1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /****************************************************************************** 3 ** Device driver for the PCI-SCSI NCR538XX controller family. 4 ** 5 ** Copyright (C) 1994 Wolfgang Stanglmeier 6 ** 7 ** 8 **----------------------------------------------------------------------------- 9 ** 10 ** This driver has been ported to Linux from the FreeBSD NCR53C8XX driver 11 ** and is currently maintained by 12 ** 13 ** Gerard Roudier <groudier@free.fr> 14 ** 15 ** Being given that this driver originates from the FreeBSD version, and 16 ** in order to keep synergy on both, any suggested enhancements and corrections 17 ** received on Linux are automatically a potential candidate for the FreeBSD 18 ** version. 19 ** 20 ** The original driver has been written for 386bsd and FreeBSD by 21 ** Wolfgang Stanglmeier <wolf@cologne.de> 22 ** Stefan Esser <se@mi.Uni-Koeln.de> 23 ** 24 ** And has been ported to NetBSD by 25 ** Charles M. Hannum <mycroft@gnu.ai.mit.edu> 26 ** 27 **----------------------------------------------------------------------------- 28 ** 29 ** Brief history 30 ** 31 ** December 10 1995 by Gerard Roudier: 32 ** Initial port to Linux. 33 ** 34 ** June 23 1996 by Gerard Roudier: 35 ** Support for 64 bits architectures (Alpha). 36 ** 37 ** November 30 1996 by Gerard Roudier: 38 ** Support for Fast-20 scsi. 39 ** Support for large DMA fifo and 128 dwords bursting. 40 ** 41 ** February 27 1997 by Gerard Roudier: 42 ** Support for Fast-40 scsi. 43 ** Support for on-Board RAM. 44 ** 45 ** May 3 1997 by Gerard Roudier: 46 ** Full support for scsi scripts instructions pre-fetching. 47 ** 48 ** May 19 1997 by Richard Waltham <dormouse@farsrobt.demon.co.uk>: 49 ** Support for NvRAM detection and reading. 50 ** 51 ** August 18 1997 by Cort <cort@cs.nmt.edu>: 52 ** Support for Power/PC (Big Endian). 53 ** 54 ** June 20 1998 by Gerard Roudier 55 ** Support for up to 64 tags per lun. 56 ** O(1) everywhere (C and SCRIPTS) for normal cases. 57 ** Low PCI traffic for command handling when on-chip RAM is present. 58 ** Aggressive SCSI SCRIPTS optimizations. 59 ** 60 ** 2005 by Matthew Wilcox and James Bottomley 61 ** PCI-ectomy. This driver now supports only the 720 chip (see the 62 ** NCR_Q720 and zalon drivers for the bus probe logic). 63 ** 64 ******************************************************************************* 65 */ 66 67 /* 68 ** Supported SCSI-II features: 69 ** Synchronous negotiation 70 ** Wide negotiation (depends on the NCR Chip) 71 ** Enable disconnection 72 ** Tagged command queuing 73 ** Parity checking 74 ** Etc... 75 ** 76 ** Supported NCR/SYMBIOS chips: 77 ** 53C720 (Wide, Fast SCSI-2, intfly problems) 78 */ 79 80 /* Name and version of the driver */ 81 #define SCSI_NCR_DRIVER_NAME "ncr53c8xx-3.4.3g" 82 83 #define SCSI_NCR_DEBUG_FLAGS (0) 84 85 #include <linux/blkdev.h> 86 #include <linux/delay.h> 87 #include <linux/dma-mapping.h> 88 #include <linux/errno.h> 89 #include <linux/gfp.h> 90 #include <linux/init.h> 91 #include <linux/interrupt.h> 92 #include <linux/ioport.h> 93 #include <linux/mm.h> 94 #include <linux/module.h> 95 #include <linux/sched.h> 96 #include <linux/signal.h> 97 #include <linux/spinlock.h> 98 #include <linux/stat.h> 99 #include <linux/string.h> 100 #include <linux/time.h> 101 #include <linux/timer.h> 102 #include <linux/types.h> 103 104 #include <asm/dma.h> 105 #include <asm/io.h> 106 107 #include <scsi/scsi.h> 108 #include <scsi/scsi_cmnd.h> 109 #include <scsi/scsi_dbg.h> 110 #include <scsi/scsi_device.h> 111 #include <scsi/scsi_tcq.h> 112 #include <scsi/scsi_transport.h> 113 #include <scsi/scsi_transport_spi.h> 114 115 #include "ncr53c8xx.h" 116 117 #define NAME53C8XX "ncr53c8xx" 118 119 /*========================================================== 120 ** 121 ** Debugging tags 122 ** 123 **========================================================== 124 */ 125 126 #define DEBUG_ALLOC (0x0001) 127 #define DEBUG_PHASE (0x0002) 128 #define DEBUG_QUEUE (0x0008) 129 #define DEBUG_RESULT (0x0010) 130 #define DEBUG_POINTER (0x0020) 131 #define DEBUG_SCRIPT (0x0040) 132 #define DEBUG_TINY (0x0080) 133 #define DEBUG_TIMING (0x0100) 134 #define DEBUG_NEGO (0x0200) 135 #define DEBUG_TAGS (0x0400) 136 #define DEBUG_SCATTER (0x0800) 137 #define DEBUG_IC (0x1000) 138 139 /* 140 ** Enable/Disable debug messages. 141 ** Can be changed at runtime too. 142 */ 143 144 #ifdef SCSI_NCR_DEBUG_INFO_SUPPORT 145 static int ncr_debug = SCSI_NCR_DEBUG_FLAGS; 146 #define DEBUG_FLAGS ncr_debug 147 #else 148 #define DEBUG_FLAGS SCSI_NCR_DEBUG_FLAGS 149 #endif 150 151 /* 152 * Locally used status flag 153 */ 154 #define SAM_STAT_ILLEGAL 0xff 155 156 static inline struct list_head *ncr_list_pop(struct list_head *head) 157 { 158 if (!list_empty(head)) { 159 struct list_head *elem = head->next; 160 161 list_del(elem); 162 return elem; 163 } 164 165 return NULL; 166 } 167 168 /*========================================================== 169 ** 170 ** Simple power of two buddy-like allocator. 171 ** 172 ** This simple code is not intended to be fast, but to 173 ** provide power of 2 aligned memory allocations. 174 ** Since the SCRIPTS processor only supplies 8 bit 175 ** arithmetic, this allocator allows simple and fast 176 ** address calculations from the SCRIPTS code. 177 ** In addition, cache line alignment is guaranteed for 178 ** power of 2 cache line size. 179 ** Enhanced in linux-2.3.44 to provide a memory pool 180 ** per pcidev to support dynamic dma mapping. (I would 181 ** have preferred a real bus abstraction, btw). 182 ** 183 **========================================================== 184 */ 185 186 #define MEMO_SHIFT 4 /* 16 bytes minimum memory chunk */ 187 #if PAGE_SIZE >= 8192 188 #define MEMO_PAGE_ORDER 0 /* 1 PAGE maximum */ 189 #else 190 #define MEMO_PAGE_ORDER 1 /* 2 PAGES maximum */ 191 #endif 192 #define MEMO_FREE_UNUSED /* Free unused pages immediately */ 193 #define MEMO_WARN 1 194 #define MEMO_GFP_FLAGS GFP_ATOMIC 195 #define MEMO_CLUSTER_SHIFT (PAGE_SHIFT+MEMO_PAGE_ORDER) 196 #define MEMO_CLUSTER_SIZE (1UL << MEMO_CLUSTER_SHIFT) 197 #define MEMO_CLUSTER_MASK (MEMO_CLUSTER_SIZE-1) 198 199 typedef u_long m_addr_t; /* Enough bits to bit-hack addresses */ 200 typedef struct device *m_bush_t; /* Something that addresses DMAable */ 201 202 typedef struct m_link { /* Link between free memory chunks */ 203 struct m_link *next; 204 } m_link_s; 205 206 typedef struct m_vtob { /* Virtual to Bus address translation */ 207 struct m_vtob *next; 208 m_addr_t vaddr; 209 m_addr_t baddr; 210 } m_vtob_s; 211 #define VTOB_HASH_SHIFT 5 212 #define VTOB_HASH_SIZE (1UL << VTOB_HASH_SHIFT) 213 #define VTOB_HASH_MASK (VTOB_HASH_SIZE-1) 214 #define VTOB_HASH_CODE(m) \ 215 ((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK) 216 217 typedef struct m_pool { /* Memory pool of a given kind */ 218 m_bush_t bush; 219 m_addr_t (*getp)(struct m_pool *); 220 void (*freep)(struct m_pool *, m_addr_t); 221 int nump; 222 m_vtob_s *(vtob[VTOB_HASH_SIZE]); 223 struct m_pool *next; 224 struct m_link h[PAGE_SHIFT-MEMO_SHIFT+MEMO_PAGE_ORDER+1]; 225 } m_pool_s; 226 227 static void *___m_alloc(m_pool_s *mp, int size) 228 { 229 int i = 0; 230 int s = (1 << MEMO_SHIFT); 231 int j; 232 m_addr_t a; 233 m_link_s *h = mp->h; 234 235 if (size > (PAGE_SIZE << MEMO_PAGE_ORDER)) 236 return NULL; 237 238 while (size > s) { 239 s <<= 1; 240 ++i; 241 } 242 243 j = i; 244 while (!h[j].next) { 245 if (s == (PAGE_SIZE << MEMO_PAGE_ORDER)) { 246 h[j].next = (m_link_s *)mp->getp(mp); 247 if (h[j].next) 248 h[j].next->next = NULL; 249 break; 250 } 251 ++j; 252 s <<= 1; 253 } 254 a = (m_addr_t) h[j].next; 255 if (a) { 256 h[j].next = h[j].next->next; 257 while (j > i) { 258 j -= 1; 259 s >>= 1; 260 h[j].next = (m_link_s *) (a+s); 261 h[j].next->next = NULL; 262 } 263 } 264 #ifdef DEBUG 265 printk("___m_alloc(%d) = %p\n", size, (void *) a); 266 #endif 267 return (void *) a; 268 } 269 270 static void ___m_free(m_pool_s *mp, void *ptr, int size) 271 { 272 int i = 0; 273 int s = (1 << MEMO_SHIFT); 274 m_link_s *q; 275 m_addr_t a, b; 276 m_link_s *h = mp->h; 277 278 #ifdef DEBUG 279 printk("___m_free(%p, %d)\n", ptr, size); 280 #endif 281 282 if (size > (PAGE_SIZE << MEMO_PAGE_ORDER)) 283 return; 284 285 while (size > s) { 286 s <<= 1; 287 ++i; 288 } 289 290 a = (m_addr_t) ptr; 291 292 while (1) { 293 #ifdef MEMO_FREE_UNUSED 294 if (s == (PAGE_SIZE << MEMO_PAGE_ORDER)) { 295 mp->freep(mp, a); 296 break; 297 } 298 #endif 299 b = a ^ s; 300 q = &h[i]; 301 while (q->next && q->next != (m_link_s *) b) { 302 q = q->next; 303 } 304 if (!q->next) { 305 ((m_link_s *) a)->next = h[i].next; 306 h[i].next = (m_link_s *) a; 307 break; 308 } 309 q->next = q->next->next; 310 a = a & b; 311 s <<= 1; 312 ++i; 313 } 314 } 315 316 static DEFINE_SPINLOCK(ncr53c8xx_lock); 317 318 static void *__m_calloc2(m_pool_s *mp, int size, char *name, int uflags) 319 { 320 void *p; 321 322 p = ___m_alloc(mp, size); 323 324 if (DEBUG_FLAGS & DEBUG_ALLOC) 325 printk ("new %-10s[%4d] @%p.\n", name, size, p); 326 327 if (p) 328 memset(p, 0, size); 329 else if (uflags & MEMO_WARN) 330 printk (NAME53C8XX ": failed to allocate %s[%d]\n", name, size); 331 332 return p; 333 } 334 335 #define __m_calloc(mp, s, n) __m_calloc2(mp, s, n, MEMO_WARN) 336 337 static void __m_free(m_pool_s *mp, void *ptr, int size, char *name) 338 { 339 if (DEBUG_FLAGS & DEBUG_ALLOC) 340 printk ("freeing %-10s[%4d] @%p.\n", name, size, ptr); 341 342 ___m_free(mp, ptr, size); 343 344 } 345 346 /* 347 * With pci bus iommu support, we use a default pool of unmapped memory 348 * for memory we donnot need to DMA from/to and one pool per pcidev for 349 * memory accessed by the PCI chip. `mp0' is the default not DMAable pool. 350 */ 351 352 static m_addr_t ___mp0_getp(m_pool_s *mp) 353 { 354 m_addr_t m = __get_free_pages(MEMO_GFP_FLAGS, MEMO_PAGE_ORDER); 355 if (m) 356 ++mp->nump; 357 return m; 358 } 359 360 static void ___mp0_freep(m_pool_s *mp, m_addr_t m) 361 { 362 free_pages(m, MEMO_PAGE_ORDER); 363 --mp->nump; 364 } 365 366 static m_pool_s mp0 = {NULL, ___mp0_getp, ___mp0_freep}; 367 368 /* 369 * DMAable pools. 370 */ 371 372 /* 373 * With pci bus iommu support, we maintain one pool per pcidev and a 374 * hashed reverse table for virtual to bus physical address translations. 375 */ 376 static m_addr_t ___dma_getp(m_pool_s *mp) 377 { 378 m_addr_t vp; 379 m_vtob_s *vbp; 380 381 vbp = __m_calloc(&mp0, sizeof(*vbp), "VTOB"); 382 if (vbp) { 383 dma_addr_t daddr; 384 vp = (m_addr_t) dma_alloc_coherent(mp->bush, 385 PAGE_SIZE<<MEMO_PAGE_ORDER, 386 &daddr, GFP_ATOMIC); 387 if (vp) { 388 int hc = VTOB_HASH_CODE(vp); 389 vbp->vaddr = vp; 390 vbp->baddr = daddr; 391 vbp->next = mp->vtob[hc]; 392 mp->vtob[hc] = vbp; 393 ++mp->nump; 394 return vp; 395 } 396 } 397 if (vbp) 398 __m_free(&mp0, vbp, sizeof(*vbp), "VTOB"); 399 return 0; 400 } 401 402 static void ___dma_freep(m_pool_s *mp, m_addr_t m) 403 { 404 m_vtob_s **vbpp, *vbp; 405 int hc = VTOB_HASH_CODE(m); 406 407 vbpp = &mp->vtob[hc]; 408 while (*vbpp && (*vbpp)->vaddr != m) 409 vbpp = &(*vbpp)->next; 410 if (*vbpp) { 411 vbp = *vbpp; 412 *vbpp = (*vbpp)->next; 413 dma_free_coherent(mp->bush, PAGE_SIZE<<MEMO_PAGE_ORDER, 414 (void *)vbp->vaddr, (dma_addr_t)vbp->baddr); 415 __m_free(&mp0, vbp, sizeof(*vbp), "VTOB"); 416 --mp->nump; 417 } 418 } 419 420 static inline m_pool_s *___get_dma_pool(m_bush_t bush) 421 { 422 m_pool_s *mp; 423 for (mp = mp0.next; mp && mp->bush != bush; mp = mp->next); 424 return mp; 425 } 426 427 static m_pool_s *___cre_dma_pool(m_bush_t bush) 428 { 429 m_pool_s *mp; 430 mp = __m_calloc(&mp0, sizeof(*mp), "MPOOL"); 431 if (mp) { 432 memset(mp, 0, sizeof(*mp)); 433 mp->bush = bush; 434 mp->getp = ___dma_getp; 435 mp->freep = ___dma_freep; 436 mp->next = mp0.next; 437 mp0.next = mp; 438 } 439 return mp; 440 } 441 442 static void ___del_dma_pool(m_pool_s *p) 443 { 444 struct m_pool **pp = &mp0.next; 445 446 while (*pp && *pp != p) 447 pp = &(*pp)->next; 448 if (*pp) { 449 *pp = (*pp)->next; 450 __m_free(&mp0, p, sizeof(*p), "MPOOL"); 451 } 452 } 453 454 static void *__m_calloc_dma(m_bush_t bush, int size, char *name) 455 { 456 u_long flags; 457 struct m_pool *mp; 458 void *m = NULL; 459 460 spin_lock_irqsave(&ncr53c8xx_lock, flags); 461 mp = ___get_dma_pool(bush); 462 if (!mp) 463 mp = ___cre_dma_pool(bush); 464 if (mp) 465 m = __m_calloc(mp, size, name); 466 if (mp && !mp->nump) 467 ___del_dma_pool(mp); 468 spin_unlock_irqrestore(&ncr53c8xx_lock, flags); 469 470 return m; 471 } 472 473 static void __m_free_dma(m_bush_t bush, void *m, int size, char *name) 474 { 475 u_long flags; 476 struct m_pool *mp; 477 478 spin_lock_irqsave(&ncr53c8xx_lock, flags); 479 mp = ___get_dma_pool(bush); 480 if (mp) 481 __m_free(mp, m, size, name); 482 if (mp && !mp->nump) 483 ___del_dma_pool(mp); 484 spin_unlock_irqrestore(&ncr53c8xx_lock, flags); 485 } 486 487 static m_addr_t __vtobus(m_bush_t bush, void *m) 488 { 489 u_long flags; 490 m_pool_s *mp; 491 int hc = VTOB_HASH_CODE(m); 492 m_vtob_s *vp = NULL; 493 m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK; 494 495 spin_lock_irqsave(&ncr53c8xx_lock, flags); 496 mp = ___get_dma_pool(bush); 497 if (mp) { 498 vp = mp->vtob[hc]; 499 while (vp && (m_addr_t) vp->vaddr != a) 500 vp = vp->next; 501 } 502 spin_unlock_irqrestore(&ncr53c8xx_lock, flags); 503 return vp ? vp->baddr + (((m_addr_t) m) - a) : 0; 504 } 505 506 #define _m_calloc_dma(np, s, n) __m_calloc_dma(np->dev, s, n) 507 #define _m_free_dma(np, p, s, n) __m_free_dma(np->dev, p, s, n) 508 #define m_calloc_dma(s, n) _m_calloc_dma(np, s, n) 509 #define m_free_dma(p, s, n) _m_free_dma(np, p, s, n) 510 #define _vtobus(np, p) __vtobus(np->dev, p) 511 #define vtobus(p) _vtobus(np, p) 512 513 /* 514 * Deal with DMA mapping/unmapping. 515 */ 516 517 /* To keep track of the dma mapping (sg/single) that has been set */ 518 #define __data_mapped SCp.phase 519 #define __data_mapping SCp.have_data_in 520 521 static void __unmap_scsi_data(struct device *dev, struct scsi_cmnd *cmd) 522 { 523 switch(cmd->__data_mapped) { 524 case 2: 525 scsi_dma_unmap(cmd); 526 break; 527 } 528 cmd->__data_mapped = 0; 529 } 530 531 static int __map_scsi_sg_data(struct device *dev, struct scsi_cmnd *cmd) 532 { 533 int use_sg; 534 535 use_sg = scsi_dma_map(cmd); 536 if (!use_sg) 537 return 0; 538 539 cmd->__data_mapped = 2; 540 cmd->__data_mapping = use_sg; 541 542 return use_sg; 543 } 544 545 #define unmap_scsi_data(np, cmd) __unmap_scsi_data(np->dev, cmd) 546 #define map_scsi_sg_data(np, cmd) __map_scsi_sg_data(np->dev, cmd) 547 548 /*========================================================== 549 ** 550 ** Driver setup. 551 ** 552 ** This structure is initialized from linux config 553 ** options. It can be overridden at boot-up by the boot 554 ** command line. 555 ** 556 **========================================================== 557 */ 558 static struct ncr_driver_setup 559 driver_setup = SCSI_NCR_DRIVER_SETUP; 560 561 #ifndef MODULE 562 #ifdef SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT 563 static struct ncr_driver_setup 564 driver_safe_setup __initdata = SCSI_NCR_DRIVER_SAFE_SETUP; 565 #endif 566 #endif /* !MODULE */ 567 568 #define initverbose (driver_setup.verbose) 569 #define bootverbose (np->verbose) 570 571 572 /*=================================================================== 573 ** 574 ** Driver setup from the boot command line 575 ** 576 **=================================================================== 577 */ 578 579 #ifdef MODULE 580 #define ARG_SEP ' ' 581 #else 582 #define ARG_SEP ',' 583 #endif 584 585 #define OPT_TAGS 1 586 #define OPT_MASTER_PARITY 2 587 #define OPT_SCSI_PARITY 3 588 #define OPT_DISCONNECTION 4 589 #define OPT_SPECIAL_FEATURES 5 590 #define OPT_UNUSED_1 6 591 #define OPT_FORCE_SYNC_NEGO 7 592 #define OPT_REVERSE_PROBE 8 593 #define OPT_DEFAULT_SYNC 9 594 #define OPT_VERBOSE 10 595 #define OPT_DEBUG 11 596 #define OPT_BURST_MAX 12 597 #define OPT_LED_PIN 13 598 #define OPT_MAX_WIDE 14 599 #define OPT_SETTLE_DELAY 15 600 #define OPT_DIFF_SUPPORT 16 601 #define OPT_IRQM 17 602 #define OPT_PCI_FIX_UP 18 603 #define OPT_BUS_CHECK 19 604 #define OPT_OPTIMIZE 20 605 #define OPT_RECOVERY 21 606 #define OPT_SAFE_SETUP 22 607 #define OPT_USE_NVRAM 23 608 #define OPT_EXCLUDE 24 609 #define OPT_HOST_ID 25 610 611 #ifdef SCSI_NCR_IARB_SUPPORT 612 #define OPT_IARB 26 613 #endif 614 615 #ifdef MODULE 616 #define ARG_SEP ' ' 617 #else 618 #define ARG_SEP ',' 619 #endif 620 621 #ifndef MODULE 622 static char setup_token[] __initdata = 623 "tags:" "mpar:" 624 "spar:" "disc:" 625 "specf:" "ultra:" 626 "fsn:" "revprob:" 627 "sync:" "verb:" 628 "debug:" "burst:" 629 "led:" "wide:" 630 "settle:" "diff:" 631 "irqm:" "pcifix:" 632 "buschk:" "optim:" 633 "recovery:" 634 "safe:" "nvram:" 635 "excl:" "hostid:" 636 #ifdef SCSI_NCR_IARB_SUPPORT 637 "iarb:" 638 #endif 639 ; /* DONNOT REMOVE THIS ';' */ 640 641 static int __init get_setup_token(char *p) 642 { 643 char *cur = setup_token; 644 char *pc; 645 int i = 0; 646 647 while (cur != NULL && (pc = strchr(cur, ':')) != NULL) { 648 ++pc; 649 ++i; 650 if (!strncmp(p, cur, pc - cur)) 651 return i; 652 cur = pc; 653 } 654 return 0; 655 } 656 657 static int __init sym53c8xx__setup(char *str) 658 { 659 #ifdef SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT 660 char *cur = str; 661 char *pc, *pv; 662 int i, val, c; 663 int xi = 0; 664 665 while (cur != NULL && (pc = strchr(cur, ':')) != NULL) { 666 char *pe; 667 668 val = 0; 669 pv = pc; 670 c = *++pv; 671 672 if (c == 'n') 673 val = 0; 674 else if (c == 'y') 675 val = 1; 676 else 677 val = (int) simple_strtoul(pv, &pe, 0); 678 679 switch (get_setup_token(cur)) { 680 case OPT_TAGS: 681 driver_setup.default_tags = val; 682 if (pe && *pe == '/') { 683 i = 0; 684 while (*pe && *pe != ARG_SEP && 685 i < sizeof(driver_setup.tag_ctrl)-1) { 686 driver_setup.tag_ctrl[i++] = *pe++; 687 } 688 driver_setup.tag_ctrl[i] = '\0'; 689 } 690 break; 691 case OPT_MASTER_PARITY: 692 driver_setup.master_parity = val; 693 break; 694 case OPT_SCSI_PARITY: 695 driver_setup.scsi_parity = val; 696 break; 697 case OPT_DISCONNECTION: 698 driver_setup.disconnection = val; 699 break; 700 case OPT_SPECIAL_FEATURES: 701 driver_setup.special_features = val; 702 break; 703 case OPT_FORCE_SYNC_NEGO: 704 driver_setup.force_sync_nego = val; 705 break; 706 case OPT_REVERSE_PROBE: 707 driver_setup.reverse_probe = val; 708 break; 709 case OPT_DEFAULT_SYNC: 710 driver_setup.default_sync = val; 711 break; 712 case OPT_VERBOSE: 713 driver_setup.verbose = val; 714 break; 715 case OPT_DEBUG: 716 driver_setup.debug = val; 717 break; 718 case OPT_BURST_MAX: 719 driver_setup.burst_max = val; 720 break; 721 case OPT_LED_PIN: 722 driver_setup.led_pin = val; 723 break; 724 case OPT_MAX_WIDE: 725 driver_setup.max_wide = val? 1:0; 726 break; 727 case OPT_SETTLE_DELAY: 728 driver_setup.settle_delay = val; 729 break; 730 case OPT_DIFF_SUPPORT: 731 driver_setup.diff_support = val; 732 break; 733 case OPT_IRQM: 734 driver_setup.irqm = val; 735 break; 736 case OPT_PCI_FIX_UP: 737 driver_setup.pci_fix_up = val; 738 break; 739 case OPT_BUS_CHECK: 740 driver_setup.bus_check = val; 741 break; 742 case OPT_OPTIMIZE: 743 driver_setup.optimize = val; 744 break; 745 case OPT_RECOVERY: 746 driver_setup.recovery = val; 747 break; 748 case OPT_USE_NVRAM: 749 driver_setup.use_nvram = val; 750 break; 751 case OPT_SAFE_SETUP: 752 memcpy(&driver_setup, &driver_safe_setup, 753 sizeof(driver_setup)); 754 break; 755 case OPT_EXCLUDE: 756 if (xi < SCSI_NCR_MAX_EXCLUDES) 757 driver_setup.excludes[xi++] = val; 758 break; 759 case OPT_HOST_ID: 760 driver_setup.host_id = val; 761 break; 762 #ifdef SCSI_NCR_IARB_SUPPORT 763 case OPT_IARB: 764 driver_setup.iarb = val; 765 break; 766 #endif 767 default: 768 printk("sym53c8xx_setup: unexpected boot option '%.*s' ignored\n", (int)(pc-cur+1), cur); 769 break; 770 } 771 772 if ((cur = strchr(cur, ARG_SEP)) != NULL) 773 ++cur; 774 } 775 #endif /* SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT */ 776 return 1; 777 } 778 #endif /* !MODULE */ 779 780 /*=================================================================== 781 ** 782 ** Get device queue depth from boot command line. 783 ** 784 **=================================================================== 785 */ 786 #define DEF_DEPTH (driver_setup.default_tags) 787 #define ALL_TARGETS -2 788 #define NO_TARGET -1 789 #define ALL_LUNS -2 790 #define NO_LUN -1 791 792 static int device_queue_depth(int unit, int target, int lun) 793 { 794 int c, h, t, u, v; 795 char *p = driver_setup.tag_ctrl; 796 char *ep; 797 798 h = -1; 799 t = NO_TARGET; 800 u = NO_LUN; 801 while ((c = *p++) != 0) { 802 v = simple_strtoul(p, &ep, 0); 803 switch(c) { 804 case '/': 805 ++h; 806 t = ALL_TARGETS; 807 u = ALL_LUNS; 808 break; 809 case 't': 810 if (t != target) 811 t = (target == v) ? v : NO_TARGET; 812 u = ALL_LUNS; 813 break; 814 case 'u': 815 if (u != lun) 816 u = (lun == v) ? v : NO_LUN; 817 break; 818 case 'q': 819 if (h == unit && 820 (t == ALL_TARGETS || t == target) && 821 (u == ALL_LUNS || u == lun)) 822 return v; 823 break; 824 case '-': 825 t = ALL_TARGETS; 826 u = ALL_LUNS; 827 break; 828 default: 829 break; 830 } 831 p = ep; 832 } 833 return DEF_DEPTH; 834 } 835 836 837 /*========================================================== 838 ** 839 ** The CCB done queue uses an array of CCB virtual 840 ** addresses. Empty entries are flagged using the bogus 841 ** virtual address 0xffffffff. 842 ** 843 ** Since PCI ensures that only aligned DWORDs are accessed 844 ** atomically, 64 bit little-endian architecture requires 845 ** to test the high order DWORD of the entry to determine 846 ** if it is empty or valid. 847 ** 848 ** BTW, I will make things differently as soon as I will 849 ** have a better idea, but this is simple and should work. 850 ** 851 **========================================================== 852 */ 853 854 #define SCSI_NCR_CCB_DONE_SUPPORT 855 #ifdef SCSI_NCR_CCB_DONE_SUPPORT 856 857 #define MAX_DONE 24 858 #define CCB_DONE_EMPTY 0xffffffffUL 859 860 /* All 32 bit architectures */ 861 #if BITS_PER_LONG == 32 862 #define CCB_DONE_VALID(cp) (((u_long) cp) != CCB_DONE_EMPTY) 863 864 /* All > 32 bit (64 bit) architectures regardless endian-ness */ 865 #else 866 #define CCB_DONE_VALID(cp) \ 867 ((((u_long) cp) & 0xffffffff00000000ul) && \ 868 (((u_long) cp) & 0xfffffffful) != CCB_DONE_EMPTY) 869 #endif 870 871 #endif /* SCSI_NCR_CCB_DONE_SUPPORT */ 872 873 /*========================================================== 874 ** 875 ** Configuration and Debugging 876 ** 877 **========================================================== 878 */ 879 880 /* 881 ** SCSI address of this device. 882 ** The boot routines should have set it. 883 ** If not, use this. 884 */ 885 886 #ifndef SCSI_NCR_MYADDR 887 #define SCSI_NCR_MYADDR (7) 888 #endif 889 890 /* 891 ** The maximum number of tags per logic unit. 892 ** Used only for disk devices that support tags. 893 */ 894 895 #ifndef SCSI_NCR_MAX_TAGS 896 #define SCSI_NCR_MAX_TAGS (8) 897 #endif 898 899 /* 900 ** TAGS are actually limited to 64 tags/lun. 901 ** We need to deal with power of 2, for alignment constraints. 902 */ 903 #if SCSI_NCR_MAX_TAGS > 64 904 #define MAX_TAGS (64) 905 #else 906 #define MAX_TAGS SCSI_NCR_MAX_TAGS 907 #endif 908 909 #define NO_TAG (255) 910 911 /* 912 ** Choose appropriate type for tag bitmap. 913 */ 914 #if MAX_TAGS > 32 915 typedef u64 tagmap_t; 916 #else 917 typedef u32 tagmap_t; 918 #endif 919 920 /* 921 ** Number of targets supported by the driver. 922 ** n permits target numbers 0..n-1. 923 ** Default is 16, meaning targets #0..#15. 924 ** #7 .. is myself. 925 */ 926 927 #ifdef SCSI_NCR_MAX_TARGET 928 #define MAX_TARGET (SCSI_NCR_MAX_TARGET) 929 #else 930 #define MAX_TARGET (16) 931 #endif 932 933 /* 934 ** Number of logic units supported by the driver. 935 ** n enables logic unit numbers 0..n-1. 936 ** The common SCSI devices require only 937 ** one lun, so take 1 as the default. 938 */ 939 940 #ifdef SCSI_NCR_MAX_LUN 941 #define MAX_LUN SCSI_NCR_MAX_LUN 942 #else 943 #define MAX_LUN (1) 944 #endif 945 946 /* 947 ** Asynchronous pre-scaler (ns). Shall be 40 948 */ 949 950 #ifndef SCSI_NCR_MIN_ASYNC 951 #define SCSI_NCR_MIN_ASYNC (40) 952 #endif 953 954 /* 955 ** The maximum number of jobs scheduled for starting. 956 ** There should be one slot per target, and one slot 957 ** for each tag of each target in use. 958 ** The calculation below is actually quite silly ... 959 */ 960 961 #ifdef SCSI_NCR_CAN_QUEUE 962 #define MAX_START (SCSI_NCR_CAN_QUEUE + 4) 963 #else 964 #define MAX_START (MAX_TARGET + 7 * MAX_TAGS) 965 #endif 966 967 /* 968 ** We limit the max number of pending IO to 250. 969 ** since we donnot want to allocate more than 1 970 ** PAGE for 'scripth'. 971 */ 972 #if MAX_START > 250 973 #undef MAX_START 974 #define MAX_START 250 975 #endif 976 977 /* 978 ** The maximum number of segments a transfer is split into. 979 ** We support up to 127 segments for both read and write. 980 ** The data scripts are broken into 2 sub-scripts. 981 ** 80 (MAX_SCATTERL) segments are moved from a sub-script 982 ** in on-chip RAM. This makes data transfers shorter than 983 ** 80k (assuming 1k fs) as fast as possible. 984 */ 985 986 #define MAX_SCATTER (SCSI_NCR_MAX_SCATTER) 987 988 #if (MAX_SCATTER > 80) 989 #define MAX_SCATTERL 80 990 #define MAX_SCATTERH (MAX_SCATTER - MAX_SCATTERL) 991 #else 992 #define MAX_SCATTERL (MAX_SCATTER-1) 993 #define MAX_SCATTERH 1 994 #endif 995 996 /* 997 ** other 998 */ 999 1000 #define NCR_SNOOP_TIMEOUT (1000000) 1001 1002 /* 1003 ** Other definitions 1004 */ 1005 1006 #define initverbose (driver_setup.verbose) 1007 #define bootverbose (np->verbose) 1008 1009 /*========================================================== 1010 ** 1011 ** Command control block states. 1012 ** 1013 **========================================================== 1014 */ 1015 1016 #define HS_IDLE (0) 1017 #define HS_BUSY (1) 1018 #define HS_NEGOTIATE (2) /* sync/wide data transfer*/ 1019 #define HS_DISCONNECT (3) /* Disconnected by target */ 1020 1021 #define HS_DONEMASK (0x80) 1022 #define HS_COMPLETE (4|HS_DONEMASK) 1023 #define HS_SEL_TIMEOUT (5|HS_DONEMASK) /* Selection timeout */ 1024 #define HS_RESET (6|HS_DONEMASK) /* SCSI reset */ 1025 #define HS_ABORTED (7|HS_DONEMASK) /* Transfer aborted */ 1026 #define HS_TIMEOUT (8|HS_DONEMASK) /* Software timeout */ 1027 #define HS_FAIL (9|HS_DONEMASK) /* SCSI or PCI bus errors */ 1028 #define HS_UNEXPECTED (10|HS_DONEMASK)/* Unexpected disconnect */ 1029 1030 /* 1031 ** Invalid host status values used by the SCRIPTS processor 1032 ** when the nexus is not fully identified. 1033 ** Shall never appear in a CCB. 1034 */ 1035 1036 #define HS_INVALMASK (0x40) 1037 #define HS_SELECTING (0|HS_INVALMASK) 1038 #define HS_IN_RESELECT (1|HS_INVALMASK) 1039 #define HS_STARTING (2|HS_INVALMASK) 1040 1041 /* 1042 ** Flags set by the SCRIPT processor for commands 1043 ** that have been skipped. 1044 */ 1045 #define HS_SKIPMASK (0x20) 1046 1047 /*========================================================== 1048 ** 1049 ** Software Interrupt Codes 1050 ** 1051 **========================================================== 1052 */ 1053 1054 #define SIR_BAD_STATUS (1) 1055 #define SIR_XXXXXXXXXX (2) 1056 #define SIR_NEGO_SYNC (3) 1057 #define SIR_NEGO_WIDE (4) 1058 #define SIR_NEGO_FAILED (5) 1059 #define SIR_NEGO_PROTO (6) 1060 #define SIR_REJECT_RECEIVED (7) 1061 #define SIR_REJECT_SENT (8) 1062 #define SIR_IGN_RESIDUE (9) 1063 #define SIR_MISSING_SAVE (10) 1064 #define SIR_RESEL_NO_MSG_IN (11) 1065 #define SIR_RESEL_NO_IDENTIFY (12) 1066 #define SIR_RESEL_BAD_LUN (13) 1067 #define SIR_RESEL_BAD_TARGET (14) 1068 #define SIR_RESEL_BAD_I_T_L (15) 1069 #define SIR_RESEL_BAD_I_T_L_Q (16) 1070 #define SIR_DONE_OVERFLOW (17) 1071 #define SIR_INTFLY (18) 1072 #define SIR_MAX (18) 1073 1074 /*========================================================== 1075 ** 1076 ** Extended error codes. 1077 ** xerr_status field of struct ccb. 1078 ** 1079 **========================================================== 1080 */ 1081 1082 #define XE_OK (0) 1083 #define XE_EXTRA_DATA (1) /* unexpected data phase */ 1084 #define XE_BAD_PHASE (2) /* illegal phase (4/5) */ 1085 1086 /*========================================================== 1087 ** 1088 ** Negotiation status. 1089 ** nego_status field of struct ccb. 1090 ** 1091 **========================================================== 1092 */ 1093 1094 #define NS_NOCHANGE (0) 1095 #define NS_SYNC (1) 1096 #define NS_WIDE (2) 1097 #define NS_PPR (4) 1098 1099 /*========================================================== 1100 ** 1101 ** Misc. 1102 ** 1103 **========================================================== 1104 */ 1105 1106 #define CCB_MAGIC (0xf2691ad2) 1107 1108 /*========================================================== 1109 ** 1110 ** Declaration of structs. 1111 ** 1112 **========================================================== 1113 */ 1114 1115 static struct scsi_transport_template *ncr53c8xx_transport_template = NULL; 1116 1117 struct tcb; 1118 struct lcb; 1119 struct ccb; 1120 struct ncb; 1121 struct script; 1122 1123 struct link { 1124 ncrcmd l_cmd; 1125 ncrcmd l_paddr; 1126 }; 1127 1128 struct usrcmd { 1129 u_long target; 1130 u_long lun; 1131 u_long data; 1132 u_long cmd; 1133 }; 1134 1135 #define UC_SETSYNC 10 1136 #define UC_SETTAGS 11 1137 #define UC_SETDEBUG 12 1138 #define UC_SETORDER 13 1139 #define UC_SETWIDE 14 1140 #define UC_SETFLAG 15 1141 #define UC_SETVERBOSE 17 1142 1143 #define UF_TRACE (0x01) 1144 #define UF_NODISC (0x02) 1145 #define UF_NOSCAN (0x04) 1146 1147 /*======================================================================== 1148 ** 1149 ** Declaration of structs: target control block 1150 ** 1151 **======================================================================== 1152 */ 1153 struct tcb { 1154 /*---------------------------------------------------------------- 1155 ** During reselection the ncr jumps to this point with SFBR 1156 ** set to the encoded target number with bit 7 set. 1157 ** if it's not this target, jump to the next. 1158 ** 1159 ** JUMP IF (SFBR != #target#), @(next tcb) 1160 **---------------------------------------------------------------- 1161 */ 1162 struct link jump_tcb; 1163 1164 /*---------------------------------------------------------------- 1165 ** Load the actual values for the sxfer and the scntl3 1166 ** register (sync/wide mode). 1167 ** 1168 ** SCR_COPY (1), @(sval field of this tcb), @(sxfer register) 1169 ** SCR_COPY (1), @(wval field of this tcb), @(scntl3 register) 1170 **---------------------------------------------------------------- 1171 */ 1172 ncrcmd getscr[6]; 1173 1174 /*---------------------------------------------------------------- 1175 ** Get the IDENTIFY message and load the LUN to SFBR. 1176 ** 1177 ** CALL, <RESEL_LUN> 1178 **---------------------------------------------------------------- 1179 */ 1180 struct link call_lun; 1181 1182 /*---------------------------------------------------------------- 1183 ** Now look for the right lun. 1184 ** 1185 ** For i = 0 to 3 1186 ** SCR_JUMP ^ IFTRUE(MASK(i, 3)), @(first lcb mod. i) 1187 ** 1188 ** Recent chips will prefetch the 4 JUMPS using only 1 burst. 1189 ** It is kind of hashcoding. 1190 **---------------------------------------------------------------- 1191 */ 1192 struct link jump_lcb[4]; /* JUMPs for reselection */ 1193 struct lcb * lp[MAX_LUN]; /* The lcb's of this tcb */ 1194 1195 /*---------------------------------------------------------------- 1196 ** Pointer to the ccb used for negotiation. 1197 ** Prevent from starting a negotiation for all queued commands 1198 ** when tagged command queuing is enabled. 1199 **---------------------------------------------------------------- 1200 */ 1201 struct ccb * nego_cp; 1202 1203 /*---------------------------------------------------------------- 1204 ** statistical data 1205 **---------------------------------------------------------------- 1206 */ 1207 u_long transfers; 1208 u_long bytes; 1209 1210 /*---------------------------------------------------------------- 1211 ** negotiation of wide and synch transfer and device quirks. 1212 **---------------------------------------------------------------- 1213 */ 1214 #ifdef SCSI_NCR_BIG_ENDIAN 1215 /*0*/ u16 period; 1216 /*2*/ u_char sval; 1217 /*3*/ u_char minsync; 1218 /*0*/ u_char wval; 1219 /*1*/ u_char widedone; 1220 /*2*/ u_char quirks; 1221 /*3*/ u_char maxoffs; 1222 #else 1223 /*0*/ u_char minsync; 1224 /*1*/ u_char sval; 1225 /*2*/ u16 period; 1226 /*0*/ u_char maxoffs; 1227 /*1*/ u_char quirks; 1228 /*2*/ u_char widedone; 1229 /*3*/ u_char wval; 1230 #endif 1231 1232 /* User settable limits and options. */ 1233 u_char usrsync; 1234 u_char usrwide; 1235 u_char usrtags; 1236 u_char usrflag; 1237 struct scsi_target *starget; 1238 }; 1239 1240 /*======================================================================== 1241 ** 1242 ** Declaration of structs: lun control block 1243 ** 1244 **======================================================================== 1245 */ 1246 struct lcb { 1247 /*---------------------------------------------------------------- 1248 ** During reselection the ncr jumps to this point 1249 ** with SFBR set to the "Identify" message. 1250 ** if it's not this lun, jump to the next. 1251 ** 1252 ** JUMP IF (SFBR != #lun#), @(next lcb of this target) 1253 ** 1254 ** It is this lun. Load TEMP with the nexus jumps table 1255 ** address and jump to RESEL_TAG (or RESEL_NOTAG). 1256 ** 1257 ** SCR_COPY (4), p_jump_ccb, TEMP, 1258 ** SCR_JUMP, <RESEL_TAG> 1259 **---------------------------------------------------------------- 1260 */ 1261 struct link jump_lcb; 1262 ncrcmd load_jump_ccb[3]; 1263 struct link jump_tag; 1264 ncrcmd p_jump_ccb; /* Jump table bus address */ 1265 1266 /*---------------------------------------------------------------- 1267 ** Jump table used by the script processor to directly jump 1268 ** to the CCB corresponding to the reselected nexus. 1269 ** Address is allocated on 256 bytes boundary in order to 1270 ** allow 8 bit calculation of the tag jump entry for up to 1271 ** 64 possible tags. 1272 **---------------------------------------------------------------- 1273 */ 1274 u32 jump_ccb_0; /* Default table if no tags */ 1275 u32 *jump_ccb; /* Virtual address */ 1276 1277 /*---------------------------------------------------------------- 1278 ** CCB queue management. 1279 **---------------------------------------------------------------- 1280 */ 1281 struct list_head free_ccbq; /* Queue of available CCBs */ 1282 struct list_head busy_ccbq; /* Queue of busy CCBs */ 1283 struct list_head wait_ccbq; /* Queue of waiting for IO CCBs */ 1284 struct list_head skip_ccbq; /* Queue of skipped CCBs */ 1285 u_char actccbs; /* Number of allocated CCBs */ 1286 u_char busyccbs; /* CCBs busy for this lun */ 1287 u_char queuedccbs; /* CCBs queued to the controller*/ 1288 u_char queuedepth; /* Queue depth for this lun */ 1289 u_char scdev_depth; /* SCSI device queue depth */ 1290 u_char maxnxs; /* Max possible nexuses */ 1291 1292 /*---------------------------------------------------------------- 1293 ** Control of tagged command queuing. 1294 ** Tags allocation is performed using a circular buffer. 1295 ** This avoids using a loop for tag allocation. 1296 **---------------------------------------------------------------- 1297 */ 1298 u_char ia_tag; /* Allocation index */ 1299 u_char if_tag; /* Freeing index */ 1300 u_char cb_tags[MAX_TAGS]; /* Circular tags buffer */ 1301 u_char usetags; /* Command queuing is active */ 1302 u_char maxtags; /* Max nr of tags asked by user */ 1303 u_char numtags; /* Current number of tags */ 1304 1305 /*---------------------------------------------------------------- 1306 ** QUEUE FULL control and ORDERED tag control. 1307 **---------------------------------------------------------------- 1308 */ 1309 /*---------------------------------------------------------------- 1310 ** QUEUE FULL and ORDERED tag control. 1311 **---------------------------------------------------------------- 1312 */ 1313 u16 num_good; /* Nr of GOOD since QUEUE FULL */ 1314 tagmap_t tags_umap; /* Used tags bitmap */ 1315 tagmap_t tags_smap; /* Tags in use at 'tag_stime' */ 1316 u_long tags_stime; /* Last time we set smap=umap */ 1317 struct ccb * held_ccb; /* CCB held for QUEUE FULL */ 1318 }; 1319 1320 /*======================================================================== 1321 ** 1322 ** Declaration of structs: the launch script. 1323 ** 1324 **======================================================================== 1325 ** 1326 ** It is part of the CCB and is called by the scripts processor to 1327 ** start or restart the data structure (nexus). 1328 ** This 6 DWORDs mini script makes use of prefetching. 1329 ** 1330 **------------------------------------------------------------------------ 1331 */ 1332 struct launch { 1333 /*---------------------------------------------------------------- 1334 ** SCR_COPY(4), @(p_phys), @(dsa register) 1335 ** SCR_JUMP, @(scheduler_point) 1336 **---------------------------------------------------------------- 1337 */ 1338 ncrcmd setup_dsa[3]; /* Copy 'phys' address to dsa */ 1339 struct link schedule; /* Jump to scheduler point */ 1340 ncrcmd p_phys; /* 'phys' header bus address */ 1341 }; 1342 1343 /*======================================================================== 1344 ** 1345 ** Declaration of structs: global HEADER. 1346 ** 1347 **======================================================================== 1348 ** 1349 ** This substructure is copied from the ccb to a global address after 1350 ** selection (or reselection) and copied back before disconnect. 1351 ** 1352 ** These fields are accessible to the script processor. 1353 ** 1354 **------------------------------------------------------------------------ 1355 */ 1356 1357 struct head { 1358 /*---------------------------------------------------------------- 1359 ** Saved data pointer. 1360 ** Points to the position in the script responsible for the 1361 ** actual transfer transfer of data. 1362 ** It's written after reception of a SAVE_DATA_POINTER message. 1363 ** The goalpointer points after the last transfer command. 1364 **---------------------------------------------------------------- 1365 */ 1366 u32 savep; 1367 u32 lastp; 1368 u32 goalp; 1369 1370 /*---------------------------------------------------------------- 1371 ** Alternate data pointer. 1372 ** They are copied back to savep/lastp/goalp by the SCRIPTS 1373 ** when the direction is unknown and the device claims data out. 1374 **---------------------------------------------------------------- 1375 */ 1376 u32 wlastp; 1377 u32 wgoalp; 1378 1379 /*---------------------------------------------------------------- 1380 ** The virtual address of the ccb containing this header. 1381 **---------------------------------------------------------------- 1382 */ 1383 struct ccb * cp; 1384 1385 /*---------------------------------------------------------------- 1386 ** Status fields. 1387 **---------------------------------------------------------------- 1388 */ 1389 u_char scr_st[4]; /* script status */ 1390 u_char status[4]; /* host status. must be the */ 1391 /* last DWORD of the header. */ 1392 }; 1393 1394 /* 1395 ** The status bytes are used by the host and the script processor. 1396 ** 1397 ** The byte corresponding to the host_status must be stored in the 1398 ** last DWORD of the CCB header since it is used for command 1399 ** completion (ncr_wakeup()). Doing so, we are sure that the header 1400 ** has been entirely copied back to the CCB when the host_status is 1401 ** seen complete by the CPU. 1402 ** 1403 ** The last four bytes (status[4]) are copied to the scratchb register 1404 ** (declared as scr0..scr3 in ncr_reg.h) just after the select/reselect, 1405 ** and copied back just after disconnecting. 1406 ** Inside the script the XX_REG are used. 1407 ** 1408 ** The first four bytes (scr_st[4]) are used inside the script by 1409 ** "COPY" commands. 1410 ** Because source and destination must have the same alignment 1411 ** in a DWORD, the fields HAVE to be at the chosen offsets. 1412 ** xerr_st 0 (0x34) scratcha 1413 ** sync_st 1 (0x05) sxfer 1414 ** wide_st 3 (0x03) scntl3 1415 */ 1416 1417 /* 1418 ** Last four bytes (script) 1419 */ 1420 #define QU_REG scr0 1421 #define HS_REG scr1 1422 #define HS_PRT nc_scr1 1423 #define SS_REG scr2 1424 #define SS_PRT nc_scr2 1425 #define PS_REG scr3 1426 1427 /* 1428 ** Last four bytes (host) 1429 */ 1430 #ifdef SCSI_NCR_BIG_ENDIAN 1431 #define actualquirks phys.header.status[3] 1432 #define host_status phys.header.status[2] 1433 #define scsi_status phys.header.status[1] 1434 #define parity_status phys.header.status[0] 1435 #else 1436 #define actualquirks phys.header.status[0] 1437 #define host_status phys.header.status[1] 1438 #define scsi_status phys.header.status[2] 1439 #define parity_status phys.header.status[3] 1440 #endif 1441 1442 /* 1443 ** First four bytes (script) 1444 */ 1445 #define xerr_st header.scr_st[0] 1446 #define sync_st header.scr_st[1] 1447 #define nego_st header.scr_st[2] 1448 #define wide_st header.scr_st[3] 1449 1450 /* 1451 ** First four bytes (host) 1452 */ 1453 #define xerr_status phys.xerr_st 1454 #define nego_status phys.nego_st 1455 1456 /*========================================================== 1457 ** 1458 ** Declaration of structs: Data structure block 1459 ** 1460 **========================================================== 1461 ** 1462 ** During execution of a ccb by the script processor, 1463 ** the DSA (data structure address) register points 1464 ** to this substructure of the ccb. 1465 ** This substructure contains the header with 1466 ** the script-processor-changeable data and 1467 ** data blocks for the indirect move commands. 1468 ** 1469 **---------------------------------------------------------- 1470 */ 1471 1472 struct dsb { 1473 1474 /* 1475 ** Header. 1476 */ 1477 1478 struct head header; 1479 1480 /* 1481 ** Table data for Script 1482 */ 1483 1484 struct scr_tblsel select; 1485 struct scr_tblmove smsg ; 1486 struct scr_tblmove cmd ; 1487 struct scr_tblmove sense ; 1488 struct scr_tblmove data[MAX_SCATTER]; 1489 }; 1490 1491 1492 /*======================================================================== 1493 ** 1494 ** Declaration of structs: Command control block. 1495 ** 1496 **======================================================================== 1497 */ 1498 struct ccb { 1499 /*---------------------------------------------------------------- 1500 ** This is the data structure which is pointed by the DSA 1501 ** register when it is executed by the script processor. 1502 ** It must be the first entry because it contains the header 1503 ** as first entry that must be cache line aligned. 1504 **---------------------------------------------------------------- 1505 */ 1506 struct dsb phys; 1507 1508 /*---------------------------------------------------------------- 1509 ** Mini-script used at CCB execution start-up. 1510 ** Load the DSA with the data structure address (phys) and 1511 ** jump to SELECT. Jump to CANCEL if CCB is to be canceled. 1512 **---------------------------------------------------------------- 1513 */ 1514 struct launch start; 1515 1516 /*---------------------------------------------------------------- 1517 ** Mini-script used at CCB relection to restart the nexus. 1518 ** Load the DSA with the data structure address (phys) and 1519 ** jump to RESEL_DSA. Jump to ABORT if CCB is to be aborted. 1520 **---------------------------------------------------------------- 1521 */ 1522 struct launch restart; 1523 1524 /*---------------------------------------------------------------- 1525 ** If a data transfer phase is terminated too early 1526 ** (after reception of a message (i.e. DISCONNECT)), 1527 ** we have to prepare a mini script to transfer 1528 ** the rest of the data. 1529 **---------------------------------------------------------------- 1530 */ 1531 ncrcmd patch[8]; 1532 1533 /*---------------------------------------------------------------- 1534 ** The general SCSI driver provides a 1535 ** pointer to a control block. 1536 **---------------------------------------------------------------- 1537 */ 1538 struct scsi_cmnd *cmd; /* SCSI command */ 1539 u_char cdb_buf[16]; /* Copy of CDB */ 1540 u_char sense_buf[64]; 1541 int data_len; /* Total data length */ 1542 1543 /*---------------------------------------------------------------- 1544 ** Message areas. 1545 ** We prepare a message to be sent after selection. 1546 ** We may use a second one if the command is rescheduled 1547 ** due to GETCC or QFULL. 1548 ** Contents are IDENTIFY and SIMPLE_TAG. 1549 ** While negotiating sync or wide transfer, 1550 ** a SDTR or WDTR message is appended. 1551 **---------------------------------------------------------------- 1552 */ 1553 u_char scsi_smsg [8]; 1554 u_char scsi_smsg2[8]; 1555 1556 /*---------------------------------------------------------------- 1557 ** Other fields. 1558 **---------------------------------------------------------------- 1559 */ 1560 u_long p_ccb; /* BUS address of this CCB */ 1561 u_char sensecmd[6]; /* Sense command */ 1562 u_char tag; /* Tag for this transfer */ 1563 /* 255 means no tag */ 1564 u_char target; 1565 u_char lun; 1566 u_char queued; 1567 u_char auto_sense; 1568 struct ccb * link_ccb; /* Host adapter CCB chain */ 1569 struct list_head link_ccbq; /* Link to unit CCB queue */ 1570 u32 startp; /* Initial data pointer */ 1571 u_long magic; /* Free / busy CCB flag */ 1572 }; 1573 1574 #define CCB_PHYS(cp,lbl) (cp->p_ccb + offsetof(struct ccb, lbl)) 1575 1576 1577 /*======================================================================== 1578 ** 1579 ** Declaration of structs: NCR device descriptor 1580 ** 1581 **======================================================================== 1582 */ 1583 struct ncb { 1584 /*---------------------------------------------------------------- 1585 ** The global header. 1586 ** It is accessible to both the host and the script processor. 1587 ** Must be cache line size aligned (32 for x86) in order to 1588 ** allow cache line bursting when it is copied to/from CCB. 1589 **---------------------------------------------------------------- 1590 */ 1591 struct head header; 1592 1593 /*---------------------------------------------------------------- 1594 ** CCBs management queues. 1595 **---------------------------------------------------------------- 1596 */ 1597 struct scsi_cmnd *waiting_list; /* Commands waiting for a CCB */ 1598 /* when lcb is not allocated. */ 1599 struct scsi_cmnd *done_list; /* Commands waiting for done() */ 1600 /* callback to be invoked. */ 1601 spinlock_t smp_lock; /* Lock for SMP threading */ 1602 1603 /*---------------------------------------------------------------- 1604 ** Chip and controller identification. 1605 **---------------------------------------------------------------- 1606 */ 1607 int unit; /* Unit number */ 1608 char inst_name[16]; /* ncb instance name */ 1609 1610 /*---------------------------------------------------------------- 1611 ** Initial value of some IO register bits. 1612 ** These values are assumed to have been set by BIOS, and may 1613 ** be used for probing adapter implementation differences. 1614 **---------------------------------------------------------------- 1615 */ 1616 u_char sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest0, sv_ctest3, 1617 sv_ctest4, sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4; 1618 1619 /*---------------------------------------------------------------- 1620 ** Actual initial value of IO register bits used by the 1621 ** driver. They are loaded at initialisation according to 1622 ** features that are to be enabled. 1623 **---------------------------------------------------------------- 1624 */ 1625 u_char rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest0, rv_ctest3, 1626 rv_ctest4, rv_ctest5, rv_stest2; 1627 1628 /*---------------------------------------------------------------- 1629 ** Targets management. 1630 ** During reselection the ncr jumps to jump_tcb. 1631 ** The SFBR register is loaded with the encoded target id. 1632 ** For i = 0 to 3 1633 ** SCR_JUMP ^ IFTRUE(MASK(i, 3)), @(next tcb mod. i) 1634 ** 1635 ** Recent chips will prefetch the 4 JUMPS using only 1 burst. 1636 ** It is kind of hashcoding. 1637 **---------------------------------------------------------------- 1638 */ 1639 struct link jump_tcb[4]; /* JUMPs for reselection */ 1640 struct tcb target[MAX_TARGET]; /* Target data */ 1641 1642 /*---------------------------------------------------------------- 1643 ** Virtual and physical bus addresses of the chip. 1644 **---------------------------------------------------------------- 1645 */ 1646 void __iomem *vaddr; /* Virtual and bus address of */ 1647 unsigned long paddr; /* chip's IO registers. */ 1648 unsigned long paddr2; /* On-chip RAM bus address. */ 1649 volatile /* Pointer to volatile for */ 1650 struct ncr_reg __iomem *reg; /* memory mapped IO. */ 1651 1652 /*---------------------------------------------------------------- 1653 ** SCRIPTS virtual and physical bus addresses. 1654 ** 'script' is loaded in the on-chip RAM if present. 1655 ** 'scripth' stays in main memory. 1656 **---------------------------------------------------------------- 1657 */ 1658 struct script *script0; /* Copies of script and scripth */ 1659 struct scripth *scripth0; /* relocated for this ncb. */ 1660 struct scripth *scripth; /* Actual scripth virt. address */ 1661 u_long p_script; /* Actual script and scripth */ 1662 u_long p_scripth; /* bus addresses. */ 1663 1664 /*---------------------------------------------------------------- 1665 ** General controller parameters and configuration. 1666 **---------------------------------------------------------------- 1667 */ 1668 struct device *dev; 1669 u_char revision_id; /* PCI device revision id */ 1670 u32 irq; /* IRQ level */ 1671 u32 features; /* Chip features map */ 1672 u_char myaddr; /* SCSI id of the adapter */ 1673 u_char maxburst; /* log base 2 of dwords burst */ 1674 u_char maxwide; /* Maximum transfer width */ 1675 u_char minsync; /* Minimum sync period factor */ 1676 u_char maxsync; /* Maximum sync period factor */ 1677 u_char maxoffs; /* Max scsi offset */ 1678 u_char multiplier; /* Clock multiplier (1,2,4) */ 1679 u_char clock_divn; /* Number of clock divisors */ 1680 u_long clock_khz; /* SCSI clock frequency in KHz */ 1681 1682 /*---------------------------------------------------------------- 1683 ** Start queue management. 1684 ** It is filled up by the host processor and accessed by the 1685 ** SCRIPTS processor in order to start SCSI commands. 1686 **---------------------------------------------------------------- 1687 */ 1688 u16 squeueput; /* Next free slot of the queue */ 1689 u16 actccbs; /* Number of allocated CCBs */ 1690 u16 queuedccbs; /* Number of CCBs in start queue*/ 1691 u16 queuedepth; /* Start queue depth */ 1692 1693 /*---------------------------------------------------------------- 1694 ** Timeout handler. 1695 **---------------------------------------------------------------- 1696 */ 1697 struct timer_list timer; /* Timer handler link header */ 1698 u_long lasttime; 1699 u_long settle_time; /* Resetting the SCSI BUS */ 1700 1701 /*---------------------------------------------------------------- 1702 ** Debugging and profiling. 1703 **---------------------------------------------------------------- 1704 */ 1705 struct ncr_reg regdump; /* Register dump */ 1706 u_long regtime; /* Time it has been done */ 1707 1708 /*---------------------------------------------------------------- 1709 ** Miscellaneous buffers accessed by the scripts-processor. 1710 ** They shall be DWORD aligned, because they may be read or 1711 ** written with a SCR_COPY script command. 1712 **---------------------------------------------------------------- 1713 */ 1714 u_char msgout[8]; /* Buffer for MESSAGE OUT */ 1715 u_char msgin [8]; /* Buffer for MESSAGE IN */ 1716 u32 lastmsg; /* Last SCSI message sent */ 1717 u_char scratch; /* Scratch for SCSI receive */ 1718 1719 /*---------------------------------------------------------------- 1720 ** Miscellaneous configuration and status parameters. 1721 **---------------------------------------------------------------- 1722 */ 1723 u_char disc; /* Disconnection allowed */ 1724 u_char scsi_mode; /* Current SCSI BUS mode */ 1725 u_char order; /* Tag order to use */ 1726 u_char verbose; /* Verbosity for this controller*/ 1727 int ncr_cache; /* Used for cache test at init. */ 1728 u_long p_ncb; /* BUS address of this NCB */ 1729 1730 /*---------------------------------------------------------------- 1731 ** Command completion handling. 1732 **---------------------------------------------------------------- 1733 */ 1734 #ifdef SCSI_NCR_CCB_DONE_SUPPORT 1735 struct ccb *(ccb_done[MAX_DONE]); 1736 int ccb_done_ic; 1737 #endif 1738 /*---------------------------------------------------------------- 1739 ** Fields that should be removed or changed. 1740 **---------------------------------------------------------------- 1741 */ 1742 struct ccb *ccb; /* Global CCB */ 1743 struct usrcmd user; /* Command from user */ 1744 volatile u_char release_stage; /* Synchronisation stage on release */ 1745 }; 1746 1747 #define NCB_SCRIPT_PHYS(np,lbl) (np->p_script + offsetof (struct script, lbl)) 1748 #define NCB_SCRIPTH_PHYS(np,lbl) (np->p_scripth + offsetof (struct scripth,lbl)) 1749 1750 /*========================================================== 1751 ** 1752 ** 1753 ** Script for NCR-Processor. 1754 ** 1755 ** Use ncr_script_fill() to create the variable parts. 1756 ** Use ncr_script_copy_and_bind() to make a copy and 1757 ** bind to physical addresses. 1758 ** 1759 ** 1760 **========================================================== 1761 ** 1762 ** We have to know the offsets of all labels before 1763 ** we reach them (for forward jumps). 1764 ** Therefore we declare a struct here. 1765 ** If you make changes inside the script, 1766 ** DONT FORGET TO CHANGE THE LENGTHS HERE! 1767 ** 1768 **---------------------------------------------------------- 1769 */ 1770 1771 /* 1772 ** For HP Zalon/53c720 systems, the Zalon interface 1773 ** between CPU and 53c720 does prefetches, which causes 1774 ** problems with self modifying scripts. The problem 1775 ** is overcome by calling a dummy subroutine after each 1776 ** modification, to force a refetch of the script on 1777 ** return from the subroutine. 1778 */ 1779 1780 #ifdef CONFIG_NCR53C8XX_PREFETCH 1781 #define PREFETCH_FLUSH_CNT 2 1782 #define PREFETCH_FLUSH SCR_CALL, PADDRH (wait_dma), 1783 #else 1784 #define PREFETCH_FLUSH_CNT 0 1785 #define PREFETCH_FLUSH 1786 #endif 1787 1788 /* 1789 ** Script fragments which are loaded into the on-chip RAM 1790 ** of 825A, 875 and 895 chips. 1791 */ 1792 struct script { 1793 ncrcmd start [ 5]; 1794 ncrcmd startpos [ 1]; 1795 ncrcmd select [ 6]; 1796 ncrcmd select2 [ 9 + PREFETCH_FLUSH_CNT]; 1797 ncrcmd loadpos [ 4]; 1798 ncrcmd send_ident [ 9]; 1799 ncrcmd prepare [ 6]; 1800 ncrcmd prepare2 [ 7]; 1801 ncrcmd command [ 6]; 1802 ncrcmd dispatch [ 32]; 1803 ncrcmd clrack [ 4]; 1804 ncrcmd no_data [ 17]; 1805 ncrcmd status [ 8]; 1806 ncrcmd msg_in [ 2]; 1807 ncrcmd msg_in2 [ 16]; 1808 ncrcmd msg_bad [ 4]; 1809 ncrcmd setmsg [ 7]; 1810 ncrcmd cleanup [ 6]; 1811 ncrcmd complete [ 9]; 1812 ncrcmd cleanup_ok [ 8 + PREFETCH_FLUSH_CNT]; 1813 ncrcmd cleanup0 [ 1]; 1814 #ifndef SCSI_NCR_CCB_DONE_SUPPORT 1815 ncrcmd signal [ 12]; 1816 #else 1817 ncrcmd signal [ 9]; 1818 ncrcmd done_pos [ 1]; 1819 ncrcmd done_plug [ 2]; 1820 ncrcmd done_end [ 7]; 1821 #endif 1822 ncrcmd save_dp [ 7]; 1823 ncrcmd restore_dp [ 5]; 1824 ncrcmd disconnect [ 10]; 1825 ncrcmd msg_out [ 9]; 1826 ncrcmd msg_out_done [ 7]; 1827 ncrcmd idle [ 2]; 1828 ncrcmd reselect [ 8]; 1829 ncrcmd reselected [ 8]; 1830 ncrcmd resel_dsa [ 6 + PREFETCH_FLUSH_CNT]; 1831 ncrcmd loadpos1 [ 4]; 1832 ncrcmd resel_lun [ 6]; 1833 ncrcmd resel_tag [ 6]; 1834 ncrcmd jump_to_nexus [ 4 + PREFETCH_FLUSH_CNT]; 1835 ncrcmd nexus_indirect [ 4]; 1836 ncrcmd resel_notag [ 4]; 1837 ncrcmd data_in [MAX_SCATTERL * 4]; 1838 ncrcmd data_in2 [ 4]; 1839 ncrcmd data_out [MAX_SCATTERL * 4]; 1840 ncrcmd data_out2 [ 4]; 1841 }; 1842 1843 /* 1844 ** Script fragments which stay in main memory for all chips. 1845 */ 1846 struct scripth { 1847 ncrcmd tryloop [MAX_START*2]; 1848 ncrcmd tryloop2 [ 2]; 1849 #ifdef SCSI_NCR_CCB_DONE_SUPPORT 1850 ncrcmd done_queue [MAX_DONE*5]; 1851 ncrcmd done_queue2 [ 2]; 1852 #endif 1853 ncrcmd select_no_atn [ 8]; 1854 ncrcmd cancel [ 4]; 1855 ncrcmd skip [ 9 + PREFETCH_FLUSH_CNT]; 1856 ncrcmd skip2 [ 19]; 1857 ncrcmd par_err_data_in [ 6]; 1858 ncrcmd par_err_other [ 4]; 1859 ncrcmd msg_reject [ 8]; 1860 ncrcmd msg_ign_residue [ 24]; 1861 ncrcmd msg_extended [ 10]; 1862 ncrcmd msg_ext_2 [ 10]; 1863 ncrcmd msg_wdtr [ 14]; 1864 ncrcmd send_wdtr [ 7]; 1865 ncrcmd msg_ext_3 [ 10]; 1866 ncrcmd msg_sdtr [ 14]; 1867 ncrcmd send_sdtr [ 7]; 1868 ncrcmd nego_bad_phase [ 4]; 1869 ncrcmd msg_out_abort [ 10]; 1870 ncrcmd hdata_in [MAX_SCATTERH * 4]; 1871 ncrcmd hdata_in2 [ 2]; 1872 ncrcmd hdata_out [MAX_SCATTERH * 4]; 1873 ncrcmd hdata_out2 [ 2]; 1874 ncrcmd reset [ 4]; 1875 ncrcmd aborttag [ 4]; 1876 ncrcmd abort [ 2]; 1877 ncrcmd abort_resel [ 20]; 1878 ncrcmd resend_ident [ 4]; 1879 ncrcmd clratn_go_on [ 3]; 1880 ncrcmd nxtdsp_go_on [ 1]; 1881 ncrcmd sdata_in [ 8]; 1882 ncrcmd data_io [ 18]; 1883 ncrcmd bad_identify [ 12]; 1884 ncrcmd bad_i_t_l [ 4]; 1885 ncrcmd bad_i_t_l_q [ 4]; 1886 ncrcmd bad_target [ 8]; 1887 ncrcmd bad_status [ 8]; 1888 ncrcmd start_ram [ 4 + PREFETCH_FLUSH_CNT]; 1889 ncrcmd start_ram0 [ 4]; 1890 ncrcmd sto_restart [ 5]; 1891 ncrcmd wait_dma [ 2]; 1892 ncrcmd snooptest [ 9]; 1893 ncrcmd snoopend [ 2]; 1894 }; 1895 1896 /*========================================================== 1897 ** 1898 ** 1899 ** Function headers. 1900 ** 1901 ** 1902 **========================================================== 1903 */ 1904 1905 static void ncr_alloc_ccb (struct ncb *np, u_char tn, u_char ln); 1906 static void ncr_complete (struct ncb *np, struct ccb *cp); 1907 static void ncr_exception (struct ncb *np); 1908 static void ncr_free_ccb (struct ncb *np, struct ccb *cp); 1909 static void ncr_init_ccb (struct ncb *np, struct ccb *cp); 1910 static void ncr_init_tcb (struct ncb *np, u_char tn); 1911 static struct lcb * ncr_alloc_lcb (struct ncb *np, u_char tn, u_char ln); 1912 static struct lcb * ncr_setup_lcb (struct ncb *np, struct scsi_device *sdev); 1913 static void ncr_getclock (struct ncb *np, int mult); 1914 static void ncr_selectclock (struct ncb *np, u_char scntl3); 1915 static struct ccb *ncr_get_ccb (struct ncb *np, struct scsi_cmnd *cmd); 1916 static void ncr_chip_reset (struct ncb *np, int delay); 1917 static void ncr_init (struct ncb *np, int reset, char * msg, u_long code); 1918 static int ncr_int_sbmc (struct ncb *np); 1919 static int ncr_int_par (struct ncb *np); 1920 static void ncr_int_ma (struct ncb *np); 1921 static void ncr_int_sir (struct ncb *np); 1922 static void ncr_int_sto (struct ncb *np); 1923 static void ncr_negotiate (struct ncb* np, struct tcb* tp); 1924 static int ncr_prepare_nego(struct ncb *np, struct ccb *cp, u_char *msgptr); 1925 1926 static void ncr_script_copy_and_bind 1927 (struct ncb *np, ncrcmd *src, ncrcmd *dst, int len); 1928 static void ncr_script_fill (struct script * scr, struct scripth * scripth); 1929 static int ncr_scatter (struct ncb *np, struct ccb *cp, struct scsi_cmnd *cmd); 1930 static void ncr_getsync (struct ncb *np, u_char sfac, u_char *fakp, u_char *scntl3p); 1931 static void ncr_setsync (struct ncb *np, struct ccb *cp, u_char scntl3, u_char sxfer); 1932 static void ncr_setup_tags (struct ncb *np, struct scsi_device *sdev); 1933 static void ncr_setwide (struct ncb *np, struct ccb *cp, u_char wide, u_char ack); 1934 static int ncr_snooptest (struct ncb *np); 1935 static void ncr_timeout (struct ncb *np); 1936 static void ncr_wakeup (struct ncb *np, u_long code); 1937 static void ncr_wakeup_done (struct ncb *np); 1938 static void ncr_start_next_ccb (struct ncb *np, struct lcb * lp, int maxn); 1939 static void ncr_put_start_queue(struct ncb *np, struct ccb *cp); 1940 1941 static void insert_into_waiting_list(struct ncb *np, struct scsi_cmnd *cmd); 1942 static void process_waiting_list(struct ncb *np, int sts); 1943 1944 #define requeue_waiting_list(np) process_waiting_list((np), DID_OK) 1945 #define reset_waiting_list(np) process_waiting_list((np), DID_RESET) 1946 1947 static inline char *ncr_name (struct ncb *np) 1948 { 1949 return np->inst_name; 1950 } 1951 1952 1953 /*========================================================== 1954 ** 1955 ** 1956 ** Scripts for NCR-Processor. 1957 ** 1958 ** Use ncr_script_bind for binding to physical addresses. 1959 ** 1960 ** 1961 **========================================================== 1962 ** 1963 ** NADDR generates a reference to a field of the controller data. 1964 ** PADDR generates a reference to another part of the script. 1965 ** RADDR generates a reference to a script processor register. 1966 ** FADDR generates a reference to a script processor register 1967 ** with offset. 1968 ** 1969 **---------------------------------------------------------- 1970 */ 1971 1972 #define RELOC_SOFTC 0x40000000 1973 #define RELOC_LABEL 0x50000000 1974 #define RELOC_REGISTER 0x60000000 1975 #define RELOC_LABELH 0x80000000 1976 #define RELOC_MASK 0xf0000000 1977 1978 #define NADDR(label) (RELOC_SOFTC | offsetof(struct ncb, label)) 1979 #define PADDR(label) (RELOC_LABEL | offsetof(struct script, label)) 1980 #define PADDRH(label) (RELOC_LABELH | offsetof(struct scripth, label)) 1981 #define RADDR(label) (RELOC_REGISTER | REG(label)) 1982 #define FADDR(label,ofs)(RELOC_REGISTER | ((REG(label))+(ofs))) 1983 1984 1985 static struct script script0 __initdata = { 1986 /*--------------------------< START >-----------------------*/ { 1987 /* 1988 ** This NOP will be patched with LED ON 1989 ** SCR_REG_REG (gpreg, SCR_AND, 0xfe) 1990 */ 1991 SCR_NO_OP, 1992 0, 1993 /* 1994 ** Clear SIGP. 1995 */ 1996 SCR_FROM_REG (ctest2), 1997 0, 1998 /* 1999 ** Then jump to a certain point in tryloop. 2000 ** Due to the lack of indirect addressing the code 2001 ** is self modifying here. 2002 */ 2003 SCR_JUMP, 2004 }/*-------------------------< STARTPOS >--------------------*/,{ 2005 PADDRH(tryloop), 2006 2007 }/*-------------------------< SELECT >----------------------*/,{ 2008 /* 2009 ** DSA contains the address of a scheduled 2010 ** data structure. 2011 ** 2012 ** SCRATCHA contains the address of the script, 2013 ** which starts the next entry. 2014 ** 2015 ** Set Initiator mode. 2016 ** 2017 ** (Target mode is left as an exercise for the reader) 2018 */ 2019 2020 SCR_CLR (SCR_TRG), 2021 0, 2022 SCR_LOAD_REG (HS_REG, HS_SELECTING), 2023 0, 2024 2025 /* 2026 ** And try to select this target. 2027 */ 2028 SCR_SEL_TBL_ATN ^ offsetof (struct dsb, select), 2029 PADDR (reselect), 2030 2031 }/*-------------------------< SELECT2 >----------------------*/,{ 2032 /* 2033 ** Now there are 4 possibilities: 2034 ** 2035 ** (1) The ncr loses arbitration. 2036 ** This is ok, because it will try again, 2037 ** when the bus becomes idle. 2038 ** (But beware of the timeout function!) 2039 ** 2040 ** (2) The ncr is reselected. 2041 ** Then the script processor takes the jump 2042 ** to the RESELECT label. 2043 ** 2044 ** (3) The ncr wins arbitration. 2045 ** Then it will execute SCRIPTS instruction until 2046 ** the next instruction that checks SCSI phase. 2047 ** Then will stop and wait for selection to be 2048 ** complete or selection time-out to occur. 2049 ** As a result the SCRIPTS instructions until 2050 ** LOADPOS + 2 should be executed in parallel with 2051 ** the SCSI core performing selection. 2052 */ 2053 2054 /* 2055 ** The MESSAGE_REJECT problem seems to be due to a selection 2056 ** timing problem. 2057 ** Wait immediately for the selection to complete. 2058 ** (2.5x behaves so) 2059 */ 2060 SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_OUT)), 2061 0, 2062 2063 /* 2064 ** Next time use the next slot. 2065 */ 2066 SCR_COPY (4), 2067 RADDR (temp), 2068 PADDR (startpos), 2069 /* 2070 ** The ncr doesn't have an indirect load 2071 ** or store command. So we have to 2072 ** copy part of the control block to a 2073 ** fixed place, where we can access it. 2074 ** 2075 ** We patch the address part of a 2076 ** COPY command with the DSA-register. 2077 */ 2078 SCR_COPY_F (4), 2079 RADDR (dsa), 2080 PADDR (loadpos), 2081 /* 2082 ** Flush script prefetch if required 2083 */ 2084 PREFETCH_FLUSH 2085 /* 2086 ** then we do the actual copy. 2087 */ 2088 SCR_COPY (sizeof (struct head)), 2089 /* 2090 ** continued after the next label ... 2091 */ 2092 }/*-------------------------< LOADPOS >---------------------*/,{ 2093 0, 2094 NADDR (header), 2095 /* 2096 ** Wait for the next phase or the selection 2097 ** to complete or time-out. 2098 */ 2099 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)), 2100 PADDR (prepare), 2101 2102 }/*-------------------------< SEND_IDENT >----------------------*/,{ 2103 /* 2104 ** Selection complete. 2105 ** Send the IDENTIFY and SIMPLE_TAG messages 2106 ** (and the EXTENDED_SDTR message) 2107 */ 2108 SCR_MOVE_TBL ^ SCR_MSG_OUT, 2109 offsetof (struct dsb, smsg), 2110 SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)), 2111 PADDRH (resend_ident), 2112 SCR_LOAD_REG (scratcha, 0x80), 2113 0, 2114 SCR_COPY (1), 2115 RADDR (scratcha), 2116 NADDR (lastmsg), 2117 }/*-------------------------< PREPARE >----------------------*/,{ 2118 /* 2119 ** load the savep (saved pointer) into 2120 ** the TEMP register (actual pointer) 2121 */ 2122 SCR_COPY (4), 2123 NADDR (header.savep), 2124 RADDR (temp), 2125 /* 2126 ** Initialize the status registers 2127 */ 2128 SCR_COPY (4), 2129 NADDR (header.status), 2130 RADDR (scr0), 2131 }/*-------------------------< PREPARE2 >---------------------*/,{ 2132 /* 2133 ** Initialize the msgout buffer with a NOOP message. 2134 */ 2135 SCR_LOAD_REG (scratcha, NOP), 2136 0, 2137 SCR_COPY (1), 2138 RADDR (scratcha), 2139 NADDR (msgout), 2140 /* 2141 ** Anticipate the COMMAND phase. 2142 ** This is the normal case for initial selection. 2143 */ 2144 SCR_JUMP ^ IFFALSE (WHEN (SCR_COMMAND)), 2145 PADDR (dispatch), 2146 2147 }/*-------------------------< COMMAND >--------------------*/,{ 2148 /* 2149 ** ... and send the command 2150 */ 2151 SCR_MOVE_TBL ^ SCR_COMMAND, 2152 offsetof (struct dsb, cmd), 2153 /* 2154 ** If status is still HS_NEGOTIATE, negotiation failed. 2155 ** We check this here, since we want to do that 2156 ** only once. 2157 */ 2158 SCR_FROM_REG (HS_REG), 2159 0, 2160 SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)), 2161 SIR_NEGO_FAILED, 2162 2163 }/*-----------------------< DISPATCH >----------------------*/,{ 2164 /* 2165 ** MSG_IN is the only phase that shall be 2166 ** entered at least once for each (re)selection. 2167 ** So we test it first. 2168 */ 2169 SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)), 2170 PADDR (msg_in), 2171 2172 SCR_RETURN ^ IFTRUE (IF (SCR_DATA_OUT)), 2173 0, 2174 /* 2175 ** DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 4. 2176 ** Possible data corruption during Memory Write and Invalidate. 2177 ** This work-around resets the addressing logic prior to the 2178 ** start of the first MOVE of a DATA IN phase. 2179 ** (See Documentation/scsi/ncr53c8xx.rst for more information) 2180 */ 2181 SCR_JUMPR ^ IFFALSE (IF (SCR_DATA_IN)), 2182 20, 2183 SCR_COPY (4), 2184 RADDR (scratcha), 2185 RADDR (scratcha), 2186 SCR_RETURN, 2187 0, 2188 SCR_JUMP ^ IFTRUE (IF (SCR_STATUS)), 2189 PADDR (status), 2190 SCR_JUMP ^ IFTRUE (IF (SCR_COMMAND)), 2191 PADDR (command), 2192 SCR_JUMP ^ IFTRUE (IF (SCR_MSG_OUT)), 2193 PADDR (msg_out), 2194 /* 2195 ** Discard one illegal phase byte, if required. 2196 */ 2197 SCR_LOAD_REG (scratcha, XE_BAD_PHASE), 2198 0, 2199 SCR_COPY (1), 2200 RADDR (scratcha), 2201 NADDR (xerr_st), 2202 SCR_JUMPR ^ IFFALSE (IF (SCR_ILG_OUT)), 2203 8, 2204 SCR_MOVE_ABS (1) ^ SCR_ILG_OUT, 2205 NADDR (scratch), 2206 SCR_JUMPR ^ IFFALSE (IF (SCR_ILG_IN)), 2207 8, 2208 SCR_MOVE_ABS (1) ^ SCR_ILG_IN, 2209 NADDR (scratch), 2210 SCR_JUMP, 2211 PADDR (dispatch), 2212 2213 }/*-------------------------< CLRACK >----------------------*/,{ 2214 /* 2215 ** Terminate possible pending message phase. 2216 */ 2217 SCR_CLR (SCR_ACK), 2218 0, 2219 SCR_JUMP, 2220 PADDR (dispatch), 2221 2222 }/*-------------------------< NO_DATA >--------------------*/,{ 2223 /* 2224 ** The target wants to tranfer too much data 2225 ** or in the wrong direction. 2226 ** Remember that in extended error. 2227 */ 2228 SCR_LOAD_REG (scratcha, XE_EXTRA_DATA), 2229 0, 2230 SCR_COPY (1), 2231 RADDR (scratcha), 2232 NADDR (xerr_st), 2233 /* 2234 ** Discard one data byte, if required. 2235 */ 2236 SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_OUT)), 2237 8, 2238 SCR_MOVE_ABS (1) ^ SCR_DATA_OUT, 2239 NADDR (scratch), 2240 SCR_JUMPR ^ IFFALSE (IF (SCR_DATA_IN)), 2241 8, 2242 SCR_MOVE_ABS (1) ^ SCR_DATA_IN, 2243 NADDR (scratch), 2244 /* 2245 ** .. and repeat as required. 2246 */ 2247 SCR_CALL, 2248 PADDR (dispatch), 2249 SCR_JUMP, 2250 PADDR (no_data), 2251 2252 }/*-------------------------< STATUS >--------------------*/,{ 2253 /* 2254 ** get the status 2255 */ 2256 SCR_MOVE_ABS (1) ^ SCR_STATUS, 2257 NADDR (scratch), 2258 /* 2259 ** save status to scsi_status. 2260 ** mark as complete. 2261 */ 2262 SCR_TO_REG (SS_REG), 2263 0, 2264 SCR_LOAD_REG (HS_REG, HS_COMPLETE), 2265 0, 2266 SCR_JUMP, 2267 PADDR (dispatch), 2268 }/*-------------------------< MSG_IN >--------------------*/,{ 2269 /* 2270 ** Get the first byte of the message 2271 ** and save it to SCRATCHA. 2272 ** 2273 ** The script processor doesn't negate the 2274 ** ACK signal after this transfer. 2275 */ 2276 SCR_MOVE_ABS (1) ^ SCR_MSG_IN, 2277 NADDR (msgin[0]), 2278 }/*-------------------------< MSG_IN2 >--------------------*/,{ 2279 /* 2280 ** Handle this message. 2281 */ 2282 SCR_JUMP ^ IFTRUE (DATA (COMMAND_COMPLETE)), 2283 PADDR (complete), 2284 SCR_JUMP ^ IFTRUE (DATA (DISCONNECT)), 2285 PADDR (disconnect), 2286 SCR_JUMP ^ IFTRUE (DATA (SAVE_POINTERS)), 2287 PADDR (save_dp), 2288 SCR_JUMP ^ IFTRUE (DATA (RESTORE_POINTERS)), 2289 PADDR (restore_dp), 2290 SCR_JUMP ^ IFTRUE (DATA (EXTENDED_MESSAGE)), 2291 PADDRH (msg_extended), 2292 SCR_JUMP ^ IFTRUE (DATA (NOP)), 2293 PADDR (clrack), 2294 SCR_JUMP ^ IFTRUE (DATA (MESSAGE_REJECT)), 2295 PADDRH (msg_reject), 2296 SCR_JUMP ^ IFTRUE (DATA (IGNORE_WIDE_RESIDUE)), 2297 PADDRH (msg_ign_residue), 2298 /* 2299 ** Rest of the messages left as 2300 ** an exercise ... 2301 ** 2302 ** Unimplemented messages: 2303 ** fall through to MSG_BAD. 2304 */ 2305 }/*-------------------------< MSG_BAD >------------------*/,{ 2306 /* 2307 ** unimplemented message - reject it. 2308 */ 2309 SCR_INT, 2310 SIR_REJECT_SENT, 2311 SCR_LOAD_REG (scratcha, MESSAGE_REJECT), 2312 0, 2313 }/*-------------------------< SETMSG >----------------------*/,{ 2314 SCR_COPY (1), 2315 RADDR (scratcha), 2316 NADDR (msgout), 2317 SCR_SET (SCR_ATN), 2318 0, 2319 SCR_JUMP, 2320 PADDR (clrack), 2321 }/*-------------------------< CLEANUP >-------------------*/,{ 2322 /* 2323 ** dsa: Pointer to ccb 2324 ** or xxxxxxFF (no ccb) 2325 ** 2326 ** HS_REG: Host-Status (<>0!) 2327 */ 2328 SCR_FROM_REG (dsa), 2329 0, 2330 SCR_JUMP ^ IFTRUE (DATA (0xff)), 2331 PADDR (start), 2332 /* 2333 ** dsa is valid. 2334 ** complete the cleanup. 2335 */ 2336 SCR_JUMP, 2337 PADDR (cleanup_ok), 2338 2339 }/*-------------------------< COMPLETE >-----------------*/,{ 2340 /* 2341 ** Complete message. 2342 ** 2343 ** Copy TEMP register to LASTP in header. 2344 */ 2345 SCR_COPY (4), 2346 RADDR (temp), 2347 NADDR (header.lastp), 2348 /* 2349 ** When we terminate the cycle by clearing ACK, 2350 ** the target may disconnect immediately. 2351 ** 2352 ** We don't want to be told of an 2353 ** "unexpected disconnect", 2354 ** so we disable this feature. 2355 */ 2356 SCR_REG_REG (scntl2, SCR_AND, 0x7f), 2357 0, 2358 /* 2359 ** Terminate cycle ... 2360 */ 2361 SCR_CLR (SCR_ACK|SCR_ATN), 2362 0, 2363 /* 2364 ** ... and wait for the disconnect. 2365 */ 2366 SCR_WAIT_DISC, 2367 0, 2368 }/*-------------------------< CLEANUP_OK >----------------*/,{ 2369 /* 2370 ** Save host status to header. 2371 */ 2372 SCR_COPY (4), 2373 RADDR (scr0), 2374 NADDR (header.status), 2375 /* 2376 ** and copy back the header to the ccb. 2377 */ 2378 SCR_COPY_F (4), 2379 RADDR (dsa), 2380 PADDR (cleanup0), 2381 /* 2382 ** Flush script prefetch if required 2383 */ 2384 PREFETCH_FLUSH 2385 SCR_COPY (sizeof (struct head)), 2386 NADDR (header), 2387 }/*-------------------------< CLEANUP0 >--------------------*/,{ 2388 0, 2389 }/*-------------------------< SIGNAL >----------------------*/,{ 2390 /* 2391 ** if job not completed ... 2392 */ 2393 SCR_FROM_REG (HS_REG), 2394 0, 2395 /* 2396 ** ... start the next command. 2397 */ 2398 SCR_JUMP ^ IFTRUE (MASK (0, (HS_DONEMASK|HS_SKIPMASK))), 2399 PADDR(start), 2400 /* 2401 ** If command resulted in not GOOD status, 2402 ** call the C code if needed. 2403 */ 2404 SCR_FROM_REG (SS_REG), 2405 0, 2406 SCR_CALL ^ IFFALSE (DATA (SAM_STAT_GOOD)), 2407 PADDRH (bad_status), 2408 2409 #ifndef SCSI_NCR_CCB_DONE_SUPPORT 2410 2411 /* 2412 ** ... signal completion to the host 2413 */ 2414 SCR_INT, 2415 SIR_INTFLY, 2416 /* 2417 ** Auf zu neuen Schandtaten! 2418 */ 2419 SCR_JUMP, 2420 PADDR(start), 2421 2422 #else /* defined SCSI_NCR_CCB_DONE_SUPPORT */ 2423 2424 /* 2425 ** ... signal completion to the host 2426 */ 2427 SCR_JUMP, 2428 }/*------------------------< DONE_POS >---------------------*/,{ 2429 PADDRH (done_queue), 2430 }/*------------------------< DONE_PLUG >--------------------*/,{ 2431 SCR_INT, 2432 SIR_DONE_OVERFLOW, 2433 }/*------------------------< DONE_END >---------------------*/,{ 2434 SCR_INT, 2435 SIR_INTFLY, 2436 SCR_COPY (4), 2437 RADDR (temp), 2438 PADDR (done_pos), 2439 SCR_JUMP, 2440 PADDR (start), 2441 2442 #endif /* SCSI_NCR_CCB_DONE_SUPPORT */ 2443 2444 }/*-------------------------< SAVE_DP >------------------*/,{ 2445 /* 2446 ** SAVE_DP message: 2447 ** Copy TEMP register to SAVEP in header. 2448 */ 2449 SCR_COPY (4), 2450 RADDR (temp), 2451 NADDR (header.savep), 2452 SCR_CLR (SCR_ACK), 2453 0, 2454 SCR_JUMP, 2455 PADDR (dispatch), 2456 }/*-------------------------< RESTORE_DP >---------------*/,{ 2457 /* 2458 ** RESTORE_DP message: 2459 ** Copy SAVEP in header to TEMP register. 2460 */ 2461 SCR_COPY (4), 2462 NADDR (header.savep), 2463 RADDR (temp), 2464 SCR_JUMP, 2465 PADDR (clrack), 2466 2467 }/*-------------------------< DISCONNECT >---------------*/,{ 2468 /* 2469 ** DISCONNECTing ... 2470 ** 2471 ** disable the "unexpected disconnect" feature, 2472 ** and remove the ACK signal. 2473 */ 2474 SCR_REG_REG (scntl2, SCR_AND, 0x7f), 2475 0, 2476 SCR_CLR (SCR_ACK|SCR_ATN), 2477 0, 2478 /* 2479 ** Wait for the disconnect. 2480 */ 2481 SCR_WAIT_DISC, 2482 0, 2483 /* 2484 ** Status is: DISCONNECTED. 2485 */ 2486 SCR_LOAD_REG (HS_REG, HS_DISCONNECT), 2487 0, 2488 SCR_JUMP, 2489 PADDR (cleanup_ok), 2490 2491 }/*-------------------------< MSG_OUT >-------------------*/,{ 2492 /* 2493 ** The target requests a message. 2494 */ 2495 SCR_MOVE_ABS (1) ^ SCR_MSG_OUT, 2496 NADDR (msgout), 2497 SCR_COPY (1), 2498 NADDR (msgout), 2499 NADDR (lastmsg), 2500 /* 2501 ** If it was no ABORT message ... 2502 */ 2503 SCR_JUMP ^ IFTRUE (DATA (ABORT_TASK_SET)), 2504 PADDRH (msg_out_abort), 2505 /* 2506 ** ... wait for the next phase 2507 ** if it's a message out, send it again, ... 2508 */ 2509 SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)), 2510 PADDR (msg_out), 2511 }/*-------------------------< MSG_OUT_DONE >--------------*/,{ 2512 /* 2513 ** ... else clear the message ... 2514 */ 2515 SCR_LOAD_REG (scratcha, NOP), 2516 0, 2517 SCR_COPY (4), 2518 RADDR (scratcha), 2519 NADDR (msgout), 2520 /* 2521 ** ... and process the next phase 2522 */ 2523 SCR_JUMP, 2524 PADDR (dispatch), 2525 }/*-------------------------< IDLE >------------------------*/,{ 2526 /* 2527 ** Nothing to do? 2528 ** Wait for reselect. 2529 ** This NOP will be patched with LED OFF 2530 ** SCR_REG_REG (gpreg, SCR_OR, 0x01) 2531 */ 2532 SCR_NO_OP, 2533 0, 2534 }/*-------------------------< RESELECT >--------------------*/,{ 2535 /* 2536 ** make the DSA invalid. 2537 */ 2538 SCR_LOAD_REG (dsa, 0xff), 2539 0, 2540 SCR_CLR (SCR_TRG), 2541 0, 2542 SCR_LOAD_REG (HS_REG, HS_IN_RESELECT), 2543 0, 2544 /* 2545 ** Sleep waiting for a reselection. 2546 ** If SIGP is set, special treatment. 2547 ** 2548 ** Zu allem bereit .. 2549 */ 2550 SCR_WAIT_RESEL, 2551 PADDR(start), 2552 }/*-------------------------< RESELECTED >------------------*/,{ 2553 /* 2554 ** This NOP will be patched with LED ON 2555 ** SCR_REG_REG (gpreg, SCR_AND, 0xfe) 2556 */ 2557 SCR_NO_OP, 2558 0, 2559 /* 2560 ** ... zu nichts zu gebrauchen ? 2561 ** 2562 ** load the target id into the SFBR 2563 ** and jump to the control block. 2564 ** 2565 ** Look at the declarations of 2566 ** - struct ncb 2567 ** - struct tcb 2568 ** - struct lcb 2569 ** - struct ccb 2570 ** to understand what's going on. 2571 */ 2572 SCR_REG_SFBR (ssid, SCR_AND, 0x8F), 2573 0, 2574 SCR_TO_REG (sdid), 2575 0, 2576 SCR_JUMP, 2577 NADDR (jump_tcb), 2578 2579 }/*-------------------------< RESEL_DSA >-------------------*/,{ 2580 /* 2581 ** Ack the IDENTIFY or TAG previously received. 2582 */ 2583 SCR_CLR (SCR_ACK), 2584 0, 2585 /* 2586 ** The ncr doesn't have an indirect load 2587 ** or store command. So we have to 2588 ** copy part of the control block to a 2589 ** fixed place, where we can access it. 2590 ** 2591 ** We patch the address part of a 2592 ** COPY command with the DSA-register. 2593 */ 2594 SCR_COPY_F (4), 2595 RADDR (dsa), 2596 PADDR (loadpos1), 2597 /* 2598 ** Flush script prefetch if required 2599 */ 2600 PREFETCH_FLUSH 2601 /* 2602 ** then we do the actual copy. 2603 */ 2604 SCR_COPY (sizeof (struct head)), 2605 /* 2606 ** continued after the next label ... 2607 */ 2608 2609 }/*-------------------------< LOADPOS1 >-------------------*/,{ 2610 0, 2611 NADDR (header), 2612 /* 2613 ** The DSA contains the data structure address. 2614 */ 2615 SCR_JUMP, 2616 PADDR (prepare), 2617 2618 }/*-------------------------< RESEL_LUN >-------------------*/,{ 2619 /* 2620 ** come back to this point 2621 ** to get an IDENTIFY message 2622 ** Wait for a msg_in phase. 2623 */ 2624 SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)), 2625 SIR_RESEL_NO_MSG_IN, 2626 /* 2627 ** message phase. 2628 ** Read the data directly from the BUS DATA lines. 2629 ** This helps to support very old SCSI devices that 2630 ** may reselect without sending an IDENTIFY. 2631 */ 2632 SCR_FROM_REG (sbdl), 2633 0, 2634 /* 2635 ** It should be an Identify message. 2636 */ 2637 SCR_RETURN, 2638 0, 2639 }/*-------------------------< RESEL_TAG >-------------------*/,{ 2640 /* 2641 ** Read IDENTIFY + SIMPLE + TAG using a single MOVE. 2642 ** Aggressive optimization, is'nt it? 2643 ** No need to test the SIMPLE TAG message, since the 2644 ** driver only supports conformant devices for tags. ;-) 2645 */ 2646 SCR_MOVE_ABS (3) ^ SCR_MSG_IN, 2647 NADDR (msgin), 2648 /* 2649 ** Read the TAG from the SIDL. 2650 ** Still an aggressive optimization. ;-) 2651 ** Compute the CCB indirect jump address which 2652 ** is (#TAG*2 & 0xfc) due to tag numbering using 2653 ** 1,3,5..MAXTAGS*2+1 actual values. 2654 */ 2655 SCR_REG_SFBR (sidl, SCR_SHL, 0), 2656 0, 2657 SCR_SFBR_REG (temp, SCR_AND, 0xfc), 2658 0, 2659 }/*-------------------------< JUMP_TO_NEXUS >-------------------*/,{ 2660 SCR_COPY_F (4), 2661 RADDR (temp), 2662 PADDR (nexus_indirect), 2663 /* 2664 ** Flush script prefetch if required 2665 */ 2666 PREFETCH_FLUSH 2667 SCR_COPY (4), 2668 }/*-------------------------< NEXUS_INDIRECT >-------------------*/,{ 2669 0, 2670 RADDR (temp), 2671 SCR_RETURN, 2672 0, 2673 }/*-------------------------< RESEL_NOTAG >-------------------*/,{ 2674 /* 2675 ** No tag expected. 2676 ** Read an throw away the IDENTIFY. 2677 */ 2678 SCR_MOVE_ABS (1) ^ SCR_MSG_IN, 2679 NADDR (msgin), 2680 SCR_JUMP, 2681 PADDR (jump_to_nexus), 2682 }/*-------------------------< DATA_IN >--------------------*/,{ 2683 /* 2684 ** Because the size depends on the 2685 ** #define MAX_SCATTERL parameter, 2686 ** it is filled in at runtime. 2687 ** 2688 ** ##===========< i=0; i<MAX_SCATTERL >========= 2689 ** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)), 2690 ** || PADDR (dispatch), 2691 ** || SCR_MOVE_TBL ^ SCR_DATA_IN, 2692 ** || offsetof (struct dsb, data[ i]), 2693 ** ##========================================== 2694 ** 2695 **--------------------------------------------------------- 2696 */ 2697 0 2698 }/*-------------------------< DATA_IN2 >-------------------*/,{ 2699 SCR_CALL, 2700 PADDR (dispatch), 2701 SCR_JUMP, 2702 PADDR (no_data), 2703 }/*-------------------------< DATA_OUT >--------------------*/,{ 2704 /* 2705 ** Because the size depends on the 2706 ** #define MAX_SCATTERL parameter, 2707 ** it is filled in at runtime. 2708 ** 2709 ** ##===========< i=0; i<MAX_SCATTERL >========= 2710 ** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT)), 2711 ** || PADDR (dispatch), 2712 ** || SCR_MOVE_TBL ^ SCR_DATA_OUT, 2713 ** || offsetof (struct dsb, data[ i]), 2714 ** ##========================================== 2715 ** 2716 **--------------------------------------------------------- 2717 */ 2718 0 2719 }/*-------------------------< DATA_OUT2 >-------------------*/,{ 2720 SCR_CALL, 2721 PADDR (dispatch), 2722 SCR_JUMP, 2723 PADDR (no_data), 2724 }/*--------------------------------------------------------*/ 2725 }; 2726 2727 static struct scripth scripth0 __initdata = { 2728 /*-------------------------< TRYLOOP >---------------------*/{ 2729 /* 2730 ** Start the next entry. 2731 ** Called addresses point to the launch script in the CCB. 2732 ** They are patched by the main processor. 2733 ** 2734 ** Because the size depends on the 2735 ** #define MAX_START parameter, it is filled 2736 ** in at runtime. 2737 ** 2738 **----------------------------------------------------------- 2739 ** 2740 ** ##===========< I=0; i<MAX_START >=========== 2741 ** || SCR_CALL, 2742 ** || PADDR (idle), 2743 ** ##========================================== 2744 ** 2745 **----------------------------------------------------------- 2746 */ 2747 0 2748 }/*------------------------< TRYLOOP2 >---------------------*/,{ 2749 SCR_JUMP, 2750 PADDRH(tryloop), 2751 2752 #ifdef SCSI_NCR_CCB_DONE_SUPPORT 2753 2754 }/*------------------------< DONE_QUEUE >-------------------*/,{ 2755 /* 2756 ** Copy the CCB address to the next done entry. 2757 ** Because the size depends on the 2758 ** #define MAX_DONE parameter, it is filled 2759 ** in at runtime. 2760 ** 2761 **----------------------------------------------------------- 2762 ** 2763 ** ##===========< I=0; i<MAX_DONE >=========== 2764 ** || SCR_COPY (sizeof(struct ccb *), 2765 ** || NADDR (header.cp), 2766 ** || NADDR (ccb_done[i]), 2767 ** || SCR_CALL, 2768 ** || PADDR (done_end), 2769 ** ##========================================== 2770 ** 2771 **----------------------------------------------------------- 2772 */ 2773 0 2774 }/*------------------------< DONE_QUEUE2 >------------------*/,{ 2775 SCR_JUMP, 2776 PADDRH (done_queue), 2777 2778 #endif /* SCSI_NCR_CCB_DONE_SUPPORT */ 2779 }/*------------------------< SELECT_NO_ATN >-----------------*/,{ 2780 /* 2781 ** Set Initiator mode. 2782 ** And try to select this target without ATN. 2783 */ 2784 2785 SCR_CLR (SCR_TRG), 2786 0, 2787 SCR_LOAD_REG (HS_REG, HS_SELECTING), 2788 0, 2789 SCR_SEL_TBL ^ offsetof (struct dsb, select), 2790 PADDR (reselect), 2791 SCR_JUMP, 2792 PADDR (select2), 2793 2794 }/*-------------------------< CANCEL >------------------------*/,{ 2795 2796 SCR_LOAD_REG (scratcha, HS_ABORTED), 2797 0, 2798 SCR_JUMPR, 2799 8, 2800 }/*-------------------------< SKIP >------------------------*/,{ 2801 SCR_LOAD_REG (scratcha, 0), 2802 0, 2803 /* 2804 ** This entry has been canceled. 2805 ** Next time use the next slot. 2806 */ 2807 SCR_COPY (4), 2808 RADDR (temp), 2809 PADDR (startpos), 2810 /* 2811 ** The ncr doesn't have an indirect load 2812 ** or store command. So we have to 2813 ** copy part of the control block to a 2814 ** fixed place, where we can access it. 2815 ** 2816 ** We patch the address part of a 2817 ** COPY command with the DSA-register. 2818 */ 2819 SCR_COPY_F (4), 2820 RADDR (dsa), 2821 PADDRH (skip2), 2822 /* 2823 ** Flush script prefetch if required 2824 */ 2825 PREFETCH_FLUSH 2826 /* 2827 ** then we do the actual copy. 2828 */ 2829 SCR_COPY (sizeof (struct head)), 2830 /* 2831 ** continued after the next label ... 2832 */ 2833 }/*-------------------------< SKIP2 >---------------------*/,{ 2834 0, 2835 NADDR (header), 2836 /* 2837 ** Initialize the status registers 2838 */ 2839 SCR_COPY (4), 2840 NADDR (header.status), 2841 RADDR (scr0), 2842 /* 2843 ** Force host status. 2844 */ 2845 SCR_FROM_REG (scratcha), 2846 0, 2847 SCR_JUMPR ^ IFFALSE (MASK (0, HS_DONEMASK)), 2848 16, 2849 SCR_REG_REG (HS_REG, SCR_OR, HS_SKIPMASK), 2850 0, 2851 SCR_JUMPR, 2852 8, 2853 SCR_TO_REG (HS_REG), 2854 0, 2855 SCR_LOAD_REG (SS_REG, SAM_STAT_GOOD), 2856 0, 2857 SCR_JUMP, 2858 PADDR (cleanup_ok), 2859 2860 },/*-------------------------< PAR_ERR_DATA_IN >---------------*/{ 2861 /* 2862 ** Ignore all data in byte, until next phase 2863 */ 2864 SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)), 2865 PADDRH (par_err_other), 2866 SCR_MOVE_ABS (1) ^ SCR_DATA_IN, 2867 NADDR (scratch), 2868 SCR_JUMPR, 2869 -24, 2870 },/*-------------------------< PAR_ERR_OTHER >------------------*/{ 2871 /* 2872 ** count it. 2873 */ 2874 SCR_REG_REG (PS_REG, SCR_ADD, 0x01), 2875 0, 2876 /* 2877 ** jump to dispatcher. 2878 */ 2879 SCR_JUMP, 2880 PADDR (dispatch), 2881 }/*-------------------------< MSG_REJECT >---------------*/,{ 2882 /* 2883 ** If a negotiation was in progress, 2884 ** negotiation failed. 2885 ** Otherwise, let the C code print 2886 ** some message. 2887 */ 2888 SCR_FROM_REG (HS_REG), 2889 0, 2890 SCR_INT ^ IFFALSE (DATA (HS_NEGOTIATE)), 2891 SIR_REJECT_RECEIVED, 2892 SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)), 2893 SIR_NEGO_FAILED, 2894 SCR_JUMP, 2895 PADDR (clrack), 2896 2897 }/*-------------------------< MSG_IGN_RESIDUE >----------*/,{ 2898 /* 2899 ** Terminate cycle 2900 */ 2901 SCR_CLR (SCR_ACK), 2902 0, 2903 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)), 2904 PADDR (dispatch), 2905 /* 2906 ** get residue size. 2907 */ 2908 SCR_MOVE_ABS (1) ^ SCR_MSG_IN, 2909 NADDR (msgin[1]), 2910 /* 2911 ** Size is 0 .. ignore message. 2912 */ 2913 SCR_JUMP ^ IFTRUE (DATA (0)), 2914 PADDR (clrack), 2915 /* 2916 ** Size is not 1 .. have to interrupt. 2917 */ 2918 SCR_JUMPR ^ IFFALSE (DATA (1)), 2919 40, 2920 /* 2921 ** Check for residue byte in swide register 2922 */ 2923 SCR_FROM_REG (scntl2), 2924 0, 2925 SCR_JUMPR ^ IFFALSE (MASK (WSR, WSR)), 2926 16, 2927 /* 2928 ** There IS data in the swide register. 2929 ** Discard it. 2930 */ 2931 SCR_REG_REG (scntl2, SCR_OR, WSR), 2932 0, 2933 SCR_JUMP, 2934 PADDR (clrack), 2935 /* 2936 ** Load again the size to the sfbr register. 2937 */ 2938 SCR_FROM_REG (scratcha), 2939 0, 2940 SCR_INT, 2941 SIR_IGN_RESIDUE, 2942 SCR_JUMP, 2943 PADDR (clrack), 2944 2945 }/*-------------------------< MSG_EXTENDED >-------------*/,{ 2946 /* 2947 ** Terminate cycle 2948 */ 2949 SCR_CLR (SCR_ACK), 2950 0, 2951 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)), 2952 PADDR (dispatch), 2953 /* 2954 ** get length. 2955 */ 2956 SCR_MOVE_ABS (1) ^ SCR_MSG_IN, 2957 NADDR (msgin[1]), 2958 /* 2959 */ 2960 SCR_JUMP ^ IFTRUE (DATA (3)), 2961 PADDRH (msg_ext_3), 2962 SCR_JUMP ^ IFFALSE (DATA (2)), 2963 PADDR (msg_bad), 2964 }/*-------------------------< MSG_EXT_2 >----------------*/,{ 2965 SCR_CLR (SCR_ACK), 2966 0, 2967 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)), 2968 PADDR (dispatch), 2969 /* 2970 ** get extended message code. 2971 */ 2972 SCR_MOVE_ABS (1) ^ SCR_MSG_IN, 2973 NADDR (msgin[2]), 2974 SCR_JUMP ^ IFTRUE (DATA (EXTENDED_WDTR)), 2975 PADDRH (msg_wdtr), 2976 /* 2977 ** unknown extended message 2978 */ 2979 SCR_JUMP, 2980 PADDR (msg_bad) 2981 }/*-------------------------< MSG_WDTR >-----------------*/,{ 2982 SCR_CLR (SCR_ACK), 2983 0, 2984 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)), 2985 PADDR (dispatch), 2986 /* 2987 ** get data bus width 2988 */ 2989 SCR_MOVE_ABS (1) ^ SCR_MSG_IN, 2990 NADDR (msgin[3]), 2991 /* 2992 ** let the host do the real work. 2993 */ 2994 SCR_INT, 2995 SIR_NEGO_WIDE, 2996 /* 2997 ** let the target fetch our answer. 2998 */ 2999 SCR_SET (SCR_ATN), 3000 0, 3001 SCR_CLR (SCR_ACK), 3002 0, 3003 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)), 3004 PADDRH (nego_bad_phase), 3005 3006 }/*-------------------------< SEND_WDTR >----------------*/,{ 3007 /* 3008 ** Send the EXTENDED_WDTR 3009 */ 3010 SCR_MOVE_ABS (4) ^ SCR_MSG_OUT, 3011 NADDR (msgout), 3012 SCR_COPY (1), 3013 NADDR (msgout), 3014 NADDR (lastmsg), 3015 SCR_JUMP, 3016 PADDR (msg_out_done), 3017 3018 }/*-------------------------< MSG_EXT_3 >----------------*/,{ 3019 SCR_CLR (SCR_ACK), 3020 0, 3021 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)), 3022 PADDR (dispatch), 3023 /* 3024 ** get extended message code. 3025 */ 3026 SCR_MOVE_ABS (1) ^ SCR_MSG_IN, 3027 NADDR (msgin[2]), 3028 SCR_JUMP ^ IFTRUE (DATA (EXTENDED_SDTR)), 3029 PADDRH (msg_sdtr), 3030 /* 3031 ** unknown extended message 3032 */ 3033 SCR_JUMP, 3034 PADDR (msg_bad) 3035 3036 }/*-------------------------< MSG_SDTR >-----------------*/,{ 3037 SCR_CLR (SCR_ACK), 3038 0, 3039 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)), 3040 PADDR (dispatch), 3041 /* 3042 ** get period and offset 3043 */ 3044 SCR_MOVE_ABS (2) ^ SCR_MSG_IN, 3045 NADDR (msgin[3]), 3046 /* 3047 ** let the host do the real work. 3048 */ 3049 SCR_INT, 3050 SIR_NEGO_SYNC, 3051 /* 3052 ** let the target fetch our answer. 3053 */ 3054 SCR_SET (SCR_ATN), 3055 0, 3056 SCR_CLR (SCR_ACK), 3057 0, 3058 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)), 3059 PADDRH (nego_bad_phase), 3060 3061 }/*-------------------------< SEND_SDTR >-------------*/,{ 3062 /* 3063 ** Send the EXTENDED_SDTR 3064 */ 3065 SCR_MOVE_ABS (5) ^ SCR_MSG_OUT, 3066 NADDR (msgout), 3067 SCR_COPY (1), 3068 NADDR (msgout), 3069 NADDR (lastmsg), 3070 SCR_JUMP, 3071 PADDR (msg_out_done), 3072 3073 }/*-------------------------< NEGO_BAD_PHASE >------------*/,{ 3074 SCR_INT, 3075 SIR_NEGO_PROTO, 3076 SCR_JUMP, 3077 PADDR (dispatch), 3078 3079 }/*-------------------------< MSG_OUT_ABORT >-------------*/,{ 3080 /* 3081 ** After ABORT message, 3082 ** 3083 ** expect an immediate disconnect, ... 3084 */ 3085 SCR_REG_REG (scntl2, SCR_AND, 0x7f), 3086 0, 3087 SCR_CLR (SCR_ACK|SCR_ATN), 3088 0, 3089 SCR_WAIT_DISC, 3090 0, 3091 /* 3092 ** ... and set the status to "ABORTED" 3093 */ 3094 SCR_LOAD_REG (HS_REG, HS_ABORTED), 3095 0, 3096 SCR_JUMP, 3097 PADDR (cleanup), 3098 3099 }/*-------------------------< HDATA_IN >-------------------*/,{ 3100 /* 3101 ** Because the size depends on the 3102 ** #define MAX_SCATTERH parameter, 3103 ** it is filled in at runtime. 3104 ** 3105 ** ##==< i=MAX_SCATTERL; i<MAX_SCATTERL+MAX_SCATTERH >== 3106 ** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)), 3107 ** || PADDR (dispatch), 3108 ** || SCR_MOVE_TBL ^ SCR_DATA_IN, 3109 ** || offsetof (struct dsb, data[ i]), 3110 ** ##=================================================== 3111 ** 3112 **--------------------------------------------------------- 3113 */ 3114 0 3115 }/*-------------------------< HDATA_IN2 >------------------*/,{ 3116 SCR_JUMP, 3117 PADDR (data_in), 3118 3119 }/*-------------------------< HDATA_OUT >-------------------*/,{ 3120 /* 3121 ** Because the size depends on the 3122 ** #define MAX_SCATTERH parameter, 3123 ** it is filled in at runtime. 3124 ** 3125 ** ##==< i=MAX_SCATTERL; i<MAX_SCATTERL+MAX_SCATTERH >== 3126 ** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT)), 3127 ** || PADDR (dispatch), 3128 ** || SCR_MOVE_TBL ^ SCR_DATA_OUT, 3129 ** || offsetof (struct dsb, data[ i]), 3130 ** ##=================================================== 3131 ** 3132 **--------------------------------------------------------- 3133 */ 3134 0 3135 }/*-------------------------< HDATA_OUT2 >------------------*/,{ 3136 SCR_JUMP, 3137 PADDR (data_out), 3138 3139 }/*-------------------------< RESET >----------------------*/,{ 3140 /* 3141 ** Send a TARGET_RESET message if bad IDENTIFY 3142 ** received on reselection. 3143 */ 3144 SCR_LOAD_REG (scratcha, ABORT_TASK), 3145 0, 3146 SCR_JUMP, 3147 PADDRH (abort_resel), 3148 }/*-------------------------< ABORTTAG >-------------------*/,{ 3149 /* 3150 ** Abort a wrong tag received on reselection. 3151 */ 3152 SCR_LOAD_REG (scratcha, ABORT_TASK), 3153 0, 3154 SCR_JUMP, 3155 PADDRH (abort_resel), 3156 }/*-------------------------< ABORT >----------------------*/,{ 3157 /* 3158 ** Abort a reselection when no active CCB. 3159 */ 3160 SCR_LOAD_REG (scratcha, ABORT_TASK_SET), 3161 0, 3162 }/*-------------------------< ABORT_RESEL >----------------*/,{ 3163 SCR_COPY (1), 3164 RADDR (scratcha), 3165 NADDR (msgout), 3166 SCR_SET (SCR_ATN), 3167 0, 3168 SCR_CLR (SCR_ACK), 3169 0, 3170 /* 3171 ** and send it. 3172 ** we expect an immediate disconnect 3173 */ 3174 SCR_REG_REG (scntl2, SCR_AND, 0x7f), 3175 0, 3176 SCR_MOVE_ABS (1) ^ SCR_MSG_OUT, 3177 NADDR (msgout), 3178 SCR_COPY (1), 3179 NADDR (msgout), 3180 NADDR (lastmsg), 3181 SCR_CLR (SCR_ACK|SCR_ATN), 3182 0, 3183 SCR_WAIT_DISC, 3184 0, 3185 SCR_JUMP, 3186 PADDR (start), 3187 }/*-------------------------< RESEND_IDENT >-------------------*/,{ 3188 /* 3189 ** The target stays in MSG OUT phase after having acked 3190 ** Identify [+ Tag [+ Extended message ]]. Targets shall 3191 ** behave this way on parity error. 3192 ** We must send it again all the messages. 3193 */ 3194 SCR_SET (SCR_ATN), /* Shall be asserted 2 deskew delays before the */ 3195 0, /* 1rst ACK = 90 ns. Hope the NCR is'nt too fast */ 3196 SCR_JUMP, 3197 PADDR (send_ident), 3198 }/*-------------------------< CLRATN_GO_ON >-------------------*/,{ 3199 SCR_CLR (SCR_ATN), 3200 0, 3201 SCR_JUMP, 3202 }/*-------------------------< NXTDSP_GO_ON >-------------------*/,{ 3203 0, 3204 }/*-------------------------< SDATA_IN >-------------------*/,{ 3205 SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)), 3206 PADDR (dispatch), 3207 SCR_MOVE_TBL ^ SCR_DATA_IN, 3208 offsetof (struct dsb, sense), 3209 SCR_CALL, 3210 PADDR (dispatch), 3211 SCR_JUMP, 3212 PADDR (no_data), 3213 }/*-------------------------< DATA_IO >--------------------*/,{ 3214 /* 3215 ** We jump here if the data direction was unknown at the 3216 ** time we had to queue the command to the scripts processor. 3217 ** Pointers had been set as follow in this situation: 3218 ** savep --> DATA_IO 3219 ** lastp --> start pointer when DATA_IN 3220 ** goalp --> goal pointer when DATA_IN 3221 ** wlastp --> start pointer when DATA_OUT 3222 ** wgoalp --> goal pointer when DATA_OUT 3223 ** This script sets savep/lastp/goalp according to the 3224 ** direction chosen by the target. 3225 */ 3226 SCR_JUMPR ^ IFTRUE (WHEN (SCR_DATA_OUT)), 3227 32, 3228 /* 3229 ** Direction is DATA IN. 3230 ** Warning: we jump here, even when phase is DATA OUT. 3231 */ 3232 SCR_COPY (4), 3233 NADDR (header.lastp), 3234 NADDR (header.savep), 3235 3236 /* 3237 ** Jump to the SCRIPTS according to actual direction. 3238 */ 3239 SCR_COPY (4), 3240 NADDR (header.savep), 3241 RADDR (temp), 3242 SCR_RETURN, 3243 0, 3244 /* 3245 ** Direction is DATA OUT. 3246 */ 3247 SCR_COPY (4), 3248 NADDR (header.wlastp), 3249 NADDR (header.lastp), 3250 SCR_COPY (4), 3251 NADDR (header.wgoalp), 3252 NADDR (header.goalp), 3253 SCR_JUMPR, 3254 -64, 3255 }/*-------------------------< BAD_IDENTIFY >---------------*/,{ 3256 /* 3257 ** If message phase but not an IDENTIFY, 3258 ** get some help from the C code. 3259 ** Old SCSI device may behave so. 3260 */ 3261 SCR_JUMPR ^ IFTRUE (MASK (0x80, 0x80)), 3262 16, 3263 SCR_INT, 3264 SIR_RESEL_NO_IDENTIFY, 3265 SCR_JUMP, 3266 PADDRH (reset), 3267 /* 3268 ** Message is an IDENTIFY, but lun is unknown. 3269 ** Read the message, since we got it directly 3270 ** from the SCSI BUS data lines. 3271 ** Signal problem to C code for logging the event. 3272 ** Send an ABORT_TASK_SET to clear all pending tasks. 3273 */ 3274 SCR_INT, 3275 SIR_RESEL_BAD_LUN, 3276 SCR_MOVE_ABS (1) ^ SCR_MSG_IN, 3277 NADDR (msgin), 3278 SCR_JUMP, 3279 PADDRH (abort), 3280 }/*-------------------------< BAD_I_T_L >------------------*/,{ 3281 /* 3282 ** We donnot have a task for that I_T_L. 3283 ** Signal problem to C code for logging the event. 3284 ** Send an ABORT_TASK_SET message. 3285 */ 3286 SCR_INT, 3287 SIR_RESEL_BAD_I_T_L, 3288 SCR_JUMP, 3289 PADDRH (abort), 3290 }/*-------------------------< BAD_I_T_L_Q >----------------*/,{ 3291 /* 3292 ** We donnot have a task that matches the tag. 3293 ** Signal problem to C code for logging the event. 3294 ** Send an ABORT_TASK message. 3295 */ 3296 SCR_INT, 3297 SIR_RESEL_BAD_I_T_L_Q, 3298 SCR_JUMP, 3299 PADDRH (aborttag), 3300 }/*-------------------------< BAD_TARGET >-----------------*/,{ 3301 /* 3302 ** We donnot know the target that reselected us. 3303 ** Grab the first message if any (IDENTIFY). 3304 ** Signal problem to C code for logging the event. 3305 ** TARGET_RESET message. 3306 */ 3307 SCR_INT, 3308 SIR_RESEL_BAD_TARGET, 3309 SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_IN)), 3310 8, 3311 SCR_MOVE_ABS (1) ^ SCR_MSG_IN, 3312 NADDR (msgin), 3313 SCR_JUMP, 3314 PADDRH (reset), 3315 }/*-------------------------< BAD_STATUS >-----------------*/,{ 3316 /* 3317 ** If command resulted in either TASK_SET FULL, 3318 ** CHECK CONDITION or COMMAND TERMINATED, 3319 ** call the C code. 3320 */ 3321 SCR_INT ^ IFTRUE (DATA (SAM_STAT_TASK_SET_FULL)), 3322 SIR_BAD_STATUS, 3323 SCR_INT ^ IFTRUE (DATA (SAM_STAT_CHECK_CONDITION)), 3324 SIR_BAD_STATUS, 3325 SCR_INT ^ IFTRUE (DATA (SAM_STAT_COMMAND_TERMINATED)), 3326 SIR_BAD_STATUS, 3327 SCR_RETURN, 3328 0, 3329 }/*-------------------------< START_RAM >-------------------*/,{ 3330 /* 3331 ** Load the script into on-chip RAM, 3332 ** and jump to start point. 3333 */ 3334 SCR_COPY_F (4), 3335 RADDR (scratcha), 3336 PADDRH (start_ram0), 3337 /* 3338 ** Flush script prefetch if required 3339 */ 3340 PREFETCH_FLUSH 3341 SCR_COPY (sizeof (struct script)), 3342 }/*-------------------------< START_RAM0 >--------------------*/,{ 3343 0, 3344 PADDR (start), 3345 SCR_JUMP, 3346 PADDR (start), 3347 }/*-------------------------< STO_RESTART >-------------------*/,{ 3348 /* 3349 ** 3350 ** Repair start queue (e.g. next time use the next slot) 3351 ** and jump to start point. 3352 */ 3353 SCR_COPY (4), 3354 RADDR (temp), 3355 PADDR (startpos), 3356 SCR_JUMP, 3357 PADDR (start), 3358 }/*-------------------------< WAIT_DMA >-------------------*/,{ 3359 /* 3360 ** For HP Zalon/53c720 systems, the Zalon interface 3361 ** between CPU and 53c720 does prefetches, which causes 3362 ** problems with self modifying scripts. The problem 3363 ** is overcome by calling a dummy subroutine after each 3364 ** modification, to force a refetch of the script on 3365 ** return from the subroutine. 3366 */ 3367 SCR_RETURN, 3368 0, 3369 }/*-------------------------< SNOOPTEST >-------------------*/,{ 3370 /* 3371 ** Read the variable. 3372 */ 3373 SCR_COPY (4), 3374 NADDR(ncr_cache), 3375 RADDR (scratcha), 3376 /* 3377 ** Write the variable. 3378 */ 3379 SCR_COPY (4), 3380 RADDR (temp), 3381 NADDR(ncr_cache), 3382 /* 3383 ** Read back the variable. 3384 */ 3385 SCR_COPY (4), 3386 NADDR(ncr_cache), 3387 RADDR (temp), 3388 }/*-------------------------< SNOOPEND >-------------------*/,{ 3389 /* 3390 ** And stop. 3391 */ 3392 SCR_INT, 3393 99, 3394 }/*--------------------------------------------------------*/ 3395 }; 3396 3397 /*========================================================== 3398 ** 3399 ** 3400 ** Fill in #define dependent parts of the script 3401 ** 3402 ** 3403 **========================================================== 3404 */ 3405 3406 void __init ncr_script_fill (struct script * scr, struct scripth * scrh) 3407 { 3408 int i; 3409 ncrcmd *p; 3410 3411 p = scrh->tryloop; 3412 for (i=0; i<MAX_START; i++) { 3413 *p++ =SCR_CALL; 3414 *p++ =PADDR (idle); 3415 } 3416 3417 BUG_ON((u_long)p != (u_long)&scrh->tryloop + sizeof (scrh->tryloop)); 3418 3419 #ifdef SCSI_NCR_CCB_DONE_SUPPORT 3420 3421 p = scrh->done_queue; 3422 for (i = 0; i<MAX_DONE; i++) { 3423 *p++ =SCR_COPY (sizeof(struct ccb *)); 3424 *p++ =NADDR (header.cp); 3425 *p++ =NADDR (ccb_done[i]); 3426 *p++ =SCR_CALL; 3427 *p++ =PADDR (done_end); 3428 } 3429 3430 BUG_ON((u_long)p != (u_long)&scrh->done_queue+sizeof(scrh->done_queue)); 3431 3432 #endif /* SCSI_NCR_CCB_DONE_SUPPORT */ 3433 3434 p = scrh->hdata_in; 3435 for (i=0; i<MAX_SCATTERH; i++) { 3436 *p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)); 3437 *p++ =PADDR (dispatch); 3438 *p++ =SCR_MOVE_TBL ^ SCR_DATA_IN; 3439 *p++ =offsetof (struct dsb, data[i]); 3440 } 3441 3442 BUG_ON((u_long)p != (u_long)&scrh->hdata_in + sizeof (scrh->hdata_in)); 3443 3444 p = scr->data_in; 3445 for (i=MAX_SCATTERH; i<MAX_SCATTERH+MAX_SCATTERL; i++) { 3446 *p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)); 3447 *p++ =PADDR (dispatch); 3448 *p++ =SCR_MOVE_TBL ^ SCR_DATA_IN; 3449 *p++ =offsetof (struct dsb, data[i]); 3450 } 3451 3452 BUG_ON((u_long)p != (u_long)&scr->data_in + sizeof (scr->data_in)); 3453 3454 p = scrh->hdata_out; 3455 for (i=0; i<MAX_SCATTERH; i++) { 3456 *p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT)); 3457 *p++ =PADDR (dispatch); 3458 *p++ =SCR_MOVE_TBL ^ SCR_DATA_OUT; 3459 *p++ =offsetof (struct dsb, data[i]); 3460 } 3461 3462 BUG_ON((u_long)p != (u_long)&scrh->hdata_out + sizeof (scrh->hdata_out)); 3463 3464 p = scr->data_out; 3465 for (i=MAX_SCATTERH; i<MAX_SCATTERH+MAX_SCATTERL; i++) { 3466 *p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT)); 3467 *p++ =PADDR (dispatch); 3468 *p++ =SCR_MOVE_TBL ^ SCR_DATA_OUT; 3469 *p++ =offsetof (struct dsb, data[i]); 3470 } 3471 3472 BUG_ON((u_long) p != (u_long)&scr->data_out + sizeof (scr->data_out)); 3473 } 3474 3475 /*========================================================== 3476 ** 3477 ** 3478 ** Copy and rebind a script. 3479 ** 3480 ** 3481 **========================================================== 3482 */ 3483 3484 static void __init 3485 ncr_script_copy_and_bind (struct ncb *np, ncrcmd *src, ncrcmd *dst, int len) 3486 { 3487 ncrcmd opcode, new, old, tmp1, tmp2; 3488 ncrcmd *start, *end; 3489 int relocs; 3490 int opchanged = 0; 3491 3492 start = src; 3493 end = src + len/4; 3494 3495 while (src < end) { 3496 3497 opcode = *src++; 3498 *dst++ = cpu_to_scr(opcode); 3499 3500 /* 3501 ** If we forget to change the length 3502 ** in struct script, a field will be 3503 ** padded with 0. This is an illegal 3504 ** command. 3505 */ 3506 3507 if (opcode == 0) { 3508 printk (KERN_ERR "%s: ERROR0 IN SCRIPT at %d.\n", 3509 ncr_name(np), (int) (src-start-1)); 3510 mdelay(1000); 3511 } 3512 3513 if (DEBUG_FLAGS & DEBUG_SCRIPT) 3514 printk (KERN_DEBUG "%p: <%x>\n", 3515 (src-1), (unsigned)opcode); 3516 3517 /* 3518 ** We don't have to decode ALL commands 3519 */ 3520 switch (opcode >> 28) { 3521 3522 case 0xc: 3523 /* 3524 ** COPY has TWO arguments. 3525 */ 3526 relocs = 2; 3527 tmp1 = src[0]; 3528 #ifdef RELOC_KVAR 3529 if ((tmp1 & RELOC_MASK) == RELOC_KVAR) 3530 tmp1 = 0; 3531 #endif 3532 tmp2 = src[1]; 3533 #ifdef RELOC_KVAR 3534 if ((tmp2 & RELOC_MASK) == RELOC_KVAR) 3535 tmp2 = 0; 3536 #endif 3537 if ((tmp1 ^ tmp2) & 3) { 3538 printk (KERN_ERR"%s: ERROR1 IN SCRIPT at %d.\n", 3539 ncr_name(np), (int) (src-start-1)); 3540 mdelay(1000); 3541 } 3542 /* 3543 ** If PREFETCH feature not enabled, remove 3544 ** the NO FLUSH bit if present. 3545 */ 3546 if ((opcode & SCR_NO_FLUSH) && !(np->features & FE_PFEN)) { 3547 dst[-1] = cpu_to_scr(opcode & ~SCR_NO_FLUSH); 3548 ++opchanged; 3549 } 3550 break; 3551 3552 case 0x0: 3553 /* 3554 ** MOVE (absolute address) 3555 */ 3556 relocs = 1; 3557 break; 3558 3559 case 0x8: 3560 /* 3561 ** JUMP / CALL 3562 ** don't relocate if relative :-) 3563 */ 3564 if (opcode & 0x00800000) 3565 relocs = 0; 3566 else 3567 relocs = 1; 3568 break; 3569 3570 case 0x4: 3571 case 0x5: 3572 case 0x6: 3573 case 0x7: 3574 relocs = 1; 3575 break; 3576 3577 default: 3578 relocs = 0; 3579 break; 3580 } 3581 3582 if (relocs) { 3583 while (relocs--) { 3584 old = *src++; 3585 3586 switch (old & RELOC_MASK) { 3587 case RELOC_REGISTER: 3588 new = (old & ~RELOC_MASK) + np->paddr; 3589 break; 3590 case RELOC_LABEL: 3591 new = (old & ~RELOC_MASK) + np->p_script; 3592 break; 3593 case RELOC_LABELH: 3594 new = (old & ~RELOC_MASK) + np->p_scripth; 3595 break; 3596 case RELOC_SOFTC: 3597 new = (old & ~RELOC_MASK) + np->p_ncb; 3598 break; 3599 #ifdef RELOC_KVAR 3600 case RELOC_KVAR: 3601 if (((old & ~RELOC_MASK) < 3602 SCRIPT_KVAR_FIRST) || 3603 ((old & ~RELOC_MASK) > 3604 SCRIPT_KVAR_LAST)) 3605 panic("ncr KVAR out of range"); 3606 new = vtophys(script_kvars[old & 3607 ~RELOC_MASK]); 3608 break; 3609 #endif 3610 case 0: 3611 /* Don't relocate a 0 address. */ 3612 if (old == 0) { 3613 new = old; 3614 break; 3615 } 3616 fallthrough; 3617 default: 3618 panic("ncr_script_copy_and_bind: weird relocation %x\n", old); 3619 break; 3620 } 3621 3622 *dst++ = cpu_to_scr(new); 3623 } 3624 } else 3625 *dst++ = cpu_to_scr(*src++); 3626 3627 } 3628 } 3629 3630 /* 3631 ** Linux host data structure 3632 */ 3633 3634 struct host_data { 3635 struct ncb *ncb; 3636 }; 3637 3638 #define PRINT_ADDR(cmd, arg...) dev_info(&cmd->device->sdev_gendev , ## arg) 3639 3640 static void ncr_print_msg(struct ccb *cp, char *label, u_char *msg) 3641 { 3642 PRINT_ADDR(cp->cmd, "%s: ", label); 3643 3644 spi_print_msg(msg); 3645 printk("\n"); 3646 } 3647 3648 /*========================================================== 3649 ** 3650 ** NCR chip clock divisor table. 3651 ** Divisors are multiplied by 10,000,000 in order to make 3652 ** calculations more simple. 3653 ** 3654 **========================================================== 3655 */ 3656 3657 #define _5M 5000000 3658 static u_long div_10M[] = 3659 {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M}; 3660 3661 3662 /*=============================================================== 3663 ** 3664 ** Prepare io register values used by ncr_init() according 3665 ** to selected and supported features. 3666 ** 3667 ** NCR chips allow burst lengths of 2, 4, 8, 16, 32, 64, 128 3668 ** transfers. 32,64,128 are only supported by 875 and 895 chips. 3669 ** We use log base 2 (burst length) as internal code, with 3670 ** value 0 meaning "burst disabled". 3671 ** 3672 **=============================================================== 3673 */ 3674 3675 /* 3676 * Burst length from burst code. 3677 */ 3678 #define burst_length(bc) (!(bc))? 0 : 1 << (bc) 3679 3680 /* 3681 * Burst code from io register bits. Burst enable is ctest0 for c720 3682 */ 3683 #define burst_code(dmode, ctest0) \ 3684 (ctest0) & 0x80 ? 0 : (((dmode) & 0xc0) >> 6) + 1 3685 3686 /* 3687 * Set initial io register bits from burst code. 3688 */ 3689 static inline void ncr_init_burst(struct ncb *np, u_char bc) 3690 { 3691 u_char *be = &np->rv_ctest0; 3692 *be &= ~0x80; 3693 np->rv_dmode &= ~(0x3 << 6); 3694 np->rv_ctest5 &= ~0x4; 3695 3696 if (!bc) { 3697 *be |= 0x80; 3698 } else { 3699 --bc; 3700 np->rv_dmode |= ((bc & 0x3) << 6); 3701 np->rv_ctest5 |= (bc & 0x4); 3702 } 3703 } 3704 3705 static void __init ncr_prepare_setting(struct ncb *np) 3706 { 3707 u_char burst_max; 3708 u_long period; 3709 int i; 3710 3711 /* 3712 ** Save assumed BIOS setting 3713 */ 3714 3715 np->sv_scntl0 = INB(nc_scntl0) & 0x0a; 3716 np->sv_scntl3 = INB(nc_scntl3) & 0x07; 3717 np->sv_dmode = INB(nc_dmode) & 0xce; 3718 np->sv_dcntl = INB(nc_dcntl) & 0xa8; 3719 np->sv_ctest0 = INB(nc_ctest0) & 0x84; 3720 np->sv_ctest3 = INB(nc_ctest3) & 0x01; 3721 np->sv_ctest4 = INB(nc_ctest4) & 0x80; 3722 np->sv_ctest5 = INB(nc_ctest5) & 0x24; 3723 np->sv_gpcntl = INB(nc_gpcntl); 3724 np->sv_stest2 = INB(nc_stest2) & 0x20; 3725 np->sv_stest4 = INB(nc_stest4); 3726 3727 /* 3728 ** Wide ? 3729 */ 3730 3731 np->maxwide = (np->features & FE_WIDE)? 1 : 0; 3732 3733 /* 3734 * Guess the frequency of the chip's clock. 3735 */ 3736 if (np->features & FE_ULTRA) 3737 np->clock_khz = 80000; 3738 else 3739 np->clock_khz = 40000; 3740 3741 /* 3742 * Get the clock multiplier factor. 3743 */ 3744 if (np->features & FE_QUAD) 3745 np->multiplier = 4; 3746 else if (np->features & FE_DBLR) 3747 np->multiplier = 2; 3748 else 3749 np->multiplier = 1; 3750 3751 /* 3752 * Measure SCSI clock frequency for chips 3753 * it may vary from assumed one. 3754 */ 3755 if (np->features & FE_VARCLK) 3756 ncr_getclock(np, np->multiplier); 3757 3758 /* 3759 * Divisor to be used for async (timer pre-scaler). 3760 */ 3761 i = np->clock_divn - 1; 3762 while (--i >= 0) { 3763 if (10ul * SCSI_NCR_MIN_ASYNC * np->clock_khz > div_10M[i]) { 3764 ++i; 3765 break; 3766 } 3767 } 3768 np->rv_scntl3 = i+1; 3769 3770 /* 3771 * Minimum synchronous period factor supported by the chip. 3772 * Btw, 'period' is in tenths of nanoseconds. 3773 */ 3774 3775 period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz; 3776 if (period <= 250) np->minsync = 10; 3777 else if (period <= 303) np->minsync = 11; 3778 else if (period <= 500) np->minsync = 12; 3779 else np->minsync = (period + 40 - 1) / 40; 3780 3781 /* 3782 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2). 3783 */ 3784 3785 if (np->minsync < 25 && !(np->features & FE_ULTRA)) 3786 np->minsync = 25; 3787 3788 /* 3789 * Maximum synchronous period factor supported by the chip. 3790 */ 3791 3792 period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz); 3793 np->maxsync = period > 2540 ? 254 : period / 10; 3794 3795 /* 3796 ** Prepare initial value of other IO registers 3797 */ 3798 #if defined SCSI_NCR_TRUST_BIOS_SETTING 3799 np->rv_scntl0 = np->sv_scntl0; 3800 np->rv_dmode = np->sv_dmode; 3801 np->rv_dcntl = np->sv_dcntl; 3802 np->rv_ctest0 = np->sv_ctest0; 3803 np->rv_ctest3 = np->sv_ctest3; 3804 np->rv_ctest4 = np->sv_ctest4; 3805 np->rv_ctest5 = np->sv_ctest5; 3806 burst_max = burst_code(np->sv_dmode, np->sv_ctest0); 3807 #else 3808 3809 /* 3810 ** Select burst length (dwords) 3811 */ 3812 burst_max = driver_setup.burst_max; 3813 if (burst_max == 255) 3814 burst_max = burst_code(np->sv_dmode, np->sv_ctest0); 3815 if (burst_max > 7) 3816 burst_max = 7; 3817 if (burst_max > np->maxburst) 3818 burst_max = np->maxburst; 3819 3820 /* 3821 ** Select all supported special features 3822 */ 3823 if (np->features & FE_ERL) 3824 np->rv_dmode |= ERL; /* Enable Read Line */ 3825 if (np->features & FE_BOF) 3826 np->rv_dmode |= BOF; /* Burst Opcode Fetch */ 3827 if (np->features & FE_ERMP) 3828 np->rv_dmode |= ERMP; /* Enable Read Multiple */ 3829 if (np->features & FE_PFEN) 3830 np->rv_dcntl |= PFEN; /* Prefetch Enable */ 3831 if (np->features & FE_CLSE) 3832 np->rv_dcntl |= CLSE; /* Cache Line Size Enable */ 3833 if (np->features & FE_WRIE) 3834 np->rv_ctest3 |= WRIE; /* Write and Invalidate */ 3835 if (np->features & FE_DFS) 3836 np->rv_ctest5 |= DFS; /* Dma Fifo Size */ 3837 if (np->features & FE_MUX) 3838 np->rv_ctest4 |= MUX; /* Host bus multiplex mode */ 3839 if (np->features & FE_EA) 3840 np->rv_dcntl |= EA; /* Enable ACK */ 3841 if (np->features & FE_EHP) 3842 np->rv_ctest0 |= EHP; /* Even host parity */ 3843 3844 /* 3845 ** Select some other 3846 */ 3847 if (driver_setup.master_parity) 3848 np->rv_ctest4 |= MPEE; /* Master parity checking */ 3849 if (driver_setup.scsi_parity) 3850 np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */ 3851 3852 /* 3853 ** Get SCSI addr of host adapter (set by bios?). 3854 */ 3855 if (np->myaddr == 255) { 3856 np->myaddr = INB(nc_scid) & 0x07; 3857 if (!np->myaddr) 3858 np->myaddr = SCSI_NCR_MYADDR; 3859 } 3860 3861 #endif /* SCSI_NCR_TRUST_BIOS_SETTING */ 3862 3863 /* 3864 * Prepare initial io register bits for burst length 3865 */ 3866 ncr_init_burst(np, burst_max); 3867 3868 /* 3869 ** Set SCSI BUS mode. 3870 ** 3871 ** - ULTRA2 chips (895/895A/896) report the current 3872 ** BUS mode through the STEST4 IO register. 3873 ** - For previous generation chips (825/825A/875), 3874 ** user has to tell us how to check against HVD, 3875 ** since a 100% safe algorithm is not possible. 3876 */ 3877 np->scsi_mode = SMODE_SE; 3878 if (np->features & FE_DIFF) { 3879 switch(driver_setup.diff_support) { 3880 case 4: /* Trust previous settings if present, then GPIO3 */ 3881 if (np->sv_scntl3) { 3882 if (np->sv_stest2 & 0x20) 3883 np->scsi_mode = SMODE_HVD; 3884 break; 3885 } 3886 fallthrough; 3887 case 3: /* SYMBIOS controllers report HVD through GPIO3 */ 3888 if (INB(nc_gpreg) & 0x08) 3889 break; 3890 fallthrough; 3891 case 2: /* Set HVD unconditionally */ 3892 np->scsi_mode = SMODE_HVD; 3893 fallthrough; 3894 case 1: /* Trust previous settings for HVD */ 3895 if (np->sv_stest2 & 0x20) 3896 np->scsi_mode = SMODE_HVD; 3897 break; 3898 default:/* Don't care about HVD */ 3899 break; 3900 } 3901 } 3902 if (np->scsi_mode == SMODE_HVD) 3903 np->rv_stest2 |= 0x20; 3904 3905 /* 3906 ** Set LED support from SCRIPTS. 3907 ** Ignore this feature for boards known to use a 3908 ** specific GPIO wiring and for the 895A or 896 3909 ** that drive the LED directly. 3910 ** Also probe initial setting of GPIO0 as output. 3911 */ 3912 if ((driver_setup.led_pin) && 3913 !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01)) 3914 np->features |= FE_LED0; 3915 3916 /* 3917 ** Set irq mode. 3918 */ 3919 switch(driver_setup.irqm & 3) { 3920 case 2: 3921 np->rv_dcntl |= IRQM; 3922 break; 3923 case 1: 3924 np->rv_dcntl |= (np->sv_dcntl & IRQM); 3925 break; 3926 default: 3927 break; 3928 } 3929 3930 /* 3931 ** Configure targets according to driver setup. 3932 ** Allow to override sync, wide and NOSCAN from 3933 ** boot command line. 3934 */ 3935 for (i = 0 ; i < MAX_TARGET ; i++) { 3936 struct tcb *tp = &np->target[i]; 3937 3938 tp->usrsync = driver_setup.default_sync; 3939 tp->usrwide = driver_setup.max_wide; 3940 tp->usrtags = MAX_TAGS; 3941 tp->period = 0xffff; 3942 if (!driver_setup.disconnection) 3943 np->target[i].usrflag = UF_NODISC; 3944 } 3945 3946 /* 3947 ** Announce all that stuff to user. 3948 */ 3949 3950 printk(KERN_INFO "%s: ID %d, Fast-%d%s%s\n", ncr_name(np), 3951 np->myaddr, 3952 np->minsync < 12 ? 40 : (np->minsync < 25 ? 20 : 10), 3953 (np->rv_scntl0 & 0xa) ? ", Parity Checking" : ", NO Parity", 3954 (np->rv_stest2 & 0x20) ? ", Differential" : ""); 3955 3956 if (bootverbose > 1) { 3957 printk (KERN_INFO "%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " 3958 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", 3959 ncr_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl, 3960 np->sv_ctest3, np->sv_ctest4, np->sv_ctest5); 3961 3962 printk (KERN_INFO "%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " 3963 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", 3964 ncr_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl, 3965 np->rv_ctest3, np->rv_ctest4, np->rv_ctest5); 3966 } 3967 3968 if (bootverbose && np->paddr2) 3969 printk (KERN_INFO "%s: on-chip RAM at 0x%lx\n", 3970 ncr_name(np), np->paddr2); 3971 } 3972 3973 /*========================================================== 3974 ** 3975 ** 3976 ** Done SCSI commands list management. 3977 ** 3978 ** We donnot enter the scsi_done() callback immediately 3979 ** after a command has been seen as completed but we 3980 ** insert it into a list which is flushed outside any kind 3981 ** of driver critical section. 3982 ** This allows to do minimal stuff under interrupt and 3983 ** inside critical sections and to also avoid locking up 3984 ** on recursive calls to driver entry points under SMP. 3985 ** In fact, the only kernel point which is entered by the 3986 ** driver with a driver lock set is kmalloc(GFP_ATOMIC) 3987 ** that shall not reenter the driver under any circumstances, 3988 ** AFAIK. 3989 ** 3990 **========================================================== 3991 */ 3992 static inline void ncr_queue_done_cmd(struct ncb *np, struct scsi_cmnd *cmd) 3993 { 3994 unmap_scsi_data(np, cmd); 3995 cmd->host_scribble = (char *) np->done_list; 3996 np->done_list = cmd; 3997 } 3998 3999 static inline void ncr_flush_done_cmds(struct scsi_cmnd *lcmd) 4000 { 4001 struct scsi_cmnd *cmd; 4002 4003 while (lcmd) { 4004 cmd = lcmd; 4005 lcmd = (struct scsi_cmnd *) cmd->host_scribble; 4006 cmd->scsi_done(cmd); 4007 } 4008 } 4009 4010 /*========================================================== 4011 ** 4012 ** 4013 ** Prepare the next negotiation message if needed. 4014 ** 4015 ** Fill in the part of message buffer that contains the 4016 ** negotiation and the nego_status field of the CCB. 4017 ** Returns the size of the message in bytes. 4018 ** 4019 ** 4020 **========================================================== 4021 */ 4022 4023 4024 static int ncr_prepare_nego(struct ncb *np, struct ccb *cp, u_char *msgptr) 4025 { 4026 struct tcb *tp = &np->target[cp->target]; 4027 int msglen = 0; 4028 int nego = 0; 4029 struct scsi_target *starget = tp->starget; 4030 4031 /* negotiate wide transfers ? */ 4032 if (!tp->widedone) { 4033 if (spi_support_wide(starget)) { 4034 nego = NS_WIDE; 4035 } else 4036 tp->widedone=1; 4037 } 4038 4039 /* negotiate synchronous transfers? */ 4040 if (!nego && !tp->period) { 4041 if (spi_support_sync(starget)) { 4042 nego = NS_SYNC; 4043 } else { 4044 tp->period =0xffff; 4045 dev_info(&starget->dev, "target did not report SYNC.\n"); 4046 } 4047 } 4048 4049 switch (nego) { 4050 case NS_SYNC: 4051 msglen += spi_populate_sync_msg(msgptr + msglen, 4052 tp->maxoffs ? tp->minsync : 0, tp->maxoffs); 4053 break; 4054 case NS_WIDE: 4055 msglen += spi_populate_width_msg(msgptr + msglen, tp->usrwide); 4056 break; 4057 } 4058 4059 cp->nego_status = nego; 4060 4061 if (nego) { 4062 tp->nego_cp = cp; 4063 if (DEBUG_FLAGS & DEBUG_NEGO) { 4064 ncr_print_msg(cp, nego == NS_WIDE ? 4065 "wide msgout":"sync_msgout", msgptr); 4066 } 4067 } 4068 4069 return msglen; 4070 } 4071 4072 4073 4074 /*========================================================== 4075 ** 4076 ** 4077 ** Start execution of a SCSI command. 4078 ** This is called from the generic SCSI driver. 4079 ** 4080 ** 4081 **========================================================== 4082 */ 4083 static int ncr_queue_command (struct ncb *np, struct scsi_cmnd *cmd) 4084 { 4085 struct scsi_device *sdev = cmd->device; 4086 struct tcb *tp = &np->target[sdev->id]; 4087 struct lcb *lp = tp->lp[sdev->lun]; 4088 struct ccb *cp; 4089 4090 int segments; 4091 u_char idmsg, *msgptr; 4092 u32 msglen; 4093 int direction; 4094 u32 lastp, goalp; 4095 4096 /*--------------------------------------------- 4097 ** 4098 ** Some shortcuts ... 4099 ** 4100 **--------------------------------------------- 4101 */ 4102 if ((sdev->id == np->myaddr ) || 4103 (sdev->id >= MAX_TARGET) || 4104 (sdev->lun >= MAX_LUN )) { 4105 return(DID_BAD_TARGET); 4106 } 4107 4108 /*--------------------------------------------- 4109 ** 4110 ** Complete the 1st TEST UNIT READY command 4111 ** with error condition if the device is 4112 ** flagged NOSCAN, in order to speed up 4113 ** the boot. 4114 ** 4115 **--------------------------------------------- 4116 */ 4117 if ((cmd->cmnd[0] == 0 || cmd->cmnd[0] == 0x12) && 4118 (tp->usrflag & UF_NOSCAN)) { 4119 tp->usrflag &= ~UF_NOSCAN; 4120 return DID_BAD_TARGET; 4121 } 4122 4123 if (DEBUG_FLAGS & DEBUG_TINY) { 4124 PRINT_ADDR(cmd, "CMD=%x ", cmd->cmnd[0]); 4125 } 4126 4127 /*--------------------------------------------------- 4128 ** 4129 ** Assign a ccb / bind cmd. 4130 ** If resetting, shorten settle_time if necessary 4131 ** in order to avoid spurious timeouts. 4132 ** If resetting or no free ccb, 4133 ** insert cmd into the waiting list. 4134 ** 4135 **---------------------------------------------------- 4136 */ 4137 if (np->settle_time && scsi_cmd_to_rq(cmd)->timeout >= HZ) { 4138 u_long tlimit = jiffies + scsi_cmd_to_rq(cmd)->timeout - HZ; 4139 if (time_after(np->settle_time, tlimit)) 4140 np->settle_time = tlimit; 4141 } 4142 4143 if (np->settle_time || !(cp=ncr_get_ccb (np, cmd))) { 4144 insert_into_waiting_list(np, cmd); 4145 return(DID_OK); 4146 } 4147 cp->cmd = cmd; 4148 4149 /*---------------------------------------------------- 4150 ** 4151 ** Build the identify / tag / sdtr message 4152 ** 4153 **---------------------------------------------------- 4154 */ 4155 4156 idmsg = IDENTIFY(0, sdev->lun); 4157 4158 if (cp ->tag != NO_TAG || 4159 (cp != np->ccb && np->disc && !(tp->usrflag & UF_NODISC))) 4160 idmsg |= 0x40; 4161 4162 msgptr = cp->scsi_smsg; 4163 msglen = 0; 4164 msgptr[msglen++] = idmsg; 4165 4166 if (cp->tag != NO_TAG) { 4167 char order = np->order; 4168 4169 /* 4170 ** Force ordered tag if necessary to avoid timeouts 4171 ** and to preserve interactivity. 4172 */ 4173 if (lp && time_after(jiffies, lp->tags_stime)) { 4174 if (lp->tags_smap) { 4175 order = ORDERED_QUEUE_TAG; 4176 if ((DEBUG_FLAGS & DEBUG_TAGS)||bootverbose>2){ 4177 PRINT_ADDR(cmd, 4178 "ordered tag forced.\n"); 4179 } 4180 } 4181 lp->tags_stime = jiffies + 3*HZ; 4182 lp->tags_smap = lp->tags_umap; 4183 } 4184 4185 if (order == 0) { 4186 /* 4187 ** Ordered write ops, unordered read ops. 4188 */ 4189 switch (cmd->cmnd[0]) { 4190 case 0x08: /* READ_SMALL (6) */ 4191 case 0x28: /* READ_BIG (10) */ 4192 case 0xa8: /* READ_HUGE (12) */ 4193 order = SIMPLE_QUEUE_TAG; 4194 break; 4195 default: 4196 order = ORDERED_QUEUE_TAG; 4197 } 4198 } 4199 msgptr[msglen++] = order; 4200 /* 4201 ** Actual tags are numbered 1,3,5,..2*MAXTAGS+1, 4202 ** since we may have to deal with devices that have 4203 ** problems with #TAG 0 or too great #TAG numbers. 4204 */ 4205 msgptr[msglen++] = (cp->tag << 1) + 1; 4206 } 4207 4208 /*---------------------------------------------------- 4209 ** 4210 ** Build the data descriptors 4211 ** 4212 **---------------------------------------------------- 4213 */ 4214 4215 direction = cmd->sc_data_direction; 4216 if (direction != DMA_NONE) { 4217 segments = ncr_scatter(np, cp, cp->cmd); 4218 if (segments < 0) { 4219 ncr_free_ccb(np, cp); 4220 return(DID_ERROR); 4221 } 4222 } 4223 else { 4224 cp->data_len = 0; 4225 segments = 0; 4226 } 4227 4228 /*--------------------------------------------------- 4229 ** 4230 ** negotiation required? 4231 ** 4232 ** (nego_status is filled by ncr_prepare_nego()) 4233 ** 4234 **--------------------------------------------------- 4235 */ 4236 4237 cp->nego_status = 0; 4238 4239 if ((!tp->widedone || !tp->period) && !tp->nego_cp && lp) { 4240 msglen += ncr_prepare_nego (np, cp, msgptr + msglen); 4241 } 4242 4243 /*---------------------------------------------------- 4244 ** 4245 ** Determine xfer direction. 4246 ** 4247 **---------------------------------------------------- 4248 */ 4249 if (!cp->data_len) 4250 direction = DMA_NONE; 4251 4252 /* 4253 ** If data direction is BIDIRECTIONAL, speculate FROM_DEVICE 4254 ** but prepare alternate pointers for TO_DEVICE in case 4255 ** of our speculation will be just wrong. 4256 ** SCRIPTS will swap values if needed. 4257 */ 4258 switch(direction) { 4259 case DMA_BIDIRECTIONAL: 4260 case DMA_TO_DEVICE: 4261 goalp = NCB_SCRIPT_PHYS (np, data_out2) + 8; 4262 if (segments <= MAX_SCATTERL) 4263 lastp = goalp - 8 - (segments * 16); 4264 else { 4265 lastp = NCB_SCRIPTH_PHYS (np, hdata_out2); 4266 lastp -= (segments - MAX_SCATTERL) * 16; 4267 } 4268 if (direction != DMA_BIDIRECTIONAL) 4269 break; 4270 cp->phys.header.wgoalp = cpu_to_scr(goalp); 4271 cp->phys.header.wlastp = cpu_to_scr(lastp); 4272 fallthrough; 4273 case DMA_FROM_DEVICE: 4274 goalp = NCB_SCRIPT_PHYS (np, data_in2) + 8; 4275 if (segments <= MAX_SCATTERL) 4276 lastp = goalp - 8 - (segments * 16); 4277 else { 4278 lastp = NCB_SCRIPTH_PHYS (np, hdata_in2); 4279 lastp -= (segments - MAX_SCATTERL) * 16; 4280 } 4281 break; 4282 default: 4283 case DMA_NONE: 4284 lastp = goalp = NCB_SCRIPT_PHYS (np, no_data); 4285 break; 4286 } 4287 4288 /* 4289 ** Set all pointers values needed by SCRIPTS. 4290 ** If direction is unknown, start at data_io. 4291 */ 4292 cp->phys.header.lastp = cpu_to_scr(lastp); 4293 cp->phys.header.goalp = cpu_to_scr(goalp); 4294 4295 if (direction == DMA_BIDIRECTIONAL) 4296 cp->phys.header.savep = 4297 cpu_to_scr(NCB_SCRIPTH_PHYS (np, data_io)); 4298 else 4299 cp->phys.header.savep= cpu_to_scr(lastp); 4300 4301 /* 4302 ** Save the initial data pointer in order to be able 4303 ** to redo the command. 4304 */ 4305 cp->startp = cp->phys.header.savep; 4306 4307 /*---------------------------------------------------- 4308 ** 4309 ** fill in ccb 4310 ** 4311 **---------------------------------------------------- 4312 ** 4313 ** 4314 ** physical -> virtual backlink 4315 ** Generic SCSI command 4316 */ 4317 4318 /* 4319 ** Startqueue 4320 */ 4321 cp->start.schedule.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, select)); 4322 cp->restart.schedule.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_dsa)); 4323 /* 4324 ** select 4325 */ 4326 cp->phys.select.sel_id = sdev_id(sdev); 4327 cp->phys.select.sel_scntl3 = tp->wval; 4328 cp->phys.select.sel_sxfer = tp->sval; 4329 /* 4330 ** message 4331 */ 4332 cp->phys.smsg.addr = cpu_to_scr(CCB_PHYS (cp, scsi_smsg)); 4333 cp->phys.smsg.size = cpu_to_scr(msglen); 4334 4335 /* 4336 ** command 4337 */ 4338 memcpy(cp->cdb_buf, cmd->cmnd, min_t(int, cmd->cmd_len, sizeof(cp->cdb_buf))); 4339 cp->phys.cmd.addr = cpu_to_scr(CCB_PHYS (cp, cdb_buf[0])); 4340 cp->phys.cmd.size = cpu_to_scr(cmd->cmd_len); 4341 4342 /* 4343 ** status 4344 */ 4345 cp->actualquirks = 0; 4346 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 4347 cp->scsi_status = SAM_STAT_ILLEGAL; 4348 cp->parity_status = 0; 4349 4350 cp->xerr_status = XE_OK; 4351 4352 /*---------------------------------------------------- 4353 ** 4354 ** Critical region: start this job. 4355 ** 4356 **---------------------------------------------------- 4357 */ 4358 4359 /* activate this job. */ 4360 cp->magic = CCB_MAGIC; 4361 4362 /* 4363 ** insert next CCBs into start queue. 4364 ** 2 max at a time is enough to flush the CCB wait queue. 4365 */ 4366 cp->auto_sense = 0; 4367 if (lp) 4368 ncr_start_next_ccb(np, lp, 2); 4369 else 4370 ncr_put_start_queue(np, cp); 4371 4372 /* Command is successfully queued. */ 4373 4374 return DID_OK; 4375 } 4376 4377 4378 /*========================================================== 4379 ** 4380 ** 4381 ** Insert a CCB into the start queue and wake up the 4382 ** SCRIPTS processor. 4383 ** 4384 ** 4385 **========================================================== 4386 */ 4387 4388 static void ncr_start_next_ccb(struct ncb *np, struct lcb *lp, int maxn) 4389 { 4390 struct list_head *qp; 4391 struct ccb *cp; 4392 4393 if (lp->held_ccb) 4394 return; 4395 4396 while (maxn-- && lp->queuedccbs < lp->queuedepth) { 4397 qp = ncr_list_pop(&lp->wait_ccbq); 4398 if (!qp) 4399 break; 4400 ++lp->queuedccbs; 4401 cp = list_entry(qp, struct ccb, link_ccbq); 4402 list_add_tail(qp, &lp->busy_ccbq); 4403 lp->jump_ccb[cp->tag == NO_TAG ? 0 : cp->tag] = 4404 cpu_to_scr(CCB_PHYS (cp, restart)); 4405 ncr_put_start_queue(np, cp); 4406 } 4407 } 4408 4409 static void ncr_put_start_queue(struct ncb *np, struct ccb *cp) 4410 { 4411 u16 qidx; 4412 4413 /* 4414 ** insert into start queue. 4415 */ 4416 if (!np->squeueput) np->squeueput = 1; 4417 qidx = np->squeueput + 2; 4418 if (qidx >= MAX_START + MAX_START) qidx = 1; 4419 4420 np->scripth->tryloop [qidx] = cpu_to_scr(NCB_SCRIPT_PHYS (np, idle)); 4421 MEMORY_BARRIER(); 4422 np->scripth->tryloop [np->squeueput] = cpu_to_scr(CCB_PHYS (cp, start)); 4423 4424 np->squeueput = qidx; 4425 ++np->queuedccbs; 4426 cp->queued = 1; 4427 4428 if (DEBUG_FLAGS & DEBUG_QUEUE) 4429 printk ("%s: queuepos=%d.\n", ncr_name (np), np->squeueput); 4430 4431 /* 4432 ** Script processor may be waiting for reselect. 4433 ** Wake it up. 4434 */ 4435 MEMORY_BARRIER(); 4436 OUTB (nc_istat, SIGP); 4437 } 4438 4439 4440 static int ncr_reset_scsi_bus(struct ncb *np, int enab_int, int settle_delay) 4441 { 4442 u32 term; 4443 int retv = 0; 4444 4445 np->settle_time = jiffies + settle_delay * HZ; 4446 4447 if (bootverbose > 1) 4448 printk("%s: resetting, " 4449 "command processing suspended for %d seconds\n", 4450 ncr_name(np), settle_delay); 4451 4452 ncr_chip_reset(np, 100); 4453 udelay(2000); /* The 895 needs time for the bus mode to settle */ 4454 if (enab_int) 4455 OUTW (nc_sien, RST); 4456 /* 4457 ** Enable Tolerant, reset IRQD if present and 4458 ** properly set IRQ mode, prior to resetting the bus. 4459 */ 4460 OUTB (nc_stest3, TE); 4461 OUTB (nc_scntl1, CRST); 4462 udelay(200); 4463 4464 if (!driver_setup.bus_check) 4465 goto out; 4466 /* 4467 ** Check for no terminators or SCSI bus shorts to ground. 4468 ** Read SCSI data bus, data parity bits and control signals. 4469 ** We are expecting RESET to be TRUE and other signals to be 4470 ** FALSE. 4471 */ 4472 4473 term = INB(nc_sstat0); 4474 term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */ 4475 term |= ((INB(nc_sstat2) & 0x01) << 26) | /* sdp1 */ 4476 ((INW(nc_sbdl) & 0xff) << 9) | /* d7-0 */ 4477 ((INW(nc_sbdl) & 0xff00) << 10) | /* d15-8 */ 4478 INB(nc_sbcl); /* req ack bsy sel atn msg cd io */ 4479 4480 if (!(np->features & FE_WIDE)) 4481 term &= 0x3ffff; 4482 4483 if (term != (2<<7)) { 4484 printk("%s: suspicious SCSI data while resetting the BUS.\n", 4485 ncr_name(np)); 4486 printk("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = " 4487 "0x%lx, expecting 0x%lx\n", 4488 ncr_name(np), 4489 (np->features & FE_WIDE) ? "dp1,d15-8," : "", 4490 (u_long)term, (u_long)(2<<7)); 4491 if (driver_setup.bus_check == 1) 4492 retv = 1; 4493 } 4494 out: 4495 OUTB (nc_scntl1, 0); 4496 return retv; 4497 } 4498 4499 /* 4500 * Start reset process. 4501 * If reset in progress do nothing. 4502 * The interrupt handler will reinitialize the chip. 4503 * The timeout handler will wait for settle_time before 4504 * clearing it and so resuming command processing. 4505 */ 4506 static void ncr_start_reset(struct ncb *np) 4507 { 4508 if (!np->settle_time) { 4509 ncr_reset_scsi_bus(np, 1, driver_setup.settle_delay); 4510 } 4511 } 4512 4513 /*========================================================== 4514 ** 4515 ** 4516 ** Reset the SCSI BUS. 4517 ** This is called from the generic SCSI driver. 4518 ** 4519 ** 4520 **========================================================== 4521 */ 4522 static int ncr_reset_bus (struct ncb *np) 4523 { 4524 /* 4525 * Return immediately if reset is in progress. 4526 */ 4527 if (np->settle_time) { 4528 return FAILED; 4529 } 4530 /* 4531 * Start the reset process. 4532 * The script processor is then assumed to be stopped. 4533 * Commands will now be queued in the waiting list until a settle 4534 * delay of 2 seconds will be completed. 4535 */ 4536 ncr_start_reset(np); 4537 /* 4538 * Wake-up all awaiting commands with DID_RESET. 4539 */ 4540 reset_waiting_list(np); 4541 /* 4542 * Wake-up all pending commands with HS_RESET -> DID_RESET. 4543 */ 4544 ncr_wakeup(np, HS_RESET); 4545 4546 return SUCCESS; 4547 } 4548 4549 static void ncr_detach(struct ncb *np) 4550 { 4551 struct ccb *cp; 4552 struct tcb *tp; 4553 struct lcb *lp; 4554 int target, lun; 4555 int i; 4556 char inst_name[16]; 4557 4558 /* Local copy so we don't access np after freeing it! */ 4559 strlcpy(inst_name, ncr_name(np), sizeof(inst_name)); 4560 4561 printk("%s: releasing host resources\n", ncr_name(np)); 4562 4563 /* 4564 ** Stop the ncr_timeout process 4565 ** Set release_stage to 1 and wait that ncr_timeout() set it to 2. 4566 */ 4567 4568 #ifdef DEBUG_NCR53C8XX 4569 printk("%s: stopping the timer\n", ncr_name(np)); 4570 #endif 4571 np->release_stage = 1; 4572 for (i = 50 ; i && np->release_stage != 2 ; i--) 4573 mdelay(100); 4574 if (np->release_stage != 2) 4575 printk("%s: the timer seems to be already stopped\n", ncr_name(np)); 4576 else np->release_stage = 2; 4577 4578 /* 4579 ** Disable chip interrupts 4580 */ 4581 4582 #ifdef DEBUG_NCR53C8XX 4583 printk("%s: disabling chip interrupts\n", ncr_name(np)); 4584 #endif 4585 OUTW (nc_sien , 0); 4586 OUTB (nc_dien , 0); 4587 4588 /* 4589 ** Reset NCR chip 4590 ** Restore bios setting for automatic clock detection. 4591 */ 4592 4593 printk("%s: resetting chip\n", ncr_name(np)); 4594 ncr_chip_reset(np, 100); 4595 4596 OUTB(nc_dmode, np->sv_dmode); 4597 OUTB(nc_dcntl, np->sv_dcntl); 4598 OUTB(nc_ctest0, np->sv_ctest0); 4599 OUTB(nc_ctest3, np->sv_ctest3); 4600 OUTB(nc_ctest4, np->sv_ctest4); 4601 OUTB(nc_ctest5, np->sv_ctest5); 4602 OUTB(nc_gpcntl, np->sv_gpcntl); 4603 OUTB(nc_stest2, np->sv_stest2); 4604 4605 ncr_selectclock(np, np->sv_scntl3); 4606 4607 /* 4608 ** Free allocated ccb(s) 4609 */ 4610 4611 while ((cp=np->ccb->link_ccb) != NULL) { 4612 np->ccb->link_ccb = cp->link_ccb; 4613 if (cp->host_status) { 4614 printk("%s: shall free an active ccb (host_status=%d)\n", 4615 ncr_name(np), cp->host_status); 4616 } 4617 #ifdef DEBUG_NCR53C8XX 4618 printk("%s: freeing ccb (%lx)\n", ncr_name(np), (u_long) cp); 4619 #endif 4620 m_free_dma(cp, sizeof(*cp), "CCB"); 4621 } 4622 4623 /* Free allocated tp(s) */ 4624 4625 for (target = 0; target < MAX_TARGET ; target++) { 4626 tp=&np->target[target]; 4627 for (lun = 0 ; lun < MAX_LUN ; lun++) { 4628 lp = tp->lp[lun]; 4629 if (lp) { 4630 #ifdef DEBUG_NCR53C8XX 4631 printk("%s: freeing lp (%lx)\n", ncr_name(np), (u_long) lp); 4632 #endif 4633 if (lp->jump_ccb != &lp->jump_ccb_0) 4634 m_free_dma(lp->jump_ccb,256,"JUMP_CCB"); 4635 m_free_dma(lp, sizeof(*lp), "LCB"); 4636 } 4637 } 4638 } 4639 4640 if (np->scripth0) 4641 m_free_dma(np->scripth0, sizeof(struct scripth), "SCRIPTH"); 4642 if (np->script0) 4643 m_free_dma(np->script0, sizeof(struct script), "SCRIPT"); 4644 if (np->ccb) 4645 m_free_dma(np->ccb, sizeof(struct ccb), "CCB"); 4646 m_free_dma(np, sizeof(struct ncb), "NCB"); 4647 4648 printk("%s: host resources successfully released\n", inst_name); 4649 } 4650 4651 /*========================================================== 4652 ** 4653 ** 4654 ** Complete execution of a SCSI command. 4655 ** Signal completion to the generic SCSI driver. 4656 ** 4657 ** 4658 **========================================================== 4659 */ 4660 4661 void ncr_complete (struct ncb *np, struct ccb *cp) 4662 { 4663 struct scsi_cmnd *cmd; 4664 struct tcb *tp; 4665 struct lcb *lp; 4666 4667 /* 4668 ** Sanity check 4669 */ 4670 4671 if (!cp || cp->magic != CCB_MAGIC || !cp->cmd) 4672 return; 4673 4674 /* 4675 ** Print minimal debug information. 4676 */ 4677 4678 if (DEBUG_FLAGS & DEBUG_TINY) 4679 printk ("CCB=%lx STAT=%x/%x\n", (unsigned long)cp, 4680 cp->host_status,cp->scsi_status); 4681 4682 /* 4683 ** Get command, target and lun pointers. 4684 */ 4685 4686 cmd = cp->cmd; 4687 cp->cmd = NULL; 4688 tp = &np->target[cmd->device->id]; 4689 lp = tp->lp[cmd->device->lun]; 4690 4691 /* 4692 ** We donnot queue more than 1 ccb per target 4693 ** with negotiation at any time. If this ccb was 4694 ** used for negotiation, clear this info in the tcb. 4695 */ 4696 4697 if (cp == tp->nego_cp) 4698 tp->nego_cp = NULL; 4699 4700 /* 4701 ** If auto-sense performed, change scsi status. 4702 */ 4703 if (cp->auto_sense) { 4704 cp->scsi_status = cp->auto_sense; 4705 } 4706 4707 /* 4708 ** If we were recovering from queue full or performing 4709 ** auto-sense, requeue skipped CCBs to the wait queue. 4710 */ 4711 4712 if (lp && lp->held_ccb) { 4713 if (cp == lp->held_ccb) { 4714 list_splice_init(&lp->skip_ccbq, &lp->wait_ccbq); 4715 lp->held_ccb = NULL; 4716 } 4717 } 4718 4719 /* 4720 ** Check for parity errors. 4721 */ 4722 4723 if (cp->parity_status > 1) { 4724 PRINT_ADDR(cmd, "%d parity error(s).\n",cp->parity_status); 4725 } 4726 4727 /* 4728 ** Check for extended errors. 4729 */ 4730 4731 if (cp->xerr_status != XE_OK) { 4732 switch (cp->xerr_status) { 4733 case XE_EXTRA_DATA: 4734 PRINT_ADDR(cmd, "extraneous data discarded.\n"); 4735 break; 4736 case XE_BAD_PHASE: 4737 PRINT_ADDR(cmd, "invalid scsi phase (4/5).\n"); 4738 break; 4739 default: 4740 PRINT_ADDR(cmd, "extended error %d.\n", 4741 cp->xerr_status); 4742 break; 4743 } 4744 if (cp->host_status==HS_COMPLETE) 4745 cp->host_status = HS_FAIL; 4746 } 4747 4748 /* 4749 ** Print out any error for debugging purpose. 4750 */ 4751 if (DEBUG_FLAGS & (DEBUG_RESULT|DEBUG_TINY)) { 4752 if (cp->host_status != HS_COMPLETE || 4753 cp->scsi_status != SAM_STAT_GOOD) { 4754 PRINT_ADDR(cmd, "ERROR: cmd=%x host_status=%x " 4755 "scsi_status=%x\n", cmd->cmnd[0], 4756 cp->host_status, cp->scsi_status); 4757 } 4758 } 4759 4760 /* 4761 ** Check the status. 4762 */ 4763 cmd->result = 0; 4764 if ( (cp->host_status == HS_COMPLETE) 4765 && (cp->scsi_status == SAM_STAT_GOOD || 4766 cp->scsi_status == SAM_STAT_CONDITION_MET)) { 4767 /* 4768 * All went well (GOOD status). 4769 * CONDITION MET status is returned on 4770 * `Pre-Fetch' or `Search data' success. 4771 */ 4772 set_status_byte(cmd, cp->scsi_status); 4773 4774 /* 4775 ** @RESID@ 4776 ** Could dig out the correct value for resid, 4777 ** but it would be quite complicated. 4778 */ 4779 /* if (cp->phys.header.lastp != cp->phys.header.goalp) */ 4780 4781 /* 4782 ** Allocate the lcb if not yet. 4783 */ 4784 if (!lp) 4785 ncr_alloc_lcb (np, cmd->device->id, cmd->device->lun); 4786 4787 tp->bytes += cp->data_len; 4788 tp->transfers ++; 4789 4790 /* 4791 ** If tags was reduced due to queue full, 4792 ** increase tags if 1000 good status received. 4793 */ 4794 if (lp && lp->usetags && lp->numtags < lp->maxtags) { 4795 ++lp->num_good; 4796 if (lp->num_good >= 1000) { 4797 lp->num_good = 0; 4798 ++lp->numtags; 4799 ncr_setup_tags (np, cmd->device); 4800 } 4801 } 4802 } else if ((cp->host_status == HS_COMPLETE) 4803 && (cp->scsi_status == SAM_STAT_CHECK_CONDITION)) { 4804 /* 4805 ** Check condition code 4806 */ 4807 set_status_byte(cmd, SAM_STAT_CHECK_CONDITION); 4808 4809 /* 4810 ** Copy back sense data to caller's buffer. 4811 */ 4812 memcpy(cmd->sense_buffer, cp->sense_buf, 4813 min_t(size_t, SCSI_SENSE_BUFFERSIZE, 4814 sizeof(cp->sense_buf))); 4815 4816 if (DEBUG_FLAGS & (DEBUG_RESULT|DEBUG_TINY)) { 4817 u_char *p = cmd->sense_buffer; 4818 int i; 4819 PRINT_ADDR(cmd, "sense data:"); 4820 for (i=0; i<14; i++) printk (" %x", *p++); 4821 printk (".\n"); 4822 } 4823 } else if ((cp->host_status == HS_COMPLETE) 4824 && (cp->scsi_status == SAM_STAT_RESERVATION_CONFLICT)) { 4825 /* 4826 ** Reservation Conflict condition code 4827 */ 4828 set_status_byte(cmd, SAM_STAT_RESERVATION_CONFLICT); 4829 4830 } else if ((cp->host_status == HS_COMPLETE) 4831 && (cp->scsi_status == SAM_STAT_BUSY || 4832 cp->scsi_status == SAM_STAT_TASK_SET_FULL)) { 4833 4834 /* 4835 ** Target is busy. 4836 */ 4837 set_status_byte(cmd, cp->scsi_status); 4838 4839 } else if ((cp->host_status == HS_SEL_TIMEOUT) 4840 || (cp->host_status == HS_TIMEOUT)) { 4841 4842 /* 4843 ** No response 4844 */ 4845 set_status_byte(cmd, cp->scsi_status); 4846 set_host_byte(cmd, DID_TIME_OUT); 4847 4848 } else if (cp->host_status == HS_RESET) { 4849 4850 /* 4851 ** SCSI bus reset 4852 */ 4853 set_status_byte(cmd, cp->scsi_status); 4854 set_host_byte(cmd, DID_RESET); 4855 4856 } else if (cp->host_status == HS_ABORTED) { 4857 4858 /* 4859 ** Transfer aborted 4860 */ 4861 set_status_byte(cmd, cp->scsi_status); 4862 set_host_byte(cmd, DID_ABORT); 4863 4864 } else { 4865 4866 /* 4867 ** Other protocol messes 4868 */ 4869 PRINT_ADDR(cmd, "COMMAND FAILED (%x %x) @%p.\n", 4870 cp->host_status, cp->scsi_status, cp); 4871 4872 set_status_byte(cmd, cp->scsi_status); 4873 set_host_byte(cmd, DID_ERROR); 4874 } 4875 4876 /* 4877 ** trace output 4878 */ 4879 4880 if (tp->usrflag & UF_TRACE) { 4881 u_char * p; 4882 int i; 4883 PRINT_ADDR(cmd, " CMD:"); 4884 p = (u_char*) &cmd->cmnd[0]; 4885 for (i=0; i<cmd->cmd_len; i++) printk (" %x", *p++); 4886 4887 if (cp->host_status==HS_COMPLETE) { 4888 switch (cp->scsi_status) { 4889 case SAM_STAT_GOOD: 4890 printk (" GOOD"); 4891 break; 4892 case SAM_STAT_CHECK_CONDITION: 4893 printk (" SENSE:"); 4894 p = (u_char*) &cmd->sense_buffer; 4895 for (i=0; i<14; i++) 4896 printk (" %x", *p++); 4897 break; 4898 default: 4899 printk (" STAT: %x\n", cp->scsi_status); 4900 break; 4901 } 4902 } else printk (" HOSTERROR: %x", cp->host_status); 4903 printk ("\n"); 4904 } 4905 4906 /* 4907 ** Free this ccb 4908 */ 4909 ncr_free_ccb (np, cp); 4910 4911 /* 4912 ** requeue awaiting scsi commands for this lun. 4913 */ 4914 if (lp && lp->queuedccbs < lp->queuedepth && 4915 !list_empty(&lp->wait_ccbq)) 4916 ncr_start_next_ccb(np, lp, 2); 4917 4918 /* 4919 ** requeue awaiting scsi commands for this controller. 4920 */ 4921 if (np->waiting_list) 4922 requeue_waiting_list(np); 4923 4924 /* 4925 ** signal completion to generic driver. 4926 */ 4927 ncr_queue_done_cmd(np, cmd); 4928 } 4929 4930 /*========================================================== 4931 ** 4932 ** 4933 ** Signal all (or one) control block done. 4934 ** 4935 ** 4936 **========================================================== 4937 */ 4938 4939 /* 4940 ** This CCB has been skipped by the NCR. 4941 ** Queue it in the corresponding unit queue. 4942 */ 4943 static void ncr_ccb_skipped(struct ncb *np, struct ccb *cp) 4944 { 4945 struct tcb *tp = &np->target[cp->target]; 4946 struct lcb *lp = tp->lp[cp->lun]; 4947 4948 if (lp && cp != np->ccb) { 4949 cp->host_status &= ~HS_SKIPMASK; 4950 cp->start.schedule.l_paddr = 4951 cpu_to_scr(NCB_SCRIPT_PHYS (np, select)); 4952 list_move_tail(&cp->link_ccbq, &lp->skip_ccbq); 4953 if (cp->queued) { 4954 --lp->queuedccbs; 4955 } 4956 } 4957 if (cp->queued) { 4958 --np->queuedccbs; 4959 cp->queued = 0; 4960 } 4961 } 4962 4963 /* 4964 ** The NCR has completed CCBs. 4965 ** Look at the DONE QUEUE if enabled, otherwise scan all CCBs 4966 */ 4967 void ncr_wakeup_done (struct ncb *np) 4968 { 4969 struct ccb *cp; 4970 #ifdef SCSI_NCR_CCB_DONE_SUPPORT 4971 int i, j; 4972 4973 i = np->ccb_done_ic; 4974 while (1) { 4975 j = i+1; 4976 if (j >= MAX_DONE) 4977 j = 0; 4978 4979 cp = np->ccb_done[j]; 4980 if (!CCB_DONE_VALID(cp)) 4981 break; 4982 4983 np->ccb_done[j] = (struct ccb *)CCB_DONE_EMPTY; 4984 np->scripth->done_queue[5*j + 4] = 4985 cpu_to_scr(NCB_SCRIPT_PHYS (np, done_plug)); 4986 MEMORY_BARRIER(); 4987 np->scripth->done_queue[5*i + 4] = 4988 cpu_to_scr(NCB_SCRIPT_PHYS (np, done_end)); 4989 4990 if (cp->host_status & HS_DONEMASK) 4991 ncr_complete (np, cp); 4992 else if (cp->host_status & HS_SKIPMASK) 4993 ncr_ccb_skipped (np, cp); 4994 4995 i = j; 4996 } 4997 np->ccb_done_ic = i; 4998 #else 4999 cp = np->ccb; 5000 while (cp) { 5001 if (cp->host_status & HS_DONEMASK) 5002 ncr_complete (np, cp); 5003 else if (cp->host_status & HS_SKIPMASK) 5004 ncr_ccb_skipped (np, cp); 5005 cp = cp->link_ccb; 5006 } 5007 #endif 5008 } 5009 5010 /* 5011 ** Complete all active CCBs. 5012 */ 5013 void ncr_wakeup (struct ncb *np, u_long code) 5014 { 5015 struct ccb *cp = np->ccb; 5016 5017 while (cp) { 5018 if (cp->host_status != HS_IDLE) { 5019 cp->host_status = code; 5020 ncr_complete (np, cp); 5021 } 5022 cp = cp->link_ccb; 5023 } 5024 } 5025 5026 /* 5027 ** Reset ncr chip. 5028 */ 5029 5030 /* Some initialisation must be done immediately following reset, for 53c720, 5031 * at least. EA (dcntl bit 5) isn't set here as it is set once only in 5032 * the _detect function. 5033 */ 5034 static void ncr_chip_reset(struct ncb *np, int delay) 5035 { 5036 OUTB (nc_istat, SRST); 5037 udelay(delay); 5038 OUTB (nc_istat, 0 ); 5039 5040 if (np->features & FE_EHP) 5041 OUTB (nc_ctest0, EHP); 5042 if (np->features & FE_MUX) 5043 OUTB (nc_ctest4, MUX); 5044 } 5045 5046 5047 /*========================================================== 5048 ** 5049 ** 5050 ** Start NCR chip. 5051 ** 5052 ** 5053 **========================================================== 5054 */ 5055 5056 void ncr_init (struct ncb *np, int reset, char * msg, u_long code) 5057 { 5058 int i; 5059 5060 /* 5061 ** Reset chip if asked, otherwise just clear fifos. 5062 */ 5063 5064 if (reset) { 5065 OUTB (nc_istat, SRST); 5066 udelay(100); 5067 } 5068 else { 5069 OUTB (nc_stest3, TE|CSF); 5070 OUTONB (nc_ctest3, CLF); 5071 } 5072 5073 /* 5074 ** Message. 5075 */ 5076 5077 if (msg) printk (KERN_INFO "%s: restart (%s).\n", ncr_name (np), msg); 5078 5079 /* 5080 ** Clear Start Queue 5081 */ 5082 np->queuedepth = MAX_START - 1; /* 1 entry needed as end marker */ 5083 for (i = 1; i < MAX_START + MAX_START; i += 2) 5084 np->scripth0->tryloop[i] = 5085 cpu_to_scr(NCB_SCRIPT_PHYS (np, idle)); 5086 5087 /* 5088 ** Start at first entry. 5089 */ 5090 np->squeueput = 0; 5091 np->script0->startpos[0] = cpu_to_scr(NCB_SCRIPTH_PHYS (np, tryloop)); 5092 5093 #ifdef SCSI_NCR_CCB_DONE_SUPPORT 5094 /* 5095 ** Clear Done Queue 5096 */ 5097 for (i = 0; i < MAX_DONE; i++) { 5098 np->ccb_done[i] = (struct ccb *)CCB_DONE_EMPTY; 5099 np->scripth0->done_queue[5*i + 4] = 5100 cpu_to_scr(NCB_SCRIPT_PHYS (np, done_end)); 5101 } 5102 #endif 5103 5104 /* 5105 ** Start at first entry. 5106 */ 5107 np->script0->done_pos[0] = cpu_to_scr(NCB_SCRIPTH_PHYS (np,done_queue)); 5108 np->ccb_done_ic = MAX_DONE-1; 5109 np->scripth0->done_queue[5*(MAX_DONE-1) + 4] = 5110 cpu_to_scr(NCB_SCRIPT_PHYS (np, done_plug)); 5111 5112 /* 5113 ** Wakeup all pending jobs. 5114 */ 5115 ncr_wakeup (np, code); 5116 5117 /* 5118 ** Init chip. 5119 */ 5120 5121 /* 5122 ** Remove reset; big delay because the 895 needs time for the 5123 ** bus mode to settle 5124 */ 5125 ncr_chip_reset(np, 2000); 5126 5127 OUTB (nc_scntl0, np->rv_scntl0 | 0xc0); 5128 /* full arb., ena parity, par->ATN */ 5129 OUTB (nc_scntl1, 0x00); /* odd parity, and remove CRST!! */ 5130 5131 ncr_selectclock(np, np->rv_scntl3); /* Select SCSI clock */ 5132 5133 OUTB (nc_scid , RRE|np->myaddr); /* Adapter SCSI address */ 5134 OUTW (nc_respid, 1ul<<np->myaddr); /* Id to respond to */ 5135 OUTB (nc_istat , SIGP ); /* Signal Process */ 5136 OUTB (nc_dmode , np->rv_dmode); /* Burst length, dma mode */ 5137 OUTB (nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */ 5138 5139 OUTB (nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */ 5140 OUTB (nc_ctest0, np->rv_ctest0); /* 720: CDIS and EHP */ 5141 OUTB (nc_ctest3, np->rv_ctest3); /* Write and invalidate */ 5142 OUTB (nc_ctest4, np->rv_ctest4); /* Master parity checking */ 5143 5144 OUTB (nc_stest2, EXT|np->rv_stest2); /* Extended Sreq/Sack filtering */ 5145 OUTB (nc_stest3, TE); /* TolerANT enable */ 5146 OUTB (nc_stime0, 0x0c ); /* HTH disabled STO 0.25 sec */ 5147 5148 /* 5149 ** Disable disconnects. 5150 */ 5151 5152 np->disc = 0; 5153 5154 /* 5155 ** Enable GPIO0 pin for writing if LED support. 5156 */ 5157 5158 if (np->features & FE_LED0) { 5159 OUTOFFB (nc_gpcntl, 0x01); 5160 } 5161 5162 /* 5163 ** enable ints 5164 */ 5165 5166 OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR); 5167 OUTB (nc_dien , MDPE|BF|ABRT|SSI|SIR|IID); 5168 5169 /* 5170 ** Fill in target structure. 5171 ** Reinitialize usrsync. 5172 ** Reinitialize usrwide. 5173 ** Prepare sync negotiation according to actual SCSI bus mode. 5174 */ 5175 5176 for (i=0;i<MAX_TARGET;i++) { 5177 struct tcb *tp = &np->target[i]; 5178 5179 tp->sval = 0; 5180 tp->wval = np->rv_scntl3; 5181 5182 if (tp->usrsync != 255) { 5183 if (tp->usrsync <= np->maxsync) { 5184 if (tp->usrsync < np->minsync) { 5185 tp->usrsync = np->minsync; 5186 } 5187 } 5188 else 5189 tp->usrsync = 255; 5190 } 5191 5192 if (tp->usrwide > np->maxwide) 5193 tp->usrwide = np->maxwide; 5194 5195 } 5196 5197 /* 5198 ** Start script processor. 5199 */ 5200 if (np->paddr2) { 5201 if (bootverbose) 5202 printk ("%s: Downloading SCSI SCRIPTS.\n", 5203 ncr_name(np)); 5204 OUTL (nc_scratcha, vtobus(np->script0)); 5205 OUTL_DSP (NCB_SCRIPTH_PHYS (np, start_ram)); 5206 } 5207 else 5208 OUTL_DSP (NCB_SCRIPT_PHYS (np, start)); 5209 } 5210 5211 /*========================================================== 5212 ** 5213 ** Prepare the negotiation values for wide and 5214 ** synchronous transfers. 5215 ** 5216 **========================================================== 5217 */ 5218 5219 static void ncr_negotiate (struct ncb* np, struct tcb* tp) 5220 { 5221 /* 5222 ** minsync unit is 4ns ! 5223 */ 5224 5225 u_long minsync = tp->usrsync; 5226 5227 /* 5228 ** SCSI bus mode limit 5229 */ 5230 5231 if (np->scsi_mode && np->scsi_mode == SMODE_SE) { 5232 if (minsync < 12) minsync = 12; 5233 } 5234 5235 /* 5236 ** our limit .. 5237 */ 5238 5239 if (minsync < np->minsync) 5240 minsync = np->minsync; 5241 5242 /* 5243 ** divider limit 5244 */ 5245 5246 if (minsync > np->maxsync) 5247 minsync = 255; 5248 5249 if (tp->maxoffs > np->maxoffs) 5250 tp->maxoffs = np->maxoffs; 5251 5252 tp->minsync = minsync; 5253 tp->maxoffs = (minsync<255 ? tp->maxoffs : 0); 5254 5255 /* 5256 ** period=0: has to negotiate sync transfer 5257 */ 5258 5259 tp->period=0; 5260 5261 /* 5262 ** widedone=0: has to negotiate wide transfer 5263 */ 5264 tp->widedone=0; 5265 } 5266 5267 /*========================================================== 5268 ** 5269 ** Get clock factor and sync divisor for a given 5270 ** synchronous factor period. 5271 ** Returns the clock factor (in sxfer) and scntl3 5272 ** synchronous divisor field. 5273 ** 5274 **========================================================== 5275 */ 5276 5277 static void ncr_getsync(struct ncb *np, u_char sfac, u_char *fakp, u_char *scntl3p) 5278 { 5279 u_long clk = np->clock_khz; /* SCSI clock frequency in kHz */ 5280 int div = np->clock_divn; /* Number of divisors supported */ 5281 u_long fak; /* Sync factor in sxfer */ 5282 u_long per; /* Period in tenths of ns */ 5283 u_long kpc; /* (per * clk) */ 5284 5285 /* 5286 ** Compute the synchronous period in tenths of nano-seconds 5287 */ 5288 if (sfac <= 10) per = 250; 5289 else if (sfac == 11) per = 303; 5290 else if (sfac == 12) per = 500; 5291 else per = 40 * sfac; 5292 5293 /* 5294 ** Look for the greatest clock divisor that allows an 5295 ** input speed faster than the period. 5296 */ 5297 kpc = per * clk; 5298 while (--div > 0) 5299 if (kpc >= (div_10M[div] << 2)) break; 5300 5301 /* 5302 ** Calculate the lowest clock factor that allows an output 5303 ** speed not faster than the period. 5304 */ 5305 fak = (kpc - 1) / div_10M[div] + 1; 5306 5307 if (fak < 4) fak = 4; /* Should never happen, too bad ... */ 5308 5309 /* 5310 ** Compute and return sync parameters for the ncr 5311 */ 5312 *fakp = fak - 4; 5313 *scntl3p = ((div+1) << 4) + (sfac < 25 ? 0x80 : 0); 5314 } 5315 5316 5317 /*========================================================== 5318 ** 5319 ** Set actual values, sync status and patch all ccbs of 5320 ** a target according to new sync/wide agreement. 5321 ** 5322 **========================================================== 5323 */ 5324 5325 static void ncr_set_sync_wide_status (struct ncb *np, u_char target) 5326 { 5327 struct ccb *cp; 5328 struct tcb *tp = &np->target[target]; 5329 5330 /* 5331 ** set actual value and sync_status 5332 */ 5333 OUTB (nc_sxfer, tp->sval); 5334 np->sync_st = tp->sval; 5335 OUTB (nc_scntl3, tp->wval); 5336 np->wide_st = tp->wval; 5337 5338 /* 5339 ** patch ALL ccbs of this target. 5340 */ 5341 for (cp = np->ccb; cp; cp = cp->link_ccb) { 5342 if (!cp->cmd) continue; 5343 if (scmd_id(cp->cmd) != target) continue; 5344 cp->phys.select.sel_scntl3 = tp->wval; 5345 cp->phys.select.sel_sxfer = tp->sval; 5346 } 5347 } 5348 5349 /*========================================================== 5350 ** 5351 ** Switch sync mode for current job and it's target 5352 ** 5353 **========================================================== 5354 */ 5355 5356 static void ncr_setsync (struct ncb *np, struct ccb *cp, u_char scntl3, u_char sxfer) 5357 { 5358 struct scsi_cmnd *cmd = cp->cmd; 5359 struct tcb *tp; 5360 u_char target = INB (nc_sdid) & 0x0f; 5361 u_char idiv; 5362 5363 BUG_ON(target != (scmd_id(cmd) & 0xf)); 5364 5365 tp = &np->target[target]; 5366 5367 if (!scntl3 || !(sxfer & 0x1f)) 5368 scntl3 = np->rv_scntl3; 5369 scntl3 = (scntl3 & 0xf0) | (tp->wval & EWS) | (np->rv_scntl3 & 0x07); 5370 5371 /* 5372 ** Deduce the value of controller sync period from scntl3. 5373 ** period is in tenths of nano-seconds. 5374 */ 5375 5376 idiv = ((scntl3 >> 4) & 0x7); 5377 if ((sxfer & 0x1f) && idiv) 5378 tp->period = (((sxfer>>5)+4)*div_10M[idiv-1])/np->clock_khz; 5379 else 5380 tp->period = 0xffff; 5381 5382 /* Stop there if sync parameters are unchanged */ 5383 if (tp->sval == sxfer && tp->wval == scntl3) 5384 return; 5385 tp->sval = sxfer; 5386 tp->wval = scntl3; 5387 5388 if (sxfer & 0x01f) { 5389 /* Disable extended Sreq/Sack filtering */ 5390 if (tp->period <= 2000) 5391 OUTOFFB(nc_stest2, EXT); 5392 } 5393 5394 spi_display_xfer_agreement(tp->starget); 5395 5396 /* 5397 ** set actual value and sync_status 5398 ** patch ALL ccbs of this target. 5399 */ 5400 ncr_set_sync_wide_status(np, target); 5401 } 5402 5403 /*========================================================== 5404 ** 5405 ** Switch wide mode for current job and it's target 5406 ** SCSI specs say: a SCSI device that accepts a WDTR 5407 ** message shall reset the synchronous agreement to 5408 ** asynchronous mode. 5409 ** 5410 **========================================================== 5411 */ 5412 5413 static void ncr_setwide (struct ncb *np, struct ccb *cp, u_char wide, u_char ack) 5414 { 5415 struct scsi_cmnd *cmd = cp->cmd; 5416 u16 target = INB (nc_sdid) & 0x0f; 5417 struct tcb *tp; 5418 u_char scntl3; 5419 u_char sxfer; 5420 5421 BUG_ON(target != (scmd_id(cmd) & 0xf)); 5422 5423 tp = &np->target[target]; 5424 tp->widedone = wide+1; 5425 scntl3 = (tp->wval & (~EWS)) | (wide ? EWS : 0); 5426 5427 sxfer = ack ? 0 : tp->sval; 5428 5429 /* 5430 ** Stop there if sync/wide parameters are unchanged 5431 */ 5432 if (tp->sval == sxfer && tp->wval == scntl3) return; 5433 tp->sval = sxfer; 5434 tp->wval = scntl3; 5435 5436 /* 5437 ** Bells and whistles ;-) 5438 */ 5439 if (bootverbose >= 2) { 5440 dev_info(&cmd->device->sdev_target->dev, "WIDE SCSI %sabled.\n", 5441 (scntl3 & EWS) ? "en" : "dis"); 5442 } 5443 5444 /* 5445 ** set actual value and sync_status 5446 ** patch ALL ccbs of this target. 5447 */ 5448 ncr_set_sync_wide_status(np, target); 5449 } 5450 5451 /*========================================================== 5452 ** 5453 ** Switch tagged mode for a target. 5454 ** 5455 **========================================================== 5456 */ 5457 5458 static void ncr_setup_tags (struct ncb *np, struct scsi_device *sdev) 5459 { 5460 unsigned char tn = sdev->id, ln = sdev->lun; 5461 struct tcb *tp = &np->target[tn]; 5462 struct lcb *lp = tp->lp[ln]; 5463 u_char reqtags, maxdepth; 5464 5465 /* 5466 ** Just in case ... 5467 */ 5468 if ((!tp) || (!lp) || !sdev) 5469 return; 5470 5471 /* 5472 ** If SCSI device queue depth is not yet set, leave here. 5473 */ 5474 if (!lp->scdev_depth) 5475 return; 5476 5477 /* 5478 ** Donnot allow more tags than the SCSI driver can queue 5479 ** for this device. 5480 ** Donnot allow more tags than we can handle. 5481 */ 5482 maxdepth = lp->scdev_depth; 5483 if (maxdepth > lp->maxnxs) maxdepth = lp->maxnxs; 5484 if (lp->maxtags > maxdepth) lp->maxtags = maxdepth; 5485 if (lp->numtags > maxdepth) lp->numtags = maxdepth; 5486 5487 /* 5488 ** only devices conformant to ANSI Version >= 2 5489 ** only devices capable of tagged commands 5490 ** only if enabled by user .. 5491 */ 5492 if (sdev->tagged_supported && lp->numtags > 1) { 5493 reqtags = lp->numtags; 5494 } else { 5495 reqtags = 1; 5496 } 5497 5498 /* 5499 ** Update max number of tags 5500 */ 5501 lp->numtags = reqtags; 5502 if (lp->numtags > lp->maxtags) 5503 lp->maxtags = lp->numtags; 5504 5505 /* 5506 ** If we want to switch tag mode, we must wait 5507 ** for no CCB to be active. 5508 */ 5509 if (reqtags > 1 && lp->usetags) { /* Stay in tagged mode */ 5510 if (lp->queuedepth == reqtags) /* Already announced */ 5511 return; 5512 lp->queuedepth = reqtags; 5513 } 5514 else if (reqtags <= 1 && !lp->usetags) { /* Stay in untagged mode */ 5515 lp->queuedepth = reqtags; 5516 return; 5517 } 5518 else { /* Want to switch tag mode */ 5519 if (lp->busyccbs) /* If not yet safe, return */ 5520 return; 5521 lp->queuedepth = reqtags; 5522 lp->usetags = reqtags > 1 ? 1 : 0; 5523 } 5524 5525 /* 5526 ** Patch the lun mini-script, according to tag mode. 5527 */ 5528 lp->jump_tag.l_paddr = lp->usetags? 5529 cpu_to_scr(NCB_SCRIPT_PHYS(np, resel_tag)) : 5530 cpu_to_scr(NCB_SCRIPT_PHYS(np, resel_notag)); 5531 5532 /* 5533 ** Announce change to user. 5534 */ 5535 if (bootverbose) { 5536 if (lp->usetags) { 5537 dev_info(&sdev->sdev_gendev, 5538 "tagged command queue depth set to %d\n", 5539 reqtags); 5540 } else { 5541 dev_info(&sdev->sdev_gendev, 5542 "tagged command queueing disabled\n"); 5543 } 5544 } 5545 } 5546 5547 /*========================================================== 5548 ** 5549 ** 5550 ** ncr timeout handler. 5551 ** 5552 ** 5553 **========================================================== 5554 ** 5555 ** Misused to keep the driver running when 5556 ** interrupts are not configured correctly. 5557 ** 5558 **---------------------------------------------------------- 5559 */ 5560 5561 static void ncr_timeout (struct ncb *np) 5562 { 5563 u_long thistime = jiffies; 5564 5565 /* 5566 ** If release process in progress, let's go 5567 ** Set the release stage from 1 to 2 to synchronize 5568 ** with the release process. 5569 */ 5570 5571 if (np->release_stage) { 5572 if (np->release_stage == 1) np->release_stage = 2; 5573 return; 5574 } 5575 5576 np->timer.expires = jiffies + SCSI_NCR_TIMER_INTERVAL; 5577 add_timer(&np->timer); 5578 5579 /* 5580 ** If we are resetting the ncr, wait for settle_time before 5581 ** clearing it. Then command processing will be resumed. 5582 */ 5583 if (np->settle_time) { 5584 if (np->settle_time <= thistime) { 5585 if (bootverbose > 1) 5586 printk("%s: command processing resumed\n", ncr_name(np)); 5587 np->settle_time = 0; 5588 np->disc = 1; 5589 requeue_waiting_list(np); 5590 } 5591 return; 5592 } 5593 5594 /* 5595 ** Since the generic scsi driver only allows us 0.5 second 5596 ** to perform abort of a command, we must look at ccbs about 5597 ** every 0.25 second. 5598 */ 5599 if (np->lasttime + 4*HZ < thistime) { 5600 /* 5601 ** block ncr interrupts 5602 */ 5603 np->lasttime = thistime; 5604 } 5605 5606 #ifdef SCSI_NCR_BROKEN_INTR 5607 if (INB(nc_istat) & (INTF|SIP|DIP)) { 5608 5609 /* 5610 ** Process pending interrupts. 5611 */ 5612 if (DEBUG_FLAGS & DEBUG_TINY) printk ("{"); 5613 ncr_exception (np); 5614 if (DEBUG_FLAGS & DEBUG_TINY) printk ("}"); 5615 } 5616 #endif /* SCSI_NCR_BROKEN_INTR */ 5617 } 5618 5619 /*========================================================== 5620 ** 5621 ** log message for real hard errors 5622 ** 5623 ** "ncr0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc)." 5624 ** " reg: r0 r1 r2 r3 r4 r5 r6 ..... rf." 5625 ** 5626 ** exception register: 5627 ** ds: dstat 5628 ** si: sist 5629 ** 5630 ** SCSI bus lines: 5631 ** so: control lines as driver by NCR. 5632 ** si: control lines as seen by NCR. 5633 ** sd: scsi data lines as seen by NCR. 5634 ** 5635 ** wide/fastmode: 5636 ** sxfer: (see the manual) 5637 ** scntl3: (see the manual) 5638 ** 5639 ** current script command: 5640 ** dsp: script address (relative to start of script). 5641 ** dbc: first word of script command. 5642 ** 5643 ** First 16 register of the chip: 5644 ** r0..rf 5645 ** 5646 **========================================================== 5647 */ 5648 5649 static void ncr_log_hard_error(struct ncb *np, u16 sist, u_char dstat) 5650 { 5651 u32 dsp; 5652 int script_ofs; 5653 int script_size; 5654 char *script_name; 5655 u_char *script_base; 5656 int i; 5657 5658 dsp = INL (nc_dsp); 5659 5660 if (dsp > np->p_script && dsp <= np->p_script + sizeof(struct script)) { 5661 script_ofs = dsp - np->p_script; 5662 script_size = sizeof(struct script); 5663 script_base = (u_char *) np->script0; 5664 script_name = "script"; 5665 } 5666 else if (np->p_scripth < dsp && 5667 dsp <= np->p_scripth + sizeof(struct scripth)) { 5668 script_ofs = dsp - np->p_scripth; 5669 script_size = sizeof(struct scripth); 5670 script_base = (u_char *) np->scripth0; 5671 script_name = "scripth"; 5672 } else { 5673 script_ofs = dsp; 5674 script_size = 0; 5675 script_base = NULL; 5676 script_name = "mem"; 5677 } 5678 5679 printk ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n", 5680 ncr_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist, 5681 (unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl), (unsigned)INB (nc_sbdl), 5682 (unsigned)INB (nc_sxfer),(unsigned)INB (nc_scntl3), script_name, script_ofs, 5683 (unsigned)INL (nc_dbc)); 5684 5685 if (((script_ofs & 3) == 0) && 5686 (unsigned)script_ofs < script_size) { 5687 printk ("%s: script cmd = %08x\n", ncr_name(np), 5688 scr_to_cpu((int) *(ncrcmd *)(script_base + script_ofs))); 5689 } 5690 5691 printk ("%s: regdump:", ncr_name(np)); 5692 for (i=0; i<16;i++) 5693 printk (" %02x", (unsigned)INB_OFF(i)); 5694 printk (".\n"); 5695 } 5696 5697 /*============================================================ 5698 ** 5699 ** ncr chip exception handler. 5700 ** 5701 **============================================================ 5702 ** 5703 ** In normal cases, interrupt conditions occur one at a 5704 ** time. The ncr is able to stack in some extra registers 5705 ** other interrupts that will occur after the first one. 5706 ** But, several interrupts may occur at the same time. 5707 ** 5708 ** We probably should only try to deal with the normal 5709 ** case, but it seems that multiple interrupts occur in 5710 ** some cases that are not abnormal at all. 5711 ** 5712 ** The most frequent interrupt condition is Phase Mismatch. 5713 ** We should want to service this interrupt quickly. 5714 ** A SCSI parity error may be delivered at the same time. 5715 ** The SIR interrupt is not very frequent in this driver, 5716 ** since the INTFLY is likely used for command completion 5717 ** signaling. 5718 ** The Selection Timeout interrupt may be triggered with 5719 ** IID and/or UDC. 5720 ** The SBMC interrupt (SCSI Bus Mode Change) may probably 5721 ** occur at any time. 5722 ** 5723 ** This handler try to deal as cleverly as possible with all 5724 ** the above. 5725 ** 5726 **============================================================ 5727 */ 5728 5729 void ncr_exception (struct ncb *np) 5730 { 5731 u_char istat, dstat; 5732 u16 sist; 5733 int i; 5734 5735 /* 5736 ** interrupt on the fly ? 5737 ** Since the global header may be copied back to a CCB 5738 ** using a posted PCI memory write, the last operation on 5739 ** the istat register is a READ in order to flush posted 5740 ** PCI write commands. 5741 */ 5742 istat = INB (nc_istat); 5743 if (istat & INTF) { 5744 OUTB (nc_istat, (istat & SIGP) | INTF); 5745 istat = INB (nc_istat); 5746 if (DEBUG_FLAGS & DEBUG_TINY) printk ("F "); 5747 ncr_wakeup_done (np); 5748 } 5749 5750 if (!(istat & (SIP|DIP))) 5751 return; 5752 5753 if (istat & CABRT) 5754 OUTB (nc_istat, CABRT); 5755 5756 /* 5757 ** Steinbach's Guideline for Systems Programming: 5758 ** Never test for an error condition you don't know how to handle. 5759 */ 5760 5761 sist = (istat & SIP) ? INW (nc_sist) : 0; 5762 dstat = (istat & DIP) ? INB (nc_dstat) : 0; 5763 5764 if (DEBUG_FLAGS & DEBUG_TINY) 5765 printk ("<%d|%x:%x|%x:%x>", 5766 (int)INB(nc_scr0), 5767 dstat,sist, 5768 (unsigned)INL(nc_dsp), 5769 (unsigned)INL(nc_dbc)); 5770 5771 /*======================================================== 5772 ** First, interrupts we want to service cleanly. 5773 ** 5774 ** Phase mismatch is the most frequent interrupt, and 5775 ** so we have to service it as quickly and as cleanly 5776 ** as possible. 5777 ** Programmed interrupts are rarely used in this driver, 5778 ** but we must handle them cleanly anyway. 5779 ** We try to deal with PAR and SBMC combined with 5780 ** some other interrupt(s). 5781 **========================================================= 5782 */ 5783 5784 if (!(sist & (STO|GEN|HTH|SGE|UDC|RST)) && 5785 !(dstat & (MDPE|BF|ABRT|IID))) { 5786 if ((sist & SBMC) && ncr_int_sbmc (np)) 5787 return; 5788 if ((sist & PAR) && ncr_int_par (np)) 5789 return; 5790 if (sist & MA) { 5791 ncr_int_ma (np); 5792 return; 5793 } 5794 if (dstat & SIR) { 5795 ncr_int_sir (np); 5796 return; 5797 } 5798 /* 5799 ** DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 2. 5800 */ 5801 if (!(sist & (SBMC|PAR)) && !(dstat & SSI)) { 5802 printk( "%s: unknown interrupt(s) ignored, " 5803 "ISTAT=%x DSTAT=%x SIST=%x\n", 5804 ncr_name(np), istat, dstat, sist); 5805 return; 5806 } 5807 OUTONB_STD (); 5808 return; 5809 } 5810 5811 /*======================================================== 5812 ** Now, interrupts that need some fixing up. 5813 ** Order and multiple interrupts is so less important. 5814 ** 5815 ** If SRST has been asserted, we just reset the chip. 5816 ** 5817 ** Selection is intirely handled by the chip. If the 5818 ** chip says STO, we trust it. Seems some other 5819 ** interrupts may occur at the same time (UDC, IID), so 5820 ** we ignore them. In any case we do enough fix-up 5821 ** in the service routine. 5822 ** We just exclude some fatal dma errors. 5823 **========================================================= 5824 */ 5825 5826 if (sist & RST) { 5827 ncr_init (np, 1, bootverbose ? "scsi reset" : NULL, HS_RESET); 5828 return; 5829 } 5830 5831 if ((sist & STO) && 5832 !(dstat & (MDPE|BF|ABRT))) { 5833 /* 5834 ** DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 1. 5835 */ 5836 OUTONB (nc_ctest3, CLF); 5837 5838 ncr_int_sto (np); 5839 return; 5840 } 5841 5842 /*========================================================= 5843 ** Now, interrupts we are not able to recover cleanly. 5844 ** (At least for the moment). 5845 ** 5846 ** Do the register dump. 5847 ** Log message for real hard errors. 5848 ** Clear all fifos. 5849 ** For MDPE, BF, ABORT, IID, SGE and HTH we reset the 5850 ** BUS and the chip. 5851 ** We are more soft for UDC. 5852 **========================================================= 5853 */ 5854 5855 if (time_after(jiffies, np->regtime)) { 5856 np->regtime = jiffies + 10*HZ; 5857 for (i = 0; i<sizeof(np->regdump); i++) 5858 ((char*)&np->regdump)[i] = INB_OFF(i); 5859 np->regdump.nc_dstat = dstat; 5860 np->regdump.nc_sist = sist; 5861 } 5862 5863 ncr_log_hard_error(np, sist, dstat); 5864 5865 printk ("%s: have to clear fifos.\n", ncr_name (np)); 5866 OUTB (nc_stest3, TE|CSF); 5867 OUTONB (nc_ctest3, CLF); 5868 5869 if ((sist & (SGE)) || 5870 (dstat & (MDPE|BF|ABRT|IID))) { 5871 ncr_start_reset(np); 5872 return; 5873 } 5874 5875 if (sist & HTH) { 5876 printk ("%s: handshake timeout\n", ncr_name(np)); 5877 ncr_start_reset(np); 5878 return; 5879 } 5880 5881 if (sist & UDC) { 5882 printk ("%s: unexpected disconnect\n", ncr_name(np)); 5883 OUTB (HS_PRT, HS_UNEXPECTED); 5884 OUTL_DSP (NCB_SCRIPT_PHYS (np, cleanup)); 5885 return; 5886 } 5887 5888 /*========================================================= 5889 ** We just miss the cause of the interrupt. :( 5890 ** Print a message. The timeout will do the real work. 5891 **========================================================= 5892 */ 5893 printk ("%s: unknown interrupt\n", ncr_name(np)); 5894 } 5895 5896 /*========================================================== 5897 ** 5898 ** ncr chip exception handler for selection timeout 5899 ** 5900 **========================================================== 5901 ** 5902 ** There seems to be a bug in the 53c810. 5903 ** Although a STO-Interrupt is pending, 5904 ** it continues executing script commands. 5905 ** But it will fail and interrupt (IID) on 5906 ** the next instruction where it's looking 5907 ** for a valid phase. 5908 ** 5909 **---------------------------------------------------------- 5910 */ 5911 5912 void ncr_int_sto (struct ncb *np) 5913 { 5914 u_long dsa; 5915 struct ccb *cp; 5916 if (DEBUG_FLAGS & DEBUG_TINY) printk ("T"); 5917 5918 /* 5919 ** look for ccb and set the status. 5920 */ 5921 5922 dsa = INL (nc_dsa); 5923 cp = np->ccb; 5924 while (cp && (CCB_PHYS (cp, phys) != dsa)) 5925 cp = cp->link_ccb; 5926 5927 if (cp) { 5928 cp-> host_status = HS_SEL_TIMEOUT; 5929 ncr_complete (np, cp); 5930 } 5931 5932 /* 5933 ** repair start queue and jump to start point. 5934 */ 5935 5936 OUTL_DSP (NCB_SCRIPTH_PHYS (np, sto_restart)); 5937 return; 5938 } 5939 5940 /*========================================================== 5941 ** 5942 ** ncr chip exception handler for SCSI bus mode change 5943 ** 5944 **========================================================== 5945 ** 5946 ** spi2-r12 11.2.3 says a transceiver mode change must 5947 ** generate a reset event and a device that detects a reset 5948 ** event shall initiate a hard reset. It says also that a 5949 ** device that detects a mode change shall set data transfer 5950 ** mode to eight bit asynchronous, etc... 5951 ** So, just resetting should be enough. 5952 ** 5953 ** 5954 **---------------------------------------------------------- 5955 */ 5956 5957 static int ncr_int_sbmc (struct ncb *np) 5958 { 5959 u_char scsi_mode = INB (nc_stest4) & SMODE; 5960 5961 if (scsi_mode != np->scsi_mode) { 5962 printk("%s: SCSI bus mode change from %x to %x.\n", 5963 ncr_name(np), np->scsi_mode, scsi_mode); 5964 5965 np->scsi_mode = scsi_mode; 5966 5967 5968 /* 5969 ** Suspend command processing for 1 second and 5970 ** reinitialize all except the chip. 5971 */ 5972 np->settle_time = jiffies + HZ; 5973 ncr_init (np, 0, bootverbose ? "scsi mode change" : NULL, HS_RESET); 5974 return 1; 5975 } 5976 return 0; 5977 } 5978 5979 /*========================================================== 5980 ** 5981 ** ncr chip exception handler for SCSI parity error. 5982 ** 5983 **========================================================== 5984 ** 5985 ** 5986 **---------------------------------------------------------- 5987 */ 5988 5989 static int ncr_int_par (struct ncb *np) 5990 { 5991 u_char hsts = INB (HS_PRT); 5992 u32 dbc = INL (nc_dbc); 5993 u_char sstat1 = INB (nc_sstat1); 5994 int phase = -1; 5995 int msg = -1; 5996 u32 jmp; 5997 5998 printk("%s: SCSI parity error detected: SCR1=%d DBC=%x SSTAT1=%x\n", 5999 ncr_name(np), hsts, dbc, sstat1); 6000 6001 /* 6002 * Ignore the interrupt if the NCR is not connected 6003 * to the SCSI bus, since the right work should have 6004 * been done on unexpected disconnection handling. 6005 */ 6006 if (!(INB (nc_scntl1) & ISCON)) 6007 return 0; 6008 6009 /* 6010 * If the nexus is not clearly identified, reset the bus. 6011 * We will try to do better later. 6012 */ 6013 if (hsts & HS_INVALMASK) 6014 goto reset_all; 6015 6016 /* 6017 * If the SCSI parity error occurs in MSG IN phase, prepare a 6018 * MSG PARITY message. Otherwise, prepare a INITIATOR DETECTED 6019 * ERROR message and let the device decide to retry the command 6020 * or to terminate with check condition. If we were in MSG IN 6021 * phase waiting for the response of a negotiation, we will 6022 * get SIR_NEGO_FAILED at dispatch. 6023 */ 6024 if (!(dbc & 0xc0000000)) 6025 phase = (dbc >> 24) & 7; 6026 if (phase == 7) 6027 msg = MSG_PARITY_ERROR; 6028 else 6029 msg = INITIATOR_ERROR; 6030 6031 6032 /* 6033 * If the NCR stopped on a MOVE ^ DATA_IN, we jump to a 6034 * script that will ignore all data in bytes until phase 6035 * change, since we are not sure the chip will wait the phase 6036 * change prior to delivering the interrupt. 6037 */ 6038 if (phase == 1) 6039 jmp = NCB_SCRIPTH_PHYS (np, par_err_data_in); 6040 else 6041 jmp = NCB_SCRIPTH_PHYS (np, par_err_other); 6042 6043 OUTONB (nc_ctest3, CLF ); /* clear dma fifo */ 6044 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ 6045 6046 np->msgout[0] = msg; 6047 OUTL_DSP (jmp); 6048 return 1; 6049 6050 reset_all: 6051 ncr_start_reset(np); 6052 return 1; 6053 } 6054 6055 /*========================================================== 6056 ** 6057 ** 6058 ** ncr chip exception handler for phase errors. 6059 ** 6060 ** 6061 **========================================================== 6062 ** 6063 ** We have to construct a new transfer descriptor, 6064 ** to transfer the rest of the current block. 6065 ** 6066 **---------------------------------------------------------- 6067 */ 6068 6069 static void ncr_int_ma (struct ncb *np) 6070 { 6071 u32 dbc; 6072 u32 rest; 6073 u32 dsp; 6074 u32 dsa; 6075 u32 nxtdsp; 6076 u32 newtmp; 6077 u32 *vdsp; 6078 u32 oadr, olen; 6079 u32 *tblp; 6080 ncrcmd *newcmd; 6081 u_char cmd, sbcl; 6082 struct ccb *cp; 6083 6084 dsp = INL (nc_dsp); 6085 dbc = INL (nc_dbc); 6086 sbcl = INB (nc_sbcl); 6087 6088 cmd = dbc >> 24; 6089 rest = dbc & 0xffffff; 6090 6091 /* 6092 ** Take into account dma fifo and various buffers and latches, 6093 ** only if the interrupted phase is an OUTPUT phase. 6094 */ 6095 6096 if ((cmd & 1) == 0) { 6097 u_char ctest5, ss0, ss2; 6098 u16 delta; 6099 6100 ctest5 = (np->rv_ctest5 & DFS) ? INB (nc_ctest5) : 0; 6101 if (ctest5 & DFS) 6102 delta=(((ctest5 << 8) | (INB (nc_dfifo) & 0xff)) - rest) & 0x3ff; 6103 else 6104 delta=(INB (nc_dfifo) - rest) & 0x7f; 6105 6106 /* 6107 ** The data in the dma fifo has not been transferred to 6108 ** the target -> add the amount to the rest 6109 ** and clear the data. 6110 ** Check the sstat2 register in case of wide transfer. 6111 */ 6112 6113 rest += delta; 6114 ss0 = INB (nc_sstat0); 6115 if (ss0 & OLF) rest++; 6116 if (ss0 & ORF) rest++; 6117 if (INB(nc_scntl3) & EWS) { 6118 ss2 = INB (nc_sstat2); 6119 if (ss2 & OLF1) rest++; 6120 if (ss2 & ORF1) rest++; 6121 } 6122 6123 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE)) 6124 printk ("P%x%x RL=%d D=%d SS0=%x ", cmd&7, sbcl&7, 6125 (unsigned) rest, (unsigned) delta, ss0); 6126 6127 } else { 6128 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE)) 6129 printk ("P%x%x RL=%d ", cmd&7, sbcl&7, rest); 6130 } 6131 6132 /* 6133 ** Clear fifos. 6134 */ 6135 OUTONB (nc_ctest3, CLF ); /* clear dma fifo */ 6136 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */ 6137 6138 /* 6139 ** locate matching cp. 6140 ** if the interrupted phase is DATA IN or DATA OUT, 6141 ** trust the global header. 6142 */ 6143 dsa = INL (nc_dsa); 6144 if (!(cmd & 6)) { 6145 cp = np->header.cp; 6146 if (CCB_PHYS(cp, phys) != dsa) 6147 cp = NULL; 6148 } else { 6149 cp = np->ccb; 6150 while (cp && (CCB_PHYS (cp, phys) != dsa)) 6151 cp = cp->link_ccb; 6152 } 6153 6154 /* 6155 ** try to find the interrupted script command, 6156 ** and the address at which to continue. 6157 */ 6158 vdsp = NULL; 6159 nxtdsp = 0; 6160 if (dsp > np->p_script && 6161 dsp <= np->p_script + sizeof(struct script)) { 6162 vdsp = (u32 *)((char*)np->script0 + (dsp-np->p_script-8)); 6163 nxtdsp = dsp; 6164 } 6165 else if (dsp > np->p_scripth && 6166 dsp <= np->p_scripth + sizeof(struct scripth)) { 6167 vdsp = (u32 *)((char*)np->scripth0 + (dsp-np->p_scripth-8)); 6168 nxtdsp = dsp; 6169 } 6170 else if (cp) { 6171 if (dsp == CCB_PHYS (cp, patch[2])) { 6172 vdsp = &cp->patch[0]; 6173 nxtdsp = scr_to_cpu(vdsp[3]); 6174 } 6175 else if (dsp == CCB_PHYS (cp, patch[6])) { 6176 vdsp = &cp->patch[4]; 6177 nxtdsp = scr_to_cpu(vdsp[3]); 6178 } 6179 } 6180 6181 /* 6182 ** log the information 6183 */ 6184 6185 if (DEBUG_FLAGS & DEBUG_PHASE) { 6186 printk ("\nCP=%p CP2=%p DSP=%x NXT=%x VDSP=%p CMD=%x ", 6187 cp, np->header.cp, 6188 (unsigned)dsp, 6189 (unsigned)nxtdsp, vdsp, cmd); 6190 } 6191 6192 /* 6193 ** cp=0 means that the DSA does not point to a valid control 6194 ** block. This should not happen since we donnot use multi-byte 6195 ** move while we are being reselected ot after command complete. 6196 ** We are not able to recover from such a phase error. 6197 */ 6198 if (!cp) { 6199 printk ("%s: SCSI phase error fixup: " 6200 "CCB already dequeued (0x%08lx)\n", 6201 ncr_name (np), (u_long) np->header.cp); 6202 goto reset_all; 6203 } 6204 6205 /* 6206 ** get old startaddress and old length. 6207 */ 6208 6209 oadr = scr_to_cpu(vdsp[1]); 6210 6211 if (cmd & 0x10) { /* Table indirect */ 6212 tblp = (u32 *) ((char*) &cp->phys + oadr); 6213 olen = scr_to_cpu(tblp[0]); 6214 oadr = scr_to_cpu(tblp[1]); 6215 } else { 6216 tblp = (u32 *) 0; 6217 olen = scr_to_cpu(vdsp[0]) & 0xffffff; 6218 } 6219 6220 if (DEBUG_FLAGS & DEBUG_PHASE) { 6221 printk ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n", 6222 (unsigned) (scr_to_cpu(vdsp[0]) >> 24), 6223 tblp, 6224 (unsigned) olen, 6225 (unsigned) oadr); 6226 } 6227 6228 /* 6229 ** check cmd against assumed interrupted script command. 6230 */ 6231 6232 if (cmd != (scr_to_cpu(vdsp[0]) >> 24)) { 6233 PRINT_ADDR(cp->cmd, "internal error: cmd=%02x != %02x=(vdsp[0] " 6234 ">> 24)\n", cmd, scr_to_cpu(vdsp[0]) >> 24); 6235 6236 goto reset_all; 6237 } 6238 6239 /* 6240 ** cp != np->header.cp means that the header of the CCB 6241 ** currently being processed has not yet been copied to 6242 ** the global header area. That may happen if the device did 6243 ** not accept all our messages after having been selected. 6244 */ 6245 if (cp != np->header.cp) { 6246 printk ("%s: SCSI phase error fixup: " 6247 "CCB address mismatch (0x%08lx != 0x%08lx)\n", 6248 ncr_name (np), (u_long) cp, (u_long) np->header.cp); 6249 } 6250 6251 /* 6252 ** if old phase not dataphase, leave here. 6253 */ 6254 6255 if (cmd & 0x06) { 6256 PRINT_ADDR(cp->cmd, "phase change %x-%x %d@%08x resid=%d.\n", 6257 cmd&7, sbcl&7, (unsigned)olen, 6258 (unsigned)oadr, (unsigned)rest); 6259 goto unexpected_phase; 6260 } 6261 6262 /* 6263 ** choose the correct patch area. 6264 ** if savep points to one, choose the other. 6265 */ 6266 6267 newcmd = cp->patch; 6268 newtmp = CCB_PHYS (cp, patch); 6269 if (newtmp == scr_to_cpu(cp->phys.header.savep)) { 6270 newcmd = &cp->patch[4]; 6271 newtmp = CCB_PHYS (cp, patch[4]); 6272 } 6273 6274 /* 6275 ** fillin the commands 6276 */ 6277 6278 newcmd[0] = cpu_to_scr(((cmd & 0x0f) << 24) | rest); 6279 newcmd[1] = cpu_to_scr(oadr + olen - rest); 6280 newcmd[2] = cpu_to_scr(SCR_JUMP); 6281 newcmd[3] = cpu_to_scr(nxtdsp); 6282 6283 if (DEBUG_FLAGS & DEBUG_PHASE) { 6284 PRINT_ADDR(cp->cmd, "newcmd[%d] %x %x %x %x.\n", 6285 (int) (newcmd - cp->patch), 6286 (unsigned)scr_to_cpu(newcmd[0]), 6287 (unsigned)scr_to_cpu(newcmd[1]), 6288 (unsigned)scr_to_cpu(newcmd[2]), 6289 (unsigned)scr_to_cpu(newcmd[3])); 6290 } 6291 /* 6292 ** fake the return address (to the patch). 6293 ** and restart script processor at dispatcher. 6294 */ 6295 OUTL (nc_temp, newtmp); 6296 OUTL_DSP (NCB_SCRIPT_PHYS (np, dispatch)); 6297 return; 6298 6299 /* 6300 ** Unexpected phase changes that occurs when the current phase 6301 ** is not a DATA IN or DATA OUT phase are due to error conditions. 6302 ** Such event may only happen when the SCRIPTS is using a 6303 ** multibyte SCSI MOVE. 6304 ** 6305 ** Phase change Some possible cause 6306 ** 6307 ** COMMAND --> MSG IN SCSI parity error detected by target. 6308 ** COMMAND --> STATUS Bad command or refused by target. 6309 ** MSG OUT --> MSG IN Message rejected by target. 6310 ** MSG OUT --> COMMAND Bogus target that discards extended 6311 ** negotiation messages. 6312 ** 6313 ** The code below does not care of the new phase and so 6314 ** trusts the target. Why to annoy it ? 6315 ** If the interrupted phase is COMMAND phase, we restart at 6316 ** dispatcher. 6317 ** If a target does not get all the messages after selection, 6318 ** the code assumes blindly that the target discards extended 6319 ** messages and clears the negotiation status. 6320 ** If the target does not want all our response to negotiation, 6321 ** we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids 6322 ** bloat for such a should_not_happen situation). 6323 ** In all other situation, we reset the BUS. 6324 ** Are these assumptions reasonable ? (Wait and see ...) 6325 */ 6326 unexpected_phase: 6327 dsp -= 8; 6328 nxtdsp = 0; 6329 6330 switch (cmd & 7) { 6331 case 2: /* COMMAND phase */ 6332 nxtdsp = NCB_SCRIPT_PHYS (np, dispatch); 6333 break; 6334 #if 0 6335 case 3: /* STATUS phase */ 6336 nxtdsp = NCB_SCRIPT_PHYS (np, dispatch); 6337 break; 6338 #endif 6339 case 6: /* MSG OUT phase */ 6340 np->scripth->nxtdsp_go_on[0] = cpu_to_scr(dsp + 8); 6341 if (dsp == NCB_SCRIPT_PHYS (np, send_ident)) { 6342 cp->host_status = HS_BUSY; 6343 nxtdsp = NCB_SCRIPTH_PHYS (np, clratn_go_on); 6344 } 6345 else if (dsp == NCB_SCRIPTH_PHYS (np, send_wdtr) || 6346 dsp == NCB_SCRIPTH_PHYS (np, send_sdtr)) { 6347 nxtdsp = NCB_SCRIPTH_PHYS (np, nego_bad_phase); 6348 } 6349 break; 6350 #if 0 6351 case 7: /* MSG IN phase */ 6352 nxtdsp = NCB_SCRIPT_PHYS (np, clrack); 6353 break; 6354 #endif 6355 } 6356 6357 if (nxtdsp) { 6358 OUTL_DSP (nxtdsp); 6359 return; 6360 } 6361 6362 reset_all: 6363 ncr_start_reset(np); 6364 } 6365 6366 6367 static void ncr_sir_to_redo(struct ncb *np, int num, struct ccb *cp) 6368 { 6369 struct scsi_cmnd *cmd = cp->cmd; 6370 struct tcb *tp = &np->target[cmd->device->id]; 6371 struct lcb *lp = tp->lp[cmd->device->lun]; 6372 struct list_head *qp; 6373 struct ccb * cp2; 6374 int disc_cnt = 0; 6375 int busy_cnt = 0; 6376 u32 startp; 6377 u_char s_status = INB (SS_PRT); 6378 6379 /* 6380 ** Let the SCRIPTS processor skip all not yet started CCBs, 6381 ** and count disconnected CCBs. Since the busy queue is in 6382 ** the same order as the chip start queue, disconnected CCBs 6383 ** are before cp and busy ones after. 6384 */ 6385 if (lp) { 6386 qp = lp->busy_ccbq.prev; 6387 while (qp != &lp->busy_ccbq) { 6388 cp2 = list_entry(qp, struct ccb, link_ccbq); 6389 qp = qp->prev; 6390 ++busy_cnt; 6391 if (cp2 == cp) 6392 break; 6393 cp2->start.schedule.l_paddr = 6394 cpu_to_scr(NCB_SCRIPTH_PHYS (np, skip)); 6395 } 6396 lp->held_ccb = cp; /* Requeue when this one completes */ 6397 disc_cnt = lp->queuedccbs - busy_cnt; 6398 } 6399 6400 switch(s_status) { 6401 default: /* Just for safety, should never happen */ 6402 case SAM_STAT_TASK_SET_FULL: 6403 /* 6404 ** Decrease number of tags to the number of 6405 ** disconnected commands. 6406 */ 6407 if (!lp) 6408 goto out; 6409 if (bootverbose >= 1) { 6410 PRINT_ADDR(cmd, "QUEUE FULL! %d busy, %d disconnected " 6411 "CCBs\n", busy_cnt, disc_cnt); 6412 } 6413 if (disc_cnt < lp->numtags) { 6414 lp->numtags = disc_cnt > 2 ? disc_cnt : 2; 6415 lp->num_good = 0; 6416 ncr_setup_tags (np, cmd->device); 6417 } 6418 /* 6419 ** Requeue the command to the start queue. 6420 ** If any disconnected commands, 6421 ** Clear SIGP. 6422 ** Jump to reselect. 6423 */ 6424 cp->phys.header.savep = cp->startp; 6425 cp->host_status = HS_BUSY; 6426 cp->scsi_status = SAM_STAT_ILLEGAL; 6427 6428 ncr_put_start_queue(np, cp); 6429 if (disc_cnt) 6430 INB (nc_ctest2); /* Clear SIGP */ 6431 OUTL_DSP (NCB_SCRIPT_PHYS (np, reselect)); 6432 return; 6433 case SAM_STAT_COMMAND_TERMINATED: 6434 case SAM_STAT_CHECK_CONDITION: 6435 /* 6436 ** If we were requesting sense, give up. 6437 */ 6438 if (cp->auto_sense) 6439 goto out; 6440 6441 /* 6442 ** Device returned CHECK CONDITION status. 6443 ** Prepare all needed data strutures for getting 6444 ** sense data. 6445 ** 6446 ** identify message 6447 */ 6448 cp->scsi_smsg2[0] = IDENTIFY(0, cmd->device->lun); 6449 cp->phys.smsg.addr = cpu_to_scr(CCB_PHYS (cp, scsi_smsg2)); 6450 cp->phys.smsg.size = cpu_to_scr(1); 6451 6452 /* 6453 ** sense command 6454 */ 6455 cp->phys.cmd.addr = cpu_to_scr(CCB_PHYS (cp, sensecmd)); 6456 cp->phys.cmd.size = cpu_to_scr(6); 6457 6458 /* 6459 ** patch requested size into sense command 6460 */ 6461 cp->sensecmd[0] = 0x03; 6462 cp->sensecmd[1] = (cmd->device->lun & 0x7) << 5; 6463 cp->sensecmd[4] = sizeof(cp->sense_buf); 6464 6465 /* 6466 ** sense data 6467 */ 6468 memset(cp->sense_buf, 0, sizeof(cp->sense_buf)); 6469 cp->phys.sense.addr = cpu_to_scr(CCB_PHYS(cp,sense_buf[0])); 6470 cp->phys.sense.size = cpu_to_scr(sizeof(cp->sense_buf)); 6471 6472 /* 6473 ** requeue the command. 6474 */ 6475 startp = cpu_to_scr(NCB_SCRIPTH_PHYS (np, sdata_in)); 6476 6477 cp->phys.header.savep = startp; 6478 cp->phys.header.goalp = startp + 24; 6479 cp->phys.header.lastp = startp; 6480 cp->phys.header.wgoalp = startp + 24; 6481 cp->phys.header.wlastp = startp; 6482 6483 cp->host_status = HS_BUSY; 6484 cp->scsi_status = SAM_STAT_ILLEGAL; 6485 cp->auto_sense = s_status; 6486 6487 cp->start.schedule.l_paddr = 6488 cpu_to_scr(NCB_SCRIPT_PHYS (np, select)); 6489 6490 /* 6491 ** Select without ATN for quirky devices. 6492 */ 6493 if (cmd->device->select_no_atn) 6494 cp->start.schedule.l_paddr = 6495 cpu_to_scr(NCB_SCRIPTH_PHYS (np, select_no_atn)); 6496 6497 ncr_put_start_queue(np, cp); 6498 6499 OUTL_DSP (NCB_SCRIPT_PHYS (np, start)); 6500 return; 6501 } 6502 6503 out: 6504 OUTONB_STD (); 6505 return; 6506 } 6507 6508 6509 /*========================================================== 6510 ** 6511 ** 6512 ** ncr chip exception handler for programmed interrupts. 6513 ** 6514 ** 6515 **========================================================== 6516 */ 6517 6518 void ncr_int_sir (struct ncb *np) 6519 { 6520 u_char scntl3; 6521 u_char chg, ofs, per, fak, wide; 6522 u_char num = INB (nc_dsps); 6523 struct ccb *cp=NULL; 6524 u_long dsa = INL (nc_dsa); 6525 u_char target = INB (nc_sdid) & 0x0f; 6526 struct tcb *tp = &np->target[target]; 6527 struct scsi_target *starget = tp->starget; 6528 6529 if (DEBUG_FLAGS & DEBUG_TINY) printk ("I#%d", num); 6530 6531 switch (num) { 6532 case SIR_INTFLY: 6533 /* 6534 ** This is used for HP Zalon/53c720 where INTFLY 6535 ** operation is currently broken. 6536 */ 6537 ncr_wakeup_done(np); 6538 #ifdef SCSI_NCR_CCB_DONE_SUPPORT 6539 OUTL(nc_dsp, NCB_SCRIPT_PHYS (np, done_end) + 8); 6540 #else 6541 OUTL(nc_dsp, NCB_SCRIPT_PHYS (np, start)); 6542 #endif 6543 return; 6544 case SIR_RESEL_NO_MSG_IN: 6545 case SIR_RESEL_NO_IDENTIFY: 6546 /* 6547 ** If devices reselecting without sending an IDENTIFY 6548 ** message still exist, this should help. 6549 ** We just assume lun=0, 1 CCB, no tag. 6550 */ 6551 if (tp->lp[0]) { 6552 OUTL_DSP (scr_to_cpu(tp->lp[0]->jump_ccb[0])); 6553 return; 6554 } 6555 fallthrough; 6556 case SIR_RESEL_BAD_TARGET: /* Will send a TARGET RESET message */ 6557 case SIR_RESEL_BAD_LUN: /* Will send a TARGET RESET message */ 6558 case SIR_RESEL_BAD_I_T_L_Q: /* Will send an ABORT TAG message */ 6559 case SIR_RESEL_BAD_I_T_L: /* Will send an ABORT message */ 6560 printk ("%s:%d: SIR %d, " 6561 "incorrect nexus identification on reselection\n", 6562 ncr_name (np), target, num); 6563 goto out; 6564 case SIR_DONE_OVERFLOW: 6565 printk ("%s:%d: SIR %d, " 6566 "CCB done queue overflow\n", 6567 ncr_name (np), target, num); 6568 goto out; 6569 case SIR_BAD_STATUS: 6570 cp = np->header.cp; 6571 if (!cp || CCB_PHYS (cp, phys) != dsa) 6572 goto out; 6573 ncr_sir_to_redo(np, num, cp); 6574 return; 6575 default: 6576 /* 6577 ** lookup the ccb 6578 */ 6579 cp = np->ccb; 6580 while (cp && (CCB_PHYS (cp, phys) != dsa)) 6581 cp = cp->link_ccb; 6582 6583 BUG_ON(!cp); 6584 BUG_ON(cp != np->header.cp); 6585 6586 if (!cp || cp != np->header.cp) 6587 goto out; 6588 } 6589 6590 switch (num) { 6591 /*----------------------------------------------------------------------------- 6592 ** 6593 ** Was Sie schon immer ueber transfermode negotiation wissen wollten ... 6594 ** ("Everything you've always wanted to know about transfer mode 6595 ** negotiation") 6596 ** 6597 ** We try to negotiate sync and wide transfer only after 6598 ** a successful inquire command. We look at byte 7 of the 6599 ** inquire data to determine the capabilities of the target. 6600 ** 6601 ** When we try to negotiate, we append the negotiation message 6602 ** to the identify and (maybe) simple tag message. 6603 ** The host status field is set to HS_NEGOTIATE to mark this 6604 ** situation. 6605 ** 6606 ** If the target doesn't answer this message immediately 6607 ** (as required by the standard), the SIR_NEGO_FAIL interrupt 6608 ** will be raised eventually. 6609 ** The handler removes the HS_NEGOTIATE status, and sets the 6610 ** negotiated value to the default (async / nowide). 6611 ** 6612 ** If we receive a matching answer immediately, we check it 6613 ** for validity, and set the values. 6614 ** 6615 ** If we receive a Reject message immediately, we assume the 6616 ** negotiation has failed, and fall back to standard values. 6617 ** 6618 ** If we receive a negotiation message while not in HS_NEGOTIATE 6619 ** state, it's a target initiated negotiation. We prepare a 6620 ** (hopefully) valid answer, set our parameters, and send back 6621 ** this answer to the target. 6622 ** 6623 ** If the target doesn't fetch the answer (no message out phase), 6624 ** we assume the negotiation has failed, and fall back to default 6625 ** settings. 6626 ** 6627 ** When we set the values, we adjust them in all ccbs belonging 6628 ** to this target, in the controller's register, and in the "phys" 6629 ** field of the controller's struct ncb. 6630 ** 6631 ** Possible cases: hs sir msg_in value send goto 6632 ** We try to negotiate: 6633 ** -> target doesn't msgin NEG FAIL noop defa. - dispatch 6634 ** -> target rejected our msg NEG FAIL reject defa. - dispatch 6635 ** -> target answered (ok) NEG SYNC sdtr set - clrack 6636 ** -> target answered (!ok) NEG SYNC sdtr defa. REJ--->msg_bad 6637 ** -> target answered (ok) NEG WIDE wdtr set - clrack 6638 ** -> target answered (!ok) NEG WIDE wdtr defa. REJ--->msg_bad 6639 ** -> any other msgin NEG FAIL noop defa. - dispatch 6640 ** 6641 ** Target tries to negotiate: 6642 ** -> incoming message --- SYNC sdtr set SDTR - 6643 ** -> incoming message --- WIDE wdtr set WDTR - 6644 ** We sent our answer: 6645 ** -> target doesn't msgout --- PROTO ? defa. - dispatch 6646 ** 6647 **----------------------------------------------------------------------------- 6648 */ 6649 6650 case SIR_NEGO_FAILED: 6651 /*------------------------------------------------------- 6652 ** 6653 ** Negotiation failed. 6654 ** Target doesn't send an answer message, 6655 ** or target rejected our message. 6656 ** 6657 ** Remove negotiation request. 6658 ** 6659 **------------------------------------------------------- 6660 */ 6661 OUTB (HS_PRT, HS_BUSY); 6662 6663 fallthrough; 6664 6665 case SIR_NEGO_PROTO: 6666 /*------------------------------------------------------- 6667 ** 6668 ** Negotiation failed. 6669 ** Target doesn't fetch the answer message. 6670 ** 6671 **------------------------------------------------------- 6672 */ 6673 6674 if (DEBUG_FLAGS & DEBUG_NEGO) { 6675 PRINT_ADDR(cp->cmd, "negotiation failed sir=%x " 6676 "status=%x.\n", num, cp->nego_status); 6677 } 6678 6679 /* 6680 ** any error in negotiation: 6681 ** fall back to default mode. 6682 */ 6683 switch (cp->nego_status) { 6684 6685 case NS_SYNC: 6686 spi_period(starget) = 0; 6687 spi_offset(starget) = 0; 6688 ncr_setsync (np, cp, 0, 0xe0); 6689 break; 6690 6691 case NS_WIDE: 6692 spi_width(starget) = 0; 6693 ncr_setwide (np, cp, 0, 0); 6694 break; 6695 6696 } 6697 np->msgin [0] = NOP; 6698 np->msgout[0] = NOP; 6699 cp->nego_status = 0; 6700 break; 6701 6702 case SIR_NEGO_SYNC: 6703 if (DEBUG_FLAGS & DEBUG_NEGO) { 6704 ncr_print_msg(cp, "sync msgin", np->msgin); 6705 } 6706 6707 chg = 0; 6708 per = np->msgin[3]; 6709 ofs = np->msgin[4]; 6710 if (ofs==0) per=255; 6711 6712 /* 6713 ** if target sends SDTR message, 6714 ** it CAN transfer synch. 6715 */ 6716 6717 if (ofs && starget) 6718 spi_support_sync(starget) = 1; 6719 6720 /* 6721 ** check values against driver limits. 6722 */ 6723 6724 if (per < np->minsync) 6725 {chg = 1; per = np->minsync;} 6726 if (per < tp->minsync) 6727 {chg = 1; per = tp->minsync;} 6728 if (ofs > tp->maxoffs) 6729 {chg = 1; ofs = tp->maxoffs;} 6730 6731 /* 6732 ** Check against controller limits. 6733 */ 6734 fak = 7; 6735 scntl3 = 0; 6736 if (ofs != 0) { 6737 ncr_getsync(np, per, &fak, &scntl3); 6738 if (fak > 7) { 6739 chg = 1; 6740 ofs = 0; 6741 } 6742 } 6743 if (ofs == 0) { 6744 fak = 7; 6745 per = 0; 6746 scntl3 = 0; 6747 tp->minsync = 0; 6748 } 6749 6750 if (DEBUG_FLAGS & DEBUG_NEGO) { 6751 PRINT_ADDR(cp->cmd, "sync: per=%d scntl3=0x%x ofs=%d " 6752 "fak=%d chg=%d.\n", per, scntl3, ofs, fak, chg); 6753 } 6754 6755 if (INB (HS_PRT) == HS_NEGOTIATE) { 6756 OUTB (HS_PRT, HS_BUSY); 6757 switch (cp->nego_status) { 6758 6759 case NS_SYNC: 6760 /* This was an answer message */ 6761 if (chg) { 6762 /* Answer wasn't acceptable. */ 6763 spi_period(starget) = 0; 6764 spi_offset(starget) = 0; 6765 ncr_setsync(np, cp, 0, 0xe0); 6766 OUTL_DSP(NCB_SCRIPT_PHYS (np, msg_bad)); 6767 } else { 6768 /* Answer is ok. */ 6769 spi_period(starget) = per; 6770 spi_offset(starget) = ofs; 6771 ncr_setsync(np, cp, scntl3, (fak<<5)|ofs); 6772 OUTL_DSP(NCB_SCRIPT_PHYS (np, clrack)); 6773 } 6774 return; 6775 6776 case NS_WIDE: 6777 spi_width(starget) = 0; 6778 ncr_setwide(np, cp, 0, 0); 6779 break; 6780 } 6781 } 6782 6783 /* 6784 ** It was a request. Set value and 6785 ** prepare an answer message 6786 */ 6787 6788 spi_period(starget) = per; 6789 spi_offset(starget) = ofs; 6790 ncr_setsync(np, cp, scntl3, (fak<<5)|ofs); 6791 6792 spi_populate_sync_msg(np->msgout, per, ofs); 6793 cp->nego_status = NS_SYNC; 6794 6795 if (DEBUG_FLAGS & DEBUG_NEGO) { 6796 ncr_print_msg(cp, "sync msgout", np->msgout); 6797 } 6798 6799 if (!ofs) { 6800 OUTL_DSP (NCB_SCRIPT_PHYS (np, msg_bad)); 6801 return; 6802 } 6803 np->msgin [0] = NOP; 6804 6805 break; 6806 6807 case SIR_NEGO_WIDE: 6808 /* 6809 ** Wide request message received. 6810 */ 6811 if (DEBUG_FLAGS & DEBUG_NEGO) { 6812 ncr_print_msg(cp, "wide msgin", np->msgin); 6813 } 6814 6815 /* 6816 ** get requested values. 6817 */ 6818 6819 chg = 0; 6820 wide = np->msgin[3]; 6821 6822 /* 6823 ** if target sends WDTR message, 6824 ** it CAN transfer wide. 6825 */ 6826 6827 if (wide && starget) 6828 spi_support_wide(starget) = 1; 6829 6830 /* 6831 ** check values against driver limits. 6832 */ 6833 6834 if (wide > tp->usrwide) 6835 {chg = 1; wide = tp->usrwide;} 6836 6837 if (DEBUG_FLAGS & DEBUG_NEGO) { 6838 PRINT_ADDR(cp->cmd, "wide: wide=%d chg=%d.\n", wide, 6839 chg); 6840 } 6841 6842 if (INB (HS_PRT) == HS_NEGOTIATE) { 6843 OUTB (HS_PRT, HS_BUSY); 6844 switch (cp->nego_status) { 6845 6846 case NS_WIDE: 6847 /* 6848 ** This was an answer message 6849 */ 6850 if (chg) { 6851 /* Answer wasn't acceptable. */ 6852 spi_width(starget) = 0; 6853 ncr_setwide(np, cp, 0, 1); 6854 OUTL_DSP (NCB_SCRIPT_PHYS (np, msg_bad)); 6855 } else { 6856 /* Answer is ok. */ 6857 spi_width(starget) = wide; 6858 ncr_setwide(np, cp, wide, 1); 6859 OUTL_DSP (NCB_SCRIPT_PHYS (np, clrack)); 6860 } 6861 return; 6862 6863 case NS_SYNC: 6864 spi_period(starget) = 0; 6865 spi_offset(starget) = 0; 6866 ncr_setsync(np, cp, 0, 0xe0); 6867 break; 6868 } 6869 } 6870 6871 /* 6872 ** It was a request, set value and 6873 ** prepare an answer message 6874 */ 6875 6876 spi_width(starget) = wide; 6877 ncr_setwide(np, cp, wide, 1); 6878 spi_populate_width_msg(np->msgout, wide); 6879 6880 np->msgin [0] = NOP; 6881 6882 cp->nego_status = NS_WIDE; 6883 6884 if (DEBUG_FLAGS & DEBUG_NEGO) { 6885 ncr_print_msg(cp, "wide msgout", np->msgin); 6886 } 6887 break; 6888 6889 /*-------------------------------------------------------------------- 6890 ** 6891 ** Processing of special messages 6892 ** 6893 **-------------------------------------------------------------------- 6894 */ 6895 6896 case SIR_REJECT_RECEIVED: 6897 /*----------------------------------------------- 6898 ** 6899 ** We received a MESSAGE_REJECT. 6900 ** 6901 **----------------------------------------------- 6902 */ 6903 6904 PRINT_ADDR(cp->cmd, "MESSAGE_REJECT received (%x:%x).\n", 6905 (unsigned)scr_to_cpu(np->lastmsg), np->msgout[0]); 6906 break; 6907 6908 case SIR_REJECT_SENT: 6909 /*----------------------------------------------- 6910 ** 6911 ** We received an unknown message 6912 ** 6913 **----------------------------------------------- 6914 */ 6915 6916 ncr_print_msg(cp, "MESSAGE_REJECT sent for", np->msgin); 6917 break; 6918 6919 /*-------------------------------------------------------------------- 6920 ** 6921 ** Processing of special messages 6922 ** 6923 **-------------------------------------------------------------------- 6924 */ 6925 6926 case SIR_IGN_RESIDUE: 6927 /*----------------------------------------------- 6928 ** 6929 ** We received an IGNORE RESIDUE message, 6930 ** which couldn't be handled by the script. 6931 ** 6932 **----------------------------------------------- 6933 */ 6934 6935 PRINT_ADDR(cp->cmd, "IGNORE_WIDE_RESIDUE received, but not yet " 6936 "implemented.\n"); 6937 break; 6938 #if 0 6939 case SIR_MISSING_SAVE: 6940 /*----------------------------------------------- 6941 ** 6942 ** We received an DISCONNECT message, 6943 ** but the datapointer wasn't saved before. 6944 ** 6945 **----------------------------------------------- 6946 */ 6947 6948 PRINT_ADDR(cp->cmd, "DISCONNECT received, but datapointer " 6949 "not saved: data=%x save=%x goal=%x.\n", 6950 (unsigned) INL (nc_temp), 6951 (unsigned) scr_to_cpu(np->header.savep), 6952 (unsigned) scr_to_cpu(np->header.goalp)); 6953 break; 6954 #endif 6955 } 6956 6957 out: 6958 OUTONB_STD (); 6959 } 6960 6961 /*========================================================== 6962 ** 6963 ** 6964 ** Acquire a control block 6965 ** 6966 ** 6967 **========================================================== 6968 */ 6969 6970 static struct ccb *ncr_get_ccb(struct ncb *np, struct scsi_cmnd *cmd) 6971 { 6972 u_char tn = cmd->device->id; 6973 u_char ln = cmd->device->lun; 6974 struct tcb *tp = &np->target[tn]; 6975 struct lcb *lp = tp->lp[ln]; 6976 u_char tag = NO_TAG; 6977 struct ccb *cp = NULL; 6978 6979 /* 6980 ** Lun structure available ? 6981 */ 6982 if (lp) { 6983 struct list_head *qp; 6984 /* 6985 ** Keep from using more tags than we can handle. 6986 */ 6987 if (lp->usetags && lp->busyccbs >= lp->maxnxs) 6988 return NULL; 6989 6990 /* 6991 ** Allocate a new CCB if needed. 6992 */ 6993 if (list_empty(&lp->free_ccbq)) 6994 ncr_alloc_ccb(np, tn, ln); 6995 6996 /* 6997 ** Look for free CCB 6998 */ 6999 qp = ncr_list_pop(&lp->free_ccbq); 7000 if (qp) { 7001 cp = list_entry(qp, struct ccb, link_ccbq); 7002 if (cp->magic) { 7003 PRINT_ADDR(cmd, "ccb free list corrupted " 7004 "(@%p)\n", cp); 7005 cp = NULL; 7006 } else { 7007 list_add_tail(qp, &lp->wait_ccbq); 7008 ++lp->busyccbs; 7009 } 7010 } 7011 7012 /* 7013 ** If a CCB is available, 7014 ** Get a tag for this nexus if required. 7015 */ 7016 if (cp) { 7017 if (lp->usetags) 7018 tag = lp->cb_tags[lp->ia_tag]; 7019 } 7020 else if (lp->actccbs > 0) 7021 return NULL; 7022 } 7023 7024 /* 7025 ** if nothing available, take the default. 7026 */ 7027 if (!cp) 7028 cp = np->ccb; 7029 7030 /* 7031 ** Wait until available. 7032 */ 7033 #if 0 7034 while (cp->magic) { 7035 if (flags & SCSI_NOSLEEP) break; 7036 if (tsleep ((caddr_t)cp, PRIBIO|PCATCH, "ncr", 0)) 7037 break; 7038 } 7039 #endif 7040 7041 if (cp->magic) 7042 return NULL; 7043 7044 cp->magic = 1; 7045 7046 /* 7047 ** Move to next available tag if tag used. 7048 */ 7049 if (lp) { 7050 if (tag != NO_TAG) { 7051 ++lp->ia_tag; 7052 if (lp->ia_tag == MAX_TAGS) 7053 lp->ia_tag = 0; 7054 lp->tags_umap |= (((tagmap_t) 1) << tag); 7055 } 7056 } 7057 7058 /* 7059 ** Remember all informations needed to free this CCB. 7060 */ 7061 cp->tag = tag; 7062 cp->target = tn; 7063 cp->lun = ln; 7064 7065 if (DEBUG_FLAGS & DEBUG_TAGS) { 7066 PRINT_ADDR(cmd, "ccb @%p using tag %d.\n", cp, tag); 7067 } 7068 7069 return cp; 7070 } 7071 7072 /*========================================================== 7073 ** 7074 ** 7075 ** Release one control block 7076 ** 7077 ** 7078 **========================================================== 7079 */ 7080 7081 static void ncr_free_ccb (struct ncb *np, struct ccb *cp) 7082 { 7083 struct tcb *tp = &np->target[cp->target]; 7084 struct lcb *lp = tp->lp[cp->lun]; 7085 7086 if (DEBUG_FLAGS & DEBUG_TAGS) { 7087 PRINT_ADDR(cp->cmd, "ccb @%p freeing tag %d.\n", cp, cp->tag); 7088 } 7089 7090 /* 7091 ** If lun control block available, 7092 ** decrement active commands and increment credit, 7093 ** free the tag if any and remove the JUMP for reselect. 7094 */ 7095 if (lp) { 7096 if (cp->tag != NO_TAG) { 7097 lp->cb_tags[lp->if_tag++] = cp->tag; 7098 if (lp->if_tag == MAX_TAGS) 7099 lp->if_tag = 0; 7100 lp->tags_umap &= ~(((tagmap_t) 1) << cp->tag); 7101 lp->tags_smap &= lp->tags_umap; 7102 lp->jump_ccb[cp->tag] = 7103 cpu_to_scr(NCB_SCRIPTH_PHYS(np, bad_i_t_l_q)); 7104 } else { 7105 lp->jump_ccb[0] = 7106 cpu_to_scr(NCB_SCRIPTH_PHYS(np, bad_i_t_l)); 7107 } 7108 } 7109 7110 /* 7111 ** Make this CCB available. 7112 */ 7113 7114 if (lp) { 7115 if (cp != np->ccb) 7116 list_move(&cp->link_ccbq, &lp->free_ccbq); 7117 --lp->busyccbs; 7118 if (cp->queued) { 7119 --lp->queuedccbs; 7120 } 7121 } 7122 cp -> host_status = HS_IDLE; 7123 cp -> magic = 0; 7124 if (cp->queued) { 7125 --np->queuedccbs; 7126 cp->queued = 0; 7127 } 7128 7129 #if 0 7130 if (cp == np->ccb) 7131 wakeup ((caddr_t) cp); 7132 #endif 7133 } 7134 7135 7136 #define ncr_reg_bus_addr(r) (np->paddr + offsetof (struct ncr_reg, r)) 7137 7138 /*------------------------------------------------------------------------ 7139 ** Initialize the fixed part of a CCB structure. 7140 **------------------------------------------------------------------------ 7141 **------------------------------------------------------------------------ 7142 */ 7143 static void ncr_init_ccb(struct ncb *np, struct ccb *cp) 7144 { 7145 ncrcmd copy_4 = np->features & FE_PFEN ? SCR_COPY(4) : SCR_COPY_F(4); 7146 7147 /* 7148 ** Remember virtual and bus address of this ccb. 7149 */ 7150 cp->p_ccb = vtobus(cp); 7151 cp->phys.header.cp = cp; 7152 7153 /* 7154 ** This allows list_del to work for the default ccb. 7155 */ 7156 INIT_LIST_HEAD(&cp->link_ccbq); 7157 7158 /* 7159 ** Initialyze the start and restart launch script. 7160 ** 7161 ** COPY(4) @(...p_phys), @(dsa) 7162 ** JUMP @(sched_point) 7163 */ 7164 cp->start.setup_dsa[0] = cpu_to_scr(copy_4); 7165 cp->start.setup_dsa[1] = cpu_to_scr(CCB_PHYS(cp, start.p_phys)); 7166 cp->start.setup_dsa[2] = cpu_to_scr(ncr_reg_bus_addr(nc_dsa)); 7167 cp->start.schedule.l_cmd = cpu_to_scr(SCR_JUMP); 7168 cp->start.p_phys = cpu_to_scr(CCB_PHYS(cp, phys)); 7169 7170 memcpy(&cp->restart, &cp->start, sizeof(cp->restart)); 7171 7172 cp->start.schedule.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, idle)); 7173 cp->restart.schedule.l_paddr = cpu_to_scr(NCB_SCRIPTH_PHYS (np, abort)); 7174 } 7175 7176 7177 /*------------------------------------------------------------------------ 7178 ** Allocate a CCB and initialize its fixed part. 7179 **------------------------------------------------------------------------ 7180 **------------------------------------------------------------------------ 7181 */ 7182 static void ncr_alloc_ccb(struct ncb *np, u_char tn, u_char ln) 7183 { 7184 struct tcb *tp = &np->target[tn]; 7185 struct lcb *lp = tp->lp[ln]; 7186 struct ccb *cp = NULL; 7187 7188 /* 7189 ** Allocate memory for this CCB. 7190 */ 7191 cp = m_calloc_dma(sizeof(struct ccb), "CCB"); 7192 if (!cp) 7193 return; 7194 7195 /* 7196 ** Count it and initialyze it. 7197 */ 7198 lp->actccbs++; 7199 np->actccbs++; 7200 memset(cp, 0, sizeof (*cp)); 7201 ncr_init_ccb(np, cp); 7202 7203 /* 7204 ** Chain into wakeup list and free ccb queue and take it 7205 ** into account for tagged commands. 7206 */ 7207 cp->link_ccb = np->ccb->link_ccb; 7208 np->ccb->link_ccb = cp; 7209 7210 list_add(&cp->link_ccbq, &lp->free_ccbq); 7211 } 7212 7213 /*========================================================== 7214 ** 7215 ** 7216 ** Allocation of resources for Targets/Luns/Tags. 7217 ** 7218 ** 7219 **========================================================== 7220 */ 7221 7222 7223 /*------------------------------------------------------------------------ 7224 ** Target control block initialisation. 7225 **------------------------------------------------------------------------ 7226 ** This data structure is fully initialized after a SCSI command 7227 ** has been successfully completed for this target. 7228 ** It contains a SCRIPT that is called on target reselection. 7229 **------------------------------------------------------------------------ 7230 */ 7231 static void ncr_init_tcb (struct ncb *np, u_char tn) 7232 { 7233 struct tcb *tp = &np->target[tn]; 7234 ncrcmd copy_1 = np->features & FE_PFEN ? SCR_COPY(1) : SCR_COPY_F(1); 7235 int th = tn & 3; 7236 int i; 7237 7238 /* 7239 ** Jump to next tcb if SFBR does not match this target. 7240 ** JUMP IF (SFBR != #target#), @(next tcb) 7241 */ 7242 tp->jump_tcb.l_cmd = 7243 cpu_to_scr((SCR_JUMP ^ IFFALSE (DATA (0x80 + tn)))); 7244 tp->jump_tcb.l_paddr = np->jump_tcb[th].l_paddr; 7245 7246 /* 7247 ** Load the synchronous transfer register. 7248 ** COPY @(tp->sval), @(sxfer) 7249 */ 7250 tp->getscr[0] = cpu_to_scr(copy_1); 7251 tp->getscr[1] = cpu_to_scr(vtobus (&tp->sval)); 7252 #ifdef SCSI_NCR_BIG_ENDIAN 7253 tp->getscr[2] = cpu_to_scr(ncr_reg_bus_addr(nc_sxfer) ^ 3); 7254 #else 7255 tp->getscr[2] = cpu_to_scr(ncr_reg_bus_addr(nc_sxfer)); 7256 #endif 7257 7258 /* 7259 ** Load the timing register. 7260 ** COPY @(tp->wval), @(scntl3) 7261 */ 7262 tp->getscr[3] = cpu_to_scr(copy_1); 7263 tp->getscr[4] = cpu_to_scr(vtobus (&tp->wval)); 7264 #ifdef SCSI_NCR_BIG_ENDIAN 7265 tp->getscr[5] = cpu_to_scr(ncr_reg_bus_addr(nc_scntl3) ^ 3); 7266 #else 7267 tp->getscr[5] = cpu_to_scr(ncr_reg_bus_addr(nc_scntl3)); 7268 #endif 7269 7270 /* 7271 ** Get the IDENTIFY message and the lun. 7272 ** CALL @script(resel_lun) 7273 */ 7274 tp->call_lun.l_cmd = cpu_to_scr(SCR_CALL); 7275 tp->call_lun.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_lun)); 7276 7277 /* 7278 ** Look for the lun control block of this nexus. 7279 ** For i = 0 to 3 7280 ** JUMP ^ IFTRUE (MASK (i, 3)), @(next_lcb) 7281 */ 7282 for (i = 0 ; i < 4 ; i++) { 7283 tp->jump_lcb[i].l_cmd = 7284 cpu_to_scr((SCR_JUMP ^ IFTRUE (MASK (i, 3)))); 7285 tp->jump_lcb[i].l_paddr = 7286 cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_identify)); 7287 } 7288 7289 /* 7290 ** Link this target control block to the JUMP chain. 7291 */ 7292 np->jump_tcb[th].l_paddr = cpu_to_scr(vtobus (&tp->jump_tcb)); 7293 7294 /* 7295 ** These assert's should be moved at driver initialisations. 7296 */ 7297 #ifdef SCSI_NCR_BIG_ENDIAN 7298 BUG_ON(((offsetof(struct ncr_reg, nc_sxfer) ^ 7299 offsetof(struct tcb , sval )) &3) != 3); 7300 BUG_ON(((offsetof(struct ncr_reg, nc_scntl3) ^ 7301 offsetof(struct tcb , wval )) &3) != 3); 7302 #else 7303 BUG_ON(((offsetof(struct ncr_reg, nc_sxfer) ^ 7304 offsetof(struct tcb , sval )) &3) != 0); 7305 BUG_ON(((offsetof(struct ncr_reg, nc_scntl3) ^ 7306 offsetof(struct tcb , wval )) &3) != 0); 7307 #endif 7308 } 7309 7310 7311 /*------------------------------------------------------------------------ 7312 ** Lun control block allocation and initialization. 7313 **------------------------------------------------------------------------ 7314 ** This data structure is allocated and initialized after a SCSI 7315 ** command has been successfully completed for this target/lun. 7316 **------------------------------------------------------------------------ 7317 */ 7318 static struct lcb *ncr_alloc_lcb (struct ncb *np, u_char tn, u_char ln) 7319 { 7320 struct tcb *tp = &np->target[tn]; 7321 struct lcb *lp = tp->lp[ln]; 7322 ncrcmd copy_4 = np->features & FE_PFEN ? SCR_COPY(4) : SCR_COPY_F(4); 7323 int lh = ln & 3; 7324 7325 /* 7326 ** Already done, return. 7327 */ 7328 if (lp) 7329 return lp; 7330 7331 /* 7332 ** Allocate the lcb. 7333 */ 7334 lp = m_calloc_dma(sizeof(struct lcb), "LCB"); 7335 if (!lp) 7336 goto fail; 7337 memset(lp, 0, sizeof(*lp)); 7338 tp->lp[ln] = lp; 7339 7340 /* 7341 ** Initialize the target control block if not yet. 7342 */ 7343 if (!tp->jump_tcb.l_cmd) 7344 ncr_init_tcb(np, tn); 7345 7346 /* 7347 ** Initialize the CCB queue headers. 7348 */ 7349 INIT_LIST_HEAD(&lp->free_ccbq); 7350 INIT_LIST_HEAD(&lp->busy_ccbq); 7351 INIT_LIST_HEAD(&lp->wait_ccbq); 7352 INIT_LIST_HEAD(&lp->skip_ccbq); 7353 7354 /* 7355 ** Set max CCBs to 1 and use the default 1 entry 7356 ** jump table by default. 7357 */ 7358 lp->maxnxs = 1; 7359 lp->jump_ccb = &lp->jump_ccb_0; 7360 lp->p_jump_ccb = cpu_to_scr(vtobus(lp->jump_ccb)); 7361 7362 /* 7363 ** Initilialyze the reselect script: 7364 ** 7365 ** Jump to next lcb if SFBR does not match this lun. 7366 ** Load TEMP with the CCB direct jump table bus address. 7367 ** Get the SIMPLE TAG message and the tag. 7368 ** 7369 ** JUMP IF (SFBR != #lun#), @(next lcb) 7370 ** COPY @(lp->p_jump_ccb), @(temp) 7371 ** JUMP @script(resel_notag) 7372 */ 7373 lp->jump_lcb.l_cmd = 7374 cpu_to_scr((SCR_JUMP ^ IFFALSE (MASK (0x80+ln, 0xff)))); 7375 lp->jump_lcb.l_paddr = tp->jump_lcb[lh].l_paddr; 7376 7377 lp->load_jump_ccb[0] = cpu_to_scr(copy_4); 7378 lp->load_jump_ccb[1] = cpu_to_scr(vtobus (&lp->p_jump_ccb)); 7379 lp->load_jump_ccb[2] = cpu_to_scr(ncr_reg_bus_addr(nc_temp)); 7380 7381 lp->jump_tag.l_cmd = cpu_to_scr(SCR_JUMP); 7382 lp->jump_tag.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_notag)); 7383 7384 /* 7385 ** Link this lun control block to the JUMP chain. 7386 */ 7387 tp->jump_lcb[lh].l_paddr = cpu_to_scr(vtobus (&lp->jump_lcb)); 7388 7389 /* 7390 ** Initialize command queuing control. 7391 */ 7392 lp->busyccbs = 1; 7393 lp->queuedccbs = 1; 7394 lp->queuedepth = 1; 7395 fail: 7396 return lp; 7397 } 7398 7399 7400 /*------------------------------------------------------------------------ 7401 ** Lun control block setup on INQUIRY data received. 7402 **------------------------------------------------------------------------ 7403 ** We only support WIDE, SYNC for targets and CMDQ for logical units. 7404 ** This setup is done on each INQUIRY since we are expecting user 7405 ** will play with CHANGE DEFINITION commands. :-) 7406 **------------------------------------------------------------------------ 7407 */ 7408 static struct lcb *ncr_setup_lcb (struct ncb *np, struct scsi_device *sdev) 7409 { 7410 unsigned char tn = sdev->id, ln = sdev->lun; 7411 struct tcb *tp = &np->target[tn]; 7412 struct lcb *lp = tp->lp[ln]; 7413 7414 /* If no lcb, try to allocate it. */ 7415 if (!lp && !(lp = ncr_alloc_lcb(np, tn, ln))) 7416 goto fail; 7417 7418 /* 7419 ** If unit supports tagged commands, allocate the 7420 ** CCB JUMP table if not yet. 7421 */ 7422 if (sdev->tagged_supported && lp->jump_ccb == &lp->jump_ccb_0) { 7423 int i; 7424 lp->jump_ccb = m_calloc_dma(256, "JUMP_CCB"); 7425 if (!lp->jump_ccb) { 7426 lp->jump_ccb = &lp->jump_ccb_0; 7427 goto fail; 7428 } 7429 lp->p_jump_ccb = cpu_to_scr(vtobus(lp->jump_ccb)); 7430 for (i = 0 ; i < 64 ; i++) 7431 lp->jump_ccb[i] = 7432 cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_i_t_l_q)); 7433 for (i = 0 ; i < MAX_TAGS ; i++) 7434 lp->cb_tags[i] = i; 7435 lp->maxnxs = MAX_TAGS; 7436 lp->tags_stime = jiffies + 3*HZ; 7437 ncr_setup_tags (np, sdev); 7438 } 7439 7440 7441 fail: 7442 return lp; 7443 } 7444 7445 /*========================================================== 7446 ** 7447 ** 7448 ** Build Scatter Gather Block 7449 ** 7450 ** 7451 **========================================================== 7452 ** 7453 ** The transfer area may be scattered among 7454 ** several non adjacent physical pages. 7455 ** 7456 ** We may use MAX_SCATTER blocks. 7457 ** 7458 **---------------------------------------------------------- 7459 */ 7460 7461 /* 7462 ** We try to reduce the number of interrupts caused 7463 ** by unexpected phase changes due to disconnects. 7464 ** A typical harddisk may disconnect before ANY block. 7465 ** If we wanted to avoid unexpected phase changes at all 7466 ** we had to use a break point every 512 bytes. 7467 ** Of course the number of scatter/gather blocks is 7468 ** limited. 7469 ** Under Linux, the scatter/gatter blocks are provided by 7470 ** the generic driver. We just have to copy addresses and 7471 ** sizes to the data segment array. 7472 */ 7473 7474 static int ncr_scatter(struct ncb *np, struct ccb *cp, struct scsi_cmnd *cmd) 7475 { 7476 int segment = 0; 7477 int use_sg = scsi_sg_count(cmd); 7478 7479 cp->data_len = 0; 7480 7481 use_sg = map_scsi_sg_data(np, cmd); 7482 if (use_sg > 0) { 7483 struct scatterlist *sg; 7484 struct scr_tblmove *data; 7485 7486 if (use_sg > MAX_SCATTER) { 7487 unmap_scsi_data(np, cmd); 7488 return -1; 7489 } 7490 7491 data = &cp->phys.data[MAX_SCATTER - use_sg]; 7492 7493 scsi_for_each_sg(cmd, sg, use_sg, segment) { 7494 dma_addr_t baddr = sg_dma_address(sg); 7495 unsigned int len = sg_dma_len(sg); 7496 7497 ncr_build_sge(np, &data[segment], baddr, len); 7498 cp->data_len += len; 7499 } 7500 } else 7501 segment = -2; 7502 7503 return segment; 7504 } 7505 7506 /*========================================================== 7507 ** 7508 ** 7509 ** Test the bus snoop logic :-( 7510 ** 7511 ** Has to be called with interrupts disabled. 7512 ** 7513 ** 7514 **========================================================== 7515 */ 7516 7517 static int __init ncr_regtest (struct ncb* np) 7518 { 7519 register volatile u32 data; 7520 /* 7521 ** ncr registers may NOT be cached. 7522 ** write 0xffffffff to a read only register area, 7523 ** and try to read it back. 7524 */ 7525 data = 0xffffffff; 7526 OUTL_OFF(offsetof(struct ncr_reg, nc_dstat), data); 7527 data = INL_OFF(offsetof(struct ncr_reg, nc_dstat)); 7528 #if 1 7529 if (data == 0xffffffff) { 7530 #else 7531 if ((data & 0xe2f0fffd) != 0x02000080) { 7532 #endif 7533 printk ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n", 7534 (unsigned) data); 7535 return (0x10); 7536 } 7537 return (0); 7538 } 7539 7540 static int __init ncr_snooptest (struct ncb* np) 7541 { 7542 u32 ncr_rd, ncr_wr, ncr_bk, host_rd, host_wr, pc; 7543 int i, err=0; 7544 if (np->reg) { 7545 err |= ncr_regtest (np); 7546 if (err) 7547 return (err); 7548 } 7549 7550 /* init */ 7551 pc = NCB_SCRIPTH_PHYS (np, snooptest); 7552 host_wr = 1; 7553 ncr_wr = 2; 7554 /* 7555 ** Set memory and register. 7556 */ 7557 np->ncr_cache = cpu_to_scr(host_wr); 7558 OUTL (nc_temp, ncr_wr); 7559 /* 7560 ** Start script (exchange values) 7561 */ 7562 OUTL_DSP (pc); 7563 /* 7564 ** Wait 'til done (with timeout) 7565 */ 7566 for (i=0; i<NCR_SNOOP_TIMEOUT; i++) 7567 if (INB(nc_istat) & (INTF|SIP|DIP)) 7568 break; 7569 /* 7570 ** Save termination position. 7571 */ 7572 pc = INL (nc_dsp); 7573 /* 7574 ** Read memory and register. 7575 */ 7576 host_rd = scr_to_cpu(np->ncr_cache); 7577 ncr_rd = INL (nc_scratcha); 7578 ncr_bk = INL (nc_temp); 7579 /* 7580 ** Reset ncr chip 7581 */ 7582 ncr_chip_reset(np, 100); 7583 /* 7584 ** check for timeout 7585 */ 7586 if (i>=NCR_SNOOP_TIMEOUT) { 7587 printk ("CACHE TEST FAILED: timeout.\n"); 7588 return (0x20); 7589 } 7590 /* 7591 ** Check termination position. 7592 */ 7593 if (pc != NCB_SCRIPTH_PHYS (np, snoopend)+8) { 7594 printk ("CACHE TEST FAILED: script execution failed.\n"); 7595 printk ("start=%08lx, pc=%08lx, end=%08lx\n", 7596 (u_long) NCB_SCRIPTH_PHYS (np, snooptest), (u_long) pc, 7597 (u_long) NCB_SCRIPTH_PHYS (np, snoopend) +8); 7598 return (0x40); 7599 } 7600 /* 7601 ** Show results. 7602 */ 7603 if (host_wr != ncr_rd) { 7604 printk ("CACHE TEST FAILED: host wrote %d, ncr read %d.\n", 7605 (int) host_wr, (int) ncr_rd); 7606 err |= 1; 7607 } 7608 if (host_rd != ncr_wr) { 7609 printk ("CACHE TEST FAILED: ncr wrote %d, host read %d.\n", 7610 (int) ncr_wr, (int) host_rd); 7611 err |= 2; 7612 } 7613 if (ncr_bk != ncr_wr) { 7614 printk ("CACHE TEST FAILED: ncr wrote %d, read back %d.\n", 7615 (int) ncr_wr, (int) ncr_bk); 7616 err |= 4; 7617 } 7618 return (err); 7619 } 7620 7621 /*========================================================== 7622 ** 7623 ** Determine the ncr's clock frequency. 7624 ** This is essential for the negotiation 7625 ** of the synchronous transfer rate. 7626 ** 7627 **========================================================== 7628 ** 7629 ** Note: we have to return the correct value. 7630 ** THERE IS NO SAFE DEFAULT VALUE. 7631 ** 7632 ** Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock. 7633 ** 53C860 and 53C875 rev. 1 support fast20 transfers but 7634 ** do not have a clock doubler and so are provided with a 7635 ** 80 MHz clock. All other fast20 boards incorporate a doubler 7636 ** and so should be delivered with a 40 MHz clock. 7637 ** The future fast40 chips (895/895) use a 40 Mhz base clock 7638 ** and provide a clock quadrupler (160 Mhz). The code below 7639 ** tries to deal as cleverly as possible with all this stuff. 7640 ** 7641 **---------------------------------------------------------- 7642 */ 7643 7644 /* 7645 * Select NCR SCSI clock frequency 7646 */ 7647 static void ncr_selectclock(struct ncb *np, u_char scntl3) 7648 { 7649 if (np->multiplier < 2) { 7650 OUTB(nc_scntl3, scntl3); 7651 return; 7652 } 7653 7654 if (bootverbose >= 2) 7655 printk ("%s: enabling clock multiplier\n", ncr_name(np)); 7656 7657 OUTB(nc_stest1, DBLEN); /* Enable clock multiplier */ 7658 if (np->multiplier > 2) { /* Poll bit 5 of stest4 for quadrupler */ 7659 int i = 20; 7660 while (!(INB(nc_stest4) & LCKFRQ) && --i > 0) 7661 udelay(20); 7662 if (!i) 7663 printk("%s: the chip cannot lock the frequency\n", ncr_name(np)); 7664 } else /* Wait 20 micro-seconds for doubler */ 7665 udelay(20); 7666 OUTB(nc_stest3, HSC); /* Halt the scsi clock */ 7667 OUTB(nc_scntl3, scntl3); 7668 OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */ 7669 OUTB(nc_stest3, 0x00); /* Restart scsi clock */ 7670 } 7671 7672 7673 /* 7674 * calculate NCR SCSI clock frequency (in KHz) 7675 */ 7676 static unsigned __init ncrgetfreq (struct ncb *np, int gen) 7677 { 7678 unsigned ms = 0; 7679 char count = 0; 7680 7681 /* 7682 * Measure GEN timer delay in order 7683 * to calculate SCSI clock frequency 7684 * 7685 * This code will never execute too 7686 * many loop iterations (if DELAY is 7687 * reasonably correct). It could get 7688 * too low a delay (too high a freq.) 7689 * if the CPU is slow executing the 7690 * loop for some reason (an NMI, for 7691 * example). For this reason we will 7692 * if multiple measurements are to be 7693 * performed trust the higher delay 7694 * (lower frequency returned). 7695 */ 7696 OUTB (nc_stest1, 0); /* make sure clock doubler is OFF */ 7697 OUTW (nc_sien , 0); /* mask all scsi interrupts */ 7698 (void) INW (nc_sist); /* clear pending scsi interrupt */ 7699 OUTB (nc_dien , 0); /* mask all dma interrupts */ 7700 (void) INW (nc_sist); /* another one, just to be sure :) */ 7701 OUTB (nc_scntl3, 4); /* set pre-scaler to divide by 3 */ 7702 OUTB (nc_stime1, 0); /* disable general purpose timer */ 7703 OUTB (nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */ 7704 while (!(INW(nc_sist) & GEN) && ms++ < 100000) { 7705 for (count = 0; count < 10; count ++) 7706 udelay(100); /* count ms */ 7707 } 7708 OUTB (nc_stime1, 0); /* disable general purpose timer */ 7709 /* 7710 * set prescaler to divide by whatever 0 means 7711 * 0 ought to choose divide by 2, but appears 7712 * to set divide by 3.5 mode in my 53c810 ... 7713 */ 7714 OUTB (nc_scntl3, 0); 7715 7716 if (bootverbose >= 2) 7717 printk ("%s: Delay (GEN=%d): %u msec\n", ncr_name(np), gen, ms); 7718 /* 7719 * adjust for prescaler, and convert into KHz 7720 */ 7721 return ms ? ((1 << gen) * 4340) / ms : 0; 7722 } 7723 7724 /* 7725 * Get/probe NCR SCSI clock frequency 7726 */ 7727 static void __init ncr_getclock (struct ncb *np, int mult) 7728 { 7729 unsigned char scntl3 = INB(nc_scntl3); 7730 unsigned char stest1 = INB(nc_stest1); 7731 unsigned f1; 7732 7733 np->multiplier = 1; 7734 f1 = 40000; 7735 7736 /* 7737 ** True with 875 or 895 with clock multiplier selected 7738 */ 7739 if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) { 7740 if (bootverbose >= 2) 7741 printk ("%s: clock multiplier found\n", ncr_name(np)); 7742 np->multiplier = mult; 7743 } 7744 7745 /* 7746 ** If multiplier not found or scntl3 not 7,5,3, 7747 ** reset chip and get frequency from general purpose timer. 7748 ** Otherwise trust scntl3 BIOS setting. 7749 */ 7750 if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) { 7751 unsigned f2; 7752 7753 ncr_chip_reset(np, 5); 7754 7755 (void) ncrgetfreq (np, 11); /* throw away first result */ 7756 f1 = ncrgetfreq (np, 11); 7757 f2 = ncrgetfreq (np, 11); 7758 7759 if(bootverbose) 7760 printk ("%s: NCR clock is %uKHz, %uKHz\n", ncr_name(np), f1, f2); 7761 7762 if (f1 > f2) f1 = f2; /* trust lower result */ 7763 7764 if (f1 < 45000) f1 = 40000; 7765 else if (f1 < 55000) f1 = 50000; 7766 else f1 = 80000; 7767 7768 if (f1 < 80000 && mult > 1) { 7769 if (bootverbose >= 2) 7770 printk ("%s: clock multiplier assumed\n", ncr_name(np)); 7771 np->multiplier = mult; 7772 } 7773 } else { 7774 if ((scntl3 & 7) == 3) f1 = 40000; 7775 else if ((scntl3 & 7) == 5) f1 = 80000; 7776 else f1 = 160000; 7777 7778 f1 /= np->multiplier; 7779 } 7780 7781 /* 7782 ** Compute controller synchronous parameters. 7783 */ 7784 f1 *= np->multiplier; 7785 np->clock_khz = f1; 7786 } 7787 7788 /*===================== LINUX ENTRY POINTS SECTION ==========================*/ 7789 7790 static int ncr53c8xx_slave_alloc(struct scsi_device *device) 7791 { 7792 struct Scsi_Host *host = device->host; 7793 struct ncb *np = ((struct host_data *) host->hostdata)->ncb; 7794 struct tcb *tp = &np->target[device->id]; 7795 tp->starget = device->sdev_target; 7796 7797 return 0; 7798 } 7799 7800 static int ncr53c8xx_slave_configure(struct scsi_device *device) 7801 { 7802 struct Scsi_Host *host = device->host; 7803 struct ncb *np = ((struct host_data *) host->hostdata)->ncb; 7804 struct tcb *tp = &np->target[device->id]; 7805 struct lcb *lp = tp->lp[device->lun]; 7806 int numtags, depth_to_use; 7807 7808 ncr_setup_lcb(np, device); 7809 7810 /* 7811 ** Select queue depth from driver setup. 7812 ** Donnot use more than configured by user. 7813 ** Use at least 2. 7814 ** Donnot use more than our maximum. 7815 */ 7816 numtags = device_queue_depth(np->unit, device->id, device->lun); 7817 if (numtags > tp->usrtags) 7818 numtags = tp->usrtags; 7819 if (!device->tagged_supported) 7820 numtags = 1; 7821 depth_to_use = numtags; 7822 if (depth_to_use < 2) 7823 depth_to_use = 2; 7824 if (depth_to_use > MAX_TAGS) 7825 depth_to_use = MAX_TAGS; 7826 7827 scsi_change_queue_depth(device, depth_to_use); 7828 7829 /* 7830 ** Since the queue depth is not tunable under Linux, 7831 ** we need to know this value in order not to 7832 ** announce stupid things to user. 7833 ** 7834 ** XXX(hch): As of Linux 2.6 it certainly _is_ tunable.. 7835 ** In fact we just tuned it, or did I miss 7836 ** something important? :) 7837 */ 7838 if (lp) { 7839 lp->numtags = lp->maxtags = numtags; 7840 lp->scdev_depth = depth_to_use; 7841 } 7842 ncr_setup_tags (np, device); 7843 7844 #ifdef DEBUG_NCR53C8XX 7845 printk("ncr53c8xx_select_queue_depth: host=%d, id=%d, lun=%d, depth=%d\n", 7846 np->unit, device->id, device->lun, depth_to_use); 7847 #endif 7848 7849 if (spi_support_sync(device->sdev_target) && 7850 !spi_initial_dv(device->sdev_target)) 7851 spi_dv_device(device); 7852 return 0; 7853 } 7854 7855 static int ncr53c8xx_queue_command_lck (struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *)) 7856 { 7857 struct ncb *np = ((struct host_data *) cmd->device->host->hostdata)->ncb; 7858 unsigned long flags; 7859 int sts; 7860 7861 #ifdef DEBUG_NCR53C8XX 7862 printk("ncr53c8xx_queue_command\n"); 7863 #endif 7864 7865 cmd->scsi_done = done; 7866 cmd->host_scribble = NULL; 7867 cmd->__data_mapped = 0; 7868 cmd->__data_mapping = 0; 7869 7870 spin_lock_irqsave(&np->smp_lock, flags); 7871 7872 if ((sts = ncr_queue_command(np, cmd)) != DID_OK) { 7873 set_host_byte(cmd, sts); 7874 #ifdef DEBUG_NCR53C8XX 7875 printk("ncr53c8xx : command not queued - result=%d\n", sts); 7876 #endif 7877 } 7878 #ifdef DEBUG_NCR53C8XX 7879 else 7880 printk("ncr53c8xx : command successfully queued\n"); 7881 #endif 7882 7883 spin_unlock_irqrestore(&np->smp_lock, flags); 7884 7885 if (sts != DID_OK) { 7886 unmap_scsi_data(np, cmd); 7887 done(cmd); 7888 sts = 0; 7889 } 7890 7891 return sts; 7892 } 7893 7894 static DEF_SCSI_QCMD(ncr53c8xx_queue_command) 7895 7896 irqreturn_t ncr53c8xx_intr(int irq, void *dev_id) 7897 { 7898 unsigned long flags; 7899 struct Scsi_Host *shost = (struct Scsi_Host *)dev_id; 7900 struct host_data *host_data = (struct host_data *)shost->hostdata; 7901 struct ncb *np = host_data->ncb; 7902 struct scsi_cmnd *done_list; 7903 7904 #ifdef DEBUG_NCR53C8XX 7905 printk("ncr53c8xx : interrupt received\n"); 7906 #endif 7907 7908 if (DEBUG_FLAGS & DEBUG_TINY) printk ("["); 7909 7910 spin_lock_irqsave(&np->smp_lock, flags); 7911 ncr_exception(np); 7912 done_list = np->done_list; 7913 np->done_list = NULL; 7914 spin_unlock_irqrestore(&np->smp_lock, flags); 7915 7916 if (DEBUG_FLAGS & DEBUG_TINY) printk ("]\n"); 7917 7918 if (done_list) 7919 ncr_flush_done_cmds(done_list); 7920 return IRQ_HANDLED; 7921 } 7922 7923 static void ncr53c8xx_timeout(struct timer_list *t) 7924 { 7925 struct ncb *np = from_timer(np, t, timer); 7926 unsigned long flags; 7927 struct scsi_cmnd *done_list; 7928 7929 spin_lock_irqsave(&np->smp_lock, flags); 7930 ncr_timeout(np); 7931 done_list = np->done_list; 7932 np->done_list = NULL; 7933 spin_unlock_irqrestore(&np->smp_lock, flags); 7934 7935 if (done_list) 7936 ncr_flush_done_cmds(done_list); 7937 } 7938 7939 static int ncr53c8xx_bus_reset(struct scsi_cmnd *cmd) 7940 { 7941 struct ncb *np = ((struct host_data *) cmd->device->host->hostdata)->ncb; 7942 int sts; 7943 unsigned long flags; 7944 struct scsi_cmnd *done_list; 7945 7946 /* 7947 * If the mid-level driver told us reset is synchronous, it seems 7948 * that we must call the done() callback for the involved command, 7949 * even if this command was not queued to the low-level driver, 7950 * before returning SUCCESS. 7951 */ 7952 7953 spin_lock_irqsave(&np->smp_lock, flags); 7954 sts = ncr_reset_bus(np); 7955 7956 done_list = np->done_list; 7957 np->done_list = NULL; 7958 spin_unlock_irqrestore(&np->smp_lock, flags); 7959 7960 ncr_flush_done_cmds(done_list); 7961 7962 return sts; 7963 } 7964 7965 7966 /* 7967 ** Scsi command waiting list management. 7968 ** 7969 ** It may happen that we cannot insert a scsi command into the start queue, 7970 ** in the following circumstances. 7971 ** Too few preallocated ccb(s), 7972 ** maxtags < cmd_per_lun of the Linux host control block, 7973 ** etc... 7974 ** Such scsi commands are inserted into a waiting list. 7975 ** When a scsi command complete, we try to requeue the commands of the 7976 ** waiting list. 7977 */ 7978 7979 #define next_wcmd host_scribble 7980 7981 static void insert_into_waiting_list(struct ncb *np, struct scsi_cmnd *cmd) 7982 { 7983 struct scsi_cmnd *wcmd; 7984 7985 #ifdef DEBUG_WAITING_LIST 7986 printk("%s: cmd %lx inserted into waiting list\n", ncr_name(np), (u_long) cmd); 7987 #endif 7988 cmd->next_wcmd = NULL; 7989 if (!(wcmd = np->waiting_list)) np->waiting_list = cmd; 7990 else { 7991 while (wcmd->next_wcmd) 7992 wcmd = (struct scsi_cmnd *) wcmd->next_wcmd; 7993 wcmd->next_wcmd = (char *) cmd; 7994 } 7995 } 7996 7997 static void process_waiting_list(struct ncb *np, int sts) 7998 { 7999 struct scsi_cmnd *waiting_list, *wcmd; 8000 8001 waiting_list = np->waiting_list; 8002 np->waiting_list = NULL; 8003 8004 #ifdef DEBUG_WAITING_LIST 8005 if (waiting_list) printk("%s: waiting_list=%lx processing sts=%d\n", ncr_name(np), (u_long) waiting_list, sts); 8006 #endif 8007 while ((wcmd = waiting_list) != NULL) { 8008 waiting_list = (struct scsi_cmnd *) wcmd->next_wcmd; 8009 wcmd->next_wcmd = NULL; 8010 if (sts == DID_OK) { 8011 #ifdef DEBUG_WAITING_LIST 8012 printk("%s: cmd %lx trying to requeue\n", ncr_name(np), (u_long) wcmd); 8013 #endif 8014 sts = ncr_queue_command(np, wcmd); 8015 } 8016 if (sts != DID_OK) { 8017 #ifdef DEBUG_WAITING_LIST 8018 printk("%s: cmd %lx done forced sts=%d\n", ncr_name(np), (u_long) wcmd, sts); 8019 #endif 8020 set_host_byte(wcmd, sts); 8021 ncr_queue_done_cmd(np, wcmd); 8022 } 8023 } 8024 } 8025 8026 #undef next_wcmd 8027 8028 static ssize_t show_ncr53c8xx_revision(struct device *dev, 8029 struct device_attribute *attr, char *buf) 8030 { 8031 struct Scsi_Host *host = class_to_shost(dev); 8032 struct host_data *host_data = (struct host_data *)host->hostdata; 8033 8034 return snprintf(buf, 20, "0x%x\n", host_data->ncb->revision_id); 8035 } 8036 8037 static struct device_attribute ncr53c8xx_revision_attr = { 8038 .attr = { .name = "revision", .mode = S_IRUGO, }, 8039 .show = show_ncr53c8xx_revision, 8040 }; 8041 8042 static struct device_attribute *ncr53c8xx_host_attrs[] = { 8043 &ncr53c8xx_revision_attr, 8044 NULL 8045 }; 8046 8047 /*========================================================== 8048 ** 8049 ** Boot command line. 8050 ** 8051 **========================================================== 8052 */ 8053 #ifdef MODULE 8054 char *ncr53c8xx; /* command line passed by insmod */ 8055 module_param(ncr53c8xx, charp, 0); 8056 #endif 8057 8058 #ifndef MODULE 8059 static int __init ncr53c8xx_setup(char *str) 8060 { 8061 return sym53c8xx__setup(str); 8062 } 8063 8064 __setup("ncr53c8xx=", ncr53c8xx_setup); 8065 #endif 8066 8067 8068 /* 8069 * Host attach and initialisations. 8070 * 8071 * Allocate host data and ncb structure. 8072 * Request IO region and remap MMIO region. 8073 * Do chip initialization. 8074 * If all is OK, install interrupt handling and 8075 * start the timer daemon. 8076 */ 8077 struct Scsi_Host * __init ncr_attach(struct scsi_host_template *tpnt, 8078 int unit, struct ncr_device *device) 8079 { 8080 struct host_data *host_data; 8081 struct ncb *np = NULL; 8082 struct Scsi_Host *instance = NULL; 8083 u_long flags = 0; 8084 int i; 8085 8086 if (!tpnt->name) 8087 tpnt->name = SCSI_NCR_DRIVER_NAME; 8088 if (!tpnt->shost_attrs) 8089 tpnt->shost_attrs = ncr53c8xx_host_attrs; 8090 8091 tpnt->queuecommand = ncr53c8xx_queue_command; 8092 tpnt->slave_configure = ncr53c8xx_slave_configure; 8093 tpnt->slave_alloc = ncr53c8xx_slave_alloc; 8094 tpnt->eh_bus_reset_handler = ncr53c8xx_bus_reset; 8095 tpnt->can_queue = SCSI_NCR_CAN_QUEUE; 8096 tpnt->this_id = 7; 8097 tpnt->sg_tablesize = SCSI_NCR_SG_TABLESIZE; 8098 tpnt->cmd_per_lun = SCSI_NCR_CMD_PER_LUN; 8099 8100 if (device->differential) 8101 driver_setup.diff_support = device->differential; 8102 8103 printk(KERN_INFO "ncr53c720-%d: rev 0x%x irq %d\n", 8104 unit, device->chip.revision_id, device->slot.irq); 8105 8106 instance = scsi_host_alloc(tpnt, sizeof(*host_data)); 8107 if (!instance) 8108 goto attach_error; 8109 host_data = (struct host_data *) instance->hostdata; 8110 8111 np = __m_calloc_dma(device->dev, sizeof(struct ncb), "NCB"); 8112 if (!np) 8113 goto attach_error; 8114 spin_lock_init(&np->smp_lock); 8115 np->dev = device->dev; 8116 np->p_ncb = vtobus(np); 8117 host_data->ncb = np; 8118 8119 np->ccb = m_calloc_dma(sizeof(struct ccb), "CCB"); 8120 if (!np->ccb) 8121 goto attach_error; 8122 8123 /* Store input information in the host data structure. */ 8124 np->unit = unit; 8125 np->verbose = driver_setup.verbose; 8126 sprintf(np->inst_name, "ncr53c720-%d", np->unit); 8127 np->revision_id = device->chip.revision_id; 8128 np->features = device->chip.features; 8129 np->clock_divn = device->chip.nr_divisor; 8130 np->maxoffs = device->chip.offset_max; 8131 np->maxburst = device->chip.burst_max; 8132 np->myaddr = device->host_id; 8133 8134 /* Allocate SCRIPTS areas. */ 8135 np->script0 = m_calloc_dma(sizeof(struct script), "SCRIPT"); 8136 if (!np->script0) 8137 goto attach_error; 8138 np->scripth0 = m_calloc_dma(sizeof(struct scripth), "SCRIPTH"); 8139 if (!np->scripth0) 8140 goto attach_error; 8141 8142 timer_setup(&np->timer, ncr53c8xx_timeout, 0); 8143 8144 /* Try to map the controller chip to virtual and physical memory. */ 8145 8146 np->paddr = device->slot.base; 8147 np->paddr2 = (np->features & FE_RAM) ? device->slot.base_2 : 0; 8148 8149 if (device->slot.base_v) 8150 np->vaddr = device->slot.base_v; 8151 else 8152 np->vaddr = ioremap(device->slot.base_c, 128); 8153 8154 if (!np->vaddr) { 8155 printk(KERN_ERR 8156 "%s: can't map memory mapped IO region\n",ncr_name(np)); 8157 goto attach_error; 8158 } else { 8159 if (bootverbose > 1) 8160 printk(KERN_INFO 8161 "%s: using memory mapped IO at virtual address 0x%lx\n", ncr_name(np), (u_long) np->vaddr); 8162 } 8163 8164 /* Make the controller's registers available. Now the INB INW INL 8165 * OUTB OUTW OUTL macros can be used safely. 8166 */ 8167 8168 np->reg = (struct ncr_reg __iomem *)np->vaddr; 8169 8170 /* Do chip dependent initialization. */ 8171 ncr_prepare_setting(np); 8172 8173 if (np->paddr2 && sizeof(struct script) > 4096) { 8174 np->paddr2 = 0; 8175 printk(KERN_WARNING "%s: script too large, NOT using on chip RAM.\n", 8176 ncr_name(np)); 8177 } 8178 8179 instance->max_channel = 0; 8180 instance->this_id = np->myaddr; 8181 instance->max_id = np->maxwide ? 16 : 8; 8182 instance->max_lun = SCSI_NCR_MAX_LUN; 8183 instance->base = (unsigned long) np->reg; 8184 instance->irq = device->slot.irq; 8185 instance->unique_id = device->slot.base; 8186 instance->dma_channel = 0; 8187 instance->cmd_per_lun = MAX_TAGS; 8188 instance->can_queue = (MAX_START-4); 8189 /* This can happen if you forget to call ncr53c8xx_init from 8190 * your module_init */ 8191 BUG_ON(!ncr53c8xx_transport_template); 8192 instance->transportt = ncr53c8xx_transport_template; 8193 8194 /* Patch script to physical addresses */ 8195 ncr_script_fill(&script0, &scripth0); 8196 8197 np->scripth = np->scripth0; 8198 np->p_scripth = vtobus(np->scripth); 8199 np->p_script = (np->paddr2) ? np->paddr2 : vtobus(np->script0); 8200 8201 ncr_script_copy_and_bind(np, (ncrcmd *) &script0, 8202 (ncrcmd *) np->script0, sizeof(struct script)); 8203 ncr_script_copy_and_bind(np, (ncrcmd *) &scripth0, 8204 (ncrcmd *) np->scripth0, sizeof(struct scripth)); 8205 np->ccb->p_ccb = vtobus (np->ccb); 8206 8207 /* Patch the script for LED support. */ 8208 8209 if (np->features & FE_LED0) { 8210 np->script0->idle[0] = 8211 cpu_to_scr(SCR_REG_REG(gpreg, SCR_OR, 0x01)); 8212 np->script0->reselected[0] = 8213 cpu_to_scr(SCR_REG_REG(gpreg, SCR_AND, 0xfe)); 8214 np->script0->start[0] = 8215 cpu_to_scr(SCR_REG_REG(gpreg, SCR_AND, 0xfe)); 8216 } 8217 8218 /* 8219 * Look for the target control block of this nexus. 8220 * For i = 0 to 3 8221 * JUMP ^ IFTRUE (MASK (i, 3)), @(next_lcb) 8222 */ 8223 for (i = 0 ; i < 4 ; i++) { 8224 np->jump_tcb[i].l_cmd = 8225 cpu_to_scr((SCR_JUMP ^ IFTRUE (MASK (i, 3)))); 8226 np->jump_tcb[i].l_paddr = 8227 cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_target)); 8228 } 8229 8230 ncr_chip_reset(np, 100); 8231 8232 /* Now check the cache handling of the chipset. */ 8233 8234 if (ncr_snooptest(np)) { 8235 printk(KERN_ERR "CACHE INCORRECTLY CONFIGURED.\n"); 8236 goto attach_error; 8237 } 8238 8239 /* Install the interrupt handler. */ 8240 np->irq = device->slot.irq; 8241 8242 /* Initialize the fixed part of the default ccb. */ 8243 ncr_init_ccb(np, np->ccb); 8244 8245 /* 8246 * After SCSI devices have been opened, we cannot reset the bus 8247 * safely, so we do it here. Interrupt handler does the real work. 8248 * Process the reset exception if interrupts are not enabled yet. 8249 * Then enable disconnects. 8250 */ 8251 spin_lock_irqsave(&np->smp_lock, flags); 8252 if (ncr_reset_scsi_bus(np, 0, driver_setup.settle_delay) != 0) { 8253 printk(KERN_ERR "%s: FATAL ERROR: CHECK SCSI BUS - CABLES, TERMINATION, DEVICE POWER etc.!\n", ncr_name(np)); 8254 8255 spin_unlock_irqrestore(&np->smp_lock, flags); 8256 goto attach_error; 8257 } 8258 ncr_exception(np); 8259 8260 np->disc = 1; 8261 8262 /* 8263 * The middle-level SCSI driver does not wait for devices to settle. 8264 * Wait synchronously if more than 2 seconds. 8265 */ 8266 if (driver_setup.settle_delay > 2) { 8267 printk(KERN_INFO "%s: waiting %d seconds for scsi devices to settle...\n", 8268 ncr_name(np), driver_setup.settle_delay); 8269 mdelay(1000 * driver_setup.settle_delay); 8270 } 8271 8272 /* start the timeout daemon */ 8273 np->lasttime=0; 8274 ncr_timeout (np); 8275 8276 /* use SIMPLE TAG messages by default */ 8277 #ifdef SCSI_NCR_ALWAYS_SIMPLE_TAG 8278 np->order = SIMPLE_QUEUE_TAG; 8279 #endif 8280 8281 spin_unlock_irqrestore(&np->smp_lock, flags); 8282 8283 return instance; 8284 8285 attach_error: 8286 if (!instance) 8287 return NULL; 8288 printk(KERN_INFO "%s: detaching...\n", ncr_name(np)); 8289 if (!np) 8290 goto unregister; 8291 if (np->scripth0) 8292 m_free_dma(np->scripth0, sizeof(struct scripth), "SCRIPTH"); 8293 if (np->script0) 8294 m_free_dma(np->script0, sizeof(struct script), "SCRIPT"); 8295 if (np->ccb) 8296 m_free_dma(np->ccb, sizeof(struct ccb), "CCB"); 8297 m_free_dma(np, sizeof(struct ncb), "NCB"); 8298 host_data->ncb = NULL; 8299 8300 unregister: 8301 scsi_host_put(instance); 8302 8303 return NULL; 8304 } 8305 8306 8307 void ncr53c8xx_release(struct Scsi_Host *host) 8308 { 8309 struct host_data *host_data = shost_priv(host); 8310 #ifdef DEBUG_NCR53C8XX 8311 printk("ncr53c8xx: release\n"); 8312 #endif 8313 if (host_data->ncb) 8314 ncr_detach(host_data->ncb); 8315 scsi_host_put(host); 8316 } 8317 8318 static void ncr53c8xx_set_period(struct scsi_target *starget, int period) 8319 { 8320 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 8321 struct ncb *np = ((struct host_data *)shost->hostdata)->ncb; 8322 struct tcb *tp = &np->target[starget->id]; 8323 8324 if (period > np->maxsync) 8325 period = np->maxsync; 8326 else if (period < np->minsync) 8327 period = np->minsync; 8328 8329 tp->usrsync = period; 8330 8331 ncr_negotiate(np, tp); 8332 } 8333 8334 static void ncr53c8xx_set_offset(struct scsi_target *starget, int offset) 8335 { 8336 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 8337 struct ncb *np = ((struct host_data *)shost->hostdata)->ncb; 8338 struct tcb *tp = &np->target[starget->id]; 8339 8340 if (offset > np->maxoffs) 8341 offset = np->maxoffs; 8342 else if (offset < 0) 8343 offset = 0; 8344 8345 tp->maxoffs = offset; 8346 8347 ncr_negotiate(np, tp); 8348 } 8349 8350 static void ncr53c8xx_set_width(struct scsi_target *starget, int width) 8351 { 8352 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 8353 struct ncb *np = ((struct host_data *)shost->hostdata)->ncb; 8354 struct tcb *tp = &np->target[starget->id]; 8355 8356 if (width > np->maxwide) 8357 width = np->maxwide; 8358 else if (width < 0) 8359 width = 0; 8360 8361 tp->usrwide = width; 8362 8363 ncr_negotiate(np, tp); 8364 } 8365 8366 static void ncr53c8xx_get_signalling(struct Scsi_Host *shost) 8367 { 8368 struct ncb *np = ((struct host_data *)shost->hostdata)->ncb; 8369 enum spi_signal_type type; 8370 8371 switch (np->scsi_mode) { 8372 case SMODE_SE: 8373 type = SPI_SIGNAL_SE; 8374 break; 8375 case SMODE_HVD: 8376 type = SPI_SIGNAL_HVD; 8377 break; 8378 default: 8379 type = SPI_SIGNAL_UNKNOWN; 8380 break; 8381 } 8382 spi_signalling(shost) = type; 8383 } 8384 8385 static struct spi_function_template ncr53c8xx_transport_functions = { 8386 .set_period = ncr53c8xx_set_period, 8387 .show_period = 1, 8388 .set_offset = ncr53c8xx_set_offset, 8389 .show_offset = 1, 8390 .set_width = ncr53c8xx_set_width, 8391 .show_width = 1, 8392 .get_signalling = ncr53c8xx_get_signalling, 8393 }; 8394 8395 int __init ncr53c8xx_init(void) 8396 { 8397 ncr53c8xx_transport_template = spi_attach_transport(&ncr53c8xx_transport_functions); 8398 if (!ncr53c8xx_transport_template) 8399 return -ENODEV; 8400 return 0; 8401 } 8402 8403 void ncr53c8xx_exit(void) 8404 { 8405 spi_release_transport(ncr53c8xx_transport_template); 8406 } 8407