xref: /openbmc/linux/drivers/scsi/ncr53c8xx.c (revision d9fd5a71)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /******************************************************************************
3 **  Device driver for the PCI-SCSI NCR538XX controller family.
4 **
5 **  Copyright (C) 1994  Wolfgang Stanglmeier
6 **
7 **
8 **-----------------------------------------------------------------------------
9 **
10 **  This driver has been ported to Linux from the FreeBSD NCR53C8XX driver
11 **  and is currently maintained by
12 **
13 **          Gerard Roudier              <groudier@free.fr>
14 **
15 **  Being given that this driver originates from the FreeBSD version, and
16 **  in order to keep synergy on both, any suggested enhancements and corrections
17 **  received on Linux are automatically a potential candidate for the FreeBSD
18 **  version.
19 **
20 **  The original driver has been written for 386bsd and FreeBSD by
21 **          Wolfgang Stanglmeier        <wolf@cologne.de>
22 **          Stefan Esser                <se@mi.Uni-Koeln.de>
23 **
24 **  And has been ported to NetBSD by
25 **          Charles M. Hannum           <mycroft@gnu.ai.mit.edu>
26 **
27 **-----------------------------------------------------------------------------
28 **
29 **                     Brief history
30 **
31 **  December 10 1995 by Gerard Roudier:
32 **     Initial port to Linux.
33 **
34 **  June 23 1996 by Gerard Roudier:
35 **     Support for 64 bits architectures (Alpha).
36 **
37 **  November 30 1996 by Gerard Roudier:
38 **     Support for Fast-20 scsi.
39 **     Support for large DMA fifo and 128 dwords bursting.
40 **
41 **  February 27 1997 by Gerard Roudier:
42 **     Support for Fast-40 scsi.
43 **     Support for on-Board RAM.
44 **
45 **  May 3 1997 by Gerard Roudier:
46 **     Full support for scsi scripts instructions pre-fetching.
47 **
48 **  May 19 1997 by Richard Waltham <dormouse@farsrobt.demon.co.uk>:
49 **     Support for NvRAM detection and reading.
50 **
51 **  August 18 1997 by Cort <cort@cs.nmt.edu>:
52 **     Support for Power/PC (Big Endian).
53 **
54 **  June 20 1998 by Gerard Roudier
55 **     Support for up to 64 tags per lun.
56 **     O(1) everywhere (C and SCRIPTS) for normal cases.
57 **     Low PCI traffic for command handling when on-chip RAM is present.
58 **     Aggressive SCSI SCRIPTS optimizations.
59 **
60 **  2005 by Matthew Wilcox and James Bottomley
61 **     PCI-ectomy.  This driver now supports only the 720 chip (see the
62 **     NCR_Q720 and zalon drivers for the bus probe logic).
63 **
64 *******************************************************************************
65 */
66 
67 /*
68 **	Supported SCSI-II features:
69 **	    Synchronous negotiation
70 **	    Wide negotiation        (depends on the NCR Chip)
71 **	    Enable disconnection
72 **	    Tagged command queuing
73 **	    Parity checking
74 **	    Etc...
75 **
76 **	Supported NCR/SYMBIOS chips:
77 **		53C720		(Wide,   Fast SCSI-2, intfly problems)
78 */
79 
80 /* Name and version of the driver */
81 #define SCSI_NCR_DRIVER_NAME	"ncr53c8xx-3.4.3g"
82 
83 #define SCSI_NCR_DEBUG_FLAGS	(0)
84 
85 #include <linux/blkdev.h>
86 #include <linux/delay.h>
87 #include <linux/dma-mapping.h>
88 #include <linux/errno.h>
89 #include <linux/gfp.h>
90 #include <linux/init.h>
91 #include <linux/interrupt.h>
92 #include <linux/ioport.h>
93 #include <linux/mm.h>
94 #include <linux/module.h>
95 #include <linux/sched.h>
96 #include <linux/signal.h>
97 #include <linux/spinlock.h>
98 #include <linux/stat.h>
99 #include <linux/string.h>
100 #include <linux/time.h>
101 #include <linux/timer.h>
102 #include <linux/types.h>
103 
104 #include <asm/dma.h>
105 #include <asm/io.h>
106 
107 #include <scsi/scsi.h>
108 #include <scsi/scsi_cmnd.h>
109 #include <scsi/scsi_dbg.h>
110 #include <scsi/scsi_device.h>
111 #include <scsi/scsi_tcq.h>
112 #include <scsi/scsi_transport.h>
113 #include <scsi/scsi_transport_spi.h>
114 
115 #include "ncr53c8xx.h"
116 
117 #define NAME53C8XX		"ncr53c8xx"
118 
119 /*==========================================================
120 **
121 **	Debugging tags
122 **
123 **==========================================================
124 */
125 
126 #define DEBUG_ALLOC    (0x0001)
127 #define DEBUG_PHASE    (0x0002)
128 #define DEBUG_QUEUE    (0x0008)
129 #define DEBUG_RESULT   (0x0010)
130 #define DEBUG_POINTER  (0x0020)
131 #define DEBUG_SCRIPT   (0x0040)
132 #define DEBUG_TINY     (0x0080)
133 #define DEBUG_TIMING   (0x0100)
134 #define DEBUG_NEGO     (0x0200)
135 #define DEBUG_TAGS     (0x0400)
136 #define DEBUG_SCATTER  (0x0800)
137 #define DEBUG_IC        (0x1000)
138 
139 /*
140 **    Enable/Disable debug messages.
141 **    Can be changed at runtime too.
142 */
143 
144 #ifdef SCSI_NCR_DEBUG_INFO_SUPPORT
145 static int ncr_debug = SCSI_NCR_DEBUG_FLAGS;
146 	#define DEBUG_FLAGS ncr_debug
147 #else
148 	#define DEBUG_FLAGS	SCSI_NCR_DEBUG_FLAGS
149 #endif
150 
151 /*
152  * Locally used status flag
153  */
154 #define SAM_STAT_ILLEGAL	0xff
155 
156 static inline struct list_head *ncr_list_pop(struct list_head *head)
157 {
158 	if (!list_empty(head)) {
159 		struct list_head *elem = head->next;
160 
161 		list_del(elem);
162 		return elem;
163 	}
164 
165 	return NULL;
166 }
167 
168 /*==========================================================
169 **
170 **	Simple power of two buddy-like allocator.
171 **
172 **	This simple code is not intended to be fast, but to
173 **	provide power of 2 aligned memory allocations.
174 **	Since the SCRIPTS processor only supplies 8 bit
175 **	arithmetic, this allocator allows simple and fast
176 **	address calculations  from the SCRIPTS code.
177 **	In addition, cache line alignment is guaranteed for
178 **	power of 2 cache line size.
179 **	Enhanced in linux-2.3.44 to provide a memory pool
180 **	per pcidev to support dynamic dma mapping. (I would
181 **	have preferred a real bus abstraction, btw).
182 **
183 **==========================================================
184 */
185 
186 #define MEMO_SHIFT	4	/* 16 bytes minimum memory chunk */
187 #if PAGE_SIZE >= 8192
188 #define MEMO_PAGE_ORDER	0	/* 1 PAGE  maximum */
189 #else
190 #define MEMO_PAGE_ORDER	1	/* 2 PAGES maximum */
191 #endif
192 #define MEMO_FREE_UNUSED	/* Free unused pages immediately */
193 #define MEMO_WARN	1
194 #define MEMO_GFP_FLAGS	GFP_ATOMIC
195 #define MEMO_CLUSTER_SHIFT	(PAGE_SHIFT+MEMO_PAGE_ORDER)
196 #define MEMO_CLUSTER_SIZE	(1UL << MEMO_CLUSTER_SHIFT)
197 #define MEMO_CLUSTER_MASK	(MEMO_CLUSTER_SIZE-1)
198 
199 typedef u_long m_addr_t;	/* Enough bits to bit-hack addresses */
200 typedef struct device *m_bush_t;	/* Something that addresses DMAable */
201 
202 typedef struct m_link {		/* Link between free memory chunks */
203 	struct m_link *next;
204 } m_link_s;
205 
206 typedef struct m_vtob {		/* Virtual to Bus address translation */
207 	struct m_vtob *next;
208 	m_addr_t vaddr;
209 	m_addr_t baddr;
210 } m_vtob_s;
211 #define VTOB_HASH_SHIFT		5
212 #define VTOB_HASH_SIZE		(1UL << VTOB_HASH_SHIFT)
213 #define VTOB_HASH_MASK		(VTOB_HASH_SIZE-1)
214 #define VTOB_HASH_CODE(m)	\
215 	((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK)
216 
217 typedef struct m_pool {		/* Memory pool of a given kind */
218 	m_bush_t bush;
219 	m_addr_t (*getp)(struct m_pool *);
220 	void (*freep)(struct m_pool *, m_addr_t);
221 	int nump;
222 	m_vtob_s *(vtob[VTOB_HASH_SIZE]);
223 	struct m_pool *next;
224 	struct m_link h[PAGE_SHIFT-MEMO_SHIFT+MEMO_PAGE_ORDER+1];
225 } m_pool_s;
226 
227 static void *___m_alloc(m_pool_s *mp, int size)
228 {
229 	int i = 0;
230 	int s = (1 << MEMO_SHIFT);
231 	int j;
232 	m_addr_t a;
233 	m_link_s *h = mp->h;
234 
235 	if (size > (PAGE_SIZE << MEMO_PAGE_ORDER))
236 		return NULL;
237 
238 	while (size > s) {
239 		s <<= 1;
240 		++i;
241 	}
242 
243 	j = i;
244 	while (!h[j].next) {
245 		if (s == (PAGE_SIZE << MEMO_PAGE_ORDER)) {
246 			h[j].next = (m_link_s *)mp->getp(mp);
247 			if (h[j].next)
248 				h[j].next->next = NULL;
249 			break;
250 		}
251 		++j;
252 		s <<= 1;
253 	}
254 	a = (m_addr_t) h[j].next;
255 	if (a) {
256 		h[j].next = h[j].next->next;
257 		while (j > i) {
258 			j -= 1;
259 			s >>= 1;
260 			h[j].next = (m_link_s *) (a+s);
261 			h[j].next->next = NULL;
262 		}
263 	}
264 #ifdef DEBUG
265 	printk("___m_alloc(%d) = %p\n", size, (void *) a);
266 #endif
267 	return (void *) a;
268 }
269 
270 static void ___m_free(m_pool_s *mp, void *ptr, int size)
271 {
272 	int i = 0;
273 	int s = (1 << MEMO_SHIFT);
274 	m_link_s *q;
275 	m_addr_t a, b;
276 	m_link_s *h = mp->h;
277 
278 #ifdef DEBUG
279 	printk("___m_free(%p, %d)\n", ptr, size);
280 #endif
281 
282 	if (size > (PAGE_SIZE << MEMO_PAGE_ORDER))
283 		return;
284 
285 	while (size > s) {
286 		s <<= 1;
287 		++i;
288 	}
289 
290 	a = (m_addr_t) ptr;
291 
292 	while (1) {
293 #ifdef MEMO_FREE_UNUSED
294 		if (s == (PAGE_SIZE << MEMO_PAGE_ORDER)) {
295 			mp->freep(mp, a);
296 			break;
297 		}
298 #endif
299 		b = a ^ s;
300 		q = &h[i];
301 		while (q->next && q->next != (m_link_s *) b) {
302 			q = q->next;
303 		}
304 		if (!q->next) {
305 			((m_link_s *) a)->next = h[i].next;
306 			h[i].next = (m_link_s *) a;
307 			break;
308 		}
309 		q->next = q->next->next;
310 		a = a & b;
311 		s <<= 1;
312 		++i;
313 	}
314 }
315 
316 static DEFINE_SPINLOCK(ncr53c8xx_lock);
317 
318 static void *__m_calloc2(m_pool_s *mp, int size, char *name, int uflags)
319 {
320 	void *p;
321 
322 	p = ___m_alloc(mp, size);
323 
324 	if (DEBUG_FLAGS & DEBUG_ALLOC)
325 		printk ("new %-10s[%4d] @%p.\n", name, size, p);
326 
327 	if (p)
328 		memset(p, 0, size);
329 	else if (uflags & MEMO_WARN)
330 		printk (NAME53C8XX ": failed to allocate %s[%d]\n", name, size);
331 
332 	return p;
333 }
334 
335 #define __m_calloc(mp, s, n)	__m_calloc2(mp, s, n, MEMO_WARN)
336 
337 static void __m_free(m_pool_s *mp, void *ptr, int size, char *name)
338 {
339 	if (DEBUG_FLAGS & DEBUG_ALLOC)
340 		printk ("freeing %-10s[%4d] @%p.\n", name, size, ptr);
341 
342 	___m_free(mp, ptr, size);
343 
344 }
345 
346 /*
347  * With pci bus iommu support, we use a default pool of unmapped memory
348  * for memory we donnot need to DMA from/to and one pool per pcidev for
349  * memory accessed by the PCI chip. `mp0' is the default not DMAable pool.
350  */
351 
352 static m_addr_t ___mp0_getp(m_pool_s *mp)
353 {
354 	m_addr_t m = __get_free_pages(MEMO_GFP_FLAGS, MEMO_PAGE_ORDER);
355 	if (m)
356 		++mp->nump;
357 	return m;
358 }
359 
360 static void ___mp0_freep(m_pool_s *mp, m_addr_t m)
361 {
362 	free_pages(m, MEMO_PAGE_ORDER);
363 	--mp->nump;
364 }
365 
366 static m_pool_s mp0 = {NULL, ___mp0_getp, ___mp0_freep};
367 
368 /*
369  * DMAable pools.
370  */
371 
372 /*
373  * With pci bus iommu support, we maintain one pool per pcidev and a
374  * hashed reverse table for virtual to bus physical address translations.
375  */
376 static m_addr_t ___dma_getp(m_pool_s *mp)
377 {
378 	m_addr_t vp;
379 	m_vtob_s *vbp;
380 
381 	vbp = __m_calloc(&mp0, sizeof(*vbp), "VTOB");
382 	if (vbp) {
383 		dma_addr_t daddr;
384 		vp = (m_addr_t) dma_alloc_coherent(mp->bush,
385 						PAGE_SIZE<<MEMO_PAGE_ORDER,
386 						&daddr, GFP_ATOMIC);
387 		if (vp) {
388 			int hc = VTOB_HASH_CODE(vp);
389 			vbp->vaddr = vp;
390 			vbp->baddr = daddr;
391 			vbp->next = mp->vtob[hc];
392 			mp->vtob[hc] = vbp;
393 			++mp->nump;
394 			return vp;
395 		}
396 	}
397 	if (vbp)
398 		__m_free(&mp0, vbp, sizeof(*vbp), "VTOB");
399 	return 0;
400 }
401 
402 static void ___dma_freep(m_pool_s *mp, m_addr_t m)
403 {
404 	m_vtob_s **vbpp, *vbp;
405 	int hc = VTOB_HASH_CODE(m);
406 
407 	vbpp = &mp->vtob[hc];
408 	while (*vbpp && (*vbpp)->vaddr != m)
409 		vbpp = &(*vbpp)->next;
410 	if (*vbpp) {
411 		vbp = *vbpp;
412 		*vbpp = (*vbpp)->next;
413 		dma_free_coherent(mp->bush, PAGE_SIZE<<MEMO_PAGE_ORDER,
414 				  (void *)vbp->vaddr, (dma_addr_t)vbp->baddr);
415 		__m_free(&mp0, vbp, sizeof(*vbp), "VTOB");
416 		--mp->nump;
417 	}
418 }
419 
420 static inline m_pool_s *___get_dma_pool(m_bush_t bush)
421 {
422 	m_pool_s *mp;
423 	for (mp = mp0.next; mp && mp->bush != bush; mp = mp->next);
424 	return mp;
425 }
426 
427 static m_pool_s *___cre_dma_pool(m_bush_t bush)
428 {
429 	m_pool_s *mp;
430 	mp = __m_calloc(&mp0, sizeof(*mp), "MPOOL");
431 	if (mp) {
432 		memset(mp, 0, sizeof(*mp));
433 		mp->bush = bush;
434 		mp->getp = ___dma_getp;
435 		mp->freep = ___dma_freep;
436 		mp->next = mp0.next;
437 		mp0.next = mp;
438 	}
439 	return mp;
440 }
441 
442 static void ___del_dma_pool(m_pool_s *p)
443 {
444 	struct m_pool **pp = &mp0.next;
445 
446 	while (*pp && *pp != p)
447 		pp = &(*pp)->next;
448 	if (*pp) {
449 		*pp = (*pp)->next;
450 		__m_free(&mp0, p, sizeof(*p), "MPOOL");
451 	}
452 }
453 
454 static void *__m_calloc_dma(m_bush_t bush, int size, char *name)
455 {
456 	u_long flags;
457 	struct m_pool *mp;
458 	void *m = NULL;
459 
460 	spin_lock_irqsave(&ncr53c8xx_lock, flags);
461 	mp = ___get_dma_pool(bush);
462 	if (!mp)
463 		mp = ___cre_dma_pool(bush);
464 	if (mp)
465 		m = __m_calloc(mp, size, name);
466 	if (mp && !mp->nump)
467 		___del_dma_pool(mp);
468 	spin_unlock_irqrestore(&ncr53c8xx_lock, flags);
469 
470 	return m;
471 }
472 
473 static void __m_free_dma(m_bush_t bush, void *m, int size, char *name)
474 {
475 	u_long flags;
476 	struct m_pool *mp;
477 
478 	spin_lock_irqsave(&ncr53c8xx_lock, flags);
479 	mp = ___get_dma_pool(bush);
480 	if (mp)
481 		__m_free(mp, m, size, name);
482 	if (mp && !mp->nump)
483 		___del_dma_pool(mp);
484 	spin_unlock_irqrestore(&ncr53c8xx_lock, flags);
485 }
486 
487 static m_addr_t __vtobus(m_bush_t bush, void *m)
488 {
489 	u_long flags;
490 	m_pool_s *mp;
491 	int hc = VTOB_HASH_CODE(m);
492 	m_vtob_s *vp = NULL;
493 	m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK;
494 
495 	spin_lock_irqsave(&ncr53c8xx_lock, flags);
496 	mp = ___get_dma_pool(bush);
497 	if (mp) {
498 		vp = mp->vtob[hc];
499 		while (vp && (m_addr_t) vp->vaddr != a)
500 			vp = vp->next;
501 	}
502 	spin_unlock_irqrestore(&ncr53c8xx_lock, flags);
503 	return vp ? vp->baddr + (((m_addr_t) m) - a) : 0;
504 }
505 
506 #define _m_calloc_dma(np, s, n)		__m_calloc_dma(np->dev, s, n)
507 #define _m_free_dma(np, p, s, n)	__m_free_dma(np->dev, p, s, n)
508 #define m_calloc_dma(s, n)		_m_calloc_dma(np, s, n)
509 #define m_free_dma(p, s, n)		_m_free_dma(np, p, s, n)
510 #define _vtobus(np, p)			__vtobus(np->dev, p)
511 #define vtobus(p)			_vtobus(np, p)
512 
513 /*
514  *  Deal with DMA mapping/unmapping.
515  */
516 
517 /* To keep track of the dma mapping (sg/single) that has been set */
518 #define __data_mapped	SCp.phase
519 #define __data_mapping	SCp.have_data_in
520 
521 static void __unmap_scsi_data(struct device *dev, struct scsi_cmnd *cmd)
522 {
523 	switch(cmd->__data_mapped) {
524 	case 2:
525 		scsi_dma_unmap(cmd);
526 		break;
527 	}
528 	cmd->__data_mapped = 0;
529 }
530 
531 static int __map_scsi_sg_data(struct device *dev, struct scsi_cmnd *cmd)
532 {
533 	int use_sg;
534 
535 	use_sg = scsi_dma_map(cmd);
536 	if (!use_sg)
537 		return 0;
538 
539 	cmd->__data_mapped = 2;
540 	cmd->__data_mapping = use_sg;
541 
542 	return use_sg;
543 }
544 
545 #define unmap_scsi_data(np, cmd)	__unmap_scsi_data(np->dev, cmd)
546 #define map_scsi_sg_data(np, cmd)	__map_scsi_sg_data(np->dev, cmd)
547 
548 /*==========================================================
549 **
550 **	Driver setup.
551 **
552 **	This structure is initialized from linux config
553 **	options. It can be overridden at boot-up by the boot
554 **	command line.
555 **
556 **==========================================================
557 */
558 static struct ncr_driver_setup
559 	driver_setup			= SCSI_NCR_DRIVER_SETUP;
560 
561 #ifndef MODULE
562 #ifdef	SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT
563 static struct ncr_driver_setup
564 	driver_safe_setup __initdata	= SCSI_NCR_DRIVER_SAFE_SETUP;
565 #endif
566 #endif /* !MODULE */
567 
568 #define initverbose (driver_setup.verbose)
569 #define bootverbose (np->verbose)
570 
571 
572 /*===================================================================
573 **
574 **	Driver setup from the boot command line
575 **
576 **===================================================================
577 */
578 
579 #ifdef MODULE
580 #define	ARG_SEP	' '
581 #else
582 #define	ARG_SEP	','
583 #endif
584 
585 #define OPT_TAGS		1
586 #define OPT_MASTER_PARITY	2
587 #define OPT_SCSI_PARITY		3
588 #define OPT_DISCONNECTION	4
589 #define OPT_SPECIAL_FEATURES	5
590 #define OPT_UNUSED_1		6
591 #define OPT_FORCE_SYNC_NEGO	7
592 #define OPT_REVERSE_PROBE	8
593 #define OPT_DEFAULT_SYNC	9
594 #define OPT_VERBOSE		10
595 #define OPT_DEBUG		11
596 #define OPT_BURST_MAX		12
597 #define OPT_LED_PIN		13
598 #define OPT_MAX_WIDE		14
599 #define OPT_SETTLE_DELAY	15
600 #define OPT_DIFF_SUPPORT	16
601 #define OPT_IRQM		17
602 #define OPT_PCI_FIX_UP		18
603 #define OPT_BUS_CHECK		19
604 #define OPT_OPTIMIZE		20
605 #define OPT_RECOVERY		21
606 #define OPT_SAFE_SETUP		22
607 #define OPT_USE_NVRAM		23
608 #define OPT_EXCLUDE		24
609 #define OPT_HOST_ID		25
610 
611 #ifdef SCSI_NCR_IARB_SUPPORT
612 #define OPT_IARB		26
613 #endif
614 
615 #ifdef MODULE
616 #define	ARG_SEP	' '
617 #else
618 #define	ARG_SEP	','
619 #endif
620 
621 #ifndef MODULE
622 static char setup_token[] __initdata =
623 	"tags:"   "mpar:"
624 	"spar:"   "disc:"
625 	"specf:"  "ultra:"
626 	"fsn:"    "revprob:"
627 	"sync:"   "verb:"
628 	"debug:"  "burst:"
629 	"led:"    "wide:"
630 	"settle:" "diff:"
631 	"irqm:"   "pcifix:"
632 	"buschk:" "optim:"
633 	"recovery:"
634 	"safe:"   "nvram:"
635 	"excl:"   "hostid:"
636 #ifdef SCSI_NCR_IARB_SUPPORT
637 	"iarb:"
638 #endif
639 	;	/* DONNOT REMOVE THIS ';' */
640 
641 static int __init get_setup_token(char *p)
642 {
643 	char *cur = setup_token;
644 	char *pc;
645 	int i = 0;
646 
647 	while (cur != NULL && (pc = strchr(cur, ':')) != NULL) {
648 		++pc;
649 		++i;
650 		if (!strncmp(p, cur, pc - cur))
651 			return i;
652 		cur = pc;
653 	}
654 	return 0;
655 }
656 
657 static int __init sym53c8xx__setup(char *str)
658 {
659 #ifdef SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT
660 	char *cur = str;
661 	char *pc, *pv;
662 	int i, val, c;
663 	int xi = 0;
664 
665 	while (cur != NULL && (pc = strchr(cur, ':')) != NULL) {
666 		char *pe;
667 
668 		val = 0;
669 		pv = pc;
670 		c = *++pv;
671 
672 		if	(c == 'n')
673 			val = 0;
674 		else if	(c == 'y')
675 			val = 1;
676 		else
677 			val = (int) simple_strtoul(pv, &pe, 0);
678 
679 		switch (get_setup_token(cur)) {
680 		case OPT_TAGS:
681 			driver_setup.default_tags = val;
682 			if (pe && *pe == '/') {
683 				i = 0;
684 				while (*pe && *pe != ARG_SEP &&
685 					i < sizeof(driver_setup.tag_ctrl)-1) {
686 					driver_setup.tag_ctrl[i++] = *pe++;
687 				}
688 				driver_setup.tag_ctrl[i] = '\0';
689 			}
690 			break;
691 		case OPT_MASTER_PARITY:
692 			driver_setup.master_parity = val;
693 			break;
694 		case OPT_SCSI_PARITY:
695 			driver_setup.scsi_parity = val;
696 			break;
697 		case OPT_DISCONNECTION:
698 			driver_setup.disconnection = val;
699 			break;
700 		case OPT_SPECIAL_FEATURES:
701 			driver_setup.special_features = val;
702 			break;
703 		case OPT_FORCE_SYNC_NEGO:
704 			driver_setup.force_sync_nego = val;
705 			break;
706 		case OPT_REVERSE_PROBE:
707 			driver_setup.reverse_probe = val;
708 			break;
709 		case OPT_DEFAULT_SYNC:
710 			driver_setup.default_sync = val;
711 			break;
712 		case OPT_VERBOSE:
713 			driver_setup.verbose = val;
714 			break;
715 		case OPT_DEBUG:
716 			driver_setup.debug = val;
717 			break;
718 		case OPT_BURST_MAX:
719 			driver_setup.burst_max = val;
720 			break;
721 		case OPT_LED_PIN:
722 			driver_setup.led_pin = val;
723 			break;
724 		case OPT_MAX_WIDE:
725 			driver_setup.max_wide = val? 1:0;
726 			break;
727 		case OPT_SETTLE_DELAY:
728 			driver_setup.settle_delay = val;
729 			break;
730 		case OPT_DIFF_SUPPORT:
731 			driver_setup.diff_support = val;
732 			break;
733 		case OPT_IRQM:
734 			driver_setup.irqm = val;
735 			break;
736 		case OPT_PCI_FIX_UP:
737 			driver_setup.pci_fix_up	= val;
738 			break;
739 		case OPT_BUS_CHECK:
740 			driver_setup.bus_check = val;
741 			break;
742 		case OPT_OPTIMIZE:
743 			driver_setup.optimize = val;
744 			break;
745 		case OPT_RECOVERY:
746 			driver_setup.recovery = val;
747 			break;
748 		case OPT_USE_NVRAM:
749 			driver_setup.use_nvram = val;
750 			break;
751 		case OPT_SAFE_SETUP:
752 			memcpy(&driver_setup, &driver_safe_setup,
753 				sizeof(driver_setup));
754 			break;
755 		case OPT_EXCLUDE:
756 			if (xi < SCSI_NCR_MAX_EXCLUDES)
757 				driver_setup.excludes[xi++] = val;
758 			break;
759 		case OPT_HOST_ID:
760 			driver_setup.host_id = val;
761 			break;
762 #ifdef SCSI_NCR_IARB_SUPPORT
763 		case OPT_IARB:
764 			driver_setup.iarb = val;
765 			break;
766 #endif
767 		default:
768 			printk("sym53c8xx_setup: unexpected boot option '%.*s' ignored\n", (int)(pc-cur+1), cur);
769 			break;
770 		}
771 
772 		if ((cur = strchr(cur, ARG_SEP)) != NULL)
773 			++cur;
774 	}
775 #endif /* SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT */
776 	return 1;
777 }
778 #endif /* !MODULE */
779 
780 /*===================================================================
781 **
782 **	Get device queue depth from boot command line.
783 **
784 **===================================================================
785 */
786 #define DEF_DEPTH	(driver_setup.default_tags)
787 #define ALL_TARGETS	-2
788 #define NO_TARGET	-1
789 #define ALL_LUNS	-2
790 #define NO_LUN		-1
791 
792 static int device_queue_depth(int unit, int target, int lun)
793 {
794 	int c, h, t, u, v;
795 	char *p = driver_setup.tag_ctrl;
796 	char *ep;
797 
798 	h = -1;
799 	t = NO_TARGET;
800 	u = NO_LUN;
801 	while ((c = *p++) != 0) {
802 		v = simple_strtoul(p, &ep, 0);
803 		switch(c) {
804 		case '/':
805 			++h;
806 			t = ALL_TARGETS;
807 			u = ALL_LUNS;
808 			break;
809 		case 't':
810 			if (t != target)
811 				t = (target == v) ? v : NO_TARGET;
812 			u = ALL_LUNS;
813 			break;
814 		case 'u':
815 			if (u != lun)
816 				u = (lun == v) ? v : NO_LUN;
817 			break;
818 		case 'q':
819 			if (h == unit &&
820 				(t == ALL_TARGETS || t == target) &&
821 				(u == ALL_LUNS    || u == lun))
822 				return v;
823 			break;
824 		case '-':
825 			t = ALL_TARGETS;
826 			u = ALL_LUNS;
827 			break;
828 		default:
829 			break;
830 		}
831 		p = ep;
832 	}
833 	return DEF_DEPTH;
834 }
835 
836 
837 /*==========================================================
838 **
839 **	The CCB done queue uses an array of CCB virtual
840 **	addresses. Empty entries are flagged using the bogus
841 **	virtual address 0xffffffff.
842 **
843 **	Since PCI ensures that only aligned DWORDs are accessed
844 **	atomically, 64 bit little-endian architecture requires
845 **	to test the high order DWORD of the entry to determine
846 **	if it is empty or valid.
847 **
848 **	BTW, I will make things differently as soon as I will
849 **	have a better idea, but this is simple and should work.
850 **
851 **==========================================================
852 */
853 
854 #define SCSI_NCR_CCB_DONE_SUPPORT
855 #ifdef  SCSI_NCR_CCB_DONE_SUPPORT
856 
857 #define MAX_DONE 24
858 #define CCB_DONE_EMPTY 0xffffffffUL
859 
860 /* All 32 bit architectures */
861 #if BITS_PER_LONG == 32
862 #define CCB_DONE_VALID(cp)  (((u_long) cp) != CCB_DONE_EMPTY)
863 
864 /* All > 32 bit (64 bit) architectures regardless endian-ness */
865 #else
866 #define CCB_DONE_VALID(cp)  \
867 	((((u_long) cp) & 0xffffffff00000000ul) && 	\
868 	 (((u_long) cp) & 0xfffffffful) != CCB_DONE_EMPTY)
869 #endif
870 
871 #endif /* SCSI_NCR_CCB_DONE_SUPPORT */
872 
873 /*==========================================================
874 **
875 **	Configuration and Debugging
876 **
877 **==========================================================
878 */
879 
880 /*
881 **    SCSI address of this device.
882 **    The boot routines should have set it.
883 **    If not, use this.
884 */
885 
886 #ifndef SCSI_NCR_MYADDR
887 #define SCSI_NCR_MYADDR      (7)
888 #endif
889 
890 /*
891 **    The maximum number of tags per logic unit.
892 **    Used only for disk devices that support tags.
893 */
894 
895 #ifndef SCSI_NCR_MAX_TAGS
896 #define SCSI_NCR_MAX_TAGS    (8)
897 #endif
898 
899 /*
900 **    TAGS are actually limited to 64 tags/lun.
901 **    We need to deal with power of 2, for alignment constraints.
902 */
903 #if	SCSI_NCR_MAX_TAGS > 64
904 #define	MAX_TAGS (64)
905 #else
906 #define	MAX_TAGS SCSI_NCR_MAX_TAGS
907 #endif
908 
909 #define NO_TAG	(255)
910 
911 /*
912 **	Choose appropriate type for tag bitmap.
913 */
914 #if	MAX_TAGS > 32
915 typedef u64 tagmap_t;
916 #else
917 typedef u32 tagmap_t;
918 #endif
919 
920 /*
921 **    Number of targets supported by the driver.
922 **    n permits target numbers 0..n-1.
923 **    Default is 16, meaning targets #0..#15.
924 **    #7 .. is myself.
925 */
926 
927 #ifdef SCSI_NCR_MAX_TARGET
928 #define MAX_TARGET  (SCSI_NCR_MAX_TARGET)
929 #else
930 #define MAX_TARGET  (16)
931 #endif
932 
933 /*
934 **    Number of logic units supported by the driver.
935 **    n enables logic unit numbers 0..n-1.
936 **    The common SCSI devices require only
937 **    one lun, so take 1 as the default.
938 */
939 
940 #ifdef SCSI_NCR_MAX_LUN
941 #define MAX_LUN    SCSI_NCR_MAX_LUN
942 #else
943 #define MAX_LUN    (1)
944 #endif
945 
946 /*
947 **    Asynchronous pre-scaler (ns). Shall be 40
948 */
949 
950 #ifndef SCSI_NCR_MIN_ASYNC
951 #define SCSI_NCR_MIN_ASYNC (40)
952 #endif
953 
954 /*
955 **    The maximum number of jobs scheduled for starting.
956 **    There should be one slot per target, and one slot
957 **    for each tag of each target in use.
958 **    The calculation below is actually quite silly ...
959 */
960 
961 #ifdef SCSI_NCR_CAN_QUEUE
962 #define MAX_START   (SCSI_NCR_CAN_QUEUE + 4)
963 #else
964 #define MAX_START   (MAX_TARGET + 7 * MAX_TAGS)
965 #endif
966 
967 /*
968 **   We limit the max number of pending IO to 250.
969 **   since we donnot want to allocate more than 1
970 **   PAGE for 'scripth'.
971 */
972 #if	MAX_START > 250
973 #undef	MAX_START
974 #define	MAX_START 250
975 #endif
976 
977 /*
978 **    The maximum number of segments a transfer is split into.
979 **    We support up to 127 segments for both read and write.
980 **    The data scripts are broken into 2 sub-scripts.
981 **    80 (MAX_SCATTERL) segments are moved from a sub-script
982 **    in on-chip RAM. This makes data transfers shorter than
983 **    80k (assuming 1k fs) as fast as possible.
984 */
985 
986 #define MAX_SCATTER (SCSI_NCR_MAX_SCATTER)
987 
988 #if (MAX_SCATTER > 80)
989 #define MAX_SCATTERL	80
990 #define	MAX_SCATTERH	(MAX_SCATTER - MAX_SCATTERL)
991 #else
992 #define MAX_SCATTERL	(MAX_SCATTER-1)
993 #define	MAX_SCATTERH	1
994 #endif
995 
996 /*
997 **	other
998 */
999 
1000 #define NCR_SNOOP_TIMEOUT (1000000)
1001 
1002 /*
1003 **	Other definitions
1004 */
1005 
1006 #define initverbose (driver_setup.verbose)
1007 #define bootverbose (np->verbose)
1008 
1009 /*==========================================================
1010 **
1011 **	Command control block states.
1012 **
1013 **==========================================================
1014 */
1015 
1016 #define HS_IDLE		(0)
1017 #define HS_BUSY		(1)
1018 #define HS_NEGOTIATE	(2)	/* sync/wide data transfer*/
1019 #define HS_DISCONNECT	(3)	/* Disconnected by target */
1020 
1021 #define HS_DONEMASK	(0x80)
1022 #define HS_COMPLETE	(4|HS_DONEMASK)
1023 #define HS_SEL_TIMEOUT	(5|HS_DONEMASK)	/* Selection timeout      */
1024 #define HS_RESET	(6|HS_DONEMASK)	/* SCSI reset	          */
1025 #define HS_ABORTED	(7|HS_DONEMASK)	/* Transfer aborted       */
1026 #define HS_TIMEOUT	(8|HS_DONEMASK)	/* Software timeout       */
1027 #define HS_FAIL		(9|HS_DONEMASK)	/* SCSI or PCI bus errors */
1028 #define HS_UNEXPECTED	(10|HS_DONEMASK)/* Unexpected disconnect  */
1029 
1030 /*
1031 **	Invalid host status values used by the SCRIPTS processor
1032 **	when the nexus is not fully identified.
1033 **	Shall never appear in a CCB.
1034 */
1035 
1036 #define HS_INVALMASK	(0x40)
1037 #define	HS_SELECTING	(0|HS_INVALMASK)
1038 #define	HS_IN_RESELECT	(1|HS_INVALMASK)
1039 #define	HS_STARTING	(2|HS_INVALMASK)
1040 
1041 /*
1042 **	Flags set by the SCRIPT processor for commands
1043 **	that have been skipped.
1044 */
1045 #define HS_SKIPMASK	(0x20)
1046 
1047 /*==========================================================
1048 **
1049 **	Software Interrupt Codes
1050 **
1051 **==========================================================
1052 */
1053 
1054 #define	SIR_BAD_STATUS		(1)
1055 #define	SIR_XXXXXXXXXX		(2)
1056 #define	SIR_NEGO_SYNC		(3)
1057 #define	SIR_NEGO_WIDE		(4)
1058 #define	SIR_NEGO_FAILED		(5)
1059 #define	SIR_NEGO_PROTO		(6)
1060 #define	SIR_REJECT_RECEIVED	(7)
1061 #define	SIR_REJECT_SENT		(8)
1062 #define	SIR_IGN_RESIDUE		(9)
1063 #define	SIR_MISSING_SAVE	(10)
1064 #define	SIR_RESEL_NO_MSG_IN	(11)
1065 #define	SIR_RESEL_NO_IDENTIFY	(12)
1066 #define	SIR_RESEL_BAD_LUN	(13)
1067 #define	SIR_RESEL_BAD_TARGET	(14)
1068 #define	SIR_RESEL_BAD_I_T_L	(15)
1069 #define	SIR_RESEL_BAD_I_T_L_Q	(16)
1070 #define	SIR_DONE_OVERFLOW	(17)
1071 #define	SIR_INTFLY		(18)
1072 #define	SIR_MAX			(18)
1073 
1074 /*==========================================================
1075 **
1076 **	Extended error codes.
1077 **	xerr_status field of struct ccb.
1078 **
1079 **==========================================================
1080 */
1081 
1082 #define	XE_OK		(0)
1083 #define	XE_EXTRA_DATA	(1)	/* unexpected data phase */
1084 #define	XE_BAD_PHASE	(2)	/* illegal phase (4/5)   */
1085 
1086 /*==========================================================
1087 **
1088 **	Negotiation status.
1089 **	nego_status field	of struct ccb.
1090 **
1091 **==========================================================
1092 */
1093 
1094 #define NS_NOCHANGE	(0)
1095 #define NS_SYNC		(1)
1096 #define NS_WIDE		(2)
1097 #define NS_PPR		(4)
1098 
1099 /*==========================================================
1100 **
1101 **	Misc.
1102 **
1103 **==========================================================
1104 */
1105 
1106 #define CCB_MAGIC	(0xf2691ad2)
1107 
1108 /*==========================================================
1109 **
1110 **	Declaration of structs.
1111 **
1112 **==========================================================
1113 */
1114 
1115 static struct scsi_transport_template *ncr53c8xx_transport_template = NULL;
1116 
1117 struct tcb;
1118 struct lcb;
1119 struct ccb;
1120 struct ncb;
1121 struct script;
1122 
1123 struct link {
1124 	ncrcmd	l_cmd;
1125 	ncrcmd	l_paddr;
1126 };
1127 
1128 struct	usrcmd {
1129 	u_long	target;
1130 	u_long	lun;
1131 	u_long	data;
1132 	u_long	cmd;
1133 };
1134 
1135 #define UC_SETSYNC      10
1136 #define UC_SETTAGS	11
1137 #define UC_SETDEBUG	12
1138 #define UC_SETORDER	13
1139 #define UC_SETWIDE	14
1140 #define UC_SETFLAG	15
1141 #define UC_SETVERBOSE	17
1142 
1143 #define	UF_TRACE	(0x01)
1144 #define	UF_NODISC	(0x02)
1145 #define	UF_NOSCAN	(0x04)
1146 
1147 /*========================================================================
1148 **
1149 **	Declaration of structs:		target control block
1150 **
1151 **========================================================================
1152 */
1153 struct tcb {
1154 	/*----------------------------------------------------------------
1155 	**	During reselection the ncr jumps to this point with SFBR
1156 	**	set to the encoded target number with bit 7 set.
1157 	**	if it's not this target, jump to the next.
1158 	**
1159 	**	JUMP  IF (SFBR != #target#), @(next tcb)
1160 	**----------------------------------------------------------------
1161 	*/
1162 	struct link   jump_tcb;
1163 
1164 	/*----------------------------------------------------------------
1165 	**	Load the actual values for the sxfer and the scntl3
1166 	**	register (sync/wide mode).
1167 	**
1168 	**	SCR_COPY (1), @(sval field of this tcb), @(sxfer  register)
1169 	**	SCR_COPY (1), @(wval field of this tcb), @(scntl3 register)
1170 	**----------------------------------------------------------------
1171 	*/
1172 	ncrcmd	getscr[6];
1173 
1174 	/*----------------------------------------------------------------
1175 	**	Get the IDENTIFY message and load the LUN to SFBR.
1176 	**
1177 	**	CALL, <RESEL_LUN>
1178 	**----------------------------------------------------------------
1179 	*/
1180 	struct link   call_lun;
1181 
1182 	/*----------------------------------------------------------------
1183 	**	Now look for the right lun.
1184 	**
1185 	**	For i = 0 to 3
1186 	**		SCR_JUMP ^ IFTRUE(MASK(i, 3)), @(first lcb mod. i)
1187 	**
1188 	**	Recent chips will prefetch the 4 JUMPS using only 1 burst.
1189 	**	It is kind of hashcoding.
1190 	**----------------------------------------------------------------
1191 	*/
1192 	struct link     jump_lcb[4];	/* JUMPs for reselection	*/
1193 	struct lcb *	lp[MAX_LUN];	/* The lcb's of this tcb	*/
1194 
1195 	/*----------------------------------------------------------------
1196 	**	Pointer to the ccb used for negotiation.
1197 	**	Prevent from starting a negotiation for all queued commands
1198 	**	when tagged command queuing is enabled.
1199 	**----------------------------------------------------------------
1200 	*/
1201 	struct ccb *   nego_cp;
1202 
1203 	/*----------------------------------------------------------------
1204 	**	statistical data
1205 	**----------------------------------------------------------------
1206 	*/
1207 	u_long	transfers;
1208 	u_long	bytes;
1209 
1210 	/*----------------------------------------------------------------
1211 	**	negotiation of wide and synch transfer and device quirks.
1212 	**----------------------------------------------------------------
1213 	*/
1214 #ifdef SCSI_NCR_BIG_ENDIAN
1215 /*0*/	u16	period;
1216 /*2*/	u_char	sval;
1217 /*3*/	u_char	minsync;
1218 /*0*/	u_char	wval;
1219 /*1*/	u_char	widedone;
1220 /*2*/	u_char	quirks;
1221 /*3*/	u_char	maxoffs;
1222 #else
1223 /*0*/	u_char	minsync;
1224 /*1*/	u_char	sval;
1225 /*2*/	u16	period;
1226 /*0*/	u_char	maxoffs;
1227 /*1*/	u_char	quirks;
1228 /*2*/	u_char	widedone;
1229 /*3*/	u_char	wval;
1230 #endif
1231 
1232 	/* User settable limits and options.  */
1233 	u_char	usrsync;
1234 	u_char	usrwide;
1235 	u_char	usrtags;
1236 	u_char	usrflag;
1237 	struct scsi_target *starget;
1238 };
1239 
1240 /*========================================================================
1241 **
1242 **	Declaration of structs:		lun control block
1243 **
1244 **========================================================================
1245 */
1246 struct lcb {
1247 	/*----------------------------------------------------------------
1248 	**	During reselection the ncr jumps to this point
1249 	**	with SFBR set to the "Identify" message.
1250 	**	if it's not this lun, jump to the next.
1251 	**
1252 	**	JUMP  IF (SFBR != #lun#), @(next lcb of this target)
1253 	**
1254 	**	It is this lun. Load TEMP with the nexus jumps table
1255 	**	address and jump to RESEL_TAG (or RESEL_NOTAG).
1256 	**
1257 	**		SCR_COPY (4), p_jump_ccb, TEMP,
1258 	**		SCR_JUMP, <RESEL_TAG>
1259 	**----------------------------------------------------------------
1260 	*/
1261 	struct link	jump_lcb;
1262 	ncrcmd		load_jump_ccb[3];
1263 	struct link	jump_tag;
1264 	ncrcmd		p_jump_ccb;	/* Jump table bus address	*/
1265 
1266 	/*----------------------------------------------------------------
1267 	**	Jump table used by the script processor to directly jump
1268 	**	to the CCB corresponding to the reselected nexus.
1269 	**	Address is allocated on 256 bytes boundary in order to
1270 	**	allow 8 bit calculation of the tag jump entry for up to
1271 	**	64 possible tags.
1272 	**----------------------------------------------------------------
1273 	*/
1274 	u32		jump_ccb_0;	/* Default table if no tags	*/
1275 	u32		*jump_ccb;	/* Virtual address		*/
1276 
1277 	/*----------------------------------------------------------------
1278 	**	CCB queue management.
1279 	**----------------------------------------------------------------
1280 	*/
1281 	struct list_head free_ccbq;	/* Queue of available CCBs	*/
1282 	struct list_head busy_ccbq;	/* Queue of busy CCBs		*/
1283 	struct list_head wait_ccbq;	/* Queue of waiting for IO CCBs	*/
1284 	struct list_head skip_ccbq;	/* Queue of skipped CCBs	*/
1285 	u_char		actccbs;	/* Number of allocated CCBs	*/
1286 	u_char		busyccbs;	/* CCBs busy for this lun	*/
1287 	u_char		queuedccbs;	/* CCBs queued to the controller*/
1288 	u_char		queuedepth;	/* Queue depth for this lun	*/
1289 	u_char		scdev_depth;	/* SCSI device queue depth	*/
1290 	u_char		maxnxs;		/* Max possible nexuses		*/
1291 
1292 	/*----------------------------------------------------------------
1293 	**	Control of tagged command queuing.
1294 	**	Tags allocation is performed using a circular buffer.
1295 	**	This avoids using a loop for tag allocation.
1296 	**----------------------------------------------------------------
1297 	*/
1298 	u_char		ia_tag;		/* Allocation index		*/
1299 	u_char		if_tag;		/* Freeing index		*/
1300 	u_char cb_tags[MAX_TAGS];	/* Circular tags buffer	*/
1301 	u_char		usetags;	/* Command queuing is active	*/
1302 	u_char		maxtags;	/* Max nr of tags asked by user	*/
1303 	u_char		numtags;	/* Current number of tags	*/
1304 
1305 	/*----------------------------------------------------------------
1306 	**	QUEUE FULL control and ORDERED tag control.
1307 	**----------------------------------------------------------------
1308 	*/
1309 	/*----------------------------------------------------------------
1310 	**	QUEUE FULL and ORDERED tag control.
1311 	**----------------------------------------------------------------
1312 	*/
1313 	u16		num_good;	/* Nr of GOOD since QUEUE FULL	*/
1314 	tagmap_t	tags_umap;	/* Used tags bitmap		*/
1315 	tagmap_t	tags_smap;	/* Tags in use at 'tag_stime'	*/
1316 	u_long		tags_stime;	/* Last time we set smap=umap	*/
1317 	struct ccb *	held_ccb;	/* CCB held for QUEUE FULL	*/
1318 };
1319 
1320 /*========================================================================
1321 **
1322 **      Declaration of structs:     the launch script.
1323 **
1324 **========================================================================
1325 **
1326 **	It is part of the CCB and is called by the scripts processor to
1327 **	start or restart the data structure (nexus).
1328 **	This 6 DWORDs mini script makes use of prefetching.
1329 **
1330 **------------------------------------------------------------------------
1331 */
1332 struct launch {
1333 	/*----------------------------------------------------------------
1334 	**	SCR_COPY(4),	@(p_phys), @(dsa register)
1335 	**	SCR_JUMP,	@(scheduler_point)
1336 	**----------------------------------------------------------------
1337 	*/
1338 	ncrcmd		setup_dsa[3];	/* Copy 'phys' address to dsa	*/
1339 	struct link	schedule;	/* Jump to scheduler point	*/
1340 	ncrcmd		p_phys;		/* 'phys' header bus address	*/
1341 };
1342 
1343 /*========================================================================
1344 **
1345 **      Declaration of structs:     global HEADER.
1346 **
1347 **========================================================================
1348 **
1349 **	This substructure is copied from the ccb to a global address after
1350 **	selection (or reselection) and copied back before disconnect.
1351 **
1352 **	These fields are accessible to the script processor.
1353 **
1354 **------------------------------------------------------------------------
1355 */
1356 
1357 struct head {
1358 	/*----------------------------------------------------------------
1359 	**	Saved data pointer.
1360 	**	Points to the position in the script responsible for the
1361 	**	actual transfer transfer of data.
1362 	**	It's written after reception of a SAVE_DATA_POINTER message.
1363 	**	The goalpointer points after the last transfer command.
1364 	**----------------------------------------------------------------
1365 	*/
1366 	u32		savep;
1367 	u32		lastp;
1368 	u32		goalp;
1369 
1370 	/*----------------------------------------------------------------
1371 	**	Alternate data pointer.
1372 	**	They are copied back to savep/lastp/goalp by the SCRIPTS
1373 	**	when the direction is unknown and the device claims data out.
1374 	**----------------------------------------------------------------
1375 	*/
1376 	u32		wlastp;
1377 	u32		wgoalp;
1378 
1379 	/*----------------------------------------------------------------
1380 	**	The virtual address of the ccb containing this header.
1381 	**----------------------------------------------------------------
1382 	*/
1383 	struct ccb *	cp;
1384 
1385 	/*----------------------------------------------------------------
1386 	**	Status fields.
1387 	**----------------------------------------------------------------
1388 	*/
1389 	u_char		scr_st[4];	/* script status		*/
1390 	u_char		status[4];	/* host status. must be the 	*/
1391 					/*  last DWORD of the header.	*/
1392 };
1393 
1394 /*
1395 **	The status bytes are used by the host and the script processor.
1396 **
1397 **	The byte corresponding to the host_status must be stored in the
1398 **	last DWORD of the CCB header since it is used for command
1399 **	completion (ncr_wakeup()). Doing so, we are sure that the header
1400 **	has been entirely copied back to the CCB when the host_status is
1401 **	seen complete by the CPU.
1402 **
1403 **	The last four bytes (status[4]) are copied to the scratchb register
1404 **	(declared as scr0..scr3 in ncr_reg.h) just after the select/reselect,
1405 **	and copied back just after disconnecting.
1406 **	Inside the script the XX_REG are used.
1407 **
1408 **	The first four bytes (scr_st[4]) are used inside the script by
1409 **	"COPY" commands.
1410 **	Because source and destination must have the same alignment
1411 **	in a DWORD, the fields HAVE to be at the chosen offsets.
1412 **		xerr_st		0	(0x34)	scratcha
1413 **		sync_st		1	(0x05)	sxfer
1414 **		wide_st		3	(0x03)	scntl3
1415 */
1416 
1417 /*
1418 **	Last four bytes (script)
1419 */
1420 #define  QU_REG	scr0
1421 #define  HS_REG	scr1
1422 #define  HS_PRT	nc_scr1
1423 #define  SS_REG	scr2
1424 #define  SS_PRT	nc_scr2
1425 #define  PS_REG	scr3
1426 
1427 /*
1428 **	Last four bytes (host)
1429 */
1430 #ifdef SCSI_NCR_BIG_ENDIAN
1431 #define  actualquirks  phys.header.status[3]
1432 #define  host_status   phys.header.status[2]
1433 #define  scsi_status   phys.header.status[1]
1434 #define  parity_status phys.header.status[0]
1435 #else
1436 #define  actualquirks  phys.header.status[0]
1437 #define  host_status   phys.header.status[1]
1438 #define  scsi_status   phys.header.status[2]
1439 #define  parity_status phys.header.status[3]
1440 #endif
1441 
1442 /*
1443 **	First four bytes (script)
1444 */
1445 #define  xerr_st       header.scr_st[0]
1446 #define  sync_st       header.scr_st[1]
1447 #define  nego_st       header.scr_st[2]
1448 #define  wide_st       header.scr_st[3]
1449 
1450 /*
1451 **	First four bytes (host)
1452 */
1453 #define  xerr_status   phys.xerr_st
1454 #define  nego_status   phys.nego_st
1455 
1456 #if 0
1457 #define  sync_status   phys.sync_st
1458 #define  wide_status   phys.wide_st
1459 #endif
1460 
1461 /*==========================================================
1462 **
1463 **      Declaration of structs:     Data structure block
1464 **
1465 **==========================================================
1466 **
1467 **	During execution of a ccb by the script processor,
1468 **	the DSA (data structure address) register points
1469 **	to this substructure of the ccb.
1470 **	This substructure contains the header with
1471 **	the script-processor-changeable data and
1472 **	data blocks for the indirect move commands.
1473 **
1474 **----------------------------------------------------------
1475 */
1476 
1477 struct dsb {
1478 
1479 	/*
1480 	**	Header.
1481 	*/
1482 
1483 	struct head	header;
1484 
1485 	/*
1486 	**	Table data for Script
1487 	*/
1488 
1489 	struct scr_tblsel  select;
1490 	struct scr_tblmove smsg  ;
1491 	struct scr_tblmove cmd   ;
1492 	struct scr_tblmove sense ;
1493 	struct scr_tblmove data[MAX_SCATTER];
1494 };
1495 
1496 
1497 /*========================================================================
1498 **
1499 **      Declaration of structs:     Command control block.
1500 **
1501 **========================================================================
1502 */
1503 struct ccb {
1504 	/*----------------------------------------------------------------
1505 	**	This is the data structure which is pointed by the DSA
1506 	**	register when it is executed by the script processor.
1507 	**	It must be the first entry because it contains the header
1508 	**	as first entry that must be cache line aligned.
1509 	**----------------------------------------------------------------
1510 	*/
1511 	struct dsb	phys;
1512 
1513 	/*----------------------------------------------------------------
1514 	**	Mini-script used at CCB execution start-up.
1515 	**	Load the DSA with the data structure address (phys) and
1516 	**	jump to SELECT. Jump to CANCEL if CCB is to be canceled.
1517 	**----------------------------------------------------------------
1518 	*/
1519 	struct launch	start;
1520 
1521 	/*----------------------------------------------------------------
1522 	**	Mini-script used at CCB relection to restart the nexus.
1523 	**	Load the DSA with the data structure address (phys) and
1524 	**	jump to RESEL_DSA. Jump to ABORT if CCB is to be aborted.
1525 	**----------------------------------------------------------------
1526 	*/
1527 	struct launch	restart;
1528 
1529 	/*----------------------------------------------------------------
1530 	**	If a data transfer phase is terminated too early
1531 	**	(after reception of a message (i.e. DISCONNECT)),
1532 	**	we have to prepare a mini script to transfer
1533 	**	the rest of the data.
1534 	**----------------------------------------------------------------
1535 	*/
1536 	ncrcmd		patch[8];
1537 
1538 	/*----------------------------------------------------------------
1539 	**	The general SCSI driver provides a
1540 	**	pointer to a control block.
1541 	**----------------------------------------------------------------
1542 	*/
1543 	struct scsi_cmnd	*cmd;		/* SCSI command 		*/
1544 	u_char		cdb_buf[16];	/* Copy of CDB			*/
1545 	u_char		sense_buf[64];
1546 	int		data_len;	/* Total data length		*/
1547 
1548 	/*----------------------------------------------------------------
1549 	**	Message areas.
1550 	**	We prepare a message to be sent after selection.
1551 	**	We may use a second one if the command is rescheduled
1552 	**	due to GETCC or QFULL.
1553 	**      Contents are IDENTIFY and SIMPLE_TAG.
1554 	**	While negotiating sync or wide transfer,
1555 	**	a SDTR or WDTR message is appended.
1556 	**----------------------------------------------------------------
1557 	*/
1558 	u_char		scsi_smsg [8];
1559 	u_char		scsi_smsg2[8];
1560 
1561 	/*----------------------------------------------------------------
1562 	**	Other fields.
1563 	**----------------------------------------------------------------
1564 	*/
1565 	u_long		p_ccb;		/* BUS address of this CCB	*/
1566 	u_char		sensecmd[6];	/* Sense command		*/
1567 	u_char		tag;		/* Tag for this transfer	*/
1568 					/*  255 means no tag		*/
1569 	u_char		target;
1570 	u_char		lun;
1571 	u_char		queued;
1572 	u_char		auto_sense;
1573 	struct ccb *	link_ccb;	/* Host adapter CCB chain	*/
1574 	struct list_head link_ccbq;	/* Link to unit CCB queue	*/
1575 	u32		startp;		/* Initial data pointer		*/
1576 	u_long		magic;		/* Free / busy  CCB flag	*/
1577 };
1578 
1579 #define CCB_PHYS(cp,lbl)	(cp->p_ccb + offsetof(struct ccb, lbl))
1580 
1581 
1582 /*========================================================================
1583 **
1584 **      Declaration of structs:     NCR device descriptor
1585 **
1586 **========================================================================
1587 */
1588 struct ncb {
1589 	/*----------------------------------------------------------------
1590 	**	The global header.
1591 	**	It is accessible to both the host and the script processor.
1592 	**	Must be cache line size aligned (32 for x86) in order to
1593 	**	allow cache line bursting when it is copied to/from CCB.
1594 	**----------------------------------------------------------------
1595 	*/
1596 	struct head     header;
1597 
1598 	/*----------------------------------------------------------------
1599 	**	CCBs management queues.
1600 	**----------------------------------------------------------------
1601 	*/
1602 	struct scsi_cmnd	*waiting_list;	/* Commands waiting for a CCB	*/
1603 					/*  when lcb is not allocated.	*/
1604 	struct scsi_cmnd	*done_list;	/* Commands waiting for done()  */
1605 					/* callback to be invoked.      */
1606 	spinlock_t	smp_lock;	/* Lock for SMP threading       */
1607 
1608 	/*----------------------------------------------------------------
1609 	**	Chip and controller identification.
1610 	**----------------------------------------------------------------
1611 	*/
1612 	int		unit;		/* Unit number			*/
1613 	char		inst_name[16];	/* ncb instance name		*/
1614 
1615 	/*----------------------------------------------------------------
1616 	**	Initial value of some IO register bits.
1617 	**	These values are assumed to have been set by BIOS, and may
1618 	**	be used for probing adapter implementation differences.
1619 	**----------------------------------------------------------------
1620 	*/
1621 	u_char	sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest0, sv_ctest3,
1622 		sv_ctest4, sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4;
1623 
1624 	/*----------------------------------------------------------------
1625 	**	Actual initial value of IO register bits used by the
1626 	**	driver. They are loaded at initialisation according to
1627 	**	features that are to be enabled.
1628 	**----------------------------------------------------------------
1629 	*/
1630 	u_char	rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest0, rv_ctest3,
1631 		rv_ctest4, rv_ctest5, rv_stest2;
1632 
1633 	/*----------------------------------------------------------------
1634 	**	Targets management.
1635 	**	During reselection the ncr jumps to jump_tcb.
1636 	**	The SFBR register is loaded with the encoded target id.
1637 	**	For i = 0 to 3
1638 	**		SCR_JUMP ^ IFTRUE(MASK(i, 3)), @(next tcb mod. i)
1639 	**
1640 	**	Recent chips will prefetch the 4 JUMPS using only 1 burst.
1641 	**	It is kind of hashcoding.
1642 	**----------------------------------------------------------------
1643 	*/
1644 	struct link     jump_tcb[4];	/* JUMPs for reselection	*/
1645 	struct tcb  target[MAX_TARGET];	/* Target data			*/
1646 
1647 	/*----------------------------------------------------------------
1648 	**	Virtual and physical bus addresses of the chip.
1649 	**----------------------------------------------------------------
1650 	*/
1651 	void __iomem *vaddr;		/* Virtual and bus address of	*/
1652 	unsigned long	paddr;		/*  chip's IO registers.	*/
1653 	unsigned long	paddr2;		/* On-chip RAM bus address.	*/
1654 	volatile			/* Pointer to volatile for 	*/
1655 	struct ncr_reg	__iomem *reg;	/*  memory mapped IO.		*/
1656 
1657 	/*----------------------------------------------------------------
1658 	**	SCRIPTS virtual and physical bus addresses.
1659 	**	'script'  is loaded in the on-chip RAM if present.
1660 	**	'scripth' stays in main memory.
1661 	**----------------------------------------------------------------
1662 	*/
1663 	struct script	*script0;	/* Copies of script and scripth	*/
1664 	struct scripth	*scripth0;	/*  relocated for this ncb.	*/
1665 	struct scripth	*scripth;	/* Actual scripth virt. address	*/
1666 	u_long		p_script;	/* Actual script and scripth	*/
1667 	u_long		p_scripth;	/*  bus addresses.		*/
1668 
1669 	/*----------------------------------------------------------------
1670 	**	General controller parameters and configuration.
1671 	**----------------------------------------------------------------
1672 	*/
1673 	struct device	*dev;
1674 	u_char		revision_id;	/* PCI device revision id	*/
1675 	u32		irq;		/* IRQ level			*/
1676 	u32		features;	/* Chip features map		*/
1677 	u_char		myaddr;		/* SCSI id of the adapter	*/
1678 	u_char		maxburst;	/* log base 2 of dwords burst	*/
1679 	u_char		maxwide;	/* Maximum transfer width	*/
1680 	u_char		minsync;	/* Minimum sync period factor	*/
1681 	u_char		maxsync;	/* Maximum sync period factor	*/
1682 	u_char		maxoffs;	/* Max scsi offset		*/
1683 	u_char		multiplier;	/* Clock multiplier (1,2,4)	*/
1684 	u_char		clock_divn;	/* Number of clock divisors	*/
1685 	u_long		clock_khz;	/* SCSI clock frequency in KHz	*/
1686 
1687 	/*----------------------------------------------------------------
1688 	**	Start queue management.
1689 	**	It is filled up by the host processor and accessed by the
1690 	**	SCRIPTS processor in order to start SCSI commands.
1691 	**----------------------------------------------------------------
1692 	*/
1693 	u16		squeueput;	/* Next free slot of the queue	*/
1694 	u16		actccbs;	/* Number of allocated CCBs	*/
1695 	u16		queuedccbs;	/* Number of CCBs in start queue*/
1696 	u16		queuedepth;	/* Start queue depth		*/
1697 
1698 	/*----------------------------------------------------------------
1699 	**	Timeout handler.
1700 	**----------------------------------------------------------------
1701 	*/
1702 	struct timer_list timer;	/* Timer handler link header	*/
1703 	u_long		lasttime;
1704 	u_long		settle_time;	/* Resetting the SCSI BUS	*/
1705 
1706 	/*----------------------------------------------------------------
1707 	**	Debugging and profiling.
1708 	**----------------------------------------------------------------
1709 	*/
1710 	struct ncr_reg	regdump;	/* Register dump		*/
1711 	u_long		regtime;	/* Time it has been done	*/
1712 
1713 	/*----------------------------------------------------------------
1714 	**	Miscellaneous buffers accessed by the scripts-processor.
1715 	**	They shall be DWORD aligned, because they may be read or
1716 	**	written with a SCR_COPY script command.
1717 	**----------------------------------------------------------------
1718 	*/
1719 	u_char		msgout[8];	/* Buffer for MESSAGE OUT 	*/
1720 	u_char		msgin [8];	/* Buffer for MESSAGE IN	*/
1721 	u32		lastmsg;	/* Last SCSI message sent	*/
1722 	u_char		scratch;	/* Scratch for SCSI receive	*/
1723 
1724 	/*----------------------------------------------------------------
1725 	**	Miscellaneous configuration and status parameters.
1726 	**----------------------------------------------------------------
1727 	*/
1728 	u_char		disc;		/* Disconnection allowed	*/
1729 	u_char		scsi_mode;	/* Current SCSI BUS mode	*/
1730 	u_char		order;		/* Tag order to use		*/
1731 	u_char		verbose;	/* Verbosity for this controller*/
1732 	int		ncr_cache;	/* Used for cache test at init.	*/
1733 	u_long		p_ncb;		/* BUS address of this NCB	*/
1734 
1735 	/*----------------------------------------------------------------
1736 	**	Command completion handling.
1737 	**----------------------------------------------------------------
1738 	*/
1739 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
1740 	struct ccb	*(ccb_done[MAX_DONE]);
1741 	int		ccb_done_ic;
1742 #endif
1743 	/*----------------------------------------------------------------
1744 	**	Fields that should be removed or changed.
1745 	**----------------------------------------------------------------
1746 	*/
1747 	struct ccb	*ccb;		/* Global CCB			*/
1748 	struct usrcmd	user;		/* Command from user		*/
1749 	volatile u_char	release_stage;	/* Synchronisation stage on release  */
1750 };
1751 
1752 #define NCB_SCRIPT_PHYS(np,lbl)	 (np->p_script  + offsetof (struct script, lbl))
1753 #define NCB_SCRIPTH_PHYS(np,lbl) (np->p_scripth + offsetof (struct scripth,lbl))
1754 
1755 /*==========================================================
1756 **
1757 **
1758 **      Script for NCR-Processor.
1759 **
1760 **	Use ncr_script_fill() to create the variable parts.
1761 **	Use ncr_script_copy_and_bind() to make a copy and
1762 **	bind to physical addresses.
1763 **
1764 **
1765 **==========================================================
1766 **
1767 **	We have to know the offsets of all labels before
1768 **	we reach them (for forward jumps).
1769 **	Therefore we declare a struct here.
1770 **	If you make changes inside the script,
1771 **	DONT FORGET TO CHANGE THE LENGTHS HERE!
1772 **
1773 **----------------------------------------------------------
1774 */
1775 
1776 /*
1777 **	For HP Zalon/53c720 systems, the Zalon interface
1778 **	between CPU and 53c720 does prefetches, which causes
1779 **	problems with self modifying scripts.  The problem
1780 **	is overcome by calling a dummy subroutine after each
1781 **	modification, to force a refetch of the script on
1782 **	return from the subroutine.
1783 */
1784 
1785 #ifdef CONFIG_NCR53C8XX_PREFETCH
1786 #define PREFETCH_FLUSH_CNT	2
1787 #define PREFETCH_FLUSH		SCR_CALL, PADDRH (wait_dma),
1788 #else
1789 #define PREFETCH_FLUSH_CNT	0
1790 #define PREFETCH_FLUSH
1791 #endif
1792 
1793 /*
1794 **	Script fragments which are loaded into the on-chip RAM
1795 **	of 825A, 875 and 895 chips.
1796 */
1797 struct script {
1798 	ncrcmd	start		[  5];
1799 	ncrcmd  startpos	[  1];
1800 	ncrcmd	select		[  6];
1801 	ncrcmd	select2		[  9 + PREFETCH_FLUSH_CNT];
1802 	ncrcmd	loadpos		[  4];
1803 	ncrcmd	send_ident	[  9];
1804 	ncrcmd	prepare		[  6];
1805 	ncrcmd	prepare2	[  7];
1806 	ncrcmd  command		[  6];
1807 	ncrcmd  dispatch	[ 32];
1808 	ncrcmd  clrack		[  4];
1809 	ncrcmd	no_data		[ 17];
1810 	ncrcmd  status		[  8];
1811 	ncrcmd  msg_in		[  2];
1812 	ncrcmd  msg_in2		[ 16];
1813 	ncrcmd  msg_bad		[  4];
1814 	ncrcmd	setmsg		[  7];
1815 	ncrcmd	cleanup		[  6];
1816 	ncrcmd  complete	[  9];
1817 	ncrcmd	cleanup_ok	[  8 + PREFETCH_FLUSH_CNT];
1818 	ncrcmd	cleanup0	[  1];
1819 #ifndef SCSI_NCR_CCB_DONE_SUPPORT
1820 	ncrcmd	signal		[ 12];
1821 #else
1822 	ncrcmd	signal		[  9];
1823 	ncrcmd	done_pos	[  1];
1824 	ncrcmd	done_plug	[  2];
1825 	ncrcmd	done_end	[  7];
1826 #endif
1827 	ncrcmd  save_dp		[  7];
1828 	ncrcmd  restore_dp	[  5];
1829 	ncrcmd  disconnect	[ 10];
1830 	ncrcmd	msg_out		[  9];
1831 	ncrcmd	msg_out_done	[  7];
1832 	ncrcmd  idle		[  2];
1833 	ncrcmd	reselect	[  8];
1834 	ncrcmd	reselected	[  8];
1835 	ncrcmd	resel_dsa	[  6 + PREFETCH_FLUSH_CNT];
1836 	ncrcmd	loadpos1	[  4];
1837 	ncrcmd  resel_lun	[  6];
1838 	ncrcmd	resel_tag	[  6];
1839 	ncrcmd	jump_to_nexus	[  4 + PREFETCH_FLUSH_CNT];
1840 	ncrcmd	nexus_indirect	[  4];
1841 	ncrcmd	resel_notag	[  4];
1842 	ncrcmd  data_in		[MAX_SCATTERL * 4];
1843 	ncrcmd  data_in2	[  4];
1844 	ncrcmd  data_out	[MAX_SCATTERL * 4];
1845 	ncrcmd  data_out2	[  4];
1846 };
1847 
1848 /*
1849 **	Script fragments which stay in main memory for all chips.
1850 */
1851 struct scripth {
1852 	ncrcmd  tryloop		[MAX_START*2];
1853 	ncrcmd  tryloop2	[  2];
1854 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
1855 	ncrcmd  done_queue	[MAX_DONE*5];
1856 	ncrcmd  done_queue2	[  2];
1857 #endif
1858 	ncrcmd	select_no_atn	[  8];
1859 	ncrcmd	cancel		[  4];
1860 	ncrcmd	skip		[  9 + PREFETCH_FLUSH_CNT];
1861 	ncrcmd	skip2		[ 19];
1862 	ncrcmd	par_err_data_in	[  6];
1863 	ncrcmd	par_err_other	[  4];
1864 	ncrcmd	msg_reject	[  8];
1865 	ncrcmd	msg_ign_residue	[ 24];
1866 	ncrcmd  msg_extended	[ 10];
1867 	ncrcmd  msg_ext_2	[ 10];
1868 	ncrcmd	msg_wdtr	[ 14];
1869 	ncrcmd	send_wdtr	[  7];
1870 	ncrcmd  msg_ext_3	[ 10];
1871 	ncrcmd	msg_sdtr	[ 14];
1872 	ncrcmd	send_sdtr	[  7];
1873 	ncrcmd	nego_bad_phase	[  4];
1874 	ncrcmd	msg_out_abort	[ 10];
1875 	ncrcmd  hdata_in	[MAX_SCATTERH * 4];
1876 	ncrcmd  hdata_in2	[  2];
1877 	ncrcmd  hdata_out	[MAX_SCATTERH * 4];
1878 	ncrcmd  hdata_out2	[  2];
1879 	ncrcmd	reset		[  4];
1880 	ncrcmd	aborttag	[  4];
1881 	ncrcmd	abort		[  2];
1882 	ncrcmd	abort_resel	[ 20];
1883 	ncrcmd	resend_ident	[  4];
1884 	ncrcmd	clratn_go_on	[  3];
1885 	ncrcmd	nxtdsp_go_on	[  1];
1886 	ncrcmd	sdata_in	[  8];
1887 	ncrcmd  data_io		[ 18];
1888 	ncrcmd	bad_identify	[ 12];
1889 	ncrcmd	bad_i_t_l	[  4];
1890 	ncrcmd	bad_i_t_l_q	[  4];
1891 	ncrcmd	bad_target	[  8];
1892 	ncrcmd	bad_status	[  8];
1893 	ncrcmd	start_ram	[  4 + PREFETCH_FLUSH_CNT];
1894 	ncrcmd	start_ram0	[  4];
1895 	ncrcmd	sto_restart	[  5];
1896 	ncrcmd	wait_dma	[  2];
1897 	ncrcmd	snooptest	[  9];
1898 	ncrcmd	snoopend	[  2];
1899 };
1900 
1901 /*==========================================================
1902 **
1903 **
1904 **      Function headers.
1905 **
1906 **
1907 **==========================================================
1908 */
1909 
1910 static	void	ncr_alloc_ccb	(struct ncb *np, u_char tn, u_char ln);
1911 static	void	ncr_complete	(struct ncb *np, struct ccb *cp);
1912 static	void	ncr_exception	(struct ncb *np);
1913 static	void	ncr_free_ccb	(struct ncb *np, struct ccb *cp);
1914 static	void	ncr_init_ccb	(struct ncb *np, struct ccb *cp);
1915 static	void	ncr_init_tcb	(struct ncb *np, u_char tn);
1916 static	struct lcb *	ncr_alloc_lcb	(struct ncb *np, u_char tn, u_char ln);
1917 static	struct lcb *	ncr_setup_lcb	(struct ncb *np, struct scsi_device *sdev);
1918 static	void	ncr_getclock	(struct ncb *np, int mult);
1919 static	void	ncr_selectclock	(struct ncb *np, u_char scntl3);
1920 static	struct ccb *ncr_get_ccb	(struct ncb *np, struct scsi_cmnd *cmd);
1921 static	void	ncr_chip_reset	(struct ncb *np, int delay);
1922 static	void	ncr_init	(struct ncb *np, int reset, char * msg, u_long code);
1923 static	int	ncr_int_sbmc	(struct ncb *np);
1924 static	int	ncr_int_par	(struct ncb *np);
1925 static	void	ncr_int_ma	(struct ncb *np);
1926 static	void	ncr_int_sir	(struct ncb *np);
1927 static  void    ncr_int_sto     (struct ncb *np);
1928 static	void	ncr_negotiate	(struct ncb* np, struct tcb* tp);
1929 static	int	ncr_prepare_nego(struct ncb *np, struct ccb *cp, u_char *msgptr);
1930 
1931 static	void	ncr_script_copy_and_bind
1932 				(struct ncb *np, ncrcmd *src, ncrcmd *dst, int len);
1933 static  void    ncr_script_fill (struct script * scr, struct scripth * scripth);
1934 static	int	ncr_scatter	(struct ncb *np, struct ccb *cp, struct scsi_cmnd *cmd);
1935 static	void	ncr_getsync	(struct ncb *np, u_char sfac, u_char *fakp, u_char *scntl3p);
1936 static	void	ncr_setsync	(struct ncb *np, struct ccb *cp, u_char scntl3, u_char sxfer);
1937 static	void	ncr_setup_tags	(struct ncb *np, struct scsi_device *sdev);
1938 static	void	ncr_setwide	(struct ncb *np, struct ccb *cp, u_char wide, u_char ack);
1939 static	int	ncr_snooptest	(struct ncb *np);
1940 static	void	ncr_timeout	(struct ncb *np);
1941 static  void    ncr_wakeup      (struct ncb *np, u_long code);
1942 static  void    ncr_wakeup_done (struct ncb *np);
1943 static	void	ncr_start_next_ccb (struct ncb *np, struct lcb * lp, int maxn);
1944 static	void	ncr_put_start_queue(struct ncb *np, struct ccb *cp);
1945 
1946 static void insert_into_waiting_list(struct ncb *np, struct scsi_cmnd *cmd);
1947 static struct scsi_cmnd *retrieve_from_waiting_list(int to_remove, struct ncb *np, struct scsi_cmnd *cmd);
1948 static void process_waiting_list(struct ncb *np, int sts);
1949 
1950 #define remove_from_waiting_list(np, cmd) \
1951 		retrieve_from_waiting_list(1, (np), (cmd))
1952 #define requeue_waiting_list(np) process_waiting_list((np), DID_OK)
1953 #define reset_waiting_list(np) process_waiting_list((np), DID_RESET)
1954 
1955 static inline char *ncr_name (struct ncb *np)
1956 {
1957 	return np->inst_name;
1958 }
1959 
1960 
1961 /*==========================================================
1962 **
1963 **
1964 **      Scripts for NCR-Processor.
1965 **
1966 **      Use ncr_script_bind for binding to physical addresses.
1967 **
1968 **
1969 **==========================================================
1970 **
1971 **	NADDR generates a reference to a field of the controller data.
1972 **	PADDR generates a reference to another part of the script.
1973 **	RADDR generates a reference to a script processor register.
1974 **	FADDR generates a reference to a script processor register
1975 **		with offset.
1976 **
1977 **----------------------------------------------------------
1978 */
1979 
1980 #define	RELOC_SOFTC	0x40000000
1981 #define	RELOC_LABEL	0x50000000
1982 #define	RELOC_REGISTER	0x60000000
1983 #if 0
1984 #define	RELOC_KVAR	0x70000000
1985 #endif
1986 #define	RELOC_LABELH	0x80000000
1987 #define	RELOC_MASK	0xf0000000
1988 
1989 #define	NADDR(label)	(RELOC_SOFTC | offsetof(struct ncb, label))
1990 #define PADDR(label)    (RELOC_LABEL | offsetof(struct script, label))
1991 #define PADDRH(label)   (RELOC_LABELH | offsetof(struct scripth, label))
1992 #define	RADDR(label)	(RELOC_REGISTER | REG(label))
1993 #define	FADDR(label,ofs)(RELOC_REGISTER | ((REG(label))+(ofs)))
1994 #if 0
1995 #define	KVAR(which)	(RELOC_KVAR | (which))
1996 #endif
1997 
1998 #if 0
1999 #define	SCRIPT_KVAR_JIFFIES	(0)
2000 #define	SCRIPT_KVAR_FIRST		SCRIPT_KVAR_JIFFIES
2001 #define	SCRIPT_KVAR_LAST		SCRIPT_KVAR_JIFFIES
2002 /*
2003  * Kernel variables referenced in the scripts.
2004  * THESE MUST ALL BE ALIGNED TO A 4-BYTE BOUNDARY.
2005  */
2006 static void *script_kvars[] __initdata =
2007 	{ (void *)&jiffies };
2008 #endif
2009 
2010 static	struct script script0 __initdata = {
2011 /*--------------------------< START >-----------------------*/ {
2012 	/*
2013 	**	This NOP will be patched with LED ON
2014 	**	SCR_REG_REG (gpreg, SCR_AND, 0xfe)
2015 	*/
2016 	SCR_NO_OP,
2017 		0,
2018 	/*
2019 	**      Clear SIGP.
2020 	*/
2021 	SCR_FROM_REG (ctest2),
2022 		0,
2023 	/*
2024 	**	Then jump to a certain point in tryloop.
2025 	**	Due to the lack of indirect addressing the code
2026 	**	is self modifying here.
2027 	*/
2028 	SCR_JUMP,
2029 }/*-------------------------< STARTPOS >--------------------*/,{
2030 		PADDRH(tryloop),
2031 
2032 }/*-------------------------< SELECT >----------------------*/,{
2033 	/*
2034 	**	DSA	contains the address of a scheduled
2035 	**		data structure.
2036 	**
2037 	**	SCRATCHA contains the address of the script,
2038 	**		which starts the next entry.
2039 	**
2040 	**	Set Initiator mode.
2041 	**
2042 	**	(Target mode is left as an exercise for the reader)
2043 	*/
2044 
2045 	SCR_CLR (SCR_TRG),
2046 		0,
2047 	SCR_LOAD_REG (HS_REG, HS_SELECTING),
2048 		0,
2049 
2050 	/*
2051 	**      And try to select this target.
2052 	*/
2053 	SCR_SEL_TBL_ATN ^ offsetof (struct dsb, select),
2054 		PADDR (reselect),
2055 
2056 }/*-------------------------< SELECT2 >----------------------*/,{
2057 	/*
2058 	**	Now there are 4 possibilities:
2059 	**
2060 	**	(1) The ncr loses arbitration.
2061 	**	This is ok, because it will try again,
2062 	**	when the bus becomes idle.
2063 	**	(But beware of the timeout function!)
2064 	**
2065 	**	(2) The ncr is reselected.
2066 	**	Then the script processor takes the jump
2067 	**	to the RESELECT label.
2068 	**
2069 	**	(3) The ncr wins arbitration.
2070 	**	Then it will execute SCRIPTS instruction until
2071 	**	the next instruction that checks SCSI phase.
2072 	**	Then will stop and wait for selection to be
2073 	**	complete or selection time-out to occur.
2074 	**	As a result the SCRIPTS instructions until
2075 	**	LOADPOS + 2 should be executed in parallel with
2076 	**	the SCSI core performing selection.
2077 	*/
2078 
2079 	/*
2080 	**	The MESSAGE_REJECT problem seems to be due to a selection
2081 	**	timing problem.
2082 	**	Wait immediately for the selection to complete.
2083 	**	(2.5x behaves so)
2084 	*/
2085 	SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_OUT)),
2086 		0,
2087 
2088 	/*
2089 	**	Next time use the next slot.
2090 	*/
2091 	SCR_COPY (4),
2092 		RADDR (temp),
2093 		PADDR (startpos),
2094 	/*
2095 	**      The ncr doesn't have an indirect load
2096 	**	or store command. So we have to
2097 	**	copy part of the control block to a
2098 	**	fixed place, where we can access it.
2099 	**
2100 	**	We patch the address part of a
2101 	**	COPY command with the DSA-register.
2102 	*/
2103 	SCR_COPY_F (4),
2104 		RADDR (dsa),
2105 		PADDR (loadpos),
2106 	/*
2107 	**	Flush script prefetch if required
2108 	*/
2109 	PREFETCH_FLUSH
2110 	/*
2111 	**	then we do the actual copy.
2112 	*/
2113 	SCR_COPY (sizeof (struct head)),
2114 	/*
2115 	**	continued after the next label ...
2116 	*/
2117 }/*-------------------------< LOADPOS >---------------------*/,{
2118 		0,
2119 		NADDR (header),
2120 	/*
2121 	**	Wait for the next phase or the selection
2122 	**	to complete or time-out.
2123 	*/
2124 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
2125 		PADDR (prepare),
2126 
2127 }/*-------------------------< SEND_IDENT >----------------------*/,{
2128 	/*
2129 	**	Selection complete.
2130 	**	Send the IDENTIFY and SIMPLE_TAG messages
2131 	**	(and the EXTENDED_SDTR message)
2132 	*/
2133 	SCR_MOVE_TBL ^ SCR_MSG_OUT,
2134 		offsetof (struct dsb, smsg),
2135 	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
2136 		PADDRH (resend_ident),
2137 	SCR_LOAD_REG (scratcha, 0x80),
2138 		0,
2139 	SCR_COPY (1),
2140 		RADDR (scratcha),
2141 		NADDR (lastmsg),
2142 }/*-------------------------< PREPARE >----------------------*/,{
2143 	/*
2144 	**      load the savep (saved pointer) into
2145 	**      the TEMP register (actual pointer)
2146 	*/
2147 	SCR_COPY (4),
2148 		NADDR (header.savep),
2149 		RADDR (temp),
2150 	/*
2151 	**      Initialize the status registers
2152 	*/
2153 	SCR_COPY (4),
2154 		NADDR (header.status),
2155 		RADDR (scr0),
2156 }/*-------------------------< PREPARE2 >---------------------*/,{
2157 	/*
2158 	**	Initialize the msgout buffer with a NOOP message.
2159 	*/
2160 	SCR_LOAD_REG (scratcha, NOP),
2161 		0,
2162 	SCR_COPY (1),
2163 		RADDR (scratcha),
2164 		NADDR (msgout),
2165 #if 0
2166 	SCR_COPY (1),
2167 		RADDR (scratcha),
2168 		NADDR (msgin),
2169 #endif
2170 	/*
2171 	**	Anticipate the COMMAND phase.
2172 	**	This is the normal case for initial selection.
2173 	*/
2174 	SCR_JUMP ^ IFFALSE (WHEN (SCR_COMMAND)),
2175 		PADDR (dispatch),
2176 
2177 }/*-------------------------< COMMAND >--------------------*/,{
2178 	/*
2179 	**	... and send the command
2180 	*/
2181 	SCR_MOVE_TBL ^ SCR_COMMAND,
2182 		offsetof (struct dsb, cmd),
2183 	/*
2184 	**	If status is still HS_NEGOTIATE, negotiation failed.
2185 	**	We check this here, since we want to do that
2186 	**	only once.
2187 	*/
2188 	SCR_FROM_REG (HS_REG),
2189 		0,
2190 	SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)),
2191 		SIR_NEGO_FAILED,
2192 
2193 }/*-----------------------< DISPATCH >----------------------*/,{
2194 	/*
2195 	**	MSG_IN is the only phase that shall be
2196 	**	entered at least once for each (re)selection.
2197 	**	So we test it first.
2198 	*/
2199 	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
2200 		PADDR (msg_in),
2201 
2202 	SCR_RETURN ^ IFTRUE (IF (SCR_DATA_OUT)),
2203 		0,
2204 	/*
2205 	**	DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 4.
2206 	**	Possible data corruption during Memory Write and Invalidate.
2207 	**	This work-around resets the addressing logic prior to the
2208 	**	start of the first MOVE of a DATA IN phase.
2209 	**	(See Documentation/scsi/ncr53c8xx.rst for more information)
2210 	*/
2211 	SCR_JUMPR ^ IFFALSE (IF (SCR_DATA_IN)),
2212 		20,
2213 	SCR_COPY (4),
2214 		RADDR (scratcha),
2215 		RADDR (scratcha),
2216 	SCR_RETURN,
2217  		0,
2218 	SCR_JUMP ^ IFTRUE (IF (SCR_STATUS)),
2219 		PADDR (status),
2220 	SCR_JUMP ^ IFTRUE (IF (SCR_COMMAND)),
2221 		PADDR (command),
2222 	SCR_JUMP ^ IFTRUE (IF (SCR_MSG_OUT)),
2223 		PADDR (msg_out),
2224 	/*
2225 	**      Discard one illegal phase byte, if required.
2226 	*/
2227 	SCR_LOAD_REG (scratcha, XE_BAD_PHASE),
2228 		0,
2229 	SCR_COPY (1),
2230 		RADDR (scratcha),
2231 		NADDR (xerr_st),
2232 	SCR_JUMPR ^ IFFALSE (IF (SCR_ILG_OUT)),
2233 		8,
2234 	SCR_MOVE_ABS (1) ^ SCR_ILG_OUT,
2235 		NADDR (scratch),
2236 	SCR_JUMPR ^ IFFALSE (IF (SCR_ILG_IN)),
2237 		8,
2238 	SCR_MOVE_ABS (1) ^ SCR_ILG_IN,
2239 		NADDR (scratch),
2240 	SCR_JUMP,
2241 		PADDR (dispatch),
2242 
2243 }/*-------------------------< CLRACK >----------------------*/,{
2244 	/*
2245 	**	Terminate possible pending message phase.
2246 	*/
2247 	SCR_CLR (SCR_ACK),
2248 		0,
2249 	SCR_JUMP,
2250 		PADDR (dispatch),
2251 
2252 }/*-------------------------< NO_DATA >--------------------*/,{
2253 	/*
2254 	**	The target wants to tranfer too much data
2255 	**	or in the wrong direction.
2256 	**      Remember that in extended error.
2257 	*/
2258 	SCR_LOAD_REG (scratcha, XE_EXTRA_DATA),
2259 		0,
2260 	SCR_COPY (1),
2261 		RADDR (scratcha),
2262 		NADDR (xerr_st),
2263 	/*
2264 	**      Discard one data byte, if required.
2265 	*/
2266 	SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_OUT)),
2267 		8,
2268 	SCR_MOVE_ABS (1) ^ SCR_DATA_OUT,
2269 		NADDR (scratch),
2270 	SCR_JUMPR ^ IFFALSE (IF (SCR_DATA_IN)),
2271 		8,
2272 	SCR_MOVE_ABS (1) ^ SCR_DATA_IN,
2273 		NADDR (scratch),
2274 	/*
2275 	**      .. and repeat as required.
2276 	*/
2277 	SCR_CALL,
2278 		PADDR (dispatch),
2279 	SCR_JUMP,
2280 		PADDR (no_data),
2281 
2282 }/*-------------------------< STATUS >--------------------*/,{
2283 	/*
2284 	**	get the status
2285 	*/
2286 	SCR_MOVE_ABS (1) ^ SCR_STATUS,
2287 		NADDR (scratch),
2288 	/*
2289 	**	save status to scsi_status.
2290 	**	mark as complete.
2291 	*/
2292 	SCR_TO_REG (SS_REG),
2293 		0,
2294 	SCR_LOAD_REG (HS_REG, HS_COMPLETE),
2295 		0,
2296 	SCR_JUMP,
2297 		PADDR (dispatch),
2298 }/*-------------------------< MSG_IN >--------------------*/,{
2299 	/*
2300 	**	Get the first byte of the message
2301 	**	and save it to SCRATCHA.
2302 	**
2303 	**	The script processor doesn't negate the
2304 	**	ACK signal after this transfer.
2305 	*/
2306 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
2307 		NADDR (msgin[0]),
2308 }/*-------------------------< MSG_IN2 >--------------------*/,{
2309 	/*
2310 	**	Handle this message.
2311 	*/
2312 	SCR_JUMP ^ IFTRUE (DATA (COMMAND_COMPLETE)),
2313 		PADDR (complete),
2314 	SCR_JUMP ^ IFTRUE (DATA (DISCONNECT)),
2315 		PADDR (disconnect),
2316 	SCR_JUMP ^ IFTRUE (DATA (SAVE_POINTERS)),
2317 		PADDR (save_dp),
2318 	SCR_JUMP ^ IFTRUE (DATA (RESTORE_POINTERS)),
2319 		PADDR (restore_dp),
2320 	SCR_JUMP ^ IFTRUE (DATA (EXTENDED_MESSAGE)),
2321 		PADDRH (msg_extended),
2322 	SCR_JUMP ^ IFTRUE (DATA (NOP)),
2323 		PADDR (clrack),
2324 	SCR_JUMP ^ IFTRUE (DATA (MESSAGE_REJECT)),
2325 		PADDRH (msg_reject),
2326 	SCR_JUMP ^ IFTRUE (DATA (IGNORE_WIDE_RESIDUE)),
2327 		PADDRH (msg_ign_residue),
2328 	/*
2329 	**	Rest of the messages left as
2330 	**	an exercise ...
2331 	**
2332 	**	Unimplemented messages:
2333 	**	fall through to MSG_BAD.
2334 	*/
2335 }/*-------------------------< MSG_BAD >------------------*/,{
2336 	/*
2337 	**	unimplemented message - reject it.
2338 	*/
2339 	SCR_INT,
2340 		SIR_REJECT_SENT,
2341 	SCR_LOAD_REG (scratcha, MESSAGE_REJECT),
2342 		0,
2343 }/*-------------------------< SETMSG >----------------------*/,{
2344 	SCR_COPY (1),
2345 		RADDR (scratcha),
2346 		NADDR (msgout),
2347 	SCR_SET (SCR_ATN),
2348 		0,
2349 	SCR_JUMP,
2350 		PADDR (clrack),
2351 }/*-------------------------< CLEANUP >-------------------*/,{
2352 	/*
2353 	**      dsa:    Pointer to ccb
2354 	**	      or xxxxxxFF (no ccb)
2355 	**
2356 	**      HS_REG:   Host-Status (<>0!)
2357 	*/
2358 	SCR_FROM_REG (dsa),
2359 		0,
2360 	SCR_JUMP ^ IFTRUE (DATA (0xff)),
2361 		PADDR (start),
2362 	/*
2363 	**      dsa is valid.
2364 	**	complete the cleanup.
2365 	*/
2366 	SCR_JUMP,
2367 		PADDR (cleanup_ok),
2368 
2369 }/*-------------------------< COMPLETE >-----------------*/,{
2370 	/*
2371 	**	Complete message.
2372 	**
2373 	**	Copy TEMP register to LASTP in header.
2374 	*/
2375 	SCR_COPY (4),
2376 		RADDR (temp),
2377 		NADDR (header.lastp),
2378 	/*
2379 	**	When we terminate the cycle by clearing ACK,
2380 	**	the target may disconnect immediately.
2381 	**
2382 	**	We don't want to be told of an
2383 	**	"unexpected disconnect",
2384 	**	so we disable this feature.
2385 	*/
2386 	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
2387 		0,
2388 	/*
2389 	**	Terminate cycle ...
2390 	*/
2391 	SCR_CLR (SCR_ACK|SCR_ATN),
2392 		0,
2393 	/*
2394 	**	... and wait for the disconnect.
2395 	*/
2396 	SCR_WAIT_DISC,
2397 		0,
2398 }/*-------------------------< CLEANUP_OK >----------------*/,{
2399 	/*
2400 	**	Save host status to header.
2401 	*/
2402 	SCR_COPY (4),
2403 		RADDR (scr0),
2404 		NADDR (header.status),
2405 	/*
2406 	**	and copy back the header to the ccb.
2407 	*/
2408 	SCR_COPY_F (4),
2409 		RADDR (dsa),
2410 		PADDR (cleanup0),
2411 	/*
2412 	**	Flush script prefetch if required
2413 	*/
2414 	PREFETCH_FLUSH
2415 	SCR_COPY (sizeof (struct head)),
2416 		NADDR (header),
2417 }/*-------------------------< CLEANUP0 >--------------------*/,{
2418 		0,
2419 }/*-------------------------< SIGNAL >----------------------*/,{
2420 	/*
2421 	**	if job not completed ...
2422 	*/
2423 	SCR_FROM_REG (HS_REG),
2424 		0,
2425 	/*
2426 	**	... start the next command.
2427 	*/
2428 	SCR_JUMP ^ IFTRUE (MASK (0, (HS_DONEMASK|HS_SKIPMASK))),
2429 		PADDR(start),
2430 	/*
2431 	**	If command resulted in not GOOD status,
2432 	**	call the C code if needed.
2433 	*/
2434 	SCR_FROM_REG (SS_REG),
2435 		0,
2436 	SCR_CALL ^ IFFALSE (DATA (SAM_STAT_GOOD)),
2437 		PADDRH (bad_status),
2438 
2439 #ifndef	SCSI_NCR_CCB_DONE_SUPPORT
2440 
2441 	/*
2442 	**	... signal completion to the host
2443 	*/
2444 	SCR_INT,
2445 		SIR_INTFLY,
2446 	/*
2447 	**	Auf zu neuen Schandtaten!
2448 	*/
2449 	SCR_JUMP,
2450 		PADDR(start),
2451 
2452 #else	/* defined SCSI_NCR_CCB_DONE_SUPPORT */
2453 
2454 	/*
2455 	**	... signal completion to the host
2456 	*/
2457 	SCR_JUMP,
2458 }/*------------------------< DONE_POS >---------------------*/,{
2459 		PADDRH (done_queue),
2460 }/*------------------------< DONE_PLUG >--------------------*/,{
2461 	SCR_INT,
2462 		SIR_DONE_OVERFLOW,
2463 }/*------------------------< DONE_END >---------------------*/,{
2464 	SCR_INT,
2465 		SIR_INTFLY,
2466 	SCR_COPY (4),
2467 		RADDR (temp),
2468 		PADDR (done_pos),
2469 	SCR_JUMP,
2470 		PADDR (start),
2471 
2472 #endif	/* SCSI_NCR_CCB_DONE_SUPPORT */
2473 
2474 }/*-------------------------< SAVE_DP >------------------*/,{
2475 	/*
2476 	**	SAVE_DP message:
2477 	**	Copy TEMP register to SAVEP in header.
2478 	*/
2479 	SCR_COPY (4),
2480 		RADDR (temp),
2481 		NADDR (header.savep),
2482 	SCR_CLR (SCR_ACK),
2483 		0,
2484 	SCR_JUMP,
2485 		PADDR (dispatch),
2486 }/*-------------------------< RESTORE_DP >---------------*/,{
2487 	/*
2488 	**	RESTORE_DP message:
2489 	**	Copy SAVEP in header to TEMP register.
2490 	*/
2491 	SCR_COPY (4),
2492 		NADDR (header.savep),
2493 		RADDR (temp),
2494 	SCR_JUMP,
2495 		PADDR (clrack),
2496 
2497 }/*-------------------------< DISCONNECT >---------------*/,{
2498 	/*
2499 	**	DISCONNECTing  ...
2500 	**
2501 	**	disable the "unexpected disconnect" feature,
2502 	**	and remove the ACK signal.
2503 	*/
2504 	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
2505 		0,
2506 	SCR_CLR (SCR_ACK|SCR_ATN),
2507 		0,
2508 	/*
2509 	**	Wait for the disconnect.
2510 	*/
2511 	SCR_WAIT_DISC,
2512 		0,
2513 	/*
2514 	**	Status is: DISCONNECTED.
2515 	*/
2516 	SCR_LOAD_REG (HS_REG, HS_DISCONNECT),
2517 		0,
2518 	SCR_JUMP,
2519 		PADDR (cleanup_ok),
2520 
2521 }/*-------------------------< MSG_OUT >-------------------*/,{
2522 	/*
2523 	**	The target requests a message.
2524 	*/
2525 	SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
2526 		NADDR (msgout),
2527 	SCR_COPY (1),
2528 		NADDR (msgout),
2529 		NADDR (lastmsg),
2530 	/*
2531 	**	If it was no ABORT message ...
2532 	*/
2533 	SCR_JUMP ^ IFTRUE (DATA (ABORT_TASK_SET)),
2534 		PADDRH (msg_out_abort),
2535 	/*
2536 	**	... wait for the next phase
2537 	**	if it's a message out, send it again, ...
2538 	*/
2539 	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
2540 		PADDR (msg_out),
2541 }/*-------------------------< MSG_OUT_DONE >--------------*/,{
2542 	/*
2543 	**	... else clear the message ...
2544 	*/
2545 	SCR_LOAD_REG (scratcha, NOP),
2546 		0,
2547 	SCR_COPY (4),
2548 		RADDR (scratcha),
2549 		NADDR (msgout),
2550 	/*
2551 	**	... and process the next phase
2552 	*/
2553 	SCR_JUMP,
2554 		PADDR (dispatch),
2555 }/*-------------------------< IDLE >------------------------*/,{
2556 	/*
2557 	**	Nothing to do?
2558 	**	Wait for reselect.
2559 	**	This NOP will be patched with LED OFF
2560 	**	SCR_REG_REG (gpreg, SCR_OR, 0x01)
2561 	*/
2562 	SCR_NO_OP,
2563 		0,
2564 }/*-------------------------< RESELECT >--------------------*/,{
2565 	/*
2566 	**	make the DSA invalid.
2567 	*/
2568 	SCR_LOAD_REG (dsa, 0xff),
2569 		0,
2570 	SCR_CLR (SCR_TRG),
2571 		0,
2572 	SCR_LOAD_REG (HS_REG, HS_IN_RESELECT),
2573 		0,
2574 	/*
2575 	**	Sleep waiting for a reselection.
2576 	**	If SIGP is set, special treatment.
2577 	**
2578 	**	Zu allem bereit ..
2579 	*/
2580 	SCR_WAIT_RESEL,
2581 		PADDR(start),
2582 }/*-------------------------< RESELECTED >------------------*/,{
2583 	/*
2584 	**	This NOP will be patched with LED ON
2585 	**	SCR_REG_REG (gpreg, SCR_AND, 0xfe)
2586 	*/
2587 	SCR_NO_OP,
2588 		0,
2589 	/*
2590 	**	... zu nichts zu gebrauchen ?
2591 	**
2592 	**      load the target id into the SFBR
2593 	**	and jump to the control block.
2594 	**
2595 	**	Look at the declarations of
2596 	**	- struct ncb
2597 	**	- struct tcb
2598 	**	- struct lcb
2599 	**	- struct ccb
2600 	**	to understand what's going on.
2601 	*/
2602 	SCR_REG_SFBR (ssid, SCR_AND, 0x8F),
2603 		0,
2604 	SCR_TO_REG (sdid),
2605 		0,
2606 	SCR_JUMP,
2607 		NADDR (jump_tcb),
2608 
2609 }/*-------------------------< RESEL_DSA >-------------------*/,{
2610 	/*
2611 	**	Ack the IDENTIFY or TAG previously received.
2612 	*/
2613 	SCR_CLR (SCR_ACK),
2614 		0,
2615 	/*
2616 	**      The ncr doesn't have an indirect load
2617 	**	or store command. So we have to
2618 	**	copy part of the control block to a
2619 	**	fixed place, where we can access it.
2620 	**
2621 	**	We patch the address part of a
2622 	**	COPY command with the DSA-register.
2623 	*/
2624 	SCR_COPY_F (4),
2625 		RADDR (dsa),
2626 		PADDR (loadpos1),
2627 	/*
2628 	**	Flush script prefetch if required
2629 	*/
2630 	PREFETCH_FLUSH
2631 	/*
2632 	**	then we do the actual copy.
2633 	*/
2634 	SCR_COPY (sizeof (struct head)),
2635 	/*
2636 	**	continued after the next label ...
2637 	*/
2638 
2639 }/*-------------------------< LOADPOS1 >-------------------*/,{
2640 		0,
2641 		NADDR (header),
2642 	/*
2643 	**	The DSA contains the data structure address.
2644 	*/
2645 	SCR_JUMP,
2646 		PADDR (prepare),
2647 
2648 }/*-------------------------< RESEL_LUN >-------------------*/,{
2649 	/*
2650 	**	come back to this point
2651 	**	to get an IDENTIFY message
2652 	**	Wait for a msg_in phase.
2653 	*/
2654 	SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)),
2655 		SIR_RESEL_NO_MSG_IN,
2656 	/*
2657 	**	message phase.
2658 	**	Read the data directly from the BUS DATA lines.
2659 	**	This helps to support very old SCSI devices that
2660 	**	may reselect without sending an IDENTIFY.
2661 	*/
2662 	SCR_FROM_REG (sbdl),
2663 		0,
2664 	/*
2665 	**	It should be an Identify message.
2666 	*/
2667 	SCR_RETURN,
2668 		0,
2669 }/*-------------------------< RESEL_TAG >-------------------*/,{
2670 	/*
2671 	**	Read IDENTIFY + SIMPLE + TAG using a single MOVE.
2672 	**	Aggressive optimization, is'nt it?
2673 	**	No need to test the SIMPLE TAG message, since the
2674 	**	driver only supports conformant devices for tags. ;-)
2675 	*/
2676 	SCR_MOVE_ABS (3) ^ SCR_MSG_IN,
2677 		NADDR (msgin),
2678 	/*
2679 	**	Read the TAG from the SIDL.
2680 	**	Still an aggressive optimization. ;-)
2681 	**	Compute the CCB indirect jump address which
2682 	**	is (#TAG*2 & 0xfc) due to tag numbering using
2683 	**	1,3,5..MAXTAGS*2+1 actual values.
2684 	*/
2685 	SCR_REG_SFBR (sidl, SCR_SHL, 0),
2686 		0,
2687 	SCR_SFBR_REG (temp, SCR_AND, 0xfc),
2688 		0,
2689 }/*-------------------------< JUMP_TO_NEXUS >-------------------*/,{
2690 	SCR_COPY_F (4),
2691 		RADDR (temp),
2692 		PADDR (nexus_indirect),
2693 	/*
2694 	**	Flush script prefetch if required
2695 	*/
2696 	PREFETCH_FLUSH
2697 	SCR_COPY (4),
2698 }/*-------------------------< NEXUS_INDIRECT >-------------------*/,{
2699 		0,
2700 		RADDR (temp),
2701 	SCR_RETURN,
2702 		0,
2703 }/*-------------------------< RESEL_NOTAG >-------------------*/,{
2704 	/*
2705 	**	No tag expected.
2706 	**	Read an throw away the IDENTIFY.
2707 	*/
2708 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
2709 		NADDR (msgin),
2710 	SCR_JUMP,
2711 		PADDR (jump_to_nexus),
2712 }/*-------------------------< DATA_IN >--------------------*/,{
2713 /*
2714 **	Because the size depends on the
2715 **	#define MAX_SCATTERL parameter,
2716 **	it is filled in at runtime.
2717 **
2718 **  ##===========< i=0; i<MAX_SCATTERL >=========
2719 **  ||	SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)),
2720 **  ||		PADDR (dispatch),
2721 **  ||	SCR_MOVE_TBL ^ SCR_DATA_IN,
2722 **  ||		offsetof (struct dsb, data[ i]),
2723 **  ##==========================================
2724 **
2725 **---------------------------------------------------------
2726 */
2727 0
2728 }/*-------------------------< DATA_IN2 >-------------------*/,{
2729 	SCR_CALL,
2730 		PADDR (dispatch),
2731 	SCR_JUMP,
2732 		PADDR (no_data),
2733 }/*-------------------------< DATA_OUT >--------------------*/,{
2734 /*
2735 **	Because the size depends on the
2736 **	#define MAX_SCATTERL parameter,
2737 **	it is filled in at runtime.
2738 **
2739 **  ##===========< i=0; i<MAX_SCATTERL >=========
2740 **  ||	SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT)),
2741 **  ||		PADDR (dispatch),
2742 **  ||	SCR_MOVE_TBL ^ SCR_DATA_OUT,
2743 **  ||		offsetof (struct dsb, data[ i]),
2744 **  ##==========================================
2745 **
2746 **---------------------------------------------------------
2747 */
2748 0
2749 }/*-------------------------< DATA_OUT2 >-------------------*/,{
2750 	SCR_CALL,
2751 		PADDR (dispatch),
2752 	SCR_JUMP,
2753 		PADDR (no_data),
2754 }/*--------------------------------------------------------*/
2755 };
2756 
2757 static	struct scripth scripth0 __initdata = {
2758 /*-------------------------< TRYLOOP >---------------------*/{
2759 /*
2760 **	Start the next entry.
2761 **	Called addresses point to the launch script in the CCB.
2762 **	They are patched by the main processor.
2763 **
2764 **	Because the size depends on the
2765 **	#define MAX_START parameter, it is filled
2766 **	in at runtime.
2767 **
2768 **-----------------------------------------------------------
2769 **
2770 **  ##===========< I=0; i<MAX_START >===========
2771 **  ||	SCR_CALL,
2772 **  ||		PADDR (idle),
2773 **  ##==========================================
2774 **
2775 **-----------------------------------------------------------
2776 */
2777 0
2778 }/*------------------------< TRYLOOP2 >---------------------*/,{
2779 	SCR_JUMP,
2780 		PADDRH(tryloop),
2781 
2782 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
2783 
2784 }/*------------------------< DONE_QUEUE >-------------------*/,{
2785 /*
2786 **	Copy the CCB address to the next done entry.
2787 **	Because the size depends on the
2788 **	#define MAX_DONE parameter, it is filled
2789 **	in at runtime.
2790 **
2791 **-----------------------------------------------------------
2792 **
2793 **  ##===========< I=0; i<MAX_DONE >===========
2794 **  ||	SCR_COPY (sizeof(struct ccb *),
2795 **  ||		NADDR (header.cp),
2796 **  ||		NADDR (ccb_done[i]),
2797 **  ||	SCR_CALL,
2798 **  ||		PADDR (done_end),
2799 **  ##==========================================
2800 **
2801 **-----------------------------------------------------------
2802 */
2803 0
2804 }/*------------------------< DONE_QUEUE2 >------------------*/,{
2805 	SCR_JUMP,
2806 		PADDRH (done_queue),
2807 
2808 #endif /* SCSI_NCR_CCB_DONE_SUPPORT */
2809 }/*------------------------< SELECT_NO_ATN >-----------------*/,{
2810 	/*
2811 	**	Set Initiator mode.
2812 	**      And try to select this target without ATN.
2813 	*/
2814 
2815 	SCR_CLR (SCR_TRG),
2816 		0,
2817 	SCR_LOAD_REG (HS_REG, HS_SELECTING),
2818 		0,
2819 	SCR_SEL_TBL ^ offsetof (struct dsb, select),
2820 		PADDR (reselect),
2821 	SCR_JUMP,
2822 		PADDR (select2),
2823 
2824 }/*-------------------------< CANCEL >------------------------*/,{
2825 
2826 	SCR_LOAD_REG (scratcha, HS_ABORTED),
2827 		0,
2828 	SCR_JUMPR,
2829 		8,
2830 }/*-------------------------< SKIP >------------------------*/,{
2831 	SCR_LOAD_REG (scratcha, 0),
2832 		0,
2833 	/*
2834 	**	This entry has been canceled.
2835 	**	Next time use the next slot.
2836 	*/
2837 	SCR_COPY (4),
2838 		RADDR (temp),
2839 		PADDR (startpos),
2840 	/*
2841 	**      The ncr doesn't have an indirect load
2842 	**	or store command. So we have to
2843 	**	copy part of the control block to a
2844 	**	fixed place, where we can access it.
2845 	**
2846 	**	We patch the address part of a
2847 	**	COPY command with the DSA-register.
2848 	*/
2849 	SCR_COPY_F (4),
2850 		RADDR (dsa),
2851 		PADDRH (skip2),
2852 	/*
2853 	**	Flush script prefetch if required
2854 	*/
2855 	PREFETCH_FLUSH
2856 	/*
2857 	**	then we do the actual copy.
2858 	*/
2859 	SCR_COPY (sizeof (struct head)),
2860 	/*
2861 	**	continued after the next label ...
2862 	*/
2863 }/*-------------------------< SKIP2 >---------------------*/,{
2864 		0,
2865 		NADDR (header),
2866 	/*
2867 	**      Initialize the status registers
2868 	*/
2869 	SCR_COPY (4),
2870 		NADDR (header.status),
2871 		RADDR (scr0),
2872 	/*
2873 	**	Force host status.
2874 	*/
2875 	SCR_FROM_REG (scratcha),
2876 		0,
2877 	SCR_JUMPR ^ IFFALSE (MASK (0, HS_DONEMASK)),
2878 		16,
2879 	SCR_REG_REG (HS_REG, SCR_OR, HS_SKIPMASK),
2880 		0,
2881 	SCR_JUMPR,
2882 		8,
2883 	SCR_TO_REG (HS_REG),
2884 		0,
2885 	SCR_LOAD_REG (SS_REG, SAM_STAT_GOOD),
2886 		0,
2887 	SCR_JUMP,
2888 		PADDR (cleanup_ok),
2889 
2890 },/*-------------------------< PAR_ERR_DATA_IN >---------------*/{
2891 	/*
2892 	**	Ignore all data in byte, until next phase
2893 	*/
2894 	SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)),
2895 		PADDRH (par_err_other),
2896 	SCR_MOVE_ABS (1) ^ SCR_DATA_IN,
2897 		NADDR (scratch),
2898 	SCR_JUMPR,
2899 		-24,
2900 },/*-------------------------< PAR_ERR_OTHER >------------------*/{
2901 	/*
2902 	**	count it.
2903 	*/
2904 	SCR_REG_REG (PS_REG, SCR_ADD, 0x01),
2905 		0,
2906 	/*
2907 	**	jump to dispatcher.
2908 	*/
2909 	SCR_JUMP,
2910 		PADDR (dispatch),
2911 }/*-------------------------< MSG_REJECT >---------------*/,{
2912 	/*
2913 	**	If a negotiation was in progress,
2914 	**	negotiation failed.
2915 	**	Otherwise, let the C code print
2916 	**	some message.
2917 	*/
2918 	SCR_FROM_REG (HS_REG),
2919 		0,
2920 	SCR_INT ^ IFFALSE (DATA (HS_NEGOTIATE)),
2921 		SIR_REJECT_RECEIVED,
2922 	SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)),
2923 		SIR_NEGO_FAILED,
2924 	SCR_JUMP,
2925 		PADDR (clrack),
2926 
2927 }/*-------------------------< MSG_IGN_RESIDUE >----------*/,{
2928 	/*
2929 	**	Terminate cycle
2930 	*/
2931 	SCR_CLR (SCR_ACK),
2932 		0,
2933 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
2934 		PADDR (dispatch),
2935 	/*
2936 	**	get residue size.
2937 	*/
2938 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
2939 		NADDR (msgin[1]),
2940 	/*
2941 	**	Size is 0 .. ignore message.
2942 	*/
2943 	SCR_JUMP ^ IFTRUE (DATA (0)),
2944 		PADDR (clrack),
2945 	/*
2946 	**	Size is not 1 .. have to interrupt.
2947 	*/
2948 	SCR_JUMPR ^ IFFALSE (DATA (1)),
2949 		40,
2950 	/*
2951 	**	Check for residue byte in swide register
2952 	*/
2953 	SCR_FROM_REG (scntl2),
2954 		0,
2955 	SCR_JUMPR ^ IFFALSE (MASK (WSR, WSR)),
2956 		16,
2957 	/*
2958 	**	There IS data in the swide register.
2959 	**	Discard it.
2960 	*/
2961 	SCR_REG_REG (scntl2, SCR_OR, WSR),
2962 		0,
2963 	SCR_JUMP,
2964 		PADDR (clrack),
2965 	/*
2966 	**	Load again the size to the sfbr register.
2967 	*/
2968 	SCR_FROM_REG (scratcha),
2969 		0,
2970 	SCR_INT,
2971 		SIR_IGN_RESIDUE,
2972 	SCR_JUMP,
2973 		PADDR (clrack),
2974 
2975 }/*-------------------------< MSG_EXTENDED >-------------*/,{
2976 	/*
2977 	**	Terminate cycle
2978 	*/
2979 	SCR_CLR (SCR_ACK),
2980 		0,
2981 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
2982 		PADDR (dispatch),
2983 	/*
2984 	**	get length.
2985 	*/
2986 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
2987 		NADDR (msgin[1]),
2988 	/*
2989 	*/
2990 	SCR_JUMP ^ IFTRUE (DATA (3)),
2991 		PADDRH (msg_ext_3),
2992 	SCR_JUMP ^ IFFALSE (DATA (2)),
2993 		PADDR (msg_bad),
2994 }/*-------------------------< MSG_EXT_2 >----------------*/,{
2995 	SCR_CLR (SCR_ACK),
2996 		0,
2997 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
2998 		PADDR (dispatch),
2999 	/*
3000 	**	get extended message code.
3001 	*/
3002 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3003 		NADDR (msgin[2]),
3004 	SCR_JUMP ^ IFTRUE (DATA (EXTENDED_WDTR)),
3005 		PADDRH (msg_wdtr),
3006 	/*
3007 	**	unknown extended message
3008 	*/
3009 	SCR_JUMP,
3010 		PADDR (msg_bad)
3011 }/*-------------------------< MSG_WDTR >-----------------*/,{
3012 	SCR_CLR (SCR_ACK),
3013 		0,
3014 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
3015 		PADDR (dispatch),
3016 	/*
3017 	**	get data bus width
3018 	*/
3019 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3020 		NADDR (msgin[3]),
3021 	/*
3022 	**	let the host do the real work.
3023 	*/
3024 	SCR_INT,
3025 		SIR_NEGO_WIDE,
3026 	/*
3027 	**	let the target fetch our answer.
3028 	*/
3029 	SCR_SET (SCR_ATN),
3030 		0,
3031 	SCR_CLR (SCR_ACK),
3032 		0,
3033 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
3034 		PADDRH (nego_bad_phase),
3035 
3036 }/*-------------------------< SEND_WDTR >----------------*/,{
3037 	/*
3038 	**	Send the EXTENDED_WDTR
3039 	*/
3040 	SCR_MOVE_ABS (4) ^ SCR_MSG_OUT,
3041 		NADDR (msgout),
3042 	SCR_COPY (1),
3043 		NADDR (msgout),
3044 		NADDR (lastmsg),
3045 	SCR_JUMP,
3046 		PADDR (msg_out_done),
3047 
3048 }/*-------------------------< MSG_EXT_3 >----------------*/,{
3049 	SCR_CLR (SCR_ACK),
3050 		0,
3051 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
3052 		PADDR (dispatch),
3053 	/*
3054 	**	get extended message code.
3055 	*/
3056 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3057 		NADDR (msgin[2]),
3058 	SCR_JUMP ^ IFTRUE (DATA (EXTENDED_SDTR)),
3059 		PADDRH (msg_sdtr),
3060 	/*
3061 	**	unknown extended message
3062 	*/
3063 	SCR_JUMP,
3064 		PADDR (msg_bad)
3065 
3066 }/*-------------------------< MSG_SDTR >-----------------*/,{
3067 	SCR_CLR (SCR_ACK),
3068 		0,
3069 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
3070 		PADDR (dispatch),
3071 	/*
3072 	**	get period and offset
3073 	*/
3074 	SCR_MOVE_ABS (2) ^ SCR_MSG_IN,
3075 		NADDR (msgin[3]),
3076 	/*
3077 	**	let the host do the real work.
3078 	*/
3079 	SCR_INT,
3080 		SIR_NEGO_SYNC,
3081 	/*
3082 	**	let the target fetch our answer.
3083 	*/
3084 	SCR_SET (SCR_ATN),
3085 		0,
3086 	SCR_CLR (SCR_ACK),
3087 		0,
3088 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
3089 		PADDRH (nego_bad_phase),
3090 
3091 }/*-------------------------< SEND_SDTR >-------------*/,{
3092 	/*
3093 	**	Send the EXTENDED_SDTR
3094 	*/
3095 	SCR_MOVE_ABS (5) ^ SCR_MSG_OUT,
3096 		NADDR (msgout),
3097 	SCR_COPY (1),
3098 		NADDR (msgout),
3099 		NADDR (lastmsg),
3100 	SCR_JUMP,
3101 		PADDR (msg_out_done),
3102 
3103 }/*-------------------------< NEGO_BAD_PHASE >------------*/,{
3104 	SCR_INT,
3105 		SIR_NEGO_PROTO,
3106 	SCR_JUMP,
3107 		PADDR (dispatch),
3108 
3109 }/*-------------------------< MSG_OUT_ABORT >-------------*/,{
3110 	/*
3111 	**	After ABORT message,
3112 	**
3113 	**	expect an immediate disconnect, ...
3114 	*/
3115 	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
3116 		0,
3117 	SCR_CLR (SCR_ACK|SCR_ATN),
3118 		0,
3119 	SCR_WAIT_DISC,
3120 		0,
3121 	/*
3122 	**	... and set the status to "ABORTED"
3123 	*/
3124 	SCR_LOAD_REG (HS_REG, HS_ABORTED),
3125 		0,
3126 	SCR_JUMP,
3127 		PADDR (cleanup),
3128 
3129 }/*-------------------------< HDATA_IN >-------------------*/,{
3130 /*
3131 **	Because the size depends on the
3132 **	#define MAX_SCATTERH parameter,
3133 **	it is filled in at runtime.
3134 **
3135 **  ##==< i=MAX_SCATTERL; i<MAX_SCATTERL+MAX_SCATTERH >==
3136 **  ||	SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)),
3137 **  ||		PADDR (dispatch),
3138 **  ||	SCR_MOVE_TBL ^ SCR_DATA_IN,
3139 **  ||		offsetof (struct dsb, data[ i]),
3140 **  ##===================================================
3141 **
3142 **---------------------------------------------------------
3143 */
3144 0
3145 }/*-------------------------< HDATA_IN2 >------------------*/,{
3146 	SCR_JUMP,
3147 		PADDR (data_in),
3148 
3149 }/*-------------------------< HDATA_OUT >-------------------*/,{
3150 /*
3151 **	Because the size depends on the
3152 **	#define MAX_SCATTERH parameter,
3153 **	it is filled in at runtime.
3154 **
3155 **  ##==< i=MAX_SCATTERL; i<MAX_SCATTERL+MAX_SCATTERH >==
3156 **  ||	SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT)),
3157 **  ||		PADDR (dispatch),
3158 **  ||	SCR_MOVE_TBL ^ SCR_DATA_OUT,
3159 **  ||		offsetof (struct dsb, data[ i]),
3160 **  ##===================================================
3161 **
3162 **---------------------------------------------------------
3163 */
3164 0
3165 }/*-------------------------< HDATA_OUT2 >------------------*/,{
3166 	SCR_JUMP,
3167 		PADDR (data_out),
3168 
3169 }/*-------------------------< RESET >----------------------*/,{
3170 	/*
3171 	**      Send a TARGET_RESET message if bad IDENTIFY
3172 	**	received on reselection.
3173 	*/
3174 	SCR_LOAD_REG (scratcha, ABORT_TASK),
3175 		0,
3176 	SCR_JUMP,
3177 		PADDRH (abort_resel),
3178 }/*-------------------------< ABORTTAG >-------------------*/,{
3179 	/*
3180 	**      Abort a wrong tag received on reselection.
3181 	*/
3182 	SCR_LOAD_REG (scratcha, ABORT_TASK),
3183 		0,
3184 	SCR_JUMP,
3185 		PADDRH (abort_resel),
3186 }/*-------------------------< ABORT >----------------------*/,{
3187 	/*
3188 	**      Abort a reselection when no active CCB.
3189 	*/
3190 	SCR_LOAD_REG (scratcha, ABORT_TASK_SET),
3191 		0,
3192 }/*-------------------------< ABORT_RESEL >----------------*/,{
3193 	SCR_COPY (1),
3194 		RADDR (scratcha),
3195 		NADDR (msgout),
3196 	SCR_SET (SCR_ATN),
3197 		0,
3198 	SCR_CLR (SCR_ACK),
3199 		0,
3200 	/*
3201 	**	and send it.
3202 	**	we expect an immediate disconnect
3203 	*/
3204 	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
3205 		0,
3206 	SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
3207 		NADDR (msgout),
3208 	SCR_COPY (1),
3209 		NADDR (msgout),
3210 		NADDR (lastmsg),
3211 	SCR_CLR (SCR_ACK|SCR_ATN),
3212 		0,
3213 	SCR_WAIT_DISC,
3214 		0,
3215 	SCR_JUMP,
3216 		PADDR (start),
3217 }/*-------------------------< RESEND_IDENT >-------------------*/,{
3218 	/*
3219 	**	The target stays in MSG OUT phase after having acked
3220 	**	Identify [+ Tag [+ Extended message ]]. Targets shall
3221 	**	behave this way on parity error.
3222 	**	We must send it again all the messages.
3223 	*/
3224 	SCR_SET (SCR_ATN), /* Shall be asserted 2 deskew delays before the  */
3225 		0,         /* 1rst ACK = 90 ns. Hope the NCR is'nt too fast */
3226 	SCR_JUMP,
3227 		PADDR (send_ident),
3228 }/*-------------------------< CLRATN_GO_ON >-------------------*/,{
3229 	SCR_CLR (SCR_ATN),
3230 		0,
3231 	SCR_JUMP,
3232 }/*-------------------------< NXTDSP_GO_ON >-------------------*/,{
3233 		0,
3234 }/*-------------------------< SDATA_IN >-------------------*/,{
3235 	SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)),
3236 		PADDR (dispatch),
3237 	SCR_MOVE_TBL ^ SCR_DATA_IN,
3238 		offsetof (struct dsb, sense),
3239 	SCR_CALL,
3240 		PADDR (dispatch),
3241 	SCR_JUMP,
3242 		PADDR (no_data),
3243 }/*-------------------------< DATA_IO >--------------------*/,{
3244 	/*
3245 	**	We jump here if the data direction was unknown at the
3246 	**	time we had to queue the command to the scripts processor.
3247 	**	Pointers had been set as follow in this situation:
3248 	**	  savep   -->   DATA_IO
3249 	**	  lastp   -->   start pointer when DATA_IN
3250 	**	  goalp   -->   goal  pointer when DATA_IN
3251 	**	  wlastp  -->   start pointer when DATA_OUT
3252 	**	  wgoalp  -->   goal  pointer when DATA_OUT
3253 	**	This script sets savep/lastp/goalp according to the
3254 	**	direction chosen by the target.
3255 	*/
3256 	SCR_JUMPR ^ IFTRUE (WHEN (SCR_DATA_OUT)),
3257 		32,
3258 	/*
3259 	**	Direction is DATA IN.
3260 	**	Warning: we jump here, even when phase is DATA OUT.
3261 	*/
3262 	SCR_COPY (4),
3263 		NADDR (header.lastp),
3264 		NADDR (header.savep),
3265 
3266 	/*
3267 	**	Jump to the SCRIPTS according to actual direction.
3268 	*/
3269 	SCR_COPY (4),
3270 		NADDR (header.savep),
3271 		RADDR (temp),
3272 	SCR_RETURN,
3273 		0,
3274 	/*
3275 	**	Direction is DATA OUT.
3276 	*/
3277 	SCR_COPY (4),
3278 		NADDR (header.wlastp),
3279 		NADDR (header.lastp),
3280 	SCR_COPY (4),
3281 		NADDR (header.wgoalp),
3282 		NADDR (header.goalp),
3283 	SCR_JUMPR,
3284 		-64,
3285 }/*-------------------------< BAD_IDENTIFY >---------------*/,{
3286 	/*
3287 	**	If message phase but not an IDENTIFY,
3288 	**	get some help from the C code.
3289 	**	Old SCSI device may behave so.
3290 	*/
3291 	SCR_JUMPR ^ IFTRUE (MASK (0x80, 0x80)),
3292 		16,
3293 	SCR_INT,
3294 		SIR_RESEL_NO_IDENTIFY,
3295 	SCR_JUMP,
3296 		PADDRH (reset),
3297 	/*
3298 	**	Message is an IDENTIFY, but lun is unknown.
3299 	**	Read the message, since we got it directly
3300 	**	from the SCSI BUS data lines.
3301 	**	Signal problem to C code for logging the event.
3302 	**	Send an ABORT_TASK_SET to clear all pending tasks.
3303 	*/
3304 	SCR_INT,
3305 		SIR_RESEL_BAD_LUN,
3306 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3307 		NADDR (msgin),
3308 	SCR_JUMP,
3309 		PADDRH (abort),
3310 }/*-------------------------< BAD_I_T_L >------------------*/,{
3311 	/*
3312 	**	We donnot have a task for that I_T_L.
3313 	**	Signal problem to C code for logging the event.
3314 	**	Send an ABORT_TASK_SET message.
3315 	*/
3316 	SCR_INT,
3317 		SIR_RESEL_BAD_I_T_L,
3318 	SCR_JUMP,
3319 		PADDRH (abort),
3320 }/*-------------------------< BAD_I_T_L_Q >----------------*/,{
3321 	/*
3322 	**	We donnot have a task that matches the tag.
3323 	**	Signal problem to C code for logging the event.
3324 	**	Send an ABORT_TASK message.
3325 	*/
3326 	SCR_INT,
3327 		SIR_RESEL_BAD_I_T_L_Q,
3328 	SCR_JUMP,
3329 		PADDRH (aborttag),
3330 }/*-------------------------< BAD_TARGET >-----------------*/,{
3331 	/*
3332 	**	We donnot know the target that reselected us.
3333 	**	Grab the first message if any (IDENTIFY).
3334 	**	Signal problem to C code for logging the event.
3335 	**	TARGET_RESET message.
3336 	*/
3337 	SCR_INT,
3338 		SIR_RESEL_BAD_TARGET,
3339 	SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_IN)),
3340 		8,
3341 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3342 		NADDR (msgin),
3343 	SCR_JUMP,
3344 		PADDRH (reset),
3345 }/*-------------------------< BAD_STATUS >-----------------*/,{
3346 	/*
3347 	**	If command resulted in either TASK_SET FULL,
3348 	**	CHECK CONDITION or COMMAND TERMINATED,
3349 	**	call the C code.
3350 	*/
3351 	SCR_INT ^ IFTRUE (DATA (SAM_STAT_TASK_SET_FULL)),
3352 		SIR_BAD_STATUS,
3353 	SCR_INT ^ IFTRUE (DATA (SAM_STAT_CHECK_CONDITION)),
3354 		SIR_BAD_STATUS,
3355 	SCR_INT ^ IFTRUE (DATA (SAM_STAT_COMMAND_TERMINATED)),
3356 		SIR_BAD_STATUS,
3357 	SCR_RETURN,
3358 		0,
3359 }/*-------------------------< START_RAM >-------------------*/,{
3360 	/*
3361 	**	Load the script into on-chip RAM,
3362 	**	and jump to start point.
3363 	*/
3364 	SCR_COPY_F (4),
3365 		RADDR (scratcha),
3366 		PADDRH (start_ram0),
3367 	/*
3368 	**	Flush script prefetch if required
3369 	*/
3370 	PREFETCH_FLUSH
3371 	SCR_COPY (sizeof (struct script)),
3372 }/*-------------------------< START_RAM0 >--------------------*/,{
3373 		0,
3374 		PADDR (start),
3375 	SCR_JUMP,
3376 		PADDR (start),
3377 }/*-------------------------< STO_RESTART >-------------------*/,{
3378 	/*
3379 	**
3380 	**	Repair start queue (e.g. next time use the next slot)
3381 	**	and jump to start point.
3382 	*/
3383 	SCR_COPY (4),
3384 		RADDR (temp),
3385 		PADDR (startpos),
3386 	SCR_JUMP,
3387 		PADDR (start),
3388 }/*-------------------------< WAIT_DMA >-------------------*/,{
3389 	/*
3390 	**	For HP Zalon/53c720 systems, the Zalon interface
3391 	**	between CPU and 53c720 does prefetches, which causes
3392 	**	problems with self modifying scripts.  The problem
3393 	**	is overcome by calling a dummy subroutine after each
3394 	**	modification, to force a refetch of the script on
3395 	**	return from the subroutine.
3396 	*/
3397 	SCR_RETURN,
3398 		0,
3399 }/*-------------------------< SNOOPTEST >-------------------*/,{
3400 	/*
3401 	**	Read the variable.
3402 	*/
3403 	SCR_COPY (4),
3404 		NADDR(ncr_cache),
3405 		RADDR (scratcha),
3406 	/*
3407 	**	Write the variable.
3408 	*/
3409 	SCR_COPY (4),
3410 		RADDR (temp),
3411 		NADDR(ncr_cache),
3412 	/*
3413 	**	Read back the variable.
3414 	*/
3415 	SCR_COPY (4),
3416 		NADDR(ncr_cache),
3417 		RADDR (temp),
3418 }/*-------------------------< SNOOPEND >-------------------*/,{
3419 	/*
3420 	**	And stop.
3421 	*/
3422 	SCR_INT,
3423 		99,
3424 }/*--------------------------------------------------------*/
3425 };
3426 
3427 /*==========================================================
3428 **
3429 **
3430 **	Fill in #define dependent parts of the script
3431 **
3432 **
3433 **==========================================================
3434 */
3435 
3436 void __init ncr_script_fill (struct script * scr, struct scripth * scrh)
3437 {
3438 	int	i;
3439 	ncrcmd	*p;
3440 
3441 	p = scrh->tryloop;
3442 	for (i=0; i<MAX_START; i++) {
3443 		*p++ =SCR_CALL;
3444 		*p++ =PADDR (idle);
3445 	}
3446 
3447 	BUG_ON((u_long)p != (u_long)&scrh->tryloop + sizeof (scrh->tryloop));
3448 
3449 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
3450 
3451 	p = scrh->done_queue;
3452 	for (i = 0; i<MAX_DONE; i++) {
3453 		*p++ =SCR_COPY (sizeof(struct ccb *));
3454 		*p++ =NADDR (header.cp);
3455 		*p++ =NADDR (ccb_done[i]);
3456 		*p++ =SCR_CALL;
3457 		*p++ =PADDR (done_end);
3458 	}
3459 
3460 	BUG_ON((u_long)p != (u_long)&scrh->done_queue+sizeof(scrh->done_queue));
3461 
3462 #endif /* SCSI_NCR_CCB_DONE_SUPPORT */
3463 
3464 	p = scrh->hdata_in;
3465 	for (i=0; i<MAX_SCATTERH; i++) {
3466 		*p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN));
3467 		*p++ =PADDR (dispatch);
3468 		*p++ =SCR_MOVE_TBL ^ SCR_DATA_IN;
3469 		*p++ =offsetof (struct dsb, data[i]);
3470 	}
3471 
3472 	BUG_ON((u_long)p != (u_long)&scrh->hdata_in + sizeof (scrh->hdata_in));
3473 
3474 	p = scr->data_in;
3475 	for (i=MAX_SCATTERH; i<MAX_SCATTERH+MAX_SCATTERL; i++) {
3476 		*p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN));
3477 		*p++ =PADDR (dispatch);
3478 		*p++ =SCR_MOVE_TBL ^ SCR_DATA_IN;
3479 		*p++ =offsetof (struct dsb, data[i]);
3480 	}
3481 
3482 	BUG_ON((u_long)p != (u_long)&scr->data_in + sizeof (scr->data_in));
3483 
3484 	p = scrh->hdata_out;
3485 	for (i=0; i<MAX_SCATTERH; i++) {
3486 		*p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT));
3487 		*p++ =PADDR (dispatch);
3488 		*p++ =SCR_MOVE_TBL ^ SCR_DATA_OUT;
3489 		*p++ =offsetof (struct dsb, data[i]);
3490 	}
3491 
3492 	BUG_ON((u_long)p != (u_long)&scrh->hdata_out + sizeof (scrh->hdata_out));
3493 
3494 	p = scr->data_out;
3495 	for (i=MAX_SCATTERH; i<MAX_SCATTERH+MAX_SCATTERL; i++) {
3496 		*p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT));
3497 		*p++ =PADDR (dispatch);
3498 		*p++ =SCR_MOVE_TBL ^ SCR_DATA_OUT;
3499 		*p++ =offsetof (struct dsb, data[i]);
3500 	}
3501 
3502 	BUG_ON((u_long) p != (u_long)&scr->data_out + sizeof (scr->data_out));
3503 }
3504 
3505 /*==========================================================
3506 **
3507 **
3508 **	Copy and rebind a script.
3509 **
3510 **
3511 **==========================================================
3512 */
3513 
3514 static void __init
3515 ncr_script_copy_and_bind (struct ncb *np, ncrcmd *src, ncrcmd *dst, int len)
3516 {
3517 	ncrcmd  opcode, new, old, tmp1, tmp2;
3518 	ncrcmd	*start, *end;
3519 	int relocs;
3520 	int opchanged = 0;
3521 
3522 	start = src;
3523 	end = src + len/4;
3524 
3525 	while (src < end) {
3526 
3527 		opcode = *src++;
3528 		*dst++ = cpu_to_scr(opcode);
3529 
3530 		/*
3531 		**	If we forget to change the length
3532 		**	in struct script, a field will be
3533 		**	padded with 0. This is an illegal
3534 		**	command.
3535 		*/
3536 
3537 		if (opcode == 0) {
3538 			printk (KERN_ERR "%s: ERROR0 IN SCRIPT at %d.\n",
3539 				ncr_name(np), (int) (src-start-1));
3540 			mdelay(1000);
3541 		}
3542 
3543 		if (DEBUG_FLAGS & DEBUG_SCRIPT)
3544 			printk (KERN_DEBUG "%p:  <%x>\n",
3545 				(src-1), (unsigned)opcode);
3546 
3547 		/*
3548 		**	We don't have to decode ALL commands
3549 		*/
3550 		switch (opcode >> 28) {
3551 
3552 		case 0xc:
3553 			/*
3554 			**	COPY has TWO arguments.
3555 			*/
3556 			relocs = 2;
3557 			tmp1 = src[0];
3558 #ifdef	RELOC_KVAR
3559 			if ((tmp1 & RELOC_MASK) == RELOC_KVAR)
3560 				tmp1 = 0;
3561 #endif
3562 			tmp2 = src[1];
3563 #ifdef	RELOC_KVAR
3564 			if ((tmp2 & RELOC_MASK) == RELOC_KVAR)
3565 				tmp2 = 0;
3566 #endif
3567 			if ((tmp1 ^ tmp2) & 3) {
3568 				printk (KERN_ERR"%s: ERROR1 IN SCRIPT at %d.\n",
3569 					ncr_name(np), (int) (src-start-1));
3570 				mdelay(1000);
3571 			}
3572 			/*
3573 			**	If PREFETCH feature not enabled, remove
3574 			**	the NO FLUSH bit if present.
3575 			*/
3576 			if ((opcode & SCR_NO_FLUSH) && !(np->features & FE_PFEN)) {
3577 				dst[-1] = cpu_to_scr(opcode & ~SCR_NO_FLUSH);
3578 				++opchanged;
3579 			}
3580 			break;
3581 
3582 		case 0x0:
3583 			/*
3584 			**	MOVE (absolute address)
3585 			*/
3586 			relocs = 1;
3587 			break;
3588 
3589 		case 0x8:
3590 			/*
3591 			**	JUMP / CALL
3592 			**	don't relocate if relative :-)
3593 			*/
3594 			if (opcode & 0x00800000)
3595 				relocs = 0;
3596 			else
3597 				relocs = 1;
3598 			break;
3599 
3600 		case 0x4:
3601 		case 0x5:
3602 		case 0x6:
3603 		case 0x7:
3604 			relocs = 1;
3605 			break;
3606 
3607 		default:
3608 			relocs = 0;
3609 			break;
3610 		}
3611 
3612 		if (relocs) {
3613 			while (relocs--) {
3614 				old = *src++;
3615 
3616 				switch (old & RELOC_MASK) {
3617 				case RELOC_REGISTER:
3618 					new = (old & ~RELOC_MASK) + np->paddr;
3619 					break;
3620 				case RELOC_LABEL:
3621 					new = (old & ~RELOC_MASK) + np->p_script;
3622 					break;
3623 				case RELOC_LABELH:
3624 					new = (old & ~RELOC_MASK) + np->p_scripth;
3625 					break;
3626 				case RELOC_SOFTC:
3627 					new = (old & ~RELOC_MASK) + np->p_ncb;
3628 					break;
3629 #ifdef	RELOC_KVAR
3630 				case RELOC_KVAR:
3631 					if (((old & ~RELOC_MASK) <
3632 					     SCRIPT_KVAR_FIRST) ||
3633 					    ((old & ~RELOC_MASK) >
3634 					     SCRIPT_KVAR_LAST))
3635 						panic("ncr KVAR out of range");
3636 					new = vtophys(script_kvars[old &
3637 					    ~RELOC_MASK]);
3638 					break;
3639 #endif
3640 				case 0:
3641 					/* Don't relocate a 0 address. */
3642 					if (old == 0) {
3643 						new = old;
3644 						break;
3645 					}
3646 					fallthrough;
3647 				default:
3648 					panic("ncr_script_copy_and_bind: weird relocation %x\n", old);
3649 					break;
3650 				}
3651 
3652 				*dst++ = cpu_to_scr(new);
3653 			}
3654 		} else
3655 			*dst++ = cpu_to_scr(*src++);
3656 
3657 	}
3658 }
3659 
3660 /*
3661 **	Linux host data structure
3662 */
3663 
3664 struct host_data {
3665      struct ncb *ncb;
3666 };
3667 
3668 #define PRINT_ADDR(cmd, arg...) dev_info(&cmd->device->sdev_gendev , ## arg)
3669 
3670 static void ncr_print_msg(struct ccb *cp, char *label, u_char *msg)
3671 {
3672 	PRINT_ADDR(cp->cmd, "%s: ", label);
3673 
3674 	spi_print_msg(msg);
3675 	printk("\n");
3676 }
3677 
3678 /*==========================================================
3679 **
3680 **	NCR chip clock divisor table.
3681 **	Divisors are multiplied by 10,000,000 in order to make
3682 **	calculations more simple.
3683 **
3684 **==========================================================
3685 */
3686 
3687 #define _5M 5000000
3688 static u_long div_10M[] =
3689 	{2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
3690 
3691 
3692 /*===============================================================
3693 **
3694 **	Prepare io register values used by ncr_init() according
3695 **	to selected and supported features.
3696 **
3697 **	NCR chips allow burst lengths of 2, 4, 8, 16, 32, 64, 128
3698 **	transfers. 32,64,128 are only supported by 875 and 895 chips.
3699 **	We use log base 2 (burst length) as internal code, with
3700 **	value 0 meaning "burst disabled".
3701 **
3702 **===============================================================
3703 */
3704 
3705 /*
3706  *	Burst length from burst code.
3707  */
3708 #define burst_length(bc) (!(bc))? 0 : 1 << (bc)
3709 
3710 /*
3711  *	Burst code from io register bits.  Burst enable is ctest0 for c720
3712  */
3713 #define burst_code(dmode, ctest0) \
3714 	(ctest0) & 0x80 ? 0 : (((dmode) & 0xc0) >> 6) + 1
3715 
3716 /*
3717  *	Set initial io register bits from burst code.
3718  */
3719 static inline void ncr_init_burst(struct ncb *np, u_char bc)
3720 {
3721 	u_char *be = &np->rv_ctest0;
3722 	*be		&= ~0x80;
3723 	np->rv_dmode	&= ~(0x3 << 6);
3724 	np->rv_ctest5	&= ~0x4;
3725 
3726 	if (!bc) {
3727 		*be		|= 0x80;
3728 	} else {
3729 		--bc;
3730 		np->rv_dmode	|= ((bc & 0x3) << 6);
3731 		np->rv_ctest5	|= (bc & 0x4);
3732 	}
3733 }
3734 
3735 static void __init ncr_prepare_setting(struct ncb *np)
3736 {
3737 	u_char	burst_max;
3738 	u_long	period;
3739 	int i;
3740 
3741 	/*
3742 	**	Save assumed BIOS setting
3743 	*/
3744 
3745 	np->sv_scntl0	= INB(nc_scntl0) & 0x0a;
3746 	np->sv_scntl3	= INB(nc_scntl3) & 0x07;
3747 	np->sv_dmode	= INB(nc_dmode)  & 0xce;
3748 	np->sv_dcntl	= INB(nc_dcntl)  & 0xa8;
3749 	np->sv_ctest0	= INB(nc_ctest0) & 0x84;
3750 	np->sv_ctest3	= INB(nc_ctest3) & 0x01;
3751 	np->sv_ctest4	= INB(nc_ctest4) & 0x80;
3752 	np->sv_ctest5	= INB(nc_ctest5) & 0x24;
3753 	np->sv_gpcntl	= INB(nc_gpcntl);
3754 	np->sv_stest2	= INB(nc_stest2) & 0x20;
3755 	np->sv_stest4	= INB(nc_stest4);
3756 
3757 	/*
3758 	**	Wide ?
3759 	*/
3760 
3761 	np->maxwide	= (np->features & FE_WIDE)? 1 : 0;
3762 
3763  	/*
3764 	 *  Guess the frequency of the chip's clock.
3765 	 */
3766 	if (np->features & FE_ULTRA)
3767 		np->clock_khz = 80000;
3768 	else
3769 		np->clock_khz = 40000;
3770 
3771 	/*
3772 	 *  Get the clock multiplier factor.
3773  	 */
3774 	if	(np->features & FE_QUAD)
3775 		np->multiplier	= 4;
3776 	else if	(np->features & FE_DBLR)
3777 		np->multiplier	= 2;
3778 	else
3779 		np->multiplier	= 1;
3780 
3781 	/*
3782 	 *  Measure SCSI clock frequency for chips
3783 	 *  it may vary from assumed one.
3784 	 */
3785 	if (np->features & FE_VARCLK)
3786 		ncr_getclock(np, np->multiplier);
3787 
3788 	/*
3789 	 * Divisor to be used for async (timer pre-scaler).
3790 	 */
3791 	i = np->clock_divn - 1;
3792 	while (--i >= 0) {
3793 		if (10ul * SCSI_NCR_MIN_ASYNC * np->clock_khz > div_10M[i]) {
3794 			++i;
3795 			break;
3796 		}
3797 	}
3798 	np->rv_scntl3 = i+1;
3799 
3800 	/*
3801 	 * Minimum synchronous period factor supported by the chip.
3802 	 * Btw, 'period' is in tenths of nanoseconds.
3803 	 */
3804 
3805 	period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
3806 	if	(period <= 250)		np->minsync = 10;
3807 	else if	(period <= 303)		np->minsync = 11;
3808 	else if	(period <= 500)		np->minsync = 12;
3809 	else				np->minsync = (period + 40 - 1) / 40;
3810 
3811 	/*
3812 	 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
3813 	 */
3814 
3815 	if	(np->minsync < 25 && !(np->features & FE_ULTRA))
3816 		np->minsync = 25;
3817 
3818 	/*
3819 	 * Maximum synchronous period factor supported by the chip.
3820 	 */
3821 
3822 	period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
3823 	np->maxsync = period > 2540 ? 254 : period / 10;
3824 
3825 	/*
3826 	**	Prepare initial value of other IO registers
3827 	*/
3828 #if defined SCSI_NCR_TRUST_BIOS_SETTING
3829 	np->rv_scntl0	= np->sv_scntl0;
3830 	np->rv_dmode	= np->sv_dmode;
3831 	np->rv_dcntl	= np->sv_dcntl;
3832 	np->rv_ctest0	= np->sv_ctest0;
3833 	np->rv_ctest3	= np->sv_ctest3;
3834 	np->rv_ctest4	= np->sv_ctest4;
3835 	np->rv_ctest5	= np->sv_ctest5;
3836 	burst_max	= burst_code(np->sv_dmode, np->sv_ctest0);
3837 #else
3838 
3839 	/*
3840 	**	Select burst length (dwords)
3841 	*/
3842 	burst_max	= driver_setup.burst_max;
3843 	if (burst_max == 255)
3844 		burst_max = burst_code(np->sv_dmode, np->sv_ctest0);
3845 	if (burst_max > 7)
3846 		burst_max = 7;
3847 	if (burst_max > np->maxburst)
3848 		burst_max = np->maxburst;
3849 
3850 	/*
3851 	**	Select all supported special features
3852 	*/
3853 	if (np->features & FE_ERL)
3854 		np->rv_dmode	|= ERL;		/* Enable Read Line */
3855 	if (np->features & FE_BOF)
3856 		np->rv_dmode	|= BOF;		/* Burst Opcode Fetch */
3857 	if (np->features & FE_ERMP)
3858 		np->rv_dmode	|= ERMP;	/* Enable Read Multiple */
3859 	if (np->features & FE_PFEN)
3860 		np->rv_dcntl	|= PFEN;	/* Prefetch Enable */
3861 	if (np->features & FE_CLSE)
3862 		np->rv_dcntl	|= CLSE;	/* Cache Line Size Enable */
3863 	if (np->features & FE_WRIE)
3864 		np->rv_ctest3	|= WRIE;	/* Write and Invalidate */
3865 	if (np->features & FE_DFS)
3866 		np->rv_ctest5	|= DFS;		/* Dma Fifo Size */
3867 	if (np->features & FE_MUX)
3868 		np->rv_ctest4	|= MUX;		/* Host bus multiplex mode */
3869 	if (np->features & FE_EA)
3870 		np->rv_dcntl	|= EA;		/* Enable ACK */
3871 	if (np->features & FE_EHP)
3872 		np->rv_ctest0	|= EHP;		/* Even host parity */
3873 
3874 	/*
3875 	**	Select some other
3876 	*/
3877 	if (driver_setup.master_parity)
3878 		np->rv_ctest4	|= MPEE;	/* Master parity checking */
3879 	if (driver_setup.scsi_parity)
3880 		np->rv_scntl0	|= 0x0a;	/*  full arb., ena parity, par->ATN  */
3881 
3882 	/*
3883 	**  Get SCSI addr of host adapter (set by bios?).
3884 	*/
3885 	if (np->myaddr == 255) {
3886 		np->myaddr = INB(nc_scid) & 0x07;
3887 		if (!np->myaddr)
3888 			np->myaddr = SCSI_NCR_MYADDR;
3889 	}
3890 
3891 #endif /* SCSI_NCR_TRUST_BIOS_SETTING */
3892 
3893 	/*
3894 	 *	Prepare initial io register bits for burst length
3895 	 */
3896 	ncr_init_burst(np, burst_max);
3897 
3898 	/*
3899 	**	Set SCSI BUS mode.
3900 	**
3901 	**	- ULTRA2 chips (895/895A/896) report the current
3902 	**	  BUS mode through the STEST4 IO register.
3903 	**	- For previous generation chips (825/825A/875),
3904 	**	  user has to tell us how to check against HVD,
3905 	**	  since a 100% safe algorithm is not possible.
3906 	*/
3907 	np->scsi_mode = SMODE_SE;
3908 	if (np->features & FE_DIFF) {
3909 		switch(driver_setup.diff_support) {
3910 		case 4:	/* Trust previous settings if present, then GPIO3 */
3911 			if (np->sv_scntl3) {
3912 				if (np->sv_stest2 & 0x20)
3913 					np->scsi_mode = SMODE_HVD;
3914 				break;
3915 			}
3916 			fallthrough;
3917 		case 3:	/* SYMBIOS controllers report HVD through GPIO3 */
3918 			if (INB(nc_gpreg) & 0x08)
3919 				break;
3920 			fallthrough;
3921 		case 2:	/* Set HVD unconditionally */
3922 			np->scsi_mode = SMODE_HVD;
3923 			fallthrough;
3924 		case 1:	/* Trust previous settings for HVD */
3925 			if (np->sv_stest2 & 0x20)
3926 				np->scsi_mode = SMODE_HVD;
3927 			break;
3928 		default:/* Don't care about HVD */
3929 			break;
3930 		}
3931 	}
3932 	if (np->scsi_mode == SMODE_HVD)
3933 		np->rv_stest2 |= 0x20;
3934 
3935 	/*
3936 	**	Set LED support from SCRIPTS.
3937 	**	Ignore this feature for boards known to use a
3938 	**	specific GPIO wiring and for the 895A or 896
3939 	**	that drive the LED directly.
3940 	**	Also probe initial setting of GPIO0 as output.
3941 	*/
3942 	if ((driver_setup.led_pin) &&
3943 	    !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
3944 		np->features |= FE_LED0;
3945 
3946 	/*
3947 	**	Set irq mode.
3948 	*/
3949 	switch(driver_setup.irqm & 3) {
3950 	case 2:
3951 		np->rv_dcntl	|= IRQM;
3952 		break;
3953 	case 1:
3954 		np->rv_dcntl	|= (np->sv_dcntl & IRQM);
3955 		break;
3956 	default:
3957 		break;
3958 	}
3959 
3960 	/*
3961 	**	Configure targets according to driver setup.
3962 	**	Allow to override sync, wide and NOSCAN from
3963 	**	boot command line.
3964 	*/
3965 	for (i = 0 ; i < MAX_TARGET ; i++) {
3966 		struct tcb *tp = &np->target[i];
3967 
3968 		tp->usrsync = driver_setup.default_sync;
3969 		tp->usrwide = driver_setup.max_wide;
3970 		tp->usrtags = MAX_TAGS;
3971 		tp->period = 0xffff;
3972 		if (!driver_setup.disconnection)
3973 			np->target[i].usrflag = UF_NODISC;
3974 	}
3975 
3976 	/*
3977 	**	Announce all that stuff to user.
3978 	*/
3979 
3980 	printk(KERN_INFO "%s: ID %d, Fast-%d%s%s\n", ncr_name(np),
3981 		np->myaddr,
3982 		np->minsync < 12 ? 40 : (np->minsync < 25 ? 20 : 10),
3983 		(np->rv_scntl0 & 0xa)	? ", Parity Checking"	: ", NO Parity",
3984 		(np->rv_stest2 & 0x20)	? ", Differential"	: "");
3985 
3986 	if (bootverbose > 1) {
3987 		printk (KERN_INFO "%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
3988 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
3989 			ncr_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
3990 			np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
3991 
3992 		printk (KERN_INFO "%s: final   SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
3993 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
3994 			ncr_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
3995 			np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
3996 	}
3997 
3998 	if (bootverbose && np->paddr2)
3999 		printk (KERN_INFO "%s: on-chip RAM at 0x%lx\n",
4000 			ncr_name(np), np->paddr2);
4001 }
4002 
4003 /*==========================================================
4004 **
4005 **
4006 **	Done SCSI commands list management.
4007 **
4008 **	We donnot enter the scsi_done() callback immediately
4009 **	after a command has been seen as completed but we
4010 **	insert it into a list which is flushed outside any kind
4011 **	of driver critical section.
4012 **	This allows to do minimal stuff under interrupt and
4013 **	inside critical sections and to also avoid locking up
4014 **	on recursive calls to driver entry points under SMP.
4015 **	In fact, the only kernel point which is entered by the
4016 **	driver with a driver lock set is kmalloc(GFP_ATOMIC)
4017 **	that shall not reenter the driver under any circumstances,
4018 **	AFAIK.
4019 **
4020 **==========================================================
4021 */
4022 static inline void ncr_queue_done_cmd(struct ncb *np, struct scsi_cmnd *cmd)
4023 {
4024 	unmap_scsi_data(np, cmd);
4025 	cmd->host_scribble = (char *) np->done_list;
4026 	np->done_list = cmd;
4027 }
4028 
4029 static inline void ncr_flush_done_cmds(struct scsi_cmnd *lcmd)
4030 {
4031 	struct scsi_cmnd *cmd;
4032 
4033 	while (lcmd) {
4034 		cmd = lcmd;
4035 		lcmd = (struct scsi_cmnd *) cmd->host_scribble;
4036 		cmd->scsi_done(cmd);
4037 	}
4038 }
4039 
4040 /*==========================================================
4041 **
4042 **
4043 **	Prepare the next negotiation message if needed.
4044 **
4045 **	Fill in the part of message buffer that contains the
4046 **	negotiation and the nego_status field of the CCB.
4047 **	Returns the size of the message in bytes.
4048 **
4049 **
4050 **==========================================================
4051 */
4052 
4053 
4054 static int ncr_prepare_nego(struct ncb *np, struct ccb *cp, u_char *msgptr)
4055 {
4056 	struct tcb *tp = &np->target[cp->target];
4057 	int msglen = 0;
4058 	int nego = 0;
4059 	struct scsi_target *starget = tp->starget;
4060 
4061 	/* negotiate wide transfers ?  */
4062 	if (!tp->widedone) {
4063 		if (spi_support_wide(starget)) {
4064 			nego = NS_WIDE;
4065 		} else
4066 			tp->widedone=1;
4067 	}
4068 
4069 	/* negotiate synchronous transfers?  */
4070 	if (!nego && !tp->period) {
4071 		if (spi_support_sync(starget)) {
4072 			nego = NS_SYNC;
4073 		} else {
4074 			tp->period  =0xffff;
4075 			dev_info(&starget->dev, "target did not report SYNC.\n");
4076 		}
4077 	}
4078 
4079 	switch (nego) {
4080 	case NS_SYNC:
4081 		msglen += spi_populate_sync_msg(msgptr + msglen,
4082 				tp->maxoffs ? tp->minsync : 0, tp->maxoffs);
4083 		break;
4084 	case NS_WIDE:
4085 		msglen += spi_populate_width_msg(msgptr + msglen, tp->usrwide);
4086 		break;
4087 	}
4088 
4089 	cp->nego_status = nego;
4090 
4091 	if (nego) {
4092 		tp->nego_cp = cp;
4093 		if (DEBUG_FLAGS & DEBUG_NEGO) {
4094 			ncr_print_msg(cp, nego == NS_WIDE ?
4095 					  "wide msgout":"sync_msgout", msgptr);
4096 		}
4097 	}
4098 
4099 	return msglen;
4100 }
4101 
4102 
4103 
4104 /*==========================================================
4105 **
4106 **
4107 **	Start execution of a SCSI command.
4108 **	This is called from the generic SCSI driver.
4109 **
4110 **
4111 **==========================================================
4112 */
4113 static int ncr_queue_command (struct ncb *np, struct scsi_cmnd *cmd)
4114 {
4115 	struct scsi_device *sdev = cmd->device;
4116 	struct tcb *tp = &np->target[sdev->id];
4117 	struct lcb *lp = tp->lp[sdev->lun];
4118 	struct ccb *cp;
4119 
4120 	int	segments;
4121 	u_char	idmsg, *msgptr;
4122 	u32	msglen;
4123 	int	direction;
4124 	u32	lastp, goalp;
4125 
4126 	/*---------------------------------------------
4127 	**
4128 	**      Some shortcuts ...
4129 	**
4130 	**---------------------------------------------
4131 	*/
4132 	if ((sdev->id == np->myaddr	  ) ||
4133 		(sdev->id >= MAX_TARGET) ||
4134 		(sdev->lun    >= MAX_LUN   )) {
4135 		return(DID_BAD_TARGET);
4136 	}
4137 
4138 	/*---------------------------------------------
4139 	**
4140 	**	Complete the 1st TEST UNIT READY command
4141 	**	with error condition if the device is
4142 	**	flagged NOSCAN, in order to speed up
4143 	**	the boot.
4144 	**
4145 	**---------------------------------------------
4146 	*/
4147 	if ((cmd->cmnd[0] == 0 || cmd->cmnd[0] == 0x12) &&
4148 	    (tp->usrflag & UF_NOSCAN)) {
4149 		tp->usrflag &= ~UF_NOSCAN;
4150 		return DID_BAD_TARGET;
4151 	}
4152 
4153 	if (DEBUG_FLAGS & DEBUG_TINY) {
4154 		PRINT_ADDR(cmd, "CMD=%x ", cmd->cmnd[0]);
4155 	}
4156 
4157 	/*---------------------------------------------------
4158 	**
4159 	**	Assign a ccb / bind cmd.
4160 	**	If resetting, shorten settle_time if necessary
4161 	**	in order to avoid spurious timeouts.
4162 	**	If resetting or no free ccb,
4163 	**	insert cmd into the waiting list.
4164 	**
4165 	**----------------------------------------------------
4166 	*/
4167 	if (np->settle_time && cmd->request->timeout >= HZ) {
4168 		u_long tlimit = jiffies + cmd->request->timeout - HZ;
4169 		if (time_after(np->settle_time, tlimit))
4170 			np->settle_time = tlimit;
4171 	}
4172 
4173 	if (np->settle_time || !(cp=ncr_get_ccb (np, cmd))) {
4174 		insert_into_waiting_list(np, cmd);
4175 		return(DID_OK);
4176 	}
4177 	cp->cmd = cmd;
4178 
4179 	/*----------------------------------------------------
4180 	**
4181 	**	Build the identify / tag / sdtr message
4182 	**
4183 	**----------------------------------------------------
4184 	*/
4185 
4186 	idmsg = IDENTIFY(0, sdev->lun);
4187 
4188 	if (cp ->tag != NO_TAG ||
4189 		(cp != np->ccb && np->disc && !(tp->usrflag & UF_NODISC)))
4190 		idmsg |= 0x40;
4191 
4192 	msgptr = cp->scsi_smsg;
4193 	msglen = 0;
4194 	msgptr[msglen++] = idmsg;
4195 
4196 	if (cp->tag != NO_TAG) {
4197 		char order = np->order;
4198 
4199 		/*
4200 		**	Force ordered tag if necessary to avoid timeouts
4201 		**	and to preserve interactivity.
4202 		*/
4203 		if (lp && time_after(jiffies, lp->tags_stime)) {
4204 			if (lp->tags_smap) {
4205 				order = ORDERED_QUEUE_TAG;
4206 				if ((DEBUG_FLAGS & DEBUG_TAGS)||bootverbose>2){
4207 					PRINT_ADDR(cmd,
4208 						"ordered tag forced.\n");
4209 				}
4210 			}
4211 			lp->tags_stime = jiffies + 3*HZ;
4212 			lp->tags_smap = lp->tags_umap;
4213 		}
4214 
4215 		if (order == 0) {
4216 			/*
4217 			**	Ordered write ops, unordered read ops.
4218 			*/
4219 			switch (cmd->cmnd[0]) {
4220 			case 0x08:  /* READ_SMALL (6) */
4221 			case 0x28:  /* READ_BIG  (10) */
4222 			case 0xa8:  /* READ_HUGE (12) */
4223 				order = SIMPLE_QUEUE_TAG;
4224 				break;
4225 			default:
4226 				order = ORDERED_QUEUE_TAG;
4227 			}
4228 		}
4229 		msgptr[msglen++] = order;
4230 		/*
4231 		**	Actual tags are numbered 1,3,5,..2*MAXTAGS+1,
4232 		**	since we may have to deal with devices that have
4233 		**	problems with #TAG 0 or too great #TAG numbers.
4234 		*/
4235 		msgptr[msglen++] = (cp->tag << 1) + 1;
4236 	}
4237 
4238 	/*----------------------------------------------------
4239 	**
4240 	**	Build the data descriptors
4241 	**
4242 	**----------------------------------------------------
4243 	*/
4244 
4245 	direction = cmd->sc_data_direction;
4246 	if (direction != DMA_NONE) {
4247 		segments = ncr_scatter(np, cp, cp->cmd);
4248 		if (segments < 0) {
4249 			ncr_free_ccb(np, cp);
4250 			return(DID_ERROR);
4251 		}
4252 	}
4253 	else {
4254 		cp->data_len = 0;
4255 		segments = 0;
4256 	}
4257 
4258 	/*---------------------------------------------------
4259 	**
4260 	**	negotiation required?
4261 	**
4262 	**	(nego_status is filled by ncr_prepare_nego())
4263 	**
4264 	**---------------------------------------------------
4265 	*/
4266 
4267 	cp->nego_status = 0;
4268 
4269 	if ((!tp->widedone || !tp->period) && !tp->nego_cp && lp) {
4270 		msglen += ncr_prepare_nego (np, cp, msgptr + msglen);
4271 	}
4272 
4273 	/*----------------------------------------------------
4274 	**
4275 	**	Determine xfer direction.
4276 	**
4277 	**----------------------------------------------------
4278 	*/
4279 	if (!cp->data_len)
4280 		direction = DMA_NONE;
4281 
4282 	/*
4283 	**	If data direction is BIDIRECTIONAL, speculate FROM_DEVICE
4284 	**	but prepare alternate pointers for TO_DEVICE in case
4285 	**	of our speculation will be just wrong.
4286 	**	SCRIPTS will swap values if needed.
4287 	*/
4288 	switch(direction) {
4289 	case DMA_BIDIRECTIONAL:
4290 	case DMA_TO_DEVICE:
4291 		goalp = NCB_SCRIPT_PHYS (np, data_out2) + 8;
4292 		if (segments <= MAX_SCATTERL)
4293 			lastp = goalp - 8 - (segments * 16);
4294 		else {
4295 			lastp = NCB_SCRIPTH_PHYS (np, hdata_out2);
4296 			lastp -= (segments - MAX_SCATTERL) * 16;
4297 		}
4298 		if (direction != DMA_BIDIRECTIONAL)
4299 			break;
4300 		cp->phys.header.wgoalp	= cpu_to_scr(goalp);
4301 		cp->phys.header.wlastp	= cpu_to_scr(lastp);
4302 		fallthrough;
4303 	case DMA_FROM_DEVICE:
4304 		goalp = NCB_SCRIPT_PHYS (np, data_in2) + 8;
4305 		if (segments <= MAX_SCATTERL)
4306 			lastp = goalp - 8 - (segments * 16);
4307 		else {
4308 			lastp = NCB_SCRIPTH_PHYS (np, hdata_in2);
4309 			lastp -= (segments - MAX_SCATTERL) * 16;
4310 		}
4311 		break;
4312 	default:
4313 	case DMA_NONE:
4314 		lastp = goalp = NCB_SCRIPT_PHYS (np, no_data);
4315 		break;
4316 	}
4317 
4318 	/*
4319 	**	Set all pointers values needed by SCRIPTS.
4320 	**	If direction is unknown, start at data_io.
4321 	*/
4322 	cp->phys.header.lastp = cpu_to_scr(lastp);
4323 	cp->phys.header.goalp = cpu_to_scr(goalp);
4324 
4325 	if (direction == DMA_BIDIRECTIONAL)
4326 		cp->phys.header.savep =
4327 			cpu_to_scr(NCB_SCRIPTH_PHYS (np, data_io));
4328 	else
4329 		cp->phys.header.savep= cpu_to_scr(lastp);
4330 
4331 	/*
4332 	**	Save the initial data pointer in order to be able
4333 	**	to redo the command.
4334 	*/
4335 	cp->startp = cp->phys.header.savep;
4336 
4337 	/*----------------------------------------------------
4338 	**
4339 	**	fill in ccb
4340 	**
4341 	**----------------------------------------------------
4342 	**
4343 	**
4344 	**	physical -> virtual backlink
4345 	**	Generic SCSI command
4346 	*/
4347 
4348 	/*
4349 	**	Startqueue
4350 	*/
4351 	cp->start.schedule.l_paddr   = cpu_to_scr(NCB_SCRIPT_PHYS (np, select));
4352 	cp->restart.schedule.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_dsa));
4353 	/*
4354 	**	select
4355 	*/
4356 	cp->phys.select.sel_id		= sdev_id(sdev);
4357 	cp->phys.select.sel_scntl3	= tp->wval;
4358 	cp->phys.select.sel_sxfer	= tp->sval;
4359 	/*
4360 	**	message
4361 	*/
4362 	cp->phys.smsg.addr		= cpu_to_scr(CCB_PHYS (cp, scsi_smsg));
4363 	cp->phys.smsg.size		= cpu_to_scr(msglen);
4364 
4365 	/*
4366 	**	command
4367 	*/
4368 	memcpy(cp->cdb_buf, cmd->cmnd, min_t(int, cmd->cmd_len, sizeof(cp->cdb_buf)));
4369 	cp->phys.cmd.addr		= cpu_to_scr(CCB_PHYS (cp, cdb_buf[0]));
4370 	cp->phys.cmd.size		= cpu_to_scr(cmd->cmd_len);
4371 
4372 	/*
4373 	**	status
4374 	*/
4375 	cp->actualquirks		= 0;
4376 	cp->host_status			= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
4377 	cp->scsi_status			= SAM_STAT_ILLEGAL;
4378 	cp->parity_status		= 0;
4379 
4380 	cp->xerr_status			= XE_OK;
4381 #if 0
4382 	cp->sync_status			= tp->sval;
4383 	cp->wide_status			= tp->wval;
4384 #endif
4385 
4386 	/*----------------------------------------------------
4387 	**
4388 	**	Critical region: start this job.
4389 	**
4390 	**----------------------------------------------------
4391 	*/
4392 
4393 	/* activate this job.  */
4394 	cp->magic		= CCB_MAGIC;
4395 
4396 	/*
4397 	**	insert next CCBs into start queue.
4398 	**	2 max at a time is enough to flush the CCB wait queue.
4399 	*/
4400 	cp->auto_sense = 0;
4401 	if (lp)
4402 		ncr_start_next_ccb(np, lp, 2);
4403 	else
4404 		ncr_put_start_queue(np, cp);
4405 
4406 	/* Command is successfully queued.  */
4407 
4408 	return DID_OK;
4409 }
4410 
4411 
4412 /*==========================================================
4413 **
4414 **
4415 **	Insert a CCB into the start queue and wake up the
4416 **	SCRIPTS processor.
4417 **
4418 **
4419 **==========================================================
4420 */
4421 
4422 static void ncr_start_next_ccb(struct ncb *np, struct lcb *lp, int maxn)
4423 {
4424 	struct list_head *qp;
4425 	struct ccb *cp;
4426 
4427 	if (lp->held_ccb)
4428 		return;
4429 
4430 	while (maxn-- && lp->queuedccbs < lp->queuedepth) {
4431 		qp = ncr_list_pop(&lp->wait_ccbq);
4432 		if (!qp)
4433 			break;
4434 		++lp->queuedccbs;
4435 		cp = list_entry(qp, struct ccb, link_ccbq);
4436 		list_add_tail(qp, &lp->busy_ccbq);
4437 		lp->jump_ccb[cp->tag == NO_TAG ? 0 : cp->tag] =
4438 			cpu_to_scr(CCB_PHYS (cp, restart));
4439 		ncr_put_start_queue(np, cp);
4440 	}
4441 }
4442 
4443 static void ncr_put_start_queue(struct ncb *np, struct ccb *cp)
4444 {
4445 	u16	qidx;
4446 
4447 	/*
4448 	**	insert into start queue.
4449 	*/
4450 	if (!np->squeueput) np->squeueput = 1;
4451 	qidx = np->squeueput + 2;
4452 	if (qidx >= MAX_START + MAX_START) qidx = 1;
4453 
4454 	np->scripth->tryloop [qidx] = cpu_to_scr(NCB_SCRIPT_PHYS (np, idle));
4455 	MEMORY_BARRIER();
4456 	np->scripth->tryloop [np->squeueput] = cpu_to_scr(CCB_PHYS (cp, start));
4457 
4458 	np->squeueput = qidx;
4459 	++np->queuedccbs;
4460 	cp->queued = 1;
4461 
4462 	if (DEBUG_FLAGS & DEBUG_QUEUE)
4463 		printk ("%s: queuepos=%d.\n", ncr_name (np), np->squeueput);
4464 
4465 	/*
4466 	**	Script processor may be waiting for reselect.
4467 	**	Wake it up.
4468 	*/
4469 	MEMORY_BARRIER();
4470 	OUTB (nc_istat, SIGP);
4471 }
4472 
4473 
4474 static int ncr_reset_scsi_bus(struct ncb *np, int enab_int, int settle_delay)
4475 {
4476 	u32 term;
4477 	int retv = 0;
4478 
4479 	np->settle_time	= jiffies + settle_delay * HZ;
4480 
4481 	if (bootverbose > 1)
4482 		printk("%s: resetting, "
4483 			"command processing suspended for %d seconds\n",
4484 			ncr_name(np), settle_delay);
4485 
4486 	ncr_chip_reset(np, 100);
4487 	udelay(2000);	/* The 895 needs time for the bus mode to settle */
4488 	if (enab_int)
4489 		OUTW (nc_sien, RST);
4490 	/*
4491 	**	Enable Tolerant, reset IRQD if present and
4492 	**	properly set IRQ mode, prior to resetting the bus.
4493 	*/
4494 	OUTB (nc_stest3, TE);
4495 	OUTB (nc_scntl1, CRST);
4496 	udelay(200);
4497 
4498 	if (!driver_setup.bus_check)
4499 		goto out;
4500 	/*
4501 	**	Check for no terminators or SCSI bus shorts to ground.
4502 	**	Read SCSI data bus, data parity bits and control signals.
4503 	**	We are expecting RESET to be TRUE and other signals to be
4504 	**	FALSE.
4505 	*/
4506 
4507 	term =	INB(nc_sstat0);
4508 	term =	((term & 2) << 7) + ((term & 1) << 17);	/* rst sdp0 */
4509 	term |= ((INB(nc_sstat2) & 0x01) << 26) |	/* sdp1     */
4510 		((INW(nc_sbdl) & 0xff)   << 9)  |	/* d7-0     */
4511 		((INW(nc_sbdl) & 0xff00) << 10) |	/* d15-8    */
4512 		INB(nc_sbcl);	/* req ack bsy sel atn msg cd io    */
4513 
4514 	if (!(np->features & FE_WIDE))
4515 		term &= 0x3ffff;
4516 
4517 	if (term != (2<<7)) {
4518 		printk("%s: suspicious SCSI data while resetting the BUS.\n",
4519 			ncr_name(np));
4520 		printk("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
4521 			"0x%lx, expecting 0x%lx\n",
4522 			ncr_name(np),
4523 			(np->features & FE_WIDE) ? "dp1,d15-8," : "",
4524 			(u_long)term, (u_long)(2<<7));
4525 		if (driver_setup.bus_check == 1)
4526 			retv = 1;
4527 	}
4528 out:
4529 	OUTB (nc_scntl1, 0);
4530 	return retv;
4531 }
4532 
4533 /*
4534  * Start reset process.
4535  * If reset in progress do nothing.
4536  * The interrupt handler will reinitialize the chip.
4537  * The timeout handler will wait for settle_time before
4538  * clearing it and so resuming command processing.
4539  */
4540 static void ncr_start_reset(struct ncb *np)
4541 {
4542 	if (!np->settle_time) {
4543 		ncr_reset_scsi_bus(np, 1, driver_setup.settle_delay);
4544  	}
4545 }
4546 
4547 /*==========================================================
4548 **
4549 **
4550 **	Reset the SCSI BUS.
4551 **	This is called from the generic SCSI driver.
4552 **
4553 **
4554 **==========================================================
4555 */
4556 static int ncr_reset_bus (struct ncb *np, struct scsi_cmnd *cmd, int sync_reset)
4557 {
4558 /*	struct scsi_device        *device    = cmd->device; */
4559 	struct ccb *cp;
4560 	int found;
4561 
4562 /*
4563  * Return immediately if reset is in progress.
4564  */
4565 	if (np->settle_time) {
4566 		return FAILED;
4567 	}
4568 /*
4569  * Start the reset process.
4570  * The script processor is then assumed to be stopped.
4571  * Commands will now be queued in the waiting list until a settle
4572  * delay of 2 seconds will be completed.
4573  */
4574 	ncr_start_reset(np);
4575 /*
4576  * First, look in the wakeup list
4577  */
4578 	for (found=0, cp=np->ccb; cp; cp=cp->link_ccb) {
4579 		/*
4580 		**	look for the ccb of this command.
4581 		*/
4582 		if (cp->host_status == HS_IDLE) continue;
4583 		if (cp->cmd == cmd) {
4584 			found = 1;
4585 			break;
4586 		}
4587 	}
4588 /*
4589  * Then, look in the waiting list
4590  */
4591 	if (!found && retrieve_from_waiting_list(0, np, cmd))
4592 		found = 1;
4593 /*
4594  * Wake-up all awaiting commands with DID_RESET.
4595  */
4596 	reset_waiting_list(np);
4597 /*
4598  * Wake-up all pending commands with HS_RESET -> DID_RESET.
4599  */
4600 	ncr_wakeup(np, HS_RESET);
4601 /*
4602  * If the involved command was not in a driver queue, and the
4603  * scsi driver told us reset is synchronous, and the command is not
4604  * currently in the waiting list, complete it with DID_RESET status,
4605  * in order to keep it alive.
4606  */
4607 	if (!found && sync_reset && !retrieve_from_waiting_list(0, np, cmd)) {
4608 		set_host_byte(cmd, DID_RESET);
4609 		ncr_queue_done_cmd(np, cmd);
4610 	}
4611 
4612 	return SUCCESS;
4613 }
4614 
4615 #if 0 /* unused and broken.. */
4616 /*==========================================================
4617 **
4618 **
4619 **	Abort an SCSI command.
4620 **	This is called from the generic SCSI driver.
4621 **
4622 **
4623 **==========================================================
4624 */
4625 static int ncr_abort_command (struct ncb *np, struct scsi_cmnd *cmd)
4626 {
4627 /*	struct scsi_device        *device    = cmd->device; */
4628 	struct ccb *cp;
4629 	int found;
4630 	int retv;
4631 
4632 /*
4633  * First, look for the scsi command in the waiting list
4634  */
4635 	if (remove_from_waiting_list(np, cmd)) {
4636 		set_host_byte(cmd, DID_ABORT);
4637 		ncr_queue_done_cmd(np, cmd);
4638 		return SCSI_ABORT_SUCCESS;
4639 	}
4640 
4641 /*
4642  * Then, look in the wakeup list
4643  */
4644 	for (found=0, cp=np->ccb; cp; cp=cp->link_ccb) {
4645 		/*
4646 		**	look for the ccb of this command.
4647 		*/
4648 		if (cp->host_status == HS_IDLE) continue;
4649 		if (cp->cmd == cmd) {
4650 			found = 1;
4651 			break;
4652 		}
4653 	}
4654 
4655 	if (!found) {
4656 		return SCSI_ABORT_NOT_RUNNING;
4657 	}
4658 
4659 	if (np->settle_time) {
4660 		return SCSI_ABORT_SNOOZE;
4661 	}
4662 
4663 	/*
4664 	**	If the CCB is active, patch schedule jumps for the
4665 	**	script to abort the command.
4666 	*/
4667 
4668 	switch(cp->host_status) {
4669 	case HS_BUSY:
4670 	case HS_NEGOTIATE:
4671 		printk ("%s: abort ccb=%p (cancel)\n", ncr_name (np), cp);
4672 			cp->start.schedule.l_paddr =
4673 				cpu_to_scr(NCB_SCRIPTH_PHYS (np, cancel));
4674 		retv = SCSI_ABORT_PENDING;
4675 		break;
4676 	case HS_DISCONNECT:
4677 		cp->restart.schedule.l_paddr =
4678 				cpu_to_scr(NCB_SCRIPTH_PHYS (np, abort));
4679 		retv = SCSI_ABORT_PENDING;
4680 		break;
4681 	default:
4682 		retv = SCSI_ABORT_NOT_RUNNING;
4683 		break;
4684 
4685 	}
4686 
4687 	/*
4688 	**      If there are no requests, the script
4689 	**      processor will sleep on SEL_WAIT_RESEL.
4690 	**      Let's wake it up, since it may have to work.
4691 	*/
4692 	OUTB (nc_istat, SIGP);
4693 
4694 	return retv;
4695 }
4696 #endif
4697 
4698 static void ncr_detach(struct ncb *np)
4699 {
4700 	struct ccb *cp;
4701 	struct tcb *tp;
4702 	struct lcb *lp;
4703 	int target, lun;
4704 	int i;
4705 	char inst_name[16];
4706 
4707 	/* Local copy so we don't access np after freeing it! */
4708 	strlcpy(inst_name, ncr_name(np), sizeof(inst_name));
4709 
4710 	printk("%s: releasing host resources\n", ncr_name(np));
4711 
4712 /*
4713 **	Stop the ncr_timeout process
4714 **	Set release_stage to 1 and wait that ncr_timeout() set it to 2.
4715 */
4716 
4717 #ifdef DEBUG_NCR53C8XX
4718 	printk("%s: stopping the timer\n", ncr_name(np));
4719 #endif
4720 	np->release_stage = 1;
4721 	for (i = 50 ; i && np->release_stage != 2 ; i--)
4722 		mdelay(100);
4723 	if (np->release_stage != 2)
4724 		printk("%s: the timer seems to be already stopped\n", ncr_name(np));
4725 	else np->release_stage = 2;
4726 
4727 /*
4728 **	Disable chip interrupts
4729 */
4730 
4731 #ifdef DEBUG_NCR53C8XX
4732 	printk("%s: disabling chip interrupts\n", ncr_name(np));
4733 #endif
4734 	OUTW (nc_sien , 0);
4735 	OUTB (nc_dien , 0);
4736 
4737 	/*
4738 	**	Reset NCR chip
4739 	**	Restore bios setting for automatic clock detection.
4740 	*/
4741 
4742 	printk("%s: resetting chip\n", ncr_name(np));
4743 	ncr_chip_reset(np, 100);
4744 
4745 	OUTB(nc_dmode,	np->sv_dmode);
4746 	OUTB(nc_dcntl,	np->sv_dcntl);
4747 	OUTB(nc_ctest0,	np->sv_ctest0);
4748 	OUTB(nc_ctest3,	np->sv_ctest3);
4749 	OUTB(nc_ctest4,	np->sv_ctest4);
4750 	OUTB(nc_ctest5,	np->sv_ctest5);
4751 	OUTB(nc_gpcntl,	np->sv_gpcntl);
4752 	OUTB(nc_stest2,	np->sv_stest2);
4753 
4754 	ncr_selectclock(np, np->sv_scntl3);
4755 
4756 	/*
4757 	**	Free allocated ccb(s)
4758 	*/
4759 
4760 	while ((cp=np->ccb->link_ccb) != NULL) {
4761 		np->ccb->link_ccb = cp->link_ccb;
4762 		if (cp->host_status) {
4763 		printk("%s: shall free an active ccb (host_status=%d)\n",
4764 			ncr_name(np), cp->host_status);
4765 		}
4766 #ifdef DEBUG_NCR53C8XX
4767 	printk("%s: freeing ccb (%lx)\n", ncr_name(np), (u_long) cp);
4768 #endif
4769 		m_free_dma(cp, sizeof(*cp), "CCB");
4770 	}
4771 
4772 	/* Free allocated tp(s) */
4773 
4774 	for (target = 0; target < MAX_TARGET ; target++) {
4775 		tp=&np->target[target];
4776 		for (lun = 0 ; lun < MAX_LUN ; lun++) {
4777 			lp = tp->lp[lun];
4778 			if (lp) {
4779 #ifdef DEBUG_NCR53C8XX
4780 	printk("%s: freeing lp (%lx)\n", ncr_name(np), (u_long) lp);
4781 #endif
4782 				if (lp->jump_ccb != &lp->jump_ccb_0)
4783 					m_free_dma(lp->jump_ccb,256,"JUMP_CCB");
4784 				m_free_dma(lp, sizeof(*lp), "LCB");
4785 			}
4786 		}
4787 	}
4788 
4789 	if (np->scripth0)
4790 		m_free_dma(np->scripth0, sizeof(struct scripth), "SCRIPTH");
4791 	if (np->script0)
4792 		m_free_dma(np->script0, sizeof(struct script), "SCRIPT");
4793 	if (np->ccb)
4794 		m_free_dma(np->ccb, sizeof(struct ccb), "CCB");
4795 	m_free_dma(np, sizeof(struct ncb), "NCB");
4796 
4797 	printk("%s: host resources successfully released\n", inst_name);
4798 }
4799 
4800 /*==========================================================
4801 **
4802 **
4803 **	Complete execution of a SCSI command.
4804 **	Signal completion to the generic SCSI driver.
4805 **
4806 **
4807 **==========================================================
4808 */
4809 
4810 void ncr_complete (struct ncb *np, struct ccb *cp)
4811 {
4812 	struct scsi_cmnd *cmd;
4813 	struct tcb *tp;
4814 	struct lcb *lp;
4815 
4816 	/*
4817 	**	Sanity check
4818 	*/
4819 
4820 	if (!cp || cp->magic != CCB_MAGIC || !cp->cmd)
4821 		return;
4822 
4823 	/*
4824 	**	Print minimal debug information.
4825 	*/
4826 
4827 	if (DEBUG_FLAGS & DEBUG_TINY)
4828 		printk ("CCB=%lx STAT=%x/%x\n", (unsigned long)cp,
4829 			cp->host_status,cp->scsi_status);
4830 
4831 	/*
4832 	**	Get command, target and lun pointers.
4833 	*/
4834 
4835 	cmd = cp->cmd;
4836 	cp->cmd = NULL;
4837 	tp = &np->target[cmd->device->id];
4838 	lp = tp->lp[cmd->device->lun];
4839 
4840 	/*
4841 	**	We donnot queue more than 1 ccb per target
4842 	**	with negotiation at any time. If this ccb was
4843 	**	used for negotiation, clear this info in the tcb.
4844 	*/
4845 
4846 	if (cp == tp->nego_cp)
4847 		tp->nego_cp = NULL;
4848 
4849 	/*
4850 	**	If auto-sense performed, change scsi status.
4851 	*/
4852 	if (cp->auto_sense) {
4853 		cp->scsi_status = cp->auto_sense;
4854 	}
4855 
4856 	/*
4857 	**	If we were recovering from queue full or performing
4858 	**	auto-sense, requeue skipped CCBs to the wait queue.
4859 	*/
4860 
4861 	if (lp && lp->held_ccb) {
4862 		if (cp == lp->held_ccb) {
4863 			list_splice_init(&lp->skip_ccbq, &lp->wait_ccbq);
4864 			lp->held_ccb = NULL;
4865 		}
4866 	}
4867 
4868 	/*
4869 	**	Check for parity errors.
4870 	*/
4871 
4872 	if (cp->parity_status > 1) {
4873 		PRINT_ADDR(cmd, "%d parity error(s).\n",cp->parity_status);
4874 	}
4875 
4876 	/*
4877 	**	Check for extended errors.
4878 	*/
4879 
4880 	if (cp->xerr_status != XE_OK) {
4881 		switch (cp->xerr_status) {
4882 		case XE_EXTRA_DATA:
4883 			PRINT_ADDR(cmd, "extraneous data discarded.\n");
4884 			break;
4885 		case XE_BAD_PHASE:
4886 			PRINT_ADDR(cmd, "invalid scsi phase (4/5).\n");
4887 			break;
4888 		default:
4889 			PRINT_ADDR(cmd, "extended error %d.\n",
4890 					cp->xerr_status);
4891 			break;
4892 		}
4893 		if (cp->host_status==HS_COMPLETE)
4894 			cp->host_status = HS_FAIL;
4895 	}
4896 
4897 	/*
4898 	**	Print out any error for debugging purpose.
4899 	*/
4900 	if (DEBUG_FLAGS & (DEBUG_RESULT|DEBUG_TINY)) {
4901 		if (cp->host_status != HS_COMPLETE ||
4902 		    cp->scsi_status != SAM_STAT_GOOD) {
4903 			PRINT_ADDR(cmd, "ERROR: cmd=%x host_status=%x "
4904 					"scsi_status=%x\n", cmd->cmnd[0],
4905 					cp->host_status, cp->scsi_status);
4906 		}
4907 	}
4908 
4909 	/*
4910 	**	Check the status.
4911 	*/
4912 	cmd->result = 0;
4913 	if (   (cp->host_status == HS_COMPLETE)
4914 		&& (cp->scsi_status == SAM_STAT_GOOD ||
4915 		    cp->scsi_status == SAM_STAT_CONDITION_MET)) {
4916 		/*
4917 		 *	All went well (GOOD status).
4918 		 *	CONDITION MET status is returned on
4919 		 *	`Pre-Fetch' or `Search data' success.
4920 		 */
4921 		set_status_byte(cmd, cp->scsi_status);
4922 
4923 		/*
4924 		**	@RESID@
4925 		**	Could dig out the correct value for resid,
4926 		**	but it would be quite complicated.
4927 		*/
4928 		/* if (cp->phys.header.lastp != cp->phys.header.goalp) */
4929 
4930 		/*
4931 		**	Allocate the lcb if not yet.
4932 		*/
4933 		if (!lp)
4934 			ncr_alloc_lcb (np, cmd->device->id, cmd->device->lun);
4935 
4936 		tp->bytes     += cp->data_len;
4937 		tp->transfers ++;
4938 
4939 		/*
4940 		**	If tags was reduced due to queue full,
4941 		**	increase tags if 1000 good status received.
4942 		*/
4943 		if (lp && lp->usetags && lp->numtags < lp->maxtags) {
4944 			++lp->num_good;
4945 			if (lp->num_good >= 1000) {
4946 				lp->num_good = 0;
4947 				++lp->numtags;
4948 				ncr_setup_tags (np, cmd->device);
4949 			}
4950 		}
4951 	} else if ((cp->host_status == HS_COMPLETE)
4952 		&& (cp->scsi_status == SAM_STAT_CHECK_CONDITION)) {
4953 		/*
4954 		**   Check condition code
4955 		*/
4956 		set_status_byte(cmd, SAM_STAT_CHECK_CONDITION);
4957 
4958 		/*
4959 		**	Copy back sense data to caller's buffer.
4960 		*/
4961 		memcpy(cmd->sense_buffer, cp->sense_buf,
4962 		       min_t(size_t, SCSI_SENSE_BUFFERSIZE,
4963 			     sizeof(cp->sense_buf)));
4964 
4965 		if (DEBUG_FLAGS & (DEBUG_RESULT|DEBUG_TINY)) {
4966 			u_char *p = cmd->sense_buffer;
4967 			int i;
4968 			PRINT_ADDR(cmd, "sense data:");
4969 			for (i=0; i<14; i++) printk (" %x", *p++);
4970 			printk (".\n");
4971 		}
4972 	} else if ((cp->host_status == HS_COMPLETE)
4973 		&& (cp->scsi_status == SAM_STAT_RESERVATION_CONFLICT)) {
4974 		/*
4975 		**   Reservation Conflict condition code
4976 		*/
4977 		set_status_byte(cmd, SAM_STAT_RESERVATION_CONFLICT);
4978 
4979 	} else if ((cp->host_status == HS_COMPLETE)
4980 		&& (cp->scsi_status == SAM_STAT_BUSY ||
4981 		    cp->scsi_status == SAM_STAT_TASK_SET_FULL)) {
4982 
4983 		/*
4984 		**   Target is busy.
4985 		*/
4986 		set_status_byte(cmd, cp->scsi_status);
4987 
4988 	} else if ((cp->host_status == HS_SEL_TIMEOUT)
4989 		|| (cp->host_status == HS_TIMEOUT)) {
4990 
4991 		/*
4992 		**   No response
4993 		*/
4994 		set_status_byte(cmd, cp->scsi_status);
4995 		set_host_byte(cmd, DID_TIME_OUT);
4996 
4997 	} else if (cp->host_status == HS_RESET) {
4998 
4999 		/*
5000 		**   SCSI bus reset
5001 		*/
5002 		set_status_byte(cmd, cp->scsi_status);
5003 		set_host_byte(cmd, DID_RESET);
5004 
5005 	} else if (cp->host_status == HS_ABORTED) {
5006 
5007 		/*
5008 		**   Transfer aborted
5009 		*/
5010 		set_status_byte(cmd, cp->scsi_status);
5011 		set_host_byte(cmd, DID_ABORT);
5012 
5013 	} else {
5014 
5015 		/*
5016 		**  Other protocol messes
5017 		*/
5018 		PRINT_ADDR(cmd, "COMMAND FAILED (%x %x) @%p.\n",
5019 			cp->host_status, cp->scsi_status, cp);
5020 
5021 		set_status_byte(cmd, cp->scsi_status);
5022 		set_host_byte(cmd, DID_ERROR);
5023 	}
5024 
5025 	/*
5026 	**	trace output
5027 	*/
5028 
5029 	if (tp->usrflag & UF_TRACE) {
5030 		u_char * p;
5031 		int i;
5032 		PRINT_ADDR(cmd, " CMD:");
5033 		p = (u_char*) &cmd->cmnd[0];
5034 		for (i=0; i<cmd->cmd_len; i++) printk (" %x", *p++);
5035 
5036 		if (cp->host_status==HS_COMPLETE) {
5037 			switch (cp->scsi_status) {
5038 			case SAM_STAT_GOOD:
5039 				printk ("  GOOD");
5040 				break;
5041 			case SAM_STAT_CHECK_CONDITION:
5042 				printk ("  SENSE:");
5043 				p = (u_char*) &cmd->sense_buffer;
5044 				for (i=0; i<14; i++)
5045 					printk (" %x", *p++);
5046 				break;
5047 			default:
5048 				printk ("  STAT: %x\n", cp->scsi_status);
5049 				break;
5050 			}
5051 		} else printk ("  HOSTERROR: %x", cp->host_status);
5052 		printk ("\n");
5053 	}
5054 
5055 	/*
5056 	**	Free this ccb
5057 	*/
5058 	ncr_free_ccb (np, cp);
5059 
5060 	/*
5061 	**	requeue awaiting scsi commands for this lun.
5062 	*/
5063 	if (lp && lp->queuedccbs < lp->queuedepth &&
5064 	    !list_empty(&lp->wait_ccbq))
5065 		ncr_start_next_ccb(np, lp, 2);
5066 
5067 	/*
5068 	**	requeue awaiting scsi commands for this controller.
5069 	*/
5070 	if (np->waiting_list)
5071 		requeue_waiting_list(np);
5072 
5073 	/*
5074 	**	signal completion to generic driver.
5075 	*/
5076 	ncr_queue_done_cmd(np, cmd);
5077 }
5078 
5079 /*==========================================================
5080 **
5081 **
5082 **	Signal all (or one) control block done.
5083 **
5084 **
5085 **==========================================================
5086 */
5087 
5088 /*
5089 **	This CCB has been skipped by the NCR.
5090 **	Queue it in the corresponding unit queue.
5091 */
5092 static void ncr_ccb_skipped(struct ncb *np, struct ccb *cp)
5093 {
5094 	struct tcb *tp = &np->target[cp->target];
5095 	struct lcb *lp = tp->lp[cp->lun];
5096 
5097 	if (lp && cp != np->ccb) {
5098 		cp->host_status &= ~HS_SKIPMASK;
5099 		cp->start.schedule.l_paddr =
5100 			cpu_to_scr(NCB_SCRIPT_PHYS (np, select));
5101 		list_move_tail(&cp->link_ccbq, &lp->skip_ccbq);
5102 		if (cp->queued) {
5103 			--lp->queuedccbs;
5104 		}
5105 	}
5106 	if (cp->queued) {
5107 		--np->queuedccbs;
5108 		cp->queued = 0;
5109 	}
5110 }
5111 
5112 /*
5113 **	The NCR has completed CCBs.
5114 **	Look at the DONE QUEUE if enabled, otherwise scan all CCBs
5115 */
5116 void ncr_wakeup_done (struct ncb *np)
5117 {
5118 	struct ccb *cp;
5119 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
5120 	int i, j;
5121 
5122 	i = np->ccb_done_ic;
5123 	while (1) {
5124 		j = i+1;
5125 		if (j >= MAX_DONE)
5126 			j = 0;
5127 
5128 		cp = np->ccb_done[j];
5129 		if (!CCB_DONE_VALID(cp))
5130 			break;
5131 
5132 		np->ccb_done[j] = (struct ccb *)CCB_DONE_EMPTY;
5133 		np->scripth->done_queue[5*j + 4] =
5134 				cpu_to_scr(NCB_SCRIPT_PHYS (np, done_plug));
5135 		MEMORY_BARRIER();
5136 		np->scripth->done_queue[5*i + 4] =
5137 				cpu_to_scr(NCB_SCRIPT_PHYS (np, done_end));
5138 
5139 		if (cp->host_status & HS_DONEMASK)
5140 			ncr_complete (np, cp);
5141 		else if (cp->host_status & HS_SKIPMASK)
5142 			ncr_ccb_skipped (np, cp);
5143 
5144 		i = j;
5145 	}
5146 	np->ccb_done_ic = i;
5147 #else
5148 	cp = np->ccb;
5149 	while (cp) {
5150 		if (cp->host_status & HS_DONEMASK)
5151 			ncr_complete (np, cp);
5152 		else if (cp->host_status & HS_SKIPMASK)
5153 			ncr_ccb_skipped (np, cp);
5154 		cp = cp->link_ccb;
5155 	}
5156 #endif
5157 }
5158 
5159 /*
5160 **	Complete all active CCBs.
5161 */
5162 void ncr_wakeup (struct ncb *np, u_long code)
5163 {
5164 	struct ccb *cp = np->ccb;
5165 
5166 	while (cp) {
5167 		if (cp->host_status != HS_IDLE) {
5168 			cp->host_status = code;
5169 			ncr_complete (np, cp);
5170 		}
5171 		cp = cp->link_ccb;
5172 	}
5173 }
5174 
5175 /*
5176 ** Reset ncr chip.
5177 */
5178 
5179 /* Some initialisation must be done immediately following reset, for 53c720,
5180  * at least.  EA (dcntl bit 5) isn't set here as it is set once only in
5181  * the _detect function.
5182  */
5183 static void ncr_chip_reset(struct ncb *np, int delay)
5184 {
5185 	OUTB (nc_istat,  SRST);
5186 	udelay(delay);
5187 	OUTB (nc_istat,  0   );
5188 
5189 	if (np->features & FE_EHP)
5190 		OUTB (nc_ctest0, EHP);
5191 	if (np->features & FE_MUX)
5192 		OUTB (nc_ctest4, MUX);
5193 }
5194 
5195 
5196 /*==========================================================
5197 **
5198 **
5199 **	Start NCR chip.
5200 **
5201 **
5202 **==========================================================
5203 */
5204 
5205 void ncr_init (struct ncb *np, int reset, char * msg, u_long code)
5206 {
5207  	int	i;
5208 
5209  	/*
5210 	**	Reset chip if asked, otherwise just clear fifos.
5211  	*/
5212 
5213 	if (reset) {
5214 		OUTB (nc_istat,  SRST);
5215 		udelay(100);
5216 	}
5217 	else {
5218 		OUTB (nc_stest3, TE|CSF);
5219 		OUTONB (nc_ctest3, CLF);
5220 	}
5221 
5222 	/*
5223 	**	Message.
5224 	*/
5225 
5226 	if (msg) printk (KERN_INFO "%s: restart (%s).\n", ncr_name (np), msg);
5227 
5228 	/*
5229 	**	Clear Start Queue
5230 	*/
5231 	np->queuedepth = MAX_START - 1;	/* 1 entry needed as end marker */
5232 	for (i = 1; i < MAX_START + MAX_START; i += 2)
5233 		np->scripth0->tryloop[i] =
5234 				cpu_to_scr(NCB_SCRIPT_PHYS (np, idle));
5235 
5236 	/*
5237 	**	Start at first entry.
5238 	*/
5239 	np->squeueput = 0;
5240 	np->script0->startpos[0] = cpu_to_scr(NCB_SCRIPTH_PHYS (np, tryloop));
5241 
5242 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
5243 	/*
5244 	**	Clear Done Queue
5245 	*/
5246 	for (i = 0; i < MAX_DONE; i++) {
5247 		np->ccb_done[i] = (struct ccb *)CCB_DONE_EMPTY;
5248 		np->scripth0->done_queue[5*i + 4] =
5249 			cpu_to_scr(NCB_SCRIPT_PHYS (np, done_end));
5250 	}
5251 #endif
5252 
5253 	/*
5254 	**	Start at first entry.
5255 	*/
5256 	np->script0->done_pos[0] = cpu_to_scr(NCB_SCRIPTH_PHYS (np,done_queue));
5257 	np->ccb_done_ic = MAX_DONE-1;
5258 	np->scripth0->done_queue[5*(MAX_DONE-1) + 4] =
5259 			cpu_to_scr(NCB_SCRIPT_PHYS (np, done_plug));
5260 
5261 	/*
5262 	**	Wakeup all pending jobs.
5263 	*/
5264 	ncr_wakeup (np, code);
5265 
5266 	/*
5267 	**	Init chip.
5268 	*/
5269 
5270 	/*
5271 	** Remove reset; big delay because the 895 needs time for the
5272 	** bus mode to settle
5273 	*/
5274 	ncr_chip_reset(np, 2000);
5275 
5276 	OUTB (nc_scntl0, np->rv_scntl0 | 0xc0);
5277 					/*  full arb., ena parity, par->ATN  */
5278 	OUTB (nc_scntl1, 0x00);		/*  odd parity, and remove CRST!! */
5279 
5280 	ncr_selectclock(np, np->rv_scntl3);	/* Select SCSI clock */
5281 
5282 	OUTB (nc_scid  , RRE|np->myaddr);	/* Adapter SCSI address */
5283 	OUTW (nc_respid, 1ul<<np->myaddr);	/* Id to respond to */
5284 	OUTB (nc_istat , SIGP	);		/*  Signal Process */
5285 	OUTB (nc_dmode , np->rv_dmode);		/* Burst length, dma mode */
5286 	OUTB (nc_ctest5, np->rv_ctest5);	/* Large fifo + large burst */
5287 
5288 	OUTB (nc_dcntl , NOCOM|np->rv_dcntl);	/* Protect SFBR */
5289 	OUTB (nc_ctest0, np->rv_ctest0);	/* 720: CDIS and EHP */
5290 	OUTB (nc_ctest3, np->rv_ctest3);	/* Write and invalidate */
5291 	OUTB (nc_ctest4, np->rv_ctest4);	/* Master parity checking */
5292 
5293 	OUTB (nc_stest2, EXT|np->rv_stest2);	/* Extended Sreq/Sack filtering */
5294 	OUTB (nc_stest3, TE);			/* TolerANT enable */
5295 	OUTB (nc_stime0, 0x0c	);		/* HTH disabled  STO 0.25 sec */
5296 
5297 	/*
5298 	**	Disable disconnects.
5299 	*/
5300 
5301 	np->disc = 0;
5302 
5303 	/*
5304 	**    Enable GPIO0 pin for writing if LED support.
5305 	*/
5306 
5307 	if (np->features & FE_LED0) {
5308 		OUTOFFB (nc_gpcntl, 0x01);
5309 	}
5310 
5311 	/*
5312 	**      enable ints
5313 	*/
5314 
5315 	OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
5316 	OUTB (nc_dien , MDPE|BF|ABRT|SSI|SIR|IID);
5317 
5318 	/*
5319 	**	Fill in target structure.
5320 	**	Reinitialize usrsync.
5321 	**	Reinitialize usrwide.
5322 	**	Prepare sync negotiation according to actual SCSI bus mode.
5323 	*/
5324 
5325 	for (i=0;i<MAX_TARGET;i++) {
5326 		struct tcb *tp = &np->target[i];
5327 
5328 		tp->sval    = 0;
5329 		tp->wval    = np->rv_scntl3;
5330 
5331 		if (tp->usrsync != 255) {
5332 			if (tp->usrsync <= np->maxsync) {
5333 				if (tp->usrsync < np->minsync) {
5334 					tp->usrsync = np->minsync;
5335 				}
5336 			}
5337 			else
5338 				tp->usrsync = 255;
5339 		}
5340 
5341 		if (tp->usrwide > np->maxwide)
5342 			tp->usrwide = np->maxwide;
5343 
5344 	}
5345 
5346 	/*
5347 	**    Start script processor.
5348 	*/
5349 	if (np->paddr2) {
5350 		if (bootverbose)
5351 			printk ("%s: Downloading SCSI SCRIPTS.\n",
5352 				ncr_name(np));
5353 		OUTL (nc_scratcha, vtobus(np->script0));
5354 		OUTL_DSP (NCB_SCRIPTH_PHYS (np, start_ram));
5355 	}
5356 	else
5357 		OUTL_DSP (NCB_SCRIPT_PHYS (np, start));
5358 }
5359 
5360 /*==========================================================
5361 **
5362 **	Prepare the negotiation values for wide and
5363 **	synchronous transfers.
5364 **
5365 **==========================================================
5366 */
5367 
5368 static void ncr_negotiate (struct ncb* np, struct tcb* tp)
5369 {
5370 	/*
5371 	**	minsync unit is 4ns !
5372 	*/
5373 
5374 	u_long minsync = tp->usrsync;
5375 
5376 	/*
5377 	**	SCSI bus mode limit
5378 	*/
5379 
5380 	if (np->scsi_mode && np->scsi_mode == SMODE_SE) {
5381 		if (minsync < 12) minsync = 12;
5382 	}
5383 
5384 	/*
5385 	**	our limit ..
5386 	*/
5387 
5388 	if (minsync < np->minsync)
5389 		minsync = np->minsync;
5390 
5391 	/*
5392 	**	divider limit
5393 	*/
5394 
5395 	if (minsync > np->maxsync)
5396 		minsync = 255;
5397 
5398 	if (tp->maxoffs > np->maxoffs)
5399 		tp->maxoffs = np->maxoffs;
5400 
5401 	tp->minsync = minsync;
5402 	tp->maxoffs = (minsync<255 ? tp->maxoffs : 0);
5403 
5404 	/*
5405 	**	period=0: has to negotiate sync transfer
5406 	*/
5407 
5408 	tp->period=0;
5409 
5410 	/*
5411 	**	widedone=0: has to negotiate wide transfer
5412 	*/
5413 	tp->widedone=0;
5414 }
5415 
5416 /*==========================================================
5417 **
5418 **	Get clock factor and sync divisor for a given
5419 **	synchronous factor period.
5420 **	Returns the clock factor (in sxfer) and scntl3
5421 **	synchronous divisor field.
5422 **
5423 **==========================================================
5424 */
5425 
5426 static void ncr_getsync(struct ncb *np, u_char sfac, u_char *fakp, u_char *scntl3p)
5427 {
5428 	u_long	clk = np->clock_khz;	/* SCSI clock frequency in kHz	*/
5429 	int	div = np->clock_divn;	/* Number of divisors supported	*/
5430 	u_long	fak;			/* Sync factor in sxfer		*/
5431 	u_long	per;			/* Period in tenths of ns	*/
5432 	u_long	kpc;			/* (per * clk)			*/
5433 
5434 	/*
5435 	**	Compute the synchronous period in tenths of nano-seconds
5436 	*/
5437 	if	(sfac <= 10)	per = 250;
5438 	else if	(sfac == 11)	per = 303;
5439 	else if	(sfac == 12)	per = 500;
5440 	else			per = 40 * sfac;
5441 
5442 	/*
5443 	**	Look for the greatest clock divisor that allows an
5444 	**	input speed faster than the period.
5445 	*/
5446 	kpc = per * clk;
5447 	while (--div > 0)
5448 		if (kpc >= (div_10M[div] << 2)) break;
5449 
5450 	/*
5451 	**	Calculate the lowest clock factor that allows an output
5452 	**	speed not faster than the period.
5453 	*/
5454 	fak = (kpc - 1) / div_10M[div] + 1;
5455 
5456 #if 0	/* This optimization does not seem very useful */
5457 
5458 	per = (fak * div_10M[div]) / clk;
5459 
5460 	/*
5461 	**	Why not to try the immediate lower divisor and to choose
5462 	**	the one that allows the fastest output speed ?
5463 	**	We don't want input speed too much greater than output speed.
5464 	*/
5465 	if (div >= 1 && fak < 8) {
5466 		u_long fak2, per2;
5467 		fak2 = (kpc - 1) / div_10M[div-1] + 1;
5468 		per2 = (fak2 * div_10M[div-1]) / clk;
5469 		if (per2 < per && fak2 <= 8) {
5470 			fak = fak2;
5471 			per = per2;
5472 			--div;
5473 		}
5474 	}
5475 #endif
5476 
5477 	if (fak < 4) fak = 4;	/* Should never happen, too bad ... */
5478 
5479 	/*
5480 	**	Compute and return sync parameters for the ncr
5481 	*/
5482 	*fakp		= fak - 4;
5483 	*scntl3p	= ((div+1) << 4) + (sfac < 25 ? 0x80 : 0);
5484 }
5485 
5486 
5487 /*==========================================================
5488 **
5489 **	Set actual values, sync status and patch all ccbs of
5490 **	a target according to new sync/wide agreement.
5491 **
5492 **==========================================================
5493 */
5494 
5495 static void ncr_set_sync_wide_status (struct ncb *np, u_char target)
5496 {
5497 	struct ccb *cp;
5498 	struct tcb *tp = &np->target[target];
5499 
5500 	/*
5501 	**	set actual value and sync_status
5502 	*/
5503 	OUTB (nc_sxfer, tp->sval);
5504 	np->sync_st = tp->sval;
5505 	OUTB (nc_scntl3, tp->wval);
5506 	np->wide_st = tp->wval;
5507 
5508 	/*
5509 	**	patch ALL ccbs of this target.
5510 	*/
5511 	for (cp = np->ccb; cp; cp = cp->link_ccb) {
5512 		if (!cp->cmd) continue;
5513 		if (scmd_id(cp->cmd) != target) continue;
5514 #if 0
5515 		cp->sync_status = tp->sval;
5516 		cp->wide_status = tp->wval;
5517 #endif
5518 		cp->phys.select.sel_scntl3 = tp->wval;
5519 		cp->phys.select.sel_sxfer  = tp->sval;
5520 	}
5521 }
5522 
5523 /*==========================================================
5524 **
5525 **	Switch sync mode for current job and it's target
5526 **
5527 **==========================================================
5528 */
5529 
5530 static void ncr_setsync (struct ncb *np, struct ccb *cp, u_char scntl3, u_char sxfer)
5531 {
5532 	struct scsi_cmnd *cmd = cp->cmd;
5533 	struct tcb *tp;
5534 	u_char target = INB (nc_sdid) & 0x0f;
5535 	u_char idiv;
5536 
5537 	BUG_ON(target != (scmd_id(cmd) & 0xf));
5538 
5539 	tp = &np->target[target];
5540 
5541 	if (!scntl3 || !(sxfer & 0x1f))
5542 		scntl3 = np->rv_scntl3;
5543 	scntl3 = (scntl3 & 0xf0) | (tp->wval & EWS) | (np->rv_scntl3 & 0x07);
5544 
5545 	/*
5546 	**	Deduce the value of controller sync period from scntl3.
5547 	**	period is in tenths of nano-seconds.
5548 	*/
5549 
5550 	idiv = ((scntl3 >> 4) & 0x7);
5551 	if ((sxfer & 0x1f) && idiv)
5552 		tp->period = (((sxfer>>5)+4)*div_10M[idiv-1])/np->clock_khz;
5553 	else
5554 		tp->period = 0xffff;
5555 
5556 	/* Stop there if sync parameters are unchanged */
5557 	if (tp->sval == sxfer && tp->wval == scntl3)
5558 		return;
5559 	tp->sval = sxfer;
5560 	tp->wval = scntl3;
5561 
5562 	if (sxfer & 0x01f) {
5563 		/* Disable extended Sreq/Sack filtering */
5564 		if (tp->period <= 2000)
5565 			OUTOFFB(nc_stest2, EXT);
5566 	}
5567 
5568 	spi_display_xfer_agreement(tp->starget);
5569 
5570 	/*
5571 	**	set actual value and sync_status
5572 	**	patch ALL ccbs of this target.
5573 	*/
5574 	ncr_set_sync_wide_status(np, target);
5575 }
5576 
5577 /*==========================================================
5578 **
5579 **	Switch wide mode for current job and it's target
5580 **	SCSI specs say: a SCSI device that accepts a WDTR
5581 **	message shall reset the synchronous agreement to
5582 **	asynchronous mode.
5583 **
5584 **==========================================================
5585 */
5586 
5587 static void ncr_setwide (struct ncb *np, struct ccb *cp, u_char wide, u_char ack)
5588 {
5589 	struct scsi_cmnd *cmd = cp->cmd;
5590 	u16 target = INB (nc_sdid) & 0x0f;
5591 	struct tcb *tp;
5592 	u_char	scntl3;
5593 	u_char	sxfer;
5594 
5595 	BUG_ON(target != (scmd_id(cmd) & 0xf));
5596 
5597 	tp = &np->target[target];
5598 	tp->widedone  =  wide+1;
5599 	scntl3 = (tp->wval & (~EWS)) | (wide ? EWS : 0);
5600 
5601 	sxfer = ack ? 0 : tp->sval;
5602 
5603 	/*
5604 	**	 Stop there if sync/wide parameters are unchanged
5605 	*/
5606 	if (tp->sval == sxfer && tp->wval == scntl3) return;
5607 	tp->sval = sxfer;
5608 	tp->wval = scntl3;
5609 
5610 	/*
5611 	**	Bells and whistles   ;-)
5612 	*/
5613 	if (bootverbose >= 2) {
5614 		dev_info(&cmd->device->sdev_target->dev, "WIDE SCSI %sabled.\n",
5615 				(scntl3 & EWS) ? "en" : "dis");
5616 	}
5617 
5618 	/*
5619 	**	set actual value and sync_status
5620 	**	patch ALL ccbs of this target.
5621 	*/
5622 	ncr_set_sync_wide_status(np, target);
5623 }
5624 
5625 /*==========================================================
5626 **
5627 **	Switch tagged mode for a target.
5628 **
5629 **==========================================================
5630 */
5631 
5632 static void ncr_setup_tags (struct ncb *np, struct scsi_device *sdev)
5633 {
5634 	unsigned char tn = sdev->id, ln = sdev->lun;
5635 	struct tcb *tp = &np->target[tn];
5636 	struct lcb *lp = tp->lp[ln];
5637 	u_char   reqtags, maxdepth;
5638 
5639 	/*
5640 	**	Just in case ...
5641 	*/
5642 	if ((!tp) || (!lp) || !sdev)
5643 		return;
5644 
5645 	/*
5646 	**	If SCSI device queue depth is not yet set, leave here.
5647 	*/
5648 	if (!lp->scdev_depth)
5649 		return;
5650 
5651 	/*
5652 	**	Donnot allow more tags than the SCSI driver can queue
5653 	**	for this device.
5654 	**	Donnot allow more tags than we can handle.
5655 	*/
5656 	maxdepth = lp->scdev_depth;
5657 	if (maxdepth > lp->maxnxs)	maxdepth    = lp->maxnxs;
5658 	if (lp->maxtags > maxdepth)	lp->maxtags = maxdepth;
5659 	if (lp->numtags > maxdepth)	lp->numtags = maxdepth;
5660 
5661 	/*
5662 	**	only devices conformant to ANSI Version >= 2
5663 	**	only devices capable of tagged commands
5664 	**	only if enabled by user ..
5665 	*/
5666 	if (sdev->tagged_supported && lp->numtags > 1) {
5667 		reqtags = lp->numtags;
5668 	} else {
5669 		reqtags = 1;
5670 	}
5671 
5672 	/*
5673 	**	Update max number of tags
5674 	*/
5675 	lp->numtags = reqtags;
5676 	if (lp->numtags > lp->maxtags)
5677 		lp->maxtags = lp->numtags;
5678 
5679 	/*
5680 	**	If we want to switch tag mode, we must wait
5681 	**	for no CCB to be active.
5682 	*/
5683 	if	(reqtags > 1 && lp->usetags) {	 /* Stay in tagged mode    */
5684 		if (lp->queuedepth == reqtags)	 /* Already announced	   */
5685 			return;
5686 		lp->queuedepth	= reqtags;
5687 	}
5688 	else if	(reqtags <= 1 && !lp->usetags) { /* Stay in untagged mode  */
5689 		lp->queuedepth	= reqtags;
5690 		return;
5691 	}
5692 	else {					 /* Want to switch tag mode */
5693 		if (lp->busyccbs)		 /* If not yet safe, return */
5694 			return;
5695 		lp->queuedepth	= reqtags;
5696 		lp->usetags	= reqtags > 1 ? 1 : 0;
5697 	}
5698 
5699 	/*
5700 	**	Patch the lun mini-script, according to tag mode.
5701 	*/
5702 	lp->jump_tag.l_paddr = lp->usetags?
5703 			cpu_to_scr(NCB_SCRIPT_PHYS(np, resel_tag)) :
5704 			cpu_to_scr(NCB_SCRIPT_PHYS(np, resel_notag));
5705 
5706 	/*
5707 	**	Announce change to user.
5708 	*/
5709 	if (bootverbose) {
5710 		if (lp->usetags) {
5711 			dev_info(&sdev->sdev_gendev,
5712 				"tagged command queue depth set to %d\n",
5713 				reqtags);
5714 		} else {
5715 			dev_info(&sdev->sdev_gendev,
5716 					"tagged command queueing disabled\n");
5717 		}
5718 	}
5719 }
5720 
5721 /*==========================================================
5722 **
5723 **
5724 **	ncr timeout handler.
5725 **
5726 **
5727 **==========================================================
5728 **
5729 **	Misused to keep the driver running when
5730 **	interrupts are not configured correctly.
5731 **
5732 **----------------------------------------------------------
5733 */
5734 
5735 static void ncr_timeout (struct ncb *np)
5736 {
5737 	u_long	thistime = jiffies;
5738 
5739 	/*
5740 	**	If release process in progress, let's go
5741 	**	Set the release stage from 1 to 2 to synchronize
5742 	**	with the release process.
5743 	*/
5744 
5745 	if (np->release_stage) {
5746 		if (np->release_stage == 1) np->release_stage = 2;
5747 		return;
5748 	}
5749 
5750 	np->timer.expires = jiffies + SCSI_NCR_TIMER_INTERVAL;
5751 	add_timer(&np->timer);
5752 
5753 	/*
5754 	**	If we are resetting the ncr, wait for settle_time before
5755 	**	clearing it. Then command processing will be resumed.
5756 	*/
5757 	if (np->settle_time) {
5758 		if (np->settle_time <= thistime) {
5759 			if (bootverbose > 1)
5760 				printk("%s: command processing resumed\n", ncr_name(np));
5761 			np->settle_time	= 0;
5762 			np->disc	= 1;
5763 			requeue_waiting_list(np);
5764 		}
5765 		return;
5766 	}
5767 
5768 	/*
5769 	**	Since the generic scsi driver only allows us 0.5 second
5770 	**	to perform abort of a command, we must look at ccbs about
5771 	**	every 0.25 second.
5772 	*/
5773 	if (np->lasttime + 4*HZ < thistime) {
5774 		/*
5775 		**	block ncr interrupts
5776 		*/
5777 		np->lasttime = thistime;
5778 	}
5779 
5780 #ifdef SCSI_NCR_BROKEN_INTR
5781 	if (INB(nc_istat) & (INTF|SIP|DIP)) {
5782 
5783 		/*
5784 		**	Process pending interrupts.
5785 		*/
5786 		if (DEBUG_FLAGS & DEBUG_TINY) printk ("{");
5787 		ncr_exception (np);
5788 		if (DEBUG_FLAGS & DEBUG_TINY) printk ("}");
5789 	}
5790 #endif /* SCSI_NCR_BROKEN_INTR */
5791 }
5792 
5793 /*==========================================================
5794 **
5795 **	log message for real hard errors
5796 **
5797 **	"ncr0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc)."
5798 **	"	      reg: r0 r1 r2 r3 r4 r5 r6 ..... rf."
5799 **
5800 **	exception register:
5801 **		ds:	dstat
5802 **		si:	sist
5803 **
5804 **	SCSI bus lines:
5805 **		so:	control lines as driver by NCR.
5806 **		si:	control lines as seen by NCR.
5807 **		sd:	scsi data lines as seen by NCR.
5808 **
5809 **	wide/fastmode:
5810 **		sxfer:	(see the manual)
5811 **		scntl3:	(see the manual)
5812 **
5813 **	current script command:
5814 **		dsp:	script address (relative to start of script).
5815 **		dbc:	first word of script command.
5816 **
5817 **	First 16 register of the chip:
5818 **		r0..rf
5819 **
5820 **==========================================================
5821 */
5822 
5823 static void ncr_log_hard_error(struct ncb *np, u16 sist, u_char dstat)
5824 {
5825 	u32	dsp;
5826 	int	script_ofs;
5827 	int	script_size;
5828 	char	*script_name;
5829 	u_char	*script_base;
5830 	int	i;
5831 
5832 	dsp	= INL (nc_dsp);
5833 
5834 	if (dsp > np->p_script && dsp <= np->p_script + sizeof(struct script)) {
5835 		script_ofs	= dsp - np->p_script;
5836 		script_size	= sizeof(struct script);
5837 		script_base	= (u_char *) np->script0;
5838 		script_name	= "script";
5839 	}
5840 	else if (np->p_scripth < dsp &&
5841 		 dsp <= np->p_scripth + sizeof(struct scripth)) {
5842 		script_ofs	= dsp - np->p_scripth;
5843 		script_size	= sizeof(struct scripth);
5844 		script_base	= (u_char *) np->scripth0;
5845 		script_name	= "scripth";
5846 	} else {
5847 		script_ofs	= dsp;
5848 		script_size	= 0;
5849 		script_base	= NULL;
5850 		script_name	= "mem";
5851 	}
5852 
5853 	printk ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n",
5854 		ncr_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist,
5855 		(unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl), (unsigned)INB (nc_sbdl),
5856 		(unsigned)INB (nc_sxfer),(unsigned)INB (nc_scntl3), script_name, script_ofs,
5857 		(unsigned)INL (nc_dbc));
5858 
5859 	if (((script_ofs & 3) == 0) &&
5860 	    (unsigned)script_ofs < script_size) {
5861 		printk ("%s: script cmd = %08x\n", ncr_name(np),
5862 			scr_to_cpu((int) *(ncrcmd *)(script_base + script_ofs)));
5863 	}
5864 
5865 	printk ("%s: regdump:", ncr_name(np));
5866 	for (i=0; i<16;i++)
5867             printk (" %02x", (unsigned)INB_OFF(i));
5868 	printk (".\n");
5869 }
5870 
5871 /*============================================================
5872 **
5873 **	ncr chip exception handler.
5874 **
5875 **============================================================
5876 **
5877 **	In normal cases, interrupt conditions occur one at a
5878 **	time. The ncr is able to stack in some extra registers
5879 **	other interrupts that will occur after the first one.
5880 **	But, several interrupts may occur at the same time.
5881 **
5882 **	We probably should only try to deal with the normal
5883 **	case, but it seems that multiple interrupts occur in
5884 **	some cases that are not abnormal at all.
5885 **
5886 **	The most frequent interrupt condition is Phase Mismatch.
5887 **	We should want to service this interrupt quickly.
5888 **	A SCSI parity error may be delivered at the same time.
5889 **	The SIR interrupt is not very frequent in this driver,
5890 **	since the INTFLY is likely used for command completion
5891 **	signaling.
5892 **	The Selection Timeout interrupt may be triggered with
5893 **	IID and/or UDC.
5894 **	The SBMC interrupt (SCSI Bus Mode Change) may probably
5895 **	occur at any time.
5896 **
5897 **	This handler try to deal as cleverly as possible with all
5898 **	the above.
5899 **
5900 **============================================================
5901 */
5902 
5903 void ncr_exception (struct ncb *np)
5904 {
5905 	u_char	istat, dstat;
5906 	u16	sist;
5907 	int	i;
5908 
5909 	/*
5910 	**	interrupt on the fly ?
5911 	**	Since the global header may be copied back to a CCB
5912 	**	using a posted PCI memory write, the last operation on
5913 	**	the istat register is a READ in order to flush posted
5914 	**	PCI write commands.
5915 	*/
5916 	istat = INB (nc_istat);
5917 	if (istat & INTF) {
5918 		OUTB (nc_istat, (istat & SIGP) | INTF);
5919 		istat = INB (nc_istat);
5920 		if (DEBUG_FLAGS & DEBUG_TINY) printk ("F ");
5921 		ncr_wakeup_done (np);
5922 	}
5923 
5924 	if (!(istat & (SIP|DIP)))
5925 		return;
5926 
5927 	if (istat & CABRT)
5928 		OUTB (nc_istat, CABRT);
5929 
5930 	/*
5931 	**	Steinbach's Guideline for Systems Programming:
5932 	**	Never test for an error condition you don't know how to handle.
5933 	*/
5934 
5935 	sist  = (istat & SIP) ? INW (nc_sist)  : 0;
5936 	dstat = (istat & DIP) ? INB (nc_dstat) : 0;
5937 
5938 	if (DEBUG_FLAGS & DEBUG_TINY)
5939 		printk ("<%d|%x:%x|%x:%x>",
5940 			(int)INB(nc_scr0),
5941 			dstat,sist,
5942 			(unsigned)INL(nc_dsp),
5943 			(unsigned)INL(nc_dbc));
5944 
5945 	/*========================================================
5946 	**	First, interrupts we want to service cleanly.
5947 	**
5948 	**	Phase mismatch is the most frequent interrupt, and
5949 	**	so we have to service it as quickly and as cleanly
5950 	**	as possible.
5951 	**	Programmed interrupts are rarely used in this driver,
5952 	**	but we must handle them cleanly anyway.
5953 	**	We try to deal with PAR and SBMC combined with
5954 	**	some other interrupt(s).
5955 	**=========================================================
5956 	*/
5957 
5958 	if (!(sist  & (STO|GEN|HTH|SGE|UDC|RST)) &&
5959 	    !(dstat & (MDPE|BF|ABRT|IID))) {
5960 		if ((sist & SBMC) && ncr_int_sbmc (np))
5961 			return;
5962 		if ((sist & PAR)  && ncr_int_par  (np))
5963 			return;
5964 		if (sist & MA) {
5965 			ncr_int_ma (np);
5966 			return;
5967 		}
5968 		if (dstat & SIR) {
5969 			ncr_int_sir (np);
5970 			return;
5971 		}
5972 		/*
5973 		**  DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 2.
5974 		*/
5975 		if (!(sist & (SBMC|PAR)) && !(dstat & SSI)) {
5976 			printk(	"%s: unknown interrupt(s) ignored, "
5977 				"ISTAT=%x DSTAT=%x SIST=%x\n",
5978 				ncr_name(np), istat, dstat, sist);
5979 			return;
5980 		}
5981 		OUTONB_STD ();
5982 		return;
5983 	}
5984 
5985 	/*========================================================
5986 	**	Now, interrupts that need some fixing up.
5987 	**	Order and multiple interrupts is so less important.
5988 	**
5989 	**	If SRST has been asserted, we just reset the chip.
5990 	**
5991 	**	Selection is intirely handled by the chip. If the
5992 	**	chip says STO, we trust it. Seems some other
5993 	**	interrupts may occur at the same time (UDC, IID), so
5994 	**	we ignore them. In any case we do enough fix-up
5995 	**	in the service routine.
5996 	**	We just exclude some fatal dma errors.
5997 	**=========================================================
5998 	*/
5999 
6000 	if (sist & RST) {
6001 		ncr_init (np, 1, bootverbose ? "scsi reset" : NULL, HS_RESET);
6002 		return;
6003 	}
6004 
6005 	if ((sist & STO) &&
6006 		!(dstat & (MDPE|BF|ABRT))) {
6007 	/*
6008 	**	DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 1.
6009 	*/
6010 		OUTONB (nc_ctest3, CLF);
6011 
6012 		ncr_int_sto (np);
6013 		return;
6014 	}
6015 
6016 	/*=========================================================
6017 	**	Now, interrupts we are not able to recover cleanly.
6018 	**	(At least for the moment).
6019 	**
6020 	**	Do the register dump.
6021 	**	Log message for real hard errors.
6022 	**	Clear all fifos.
6023 	**	For MDPE, BF, ABORT, IID, SGE and HTH we reset the
6024 	**	BUS and the chip.
6025 	**	We are more soft for UDC.
6026 	**=========================================================
6027 	*/
6028 
6029 	if (time_after(jiffies, np->regtime)) {
6030 		np->regtime = jiffies + 10*HZ;
6031 		for (i = 0; i<sizeof(np->regdump); i++)
6032 			((char*)&np->regdump)[i] = INB_OFF(i);
6033 		np->regdump.nc_dstat = dstat;
6034 		np->regdump.nc_sist  = sist;
6035 	}
6036 
6037 	ncr_log_hard_error(np, sist, dstat);
6038 
6039 	printk ("%s: have to clear fifos.\n", ncr_name (np));
6040 	OUTB (nc_stest3, TE|CSF);
6041 	OUTONB (nc_ctest3, CLF);
6042 
6043 	if ((sist & (SGE)) ||
6044 		(dstat & (MDPE|BF|ABRT|IID))) {
6045 		ncr_start_reset(np);
6046 		return;
6047 	}
6048 
6049 	if (sist & HTH) {
6050 		printk ("%s: handshake timeout\n", ncr_name(np));
6051 		ncr_start_reset(np);
6052 		return;
6053 	}
6054 
6055 	if (sist & UDC) {
6056 		printk ("%s: unexpected disconnect\n", ncr_name(np));
6057 		OUTB (HS_PRT, HS_UNEXPECTED);
6058 		OUTL_DSP (NCB_SCRIPT_PHYS (np, cleanup));
6059 		return;
6060 	}
6061 
6062 	/*=========================================================
6063 	**	We just miss the cause of the interrupt. :(
6064 	**	Print a message. The timeout will do the real work.
6065 	**=========================================================
6066 	*/
6067 	printk ("%s: unknown interrupt\n", ncr_name(np));
6068 }
6069 
6070 /*==========================================================
6071 **
6072 **	ncr chip exception handler for selection timeout
6073 **
6074 **==========================================================
6075 **
6076 **	There seems to be a bug in the 53c810.
6077 **	Although a STO-Interrupt is pending,
6078 **	it continues executing script commands.
6079 **	But it will fail and interrupt (IID) on
6080 **	the next instruction where it's looking
6081 **	for a valid phase.
6082 **
6083 **----------------------------------------------------------
6084 */
6085 
6086 void ncr_int_sto (struct ncb *np)
6087 {
6088 	u_long dsa;
6089 	struct ccb *cp;
6090 	if (DEBUG_FLAGS & DEBUG_TINY) printk ("T");
6091 
6092 	/*
6093 	**	look for ccb and set the status.
6094 	*/
6095 
6096 	dsa = INL (nc_dsa);
6097 	cp = np->ccb;
6098 	while (cp && (CCB_PHYS (cp, phys) != dsa))
6099 		cp = cp->link_ccb;
6100 
6101 	if (cp) {
6102 		cp-> host_status = HS_SEL_TIMEOUT;
6103 		ncr_complete (np, cp);
6104 	}
6105 
6106 	/*
6107 	**	repair start queue and jump to start point.
6108 	*/
6109 
6110 	OUTL_DSP (NCB_SCRIPTH_PHYS (np, sto_restart));
6111 	return;
6112 }
6113 
6114 /*==========================================================
6115 **
6116 **	ncr chip exception handler for SCSI bus mode change
6117 **
6118 **==========================================================
6119 **
6120 **	spi2-r12 11.2.3 says a transceiver mode change must
6121 **	generate a reset event and a device that detects a reset
6122 **	event shall initiate a hard reset. It says also that a
6123 **	device that detects a mode change shall set data transfer
6124 **	mode to eight bit asynchronous, etc...
6125 **	So, just resetting should be enough.
6126 **
6127 **
6128 **----------------------------------------------------------
6129 */
6130 
6131 static int ncr_int_sbmc (struct ncb *np)
6132 {
6133 	u_char scsi_mode = INB (nc_stest4) & SMODE;
6134 
6135 	if (scsi_mode != np->scsi_mode) {
6136 		printk("%s: SCSI bus mode change from %x to %x.\n",
6137 			ncr_name(np), np->scsi_mode, scsi_mode);
6138 
6139 		np->scsi_mode = scsi_mode;
6140 
6141 
6142 		/*
6143 		**	Suspend command processing for 1 second and
6144 		**	reinitialize all except the chip.
6145 		*/
6146 		np->settle_time	= jiffies + HZ;
6147 		ncr_init (np, 0, bootverbose ? "scsi mode change" : NULL, HS_RESET);
6148 		return 1;
6149 	}
6150 	return 0;
6151 }
6152 
6153 /*==========================================================
6154 **
6155 **	ncr chip exception handler for SCSI parity error.
6156 **
6157 **==========================================================
6158 **
6159 **
6160 **----------------------------------------------------------
6161 */
6162 
6163 static int ncr_int_par (struct ncb *np)
6164 {
6165 	u_char	hsts	= INB (HS_PRT);
6166 	u32	dbc	= INL (nc_dbc);
6167 	u_char	sstat1	= INB (nc_sstat1);
6168 	int phase	= -1;
6169 	int msg		= -1;
6170 	u32 jmp;
6171 
6172 	printk("%s: SCSI parity error detected: SCR1=%d DBC=%x SSTAT1=%x\n",
6173 		ncr_name(np), hsts, dbc, sstat1);
6174 
6175 	/*
6176 	 *	Ignore the interrupt if the NCR is not connected
6177 	 *	to the SCSI bus, since the right work should have
6178 	 *	been done on unexpected disconnection handling.
6179 	 */
6180 	if (!(INB (nc_scntl1) & ISCON))
6181 		return 0;
6182 
6183 	/*
6184 	 *	If the nexus is not clearly identified, reset the bus.
6185 	 *	We will try to do better later.
6186 	 */
6187 	if (hsts & HS_INVALMASK)
6188 		goto reset_all;
6189 
6190 	/*
6191 	 *	If the SCSI parity error occurs in MSG IN phase, prepare a
6192 	 *	MSG PARITY message. Otherwise, prepare a INITIATOR DETECTED
6193 	 *	ERROR message and let the device decide to retry the command
6194 	 *	or to terminate with check condition. If we were in MSG IN
6195 	 *	phase waiting for the response of a negotiation, we will
6196 	 *	get SIR_NEGO_FAILED at dispatch.
6197 	 */
6198 	if (!(dbc & 0xc0000000))
6199 		phase = (dbc >> 24) & 7;
6200 	if (phase == 7)
6201 		msg = MSG_PARITY_ERROR;
6202 	else
6203 		msg = INITIATOR_ERROR;
6204 
6205 
6206 	/*
6207 	 *	If the NCR stopped on a MOVE ^ DATA_IN, we jump to a
6208 	 *	script that will ignore all data in bytes until phase
6209 	 *	change, since we are not sure the chip will wait the phase
6210 	 *	change prior to delivering the interrupt.
6211 	 */
6212 	if (phase == 1)
6213 		jmp = NCB_SCRIPTH_PHYS (np, par_err_data_in);
6214 	else
6215 		jmp = NCB_SCRIPTH_PHYS (np, par_err_other);
6216 
6217 	OUTONB (nc_ctest3, CLF );	/* clear dma fifo  */
6218 	OUTB (nc_stest3, TE|CSF);	/* clear scsi fifo */
6219 
6220 	np->msgout[0] = msg;
6221 	OUTL_DSP (jmp);
6222 	return 1;
6223 
6224 reset_all:
6225 	ncr_start_reset(np);
6226 	return 1;
6227 }
6228 
6229 /*==========================================================
6230 **
6231 **
6232 **	ncr chip exception handler for phase errors.
6233 **
6234 **
6235 **==========================================================
6236 **
6237 **	We have to construct a new transfer descriptor,
6238 **	to transfer the rest of the current block.
6239 **
6240 **----------------------------------------------------------
6241 */
6242 
6243 static void ncr_int_ma (struct ncb *np)
6244 {
6245 	u32	dbc;
6246 	u32	rest;
6247 	u32	dsp;
6248 	u32	dsa;
6249 	u32	nxtdsp;
6250 	u32	newtmp;
6251 	u32	*vdsp;
6252 	u32	oadr, olen;
6253 	u32	*tblp;
6254 	ncrcmd *newcmd;
6255 	u_char	cmd, sbcl;
6256 	struct ccb *cp;
6257 
6258 	dsp	= INL (nc_dsp);
6259 	dbc	= INL (nc_dbc);
6260 	sbcl	= INB (nc_sbcl);
6261 
6262 	cmd	= dbc >> 24;
6263 	rest	= dbc & 0xffffff;
6264 
6265 	/*
6266 	**	Take into account dma fifo and various buffers and latches,
6267 	**	only if the interrupted phase is an OUTPUT phase.
6268 	*/
6269 
6270 	if ((cmd & 1) == 0) {
6271 		u_char	ctest5, ss0, ss2;
6272 		u16	delta;
6273 
6274 		ctest5 = (np->rv_ctest5 & DFS) ? INB (nc_ctest5) : 0;
6275 		if (ctest5 & DFS)
6276 			delta=(((ctest5 << 8) | (INB (nc_dfifo) & 0xff)) - rest) & 0x3ff;
6277 		else
6278 			delta=(INB (nc_dfifo) - rest) & 0x7f;
6279 
6280 		/*
6281 		**	The data in the dma fifo has not been transferred to
6282 		**	the target -> add the amount to the rest
6283 		**	and clear the data.
6284 		**	Check the sstat2 register in case of wide transfer.
6285 		*/
6286 
6287 		rest += delta;
6288 		ss0  = INB (nc_sstat0);
6289 		if (ss0 & OLF) rest++;
6290 		if (ss0 & ORF) rest++;
6291 		if (INB(nc_scntl3) & EWS) {
6292 			ss2 = INB (nc_sstat2);
6293 			if (ss2 & OLF1) rest++;
6294 			if (ss2 & ORF1) rest++;
6295 		}
6296 
6297 		if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
6298 			printk ("P%x%x RL=%d D=%d SS0=%x ", cmd&7, sbcl&7,
6299 				(unsigned) rest, (unsigned) delta, ss0);
6300 
6301 	} else	{
6302 		if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
6303 			printk ("P%x%x RL=%d ", cmd&7, sbcl&7, rest);
6304 	}
6305 
6306 	/*
6307 	**	Clear fifos.
6308 	*/
6309 	OUTONB (nc_ctest3, CLF );	/* clear dma fifo  */
6310 	OUTB (nc_stest3, TE|CSF);	/* clear scsi fifo */
6311 
6312 	/*
6313 	**	locate matching cp.
6314 	**	if the interrupted phase is DATA IN or DATA OUT,
6315 	**	trust the global header.
6316 	*/
6317 	dsa = INL (nc_dsa);
6318 	if (!(cmd & 6)) {
6319 		cp = np->header.cp;
6320 		if (CCB_PHYS(cp, phys) != dsa)
6321 			cp = NULL;
6322 	} else {
6323 		cp  = np->ccb;
6324 		while (cp && (CCB_PHYS (cp, phys) != dsa))
6325 			cp = cp->link_ccb;
6326 	}
6327 
6328 	/*
6329 	**	try to find the interrupted script command,
6330 	**	and the address at which to continue.
6331 	*/
6332 	vdsp	= NULL;
6333 	nxtdsp	= 0;
6334 	if	(dsp >  np->p_script &&
6335 		 dsp <= np->p_script + sizeof(struct script)) {
6336 		vdsp = (u32 *)((char*)np->script0 + (dsp-np->p_script-8));
6337 		nxtdsp = dsp;
6338 	}
6339 	else if	(dsp >  np->p_scripth &&
6340 		 dsp <= np->p_scripth + sizeof(struct scripth)) {
6341 		vdsp = (u32 *)((char*)np->scripth0 + (dsp-np->p_scripth-8));
6342 		nxtdsp = dsp;
6343 	}
6344 	else if (cp) {
6345 		if	(dsp == CCB_PHYS (cp, patch[2])) {
6346 			vdsp = &cp->patch[0];
6347 			nxtdsp = scr_to_cpu(vdsp[3]);
6348 		}
6349 		else if (dsp == CCB_PHYS (cp, patch[6])) {
6350 			vdsp = &cp->patch[4];
6351 			nxtdsp = scr_to_cpu(vdsp[3]);
6352 		}
6353 	}
6354 
6355 	/*
6356 	**	log the information
6357 	*/
6358 
6359 	if (DEBUG_FLAGS & DEBUG_PHASE) {
6360 		printk ("\nCP=%p CP2=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
6361 			cp, np->header.cp,
6362 			(unsigned)dsp,
6363 			(unsigned)nxtdsp, vdsp, cmd);
6364 	}
6365 
6366 	/*
6367 	**	cp=0 means that the DSA does not point to a valid control
6368 	**	block. This should not happen since we donnot use multi-byte
6369 	**	move while we are being reselected ot after command complete.
6370 	**	We are not able to recover from such a phase error.
6371 	*/
6372 	if (!cp) {
6373 		printk ("%s: SCSI phase error fixup: "
6374 			"CCB already dequeued (0x%08lx)\n",
6375 			ncr_name (np), (u_long) np->header.cp);
6376 		goto reset_all;
6377 	}
6378 
6379 	/*
6380 	**	get old startaddress and old length.
6381 	*/
6382 
6383 	oadr = scr_to_cpu(vdsp[1]);
6384 
6385 	if (cmd & 0x10) {	/* Table indirect */
6386 		tblp = (u32 *) ((char*) &cp->phys + oadr);
6387 		olen = scr_to_cpu(tblp[0]);
6388 		oadr = scr_to_cpu(tblp[1]);
6389 	} else {
6390 		tblp = (u32 *) 0;
6391 		olen = scr_to_cpu(vdsp[0]) & 0xffffff;
6392 	}
6393 
6394 	if (DEBUG_FLAGS & DEBUG_PHASE) {
6395 		printk ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
6396 			(unsigned) (scr_to_cpu(vdsp[0]) >> 24),
6397 			tblp,
6398 			(unsigned) olen,
6399 			(unsigned) oadr);
6400 	}
6401 
6402 	/*
6403 	**	check cmd against assumed interrupted script command.
6404 	*/
6405 
6406 	if (cmd != (scr_to_cpu(vdsp[0]) >> 24)) {
6407 		PRINT_ADDR(cp->cmd, "internal error: cmd=%02x != %02x=(vdsp[0] "
6408 				">> 24)\n", cmd, scr_to_cpu(vdsp[0]) >> 24);
6409 
6410 		goto reset_all;
6411 	}
6412 
6413 	/*
6414 	**	cp != np->header.cp means that the header of the CCB
6415 	**	currently being processed has not yet been copied to
6416 	**	the global header area. That may happen if the device did
6417 	**	not accept all our messages after having been selected.
6418 	*/
6419 	if (cp != np->header.cp) {
6420 		printk ("%s: SCSI phase error fixup: "
6421 			"CCB address mismatch (0x%08lx != 0x%08lx)\n",
6422 			ncr_name (np), (u_long) cp, (u_long) np->header.cp);
6423 	}
6424 
6425 	/*
6426 	**	if old phase not dataphase, leave here.
6427 	*/
6428 
6429 	if (cmd & 0x06) {
6430 		PRINT_ADDR(cp->cmd, "phase change %x-%x %d@%08x resid=%d.\n",
6431 			cmd&7, sbcl&7, (unsigned)olen,
6432 			(unsigned)oadr, (unsigned)rest);
6433 		goto unexpected_phase;
6434 	}
6435 
6436 	/*
6437 	**	choose the correct patch area.
6438 	**	if savep points to one, choose the other.
6439 	*/
6440 
6441 	newcmd = cp->patch;
6442 	newtmp = CCB_PHYS (cp, patch);
6443 	if (newtmp == scr_to_cpu(cp->phys.header.savep)) {
6444 		newcmd = &cp->patch[4];
6445 		newtmp = CCB_PHYS (cp, patch[4]);
6446 	}
6447 
6448 	/*
6449 	**	fillin the commands
6450 	*/
6451 
6452 	newcmd[0] = cpu_to_scr(((cmd & 0x0f) << 24) | rest);
6453 	newcmd[1] = cpu_to_scr(oadr + olen - rest);
6454 	newcmd[2] = cpu_to_scr(SCR_JUMP);
6455 	newcmd[3] = cpu_to_scr(nxtdsp);
6456 
6457 	if (DEBUG_FLAGS & DEBUG_PHASE) {
6458 		PRINT_ADDR(cp->cmd, "newcmd[%d] %x %x %x %x.\n",
6459 			(int) (newcmd - cp->patch),
6460 			(unsigned)scr_to_cpu(newcmd[0]),
6461 			(unsigned)scr_to_cpu(newcmd[1]),
6462 			(unsigned)scr_to_cpu(newcmd[2]),
6463 			(unsigned)scr_to_cpu(newcmd[3]));
6464 	}
6465 	/*
6466 	**	fake the return address (to the patch).
6467 	**	and restart script processor at dispatcher.
6468 	*/
6469 	OUTL (nc_temp, newtmp);
6470 	OUTL_DSP (NCB_SCRIPT_PHYS (np, dispatch));
6471 	return;
6472 
6473 	/*
6474 	**	Unexpected phase changes that occurs when the current phase
6475 	**	is not a DATA IN or DATA OUT phase are due to error conditions.
6476 	**	Such event may only happen when the SCRIPTS is using a
6477 	**	multibyte SCSI MOVE.
6478 	**
6479 	**	Phase change		Some possible cause
6480 	**
6481 	**	COMMAND  --> MSG IN	SCSI parity error detected by target.
6482 	**	COMMAND  --> STATUS	Bad command or refused by target.
6483 	**	MSG OUT  --> MSG IN     Message rejected by target.
6484 	**	MSG OUT  --> COMMAND    Bogus target that discards extended
6485 	**				negotiation messages.
6486 	**
6487 	**	The code below does not care of the new phase and so
6488 	**	trusts the target. Why to annoy it ?
6489 	**	If the interrupted phase is COMMAND phase, we restart at
6490 	**	dispatcher.
6491 	**	If a target does not get all the messages after selection,
6492 	**	the code assumes blindly that the target discards extended
6493 	**	messages and clears the negotiation status.
6494 	**	If the target does not want all our response to negotiation,
6495 	**	we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
6496 	**	bloat for such a should_not_happen situation).
6497 	**	In all other situation, we reset the BUS.
6498 	**	Are these assumptions reasonable ? (Wait and see ...)
6499 	*/
6500 unexpected_phase:
6501 	dsp -= 8;
6502 	nxtdsp = 0;
6503 
6504 	switch (cmd & 7) {
6505 	case 2:	/* COMMAND phase */
6506 		nxtdsp = NCB_SCRIPT_PHYS (np, dispatch);
6507 		break;
6508 #if 0
6509 	case 3:	/* STATUS  phase */
6510 		nxtdsp = NCB_SCRIPT_PHYS (np, dispatch);
6511 		break;
6512 #endif
6513 	case 6:	/* MSG OUT phase */
6514 		np->scripth->nxtdsp_go_on[0] = cpu_to_scr(dsp + 8);
6515 		if	(dsp == NCB_SCRIPT_PHYS (np, send_ident)) {
6516 			cp->host_status = HS_BUSY;
6517 			nxtdsp = NCB_SCRIPTH_PHYS (np, clratn_go_on);
6518 		}
6519 		else if	(dsp == NCB_SCRIPTH_PHYS (np, send_wdtr) ||
6520 			 dsp == NCB_SCRIPTH_PHYS (np, send_sdtr)) {
6521 			nxtdsp = NCB_SCRIPTH_PHYS (np, nego_bad_phase);
6522 		}
6523 		break;
6524 #if 0
6525 	case 7:	/* MSG IN  phase */
6526 		nxtdsp = NCB_SCRIPT_PHYS (np, clrack);
6527 		break;
6528 #endif
6529 	}
6530 
6531 	if (nxtdsp) {
6532 		OUTL_DSP (nxtdsp);
6533 		return;
6534 	}
6535 
6536 reset_all:
6537 	ncr_start_reset(np);
6538 }
6539 
6540 
6541 static void ncr_sir_to_redo(struct ncb *np, int num, struct ccb *cp)
6542 {
6543 	struct scsi_cmnd *cmd	= cp->cmd;
6544 	struct tcb *tp	= &np->target[cmd->device->id];
6545 	struct lcb *lp	= tp->lp[cmd->device->lun];
6546 	struct list_head *qp;
6547 	struct ccb *	cp2;
6548 	int		disc_cnt = 0;
6549 	int		busy_cnt = 0;
6550 	u32		startp;
6551 	u_char		s_status = INB (SS_PRT);
6552 
6553 	/*
6554 	**	Let the SCRIPTS processor skip all not yet started CCBs,
6555 	**	and count disconnected CCBs. Since the busy queue is in
6556 	**	the same order as the chip start queue, disconnected CCBs
6557 	**	are before cp and busy ones after.
6558 	*/
6559 	if (lp) {
6560 		qp = lp->busy_ccbq.prev;
6561 		while (qp != &lp->busy_ccbq) {
6562 			cp2 = list_entry(qp, struct ccb, link_ccbq);
6563 			qp  = qp->prev;
6564 			++busy_cnt;
6565 			if (cp2 == cp)
6566 				break;
6567 			cp2->start.schedule.l_paddr =
6568 			cpu_to_scr(NCB_SCRIPTH_PHYS (np, skip));
6569 		}
6570 		lp->held_ccb = cp;	/* Requeue when this one completes */
6571 		disc_cnt = lp->queuedccbs - busy_cnt;
6572 	}
6573 
6574 	switch(s_status) {
6575 	default:	/* Just for safety, should never happen */
6576 	case SAM_STAT_TASK_SET_FULL:
6577 		/*
6578 		**	Decrease number of tags to the number of
6579 		**	disconnected commands.
6580 		*/
6581 		if (!lp)
6582 			goto out;
6583 		if (bootverbose >= 1) {
6584 			PRINT_ADDR(cmd, "QUEUE FULL! %d busy, %d disconnected "
6585 					"CCBs\n", busy_cnt, disc_cnt);
6586 		}
6587 		if (disc_cnt < lp->numtags) {
6588 			lp->numtags	= disc_cnt > 2 ? disc_cnt : 2;
6589 			lp->num_good	= 0;
6590 			ncr_setup_tags (np, cmd->device);
6591 		}
6592 		/*
6593 		**	Requeue the command to the start queue.
6594 		**	If any disconnected commands,
6595 		**		Clear SIGP.
6596 		**		Jump to reselect.
6597 		*/
6598 		cp->phys.header.savep = cp->startp;
6599 		cp->host_status = HS_BUSY;
6600 		cp->scsi_status = SAM_STAT_ILLEGAL;
6601 
6602 		ncr_put_start_queue(np, cp);
6603 		if (disc_cnt)
6604 			INB (nc_ctest2);		/* Clear SIGP */
6605 		OUTL_DSP (NCB_SCRIPT_PHYS (np, reselect));
6606 		return;
6607 	case SAM_STAT_COMMAND_TERMINATED:
6608 	case SAM_STAT_CHECK_CONDITION:
6609 		/*
6610 		**	If we were requesting sense, give up.
6611 		*/
6612 		if (cp->auto_sense)
6613 			goto out;
6614 
6615 		/*
6616 		**	Device returned CHECK CONDITION status.
6617 		**	Prepare all needed data strutures for getting
6618 		**	sense data.
6619 		**
6620 		**	identify message
6621 		*/
6622 		cp->scsi_smsg2[0]	= IDENTIFY(0, cmd->device->lun);
6623 		cp->phys.smsg.addr	= cpu_to_scr(CCB_PHYS (cp, scsi_smsg2));
6624 		cp->phys.smsg.size	= cpu_to_scr(1);
6625 
6626 		/*
6627 		**	sense command
6628 		*/
6629 		cp->phys.cmd.addr	= cpu_to_scr(CCB_PHYS (cp, sensecmd));
6630 		cp->phys.cmd.size	= cpu_to_scr(6);
6631 
6632 		/*
6633 		**	patch requested size into sense command
6634 		*/
6635 		cp->sensecmd[0]		= 0x03;
6636 		cp->sensecmd[1]		= (cmd->device->lun & 0x7) << 5;
6637 		cp->sensecmd[4]		= sizeof(cp->sense_buf);
6638 
6639 		/*
6640 		**	sense data
6641 		*/
6642 		memset(cp->sense_buf, 0, sizeof(cp->sense_buf));
6643 		cp->phys.sense.addr	= cpu_to_scr(CCB_PHYS(cp,sense_buf[0]));
6644 		cp->phys.sense.size	= cpu_to_scr(sizeof(cp->sense_buf));
6645 
6646 		/*
6647 		**	requeue the command.
6648 		*/
6649 		startp = cpu_to_scr(NCB_SCRIPTH_PHYS (np, sdata_in));
6650 
6651 		cp->phys.header.savep	= startp;
6652 		cp->phys.header.goalp	= startp + 24;
6653 		cp->phys.header.lastp	= startp;
6654 		cp->phys.header.wgoalp	= startp + 24;
6655 		cp->phys.header.wlastp	= startp;
6656 
6657 		cp->host_status = HS_BUSY;
6658 		cp->scsi_status = SAM_STAT_ILLEGAL;
6659 		cp->auto_sense	= s_status;
6660 
6661 		cp->start.schedule.l_paddr =
6662 			cpu_to_scr(NCB_SCRIPT_PHYS (np, select));
6663 
6664 		/*
6665 		**	Select without ATN for quirky devices.
6666 		*/
6667 		if (cmd->device->select_no_atn)
6668 			cp->start.schedule.l_paddr =
6669 			cpu_to_scr(NCB_SCRIPTH_PHYS (np, select_no_atn));
6670 
6671 		ncr_put_start_queue(np, cp);
6672 
6673 		OUTL_DSP (NCB_SCRIPT_PHYS (np, start));
6674 		return;
6675 	}
6676 
6677 out:
6678 	OUTONB_STD ();
6679 	return;
6680 }
6681 
6682 
6683 /*==========================================================
6684 **
6685 **
6686 **      ncr chip exception handler for programmed interrupts.
6687 **
6688 **
6689 **==========================================================
6690 */
6691 
6692 void ncr_int_sir (struct ncb *np)
6693 {
6694 	u_char scntl3;
6695 	u_char chg, ofs, per, fak, wide;
6696 	u_char num = INB (nc_dsps);
6697 	struct ccb *cp=NULL;
6698 	u_long	dsa    = INL (nc_dsa);
6699 	u_char	target = INB (nc_sdid) & 0x0f;
6700 	struct tcb *tp     = &np->target[target];
6701 	struct scsi_target *starget = tp->starget;
6702 
6703 	if (DEBUG_FLAGS & DEBUG_TINY) printk ("I#%d", num);
6704 
6705 	switch (num) {
6706 	case SIR_INTFLY:
6707 		/*
6708 		**	This is used for HP Zalon/53c720 where INTFLY
6709 		**	operation is currently broken.
6710 		*/
6711 		ncr_wakeup_done(np);
6712 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
6713 		OUTL(nc_dsp, NCB_SCRIPT_PHYS (np, done_end) + 8);
6714 #else
6715 		OUTL(nc_dsp, NCB_SCRIPT_PHYS (np, start));
6716 #endif
6717 		return;
6718 	case SIR_RESEL_NO_MSG_IN:
6719 	case SIR_RESEL_NO_IDENTIFY:
6720 		/*
6721 		**	If devices reselecting without sending an IDENTIFY
6722 		**	message still exist, this should help.
6723 		**	We just assume lun=0, 1 CCB, no tag.
6724 		*/
6725 		if (tp->lp[0]) {
6726 			OUTL_DSP (scr_to_cpu(tp->lp[0]->jump_ccb[0]));
6727 			return;
6728 		}
6729 		fallthrough;
6730 	case SIR_RESEL_BAD_TARGET:	/* Will send a TARGET RESET message */
6731 	case SIR_RESEL_BAD_LUN:		/* Will send a TARGET RESET message */
6732 	case SIR_RESEL_BAD_I_T_L_Q:	/* Will send an ABORT TAG message   */
6733 	case SIR_RESEL_BAD_I_T_L:	/* Will send an ABORT message	    */
6734 		printk ("%s:%d: SIR %d, "
6735 			"incorrect nexus identification on reselection\n",
6736 			ncr_name (np), target, num);
6737 		goto out;
6738 	case SIR_DONE_OVERFLOW:
6739 		printk ("%s:%d: SIR %d, "
6740 			"CCB done queue overflow\n",
6741 			ncr_name (np), target, num);
6742 		goto out;
6743 	case SIR_BAD_STATUS:
6744 		cp = np->header.cp;
6745 		if (!cp || CCB_PHYS (cp, phys) != dsa)
6746 			goto out;
6747 		ncr_sir_to_redo(np, num, cp);
6748 		return;
6749 	default:
6750 		/*
6751 		**	lookup the ccb
6752 		*/
6753 		cp = np->ccb;
6754 		while (cp && (CCB_PHYS (cp, phys) != dsa))
6755 			cp = cp->link_ccb;
6756 
6757 		BUG_ON(!cp);
6758 		BUG_ON(cp != np->header.cp);
6759 
6760 		if (!cp || cp != np->header.cp)
6761 			goto out;
6762 	}
6763 
6764 	switch (num) {
6765 /*-----------------------------------------------------------------------------
6766 **
6767 **	Was Sie schon immer ueber transfermode negotiation wissen wollten ...
6768 **	("Everything you've always wanted to know about transfer mode
6769 **	  negotiation")
6770 **
6771 **	We try to negotiate sync and wide transfer only after
6772 **	a successful inquire command. We look at byte 7 of the
6773 **	inquire data to determine the capabilities of the target.
6774 **
6775 **	When we try to negotiate, we append the negotiation message
6776 **	to the identify and (maybe) simple tag message.
6777 **	The host status field is set to HS_NEGOTIATE to mark this
6778 **	situation.
6779 **
6780 **	If the target doesn't answer this message immediately
6781 **	(as required by the standard), the SIR_NEGO_FAIL interrupt
6782 **	will be raised eventually.
6783 **	The handler removes the HS_NEGOTIATE status, and sets the
6784 **	negotiated value to the default (async / nowide).
6785 **
6786 **	If we receive a matching answer immediately, we check it
6787 **	for validity, and set the values.
6788 **
6789 **	If we receive a Reject message immediately, we assume the
6790 **	negotiation has failed, and fall back to standard values.
6791 **
6792 **	If we receive a negotiation message while not in HS_NEGOTIATE
6793 **	state, it's a target initiated negotiation. We prepare a
6794 **	(hopefully) valid answer, set our parameters, and send back
6795 **	this answer to the target.
6796 **
6797 **	If the target doesn't fetch the answer (no message out phase),
6798 **	we assume the negotiation has failed, and fall back to default
6799 **	settings.
6800 **
6801 **	When we set the values, we adjust them in all ccbs belonging
6802 **	to this target, in the controller's register, and in the "phys"
6803 **	field of the controller's struct ncb.
6804 **
6805 **	Possible cases:		   hs  sir   msg_in value  send   goto
6806 **	We try to negotiate:
6807 **	-> target doesn't msgin    NEG FAIL  noop   defa.  -      dispatch
6808 **	-> target rejected our msg NEG FAIL  reject defa.  -      dispatch
6809 **	-> target answered  (ok)   NEG SYNC  sdtr   set    -      clrack
6810 **	-> target answered (!ok)   NEG SYNC  sdtr   defa.  REJ--->msg_bad
6811 **	-> target answered  (ok)   NEG WIDE  wdtr   set    -      clrack
6812 **	-> target answered (!ok)   NEG WIDE  wdtr   defa.  REJ--->msg_bad
6813 **	-> any other msgin	   NEG FAIL  noop   defa.  -      dispatch
6814 **
6815 **	Target tries to negotiate:
6816 **	-> incoming message	   --- SYNC  sdtr   set    SDTR   -
6817 **	-> incoming message	   --- WIDE  wdtr   set    WDTR   -
6818 **      We sent our answer:
6819 **	-> target doesn't msgout   --- PROTO ?      defa.  -      dispatch
6820 **
6821 **-----------------------------------------------------------------------------
6822 */
6823 
6824 	case SIR_NEGO_FAILED:
6825 		/*-------------------------------------------------------
6826 		**
6827 		**	Negotiation failed.
6828 		**	Target doesn't send an answer message,
6829 		**	or target rejected our message.
6830 		**
6831 		**      Remove negotiation request.
6832 		**
6833 		**-------------------------------------------------------
6834 		*/
6835 		OUTB (HS_PRT, HS_BUSY);
6836 
6837 		fallthrough;
6838 
6839 	case SIR_NEGO_PROTO:
6840 		/*-------------------------------------------------------
6841 		**
6842 		**	Negotiation failed.
6843 		**	Target doesn't fetch the answer message.
6844 		**
6845 		**-------------------------------------------------------
6846 		*/
6847 
6848 		if (DEBUG_FLAGS & DEBUG_NEGO) {
6849 			PRINT_ADDR(cp->cmd, "negotiation failed sir=%x "
6850 					"status=%x.\n", num, cp->nego_status);
6851 		}
6852 
6853 		/*
6854 		**	any error in negotiation:
6855 		**	fall back to default mode.
6856 		*/
6857 		switch (cp->nego_status) {
6858 
6859 		case NS_SYNC:
6860 			spi_period(starget) = 0;
6861 			spi_offset(starget) = 0;
6862 			ncr_setsync (np, cp, 0, 0xe0);
6863 			break;
6864 
6865 		case NS_WIDE:
6866 			spi_width(starget) = 0;
6867 			ncr_setwide (np, cp, 0, 0);
6868 			break;
6869 
6870 		}
6871 		np->msgin [0] = NOP;
6872 		np->msgout[0] = NOP;
6873 		cp->nego_status = 0;
6874 		break;
6875 
6876 	case SIR_NEGO_SYNC:
6877 		if (DEBUG_FLAGS & DEBUG_NEGO) {
6878 			ncr_print_msg(cp, "sync msgin", np->msgin);
6879 		}
6880 
6881 		chg = 0;
6882 		per = np->msgin[3];
6883 		ofs = np->msgin[4];
6884 		if (ofs==0) per=255;
6885 
6886 		/*
6887 		**      if target sends SDTR message,
6888 		**	      it CAN transfer synch.
6889 		*/
6890 
6891 		if (ofs && starget)
6892 			spi_support_sync(starget) = 1;
6893 
6894 		/*
6895 		**	check values against driver limits.
6896 		*/
6897 
6898 		if (per < np->minsync)
6899 			{chg = 1; per = np->minsync;}
6900 		if (per < tp->minsync)
6901 			{chg = 1; per = tp->minsync;}
6902 		if (ofs > tp->maxoffs)
6903 			{chg = 1; ofs = tp->maxoffs;}
6904 
6905 		/*
6906 		**	Check against controller limits.
6907 		*/
6908 		fak	= 7;
6909 		scntl3	= 0;
6910 		if (ofs != 0) {
6911 			ncr_getsync(np, per, &fak, &scntl3);
6912 			if (fak > 7) {
6913 				chg = 1;
6914 				ofs = 0;
6915 			}
6916 		}
6917 		if (ofs == 0) {
6918 			fak	= 7;
6919 			per	= 0;
6920 			scntl3	= 0;
6921 			tp->minsync = 0;
6922 		}
6923 
6924 		if (DEBUG_FLAGS & DEBUG_NEGO) {
6925 			PRINT_ADDR(cp->cmd, "sync: per=%d scntl3=0x%x ofs=%d "
6926 				"fak=%d chg=%d.\n", per, scntl3, ofs, fak, chg);
6927 		}
6928 
6929 		if (INB (HS_PRT) == HS_NEGOTIATE) {
6930 			OUTB (HS_PRT, HS_BUSY);
6931 			switch (cp->nego_status) {
6932 
6933 			case NS_SYNC:
6934 				/* This was an answer message */
6935 				if (chg) {
6936 					/* Answer wasn't acceptable.  */
6937 					spi_period(starget) = 0;
6938 					spi_offset(starget) = 0;
6939 					ncr_setsync(np, cp, 0, 0xe0);
6940 					OUTL_DSP(NCB_SCRIPT_PHYS (np, msg_bad));
6941 				} else {
6942 					/* Answer is ok.  */
6943 					spi_period(starget) = per;
6944 					spi_offset(starget) = ofs;
6945 					ncr_setsync(np, cp, scntl3, (fak<<5)|ofs);
6946 					OUTL_DSP(NCB_SCRIPT_PHYS (np, clrack));
6947 				}
6948 				return;
6949 
6950 			case NS_WIDE:
6951 				spi_width(starget) = 0;
6952 				ncr_setwide(np, cp, 0, 0);
6953 				break;
6954 			}
6955 		}
6956 
6957 		/*
6958 		**	It was a request. Set value and
6959 		**      prepare an answer message
6960 		*/
6961 
6962 		spi_period(starget) = per;
6963 		spi_offset(starget) = ofs;
6964 		ncr_setsync(np, cp, scntl3, (fak<<5)|ofs);
6965 
6966 		spi_populate_sync_msg(np->msgout, per, ofs);
6967 		cp->nego_status = NS_SYNC;
6968 
6969 		if (DEBUG_FLAGS & DEBUG_NEGO) {
6970 			ncr_print_msg(cp, "sync msgout", np->msgout);
6971 		}
6972 
6973 		if (!ofs) {
6974 			OUTL_DSP (NCB_SCRIPT_PHYS (np, msg_bad));
6975 			return;
6976 		}
6977 		np->msgin [0] = NOP;
6978 
6979 		break;
6980 
6981 	case SIR_NEGO_WIDE:
6982 		/*
6983 		**	Wide request message received.
6984 		*/
6985 		if (DEBUG_FLAGS & DEBUG_NEGO) {
6986 			ncr_print_msg(cp, "wide msgin", np->msgin);
6987 		}
6988 
6989 		/*
6990 		**	get requested values.
6991 		*/
6992 
6993 		chg  = 0;
6994 		wide = np->msgin[3];
6995 
6996 		/*
6997 		**      if target sends WDTR message,
6998 		**	      it CAN transfer wide.
6999 		*/
7000 
7001 		if (wide && starget)
7002 			spi_support_wide(starget) = 1;
7003 
7004 		/*
7005 		**	check values against driver limits.
7006 		*/
7007 
7008 		if (wide > tp->usrwide)
7009 			{chg = 1; wide = tp->usrwide;}
7010 
7011 		if (DEBUG_FLAGS & DEBUG_NEGO) {
7012 			PRINT_ADDR(cp->cmd, "wide: wide=%d chg=%d.\n", wide,
7013 					chg);
7014 		}
7015 
7016 		if (INB (HS_PRT) == HS_NEGOTIATE) {
7017 			OUTB (HS_PRT, HS_BUSY);
7018 			switch (cp->nego_status) {
7019 
7020 			case NS_WIDE:
7021 				/*
7022 				**      This was an answer message
7023 				*/
7024 				if (chg) {
7025 					/* Answer wasn't acceptable.  */
7026 					spi_width(starget) = 0;
7027 					ncr_setwide(np, cp, 0, 1);
7028 					OUTL_DSP (NCB_SCRIPT_PHYS (np, msg_bad));
7029 				} else {
7030 					/* Answer is ok.  */
7031 					spi_width(starget) = wide;
7032 					ncr_setwide(np, cp, wide, 1);
7033 					OUTL_DSP (NCB_SCRIPT_PHYS (np, clrack));
7034 				}
7035 				return;
7036 
7037 			case NS_SYNC:
7038 				spi_period(starget) = 0;
7039 				spi_offset(starget) = 0;
7040 				ncr_setsync(np, cp, 0, 0xe0);
7041 				break;
7042 			}
7043 		}
7044 
7045 		/*
7046 		**	It was a request, set value and
7047 		**      prepare an answer message
7048 		*/
7049 
7050 		spi_width(starget) = wide;
7051 		ncr_setwide(np, cp, wide, 1);
7052 		spi_populate_width_msg(np->msgout, wide);
7053 
7054 		np->msgin [0] = NOP;
7055 
7056 		cp->nego_status = NS_WIDE;
7057 
7058 		if (DEBUG_FLAGS & DEBUG_NEGO) {
7059 			ncr_print_msg(cp, "wide msgout", np->msgin);
7060 		}
7061 		break;
7062 
7063 /*--------------------------------------------------------------------
7064 **
7065 **	Processing of special messages
7066 **
7067 **--------------------------------------------------------------------
7068 */
7069 
7070 	case SIR_REJECT_RECEIVED:
7071 		/*-----------------------------------------------
7072 		**
7073 		**	We received a MESSAGE_REJECT.
7074 		**
7075 		**-----------------------------------------------
7076 		*/
7077 
7078 		PRINT_ADDR(cp->cmd, "MESSAGE_REJECT received (%x:%x).\n",
7079 			(unsigned)scr_to_cpu(np->lastmsg), np->msgout[0]);
7080 		break;
7081 
7082 	case SIR_REJECT_SENT:
7083 		/*-----------------------------------------------
7084 		**
7085 		**	We received an unknown message
7086 		**
7087 		**-----------------------------------------------
7088 		*/
7089 
7090 		ncr_print_msg(cp, "MESSAGE_REJECT sent for", np->msgin);
7091 		break;
7092 
7093 /*--------------------------------------------------------------------
7094 **
7095 **	Processing of special messages
7096 **
7097 **--------------------------------------------------------------------
7098 */
7099 
7100 	case SIR_IGN_RESIDUE:
7101 		/*-----------------------------------------------
7102 		**
7103 		**	We received an IGNORE RESIDUE message,
7104 		**	which couldn't be handled by the script.
7105 		**
7106 		**-----------------------------------------------
7107 		*/
7108 
7109 		PRINT_ADDR(cp->cmd, "IGNORE_WIDE_RESIDUE received, but not yet "
7110 				"implemented.\n");
7111 		break;
7112 #if 0
7113 	case SIR_MISSING_SAVE:
7114 		/*-----------------------------------------------
7115 		**
7116 		**	We received an DISCONNECT message,
7117 		**	but the datapointer wasn't saved before.
7118 		**
7119 		**-----------------------------------------------
7120 		*/
7121 
7122 		PRINT_ADDR(cp->cmd, "DISCONNECT received, but datapointer "
7123 				"not saved: data=%x save=%x goal=%x.\n",
7124 			(unsigned) INL (nc_temp),
7125 			(unsigned) scr_to_cpu(np->header.savep),
7126 			(unsigned) scr_to_cpu(np->header.goalp));
7127 		break;
7128 #endif
7129 	}
7130 
7131 out:
7132 	OUTONB_STD ();
7133 }
7134 
7135 /*==========================================================
7136 **
7137 **
7138 **	Acquire a control block
7139 **
7140 **
7141 **==========================================================
7142 */
7143 
7144 static struct ccb *ncr_get_ccb(struct ncb *np, struct scsi_cmnd *cmd)
7145 {
7146 	u_char tn = cmd->device->id;
7147 	u_char ln = cmd->device->lun;
7148 	struct tcb *tp = &np->target[tn];
7149 	struct lcb *lp = tp->lp[ln];
7150 	u_char tag = NO_TAG;
7151 	struct ccb *cp = NULL;
7152 
7153 	/*
7154 	**	Lun structure available ?
7155 	*/
7156 	if (lp) {
7157 		struct list_head *qp;
7158 		/*
7159 		**	Keep from using more tags than we can handle.
7160 		*/
7161 		if (lp->usetags && lp->busyccbs >= lp->maxnxs)
7162 			return NULL;
7163 
7164 		/*
7165 		**	Allocate a new CCB if needed.
7166 		*/
7167 		if (list_empty(&lp->free_ccbq))
7168 			ncr_alloc_ccb(np, tn, ln);
7169 
7170 		/*
7171 		**	Look for free CCB
7172 		*/
7173 		qp = ncr_list_pop(&lp->free_ccbq);
7174 		if (qp) {
7175 			cp = list_entry(qp, struct ccb, link_ccbq);
7176 			if (cp->magic) {
7177 				PRINT_ADDR(cmd, "ccb free list corrupted "
7178 						"(@%p)\n", cp);
7179 				cp = NULL;
7180 			} else {
7181 				list_add_tail(qp, &lp->wait_ccbq);
7182 				++lp->busyccbs;
7183 			}
7184 		}
7185 
7186 		/*
7187 		**	If a CCB is available,
7188 		**	Get a tag for this nexus if required.
7189 		*/
7190 		if (cp) {
7191 			if (lp->usetags)
7192 				tag = lp->cb_tags[lp->ia_tag];
7193 		}
7194 		else if (lp->actccbs > 0)
7195 			return NULL;
7196 	}
7197 
7198 	/*
7199 	**	if nothing available, take the default.
7200 	*/
7201 	if (!cp)
7202 		cp = np->ccb;
7203 
7204 	/*
7205 	**	Wait until available.
7206 	*/
7207 #if 0
7208 	while (cp->magic) {
7209 		if (flags & SCSI_NOSLEEP) break;
7210 		if (tsleep ((caddr_t)cp, PRIBIO|PCATCH, "ncr", 0))
7211 			break;
7212 	}
7213 #endif
7214 
7215 	if (cp->magic)
7216 		return NULL;
7217 
7218 	cp->magic = 1;
7219 
7220 	/*
7221 	**	Move to next available tag if tag used.
7222 	*/
7223 	if (lp) {
7224 		if (tag != NO_TAG) {
7225 			++lp->ia_tag;
7226 			if (lp->ia_tag == MAX_TAGS)
7227 				lp->ia_tag = 0;
7228 			lp->tags_umap |= (((tagmap_t) 1) << tag);
7229 		}
7230 	}
7231 
7232 	/*
7233 	**	Remember all informations needed to free this CCB.
7234 	*/
7235 	cp->tag	   = tag;
7236 	cp->target = tn;
7237 	cp->lun    = ln;
7238 
7239 	if (DEBUG_FLAGS & DEBUG_TAGS) {
7240 		PRINT_ADDR(cmd, "ccb @%p using tag %d.\n", cp, tag);
7241 	}
7242 
7243 	return cp;
7244 }
7245 
7246 /*==========================================================
7247 **
7248 **
7249 **	Release one control block
7250 **
7251 **
7252 **==========================================================
7253 */
7254 
7255 static void ncr_free_ccb (struct ncb *np, struct ccb *cp)
7256 {
7257 	struct tcb *tp = &np->target[cp->target];
7258 	struct lcb *lp = tp->lp[cp->lun];
7259 
7260 	if (DEBUG_FLAGS & DEBUG_TAGS) {
7261 		PRINT_ADDR(cp->cmd, "ccb @%p freeing tag %d.\n", cp, cp->tag);
7262 	}
7263 
7264 	/*
7265 	**	If lun control block available,
7266 	**	decrement active commands and increment credit,
7267 	**	free the tag if any and remove the JUMP for reselect.
7268 	*/
7269 	if (lp) {
7270 		if (cp->tag != NO_TAG) {
7271 			lp->cb_tags[lp->if_tag++] = cp->tag;
7272 			if (lp->if_tag == MAX_TAGS)
7273 				lp->if_tag = 0;
7274 			lp->tags_umap &= ~(((tagmap_t) 1) << cp->tag);
7275 			lp->tags_smap &= lp->tags_umap;
7276 			lp->jump_ccb[cp->tag] =
7277 				cpu_to_scr(NCB_SCRIPTH_PHYS(np, bad_i_t_l_q));
7278 		} else {
7279 			lp->jump_ccb[0] =
7280 				cpu_to_scr(NCB_SCRIPTH_PHYS(np, bad_i_t_l));
7281 		}
7282 	}
7283 
7284 	/*
7285 	**	Make this CCB available.
7286 	*/
7287 
7288 	if (lp) {
7289 		if (cp != np->ccb)
7290 			list_move(&cp->link_ccbq, &lp->free_ccbq);
7291 		--lp->busyccbs;
7292 		if (cp->queued) {
7293 			--lp->queuedccbs;
7294 		}
7295 	}
7296 	cp -> host_status = HS_IDLE;
7297 	cp -> magic = 0;
7298 	if (cp->queued) {
7299 		--np->queuedccbs;
7300 		cp->queued = 0;
7301 	}
7302 
7303 #if 0
7304 	if (cp == np->ccb)
7305 		wakeup ((caddr_t) cp);
7306 #endif
7307 }
7308 
7309 
7310 #define ncr_reg_bus_addr(r) (np->paddr + offsetof (struct ncr_reg, r))
7311 
7312 /*------------------------------------------------------------------------
7313 **	Initialize the fixed part of a CCB structure.
7314 **------------------------------------------------------------------------
7315 **------------------------------------------------------------------------
7316 */
7317 static void ncr_init_ccb(struct ncb *np, struct ccb *cp)
7318 {
7319 	ncrcmd copy_4 = np->features & FE_PFEN ? SCR_COPY(4) : SCR_COPY_F(4);
7320 
7321 	/*
7322 	**	Remember virtual and bus address of this ccb.
7323 	*/
7324 	cp->p_ccb 	   = vtobus(cp);
7325 	cp->phys.header.cp = cp;
7326 
7327 	/*
7328 	**	This allows list_del to work for the default ccb.
7329 	*/
7330 	INIT_LIST_HEAD(&cp->link_ccbq);
7331 
7332 	/*
7333 	**	Initialyze the start and restart launch script.
7334 	**
7335 	**	COPY(4) @(...p_phys), @(dsa)
7336 	**	JUMP @(sched_point)
7337 	*/
7338 	cp->start.setup_dsa[0]	 = cpu_to_scr(copy_4);
7339 	cp->start.setup_dsa[1]	 = cpu_to_scr(CCB_PHYS(cp, start.p_phys));
7340 	cp->start.setup_dsa[2]	 = cpu_to_scr(ncr_reg_bus_addr(nc_dsa));
7341 	cp->start.schedule.l_cmd = cpu_to_scr(SCR_JUMP);
7342 	cp->start.p_phys	 = cpu_to_scr(CCB_PHYS(cp, phys));
7343 
7344 	memcpy(&cp->restart, &cp->start, sizeof(cp->restart));
7345 
7346 	cp->start.schedule.l_paddr   = cpu_to_scr(NCB_SCRIPT_PHYS (np, idle));
7347 	cp->restart.schedule.l_paddr = cpu_to_scr(NCB_SCRIPTH_PHYS (np, abort));
7348 }
7349 
7350 
7351 /*------------------------------------------------------------------------
7352 **	Allocate a CCB and initialize its fixed part.
7353 **------------------------------------------------------------------------
7354 **------------------------------------------------------------------------
7355 */
7356 static void ncr_alloc_ccb(struct ncb *np, u_char tn, u_char ln)
7357 {
7358 	struct tcb *tp = &np->target[tn];
7359 	struct lcb *lp = tp->lp[ln];
7360 	struct ccb *cp = NULL;
7361 
7362 	/*
7363 	**	Allocate memory for this CCB.
7364 	*/
7365 	cp = m_calloc_dma(sizeof(struct ccb), "CCB");
7366 	if (!cp)
7367 		return;
7368 
7369 	/*
7370 	**	Count it and initialyze it.
7371 	*/
7372 	lp->actccbs++;
7373 	np->actccbs++;
7374 	memset(cp, 0, sizeof (*cp));
7375 	ncr_init_ccb(np, cp);
7376 
7377 	/*
7378 	**	Chain into wakeup list and free ccb queue and take it
7379 	**	into account for tagged commands.
7380 	*/
7381 	cp->link_ccb      = np->ccb->link_ccb;
7382 	np->ccb->link_ccb = cp;
7383 
7384 	list_add(&cp->link_ccbq, &lp->free_ccbq);
7385 }
7386 
7387 /*==========================================================
7388 **
7389 **
7390 **      Allocation of resources for Targets/Luns/Tags.
7391 **
7392 **
7393 **==========================================================
7394 */
7395 
7396 
7397 /*------------------------------------------------------------------------
7398 **	Target control block initialisation.
7399 **------------------------------------------------------------------------
7400 **	This data structure is fully initialized after a SCSI command
7401 **	has been successfully completed for this target.
7402 **	It contains a SCRIPT that is called on target reselection.
7403 **------------------------------------------------------------------------
7404 */
7405 static void ncr_init_tcb (struct ncb *np, u_char tn)
7406 {
7407 	struct tcb *tp = &np->target[tn];
7408 	ncrcmd copy_1 = np->features & FE_PFEN ? SCR_COPY(1) : SCR_COPY_F(1);
7409 	int th = tn & 3;
7410 	int i;
7411 
7412 	/*
7413 	**	Jump to next tcb if SFBR does not match this target.
7414 	**	JUMP  IF (SFBR != #target#), @(next tcb)
7415 	*/
7416 	tp->jump_tcb.l_cmd   =
7417 		cpu_to_scr((SCR_JUMP ^ IFFALSE (DATA (0x80 + tn))));
7418 	tp->jump_tcb.l_paddr = np->jump_tcb[th].l_paddr;
7419 
7420 	/*
7421 	**	Load the synchronous transfer register.
7422 	**	COPY @(tp->sval), @(sxfer)
7423 	*/
7424 	tp->getscr[0] =	cpu_to_scr(copy_1);
7425 	tp->getscr[1] = cpu_to_scr(vtobus (&tp->sval));
7426 #ifdef SCSI_NCR_BIG_ENDIAN
7427 	tp->getscr[2] = cpu_to_scr(ncr_reg_bus_addr(nc_sxfer) ^ 3);
7428 #else
7429 	tp->getscr[2] = cpu_to_scr(ncr_reg_bus_addr(nc_sxfer));
7430 #endif
7431 
7432 	/*
7433 	**	Load the timing register.
7434 	**	COPY @(tp->wval), @(scntl3)
7435 	*/
7436 	tp->getscr[3] =	cpu_to_scr(copy_1);
7437 	tp->getscr[4] = cpu_to_scr(vtobus (&tp->wval));
7438 #ifdef SCSI_NCR_BIG_ENDIAN
7439 	tp->getscr[5] = cpu_to_scr(ncr_reg_bus_addr(nc_scntl3) ^ 3);
7440 #else
7441 	tp->getscr[5] = cpu_to_scr(ncr_reg_bus_addr(nc_scntl3));
7442 #endif
7443 
7444 	/*
7445 	**	Get the IDENTIFY message and the lun.
7446 	**	CALL @script(resel_lun)
7447 	*/
7448 	tp->call_lun.l_cmd   = cpu_to_scr(SCR_CALL);
7449 	tp->call_lun.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_lun));
7450 
7451 	/*
7452 	**	Look for the lun control block of this nexus.
7453 	**	For i = 0 to 3
7454 	**		JUMP ^ IFTRUE (MASK (i, 3)), @(next_lcb)
7455 	*/
7456 	for (i = 0 ; i < 4 ; i++) {
7457 		tp->jump_lcb[i].l_cmd   =
7458 				cpu_to_scr((SCR_JUMP ^ IFTRUE (MASK (i, 3))));
7459 		tp->jump_lcb[i].l_paddr =
7460 				cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_identify));
7461 	}
7462 
7463 	/*
7464 	**	Link this target control block to the JUMP chain.
7465 	*/
7466 	np->jump_tcb[th].l_paddr = cpu_to_scr(vtobus (&tp->jump_tcb));
7467 
7468 	/*
7469 	**	These assert's should be moved at driver initialisations.
7470 	*/
7471 #ifdef SCSI_NCR_BIG_ENDIAN
7472 	BUG_ON(((offsetof(struct ncr_reg, nc_sxfer) ^
7473 		 offsetof(struct tcb    , sval    )) &3) != 3);
7474 	BUG_ON(((offsetof(struct ncr_reg, nc_scntl3) ^
7475 		 offsetof(struct tcb    , wval    )) &3) != 3);
7476 #else
7477 	BUG_ON(((offsetof(struct ncr_reg, nc_sxfer) ^
7478 		 offsetof(struct tcb    , sval    )) &3) != 0);
7479 	BUG_ON(((offsetof(struct ncr_reg, nc_scntl3) ^
7480 		 offsetof(struct tcb    , wval    )) &3) != 0);
7481 #endif
7482 }
7483 
7484 
7485 /*------------------------------------------------------------------------
7486 **	Lun control block allocation and initialization.
7487 **------------------------------------------------------------------------
7488 **	This data structure is allocated and initialized after a SCSI
7489 **	command has been successfully completed for this target/lun.
7490 **------------------------------------------------------------------------
7491 */
7492 static struct lcb *ncr_alloc_lcb (struct ncb *np, u_char tn, u_char ln)
7493 {
7494 	struct tcb *tp = &np->target[tn];
7495 	struct lcb *lp = tp->lp[ln];
7496 	ncrcmd copy_4 = np->features & FE_PFEN ? SCR_COPY(4) : SCR_COPY_F(4);
7497 	int lh = ln & 3;
7498 
7499 	/*
7500 	**	Already done, return.
7501 	*/
7502 	if (lp)
7503 		return lp;
7504 
7505 	/*
7506 	**	Allocate the lcb.
7507 	*/
7508 	lp = m_calloc_dma(sizeof(struct lcb), "LCB");
7509 	if (!lp)
7510 		goto fail;
7511 	memset(lp, 0, sizeof(*lp));
7512 	tp->lp[ln] = lp;
7513 
7514 	/*
7515 	**	Initialize the target control block if not yet.
7516 	*/
7517 	if (!tp->jump_tcb.l_cmd)
7518 		ncr_init_tcb(np, tn);
7519 
7520 	/*
7521 	**	Initialize the CCB queue headers.
7522 	*/
7523 	INIT_LIST_HEAD(&lp->free_ccbq);
7524 	INIT_LIST_HEAD(&lp->busy_ccbq);
7525 	INIT_LIST_HEAD(&lp->wait_ccbq);
7526 	INIT_LIST_HEAD(&lp->skip_ccbq);
7527 
7528 	/*
7529 	**	Set max CCBs to 1 and use the default 1 entry
7530 	**	jump table by default.
7531 	*/
7532 	lp->maxnxs	= 1;
7533 	lp->jump_ccb	= &lp->jump_ccb_0;
7534 	lp->p_jump_ccb	= cpu_to_scr(vtobus(lp->jump_ccb));
7535 
7536 	/*
7537 	**	Initilialyze the reselect script:
7538 	**
7539 	**	Jump to next lcb if SFBR does not match this lun.
7540 	**	Load TEMP with the CCB direct jump table bus address.
7541 	**	Get the SIMPLE TAG message and the tag.
7542 	**
7543 	**	JUMP  IF (SFBR != #lun#), @(next lcb)
7544 	**	COPY @(lp->p_jump_ccb),	  @(temp)
7545 	**	JUMP @script(resel_notag)
7546 	*/
7547 	lp->jump_lcb.l_cmd   =
7548 		cpu_to_scr((SCR_JUMP ^ IFFALSE (MASK (0x80+ln, 0xff))));
7549 	lp->jump_lcb.l_paddr = tp->jump_lcb[lh].l_paddr;
7550 
7551 	lp->load_jump_ccb[0] = cpu_to_scr(copy_4);
7552 	lp->load_jump_ccb[1] = cpu_to_scr(vtobus (&lp->p_jump_ccb));
7553 	lp->load_jump_ccb[2] = cpu_to_scr(ncr_reg_bus_addr(nc_temp));
7554 
7555 	lp->jump_tag.l_cmd   = cpu_to_scr(SCR_JUMP);
7556 	lp->jump_tag.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_notag));
7557 
7558 	/*
7559 	**	Link this lun control block to the JUMP chain.
7560 	*/
7561 	tp->jump_lcb[lh].l_paddr = cpu_to_scr(vtobus (&lp->jump_lcb));
7562 
7563 	/*
7564 	**	Initialize command queuing control.
7565 	*/
7566 	lp->busyccbs	= 1;
7567 	lp->queuedccbs	= 1;
7568 	lp->queuedepth	= 1;
7569 fail:
7570 	return lp;
7571 }
7572 
7573 
7574 /*------------------------------------------------------------------------
7575 **	Lun control block setup on INQUIRY data received.
7576 **------------------------------------------------------------------------
7577 **	We only support WIDE, SYNC for targets and CMDQ for logical units.
7578 **	This setup is done on each INQUIRY since we are expecting user
7579 **	will play with CHANGE DEFINITION commands. :-)
7580 **------------------------------------------------------------------------
7581 */
7582 static struct lcb *ncr_setup_lcb (struct ncb *np, struct scsi_device *sdev)
7583 {
7584 	unsigned char tn = sdev->id, ln = sdev->lun;
7585 	struct tcb *tp = &np->target[tn];
7586 	struct lcb *lp = tp->lp[ln];
7587 
7588 	/* If no lcb, try to allocate it.  */
7589 	if (!lp && !(lp = ncr_alloc_lcb(np, tn, ln)))
7590 		goto fail;
7591 
7592 	/*
7593 	**	If unit supports tagged commands, allocate the
7594 	**	CCB JUMP table if not yet.
7595 	*/
7596 	if (sdev->tagged_supported && lp->jump_ccb == &lp->jump_ccb_0) {
7597 		int i;
7598 		lp->jump_ccb = m_calloc_dma(256, "JUMP_CCB");
7599 		if (!lp->jump_ccb) {
7600 			lp->jump_ccb = &lp->jump_ccb_0;
7601 			goto fail;
7602 		}
7603 		lp->p_jump_ccb = cpu_to_scr(vtobus(lp->jump_ccb));
7604 		for (i = 0 ; i < 64 ; i++)
7605 			lp->jump_ccb[i] =
7606 				cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_i_t_l_q));
7607 		for (i = 0 ; i < MAX_TAGS ; i++)
7608 			lp->cb_tags[i] = i;
7609 		lp->maxnxs = MAX_TAGS;
7610 		lp->tags_stime = jiffies + 3*HZ;
7611 		ncr_setup_tags (np, sdev);
7612 	}
7613 
7614 
7615 fail:
7616 	return lp;
7617 }
7618 
7619 /*==========================================================
7620 **
7621 **
7622 **	Build Scatter Gather Block
7623 **
7624 **
7625 **==========================================================
7626 **
7627 **	The transfer area may be scattered among
7628 **	several non adjacent physical pages.
7629 **
7630 **	We may use MAX_SCATTER blocks.
7631 **
7632 **----------------------------------------------------------
7633 */
7634 
7635 /*
7636 **	We try to reduce the number of interrupts caused
7637 **	by unexpected phase changes due to disconnects.
7638 **	A typical harddisk may disconnect before ANY block.
7639 **	If we wanted to avoid unexpected phase changes at all
7640 **	we had to use a break point every 512 bytes.
7641 **	Of course the number of scatter/gather blocks is
7642 **	limited.
7643 **	Under Linux, the scatter/gatter blocks are provided by
7644 **	the generic driver. We just have to copy addresses and
7645 **	sizes to the data segment array.
7646 */
7647 
7648 static int ncr_scatter(struct ncb *np, struct ccb *cp, struct scsi_cmnd *cmd)
7649 {
7650 	int segment	= 0;
7651 	int use_sg	= scsi_sg_count(cmd);
7652 
7653 	cp->data_len	= 0;
7654 
7655 	use_sg = map_scsi_sg_data(np, cmd);
7656 	if (use_sg > 0) {
7657 		struct scatterlist *sg;
7658 		struct scr_tblmove *data;
7659 
7660 		if (use_sg > MAX_SCATTER) {
7661 			unmap_scsi_data(np, cmd);
7662 			return -1;
7663 		}
7664 
7665 		data = &cp->phys.data[MAX_SCATTER - use_sg];
7666 
7667 		scsi_for_each_sg(cmd, sg, use_sg, segment) {
7668 			dma_addr_t baddr = sg_dma_address(sg);
7669 			unsigned int len = sg_dma_len(sg);
7670 
7671 			ncr_build_sge(np, &data[segment], baddr, len);
7672 			cp->data_len += len;
7673 		}
7674 	} else
7675 		segment = -2;
7676 
7677 	return segment;
7678 }
7679 
7680 /*==========================================================
7681 **
7682 **
7683 **	Test the bus snoop logic :-(
7684 **
7685 **	Has to be called with interrupts disabled.
7686 **
7687 **
7688 **==========================================================
7689 */
7690 
7691 static int __init ncr_regtest (struct ncb* np)
7692 {
7693 	register volatile u32 data;
7694 	/*
7695 	**	ncr registers may NOT be cached.
7696 	**	write 0xffffffff to a read only register area,
7697 	**	and try to read it back.
7698 	*/
7699 	data = 0xffffffff;
7700 	OUTL_OFF(offsetof(struct ncr_reg, nc_dstat), data);
7701 	data = INL_OFF(offsetof(struct ncr_reg, nc_dstat));
7702 #if 1
7703 	if (data == 0xffffffff) {
7704 #else
7705 	if ((data & 0xe2f0fffd) != 0x02000080) {
7706 #endif
7707 		printk ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
7708 			(unsigned) data);
7709 		return (0x10);
7710 	}
7711 	return (0);
7712 }
7713 
7714 static int __init ncr_snooptest (struct ncb* np)
7715 {
7716 	u32	ncr_rd, ncr_wr, ncr_bk, host_rd, host_wr, pc;
7717 	int	i, err=0;
7718 	if (np->reg) {
7719 		err |= ncr_regtest (np);
7720 		if (err)
7721 			return (err);
7722 	}
7723 
7724 	/* init */
7725 	pc  = NCB_SCRIPTH_PHYS (np, snooptest);
7726 	host_wr = 1;
7727 	ncr_wr  = 2;
7728 	/*
7729 	**	Set memory and register.
7730 	*/
7731 	np->ncr_cache = cpu_to_scr(host_wr);
7732 	OUTL (nc_temp, ncr_wr);
7733 	/*
7734 	**	Start script (exchange values)
7735 	*/
7736 	OUTL_DSP (pc);
7737 	/*
7738 	**	Wait 'til done (with timeout)
7739 	*/
7740 	for (i=0; i<NCR_SNOOP_TIMEOUT; i++)
7741 		if (INB(nc_istat) & (INTF|SIP|DIP))
7742 			break;
7743 	/*
7744 	**	Save termination position.
7745 	*/
7746 	pc = INL (nc_dsp);
7747 	/*
7748 	**	Read memory and register.
7749 	*/
7750 	host_rd = scr_to_cpu(np->ncr_cache);
7751 	ncr_rd  = INL (nc_scratcha);
7752 	ncr_bk  = INL (nc_temp);
7753 	/*
7754 	**	Reset ncr chip
7755 	*/
7756 	ncr_chip_reset(np, 100);
7757 	/*
7758 	**	check for timeout
7759 	*/
7760 	if (i>=NCR_SNOOP_TIMEOUT) {
7761 		printk ("CACHE TEST FAILED: timeout.\n");
7762 		return (0x20);
7763 	}
7764 	/*
7765 	**	Check termination position.
7766 	*/
7767 	if (pc != NCB_SCRIPTH_PHYS (np, snoopend)+8) {
7768 		printk ("CACHE TEST FAILED: script execution failed.\n");
7769 		printk ("start=%08lx, pc=%08lx, end=%08lx\n",
7770 			(u_long) NCB_SCRIPTH_PHYS (np, snooptest), (u_long) pc,
7771 			(u_long) NCB_SCRIPTH_PHYS (np, snoopend) +8);
7772 		return (0x40);
7773 	}
7774 	/*
7775 	**	Show results.
7776 	*/
7777 	if (host_wr != ncr_rd) {
7778 		printk ("CACHE TEST FAILED: host wrote %d, ncr read %d.\n",
7779 			(int) host_wr, (int) ncr_rd);
7780 		err |= 1;
7781 	}
7782 	if (host_rd != ncr_wr) {
7783 		printk ("CACHE TEST FAILED: ncr wrote %d, host read %d.\n",
7784 			(int) ncr_wr, (int) host_rd);
7785 		err |= 2;
7786 	}
7787 	if (ncr_bk != ncr_wr) {
7788 		printk ("CACHE TEST FAILED: ncr wrote %d, read back %d.\n",
7789 			(int) ncr_wr, (int) ncr_bk);
7790 		err |= 4;
7791 	}
7792 	return (err);
7793 }
7794 
7795 /*==========================================================
7796 **
7797 **	Determine the ncr's clock frequency.
7798 **	This is essential for the negotiation
7799 **	of the synchronous transfer rate.
7800 **
7801 **==========================================================
7802 **
7803 **	Note: we have to return the correct value.
7804 **	THERE IS NO SAFE DEFAULT VALUE.
7805 **
7806 **	Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
7807 **	53C860 and 53C875 rev. 1 support fast20 transfers but
7808 **	do not have a clock doubler and so are provided with a
7809 **	80 MHz clock. All other fast20 boards incorporate a doubler
7810 **	and so should be delivered with a 40 MHz clock.
7811 **	The future fast40 chips (895/895) use a 40 Mhz base clock
7812 **	and provide a clock quadrupler (160 Mhz). The code below
7813 **	tries to deal as cleverly as possible with all this stuff.
7814 **
7815 **----------------------------------------------------------
7816 */
7817 
7818 /*
7819  *	Select NCR SCSI clock frequency
7820  */
7821 static void ncr_selectclock(struct ncb *np, u_char scntl3)
7822 {
7823 	if (np->multiplier < 2) {
7824 		OUTB(nc_scntl3,	scntl3);
7825 		return;
7826 	}
7827 
7828 	if (bootverbose >= 2)
7829 		printk ("%s: enabling clock multiplier\n", ncr_name(np));
7830 
7831 	OUTB(nc_stest1, DBLEN);	   /* Enable clock multiplier		  */
7832 	if (np->multiplier > 2) {  /* Poll bit 5 of stest4 for quadrupler */
7833 		int i = 20;
7834 		while (!(INB(nc_stest4) & LCKFRQ) && --i > 0)
7835 			udelay(20);
7836 		if (!i)
7837 			printk("%s: the chip cannot lock the frequency\n", ncr_name(np));
7838 	} else			/* Wait 20 micro-seconds for doubler	*/
7839 		udelay(20);
7840 	OUTB(nc_stest3, HSC);		/* Halt the scsi clock		*/
7841 	OUTB(nc_scntl3,	scntl3);
7842 	OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier	*/
7843 	OUTB(nc_stest3, 0x00);		/* Restart scsi clock 		*/
7844 }
7845 
7846 
7847 /*
7848  *	calculate NCR SCSI clock frequency (in KHz)
7849  */
7850 static unsigned __init ncrgetfreq (struct ncb *np, int gen)
7851 {
7852 	unsigned ms = 0;
7853 	char count = 0;
7854 
7855 	/*
7856 	 * Measure GEN timer delay in order
7857 	 * to calculate SCSI clock frequency
7858 	 *
7859 	 * This code will never execute too
7860 	 * many loop iterations (if DELAY is
7861 	 * reasonably correct). It could get
7862 	 * too low a delay (too high a freq.)
7863 	 * if the CPU is slow executing the
7864 	 * loop for some reason (an NMI, for
7865 	 * example). For this reason we will
7866 	 * if multiple measurements are to be
7867 	 * performed trust the higher delay
7868 	 * (lower frequency returned).
7869 	 */
7870 	OUTB (nc_stest1, 0);	/* make sure clock doubler is OFF */
7871 	OUTW (nc_sien , 0);	/* mask all scsi interrupts */
7872 	(void) INW (nc_sist);	/* clear pending scsi interrupt */
7873 	OUTB (nc_dien , 0);	/* mask all dma interrupts */
7874 	(void) INW (nc_sist);	/* another one, just to be sure :) */
7875 	OUTB (nc_scntl3, 4);	/* set pre-scaler to divide by 3 */
7876 	OUTB (nc_stime1, 0);	/* disable general purpose timer */
7877 	OUTB (nc_stime1, gen);	/* set to nominal delay of 1<<gen * 125us */
7878 	while (!(INW(nc_sist) & GEN) && ms++ < 100000) {
7879 		for (count = 0; count < 10; count ++)
7880 			udelay(100);	/* count ms */
7881 	}
7882 	OUTB (nc_stime1, 0);	/* disable general purpose timer */
7883  	/*
7884  	 * set prescaler to divide by whatever 0 means
7885  	 * 0 ought to choose divide by 2, but appears
7886  	 * to set divide by 3.5 mode in my 53c810 ...
7887  	 */
7888  	OUTB (nc_scntl3, 0);
7889 
7890 	if (bootverbose >= 2)
7891 		printk ("%s: Delay (GEN=%d): %u msec\n", ncr_name(np), gen, ms);
7892   	/*
7893  	 * adjust for prescaler, and convert into KHz
7894   	 */
7895 	return ms ? ((1 << gen) * 4340) / ms : 0;
7896 }
7897 
7898 /*
7899  *	Get/probe NCR SCSI clock frequency
7900  */
7901 static void __init ncr_getclock (struct ncb *np, int mult)
7902 {
7903 	unsigned char scntl3 = INB(nc_scntl3);
7904 	unsigned char stest1 = INB(nc_stest1);
7905 	unsigned f1;
7906 
7907 	np->multiplier = 1;
7908 	f1 = 40000;
7909 
7910 	/*
7911 	**	True with 875 or 895 with clock multiplier selected
7912 	*/
7913 	if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
7914 		if (bootverbose >= 2)
7915 			printk ("%s: clock multiplier found\n", ncr_name(np));
7916 		np->multiplier = mult;
7917 	}
7918 
7919 	/*
7920 	**	If multiplier not found or scntl3 not 7,5,3,
7921 	**	reset chip and get frequency from general purpose timer.
7922 	**	Otherwise trust scntl3 BIOS setting.
7923 	*/
7924 	if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
7925 		unsigned f2;
7926 
7927 		ncr_chip_reset(np, 5);
7928 
7929 		(void) ncrgetfreq (np, 11);	/* throw away first result */
7930 		f1 = ncrgetfreq (np, 11);
7931 		f2 = ncrgetfreq (np, 11);
7932 
7933 		if(bootverbose)
7934 			printk ("%s: NCR clock is %uKHz, %uKHz\n", ncr_name(np), f1, f2);
7935 
7936 		if (f1 > f2) f1 = f2;		/* trust lower result	*/
7937 
7938 		if	(f1 <	45000)		f1 =  40000;
7939 		else if (f1 <	55000)		f1 =  50000;
7940 		else				f1 =  80000;
7941 
7942 		if (f1 < 80000 && mult > 1) {
7943 			if (bootverbose >= 2)
7944 				printk ("%s: clock multiplier assumed\n", ncr_name(np));
7945 			np->multiplier	= mult;
7946 		}
7947 	} else {
7948 		if	((scntl3 & 7) == 3)	f1 =  40000;
7949 		else if	((scntl3 & 7) == 5)	f1 =  80000;
7950 		else 				f1 = 160000;
7951 
7952 		f1 /= np->multiplier;
7953 	}
7954 
7955 	/*
7956 	**	Compute controller synchronous parameters.
7957 	*/
7958 	f1		*= np->multiplier;
7959 	np->clock_khz	= f1;
7960 }
7961 
7962 /*===================== LINUX ENTRY POINTS SECTION ==========================*/
7963 
7964 static int ncr53c8xx_slave_alloc(struct scsi_device *device)
7965 {
7966 	struct Scsi_Host *host = device->host;
7967 	struct ncb *np = ((struct host_data *) host->hostdata)->ncb;
7968 	struct tcb *tp = &np->target[device->id];
7969 	tp->starget = device->sdev_target;
7970 
7971 	return 0;
7972 }
7973 
7974 static int ncr53c8xx_slave_configure(struct scsi_device *device)
7975 {
7976 	struct Scsi_Host *host = device->host;
7977 	struct ncb *np = ((struct host_data *) host->hostdata)->ncb;
7978 	struct tcb *tp = &np->target[device->id];
7979 	struct lcb *lp = tp->lp[device->lun];
7980 	int numtags, depth_to_use;
7981 
7982 	ncr_setup_lcb(np, device);
7983 
7984 	/*
7985 	**	Select queue depth from driver setup.
7986 	**	Donnot use more than configured by user.
7987 	**	Use at least 2.
7988 	**	Donnot use more than our maximum.
7989 	*/
7990 	numtags = device_queue_depth(np->unit, device->id, device->lun);
7991 	if (numtags > tp->usrtags)
7992 		numtags = tp->usrtags;
7993 	if (!device->tagged_supported)
7994 		numtags = 1;
7995 	depth_to_use = numtags;
7996 	if (depth_to_use < 2)
7997 		depth_to_use = 2;
7998 	if (depth_to_use > MAX_TAGS)
7999 		depth_to_use = MAX_TAGS;
8000 
8001 	scsi_change_queue_depth(device, depth_to_use);
8002 
8003 	/*
8004 	**	Since the queue depth is not tunable under Linux,
8005 	**	we need to know this value in order not to
8006 	**	announce stupid things to user.
8007 	**
8008 	**	XXX(hch): As of Linux 2.6 it certainly _is_ tunable..
8009 	**		  In fact we just tuned it, or did I miss
8010 	**		  something important? :)
8011 	*/
8012 	if (lp) {
8013 		lp->numtags = lp->maxtags = numtags;
8014 		lp->scdev_depth = depth_to_use;
8015 	}
8016 	ncr_setup_tags (np, device);
8017 
8018 #ifdef DEBUG_NCR53C8XX
8019 	printk("ncr53c8xx_select_queue_depth: host=%d, id=%d, lun=%d, depth=%d\n",
8020 	       np->unit, device->id, device->lun, depth_to_use);
8021 #endif
8022 
8023 	if (spi_support_sync(device->sdev_target) &&
8024 	    !spi_initial_dv(device->sdev_target))
8025 		spi_dv_device(device);
8026 	return 0;
8027 }
8028 
8029 static int ncr53c8xx_queue_command_lck (struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *))
8030 {
8031      struct ncb *np = ((struct host_data *) cmd->device->host->hostdata)->ncb;
8032      unsigned long flags;
8033      int sts;
8034 
8035 #ifdef DEBUG_NCR53C8XX
8036 printk("ncr53c8xx_queue_command\n");
8037 #endif
8038 
8039      cmd->scsi_done     = done;
8040      cmd->host_scribble = NULL;
8041      cmd->__data_mapped = 0;
8042      cmd->__data_mapping = 0;
8043 
8044      spin_lock_irqsave(&np->smp_lock, flags);
8045 
8046      if ((sts = ncr_queue_command(np, cmd)) != DID_OK) {
8047 	     set_host_byte(cmd, sts);
8048 #ifdef DEBUG_NCR53C8XX
8049 printk("ncr53c8xx : command not queued - result=%d\n", sts);
8050 #endif
8051      }
8052 #ifdef DEBUG_NCR53C8XX
8053      else
8054 printk("ncr53c8xx : command successfully queued\n");
8055 #endif
8056 
8057      spin_unlock_irqrestore(&np->smp_lock, flags);
8058 
8059      if (sts != DID_OK) {
8060           unmap_scsi_data(np, cmd);
8061           done(cmd);
8062 	  sts = 0;
8063      }
8064 
8065      return sts;
8066 }
8067 
8068 static DEF_SCSI_QCMD(ncr53c8xx_queue_command)
8069 
8070 irqreturn_t ncr53c8xx_intr(int irq, void *dev_id)
8071 {
8072      unsigned long flags;
8073      struct Scsi_Host *shost = (struct Scsi_Host *)dev_id;
8074      struct host_data *host_data = (struct host_data *)shost->hostdata;
8075      struct ncb *np = host_data->ncb;
8076      struct scsi_cmnd *done_list;
8077 
8078 #ifdef DEBUG_NCR53C8XX
8079      printk("ncr53c8xx : interrupt received\n");
8080 #endif
8081 
8082      if (DEBUG_FLAGS & DEBUG_TINY) printk ("[");
8083 
8084      spin_lock_irqsave(&np->smp_lock, flags);
8085      ncr_exception(np);
8086      done_list     = np->done_list;
8087      np->done_list = NULL;
8088      spin_unlock_irqrestore(&np->smp_lock, flags);
8089 
8090      if (DEBUG_FLAGS & DEBUG_TINY) printk ("]\n");
8091 
8092      if (done_list)
8093 	     ncr_flush_done_cmds(done_list);
8094      return IRQ_HANDLED;
8095 }
8096 
8097 static void ncr53c8xx_timeout(struct timer_list *t)
8098 {
8099 	struct ncb *np = from_timer(np, t, timer);
8100 	unsigned long flags;
8101 	struct scsi_cmnd *done_list;
8102 
8103 	spin_lock_irqsave(&np->smp_lock, flags);
8104 	ncr_timeout(np);
8105 	done_list     = np->done_list;
8106 	np->done_list = NULL;
8107 	spin_unlock_irqrestore(&np->smp_lock, flags);
8108 
8109 	if (done_list)
8110 		ncr_flush_done_cmds(done_list);
8111 }
8112 
8113 static int ncr53c8xx_bus_reset(struct scsi_cmnd *cmd)
8114 {
8115 	struct ncb *np = ((struct host_data *) cmd->device->host->hostdata)->ncb;
8116 	int sts;
8117 	unsigned long flags;
8118 	struct scsi_cmnd *done_list;
8119 
8120 	/*
8121 	 * If the mid-level driver told us reset is synchronous, it seems
8122 	 * that we must call the done() callback for the involved command,
8123 	 * even if this command was not queued to the low-level driver,
8124 	 * before returning SUCCESS.
8125 	 */
8126 
8127 	spin_lock_irqsave(&np->smp_lock, flags);
8128 	sts = ncr_reset_bus(np, cmd, 1);
8129 
8130 	done_list     = np->done_list;
8131 	np->done_list = NULL;
8132 	spin_unlock_irqrestore(&np->smp_lock, flags);
8133 
8134 	ncr_flush_done_cmds(done_list);
8135 
8136 	return sts;
8137 }
8138 
8139 #if 0 /* unused and broken */
8140 static int ncr53c8xx_abort(struct scsi_cmnd *cmd)
8141 {
8142 	struct ncb *np = ((struct host_data *) cmd->device->host->hostdata)->ncb;
8143 	int sts;
8144 	unsigned long flags;
8145 	struct scsi_cmnd *done_list;
8146 
8147 	printk("ncr53c8xx_abort\n");
8148 
8149 	NCR_LOCK_NCB(np, flags);
8150 
8151 	sts = ncr_abort_command(np, cmd);
8152 out:
8153 	done_list     = np->done_list;
8154 	np->done_list = NULL;
8155 	NCR_UNLOCK_NCB(np, flags);
8156 
8157 	ncr_flush_done_cmds(done_list);
8158 
8159 	return sts;
8160 }
8161 #endif
8162 
8163 
8164 /*
8165 **	Scsi command waiting list management.
8166 **
8167 **	It may happen that we cannot insert a scsi command into the start queue,
8168 **	in the following circumstances.
8169 ** 		Too few preallocated ccb(s),
8170 **		maxtags < cmd_per_lun of the Linux host control block,
8171 **		etc...
8172 **	Such scsi commands are inserted into a waiting list.
8173 **	When a scsi command complete, we try to requeue the commands of the
8174 **	waiting list.
8175 */
8176 
8177 #define next_wcmd host_scribble
8178 
8179 static void insert_into_waiting_list(struct ncb *np, struct scsi_cmnd *cmd)
8180 {
8181 	struct scsi_cmnd *wcmd;
8182 
8183 #ifdef DEBUG_WAITING_LIST
8184 	printk("%s: cmd %lx inserted into waiting list\n", ncr_name(np), (u_long) cmd);
8185 #endif
8186 	cmd->next_wcmd = NULL;
8187 	if (!(wcmd = np->waiting_list)) np->waiting_list = cmd;
8188 	else {
8189 		while (wcmd->next_wcmd)
8190 			wcmd = (struct scsi_cmnd *) wcmd->next_wcmd;
8191 		wcmd->next_wcmd = (char *) cmd;
8192 	}
8193 }
8194 
8195 static struct scsi_cmnd *retrieve_from_waiting_list(int to_remove, struct ncb *np, struct scsi_cmnd *cmd)
8196 {
8197 	struct scsi_cmnd **pcmd = &np->waiting_list;
8198 
8199 	while (*pcmd) {
8200 		if (cmd == *pcmd) {
8201 			if (to_remove) {
8202 				*pcmd = (struct scsi_cmnd *) cmd->next_wcmd;
8203 				cmd->next_wcmd = NULL;
8204 			}
8205 #ifdef DEBUG_WAITING_LIST
8206 	printk("%s: cmd %lx retrieved from waiting list\n", ncr_name(np), (u_long) cmd);
8207 #endif
8208 			return cmd;
8209 		}
8210 		pcmd = (struct scsi_cmnd **) &(*pcmd)->next_wcmd;
8211 	}
8212 	return NULL;
8213 }
8214 
8215 static void process_waiting_list(struct ncb *np, int sts)
8216 {
8217 	struct scsi_cmnd *waiting_list, *wcmd;
8218 
8219 	waiting_list = np->waiting_list;
8220 	np->waiting_list = NULL;
8221 
8222 #ifdef DEBUG_WAITING_LIST
8223 	if (waiting_list) printk("%s: waiting_list=%lx processing sts=%d\n", ncr_name(np), (u_long) waiting_list, sts);
8224 #endif
8225 	while ((wcmd = waiting_list) != NULL) {
8226 		waiting_list = (struct scsi_cmnd *) wcmd->next_wcmd;
8227 		wcmd->next_wcmd = NULL;
8228 		if (sts == DID_OK) {
8229 #ifdef DEBUG_WAITING_LIST
8230 	printk("%s: cmd %lx trying to requeue\n", ncr_name(np), (u_long) wcmd);
8231 #endif
8232 			sts = ncr_queue_command(np, wcmd);
8233 		}
8234 		if (sts != DID_OK) {
8235 #ifdef DEBUG_WAITING_LIST
8236 	printk("%s: cmd %lx done forced sts=%d\n", ncr_name(np), (u_long) wcmd, sts);
8237 #endif
8238 			set_host_byte(wcmd, sts);
8239 			ncr_queue_done_cmd(np, wcmd);
8240 		}
8241 	}
8242 }
8243 
8244 #undef next_wcmd
8245 
8246 static ssize_t show_ncr53c8xx_revision(struct device *dev,
8247 				       struct device_attribute *attr, char *buf)
8248 {
8249 	struct Scsi_Host *host = class_to_shost(dev);
8250 	struct host_data *host_data = (struct host_data *)host->hostdata;
8251 
8252 	return snprintf(buf, 20, "0x%x\n", host_data->ncb->revision_id);
8253 }
8254 
8255 static struct device_attribute ncr53c8xx_revision_attr = {
8256 	.attr	= { .name = "revision", .mode = S_IRUGO, },
8257 	.show	= show_ncr53c8xx_revision,
8258 };
8259 
8260 static struct device_attribute *ncr53c8xx_host_attrs[] = {
8261 	&ncr53c8xx_revision_attr,
8262 	NULL
8263 };
8264 
8265 /*==========================================================
8266 **
8267 **	Boot command line.
8268 **
8269 **==========================================================
8270 */
8271 #ifdef	MODULE
8272 char *ncr53c8xx;	/* command line passed by insmod */
8273 module_param(ncr53c8xx, charp, 0);
8274 #endif
8275 
8276 #ifndef MODULE
8277 static int __init ncr53c8xx_setup(char *str)
8278 {
8279 	return sym53c8xx__setup(str);
8280 }
8281 
8282 __setup("ncr53c8xx=", ncr53c8xx_setup);
8283 #endif
8284 
8285 
8286 /*
8287  *	Host attach and initialisations.
8288  *
8289  *	Allocate host data and ncb structure.
8290  *	Request IO region and remap MMIO region.
8291  *	Do chip initialization.
8292  *	If all is OK, install interrupt handling and
8293  *	start the timer daemon.
8294  */
8295 struct Scsi_Host * __init ncr_attach(struct scsi_host_template *tpnt,
8296 					int unit, struct ncr_device *device)
8297 {
8298 	struct host_data *host_data;
8299 	struct ncb *np = NULL;
8300 	struct Scsi_Host *instance = NULL;
8301 	u_long flags = 0;
8302 	int i;
8303 
8304 	if (!tpnt->name)
8305 		tpnt->name	= SCSI_NCR_DRIVER_NAME;
8306 	if (!tpnt->shost_attrs)
8307 		tpnt->shost_attrs = ncr53c8xx_host_attrs;
8308 
8309 	tpnt->queuecommand	= ncr53c8xx_queue_command;
8310 	tpnt->slave_configure	= ncr53c8xx_slave_configure;
8311 	tpnt->slave_alloc	= ncr53c8xx_slave_alloc;
8312 	tpnt->eh_bus_reset_handler = ncr53c8xx_bus_reset;
8313 	tpnt->can_queue		= SCSI_NCR_CAN_QUEUE;
8314 	tpnt->this_id		= 7;
8315 	tpnt->sg_tablesize	= SCSI_NCR_SG_TABLESIZE;
8316 	tpnt->cmd_per_lun	= SCSI_NCR_CMD_PER_LUN;
8317 
8318 	if (device->differential)
8319 		driver_setup.diff_support = device->differential;
8320 
8321 	printk(KERN_INFO "ncr53c720-%d: rev 0x%x irq %d\n",
8322 		unit, device->chip.revision_id, device->slot.irq);
8323 
8324 	instance = scsi_host_alloc(tpnt, sizeof(*host_data));
8325 	if (!instance)
8326 	        goto attach_error;
8327 	host_data = (struct host_data *) instance->hostdata;
8328 
8329 	np = __m_calloc_dma(device->dev, sizeof(struct ncb), "NCB");
8330 	if (!np)
8331 		goto attach_error;
8332 	spin_lock_init(&np->smp_lock);
8333 	np->dev = device->dev;
8334 	np->p_ncb = vtobus(np);
8335 	host_data->ncb = np;
8336 
8337 	np->ccb = m_calloc_dma(sizeof(struct ccb), "CCB");
8338 	if (!np->ccb)
8339 		goto attach_error;
8340 
8341 	/* Store input information in the host data structure.  */
8342 	np->unit	= unit;
8343 	np->verbose	= driver_setup.verbose;
8344 	sprintf(np->inst_name, "ncr53c720-%d", np->unit);
8345 	np->revision_id	= device->chip.revision_id;
8346 	np->features	= device->chip.features;
8347 	np->clock_divn	= device->chip.nr_divisor;
8348 	np->maxoffs	= device->chip.offset_max;
8349 	np->maxburst	= device->chip.burst_max;
8350 	np->myaddr	= device->host_id;
8351 
8352 	/* Allocate SCRIPTS areas.  */
8353 	np->script0 = m_calloc_dma(sizeof(struct script), "SCRIPT");
8354 	if (!np->script0)
8355 		goto attach_error;
8356 	np->scripth0 = m_calloc_dma(sizeof(struct scripth), "SCRIPTH");
8357 	if (!np->scripth0)
8358 		goto attach_error;
8359 
8360 	timer_setup(&np->timer, ncr53c8xx_timeout, 0);
8361 
8362 	/* Try to map the controller chip to virtual and physical memory. */
8363 
8364 	np->paddr	= device->slot.base;
8365 	np->paddr2	= (np->features & FE_RAM) ? device->slot.base_2 : 0;
8366 
8367 	if (device->slot.base_v)
8368 		np->vaddr = device->slot.base_v;
8369 	else
8370 		np->vaddr = ioremap(device->slot.base_c, 128);
8371 
8372 	if (!np->vaddr) {
8373 		printk(KERN_ERR
8374 			"%s: can't map memory mapped IO region\n",ncr_name(np));
8375 		goto attach_error;
8376 	} else {
8377 		if (bootverbose > 1)
8378 			printk(KERN_INFO
8379 				"%s: using memory mapped IO at virtual address 0x%lx\n", ncr_name(np), (u_long) np->vaddr);
8380 	}
8381 
8382 	/* Make the controller's registers available.  Now the INB INW INL
8383 	 * OUTB OUTW OUTL macros can be used safely.
8384 	 */
8385 
8386 	np->reg = (struct ncr_reg __iomem *)np->vaddr;
8387 
8388 	/* Do chip dependent initialization.  */
8389 	ncr_prepare_setting(np);
8390 
8391 	if (np->paddr2 && sizeof(struct script) > 4096) {
8392 		np->paddr2 = 0;
8393 		printk(KERN_WARNING "%s: script too large, NOT using on chip RAM.\n",
8394 			ncr_name(np));
8395 	}
8396 
8397 	instance->max_channel	= 0;
8398 	instance->this_id       = np->myaddr;
8399 	instance->max_id	= np->maxwide ? 16 : 8;
8400 	instance->max_lun	= SCSI_NCR_MAX_LUN;
8401 	instance->base		= (unsigned long) np->reg;
8402 	instance->irq		= device->slot.irq;
8403 	instance->unique_id	= device->slot.base;
8404 	instance->dma_channel	= 0;
8405 	instance->cmd_per_lun	= MAX_TAGS;
8406 	instance->can_queue	= (MAX_START-4);
8407 	/* This can happen if you forget to call ncr53c8xx_init from
8408 	 * your module_init */
8409 	BUG_ON(!ncr53c8xx_transport_template);
8410 	instance->transportt	= ncr53c8xx_transport_template;
8411 
8412 	/* Patch script to physical addresses */
8413 	ncr_script_fill(&script0, &scripth0);
8414 
8415 	np->scripth	= np->scripth0;
8416 	np->p_scripth	= vtobus(np->scripth);
8417 	np->p_script	= (np->paddr2) ?  np->paddr2 : vtobus(np->script0);
8418 
8419 	ncr_script_copy_and_bind(np, (ncrcmd *) &script0,
8420 			(ncrcmd *) np->script0, sizeof(struct script));
8421 	ncr_script_copy_and_bind(np, (ncrcmd *) &scripth0,
8422 			(ncrcmd *) np->scripth0, sizeof(struct scripth));
8423 	np->ccb->p_ccb	= vtobus (np->ccb);
8424 
8425 	/* Patch the script for LED support.  */
8426 
8427 	if (np->features & FE_LED0) {
8428 		np->script0->idle[0]  =
8429 				cpu_to_scr(SCR_REG_REG(gpreg, SCR_OR,  0x01));
8430 		np->script0->reselected[0] =
8431 				cpu_to_scr(SCR_REG_REG(gpreg, SCR_AND, 0xfe));
8432 		np->script0->start[0] =
8433 				cpu_to_scr(SCR_REG_REG(gpreg, SCR_AND, 0xfe));
8434 	}
8435 
8436 	/*
8437 	 * Look for the target control block of this nexus.
8438 	 * For i = 0 to 3
8439 	 *   JUMP ^ IFTRUE (MASK (i, 3)), @(next_lcb)
8440 	 */
8441 	for (i = 0 ; i < 4 ; i++) {
8442 		np->jump_tcb[i].l_cmd   =
8443 				cpu_to_scr((SCR_JUMP ^ IFTRUE (MASK (i, 3))));
8444 		np->jump_tcb[i].l_paddr =
8445 				cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_target));
8446 	}
8447 
8448 	ncr_chip_reset(np, 100);
8449 
8450 	/* Now check the cache handling of the chipset.  */
8451 
8452 	if (ncr_snooptest(np)) {
8453 		printk(KERN_ERR "CACHE INCORRECTLY CONFIGURED.\n");
8454 		goto attach_error;
8455 	}
8456 
8457 	/* Install the interrupt handler.  */
8458 	np->irq = device->slot.irq;
8459 
8460 	/* Initialize the fixed part of the default ccb.  */
8461 	ncr_init_ccb(np, np->ccb);
8462 
8463 	/*
8464 	 * After SCSI devices have been opened, we cannot reset the bus
8465 	 * safely, so we do it here.  Interrupt handler does the real work.
8466 	 * Process the reset exception if interrupts are not enabled yet.
8467 	 * Then enable disconnects.
8468 	 */
8469 	spin_lock_irqsave(&np->smp_lock, flags);
8470 	if (ncr_reset_scsi_bus(np, 0, driver_setup.settle_delay) != 0) {
8471 		printk(KERN_ERR "%s: FATAL ERROR: CHECK SCSI BUS - CABLES, TERMINATION, DEVICE POWER etc.!\n", ncr_name(np));
8472 
8473 		spin_unlock_irqrestore(&np->smp_lock, flags);
8474 		goto attach_error;
8475 	}
8476 	ncr_exception(np);
8477 
8478 	np->disc = 1;
8479 
8480 	/*
8481 	 * The middle-level SCSI driver does not wait for devices to settle.
8482 	 * Wait synchronously if more than 2 seconds.
8483 	 */
8484 	if (driver_setup.settle_delay > 2) {
8485 		printk(KERN_INFO "%s: waiting %d seconds for scsi devices to settle...\n",
8486 			ncr_name(np), driver_setup.settle_delay);
8487 		mdelay(1000 * driver_setup.settle_delay);
8488 	}
8489 
8490 	/* start the timeout daemon */
8491 	np->lasttime=0;
8492 	ncr_timeout (np);
8493 
8494 	/* use SIMPLE TAG messages by default */
8495 #ifdef SCSI_NCR_ALWAYS_SIMPLE_TAG
8496 	np->order = SIMPLE_QUEUE_TAG;
8497 #endif
8498 
8499 	spin_unlock_irqrestore(&np->smp_lock, flags);
8500 
8501 	return instance;
8502 
8503  attach_error:
8504 	if (!instance)
8505 		return NULL;
8506 	printk(KERN_INFO "%s: detaching...\n", ncr_name(np));
8507 	if (!np)
8508 		goto unregister;
8509 	if (np->scripth0)
8510 		m_free_dma(np->scripth0, sizeof(struct scripth), "SCRIPTH");
8511 	if (np->script0)
8512 		m_free_dma(np->script0, sizeof(struct script), "SCRIPT");
8513 	if (np->ccb)
8514 		m_free_dma(np->ccb, sizeof(struct ccb), "CCB");
8515 	m_free_dma(np, sizeof(struct ncb), "NCB");
8516 	host_data->ncb = NULL;
8517 
8518  unregister:
8519 	scsi_host_put(instance);
8520 
8521 	return NULL;
8522 }
8523 
8524 
8525 void ncr53c8xx_release(struct Scsi_Host *host)
8526 {
8527 	struct host_data *host_data = shost_priv(host);
8528 #ifdef DEBUG_NCR53C8XX
8529 	printk("ncr53c8xx: release\n");
8530 #endif
8531 	if (host_data->ncb)
8532 		ncr_detach(host_data->ncb);
8533 	scsi_host_put(host);
8534 }
8535 
8536 static void ncr53c8xx_set_period(struct scsi_target *starget, int period)
8537 {
8538 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
8539 	struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
8540 	struct tcb *tp = &np->target[starget->id];
8541 
8542 	if (period > np->maxsync)
8543 		period = np->maxsync;
8544 	else if (period < np->minsync)
8545 		period = np->minsync;
8546 
8547 	tp->usrsync = period;
8548 
8549 	ncr_negotiate(np, tp);
8550 }
8551 
8552 static void ncr53c8xx_set_offset(struct scsi_target *starget, int offset)
8553 {
8554 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
8555 	struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
8556 	struct tcb *tp = &np->target[starget->id];
8557 
8558 	if (offset > np->maxoffs)
8559 		offset = np->maxoffs;
8560 	else if (offset < 0)
8561 		offset = 0;
8562 
8563 	tp->maxoffs = offset;
8564 
8565 	ncr_negotiate(np, tp);
8566 }
8567 
8568 static void ncr53c8xx_set_width(struct scsi_target *starget, int width)
8569 {
8570 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
8571 	struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
8572 	struct tcb *tp = &np->target[starget->id];
8573 
8574 	if (width > np->maxwide)
8575 		width = np->maxwide;
8576 	else if (width < 0)
8577 		width = 0;
8578 
8579 	tp->usrwide = width;
8580 
8581 	ncr_negotiate(np, tp);
8582 }
8583 
8584 static void ncr53c8xx_get_signalling(struct Scsi_Host *shost)
8585 {
8586 	struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
8587 	enum spi_signal_type type;
8588 
8589 	switch (np->scsi_mode) {
8590 	case SMODE_SE:
8591 		type = SPI_SIGNAL_SE;
8592 		break;
8593 	case SMODE_HVD:
8594 		type = SPI_SIGNAL_HVD;
8595 		break;
8596 	default:
8597 		type = SPI_SIGNAL_UNKNOWN;
8598 		break;
8599 	}
8600 	spi_signalling(shost) = type;
8601 }
8602 
8603 static struct spi_function_template ncr53c8xx_transport_functions =  {
8604 	.set_period	= ncr53c8xx_set_period,
8605 	.show_period	= 1,
8606 	.set_offset	= ncr53c8xx_set_offset,
8607 	.show_offset	= 1,
8608 	.set_width	= ncr53c8xx_set_width,
8609 	.show_width	= 1,
8610 	.get_signalling	= ncr53c8xx_get_signalling,
8611 };
8612 
8613 int __init ncr53c8xx_init(void)
8614 {
8615 	ncr53c8xx_transport_template = spi_attach_transport(&ncr53c8xx_transport_functions);
8616 	if (!ncr53c8xx_transport_template)
8617 		return -ENODEV;
8618 	return 0;
8619 }
8620 
8621 void ncr53c8xx_exit(void)
8622 {
8623 	spi_release_transport(ncr53c8xx_transport_template);
8624 }
8625