xref: /openbmc/linux/drivers/scsi/ncr53c8xx.c (revision 9be08a27)
1 /******************************************************************************
2 **  Device driver for the PCI-SCSI NCR538XX controller family.
3 **
4 **  Copyright (C) 1994  Wolfgang Stanglmeier
5 **
6 **  This program is free software; you can redistribute it and/or modify
7 **  it under the terms of the GNU General Public License as published by
8 **  the Free Software Foundation; either version 2 of the License, or
9 **  (at your option) any later version.
10 **
11 **  This program is distributed in the hope that it will be useful,
12 **  but WITHOUT ANY WARRANTY; without even the implied warranty of
13 **  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 **  GNU General Public License for more details.
15 **
16 **  You should have received a copy of the GNU General Public License
17 **  along with this program; if not, write to the Free Software
18 **  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 **
20 **-----------------------------------------------------------------------------
21 **
22 **  This driver has been ported to Linux from the FreeBSD NCR53C8XX driver
23 **  and is currently maintained by
24 **
25 **          Gerard Roudier              <groudier@free.fr>
26 **
27 **  Being given that this driver originates from the FreeBSD version, and
28 **  in order to keep synergy on both, any suggested enhancements and corrections
29 **  received on Linux are automatically a potential candidate for the FreeBSD
30 **  version.
31 **
32 **  The original driver has been written for 386bsd and FreeBSD by
33 **          Wolfgang Stanglmeier        <wolf@cologne.de>
34 **          Stefan Esser                <se@mi.Uni-Koeln.de>
35 **
36 **  And has been ported to NetBSD by
37 **          Charles M. Hannum           <mycroft@gnu.ai.mit.edu>
38 **
39 **-----------------------------------------------------------------------------
40 **
41 **                     Brief history
42 **
43 **  December 10 1995 by Gerard Roudier:
44 **     Initial port to Linux.
45 **
46 **  June 23 1996 by Gerard Roudier:
47 **     Support for 64 bits architectures (Alpha).
48 **
49 **  November 30 1996 by Gerard Roudier:
50 **     Support for Fast-20 scsi.
51 **     Support for large DMA fifo and 128 dwords bursting.
52 **
53 **  February 27 1997 by Gerard Roudier:
54 **     Support for Fast-40 scsi.
55 **     Support for on-Board RAM.
56 **
57 **  May 3 1997 by Gerard Roudier:
58 **     Full support for scsi scripts instructions pre-fetching.
59 **
60 **  May 19 1997 by Richard Waltham <dormouse@farsrobt.demon.co.uk>:
61 **     Support for NvRAM detection and reading.
62 **
63 **  August 18 1997 by Cort <cort@cs.nmt.edu>:
64 **     Support for Power/PC (Big Endian).
65 **
66 **  June 20 1998 by Gerard Roudier
67 **     Support for up to 64 tags per lun.
68 **     O(1) everywhere (C and SCRIPTS) for normal cases.
69 **     Low PCI traffic for command handling when on-chip RAM is present.
70 **     Aggressive SCSI SCRIPTS optimizations.
71 **
72 **  2005 by Matthew Wilcox and James Bottomley
73 **     PCI-ectomy.  This driver now supports only the 720 chip (see the
74 **     NCR_Q720 and zalon drivers for the bus probe logic).
75 **
76 *******************************************************************************
77 */
78 
79 /*
80 **	Supported SCSI-II features:
81 **	    Synchronous negotiation
82 **	    Wide negotiation        (depends on the NCR Chip)
83 **	    Enable disconnection
84 **	    Tagged command queuing
85 **	    Parity checking
86 **	    Etc...
87 **
88 **	Supported NCR/SYMBIOS chips:
89 **		53C720		(Wide,   Fast SCSI-2, intfly problems)
90 */
91 
92 /* Name and version of the driver */
93 #define SCSI_NCR_DRIVER_NAME	"ncr53c8xx-3.4.3g"
94 
95 #define SCSI_NCR_DEBUG_FLAGS	(0)
96 
97 #include <linux/blkdev.h>
98 #include <linux/delay.h>
99 #include <linux/dma-mapping.h>
100 #include <linux/errno.h>
101 #include <linux/gfp.h>
102 #include <linux/init.h>
103 #include <linux/interrupt.h>
104 #include <linux/ioport.h>
105 #include <linux/mm.h>
106 #include <linux/module.h>
107 #include <linux/sched.h>
108 #include <linux/signal.h>
109 #include <linux/spinlock.h>
110 #include <linux/stat.h>
111 #include <linux/string.h>
112 #include <linux/time.h>
113 #include <linux/timer.h>
114 #include <linux/types.h>
115 
116 #include <asm/dma.h>
117 #include <asm/io.h>
118 
119 #include <scsi/scsi.h>
120 #include <scsi/scsi_cmnd.h>
121 #include <scsi/scsi_dbg.h>
122 #include <scsi/scsi_device.h>
123 #include <scsi/scsi_tcq.h>
124 #include <scsi/scsi_transport.h>
125 #include <scsi/scsi_transport_spi.h>
126 
127 #include "ncr53c8xx.h"
128 
129 #define NAME53C8XX		"ncr53c8xx"
130 
131 /*==========================================================
132 **
133 **	Debugging tags
134 **
135 **==========================================================
136 */
137 
138 #define DEBUG_ALLOC    (0x0001)
139 #define DEBUG_PHASE    (0x0002)
140 #define DEBUG_QUEUE    (0x0008)
141 #define DEBUG_RESULT   (0x0010)
142 #define DEBUG_POINTER  (0x0020)
143 #define DEBUG_SCRIPT   (0x0040)
144 #define DEBUG_TINY     (0x0080)
145 #define DEBUG_TIMING   (0x0100)
146 #define DEBUG_NEGO     (0x0200)
147 #define DEBUG_TAGS     (0x0400)
148 #define DEBUG_SCATTER  (0x0800)
149 #define DEBUG_IC        (0x1000)
150 
151 /*
152 **    Enable/Disable debug messages.
153 **    Can be changed at runtime too.
154 */
155 
156 #ifdef SCSI_NCR_DEBUG_INFO_SUPPORT
157 static int ncr_debug = SCSI_NCR_DEBUG_FLAGS;
158 	#define DEBUG_FLAGS ncr_debug
159 #else
160 	#define DEBUG_FLAGS	SCSI_NCR_DEBUG_FLAGS
161 #endif
162 
163 static inline struct list_head *ncr_list_pop(struct list_head *head)
164 {
165 	if (!list_empty(head)) {
166 		struct list_head *elem = head->next;
167 
168 		list_del(elem);
169 		return elem;
170 	}
171 
172 	return NULL;
173 }
174 
175 /*==========================================================
176 **
177 **	Simple power of two buddy-like allocator.
178 **
179 **	This simple code is not intended to be fast, but to
180 **	provide power of 2 aligned memory allocations.
181 **	Since the SCRIPTS processor only supplies 8 bit
182 **	arithmetic, this allocator allows simple and fast
183 **	address calculations  from the SCRIPTS code.
184 **	In addition, cache line alignment is guaranteed for
185 **	power of 2 cache line size.
186 **	Enhanced in linux-2.3.44 to provide a memory pool
187 **	per pcidev to support dynamic dma mapping. (I would
188 **	have preferred a real bus abstraction, btw).
189 **
190 **==========================================================
191 */
192 
193 #define MEMO_SHIFT	4	/* 16 bytes minimum memory chunk */
194 #if PAGE_SIZE >= 8192
195 #define MEMO_PAGE_ORDER	0	/* 1 PAGE  maximum */
196 #else
197 #define MEMO_PAGE_ORDER	1	/* 2 PAGES maximum */
198 #endif
199 #define MEMO_FREE_UNUSED	/* Free unused pages immediately */
200 #define MEMO_WARN	1
201 #define MEMO_GFP_FLAGS	GFP_ATOMIC
202 #define MEMO_CLUSTER_SHIFT	(PAGE_SHIFT+MEMO_PAGE_ORDER)
203 #define MEMO_CLUSTER_SIZE	(1UL << MEMO_CLUSTER_SHIFT)
204 #define MEMO_CLUSTER_MASK	(MEMO_CLUSTER_SIZE-1)
205 
206 typedef u_long m_addr_t;	/* Enough bits to bit-hack addresses */
207 typedef struct device *m_bush_t;	/* Something that addresses DMAable */
208 
209 typedef struct m_link {		/* Link between free memory chunks */
210 	struct m_link *next;
211 } m_link_s;
212 
213 typedef struct m_vtob {		/* Virtual to Bus address translation */
214 	struct m_vtob *next;
215 	m_addr_t vaddr;
216 	m_addr_t baddr;
217 } m_vtob_s;
218 #define VTOB_HASH_SHIFT		5
219 #define VTOB_HASH_SIZE		(1UL << VTOB_HASH_SHIFT)
220 #define VTOB_HASH_MASK		(VTOB_HASH_SIZE-1)
221 #define VTOB_HASH_CODE(m)	\
222 	((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK)
223 
224 typedef struct m_pool {		/* Memory pool of a given kind */
225 	m_bush_t bush;
226 	m_addr_t (*getp)(struct m_pool *);
227 	void (*freep)(struct m_pool *, m_addr_t);
228 	int nump;
229 	m_vtob_s *(vtob[VTOB_HASH_SIZE]);
230 	struct m_pool *next;
231 	struct m_link h[PAGE_SHIFT-MEMO_SHIFT+MEMO_PAGE_ORDER+1];
232 } m_pool_s;
233 
234 static void *___m_alloc(m_pool_s *mp, int size)
235 {
236 	int i = 0;
237 	int s = (1 << MEMO_SHIFT);
238 	int j;
239 	m_addr_t a;
240 	m_link_s *h = mp->h;
241 
242 	if (size > (PAGE_SIZE << MEMO_PAGE_ORDER))
243 		return NULL;
244 
245 	while (size > s) {
246 		s <<= 1;
247 		++i;
248 	}
249 
250 	j = i;
251 	while (!h[j].next) {
252 		if (s == (PAGE_SIZE << MEMO_PAGE_ORDER)) {
253 			h[j].next = (m_link_s *)mp->getp(mp);
254 			if (h[j].next)
255 				h[j].next->next = NULL;
256 			break;
257 		}
258 		++j;
259 		s <<= 1;
260 	}
261 	a = (m_addr_t) h[j].next;
262 	if (a) {
263 		h[j].next = h[j].next->next;
264 		while (j > i) {
265 			j -= 1;
266 			s >>= 1;
267 			h[j].next = (m_link_s *) (a+s);
268 			h[j].next->next = NULL;
269 		}
270 	}
271 #ifdef DEBUG
272 	printk("___m_alloc(%d) = %p\n", size, (void *) a);
273 #endif
274 	return (void *) a;
275 }
276 
277 static void ___m_free(m_pool_s *mp, void *ptr, int size)
278 {
279 	int i = 0;
280 	int s = (1 << MEMO_SHIFT);
281 	m_link_s *q;
282 	m_addr_t a, b;
283 	m_link_s *h = mp->h;
284 
285 #ifdef DEBUG
286 	printk("___m_free(%p, %d)\n", ptr, size);
287 #endif
288 
289 	if (size > (PAGE_SIZE << MEMO_PAGE_ORDER))
290 		return;
291 
292 	while (size > s) {
293 		s <<= 1;
294 		++i;
295 	}
296 
297 	a = (m_addr_t) ptr;
298 
299 	while (1) {
300 #ifdef MEMO_FREE_UNUSED
301 		if (s == (PAGE_SIZE << MEMO_PAGE_ORDER)) {
302 			mp->freep(mp, a);
303 			break;
304 		}
305 #endif
306 		b = a ^ s;
307 		q = &h[i];
308 		while (q->next && q->next != (m_link_s *) b) {
309 			q = q->next;
310 		}
311 		if (!q->next) {
312 			((m_link_s *) a)->next = h[i].next;
313 			h[i].next = (m_link_s *) a;
314 			break;
315 		}
316 		q->next = q->next->next;
317 		a = a & b;
318 		s <<= 1;
319 		++i;
320 	}
321 }
322 
323 static DEFINE_SPINLOCK(ncr53c8xx_lock);
324 
325 static void *__m_calloc2(m_pool_s *mp, int size, char *name, int uflags)
326 {
327 	void *p;
328 
329 	p = ___m_alloc(mp, size);
330 
331 	if (DEBUG_FLAGS & DEBUG_ALLOC)
332 		printk ("new %-10s[%4d] @%p.\n", name, size, p);
333 
334 	if (p)
335 		memset(p, 0, size);
336 	else if (uflags & MEMO_WARN)
337 		printk (NAME53C8XX ": failed to allocate %s[%d]\n", name, size);
338 
339 	return p;
340 }
341 
342 #define __m_calloc(mp, s, n)	__m_calloc2(mp, s, n, MEMO_WARN)
343 
344 static void __m_free(m_pool_s *mp, void *ptr, int size, char *name)
345 {
346 	if (DEBUG_FLAGS & DEBUG_ALLOC)
347 		printk ("freeing %-10s[%4d] @%p.\n", name, size, ptr);
348 
349 	___m_free(mp, ptr, size);
350 
351 }
352 
353 /*
354  * With pci bus iommu support, we use a default pool of unmapped memory
355  * for memory we donnot need to DMA from/to and one pool per pcidev for
356  * memory accessed by the PCI chip. `mp0' is the default not DMAable pool.
357  */
358 
359 static m_addr_t ___mp0_getp(m_pool_s *mp)
360 {
361 	m_addr_t m = __get_free_pages(MEMO_GFP_FLAGS, MEMO_PAGE_ORDER);
362 	if (m)
363 		++mp->nump;
364 	return m;
365 }
366 
367 static void ___mp0_freep(m_pool_s *mp, m_addr_t m)
368 {
369 	free_pages(m, MEMO_PAGE_ORDER);
370 	--mp->nump;
371 }
372 
373 static m_pool_s mp0 = {NULL, ___mp0_getp, ___mp0_freep};
374 
375 /*
376  * DMAable pools.
377  */
378 
379 /*
380  * With pci bus iommu support, we maintain one pool per pcidev and a
381  * hashed reverse table for virtual to bus physical address translations.
382  */
383 static m_addr_t ___dma_getp(m_pool_s *mp)
384 {
385 	m_addr_t vp;
386 	m_vtob_s *vbp;
387 
388 	vbp = __m_calloc(&mp0, sizeof(*vbp), "VTOB");
389 	if (vbp) {
390 		dma_addr_t daddr;
391 		vp = (m_addr_t) dma_alloc_coherent(mp->bush,
392 						PAGE_SIZE<<MEMO_PAGE_ORDER,
393 						&daddr, GFP_ATOMIC);
394 		if (vp) {
395 			int hc = VTOB_HASH_CODE(vp);
396 			vbp->vaddr = vp;
397 			vbp->baddr = daddr;
398 			vbp->next = mp->vtob[hc];
399 			mp->vtob[hc] = vbp;
400 			++mp->nump;
401 			return vp;
402 		}
403 	}
404 	if (vbp)
405 		__m_free(&mp0, vbp, sizeof(*vbp), "VTOB");
406 	return 0;
407 }
408 
409 static void ___dma_freep(m_pool_s *mp, m_addr_t m)
410 {
411 	m_vtob_s **vbpp, *vbp;
412 	int hc = VTOB_HASH_CODE(m);
413 
414 	vbpp = &mp->vtob[hc];
415 	while (*vbpp && (*vbpp)->vaddr != m)
416 		vbpp = &(*vbpp)->next;
417 	if (*vbpp) {
418 		vbp = *vbpp;
419 		*vbpp = (*vbpp)->next;
420 		dma_free_coherent(mp->bush, PAGE_SIZE<<MEMO_PAGE_ORDER,
421 				  (void *)vbp->vaddr, (dma_addr_t)vbp->baddr);
422 		__m_free(&mp0, vbp, sizeof(*vbp), "VTOB");
423 		--mp->nump;
424 	}
425 }
426 
427 static inline m_pool_s *___get_dma_pool(m_bush_t bush)
428 {
429 	m_pool_s *mp;
430 	for (mp = mp0.next; mp && mp->bush != bush; mp = mp->next);
431 	return mp;
432 }
433 
434 static m_pool_s *___cre_dma_pool(m_bush_t bush)
435 {
436 	m_pool_s *mp;
437 	mp = __m_calloc(&mp0, sizeof(*mp), "MPOOL");
438 	if (mp) {
439 		memset(mp, 0, sizeof(*mp));
440 		mp->bush = bush;
441 		mp->getp = ___dma_getp;
442 		mp->freep = ___dma_freep;
443 		mp->next = mp0.next;
444 		mp0.next = mp;
445 	}
446 	return mp;
447 }
448 
449 static void ___del_dma_pool(m_pool_s *p)
450 {
451 	struct m_pool **pp = &mp0.next;
452 
453 	while (*pp && *pp != p)
454 		pp = &(*pp)->next;
455 	if (*pp) {
456 		*pp = (*pp)->next;
457 		__m_free(&mp0, p, sizeof(*p), "MPOOL");
458 	}
459 }
460 
461 static void *__m_calloc_dma(m_bush_t bush, int size, char *name)
462 {
463 	u_long flags;
464 	struct m_pool *mp;
465 	void *m = NULL;
466 
467 	spin_lock_irqsave(&ncr53c8xx_lock, flags);
468 	mp = ___get_dma_pool(bush);
469 	if (!mp)
470 		mp = ___cre_dma_pool(bush);
471 	if (mp)
472 		m = __m_calloc(mp, size, name);
473 	if (mp && !mp->nump)
474 		___del_dma_pool(mp);
475 	spin_unlock_irqrestore(&ncr53c8xx_lock, flags);
476 
477 	return m;
478 }
479 
480 static void __m_free_dma(m_bush_t bush, void *m, int size, char *name)
481 {
482 	u_long flags;
483 	struct m_pool *mp;
484 
485 	spin_lock_irqsave(&ncr53c8xx_lock, flags);
486 	mp = ___get_dma_pool(bush);
487 	if (mp)
488 		__m_free(mp, m, size, name);
489 	if (mp && !mp->nump)
490 		___del_dma_pool(mp);
491 	spin_unlock_irqrestore(&ncr53c8xx_lock, flags);
492 }
493 
494 static m_addr_t __vtobus(m_bush_t bush, void *m)
495 {
496 	u_long flags;
497 	m_pool_s *mp;
498 	int hc = VTOB_HASH_CODE(m);
499 	m_vtob_s *vp = NULL;
500 	m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK;
501 
502 	spin_lock_irqsave(&ncr53c8xx_lock, flags);
503 	mp = ___get_dma_pool(bush);
504 	if (mp) {
505 		vp = mp->vtob[hc];
506 		while (vp && (m_addr_t) vp->vaddr != a)
507 			vp = vp->next;
508 	}
509 	spin_unlock_irqrestore(&ncr53c8xx_lock, flags);
510 	return vp ? vp->baddr + (((m_addr_t) m) - a) : 0;
511 }
512 
513 #define _m_calloc_dma(np, s, n)		__m_calloc_dma(np->dev, s, n)
514 #define _m_free_dma(np, p, s, n)	__m_free_dma(np->dev, p, s, n)
515 #define m_calloc_dma(s, n)		_m_calloc_dma(np, s, n)
516 #define m_free_dma(p, s, n)		_m_free_dma(np, p, s, n)
517 #define _vtobus(np, p)			__vtobus(np->dev, p)
518 #define vtobus(p)			_vtobus(np, p)
519 
520 /*
521  *  Deal with DMA mapping/unmapping.
522  */
523 
524 /* To keep track of the dma mapping (sg/single) that has been set */
525 #define __data_mapped	SCp.phase
526 #define __data_mapping	SCp.have_data_in
527 
528 static void __unmap_scsi_data(struct device *dev, struct scsi_cmnd *cmd)
529 {
530 	switch(cmd->__data_mapped) {
531 	case 2:
532 		scsi_dma_unmap(cmd);
533 		break;
534 	}
535 	cmd->__data_mapped = 0;
536 }
537 
538 static int __map_scsi_sg_data(struct device *dev, struct scsi_cmnd *cmd)
539 {
540 	int use_sg;
541 
542 	use_sg = scsi_dma_map(cmd);
543 	if (!use_sg)
544 		return 0;
545 
546 	cmd->__data_mapped = 2;
547 	cmd->__data_mapping = use_sg;
548 
549 	return use_sg;
550 }
551 
552 #define unmap_scsi_data(np, cmd)	__unmap_scsi_data(np->dev, cmd)
553 #define map_scsi_sg_data(np, cmd)	__map_scsi_sg_data(np->dev, cmd)
554 
555 /*==========================================================
556 **
557 **	Driver setup.
558 **
559 **	This structure is initialized from linux config
560 **	options. It can be overridden at boot-up by the boot
561 **	command line.
562 **
563 **==========================================================
564 */
565 static struct ncr_driver_setup
566 	driver_setup			= SCSI_NCR_DRIVER_SETUP;
567 
568 #ifndef MODULE
569 #ifdef	SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT
570 static struct ncr_driver_setup
571 	driver_safe_setup __initdata	= SCSI_NCR_DRIVER_SAFE_SETUP;
572 #endif
573 #endif /* !MODULE */
574 
575 #define initverbose (driver_setup.verbose)
576 #define bootverbose (np->verbose)
577 
578 
579 /*===================================================================
580 **
581 **	Driver setup from the boot command line
582 **
583 **===================================================================
584 */
585 
586 #ifdef MODULE
587 #define	ARG_SEP	' '
588 #else
589 #define	ARG_SEP	','
590 #endif
591 
592 #define OPT_TAGS		1
593 #define OPT_MASTER_PARITY	2
594 #define OPT_SCSI_PARITY		3
595 #define OPT_DISCONNECTION	4
596 #define OPT_SPECIAL_FEATURES	5
597 #define OPT_UNUSED_1		6
598 #define OPT_FORCE_SYNC_NEGO	7
599 #define OPT_REVERSE_PROBE	8
600 #define OPT_DEFAULT_SYNC	9
601 #define OPT_VERBOSE		10
602 #define OPT_DEBUG		11
603 #define OPT_BURST_MAX		12
604 #define OPT_LED_PIN		13
605 #define OPT_MAX_WIDE		14
606 #define OPT_SETTLE_DELAY	15
607 #define OPT_DIFF_SUPPORT	16
608 #define OPT_IRQM		17
609 #define OPT_PCI_FIX_UP		18
610 #define OPT_BUS_CHECK		19
611 #define OPT_OPTIMIZE		20
612 #define OPT_RECOVERY		21
613 #define OPT_SAFE_SETUP		22
614 #define OPT_USE_NVRAM		23
615 #define OPT_EXCLUDE		24
616 #define OPT_HOST_ID		25
617 
618 #ifdef SCSI_NCR_IARB_SUPPORT
619 #define OPT_IARB		26
620 #endif
621 
622 #ifdef MODULE
623 #define	ARG_SEP	' '
624 #else
625 #define	ARG_SEP	','
626 #endif
627 
628 #ifndef MODULE
629 static char setup_token[] __initdata =
630 	"tags:"   "mpar:"
631 	"spar:"   "disc:"
632 	"specf:"  "ultra:"
633 	"fsn:"    "revprob:"
634 	"sync:"   "verb:"
635 	"debug:"  "burst:"
636 	"led:"    "wide:"
637 	"settle:" "diff:"
638 	"irqm:"   "pcifix:"
639 	"buschk:" "optim:"
640 	"recovery:"
641 	"safe:"   "nvram:"
642 	"excl:"   "hostid:"
643 #ifdef SCSI_NCR_IARB_SUPPORT
644 	"iarb:"
645 #endif
646 	;	/* DONNOT REMOVE THIS ';' */
647 
648 static int __init get_setup_token(char *p)
649 {
650 	char *cur = setup_token;
651 	char *pc;
652 	int i = 0;
653 
654 	while (cur != NULL && (pc = strchr(cur, ':')) != NULL) {
655 		++pc;
656 		++i;
657 		if (!strncmp(p, cur, pc - cur))
658 			return i;
659 		cur = pc;
660 	}
661 	return 0;
662 }
663 
664 static int __init sym53c8xx__setup(char *str)
665 {
666 #ifdef SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT
667 	char *cur = str;
668 	char *pc, *pv;
669 	int i, val, c;
670 	int xi = 0;
671 
672 	while (cur != NULL && (pc = strchr(cur, ':')) != NULL) {
673 		char *pe;
674 
675 		val = 0;
676 		pv = pc;
677 		c = *++pv;
678 
679 		if	(c == 'n')
680 			val = 0;
681 		else if	(c == 'y')
682 			val = 1;
683 		else
684 			val = (int) simple_strtoul(pv, &pe, 0);
685 
686 		switch (get_setup_token(cur)) {
687 		case OPT_TAGS:
688 			driver_setup.default_tags = val;
689 			if (pe && *pe == '/') {
690 				i = 0;
691 				while (*pe && *pe != ARG_SEP &&
692 					i < sizeof(driver_setup.tag_ctrl)-1) {
693 					driver_setup.tag_ctrl[i++] = *pe++;
694 				}
695 				driver_setup.tag_ctrl[i] = '\0';
696 			}
697 			break;
698 		case OPT_MASTER_PARITY:
699 			driver_setup.master_parity = val;
700 			break;
701 		case OPT_SCSI_PARITY:
702 			driver_setup.scsi_parity = val;
703 			break;
704 		case OPT_DISCONNECTION:
705 			driver_setup.disconnection = val;
706 			break;
707 		case OPT_SPECIAL_FEATURES:
708 			driver_setup.special_features = val;
709 			break;
710 		case OPT_FORCE_SYNC_NEGO:
711 			driver_setup.force_sync_nego = val;
712 			break;
713 		case OPT_REVERSE_PROBE:
714 			driver_setup.reverse_probe = val;
715 			break;
716 		case OPT_DEFAULT_SYNC:
717 			driver_setup.default_sync = val;
718 			break;
719 		case OPT_VERBOSE:
720 			driver_setup.verbose = val;
721 			break;
722 		case OPT_DEBUG:
723 			driver_setup.debug = val;
724 			break;
725 		case OPT_BURST_MAX:
726 			driver_setup.burst_max = val;
727 			break;
728 		case OPT_LED_PIN:
729 			driver_setup.led_pin = val;
730 			break;
731 		case OPT_MAX_WIDE:
732 			driver_setup.max_wide = val? 1:0;
733 			break;
734 		case OPT_SETTLE_DELAY:
735 			driver_setup.settle_delay = val;
736 			break;
737 		case OPT_DIFF_SUPPORT:
738 			driver_setup.diff_support = val;
739 			break;
740 		case OPT_IRQM:
741 			driver_setup.irqm = val;
742 			break;
743 		case OPT_PCI_FIX_UP:
744 			driver_setup.pci_fix_up	= val;
745 			break;
746 		case OPT_BUS_CHECK:
747 			driver_setup.bus_check = val;
748 			break;
749 		case OPT_OPTIMIZE:
750 			driver_setup.optimize = val;
751 			break;
752 		case OPT_RECOVERY:
753 			driver_setup.recovery = val;
754 			break;
755 		case OPT_USE_NVRAM:
756 			driver_setup.use_nvram = val;
757 			break;
758 		case OPT_SAFE_SETUP:
759 			memcpy(&driver_setup, &driver_safe_setup,
760 				sizeof(driver_setup));
761 			break;
762 		case OPT_EXCLUDE:
763 			if (xi < SCSI_NCR_MAX_EXCLUDES)
764 				driver_setup.excludes[xi++] = val;
765 			break;
766 		case OPT_HOST_ID:
767 			driver_setup.host_id = val;
768 			break;
769 #ifdef SCSI_NCR_IARB_SUPPORT
770 		case OPT_IARB:
771 			driver_setup.iarb = val;
772 			break;
773 #endif
774 		default:
775 			printk("sym53c8xx_setup: unexpected boot option '%.*s' ignored\n", (int)(pc-cur+1), cur);
776 			break;
777 		}
778 
779 		if ((cur = strchr(cur, ARG_SEP)) != NULL)
780 			++cur;
781 	}
782 #endif /* SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT */
783 	return 1;
784 }
785 #endif /* !MODULE */
786 
787 /*===================================================================
788 **
789 **	Get device queue depth from boot command line.
790 **
791 **===================================================================
792 */
793 #define DEF_DEPTH	(driver_setup.default_tags)
794 #define ALL_TARGETS	-2
795 #define NO_TARGET	-1
796 #define ALL_LUNS	-2
797 #define NO_LUN		-1
798 
799 static int device_queue_depth(int unit, int target, int lun)
800 {
801 	int c, h, t, u, v;
802 	char *p = driver_setup.tag_ctrl;
803 	char *ep;
804 
805 	h = -1;
806 	t = NO_TARGET;
807 	u = NO_LUN;
808 	while ((c = *p++) != 0) {
809 		v = simple_strtoul(p, &ep, 0);
810 		switch(c) {
811 		case '/':
812 			++h;
813 			t = ALL_TARGETS;
814 			u = ALL_LUNS;
815 			break;
816 		case 't':
817 			if (t != target)
818 				t = (target == v) ? v : NO_TARGET;
819 			u = ALL_LUNS;
820 			break;
821 		case 'u':
822 			if (u != lun)
823 				u = (lun == v) ? v : NO_LUN;
824 			break;
825 		case 'q':
826 			if (h == unit &&
827 				(t == ALL_TARGETS || t == target) &&
828 				(u == ALL_LUNS    || u == lun))
829 				return v;
830 			break;
831 		case '-':
832 			t = ALL_TARGETS;
833 			u = ALL_LUNS;
834 			break;
835 		default:
836 			break;
837 		}
838 		p = ep;
839 	}
840 	return DEF_DEPTH;
841 }
842 
843 
844 /*==========================================================
845 **
846 **	The CCB done queue uses an array of CCB virtual
847 **	addresses. Empty entries are flagged using the bogus
848 **	virtual address 0xffffffff.
849 **
850 **	Since PCI ensures that only aligned DWORDs are accessed
851 **	atomically, 64 bit little-endian architecture requires
852 **	to test the high order DWORD of the entry to determine
853 **	if it is empty or valid.
854 **
855 **	BTW, I will make things differently as soon as I will
856 **	have a better idea, but this is simple and should work.
857 **
858 **==========================================================
859 */
860 
861 #define SCSI_NCR_CCB_DONE_SUPPORT
862 #ifdef  SCSI_NCR_CCB_DONE_SUPPORT
863 
864 #define MAX_DONE 24
865 #define CCB_DONE_EMPTY 0xffffffffUL
866 
867 /* All 32 bit architectures */
868 #if BITS_PER_LONG == 32
869 #define CCB_DONE_VALID(cp)  (((u_long) cp) != CCB_DONE_EMPTY)
870 
871 /* All > 32 bit (64 bit) architectures regardless endian-ness */
872 #else
873 #define CCB_DONE_VALID(cp)  \
874 	((((u_long) cp) & 0xffffffff00000000ul) && 	\
875 	 (((u_long) cp) & 0xfffffffful) != CCB_DONE_EMPTY)
876 #endif
877 
878 #endif /* SCSI_NCR_CCB_DONE_SUPPORT */
879 
880 /*==========================================================
881 **
882 **	Configuration and Debugging
883 **
884 **==========================================================
885 */
886 
887 /*
888 **    SCSI address of this device.
889 **    The boot routines should have set it.
890 **    If not, use this.
891 */
892 
893 #ifndef SCSI_NCR_MYADDR
894 #define SCSI_NCR_MYADDR      (7)
895 #endif
896 
897 /*
898 **    The maximum number of tags per logic unit.
899 **    Used only for disk devices that support tags.
900 */
901 
902 #ifndef SCSI_NCR_MAX_TAGS
903 #define SCSI_NCR_MAX_TAGS    (8)
904 #endif
905 
906 /*
907 **    TAGS are actually limited to 64 tags/lun.
908 **    We need to deal with power of 2, for alignment constraints.
909 */
910 #if	SCSI_NCR_MAX_TAGS > 64
911 #define	MAX_TAGS (64)
912 #else
913 #define	MAX_TAGS SCSI_NCR_MAX_TAGS
914 #endif
915 
916 #define NO_TAG	(255)
917 
918 /*
919 **	Choose appropriate type for tag bitmap.
920 */
921 #if	MAX_TAGS > 32
922 typedef u64 tagmap_t;
923 #else
924 typedef u32 tagmap_t;
925 #endif
926 
927 /*
928 **    Number of targets supported by the driver.
929 **    n permits target numbers 0..n-1.
930 **    Default is 16, meaning targets #0..#15.
931 **    #7 .. is myself.
932 */
933 
934 #ifdef SCSI_NCR_MAX_TARGET
935 #define MAX_TARGET  (SCSI_NCR_MAX_TARGET)
936 #else
937 #define MAX_TARGET  (16)
938 #endif
939 
940 /*
941 **    Number of logic units supported by the driver.
942 **    n enables logic unit numbers 0..n-1.
943 **    The common SCSI devices require only
944 **    one lun, so take 1 as the default.
945 */
946 
947 #ifdef SCSI_NCR_MAX_LUN
948 #define MAX_LUN    SCSI_NCR_MAX_LUN
949 #else
950 #define MAX_LUN    (1)
951 #endif
952 
953 /*
954 **    Asynchronous pre-scaler (ns). Shall be 40
955 */
956 
957 #ifndef SCSI_NCR_MIN_ASYNC
958 #define SCSI_NCR_MIN_ASYNC (40)
959 #endif
960 
961 /*
962 **    The maximum number of jobs scheduled for starting.
963 **    There should be one slot per target, and one slot
964 **    for each tag of each target in use.
965 **    The calculation below is actually quite silly ...
966 */
967 
968 #ifdef SCSI_NCR_CAN_QUEUE
969 #define MAX_START   (SCSI_NCR_CAN_QUEUE + 4)
970 #else
971 #define MAX_START   (MAX_TARGET + 7 * MAX_TAGS)
972 #endif
973 
974 /*
975 **   We limit the max number of pending IO to 250.
976 **   since we donnot want to allocate more than 1
977 **   PAGE for 'scripth'.
978 */
979 #if	MAX_START > 250
980 #undef	MAX_START
981 #define	MAX_START 250
982 #endif
983 
984 /*
985 **    The maximum number of segments a transfer is split into.
986 **    We support up to 127 segments for both read and write.
987 **    The data scripts are broken into 2 sub-scripts.
988 **    80 (MAX_SCATTERL) segments are moved from a sub-script
989 **    in on-chip RAM. This makes data transfers shorter than
990 **    80k (assuming 1k fs) as fast as possible.
991 */
992 
993 #define MAX_SCATTER (SCSI_NCR_MAX_SCATTER)
994 
995 #if (MAX_SCATTER > 80)
996 #define MAX_SCATTERL	80
997 #define	MAX_SCATTERH	(MAX_SCATTER - MAX_SCATTERL)
998 #else
999 #define MAX_SCATTERL	(MAX_SCATTER-1)
1000 #define	MAX_SCATTERH	1
1001 #endif
1002 
1003 /*
1004 **	other
1005 */
1006 
1007 #define NCR_SNOOP_TIMEOUT (1000000)
1008 
1009 /*
1010 **	Other definitions
1011 */
1012 
1013 #define ScsiResult(host_code, scsi_code) (((host_code) << 16) + ((scsi_code) & 0x7f))
1014 
1015 #define initverbose (driver_setup.verbose)
1016 #define bootverbose (np->verbose)
1017 
1018 /*==========================================================
1019 **
1020 **	Command control block states.
1021 **
1022 **==========================================================
1023 */
1024 
1025 #define HS_IDLE		(0)
1026 #define HS_BUSY		(1)
1027 #define HS_NEGOTIATE	(2)	/* sync/wide data transfer*/
1028 #define HS_DISCONNECT	(3)	/* Disconnected by target */
1029 
1030 #define HS_DONEMASK	(0x80)
1031 #define HS_COMPLETE	(4|HS_DONEMASK)
1032 #define HS_SEL_TIMEOUT	(5|HS_DONEMASK)	/* Selection timeout      */
1033 #define HS_RESET	(6|HS_DONEMASK)	/* SCSI reset	          */
1034 #define HS_ABORTED	(7|HS_DONEMASK)	/* Transfer aborted       */
1035 #define HS_TIMEOUT	(8|HS_DONEMASK)	/* Software timeout       */
1036 #define HS_FAIL		(9|HS_DONEMASK)	/* SCSI or PCI bus errors */
1037 #define HS_UNEXPECTED	(10|HS_DONEMASK)/* Unexpected disconnect  */
1038 
1039 /*
1040 **	Invalid host status values used by the SCRIPTS processor
1041 **	when the nexus is not fully identified.
1042 **	Shall never appear in a CCB.
1043 */
1044 
1045 #define HS_INVALMASK	(0x40)
1046 #define	HS_SELECTING	(0|HS_INVALMASK)
1047 #define	HS_IN_RESELECT	(1|HS_INVALMASK)
1048 #define	HS_STARTING	(2|HS_INVALMASK)
1049 
1050 /*
1051 **	Flags set by the SCRIPT processor for commands
1052 **	that have been skipped.
1053 */
1054 #define HS_SKIPMASK	(0x20)
1055 
1056 /*==========================================================
1057 **
1058 **	Software Interrupt Codes
1059 **
1060 **==========================================================
1061 */
1062 
1063 #define	SIR_BAD_STATUS		(1)
1064 #define	SIR_XXXXXXXXXX		(2)
1065 #define	SIR_NEGO_SYNC		(3)
1066 #define	SIR_NEGO_WIDE		(4)
1067 #define	SIR_NEGO_FAILED		(5)
1068 #define	SIR_NEGO_PROTO		(6)
1069 #define	SIR_REJECT_RECEIVED	(7)
1070 #define	SIR_REJECT_SENT		(8)
1071 #define	SIR_IGN_RESIDUE		(9)
1072 #define	SIR_MISSING_SAVE	(10)
1073 #define	SIR_RESEL_NO_MSG_IN	(11)
1074 #define	SIR_RESEL_NO_IDENTIFY	(12)
1075 #define	SIR_RESEL_BAD_LUN	(13)
1076 #define	SIR_RESEL_BAD_TARGET	(14)
1077 #define	SIR_RESEL_BAD_I_T_L	(15)
1078 #define	SIR_RESEL_BAD_I_T_L_Q	(16)
1079 #define	SIR_DONE_OVERFLOW	(17)
1080 #define	SIR_INTFLY		(18)
1081 #define	SIR_MAX			(18)
1082 
1083 /*==========================================================
1084 **
1085 **	Extended error codes.
1086 **	xerr_status field of struct ccb.
1087 **
1088 **==========================================================
1089 */
1090 
1091 #define	XE_OK		(0)
1092 #define	XE_EXTRA_DATA	(1)	/* unexpected data phase */
1093 #define	XE_BAD_PHASE	(2)	/* illegal phase (4/5)   */
1094 
1095 /*==========================================================
1096 **
1097 **	Negotiation status.
1098 **	nego_status field	of struct ccb.
1099 **
1100 **==========================================================
1101 */
1102 
1103 #define NS_NOCHANGE	(0)
1104 #define NS_SYNC		(1)
1105 #define NS_WIDE		(2)
1106 #define NS_PPR		(4)
1107 
1108 /*==========================================================
1109 **
1110 **	Misc.
1111 **
1112 **==========================================================
1113 */
1114 
1115 #define CCB_MAGIC	(0xf2691ad2)
1116 
1117 /*==========================================================
1118 **
1119 **	Declaration of structs.
1120 **
1121 **==========================================================
1122 */
1123 
1124 static struct scsi_transport_template *ncr53c8xx_transport_template = NULL;
1125 
1126 struct tcb;
1127 struct lcb;
1128 struct ccb;
1129 struct ncb;
1130 struct script;
1131 
1132 struct link {
1133 	ncrcmd	l_cmd;
1134 	ncrcmd	l_paddr;
1135 };
1136 
1137 struct	usrcmd {
1138 	u_long	target;
1139 	u_long	lun;
1140 	u_long	data;
1141 	u_long	cmd;
1142 };
1143 
1144 #define UC_SETSYNC      10
1145 #define UC_SETTAGS	11
1146 #define UC_SETDEBUG	12
1147 #define UC_SETORDER	13
1148 #define UC_SETWIDE	14
1149 #define UC_SETFLAG	15
1150 #define UC_SETVERBOSE	17
1151 
1152 #define	UF_TRACE	(0x01)
1153 #define	UF_NODISC	(0x02)
1154 #define	UF_NOSCAN	(0x04)
1155 
1156 /*========================================================================
1157 **
1158 **	Declaration of structs:		target control block
1159 **
1160 **========================================================================
1161 */
1162 struct tcb {
1163 	/*----------------------------------------------------------------
1164 	**	During reselection the ncr jumps to this point with SFBR
1165 	**	set to the encoded target number with bit 7 set.
1166 	**	if it's not this target, jump to the next.
1167 	**
1168 	**	JUMP  IF (SFBR != #target#), @(next tcb)
1169 	**----------------------------------------------------------------
1170 	*/
1171 	struct link   jump_tcb;
1172 
1173 	/*----------------------------------------------------------------
1174 	**	Load the actual values for the sxfer and the scntl3
1175 	**	register (sync/wide mode).
1176 	**
1177 	**	SCR_COPY (1), @(sval field of this tcb), @(sxfer  register)
1178 	**	SCR_COPY (1), @(wval field of this tcb), @(scntl3 register)
1179 	**----------------------------------------------------------------
1180 	*/
1181 	ncrcmd	getscr[6];
1182 
1183 	/*----------------------------------------------------------------
1184 	**	Get the IDENTIFY message and load the LUN to SFBR.
1185 	**
1186 	**	CALL, <RESEL_LUN>
1187 	**----------------------------------------------------------------
1188 	*/
1189 	struct link   call_lun;
1190 
1191 	/*----------------------------------------------------------------
1192 	**	Now look for the right lun.
1193 	**
1194 	**	For i = 0 to 3
1195 	**		SCR_JUMP ^ IFTRUE(MASK(i, 3)), @(first lcb mod. i)
1196 	**
1197 	**	Recent chips will prefetch the 4 JUMPS using only 1 burst.
1198 	**	It is kind of hashcoding.
1199 	**----------------------------------------------------------------
1200 	*/
1201 	struct link     jump_lcb[4];	/* JUMPs for reselection	*/
1202 	struct lcb *	lp[MAX_LUN];	/* The lcb's of this tcb	*/
1203 
1204 	/*----------------------------------------------------------------
1205 	**	Pointer to the ccb used for negotiation.
1206 	**	Prevent from starting a negotiation for all queued commands
1207 	**	when tagged command queuing is enabled.
1208 	**----------------------------------------------------------------
1209 	*/
1210 	struct ccb *   nego_cp;
1211 
1212 	/*----------------------------------------------------------------
1213 	**	statistical data
1214 	**----------------------------------------------------------------
1215 	*/
1216 	u_long	transfers;
1217 	u_long	bytes;
1218 
1219 	/*----------------------------------------------------------------
1220 	**	negotiation of wide and synch transfer and device quirks.
1221 	**----------------------------------------------------------------
1222 	*/
1223 #ifdef SCSI_NCR_BIG_ENDIAN
1224 /*0*/	u16	period;
1225 /*2*/	u_char	sval;
1226 /*3*/	u_char	minsync;
1227 /*0*/	u_char	wval;
1228 /*1*/	u_char	widedone;
1229 /*2*/	u_char	quirks;
1230 /*3*/	u_char	maxoffs;
1231 #else
1232 /*0*/	u_char	minsync;
1233 /*1*/	u_char	sval;
1234 /*2*/	u16	period;
1235 /*0*/	u_char	maxoffs;
1236 /*1*/	u_char	quirks;
1237 /*2*/	u_char	widedone;
1238 /*3*/	u_char	wval;
1239 #endif
1240 
1241 	/* User settable limits and options.  */
1242 	u_char	usrsync;
1243 	u_char	usrwide;
1244 	u_char	usrtags;
1245 	u_char	usrflag;
1246 	struct scsi_target *starget;
1247 };
1248 
1249 /*========================================================================
1250 **
1251 **	Declaration of structs:		lun control block
1252 **
1253 **========================================================================
1254 */
1255 struct lcb {
1256 	/*----------------------------------------------------------------
1257 	**	During reselection the ncr jumps to this point
1258 	**	with SFBR set to the "Identify" message.
1259 	**	if it's not this lun, jump to the next.
1260 	**
1261 	**	JUMP  IF (SFBR != #lun#), @(next lcb of this target)
1262 	**
1263 	**	It is this lun. Load TEMP with the nexus jumps table
1264 	**	address and jump to RESEL_TAG (or RESEL_NOTAG).
1265 	**
1266 	**		SCR_COPY (4), p_jump_ccb, TEMP,
1267 	**		SCR_JUMP, <RESEL_TAG>
1268 	**----------------------------------------------------------------
1269 	*/
1270 	struct link	jump_lcb;
1271 	ncrcmd		load_jump_ccb[3];
1272 	struct link	jump_tag;
1273 	ncrcmd		p_jump_ccb;	/* Jump table bus address	*/
1274 
1275 	/*----------------------------------------------------------------
1276 	**	Jump table used by the script processor to directly jump
1277 	**	to the CCB corresponding to the reselected nexus.
1278 	**	Address is allocated on 256 bytes boundary in order to
1279 	**	allow 8 bit calculation of the tag jump entry for up to
1280 	**	64 possible tags.
1281 	**----------------------------------------------------------------
1282 	*/
1283 	u32		jump_ccb_0;	/* Default table if no tags	*/
1284 	u32		*jump_ccb;	/* Virtual address		*/
1285 
1286 	/*----------------------------------------------------------------
1287 	**	CCB queue management.
1288 	**----------------------------------------------------------------
1289 	*/
1290 	struct list_head free_ccbq;	/* Queue of available CCBs	*/
1291 	struct list_head busy_ccbq;	/* Queue of busy CCBs		*/
1292 	struct list_head wait_ccbq;	/* Queue of waiting for IO CCBs	*/
1293 	struct list_head skip_ccbq;	/* Queue of skipped CCBs	*/
1294 	u_char		actccbs;	/* Number of allocated CCBs	*/
1295 	u_char		busyccbs;	/* CCBs busy for this lun	*/
1296 	u_char		queuedccbs;	/* CCBs queued to the controller*/
1297 	u_char		queuedepth;	/* Queue depth for this lun	*/
1298 	u_char		scdev_depth;	/* SCSI device queue depth	*/
1299 	u_char		maxnxs;		/* Max possible nexuses		*/
1300 
1301 	/*----------------------------------------------------------------
1302 	**	Control of tagged command queuing.
1303 	**	Tags allocation is performed using a circular buffer.
1304 	**	This avoids using a loop for tag allocation.
1305 	**----------------------------------------------------------------
1306 	*/
1307 	u_char		ia_tag;		/* Allocation index		*/
1308 	u_char		if_tag;		/* Freeing index		*/
1309 	u_char cb_tags[MAX_TAGS];	/* Circular tags buffer	*/
1310 	u_char		usetags;	/* Command queuing is active	*/
1311 	u_char		maxtags;	/* Max nr of tags asked by user	*/
1312 	u_char		numtags;	/* Current number of tags	*/
1313 
1314 	/*----------------------------------------------------------------
1315 	**	QUEUE FULL control and ORDERED tag control.
1316 	**----------------------------------------------------------------
1317 	*/
1318 	/*----------------------------------------------------------------
1319 	**	QUEUE FULL and ORDERED tag control.
1320 	**----------------------------------------------------------------
1321 	*/
1322 	u16		num_good;	/* Nr of GOOD since QUEUE FULL	*/
1323 	tagmap_t	tags_umap;	/* Used tags bitmap		*/
1324 	tagmap_t	tags_smap;	/* Tags in use at 'tag_stime'	*/
1325 	u_long		tags_stime;	/* Last time we set smap=umap	*/
1326 	struct ccb *	held_ccb;	/* CCB held for QUEUE FULL	*/
1327 };
1328 
1329 /*========================================================================
1330 **
1331 **      Declaration of structs:     the launch script.
1332 **
1333 **========================================================================
1334 **
1335 **	It is part of the CCB and is called by the scripts processor to
1336 **	start or restart the data structure (nexus).
1337 **	This 6 DWORDs mini script makes use of prefetching.
1338 **
1339 **------------------------------------------------------------------------
1340 */
1341 struct launch {
1342 	/*----------------------------------------------------------------
1343 	**	SCR_COPY(4),	@(p_phys), @(dsa register)
1344 	**	SCR_JUMP,	@(scheduler_point)
1345 	**----------------------------------------------------------------
1346 	*/
1347 	ncrcmd		setup_dsa[3];	/* Copy 'phys' address to dsa	*/
1348 	struct link	schedule;	/* Jump to scheduler point	*/
1349 	ncrcmd		p_phys;		/* 'phys' header bus address	*/
1350 };
1351 
1352 /*========================================================================
1353 **
1354 **      Declaration of structs:     global HEADER.
1355 **
1356 **========================================================================
1357 **
1358 **	This substructure is copied from the ccb to a global address after
1359 **	selection (or reselection) and copied back before disconnect.
1360 **
1361 **	These fields are accessible to the script processor.
1362 **
1363 **------------------------------------------------------------------------
1364 */
1365 
1366 struct head {
1367 	/*----------------------------------------------------------------
1368 	**	Saved data pointer.
1369 	**	Points to the position in the script responsible for the
1370 	**	actual transfer transfer of data.
1371 	**	It's written after reception of a SAVE_DATA_POINTER message.
1372 	**	The goalpointer points after the last transfer command.
1373 	**----------------------------------------------------------------
1374 	*/
1375 	u32		savep;
1376 	u32		lastp;
1377 	u32		goalp;
1378 
1379 	/*----------------------------------------------------------------
1380 	**	Alternate data pointer.
1381 	**	They are copied back to savep/lastp/goalp by the SCRIPTS
1382 	**	when the direction is unknown and the device claims data out.
1383 	**----------------------------------------------------------------
1384 	*/
1385 	u32		wlastp;
1386 	u32		wgoalp;
1387 
1388 	/*----------------------------------------------------------------
1389 	**	The virtual address of the ccb containing this header.
1390 	**----------------------------------------------------------------
1391 	*/
1392 	struct ccb *	cp;
1393 
1394 	/*----------------------------------------------------------------
1395 	**	Status fields.
1396 	**----------------------------------------------------------------
1397 	*/
1398 	u_char		scr_st[4];	/* script status		*/
1399 	u_char		status[4];	/* host status. must be the 	*/
1400 					/*  last DWORD of the header.	*/
1401 };
1402 
1403 /*
1404 **	The status bytes are used by the host and the script processor.
1405 **
1406 **	The byte corresponding to the host_status must be stored in the
1407 **	last DWORD of the CCB header since it is used for command
1408 **	completion (ncr_wakeup()). Doing so, we are sure that the header
1409 **	has been entirely copied back to the CCB when the host_status is
1410 **	seen complete by the CPU.
1411 **
1412 **	The last four bytes (status[4]) are copied to the scratchb register
1413 **	(declared as scr0..scr3 in ncr_reg.h) just after the select/reselect,
1414 **	and copied back just after disconnecting.
1415 **	Inside the script the XX_REG are used.
1416 **
1417 **	The first four bytes (scr_st[4]) are used inside the script by
1418 **	"COPY" commands.
1419 **	Because source and destination must have the same alignment
1420 **	in a DWORD, the fields HAVE to be at the chosen offsets.
1421 **		xerr_st		0	(0x34)	scratcha
1422 **		sync_st		1	(0x05)	sxfer
1423 **		wide_st		3	(0x03)	scntl3
1424 */
1425 
1426 /*
1427 **	Last four bytes (script)
1428 */
1429 #define  QU_REG	scr0
1430 #define  HS_REG	scr1
1431 #define  HS_PRT	nc_scr1
1432 #define  SS_REG	scr2
1433 #define  SS_PRT	nc_scr2
1434 #define  PS_REG	scr3
1435 
1436 /*
1437 **	Last four bytes (host)
1438 */
1439 #ifdef SCSI_NCR_BIG_ENDIAN
1440 #define  actualquirks  phys.header.status[3]
1441 #define  host_status   phys.header.status[2]
1442 #define  scsi_status   phys.header.status[1]
1443 #define  parity_status phys.header.status[0]
1444 #else
1445 #define  actualquirks  phys.header.status[0]
1446 #define  host_status   phys.header.status[1]
1447 #define  scsi_status   phys.header.status[2]
1448 #define  parity_status phys.header.status[3]
1449 #endif
1450 
1451 /*
1452 **	First four bytes (script)
1453 */
1454 #define  xerr_st       header.scr_st[0]
1455 #define  sync_st       header.scr_st[1]
1456 #define  nego_st       header.scr_st[2]
1457 #define  wide_st       header.scr_st[3]
1458 
1459 /*
1460 **	First four bytes (host)
1461 */
1462 #define  xerr_status   phys.xerr_st
1463 #define  nego_status   phys.nego_st
1464 
1465 #if 0
1466 #define  sync_status   phys.sync_st
1467 #define  wide_status   phys.wide_st
1468 #endif
1469 
1470 /*==========================================================
1471 **
1472 **      Declaration of structs:     Data structure block
1473 **
1474 **==========================================================
1475 **
1476 **	During execution of a ccb by the script processor,
1477 **	the DSA (data structure address) register points
1478 **	to this substructure of the ccb.
1479 **	This substructure contains the header with
1480 **	the script-processor-changeable data and
1481 **	data blocks for the indirect move commands.
1482 **
1483 **----------------------------------------------------------
1484 */
1485 
1486 struct dsb {
1487 
1488 	/*
1489 	**	Header.
1490 	*/
1491 
1492 	struct head	header;
1493 
1494 	/*
1495 	**	Table data for Script
1496 	*/
1497 
1498 	struct scr_tblsel  select;
1499 	struct scr_tblmove smsg  ;
1500 	struct scr_tblmove cmd   ;
1501 	struct scr_tblmove sense ;
1502 	struct scr_tblmove data[MAX_SCATTER];
1503 };
1504 
1505 
1506 /*========================================================================
1507 **
1508 **      Declaration of structs:     Command control block.
1509 **
1510 **========================================================================
1511 */
1512 struct ccb {
1513 	/*----------------------------------------------------------------
1514 	**	This is the data structure which is pointed by the DSA
1515 	**	register when it is executed by the script processor.
1516 	**	It must be the first entry because it contains the header
1517 	**	as first entry that must be cache line aligned.
1518 	**----------------------------------------------------------------
1519 	*/
1520 	struct dsb	phys;
1521 
1522 	/*----------------------------------------------------------------
1523 	**	Mini-script used at CCB execution start-up.
1524 	**	Load the DSA with the data structure address (phys) and
1525 	**	jump to SELECT. Jump to CANCEL if CCB is to be canceled.
1526 	**----------------------------------------------------------------
1527 	*/
1528 	struct launch	start;
1529 
1530 	/*----------------------------------------------------------------
1531 	**	Mini-script used at CCB relection to restart the nexus.
1532 	**	Load the DSA with the data structure address (phys) and
1533 	**	jump to RESEL_DSA. Jump to ABORT if CCB is to be aborted.
1534 	**----------------------------------------------------------------
1535 	*/
1536 	struct launch	restart;
1537 
1538 	/*----------------------------------------------------------------
1539 	**	If a data transfer phase is terminated too early
1540 	**	(after reception of a message (i.e. DISCONNECT)),
1541 	**	we have to prepare a mini script to transfer
1542 	**	the rest of the data.
1543 	**----------------------------------------------------------------
1544 	*/
1545 	ncrcmd		patch[8];
1546 
1547 	/*----------------------------------------------------------------
1548 	**	The general SCSI driver provides a
1549 	**	pointer to a control block.
1550 	**----------------------------------------------------------------
1551 	*/
1552 	struct scsi_cmnd	*cmd;		/* SCSI command 		*/
1553 	u_char		cdb_buf[16];	/* Copy of CDB			*/
1554 	u_char		sense_buf[64];
1555 	int		data_len;	/* Total data length		*/
1556 
1557 	/*----------------------------------------------------------------
1558 	**	Message areas.
1559 	**	We prepare a message to be sent after selection.
1560 	**	We may use a second one if the command is rescheduled
1561 	**	due to GETCC or QFULL.
1562 	**      Contents are IDENTIFY and SIMPLE_TAG.
1563 	**	While negotiating sync or wide transfer,
1564 	**	a SDTR or WDTR message is appended.
1565 	**----------------------------------------------------------------
1566 	*/
1567 	u_char		scsi_smsg [8];
1568 	u_char		scsi_smsg2[8];
1569 
1570 	/*----------------------------------------------------------------
1571 	**	Other fields.
1572 	**----------------------------------------------------------------
1573 	*/
1574 	u_long		p_ccb;		/* BUS address of this CCB	*/
1575 	u_char		sensecmd[6];	/* Sense command		*/
1576 	u_char		tag;		/* Tag for this transfer	*/
1577 					/*  255 means no tag		*/
1578 	u_char		target;
1579 	u_char		lun;
1580 	u_char		queued;
1581 	u_char		auto_sense;
1582 	struct ccb *	link_ccb;	/* Host adapter CCB chain	*/
1583 	struct list_head link_ccbq;	/* Link to unit CCB queue	*/
1584 	u32		startp;		/* Initial data pointer		*/
1585 	u_long		magic;		/* Free / busy  CCB flag	*/
1586 };
1587 
1588 #define CCB_PHYS(cp,lbl)	(cp->p_ccb + offsetof(struct ccb, lbl))
1589 
1590 
1591 /*========================================================================
1592 **
1593 **      Declaration of structs:     NCR device descriptor
1594 **
1595 **========================================================================
1596 */
1597 struct ncb {
1598 	/*----------------------------------------------------------------
1599 	**	The global header.
1600 	**	It is accessible to both the host and the script processor.
1601 	**	Must be cache line size aligned (32 for x86) in order to
1602 	**	allow cache line bursting when it is copied to/from CCB.
1603 	**----------------------------------------------------------------
1604 	*/
1605 	struct head     header;
1606 
1607 	/*----------------------------------------------------------------
1608 	**	CCBs management queues.
1609 	**----------------------------------------------------------------
1610 	*/
1611 	struct scsi_cmnd	*waiting_list;	/* Commands waiting for a CCB	*/
1612 					/*  when lcb is not allocated.	*/
1613 	struct scsi_cmnd	*done_list;	/* Commands waiting for done()  */
1614 					/* callback to be invoked.      */
1615 	spinlock_t	smp_lock;	/* Lock for SMP threading       */
1616 
1617 	/*----------------------------------------------------------------
1618 	**	Chip and controller identification.
1619 	**----------------------------------------------------------------
1620 	*/
1621 	int		unit;		/* Unit number			*/
1622 	char		inst_name[16];	/* ncb instance name		*/
1623 
1624 	/*----------------------------------------------------------------
1625 	**	Initial value of some IO register bits.
1626 	**	These values are assumed to have been set by BIOS, and may
1627 	**	be used for probing adapter implementation differences.
1628 	**----------------------------------------------------------------
1629 	*/
1630 	u_char	sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest0, sv_ctest3,
1631 		sv_ctest4, sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4;
1632 
1633 	/*----------------------------------------------------------------
1634 	**	Actual initial value of IO register bits used by the
1635 	**	driver. They are loaded at initialisation according to
1636 	**	features that are to be enabled.
1637 	**----------------------------------------------------------------
1638 	*/
1639 	u_char	rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest0, rv_ctest3,
1640 		rv_ctest4, rv_ctest5, rv_stest2;
1641 
1642 	/*----------------------------------------------------------------
1643 	**	Targets management.
1644 	**	During reselection the ncr jumps to jump_tcb.
1645 	**	The SFBR register is loaded with the encoded target id.
1646 	**	For i = 0 to 3
1647 	**		SCR_JUMP ^ IFTRUE(MASK(i, 3)), @(next tcb mod. i)
1648 	**
1649 	**	Recent chips will prefetch the 4 JUMPS using only 1 burst.
1650 	**	It is kind of hashcoding.
1651 	**----------------------------------------------------------------
1652 	*/
1653 	struct link     jump_tcb[4];	/* JUMPs for reselection	*/
1654 	struct tcb  target[MAX_TARGET];	/* Target data			*/
1655 
1656 	/*----------------------------------------------------------------
1657 	**	Virtual and physical bus addresses of the chip.
1658 	**----------------------------------------------------------------
1659 	*/
1660 	void __iomem *vaddr;		/* Virtual and bus address of	*/
1661 	unsigned long	paddr;		/*  chip's IO registers.	*/
1662 	unsigned long	paddr2;		/* On-chip RAM bus address.	*/
1663 	volatile			/* Pointer to volatile for 	*/
1664 	struct ncr_reg	__iomem *reg;	/*  memory mapped IO.		*/
1665 
1666 	/*----------------------------------------------------------------
1667 	**	SCRIPTS virtual and physical bus addresses.
1668 	**	'script'  is loaded in the on-chip RAM if present.
1669 	**	'scripth' stays in main memory.
1670 	**----------------------------------------------------------------
1671 	*/
1672 	struct script	*script0;	/* Copies of script and scripth	*/
1673 	struct scripth	*scripth0;	/*  relocated for this ncb.	*/
1674 	struct scripth	*scripth;	/* Actual scripth virt. address	*/
1675 	u_long		p_script;	/* Actual script and scripth	*/
1676 	u_long		p_scripth;	/*  bus addresses.		*/
1677 
1678 	/*----------------------------------------------------------------
1679 	**	General controller parameters and configuration.
1680 	**----------------------------------------------------------------
1681 	*/
1682 	struct device	*dev;
1683 	u_char		revision_id;	/* PCI device revision id	*/
1684 	u32		irq;		/* IRQ level			*/
1685 	u32		features;	/* Chip features map		*/
1686 	u_char		myaddr;		/* SCSI id of the adapter	*/
1687 	u_char		maxburst;	/* log base 2 of dwords burst	*/
1688 	u_char		maxwide;	/* Maximum transfer width	*/
1689 	u_char		minsync;	/* Minimum sync period factor	*/
1690 	u_char		maxsync;	/* Maximum sync period factor	*/
1691 	u_char		maxoffs;	/* Max scsi offset		*/
1692 	u_char		multiplier;	/* Clock multiplier (1,2,4)	*/
1693 	u_char		clock_divn;	/* Number of clock divisors	*/
1694 	u_long		clock_khz;	/* SCSI clock frequency in KHz	*/
1695 
1696 	/*----------------------------------------------------------------
1697 	**	Start queue management.
1698 	**	It is filled up by the host processor and accessed by the
1699 	**	SCRIPTS processor in order to start SCSI commands.
1700 	**----------------------------------------------------------------
1701 	*/
1702 	u16		squeueput;	/* Next free slot of the queue	*/
1703 	u16		actccbs;	/* Number of allocated CCBs	*/
1704 	u16		queuedccbs;	/* Number of CCBs in start queue*/
1705 	u16		queuedepth;	/* Start queue depth		*/
1706 
1707 	/*----------------------------------------------------------------
1708 	**	Timeout handler.
1709 	**----------------------------------------------------------------
1710 	*/
1711 	struct timer_list timer;	/* Timer handler link header	*/
1712 	u_long		lasttime;
1713 	u_long		settle_time;	/* Resetting the SCSI BUS	*/
1714 
1715 	/*----------------------------------------------------------------
1716 	**	Debugging and profiling.
1717 	**----------------------------------------------------------------
1718 	*/
1719 	struct ncr_reg	regdump;	/* Register dump		*/
1720 	u_long		regtime;	/* Time it has been done	*/
1721 
1722 	/*----------------------------------------------------------------
1723 	**	Miscellaneous buffers accessed by the scripts-processor.
1724 	**	They shall be DWORD aligned, because they may be read or
1725 	**	written with a SCR_COPY script command.
1726 	**----------------------------------------------------------------
1727 	*/
1728 	u_char		msgout[8];	/* Buffer for MESSAGE OUT 	*/
1729 	u_char		msgin [8];	/* Buffer for MESSAGE IN	*/
1730 	u32		lastmsg;	/* Last SCSI message sent	*/
1731 	u_char		scratch;	/* Scratch for SCSI receive	*/
1732 
1733 	/*----------------------------------------------------------------
1734 	**	Miscellaneous configuration and status parameters.
1735 	**----------------------------------------------------------------
1736 	*/
1737 	u_char		disc;		/* Diconnection allowed		*/
1738 	u_char		scsi_mode;	/* Current SCSI BUS mode	*/
1739 	u_char		order;		/* Tag order to use		*/
1740 	u_char		verbose;	/* Verbosity for this controller*/
1741 	int		ncr_cache;	/* Used for cache test at init.	*/
1742 	u_long		p_ncb;		/* BUS address of this NCB	*/
1743 
1744 	/*----------------------------------------------------------------
1745 	**	Command completion handling.
1746 	**----------------------------------------------------------------
1747 	*/
1748 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
1749 	struct ccb	*(ccb_done[MAX_DONE]);
1750 	int		ccb_done_ic;
1751 #endif
1752 	/*----------------------------------------------------------------
1753 	**	Fields that should be removed or changed.
1754 	**----------------------------------------------------------------
1755 	*/
1756 	struct ccb	*ccb;		/* Global CCB			*/
1757 	struct usrcmd	user;		/* Command from user		*/
1758 	volatile u_char	release_stage;	/* Synchronisation stage on release  */
1759 };
1760 
1761 #define NCB_SCRIPT_PHYS(np,lbl)	 (np->p_script  + offsetof (struct script, lbl))
1762 #define NCB_SCRIPTH_PHYS(np,lbl) (np->p_scripth + offsetof (struct scripth,lbl))
1763 
1764 /*==========================================================
1765 **
1766 **
1767 **      Script for NCR-Processor.
1768 **
1769 **	Use ncr_script_fill() to create the variable parts.
1770 **	Use ncr_script_copy_and_bind() to make a copy and
1771 **	bind to physical addresses.
1772 **
1773 **
1774 **==========================================================
1775 **
1776 **	We have to know the offsets of all labels before
1777 **	we reach them (for forward jumps).
1778 **	Therefore we declare a struct here.
1779 **	If you make changes inside the script,
1780 **	DONT FORGET TO CHANGE THE LENGTHS HERE!
1781 **
1782 **----------------------------------------------------------
1783 */
1784 
1785 /*
1786 **	For HP Zalon/53c720 systems, the Zalon interface
1787 **	between CPU and 53c720 does prefetches, which causes
1788 **	problems with self modifying scripts.  The problem
1789 **	is overcome by calling a dummy subroutine after each
1790 **	modification, to force a refetch of the script on
1791 **	return from the subroutine.
1792 */
1793 
1794 #ifdef CONFIG_NCR53C8XX_PREFETCH
1795 #define PREFETCH_FLUSH_CNT	2
1796 #define PREFETCH_FLUSH		SCR_CALL, PADDRH (wait_dma),
1797 #else
1798 #define PREFETCH_FLUSH_CNT	0
1799 #define PREFETCH_FLUSH
1800 #endif
1801 
1802 /*
1803 **	Script fragments which are loaded into the on-chip RAM
1804 **	of 825A, 875 and 895 chips.
1805 */
1806 struct script {
1807 	ncrcmd	start		[  5];
1808 	ncrcmd  startpos	[  1];
1809 	ncrcmd	select		[  6];
1810 	ncrcmd	select2		[  9 + PREFETCH_FLUSH_CNT];
1811 	ncrcmd	loadpos		[  4];
1812 	ncrcmd	send_ident	[  9];
1813 	ncrcmd	prepare		[  6];
1814 	ncrcmd	prepare2	[  7];
1815 	ncrcmd  command		[  6];
1816 	ncrcmd  dispatch	[ 32];
1817 	ncrcmd  clrack		[  4];
1818 	ncrcmd	no_data		[ 17];
1819 	ncrcmd  status		[  8];
1820 	ncrcmd  msg_in		[  2];
1821 	ncrcmd  msg_in2		[ 16];
1822 	ncrcmd  msg_bad		[  4];
1823 	ncrcmd	setmsg		[  7];
1824 	ncrcmd	cleanup		[  6];
1825 	ncrcmd  complete	[  9];
1826 	ncrcmd	cleanup_ok	[  8 + PREFETCH_FLUSH_CNT];
1827 	ncrcmd	cleanup0	[  1];
1828 #ifndef SCSI_NCR_CCB_DONE_SUPPORT
1829 	ncrcmd	signal		[ 12];
1830 #else
1831 	ncrcmd	signal		[  9];
1832 	ncrcmd	done_pos	[  1];
1833 	ncrcmd	done_plug	[  2];
1834 	ncrcmd	done_end	[  7];
1835 #endif
1836 	ncrcmd  save_dp		[  7];
1837 	ncrcmd  restore_dp	[  5];
1838 	ncrcmd  disconnect	[ 10];
1839 	ncrcmd	msg_out		[  9];
1840 	ncrcmd	msg_out_done	[  7];
1841 	ncrcmd  idle		[  2];
1842 	ncrcmd	reselect	[  8];
1843 	ncrcmd	reselected	[  8];
1844 	ncrcmd	resel_dsa	[  6 + PREFETCH_FLUSH_CNT];
1845 	ncrcmd	loadpos1	[  4];
1846 	ncrcmd  resel_lun	[  6];
1847 	ncrcmd	resel_tag	[  6];
1848 	ncrcmd	jump_to_nexus	[  4 + PREFETCH_FLUSH_CNT];
1849 	ncrcmd	nexus_indirect	[  4];
1850 	ncrcmd	resel_notag	[  4];
1851 	ncrcmd  data_in		[MAX_SCATTERL * 4];
1852 	ncrcmd  data_in2	[  4];
1853 	ncrcmd  data_out	[MAX_SCATTERL * 4];
1854 	ncrcmd  data_out2	[  4];
1855 };
1856 
1857 /*
1858 **	Script fragments which stay in main memory for all chips.
1859 */
1860 struct scripth {
1861 	ncrcmd  tryloop		[MAX_START*2];
1862 	ncrcmd  tryloop2	[  2];
1863 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
1864 	ncrcmd  done_queue	[MAX_DONE*5];
1865 	ncrcmd  done_queue2	[  2];
1866 #endif
1867 	ncrcmd	select_no_atn	[  8];
1868 	ncrcmd	cancel		[  4];
1869 	ncrcmd	skip		[  9 + PREFETCH_FLUSH_CNT];
1870 	ncrcmd	skip2		[ 19];
1871 	ncrcmd	par_err_data_in	[  6];
1872 	ncrcmd	par_err_other	[  4];
1873 	ncrcmd	msg_reject	[  8];
1874 	ncrcmd	msg_ign_residue	[ 24];
1875 	ncrcmd  msg_extended	[ 10];
1876 	ncrcmd  msg_ext_2	[ 10];
1877 	ncrcmd	msg_wdtr	[ 14];
1878 	ncrcmd	send_wdtr	[  7];
1879 	ncrcmd  msg_ext_3	[ 10];
1880 	ncrcmd	msg_sdtr	[ 14];
1881 	ncrcmd	send_sdtr	[  7];
1882 	ncrcmd	nego_bad_phase	[  4];
1883 	ncrcmd	msg_out_abort	[ 10];
1884 	ncrcmd  hdata_in	[MAX_SCATTERH * 4];
1885 	ncrcmd  hdata_in2	[  2];
1886 	ncrcmd  hdata_out	[MAX_SCATTERH * 4];
1887 	ncrcmd  hdata_out2	[  2];
1888 	ncrcmd	reset		[  4];
1889 	ncrcmd	aborttag	[  4];
1890 	ncrcmd	abort		[  2];
1891 	ncrcmd	abort_resel	[ 20];
1892 	ncrcmd	resend_ident	[  4];
1893 	ncrcmd	clratn_go_on	[  3];
1894 	ncrcmd	nxtdsp_go_on	[  1];
1895 	ncrcmd	sdata_in	[  8];
1896 	ncrcmd  data_io		[ 18];
1897 	ncrcmd	bad_identify	[ 12];
1898 	ncrcmd	bad_i_t_l	[  4];
1899 	ncrcmd	bad_i_t_l_q	[  4];
1900 	ncrcmd	bad_target	[  8];
1901 	ncrcmd	bad_status	[  8];
1902 	ncrcmd	start_ram	[  4 + PREFETCH_FLUSH_CNT];
1903 	ncrcmd	start_ram0	[  4];
1904 	ncrcmd	sto_restart	[  5];
1905 	ncrcmd	wait_dma	[  2];
1906 	ncrcmd	snooptest	[  9];
1907 	ncrcmd	snoopend	[  2];
1908 };
1909 
1910 /*==========================================================
1911 **
1912 **
1913 **      Function headers.
1914 **
1915 **
1916 **==========================================================
1917 */
1918 
1919 static	void	ncr_alloc_ccb	(struct ncb *np, u_char tn, u_char ln);
1920 static	void	ncr_complete	(struct ncb *np, struct ccb *cp);
1921 static	void	ncr_exception	(struct ncb *np);
1922 static	void	ncr_free_ccb	(struct ncb *np, struct ccb *cp);
1923 static	void	ncr_init_ccb	(struct ncb *np, struct ccb *cp);
1924 static	void	ncr_init_tcb	(struct ncb *np, u_char tn);
1925 static	struct lcb *	ncr_alloc_lcb	(struct ncb *np, u_char tn, u_char ln);
1926 static	struct lcb *	ncr_setup_lcb	(struct ncb *np, struct scsi_device *sdev);
1927 static	void	ncr_getclock	(struct ncb *np, int mult);
1928 static	void	ncr_selectclock	(struct ncb *np, u_char scntl3);
1929 static	struct ccb *ncr_get_ccb	(struct ncb *np, struct scsi_cmnd *cmd);
1930 static	void	ncr_chip_reset	(struct ncb *np, int delay);
1931 static	void	ncr_init	(struct ncb *np, int reset, char * msg, u_long code);
1932 static	int	ncr_int_sbmc	(struct ncb *np);
1933 static	int	ncr_int_par	(struct ncb *np);
1934 static	void	ncr_int_ma	(struct ncb *np);
1935 static	void	ncr_int_sir	(struct ncb *np);
1936 static  void    ncr_int_sto     (struct ncb *np);
1937 static	void	ncr_negotiate	(struct ncb* np, struct tcb* tp);
1938 static	int	ncr_prepare_nego(struct ncb *np, struct ccb *cp, u_char *msgptr);
1939 
1940 static	void	ncr_script_copy_and_bind
1941 				(struct ncb *np, ncrcmd *src, ncrcmd *dst, int len);
1942 static  void    ncr_script_fill (struct script * scr, struct scripth * scripth);
1943 static	int	ncr_scatter	(struct ncb *np, struct ccb *cp, struct scsi_cmnd *cmd);
1944 static	void	ncr_getsync	(struct ncb *np, u_char sfac, u_char *fakp, u_char *scntl3p);
1945 static	void	ncr_setsync	(struct ncb *np, struct ccb *cp, u_char scntl3, u_char sxfer);
1946 static	void	ncr_setup_tags	(struct ncb *np, struct scsi_device *sdev);
1947 static	void	ncr_setwide	(struct ncb *np, struct ccb *cp, u_char wide, u_char ack);
1948 static	int	ncr_snooptest	(struct ncb *np);
1949 static	void	ncr_timeout	(struct ncb *np);
1950 static  void    ncr_wakeup      (struct ncb *np, u_long code);
1951 static  void    ncr_wakeup_done (struct ncb *np);
1952 static	void	ncr_start_next_ccb (struct ncb *np, struct lcb * lp, int maxn);
1953 static	void	ncr_put_start_queue(struct ncb *np, struct ccb *cp);
1954 
1955 static void insert_into_waiting_list(struct ncb *np, struct scsi_cmnd *cmd);
1956 static struct scsi_cmnd *retrieve_from_waiting_list(int to_remove, struct ncb *np, struct scsi_cmnd *cmd);
1957 static void process_waiting_list(struct ncb *np, int sts);
1958 
1959 #define remove_from_waiting_list(np, cmd) \
1960 		retrieve_from_waiting_list(1, (np), (cmd))
1961 #define requeue_waiting_list(np) process_waiting_list((np), DID_OK)
1962 #define reset_waiting_list(np) process_waiting_list((np), DID_RESET)
1963 
1964 static inline char *ncr_name (struct ncb *np)
1965 {
1966 	return np->inst_name;
1967 }
1968 
1969 
1970 /*==========================================================
1971 **
1972 **
1973 **      Scripts for NCR-Processor.
1974 **
1975 **      Use ncr_script_bind for binding to physical addresses.
1976 **
1977 **
1978 **==========================================================
1979 **
1980 **	NADDR generates a reference to a field of the controller data.
1981 **	PADDR generates a reference to another part of the script.
1982 **	RADDR generates a reference to a script processor register.
1983 **	FADDR generates a reference to a script processor register
1984 **		with offset.
1985 **
1986 **----------------------------------------------------------
1987 */
1988 
1989 #define	RELOC_SOFTC	0x40000000
1990 #define	RELOC_LABEL	0x50000000
1991 #define	RELOC_REGISTER	0x60000000
1992 #if 0
1993 #define	RELOC_KVAR	0x70000000
1994 #endif
1995 #define	RELOC_LABELH	0x80000000
1996 #define	RELOC_MASK	0xf0000000
1997 
1998 #define	NADDR(label)	(RELOC_SOFTC | offsetof(struct ncb, label))
1999 #define PADDR(label)    (RELOC_LABEL | offsetof(struct script, label))
2000 #define PADDRH(label)   (RELOC_LABELH | offsetof(struct scripth, label))
2001 #define	RADDR(label)	(RELOC_REGISTER | REG(label))
2002 #define	FADDR(label,ofs)(RELOC_REGISTER | ((REG(label))+(ofs)))
2003 #if 0
2004 #define	KVAR(which)	(RELOC_KVAR | (which))
2005 #endif
2006 
2007 #if 0
2008 #define	SCRIPT_KVAR_JIFFIES	(0)
2009 #define	SCRIPT_KVAR_FIRST		SCRIPT_KVAR_JIFFIES
2010 #define	SCRIPT_KVAR_LAST		SCRIPT_KVAR_JIFFIES
2011 /*
2012  * Kernel variables referenced in the scripts.
2013  * THESE MUST ALL BE ALIGNED TO A 4-BYTE BOUNDARY.
2014  */
2015 static void *script_kvars[] __initdata =
2016 	{ (void *)&jiffies };
2017 #endif
2018 
2019 static	struct script script0 __initdata = {
2020 /*--------------------------< START >-----------------------*/ {
2021 	/*
2022 	**	This NOP will be patched with LED ON
2023 	**	SCR_REG_REG (gpreg, SCR_AND, 0xfe)
2024 	*/
2025 	SCR_NO_OP,
2026 		0,
2027 	/*
2028 	**      Clear SIGP.
2029 	*/
2030 	SCR_FROM_REG (ctest2),
2031 		0,
2032 	/*
2033 	**	Then jump to a certain point in tryloop.
2034 	**	Due to the lack of indirect addressing the code
2035 	**	is self modifying here.
2036 	*/
2037 	SCR_JUMP,
2038 }/*-------------------------< STARTPOS >--------------------*/,{
2039 		PADDRH(tryloop),
2040 
2041 }/*-------------------------< SELECT >----------------------*/,{
2042 	/*
2043 	**	DSA	contains the address of a scheduled
2044 	**		data structure.
2045 	**
2046 	**	SCRATCHA contains the address of the script,
2047 	**		which starts the next entry.
2048 	**
2049 	**	Set Initiator mode.
2050 	**
2051 	**	(Target mode is left as an exercise for the reader)
2052 	*/
2053 
2054 	SCR_CLR (SCR_TRG),
2055 		0,
2056 	SCR_LOAD_REG (HS_REG, HS_SELECTING),
2057 		0,
2058 
2059 	/*
2060 	**      And try to select this target.
2061 	*/
2062 	SCR_SEL_TBL_ATN ^ offsetof (struct dsb, select),
2063 		PADDR (reselect),
2064 
2065 }/*-------------------------< SELECT2 >----------------------*/,{
2066 	/*
2067 	**	Now there are 4 possibilities:
2068 	**
2069 	**	(1) The ncr loses arbitration.
2070 	**	This is ok, because it will try again,
2071 	**	when the bus becomes idle.
2072 	**	(But beware of the timeout function!)
2073 	**
2074 	**	(2) The ncr is reselected.
2075 	**	Then the script processor takes the jump
2076 	**	to the RESELECT label.
2077 	**
2078 	**	(3) The ncr wins arbitration.
2079 	**	Then it will execute SCRIPTS instruction until
2080 	**	the next instruction that checks SCSI phase.
2081 	**	Then will stop and wait for selection to be
2082 	**	complete or selection time-out to occur.
2083 	**	As a result the SCRIPTS instructions until
2084 	**	LOADPOS + 2 should be executed in parallel with
2085 	**	the SCSI core performing selection.
2086 	*/
2087 
2088 	/*
2089 	**	The MESSAGE_REJECT problem seems to be due to a selection
2090 	**	timing problem.
2091 	**	Wait immediately for the selection to complete.
2092 	**	(2.5x behaves so)
2093 	*/
2094 	SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_OUT)),
2095 		0,
2096 
2097 	/*
2098 	**	Next time use the next slot.
2099 	*/
2100 	SCR_COPY (4),
2101 		RADDR (temp),
2102 		PADDR (startpos),
2103 	/*
2104 	**      The ncr doesn't have an indirect load
2105 	**	or store command. So we have to
2106 	**	copy part of the control block to a
2107 	**	fixed place, where we can access it.
2108 	**
2109 	**	We patch the address part of a
2110 	**	COPY command with the DSA-register.
2111 	*/
2112 	SCR_COPY_F (4),
2113 		RADDR (dsa),
2114 		PADDR (loadpos),
2115 	/*
2116 	**	Flush script prefetch if required
2117 	*/
2118 	PREFETCH_FLUSH
2119 	/*
2120 	**	then we do the actual copy.
2121 	*/
2122 	SCR_COPY (sizeof (struct head)),
2123 	/*
2124 	**	continued after the next label ...
2125 	*/
2126 }/*-------------------------< LOADPOS >---------------------*/,{
2127 		0,
2128 		NADDR (header),
2129 	/*
2130 	**	Wait for the next phase or the selection
2131 	**	to complete or time-out.
2132 	*/
2133 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
2134 		PADDR (prepare),
2135 
2136 }/*-------------------------< SEND_IDENT >----------------------*/,{
2137 	/*
2138 	**	Selection complete.
2139 	**	Send the IDENTIFY and SIMPLE_TAG messages
2140 	**	(and the EXTENDED_SDTR message)
2141 	*/
2142 	SCR_MOVE_TBL ^ SCR_MSG_OUT,
2143 		offsetof (struct dsb, smsg),
2144 	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
2145 		PADDRH (resend_ident),
2146 	SCR_LOAD_REG (scratcha, 0x80),
2147 		0,
2148 	SCR_COPY (1),
2149 		RADDR (scratcha),
2150 		NADDR (lastmsg),
2151 }/*-------------------------< PREPARE >----------------------*/,{
2152 	/*
2153 	**      load the savep (saved pointer) into
2154 	**      the TEMP register (actual pointer)
2155 	*/
2156 	SCR_COPY (4),
2157 		NADDR (header.savep),
2158 		RADDR (temp),
2159 	/*
2160 	**      Initialize the status registers
2161 	*/
2162 	SCR_COPY (4),
2163 		NADDR (header.status),
2164 		RADDR (scr0),
2165 }/*-------------------------< PREPARE2 >---------------------*/,{
2166 	/*
2167 	**	Initialize the msgout buffer with a NOOP message.
2168 	*/
2169 	SCR_LOAD_REG (scratcha, NOP),
2170 		0,
2171 	SCR_COPY (1),
2172 		RADDR (scratcha),
2173 		NADDR (msgout),
2174 #if 0
2175 	SCR_COPY (1),
2176 		RADDR (scratcha),
2177 		NADDR (msgin),
2178 #endif
2179 	/*
2180 	**	Anticipate the COMMAND phase.
2181 	**	This is the normal case for initial selection.
2182 	*/
2183 	SCR_JUMP ^ IFFALSE (WHEN (SCR_COMMAND)),
2184 		PADDR (dispatch),
2185 
2186 }/*-------------------------< COMMAND >--------------------*/,{
2187 	/*
2188 	**	... and send the command
2189 	*/
2190 	SCR_MOVE_TBL ^ SCR_COMMAND,
2191 		offsetof (struct dsb, cmd),
2192 	/*
2193 	**	If status is still HS_NEGOTIATE, negotiation failed.
2194 	**	We check this here, since we want to do that
2195 	**	only once.
2196 	*/
2197 	SCR_FROM_REG (HS_REG),
2198 		0,
2199 	SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)),
2200 		SIR_NEGO_FAILED,
2201 
2202 }/*-----------------------< DISPATCH >----------------------*/,{
2203 	/*
2204 	**	MSG_IN is the only phase that shall be
2205 	**	entered at least once for each (re)selection.
2206 	**	So we test it first.
2207 	*/
2208 	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
2209 		PADDR (msg_in),
2210 
2211 	SCR_RETURN ^ IFTRUE (IF (SCR_DATA_OUT)),
2212 		0,
2213 	/*
2214 	**	DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 4.
2215 	**	Possible data corruption during Memory Write and Invalidate.
2216 	**	This work-around resets the addressing logic prior to the
2217 	**	start of the first MOVE of a DATA IN phase.
2218 	**	(See Documentation/scsi/ncr53c8xx.txt for more information)
2219 	*/
2220 	SCR_JUMPR ^ IFFALSE (IF (SCR_DATA_IN)),
2221 		20,
2222 	SCR_COPY (4),
2223 		RADDR (scratcha),
2224 		RADDR (scratcha),
2225 	SCR_RETURN,
2226  		0,
2227 	SCR_JUMP ^ IFTRUE (IF (SCR_STATUS)),
2228 		PADDR (status),
2229 	SCR_JUMP ^ IFTRUE (IF (SCR_COMMAND)),
2230 		PADDR (command),
2231 	SCR_JUMP ^ IFTRUE (IF (SCR_MSG_OUT)),
2232 		PADDR (msg_out),
2233 	/*
2234 	**      Discard one illegal phase byte, if required.
2235 	*/
2236 	SCR_LOAD_REG (scratcha, XE_BAD_PHASE),
2237 		0,
2238 	SCR_COPY (1),
2239 		RADDR (scratcha),
2240 		NADDR (xerr_st),
2241 	SCR_JUMPR ^ IFFALSE (IF (SCR_ILG_OUT)),
2242 		8,
2243 	SCR_MOVE_ABS (1) ^ SCR_ILG_OUT,
2244 		NADDR (scratch),
2245 	SCR_JUMPR ^ IFFALSE (IF (SCR_ILG_IN)),
2246 		8,
2247 	SCR_MOVE_ABS (1) ^ SCR_ILG_IN,
2248 		NADDR (scratch),
2249 	SCR_JUMP,
2250 		PADDR (dispatch),
2251 
2252 }/*-------------------------< CLRACK >----------------------*/,{
2253 	/*
2254 	**	Terminate possible pending message phase.
2255 	*/
2256 	SCR_CLR (SCR_ACK),
2257 		0,
2258 	SCR_JUMP,
2259 		PADDR (dispatch),
2260 
2261 }/*-------------------------< NO_DATA >--------------------*/,{
2262 	/*
2263 	**	The target wants to tranfer too much data
2264 	**	or in the wrong direction.
2265 	**      Remember that in extended error.
2266 	*/
2267 	SCR_LOAD_REG (scratcha, XE_EXTRA_DATA),
2268 		0,
2269 	SCR_COPY (1),
2270 		RADDR (scratcha),
2271 		NADDR (xerr_st),
2272 	/*
2273 	**      Discard one data byte, if required.
2274 	*/
2275 	SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_OUT)),
2276 		8,
2277 	SCR_MOVE_ABS (1) ^ SCR_DATA_OUT,
2278 		NADDR (scratch),
2279 	SCR_JUMPR ^ IFFALSE (IF (SCR_DATA_IN)),
2280 		8,
2281 	SCR_MOVE_ABS (1) ^ SCR_DATA_IN,
2282 		NADDR (scratch),
2283 	/*
2284 	**      .. and repeat as required.
2285 	*/
2286 	SCR_CALL,
2287 		PADDR (dispatch),
2288 	SCR_JUMP,
2289 		PADDR (no_data),
2290 
2291 }/*-------------------------< STATUS >--------------------*/,{
2292 	/*
2293 	**	get the status
2294 	*/
2295 	SCR_MOVE_ABS (1) ^ SCR_STATUS,
2296 		NADDR (scratch),
2297 	/*
2298 	**	save status to scsi_status.
2299 	**	mark as complete.
2300 	*/
2301 	SCR_TO_REG (SS_REG),
2302 		0,
2303 	SCR_LOAD_REG (HS_REG, HS_COMPLETE),
2304 		0,
2305 	SCR_JUMP,
2306 		PADDR (dispatch),
2307 }/*-------------------------< MSG_IN >--------------------*/,{
2308 	/*
2309 	**	Get the first byte of the message
2310 	**	and save it to SCRATCHA.
2311 	**
2312 	**	The script processor doesn't negate the
2313 	**	ACK signal after this transfer.
2314 	*/
2315 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
2316 		NADDR (msgin[0]),
2317 }/*-------------------------< MSG_IN2 >--------------------*/,{
2318 	/*
2319 	**	Handle this message.
2320 	*/
2321 	SCR_JUMP ^ IFTRUE (DATA (COMMAND_COMPLETE)),
2322 		PADDR (complete),
2323 	SCR_JUMP ^ IFTRUE (DATA (DISCONNECT)),
2324 		PADDR (disconnect),
2325 	SCR_JUMP ^ IFTRUE (DATA (SAVE_POINTERS)),
2326 		PADDR (save_dp),
2327 	SCR_JUMP ^ IFTRUE (DATA (RESTORE_POINTERS)),
2328 		PADDR (restore_dp),
2329 	SCR_JUMP ^ IFTRUE (DATA (EXTENDED_MESSAGE)),
2330 		PADDRH (msg_extended),
2331 	SCR_JUMP ^ IFTRUE (DATA (NOP)),
2332 		PADDR (clrack),
2333 	SCR_JUMP ^ IFTRUE (DATA (MESSAGE_REJECT)),
2334 		PADDRH (msg_reject),
2335 	SCR_JUMP ^ IFTRUE (DATA (IGNORE_WIDE_RESIDUE)),
2336 		PADDRH (msg_ign_residue),
2337 	/*
2338 	**	Rest of the messages left as
2339 	**	an exercise ...
2340 	**
2341 	**	Unimplemented messages:
2342 	**	fall through to MSG_BAD.
2343 	*/
2344 }/*-------------------------< MSG_BAD >------------------*/,{
2345 	/*
2346 	**	unimplemented message - reject it.
2347 	*/
2348 	SCR_INT,
2349 		SIR_REJECT_SENT,
2350 	SCR_LOAD_REG (scratcha, MESSAGE_REJECT),
2351 		0,
2352 }/*-------------------------< SETMSG >----------------------*/,{
2353 	SCR_COPY (1),
2354 		RADDR (scratcha),
2355 		NADDR (msgout),
2356 	SCR_SET (SCR_ATN),
2357 		0,
2358 	SCR_JUMP,
2359 		PADDR (clrack),
2360 }/*-------------------------< CLEANUP >-------------------*/,{
2361 	/*
2362 	**      dsa:    Pointer to ccb
2363 	**	      or xxxxxxFF (no ccb)
2364 	**
2365 	**      HS_REG:   Host-Status (<>0!)
2366 	*/
2367 	SCR_FROM_REG (dsa),
2368 		0,
2369 	SCR_JUMP ^ IFTRUE (DATA (0xff)),
2370 		PADDR (start),
2371 	/*
2372 	**      dsa is valid.
2373 	**	complete the cleanup.
2374 	*/
2375 	SCR_JUMP,
2376 		PADDR (cleanup_ok),
2377 
2378 }/*-------------------------< COMPLETE >-----------------*/,{
2379 	/*
2380 	**	Complete message.
2381 	**
2382 	**	Copy TEMP register to LASTP in header.
2383 	*/
2384 	SCR_COPY (4),
2385 		RADDR (temp),
2386 		NADDR (header.lastp),
2387 	/*
2388 	**	When we terminate the cycle by clearing ACK,
2389 	**	the target may disconnect immediately.
2390 	**
2391 	**	We don't want to be told of an
2392 	**	"unexpected disconnect",
2393 	**	so we disable this feature.
2394 	*/
2395 	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
2396 		0,
2397 	/*
2398 	**	Terminate cycle ...
2399 	*/
2400 	SCR_CLR (SCR_ACK|SCR_ATN),
2401 		0,
2402 	/*
2403 	**	... and wait for the disconnect.
2404 	*/
2405 	SCR_WAIT_DISC,
2406 		0,
2407 }/*-------------------------< CLEANUP_OK >----------------*/,{
2408 	/*
2409 	**	Save host status to header.
2410 	*/
2411 	SCR_COPY (4),
2412 		RADDR (scr0),
2413 		NADDR (header.status),
2414 	/*
2415 	**	and copy back the header to the ccb.
2416 	*/
2417 	SCR_COPY_F (4),
2418 		RADDR (dsa),
2419 		PADDR (cleanup0),
2420 	/*
2421 	**	Flush script prefetch if required
2422 	*/
2423 	PREFETCH_FLUSH
2424 	SCR_COPY (sizeof (struct head)),
2425 		NADDR (header),
2426 }/*-------------------------< CLEANUP0 >--------------------*/,{
2427 		0,
2428 }/*-------------------------< SIGNAL >----------------------*/,{
2429 	/*
2430 	**	if job not completed ...
2431 	*/
2432 	SCR_FROM_REG (HS_REG),
2433 		0,
2434 	/*
2435 	**	... start the next command.
2436 	*/
2437 	SCR_JUMP ^ IFTRUE (MASK (0, (HS_DONEMASK|HS_SKIPMASK))),
2438 		PADDR(start),
2439 	/*
2440 	**	If command resulted in not GOOD status,
2441 	**	call the C code if needed.
2442 	*/
2443 	SCR_FROM_REG (SS_REG),
2444 		0,
2445 	SCR_CALL ^ IFFALSE (DATA (S_GOOD)),
2446 		PADDRH (bad_status),
2447 
2448 #ifndef	SCSI_NCR_CCB_DONE_SUPPORT
2449 
2450 	/*
2451 	**	... signal completion to the host
2452 	*/
2453 	SCR_INT,
2454 		SIR_INTFLY,
2455 	/*
2456 	**	Auf zu neuen Schandtaten!
2457 	*/
2458 	SCR_JUMP,
2459 		PADDR(start),
2460 
2461 #else	/* defined SCSI_NCR_CCB_DONE_SUPPORT */
2462 
2463 	/*
2464 	**	... signal completion to the host
2465 	*/
2466 	SCR_JUMP,
2467 }/*------------------------< DONE_POS >---------------------*/,{
2468 		PADDRH (done_queue),
2469 }/*------------------------< DONE_PLUG >--------------------*/,{
2470 	SCR_INT,
2471 		SIR_DONE_OVERFLOW,
2472 }/*------------------------< DONE_END >---------------------*/,{
2473 	SCR_INT,
2474 		SIR_INTFLY,
2475 	SCR_COPY (4),
2476 		RADDR (temp),
2477 		PADDR (done_pos),
2478 	SCR_JUMP,
2479 		PADDR (start),
2480 
2481 #endif	/* SCSI_NCR_CCB_DONE_SUPPORT */
2482 
2483 }/*-------------------------< SAVE_DP >------------------*/,{
2484 	/*
2485 	**	SAVE_DP message:
2486 	**	Copy TEMP register to SAVEP in header.
2487 	*/
2488 	SCR_COPY (4),
2489 		RADDR (temp),
2490 		NADDR (header.savep),
2491 	SCR_CLR (SCR_ACK),
2492 		0,
2493 	SCR_JUMP,
2494 		PADDR (dispatch),
2495 }/*-------------------------< RESTORE_DP >---------------*/,{
2496 	/*
2497 	**	RESTORE_DP message:
2498 	**	Copy SAVEP in header to TEMP register.
2499 	*/
2500 	SCR_COPY (4),
2501 		NADDR (header.savep),
2502 		RADDR (temp),
2503 	SCR_JUMP,
2504 		PADDR (clrack),
2505 
2506 }/*-------------------------< DISCONNECT >---------------*/,{
2507 	/*
2508 	**	DISCONNECTing  ...
2509 	**
2510 	**	disable the "unexpected disconnect" feature,
2511 	**	and remove the ACK signal.
2512 	*/
2513 	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
2514 		0,
2515 	SCR_CLR (SCR_ACK|SCR_ATN),
2516 		0,
2517 	/*
2518 	**	Wait for the disconnect.
2519 	*/
2520 	SCR_WAIT_DISC,
2521 		0,
2522 	/*
2523 	**	Status is: DISCONNECTED.
2524 	*/
2525 	SCR_LOAD_REG (HS_REG, HS_DISCONNECT),
2526 		0,
2527 	SCR_JUMP,
2528 		PADDR (cleanup_ok),
2529 
2530 }/*-------------------------< MSG_OUT >-------------------*/,{
2531 	/*
2532 	**	The target requests a message.
2533 	*/
2534 	SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
2535 		NADDR (msgout),
2536 	SCR_COPY (1),
2537 		NADDR (msgout),
2538 		NADDR (lastmsg),
2539 	/*
2540 	**	If it was no ABORT message ...
2541 	*/
2542 	SCR_JUMP ^ IFTRUE (DATA (ABORT_TASK_SET)),
2543 		PADDRH (msg_out_abort),
2544 	/*
2545 	**	... wait for the next phase
2546 	**	if it's a message out, send it again, ...
2547 	*/
2548 	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
2549 		PADDR (msg_out),
2550 }/*-------------------------< MSG_OUT_DONE >--------------*/,{
2551 	/*
2552 	**	... else clear the message ...
2553 	*/
2554 	SCR_LOAD_REG (scratcha, NOP),
2555 		0,
2556 	SCR_COPY (4),
2557 		RADDR (scratcha),
2558 		NADDR (msgout),
2559 	/*
2560 	**	... and process the next phase
2561 	*/
2562 	SCR_JUMP,
2563 		PADDR (dispatch),
2564 }/*-------------------------< IDLE >------------------------*/,{
2565 	/*
2566 	**	Nothing to do?
2567 	**	Wait for reselect.
2568 	**	This NOP will be patched with LED OFF
2569 	**	SCR_REG_REG (gpreg, SCR_OR, 0x01)
2570 	*/
2571 	SCR_NO_OP,
2572 		0,
2573 }/*-------------------------< RESELECT >--------------------*/,{
2574 	/*
2575 	**	make the DSA invalid.
2576 	*/
2577 	SCR_LOAD_REG (dsa, 0xff),
2578 		0,
2579 	SCR_CLR (SCR_TRG),
2580 		0,
2581 	SCR_LOAD_REG (HS_REG, HS_IN_RESELECT),
2582 		0,
2583 	/*
2584 	**	Sleep waiting for a reselection.
2585 	**	If SIGP is set, special treatment.
2586 	**
2587 	**	Zu allem bereit ..
2588 	*/
2589 	SCR_WAIT_RESEL,
2590 		PADDR(start),
2591 }/*-------------------------< RESELECTED >------------------*/,{
2592 	/*
2593 	**	This NOP will be patched with LED ON
2594 	**	SCR_REG_REG (gpreg, SCR_AND, 0xfe)
2595 	*/
2596 	SCR_NO_OP,
2597 		0,
2598 	/*
2599 	**	... zu nichts zu gebrauchen ?
2600 	**
2601 	**      load the target id into the SFBR
2602 	**	and jump to the control block.
2603 	**
2604 	**	Look at the declarations of
2605 	**	- struct ncb
2606 	**	- struct tcb
2607 	**	- struct lcb
2608 	**	- struct ccb
2609 	**	to understand what's going on.
2610 	*/
2611 	SCR_REG_SFBR (ssid, SCR_AND, 0x8F),
2612 		0,
2613 	SCR_TO_REG (sdid),
2614 		0,
2615 	SCR_JUMP,
2616 		NADDR (jump_tcb),
2617 
2618 }/*-------------------------< RESEL_DSA >-------------------*/,{
2619 	/*
2620 	**	Ack the IDENTIFY or TAG previously received.
2621 	*/
2622 	SCR_CLR (SCR_ACK),
2623 		0,
2624 	/*
2625 	**      The ncr doesn't have an indirect load
2626 	**	or store command. So we have to
2627 	**	copy part of the control block to a
2628 	**	fixed place, where we can access it.
2629 	**
2630 	**	We patch the address part of a
2631 	**	COPY command with the DSA-register.
2632 	*/
2633 	SCR_COPY_F (4),
2634 		RADDR (dsa),
2635 		PADDR (loadpos1),
2636 	/*
2637 	**	Flush script prefetch if required
2638 	*/
2639 	PREFETCH_FLUSH
2640 	/*
2641 	**	then we do the actual copy.
2642 	*/
2643 	SCR_COPY (sizeof (struct head)),
2644 	/*
2645 	**	continued after the next label ...
2646 	*/
2647 
2648 }/*-------------------------< LOADPOS1 >-------------------*/,{
2649 		0,
2650 		NADDR (header),
2651 	/*
2652 	**	The DSA contains the data structure address.
2653 	*/
2654 	SCR_JUMP,
2655 		PADDR (prepare),
2656 
2657 }/*-------------------------< RESEL_LUN >-------------------*/,{
2658 	/*
2659 	**	come back to this point
2660 	**	to get an IDENTIFY message
2661 	**	Wait for a msg_in phase.
2662 	*/
2663 	SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)),
2664 		SIR_RESEL_NO_MSG_IN,
2665 	/*
2666 	**	message phase.
2667 	**	Read the data directly from the BUS DATA lines.
2668 	**	This helps to support very old SCSI devices that
2669 	**	may reselect without sending an IDENTIFY.
2670 	*/
2671 	SCR_FROM_REG (sbdl),
2672 		0,
2673 	/*
2674 	**	It should be an Identify message.
2675 	*/
2676 	SCR_RETURN,
2677 		0,
2678 }/*-------------------------< RESEL_TAG >-------------------*/,{
2679 	/*
2680 	**	Read IDENTIFY + SIMPLE + TAG using a single MOVE.
2681 	**	Aggressive optimization, is'nt it?
2682 	**	No need to test the SIMPLE TAG message, since the
2683 	**	driver only supports conformant devices for tags. ;-)
2684 	*/
2685 	SCR_MOVE_ABS (3) ^ SCR_MSG_IN,
2686 		NADDR (msgin),
2687 	/*
2688 	**	Read the TAG from the SIDL.
2689 	**	Still an aggressive optimization. ;-)
2690 	**	Compute the CCB indirect jump address which
2691 	**	is (#TAG*2 & 0xfc) due to tag numbering using
2692 	**	1,3,5..MAXTAGS*2+1 actual values.
2693 	*/
2694 	SCR_REG_SFBR (sidl, SCR_SHL, 0),
2695 		0,
2696 	SCR_SFBR_REG (temp, SCR_AND, 0xfc),
2697 		0,
2698 }/*-------------------------< JUMP_TO_NEXUS >-------------------*/,{
2699 	SCR_COPY_F (4),
2700 		RADDR (temp),
2701 		PADDR (nexus_indirect),
2702 	/*
2703 	**	Flush script prefetch if required
2704 	*/
2705 	PREFETCH_FLUSH
2706 	SCR_COPY (4),
2707 }/*-------------------------< NEXUS_INDIRECT >-------------------*/,{
2708 		0,
2709 		RADDR (temp),
2710 	SCR_RETURN,
2711 		0,
2712 }/*-------------------------< RESEL_NOTAG >-------------------*/,{
2713 	/*
2714 	**	No tag expected.
2715 	**	Read an throw away the IDENTIFY.
2716 	*/
2717 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
2718 		NADDR (msgin),
2719 	SCR_JUMP,
2720 		PADDR (jump_to_nexus),
2721 }/*-------------------------< DATA_IN >--------------------*/,{
2722 /*
2723 **	Because the size depends on the
2724 **	#define MAX_SCATTERL parameter,
2725 **	it is filled in at runtime.
2726 **
2727 **  ##===========< i=0; i<MAX_SCATTERL >=========
2728 **  ||	SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)),
2729 **  ||		PADDR (dispatch),
2730 **  ||	SCR_MOVE_TBL ^ SCR_DATA_IN,
2731 **  ||		offsetof (struct dsb, data[ i]),
2732 **  ##==========================================
2733 **
2734 **---------------------------------------------------------
2735 */
2736 0
2737 }/*-------------------------< DATA_IN2 >-------------------*/,{
2738 	SCR_CALL,
2739 		PADDR (dispatch),
2740 	SCR_JUMP,
2741 		PADDR (no_data),
2742 }/*-------------------------< DATA_OUT >--------------------*/,{
2743 /*
2744 **	Because the size depends on the
2745 **	#define MAX_SCATTERL parameter,
2746 **	it is filled in at runtime.
2747 **
2748 **  ##===========< i=0; i<MAX_SCATTERL >=========
2749 **  ||	SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT)),
2750 **  ||		PADDR (dispatch),
2751 **  ||	SCR_MOVE_TBL ^ SCR_DATA_OUT,
2752 **  ||		offsetof (struct dsb, data[ i]),
2753 **  ##==========================================
2754 **
2755 **---------------------------------------------------------
2756 */
2757 0
2758 }/*-------------------------< DATA_OUT2 >-------------------*/,{
2759 	SCR_CALL,
2760 		PADDR (dispatch),
2761 	SCR_JUMP,
2762 		PADDR (no_data),
2763 }/*--------------------------------------------------------*/
2764 };
2765 
2766 static	struct scripth scripth0 __initdata = {
2767 /*-------------------------< TRYLOOP >---------------------*/{
2768 /*
2769 **	Start the next entry.
2770 **	Called addresses point to the launch script in the CCB.
2771 **	They are patched by the main processor.
2772 **
2773 **	Because the size depends on the
2774 **	#define MAX_START parameter, it is filled
2775 **	in at runtime.
2776 **
2777 **-----------------------------------------------------------
2778 **
2779 **  ##===========< I=0; i<MAX_START >===========
2780 **  ||	SCR_CALL,
2781 **  ||		PADDR (idle),
2782 **  ##==========================================
2783 **
2784 **-----------------------------------------------------------
2785 */
2786 0
2787 }/*------------------------< TRYLOOP2 >---------------------*/,{
2788 	SCR_JUMP,
2789 		PADDRH(tryloop),
2790 
2791 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
2792 
2793 }/*------------------------< DONE_QUEUE >-------------------*/,{
2794 /*
2795 **	Copy the CCB address to the next done entry.
2796 **	Because the size depends on the
2797 **	#define MAX_DONE parameter, it is filled
2798 **	in at runtime.
2799 **
2800 **-----------------------------------------------------------
2801 **
2802 **  ##===========< I=0; i<MAX_DONE >===========
2803 **  ||	SCR_COPY (sizeof(struct ccb *),
2804 **  ||		NADDR (header.cp),
2805 **  ||		NADDR (ccb_done[i]),
2806 **  ||	SCR_CALL,
2807 **  ||		PADDR (done_end),
2808 **  ##==========================================
2809 **
2810 **-----------------------------------------------------------
2811 */
2812 0
2813 }/*------------------------< DONE_QUEUE2 >------------------*/,{
2814 	SCR_JUMP,
2815 		PADDRH (done_queue),
2816 
2817 #endif /* SCSI_NCR_CCB_DONE_SUPPORT */
2818 }/*------------------------< SELECT_NO_ATN >-----------------*/,{
2819 	/*
2820 	**	Set Initiator mode.
2821 	**      And try to select this target without ATN.
2822 	*/
2823 
2824 	SCR_CLR (SCR_TRG),
2825 		0,
2826 	SCR_LOAD_REG (HS_REG, HS_SELECTING),
2827 		0,
2828 	SCR_SEL_TBL ^ offsetof (struct dsb, select),
2829 		PADDR (reselect),
2830 	SCR_JUMP,
2831 		PADDR (select2),
2832 
2833 }/*-------------------------< CANCEL >------------------------*/,{
2834 
2835 	SCR_LOAD_REG (scratcha, HS_ABORTED),
2836 		0,
2837 	SCR_JUMPR,
2838 		8,
2839 }/*-------------------------< SKIP >------------------------*/,{
2840 	SCR_LOAD_REG (scratcha, 0),
2841 		0,
2842 	/*
2843 	**	This entry has been canceled.
2844 	**	Next time use the next slot.
2845 	*/
2846 	SCR_COPY (4),
2847 		RADDR (temp),
2848 		PADDR (startpos),
2849 	/*
2850 	**      The ncr doesn't have an indirect load
2851 	**	or store command. So we have to
2852 	**	copy part of the control block to a
2853 	**	fixed place, where we can access it.
2854 	**
2855 	**	We patch the address part of a
2856 	**	COPY command with the DSA-register.
2857 	*/
2858 	SCR_COPY_F (4),
2859 		RADDR (dsa),
2860 		PADDRH (skip2),
2861 	/*
2862 	**	Flush script prefetch if required
2863 	*/
2864 	PREFETCH_FLUSH
2865 	/*
2866 	**	then we do the actual copy.
2867 	*/
2868 	SCR_COPY (sizeof (struct head)),
2869 	/*
2870 	**	continued after the next label ...
2871 	*/
2872 }/*-------------------------< SKIP2 >---------------------*/,{
2873 		0,
2874 		NADDR (header),
2875 	/*
2876 	**      Initialize the status registers
2877 	*/
2878 	SCR_COPY (4),
2879 		NADDR (header.status),
2880 		RADDR (scr0),
2881 	/*
2882 	**	Force host status.
2883 	*/
2884 	SCR_FROM_REG (scratcha),
2885 		0,
2886 	SCR_JUMPR ^ IFFALSE (MASK (0, HS_DONEMASK)),
2887 		16,
2888 	SCR_REG_REG (HS_REG, SCR_OR, HS_SKIPMASK),
2889 		0,
2890 	SCR_JUMPR,
2891 		8,
2892 	SCR_TO_REG (HS_REG),
2893 		0,
2894 	SCR_LOAD_REG (SS_REG, S_GOOD),
2895 		0,
2896 	SCR_JUMP,
2897 		PADDR (cleanup_ok),
2898 
2899 },/*-------------------------< PAR_ERR_DATA_IN >---------------*/{
2900 	/*
2901 	**	Ignore all data in byte, until next phase
2902 	*/
2903 	SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)),
2904 		PADDRH (par_err_other),
2905 	SCR_MOVE_ABS (1) ^ SCR_DATA_IN,
2906 		NADDR (scratch),
2907 	SCR_JUMPR,
2908 		-24,
2909 },/*-------------------------< PAR_ERR_OTHER >------------------*/{
2910 	/*
2911 	**	count it.
2912 	*/
2913 	SCR_REG_REG (PS_REG, SCR_ADD, 0x01),
2914 		0,
2915 	/*
2916 	**	jump to dispatcher.
2917 	*/
2918 	SCR_JUMP,
2919 		PADDR (dispatch),
2920 }/*-------------------------< MSG_REJECT >---------------*/,{
2921 	/*
2922 	**	If a negotiation was in progress,
2923 	**	negotiation failed.
2924 	**	Otherwise, let the C code print
2925 	**	some message.
2926 	*/
2927 	SCR_FROM_REG (HS_REG),
2928 		0,
2929 	SCR_INT ^ IFFALSE (DATA (HS_NEGOTIATE)),
2930 		SIR_REJECT_RECEIVED,
2931 	SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)),
2932 		SIR_NEGO_FAILED,
2933 	SCR_JUMP,
2934 		PADDR (clrack),
2935 
2936 }/*-------------------------< MSG_IGN_RESIDUE >----------*/,{
2937 	/*
2938 	**	Terminate cycle
2939 	*/
2940 	SCR_CLR (SCR_ACK),
2941 		0,
2942 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
2943 		PADDR (dispatch),
2944 	/*
2945 	**	get residue size.
2946 	*/
2947 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
2948 		NADDR (msgin[1]),
2949 	/*
2950 	**	Size is 0 .. ignore message.
2951 	*/
2952 	SCR_JUMP ^ IFTRUE (DATA (0)),
2953 		PADDR (clrack),
2954 	/*
2955 	**	Size is not 1 .. have to interrupt.
2956 	*/
2957 	SCR_JUMPR ^ IFFALSE (DATA (1)),
2958 		40,
2959 	/*
2960 	**	Check for residue byte in swide register
2961 	*/
2962 	SCR_FROM_REG (scntl2),
2963 		0,
2964 	SCR_JUMPR ^ IFFALSE (MASK (WSR, WSR)),
2965 		16,
2966 	/*
2967 	**	There IS data in the swide register.
2968 	**	Discard it.
2969 	*/
2970 	SCR_REG_REG (scntl2, SCR_OR, WSR),
2971 		0,
2972 	SCR_JUMP,
2973 		PADDR (clrack),
2974 	/*
2975 	**	Load again the size to the sfbr register.
2976 	*/
2977 	SCR_FROM_REG (scratcha),
2978 		0,
2979 	SCR_INT,
2980 		SIR_IGN_RESIDUE,
2981 	SCR_JUMP,
2982 		PADDR (clrack),
2983 
2984 }/*-------------------------< MSG_EXTENDED >-------------*/,{
2985 	/*
2986 	**	Terminate cycle
2987 	*/
2988 	SCR_CLR (SCR_ACK),
2989 		0,
2990 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
2991 		PADDR (dispatch),
2992 	/*
2993 	**	get length.
2994 	*/
2995 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
2996 		NADDR (msgin[1]),
2997 	/*
2998 	*/
2999 	SCR_JUMP ^ IFTRUE (DATA (3)),
3000 		PADDRH (msg_ext_3),
3001 	SCR_JUMP ^ IFFALSE (DATA (2)),
3002 		PADDR (msg_bad),
3003 }/*-------------------------< MSG_EXT_2 >----------------*/,{
3004 	SCR_CLR (SCR_ACK),
3005 		0,
3006 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
3007 		PADDR (dispatch),
3008 	/*
3009 	**	get extended message code.
3010 	*/
3011 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3012 		NADDR (msgin[2]),
3013 	SCR_JUMP ^ IFTRUE (DATA (EXTENDED_WDTR)),
3014 		PADDRH (msg_wdtr),
3015 	/*
3016 	**	unknown extended message
3017 	*/
3018 	SCR_JUMP,
3019 		PADDR (msg_bad)
3020 }/*-------------------------< MSG_WDTR >-----------------*/,{
3021 	SCR_CLR (SCR_ACK),
3022 		0,
3023 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
3024 		PADDR (dispatch),
3025 	/*
3026 	**	get data bus width
3027 	*/
3028 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3029 		NADDR (msgin[3]),
3030 	/*
3031 	**	let the host do the real work.
3032 	*/
3033 	SCR_INT,
3034 		SIR_NEGO_WIDE,
3035 	/*
3036 	**	let the target fetch our answer.
3037 	*/
3038 	SCR_SET (SCR_ATN),
3039 		0,
3040 	SCR_CLR (SCR_ACK),
3041 		0,
3042 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
3043 		PADDRH (nego_bad_phase),
3044 
3045 }/*-------------------------< SEND_WDTR >----------------*/,{
3046 	/*
3047 	**	Send the EXTENDED_WDTR
3048 	*/
3049 	SCR_MOVE_ABS (4) ^ SCR_MSG_OUT,
3050 		NADDR (msgout),
3051 	SCR_COPY (1),
3052 		NADDR (msgout),
3053 		NADDR (lastmsg),
3054 	SCR_JUMP,
3055 		PADDR (msg_out_done),
3056 
3057 }/*-------------------------< MSG_EXT_3 >----------------*/,{
3058 	SCR_CLR (SCR_ACK),
3059 		0,
3060 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
3061 		PADDR (dispatch),
3062 	/*
3063 	**	get extended message code.
3064 	*/
3065 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3066 		NADDR (msgin[2]),
3067 	SCR_JUMP ^ IFTRUE (DATA (EXTENDED_SDTR)),
3068 		PADDRH (msg_sdtr),
3069 	/*
3070 	**	unknown extended message
3071 	*/
3072 	SCR_JUMP,
3073 		PADDR (msg_bad)
3074 
3075 }/*-------------------------< MSG_SDTR >-----------------*/,{
3076 	SCR_CLR (SCR_ACK),
3077 		0,
3078 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
3079 		PADDR (dispatch),
3080 	/*
3081 	**	get period and offset
3082 	*/
3083 	SCR_MOVE_ABS (2) ^ SCR_MSG_IN,
3084 		NADDR (msgin[3]),
3085 	/*
3086 	**	let the host do the real work.
3087 	*/
3088 	SCR_INT,
3089 		SIR_NEGO_SYNC,
3090 	/*
3091 	**	let the target fetch our answer.
3092 	*/
3093 	SCR_SET (SCR_ATN),
3094 		0,
3095 	SCR_CLR (SCR_ACK),
3096 		0,
3097 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
3098 		PADDRH (nego_bad_phase),
3099 
3100 }/*-------------------------< SEND_SDTR >-------------*/,{
3101 	/*
3102 	**	Send the EXTENDED_SDTR
3103 	*/
3104 	SCR_MOVE_ABS (5) ^ SCR_MSG_OUT,
3105 		NADDR (msgout),
3106 	SCR_COPY (1),
3107 		NADDR (msgout),
3108 		NADDR (lastmsg),
3109 	SCR_JUMP,
3110 		PADDR (msg_out_done),
3111 
3112 }/*-------------------------< NEGO_BAD_PHASE >------------*/,{
3113 	SCR_INT,
3114 		SIR_NEGO_PROTO,
3115 	SCR_JUMP,
3116 		PADDR (dispatch),
3117 
3118 }/*-------------------------< MSG_OUT_ABORT >-------------*/,{
3119 	/*
3120 	**	After ABORT message,
3121 	**
3122 	**	expect an immediate disconnect, ...
3123 	*/
3124 	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
3125 		0,
3126 	SCR_CLR (SCR_ACK|SCR_ATN),
3127 		0,
3128 	SCR_WAIT_DISC,
3129 		0,
3130 	/*
3131 	**	... and set the status to "ABORTED"
3132 	*/
3133 	SCR_LOAD_REG (HS_REG, HS_ABORTED),
3134 		0,
3135 	SCR_JUMP,
3136 		PADDR (cleanup),
3137 
3138 }/*-------------------------< HDATA_IN >-------------------*/,{
3139 /*
3140 **	Because the size depends on the
3141 **	#define MAX_SCATTERH parameter,
3142 **	it is filled in at runtime.
3143 **
3144 **  ##==< i=MAX_SCATTERL; i<MAX_SCATTERL+MAX_SCATTERH >==
3145 **  ||	SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)),
3146 **  ||		PADDR (dispatch),
3147 **  ||	SCR_MOVE_TBL ^ SCR_DATA_IN,
3148 **  ||		offsetof (struct dsb, data[ i]),
3149 **  ##===================================================
3150 **
3151 **---------------------------------------------------------
3152 */
3153 0
3154 }/*-------------------------< HDATA_IN2 >------------------*/,{
3155 	SCR_JUMP,
3156 		PADDR (data_in),
3157 
3158 }/*-------------------------< HDATA_OUT >-------------------*/,{
3159 /*
3160 **	Because the size depends on the
3161 **	#define MAX_SCATTERH parameter,
3162 **	it is filled in at runtime.
3163 **
3164 **  ##==< i=MAX_SCATTERL; i<MAX_SCATTERL+MAX_SCATTERH >==
3165 **  ||	SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT)),
3166 **  ||		PADDR (dispatch),
3167 **  ||	SCR_MOVE_TBL ^ SCR_DATA_OUT,
3168 **  ||		offsetof (struct dsb, data[ i]),
3169 **  ##===================================================
3170 **
3171 **---------------------------------------------------------
3172 */
3173 0
3174 }/*-------------------------< HDATA_OUT2 >------------------*/,{
3175 	SCR_JUMP,
3176 		PADDR (data_out),
3177 
3178 }/*-------------------------< RESET >----------------------*/,{
3179 	/*
3180 	**      Send a TARGET_RESET message if bad IDENTIFY
3181 	**	received on reselection.
3182 	*/
3183 	SCR_LOAD_REG (scratcha, ABORT_TASK),
3184 		0,
3185 	SCR_JUMP,
3186 		PADDRH (abort_resel),
3187 }/*-------------------------< ABORTTAG >-------------------*/,{
3188 	/*
3189 	**      Abort a wrong tag received on reselection.
3190 	*/
3191 	SCR_LOAD_REG (scratcha, ABORT_TASK),
3192 		0,
3193 	SCR_JUMP,
3194 		PADDRH (abort_resel),
3195 }/*-------------------------< ABORT >----------------------*/,{
3196 	/*
3197 	**      Abort a reselection when no active CCB.
3198 	*/
3199 	SCR_LOAD_REG (scratcha, ABORT_TASK_SET),
3200 		0,
3201 }/*-------------------------< ABORT_RESEL >----------------*/,{
3202 	SCR_COPY (1),
3203 		RADDR (scratcha),
3204 		NADDR (msgout),
3205 	SCR_SET (SCR_ATN),
3206 		0,
3207 	SCR_CLR (SCR_ACK),
3208 		0,
3209 	/*
3210 	**	and send it.
3211 	**	we expect an immediate disconnect
3212 	*/
3213 	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
3214 		0,
3215 	SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
3216 		NADDR (msgout),
3217 	SCR_COPY (1),
3218 		NADDR (msgout),
3219 		NADDR (lastmsg),
3220 	SCR_CLR (SCR_ACK|SCR_ATN),
3221 		0,
3222 	SCR_WAIT_DISC,
3223 		0,
3224 	SCR_JUMP,
3225 		PADDR (start),
3226 }/*-------------------------< RESEND_IDENT >-------------------*/,{
3227 	/*
3228 	**	The target stays in MSG OUT phase after having acked
3229 	**	Identify [+ Tag [+ Extended message ]]. Targets shall
3230 	**	behave this way on parity error.
3231 	**	We must send it again all the messages.
3232 	*/
3233 	SCR_SET (SCR_ATN), /* Shall be asserted 2 deskew delays before the  */
3234 		0,         /* 1rst ACK = 90 ns. Hope the NCR is'nt too fast */
3235 	SCR_JUMP,
3236 		PADDR (send_ident),
3237 }/*-------------------------< CLRATN_GO_ON >-------------------*/,{
3238 	SCR_CLR (SCR_ATN),
3239 		0,
3240 	SCR_JUMP,
3241 }/*-------------------------< NXTDSP_GO_ON >-------------------*/,{
3242 		0,
3243 }/*-------------------------< SDATA_IN >-------------------*/,{
3244 	SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)),
3245 		PADDR (dispatch),
3246 	SCR_MOVE_TBL ^ SCR_DATA_IN,
3247 		offsetof (struct dsb, sense),
3248 	SCR_CALL,
3249 		PADDR (dispatch),
3250 	SCR_JUMP,
3251 		PADDR (no_data),
3252 }/*-------------------------< DATA_IO >--------------------*/,{
3253 	/*
3254 	**	We jump here if the data direction was unknown at the
3255 	**	time we had to queue the command to the scripts processor.
3256 	**	Pointers had been set as follow in this situation:
3257 	**	  savep   -->   DATA_IO
3258 	**	  lastp   -->   start pointer when DATA_IN
3259 	**	  goalp   -->   goal  pointer when DATA_IN
3260 	**	  wlastp  -->   start pointer when DATA_OUT
3261 	**	  wgoalp  -->   goal  pointer when DATA_OUT
3262 	**	This script sets savep/lastp/goalp according to the
3263 	**	direction chosen by the target.
3264 	*/
3265 	SCR_JUMPR ^ IFTRUE (WHEN (SCR_DATA_OUT)),
3266 		32,
3267 	/*
3268 	**	Direction is DATA IN.
3269 	**	Warning: we jump here, even when phase is DATA OUT.
3270 	*/
3271 	SCR_COPY (4),
3272 		NADDR (header.lastp),
3273 		NADDR (header.savep),
3274 
3275 	/*
3276 	**	Jump to the SCRIPTS according to actual direction.
3277 	*/
3278 	SCR_COPY (4),
3279 		NADDR (header.savep),
3280 		RADDR (temp),
3281 	SCR_RETURN,
3282 		0,
3283 	/*
3284 	**	Direction is DATA OUT.
3285 	*/
3286 	SCR_COPY (4),
3287 		NADDR (header.wlastp),
3288 		NADDR (header.lastp),
3289 	SCR_COPY (4),
3290 		NADDR (header.wgoalp),
3291 		NADDR (header.goalp),
3292 	SCR_JUMPR,
3293 		-64,
3294 }/*-------------------------< BAD_IDENTIFY >---------------*/,{
3295 	/*
3296 	**	If message phase but not an IDENTIFY,
3297 	**	get some help from the C code.
3298 	**	Old SCSI device may behave so.
3299 	*/
3300 	SCR_JUMPR ^ IFTRUE (MASK (0x80, 0x80)),
3301 		16,
3302 	SCR_INT,
3303 		SIR_RESEL_NO_IDENTIFY,
3304 	SCR_JUMP,
3305 		PADDRH (reset),
3306 	/*
3307 	**	Message is an IDENTIFY, but lun is unknown.
3308 	**	Read the message, since we got it directly
3309 	**	from the SCSI BUS data lines.
3310 	**	Signal problem to C code for logging the event.
3311 	**	Send an ABORT_TASK_SET to clear all pending tasks.
3312 	*/
3313 	SCR_INT,
3314 		SIR_RESEL_BAD_LUN,
3315 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3316 		NADDR (msgin),
3317 	SCR_JUMP,
3318 		PADDRH (abort),
3319 }/*-------------------------< BAD_I_T_L >------------------*/,{
3320 	/*
3321 	**	We donnot have a task for that I_T_L.
3322 	**	Signal problem to C code for logging the event.
3323 	**	Send an ABORT_TASK_SET message.
3324 	*/
3325 	SCR_INT,
3326 		SIR_RESEL_BAD_I_T_L,
3327 	SCR_JUMP,
3328 		PADDRH (abort),
3329 }/*-------------------------< BAD_I_T_L_Q >----------------*/,{
3330 	/*
3331 	**	We donnot have a task that matches the tag.
3332 	**	Signal problem to C code for logging the event.
3333 	**	Send an ABORT_TASK message.
3334 	*/
3335 	SCR_INT,
3336 		SIR_RESEL_BAD_I_T_L_Q,
3337 	SCR_JUMP,
3338 		PADDRH (aborttag),
3339 }/*-------------------------< BAD_TARGET >-----------------*/,{
3340 	/*
3341 	**	We donnot know the target that reselected us.
3342 	**	Grab the first message if any (IDENTIFY).
3343 	**	Signal problem to C code for logging the event.
3344 	**	TARGET_RESET message.
3345 	*/
3346 	SCR_INT,
3347 		SIR_RESEL_BAD_TARGET,
3348 	SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_IN)),
3349 		8,
3350 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3351 		NADDR (msgin),
3352 	SCR_JUMP,
3353 		PADDRH (reset),
3354 }/*-------------------------< BAD_STATUS >-----------------*/,{
3355 	/*
3356 	**	If command resulted in either QUEUE FULL,
3357 	**	CHECK CONDITION or COMMAND TERMINATED,
3358 	**	call the C code.
3359 	*/
3360 	SCR_INT ^ IFTRUE (DATA (S_QUEUE_FULL)),
3361 		SIR_BAD_STATUS,
3362 	SCR_INT ^ IFTRUE (DATA (S_CHECK_COND)),
3363 		SIR_BAD_STATUS,
3364 	SCR_INT ^ IFTRUE (DATA (S_TERMINATED)),
3365 		SIR_BAD_STATUS,
3366 	SCR_RETURN,
3367 		0,
3368 }/*-------------------------< START_RAM >-------------------*/,{
3369 	/*
3370 	**	Load the script into on-chip RAM,
3371 	**	and jump to start point.
3372 	*/
3373 	SCR_COPY_F (4),
3374 		RADDR (scratcha),
3375 		PADDRH (start_ram0),
3376 	/*
3377 	**	Flush script prefetch if required
3378 	*/
3379 	PREFETCH_FLUSH
3380 	SCR_COPY (sizeof (struct script)),
3381 }/*-------------------------< START_RAM0 >--------------------*/,{
3382 		0,
3383 		PADDR (start),
3384 	SCR_JUMP,
3385 		PADDR (start),
3386 }/*-------------------------< STO_RESTART >-------------------*/,{
3387 	/*
3388 	**
3389 	**	Repair start queue (e.g. next time use the next slot)
3390 	**	and jump to start point.
3391 	*/
3392 	SCR_COPY (4),
3393 		RADDR (temp),
3394 		PADDR (startpos),
3395 	SCR_JUMP,
3396 		PADDR (start),
3397 }/*-------------------------< WAIT_DMA >-------------------*/,{
3398 	/*
3399 	**	For HP Zalon/53c720 systems, the Zalon interface
3400 	**	between CPU and 53c720 does prefetches, which causes
3401 	**	problems with self modifying scripts.  The problem
3402 	**	is overcome by calling a dummy subroutine after each
3403 	**	modification, to force a refetch of the script on
3404 	**	return from the subroutine.
3405 	*/
3406 	SCR_RETURN,
3407 		0,
3408 }/*-------------------------< SNOOPTEST >-------------------*/,{
3409 	/*
3410 	**	Read the variable.
3411 	*/
3412 	SCR_COPY (4),
3413 		NADDR(ncr_cache),
3414 		RADDR (scratcha),
3415 	/*
3416 	**	Write the variable.
3417 	*/
3418 	SCR_COPY (4),
3419 		RADDR (temp),
3420 		NADDR(ncr_cache),
3421 	/*
3422 	**	Read back the variable.
3423 	*/
3424 	SCR_COPY (4),
3425 		NADDR(ncr_cache),
3426 		RADDR (temp),
3427 }/*-------------------------< SNOOPEND >-------------------*/,{
3428 	/*
3429 	**	And stop.
3430 	*/
3431 	SCR_INT,
3432 		99,
3433 }/*--------------------------------------------------------*/
3434 };
3435 
3436 /*==========================================================
3437 **
3438 **
3439 **	Fill in #define dependent parts of the script
3440 **
3441 **
3442 **==========================================================
3443 */
3444 
3445 void __init ncr_script_fill (struct script * scr, struct scripth * scrh)
3446 {
3447 	int	i;
3448 	ncrcmd	*p;
3449 
3450 	p = scrh->tryloop;
3451 	for (i=0; i<MAX_START; i++) {
3452 		*p++ =SCR_CALL;
3453 		*p++ =PADDR (idle);
3454 	}
3455 
3456 	BUG_ON((u_long)p != (u_long)&scrh->tryloop + sizeof (scrh->tryloop));
3457 
3458 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
3459 
3460 	p = scrh->done_queue;
3461 	for (i = 0; i<MAX_DONE; i++) {
3462 		*p++ =SCR_COPY (sizeof(struct ccb *));
3463 		*p++ =NADDR (header.cp);
3464 		*p++ =NADDR (ccb_done[i]);
3465 		*p++ =SCR_CALL;
3466 		*p++ =PADDR (done_end);
3467 	}
3468 
3469 	BUG_ON((u_long)p != (u_long)&scrh->done_queue+sizeof(scrh->done_queue));
3470 
3471 #endif /* SCSI_NCR_CCB_DONE_SUPPORT */
3472 
3473 	p = scrh->hdata_in;
3474 	for (i=0; i<MAX_SCATTERH; i++) {
3475 		*p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN));
3476 		*p++ =PADDR (dispatch);
3477 		*p++ =SCR_MOVE_TBL ^ SCR_DATA_IN;
3478 		*p++ =offsetof (struct dsb, data[i]);
3479 	}
3480 
3481 	BUG_ON((u_long)p != (u_long)&scrh->hdata_in + sizeof (scrh->hdata_in));
3482 
3483 	p = scr->data_in;
3484 	for (i=MAX_SCATTERH; i<MAX_SCATTERH+MAX_SCATTERL; i++) {
3485 		*p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN));
3486 		*p++ =PADDR (dispatch);
3487 		*p++ =SCR_MOVE_TBL ^ SCR_DATA_IN;
3488 		*p++ =offsetof (struct dsb, data[i]);
3489 	}
3490 
3491 	BUG_ON((u_long)p != (u_long)&scr->data_in + sizeof (scr->data_in));
3492 
3493 	p = scrh->hdata_out;
3494 	for (i=0; i<MAX_SCATTERH; i++) {
3495 		*p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT));
3496 		*p++ =PADDR (dispatch);
3497 		*p++ =SCR_MOVE_TBL ^ SCR_DATA_OUT;
3498 		*p++ =offsetof (struct dsb, data[i]);
3499 	}
3500 
3501 	BUG_ON((u_long)p != (u_long)&scrh->hdata_out + sizeof (scrh->hdata_out));
3502 
3503 	p = scr->data_out;
3504 	for (i=MAX_SCATTERH; i<MAX_SCATTERH+MAX_SCATTERL; i++) {
3505 		*p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT));
3506 		*p++ =PADDR (dispatch);
3507 		*p++ =SCR_MOVE_TBL ^ SCR_DATA_OUT;
3508 		*p++ =offsetof (struct dsb, data[i]);
3509 	}
3510 
3511 	BUG_ON((u_long) p != (u_long)&scr->data_out + sizeof (scr->data_out));
3512 }
3513 
3514 /*==========================================================
3515 **
3516 **
3517 **	Copy and rebind a script.
3518 **
3519 **
3520 **==========================================================
3521 */
3522 
3523 static void __init
3524 ncr_script_copy_and_bind (struct ncb *np, ncrcmd *src, ncrcmd *dst, int len)
3525 {
3526 	ncrcmd  opcode, new, old, tmp1, tmp2;
3527 	ncrcmd	*start, *end;
3528 	int relocs;
3529 	int opchanged = 0;
3530 
3531 	start = src;
3532 	end = src + len/4;
3533 
3534 	while (src < end) {
3535 
3536 		opcode = *src++;
3537 		*dst++ = cpu_to_scr(opcode);
3538 
3539 		/*
3540 		**	If we forget to change the length
3541 		**	in struct script, a field will be
3542 		**	padded with 0. This is an illegal
3543 		**	command.
3544 		*/
3545 
3546 		if (opcode == 0) {
3547 			printk (KERN_ERR "%s: ERROR0 IN SCRIPT at %d.\n",
3548 				ncr_name(np), (int) (src-start-1));
3549 			mdelay(1000);
3550 		}
3551 
3552 		if (DEBUG_FLAGS & DEBUG_SCRIPT)
3553 			printk (KERN_DEBUG "%p:  <%x>\n",
3554 				(src-1), (unsigned)opcode);
3555 
3556 		/*
3557 		**	We don't have to decode ALL commands
3558 		*/
3559 		switch (opcode >> 28) {
3560 
3561 		case 0xc:
3562 			/*
3563 			**	COPY has TWO arguments.
3564 			*/
3565 			relocs = 2;
3566 			tmp1 = src[0];
3567 #ifdef	RELOC_KVAR
3568 			if ((tmp1 & RELOC_MASK) == RELOC_KVAR)
3569 				tmp1 = 0;
3570 #endif
3571 			tmp2 = src[1];
3572 #ifdef	RELOC_KVAR
3573 			if ((tmp2 & RELOC_MASK) == RELOC_KVAR)
3574 				tmp2 = 0;
3575 #endif
3576 			if ((tmp1 ^ tmp2) & 3) {
3577 				printk (KERN_ERR"%s: ERROR1 IN SCRIPT at %d.\n",
3578 					ncr_name(np), (int) (src-start-1));
3579 				mdelay(1000);
3580 			}
3581 			/*
3582 			**	If PREFETCH feature not enabled, remove
3583 			**	the NO FLUSH bit if present.
3584 			*/
3585 			if ((opcode & SCR_NO_FLUSH) && !(np->features & FE_PFEN)) {
3586 				dst[-1] = cpu_to_scr(opcode & ~SCR_NO_FLUSH);
3587 				++opchanged;
3588 			}
3589 			break;
3590 
3591 		case 0x0:
3592 			/*
3593 			**	MOVE (absolute address)
3594 			*/
3595 			relocs = 1;
3596 			break;
3597 
3598 		case 0x8:
3599 			/*
3600 			**	JUMP / CALL
3601 			**	don't relocate if relative :-)
3602 			*/
3603 			if (opcode & 0x00800000)
3604 				relocs = 0;
3605 			else
3606 				relocs = 1;
3607 			break;
3608 
3609 		case 0x4:
3610 		case 0x5:
3611 		case 0x6:
3612 		case 0x7:
3613 			relocs = 1;
3614 			break;
3615 
3616 		default:
3617 			relocs = 0;
3618 			break;
3619 		}
3620 
3621 		if (relocs) {
3622 			while (relocs--) {
3623 				old = *src++;
3624 
3625 				switch (old & RELOC_MASK) {
3626 				case RELOC_REGISTER:
3627 					new = (old & ~RELOC_MASK) + np->paddr;
3628 					break;
3629 				case RELOC_LABEL:
3630 					new = (old & ~RELOC_MASK) + np->p_script;
3631 					break;
3632 				case RELOC_LABELH:
3633 					new = (old & ~RELOC_MASK) + np->p_scripth;
3634 					break;
3635 				case RELOC_SOFTC:
3636 					new = (old & ~RELOC_MASK) + np->p_ncb;
3637 					break;
3638 #ifdef	RELOC_KVAR
3639 				case RELOC_KVAR:
3640 					if (((old & ~RELOC_MASK) <
3641 					     SCRIPT_KVAR_FIRST) ||
3642 					    ((old & ~RELOC_MASK) >
3643 					     SCRIPT_KVAR_LAST))
3644 						panic("ncr KVAR out of range");
3645 					new = vtophys(script_kvars[old &
3646 					    ~RELOC_MASK]);
3647 					break;
3648 #endif
3649 				case 0:
3650 					/* Don't relocate a 0 address. */
3651 					if (old == 0) {
3652 						new = old;
3653 						break;
3654 					}
3655 					/* fall through */
3656 				default:
3657 					panic("ncr_script_copy_and_bind: weird relocation %x\n", old);
3658 					break;
3659 				}
3660 
3661 				*dst++ = cpu_to_scr(new);
3662 			}
3663 		} else
3664 			*dst++ = cpu_to_scr(*src++);
3665 
3666 	}
3667 }
3668 
3669 /*
3670 **	Linux host data structure
3671 */
3672 
3673 struct host_data {
3674      struct ncb *ncb;
3675 };
3676 
3677 #define PRINT_ADDR(cmd, arg...) dev_info(&cmd->device->sdev_gendev , ## arg)
3678 
3679 static void ncr_print_msg(struct ccb *cp, char *label, u_char *msg)
3680 {
3681 	PRINT_ADDR(cp->cmd, "%s: ", label);
3682 
3683 	spi_print_msg(msg);
3684 	printk("\n");
3685 }
3686 
3687 /*==========================================================
3688 **
3689 **	NCR chip clock divisor table.
3690 **	Divisors are multiplied by 10,000,000 in order to make
3691 **	calculations more simple.
3692 **
3693 **==========================================================
3694 */
3695 
3696 #define _5M 5000000
3697 static u_long div_10M[] =
3698 	{2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
3699 
3700 
3701 /*===============================================================
3702 **
3703 **	Prepare io register values used by ncr_init() according
3704 **	to selected and supported features.
3705 **
3706 **	NCR chips allow burst lengths of 2, 4, 8, 16, 32, 64, 128
3707 **	transfers. 32,64,128 are only supported by 875 and 895 chips.
3708 **	We use log base 2 (burst length) as internal code, with
3709 **	value 0 meaning "burst disabled".
3710 **
3711 **===============================================================
3712 */
3713 
3714 /*
3715  *	Burst length from burst code.
3716  */
3717 #define burst_length(bc) (!(bc))? 0 : 1 << (bc)
3718 
3719 /*
3720  *	Burst code from io register bits.  Burst enable is ctest0 for c720
3721  */
3722 #define burst_code(dmode, ctest0) \
3723 	(ctest0) & 0x80 ? 0 : (((dmode) & 0xc0) >> 6) + 1
3724 
3725 /*
3726  *	Set initial io register bits from burst code.
3727  */
3728 static inline void ncr_init_burst(struct ncb *np, u_char bc)
3729 {
3730 	u_char *be = &np->rv_ctest0;
3731 	*be		&= ~0x80;
3732 	np->rv_dmode	&= ~(0x3 << 6);
3733 	np->rv_ctest5	&= ~0x4;
3734 
3735 	if (!bc) {
3736 		*be		|= 0x80;
3737 	} else {
3738 		--bc;
3739 		np->rv_dmode	|= ((bc & 0x3) << 6);
3740 		np->rv_ctest5	|= (bc & 0x4);
3741 	}
3742 }
3743 
3744 static void __init ncr_prepare_setting(struct ncb *np)
3745 {
3746 	u_char	burst_max;
3747 	u_long	period;
3748 	int i;
3749 
3750 	/*
3751 	**	Save assumed BIOS setting
3752 	*/
3753 
3754 	np->sv_scntl0	= INB(nc_scntl0) & 0x0a;
3755 	np->sv_scntl3	= INB(nc_scntl3) & 0x07;
3756 	np->sv_dmode	= INB(nc_dmode)  & 0xce;
3757 	np->sv_dcntl	= INB(nc_dcntl)  & 0xa8;
3758 	np->sv_ctest0	= INB(nc_ctest0) & 0x84;
3759 	np->sv_ctest3	= INB(nc_ctest3) & 0x01;
3760 	np->sv_ctest4	= INB(nc_ctest4) & 0x80;
3761 	np->sv_ctest5	= INB(nc_ctest5) & 0x24;
3762 	np->sv_gpcntl	= INB(nc_gpcntl);
3763 	np->sv_stest2	= INB(nc_stest2) & 0x20;
3764 	np->sv_stest4	= INB(nc_stest4);
3765 
3766 	/*
3767 	**	Wide ?
3768 	*/
3769 
3770 	np->maxwide	= (np->features & FE_WIDE)? 1 : 0;
3771 
3772  	/*
3773 	 *  Guess the frequency of the chip's clock.
3774 	 */
3775 	if (np->features & FE_ULTRA)
3776 		np->clock_khz = 80000;
3777 	else
3778 		np->clock_khz = 40000;
3779 
3780 	/*
3781 	 *  Get the clock multiplier factor.
3782  	 */
3783 	if	(np->features & FE_QUAD)
3784 		np->multiplier	= 4;
3785 	else if	(np->features & FE_DBLR)
3786 		np->multiplier	= 2;
3787 	else
3788 		np->multiplier	= 1;
3789 
3790 	/*
3791 	 *  Measure SCSI clock frequency for chips
3792 	 *  it may vary from assumed one.
3793 	 */
3794 	if (np->features & FE_VARCLK)
3795 		ncr_getclock(np, np->multiplier);
3796 
3797 	/*
3798 	 * Divisor to be used for async (timer pre-scaler).
3799 	 */
3800 	i = np->clock_divn - 1;
3801 	while (--i >= 0) {
3802 		if (10ul * SCSI_NCR_MIN_ASYNC * np->clock_khz > div_10M[i]) {
3803 			++i;
3804 			break;
3805 		}
3806 	}
3807 	np->rv_scntl3 = i+1;
3808 
3809 	/*
3810 	 * Minimum synchronous period factor supported by the chip.
3811 	 * Btw, 'period' is in tenths of nanoseconds.
3812 	 */
3813 
3814 	period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
3815 	if	(period <= 250)		np->minsync = 10;
3816 	else if	(period <= 303)		np->minsync = 11;
3817 	else if	(period <= 500)		np->minsync = 12;
3818 	else				np->minsync = (period + 40 - 1) / 40;
3819 
3820 	/*
3821 	 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
3822 	 */
3823 
3824 	if	(np->minsync < 25 && !(np->features & FE_ULTRA))
3825 		np->minsync = 25;
3826 
3827 	/*
3828 	 * Maximum synchronous period factor supported by the chip.
3829 	 */
3830 
3831 	period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
3832 	np->maxsync = period > 2540 ? 254 : period / 10;
3833 
3834 	/*
3835 	**	Prepare initial value of other IO registers
3836 	*/
3837 #if defined SCSI_NCR_TRUST_BIOS_SETTING
3838 	np->rv_scntl0	= np->sv_scntl0;
3839 	np->rv_dmode	= np->sv_dmode;
3840 	np->rv_dcntl	= np->sv_dcntl;
3841 	np->rv_ctest0	= np->sv_ctest0;
3842 	np->rv_ctest3	= np->sv_ctest3;
3843 	np->rv_ctest4	= np->sv_ctest4;
3844 	np->rv_ctest5	= np->sv_ctest5;
3845 	burst_max	= burst_code(np->sv_dmode, np->sv_ctest0);
3846 #else
3847 
3848 	/*
3849 	**	Select burst length (dwords)
3850 	*/
3851 	burst_max	= driver_setup.burst_max;
3852 	if (burst_max == 255)
3853 		burst_max = burst_code(np->sv_dmode, np->sv_ctest0);
3854 	if (burst_max > 7)
3855 		burst_max = 7;
3856 	if (burst_max > np->maxburst)
3857 		burst_max = np->maxburst;
3858 
3859 	/*
3860 	**	Select all supported special features
3861 	*/
3862 	if (np->features & FE_ERL)
3863 		np->rv_dmode	|= ERL;		/* Enable Read Line */
3864 	if (np->features & FE_BOF)
3865 		np->rv_dmode	|= BOF;		/* Burst Opcode Fetch */
3866 	if (np->features & FE_ERMP)
3867 		np->rv_dmode	|= ERMP;	/* Enable Read Multiple */
3868 	if (np->features & FE_PFEN)
3869 		np->rv_dcntl	|= PFEN;	/* Prefetch Enable */
3870 	if (np->features & FE_CLSE)
3871 		np->rv_dcntl	|= CLSE;	/* Cache Line Size Enable */
3872 	if (np->features & FE_WRIE)
3873 		np->rv_ctest3	|= WRIE;	/* Write and Invalidate */
3874 	if (np->features & FE_DFS)
3875 		np->rv_ctest5	|= DFS;		/* Dma Fifo Size */
3876 	if (np->features & FE_MUX)
3877 		np->rv_ctest4	|= MUX;		/* Host bus multiplex mode */
3878 	if (np->features & FE_EA)
3879 		np->rv_dcntl	|= EA;		/* Enable ACK */
3880 	if (np->features & FE_EHP)
3881 		np->rv_ctest0	|= EHP;		/* Even host parity */
3882 
3883 	/*
3884 	**	Select some other
3885 	*/
3886 	if (driver_setup.master_parity)
3887 		np->rv_ctest4	|= MPEE;	/* Master parity checking */
3888 	if (driver_setup.scsi_parity)
3889 		np->rv_scntl0	|= 0x0a;	/*  full arb., ena parity, par->ATN  */
3890 
3891 	/*
3892 	**  Get SCSI addr of host adapter (set by bios?).
3893 	*/
3894 	if (np->myaddr == 255) {
3895 		np->myaddr = INB(nc_scid) & 0x07;
3896 		if (!np->myaddr)
3897 			np->myaddr = SCSI_NCR_MYADDR;
3898 	}
3899 
3900 #endif /* SCSI_NCR_TRUST_BIOS_SETTING */
3901 
3902 	/*
3903 	 *	Prepare initial io register bits for burst length
3904 	 */
3905 	ncr_init_burst(np, burst_max);
3906 
3907 	/*
3908 	**	Set SCSI BUS mode.
3909 	**
3910 	**	- ULTRA2 chips (895/895A/896) report the current
3911 	**	  BUS mode through the STEST4 IO register.
3912 	**	- For previous generation chips (825/825A/875),
3913 	**	  user has to tell us how to check against HVD,
3914 	**	  since a 100% safe algorithm is not possible.
3915 	*/
3916 	np->scsi_mode = SMODE_SE;
3917 	if (np->features & FE_DIFF) {
3918 		switch(driver_setup.diff_support) {
3919 		case 4:	/* Trust previous settings if present, then GPIO3 */
3920 			if (np->sv_scntl3) {
3921 				if (np->sv_stest2 & 0x20)
3922 					np->scsi_mode = SMODE_HVD;
3923 				break;
3924 			}
3925 		case 3:	/* SYMBIOS controllers report HVD through GPIO3 */
3926 			if (INB(nc_gpreg) & 0x08)
3927 				break;
3928 		case 2:	/* Set HVD unconditionally */
3929 			np->scsi_mode = SMODE_HVD;
3930 		case 1:	/* Trust previous settings for HVD */
3931 			if (np->sv_stest2 & 0x20)
3932 				np->scsi_mode = SMODE_HVD;
3933 			break;
3934 		default:/* Don't care about HVD */
3935 			break;
3936 		}
3937 	}
3938 	if (np->scsi_mode == SMODE_HVD)
3939 		np->rv_stest2 |= 0x20;
3940 
3941 	/*
3942 	**	Set LED support from SCRIPTS.
3943 	**	Ignore this feature for boards known to use a
3944 	**	specific GPIO wiring and for the 895A or 896
3945 	**	that drive the LED directly.
3946 	**	Also probe initial setting of GPIO0 as output.
3947 	*/
3948 	if ((driver_setup.led_pin) &&
3949 	    !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
3950 		np->features |= FE_LED0;
3951 
3952 	/*
3953 	**	Set irq mode.
3954 	*/
3955 	switch(driver_setup.irqm & 3) {
3956 	case 2:
3957 		np->rv_dcntl	|= IRQM;
3958 		break;
3959 	case 1:
3960 		np->rv_dcntl	|= (np->sv_dcntl & IRQM);
3961 		break;
3962 	default:
3963 		break;
3964 	}
3965 
3966 	/*
3967 	**	Configure targets according to driver setup.
3968 	**	Allow to override sync, wide and NOSCAN from
3969 	**	boot command line.
3970 	*/
3971 	for (i = 0 ; i < MAX_TARGET ; i++) {
3972 		struct tcb *tp = &np->target[i];
3973 
3974 		tp->usrsync = driver_setup.default_sync;
3975 		tp->usrwide = driver_setup.max_wide;
3976 		tp->usrtags = MAX_TAGS;
3977 		tp->period = 0xffff;
3978 		if (!driver_setup.disconnection)
3979 			np->target[i].usrflag = UF_NODISC;
3980 	}
3981 
3982 	/*
3983 	**	Announce all that stuff to user.
3984 	*/
3985 
3986 	printk(KERN_INFO "%s: ID %d, Fast-%d%s%s\n", ncr_name(np),
3987 		np->myaddr,
3988 		np->minsync < 12 ? 40 : (np->minsync < 25 ? 20 : 10),
3989 		(np->rv_scntl0 & 0xa)	? ", Parity Checking"	: ", NO Parity",
3990 		(np->rv_stest2 & 0x20)	? ", Differential"	: "");
3991 
3992 	if (bootverbose > 1) {
3993 		printk (KERN_INFO "%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
3994 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
3995 			ncr_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
3996 			np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
3997 
3998 		printk (KERN_INFO "%s: final   SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
3999 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
4000 			ncr_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
4001 			np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
4002 	}
4003 
4004 	if (bootverbose && np->paddr2)
4005 		printk (KERN_INFO "%s: on-chip RAM at 0x%lx\n",
4006 			ncr_name(np), np->paddr2);
4007 }
4008 
4009 /*==========================================================
4010 **
4011 **
4012 **	Done SCSI commands list management.
4013 **
4014 **	We donnot enter the scsi_done() callback immediately
4015 **	after a command has been seen as completed but we
4016 **	insert it into a list which is flushed outside any kind
4017 **	of driver critical section.
4018 **	This allows to do minimal stuff under interrupt and
4019 **	inside critical sections and to also avoid locking up
4020 **	on recursive calls to driver entry points under SMP.
4021 **	In fact, the only kernel point which is entered by the
4022 **	driver with a driver lock set is kmalloc(GFP_ATOMIC)
4023 **	that shall not reenter the driver under any circumstances,
4024 **	AFAIK.
4025 **
4026 **==========================================================
4027 */
4028 static inline void ncr_queue_done_cmd(struct ncb *np, struct scsi_cmnd *cmd)
4029 {
4030 	unmap_scsi_data(np, cmd);
4031 	cmd->host_scribble = (char *) np->done_list;
4032 	np->done_list = cmd;
4033 }
4034 
4035 static inline void ncr_flush_done_cmds(struct scsi_cmnd *lcmd)
4036 {
4037 	struct scsi_cmnd *cmd;
4038 
4039 	while (lcmd) {
4040 		cmd = lcmd;
4041 		lcmd = (struct scsi_cmnd *) cmd->host_scribble;
4042 		cmd->scsi_done(cmd);
4043 	}
4044 }
4045 
4046 /*==========================================================
4047 **
4048 **
4049 **	Prepare the next negotiation message if needed.
4050 **
4051 **	Fill in the part of message buffer that contains the
4052 **	negotiation and the nego_status field of the CCB.
4053 **	Returns the size of the message in bytes.
4054 **
4055 **
4056 **==========================================================
4057 */
4058 
4059 
4060 static int ncr_prepare_nego(struct ncb *np, struct ccb *cp, u_char *msgptr)
4061 {
4062 	struct tcb *tp = &np->target[cp->target];
4063 	int msglen = 0;
4064 	int nego = 0;
4065 	struct scsi_target *starget = tp->starget;
4066 
4067 	/* negotiate wide transfers ?  */
4068 	if (!tp->widedone) {
4069 		if (spi_support_wide(starget)) {
4070 			nego = NS_WIDE;
4071 		} else
4072 			tp->widedone=1;
4073 	}
4074 
4075 	/* negotiate synchronous transfers?  */
4076 	if (!nego && !tp->period) {
4077 		if (spi_support_sync(starget)) {
4078 			nego = NS_SYNC;
4079 		} else {
4080 			tp->period  =0xffff;
4081 			dev_info(&starget->dev, "target did not report SYNC.\n");
4082 		}
4083 	}
4084 
4085 	switch (nego) {
4086 	case NS_SYNC:
4087 		msglen += spi_populate_sync_msg(msgptr + msglen,
4088 				tp->maxoffs ? tp->minsync : 0, tp->maxoffs);
4089 		break;
4090 	case NS_WIDE:
4091 		msglen += spi_populate_width_msg(msgptr + msglen, tp->usrwide);
4092 		break;
4093 	}
4094 
4095 	cp->nego_status = nego;
4096 
4097 	if (nego) {
4098 		tp->nego_cp = cp;
4099 		if (DEBUG_FLAGS & DEBUG_NEGO) {
4100 			ncr_print_msg(cp, nego == NS_WIDE ?
4101 					  "wide msgout":"sync_msgout", msgptr);
4102 		}
4103 	}
4104 
4105 	return msglen;
4106 }
4107 
4108 
4109 
4110 /*==========================================================
4111 **
4112 **
4113 **	Start execution of a SCSI command.
4114 **	This is called from the generic SCSI driver.
4115 **
4116 **
4117 **==========================================================
4118 */
4119 static int ncr_queue_command (struct ncb *np, struct scsi_cmnd *cmd)
4120 {
4121 	struct scsi_device *sdev = cmd->device;
4122 	struct tcb *tp = &np->target[sdev->id];
4123 	struct lcb *lp = tp->lp[sdev->lun];
4124 	struct ccb *cp;
4125 
4126 	int	segments;
4127 	u_char	idmsg, *msgptr;
4128 	u32	msglen;
4129 	int	direction;
4130 	u32	lastp, goalp;
4131 
4132 	/*---------------------------------------------
4133 	**
4134 	**      Some shortcuts ...
4135 	**
4136 	**---------------------------------------------
4137 	*/
4138 	if ((sdev->id == np->myaddr	  ) ||
4139 		(sdev->id >= MAX_TARGET) ||
4140 		(sdev->lun    >= MAX_LUN   )) {
4141 		return(DID_BAD_TARGET);
4142 	}
4143 
4144 	/*---------------------------------------------
4145 	**
4146 	**	Complete the 1st TEST UNIT READY command
4147 	**	with error condition if the device is
4148 	**	flagged NOSCAN, in order to speed up
4149 	**	the boot.
4150 	**
4151 	**---------------------------------------------
4152 	*/
4153 	if ((cmd->cmnd[0] == 0 || cmd->cmnd[0] == 0x12) &&
4154 	    (tp->usrflag & UF_NOSCAN)) {
4155 		tp->usrflag &= ~UF_NOSCAN;
4156 		return DID_BAD_TARGET;
4157 	}
4158 
4159 	if (DEBUG_FLAGS & DEBUG_TINY) {
4160 		PRINT_ADDR(cmd, "CMD=%x ", cmd->cmnd[0]);
4161 	}
4162 
4163 	/*---------------------------------------------------
4164 	**
4165 	**	Assign a ccb / bind cmd.
4166 	**	If resetting, shorten settle_time if necessary
4167 	**	in order to avoid spurious timeouts.
4168 	**	If resetting or no free ccb,
4169 	**	insert cmd into the waiting list.
4170 	**
4171 	**----------------------------------------------------
4172 	*/
4173 	if (np->settle_time && cmd->request->timeout >= HZ) {
4174 		u_long tlimit = jiffies + cmd->request->timeout - HZ;
4175 		if (time_after(np->settle_time, tlimit))
4176 			np->settle_time = tlimit;
4177 	}
4178 
4179 	if (np->settle_time || !(cp=ncr_get_ccb (np, cmd))) {
4180 		insert_into_waiting_list(np, cmd);
4181 		return(DID_OK);
4182 	}
4183 	cp->cmd = cmd;
4184 
4185 	/*----------------------------------------------------
4186 	**
4187 	**	Build the identify / tag / sdtr message
4188 	**
4189 	**----------------------------------------------------
4190 	*/
4191 
4192 	idmsg = IDENTIFY(0, sdev->lun);
4193 
4194 	if (cp ->tag != NO_TAG ||
4195 		(cp != np->ccb && np->disc && !(tp->usrflag & UF_NODISC)))
4196 		idmsg |= 0x40;
4197 
4198 	msgptr = cp->scsi_smsg;
4199 	msglen = 0;
4200 	msgptr[msglen++] = idmsg;
4201 
4202 	if (cp->tag != NO_TAG) {
4203 		char order = np->order;
4204 
4205 		/*
4206 		**	Force ordered tag if necessary to avoid timeouts
4207 		**	and to preserve interactivity.
4208 		*/
4209 		if (lp && time_after(jiffies, lp->tags_stime)) {
4210 			if (lp->tags_smap) {
4211 				order = ORDERED_QUEUE_TAG;
4212 				if ((DEBUG_FLAGS & DEBUG_TAGS)||bootverbose>2){
4213 					PRINT_ADDR(cmd,
4214 						"ordered tag forced.\n");
4215 				}
4216 			}
4217 			lp->tags_stime = jiffies + 3*HZ;
4218 			lp->tags_smap = lp->tags_umap;
4219 		}
4220 
4221 		if (order == 0) {
4222 			/*
4223 			**	Ordered write ops, unordered read ops.
4224 			*/
4225 			switch (cmd->cmnd[0]) {
4226 			case 0x08:  /* READ_SMALL (6) */
4227 			case 0x28:  /* READ_BIG  (10) */
4228 			case 0xa8:  /* READ_HUGE (12) */
4229 				order = SIMPLE_QUEUE_TAG;
4230 				break;
4231 			default:
4232 				order = ORDERED_QUEUE_TAG;
4233 			}
4234 		}
4235 		msgptr[msglen++] = order;
4236 		/*
4237 		**	Actual tags are numbered 1,3,5,..2*MAXTAGS+1,
4238 		**	since we may have to deal with devices that have
4239 		**	problems with #TAG 0 or too great #TAG numbers.
4240 		*/
4241 		msgptr[msglen++] = (cp->tag << 1) + 1;
4242 	}
4243 
4244 	/*----------------------------------------------------
4245 	**
4246 	**	Build the data descriptors
4247 	**
4248 	**----------------------------------------------------
4249 	*/
4250 
4251 	direction = cmd->sc_data_direction;
4252 	if (direction != DMA_NONE) {
4253 		segments = ncr_scatter(np, cp, cp->cmd);
4254 		if (segments < 0) {
4255 			ncr_free_ccb(np, cp);
4256 			return(DID_ERROR);
4257 		}
4258 	}
4259 	else {
4260 		cp->data_len = 0;
4261 		segments = 0;
4262 	}
4263 
4264 	/*---------------------------------------------------
4265 	**
4266 	**	negotiation required?
4267 	**
4268 	**	(nego_status is filled by ncr_prepare_nego())
4269 	**
4270 	**---------------------------------------------------
4271 	*/
4272 
4273 	cp->nego_status = 0;
4274 
4275 	if ((!tp->widedone || !tp->period) && !tp->nego_cp && lp) {
4276 		msglen += ncr_prepare_nego (np, cp, msgptr + msglen);
4277 	}
4278 
4279 	/*----------------------------------------------------
4280 	**
4281 	**	Determine xfer direction.
4282 	**
4283 	**----------------------------------------------------
4284 	*/
4285 	if (!cp->data_len)
4286 		direction = DMA_NONE;
4287 
4288 	/*
4289 	**	If data direction is BIDIRECTIONAL, speculate FROM_DEVICE
4290 	**	but prepare alternate pointers for TO_DEVICE in case
4291 	**	of our speculation will be just wrong.
4292 	**	SCRIPTS will swap values if needed.
4293 	*/
4294 	switch(direction) {
4295 	case DMA_BIDIRECTIONAL:
4296 	case DMA_TO_DEVICE:
4297 		goalp = NCB_SCRIPT_PHYS (np, data_out2) + 8;
4298 		if (segments <= MAX_SCATTERL)
4299 			lastp = goalp - 8 - (segments * 16);
4300 		else {
4301 			lastp = NCB_SCRIPTH_PHYS (np, hdata_out2);
4302 			lastp -= (segments - MAX_SCATTERL) * 16;
4303 		}
4304 		if (direction != DMA_BIDIRECTIONAL)
4305 			break;
4306 		cp->phys.header.wgoalp	= cpu_to_scr(goalp);
4307 		cp->phys.header.wlastp	= cpu_to_scr(lastp);
4308 		/* fall through */
4309 	case DMA_FROM_DEVICE:
4310 		goalp = NCB_SCRIPT_PHYS (np, data_in2) + 8;
4311 		if (segments <= MAX_SCATTERL)
4312 			lastp = goalp - 8 - (segments * 16);
4313 		else {
4314 			lastp = NCB_SCRIPTH_PHYS (np, hdata_in2);
4315 			lastp -= (segments - MAX_SCATTERL) * 16;
4316 		}
4317 		break;
4318 	default:
4319 	case DMA_NONE:
4320 		lastp = goalp = NCB_SCRIPT_PHYS (np, no_data);
4321 		break;
4322 	}
4323 
4324 	/*
4325 	**	Set all pointers values needed by SCRIPTS.
4326 	**	If direction is unknown, start at data_io.
4327 	*/
4328 	cp->phys.header.lastp = cpu_to_scr(lastp);
4329 	cp->phys.header.goalp = cpu_to_scr(goalp);
4330 
4331 	if (direction == DMA_BIDIRECTIONAL)
4332 		cp->phys.header.savep =
4333 			cpu_to_scr(NCB_SCRIPTH_PHYS (np, data_io));
4334 	else
4335 		cp->phys.header.savep= cpu_to_scr(lastp);
4336 
4337 	/*
4338 	**	Save the initial data pointer in order to be able
4339 	**	to redo the command.
4340 	*/
4341 	cp->startp = cp->phys.header.savep;
4342 
4343 	/*----------------------------------------------------
4344 	**
4345 	**	fill in ccb
4346 	**
4347 	**----------------------------------------------------
4348 	**
4349 	**
4350 	**	physical -> virtual backlink
4351 	**	Generic SCSI command
4352 	*/
4353 
4354 	/*
4355 	**	Startqueue
4356 	*/
4357 	cp->start.schedule.l_paddr   = cpu_to_scr(NCB_SCRIPT_PHYS (np, select));
4358 	cp->restart.schedule.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_dsa));
4359 	/*
4360 	**	select
4361 	*/
4362 	cp->phys.select.sel_id		= sdev_id(sdev);
4363 	cp->phys.select.sel_scntl3	= tp->wval;
4364 	cp->phys.select.sel_sxfer	= tp->sval;
4365 	/*
4366 	**	message
4367 	*/
4368 	cp->phys.smsg.addr		= cpu_to_scr(CCB_PHYS (cp, scsi_smsg));
4369 	cp->phys.smsg.size		= cpu_to_scr(msglen);
4370 
4371 	/*
4372 	**	command
4373 	*/
4374 	memcpy(cp->cdb_buf, cmd->cmnd, min_t(int, cmd->cmd_len, sizeof(cp->cdb_buf)));
4375 	cp->phys.cmd.addr		= cpu_to_scr(CCB_PHYS (cp, cdb_buf[0]));
4376 	cp->phys.cmd.size		= cpu_to_scr(cmd->cmd_len);
4377 
4378 	/*
4379 	**	status
4380 	*/
4381 	cp->actualquirks		= 0;
4382 	cp->host_status			= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
4383 	cp->scsi_status			= S_ILLEGAL;
4384 	cp->parity_status		= 0;
4385 
4386 	cp->xerr_status			= XE_OK;
4387 #if 0
4388 	cp->sync_status			= tp->sval;
4389 	cp->wide_status			= tp->wval;
4390 #endif
4391 
4392 	/*----------------------------------------------------
4393 	**
4394 	**	Critical region: start this job.
4395 	**
4396 	**----------------------------------------------------
4397 	*/
4398 
4399 	/* activate this job.  */
4400 	cp->magic		= CCB_MAGIC;
4401 
4402 	/*
4403 	**	insert next CCBs into start queue.
4404 	**	2 max at a time is enough to flush the CCB wait queue.
4405 	*/
4406 	cp->auto_sense = 0;
4407 	if (lp)
4408 		ncr_start_next_ccb(np, lp, 2);
4409 	else
4410 		ncr_put_start_queue(np, cp);
4411 
4412 	/* Command is successfully queued.  */
4413 
4414 	return DID_OK;
4415 }
4416 
4417 
4418 /*==========================================================
4419 **
4420 **
4421 **	Insert a CCB into the start queue and wake up the
4422 **	SCRIPTS processor.
4423 **
4424 **
4425 **==========================================================
4426 */
4427 
4428 static void ncr_start_next_ccb(struct ncb *np, struct lcb *lp, int maxn)
4429 {
4430 	struct list_head *qp;
4431 	struct ccb *cp;
4432 
4433 	if (lp->held_ccb)
4434 		return;
4435 
4436 	while (maxn-- && lp->queuedccbs < lp->queuedepth) {
4437 		qp = ncr_list_pop(&lp->wait_ccbq);
4438 		if (!qp)
4439 			break;
4440 		++lp->queuedccbs;
4441 		cp = list_entry(qp, struct ccb, link_ccbq);
4442 		list_add_tail(qp, &lp->busy_ccbq);
4443 		lp->jump_ccb[cp->tag == NO_TAG ? 0 : cp->tag] =
4444 			cpu_to_scr(CCB_PHYS (cp, restart));
4445 		ncr_put_start_queue(np, cp);
4446 	}
4447 }
4448 
4449 static void ncr_put_start_queue(struct ncb *np, struct ccb *cp)
4450 {
4451 	u16	qidx;
4452 
4453 	/*
4454 	**	insert into start queue.
4455 	*/
4456 	if (!np->squeueput) np->squeueput = 1;
4457 	qidx = np->squeueput + 2;
4458 	if (qidx >= MAX_START + MAX_START) qidx = 1;
4459 
4460 	np->scripth->tryloop [qidx] = cpu_to_scr(NCB_SCRIPT_PHYS (np, idle));
4461 	MEMORY_BARRIER();
4462 	np->scripth->tryloop [np->squeueput] = cpu_to_scr(CCB_PHYS (cp, start));
4463 
4464 	np->squeueput = qidx;
4465 	++np->queuedccbs;
4466 	cp->queued = 1;
4467 
4468 	if (DEBUG_FLAGS & DEBUG_QUEUE)
4469 		printk ("%s: queuepos=%d.\n", ncr_name (np), np->squeueput);
4470 
4471 	/*
4472 	**	Script processor may be waiting for reselect.
4473 	**	Wake it up.
4474 	*/
4475 	MEMORY_BARRIER();
4476 	OUTB (nc_istat, SIGP);
4477 }
4478 
4479 
4480 static int ncr_reset_scsi_bus(struct ncb *np, int enab_int, int settle_delay)
4481 {
4482 	u32 term;
4483 	int retv = 0;
4484 
4485 	np->settle_time	= jiffies + settle_delay * HZ;
4486 
4487 	if (bootverbose > 1)
4488 		printk("%s: resetting, "
4489 			"command processing suspended for %d seconds\n",
4490 			ncr_name(np), settle_delay);
4491 
4492 	ncr_chip_reset(np, 100);
4493 	udelay(2000);	/* The 895 needs time for the bus mode to settle */
4494 	if (enab_int)
4495 		OUTW (nc_sien, RST);
4496 	/*
4497 	**	Enable Tolerant, reset IRQD if present and
4498 	**	properly set IRQ mode, prior to resetting the bus.
4499 	*/
4500 	OUTB (nc_stest3, TE);
4501 	OUTB (nc_scntl1, CRST);
4502 	udelay(200);
4503 
4504 	if (!driver_setup.bus_check)
4505 		goto out;
4506 	/*
4507 	**	Check for no terminators or SCSI bus shorts to ground.
4508 	**	Read SCSI data bus, data parity bits and control signals.
4509 	**	We are expecting RESET to be TRUE and other signals to be
4510 	**	FALSE.
4511 	*/
4512 
4513 	term =	INB(nc_sstat0);
4514 	term =	((term & 2) << 7) + ((term & 1) << 17);	/* rst sdp0 */
4515 	term |= ((INB(nc_sstat2) & 0x01) << 26) |	/* sdp1     */
4516 		((INW(nc_sbdl) & 0xff)   << 9)  |	/* d7-0     */
4517 		((INW(nc_sbdl) & 0xff00) << 10) |	/* d15-8    */
4518 		INB(nc_sbcl);	/* req ack bsy sel atn msg cd io    */
4519 
4520 	if (!(np->features & FE_WIDE))
4521 		term &= 0x3ffff;
4522 
4523 	if (term != (2<<7)) {
4524 		printk("%s: suspicious SCSI data while resetting the BUS.\n",
4525 			ncr_name(np));
4526 		printk("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
4527 			"0x%lx, expecting 0x%lx\n",
4528 			ncr_name(np),
4529 			(np->features & FE_WIDE) ? "dp1,d15-8," : "",
4530 			(u_long)term, (u_long)(2<<7));
4531 		if (driver_setup.bus_check == 1)
4532 			retv = 1;
4533 	}
4534 out:
4535 	OUTB (nc_scntl1, 0);
4536 	return retv;
4537 }
4538 
4539 /*
4540  * Start reset process.
4541  * If reset in progress do nothing.
4542  * The interrupt handler will reinitialize the chip.
4543  * The timeout handler will wait for settle_time before
4544  * clearing it and so resuming command processing.
4545  */
4546 static void ncr_start_reset(struct ncb *np)
4547 {
4548 	if (!np->settle_time) {
4549 		ncr_reset_scsi_bus(np, 1, driver_setup.settle_delay);
4550  	}
4551 }
4552 
4553 /*==========================================================
4554 **
4555 **
4556 **	Reset the SCSI BUS.
4557 **	This is called from the generic SCSI driver.
4558 **
4559 **
4560 **==========================================================
4561 */
4562 static int ncr_reset_bus (struct ncb *np, struct scsi_cmnd *cmd, int sync_reset)
4563 {
4564 /*	struct scsi_device        *device    = cmd->device; */
4565 	struct ccb *cp;
4566 	int found;
4567 
4568 /*
4569  * Return immediately if reset is in progress.
4570  */
4571 	if (np->settle_time) {
4572 		return FAILED;
4573 	}
4574 /*
4575  * Start the reset process.
4576  * The script processor is then assumed to be stopped.
4577  * Commands will now be queued in the waiting list until a settle
4578  * delay of 2 seconds will be completed.
4579  */
4580 	ncr_start_reset(np);
4581 /*
4582  * First, look in the wakeup list
4583  */
4584 	for (found=0, cp=np->ccb; cp; cp=cp->link_ccb) {
4585 		/*
4586 		**	look for the ccb of this command.
4587 		*/
4588 		if (cp->host_status == HS_IDLE) continue;
4589 		if (cp->cmd == cmd) {
4590 			found = 1;
4591 			break;
4592 		}
4593 	}
4594 /*
4595  * Then, look in the waiting list
4596  */
4597 	if (!found && retrieve_from_waiting_list(0, np, cmd))
4598 		found = 1;
4599 /*
4600  * Wake-up all awaiting commands with DID_RESET.
4601  */
4602 	reset_waiting_list(np);
4603 /*
4604  * Wake-up all pending commands with HS_RESET -> DID_RESET.
4605  */
4606 	ncr_wakeup(np, HS_RESET);
4607 /*
4608  * If the involved command was not in a driver queue, and the
4609  * scsi driver told us reset is synchronous, and the command is not
4610  * currently in the waiting list, complete it with DID_RESET status,
4611  * in order to keep it alive.
4612  */
4613 	if (!found && sync_reset && !retrieve_from_waiting_list(0, np, cmd)) {
4614 		cmd->result = DID_RESET << 16;
4615 		ncr_queue_done_cmd(np, cmd);
4616 	}
4617 
4618 	return SUCCESS;
4619 }
4620 
4621 #if 0 /* unused and broken.. */
4622 /*==========================================================
4623 **
4624 **
4625 **	Abort an SCSI command.
4626 **	This is called from the generic SCSI driver.
4627 **
4628 **
4629 **==========================================================
4630 */
4631 static int ncr_abort_command (struct ncb *np, struct scsi_cmnd *cmd)
4632 {
4633 /*	struct scsi_device        *device    = cmd->device; */
4634 	struct ccb *cp;
4635 	int found;
4636 	int retv;
4637 
4638 /*
4639  * First, look for the scsi command in the waiting list
4640  */
4641 	if (remove_from_waiting_list(np, cmd)) {
4642 		cmd->result = ScsiResult(DID_ABORT, 0);
4643 		ncr_queue_done_cmd(np, cmd);
4644 		return SCSI_ABORT_SUCCESS;
4645 	}
4646 
4647 /*
4648  * Then, look in the wakeup list
4649  */
4650 	for (found=0, cp=np->ccb; cp; cp=cp->link_ccb) {
4651 		/*
4652 		**	look for the ccb of this command.
4653 		*/
4654 		if (cp->host_status == HS_IDLE) continue;
4655 		if (cp->cmd == cmd) {
4656 			found = 1;
4657 			break;
4658 		}
4659 	}
4660 
4661 	if (!found) {
4662 		return SCSI_ABORT_NOT_RUNNING;
4663 	}
4664 
4665 	if (np->settle_time) {
4666 		return SCSI_ABORT_SNOOZE;
4667 	}
4668 
4669 	/*
4670 	**	If the CCB is active, patch schedule jumps for the
4671 	**	script to abort the command.
4672 	*/
4673 
4674 	switch(cp->host_status) {
4675 	case HS_BUSY:
4676 	case HS_NEGOTIATE:
4677 		printk ("%s: abort ccb=%p (cancel)\n", ncr_name (np), cp);
4678 			cp->start.schedule.l_paddr =
4679 				cpu_to_scr(NCB_SCRIPTH_PHYS (np, cancel));
4680 		retv = SCSI_ABORT_PENDING;
4681 		break;
4682 	case HS_DISCONNECT:
4683 		cp->restart.schedule.l_paddr =
4684 				cpu_to_scr(NCB_SCRIPTH_PHYS (np, abort));
4685 		retv = SCSI_ABORT_PENDING;
4686 		break;
4687 	default:
4688 		retv = SCSI_ABORT_NOT_RUNNING;
4689 		break;
4690 
4691 	}
4692 
4693 	/*
4694 	**      If there are no requests, the script
4695 	**      processor will sleep on SEL_WAIT_RESEL.
4696 	**      Let's wake it up, since it may have to work.
4697 	*/
4698 	OUTB (nc_istat, SIGP);
4699 
4700 	return retv;
4701 }
4702 #endif
4703 
4704 static void ncr_detach(struct ncb *np)
4705 {
4706 	struct ccb *cp;
4707 	struct tcb *tp;
4708 	struct lcb *lp;
4709 	int target, lun;
4710 	int i;
4711 	char inst_name[16];
4712 
4713 	/* Local copy so we don't access np after freeing it! */
4714 	strlcpy(inst_name, ncr_name(np), sizeof(inst_name));
4715 
4716 	printk("%s: releasing host resources\n", ncr_name(np));
4717 
4718 /*
4719 **	Stop the ncr_timeout process
4720 **	Set release_stage to 1 and wait that ncr_timeout() set it to 2.
4721 */
4722 
4723 #ifdef DEBUG_NCR53C8XX
4724 	printk("%s: stopping the timer\n", ncr_name(np));
4725 #endif
4726 	np->release_stage = 1;
4727 	for (i = 50 ; i && np->release_stage != 2 ; i--)
4728 		mdelay(100);
4729 	if (np->release_stage != 2)
4730 		printk("%s: the timer seems to be already stopped\n", ncr_name(np));
4731 	else np->release_stage = 2;
4732 
4733 /*
4734 **	Disable chip interrupts
4735 */
4736 
4737 #ifdef DEBUG_NCR53C8XX
4738 	printk("%s: disabling chip interrupts\n", ncr_name(np));
4739 #endif
4740 	OUTW (nc_sien , 0);
4741 	OUTB (nc_dien , 0);
4742 
4743 	/*
4744 	**	Reset NCR chip
4745 	**	Restore bios setting for automatic clock detection.
4746 	*/
4747 
4748 	printk("%s: resetting chip\n", ncr_name(np));
4749 	ncr_chip_reset(np, 100);
4750 
4751 	OUTB(nc_dmode,	np->sv_dmode);
4752 	OUTB(nc_dcntl,	np->sv_dcntl);
4753 	OUTB(nc_ctest0,	np->sv_ctest0);
4754 	OUTB(nc_ctest3,	np->sv_ctest3);
4755 	OUTB(nc_ctest4,	np->sv_ctest4);
4756 	OUTB(nc_ctest5,	np->sv_ctest5);
4757 	OUTB(nc_gpcntl,	np->sv_gpcntl);
4758 	OUTB(nc_stest2,	np->sv_stest2);
4759 
4760 	ncr_selectclock(np, np->sv_scntl3);
4761 
4762 	/*
4763 	**	Free allocated ccb(s)
4764 	*/
4765 
4766 	while ((cp=np->ccb->link_ccb) != NULL) {
4767 		np->ccb->link_ccb = cp->link_ccb;
4768 		if (cp->host_status) {
4769 		printk("%s: shall free an active ccb (host_status=%d)\n",
4770 			ncr_name(np), cp->host_status);
4771 		}
4772 #ifdef DEBUG_NCR53C8XX
4773 	printk("%s: freeing ccb (%lx)\n", ncr_name(np), (u_long) cp);
4774 #endif
4775 		m_free_dma(cp, sizeof(*cp), "CCB");
4776 	}
4777 
4778 	/* Free allocated tp(s) */
4779 
4780 	for (target = 0; target < MAX_TARGET ; target++) {
4781 		tp=&np->target[target];
4782 		for (lun = 0 ; lun < MAX_LUN ; lun++) {
4783 			lp = tp->lp[lun];
4784 			if (lp) {
4785 #ifdef DEBUG_NCR53C8XX
4786 	printk("%s: freeing lp (%lx)\n", ncr_name(np), (u_long) lp);
4787 #endif
4788 				if (lp->jump_ccb != &lp->jump_ccb_0)
4789 					m_free_dma(lp->jump_ccb,256,"JUMP_CCB");
4790 				m_free_dma(lp, sizeof(*lp), "LCB");
4791 			}
4792 		}
4793 	}
4794 
4795 	if (np->scripth0)
4796 		m_free_dma(np->scripth0, sizeof(struct scripth), "SCRIPTH");
4797 	if (np->script0)
4798 		m_free_dma(np->script0, sizeof(struct script), "SCRIPT");
4799 	if (np->ccb)
4800 		m_free_dma(np->ccb, sizeof(struct ccb), "CCB");
4801 	m_free_dma(np, sizeof(struct ncb), "NCB");
4802 
4803 	printk("%s: host resources successfully released\n", inst_name);
4804 }
4805 
4806 /*==========================================================
4807 **
4808 **
4809 **	Complete execution of a SCSI command.
4810 **	Signal completion to the generic SCSI driver.
4811 **
4812 **
4813 **==========================================================
4814 */
4815 
4816 void ncr_complete (struct ncb *np, struct ccb *cp)
4817 {
4818 	struct scsi_cmnd *cmd;
4819 	struct tcb *tp;
4820 	struct lcb *lp;
4821 
4822 	/*
4823 	**	Sanity check
4824 	*/
4825 
4826 	if (!cp || cp->magic != CCB_MAGIC || !cp->cmd)
4827 		return;
4828 
4829 	/*
4830 	**	Print minimal debug information.
4831 	*/
4832 
4833 	if (DEBUG_FLAGS & DEBUG_TINY)
4834 		printk ("CCB=%lx STAT=%x/%x\n", (unsigned long)cp,
4835 			cp->host_status,cp->scsi_status);
4836 
4837 	/*
4838 	**	Get command, target and lun pointers.
4839 	*/
4840 
4841 	cmd = cp->cmd;
4842 	cp->cmd = NULL;
4843 	tp = &np->target[cmd->device->id];
4844 	lp = tp->lp[cmd->device->lun];
4845 
4846 	/*
4847 	**	We donnot queue more than 1 ccb per target
4848 	**	with negotiation at any time. If this ccb was
4849 	**	used for negotiation, clear this info in the tcb.
4850 	*/
4851 
4852 	if (cp == tp->nego_cp)
4853 		tp->nego_cp = NULL;
4854 
4855 	/*
4856 	**	If auto-sense performed, change scsi status.
4857 	*/
4858 	if (cp->auto_sense) {
4859 		cp->scsi_status = cp->auto_sense;
4860 	}
4861 
4862 	/*
4863 	**	If we were recovering from queue full or performing
4864 	**	auto-sense, requeue skipped CCBs to the wait queue.
4865 	*/
4866 
4867 	if (lp && lp->held_ccb) {
4868 		if (cp == lp->held_ccb) {
4869 			list_splice_init(&lp->skip_ccbq, &lp->wait_ccbq);
4870 			lp->held_ccb = NULL;
4871 		}
4872 	}
4873 
4874 	/*
4875 	**	Check for parity errors.
4876 	*/
4877 
4878 	if (cp->parity_status > 1) {
4879 		PRINT_ADDR(cmd, "%d parity error(s).\n",cp->parity_status);
4880 	}
4881 
4882 	/*
4883 	**	Check for extended errors.
4884 	*/
4885 
4886 	if (cp->xerr_status != XE_OK) {
4887 		switch (cp->xerr_status) {
4888 		case XE_EXTRA_DATA:
4889 			PRINT_ADDR(cmd, "extraneous data discarded.\n");
4890 			break;
4891 		case XE_BAD_PHASE:
4892 			PRINT_ADDR(cmd, "invalid scsi phase (4/5).\n");
4893 			break;
4894 		default:
4895 			PRINT_ADDR(cmd, "extended error %d.\n",
4896 					cp->xerr_status);
4897 			break;
4898 		}
4899 		if (cp->host_status==HS_COMPLETE)
4900 			cp->host_status = HS_FAIL;
4901 	}
4902 
4903 	/*
4904 	**	Print out any error for debugging purpose.
4905 	*/
4906 	if (DEBUG_FLAGS & (DEBUG_RESULT|DEBUG_TINY)) {
4907 		if (cp->host_status!=HS_COMPLETE || cp->scsi_status!=S_GOOD) {
4908 			PRINT_ADDR(cmd, "ERROR: cmd=%x host_status=%x "
4909 					"scsi_status=%x\n", cmd->cmnd[0],
4910 					cp->host_status, cp->scsi_status);
4911 		}
4912 	}
4913 
4914 	/*
4915 	**	Check the status.
4916 	*/
4917 	if (   (cp->host_status == HS_COMPLETE)
4918 		&& (cp->scsi_status == S_GOOD ||
4919 		    cp->scsi_status == S_COND_MET)) {
4920 		/*
4921 		 *	All went well (GOOD status).
4922 		 *	CONDITION MET status is returned on
4923 		 *	`Pre-Fetch' or `Search data' success.
4924 		 */
4925 		cmd->result = ScsiResult(DID_OK, cp->scsi_status);
4926 
4927 		/*
4928 		**	@RESID@
4929 		**	Could dig out the correct value for resid,
4930 		**	but it would be quite complicated.
4931 		*/
4932 		/* if (cp->phys.header.lastp != cp->phys.header.goalp) */
4933 
4934 		/*
4935 		**	Allocate the lcb if not yet.
4936 		*/
4937 		if (!lp)
4938 			ncr_alloc_lcb (np, cmd->device->id, cmd->device->lun);
4939 
4940 		tp->bytes     += cp->data_len;
4941 		tp->transfers ++;
4942 
4943 		/*
4944 		**	If tags was reduced due to queue full,
4945 		**	increase tags if 1000 good status received.
4946 		*/
4947 		if (lp && lp->usetags && lp->numtags < lp->maxtags) {
4948 			++lp->num_good;
4949 			if (lp->num_good >= 1000) {
4950 				lp->num_good = 0;
4951 				++lp->numtags;
4952 				ncr_setup_tags (np, cmd->device);
4953 			}
4954 		}
4955 	} else if ((cp->host_status == HS_COMPLETE)
4956 		&& (cp->scsi_status == S_CHECK_COND)) {
4957 		/*
4958 		**   Check condition code
4959 		*/
4960 		cmd->result = DID_OK << 16 | S_CHECK_COND;
4961 
4962 		/*
4963 		**	Copy back sense data to caller's buffer.
4964 		*/
4965 		memcpy(cmd->sense_buffer, cp->sense_buf,
4966 		       min_t(size_t, SCSI_SENSE_BUFFERSIZE,
4967 			     sizeof(cp->sense_buf)));
4968 
4969 		if (DEBUG_FLAGS & (DEBUG_RESULT|DEBUG_TINY)) {
4970 			u_char *p = cmd->sense_buffer;
4971 			int i;
4972 			PRINT_ADDR(cmd, "sense data:");
4973 			for (i=0; i<14; i++) printk (" %x", *p++);
4974 			printk (".\n");
4975 		}
4976 	} else if ((cp->host_status == HS_COMPLETE)
4977 		&& (cp->scsi_status == S_CONFLICT)) {
4978 		/*
4979 		**   Reservation Conflict condition code
4980 		*/
4981 		cmd->result = DID_OK << 16 | S_CONFLICT;
4982 
4983 	} else if ((cp->host_status == HS_COMPLETE)
4984 		&& (cp->scsi_status == S_BUSY ||
4985 		    cp->scsi_status == S_QUEUE_FULL)) {
4986 
4987 		/*
4988 		**   Target is busy.
4989 		*/
4990 		cmd->result = ScsiResult(DID_OK, cp->scsi_status);
4991 
4992 	} else if ((cp->host_status == HS_SEL_TIMEOUT)
4993 		|| (cp->host_status == HS_TIMEOUT)) {
4994 
4995 		/*
4996 		**   No response
4997 		*/
4998 		cmd->result = ScsiResult(DID_TIME_OUT, cp->scsi_status);
4999 
5000 	} else if (cp->host_status == HS_RESET) {
5001 
5002 		/*
5003 		**   SCSI bus reset
5004 		*/
5005 		cmd->result = ScsiResult(DID_RESET, cp->scsi_status);
5006 
5007 	} else if (cp->host_status == HS_ABORTED) {
5008 
5009 		/*
5010 		**   Transfer aborted
5011 		*/
5012 		cmd->result = ScsiResult(DID_ABORT, cp->scsi_status);
5013 
5014 	} else {
5015 
5016 		/*
5017 		**  Other protocol messes
5018 		*/
5019 		PRINT_ADDR(cmd, "COMMAND FAILED (%x %x) @%p.\n",
5020 			cp->host_status, cp->scsi_status, cp);
5021 
5022 		cmd->result = ScsiResult(DID_ERROR, cp->scsi_status);
5023 	}
5024 
5025 	/*
5026 	**	trace output
5027 	*/
5028 
5029 	if (tp->usrflag & UF_TRACE) {
5030 		u_char * p;
5031 		int i;
5032 		PRINT_ADDR(cmd, " CMD:");
5033 		p = (u_char*) &cmd->cmnd[0];
5034 		for (i=0; i<cmd->cmd_len; i++) printk (" %x", *p++);
5035 
5036 		if (cp->host_status==HS_COMPLETE) {
5037 			switch (cp->scsi_status) {
5038 			case S_GOOD:
5039 				printk ("  GOOD");
5040 				break;
5041 			case S_CHECK_COND:
5042 				printk ("  SENSE:");
5043 				p = (u_char*) &cmd->sense_buffer;
5044 				for (i=0; i<14; i++)
5045 					printk (" %x", *p++);
5046 				break;
5047 			default:
5048 				printk ("  STAT: %x\n", cp->scsi_status);
5049 				break;
5050 			}
5051 		} else printk ("  HOSTERROR: %x", cp->host_status);
5052 		printk ("\n");
5053 	}
5054 
5055 	/*
5056 	**	Free this ccb
5057 	*/
5058 	ncr_free_ccb (np, cp);
5059 
5060 	/*
5061 	**	requeue awaiting scsi commands for this lun.
5062 	*/
5063 	if (lp && lp->queuedccbs < lp->queuedepth &&
5064 	    !list_empty(&lp->wait_ccbq))
5065 		ncr_start_next_ccb(np, lp, 2);
5066 
5067 	/*
5068 	**	requeue awaiting scsi commands for this controller.
5069 	*/
5070 	if (np->waiting_list)
5071 		requeue_waiting_list(np);
5072 
5073 	/*
5074 	**	signal completion to generic driver.
5075 	*/
5076 	ncr_queue_done_cmd(np, cmd);
5077 }
5078 
5079 /*==========================================================
5080 **
5081 **
5082 **	Signal all (or one) control block done.
5083 **
5084 **
5085 **==========================================================
5086 */
5087 
5088 /*
5089 **	This CCB has been skipped by the NCR.
5090 **	Queue it in the corresponding unit queue.
5091 */
5092 static void ncr_ccb_skipped(struct ncb *np, struct ccb *cp)
5093 {
5094 	struct tcb *tp = &np->target[cp->target];
5095 	struct lcb *lp = tp->lp[cp->lun];
5096 
5097 	if (lp && cp != np->ccb) {
5098 		cp->host_status &= ~HS_SKIPMASK;
5099 		cp->start.schedule.l_paddr =
5100 			cpu_to_scr(NCB_SCRIPT_PHYS (np, select));
5101 		list_move_tail(&cp->link_ccbq, &lp->skip_ccbq);
5102 		if (cp->queued) {
5103 			--lp->queuedccbs;
5104 		}
5105 	}
5106 	if (cp->queued) {
5107 		--np->queuedccbs;
5108 		cp->queued = 0;
5109 	}
5110 }
5111 
5112 /*
5113 **	The NCR has completed CCBs.
5114 **	Look at the DONE QUEUE if enabled, otherwise scan all CCBs
5115 */
5116 void ncr_wakeup_done (struct ncb *np)
5117 {
5118 	struct ccb *cp;
5119 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
5120 	int i, j;
5121 
5122 	i = np->ccb_done_ic;
5123 	while (1) {
5124 		j = i+1;
5125 		if (j >= MAX_DONE)
5126 			j = 0;
5127 
5128 		cp = np->ccb_done[j];
5129 		if (!CCB_DONE_VALID(cp))
5130 			break;
5131 
5132 		np->ccb_done[j] = (struct ccb *)CCB_DONE_EMPTY;
5133 		np->scripth->done_queue[5*j + 4] =
5134 				cpu_to_scr(NCB_SCRIPT_PHYS (np, done_plug));
5135 		MEMORY_BARRIER();
5136 		np->scripth->done_queue[5*i + 4] =
5137 				cpu_to_scr(NCB_SCRIPT_PHYS (np, done_end));
5138 
5139 		if (cp->host_status & HS_DONEMASK)
5140 			ncr_complete (np, cp);
5141 		else if (cp->host_status & HS_SKIPMASK)
5142 			ncr_ccb_skipped (np, cp);
5143 
5144 		i = j;
5145 	}
5146 	np->ccb_done_ic = i;
5147 #else
5148 	cp = np->ccb;
5149 	while (cp) {
5150 		if (cp->host_status & HS_DONEMASK)
5151 			ncr_complete (np, cp);
5152 		else if (cp->host_status & HS_SKIPMASK)
5153 			ncr_ccb_skipped (np, cp);
5154 		cp = cp->link_ccb;
5155 	}
5156 #endif
5157 }
5158 
5159 /*
5160 **	Complete all active CCBs.
5161 */
5162 void ncr_wakeup (struct ncb *np, u_long code)
5163 {
5164 	struct ccb *cp = np->ccb;
5165 
5166 	while (cp) {
5167 		if (cp->host_status != HS_IDLE) {
5168 			cp->host_status = code;
5169 			ncr_complete (np, cp);
5170 		}
5171 		cp = cp->link_ccb;
5172 	}
5173 }
5174 
5175 /*
5176 ** Reset ncr chip.
5177 */
5178 
5179 /* Some initialisation must be done immediately following reset, for 53c720,
5180  * at least.  EA (dcntl bit 5) isn't set here as it is set once only in
5181  * the _detect function.
5182  */
5183 static void ncr_chip_reset(struct ncb *np, int delay)
5184 {
5185 	OUTB (nc_istat,  SRST);
5186 	udelay(delay);
5187 	OUTB (nc_istat,  0   );
5188 
5189 	if (np->features & FE_EHP)
5190 		OUTB (nc_ctest0, EHP);
5191 	if (np->features & FE_MUX)
5192 		OUTB (nc_ctest4, MUX);
5193 }
5194 
5195 
5196 /*==========================================================
5197 **
5198 **
5199 **	Start NCR chip.
5200 **
5201 **
5202 **==========================================================
5203 */
5204 
5205 void ncr_init (struct ncb *np, int reset, char * msg, u_long code)
5206 {
5207  	int	i;
5208 
5209  	/*
5210 	**	Reset chip if asked, otherwise just clear fifos.
5211  	*/
5212 
5213 	if (reset) {
5214 		OUTB (nc_istat,  SRST);
5215 		udelay(100);
5216 	}
5217 	else {
5218 		OUTB (nc_stest3, TE|CSF);
5219 		OUTONB (nc_ctest3, CLF);
5220 	}
5221 
5222 	/*
5223 	**	Message.
5224 	*/
5225 
5226 	if (msg) printk (KERN_INFO "%s: restart (%s).\n", ncr_name (np), msg);
5227 
5228 	/*
5229 	**	Clear Start Queue
5230 	*/
5231 	np->queuedepth = MAX_START - 1;	/* 1 entry needed as end marker */
5232 	for (i = 1; i < MAX_START + MAX_START; i += 2)
5233 		np->scripth0->tryloop[i] =
5234 				cpu_to_scr(NCB_SCRIPT_PHYS (np, idle));
5235 
5236 	/*
5237 	**	Start at first entry.
5238 	*/
5239 	np->squeueput = 0;
5240 	np->script0->startpos[0] = cpu_to_scr(NCB_SCRIPTH_PHYS (np, tryloop));
5241 
5242 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
5243 	/*
5244 	**	Clear Done Queue
5245 	*/
5246 	for (i = 0; i < MAX_DONE; i++) {
5247 		np->ccb_done[i] = (struct ccb *)CCB_DONE_EMPTY;
5248 		np->scripth0->done_queue[5*i + 4] =
5249 			cpu_to_scr(NCB_SCRIPT_PHYS (np, done_end));
5250 	}
5251 #endif
5252 
5253 	/*
5254 	**	Start at first entry.
5255 	*/
5256 	np->script0->done_pos[0] = cpu_to_scr(NCB_SCRIPTH_PHYS (np,done_queue));
5257 	np->ccb_done_ic = MAX_DONE-1;
5258 	np->scripth0->done_queue[5*(MAX_DONE-1) + 4] =
5259 			cpu_to_scr(NCB_SCRIPT_PHYS (np, done_plug));
5260 
5261 	/*
5262 	**	Wakeup all pending jobs.
5263 	*/
5264 	ncr_wakeup (np, code);
5265 
5266 	/*
5267 	**	Init chip.
5268 	*/
5269 
5270 	/*
5271 	** Remove reset; big delay because the 895 needs time for the
5272 	** bus mode to settle
5273 	*/
5274 	ncr_chip_reset(np, 2000);
5275 
5276 	OUTB (nc_scntl0, np->rv_scntl0 | 0xc0);
5277 					/*  full arb., ena parity, par->ATN  */
5278 	OUTB (nc_scntl1, 0x00);		/*  odd parity, and remove CRST!! */
5279 
5280 	ncr_selectclock(np, np->rv_scntl3);	/* Select SCSI clock */
5281 
5282 	OUTB (nc_scid  , RRE|np->myaddr);	/* Adapter SCSI address */
5283 	OUTW (nc_respid, 1ul<<np->myaddr);	/* Id to respond to */
5284 	OUTB (nc_istat , SIGP	);		/*  Signal Process */
5285 	OUTB (nc_dmode , np->rv_dmode);		/* Burst length, dma mode */
5286 	OUTB (nc_ctest5, np->rv_ctest5);	/* Large fifo + large burst */
5287 
5288 	OUTB (nc_dcntl , NOCOM|np->rv_dcntl);	/* Protect SFBR */
5289 	OUTB (nc_ctest0, np->rv_ctest0);	/* 720: CDIS and EHP */
5290 	OUTB (nc_ctest3, np->rv_ctest3);	/* Write and invalidate */
5291 	OUTB (nc_ctest4, np->rv_ctest4);	/* Master parity checking */
5292 
5293 	OUTB (nc_stest2, EXT|np->rv_stest2);	/* Extended Sreq/Sack filtering */
5294 	OUTB (nc_stest3, TE);			/* TolerANT enable */
5295 	OUTB (nc_stime0, 0x0c	);		/* HTH disabled  STO 0.25 sec */
5296 
5297 	/*
5298 	**	Disable disconnects.
5299 	*/
5300 
5301 	np->disc = 0;
5302 
5303 	/*
5304 	**    Enable GPIO0 pin for writing if LED support.
5305 	*/
5306 
5307 	if (np->features & FE_LED0) {
5308 		OUTOFFB (nc_gpcntl, 0x01);
5309 	}
5310 
5311 	/*
5312 	**      enable ints
5313 	*/
5314 
5315 	OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
5316 	OUTB (nc_dien , MDPE|BF|ABRT|SSI|SIR|IID);
5317 
5318 	/*
5319 	**	Fill in target structure.
5320 	**	Reinitialize usrsync.
5321 	**	Reinitialize usrwide.
5322 	**	Prepare sync negotiation according to actual SCSI bus mode.
5323 	*/
5324 
5325 	for (i=0;i<MAX_TARGET;i++) {
5326 		struct tcb *tp = &np->target[i];
5327 
5328 		tp->sval    = 0;
5329 		tp->wval    = np->rv_scntl3;
5330 
5331 		if (tp->usrsync != 255) {
5332 			if (tp->usrsync <= np->maxsync) {
5333 				if (tp->usrsync < np->minsync) {
5334 					tp->usrsync = np->minsync;
5335 				}
5336 			}
5337 			else
5338 				tp->usrsync = 255;
5339 		}
5340 
5341 		if (tp->usrwide > np->maxwide)
5342 			tp->usrwide = np->maxwide;
5343 
5344 	}
5345 
5346 	/*
5347 	**    Start script processor.
5348 	*/
5349 	if (np->paddr2) {
5350 		if (bootverbose)
5351 			printk ("%s: Downloading SCSI SCRIPTS.\n",
5352 				ncr_name(np));
5353 		OUTL (nc_scratcha, vtobus(np->script0));
5354 		OUTL_DSP (NCB_SCRIPTH_PHYS (np, start_ram));
5355 	}
5356 	else
5357 		OUTL_DSP (NCB_SCRIPT_PHYS (np, start));
5358 }
5359 
5360 /*==========================================================
5361 **
5362 **	Prepare the negotiation values for wide and
5363 **	synchronous transfers.
5364 **
5365 **==========================================================
5366 */
5367 
5368 static void ncr_negotiate (struct ncb* np, struct tcb* tp)
5369 {
5370 	/*
5371 	**	minsync unit is 4ns !
5372 	*/
5373 
5374 	u_long minsync = tp->usrsync;
5375 
5376 	/*
5377 	**	SCSI bus mode limit
5378 	*/
5379 
5380 	if (np->scsi_mode && np->scsi_mode == SMODE_SE) {
5381 		if (minsync < 12) minsync = 12;
5382 	}
5383 
5384 	/*
5385 	**	our limit ..
5386 	*/
5387 
5388 	if (minsync < np->minsync)
5389 		minsync = np->minsync;
5390 
5391 	/*
5392 	**	divider limit
5393 	*/
5394 
5395 	if (minsync > np->maxsync)
5396 		minsync = 255;
5397 
5398 	if (tp->maxoffs > np->maxoffs)
5399 		tp->maxoffs = np->maxoffs;
5400 
5401 	tp->minsync = minsync;
5402 	tp->maxoffs = (minsync<255 ? tp->maxoffs : 0);
5403 
5404 	/*
5405 	**	period=0: has to negotiate sync transfer
5406 	*/
5407 
5408 	tp->period=0;
5409 
5410 	/*
5411 	**	widedone=0: has to negotiate wide transfer
5412 	*/
5413 	tp->widedone=0;
5414 }
5415 
5416 /*==========================================================
5417 **
5418 **	Get clock factor and sync divisor for a given
5419 **	synchronous factor period.
5420 **	Returns the clock factor (in sxfer) and scntl3
5421 **	synchronous divisor field.
5422 **
5423 **==========================================================
5424 */
5425 
5426 static void ncr_getsync(struct ncb *np, u_char sfac, u_char *fakp, u_char *scntl3p)
5427 {
5428 	u_long	clk = np->clock_khz;	/* SCSI clock frequency in kHz	*/
5429 	int	div = np->clock_divn;	/* Number of divisors supported	*/
5430 	u_long	fak;			/* Sync factor in sxfer		*/
5431 	u_long	per;			/* Period in tenths of ns	*/
5432 	u_long	kpc;			/* (per * clk)			*/
5433 
5434 	/*
5435 	**	Compute the synchronous period in tenths of nano-seconds
5436 	*/
5437 	if	(sfac <= 10)	per = 250;
5438 	else if	(sfac == 11)	per = 303;
5439 	else if	(sfac == 12)	per = 500;
5440 	else			per = 40 * sfac;
5441 
5442 	/*
5443 	**	Look for the greatest clock divisor that allows an
5444 	**	input speed faster than the period.
5445 	*/
5446 	kpc = per * clk;
5447 	while (--div > 0)
5448 		if (kpc >= (div_10M[div] << 2)) break;
5449 
5450 	/*
5451 	**	Calculate the lowest clock factor that allows an output
5452 	**	speed not faster than the period.
5453 	*/
5454 	fak = (kpc - 1) / div_10M[div] + 1;
5455 
5456 #if 0	/* This optimization does not seem very useful */
5457 
5458 	per = (fak * div_10M[div]) / clk;
5459 
5460 	/*
5461 	**	Why not to try the immediate lower divisor and to choose
5462 	**	the one that allows the fastest output speed ?
5463 	**	We don't want input speed too much greater than output speed.
5464 	*/
5465 	if (div >= 1 && fak < 8) {
5466 		u_long fak2, per2;
5467 		fak2 = (kpc - 1) / div_10M[div-1] + 1;
5468 		per2 = (fak2 * div_10M[div-1]) / clk;
5469 		if (per2 < per && fak2 <= 8) {
5470 			fak = fak2;
5471 			per = per2;
5472 			--div;
5473 		}
5474 	}
5475 #endif
5476 
5477 	if (fak < 4) fak = 4;	/* Should never happen, too bad ... */
5478 
5479 	/*
5480 	**	Compute and return sync parameters for the ncr
5481 	*/
5482 	*fakp		= fak - 4;
5483 	*scntl3p	= ((div+1) << 4) + (sfac < 25 ? 0x80 : 0);
5484 }
5485 
5486 
5487 /*==========================================================
5488 **
5489 **	Set actual values, sync status and patch all ccbs of
5490 **	a target according to new sync/wide agreement.
5491 **
5492 **==========================================================
5493 */
5494 
5495 static void ncr_set_sync_wide_status (struct ncb *np, u_char target)
5496 {
5497 	struct ccb *cp;
5498 	struct tcb *tp = &np->target[target];
5499 
5500 	/*
5501 	**	set actual value and sync_status
5502 	*/
5503 	OUTB (nc_sxfer, tp->sval);
5504 	np->sync_st = tp->sval;
5505 	OUTB (nc_scntl3, tp->wval);
5506 	np->wide_st = tp->wval;
5507 
5508 	/*
5509 	**	patch ALL ccbs of this target.
5510 	*/
5511 	for (cp = np->ccb; cp; cp = cp->link_ccb) {
5512 		if (!cp->cmd) continue;
5513 		if (scmd_id(cp->cmd) != target) continue;
5514 #if 0
5515 		cp->sync_status = tp->sval;
5516 		cp->wide_status = tp->wval;
5517 #endif
5518 		cp->phys.select.sel_scntl3 = tp->wval;
5519 		cp->phys.select.sel_sxfer  = tp->sval;
5520 	}
5521 }
5522 
5523 /*==========================================================
5524 **
5525 **	Switch sync mode for current job and it's target
5526 **
5527 **==========================================================
5528 */
5529 
5530 static void ncr_setsync (struct ncb *np, struct ccb *cp, u_char scntl3, u_char sxfer)
5531 {
5532 	struct scsi_cmnd *cmd = cp->cmd;
5533 	struct tcb *tp;
5534 	u_char target = INB (nc_sdid) & 0x0f;
5535 	u_char idiv;
5536 
5537 	BUG_ON(target != (scmd_id(cmd) & 0xf));
5538 
5539 	tp = &np->target[target];
5540 
5541 	if (!scntl3 || !(sxfer & 0x1f))
5542 		scntl3 = np->rv_scntl3;
5543 	scntl3 = (scntl3 & 0xf0) | (tp->wval & EWS) | (np->rv_scntl3 & 0x07);
5544 
5545 	/*
5546 	**	Deduce the value of controller sync period from scntl3.
5547 	**	period is in tenths of nano-seconds.
5548 	*/
5549 
5550 	idiv = ((scntl3 >> 4) & 0x7);
5551 	if ((sxfer & 0x1f) && idiv)
5552 		tp->period = (((sxfer>>5)+4)*div_10M[idiv-1])/np->clock_khz;
5553 	else
5554 		tp->period = 0xffff;
5555 
5556 	/* Stop there if sync parameters are unchanged */
5557 	if (tp->sval == sxfer && tp->wval == scntl3)
5558 		return;
5559 	tp->sval = sxfer;
5560 	tp->wval = scntl3;
5561 
5562 	if (sxfer & 0x01f) {
5563 		/* Disable extended Sreq/Sack filtering */
5564 		if (tp->period <= 2000)
5565 			OUTOFFB(nc_stest2, EXT);
5566 	}
5567 
5568 	spi_display_xfer_agreement(tp->starget);
5569 
5570 	/*
5571 	**	set actual value and sync_status
5572 	**	patch ALL ccbs of this target.
5573 	*/
5574 	ncr_set_sync_wide_status(np, target);
5575 }
5576 
5577 /*==========================================================
5578 **
5579 **	Switch wide mode for current job and it's target
5580 **	SCSI specs say: a SCSI device that accepts a WDTR
5581 **	message shall reset the synchronous agreement to
5582 **	asynchronous mode.
5583 **
5584 **==========================================================
5585 */
5586 
5587 static void ncr_setwide (struct ncb *np, struct ccb *cp, u_char wide, u_char ack)
5588 {
5589 	struct scsi_cmnd *cmd = cp->cmd;
5590 	u16 target = INB (nc_sdid) & 0x0f;
5591 	struct tcb *tp;
5592 	u_char	scntl3;
5593 	u_char	sxfer;
5594 
5595 	BUG_ON(target != (scmd_id(cmd) & 0xf));
5596 
5597 	tp = &np->target[target];
5598 	tp->widedone  =  wide+1;
5599 	scntl3 = (tp->wval & (~EWS)) | (wide ? EWS : 0);
5600 
5601 	sxfer = ack ? 0 : tp->sval;
5602 
5603 	/*
5604 	**	 Stop there if sync/wide parameters are unchanged
5605 	*/
5606 	if (tp->sval == sxfer && tp->wval == scntl3) return;
5607 	tp->sval = sxfer;
5608 	tp->wval = scntl3;
5609 
5610 	/*
5611 	**	Bells and whistles   ;-)
5612 	*/
5613 	if (bootverbose >= 2) {
5614 		dev_info(&cmd->device->sdev_target->dev, "WIDE SCSI %sabled.\n",
5615 				(scntl3 & EWS) ? "en" : "dis");
5616 	}
5617 
5618 	/*
5619 	**	set actual value and sync_status
5620 	**	patch ALL ccbs of this target.
5621 	*/
5622 	ncr_set_sync_wide_status(np, target);
5623 }
5624 
5625 /*==========================================================
5626 **
5627 **	Switch tagged mode for a target.
5628 **
5629 **==========================================================
5630 */
5631 
5632 static void ncr_setup_tags (struct ncb *np, struct scsi_device *sdev)
5633 {
5634 	unsigned char tn = sdev->id, ln = sdev->lun;
5635 	struct tcb *tp = &np->target[tn];
5636 	struct lcb *lp = tp->lp[ln];
5637 	u_char   reqtags, maxdepth;
5638 
5639 	/*
5640 	**	Just in case ...
5641 	*/
5642 	if ((!tp) || (!lp) || !sdev)
5643 		return;
5644 
5645 	/*
5646 	**	If SCSI device queue depth is not yet set, leave here.
5647 	*/
5648 	if (!lp->scdev_depth)
5649 		return;
5650 
5651 	/*
5652 	**	Donnot allow more tags than the SCSI driver can queue
5653 	**	for this device.
5654 	**	Donnot allow more tags than we can handle.
5655 	*/
5656 	maxdepth = lp->scdev_depth;
5657 	if (maxdepth > lp->maxnxs)	maxdepth    = lp->maxnxs;
5658 	if (lp->maxtags > maxdepth)	lp->maxtags = maxdepth;
5659 	if (lp->numtags > maxdepth)	lp->numtags = maxdepth;
5660 
5661 	/*
5662 	**	only devices conformant to ANSI Version >= 2
5663 	**	only devices capable of tagged commands
5664 	**	only if enabled by user ..
5665 	*/
5666 	if (sdev->tagged_supported && lp->numtags > 1) {
5667 		reqtags = lp->numtags;
5668 	} else {
5669 		reqtags = 1;
5670 	}
5671 
5672 	/*
5673 	**	Update max number of tags
5674 	*/
5675 	lp->numtags = reqtags;
5676 	if (lp->numtags > lp->maxtags)
5677 		lp->maxtags = lp->numtags;
5678 
5679 	/*
5680 	**	If we want to switch tag mode, we must wait
5681 	**	for no CCB to be active.
5682 	*/
5683 	if	(reqtags > 1 && lp->usetags) {	 /* Stay in tagged mode    */
5684 		if (lp->queuedepth == reqtags)	 /* Already announced	   */
5685 			return;
5686 		lp->queuedepth	= reqtags;
5687 	}
5688 	else if	(reqtags <= 1 && !lp->usetags) { /* Stay in untagged mode  */
5689 		lp->queuedepth	= reqtags;
5690 		return;
5691 	}
5692 	else {					 /* Want to switch tag mode */
5693 		if (lp->busyccbs)		 /* If not yet safe, return */
5694 			return;
5695 		lp->queuedepth	= reqtags;
5696 		lp->usetags	= reqtags > 1 ? 1 : 0;
5697 	}
5698 
5699 	/*
5700 	**	Patch the lun mini-script, according to tag mode.
5701 	*/
5702 	lp->jump_tag.l_paddr = lp->usetags?
5703 			cpu_to_scr(NCB_SCRIPT_PHYS(np, resel_tag)) :
5704 			cpu_to_scr(NCB_SCRIPT_PHYS(np, resel_notag));
5705 
5706 	/*
5707 	**	Announce change to user.
5708 	*/
5709 	if (bootverbose) {
5710 		if (lp->usetags) {
5711 			dev_info(&sdev->sdev_gendev,
5712 				"tagged command queue depth set to %d\n",
5713 				reqtags);
5714 		} else {
5715 			dev_info(&sdev->sdev_gendev,
5716 					"tagged command queueing disabled\n");
5717 		}
5718 	}
5719 }
5720 
5721 /*==========================================================
5722 **
5723 **
5724 **	ncr timeout handler.
5725 **
5726 **
5727 **==========================================================
5728 **
5729 **	Misused to keep the driver running when
5730 **	interrupts are not configured correctly.
5731 **
5732 **----------------------------------------------------------
5733 */
5734 
5735 static void ncr_timeout (struct ncb *np)
5736 {
5737 	u_long	thistime = jiffies;
5738 
5739 	/*
5740 	**	If release process in progress, let's go
5741 	**	Set the release stage from 1 to 2 to synchronize
5742 	**	with the release process.
5743 	*/
5744 
5745 	if (np->release_stage) {
5746 		if (np->release_stage == 1) np->release_stage = 2;
5747 		return;
5748 	}
5749 
5750 	np->timer.expires = jiffies + SCSI_NCR_TIMER_INTERVAL;
5751 	add_timer(&np->timer);
5752 
5753 	/*
5754 	**	If we are resetting the ncr, wait for settle_time before
5755 	**	clearing it. Then command processing will be resumed.
5756 	*/
5757 	if (np->settle_time) {
5758 		if (np->settle_time <= thistime) {
5759 			if (bootverbose > 1)
5760 				printk("%s: command processing resumed\n", ncr_name(np));
5761 			np->settle_time	= 0;
5762 			np->disc	= 1;
5763 			requeue_waiting_list(np);
5764 		}
5765 		return;
5766 	}
5767 
5768 	/*
5769 	**	Since the generic scsi driver only allows us 0.5 second
5770 	**	to perform abort of a command, we must look at ccbs about
5771 	**	every 0.25 second.
5772 	*/
5773 	if (np->lasttime + 4*HZ < thistime) {
5774 		/*
5775 		**	block ncr interrupts
5776 		*/
5777 		np->lasttime = thistime;
5778 	}
5779 
5780 #ifdef SCSI_NCR_BROKEN_INTR
5781 	if (INB(nc_istat) & (INTF|SIP|DIP)) {
5782 
5783 		/*
5784 		**	Process pending interrupts.
5785 		*/
5786 		if (DEBUG_FLAGS & DEBUG_TINY) printk ("{");
5787 		ncr_exception (np);
5788 		if (DEBUG_FLAGS & DEBUG_TINY) printk ("}");
5789 	}
5790 #endif /* SCSI_NCR_BROKEN_INTR */
5791 }
5792 
5793 /*==========================================================
5794 **
5795 **	log message for real hard errors
5796 **
5797 **	"ncr0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc)."
5798 **	"	      reg: r0 r1 r2 r3 r4 r5 r6 ..... rf."
5799 **
5800 **	exception register:
5801 **		ds:	dstat
5802 **		si:	sist
5803 **
5804 **	SCSI bus lines:
5805 **		so:	control lines as driver by NCR.
5806 **		si:	control lines as seen by NCR.
5807 **		sd:	scsi data lines as seen by NCR.
5808 **
5809 **	wide/fastmode:
5810 **		sxfer:	(see the manual)
5811 **		scntl3:	(see the manual)
5812 **
5813 **	current script command:
5814 **		dsp:	script address (relative to start of script).
5815 **		dbc:	first word of script command.
5816 **
5817 **	First 16 register of the chip:
5818 **		r0..rf
5819 **
5820 **==========================================================
5821 */
5822 
5823 static void ncr_log_hard_error(struct ncb *np, u16 sist, u_char dstat)
5824 {
5825 	u32	dsp;
5826 	int	script_ofs;
5827 	int	script_size;
5828 	char	*script_name;
5829 	u_char	*script_base;
5830 	int	i;
5831 
5832 	dsp	= INL (nc_dsp);
5833 
5834 	if (dsp > np->p_script && dsp <= np->p_script + sizeof(struct script)) {
5835 		script_ofs	= dsp - np->p_script;
5836 		script_size	= sizeof(struct script);
5837 		script_base	= (u_char *) np->script0;
5838 		script_name	= "script";
5839 	}
5840 	else if (np->p_scripth < dsp &&
5841 		 dsp <= np->p_scripth + sizeof(struct scripth)) {
5842 		script_ofs	= dsp - np->p_scripth;
5843 		script_size	= sizeof(struct scripth);
5844 		script_base	= (u_char *) np->scripth0;
5845 		script_name	= "scripth";
5846 	} else {
5847 		script_ofs	= dsp;
5848 		script_size	= 0;
5849 		script_base	= NULL;
5850 		script_name	= "mem";
5851 	}
5852 
5853 	printk ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n",
5854 		ncr_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist,
5855 		(unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl), (unsigned)INB (nc_sbdl),
5856 		(unsigned)INB (nc_sxfer),(unsigned)INB (nc_scntl3), script_name, script_ofs,
5857 		(unsigned)INL (nc_dbc));
5858 
5859 	if (((script_ofs & 3) == 0) &&
5860 	    (unsigned)script_ofs < script_size) {
5861 		printk ("%s: script cmd = %08x\n", ncr_name(np),
5862 			scr_to_cpu((int) *(ncrcmd *)(script_base + script_ofs)));
5863 	}
5864 
5865 	printk ("%s: regdump:", ncr_name(np));
5866 	for (i=0; i<16;i++)
5867             printk (" %02x", (unsigned)INB_OFF(i));
5868 	printk (".\n");
5869 }
5870 
5871 /*============================================================
5872 **
5873 **	ncr chip exception handler.
5874 **
5875 **============================================================
5876 **
5877 **	In normal cases, interrupt conditions occur one at a
5878 **	time. The ncr is able to stack in some extra registers
5879 **	other interrupts that will occur after the first one.
5880 **	But, several interrupts may occur at the same time.
5881 **
5882 **	We probably should only try to deal with the normal
5883 **	case, but it seems that multiple interrupts occur in
5884 **	some cases that are not abnormal at all.
5885 **
5886 **	The most frequent interrupt condition is Phase Mismatch.
5887 **	We should want to service this interrupt quickly.
5888 **	A SCSI parity error may be delivered at the same time.
5889 **	The SIR interrupt is not very frequent in this driver,
5890 **	since the INTFLY is likely used for command completion
5891 **	signaling.
5892 **	The Selection Timeout interrupt may be triggered with
5893 **	IID and/or UDC.
5894 **	The SBMC interrupt (SCSI Bus Mode Change) may probably
5895 **	occur at any time.
5896 **
5897 **	This handler try to deal as cleverly as possible with all
5898 **	the above.
5899 **
5900 **============================================================
5901 */
5902 
5903 void ncr_exception (struct ncb *np)
5904 {
5905 	u_char	istat, dstat;
5906 	u16	sist;
5907 	int	i;
5908 
5909 	/*
5910 	**	interrupt on the fly ?
5911 	**	Since the global header may be copied back to a CCB
5912 	**	using a posted PCI memory write, the last operation on
5913 	**	the istat register is a READ in order to flush posted
5914 	**	PCI write commands.
5915 	*/
5916 	istat = INB (nc_istat);
5917 	if (istat & INTF) {
5918 		OUTB (nc_istat, (istat & SIGP) | INTF);
5919 		istat = INB (nc_istat);
5920 		if (DEBUG_FLAGS & DEBUG_TINY) printk ("F ");
5921 		ncr_wakeup_done (np);
5922 	}
5923 
5924 	if (!(istat & (SIP|DIP)))
5925 		return;
5926 
5927 	if (istat & CABRT)
5928 		OUTB (nc_istat, CABRT);
5929 
5930 	/*
5931 	**	Steinbach's Guideline for Systems Programming:
5932 	**	Never test for an error condition you don't know how to handle.
5933 	*/
5934 
5935 	sist  = (istat & SIP) ? INW (nc_sist)  : 0;
5936 	dstat = (istat & DIP) ? INB (nc_dstat) : 0;
5937 
5938 	if (DEBUG_FLAGS & DEBUG_TINY)
5939 		printk ("<%d|%x:%x|%x:%x>",
5940 			(int)INB(nc_scr0),
5941 			dstat,sist,
5942 			(unsigned)INL(nc_dsp),
5943 			(unsigned)INL(nc_dbc));
5944 
5945 	/*========================================================
5946 	**	First, interrupts we want to service cleanly.
5947 	**
5948 	**	Phase mismatch is the most frequent interrupt, and
5949 	**	so we have to service it as quickly and as cleanly
5950 	**	as possible.
5951 	**	Programmed interrupts are rarely used in this driver,
5952 	**	but we must handle them cleanly anyway.
5953 	**	We try to deal with PAR and SBMC combined with
5954 	**	some other interrupt(s).
5955 	**=========================================================
5956 	*/
5957 
5958 	if (!(sist  & (STO|GEN|HTH|SGE|UDC|RST)) &&
5959 	    !(dstat & (MDPE|BF|ABRT|IID))) {
5960 		if ((sist & SBMC) && ncr_int_sbmc (np))
5961 			return;
5962 		if ((sist & PAR)  && ncr_int_par  (np))
5963 			return;
5964 		if (sist & MA) {
5965 			ncr_int_ma (np);
5966 			return;
5967 		}
5968 		if (dstat & SIR) {
5969 			ncr_int_sir (np);
5970 			return;
5971 		}
5972 		/*
5973 		**  DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 2.
5974 		*/
5975 		if (!(sist & (SBMC|PAR)) && !(dstat & SSI)) {
5976 			printk(	"%s: unknown interrupt(s) ignored, "
5977 				"ISTAT=%x DSTAT=%x SIST=%x\n",
5978 				ncr_name(np), istat, dstat, sist);
5979 			return;
5980 		}
5981 		OUTONB_STD ();
5982 		return;
5983 	}
5984 
5985 	/*========================================================
5986 	**	Now, interrupts that need some fixing up.
5987 	**	Order and multiple interrupts is so less important.
5988 	**
5989 	**	If SRST has been asserted, we just reset the chip.
5990 	**
5991 	**	Selection is intirely handled by the chip. If the
5992 	**	chip says STO, we trust it. Seems some other
5993 	**	interrupts may occur at the same time (UDC, IID), so
5994 	**	we ignore them. In any case we do enough fix-up
5995 	**	in the service routine.
5996 	**	We just exclude some fatal dma errors.
5997 	**=========================================================
5998 	*/
5999 
6000 	if (sist & RST) {
6001 		ncr_init (np, 1, bootverbose ? "scsi reset" : NULL, HS_RESET);
6002 		return;
6003 	}
6004 
6005 	if ((sist & STO) &&
6006 		!(dstat & (MDPE|BF|ABRT))) {
6007 	/*
6008 	**	DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 1.
6009 	*/
6010 		OUTONB (nc_ctest3, CLF);
6011 
6012 		ncr_int_sto (np);
6013 		return;
6014 	}
6015 
6016 	/*=========================================================
6017 	**	Now, interrupts we are not able to recover cleanly.
6018 	**	(At least for the moment).
6019 	**
6020 	**	Do the register dump.
6021 	**	Log message for real hard errors.
6022 	**	Clear all fifos.
6023 	**	For MDPE, BF, ABORT, IID, SGE and HTH we reset the
6024 	**	BUS and the chip.
6025 	**	We are more soft for UDC.
6026 	**=========================================================
6027 	*/
6028 
6029 	if (time_after(jiffies, np->regtime)) {
6030 		np->regtime = jiffies + 10*HZ;
6031 		for (i = 0; i<sizeof(np->regdump); i++)
6032 			((char*)&np->regdump)[i] = INB_OFF(i);
6033 		np->regdump.nc_dstat = dstat;
6034 		np->regdump.nc_sist  = sist;
6035 	}
6036 
6037 	ncr_log_hard_error(np, sist, dstat);
6038 
6039 	printk ("%s: have to clear fifos.\n", ncr_name (np));
6040 	OUTB (nc_stest3, TE|CSF);
6041 	OUTONB (nc_ctest3, CLF);
6042 
6043 	if ((sist & (SGE)) ||
6044 		(dstat & (MDPE|BF|ABRT|IID))) {
6045 		ncr_start_reset(np);
6046 		return;
6047 	}
6048 
6049 	if (sist & HTH) {
6050 		printk ("%s: handshake timeout\n", ncr_name(np));
6051 		ncr_start_reset(np);
6052 		return;
6053 	}
6054 
6055 	if (sist & UDC) {
6056 		printk ("%s: unexpected disconnect\n", ncr_name(np));
6057 		OUTB (HS_PRT, HS_UNEXPECTED);
6058 		OUTL_DSP (NCB_SCRIPT_PHYS (np, cleanup));
6059 		return;
6060 	}
6061 
6062 	/*=========================================================
6063 	**	We just miss the cause of the interrupt. :(
6064 	**	Print a message. The timeout will do the real work.
6065 	**=========================================================
6066 	*/
6067 	printk ("%s: unknown interrupt\n", ncr_name(np));
6068 }
6069 
6070 /*==========================================================
6071 **
6072 **	ncr chip exception handler for selection timeout
6073 **
6074 **==========================================================
6075 **
6076 **	There seems to be a bug in the 53c810.
6077 **	Although a STO-Interrupt is pending,
6078 **	it continues executing script commands.
6079 **	But it will fail and interrupt (IID) on
6080 **	the next instruction where it's looking
6081 **	for a valid phase.
6082 **
6083 **----------------------------------------------------------
6084 */
6085 
6086 void ncr_int_sto (struct ncb *np)
6087 {
6088 	u_long dsa;
6089 	struct ccb *cp;
6090 	if (DEBUG_FLAGS & DEBUG_TINY) printk ("T");
6091 
6092 	/*
6093 	**	look for ccb and set the status.
6094 	*/
6095 
6096 	dsa = INL (nc_dsa);
6097 	cp = np->ccb;
6098 	while (cp && (CCB_PHYS (cp, phys) != dsa))
6099 		cp = cp->link_ccb;
6100 
6101 	if (cp) {
6102 		cp-> host_status = HS_SEL_TIMEOUT;
6103 		ncr_complete (np, cp);
6104 	}
6105 
6106 	/*
6107 	**	repair start queue and jump to start point.
6108 	*/
6109 
6110 	OUTL_DSP (NCB_SCRIPTH_PHYS (np, sto_restart));
6111 	return;
6112 }
6113 
6114 /*==========================================================
6115 **
6116 **	ncr chip exception handler for SCSI bus mode change
6117 **
6118 **==========================================================
6119 **
6120 **	spi2-r12 11.2.3 says a transceiver mode change must
6121 **	generate a reset event and a device that detects a reset
6122 **	event shall initiate a hard reset. It says also that a
6123 **	device that detects a mode change shall set data transfer
6124 **	mode to eight bit asynchronous, etc...
6125 **	So, just resetting should be enough.
6126 **
6127 **
6128 **----------------------------------------------------------
6129 */
6130 
6131 static int ncr_int_sbmc (struct ncb *np)
6132 {
6133 	u_char scsi_mode = INB (nc_stest4) & SMODE;
6134 
6135 	if (scsi_mode != np->scsi_mode) {
6136 		printk("%s: SCSI bus mode change from %x to %x.\n",
6137 			ncr_name(np), np->scsi_mode, scsi_mode);
6138 
6139 		np->scsi_mode = scsi_mode;
6140 
6141 
6142 		/*
6143 		**	Suspend command processing for 1 second and
6144 		**	reinitialize all except the chip.
6145 		*/
6146 		np->settle_time	= jiffies + HZ;
6147 		ncr_init (np, 0, bootverbose ? "scsi mode change" : NULL, HS_RESET);
6148 		return 1;
6149 	}
6150 	return 0;
6151 }
6152 
6153 /*==========================================================
6154 **
6155 **	ncr chip exception handler for SCSI parity error.
6156 **
6157 **==========================================================
6158 **
6159 **
6160 **----------------------------------------------------------
6161 */
6162 
6163 static int ncr_int_par (struct ncb *np)
6164 {
6165 	u_char	hsts	= INB (HS_PRT);
6166 	u32	dbc	= INL (nc_dbc);
6167 	u_char	sstat1	= INB (nc_sstat1);
6168 	int phase	= -1;
6169 	int msg		= -1;
6170 	u32 jmp;
6171 
6172 	printk("%s: SCSI parity error detected: SCR1=%d DBC=%x SSTAT1=%x\n",
6173 		ncr_name(np), hsts, dbc, sstat1);
6174 
6175 	/*
6176 	 *	Ignore the interrupt if the NCR is not connected
6177 	 *	to the SCSI bus, since the right work should have
6178 	 *	been done on unexpected disconnection handling.
6179 	 */
6180 	if (!(INB (nc_scntl1) & ISCON))
6181 		return 0;
6182 
6183 	/*
6184 	 *	If the nexus is not clearly identified, reset the bus.
6185 	 *	We will try to do better later.
6186 	 */
6187 	if (hsts & HS_INVALMASK)
6188 		goto reset_all;
6189 
6190 	/*
6191 	 *	If the SCSI parity error occurs in MSG IN phase, prepare a
6192 	 *	MSG PARITY message. Otherwise, prepare a INITIATOR DETECTED
6193 	 *	ERROR message and let the device decide to retry the command
6194 	 *	or to terminate with check condition. If we were in MSG IN
6195 	 *	phase waiting for the response of a negotiation, we will
6196 	 *	get SIR_NEGO_FAILED at dispatch.
6197 	 */
6198 	if (!(dbc & 0xc0000000))
6199 		phase = (dbc >> 24) & 7;
6200 	if (phase == 7)
6201 		msg = MSG_PARITY_ERROR;
6202 	else
6203 		msg = INITIATOR_ERROR;
6204 
6205 
6206 	/*
6207 	 *	If the NCR stopped on a MOVE ^ DATA_IN, we jump to a
6208 	 *	script that will ignore all data in bytes until phase
6209 	 *	change, since we are not sure the chip will wait the phase
6210 	 *	change prior to delivering the interrupt.
6211 	 */
6212 	if (phase == 1)
6213 		jmp = NCB_SCRIPTH_PHYS (np, par_err_data_in);
6214 	else
6215 		jmp = NCB_SCRIPTH_PHYS (np, par_err_other);
6216 
6217 	OUTONB (nc_ctest3, CLF );	/* clear dma fifo  */
6218 	OUTB (nc_stest3, TE|CSF);	/* clear scsi fifo */
6219 
6220 	np->msgout[0] = msg;
6221 	OUTL_DSP (jmp);
6222 	return 1;
6223 
6224 reset_all:
6225 	ncr_start_reset(np);
6226 	return 1;
6227 }
6228 
6229 /*==========================================================
6230 **
6231 **
6232 **	ncr chip exception handler for phase errors.
6233 **
6234 **
6235 **==========================================================
6236 **
6237 **	We have to construct a new transfer descriptor,
6238 **	to transfer the rest of the current block.
6239 **
6240 **----------------------------------------------------------
6241 */
6242 
6243 static void ncr_int_ma (struct ncb *np)
6244 {
6245 	u32	dbc;
6246 	u32	rest;
6247 	u32	dsp;
6248 	u32	dsa;
6249 	u32	nxtdsp;
6250 	u32	newtmp;
6251 	u32	*vdsp;
6252 	u32	oadr, olen;
6253 	u32	*tblp;
6254 	ncrcmd *newcmd;
6255 	u_char	cmd, sbcl;
6256 	struct ccb *cp;
6257 
6258 	dsp	= INL (nc_dsp);
6259 	dbc	= INL (nc_dbc);
6260 	sbcl	= INB (nc_sbcl);
6261 
6262 	cmd	= dbc >> 24;
6263 	rest	= dbc & 0xffffff;
6264 
6265 	/*
6266 	**	Take into account dma fifo and various buffers and latches,
6267 	**	only if the interrupted phase is an OUTPUT phase.
6268 	*/
6269 
6270 	if ((cmd & 1) == 0) {
6271 		u_char	ctest5, ss0, ss2;
6272 		u16	delta;
6273 
6274 		ctest5 = (np->rv_ctest5 & DFS) ? INB (nc_ctest5) : 0;
6275 		if (ctest5 & DFS)
6276 			delta=(((ctest5 << 8) | (INB (nc_dfifo) & 0xff)) - rest) & 0x3ff;
6277 		else
6278 			delta=(INB (nc_dfifo) - rest) & 0x7f;
6279 
6280 		/*
6281 		**	The data in the dma fifo has not been transferred to
6282 		**	the target -> add the amount to the rest
6283 		**	and clear the data.
6284 		**	Check the sstat2 register in case of wide transfer.
6285 		*/
6286 
6287 		rest += delta;
6288 		ss0  = INB (nc_sstat0);
6289 		if (ss0 & OLF) rest++;
6290 		if (ss0 & ORF) rest++;
6291 		if (INB(nc_scntl3) & EWS) {
6292 			ss2 = INB (nc_sstat2);
6293 			if (ss2 & OLF1) rest++;
6294 			if (ss2 & ORF1) rest++;
6295 		}
6296 
6297 		if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
6298 			printk ("P%x%x RL=%d D=%d SS0=%x ", cmd&7, sbcl&7,
6299 				(unsigned) rest, (unsigned) delta, ss0);
6300 
6301 	} else	{
6302 		if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
6303 			printk ("P%x%x RL=%d ", cmd&7, sbcl&7, rest);
6304 	}
6305 
6306 	/*
6307 	**	Clear fifos.
6308 	*/
6309 	OUTONB (nc_ctest3, CLF );	/* clear dma fifo  */
6310 	OUTB (nc_stest3, TE|CSF);	/* clear scsi fifo */
6311 
6312 	/*
6313 	**	locate matching cp.
6314 	**	if the interrupted phase is DATA IN or DATA OUT,
6315 	**	trust the global header.
6316 	*/
6317 	dsa = INL (nc_dsa);
6318 	if (!(cmd & 6)) {
6319 		cp = np->header.cp;
6320 		if (CCB_PHYS(cp, phys) != dsa)
6321 			cp = NULL;
6322 	} else {
6323 		cp  = np->ccb;
6324 		while (cp && (CCB_PHYS (cp, phys) != dsa))
6325 			cp = cp->link_ccb;
6326 	}
6327 
6328 	/*
6329 	**	try to find the interrupted script command,
6330 	**	and the address at which to continue.
6331 	*/
6332 	vdsp	= NULL;
6333 	nxtdsp	= 0;
6334 	if	(dsp >  np->p_script &&
6335 		 dsp <= np->p_script + sizeof(struct script)) {
6336 		vdsp = (u32 *)((char*)np->script0 + (dsp-np->p_script-8));
6337 		nxtdsp = dsp;
6338 	}
6339 	else if	(dsp >  np->p_scripth &&
6340 		 dsp <= np->p_scripth + sizeof(struct scripth)) {
6341 		vdsp = (u32 *)((char*)np->scripth0 + (dsp-np->p_scripth-8));
6342 		nxtdsp = dsp;
6343 	}
6344 	else if (cp) {
6345 		if	(dsp == CCB_PHYS (cp, patch[2])) {
6346 			vdsp = &cp->patch[0];
6347 			nxtdsp = scr_to_cpu(vdsp[3]);
6348 		}
6349 		else if (dsp == CCB_PHYS (cp, patch[6])) {
6350 			vdsp = &cp->patch[4];
6351 			nxtdsp = scr_to_cpu(vdsp[3]);
6352 		}
6353 	}
6354 
6355 	/*
6356 	**	log the information
6357 	*/
6358 
6359 	if (DEBUG_FLAGS & DEBUG_PHASE) {
6360 		printk ("\nCP=%p CP2=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
6361 			cp, np->header.cp,
6362 			(unsigned)dsp,
6363 			(unsigned)nxtdsp, vdsp, cmd);
6364 	}
6365 
6366 	/*
6367 	**	cp=0 means that the DSA does not point to a valid control
6368 	**	block. This should not happen since we donnot use multi-byte
6369 	**	move while we are being reselected ot after command complete.
6370 	**	We are not able to recover from such a phase error.
6371 	*/
6372 	if (!cp) {
6373 		printk ("%s: SCSI phase error fixup: "
6374 			"CCB already dequeued (0x%08lx)\n",
6375 			ncr_name (np), (u_long) np->header.cp);
6376 		goto reset_all;
6377 	}
6378 
6379 	/*
6380 	**	get old startaddress and old length.
6381 	*/
6382 
6383 	oadr = scr_to_cpu(vdsp[1]);
6384 
6385 	if (cmd & 0x10) {	/* Table indirect */
6386 		tblp = (u32 *) ((char*) &cp->phys + oadr);
6387 		olen = scr_to_cpu(tblp[0]);
6388 		oadr = scr_to_cpu(tblp[1]);
6389 	} else {
6390 		tblp = (u32 *) 0;
6391 		olen = scr_to_cpu(vdsp[0]) & 0xffffff;
6392 	}
6393 
6394 	if (DEBUG_FLAGS & DEBUG_PHASE) {
6395 		printk ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
6396 			(unsigned) (scr_to_cpu(vdsp[0]) >> 24),
6397 			tblp,
6398 			(unsigned) olen,
6399 			(unsigned) oadr);
6400 	}
6401 
6402 	/*
6403 	**	check cmd against assumed interrupted script command.
6404 	*/
6405 
6406 	if (cmd != (scr_to_cpu(vdsp[0]) >> 24)) {
6407 		PRINT_ADDR(cp->cmd, "internal error: cmd=%02x != %02x=(vdsp[0] "
6408 				">> 24)\n", cmd, scr_to_cpu(vdsp[0]) >> 24);
6409 
6410 		goto reset_all;
6411 	}
6412 
6413 	/*
6414 	**	cp != np->header.cp means that the header of the CCB
6415 	**	currently being processed has not yet been copied to
6416 	**	the global header area. That may happen if the device did
6417 	**	not accept all our messages after having been selected.
6418 	*/
6419 	if (cp != np->header.cp) {
6420 		printk ("%s: SCSI phase error fixup: "
6421 			"CCB address mismatch (0x%08lx != 0x%08lx)\n",
6422 			ncr_name (np), (u_long) cp, (u_long) np->header.cp);
6423 	}
6424 
6425 	/*
6426 	**	if old phase not dataphase, leave here.
6427 	*/
6428 
6429 	if (cmd & 0x06) {
6430 		PRINT_ADDR(cp->cmd, "phase change %x-%x %d@%08x resid=%d.\n",
6431 			cmd&7, sbcl&7, (unsigned)olen,
6432 			(unsigned)oadr, (unsigned)rest);
6433 		goto unexpected_phase;
6434 	}
6435 
6436 	/*
6437 	**	choose the correct patch area.
6438 	**	if savep points to one, choose the other.
6439 	*/
6440 
6441 	newcmd = cp->patch;
6442 	newtmp = CCB_PHYS (cp, patch);
6443 	if (newtmp == scr_to_cpu(cp->phys.header.savep)) {
6444 		newcmd = &cp->patch[4];
6445 		newtmp = CCB_PHYS (cp, patch[4]);
6446 	}
6447 
6448 	/*
6449 	**	fillin the commands
6450 	*/
6451 
6452 	newcmd[0] = cpu_to_scr(((cmd & 0x0f) << 24) | rest);
6453 	newcmd[1] = cpu_to_scr(oadr + olen - rest);
6454 	newcmd[2] = cpu_to_scr(SCR_JUMP);
6455 	newcmd[3] = cpu_to_scr(nxtdsp);
6456 
6457 	if (DEBUG_FLAGS & DEBUG_PHASE) {
6458 		PRINT_ADDR(cp->cmd, "newcmd[%d] %x %x %x %x.\n",
6459 			(int) (newcmd - cp->patch),
6460 			(unsigned)scr_to_cpu(newcmd[0]),
6461 			(unsigned)scr_to_cpu(newcmd[1]),
6462 			(unsigned)scr_to_cpu(newcmd[2]),
6463 			(unsigned)scr_to_cpu(newcmd[3]));
6464 	}
6465 	/*
6466 	**	fake the return address (to the patch).
6467 	**	and restart script processor at dispatcher.
6468 	*/
6469 	OUTL (nc_temp, newtmp);
6470 	OUTL_DSP (NCB_SCRIPT_PHYS (np, dispatch));
6471 	return;
6472 
6473 	/*
6474 	**	Unexpected phase changes that occurs when the current phase
6475 	**	is not a DATA IN or DATA OUT phase are due to error conditions.
6476 	**	Such event may only happen when the SCRIPTS is using a
6477 	**	multibyte SCSI MOVE.
6478 	**
6479 	**	Phase change		Some possible cause
6480 	**
6481 	**	COMMAND  --> MSG IN	SCSI parity error detected by target.
6482 	**	COMMAND  --> STATUS	Bad command or refused by target.
6483 	**	MSG OUT  --> MSG IN     Message rejected by target.
6484 	**	MSG OUT  --> COMMAND    Bogus target that discards extended
6485 	**				negotiation messages.
6486 	**
6487 	**	The code below does not care of the new phase and so
6488 	**	trusts the target. Why to annoy it ?
6489 	**	If the interrupted phase is COMMAND phase, we restart at
6490 	**	dispatcher.
6491 	**	If a target does not get all the messages after selection,
6492 	**	the code assumes blindly that the target discards extended
6493 	**	messages and clears the negotiation status.
6494 	**	If the target does not want all our response to negotiation,
6495 	**	we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
6496 	**	bloat for such a should_not_happen situation).
6497 	**	In all other situation, we reset the BUS.
6498 	**	Are these assumptions reasonable ? (Wait and see ...)
6499 	*/
6500 unexpected_phase:
6501 	dsp -= 8;
6502 	nxtdsp = 0;
6503 
6504 	switch (cmd & 7) {
6505 	case 2:	/* COMMAND phase */
6506 		nxtdsp = NCB_SCRIPT_PHYS (np, dispatch);
6507 		break;
6508 #if 0
6509 	case 3:	/* STATUS  phase */
6510 		nxtdsp = NCB_SCRIPT_PHYS (np, dispatch);
6511 		break;
6512 #endif
6513 	case 6:	/* MSG OUT phase */
6514 		np->scripth->nxtdsp_go_on[0] = cpu_to_scr(dsp + 8);
6515 		if	(dsp == NCB_SCRIPT_PHYS (np, send_ident)) {
6516 			cp->host_status = HS_BUSY;
6517 			nxtdsp = NCB_SCRIPTH_PHYS (np, clratn_go_on);
6518 		}
6519 		else if	(dsp == NCB_SCRIPTH_PHYS (np, send_wdtr) ||
6520 			 dsp == NCB_SCRIPTH_PHYS (np, send_sdtr)) {
6521 			nxtdsp = NCB_SCRIPTH_PHYS (np, nego_bad_phase);
6522 		}
6523 		break;
6524 #if 0
6525 	case 7:	/* MSG IN  phase */
6526 		nxtdsp = NCB_SCRIPT_PHYS (np, clrack);
6527 		break;
6528 #endif
6529 	}
6530 
6531 	if (nxtdsp) {
6532 		OUTL_DSP (nxtdsp);
6533 		return;
6534 	}
6535 
6536 reset_all:
6537 	ncr_start_reset(np);
6538 }
6539 
6540 
6541 static void ncr_sir_to_redo(struct ncb *np, int num, struct ccb *cp)
6542 {
6543 	struct scsi_cmnd *cmd	= cp->cmd;
6544 	struct tcb *tp	= &np->target[cmd->device->id];
6545 	struct lcb *lp	= tp->lp[cmd->device->lun];
6546 	struct list_head *qp;
6547 	struct ccb *	cp2;
6548 	int		disc_cnt = 0;
6549 	int		busy_cnt = 0;
6550 	u32		startp;
6551 	u_char		s_status = INB (SS_PRT);
6552 
6553 	/*
6554 	**	Let the SCRIPTS processor skip all not yet started CCBs,
6555 	**	and count disconnected CCBs. Since the busy queue is in
6556 	**	the same order as the chip start queue, disconnected CCBs
6557 	**	are before cp and busy ones after.
6558 	*/
6559 	if (lp) {
6560 		qp = lp->busy_ccbq.prev;
6561 		while (qp != &lp->busy_ccbq) {
6562 			cp2 = list_entry(qp, struct ccb, link_ccbq);
6563 			qp  = qp->prev;
6564 			++busy_cnt;
6565 			if (cp2 == cp)
6566 				break;
6567 			cp2->start.schedule.l_paddr =
6568 			cpu_to_scr(NCB_SCRIPTH_PHYS (np, skip));
6569 		}
6570 		lp->held_ccb = cp;	/* Requeue when this one completes */
6571 		disc_cnt = lp->queuedccbs - busy_cnt;
6572 	}
6573 
6574 	switch(s_status) {
6575 	default:	/* Just for safety, should never happen */
6576 	case S_QUEUE_FULL:
6577 		/*
6578 		**	Decrease number of tags to the number of
6579 		**	disconnected commands.
6580 		*/
6581 		if (!lp)
6582 			goto out;
6583 		if (bootverbose >= 1) {
6584 			PRINT_ADDR(cmd, "QUEUE FULL! %d busy, %d disconnected "
6585 					"CCBs\n", busy_cnt, disc_cnt);
6586 		}
6587 		if (disc_cnt < lp->numtags) {
6588 			lp->numtags	= disc_cnt > 2 ? disc_cnt : 2;
6589 			lp->num_good	= 0;
6590 			ncr_setup_tags (np, cmd->device);
6591 		}
6592 		/*
6593 		**	Requeue the command to the start queue.
6594 		**	If any disconnected commands,
6595 		**		Clear SIGP.
6596 		**		Jump to reselect.
6597 		*/
6598 		cp->phys.header.savep = cp->startp;
6599 		cp->host_status = HS_BUSY;
6600 		cp->scsi_status = S_ILLEGAL;
6601 
6602 		ncr_put_start_queue(np, cp);
6603 		if (disc_cnt)
6604 			INB (nc_ctest2);		/* Clear SIGP */
6605 		OUTL_DSP (NCB_SCRIPT_PHYS (np, reselect));
6606 		return;
6607 	case S_TERMINATED:
6608 	case S_CHECK_COND:
6609 		/*
6610 		**	If we were requesting sense, give up.
6611 		*/
6612 		if (cp->auto_sense)
6613 			goto out;
6614 
6615 		/*
6616 		**	Device returned CHECK CONDITION status.
6617 		**	Prepare all needed data strutures for getting
6618 		**	sense data.
6619 		**
6620 		**	identify message
6621 		*/
6622 		cp->scsi_smsg2[0]	= IDENTIFY(0, cmd->device->lun);
6623 		cp->phys.smsg.addr	= cpu_to_scr(CCB_PHYS (cp, scsi_smsg2));
6624 		cp->phys.smsg.size	= cpu_to_scr(1);
6625 
6626 		/*
6627 		**	sense command
6628 		*/
6629 		cp->phys.cmd.addr	= cpu_to_scr(CCB_PHYS (cp, sensecmd));
6630 		cp->phys.cmd.size	= cpu_to_scr(6);
6631 
6632 		/*
6633 		**	patch requested size into sense command
6634 		*/
6635 		cp->sensecmd[0]		= 0x03;
6636 		cp->sensecmd[1]		= (cmd->device->lun & 0x7) << 5;
6637 		cp->sensecmd[4]		= sizeof(cp->sense_buf);
6638 
6639 		/*
6640 		**	sense data
6641 		*/
6642 		memset(cp->sense_buf, 0, sizeof(cp->sense_buf));
6643 		cp->phys.sense.addr	= cpu_to_scr(CCB_PHYS(cp,sense_buf[0]));
6644 		cp->phys.sense.size	= cpu_to_scr(sizeof(cp->sense_buf));
6645 
6646 		/*
6647 		**	requeue the command.
6648 		*/
6649 		startp = cpu_to_scr(NCB_SCRIPTH_PHYS (np, sdata_in));
6650 
6651 		cp->phys.header.savep	= startp;
6652 		cp->phys.header.goalp	= startp + 24;
6653 		cp->phys.header.lastp	= startp;
6654 		cp->phys.header.wgoalp	= startp + 24;
6655 		cp->phys.header.wlastp	= startp;
6656 
6657 		cp->host_status = HS_BUSY;
6658 		cp->scsi_status = S_ILLEGAL;
6659 		cp->auto_sense	= s_status;
6660 
6661 		cp->start.schedule.l_paddr =
6662 			cpu_to_scr(NCB_SCRIPT_PHYS (np, select));
6663 
6664 		/*
6665 		**	Select without ATN for quirky devices.
6666 		*/
6667 		if (cmd->device->select_no_atn)
6668 			cp->start.schedule.l_paddr =
6669 			cpu_to_scr(NCB_SCRIPTH_PHYS (np, select_no_atn));
6670 
6671 		ncr_put_start_queue(np, cp);
6672 
6673 		OUTL_DSP (NCB_SCRIPT_PHYS (np, start));
6674 		return;
6675 	}
6676 
6677 out:
6678 	OUTONB_STD ();
6679 	return;
6680 }
6681 
6682 
6683 /*==========================================================
6684 **
6685 **
6686 **      ncr chip exception handler for programmed interrupts.
6687 **
6688 **
6689 **==========================================================
6690 */
6691 
6692 void ncr_int_sir (struct ncb *np)
6693 {
6694 	u_char scntl3;
6695 	u_char chg, ofs, per, fak, wide;
6696 	u_char num = INB (nc_dsps);
6697 	struct ccb *cp=NULL;
6698 	u_long	dsa    = INL (nc_dsa);
6699 	u_char	target = INB (nc_sdid) & 0x0f;
6700 	struct tcb *tp     = &np->target[target];
6701 	struct scsi_target *starget = tp->starget;
6702 
6703 	if (DEBUG_FLAGS & DEBUG_TINY) printk ("I#%d", num);
6704 
6705 	switch (num) {
6706 	case SIR_INTFLY:
6707 		/*
6708 		**	This is used for HP Zalon/53c720 where INTFLY
6709 		**	operation is currently broken.
6710 		*/
6711 		ncr_wakeup_done(np);
6712 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
6713 		OUTL(nc_dsp, NCB_SCRIPT_PHYS (np, done_end) + 8);
6714 #else
6715 		OUTL(nc_dsp, NCB_SCRIPT_PHYS (np, start));
6716 #endif
6717 		return;
6718 	case SIR_RESEL_NO_MSG_IN:
6719 	case SIR_RESEL_NO_IDENTIFY:
6720 		/*
6721 		**	If devices reselecting without sending an IDENTIFY
6722 		**	message still exist, this should help.
6723 		**	We just assume lun=0, 1 CCB, no tag.
6724 		*/
6725 		if (tp->lp[0]) {
6726 			OUTL_DSP (scr_to_cpu(tp->lp[0]->jump_ccb[0]));
6727 			return;
6728 		}
6729 	case SIR_RESEL_BAD_TARGET:	/* Will send a TARGET RESET message */
6730 	case SIR_RESEL_BAD_LUN:		/* Will send a TARGET RESET message */
6731 	case SIR_RESEL_BAD_I_T_L_Q:	/* Will send an ABORT TAG message   */
6732 	case SIR_RESEL_BAD_I_T_L:	/* Will send an ABORT message	    */
6733 		printk ("%s:%d: SIR %d, "
6734 			"incorrect nexus identification on reselection\n",
6735 			ncr_name (np), target, num);
6736 		goto out;
6737 	case SIR_DONE_OVERFLOW:
6738 		printk ("%s:%d: SIR %d, "
6739 			"CCB done queue overflow\n",
6740 			ncr_name (np), target, num);
6741 		goto out;
6742 	case SIR_BAD_STATUS:
6743 		cp = np->header.cp;
6744 		if (!cp || CCB_PHYS (cp, phys) != dsa)
6745 			goto out;
6746 		ncr_sir_to_redo(np, num, cp);
6747 		return;
6748 	default:
6749 		/*
6750 		**	lookup the ccb
6751 		*/
6752 		cp = np->ccb;
6753 		while (cp && (CCB_PHYS (cp, phys) != dsa))
6754 			cp = cp->link_ccb;
6755 
6756 		BUG_ON(!cp);
6757 		BUG_ON(cp != np->header.cp);
6758 
6759 		if (!cp || cp != np->header.cp)
6760 			goto out;
6761 	}
6762 
6763 	switch (num) {
6764 /*-----------------------------------------------------------------------------
6765 **
6766 **	Was Sie schon immer ueber transfermode negotiation wissen wollten ...
6767 **	("Everything you've always wanted to know about transfer mode
6768 **	  negotiation")
6769 **
6770 **	We try to negotiate sync and wide transfer only after
6771 **	a successful inquire command. We look at byte 7 of the
6772 **	inquire data to determine the capabilities of the target.
6773 **
6774 **	When we try to negotiate, we append the negotiation message
6775 **	to the identify and (maybe) simple tag message.
6776 **	The host status field is set to HS_NEGOTIATE to mark this
6777 **	situation.
6778 **
6779 **	If the target doesn't answer this message immediately
6780 **	(as required by the standard), the SIR_NEGO_FAIL interrupt
6781 **	will be raised eventually.
6782 **	The handler removes the HS_NEGOTIATE status, and sets the
6783 **	negotiated value to the default (async / nowide).
6784 **
6785 **	If we receive a matching answer immediately, we check it
6786 **	for validity, and set the values.
6787 **
6788 **	If we receive a Reject message immediately, we assume the
6789 **	negotiation has failed, and fall back to standard values.
6790 **
6791 **	If we receive a negotiation message while not in HS_NEGOTIATE
6792 **	state, it's a target initiated negotiation. We prepare a
6793 **	(hopefully) valid answer, set our parameters, and send back
6794 **	this answer to the target.
6795 **
6796 **	If the target doesn't fetch the answer (no message out phase),
6797 **	we assume the negotiation has failed, and fall back to default
6798 **	settings.
6799 **
6800 **	When we set the values, we adjust them in all ccbs belonging
6801 **	to this target, in the controller's register, and in the "phys"
6802 **	field of the controller's struct ncb.
6803 **
6804 **	Possible cases:		   hs  sir   msg_in value  send   goto
6805 **	We try to negotiate:
6806 **	-> target doesn't msgin    NEG FAIL  noop   defa.  -      dispatch
6807 **	-> target rejected our msg NEG FAIL  reject defa.  -      dispatch
6808 **	-> target answered  (ok)   NEG SYNC  sdtr   set    -      clrack
6809 **	-> target answered (!ok)   NEG SYNC  sdtr   defa.  REJ--->msg_bad
6810 **	-> target answered  (ok)   NEG WIDE  wdtr   set    -      clrack
6811 **	-> target answered (!ok)   NEG WIDE  wdtr   defa.  REJ--->msg_bad
6812 **	-> any other msgin	   NEG FAIL  noop   defa.  -      dispatch
6813 **
6814 **	Target tries to negotiate:
6815 **	-> incoming message	   --- SYNC  sdtr   set    SDTR   -
6816 **	-> incoming message	   --- WIDE  wdtr   set    WDTR   -
6817 **      We sent our answer:
6818 **	-> target doesn't msgout   --- PROTO ?      defa.  -      dispatch
6819 **
6820 **-----------------------------------------------------------------------------
6821 */
6822 
6823 	case SIR_NEGO_FAILED:
6824 		/*-------------------------------------------------------
6825 		**
6826 		**	Negotiation failed.
6827 		**	Target doesn't send an answer message,
6828 		**	or target rejected our message.
6829 		**
6830 		**      Remove negotiation request.
6831 		**
6832 		**-------------------------------------------------------
6833 		*/
6834 		OUTB (HS_PRT, HS_BUSY);
6835 
6836 		/* fall through */
6837 
6838 	case SIR_NEGO_PROTO:
6839 		/*-------------------------------------------------------
6840 		**
6841 		**	Negotiation failed.
6842 		**	Target doesn't fetch the answer message.
6843 		**
6844 		**-------------------------------------------------------
6845 		*/
6846 
6847 		if (DEBUG_FLAGS & DEBUG_NEGO) {
6848 			PRINT_ADDR(cp->cmd, "negotiation failed sir=%x "
6849 					"status=%x.\n", num, cp->nego_status);
6850 		}
6851 
6852 		/*
6853 		**	any error in negotiation:
6854 		**	fall back to default mode.
6855 		*/
6856 		switch (cp->nego_status) {
6857 
6858 		case NS_SYNC:
6859 			spi_period(starget) = 0;
6860 			spi_offset(starget) = 0;
6861 			ncr_setsync (np, cp, 0, 0xe0);
6862 			break;
6863 
6864 		case NS_WIDE:
6865 			spi_width(starget) = 0;
6866 			ncr_setwide (np, cp, 0, 0);
6867 			break;
6868 
6869 		}
6870 		np->msgin [0] = NOP;
6871 		np->msgout[0] = NOP;
6872 		cp->nego_status = 0;
6873 		break;
6874 
6875 	case SIR_NEGO_SYNC:
6876 		if (DEBUG_FLAGS & DEBUG_NEGO) {
6877 			ncr_print_msg(cp, "sync msgin", np->msgin);
6878 		}
6879 
6880 		chg = 0;
6881 		per = np->msgin[3];
6882 		ofs = np->msgin[4];
6883 		if (ofs==0) per=255;
6884 
6885 		/*
6886 		**      if target sends SDTR message,
6887 		**	      it CAN transfer synch.
6888 		*/
6889 
6890 		if (ofs && starget)
6891 			spi_support_sync(starget) = 1;
6892 
6893 		/*
6894 		**	check values against driver limits.
6895 		*/
6896 
6897 		if (per < np->minsync)
6898 			{chg = 1; per = np->minsync;}
6899 		if (per < tp->minsync)
6900 			{chg = 1; per = tp->minsync;}
6901 		if (ofs > tp->maxoffs)
6902 			{chg = 1; ofs = tp->maxoffs;}
6903 
6904 		/*
6905 		**	Check against controller limits.
6906 		*/
6907 		fak	= 7;
6908 		scntl3	= 0;
6909 		if (ofs != 0) {
6910 			ncr_getsync(np, per, &fak, &scntl3);
6911 			if (fak > 7) {
6912 				chg = 1;
6913 				ofs = 0;
6914 			}
6915 		}
6916 		if (ofs == 0) {
6917 			fak	= 7;
6918 			per	= 0;
6919 			scntl3	= 0;
6920 			tp->minsync = 0;
6921 		}
6922 
6923 		if (DEBUG_FLAGS & DEBUG_NEGO) {
6924 			PRINT_ADDR(cp->cmd, "sync: per=%d scntl3=0x%x ofs=%d "
6925 				"fak=%d chg=%d.\n", per, scntl3, ofs, fak, chg);
6926 		}
6927 
6928 		if (INB (HS_PRT) == HS_NEGOTIATE) {
6929 			OUTB (HS_PRT, HS_BUSY);
6930 			switch (cp->nego_status) {
6931 
6932 			case NS_SYNC:
6933 				/* This was an answer message */
6934 				if (chg) {
6935 					/* Answer wasn't acceptable.  */
6936 					spi_period(starget) = 0;
6937 					spi_offset(starget) = 0;
6938 					ncr_setsync(np, cp, 0, 0xe0);
6939 					OUTL_DSP(NCB_SCRIPT_PHYS (np, msg_bad));
6940 				} else {
6941 					/* Answer is ok.  */
6942 					spi_period(starget) = per;
6943 					spi_offset(starget) = ofs;
6944 					ncr_setsync(np, cp, scntl3, (fak<<5)|ofs);
6945 					OUTL_DSP(NCB_SCRIPT_PHYS (np, clrack));
6946 				}
6947 				return;
6948 
6949 			case NS_WIDE:
6950 				spi_width(starget) = 0;
6951 				ncr_setwide(np, cp, 0, 0);
6952 				break;
6953 			}
6954 		}
6955 
6956 		/*
6957 		**	It was a request. Set value and
6958 		**      prepare an answer message
6959 		*/
6960 
6961 		spi_period(starget) = per;
6962 		spi_offset(starget) = ofs;
6963 		ncr_setsync(np, cp, scntl3, (fak<<5)|ofs);
6964 
6965 		spi_populate_sync_msg(np->msgout, per, ofs);
6966 		cp->nego_status = NS_SYNC;
6967 
6968 		if (DEBUG_FLAGS & DEBUG_NEGO) {
6969 			ncr_print_msg(cp, "sync msgout", np->msgout);
6970 		}
6971 
6972 		if (!ofs) {
6973 			OUTL_DSP (NCB_SCRIPT_PHYS (np, msg_bad));
6974 			return;
6975 		}
6976 		np->msgin [0] = NOP;
6977 
6978 		break;
6979 
6980 	case SIR_NEGO_WIDE:
6981 		/*
6982 		**	Wide request message received.
6983 		*/
6984 		if (DEBUG_FLAGS & DEBUG_NEGO) {
6985 			ncr_print_msg(cp, "wide msgin", np->msgin);
6986 		}
6987 
6988 		/*
6989 		**	get requested values.
6990 		*/
6991 
6992 		chg  = 0;
6993 		wide = np->msgin[3];
6994 
6995 		/*
6996 		**      if target sends WDTR message,
6997 		**	      it CAN transfer wide.
6998 		*/
6999 
7000 		if (wide && starget)
7001 			spi_support_wide(starget) = 1;
7002 
7003 		/*
7004 		**	check values against driver limits.
7005 		*/
7006 
7007 		if (wide > tp->usrwide)
7008 			{chg = 1; wide = tp->usrwide;}
7009 
7010 		if (DEBUG_FLAGS & DEBUG_NEGO) {
7011 			PRINT_ADDR(cp->cmd, "wide: wide=%d chg=%d.\n", wide,
7012 					chg);
7013 		}
7014 
7015 		if (INB (HS_PRT) == HS_NEGOTIATE) {
7016 			OUTB (HS_PRT, HS_BUSY);
7017 			switch (cp->nego_status) {
7018 
7019 			case NS_WIDE:
7020 				/*
7021 				**      This was an answer message
7022 				*/
7023 				if (chg) {
7024 					/* Answer wasn't acceptable.  */
7025 					spi_width(starget) = 0;
7026 					ncr_setwide(np, cp, 0, 1);
7027 					OUTL_DSP (NCB_SCRIPT_PHYS (np, msg_bad));
7028 				} else {
7029 					/* Answer is ok.  */
7030 					spi_width(starget) = wide;
7031 					ncr_setwide(np, cp, wide, 1);
7032 					OUTL_DSP (NCB_SCRIPT_PHYS (np, clrack));
7033 				}
7034 				return;
7035 
7036 			case NS_SYNC:
7037 				spi_period(starget) = 0;
7038 				spi_offset(starget) = 0;
7039 				ncr_setsync(np, cp, 0, 0xe0);
7040 				break;
7041 			}
7042 		}
7043 
7044 		/*
7045 		**	It was a request, set value and
7046 		**      prepare an answer message
7047 		*/
7048 
7049 		spi_width(starget) = wide;
7050 		ncr_setwide(np, cp, wide, 1);
7051 		spi_populate_width_msg(np->msgout, wide);
7052 
7053 		np->msgin [0] = NOP;
7054 
7055 		cp->nego_status = NS_WIDE;
7056 
7057 		if (DEBUG_FLAGS & DEBUG_NEGO) {
7058 			ncr_print_msg(cp, "wide msgout", np->msgin);
7059 		}
7060 		break;
7061 
7062 /*--------------------------------------------------------------------
7063 **
7064 **	Processing of special messages
7065 **
7066 **--------------------------------------------------------------------
7067 */
7068 
7069 	case SIR_REJECT_RECEIVED:
7070 		/*-----------------------------------------------
7071 		**
7072 		**	We received a MESSAGE_REJECT.
7073 		**
7074 		**-----------------------------------------------
7075 		*/
7076 
7077 		PRINT_ADDR(cp->cmd, "MESSAGE_REJECT received (%x:%x).\n",
7078 			(unsigned)scr_to_cpu(np->lastmsg), np->msgout[0]);
7079 		break;
7080 
7081 	case SIR_REJECT_SENT:
7082 		/*-----------------------------------------------
7083 		**
7084 		**	We received an unknown message
7085 		**
7086 		**-----------------------------------------------
7087 		*/
7088 
7089 		ncr_print_msg(cp, "MESSAGE_REJECT sent for", np->msgin);
7090 		break;
7091 
7092 /*--------------------------------------------------------------------
7093 **
7094 **	Processing of special messages
7095 **
7096 **--------------------------------------------------------------------
7097 */
7098 
7099 	case SIR_IGN_RESIDUE:
7100 		/*-----------------------------------------------
7101 		**
7102 		**	We received an IGNORE RESIDUE message,
7103 		**	which couldn't be handled by the script.
7104 		**
7105 		**-----------------------------------------------
7106 		*/
7107 
7108 		PRINT_ADDR(cp->cmd, "IGNORE_WIDE_RESIDUE received, but not yet "
7109 				"implemented.\n");
7110 		break;
7111 #if 0
7112 	case SIR_MISSING_SAVE:
7113 		/*-----------------------------------------------
7114 		**
7115 		**	We received an DISCONNECT message,
7116 		**	but the datapointer wasn't saved before.
7117 		**
7118 		**-----------------------------------------------
7119 		*/
7120 
7121 		PRINT_ADDR(cp->cmd, "DISCONNECT received, but datapointer "
7122 				"not saved: data=%x save=%x goal=%x.\n",
7123 			(unsigned) INL (nc_temp),
7124 			(unsigned) scr_to_cpu(np->header.savep),
7125 			(unsigned) scr_to_cpu(np->header.goalp));
7126 		break;
7127 #endif
7128 	}
7129 
7130 out:
7131 	OUTONB_STD ();
7132 }
7133 
7134 /*==========================================================
7135 **
7136 **
7137 **	Acquire a control block
7138 **
7139 **
7140 **==========================================================
7141 */
7142 
7143 static struct ccb *ncr_get_ccb(struct ncb *np, struct scsi_cmnd *cmd)
7144 {
7145 	u_char tn = cmd->device->id;
7146 	u_char ln = cmd->device->lun;
7147 	struct tcb *tp = &np->target[tn];
7148 	struct lcb *lp = tp->lp[ln];
7149 	u_char tag = NO_TAG;
7150 	struct ccb *cp = NULL;
7151 
7152 	/*
7153 	**	Lun structure available ?
7154 	*/
7155 	if (lp) {
7156 		struct list_head *qp;
7157 		/*
7158 		**	Keep from using more tags than we can handle.
7159 		*/
7160 		if (lp->usetags && lp->busyccbs >= lp->maxnxs)
7161 			return NULL;
7162 
7163 		/*
7164 		**	Allocate a new CCB if needed.
7165 		*/
7166 		if (list_empty(&lp->free_ccbq))
7167 			ncr_alloc_ccb(np, tn, ln);
7168 
7169 		/*
7170 		**	Look for free CCB
7171 		*/
7172 		qp = ncr_list_pop(&lp->free_ccbq);
7173 		if (qp) {
7174 			cp = list_entry(qp, struct ccb, link_ccbq);
7175 			if (cp->magic) {
7176 				PRINT_ADDR(cmd, "ccb free list corrupted "
7177 						"(@%p)\n", cp);
7178 				cp = NULL;
7179 			} else {
7180 				list_add_tail(qp, &lp->wait_ccbq);
7181 				++lp->busyccbs;
7182 			}
7183 		}
7184 
7185 		/*
7186 		**	If a CCB is available,
7187 		**	Get a tag for this nexus if required.
7188 		*/
7189 		if (cp) {
7190 			if (lp->usetags)
7191 				tag = lp->cb_tags[lp->ia_tag];
7192 		}
7193 		else if (lp->actccbs > 0)
7194 			return NULL;
7195 	}
7196 
7197 	/*
7198 	**	if nothing available, take the default.
7199 	*/
7200 	if (!cp)
7201 		cp = np->ccb;
7202 
7203 	/*
7204 	**	Wait until available.
7205 	*/
7206 #if 0
7207 	while (cp->magic) {
7208 		if (flags & SCSI_NOSLEEP) break;
7209 		if (tsleep ((caddr_t)cp, PRIBIO|PCATCH, "ncr", 0))
7210 			break;
7211 	}
7212 #endif
7213 
7214 	if (cp->magic)
7215 		return NULL;
7216 
7217 	cp->magic = 1;
7218 
7219 	/*
7220 	**	Move to next available tag if tag used.
7221 	*/
7222 	if (lp) {
7223 		if (tag != NO_TAG) {
7224 			++lp->ia_tag;
7225 			if (lp->ia_tag == MAX_TAGS)
7226 				lp->ia_tag = 0;
7227 			lp->tags_umap |= (((tagmap_t) 1) << tag);
7228 		}
7229 	}
7230 
7231 	/*
7232 	**	Remember all informations needed to free this CCB.
7233 	*/
7234 	cp->tag	   = tag;
7235 	cp->target = tn;
7236 	cp->lun    = ln;
7237 
7238 	if (DEBUG_FLAGS & DEBUG_TAGS) {
7239 		PRINT_ADDR(cmd, "ccb @%p using tag %d.\n", cp, tag);
7240 	}
7241 
7242 	return cp;
7243 }
7244 
7245 /*==========================================================
7246 **
7247 **
7248 **	Release one control block
7249 **
7250 **
7251 **==========================================================
7252 */
7253 
7254 static void ncr_free_ccb (struct ncb *np, struct ccb *cp)
7255 {
7256 	struct tcb *tp = &np->target[cp->target];
7257 	struct lcb *lp = tp->lp[cp->lun];
7258 
7259 	if (DEBUG_FLAGS & DEBUG_TAGS) {
7260 		PRINT_ADDR(cp->cmd, "ccb @%p freeing tag %d.\n", cp, cp->tag);
7261 	}
7262 
7263 	/*
7264 	**	If lun control block available,
7265 	**	decrement active commands and increment credit,
7266 	**	free the tag if any and remove the JUMP for reselect.
7267 	*/
7268 	if (lp) {
7269 		if (cp->tag != NO_TAG) {
7270 			lp->cb_tags[lp->if_tag++] = cp->tag;
7271 			if (lp->if_tag == MAX_TAGS)
7272 				lp->if_tag = 0;
7273 			lp->tags_umap &= ~(((tagmap_t) 1) << cp->tag);
7274 			lp->tags_smap &= lp->tags_umap;
7275 			lp->jump_ccb[cp->tag] =
7276 				cpu_to_scr(NCB_SCRIPTH_PHYS(np, bad_i_t_l_q));
7277 		} else {
7278 			lp->jump_ccb[0] =
7279 				cpu_to_scr(NCB_SCRIPTH_PHYS(np, bad_i_t_l));
7280 		}
7281 	}
7282 
7283 	/*
7284 	**	Make this CCB available.
7285 	*/
7286 
7287 	if (lp) {
7288 		if (cp != np->ccb)
7289 			list_move(&cp->link_ccbq, &lp->free_ccbq);
7290 		--lp->busyccbs;
7291 		if (cp->queued) {
7292 			--lp->queuedccbs;
7293 		}
7294 	}
7295 	cp -> host_status = HS_IDLE;
7296 	cp -> magic = 0;
7297 	if (cp->queued) {
7298 		--np->queuedccbs;
7299 		cp->queued = 0;
7300 	}
7301 
7302 #if 0
7303 	if (cp == np->ccb)
7304 		wakeup ((caddr_t) cp);
7305 #endif
7306 }
7307 
7308 
7309 #define ncr_reg_bus_addr(r) (np->paddr + offsetof (struct ncr_reg, r))
7310 
7311 /*------------------------------------------------------------------------
7312 **	Initialize the fixed part of a CCB structure.
7313 **------------------------------------------------------------------------
7314 **------------------------------------------------------------------------
7315 */
7316 static void ncr_init_ccb(struct ncb *np, struct ccb *cp)
7317 {
7318 	ncrcmd copy_4 = np->features & FE_PFEN ? SCR_COPY(4) : SCR_COPY_F(4);
7319 
7320 	/*
7321 	**	Remember virtual and bus address of this ccb.
7322 	*/
7323 	cp->p_ccb 	   = vtobus(cp);
7324 	cp->phys.header.cp = cp;
7325 
7326 	/*
7327 	**	This allows list_del to work for the default ccb.
7328 	*/
7329 	INIT_LIST_HEAD(&cp->link_ccbq);
7330 
7331 	/*
7332 	**	Initialyze the start and restart launch script.
7333 	**
7334 	**	COPY(4) @(...p_phys), @(dsa)
7335 	**	JUMP @(sched_point)
7336 	*/
7337 	cp->start.setup_dsa[0]	 = cpu_to_scr(copy_4);
7338 	cp->start.setup_dsa[1]	 = cpu_to_scr(CCB_PHYS(cp, start.p_phys));
7339 	cp->start.setup_dsa[2]	 = cpu_to_scr(ncr_reg_bus_addr(nc_dsa));
7340 	cp->start.schedule.l_cmd = cpu_to_scr(SCR_JUMP);
7341 	cp->start.p_phys	 = cpu_to_scr(CCB_PHYS(cp, phys));
7342 
7343 	memcpy(&cp->restart, &cp->start, sizeof(cp->restart));
7344 
7345 	cp->start.schedule.l_paddr   = cpu_to_scr(NCB_SCRIPT_PHYS (np, idle));
7346 	cp->restart.schedule.l_paddr = cpu_to_scr(NCB_SCRIPTH_PHYS (np, abort));
7347 }
7348 
7349 
7350 /*------------------------------------------------------------------------
7351 **	Allocate a CCB and initialize its fixed part.
7352 **------------------------------------------------------------------------
7353 **------------------------------------------------------------------------
7354 */
7355 static void ncr_alloc_ccb(struct ncb *np, u_char tn, u_char ln)
7356 {
7357 	struct tcb *tp = &np->target[tn];
7358 	struct lcb *lp = tp->lp[ln];
7359 	struct ccb *cp = NULL;
7360 
7361 	/*
7362 	**	Allocate memory for this CCB.
7363 	*/
7364 	cp = m_calloc_dma(sizeof(struct ccb), "CCB");
7365 	if (!cp)
7366 		return;
7367 
7368 	/*
7369 	**	Count it and initialyze it.
7370 	*/
7371 	lp->actccbs++;
7372 	np->actccbs++;
7373 	memset(cp, 0, sizeof (*cp));
7374 	ncr_init_ccb(np, cp);
7375 
7376 	/*
7377 	**	Chain into wakeup list and free ccb queue and take it
7378 	**	into account for tagged commands.
7379 	*/
7380 	cp->link_ccb      = np->ccb->link_ccb;
7381 	np->ccb->link_ccb = cp;
7382 
7383 	list_add(&cp->link_ccbq, &lp->free_ccbq);
7384 }
7385 
7386 /*==========================================================
7387 **
7388 **
7389 **      Allocation of resources for Targets/Luns/Tags.
7390 **
7391 **
7392 **==========================================================
7393 */
7394 
7395 
7396 /*------------------------------------------------------------------------
7397 **	Target control block initialisation.
7398 **------------------------------------------------------------------------
7399 **	This data structure is fully initialized after a SCSI command
7400 **	has been successfully completed for this target.
7401 **	It contains a SCRIPT that is called on target reselection.
7402 **------------------------------------------------------------------------
7403 */
7404 static void ncr_init_tcb (struct ncb *np, u_char tn)
7405 {
7406 	struct tcb *tp = &np->target[tn];
7407 	ncrcmd copy_1 = np->features & FE_PFEN ? SCR_COPY(1) : SCR_COPY_F(1);
7408 	int th = tn & 3;
7409 	int i;
7410 
7411 	/*
7412 	**	Jump to next tcb if SFBR does not match this target.
7413 	**	JUMP  IF (SFBR != #target#), @(next tcb)
7414 	*/
7415 	tp->jump_tcb.l_cmd   =
7416 		cpu_to_scr((SCR_JUMP ^ IFFALSE (DATA (0x80 + tn))));
7417 	tp->jump_tcb.l_paddr = np->jump_tcb[th].l_paddr;
7418 
7419 	/*
7420 	**	Load the synchronous transfer register.
7421 	**	COPY @(tp->sval), @(sxfer)
7422 	*/
7423 	tp->getscr[0] =	cpu_to_scr(copy_1);
7424 	tp->getscr[1] = cpu_to_scr(vtobus (&tp->sval));
7425 #ifdef SCSI_NCR_BIG_ENDIAN
7426 	tp->getscr[2] = cpu_to_scr(ncr_reg_bus_addr(nc_sxfer) ^ 3);
7427 #else
7428 	tp->getscr[2] = cpu_to_scr(ncr_reg_bus_addr(nc_sxfer));
7429 #endif
7430 
7431 	/*
7432 	**	Load the timing register.
7433 	**	COPY @(tp->wval), @(scntl3)
7434 	*/
7435 	tp->getscr[3] =	cpu_to_scr(copy_1);
7436 	tp->getscr[4] = cpu_to_scr(vtobus (&tp->wval));
7437 #ifdef SCSI_NCR_BIG_ENDIAN
7438 	tp->getscr[5] = cpu_to_scr(ncr_reg_bus_addr(nc_scntl3) ^ 3);
7439 #else
7440 	tp->getscr[5] = cpu_to_scr(ncr_reg_bus_addr(nc_scntl3));
7441 #endif
7442 
7443 	/*
7444 	**	Get the IDENTIFY message and the lun.
7445 	**	CALL @script(resel_lun)
7446 	*/
7447 	tp->call_lun.l_cmd   = cpu_to_scr(SCR_CALL);
7448 	tp->call_lun.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_lun));
7449 
7450 	/*
7451 	**	Look for the lun control block of this nexus.
7452 	**	For i = 0 to 3
7453 	**		JUMP ^ IFTRUE (MASK (i, 3)), @(next_lcb)
7454 	*/
7455 	for (i = 0 ; i < 4 ; i++) {
7456 		tp->jump_lcb[i].l_cmd   =
7457 				cpu_to_scr((SCR_JUMP ^ IFTRUE (MASK (i, 3))));
7458 		tp->jump_lcb[i].l_paddr =
7459 				cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_identify));
7460 	}
7461 
7462 	/*
7463 	**	Link this target control block to the JUMP chain.
7464 	*/
7465 	np->jump_tcb[th].l_paddr = cpu_to_scr(vtobus (&tp->jump_tcb));
7466 
7467 	/*
7468 	**	These assert's should be moved at driver initialisations.
7469 	*/
7470 #ifdef SCSI_NCR_BIG_ENDIAN
7471 	BUG_ON(((offsetof(struct ncr_reg, nc_sxfer) ^
7472 		 offsetof(struct tcb    , sval    )) &3) != 3);
7473 	BUG_ON(((offsetof(struct ncr_reg, nc_scntl3) ^
7474 		 offsetof(struct tcb    , wval    )) &3) != 3);
7475 #else
7476 	BUG_ON(((offsetof(struct ncr_reg, nc_sxfer) ^
7477 		 offsetof(struct tcb    , sval    )) &3) != 0);
7478 	BUG_ON(((offsetof(struct ncr_reg, nc_scntl3) ^
7479 		 offsetof(struct tcb    , wval    )) &3) != 0);
7480 #endif
7481 }
7482 
7483 
7484 /*------------------------------------------------------------------------
7485 **	Lun control block allocation and initialization.
7486 **------------------------------------------------------------------------
7487 **	This data structure is allocated and initialized after a SCSI
7488 **	command has been successfully completed for this target/lun.
7489 **------------------------------------------------------------------------
7490 */
7491 static struct lcb *ncr_alloc_lcb (struct ncb *np, u_char tn, u_char ln)
7492 {
7493 	struct tcb *tp = &np->target[tn];
7494 	struct lcb *lp = tp->lp[ln];
7495 	ncrcmd copy_4 = np->features & FE_PFEN ? SCR_COPY(4) : SCR_COPY_F(4);
7496 	int lh = ln & 3;
7497 
7498 	/*
7499 	**	Already done, return.
7500 	*/
7501 	if (lp)
7502 		return lp;
7503 
7504 	/*
7505 	**	Allocate the lcb.
7506 	*/
7507 	lp = m_calloc_dma(sizeof(struct lcb), "LCB");
7508 	if (!lp)
7509 		goto fail;
7510 	memset(lp, 0, sizeof(*lp));
7511 	tp->lp[ln] = lp;
7512 
7513 	/*
7514 	**	Initialize the target control block if not yet.
7515 	*/
7516 	if (!tp->jump_tcb.l_cmd)
7517 		ncr_init_tcb(np, tn);
7518 
7519 	/*
7520 	**	Initialize the CCB queue headers.
7521 	*/
7522 	INIT_LIST_HEAD(&lp->free_ccbq);
7523 	INIT_LIST_HEAD(&lp->busy_ccbq);
7524 	INIT_LIST_HEAD(&lp->wait_ccbq);
7525 	INIT_LIST_HEAD(&lp->skip_ccbq);
7526 
7527 	/*
7528 	**	Set max CCBs to 1 and use the default 1 entry
7529 	**	jump table by default.
7530 	*/
7531 	lp->maxnxs	= 1;
7532 	lp->jump_ccb	= &lp->jump_ccb_0;
7533 	lp->p_jump_ccb	= cpu_to_scr(vtobus(lp->jump_ccb));
7534 
7535 	/*
7536 	**	Initilialyze the reselect script:
7537 	**
7538 	**	Jump to next lcb if SFBR does not match this lun.
7539 	**	Load TEMP with the CCB direct jump table bus address.
7540 	**	Get the SIMPLE TAG message and the tag.
7541 	**
7542 	**	JUMP  IF (SFBR != #lun#), @(next lcb)
7543 	**	COPY @(lp->p_jump_ccb),	  @(temp)
7544 	**	JUMP @script(resel_notag)
7545 	*/
7546 	lp->jump_lcb.l_cmd   =
7547 		cpu_to_scr((SCR_JUMP ^ IFFALSE (MASK (0x80+ln, 0xff))));
7548 	lp->jump_lcb.l_paddr = tp->jump_lcb[lh].l_paddr;
7549 
7550 	lp->load_jump_ccb[0] = cpu_to_scr(copy_4);
7551 	lp->load_jump_ccb[1] = cpu_to_scr(vtobus (&lp->p_jump_ccb));
7552 	lp->load_jump_ccb[2] = cpu_to_scr(ncr_reg_bus_addr(nc_temp));
7553 
7554 	lp->jump_tag.l_cmd   = cpu_to_scr(SCR_JUMP);
7555 	lp->jump_tag.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_notag));
7556 
7557 	/*
7558 	**	Link this lun control block to the JUMP chain.
7559 	*/
7560 	tp->jump_lcb[lh].l_paddr = cpu_to_scr(vtobus (&lp->jump_lcb));
7561 
7562 	/*
7563 	**	Initialize command queuing control.
7564 	*/
7565 	lp->busyccbs	= 1;
7566 	lp->queuedccbs	= 1;
7567 	lp->queuedepth	= 1;
7568 fail:
7569 	return lp;
7570 }
7571 
7572 
7573 /*------------------------------------------------------------------------
7574 **	Lun control block setup on INQUIRY data received.
7575 **------------------------------------------------------------------------
7576 **	We only support WIDE, SYNC for targets and CMDQ for logical units.
7577 **	This setup is done on each INQUIRY since we are expecting user
7578 **	will play with CHANGE DEFINITION commands. :-)
7579 **------------------------------------------------------------------------
7580 */
7581 static struct lcb *ncr_setup_lcb (struct ncb *np, struct scsi_device *sdev)
7582 {
7583 	unsigned char tn = sdev->id, ln = sdev->lun;
7584 	struct tcb *tp = &np->target[tn];
7585 	struct lcb *lp = tp->lp[ln];
7586 
7587 	/* If no lcb, try to allocate it.  */
7588 	if (!lp && !(lp = ncr_alloc_lcb(np, tn, ln)))
7589 		goto fail;
7590 
7591 	/*
7592 	**	If unit supports tagged commands, allocate the
7593 	**	CCB JUMP table if not yet.
7594 	*/
7595 	if (sdev->tagged_supported && lp->jump_ccb == &lp->jump_ccb_0) {
7596 		int i;
7597 		lp->jump_ccb = m_calloc_dma(256, "JUMP_CCB");
7598 		if (!lp->jump_ccb) {
7599 			lp->jump_ccb = &lp->jump_ccb_0;
7600 			goto fail;
7601 		}
7602 		lp->p_jump_ccb = cpu_to_scr(vtobus(lp->jump_ccb));
7603 		for (i = 0 ; i < 64 ; i++)
7604 			lp->jump_ccb[i] =
7605 				cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_i_t_l_q));
7606 		for (i = 0 ; i < MAX_TAGS ; i++)
7607 			lp->cb_tags[i] = i;
7608 		lp->maxnxs = MAX_TAGS;
7609 		lp->tags_stime = jiffies + 3*HZ;
7610 		ncr_setup_tags (np, sdev);
7611 	}
7612 
7613 
7614 fail:
7615 	return lp;
7616 }
7617 
7618 /*==========================================================
7619 **
7620 **
7621 **	Build Scatter Gather Block
7622 **
7623 **
7624 **==========================================================
7625 **
7626 **	The transfer area may be scattered among
7627 **	several non adjacent physical pages.
7628 **
7629 **	We may use MAX_SCATTER blocks.
7630 **
7631 **----------------------------------------------------------
7632 */
7633 
7634 /*
7635 **	We try to reduce the number of interrupts caused
7636 **	by unexpected phase changes due to disconnects.
7637 **	A typical harddisk may disconnect before ANY block.
7638 **	If we wanted to avoid unexpected phase changes at all
7639 **	we had to use a break point every 512 bytes.
7640 **	Of course the number of scatter/gather blocks is
7641 **	limited.
7642 **	Under Linux, the scatter/gatter blocks are provided by
7643 **	the generic driver. We just have to copy addresses and
7644 **	sizes to the data segment array.
7645 */
7646 
7647 static int ncr_scatter(struct ncb *np, struct ccb *cp, struct scsi_cmnd *cmd)
7648 {
7649 	int segment	= 0;
7650 	int use_sg	= scsi_sg_count(cmd);
7651 
7652 	cp->data_len	= 0;
7653 
7654 	use_sg = map_scsi_sg_data(np, cmd);
7655 	if (use_sg > 0) {
7656 		struct scatterlist *sg;
7657 		struct scr_tblmove *data;
7658 
7659 		if (use_sg > MAX_SCATTER) {
7660 			unmap_scsi_data(np, cmd);
7661 			return -1;
7662 		}
7663 
7664 		data = &cp->phys.data[MAX_SCATTER - use_sg];
7665 
7666 		scsi_for_each_sg(cmd, sg, use_sg, segment) {
7667 			dma_addr_t baddr = sg_dma_address(sg);
7668 			unsigned int len = sg_dma_len(sg);
7669 
7670 			ncr_build_sge(np, &data[segment], baddr, len);
7671 			cp->data_len += len;
7672 		}
7673 	} else
7674 		segment = -2;
7675 
7676 	return segment;
7677 }
7678 
7679 /*==========================================================
7680 **
7681 **
7682 **	Test the bus snoop logic :-(
7683 **
7684 **	Has to be called with interrupts disabled.
7685 **
7686 **
7687 **==========================================================
7688 */
7689 
7690 static int __init ncr_regtest (struct ncb* np)
7691 {
7692 	register volatile u32 data;
7693 	/*
7694 	**	ncr registers may NOT be cached.
7695 	**	write 0xffffffff to a read only register area,
7696 	**	and try to read it back.
7697 	*/
7698 	data = 0xffffffff;
7699 	OUTL_OFF(offsetof(struct ncr_reg, nc_dstat), data);
7700 	data = INL_OFF(offsetof(struct ncr_reg, nc_dstat));
7701 #if 1
7702 	if (data == 0xffffffff) {
7703 #else
7704 	if ((data & 0xe2f0fffd) != 0x02000080) {
7705 #endif
7706 		printk ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
7707 			(unsigned) data);
7708 		return (0x10);
7709 	}
7710 	return (0);
7711 }
7712 
7713 static int __init ncr_snooptest (struct ncb* np)
7714 {
7715 	u32	ncr_rd, ncr_wr, ncr_bk, host_rd, host_wr, pc;
7716 	int	i, err=0;
7717 	if (np->reg) {
7718 		err |= ncr_regtest (np);
7719 		if (err)
7720 			return (err);
7721 	}
7722 
7723 	/* init */
7724 	pc  = NCB_SCRIPTH_PHYS (np, snooptest);
7725 	host_wr = 1;
7726 	ncr_wr  = 2;
7727 	/*
7728 	**	Set memory and register.
7729 	*/
7730 	np->ncr_cache = cpu_to_scr(host_wr);
7731 	OUTL (nc_temp, ncr_wr);
7732 	/*
7733 	**	Start script (exchange values)
7734 	*/
7735 	OUTL_DSP (pc);
7736 	/*
7737 	**	Wait 'til done (with timeout)
7738 	*/
7739 	for (i=0; i<NCR_SNOOP_TIMEOUT; i++)
7740 		if (INB(nc_istat) & (INTF|SIP|DIP))
7741 			break;
7742 	/*
7743 	**	Save termination position.
7744 	*/
7745 	pc = INL (nc_dsp);
7746 	/*
7747 	**	Read memory and register.
7748 	*/
7749 	host_rd = scr_to_cpu(np->ncr_cache);
7750 	ncr_rd  = INL (nc_scratcha);
7751 	ncr_bk  = INL (nc_temp);
7752 	/*
7753 	**	Reset ncr chip
7754 	*/
7755 	ncr_chip_reset(np, 100);
7756 	/*
7757 	**	check for timeout
7758 	*/
7759 	if (i>=NCR_SNOOP_TIMEOUT) {
7760 		printk ("CACHE TEST FAILED: timeout.\n");
7761 		return (0x20);
7762 	}
7763 	/*
7764 	**	Check termination position.
7765 	*/
7766 	if (pc != NCB_SCRIPTH_PHYS (np, snoopend)+8) {
7767 		printk ("CACHE TEST FAILED: script execution failed.\n");
7768 		printk ("start=%08lx, pc=%08lx, end=%08lx\n",
7769 			(u_long) NCB_SCRIPTH_PHYS (np, snooptest), (u_long) pc,
7770 			(u_long) NCB_SCRIPTH_PHYS (np, snoopend) +8);
7771 		return (0x40);
7772 	}
7773 	/*
7774 	**	Show results.
7775 	*/
7776 	if (host_wr != ncr_rd) {
7777 		printk ("CACHE TEST FAILED: host wrote %d, ncr read %d.\n",
7778 			(int) host_wr, (int) ncr_rd);
7779 		err |= 1;
7780 	}
7781 	if (host_rd != ncr_wr) {
7782 		printk ("CACHE TEST FAILED: ncr wrote %d, host read %d.\n",
7783 			(int) ncr_wr, (int) host_rd);
7784 		err |= 2;
7785 	}
7786 	if (ncr_bk != ncr_wr) {
7787 		printk ("CACHE TEST FAILED: ncr wrote %d, read back %d.\n",
7788 			(int) ncr_wr, (int) ncr_bk);
7789 		err |= 4;
7790 	}
7791 	return (err);
7792 }
7793 
7794 /*==========================================================
7795 **
7796 **	Determine the ncr's clock frequency.
7797 **	This is essential for the negotiation
7798 **	of the synchronous transfer rate.
7799 **
7800 **==========================================================
7801 **
7802 **	Note: we have to return the correct value.
7803 **	THERE IS NO SAFE DEFAULT VALUE.
7804 **
7805 **	Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
7806 **	53C860 and 53C875 rev. 1 support fast20 transfers but
7807 **	do not have a clock doubler and so are provided with a
7808 **	80 MHz clock. All other fast20 boards incorporate a doubler
7809 **	and so should be delivered with a 40 MHz clock.
7810 **	The future fast40 chips (895/895) use a 40 Mhz base clock
7811 **	and provide a clock quadrupler (160 Mhz). The code below
7812 **	tries to deal as cleverly as possible with all this stuff.
7813 **
7814 **----------------------------------------------------------
7815 */
7816 
7817 /*
7818  *	Select NCR SCSI clock frequency
7819  */
7820 static void ncr_selectclock(struct ncb *np, u_char scntl3)
7821 {
7822 	if (np->multiplier < 2) {
7823 		OUTB(nc_scntl3,	scntl3);
7824 		return;
7825 	}
7826 
7827 	if (bootverbose >= 2)
7828 		printk ("%s: enabling clock multiplier\n", ncr_name(np));
7829 
7830 	OUTB(nc_stest1, DBLEN);	   /* Enable clock multiplier		  */
7831 	if (np->multiplier > 2) {  /* Poll bit 5 of stest4 for quadrupler */
7832 		int i = 20;
7833 		while (!(INB(nc_stest4) & LCKFRQ) && --i > 0)
7834 			udelay(20);
7835 		if (!i)
7836 			printk("%s: the chip cannot lock the frequency\n", ncr_name(np));
7837 	} else			/* Wait 20 micro-seconds for doubler	*/
7838 		udelay(20);
7839 	OUTB(nc_stest3, HSC);		/* Halt the scsi clock		*/
7840 	OUTB(nc_scntl3,	scntl3);
7841 	OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier	*/
7842 	OUTB(nc_stest3, 0x00);		/* Restart scsi clock 		*/
7843 }
7844 
7845 
7846 /*
7847  *	calculate NCR SCSI clock frequency (in KHz)
7848  */
7849 static unsigned __init ncrgetfreq (struct ncb *np, int gen)
7850 {
7851 	unsigned ms = 0;
7852 	char count = 0;
7853 
7854 	/*
7855 	 * Measure GEN timer delay in order
7856 	 * to calculate SCSI clock frequency
7857 	 *
7858 	 * This code will never execute too
7859 	 * many loop iterations (if DELAY is
7860 	 * reasonably correct). It could get
7861 	 * too low a delay (too high a freq.)
7862 	 * if the CPU is slow executing the
7863 	 * loop for some reason (an NMI, for
7864 	 * example). For this reason we will
7865 	 * if multiple measurements are to be
7866 	 * performed trust the higher delay
7867 	 * (lower frequency returned).
7868 	 */
7869 	OUTB (nc_stest1, 0);	/* make sure clock doubler is OFF */
7870 	OUTW (nc_sien , 0);	/* mask all scsi interrupts */
7871 	(void) INW (nc_sist);	/* clear pending scsi interrupt */
7872 	OUTB (nc_dien , 0);	/* mask all dma interrupts */
7873 	(void) INW (nc_sist);	/* another one, just to be sure :) */
7874 	OUTB (nc_scntl3, 4);	/* set pre-scaler to divide by 3 */
7875 	OUTB (nc_stime1, 0);	/* disable general purpose timer */
7876 	OUTB (nc_stime1, gen);	/* set to nominal delay of 1<<gen * 125us */
7877 	while (!(INW(nc_sist) & GEN) && ms++ < 100000) {
7878 		for (count = 0; count < 10; count ++)
7879 			udelay(100);	/* count ms */
7880 	}
7881 	OUTB (nc_stime1, 0);	/* disable general purpose timer */
7882  	/*
7883  	 * set prescaler to divide by whatever 0 means
7884  	 * 0 ought to choose divide by 2, but appears
7885  	 * to set divide by 3.5 mode in my 53c810 ...
7886  	 */
7887  	OUTB (nc_scntl3, 0);
7888 
7889 	if (bootverbose >= 2)
7890 		printk ("%s: Delay (GEN=%d): %u msec\n", ncr_name(np), gen, ms);
7891   	/*
7892  	 * adjust for prescaler, and convert into KHz
7893   	 */
7894 	return ms ? ((1 << gen) * 4340) / ms : 0;
7895 }
7896 
7897 /*
7898  *	Get/probe NCR SCSI clock frequency
7899  */
7900 static void __init ncr_getclock (struct ncb *np, int mult)
7901 {
7902 	unsigned char scntl3 = INB(nc_scntl3);
7903 	unsigned char stest1 = INB(nc_stest1);
7904 	unsigned f1;
7905 
7906 	np->multiplier = 1;
7907 	f1 = 40000;
7908 
7909 	/*
7910 	**	True with 875 or 895 with clock multiplier selected
7911 	*/
7912 	if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
7913 		if (bootverbose >= 2)
7914 			printk ("%s: clock multiplier found\n", ncr_name(np));
7915 		np->multiplier = mult;
7916 	}
7917 
7918 	/*
7919 	**	If multiplier not found or scntl3 not 7,5,3,
7920 	**	reset chip and get frequency from general purpose timer.
7921 	**	Otherwise trust scntl3 BIOS setting.
7922 	*/
7923 	if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
7924 		unsigned f2;
7925 
7926 		ncr_chip_reset(np, 5);
7927 
7928 		(void) ncrgetfreq (np, 11);	/* throw away first result */
7929 		f1 = ncrgetfreq (np, 11);
7930 		f2 = ncrgetfreq (np, 11);
7931 
7932 		if(bootverbose)
7933 			printk ("%s: NCR clock is %uKHz, %uKHz\n", ncr_name(np), f1, f2);
7934 
7935 		if (f1 > f2) f1 = f2;		/* trust lower result	*/
7936 
7937 		if	(f1 <	45000)		f1 =  40000;
7938 		else if (f1 <	55000)		f1 =  50000;
7939 		else				f1 =  80000;
7940 
7941 		if (f1 < 80000 && mult > 1) {
7942 			if (bootverbose >= 2)
7943 				printk ("%s: clock multiplier assumed\n", ncr_name(np));
7944 			np->multiplier	= mult;
7945 		}
7946 	} else {
7947 		if	((scntl3 & 7) == 3)	f1 =  40000;
7948 		else if	((scntl3 & 7) == 5)	f1 =  80000;
7949 		else 				f1 = 160000;
7950 
7951 		f1 /= np->multiplier;
7952 	}
7953 
7954 	/*
7955 	**	Compute controller synchronous parameters.
7956 	*/
7957 	f1		*= np->multiplier;
7958 	np->clock_khz	= f1;
7959 }
7960 
7961 /*===================== LINUX ENTRY POINTS SECTION ==========================*/
7962 
7963 static int ncr53c8xx_slave_alloc(struct scsi_device *device)
7964 {
7965 	struct Scsi_Host *host = device->host;
7966 	struct ncb *np = ((struct host_data *) host->hostdata)->ncb;
7967 	struct tcb *tp = &np->target[device->id];
7968 	tp->starget = device->sdev_target;
7969 
7970 	return 0;
7971 }
7972 
7973 static int ncr53c8xx_slave_configure(struct scsi_device *device)
7974 {
7975 	struct Scsi_Host *host = device->host;
7976 	struct ncb *np = ((struct host_data *) host->hostdata)->ncb;
7977 	struct tcb *tp = &np->target[device->id];
7978 	struct lcb *lp = tp->lp[device->lun];
7979 	int numtags, depth_to_use;
7980 
7981 	ncr_setup_lcb(np, device);
7982 
7983 	/*
7984 	**	Select queue depth from driver setup.
7985 	**	Donnot use more than configured by user.
7986 	**	Use at least 2.
7987 	**	Donnot use more than our maximum.
7988 	*/
7989 	numtags = device_queue_depth(np->unit, device->id, device->lun);
7990 	if (numtags > tp->usrtags)
7991 		numtags = tp->usrtags;
7992 	if (!device->tagged_supported)
7993 		numtags = 1;
7994 	depth_to_use = numtags;
7995 	if (depth_to_use < 2)
7996 		depth_to_use = 2;
7997 	if (depth_to_use > MAX_TAGS)
7998 		depth_to_use = MAX_TAGS;
7999 
8000 	scsi_change_queue_depth(device, depth_to_use);
8001 
8002 	/*
8003 	**	Since the queue depth is not tunable under Linux,
8004 	**	we need to know this value in order not to
8005 	**	announce stupid things to user.
8006 	**
8007 	**	XXX(hch): As of Linux 2.6 it certainly _is_ tunable..
8008 	**		  In fact we just tuned it, or did I miss
8009 	**		  something important? :)
8010 	*/
8011 	if (lp) {
8012 		lp->numtags = lp->maxtags = numtags;
8013 		lp->scdev_depth = depth_to_use;
8014 	}
8015 	ncr_setup_tags (np, device);
8016 
8017 #ifdef DEBUG_NCR53C8XX
8018 	printk("ncr53c8xx_select_queue_depth: host=%d, id=%d, lun=%d, depth=%d\n",
8019 	       np->unit, device->id, device->lun, depth_to_use);
8020 #endif
8021 
8022 	if (spi_support_sync(device->sdev_target) &&
8023 	    !spi_initial_dv(device->sdev_target))
8024 		spi_dv_device(device);
8025 	return 0;
8026 }
8027 
8028 static int ncr53c8xx_queue_command_lck (struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *))
8029 {
8030      struct ncb *np = ((struct host_data *) cmd->device->host->hostdata)->ncb;
8031      unsigned long flags;
8032      int sts;
8033 
8034 #ifdef DEBUG_NCR53C8XX
8035 printk("ncr53c8xx_queue_command\n");
8036 #endif
8037 
8038      cmd->scsi_done     = done;
8039      cmd->host_scribble = NULL;
8040      cmd->__data_mapped = 0;
8041      cmd->__data_mapping = 0;
8042 
8043      spin_lock_irqsave(&np->smp_lock, flags);
8044 
8045      if ((sts = ncr_queue_command(np, cmd)) != DID_OK) {
8046 	  cmd->result = sts << 16;
8047 #ifdef DEBUG_NCR53C8XX
8048 printk("ncr53c8xx : command not queued - result=%d\n", sts);
8049 #endif
8050      }
8051 #ifdef DEBUG_NCR53C8XX
8052      else
8053 printk("ncr53c8xx : command successfully queued\n");
8054 #endif
8055 
8056      spin_unlock_irqrestore(&np->smp_lock, flags);
8057 
8058      if (sts != DID_OK) {
8059           unmap_scsi_data(np, cmd);
8060           done(cmd);
8061 	  sts = 0;
8062      }
8063 
8064      return sts;
8065 }
8066 
8067 static DEF_SCSI_QCMD(ncr53c8xx_queue_command)
8068 
8069 irqreturn_t ncr53c8xx_intr(int irq, void *dev_id)
8070 {
8071      unsigned long flags;
8072      struct Scsi_Host *shost = (struct Scsi_Host *)dev_id;
8073      struct host_data *host_data = (struct host_data *)shost->hostdata;
8074      struct ncb *np = host_data->ncb;
8075      struct scsi_cmnd *done_list;
8076 
8077 #ifdef DEBUG_NCR53C8XX
8078      printk("ncr53c8xx : interrupt received\n");
8079 #endif
8080 
8081      if (DEBUG_FLAGS & DEBUG_TINY) printk ("[");
8082 
8083      spin_lock_irqsave(&np->smp_lock, flags);
8084      ncr_exception(np);
8085      done_list     = np->done_list;
8086      np->done_list = NULL;
8087      spin_unlock_irqrestore(&np->smp_lock, flags);
8088 
8089      if (DEBUG_FLAGS & DEBUG_TINY) printk ("]\n");
8090 
8091      if (done_list)
8092 	     ncr_flush_done_cmds(done_list);
8093      return IRQ_HANDLED;
8094 }
8095 
8096 static void ncr53c8xx_timeout(struct timer_list *t)
8097 {
8098 	struct ncb *np = from_timer(np, t, timer);
8099 	unsigned long flags;
8100 	struct scsi_cmnd *done_list;
8101 
8102 	spin_lock_irqsave(&np->smp_lock, flags);
8103 	ncr_timeout(np);
8104 	done_list     = np->done_list;
8105 	np->done_list = NULL;
8106 	spin_unlock_irqrestore(&np->smp_lock, flags);
8107 
8108 	if (done_list)
8109 		ncr_flush_done_cmds(done_list);
8110 }
8111 
8112 static int ncr53c8xx_bus_reset(struct scsi_cmnd *cmd)
8113 {
8114 	struct ncb *np = ((struct host_data *) cmd->device->host->hostdata)->ncb;
8115 	int sts;
8116 	unsigned long flags;
8117 	struct scsi_cmnd *done_list;
8118 
8119 	/*
8120 	 * If the mid-level driver told us reset is synchronous, it seems
8121 	 * that we must call the done() callback for the involved command,
8122 	 * even if this command was not queued to the low-level driver,
8123 	 * before returning SUCCESS.
8124 	 */
8125 
8126 	spin_lock_irqsave(&np->smp_lock, flags);
8127 	sts = ncr_reset_bus(np, cmd, 1);
8128 
8129 	done_list     = np->done_list;
8130 	np->done_list = NULL;
8131 	spin_unlock_irqrestore(&np->smp_lock, flags);
8132 
8133 	ncr_flush_done_cmds(done_list);
8134 
8135 	return sts;
8136 }
8137 
8138 #if 0 /* unused and broken */
8139 static int ncr53c8xx_abort(struct scsi_cmnd *cmd)
8140 {
8141 	struct ncb *np = ((struct host_data *) cmd->device->host->hostdata)->ncb;
8142 	int sts;
8143 	unsigned long flags;
8144 	struct scsi_cmnd *done_list;
8145 
8146 	printk("ncr53c8xx_abort\n");
8147 
8148 	NCR_LOCK_NCB(np, flags);
8149 
8150 	sts = ncr_abort_command(np, cmd);
8151 out:
8152 	done_list     = np->done_list;
8153 	np->done_list = NULL;
8154 	NCR_UNLOCK_NCB(np, flags);
8155 
8156 	ncr_flush_done_cmds(done_list);
8157 
8158 	return sts;
8159 }
8160 #endif
8161 
8162 
8163 /*
8164 **	Scsi command waiting list management.
8165 **
8166 **	It may happen that we cannot insert a scsi command into the start queue,
8167 **	in the following circumstances.
8168 ** 		Too few preallocated ccb(s),
8169 **		maxtags < cmd_per_lun of the Linux host control block,
8170 **		etc...
8171 **	Such scsi commands are inserted into a waiting list.
8172 **	When a scsi command complete, we try to requeue the commands of the
8173 **	waiting list.
8174 */
8175 
8176 #define next_wcmd host_scribble
8177 
8178 static void insert_into_waiting_list(struct ncb *np, struct scsi_cmnd *cmd)
8179 {
8180 	struct scsi_cmnd *wcmd;
8181 
8182 #ifdef DEBUG_WAITING_LIST
8183 	printk("%s: cmd %lx inserted into waiting list\n", ncr_name(np), (u_long) cmd);
8184 #endif
8185 	cmd->next_wcmd = NULL;
8186 	if (!(wcmd = np->waiting_list)) np->waiting_list = cmd;
8187 	else {
8188 		while (wcmd->next_wcmd)
8189 			wcmd = (struct scsi_cmnd *) wcmd->next_wcmd;
8190 		wcmd->next_wcmd = (char *) cmd;
8191 	}
8192 }
8193 
8194 static struct scsi_cmnd *retrieve_from_waiting_list(int to_remove, struct ncb *np, struct scsi_cmnd *cmd)
8195 {
8196 	struct scsi_cmnd **pcmd = &np->waiting_list;
8197 
8198 	while (*pcmd) {
8199 		if (cmd == *pcmd) {
8200 			if (to_remove) {
8201 				*pcmd = (struct scsi_cmnd *) cmd->next_wcmd;
8202 				cmd->next_wcmd = NULL;
8203 			}
8204 #ifdef DEBUG_WAITING_LIST
8205 	printk("%s: cmd %lx retrieved from waiting list\n", ncr_name(np), (u_long) cmd);
8206 #endif
8207 			return cmd;
8208 		}
8209 		pcmd = (struct scsi_cmnd **) &(*pcmd)->next_wcmd;
8210 	}
8211 	return NULL;
8212 }
8213 
8214 static void process_waiting_list(struct ncb *np, int sts)
8215 {
8216 	struct scsi_cmnd *waiting_list, *wcmd;
8217 
8218 	waiting_list = np->waiting_list;
8219 	np->waiting_list = NULL;
8220 
8221 #ifdef DEBUG_WAITING_LIST
8222 	if (waiting_list) printk("%s: waiting_list=%lx processing sts=%d\n", ncr_name(np), (u_long) waiting_list, sts);
8223 #endif
8224 	while ((wcmd = waiting_list) != NULL) {
8225 		waiting_list = (struct scsi_cmnd *) wcmd->next_wcmd;
8226 		wcmd->next_wcmd = NULL;
8227 		if (sts == DID_OK) {
8228 #ifdef DEBUG_WAITING_LIST
8229 	printk("%s: cmd %lx trying to requeue\n", ncr_name(np), (u_long) wcmd);
8230 #endif
8231 			sts = ncr_queue_command(np, wcmd);
8232 		}
8233 		if (sts != DID_OK) {
8234 #ifdef DEBUG_WAITING_LIST
8235 	printk("%s: cmd %lx done forced sts=%d\n", ncr_name(np), (u_long) wcmd, sts);
8236 #endif
8237 			wcmd->result = sts << 16;
8238 			ncr_queue_done_cmd(np, wcmd);
8239 		}
8240 	}
8241 }
8242 
8243 #undef next_wcmd
8244 
8245 static ssize_t show_ncr53c8xx_revision(struct device *dev,
8246 				       struct device_attribute *attr, char *buf)
8247 {
8248 	struct Scsi_Host *host = class_to_shost(dev);
8249 	struct host_data *host_data = (struct host_data *)host->hostdata;
8250 
8251 	return snprintf(buf, 20, "0x%x\n", host_data->ncb->revision_id);
8252 }
8253 
8254 static struct device_attribute ncr53c8xx_revision_attr = {
8255 	.attr	= { .name = "revision", .mode = S_IRUGO, },
8256 	.show	= show_ncr53c8xx_revision,
8257 };
8258 
8259 static struct device_attribute *ncr53c8xx_host_attrs[] = {
8260 	&ncr53c8xx_revision_attr,
8261 	NULL
8262 };
8263 
8264 /*==========================================================
8265 **
8266 **	Boot command line.
8267 **
8268 **==========================================================
8269 */
8270 #ifdef	MODULE
8271 char *ncr53c8xx;	/* command line passed by insmod */
8272 module_param(ncr53c8xx, charp, 0);
8273 #endif
8274 
8275 #ifndef MODULE
8276 static int __init ncr53c8xx_setup(char *str)
8277 {
8278 	return sym53c8xx__setup(str);
8279 }
8280 
8281 __setup("ncr53c8xx=", ncr53c8xx_setup);
8282 #endif
8283 
8284 
8285 /*
8286  *	Host attach and initialisations.
8287  *
8288  *	Allocate host data and ncb structure.
8289  *	Request IO region and remap MMIO region.
8290  *	Do chip initialization.
8291  *	If all is OK, install interrupt handling and
8292  *	start the timer daemon.
8293  */
8294 struct Scsi_Host * __init ncr_attach(struct scsi_host_template *tpnt,
8295 					int unit, struct ncr_device *device)
8296 {
8297 	struct host_data *host_data;
8298 	struct ncb *np = NULL;
8299 	struct Scsi_Host *instance = NULL;
8300 	u_long flags = 0;
8301 	int i;
8302 
8303 	if (!tpnt->name)
8304 		tpnt->name	= SCSI_NCR_DRIVER_NAME;
8305 	if (!tpnt->shost_attrs)
8306 		tpnt->shost_attrs = ncr53c8xx_host_attrs;
8307 
8308 	tpnt->queuecommand	= ncr53c8xx_queue_command;
8309 	tpnt->slave_configure	= ncr53c8xx_slave_configure;
8310 	tpnt->slave_alloc	= ncr53c8xx_slave_alloc;
8311 	tpnt->eh_bus_reset_handler = ncr53c8xx_bus_reset;
8312 	tpnt->can_queue		= SCSI_NCR_CAN_QUEUE;
8313 	tpnt->this_id		= 7;
8314 	tpnt->sg_tablesize	= SCSI_NCR_SG_TABLESIZE;
8315 	tpnt->cmd_per_lun	= SCSI_NCR_CMD_PER_LUN;
8316 	tpnt->use_clustering	= ENABLE_CLUSTERING;
8317 
8318 	if (device->differential)
8319 		driver_setup.diff_support = device->differential;
8320 
8321 	printk(KERN_INFO "ncr53c720-%d: rev 0x%x irq %d\n",
8322 		unit, device->chip.revision_id, device->slot.irq);
8323 
8324 	instance = scsi_host_alloc(tpnt, sizeof(*host_data));
8325 	if (!instance)
8326 	        goto attach_error;
8327 	host_data = (struct host_data *) instance->hostdata;
8328 
8329 	np = __m_calloc_dma(device->dev, sizeof(struct ncb), "NCB");
8330 	if (!np)
8331 		goto attach_error;
8332 	spin_lock_init(&np->smp_lock);
8333 	np->dev = device->dev;
8334 	np->p_ncb = vtobus(np);
8335 	host_data->ncb = np;
8336 
8337 	np->ccb = m_calloc_dma(sizeof(struct ccb), "CCB");
8338 	if (!np->ccb)
8339 		goto attach_error;
8340 
8341 	/* Store input information in the host data structure.  */
8342 	np->unit	= unit;
8343 	np->verbose	= driver_setup.verbose;
8344 	sprintf(np->inst_name, "ncr53c720-%d", np->unit);
8345 	np->revision_id	= device->chip.revision_id;
8346 	np->features	= device->chip.features;
8347 	np->clock_divn	= device->chip.nr_divisor;
8348 	np->maxoffs	= device->chip.offset_max;
8349 	np->maxburst	= device->chip.burst_max;
8350 	np->myaddr	= device->host_id;
8351 
8352 	/* Allocate SCRIPTS areas.  */
8353 	np->script0 = m_calloc_dma(sizeof(struct script), "SCRIPT");
8354 	if (!np->script0)
8355 		goto attach_error;
8356 	np->scripth0 = m_calloc_dma(sizeof(struct scripth), "SCRIPTH");
8357 	if (!np->scripth0)
8358 		goto attach_error;
8359 
8360 	timer_setup(&np->timer, ncr53c8xx_timeout, 0);
8361 
8362 	/* Try to map the controller chip to virtual and physical memory. */
8363 
8364 	np->paddr	= device->slot.base;
8365 	np->paddr2	= (np->features & FE_RAM) ? device->slot.base_2 : 0;
8366 
8367 	if (device->slot.base_v)
8368 		np->vaddr = device->slot.base_v;
8369 	else
8370 		np->vaddr = ioremap(device->slot.base_c, 128);
8371 
8372 	if (!np->vaddr) {
8373 		printk(KERN_ERR
8374 			"%s: can't map memory mapped IO region\n",ncr_name(np));
8375 		goto attach_error;
8376 	} else {
8377 		if (bootverbose > 1)
8378 			printk(KERN_INFO
8379 				"%s: using memory mapped IO at virtual address 0x%lx\n", ncr_name(np), (u_long) np->vaddr);
8380 	}
8381 
8382 	/* Make the controller's registers available.  Now the INB INW INL
8383 	 * OUTB OUTW OUTL macros can be used safely.
8384 	 */
8385 
8386 	np->reg = (struct ncr_reg __iomem *)np->vaddr;
8387 
8388 	/* Do chip dependent initialization.  */
8389 	ncr_prepare_setting(np);
8390 
8391 	if (np->paddr2 && sizeof(struct script) > 4096) {
8392 		np->paddr2 = 0;
8393 		printk(KERN_WARNING "%s: script too large, NOT using on chip RAM.\n",
8394 			ncr_name(np));
8395 	}
8396 
8397 	instance->max_channel	= 0;
8398 	instance->this_id       = np->myaddr;
8399 	instance->max_id	= np->maxwide ? 16 : 8;
8400 	instance->max_lun	= SCSI_NCR_MAX_LUN;
8401 	instance->base		= (unsigned long) np->reg;
8402 	instance->irq		= device->slot.irq;
8403 	instance->unique_id	= device->slot.base;
8404 	instance->dma_channel	= 0;
8405 	instance->cmd_per_lun	= MAX_TAGS;
8406 	instance->can_queue	= (MAX_START-4);
8407 	/* This can happen if you forget to call ncr53c8xx_init from
8408 	 * your module_init */
8409 	BUG_ON(!ncr53c8xx_transport_template);
8410 	instance->transportt	= ncr53c8xx_transport_template;
8411 
8412 	/* Patch script to physical addresses */
8413 	ncr_script_fill(&script0, &scripth0);
8414 
8415 	np->scripth	= np->scripth0;
8416 	np->p_scripth	= vtobus(np->scripth);
8417 	np->p_script	= (np->paddr2) ?  np->paddr2 : vtobus(np->script0);
8418 
8419 	ncr_script_copy_and_bind(np, (ncrcmd *) &script0,
8420 			(ncrcmd *) np->script0, sizeof(struct script));
8421 	ncr_script_copy_and_bind(np, (ncrcmd *) &scripth0,
8422 			(ncrcmd *) np->scripth0, sizeof(struct scripth));
8423 	np->ccb->p_ccb	= vtobus (np->ccb);
8424 
8425 	/* Patch the script for LED support.  */
8426 
8427 	if (np->features & FE_LED0) {
8428 		np->script0->idle[0]  =
8429 				cpu_to_scr(SCR_REG_REG(gpreg, SCR_OR,  0x01));
8430 		np->script0->reselected[0] =
8431 				cpu_to_scr(SCR_REG_REG(gpreg, SCR_AND, 0xfe));
8432 		np->script0->start[0] =
8433 				cpu_to_scr(SCR_REG_REG(gpreg, SCR_AND, 0xfe));
8434 	}
8435 
8436 	/*
8437 	 * Look for the target control block of this nexus.
8438 	 * For i = 0 to 3
8439 	 *   JUMP ^ IFTRUE (MASK (i, 3)), @(next_lcb)
8440 	 */
8441 	for (i = 0 ; i < 4 ; i++) {
8442 		np->jump_tcb[i].l_cmd   =
8443 				cpu_to_scr((SCR_JUMP ^ IFTRUE (MASK (i, 3))));
8444 		np->jump_tcb[i].l_paddr =
8445 				cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_target));
8446 	}
8447 
8448 	ncr_chip_reset(np, 100);
8449 
8450 	/* Now check the cache handling of the chipset.  */
8451 
8452 	if (ncr_snooptest(np)) {
8453 		printk(KERN_ERR "CACHE INCORRECTLY CONFIGURED.\n");
8454 		goto attach_error;
8455 	}
8456 
8457 	/* Install the interrupt handler.  */
8458 	np->irq = device->slot.irq;
8459 
8460 	/* Initialize the fixed part of the default ccb.  */
8461 	ncr_init_ccb(np, np->ccb);
8462 
8463 	/*
8464 	 * After SCSI devices have been opened, we cannot reset the bus
8465 	 * safely, so we do it here.  Interrupt handler does the real work.
8466 	 * Process the reset exception if interrupts are not enabled yet.
8467 	 * Then enable disconnects.
8468 	 */
8469 	spin_lock_irqsave(&np->smp_lock, flags);
8470 	if (ncr_reset_scsi_bus(np, 0, driver_setup.settle_delay) != 0) {
8471 		printk(KERN_ERR "%s: FATAL ERROR: CHECK SCSI BUS - CABLES, TERMINATION, DEVICE POWER etc.!\n", ncr_name(np));
8472 
8473 		spin_unlock_irqrestore(&np->smp_lock, flags);
8474 		goto attach_error;
8475 	}
8476 	ncr_exception(np);
8477 
8478 	np->disc = 1;
8479 
8480 	/*
8481 	 * The middle-level SCSI driver does not wait for devices to settle.
8482 	 * Wait synchronously if more than 2 seconds.
8483 	 */
8484 	if (driver_setup.settle_delay > 2) {
8485 		printk(KERN_INFO "%s: waiting %d seconds for scsi devices to settle...\n",
8486 			ncr_name(np), driver_setup.settle_delay);
8487 		mdelay(1000 * driver_setup.settle_delay);
8488 	}
8489 
8490 	/* start the timeout daemon */
8491 	np->lasttime=0;
8492 	ncr_timeout (np);
8493 
8494 	/* use SIMPLE TAG messages by default */
8495 #ifdef SCSI_NCR_ALWAYS_SIMPLE_TAG
8496 	np->order = SIMPLE_QUEUE_TAG;
8497 #endif
8498 
8499 	spin_unlock_irqrestore(&np->smp_lock, flags);
8500 
8501 	return instance;
8502 
8503  attach_error:
8504 	if (!instance)
8505 		return NULL;
8506 	printk(KERN_INFO "%s: detaching...\n", ncr_name(np));
8507 	if (!np)
8508 		goto unregister;
8509 	if (np->scripth0)
8510 		m_free_dma(np->scripth0, sizeof(struct scripth), "SCRIPTH");
8511 	if (np->script0)
8512 		m_free_dma(np->script0, sizeof(struct script), "SCRIPT");
8513 	if (np->ccb)
8514 		m_free_dma(np->ccb, sizeof(struct ccb), "CCB");
8515 	m_free_dma(np, sizeof(struct ncb), "NCB");
8516 	host_data->ncb = NULL;
8517 
8518  unregister:
8519 	scsi_host_put(instance);
8520 
8521 	return NULL;
8522 }
8523 
8524 
8525 void ncr53c8xx_release(struct Scsi_Host *host)
8526 {
8527 	struct host_data *host_data = shost_priv(host);
8528 #ifdef DEBUG_NCR53C8XX
8529 	printk("ncr53c8xx: release\n");
8530 #endif
8531 	if (host_data->ncb)
8532 		ncr_detach(host_data->ncb);
8533 	scsi_host_put(host);
8534 }
8535 
8536 static void ncr53c8xx_set_period(struct scsi_target *starget, int period)
8537 {
8538 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
8539 	struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
8540 	struct tcb *tp = &np->target[starget->id];
8541 
8542 	if (period > np->maxsync)
8543 		period = np->maxsync;
8544 	else if (period < np->minsync)
8545 		period = np->minsync;
8546 
8547 	tp->usrsync = period;
8548 
8549 	ncr_negotiate(np, tp);
8550 }
8551 
8552 static void ncr53c8xx_set_offset(struct scsi_target *starget, int offset)
8553 {
8554 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
8555 	struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
8556 	struct tcb *tp = &np->target[starget->id];
8557 
8558 	if (offset > np->maxoffs)
8559 		offset = np->maxoffs;
8560 	else if (offset < 0)
8561 		offset = 0;
8562 
8563 	tp->maxoffs = offset;
8564 
8565 	ncr_negotiate(np, tp);
8566 }
8567 
8568 static void ncr53c8xx_set_width(struct scsi_target *starget, int width)
8569 {
8570 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
8571 	struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
8572 	struct tcb *tp = &np->target[starget->id];
8573 
8574 	if (width > np->maxwide)
8575 		width = np->maxwide;
8576 	else if (width < 0)
8577 		width = 0;
8578 
8579 	tp->usrwide = width;
8580 
8581 	ncr_negotiate(np, tp);
8582 }
8583 
8584 static void ncr53c8xx_get_signalling(struct Scsi_Host *shost)
8585 {
8586 	struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
8587 	enum spi_signal_type type;
8588 
8589 	switch (np->scsi_mode) {
8590 	case SMODE_SE:
8591 		type = SPI_SIGNAL_SE;
8592 		break;
8593 	case SMODE_HVD:
8594 		type = SPI_SIGNAL_HVD;
8595 		break;
8596 	default:
8597 		type = SPI_SIGNAL_UNKNOWN;
8598 		break;
8599 	}
8600 	spi_signalling(shost) = type;
8601 }
8602 
8603 static struct spi_function_template ncr53c8xx_transport_functions =  {
8604 	.set_period	= ncr53c8xx_set_period,
8605 	.show_period	= 1,
8606 	.set_offset	= ncr53c8xx_set_offset,
8607 	.show_offset	= 1,
8608 	.set_width	= ncr53c8xx_set_width,
8609 	.show_width	= 1,
8610 	.get_signalling	= ncr53c8xx_get_signalling,
8611 };
8612 
8613 int __init ncr53c8xx_init(void)
8614 {
8615 	ncr53c8xx_transport_template = spi_attach_transport(&ncr53c8xx_transport_functions);
8616 	if (!ncr53c8xx_transport_template)
8617 		return -ENODEV;
8618 	return 0;
8619 }
8620 
8621 void ncr53c8xx_exit(void)
8622 {
8623 	spi_release_transport(ncr53c8xx_transport_template);
8624 }
8625