xref: /openbmc/linux/drivers/scsi/ncr53c8xx.c (revision 86e281fc)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /******************************************************************************
3 **  Device driver for the PCI-SCSI NCR538XX controller family.
4 **
5 **  Copyright (C) 1994  Wolfgang Stanglmeier
6 **
7 **
8 **-----------------------------------------------------------------------------
9 **
10 **  This driver has been ported to Linux from the FreeBSD NCR53C8XX driver
11 **  and is currently maintained by
12 **
13 **          Gerard Roudier              <groudier@free.fr>
14 **
15 **  Being given that this driver originates from the FreeBSD version, and
16 **  in order to keep synergy on both, any suggested enhancements and corrections
17 **  received on Linux are automatically a potential candidate for the FreeBSD
18 **  version.
19 **
20 **  The original driver has been written for 386bsd and FreeBSD by
21 **          Wolfgang Stanglmeier        <wolf@cologne.de>
22 **          Stefan Esser                <se@mi.Uni-Koeln.de>
23 **
24 **  And has been ported to NetBSD by
25 **          Charles M. Hannum           <mycroft@gnu.ai.mit.edu>
26 **
27 **-----------------------------------------------------------------------------
28 **
29 **                     Brief history
30 **
31 **  December 10 1995 by Gerard Roudier:
32 **     Initial port to Linux.
33 **
34 **  June 23 1996 by Gerard Roudier:
35 **     Support for 64 bits architectures (Alpha).
36 **
37 **  November 30 1996 by Gerard Roudier:
38 **     Support for Fast-20 scsi.
39 **     Support for large DMA fifo and 128 dwords bursting.
40 **
41 **  February 27 1997 by Gerard Roudier:
42 **     Support for Fast-40 scsi.
43 **     Support for on-Board RAM.
44 **
45 **  May 3 1997 by Gerard Roudier:
46 **     Full support for scsi scripts instructions pre-fetching.
47 **
48 **  May 19 1997 by Richard Waltham <dormouse@farsrobt.demon.co.uk>:
49 **     Support for NvRAM detection and reading.
50 **
51 **  August 18 1997 by Cort <cort@cs.nmt.edu>:
52 **     Support for Power/PC (Big Endian).
53 **
54 **  June 20 1998 by Gerard Roudier
55 **     Support for up to 64 tags per lun.
56 **     O(1) everywhere (C and SCRIPTS) for normal cases.
57 **     Low PCI traffic for command handling when on-chip RAM is present.
58 **     Aggressive SCSI SCRIPTS optimizations.
59 **
60 **  2005 by Matthew Wilcox and James Bottomley
61 **     PCI-ectomy.  This driver now supports only the 720 chip (see the
62 **     NCR_Q720 and zalon drivers for the bus probe logic).
63 **
64 *******************************************************************************
65 */
66 
67 /*
68 **	Supported SCSI-II features:
69 **	    Synchronous negotiation
70 **	    Wide negotiation        (depends on the NCR Chip)
71 **	    Enable disconnection
72 **	    Tagged command queuing
73 **	    Parity checking
74 **	    Etc...
75 **
76 **	Supported NCR/SYMBIOS chips:
77 **		53C720		(Wide,   Fast SCSI-2, intfly problems)
78 */
79 
80 /* Name and version of the driver */
81 #define SCSI_NCR_DRIVER_NAME	"ncr53c8xx-3.4.3g"
82 
83 #define SCSI_NCR_DEBUG_FLAGS	(0)
84 
85 #include <linux/blkdev.h>
86 #include <linux/delay.h>
87 #include <linux/dma-mapping.h>
88 #include <linux/errno.h>
89 #include <linux/gfp.h>
90 #include <linux/init.h>
91 #include <linux/interrupt.h>
92 #include <linux/ioport.h>
93 #include <linux/mm.h>
94 #include <linux/module.h>
95 #include <linux/sched.h>
96 #include <linux/signal.h>
97 #include <linux/spinlock.h>
98 #include <linux/stat.h>
99 #include <linux/string.h>
100 #include <linux/time.h>
101 #include <linux/timer.h>
102 #include <linux/types.h>
103 
104 #include <asm/dma.h>
105 #include <asm/io.h>
106 
107 #include <scsi/scsi.h>
108 #include <scsi/scsi_cmnd.h>
109 #include <scsi/scsi_dbg.h>
110 #include <scsi/scsi_device.h>
111 #include <scsi/scsi_tcq.h>
112 #include <scsi/scsi_transport.h>
113 #include <scsi/scsi_transport_spi.h>
114 
115 #include "ncr53c8xx.h"
116 
117 #define NAME53C8XX		"ncr53c8xx"
118 
119 /*==========================================================
120 **
121 **	Debugging tags
122 **
123 **==========================================================
124 */
125 
126 #define DEBUG_ALLOC    (0x0001)
127 #define DEBUG_PHASE    (0x0002)
128 #define DEBUG_QUEUE    (0x0008)
129 #define DEBUG_RESULT   (0x0010)
130 #define DEBUG_POINTER  (0x0020)
131 #define DEBUG_SCRIPT   (0x0040)
132 #define DEBUG_TINY     (0x0080)
133 #define DEBUG_TIMING   (0x0100)
134 #define DEBUG_NEGO     (0x0200)
135 #define DEBUG_TAGS     (0x0400)
136 #define DEBUG_SCATTER  (0x0800)
137 #define DEBUG_IC        (0x1000)
138 
139 /*
140 **    Enable/Disable debug messages.
141 **    Can be changed at runtime too.
142 */
143 
144 #ifdef SCSI_NCR_DEBUG_INFO_SUPPORT
145 static int ncr_debug = SCSI_NCR_DEBUG_FLAGS;
146 	#define DEBUG_FLAGS ncr_debug
147 #else
148 	#define DEBUG_FLAGS	SCSI_NCR_DEBUG_FLAGS
149 #endif
150 
151 /*
152  * Locally used status flag
153  */
154 #define SAM_STAT_ILLEGAL	0xff
155 
156 static inline struct list_head *ncr_list_pop(struct list_head *head)
157 {
158 	if (!list_empty(head)) {
159 		struct list_head *elem = head->next;
160 
161 		list_del(elem);
162 		return elem;
163 	}
164 
165 	return NULL;
166 }
167 
168 /*==========================================================
169 **
170 **	Simple power of two buddy-like allocator.
171 **
172 **	This simple code is not intended to be fast, but to
173 **	provide power of 2 aligned memory allocations.
174 **	Since the SCRIPTS processor only supplies 8 bit
175 **	arithmetic, this allocator allows simple and fast
176 **	address calculations  from the SCRIPTS code.
177 **	In addition, cache line alignment is guaranteed for
178 **	power of 2 cache line size.
179 **	Enhanced in linux-2.3.44 to provide a memory pool
180 **	per pcidev to support dynamic dma mapping. (I would
181 **	have preferred a real bus abstraction, btw).
182 **
183 **==========================================================
184 */
185 
186 #define MEMO_SHIFT	4	/* 16 bytes minimum memory chunk */
187 #if PAGE_SIZE >= 8192
188 #define MEMO_PAGE_ORDER	0	/* 1 PAGE  maximum */
189 #else
190 #define MEMO_PAGE_ORDER	1	/* 2 PAGES maximum */
191 #endif
192 #define MEMO_FREE_UNUSED	/* Free unused pages immediately */
193 #define MEMO_WARN	1
194 #define MEMO_GFP_FLAGS	GFP_ATOMIC
195 #define MEMO_CLUSTER_SHIFT	(PAGE_SHIFT+MEMO_PAGE_ORDER)
196 #define MEMO_CLUSTER_SIZE	(1UL << MEMO_CLUSTER_SHIFT)
197 #define MEMO_CLUSTER_MASK	(MEMO_CLUSTER_SIZE-1)
198 
199 typedef u_long m_addr_t;	/* Enough bits to bit-hack addresses */
200 typedef struct device *m_bush_t;	/* Something that addresses DMAable */
201 
202 typedef struct m_link {		/* Link between free memory chunks */
203 	struct m_link *next;
204 } m_link_s;
205 
206 typedef struct m_vtob {		/* Virtual to Bus address translation */
207 	struct m_vtob *next;
208 	m_addr_t vaddr;
209 	m_addr_t baddr;
210 } m_vtob_s;
211 #define VTOB_HASH_SHIFT		5
212 #define VTOB_HASH_SIZE		(1UL << VTOB_HASH_SHIFT)
213 #define VTOB_HASH_MASK		(VTOB_HASH_SIZE-1)
214 #define VTOB_HASH_CODE(m)	\
215 	((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK)
216 
217 typedef struct m_pool {		/* Memory pool of a given kind */
218 	m_bush_t bush;
219 	m_addr_t (*getp)(struct m_pool *);
220 	void (*freep)(struct m_pool *, m_addr_t);
221 	int nump;
222 	m_vtob_s *(vtob[VTOB_HASH_SIZE]);
223 	struct m_pool *next;
224 	struct m_link h[PAGE_SHIFT-MEMO_SHIFT+MEMO_PAGE_ORDER+1];
225 } m_pool_s;
226 
227 static void *___m_alloc(m_pool_s *mp, int size)
228 {
229 	int i = 0;
230 	int s = (1 << MEMO_SHIFT);
231 	int j;
232 	m_addr_t a;
233 	m_link_s *h = mp->h;
234 
235 	if (size > (PAGE_SIZE << MEMO_PAGE_ORDER))
236 		return NULL;
237 
238 	while (size > s) {
239 		s <<= 1;
240 		++i;
241 	}
242 
243 	j = i;
244 	while (!h[j].next) {
245 		if (s == (PAGE_SIZE << MEMO_PAGE_ORDER)) {
246 			h[j].next = (m_link_s *)mp->getp(mp);
247 			if (h[j].next)
248 				h[j].next->next = NULL;
249 			break;
250 		}
251 		++j;
252 		s <<= 1;
253 	}
254 	a = (m_addr_t) h[j].next;
255 	if (a) {
256 		h[j].next = h[j].next->next;
257 		while (j > i) {
258 			j -= 1;
259 			s >>= 1;
260 			h[j].next = (m_link_s *) (a+s);
261 			h[j].next->next = NULL;
262 		}
263 	}
264 #ifdef DEBUG
265 	printk("___m_alloc(%d) = %p\n", size, (void *) a);
266 #endif
267 	return (void *) a;
268 }
269 
270 static void ___m_free(m_pool_s *mp, void *ptr, int size)
271 {
272 	int i = 0;
273 	int s = (1 << MEMO_SHIFT);
274 	m_link_s *q;
275 	m_addr_t a, b;
276 	m_link_s *h = mp->h;
277 
278 #ifdef DEBUG
279 	printk("___m_free(%p, %d)\n", ptr, size);
280 #endif
281 
282 	if (size > (PAGE_SIZE << MEMO_PAGE_ORDER))
283 		return;
284 
285 	while (size > s) {
286 		s <<= 1;
287 		++i;
288 	}
289 
290 	a = (m_addr_t) ptr;
291 
292 	while (1) {
293 #ifdef MEMO_FREE_UNUSED
294 		if (s == (PAGE_SIZE << MEMO_PAGE_ORDER)) {
295 			mp->freep(mp, a);
296 			break;
297 		}
298 #endif
299 		b = a ^ s;
300 		q = &h[i];
301 		while (q->next && q->next != (m_link_s *) b) {
302 			q = q->next;
303 		}
304 		if (!q->next) {
305 			((m_link_s *) a)->next = h[i].next;
306 			h[i].next = (m_link_s *) a;
307 			break;
308 		}
309 		q->next = q->next->next;
310 		a = a & b;
311 		s <<= 1;
312 		++i;
313 	}
314 }
315 
316 static DEFINE_SPINLOCK(ncr53c8xx_lock);
317 
318 static void *__m_calloc2(m_pool_s *mp, int size, char *name, int uflags)
319 {
320 	void *p;
321 
322 	p = ___m_alloc(mp, size);
323 
324 	if (DEBUG_FLAGS & DEBUG_ALLOC)
325 		printk ("new %-10s[%4d] @%p.\n", name, size, p);
326 
327 	if (p)
328 		memset(p, 0, size);
329 	else if (uflags & MEMO_WARN)
330 		printk (NAME53C8XX ": failed to allocate %s[%d]\n", name, size);
331 
332 	return p;
333 }
334 
335 #define __m_calloc(mp, s, n)	__m_calloc2(mp, s, n, MEMO_WARN)
336 
337 static void __m_free(m_pool_s *mp, void *ptr, int size, char *name)
338 {
339 	if (DEBUG_FLAGS & DEBUG_ALLOC)
340 		printk ("freeing %-10s[%4d] @%p.\n", name, size, ptr);
341 
342 	___m_free(mp, ptr, size);
343 
344 }
345 
346 /*
347  * With pci bus iommu support, we use a default pool of unmapped memory
348  * for memory we donnot need to DMA from/to and one pool per pcidev for
349  * memory accessed by the PCI chip. `mp0' is the default not DMAable pool.
350  */
351 
352 static m_addr_t ___mp0_getp(m_pool_s *mp)
353 {
354 	m_addr_t m = __get_free_pages(MEMO_GFP_FLAGS, MEMO_PAGE_ORDER);
355 	if (m)
356 		++mp->nump;
357 	return m;
358 }
359 
360 static void ___mp0_freep(m_pool_s *mp, m_addr_t m)
361 {
362 	free_pages(m, MEMO_PAGE_ORDER);
363 	--mp->nump;
364 }
365 
366 static m_pool_s mp0 = {NULL, ___mp0_getp, ___mp0_freep};
367 
368 /*
369  * DMAable pools.
370  */
371 
372 /*
373  * With pci bus iommu support, we maintain one pool per pcidev and a
374  * hashed reverse table for virtual to bus physical address translations.
375  */
376 static m_addr_t ___dma_getp(m_pool_s *mp)
377 {
378 	m_addr_t vp;
379 	m_vtob_s *vbp;
380 
381 	vbp = __m_calloc(&mp0, sizeof(*vbp), "VTOB");
382 	if (vbp) {
383 		dma_addr_t daddr;
384 		vp = (m_addr_t) dma_alloc_coherent(mp->bush,
385 						PAGE_SIZE<<MEMO_PAGE_ORDER,
386 						&daddr, GFP_ATOMIC);
387 		if (vp) {
388 			int hc = VTOB_HASH_CODE(vp);
389 			vbp->vaddr = vp;
390 			vbp->baddr = daddr;
391 			vbp->next = mp->vtob[hc];
392 			mp->vtob[hc] = vbp;
393 			++mp->nump;
394 			return vp;
395 		}
396 	}
397 	if (vbp)
398 		__m_free(&mp0, vbp, sizeof(*vbp), "VTOB");
399 	return 0;
400 }
401 
402 static void ___dma_freep(m_pool_s *mp, m_addr_t m)
403 {
404 	m_vtob_s **vbpp, *vbp;
405 	int hc = VTOB_HASH_CODE(m);
406 
407 	vbpp = &mp->vtob[hc];
408 	while (*vbpp && (*vbpp)->vaddr != m)
409 		vbpp = &(*vbpp)->next;
410 	if (*vbpp) {
411 		vbp = *vbpp;
412 		*vbpp = (*vbpp)->next;
413 		dma_free_coherent(mp->bush, PAGE_SIZE<<MEMO_PAGE_ORDER,
414 				  (void *)vbp->vaddr, (dma_addr_t)vbp->baddr);
415 		__m_free(&mp0, vbp, sizeof(*vbp), "VTOB");
416 		--mp->nump;
417 	}
418 }
419 
420 static inline m_pool_s *___get_dma_pool(m_bush_t bush)
421 {
422 	m_pool_s *mp;
423 	for (mp = mp0.next; mp && mp->bush != bush; mp = mp->next);
424 	return mp;
425 }
426 
427 static m_pool_s *___cre_dma_pool(m_bush_t bush)
428 {
429 	m_pool_s *mp;
430 	mp = __m_calloc(&mp0, sizeof(*mp), "MPOOL");
431 	if (mp) {
432 		memset(mp, 0, sizeof(*mp));
433 		mp->bush = bush;
434 		mp->getp = ___dma_getp;
435 		mp->freep = ___dma_freep;
436 		mp->next = mp0.next;
437 		mp0.next = mp;
438 	}
439 	return mp;
440 }
441 
442 static void ___del_dma_pool(m_pool_s *p)
443 {
444 	struct m_pool **pp = &mp0.next;
445 
446 	while (*pp && *pp != p)
447 		pp = &(*pp)->next;
448 	if (*pp) {
449 		*pp = (*pp)->next;
450 		__m_free(&mp0, p, sizeof(*p), "MPOOL");
451 	}
452 }
453 
454 static void *__m_calloc_dma(m_bush_t bush, int size, char *name)
455 {
456 	u_long flags;
457 	struct m_pool *mp;
458 	void *m = NULL;
459 
460 	spin_lock_irqsave(&ncr53c8xx_lock, flags);
461 	mp = ___get_dma_pool(bush);
462 	if (!mp)
463 		mp = ___cre_dma_pool(bush);
464 	if (mp)
465 		m = __m_calloc(mp, size, name);
466 	if (mp && !mp->nump)
467 		___del_dma_pool(mp);
468 	spin_unlock_irqrestore(&ncr53c8xx_lock, flags);
469 
470 	return m;
471 }
472 
473 static void __m_free_dma(m_bush_t bush, void *m, int size, char *name)
474 {
475 	u_long flags;
476 	struct m_pool *mp;
477 
478 	spin_lock_irqsave(&ncr53c8xx_lock, flags);
479 	mp = ___get_dma_pool(bush);
480 	if (mp)
481 		__m_free(mp, m, size, name);
482 	if (mp && !mp->nump)
483 		___del_dma_pool(mp);
484 	spin_unlock_irqrestore(&ncr53c8xx_lock, flags);
485 }
486 
487 static m_addr_t __vtobus(m_bush_t bush, void *m)
488 {
489 	u_long flags;
490 	m_pool_s *mp;
491 	int hc = VTOB_HASH_CODE(m);
492 	m_vtob_s *vp = NULL;
493 	m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK;
494 
495 	spin_lock_irqsave(&ncr53c8xx_lock, flags);
496 	mp = ___get_dma_pool(bush);
497 	if (mp) {
498 		vp = mp->vtob[hc];
499 		while (vp && (m_addr_t) vp->vaddr != a)
500 			vp = vp->next;
501 	}
502 	spin_unlock_irqrestore(&ncr53c8xx_lock, flags);
503 	return vp ? vp->baddr + (((m_addr_t) m) - a) : 0;
504 }
505 
506 #define _m_calloc_dma(np, s, n)		__m_calloc_dma(np->dev, s, n)
507 #define _m_free_dma(np, p, s, n)	__m_free_dma(np->dev, p, s, n)
508 #define m_calloc_dma(s, n)		_m_calloc_dma(np, s, n)
509 #define m_free_dma(p, s, n)		_m_free_dma(np, p, s, n)
510 #define _vtobus(np, p)			__vtobus(np->dev, p)
511 #define vtobus(p)			_vtobus(np, p)
512 
513 /*
514  *  Deal with DMA mapping/unmapping.
515  */
516 
517 static void __unmap_scsi_data(struct device *dev, struct scsi_cmnd *cmd)
518 {
519 	struct ncr_cmd_priv *cmd_priv = scsi_cmd_priv(cmd);
520 
521 	switch(cmd_priv->data_mapped) {
522 	case 2:
523 		scsi_dma_unmap(cmd);
524 		break;
525 	}
526 	cmd_priv->data_mapped = 0;
527 }
528 
529 static int __map_scsi_sg_data(struct device *dev, struct scsi_cmnd *cmd)
530 {
531 	struct ncr_cmd_priv *cmd_priv = scsi_cmd_priv(cmd);
532 	int use_sg;
533 
534 	use_sg = scsi_dma_map(cmd);
535 	if (!use_sg)
536 		return 0;
537 
538 	cmd_priv->data_mapped = 2;
539 	cmd_priv->data_mapping = use_sg;
540 
541 	return use_sg;
542 }
543 
544 #define unmap_scsi_data(np, cmd)	__unmap_scsi_data(np->dev, cmd)
545 #define map_scsi_sg_data(np, cmd)	__map_scsi_sg_data(np->dev, cmd)
546 
547 /*==========================================================
548 **
549 **	Driver setup.
550 **
551 **	This structure is initialized from linux config
552 **	options. It can be overridden at boot-up by the boot
553 **	command line.
554 **
555 **==========================================================
556 */
557 static struct ncr_driver_setup
558 	driver_setup			= SCSI_NCR_DRIVER_SETUP;
559 
560 #ifndef MODULE
561 #ifdef	SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT
562 static struct ncr_driver_setup
563 	driver_safe_setup __initdata	= SCSI_NCR_DRIVER_SAFE_SETUP;
564 #endif
565 #endif /* !MODULE */
566 
567 #define initverbose (driver_setup.verbose)
568 #define bootverbose (np->verbose)
569 
570 
571 /*===================================================================
572 **
573 **	Driver setup from the boot command line
574 **
575 **===================================================================
576 */
577 
578 #ifdef MODULE
579 #define	ARG_SEP	' '
580 #else
581 #define	ARG_SEP	','
582 #endif
583 
584 #define OPT_TAGS		1
585 #define OPT_MASTER_PARITY	2
586 #define OPT_SCSI_PARITY		3
587 #define OPT_DISCONNECTION	4
588 #define OPT_SPECIAL_FEATURES	5
589 #define OPT_UNUSED_1		6
590 #define OPT_FORCE_SYNC_NEGO	7
591 #define OPT_REVERSE_PROBE	8
592 #define OPT_DEFAULT_SYNC	9
593 #define OPT_VERBOSE		10
594 #define OPT_DEBUG		11
595 #define OPT_BURST_MAX		12
596 #define OPT_LED_PIN		13
597 #define OPT_MAX_WIDE		14
598 #define OPT_SETTLE_DELAY	15
599 #define OPT_DIFF_SUPPORT	16
600 #define OPT_IRQM		17
601 #define OPT_PCI_FIX_UP		18
602 #define OPT_BUS_CHECK		19
603 #define OPT_OPTIMIZE		20
604 #define OPT_RECOVERY		21
605 #define OPT_SAFE_SETUP		22
606 #define OPT_USE_NVRAM		23
607 #define OPT_EXCLUDE		24
608 #define OPT_HOST_ID		25
609 
610 #ifdef SCSI_NCR_IARB_SUPPORT
611 #define OPT_IARB		26
612 #endif
613 
614 #ifdef MODULE
615 #define	ARG_SEP	' '
616 #else
617 #define	ARG_SEP	','
618 #endif
619 
620 #ifndef MODULE
621 static char setup_token[] __initdata =
622 	"tags:"   "mpar:"
623 	"spar:"   "disc:"
624 	"specf:"  "ultra:"
625 	"fsn:"    "revprob:"
626 	"sync:"   "verb:"
627 	"debug:"  "burst:"
628 	"led:"    "wide:"
629 	"settle:" "diff:"
630 	"irqm:"   "pcifix:"
631 	"buschk:" "optim:"
632 	"recovery:"
633 	"safe:"   "nvram:"
634 	"excl:"   "hostid:"
635 #ifdef SCSI_NCR_IARB_SUPPORT
636 	"iarb:"
637 #endif
638 	;	/* DONNOT REMOVE THIS ';' */
639 
640 static int __init get_setup_token(char *p)
641 {
642 	char *cur = setup_token;
643 	char *pc;
644 	int i = 0;
645 
646 	while (cur != NULL && (pc = strchr(cur, ':')) != NULL) {
647 		++pc;
648 		++i;
649 		if (!strncmp(p, cur, pc - cur))
650 			return i;
651 		cur = pc;
652 	}
653 	return 0;
654 }
655 
656 static int __init sym53c8xx__setup(char *str)
657 {
658 #ifdef SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT
659 	char *cur = str;
660 	char *pc, *pv;
661 	int i, val, c;
662 	int xi = 0;
663 
664 	while (cur != NULL && (pc = strchr(cur, ':')) != NULL) {
665 		char *pe;
666 
667 		val = 0;
668 		pv = pc;
669 		c = *++pv;
670 
671 		if	(c == 'n')
672 			val = 0;
673 		else if	(c == 'y')
674 			val = 1;
675 		else
676 			val = (int) simple_strtoul(pv, &pe, 0);
677 
678 		switch (get_setup_token(cur)) {
679 		case OPT_TAGS:
680 			driver_setup.default_tags = val;
681 			if (pe && *pe == '/') {
682 				i = 0;
683 				while (*pe && *pe != ARG_SEP &&
684 					i < sizeof(driver_setup.tag_ctrl)-1) {
685 					driver_setup.tag_ctrl[i++] = *pe++;
686 				}
687 				driver_setup.tag_ctrl[i] = '\0';
688 			}
689 			break;
690 		case OPT_MASTER_PARITY:
691 			driver_setup.master_parity = val;
692 			break;
693 		case OPT_SCSI_PARITY:
694 			driver_setup.scsi_parity = val;
695 			break;
696 		case OPT_DISCONNECTION:
697 			driver_setup.disconnection = val;
698 			break;
699 		case OPT_SPECIAL_FEATURES:
700 			driver_setup.special_features = val;
701 			break;
702 		case OPT_FORCE_SYNC_NEGO:
703 			driver_setup.force_sync_nego = val;
704 			break;
705 		case OPT_REVERSE_PROBE:
706 			driver_setup.reverse_probe = val;
707 			break;
708 		case OPT_DEFAULT_SYNC:
709 			driver_setup.default_sync = val;
710 			break;
711 		case OPT_VERBOSE:
712 			driver_setup.verbose = val;
713 			break;
714 		case OPT_DEBUG:
715 			driver_setup.debug = val;
716 			break;
717 		case OPT_BURST_MAX:
718 			driver_setup.burst_max = val;
719 			break;
720 		case OPT_LED_PIN:
721 			driver_setup.led_pin = val;
722 			break;
723 		case OPT_MAX_WIDE:
724 			driver_setup.max_wide = val? 1:0;
725 			break;
726 		case OPT_SETTLE_DELAY:
727 			driver_setup.settle_delay = val;
728 			break;
729 		case OPT_DIFF_SUPPORT:
730 			driver_setup.diff_support = val;
731 			break;
732 		case OPT_IRQM:
733 			driver_setup.irqm = val;
734 			break;
735 		case OPT_PCI_FIX_UP:
736 			driver_setup.pci_fix_up	= val;
737 			break;
738 		case OPT_BUS_CHECK:
739 			driver_setup.bus_check = val;
740 			break;
741 		case OPT_OPTIMIZE:
742 			driver_setup.optimize = val;
743 			break;
744 		case OPT_RECOVERY:
745 			driver_setup.recovery = val;
746 			break;
747 		case OPT_USE_NVRAM:
748 			driver_setup.use_nvram = val;
749 			break;
750 		case OPT_SAFE_SETUP:
751 			memcpy(&driver_setup, &driver_safe_setup,
752 				sizeof(driver_setup));
753 			break;
754 		case OPT_EXCLUDE:
755 			if (xi < SCSI_NCR_MAX_EXCLUDES)
756 				driver_setup.excludes[xi++] = val;
757 			break;
758 		case OPT_HOST_ID:
759 			driver_setup.host_id = val;
760 			break;
761 #ifdef SCSI_NCR_IARB_SUPPORT
762 		case OPT_IARB:
763 			driver_setup.iarb = val;
764 			break;
765 #endif
766 		default:
767 			printk("sym53c8xx_setup: unexpected boot option '%.*s' ignored\n", (int)(pc-cur+1), cur);
768 			break;
769 		}
770 
771 		if ((cur = strchr(cur, ARG_SEP)) != NULL)
772 			++cur;
773 	}
774 #endif /* SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT */
775 	return 1;
776 }
777 #endif /* !MODULE */
778 
779 /*===================================================================
780 **
781 **	Get device queue depth from boot command line.
782 **
783 **===================================================================
784 */
785 #define DEF_DEPTH	(driver_setup.default_tags)
786 #define ALL_TARGETS	-2
787 #define NO_TARGET	-1
788 #define ALL_LUNS	-2
789 #define NO_LUN		-1
790 
791 static int device_queue_depth(int unit, int target, int lun)
792 {
793 	int c, h, t, u, v;
794 	char *p = driver_setup.tag_ctrl;
795 	char *ep;
796 
797 	h = -1;
798 	t = NO_TARGET;
799 	u = NO_LUN;
800 	while ((c = *p++) != 0) {
801 		v = simple_strtoul(p, &ep, 0);
802 		switch(c) {
803 		case '/':
804 			++h;
805 			t = ALL_TARGETS;
806 			u = ALL_LUNS;
807 			break;
808 		case 't':
809 			if (t != target)
810 				t = (target == v) ? v : NO_TARGET;
811 			u = ALL_LUNS;
812 			break;
813 		case 'u':
814 			if (u != lun)
815 				u = (lun == v) ? v : NO_LUN;
816 			break;
817 		case 'q':
818 			if (h == unit &&
819 				(t == ALL_TARGETS || t == target) &&
820 				(u == ALL_LUNS    || u == lun))
821 				return v;
822 			break;
823 		case '-':
824 			t = ALL_TARGETS;
825 			u = ALL_LUNS;
826 			break;
827 		default:
828 			break;
829 		}
830 		p = ep;
831 	}
832 	return DEF_DEPTH;
833 }
834 
835 
836 /*==========================================================
837 **
838 **	The CCB done queue uses an array of CCB virtual
839 **	addresses. Empty entries are flagged using the bogus
840 **	virtual address 0xffffffff.
841 **
842 **	Since PCI ensures that only aligned DWORDs are accessed
843 **	atomically, 64 bit little-endian architecture requires
844 **	to test the high order DWORD of the entry to determine
845 **	if it is empty or valid.
846 **
847 **	BTW, I will make things differently as soon as I will
848 **	have a better idea, but this is simple and should work.
849 **
850 **==========================================================
851 */
852 
853 #define SCSI_NCR_CCB_DONE_SUPPORT
854 #ifdef  SCSI_NCR_CCB_DONE_SUPPORT
855 
856 #define MAX_DONE 24
857 #define CCB_DONE_EMPTY 0xffffffffUL
858 
859 /* All 32 bit architectures */
860 #if BITS_PER_LONG == 32
861 #define CCB_DONE_VALID(cp)  (((u_long) cp) != CCB_DONE_EMPTY)
862 
863 /* All > 32 bit (64 bit) architectures regardless endian-ness */
864 #else
865 #define CCB_DONE_VALID(cp)  \
866 	((((u_long) cp) & 0xffffffff00000000ul) && 	\
867 	 (((u_long) cp) & 0xfffffffful) != CCB_DONE_EMPTY)
868 #endif
869 
870 #endif /* SCSI_NCR_CCB_DONE_SUPPORT */
871 
872 /*==========================================================
873 **
874 **	Configuration and Debugging
875 **
876 **==========================================================
877 */
878 
879 /*
880 **    SCSI address of this device.
881 **    The boot routines should have set it.
882 **    If not, use this.
883 */
884 
885 #ifndef SCSI_NCR_MYADDR
886 #define SCSI_NCR_MYADDR      (7)
887 #endif
888 
889 /*
890 **    The maximum number of tags per logic unit.
891 **    Used only for disk devices that support tags.
892 */
893 
894 #ifndef SCSI_NCR_MAX_TAGS
895 #define SCSI_NCR_MAX_TAGS    (8)
896 #endif
897 
898 /*
899 **    TAGS are actually limited to 64 tags/lun.
900 **    We need to deal with power of 2, for alignment constraints.
901 */
902 #if	SCSI_NCR_MAX_TAGS > 64
903 #define	MAX_TAGS (64)
904 #else
905 #define	MAX_TAGS SCSI_NCR_MAX_TAGS
906 #endif
907 
908 #define NO_TAG	(255)
909 
910 /*
911 **	Choose appropriate type for tag bitmap.
912 */
913 #if	MAX_TAGS > 32
914 typedef u64 tagmap_t;
915 #else
916 typedef u32 tagmap_t;
917 #endif
918 
919 /*
920 **    Number of targets supported by the driver.
921 **    n permits target numbers 0..n-1.
922 **    Default is 16, meaning targets #0..#15.
923 **    #7 .. is myself.
924 */
925 
926 #ifdef SCSI_NCR_MAX_TARGET
927 #define MAX_TARGET  (SCSI_NCR_MAX_TARGET)
928 #else
929 #define MAX_TARGET  (16)
930 #endif
931 
932 /*
933 **    Number of logic units supported by the driver.
934 **    n enables logic unit numbers 0..n-1.
935 **    The common SCSI devices require only
936 **    one lun, so take 1 as the default.
937 */
938 
939 #ifdef SCSI_NCR_MAX_LUN
940 #define MAX_LUN    SCSI_NCR_MAX_LUN
941 #else
942 #define MAX_LUN    (1)
943 #endif
944 
945 /*
946 **    Asynchronous pre-scaler (ns). Shall be 40
947 */
948 
949 #ifndef SCSI_NCR_MIN_ASYNC
950 #define SCSI_NCR_MIN_ASYNC (40)
951 #endif
952 
953 /*
954 **    The maximum number of jobs scheduled for starting.
955 **    There should be one slot per target, and one slot
956 **    for each tag of each target in use.
957 **    The calculation below is actually quite silly ...
958 */
959 
960 #ifdef SCSI_NCR_CAN_QUEUE
961 #define MAX_START   (SCSI_NCR_CAN_QUEUE + 4)
962 #else
963 #define MAX_START   (MAX_TARGET + 7 * MAX_TAGS)
964 #endif
965 
966 /*
967 **   We limit the max number of pending IO to 250.
968 **   since we donnot want to allocate more than 1
969 **   PAGE for 'scripth'.
970 */
971 #if	MAX_START > 250
972 #undef	MAX_START
973 #define	MAX_START 250
974 #endif
975 
976 /*
977 **    The maximum number of segments a transfer is split into.
978 **    We support up to 127 segments for both read and write.
979 **    The data scripts are broken into 2 sub-scripts.
980 **    80 (MAX_SCATTERL) segments are moved from a sub-script
981 **    in on-chip RAM. This makes data transfers shorter than
982 **    80k (assuming 1k fs) as fast as possible.
983 */
984 
985 #define MAX_SCATTER (SCSI_NCR_MAX_SCATTER)
986 
987 #if (MAX_SCATTER > 80)
988 #define MAX_SCATTERL	80
989 #define	MAX_SCATTERH	(MAX_SCATTER - MAX_SCATTERL)
990 #else
991 #define MAX_SCATTERL	(MAX_SCATTER-1)
992 #define	MAX_SCATTERH	1
993 #endif
994 
995 /*
996 **	other
997 */
998 
999 #define NCR_SNOOP_TIMEOUT (1000000)
1000 
1001 /*
1002 **	Other definitions
1003 */
1004 
1005 #define initverbose (driver_setup.verbose)
1006 #define bootverbose (np->verbose)
1007 
1008 /*==========================================================
1009 **
1010 **	Command control block states.
1011 **
1012 **==========================================================
1013 */
1014 
1015 #define HS_IDLE		(0)
1016 #define HS_BUSY		(1)
1017 #define HS_NEGOTIATE	(2)	/* sync/wide data transfer*/
1018 #define HS_DISCONNECT	(3)	/* Disconnected by target */
1019 
1020 #define HS_DONEMASK	(0x80)
1021 #define HS_COMPLETE	(4|HS_DONEMASK)
1022 #define HS_SEL_TIMEOUT	(5|HS_DONEMASK)	/* Selection timeout      */
1023 #define HS_RESET	(6|HS_DONEMASK)	/* SCSI reset	          */
1024 #define HS_ABORTED	(7|HS_DONEMASK)	/* Transfer aborted       */
1025 #define HS_TIMEOUT	(8|HS_DONEMASK)	/* Software timeout       */
1026 #define HS_FAIL		(9|HS_DONEMASK)	/* SCSI or PCI bus errors */
1027 #define HS_UNEXPECTED	(10|HS_DONEMASK)/* Unexpected disconnect  */
1028 
1029 /*
1030 **	Invalid host status values used by the SCRIPTS processor
1031 **	when the nexus is not fully identified.
1032 **	Shall never appear in a CCB.
1033 */
1034 
1035 #define HS_INVALMASK	(0x40)
1036 #define	HS_SELECTING	(0|HS_INVALMASK)
1037 #define	HS_IN_RESELECT	(1|HS_INVALMASK)
1038 #define	HS_STARTING	(2|HS_INVALMASK)
1039 
1040 /*
1041 **	Flags set by the SCRIPT processor for commands
1042 **	that have been skipped.
1043 */
1044 #define HS_SKIPMASK	(0x20)
1045 
1046 /*==========================================================
1047 **
1048 **	Software Interrupt Codes
1049 **
1050 **==========================================================
1051 */
1052 
1053 #define	SIR_BAD_STATUS		(1)
1054 #define	SIR_XXXXXXXXXX		(2)
1055 #define	SIR_NEGO_SYNC		(3)
1056 #define	SIR_NEGO_WIDE		(4)
1057 #define	SIR_NEGO_FAILED		(5)
1058 #define	SIR_NEGO_PROTO		(6)
1059 #define	SIR_REJECT_RECEIVED	(7)
1060 #define	SIR_REJECT_SENT		(8)
1061 #define	SIR_IGN_RESIDUE		(9)
1062 #define	SIR_MISSING_SAVE	(10)
1063 #define	SIR_RESEL_NO_MSG_IN	(11)
1064 #define	SIR_RESEL_NO_IDENTIFY	(12)
1065 #define	SIR_RESEL_BAD_LUN	(13)
1066 #define	SIR_RESEL_BAD_TARGET	(14)
1067 #define	SIR_RESEL_BAD_I_T_L	(15)
1068 #define	SIR_RESEL_BAD_I_T_L_Q	(16)
1069 #define	SIR_DONE_OVERFLOW	(17)
1070 #define	SIR_INTFLY		(18)
1071 #define	SIR_MAX			(18)
1072 
1073 /*==========================================================
1074 **
1075 **	Extended error codes.
1076 **	xerr_status field of struct ccb.
1077 **
1078 **==========================================================
1079 */
1080 
1081 #define	XE_OK		(0)
1082 #define	XE_EXTRA_DATA	(1)	/* unexpected data phase */
1083 #define	XE_BAD_PHASE	(2)	/* illegal phase (4/5)   */
1084 
1085 /*==========================================================
1086 **
1087 **	Negotiation status.
1088 **	nego_status field	of struct ccb.
1089 **
1090 **==========================================================
1091 */
1092 
1093 #define NS_NOCHANGE	(0)
1094 #define NS_SYNC		(1)
1095 #define NS_WIDE		(2)
1096 #define NS_PPR		(4)
1097 
1098 /*==========================================================
1099 **
1100 **	Misc.
1101 **
1102 **==========================================================
1103 */
1104 
1105 #define CCB_MAGIC	(0xf2691ad2)
1106 
1107 /*==========================================================
1108 **
1109 **	Declaration of structs.
1110 **
1111 **==========================================================
1112 */
1113 
1114 static struct scsi_transport_template *ncr53c8xx_transport_template = NULL;
1115 
1116 struct tcb;
1117 struct lcb;
1118 struct ccb;
1119 struct ncb;
1120 struct script;
1121 
1122 struct link {
1123 	ncrcmd	l_cmd;
1124 	ncrcmd	l_paddr;
1125 };
1126 
1127 struct	usrcmd {
1128 	u_long	target;
1129 	u_long	lun;
1130 	u_long	data;
1131 	u_long	cmd;
1132 };
1133 
1134 #define UC_SETSYNC      10
1135 #define UC_SETTAGS	11
1136 #define UC_SETDEBUG	12
1137 #define UC_SETORDER	13
1138 #define UC_SETWIDE	14
1139 #define UC_SETFLAG	15
1140 #define UC_SETVERBOSE	17
1141 
1142 #define	UF_TRACE	(0x01)
1143 #define	UF_NODISC	(0x02)
1144 #define	UF_NOSCAN	(0x04)
1145 
1146 /*========================================================================
1147 **
1148 **	Declaration of structs:		target control block
1149 **
1150 **========================================================================
1151 */
1152 struct tcb {
1153 	/*----------------------------------------------------------------
1154 	**	During reselection the ncr jumps to this point with SFBR
1155 	**	set to the encoded target number with bit 7 set.
1156 	**	if it's not this target, jump to the next.
1157 	**
1158 	**	JUMP  IF (SFBR != #target#), @(next tcb)
1159 	**----------------------------------------------------------------
1160 	*/
1161 	struct link   jump_tcb;
1162 
1163 	/*----------------------------------------------------------------
1164 	**	Load the actual values for the sxfer and the scntl3
1165 	**	register (sync/wide mode).
1166 	**
1167 	**	SCR_COPY (1), @(sval field of this tcb), @(sxfer  register)
1168 	**	SCR_COPY (1), @(wval field of this tcb), @(scntl3 register)
1169 	**----------------------------------------------------------------
1170 	*/
1171 	ncrcmd	getscr[6];
1172 
1173 	/*----------------------------------------------------------------
1174 	**	Get the IDENTIFY message and load the LUN to SFBR.
1175 	**
1176 	**	CALL, <RESEL_LUN>
1177 	**----------------------------------------------------------------
1178 	*/
1179 	struct link   call_lun;
1180 
1181 	/*----------------------------------------------------------------
1182 	**	Now look for the right lun.
1183 	**
1184 	**	For i = 0 to 3
1185 	**		SCR_JUMP ^ IFTRUE(MASK(i, 3)), @(first lcb mod. i)
1186 	**
1187 	**	Recent chips will prefetch the 4 JUMPS using only 1 burst.
1188 	**	It is kind of hashcoding.
1189 	**----------------------------------------------------------------
1190 	*/
1191 	struct link     jump_lcb[4];	/* JUMPs for reselection	*/
1192 	struct lcb *	lp[MAX_LUN];	/* The lcb's of this tcb	*/
1193 
1194 	/*----------------------------------------------------------------
1195 	**	Pointer to the ccb used for negotiation.
1196 	**	Prevent from starting a negotiation for all queued commands
1197 	**	when tagged command queuing is enabled.
1198 	**----------------------------------------------------------------
1199 	*/
1200 	struct ccb *   nego_cp;
1201 
1202 	/*----------------------------------------------------------------
1203 	**	statistical data
1204 	**----------------------------------------------------------------
1205 	*/
1206 	u_long	transfers;
1207 	u_long	bytes;
1208 
1209 	/*----------------------------------------------------------------
1210 	**	negotiation of wide and synch transfer and device quirks.
1211 	**----------------------------------------------------------------
1212 	*/
1213 #ifdef SCSI_NCR_BIG_ENDIAN
1214 /*0*/	u16	period;
1215 /*2*/	u_char	sval;
1216 /*3*/	u_char	minsync;
1217 /*0*/	u_char	wval;
1218 /*1*/	u_char	widedone;
1219 /*2*/	u_char	quirks;
1220 /*3*/	u_char	maxoffs;
1221 #else
1222 /*0*/	u_char	minsync;
1223 /*1*/	u_char	sval;
1224 /*2*/	u16	period;
1225 /*0*/	u_char	maxoffs;
1226 /*1*/	u_char	quirks;
1227 /*2*/	u_char	widedone;
1228 /*3*/	u_char	wval;
1229 #endif
1230 
1231 	/* User settable limits and options.  */
1232 	u_char	usrsync;
1233 	u_char	usrwide;
1234 	u_char	usrtags;
1235 	u_char	usrflag;
1236 	struct scsi_target *starget;
1237 };
1238 
1239 /*========================================================================
1240 **
1241 **	Declaration of structs:		lun control block
1242 **
1243 **========================================================================
1244 */
1245 struct lcb {
1246 	/*----------------------------------------------------------------
1247 	**	During reselection the ncr jumps to this point
1248 	**	with SFBR set to the "Identify" message.
1249 	**	if it's not this lun, jump to the next.
1250 	**
1251 	**	JUMP  IF (SFBR != #lun#), @(next lcb of this target)
1252 	**
1253 	**	It is this lun. Load TEMP with the nexus jumps table
1254 	**	address and jump to RESEL_TAG (or RESEL_NOTAG).
1255 	**
1256 	**		SCR_COPY (4), p_jump_ccb, TEMP,
1257 	**		SCR_JUMP, <RESEL_TAG>
1258 	**----------------------------------------------------------------
1259 	*/
1260 	struct link	jump_lcb;
1261 	ncrcmd		load_jump_ccb[3];
1262 	struct link	jump_tag;
1263 	ncrcmd		p_jump_ccb;	/* Jump table bus address	*/
1264 
1265 	/*----------------------------------------------------------------
1266 	**	Jump table used by the script processor to directly jump
1267 	**	to the CCB corresponding to the reselected nexus.
1268 	**	Address is allocated on 256 bytes boundary in order to
1269 	**	allow 8 bit calculation of the tag jump entry for up to
1270 	**	64 possible tags.
1271 	**----------------------------------------------------------------
1272 	*/
1273 	u32		jump_ccb_0;	/* Default table if no tags	*/
1274 	u32		*jump_ccb;	/* Virtual address		*/
1275 
1276 	/*----------------------------------------------------------------
1277 	**	CCB queue management.
1278 	**----------------------------------------------------------------
1279 	*/
1280 	struct list_head free_ccbq;	/* Queue of available CCBs	*/
1281 	struct list_head busy_ccbq;	/* Queue of busy CCBs		*/
1282 	struct list_head wait_ccbq;	/* Queue of waiting for IO CCBs	*/
1283 	struct list_head skip_ccbq;	/* Queue of skipped CCBs	*/
1284 	u_char		actccbs;	/* Number of allocated CCBs	*/
1285 	u_char		busyccbs;	/* CCBs busy for this lun	*/
1286 	u_char		queuedccbs;	/* CCBs queued to the controller*/
1287 	u_char		queuedepth;	/* Queue depth for this lun	*/
1288 	u_char		scdev_depth;	/* SCSI device queue depth	*/
1289 	u_char		maxnxs;		/* Max possible nexuses		*/
1290 
1291 	/*----------------------------------------------------------------
1292 	**	Control of tagged command queuing.
1293 	**	Tags allocation is performed using a circular buffer.
1294 	**	This avoids using a loop for tag allocation.
1295 	**----------------------------------------------------------------
1296 	*/
1297 	u_char		ia_tag;		/* Allocation index		*/
1298 	u_char		if_tag;		/* Freeing index		*/
1299 	u_char cb_tags[MAX_TAGS];	/* Circular tags buffer	*/
1300 	u_char		usetags;	/* Command queuing is active	*/
1301 	u_char		maxtags;	/* Max nr of tags asked by user	*/
1302 	u_char		numtags;	/* Current number of tags	*/
1303 
1304 	/*----------------------------------------------------------------
1305 	**	QUEUE FULL control and ORDERED tag control.
1306 	**----------------------------------------------------------------
1307 	*/
1308 	/*----------------------------------------------------------------
1309 	**	QUEUE FULL and ORDERED tag control.
1310 	**----------------------------------------------------------------
1311 	*/
1312 	u16		num_good;	/* Nr of GOOD since QUEUE FULL	*/
1313 	tagmap_t	tags_umap;	/* Used tags bitmap		*/
1314 	tagmap_t	tags_smap;	/* Tags in use at 'tag_stime'	*/
1315 	u_long		tags_stime;	/* Last time we set smap=umap	*/
1316 	struct ccb *	held_ccb;	/* CCB held for QUEUE FULL	*/
1317 };
1318 
1319 /*========================================================================
1320 **
1321 **      Declaration of structs:     the launch script.
1322 **
1323 **========================================================================
1324 **
1325 **	It is part of the CCB and is called by the scripts processor to
1326 **	start or restart the data structure (nexus).
1327 **	This 6 DWORDs mini script makes use of prefetching.
1328 **
1329 **------------------------------------------------------------------------
1330 */
1331 struct launch {
1332 	/*----------------------------------------------------------------
1333 	**	SCR_COPY(4),	@(p_phys), @(dsa register)
1334 	**	SCR_JUMP,	@(scheduler_point)
1335 	**----------------------------------------------------------------
1336 	*/
1337 	ncrcmd		setup_dsa[3];	/* Copy 'phys' address to dsa	*/
1338 	struct link	schedule;	/* Jump to scheduler point	*/
1339 	ncrcmd		p_phys;		/* 'phys' header bus address	*/
1340 };
1341 
1342 /*========================================================================
1343 **
1344 **      Declaration of structs:     global HEADER.
1345 **
1346 **========================================================================
1347 **
1348 **	This substructure is copied from the ccb to a global address after
1349 **	selection (or reselection) and copied back before disconnect.
1350 **
1351 **	These fields are accessible to the script processor.
1352 **
1353 **------------------------------------------------------------------------
1354 */
1355 
1356 struct head {
1357 	/*----------------------------------------------------------------
1358 	**	Saved data pointer.
1359 	**	Points to the position in the script responsible for the
1360 	**	actual transfer transfer of data.
1361 	**	It's written after reception of a SAVE_DATA_POINTER message.
1362 	**	The goalpointer points after the last transfer command.
1363 	**----------------------------------------------------------------
1364 	*/
1365 	u32		savep;
1366 	u32		lastp;
1367 	u32		goalp;
1368 
1369 	/*----------------------------------------------------------------
1370 	**	Alternate data pointer.
1371 	**	They are copied back to savep/lastp/goalp by the SCRIPTS
1372 	**	when the direction is unknown and the device claims data out.
1373 	**----------------------------------------------------------------
1374 	*/
1375 	u32		wlastp;
1376 	u32		wgoalp;
1377 
1378 	/*----------------------------------------------------------------
1379 	**	The virtual address of the ccb containing this header.
1380 	**----------------------------------------------------------------
1381 	*/
1382 	struct ccb *	cp;
1383 
1384 	/*----------------------------------------------------------------
1385 	**	Status fields.
1386 	**----------------------------------------------------------------
1387 	*/
1388 	u_char		scr_st[4];	/* script status		*/
1389 	u_char		status[4];	/* host status. must be the 	*/
1390 					/*  last DWORD of the header.	*/
1391 };
1392 
1393 /*
1394 **	The status bytes are used by the host and the script processor.
1395 **
1396 **	The byte corresponding to the host_status must be stored in the
1397 **	last DWORD of the CCB header since it is used for command
1398 **	completion (ncr_wakeup()). Doing so, we are sure that the header
1399 **	has been entirely copied back to the CCB when the host_status is
1400 **	seen complete by the CPU.
1401 **
1402 **	The last four bytes (status[4]) are copied to the scratchb register
1403 **	(declared as scr0..scr3 in ncr_reg.h) just after the select/reselect,
1404 **	and copied back just after disconnecting.
1405 **	Inside the script the XX_REG are used.
1406 **
1407 **	The first four bytes (scr_st[4]) are used inside the script by
1408 **	"COPY" commands.
1409 **	Because source and destination must have the same alignment
1410 **	in a DWORD, the fields HAVE to be at the chosen offsets.
1411 **		xerr_st		0	(0x34)	scratcha
1412 **		sync_st		1	(0x05)	sxfer
1413 **		wide_st		3	(0x03)	scntl3
1414 */
1415 
1416 /*
1417 **	Last four bytes (script)
1418 */
1419 #define  QU_REG	scr0
1420 #define  HS_REG	scr1
1421 #define  HS_PRT	nc_scr1
1422 #define  SS_REG	scr2
1423 #define  SS_PRT	nc_scr2
1424 #define  PS_REG	scr3
1425 
1426 /*
1427 **	Last four bytes (host)
1428 */
1429 #ifdef SCSI_NCR_BIG_ENDIAN
1430 #define  actualquirks  phys.header.status[3]
1431 #define  host_status   phys.header.status[2]
1432 #define  scsi_status   phys.header.status[1]
1433 #define  parity_status phys.header.status[0]
1434 #else
1435 #define  actualquirks  phys.header.status[0]
1436 #define  host_status   phys.header.status[1]
1437 #define  scsi_status   phys.header.status[2]
1438 #define  parity_status phys.header.status[3]
1439 #endif
1440 
1441 /*
1442 **	First four bytes (script)
1443 */
1444 #define  xerr_st       header.scr_st[0]
1445 #define  sync_st       header.scr_st[1]
1446 #define  nego_st       header.scr_st[2]
1447 #define  wide_st       header.scr_st[3]
1448 
1449 /*
1450 **	First four bytes (host)
1451 */
1452 #define  xerr_status   phys.xerr_st
1453 #define  nego_status   phys.nego_st
1454 
1455 /*==========================================================
1456 **
1457 **      Declaration of structs:     Data structure block
1458 **
1459 **==========================================================
1460 **
1461 **	During execution of a ccb by the script processor,
1462 **	the DSA (data structure address) register points
1463 **	to this substructure of the ccb.
1464 **	This substructure contains the header with
1465 **	the script-processor-changeable data and
1466 **	data blocks for the indirect move commands.
1467 **
1468 **----------------------------------------------------------
1469 */
1470 
1471 struct dsb {
1472 
1473 	/*
1474 	**	Header.
1475 	*/
1476 
1477 	struct head	header;
1478 
1479 	/*
1480 	**	Table data for Script
1481 	*/
1482 
1483 	struct scr_tblsel  select;
1484 	struct scr_tblmove smsg  ;
1485 	struct scr_tblmove cmd   ;
1486 	struct scr_tblmove sense ;
1487 	struct scr_tblmove data[MAX_SCATTER];
1488 };
1489 
1490 
1491 /*========================================================================
1492 **
1493 **      Declaration of structs:     Command control block.
1494 **
1495 **========================================================================
1496 */
1497 struct ccb {
1498 	/*----------------------------------------------------------------
1499 	**	This is the data structure which is pointed by the DSA
1500 	**	register when it is executed by the script processor.
1501 	**	It must be the first entry because it contains the header
1502 	**	as first entry that must be cache line aligned.
1503 	**----------------------------------------------------------------
1504 	*/
1505 	struct dsb	phys;
1506 
1507 	/*----------------------------------------------------------------
1508 	**	Mini-script used at CCB execution start-up.
1509 	**	Load the DSA with the data structure address (phys) and
1510 	**	jump to SELECT. Jump to CANCEL if CCB is to be canceled.
1511 	**----------------------------------------------------------------
1512 	*/
1513 	struct launch	start;
1514 
1515 	/*----------------------------------------------------------------
1516 	**	Mini-script used at CCB relection to restart the nexus.
1517 	**	Load the DSA with the data structure address (phys) and
1518 	**	jump to RESEL_DSA. Jump to ABORT if CCB is to be aborted.
1519 	**----------------------------------------------------------------
1520 	*/
1521 	struct launch	restart;
1522 
1523 	/*----------------------------------------------------------------
1524 	**	If a data transfer phase is terminated too early
1525 	**	(after reception of a message (i.e. DISCONNECT)),
1526 	**	we have to prepare a mini script to transfer
1527 	**	the rest of the data.
1528 	**----------------------------------------------------------------
1529 	*/
1530 	ncrcmd		patch[8];
1531 
1532 	/*----------------------------------------------------------------
1533 	**	The general SCSI driver provides a
1534 	**	pointer to a control block.
1535 	**----------------------------------------------------------------
1536 	*/
1537 	struct scsi_cmnd	*cmd;		/* SCSI command 		*/
1538 	u_char		cdb_buf[16];	/* Copy of CDB			*/
1539 	u_char		sense_buf[64];
1540 	int		data_len;	/* Total data length		*/
1541 
1542 	/*----------------------------------------------------------------
1543 	**	Message areas.
1544 	**	We prepare a message to be sent after selection.
1545 	**	We may use a second one if the command is rescheduled
1546 	**	due to GETCC or QFULL.
1547 	**      Contents are IDENTIFY and SIMPLE_TAG.
1548 	**	While negotiating sync or wide transfer,
1549 	**	a SDTR or WDTR message is appended.
1550 	**----------------------------------------------------------------
1551 	*/
1552 	u_char		scsi_smsg [8];
1553 	u_char		scsi_smsg2[8];
1554 
1555 	/*----------------------------------------------------------------
1556 	**	Other fields.
1557 	**----------------------------------------------------------------
1558 	*/
1559 	u_long		p_ccb;		/* BUS address of this CCB	*/
1560 	u_char		sensecmd[6];	/* Sense command		*/
1561 	u_char		tag;		/* Tag for this transfer	*/
1562 					/*  255 means no tag		*/
1563 	u_char		target;
1564 	u_char		lun;
1565 	u_char		queued;
1566 	u_char		auto_sense;
1567 	struct ccb *	link_ccb;	/* Host adapter CCB chain	*/
1568 	struct list_head link_ccbq;	/* Link to unit CCB queue	*/
1569 	u32		startp;		/* Initial data pointer		*/
1570 	u_long		magic;		/* Free / busy  CCB flag	*/
1571 };
1572 
1573 #define CCB_PHYS(cp,lbl)	(cp->p_ccb + offsetof(struct ccb, lbl))
1574 
1575 
1576 /*========================================================================
1577 **
1578 **      Declaration of structs:     NCR device descriptor
1579 **
1580 **========================================================================
1581 */
1582 struct ncb {
1583 	/*----------------------------------------------------------------
1584 	**	The global header.
1585 	**	It is accessible to both the host and the script processor.
1586 	**	Must be cache line size aligned (32 for x86) in order to
1587 	**	allow cache line bursting when it is copied to/from CCB.
1588 	**----------------------------------------------------------------
1589 	*/
1590 	struct head     header;
1591 
1592 	/*----------------------------------------------------------------
1593 	**	CCBs management queues.
1594 	**----------------------------------------------------------------
1595 	*/
1596 	struct scsi_cmnd	*waiting_list;	/* Commands waiting for a CCB	*/
1597 					/*  when lcb is not allocated.	*/
1598 	struct scsi_cmnd	*done_list;	/* Commands waiting for done()  */
1599 					/* callback to be invoked.      */
1600 	spinlock_t	smp_lock;	/* Lock for SMP threading       */
1601 
1602 	/*----------------------------------------------------------------
1603 	**	Chip and controller identification.
1604 	**----------------------------------------------------------------
1605 	*/
1606 	int		unit;		/* Unit number			*/
1607 	char		inst_name[16];	/* ncb instance name		*/
1608 
1609 	/*----------------------------------------------------------------
1610 	**	Initial value of some IO register bits.
1611 	**	These values are assumed to have been set by BIOS, and may
1612 	**	be used for probing adapter implementation differences.
1613 	**----------------------------------------------------------------
1614 	*/
1615 	u_char	sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest0, sv_ctest3,
1616 		sv_ctest4, sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4;
1617 
1618 	/*----------------------------------------------------------------
1619 	**	Actual initial value of IO register bits used by the
1620 	**	driver. They are loaded at initialisation according to
1621 	**	features that are to be enabled.
1622 	**----------------------------------------------------------------
1623 	*/
1624 	u_char	rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest0, rv_ctest3,
1625 		rv_ctest4, rv_ctest5, rv_stest2;
1626 
1627 	/*----------------------------------------------------------------
1628 	**	Targets management.
1629 	**	During reselection the ncr jumps to jump_tcb.
1630 	**	The SFBR register is loaded with the encoded target id.
1631 	**	For i = 0 to 3
1632 	**		SCR_JUMP ^ IFTRUE(MASK(i, 3)), @(next tcb mod. i)
1633 	**
1634 	**	Recent chips will prefetch the 4 JUMPS using only 1 burst.
1635 	**	It is kind of hashcoding.
1636 	**----------------------------------------------------------------
1637 	*/
1638 	struct link     jump_tcb[4];	/* JUMPs for reselection	*/
1639 	struct tcb  target[MAX_TARGET];	/* Target data			*/
1640 
1641 	/*----------------------------------------------------------------
1642 	**	Virtual and physical bus addresses of the chip.
1643 	**----------------------------------------------------------------
1644 	*/
1645 	void __iomem *vaddr;		/* Virtual and bus address of	*/
1646 	unsigned long	paddr;		/*  chip's IO registers.	*/
1647 	unsigned long	paddr2;		/* On-chip RAM bus address.	*/
1648 	volatile			/* Pointer to volatile for 	*/
1649 	struct ncr_reg	__iomem *reg;	/*  memory mapped IO.		*/
1650 
1651 	/*----------------------------------------------------------------
1652 	**	SCRIPTS virtual and physical bus addresses.
1653 	**	'script'  is loaded in the on-chip RAM if present.
1654 	**	'scripth' stays in main memory.
1655 	**----------------------------------------------------------------
1656 	*/
1657 	struct script	*script0;	/* Copies of script and scripth	*/
1658 	struct scripth	*scripth0;	/*  relocated for this ncb.	*/
1659 	struct scripth	*scripth;	/* Actual scripth virt. address	*/
1660 	u_long		p_script;	/* Actual script and scripth	*/
1661 	u_long		p_scripth;	/*  bus addresses.		*/
1662 
1663 	/*----------------------------------------------------------------
1664 	**	General controller parameters and configuration.
1665 	**----------------------------------------------------------------
1666 	*/
1667 	struct device	*dev;
1668 	u_char		revision_id;	/* PCI device revision id	*/
1669 	u32		irq;		/* IRQ level			*/
1670 	u32		features;	/* Chip features map		*/
1671 	u_char		myaddr;		/* SCSI id of the adapter	*/
1672 	u_char		maxburst;	/* log base 2 of dwords burst	*/
1673 	u_char		maxwide;	/* Maximum transfer width	*/
1674 	u_char		minsync;	/* Minimum sync period factor	*/
1675 	u_char		maxsync;	/* Maximum sync period factor	*/
1676 	u_char		maxoffs;	/* Max scsi offset		*/
1677 	u_char		multiplier;	/* Clock multiplier (1,2,4)	*/
1678 	u_char		clock_divn;	/* Number of clock divisors	*/
1679 	u_long		clock_khz;	/* SCSI clock frequency in KHz	*/
1680 
1681 	/*----------------------------------------------------------------
1682 	**	Start queue management.
1683 	**	It is filled up by the host processor and accessed by the
1684 	**	SCRIPTS processor in order to start SCSI commands.
1685 	**----------------------------------------------------------------
1686 	*/
1687 	u16		squeueput;	/* Next free slot of the queue	*/
1688 	u16		actccbs;	/* Number of allocated CCBs	*/
1689 	u16		queuedccbs;	/* Number of CCBs in start queue*/
1690 	u16		queuedepth;	/* Start queue depth		*/
1691 
1692 	/*----------------------------------------------------------------
1693 	**	Timeout handler.
1694 	**----------------------------------------------------------------
1695 	*/
1696 	struct timer_list timer;	/* Timer handler link header	*/
1697 	u_long		lasttime;
1698 	u_long		settle_time;	/* Resetting the SCSI BUS	*/
1699 
1700 	/*----------------------------------------------------------------
1701 	**	Debugging and profiling.
1702 	**----------------------------------------------------------------
1703 	*/
1704 	struct ncr_reg	regdump;	/* Register dump		*/
1705 	u_long		regtime;	/* Time it has been done	*/
1706 
1707 	/*----------------------------------------------------------------
1708 	**	Miscellaneous buffers accessed by the scripts-processor.
1709 	**	They shall be DWORD aligned, because they may be read or
1710 	**	written with a SCR_COPY script command.
1711 	**----------------------------------------------------------------
1712 	*/
1713 	u_char		msgout[8];	/* Buffer for MESSAGE OUT 	*/
1714 	u_char		msgin [8];	/* Buffer for MESSAGE IN	*/
1715 	u32		lastmsg;	/* Last SCSI message sent	*/
1716 	u_char		scratch;	/* Scratch for SCSI receive	*/
1717 
1718 	/*----------------------------------------------------------------
1719 	**	Miscellaneous configuration and status parameters.
1720 	**----------------------------------------------------------------
1721 	*/
1722 	u_char		disc;		/* Disconnection allowed	*/
1723 	u_char		scsi_mode;	/* Current SCSI BUS mode	*/
1724 	u_char		order;		/* Tag order to use		*/
1725 	u_char		verbose;	/* Verbosity for this controller*/
1726 	int		ncr_cache;	/* Used for cache test at init.	*/
1727 	u_long		p_ncb;		/* BUS address of this NCB	*/
1728 
1729 	/*----------------------------------------------------------------
1730 	**	Command completion handling.
1731 	**----------------------------------------------------------------
1732 	*/
1733 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
1734 	struct ccb	*(ccb_done[MAX_DONE]);
1735 	int		ccb_done_ic;
1736 #endif
1737 	/*----------------------------------------------------------------
1738 	**	Fields that should be removed or changed.
1739 	**----------------------------------------------------------------
1740 	*/
1741 	struct ccb	*ccb;		/* Global CCB			*/
1742 	struct usrcmd	user;		/* Command from user		*/
1743 	volatile u_char	release_stage;	/* Synchronisation stage on release  */
1744 };
1745 
1746 #define NCB_SCRIPT_PHYS(np,lbl)	 (np->p_script  + offsetof (struct script, lbl))
1747 #define NCB_SCRIPTH_PHYS(np,lbl) (np->p_scripth + offsetof (struct scripth,lbl))
1748 
1749 /*==========================================================
1750 **
1751 **
1752 **      Script for NCR-Processor.
1753 **
1754 **	Use ncr_script_fill() to create the variable parts.
1755 **	Use ncr_script_copy_and_bind() to make a copy and
1756 **	bind to physical addresses.
1757 **
1758 **
1759 **==========================================================
1760 **
1761 **	We have to know the offsets of all labels before
1762 **	we reach them (for forward jumps).
1763 **	Therefore we declare a struct here.
1764 **	If you make changes inside the script,
1765 **	DONT FORGET TO CHANGE THE LENGTHS HERE!
1766 **
1767 **----------------------------------------------------------
1768 */
1769 
1770 /*
1771 **	For HP Zalon/53c720 systems, the Zalon interface
1772 **	between CPU and 53c720 does prefetches, which causes
1773 **	problems with self modifying scripts.  The problem
1774 **	is overcome by calling a dummy subroutine after each
1775 **	modification, to force a refetch of the script on
1776 **	return from the subroutine.
1777 */
1778 
1779 #ifdef CONFIG_NCR53C8XX_PREFETCH
1780 #define PREFETCH_FLUSH_CNT	2
1781 #define PREFETCH_FLUSH		SCR_CALL, PADDRH (wait_dma),
1782 #else
1783 #define PREFETCH_FLUSH_CNT	0
1784 #define PREFETCH_FLUSH
1785 #endif
1786 
1787 /*
1788 **	Script fragments which are loaded into the on-chip RAM
1789 **	of 825A, 875 and 895 chips.
1790 */
1791 struct script {
1792 	ncrcmd	start		[  5];
1793 	ncrcmd  startpos	[  1];
1794 	ncrcmd	select		[  6];
1795 	ncrcmd	select2		[  9 + PREFETCH_FLUSH_CNT];
1796 	ncrcmd	loadpos		[  4];
1797 	ncrcmd	send_ident	[  9];
1798 	ncrcmd	prepare		[  6];
1799 	ncrcmd	prepare2	[  7];
1800 	ncrcmd  command		[  6];
1801 	ncrcmd  dispatch	[ 32];
1802 	ncrcmd  clrack		[  4];
1803 	ncrcmd	no_data		[ 17];
1804 	ncrcmd  status		[  8];
1805 	ncrcmd  msg_in		[  2];
1806 	ncrcmd  msg_in2		[ 16];
1807 	ncrcmd  msg_bad		[  4];
1808 	ncrcmd	setmsg		[  7];
1809 	ncrcmd	cleanup		[  6];
1810 	ncrcmd  complete	[  9];
1811 	ncrcmd	cleanup_ok	[  8 + PREFETCH_FLUSH_CNT];
1812 	ncrcmd	cleanup0	[  1];
1813 #ifndef SCSI_NCR_CCB_DONE_SUPPORT
1814 	ncrcmd	signal		[ 12];
1815 #else
1816 	ncrcmd	signal		[  9];
1817 	ncrcmd	done_pos	[  1];
1818 	ncrcmd	done_plug	[  2];
1819 	ncrcmd	done_end	[  7];
1820 #endif
1821 	ncrcmd  save_dp		[  7];
1822 	ncrcmd  restore_dp	[  5];
1823 	ncrcmd  disconnect	[ 10];
1824 	ncrcmd	msg_out		[  9];
1825 	ncrcmd	msg_out_done	[  7];
1826 	ncrcmd  idle		[  2];
1827 	ncrcmd	reselect	[  8];
1828 	ncrcmd	reselected	[  8];
1829 	ncrcmd	resel_dsa	[  6 + PREFETCH_FLUSH_CNT];
1830 	ncrcmd	loadpos1	[  4];
1831 	ncrcmd  resel_lun	[  6];
1832 	ncrcmd	resel_tag	[  6];
1833 	ncrcmd	jump_to_nexus	[  4 + PREFETCH_FLUSH_CNT];
1834 	ncrcmd	nexus_indirect	[  4];
1835 	ncrcmd	resel_notag	[  4];
1836 	ncrcmd  data_in		[MAX_SCATTERL * 4];
1837 	ncrcmd  data_in2	[  4];
1838 	ncrcmd  data_out	[MAX_SCATTERL * 4];
1839 	ncrcmd  data_out2	[  4];
1840 };
1841 
1842 /*
1843 **	Script fragments which stay in main memory for all chips.
1844 */
1845 struct scripth {
1846 	ncrcmd  tryloop		[MAX_START*2];
1847 	ncrcmd  tryloop2	[  2];
1848 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
1849 	ncrcmd  done_queue	[MAX_DONE*5];
1850 	ncrcmd  done_queue2	[  2];
1851 #endif
1852 	ncrcmd	select_no_atn	[  8];
1853 	ncrcmd	cancel		[  4];
1854 	ncrcmd	skip		[  9 + PREFETCH_FLUSH_CNT];
1855 	ncrcmd	skip2		[ 19];
1856 	ncrcmd	par_err_data_in	[  6];
1857 	ncrcmd	par_err_other	[  4];
1858 	ncrcmd	msg_reject	[  8];
1859 	ncrcmd	msg_ign_residue	[ 24];
1860 	ncrcmd  msg_extended	[ 10];
1861 	ncrcmd  msg_ext_2	[ 10];
1862 	ncrcmd	msg_wdtr	[ 14];
1863 	ncrcmd	send_wdtr	[  7];
1864 	ncrcmd  msg_ext_3	[ 10];
1865 	ncrcmd	msg_sdtr	[ 14];
1866 	ncrcmd	send_sdtr	[  7];
1867 	ncrcmd	nego_bad_phase	[  4];
1868 	ncrcmd	msg_out_abort	[ 10];
1869 	ncrcmd  hdata_in	[MAX_SCATTERH * 4];
1870 	ncrcmd  hdata_in2	[  2];
1871 	ncrcmd  hdata_out	[MAX_SCATTERH * 4];
1872 	ncrcmd  hdata_out2	[  2];
1873 	ncrcmd	reset		[  4];
1874 	ncrcmd	aborttag	[  4];
1875 	ncrcmd	abort		[  2];
1876 	ncrcmd	abort_resel	[ 20];
1877 	ncrcmd	resend_ident	[  4];
1878 	ncrcmd	clratn_go_on	[  3];
1879 	ncrcmd	nxtdsp_go_on	[  1];
1880 	ncrcmd	sdata_in	[  8];
1881 	ncrcmd  data_io		[ 18];
1882 	ncrcmd	bad_identify	[ 12];
1883 	ncrcmd	bad_i_t_l	[  4];
1884 	ncrcmd	bad_i_t_l_q	[  4];
1885 	ncrcmd	bad_target	[  8];
1886 	ncrcmd	bad_status	[  8];
1887 	ncrcmd	start_ram	[  4 + PREFETCH_FLUSH_CNT];
1888 	ncrcmd	start_ram0	[  4];
1889 	ncrcmd	sto_restart	[  5];
1890 	ncrcmd	wait_dma	[  2];
1891 	ncrcmd	snooptest	[  9];
1892 	ncrcmd	snoopend	[  2];
1893 };
1894 
1895 /*==========================================================
1896 **
1897 **
1898 **      Function headers.
1899 **
1900 **
1901 **==========================================================
1902 */
1903 
1904 static	void	ncr_alloc_ccb	(struct ncb *np, u_char tn, u_char ln);
1905 static	void	ncr_complete	(struct ncb *np, struct ccb *cp);
1906 static	void	ncr_exception	(struct ncb *np);
1907 static	void	ncr_free_ccb	(struct ncb *np, struct ccb *cp);
1908 static	void	ncr_init_ccb	(struct ncb *np, struct ccb *cp);
1909 static	void	ncr_init_tcb	(struct ncb *np, u_char tn);
1910 static	struct lcb *	ncr_alloc_lcb	(struct ncb *np, u_char tn, u_char ln);
1911 static	struct lcb *	ncr_setup_lcb	(struct ncb *np, struct scsi_device *sdev);
1912 static	void	ncr_getclock	(struct ncb *np, int mult);
1913 static	void	ncr_selectclock	(struct ncb *np, u_char scntl3);
1914 static	struct ccb *ncr_get_ccb	(struct ncb *np, struct scsi_cmnd *cmd);
1915 static	void	ncr_chip_reset	(struct ncb *np, int delay);
1916 static	void	ncr_init	(struct ncb *np, int reset, char * msg, u_long code);
1917 static	int	ncr_int_sbmc	(struct ncb *np);
1918 static	int	ncr_int_par	(struct ncb *np);
1919 static	void	ncr_int_ma	(struct ncb *np);
1920 static	void	ncr_int_sir	(struct ncb *np);
1921 static  void    ncr_int_sto     (struct ncb *np);
1922 static	void	ncr_negotiate	(struct ncb* np, struct tcb* tp);
1923 static	int	ncr_prepare_nego(struct ncb *np, struct ccb *cp, u_char *msgptr);
1924 
1925 static	void	ncr_script_copy_and_bind
1926 				(struct ncb *np, ncrcmd *src, ncrcmd *dst, int len);
1927 static  void    ncr_script_fill (struct script * scr, struct scripth * scripth);
1928 static	int	ncr_scatter	(struct ncb *np, struct ccb *cp, struct scsi_cmnd *cmd);
1929 static	void	ncr_getsync	(struct ncb *np, u_char sfac, u_char *fakp, u_char *scntl3p);
1930 static	void	ncr_setsync	(struct ncb *np, struct ccb *cp, u_char scntl3, u_char sxfer);
1931 static	void	ncr_setup_tags	(struct ncb *np, struct scsi_device *sdev);
1932 static	void	ncr_setwide	(struct ncb *np, struct ccb *cp, u_char wide, u_char ack);
1933 static	int	ncr_snooptest	(struct ncb *np);
1934 static	void	ncr_timeout	(struct ncb *np);
1935 static  void    ncr_wakeup      (struct ncb *np, u_long code);
1936 static  void    ncr_wakeup_done (struct ncb *np);
1937 static	void	ncr_start_next_ccb (struct ncb *np, struct lcb * lp, int maxn);
1938 static	void	ncr_put_start_queue(struct ncb *np, struct ccb *cp);
1939 
1940 static void insert_into_waiting_list(struct ncb *np, struct scsi_cmnd *cmd);
1941 static void process_waiting_list(struct ncb *np, int sts);
1942 
1943 #define requeue_waiting_list(np) process_waiting_list((np), DID_OK)
1944 #define reset_waiting_list(np) process_waiting_list((np), DID_RESET)
1945 
1946 static inline char *ncr_name (struct ncb *np)
1947 {
1948 	return np->inst_name;
1949 }
1950 
1951 
1952 /*==========================================================
1953 **
1954 **
1955 **      Scripts for NCR-Processor.
1956 **
1957 **      Use ncr_script_bind for binding to physical addresses.
1958 **
1959 **
1960 **==========================================================
1961 **
1962 **	NADDR generates a reference to a field of the controller data.
1963 **	PADDR generates a reference to another part of the script.
1964 **	RADDR generates a reference to a script processor register.
1965 **	FADDR generates a reference to a script processor register
1966 **		with offset.
1967 **
1968 **----------------------------------------------------------
1969 */
1970 
1971 #define	RELOC_SOFTC	0x40000000
1972 #define	RELOC_LABEL	0x50000000
1973 #define	RELOC_REGISTER	0x60000000
1974 #define	RELOC_LABELH	0x80000000
1975 #define	RELOC_MASK	0xf0000000
1976 
1977 #define	NADDR(label)	(RELOC_SOFTC | offsetof(struct ncb, label))
1978 #define PADDR(label)    (RELOC_LABEL | offsetof(struct script, label))
1979 #define PADDRH(label)   (RELOC_LABELH | offsetof(struct scripth, label))
1980 #define	RADDR(label)	(RELOC_REGISTER | REG(label))
1981 #define	FADDR(label,ofs)(RELOC_REGISTER | ((REG(label))+(ofs)))
1982 
1983 
1984 static	struct script script0 __initdata = {
1985 /*--------------------------< START >-----------------------*/ {
1986 	/*
1987 	**	This NOP will be patched with LED ON
1988 	**	SCR_REG_REG (gpreg, SCR_AND, 0xfe)
1989 	*/
1990 	SCR_NO_OP,
1991 		0,
1992 	/*
1993 	**      Clear SIGP.
1994 	*/
1995 	SCR_FROM_REG (ctest2),
1996 		0,
1997 	/*
1998 	**	Then jump to a certain point in tryloop.
1999 	**	Due to the lack of indirect addressing the code
2000 	**	is self modifying here.
2001 	*/
2002 	SCR_JUMP,
2003 }/*-------------------------< STARTPOS >--------------------*/,{
2004 		PADDRH(tryloop),
2005 
2006 }/*-------------------------< SELECT >----------------------*/,{
2007 	/*
2008 	**	DSA	contains the address of a scheduled
2009 	**		data structure.
2010 	**
2011 	**	SCRATCHA contains the address of the script,
2012 	**		which starts the next entry.
2013 	**
2014 	**	Set Initiator mode.
2015 	**
2016 	**	(Target mode is left as an exercise for the reader)
2017 	*/
2018 
2019 	SCR_CLR (SCR_TRG),
2020 		0,
2021 	SCR_LOAD_REG (HS_REG, HS_SELECTING),
2022 		0,
2023 
2024 	/*
2025 	**      And try to select this target.
2026 	*/
2027 	SCR_SEL_TBL_ATN ^ offsetof (struct dsb, select),
2028 		PADDR (reselect),
2029 
2030 }/*-------------------------< SELECT2 >----------------------*/,{
2031 	/*
2032 	**	Now there are 4 possibilities:
2033 	**
2034 	**	(1) The ncr loses arbitration.
2035 	**	This is ok, because it will try again,
2036 	**	when the bus becomes idle.
2037 	**	(But beware of the timeout function!)
2038 	**
2039 	**	(2) The ncr is reselected.
2040 	**	Then the script processor takes the jump
2041 	**	to the RESELECT label.
2042 	**
2043 	**	(3) The ncr wins arbitration.
2044 	**	Then it will execute SCRIPTS instruction until
2045 	**	the next instruction that checks SCSI phase.
2046 	**	Then will stop and wait for selection to be
2047 	**	complete or selection time-out to occur.
2048 	**	As a result the SCRIPTS instructions until
2049 	**	LOADPOS + 2 should be executed in parallel with
2050 	**	the SCSI core performing selection.
2051 	*/
2052 
2053 	/*
2054 	**	The MESSAGE_REJECT problem seems to be due to a selection
2055 	**	timing problem.
2056 	**	Wait immediately for the selection to complete.
2057 	**	(2.5x behaves so)
2058 	*/
2059 	SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_OUT)),
2060 		0,
2061 
2062 	/*
2063 	**	Next time use the next slot.
2064 	*/
2065 	SCR_COPY (4),
2066 		RADDR (temp),
2067 		PADDR (startpos),
2068 	/*
2069 	**      The ncr doesn't have an indirect load
2070 	**	or store command. So we have to
2071 	**	copy part of the control block to a
2072 	**	fixed place, where we can access it.
2073 	**
2074 	**	We patch the address part of a
2075 	**	COPY command with the DSA-register.
2076 	*/
2077 	SCR_COPY_F (4),
2078 		RADDR (dsa),
2079 		PADDR (loadpos),
2080 	/*
2081 	**	Flush script prefetch if required
2082 	*/
2083 	PREFETCH_FLUSH
2084 	/*
2085 	**	then we do the actual copy.
2086 	*/
2087 	SCR_COPY (sizeof (struct head)),
2088 	/*
2089 	**	continued after the next label ...
2090 	*/
2091 }/*-------------------------< LOADPOS >---------------------*/,{
2092 		0,
2093 		NADDR (header),
2094 	/*
2095 	**	Wait for the next phase or the selection
2096 	**	to complete or time-out.
2097 	*/
2098 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
2099 		PADDR (prepare),
2100 
2101 }/*-------------------------< SEND_IDENT >----------------------*/,{
2102 	/*
2103 	**	Selection complete.
2104 	**	Send the IDENTIFY and SIMPLE_TAG messages
2105 	**	(and the EXTENDED_SDTR message)
2106 	*/
2107 	SCR_MOVE_TBL ^ SCR_MSG_OUT,
2108 		offsetof (struct dsb, smsg),
2109 	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
2110 		PADDRH (resend_ident),
2111 	SCR_LOAD_REG (scratcha, 0x80),
2112 		0,
2113 	SCR_COPY (1),
2114 		RADDR (scratcha),
2115 		NADDR (lastmsg),
2116 }/*-------------------------< PREPARE >----------------------*/,{
2117 	/*
2118 	**      load the savep (saved pointer) into
2119 	**      the TEMP register (actual pointer)
2120 	*/
2121 	SCR_COPY (4),
2122 		NADDR (header.savep),
2123 		RADDR (temp),
2124 	/*
2125 	**      Initialize the status registers
2126 	*/
2127 	SCR_COPY (4),
2128 		NADDR (header.status),
2129 		RADDR (scr0),
2130 }/*-------------------------< PREPARE2 >---------------------*/,{
2131 	/*
2132 	**	Initialize the msgout buffer with a NOOP message.
2133 	*/
2134 	SCR_LOAD_REG (scratcha, NOP),
2135 		0,
2136 	SCR_COPY (1),
2137 		RADDR (scratcha),
2138 		NADDR (msgout),
2139 	/*
2140 	**	Anticipate the COMMAND phase.
2141 	**	This is the normal case for initial selection.
2142 	*/
2143 	SCR_JUMP ^ IFFALSE (WHEN (SCR_COMMAND)),
2144 		PADDR (dispatch),
2145 
2146 }/*-------------------------< COMMAND >--------------------*/,{
2147 	/*
2148 	**	... and send the command
2149 	*/
2150 	SCR_MOVE_TBL ^ SCR_COMMAND,
2151 		offsetof (struct dsb, cmd),
2152 	/*
2153 	**	If status is still HS_NEGOTIATE, negotiation failed.
2154 	**	We check this here, since we want to do that
2155 	**	only once.
2156 	*/
2157 	SCR_FROM_REG (HS_REG),
2158 		0,
2159 	SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)),
2160 		SIR_NEGO_FAILED,
2161 
2162 }/*-----------------------< DISPATCH >----------------------*/,{
2163 	/*
2164 	**	MSG_IN is the only phase that shall be
2165 	**	entered at least once for each (re)selection.
2166 	**	So we test it first.
2167 	*/
2168 	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
2169 		PADDR (msg_in),
2170 
2171 	SCR_RETURN ^ IFTRUE (IF (SCR_DATA_OUT)),
2172 		0,
2173 	/*
2174 	**	DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 4.
2175 	**	Possible data corruption during Memory Write and Invalidate.
2176 	**	This work-around resets the addressing logic prior to the
2177 	**	start of the first MOVE of a DATA IN phase.
2178 	**	(See Documentation/scsi/ncr53c8xx.rst for more information)
2179 	*/
2180 	SCR_JUMPR ^ IFFALSE (IF (SCR_DATA_IN)),
2181 		20,
2182 	SCR_COPY (4),
2183 		RADDR (scratcha),
2184 		RADDR (scratcha),
2185 	SCR_RETURN,
2186  		0,
2187 	SCR_JUMP ^ IFTRUE (IF (SCR_STATUS)),
2188 		PADDR (status),
2189 	SCR_JUMP ^ IFTRUE (IF (SCR_COMMAND)),
2190 		PADDR (command),
2191 	SCR_JUMP ^ IFTRUE (IF (SCR_MSG_OUT)),
2192 		PADDR (msg_out),
2193 	/*
2194 	**      Discard one illegal phase byte, if required.
2195 	*/
2196 	SCR_LOAD_REG (scratcha, XE_BAD_PHASE),
2197 		0,
2198 	SCR_COPY (1),
2199 		RADDR (scratcha),
2200 		NADDR (xerr_st),
2201 	SCR_JUMPR ^ IFFALSE (IF (SCR_ILG_OUT)),
2202 		8,
2203 	SCR_MOVE_ABS (1) ^ SCR_ILG_OUT,
2204 		NADDR (scratch),
2205 	SCR_JUMPR ^ IFFALSE (IF (SCR_ILG_IN)),
2206 		8,
2207 	SCR_MOVE_ABS (1) ^ SCR_ILG_IN,
2208 		NADDR (scratch),
2209 	SCR_JUMP,
2210 		PADDR (dispatch),
2211 
2212 }/*-------------------------< CLRACK >----------------------*/,{
2213 	/*
2214 	**	Terminate possible pending message phase.
2215 	*/
2216 	SCR_CLR (SCR_ACK),
2217 		0,
2218 	SCR_JUMP,
2219 		PADDR (dispatch),
2220 
2221 }/*-------------------------< NO_DATA >--------------------*/,{
2222 	/*
2223 	**	The target wants to tranfer too much data
2224 	**	or in the wrong direction.
2225 	**      Remember that in extended error.
2226 	*/
2227 	SCR_LOAD_REG (scratcha, XE_EXTRA_DATA),
2228 		0,
2229 	SCR_COPY (1),
2230 		RADDR (scratcha),
2231 		NADDR (xerr_st),
2232 	/*
2233 	**      Discard one data byte, if required.
2234 	*/
2235 	SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_OUT)),
2236 		8,
2237 	SCR_MOVE_ABS (1) ^ SCR_DATA_OUT,
2238 		NADDR (scratch),
2239 	SCR_JUMPR ^ IFFALSE (IF (SCR_DATA_IN)),
2240 		8,
2241 	SCR_MOVE_ABS (1) ^ SCR_DATA_IN,
2242 		NADDR (scratch),
2243 	/*
2244 	**      .. and repeat as required.
2245 	*/
2246 	SCR_CALL,
2247 		PADDR (dispatch),
2248 	SCR_JUMP,
2249 		PADDR (no_data),
2250 
2251 }/*-------------------------< STATUS >--------------------*/,{
2252 	/*
2253 	**	get the status
2254 	*/
2255 	SCR_MOVE_ABS (1) ^ SCR_STATUS,
2256 		NADDR (scratch),
2257 	/*
2258 	**	save status to scsi_status.
2259 	**	mark as complete.
2260 	*/
2261 	SCR_TO_REG (SS_REG),
2262 		0,
2263 	SCR_LOAD_REG (HS_REG, HS_COMPLETE),
2264 		0,
2265 	SCR_JUMP,
2266 		PADDR (dispatch),
2267 }/*-------------------------< MSG_IN >--------------------*/,{
2268 	/*
2269 	**	Get the first byte of the message
2270 	**	and save it to SCRATCHA.
2271 	**
2272 	**	The script processor doesn't negate the
2273 	**	ACK signal after this transfer.
2274 	*/
2275 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
2276 		NADDR (msgin[0]),
2277 }/*-------------------------< MSG_IN2 >--------------------*/,{
2278 	/*
2279 	**	Handle this message.
2280 	*/
2281 	SCR_JUMP ^ IFTRUE (DATA (COMMAND_COMPLETE)),
2282 		PADDR (complete),
2283 	SCR_JUMP ^ IFTRUE (DATA (DISCONNECT)),
2284 		PADDR (disconnect),
2285 	SCR_JUMP ^ IFTRUE (DATA (SAVE_POINTERS)),
2286 		PADDR (save_dp),
2287 	SCR_JUMP ^ IFTRUE (DATA (RESTORE_POINTERS)),
2288 		PADDR (restore_dp),
2289 	SCR_JUMP ^ IFTRUE (DATA (EXTENDED_MESSAGE)),
2290 		PADDRH (msg_extended),
2291 	SCR_JUMP ^ IFTRUE (DATA (NOP)),
2292 		PADDR (clrack),
2293 	SCR_JUMP ^ IFTRUE (DATA (MESSAGE_REJECT)),
2294 		PADDRH (msg_reject),
2295 	SCR_JUMP ^ IFTRUE (DATA (IGNORE_WIDE_RESIDUE)),
2296 		PADDRH (msg_ign_residue),
2297 	/*
2298 	**	Rest of the messages left as
2299 	**	an exercise ...
2300 	**
2301 	**	Unimplemented messages:
2302 	**	fall through to MSG_BAD.
2303 	*/
2304 }/*-------------------------< MSG_BAD >------------------*/,{
2305 	/*
2306 	**	unimplemented message - reject it.
2307 	*/
2308 	SCR_INT,
2309 		SIR_REJECT_SENT,
2310 	SCR_LOAD_REG (scratcha, MESSAGE_REJECT),
2311 		0,
2312 }/*-------------------------< SETMSG >----------------------*/,{
2313 	SCR_COPY (1),
2314 		RADDR (scratcha),
2315 		NADDR (msgout),
2316 	SCR_SET (SCR_ATN),
2317 		0,
2318 	SCR_JUMP,
2319 		PADDR (clrack),
2320 }/*-------------------------< CLEANUP >-------------------*/,{
2321 	/*
2322 	**      dsa:    Pointer to ccb
2323 	**	      or xxxxxxFF (no ccb)
2324 	**
2325 	**      HS_REG:   Host-Status (<>0!)
2326 	*/
2327 	SCR_FROM_REG (dsa),
2328 		0,
2329 	SCR_JUMP ^ IFTRUE (DATA (0xff)),
2330 		PADDR (start),
2331 	/*
2332 	**      dsa is valid.
2333 	**	complete the cleanup.
2334 	*/
2335 	SCR_JUMP,
2336 		PADDR (cleanup_ok),
2337 
2338 }/*-------------------------< COMPLETE >-----------------*/,{
2339 	/*
2340 	**	Complete message.
2341 	**
2342 	**	Copy TEMP register to LASTP in header.
2343 	*/
2344 	SCR_COPY (4),
2345 		RADDR (temp),
2346 		NADDR (header.lastp),
2347 	/*
2348 	**	When we terminate the cycle by clearing ACK,
2349 	**	the target may disconnect immediately.
2350 	**
2351 	**	We don't want to be told of an
2352 	**	"unexpected disconnect",
2353 	**	so we disable this feature.
2354 	*/
2355 	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
2356 		0,
2357 	/*
2358 	**	Terminate cycle ...
2359 	*/
2360 	SCR_CLR (SCR_ACK|SCR_ATN),
2361 		0,
2362 	/*
2363 	**	... and wait for the disconnect.
2364 	*/
2365 	SCR_WAIT_DISC,
2366 		0,
2367 }/*-------------------------< CLEANUP_OK >----------------*/,{
2368 	/*
2369 	**	Save host status to header.
2370 	*/
2371 	SCR_COPY (4),
2372 		RADDR (scr0),
2373 		NADDR (header.status),
2374 	/*
2375 	**	and copy back the header to the ccb.
2376 	*/
2377 	SCR_COPY_F (4),
2378 		RADDR (dsa),
2379 		PADDR (cleanup0),
2380 	/*
2381 	**	Flush script prefetch if required
2382 	*/
2383 	PREFETCH_FLUSH
2384 	SCR_COPY (sizeof (struct head)),
2385 		NADDR (header),
2386 }/*-------------------------< CLEANUP0 >--------------------*/,{
2387 		0,
2388 }/*-------------------------< SIGNAL >----------------------*/,{
2389 	/*
2390 	**	if job not completed ...
2391 	*/
2392 	SCR_FROM_REG (HS_REG),
2393 		0,
2394 	/*
2395 	**	... start the next command.
2396 	*/
2397 	SCR_JUMP ^ IFTRUE (MASK (0, (HS_DONEMASK|HS_SKIPMASK))),
2398 		PADDR(start),
2399 	/*
2400 	**	If command resulted in not GOOD status,
2401 	**	call the C code if needed.
2402 	*/
2403 	SCR_FROM_REG (SS_REG),
2404 		0,
2405 	SCR_CALL ^ IFFALSE (DATA (SAM_STAT_GOOD)),
2406 		PADDRH (bad_status),
2407 
2408 #ifndef	SCSI_NCR_CCB_DONE_SUPPORT
2409 
2410 	/*
2411 	**	... signal completion to the host
2412 	*/
2413 	SCR_INT,
2414 		SIR_INTFLY,
2415 	/*
2416 	**	Auf zu neuen Schandtaten!
2417 	*/
2418 	SCR_JUMP,
2419 		PADDR(start),
2420 
2421 #else	/* defined SCSI_NCR_CCB_DONE_SUPPORT */
2422 
2423 	/*
2424 	**	... signal completion to the host
2425 	*/
2426 	SCR_JUMP,
2427 }/*------------------------< DONE_POS >---------------------*/,{
2428 		PADDRH (done_queue),
2429 }/*------------------------< DONE_PLUG >--------------------*/,{
2430 	SCR_INT,
2431 		SIR_DONE_OVERFLOW,
2432 }/*------------------------< DONE_END >---------------------*/,{
2433 	SCR_INT,
2434 		SIR_INTFLY,
2435 	SCR_COPY (4),
2436 		RADDR (temp),
2437 		PADDR (done_pos),
2438 	SCR_JUMP,
2439 		PADDR (start),
2440 
2441 #endif	/* SCSI_NCR_CCB_DONE_SUPPORT */
2442 
2443 }/*-------------------------< SAVE_DP >------------------*/,{
2444 	/*
2445 	**	SAVE_DP message:
2446 	**	Copy TEMP register to SAVEP in header.
2447 	*/
2448 	SCR_COPY (4),
2449 		RADDR (temp),
2450 		NADDR (header.savep),
2451 	SCR_CLR (SCR_ACK),
2452 		0,
2453 	SCR_JUMP,
2454 		PADDR (dispatch),
2455 }/*-------------------------< RESTORE_DP >---------------*/,{
2456 	/*
2457 	**	RESTORE_DP message:
2458 	**	Copy SAVEP in header to TEMP register.
2459 	*/
2460 	SCR_COPY (4),
2461 		NADDR (header.savep),
2462 		RADDR (temp),
2463 	SCR_JUMP,
2464 		PADDR (clrack),
2465 
2466 }/*-------------------------< DISCONNECT >---------------*/,{
2467 	/*
2468 	**	DISCONNECTing  ...
2469 	**
2470 	**	disable the "unexpected disconnect" feature,
2471 	**	and remove the ACK signal.
2472 	*/
2473 	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
2474 		0,
2475 	SCR_CLR (SCR_ACK|SCR_ATN),
2476 		0,
2477 	/*
2478 	**	Wait for the disconnect.
2479 	*/
2480 	SCR_WAIT_DISC,
2481 		0,
2482 	/*
2483 	**	Status is: DISCONNECTED.
2484 	*/
2485 	SCR_LOAD_REG (HS_REG, HS_DISCONNECT),
2486 		0,
2487 	SCR_JUMP,
2488 		PADDR (cleanup_ok),
2489 
2490 }/*-------------------------< MSG_OUT >-------------------*/,{
2491 	/*
2492 	**	The target requests a message.
2493 	*/
2494 	SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
2495 		NADDR (msgout),
2496 	SCR_COPY (1),
2497 		NADDR (msgout),
2498 		NADDR (lastmsg),
2499 	/*
2500 	**	If it was no ABORT message ...
2501 	*/
2502 	SCR_JUMP ^ IFTRUE (DATA (ABORT_TASK_SET)),
2503 		PADDRH (msg_out_abort),
2504 	/*
2505 	**	... wait for the next phase
2506 	**	if it's a message out, send it again, ...
2507 	*/
2508 	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
2509 		PADDR (msg_out),
2510 }/*-------------------------< MSG_OUT_DONE >--------------*/,{
2511 	/*
2512 	**	... else clear the message ...
2513 	*/
2514 	SCR_LOAD_REG (scratcha, NOP),
2515 		0,
2516 	SCR_COPY (4),
2517 		RADDR (scratcha),
2518 		NADDR (msgout),
2519 	/*
2520 	**	... and process the next phase
2521 	*/
2522 	SCR_JUMP,
2523 		PADDR (dispatch),
2524 }/*-------------------------< IDLE >------------------------*/,{
2525 	/*
2526 	**	Nothing to do?
2527 	**	Wait for reselect.
2528 	**	This NOP will be patched with LED OFF
2529 	**	SCR_REG_REG (gpreg, SCR_OR, 0x01)
2530 	*/
2531 	SCR_NO_OP,
2532 		0,
2533 }/*-------------------------< RESELECT >--------------------*/,{
2534 	/*
2535 	**	make the DSA invalid.
2536 	*/
2537 	SCR_LOAD_REG (dsa, 0xff),
2538 		0,
2539 	SCR_CLR (SCR_TRG),
2540 		0,
2541 	SCR_LOAD_REG (HS_REG, HS_IN_RESELECT),
2542 		0,
2543 	/*
2544 	**	Sleep waiting for a reselection.
2545 	**	If SIGP is set, special treatment.
2546 	**
2547 	**	Zu allem bereit ..
2548 	*/
2549 	SCR_WAIT_RESEL,
2550 		PADDR(start),
2551 }/*-------------------------< RESELECTED >------------------*/,{
2552 	/*
2553 	**	This NOP will be patched with LED ON
2554 	**	SCR_REG_REG (gpreg, SCR_AND, 0xfe)
2555 	*/
2556 	SCR_NO_OP,
2557 		0,
2558 	/*
2559 	**	... zu nichts zu gebrauchen ?
2560 	**
2561 	**      load the target id into the SFBR
2562 	**	and jump to the control block.
2563 	**
2564 	**	Look at the declarations of
2565 	**	- struct ncb
2566 	**	- struct tcb
2567 	**	- struct lcb
2568 	**	- struct ccb
2569 	**	to understand what's going on.
2570 	*/
2571 	SCR_REG_SFBR (ssid, SCR_AND, 0x8F),
2572 		0,
2573 	SCR_TO_REG (sdid),
2574 		0,
2575 	SCR_JUMP,
2576 		NADDR (jump_tcb),
2577 
2578 }/*-------------------------< RESEL_DSA >-------------------*/,{
2579 	/*
2580 	**	Ack the IDENTIFY or TAG previously received.
2581 	*/
2582 	SCR_CLR (SCR_ACK),
2583 		0,
2584 	/*
2585 	**      The ncr doesn't have an indirect load
2586 	**	or store command. So we have to
2587 	**	copy part of the control block to a
2588 	**	fixed place, where we can access it.
2589 	**
2590 	**	We patch the address part of a
2591 	**	COPY command with the DSA-register.
2592 	*/
2593 	SCR_COPY_F (4),
2594 		RADDR (dsa),
2595 		PADDR (loadpos1),
2596 	/*
2597 	**	Flush script prefetch if required
2598 	*/
2599 	PREFETCH_FLUSH
2600 	/*
2601 	**	then we do the actual copy.
2602 	*/
2603 	SCR_COPY (sizeof (struct head)),
2604 	/*
2605 	**	continued after the next label ...
2606 	*/
2607 
2608 }/*-------------------------< LOADPOS1 >-------------------*/,{
2609 		0,
2610 		NADDR (header),
2611 	/*
2612 	**	The DSA contains the data structure address.
2613 	*/
2614 	SCR_JUMP,
2615 		PADDR (prepare),
2616 
2617 }/*-------------------------< RESEL_LUN >-------------------*/,{
2618 	/*
2619 	**	come back to this point
2620 	**	to get an IDENTIFY message
2621 	**	Wait for a msg_in phase.
2622 	*/
2623 	SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)),
2624 		SIR_RESEL_NO_MSG_IN,
2625 	/*
2626 	**	message phase.
2627 	**	Read the data directly from the BUS DATA lines.
2628 	**	This helps to support very old SCSI devices that
2629 	**	may reselect without sending an IDENTIFY.
2630 	*/
2631 	SCR_FROM_REG (sbdl),
2632 		0,
2633 	/*
2634 	**	It should be an Identify message.
2635 	*/
2636 	SCR_RETURN,
2637 		0,
2638 }/*-------------------------< RESEL_TAG >-------------------*/,{
2639 	/*
2640 	**	Read IDENTIFY + SIMPLE + TAG using a single MOVE.
2641 	**	Aggressive optimization, is'nt it?
2642 	**	No need to test the SIMPLE TAG message, since the
2643 	**	driver only supports conformant devices for tags. ;-)
2644 	*/
2645 	SCR_MOVE_ABS (3) ^ SCR_MSG_IN,
2646 		NADDR (msgin),
2647 	/*
2648 	**	Read the TAG from the SIDL.
2649 	**	Still an aggressive optimization. ;-)
2650 	**	Compute the CCB indirect jump address which
2651 	**	is (#TAG*2 & 0xfc) due to tag numbering using
2652 	**	1,3,5..MAXTAGS*2+1 actual values.
2653 	*/
2654 	SCR_REG_SFBR (sidl, SCR_SHL, 0),
2655 		0,
2656 	SCR_SFBR_REG (temp, SCR_AND, 0xfc),
2657 		0,
2658 }/*-------------------------< JUMP_TO_NEXUS >-------------------*/,{
2659 	SCR_COPY_F (4),
2660 		RADDR (temp),
2661 		PADDR (nexus_indirect),
2662 	/*
2663 	**	Flush script prefetch if required
2664 	*/
2665 	PREFETCH_FLUSH
2666 	SCR_COPY (4),
2667 }/*-------------------------< NEXUS_INDIRECT >-------------------*/,{
2668 		0,
2669 		RADDR (temp),
2670 	SCR_RETURN,
2671 		0,
2672 }/*-------------------------< RESEL_NOTAG >-------------------*/,{
2673 	/*
2674 	**	No tag expected.
2675 	**	Read an throw away the IDENTIFY.
2676 	*/
2677 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
2678 		NADDR (msgin),
2679 	SCR_JUMP,
2680 		PADDR (jump_to_nexus),
2681 }/*-------------------------< DATA_IN >--------------------*/,{
2682 /*
2683 **	Because the size depends on the
2684 **	#define MAX_SCATTERL parameter,
2685 **	it is filled in at runtime.
2686 **
2687 **  ##===========< i=0; i<MAX_SCATTERL >=========
2688 **  ||	SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)),
2689 **  ||		PADDR (dispatch),
2690 **  ||	SCR_MOVE_TBL ^ SCR_DATA_IN,
2691 **  ||		offsetof (struct dsb, data[ i]),
2692 **  ##==========================================
2693 **
2694 **---------------------------------------------------------
2695 */
2696 0
2697 }/*-------------------------< DATA_IN2 >-------------------*/,{
2698 	SCR_CALL,
2699 		PADDR (dispatch),
2700 	SCR_JUMP,
2701 		PADDR (no_data),
2702 }/*-------------------------< DATA_OUT >--------------------*/,{
2703 /*
2704 **	Because the size depends on the
2705 **	#define MAX_SCATTERL parameter,
2706 **	it is filled in at runtime.
2707 **
2708 **  ##===========< i=0; i<MAX_SCATTERL >=========
2709 **  ||	SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT)),
2710 **  ||		PADDR (dispatch),
2711 **  ||	SCR_MOVE_TBL ^ SCR_DATA_OUT,
2712 **  ||		offsetof (struct dsb, data[ i]),
2713 **  ##==========================================
2714 **
2715 **---------------------------------------------------------
2716 */
2717 0
2718 }/*-------------------------< DATA_OUT2 >-------------------*/,{
2719 	SCR_CALL,
2720 		PADDR (dispatch),
2721 	SCR_JUMP,
2722 		PADDR (no_data),
2723 }/*--------------------------------------------------------*/
2724 };
2725 
2726 static	struct scripth scripth0 __initdata = {
2727 /*-------------------------< TRYLOOP >---------------------*/{
2728 /*
2729 **	Start the next entry.
2730 **	Called addresses point to the launch script in the CCB.
2731 **	They are patched by the main processor.
2732 **
2733 **	Because the size depends on the
2734 **	#define MAX_START parameter, it is filled
2735 **	in at runtime.
2736 **
2737 **-----------------------------------------------------------
2738 **
2739 **  ##===========< I=0; i<MAX_START >===========
2740 **  ||	SCR_CALL,
2741 **  ||		PADDR (idle),
2742 **  ##==========================================
2743 **
2744 **-----------------------------------------------------------
2745 */
2746 0
2747 }/*------------------------< TRYLOOP2 >---------------------*/,{
2748 	SCR_JUMP,
2749 		PADDRH(tryloop),
2750 
2751 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
2752 
2753 }/*------------------------< DONE_QUEUE >-------------------*/,{
2754 /*
2755 **	Copy the CCB address to the next done entry.
2756 **	Because the size depends on the
2757 **	#define MAX_DONE parameter, it is filled
2758 **	in at runtime.
2759 **
2760 **-----------------------------------------------------------
2761 **
2762 **  ##===========< I=0; i<MAX_DONE >===========
2763 **  ||	SCR_COPY (sizeof(struct ccb *),
2764 **  ||		NADDR (header.cp),
2765 **  ||		NADDR (ccb_done[i]),
2766 **  ||	SCR_CALL,
2767 **  ||		PADDR (done_end),
2768 **  ##==========================================
2769 **
2770 **-----------------------------------------------------------
2771 */
2772 0
2773 }/*------------------------< DONE_QUEUE2 >------------------*/,{
2774 	SCR_JUMP,
2775 		PADDRH (done_queue),
2776 
2777 #endif /* SCSI_NCR_CCB_DONE_SUPPORT */
2778 }/*------------------------< SELECT_NO_ATN >-----------------*/,{
2779 	/*
2780 	**	Set Initiator mode.
2781 	**      And try to select this target without ATN.
2782 	*/
2783 
2784 	SCR_CLR (SCR_TRG),
2785 		0,
2786 	SCR_LOAD_REG (HS_REG, HS_SELECTING),
2787 		0,
2788 	SCR_SEL_TBL ^ offsetof (struct dsb, select),
2789 		PADDR (reselect),
2790 	SCR_JUMP,
2791 		PADDR (select2),
2792 
2793 }/*-------------------------< CANCEL >------------------------*/,{
2794 
2795 	SCR_LOAD_REG (scratcha, HS_ABORTED),
2796 		0,
2797 	SCR_JUMPR,
2798 		8,
2799 }/*-------------------------< SKIP >------------------------*/,{
2800 	SCR_LOAD_REG (scratcha, 0),
2801 		0,
2802 	/*
2803 	**	This entry has been canceled.
2804 	**	Next time use the next slot.
2805 	*/
2806 	SCR_COPY (4),
2807 		RADDR (temp),
2808 		PADDR (startpos),
2809 	/*
2810 	**      The ncr doesn't have an indirect load
2811 	**	or store command. So we have to
2812 	**	copy part of the control block to a
2813 	**	fixed place, where we can access it.
2814 	**
2815 	**	We patch the address part of a
2816 	**	COPY command with the DSA-register.
2817 	*/
2818 	SCR_COPY_F (4),
2819 		RADDR (dsa),
2820 		PADDRH (skip2),
2821 	/*
2822 	**	Flush script prefetch if required
2823 	*/
2824 	PREFETCH_FLUSH
2825 	/*
2826 	**	then we do the actual copy.
2827 	*/
2828 	SCR_COPY (sizeof (struct head)),
2829 	/*
2830 	**	continued after the next label ...
2831 	*/
2832 }/*-------------------------< SKIP2 >---------------------*/,{
2833 		0,
2834 		NADDR (header),
2835 	/*
2836 	**      Initialize the status registers
2837 	*/
2838 	SCR_COPY (4),
2839 		NADDR (header.status),
2840 		RADDR (scr0),
2841 	/*
2842 	**	Force host status.
2843 	*/
2844 	SCR_FROM_REG (scratcha),
2845 		0,
2846 	SCR_JUMPR ^ IFFALSE (MASK (0, HS_DONEMASK)),
2847 		16,
2848 	SCR_REG_REG (HS_REG, SCR_OR, HS_SKIPMASK),
2849 		0,
2850 	SCR_JUMPR,
2851 		8,
2852 	SCR_TO_REG (HS_REG),
2853 		0,
2854 	SCR_LOAD_REG (SS_REG, SAM_STAT_GOOD),
2855 		0,
2856 	SCR_JUMP,
2857 		PADDR (cleanup_ok),
2858 
2859 },/*-------------------------< PAR_ERR_DATA_IN >---------------*/{
2860 	/*
2861 	**	Ignore all data in byte, until next phase
2862 	*/
2863 	SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)),
2864 		PADDRH (par_err_other),
2865 	SCR_MOVE_ABS (1) ^ SCR_DATA_IN,
2866 		NADDR (scratch),
2867 	SCR_JUMPR,
2868 		-24,
2869 },/*-------------------------< PAR_ERR_OTHER >------------------*/{
2870 	/*
2871 	**	count it.
2872 	*/
2873 	SCR_REG_REG (PS_REG, SCR_ADD, 0x01),
2874 		0,
2875 	/*
2876 	**	jump to dispatcher.
2877 	*/
2878 	SCR_JUMP,
2879 		PADDR (dispatch),
2880 }/*-------------------------< MSG_REJECT >---------------*/,{
2881 	/*
2882 	**	If a negotiation was in progress,
2883 	**	negotiation failed.
2884 	**	Otherwise, let the C code print
2885 	**	some message.
2886 	*/
2887 	SCR_FROM_REG (HS_REG),
2888 		0,
2889 	SCR_INT ^ IFFALSE (DATA (HS_NEGOTIATE)),
2890 		SIR_REJECT_RECEIVED,
2891 	SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)),
2892 		SIR_NEGO_FAILED,
2893 	SCR_JUMP,
2894 		PADDR (clrack),
2895 
2896 }/*-------------------------< MSG_IGN_RESIDUE >----------*/,{
2897 	/*
2898 	**	Terminate cycle
2899 	*/
2900 	SCR_CLR (SCR_ACK),
2901 		0,
2902 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
2903 		PADDR (dispatch),
2904 	/*
2905 	**	get residue size.
2906 	*/
2907 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
2908 		NADDR (msgin[1]),
2909 	/*
2910 	**	Size is 0 .. ignore message.
2911 	*/
2912 	SCR_JUMP ^ IFTRUE (DATA (0)),
2913 		PADDR (clrack),
2914 	/*
2915 	**	Size is not 1 .. have to interrupt.
2916 	*/
2917 	SCR_JUMPR ^ IFFALSE (DATA (1)),
2918 		40,
2919 	/*
2920 	**	Check for residue byte in swide register
2921 	*/
2922 	SCR_FROM_REG (scntl2),
2923 		0,
2924 	SCR_JUMPR ^ IFFALSE (MASK (WSR, WSR)),
2925 		16,
2926 	/*
2927 	**	There IS data in the swide register.
2928 	**	Discard it.
2929 	*/
2930 	SCR_REG_REG (scntl2, SCR_OR, WSR),
2931 		0,
2932 	SCR_JUMP,
2933 		PADDR (clrack),
2934 	/*
2935 	**	Load again the size to the sfbr register.
2936 	*/
2937 	SCR_FROM_REG (scratcha),
2938 		0,
2939 	SCR_INT,
2940 		SIR_IGN_RESIDUE,
2941 	SCR_JUMP,
2942 		PADDR (clrack),
2943 
2944 }/*-------------------------< MSG_EXTENDED >-------------*/,{
2945 	/*
2946 	**	Terminate cycle
2947 	*/
2948 	SCR_CLR (SCR_ACK),
2949 		0,
2950 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
2951 		PADDR (dispatch),
2952 	/*
2953 	**	get length.
2954 	*/
2955 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
2956 		NADDR (msgin[1]),
2957 	/*
2958 	*/
2959 	SCR_JUMP ^ IFTRUE (DATA (3)),
2960 		PADDRH (msg_ext_3),
2961 	SCR_JUMP ^ IFFALSE (DATA (2)),
2962 		PADDR (msg_bad),
2963 }/*-------------------------< MSG_EXT_2 >----------------*/,{
2964 	SCR_CLR (SCR_ACK),
2965 		0,
2966 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
2967 		PADDR (dispatch),
2968 	/*
2969 	**	get extended message code.
2970 	*/
2971 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
2972 		NADDR (msgin[2]),
2973 	SCR_JUMP ^ IFTRUE (DATA (EXTENDED_WDTR)),
2974 		PADDRH (msg_wdtr),
2975 	/*
2976 	**	unknown extended message
2977 	*/
2978 	SCR_JUMP,
2979 		PADDR (msg_bad)
2980 }/*-------------------------< MSG_WDTR >-----------------*/,{
2981 	SCR_CLR (SCR_ACK),
2982 		0,
2983 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
2984 		PADDR (dispatch),
2985 	/*
2986 	**	get data bus width
2987 	*/
2988 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
2989 		NADDR (msgin[3]),
2990 	/*
2991 	**	let the host do the real work.
2992 	*/
2993 	SCR_INT,
2994 		SIR_NEGO_WIDE,
2995 	/*
2996 	**	let the target fetch our answer.
2997 	*/
2998 	SCR_SET (SCR_ATN),
2999 		0,
3000 	SCR_CLR (SCR_ACK),
3001 		0,
3002 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
3003 		PADDRH (nego_bad_phase),
3004 
3005 }/*-------------------------< SEND_WDTR >----------------*/,{
3006 	/*
3007 	**	Send the EXTENDED_WDTR
3008 	*/
3009 	SCR_MOVE_ABS (4) ^ SCR_MSG_OUT,
3010 		NADDR (msgout),
3011 	SCR_COPY (1),
3012 		NADDR (msgout),
3013 		NADDR (lastmsg),
3014 	SCR_JUMP,
3015 		PADDR (msg_out_done),
3016 
3017 }/*-------------------------< MSG_EXT_3 >----------------*/,{
3018 	SCR_CLR (SCR_ACK),
3019 		0,
3020 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
3021 		PADDR (dispatch),
3022 	/*
3023 	**	get extended message code.
3024 	*/
3025 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3026 		NADDR (msgin[2]),
3027 	SCR_JUMP ^ IFTRUE (DATA (EXTENDED_SDTR)),
3028 		PADDRH (msg_sdtr),
3029 	/*
3030 	**	unknown extended message
3031 	*/
3032 	SCR_JUMP,
3033 		PADDR (msg_bad)
3034 
3035 }/*-------------------------< MSG_SDTR >-----------------*/,{
3036 	SCR_CLR (SCR_ACK),
3037 		0,
3038 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
3039 		PADDR (dispatch),
3040 	/*
3041 	**	get period and offset
3042 	*/
3043 	SCR_MOVE_ABS (2) ^ SCR_MSG_IN,
3044 		NADDR (msgin[3]),
3045 	/*
3046 	**	let the host do the real work.
3047 	*/
3048 	SCR_INT,
3049 		SIR_NEGO_SYNC,
3050 	/*
3051 	**	let the target fetch our answer.
3052 	*/
3053 	SCR_SET (SCR_ATN),
3054 		0,
3055 	SCR_CLR (SCR_ACK),
3056 		0,
3057 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
3058 		PADDRH (nego_bad_phase),
3059 
3060 }/*-------------------------< SEND_SDTR >-------------*/,{
3061 	/*
3062 	**	Send the EXTENDED_SDTR
3063 	*/
3064 	SCR_MOVE_ABS (5) ^ SCR_MSG_OUT,
3065 		NADDR (msgout),
3066 	SCR_COPY (1),
3067 		NADDR (msgout),
3068 		NADDR (lastmsg),
3069 	SCR_JUMP,
3070 		PADDR (msg_out_done),
3071 
3072 }/*-------------------------< NEGO_BAD_PHASE >------------*/,{
3073 	SCR_INT,
3074 		SIR_NEGO_PROTO,
3075 	SCR_JUMP,
3076 		PADDR (dispatch),
3077 
3078 }/*-------------------------< MSG_OUT_ABORT >-------------*/,{
3079 	/*
3080 	**	After ABORT message,
3081 	**
3082 	**	expect an immediate disconnect, ...
3083 	*/
3084 	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
3085 		0,
3086 	SCR_CLR (SCR_ACK|SCR_ATN),
3087 		0,
3088 	SCR_WAIT_DISC,
3089 		0,
3090 	/*
3091 	**	... and set the status to "ABORTED"
3092 	*/
3093 	SCR_LOAD_REG (HS_REG, HS_ABORTED),
3094 		0,
3095 	SCR_JUMP,
3096 		PADDR (cleanup),
3097 
3098 }/*-------------------------< HDATA_IN >-------------------*/,{
3099 /*
3100 **	Because the size depends on the
3101 **	#define MAX_SCATTERH parameter,
3102 **	it is filled in at runtime.
3103 **
3104 **  ##==< i=MAX_SCATTERL; i<MAX_SCATTERL+MAX_SCATTERH >==
3105 **  ||	SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)),
3106 **  ||		PADDR (dispatch),
3107 **  ||	SCR_MOVE_TBL ^ SCR_DATA_IN,
3108 **  ||		offsetof (struct dsb, data[ i]),
3109 **  ##===================================================
3110 **
3111 **---------------------------------------------------------
3112 */
3113 0
3114 }/*-------------------------< HDATA_IN2 >------------------*/,{
3115 	SCR_JUMP,
3116 		PADDR (data_in),
3117 
3118 }/*-------------------------< HDATA_OUT >-------------------*/,{
3119 /*
3120 **	Because the size depends on the
3121 **	#define MAX_SCATTERH parameter,
3122 **	it is filled in at runtime.
3123 **
3124 **  ##==< i=MAX_SCATTERL; i<MAX_SCATTERL+MAX_SCATTERH >==
3125 **  ||	SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT)),
3126 **  ||		PADDR (dispatch),
3127 **  ||	SCR_MOVE_TBL ^ SCR_DATA_OUT,
3128 **  ||		offsetof (struct dsb, data[ i]),
3129 **  ##===================================================
3130 **
3131 **---------------------------------------------------------
3132 */
3133 0
3134 }/*-------------------------< HDATA_OUT2 >------------------*/,{
3135 	SCR_JUMP,
3136 		PADDR (data_out),
3137 
3138 }/*-------------------------< RESET >----------------------*/,{
3139 	/*
3140 	**      Send a TARGET_RESET message if bad IDENTIFY
3141 	**	received on reselection.
3142 	*/
3143 	SCR_LOAD_REG (scratcha, ABORT_TASK),
3144 		0,
3145 	SCR_JUMP,
3146 		PADDRH (abort_resel),
3147 }/*-------------------------< ABORTTAG >-------------------*/,{
3148 	/*
3149 	**      Abort a wrong tag received on reselection.
3150 	*/
3151 	SCR_LOAD_REG (scratcha, ABORT_TASK),
3152 		0,
3153 	SCR_JUMP,
3154 		PADDRH (abort_resel),
3155 }/*-------------------------< ABORT >----------------------*/,{
3156 	/*
3157 	**      Abort a reselection when no active CCB.
3158 	*/
3159 	SCR_LOAD_REG (scratcha, ABORT_TASK_SET),
3160 		0,
3161 }/*-------------------------< ABORT_RESEL >----------------*/,{
3162 	SCR_COPY (1),
3163 		RADDR (scratcha),
3164 		NADDR (msgout),
3165 	SCR_SET (SCR_ATN),
3166 		0,
3167 	SCR_CLR (SCR_ACK),
3168 		0,
3169 	/*
3170 	**	and send it.
3171 	**	we expect an immediate disconnect
3172 	*/
3173 	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
3174 		0,
3175 	SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
3176 		NADDR (msgout),
3177 	SCR_COPY (1),
3178 		NADDR (msgout),
3179 		NADDR (lastmsg),
3180 	SCR_CLR (SCR_ACK|SCR_ATN),
3181 		0,
3182 	SCR_WAIT_DISC,
3183 		0,
3184 	SCR_JUMP,
3185 		PADDR (start),
3186 }/*-------------------------< RESEND_IDENT >-------------------*/,{
3187 	/*
3188 	**	The target stays in MSG OUT phase after having acked
3189 	**	Identify [+ Tag [+ Extended message ]]. Targets shall
3190 	**	behave this way on parity error.
3191 	**	We must send it again all the messages.
3192 	*/
3193 	SCR_SET (SCR_ATN), /* Shall be asserted 2 deskew delays before the  */
3194 		0,         /* 1rst ACK = 90 ns. Hope the NCR is'nt too fast */
3195 	SCR_JUMP,
3196 		PADDR (send_ident),
3197 }/*-------------------------< CLRATN_GO_ON >-------------------*/,{
3198 	SCR_CLR (SCR_ATN),
3199 		0,
3200 	SCR_JUMP,
3201 }/*-------------------------< NXTDSP_GO_ON >-------------------*/,{
3202 		0,
3203 }/*-------------------------< SDATA_IN >-------------------*/,{
3204 	SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)),
3205 		PADDR (dispatch),
3206 	SCR_MOVE_TBL ^ SCR_DATA_IN,
3207 		offsetof (struct dsb, sense),
3208 	SCR_CALL,
3209 		PADDR (dispatch),
3210 	SCR_JUMP,
3211 		PADDR (no_data),
3212 }/*-------------------------< DATA_IO >--------------------*/,{
3213 	/*
3214 	**	We jump here if the data direction was unknown at the
3215 	**	time we had to queue the command to the scripts processor.
3216 	**	Pointers had been set as follow in this situation:
3217 	**	  savep   -->   DATA_IO
3218 	**	  lastp   -->   start pointer when DATA_IN
3219 	**	  goalp   -->   goal  pointer when DATA_IN
3220 	**	  wlastp  -->   start pointer when DATA_OUT
3221 	**	  wgoalp  -->   goal  pointer when DATA_OUT
3222 	**	This script sets savep/lastp/goalp according to the
3223 	**	direction chosen by the target.
3224 	*/
3225 	SCR_JUMPR ^ IFTRUE (WHEN (SCR_DATA_OUT)),
3226 		32,
3227 	/*
3228 	**	Direction is DATA IN.
3229 	**	Warning: we jump here, even when phase is DATA OUT.
3230 	*/
3231 	SCR_COPY (4),
3232 		NADDR (header.lastp),
3233 		NADDR (header.savep),
3234 
3235 	/*
3236 	**	Jump to the SCRIPTS according to actual direction.
3237 	*/
3238 	SCR_COPY (4),
3239 		NADDR (header.savep),
3240 		RADDR (temp),
3241 	SCR_RETURN,
3242 		0,
3243 	/*
3244 	**	Direction is DATA OUT.
3245 	*/
3246 	SCR_COPY (4),
3247 		NADDR (header.wlastp),
3248 		NADDR (header.lastp),
3249 	SCR_COPY (4),
3250 		NADDR (header.wgoalp),
3251 		NADDR (header.goalp),
3252 	SCR_JUMPR,
3253 		-64,
3254 }/*-------------------------< BAD_IDENTIFY >---------------*/,{
3255 	/*
3256 	**	If message phase but not an IDENTIFY,
3257 	**	get some help from the C code.
3258 	**	Old SCSI device may behave so.
3259 	*/
3260 	SCR_JUMPR ^ IFTRUE (MASK (0x80, 0x80)),
3261 		16,
3262 	SCR_INT,
3263 		SIR_RESEL_NO_IDENTIFY,
3264 	SCR_JUMP,
3265 		PADDRH (reset),
3266 	/*
3267 	**	Message is an IDENTIFY, but lun is unknown.
3268 	**	Read the message, since we got it directly
3269 	**	from the SCSI BUS data lines.
3270 	**	Signal problem to C code for logging the event.
3271 	**	Send an ABORT_TASK_SET to clear all pending tasks.
3272 	*/
3273 	SCR_INT,
3274 		SIR_RESEL_BAD_LUN,
3275 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3276 		NADDR (msgin),
3277 	SCR_JUMP,
3278 		PADDRH (abort),
3279 }/*-------------------------< BAD_I_T_L >------------------*/,{
3280 	/*
3281 	**	We donnot have a task for that I_T_L.
3282 	**	Signal problem to C code for logging the event.
3283 	**	Send an ABORT_TASK_SET message.
3284 	*/
3285 	SCR_INT,
3286 		SIR_RESEL_BAD_I_T_L,
3287 	SCR_JUMP,
3288 		PADDRH (abort),
3289 }/*-------------------------< BAD_I_T_L_Q >----------------*/,{
3290 	/*
3291 	**	We donnot have a task that matches the tag.
3292 	**	Signal problem to C code for logging the event.
3293 	**	Send an ABORT_TASK message.
3294 	*/
3295 	SCR_INT,
3296 		SIR_RESEL_BAD_I_T_L_Q,
3297 	SCR_JUMP,
3298 		PADDRH (aborttag),
3299 }/*-------------------------< BAD_TARGET >-----------------*/,{
3300 	/*
3301 	**	We donnot know the target that reselected us.
3302 	**	Grab the first message if any (IDENTIFY).
3303 	**	Signal problem to C code for logging the event.
3304 	**	TARGET_RESET message.
3305 	*/
3306 	SCR_INT,
3307 		SIR_RESEL_BAD_TARGET,
3308 	SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_IN)),
3309 		8,
3310 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3311 		NADDR (msgin),
3312 	SCR_JUMP,
3313 		PADDRH (reset),
3314 }/*-------------------------< BAD_STATUS >-----------------*/,{
3315 	/*
3316 	**	If command resulted in either TASK_SET FULL,
3317 	**	CHECK CONDITION or COMMAND TERMINATED,
3318 	**	call the C code.
3319 	*/
3320 	SCR_INT ^ IFTRUE (DATA (SAM_STAT_TASK_SET_FULL)),
3321 		SIR_BAD_STATUS,
3322 	SCR_INT ^ IFTRUE (DATA (SAM_STAT_CHECK_CONDITION)),
3323 		SIR_BAD_STATUS,
3324 	SCR_INT ^ IFTRUE (DATA (SAM_STAT_COMMAND_TERMINATED)),
3325 		SIR_BAD_STATUS,
3326 	SCR_RETURN,
3327 		0,
3328 }/*-------------------------< START_RAM >-------------------*/,{
3329 	/*
3330 	**	Load the script into on-chip RAM,
3331 	**	and jump to start point.
3332 	*/
3333 	SCR_COPY_F (4),
3334 		RADDR (scratcha),
3335 		PADDRH (start_ram0),
3336 	/*
3337 	**	Flush script prefetch if required
3338 	*/
3339 	PREFETCH_FLUSH
3340 	SCR_COPY (sizeof (struct script)),
3341 }/*-------------------------< START_RAM0 >--------------------*/,{
3342 		0,
3343 		PADDR (start),
3344 	SCR_JUMP,
3345 		PADDR (start),
3346 }/*-------------------------< STO_RESTART >-------------------*/,{
3347 	/*
3348 	**
3349 	**	Repair start queue (e.g. next time use the next slot)
3350 	**	and jump to start point.
3351 	*/
3352 	SCR_COPY (4),
3353 		RADDR (temp),
3354 		PADDR (startpos),
3355 	SCR_JUMP,
3356 		PADDR (start),
3357 }/*-------------------------< WAIT_DMA >-------------------*/,{
3358 	/*
3359 	**	For HP Zalon/53c720 systems, the Zalon interface
3360 	**	between CPU and 53c720 does prefetches, which causes
3361 	**	problems with self modifying scripts.  The problem
3362 	**	is overcome by calling a dummy subroutine after each
3363 	**	modification, to force a refetch of the script on
3364 	**	return from the subroutine.
3365 	*/
3366 	SCR_RETURN,
3367 		0,
3368 }/*-------------------------< SNOOPTEST >-------------------*/,{
3369 	/*
3370 	**	Read the variable.
3371 	*/
3372 	SCR_COPY (4),
3373 		NADDR(ncr_cache),
3374 		RADDR (scratcha),
3375 	/*
3376 	**	Write the variable.
3377 	*/
3378 	SCR_COPY (4),
3379 		RADDR (temp),
3380 		NADDR(ncr_cache),
3381 	/*
3382 	**	Read back the variable.
3383 	*/
3384 	SCR_COPY (4),
3385 		NADDR(ncr_cache),
3386 		RADDR (temp),
3387 }/*-------------------------< SNOOPEND >-------------------*/,{
3388 	/*
3389 	**	And stop.
3390 	*/
3391 	SCR_INT,
3392 		99,
3393 }/*--------------------------------------------------------*/
3394 };
3395 
3396 /*==========================================================
3397 **
3398 **
3399 **	Fill in #define dependent parts of the script
3400 **
3401 **
3402 **==========================================================
3403 */
3404 
3405 void __init ncr_script_fill (struct script * scr, struct scripth * scrh)
3406 {
3407 	int	i;
3408 	ncrcmd	*p;
3409 
3410 	p = scrh->tryloop;
3411 	for (i=0; i<MAX_START; i++) {
3412 		*p++ =SCR_CALL;
3413 		*p++ =PADDR (idle);
3414 	}
3415 
3416 	BUG_ON((u_long)p != (u_long)&scrh->tryloop + sizeof (scrh->tryloop));
3417 
3418 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
3419 
3420 	p = scrh->done_queue;
3421 	for (i = 0; i<MAX_DONE; i++) {
3422 		*p++ =SCR_COPY (sizeof(struct ccb *));
3423 		*p++ =NADDR (header.cp);
3424 		*p++ =NADDR (ccb_done[i]);
3425 		*p++ =SCR_CALL;
3426 		*p++ =PADDR (done_end);
3427 	}
3428 
3429 	BUG_ON((u_long)p != (u_long)&scrh->done_queue+sizeof(scrh->done_queue));
3430 
3431 #endif /* SCSI_NCR_CCB_DONE_SUPPORT */
3432 
3433 	p = scrh->hdata_in;
3434 	for (i=0; i<MAX_SCATTERH; i++) {
3435 		*p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN));
3436 		*p++ =PADDR (dispatch);
3437 		*p++ =SCR_MOVE_TBL ^ SCR_DATA_IN;
3438 		*p++ =offsetof (struct dsb, data[i]);
3439 	}
3440 
3441 	BUG_ON((u_long)p != (u_long)&scrh->hdata_in + sizeof (scrh->hdata_in));
3442 
3443 	p = scr->data_in;
3444 	for (i=MAX_SCATTERH; i<MAX_SCATTERH+MAX_SCATTERL; i++) {
3445 		*p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN));
3446 		*p++ =PADDR (dispatch);
3447 		*p++ =SCR_MOVE_TBL ^ SCR_DATA_IN;
3448 		*p++ =offsetof (struct dsb, data[i]);
3449 	}
3450 
3451 	BUG_ON((u_long)p != (u_long)&scr->data_in + sizeof (scr->data_in));
3452 
3453 	p = scrh->hdata_out;
3454 	for (i=0; i<MAX_SCATTERH; i++) {
3455 		*p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT));
3456 		*p++ =PADDR (dispatch);
3457 		*p++ =SCR_MOVE_TBL ^ SCR_DATA_OUT;
3458 		*p++ =offsetof (struct dsb, data[i]);
3459 	}
3460 
3461 	BUG_ON((u_long)p != (u_long)&scrh->hdata_out + sizeof (scrh->hdata_out));
3462 
3463 	p = scr->data_out;
3464 	for (i=MAX_SCATTERH; i<MAX_SCATTERH+MAX_SCATTERL; i++) {
3465 		*p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT));
3466 		*p++ =PADDR (dispatch);
3467 		*p++ =SCR_MOVE_TBL ^ SCR_DATA_OUT;
3468 		*p++ =offsetof (struct dsb, data[i]);
3469 	}
3470 
3471 	BUG_ON((u_long) p != (u_long)&scr->data_out + sizeof (scr->data_out));
3472 }
3473 
3474 /*==========================================================
3475 **
3476 **
3477 **	Copy and rebind a script.
3478 **
3479 **
3480 **==========================================================
3481 */
3482 
3483 static void __init
3484 ncr_script_copy_and_bind (struct ncb *np, ncrcmd *src, ncrcmd *dst, int len)
3485 {
3486 	ncrcmd  opcode, new, old, tmp1, tmp2;
3487 	ncrcmd	*start, *end;
3488 	int relocs;
3489 	int opchanged = 0;
3490 
3491 	start = src;
3492 	end = src + len/4;
3493 
3494 	while (src < end) {
3495 
3496 		opcode = *src++;
3497 		*dst++ = cpu_to_scr(opcode);
3498 
3499 		/*
3500 		**	If we forget to change the length
3501 		**	in struct script, a field will be
3502 		**	padded with 0. This is an illegal
3503 		**	command.
3504 		*/
3505 
3506 		if (opcode == 0) {
3507 			printk (KERN_ERR "%s: ERROR0 IN SCRIPT at %d.\n",
3508 				ncr_name(np), (int) (src-start-1));
3509 			mdelay(1000);
3510 		}
3511 
3512 		if (DEBUG_FLAGS & DEBUG_SCRIPT)
3513 			printk (KERN_DEBUG "%p:  <%x>\n",
3514 				(src-1), (unsigned)opcode);
3515 
3516 		/*
3517 		**	We don't have to decode ALL commands
3518 		*/
3519 		switch (opcode >> 28) {
3520 
3521 		case 0xc:
3522 			/*
3523 			**	COPY has TWO arguments.
3524 			*/
3525 			relocs = 2;
3526 			tmp1 = src[0];
3527 #ifdef	RELOC_KVAR
3528 			if ((tmp1 & RELOC_MASK) == RELOC_KVAR)
3529 				tmp1 = 0;
3530 #endif
3531 			tmp2 = src[1];
3532 #ifdef	RELOC_KVAR
3533 			if ((tmp2 & RELOC_MASK) == RELOC_KVAR)
3534 				tmp2 = 0;
3535 #endif
3536 			if ((tmp1 ^ tmp2) & 3) {
3537 				printk (KERN_ERR"%s: ERROR1 IN SCRIPT at %d.\n",
3538 					ncr_name(np), (int) (src-start-1));
3539 				mdelay(1000);
3540 			}
3541 			/*
3542 			**	If PREFETCH feature not enabled, remove
3543 			**	the NO FLUSH bit if present.
3544 			*/
3545 			if ((opcode & SCR_NO_FLUSH) && !(np->features & FE_PFEN)) {
3546 				dst[-1] = cpu_to_scr(opcode & ~SCR_NO_FLUSH);
3547 				++opchanged;
3548 			}
3549 			break;
3550 
3551 		case 0x0:
3552 			/*
3553 			**	MOVE (absolute address)
3554 			*/
3555 			relocs = 1;
3556 			break;
3557 
3558 		case 0x8:
3559 			/*
3560 			**	JUMP / CALL
3561 			**	don't relocate if relative :-)
3562 			*/
3563 			if (opcode & 0x00800000)
3564 				relocs = 0;
3565 			else
3566 				relocs = 1;
3567 			break;
3568 
3569 		case 0x4:
3570 		case 0x5:
3571 		case 0x6:
3572 		case 0x7:
3573 			relocs = 1;
3574 			break;
3575 
3576 		default:
3577 			relocs = 0;
3578 			break;
3579 		}
3580 
3581 		if (relocs) {
3582 			while (relocs--) {
3583 				old = *src++;
3584 
3585 				switch (old & RELOC_MASK) {
3586 				case RELOC_REGISTER:
3587 					new = (old & ~RELOC_MASK) + np->paddr;
3588 					break;
3589 				case RELOC_LABEL:
3590 					new = (old & ~RELOC_MASK) + np->p_script;
3591 					break;
3592 				case RELOC_LABELH:
3593 					new = (old & ~RELOC_MASK) + np->p_scripth;
3594 					break;
3595 				case RELOC_SOFTC:
3596 					new = (old & ~RELOC_MASK) + np->p_ncb;
3597 					break;
3598 #ifdef	RELOC_KVAR
3599 				case RELOC_KVAR:
3600 					if (((old & ~RELOC_MASK) <
3601 					     SCRIPT_KVAR_FIRST) ||
3602 					    ((old & ~RELOC_MASK) >
3603 					     SCRIPT_KVAR_LAST))
3604 						panic("ncr KVAR out of range");
3605 					new = vtophys(script_kvars[old &
3606 					    ~RELOC_MASK]);
3607 					break;
3608 #endif
3609 				case 0:
3610 					/* Don't relocate a 0 address. */
3611 					if (old == 0) {
3612 						new = old;
3613 						break;
3614 					}
3615 					fallthrough;
3616 				default:
3617 					panic("ncr_script_copy_and_bind: weird relocation %x\n", old);
3618 					break;
3619 				}
3620 
3621 				*dst++ = cpu_to_scr(new);
3622 			}
3623 		} else
3624 			*dst++ = cpu_to_scr(*src++);
3625 
3626 	}
3627 }
3628 
3629 /*
3630 **	Linux host data structure
3631 */
3632 
3633 struct host_data {
3634      struct ncb *ncb;
3635 };
3636 
3637 #define PRINT_ADDR(cmd, arg...) dev_info(&cmd->device->sdev_gendev , ## arg)
3638 
3639 static void ncr_print_msg(struct ccb *cp, char *label, u_char *msg)
3640 {
3641 	PRINT_ADDR(cp->cmd, "%s: ", label);
3642 
3643 	spi_print_msg(msg);
3644 	printk("\n");
3645 }
3646 
3647 /*==========================================================
3648 **
3649 **	NCR chip clock divisor table.
3650 **	Divisors are multiplied by 10,000,000 in order to make
3651 **	calculations more simple.
3652 **
3653 **==========================================================
3654 */
3655 
3656 #define _5M 5000000
3657 static u_long div_10M[] =
3658 	{2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
3659 
3660 
3661 /*===============================================================
3662 **
3663 **	Prepare io register values used by ncr_init() according
3664 **	to selected and supported features.
3665 **
3666 **	NCR chips allow burst lengths of 2, 4, 8, 16, 32, 64, 128
3667 **	transfers. 32,64,128 are only supported by 875 and 895 chips.
3668 **	We use log base 2 (burst length) as internal code, with
3669 **	value 0 meaning "burst disabled".
3670 **
3671 **===============================================================
3672 */
3673 
3674 /*
3675  *	Burst length from burst code.
3676  */
3677 #define burst_length(bc) (!(bc))? 0 : 1 << (bc)
3678 
3679 /*
3680  *	Burst code from io register bits.  Burst enable is ctest0 for c720
3681  */
3682 #define burst_code(dmode, ctest0) \
3683 	(ctest0) & 0x80 ? 0 : (((dmode) & 0xc0) >> 6) + 1
3684 
3685 /*
3686  *	Set initial io register bits from burst code.
3687  */
3688 static inline void ncr_init_burst(struct ncb *np, u_char bc)
3689 {
3690 	u_char *be = &np->rv_ctest0;
3691 	*be		&= ~0x80;
3692 	np->rv_dmode	&= ~(0x3 << 6);
3693 	np->rv_ctest5	&= ~0x4;
3694 
3695 	if (!bc) {
3696 		*be		|= 0x80;
3697 	} else {
3698 		--bc;
3699 		np->rv_dmode	|= ((bc & 0x3) << 6);
3700 		np->rv_ctest5	|= (bc & 0x4);
3701 	}
3702 }
3703 
3704 static void __init ncr_prepare_setting(struct ncb *np)
3705 {
3706 	u_char	burst_max;
3707 	u_long	period;
3708 	int i;
3709 
3710 	/*
3711 	**	Save assumed BIOS setting
3712 	*/
3713 
3714 	np->sv_scntl0	= INB(nc_scntl0) & 0x0a;
3715 	np->sv_scntl3	= INB(nc_scntl3) & 0x07;
3716 	np->sv_dmode	= INB(nc_dmode)  & 0xce;
3717 	np->sv_dcntl	= INB(nc_dcntl)  & 0xa8;
3718 	np->sv_ctest0	= INB(nc_ctest0) & 0x84;
3719 	np->sv_ctest3	= INB(nc_ctest3) & 0x01;
3720 	np->sv_ctest4	= INB(nc_ctest4) & 0x80;
3721 	np->sv_ctest5	= INB(nc_ctest5) & 0x24;
3722 	np->sv_gpcntl	= INB(nc_gpcntl);
3723 	np->sv_stest2	= INB(nc_stest2) & 0x20;
3724 	np->sv_stest4	= INB(nc_stest4);
3725 
3726 	/*
3727 	**	Wide ?
3728 	*/
3729 
3730 	np->maxwide	= (np->features & FE_WIDE)? 1 : 0;
3731 
3732  	/*
3733 	 *  Guess the frequency of the chip's clock.
3734 	 */
3735 	if (np->features & FE_ULTRA)
3736 		np->clock_khz = 80000;
3737 	else
3738 		np->clock_khz = 40000;
3739 
3740 	/*
3741 	 *  Get the clock multiplier factor.
3742  	 */
3743 	if	(np->features & FE_QUAD)
3744 		np->multiplier	= 4;
3745 	else if	(np->features & FE_DBLR)
3746 		np->multiplier	= 2;
3747 	else
3748 		np->multiplier	= 1;
3749 
3750 	/*
3751 	 *  Measure SCSI clock frequency for chips
3752 	 *  it may vary from assumed one.
3753 	 */
3754 	if (np->features & FE_VARCLK)
3755 		ncr_getclock(np, np->multiplier);
3756 
3757 	/*
3758 	 * Divisor to be used for async (timer pre-scaler).
3759 	 */
3760 	i = np->clock_divn - 1;
3761 	while (--i >= 0) {
3762 		if (10ul * SCSI_NCR_MIN_ASYNC * np->clock_khz > div_10M[i]) {
3763 			++i;
3764 			break;
3765 		}
3766 	}
3767 	np->rv_scntl3 = i+1;
3768 
3769 	/*
3770 	 * Minimum synchronous period factor supported by the chip.
3771 	 * Btw, 'period' is in tenths of nanoseconds.
3772 	 */
3773 
3774 	period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
3775 	if	(period <= 250)		np->minsync = 10;
3776 	else if	(period <= 303)		np->minsync = 11;
3777 	else if	(period <= 500)		np->minsync = 12;
3778 	else				np->minsync = (period + 40 - 1) / 40;
3779 
3780 	/*
3781 	 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
3782 	 */
3783 
3784 	if	(np->minsync < 25 && !(np->features & FE_ULTRA))
3785 		np->minsync = 25;
3786 
3787 	/*
3788 	 * Maximum synchronous period factor supported by the chip.
3789 	 */
3790 
3791 	period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
3792 	np->maxsync = period > 2540 ? 254 : period / 10;
3793 
3794 	/*
3795 	**	Prepare initial value of other IO registers
3796 	*/
3797 #if defined SCSI_NCR_TRUST_BIOS_SETTING
3798 	np->rv_scntl0	= np->sv_scntl0;
3799 	np->rv_dmode	= np->sv_dmode;
3800 	np->rv_dcntl	= np->sv_dcntl;
3801 	np->rv_ctest0	= np->sv_ctest0;
3802 	np->rv_ctest3	= np->sv_ctest3;
3803 	np->rv_ctest4	= np->sv_ctest4;
3804 	np->rv_ctest5	= np->sv_ctest5;
3805 	burst_max	= burst_code(np->sv_dmode, np->sv_ctest0);
3806 #else
3807 
3808 	/*
3809 	**	Select burst length (dwords)
3810 	*/
3811 	burst_max	= driver_setup.burst_max;
3812 	if (burst_max == 255)
3813 		burst_max = burst_code(np->sv_dmode, np->sv_ctest0);
3814 	if (burst_max > 7)
3815 		burst_max = 7;
3816 	if (burst_max > np->maxburst)
3817 		burst_max = np->maxburst;
3818 
3819 	/*
3820 	**	Select all supported special features
3821 	*/
3822 	if (np->features & FE_ERL)
3823 		np->rv_dmode	|= ERL;		/* Enable Read Line */
3824 	if (np->features & FE_BOF)
3825 		np->rv_dmode	|= BOF;		/* Burst Opcode Fetch */
3826 	if (np->features & FE_ERMP)
3827 		np->rv_dmode	|= ERMP;	/* Enable Read Multiple */
3828 	if (np->features & FE_PFEN)
3829 		np->rv_dcntl	|= PFEN;	/* Prefetch Enable */
3830 	if (np->features & FE_CLSE)
3831 		np->rv_dcntl	|= CLSE;	/* Cache Line Size Enable */
3832 	if (np->features & FE_WRIE)
3833 		np->rv_ctest3	|= WRIE;	/* Write and Invalidate */
3834 	if (np->features & FE_DFS)
3835 		np->rv_ctest5	|= DFS;		/* Dma Fifo Size */
3836 	if (np->features & FE_MUX)
3837 		np->rv_ctest4	|= MUX;		/* Host bus multiplex mode */
3838 	if (np->features & FE_EA)
3839 		np->rv_dcntl	|= EA;		/* Enable ACK */
3840 	if (np->features & FE_EHP)
3841 		np->rv_ctest0	|= EHP;		/* Even host parity */
3842 
3843 	/*
3844 	**	Select some other
3845 	*/
3846 	if (driver_setup.master_parity)
3847 		np->rv_ctest4	|= MPEE;	/* Master parity checking */
3848 	if (driver_setup.scsi_parity)
3849 		np->rv_scntl0	|= 0x0a;	/*  full arb., ena parity, par->ATN  */
3850 
3851 	/*
3852 	**  Get SCSI addr of host adapter (set by bios?).
3853 	*/
3854 	if (np->myaddr == 255) {
3855 		np->myaddr = INB(nc_scid) & 0x07;
3856 		if (!np->myaddr)
3857 			np->myaddr = SCSI_NCR_MYADDR;
3858 	}
3859 
3860 #endif /* SCSI_NCR_TRUST_BIOS_SETTING */
3861 
3862 	/*
3863 	 *	Prepare initial io register bits for burst length
3864 	 */
3865 	ncr_init_burst(np, burst_max);
3866 
3867 	/*
3868 	**	Set SCSI BUS mode.
3869 	**
3870 	**	- ULTRA2 chips (895/895A/896) report the current
3871 	**	  BUS mode through the STEST4 IO register.
3872 	**	- For previous generation chips (825/825A/875),
3873 	**	  user has to tell us how to check against HVD,
3874 	**	  since a 100% safe algorithm is not possible.
3875 	*/
3876 	np->scsi_mode = SMODE_SE;
3877 	if (np->features & FE_DIFF) {
3878 		switch(driver_setup.diff_support) {
3879 		case 4:	/* Trust previous settings if present, then GPIO3 */
3880 			if (np->sv_scntl3) {
3881 				if (np->sv_stest2 & 0x20)
3882 					np->scsi_mode = SMODE_HVD;
3883 				break;
3884 			}
3885 			fallthrough;
3886 		case 3:	/* SYMBIOS controllers report HVD through GPIO3 */
3887 			if (INB(nc_gpreg) & 0x08)
3888 				break;
3889 			fallthrough;
3890 		case 2:	/* Set HVD unconditionally */
3891 			np->scsi_mode = SMODE_HVD;
3892 			fallthrough;
3893 		case 1:	/* Trust previous settings for HVD */
3894 			if (np->sv_stest2 & 0x20)
3895 				np->scsi_mode = SMODE_HVD;
3896 			break;
3897 		default:/* Don't care about HVD */
3898 			break;
3899 		}
3900 	}
3901 	if (np->scsi_mode == SMODE_HVD)
3902 		np->rv_stest2 |= 0x20;
3903 
3904 	/*
3905 	**	Set LED support from SCRIPTS.
3906 	**	Ignore this feature for boards known to use a
3907 	**	specific GPIO wiring and for the 895A or 896
3908 	**	that drive the LED directly.
3909 	**	Also probe initial setting of GPIO0 as output.
3910 	*/
3911 	if ((driver_setup.led_pin) &&
3912 	    !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
3913 		np->features |= FE_LED0;
3914 
3915 	/*
3916 	**	Set irq mode.
3917 	*/
3918 	switch(driver_setup.irqm & 3) {
3919 	case 2:
3920 		np->rv_dcntl	|= IRQM;
3921 		break;
3922 	case 1:
3923 		np->rv_dcntl	|= (np->sv_dcntl & IRQM);
3924 		break;
3925 	default:
3926 		break;
3927 	}
3928 
3929 	/*
3930 	**	Configure targets according to driver setup.
3931 	**	Allow to override sync, wide and NOSCAN from
3932 	**	boot command line.
3933 	*/
3934 	for (i = 0 ; i < MAX_TARGET ; i++) {
3935 		struct tcb *tp = &np->target[i];
3936 
3937 		tp->usrsync = driver_setup.default_sync;
3938 		tp->usrwide = driver_setup.max_wide;
3939 		tp->usrtags = MAX_TAGS;
3940 		tp->period = 0xffff;
3941 		if (!driver_setup.disconnection)
3942 			np->target[i].usrflag = UF_NODISC;
3943 	}
3944 
3945 	/*
3946 	**	Announce all that stuff to user.
3947 	*/
3948 
3949 	printk(KERN_INFO "%s: ID %d, Fast-%d%s%s\n", ncr_name(np),
3950 		np->myaddr,
3951 		np->minsync < 12 ? 40 : (np->minsync < 25 ? 20 : 10),
3952 		(np->rv_scntl0 & 0xa)	? ", Parity Checking"	: ", NO Parity",
3953 		(np->rv_stest2 & 0x20)	? ", Differential"	: "");
3954 
3955 	if (bootverbose > 1) {
3956 		printk (KERN_INFO "%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
3957 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
3958 			ncr_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
3959 			np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
3960 
3961 		printk (KERN_INFO "%s: final   SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
3962 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
3963 			ncr_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
3964 			np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
3965 	}
3966 
3967 	if (bootverbose && np->paddr2)
3968 		printk (KERN_INFO "%s: on-chip RAM at 0x%lx\n",
3969 			ncr_name(np), np->paddr2);
3970 }
3971 
3972 /*==========================================================
3973 **
3974 **
3975 **	Done SCSI commands list management.
3976 **
3977 **	We donnot enter the scsi_done() callback immediately
3978 **	after a command has been seen as completed but we
3979 **	insert it into a list which is flushed outside any kind
3980 **	of driver critical section.
3981 **	This allows to do minimal stuff under interrupt and
3982 **	inside critical sections and to also avoid locking up
3983 **	on recursive calls to driver entry points under SMP.
3984 **	In fact, the only kernel point which is entered by the
3985 **	driver with a driver lock set is kmalloc(GFP_ATOMIC)
3986 **	that shall not reenter the driver under any circumstances,
3987 **	AFAIK.
3988 **
3989 **==========================================================
3990 */
3991 static inline void ncr_queue_done_cmd(struct ncb *np, struct scsi_cmnd *cmd)
3992 {
3993 	unmap_scsi_data(np, cmd);
3994 	cmd->host_scribble = (char *) np->done_list;
3995 	np->done_list = cmd;
3996 }
3997 
3998 static inline void ncr_flush_done_cmds(struct scsi_cmnd *lcmd)
3999 {
4000 	struct scsi_cmnd *cmd;
4001 
4002 	while (lcmd) {
4003 		cmd = lcmd;
4004 		lcmd = (struct scsi_cmnd *) cmd->host_scribble;
4005 		scsi_done(cmd);
4006 	}
4007 }
4008 
4009 /*==========================================================
4010 **
4011 **
4012 **	Prepare the next negotiation message if needed.
4013 **
4014 **	Fill in the part of message buffer that contains the
4015 **	negotiation and the nego_status field of the CCB.
4016 **	Returns the size of the message in bytes.
4017 **
4018 **
4019 **==========================================================
4020 */
4021 
4022 
4023 static int ncr_prepare_nego(struct ncb *np, struct ccb *cp, u_char *msgptr)
4024 {
4025 	struct tcb *tp = &np->target[cp->target];
4026 	int msglen = 0;
4027 	int nego = 0;
4028 	struct scsi_target *starget = tp->starget;
4029 
4030 	/* negotiate wide transfers ?  */
4031 	if (!tp->widedone) {
4032 		if (spi_support_wide(starget)) {
4033 			nego = NS_WIDE;
4034 		} else
4035 			tp->widedone=1;
4036 	}
4037 
4038 	/* negotiate synchronous transfers?  */
4039 	if (!nego && !tp->period) {
4040 		if (spi_support_sync(starget)) {
4041 			nego = NS_SYNC;
4042 		} else {
4043 			tp->period  =0xffff;
4044 			dev_info(&starget->dev, "target did not report SYNC.\n");
4045 		}
4046 	}
4047 
4048 	switch (nego) {
4049 	case NS_SYNC:
4050 		msglen += spi_populate_sync_msg(msgptr + msglen,
4051 				tp->maxoffs ? tp->minsync : 0, tp->maxoffs);
4052 		break;
4053 	case NS_WIDE:
4054 		msglen += spi_populate_width_msg(msgptr + msglen, tp->usrwide);
4055 		break;
4056 	}
4057 
4058 	cp->nego_status = nego;
4059 
4060 	if (nego) {
4061 		tp->nego_cp = cp;
4062 		if (DEBUG_FLAGS & DEBUG_NEGO) {
4063 			ncr_print_msg(cp, nego == NS_WIDE ?
4064 					  "wide msgout":"sync_msgout", msgptr);
4065 		}
4066 	}
4067 
4068 	return msglen;
4069 }
4070 
4071 
4072 
4073 /*==========================================================
4074 **
4075 **
4076 **	Start execution of a SCSI command.
4077 **	This is called from the generic SCSI driver.
4078 **
4079 **
4080 **==========================================================
4081 */
4082 static int ncr_queue_command (struct ncb *np, struct scsi_cmnd *cmd)
4083 {
4084 	struct scsi_device *sdev = cmd->device;
4085 	struct tcb *tp = &np->target[sdev->id];
4086 	struct lcb *lp = tp->lp[sdev->lun];
4087 	struct ccb *cp;
4088 
4089 	int	segments;
4090 	u_char	idmsg, *msgptr;
4091 	u32	msglen;
4092 	int	direction;
4093 	u32	lastp, goalp;
4094 
4095 	/*---------------------------------------------
4096 	**
4097 	**      Some shortcuts ...
4098 	**
4099 	**---------------------------------------------
4100 	*/
4101 	if ((sdev->id == np->myaddr	  ) ||
4102 		(sdev->id >= MAX_TARGET) ||
4103 		(sdev->lun    >= MAX_LUN   )) {
4104 		return(DID_BAD_TARGET);
4105 	}
4106 
4107 	/*---------------------------------------------
4108 	**
4109 	**	Complete the 1st TEST UNIT READY command
4110 	**	with error condition if the device is
4111 	**	flagged NOSCAN, in order to speed up
4112 	**	the boot.
4113 	**
4114 	**---------------------------------------------
4115 	*/
4116 	if ((cmd->cmnd[0] == 0 || cmd->cmnd[0] == 0x12) &&
4117 	    (tp->usrflag & UF_NOSCAN)) {
4118 		tp->usrflag &= ~UF_NOSCAN;
4119 		return DID_BAD_TARGET;
4120 	}
4121 
4122 	if (DEBUG_FLAGS & DEBUG_TINY) {
4123 		PRINT_ADDR(cmd, "CMD=%x ", cmd->cmnd[0]);
4124 	}
4125 
4126 	/*---------------------------------------------------
4127 	**
4128 	**	Assign a ccb / bind cmd.
4129 	**	If resetting, shorten settle_time if necessary
4130 	**	in order to avoid spurious timeouts.
4131 	**	If resetting or no free ccb,
4132 	**	insert cmd into the waiting list.
4133 	**
4134 	**----------------------------------------------------
4135 	*/
4136 	if (np->settle_time && scsi_cmd_to_rq(cmd)->timeout >= HZ) {
4137 		u_long tlimit = jiffies + scsi_cmd_to_rq(cmd)->timeout - HZ;
4138 		if (time_after(np->settle_time, tlimit))
4139 			np->settle_time = tlimit;
4140 	}
4141 
4142 	if (np->settle_time || !(cp=ncr_get_ccb (np, cmd))) {
4143 		insert_into_waiting_list(np, cmd);
4144 		return(DID_OK);
4145 	}
4146 	cp->cmd = cmd;
4147 
4148 	/*----------------------------------------------------
4149 	**
4150 	**	Build the identify / tag / sdtr message
4151 	**
4152 	**----------------------------------------------------
4153 	*/
4154 
4155 	idmsg = IDENTIFY(0, sdev->lun);
4156 
4157 	if (cp ->tag != NO_TAG ||
4158 		(cp != np->ccb && np->disc && !(tp->usrflag & UF_NODISC)))
4159 		idmsg |= 0x40;
4160 
4161 	msgptr = cp->scsi_smsg;
4162 	msglen = 0;
4163 	msgptr[msglen++] = idmsg;
4164 
4165 	if (cp->tag != NO_TAG) {
4166 		char order = np->order;
4167 
4168 		/*
4169 		**	Force ordered tag if necessary to avoid timeouts
4170 		**	and to preserve interactivity.
4171 		*/
4172 		if (lp && time_after(jiffies, lp->tags_stime)) {
4173 			if (lp->tags_smap) {
4174 				order = ORDERED_QUEUE_TAG;
4175 				if ((DEBUG_FLAGS & DEBUG_TAGS)||bootverbose>2){
4176 					PRINT_ADDR(cmd,
4177 						"ordered tag forced.\n");
4178 				}
4179 			}
4180 			lp->tags_stime = jiffies + 3*HZ;
4181 			lp->tags_smap = lp->tags_umap;
4182 		}
4183 
4184 		if (order == 0) {
4185 			/*
4186 			**	Ordered write ops, unordered read ops.
4187 			*/
4188 			switch (cmd->cmnd[0]) {
4189 			case 0x08:  /* READ_SMALL (6) */
4190 			case 0x28:  /* READ_BIG  (10) */
4191 			case 0xa8:  /* READ_HUGE (12) */
4192 				order = SIMPLE_QUEUE_TAG;
4193 				break;
4194 			default:
4195 				order = ORDERED_QUEUE_TAG;
4196 			}
4197 		}
4198 		msgptr[msglen++] = order;
4199 		/*
4200 		**	Actual tags are numbered 1,3,5,..2*MAXTAGS+1,
4201 		**	since we may have to deal with devices that have
4202 		**	problems with #TAG 0 or too great #TAG numbers.
4203 		*/
4204 		msgptr[msglen++] = (cp->tag << 1) + 1;
4205 	}
4206 
4207 	/*----------------------------------------------------
4208 	**
4209 	**	Build the data descriptors
4210 	**
4211 	**----------------------------------------------------
4212 	*/
4213 
4214 	direction = cmd->sc_data_direction;
4215 	if (direction != DMA_NONE) {
4216 		segments = ncr_scatter(np, cp, cp->cmd);
4217 		if (segments < 0) {
4218 			ncr_free_ccb(np, cp);
4219 			return(DID_ERROR);
4220 		}
4221 	}
4222 	else {
4223 		cp->data_len = 0;
4224 		segments = 0;
4225 	}
4226 
4227 	/*---------------------------------------------------
4228 	**
4229 	**	negotiation required?
4230 	**
4231 	**	(nego_status is filled by ncr_prepare_nego())
4232 	**
4233 	**---------------------------------------------------
4234 	*/
4235 
4236 	cp->nego_status = 0;
4237 
4238 	if ((!tp->widedone || !tp->period) && !tp->nego_cp && lp) {
4239 		msglen += ncr_prepare_nego (np, cp, msgptr + msglen);
4240 	}
4241 
4242 	/*----------------------------------------------------
4243 	**
4244 	**	Determine xfer direction.
4245 	**
4246 	**----------------------------------------------------
4247 	*/
4248 	if (!cp->data_len)
4249 		direction = DMA_NONE;
4250 
4251 	/*
4252 	**	If data direction is BIDIRECTIONAL, speculate FROM_DEVICE
4253 	**	but prepare alternate pointers for TO_DEVICE in case
4254 	**	of our speculation will be just wrong.
4255 	**	SCRIPTS will swap values if needed.
4256 	*/
4257 	switch(direction) {
4258 	case DMA_BIDIRECTIONAL:
4259 	case DMA_TO_DEVICE:
4260 		goalp = NCB_SCRIPT_PHYS (np, data_out2) + 8;
4261 		if (segments <= MAX_SCATTERL)
4262 			lastp = goalp - 8 - (segments * 16);
4263 		else {
4264 			lastp = NCB_SCRIPTH_PHYS (np, hdata_out2);
4265 			lastp -= (segments - MAX_SCATTERL) * 16;
4266 		}
4267 		if (direction != DMA_BIDIRECTIONAL)
4268 			break;
4269 		cp->phys.header.wgoalp	= cpu_to_scr(goalp);
4270 		cp->phys.header.wlastp	= cpu_to_scr(lastp);
4271 		fallthrough;
4272 	case DMA_FROM_DEVICE:
4273 		goalp = NCB_SCRIPT_PHYS (np, data_in2) + 8;
4274 		if (segments <= MAX_SCATTERL)
4275 			lastp = goalp - 8 - (segments * 16);
4276 		else {
4277 			lastp = NCB_SCRIPTH_PHYS (np, hdata_in2);
4278 			lastp -= (segments - MAX_SCATTERL) * 16;
4279 		}
4280 		break;
4281 	default:
4282 	case DMA_NONE:
4283 		lastp = goalp = NCB_SCRIPT_PHYS (np, no_data);
4284 		break;
4285 	}
4286 
4287 	/*
4288 	**	Set all pointers values needed by SCRIPTS.
4289 	**	If direction is unknown, start at data_io.
4290 	*/
4291 	cp->phys.header.lastp = cpu_to_scr(lastp);
4292 	cp->phys.header.goalp = cpu_to_scr(goalp);
4293 
4294 	if (direction == DMA_BIDIRECTIONAL)
4295 		cp->phys.header.savep =
4296 			cpu_to_scr(NCB_SCRIPTH_PHYS (np, data_io));
4297 	else
4298 		cp->phys.header.savep= cpu_to_scr(lastp);
4299 
4300 	/*
4301 	**	Save the initial data pointer in order to be able
4302 	**	to redo the command.
4303 	*/
4304 	cp->startp = cp->phys.header.savep;
4305 
4306 	/*----------------------------------------------------
4307 	**
4308 	**	fill in ccb
4309 	**
4310 	**----------------------------------------------------
4311 	**
4312 	**
4313 	**	physical -> virtual backlink
4314 	**	Generic SCSI command
4315 	*/
4316 
4317 	/*
4318 	**	Startqueue
4319 	*/
4320 	cp->start.schedule.l_paddr   = cpu_to_scr(NCB_SCRIPT_PHYS (np, select));
4321 	cp->restart.schedule.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_dsa));
4322 	/*
4323 	**	select
4324 	*/
4325 	cp->phys.select.sel_id		= sdev_id(sdev);
4326 	cp->phys.select.sel_scntl3	= tp->wval;
4327 	cp->phys.select.sel_sxfer	= tp->sval;
4328 	/*
4329 	**	message
4330 	*/
4331 	cp->phys.smsg.addr		= cpu_to_scr(CCB_PHYS (cp, scsi_smsg));
4332 	cp->phys.smsg.size		= cpu_to_scr(msglen);
4333 
4334 	/*
4335 	**	command
4336 	*/
4337 	memcpy(cp->cdb_buf, cmd->cmnd, min_t(int, cmd->cmd_len, sizeof(cp->cdb_buf)));
4338 	cp->phys.cmd.addr		= cpu_to_scr(CCB_PHYS (cp, cdb_buf[0]));
4339 	cp->phys.cmd.size		= cpu_to_scr(cmd->cmd_len);
4340 
4341 	/*
4342 	**	status
4343 	*/
4344 	cp->actualquirks		= 0;
4345 	cp->host_status			= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
4346 	cp->scsi_status			= SAM_STAT_ILLEGAL;
4347 	cp->parity_status		= 0;
4348 
4349 	cp->xerr_status			= XE_OK;
4350 
4351 	/*----------------------------------------------------
4352 	**
4353 	**	Critical region: start this job.
4354 	**
4355 	**----------------------------------------------------
4356 	*/
4357 
4358 	/* activate this job.  */
4359 	cp->magic		= CCB_MAGIC;
4360 
4361 	/*
4362 	**	insert next CCBs into start queue.
4363 	**	2 max at a time is enough to flush the CCB wait queue.
4364 	*/
4365 	cp->auto_sense = 0;
4366 	if (lp)
4367 		ncr_start_next_ccb(np, lp, 2);
4368 	else
4369 		ncr_put_start_queue(np, cp);
4370 
4371 	/* Command is successfully queued.  */
4372 
4373 	return DID_OK;
4374 }
4375 
4376 
4377 /*==========================================================
4378 **
4379 **
4380 **	Insert a CCB into the start queue and wake up the
4381 **	SCRIPTS processor.
4382 **
4383 **
4384 **==========================================================
4385 */
4386 
4387 static void ncr_start_next_ccb(struct ncb *np, struct lcb *lp, int maxn)
4388 {
4389 	struct list_head *qp;
4390 	struct ccb *cp;
4391 
4392 	if (lp->held_ccb)
4393 		return;
4394 
4395 	while (maxn-- && lp->queuedccbs < lp->queuedepth) {
4396 		qp = ncr_list_pop(&lp->wait_ccbq);
4397 		if (!qp)
4398 			break;
4399 		++lp->queuedccbs;
4400 		cp = list_entry(qp, struct ccb, link_ccbq);
4401 		list_add_tail(qp, &lp->busy_ccbq);
4402 		lp->jump_ccb[cp->tag == NO_TAG ? 0 : cp->tag] =
4403 			cpu_to_scr(CCB_PHYS (cp, restart));
4404 		ncr_put_start_queue(np, cp);
4405 	}
4406 }
4407 
4408 static void ncr_put_start_queue(struct ncb *np, struct ccb *cp)
4409 {
4410 	u16	qidx;
4411 
4412 	/*
4413 	**	insert into start queue.
4414 	*/
4415 	if (!np->squeueput) np->squeueput = 1;
4416 	qidx = np->squeueput + 2;
4417 	if (qidx >= MAX_START + MAX_START) qidx = 1;
4418 
4419 	np->scripth->tryloop [qidx] = cpu_to_scr(NCB_SCRIPT_PHYS (np, idle));
4420 	MEMORY_BARRIER();
4421 	np->scripth->tryloop [np->squeueput] = cpu_to_scr(CCB_PHYS (cp, start));
4422 
4423 	np->squeueput = qidx;
4424 	++np->queuedccbs;
4425 	cp->queued = 1;
4426 
4427 	if (DEBUG_FLAGS & DEBUG_QUEUE)
4428 		printk ("%s: queuepos=%d.\n", ncr_name (np), np->squeueput);
4429 
4430 	/*
4431 	**	Script processor may be waiting for reselect.
4432 	**	Wake it up.
4433 	*/
4434 	MEMORY_BARRIER();
4435 	OUTB (nc_istat, SIGP);
4436 }
4437 
4438 
4439 static int ncr_reset_scsi_bus(struct ncb *np, int enab_int, int settle_delay)
4440 {
4441 	u32 term;
4442 	int retv = 0;
4443 
4444 	np->settle_time	= jiffies + settle_delay * HZ;
4445 
4446 	if (bootverbose > 1)
4447 		printk("%s: resetting, "
4448 			"command processing suspended for %d seconds\n",
4449 			ncr_name(np), settle_delay);
4450 
4451 	ncr_chip_reset(np, 100);
4452 	udelay(2000);	/* The 895 needs time for the bus mode to settle */
4453 	if (enab_int)
4454 		OUTW (nc_sien, RST);
4455 	/*
4456 	**	Enable Tolerant, reset IRQD if present and
4457 	**	properly set IRQ mode, prior to resetting the bus.
4458 	*/
4459 	OUTB (nc_stest3, TE);
4460 	OUTB (nc_scntl1, CRST);
4461 	udelay(200);
4462 
4463 	if (!driver_setup.bus_check)
4464 		goto out;
4465 	/*
4466 	**	Check for no terminators or SCSI bus shorts to ground.
4467 	**	Read SCSI data bus, data parity bits and control signals.
4468 	**	We are expecting RESET to be TRUE and other signals to be
4469 	**	FALSE.
4470 	*/
4471 
4472 	term =	INB(nc_sstat0);
4473 	term =	((term & 2) << 7) + ((term & 1) << 17);	/* rst sdp0 */
4474 	term |= ((INB(nc_sstat2) & 0x01) << 26) |	/* sdp1     */
4475 		((INW(nc_sbdl) & 0xff)   << 9)  |	/* d7-0     */
4476 		((INW(nc_sbdl) & 0xff00) << 10) |	/* d15-8    */
4477 		INB(nc_sbcl);	/* req ack bsy sel atn msg cd io    */
4478 
4479 	if (!(np->features & FE_WIDE))
4480 		term &= 0x3ffff;
4481 
4482 	if (term != (2<<7)) {
4483 		printk("%s: suspicious SCSI data while resetting the BUS.\n",
4484 			ncr_name(np));
4485 		printk("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
4486 			"0x%lx, expecting 0x%lx\n",
4487 			ncr_name(np),
4488 			(np->features & FE_WIDE) ? "dp1,d15-8," : "",
4489 			(u_long)term, (u_long)(2<<7));
4490 		if (driver_setup.bus_check == 1)
4491 			retv = 1;
4492 	}
4493 out:
4494 	OUTB (nc_scntl1, 0);
4495 	return retv;
4496 }
4497 
4498 /*
4499  * Start reset process.
4500  * If reset in progress do nothing.
4501  * The interrupt handler will reinitialize the chip.
4502  * The timeout handler will wait for settle_time before
4503  * clearing it and so resuming command processing.
4504  */
4505 static void ncr_start_reset(struct ncb *np)
4506 {
4507 	if (!np->settle_time) {
4508 		ncr_reset_scsi_bus(np, 1, driver_setup.settle_delay);
4509  	}
4510 }
4511 
4512 /*==========================================================
4513 **
4514 **
4515 **	Reset the SCSI BUS.
4516 **	This is called from the generic SCSI driver.
4517 **
4518 **
4519 **==========================================================
4520 */
4521 static int ncr_reset_bus (struct ncb *np)
4522 {
4523 /*
4524  * Return immediately if reset is in progress.
4525  */
4526 	if (np->settle_time) {
4527 		return FAILED;
4528 	}
4529 /*
4530  * Start the reset process.
4531  * The script processor is then assumed to be stopped.
4532  * Commands will now be queued in the waiting list until a settle
4533  * delay of 2 seconds will be completed.
4534  */
4535 	ncr_start_reset(np);
4536 /*
4537  * Wake-up all awaiting commands with DID_RESET.
4538  */
4539 	reset_waiting_list(np);
4540 /*
4541  * Wake-up all pending commands with HS_RESET -> DID_RESET.
4542  */
4543 	ncr_wakeup(np, HS_RESET);
4544 
4545 	return SUCCESS;
4546 }
4547 
4548 static void ncr_detach(struct ncb *np)
4549 {
4550 	struct ccb *cp;
4551 	struct tcb *tp;
4552 	struct lcb *lp;
4553 	int target, lun;
4554 	int i;
4555 	char inst_name[16];
4556 
4557 	/* Local copy so we don't access np after freeing it! */
4558 	strscpy(inst_name, ncr_name(np), sizeof(inst_name));
4559 
4560 	printk("%s: releasing host resources\n", ncr_name(np));
4561 
4562 /*
4563 **	Stop the ncr_timeout process
4564 **	Set release_stage to 1 and wait that ncr_timeout() set it to 2.
4565 */
4566 
4567 #ifdef DEBUG_NCR53C8XX
4568 	printk("%s: stopping the timer\n", ncr_name(np));
4569 #endif
4570 	np->release_stage = 1;
4571 	for (i = 50 ; i && np->release_stage != 2 ; i--)
4572 		mdelay(100);
4573 	if (np->release_stage != 2)
4574 		printk("%s: the timer seems to be already stopped\n", ncr_name(np));
4575 	else np->release_stage = 2;
4576 
4577 /*
4578 **	Disable chip interrupts
4579 */
4580 
4581 #ifdef DEBUG_NCR53C8XX
4582 	printk("%s: disabling chip interrupts\n", ncr_name(np));
4583 #endif
4584 	OUTW (nc_sien , 0);
4585 	OUTB (nc_dien , 0);
4586 
4587 	/*
4588 	**	Reset NCR chip
4589 	**	Restore bios setting for automatic clock detection.
4590 	*/
4591 
4592 	printk("%s: resetting chip\n", ncr_name(np));
4593 	ncr_chip_reset(np, 100);
4594 
4595 	OUTB(nc_dmode,	np->sv_dmode);
4596 	OUTB(nc_dcntl,	np->sv_dcntl);
4597 	OUTB(nc_ctest0,	np->sv_ctest0);
4598 	OUTB(nc_ctest3,	np->sv_ctest3);
4599 	OUTB(nc_ctest4,	np->sv_ctest4);
4600 	OUTB(nc_ctest5,	np->sv_ctest5);
4601 	OUTB(nc_gpcntl,	np->sv_gpcntl);
4602 	OUTB(nc_stest2,	np->sv_stest2);
4603 
4604 	ncr_selectclock(np, np->sv_scntl3);
4605 
4606 	/*
4607 	**	Free allocated ccb(s)
4608 	*/
4609 
4610 	while ((cp=np->ccb->link_ccb) != NULL) {
4611 		np->ccb->link_ccb = cp->link_ccb;
4612 		if (cp->host_status) {
4613 		printk("%s: shall free an active ccb (host_status=%d)\n",
4614 			ncr_name(np), cp->host_status);
4615 		}
4616 #ifdef DEBUG_NCR53C8XX
4617 	printk("%s: freeing ccb (%lx)\n", ncr_name(np), (u_long) cp);
4618 #endif
4619 		m_free_dma(cp, sizeof(*cp), "CCB");
4620 	}
4621 
4622 	/* Free allocated tp(s) */
4623 
4624 	for (target = 0; target < MAX_TARGET ; target++) {
4625 		tp=&np->target[target];
4626 		for (lun = 0 ; lun < MAX_LUN ; lun++) {
4627 			lp = tp->lp[lun];
4628 			if (lp) {
4629 #ifdef DEBUG_NCR53C8XX
4630 	printk("%s: freeing lp (%lx)\n", ncr_name(np), (u_long) lp);
4631 #endif
4632 				if (lp->jump_ccb != &lp->jump_ccb_0)
4633 					m_free_dma(lp->jump_ccb,256,"JUMP_CCB");
4634 				m_free_dma(lp, sizeof(*lp), "LCB");
4635 			}
4636 		}
4637 	}
4638 
4639 	if (np->scripth0)
4640 		m_free_dma(np->scripth0, sizeof(struct scripth), "SCRIPTH");
4641 	if (np->script0)
4642 		m_free_dma(np->script0, sizeof(struct script), "SCRIPT");
4643 	if (np->ccb)
4644 		m_free_dma(np->ccb, sizeof(struct ccb), "CCB");
4645 	m_free_dma(np, sizeof(struct ncb), "NCB");
4646 
4647 	printk("%s: host resources successfully released\n", inst_name);
4648 }
4649 
4650 /*==========================================================
4651 **
4652 **
4653 **	Complete execution of a SCSI command.
4654 **	Signal completion to the generic SCSI driver.
4655 **
4656 **
4657 **==========================================================
4658 */
4659 
4660 void ncr_complete (struct ncb *np, struct ccb *cp)
4661 {
4662 	struct scsi_cmnd *cmd;
4663 	struct tcb *tp;
4664 	struct lcb *lp;
4665 
4666 	/*
4667 	**	Sanity check
4668 	*/
4669 
4670 	if (!cp || cp->magic != CCB_MAGIC || !cp->cmd)
4671 		return;
4672 
4673 	/*
4674 	**	Print minimal debug information.
4675 	*/
4676 
4677 	if (DEBUG_FLAGS & DEBUG_TINY)
4678 		printk ("CCB=%lx STAT=%x/%x\n", (unsigned long)cp,
4679 			cp->host_status,cp->scsi_status);
4680 
4681 	/*
4682 	**	Get command, target and lun pointers.
4683 	*/
4684 
4685 	cmd = cp->cmd;
4686 	cp->cmd = NULL;
4687 	tp = &np->target[cmd->device->id];
4688 	lp = tp->lp[cmd->device->lun];
4689 
4690 	/*
4691 	**	We donnot queue more than 1 ccb per target
4692 	**	with negotiation at any time. If this ccb was
4693 	**	used for negotiation, clear this info in the tcb.
4694 	*/
4695 
4696 	if (cp == tp->nego_cp)
4697 		tp->nego_cp = NULL;
4698 
4699 	/*
4700 	**	If auto-sense performed, change scsi status.
4701 	*/
4702 	if (cp->auto_sense) {
4703 		cp->scsi_status = cp->auto_sense;
4704 	}
4705 
4706 	/*
4707 	**	If we were recovering from queue full or performing
4708 	**	auto-sense, requeue skipped CCBs to the wait queue.
4709 	*/
4710 
4711 	if (lp && lp->held_ccb) {
4712 		if (cp == lp->held_ccb) {
4713 			list_splice_init(&lp->skip_ccbq, &lp->wait_ccbq);
4714 			lp->held_ccb = NULL;
4715 		}
4716 	}
4717 
4718 	/*
4719 	**	Check for parity errors.
4720 	*/
4721 
4722 	if (cp->parity_status > 1) {
4723 		PRINT_ADDR(cmd, "%d parity error(s).\n",cp->parity_status);
4724 	}
4725 
4726 	/*
4727 	**	Check for extended errors.
4728 	*/
4729 
4730 	if (cp->xerr_status != XE_OK) {
4731 		switch (cp->xerr_status) {
4732 		case XE_EXTRA_DATA:
4733 			PRINT_ADDR(cmd, "extraneous data discarded.\n");
4734 			break;
4735 		case XE_BAD_PHASE:
4736 			PRINT_ADDR(cmd, "invalid scsi phase (4/5).\n");
4737 			break;
4738 		default:
4739 			PRINT_ADDR(cmd, "extended error %d.\n",
4740 					cp->xerr_status);
4741 			break;
4742 		}
4743 		if (cp->host_status==HS_COMPLETE)
4744 			cp->host_status = HS_FAIL;
4745 	}
4746 
4747 	/*
4748 	**	Print out any error for debugging purpose.
4749 	*/
4750 	if (DEBUG_FLAGS & (DEBUG_RESULT|DEBUG_TINY)) {
4751 		if (cp->host_status != HS_COMPLETE ||
4752 		    cp->scsi_status != SAM_STAT_GOOD) {
4753 			PRINT_ADDR(cmd, "ERROR: cmd=%x host_status=%x "
4754 					"scsi_status=%x\n", cmd->cmnd[0],
4755 					cp->host_status, cp->scsi_status);
4756 		}
4757 	}
4758 
4759 	/*
4760 	**	Check the status.
4761 	*/
4762 	cmd->result = 0;
4763 	if (   (cp->host_status == HS_COMPLETE)
4764 		&& (cp->scsi_status == SAM_STAT_GOOD ||
4765 		    cp->scsi_status == SAM_STAT_CONDITION_MET)) {
4766 		/*
4767 		 *	All went well (GOOD status).
4768 		 *	CONDITION MET status is returned on
4769 		 *	`Pre-Fetch' or `Search data' success.
4770 		 */
4771 		set_status_byte(cmd, cp->scsi_status);
4772 
4773 		/*
4774 		**	@RESID@
4775 		**	Could dig out the correct value for resid,
4776 		**	but it would be quite complicated.
4777 		*/
4778 		/* if (cp->phys.header.lastp != cp->phys.header.goalp) */
4779 
4780 		/*
4781 		**	Allocate the lcb if not yet.
4782 		*/
4783 		if (!lp)
4784 			ncr_alloc_lcb (np, cmd->device->id, cmd->device->lun);
4785 
4786 		tp->bytes     += cp->data_len;
4787 		tp->transfers ++;
4788 
4789 		/*
4790 		**	If tags was reduced due to queue full,
4791 		**	increase tags if 1000 good status received.
4792 		*/
4793 		if (lp && lp->usetags && lp->numtags < lp->maxtags) {
4794 			++lp->num_good;
4795 			if (lp->num_good >= 1000) {
4796 				lp->num_good = 0;
4797 				++lp->numtags;
4798 				ncr_setup_tags (np, cmd->device);
4799 			}
4800 		}
4801 	} else if ((cp->host_status == HS_COMPLETE)
4802 		&& (cp->scsi_status == SAM_STAT_CHECK_CONDITION)) {
4803 		/*
4804 		**   Check condition code
4805 		*/
4806 		set_status_byte(cmd, SAM_STAT_CHECK_CONDITION);
4807 
4808 		/*
4809 		**	Copy back sense data to caller's buffer.
4810 		*/
4811 		memcpy(cmd->sense_buffer, cp->sense_buf,
4812 		       min_t(size_t, SCSI_SENSE_BUFFERSIZE,
4813 			     sizeof(cp->sense_buf)));
4814 
4815 		if (DEBUG_FLAGS & (DEBUG_RESULT|DEBUG_TINY)) {
4816 			u_char *p = cmd->sense_buffer;
4817 			int i;
4818 			PRINT_ADDR(cmd, "sense data:");
4819 			for (i=0; i<14; i++) printk (" %x", *p++);
4820 			printk (".\n");
4821 		}
4822 	} else if ((cp->host_status == HS_COMPLETE)
4823 		&& (cp->scsi_status == SAM_STAT_RESERVATION_CONFLICT)) {
4824 		/*
4825 		**   Reservation Conflict condition code
4826 		*/
4827 		set_status_byte(cmd, SAM_STAT_RESERVATION_CONFLICT);
4828 
4829 	} else if ((cp->host_status == HS_COMPLETE)
4830 		&& (cp->scsi_status == SAM_STAT_BUSY ||
4831 		    cp->scsi_status == SAM_STAT_TASK_SET_FULL)) {
4832 
4833 		/*
4834 		**   Target is busy.
4835 		*/
4836 		set_status_byte(cmd, cp->scsi_status);
4837 
4838 	} else if ((cp->host_status == HS_SEL_TIMEOUT)
4839 		|| (cp->host_status == HS_TIMEOUT)) {
4840 
4841 		/*
4842 		**   No response
4843 		*/
4844 		set_status_byte(cmd, cp->scsi_status);
4845 		set_host_byte(cmd, DID_TIME_OUT);
4846 
4847 	} else if (cp->host_status == HS_RESET) {
4848 
4849 		/*
4850 		**   SCSI bus reset
4851 		*/
4852 		set_status_byte(cmd, cp->scsi_status);
4853 		set_host_byte(cmd, DID_RESET);
4854 
4855 	} else if (cp->host_status == HS_ABORTED) {
4856 
4857 		/*
4858 		**   Transfer aborted
4859 		*/
4860 		set_status_byte(cmd, cp->scsi_status);
4861 		set_host_byte(cmd, DID_ABORT);
4862 
4863 	} else {
4864 
4865 		/*
4866 		**  Other protocol messes
4867 		*/
4868 		PRINT_ADDR(cmd, "COMMAND FAILED (%x %x) @%p.\n",
4869 			cp->host_status, cp->scsi_status, cp);
4870 
4871 		set_status_byte(cmd, cp->scsi_status);
4872 		set_host_byte(cmd, DID_ERROR);
4873 	}
4874 
4875 	/*
4876 	**	trace output
4877 	*/
4878 
4879 	if (tp->usrflag & UF_TRACE) {
4880 		u_char * p;
4881 		int i;
4882 		PRINT_ADDR(cmd, " CMD:");
4883 		p = (u_char*) &cmd->cmnd[0];
4884 		for (i=0; i<cmd->cmd_len; i++) printk (" %x", *p++);
4885 
4886 		if (cp->host_status==HS_COMPLETE) {
4887 			switch (cp->scsi_status) {
4888 			case SAM_STAT_GOOD:
4889 				printk ("  GOOD");
4890 				break;
4891 			case SAM_STAT_CHECK_CONDITION:
4892 				printk ("  SENSE:");
4893 				p = (u_char*) &cmd->sense_buffer;
4894 				for (i=0; i<14; i++)
4895 					printk (" %x", *p++);
4896 				break;
4897 			default:
4898 				printk ("  STAT: %x\n", cp->scsi_status);
4899 				break;
4900 			}
4901 		} else printk ("  HOSTERROR: %x", cp->host_status);
4902 		printk ("\n");
4903 	}
4904 
4905 	/*
4906 	**	Free this ccb
4907 	*/
4908 	ncr_free_ccb (np, cp);
4909 
4910 	/*
4911 	**	requeue awaiting scsi commands for this lun.
4912 	*/
4913 	if (lp && lp->queuedccbs < lp->queuedepth &&
4914 	    !list_empty(&lp->wait_ccbq))
4915 		ncr_start_next_ccb(np, lp, 2);
4916 
4917 	/*
4918 	**	requeue awaiting scsi commands for this controller.
4919 	*/
4920 	if (np->waiting_list)
4921 		requeue_waiting_list(np);
4922 
4923 	/*
4924 	**	signal completion to generic driver.
4925 	*/
4926 	ncr_queue_done_cmd(np, cmd);
4927 }
4928 
4929 /*==========================================================
4930 **
4931 **
4932 **	Signal all (or one) control block done.
4933 **
4934 **
4935 **==========================================================
4936 */
4937 
4938 /*
4939 **	This CCB has been skipped by the NCR.
4940 **	Queue it in the corresponding unit queue.
4941 */
4942 static void ncr_ccb_skipped(struct ncb *np, struct ccb *cp)
4943 {
4944 	struct tcb *tp = &np->target[cp->target];
4945 	struct lcb *lp = tp->lp[cp->lun];
4946 
4947 	if (lp && cp != np->ccb) {
4948 		cp->host_status &= ~HS_SKIPMASK;
4949 		cp->start.schedule.l_paddr =
4950 			cpu_to_scr(NCB_SCRIPT_PHYS (np, select));
4951 		list_move_tail(&cp->link_ccbq, &lp->skip_ccbq);
4952 		if (cp->queued) {
4953 			--lp->queuedccbs;
4954 		}
4955 	}
4956 	if (cp->queued) {
4957 		--np->queuedccbs;
4958 		cp->queued = 0;
4959 	}
4960 }
4961 
4962 /*
4963 **	The NCR has completed CCBs.
4964 **	Look at the DONE QUEUE if enabled, otherwise scan all CCBs
4965 */
4966 void ncr_wakeup_done (struct ncb *np)
4967 {
4968 	struct ccb *cp;
4969 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
4970 	int i, j;
4971 
4972 	i = np->ccb_done_ic;
4973 	while (1) {
4974 		j = i+1;
4975 		if (j >= MAX_DONE)
4976 			j = 0;
4977 
4978 		cp = np->ccb_done[j];
4979 		if (!CCB_DONE_VALID(cp))
4980 			break;
4981 
4982 		np->ccb_done[j] = (struct ccb *)CCB_DONE_EMPTY;
4983 		np->scripth->done_queue[5*j + 4] =
4984 				cpu_to_scr(NCB_SCRIPT_PHYS (np, done_plug));
4985 		MEMORY_BARRIER();
4986 		np->scripth->done_queue[5*i + 4] =
4987 				cpu_to_scr(NCB_SCRIPT_PHYS (np, done_end));
4988 
4989 		if (cp->host_status & HS_DONEMASK)
4990 			ncr_complete (np, cp);
4991 		else if (cp->host_status & HS_SKIPMASK)
4992 			ncr_ccb_skipped (np, cp);
4993 
4994 		i = j;
4995 	}
4996 	np->ccb_done_ic = i;
4997 #else
4998 	cp = np->ccb;
4999 	while (cp) {
5000 		if (cp->host_status & HS_DONEMASK)
5001 			ncr_complete (np, cp);
5002 		else if (cp->host_status & HS_SKIPMASK)
5003 			ncr_ccb_skipped (np, cp);
5004 		cp = cp->link_ccb;
5005 	}
5006 #endif
5007 }
5008 
5009 /*
5010 **	Complete all active CCBs.
5011 */
5012 void ncr_wakeup (struct ncb *np, u_long code)
5013 {
5014 	struct ccb *cp = np->ccb;
5015 
5016 	while (cp) {
5017 		if (cp->host_status != HS_IDLE) {
5018 			cp->host_status = code;
5019 			ncr_complete (np, cp);
5020 		}
5021 		cp = cp->link_ccb;
5022 	}
5023 }
5024 
5025 /*
5026 ** Reset ncr chip.
5027 */
5028 
5029 /* Some initialisation must be done immediately following reset, for 53c720,
5030  * at least.  EA (dcntl bit 5) isn't set here as it is set once only in
5031  * the _detect function.
5032  */
5033 static void ncr_chip_reset(struct ncb *np, int delay)
5034 {
5035 	OUTB (nc_istat,  SRST);
5036 	udelay(delay);
5037 	OUTB (nc_istat,  0   );
5038 
5039 	if (np->features & FE_EHP)
5040 		OUTB (nc_ctest0, EHP);
5041 	if (np->features & FE_MUX)
5042 		OUTB (nc_ctest4, MUX);
5043 }
5044 
5045 
5046 /*==========================================================
5047 **
5048 **
5049 **	Start NCR chip.
5050 **
5051 **
5052 **==========================================================
5053 */
5054 
5055 void ncr_init (struct ncb *np, int reset, char * msg, u_long code)
5056 {
5057  	int	i;
5058 
5059  	/*
5060 	**	Reset chip if asked, otherwise just clear fifos.
5061  	*/
5062 
5063 	if (reset) {
5064 		OUTB (nc_istat,  SRST);
5065 		udelay(100);
5066 	}
5067 	else {
5068 		OUTB (nc_stest3, TE|CSF);
5069 		OUTONB (nc_ctest3, CLF);
5070 	}
5071 
5072 	/*
5073 	**	Message.
5074 	*/
5075 
5076 	if (msg) printk (KERN_INFO "%s: restart (%s).\n", ncr_name (np), msg);
5077 
5078 	/*
5079 	**	Clear Start Queue
5080 	*/
5081 	np->queuedepth = MAX_START - 1;	/* 1 entry needed as end marker */
5082 	for (i = 1; i < MAX_START + MAX_START; i += 2)
5083 		np->scripth0->tryloop[i] =
5084 				cpu_to_scr(NCB_SCRIPT_PHYS (np, idle));
5085 
5086 	/*
5087 	**	Start at first entry.
5088 	*/
5089 	np->squeueput = 0;
5090 	np->script0->startpos[0] = cpu_to_scr(NCB_SCRIPTH_PHYS (np, tryloop));
5091 
5092 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
5093 	/*
5094 	**	Clear Done Queue
5095 	*/
5096 	for (i = 0; i < MAX_DONE; i++) {
5097 		np->ccb_done[i] = (struct ccb *)CCB_DONE_EMPTY;
5098 		np->scripth0->done_queue[5*i + 4] =
5099 			cpu_to_scr(NCB_SCRIPT_PHYS (np, done_end));
5100 	}
5101 #endif
5102 
5103 	/*
5104 	**	Start at first entry.
5105 	*/
5106 	np->script0->done_pos[0] = cpu_to_scr(NCB_SCRIPTH_PHYS (np,done_queue));
5107 	np->ccb_done_ic = MAX_DONE-1;
5108 	np->scripth0->done_queue[5*(MAX_DONE-1) + 4] =
5109 			cpu_to_scr(NCB_SCRIPT_PHYS (np, done_plug));
5110 
5111 	/*
5112 	**	Wakeup all pending jobs.
5113 	*/
5114 	ncr_wakeup (np, code);
5115 
5116 	/*
5117 	**	Init chip.
5118 	*/
5119 
5120 	/*
5121 	** Remove reset; big delay because the 895 needs time for the
5122 	** bus mode to settle
5123 	*/
5124 	ncr_chip_reset(np, 2000);
5125 
5126 	OUTB (nc_scntl0, np->rv_scntl0 | 0xc0);
5127 					/*  full arb., ena parity, par->ATN  */
5128 	OUTB (nc_scntl1, 0x00);		/*  odd parity, and remove CRST!! */
5129 
5130 	ncr_selectclock(np, np->rv_scntl3);	/* Select SCSI clock */
5131 
5132 	OUTB (nc_scid  , RRE|np->myaddr);	/* Adapter SCSI address */
5133 	OUTW (nc_respid, 1ul<<np->myaddr);	/* Id to respond to */
5134 	OUTB (nc_istat , SIGP	);		/*  Signal Process */
5135 	OUTB (nc_dmode , np->rv_dmode);		/* Burst length, dma mode */
5136 	OUTB (nc_ctest5, np->rv_ctest5);	/* Large fifo + large burst */
5137 
5138 	OUTB (nc_dcntl , NOCOM|np->rv_dcntl);	/* Protect SFBR */
5139 	OUTB (nc_ctest0, np->rv_ctest0);	/* 720: CDIS and EHP */
5140 	OUTB (nc_ctest3, np->rv_ctest3);	/* Write and invalidate */
5141 	OUTB (nc_ctest4, np->rv_ctest4);	/* Master parity checking */
5142 
5143 	OUTB (nc_stest2, EXT|np->rv_stest2);	/* Extended Sreq/Sack filtering */
5144 	OUTB (nc_stest3, TE);			/* TolerANT enable */
5145 	OUTB (nc_stime0, 0x0c	);		/* HTH disabled  STO 0.25 sec */
5146 
5147 	/*
5148 	**	Disable disconnects.
5149 	*/
5150 
5151 	np->disc = 0;
5152 
5153 	/*
5154 	**    Enable GPIO0 pin for writing if LED support.
5155 	*/
5156 
5157 	if (np->features & FE_LED0) {
5158 		OUTOFFB (nc_gpcntl, 0x01);
5159 	}
5160 
5161 	/*
5162 	**      enable ints
5163 	*/
5164 
5165 	OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
5166 	OUTB (nc_dien , MDPE|BF|ABRT|SSI|SIR|IID);
5167 
5168 	/*
5169 	**	Fill in target structure.
5170 	**	Reinitialize usrsync.
5171 	**	Reinitialize usrwide.
5172 	**	Prepare sync negotiation according to actual SCSI bus mode.
5173 	*/
5174 
5175 	for (i=0;i<MAX_TARGET;i++) {
5176 		struct tcb *tp = &np->target[i];
5177 
5178 		tp->sval    = 0;
5179 		tp->wval    = np->rv_scntl3;
5180 
5181 		if (tp->usrsync != 255) {
5182 			if (tp->usrsync <= np->maxsync) {
5183 				if (tp->usrsync < np->minsync) {
5184 					tp->usrsync = np->minsync;
5185 				}
5186 			}
5187 			else
5188 				tp->usrsync = 255;
5189 		}
5190 
5191 		if (tp->usrwide > np->maxwide)
5192 			tp->usrwide = np->maxwide;
5193 
5194 	}
5195 
5196 	/*
5197 	**    Start script processor.
5198 	*/
5199 	if (np->paddr2) {
5200 		if (bootverbose)
5201 			printk ("%s: Downloading SCSI SCRIPTS.\n",
5202 				ncr_name(np));
5203 		OUTL (nc_scratcha, vtobus(np->script0));
5204 		OUTL_DSP (NCB_SCRIPTH_PHYS (np, start_ram));
5205 	}
5206 	else
5207 		OUTL_DSP (NCB_SCRIPT_PHYS (np, start));
5208 }
5209 
5210 /*==========================================================
5211 **
5212 **	Prepare the negotiation values for wide and
5213 **	synchronous transfers.
5214 **
5215 **==========================================================
5216 */
5217 
5218 static void ncr_negotiate (struct ncb* np, struct tcb* tp)
5219 {
5220 	/*
5221 	**	minsync unit is 4ns !
5222 	*/
5223 
5224 	u_long minsync = tp->usrsync;
5225 
5226 	/*
5227 	**	SCSI bus mode limit
5228 	*/
5229 
5230 	if (np->scsi_mode && np->scsi_mode == SMODE_SE) {
5231 		if (minsync < 12) minsync = 12;
5232 	}
5233 
5234 	/*
5235 	**	our limit ..
5236 	*/
5237 
5238 	if (minsync < np->minsync)
5239 		minsync = np->minsync;
5240 
5241 	/*
5242 	**	divider limit
5243 	*/
5244 
5245 	if (minsync > np->maxsync)
5246 		minsync = 255;
5247 
5248 	if (tp->maxoffs > np->maxoffs)
5249 		tp->maxoffs = np->maxoffs;
5250 
5251 	tp->minsync = minsync;
5252 	tp->maxoffs = (minsync<255 ? tp->maxoffs : 0);
5253 
5254 	/*
5255 	**	period=0: has to negotiate sync transfer
5256 	*/
5257 
5258 	tp->period=0;
5259 
5260 	/*
5261 	**	widedone=0: has to negotiate wide transfer
5262 	*/
5263 	tp->widedone=0;
5264 }
5265 
5266 /*==========================================================
5267 **
5268 **	Get clock factor and sync divisor for a given
5269 **	synchronous factor period.
5270 **	Returns the clock factor (in sxfer) and scntl3
5271 **	synchronous divisor field.
5272 **
5273 **==========================================================
5274 */
5275 
5276 static void ncr_getsync(struct ncb *np, u_char sfac, u_char *fakp, u_char *scntl3p)
5277 {
5278 	u_long	clk = np->clock_khz;	/* SCSI clock frequency in kHz	*/
5279 	int	div = np->clock_divn;	/* Number of divisors supported	*/
5280 	u_long	fak;			/* Sync factor in sxfer		*/
5281 	u_long	per;			/* Period in tenths of ns	*/
5282 	u_long	kpc;			/* (per * clk)			*/
5283 
5284 	/*
5285 	**	Compute the synchronous period in tenths of nano-seconds
5286 	*/
5287 	if	(sfac <= 10)	per = 250;
5288 	else if	(sfac == 11)	per = 303;
5289 	else if	(sfac == 12)	per = 500;
5290 	else			per = 40 * sfac;
5291 
5292 	/*
5293 	**	Look for the greatest clock divisor that allows an
5294 	**	input speed faster than the period.
5295 	*/
5296 	kpc = per * clk;
5297 	while (--div > 0)
5298 		if (kpc >= (div_10M[div] << 2)) break;
5299 
5300 	/*
5301 	**	Calculate the lowest clock factor that allows an output
5302 	**	speed not faster than the period.
5303 	*/
5304 	fak = (kpc - 1) / div_10M[div] + 1;
5305 
5306 	if (fak < 4) fak = 4;	/* Should never happen, too bad ... */
5307 
5308 	/*
5309 	**	Compute and return sync parameters for the ncr
5310 	*/
5311 	*fakp		= fak - 4;
5312 	*scntl3p	= ((div+1) << 4) + (sfac < 25 ? 0x80 : 0);
5313 }
5314 
5315 
5316 /*==========================================================
5317 **
5318 **	Set actual values, sync status and patch all ccbs of
5319 **	a target according to new sync/wide agreement.
5320 **
5321 **==========================================================
5322 */
5323 
5324 static void ncr_set_sync_wide_status (struct ncb *np, u_char target)
5325 {
5326 	struct ccb *cp;
5327 	struct tcb *tp = &np->target[target];
5328 
5329 	/*
5330 	**	set actual value and sync_status
5331 	*/
5332 	OUTB (nc_sxfer, tp->sval);
5333 	np->sync_st = tp->sval;
5334 	OUTB (nc_scntl3, tp->wval);
5335 	np->wide_st = tp->wval;
5336 
5337 	/*
5338 	**	patch ALL ccbs of this target.
5339 	*/
5340 	for (cp = np->ccb; cp; cp = cp->link_ccb) {
5341 		if (!cp->cmd) continue;
5342 		if (scmd_id(cp->cmd) != target) continue;
5343 		cp->phys.select.sel_scntl3 = tp->wval;
5344 		cp->phys.select.sel_sxfer  = tp->sval;
5345 	}
5346 }
5347 
5348 /*==========================================================
5349 **
5350 **	Switch sync mode for current job and it's target
5351 **
5352 **==========================================================
5353 */
5354 
5355 static void ncr_setsync (struct ncb *np, struct ccb *cp, u_char scntl3, u_char sxfer)
5356 {
5357 	struct scsi_cmnd *cmd = cp->cmd;
5358 	struct tcb *tp;
5359 	u_char target = INB (nc_sdid) & 0x0f;
5360 	u_char idiv;
5361 
5362 	BUG_ON(target != (scmd_id(cmd) & 0xf));
5363 
5364 	tp = &np->target[target];
5365 
5366 	if (!scntl3 || !(sxfer & 0x1f))
5367 		scntl3 = np->rv_scntl3;
5368 	scntl3 = (scntl3 & 0xf0) | (tp->wval & EWS) | (np->rv_scntl3 & 0x07);
5369 
5370 	/*
5371 	**	Deduce the value of controller sync period from scntl3.
5372 	**	period is in tenths of nano-seconds.
5373 	*/
5374 
5375 	idiv = ((scntl3 >> 4) & 0x7);
5376 	if ((sxfer & 0x1f) && idiv)
5377 		tp->period = (((sxfer>>5)+4)*div_10M[idiv-1])/np->clock_khz;
5378 	else
5379 		tp->period = 0xffff;
5380 
5381 	/* Stop there if sync parameters are unchanged */
5382 	if (tp->sval == sxfer && tp->wval == scntl3)
5383 		return;
5384 	tp->sval = sxfer;
5385 	tp->wval = scntl3;
5386 
5387 	if (sxfer & 0x01f) {
5388 		/* Disable extended Sreq/Sack filtering */
5389 		if (tp->period <= 2000)
5390 			OUTOFFB(nc_stest2, EXT);
5391 	}
5392 
5393 	spi_display_xfer_agreement(tp->starget);
5394 
5395 	/*
5396 	**	set actual value and sync_status
5397 	**	patch ALL ccbs of this target.
5398 	*/
5399 	ncr_set_sync_wide_status(np, target);
5400 }
5401 
5402 /*==========================================================
5403 **
5404 **	Switch wide mode for current job and it's target
5405 **	SCSI specs say: a SCSI device that accepts a WDTR
5406 **	message shall reset the synchronous agreement to
5407 **	asynchronous mode.
5408 **
5409 **==========================================================
5410 */
5411 
5412 static void ncr_setwide (struct ncb *np, struct ccb *cp, u_char wide, u_char ack)
5413 {
5414 	struct scsi_cmnd *cmd = cp->cmd;
5415 	u16 target = INB (nc_sdid) & 0x0f;
5416 	struct tcb *tp;
5417 	u_char	scntl3;
5418 	u_char	sxfer;
5419 
5420 	BUG_ON(target != (scmd_id(cmd) & 0xf));
5421 
5422 	tp = &np->target[target];
5423 	tp->widedone  =  wide+1;
5424 	scntl3 = (tp->wval & (~EWS)) | (wide ? EWS : 0);
5425 
5426 	sxfer = ack ? 0 : tp->sval;
5427 
5428 	/*
5429 	**	 Stop there if sync/wide parameters are unchanged
5430 	*/
5431 	if (tp->sval == sxfer && tp->wval == scntl3) return;
5432 	tp->sval = sxfer;
5433 	tp->wval = scntl3;
5434 
5435 	/*
5436 	**	Bells and whistles   ;-)
5437 	*/
5438 	if (bootverbose >= 2) {
5439 		dev_info(&cmd->device->sdev_target->dev, "WIDE SCSI %sabled.\n",
5440 				(scntl3 & EWS) ? "en" : "dis");
5441 	}
5442 
5443 	/*
5444 	**	set actual value and sync_status
5445 	**	patch ALL ccbs of this target.
5446 	*/
5447 	ncr_set_sync_wide_status(np, target);
5448 }
5449 
5450 /*==========================================================
5451 **
5452 **	Switch tagged mode for a target.
5453 **
5454 **==========================================================
5455 */
5456 
5457 static void ncr_setup_tags (struct ncb *np, struct scsi_device *sdev)
5458 {
5459 	unsigned char tn = sdev->id, ln = sdev->lun;
5460 	struct tcb *tp = &np->target[tn];
5461 	struct lcb *lp = tp->lp[ln];
5462 	u_char   reqtags, maxdepth;
5463 
5464 	/*
5465 	**	Just in case ...
5466 	*/
5467 	if ((!tp) || (!lp) || !sdev)
5468 		return;
5469 
5470 	/*
5471 	**	If SCSI device queue depth is not yet set, leave here.
5472 	*/
5473 	if (!lp->scdev_depth)
5474 		return;
5475 
5476 	/*
5477 	**	Donnot allow more tags than the SCSI driver can queue
5478 	**	for this device.
5479 	**	Donnot allow more tags than we can handle.
5480 	*/
5481 	maxdepth = lp->scdev_depth;
5482 	if (maxdepth > lp->maxnxs)	maxdepth    = lp->maxnxs;
5483 	if (lp->maxtags > maxdepth)	lp->maxtags = maxdepth;
5484 	if (lp->numtags > maxdepth)	lp->numtags = maxdepth;
5485 
5486 	/*
5487 	**	only devices conformant to ANSI Version >= 2
5488 	**	only devices capable of tagged commands
5489 	**	only if enabled by user ..
5490 	*/
5491 	if (sdev->tagged_supported && lp->numtags > 1) {
5492 		reqtags = lp->numtags;
5493 	} else {
5494 		reqtags = 1;
5495 	}
5496 
5497 	/*
5498 	**	Update max number of tags
5499 	*/
5500 	lp->numtags = reqtags;
5501 	if (lp->numtags > lp->maxtags)
5502 		lp->maxtags = lp->numtags;
5503 
5504 	/*
5505 	**	If we want to switch tag mode, we must wait
5506 	**	for no CCB to be active.
5507 	*/
5508 	if	(reqtags > 1 && lp->usetags) {	 /* Stay in tagged mode    */
5509 		if (lp->queuedepth == reqtags)	 /* Already announced	   */
5510 			return;
5511 		lp->queuedepth	= reqtags;
5512 	}
5513 	else if	(reqtags <= 1 && !lp->usetags) { /* Stay in untagged mode  */
5514 		lp->queuedepth	= reqtags;
5515 		return;
5516 	}
5517 	else {					 /* Want to switch tag mode */
5518 		if (lp->busyccbs)		 /* If not yet safe, return */
5519 			return;
5520 		lp->queuedepth	= reqtags;
5521 		lp->usetags	= reqtags > 1 ? 1 : 0;
5522 	}
5523 
5524 	/*
5525 	**	Patch the lun mini-script, according to tag mode.
5526 	*/
5527 	lp->jump_tag.l_paddr = lp->usetags?
5528 			cpu_to_scr(NCB_SCRIPT_PHYS(np, resel_tag)) :
5529 			cpu_to_scr(NCB_SCRIPT_PHYS(np, resel_notag));
5530 
5531 	/*
5532 	**	Announce change to user.
5533 	*/
5534 	if (bootverbose) {
5535 		if (lp->usetags) {
5536 			dev_info(&sdev->sdev_gendev,
5537 				"tagged command queue depth set to %d\n",
5538 				reqtags);
5539 		} else {
5540 			dev_info(&sdev->sdev_gendev,
5541 					"tagged command queueing disabled\n");
5542 		}
5543 	}
5544 }
5545 
5546 /*==========================================================
5547 **
5548 **
5549 **	ncr timeout handler.
5550 **
5551 **
5552 **==========================================================
5553 **
5554 **	Misused to keep the driver running when
5555 **	interrupts are not configured correctly.
5556 **
5557 **----------------------------------------------------------
5558 */
5559 
5560 static void ncr_timeout (struct ncb *np)
5561 {
5562 	u_long	thistime = jiffies;
5563 
5564 	/*
5565 	**	If release process in progress, let's go
5566 	**	Set the release stage from 1 to 2 to synchronize
5567 	**	with the release process.
5568 	*/
5569 
5570 	if (np->release_stage) {
5571 		if (np->release_stage == 1) np->release_stage = 2;
5572 		return;
5573 	}
5574 
5575 	np->timer.expires = jiffies + SCSI_NCR_TIMER_INTERVAL;
5576 	add_timer(&np->timer);
5577 
5578 	/*
5579 	**	If we are resetting the ncr, wait for settle_time before
5580 	**	clearing it. Then command processing will be resumed.
5581 	*/
5582 	if (np->settle_time) {
5583 		if (np->settle_time <= thistime) {
5584 			if (bootverbose > 1)
5585 				printk("%s: command processing resumed\n", ncr_name(np));
5586 			np->settle_time	= 0;
5587 			np->disc	= 1;
5588 			requeue_waiting_list(np);
5589 		}
5590 		return;
5591 	}
5592 
5593 	/*
5594 	**	Since the generic scsi driver only allows us 0.5 second
5595 	**	to perform abort of a command, we must look at ccbs about
5596 	**	every 0.25 second.
5597 	*/
5598 	if (np->lasttime + 4*HZ < thistime) {
5599 		/*
5600 		**	block ncr interrupts
5601 		*/
5602 		np->lasttime = thistime;
5603 	}
5604 
5605 #ifdef SCSI_NCR_BROKEN_INTR
5606 	if (INB(nc_istat) & (INTF|SIP|DIP)) {
5607 
5608 		/*
5609 		**	Process pending interrupts.
5610 		*/
5611 		if (DEBUG_FLAGS & DEBUG_TINY) printk ("{");
5612 		ncr_exception (np);
5613 		if (DEBUG_FLAGS & DEBUG_TINY) printk ("}");
5614 	}
5615 #endif /* SCSI_NCR_BROKEN_INTR */
5616 }
5617 
5618 /*==========================================================
5619 **
5620 **	log message for real hard errors
5621 **
5622 **	"ncr0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc)."
5623 **	"	      reg: r0 r1 r2 r3 r4 r5 r6 ..... rf."
5624 **
5625 **	exception register:
5626 **		ds:	dstat
5627 **		si:	sist
5628 **
5629 **	SCSI bus lines:
5630 **		so:	control lines as driver by NCR.
5631 **		si:	control lines as seen by NCR.
5632 **		sd:	scsi data lines as seen by NCR.
5633 **
5634 **	wide/fastmode:
5635 **		sxfer:	(see the manual)
5636 **		scntl3:	(see the manual)
5637 **
5638 **	current script command:
5639 **		dsp:	script address (relative to start of script).
5640 **		dbc:	first word of script command.
5641 **
5642 **	First 16 register of the chip:
5643 **		r0..rf
5644 **
5645 **==========================================================
5646 */
5647 
5648 static void ncr_log_hard_error(struct ncb *np, u16 sist, u_char dstat)
5649 {
5650 	u32	dsp;
5651 	int	script_ofs;
5652 	int	script_size;
5653 	char	*script_name;
5654 	u_char	*script_base;
5655 	int	i;
5656 
5657 	dsp	= INL (nc_dsp);
5658 
5659 	if (dsp > np->p_script && dsp <= np->p_script + sizeof(struct script)) {
5660 		script_ofs	= dsp - np->p_script;
5661 		script_size	= sizeof(struct script);
5662 		script_base	= (u_char *) np->script0;
5663 		script_name	= "script";
5664 	}
5665 	else if (np->p_scripth < dsp &&
5666 		 dsp <= np->p_scripth + sizeof(struct scripth)) {
5667 		script_ofs	= dsp - np->p_scripth;
5668 		script_size	= sizeof(struct scripth);
5669 		script_base	= (u_char *) np->scripth0;
5670 		script_name	= "scripth";
5671 	} else {
5672 		script_ofs	= dsp;
5673 		script_size	= 0;
5674 		script_base	= NULL;
5675 		script_name	= "mem";
5676 	}
5677 
5678 	printk ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n",
5679 		ncr_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist,
5680 		(unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl), (unsigned)INB (nc_sbdl),
5681 		(unsigned)INB (nc_sxfer),(unsigned)INB (nc_scntl3), script_name, script_ofs,
5682 		(unsigned)INL (nc_dbc));
5683 
5684 	if (((script_ofs & 3) == 0) &&
5685 	    (unsigned)script_ofs < script_size) {
5686 		printk ("%s: script cmd = %08x\n", ncr_name(np),
5687 			scr_to_cpu((int) *(ncrcmd *)(script_base + script_ofs)));
5688 	}
5689 
5690 	printk ("%s: regdump:", ncr_name(np));
5691 	for (i=0; i<16;i++)
5692             printk (" %02x", (unsigned)INB_OFF(i));
5693 	printk (".\n");
5694 }
5695 
5696 /*============================================================
5697 **
5698 **	ncr chip exception handler.
5699 **
5700 **============================================================
5701 **
5702 **	In normal cases, interrupt conditions occur one at a
5703 **	time. The ncr is able to stack in some extra registers
5704 **	other interrupts that will occur after the first one.
5705 **	But, several interrupts may occur at the same time.
5706 **
5707 **	We probably should only try to deal with the normal
5708 **	case, but it seems that multiple interrupts occur in
5709 **	some cases that are not abnormal at all.
5710 **
5711 **	The most frequent interrupt condition is Phase Mismatch.
5712 **	We should want to service this interrupt quickly.
5713 **	A SCSI parity error may be delivered at the same time.
5714 **	The SIR interrupt is not very frequent in this driver,
5715 **	since the INTFLY is likely used for command completion
5716 **	signaling.
5717 **	The Selection Timeout interrupt may be triggered with
5718 **	IID and/or UDC.
5719 **	The SBMC interrupt (SCSI Bus Mode Change) may probably
5720 **	occur at any time.
5721 **
5722 **	This handler try to deal as cleverly as possible with all
5723 **	the above.
5724 **
5725 **============================================================
5726 */
5727 
5728 void ncr_exception (struct ncb *np)
5729 {
5730 	u_char	istat, dstat;
5731 	u16	sist;
5732 	int	i;
5733 
5734 	/*
5735 	**	interrupt on the fly ?
5736 	**	Since the global header may be copied back to a CCB
5737 	**	using a posted PCI memory write, the last operation on
5738 	**	the istat register is a READ in order to flush posted
5739 	**	PCI write commands.
5740 	*/
5741 	istat = INB (nc_istat);
5742 	if (istat & INTF) {
5743 		OUTB (nc_istat, (istat & SIGP) | INTF);
5744 		istat = INB (nc_istat);
5745 		if (DEBUG_FLAGS & DEBUG_TINY) printk ("F ");
5746 		ncr_wakeup_done (np);
5747 	}
5748 
5749 	if (!(istat & (SIP|DIP)))
5750 		return;
5751 
5752 	if (istat & CABRT)
5753 		OUTB (nc_istat, CABRT);
5754 
5755 	/*
5756 	**	Steinbach's Guideline for Systems Programming:
5757 	**	Never test for an error condition you don't know how to handle.
5758 	*/
5759 
5760 	sist  = (istat & SIP) ? INW (nc_sist)  : 0;
5761 	dstat = (istat & DIP) ? INB (nc_dstat) : 0;
5762 
5763 	if (DEBUG_FLAGS & DEBUG_TINY)
5764 		printk ("<%d|%x:%x|%x:%x>",
5765 			(int)INB(nc_scr0),
5766 			dstat,sist,
5767 			(unsigned)INL(nc_dsp),
5768 			(unsigned)INL(nc_dbc));
5769 
5770 	/*========================================================
5771 	**	First, interrupts we want to service cleanly.
5772 	**
5773 	**	Phase mismatch is the most frequent interrupt, and
5774 	**	so we have to service it as quickly and as cleanly
5775 	**	as possible.
5776 	**	Programmed interrupts are rarely used in this driver,
5777 	**	but we must handle them cleanly anyway.
5778 	**	We try to deal with PAR and SBMC combined with
5779 	**	some other interrupt(s).
5780 	**=========================================================
5781 	*/
5782 
5783 	if (!(sist  & (STO|GEN|HTH|SGE|UDC|RST)) &&
5784 	    !(dstat & (MDPE|BF|ABRT|IID))) {
5785 		if ((sist & SBMC) && ncr_int_sbmc (np))
5786 			return;
5787 		if ((sist & PAR)  && ncr_int_par  (np))
5788 			return;
5789 		if (sist & MA) {
5790 			ncr_int_ma (np);
5791 			return;
5792 		}
5793 		if (dstat & SIR) {
5794 			ncr_int_sir (np);
5795 			return;
5796 		}
5797 		/*
5798 		**  DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 2.
5799 		*/
5800 		if (!(sist & (SBMC|PAR)) && !(dstat & SSI)) {
5801 			printk(	"%s: unknown interrupt(s) ignored, "
5802 				"ISTAT=%x DSTAT=%x SIST=%x\n",
5803 				ncr_name(np), istat, dstat, sist);
5804 			return;
5805 		}
5806 		OUTONB_STD ();
5807 		return;
5808 	}
5809 
5810 	/*========================================================
5811 	**	Now, interrupts that need some fixing up.
5812 	**	Order and multiple interrupts is so less important.
5813 	**
5814 	**	If SRST has been asserted, we just reset the chip.
5815 	**
5816 	**	Selection is intirely handled by the chip. If the
5817 	**	chip says STO, we trust it. Seems some other
5818 	**	interrupts may occur at the same time (UDC, IID), so
5819 	**	we ignore them. In any case we do enough fix-up
5820 	**	in the service routine.
5821 	**	We just exclude some fatal dma errors.
5822 	**=========================================================
5823 	*/
5824 
5825 	if (sist & RST) {
5826 		ncr_init (np, 1, bootverbose ? "scsi reset" : NULL, HS_RESET);
5827 		return;
5828 	}
5829 
5830 	if ((sist & STO) &&
5831 		!(dstat & (MDPE|BF|ABRT))) {
5832 	/*
5833 	**	DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 1.
5834 	*/
5835 		OUTONB (nc_ctest3, CLF);
5836 
5837 		ncr_int_sto (np);
5838 		return;
5839 	}
5840 
5841 	/*=========================================================
5842 	**	Now, interrupts we are not able to recover cleanly.
5843 	**	(At least for the moment).
5844 	**
5845 	**	Do the register dump.
5846 	**	Log message for real hard errors.
5847 	**	Clear all fifos.
5848 	**	For MDPE, BF, ABORT, IID, SGE and HTH we reset the
5849 	**	BUS and the chip.
5850 	**	We are more soft for UDC.
5851 	**=========================================================
5852 	*/
5853 
5854 	if (time_after(jiffies, np->regtime)) {
5855 		np->regtime = jiffies + 10*HZ;
5856 		for (i = 0; i<sizeof(np->regdump); i++)
5857 			((char*)&np->regdump)[i] = INB_OFF(i);
5858 		np->regdump.nc_dstat = dstat;
5859 		np->regdump.nc_sist  = sist;
5860 	}
5861 
5862 	ncr_log_hard_error(np, sist, dstat);
5863 
5864 	printk ("%s: have to clear fifos.\n", ncr_name (np));
5865 	OUTB (nc_stest3, TE|CSF);
5866 	OUTONB (nc_ctest3, CLF);
5867 
5868 	if ((sist & (SGE)) ||
5869 		(dstat & (MDPE|BF|ABRT|IID))) {
5870 		ncr_start_reset(np);
5871 		return;
5872 	}
5873 
5874 	if (sist & HTH) {
5875 		printk ("%s: handshake timeout\n", ncr_name(np));
5876 		ncr_start_reset(np);
5877 		return;
5878 	}
5879 
5880 	if (sist & UDC) {
5881 		printk ("%s: unexpected disconnect\n", ncr_name(np));
5882 		OUTB (HS_PRT, HS_UNEXPECTED);
5883 		OUTL_DSP (NCB_SCRIPT_PHYS (np, cleanup));
5884 		return;
5885 	}
5886 
5887 	/*=========================================================
5888 	**	We just miss the cause of the interrupt. :(
5889 	**	Print a message. The timeout will do the real work.
5890 	**=========================================================
5891 	*/
5892 	printk ("%s: unknown interrupt\n", ncr_name(np));
5893 }
5894 
5895 /*==========================================================
5896 **
5897 **	ncr chip exception handler for selection timeout
5898 **
5899 **==========================================================
5900 **
5901 **	There seems to be a bug in the 53c810.
5902 **	Although a STO-Interrupt is pending,
5903 **	it continues executing script commands.
5904 **	But it will fail and interrupt (IID) on
5905 **	the next instruction where it's looking
5906 **	for a valid phase.
5907 **
5908 **----------------------------------------------------------
5909 */
5910 
5911 void ncr_int_sto (struct ncb *np)
5912 {
5913 	u_long dsa;
5914 	struct ccb *cp;
5915 	if (DEBUG_FLAGS & DEBUG_TINY) printk ("T");
5916 
5917 	/*
5918 	**	look for ccb and set the status.
5919 	*/
5920 
5921 	dsa = INL (nc_dsa);
5922 	cp = np->ccb;
5923 	while (cp && (CCB_PHYS (cp, phys) != dsa))
5924 		cp = cp->link_ccb;
5925 
5926 	if (cp) {
5927 		cp-> host_status = HS_SEL_TIMEOUT;
5928 		ncr_complete (np, cp);
5929 	}
5930 
5931 	/*
5932 	**	repair start queue and jump to start point.
5933 	*/
5934 
5935 	OUTL_DSP (NCB_SCRIPTH_PHYS (np, sto_restart));
5936 	return;
5937 }
5938 
5939 /*==========================================================
5940 **
5941 **	ncr chip exception handler for SCSI bus mode change
5942 **
5943 **==========================================================
5944 **
5945 **	spi2-r12 11.2.3 says a transceiver mode change must
5946 **	generate a reset event and a device that detects a reset
5947 **	event shall initiate a hard reset. It says also that a
5948 **	device that detects a mode change shall set data transfer
5949 **	mode to eight bit asynchronous, etc...
5950 **	So, just resetting should be enough.
5951 **
5952 **
5953 **----------------------------------------------------------
5954 */
5955 
5956 static int ncr_int_sbmc (struct ncb *np)
5957 {
5958 	u_char scsi_mode = INB (nc_stest4) & SMODE;
5959 
5960 	if (scsi_mode != np->scsi_mode) {
5961 		printk("%s: SCSI bus mode change from %x to %x.\n",
5962 			ncr_name(np), np->scsi_mode, scsi_mode);
5963 
5964 		np->scsi_mode = scsi_mode;
5965 
5966 
5967 		/*
5968 		**	Suspend command processing for 1 second and
5969 		**	reinitialize all except the chip.
5970 		*/
5971 		np->settle_time	= jiffies + HZ;
5972 		ncr_init (np, 0, bootverbose ? "scsi mode change" : NULL, HS_RESET);
5973 		return 1;
5974 	}
5975 	return 0;
5976 }
5977 
5978 /*==========================================================
5979 **
5980 **	ncr chip exception handler for SCSI parity error.
5981 **
5982 **==========================================================
5983 **
5984 **
5985 **----------------------------------------------------------
5986 */
5987 
5988 static int ncr_int_par (struct ncb *np)
5989 {
5990 	u_char	hsts	= INB (HS_PRT);
5991 	u32	dbc	= INL (nc_dbc);
5992 	u_char	sstat1	= INB (nc_sstat1);
5993 	int phase	= -1;
5994 	int msg		= -1;
5995 	u32 jmp;
5996 
5997 	printk("%s: SCSI parity error detected: SCR1=%d DBC=%x SSTAT1=%x\n",
5998 		ncr_name(np), hsts, dbc, sstat1);
5999 
6000 	/*
6001 	 *	Ignore the interrupt if the NCR is not connected
6002 	 *	to the SCSI bus, since the right work should have
6003 	 *	been done on unexpected disconnection handling.
6004 	 */
6005 	if (!(INB (nc_scntl1) & ISCON))
6006 		return 0;
6007 
6008 	/*
6009 	 *	If the nexus is not clearly identified, reset the bus.
6010 	 *	We will try to do better later.
6011 	 */
6012 	if (hsts & HS_INVALMASK)
6013 		goto reset_all;
6014 
6015 	/*
6016 	 *	If the SCSI parity error occurs in MSG IN phase, prepare a
6017 	 *	MSG PARITY message. Otherwise, prepare a INITIATOR DETECTED
6018 	 *	ERROR message and let the device decide to retry the command
6019 	 *	or to terminate with check condition. If we were in MSG IN
6020 	 *	phase waiting for the response of a negotiation, we will
6021 	 *	get SIR_NEGO_FAILED at dispatch.
6022 	 */
6023 	if (!(dbc & 0xc0000000))
6024 		phase = (dbc >> 24) & 7;
6025 	if (phase == 7)
6026 		msg = MSG_PARITY_ERROR;
6027 	else
6028 		msg = INITIATOR_ERROR;
6029 
6030 
6031 	/*
6032 	 *	If the NCR stopped on a MOVE ^ DATA_IN, we jump to a
6033 	 *	script that will ignore all data in bytes until phase
6034 	 *	change, since we are not sure the chip will wait the phase
6035 	 *	change prior to delivering the interrupt.
6036 	 */
6037 	if (phase == 1)
6038 		jmp = NCB_SCRIPTH_PHYS (np, par_err_data_in);
6039 	else
6040 		jmp = NCB_SCRIPTH_PHYS (np, par_err_other);
6041 
6042 	OUTONB (nc_ctest3, CLF );	/* clear dma fifo  */
6043 	OUTB (nc_stest3, TE|CSF);	/* clear scsi fifo */
6044 
6045 	np->msgout[0] = msg;
6046 	OUTL_DSP (jmp);
6047 	return 1;
6048 
6049 reset_all:
6050 	ncr_start_reset(np);
6051 	return 1;
6052 }
6053 
6054 /*==========================================================
6055 **
6056 **
6057 **	ncr chip exception handler for phase errors.
6058 **
6059 **
6060 **==========================================================
6061 **
6062 **	We have to construct a new transfer descriptor,
6063 **	to transfer the rest of the current block.
6064 **
6065 **----------------------------------------------------------
6066 */
6067 
6068 static void ncr_int_ma (struct ncb *np)
6069 {
6070 	u32	dbc;
6071 	u32	rest;
6072 	u32	dsp;
6073 	u32	dsa;
6074 	u32	nxtdsp;
6075 	u32	newtmp;
6076 	u32	*vdsp;
6077 	u32	oadr, olen;
6078 	u32	*tblp;
6079 	ncrcmd *newcmd;
6080 	u_char	cmd, sbcl;
6081 	struct ccb *cp;
6082 
6083 	dsp	= INL (nc_dsp);
6084 	dbc	= INL (nc_dbc);
6085 	sbcl	= INB (nc_sbcl);
6086 
6087 	cmd	= dbc >> 24;
6088 	rest	= dbc & 0xffffff;
6089 
6090 	/*
6091 	**	Take into account dma fifo and various buffers and latches,
6092 	**	only if the interrupted phase is an OUTPUT phase.
6093 	*/
6094 
6095 	if ((cmd & 1) == 0) {
6096 		u_char	ctest5, ss0, ss2;
6097 		u16	delta;
6098 
6099 		ctest5 = (np->rv_ctest5 & DFS) ? INB (nc_ctest5) : 0;
6100 		if (ctest5 & DFS)
6101 			delta=(((ctest5 << 8) | (INB (nc_dfifo) & 0xff)) - rest) & 0x3ff;
6102 		else
6103 			delta=(INB (nc_dfifo) - rest) & 0x7f;
6104 
6105 		/*
6106 		**	The data in the dma fifo has not been transferred to
6107 		**	the target -> add the amount to the rest
6108 		**	and clear the data.
6109 		**	Check the sstat2 register in case of wide transfer.
6110 		*/
6111 
6112 		rest += delta;
6113 		ss0  = INB (nc_sstat0);
6114 		if (ss0 & OLF) rest++;
6115 		if (ss0 & ORF) rest++;
6116 		if (INB(nc_scntl3) & EWS) {
6117 			ss2 = INB (nc_sstat2);
6118 			if (ss2 & OLF1) rest++;
6119 			if (ss2 & ORF1) rest++;
6120 		}
6121 
6122 		if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
6123 			printk ("P%x%x RL=%d D=%d SS0=%x ", cmd&7, sbcl&7,
6124 				(unsigned) rest, (unsigned) delta, ss0);
6125 
6126 	} else	{
6127 		if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
6128 			printk ("P%x%x RL=%d ", cmd&7, sbcl&7, rest);
6129 	}
6130 
6131 	/*
6132 	**	Clear fifos.
6133 	*/
6134 	OUTONB (nc_ctest3, CLF );	/* clear dma fifo  */
6135 	OUTB (nc_stest3, TE|CSF);	/* clear scsi fifo */
6136 
6137 	/*
6138 	**	locate matching cp.
6139 	**	if the interrupted phase is DATA IN or DATA OUT,
6140 	**	trust the global header.
6141 	*/
6142 	dsa = INL (nc_dsa);
6143 	if (!(cmd & 6)) {
6144 		cp = np->header.cp;
6145 		if (CCB_PHYS(cp, phys) != dsa)
6146 			cp = NULL;
6147 	} else {
6148 		cp  = np->ccb;
6149 		while (cp && (CCB_PHYS (cp, phys) != dsa))
6150 			cp = cp->link_ccb;
6151 	}
6152 
6153 	/*
6154 	**	try to find the interrupted script command,
6155 	**	and the address at which to continue.
6156 	*/
6157 	vdsp	= NULL;
6158 	nxtdsp	= 0;
6159 	if	(dsp >  np->p_script &&
6160 		 dsp <= np->p_script + sizeof(struct script)) {
6161 		vdsp = (u32 *)((char*)np->script0 + (dsp-np->p_script-8));
6162 		nxtdsp = dsp;
6163 	}
6164 	else if	(dsp >  np->p_scripth &&
6165 		 dsp <= np->p_scripth + sizeof(struct scripth)) {
6166 		vdsp = (u32 *)((char*)np->scripth0 + (dsp-np->p_scripth-8));
6167 		nxtdsp = dsp;
6168 	}
6169 	else if (cp) {
6170 		if	(dsp == CCB_PHYS (cp, patch[2])) {
6171 			vdsp = &cp->patch[0];
6172 			nxtdsp = scr_to_cpu(vdsp[3]);
6173 		}
6174 		else if (dsp == CCB_PHYS (cp, patch[6])) {
6175 			vdsp = &cp->patch[4];
6176 			nxtdsp = scr_to_cpu(vdsp[3]);
6177 		}
6178 	}
6179 
6180 	/*
6181 	**	log the information
6182 	*/
6183 
6184 	if (DEBUG_FLAGS & DEBUG_PHASE) {
6185 		printk ("\nCP=%p CP2=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
6186 			cp, np->header.cp,
6187 			(unsigned)dsp,
6188 			(unsigned)nxtdsp, vdsp, cmd);
6189 	}
6190 
6191 	/*
6192 	**	cp=0 means that the DSA does not point to a valid control
6193 	**	block. This should not happen since we donnot use multi-byte
6194 	**	move while we are being reselected ot after command complete.
6195 	**	We are not able to recover from such a phase error.
6196 	*/
6197 	if (!cp) {
6198 		printk ("%s: SCSI phase error fixup: "
6199 			"CCB already dequeued (0x%08lx)\n",
6200 			ncr_name (np), (u_long) np->header.cp);
6201 		goto reset_all;
6202 	}
6203 
6204 	/*
6205 	**	get old startaddress and old length.
6206 	*/
6207 
6208 	oadr = scr_to_cpu(vdsp[1]);
6209 
6210 	if (cmd & 0x10) {	/* Table indirect */
6211 		tblp = (u32 *) ((char*) &cp->phys + oadr);
6212 		olen = scr_to_cpu(tblp[0]);
6213 		oadr = scr_to_cpu(tblp[1]);
6214 	} else {
6215 		tblp = (u32 *) 0;
6216 		olen = scr_to_cpu(vdsp[0]) & 0xffffff;
6217 	}
6218 
6219 	if (DEBUG_FLAGS & DEBUG_PHASE) {
6220 		printk ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
6221 			(unsigned) (scr_to_cpu(vdsp[0]) >> 24),
6222 			tblp,
6223 			(unsigned) olen,
6224 			(unsigned) oadr);
6225 	}
6226 
6227 	/*
6228 	**	check cmd against assumed interrupted script command.
6229 	*/
6230 
6231 	if (cmd != (scr_to_cpu(vdsp[0]) >> 24)) {
6232 		PRINT_ADDR(cp->cmd, "internal error: cmd=%02x != %02x=(vdsp[0] "
6233 				">> 24)\n", cmd, scr_to_cpu(vdsp[0]) >> 24);
6234 
6235 		goto reset_all;
6236 	}
6237 
6238 	/*
6239 	**	cp != np->header.cp means that the header of the CCB
6240 	**	currently being processed has not yet been copied to
6241 	**	the global header area. That may happen if the device did
6242 	**	not accept all our messages after having been selected.
6243 	*/
6244 	if (cp != np->header.cp) {
6245 		printk ("%s: SCSI phase error fixup: "
6246 			"CCB address mismatch (0x%08lx != 0x%08lx)\n",
6247 			ncr_name (np), (u_long) cp, (u_long) np->header.cp);
6248 	}
6249 
6250 	/*
6251 	**	if old phase not dataphase, leave here.
6252 	*/
6253 
6254 	if (cmd & 0x06) {
6255 		PRINT_ADDR(cp->cmd, "phase change %x-%x %d@%08x resid=%d.\n",
6256 			cmd&7, sbcl&7, (unsigned)olen,
6257 			(unsigned)oadr, (unsigned)rest);
6258 		goto unexpected_phase;
6259 	}
6260 
6261 	/*
6262 	**	choose the correct patch area.
6263 	**	if savep points to one, choose the other.
6264 	*/
6265 
6266 	newcmd = cp->patch;
6267 	newtmp = CCB_PHYS (cp, patch);
6268 	if (newtmp == scr_to_cpu(cp->phys.header.savep)) {
6269 		newcmd = &cp->patch[4];
6270 		newtmp = CCB_PHYS (cp, patch[4]);
6271 	}
6272 
6273 	/*
6274 	**	fillin the commands
6275 	*/
6276 
6277 	newcmd[0] = cpu_to_scr(((cmd & 0x0f) << 24) | rest);
6278 	newcmd[1] = cpu_to_scr(oadr + olen - rest);
6279 	newcmd[2] = cpu_to_scr(SCR_JUMP);
6280 	newcmd[3] = cpu_to_scr(nxtdsp);
6281 
6282 	if (DEBUG_FLAGS & DEBUG_PHASE) {
6283 		PRINT_ADDR(cp->cmd, "newcmd[%d] %x %x %x %x.\n",
6284 			(int) (newcmd - cp->patch),
6285 			(unsigned)scr_to_cpu(newcmd[0]),
6286 			(unsigned)scr_to_cpu(newcmd[1]),
6287 			(unsigned)scr_to_cpu(newcmd[2]),
6288 			(unsigned)scr_to_cpu(newcmd[3]));
6289 	}
6290 	/*
6291 	**	fake the return address (to the patch).
6292 	**	and restart script processor at dispatcher.
6293 	*/
6294 	OUTL (nc_temp, newtmp);
6295 	OUTL_DSP (NCB_SCRIPT_PHYS (np, dispatch));
6296 	return;
6297 
6298 	/*
6299 	**	Unexpected phase changes that occurs when the current phase
6300 	**	is not a DATA IN or DATA OUT phase are due to error conditions.
6301 	**	Such event may only happen when the SCRIPTS is using a
6302 	**	multibyte SCSI MOVE.
6303 	**
6304 	**	Phase change		Some possible cause
6305 	**
6306 	**	COMMAND  --> MSG IN	SCSI parity error detected by target.
6307 	**	COMMAND  --> STATUS	Bad command or refused by target.
6308 	**	MSG OUT  --> MSG IN     Message rejected by target.
6309 	**	MSG OUT  --> COMMAND    Bogus target that discards extended
6310 	**				negotiation messages.
6311 	**
6312 	**	The code below does not care of the new phase and so
6313 	**	trusts the target. Why to annoy it ?
6314 	**	If the interrupted phase is COMMAND phase, we restart at
6315 	**	dispatcher.
6316 	**	If a target does not get all the messages after selection,
6317 	**	the code assumes blindly that the target discards extended
6318 	**	messages and clears the negotiation status.
6319 	**	If the target does not want all our response to negotiation,
6320 	**	we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
6321 	**	bloat for such a should_not_happen situation).
6322 	**	In all other situation, we reset the BUS.
6323 	**	Are these assumptions reasonable ? (Wait and see ...)
6324 	*/
6325 unexpected_phase:
6326 	dsp -= 8;
6327 	nxtdsp = 0;
6328 
6329 	switch (cmd & 7) {
6330 	case 2:	/* COMMAND phase */
6331 		nxtdsp = NCB_SCRIPT_PHYS (np, dispatch);
6332 		break;
6333 #if 0
6334 	case 3:	/* STATUS  phase */
6335 		nxtdsp = NCB_SCRIPT_PHYS (np, dispatch);
6336 		break;
6337 #endif
6338 	case 6:	/* MSG OUT phase */
6339 		np->scripth->nxtdsp_go_on[0] = cpu_to_scr(dsp + 8);
6340 		if	(dsp == NCB_SCRIPT_PHYS (np, send_ident)) {
6341 			cp->host_status = HS_BUSY;
6342 			nxtdsp = NCB_SCRIPTH_PHYS (np, clratn_go_on);
6343 		}
6344 		else if	(dsp == NCB_SCRIPTH_PHYS (np, send_wdtr) ||
6345 			 dsp == NCB_SCRIPTH_PHYS (np, send_sdtr)) {
6346 			nxtdsp = NCB_SCRIPTH_PHYS (np, nego_bad_phase);
6347 		}
6348 		break;
6349 #if 0
6350 	case 7:	/* MSG IN  phase */
6351 		nxtdsp = NCB_SCRIPT_PHYS (np, clrack);
6352 		break;
6353 #endif
6354 	}
6355 
6356 	if (nxtdsp) {
6357 		OUTL_DSP (nxtdsp);
6358 		return;
6359 	}
6360 
6361 reset_all:
6362 	ncr_start_reset(np);
6363 }
6364 
6365 
6366 static void ncr_sir_to_redo(struct ncb *np, int num, struct ccb *cp)
6367 {
6368 	struct scsi_cmnd *cmd	= cp->cmd;
6369 	struct tcb *tp	= &np->target[cmd->device->id];
6370 	struct lcb *lp	= tp->lp[cmd->device->lun];
6371 	struct list_head *qp;
6372 	struct ccb *	cp2;
6373 	int		disc_cnt = 0;
6374 	int		busy_cnt = 0;
6375 	u32		startp;
6376 	u_char		s_status = INB (SS_PRT);
6377 
6378 	/*
6379 	**	Let the SCRIPTS processor skip all not yet started CCBs,
6380 	**	and count disconnected CCBs. Since the busy queue is in
6381 	**	the same order as the chip start queue, disconnected CCBs
6382 	**	are before cp and busy ones after.
6383 	*/
6384 	if (lp) {
6385 		qp = lp->busy_ccbq.prev;
6386 		while (qp != &lp->busy_ccbq) {
6387 			cp2 = list_entry(qp, struct ccb, link_ccbq);
6388 			qp  = qp->prev;
6389 			++busy_cnt;
6390 			if (cp2 == cp)
6391 				break;
6392 			cp2->start.schedule.l_paddr =
6393 			cpu_to_scr(NCB_SCRIPTH_PHYS (np, skip));
6394 		}
6395 		lp->held_ccb = cp;	/* Requeue when this one completes */
6396 		disc_cnt = lp->queuedccbs - busy_cnt;
6397 	}
6398 
6399 	switch(s_status) {
6400 	default:	/* Just for safety, should never happen */
6401 	case SAM_STAT_TASK_SET_FULL:
6402 		/*
6403 		**	Decrease number of tags to the number of
6404 		**	disconnected commands.
6405 		*/
6406 		if (!lp)
6407 			goto out;
6408 		if (bootverbose >= 1) {
6409 			PRINT_ADDR(cmd, "QUEUE FULL! %d busy, %d disconnected "
6410 					"CCBs\n", busy_cnt, disc_cnt);
6411 		}
6412 		if (disc_cnt < lp->numtags) {
6413 			lp->numtags	= disc_cnt > 2 ? disc_cnt : 2;
6414 			lp->num_good	= 0;
6415 			ncr_setup_tags (np, cmd->device);
6416 		}
6417 		/*
6418 		**	Requeue the command to the start queue.
6419 		**	If any disconnected commands,
6420 		**		Clear SIGP.
6421 		**		Jump to reselect.
6422 		*/
6423 		cp->phys.header.savep = cp->startp;
6424 		cp->host_status = HS_BUSY;
6425 		cp->scsi_status = SAM_STAT_ILLEGAL;
6426 
6427 		ncr_put_start_queue(np, cp);
6428 		if (disc_cnt)
6429 			INB (nc_ctest2);		/* Clear SIGP */
6430 		OUTL_DSP (NCB_SCRIPT_PHYS (np, reselect));
6431 		return;
6432 	case SAM_STAT_COMMAND_TERMINATED:
6433 	case SAM_STAT_CHECK_CONDITION:
6434 		/*
6435 		**	If we were requesting sense, give up.
6436 		*/
6437 		if (cp->auto_sense)
6438 			goto out;
6439 
6440 		/*
6441 		**	Device returned CHECK CONDITION status.
6442 		**	Prepare all needed data strutures for getting
6443 		**	sense data.
6444 		**
6445 		**	identify message
6446 		*/
6447 		cp->scsi_smsg2[0]	= IDENTIFY(0, cmd->device->lun);
6448 		cp->phys.smsg.addr	= cpu_to_scr(CCB_PHYS (cp, scsi_smsg2));
6449 		cp->phys.smsg.size	= cpu_to_scr(1);
6450 
6451 		/*
6452 		**	sense command
6453 		*/
6454 		cp->phys.cmd.addr	= cpu_to_scr(CCB_PHYS (cp, sensecmd));
6455 		cp->phys.cmd.size	= cpu_to_scr(6);
6456 
6457 		/*
6458 		**	patch requested size into sense command
6459 		*/
6460 		cp->sensecmd[0]		= 0x03;
6461 		cp->sensecmd[1]		= (cmd->device->lun & 0x7) << 5;
6462 		cp->sensecmd[4]		= sizeof(cp->sense_buf);
6463 
6464 		/*
6465 		**	sense data
6466 		*/
6467 		memset(cp->sense_buf, 0, sizeof(cp->sense_buf));
6468 		cp->phys.sense.addr	= cpu_to_scr(CCB_PHYS(cp,sense_buf[0]));
6469 		cp->phys.sense.size	= cpu_to_scr(sizeof(cp->sense_buf));
6470 
6471 		/*
6472 		**	requeue the command.
6473 		*/
6474 		startp = cpu_to_scr(NCB_SCRIPTH_PHYS (np, sdata_in));
6475 
6476 		cp->phys.header.savep	= startp;
6477 		cp->phys.header.goalp	= startp + 24;
6478 		cp->phys.header.lastp	= startp;
6479 		cp->phys.header.wgoalp	= startp + 24;
6480 		cp->phys.header.wlastp	= startp;
6481 
6482 		cp->host_status = HS_BUSY;
6483 		cp->scsi_status = SAM_STAT_ILLEGAL;
6484 		cp->auto_sense	= s_status;
6485 
6486 		cp->start.schedule.l_paddr =
6487 			cpu_to_scr(NCB_SCRIPT_PHYS (np, select));
6488 
6489 		/*
6490 		**	Select without ATN for quirky devices.
6491 		*/
6492 		if (cmd->device->select_no_atn)
6493 			cp->start.schedule.l_paddr =
6494 			cpu_to_scr(NCB_SCRIPTH_PHYS (np, select_no_atn));
6495 
6496 		ncr_put_start_queue(np, cp);
6497 
6498 		OUTL_DSP (NCB_SCRIPT_PHYS (np, start));
6499 		return;
6500 	}
6501 
6502 out:
6503 	OUTONB_STD ();
6504 	return;
6505 }
6506 
6507 
6508 /*==========================================================
6509 **
6510 **
6511 **      ncr chip exception handler for programmed interrupts.
6512 **
6513 **
6514 **==========================================================
6515 */
6516 
6517 void ncr_int_sir (struct ncb *np)
6518 {
6519 	u_char scntl3;
6520 	u_char chg, ofs, per, fak, wide;
6521 	u_char num = INB (nc_dsps);
6522 	struct ccb *cp=NULL;
6523 	u_long	dsa    = INL (nc_dsa);
6524 	u_char	target = INB (nc_sdid) & 0x0f;
6525 	struct tcb *tp     = &np->target[target];
6526 	struct scsi_target *starget = tp->starget;
6527 
6528 	if (DEBUG_FLAGS & DEBUG_TINY) printk ("I#%d", num);
6529 
6530 	switch (num) {
6531 	case SIR_INTFLY:
6532 		/*
6533 		**	This is used for HP Zalon/53c720 where INTFLY
6534 		**	operation is currently broken.
6535 		*/
6536 		ncr_wakeup_done(np);
6537 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
6538 		OUTL(nc_dsp, NCB_SCRIPT_PHYS (np, done_end) + 8);
6539 #else
6540 		OUTL(nc_dsp, NCB_SCRIPT_PHYS (np, start));
6541 #endif
6542 		return;
6543 	case SIR_RESEL_NO_MSG_IN:
6544 	case SIR_RESEL_NO_IDENTIFY:
6545 		/*
6546 		**	If devices reselecting without sending an IDENTIFY
6547 		**	message still exist, this should help.
6548 		**	We just assume lun=0, 1 CCB, no tag.
6549 		*/
6550 		if (tp->lp[0]) {
6551 			OUTL_DSP (scr_to_cpu(tp->lp[0]->jump_ccb[0]));
6552 			return;
6553 		}
6554 		fallthrough;
6555 	case SIR_RESEL_BAD_TARGET:	/* Will send a TARGET RESET message */
6556 	case SIR_RESEL_BAD_LUN:		/* Will send a TARGET RESET message */
6557 	case SIR_RESEL_BAD_I_T_L_Q:	/* Will send an ABORT TAG message   */
6558 	case SIR_RESEL_BAD_I_T_L:	/* Will send an ABORT message	    */
6559 		printk ("%s:%d: SIR %d, "
6560 			"incorrect nexus identification on reselection\n",
6561 			ncr_name (np), target, num);
6562 		goto out;
6563 	case SIR_DONE_OVERFLOW:
6564 		printk ("%s:%d: SIR %d, "
6565 			"CCB done queue overflow\n",
6566 			ncr_name (np), target, num);
6567 		goto out;
6568 	case SIR_BAD_STATUS:
6569 		cp = np->header.cp;
6570 		if (!cp || CCB_PHYS (cp, phys) != dsa)
6571 			goto out;
6572 		ncr_sir_to_redo(np, num, cp);
6573 		return;
6574 	default:
6575 		/*
6576 		**	lookup the ccb
6577 		*/
6578 		cp = np->ccb;
6579 		while (cp && (CCB_PHYS (cp, phys) != dsa))
6580 			cp = cp->link_ccb;
6581 
6582 		BUG_ON(!cp);
6583 		BUG_ON(cp != np->header.cp);
6584 
6585 		if (!cp || cp != np->header.cp)
6586 			goto out;
6587 	}
6588 
6589 	switch (num) {
6590 /*-----------------------------------------------------------------------------
6591 **
6592 **	Was Sie schon immer ueber transfermode negotiation wissen wollten ...
6593 **	("Everything you've always wanted to know about transfer mode
6594 **	  negotiation")
6595 **
6596 **	We try to negotiate sync and wide transfer only after
6597 **	a successful inquire command. We look at byte 7 of the
6598 **	inquire data to determine the capabilities of the target.
6599 **
6600 **	When we try to negotiate, we append the negotiation message
6601 **	to the identify and (maybe) simple tag message.
6602 **	The host status field is set to HS_NEGOTIATE to mark this
6603 **	situation.
6604 **
6605 **	If the target doesn't answer this message immediately
6606 **	(as required by the standard), the SIR_NEGO_FAIL interrupt
6607 **	will be raised eventually.
6608 **	The handler removes the HS_NEGOTIATE status, and sets the
6609 **	negotiated value to the default (async / nowide).
6610 **
6611 **	If we receive a matching answer immediately, we check it
6612 **	for validity, and set the values.
6613 **
6614 **	If we receive a Reject message immediately, we assume the
6615 **	negotiation has failed, and fall back to standard values.
6616 **
6617 **	If we receive a negotiation message while not in HS_NEGOTIATE
6618 **	state, it's a target initiated negotiation. We prepare a
6619 **	(hopefully) valid answer, set our parameters, and send back
6620 **	this answer to the target.
6621 **
6622 **	If the target doesn't fetch the answer (no message out phase),
6623 **	we assume the negotiation has failed, and fall back to default
6624 **	settings.
6625 **
6626 **	When we set the values, we adjust them in all ccbs belonging
6627 **	to this target, in the controller's register, and in the "phys"
6628 **	field of the controller's struct ncb.
6629 **
6630 **	Possible cases:		   hs  sir   msg_in value  send   goto
6631 **	We try to negotiate:
6632 **	-> target doesn't msgin    NEG FAIL  noop   defa.  -      dispatch
6633 **	-> target rejected our msg NEG FAIL  reject defa.  -      dispatch
6634 **	-> target answered  (ok)   NEG SYNC  sdtr   set    -      clrack
6635 **	-> target answered (!ok)   NEG SYNC  sdtr   defa.  REJ--->msg_bad
6636 **	-> target answered  (ok)   NEG WIDE  wdtr   set    -      clrack
6637 **	-> target answered (!ok)   NEG WIDE  wdtr   defa.  REJ--->msg_bad
6638 **	-> any other msgin	   NEG FAIL  noop   defa.  -      dispatch
6639 **
6640 **	Target tries to negotiate:
6641 **	-> incoming message	   --- SYNC  sdtr   set    SDTR   -
6642 **	-> incoming message	   --- WIDE  wdtr   set    WDTR   -
6643 **      We sent our answer:
6644 **	-> target doesn't msgout   --- PROTO ?      defa.  -      dispatch
6645 **
6646 **-----------------------------------------------------------------------------
6647 */
6648 
6649 	case SIR_NEGO_FAILED:
6650 		/*-------------------------------------------------------
6651 		**
6652 		**	Negotiation failed.
6653 		**	Target doesn't send an answer message,
6654 		**	or target rejected our message.
6655 		**
6656 		**      Remove negotiation request.
6657 		**
6658 		**-------------------------------------------------------
6659 		*/
6660 		OUTB (HS_PRT, HS_BUSY);
6661 
6662 		fallthrough;
6663 
6664 	case SIR_NEGO_PROTO:
6665 		/*-------------------------------------------------------
6666 		**
6667 		**	Negotiation failed.
6668 		**	Target doesn't fetch the answer message.
6669 		**
6670 		**-------------------------------------------------------
6671 		*/
6672 
6673 		if (DEBUG_FLAGS & DEBUG_NEGO) {
6674 			PRINT_ADDR(cp->cmd, "negotiation failed sir=%x "
6675 					"status=%x.\n", num, cp->nego_status);
6676 		}
6677 
6678 		/*
6679 		**	any error in negotiation:
6680 		**	fall back to default mode.
6681 		*/
6682 		switch (cp->nego_status) {
6683 
6684 		case NS_SYNC:
6685 			spi_period(starget) = 0;
6686 			spi_offset(starget) = 0;
6687 			ncr_setsync (np, cp, 0, 0xe0);
6688 			break;
6689 
6690 		case NS_WIDE:
6691 			spi_width(starget) = 0;
6692 			ncr_setwide (np, cp, 0, 0);
6693 			break;
6694 
6695 		}
6696 		np->msgin [0] = NOP;
6697 		np->msgout[0] = NOP;
6698 		cp->nego_status = 0;
6699 		break;
6700 
6701 	case SIR_NEGO_SYNC:
6702 		if (DEBUG_FLAGS & DEBUG_NEGO) {
6703 			ncr_print_msg(cp, "sync msgin", np->msgin);
6704 		}
6705 
6706 		chg = 0;
6707 		per = np->msgin[3];
6708 		ofs = np->msgin[4];
6709 		if (ofs==0) per=255;
6710 
6711 		/*
6712 		**      if target sends SDTR message,
6713 		**	      it CAN transfer synch.
6714 		*/
6715 
6716 		if (ofs && starget)
6717 			spi_support_sync(starget) = 1;
6718 
6719 		/*
6720 		**	check values against driver limits.
6721 		*/
6722 
6723 		if (per < np->minsync)
6724 			{chg = 1; per = np->minsync;}
6725 		if (per < tp->minsync)
6726 			{chg = 1; per = tp->minsync;}
6727 		if (ofs > tp->maxoffs)
6728 			{chg = 1; ofs = tp->maxoffs;}
6729 
6730 		/*
6731 		**	Check against controller limits.
6732 		*/
6733 		fak	= 7;
6734 		scntl3	= 0;
6735 		if (ofs != 0) {
6736 			ncr_getsync(np, per, &fak, &scntl3);
6737 			if (fak > 7) {
6738 				chg = 1;
6739 				ofs = 0;
6740 			}
6741 		}
6742 		if (ofs == 0) {
6743 			fak	= 7;
6744 			per	= 0;
6745 			scntl3	= 0;
6746 			tp->minsync = 0;
6747 		}
6748 
6749 		if (DEBUG_FLAGS & DEBUG_NEGO) {
6750 			PRINT_ADDR(cp->cmd, "sync: per=%d scntl3=0x%x ofs=%d "
6751 				"fak=%d chg=%d.\n", per, scntl3, ofs, fak, chg);
6752 		}
6753 
6754 		if (INB (HS_PRT) == HS_NEGOTIATE) {
6755 			OUTB (HS_PRT, HS_BUSY);
6756 			switch (cp->nego_status) {
6757 
6758 			case NS_SYNC:
6759 				/* This was an answer message */
6760 				if (chg) {
6761 					/* Answer wasn't acceptable.  */
6762 					spi_period(starget) = 0;
6763 					spi_offset(starget) = 0;
6764 					ncr_setsync(np, cp, 0, 0xe0);
6765 					OUTL_DSP(NCB_SCRIPT_PHYS (np, msg_bad));
6766 				} else {
6767 					/* Answer is ok.  */
6768 					spi_period(starget) = per;
6769 					spi_offset(starget) = ofs;
6770 					ncr_setsync(np, cp, scntl3, (fak<<5)|ofs);
6771 					OUTL_DSP(NCB_SCRIPT_PHYS (np, clrack));
6772 				}
6773 				return;
6774 
6775 			case NS_WIDE:
6776 				spi_width(starget) = 0;
6777 				ncr_setwide(np, cp, 0, 0);
6778 				break;
6779 			}
6780 		}
6781 
6782 		/*
6783 		**	It was a request. Set value and
6784 		**      prepare an answer message
6785 		*/
6786 
6787 		spi_period(starget) = per;
6788 		spi_offset(starget) = ofs;
6789 		ncr_setsync(np, cp, scntl3, (fak<<5)|ofs);
6790 
6791 		spi_populate_sync_msg(np->msgout, per, ofs);
6792 		cp->nego_status = NS_SYNC;
6793 
6794 		if (DEBUG_FLAGS & DEBUG_NEGO) {
6795 			ncr_print_msg(cp, "sync msgout", np->msgout);
6796 		}
6797 
6798 		if (!ofs) {
6799 			OUTL_DSP (NCB_SCRIPT_PHYS (np, msg_bad));
6800 			return;
6801 		}
6802 		np->msgin [0] = NOP;
6803 
6804 		break;
6805 
6806 	case SIR_NEGO_WIDE:
6807 		/*
6808 		**	Wide request message received.
6809 		*/
6810 		if (DEBUG_FLAGS & DEBUG_NEGO) {
6811 			ncr_print_msg(cp, "wide msgin", np->msgin);
6812 		}
6813 
6814 		/*
6815 		**	get requested values.
6816 		*/
6817 
6818 		chg  = 0;
6819 		wide = np->msgin[3];
6820 
6821 		/*
6822 		**      if target sends WDTR message,
6823 		**	      it CAN transfer wide.
6824 		*/
6825 
6826 		if (wide && starget)
6827 			spi_support_wide(starget) = 1;
6828 
6829 		/*
6830 		**	check values against driver limits.
6831 		*/
6832 
6833 		if (wide > tp->usrwide)
6834 			{chg = 1; wide = tp->usrwide;}
6835 
6836 		if (DEBUG_FLAGS & DEBUG_NEGO) {
6837 			PRINT_ADDR(cp->cmd, "wide: wide=%d chg=%d.\n", wide,
6838 					chg);
6839 		}
6840 
6841 		if (INB (HS_PRT) == HS_NEGOTIATE) {
6842 			OUTB (HS_PRT, HS_BUSY);
6843 			switch (cp->nego_status) {
6844 
6845 			case NS_WIDE:
6846 				/*
6847 				**      This was an answer message
6848 				*/
6849 				if (chg) {
6850 					/* Answer wasn't acceptable.  */
6851 					spi_width(starget) = 0;
6852 					ncr_setwide(np, cp, 0, 1);
6853 					OUTL_DSP (NCB_SCRIPT_PHYS (np, msg_bad));
6854 				} else {
6855 					/* Answer is ok.  */
6856 					spi_width(starget) = wide;
6857 					ncr_setwide(np, cp, wide, 1);
6858 					OUTL_DSP (NCB_SCRIPT_PHYS (np, clrack));
6859 				}
6860 				return;
6861 
6862 			case NS_SYNC:
6863 				spi_period(starget) = 0;
6864 				spi_offset(starget) = 0;
6865 				ncr_setsync(np, cp, 0, 0xe0);
6866 				break;
6867 			}
6868 		}
6869 
6870 		/*
6871 		**	It was a request, set value and
6872 		**      prepare an answer message
6873 		*/
6874 
6875 		spi_width(starget) = wide;
6876 		ncr_setwide(np, cp, wide, 1);
6877 		spi_populate_width_msg(np->msgout, wide);
6878 
6879 		np->msgin [0] = NOP;
6880 
6881 		cp->nego_status = NS_WIDE;
6882 
6883 		if (DEBUG_FLAGS & DEBUG_NEGO) {
6884 			ncr_print_msg(cp, "wide msgout", np->msgin);
6885 		}
6886 		break;
6887 
6888 /*--------------------------------------------------------------------
6889 **
6890 **	Processing of special messages
6891 **
6892 **--------------------------------------------------------------------
6893 */
6894 
6895 	case SIR_REJECT_RECEIVED:
6896 		/*-----------------------------------------------
6897 		**
6898 		**	We received a MESSAGE_REJECT.
6899 		**
6900 		**-----------------------------------------------
6901 		*/
6902 
6903 		PRINT_ADDR(cp->cmd, "MESSAGE_REJECT received (%x:%x).\n",
6904 			(unsigned)scr_to_cpu(np->lastmsg), np->msgout[0]);
6905 		break;
6906 
6907 	case SIR_REJECT_SENT:
6908 		/*-----------------------------------------------
6909 		**
6910 		**	We received an unknown message
6911 		**
6912 		**-----------------------------------------------
6913 		*/
6914 
6915 		ncr_print_msg(cp, "MESSAGE_REJECT sent for", np->msgin);
6916 		break;
6917 
6918 /*--------------------------------------------------------------------
6919 **
6920 **	Processing of special messages
6921 **
6922 **--------------------------------------------------------------------
6923 */
6924 
6925 	case SIR_IGN_RESIDUE:
6926 		/*-----------------------------------------------
6927 		**
6928 		**	We received an IGNORE RESIDUE message,
6929 		**	which couldn't be handled by the script.
6930 		**
6931 		**-----------------------------------------------
6932 		*/
6933 
6934 		PRINT_ADDR(cp->cmd, "IGNORE_WIDE_RESIDUE received, but not yet "
6935 				"implemented.\n");
6936 		break;
6937 #if 0
6938 	case SIR_MISSING_SAVE:
6939 		/*-----------------------------------------------
6940 		**
6941 		**	We received an DISCONNECT message,
6942 		**	but the datapointer wasn't saved before.
6943 		**
6944 		**-----------------------------------------------
6945 		*/
6946 
6947 		PRINT_ADDR(cp->cmd, "DISCONNECT received, but datapointer "
6948 				"not saved: data=%x save=%x goal=%x.\n",
6949 			(unsigned) INL (nc_temp),
6950 			(unsigned) scr_to_cpu(np->header.savep),
6951 			(unsigned) scr_to_cpu(np->header.goalp));
6952 		break;
6953 #endif
6954 	}
6955 
6956 out:
6957 	OUTONB_STD ();
6958 }
6959 
6960 /*==========================================================
6961 **
6962 **
6963 **	Acquire a control block
6964 **
6965 **
6966 **==========================================================
6967 */
6968 
6969 static struct ccb *ncr_get_ccb(struct ncb *np, struct scsi_cmnd *cmd)
6970 {
6971 	u_char tn = cmd->device->id;
6972 	u_char ln = cmd->device->lun;
6973 	struct tcb *tp = &np->target[tn];
6974 	struct lcb *lp = tp->lp[ln];
6975 	u_char tag = NO_TAG;
6976 	struct ccb *cp = NULL;
6977 
6978 	/*
6979 	**	Lun structure available ?
6980 	*/
6981 	if (lp) {
6982 		struct list_head *qp;
6983 		/*
6984 		**	Keep from using more tags than we can handle.
6985 		*/
6986 		if (lp->usetags && lp->busyccbs >= lp->maxnxs)
6987 			return NULL;
6988 
6989 		/*
6990 		**	Allocate a new CCB if needed.
6991 		*/
6992 		if (list_empty(&lp->free_ccbq))
6993 			ncr_alloc_ccb(np, tn, ln);
6994 
6995 		/*
6996 		**	Look for free CCB
6997 		*/
6998 		qp = ncr_list_pop(&lp->free_ccbq);
6999 		if (qp) {
7000 			cp = list_entry(qp, struct ccb, link_ccbq);
7001 			if (cp->magic) {
7002 				PRINT_ADDR(cmd, "ccb free list corrupted "
7003 						"(@%p)\n", cp);
7004 				cp = NULL;
7005 			} else {
7006 				list_add_tail(qp, &lp->wait_ccbq);
7007 				++lp->busyccbs;
7008 			}
7009 		}
7010 
7011 		/*
7012 		**	If a CCB is available,
7013 		**	Get a tag for this nexus if required.
7014 		*/
7015 		if (cp) {
7016 			if (lp->usetags)
7017 				tag = lp->cb_tags[lp->ia_tag];
7018 		}
7019 		else if (lp->actccbs > 0)
7020 			return NULL;
7021 	}
7022 
7023 	/*
7024 	**	if nothing available, take the default.
7025 	*/
7026 	if (!cp)
7027 		cp = np->ccb;
7028 
7029 	/*
7030 	**	Wait until available.
7031 	*/
7032 #if 0
7033 	while (cp->magic) {
7034 		if (flags & SCSI_NOSLEEP) break;
7035 		if (tsleep ((caddr_t)cp, PRIBIO|PCATCH, "ncr", 0))
7036 			break;
7037 	}
7038 #endif
7039 
7040 	if (cp->magic)
7041 		return NULL;
7042 
7043 	cp->magic = 1;
7044 
7045 	/*
7046 	**	Move to next available tag if tag used.
7047 	*/
7048 	if (lp) {
7049 		if (tag != NO_TAG) {
7050 			++lp->ia_tag;
7051 			if (lp->ia_tag == MAX_TAGS)
7052 				lp->ia_tag = 0;
7053 			lp->tags_umap |= (((tagmap_t) 1) << tag);
7054 		}
7055 	}
7056 
7057 	/*
7058 	**	Remember all informations needed to free this CCB.
7059 	*/
7060 	cp->tag	   = tag;
7061 	cp->target = tn;
7062 	cp->lun    = ln;
7063 
7064 	if (DEBUG_FLAGS & DEBUG_TAGS) {
7065 		PRINT_ADDR(cmd, "ccb @%p using tag %d.\n", cp, tag);
7066 	}
7067 
7068 	return cp;
7069 }
7070 
7071 /*==========================================================
7072 **
7073 **
7074 **	Release one control block
7075 **
7076 **
7077 **==========================================================
7078 */
7079 
7080 static void ncr_free_ccb (struct ncb *np, struct ccb *cp)
7081 {
7082 	struct tcb *tp = &np->target[cp->target];
7083 	struct lcb *lp = tp->lp[cp->lun];
7084 
7085 	if (DEBUG_FLAGS & DEBUG_TAGS) {
7086 		PRINT_ADDR(cp->cmd, "ccb @%p freeing tag %d.\n", cp, cp->tag);
7087 	}
7088 
7089 	/*
7090 	**	If lun control block available,
7091 	**	decrement active commands and increment credit,
7092 	**	free the tag if any and remove the JUMP for reselect.
7093 	*/
7094 	if (lp) {
7095 		if (cp->tag != NO_TAG) {
7096 			lp->cb_tags[lp->if_tag++] = cp->tag;
7097 			if (lp->if_tag == MAX_TAGS)
7098 				lp->if_tag = 0;
7099 			lp->tags_umap &= ~(((tagmap_t) 1) << cp->tag);
7100 			lp->tags_smap &= lp->tags_umap;
7101 			lp->jump_ccb[cp->tag] =
7102 				cpu_to_scr(NCB_SCRIPTH_PHYS(np, bad_i_t_l_q));
7103 		} else {
7104 			lp->jump_ccb[0] =
7105 				cpu_to_scr(NCB_SCRIPTH_PHYS(np, bad_i_t_l));
7106 		}
7107 	}
7108 
7109 	/*
7110 	**	Make this CCB available.
7111 	*/
7112 
7113 	if (lp) {
7114 		if (cp != np->ccb)
7115 			list_move(&cp->link_ccbq, &lp->free_ccbq);
7116 		--lp->busyccbs;
7117 		if (cp->queued) {
7118 			--lp->queuedccbs;
7119 		}
7120 	}
7121 	cp -> host_status = HS_IDLE;
7122 	cp -> magic = 0;
7123 	if (cp->queued) {
7124 		--np->queuedccbs;
7125 		cp->queued = 0;
7126 	}
7127 
7128 #if 0
7129 	if (cp == np->ccb)
7130 		wakeup ((caddr_t) cp);
7131 #endif
7132 }
7133 
7134 
7135 #define ncr_reg_bus_addr(r) (np->paddr + offsetof (struct ncr_reg, r))
7136 
7137 /*------------------------------------------------------------------------
7138 **	Initialize the fixed part of a CCB structure.
7139 **------------------------------------------------------------------------
7140 **------------------------------------------------------------------------
7141 */
7142 static void ncr_init_ccb(struct ncb *np, struct ccb *cp)
7143 {
7144 	ncrcmd copy_4 = np->features & FE_PFEN ? SCR_COPY(4) : SCR_COPY_F(4);
7145 
7146 	/*
7147 	**	Remember virtual and bus address of this ccb.
7148 	*/
7149 	cp->p_ccb 	   = vtobus(cp);
7150 	cp->phys.header.cp = cp;
7151 
7152 	/*
7153 	**	This allows list_del to work for the default ccb.
7154 	*/
7155 	INIT_LIST_HEAD(&cp->link_ccbq);
7156 
7157 	/*
7158 	**	Initialyze the start and restart launch script.
7159 	**
7160 	**	COPY(4) @(...p_phys), @(dsa)
7161 	**	JUMP @(sched_point)
7162 	*/
7163 	cp->start.setup_dsa[0]	 = cpu_to_scr(copy_4);
7164 	cp->start.setup_dsa[1]	 = cpu_to_scr(CCB_PHYS(cp, start.p_phys));
7165 	cp->start.setup_dsa[2]	 = cpu_to_scr(ncr_reg_bus_addr(nc_dsa));
7166 	cp->start.schedule.l_cmd = cpu_to_scr(SCR_JUMP);
7167 	cp->start.p_phys	 = cpu_to_scr(CCB_PHYS(cp, phys));
7168 
7169 	memcpy(&cp->restart, &cp->start, sizeof(cp->restart));
7170 
7171 	cp->start.schedule.l_paddr   = cpu_to_scr(NCB_SCRIPT_PHYS (np, idle));
7172 	cp->restart.schedule.l_paddr = cpu_to_scr(NCB_SCRIPTH_PHYS (np, abort));
7173 }
7174 
7175 
7176 /*------------------------------------------------------------------------
7177 **	Allocate a CCB and initialize its fixed part.
7178 **------------------------------------------------------------------------
7179 **------------------------------------------------------------------------
7180 */
7181 static void ncr_alloc_ccb(struct ncb *np, u_char tn, u_char ln)
7182 {
7183 	struct tcb *tp = &np->target[tn];
7184 	struct lcb *lp = tp->lp[ln];
7185 	struct ccb *cp = NULL;
7186 
7187 	/*
7188 	**	Allocate memory for this CCB.
7189 	*/
7190 	cp = m_calloc_dma(sizeof(struct ccb), "CCB");
7191 	if (!cp)
7192 		return;
7193 
7194 	/*
7195 	**	Count it and initialyze it.
7196 	*/
7197 	lp->actccbs++;
7198 	np->actccbs++;
7199 	memset(cp, 0, sizeof (*cp));
7200 	ncr_init_ccb(np, cp);
7201 
7202 	/*
7203 	**	Chain into wakeup list and free ccb queue and take it
7204 	**	into account for tagged commands.
7205 	*/
7206 	cp->link_ccb      = np->ccb->link_ccb;
7207 	np->ccb->link_ccb = cp;
7208 
7209 	list_add(&cp->link_ccbq, &lp->free_ccbq);
7210 }
7211 
7212 /*==========================================================
7213 **
7214 **
7215 **      Allocation of resources for Targets/Luns/Tags.
7216 **
7217 **
7218 **==========================================================
7219 */
7220 
7221 
7222 /*------------------------------------------------------------------------
7223 **	Target control block initialisation.
7224 **------------------------------------------------------------------------
7225 **	This data structure is fully initialized after a SCSI command
7226 **	has been successfully completed for this target.
7227 **	It contains a SCRIPT that is called on target reselection.
7228 **------------------------------------------------------------------------
7229 */
7230 static void ncr_init_tcb (struct ncb *np, u_char tn)
7231 {
7232 	struct tcb *tp = &np->target[tn];
7233 	ncrcmd copy_1 = np->features & FE_PFEN ? SCR_COPY(1) : SCR_COPY_F(1);
7234 	int th = tn & 3;
7235 	int i;
7236 
7237 	/*
7238 	**	Jump to next tcb if SFBR does not match this target.
7239 	**	JUMP  IF (SFBR != #target#), @(next tcb)
7240 	*/
7241 	tp->jump_tcb.l_cmd   =
7242 		cpu_to_scr((SCR_JUMP ^ IFFALSE (DATA (0x80 + tn))));
7243 	tp->jump_tcb.l_paddr = np->jump_tcb[th].l_paddr;
7244 
7245 	/*
7246 	**	Load the synchronous transfer register.
7247 	**	COPY @(tp->sval), @(sxfer)
7248 	*/
7249 	tp->getscr[0] =	cpu_to_scr(copy_1);
7250 	tp->getscr[1] = cpu_to_scr(vtobus (&tp->sval));
7251 #ifdef SCSI_NCR_BIG_ENDIAN
7252 	tp->getscr[2] = cpu_to_scr(ncr_reg_bus_addr(nc_sxfer) ^ 3);
7253 #else
7254 	tp->getscr[2] = cpu_to_scr(ncr_reg_bus_addr(nc_sxfer));
7255 #endif
7256 
7257 	/*
7258 	**	Load the timing register.
7259 	**	COPY @(tp->wval), @(scntl3)
7260 	*/
7261 	tp->getscr[3] =	cpu_to_scr(copy_1);
7262 	tp->getscr[4] = cpu_to_scr(vtobus (&tp->wval));
7263 #ifdef SCSI_NCR_BIG_ENDIAN
7264 	tp->getscr[5] = cpu_to_scr(ncr_reg_bus_addr(nc_scntl3) ^ 3);
7265 #else
7266 	tp->getscr[5] = cpu_to_scr(ncr_reg_bus_addr(nc_scntl3));
7267 #endif
7268 
7269 	/*
7270 	**	Get the IDENTIFY message and the lun.
7271 	**	CALL @script(resel_lun)
7272 	*/
7273 	tp->call_lun.l_cmd   = cpu_to_scr(SCR_CALL);
7274 	tp->call_lun.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_lun));
7275 
7276 	/*
7277 	**	Look for the lun control block of this nexus.
7278 	**	For i = 0 to 3
7279 	**		JUMP ^ IFTRUE (MASK (i, 3)), @(next_lcb)
7280 	*/
7281 	for (i = 0 ; i < 4 ; i++) {
7282 		tp->jump_lcb[i].l_cmd   =
7283 				cpu_to_scr((SCR_JUMP ^ IFTRUE (MASK (i, 3))));
7284 		tp->jump_lcb[i].l_paddr =
7285 				cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_identify));
7286 	}
7287 
7288 	/*
7289 	**	Link this target control block to the JUMP chain.
7290 	*/
7291 	np->jump_tcb[th].l_paddr = cpu_to_scr(vtobus (&tp->jump_tcb));
7292 
7293 	/*
7294 	**	These assert's should be moved at driver initialisations.
7295 	*/
7296 #ifdef SCSI_NCR_BIG_ENDIAN
7297 	BUG_ON(((offsetof(struct ncr_reg, nc_sxfer) ^
7298 		 offsetof(struct tcb    , sval    )) &3) != 3);
7299 	BUG_ON(((offsetof(struct ncr_reg, nc_scntl3) ^
7300 		 offsetof(struct tcb    , wval    )) &3) != 3);
7301 #else
7302 	BUG_ON(((offsetof(struct ncr_reg, nc_sxfer) ^
7303 		 offsetof(struct tcb    , sval    )) &3) != 0);
7304 	BUG_ON(((offsetof(struct ncr_reg, nc_scntl3) ^
7305 		 offsetof(struct tcb    , wval    )) &3) != 0);
7306 #endif
7307 }
7308 
7309 
7310 /*------------------------------------------------------------------------
7311 **	Lun control block allocation and initialization.
7312 **------------------------------------------------------------------------
7313 **	This data structure is allocated and initialized after a SCSI
7314 **	command has been successfully completed for this target/lun.
7315 **------------------------------------------------------------------------
7316 */
7317 static struct lcb *ncr_alloc_lcb (struct ncb *np, u_char tn, u_char ln)
7318 {
7319 	struct tcb *tp = &np->target[tn];
7320 	struct lcb *lp = tp->lp[ln];
7321 	ncrcmd copy_4 = np->features & FE_PFEN ? SCR_COPY(4) : SCR_COPY_F(4);
7322 	int lh = ln & 3;
7323 
7324 	/*
7325 	**	Already done, return.
7326 	*/
7327 	if (lp)
7328 		return lp;
7329 
7330 	/*
7331 	**	Allocate the lcb.
7332 	*/
7333 	lp = m_calloc_dma(sizeof(struct lcb), "LCB");
7334 	if (!lp)
7335 		goto fail;
7336 	memset(lp, 0, sizeof(*lp));
7337 	tp->lp[ln] = lp;
7338 
7339 	/*
7340 	**	Initialize the target control block if not yet.
7341 	*/
7342 	if (!tp->jump_tcb.l_cmd)
7343 		ncr_init_tcb(np, tn);
7344 
7345 	/*
7346 	**	Initialize the CCB queue headers.
7347 	*/
7348 	INIT_LIST_HEAD(&lp->free_ccbq);
7349 	INIT_LIST_HEAD(&lp->busy_ccbq);
7350 	INIT_LIST_HEAD(&lp->wait_ccbq);
7351 	INIT_LIST_HEAD(&lp->skip_ccbq);
7352 
7353 	/*
7354 	**	Set max CCBs to 1 and use the default 1 entry
7355 	**	jump table by default.
7356 	*/
7357 	lp->maxnxs	= 1;
7358 	lp->jump_ccb	= &lp->jump_ccb_0;
7359 	lp->p_jump_ccb	= cpu_to_scr(vtobus(lp->jump_ccb));
7360 
7361 	/*
7362 	**	Initilialyze the reselect script:
7363 	**
7364 	**	Jump to next lcb if SFBR does not match this lun.
7365 	**	Load TEMP with the CCB direct jump table bus address.
7366 	**	Get the SIMPLE TAG message and the tag.
7367 	**
7368 	**	JUMP  IF (SFBR != #lun#), @(next lcb)
7369 	**	COPY @(lp->p_jump_ccb),	  @(temp)
7370 	**	JUMP @script(resel_notag)
7371 	*/
7372 	lp->jump_lcb.l_cmd   =
7373 		cpu_to_scr((SCR_JUMP ^ IFFALSE (MASK (0x80+ln, 0xff))));
7374 	lp->jump_lcb.l_paddr = tp->jump_lcb[lh].l_paddr;
7375 
7376 	lp->load_jump_ccb[0] = cpu_to_scr(copy_4);
7377 	lp->load_jump_ccb[1] = cpu_to_scr(vtobus (&lp->p_jump_ccb));
7378 	lp->load_jump_ccb[2] = cpu_to_scr(ncr_reg_bus_addr(nc_temp));
7379 
7380 	lp->jump_tag.l_cmd   = cpu_to_scr(SCR_JUMP);
7381 	lp->jump_tag.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_notag));
7382 
7383 	/*
7384 	**	Link this lun control block to the JUMP chain.
7385 	*/
7386 	tp->jump_lcb[lh].l_paddr = cpu_to_scr(vtobus (&lp->jump_lcb));
7387 
7388 	/*
7389 	**	Initialize command queuing control.
7390 	*/
7391 	lp->busyccbs	= 1;
7392 	lp->queuedccbs	= 1;
7393 	lp->queuedepth	= 1;
7394 fail:
7395 	return lp;
7396 }
7397 
7398 
7399 /*------------------------------------------------------------------------
7400 **	Lun control block setup on INQUIRY data received.
7401 **------------------------------------------------------------------------
7402 **	We only support WIDE, SYNC for targets and CMDQ for logical units.
7403 **	This setup is done on each INQUIRY since we are expecting user
7404 **	will play with CHANGE DEFINITION commands. :-)
7405 **------------------------------------------------------------------------
7406 */
7407 static struct lcb *ncr_setup_lcb (struct ncb *np, struct scsi_device *sdev)
7408 {
7409 	unsigned char tn = sdev->id, ln = sdev->lun;
7410 	struct tcb *tp = &np->target[tn];
7411 	struct lcb *lp = tp->lp[ln];
7412 
7413 	/* If no lcb, try to allocate it.  */
7414 	if (!lp && !(lp = ncr_alloc_lcb(np, tn, ln)))
7415 		goto fail;
7416 
7417 	/*
7418 	**	If unit supports tagged commands, allocate the
7419 	**	CCB JUMP table if not yet.
7420 	*/
7421 	if (sdev->tagged_supported && lp->jump_ccb == &lp->jump_ccb_0) {
7422 		int i;
7423 		lp->jump_ccb = m_calloc_dma(256, "JUMP_CCB");
7424 		if (!lp->jump_ccb) {
7425 			lp->jump_ccb = &lp->jump_ccb_0;
7426 			goto fail;
7427 		}
7428 		lp->p_jump_ccb = cpu_to_scr(vtobus(lp->jump_ccb));
7429 		for (i = 0 ; i < 64 ; i++)
7430 			lp->jump_ccb[i] =
7431 				cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_i_t_l_q));
7432 		for (i = 0 ; i < MAX_TAGS ; i++)
7433 			lp->cb_tags[i] = i;
7434 		lp->maxnxs = MAX_TAGS;
7435 		lp->tags_stime = jiffies + 3*HZ;
7436 		ncr_setup_tags (np, sdev);
7437 	}
7438 
7439 
7440 fail:
7441 	return lp;
7442 }
7443 
7444 /*==========================================================
7445 **
7446 **
7447 **	Build Scatter Gather Block
7448 **
7449 **
7450 **==========================================================
7451 **
7452 **	The transfer area may be scattered among
7453 **	several non adjacent physical pages.
7454 **
7455 **	We may use MAX_SCATTER blocks.
7456 **
7457 **----------------------------------------------------------
7458 */
7459 
7460 /*
7461 **	We try to reduce the number of interrupts caused
7462 **	by unexpected phase changes due to disconnects.
7463 **	A typical harddisk may disconnect before ANY block.
7464 **	If we wanted to avoid unexpected phase changes at all
7465 **	we had to use a break point every 512 bytes.
7466 **	Of course the number of scatter/gather blocks is
7467 **	limited.
7468 **	Under Linux, the scatter/gatter blocks are provided by
7469 **	the generic driver. We just have to copy addresses and
7470 **	sizes to the data segment array.
7471 */
7472 
7473 static int ncr_scatter(struct ncb *np, struct ccb *cp, struct scsi_cmnd *cmd)
7474 {
7475 	int segment	= 0;
7476 	int use_sg	= scsi_sg_count(cmd);
7477 
7478 	cp->data_len	= 0;
7479 
7480 	use_sg = map_scsi_sg_data(np, cmd);
7481 	if (use_sg > 0) {
7482 		struct scatterlist *sg;
7483 		struct scr_tblmove *data;
7484 
7485 		if (use_sg > MAX_SCATTER) {
7486 			unmap_scsi_data(np, cmd);
7487 			return -1;
7488 		}
7489 
7490 		data = &cp->phys.data[MAX_SCATTER - use_sg];
7491 
7492 		scsi_for_each_sg(cmd, sg, use_sg, segment) {
7493 			dma_addr_t baddr = sg_dma_address(sg);
7494 			unsigned int len = sg_dma_len(sg);
7495 
7496 			ncr_build_sge(np, &data[segment], baddr, len);
7497 			cp->data_len += len;
7498 		}
7499 	} else
7500 		segment = -2;
7501 
7502 	return segment;
7503 }
7504 
7505 /*==========================================================
7506 **
7507 **
7508 **	Test the bus snoop logic :-(
7509 **
7510 **	Has to be called with interrupts disabled.
7511 **
7512 **
7513 **==========================================================
7514 */
7515 
7516 static int __init ncr_regtest (struct ncb* np)
7517 {
7518 	register volatile u32 data;
7519 	/*
7520 	**	ncr registers may NOT be cached.
7521 	**	write 0xffffffff to a read only register area,
7522 	**	and try to read it back.
7523 	*/
7524 	data = 0xffffffff;
7525 	OUTL_OFF(offsetof(struct ncr_reg, nc_dstat), data);
7526 	data = INL_OFF(offsetof(struct ncr_reg, nc_dstat));
7527 #if 1
7528 	if (data == 0xffffffff) {
7529 #else
7530 	if ((data & 0xe2f0fffd) != 0x02000080) {
7531 #endif
7532 		printk ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
7533 			(unsigned) data);
7534 		return (0x10);
7535 	}
7536 	return (0);
7537 }
7538 
7539 static int __init ncr_snooptest (struct ncb* np)
7540 {
7541 	u32	ncr_rd, ncr_wr, ncr_bk, host_rd, host_wr, pc;
7542 	int	i, err=0;
7543 	if (np->reg) {
7544 		err |= ncr_regtest (np);
7545 		if (err)
7546 			return (err);
7547 	}
7548 
7549 	/* init */
7550 	pc  = NCB_SCRIPTH_PHYS (np, snooptest);
7551 	host_wr = 1;
7552 	ncr_wr  = 2;
7553 	/*
7554 	**	Set memory and register.
7555 	*/
7556 	np->ncr_cache = cpu_to_scr(host_wr);
7557 	OUTL (nc_temp, ncr_wr);
7558 	/*
7559 	**	Start script (exchange values)
7560 	*/
7561 	OUTL_DSP (pc);
7562 	/*
7563 	**	Wait 'til done (with timeout)
7564 	*/
7565 	for (i=0; i<NCR_SNOOP_TIMEOUT; i++)
7566 		if (INB(nc_istat) & (INTF|SIP|DIP))
7567 			break;
7568 	/*
7569 	**	Save termination position.
7570 	*/
7571 	pc = INL (nc_dsp);
7572 	/*
7573 	**	Read memory and register.
7574 	*/
7575 	host_rd = scr_to_cpu(np->ncr_cache);
7576 	ncr_rd  = INL (nc_scratcha);
7577 	ncr_bk  = INL (nc_temp);
7578 	/*
7579 	**	Reset ncr chip
7580 	*/
7581 	ncr_chip_reset(np, 100);
7582 	/*
7583 	**	check for timeout
7584 	*/
7585 	if (i>=NCR_SNOOP_TIMEOUT) {
7586 		printk ("CACHE TEST FAILED: timeout.\n");
7587 		return (0x20);
7588 	}
7589 	/*
7590 	**	Check termination position.
7591 	*/
7592 	if (pc != NCB_SCRIPTH_PHYS (np, snoopend)+8) {
7593 		printk ("CACHE TEST FAILED: script execution failed.\n");
7594 		printk ("start=%08lx, pc=%08lx, end=%08lx\n",
7595 			(u_long) NCB_SCRIPTH_PHYS (np, snooptest), (u_long) pc,
7596 			(u_long) NCB_SCRIPTH_PHYS (np, snoopend) +8);
7597 		return (0x40);
7598 	}
7599 	/*
7600 	**	Show results.
7601 	*/
7602 	if (host_wr != ncr_rd) {
7603 		printk ("CACHE TEST FAILED: host wrote %d, ncr read %d.\n",
7604 			(int) host_wr, (int) ncr_rd);
7605 		err |= 1;
7606 	}
7607 	if (host_rd != ncr_wr) {
7608 		printk ("CACHE TEST FAILED: ncr wrote %d, host read %d.\n",
7609 			(int) ncr_wr, (int) host_rd);
7610 		err |= 2;
7611 	}
7612 	if (ncr_bk != ncr_wr) {
7613 		printk ("CACHE TEST FAILED: ncr wrote %d, read back %d.\n",
7614 			(int) ncr_wr, (int) ncr_bk);
7615 		err |= 4;
7616 	}
7617 	return (err);
7618 }
7619 
7620 /*==========================================================
7621 **
7622 **	Determine the ncr's clock frequency.
7623 **	This is essential for the negotiation
7624 **	of the synchronous transfer rate.
7625 **
7626 **==========================================================
7627 **
7628 **	Note: we have to return the correct value.
7629 **	THERE IS NO SAFE DEFAULT VALUE.
7630 **
7631 **	Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
7632 **	53C860 and 53C875 rev. 1 support fast20 transfers but
7633 **	do not have a clock doubler and so are provided with a
7634 **	80 MHz clock. All other fast20 boards incorporate a doubler
7635 **	and so should be delivered with a 40 MHz clock.
7636 **	The future fast40 chips (895/895) use a 40 Mhz base clock
7637 **	and provide a clock quadrupler (160 Mhz). The code below
7638 **	tries to deal as cleverly as possible with all this stuff.
7639 **
7640 **----------------------------------------------------------
7641 */
7642 
7643 /*
7644  *	Select NCR SCSI clock frequency
7645  */
7646 static void ncr_selectclock(struct ncb *np, u_char scntl3)
7647 {
7648 	if (np->multiplier < 2) {
7649 		OUTB(nc_scntl3,	scntl3);
7650 		return;
7651 	}
7652 
7653 	if (bootverbose >= 2)
7654 		printk ("%s: enabling clock multiplier\n", ncr_name(np));
7655 
7656 	OUTB(nc_stest1, DBLEN);	   /* Enable clock multiplier		  */
7657 	if (np->multiplier > 2) {  /* Poll bit 5 of stest4 for quadrupler */
7658 		int i = 20;
7659 		while (!(INB(nc_stest4) & LCKFRQ) && --i > 0)
7660 			udelay(20);
7661 		if (!i)
7662 			printk("%s: the chip cannot lock the frequency\n", ncr_name(np));
7663 	} else			/* Wait 20 micro-seconds for doubler	*/
7664 		udelay(20);
7665 	OUTB(nc_stest3, HSC);		/* Halt the scsi clock		*/
7666 	OUTB(nc_scntl3,	scntl3);
7667 	OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier	*/
7668 	OUTB(nc_stest3, 0x00);		/* Restart scsi clock 		*/
7669 }
7670 
7671 
7672 /*
7673  *	calculate NCR SCSI clock frequency (in KHz)
7674  */
7675 static unsigned __init ncrgetfreq (struct ncb *np, int gen)
7676 {
7677 	unsigned ms = 0;
7678 	char count = 0;
7679 
7680 	/*
7681 	 * Measure GEN timer delay in order
7682 	 * to calculate SCSI clock frequency
7683 	 *
7684 	 * This code will never execute too
7685 	 * many loop iterations (if DELAY is
7686 	 * reasonably correct). It could get
7687 	 * too low a delay (too high a freq.)
7688 	 * if the CPU is slow executing the
7689 	 * loop for some reason (an NMI, for
7690 	 * example). For this reason we will
7691 	 * if multiple measurements are to be
7692 	 * performed trust the higher delay
7693 	 * (lower frequency returned).
7694 	 */
7695 	OUTB (nc_stest1, 0);	/* make sure clock doubler is OFF */
7696 	OUTW (nc_sien , 0);	/* mask all scsi interrupts */
7697 	(void) INW (nc_sist);	/* clear pending scsi interrupt */
7698 	OUTB (nc_dien , 0);	/* mask all dma interrupts */
7699 	(void) INW (nc_sist);	/* another one, just to be sure :) */
7700 	OUTB (nc_scntl3, 4);	/* set pre-scaler to divide by 3 */
7701 	OUTB (nc_stime1, 0);	/* disable general purpose timer */
7702 	OUTB (nc_stime1, gen);	/* set to nominal delay of 1<<gen * 125us */
7703 	while (!(INW(nc_sist) & GEN) && ms++ < 100000) {
7704 		for (count = 0; count < 10; count ++)
7705 			udelay(100);	/* count ms */
7706 	}
7707 	OUTB (nc_stime1, 0);	/* disable general purpose timer */
7708  	/*
7709  	 * set prescaler to divide by whatever 0 means
7710  	 * 0 ought to choose divide by 2, but appears
7711  	 * to set divide by 3.5 mode in my 53c810 ...
7712  	 */
7713  	OUTB (nc_scntl3, 0);
7714 
7715 	if (bootverbose >= 2)
7716 		printk ("%s: Delay (GEN=%d): %u msec\n", ncr_name(np), gen, ms);
7717   	/*
7718  	 * adjust for prescaler, and convert into KHz
7719   	 */
7720 	return ms ? ((1 << gen) * 4340) / ms : 0;
7721 }
7722 
7723 /*
7724  *	Get/probe NCR SCSI clock frequency
7725  */
7726 static void __init ncr_getclock (struct ncb *np, int mult)
7727 {
7728 	unsigned char scntl3 = INB(nc_scntl3);
7729 	unsigned char stest1 = INB(nc_stest1);
7730 	unsigned f1;
7731 
7732 	np->multiplier = 1;
7733 	f1 = 40000;
7734 
7735 	/*
7736 	**	True with 875 or 895 with clock multiplier selected
7737 	*/
7738 	if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
7739 		if (bootverbose >= 2)
7740 			printk ("%s: clock multiplier found\n", ncr_name(np));
7741 		np->multiplier = mult;
7742 	}
7743 
7744 	/*
7745 	**	If multiplier not found or scntl3 not 7,5,3,
7746 	**	reset chip and get frequency from general purpose timer.
7747 	**	Otherwise trust scntl3 BIOS setting.
7748 	*/
7749 	if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
7750 		unsigned f2;
7751 
7752 		ncr_chip_reset(np, 5);
7753 
7754 		(void) ncrgetfreq (np, 11);	/* throw away first result */
7755 		f1 = ncrgetfreq (np, 11);
7756 		f2 = ncrgetfreq (np, 11);
7757 
7758 		if(bootverbose)
7759 			printk ("%s: NCR clock is %uKHz, %uKHz\n", ncr_name(np), f1, f2);
7760 
7761 		if (f1 > f2) f1 = f2;		/* trust lower result	*/
7762 
7763 		if	(f1 <	45000)		f1 =  40000;
7764 		else if (f1 <	55000)		f1 =  50000;
7765 		else				f1 =  80000;
7766 
7767 		if (f1 < 80000 && mult > 1) {
7768 			if (bootverbose >= 2)
7769 				printk ("%s: clock multiplier assumed\n", ncr_name(np));
7770 			np->multiplier	= mult;
7771 		}
7772 	} else {
7773 		if	((scntl3 & 7) == 3)	f1 =  40000;
7774 		else if	((scntl3 & 7) == 5)	f1 =  80000;
7775 		else 				f1 = 160000;
7776 
7777 		f1 /= np->multiplier;
7778 	}
7779 
7780 	/*
7781 	**	Compute controller synchronous parameters.
7782 	*/
7783 	f1		*= np->multiplier;
7784 	np->clock_khz	= f1;
7785 }
7786 
7787 /*===================== LINUX ENTRY POINTS SECTION ==========================*/
7788 
7789 static int ncr53c8xx_slave_alloc(struct scsi_device *device)
7790 {
7791 	struct Scsi_Host *host = device->host;
7792 	struct ncb *np = ((struct host_data *) host->hostdata)->ncb;
7793 	struct tcb *tp = &np->target[device->id];
7794 	tp->starget = device->sdev_target;
7795 
7796 	return 0;
7797 }
7798 
7799 static int ncr53c8xx_slave_configure(struct scsi_device *device)
7800 {
7801 	struct Scsi_Host *host = device->host;
7802 	struct ncb *np = ((struct host_data *) host->hostdata)->ncb;
7803 	struct tcb *tp = &np->target[device->id];
7804 	struct lcb *lp = tp->lp[device->lun];
7805 	int numtags, depth_to_use;
7806 
7807 	ncr_setup_lcb(np, device);
7808 
7809 	/*
7810 	**	Select queue depth from driver setup.
7811 	**	Donnot use more than configured by user.
7812 	**	Use at least 2.
7813 	**	Donnot use more than our maximum.
7814 	*/
7815 	numtags = device_queue_depth(np->unit, device->id, device->lun);
7816 	if (numtags > tp->usrtags)
7817 		numtags = tp->usrtags;
7818 	if (!device->tagged_supported)
7819 		numtags = 1;
7820 	depth_to_use = numtags;
7821 	if (depth_to_use < 2)
7822 		depth_to_use = 2;
7823 	if (depth_to_use > MAX_TAGS)
7824 		depth_to_use = MAX_TAGS;
7825 
7826 	scsi_change_queue_depth(device, depth_to_use);
7827 
7828 	/*
7829 	**	Since the queue depth is not tunable under Linux,
7830 	**	we need to know this value in order not to
7831 	**	announce stupid things to user.
7832 	**
7833 	**	XXX(hch): As of Linux 2.6 it certainly _is_ tunable..
7834 	**		  In fact we just tuned it, or did I miss
7835 	**		  something important? :)
7836 	*/
7837 	if (lp) {
7838 		lp->numtags = lp->maxtags = numtags;
7839 		lp->scdev_depth = depth_to_use;
7840 	}
7841 	ncr_setup_tags (np, device);
7842 
7843 #ifdef DEBUG_NCR53C8XX
7844 	printk("ncr53c8xx_select_queue_depth: host=%d, id=%d, lun=%d, depth=%d\n",
7845 	       np->unit, device->id, device->lun, depth_to_use);
7846 #endif
7847 
7848 	if (spi_support_sync(device->sdev_target) &&
7849 	    !spi_initial_dv(device->sdev_target))
7850 		spi_dv_device(device);
7851 	return 0;
7852 }
7853 
7854 static int ncr53c8xx_queue_command_lck(struct scsi_cmnd *cmd)
7855 {
7856      struct ncr_cmd_priv *cmd_priv = scsi_cmd_priv(cmd);
7857      void (*done)(struct scsi_cmnd *) = scsi_done;
7858      struct ncb *np = ((struct host_data *) cmd->device->host->hostdata)->ncb;
7859      unsigned long flags;
7860      int sts;
7861 
7862 #ifdef DEBUG_NCR53C8XX
7863 printk("ncr53c8xx_queue_command\n");
7864 #endif
7865 
7866      cmd->host_scribble = NULL;
7867      cmd_priv->data_mapped = 0;
7868      cmd_priv->data_mapping = 0;
7869 
7870      spin_lock_irqsave(&np->smp_lock, flags);
7871 
7872      if ((sts = ncr_queue_command(np, cmd)) != DID_OK) {
7873 	     set_host_byte(cmd, sts);
7874 #ifdef DEBUG_NCR53C8XX
7875 printk("ncr53c8xx : command not queued - result=%d\n", sts);
7876 #endif
7877      }
7878 #ifdef DEBUG_NCR53C8XX
7879      else
7880 printk("ncr53c8xx : command successfully queued\n");
7881 #endif
7882 
7883      spin_unlock_irqrestore(&np->smp_lock, flags);
7884 
7885      if (sts != DID_OK) {
7886           unmap_scsi_data(np, cmd);
7887           done(cmd);
7888 	  sts = 0;
7889      }
7890 
7891      return sts;
7892 }
7893 
7894 static DEF_SCSI_QCMD(ncr53c8xx_queue_command)
7895 
7896 irqreturn_t ncr53c8xx_intr(int irq, void *dev_id)
7897 {
7898      unsigned long flags;
7899      struct Scsi_Host *shost = (struct Scsi_Host *)dev_id;
7900      struct host_data *host_data = (struct host_data *)shost->hostdata;
7901      struct ncb *np = host_data->ncb;
7902      struct scsi_cmnd *done_list;
7903 
7904 #ifdef DEBUG_NCR53C8XX
7905      printk("ncr53c8xx : interrupt received\n");
7906 #endif
7907 
7908      if (DEBUG_FLAGS & DEBUG_TINY) printk ("[");
7909 
7910      spin_lock_irqsave(&np->smp_lock, flags);
7911      ncr_exception(np);
7912      done_list     = np->done_list;
7913      np->done_list = NULL;
7914      spin_unlock_irqrestore(&np->smp_lock, flags);
7915 
7916      if (DEBUG_FLAGS & DEBUG_TINY) printk ("]\n");
7917 
7918      if (done_list)
7919 	     ncr_flush_done_cmds(done_list);
7920      return IRQ_HANDLED;
7921 }
7922 
7923 static void ncr53c8xx_timeout(struct timer_list *t)
7924 {
7925 	struct ncb *np = from_timer(np, t, timer);
7926 	unsigned long flags;
7927 	struct scsi_cmnd *done_list;
7928 
7929 	spin_lock_irqsave(&np->smp_lock, flags);
7930 	ncr_timeout(np);
7931 	done_list     = np->done_list;
7932 	np->done_list = NULL;
7933 	spin_unlock_irqrestore(&np->smp_lock, flags);
7934 
7935 	if (done_list)
7936 		ncr_flush_done_cmds(done_list);
7937 }
7938 
7939 static int ncr53c8xx_bus_reset(struct scsi_cmnd *cmd)
7940 {
7941 	struct ncb *np = ((struct host_data *) cmd->device->host->hostdata)->ncb;
7942 	int sts;
7943 	unsigned long flags;
7944 	struct scsi_cmnd *done_list;
7945 
7946 	/*
7947 	 * If the mid-level driver told us reset is synchronous, it seems
7948 	 * that we must call the done() callback for the involved command,
7949 	 * even if this command was not queued to the low-level driver,
7950 	 * before returning SUCCESS.
7951 	 */
7952 
7953 	spin_lock_irqsave(&np->smp_lock, flags);
7954 	sts = ncr_reset_bus(np);
7955 
7956 	done_list     = np->done_list;
7957 	np->done_list = NULL;
7958 	spin_unlock_irqrestore(&np->smp_lock, flags);
7959 
7960 	ncr_flush_done_cmds(done_list);
7961 
7962 	return sts;
7963 }
7964 
7965 
7966 /*
7967 **	Scsi command waiting list management.
7968 **
7969 **	It may happen that we cannot insert a scsi command into the start queue,
7970 **	in the following circumstances.
7971 ** 		Too few preallocated ccb(s),
7972 **		maxtags < cmd_per_lun of the Linux host control block,
7973 **		etc...
7974 **	Such scsi commands are inserted into a waiting list.
7975 **	When a scsi command complete, we try to requeue the commands of the
7976 **	waiting list.
7977 */
7978 
7979 #define next_wcmd host_scribble
7980 
7981 static void insert_into_waiting_list(struct ncb *np, struct scsi_cmnd *cmd)
7982 {
7983 	struct scsi_cmnd *wcmd;
7984 
7985 #ifdef DEBUG_WAITING_LIST
7986 	printk("%s: cmd %lx inserted into waiting list\n", ncr_name(np), (u_long) cmd);
7987 #endif
7988 	cmd->next_wcmd = NULL;
7989 	if (!(wcmd = np->waiting_list)) np->waiting_list = cmd;
7990 	else {
7991 		while (wcmd->next_wcmd)
7992 			wcmd = (struct scsi_cmnd *) wcmd->next_wcmd;
7993 		wcmd->next_wcmd = (char *) cmd;
7994 	}
7995 }
7996 
7997 static void process_waiting_list(struct ncb *np, int sts)
7998 {
7999 	struct scsi_cmnd *waiting_list, *wcmd;
8000 
8001 	waiting_list = np->waiting_list;
8002 	np->waiting_list = NULL;
8003 
8004 #ifdef DEBUG_WAITING_LIST
8005 	if (waiting_list) printk("%s: waiting_list=%lx processing sts=%d\n", ncr_name(np), (u_long) waiting_list, sts);
8006 #endif
8007 	while ((wcmd = waiting_list) != NULL) {
8008 		waiting_list = (struct scsi_cmnd *) wcmd->next_wcmd;
8009 		wcmd->next_wcmd = NULL;
8010 		if (sts == DID_OK) {
8011 #ifdef DEBUG_WAITING_LIST
8012 	printk("%s: cmd %lx trying to requeue\n", ncr_name(np), (u_long) wcmd);
8013 #endif
8014 			sts = ncr_queue_command(np, wcmd);
8015 		}
8016 		if (sts != DID_OK) {
8017 #ifdef DEBUG_WAITING_LIST
8018 	printk("%s: cmd %lx done forced sts=%d\n", ncr_name(np), (u_long) wcmd, sts);
8019 #endif
8020 			set_host_byte(wcmd, sts);
8021 			ncr_queue_done_cmd(np, wcmd);
8022 		}
8023 	}
8024 }
8025 
8026 #undef next_wcmd
8027 
8028 static ssize_t show_ncr53c8xx_revision(struct device *dev,
8029 				       struct device_attribute *attr, char *buf)
8030 {
8031 	struct Scsi_Host *host = class_to_shost(dev);
8032 	struct host_data *host_data = (struct host_data *)host->hostdata;
8033 
8034 	return snprintf(buf, 20, "0x%x\n", host_data->ncb->revision_id);
8035 }
8036 
8037 static struct device_attribute ncr53c8xx_revision_attr = {
8038 	.attr	= { .name = "revision", .mode = S_IRUGO, },
8039 	.show	= show_ncr53c8xx_revision,
8040 };
8041 
8042 static struct attribute *ncr53c8xx_host_attrs[] = {
8043 	&ncr53c8xx_revision_attr.attr,
8044 	NULL
8045 };
8046 
8047 ATTRIBUTE_GROUPS(ncr53c8xx_host);
8048 
8049 /*==========================================================
8050 **
8051 **	Boot command line.
8052 **
8053 **==========================================================
8054 */
8055 #ifdef	MODULE
8056 char *ncr53c8xx;	/* command line passed by insmod */
8057 module_param(ncr53c8xx, charp, 0);
8058 #endif
8059 
8060 #ifndef MODULE
8061 static int __init ncr53c8xx_setup(char *str)
8062 {
8063 	return sym53c8xx__setup(str);
8064 }
8065 
8066 __setup("ncr53c8xx=", ncr53c8xx_setup);
8067 #endif
8068 
8069 
8070 /*
8071  *	Host attach and initialisations.
8072  *
8073  *	Allocate host data and ncb structure.
8074  *	Request IO region and remap MMIO region.
8075  *	Do chip initialization.
8076  *	If all is OK, install interrupt handling and
8077  *	start the timer daemon.
8078  */
8079 struct Scsi_Host * __init ncr_attach(struct scsi_host_template *tpnt,
8080 					int unit, struct ncr_device *device)
8081 {
8082 	struct host_data *host_data;
8083 	struct ncb *np = NULL;
8084 	struct Scsi_Host *instance = NULL;
8085 	u_long flags = 0;
8086 	int i;
8087 
8088 	WARN_ON_ONCE(tpnt->cmd_size < sizeof(struct ncr_cmd_priv));
8089 
8090 	if (!tpnt->name)
8091 		tpnt->name	= SCSI_NCR_DRIVER_NAME;
8092 	if (!tpnt->shost_groups)
8093 		tpnt->shost_groups = ncr53c8xx_host_groups;
8094 
8095 	tpnt->queuecommand	= ncr53c8xx_queue_command;
8096 	tpnt->slave_configure	= ncr53c8xx_slave_configure;
8097 	tpnt->slave_alloc	= ncr53c8xx_slave_alloc;
8098 	tpnt->eh_bus_reset_handler = ncr53c8xx_bus_reset;
8099 	tpnt->can_queue		= SCSI_NCR_CAN_QUEUE;
8100 	tpnt->this_id		= 7;
8101 	tpnt->sg_tablesize	= SCSI_NCR_SG_TABLESIZE;
8102 	tpnt->cmd_per_lun	= SCSI_NCR_CMD_PER_LUN;
8103 
8104 	if (device->differential)
8105 		driver_setup.diff_support = device->differential;
8106 
8107 	printk(KERN_INFO "ncr53c720-%d: rev 0x%x irq %d\n",
8108 		unit, device->chip.revision_id, device->slot.irq);
8109 
8110 	instance = scsi_host_alloc(tpnt, sizeof(*host_data));
8111 	if (!instance)
8112 	        goto attach_error;
8113 	host_data = (struct host_data *) instance->hostdata;
8114 
8115 	np = __m_calloc_dma(device->dev, sizeof(struct ncb), "NCB");
8116 	if (!np)
8117 		goto attach_error;
8118 	spin_lock_init(&np->smp_lock);
8119 	np->dev = device->dev;
8120 	np->p_ncb = vtobus(np);
8121 	host_data->ncb = np;
8122 
8123 	np->ccb = m_calloc_dma(sizeof(struct ccb), "CCB");
8124 	if (!np->ccb)
8125 		goto attach_error;
8126 
8127 	/* Store input information in the host data structure.  */
8128 	np->unit	= unit;
8129 	np->verbose	= driver_setup.verbose;
8130 	sprintf(np->inst_name, "ncr53c720-%d", np->unit);
8131 	np->revision_id	= device->chip.revision_id;
8132 	np->features	= device->chip.features;
8133 	np->clock_divn	= device->chip.nr_divisor;
8134 	np->maxoffs	= device->chip.offset_max;
8135 	np->maxburst	= device->chip.burst_max;
8136 	np->myaddr	= device->host_id;
8137 
8138 	/* Allocate SCRIPTS areas.  */
8139 	np->script0 = m_calloc_dma(sizeof(struct script), "SCRIPT");
8140 	if (!np->script0)
8141 		goto attach_error;
8142 	np->scripth0 = m_calloc_dma(sizeof(struct scripth), "SCRIPTH");
8143 	if (!np->scripth0)
8144 		goto attach_error;
8145 
8146 	timer_setup(&np->timer, ncr53c8xx_timeout, 0);
8147 
8148 	/* Try to map the controller chip to virtual and physical memory. */
8149 
8150 	np->paddr	= device->slot.base;
8151 	np->paddr2	= (np->features & FE_RAM) ? device->slot.base_2 : 0;
8152 
8153 	if (device->slot.base_v)
8154 		np->vaddr = device->slot.base_v;
8155 	else
8156 		np->vaddr = ioremap(device->slot.base_c, 128);
8157 
8158 	if (!np->vaddr) {
8159 		printk(KERN_ERR
8160 			"%s: can't map memory mapped IO region\n",ncr_name(np));
8161 		goto attach_error;
8162 	} else {
8163 		if (bootverbose > 1)
8164 			printk(KERN_INFO
8165 				"%s: using memory mapped IO at virtual address 0x%lx\n", ncr_name(np), (u_long) np->vaddr);
8166 	}
8167 
8168 	/* Make the controller's registers available.  Now the INB INW INL
8169 	 * OUTB OUTW OUTL macros can be used safely.
8170 	 */
8171 
8172 	np->reg = (struct ncr_reg __iomem *)np->vaddr;
8173 
8174 	/* Do chip dependent initialization.  */
8175 	ncr_prepare_setting(np);
8176 
8177 	if (np->paddr2 && sizeof(struct script) > 4096) {
8178 		np->paddr2 = 0;
8179 		printk(KERN_WARNING "%s: script too large, NOT using on chip RAM.\n",
8180 			ncr_name(np));
8181 	}
8182 
8183 	instance->max_channel	= 0;
8184 	instance->this_id       = np->myaddr;
8185 	instance->max_id	= np->maxwide ? 16 : 8;
8186 	instance->max_lun	= SCSI_NCR_MAX_LUN;
8187 	instance->base		= (unsigned long) np->reg;
8188 	instance->irq		= device->slot.irq;
8189 	instance->unique_id	= device->slot.base;
8190 	instance->dma_channel	= 0;
8191 	instance->cmd_per_lun	= MAX_TAGS;
8192 	instance->can_queue	= (MAX_START-4);
8193 	/* This can happen if you forget to call ncr53c8xx_init from
8194 	 * your module_init */
8195 	BUG_ON(!ncr53c8xx_transport_template);
8196 	instance->transportt	= ncr53c8xx_transport_template;
8197 
8198 	/* Patch script to physical addresses */
8199 	ncr_script_fill(&script0, &scripth0);
8200 
8201 	np->scripth	= np->scripth0;
8202 	np->p_scripth	= vtobus(np->scripth);
8203 	np->p_script	= (np->paddr2) ?  np->paddr2 : vtobus(np->script0);
8204 
8205 	ncr_script_copy_and_bind(np, (ncrcmd *) &script0,
8206 			(ncrcmd *) np->script0, sizeof(struct script));
8207 	ncr_script_copy_and_bind(np, (ncrcmd *) &scripth0,
8208 			(ncrcmd *) np->scripth0, sizeof(struct scripth));
8209 	np->ccb->p_ccb	= vtobus (np->ccb);
8210 
8211 	/* Patch the script for LED support.  */
8212 
8213 	if (np->features & FE_LED0) {
8214 		np->script0->idle[0]  =
8215 				cpu_to_scr(SCR_REG_REG(gpreg, SCR_OR,  0x01));
8216 		np->script0->reselected[0] =
8217 				cpu_to_scr(SCR_REG_REG(gpreg, SCR_AND, 0xfe));
8218 		np->script0->start[0] =
8219 				cpu_to_scr(SCR_REG_REG(gpreg, SCR_AND, 0xfe));
8220 	}
8221 
8222 	/*
8223 	 * Look for the target control block of this nexus.
8224 	 * For i = 0 to 3
8225 	 *   JUMP ^ IFTRUE (MASK (i, 3)), @(next_lcb)
8226 	 */
8227 	for (i = 0 ; i < 4 ; i++) {
8228 		np->jump_tcb[i].l_cmd   =
8229 				cpu_to_scr((SCR_JUMP ^ IFTRUE (MASK (i, 3))));
8230 		np->jump_tcb[i].l_paddr =
8231 				cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_target));
8232 	}
8233 
8234 	ncr_chip_reset(np, 100);
8235 
8236 	/* Now check the cache handling of the chipset.  */
8237 
8238 	if (ncr_snooptest(np)) {
8239 		printk(KERN_ERR "CACHE INCORRECTLY CONFIGURED.\n");
8240 		goto attach_error;
8241 	}
8242 
8243 	/* Install the interrupt handler.  */
8244 	np->irq = device->slot.irq;
8245 
8246 	/* Initialize the fixed part of the default ccb.  */
8247 	ncr_init_ccb(np, np->ccb);
8248 
8249 	/*
8250 	 * After SCSI devices have been opened, we cannot reset the bus
8251 	 * safely, so we do it here.  Interrupt handler does the real work.
8252 	 * Process the reset exception if interrupts are not enabled yet.
8253 	 * Then enable disconnects.
8254 	 */
8255 	spin_lock_irqsave(&np->smp_lock, flags);
8256 	if (ncr_reset_scsi_bus(np, 0, driver_setup.settle_delay) != 0) {
8257 		printk(KERN_ERR "%s: FATAL ERROR: CHECK SCSI BUS - CABLES, TERMINATION, DEVICE POWER etc.!\n", ncr_name(np));
8258 
8259 		spin_unlock_irqrestore(&np->smp_lock, flags);
8260 		goto attach_error;
8261 	}
8262 	ncr_exception(np);
8263 
8264 	np->disc = 1;
8265 
8266 	/*
8267 	 * The middle-level SCSI driver does not wait for devices to settle.
8268 	 * Wait synchronously if more than 2 seconds.
8269 	 */
8270 	if (driver_setup.settle_delay > 2) {
8271 		printk(KERN_INFO "%s: waiting %d seconds for scsi devices to settle...\n",
8272 			ncr_name(np), driver_setup.settle_delay);
8273 		mdelay(1000 * driver_setup.settle_delay);
8274 	}
8275 
8276 	/* start the timeout daemon */
8277 	np->lasttime=0;
8278 	ncr_timeout (np);
8279 
8280 	/* use SIMPLE TAG messages by default */
8281 #ifdef SCSI_NCR_ALWAYS_SIMPLE_TAG
8282 	np->order = SIMPLE_QUEUE_TAG;
8283 #endif
8284 
8285 	spin_unlock_irqrestore(&np->smp_lock, flags);
8286 
8287 	return instance;
8288 
8289  attach_error:
8290 	if (!instance)
8291 		return NULL;
8292 	printk(KERN_INFO "%s: detaching...\n", ncr_name(np));
8293 	if (!np)
8294 		goto unregister;
8295 	if (np->scripth0)
8296 		m_free_dma(np->scripth0, sizeof(struct scripth), "SCRIPTH");
8297 	if (np->script0)
8298 		m_free_dma(np->script0, sizeof(struct script), "SCRIPT");
8299 	if (np->ccb)
8300 		m_free_dma(np->ccb, sizeof(struct ccb), "CCB");
8301 	m_free_dma(np, sizeof(struct ncb), "NCB");
8302 	host_data->ncb = NULL;
8303 
8304  unregister:
8305 	scsi_host_put(instance);
8306 
8307 	return NULL;
8308 }
8309 
8310 
8311 void ncr53c8xx_release(struct Scsi_Host *host)
8312 {
8313 	struct host_data *host_data = shost_priv(host);
8314 #ifdef DEBUG_NCR53C8XX
8315 	printk("ncr53c8xx: release\n");
8316 #endif
8317 	if (host_data->ncb)
8318 		ncr_detach(host_data->ncb);
8319 	scsi_host_put(host);
8320 }
8321 
8322 static void ncr53c8xx_set_period(struct scsi_target *starget, int period)
8323 {
8324 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
8325 	struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
8326 	struct tcb *tp = &np->target[starget->id];
8327 
8328 	if (period > np->maxsync)
8329 		period = np->maxsync;
8330 	else if (period < np->minsync)
8331 		period = np->minsync;
8332 
8333 	tp->usrsync = period;
8334 
8335 	ncr_negotiate(np, tp);
8336 }
8337 
8338 static void ncr53c8xx_set_offset(struct scsi_target *starget, int offset)
8339 {
8340 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
8341 	struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
8342 	struct tcb *tp = &np->target[starget->id];
8343 
8344 	if (offset > np->maxoffs)
8345 		offset = np->maxoffs;
8346 	else if (offset < 0)
8347 		offset = 0;
8348 
8349 	tp->maxoffs = offset;
8350 
8351 	ncr_negotiate(np, tp);
8352 }
8353 
8354 static void ncr53c8xx_set_width(struct scsi_target *starget, int width)
8355 {
8356 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
8357 	struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
8358 	struct tcb *tp = &np->target[starget->id];
8359 
8360 	if (width > np->maxwide)
8361 		width = np->maxwide;
8362 	else if (width < 0)
8363 		width = 0;
8364 
8365 	tp->usrwide = width;
8366 
8367 	ncr_negotiate(np, tp);
8368 }
8369 
8370 static void ncr53c8xx_get_signalling(struct Scsi_Host *shost)
8371 {
8372 	struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
8373 	enum spi_signal_type type;
8374 
8375 	switch (np->scsi_mode) {
8376 	case SMODE_SE:
8377 		type = SPI_SIGNAL_SE;
8378 		break;
8379 	case SMODE_HVD:
8380 		type = SPI_SIGNAL_HVD;
8381 		break;
8382 	default:
8383 		type = SPI_SIGNAL_UNKNOWN;
8384 		break;
8385 	}
8386 	spi_signalling(shost) = type;
8387 }
8388 
8389 static struct spi_function_template ncr53c8xx_transport_functions =  {
8390 	.set_period	= ncr53c8xx_set_period,
8391 	.show_period	= 1,
8392 	.set_offset	= ncr53c8xx_set_offset,
8393 	.show_offset	= 1,
8394 	.set_width	= ncr53c8xx_set_width,
8395 	.show_width	= 1,
8396 	.get_signalling	= ncr53c8xx_get_signalling,
8397 };
8398 
8399 int __init ncr53c8xx_init(void)
8400 {
8401 	ncr53c8xx_transport_template = spi_attach_transport(&ncr53c8xx_transport_functions);
8402 	if (!ncr53c8xx_transport_template)
8403 		return -ENODEV;
8404 	return 0;
8405 }
8406 
8407 void ncr53c8xx_exit(void)
8408 {
8409 	spi_release_transport(ncr53c8xx_transport_template);
8410 }
8411