1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /****************************************************************************** 3 ** Device driver for the PCI-SCSI NCR538XX controller family. 4 ** 5 ** Copyright (C) 1994 Wolfgang Stanglmeier 6 ** 7 ** 8 **----------------------------------------------------------------------------- 9 ** 10 ** This driver has been ported to Linux from the FreeBSD NCR53C8XX driver 11 ** and is currently maintained by 12 ** 13 ** Gerard Roudier <groudier@free.fr> 14 ** 15 ** Being given that this driver originates from the FreeBSD version, and 16 ** in order to keep synergy on both, any suggested enhancements and corrections 17 ** received on Linux are automatically a potential candidate for the FreeBSD 18 ** version. 19 ** 20 ** The original driver has been written for 386bsd and FreeBSD by 21 ** Wolfgang Stanglmeier <wolf@cologne.de> 22 ** Stefan Esser <se@mi.Uni-Koeln.de> 23 ** 24 ** And has been ported to NetBSD by 25 ** Charles M. Hannum <mycroft@gnu.ai.mit.edu> 26 ** 27 **----------------------------------------------------------------------------- 28 ** 29 ** Brief history 30 ** 31 ** December 10 1995 by Gerard Roudier: 32 ** Initial port to Linux. 33 ** 34 ** June 23 1996 by Gerard Roudier: 35 ** Support for 64 bits architectures (Alpha). 36 ** 37 ** November 30 1996 by Gerard Roudier: 38 ** Support for Fast-20 scsi. 39 ** Support for large DMA fifo and 128 dwords bursting. 40 ** 41 ** February 27 1997 by Gerard Roudier: 42 ** Support for Fast-40 scsi. 43 ** Support for on-Board RAM. 44 ** 45 ** May 3 1997 by Gerard Roudier: 46 ** Full support for scsi scripts instructions pre-fetching. 47 ** 48 ** May 19 1997 by Richard Waltham <dormouse@farsrobt.demon.co.uk>: 49 ** Support for NvRAM detection and reading. 50 ** 51 ** August 18 1997 by Cort <cort@cs.nmt.edu>: 52 ** Support for Power/PC (Big Endian). 53 ** 54 ** June 20 1998 by Gerard Roudier 55 ** Support for up to 64 tags per lun. 56 ** O(1) everywhere (C and SCRIPTS) for normal cases. 57 ** Low PCI traffic for command handling when on-chip RAM is present. 58 ** Aggressive SCSI SCRIPTS optimizations. 59 ** 60 ** 2005 by Matthew Wilcox and James Bottomley 61 ** PCI-ectomy. This driver now supports only the 720 chip (see the 62 ** NCR_Q720 and zalon drivers for the bus probe logic). 63 ** 64 ******************************************************************************* 65 */ 66 67 /* 68 ** Supported SCSI-II features: 69 ** Synchronous negotiation 70 ** Wide negotiation (depends on the NCR Chip) 71 ** Enable disconnection 72 ** Tagged command queuing 73 ** Parity checking 74 ** Etc... 75 ** 76 ** Supported NCR/SYMBIOS chips: 77 ** 53C720 (Wide, Fast SCSI-2, intfly problems) 78 */ 79 80 /* Name and version of the driver */ 81 #define SCSI_NCR_DRIVER_NAME "ncr53c8xx-3.4.3g" 82 83 #define SCSI_NCR_DEBUG_FLAGS (0) 84 85 #include <linux/blkdev.h> 86 #include <linux/delay.h> 87 #include <linux/dma-mapping.h> 88 #include <linux/errno.h> 89 #include <linux/gfp.h> 90 #include <linux/init.h> 91 #include <linux/interrupt.h> 92 #include <linux/ioport.h> 93 #include <linux/mm.h> 94 #include <linux/module.h> 95 #include <linux/sched.h> 96 #include <linux/signal.h> 97 #include <linux/spinlock.h> 98 #include <linux/stat.h> 99 #include <linux/string.h> 100 #include <linux/time.h> 101 #include <linux/timer.h> 102 #include <linux/types.h> 103 104 #include <asm/dma.h> 105 #include <asm/io.h> 106 107 #include <scsi/scsi.h> 108 #include <scsi/scsi_cmnd.h> 109 #include <scsi/scsi_dbg.h> 110 #include <scsi/scsi_device.h> 111 #include <scsi/scsi_tcq.h> 112 #include <scsi/scsi_transport.h> 113 #include <scsi/scsi_transport_spi.h> 114 115 #include "ncr53c8xx.h" 116 117 #define NAME53C8XX "ncr53c8xx" 118 119 /*========================================================== 120 ** 121 ** Debugging tags 122 ** 123 **========================================================== 124 */ 125 126 #define DEBUG_ALLOC (0x0001) 127 #define DEBUG_PHASE (0x0002) 128 #define DEBUG_QUEUE (0x0008) 129 #define DEBUG_RESULT (0x0010) 130 #define DEBUG_POINTER (0x0020) 131 #define DEBUG_SCRIPT (0x0040) 132 #define DEBUG_TINY (0x0080) 133 #define DEBUG_TIMING (0x0100) 134 #define DEBUG_NEGO (0x0200) 135 #define DEBUG_TAGS (0x0400) 136 #define DEBUG_SCATTER (0x0800) 137 #define DEBUG_IC (0x1000) 138 139 /* 140 ** Enable/Disable debug messages. 141 ** Can be changed at runtime too. 142 */ 143 144 #ifdef SCSI_NCR_DEBUG_INFO_SUPPORT 145 static int ncr_debug = SCSI_NCR_DEBUG_FLAGS; 146 #define DEBUG_FLAGS ncr_debug 147 #else 148 #define DEBUG_FLAGS SCSI_NCR_DEBUG_FLAGS 149 #endif 150 151 static inline struct list_head *ncr_list_pop(struct list_head *head) 152 { 153 if (!list_empty(head)) { 154 struct list_head *elem = head->next; 155 156 list_del(elem); 157 return elem; 158 } 159 160 return NULL; 161 } 162 163 /*========================================================== 164 ** 165 ** Simple power of two buddy-like allocator. 166 ** 167 ** This simple code is not intended to be fast, but to 168 ** provide power of 2 aligned memory allocations. 169 ** Since the SCRIPTS processor only supplies 8 bit 170 ** arithmetic, this allocator allows simple and fast 171 ** address calculations from the SCRIPTS code. 172 ** In addition, cache line alignment is guaranteed for 173 ** power of 2 cache line size. 174 ** Enhanced in linux-2.3.44 to provide a memory pool 175 ** per pcidev to support dynamic dma mapping. (I would 176 ** have preferred a real bus abstraction, btw). 177 ** 178 **========================================================== 179 */ 180 181 #define MEMO_SHIFT 4 /* 16 bytes minimum memory chunk */ 182 #if PAGE_SIZE >= 8192 183 #define MEMO_PAGE_ORDER 0 /* 1 PAGE maximum */ 184 #else 185 #define MEMO_PAGE_ORDER 1 /* 2 PAGES maximum */ 186 #endif 187 #define MEMO_FREE_UNUSED /* Free unused pages immediately */ 188 #define MEMO_WARN 1 189 #define MEMO_GFP_FLAGS GFP_ATOMIC 190 #define MEMO_CLUSTER_SHIFT (PAGE_SHIFT+MEMO_PAGE_ORDER) 191 #define MEMO_CLUSTER_SIZE (1UL << MEMO_CLUSTER_SHIFT) 192 #define MEMO_CLUSTER_MASK (MEMO_CLUSTER_SIZE-1) 193 194 typedef u_long m_addr_t; /* Enough bits to bit-hack addresses */ 195 typedef struct device *m_bush_t; /* Something that addresses DMAable */ 196 197 typedef struct m_link { /* Link between free memory chunks */ 198 struct m_link *next; 199 } m_link_s; 200 201 typedef struct m_vtob { /* Virtual to Bus address translation */ 202 struct m_vtob *next; 203 m_addr_t vaddr; 204 m_addr_t baddr; 205 } m_vtob_s; 206 #define VTOB_HASH_SHIFT 5 207 #define VTOB_HASH_SIZE (1UL << VTOB_HASH_SHIFT) 208 #define VTOB_HASH_MASK (VTOB_HASH_SIZE-1) 209 #define VTOB_HASH_CODE(m) \ 210 ((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK) 211 212 typedef struct m_pool { /* Memory pool of a given kind */ 213 m_bush_t bush; 214 m_addr_t (*getp)(struct m_pool *); 215 void (*freep)(struct m_pool *, m_addr_t); 216 int nump; 217 m_vtob_s *(vtob[VTOB_HASH_SIZE]); 218 struct m_pool *next; 219 struct m_link h[PAGE_SHIFT-MEMO_SHIFT+MEMO_PAGE_ORDER+1]; 220 } m_pool_s; 221 222 static void *___m_alloc(m_pool_s *mp, int size) 223 { 224 int i = 0; 225 int s = (1 << MEMO_SHIFT); 226 int j; 227 m_addr_t a; 228 m_link_s *h = mp->h; 229 230 if (size > (PAGE_SIZE << MEMO_PAGE_ORDER)) 231 return NULL; 232 233 while (size > s) { 234 s <<= 1; 235 ++i; 236 } 237 238 j = i; 239 while (!h[j].next) { 240 if (s == (PAGE_SIZE << MEMO_PAGE_ORDER)) { 241 h[j].next = (m_link_s *)mp->getp(mp); 242 if (h[j].next) 243 h[j].next->next = NULL; 244 break; 245 } 246 ++j; 247 s <<= 1; 248 } 249 a = (m_addr_t) h[j].next; 250 if (a) { 251 h[j].next = h[j].next->next; 252 while (j > i) { 253 j -= 1; 254 s >>= 1; 255 h[j].next = (m_link_s *) (a+s); 256 h[j].next->next = NULL; 257 } 258 } 259 #ifdef DEBUG 260 printk("___m_alloc(%d) = %p\n", size, (void *) a); 261 #endif 262 return (void *) a; 263 } 264 265 static void ___m_free(m_pool_s *mp, void *ptr, int size) 266 { 267 int i = 0; 268 int s = (1 << MEMO_SHIFT); 269 m_link_s *q; 270 m_addr_t a, b; 271 m_link_s *h = mp->h; 272 273 #ifdef DEBUG 274 printk("___m_free(%p, %d)\n", ptr, size); 275 #endif 276 277 if (size > (PAGE_SIZE << MEMO_PAGE_ORDER)) 278 return; 279 280 while (size > s) { 281 s <<= 1; 282 ++i; 283 } 284 285 a = (m_addr_t) ptr; 286 287 while (1) { 288 #ifdef MEMO_FREE_UNUSED 289 if (s == (PAGE_SIZE << MEMO_PAGE_ORDER)) { 290 mp->freep(mp, a); 291 break; 292 } 293 #endif 294 b = a ^ s; 295 q = &h[i]; 296 while (q->next && q->next != (m_link_s *) b) { 297 q = q->next; 298 } 299 if (!q->next) { 300 ((m_link_s *) a)->next = h[i].next; 301 h[i].next = (m_link_s *) a; 302 break; 303 } 304 q->next = q->next->next; 305 a = a & b; 306 s <<= 1; 307 ++i; 308 } 309 } 310 311 static DEFINE_SPINLOCK(ncr53c8xx_lock); 312 313 static void *__m_calloc2(m_pool_s *mp, int size, char *name, int uflags) 314 { 315 void *p; 316 317 p = ___m_alloc(mp, size); 318 319 if (DEBUG_FLAGS & DEBUG_ALLOC) 320 printk ("new %-10s[%4d] @%p.\n", name, size, p); 321 322 if (p) 323 memset(p, 0, size); 324 else if (uflags & MEMO_WARN) 325 printk (NAME53C8XX ": failed to allocate %s[%d]\n", name, size); 326 327 return p; 328 } 329 330 #define __m_calloc(mp, s, n) __m_calloc2(mp, s, n, MEMO_WARN) 331 332 static void __m_free(m_pool_s *mp, void *ptr, int size, char *name) 333 { 334 if (DEBUG_FLAGS & DEBUG_ALLOC) 335 printk ("freeing %-10s[%4d] @%p.\n", name, size, ptr); 336 337 ___m_free(mp, ptr, size); 338 339 } 340 341 /* 342 * With pci bus iommu support, we use a default pool of unmapped memory 343 * for memory we donnot need to DMA from/to and one pool per pcidev for 344 * memory accessed by the PCI chip. `mp0' is the default not DMAable pool. 345 */ 346 347 static m_addr_t ___mp0_getp(m_pool_s *mp) 348 { 349 m_addr_t m = __get_free_pages(MEMO_GFP_FLAGS, MEMO_PAGE_ORDER); 350 if (m) 351 ++mp->nump; 352 return m; 353 } 354 355 static void ___mp0_freep(m_pool_s *mp, m_addr_t m) 356 { 357 free_pages(m, MEMO_PAGE_ORDER); 358 --mp->nump; 359 } 360 361 static m_pool_s mp0 = {NULL, ___mp0_getp, ___mp0_freep}; 362 363 /* 364 * DMAable pools. 365 */ 366 367 /* 368 * With pci bus iommu support, we maintain one pool per pcidev and a 369 * hashed reverse table for virtual to bus physical address translations. 370 */ 371 static m_addr_t ___dma_getp(m_pool_s *mp) 372 { 373 m_addr_t vp; 374 m_vtob_s *vbp; 375 376 vbp = __m_calloc(&mp0, sizeof(*vbp), "VTOB"); 377 if (vbp) { 378 dma_addr_t daddr; 379 vp = (m_addr_t) dma_alloc_coherent(mp->bush, 380 PAGE_SIZE<<MEMO_PAGE_ORDER, 381 &daddr, GFP_ATOMIC); 382 if (vp) { 383 int hc = VTOB_HASH_CODE(vp); 384 vbp->vaddr = vp; 385 vbp->baddr = daddr; 386 vbp->next = mp->vtob[hc]; 387 mp->vtob[hc] = vbp; 388 ++mp->nump; 389 return vp; 390 } 391 } 392 if (vbp) 393 __m_free(&mp0, vbp, sizeof(*vbp), "VTOB"); 394 return 0; 395 } 396 397 static void ___dma_freep(m_pool_s *mp, m_addr_t m) 398 { 399 m_vtob_s **vbpp, *vbp; 400 int hc = VTOB_HASH_CODE(m); 401 402 vbpp = &mp->vtob[hc]; 403 while (*vbpp && (*vbpp)->vaddr != m) 404 vbpp = &(*vbpp)->next; 405 if (*vbpp) { 406 vbp = *vbpp; 407 *vbpp = (*vbpp)->next; 408 dma_free_coherent(mp->bush, PAGE_SIZE<<MEMO_PAGE_ORDER, 409 (void *)vbp->vaddr, (dma_addr_t)vbp->baddr); 410 __m_free(&mp0, vbp, sizeof(*vbp), "VTOB"); 411 --mp->nump; 412 } 413 } 414 415 static inline m_pool_s *___get_dma_pool(m_bush_t bush) 416 { 417 m_pool_s *mp; 418 for (mp = mp0.next; mp && mp->bush != bush; mp = mp->next); 419 return mp; 420 } 421 422 static m_pool_s *___cre_dma_pool(m_bush_t bush) 423 { 424 m_pool_s *mp; 425 mp = __m_calloc(&mp0, sizeof(*mp), "MPOOL"); 426 if (mp) { 427 memset(mp, 0, sizeof(*mp)); 428 mp->bush = bush; 429 mp->getp = ___dma_getp; 430 mp->freep = ___dma_freep; 431 mp->next = mp0.next; 432 mp0.next = mp; 433 } 434 return mp; 435 } 436 437 static void ___del_dma_pool(m_pool_s *p) 438 { 439 struct m_pool **pp = &mp0.next; 440 441 while (*pp && *pp != p) 442 pp = &(*pp)->next; 443 if (*pp) { 444 *pp = (*pp)->next; 445 __m_free(&mp0, p, sizeof(*p), "MPOOL"); 446 } 447 } 448 449 static void *__m_calloc_dma(m_bush_t bush, int size, char *name) 450 { 451 u_long flags; 452 struct m_pool *mp; 453 void *m = NULL; 454 455 spin_lock_irqsave(&ncr53c8xx_lock, flags); 456 mp = ___get_dma_pool(bush); 457 if (!mp) 458 mp = ___cre_dma_pool(bush); 459 if (mp) 460 m = __m_calloc(mp, size, name); 461 if (mp && !mp->nump) 462 ___del_dma_pool(mp); 463 spin_unlock_irqrestore(&ncr53c8xx_lock, flags); 464 465 return m; 466 } 467 468 static void __m_free_dma(m_bush_t bush, void *m, int size, char *name) 469 { 470 u_long flags; 471 struct m_pool *mp; 472 473 spin_lock_irqsave(&ncr53c8xx_lock, flags); 474 mp = ___get_dma_pool(bush); 475 if (mp) 476 __m_free(mp, m, size, name); 477 if (mp && !mp->nump) 478 ___del_dma_pool(mp); 479 spin_unlock_irqrestore(&ncr53c8xx_lock, flags); 480 } 481 482 static m_addr_t __vtobus(m_bush_t bush, void *m) 483 { 484 u_long flags; 485 m_pool_s *mp; 486 int hc = VTOB_HASH_CODE(m); 487 m_vtob_s *vp = NULL; 488 m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK; 489 490 spin_lock_irqsave(&ncr53c8xx_lock, flags); 491 mp = ___get_dma_pool(bush); 492 if (mp) { 493 vp = mp->vtob[hc]; 494 while (vp && (m_addr_t) vp->vaddr != a) 495 vp = vp->next; 496 } 497 spin_unlock_irqrestore(&ncr53c8xx_lock, flags); 498 return vp ? vp->baddr + (((m_addr_t) m) - a) : 0; 499 } 500 501 #define _m_calloc_dma(np, s, n) __m_calloc_dma(np->dev, s, n) 502 #define _m_free_dma(np, p, s, n) __m_free_dma(np->dev, p, s, n) 503 #define m_calloc_dma(s, n) _m_calloc_dma(np, s, n) 504 #define m_free_dma(p, s, n) _m_free_dma(np, p, s, n) 505 #define _vtobus(np, p) __vtobus(np->dev, p) 506 #define vtobus(p) _vtobus(np, p) 507 508 /* 509 * Deal with DMA mapping/unmapping. 510 */ 511 512 /* To keep track of the dma mapping (sg/single) that has been set */ 513 #define __data_mapped SCp.phase 514 #define __data_mapping SCp.have_data_in 515 516 static void __unmap_scsi_data(struct device *dev, struct scsi_cmnd *cmd) 517 { 518 switch(cmd->__data_mapped) { 519 case 2: 520 scsi_dma_unmap(cmd); 521 break; 522 } 523 cmd->__data_mapped = 0; 524 } 525 526 static int __map_scsi_sg_data(struct device *dev, struct scsi_cmnd *cmd) 527 { 528 int use_sg; 529 530 use_sg = scsi_dma_map(cmd); 531 if (!use_sg) 532 return 0; 533 534 cmd->__data_mapped = 2; 535 cmd->__data_mapping = use_sg; 536 537 return use_sg; 538 } 539 540 #define unmap_scsi_data(np, cmd) __unmap_scsi_data(np->dev, cmd) 541 #define map_scsi_sg_data(np, cmd) __map_scsi_sg_data(np->dev, cmd) 542 543 /*========================================================== 544 ** 545 ** Driver setup. 546 ** 547 ** This structure is initialized from linux config 548 ** options. It can be overridden at boot-up by the boot 549 ** command line. 550 ** 551 **========================================================== 552 */ 553 static struct ncr_driver_setup 554 driver_setup = SCSI_NCR_DRIVER_SETUP; 555 556 #ifndef MODULE 557 #ifdef SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT 558 static struct ncr_driver_setup 559 driver_safe_setup __initdata = SCSI_NCR_DRIVER_SAFE_SETUP; 560 #endif 561 #endif /* !MODULE */ 562 563 #define initverbose (driver_setup.verbose) 564 #define bootverbose (np->verbose) 565 566 567 /*=================================================================== 568 ** 569 ** Driver setup from the boot command line 570 ** 571 **=================================================================== 572 */ 573 574 #ifdef MODULE 575 #define ARG_SEP ' ' 576 #else 577 #define ARG_SEP ',' 578 #endif 579 580 #define OPT_TAGS 1 581 #define OPT_MASTER_PARITY 2 582 #define OPT_SCSI_PARITY 3 583 #define OPT_DISCONNECTION 4 584 #define OPT_SPECIAL_FEATURES 5 585 #define OPT_UNUSED_1 6 586 #define OPT_FORCE_SYNC_NEGO 7 587 #define OPT_REVERSE_PROBE 8 588 #define OPT_DEFAULT_SYNC 9 589 #define OPT_VERBOSE 10 590 #define OPT_DEBUG 11 591 #define OPT_BURST_MAX 12 592 #define OPT_LED_PIN 13 593 #define OPT_MAX_WIDE 14 594 #define OPT_SETTLE_DELAY 15 595 #define OPT_DIFF_SUPPORT 16 596 #define OPT_IRQM 17 597 #define OPT_PCI_FIX_UP 18 598 #define OPT_BUS_CHECK 19 599 #define OPT_OPTIMIZE 20 600 #define OPT_RECOVERY 21 601 #define OPT_SAFE_SETUP 22 602 #define OPT_USE_NVRAM 23 603 #define OPT_EXCLUDE 24 604 #define OPT_HOST_ID 25 605 606 #ifdef SCSI_NCR_IARB_SUPPORT 607 #define OPT_IARB 26 608 #endif 609 610 #ifdef MODULE 611 #define ARG_SEP ' ' 612 #else 613 #define ARG_SEP ',' 614 #endif 615 616 #ifndef MODULE 617 static char setup_token[] __initdata = 618 "tags:" "mpar:" 619 "spar:" "disc:" 620 "specf:" "ultra:" 621 "fsn:" "revprob:" 622 "sync:" "verb:" 623 "debug:" "burst:" 624 "led:" "wide:" 625 "settle:" "diff:" 626 "irqm:" "pcifix:" 627 "buschk:" "optim:" 628 "recovery:" 629 "safe:" "nvram:" 630 "excl:" "hostid:" 631 #ifdef SCSI_NCR_IARB_SUPPORT 632 "iarb:" 633 #endif 634 ; /* DONNOT REMOVE THIS ';' */ 635 636 static int __init get_setup_token(char *p) 637 { 638 char *cur = setup_token; 639 char *pc; 640 int i = 0; 641 642 while (cur != NULL && (pc = strchr(cur, ':')) != NULL) { 643 ++pc; 644 ++i; 645 if (!strncmp(p, cur, pc - cur)) 646 return i; 647 cur = pc; 648 } 649 return 0; 650 } 651 652 static int __init sym53c8xx__setup(char *str) 653 { 654 #ifdef SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT 655 char *cur = str; 656 char *pc, *pv; 657 int i, val, c; 658 int xi = 0; 659 660 while (cur != NULL && (pc = strchr(cur, ':')) != NULL) { 661 char *pe; 662 663 val = 0; 664 pv = pc; 665 c = *++pv; 666 667 if (c == 'n') 668 val = 0; 669 else if (c == 'y') 670 val = 1; 671 else 672 val = (int) simple_strtoul(pv, &pe, 0); 673 674 switch (get_setup_token(cur)) { 675 case OPT_TAGS: 676 driver_setup.default_tags = val; 677 if (pe && *pe == '/') { 678 i = 0; 679 while (*pe && *pe != ARG_SEP && 680 i < sizeof(driver_setup.tag_ctrl)-1) { 681 driver_setup.tag_ctrl[i++] = *pe++; 682 } 683 driver_setup.tag_ctrl[i] = '\0'; 684 } 685 break; 686 case OPT_MASTER_PARITY: 687 driver_setup.master_parity = val; 688 break; 689 case OPT_SCSI_PARITY: 690 driver_setup.scsi_parity = val; 691 break; 692 case OPT_DISCONNECTION: 693 driver_setup.disconnection = val; 694 break; 695 case OPT_SPECIAL_FEATURES: 696 driver_setup.special_features = val; 697 break; 698 case OPT_FORCE_SYNC_NEGO: 699 driver_setup.force_sync_nego = val; 700 break; 701 case OPT_REVERSE_PROBE: 702 driver_setup.reverse_probe = val; 703 break; 704 case OPT_DEFAULT_SYNC: 705 driver_setup.default_sync = val; 706 break; 707 case OPT_VERBOSE: 708 driver_setup.verbose = val; 709 break; 710 case OPT_DEBUG: 711 driver_setup.debug = val; 712 break; 713 case OPT_BURST_MAX: 714 driver_setup.burst_max = val; 715 break; 716 case OPT_LED_PIN: 717 driver_setup.led_pin = val; 718 break; 719 case OPT_MAX_WIDE: 720 driver_setup.max_wide = val? 1:0; 721 break; 722 case OPT_SETTLE_DELAY: 723 driver_setup.settle_delay = val; 724 break; 725 case OPT_DIFF_SUPPORT: 726 driver_setup.diff_support = val; 727 break; 728 case OPT_IRQM: 729 driver_setup.irqm = val; 730 break; 731 case OPT_PCI_FIX_UP: 732 driver_setup.pci_fix_up = val; 733 break; 734 case OPT_BUS_CHECK: 735 driver_setup.bus_check = val; 736 break; 737 case OPT_OPTIMIZE: 738 driver_setup.optimize = val; 739 break; 740 case OPT_RECOVERY: 741 driver_setup.recovery = val; 742 break; 743 case OPT_USE_NVRAM: 744 driver_setup.use_nvram = val; 745 break; 746 case OPT_SAFE_SETUP: 747 memcpy(&driver_setup, &driver_safe_setup, 748 sizeof(driver_setup)); 749 break; 750 case OPT_EXCLUDE: 751 if (xi < SCSI_NCR_MAX_EXCLUDES) 752 driver_setup.excludes[xi++] = val; 753 break; 754 case OPT_HOST_ID: 755 driver_setup.host_id = val; 756 break; 757 #ifdef SCSI_NCR_IARB_SUPPORT 758 case OPT_IARB: 759 driver_setup.iarb = val; 760 break; 761 #endif 762 default: 763 printk("sym53c8xx_setup: unexpected boot option '%.*s' ignored\n", (int)(pc-cur+1), cur); 764 break; 765 } 766 767 if ((cur = strchr(cur, ARG_SEP)) != NULL) 768 ++cur; 769 } 770 #endif /* SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT */ 771 return 1; 772 } 773 #endif /* !MODULE */ 774 775 /*=================================================================== 776 ** 777 ** Get device queue depth from boot command line. 778 ** 779 **=================================================================== 780 */ 781 #define DEF_DEPTH (driver_setup.default_tags) 782 #define ALL_TARGETS -2 783 #define NO_TARGET -1 784 #define ALL_LUNS -2 785 #define NO_LUN -1 786 787 static int device_queue_depth(int unit, int target, int lun) 788 { 789 int c, h, t, u, v; 790 char *p = driver_setup.tag_ctrl; 791 char *ep; 792 793 h = -1; 794 t = NO_TARGET; 795 u = NO_LUN; 796 while ((c = *p++) != 0) { 797 v = simple_strtoul(p, &ep, 0); 798 switch(c) { 799 case '/': 800 ++h; 801 t = ALL_TARGETS; 802 u = ALL_LUNS; 803 break; 804 case 't': 805 if (t != target) 806 t = (target == v) ? v : NO_TARGET; 807 u = ALL_LUNS; 808 break; 809 case 'u': 810 if (u != lun) 811 u = (lun == v) ? v : NO_LUN; 812 break; 813 case 'q': 814 if (h == unit && 815 (t == ALL_TARGETS || t == target) && 816 (u == ALL_LUNS || u == lun)) 817 return v; 818 break; 819 case '-': 820 t = ALL_TARGETS; 821 u = ALL_LUNS; 822 break; 823 default: 824 break; 825 } 826 p = ep; 827 } 828 return DEF_DEPTH; 829 } 830 831 832 /*========================================================== 833 ** 834 ** The CCB done queue uses an array of CCB virtual 835 ** addresses. Empty entries are flagged using the bogus 836 ** virtual address 0xffffffff. 837 ** 838 ** Since PCI ensures that only aligned DWORDs are accessed 839 ** atomically, 64 bit little-endian architecture requires 840 ** to test the high order DWORD of the entry to determine 841 ** if it is empty or valid. 842 ** 843 ** BTW, I will make things differently as soon as I will 844 ** have a better idea, but this is simple and should work. 845 ** 846 **========================================================== 847 */ 848 849 #define SCSI_NCR_CCB_DONE_SUPPORT 850 #ifdef SCSI_NCR_CCB_DONE_SUPPORT 851 852 #define MAX_DONE 24 853 #define CCB_DONE_EMPTY 0xffffffffUL 854 855 /* All 32 bit architectures */ 856 #if BITS_PER_LONG == 32 857 #define CCB_DONE_VALID(cp) (((u_long) cp) != CCB_DONE_EMPTY) 858 859 /* All > 32 bit (64 bit) architectures regardless endian-ness */ 860 #else 861 #define CCB_DONE_VALID(cp) \ 862 ((((u_long) cp) & 0xffffffff00000000ul) && \ 863 (((u_long) cp) & 0xfffffffful) != CCB_DONE_EMPTY) 864 #endif 865 866 #endif /* SCSI_NCR_CCB_DONE_SUPPORT */ 867 868 /*========================================================== 869 ** 870 ** Configuration and Debugging 871 ** 872 **========================================================== 873 */ 874 875 /* 876 ** SCSI address of this device. 877 ** The boot routines should have set it. 878 ** If not, use this. 879 */ 880 881 #ifndef SCSI_NCR_MYADDR 882 #define SCSI_NCR_MYADDR (7) 883 #endif 884 885 /* 886 ** The maximum number of tags per logic unit. 887 ** Used only for disk devices that support tags. 888 */ 889 890 #ifndef SCSI_NCR_MAX_TAGS 891 #define SCSI_NCR_MAX_TAGS (8) 892 #endif 893 894 /* 895 ** TAGS are actually limited to 64 tags/lun. 896 ** We need to deal with power of 2, for alignment constraints. 897 */ 898 #if SCSI_NCR_MAX_TAGS > 64 899 #define MAX_TAGS (64) 900 #else 901 #define MAX_TAGS SCSI_NCR_MAX_TAGS 902 #endif 903 904 #define NO_TAG (255) 905 906 /* 907 ** Choose appropriate type for tag bitmap. 908 */ 909 #if MAX_TAGS > 32 910 typedef u64 tagmap_t; 911 #else 912 typedef u32 tagmap_t; 913 #endif 914 915 /* 916 ** Number of targets supported by the driver. 917 ** n permits target numbers 0..n-1. 918 ** Default is 16, meaning targets #0..#15. 919 ** #7 .. is myself. 920 */ 921 922 #ifdef SCSI_NCR_MAX_TARGET 923 #define MAX_TARGET (SCSI_NCR_MAX_TARGET) 924 #else 925 #define MAX_TARGET (16) 926 #endif 927 928 /* 929 ** Number of logic units supported by the driver. 930 ** n enables logic unit numbers 0..n-1. 931 ** The common SCSI devices require only 932 ** one lun, so take 1 as the default. 933 */ 934 935 #ifdef SCSI_NCR_MAX_LUN 936 #define MAX_LUN SCSI_NCR_MAX_LUN 937 #else 938 #define MAX_LUN (1) 939 #endif 940 941 /* 942 ** Asynchronous pre-scaler (ns). Shall be 40 943 */ 944 945 #ifndef SCSI_NCR_MIN_ASYNC 946 #define SCSI_NCR_MIN_ASYNC (40) 947 #endif 948 949 /* 950 ** The maximum number of jobs scheduled for starting. 951 ** There should be one slot per target, and one slot 952 ** for each tag of each target in use. 953 ** The calculation below is actually quite silly ... 954 */ 955 956 #ifdef SCSI_NCR_CAN_QUEUE 957 #define MAX_START (SCSI_NCR_CAN_QUEUE + 4) 958 #else 959 #define MAX_START (MAX_TARGET + 7 * MAX_TAGS) 960 #endif 961 962 /* 963 ** We limit the max number of pending IO to 250. 964 ** since we donnot want to allocate more than 1 965 ** PAGE for 'scripth'. 966 */ 967 #if MAX_START > 250 968 #undef MAX_START 969 #define MAX_START 250 970 #endif 971 972 /* 973 ** The maximum number of segments a transfer is split into. 974 ** We support up to 127 segments for both read and write. 975 ** The data scripts are broken into 2 sub-scripts. 976 ** 80 (MAX_SCATTERL) segments are moved from a sub-script 977 ** in on-chip RAM. This makes data transfers shorter than 978 ** 80k (assuming 1k fs) as fast as possible. 979 */ 980 981 #define MAX_SCATTER (SCSI_NCR_MAX_SCATTER) 982 983 #if (MAX_SCATTER > 80) 984 #define MAX_SCATTERL 80 985 #define MAX_SCATTERH (MAX_SCATTER - MAX_SCATTERL) 986 #else 987 #define MAX_SCATTERL (MAX_SCATTER-1) 988 #define MAX_SCATTERH 1 989 #endif 990 991 /* 992 ** other 993 */ 994 995 #define NCR_SNOOP_TIMEOUT (1000000) 996 997 /* 998 ** Other definitions 999 */ 1000 1001 #define ScsiResult(host_code, scsi_code) (((host_code) << 16) + ((scsi_code) & 0x7f)) 1002 1003 #define initverbose (driver_setup.verbose) 1004 #define bootverbose (np->verbose) 1005 1006 /*========================================================== 1007 ** 1008 ** Command control block states. 1009 ** 1010 **========================================================== 1011 */ 1012 1013 #define HS_IDLE (0) 1014 #define HS_BUSY (1) 1015 #define HS_NEGOTIATE (2) /* sync/wide data transfer*/ 1016 #define HS_DISCONNECT (3) /* Disconnected by target */ 1017 1018 #define HS_DONEMASK (0x80) 1019 #define HS_COMPLETE (4|HS_DONEMASK) 1020 #define HS_SEL_TIMEOUT (5|HS_DONEMASK) /* Selection timeout */ 1021 #define HS_RESET (6|HS_DONEMASK) /* SCSI reset */ 1022 #define HS_ABORTED (7|HS_DONEMASK) /* Transfer aborted */ 1023 #define HS_TIMEOUT (8|HS_DONEMASK) /* Software timeout */ 1024 #define HS_FAIL (9|HS_DONEMASK) /* SCSI or PCI bus errors */ 1025 #define HS_UNEXPECTED (10|HS_DONEMASK)/* Unexpected disconnect */ 1026 1027 /* 1028 ** Invalid host status values used by the SCRIPTS processor 1029 ** when the nexus is not fully identified. 1030 ** Shall never appear in a CCB. 1031 */ 1032 1033 #define HS_INVALMASK (0x40) 1034 #define HS_SELECTING (0|HS_INVALMASK) 1035 #define HS_IN_RESELECT (1|HS_INVALMASK) 1036 #define HS_STARTING (2|HS_INVALMASK) 1037 1038 /* 1039 ** Flags set by the SCRIPT processor for commands 1040 ** that have been skipped. 1041 */ 1042 #define HS_SKIPMASK (0x20) 1043 1044 /*========================================================== 1045 ** 1046 ** Software Interrupt Codes 1047 ** 1048 **========================================================== 1049 */ 1050 1051 #define SIR_BAD_STATUS (1) 1052 #define SIR_XXXXXXXXXX (2) 1053 #define SIR_NEGO_SYNC (3) 1054 #define SIR_NEGO_WIDE (4) 1055 #define SIR_NEGO_FAILED (5) 1056 #define SIR_NEGO_PROTO (6) 1057 #define SIR_REJECT_RECEIVED (7) 1058 #define SIR_REJECT_SENT (8) 1059 #define SIR_IGN_RESIDUE (9) 1060 #define SIR_MISSING_SAVE (10) 1061 #define SIR_RESEL_NO_MSG_IN (11) 1062 #define SIR_RESEL_NO_IDENTIFY (12) 1063 #define SIR_RESEL_BAD_LUN (13) 1064 #define SIR_RESEL_BAD_TARGET (14) 1065 #define SIR_RESEL_BAD_I_T_L (15) 1066 #define SIR_RESEL_BAD_I_T_L_Q (16) 1067 #define SIR_DONE_OVERFLOW (17) 1068 #define SIR_INTFLY (18) 1069 #define SIR_MAX (18) 1070 1071 /*========================================================== 1072 ** 1073 ** Extended error codes. 1074 ** xerr_status field of struct ccb. 1075 ** 1076 **========================================================== 1077 */ 1078 1079 #define XE_OK (0) 1080 #define XE_EXTRA_DATA (1) /* unexpected data phase */ 1081 #define XE_BAD_PHASE (2) /* illegal phase (4/5) */ 1082 1083 /*========================================================== 1084 ** 1085 ** Negotiation status. 1086 ** nego_status field of struct ccb. 1087 ** 1088 **========================================================== 1089 */ 1090 1091 #define NS_NOCHANGE (0) 1092 #define NS_SYNC (1) 1093 #define NS_WIDE (2) 1094 #define NS_PPR (4) 1095 1096 /*========================================================== 1097 ** 1098 ** Misc. 1099 ** 1100 **========================================================== 1101 */ 1102 1103 #define CCB_MAGIC (0xf2691ad2) 1104 1105 /*========================================================== 1106 ** 1107 ** Declaration of structs. 1108 ** 1109 **========================================================== 1110 */ 1111 1112 static struct scsi_transport_template *ncr53c8xx_transport_template = NULL; 1113 1114 struct tcb; 1115 struct lcb; 1116 struct ccb; 1117 struct ncb; 1118 struct script; 1119 1120 struct link { 1121 ncrcmd l_cmd; 1122 ncrcmd l_paddr; 1123 }; 1124 1125 struct usrcmd { 1126 u_long target; 1127 u_long lun; 1128 u_long data; 1129 u_long cmd; 1130 }; 1131 1132 #define UC_SETSYNC 10 1133 #define UC_SETTAGS 11 1134 #define UC_SETDEBUG 12 1135 #define UC_SETORDER 13 1136 #define UC_SETWIDE 14 1137 #define UC_SETFLAG 15 1138 #define UC_SETVERBOSE 17 1139 1140 #define UF_TRACE (0x01) 1141 #define UF_NODISC (0x02) 1142 #define UF_NOSCAN (0x04) 1143 1144 /*======================================================================== 1145 ** 1146 ** Declaration of structs: target control block 1147 ** 1148 **======================================================================== 1149 */ 1150 struct tcb { 1151 /*---------------------------------------------------------------- 1152 ** During reselection the ncr jumps to this point with SFBR 1153 ** set to the encoded target number with bit 7 set. 1154 ** if it's not this target, jump to the next. 1155 ** 1156 ** JUMP IF (SFBR != #target#), @(next tcb) 1157 **---------------------------------------------------------------- 1158 */ 1159 struct link jump_tcb; 1160 1161 /*---------------------------------------------------------------- 1162 ** Load the actual values for the sxfer and the scntl3 1163 ** register (sync/wide mode). 1164 ** 1165 ** SCR_COPY (1), @(sval field of this tcb), @(sxfer register) 1166 ** SCR_COPY (1), @(wval field of this tcb), @(scntl3 register) 1167 **---------------------------------------------------------------- 1168 */ 1169 ncrcmd getscr[6]; 1170 1171 /*---------------------------------------------------------------- 1172 ** Get the IDENTIFY message and load the LUN to SFBR. 1173 ** 1174 ** CALL, <RESEL_LUN> 1175 **---------------------------------------------------------------- 1176 */ 1177 struct link call_lun; 1178 1179 /*---------------------------------------------------------------- 1180 ** Now look for the right lun. 1181 ** 1182 ** For i = 0 to 3 1183 ** SCR_JUMP ^ IFTRUE(MASK(i, 3)), @(first lcb mod. i) 1184 ** 1185 ** Recent chips will prefetch the 4 JUMPS using only 1 burst. 1186 ** It is kind of hashcoding. 1187 **---------------------------------------------------------------- 1188 */ 1189 struct link jump_lcb[4]; /* JUMPs for reselection */ 1190 struct lcb * lp[MAX_LUN]; /* The lcb's of this tcb */ 1191 1192 /*---------------------------------------------------------------- 1193 ** Pointer to the ccb used for negotiation. 1194 ** Prevent from starting a negotiation for all queued commands 1195 ** when tagged command queuing is enabled. 1196 **---------------------------------------------------------------- 1197 */ 1198 struct ccb * nego_cp; 1199 1200 /*---------------------------------------------------------------- 1201 ** statistical data 1202 **---------------------------------------------------------------- 1203 */ 1204 u_long transfers; 1205 u_long bytes; 1206 1207 /*---------------------------------------------------------------- 1208 ** negotiation of wide and synch transfer and device quirks. 1209 **---------------------------------------------------------------- 1210 */ 1211 #ifdef SCSI_NCR_BIG_ENDIAN 1212 /*0*/ u16 period; 1213 /*2*/ u_char sval; 1214 /*3*/ u_char minsync; 1215 /*0*/ u_char wval; 1216 /*1*/ u_char widedone; 1217 /*2*/ u_char quirks; 1218 /*3*/ u_char maxoffs; 1219 #else 1220 /*0*/ u_char minsync; 1221 /*1*/ u_char sval; 1222 /*2*/ u16 period; 1223 /*0*/ u_char maxoffs; 1224 /*1*/ u_char quirks; 1225 /*2*/ u_char widedone; 1226 /*3*/ u_char wval; 1227 #endif 1228 1229 /* User settable limits and options. */ 1230 u_char usrsync; 1231 u_char usrwide; 1232 u_char usrtags; 1233 u_char usrflag; 1234 struct scsi_target *starget; 1235 }; 1236 1237 /*======================================================================== 1238 ** 1239 ** Declaration of structs: lun control block 1240 ** 1241 **======================================================================== 1242 */ 1243 struct lcb { 1244 /*---------------------------------------------------------------- 1245 ** During reselection the ncr jumps to this point 1246 ** with SFBR set to the "Identify" message. 1247 ** if it's not this lun, jump to the next. 1248 ** 1249 ** JUMP IF (SFBR != #lun#), @(next lcb of this target) 1250 ** 1251 ** It is this lun. Load TEMP with the nexus jumps table 1252 ** address and jump to RESEL_TAG (or RESEL_NOTAG). 1253 ** 1254 ** SCR_COPY (4), p_jump_ccb, TEMP, 1255 ** SCR_JUMP, <RESEL_TAG> 1256 **---------------------------------------------------------------- 1257 */ 1258 struct link jump_lcb; 1259 ncrcmd load_jump_ccb[3]; 1260 struct link jump_tag; 1261 ncrcmd p_jump_ccb; /* Jump table bus address */ 1262 1263 /*---------------------------------------------------------------- 1264 ** Jump table used by the script processor to directly jump 1265 ** to the CCB corresponding to the reselected nexus. 1266 ** Address is allocated on 256 bytes boundary in order to 1267 ** allow 8 bit calculation of the tag jump entry for up to 1268 ** 64 possible tags. 1269 **---------------------------------------------------------------- 1270 */ 1271 u32 jump_ccb_0; /* Default table if no tags */ 1272 u32 *jump_ccb; /* Virtual address */ 1273 1274 /*---------------------------------------------------------------- 1275 ** CCB queue management. 1276 **---------------------------------------------------------------- 1277 */ 1278 struct list_head free_ccbq; /* Queue of available CCBs */ 1279 struct list_head busy_ccbq; /* Queue of busy CCBs */ 1280 struct list_head wait_ccbq; /* Queue of waiting for IO CCBs */ 1281 struct list_head skip_ccbq; /* Queue of skipped CCBs */ 1282 u_char actccbs; /* Number of allocated CCBs */ 1283 u_char busyccbs; /* CCBs busy for this lun */ 1284 u_char queuedccbs; /* CCBs queued to the controller*/ 1285 u_char queuedepth; /* Queue depth for this lun */ 1286 u_char scdev_depth; /* SCSI device queue depth */ 1287 u_char maxnxs; /* Max possible nexuses */ 1288 1289 /*---------------------------------------------------------------- 1290 ** Control of tagged command queuing. 1291 ** Tags allocation is performed using a circular buffer. 1292 ** This avoids using a loop for tag allocation. 1293 **---------------------------------------------------------------- 1294 */ 1295 u_char ia_tag; /* Allocation index */ 1296 u_char if_tag; /* Freeing index */ 1297 u_char cb_tags[MAX_TAGS]; /* Circular tags buffer */ 1298 u_char usetags; /* Command queuing is active */ 1299 u_char maxtags; /* Max nr of tags asked by user */ 1300 u_char numtags; /* Current number of tags */ 1301 1302 /*---------------------------------------------------------------- 1303 ** QUEUE FULL control and ORDERED tag control. 1304 **---------------------------------------------------------------- 1305 */ 1306 /*---------------------------------------------------------------- 1307 ** QUEUE FULL and ORDERED tag control. 1308 **---------------------------------------------------------------- 1309 */ 1310 u16 num_good; /* Nr of GOOD since QUEUE FULL */ 1311 tagmap_t tags_umap; /* Used tags bitmap */ 1312 tagmap_t tags_smap; /* Tags in use at 'tag_stime' */ 1313 u_long tags_stime; /* Last time we set smap=umap */ 1314 struct ccb * held_ccb; /* CCB held for QUEUE FULL */ 1315 }; 1316 1317 /*======================================================================== 1318 ** 1319 ** Declaration of structs: the launch script. 1320 ** 1321 **======================================================================== 1322 ** 1323 ** It is part of the CCB and is called by the scripts processor to 1324 ** start or restart the data structure (nexus). 1325 ** This 6 DWORDs mini script makes use of prefetching. 1326 ** 1327 **------------------------------------------------------------------------ 1328 */ 1329 struct launch { 1330 /*---------------------------------------------------------------- 1331 ** SCR_COPY(4), @(p_phys), @(dsa register) 1332 ** SCR_JUMP, @(scheduler_point) 1333 **---------------------------------------------------------------- 1334 */ 1335 ncrcmd setup_dsa[3]; /* Copy 'phys' address to dsa */ 1336 struct link schedule; /* Jump to scheduler point */ 1337 ncrcmd p_phys; /* 'phys' header bus address */ 1338 }; 1339 1340 /*======================================================================== 1341 ** 1342 ** Declaration of structs: global HEADER. 1343 ** 1344 **======================================================================== 1345 ** 1346 ** This substructure is copied from the ccb to a global address after 1347 ** selection (or reselection) and copied back before disconnect. 1348 ** 1349 ** These fields are accessible to the script processor. 1350 ** 1351 **------------------------------------------------------------------------ 1352 */ 1353 1354 struct head { 1355 /*---------------------------------------------------------------- 1356 ** Saved data pointer. 1357 ** Points to the position in the script responsible for the 1358 ** actual transfer transfer of data. 1359 ** It's written after reception of a SAVE_DATA_POINTER message. 1360 ** The goalpointer points after the last transfer command. 1361 **---------------------------------------------------------------- 1362 */ 1363 u32 savep; 1364 u32 lastp; 1365 u32 goalp; 1366 1367 /*---------------------------------------------------------------- 1368 ** Alternate data pointer. 1369 ** They are copied back to savep/lastp/goalp by the SCRIPTS 1370 ** when the direction is unknown and the device claims data out. 1371 **---------------------------------------------------------------- 1372 */ 1373 u32 wlastp; 1374 u32 wgoalp; 1375 1376 /*---------------------------------------------------------------- 1377 ** The virtual address of the ccb containing this header. 1378 **---------------------------------------------------------------- 1379 */ 1380 struct ccb * cp; 1381 1382 /*---------------------------------------------------------------- 1383 ** Status fields. 1384 **---------------------------------------------------------------- 1385 */ 1386 u_char scr_st[4]; /* script status */ 1387 u_char status[4]; /* host status. must be the */ 1388 /* last DWORD of the header. */ 1389 }; 1390 1391 /* 1392 ** The status bytes are used by the host and the script processor. 1393 ** 1394 ** The byte corresponding to the host_status must be stored in the 1395 ** last DWORD of the CCB header since it is used for command 1396 ** completion (ncr_wakeup()). Doing so, we are sure that the header 1397 ** has been entirely copied back to the CCB when the host_status is 1398 ** seen complete by the CPU. 1399 ** 1400 ** The last four bytes (status[4]) are copied to the scratchb register 1401 ** (declared as scr0..scr3 in ncr_reg.h) just after the select/reselect, 1402 ** and copied back just after disconnecting. 1403 ** Inside the script the XX_REG are used. 1404 ** 1405 ** The first four bytes (scr_st[4]) are used inside the script by 1406 ** "COPY" commands. 1407 ** Because source and destination must have the same alignment 1408 ** in a DWORD, the fields HAVE to be at the chosen offsets. 1409 ** xerr_st 0 (0x34) scratcha 1410 ** sync_st 1 (0x05) sxfer 1411 ** wide_st 3 (0x03) scntl3 1412 */ 1413 1414 /* 1415 ** Last four bytes (script) 1416 */ 1417 #define QU_REG scr0 1418 #define HS_REG scr1 1419 #define HS_PRT nc_scr1 1420 #define SS_REG scr2 1421 #define SS_PRT nc_scr2 1422 #define PS_REG scr3 1423 1424 /* 1425 ** Last four bytes (host) 1426 */ 1427 #ifdef SCSI_NCR_BIG_ENDIAN 1428 #define actualquirks phys.header.status[3] 1429 #define host_status phys.header.status[2] 1430 #define scsi_status phys.header.status[1] 1431 #define parity_status phys.header.status[0] 1432 #else 1433 #define actualquirks phys.header.status[0] 1434 #define host_status phys.header.status[1] 1435 #define scsi_status phys.header.status[2] 1436 #define parity_status phys.header.status[3] 1437 #endif 1438 1439 /* 1440 ** First four bytes (script) 1441 */ 1442 #define xerr_st header.scr_st[0] 1443 #define sync_st header.scr_st[1] 1444 #define nego_st header.scr_st[2] 1445 #define wide_st header.scr_st[3] 1446 1447 /* 1448 ** First four bytes (host) 1449 */ 1450 #define xerr_status phys.xerr_st 1451 #define nego_status phys.nego_st 1452 1453 #if 0 1454 #define sync_status phys.sync_st 1455 #define wide_status phys.wide_st 1456 #endif 1457 1458 /*========================================================== 1459 ** 1460 ** Declaration of structs: Data structure block 1461 ** 1462 **========================================================== 1463 ** 1464 ** During execution of a ccb by the script processor, 1465 ** the DSA (data structure address) register points 1466 ** to this substructure of the ccb. 1467 ** This substructure contains the header with 1468 ** the script-processor-changeable data and 1469 ** data blocks for the indirect move commands. 1470 ** 1471 **---------------------------------------------------------- 1472 */ 1473 1474 struct dsb { 1475 1476 /* 1477 ** Header. 1478 */ 1479 1480 struct head header; 1481 1482 /* 1483 ** Table data for Script 1484 */ 1485 1486 struct scr_tblsel select; 1487 struct scr_tblmove smsg ; 1488 struct scr_tblmove cmd ; 1489 struct scr_tblmove sense ; 1490 struct scr_tblmove data[MAX_SCATTER]; 1491 }; 1492 1493 1494 /*======================================================================== 1495 ** 1496 ** Declaration of structs: Command control block. 1497 ** 1498 **======================================================================== 1499 */ 1500 struct ccb { 1501 /*---------------------------------------------------------------- 1502 ** This is the data structure which is pointed by the DSA 1503 ** register when it is executed by the script processor. 1504 ** It must be the first entry because it contains the header 1505 ** as first entry that must be cache line aligned. 1506 **---------------------------------------------------------------- 1507 */ 1508 struct dsb phys; 1509 1510 /*---------------------------------------------------------------- 1511 ** Mini-script used at CCB execution start-up. 1512 ** Load the DSA with the data structure address (phys) and 1513 ** jump to SELECT. Jump to CANCEL if CCB is to be canceled. 1514 **---------------------------------------------------------------- 1515 */ 1516 struct launch start; 1517 1518 /*---------------------------------------------------------------- 1519 ** Mini-script used at CCB relection to restart the nexus. 1520 ** Load the DSA with the data structure address (phys) and 1521 ** jump to RESEL_DSA. Jump to ABORT if CCB is to be aborted. 1522 **---------------------------------------------------------------- 1523 */ 1524 struct launch restart; 1525 1526 /*---------------------------------------------------------------- 1527 ** If a data transfer phase is terminated too early 1528 ** (after reception of a message (i.e. DISCONNECT)), 1529 ** we have to prepare a mini script to transfer 1530 ** the rest of the data. 1531 **---------------------------------------------------------------- 1532 */ 1533 ncrcmd patch[8]; 1534 1535 /*---------------------------------------------------------------- 1536 ** The general SCSI driver provides a 1537 ** pointer to a control block. 1538 **---------------------------------------------------------------- 1539 */ 1540 struct scsi_cmnd *cmd; /* SCSI command */ 1541 u_char cdb_buf[16]; /* Copy of CDB */ 1542 u_char sense_buf[64]; 1543 int data_len; /* Total data length */ 1544 1545 /*---------------------------------------------------------------- 1546 ** Message areas. 1547 ** We prepare a message to be sent after selection. 1548 ** We may use a second one if the command is rescheduled 1549 ** due to GETCC or QFULL. 1550 ** Contents are IDENTIFY and SIMPLE_TAG. 1551 ** While negotiating sync or wide transfer, 1552 ** a SDTR or WDTR message is appended. 1553 **---------------------------------------------------------------- 1554 */ 1555 u_char scsi_smsg [8]; 1556 u_char scsi_smsg2[8]; 1557 1558 /*---------------------------------------------------------------- 1559 ** Other fields. 1560 **---------------------------------------------------------------- 1561 */ 1562 u_long p_ccb; /* BUS address of this CCB */ 1563 u_char sensecmd[6]; /* Sense command */ 1564 u_char tag; /* Tag for this transfer */ 1565 /* 255 means no tag */ 1566 u_char target; 1567 u_char lun; 1568 u_char queued; 1569 u_char auto_sense; 1570 struct ccb * link_ccb; /* Host adapter CCB chain */ 1571 struct list_head link_ccbq; /* Link to unit CCB queue */ 1572 u32 startp; /* Initial data pointer */ 1573 u_long magic; /* Free / busy CCB flag */ 1574 }; 1575 1576 #define CCB_PHYS(cp,lbl) (cp->p_ccb + offsetof(struct ccb, lbl)) 1577 1578 1579 /*======================================================================== 1580 ** 1581 ** Declaration of structs: NCR device descriptor 1582 ** 1583 **======================================================================== 1584 */ 1585 struct ncb { 1586 /*---------------------------------------------------------------- 1587 ** The global header. 1588 ** It is accessible to both the host and the script processor. 1589 ** Must be cache line size aligned (32 for x86) in order to 1590 ** allow cache line bursting when it is copied to/from CCB. 1591 **---------------------------------------------------------------- 1592 */ 1593 struct head header; 1594 1595 /*---------------------------------------------------------------- 1596 ** CCBs management queues. 1597 **---------------------------------------------------------------- 1598 */ 1599 struct scsi_cmnd *waiting_list; /* Commands waiting for a CCB */ 1600 /* when lcb is not allocated. */ 1601 struct scsi_cmnd *done_list; /* Commands waiting for done() */ 1602 /* callback to be invoked. */ 1603 spinlock_t smp_lock; /* Lock for SMP threading */ 1604 1605 /*---------------------------------------------------------------- 1606 ** Chip and controller identification. 1607 **---------------------------------------------------------------- 1608 */ 1609 int unit; /* Unit number */ 1610 char inst_name[16]; /* ncb instance name */ 1611 1612 /*---------------------------------------------------------------- 1613 ** Initial value of some IO register bits. 1614 ** These values are assumed to have been set by BIOS, and may 1615 ** be used for probing adapter implementation differences. 1616 **---------------------------------------------------------------- 1617 */ 1618 u_char sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest0, sv_ctest3, 1619 sv_ctest4, sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4; 1620 1621 /*---------------------------------------------------------------- 1622 ** Actual initial value of IO register bits used by the 1623 ** driver. They are loaded at initialisation according to 1624 ** features that are to be enabled. 1625 **---------------------------------------------------------------- 1626 */ 1627 u_char rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest0, rv_ctest3, 1628 rv_ctest4, rv_ctest5, rv_stest2; 1629 1630 /*---------------------------------------------------------------- 1631 ** Targets management. 1632 ** During reselection the ncr jumps to jump_tcb. 1633 ** The SFBR register is loaded with the encoded target id. 1634 ** For i = 0 to 3 1635 ** SCR_JUMP ^ IFTRUE(MASK(i, 3)), @(next tcb mod. i) 1636 ** 1637 ** Recent chips will prefetch the 4 JUMPS using only 1 burst. 1638 ** It is kind of hashcoding. 1639 **---------------------------------------------------------------- 1640 */ 1641 struct link jump_tcb[4]; /* JUMPs for reselection */ 1642 struct tcb target[MAX_TARGET]; /* Target data */ 1643 1644 /*---------------------------------------------------------------- 1645 ** Virtual and physical bus addresses of the chip. 1646 **---------------------------------------------------------------- 1647 */ 1648 void __iomem *vaddr; /* Virtual and bus address of */ 1649 unsigned long paddr; /* chip's IO registers. */ 1650 unsigned long paddr2; /* On-chip RAM bus address. */ 1651 volatile /* Pointer to volatile for */ 1652 struct ncr_reg __iomem *reg; /* memory mapped IO. */ 1653 1654 /*---------------------------------------------------------------- 1655 ** SCRIPTS virtual and physical bus addresses. 1656 ** 'script' is loaded in the on-chip RAM if present. 1657 ** 'scripth' stays in main memory. 1658 **---------------------------------------------------------------- 1659 */ 1660 struct script *script0; /* Copies of script and scripth */ 1661 struct scripth *scripth0; /* relocated for this ncb. */ 1662 struct scripth *scripth; /* Actual scripth virt. address */ 1663 u_long p_script; /* Actual script and scripth */ 1664 u_long p_scripth; /* bus addresses. */ 1665 1666 /*---------------------------------------------------------------- 1667 ** General controller parameters and configuration. 1668 **---------------------------------------------------------------- 1669 */ 1670 struct device *dev; 1671 u_char revision_id; /* PCI device revision id */ 1672 u32 irq; /* IRQ level */ 1673 u32 features; /* Chip features map */ 1674 u_char myaddr; /* SCSI id of the adapter */ 1675 u_char maxburst; /* log base 2 of dwords burst */ 1676 u_char maxwide; /* Maximum transfer width */ 1677 u_char minsync; /* Minimum sync period factor */ 1678 u_char maxsync; /* Maximum sync period factor */ 1679 u_char maxoffs; /* Max scsi offset */ 1680 u_char multiplier; /* Clock multiplier (1,2,4) */ 1681 u_char clock_divn; /* Number of clock divisors */ 1682 u_long clock_khz; /* SCSI clock frequency in KHz */ 1683 1684 /*---------------------------------------------------------------- 1685 ** Start queue management. 1686 ** It is filled up by the host processor and accessed by the 1687 ** SCRIPTS processor in order to start SCSI commands. 1688 **---------------------------------------------------------------- 1689 */ 1690 u16 squeueput; /* Next free slot of the queue */ 1691 u16 actccbs; /* Number of allocated CCBs */ 1692 u16 queuedccbs; /* Number of CCBs in start queue*/ 1693 u16 queuedepth; /* Start queue depth */ 1694 1695 /*---------------------------------------------------------------- 1696 ** Timeout handler. 1697 **---------------------------------------------------------------- 1698 */ 1699 struct timer_list timer; /* Timer handler link header */ 1700 u_long lasttime; 1701 u_long settle_time; /* Resetting the SCSI BUS */ 1702 1703 /*---------------------------------------------------------------- 1704 ** Debugging and profiling. 1705 **---------------------------------------------------------------- 1706 */ 1707 struct ncr_reg regdump; /* Register dump */ 1708 u_long regtime; /* Time it has been done */ 1709 1710 /*---------------------------------------------------------------- 1711 ** Miscellaneous buffers accessed by the scripts-processor. 1712 ** They shall be DWORD aligned, because they may be read or 1713 ** written with a SCR_COPY script command. 1714 **---------------------------------------------------------------- 1715 */ 1716 u_char msgout[8]; /* Buffer for MESSAGE OUT */ 1717 u_char msgin [8]; /* Buffer for MESSAGE IN */ 1718 u32 lastmsg; /* Last SCSI message sent */ 1719 u_char scratch; /* Scratch for SCSI receive */ 1720 1721 /*---------------------------------------------------------------- 1722 ** Miscellaneous configuration and status parameters. 1723 **---------------------------------------------------------------- 1724 */ 1725 u_char disc; /* Disconnection allowed */ 1726 u_char scsi_mode; /* Current SCSI BUS mode */ 1727 u_char order; /* Tag order to use */ 1728 u_char verbose; /* Verbosity for this controller*/ 1729 int ncr_cache; /* Used for cache test at init. */ 1730 u_long p_ncb; /* BUS address of this NCB */ 1731 1732 /*---------------------------------------------------------------- 1733 ** Command completion handling. 1734 **---------------------------------------------------------------- 1735 */ 1736 #ifdef SCSI_NCR_CCB_DONE_SUPPORT 1737 struct ccb *(ccb_done[MAX_DONE]); 1738 int ccb_done_ic; 1739 #endif 1740 /*---------------------------------------------------------------- 1741 ** Fields that should be removed or changed. 1742 **---------------------------------------------------------------- 1743 */ 1744 struct ccb *ccb; /* Global CCB */ 1745 struct usrcmd user; /* Command from user */ 1746 volatile u_char release_stage; /* Synchronisation stage on release */ 1747 }; 1748 1749 #define NCB_SCRIPT_PHYS(np,lbl) (np->p_script + offsetof (struct script, lbl)) 1750 #define NCB_SCRIPTH_PHYS(np,lbl) (np->p_scripth + offsetof (struct scripth,lbl)) 1751 1752 /*========================================================== 1753 ** 1754 ** 1755 ** Script for NCR-Processor. 1756 ** 1757 ** Use ncr_script_fill() to create the variable parts. 1758 ** Use ncr_script_copy_and_bind() to make a copy and 1759 ** bind to physical addresses. 1760 ** 1761 ** 1762 **========================================================== 1763 ** 1764 ** We have to know the offsets of all labels before 1765 ** we reach them (for forward jumps). 1766 ** Therefore we declare a struct here. 1767 ** If you make changes inside the script, 1768 ** DONT FORGET TO CHANGE THE LENGTHS HERE! 1769 ** 1770 **---------------------------------------------------------- 1771 */ 1772 1773 /* 1774 ** For HP Zalon/53c720 systems, the Zalon interface 1775 ** between CPU and 53c720 does prefetches, which causes 1776 ** problems with self modifying scripts. The problem 1777 ** is overcome by calling a dummy subroutine after each 1778 ** modification, to force a refetch of the script on 1779 ** return from the subroutine. 1780 */ 1781 1782 #ifdef CONFIG_NCR53C8XX_PREFETCH 1783 #define PREFETCH_FLUSH_CNT 2 1784 #define PREFETCH_FLUSH SCR_CALL, PADDRH (wait_dma), 1785 #else 1786 #define PREFETCH_FLUSH_CNT 0 1787 #define PREFETCH_FLUSH 1788 #endif 1789 1790 /* 1791 ** Script fragments which are loaded into the on-chip RAM 1792 ** of 825A, 875 and 895 chips. 1793 */ 1794 struct script { 1795 ncrcmd start [ 5]; 1796 ncrcmd startpos [ 1]; 1797 ncrcmd select [ 6]; 1798 ncrcmd select2 [ 9 + PREFETCH_FLUSH_CNT]; 1799 ncrcmd loadpos [ 4]; 1800 ncrcmd send_ident [ 9]; 1801 ncrcmd prepare [ 6]; 1802 ncrcmd prepare2 [ 7]; 1803 ncrcmd command [ 6]; 1804 ncrcmd dispatch [ 32]; 1805 ncrcmd clrack [ 4]; 1806 ncrcmd no_data [ 17]; 1807 ncrcmd status [ 8]; 1808 ncrcmd msg_in [ 2]; 1809 ncrcmd msg_in2 [ 16]; 1810 ncrcmd msg_bad [ 4]; 1811 ncrcmd setmsg [ 7]; 1812 ncrcmd cleanup [ 6]; 1813 ncrcmd complete [ 9]; 1814 ncrcmd cleanup_ok [ 8 + PREFETCH_FLUSH_CNT]; 1815 ncrcmd cleanup0 [ 1]; 1816 #ifndef SCSI_NCR_CCB_DONE_SUPPORT 1817 ncrcmd signal [ 12]; 1818 #else 1819 ncrcmd signal [ 9]; 1820 ncrcmd done_pos [ 1]; 1821 ncrcmd done_plug [ 2]; 1822 ncrcmd done_end [ 7]; 1823 #endif 1824 ncrcmd save_dp [ 7]; 1825 ncrcmd restore_dp [ 5]; 1826 ncrcmd disconnect [ 10]; 1827 ncrcmd msg_out [ 9]; 1828 ncrcmd msg_out_done [ 7]; 1829 ncrcmd idle [ 2]; 1830 ncrcmd reselect [ 8]; 1831 ncrcmd reselected [ 8]; 1832 ncrcmd resel_dsa [ 6 + PREFETCH_FLUSH_CNT]; 1833 ncrcmd loadpos1 [ 4]; 1834 ncrcmd resel_lun [ 6]; 1835 ncrcmd resel_tag [ 6]; 1836 ncrcmd jump_to_nexus [ 4 + PREFETCH_FLUSH_CNT]; 1837 ncrcmd nexus_indirect [ 4]; 1838 ncrcmd resel_notag [ 4]; 1839 ncrcmd data_in [MAX_SCATTERL * 4]; 1840 ncrcmd data_in2 [ 4]; 1841 ncrcmd data_out [MAX_SCATTERL * 4]; 1842 ncrcmd data_out2 [ 4]; 1843 }; 1844 1845 /* 1846 ** Script fragments which stay in main memory for all chips. 1847 */ 1848 struct scripth { 1849 ncrcmd tryloop [MAX_START*2]; 1850 ncrcmd tryloop2 [ 2]; 1851 #ifdef SCSI_NCR_CCB_DONE_SUPPORT 1852 ncrcmd done_queue [MAX_DONE*5]; 1853 ncrcmd done_queue2 [ 2]; 1854 #endif 1855 ncrcmd select_no_atn [ 8]; 1856 ncrcmd cancel [ 4]; 1857 ncrcmd skip [ 9 + PREFETCH_FLUSH_CNT]; 1858 ncrcmd skip2 [ 19]; 1859 ncrcmd par_err_data_in [ 6]; 1860 ncrcmd par_err_other [ 4]; 1861 ncrcmd msg_reject [ 8]; 1862 ncrcmd msg_ign_residue [ 24]; 1863 ncrcmd msg_extended [ 10]; 1864 ncrcmd msg_ext_2 [ 10]; 1865 ncrcmd msg_wdtr [ 14]; 1866 ncrcmd send_wdtr [ 7]; 1867 ncrcmd msg_ext_3 [ 10]; 1868 ncrcmd msg_sdtr [ 14]; 1869 ncrcmd send_sdtr [ 7]; 1870 ncrcmd nego_bad_phase [ 4]; 1871 ncrcmd msg_out_abort [ 10]; 1872 ncrcmd hdata_in [MAX_SCATTERH * 4]; 1873 ncrcmd hdata_in2 [ 2]; 1874 ncrcmd hdata_out [MAX_SCATTERH * 4]; 1875 ncrcmd hdata_out2 [ 2]; 1876 ncrcmd reset [ 4]; 1877 ncrcmd aborttag [ 4]; 1878 ncrcmd abort [ 2]; 1879 ncrcmd abort_resel [ 20]; 1880 ncrcmd resend_ident [ 4]; 1881 ncrcmd clratn_go_on [ 3]; 1882 ncrcmd nxtdsp_go_on [ 1]; 1883 ncrcmd sdata_in [ 8]; 1884 ncrcmd data_io [ 18]; 1885 ncrcmd bad_identify [ 12]; 1886 ncrcmd bad_i_t_l [ 4]; 1887 ncrcmd bad_i_t_l_q [ 4]; 1888 ncrcmd bad_target [ 8]; 1889 ncrcmd bad_status [ 8]; 1890 ncrcmd start_ram [ 4 + PREFETCH_FLUSH_CNT]; 1891 ncrcmd start_ram0 [ 4]; 1892 ncrcmd sto_restart [ 5]; 1893 ncrcmd wait_dma [ 2]; 1894 ncrcmd snooptest [ 9]; 1895 ncrcmd snoopend [ 2]; 1896 }; 1897 1898 /*========================================================== 1899 ** 1900 ** 1901 ** Function headers. 1902 ** 1903 ** 1904 **========================================================== 1905 */ 1906 1907 static void ncr_alloc_ccb (struct ncb *np, u_char tn, u_char ln); 1908 static void ncr_complete (struct ncb *np, struct ccb *cp); 1909 static void ncr_exception (struct ncb *np); 1910 static void ncr_free_ccb (struct ncb *np, struct ccb *cp); 1911 static void ncr_init_ccb (struct ncb *np, struct ccb *cp); 1912 static void ncr_init_tcb (struct ncb *np, u_char tn); 1913 static struct lcb * ncr_alloc_lcb (struct ncb *np, u_char tn, u_char ln); 1914 static struct lcb * ncr_setup_lcb (struct ncb *np, struct scsi_device *sdev); 1915 static void ncr_getclock (struct ncb *np, int mult); 1916 static void ncr_selectclock (struct ncb *np, u_char scntl3); 1917 static struct ccb *ncr_get_ccb (struct ncb *np, struct scsi_cmnd *cmd); 1918 static void ncr_chip_reset (struct ncb *np, int delay); 1919 static void ncr_init (struct ncb *np, int reset, char * msg, u_long code); 1920 static int ncr_int_sbmc (struct ncb *np); 1921 static int ncr_int_par (struct ncb *np); 1922 static void ncr_int_ma (struct ncb *np); 1923 static void ncr_int_sir (struct ncb *np); 1924 static void ncr_int_sto (struct ncb *np); 1925 static void ncr_negotiate (struct ncb* np, struct tcb* tp); 1926 static int ncr_prepare_nego(struct ncb *np, struct ccb *cp, u_char *msgptr); 1927 1928 static void ncr_script_copy_and_bind 1929 (struct ncb *np, ncrcmd *src, ncrcmd *dst, int len); 1930 static void ncr_script_fill (struct script * scr, struct scripth * scripth); 1931 static int ncr_scatter (struct ncb *np, struct ccb *cp, struct scsi_cmnd *cmd); 1932 static void ncr_getsync (struct ncb *np, u_char sfac, u_char *fakp, u_char *scntl3p); 1933 static void ncr_setsync (struct ncb *np, struct ccb *cp, u_char scntl3, u_char sxfer); 1934 static void ncr_setup_tags (struct ncb *np, struct scsi_device *sdev); 1935 static void ncr_setwide (struct ncb *np, struct ccb *cp, u_char wide, u_char ack); 1936 static int ncr_snooptest (struct ncb *np); 1937 static void ncr_timeout (struct ncb *np); 1938 static void ncr_wakeup (struct ncb *np, u_long code); 1939 static void ncr_wakeup_done (struct ncb *np); 1940 static void ncr_start_next_ccb (struct ncb *np, struct lcb * lp, int maxn); 1941 static void ncr_put_start_queue(struct ncb *np, struct ccb *cp); 1942 1943 static void insert_into_waiting_list(struct ncb *np, struct scsi_cmnd *cmd); 1944 static struct scsi_cmnd *retrieve_from_waiting_list(int to_remove, struct ncb *np, struct scsi_cmnd *cmd); 1945 static void process_waiting_list(struct ncb *np, int sts); 1946 1947 #define remove_from_waiting_list(np, cmd) \ 1948 retrieve_from_waiting_list(1, (np), (cmd)) 1949 #define requeue_waiting_list(np) process_waiting_list((np), DID_OK) 1950 #define reset_waiting_list(np) process_waiting_list((np), DID_RESET) 1951 1952 static inline char *ncr_name (struct ncb *np) 1953 { 1954 return np->inst_name; 1955 } 1956 1957 1958 /*========================================================== 1959 ** 1960 ** 1961 ** Scripts for NCR-Processor. 1962 ** 1963 ** Use ncr_script_bind for binding to physical addresses. 1964 ** 1965 ** 1966 **========================================================== 1967 ** 1968 ** NADDR generates a reference to a field of the controller data. 1969 ** PADDR generates a reference to another part of the script. 1970 ** RADDR generates a reference to a script processor register. 1971 ** FADDR generates a reference to a script processor register 1972 ** with offset. 1973 ** 1974 **---------------------------------------------------------- 1975 */ 1976 1977 #define RELOC_SOFTC 0x40000000 1978 #define RELOC_LABEL 0x50000000 1979 #define RELOC_REGISTER 0x60000000 1980 #if 0 1981 #define RELOC_KVAR 0x70000000 1982 #endif 1983 #define RELOC_LABELH 0x80000000 1984 #define RELOC_MASK 0xf0000000 1985 1986 #define NADDR(label) (RELOC_SOFTC | offsetof(struct ncb, label)) 1987 #define PADDR(label) (RELOC_LABEL | offsetof(struct script, label)) 1988 #define PADDRH(label) (RELOC_LABELH | offsetof(struct scripth, label)) 1989 #define RADDR(label) (RELOC_REGISTER | REG(label)) 1990 #define FADDR(label,ofs)(RELOC_REGISTER | ((REG(label))+(ofs))) 1991 #if 0 1992 #define KVAR(which) (RELOC_KVAR | (which)) 1993 #endif 1994 1995 #if 0 1996 #define SCRIPT_KVAR_JIFFIES (0) 1997 #define SCRIPT_KVAR_FIRST SCRIPT_KVAR_JIFFIES 1998 #define SCRIPT_KVAR_LAST SCRIPT_KVAR_JIFFIES 1999 /* 2000 * Kernel variables referenced in the scripts. 2001 * THESE MUST ALL BE ALIGNED TO A 4-BYTE BOUNDARY. 2002 */ 2003 static void *script_kvars[] __initdata = 2004 { (void *)&jiffies }; 2005 #endif 2006 2007 static struct script script0 __initdata = { 2008 /*--------------------------< START >-----------------------*/ { 2009 /* 2010 ** This NOP will be patched with LED ON 2011 ** SCR_REG_REG (gpreg, SCR_AND, 0xfe) 2012 */ 2013 SCR_NO_OP, 2014 0, 2015 /* 2016 ** Clear SIGP. 2017 */ 2018 SCR_FROM_REG (ctest2), 2019 0, 2020 /* 2021 ** Then jump to a certain point in tryloop. 2022 ** Due to the lack of indirect addressing the code 2023 ** is self modifying here. 2024 */ 2025 SCR_JUMP, 2026 }/*-------------------------< STARTPOS >--------------------*/,{ 2027 PADDRH(tryloop), 2028 2029 }/*-------------------------< SELECT >----------------------*/,{ 2030 /* 2031 ** DSA contains the address of a scheduled 2032 ** data structure. 2033 ** 2034 ** SCRATCHA contains the address of the script, 2035 ** which starts the next entry. 2036 ** 2037 ** Set Initiator mode. 2038 ** 2039 ** (Target mode is left as an exercise for the reader) 2040 */ 2041 2042 SCR_CLR (SCR_TRG), 2043 0, 2044 SCR_LOAD_REG (HS_REG, HS_SELECTING), 2045 0, 2046 2047 /* 2048 ** And try to select this target. 2049 */ 2050 SCR_SEL_TBL_ATN ^ offsetof (struct dsb, select), 2051 PADDR (reselect), 2052 2053 }/*-------------------------< SELECT2 >----------------------*/,{ 2054 /* 2055 ** Now there are 4 possibilities: 2056 ** 2057 ** (1) The ncr loses arbitration. 2058 ** This is ok, because it will try again, 2059 ** when the bus becomes idle. 2060 ** (But beware of the timeout function!) 2061 ** 2062 ** (2) The ncr is reselected. 2063 ** Then the script processor takes the jump 2064 ** to the RESELECT label. 2065 ** 2066 ** (3) The ncr wins arbitration. 2067 ** Then it will execute SCRIPTS instruction until 2068 ** the next instruction that checks SCSI phase. 2069 ** Then will stop and wait for selection to be 2070 ** complete or selection time-out to occur. 2071 ** As a result the SCRIPTS instructions until 2072 ** LOADPOS + 2 should be executed in parallel with 2073 ** the SCSI core performing selection. 2074 */ 2075 2076 /* 2077 ** The MESSAGE_REJECT problem seems to be due to a selection 2078 ** timing problem. 2079 ** Wait immediately for the selection to complete. 2080 ** (2.5x behaves so) 2081 */ 2082 SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_OUT)), 2083 0, 2084 2085 /* 2086 ** Next time use the next slot. 2087 */ 2088 SCR_COPY (4), 2089 RADDR (temp), 2090 PADDR (startpos), 2091 /* 2092 ** The ncr doesn't have an indirect load 2093 ** or store command. So we have to 2094 ** copy part of the control block to a 2095 ** fixed place, where we can access it. 2096 ** 2097 ** We patch the address part of a 2098 ** COPY command with the DSA-register. 2099 */ 2100 SCR_COPY_F (4), 2101 RADDR (dsa), 2102 PADDR (loadpos), 2103 /* 2104 ** Flush script prefetch if required 2105 */ 2106 PREFETCH_FLUSH 2107 /* 2108 ** then we do the actual copy. 2109 */ 2110 SCR_COPY (sizeof (struct head)), 2111 /* 2112 ** continued after the next label ... 2113 */ 2114 }/*-------------------------< LOADPOS >---------------------*/,{ 2115 0, 2116 NADDR (header), 2117 /* 2118 ** Wait for the next phase or the selection 2119 ** to complete or time-out. 2120 */ 2121 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)), 2122 PADDR (prepare), 2123 2124 }/*-------------------------< SEND_IDENT >----------------------*/,{ 2125 /* 2126 ** Selection complete. 2127 ** Send the IDENTIFY and SIMPLE_TAG messages 2128 ** (and the EXTENDED_SDTR message) 2129 */ 2130 SCR_MOVE_TBL ^ SCR_MSG_OUT, 2131 offsetof (struct dsb, smsg), 2132 SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)), 2133 PADDRH (resend_ident), 2134 SCR_LOAD_REG (scratcha, 0x80), 2135 0, 2136 SCR_COPY (1), 2137 RADDR (scratcha), 2138 NADDR (lastmsg), 2139 }/*-------------------------< PREPARE >----------------------*/,{ 2140 /* 2141 ** load the savep (saved pointer) into 2142 ** the TEMP register (actual pointer) 2143 */ 2144 SCR_COPY (4), 2145 NADDR (header.savep), 2146 RADDR (temp), 2147 /* 2148 ** Initialize the status registers 2149 */ 2150 SCR_COPY (4), 2151 NADDR (header.status), 2152 RADDR (scr0), 2153 }/*-------------------------< PREPARE2 >---------------------*/,{ 2154 /* 2155 ** Initialize the msgout buffer with a NOOP message. 2156 */ 2157 SCR_LOAD_REG (scratcha, NOP), 2158 0, 2159 SCR_COPY (1), 2160 RADDR (scratcha), 2161 NADDR (msgout), 2162 #if 0 2163 SCR_COPY (1), 2164 RADDR (scratcha), 2165 NADDR (msgin), 2166 #endif 2167 /* 2168 ** Anticipate the COMMAND phase. 2169 ** This is the normal case for initial selection. 2170 */ 2171 SCR_JUMP ^ IFFALSE (WHEN (SCR_COMMAND)), 2172 PADDR (dispatch), 2173 2174 }/*-------------------------< COMMAND >--------------------*/,{ 2175 /* 2176 ** ... and send the command 2177 */ 2178 SCR_MOVE_TBL ^ SCR_COMMAND, 2179 offsetof (struct dsb, cmd), 2180 /* 2181 ** If status is still HS_NEGOTIATE, negotiation failed. 2182 ** We check this here, since we want to do that 2183 ** only once. 2184 */ 2185 SCR_FROM_REG (HS_REG), 2186 0, 2187 SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)), 2188 SIR_NEGO_FAILED, 2189 2190 }/*-----------------------< DISPATCH >----------------------*/,{ 2191 /* 2192 ** MSG_IN is the only phase that shall be 2193 ** entered at least once for each (re)selection. 2194 ** So we test it first. 2195 */ 2196 SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)), 2197 PADDR (msg_in), 2198 2199 SCR_RETURN ^ IFTRUE (IF (SCR_DATA_OUT)), 2200 0, 2201 /* 2202 ** DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 4. 2203 ** Possible data corruption during Memory Write and Invalidate. 2204 ** This work-around resets the addressing logic prior to the 2205 ** start of the first MOVE of a DATA IN phase. 2206 ** (See Documentation/scsi/ncr53c8xx.rst for more information) 2207 */ 2208 SCR_JUMPR ^ IFFALSE (IF (SCR_DATA_IN)), 2209 20, 2210 SCR_COPY (4), 2211 RADDR (scratcha), 2212 RADDR (scratcha), 2213 SCR_RETURN, 2214 0, 2215 SCR_JUMP ^ IFTRUE (IF (SCR_STATUS)), 2216 PADDR (status), 2217 SCR_JUMP ^ IFTRUE (IF (SCR_COMMAND)), 2218 PADDR (command), 2219 SCR_JUMP ^ IFTRUE (IF (SCR_MSG_OUT)), 2220 PADDR (msg_out), 2221 /* 2222 ** Discard one illegal phase byte, if required. 2223 */ 2224 SCR_LOAD_REG (scratcha, XE_BAD_PHASE), 2225 0, 2226 SCR_COPY (1), 2227 RADDR (scratcha), 2228 NADDR (xerr_st), 2229 SCR_JUMPR ^ IFFALSE (IF (SCR_ILG_OUT)), 2230 8, 2231 SCR_MOVE_ABS (1) ^ SCR_ILG_OUT, 2232 NADDR (scratch), 2233 SCR_JUMPR ^ IFFALSE (IF (SCR_ILG_IN)), 2234 8, 2235 SCR_MOVE_ABS (1) ^ SCR_ILG_IN, 2236 NADDR (scratch), 2237 SCR_JUMP, 2238 PADDR (dispatch), 2239 2240 }/*-------------------------< CLRACK >----------------------*/,{ 2241 /* 2242 ** Terminate possible pending message phase. 2243 */ 2244 SCR_CLR (SCR_ACK), 2245 0, 2246 SCR_JUMP, 2247 PADDR (dispatch), 2248 2249 }/*-------------------------< NO_DATA >--------------------*/,{ 2250 /* 2251 ** The target wants to tranfer too much data 2252 ** or in the wrong direction. 2253 ** Remember that in extended error. 2254 */ 2255 SCR_LOAD_REG (scratcha, XE_EXTRA_DATA), 2256 0, 2257 SCR_COPY (1), 2258 RADDR (scratcha), 2259 NADDR (xerr_st), 2260 /* 2261 ** Discard one data byte, if required. 2262 */ 2263 SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_OUT)), 2264 8, 2265 SCR_MOVE_ABS (1) ^ SCR_DATA_OUT, 2266 NADDR (scratch), 2267 SCR_JUMPR ^ IFFALSE (IF (SCR_DATA_IN)), 2268 8, 2269 SCR_MOVE_ABS (1) ^ SCR_DATA_IN, 2270 NADDR (scratch), 2271 /* 2272 ** .. and repeat as required. 2273 */ 2274 SCR_CALL, 2275 PADDR (dispatch), 2276 SCR_JUMP, 2277 PADDR (no_data), 2278 2279 }/*-------------------------< STATUS >--------------------*/,{ 2280 /* 2281 ** get the status 2282 */ 2283 SCR_MOVE_ABS (1) ^ SCR_STATUS, 2284 NADDR (scratch), 2285 /* 2286 ** save status to scsi_status. 2287 ** mark as complete. 2288 */ 2289 SCR_TO_REG (SS_REG), 2290 0, 2291 SCR_LOAD_REG (HS_REG, HS_COMPLETE), 2292 0, 2293 SCR_JUMP, 2294 PADDR (dispatch), 2295 }/*-------------------------< MSG_IN >--------------------*/,{ 2296 /* 2297 ** Get the first byte of the message 2298 ** and save it to SCRATCHA. 2299 ** 2300 ** The script processor doesn't negate the 2301 ** ACK signal after this transfer. 2302 */ 2303 SCR_MOVE_ABS (1) ^ SCR_MSG_IN, 2304 NADDR (msgin[0]), 2305 }/*-------------------------< MSG_IN2 >--------------------*/,{ 2306 /* 2307 ** Handle this message. 2308 */ 2309 SCR_JUMP ^ IFTRUE (DATA (COMMAND_COMPLETE)), 2310 PADDR (complete), 2311 SCR_JUMP ^ IFTRUE (DATA (DISCONNECT)), 2312 PADDR (disconnect), 2313 SCR_JUMP ^ IFTRUE (DATA (SAVE_POINTERS)), 2314 PADDR (save_dp), 2315 SCR_JUMP ^ IFTRUE (DATA (RESTORE_POINTERS)), 2316 PADDR (restore_dp), 2317 SCR_JUMP ^ IFTRUE (DATA (EXTENDED_MESSAGE)), 2318 PADDRH (msg_extended), 2319 SCR_JUMP ^ IFTRUE (DATA (NOP)), 2320 PADDR (clrack), 2321 SCR_JUMP ^ IFTRUE (DATA (MESSAGE_REJECT)), 2322 PADDRH (msg_reject), 2323 SCR_JUMP ^ IFTRUE (DATA (IGNORE_WIDE_RESIDUE)), 2324 PADDRH (msg_ign_residue), 2325 /* 2326 ** Rest of the messages left as 2327 ** an exercise ... 2328 ** 2329 ** Unimplemented messages: 2330 ** fall through to MSG_BAD. 2331 */ 2332 }/*-------------------------< MSG_BAD >------------------*/,{ 2333 /* 2334 ** unimplemented message - reject it. 2335 */ 2336 SCR_INT, 2337 SIR_REJECT_SENT, 2338 SCR_LOAD_REG (scratcha, MESSAGE_REJECT), 2339 0, 2340 }/*-------------------------< SETMSG >----------------------*/,{ 2341 SCR_COPY (1), 2342 RADDR (scratcha), 2343 NADDR (msgout), 2344 SCR_SET (SCR_ATN), 2345 0, 2346 SCR_JUMP, 2347 PADDR (clrack), 2348 }/*-------------------------< CLEANUP >-------------------*/,{ 2349 /* 2350 ** dsa: Pointer to ccb 2351 ** or xxxxxxFF (no ccb) 2352 ** 2353 ** HS_REG: Host-Status (<>0!) 2354 */ 2355 SCR_FROM_REG (dsa), 2356 0, 2357 SCR_JUMP ^ IFTRUE (DATA (0xff)), 2358 PADDR (start), 2359 /* 2360 ** dsa is valid. 2361 ** complete the cleanup. 2362 */ 2363 SCR_JUMP, 2364 PADDR (cleanup_ok), 2365 2366 }/*-------------------------< COMPLETE >-----------------*/,{ 2367 /* 2368 ** Complete message. 2369 ** 2370 ** Copy TEMP register to LASTP in header. 2371 */ 2372 SCR_COPY (4), 2373 RADDR (temp), 2374 NADDR (header.lastp), 2375 /* 2376 ** When we terminate the cycle by clearing ACK, 2377 ** the target may disconnect immediately. 2378 ** 2379 ** We don't want to be told of an 2380 ** "unexpected disconnect", 2381 ** so we disable this feature. 2382 */ 2383 SCR_REG_REG (scntl2, SCR_AND, 0x7f), 2384 0, 2385 /* 2386 ** Terminate cycle ... 2387 */ 2388 SCR_CLR (SCR_ACK|SCR_ATN), 2389 0, 2390 /* 2391 ** ... and wait for the disconnect. 2392 */ 2393 SCR_WAIT_DISC, 2394 0, 2395 }/*-------------------------< CLEANUP_OK >----------------*/,{ 2396 /* 2397 ** Save host status to header. 2398 */ 2399 SCR_COPY (4), 2400 RADDR (scr0), 2401 NADDR (header.status), 2402 /* 2403 ** and copy back the header to the ccb. 2404 */ 2405 SCR_COPY_F (4), 2406 RADDR (dsa), 2407 PADDR (cleanup0), 2408 /* 2409 ** Flush script prefetch if required 2410 */ 2411 PREFETCH_FLUSH 2412 SCR_COPY (sizeof (struct head)), 2413 NADDR (header), 2414 }/*-------------------------< CLEANUP0 >--------------------*/,{ 2415 0, 2416 }/*-------------------------< SIGNAL >----------------------*/,{ 2417 /* 2418 ** if job not completed ... 2419 */ 2420 SCR_FROM_REG (HS_REG), 2421 0, 2422 /* 2423 ** ... start the next command. 2424 */ 2425 SCR_JUMP ^ IFTRUE (MASK (0, (HS_DONEMASK|HS_SKIPMASK))), 2426 PADDR(start), 2427 /* 2428 ** If command resulted in not GOOD status, 2429 ** call the C code if needed. 2430 */ 2431 SCR_FROM_REG (SS_REG), 2432 0, 2433 SCR_CALL ^ IFFALSE (DATA (S_GOOD)), 2434 PADDRH (bad_status), 2435 2436 #ifndef SCSI_NCR_CCB_DONE_SUPPORT 2437 2438 /* 2439 ** ... signal completion to the host 2440 */ 2441 SCR_INT, 2442 SIR_INTFLY, 2443 /* 2444 ** Auf zu neuen Schandtaten! 2445 */ 2446 SCR_JUMP, 2447 PADDR(start), 2448 2449 #else /* defined SCSI_NCR_CCB_DONE_SUPPORT */ 2450 2451 /* 2452 ** ... signal completion to the host 2453 */ 2454 SCR_JUMP, 2455 }/*------------------------< DONE_POS >---------------------*/,{ 2456 PADDRH (done_queue), 2457 }/*------------------------< DONE_PLUG >--------------------*/,{ 2458 SCR_INT, 2459 SIR_DONE_OVERFLOW, 2460 }/*------------------------< DONE_END >---------------------*/,{ 2461 SCR_INT, 2462 SIR_INTFLY, 2463 SCR_COPY (4), 2464 RADDR (temp), 2465 PADDR (done_pos), 2466 SCR_JUMP, 2467 PADDR (start), 2468 2469 #endif /* SCSI_NCR_CCB_DONE_SUPPORT */ 2470 2471 }/*-------------------------< SAVE_DP >------------------*/,{ 2472 /* 2473 ** SAVE_DP message: 2474 ** Copy TEMP register to SAVEP in header. 2475 */ 2476 SCR_COPY (4), 2477 RADDR (temp), 2478 NADDR (header.savep), 2479 SCR_CLR (SCR_ACK), 2480 0, 2481 SCR_JUMP, 2482 PADDR (dispatch), 2483 }/*-------------------------< RESTORE_DP >---------------*/,{ 2484 /* 2485 ** RESTORE_DP message: 2486 ** Copy SAVEP in header to TEMP register. 2487 */ 2488 SCR_COPY (4), 2489 NADDR (header.savep), 2490 RADDR (temp), 2491 SCR_JUMP, 2492 PADDR (clrack), 2493 2494 }/*-------------------------< DISCONNECT >---------------*/,{ 2495 /* 2496 ** DISCONNECTing ... 2497 ** 2498 ** disable the "unexpected disconnect" feature, 2499 ** and remove the ACK signal. 2500 */ 2501 SCR_REG_REG (scntl2, SCR_AND, 0x7f), 2502 0, 2503 SCR_CLR (SCR_ACK|SCR_ATN), 2504 0, 2505 /* 2506 ** Wait for the disconnect. 2507 */ 2508 SCR_WAIT_DISC, 2509 0, 2510 /* 2511 ** Status is: DISCONNECTED. 2512 */ 2513 SCR_LOAD_REG (HS_REG, HS_DISCONNECT), 2514 0, 2515 SCR_JUMP, 2516 PADDR (cleanup_ok), 2517 2518 }/*-------------------------< MSG_OUT >-------------------*/,{ 2519 /* 2520 ** The target requests a message. 2521 */ 2522 SCR_MOVE_ABS (1) ^ SCR_MSG_OUT, 2523 NADDR (msgout), 2524 SCR_COPY (1), 2525 NADDR (msgout), 2526 NADDR (lastmsg), 2527 /* 2528 ** If it was no ABORT message ... 2529 */ 2530 SCR_JUMP ^ IFTRUE (DATA (ABORT_TASK_SET)), 2531 PADDRH (msg_out_abort), 2532 /* 2533 ** ... wait for the next phase 2534 ** if it's a message out, send it again, ... 2535 */ 2536 SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)), 2537 PADDR (msg_out), 2538 }/*-------------------------< MSG_OUT_DONE >--------------*/,{ 2539 /* 2540 ** ... else clear the message ... 2541 */ 2542 SCR_LOAD_REG (scratcha, NOP), 2543 0, 2544 SCR_COPY (4), 2545 RADDR (scratcha), 2546 NADDR (msgout), 2547 /* 2548 ** ... and process the next phase 2549 */ 2550 SCR_JUMP, 2551 PADDR (dispatch), 2552 }/*-------------------------< IDLE >------------------------*/,{ 2553 /* 2554 ** Nothing to do? 2555 ** Wait for reselect. 2556 ** This NOP will be patched with LED OFF 2557 ** SCR_REG_REG (gpreg, SCR_OR, 0x01) 2558 */ 2559 SCR_NO_OP, 2560 0, 2561 }/*-------------------------< RESELECT >--------------------*/,{ 2562 /* 2563 ** make the DSA invalid. 2564 */ 2565 SCR_LOAD_REG (dsa, 0xff), 2566 0, 2567 SCR_CLR (SCR_TRG), 2568 0, 2569 SCR_LOAD_REG (HS_REG, HS_IN_RESELECT), 2570 0, 2571 /* 2572 ** Sleep waiting for a reselection. 2573 ** If SIGP is set, special treatment. 2574 ** 2575 ** Zu allem bereit .. 2576 */ 2577 SCR_WAIT_RESEL, 2578 PADDR(start), 2579 }/*-------------------------< RESELECTED >------------------*/,{ 2580 /* 2581 ** This NOP will be patched with LED ON 2582 ** SCR_REG_REG (gpreg, SCR_AND, 0xfe) 2583 */ 2584 SCR_NO_OP, 2585 0, 2586 /* 2587 ** ... zu nichts zu gebrauchen ? 2588 ** 2589 ** load the target id into the SFBR 2590 ** and jump to the control block. 2591 ** 2592 ** Look at the declarations of 2593 ** - struct ncb 2594 ** - struct tcb 2595 ** - struct lcb 2596 ** - struct ccb 2597 ** to understand what's going on. 2598 */ 2599 SCR_REG_SFBR (ssid, SCR_AND, 0x8F), 2600 0, 2601 SCR_TO_REG (sdid), 2602 0, 2603 SCR_JUMP, 2604 NADDR (jump_tcb), 2605 2606 }/*-------------------------< RESEL_DSA >-------------------*/,{ 2607 /* 2608 ** Ack the IDENTIFY or TAG previously received. 2609 */ 2610 SCR_CLR (SCR_ACK), 2611 0, 2612 /* 2613 ** The ncr doesn't have an indirect load 2614 ** or store command. So we have to 2615 ** copy part of the control block to a 2616 ** fixed place, where we can access it. 2617 ** 2618 ** We patch the address part of a 2619 ** COPY command with the DSA-register. 2620 */ 2621 SCR_COPY_F (4), 2622 RADDR (dsa), 2623 PADDR (loadpos1), 2624 /* 2625 ** Flush script prefetch if required 2626 */ 2627 PREFETCH_FLUSH 2628 /* 2629 ** then we do the actual copy. 2630 */ 2631 SCR_COPY (sizeof (struct head)), 2632 /* 2633 ** continued after the next label ... 2634 */ 2635 2636 }/*-------------------------< LOADPOS1 >-------------------*/,{ 2637 0, 2638 NADDR (header), 2639 /* 2640 ** The DSA contains the data structure address. 2641 */ 2642 SCR_JUMP, 2643 PADDR (prepare), 2644 2645 }/*-------------------------< RESEL_LUN >-------------------*/,{ 2646 /* 2647 ** come back to this point 2648 ** to get an IDENTIFY message 2649 ** Wait for a msg_in phase. 2650 */ 2651 SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)), 2652 SIR_RESEL_NO_MSG_IN, 2653 /* 2654 ** message phase. 2655 ** Read the data directly from the BUS DATA lines. 2656 ** This helps to support very old SCSI devices that 2657 ** may reselect without sending an IDENTIFY. 2658 */ 2659 SCR_FROM_REG (sbdl), 2660 0, 2661 /* 2662 ** It should be an Identify message. 2663 */ 2664 SCR_RETURN, 2665 0, 2666 }/*-------------------------< RESEL_TAG >-------------------*/,{ 2667 /* 2668 ** Read IDENTIFY + SIMPLE + TAG using a single MOVE. 2669 ** Aggressive optimization, is'nt it? 2670 ** No need to test the SIMPLE TAG message, since the 2671 ** driver only supports conformant devices for tags. ;-) 2672 */ 2673 SCR_MOVE_ABS (3) ^ SCR_MSG_IN, 2674 NADDR (msgin), 2675 /* 2676 ** Read the TAG from the SIDL. 2677 ** Still an aggressive optimization. ;-) 2678 ** Compute the CCB indirect jump address which 2679 ** is (#TAG*2 & 0xfc) due to tag numbering using 2680 ** 1,3,5..MAXTAGS*2+1 actual values. 2681 */ 2682 SCR_REG_SFBR (sidl, SCR_SHL, 0), 2683 0, 2684 SCR_SFBR_REG (temp, SCR_AND, 0xfc), 2685 0, 2686 }/*-------------------------< JUMP_TO_NEXUS >-------------------*/,{ 2687 SCR_COPY_F (4), 2688 RADDR (temp), 2689 PADDR (nexus_indirect), 2690 /* 2691 ** Flush script prefetch if required 2692 */ 2693 PREFETCH_FLUSH 2694 SCR_COPY (4), 2695 }/*-------------------------< NEXUS_INDIRECT >-------------------*/,{ 2696 0, 2697 RADDR (temp), 2698 SCR_RETURN, 2699 0, 2700 }/*-------------------------< RESEL_NOTAG >-------------------*/,{ 2701 /* 2702 ** No tag expected. 2703 ** Read an throw away the IDENTIFY. 2704 */ 2705 SCR_MOVE_ABS (1) ^ SCR_MSG_IN, 2706 NADDR (msgin), 2707 SCR_JUMP, 2708 PADDR (jump_to_nexus), 2709 }/*-------------------------< DATA_IN >--------------------*/,{ 2710 /* 2711 ** Because the size depends on the 2712 ** #define MAX_SCATTERL parameter, 2713 ** it is filled in at runtime. 2714 ** 2715 ** ##===========< i=0; i<MAX_SCATTERL >========= 2716 ** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)), 2717 ** || PADDR (dispatch), 2718 ** || SCR_MOVE_TBL ^ SCR_DATA_IN, 2719 ** || offsetof (struct dsb, data[ i]), 2720 ** ##========================================== 2721 ** 2722 **--------------------------------------------------------- 2723 */ 2724 0 2725 }/*-------------------------< DATA_IN2 >-------------------*/,{ 2726 SCR_CALL, 2727 PADDR (dispatch), 2728 SCR_JUMP, 2729 PADDR (no_data), 2730 }/*-------------------------< DATA_OUT >--------------------*/,{ 2731 /* 2732 ** Because the size depends on the 2733 ** #define MAX_SCATTERL parameter, 2734 ** it is filled in at runtime. 2735 ** 2736 ** ##===========< i=0; i<MAX_SCATTERL >========= 2737 ** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT)), 2738 ** || PADDR (dispatch), 2739 ** || SCR_MOVE_TBL ^ SCR_DATA_OUT, 2740 ** || offsetof (struct dsb, data[ i]), 2741 ** ##========================================== 2742 ** 2743 **--------------------------------------------------------- 2744 */ 2745 0 2746 }/*-------------------------< DATA_OUT2 >-------------------*/,{ 2747 SCR_CALL, 2748 PADDR (dispatch), 2749 SCR_JUMP, 2750 PADDR (no_data), 2751 }/*--------------------------------------------------------*/ 2752 }; 2753 2754 static struct scripth scripth0 __initdata = { 2755 /*-------------------------< TRYLOOP >---------------------*/{ 2756 /* 2757 ** Start the next entry. 2758 ** Called addresses point to the launch script in the CCB. 2759 ** They are patched by the main processor. 2760 ** 2761 ** Because the size depends on the 2762 ** #define MAX_START parameter, it is filled 2763 ** in at runtime. 2764 ** 2765 **----------------------------------------------------------- 2766 ** 2767 ** ##===========< I=0; i<MAX_START >=========== 2768 ** || SCR_CALL, 2769 ** || PADDR (idle), 2770 ** ##========================================== 2771 ** 2772 **----------------------------------------------------------- 2773 */ 2774 0 2775 }/*------------------------< TRYLOOP2 >---------------------*/,{ 2776 SCR_JUMP, 2777 PADDRH(tryloop), 2778 2779 #ifdef SCSI_NCR_CCB_DONE_SUPPORT 2780 2781 }/*------------------------< DONE_QUEUE >-------------------*/,{ 2782 /* 2783 ** Copy the CCB address to the next done entry. 2784 ** Because the size depends on the 2785 ** #define MAX_DONE parameter, it is filled 2786 ** in at runtime. 2787 ** 2788 **----------------------------------------------------------- 2789 ** 2790 ** ##===========< I=0; i<MAX_DONE >=========== 2791 ** || SCR_COPY (sizeof(struct ccb *), 2792 ** || NADDR (header.cp), 2793 ** || NADDR (ccb_done[i]), 2794 ** || SCR_CALL, 2795 ** || PADDR (done_end), 2796 ** ##========================================== 2797 ** 2798 **----------------------------------------------------------- 2799 */ 2800 0 2801 }/*------------------------< DONE_QUEUE2 >------------------*/,{ 2802 SCR_JUMP, 2803 PADDRH (done_queue), 2804 2805 #endif /* SCSI_NCR_CCB_DONE_SUPPORT */ 2806 }/*------------------------< SELECT_NO_ATN >-----------------*/,{ 2807 /* 2808 ** Set Initiator mode. 2809 ** And try to select this target without ATN. 2810 */ 2811 2812 SCR_CLR (SCR_TRG), 2813 0, 2814 SCR_LOAD_REG (HS_REG, HS_SELECTING), 2815 0, 2816 SCR_SEL_TBL ^ offsetof (struct dsb, select), 2817 PADDR (reselect), 2818 SCR_JUMP, 2819 PADDR (select2), 2820 2821 }/*-------------------------< CANCEL >------------------------*/,{ 2822 2823 SCR_LOAD_REG (scratcha, HS_ABORTED), 2824 0, 2825 SCR_JUMPR, 2826 8, 2827 }/*-------------------------< SKIP >------------------------*/,{ 2828 SCR_LOAD_REG (scratcha, 0), 2829 0, 2830 /* 2831 ** This entry has been canceled. 2832 ** Next time use the next slot. 2833 */ 2834 SCR_COPY (4), 2835 RADDR (temp), 2836 PADDR (startpos), 2837 /* 2838 ** The ncr doesn't have an indirect load 2839 ** or store command. So we have to 2840 ** copy part of the control block to a 2841 ** fixed place, where we can access it. 2842 ** 2843 ** We patch the address part of a 2844 ** COPY command with the DSA-register. 2845 */ 2846 SCR_COPY_F (4), 2847 RADDR (dsa), 2848 PADDRH (skip2), 2849 /* 2850 ** Flush script prefetch if required 2851 */ 2852 PREFETCH_FLUSH 2853 /* 2854 ** then we do the actual copy. 2855 */ 2856 SCR_COPY (sizeof (struct head)), 2857 /* 2858 ** continued after the next label ... 2859 */ 2860 }/*-------------------------< SKIP2 >---------------------*/,{ 2861 0, 2862 NADDR (header), 2863 /* 2864 ** Initialize the status registers 2865 */ 2866 SCR_COPY (4), 2867 NADDR (header.status), 2868 RADDR (scr0), 2869 /* 2870 ** Force host status. 2871 */ 2872 SCR_FROM_REG (scratcha), 2873 0, 2874 SCR_JUMPR ^ IFFALSE (MASK (0, HS_DONEMASK)), 2875 16, 2876 SCR_REG_REG (HS_REG, SCR_OR, HS_SKIPMASK), 2877 0, 2878 SCR_JUMPR, 2879 8, 2880 SCR_TO_REG (HS_REG), 2881 0, 2882 SCR_LOAD_REG (SS_REG, S_GOOD), 2883 0, 2884 SCR_JUMP, 2885 PADDR (cleanup_ok), 2886 2887 },/*-------------------------< PAR_ERR_DATA_IN >---------------*/{ 2888 /* 2889 ** Ignore all data in byte, until next phase 2890 */ 2891 SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)), 2892 PADDRH (par_err_other), 2893 SCR_MOVE_ABS (1) ^ SCR_DATA_IN, 2894 NADDR (scratch), 2895 SCR_JUMPR, 2896 -24, 2897 },/*-------------------------< PAR_ERR_OTHER >------------------*/{ 2898 /* 2899 ** count it. 2900 */ 2901 SCR_REG_REG (PS_REG, SCR_ADD, 0x01), 2902 0, 2903 /* 2904 ** jump to dispatcher. 2905 */ 2906 SCR_JUMP, 2907 PADDR (dispatch), 2908 }/*-------------------------< MSG_REJECT >---------------*/,{ 2909 /* 2910 ** If a negotiation was in progress, 2911 ** negotiation failed. 2912 ** Otherwise, let the C code print 2913 ** some message. 2914 */ 2915 SCR_FROM_REG (HS_REG), 2916 0, 2917 SCR_INT ^ IFFALSE (DATA (HS_NEGOTIATE)), 2918 SIR_REJECT_RECEIVED, 2919 SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)), 2920 SIR_NEGO_FAILED, 2921 SCR_JUMP, 2922 PADDR (clrack), 2923 2924 }/*-------------------------< MSG_IGN_RESIDUE >----------*/,{ 2925 /* 2926 ** Terminate cycle 2927 */ 2928 SCR_CLR (SCR_ACK), 2929 0, 2930 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)), 2931 PADDR (dispatch), 2932 /* 2933 ** get residue size. 2934 */ 2935 SCR_MOVE_ABS (1) ^ SCR_MSG_IN, 2936 NADDR (msgin[1]), 2937 /* 2938 ** Size is 0 .. ignore message. 2939 */ 2940 SCR_JUMP ^ IFTRUE (DATA (0)), 2941 PADDR (clrack), 2942 /* 2943 ** Size is not 1 .. have to interrupt. 2944 */ 2945 SCR_JUMPR ^ IFFALSE (DATA (1)), 2946 40, 2947 /* 2948 ** Check for residue byte in swide register 2949 */ 2950 SCR_FROM_REG (scntl2), 2951 0, 2952 SCR_JUMPR ^ IFFALSE (MASK (WSR, WSR)), 2953 16, 2954 /* 2955 ** There IS data in the swide register. 2956 ** Discard it. 2957 */ 2958 SCR_REG_REG (scntl2, SCR_OR, WSR), 2959 0, 2960 SCR_JUMP, 2961 PADDR (clrack), 2962 /* 2963 ** Load again the size to the sfbr register. 2964 */ 2965 SCR_FROM_REG (scratcha), 2966 0, 2967 SCR_INT, 2968 SIR_IGN_RESIDUE, 2969 SCR_JUMP, 2970 PADDR (clrack), 2971 2972 }/*-------------------------< MSG_EXTENDED >-------------*/,{ 2973 /* 2974 ** Terminate cycle 2975 */ 2976 SCR_CLR (SCR_ACK), 2977 0, 2978 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)), 2979 PADDR (dispatch), 2980 /* 2981 ** get length. 2982 */ 2983 SCR_MOVE_ABS (1) ^ SCR_MSG_IN, 2984 NADDR (msgin[1]), 2985 /* 2986 */ 2987 SCR_JUMP ^ IFTRUE (DATA (3)), 2988 PADDRH (msg_ext_3), 2989 SCR_JUMP ^ IFFALSE (DATA (2)), 2990 PADDR (msg_bad), 2991 }/*-------------------------< MSG_EXT_2 >----------------*/,{ 2992 SCR_CLR (SCR_ACK), 2993 0, 2994 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)), 2995 PADDR (dispatch), 2996 /* 2997 ** get extended message code. 2998 */ 2999 SCR_MOVE_ABS (1) ^ SCR_MSG_IN, 3000 NADDR (msgin[2]), 3001 SCR_JUMP ^ IFTRUE (DATA (EXTENDED_WDTR)), 3002 PADDRH (msg_wdtr), 3003 /* 3004 ** unknown extended message 3005 */ 3006 SCR_JUMP, 3007 PADDR (msg_bad) 3008 }/*-------------------------< MSG_WDTR >-----------------*/,{ 3009 SCR_CLR (SCR_ACK), 3010 0, 3011 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)), 3012 PADDR (dispatch), 3013 /* 3014 ** get data bus width 3015 */ 3016 SCR_MOVE_ABS (1) ^ SCR_MSG_IN, 3017 NADDR (msgin[3]), 3018 /* 3019 ** let the host do the real work. 3020 */ 3021 SCR_INT, 3022 SIR_NEGO_WIDE, 3023 /* 3024 ** let the target fetch our answer. 3025 */ 3026 SCR_SET (SCR_ATN), 3027 0, 3028 SCR_CLR (SCR_ACK), 3029 0, 3030 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)), 3031 PADDRH (nego_bad_phase), 3032 3033 }/*-------------------------< SEND_WDTR >----------------*/,{ 3034 /* 3035 ** Send the EXTENDED_WDTR 3036 */ 3037 SCR_MOVE_ABS (4) ^ SCR_MSG_OUT, 3038 NADDR (msgout), 3039 SCR_COPY (1), 3040 NADDR (msgout), 3041 NADDR (lastmsg), 3042 SCR_JUMP, 3043 PADDR (msg_out_done), 3044 3045 }/*-------------------------< MSG_EXT_3 >----------------*/,{ 3046 SCR_CLR (SCR_ACK), 3047 0, 3048 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)), 3049 PADDR (dispatch), 3050 /* 3051 ** get extended message code. 3052 */ 3053 SCR_MOVE_ABS (1) ^ SCR_MSG_IN, 3054 NADDR (msgin[2]), 3055 SCR_JUMP ^ IFTRUE (DATA (EXTENDED_SDTR)), 3056 PADDRH (msg_sdtr), 3057 /* 3058 ** unknown extended message 3059 */ 3060 SCR_JUMP, 3061 PADDR (msg_bad) 3062 3063 }/*-------------------------< MSG_SDTR >-----------------*/,{ 3064 SCR_CLR (SCR_ACK), 3065 0, 3066 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)), 3067 PADDR (dispatch), 3068 /* 3069 ** get period and offset 3070 */ 3071 SCR_MOVE_ABS (2) ^ SCR_MSG_IN, 3072 NADDR (msgin[3]), 3073 /* 3074 ** let the host do the real work. 3075 */ 3076 SCR_INT, 3077 SIR_NEGO_SYNC, 3078 /* 3079 ** let the target fetch our answer. 3080 */ 3081 SCR_SET (SCR_ATN), 3082 0, 3083 SCR_CLR (SCR_ACK), 3084 0, 3085 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)), 3086 PADDRH (nego_bad_phase), 3087 3088 }/*-------------------------< SEND_SDTR >-------------*/,{ 3089 /* 3090 ** Send the EXTENDED_SDTR 3091 */ 3092 SCR_MOVE_ABS (5) ^ SCR_MSG_OUT, 3093 NADDR (msgout), 3094 SCR_COPY (1), 3095 NADDR (msgout), 3096 NADDR (lastmsg), 3097 SCR_JUMP, 3098 PADDR (msg_out_done), 3099 3100 }/*-------------------------< NEGO_BAD_PHASE >------------*/,{ 3101 SCR_INT, 3102 SIR_NEGO_PROTO, 3103 SCR_JUMP, 3104 PADDR (dispatch), 3105 3106 }/*-------------------------< MSG_OUT_ABORT >-------------*/,{ 3107 /* 3108 ** After ABORT message, 3109 ** 3110 ** expect an immediate disconnect, ... 3111 */ 3112 SCR_REG_REG (scntl2, SCR_AND, 0x7f), 3113 0, 3114 SCR_CLR (SCR_ACK|SCR_ATN), 3115 0, 3116 SCR_WAIT_DISC, 3117 0, 3118 /* 3119 ** ... and set the status to "ABORTED" 3120 */ 3121 SCR_LOAD_REG (HS_REG, HS_ABORTED), 3122 0, 3123 SCR_JUMP, 3124 PADDR (cleanup), 3125 3126 }/*-------------------------< HDATA_IN >-------------------*/,{ 3127 /* 3128 ** Because the size depends on the 3129 ** #define MAX_SCATTERH parameter, 3130 ** it is filled in at runtime. 3131 ** 3132 ** ##==< i=MAX_SCATTERL; i<MAX_SCATTERL+MAX_SCATTERH >== 3133 ** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)), 3134 ** || PADDR (dispatch), 3135 ** || SCR_MOVE_TBL ^ SCR_DATA_IN, 3136 ** || offsetof (struct dsb, data[ i]), 3137 ** ##=================================================== 3138 ** 3139 **--------------------------------------------------------- 3140 */ 3141 0 3142 }/*-------------------------< HDATA_IN2 >------------------*/,{ 3143 SCR_JUMP, 3144 PADDR (data_in), 3145 3146 }/*-------------------------< HDATA_OUT >-------------------*/,{ 3147 /* 3148 ** Because the size depends on the 3149 ** #define MAX_SCATTERH parameter, 3150 ** it is filled in at runtime. 3151 ** 3152 ** ##==< i=MAX_SCATTERL; i<MAX_SCATTERL+MAX_SCATTERH >== 3153 ** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT)), 3154 ** || PADDR (dispatch), 3155 ** || SCR_MOVE_TBL ^ SCR_DATA_OUT, 3156 ** || offsetof (struct dsb, data[ i]), 3157 ** ##=================================================== 3158 ** 3159 **--------------------------------------------------------- 3160 */ 3161 0 3162 }/*-------------------------< HDATA_OUT2 >------------------*/,{ 3163 SCR_JUMP, 3164 PADDR (data_out), 3165 3166 }/*-------------------------< RESET >----------------------*/,{ 3167 /* 3168 ** Send a TARGET_RESET message if bad IDENTIFY 3169 ** received on reselection. 3170 */ 3171 SCR_LOAD_REG (scratcha, ABORT_TASK), 3172 0, 3173 SCR_JUMP, 3174 PADDRH (abort_resel), 3175 }/*-------------------------< ABORTTAG >-------------------*/,{ 3176 /* 3177 ** Abort a wrong tag received on reselection. 3178 */ 3179 SCR_LOAD_REG (scratcha, ABORT_TASK), 3180 0, 3181 SCR_JUMP, 3182 PADDRH (abort_resel), 3183 }/*-------------------------< ABORT >----------------------*/,{ 3184 /* 3185 ** Abort a reselection when no active CCB. 3186 */ 3187 SCR_LOAD_REG (scratcha, ABORT_TASK_SET), 3188 0, 3189 }/*-------------------------< ABORT_RESEL >----------------*/,{ 3190 SCR_COPY (1), 3191 RADDR (scratcha), 3192 NADDR (msgout), 3193 SCR_SET (SCR_ATN), 3194 0, 3195 SCR_CLR (SCR_ACK), 3196 0, 3197 /* 3198 ** and send it. 3199 ** we expect an immediate disconnect 3200 */ 3201 SCR_REG_REG (scntl2, SCR_AND, 0x7f), 3202 0, 3203 SCR_MOVE_ABS (1) ^ SCR_MSG_OUT, 3204 NADDR (msgout), 3205 SCR_COPY (1), 3206 NADDR (msgout), 3207 NADDR (lastmsg), 3208 SCR_CLR (SCR_ACK|SCR_ATN), 3209 0, 3210 SCR_WAIT_DISC, 3211 0, 3212 SCR_JUMP, 3213 PADDR (start), 3214 }/*-------------------------< RESEND_IDENT >-------------------*/,{ 3215 /* 3216 ** The target stays in MSG OUT phase after having acked 3217 ** Identify [+ Tag [+ Extended message ]]. Targets shall 3218 ** behave this way on parity error. 3219 ** We must send it again all the messages. 3220 */ 3221 SCR_SET (SCR_ATN), /* Shall be asserted 2 deskew delays before the */ 3222 0, /* 1rst ACK = 90 ns. Hope the NCR is'nt too fast */ 3223 SCR_JUMP, 3224 PADDR (send_ident), 3225 }/*-------------------------< CLRATN_GO_ON >-------------------*/,{ 3226 SCR_CLR (SCR_ATN), 3227 0, 3228 SCR_JUMP, 3229 }/*-------------------------< NXTDSP_GO_ON >-------------------*/,{ 3230 0, 3231 }/*-------------------------< SDATA_IN >-------------------*/,{ 3232 SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)), 3233 PADDR (dispatch), 3234 SCR_MOVE_TBL ^ SCR_DATA_IN, 3235 offsetof (struct dsb, sense), 3236 SCR_CALL, 3237 PADDR (dispatch), 3238 SCR_JUMP, 3239 PADDR (no_data), 3240 }/*-------------------------< DATA_IO >--------------------*/,{ 3241 /* 3242 ** We jump here if the data direction was unknown at the 3243 ** time we had to queue the command to the scripts processor. 3244 ** Pointers had been set as follow in this situation: 3245 ** savep --> DATA_IO 3246 ** lastp --> start pointer when DATA_IN 3247 ** goalp --> goal pointer when DATA_IN 3248 ** wlastp --> start pointer when DATA_OUT 3249 ** wgoalp --> goal pointer when DATA_OUT 3250 ** This script sets savep/lastp/goalp according to the 3251 ** direction chosen by the target. 3252 */ 3253 SCR_JUMPR ^ IFTRUE (WHEN (SCR_DATA_OUT)), 3254 32, 3255 /* 3256 ** Direction is DATA IN. 3257 ** Warning: we jump here, even when phase is DATA OUT. 3258 */ 3259 SCR_COPY (4), 3260 NADDR (header.lastp), 3261 NADDR (header.savep), 3262 3263 /* 3264 ** Jump to the SCRIPTS according to actual direction. 3265 */ 3266 SCR_COPY (4), 3267 NADDR (header.savep), 3268 RADDR (temp), 3269 SCR_RETURN, 3270 0, 3271 /* 3272 ** Direction is DATA OUT. 3273 */ 3274 SCR_COPY (4), 3275 NADDR (header.wlastp), 3276 NADDR (header.lastp), 3277 SCR_COPY (4), 3278 NADDR (header.wgoalp), 3279 NADDR (header.goalp), 3280 SCR_JUMPR, 3281 -64, 3282 }/*-------------------------< BAD_IDENTIFY >---------------*/,{ 3283 /* 3284 ** If message phase but not an IDENTIFY, 3285 ** get some help from the C code. 3286 ** Old SCSI device may behave so. 3287 */ 3288 SCR_JUMPR ^ IFTRUE (MASK (0x80, 0x80)), 3289 16, 3290 SCR_INT, 3291 SIR_RESEL_NO_IDENTIFY, 3292 SCR_JUMP, 3293 PADDRH (reset), 3294 /* 3295 ** Message is an IDENTIFY, but lun is unknown. 3296 ** Read the message, since we got it directly 3297 ** from the SCSI BUS data lines. 3298 ** Signal problem to C code for logging the event. 3299 ** Send an ABORT_TASK_SET to clear all pending tasks. 3300 */ 3301 SCR_INT, 3302 SIR_RESEL_BAD_LUN, 3303 SCR_MOVE_ABS (1) ^ SCR_MSG_IN, 3304 NADDR (msgin), 3305 SCR_JUMP, 3306 PADDRH (abort), 3307 }/*-------------------------< BAD_I_T_L >------------------*/,{ 3308 /* 3309 ** We donnot have a task for that I_T_L. 3310 ** Signal problem to C code for logging the event. 3311 ** Send an ABORT_TASK_SET message. 3312 */ 3313 SCR_INT, 3314 SIR_RESEL_BAD_I_T_L, 3315 SCR_JUMP, 3316 PADDRH (abort), 3317 }/*-------------------------< BAD_I_T_L_Q >----------------*/,{ 3318 /* 3319 ** We donnot have a task that matches the tag. 3320 ** Signal problem to C code for logging the event. 3321 ** Send an ABORT_TASK message. 3322 */ 3323 SCR_INT, 3324 SIR_RESEL_BAD_I_T_L_Q, 3325 SCR_JUMP, 3326 PADDRH (aborttag), 3327 }/*-------------------------< BAD_TARGET >-----------------*/,{ 3328 /* 3329 ** We donnot know the target that reselected us. 3330 ** Grab the first message if any (IDENTIFY). 3331 ** Signal problem to C code for logging the event. 3332 ** TARGET_RESET message. 3333 */ 3334 SCR_INT, 3335 SIR_RESEL_BAD_TARGET, 3336 SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_IN)), 3337 8, 3338 SCR_MOVE_ABS (1) ^ SCR_MSG_IN, 3339 NADDR (msgin), 3340 SCR_JUMP, 3341 PADDRH (reset), 3342 }/*-------------------------< BAD_STATUS >-----------------*/,{ 3343 /* 3344 ** If command resulted in either QUEUE FULL, 3345 ** CHECK CONDITION or COMMAND TERMINATED, 3346 ** call the C code. 3347 */ 3348 SCR_INT ^ IFTRUE (DATA (S_QUEUE_FULL)), 3349 SIR_BAD_STATUS, 3350 SCR_INT ^ IFTRUE (DATA (S_CHECK_COND)), 3351 SIR_BAD_STATUS, 3352 SCR_INT ^ IFTRUE (DATA (S_TERMINATED)), 3353 SIR_BAD_STATUS, 3354 SCR_RETURN, 3355 0, 3356 }/*-------------------------< START_RAM >-------------------*/,{ 3357 /* 3358 ** Load the script into on-chip RAM, 3359 ** and jump to start point. 3360 */ 3361 SCR_COPY_F (4), 3362 RADDR (scratcha), 3363 PADDRH (start_ram0), 3364 /* 3365 ** Flush script prefetch if required 3366 */ 3367 PREFETCH_FLUSH 3368 SCR_COPY (sizeof (struct script)), 3369 }/*-------------------------< START_RAM0 >--------------------*/,{ 3370 0, 3371 PADDR (start), 3372 SCR_JUMP, 3373 PADDR (start), 3374 }/*-------------------------< STO_RESTART >-------------------*/,{ 3375 /* 3376 ** 3377 ** Repair start queue (e.g. next time use the next slot) 3378 ** and jump to start point. 3379 */ 3380 SCR_COPY (4), 3381 RADDR (temp), 3382 PADDR (startpos), 3383 SCR_JUMP, 3384 PADDR (start), 3385 }/*-------------------------< WAIT_DMA >-------------------*/,{ 3386 /* 3387 ** For HP Zalon/53c720 systems, the Zalon interface 3388 ** between CPU and 53c720 does prefetches, which causes 3389 ** problems with self modifying scripts. The problem 3390 ** is overcome by calling a dummy subroutine after each 3391 ** modification, to force a refetch of the script on 3392 ** return from the subroutine. 3393 */ 3394 SCR_RETURN, 3395 0, 3396 }/*-------------------------< SNOOPTEST >-------------------*/,{ 3397 /* 3398 ** Read the variable. 3399 */ 3400 SCR_COPY (4), 3401 NADDR(ncr_cache), 3402 RADDR (scratcha), 3403 /* 3404 ** Write the variable. 3405 */ 3406 SCR_COPY (4), 3407 RADDR (temp), 3408 NADDR(ncr_cache), 3409 /* 3410 ** Read back the variable. 3411 */ 3412 SCR_COPY (4), 3413 NADDR(ncr_cache), 3414 RADDR (temp), 3415 }/*-------------------------< SNOOPEND >-------------------*/,{ 3416 /* 3417 ** And stop. 3418 */ 3419 SCR_INT, 3420 99, 3421 }/*--------------------------------------------------------*/ 3422 }; 3423 3424 /*========================================================== 3425 ** 3426 ** 3427 ** Fill in #define dependent parts of the script 3428 ** 3429 ** 3430 **========================================================== 3431 */ 3432 3433 void __init ncr_script_fill (struct script * scr, struct scripth * scrh) 3434 { 3435 int i; 3436 ncrcmd *p; 3437 3438 p = scrh->tryloop; 3439 for (i=0; i<MAX_START; i++) { 3440 *p++ =SCR_CALL; 3441 *p++ =PADDR (idle); 3442 } 3443 3444 BUG_ON((u_long)p != (u_long)&scrh->tryloop + sizeof (scrh->tryloop)); 3445 3446 #ifdef SCSI_NCR_CCB_DONE_SUPPORT 3447 3448 p = scrh->done_queue; 3449 for (i = 0; i<MAX_DONE; i++) { 3450 *p++ =SCR_COPY (sizeof(struct ccb *)); 3451 *p++ =NADDR (header.cp); 3452 *p++ =NADDR (ccb_done[i]); 3453 *p++ =SCR_CALL; 3454 *p++ =PADDR (done_end); 3455 } 3456 3457 BUG_ON((u_long)p != (u_long)&scrh->done_queue+sizeof(scrh->done_queue)); 3458 3459 #endif /* SCSI_NCR_CCB_DONE_SUPPORT */ 3460 3461 p = scrh->hdata_in; 3462 for (i=0; i<MAX_SCATTERH; i++) { 3463 *p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)); 3464 *p++ =PADDR (dispatch); 3465 *p++ =SCR_MOVE_TBL ^ SCR_DATA_IN; 3466 *p++ =offsetof (struct dsb, data[i]); 3467 } 3468 3469 BUG_ON((u_long)p != (u_long)&scrh->hdata_in + sizeof (scrh->hdata_in)); 3470 3471 p = scr->data_in; 3472 for (i=MAX_SCATTERH; i<MAX_SCATTERH+MAX_SCATTERL; i++) { 3473 *p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)); 3474 *p++ =PADDR (dispatch); 3475 *p++ =SCR_MOVE_TBL ^ SCR_DATA_IN; 3476 *p++ =offsetof (struct dsb, data[i]); 3477 } 3478 3479 BUG_ON((u_long)p != (u_long)&scr->data_in + sizeof (scr->data_in)); 3480 3481 p = scrh->hdata_out; 3482 for (i=0; i<MAX_SCATTERH; i++) { 3483 *p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT)); 3484 *p++ =PADDR (dispatch); 3485 *p++ =SCR_MOVE_TBL ^ SCR_DATA_OUT; 3486 *p++ =offsetof (struct dsb, data[i]); 3487 } 3488 3489 BUG_ON((u_long)p != (u_long)&scrh->hdata_out + sizeof (scrh->hdata_out)); 3490 3491 p = scr->data_out; 3492 for (i=MAX_SCATTERH; i<MAX_SCATTERH+MAX_SCATTERL; i++) { 3493 *p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT)); 3494 *p++ =PADDR (dispatch); 3495 *p++ =SCR_MOVE_TBL ^ SCR_DATA_OUT; 3496 *p++ =offsetof (struct dsb, data[i]); 3497 } 3498 3499 BUG_ON((u_long) p != (u_long)&scr->data_out + sizeof (scr->data_out)); 3500 } 3501 3502 /*========================================================== 3503 ** 3504 ** 3505 ** Copy and rebind a script. 3506 ** 3507 ** 3508 **========================================================== 3509 */ 3510 3511 static void __init 3512 ncr_script_copy_and_bind (struct ncb *np, ncrcmd *src, ncrcmd *dst, int len) 3513 { 3514 ncrcmd opcode, new, old, tmp1, tmp2; 3515 ncrcmd *start, *end; 3516 int relocs; 3517 int opchanged = 0; 3518 3519 start = src; 3520 end = src + len/4; 3521 3522 while (src < end) { 3523 3524 opcode = *src++; 3525 *dst++ = cpu_to_scr(opcode); 3526 3527 /* 3528 ** If we forget to change the length 3529 ** in struct script, a field will be 3530 ** padded with 0. This is an illegal 3531 ** command. 3532 */ 3533 3534 if (opcode == 0) { 3535 printk (KERN_ERR "%s: ERROR0 IN SCRIPT at %d.\n", 3536 ncr_name(np), (int) (src-start-1)); 3537 mdelay(1000); 3538 } 3539 3540 if (DEBUG_FLAGS & DEBUG_SCRIPT) 3541 printk (KERN_DEBUG "%p: <%x>\n", 3542 (src-1), (unsigned)opcode); 3543 3544 /* 3545 ** We don't have to decode ALL commands 3546 */ 3547 switch (opcode >> 28) { 3548 3549 case 0xc: 3550 /* 3551 ** COPY has TWO arguments. 3552 */ 3553 relocs = 2; 3554 tmp1 = src[0]; 3555 #ifdef RELOC_KVAR 3556 if ((tmp1 & RELOC_MASK) == RELOC_KVAR) 3557 tmp1 = 0; 3558 #endif 3559 tmp2 = src[1]; 3560 #ifdef RELOC_KVAR 3561 if ((tmp2 & RELOC_MASK) == RELOC_KVAR) 3562 tmp2 = 0; 3563 #endif 3564 if ((tmp1 ^ tmp2) & 3) { 3565 printk (KERN_ERR"%s: ERROR1 IN SCRIPT at %d.\n", 3566 ncr_name(np), (int) (src-start-1)); 3567 mdelay(1000); 3568 } 3569 /* 3570 ** If PREFETCH feature not enabled, remove 3571 ** the NO FLUSH bit if present. 3572 */ 3573 if ((opcode & SCR_NO_FLUSH) && !(np->features & FE_PFEN)) { 3574 dst[-1] = cpu_to_scr(opcode & ~SCR_NO_FLUSH); 3575 ++opchanged; 3576 } 3577 break; 3578 3579 case 0x0: 3580 /* 3581 ** MOVE (absolute address) 3582 */ 3583 relocs = 1; 3584 break; 3585 3586 case 0x8: 3587 /* 3588 ** JUMP / CALL 3589 ** don't relocate if relative :-) 3590 */ 3591 if (opcode & 0x00800000) 3592 relocs = 0; 3593 else 3594 relocs = 1; 3595 break; 3596 3597 case 0x4: 3598 case 0x5: 3599 case 0x6: 3600 case 0x7: 3601 relocs = 1; 3602 break; 3603 3604 default: 3605 relocs = 0; 3606 break; 3607 } 3608 3609 if (relocs) { 3610 while (relocs--) { 3611 old = *src++; 3612 3613 switch (old & RELOC_MASK) { 3614 case RELOC_REGISTER: 3615 new = (old & ~RELOC_MASK) + np->paddr; 3616 break; 3617 case RELOC_LABEL: 3618 new = (old & ~RELOC_MASK) + np->p_script; 3619 break; 3620 case RELOC_LABELH: 3621 new = (old & ~RELOC_MASK) + np->p_scripth; 3622 break; 3623 case RELOC_SOFTC: 3624 new = (old & ~RELOC_MASK) + np->p_ncb; 3625 break; 3626 #ifdef RELOC_KVAR 3627 case RELOC_KVAR: 3628 if (((old & ~RELOC_MASK) < 3629 SCRIPT_KVAR_FIRST) || 3630 ((old & ~RELOC_MASK) > 3631 SCRIPT_KVAR_LAST)) 3632 panic("ncr KVAR out of range"); 3633 new = vtophys(script_kvars[old & 3634 ~RELOC_MASK]); 3635 break; 3636 #endif 3637 case 0: 3638 /* Don't relocate a 0 address. */ 3639 if (old == 0) { 3640 new = old; 3641 break; 3642 } 3643 fallthrough; 3644 default: 3645 panic("ncr_script_copy_and_bind: weird relocation %x\n", old); 3646 break; 3647 } 3648 3649 *dst++ = cpu_to_scr(new); 3650 } 3651 } else 3652 *dst++ = cpu_to_scr(*src++); 3653 3654 } 3655 } 3656 3657 /* 3658 ** Linux host data structure 3659 */ 3660 3661 struct host_data { 3662 struct ncb *ncb; 3663 }; 3664 3665 #define PRINT_ADDR(cmd, arg...) dev_info(&cmd->device->sdev_gendev , ## arg) 3666 3667 static void ncr_print_msg(struct ccb *cp, char *label, u_char *msg) 3668 { 3669 PRINT_ADDR(cp->cmd, "%s: ", label); 3670 3671 spi_print_msg(msg); 3672 printk("\n"); 3673 } 3674 3675 /*========================================================== 3676 ** 3677 ** NCR chip clock divisor table. 3678 ** Divisors are multiplied by 10,000,000 in order to make 3679 ** calculations more simple. 3680 ** 3681 **========================================================== 3682 */ 3683 3684 #define _5M 5000000 3685 static u_long div_10M[] = 3686 {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M}; 3687 3688 3689 /*=============================================================== 3690 ** 3691 ** Prepare io register values used by ncr_init() according 3692 ** to selected and supported features. 3693 ** 3694 ** NCR chips allow burst lengths of 2, 4, 8, 16, 32, 64, 128 3695 ** transfers. 32,64,128 are only supported by 875 and 895 chips. 3696 ** We use log base 2 (burst length) as internal code, with 3697 ** value 0 meaning "burst disabled". 3698 ** 3699 **=============================================================== 3700 */ 3701 3702 /* 3703 * Burst length from burst code. 3704 */ 3705 #define burst_length(bc) (!(bc))? 0 : 1 << (bc) 3706 3707 /* 3708 * Burst code from io register bits. Burst enable is ctest0 for c720 3709 */ 3710 #define burst_code(dmode, ctest0) \ 3711 (ctest0) & 0x80 ? 0 : (((dmode) & 0xc0) >> 6) + 1 3712 3713 /* 3714 * Set initial io register bits from burst code. 3715 */ 3716 static inline void ncr_init_burst(struct ncb *np, u_char bc) 3717 { 3718 u_char *be = &np->rv_ctest0; 3719 *be &= ~0x80; 3720 np->rv_dmode &= ~(0x3 << 6); 3721 np->rv_ctest5 &= ~0x4; 3722 3723 if (!bc) { 3724 *be |= 0x80; 3725 } else { 3726 --bc; 3727 np->rv_dmode |= ((bc & 0x3) << 6); 3728 np->rv_ctest5 |= (bc & 0x4); 3729 } 3730 } 3731 3732 static void __init ncr_prepare_setting(struct ncb *np) 3733 { 3734 u_char burst_max; 3735 u_long period; 3736 int i; 3737 3738 /* 3739 ** Save assumed BIOS setting 3740 */ 3741 3742 np->sv_scntl0 = INB(nc_scntl0) & 0x0a; 3743 np->sv_scntl3 = INB(nc_scntl3) & 0x07; 3744 np->sv_dmode = INB(nc_dmode) & 0xce; 3745 np->sv_dcntl = INB(nc_dcntl) & 0xa8; 3746 np->sv_ctest0 = INB(nc_ctest0) & 0x84; 3747 np->sv_ctest3 = INB(nc_ctest3) & 0x01; 3748 np->sv_ctest4 = INB(nc_ctest4) & 0x80; 3749 np->sv_ctest5 = INB(nc_ctest5) & 0x24; 3750 np->sv_gpcntl = INB(nc_gpcntl); 3751 np->sv_stest2 = INB(nc_stest2) & 0x20; 3752 np->sv_stest4 = INB(nc_stest4); 3753 3754 /* 3755 ** Wide ? 3756 */ 3757 3758 np->maxwide = (np->features & FE_WIDE)? 1 : 0; 3759 3760 /* 3761 * Guess the frequency of the chip's clock. 3762 */ 3763 if (np->features & FE_ULTRA) 3764 np->clock_khz = 80000; 3765 else 3766 np->clock_khz = 40000; 3767 3768 /* 3769 * Get the clock multiplier factor. 3770 */ 3771 if (np->features & FE_QUAD) 3772 np->multiplier = 4; 3773 else if (np->features & FE_DBLR) 3774 np->multiplier = 2; 3775 else 3776 np->multiplier = 1; 3777 3778 /* 3779 * Measure SCSI clock frequency for chips 3780 * it may vary from assumed one. 3781 */ 3782 if (np->features & FE_VARCLK) 3783 ncr_getclock(np, np->multiplier); 3784 3785 /* 3786 * Divisor to be used for async (timer pre-scaler). 3787 */ 3788 i = np->clock_divn - 1; 3789 while (--i >= 0) { 3790 if (10ul * SCSI_NCR_MIN_ASYNC * np->clock_khz > div_10M[i]) { 3791 ++i; 3792 break; 3793 } 3794 } 3795 np->rv_scntl3 = i+1; 3796 3797 /* 3798 * Minimum synchronous period factor supported by the chip. 3799 * Btw, 'period' is in tenths of nanoseconds. 3800 */ 3801 3802 period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz; 3803 if (period <= 250) np->minsync = 10; 3804 else if (period <= 303) np->minsync = 11; 3805 else if (period <= 500) np->minsync = 12; 3806 else np->minsync = (period + 40 - 1) / 40; 3807 3808 /* 3809 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2). 3810 */ 3811 3812 if (np->minsync < 25 && !(np->features & FE_ULTRA)) 3813 np->minsync = 25; 3814 3815 /* 3816 * Maximum synchronous period factor supported by the chip. 3817 */ 3818 3819 period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz); 3820 np->maxsync = period > 2540 ? 254 : period / 10; 3821 3822 /* 3823 ** Prepare initial value of other IO registers 3824 */ 3825 #if defined SCSI_NCR_TRUST_BIOS_SETTING 3826 np->rv_scntl0 = np->sv_scntl0; 3827 np->rv_dmode = np->sv_dmode; 3828 np->rv_dcntl = np->sv_dcntl; 3829 np->rv_ctest0 = np->sv_ctest0; 3830 np->rv_ctest3 = np->sv_ctest3; 3831 np->rv_ctest4 = np->sv_ctest4; 3832 np->rv_ctest5 = np->sv_ctest5; 3833 burst_max = burst_code(np->sv_dmode, np->sv_ctest0); 3834 #else 3835 3836 /* 3837 ** Select burst length (dwords) 3838 */ 3839 burst_max = driver_setup.burst_max; 3840 if (burst_max == 255) 3841 burst_max = burst_code(np->sv_dmode, np->sv_ctest0); 3842 if (burst_max > 7) 3843 burst_max = 7; 3844 if (burst_max > np->maxburst) 3845 burst_max = np->maxburst; 3846 3847 /* 3848 ** Select all supported special features 3849 */ 3850 if (np->features & FE_ERL) 3851 np->rv_dmode |= ERL; /* Enable Read Line */ 3852 if (np->features & FE_BOF) 3853 np->rv_dmode |= BOF; /* Burst Opcode Fetch */ 3854 if (np->features & FE_ERMP) 3855 np->rv_dmode |= ERMP; /* Enable Read Multiple */ 3856 if (np->features & FE_PFEN) 3857 np->rv_dcntl |= PFEN; /* Prefetch Enable */ 3858 if (np->features & FE_CLSE) 3859 np->rv_dcntl |= CLSE; /* Cache Line Size Enable */ 3860 if (np->features & FE_WRIE) 3861 np->rv_ctest3 |= WRIE; /* Write and Invalidate */ 3862 if (np->features & FE_DFS) 3863 np->rv_ctest5 |= DFS; /* Dma Fifo Size */ 3864 if (np->features & FE_MUX) 3865 np->rv_ctest4 |= MUX; /* Host bus multiplex mode */ 3866 if (np->features & FE_EA) 3867 np->rv_dcntl |= EA; /* Enable ACK */ 3868 if (np->features & FE_EHP) 3869 np->rv_ctest0 |= EHP; /* Even host parity */ 3870 3871 /* 3872 ** Select some other 3873 */ 3874 if (driver_setup.master_parity) 3875 np->rv_ctest4 |= MPEE; /* Master parity checking */ 3876 if (driver_setup.scsi_parity) 3877 np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */ 3878 3879 /* 3880 ** Get SCSI addr of host adapter (set by bios?). 3881 */ 3882 if (np->myaddr == 255) { 3883 np->myaddr = INB(nc_scid) & 0x07; 3884 if (!np->myaddr) 3885 np->myaddr = SCSI_NCR_MYADDR; 3886 } 3887 3888 #endif /* SCSI_NCR_TRUST_BIOS_SETTING */ 3889 3890 /* 3891 * Prepare initial io register bits for burst length 3892 */ 3893 ncr_init_burst(np, burst_max); 3894 3895 /* 3896 ** Set SCSI BUS mode. 3897 ** 3898 ** - ULTRA2 chips (895/895A/896) report the current 3899 ** BUS mode through the STEST4 IO register. 3900 ** - For previous generation chips (825/825A/875), 3901 ** user has to tell us how to check against HVD, 3902 ** since a 100% safe algorithm is not possible. 3903 */ 3904 np->scsi_mode = SMODE_SE; 3905 if (np->features & FE_DIFF) { 3906 switch(driver_setup.diff_support) { 3907 case 4: /* Trust previous settings if present, then GPIO3 */ 3908 if (np->sv_scntl3) { 3909 if (np->sv_stest2 & 0x20) 3910 np->scsi_mode = SMODE_HVD; 3911 break; 3912 } 3913 fallthrough; 3914 case 3: /* SYMBIOS controllers report HVD through GPIO3 */ 3915 if (INB(nc_gpreg) & 0x08) 3916 break; 3917 fallthrough; 3918 case 2: /* Set HVD unconditionally */ 3919 np->scsi_mode = SMODE_HVD; 3920 fallthrough; 3921 case 1: /* Trust previous settings for HVD */ 3922 if (np->sv_stest2 & 0x20) 3923 np->scsi_mode = SMODE_HVD; 3924 break; 3925 default:/* Don't care about HVD */ 3926 break; 3927 } 3928 } 3929 if (np->scsi_mode == SMODE_HVD) 3930 np->rv_stest2 |= 0x20; 3931 3932 /* 3933 ** Set LED support from SCRIPTS. 3934 ** Ignore this feature for boards known to use a 3935 ** specific GPIO wiring and for the 895A or 896 3936 ** that drive the LED directly. 3937 ** Also probe initial setting of GPIO0 as output. 3938 */ 3939 if ((driver_setup.led_pin) && 3940 !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01)) 3941 np->features |= FE_LED0; 3942 3943 /* 3944 ** Set irq mode. 3945 */ 3946 switch(driver_setup.irqm & 3) { 3947 case 2: 3948 np->rv_dcntl |= IRQM; 3949 break; 3950 case 1: 3951 np->rv_dcntl |= (np->sv_dcntl & IRQM); 3952 break; 3953 default: 3954 break; 3955 } 3956 3957 /* 3958 ** Configure targets according to driver setup. 3959 ** Allow to override sync, wide and NOSCAN from 3960 ** boot command line. 3961 */ 3962 for (i = 0 ; i < MAX_TARGET ; i++) { 3963 struct tcb *tp = &np->target[i]; 3964 3965 tp->usrsync = driver_setup.default_sync; 3966 tp->usrwide = driver_setup.max_wide; 3967 tp->usrtags = MAX_TAGS; 3968 tp->period = 0xffff; 3969 if (!driver_setup.disconnection) 3970 np->target[i].usrflag = UF_NODISC; 3971 } 3972 3973 /* 3974 ** Announce all that stuff to user. 3975 */ 3976 3977 printk(KERN_INFO "%s: ID %d, Fast-%d%s%s\n", ncr_name(np), 3978 np->myaddr, 3979 np->minsync < 12 ? 40 : (np->minsync < 25 ? 20 : 10), 3980 (np->rv_scntl0 & 0xa) ? ", Parity Checking" : ", NO Parity", 3981 (np->rv_stest2 & 0x20) ? ", Differential" : ""); 3982 3983 if (bootverbose > 1) { 3984 printk (KERN_INFO "%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " 3985 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", 3986 ncr_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl, 3987 np->sv_ctest3, np->sv_ctest4, np->sv_ctest5); 3988 3989 printk (KERN_INFO "%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " 3990 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", 3991 ncr_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl, 3992 np->rv_ctest3, np->rv_ctest4, np->rv_ctest5); 3993 } 3994 3995 if (bootverbose && np->paddr2) 3996 printk (KERN_INFO "%s: on-chip RAM at 0x%lx\n", 3997 ncr_name(np), np->paddr2); 3998 } 3999 4000 /*========================================================== 4001 ** 4002 ** 4003 ** Done SCSI commands list management. 4004 ** 4005 ** We donnot enter the scsi_done() callback immediately 4006 ** after a command has been seen as completed but we 4007 ** insert it into a list which is flushed outside any kind 4008 ** of driver critical section. 4009 ** This allows to do minimal stuff under interrupt and 4010 ** inside critical sections and to also avoid locking up 4011 ** on recursive calls to driver entry points under SMP. 4012 ** In fact, the only kernel point which is entered by the 4013 ** driver with a driver lock set is kmalloc(GFP_ATOMIC) 4014 ** that shall not reenter the driver under any circumstances, 4015 ** AFAIK. 4016 ** 4017 **========================================================== 4018 */ 4019 static inline void ncr_queue_done_cmd(struct ncb *np, struct scsi_cmnd *cmd) 4020 { 4021 unmap_scsi_data(np, cmd); 4022 cmd->host_scribble = (char *) np->done_list; 4023 np->done_list = cmd; 4024 } 4025 4026 static inline void ncr_flush_done_cmds(struct scsi_cmnd *lcmd) 4027 { 4028 struct scsi_cmnd *cmd; 4029 4030 while (lcmd) { 4031 cmd = lcmd; 4032 lcmd = (struct scsi_cmnd *) cmd->host_scribble; 4033 cmd->scsi_done(cmd); 4034 } 4035 } 4036 4037 /*========================================================== 4038 ** 4039 ** 4040 ** Prepare the next negotiation message if needed. 4041 ** 4042 ** Fill in the part of message buffer that contains the 4043 ** negotiation and the nego_status field of the CCB. 4044 ** Returns the size of the message in bytes. 4045 ** 4046 ** 4047 **========================================================== 4048 */ 4049 4050 4051 static int ncr_prepare_nego(struct ncb *np, struct ccb *cp, u_char *msgptr) 4052 { 4053 struct tcb *tp = &np->target[cp->target]; 4054 int msglen = 0; 4055 int nego = 0; 4056 struct scsi_target *starget = tp->starget; 4057 4058 /* negotiate wide transfers ? */ 4059 if (!tp->widedone) { 4060 if (spi_support_wide(starget)) { 4061 nego = NS_WIDE; 4062 } else 4063 tp->widedone=1; 4064 } 4065 4066 /* negotiate synchronous transfers? */ 4067 if (!nego && !tp->period) { 4068 if (spi_support_sync(starget)) { 4069 nego = NS_SYNC; 4070 } else { 4071 tp->period =0xffff; 4072 dev_info(&starget->dev, "target did not report SYNC.\n"); 4073 } 4074 } 4075 4076 switch (nego) { 4077 case NS_SYNC: 4078 msglen += spi_populate_sync_msg(msgptr + msglen, 4079 tp->maxoffs ? tp->minsync : 0, tp->maxoffs); 4080 break; 4081 case NS_WIDE: 4082 msglen += spi_populate_width_msg(msgptr + msglen, tp->usrwide); 4083 break; 4084 } 4085 4086 cp->nego_status = nego; 4087 4088 if (nego) { 4089 tp->nego_cp = cp; 4090 if (DEBUG_FLAGS & DEBUG_NEGO) { 4091 ncr_print_msg(cp, nego == NS_WIDE ? 4092 "wide msgout":"sync_msgout", msgptr); 4093 } 4094 } 4095 4096 return msglen; 4097 } 4098 4099 4100 4101 /*========================================================== 4102 ** 4103 ** 4104 ** Start execution of a SCSI command. 4105 ** This is called from the generic SCSI driver. 4106 ** 4107 ** 4108 **========================================================== 4109 */ 4110 static int ncr_queue_command (struct ncb *np, struct scsi_cmnd *cmd) 4111 { 4112 struct scsi_device *sdev = cmd->device; 4113 struct tcb *tp = &np->target[sdev->id]; 4114 struct lcb *lp = tp->lp[sdev->lun]; 4115 struct ccb *cp; 4116 4117 int segments; 4118 u_char idmsg, *msgptr; 4119 u32 msglen; 4120 int direction; 4121 u32 lastp, goalp; 4122 4123 /*--------------------------------------------- 4124 ** 4125 ** Some shortcuts ... 4126 ** 4127 **--------------------------------------------- 4128 */ 4129 if ((sdev->id == np->myaddr ) || 4130 (sdev->id >= MAX_TARGET) || 4131 (sdev->lun >= MAX_LUN )) { 4132 return(DID_BAD_TARGET); 4133 } 4134 4135 /*--------------------------------------------- 4136 ** 4137 ** Complete the 1st TEST UNIT READY command 4138 ** with error condition if the device is 4139 ** flagged NOSCAN, in order to speed up 4140 ** the boot. 4141 ** 4142 **--------------------------------------------- 4143 */ 4144 if ((cmd->cmnd[0] == 0 || cmd->cmnd[0] == 0x12) && 4145 (tp->usrflag & UF_NOSCAN)) { 4146 tp->usrflag &= ~UF_NOSCAN; 4147 return DID_BAD_TARGET; 4148 } 4149 4150 if (DEBUG_FLAGS & DEBUG_TINY) { 4151 PRINT_ADDR(cmd, "CMD=%x ", cmd->cmnd[0]); 4152 } 4153 4154 /*--------------------------------------------------- 4155 ** 4156 ** Assign a ccb / bind cmd. 4157 ** If resetting, shorten settle_time if necessary 4158 ** in order to avoid spurious timeouts. 4159 ** If resetting or no free ccb, 4160 ** insert cmd into the waiting list. 4161 ** 4162 **---------------------------------------------------- 4163 */ 4164 if (np->settle_time && cmd->request->timeout >= HZ) { 4165 u_long tlimit = jiffies + cmd->request->timeout - HZ; 4166 if (time_after(np->settle_time, tlimit)) 4167 np->settle_time = tlimit; 4168 } 4169 4170 if (np->settle_time || !(cp=ncr_get_ccb (np, cmd))) { 4171 insert_into_waiting_list(np, cmd); 4172 return(DID_OK); 4173 } 4174 cp->cmd = cmd; 4175 4176 /*---------------------------------------------------- 4177 ** 4178 ** Build the identify / tag / sdtr message 4179 ** 4180 **---------------------------------------------------- 4181 */ 4182 4183 idmsg = IDENTIFY(0, sdev->lun); 4184 4185 if (cp ->tag != NO_TAG || 4186 (cp != np->ccb && np->disc && !(tp->usrflag & UF_NODISC))) 4187 idmsg |= 0x40; 4188 4189 msgptr = cp->scsi_smsg; 4190 msglen = 0; 4191 msgptr[msglen++] = idmsg; 4192 4193 if (cp->tag != NO_TAG) { 4194 char order = np->order; 4195 4196 /* 4197 ** Force ordered tag if necessary to avoid timeouts 4198 ** and to preserve interactivity. 4199 */ 4200 if (lp && time_after(jiffies, lp->tags_stime)) { 4201 if (lp->tags_smap) { 4202 order = ORDERED_QUEUE_TAG; 4203 if ((DEBUG_FLAGS & DEBUG_TAGS)||bootverbose>2){ 4204 PRINT_ADDR(cmd, 4205 "ordered tag forced.\n"); 4206 } 4207 } 4208 lp->tags_stime = jiffies + 3*HZ; 4209 lp->tags_smap = lp->tags_umap; 4210 } 4211 4212 if (order == 0) { 4213 /* 4214 ** Ordered write ops, unordered read ops. 4215 */ 4216 switch (cmd->cmnd[0]) { 4217 case 0x08: /* READ_SMALL (6) */ 4218 case 0x28: /* READ_BIG (10) */ 4219 case 0xa8: /* READ_HUGE (12) */ 4220 order = SIMPLE_QUEUE_TAG; 4221 break; 4222 default: 4223 order = ORDERED_QUEUE_TAG; 4224 } 4225 } 4226 msgptr[msglen++] = order; 4227 /* 4228 ** Actual tags are numbered 1,3,5,..2*MAXTAGS+1, 4229 ** since we may have to deal with devices that have 4230 ** problems with #TAG 0 or too great #TAG numbers. 4231 */ 4232 msgptr[msglen++] = (cp->tag << 1) + 1; 4233 } 4234 4235 /*---------------------------------------------------- 4236 ** 4237 ** Build the data descriptors 4238 ** 4239 **---------------------------------------------------- 4240 */ 4241 4242 direction = cmd->sc_data_direction; 4243 if (direction != DMA_NONE) { 4244 segments = ncr_scatter(np, cp, cp->cmd); 4245 if (segments < 0) { 4246 ncr_free_ccb(np, cp); 4247 return(DID_ERROR); 4248 } 4249 } 4250 else { 4251 cp->data_len = 0; 4252 segments = 0; 4253 } 4254 4255 /*--------------------------------------------------- 4256 ** 4257 ** negotiation required? 4258 ** 4259 ** (nego_status is filled by ncr_prepare_nego()) 4260 ** 4261 **--------------------------------------------------- 4262 */ 4263 4264 cp->nego_status = 0; 4265 4266 if ((!tp->widedone || !tp->period) && !tp->nego_cp && lp) { 4267 msglen += ncr_prepare_nego (np, cp, msgptr + msglen); 4268 } 4269 4270 /*---------------------------------------------------- 4271 ** 4272 ** Determine xfer direction. 4273 ** 4274 **---------------------------------------------------- 4275 */ 4276 if (!cp->data_len) 4277 direction = DMA_NONE; 4278 4279 /* 4280 ** If data direction is BIDIRECTIONAL, speculate FROM_DEVICE 4281 ** but prepare alternate pointers for TO_DEVICE in case 4282 ** of our speculation will be just wrong. 4283 ** SCRIPTS will swap values if needed. 4284 */ 4285 switch(direction) { 4286 case DMA_BIDIRECTIONAL: 4287 case DMA_TO_DEVICE: 4288 goalp = NCB_SCRIPT_PHYS (np, data_out2) + 8; 4289 if (segments <= MAX_SCATTERL) 4290 lastp = goalp - 8 - (segments * 16); 4291 else { 4292 lastp = NCB_SCRIPTH_PHYS (np, hdata_out2); 4293 lastp -= (segments - MAX_SCATTERL) * 16; 4294 } 4295 if (direction != DMA_BIDIRECTIONAL) 4296 break; 4297 cp->phys.header.wgoalp = cpu_to_scr(goalp); 4298 cp->phys.header.wlastp = cpu_to_scr(lastp); 4299 fallthrough; 4300 case DMA_FROM_DEVICE: 4301 goalp = NCB_SCRIPT_PHYS (np, data_in2) + 8; 4302 if (segments <= MAX_SCATTERL) 4303 lastp = goalp - 8 - (segments * 16); 4304 else { 4305 lastp = NCB_SCRIPTH_PHYS (np, hdata_in2); 4306 lastp -= (segments - MAX_SCATTERL) * 16; 4307 } 4308 break; 4309 default: 4310 case DMA_NONE: 4311 lastp = goalp = NCB_SCRIPT_PHYS (np, no_data); 4312 break; 4313 } 4314 4315 /* 4316 ** Set all pointers values needed by SCRIPTS. 4317 ** If direction is unknown, start at data_io. 4318 */ 4319 cp->phys.header.lastp = cpu_to_scr(lastp); 4320 cp->phys.header.goalp = cpu_to_scr(goalp); 4321 4322 if (direction == DMA_BIDIRECTIONAL) 4323 cp->phys.header.savep = 4324 cpu_to_scr(NCB_SCRIPTH_PHYS (np, data_io)); 4325 else 4326 cp->phys.header.savep= cpu_to_scr(lastp); 4327 4328 /* 4329 ** Save the initial data pointer in order to be able 4330 ** to redo the command. 4331 */ 4332 cp->startp = cp->phys.header.savep; 4333 4334 /*---------------------------------------------------- 4335 ** 4336 ** fill in ccb 4337 ** 4338 **---------------------------------------------------- 4339 ** 4340 ** 4341 ** physical -> virtual backlink 4342 ** Generic SCSI command 4343 */ 4344 4345 /* 4346 ** Startqueue 4347 */ 4348 cp->start.schedule.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, select)); 4349 cp->restart.schedule.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_dsa)); 4350 /* 4351 ** select 4352 */ 4353 cp->phys.select.sel_id = sdev_id(sdev); 4354 cp->phys.select.sel_scntl3 = tp->wval; 4355 cp->phys.select.sel_sxfer = tp->sval; 4356 /* 4357 ** message 4358 */ 4359 cp->phys.smsg.addr = cpu_to_scr(CCB_PHYS (cp, scsi_smsg)); 4360 cp->phys.smsg.size = cpu_to_scr(msglen); 4361 4362 /* 4363 ** command 4364 */ 4365 memcpy(cp->cdb_buf, cmd->cmnd, min_t(int, cmd->cmd_len, sizeof(cp->cdb_buf))); 4366 cp->phys.cmd.addr = cpu_to_scr(CCB_PHYS (cp, cdb_buf[0])); 4367 cp->phys.cmd.size = cpu_to_scr(cmd->cmd_len); 4368 4369 /* 4370 ** status 4371 */ 4372 cp->actualquirks = 0; 4373 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 4374 cp->scsi_status = S_ILLEGAL; 4375 cp->parity_status = 0; 4376 4377 cp->xerr_status = XE_OK; 4378 #if 0 4379 cp->sync_status = tp->sval; 4380 cp->wide_status = tp->wval; 4381 #endif 4382 4383 /*---------------------------------------------------- 4384 ** 4385 ** Critical region: start this job. 4386 ** 4387 **---------------------------------------------------- 4388 */ 4389 4390 /* activate this job. */ 4391 cp->magic = CCB_MAGIC; 4392 4393 /* 4394 ** insert next CCBs into start queue. 4395 ** 2 max at a time is enough to flush the CCB wait queue. 4396 */ 4397 cp->auto_sense = 0; 4398 if (lp) 4399 ncr_start_next_ccb(np, lp, 2); 4400 else 4401 ncr_put_start_queue(np, cp); 4402 4403 /* Command is successfully queued. */ 4404 4405 return DID_OK; 4406 } 4407 4408 4409 /*========================================================== 4410 ** 4411 ** 4412 ** Insert a CCB into the start queue and wake up the 4413 ** SCRIPTS processor. 4414 ** 4415 ** 4416 **========================================================== 4417 */ 4418 4419 static void ncr_start_next_ccb(struct ncb *np, struct lcb *lp, int maxn) 4420 { 4421 struct list_head *qp; 4422 struct ccb *cp; 4423 4424 if (lp->held_ccb) 4425 return; 4426 4427 while (maxn-- && lp->queuedccbs < lp->queuedepth) { 4428 qp = ncr_list_pop(&lp->wait_ccbq); 4429 if (!qp) 4430 break; 4431 ++lp->queuedccbs; 4432 cp = list_entry(qp, struct ccb, link_ccbq); 4433 list_add_tail(qp, &lp->busy_ccbq); 4434 lp->jump_ccb[cp->tag == NO_TAG ? 0 : cp->tag] = 4435 cpu_to_scr(CCB_PHYS (cp, restart)); 4436 ncr_put_start_queue(np, cp); 4437 } 4438 } 4439 4440 static void ncr_put_start_queue(struct ncb *np, struct ccb *cp) 4441 { 4442 u16 qidx; 4443 4444 /* 4445 ** insert into start queue. 4446 */ 4447 if (!np->squeueput) np->squeueput = 1; 4448 qidx = np->squeueput + 2; 4449 if (qidx >= MAX_START + MAX_START) qidx = 1; 4450 4451 np->scripth->tryloop [qidx] = cpu_to_scr(NCB_SCRIPT_PHYS (np, idle)); 4452 MEMORY_BARRIER(); 4453 np->scripth->tryloop [np->squeueput] = cpu_to_scr(CCB_PHYS (cp, start)); 4454 4455 np->squeueput = qidx; 4456 ++np->queuedccbs; 4457 cp->queued = 1; 4458 4459 if (DEBUG_FLAGS & DEBUG_QUEUE) 4460 printk ("%s: queuepos=%d.\n", ncr_name (np), np->squeueput); 4461 4462 /* 4463 ** Script processor may be waiting for reselect. 4464 ** Wake it up. 4465 */ 4466 MEMORY_BARRIER(); 4467 OUTB (nc_istat, SIGP); 4468 } 4469 4470 4471 static int ncr_reset_scsi_bus(struct ncb *np, int enab_int, int settle_delay) 4472 { 4473 u32 term; 4474 int retv = 0; 4475 4476 np->settle_time = jiffies + settle_delay * HZ; 4477 4478 if (bootverbose > 1) 4479 printk("%s: resetting, " 4480 "command processing suspended for %d seconds\n", 4481 ncr_name(np), settle_delay); 4482 4483 ncr_chip_reset(np, 100); 4484 udelay(2000); /* The 895 needs time for the bus mode to settle */ 4485 if (enab_int) 4486 OUTW (nc_sien, RST); 4487 /* 4488 ** Enable Tolerant, reset IRQD if present and 4489 ** properly set IRQ mode, prior to resetting the bus. 4490 */ 4491 OUTB (nc_stest3, TE); 4492 OUTB (nc_scntl1, CRST); 4493 udelay(200); 4494 4495 if (!driver_setup.bus_check) 4496 goto out; 4497 /* 4498 ** Check for no terminators or SCSI bus shorts to ground. 4499 ** Read SCSI data bus, data parity bits and control signals. 4500 ** We are expecting RESET to be TRUE and other signals to be 4501 ** FALSE. 4502 */ 4503 4504 term = INB(nc_sstat0); 4505 term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */ 4506 term |= ((INB(nc_sstat2) & 0x01) << 26) | /* sdp1 */ 4507 ((INW(nc_sbdl) & 0xff) << 9) | /* d7-0 */ 4508 ((INW(nc_sbdl) & 0xff00) << 10) | /* d15-8 */ 4509 INB(nc_sbcl); /* req ack bsy sel atn msg cd io */ 4510 4511 if (!(np->features & FE_WIDE)) 4512 term &= 0x3ffff; 4513 4514 if (term != (2<<7)) { 4515 printk("%s: suspicious SCSI data while resetting the BUS.\n", 4516 ncr_name(np)); 4517 printk("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = " 4518 "0x%lx, expecting 0x%lx\n", 4519 ncr_name(np), 4520 (np->features & FE_WIDE) ? "dp1,d15-8," : "", 4521 (u_long)term, (u_long)(2<<7)); 4522 if (driver_setup.bus_check == 1) 4523 retv = 1; 4524 } 4525 out: 4526 OUTB (nc_scntl1, 0); 4527 return retv; 4528 } 4529 4530 /* 4531 * Start reset process. 4532 * If reset in progress do nothing. 4533 * The interrupt handler will reinitialize the chip. 4534 * The timeout handler will wait for settle_time before 4535 * clearing it and so resuming command processing. 4536 */ 4537 static void ncr_start_reset(struct ncb *np) 4538 { 4539 if (!np->settle_time) { 4540 ncr_reset_scsi_bus(np, 1, driver_setup.settle_delay); 4541 } 4542 } 4543 4544 /*========================================================== 4545 ** 4546 ** 4547 ** Reset the SCSI BUS. 4548 ** This is called from the generic SCSI driver. 4549 ** 4550 ** 4551 **========================================================== 4552 */ 4553 static int ncr_reset_bus (struct ncb *np, struct scsi_cmnd *cmd, int sync_reset) 4554 { 4555 /* struct scsi_device *device = cmd->device; */ 4556 struct ccb *cp; 4557 int found; 4558 4559 /* 4560 * Return immediately if reset is in progress. 4561 */ 4562 if (np->settle_time) { 4563 return FAILED; 4564 } 4565 /* 4566 * Start the reset process. 4567 * The script processor is then assumed to be stopped. 4568 * Commands will now be queued in the waiting list until a settle 4569 * delay of 2 seconds will be completed. 4570 */ 4571 ncr_start_reset(np); 4572 /* 4573 * First, look in the wakeup list 4574 */ 4575 for (found=0, cp=np->ccb; cp; cp=cp->link_ccb) { 4576 /* 4577 ** look for the ccb of this command. 4578 */ 4579 if (cp->host_status == HS_IDLE) continue; 4580 if (cp->cmd == cmd) { 4581 found = 1; 4582 break; 4583 } 4584 } 4585 /* 4586 * Then, look in the waiting list 4587 */ 4588 if (!found && retrieve_from_waiting_list(0, np, cmd)) 4589 found = 1; 4590 /* 4591 * Wake-up all awaiting commands with DID_RESET. 4592 */ 4593 reset_waiting_list(np); 4594 /* 4595 * Wake-up all pending commands with HS_RESET -> DID_RESET. 4596 */ 4597 ncr_wakeup(np, HS_RESET); 4598 /* 4599 * If the involved command was not in a driver queue, and the 4600 * scsi driver told us reset is synchronous, and the command is not 4601 * currently in the waiting list, complete it with DID_RESET status, 4602 * in order to keep it alive. 4603 */ 4604 if (!found && sync_reset && !retrieve_from_waiting_list(0, np, cmd)) { 4605 cmd->result = DID_RESET << 16; 4606 ncr_queue_done_cmd(np, cmd); 4607 } 4608 4609 return SUCCESS; 4610 } 4611 4612 #if 0 /* unused and broken.. */ 4613 /*========================================================== 4614 ** 4615 ** 4616 ** Abort an SCSI command. 4617 ** This is called from the generic SCSI driver. 4618 ** 4619 ** 4620 **========================================================== 4621 */ 4622 static int ncr_abort_command (struct ncb *np, struct scsi_cmnd *cmd) 4623 { 4624 /* struct scsi_device *device = cmd->device; */ 4625 struct ccb *cp; 4626 int found; 4627 int retv; 4628 4629 /* 4630 * First, look for the scsi command in the waiting list 4631 */ 4632 if (remove_from_waiting_list(np, cmd)) { 4633 cmd->result = ScsiResult(DID_ABORT, 0); 4634 ncr_queue_done_cmd(np, cmd); 4635 return SCSI_ABORT_SUCCESS; 4636 } 4637 4638 /* 4639 * Then, look in the wakeup list 4640 */ 4641 for (found=0, cp=np->ccb; cp; cp=cp->link_ccb) { 4642 /* 4643 ** look for the ccb of this command. 4644 */ 4645 if (cp->host_status == HS_IDLE) continue; 4646 if (cp->cmd == cmd) { 4647 found = 1; 4648 break; 4649 } 4650 } 4651 4652 if (!found) { 4653 return SCSI_ABORT_NOT_RUNNING; 4654 } 4655 4656 if (np->settle_time) { 4657 return SCSI_ABORT_SNOOZE; 4658 } 4659 4660 /* 4661 ** If the CCB is active, patch schedule jumps for the 4662 ** script to abort the command. 4663 */ 4664 4665 switch(cp->host_status) { 4666 case HS_BUSY: 4667 case HS_NEGOTIATE: 4668 printk ("%s: abort ccb=%p (cancel)\n", ncr_name (np), cp); 4669 cp->start.schedule.l_paddr = 4670 cpu_to_scr(NCB_SCRIPTH_PHYS (np, cancel)); 4671 retv = SCSI_ABORT_PENDING; 4672 break; 4673 case HS_DISCONNECT: 4674 cp->restart.schedule.l_paddr = 4675 cpu_to_scr(NCB_SCRIPTH_PHYS (np, abort)); 4676 retv = SCSI_ABORT_PENDING; 4677 break; 4678 default: 4679 retv = SCSI_ABORT_NOT_RUNNING; 4680 break; 4681 4682 } 4683 4684 /* 4685 ** If there are no requests, the script 4686 ** processor will sleep on SEL_WAIT_RESEL. 4687 ** Let's wake it up, since it may have to work. 4688 */ 4689 OUTB (nc_istat, SIGP); 4690 4691 return retv; 4692 } 4693 #endif 4694 4695 static void ncr_detach(struct ncb *np) 4696 { 4697 struct ccb *cp; 4698 struct tcb *tp; 4699 struct lcb *lp; 4700 int target, lun; 4701 int i; 4702 char inst_name[16]; 4703 4704 /* Local copy so we don't access np after freeing it! */ 4705 strlcpy(inst_name, ncr_name(np), sizeof(inst_name)); 4706 4707 printk("%s: releasing host resources\n", ncr_name(np)); 4708 4709 /* 4710 ** Stop the ncr_timeout process 4711 ** Set release_stage to 1 and wait that ncr_timeout() set it to 2. 4712 */ 4713 4714 #ifdef DEBUG_NCR53C8XX 4715 printk("%s: stopping the timer\n", ncr_name(np)); 4716 #endif 4717 np->release_stage = 1; 4718 for (i = 50 ; i && np->release_stage != 2 ; i--) 4719 mdelay(100); 4720 if (np->release_stage != 2) 4721 printk("%s: the timer seems to be already stopped\n", ncr_name(np)); 4722 else np->release_stage = 2; 4723 4724 /* 4725 ** Disable chip interrupts 4726 */ 4727 4728 #ifdef DEBUG_NCR53C8XX 4729 printk("%s: disabling chip interrupts\n", ncr_name(np)); 4730 #endif 4731 OUTW (nc_sien , 0); 4732 OUTB (nc_dien , 0); 4733 4734 /* 4735 ** Reset NCR chip 4736 ** Restore bios setting for automatic clock detection. 4737 */ 4738 4739 printk("%s: resetting chip\n", ncr_name(np)); 4740 ncr_chip_reset(np, 100); 4741 4742 OUTB(nc_dmode, np->sv_dmode); 4743 OUTB(nc_dcntl, np->sv_dcntl); 4744 OUTB(nc_ctest0, np->sv_ctest0); 4745 OUTB(nc_ctest3, np->sv_ctest3); 4746 OUTB(nc_ctest4, np->sv_ctest4); 4747 OUTB(nc_ctest5, np->sv_ctest5); 4748 OUTB(nc_gpcntl, np->sv_gpcntl); 4749 OUTB(nc_stest2, np->sv_stest2); 4750 4751 ncr_selectclock(np, np->sv_scntl3); 4752 4753 /* 4754 ** Free allocated ccb(s) 4755 */ 4756 4757 while ((cp=np->ccb->link_ccb) != NULL) { 4758 np->ccb->link_ccb = cp->link_ccb; 4759 if (cp->host_status) { 4760 printk("%s: shall free an active ccb (host_status=%d)\n", 4761 ncr_name(np), cp->host_status); 4762 } 4763 #ifdef DEBUG_NCR53C8XX 4764 printk("%s: freeing ccb (%lx)\n", ncr_name(np), (u_long) cp); 4765 #endif 4766 m_free_dma(cp, sizeof(*cp), "CCB"); 4767 } 4768 4769 /* Free allocated tp(s) */ 4770 4771 for (target = 0; target < MAX_TARGET ; target++) { 4772 tp=&np->target[target]; 4773 for (lun = 0 ; lun < MAX_LUN ; lun++) { 4774 lp = tp->lp[lun]; 4775 if (lp) { 4776 #ifdef DEBUG_NCR53C8XX 4777 printk("%s: freeing lp (%lx)\n", ncr_name(np), (u_long) lp); 4778 #endif 4779 if (lp->jump_ccb != &lp->jump_ccb_0) 4780 m_free_dma(lp->jump_ccb,256,"JUMP_CCB"); 4781 m_free_dma(lp, sizeof(*lp), "LCB"); 4782 } 4783 } 4784 } 4785 4786 if (np->scripth0) 4787 m_free_dma(np->scripth0, sizeof(struct scripth), "SCRIPTH"); 4788 if (np->script0) 4789 m_free_dma(np->script0, sizeof(struct script), "SCRIPT"); 4790 if (np->ccb) 4791 m_free_dma(np->ccb, sizeof(struct ccb), "CCB"); 4792 m_free_dma(np, sizeof(struct ncb), "NCB"); 4793 4794 printk("%s: host resources successfully released\n", inst_name); 4795 } 4796 4797 /*========================================================== 4798 ** 4799 ** 4800 ** Complete execution of a SCSI command. 4801 ** Signal completion to the generic SCSI driver. 4802 ** 4803 ** 4804 **========================================================== 4805 */ 4806 4807 void ncr_complete (struct ncb *np, struct ccb *cp) 4808 { 4809 struct scsi_cmnd *cmd; 4810 struct tcb *tp; 4811 struct lcb *lp; 4812 4813 /* 4814 ** Sanity check 4815 */ 4816 4817 if (!cp || cp->magic != CCB_MAGIC || !cp->cmd) 4818 return; 4819 4820 /* 4821 ** Print minimal debug information. 4822 */ 4823 4824 if (DEBUG_FLAGS & DEBUG_TINY) 4825 printk ("CCB=%lx STAT=%x/%x\n", (unsigned long)cp, 4826 cp->host_status,cp->scsi_status); 4827 4828 /* 4829 ** Get command, target and lun pointers. 4830 */ 4831 4832 cmd = cp->cmd; 4833 cp->cmd = NULL; 4834 tp = &np->target[cmd->device->id]; 4835 lp = tp->lp[cmd->device->lun]; 4836 4837 /* 4838 ** We donnot queue more than 1 ccb per target 4839 ** with negotiation at any time. If this ccb was 4840 ** used for negotiation, clear this info in the tcb. 4841 */ 4842 4843 if (cp == tp->nego_cp) 4844 tp->nego_cp = NULL; 4845 4846 /* 4847 ** If auto-sense performed, change scsi status. 4848 */ 4849 if (cp->auto_sense) { 4850 cp->scsi_status = cp->auto_sense; 4851 } 4852 4853 /* 4854 ** If we were recovering from queue full or performing 4855 ** auto-sense, requeue skipped CCBs to the wait queue. 4856 */ 4857 4858 if (lp && lp->held_ccb) { 4859 if (cp == lp->held_ccb) { 4860 list_splice_init(&lp->skip_ccbq, &lp->wait_ccbq); 4861 lp->held_ccb = NULL; 4862 } 4863 } 4864 4865 /* 4866 ** Check for parity errors. 4867 */ 4868 4869 if (cp->parity_status > 1) { 4870 PRINT_ADDR(cmd, "%d parity error(s).\n",cp->parity_status); 4871 } 4872 4873 /* 4874 ** Check for extended errors. 4875 */ 4876 4877 if (cp->xerr_status != XE_OK) { 4878 switch (cp->xerr_status) { 4879 case XE_EXTRA_DATA: 4880 PRINT_ADDR(cmd, "extraneous data discarded.\n"); 4881 break; 4882 case XE_BAD_PHASE: 4883 PRINT_ADDR(cmd, "invalid scsi phase (4/5).\n"); 4884 break; 4885 default: 4886 PRINT_ADDR(cmd, "extended error %d.\n", 4887 cp->xerr_status); 4888 break; 4889 } 4890 if (cp->host_status==HS_COMPLETE) 4891 cp->host_status = HS_FAIL; 4892 } 4893 4894 /* 4895 ** Print out any error for debugging purpose. 4896 */ 4897 if (DEBUG_FLAGS & (DEBUG_RESULT|DEBUG_TINY)) { 4898 if (cp->host_status!=HS_COMPLETE || cp->scsi_status!=S_GOOD) { 4899 PRINT_ADDR(cmd, "ERROR: cmd=%x host_status=%x " 4900 "scsi_status=%x\n", cmd->cmnd[0], 4901 cp->host_status, cp->scsi_status); 4902 } 4903 } 4904 4905 /* 4906 ** Check the status. 4907 */ 4908 if ( (cp->host_status == HS_COMPLETE) 4909 && (cp->scsi_status == S_GOOD || 4910 cp->scsi_status == S_COND_MET)) { 4911 /* 4912 * All went well (GOOD status). 4913 * CONDITION MET status is returned on 4914 * `Pre-Fetch' or `Search data' success. 4915 */ 4916 cmd->result = ScsiResult(DID_OK, cp->scsi_status); 4917 4918 /* 4919 ** @RESID@ 4920 ** Could dig out the correct value for resid, 4921 ** but it would be quite complicated. 4922 */ 4923 /* if (cp->phys.header.lastp != cp->phys.header.goalp) */ 4924 4925 /* 4926 ** Allocate the lcb if not yet. 4927 */ 4928 if (!lp) 4929 ncr_alloc_lcb (np, cmd->device->id, cmd->device->lun); 4930 4931 tp->bytes += cp->data_len; 4932 tp->transfers ++; 4933 4934 /* 4935 ** If tags was reduced due to queue full, 4936 ** increase tags if 1000 good status received. 4937 */ 4938 if (lp && lp->usetags && lp->numtags < lp->maxtags) { 4939 ++lp->num_good; 4940 if (lp->num_good >= 1000) { 4941 lp->num_good = 0; 4942 ++lp->numtags; 4943 ncr_setup_tags (np, cmd->device); 4944 } 4945 } 4946 } else if ((cp->host_status == HS_COMPLETE) 4947 && (cp->scsi_status == S_CHECK_COND)) { 4948 /* 4949 ** Check condition code 4950 */ 4951 cmd->result = DID_OK << 16 | S_CHECK_COND; 4952 4953 /* 4954 ** Copy back sense data to caller's buffer. 4955 */ 4956 memcpy(cmd->sense_buffer, cp->sense_buf, 4957 min_t(size_t, SCSI_SENSE_BUFFERSIZE, 4958 sizeof(cp->sense_buf))); 4959 4960 if (DEBUG_FLAGS & (DEBUG_RESULT|DEBUG_TINY)) { 4961 u_char *p = cmd->sense_buffer; 4962 int i; 4963 PRINT_ADDR(cmd, "sense data:"); 4964 for (i=0; i<14; i++) printk (" %x", *p++); 4965 printk (".\n"); 4966 } 4967 } else if ((cp->host_status == HS_COMPLETE) 4968 && (cp->scsi_status == S_CONFLICT)) { 4969 /* 4970 ** Reservation Conflict condition code 4971 */ 4972 cmd->result = DID_OK << 16 | S_CONFLICT; 4973 4974 } else if ((cp->host_status == HS_COMPLETE) 4975 && (cp->scsi_status == S_BUSY || 4976 cp->scsi_status == S_QUEUE_FULL)) { 4977 4978 /* 4979 ** Target is busy. 4980 */ 4981 cmd->result = ScsiResult(DID_OK, cp->scsi_status); 4982 4983 } else if ((cp->host_status == HS_SEL_TIMEOUT) 4984 || (cp->host_status == HS_TIMEOUT)) { 4985 4986 /* 4987 ** No response 4988 */ 4989 cmd->result = ScsiResult(DID_TIME_OUT, cp->scsi_status); 4990 4991 } else if (cp->host_status == HS_RESET) { 4992 4993 /* 4994 ** SCSI bus reset 4995 */ 4996 cmd->result = ScsiResult(DID_RESET, cp->scsi_status); 4997 4998 } else if (cp->host_status == HS_ABORTED) { 4999 5000 /* 5001 ** Transfer aborted 5002 */ 5003 cmd->result = ScsiResult(DID_ABORT, cp->scsi_status); 5004 5005 } else { 5006 5007 /* 5008 ** Other protocol messes 5009 */ 5010 PRINT_ADDR(cmd, "COMMAND FAILED (%x %x) @%p.\n", 5011 cp->host_status, cp->scsi_status, cp); 5012 5013 cmd->result = ScsiResult(DID_ERROR, cp->scsi_status); 5014 } 5015 5016 /* 5017 ** trace output 5018 */ 5019 5020 if (tp->usrflag & UF_TRACE) { 5021 u_char * p; 5022 int i; 5023 PRINT_ADDR(cmd, " CMD:"); 5024 p = (u_char*) &cmd->cmnd[0]; 5025 for (i=0; i<cmd->cmd_len; i++) printk (" %x", *p++); 5026 5027 if (cp->host_status==HS_COMPLETE) { 5028 switch (cp->scsi_status) { 5029 case S_GOOD: 5030 printk (" GOOD"); 5031 break; 5032 case S_CHECK_COND: 5033 printk (" SENSE:"); 5034 p = (u_char*) &cmd->sense_buffer; 5035 for (i=0; i<14; i++) 5036 printk (" %x", *p++); 5037 break; 5038 default: 5039 printk (" STAT: %x\n", cp->scsi_status); 5040 break; 5041 } 5042 } else printk (" HOSTERROR: %x", cp->host_status); 5043 printk ("\n"); 5044 } 5045 5046 /* 5047 ** Free this ccb 5048 */ 5049 ncr_free_ccb (np, cp); 5050 5051 /* 5052 ** requeue awaiting scsi commands for this lun. 5053 */ 5054 if (lp && lp->queuedccbs < lp->queuedepth && 5055 !list_empty(&lp->wait_ccbq)) 5056 ncr_start_next_ccb(np, lp, 2); 5057 5058 /* 5059 ** requeue awaiting scsi commands for this controller. 5060 */ 5061 if (np->waiting_list) 5062 requeue_waiting_list(np); 5063 5064 /* 5065 ** signal completion to generic driver. 5066 */ 5067 ncr_queue_done_cmd(np, cmd); 5068 } 5069 5070 /*========================================================== 5071 ** 5072 ** 5073 ** Signal all (or one) control block done. 5074 ** 5075 ** 5076 **========================================================== 5077 */ 5078 5079 /* 5080 ** This CCB has been skipped by the NCR. 5081 ** Queue it in the corresponding unit queue. 5082 */ 5083 static void ncr_ccb_skipped(struct ncb *np, struct ccb *cp) 5084 { 5085 struct tcb *tp = &np->target[cp->target]; 5086 struct lcb *lp = tp->lp[cp->lun]; 5087 5088 if (lp && cp != np->ccb) { 5089 cp->host_status &= ~HS_SKIPMASK; 5090 cp->start.schedule.l_paddr = 5091 cpu_to_scr(NCB_SCRIPT_PHYS (np, select)); 5092 list_move_tail(&cp->link_ccbq, &lp->skip_ccbq); 5093 if (cp->queued) { 5094 --lp->queuedccbs; 5095 } 5096 } 5097 if (cp->queued) { 5098 --np->queuedccbs; 5099 cp->queued = 0; 5100 } 5101 } 5102 5103 /* 5104 ** The NCR has completed CCBs. 5105 ** Look at the DONE QUEUE if enabled, otherwise scan all CCBs 5106 */ 5107 void ncr_wakeup_done (struct ncb *np) 5108 { 5109 struct ccb *cp; 5110 #ifdef SCSI_NCR_CCB_DONE_SUPPORT 5111 int i, j; 5112 5113 i = np->ccb_done_ic; 5114 while (1) { 5115 j = i+1; 5116 if (j >= MAX_DONE) 5117 j = 0; 5118 5119 cp = np->ccb_done[j]; 5120 if (!CCB_DONE_VALID(cp)) 5121 break; 5122 5123 np->ccb_done[j] = (struct ccb *)CCB_DONE_EMPTY; 5124 np->scripth->done_queue[5*j + 4] = 5125 cpu_to_scr(NCB_SCRIPT_PHYS (np, done_plug)); 5126 MEMORY_BARRIER(); 5127 np->scripth->done_queue[5*i + 4] = 5128 cpu_to_scr(NCB_SCRIPT_PHYS (np, done_end)); 5129 5130 if (cp->host_status & HS_DONEMASK) 5131 ncr_complete (np, cp); 5132 else if (cp->host_status & HS_SKIPMASK) 5133 ncr_ccb_skipped (np, cp); 5134 5135 i = j; 5136 } 5137 np->ccb_done_ic = i; 5138 #else 5139 cp = np->ccb; 5140 while (cp) { 5141 if (cp->host_status & HS_DONEMASK) 5142 ncr_complete (np, cp); 5143 else if (cp->host_status & HS_SKIPMASK) 5144 ncr_ccb_skipped (np, cp); 5145 cp = cp->link_ccb; 5146 } 5147 #endif 5148 } 5149 5150 /* 5151 ** Complete all active CCBs. 5152 */ 5153 void ncr_wakeup (struct ncb *np, u_long code) 5154 { 5155 struct ccb *cp = np->ccb; 5156 5157 while (cp) { 5158 if (cp->host_status != HS_IDLE) { 5159 cp->host_status = code; 5160 ncr_complete (np, cp); 5161 } 5162 cp = cp->link_ccb; 5163 } 5164 } 5165 5166 /* 5167 ** Reset ncr chip. 5168 */ 5169 5170 /* Some initialisation must be done immediately following reset, for 53c720, 5171 * at least. EA (dcntl bit 5) isn't set here as it is set once only in 5172 * the _detect function. 5173 */ 5174 static void ncr_chip_reset(struct ncb *np, int delay) 5175 { 5176 OUTB (nc_istat, SRST); 5177 udelay(delay); 5178 OUTB (nc_istat, 0 ); 5179 5180 if (np->features & FE_EHP) 5181 OUTB (nc_ctest0, EHP); 5182 if (np->features & FE_MUX) 5183 OUTB (nc_ctest4, MUX); 5184 } 5185 5186 5187 /*========================================================== 5188 ** 5189 ** 5190 ** Start NCR chip. 5191 ** 5192 ** 5193 **========================================================== 5194 */ 5195 5196 void ncr_init (struct ncb *np, int reset, char * msg, u_long code) 5197 { 5198 int i; 5199 5200 /* 5201 ** Reset chip if asked, otherwise just clear fifos. 5202 */ 5203 5204 if (reset) { 5205 OUTB (nc_istat, SRST); 5206 udelay(100); 5207 } 5208 else { 5209 OUTB (nc_stest3, TE|CSF); 5210 OUTONB (nc_ctest3, CLF); 5211 } 5212 5213 /* 5214 ** Message. 5215 */ 5216 5217 if (msg) printk (KERN_INFO "%s: restart (%s).\n", ncr_name (np), msg); 5218 5219 /* 5220 ** Clear Start Queue 5221 */ 5222 np->queuedepth = MAX_START - 1; /* 1 entry needed as end marker */ 5223 for (i = 1; i < MAX_START + MAX_START; i += 2) 5224 np->scripth0->tryloop[i] = 5225 cpu_to_scr(NCB_SCRIPT_PHYS (np, idle)); 5226 5227 /* 5228 ** Start at first entry. 5229 */ 5230 np->squeueput = 0; 5231 np->script0->startpos[0] = cpu_to_scr(NCB_SCRIPTH_PHYS (np, tryloop)); 5232 5233 #ifdef SCSI_NCR_CCB_DONE_SUPPORT 5234 /* 5235 ** Clear Done Queue 5236 */ 5237 for (i = 0; i < MAX_DONE; i++) { 5238 np->ccb_done[i] = (struct ccb *)CCB_DONE_EMPTY; 5239 np->scripth0->done_queue[5*i + 4] = 5240 cpu_to_scr(NCB_SCRIPT_PHYS (np, done_end)); 5241 } 5242 #endif 5243 5244 /* 5245 ** Start at first entry. 5246 */ 5247 np->script0->done_pos[0] = cpu_to_scr(NCB_SCRIPTH_PHYS (np,done_queue)); 5248 np->ccb_done_ic = MAX_DONE-1; 5249 np->scripth0->done_queue[5*(MAX_DONE-1) + 4] = 5250 cpu_to_scr(NCB_SCRIPT_PHYS (np, done_plug)); 5251 5252 /* 5253 ** Wakeup all pending jobs. 5254 */ 5255 ncr_wakeup (np, code); 5256 5257 /* 5258 ** Init chip. 5259 */ 5260 5261 /* 5262 ** Remove reset; big delay because the 895 needs time for the 5263 ** bus mode to settle 5264 */ 5265 ncr_chip_reset(np, 2000); 5266 5267 OUTB (nc_scntl0, np->rv_scntl0 | 0xc0); 5268 /* full arb., ena parity, par->ATN */ 5269 OUTB (nc_scntl1, 0x00); /* odd parity, and remove CRST!! */ 5270 5271 ncr_selectclock(np, np->rv_scntl3); /* Select SCSI clock */ 5272 5273 OUTB (nc_scid , RRE|np->myaddr); /* Adapter SCSI address */ 5274 OUTW (nc_respid, 1ul<<np->myaddr); /* Id to respond to */ 5275 OUTB (nc_istat , SIGP ); /* Signal Process */ 5276 OUTB (nc_dmode , np->rv_dmode); /* Burst length, dma mode */ 5277 OUTB (nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */ 5278 5279 OUTB (nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */ 5280 OUTB (nc_ctest0, np->rv_ctest0); /* 720: CDIS and EHP */ 5281 OUTB (nc_ctest3, np->rv_ctest3); /* Write and invalidate */ 5282 OUTB (nc_ctest4, np->rv_ctest4); /* Master parity checking */ 5283 5284 OUTB (nc_stest2, EXT|np->rv_stest2); /* Extended Sreq/Sack filtering */ 5285 OUTB (nc_stest3, TE); /* TolerANT enable */ 5286 OUTB (nc_stime0, 0x0c ); /* HTH disabled STO 0.25 sec */ 5287 5288 /* 5289 ** Disable disconnects. 5290 */ 5291 5292 np->disc = 0; 5293 5294 /* 5295 ** Enable GPIO0 pin for writing if LED support. 5296 */ 5297 5298 if (np->features & FE_LED0) { 5299 OUTOFFB (nc_gpcntl, 0x01); 5300 } 5301 5302 /* 5303 ** enable ints 5304 */ 5305 5306 OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR); 5307 OUTB (nc_dien , MDPE|BF|ABRT|SSI|SIR|IID); 5308 5309 /* 5310 ** Fill in target structure. 5311 ** Reinitialize usrsync. 5312 ** Reinitialize usrwide. 5313 ** Prepare sync negotiation according to actual SCSI bus mode. 5314 */ 5315 5316 for (i=0;i<MAX_TARGET;i++) { 5317 struct tcb *tp = &np->target[i]; 5318 5319 tp->sval = 0; 5320 tp->wval = np->rv_scntl3; 5321 5322 if (tp->usrsync != 255) { 5323 if (tp->usrsync <= np->maxsync) { 5324 if (tp->usrsync < np->minsync) { 5325 tp->usrsync = np->minsync; 5326 } 5327 } 5328 else 5329 tp->usrsync = 255; 5330 } 5331 5332 if (tp->usrwide > np->maxwide) 5333 tp->usrwide = np->maxwide; 5334 5335 } 5336 5337 /* 5338 ** Start script processor. 5339 */ 5340 if (np->paddr2) { 5341 if (bootverbose) 5342 printk ("%s: Downloading SCSI SCRIPTS.\n", 5343 ncr_name(np)); 5344 OUTL (nc_scratcha, vtobus(np->script0)); 5345 OUTL_DSP (NCB_SCRIPTH_PHYS (np, start_ram)); 5346 } 5347 else 5348 OUTL_DSP (NCB_SCRIPT_PHYS (np, start)); 5349 } 5350 5351 /*========================================================== 5352 ** 5353 ** Prepare the negotiation values for wide and 5354 ** synchronous transfers. 5355 ** 5356 **========================================================== 5357 */ 5358 5359 static void ncr_negotiate (struct ncb* np, struct tcb* tp) 5360 { 5361 /* 5362 ** minsync unit is 4ns ! 5363 */ 5364 5365 u_long minsync = tp->usrsync; 5366 5367 /* 5368 ** SCSI bus mode limit 5369 */ 5370 5371 if (np->scsi_mode && np->scsi_mode == SMODE_SE) { 5372 if (minsync < 12) minsync = 12; 5373 } 5374 5375 /* 5376 ** our limit .. 5377 */ 5378 5379 if (minsync < np->minsync) 5380 minsync = np->minsync; 5381 5382 /* 5383 ** divider limit 5384 */ 5385 5386 if (minsync > np->maxsync) 5387 minsync = 255; 5388 5389 if (tp->maxoffs > np->maxoffs) 5390 tp->maxoffs = np->maxoffs; 5391 5392 tp->minsync = minsync; 5393 tp->maxoffs = (minsync<255 ? tp->maxoffs : 0); 5394 5395 /* 5396 ** period=0: has to negotiate sync transfer 5397 */ 5398 5399 tp->period=0; 5400 5401 /* 5402 ** widedone=0: has to negotiate wide transfer 5403 */ 5404 tp->widedone=0; 5405 } 5406 5407 /*========================================================== 5408 ** 5409 ** Get clock factor and sync divisor for a given 5410 ** synchronous factor period. 5411 ** Returns the clock factor (in sxfer) and scntl3 5412 ** synchronous divisor field. 5413 ** 5414 **========================================================== 5415 */ 5416 5417 static void ncr_getsync(struct ncb *np, u_char sfac, u_char *fakp, u_char *scntl3p) 5418 { 5419 u_long clk = np->clock_khz; /* SCSI clock frequency in kHz */ 5420 int div = np->clock_divn; /* Number of divisors supported */ 5421 u_long fak; /* Sync factor in sxfer */ 5422 u_long per; /* Period in tenths of ns */ 5423 u_long kpc; /* (per * clk) */ 5424 5425 /* 5426 ** Compute the synchronous period in tenths of nano-seconds 5427 */ 5428 if (sfac <= 10) per = 250; 5429 else if (sfac == 11) per = 303; 5430 else if (sfac == 12) per = 500; 5431 else per = 40 * sfac; 5432 5433 /* 5434 ** Look for the greatest clock divisor that allows an 5435 ** input speed faster than the period. 5436 */ 5437 kpc = per * clk; 5438 while (--div > 0) 5439 if (kpc >= (div_10M[div] << 2)) break; 5440 5441 /* 5442 ** Calculate the lowest clock factor that allows an output 5443 ** speed not faster than the period. 5444 */ 5445 fak = (kpc - 1) / div_10M[div] + 1; 5446 5447 #if 0 /* This optimization does not seem very useful */ 5448 5449 per = (fak * div_10M[div]) / clk; 5450 5451 /* 5452 ** Why not to try the immediate lower divisor and to choose 5453 ** the one that allows the fastest output speed ? 5454 ** We don't want input speed too much greater than output speed. 5455 */ 5456 if (div >= 1 && fak < 8) { 5457 u_long fak2, per2; 5458 fak2 = (kpc - 1) / div_10M[div-1] + 1; 5459 per2 = (fak2 * div_10M[div-1]) / clk; 5460 if (per2 < per && fak2 <= 8) { 5461 fak = fak2; 5462 per = per2; 5463 --div; 5464 } 5465 } 5466 #endif 5467 5468 if (fak < 4) fak = 4; /* Should never happen, too bad ... */ 5469 5470 /* 5471 ** Compute and return sync parameters for the ncr 5472 */ 5473 *fakp = fak - 4; 5474 *scntl3p = ((div+1) << 4) + (sfac < 25 ? 0x80 : 0); 5475 } 5476 5477 5478 /*========================================================== 5479 ** 5480 ** Set actual values, sync status and patch all ccbs of 5481 ** a target according to new sync/wide agreement. 5482 ** 5483 **========================================================== 5484 */ 5485 5486 static void ncr_set_sync_wide_status (struct ncb *np, u_char target) 5487 { 5488 struct ccb *cp; 5489 struct tcb *tp = &np->target[target]; 5490 5491 /* 5492 ** set actual value and sync_status 5493 */ 5494 OUTB (nc_sxfer, tp->sval); 5495 np->sync_st = tp->sval; 5496 OUTB (nc_scntl3, tp->wval); 5497 np->wide_st = tp->wval; 5498 5499 /* 5500 ** patch ALL ccbs of this target. 5501 */ 5502 for (cp = np->ccb; cp; cp = cp->link_ccb) { 5503 if (!cp->cmd) continue; 5504 if (scmd_id(cp->cmd) != target) continue; 5505 #if 0 5506 cp->sync_status = tp->sval; 5507 cp->wide_status = tp->wval; 5508 #endif 5509 cp->phys.select.sel_scntl3 = tp->wval; 5510 cp->phys.select.sel_sxfer = tp->sval; 5511 } 5512 } 5513 5514 /*========================================================== 5515 ** 5516 ** Switch sync mode for current job and it's target 5517 ** 5518 **========================================================== 5519 */ 5520 5521 static void ncr_setsync (struct ncb *np, struct ccb *cp, u_char scntl3, u_char sxfer) 5522 { 5523 struct scsi_cmnd *cmd = cp->cmd; 5524 struct tcb *tp; 5525 u_char target = INB (nc_sdid) & 0x0f; 5526 u_char idiv; 5527 5528 BUG_ON(target != (scmd_id(cmd) & 0xf)); 5529 5530 tp = &np->target[target]; 5531 5532 if (!scntl3 || !(sxfer & 0x1f)) 5533 scntl3 = np->rv_scntl3; 5534 scntl3 = (scntl3 & 0xf0) | (tp->wval & EWS) | (np->rv_scntl3 & 0x07); 5535 5536 /* 5537 ** Deduce the value of controller sync period from scntl3. 5538 ** period is in tenths of nano-seconds. 5539 */ 5540 5541 idiv = ((scntl3 >> 4) & 0x7); 5542 if ((sxfer & 0x1f) && idiv) 5543 tp->period = (((sxfer>>5)+4)*div_10M[idiv-1])/np->clock_khz; 5544 else 5545 tp->period = 0xffff; 5546 5547 /* Stop there if sync parameters are unchanged */ 5548 if (tp->sval == sxfer && tp->wval == scntl3) 5549 return; 5550 tp->sval = sxfer; 5551 tp->wval = scntl3; 5552 5553 if (sxfer & 0x01f) { 5554 /* Disable extended Sreq/Sack filtering */ 5555 if (tp->period <= 2000) 5556 OUTOFFB(nc_stest2, EXT); 5557 } 5558 5559 spi_display_xfer_agreement(tp->starget); 5560 5561 /* 5562 ** set actual value and sync_status 5563 ** patch ALL ccbs of this target. 5564 */ 5565 ncr_set_sync_wide_status(np, target); 5566 } 5567 5568 /*========================================================== 5569 ** 5570 ** Switch wide mode for current job and it's target 5571 ** SCSI specs say: a SCSI device that accepts a WDTR 5572 ** message shall reset the synchronous agreement to 5573 ** asynchronous mode. 5574 ** 5575 **========================================================== 5576 */ 5577 5578 static void ncr_setwide (struct ncb *np, struct ccb *cp, u_char wide, u_char ack) 5579 { 5580 struct scsi_cmnd *cmd = cp->cmd; 5581 u16 target = INB (nc_sdid) & 0x0f; 5582 struct tcb *tp; 5583 u_char scntl3; 5584 u_char sxfer; 5585 5586 BUG_ON(target != (scmd_id(cmd) & 0xf)); 5587 5588 tp = &np->target[target]; 5589 tp->widedone = wide+1; 5590 scntl3 = (tp->wval & (~EWS)) | (wide ? EWS : 0); 5591 5592 sxfer = ack ? 0 : tp->sval; 5593 5594 /* 5595 ** Stop there if sync/wide parameters are unchanged 5596 */ 5597 if (tp->sval == sxfer && tp->wval == scntl3) return; 5598 tp->sval = sxfer; 5599 tp->wval = scntl3; 5600 5601 /* 5602 ** Bells and whistles ;-) 5603 */ 5604 if (bootverbose >= 2) { 5605 dev_info(&cmd->device->sdev_target->dev, "WIDE SCSI %sabled.\n", 5606 (scntl3 & EWS) ? "en" : "dis"); 5607 } 5608 5609 /* 5610 ** set actual value and sync_status 5611 ** patch ALL ccbs of this target. 5612 */ 5613 ncr_set_sync_wide_status(np, target); 5614 } 5615 5616 /*========================================================== 5617 ** 5618 ** Switch tagged mode for a target. 5619 ** 5620 **========================================================== 5621 */ 5622 5623 static void ncr_setup_tags (struct ncb *np, struct scsi_device *sdev) 5624 { 5625 unsigned char tn = sdev->id, ln = sdev->lun; 5626 struct tcb *tp = &np->target[tn]; 5627 struct lcb *lp = tp->lp[ln]; 5628 u_char reqtags, maxdepth; 5629 5630 /* 5631 ** Just in case ... 5632 */ 5633 if ((!tp) || (!lp) || !sdev) 5634 return; 5635 5636 /* 5637 ** If SCSI device queue depth is not yet set, leave here. 5638 */ 5639 if (!lp->scdev_depth) 5640 return; 5641 5642 /* 5643 ** Donnot allow more tags than the SCSI driver can queue 5644 ** for this device. 5645 ** Donnot allow more tags than we can handle. 5646 */ 5647 maxdepth = lp->scdev_depth; 5648 if (maxdepth > lp->maxnxs) maxdepth = lp->maxnxs; 5649 if (lp->maxtags > maxdepth) lp->maxtags = maxdepth; 5650 if (lp->numtags > maxdepth) lp->numtags = maxdepth; 5651 5652 /* 5653 ** only devices conformant to ANSI Version >= 2 5654 ** only devices capable of tagged commands 5655 ** only if enabled by user .. 5656 */ 5657 if (sdev->tagged_supported && lp->numtags > 1) { 5658 reqtags = lp->numtags; 5659 } else { 5660 reqtags = 1; 5661 } 5662 5663 /* 5664 ** Update max number of tags 5665 */ 5666 lp->numtags = reqtags; 5667 if (lp->numtags > lp->maxtags) 5668 lp->maxtags = lp->numtags; 5669 5670 /* 5671 ** If we want to switch tag mode, we must wait 5672 ** for no CCB to be active. 5673 */ 5674 if (reqtags > 1 && lp->usetags) { /* Stay in tagged mode */ 5675 if (lp->queuedepth == reqtags) /* Already announced */ 5676 return; 5677 lp->queuedepth = reqtags; 5678 } 5679 else if (reqtags <= 1 && !lp->usetags) { /* Stay in untagged mode */ 5680 lp->queuedepth = reqtags; 5681 return; 5682 } 5683 else { /* Want to switch tag mode */ 5684 if (lp->busyccbs) /* If not yet safe, return */ 5685 return; 5686 lp->queuedepth = reqtags; 5687 lp->usetags = reqtags > 1 ? 1 : 0; 5688 } 5689 5690 /* 5691 ** Patch the lun mini-script, according to tag mode. 5692 */ 5693 lp->jump_tag.l_paddr = lp->usetags? 5694 cpu_to_scr(NCB_SCRIPT_PHYS(np, resel_tag)) : 5695 cpu_to_scr(NCB_SCRIPT_PHYS(np, resel_notag)); 5696 5697 /* 5698 ** Announce change to user. 5699 */ 5700 if (bootverbose) { 5701 if (lp->usetags) { 5702 dev_info(&sdev->sdev_gendev, 5703 "tagged command queue depth set to %d\n", 5704 reqtags); 5705 } else { 5706 dev_info(&sdev->sdev_gendev, 5707 "tagged command queueing disabled\n"); 5708 } 5709 } 5710 } 5711 5712 /*========================================================== 5713 ** 5714 ** 5715 ** ncr timeout handler. 5716 ** 5717 ** 5718 **========================================================== 5719 ** 5720 ** Misused to keep the driver running when 5721 ** interrupts are not configured correctly. 5722 ** 5723 **---------------------------------------------------------- 5724 */ 5725 5726 static void ncr_timeout (struct ncb *np) 5727 { 5728 u_long thistime = jiffies; 5729 5730 /* 5731 ** If release process in progress, let's go 5732 ** Set the release stage from 1 to 2 to synchronize 5733 ** with the release process. 5734 */ 5735 5736 if (np->release_stage) { 5737 if (np->release_stage == 1) np->release_stage = 2; 5738 return; 5739 } 5740 5741 np->timer.expires = jiffies + SCSI_NCR_TIMER_INTERVAL; 5742 add_timer(&np->timer); 5743 5744 /* 5745 ** If we are resetting the ncr, wait for settle_time before 5746 ** clearing it. Then command processing will be resumed. 5747 */ 5748 if (np->settle_time) { 5749 if (np->settle_time <= thistime) { 5750 if (bootverbose > 1) 5751 printk("%s: command processing resumed\n", ncr_name(np)); 5752 np->settle_time = 0; 5753 np->disc = 1; 5754 requeue_waiting_list(np); 5755 } 5756 return; 5757 } 5758 5759 /* 5760 ** Since the generic scsi driver only allows us 0.5 second 5761 ** to perform abort of a command, we must look at ccbs about 5762 ** every 0.25 second. 5763 */ 5764 if (np->lasttime + 4*HZ < thistime) { 5765 /* 5766 ** block ncr interrupts 5767 */ 5768 np->lasttime = thistime; 5769 } 5770 5771 #ifdef SCSI_NCR_BROKEN_INTR 5772 if (INB(nc_istat) & (INTF|SIP|DIP)) { 5773 5774 /* 5775 ** Process pending interrupts. 5776 */ 5777 if (DEBUG_FLAGS & DEBUG_TINY) printk ("{"); 5778 ncr_exception (np); 5779 if (DEBUG_FLAGS & DEBUG_TINY) printk ("}"); 5780 } 5781 #endif /* SCSI_NCR_BROKEN_INTR */ 5782 } 5783 5784 /*========================================================== 5785 ** 5786 ** log message for real hard errors 5787 ** 5788 ** "ncr0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc)." 5789 ** " reg: r0 r1 r2 r3 r4 r5 r6 ..... rf." 5790 ** 5791 ** exception register: 5792 ** ds: dstat 5793 ** si: sist 5794 ** 5795 ** SCSI bus lines: 5796 ** so: control lines as driver by NCR. 5797 ** si: control lines as seen by NCR. 5798 ** sd: scsi data lines as seen by NCR. 5799 ** 5800 ** wide/fastmode: 5801 ** sxfer: (see the manual) 5802 ** scntl3: (see the manual) 5803 ** 5804 ** current script command: 5805 ** dsp: script address (relative to start of script). 5806 ** dbc: first word of script command. 5807 ** 5808 ** First 16 register of the chip: 5809 ** r0..rf 5810 ** 5811 **========================================================== 5812 */ 5813 5814 static void ncr_log_hard_error(struct ncb *np, u16 sist, u_char dstat) 5815 { 5816 u32 dsp; 5817 int script_ofs; 5818 int script_size; 5819 char *script_name; 5820 u_char *script_base; 5821 int i; 5822 5823 dsp = INL (nc_dsp); 5824 5825 if (dsp > np->p_script && dsp <= np->p_script + sizeof(struct script)) { 5826 script_ofs = dsp - np->p_script; 5827 script_size = sizeof(struct script); 5828 script_base = (u_char *) np->script0; 5829 script_name = "script"; 5830 } 5831 else if (np->p_scripth < dsp && 5832 dsp <= np->p_scripth + sizeof(struct scripth)) { 5833 script_ofs = dsp - np->p_scripth; 5834 script_size = sizeof(struct scripth); 5835 script_base = (u_char *) np->scripth0; 5836 script_name = "scripth"; 5837 } else { 5838 script_ofs = dsp; 5839 script_size = 0; 5840 script_base = NULL; 5841 script_name = "mem"; 5842 } 5843 5844 printk ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n", 5845 ncr_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist, 5846 (unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl), (unsigned)INB (nc_sbdl), 5847 (unsigned)INB (nc_sxfer),(unsigned)INB (nc_scntl3), script_name, script_ofs, 5848 (unsigned)INL (nc_dbc)); 5849 5850 if (((script_ofs & 3) == 0) && 5851 (unsigned)script_ofs < script_size) { 5852 printk ("%s: script cmd = %08x\n", ncr_name(np), 5853 scr_to_cpu((int) *(ncrcmd *)(script_base + script_ofs))); 5854 } 5855 5856 printk ("%s: regdump:", ncr_name(np)); 5857 for (i=0; i<16;i++) 5858 printk (" %02x", (unsigned)INB_OFF(i)); 5859 printk (".\n"); 5860 } 5861 5862 /*============================================================ 5863 ** 5864 ** ncr chip exception handler. 5865 ** 5866 **============================================================ 5867 ** 5868 ** In normal cases, interrupt conditions occur one at a 5869 ** time. The ncr is able to stack in some extra registers 5870 ** other interrupts that will occur after the first one. 5871 ** But, several interrupts may occur at the same time. 5872 ** 5873 ** We probably should only try to deal with the normal 5874 ** case, but it seems that multiple interrupts occur in 5875 ** some cases that are not abnormal at all. 5876 ** 5877 ** The most frequent interrupt condition is Phase Mismatch. 5878 ** We should want to service this interrupt quickly. 5879 ** A SCSI parity error may be delivered at the same time. 5880 ** The SIR interrupt is not very frequent in this driver, 5881 ** since the INTFLY is likely used for command completion 5882 ** signaling. 5883 ** The Selection Timeout interrupt may be triggered with 5884 ** IID and/or UDC. 5885 ** The SBMC interrupt (SCSI Bus Mode Change) may probably 5886 ** occur at any time. 5887 ** 5888 ** This handler try to deal as cleverly as possible with all 5889 ** the above. 5890 ** 5891 **============================================================ 5892 */ 5893 5894 void ncr_exception (struct ncb *np) 5895 { 5896 u_char istat, dstat; 5897 u16 sist; 5898 int i; 5899 5900 /* 5901 ** interrupt on the fly ? 5902 ** Since the global header may be copied back to a CCB 5903 ** using a posted PCI memory write, the last operation on 5904 ** the istat register is a READ in order to flush posted 5905 ** PCI write commands. 5906 */ 5907 istat = INB (nc_istat); 5908 if (istat & INTF) { 5909 OUTB (nc_istat, (istat & SIGP) | INTF); 5910 istat = INB (nc_istat); 5911 if (DEBUG_FLAGS & DEBUG_TINY) printk ("F "); 5912 ncr_wakeup_done (np); 5913 } 5914 5915 if (!(istat & (SIP|DIP))) 5916 return; 5917 5918 if (istat & CABRT) 5919 OUTB (nc_istat, CABRT); 5920 5921 /* 5922 ** Steinbach's Guideline for Systems Programming: 5923 ** Never test for an error condition you don't know how to handle. 5924 */ 5925 5926 sist = (istat & SIP) ? INW (nc_sist) : 0; 5927 dstat = (istat & DIP) ? INB (nc_dstat) : 0; 5928 5929 if (DEBUG_FLAGS & DEBUG_TINY) 5930 printk ("<%d|%x:%x|%x:%x>", 5931 (int)INB(nc_scr0), 5932 dstat,sist, 5933 (unsigned)INL(nc_dsp), 5934 (unsigned)INL(nc_dbc)); 5935 5936 /*======================================================== 5937 ** First, interrupts we want to service cleanly. 5938 ** 5939 ** Phase mismatch is the most frequent interrupt, and 5940 ** so we have to service it as quickly and as cleanly 5941 ** as possible. 5942 ** Programmed interrupts are rarely used in this driver, 5943 ** but we must handle them cleanly anyway. 5944 ** We try to deal with PAR and SBMC combined with 5945 ** some other interrupt(s). 5946 **========================================================= 5947 */ 5948 5949 if (!(sist & (STO|GEN|HTH|SGE|UDC|RST)) && 5950 !(dstat & (MDPE|BF|ABRT|IID))) { 5951 if ((sist & SBMC) && ncr_int_sbmc (np)) 5952 return; 5953 if ((sist & PAR) && ncr_int_par (np)) 5954 return; 5955 if (sist & MA) { 5956 ncr_int_ma (np); 5957 return; 5958 } 5959 if (dstat & SIR) { 5960 ncr_int_sir (np); 5961 return; 5962 } 5963 /* 5964 ** DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 2. 5965 */ 5966 if (!(sist & (SBMC|PAR)) && !(dstat & SSI)) { 5967 printk( "%s: unknown interrupt(s) ignored, " 5968 "ISTAT=%x DSTAT=%x SIST=%x\n", 5969 ncr_name(np), istat, dstat, sist); 5970 return; 5971 } 5972 OUTONB_STD (); 5973 return; 5974 } 5975 5976 /*======================================================== 5977 ** Now, interrupts that need some fixing up. 5978 ** Order and multiple interrupts is so less important. 5979 ** 5980 ** If SRST has been asserted, we just reset the chip. 5981 ** 5982 ** Selection is intirely handled by the chip. If the 5983 ** chip says STO, we trust it. Seems some other 5984 ** interrupts may occur at the same time (UDC, IID), so 5985 ** we ignore them. In any case we do enough fix-up 5986 ** in the service routine. 5987 ** We just exclude some fatal dma errors. 5988 **========================================================= 5989 */ 5990 5991 if (sist & RST) { 5992 ncr_init (np, 1, bootverbose ? "scsi reset" : NULL, HS_RESET); 5993 return; 5994 } 5995 5996 if ((sist & STO) && 5997 !(dstat & (MDPE|BF|ABRT))) { 5998 /* 5999 ** DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 1. 6000 */ 6001 OUTONB (nc_ctest3, CLF); 6002 6003 ncr_int_sto (np); 6004 return; 6005 } 6006 6007 /*========================================================= 6008 ** Now, interrupts we are not able to recover cleanly. 6009 ** (At least for the moment). 6010 ** 6011 ** Do the register dump. 6012 ** Log message for real hard errors. 6013 ** Clear all fifos. 6014 ** For MDPE, BF, ABORT, IID, SGE and HTH we reset the 6015 ** BUS and the chip. 6016 ** We are more soft for UDC. 6017 **========================================================= 6018 */ 6019 6020 if (time_after(jiffies, np->regtime)) { 6021 np->regtime = jiffies + 10*HZ; 6022 for (i = 0; i<sizeof(np->regdump); i++) 6023 ((char*)&np->regdump)[i] = INB_OFF(i); 6024 np->regdump.nc_dstat = dstat; 6025 np->regdump.nc_sist = sist; 6026 } 6027 6028 ncr_log_hard_error(np, sist, dstat); 6029 6030 printk ("%s: have to clear fifos.\n", ncr_name (np)); 6031 OUTB (nc_stest3, TE|CSF); 6032 OUTONB (nc_ctest3, CLF); 6033 6034 if ((sist & (SGE)) || 6035 (dstat & (MDPE|BF|ABRT|IID))) { 6036 ncr_start_reset(np); 6037 return; 6038 } 6039 6040 if (sist & HTH) { 6041 printk ("%s: handshake timeout\n", ncr_name(np)); 6042 ncr_start_reset(np); 6043 return; 6044 } 6045 6046 if (sist & UDC) { 6047 printk ("%s: unexpected disconnect\n", ncr_name(np)); 6048 OUTB (HS_PRT, HS_UNEXPECTED); 6049 OUTL_DSP (NCB_SCRIPT_PHYS (np, cleanup)); 6050 return; 6051 } 6052 6053 /*========================================================= 6054 ** We just miss the cause of the interrupt. :( 6055 ** Print a message. The timeout will do the real work. 6056 **========================================================= 6057 */ 6058 printk ("%s: unknown interrupt\n", ncr_name(np)); 6059 } 6060 6061 /*========================================================== 6062 ** 6063 ** ncr chip exception handler for selection timeout 6064 ** 6065 **========================================================== 6066 ** 6067 ** There seems to be a bug in the 53c810. 6068 ** Although a STO-Interrupt is pending, 6069 ** it continues executing script commands. 6070 ** But it will fail and interrupt (IID) on 6071 ** the next instruction where it's looking 6072 ** for a valid phase. 6073 ** 6074 **---------------------------------------------------------- 6075 */ 6076 6077 void ncr_int_sto (struct ncb *np) 6078 { 6079 u_long dsa; 6080 struct ccb *cp; 6081 if (DEBUG_FLAGS & DEBUG_TINY) printk ("T"); 6082 6083 /* 6084 ** look for ccb and set the status. 6085 */ 6086 6087 dsa = INL (nc_dsa); 6088 cp = np->ccb; 6089 while (cp && (CCB_PHYS (cp, phys) != dsa)) 6090 cp = cp->link_ccb; 6091 6092 if (cp) { 6093 cp-> host_status = HS_SEL_TIMEOUT; 6094 ncr_complete (np, cp); 6095 } 6096 6097 /* 6098 ** repair start queue and jump to start point. 6099 */ 6100 6101 OUTL_DSP (NCB_SCRIPTH_PHYS (np, sto_restart)); 6102 return; 6103 } 6104 6105 /*========================================================== 6106 ** 6107 ** ncr chip exception handler for SCSI bus mode change 6108 ** 6109 **========================================================== 6110 ** 6111 ** spi2-r12 11.2.3 says a transceiver mode change must 6112 ** generate a reset event and a device that detects a reset 6113 ** event shall initiate a hard reset. It says also that a 6114 ** device that detects a mode change shall set data transfer 6115 ** mode to eight bit asynchronous, etc... 6116 ** So, just resetting should be enough. 6117 ** 6118 ** 6119 **---------------------------------------------------------- 6120 */ 6121 6122 static int ncr_int_sbmc (struct ncb *np) 6123 { 6124 u_char scsi_mode = INB (nc_stest4) & SMODE; 6125 6126 if (scsi_mode != np->scsi_mode) { 6127 printk("%s: SCSI bus mode change from %x to %x.\n", 6128 ncr_name(np), np->scsi_mode, scsi_mode); 6129 6130 np->scsi_mode = scsi_mode; 6131 6132 6133 /* 6134 ** Suspend command processing for 1 second and 6135 ** reinitialize all except the chip. 6136 */ 6137 np->settle_time = jiffies + HZ; 6138 ncr_init (np, 0, bootverbose ? "scsi mode change" : NULL, HS_RESET); 6139 return 1; 6140 } 6141 return 0; 6142 } 6143 6144 /*========================================================== 6145 ** 6146 ** ncr chip exception handler for SCSI parity error. 6147 ** 6148 **========================================================== 6149 ** 6150 ** 6151 **---------------------------------------------------------- 6152 */ 6153 6154 static int ncr_int_par (struct ncb *np) 6155 { 6156 u_char hsts = INB (HS_PRT); 6157 u32 dbc = INL (nc_dbc); 6158 u_char sstat1 = INB (nc_sstat1); 6159 int phase = -1; 6160 int msg = -1; 6161 u32 jmp; 6162 6163 printk("%s: SCSI parity error detected: SCR1=%d DBC=%x SSTAT1=%x\n", 6164 ncr_name(np), hsts, dbc, sstat1); 6165 6166 /* 6167 * Ignore the interrupt if the NCR is not connected 6168 * to the SCSI bus, since the right work should have 6169 * been done on unexpected disconnection handling. 6170 */ 6171 if (!(INB (nc_scntl1) & ISCON)) 6172 return 0; 6173 6174 /* 6175 * If the nexus is not clearly identified, reset the bus. 6176 * We will try to do better later. 6177 */ 6178 if (hsts & HS_INVALMASK) 6179 goto reset_all; 6180 6181 /* 6182 * If the SCSI parity error occurs in MSG IN phase, prepare a 6183 * MSG PARITY message. Otherwise, prepare a INITIATOR DETECTED 6184 * ERROR message and let the device decide to retry the command 6185 * or to terminate with check condition. If we were in MSG IN 6186 * phase waiting for the response of a negotiation, we will 6187 * get SIR_NEGO_FAILED at dispatch. 6188 */ 6189 if (!(dbc & 0xc0000000)) 6190 phase = (dbc >> 24) & 7; 6191 if (phase == 7) 6192 msg = MSG_PARITY_ERROR; 6193 else 6194 msg = INITIATOR_ERROR; 6195 6196 6197 /* 6198 * If the NCR stopped on a MOVE ^ DATA_IN, we jump to a 6199 * script that will ignore all data in bytes until phase 6200 * change, since we are not sure the chip will wait the phase 6201 * change prior to delivering the interrupt. 6202 */ 6203 if (phase == 1) 6204 jmp = NCB_SCRIPTH_PHYS (np, par_err_data_in); 6205 else 6206 jmp = NCB_SCRIPTH_PHYS (np, par_err_other); 6207 6208 OUTONB (nc_ctest3, CLF ); /* clear dma fifo */ 6209 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ 6210 6211 np->msgout[0] = msg; 6212 OUTL_DSP (jmp); 6213 return 1; 6214 6215 reset_all: 6216 ncr_start_reset(np); 6217 return 1; 6218 } 6219 6220 /*========================================================== 6221 ** 6222 ** 6223 ** ncr chip exception handler for phase errors. 6224 ** 6225 ** 6226 **========================================================== 6227 ** 6228 ** We have to construct a new transfer descriptor, 6229 ** to transfer the rest of the current block. 6230 ** 6231 **---------------------------------------------------------- 6232 */ 6233 6234 static void ncr_int_ma (struct ncb *np) 6235 { 6236 u32 dbc; 6237 u32 rest; 6238 u32 dsp; 6239 u32 dsa; 6240 u32 nxtdsp; 6241 u32 newtmp; 6242 u32 *vdsp; 6243 u32 oadr, olen; 6244 u32 *tblp; 6245 ncrcmd *newcmd; 6246 u_char cmd, sbcl; 6247 struct ccb *cp; 6248 6249 dsp = INL (nc_dsp); 6250 dbc = INL (nc_dbc); 6251 sbcl = INB (nc_sbcl); 6252 6253 cmd = dbc >> 24; 6254 rest = dbc & 0xffffff; 6255 6256 /* 6257 ** Take into account dma fifo and various buffers and latches, 6258 ** only if the interrupted phase is an OUTPUT phase. 6259 */ 6260 6261 if ((cmd & 1) == 0) { 6262 u_char ctest5, ss0, ss2; 6263 u16 delta; 6264 6265 ctest5 = (np->rv_ctest5 & DFS) ? INB (nc_ctest5) : 0; 6266 if (ctest5 & DFS) 6267 delta=(((ctest5 << 8) | (INB (nc_dfifo) & 0xff)) - rest) & 0x3ff; 6268 else 6269 delta=(INB (nc_dfifo) - rest) & 0x7f; 6270 6271 /* 6272 ** The data in the dma fifo has not been transferred to 6273 ** the target -> add the amount to the rest 6274 ** and clear the data. 6275 ** Check the sstat2 register in case of wide transfer. 6276 */ 6277 6278 rest += delta; 6279 ss0 = INB (nc_sstat0); 6280 if (ss0 & OLF) rest++; 6281 if (ss0 & ORF) rest++; 6282 if (INB(nc_scntl3) & EWS) { 6283 ss2 = INB (nc_sstat2); 6284 if (ss2 & OLF1) rest++; 6285 if (ss2 & ORF1) rest++; 6286 } 6287 6288 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE)) 6289 printk ("P%x%x RL=%d D=%d SS0=%x ", cmd&7, sbcl&7, 6290 (unsigned) rest, (unsigned) delta, ss0); 6291 6292 } else { 6293 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE)) 6294 printk ("P%x%x RL=%d ", cmd&7, sbcl&7, rest); 6295 } 6296 6297 /* 6298 ** Clear fifos. 6299 */ 6300 OUTONB (nc_ctest3, CLF ); /* clear dma fifo */ 6301 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ 6302 6303 /* 6304 ** locate matching cp. 6305 ** if the interrupted phase is DATA IN or DATA OUT, 6306 ** trust the global header. 6307 */ 6308 dsa = INL (nc_dsa); 6309 if (!(cmd & 6)) { 6310 cp = np->header.cp; 6311 if (CCB_PHYS(cp, phys) != dsa) 6312 cp = NULL; 6313 } else { 6314 cp = np->ccb; 6315 while (cp && (CCB_PHYS (cp, phys) != dsa)) 6316 cp = cp->link_ccb; 6317 } 6318 6319 /* 6320 ** try to find the interrupted script command, 6321 ** and the address at which to continue. 6322 */ 6323 vdsp = NULL; 6324 nxtdsp = 0; 6325 if (dsp > np->p_script && 6326 dsp <= np->p_script + sizeof(struct script)) { 6327 vdsp = (u32 *)((char*)np->script0 + (dsp-np->p_script-8)); 6328 nxtdsp = dsp; 6329 } 6330 else if (dsp > np->p_scripth && 6331 dsp <= np->p_scripth + sizeof(struct scripth)) { 6332 vdsp = (u32 *)((char*)np->scripth0 + (dsp-np->p_scripth-8)); 6333 nxtdsp = dsp; 6334 } 6335 else if (cp) { 6336 if (dsp == CCB_PHYS (cp, patch[2])) { 6337 vdsp = &cp->patch[0]; 6338 nxtdsp = scr_to_cpu(vdsp[3]); 6339 } 6340 else if (dsp == CCB_PHYS (cp, patch[6])) { 6341 vdsp = &cp->patch[4]; 6342 nxtdsp = scr_to_cpu(vdsp[3]); 6343 } 6344 } 6345 6346 /* 6347 ** log the information 6348 */ 6349 6350 if (DEBUG_FLAGS & DEBUG_PHASE) { 6351 printk ("\nCP=%p CP2=%p DSP=%x NXT=%x VDSP=%p CMD=%x ", 6352 cp, np->header.cp, 6353 (unsigned)dsp, 6354 (unsigned)nxtdsp, vdsp, cmd); 6355 } 6356 6357 /* 6358 ** cp=0 means that the DSA does not point to a valid control 6359 ** block. This should not happen since we donnot use multi-byte 6360 ** move while we are being reselected ot after command complete. 6361 ** We are not able to recover from such a phase error. 6362 */ 6363 if (!cp) { 6364 printk ("%s: SCSI phase error fixup: " 6365 "CCB already dequeued (0x%08lx)\n", 6366 ncr_name (np), (u_long) np->header.cp); 6367 goto reset_all; 6368 } 6369 6370 /* 6371 ** get old startaddress and old length. 6372 */ 6373 6374 oadr = scr_to_cpu(vdsp[1]); 6375 6376 if (cmd & 0x10) { /* Table indirect */ 6377 tblp = (u32 *) ((char*) &cp->phys + oadr); 6378 olen = scr_to_cpu(tblp[0]); 6379 oadr = scr_to_cpu(tblp[1]); 6380 } else { 6381 tblp = (u32 *) 0; 6382 olen = scr_to_cpu(vdsp[0]) & 0xffffff; 6383 } 6384 6385 if (DEBUG_FLAGS & DEBUG_PHASE) { 6386 printk ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n", 6387 (unsigned) (scr_to_cpu(vdsp[0]) >> 24), 6388 tblp, 6389 (unsigned) olen, 6390 (unsigned) oadr); 6391 } 6392 6393 /* 6394 ** check cmd against assumed interrupted script command. 6395 */ 6396 6397 if (cmd != (scr_to_cpu(vdsp[0]) >> 24)) { 6398 PRINT_ADDR(cp->cmd, "internal error: cmd=%02x != %02x=(vdsp[0] " 6399 ">> 24)\n", cmd, scr_to_cpu(vdsp[0]) >> 24); 6400 6401 goto reset_all; 6402 } 6403 6404 /* 6405 ** cp != np->header.cp means that the header of the CCB 6406 ** currently being processed has not yet been copied to 6407 ** the global header area. That may happen if the device did 6408 ** not accept all our messages after having been selected. 6409 */ 6410 if (cp != np->header.cp) { 6411 printk ("%s: SCSI phase error fixup: " 6412 "CCB address mismatch (0x%08lx != 0x%08lx)\n", 6413 ncr_name (np), (u_long) cp, (u_long) np->header.cp); 6414 } 6415 6416 /* 6417 ** if old phase not dataphase, leave here. 6418 */ 6419 6420 if (cmd & 0x06) { 6421 PRINT_ADDR(cp->cmd, "phase change %x-%x %d@%08x resid=%d.\n", 6422 cmd&7, sbcl&7, (unsigned)olen, 6423 (unsigned)oadr, (unsigned)rest); 6424 goto unexpected_phase; 6425 } 6426 6427 /* 6428 ** choose the correct patch area. 6429 ** if savep points to one, choose the other. 6430 */ 6431 6432 newcmd = cp->patch; 6433 newtmp = CCB_PHYS (cp, patch); 6434 if (newtmp == scr_to_cpu(cp->phys.header.savep)) { 6435 newcmd = &cp->patch[4]; 6436 newtmp = CCB_PHYS (cp, patch[4]); 6437 } 6438 6439 /* 6440 ** fillin the commands 6441 */ 6442 6443 newcmd[0] = cpu_to_scr(((cmd & 0x0f) << 24) | rest); 6444 newcmd[1] = cpu_to_scr(oadr + olen - rest); 6445 newcmd[2] = cpu_to_scr(SCR_JUMP); 6446 newcmd[3] = cpu_to_scr(nxtdsp); 6447 6448 if (DEBUG_FLAGS & DEBUG_PHASE) { 6449 PRINT_ADDR(cp->cmd, "newcmd[%d] %x %x %x %x.\n", 6450 (int) (newcmd - cp->patch), 6451 (unsigned)scr_to_cpu(newcmd[0]), 6452 (unsigned)scr_to_cpu(newcmd[1]), 6453 (unsigned)scr_to_cpu(newcmd[2]), 6454 (unsigned)scr_to_cpu(newcmd[3])); 6455 } 6456 /* 6457 ** fake the return address (to the patch). 6458 ** and restart script processor at dispatcher. 6459 */ 6460 OUTL (nc_temp, newtmp); 6461 OUTL_DSP (NCB_SCRIPT_PHYS (np, dispatch)); 6462 return; 6463 6464 /* 6465 ** Unexpected phase changes that occurs when the current phase 6466 ** is not a DATA IN or DATA OUT phase are due to error conditions. 6467 ** Such event may only happen when the SCRIPTS is using a 6468 ** multibyte SCSI MOVE. 6469 ** 6470 ** Phase change Some possible cause 6471 ** 6472 ** COMMAND --> MSG IN SCSI parity error detected by target. 6473 ** COMMAND --> STATUS Bad command or refused by target. 6474 ** MSG OUT --> MSG IN Message rejected by target. 6475 ** MSG OUT --> COMMAND Bogus target that discards extended 6476 ** negotiation messages. 6477 ** 6478 ** The code below does not care of the new phase and so 6479 ** trusts the target. Why to annoy it ? 6480 ** If the interrupted phase is COMMAND phase, we restart at 6481 ** dispatcher. 6482 ** If a target does not get all the messages after selection, 6483 ** the code assumes blindly that the target discards extended 6484 ** messages and clears the negotiation status. 6485 ** If the target does not want all our response to negotiation, 6486 ** we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids 6487 ** bloat for such a should_not_happen situation). 6488 ** In all other situation, we reset the BUS. 6489 ** Are these assumptions reasonable ? (Wait and see ...) 6490 */ 6491 unexpected_phase: 6492 dsp -= 8; 6493 nxtdsp = 0; 6494 6495 switch (cmd & 7) { 6496 case 2: /* COMMAND phase */ 6497 nxtdsp = NCB_SCRIPT_PHYS (np, dispatch); 6498 break; 6499 #if 0 6500 case 3: /* STATUS phase */ 6501 nxtdsp = NCB_SCRIPT_PHYS (np, dispatch); 6502 break; 6503 #endif 6504 case 6: /* MSG OUT phase */ 6505 np->scripth->nxtdsp_go_on[0] = cpu_to_scr(dsp + 8); 6506 if (dsp == NCB_SCRIPT_PHYS (np, send_ident)) { 6507 cp->host_status = HS_BUSY; 6508 nxtdsp = NCB_SCRIPTH_PHYS (np, clratn_go_on); 6509 } 6510 else if (dsp == NCB_SCRIPTH_PHYS (np, send_wdtr) || 6511 dsp == NCB_SCRIPTH_PHYS (np, send_sdtr)) { 6512 nxtdsp = NCB_SCRIPTH_PHYS (np, nego_bad_phase); 6513 } 6514 break; 6515 #if 0 6516 case 7: /* MSG IN phase */ 6517 nxtdsp = NCB_SCRIPT_PHYS (np, clrack); 6518 break; 6519 #endif 6520 } 6521 6522 if (nxtdsp) { 6523 OUTL_DSP (nxtdsp); 6524 return; 6525 } 6526 6527 reset_all: 6528 ncr_start_reset(np); 6529 } 6530 6531 6532 static void ncr_sir_to_redo(struct ncb *np, int num, struct ccb *cp) 6533 { 6534 struct scsi_cmnd *cmd = cp->cmd; 6535 struct tcb *tp = &np->target[cmd->device->id]; 6536 struct lcb *lp = tp->lp[cmd->device->lun]; 6537 struct list_head *qp; 6538 struct ccb * cp2; 6539 int disc_cnt = 0; 6540 int busy_cnt = 0; 6541 u32 startp; 6542 u_char s_status = INB (SS_PRT); 6543 6544 /* 6545 ** Let the SCRIPTS processor skip all not yet started CCBs, 6546 ** and count disconnected CCBs. Since the busy queue is in 6547 ** the same order as the chip start queue, disconnected CCBs 6548 ** are before cp and busy ones after. 6549 */ 6550 if (lp) { 6551 qp = lp->busy_ccbq.prev; 6552 while (qp != &lp->busy_ccbq) { 6553 cp2 = list_entry(qp, struct ccb, link_ccbq); 6554 qp = qp->prev; 6555 ++busy_cnt; 6556 if (cp2 == cp) 6557 break; 6558 cp2->start.schedule.l_paddr = 6559 cpu_to_scr(NCB_SCRIPTH_PHYS (np, skip)); 6560 } 6561 lp->held_ccb = cp; /* Requeue when this one completes */ 6562 disc_cnt = lp->queuedccbs - busy_cnt; 6563 } 6564 6565 switch(s_status) { 6566 default: /* Just for safety, should never happen */ 6567 case S_QUEUE_FULL: 6568 /* 6569 ** Decrease number of tags to the number of 6570 ** disconnected commands. 6571 */ 6572 if (!lp) 6573 goto out; 6574 if (bootverbose >= 1) { 6575 PRINT_ADDR(cmd, "QUEUE FULL! %d busy, %d disconnected " 6576 "CCBs\n", busy_cnt, disc_cnt); 6577 } 6578 if (disc_cnt < lp->numtags) { 6579 lp->numtags = disc_cnt > 2 ? disc_cnt : 2; 6580 lp->num_good = 0; 6581 ncr_setup_tags (np, cmd->device); 6582 } 6583 /* 6584 ** Requeue the command to the start queue. 6585 ** If any disconnected commands, 6586 ** Clear SIGP. 6587 ** Jump to reselect. 6588 */ 6589 cp->phys.header.savep = cp->startp; 6590 cp->host_status = HS_BUSY; 6591 cp->scsi_status = S_ILLEGAL; 6592 6593 ncr_put_start_queue(np, cp); 6594 if (disc_cnt) 6595 INB (nc_ctest2); /* Clear SIGP */ 6596 OUTL_DSP (NCB_SCRIPT_PHYS (np, reselect)); 6597 return; 6598 case S_TERMINATED: 6599 case S_CHECK_COND: 6600 /* 6601 ** If we were requesting sense, give up. 6602 */ 6603 if (cp->auto_sense) 6604 goto out; 6605 6606 /* 6607 ** Device returned CHECK CONDITION status. 6608 ** Prepare all needed data strutures for getting 6609 ** sense data. 6610 ** 6611 ** identify message 6612 */ 6613 cp->scsi_smsg2[0] = IDENTIFY(0, cmd->device->lun); 6614 cp->phys.smsg.addr = cpu_to_scr(CCB_PHYS (cp, scsi_smsg2)); 6615 cp->phys.smsg.size = cpu_to_scr(1); 6616 6617 /* 6618 ** sense command 6619 */ 6620 cp->phys.cmd.addr = cpu_to_scr(CCB_PHYS (cp, sensecmd)); 6621 cp->phys.cmd.size = cpu_to_scr(6); 6622 6623 /* 6624 ** patch requested size into sense command 6625 */ 6626 cp->sensecmd[0] = 0x03; 6627 cp->sensecmd[1] = (cmd->device->lun & 0x7) << 5; 6628 cp->sensecmd[4] = sizeof(cp->sense_buf); 6629 6630 /* 6631 ** sense data 6632 */ 6633 memset(cp->sense_buf, 0, sizeof(cp->sense_buf)); 6634 cp->phys.sense.addr = cpu_to_scr(CCB_PHYS(cp,sense_buf[0])); 6635 cp->phys.sense.size = cpu_to_scr(sizeof(cp->sense_buf)); 6636 6637 /* 6638 ** requeue the command. 6639 */ 6640 startp = cpu_to_scr(NCB_SCRIPTH_PHYS (np, sdata_in)); 6641 6642 cp->phys.header.savep = startp; 6643 cp->phys.header.goalp = startp + 24; 6644 cp->phys.header.lastp = startp; 6645 cp->phys.header.wgoalp = startp + 24; 6646 cp->phys.header.wlastp = startp; 6647 6648 cp->host_status = HS_BUSY; 6649 cp->scsi_status = S_ILLEGAL; 6650 cp->auto_sense = s_status; 6651 6652 cp->start.schedule.l_paddr = 6653 cpu_to_scr(NCB_SCRIPT_PHYS (np, select)); 6654 6655 /* 6656 ** Select without ATN for quirky devices. 6657 */ 6658 if (cmd->device->select_no_atn) 6659 cp->start.schedule.l_paddr = 6660 cpu_to_scr(NCB_SCRIPTH_PHYS (np, select_no_atn)); 6661 6662 ncr_put_start_queue(np, cp); 6663 6664 OUTL_DSP (NCB_SCRIPT_PHYS (np, start)); 6665 return; 6666 } 6667 6668 out: 6669 OUTONB_STD (); 6670 return; 6671 } 6672 6673 6674 /*========================================================== 6675 ** 6676 ** 6677 ** ncr chip exception handler for programmed interrupts. 6678 ** 6679 ** 6680 **========================================================== 6681 */ 6682 6683 void ncr_int_sir (struct ncb *np) 6684 { 6685 u_char scntl3; 6686 u_char chg, ofs, per, fak, wide; 6687 u_char num = INB (nc_dsps); 6688 struct ccb *cp=NULL; 6689 u_long dsa = INL (nc_dsa); 6690 u_char target = INB (nc_sdid) & 0x0f; 6691 struct tcb *tp = &np->target[target]; 6692 struct scsi_target *starget = tp->starget; 6693 6694 if (DEBUG_FLAGS & DEBUG_TINY) printk ("I#%d", num); 6695 6696 switch (num) { 6697 case SIR_INTFLY: 6698 /* 6699 ** This is used for HP Zalon/53c720 where INTFLY 6700 ** operation is currently broken. 6701 */ 6702 ncr_wakeup_done(np); 6703 #ifdef SCSI_NCR_CCB_DONE_SUPPORT 6704 OUTL(nc_dsp, NCB_SCRIPT_PHYS (np, done_end) + 8); 6705 #else 6706 OUTL(nc_dsp, NCB_SCRIPT_PHYS (np, start)); 6707 #endif 6708 return; 6709 case SIR_RESEL_NO_MSG_IN: 6710 case SIR_RESEL_NO_IDENTIFY: 6711 /* 6712 ** If devices reselecting without sending an IDENTIFY 6713 ** message still exist, this should help. 6714 ** We just assume lun=0, 1 CCB, no tag. 6715 */ 6716 if (tp->lp[0]) { 6717 OUTL_DSP (scr_to_cpu(tp->lp[0]->jump_ccb[0])); 6718 return; 6719 } 6720 fallthrough; 6721 case SIR_RESEL_BAD_TARGET: /* Will send a TARGET RESET message */ 6722 case SIR_RESEL_BAD_LUN: /* Will send a TARGET RESET message */ 6723 case SIR_RESEL_BAD_I_T_L_Q: /* Will send an ABORT TAG message */ 6724 case SIR_RESEL_BAD_I_T_L: /* Will send an ABORT message */ 6725 printk ("%s:%d: SIR %d, " 6726 "incorrect nexus identification on reselection\n", 6727 ncr_name (np), target, num); 6728 goto out; 6729 case SIR_DONE_OVERFLOW: 6730 printk ("%s:%d: SIR %d, " 6731 "CCB done queue overflow\n", 6732 ncr_name (np), target, num); 6733 goto out; 6734 case SIR_BAD_STATUS: 6735 cp = np->header.cp; 6736 if (!cp || CCB_PHYS (cp, phys) != dsa) 6737 goto out; 6738 ncr_sir_to_redo(np, num, cp); 6739 return; 6740 default: 6741 /* 6742 ** lookup the ccb 6743 */ 6744 cp = np->ccb; 6745 while (cp && (CCB_PHYS (cp, phys) != dsa)) 6746 cp = cp->link_ccb; 6747 6748 BUG_ON(!cp); 6749 BUG_ON(cp != np->header.cp); 6750 6751 if (!cp || cp != np->header.cp) 6752 goto out; 6753 } 6754 6755 switch (num) { 6756 /*----------------------------------------------------------------------------- 6757 ** 6758 ** Was Sie schon immer ueber transfermode negotiation wissen wollten ... 6759 ** ("Everything you've always wanted to know about transfer mode 6760 ** negotiation") 6761 ** 6762 ** We try to negotiate sync and wide transfer only after 6763 ** a successful inquire command. We look at byte 7 of the 6764 ** inquire data to determine the capabilities of the target. 6765 ** 6766 ** When we try to negotiate, we append the negotiation message 6767 ** to the identify and (maybe) simple tag message. 6768 ** The host status field is set to HS_NEGOTIATE to mark this 6769 ** situation. 6770 ** 6771 ** If the target doesn't answer this message immediately 6772 ** (as required by the standard), the SIR_NEGO_FAIL interrupt 6773 ** will be raised eventually. 6774 ** The handler removes the HS_NEGOTIATE status, and sets the 6775 ** negotiated value to the default (async / nowide). 6776 ** 6777 ** If we receive a matching answer immediately, we check it 6778 ** for validity, and set the values. 6779 ** 6780 ** If we receive a Reject message immediately, we assume the 6781 ** negotiation has failed, and fall back to standard values. 6782 ** 6783 ** If we receive a negotiation message while not in HS_NEGOTIATE 6784 ** state, it's a target initiated negotiation. We prepare a 6785 ** (hopefully) valid answer, set our parameters, and send back 6786 ** this answer to the target. 6787 ** 6788 ** If the target doesn't fetch the answer (no message out phase), 6789 ** we assume the negotiation has failed, and fall back to default 6790 ** settings. 6791 ** 6792 ** When we set the values, we adjust them in all ccbs belonging 6793 ** to this target, in the controller's register, and in the "phys" 6794 ** field of the controller's struct ncb. 6795 ** 6796 ** Possible cases: hs sir msg_in value send goto 6797 ** We try to negotiate: 6798 ** -> target doesn't msgin NEG FAIL noop defa. - dispatch 6799 ** -> target rejected our msg NEG FAIL reject defa. - dispatch 6800 ** -> target answered (ok) NEG SYNC sdtr set - clrack 6801 ** -> target answered (!ok) NEG SYNC sdtr defa. REJ--->msg_bad 6802 ** -> target answered (ok) NEG WIDE wdtr set - clrack 6803 ** -> target answered (!ok) NEG WIDE wdtr defa. REJ--->msg_bad 6804 ** -> any other msgin NEG FAIL noop defa. - dispatch 6805 ** 6806 ** Target tries to negotiate: 6807 ** -> incoming message --- SYNC sdtr set SDTR - 6808 ** -> incoming message --- WIDE wdtr set WDTR - 6809 ** We sent our answer: 6810 ** -> target doesn't msgout --- PROTO ? defa. - dispatch 6811 ** 6812 **----------------------------------------------------------------------------- 6813 */ 6814 6815 case SIR_NEGO_FAILED: 6816 /*------------------------------------------------------- 6817 ** 6818 ** Negotiation failed. 6819 ** Target doesn't send an answer message, 6820 ** or target rejected our message. 6821 ** 6822 ** Remove negotiation request. 6823 ** 6824 **------------------------------------------------------- 6825 */ 6826 OUTB (HS_PRT, HS_BUSY); 6827 6828 fallthrough; 6829 6830 case SIR_NEGO_PROTO: 6831 /*------------------------------------------------------- 6832 ** 6833 ** Negotiation failed. 6834 ** Target doesn't fetch the answer message. 6835 ** 6836 **------------------------------------------------------- 6837 */ 6838 6839 if (DEBUG_FLAGS & DEBUG_NEGO) { 6840 PRINT_ADDR(cp->cmd, "negotiation failed sir=%x " 6841 "status=%x.\n", num, cp->nego_status); 6842 } 6843 6844 /* 6845 ** any error in negotiation: 6846 ** fall back to default mode. 6847 */ 6848 switch (cp->nego_status) { 6849 6850 case NS_SYNC: 6851 spi_period(starget) = 0; 6852 spi_offset(starget) = 0; 6853 ncr_setsync (np, cp, 0, 0xe0); 6854 break; 6855 6856 case NS_WIDE: 6857 spi_width(starget) = 0; 6858 ncr_setwide (np, cp, 0, 0); 6859 break; 6860 6861 } 6862 np->msgin [0] = NOP; 6863 np->msgout[0] = NOP; 6864 cp->nego_status = 0; 6865 break; 6866 6867 case SIR_NEGO_SYNC: 6868 if (DEBUG_FLAGS & DEBUG_NEGO) { 6869 ncr_print_msg(cp, "sync msgin", np->msgin); 6870 } 6871 6872 chg = 0; 6873 per = np->msgin[3]; 6874 ofs = np->msgin[4]; 6875 if (ofs==0) per=255; 6876 6877 /* 6878 ** if target sends SDTR message, 6879 ** it CAN transfer synch. 6880 */ 6881 6882 if (ofs && starget) 6883 spi_support_sync(starget) = 1; 6884 6885 /* 6886 ** check values against driver limits. 6887 */ 6888 6889 if (per < np->minsync) 6890 {chg = 1; per = np->minsync;} 6891 if (per < tp->minsync) 6892 {chg = 1; per = tp->minsync;} 6893 if (ofs > tp->maxoffs) 6894 {chg = 1; ofs = tp->maxoffs;} 6895 6896 /* 6897 ** Check against controller limits. 6898 */ 6899 fak = 7; 6900 scntl3 = 0; 6901 if (ofs != 0) { 6902 ncr_getsync(np, per, &fak, &scntl3); 6903 if (fak > 7) { 6904 chg = 1; 6905 ofs = 0; 6906 } 6907 } 6908 if (ofs == 0) { 6909 fak = 7; 6910 per = 0; 6911 scntl3 = 0; 6912 tp->minsync = 0; 6913 } 6914 6915 if (DEBUG_FLAGS & DEBUG_NEGO) { 6916 PRINT_ADDR(cp->cmd, "sync: per=%d scntl3=0x%x ofs=%d " 6917 "fak=%d chg=%d.\n", per, scntl3, ofs, fak, chg); 6918 } 6919 6920 if (INB (HS_PRT) == HS_NEGOTIATE) { 6921 OUTB (HS_PRT, HS_BUSY); 6922 switch (cp->nego_status) { 6923 6924 case NS_SYNC: 6925 /* This was an answer message */ 6926 if (chg) { 6927 /* Answer wasn't acceptable. */ 6928 spi_period(starget) = 0; 6929 spi_offset(starget) = 0; 6930 ncr_setsync(np, cp, 0, 0xe0); 6931 OUTL_DSP(NCB_SCRIPT_PHYS (np, msg_bad)); 6932 } else { 6933 /* Answer is ok. */ 6934 spi_period(starget) = per; 6935 spi_offset(starget) = ofs; 6936 ncr_setsync(np, cp, scntl3, (fak<<5)|ofs); 6937 OUTL_DSP(NCB_SCRIPT_PHYS (np, clrack)); 6938 } 6939 return; 6940 6941 case NS_WIDE: 6942 spi_width(starget) = 0; 6943 ncr_setwide(np, cp, 0, 0); 6944 break; 6945 } 6946 } 6947 6948 /* 6949 ** It was a request. Set value and 6950 ** prepare an answer message 6951 */ 6952 6953 spi_period(starget) = per; 6954 spi_offset(starget) = ofs; 6955 ncr_setsync(np, cp, scntl3, (fak<<5)|ofs); 6956 6957 spi_populate_sync_msg(np->msgout, per, ofs); 6958 cp->nego_status = NS_SYNC; 6959 6960 if (DEBUG_FLAGS & DEBUG_NEGO) { 6961 ncr_print_msg(cp, "sync msgout", np->msgout); 6962 } 6963 6964 if (!ofs) { 6965 OUTL_DSP (NCB_SCRIPT_PHYS (np, msg_bad)); 6966 return; 6967 } 6968 np->msgin [0] = NOP; 6969 6970 break; 6971 6972 case SIR_NEGO_WIDE: 6973 /* 6974 ** Wide request message received. 6975 */ 6976 if (DEBUG_FLAGS & DEBUG_NEGO) { 6977 ncr_print_msg(cp, "wide msgin", np->msgin); 6978 } 6979 6980 /* 6981 ** get requested values. 6982 */ 6983 6984 chg = 0; 6985 wide = np->msgin[3]; 6986 6987 /* 6988 ** if target sends WDTR message, 6989 ** it CAN transfer wide. 6990 */ 6991 6992 if (wide && starget) 6993 spi_support_wide(starget) = 1; 6994 6995 /* 6996 ** check values against driver limits. 6997 */ 6998 6999 if (wide > tp->usrwide) 7000 {chg = 1; wide = tp->usrwide;} 7001 7002 if (DEBUG_FLAGS & DEBUG_NEGO) { 7003 PRINT_ADDR(cp->cmd, "wide: wide=%d chg=%d.\n", wide, 7004 chg); 7005 } 7006 7007 if (INB (HS_PRT) == HS_NEGOTIATE) { 7008 OUTB (HS_PRT, HS_BUSY); 7009 switch (cp->nego_status) { 7010 7011 case NS_WIDE: 7012 /* 7013 ** This was an answer message 7014 */ 7015 if (chg) { 7016 /* Answer wasn't acceptable. */ 7017 spi_width(starget) = 0; 7018 ncr_setwide(np, cp, 0, 1); 7019 OUTL_DSP (NCB_SCRIPT_PHYS (np, msg_bad)); 7020 } else { 7021 /* Answer is ok. */ 7022 spi_width(starget) = wide; 7023 ncr_setwide(np, cp, wide, 1); 7024 OUTL_DSP (NCB_SCRIPT_PHYS (np, clrack)); 7025 } 7026 return; 7027 7028 case NS_SYNC: 7029 spi_period(starget) = 0; 7030 spi_offset(starget) = 0; 7031 ncr_setsync(np, cp, 0, 0xe0); 7032 break; 7033 } 7034 } 7035 7036 /* 7037 ** It was a request, set value and 7038 ** prepare an answer message 7039 */ 7040 7041 spi_width(starget) = wide; 7042 ncr_setwide(np, cp, wide, 1); 7043 spi_populate_width_msg(np->msgout, wide); 7044 7045 np->msgin [0] = NOP; 7046 7047 cp->nego_status = NS_WIDE; 7048 7049 if (DEBUG_FLAGS & DEBUG_NEGO) { 7050 ncr_print_msg(cp, "wide msgout", np->msgin); 7051 } 7052 break; 7053 7054 /*-------------------------------------------------------------------- 7055 ** 7056 ** Processing of special messages 7057 ** 7058 **-------------------------------------------------------------------- 7059 */ 7060 7061 case SIR_REJECT_RECEIVED: 7062 /*----------------------------------------------- 7063 ** 7064 ** We received a MESSAGE_REJECT. 7065 ** 7066 **----------------------------------------------- 7067 */ 7068 7069 PRINT_ADDR(cp->cmd, "MESSAGE_REJECT received (%x:%x).\n", 7070 (unsigned)scr_to_cpu(np->lastmsg), np->msgout[0]); 7071 break; 7072 7073 case SIR_REJECT_SENT: 7074 /*----------------------------------------------- 7075 ** 7076 ** We received an unknown message 7077 ** 7078 **----------------------------------------------- 7079 */ 7080 7081 ncr_print_msg(cp, "MESSAGE_REJECT sent for", np->msgin); 7082 break; 7083 7084 /*-------------------------------------------------------------------- 7085 ** 7086 ** Processing of special messages 7087 ** 7088 **-------------------------------------------------------------------- 7089 */ 7090 7091 case SIR_IGN_RESIDUE: 7092 /*----------------------------------------------- 7093 ** 7094 ** We received an IGNORE RESIDUE message, 7095 ** which couldn't be handled by the script. 7096 ** 7097 **----------------------------------------------- 7098 */ 7099 7100 PRINT_ADDR(cp->cmd, "IGNORE_WIDE_RESIDUE received, but not yet " 7101 "implemented.\n"); 7102 break; 7103 #if 0 7104 case SIR_MISSING_SAVE: 7105 /*----------------------------------------------- 7106 ** 7107 ** We received an DISCONNECT message, 7108 ** but the datapointer wasn't saved before. 7109 ** 7110 **----------------------------------------------- 7111 */ 7112 7113 PRINT_ADDR(cp->cmd, "DISCONNECT received, but datapointer " 7114 "not saved: data=%x save=%x goal=%x.\n", 7115 (unsigned) INL (nc_temp), 7116 (unsigned) scr_to_cpu(np->header.savep), 7117 (unsigned) scr_to_cpu(np->header.goalp)); 7118 break; 7119 #endif 7120 } 7121 7122 out: 7123 OUTONB_STD (); 7124 } 7125 7126 /*========================================================== 7127 ** 7128 ** 7129 ** Acquire a control block 7130 ** 7131 ** 7132 **========================================================== 7133 */ 7134 7135 static struct ccb *ncr_get_ccb(struct ncb *np, struct scsi_cmnd *cmd) 7136 { 7137 u_char tn = cmd->device->id; 7138 u_char ln = cmd->device->lun; 7139 struct tcb *tp = &np->target[tn]; 7140 struct lcb *lp = tp->lp[ln]; 7141 u_char tag = NO_TAG; 7142 struct ccb *cp = NULL; 7143 7144 /* 7145 ** Lun structure available ? 7146 */ 7147 if (lp) { 7148 struct list_head *qp; 7149 /* 7150 ** Keep from using more tags than we can handle. 7151 */ 7152 if (lp->usetags && lp->busyccbs >= lp->maxnxs) 7153 return NULL; 7154 7155 /* 7156 ** Allocate a new CCB if needed. 7157 */ 7158 if (list_empty(&lp->free_ccbq)) 7159 ncr_alloc_ccb(np, tn, ln); 7160 7161 /* 7162 ** Look for free CCB 7163 */ 7164 qp = ncr_list_pop(&lp->free_ccbq); 7165 if (qp) { 7166 cp = list_entry(qp, struct ccb, link_ccbq); 7167 if (cp->magic) { 7168 PRINT_ADDR(cmd, "ccb free list corrupted " 7169 "(@%p)\n", cp); 7170 cp = NULL; 7171 } else { 7172 list_add_tail(qp, &lp->wait_ccbq); 7173 ++lp->busyccbs; 7174 } 7175 } 7176 7177 /* 7178 ** If a CCB is available, 7179 ** Get a tag for this nexus if required. 7180 */ 7181 if (cp) { 7182 if (lp->usetags) 7183 tag = lp->cb_tags[lp->ia_tag]; 7184 } 7185 else if (lp->actccbs > 0) 7186 return NULL; 7187 } 7188 7189 /* 7190 ** if nothing available, take the default. 7191 */ 7192 if (!cp) 7193 cp = np->ccb; 7194 7195 /* 7196 ** Wait until available. 7197 */ 7198 #if 0 7199 while (cp->magic) { 7200 if (flags & SCSI_NOSLEEP) break; 7201 if (tsleep ((caddr_t)cp, PRIBIO|PCATCH, "ncr", 0)) 7202 break; 7203 } 7204 #endif 7205 7206 if (cp->magic) 7207 return NULL; 7208 7209 cp->magic = 1; 7210 7211 /* 7212 ** Move to next available tag if tag used. 7213 */ 7214 if (lp) { 7215 if (tag != NO_TAG) { 7216 ++lp->ia_tag; 7217 if (lp->ia_tag == MAX_TAGS) 7218 lp->ia_tag = 0; 7219 lp->tags_umap |= (((tagmap_t) 1) << tag); 7220 } 7221 } 7222 7223 /* 7224 ** Remember all informations needed to free this CCB. 7225 */ 7226 cp->tag = tag; 7227 cp->target = tn; 7228 cp->lun = ln; 7229 7230 if (DEBUG_FLAGS & DEBUG_TAGS) { 7231 PRINT_ADDR(cmd, "ccb @%p using tag %d.\n", cp, tag); 7232 } 7233 7234 return cp; 7235 } 7236 7237 /*========================================================== 7238 ** 7239 ** 7240 ** Release one control block 7241 ** 7242 ** 7243 **========================================================== 7244 */ 7245 7246 static void ncr_free_ccb (struct ncb *np, struct ccb *cp) 7247 { 7248 struct tcb *tp = &np->target[cp->target]; 7249 struct lcb *lp = tp->lp[cp->lun]; 7250 7251 if (DEBUG_FLAGS & DEBUG_TAGS) { 7252 PRINT_ADDR(cp->cmd, "ccb @%p freeing tag %d.\n", cp, cp->tag); 7253 } 7254 7255 /* 7256 ** If lun control block available, 7257 ** decrement active commands and increment credit, 7258 ** free the tag if any and remove the JUMP for reselect. 7259 */ 7260 if (lp) { 7261 if (cp->tag != NO_TAG) { 7262 lp->cb_tags[lp->if_tag++] = cp->tag; 7263 if (lp->if_tag == MAX_TAGS) 7264 lp->if_tag = 0; 7265 lp->tags_umap &= ~(((tagmap_t) 1) << cp->tag); 7266 lp->tags_smap &= lp->tags_umap; 7267 lp->jump_ccb[cp->tag] = 7268 cpu_to_scr(NCB_SCRIPTH_PHYS(np, bad_i_t_l_q)); 7269 } else { 7270 lp->jump_ccb[0] = 7271 cpu_to_scr(NCB_SCRIPTH_PHYS(np, bad_i_t_l)); 7272 } 7273 } 7274 7275 /* 7276 ** Make this CCB available. 7277 */ 7278 7279 if (lp) { 7280 if (cp != np->ccb) 7281 list_move(&cp->link_ccbq, &lp->free_ccbq); 7282 --lp->busyccbs; 7283 if (cp->queued) { 7284 --lp->queuedccbs; 7285 } 7286 } 7287 cp -> host_status = HS_IDLE; 7288 cp -> magic = 0; 7289 if (cp->queued) { 7290 --np->queuedccbs; 7291 cp->queued = 0; 7292 } 7293 7294 #if 0 7295 if (cp == np->ccb) 7296 wakeup ((caddr_t) cp); 7297 #endif 7298 } 7299 7300 7301 #define ncr_reg_bus_addr(r) (np->paddr + offsetof (struct ncr_reg, r)) 7302 7303 /*------------------------------------------------------------------------ 7304 ** Initialize the fixed part of a CCB structure. 7305 **------------------------------------------------------------------------ 7306 **------------------------------------------------------------------------ 7307 */ 7308 static void ncr_init_ccb(struct ncb *np, struct ccb *cp) 7309 { 7310 ncrcmd copy_4 = np->features & FE_PFEN ? SCR_COPY(4) : SCR_COPY_F(4); 7311 7312 /* 7313 ** Remember virtual and bus address of this ccb. 7314 */ 7315 cp->p_ccb = vtobus(cp); 7316 cp->phys.header.cp = cp; 7317 7318 /* 7319 ** This allows list_del to work for the default ccb. 7320 */ 7321 INIT_LIST_HEAD(&cp->link_ccbq); 7322 7323 /* 7324 ** Initialyze the start and restart launch script. 7325 ** 7326 ** COPY(4) @(...p_phys), @(dsa) 7327 ** JUMP @(sched_point) 7328 */ 7329 cp->start.setup_dsa[0] = cpu_to_scr(copy_4); 7330 cp->start.setup_dsa[1] = cpu_to_scr(CCB_PHYS(cp, start.p_phys)); 7331 cp->start.setup_dsa[2] = cpu_to_scr(ncr_reg_bus_addr(nc_dsa)); 7332 cp->start.schedule.l_cmd = cpu_to_scr(SCR_JUMP); 7333 cp->start.p_phys = cpu_to_scr(CCB_PHYS(cp, phys)); 7334 7335 memcpy(&cp->restart, &cp->start, sizeof(cp->restart)); 7336 7337 cp->start.schedule.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, idle)); 7338 cp->restart.schedule.l_paddr = cpu_to_scr(NCB_SCRIPTH_PHYS (np, abort)); 7339 } 7340 7341 7342 /*------------------------------------------------------------------------ 7343 ** Allocate a CCB and initialize its fixed part. 7344 **------------------------------------------------------------------------ 7345 **------------------------------------------------------------------------ 7346 */ 7347 static void ncr_alloc_ccb(struct ncb *np, u_char tn, u_char ln) 7348 { 7349 struct tcb *tp = &np->target[tn]; 7350 struct lcb *lp = tp->lp[ln]; 7351 struct ccb *cp = NULL; 7352 7353 /* 7354 ** Allocate memory for this CCB. 7355 */ 7356 cp = m_calloc_dma(sizeof(struct ccb), "CCB"); 7357 if (!cp) 7358 return; 7359 7360 /* 7361 ** Count it and initialyze it. 7362 */ 7363 lp->actccbs++; 7364 np->actccbs++; 7365 memset(cp, 0, sizeof (*cp)); 7366 ncr_init_ccb(np, cp); 7367 7368 /* 7369 ** Chain into wakeup list and free ccb queue and take it 7370 ** into account for tagged commands. 7371 */ 7372 cp->link_ccb = np->ccb->link_ccb; 7373 np->ccb->link_ccb = cp; 7374 7375 list_add(&cp->link_ccbq, &lp->free_ccbq); 7376 } 7377 7378 /*========================================================== 7379 ** 7380 ** 7381 ** Allocation of resources for Targets/Luns/Tags. 7382 ** 7383 ** 7384 **========================================================== 7385 */ 7386 7387 7388 /*------------------------------------------------------------------------ 7389 ** Target control block initialisation. 7390 **------------------------------------------------------------------------ 7391 ** This data structure is fully initialized after a SCSI command 7392 ** has been successfully completed for this target. 7393 ** It contains a SCRIPT that is called on target reselection. 7394 **------------------------------------------------------------------------ 7395 */ 7396 static void ncr_init_tcb (struct ncb *np, u_char tn) 7397 { 7398 struct tcb *tp = &np->target[tn]; 7399 ncrcmd copy_1 = np->features & FE_PFEN ? SCR_COPY(1) : SCR_COPY_F(1); 7400 int th = tn & 3; 7401 int i; 7402 7403 /* 7404 ** Jump to next tcb if SFBR does not match this target. 7405 ** JUMP IF (SFBR != #target#), @(next tcb) 7406 */ 7407 tp->jump_tcb.l_cmd = 7408 cpu_to_scr((SCR_JUMP ^ IFFALSE (DATA (0x80 + tn)))); 7409 tp->jump_tcb.l_paddr = np->jump_tcb[th].l_paddr; 7410 7411 /* 7412 ** Load the synchronous transfer register. 7413 ** COPY @(tp->sval), @(sxfer) 7414 */ 7415 tp->getscr[0] = cpu_to_scr(copy_1); 7416 tp->getscr[1] = cpu_to_scr(vtobus (&tp->sval)); 7417 #ifdef SCSI_NCR_BIG_ENDIAN 7418 tp->getscr[2] = cpu_to_scr(ncr_reg_bus_addr(nc_sxfer) ^ 3); 7419 #else 7420 tp->getscr[2] = cpu_to_scr(ncr_reg_bus_addr(nc_sxfer)); 7421 #endif 7422 7423 /* 7424 ** Load the timing register. 7425 ** COPY @(tp->wval), @(scntl3) 7426 */ 7427 tp->getscr[3] = cpu_to_scr(copy_1); 7428 tp->getscr[4] = cpu_to_scr(vtobus (&tp->wval)); 7429 #ifdef SCSI_NCR_BIG_ENDIAN 7430 tp->getscr[5] = cpu_to_scr(ncr_reg_bus_addr(nc_scntl3) ^ 3); 7431 #else 7432 tp->getscr[5] = cpu_to_scr(ncr_reg_bus_addr(nc_scntl3)); 7433 #endif 7434 7435 /* 7436 ** Get the IDENTIFY message and the lun. 7437 ** CALL @script(resel_lun) 7438 */ 7439 tp->call_lun.l_cmd = cpu_to_scr(SCR_CALL); 7440 tp->call_lun.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_lun)); 7441 7442 /* 7443 ** Look for the lun control block of this nexus. 7444 ** For i = 0 to 3 7445 ** JUMP ^ IFTRUE (MASK (i, 3)), @(next_lcb) 7446 */ 7447 for (i = 0 ; i < 4 ; i++) { 7448 tp->jump_lcb[i].l_cmd = 7449 cpu_to_scr((SCR_JUMP ^ IFTRUE (MASK (i, 3)))); 7450 tp->jump_lcb[i].l_paddr = 7451 cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_identify)); 7452 } 7453 7454 /* 7455 ** Link this target control block to the JUMP chain. 7456 */ 7457 np->jump_tcb[th].l_paddr = cpu_to_scr(vtobus (&tp->jump_tcb)); 7458 7459 /* 7460 ** These assert's should be moved at driver initialisations. 7461 */ 7462 #ifdef SCSI_NCR_BIG_ENDIAN 7463 BUG_ON(((offsetof(struct ncr_reg, nc_sxfer) ^ 7464 offsetof(struct tcb , sval )) &3) != 3); 7465 BUG_ON(((offsetof(struct ncr_reg, nc_scntl3) ^ 7466 offsetof(struct tcb , wval )) &3) != 3); 7467 #else 7468 BUG_ON(((offsetof(struct ncr_reg, nc_sxfer) ^ 7469 offsetof(struct tcb , sval )) &3) != 0); 7470 BUG_ON(((offsetof(struct ncr_reg, nc_scntl3) ^ 7471 offsetof(struct tcb , wval )) &3) != 0); 7472 #endif 7473 } 7474 7475 7476 /*------------------------------------------------------------------------ 7477 ** Lun control block allocation and initialization. 7478 **------------------------------------------------------------------------ 7479 ** This data structure is allocated and initialized after a SCSI 7480 ** command has been successfully completed for this target/lun. 7481 **------------------------------------------------------------------------ 7482 */ 7483 static struct lcb *ncr_alloc_lcb (struct ncb *np, u_char tn, u_char ln) 7484 { 7485 struct tcb *tp = &np->target[tn]; 7486 struct lcb *lp = tp->lp[ln]; 7487 ncrcmd copy_4 = np->features & FE_PFEN ? SCR_COPY(4) : SCR_COPY_F(4); 7488 int lh = ln & 3; 7489 7490 /* 7491 ** Already done, return. 7492 */ 7493 if (lp) 7494 return lp; 7495 7496 /* 7497 ** Allocate the lcb. 7498 */ 7499 lp = m_calloc_dma(sizeof(struct lcb), "LCB"); 7500 if (!lp) 7501 goto fail; 7502 memset(lp, 0, sizeof(*lp)); 7503 tp->lp[ln] = lp; 7504 7505 /* 7506 ** Initialize the target control block if not yet. 7507 */ 7508 if (!tp->jump_tcb.l_cmd) 7509 ncr_init_tcb(np, tn); 7510 7511 /* 7512 ** Initialize the CCB queue headers. 7513 */ 7514 INIT_LIST_HEAD(&lp->free_ccbq); 7515 INIT_LIST_HEAD(&lp->busy_ccbq); 7516 INIT_LIST_HEAD(&lp->wait_ccbq); 7517 INIT_LIST_HEAD(&lp->skip_ccbq); 7518 7519 /* 7520 ** Set max CCBs to 1 and use the default 1 entry 7521 ** jump table by default. 7522 */ 7523 lp->maxnxs = 1; 7524 lp->jump_ccb = &lp->jump_ccb_0; 7525 lp->p_jump_ccb = cpu_to_scr(vtobus(lp->jump_ccb)); 7526 7527 /* 7528 ** Initilialyze the reselect script: 7529 ** 7530 ** Jump to next lcb if SFBR does not match this lun. 7531 ** Load TEMP with the CCB direct jump table bus address. 7532 ** Get the SIMPLE TAG message and the tag. 7533 ** 7534 ** JUMP IF (SFBR != #lun#), @(next lcb) 7535 ** COPY @(lp->p_jump_ccb), @(temp) 7536 ** JUMP @script(resel_notag) 7537 */ 7538 lp->jump_lcb.l_cmd = 7539 cpu_to_scr((SCR_JUMP ^ IFFALSE (MASK (0x80+ln, 0xff)))); 7540 lp->jump_lcb.l_paddr = tp->jump_lcb[lh].l_paddr; 7541 7542 lp->load_jump_ccb[0] = cpu_to_scr(copy_4); 7543 lp->load_jump_ccb[1] = cpu_to_scr(vtobus (&lp->p_jump_ccb)); 7544 lp->load_jump_ccb[2] = cpu_to_scr(ncr_reg_bus_addr(nc_temp)); 7545 7546 lp->jump_tag.l_cmd = cpu_to_scr(SCR_JUMP); 7547 lp->jump_tag.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_notag)); 7548 7549 /* 7550 ** Link this lun control block to the JUMP chain. 7551 */ 7552 tp->jump_lcb[lh].l_paddr = cpu_to_scr(vtobus (&lp->jump_lcb)); 7553 7554 /* 7555 ** Initialize command queuing control. 7556 */ 7557 lp->busyccbs = 1; 7558 lp->queuedccbs = 1; 7559 lp->queuedepth = 1; 7560 fail: 7561 return lp; 7562 } 7563 7564 7565 /*------------------------------------------------------------------------ 7566 ** Lun control block setup on INQUIRY data received. 7567 **------------------------------------------------------------------------ 7568 ** We only support WIDE, SYNC for targets and CMDQ for logical units. 7569 ** This setup is done on each INQUIRY since we are expecting user 7570 ** will play with CHANGE DEFINITION commands. :-) 7571 **------------------------------------------------------------------------ 7572 */ 7573 static struct lcb *ncr_setup_lcb (struct ncb *np, struct scsi_device *sdev) 7574 { 7575 unsigned char tn = sdev->id, ln = sdev->lun; 7576 struct tcb *tp = &np->target[tn]; 7577 struct lcb *lp = tp->lp[ln]; 7578 7579 /* If no lcb, try to allocate it. */ 7580 if (!lp && !(lp = ncr_alloc_lcb(np, tn, ln))) 7581 goto fail; 7582 7583 /* 7584 ** If unit supports tagged commands, allocate the 7585 ** CCB JUMP table if not yet. 7586 */ 7587 if (sdev->tagged_supported && lp->jump_ccb == &lp->jump_ccb_0) { 7588 int i; 7589 lp->jump_ccb = m_calloc_dma(256, "JUMP_CCB"); 7590 if (!lp->jump_ccb) { 7591 lp->jump_ccb = &lp->jump_ccb_0; 7592 goto fail; 7593 } 7594 lp->p_jump_ccb = cpu_to_scr(vtobus(lp->jump_ccb)); 7595 for (i = 0 ; i < 64 ; i++) 7596 lp->jump_ccb[i] = 7597 cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_i_t_l_q)); 7598 for (i = 0 ; i < MAX_TAGS ; i++) 7599 lp->cb_tags[i] = i; 7600 lp->maxnxs = MAX_TAGS; 7601 lp->tags_stime = jiffies + 3*HZ; 7602 ncr_setup_tags (np, sdev); 7603 } 7604 7605 7606 fail: 7607 return lp; 7608 } 7609 7610 /*========================================================== 7611 ** 7612 ** 7613 ** Build Scatter Gather Block 7614 ** 7615 ** 7616 **========================================================== 7617 ** 7618 ** The transfer area may be scattered among 7619 ** several non adjacent physical pages. 7620 ** 7621 ** We may use MAX_SCATTER blocks. 7622 ** 7623 **---------------------------------------------------------- 7624 */ 7625 7626 /* 7627 ** We try to reduce the number of interrupts caused 7628 ** by unexpected phase changes due to disconnects. 7629 ** A typical harddisk may disconnect before ANY block. 7630 ** If we wanted to avoid unexpected phase changes at all 7631 ** we had to use a break point every 512 bytes. 7632 ** Of course the number of scatter/gather blocks is 7633 ** limited. 7634 ** Under Linux, the scatter/gatter blocks are provided by 7635 ** the generic driver. We just have to copy addresses and 7636 ** sizes to the data segment array. 7637 */ 7638 7639 static int ncr_scatter(struct ncb *np, struct ccb *cp, struct scsi_cmnd *cmd) 7640 { 7641 int segment = 0; 7642 int use_sg = scsi_sg_count(cmd); 7643 7644 cp->data_len = 0; 7645 7646 use_sg = map_scsi_sg_data(np, cmd); 7647 if (use_sg > 0) { 7648 struct scatterlist *sg; 7649 struct scr_tblmove *data; 7650 7651 if (use_sg > MAX_SCATTER) { 7652 unmap_scsi_data(np, cmd); 7653 return -1; 7654 } 7655 7656 data = &cp->phys.data[MAX_SCATTER - use_sg]; 7657 7658 scsi_for_each_sg(cmd, sg, use_sg, segment) { 7659 dma_addr_t baddr = sg_dma_address(sg); 7660 unsigned int len = sg_dma_len(sg); 7661 7662 ncr_build_sge(np, &data[segment], baddr, len); 7663 cp->data_len += len; 7664 } 7665 } else 7666 segment = -2; 7667 7668 return segment; 7669 } 7670 7671 /*========================================================== 7672 ** 7673 ** 7674 ** Test the bus snoop logic :-( 7675 ** 7676 ** Has to be called with interrupts disabled. 7677 ** 7678 ** 7679 **========================================================== 7680 */ 7681 7682 static int __init ncr_regtest (struct ncb* np) 7683 { 7684 register volatile u32 data; 7685 /* 7686 ** ncr registers may NOT be cached. 7687 ** write 0xffffffff to a read only register area, 7688 ** and try to read it back. 7689 */ 7690 data = 0xffffffff; 7691 OUTL_OFF(offsetof(struct ncr_reg, nc_dstat), data); 7692 data = INL_OFF(offsetof(struct ncr_reg, nc_dstat)); 7693 #if 1 7694 if (data == 0xffffffff) { 7695 #else 7696 if ((data & 0xe2f0fffd) != 0x02000080) { 7697 #endif 7698 printk ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n", 7699 (unsigned) data); 7700 return (0x10); 7701 } 7702 return (0); 7703 } 7704 7705 static int __init ncr_snooptest (struct ncb* np) 7706 { 7707 u32 ncr_rd, ncr_wr, ncr_bk, host_rd, host_wr, pc; 7708 int i, err=0; 7709 if (np->reg) { 7710 err |= ncr_regtest (np); 7711 if (err) 7712 return (err); 7713 } 7714 7715 /* init */ 7716 pc = NCB_SCRIPTH_PHYS (np, snooptest); 7717 host_wr = 1; 7718 ncr_wr = 2; 7719 /* 7720 ** Set memory and register. 7721 */ 7722 np->ncr_cache = cpu_to_scr(host_wr); 7723 OUTL (nc_temp, ncr_wr); 7724 /* 7725 ** Start script (exchange values) 7726 */ 7727 OUTL_DSP (pc); 7728 /* 7729 ** Wait 'til done (with timeout) 7730 */ 7731 for (i=0; i<NCR_SNOOP_TIMEOUT; i++) 7732 if (INB(nc_istat) & (INTF|SIP|DIP)) 7733 break; 7734 /* 7735 ** Save termination position. 7736 */ 7737 pc = INL (nc_dsp); 7738 /* 7739 ** Read memory and register. 7740 */ 7741 host_rd = scr_to_cpu(np->ncr_cache); 7742 ncr_rd = INL (nc_scratcha); 7743 ncr_bk = INL (nc_temp); 7744 /* 7745 ** Reset ncr chip 7746 */ 7747 ncr_chip_reset(np, 100); 7748 /* 7749 ** check for timeout 7750 */ 7751 if (i>=NCR_SNOOP_TIMEOUT) { 7752 printk ("CACHE TEST FAILED: timeout.\n"); 7753 return (0x20); 7754 } 7755 /* 7756 ** Check termination position. 7757 */ 7758 if (pc != NCB_SCRIPTH_PHYS (np, snoopend)+8) { 7759 printk ("CACHE TEST FAILED: script execution failed.\n"); 7760 printk ("start=%08lx, pc=%08lx, end=%08lx\n", 7761 (u_long) NCB_SCRIPTH_PHYS (np, snooptest), (u_long) pc, 7762 (u_long) NCB_SCRIPTH_PHYS (np, snoopend) +8); 7763 return (0x40); 7764 } 7765 /* 7766 ** Show results. 7767 */ 7768 if (host_wr != ncr_rd) { 7769 printk ("CACHE TEST FAILED: host wrote %d, ncr read %d.\n", 7770 (int) host_wr, (int) ncr_rd); 7771 err |= 1; 7772 } 7773 if (host_rd != ncr_wr) { 7774 printk ("CACHE TEST FAILED: ncr wrote %d, host read %d.\n", 7775 (int) ncr_wr, (int) host_rd); 7776 err |= 2; 7777 } 7778 if (ncr_bk != ncr_wr) { 7779 printk ("CACHE TEST FAILED: ncr wrote %d, read back %d.\n", 7780 (int) ncr_wr, (int) ncr_bk); 7781 err |= 4; 7782 } 7783 return (err); 7784 } 7785 7786 /*========================================================== 7787 ** 7788 ** Determine the ncr's clock frequency. 7789 ** This is essential for the negotiation 7790 ** of the synchronous transfer rate. 7791 ** 7792 **========================================================== 7793 ** 7794 ** Note: we have to return the correct value. 7795 ** THERE IS NO SAFE DEFAULT VALUE. 7796 ** 7797 ** Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock. 7798 ** 53C860 and 53C875 rev. 1 support fast20 transfers but 7799 ** do not have a clock doubler and so are provided with a 7800 ** 80 MHz clock. All other fast20 boards incorporate a doubler 7801 ** and so should be delivered with a 40 MHz clock. 7802 ** The future fast40 chips (895/895) use a 40 Mhz base clock 7803 ** and provide a clock quadrupler (160 Mhz). The code below 7804 ** tries to deal as cleverly as possible with all this stuff. 7805 ** 7806 **---------------------------------------------------------- 7807 */ 7808 7809 /* 7810 * Select NCR SCSI clock frequency 7811 */ 7812 static void ncr_selectclock(struct ncb *np, u_char scntl3) 7813 { 7814 if (np->multiplier < 2) { 7815 OUTB(nc_scntl3, scntl3); 7816 return; 7817 } 7818 7819 if (bootverbose >= 2) 7820 printk ("%s: enabling clock multiplier\n", ncr_name(np)); 7821 7822 OUTB(nc_stest1, DBLEN); /* Enable clock multiplier */ 7823 if (np->multiplier > 2) { /* Poll bit 5 of stest4 for quadrupler */ 7824 int i = 20; 7825 while (!(INB(nc_stest4) & LCKFRQ) && --i > 0) 7826 udelay(20); 7827 if (!i) 7828 printk("%s: the chip cannot lock the frequency\n", ncr_name(np)); 7829 } else /* Wait 20 micro-seconds for doubler */ 7830 udelay(20); 7831 OUTB(nc_stest3, HSC); /* Halt the scsi clock */ 7832 OUTB(nc_scntl3, scntl3); 7833 OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */ 7834 OUTB(nc_stest3, 0x00); /* Restart scsi clock */ 7835 } 7836 7837 7838 /* 7839 * calculate NCR SCSI clock frequency (in KHz) 7840 */ 7841 static unsigned __init ncrgetfreq (struct ncb *np, int gen) 7842 { 7843 unsigned ms = 0; 7844 char count = 0; 7845 7846 /* 7847 * Measure GEN timer delay in order 7848 * to calculate SCSI clock frequency 7849 * 7850 * This code will never execute too 7851 * many loop iterations (if DELAY is 7852 * reasonably correct). It could get 7853 * too low a delay (too high a freq.) 7854 * if the CPU is slow executing the 7855 * loop for some reason (an NMI, for 7856 * example). For this reason we will 7857 * if multiple measurements are to be 7858 * performed trust the higher delay 7859 * (lower frequency returned). 7860 */ 7861 OUTB (nc_stest1, 0); /* make sure clock doubler is OFF */ 7862 OUTW (nc_sien , 0); /* mask all scsi interrupts */ 7863 (void) INW (nc_sist); /* clear pending scsi interrupt */ 7864 OUTB (nc_dien , 0); /* mask all dma interrupts */ 7865 (void) INW (nc_sist); /* another one, just to be sure :) */ 7866 OUTB (nc_scntl3, 4); /* set pre-scaler to divide by 3 */ 7867 OUTB (nc_stime1, 0); /* disable general purpose timer */ 7868 OUTB (nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */ 7869 while (!(INW(nc_sist) & GEN) && ms++ < 100000) { 7870 for (count = 0; count < 10; count ++) 7871 udelay(100); /* count ms */ 7872 } 7873 OUTB (nc_stime1, 0); /* disable general purpose timer */ 7874 /* 7875 * set prescaler to divide by whatever 0 means 7876 * 0 ought to choose divide by 2, but appears 7877 * to set divide by 3.5 mode in my 53c810 ... 7878 */ 7879 OUTB (nc_scntl3, 0); 7880 7881 if (bootverbose >= 2) 7882 printk ("%s: Delay (GEN=%d): %u msec\n", ncr_name(np), gen, ms); 7883 /* 7884 * adjust for prescaler, and convert into KHz 7885 */ 7886 return ms ? ((1 << gen) * 4340) / ms : 0; 7887 } 7888 7889 /* 7890 * Get/probe NCR SCSI clock frequency 7891 */ 7892 static void __init ncr_getclock (struct ncb *np, int mult) 7893 { 7894 unsigned char scntl3 = INB(nc_scntl3); 7895 unsigned char stest1 = INB(nc_stest1); 7896 unsigned f1; 7897 7898 np->multiplier = 1; 7899 f1 = 40000; 7900 7901 /* 7902 ** True with 875 or 895 with clock multiplier selected 7903 */ 7904 if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) { 7905 if (bootverbose >= 2) 7906 printk ("%s: clock multiplier found\n", ncr_name(np)); 7907 np->multiplier = mult; 7908 } 7909 7910 /* 7911 ** If multiplier not found or scntl3 not 7,5,3, 7912 ** reset chip and get frequency from general purpose timer. 7913 ** Otherwise trust scntl3 BIOS setting. 7914 */ 7915 if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) { 7916 unsigned f2; 7917 7918 ncr_chip_reset(np, 5); 7919 7920 (void) ncrgetfreq (np, 11); /* throw away first result */ 7921 f1 = ncrgetfreq (np, 11); 7922 f2 = ncrgetfreq (np, 11); 7923 7924 if(bootverbose) 7925 printk ("%s: NCR clock is %uKHz, %uKHz\n", ncr_name(np), f1, f2); 7926 7927 if (f1 > f2) f1 = f2; /* trust lower result */ 7928 7929 if (f1 < 45000) f1 = 40000; 7930 else if (f1 < 55000) f1 = 50000; 7931 else f1 = 80000; 7932 7933 if (f1 < 80000 && mult > 1) { 7934 if (bootverbose >= 2) 7935 printk ("%s: clock multiplier assumed\n", ncr_name(np)); 7936 np->multiplier = mult; 7937 } 7938 } else { 7939 if ((scntl3 & 7) == 3) f1 = 40000; 7940 else if ((scntl3 & 7) == 5) f1 = 80000; 7941 else f1 = 160000; 7942 7943 f1 /= np->multiplier; 7944 } 7945 7946 /* 7947 ** Compute controller synchronous parameters. 7948 */ 7949 f1 *= np->multiplier; 7950 np->clock_khz = f1; 7951 } 7952 7953 /*===================== LINUX ENTRY POINTS SECTION ==========================*/ 7954 7955 static int ncr53c8xx_slave_alloc(struct scsi_device *device) 7956 { 7957 struct Scsi_Host *host = device->host; 7958 struct ncb *np = ((struct host_data *) host->hostdata)->ncb; 7959 struct tcb *tp = &np->target[device->id]; 7960 tp->starget = device->sdev_target; 7961 7962 return 0; 7963 } 7964 7965 static int ncr53c8xx_slave_configure(struct scsi_device *device) 7966 { 7967 struct Scsi_Host *host = device->host; 7968 struct ncb *np = ((struct host_data *) host->hostdata)->ncb; 7969 struct tcb *tp = &np->target[device->id]; 7970 struct lcb *lp = tp->lp[device->lun]; 7971 int numtags, depth_to_use; 7972 7973 ncr_setup_lcb(np, device); 7974 7975 /* 7976 ** Select queue depth from driver setup. 7977 ** Donnot use more than configured by user. 7978 ** Use at least 2. 7979 ** Donnot use more than our maximum. 7980 */ 7981 numtags = device_queue_depth(np->unit, device->id, device->lun); 7982 if (numtags > tp->usrtags) 7983 numtags = tp->usrtags; 7984 if (!device->tagged_supported) 7985 numtags = 1; 7986 depth_to_use = numtags; 7987 if (depth_to_use < 2) 7988 depth_to_use = 2; 7989 if (depth_to_use > MAX_TAGS) 7990 depth_to_use = MAX_TAGS; 7991 7992 scsi_change_queue_depth(device, depth_to_use); 7993 7994 /* 7995 ** Since the queue depth is not tunable under Linux, 7996 ** we need to know this value in order not to 7997 ** announce stupid things to user. 7998 ** 7999 ** XXX(hch): As of Linux 2.6 it certainly _is_ tunable.. 8000 ** In fact we just tuned it, or did I miss 8001 ** something important? :) 8002 */ 8003 if (lp) { 8004 lp->numtags = lp->maxtags = numtags; 8005 lp->scdev_depth = depth_to_use; 8006 } 8007 ncr_setup_tags (np, device); 8008 8009 #ifdef DEBUG_NCR53C8XX 8010 printk("ncr53c8xx_select_queue_depth: host=%d, id=%d, lun=%d, depth=%d\n", 8011 np->unit, device->id, device->lun, depth_to_use); 8012 #endif 8013 8014 if (spi_support_sync(device->sdev_target) && 8015 !spi_initial_dv(device->sdev_target)) 8016 spi_dv_device(device); 8017 return 0; 8018 } 8019 8020 static int ncr53c8xx_queue_command_lck (struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *)) 8021 { 8022 struct ncb *np = ((struct host_data *) cmd->device->host->hostdata)->ncb; 8023 unsigned long flags; 8024 int sts; 8025 8026 #ifdef DEBUG_NCR53C8XX 8027 printk("ncr53c8xx_queue_command\n"); 8028 #endif 8029 8030 cmd->scsi_done = done; 8031 cmd->host_scribble = NULL; 8032 cmd->__data_mapped = 0; 8033 cmd->__data_mapping = 0; 8034 8035 spin_lock_irqsave(&np->smp_lock, flags); 8036 8037 if ((sts = ncr_queue_command(np, cmd)) != DID_OK) { 8038 cmd->result = sts << 16; 8039 #ifdef DEBUG_NCR53C8XX 8040 printk("ncr53c8xx : command not queued - result=%d\n", sts); 8041 #endif 8042 } 8043 #ifdef DEBUG_NCR53C8XX 8044 else 8045 printk("ncr53c8xx : command successfully queued\n"); 8046 #endif 8047 8048 spin_unlock_irqrestore(&np->smp_lock, flags); 8049 8050 if (sts != DID_OK) { 8051 unmap_scsi_data(np, cmd); 8052 done(cmd); 8053 sts = 0; 8054 } 8055 8056 return sts; 8057 } 8058 8059 static DEF_SCSI_QCMD(ncr53c8xx_queue_command) 8060 8061 irqreturn_t ncr53c8xx_intr(int irq, void *dev_id) 8062 { 8063 unsigned long flags; 8064 struct Scsi_Host *shost = (struct Scsi_Host *)dev_id; 8065 struct host_data *host_data = (struct host_data *)shost->hostdata; 8066 struct ncb *np = host_data->ncb; 8067 struct scsi_cmnd *done_list; 8068 8069 #ifdef DEBUG_NCR53C8XX 8070 printk("ncr53c8xx : interrupt received\n"); 8071 #endif 8072 8073 if (DEBUG_FLAGS & DEBUG_TINY) printk ("["); 8074 8075 spin_lock_irqsave(&np->smp_lock, flags); 8076 ncr_exception(np); 8077 done_list = np->done_list; 8078 np->done_list = NULL; 8079 spin_unlock_irqrestore(&np->smp_lock, flags); 8080 8081 if (DEBUG_FLAGS & DEBUG_TINY) printk ("]\n"); 8082 8083 if (done_list) 8084 ncr_flush_done_cmds(done_list); 8085 return IRQ_HANDLED; 8086 } 8087 8088 static void ncr53c8xx_timeout(struct timer_list *t) 8089 { 8090 struct ncb *np = from_timer(np, t, timer); 8091 unsigned long flags; 8092 struct scsi_cmnd *done_list; 8093 8094 spin_lock_irqsave(&np->smp_lock, flags); 8095 ncr_timeout(np); 8096 done_list = np->done_list; 8097 np->done_list = NULL; 8098 spin_unlock_irqrestore(&np->smp_lock, flags); 8099 8100 if (done_list) 8101 ncr_flush_done_cmds(done_list); 8102 } 8103 8104 static int ncr53c8xx_bus_reset(struct scsi_cmnd *cmd) 8105 { 8106 struct ncb *np = ((struct host_data *) cmd->device->host->hostdata)->ncb; 8107 int sts; 8108 unsigned long flags; 8109 struct scsi_cmnd *done_list; 8110 8111 /* 8112 * If the mid-level driver told us reset is synchronous, it seems 8113 * that we must call the done() callback for the involved command, 8114 * even if this command was not queued to the low-level driver, 8115 * before returning SUCCESS. 8116 */ 8117 8118 spin_lock_irqsave(&np->smp_lock, flags); 8119 sts = ncr_reset_bus(np, cmd, 1); 8120 8121 done_list = np->done_list; 8122 np->done_list = NULL; 8123 spin_unlock_irqrestore(&np->smp_lock, flags); 8124 8125 ncr_flush_done_cmds(done_list); 8126 8127 return sts; 8128 } 8129 8130 #if 0 /* unused and broken */ 8131 static int ncr53c8xx_abort(struct scsi_cmnd *cmd) 8132 { 8133 struct ncb *np = ((struct host_data *) cmd->device->host->hostdata)->ncb; 8134 int sts; 8135 unsigned long flags; 8136 struct scsi_cmnd *done_list; 8137 8138 printk("ncr53c8xx_abort\n"); 8139 8140 NCR_LOCK_NCB(np, flags); 8141 8142 sts = ncr_abort_command(np, cmd); 8143 out: 8144 done_list = np->done_list; 8145 np->done_list = NULL; 8146 NCR_UNLOCK_NCB(np, flags); 8147 8148 ncr_flush_done_cmds(done_list); 8149 8150 return sts; 8151 } 8152 #endif 8153 8154 8155 /* 8156 ** Scsi command waiting list management. 8157 ** 8158 ** It may happen that we cannot insert a scsi command into the start queue, 8159 ** in the following circumstances. 8160 ** Too few preallocated ccb(s), 8161 ** maxtags < cmd_per_lun of the Linux host control block, 8162 ** etc... 8163 ** Such scsi commands are inserted into a waiting list. 8164 ** When a scsi command complete, we try to requeue the commands of the 8165 ** waiting list. 8166 */ 8167 8168 #define next_wcmd host_scribble 8169 8170 static void insert_into_waiting_list(struct ncb *np, struct scsi_cmnd *cmd) 8171 { 8172 struct scsi_cmnd *wcmd; 8173 8174 #ifdef DEBUG_WAITING_LIST 8175 printk("%s: cmd %lx inserted into waiting list\n", ncr_name(np), (u_long) cmd); 8176 #endif 8177 cmd->next_wcmd = NULL; 8178 if (!(wcmd = np->waiting_list)) np->waiting_list = cmd; 8179 else { 8180 while (wcmd->next_wcmd) 8181 wcmd = (struct scsi_cmnd *) wcmd->next_wcmd; 8182 wcmd->next_wcmd = (char *) cmd; 8183 } 8184 } 8185 8186 static struct scsi_cmnd *retrieve_from_waiting_list(int to_remove, struct ncb *np, struct scsi_cmnd *cmd) 8187 { 8188 struct scsi_cmnd **pcmd = &np->waiting_list; 8189 8190 while (*pcmd) { 8191 if (cmd == *pcmd) { 8192 if (to_remove) { 8193 *pcmd = (struct scsi_cmnd *) cmd->next_wcmd; 8194 cmd->next_wcmd = NULL; 8195 } 8196 #ifdef DEBUG_WAITING_LIST 8197 printk("%s: cmd %lx retrieved from waiting list\n", ncr_name(np), (u_long) cmd); 8198 #endif 8199 return cmd; 8200 } 8201 pcmd = (struct scsi_cmnd **) &(*pcmd)->next_wcmd; 8202 } 8203 return NULL; 8204 } 8205 8206 static void process_waiting_list(struct ncb *np, int sts) 8207 { 8208 struct scsi_cmnd *waiting_list, *wcmd; 8209 8210 waiting_list = np->waiting_list; 8211 np->waiting_list = NULL; 8212 8213 #ifdef DEBUG_WAITING_LIST 8214 if (waiting_list) printk("%s: waiting_list=%lx processing sts=%d\n", ncr_name(np), (u_long) waiting_list, sts); 8215 #endif 8216 while ((wcmd = waiting_list) != NULL) { 8217 waiting_list = (struct scsi_cmnd *) wcmd->next_wcmd; 8218 wcmd->next_wcmd = NULL; 8219 if (sts == DID_OK) { 8220 #ifdef DEBUG_WAITING_LIST 8221 printk("%s: cmd %lx trying to requeue\n", ncr_name(np), (u_long) wcmd); 8222 #endif 8223 sts = ncr_queue_command(np, wcmd); 8224 } 8225 if (sts != DID_OK) { 8226 #ifdef DEBUG_WAITING_LIST 8227 printk("%s: cmd %lx done forced sts=%d\n", ncr_name(np), (u_long) wcmd, sts); 8228 #endif 8229 wcmd->result = sts << 16; 8230 ncr_queue_done_cmd(np, wcmd); 8231 } 8232 } 8233 } 8234 8235 #undef next_wcmd 8236 8237 static ssize_t show_ncr53c8xx_revision(struct device *dev, 8238 struct device_attribute *attr, char *buf) 8239 { 8240 struct Scsi_Host *host = class_to_shost(dev); 8241 struct host_data *host_data = (struct host_data *)host->hostdata; 8242 8243 return snprintf(buf, 20, "0x%x\n", host_data->ncb->revision_id); 8244 } 8245 8246 static struct device_attribute ncr53c8xx_revision_attr = { 8247 .attr = { .name = "revision", .mode = S_IRUGO, }, 8248 .show = show_ncr53c8xx_revision, 8249 }; 8250 8251 static struct device_attribute *ncr53c8xx_host_attrs[] = { 8252 &ncr53c8xx_revision_attr, 8253 NULL 8254 }; 8255 8256 /*========================================================== 8257 ** 8258 ** Boot command line. 8259 ** 8260 **========================================================== 8261 */ 8262 #ifdef MODULE 8263 char *ncr53c8xx; /* command line passed by insmod */ 8264 module_param(ncr53c8xx, charp, 0); 8265 #endif 8266 8267 #ifndef MODULE 8268 static int __init ncr53c8xx_setup(char *str) 8269 { 8270 return sym53c8xx__setup(str); 8271 } 8272 8273 __setup("ncr53c8xx=", ncr53c8xx_setup); 8274 #endif 8275 8276 8277 /* 8278 * Host attach and initialisations. 8279 * 8280 * Allocate host data and ncb structure. 8281 * Request IO region and remap MMIO region. 8282 * Do chip initialization. 8283 * If all is OK, install interrupt handling and 8284 * start the timer daemon. 8285 */ 8286 struct Scsi_Host * __init ncr_attach(struct scsi_host_template *tpnt, 8287 int unit, struct ncr_device *device) 8288 { 8289 struct host_data *host_data; 8290 struct ncb *np = NULL; 8291 struct Scsi_Host *instance = NULL; 8292 u_long flags = 0; 8293 int i; 8294 8295 if (!tpnt->name) 8296 tpnt->name = SCSI_NCR_DRIVER_NAME; 8297 if (!tpnt->shost_attrs) 8298 tpnt->shost_attrs = ncr53c8xx_host_attrs; 8299 8300 tpnt->queuecommand = ncr53c8xx_queue_command; 8301 tpnt->slave_configure = ncr53c8xx_slave_configure; 8302 tpnt->slave_alloc = ncr53c8xx_slave_alloc; 8303 tpnt->eh_bus_reset_handler = ncr53c8xx_bus_reset; 8304 tpnt->can_queue = SCSI_NCR_CAN_QUEUE; 8305 tpnt->this_id = 7; 8306 tpnt->sg_tablesize = SCSI_NCR_SG_TABLESIZE; 8307 tpnt->cmd_per_lun = SCSI_NCR_CMD_PER_LUN; 8308 8309 if (device->differential) 8310 driver_setup.diff_support = device->differential; 8311 8312 printk(KERN_INFO "ncr53c720-%d: rev 0x%x irq %d\n", 8313 unit, device->chip.revision_id, device->slot.irq); 8314 8315 instance = scsi_host_alloc(tpnt, sizeof(*host_data)); 8316 if (!instance) 8317 goto attach_error; 8318 host_data = (struct host_data *) instance->hostdata; 8319 8320 np = __m_calloc_dma(device->dev, sizeof(struct ncb), "NCB"); 8321 if (!np) 8322 goto attach_error; 8323 spin_lock_init(&np->smp_lock); 8324 np->dev = device->dev; 8325 np->p_ncb = vtobus(np); 8326 host_data->ncb = np; 8327 8328 np->ccb = m_calloc_dma(sizeof(struct ccb), "CCB"); 8329 if (!np->ccb) 8330 goto attach_error; 8331 8332 /* Store input information in the host data structure. */ 8333 np->unit = unit; 8334 np->verbose = driver_setup.verbose; 8335 sprintf(np->inst_name, "ncr53c720-%d", np->unit); 8336 np->revision_id = device->chip.revision_id; 8337 np->features = device->chip.features; 8338 np->clock_divn = device->chip.nr_divisor; 8339 np->maxoffs = device->chip.offset_max; 8340 np->maxburst = device->chip.burst_max; 8341 np->myaddr = device->host_id; 8342 8343 /* Allocate SCRIPTS areas. */ 8344 np->script0 = m_calloc_dma(sizeof(struct script), "SCRIPT"); 8345 if (!np->script0) 8346 goto attach_error; 8347 np->scripth0 = m_calloc_dma(sizeof(struct scripth), "SCRIPTH"); 8348 if (!np->scripth0) 8349 goto attach_error; 8350 8351 timer_setup(&np->timer, ncr53c8xx_timeout, 0); 8352 8353 /* Try to map the controller chip to virtual and physical memory. */ 8354 8355 np->paddr = device->slot.base; 8356 np->paddr2 = (np->features & FE_RAM) ? device->slot.base_2 : 0; 8357 8358 if (device->slot.base_v) 8359 np->vaddr = device->slot.base_v; 8360 else 8361 np->vaddr = ioremap(device->slot.base_c, 128); 8362 8363 if (!np->vaddr) { 8364 printk(KERN_ERR 8365 "%s: can't map memory mapped IO region\n",ncr_name(np)); 8366 goto attach_error; 8367 } else { 8368 if (bootverbose > 1) 8369 printk(KERN_INFO 8370 "%s: using memory mapped IO at virtual address 0x%lx\n", ncr_name(np), (u_long) np->vaddr); 8371 } 8372 8373 /* Make the controller's registers available. Now the INB INW INL 8374 * OUTB OUTW OUTL macros can be used safely. 8375 */ 8376 8377 np->reg = (struct ncr_reg __iomem *)np->vaddr; 8378 8379 /* Do chip dependent initialization. */ 8380 ncr_prepare_setting(np); 8381 8382 if (np->paddr2 && sizeof(struct script) > 4096) { 8383 np->paddr2 = 0; 8384 printk(KERN_WARNING "%s: script too large, NOT using on chip RAM.\n", 8385 ncr_name(np)); 8386 } 8387 8388 instance->max_channel = 0; 8389 instance->this_id = np->myaddr; 8390 instance->max_id = np->maxwide ? 16 : 8; 8391 instance->max_lun = SCSI_NCR_MAX_LUN; 8392 instance->base = (unsigned long) np->reg; 8393 instance->irq = device->slot.irq; 8394 instance->unique_id = device->slot.base; 8395 instance->dma_channel = 0; 8396 instance->cmd_per_lun = MAX_TAGS; 8397 instance->can_queue = (MAX_START-4); 8398 /* This can happen if you forget to call ncr53c8xx_init from 8399 * your module_init */ 8400 BUG_ON(!ncr53c8xx_transport_template); 8401 instance->transportt = ncr53c8xx_transport_template; 8402 8403 /* Patch script to physical addresses */ 8404 ncr_script_fill(&script0, &scripth0); 8405 8406 np->scripth = np->scripth0; 8407 np->p_scripth = vtobus(np->scripth); 8408 np->p_script = (np->paddr2) ? np->paddr2 : vtobus(np->script0); 8409 8410 ncr_script_copy_and_bind(np, (ncrcmd *) &script0, 8411 (ncrcmd *) np->script0, sizeof(struct script)); 8412 ncr_script_copy_and_bind(np, (ncrcmd *) &scripth0, 8413 (ncrcmd *) np->scripth0, sizeof(struct scripth)); 8414 np->ccb->p_ccb = vtobus (np->ccb); 8415 8416 /* Patch the script for LED support. */ 8417 8418 if (np->features & FE_LED0) { 8419 np->script0->idle[0] = 8420 cpu_to_scr(SCR_REG_REG(gpreg, SCR_OR, 0x01)); 8421 np->script0->reselected[0] = 8422 cpu_to_scr(SCR_REG_REG(gpreg, SCR_AND, 0xfe)); 8423 np->script0->start[0] = 8424 cpu_to_scr(SCR_REG_REG(gpreg, SCR_AND, 0xfe)); 8425 } 8426 8427 /* 8428 * Look for the target control block of this nexus. 8429 * For i = 0 to 3 8430 * JUMP ^ IFTRUE (MASK (i, 3)), @(next_lcb) 8431 */ 8432 for (i = 0 ; i < 4 ; i++) { 8433 np->jump_tcb[i].l_cmd = 8434 cpu_to_scr((SCR_JUMP ^ IFTRUE (MASK (i, 3)))); 8435 np->jump_tcb[i].l_paddr = 8436 cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_target)); 8437 } 8438 8439 ncr_chip_reset(np, 100); 8440 8441 /* Now check the cache handling of the chipset. */ 8442 8443 if (ncr_snooptest(np)) { 8444 printk(KERN_ERR "CACHE INCORRECTLY CONFIGURED.\n"); 8445 goto attach_error; 8446 } 8447 8448 /* Install the interrupt handler. */ 8449 np->irq = device->slot.irq; 8450 8451 /* Initialize the fixed part of the default ccb. */ 8452 ncr_init_ccb(np, np->ccb); 8453 8454 /* 8455 * After SCSI devices have been opened, we cannot reset the bus 8456 * safely, so we do it here. Interrupt handler does the real work. 8457 * Process the reset exception if interrupts are not enabled yet. 8458 * Then enable disconnects. 8459 */ 8460 spin_lock_irqsave(&np->smp_lock, flags); 8461 if (ncr_reset_scsi_bus(np, 0, driver_setup.settle_delay) != 0) { 8462 printk(KERN_ERR "%s: FATAL ERROR: CHECK SCSI BUS - CABLES, TERMINATION, DEVICE POWER etc.!\n", ncr_name(np)); 8463 8464 spin_unlock_irqrestore(&np->smp_lock, flags); 8465 goto attach_error; 8466 } 8467 ncr_exception(np); 8468 8469 np->disc = 1; 8470 8471 /* 8472 * The middle-level SCSI driver does not wait for devices to settle. 8473 * Wait synchronously if more than 2 seconds. 8474 */ 8475 if (driver_setup.settle_delay > 2) { 8476 printk(KERN_INFO "%s: waiting %d seconds for scsi devices to settle...\n", 8477 ncr_name(np), driver_setup.settle_delay); 8478 mdelay(1000 * driver_setup.settle_delay); 8479 } 8480 8481 /* start the timeout daemon */ 8482 np->lasttime=0; 8483 ncr_timeout (np); 8484 8485 /* use SIMPLE TAG messages by default */ 8486 #ifdef SCSI_NCR_ALWAYS_SIMPLE_TAG 8487 np->order = SIMPLE_QUEUE_TAG; 8488 #endif 8489 8490 spin_unlock_irqrestore(&np->smp_lock, flags); 8491 8492 return instance; 8493 8494 attach_error: 8495 if (!instance) 8496 return NULL; 8497 printk(KERN_INFO "%s: detaching...\n", ncr_name(np)); 8498 if (!np) 8499 goto unregister; 8500 if (np->scripth0) 8501 m_free_dma(np->scripth0, sizeof(struct scripth), "SCRIPTH"); 8502 if (np->script0) 8503 m_free_dma(np->script0, sizeof(struct script), "SCRIPT"); 8504 if (np->ccb) 8505 m_free_dma(np->ccb, sizeof(struct ccb), "CCB"); 8506 m_free_dma(np, sizeof(struct ncb), "NCB"); 8507 host_data->ncb = NULL; 8508 8509 unregister: 8510 scsi_host_put(instance); 8511 8512 return NULL; 8513 } 8514 8515 8516 void ncr53c8xx_release(struct Scsi_Host *host) 8517 { 8518 struct host_data *host_data = shost_priv(host); 8519 #ifdef DEBUG_NCR53C8XX 8520 printk("ncr53c8xx: release\n"); 8521 #endif 8522 if (host_data->ncb) 8523 ncr_detach(host_data->ncb); 8524 scsi_host_put(host); 8525 } 8526 8527 static void ncr53c8xx_set_period(struct scsi_target *starget, int period) 8528 { 8529 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 8530 struct ncb *np = ((struct host_data *)shost->hostdata)->ncb; 8531 struct tcb *tp = &np->target[starget->id]; 8532 8533 if (period > np->maxsync) 8534 period = np->maxsync; 8535 else if (period < np->minsync) 8536 period = np->minsync; 8537 8538 tp->usrsync = period; 8539 8540 ncr_negotiate(np, tp); 8541 } 8542 8543 static void ncr53c8xx_set_offset(struct scsi_target *starget, int offset) 8544 { 8545 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 8546 struct ncb *np = ((struct host_data *)shost->hostdata)->ncb; 8547 struct tcb *tp = &np->target[starget->id]; 8548 8549 if (offset > np->maxoffs) 8550 offset = np->maxoffs; 8551 else if (offset < 0) 8552 offset = 0; 8553 8554 tp->maxoffs = offset; 8555 8556 ncr_negotiate(np, tp); 8557 } 8558 8559 static void ncr53c8xx_set_width(struct scsi_target *starget, int width) 8560 { 8561 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 8562 struct ncb *np = ((struct host_data *)shost->hostdata)->ncb; 8563 struct tcb *tp = &np->target[starget->id]; 8564 8565 if (width > np->maxwide) 8566 width = np->maxwide; 8567 else if (width < 0) 8568 width = 0; 8569 8570 tp->usrwide = width; 8571 8572 ncr_negotiate(np, tp); 8573 } 8574 8575 static void ncr53c8xx_get_signalling(struct Scsi_Host *shost) 8576 { 8577 struct ncb *np = ((struct host_data *)shost->hostdata)->ncb; 8578 enum spi_signal_type type; 8579 8580 switch (np->scsi_mode) { 8581 case SMODE_SE: 8582 type = SPI_SIGNAL_SE; 8583 break; 8584 case SMODE_HVD: 8585 type = SPI_SIGNAL_HVD; 8586 break; 8587 default: 8588 type = SPI_SIGNAL_UNKNOWN; 8589 break; 8590 } 8591 spi_signalling(shost) = type; 8592 } 8593 8594 static struct spi_function_template ncr53c8xx_transport_functions = { 8595 .set_period = ncr53c8xx_set_period, 8596 .show_period = 1, 8597 .set_offset = ncr53c8xx_set_offset, 8598 .show_offset = 1, 8599 .set_width = ncr53c8xx_set_width, 8600 .show_width = 1, 8601 .get_signalling = ncr53c8xx_get_signalling, 8602 }; 8603 8604 int __init ncr53c8xx_init(void) 8605 { 8606 ncr53c8xx_transport_template = spi_attach_transport(&ncr53c8xx_transport_functions); 8607 if (!ncr53c8xx_transport_template) 8608 return -ENODEV; 8609 return 0; 8610 } 8611 8612 void ncr53c8xx_exit(void) 8613 { 8614 spi_release_transport(ncr53c8xx_transport_template); 8615 } 8616