xref: /openbmc/linux/drivers/scsi/ncr53c8xx.c (revision 64c70b1c)
1 /******************************************************************************
2 **  Device driver for the PCI-SCSI NCR538XX controller family.
3 **
4 **  Copyright (C) 1994  Wolfgang Stanglmeier
5 **
6 **  This program is free software; you can redistribute it and/or modify
7 **  it under the terms of the GNU General Public License as published by
8 **  the Free Software Foundation; either version 2 of the License, or
9 **  (at your option) any later version.
10 **
11 **  This program is distributed in the hope that it will be useful,
12 **  but WITHOUT ANY WARRANTY; without even the implied warranty of
13 **  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 **  GNU General Public License for more details.
15 **
16 **  You should have received a copy of the GNU General Public License
17 **  along with this program; if not, write to the Free Software
18 **  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 **
20 **-----------------------------------------------------------------------------
21 **
22 **  This driver has been ported to Linux from the FreeBSD NCR53C8XX driver
23 **  and is currently maintained by
24 **
25 **          Gerard Roudier              <groudier@free.fr>
26 **
27 **  Being given that this driver originates from the FreeBSD version, and
28 **  in order to keep synergy on both, any suggested enhancements and corrections
29 **  received on Linux are automatically a potential candidate for the FreeBSD
30 **  version.
31 **
32 **  The original driver has been written for 386bsd and FreeBSD by
33 **          Wolfgang Stanglmeier        <wolf@cologne.de>
34 **          Stefan Esser                <se@mi.Uni-Koeln.de>
35 **
36 **  And has been ported to NetBSD by
37 **          Charles M. Hannum           <mycroft@gnu.ai.mit.edu>
38 **
39 **-----------------------------------------------------------------------------
40 **
41 **                     Brief history
42 **
43 **  December 10 1995 by Gerard Roudier:
44 **     Initial port to Linux.
45 **
46 **  June 23 1996 by Gerard Roudier:
47 **     Support for 64 bits architectures (Alpha).
48 **
49 **  November 30 1996 by Gerard Roudier:
50 **     Support for Fast-20 scsi.
51 **     Support for large DMA fifo and 128 dwords bursting.
52 **
53 **  February 27 1997 by Gerard Roudier:
54 **     Support for Fast-40 scsi.
55 **     Support for on-Board RAM.
56 **
57 **  May 3 1997 by Gerard Roudier:
58 **     Full support for scsi scripts instructions pre-fetching.
59 **
60 **  May 19 1997 by Richard Waltham <dormouse@farsrobt.demon.co.uk>:
61 **     Support for NvRAM detection and reading.
62 **
63 **  August 18 1997 by Cort <cort@cs.nmt.edu>:
64 **     Support for Power/PC (Big Endian).
65 **
66 **  June 20 1998 by Gerard Roudier
67 **     Support for up to 64 tags per lun.
68 **     O(1) everywhere (C and SCRIPTS) for normal cases.
69 **     Low PCI traffic for command handling when on-chip RAM is present.
70 **     Aggressive SCSI SCRIPTS optimizations.
71 **
72 **  2005 by Matthew Wilcox and James Bottomley
73 **     PCI-ectomy.  This driver now supports only the 720 chip (see the
74 **     NCR_Q720 and zalon drivers for the bus probe logic).
75 **
76 *******************************************************************************
77 */
78 
79 /*
80 **	Supported SCSI-II features:
81 **	    Synchronous negotiation
82 **	    Wide negotiation        (depends on the NCR Chip)
83 **	    Enable disconnection
84 **	    Tagged command queuing
85 **	    Parity checking
86 **	    Etc...
87 **
88 **	Supported NCR/SYMBIOS chips:
89 **		53C720		(Wide,   Fast SCSI-2, intfly problems)
90 */
91 
92 /* Name and version of the driver */
93 #define SCSI_NCR_DRIVER_NAME	"ncr53c8xx-3.4.3g"
94 
95 #define SCSI_NCR_DEBUG_FLAGS	(0)
96 
97 #include <linux/blkdev.h>
98 #include <linux/delay.h>
99 #include <linux/dma-mapping.h>
100 #include <linux/errno.h>
101 #include <linux/init.h>
102 #include <linux/interrupt.h>
103 #include <linux/ioport.h>
104 #include <linux/mm.h>
105 #include <linux/module.h>
106 #include <linux/sched.h>
107 #include <linux/signal.h>
108 #include <linux/spinlock.h>
109 #include <linux/stat.h>
110 #include <linux/string.h>
111 #include <linux/time.h>
112 #include <linux/timer.h>
113 #include <linux/types.h>
114 
115 #include <asm/dma.h>
116 #include <asm/io.h>
117 #include <asm/system.h>
118 
119 #include <scsi/scsi.h>
120 #include <scsi/scsi_cmnd.h>
121 #include <scsi/scsi_dbg.h>
122 #include <scsi/scsi_device.h>
123 #include <scsi/scsi_tcq.h>
124 #include <scsi/scsi_transport.h>
125 #include <scsi/scsi_transport_spi.h>
126 
127 #include "ncr53c8xx.h"
128 
129 #define NAME53C8XX		"ncr53c8xx"
130 
131 /*==========================================================
132 **
133 **	Debugging tags
134 **
135 **==========================================================
136 */
137 
138 #define DEBUG_ALLOC    (0x0001)
139 #define DEBUG_PHASE    (0x0002)
140 #define DEBUG_QUEUE    (0x0008)
141 #define DEBUG_RESULT   (0x0010)
142 #define DEBUG_POINTER  (0x0020)
143 #define DEBUG_SCRIPT   (0x0040)
144 #define DEBUG_TINY     (0x0080)
145 #define DEBUG_TIMING   (0x0100)
146 #define DEBUG_NEGO     (0x0200)
147 #define DEBUG_TAGS     (0x0400)
148 #define DEBUG_SCATTER  (0x0800)
149 #define DEBUG_IC        (0x1000)
150 
151 /*
152 **    Enable/Disable debug messages.
153 **    Can be changed at runtime too.
154 */
155 
156 #ifdef SCSI_NCR_DEBUG_INFO_SUPPORT
157 static int ncr_debug = SCSI_NCR_DEBUG_FLAGS;
158 	#define DEBUG_FLAGS ncr_debug
159 #else
160 	#define DEBUG_FLAGS	SCSI_NCR_DEBUG_FLAGS
161 #endif
162 
163 static inline struct list_head *ncr_list_pop(struct list_head *head)
164 {
165 	if (!list_empty(head)) {
166 		struct list_head *elem = head->next;
167 
168 		list_del(elem);
169 		return elem;
170 	}
171 
172 	return NULL;
173 }
174 
175 /*==========================================================
176 **
177 **	Simple power of two buddy-like allocator.
178 **
179 **	This simple code is not intended to be fast, but to
180 **	provide power of 2 aligned memory allocations.
181 **	Since the SCRIPTS processor only supplies 8 bit
182 **	arithmetic, this allocator allows simple and fast
183 **	address calculations  from the SCRIPTS code.
184 **	In addition, cache line alignment is guaranteed for
185 **	power of 2 cache line size.
186 **	Enhanced in linux-2.3.44 to provide a memory pool
187 **	per pcidev to support dynamic dma mapping. (I would
188 **	have preferred a real bus abstraction, btw).
189 **
190 **==========================================================
191 */
192 
193 #define MEMO_SHIFT	4	/* 16 bytes minimum memory chunk */
194 #if PAGE_SIZE >= 8192
195 #define MEMO_PAGE_ORDER	0	/* 1 PAGE  maximum */
196 #else
197 #define MEMO_PAGE_ORDER	1	/* 2 PAGES maximum */
198 #endif
199 #define MEMO_FREE_UNUSED	/* Free unused pages immediately */
200 #define MEMO_WARN	1
201 #define MEMO_GFP_FLAGS	GFP_ATOMIC
202 #define MEMO_CLUSTER_SHIFT	(PAGE_SHIFT+MEMO_PAGE_ORDER)
203 #define MEMO_CLUSTER_SIZE	(1UL << MEMO_CLUSTER_SHIFT)
204 #define MEMO_CLUSTER_MASK	(MEMO_CLUSTER_SIZE-1)
205 
206 typedef u_long m_addr_t;	/* Enough bits to bit-hack addresses */
207 typedef struct device *m_bush_t;	/* Something that addresses DMAable */
208 
209 typedef struct m_link {		/* Link between free memory chunks */
210 	struct m_link *next;
211 } m_link_s;
212 
213 typedef struct m_vtob {		/* Virtual to Bus address translation */
214 	struct m_vtob *next;
215 	m_addr_t vaddr;
216 	m_addr_t baddr;
217 } m_vtob_s;
218 #define VTOB_HASH_SHIFT		5
219 #define VTOB_HASH_SIZE		(1UL << VTOB_HASH_SHIFT)
220 #define VTOB_HASH_MASK		(VTOB_HASH_SIZE-1)
221 #define VTOB_HASH_CODE(m)	\
222 	((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK)
223 
224 typedef struct m_pool {		/* Memory pool of a given kind */
225 	m_bush_t bush;
226 	m_addr_t (*getp)(struct m_pool *);
227 	void (*freep)(struct m_pool *, m_addr_t);
228 	int nump;
229 	m_vtob_s *(vtob[VTOB_HASH_SIZE]);
230 	struct m_pool *next;
231 	struct m_link h[PAGE_SHIFT-MEMO_SHIFT+MEMO_PAGE_ORDER+1];
232 } m_pool_s;
233 
234 static void *___m_alloc(m_pool_s *mp, int size)
235 {
236 	int i = 0;
237 	int s = (1 << MEMO_SHIFT);
238 	int j;
239 	m_addr_t a;
240 	m_link_s *h = mp->h;
241 
242 	if (size > (PAGE_SIZE << MEMO_PAGE_ORDER))
243 		return NULL;
244 
245 	while (size > s) {
246 		s <<= 1;
247 		++i;
248 	}
249 
250 	j = i;
251 	while (!h[j].next) {
252 		if (s == (PAGE_SIZE << MEMO_PAGE_ORDER)) {
253 			h[j].next = (m_link_s *)mp->getp(mp);
254 			if (h[j].next)
255 				h[j].next->next = NULL;
256 			break;
257 		}
258 		++j;
259 		s <<= 1;
260 	}
261 	a = (m_addr_t) h[j].next;
262 	if (a) {
263 		h[j].next = h[j].next->next;
264 		while (j > i) {
265 			j -= 1;
266 			s >>= 1;
267 			h[j].next = (m_link_s *) (a+s);
268 			h[j].next->next = NULL;
269 		}
270 	}
271 #ifdef DEBUG
272 	printk("___m_alloc(%d) = %p\n", size, (void *) a);
273 #endif
274 	return (void *) a;
275 }
276 
277 static void ___m_free(m_pool_s *mp, void *ptr, int size)
278 {
279 	int i = 0;
280 	int s = (1 << MEMO_SHIFT);
281 	m_link_s *q;
282 	m_addr_t a, b;
283 	m_link_s *h = mp->h;
284 
285 #ifdef DEBUG
286 	printk("___m_free(%p, %d)\n", ptr, size);
287 #endif
288 
289 	if (size > (PAGE_SIZE << MEMO_PAGE_ORDER))
290 		return;
291 
292 	while (size > s) {
293 		s <<= 1;
294 		++i;
295 	}
296 
297 	a = (m_addr_t) ptr;
298 
299 	while (1) {
300 #ifdef MEMO_FREE_UNUSED
301 		if (s == (PAGE_SIZE << MEMO_PAGE_ORDER)) {
302 			mp->freep(mp, a);
303 			break;
304 		}
305 #endif
306 		b = a ^ s;
307 		q = &h[i];
308 		while (q->next && q->next != (m_link_s *) b) {
309 			q = q->next;
310 		}
311 		if (!q->next) {
312 			((m_link_s *) a)->next = h[i].next;
313 			h[i].next = (m_link_s *) a;
314 			break;
315 		}
316 		q->next = q->next->next;
317 		a = a & b;
318 		s <<= 1;
319 		++i;
320 	}
321 }
322 
323 static DEFINE_SPINLOCK(ncr53c8xx_lock);
324 
325 static void *__m_calloc2(m_pool_s *mp, int size, char *name, int uflags)
326 {
327 	void *p;
328 
329 	p = ___m_alloc(mp, size);
330 
331 	if (DEBUG_FLAGS & DEBUG_ALLOC)
332 		printk ("new %-10s[%4d] @%p.\n", name, size, p);
333 
334 	if (p)
335 		memset(p, 0, size);
336 	else if (uflags & MEMO_WARN)
337 		printk (NAME53C8XX ": failed to allocate %s[%d]\n", name, size);
338 
339 	return p;
340 }
341 
342 #define __m_calloc(mp, s, n)	__m_calloc2(mp, s, n, MEMO_WARN)
343 
344 static void __m_free(m_pool_s *mp, void *ptr, int size, char *name)
345 {
346 	if (DEBUG_FLAGS & DEBUG_ALLOC)
347 		printk ("freeing %-10s[%4d] @%p.\n", name, size, ptr);
348 
349 	___m_free(mp, ptr, size);
350 
351 }
352 
353 /*
354  * With pci bus iommu support, we use a default pool of unmapped memory
355  * for memory we donnot need to DMA from/to and one pool per pcidev for
356  * memory accessed by the PCI chip. `mp0' is the default not DMAable pool.
357  */
358 
359 static m_addr_t ___mp0_getp(m_pool_s *mp)
360 {
361 	m_addr_t m = __get_free_pages(MEMO_GFP_FLAGS, MEMO_PAGE_ORDER);
362 	if (m)
363 		++mp->nump;
364 	return m;
365 }
366 
367 static void ___mp0_freep(m_pool_s *mp, m_addr_t m)
368 {
369 	free_pages(m, MEMO_PAGE_ORDER);
370 	--mp->nump;
371 }
372 
373 static m_pool_s mp0 = {NULL, ___mp0_getp, ___mp0_freep};
374 
375 /*
376  * DMAable pools.
377  */
378 
379 /*
380  * With pci bus iommu support, we maintain one pool per pcidev and a
381  * hashed reverse table for virtual to bus physical address translations.
382  */
383 static m_addr_t ___dma_getp(m_pool_s *mp)
384 {
385 	m_addr_t vp;
386 	m_vtob_s *vbp;
387 
388 	vbp = __m_calloc(&mp0, sizeof(*vbp), "VTOB");
389 	if (vbp) {
390 		dma_addr_t daddr;
391 		vp = (m_addr_t) dma_alloc_coherent(mp->bush,
392 						PAGE_SIZE<<MEMO_PAGE_ORDER,
393 						&daddr, GFP_ATOMIC);
394 		if (vp) {
395 			int hc = VTOB_HASH_CODE(vp);
396 			vbp->vaddr = vp;
397 			vbp->baddr = daddr;
398 			vbp->next = mp->vtob[hc];
399 			mp->vtob[hc] = vbp;
400 			++mp->nump;
401 			return vp;
402 		}
403 	}
404 	if (vbp)
405 		__m_free(&mp0, vbp, sizeof(*vbp), "VTOB");
406 	return 0;
407 }
408 
409 static void ___dma_freep(m_pool_s *mp, m_addr_t m)
410 {
411 	m_vtob_s **vbpp, *vbp;
412 	int hc = VTOB_HASH_CODE(m);
413 
414 	vbpp = &mp->vtob[hc];
415 	while (*vbpp && (*vbpp)->vaddr != m)
416 		vbpp = &(*vbpp)->next;
417 	if (*vbpp) {
418 		vbp = *vbpp;
419 		*vbpp = (*vbpp)->next;
420 		dma_free_coherent(mp->bush, PAGE_SIZE<<MEMO_PAGE_ORDER,
421 				  (void *)vbp->vaddr, (dma_addr_t)vbp->baddr);
422 		__m_free(&mp0, vbp, sizeof(*vbp), "VTOB");
423 		--mp->nump;
424 	}
425 }
426 
427 static inline m_pool_s *___get_dma_pool(m_bush_t bush)
428 {
429 	m_pool_s *mp;
430 	for (mp = mp0.next; mp && mp->bush != bush; mp = mp->next);
431 	return mp;
432 }
433 
434 static m_pool_s *___cre_dma_pool(m_bush_t bush)
435 {
436 	m_pool_s *mp;
437 	mp = __m_calloc(&mp0, sizeof(*mp), "MPOOL");
438 	if (mp) {
439 		memset(mp, 0, sizeof(*mp));
440 		mp->bush = bush;
441 		mp->getp = ___dma_getp;
442 		mp->freep = ___dma_freep;
443 		mp->next = mp0.next;
444 		mp0.next = mp;
445 	}
446 	return mp;
447 }
448 
449 static void ___del_dma_pool(m_pool_s *p)
450 {
451 	struct m_pool **pp = &mp0.next;
452 
453 	while (*pp && *pp != p)
454 		pp = &(*pp)->next;
455 	if (*pp) {
456 		*pp = (*pp)->next;
457 		__m_free(&mp0, p, sizeof(*p), "MPOOL");
458 	}
459 }
460 
461 static void *__m_calloc_dma(m_bush_t bush, int size, char *name)
462 {
463 	u_long flags;
464 	struct m_pool *mp;
465 	void *m = NULL;
466 
467 	spin_lock_irqsave(&ncr53c8xx_lock, flags);
468 	mp = ___get_dma_pool(bush);
469 	if (!mp)
470 		mp = ___cre_dma_pool(bush);
471 	if (mp)
472 		m = __m_calloc(mp, size, name);
473 	if (mp && !mp->nump)
474 		___del_dma_pool(mp);
475 	spin_unlock_irqrestore(&ncr53c8xx_lock, flags);
476 
477 	return m;
478 }
479 
480 static void __m_free_dma(m_bush_t bush, void *m, int size, char *name)
481 {
482 	u_long flags;
483 	struct m_pool *mp;
484 
485 	spin_lock_irqsave(&ncr53c8xx_lock, flags);
486 	mp = ___get_dma_pool(bush);
487 	if (mp)
488 		__m_free(mp, m, size, name);
489 	if (mp && !mp->nump)
490 		___del_dma_pool(mp);
491 	spin_unlock_irqrestore(&ncr53c8xx_lock, flags);
492 }
493 
494 static m_addr_t __vtobus(m_bush_t bush, void *m)
495 {
496 	u_long flags;
497 	m_pool_s *mp;
498 	int hc = VTOB_HASH_CODE(m);
499 	m_vtob_s *vp = NULL;
500 	m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK;
501 
502 	spin_lock_irqsave(&ncr53c8xx_lock, flags);
503 	mp = ___get_dma_pool(bush);
504 	if (mp) {
505 		vp = mp->vtob[hc];
506 		while (vp && (m_addr_t) vp->vaddr != a)
507 			vp = vp->next;
508 	}
509 	spin_unlock_irqrestore(&ncr53c8xx_lock, flags);
510 	return vp ? vp->baddr + (((m_addr_t) m) - a) : 0;
511 }
512 
513 #define _m_calloc_dma(np, s, n)		__m_calloc_dma(np->dev, s, n)
514 #define _m_free_dma(np, p, s, n)	__m_free_dma(np->dev, p, s, n)
515 #define m_calloc_dma(s, n)		_m_calloc_dma(np, s, n)
516 #define m_free_dma(p, s, n)		_m_free_dma(np, p, s, n)
517 #define _vtobus(np, p)			__vtobus(np->dev, p)
518 #define vtobus(p)			_vtobus(np, p)
519 
520 /*
521  *  Deal with DMA mapping/unmapping.
522  */
523 
524 /* To keep track of the dma mapping (sg/single) that has been set */
525 #define __data_mapped	SCp.phase
526 #define __data_mapping	SCp.have_data_in
527 
528 static void __unmap_scsi_data(struct device *dev, struct scsi_cmnd *cmd)
529 {
530 	switch(cmd->__data_mapped) {
531 	case 2:
532 		dma_unmap_sg(dev, cmd->request_buffer, cmd->use_sg,
533 				cmd->sc_data_direction);
534 		break;
535 	case 1:
536 		dma_unmap_single(dev, cmd->__data_mapping,
537 				 cmd->request_bufflen,
538 				 cmd->sc_data_direction);
539 		break;
540 	}
541 	cmd->__data_mapped = 0;
542 }
543 
544 static u_long __map_scsi_single_data(struct device *dev, struct scsi_cmnd *cmd)
545 {
546 	dma_addr_t mapping;
547 
548 	if (cmd->request_bufflen == 0)
549 		return 0;
550 
551 	mapping = dma_map_single(dev, cmd->request_buffer,
552 				 cmd->request_bufflen,
553 				 cmd->sc_data_direction);
554 	cmd->__data_mapped = 1;
555 	cmd->__data_mapping = mapping;
556 
557 	return mapping;
558 }
559 
560 static int __map_scsi_sg_data(struct device *dev, struct scsi_cmnd *cmd)
561 {
562 	int use_sg;
563 
564 	if (cmd->use_sg == 0)
565 		return 0;
566 
567 	use_sg = dma_map_sg(dev, cmd->request_buffer, cmd->use_sg,
568 			cmd->sc_data_direction);
569 	cmd->__data_mapped = 2;
570 	cmd->__data_mapping = use_sg;
571 
572 	return use_sg;
573 }
574 
575 #define unmap_scsi_data(np, cmd)	__unmap_scsi_data(np->dev, cmd)
576 #define map_scsi_single_data(np, cmd)	__map_scsi_single_data(np->dev, cmd)
577 #define map_scsi_sg_data(np, cmd)	__map_scsi_sg_data(np->dev, cmd)
578 
579 /*==========================================================
580 **
581 **	Driver setup.
582 **
583 **	This structure is initialized from linux config
584 **	options. It can be overridden at boot-up by the boot
585 **	command line.
586 **
587 **==========================================================
588 */
589 static struct ncr_driver_setup
590 	driver_setup			= SCSI_NCR_DRIVER_SETUP;
591 
592 #ifndef MODULE
593 #ifdef	SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT
594 static struct ncr_driver_setup
595 	driver_safe_setup __initdata	= SCSI_NCR_DRIVER_SAFE_SETUP;
596 #endif
597 #endif /* !MODULE */
598 
599 #define initverbose (driver_setup.verbose)
600 #define bootverbose (np->verbose)
601 
602 
603 /*===================================================================
604 **
605 **	Driver setup from the boot command line
606 **
607 **===================================================================
608 */
609 
610 #ifdef MODULE
611 #define	ARG_SEP	' '
612 #else
613 #define	ARG_SEP	','
614 #endif
615 
616 #define OPT_TAGS		1
617 #define OPT_MASTER_PARITY	2
618 #define OPT_SCSI_PARITY		3
619 #define OPT_DISCONNECTION	4
620 #define OPT_SPECIAL_FEATURES	5
621 #define OPT_UNUSED_1		6
622 #define OPT_FORCE_SYNC_NEGO	7
623 #define OPT_REVERSE_PROBE	8
624 #define OPT_DEFAULT_SYNC	9
625 #define OPT_VERBOSE		10
626 #define OPT_DEBUG		11
627 #define OPT_BURST_MAX		12
628 #define OPT_LED_PIN		13
629 #define OPT_MAX_WIDE		14
630 #define OPT_SETTLE_DELAY	15
631 #define OPT_DIFF_SUPPORT	16
632 #define OPT_IRQM		17
633 #define OPT_PCI_FIX_UP		18
634 #define OPT_BUS_CHECK		19
635 #define OPT_OPTIMIZE		20
636 #define OPT_RECOVERY		21
637 #define OPT_SAFE_SETUP		22
638 #define OPT_USE_NVRAM		23
639 #define OPT_EXCLUDE		24
640 #define OPT_HOST_ID		25
641 
642 #ifdef SCSI_NCR_IARB_SUPPORT
643 #define OPT_IARB		26
644 #endif
645 
646 #ifdef MODULE
647 #define	ARG_SEP	' '
648 #else
649 #define	ARG_SEP	','
650 #endif
651 
652 #ifndef MODULE
653 static char setup_token[] __initdata =
654 	"tags:"   "mpar:"
655 	"spar:"   "disc:"
656 	"specf:"  "ultra:"
657 	"fsn:"    "revprob:"
658 	"sync:"   "verb:"
659 	"debug:"  "burst:"
660 	"led:"    "wide:"
661 	"settle:" "diff:"
662 	"irqm:"   "pcifix:"
663 	"buschk:" "optim:"
664 	"recovery:"
665 	"safe:"   "nvram:"
666 	"excl:"   "hostid:"
667 #ifdef SCSI_NCR_IARB_SUPPORT
668 	"iarb:"
669 #endif
670 	;	/* DONNOT REMOVE THIS ';' */
671 
672 static int __init get_setup_token(char *p)
673 {
674 	char *cur = setup_token;
675 	char *pc;
676 	int i = 0;
677 
678 	while (cur != NULL && (pc = strchr(cur, ':')) != NULL) {
679 		++pc;
680 		++i;
681 		if (!strncmp(p, cur, pc - cur))
682 			return i;
683 		cur = pc;
684 	}
685 	return 0;
686 }
687 
688 static int __init sym53c8xx__setup(char *str)
689 {
690 #ifdef SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT
691 	char *cur = str;
692 	char *pc, *pv;
693 	int i, val, c;
694 	int xi = 0;
695 
696 	while (cur != NULL && (pc = strchr(cur, ':')) != NULL) {
697 		char *pe;
698 
699 		val = 0;
700 		pv = pc;
701 		c = *++pv;
702 
703 		if	(c == 'n')
704 			val = 0;
705 		else if	(c == 'y')
706 			val = 1;
707 		else
708 			val = (int) simple_strtoul(pv, &pe, 0);
709 
710 		switch (get_setup_token(cur)) {
711 		case OPT_TAGS:
712 			driver_setup.default_tags = val;
713 			if (pe && *pe == '/') {
714 				i = 0;
715 				while (*pe && *pe != ARG_SEP &&
716 					i < sizeof(driver_setup.tag_ctrl)-1) {
717 					driver_setup.tag_ctrl[i++] = *pe++;
718 				}
719 				driver_setup.tag_ctrl[i] = '\0';
720 			}
721 			break;
722 		case OPT_MASTER_PARITY:
723 			driver_setup.master_parity = val;
724 			break;
725 		case OPT_SCSI_PARITY:
726 			driver_setup.scsi_parity = val;
727 			break;
728 		case OPT_DISCONNECTION:
729 			driver_setup.disconnection = val;
730 			break;
731 		case OPT_SPECIAL_FEATURES:
732 			driver_setup.special_features = val;
733 			break;
734 		case OPT_FORCE_SYNC_NEGO:
735 			driver_setup.force_sync_nego = val;
736 			break;
737 		case OPT_REVERSE_PROBE:
738 			driver_setup.reverse_probe = val;
739 			break;
740 		case OPT_DEFAULT_SYNC:
741 			driver_setup.default_sync = val;
742 			break;
743 		case OPT_VERBOSE:
744 			driver_setup.verbose = val;
745 			break;
746 		case OPT_DEBUG:
747 			driver_setup.debug = val;
748 			break;
749 		case OPT_BURST_MAX:
750 			driver_setup.burst_max = val;
751 			break;
752 		case OPT_LED_PIN:
753 			driver_setup.led_pin = val;
754 			break;
755 		case OPT_MAX_WIDE:
756 			driver_setup.max_wide = val? 1:0;
757 			break;
758 		case OPT_SETTLE_DELAY:
759 			driver_setup.settle_delay = val;
760 			break;
761 		case OPT_DIFF_SUPPORT:
762 			driver_setup.diff_support = val;
763 			break;
764 		case OPT_IRQM:
765 			driver_setup.irqm = val;
766 			break;
767 		case OPT_PCI_FIX_UP:
768 			driver_setup.pci_fix_up	= val;
769 			break;
770 		case OPT_BUS_CHECK:
771 			driver_setup.bus_check = val;
772 			break;
773 		case OPT_OPTIMIZE:
774 			driver_setup.optimize = val;
775 			break;
776 		case OPT_RECOVERY:
777 			driver_setup.recovery = val;
778 			break;
779 		case OPT_USE_NVRAM:
780 			driver_setup.use_nvram = val;
781 			break;
782 		case OPT_SAFE_SETUP:
783 			memcpy(&driver_setup, &driver_safe_setup,
784 				sizeof(driver_setup));
785 			break;
786 		case OPT_EXCLUDE:
787 			if (xi < SCSI_NCR_MAX_EXCLUDES)
788 				driver_setup.excludes[xi++] = val;
789 			break;
790 		case OPT_HOST_ID:
791 			driver_setup.host_id = val;
792 			break;
793 #ifdef SCSI_NCR_IARB_SUPPORT
794 		case OPT_IARB:
795 			driver_setup.iarb = val;
796 			break;
797 #endif
798 		default:
799 			printk("sym53c8xx_setup: unexpected boot option '%.*s' ignored\n", (int)(pc-cur+1), cur);
800 			break;
801 		}
802 
803 		if ((cur = strchr(cur, ARG_SEP)) != NULL)
804 			++cur;
805 	}
806 #endif /* SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT */
807 	return 1;
808 }
809 #endif /* !MODULE */
810 
811 /*===================================================================
812 **
813 **	Get device queue depth from boot command line.
814 **
815 **===================================================================
816 */
817 #define DEF_DEPTH	(driver_setup.default_tags)
818 #define ALL_TARGETS	-2
819 #define NO_TARGET	-1
820 #define ALL_LUNS	-2
821 #define NO_LUN		-1
822 
823 static int device_queue_depth(int unit, int target, int lun)
824 {
825 	int c, h, t, u, v;
826 	char *p = driver_setup.tag_ctrl;
827 	char *ep;
828 
829 	h = -1;
830 	t = NO_TARGET;
831 	u = NO_LUN;
832 	while ((c = *p++) != 0) {
833 		v = simple_strtoul(p, &ep, 0);
834 		switch(c) {
835 		case '/':
836 			++h;
837 			t = ALL_TARGETS;
838 			u = ALL_LUNS;
839 			break;
840 		case 't':
841 			if (t != target)
842 				t = (target == v) ? v : NO_TARGET;
843 			u = ALL_LUNS;
844 			break;
845 		case 'u':
846 			if (u != lun)
847 				u = (lun == v) ? v : NO_LUN;
848 			break;
849 		case 'q':
850 			if (h == unit &&
851 				(t == ALL_TARGETS || t == target) &&
852 				(u == ALL_LUNS    || u == lun))
853 				return v;
854 			break;
855 		case '-':
856 			t = ALL_TARGETS;
857 			u = ALL_LUNS;
858 			break;
859 		default:
860 			break;
861 		}
862 		p = ep;
863 	}
864 	return DEF_DEPTH;
865 }
866 
867 
868 /*==========================================================
869 **
870 **	The CCB done queue uses an array of CCB virtual
871 **	addresses. Empty entries are flagged using the bogus
872 **	virtual address 0xffffffff.
873 **
874 **	Since PCI ensures that only aligned DWORDs are accessed
875 **	atomically, 64 bit little-endian architecture requires
876 **	to test the high order DWORD of the entry to determine
877 **	if it is empty or valid.
878 **
879 **	BTW, I will make things differently as soon as I will
880 **	have a better idea, but this is simple and should work.
881 **
882 **==========================================================
883 */
884 
885 #define SCSI_NCR_CCB_DONE_SUPPORT
886 #ifdef  SCSI_NCR_CCB_DONE_SUPPORT
887 
888 #define MAX_DONE 24
889 #define CCB_DONE_EMPTY 0xffffffffUL
890 
891 /* All 32 bit architectures */
892 #if BITS_PER_LONG == 32
893 #define CCB_DONE_VALID(cp)  (((u_long) cp) != CCB_DONE_EMPTY)
894 
895 /* All > 32 bit (64 bit) architectures regardless endian-ness */
896 #else
897 #define CCB_DONE_VALID(cp)  \
898 	((((u_long) cp) & 0xffffffff00000000ul) && 	\
899 	 (((u_long) cp) & 0xfffffffful) != CCB_DONE_EMPTY)
900 #endif
901 
902 #endif /* SCSI_NCR_CCB_DONE_SUPPORT */
903 
904 /*==========================================================
905 **
906 **	Configuration and Debugging
907 **
908 **==========================================================
909 */
910 
911 /*
912 **    SCSI address of this device.
913 **    The boot routines should have set it.
914 **    If not, use this.
915 */
916 
917 #ifndef SCSI_NCR_MYADDR
918 #define SCSI_NCR_MYADDR      (7)
919 #endif
920 
921 /*
922 **    The maximum number of tags per logic unit.
923 **    Used only for disk devices that support tags.
924 */
925 
926 #ifndef SCSI_NCR_MAX_TAGS
927 #define SCSI_NCR_MAX_TAGS    (8)
928 #endif
929 
930 /*
931 **    TAGS are actually limited to 64 tags/lun.
932 **    We need to deal with power of 2, for alignment constraints.
933 */
934 #if	SCSI_NCR_MAX_TAGS > 64
935 #define	MAX_TAGS (64)
936 #else
937 #define	MAX_TAGS SCSI_NCR_MAX_TAGS
938 #endif
939 
940 #define NO_TAG	(255)
941 
942 /*
943 **	Choose appropriate type for tag bitmap.
944 */
945 #if	MAX_TAGS > 32
946 typedef u64 tagmap_t;
947 #else
948 typedef u32 tagmap_t;
949 #endif
950 
951 /*
952 **    Number of targets supported by the driver.
953 **    n permits target numbers 0..n-1.
954 **    Default is 16, meaning targets #0..#15.
955 **    #7 .. is myself.
956 */
957 
958 #ifdef SCSI_NCR_MAX_TARGET
959 #define MAX_TARGET  (SCSI_NCR_MAX_TARGET)
960 #else
961 #define MAX_TARGET  (16)
962 #endif
963 
964 /*
965 **    Number of logic units supported by the driver.
966 **    n enables logic unit numbers 0..n-1.
967 **    The common SCSI devices require only
968 **    one lun, so take 1 as the default.
969 */
970 
971 #ifdef SCSI_NCR_MAX_LUN
972 #define MAX_LUN    SCSI_NCR_MAX_LUN
973 #else
974 #define MAX_LUN    (1)
975 #endif
976 
977 /*
978 **    Asynchronous pre-scaler (ns). Shall be 40
979 */
980 
981 #ifndef SCSI_NCR_MIN_ASYNC
982 #define SCSI_NCR_MIN_ASYNC (40)
983 #endif
984 
985 /*
986 **    The maximum number of jobs scheduled for starting.
987 **    There should be one slot per target, and one slot
988 **    for each tag of each target in use.
989 **    The calculation below is actually quite silly ...
990 */
991 
992 #ifdef SCSI_NCR_CAN_QUEUE
993 #define MAX_START   (SCSI_NCR_CAN_QUEUE + 4)
994 #else
995 #define MAX_START   (MAX_TARGET + 7 * MAX_TAGS)
996 #endif
997 
998 /*
999 **   We limit the max number of pending IO to 250.
1000 **   since we donnot want to allocate more than 1
1001 **   PAGE for 'scripth'.
1002 */
1003 #if	MAX_START > 250
1004 #undef	MAX_START
1005 #define	MAX_START 250
1006 #endif
1007 
1008 /*
1009 **    The maximum number of segments a transfer is split into.
1010 **    We support up to 127 segments for both read and write.
1011 **    The data scripts are broken into 2 sub-scripts.
1012 **    80 (MAX_SCATTERL) segments are moved from a sub-script
1013 **    in on-chip RAM. This makes data transfers shorter than
1014 **    80k (assuming 1k fs) as fast as possible.
1015 */
1016 
1017 #define MAX_SCATTER (SCSI_NCR_MAX_SCATTER)
1018 
1019 #if (MAX_SCATTER > 80)
1020 #define MAX_SCATTERL	80
1021 #define	MAX_SCATTERH	(MAX_SCATTER - MAX_SCATTERL)
1022 #else
1023 #define MAX_SCATTERL	(MAX_SCATTER-1)
1024 #define	MAX_SCATTERH	1
1025 #endif
1026 
1027 /*
1028 **	other
1029 */
1030 
1031 #define NCR_SNOOP_TIMEOUT (1000000)
1032 
1033 /*
1034 **	Other definitions
1035 */
1036 
1037 #define ScsiResult(host_code, scsi_code) (((host_code) << 16) + ((scsi_code) & 0x7f))
1038 
1039 #define initverbose (driver_setup.verbose)
1040 #define bootverbose (np->verbose)
1041 
1042 /*==========================================================
1043 **
1044 **	Command control block states.
1045 **
1046 **==========================================================
1047 */
1048 
1049 #define HS_IDLE		(0)
1050 #define HS_BUSY		(1)
1051 #define HS_NEGOTIATE	(2)	/* sync/wide data transfer*/
1052 #define HS_DISCONNECT	(3)	/* Disconnected by target */
1053 
1054 #define HS_DONEMASK	(0x80)
1055 #define HS_COMPLETE	(4|HS_DONEMASK)
1056 #define HS_SEL_TIMEOUT	(5|HS_DONEMASK)	/* Selection timeout      */
1057 #define HS_RESET	(6|HS_DONEMASK)	/* SCSI reset	          */
1058 #define HS_ABORTED	(7|HS_DONEMASK)	/* Transfer aborted       */
1059 #define HS_TIMEOUT	(8|HS_DONEMASK)	/* Software timeout       */
1060 #define HS_FAIL		(9|HS_DONEMASK)	/* SCSI or PCI bus errors */
1061 #define HS_UNEXPECTED	(10|HS_DONEMASK)/* Unexpected disconnect  */
1062 
1063 /*
1064 **	Invalid host status values used by the SCRIPTS processor
1065 **	when the nexus is not fully identified.
1066 **	Shall never appear in a CCB.
1067 */
1068 
1069 #define HS_INVALMASK	(0x40)
1070 #define	HS_SELECTING	(0|HS_INVALMASK)
1071 #define	HS_IN_RESELECT	(1|HS_INVALMASK)
1072 #define	HS_STARTING	(2|HS_INVALMASK)
1073 
1074 /*
1075 **	Flags set by the SCRIPT processor for commands
1076 **	that have been skipped.
1077 */
1078 #define HS_SKIPMASK	(0x20)
1079 
1080 /*==========================================================
1081 **
1082 **	Software Interrupt Codes
1083 **
1084 **==========================================================
1085 */
1086 
1087 #define	SIR_BAD_STATUS		(1)
1088 #define	SIR_XXXXXXXXXX		(2)
1089 #define	SIR_NEGO_SYNC		(3)
1090 #define	SIR_NEGO_WIDE		(4)
1091 #define	SIR_NEGO_FAILED		(5)
1092 #define	SIR_NEGO_PROTO		(6)
1093 #define	SIR_REJECT_RECEIVED	(7)
1094 #define	SIR_REJECT_SENT		(8)
1095 #define	SIR_IGN_RESIDUE		(9)
1096 #define	SIR_MISSING_SAVE	(10)
1097 #define	SIR_RESEL_NO_MSG_IN	(11)
1098 #define	SIR_RESEL_NO_IDENTIFY	(12)
1099 #define	SIR_RESEL_BAD_LUN	(13)
1100 #define	SIR_RESEL_BAD_TARGET	(14)
1101 #define	SIR_RESEL_BAD_I_T_L	(15)
1102 #define	SIR_RESEL_BAD_I_T_L_Q	(16)
1103 #define	SIR_DONE_OVERFLOW	(17)
1104 #define	SIR_INTFLY		(18)
1105 #define	SIR_MAX			(18)
1106 
1107 /*==========================================================
1108 **
1109 **	Extended error codes.
1110 **	xerr_status field of struct ccb.
1111 **
1112 **==========================================================
1113 */
1114 
1115 #define	XE_OK		(0)
1116 #define	XE_EXTRA_DATA	(1)	/* unexpected data phase */
1117 #define	XE_BAD_PHASE	(2)	/* illegal phase (4/5)   */
1118 
1119 /*==========================================================
1120 **
1121 **	Negotiation status.
1122 **	nego_status field	of struct ccb.
1123 **
1124 **==========================================================
1125 */
1126 
1127 #define NS_NOCHANGE	(0)
1128 #define NS_SYNC		(1)
1129 #define NS_WIDE		(2)
1130 #define NS_PPR		(4)
1131 
1132 /*==========================================================
1133 **
1134 **	Misc.
1135 **
1136 **==========================================================
1137 */
1138 
1139 #define CCB_MAGIC	(0xf2691ad2)
1140 
1141 /*==========================================================
1142 **
1143 **	Declaration of structs.
1144 **
1145 **==========================================================
1146 */
1147 
1148 static struct scsi_transport_template *ncr53c8xx_transport_template = NULL;
1149 
1150 struct tcb;
1151 struct lcb;
1152 struct ccb;
1153 struct ncb;
1154 struct script;
1155 
1156 struct link {
1157 	ncrcmd	l_cmd;
1158 	ncrcmd	l_paddr;
1159 };
1160 
1161 struct	usrcmd {
1162 	u_long	target;
1163 	u_long	lun;
1164 	u_long	data;
1165 	u_long	cmd;
1166 };
1167 
1168 #define UC_SETSYNC      10
1169 #define UC_SETTAGS	11
1170 #define UC_SETDEBUG	12
1171 #define UC_SETORDER	13
1172 #define UC_SETWIDE	14
1173 #define UC_SETFLAG	15
1174 #define UC_SETVERBOSE	17
1175 
1176 #define	UF_TRACE	(0x01)
1177 #define	UF_NODISC	(0x02)
1178 #define	UF_NOSCAN	(0x04)
1179 
1180 /*========================================================================
1181 **
1182 **	Declaration of structs:		target control block
1183 **
1184 **========================================================================
1185 */
1186 struct tcb {
1187 	/*----------------------------------------------------------------
1188 	**	During reselection the ncr jumps to this point with SFBR
1189 	**	set to the encoded target number with bit 7 set.
1190 	**	if it's not this target, jump to the next.
1191 	**
1192 	**	JUMP  IF (SFBR != #target#), @(next tcb)
1193 	**----------------------------------------------------------------
1194 	*/
1195 	struct link   jump_tcb;
1196 
1197 	/*----------------------------------------------------------------
1198 	**	Load the actual values for the sxfer and the scntl3
1199 	**	register (sync/wide mode).
1200 	**
1201 	**	SCR_COPY (1), @(sval field of this tcb), @(sxfer  register)
1202 	**	SCR_COPY (1), @(wval field of this tcb), @(scntl3 register)
1203 	**----------------------------------------------------------------
1204 	*/
1205 	ncrcmd	getscr[6];
1206 
1207 	/*----------------------------------------------------------------
1208 	**	Get the IDENTIFY message and load the LUN to SFBR.
1209 	**
1210 	**	CALL, <RESEL_LUN>
1211 	**----------------------------------------------------------------
1212 	*/
1213 	struct link   call_lun;
1214 
1215 	/*----------------------------------------------------------------
1216 	**	Now look for the right lun.
1217 	**
1218 	**	For i = 0 to 3
1219 	**		SCR_JUMP ^ IFTRUE(MASK(i, 3)), @(first lcb mod. i)
1220 	**
1221 	**	Recent chips will prefetch the 4 JUMPS using only 1 burst.
1222 	**	It is kind of hashcoding.
1223 	**----------------------------------------------------------------
1224 	*/
1225 	struct link     jump_lcb[4];	/* JUMPs for reselection	*/
1226 	struct lcb *	lp[MAX_LUN];	/* The lcb's of this tcb	*/
1227 
1228 	/*----------------------------------------------------------------
1229 	**	Pointer to the ccb used for negotiation.
1230 	**	Prevent from starting a negotiation for all queued commands
1231 	**	when tagged command queuing is enabled.
1232 	**----------------------------------------------------------------
1233 	*/
1234 	struct ccb *   nego_cp;
1235 
1236 	/*----------------------------------------------------------------
1237 	**	statistical data
1238 	**----------------------------------------------------------------
1239 	*/
1240 	u_long	transfers;
1241 	u_long	bytes;
1242 
1243 	/*----------------------------------------------------------------
1244 	**	negotiation of wide and synch transfer and device quirks.
1245 	**----------------------------------------------------------------
1246 	*/
1247 #ifdef SCSI_NCR_BIG_ENDIAN
1248 /*0*/	u16	period;
1249 /*2*/	u_char	sval;
1250 /*3*/	u_char	minsync;
1251 /*0*/	u_char	wval;
1252 /*1*/	u_char	widedone;
1253 /*2*/	u_char	quirks;
1254 /*3*/	u_char	maxoffs;
1255 #else
1256 /*0*/	u_char	minsync;
1257 /*1*/	u_char	sval;
1258 /*2*/	u16	period;
1259 /*0*/	u_char	maxoffs;
1260 /*1*/	u_char	quirks;
1261 /*2*/	u_char	widedone;
1262 /*3*/	u_char	wval;
1263 #endif
1264 
1265 	/* User settable limits and options.  */
1266 	u_char	usrsync;
1267 	u_char	usrwide;
1268 	u_char	usrtags;
1269 	u_char	usrflag;
1270 	struct scsi_target *starget;
1271 };
1272 
1273 /*========================================================================
1274 **
1275 **	Declaration of structs:		lun control block
1276 **
1277 **========================================================================
1278 */
1279 struct lcb {
1280 	/*----------------------------------------------------------------
1281 	**	During reselection the ncr jumps to this point
1282 	**	with SFBR set to the "Identify" message.
1283 	**	if it's not this lun, jump to the next.
1284 	**
1285 	**	JUMP  IF (SFBR != #lun#), @(next lcb of this target)
1286 	**
1287 	**	It is this lun. Load TEMP with the nexus jumps table
1288 	**	address and jump to RESEL_TAG (or RESEL_NOTAG).
1289 	**
1290 	**		SCR_COPY (4), p_jump_ccb, TEMP,
1291 	**		SCR_JUMP, <RESEL_TAG>
1292 	**----------------------------------------------------------------
1293 	*/
1294 	struct link	jump_lcb;
1295 	ncrcmd		load_jump_ccb[3];
1296 	struct link	jump_tag;
1297 	ncrcmd		p_jump_ccb;	/* Jump table bus address	*/
1298 
1299 	/*----------------------------------------------------------------
1300 	**	Jump table used by the script processor to directly jump
1301 	**	to the CCB corresponding to the reselected nexus.
1302 	**	Address is allocated on 256 bytes boundary in order to
1303 	**	allow 8 bit calculation of the tag jump entry for up to
1304 	**	64 possible tags.
1305 	**----------------------------------------------------------------
1306 	*/
1307 	u32		jump_ccb_0;	/* Default table if no tags	*/
1308 	u32		*jump_ccb;	/* Virtual address		*/
1309 
1310 	/*----------------------------------------------------------------
1311 	**	CCB queue management.
1312 	**----------------------------------------------------------------
1313 	*/
1314 	struct list_head free_ccbq;	/* Queue of available CCBs	*/
1315 	struct list_head busy_ccbq;	/* Queue of busy CCBs		*/
1316 	struct list_head wait_ccbq;	/* Queue of waiting for IO CCBs	*/
1317 	struct list_head skip_ccbq;	/* Queue of skipped CCBs	*/
1318 	u_char		actccbs;	/* Number of allocated CCBs	*/
1319 	u_char		busyccbs;	/* CCBs busy for this lun	*/
1320 	u_char		queuedccbs;	/* CCBs queued to the controller*/
1321 	u_char		queuedepth;	/* Queue depth for this lun	*/
1322 	u_char		scdev_depth;	/* SCSI device queue depth	*/
1323 	u_char		maxnxs;		/* Max possible nexuses		*/
1324 
1325 	/*----------------------------------------------------------------
1326 	**	Control of tagged command queuing.
1327 	**	Tags allocation is performed using a circular buffer.
1328 	**	This avoids using a loop for tag allocation.
1329 	**----------------------------------------------------------------
1330 	*/
1331 	u_char		ia_tag;		/* Allocation index		*/
1332 	u_char		if_tag;		/* Freeing index		*/
1333 	u_char cb_tags[MAX_TAGS];	/* Circular tags buffer	*/
1334 	u_char		usetags;	/* Command queuing is active	*/
1335 	u_char		maxtags;	/* Max nr of tags asked by user	*/
1336 	u_char		numtags;	/* Current number of tags	*/
1337 
1338 	/*----------------------------------------------------------------
1339 	**	QUEUE FULL control and ORDERED tag control.
1340 	**----------------------------------------------------------------
1341 	*/
1342 	/*----------------------------------------------------------------
1343 	**	QUEUE FULL and ORDERED tag control.
1344 	**----------------------------------------------------------------
1345 	*/
1346 	u16		num_good;	/* Nr of GOOD since QUEUE FULL	*/
1347 	tagmap_t	tags_umap;	/* Used tags bitmap		*/
1348 	tagmap_t	tags_smap;	/* Tags in use at 'tag_stime'	*/
1349 	u_long		tags_stime;	/* Last time we set smap=umap	*/
1350 	struct ccb *	held_ccb;	/* CCB held for QUEUE FULL	*/
1351 };
1352 
1353 /*========================================================================
1354 **
1355 **      Declaration of structs:     the launch script.
1356 **
1357 **========================================================================
1358 **
1359 **	It is part of the CCB and is called by the scripts processor to
1360 **	start or restart the data structure (nexus).
1361 **	This 6 DWORDs mini script makes use of prefetching.
1362 **
1363 **------------------------------------------------------------------------
1364 */
1365 struct launch {
1366 	/*----------------------------------------------------------------
1367 	**	SCR_COPY(4),	@(p_phys), @(dsa register)
1368 	**	SCR_JUMP,	@(scheduler_point)
1369 	**----------------------------------------------------------------
1370 	*/
1371 	ncrcmd		setup_dsa[3];	/* Copy 'phys' address to dsa	*/
1372 	struct link	schedule;	/* Jump to scheduler point	*/
1373 	ncrcmd		p_phys;		/* 'phys' header bus address	*/
1374 };
1375 
1376 /*========================================================================
1377 **
1378 **      Declaration of structs:     global HEADER.
1379 **
1380 **========================================================================
1381 **
1382 **	This substructure is copied from the ccb to a global address after
1383 **	selection (or reselection) and copied back before disconnect.
1384 **
1385 **	These fields are accessible to the script processor.
1386 **
1387 **------------------------------------------------------------------------
1388 */
1389 
1390 struct head {
1391 	/*----------------------------------------------------------------
1392 	**	Saved data pointer.
1393 	**	Points to the position in the script responsible for the
1394 	**	actual transfer transfer of data.
1395 	**	It's written after reception of a SAVE_DATA_POINTER message.
1396 	**	The goalpointer points after the last transfer command.
1397 	**----------------------------------------------------------------
1398 	*/
1399 	u32		savep;
1400 	u32		lastp;
1401 	u32		goalp;
1402 
1403 	/*----------------------------------------------------------------
1404 	**	Alternate data pointer.
1405 	**	They are copied back to savep/lastp/goalp by the SCRIPTS
1406 	**	when the direction is unknown and the device claims data out.
1407 	**----------------------------------------------------------------
1408 	*/
1409 	u32		wlastp;
1410 	u32		wgoalp;
1411 
1412 	/*----------------------------------------------------------------
1413 	**	The virtual address of the ccb containing this header.
1414 	**----------------------------------------------------------------
1415 	*/
1416 	struct ccb *	cp;
1417 
1418 	/*----------------------------------------------------------------
1419 	**	Status fields.
1420 	**----------------------------------------------------------------
1421 	*/
1422 	u_char		scr_st[4];	/* script status		*/
1423 	u_char		status[4];	/* host status. must be the 	*/
1424 					/*  last DWORD of the header.	*/
1425 };
1426 
1427 /*
1428 **	The status bytes are used by the host and the script processor.
1429 **
1430 **	The byte corresponding to the host_status must be stored in the
1431 **	last DWORD of the CCB header since it is used for command
1432 **	completion (ncr_wakeup()). Doing so, we are sure that the header
1433 **	has been entirely copied back to the CCB when the host_status is
1434 **	seen complete by the CPU.
1435 **
1436 **	The last four bytes (status[4]) are copied to the scratchb register
1437 **	(declared as scr0..scr3 in ncr_reg.h) just after the select/reselect,
1438 **	and copied back just after disconnecting.
1439 **	Inside the script the XX_REG are used.
1440 **
1441 **	The first four bytes (scr_st[4]) are used inside the script by
1442 **	"COPY" commands.
1443 **	Because source and destination must have the same alignment
1444 **	in a DWORD, the fields HAVE to be at the chosen offsets.
1445 **		xerr_st		0	(0x34)	scratcha
1446 **		sync_st		1	(0x05)	sxfer
1447 **		wide_st		3	(0x03)	scntl3
1448 */
1449 
1450 /*
1451 **	Last four bytes (script)
1452 */
1453 #define  QU_REG	scr0
1454 #define  HS_REG	scr1
1455 #define  HS_PRT	nc_scr1
1456 #define  SS_REG	scr2
1457 #define  SS_PRT	nc_scr2
1458 #define  PS_REG	scr3
1459 
1460 /*
1461 **	Last four bytes (host)
1462 */
1463 #ifdef SCSI_NCR_BIG_ENDIAN
1464 #define  actualquirks  phys.header.status[3]
1465 #define  host_status   phys.header.status[2]
1466 #define  scsi_status   phys.header.status[1]
1467 #define  parity_status phys.header.status[0]
1468 #else
1469 #define  actualquirks  phys.header.status[0]
1470 #define  host_status   phys.header.status[1]
1471 #define  scsi_status   phys.header.status[2]
1472 #define  parity_status phys.header.status[3]
1473 #endif
1474 
1475 /*
1476 **	First four bytes (script)
1477 */
1478 #define  xerr_st       header.scr_st[0]
1479 #define  sync_st       header.scr_st[1]
1480 #define  nego_st       header.scr_st[2]
1481 #define  wide_st       header.scr_st[3]
1482 
1483 /*
1484 **	First four bytes (host)
1485 */
1486 #define  xerr_status   phys.xerr_st
1487 #define  nego_status   phys.nego_st
1488 
1489 #if 0
1490 #define  sync_status   phys.sync_st
1491 #define  wide_status   phys.wide_st
1492 #endif
1493 
1494 /*==========================================================
1495 **
1496 **      Declaration of structs:     Data structure block
1497 **
1498 **==========================================================
1499 **
1500 **	During execution of a ccb by the script processor,
1501 **	the DSA (data structure address) register points
1502 **	to this substructure of the ccb.
1503 **	This substructure contains the header with
1504 **	the script-processor-changeable data and
1505 **	data blocks for the indirect move commands.
1506 **
1507 **----------------------------------------------------------
1508 */
1509 
1510 struct dsb {
1511 
1512 	/*
1513 	**	Header.
1514 	*/
1515 
1516 	struct head	header;
1517 
1518 	/*
1519 	**	Table data for Script
1520 	*/
1521 
1522 	struct scr_tblsel  select;
1523 	struct scr_tblmove smsg  ;
1524 	struct scr_tblmove cmd   ;
1525 	struct scr_tblmove sense ;
1526 	struct scr_tblmove data[MAX_SCATTER];
1527 };
1528 
1529 
1530 /*========================================================================
1531 **
1532 **      Declaration of structs:     Command control block.
1533 **
1534 **========================================================================
1535 */
1536 struct ccb {
1537 	/*----------------------------------------------------------------
1538 	**	This is the data structure which is pointed by the DSA
1539 	**	register when it is executed by the script processor.
1540 	**	It must be the first entry because it contains the header
1541 	**	as first entry that must be cache line aligned.
1542 	**----------------------------------------------------------------
1543 	*/
1544 	struct dsb	phys;
1545 
1546 	/*----------------------------------------------------------------
1547 	**	Mini-script used at CCB execution start-up.
1548 	**	Load the DSA with the data structure address (phys) and
1549 	**	jump to SELECT. Jump to CANCEL if CCB is to be canceled.
1550 	**----------------------------------------------------------------
1551 	*/
1552 	struct launch	start;
1553 
1554 	/*----------------------------------------------------------------
1555 	**	Mini-script used at CCB relection to restart the nexus.
1556 	**	Load the DSA with the data structure address (phys) and
1557 	**	jump to RESEL_DSA. Jump to ABORT if CCB is to be aborted.
1558 	**----------------------------------------------------------------
1559 	*/
1560 	struct launch	restart;
1561 
1562 	/*----------------------------------------------------------------
1563 	**	If a data transfer phase is terminated too early
1564 	**	(after reception of a message (i.e. DISCONNECT)),
1565 	**	we have to prepare a mini script to transfer
1566 	**	the rest of the data.
1567 	**----------------------------------------------------------------
1568 	*/
1569 	ncrcmd		patch[8];
1570 
1571 	/*----------------------------------------------------------------
1572 	**	The general SCSI driver provides a
1573 	**	pointer to a control block.
1574 	**----------------------------------------------------------------
1575 	*/
1576 	struct scsi_cmnd	*cmd;		/* SCSI command 		*/
1577 	u_char		cdb_buf[16];	/* Copy of CDB			*/
1578 	u_char		sense_buf[64];
1579 	int		data_len;	/* Total data length		*/
1580 
1581 	/*----------------------------------------------------------------
1582 	**	Message areas.
1583 	**	We prepare a message to be sent after selection.
1584 	**	We may use a second one if the command is rescheduled
1585 	**	due to GETCC or QFULL.
1586 	**      Contents are IDENTIFY and SIMPLE_TAG.
1587 	**	While negotiating sync or wide transfer,
1588 	**	a SDTR or WDTR message is appended.
1589 	**----------------------------------------------------------------
1590 	*/
1591 	u_char		scsi_smsg [8];
1592 	u_char		scsi_smsg2[8];
1593 
1594 	/*----------------------------------------------------------------
1595 	**	Other fields.
1596 	**----------------------------------------------------------------
1597 	*/
1598 	u_long		p_ccb;		/* BUS address of this CCB	*/
1599 	u_char		sensecmd[6];	/* Sense command		*/
1600 	u_char		tag;		/* Tag for this transfer	*/
1601 					/*  255 means no tag		*/
1602 	u_char		target;
1603 	u_char		lun;
1604 	u_char		queued;
1605 	u_char		auto_sense;
1606 	struct ccb *	link_ccb;	/* Host adapter CCB chain	*/
1607 	struct list_head link_ccbq;	/* Link to unit CCB queue	*/
1608 	u32		startp;		/* Initial data pointer		*/
1609 	u_long		magic;		/* Free / busy  CCB flag	*/
1610 };
1611 
1612 #define CCB_PHYS(cp,lbl)	(cp->p_ccb + offsetof(struct ccb, lbl))
1613 
1614 
1615 /*========================================================================
1616 **
1617 **      Declaration of structs:     NCR device descriptor
1618 **
1619 **========================================================================
1620 */
1621 struct ncb {
1622 	/*----------------------------------------------------------------
1623 	**	The global header.
1624 	**	It is accessible to both the host and the script processor.
1625 	**	Must be cache line size aligned (32 for x86) in order to
1626 	**	allow cache line bursting when it is copied to/from CCB.
1627 	**----------------------------------------------------------------
1628 	*/
1629 	struct head     header;
1630 
1631 	/*----------------------------------------------------------------
1632 	**	CCBs management queues.
1633 	**----------------------------------------------------------------
1634 	*/
1635 	struct scsi_cmnd	*waiting_list;	/* Commands waiting for a CCB	*/
1636 					/*  when lcb is not allocated.	*/
1637 	struct scsi_cmnd	*done_list;	/* Commands waiting for done()  */
1638 					/* callback to be invoked.      */
1639 	spinlock_t	smp_lock;	/* Lock for SMP threading       */
1640 
1641 	/*----------------------------------------------------------------
1642 	**	Chip and controller indentification.
1643 	**----------------------------------------------------------------
1644 	*/
1645 	int		unit;		/* Unit number			*/
1646 	char		inst_name[16];	/* ncb instance name		*/
1647 
1648 	/*----------------------------------------------------------------
1649 	**	Initial value of some IO register bits.
1650 	**	These values are assumed to have been set by BIOS, and may
1651 	**	be used for probing adapter implementation differences.
1652 	**----------------------------------------------------------------
1653 	*/
1654 	u_char	sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest0, sv_ctest3,
1655 		sv_ctest4, sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4;
1656 
1657 	/*----------------------------------------------------------------
1658 	**	Actual initial value of IO register bits used by the
1659 	**	driver. They are loaded at initialisation according to
1660 	**	features that are to be enabled.
1661 	**----------------------------------------------------------------
1662 	*/
1663 	u_char	rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest0, rv_ctest3,
1664 		rv_ctest4, rv_ctest5, rv_stest2;
1665 
1666 	/*----------------------------------------------------------------
1667 	**	Targets management.
1668 	**	During reselection the ncr jumps to jump_tcb.
1669 	**	The SFBR register is loaded with the encoded target id.
1670 	**	For i = 0 to 3
1671 	**		SCR_JUMP ^ IFTRUE(MASK(i, 3)), @(next tcb mod. i)
1672 	**
1673 	**	Recent chips will prefetch the 4 JUMPS using only 1 burst.
1674 	**	It is kind of hashcoding.
1675 	**----------------------------------------------------------------
1676 	*/
1677 	struct link     jump_tcb[4];	/* JUMPs for reselection	*/
1678 	struct tcb  target[MAX_TARGET];	/* Target data			*/
1679 
1680 	/*----------------------------------------------------------------
1681 	**	Virtual and physical bus addresses of the chip.
1682 	**----------------------------------------------------------------
1683 	*/
1684 	void __iomem *vaddr;		/* Virtual and bus address of	*/
1685 	unsigned long	paddr;		/*  chip's IO registers.	*/
1686 	unsigned long	paddr2;		/* On-chip RAM bus address.	*/
1687 	volatile			/* Pointer to volatile for 	*/
1688 	struct ncr_reg	__iomem *reg;	/*  memory mapped IO.		*/
1689 
1690 	/*----------------------------------------------------------------
1691 	**	SCRIPTS virtual and physical bus addresses.
1692 	**	'script'  is loaded in the on-chip RAM if present.
1693 	**	'scripth' stays in main memory.
1694 	**----------------------------------------------------------------
1695 	*/
1696 	struct script	*script0;	/* Copies of script and scripth	*/
1697 	struct scripth	*scripth0;	/*  relocated for this ncb.	*/
1698 	struct scripth	*scripth;	/* Actual scripth virt. address	*/
1699 	u_long		p_script;	/* Actual script and scripth	*/
1700 	u_long		p_scripth;	/*  bus addresses.		*/
1701 
1702 	/*----------------------------------------------------------------
1703 	**	General controller parameters and configuration.
1704 	**----------------------------------------------------------------
1705 	*/
1706 	struct device	*dev;
1707 	u_char		revision_id;	/* PCI device revision id	*/
1708 	u32		irq;		/* IRQ level			*/
1709 	u32		features;	/* Chip features map		*/
1710 	u_char		myaddr;		/* SCSI id of the adapter	*/
1711 	u_char		maxburst;	/* log base 2 of dwords burst	*/
1712 	u_char		maxwide;	/* Maximum transfer width	*/
1713 	u_char		minsync;	/* Minimum sync period factor	*/
1714 	u_char		maxsync;	/* Maximum sync period factor	*/
1715 	u_char		maxoffs;	/* Max scsi offset		*/
1716 	u_char		multiplier;	/* Clock multiplier (1,2,4)	*/
1717 	u_char		clock_divn;	/* Number of clock divisors	*/
1718 	u_long		clock_khz;	/* SCSI clock frequency in KHz	*/
1719 
1720 	/*----------------------------------------------------------------
1721 	**	Start queue management.
1722 	**	It is filled up by the host processor and accessed by the
1723 	**	SCRIPTS processor in order to start SCSI commands.
1724 	**----------------------------------------------------------------
1725 	*/
1726 	u16		squeueput;	/* Next free slot of the queue	*/
1727 	u16		actccbs;	/* Number of allocated CCBs	*/
1728 	u16		queuedccbs;	/* Number of CCBs in start queue*/
1729 	u16		queuedepth;	/* Start queue depth		*/
1730 
1731 	/*----------------------------------------------------------------
1732 	**	Timeout handler.
1733 	**----------------------------------------------------------------
1734 	*/
1735 	struct timer_list timer;	/* Timer handler link header	*/
1736 	u_long		lasttime;
1737 	u_long		settle_time;	/* Resetting the SCSI BUS	*/
1738 
1739 	/*----------------------------------------------------------------
1740 	**	Debugging and profiling.
1741 	**----------------------------------------------------------------
1742 	*/
1743 	struct ncr_reg	regdump;	/* Register dump		*/
1744 	u_long		regtime;	/* Time it has been done	*/
1745 
1746 	/*----------------------------------------------------------------
1747 	**	Miscellaneous buffers accessed by the scripts-processor.
1748 	**	They shall be DWORD aligned, because they may be read or
1749 	**	written with a SCR_COPY script command.
1750 	**----------------------------------------------------------------
1751 	*/
1752 	u_char		msgout[8];	/* Buffer for MESSAGE OUT 	*/
1753 	u_char		msgin [8];	/* Buffer for MESSAGE IN	*/
1754 	u32		lastmsg;	/* Last SCSI message sent	*/
1755 	u_char		scratch;	/* Scratch for SCSI receive	*/
1756 
1757 	/*----------------------------------------------------------------
1758 	**	Miscellaneous configuration and status parameters.
1759 	**----------------------------------------------------------------
1760 	*/
1761 	u_char		disc;		/* Diconnection allowed		*/
1762 	u_char		scsi_mode;	/* Current SCSI BUS mode	*/
1763 	u_char		order;		/* Tag order to use		*/
1764 	u_char		verbose;	/* Verbosity for this controller*/
1765 	int		ncr_cache;	/* Used for cache test at init.	*/
1766 	u_long		p_ncb;		/* BUS address of this NCB	*/
1767 
1768 	/*----------------------------------------------------------------
1769 	**	Command completion handling.
1770 	**----------------------------------------------------------------
1771 	*/
1772 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
1773 	struct ccb	*(ccb_done[MAX_DONE]);
1774 	int		ccb_done_ic;
1775 #endif
1776 	/*----------------------------------------------------------------
1777 	**	Fields that should be removed or changed.
1778 	**----------------------------------------------------------------
1779 	*/
1780 	struct ccb	*ccb;		/* Global CCB			*/
1781 	struct usrcmd	user;		/* Command from user		*/
1782 	volatile u_char	release_stage;	/* Synchronisation stage on release  */
1783 };
1784 
1785 #define NCB_SCRIPT_PHYS(np,lbl)	 (np->p_script  + offsetof (struct script, lbl))
1786 #define NCB_SCRIPTH_PHYS(np,lbl) (np->p_scripth + offsetof (struct scripth,lbl))
1787 
1788 /*==========================================================
1789 **
1790 **
1791 **      Script for NCR-Processor.
1792 **
1793 **	Use ncr_script_fill() to create the variable parts.
1794 **	Use ncr_script_copy_and_bind() to make a copy and
1795 **	bind to physical addresses.
1796 **
1797 **
1798 **==========================================================
1799 **
1800 **	We have to know the offsets of all labels before
1801 **	we reach them (for forward jumps).
1802 **	Therefore we declare a struct here.
1803 **	If you make changes inside the script,
1804 **	DONT FORGET TO CHANGE THE LENGTHS HERE!
1805 **
1806 **----------------------------------------------------------
1807 */
1808 
1809 /*
1810 **	For HP Zalon/53c720 systems, the Zalon interface
1811 **	between CPU and 53c720 does prefetches, which causes
1812 **	problems with self modifying scripts.  The problem
1813 **	is overcome by calling a dummy subroutine after each
1814 **	modification, to force a refetch of the script on
1815 **	return from the subroutine.
1816 */
1817 
1818 #ifdef CONFIG_NCR53C8XX_PREFETCH
1819 #define PREFETCH_FLUSH_CNT	2
1820 #define PREFETCH_FLUSH		SCR_CALL, PADDRH (wait_dma),
1821 #else
1822 #define PREFETCH_FLUSH_CNT	0
1823 #define PREFETCH_FLUSH
1824 #endif
1825 
1826 /*
1827 **	Script fragments which are loaded into the on-chip RAM
1828 **	of 825A, 875 and 895 chips.
1829 */
1830 struct script {
1831 	ncrcmd	start		[  5];
1832 	ncrcmd  startpos	[  1];
1833 	ncrcmd	select		[  6];
1834 	ncrcmd	select2		[  9 + PREFETCH_FLUSH_CNT];
1835 	ncrcmd	loadpos		[  4];
1836 	ncrcmd	send_ident	[  9];
1837 	ncrcmd	prepare		[  6];
1838 	ncrcmd	prepare2	[  7];
1839 	ncrcmd  command		[  6];
1840 	ncrcmd  dispatch	[ 32];
1841 	ncrcmd  clrack		[  4];
1842 	ncrcmd	no_data		[ 17];
1843 	ncrcmd  status		[  8];
1844 	ncrcmd  msg_in		[  2];
1845 	ncrcmd  msg_in2		[ 16];
1846 	ncrcmd  msg_bad		[  4];
1847 	ncrcmd	setmsg		[  7];
1848 	ncrcmd	cleanup		[  6];
1849 	ncrcmd  complete	[  9];
1850 	ncrcmd	cleanup_ok	[  8 + PREFETCH_FLUSH_CNT];
1851 	ncrcmd	cleanup0	[  1];
1852 #ifndef SCSI_NCR_CCB_DONE_SUPPORT
1853 	ncrcmd	signal		[ 12];
1854 #else
1855 	ncrcmd	signal		[  9];
1856 	ncrcmd	done_pos	[  1];
1857 	ncrcmd	done_plug	[  2];
1858 	ncrcmd	done_end	[  7];
1859 #endif
1860 	ncrcmd  save_dp		[  7];
1861 	ncrcmd  restore_dp	[  5];
1862 	ncrcmd  disconnect	[ 10];
1863 	ncrcmd	msg_out		[  9];
1864 	ncrcmd	msg_out_done	[  7];
1865 	ncrcmd  idle		[  2];
1866 	ncrcmd	reselect	[  8];
1867 	ncrcmd	reselected	[  8];
1868 	ncrcmd	resel_dsa	[  6 + PREFETCH_FLUSH_CNT];
1869 	ncrcmd	loadpos1	[  4];
1870 	ncrcmd  resel_lun	[  6];
1871 	ncrcmd	resel_tag	[  6];
1872 	ncrcmd	jump_to_nexus	[  4 + PREFETCH_FLUSH_CNT];
1873 	ncrcmd	nexus_indirect	[  4];
1874 	ncrcmd	resel_notag	[  4];
1875 	ncrcmd  data_in		[MAX_SCATTERL * 4];
1876 	ncrcmd  data_in2	[  4];
1877 	ncrcmd  data_out	[MAX_SCATTERL * 4];
1878 	ncrcmd  data_out2	[  4];
1879 };
1880 
1881 /*
1882 **	Script fragments which stay in main memory for all chips.
1883 */
1884 struct scripth {
1885 	ncrcmd  tryloop		[MAX_START*2];
1886 	ncrcmd  tryloop2	[  2];
1887 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
1888 	ncrcmd  done_queue	[MAX_DONE*5];
1889 	ncrcmd  done_queue2	[  2];
1890 #endif
1891 	ncrcmd	select_no_atn	[  8];
1892 	ncrcmd	cancel		[  4];
1893 	ncrcmd	skip		[  9 + PREFETCH_FLUSH_CNT];
1894 	ncrcmd	skip2		[ 19];
1895 	ncrcmd	par_err_data_in	[  6];
1896 	ncrcmd	par_err_other	[  4];
1897 	ncrcmd	msg_reject	[  8];
1898 	ncrcmd	msg_ign_residue	[ 24];
1899 	ncrcmd  msg_extended	[ 10];
1900 	ncrcmd  msg_ext_2	[ 10];
1901 	ncrcmd	msg_wdtr	[ 14];
1902 	ncrcmd	send_wdtr	[  7];
1903 	ncrcmd  msg_ext_3	[ 10];
1904 	ncrcmd	msg_sdtr	[ 14];
1905 	ncrcmd	send_sdtr	[  7];
1906 	ncrcmd	nego_bad_phase	[  4];
1907 	ncrcmd	msg_out_abort	[ 10];
1908 	ncrcmd  hdata_in	[MAX_SCATTERH * 4];
1909 	ncrcmd  hdata_in2	[  2];
1910 	ncrcmd  hdata_out	[MAX_SCATTERH * 4];
1911 	ncrcmd  hdata_out2	[  2];
1912 	ncrcmd	reset		[  4];
1913 	ncrcmd	aborttag	[  4];
1914 	ncrcmd	abort		[  2];
1915 	ncrcmd	abort_resel	[ 20];
1916 	ncrcmd	resend_ident	[  4];
1917 	ncrcmd	clratn_go_on	[  3];
1918 	ncrcmd	nxtdsp_go_on	[  1];
1919 	ncrcmd	sdata_in	[  8];
1920 	ncrcmd  data_io		[ 18];
1921 	ncrcmd	bad_identify	[ 12];
1922 	ncrcmd	bad_i_t_l	[  4];
1923 	ncrcmd	bad_i_t_l_q	[  4];
1924 	ncrcmd	bad_target	[  8];
1925 	ncrcmd	bad_status	[  8];
1926 	ncrcmd	start_ram	[  4 + PREFETCH_FLUSH_CNT];
1927 	ncrcmd	start_ram0	[  4];
1928 	ncrcmd	sto_restart	[  5];
1929 	ncrcmd	wait_dma	[  2];
1930 	ncrcmd	snooptest	[  9];
1931 	ncrcmd	snoopend	[  2];
1932 };
1933 
1934 /*==========================================================
1935 **
1936 **
1937 **      Function headers.
1938 **
1939 **
1940 **==========================================================
1941 */
1942 
1943 static	void	ncr_alloc_ccb	(struct ncb *np, u_char tn, u_char ln);
1944 static	void	ncr_complete	(struct ncb *np, struct ccb *cp);
1945 static	void	ncr_exception	(struct ncb *np);
1946 static	void	ncr_free_ccb	(struct ncb *np, struct ccb *cp);
1947 static	void	ncr_init_ccb	(struct ncb *np, struct ccb *cp);
1948 static	void	ncr_init_tcb	(struct ncb *np, u_char tn);
1949 static	struct lcb *	ncr_alloc_lcb	(struct ncb *np, u_char tn, u_char ln);
1950 static	struct lcb *	ncr_setup_lcb	(struct ncb *np, struct scsi_device *sdev);
1951 static	void	ncr_getclock	(struct ncb *np, int mult);
1952 static	void	ncr_selectclock	(struct ncb *np, u_char scntl3);
1953 static	struct ccb *ncr_get_ccb	(struct ncb *np, struct scsi_cmnd *cmd);
1954 static	void	ncr_chip_reset	(struct ncb *np, int delay);
1955 static	void	ncr_init	(struct ncb *np, int reset, char * msg, u_long code);
1956 static	int	ncr_int_sbmc	(struct ncb *np);
1957 static	int	ncr_int_par	(struct ncb *np);
1958 static	void	ncr_int_ma	(struct ncb *np);
1959 static	void	ncr_int_sir	(struct ncb *np);
1960 static  void    ncr_int_sto     (struct ncb *np);
1961 static	void	ncr_negotiate	(struct ncb* np, struct tcb* tp);
1962 static	int	ncr_prepare_nego(struct ncb *np, struct ccb *cp, u_char *msgptr);
1963 
1964 static	void	ncr_script_copy_and_bind
1965 				(struct ncb *np, ncrcmd *src, ncrcmd *dst, int len);
1966 static  void    ncr_script_fill (struct script * scr, struct scripth * scripth);
1967 static	int	ncr_scatter	(struct ncb *np, struct ccb *cp, struct scsi_cmnd *cmd);
1968 static	void	ncr_getsync	(struct ncb *np, u_char sfac, u_char *fakp, u_char *scntl3p);
1969 static	void	ncr_setsync	(struct ncb *np, struct ccb *cp, u_char scntl3, u_char sxfer);
1970 static	void	ncr_setup_tags	(struct ncb *np, struct scsi_device *sdev);
1971 static	void	ncr_setwide	(struct ncb *np, struct ccb *cp, u_char wide, u_char ack);
1972 static	int	ncr_snooptest	(struct ncb *np);
1973 static	void	ncr_timeout	(struct ncb *np);
1974 static  void    ncr_wakeup      (struct ncb *np, u_long code);
1975 static  void    ncr_wakeup_done (struct ncb *np);
1976 static	void	ncr_start_next_ccb (struct ncb *np, struct lcb * lp, int maxn);
1977 static	void	ncr_put_start_queue(struct ncb *np, struct ccb *cp);
1978 
1979 static void insert_into_waiting_list(struct ncb *np, struct scsi_cmnd *cmd);
1980 static struct scsi_cmnd *retrieve_from_waiting_list(int to_remove, struct ncb *np, struct scsi_cmnd *cmd);
1981 static void process_waiting_list(struct ncb *np, int sts);
1982 
1983 #define remove_from_waiting_list(np, cmd) \
1984 		retrieve_from_waiting_list(1, (np), (cmd))
1985 #define requeue_waiting_list(np) process_waiting_list((np), DID_OK)
1986 #define reset_waiting_list(np) process_waiting_list((np), DID_RESET)
1987 
1988 static inline char *ncr_name (struct ncb *np)
1989 {
1990 	return np->inst_name;
1991 }
1992 
1993 
1994 /*==========================================================
1995 **
1996 **
1997 **      Scripts for NCR-Processor.
1998 **
1999 **      Use ncr_script_bind for binding to physical addresses.
2000 **
2001 **
2002 **==========================================================
2003 **
2004 **	NADDR generates a reference to a field of the controller data.
2005 **	PADDR generates a reference to another part of the script.
2006 **	RADDR generates a reference to a script processor register.
2007 **	FADDR generates a reference to a script processor register
2008 **		with offset.
2009 **
2010 **----------------------------------------------------------
2011 */
2012 
2013 #define	RELOC_SOFTC	0x40000000
2014 #define	RELOC_LABEL	0x50000000
2015 #define	RELOC_REGISTER	0x60000000
2016 #if 0
2017 #define	RELOC_KVAR	0x70000000
2018 #endif
2019 #define	RELOC_LABELH	0x80000000
2020 #define	RELOC_MASK	0xf0000000
2021 
2022 #define	NADDR(label)	(RELOC_SOFTC | offsetof(struct ncb, label))
2023 #define PADDR(label)    (RELOC_LABEL | offsetof(struct script, label))
2024 #define PADDRH(label)   (RELOC_LABELH | offsetof(struct scripth, label))
2025 #define	RADDR(label)	(RELOC_REGISTER | REG(label))
2026 #define	FADDR(label,ofs)(RELOC_REGISTER | ((REG(label))+(ofs)))
2027 #if 0
2028 #define	KVAR(which)	(RELOC_KVAR | (which))
2029 #endif
2030 
2031 #if 0
2032 #define	SCRIPT_KVAR_JIFFIES	(0)
2033 #define	SCRIPT_KVAR_FIRST		SCRIPT_KVAR_JIFFIES
2034 #define	SCRIPT_KVAR_LAST		SCRIPT_KVAR_JIFFIES
2035 /*
2036  * Kernel variables referenced in the scripts.
2037  * THESE MUST ALL BE ALIGNED TO A 4-BYTE BOUNDARY.
2038  */
2039 static void *script_kvars[] __initdata =
2040 	{ (void *)&jiffies };
2041 #endif
2042 
2043 static	struct script script0 __initdata = {
2044 /*--------------------------< START >-----------------------*/ {
2045 	/*
2046 	**	This NOP will be patched with LED ON
2047 	**	SCR_REG_REG (gpreg, SCR_AND, 0xfe)
2048 	*/
2049 	SCR_NO_OP,
2050 		0,
2051 	/*
2052 	**      Clear SIGP.
2053 	*/
2054 	SCR_FROM_REG (ctest2),
2055 		0,
2056 	/*
2057 	**	Then jump to a certain point in tryloop.
2058 	**	Due to the lack of indirect addressing the code
2059 	**	is self modifying here.
2060 	*/
2061 	SCR_JUMP,
2062 }/*-------------------------< STARTPOS >--------------------*/,{
2063 		PADDRH(tryloop),
2064 
2065 }/*-------------------------< SELECT >----------------------*/,{
2066 	/*
2067 	**	DSA	contains the address of a scheduled
2068 	**		data structure.
2069 	**
2070 	**	SCRATCHA contains the address of the script,
2071 	**		which starts the next entry.
2072 	**
2073 	**	Set Initiator mode.
2074 	**
2075 	**	(Target mode is left as an exercise for the reader)
2076 	*/
2077 
2078 	SCR_CLR (SCR_TRG),
2079 		0,
2080 	SCR_LOAD_REG (HS_REG, HS_SELECTING),
2081 		0,
2082 
2083 	/*
2084 	**      And try to select this target.
2085 	*/
2086 	SCR_SEL_TBL_ATN ^ offsetof (struct dsb, select),
2087 		PADDR (reselect),
2088 
2089 }/*-------------------------< SELECT2 >----------------------*/,{
2090 	/*
2091 	**	Now there are 4 possibilities:
2092 	**
2093 	**	(1) The ncr loses arbitration.
2094 	**	This is ok, because it will try again,
2095 	**	when the bus becomes idle.
2096 	**	(But beware of the timeout function!)
2097 	**
2098 	**	(2) The ncr is reselected.
2099 	**	Then the script processor takes the jump
2100 	**	to the RESELECT label.
2101 	**
2102 	**	(3) The ncr wins arbitration.
2103 	**	Then it will execute SCRIPTS instruction until
2104 	**	the next instruction that checks SCSI phase.
2105 	**	Then will stop and wait for selection to be
2106 	**	complete or selection time-out to occur.
2107 	**	As a result the SCRIPTS instructions until
2108 	**	LOADPOS + 2 should be executed in parallel with
2109 	**	the SCSI core performing selection.
2110 	*/
2111 
2112 	/*
2113 	**	The MESSAGE_REJECT problem seems to be due to a selection
2114 	**	timing problem.
2115 	**	Wait immediately for the selection to complete.
2116 	**	(2.5x behaves so)
2117 	*/
2118 	SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_OUT)),
2119 		0,
2120 
2121 	/*
2122 	**	Next time use the next slot.
2123 	*/
2124 	SCR_COPY (4),
2125 		RADDR (temp),
2126 		PADDR (startpos),
2127 	/*
2128 	**      The ncr doesn't have an indirect load
2129 	**	or store command. So we have to
2130 	**	copy part of the control block to a
2131 	**	fixed place, where we can access it.
2132 	**
2133 	**	We patch the address part of a
2134 	**	COPY command with the DSA-register.
2135 	*/
2136 	SCR_COPY_F (4),
2137 		RADDR (dsa),
2138 		PADDR (loadpos),
2139 	/*
2140 	**	Flush script prefetch if required
2141 	*/
2142 	PREFETCH_FLUSH
2143 	/*
2144 	**	then we do the actual copy.
2145 	*/
2146 	SCR_COPY (sizeof (struct head)),
2147 	/*
2148 	**	continued after the next label ...
2149 	*/
2150 }/*-------------------------< LOADPOS >---------------------*/,{
2151 		0,
2152 		NADDR (header),
2153 	/*
2154 	**	Wait for the next phase or the selection
2155 	**	to complete or time-out.
2156 	*/
2157 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
2158 		PADDR (prepare),
2159 
2160 }/*-------------------------< SEND_IDENT >----------------------*/,{
2161 	/*
2162 	**	Selection complete.
2163 	**	Send the IDENTIFY and SIMPLE_TAG messages
2164 	**	(and the EXTENDED_SDTR message)
2165 	*/
2166 	SCR_MOVE_TBL ^ SCR_MSG_OUT,
2167 		offsetof (struct dsb, smsg),
2168 	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
2169 		PADDRH (resend_ident),
2170 	SCR_LOAD_REG (scratcha, 0x80),
2171 		0,
2172 	SCR_COPY (1),
2173 		RADDR (scratcha),
2174 		NADDR (lastmsg),
2175 }/*-------------------------< PREPARE >----------------------*/,{
2176 	/*
2177 	**      load the savep (saved pointer) into
2178 	**      the TEMP register (actual pointer)
2179 	*/
2180 	SCR_COPY (4),
2181 		NADDR (header.savep),
2182 		RADDR (temp),
2183 	/*
2184 	**      Initialize the status registers
2185 	*/
2186 	SCR_COPY (4),
2187 		NADDR (header.status),
2188 		RADDR (scr0),
2189 }/*-------------------------< PREPARE2 >---------------------*/,{
2190 	/*
2191 	**	Initialize the msgout buffer with a NOOP message.
2192 	*/
2193 	SCR_LOAD_REG (scratcha, NOP),
2194 		0,
2195 	SCR_COPY (1),
2196 		RADDR (scratcha),
2197 		NADDR (msgout),
2198 #if 0
2199 	SCR_COPY (1),
2200 		RADDR (scratcha),
2201 		NADDR (msgin),
2202 #endif
2203 	/*
2204 	**	Anticipate the COMMAND phase.
2205 	**	This is the normal case for initial selection.
2206 	*/
2207 	SCR_JUMP ^ IFFALSE (WHEN (SCR_COMMAND)),
2208 		PADDR (dispatch),
2209 
2210 }/*-------------------------< COMMAND >--------------------*/,{
2211 	/*
2212 	**	... and send the command
2213 	*/
2214 	SCR_MOVE_TBL ^ SCR_COMMAND,
2215 		offsetof (struct dsb, cmd),
2216 	/*
2217 	**	If status is still HS_NEGOTIATE, negotiation failed.
2218 	**	We check this here, since we want to do that
2219 	**	only once.
2220 	*/
2221 	SCR_FROM_REG (HS_REG),
2222 		0,
2223 	SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)),
2224 		SIR_NEGO_FAILED,
2225 
2226 }/*-----------------------< DISPATCH >----------------------*/,{
2227 	/*
2228 	**	MSG_IN is the only phase that shall be
2229 	**	entered at least once for each (re)selection.
2230 	**	So we test it first.
2231 	*/
2232 	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
2233 		PADDR (msg_in),
2234 
2235 	SCR_RETURN ^ IFTRUE (IF (SCR_DATA_OUT)),
2236 		0,
2237 	/*
2238 	**	DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 4.
2239 	**	Possible data corruption during Memory Write and Invalidate.
2240 	**	This work-around resets the addressing logic prior to the
2241 	**	start of the first MOVE of a DATA IN phase.
2242 	**	(See Documentation/scsi/ncr53c8xx.txt for more information)
2243 	*/
2244 	SCR_JUMPR ^ IFFALSE (IF (SCR_DATA_IN)),
2245 		20,
2246 	SCR_COPY (4),
2247 		RADDR (scratcha),
2248 		RADDR (scratcha),
2249 	SCR_RETURN,
2250  		0,
2251 	SCR_JUMP ^ IFTRUE (IF (SCR_STATUS)),
2252 		PADDR (status),
2253 	SCR_JUMP ^ IFTRUE (IF (SCR_COMMAND)),
2254 		PADDR (command),
2255 	SCR_JUMP ^ IFTRUE (IF (SCR_MSG_OUT)),
2256 		PADDR (msg_out),
2257 	/*
2258 	**      Discard one illegal phase byte, if required.
2259 	*/
2260 	SCR_LOAD_REG (scratcha, XE_BAD_PHASE),
2261 		0,
2262 	SCR_COPY (1),
2263 		RADDR (scratcha),
2264 		NADDR (xerr_st),
2265 	SCR_JUMPR ^ IFFALSE (IF (SCR_ILG_OUT)),
2266 		8,
2267 	SCR_MOVE_ABS (1) ^ SCR_ILG_OUT,
2268 		NADDR (scratch),
2269 	SCR_JUMPR ^ IFFALSE (IF (SCR_ILG_IN)),
2270 		8,
2271 	SCR_MOVE_ABS (1) ^ SCR_ILG_IN,
2272 		NADDR (scratch),
2273 	SCR_JUMP,
2274 		PADDR (dispatch),
2275 
2276 }/*-------------------------< CLRACK >----------------------*/,{
2277 	/*
2278 	**	Terminate possible pending message phase.
2279 	*/
2280 	SCR_CLR (SCR_ACK),
2281 		0,
2282 	SCR_JUMP,
2283 		PADDR (dispatch),
2284 
2285 }/*-------------------------< NO_DATA >--------------------*/,{
2286 	/*
2287 	**	The target wants to tranfer too much data
2288 	**	or in the wrong direction.
2289 	**      Remember that in extended error.
2290 	*/
2291 	SCR_LOAD_REG (scratcha, XE_EXTRA_DATA),
2292 		0,
2293 	SCR_COPY (1),
2294 		RADDR (scratcha),
2295 		NADDR (xerr_st),
2296 	/*
2297 	**      Discard one data byte, if required.
2298 	*/
2299 	SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_OUT)),
2300 		8,
2301 	SCR_MOVE_ABS (1) ^ SCR_DATA_OUT,
2302 		NADDR (scratch),
2303 	SCR_JUMPR ^ IFFALSE (IF (SCR_DATA_IN)),
2304 		8,
2305 	SCR_MOVE_ABS (1) ^ SCR_DATA_IN,
2306 		NADDR (scratch),
2307 	/*
2308 	**      .. and repeat as required.
2309 	*/
2310 	SCR_CALL,
2311 		PADDR (dispatch),
2312 	SCR_JUMP,
2313 		PADDR (no_data),
2314 
2315 }/*-------------------------< STATUS >--------------------*/,{
2316 	/*
2317 	**	get the status
2318 	*/
2319 	SCR_MOVE_ABS (1) ^ SCR_STATUS,
2320 		NADDR (scratch),
2321 	/*
2322 	**	save status to scsi_status.
2323 	**	mark as complete.
2324 	*/
2325 	SCR_TO_REG (SS_REG),
2326 		0,
2327 	SCR_LOAD_REG (HS_REG, HS_COMPLETE),
2328 		0,
2329 	SCR_JUMP,
2330 		PADDR (dispatch),
2331 }/*-------------------------< MSG_IN >--------------------*/,{
2332 	/*
2333 	**	Get the first byte of the message
2334 	**	and save it to SCRATCHA.
2335 	**
2336 	**	The script processor doesn't negate the
2337 	**	ACK signal after this transfer.
2338 	*/
2339 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
2340 		NADDR (msgin[0]),
2341 }/*-------------------------< MSG_IN2 >--------------------*/,{
2342 	/*
2343 	**	Handle this message.
2344 	*/
2345 	SCR_JUMP ^ IFTRUE (DATA (COMMAND_COMPLETE)),
2346 		PADDR (complete),
2347 	SCR_JUMP ^ IFTRUE (DATA (DISCONNECT)),
2348 		PADDR (disconnect),
2349 	SCR_JUMP ^ IFTRUE (DATA (SAVE_POINTERS)),
2350 		PADDR (save_dp),
2351 	SCR_JUMP ^ IFTRUE (DATA (RESTORE_POINTERS)),
2352 		PADDR (restore_dp),
2353 	SCR_JUMP ^ IFTRUE (DATA (EXTENDED_MESSAGE)),
2354 		PADDRH (msg_extended),
2355 	SCR_JUMP ^ IFTRUE (DATA (NOP)),
2356 		PADDR (clrack),
2357 	SCR_JUMP ^ IFTRUE (DATA (MESSAGE_REJECT)),
2358 		PADDRH (msg_reject),
2359 	SCR_JUMP ^ IFTRUE (DATA (IGNORE_WIDE_RESIDUE)),
2360 		PADDRH (msg_ign_residue),
2361 	/*
2362 	**	Rest of the messages left as
2363 	**	an exercise ...
2364 	**
2365 	**	Unimplemented messages:
2366 	**	fall through to MSG_BAD.
2367 	*/
2368 }/*-------------------------< MSG_BAD >------------------*/,{
2369 	/*
2370 	**	unimplemented message - reject it.
2371 	*/
2372 	SCR_INT,
2373 		SIR_REJECT_SENT,
2374 	SCR_LOAD_REG (scratcha, MESSAGE_REJECT),
2375 		0,
2376 }/*-------------------------< SETMSG >----------------------*/,{
2377 	SCR_COPY (1),
2378 		RADDR (scratcha),
2379 		NADDR (msgout),
2380 	SCR_SET (SCR_ATN),
2381 		0,
2382 	SCR_JUMP,
2383 		PADDR (clrack),
2384 }/*-------------------------< CLEANUP >-------------------*/,{
2385 	/*
2386 	**      dsa:    Pointer to ccb
2387 	**	      or xxxxxxFF (no ccb)
2388 	**
2389 	**      HS_REG:   Host-Status (<>0!)
2390 	*/
2391 	SCR_FROM_REG (dsa),
2392 		0,
2393 	SCR_JUMP ^ IFTRUE (DATA (0xff)),
2394 		PADDR (start),
2395 	/*
2396 	**      dsa is valid.
2397 	**	complete the cleanup.
2398 	*/
2399 	SCR_JUMP,
2400 		PADDR (cleanup_ok),
2401 
2402 }/*-------------------------< COMPLETE >-----------------*/,{
2403 	/*
2404 	**	Complete message.
2405 	**
2406 	**	Copy TEMP register to LASTP in header.
2407 	*/
2408 	SCR_COPY (4),
2409 		RADDR (temp),
2410 		NADDR (header.lastp),
2411 	/*
2412 	**	When we terminate the cycle by clearing ACK,
2413 	**	the target may disconnect immediately.
2414 	**
2415 	**	We don't want to be told of an
2416 	**	"unexpected disconnect",
2417 	**	so we disable this feature.
2418 	*/
2419 	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
2420 		0,
2421 	/*
2422 	**	Terminate cycle ...
2423 	*/
2424 	SCR_CLR (SCR_ACK|SCR_ATN),
2425 		0,
2426 	/*
2427 	**	... and wait for the disconnect.
2428 	*/
2429 	SCR_WAIT_DISC,
2430 		0,
2431 }/*-------------------------< CLEANUP_OK >----------------*/,{
2432 	/*
2433 	**	Save host status to header.
2434 	*/
2435 	SCR_COPY (4),
2436 		RADDR (scr0),
2437 		NADDR (header.status),
2438 	/*
2439 	**	and copy back the header to the ccb.
2440 	*/
2441 	SCR_COPY_F (4),
2442 		RADDR (dsa),
2443 		PADDR (cleanup0),
2444 	/*
2445 	**	Flush script prefetch if required
2446 	*/
2447 	PREFETCH_FLUSH
2448 	SCR_COPY (sizeof (struct head)),
2449 		NADDR (header),
2450 }/*-------------------------< CLEANUP0 >--------------------*/,{
2451 		0,
2452 }/*-------------------------< SIGNAL >----------------------*/,{
2453 	/*
2454 	**	if job not completed ...
2455 	*/
2456 	SCR_FROM_REG (HS_REG),
2457 		0,
2458 	/*
2459 	**	... start the next command.
2460 	*/
2461 	SCR_JUMP ^ IFTRUE (MASK (0, (HS_DONEMASK|HS_SKIPMASK))),
2462 		PADDR(start),
2463 	/*
2464 	**	If command resulted in not GOOD status,
2465 	**	call the C code if needed.
2466 	*/
2467 	SCR_FROM_REG (SS_REG),
2468 		0,
2469 	SCR_CALL ^ IFFALSE (DATA (S_GOOD)),
2470 		PADDRH (bad_status),
2471 
2472 #ifndef	SCSI_NCR_CCB_DONE_SUPPORT
2473 
2474 	/*
2475 	**	... signal completion to the host
2476 	*/
2477 	SCR_INT,
2478 		SIR_INTFLY,
2479 	/*
2480 	**	Auf zu neuen Schandtaten!
2481 	*/
2482 	SCR_JUMP,
2483 		PADDR(start),
2484 
2485 #else	/* defined SCSI_NCR_CCB_DONE_SUPPORT */
2486 
2487 	/*
2488 	**	... signal completion to the host
2489 	*/
2490 	SCR_JUMP,
2491 }/*------------------------< DONE_POS >---------------------*/,{
2492 		PADDRH (done_queue),
2493 }/*------------------------< DONE_PLUG >--------------------*/,{
2494 	SCR_INT,
2495 		SIR_DONE_OVERFLOW,
2496 }/*------------------------< DONE_END >---------------------*/,{
2497 	SCR_INT,
2498 		SIR_INTFLY,
2499 	SCR_COPY (4),
2500 		RADDR (temp),
2501 		PADDR (done_pos),
2502 	SCR_JUMP,
2503 		PADDR (start),
2504 
2505 #endif	/* SCSI_NCR_CCB_DONE_SUPPORT */
2506 
2507 }/*-------------------------< SAVE_DP >------------------*/,{
2508 	/*
2509 	**	SAVE_DP message:
2510 	**	Copy TEMP register to SAVEP in header.
2511 	*/
2512 	SCR_COPY (4),
2513 		RADDR (temp),
2514 		NADDR (header.savep),
2515 	SCR_CLR (SCR_ACK),
2516 		0,
2517 	SCR_JUMP,
2518 		PADDR (dispatch),
2519 }/*-------------------------< RESTORE_DP >---------------*/,{
2520 	/*
2521 	**	RESTORE_DP message:
2522 	**	Copy SAVEP in header to TEMP register.
2523 	*/
2524 	SCR_COPY (4),
2525 		NADDR (header.savep),
2526 		RADDR (temp),
2527 	SCR_JUMP,
2528 		PADDR (clrack),
2529 
2530 }/*-------------------------< DISCONNECT >---------------*/,{
2531 	/*
2532 	**	DISCONNECTing  ...
2533 	**
2534 	**	disable the "unexpected disconnect" feature,
2535 	**	and remove the ACK signal.
2536 	*/
2537 	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
2538 		0,
2539 	SCR_CLR (SCR_ACK|SCR_ATN),
2540 		0,
2541 	/*
2542 	**	Wait for the disconnect.
2543 	*/
2544 	SCR_WAIT_DISC,
2545 		0,
2546 	/*
2547 	**	Status is: DISCONNECTED.
2548 	*/
2549 	SCR_LOAD_REG (HS_REG, HS_DISCONNECT),
2550 		0,
2551 	SCR_JUMP,
2552 		PADDR (cleanup_ok),
2553 
2554 }/*-------------------------< MSG_OUT >-------------------*/,{
2555 	/*
2556 	**	The target requests a message.
2557 	*/
2558 	SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
2559 		NADDR (msgout),
2560 	SCR_COPY (1),
2561 		NADDR (msgout),
2562 		NADDR (lastmsg),
2563 	/*
2564 	**	If it was no ABORT message ...
2565 	*/
2566 	SCR_JUMP ^ IFTRUE (DATA (ABORT_TASK_SET)),
2567 		PADDRH (msg_out_abort),
2568 	/*
2569 	**	... wait for the next phase
2570 	**	if it's a message out, send it again, ...
2571 	*/
2572 	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
2573 		PADDR (msg_out),
2574 }/*-------------------------< MSG_OUT_DONE >--------------*/,{
2575 	/*
2576 	**	... else clear the message ...
2577 	*/
2578 	SCR_LOAD_REG (scratcha, NOP),
2579 		0,
2580 	SCR_COPY (4),
2581 		RADDR (scratcha),
2582 		NADDR (msgout),
2583 	/*
2584 	**	... and process the next phase
2585 	*/
2586 	SCR_JUMP,
2587 		PADDR (dispatch),
2588 }/*-------------------------< IDLE >------------------------*/,{
2589 	/*
2590 	**	Nothing to do?
2591 	**	Wait for reselect.
2592 	**	This NOP will be patched with LED OFF
2593 	**	SCR_REG_REG (gpreg, SCR_OR, 0x01)
2594 	*/
2595 	SCR_NO_OP,
2596 		0,
2597 }/*-------------------------< RESELECT >--------------------*/,{
2598 	/*
2599 	**	make the DSA invalid.
2600 	*/
2601 	SCR_LOAD_REG (dsa, 0xff),
2602 		0,
2603 	SCR_CLR (SCR_TRG),
2604 		0,
2605 	SCR_LOAD_REG (HS_REG, HS_IN_RESELECT),
2606 		0,
2607 	/*
2608 	**	Sleep waiting for a reselection.
2609 	**	If SIGP is set, special treatment.
2610 	**
2611 	**	Zu allem bereit ..
2612 	*/
2613 	SCR_WAIT_RESEL,
2614 		PADDR(start),
2615 }/*-------------------------< RESELECTED >------------------*/,{
2616 	/*
2617 	**	This NOP will be patched with LED ON
2618 	**	SCR_REG_REG (gpreg, SCR_AND, 0xfe)
2619 	*/
2620 	SCR_NO_OP,
2621 		0,
2622 	/*
2623 	**	... zu nichts zu gebrauchen ?
2624 	**
2625 	**      load the target id into the SFBR
2626 	**	and jump to the control block.
2627 	**
2628 	**	Look at the declarations of
2629 	**	- struct ncb
2630 	**	- struct tcb
2631 	**	- struct lcb
2632 	**	- struct ccb
2633 	**	to understand what's going on.
2634 	*/
2635 	SCR_REG_SFBR (ssid, SCR_AND, 0x8F),
2636 		0,
2637 	SCR_TO_REG (sdid),
2638 		0,
2639 	SCR_JUMP,
2640 		NADDR (jump_tcb),
2641 
2642 }/*-------------------------< RESEL_DSA >-------------------*/,{
2643 	/*
2644 	**	Ack the IDENTIFY or TAG previously received.
2645 	*/
2646 	SCR_CLR (SCR_ACK),
2647 		0,
2648 	/*
2649 	**      The ncr doesn't have an indirect load
2650 	**	or store command. So we have to
2651 	**	copy part of the control block to a
2652 	**	fixed place, where we can access it.
2653 	**
2654 	**	We patch the address part of a
2655 	**	COPY command with the DSA-register.
2656 	*/
2657 	SCR_COPY_F (4),
2658 		RADDR (dsa),
2659 		PADDR (loadpos1),
2660 	/*
2661 	**	Flush script prefetch if required
2662 	*/
2663 	PREFETCH_FLUSH
2664 	/*
2665 	**	then we do the actual copy.
2666 	*/
2667 	SCR_COPY (sizeof (struct head)),
2668 	/*
2669 	**	continued after the next label ...
2670 	*/
2671 
2672 }/*-------------------------< LOADPOS1 >-------------------*/,{
2673 		0,
2674 		NADDR (header),
2675 	/*
2676 	**	The DSA contains the data structure address.
2677 	*/
2678 	SCR_JUMP,
2679 		PADDR (prepare),
2680 
2681 }/*-------------------------< RESEL_LUN >-------------------*/,{
2682 	/*
2683 	**	come back to this point
2684 	**	to get an IDENTIFY message
2685 	**	Wait for a msg_in phase.
2686 	*/
2687 	SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)),
2688 		SIR_RESEL_NO_MSG_IN,
2689 	/*
2690 	**	message phase.
2691 	**	Read the data directly from the BUS DATA lines.
2692 	**	This helps to support very old SCSI devices that
2693 	**	may reselect without sending an IDENTIFY.
2694 	*/
2695 	SCR_FROM_REG (sbdl),
2696 		0,
2697 	/*
2698 	**	It should be an Identify message.
2699 	*/
2700 	SCR_RETURN,
2701 		0,
2702 }/*-------------------------< RESEL_TAG >-------------------*/,{
2703 	/*
2704 	**	Read IDENTIFY + SIMPLE + TAG using a single MOVE.
2705 	**	Agressive optimization, is'nt it?
2706 	**	No need to test the SIMPLE TAG message, since the
2707 	**	driver only supports conformant devices for tags. ;-)
2708 	*/
2709 	SCR_MOVE_ABS (3) ^ SCR_MSG_IN,
2710 		NADDR (msgin),
2711 	/*
2712 	**	Read the TAG from the SIDL.
2713 	**	Still an aggressive optimization. ;-)
2714 	**	Compute the CCB indirect jump address which
2715 	**	is (#TAG*2 & 0xfc) due to tag numbering using
2716 	**	1,3,5..MAXTAGS*2+1 actual values.
2717 	*/
2718 	SCR_REG_SFBR (sidl, SCR_SHL, 0),
2719 		0,
2720 	SCR_SFBR_REG (temp, SCR_AND, 0xfc),
2721 		0,
2722 }/*-------------------------< JUMP_TO_NEXUS >-------------------*/,{
2723 	SCR_COPY_F (4),
2724 		RADDR (temp),
2725 		PADDR (nexus_indirect),
2726 	/*
2727 	**	Flush script prefetch if required
2728 	*/
2729 	PREFETCH_FLUSH
2730 	SCR_COPY (4),
2731 }/*-------------------------< NEXUS_INDIRECT >-------------------*/,{
2732 		0,
2733 		RADDR (temp),
2734 	SCR_RETURN,
2735 		0,
2736 }/*-------------------------< RESEL_NOTAG >-------------------*/,{
2737 	/*
2738 	**	No tag expected.
2739 	**	Read an throw away the IDENTIFY.
2740 	*/
2741 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
2742 		NADDR (msgin),
2743 	SCR_JUMP,
2744 		PADDR (jump_to_nexus),
2745 }/*-------------------------< DATA_IN >--------------------*/,{
2746 /*
2747 **	Because the size depends on the
2748 **	#define MAX_SCATTERL parameter,
2749 **	it is filled in at runtime.
2750 **
2751 **  ##===========< i=0; i<MAX_SCATTERL >=========
2752 **  ||	SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)),
2753 **  ||		PADDR (dispatch),
2754 **  ||	SCR_MOVE_TBL ^ SCR_DATA_IN,
2755 **  ||		offsetof (struct dsb, data[ i]),
2756 **  ##==========================================
2757 **
2758 **---------------------------------------------------------
2759 */
2760 0
2761 }/*-------------------------< DATA_IN2 >-------------------*/,{
2762 	SCR_CALL,
2763 		PADDR (dispatch),
2764 	SCR_JUMP,
2765 		PADDR (no_data),
2766 }/*-------------------------< DATA_OUT >--------------------*/,{
2767 /*
2768 **	Because the size depends on the
2769 **	#define MAX_SCATTERL parameter,
2770 **	it is filled in at runtime.
2771 **
2772 **  ##===========< i=0; i<MAX_SCATTERL >=========
2773 **  ||	SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT)),
2774 **  ||		PADDR (dispatch),
2775 **  ||	SCR_MOVE_TBL ^ SCR_DATA_OUT,
2776 **  ||		offsetof (struct dsb, data[ i]),
2777 **  ##==========================================
2778 **
2779 **---------------------------------------------------------
2780 */
2781 0
2782 }/*-------------------------< DATA_OUT2 >-------------------*/,{
2783 	SCR_CALL,
2784 		PADDR (dispatch),
2785 	SCR_JUMP,
2786 		PADDR (no_data),
2787 }/*--------------------------------------------------------*/
2788 };
2789 
2790 static	struct scripth scripth0 __initdata = {
2791 /*-------------------------< TRYLOOP >---------------------*/{
2792 /*
2793 **	Start the next entry.
2794 **	Called addresses point to the launch script in the CCB.
2795 **	They are patched by the main processor.
2796 **
2797 **	Because the size depends on the
2798 **	#define MAX_START parameter, it is filled
2799 **	in at runtime.
2800 **
2801 **-----------------------------------------------------------
2802 **
2803 **  ##===========< I=0; i<MAX_START >===========
2804 **  ||	SCR_CALL,
2805 **  ||		PADDR (idle),
2806 **  ##==========================================
2807 **
2808 **-----------------------------------------------------------
2809 */
2810 0
2811 }/*------------------------< TRYLOOP2 >---------------------*/,{
2812 	SCR_JUMP,
2813 		PADDRH(tryloop),
2814 
2815 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
2816 
2817 }/*------------------------< DONE_QUEUE >-------------------*/,{
2818 /*
2819 **	Copy the CCB address to the next done entry.
2820 **	Because the size depends on the
2821 **	#define MAX_DONE parameter, it is filled
2822 **	in at runtime.
2823 **
2824 **-----------------------------------------------------------
2825 **
2826 **  ##===========< I=0; i<MAX_DONE >===========
2827 **  ||	SCR_COPY (sizeof(struct ccb *),
2828 **  ||		NADDR (header.cp),
2829 **  ||		NADDR (ccb_done[i]),
2830 **  ||	SCR_CALL,
2831 **  ||		PADDR (done_end),
2832 **  ##==========================================
2833 **
2834 **-----------------------------------------------------------
2835 */
2836 0
2837 }/*------------------------< DONE_QUEUE2 >------------------*/,{
2838 	SCR_JUMP,
2839 		PADDRH (done_queue),
2840 
2841 #endif /* SCSI_NCR_CCB_DONE_SUPPORT */
2842 }/*------------------------< SELECT_NO_ATN >-----------------*/,{
2843 	/*
2844 	**	Set Initiator mode.
2845 	**      And try to select this target without ATN.
2846 	*/
2847 
2848 	SCR_CLR (SCR_TRG),
2849 		0,
2850 	SCR_LOAD_REG (HS_REG, HS_SELECTING),
2851 		0,
2852 	SCR_SEL_TBL ^ offsetof (struct dsb, select),
2853 		PADDR (reselect),
2854 	SCR_JUMP,
2855 		PADDR (select2),
2856 
2857 }/*-------------------------< CANCEL >------------------------*/,{
2858 
2859 	SCR_LOAD_REG (scratcha, HS_ABORTED),
2860 		0,
2861 	SCR_JUMPR,
2862 		8,
2863 }/*-------------------------< SKIP >------------------------*/,{
2864 	SCR_LOAD_REG (scratcha, 0),
2865 		0,
2866 	/*
2867 	**	This entry has been canceled.
2868 	**	Next time use the next slot.
2869 	*/
2870 	SCR_COPY (4),
2871 		RADDR (temp),
2872 		PADDR (startpos),
2873 	/*
2874 	**      The ncr doesn't have an indirect load
2875 	**	or store command. So we have to
2876 	**	copy part of the control block to a
2877 	**	fixed place, where we can access it.
2878 	**
2879 	**	We patch the address part of a
2880 	**	COPY command with the DSA-register.
2881 	*/
2882 	SCR_COPY_F (4),
2883 		RADDR (dsa),
2884 		PADDRH (skip2),
2885 	/*
2886 	**	Flush script prefetch if required
2887 	*/
2888 	PREFETCH_FLUSH
2889 	/*
2890 	**	then we do the actual copy.
2891 	*/
2892 	SCR_COPY (sizeof (struct head)),
2893 	/*
2894 	**	continued after the next label ...
2895 	*/
2896 }/*-------------------------< SKIP2 >---------------------*/,{
2897 		0,
2898 		NADDR (header),
2899 	/*
2900 	**      Initialize the status registers
2901 	*/
2902 	SCR_COPY (4),
2903 		NADDR (header.status),
2904 		RADDR (scr0),
2905 	/*
2906 	**	Force host status.
2907 	*/
2908 	SCR_FROM_REG (scratcha),
2909 		0,
2910 	SCR_JUMPR ^ IFFALSE (MASK (0, HS_DONEMASK)),
2911 		16,
2912 	SCR_REG_REG (HS_REG, SCR_OR, HS_SKIPMASK),
2913 		0,
2914 	SCR_JUMPR,
2915 		8,
2916 	SCR_TO_REG (HS_REG),
2917 		0,
2918 	SCR_LOAD_REG (SS_REG, S_GOOD),
2919 		0,
2920 	SCR_JUMP,
2921 		PADDR (cleanup_ok),
2922 
2923 },/*-------------------------< PAR_ERR_DATA_IN >---------------*/{
2924 	/*
2925 	**	Ignore all data in byte, until next phase
2926 	*/
2927 	SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)),
2928 		PADDRH (par_err_other),
2929 	SCR_MOVE_ABS (1) ^ SCR_DATA_IN,
2930 		NADDR (scratch),
2931 	SCR_JUMPR,
2932 		-24,
2933 },/*-------------------------< PAR_ERR_OTHER >------------------*/{
2934 	/*
2935 	**	count it.
2936 	*/
2937 	SCR_REG_REG (PS_REG, SCR_ADD, 0x01),
2938 		0,
2939 	/*
2940 	**	jump to dispatcher.
2941 	*/
2942 	SCR_JUMP,
2943 		PADDR (dispatch),
2944 }/*-------------------------< MSG_REJECT >---------------*/,{
2945 	/*
2946 	**	If a negotiation was in progress,
2947 	**	negotiation failed.
2948 	**	Otherwise, let the C code print
2949 	**	some message.
2950 	*/
2951 	SCR_FROM_REG (HS_REG),
2952 		0,
2953 	SCR_INT ^ IFFALSE (DATA (HS_NEGOTIATE)),
2954 		SIR_REJECT_RECEIVED,
2955 	SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)),
2956 		SIR_NEGO_FAILED,
2957 	SCR_JUMP,
2958 		PADDR (clrack),
2959 
2960 }/*-------------------------< MSG_IGN_RESIDUE >----------*/,{
2961 	/*
2962 	**	Terminate cycle
2963 	*/
2964 	SCR_CLR (SCR_ACK),
2965 		0,
2966 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
2967 		PADDR (dispatch),
2968 	/*
2969 	**	get residue size.
2970 	*/
2971 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
2972 		NADDR (msgin[1]),
2973 	/*
2974 	**	Size is 0 .. ignore message.
2975 	*/
2976 	SCR_JUMP ^ IFTRUE (DATA (0)),
2977 		PADDR (clrack),
2978 	/*
2979 	**	Size is not 1 .. have to interrupt.
2980 	*/
2981 	SCR_JUMPR ^ IFFALSE (DATA (1)),
2982 		40,
2983 	/*
2984 	**	Check for residue byte in swide register
2985 	*/
2986 	SCR_FROM_REG (scntl2),
2987 		0,
2988 	SCR_JUMPR ^ IFFALSE (MASK (WSR, WSR)),
2989 		16,
2990 	/*
2991 	**	There IS data in the swide register.
2992 	**	Discard it.
2993 	*/
2994 	SCR_REG_REG (scntl2, SCR_OR, WSR),
2995 		0,
2996 	SCR_JUMP,
2997 		PADDR (clrack),
2998 	/*
2999 	**	Load again the size to the sfbr register.
3000 	*/
3001 	SCR_FROM_REG (scratcha),
3002 		0,
3003 	SCR_INT,
3004 		SIR_IGN_RESIDUE,
3005 	SCR_JUMP,
3006 		PADDR (clrack),
3007 
3008 }/*-------------------------< MSG_EXTENDED >-------------*/,{
3009 	/*
3010 	**	Terminate cycle
3011 	*/
3012 	SCR_CLR (SCR_ACK),
3013 		0,
3014 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
3015 		PADDR (dispatch),
3016 	/*
3017 	**	get length.
3018 	*/
3019 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3020 		NADDR (msgin[1]),
3021 	/*
3022 	*/
3023 	SCR_JUMP ^ IFTRUE (DATA (3)),
3024 		PADDRH (msg_ext_3),
3025 	SCR_JUMP ^ IFFALSE (DATA (2)),
3026 		PADDR (msg_bad),
3027 }/*-------------------------< MSG_EXT_2 >----------------*/,{
3028 	SCR_CLR (SCR_ACK),
3029 		0,
3030 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
3031 		PADDR (dispatch),
3032 	/*
3033 	**	get extended message code.
3034 	*/
3035 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3036 		NADDR (msgin[2]),
3037 	SCR_JUMP ^ IFTRUE (DATA (EXTENDED_WDTR)),
3038 		PADDRH (msg_wdtr),
3039 	/*
3040 	**	unknown extended message
3041 	*/
3042 	SCR_JUMP,
3043 		PADDR (msg_bad)
3044 }/*-------------------------< MSG_WDTR >-----------------*/,{
3045 	SCR_CLR (SCR_ACK),
3046 		0,
3047 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
3048 		PADDR (dispatch),
3049 	/*
3050 	**	get data bus width
3051 	*/
3052 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3053 		NADDR (msgin[3]),
3054 	/*
3055 	**	let the host do the real work.
3056 	*/
3057 	SCR_INT,
3058 		SIR_NEGO_WIDE,
3059 	/*
3060 	**	let the target fetch our answer.
3061 	*/
3062 	SCR_SET (SCR_ATN),
3063 		0,
3064 	SCR_CLR (SCR_ACK),
3065 		0,
3066 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
3067 		PADDRH (nego_bad_phase),
3068 
3069 }/*-------------------------< SEND_WDTR >----------------*/,{
3070 	/*
3071 	**	Send the EXTENDED_WDTR
3072 	*/
3073 	SCR_MOVE_ABS (4) ^ SCR_MSG_OUT,
3074 		NADDR (msgout),
3075 	SCR_COPY (1),
3076 		NADDR (msgout),
3077 		NADDR (lastmsg),
3078 	SCR_JUMP,
3079 		PADDR (msg_out_done),
3080 
3081 }/*-------------------------< MSG_EXT_3 >----------------*/,{
3082 	SCR_CLR (SCR_ACK),
3083 		0,
3084 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
3085 		PADDR (dispatch),
3086 	/*
3087 	**	get extended message code.
3088 	*/
3089 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3090 		NADDR (msgin[2]),
3091 	SCR_JUMP ^ IFTRUE (DATA (EXTENDED_SDTR)),
3092 		PADDRH (msg_sdtr),
3093 	/*
3094 	**	unknown extended message
3095 	*/
3096 	SCR_JUMP,
3097 		PADDR (msg_bad)
3098 
3099 }/*-------------------------< MSG_SDTR >-----------------*/,{
3100 	SCR_CLR (SCR_ACK),
3101 		0,
3102 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
3103 		PADDR (dispatch),
3104 	/*
3105 	**	get period and offset
3106 	*/
3107 	SCR_MOVE_ABS (2) ^ SCR_MSG_IN,
3108 		NADDR (msgin[3]),
3109 	/*
3110 	**	let the host do the real work.
3111 	*/
3112 	SCR_INT,
3113 		SIR_NEGO_SYNC,
3114 	/*
3115 	**	let the target fetch our answer.
3116 	*/
3117 	SCR_SET (SCR_ATN),
3118 		0,
3119 	SCR_CLR (SCR_ACK),
3120 		0,
3121 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
3122 		PADDRH (nego_bad_phase),
3123 
3124 }/*-------------------------< SEND_SDTR >-------------*/,{
3125 	/*
3126 	**	Send the EXTENDED_SDTR
3127 	*/
3128 	SCR_MOVE_ABS (5) ^ SCR_MSG_OUT,
3129 		NADDR (msgout),
3130 	SCR_COPY (1),
3131 		NADDR (msgout),
3132 		NADDR (lastmsg),
3133 	SCR_JUMP,
3134 		PADDR (msg_out_done),
3135 
3136 }/*-------------------------< NEGO_BAD_PHASE >------------*/,{
3137 	SCR_INT,
3138 		SIR_NEGO_PROTO,
3139 	SCR_JUMP,
3140 		PADDR (dispatch),
3141 
3142 }/*-------------------------< MSG_OUT_ABORT >-------------*/,{
3143 	/*
3144 	**	After ABORT message,
3145 	**
3146 	**	expect an immediate disconnect, ...
3147 	*/
3148 	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
3149 		0,
3150 	SCR_CLR (SCR_ACK|SCR_ATN),
3151 		0,
3152 	SCR_WAIT_DISC,
3153 		0,
3154 	/*
3155 	**	... and set the status to "ABORTED"
3156 	*/
3157 	SCR_LOAD_REG (HS_REG, HS_ABORTED),
3158 		0,
3159 	SCR_JUMP,
3160 		PADDR (cleanup),
3161 
3162 }/*-------------------------< HDATA_IN >-------------------*/,{
3163 /*
3164 **	Because the size depends on the
3165 **	#define MAX_SCATTERH parameter,
3166 **	it is filled in at runtime.
3167 **
3168 **  ##==< i=MAX_SCATTERL; i<MAX_SCATTERL+MAX_SCATTERH >==
3169 **  ||	SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)),
3170 **  ||		PADDR (dispatch),
3171 **  ||	SCR_MOVE_TBL ^ SCR_DATA_IN,
3172 **  ||		offsetof (struct dsb, data[ i]),
3173 **  ##===================================================
3174 **
3175 **---------------------------------------------------------
3176 */
3177 0
3178 }/*-------------------------< HDATA_IN2 >------------------*/,{
3179 	SCR_JUMP,
3180 		PADDR (data_in),
3181 
3182 }/*-------------------------< HDATA_OUT >-------------------*/,{
3183 /*
3184 **	Because the size depends on the
3185 **	#define MAX_SCATTERH parameter,
3186 **	it is filled in at runtime.
3187 **
3188 **  ##==< i=MAX_SCATTERL; i<MAX_SCATTERL+MAX_SCATTERH >==
3189 **  ||	SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT)),
3190 **  ||		PADDR (dispatch),
3191 **  ||	SCR_MOVE_TBL ^ SCR_DATA_OUT,
3192 **  ||		offsetof (struct dsb, data[ i]),
3193 **  ##===================================================
3194 **
3195 **---------------------------------------------------------
3196 */
3197 0
3198 }/*-------------------------< HDATA_OUT2 >------------------*/,{
3199 	SCR_JUMP,
3200 		PADDR (data_out),
3201 
3202 }/*-------------------------< RESET >----------------------*/,{
3203 	/*
3204 	**      Send a TARGET_RESET message if bad IDENTIFY
3205 	**	received on reselection.
3206 	*/
3207 	SCR_LOAD_REG (scratcha, ABORT_TASK),
3208 		0,
3209 	SCR_JUMP,
3210 		PADDRH (abort_resel),
3211 }/*-------------------------< ABORTTAG >-------------------*/,{
3212 	/*
3213 	**      Abort a wrong tag received on reselection.
3214 	*/
3215 	SCR_LOAD_REG (scratcha, ABORT_TASK),
3216 		0,
3217 	SCR_JUMP,
3218 		PADDRH (abort_resel),
3219 }/*-------------------------< ABORT >----------------------*/,{
3220 	/*
3221 	**      Abort a reselection when no active CCB.
3222 	*/
3223 	SCR_LOAD_REG (scratcha, ABORT_TASK_SET),
3224 		0,
3225 }/*-------------------------< ABORT_RESEL >----------------*/,{
3226 	SCR_COPY (1),
3227 		RADDR (scratcha),
3228 		NADDR (msgout),
3229 	SCR_SET (SCR_ATN),
3230 		0,
3231 	SCR_CLR (SCR_ACK),
3232 		0,
3233 	/*
3234 	**	and send it.
3235 	**	we expect an immediate disconnect
3236 	*/
3237 	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
3238 		0,
3239 	SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
3240 		NADDR (msgout),
3241 	SCR_COPY (1),
3242 		NADDR (msgout),
3243 		NADDR (lastmsg),
3244 	SCR_CLR (SCR_ACK|SCR_ATN),
3245 		0,
3246 	SCR_WAIT_DISC,
3247 		0,
3248 	SCR_JUMP,
3249 		PADDR (start),
3250 }/*-------------------------< RESEND_IDENT >-------------------*/,{
3251 	/*
3252 	**	The target stays in MSG OUT phase after having acked
3253 	**	Identify [+ Tag [+ Extended message ]]. Targets shall
3254 	**	behave this way on parity error.
3255 	**	We must send it again all the messages.
3256 	*/
3257 	SCR_SET (SCR_ATN), /* Shall be asserted 2 deskew delays before the  */
3258 		0,         /* 1rst ACK = 90 ns. Hope the NCR is'nt too fast */
3259 	SCR_JUMP,
3260 		PADDR (send_ident),
3261 }/*-------------------------< CLRATN_GO_ON >-------------------*/,{
3262 	SCR_CLR (SCR_ATN),
3263 		0,
3264 	SCR_JUMP,
3265 }/*-------------------------< NXTDSP_GO_ON >-------------------*/,{
3266 		0,
3267 }/*-------------------------< SDATA_IN >-------------------*/,{
3268 	SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)),
3269 		PADDR (dispatch),
3270 	SCR_MOVE_TBL ^ SCR_DATA_IN,
3271 		offsetof (struct dsb, sense),
3272 	SCR_CALL,
3273 		PADDR (dispatch),
3274 	SCR_JUMP,
3275 		PADDR (no_data),
3276 }/*-------------------------< DATA_IO >--------------------*/,{
3277 	/*
3278 	**	We jump here if the data direction was unknown at the
3279 	**	time we had to queue the command to the scripts processor.
3280 	**	Pointers had been set as follow in this situation:
3281 	**	  savep   -->   DATA_IO
3282 	**	  lastp   -->   start pointer when DATA_IN
3283 	**	  goalp   -->   goal  pointer when DATA_IN
3284 	**	  wlastp  -->   start pointer when DATA_OUT
3285 	**	  wgoalp  -->   goal  pointer when DATA_OUT
3286 	**	This script sets savep/lastp/goalp according to the
3287 	**	direction chosen by the target.
3288 	*/
3289 	SCR_JUMPR ^ IFTRUE (WHEN (SCR_DATA_OUT)),
3290 		32,
3291 	/*
3292 	**	Direction is DATA IN.
3293 	**	Warning: we jump here, even when phase is DATA OUT.
3294 	*/
3295 	SCR_COPY (4),
3296 		NADDR (header.lastp),
3297 		NADDR (header.savep),
3298 
3299 	/*
3300 	**	Jump to the SCRIPTS according to actual direction.
3301 	*/
3302 	SCR_COPY (4),
3303 		NADDR (header.savep),
3304 		RADDR (temp),
3305 	SCR_RETURN,
3306 		0,
3307 	/*
3308 	**	Direction is DATA OUT.
3309 	*/
3310 	SCR_COPY (4),
3311 		NADDR (header.wlastp),
3312 		NADDR (header.lastp),
3313 	SCR_COPY (4),
3314 		NADDR (header.wgoalp),
3315 		NADDR (header.goalp),
3316 	SCR_JUMPR,
3317 		-64,
3318 }/*-------------------------< BAD_IDENTIFY >---------------*/,{
3319 	/*
3320 	**	If message phase but not an IDENTIFY,
3321 	**	get some help from the C code.
3322 	**	Old SCSI device may behave so.
3323 	*/
3324 	SCR_JUMPR ^ IFTRUE (MASK (0x80, 0x80)),
3325 		16,
3326 	SCR_INT,
3327 		SIR_RESEL_NO_IDENTIFY,
3328 	SCR_JUMP,
3329 		PADDRH (reset),
3330 	/*
3331 	**	Message is an IDENTIFY, but lun is unknown.
3332 	**	Read the message, since we got it directly
3333 	**	from the SCSI BUS data lines.
3334 	**	Signal problem to C code for logging the event.
3335 	**	Send an ABORT_TASK_SET to clear all pending tasks.
3336 	*/
3337 	SCR_INT,
3338 		SIR_RESEL_BAD_LUN,
3339 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3340 		NADDR (msgin),
3341 	SCR_JUMP,
3342 		PADDRH (abort),
3343 }/*-------------------------< BAD_I_T_L >------------------*/,{
3344 	/*
3345 	**	We donnot have a task for that I_T_L.
3346 	**	Signal problem to C code for logging the event.
3347 	**	Send an ABORT_TASK_SET message.
3348 	*/
3349 	SCR_INT,
3350 		SIR_RESEL_BAD_I_T_L,
3351 	SCR_JUMP,
3352 		PADDRH (abort),
3353 }/*-------------------------< BAD_I_T_L_Q >----------------*/,{
3354 	/*
3355 	**	We donnot have a task that matches the tag.
3356 	**	Signal problem to C code for logging the event.
3357 	**	Send an ABORT_TASK message.
3358 	*/
3359 	SCR_INT,
3360 		SIR_RESEL_BAD_I_T_L_Q,
3361 	SCR_JUMP,
3362 		PADDRH (aborttag),
3363 }/*-------------------------< BAD_TARGET >-----------------*/,{
3364 	/*
3365 	**	We donnot know the target that reselected us.
3366 	**	Grab the first message if any (IDENTIFY).
3367 	**	Signal problem to C code for logging the event.
3368 	**	TARGET_RESET message.
3369 	*/
3370 	SCR_INT,
3371 		SIR_RESEL_BAD_TARGET,
3372 	SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_IN)),
3373 		8,
3374 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3375 		NADDR (msgin),
3376 	SCR_JUMP,
3377 		PADDRH (reset),
3378 }/*-------------------------< BAD_STATUS >-----------------*/,{
3379 	/*
3380 	**	If command resulted in either QUEUE FULL,
3381 	**	CHECK CONDITION or COMMAND TERMINATED,
3382 	**	call the C code.
3383 	*/
3384 	SCR_INT ^ IFTRUE (DATA (S_QUEUE_FULL)),
3385 		SIR_BAD_STATUS,
3386 	SCR_INT ^ IFTRUE (DATA (S_CHECK_COND)),
3387 		SIR_BAD_STATUS,
3388 	SCR_INT ^ IFTRUE (DATA (S_TERMINATED)),
3389 		SIR_BAD_STATUS,
3390 	SCR_RETURN,
3391 		0,
3392 }/*-------------------------< START_RAM >-------------------*/,{
3393 	/*
3394 	**	Load the script into on-chip RAM,
3395 	**	and jump to start point.
3396 	*/
3397 	SCR_COPY_F (4),
3398 		RADDR (scratcha),
3399 		PADDRH (start_ram0),
3400 	/*
3401 	**	Flush script prefetch if required
3402 	*/
3403 	PREFETCH_FLUSH
3404 	SCR_COPY (sizeof (struct script)),
3405 }/*-------------------------< START_RAM0 >--------------------*/,{
3406 		0,
3407 		PADDR (start),
3408 	SCR_JUMP,
3409 		PADDR (start),
3410 }/*-------------------------< STO_RESTART >-------------------*/,{
3411 	/*
3412 	**
3413 	**	Repair start queue (e.g. next time use the next slot)
3414 	**	and jump to start point.
3415 	*/
3416 	SCR_COPY (4),
3417 		RADDR (temp),
3418 		PADDR (startpos),
3419 	SCR_JUMP,
3420 		PADDR (start),
3421 }/*-------------------------< WAIT_DMA >-------------------*/,{
3422 	/*
3423 	**	For HP Zalon/53c720 systems, the Zalon interface
3424 	**	between CPU and 53c720 does prefetches, which causes
3425 	**	problems with self modifying scripts.  The problem
3426 	**	is overcome by calling a dummy subroutine after each
3427 	**	modification, to force a refetch of the script on
3428 	**	return from the subroutine.
3429 	*/
3430 	SCR_RETURN,
3431 		0,
3432 }/*-------------------------< SNOOPTEST >-------------------*/,{
3433 	/*
3434 	**	Read the variable.
3435 	*/
3436 	SCR_COPY (4),
3437 		NADDR(ncr_cache),
3438 		RADDR (scratcha),
3439 	/*
3440 	**	Write the variable.
3441 	*/
3442 	SCR_COPY (4),
3443 		RADDR (temp),
3444 		NADDR(ncr_cache),
3445 	/*
3446 	**	Read back the variable.
3447 	*/
3448 	SCR_COPY (4),
3449 		NADDR(ncr_cache),
3450 		RADDR (temp),
3451 }/*-------------------------< SNOOPEND >-------------------*/,{
3452 	/*
3453 	**	And stop.
3454 	*/
3455 	SCR_INT,
3456 		99,
3457 }/*--------------------------------------------------------*/
3458 };
3459 
3460 /*==========================================================
3461 **
3462 **
3463 **	Fill in #define dependent parts of the script
3464 **
3465 **
3466 **==========================================================
3467 */
3468 
3469 void __init ncr_script_fill (struct script * scr, struct scripth * scrh)
3470 {
3471 	int	i;
3472 	ncrcmd	*p;
3473 
3474 	p = scrh->tryloop;
3475 	for (i=0; i<MAX_START; i++) {
3476 		*p++ =SCR_CALL;
3477 		*p++ =PADDR (idle);
3478 	}
3479 
3480 	BUG_ON((u_long)p != (u_long)&scrh->tryloop + sizeof (scrh->tryloop));
3481 
3482 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
3483 
3484 	p = scrh->done_queue;
3485 	for (i = 0; i<MAX_DONE; i++) {
3486 		*p++ =SCR_COPY (sizeof(struct ccb *));
3487 		*p++ =NADDR (header.cp);
3488 		*p++ =NADDR (ccb_done[i]);
3489 		*p++ =SCR_CALL;
3490 		*p++ =PADDR (done_end);
3491 	}
3492 
3493 	BUG_ON((u_long)p != (u_long)&scrh->done_queue+sizeof(scrh->done_queue));
3494 
3495 #endif /* SCSI_NCR_CCB_DONE_SUPPORT */
3496 
3497 	p = scrh->hdata_in;
3498 	for (i=0; i<MAX_SCATTERH; i++) {
3499 		*p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN));
3500 		*p++ =PADDR (dispatch);
3501 		*p++ =SCR_MOVE_TBL ^ SCR_DATA_IN;
3502 		*p++ =offsetof (struct dsb, data[i]);
3503 	}
3504 
3505 	BUG_ON((u_long)p != (u_long)&scrh->hdata_in + sizeof (scrh->hdata_in));
3506 
3507 	p = scr->data_in;
3508 	for (i=MAX_SCATTERH; i<MAX_SCATTERH+MAX_SCATTERL; i++) {
3509 		*p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN));
3510 		*p++ =PADDR (dispatch);
3511 		*p++ =SCR_MOVE_TBL ^ SCR_DATA_IN;
3512 		*p++ =offsetof (struct dsb, data[i]);
3513 	}
3514 
3515 	BUG_ON((u_long)p != (u_long)&scr->data_in + sizeof (scr->data_in));
3516 
3517 	p = scrh->hdata_out;
3518 	for (i=0; i<MAX_SCATTERH; i++) {
3519 		*p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT));
3520 		*p++ =PADDR (dispatch);
3521 		*p++ =SCR_MOVE_TBL ^ SCR_DATA_OUT;
3522 		*p++ =offsetof (struct dsb, data[i]);
3523 	}
3524 
3525 	BUG_ON((u_long)p != (u_long)&scrh->hdata_out + sizeof (scrh->hdata_out));
3526 
3527 	p = scr->data_out;
3528 	for (i=MAX_SCATTERH; i<MAX_SCATTERH+MAX_SCATTERL; i++) {
3529 		*p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT));
3530 		*p++ =PADDR (dispatch);
3531 		*p++ =SCR_MOVE_TBL ^ SCR_DATA_OUT;
3532 		*p++ =offsetof (struct dsb, data[i]);
3533 	}
3534 
3535 	BUG_ON((u_long) p != (u_long)&scr->data_out + sizeof (scr->data_out));
3536 }
3537 
3538 /*==========================================================
3539 **
3540 **
3541 **	Copy and rebind a script.
3542 **
3543 **
3544 **==========================================================
3545 */
3546 
3547 static void __init
3548 ncr_script_copy_and_bind (struct ncb *np, ncrcmd *src, ncrcmd *dst, int len)
3549 {
3550 	ncrcmd  opcode, new, old, tmp1, tmp2;
3551 	ncrcmd	*start, *end;
3552 	int relocs;
3553 	int opchanged = 0;
3554 
3555 	start = src;
3556 	end = src + len/4;
3557 
3558 	while (src < end) {
3559 
3560 		opcode = *src++;
3561 		*dst++ = cpu_to_scr(opcode);
3562 
3563 		/*
3564 		**	If we forget to change the length
3565 		**	in struct script, a field will be
3566 		**	padded with 0. This is an illegal
3567 		**	command.
3568 		*/
3569 
3570 		if (opcode == 0) {
3571 			printk (KERN_ERR "%s: ERROR0 IN SCRIPT at %d.\n",
3572 				ncr_name(np), (int) (src-start-1));
3573 			mdelay(1000);
3574 		}
3575 
3576 		if (DEBUG_FLAGS & DEBUG_SCRIPT)
3577 			printk (KERN_DEBUG "%p:  <%x>\n",
3578 				(src-1), (unsigned)opcode);
3579 
3580 		/*
3581 		**	We don't have to decode ALL commands
3582 		*/
3583 		switch (opcode >> 28) {
3584 
3585 		case 0xc:
3586 			/*
3587 			**	COPY has TWO arguments.
3588 			*/
3589 			relocs = 2;
3590 			tmp1 = src[0];
3591 #ifdef	RELOC_KVAR
3592 			if ((tmp1 & RELOC_MASK) == RELOC_KVAR)
3593 				tmp1 = 0;
3594 #endif
3595 			tmp2 = src[1];
3596 #ifdef	RELOC_KVAR
3597 			if ((tmp2 & RELOC_MASK) == RELOC_KVAR)
3598 				tmp2 = 0;
3599 #endif
3600 			if ((tmp1 ^ tmp2) & 3) {
3601 				printk (KERN_ERR"%s: ERROR1 IN SCRIPT at %d.\n",
3602 					ncr_name(np), (int) (src-start-1));
3603 				mdelay(1000);
3604 			}
3605 			/*
3606 			**	If PREFETCH feature not enabled, remove
3607 			**	the NO FLUSH bit if present.
3608 			*/
3609 			if ((opcode & SCR_NO_FLUSH) && !(np->features & FE_PFEN)) {
3610 				dst[-1] = cpu_to_scr(opcode & ~SCR_NO_FLUSH);
3611 				++opchanged;
3612 			}
3613 			break;
3614 
3615 		case 0x0:
3616 			/*
3617 			**	MOVE (absolute address)
3618 			*/
3619 			relocs = 1;
3620 			break;
3621 
3622 		case 0x8:
3623 			/*
3624 			**	JUMP / CALL
3625 			**	don't relocate if relative :-)
3626 			*/
3627 			if (opcode & 0x00800000)
3628 				relocs = 0;
3629 			else
3630 				relocs = 1;
3631 			break;
3632 
3633 		case 0x4:
3634 		case 0x5:
3635 		case 0x6:
3636 		case 0x7:
3637 			relocs = 1;
3638 			break;
3639 
3640 		default:
3641 			relocs = 0;
3642 			break;
3643 		}
3644 
3645 		if (relocs) {
3646 			while (relocs--) {
3647 				old = *src++;
3648 
3649 				switch (old & RELOC_MASK) {
3650 				case RELOC_REGISTER:
3651 					new = (old & ~RELOC_MASK) + np->paddr;
3652 					break;
3653 				case RELOC_LABEL:
3654 					new = (old & ~RELOC_MASK) + np->p_script;
3655 					break;
3656 				case RELOC_LABELH:
3657 					new = (old & ~RELOC_MASK) + np->p_scripth;
3658 					break;
3659 				case RELOC_SOFTC:
3660 					new = (old & ~RELOC_MASK) + np->p_ncb;
3661 					break;
3662 #ifdef	RELOC_KVAR
3663 				case RELOC_KVAR:
3664 					if (((old & ~RELOC_MASK) <
3665 					     SCRIPT_KVAR_FIRST) ||
3666 					    ((old & ~RELOC_MASK) >
3667 					     SCRIPT_KVAR_LAST))
3668 						panic("ncr KVAR out of range");
3669 					new = vtophys(script_kvars[old &
3670 					    ~RELOC_MASK]);
3671 					break;
3672 #endif
3673 				case 0:
3674 					/* Don't relocate a 0 address. */
3675 					if (old == 0) {
3676 						new = old;
3677 						break;
3678 					}
3679 					/* fall through */
3680 				default:
3681 					panic("ncr_script_copy_and_bind: weird relocation %x\n", old);
3682 					break;
3683 				}
3684 
3685 				*dst++ = cpu_to_scr(new);
3686 			}
3687 		} else
3688 			*dst++ = cpu_to_scr(*src++);
3689 
3690 	}
3691 }
3692 
3693 /*
3694 **	Linux host data structure
3695 */
3696 
3697 struct host_data {
3698      struct ncb *ncb;
3699 };
3700 
3701 #define PRINT_ADDR(cmd, arg...) dev_info(&cmd->device->sdev_gendev , ## arg)
3702 
3703 static void ncr_print_msg(struct ccb *cp, char *label, u_char *msg)
3704 {
3705 	PRINT_ADDR(cp->cmd, "%s: ", label);
3706 
3707 	spi_print_msg(msg);
3708 	printk("\n");
3709 }
3710 
3711 /*==========================================================
3712 **
3713 **	NCR chip clock divisor table.
3714 **	Divisors are multiplied by 10,000,000 in order to make
3715 **	calculations more simple.
3716 **
3717 **==========================================================
3718 */
3719 
3720 #define _5M 5000000
3721 static u_long div_10M[] =
3722 	{2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
3723 
3724 
3725 /*===============================================================
3726 **
3727 **	Prepare io register values used by ncr_init() according
3728 **	to selected and supported features.
3729 **
3730 **	NCR chips allow burst lengths of 2, 4, 8, 16, 32, 64, 128
3731 **	transfers. 32,64,128 are only supported by 875 and 895 chips.
3732 **	We use log base 2 (burst length) as internal code, with
3733 **	value 0 meaning "burst disabled".
3734 **
3735 **===============================================================
3736 */
3737 
3738 /*
3739  *	Burst length from burst code.
3740  */
3741 #define burst_length(bc) (!(bc))? 0 : 1 << (bc)
3742 
3743 /*
3744  *	Burst code from io register bits.  Burst enable is ctest0 for c720
3745  */
3746 #define burst_code(dmode, ctest0) \
3747 	(ctest0) & 0x80 ? 0 : (((dmode) & 0xc0) >> 6) + 1
3748 
3749 /*
3750  *	Set initial io register bits from burst code.
3751  */
3752 static inline void ncr_init_burst(struct ncb *np, u_char bc)
3753 {
3754 	u_char *be = &np->rv_ctest0;
3755 	*be		&= ~0x80;
3756 	np->rv_dmode	&= ~(0x3 << 6);
3757 	np->rv_ctest5	&= ~0x4;
3758 
3759 	if (!bc) {
3760 		*be		|= 0x80;
3761 	} else {
3762 		--bc;
3763 		np->rv_dmode	|= ((bc & 0x3) << 6);
3764 		np->rv_ctest5	|= (bc & 0x4);
3765 	}
3766 }
3767 
3768 static void __init ncr_prepare_setting(struct ncb *np)
3769 {
3770 	u_char	burst_max;
3771 	u_long	period;
3772 	int i;
3773 
3774 	/*
3775 	**	Save assumed BIOS setting
3776 	*/
3777 
3778 	np->sv_scntl0	= INB(nc_scntl0) & 0x0a;
3779 	np->sv_scntl3	= INB(nc_scntl3) & 0x07;
3780 	np->sv_dmode	= INB(nc_dmode)  & 0xce;
3781 	np->sv_dcntl	= INB(nc_dcntl)  & 0xa8;
3782 	np->sv_ctest0	= INB(nc_ctest0) & 0x84;
3783 	np->sv_ctest3	= INB(nc_ctest3) & 0x01;
3784 	np->sv_ctest4	= INB(nc_ctest4) & 0x80;
3785 	np->sv_ctest5	= INB(nc_ctest5) & 0x24;
3786 	np->sv_gpcntl	= INB(nc_gpcntl);
3787 	np->sv_stest2	= INB(nc_stest2) & 0x20;
3788 	np->sv_stest4	= INB(nc_stest4);
3789 
3790 	/*
3791 	**	Wide ?
3792 	*/
3793 
3794 	np->maxwide	= (np->features & FE_WIDE)? 1 : 0;
3795 
3796  	/*
3797 	 *  Guess the frequency of the chip's clock.
3798 	 */
3799 	if (np->features & FE_ULTRA)
3800 		np->clock_khz = 80000;
3801 	else
3802 		np->clock_khz = 40000;
3803 
3804 	/*
3805 	 *  Get the clock multiplier factor.
3806  	 */
3807 	if	(np->features & FE_QUAD)
3808 		np->multiplier	= 4;
3809 	else if	(np->features & FE_DBLR)
3810 		np->multiplier	= 2;
3811 	else
3812 		np->multiplier	= 1;
3813 
3814 	/*
3815 	 *  Measure SCSI clock frequency for chips
3816 	 *  it may vary from assumed one.
3817 	 */
3818 	if (np->features & FE_VARCLK)
3819 		ncr_getclock(np, np->multiplier);
3820 
3821 	/*
3822 	 * Divisor to be used for async (timer pre-scaler).
3823 	 */
3824 	i = np->clock_divn - 1;
3825 	while (--i >= 0) {
3826 		if (10ul * SCSI_NCR_MIN_ASYNC * np->clock_khz > div_10M[i]) {
3827 			++i;
3828 			break;
3829 		}
3830 	}
3831 	np->rv_scntl3 = i+1;
3832 
3833 	/*
3834 	 * Minimum synchronous period factor supported by the chip.
3835 	 * Btw, 'period' is in tenths of nanoseconds.
3836 	 */
3837 
3838 	period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
3839 	if	(period <= 250)		np->minsync = 10;
3840 	else if	(period <= 303)		np->minsync = 11;
3841 	else if	(period <= 500)		np->minsync = 12;
3842 	else				np->minsync = (period + 40 - 1) / 40;
3843 
3844 	/*
3845 	 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
3846 	 */
3847 
3848 	if	(np->minsync < 25 && !(np->features & FE_ULTRA))
3849 		np->minsync = 25;
3850 
3851 	/*
3852 	 * Maximum synchronous period factor supported by the chip.
3853 	 */
3854 
3855 	period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
3856 	np->maxsync = period > 2540 ? 254 : period / 10;
3857 
3858 	/*
3859 	**	Prepare initial value of other IO registers
3860 	*/
3861 #if defined SCSI_NCR_TRUST_BIOS_SETTING
3862 	np->rv_scntl0	= np->sv_scntl0;
3863 	np->rv_dmode	= np->sv_dmode;
3864 	np->rv_dcntl	= np->sv_dcntl;
3865 	np->rv_ctest0	= np->sv_ctest0;
3866 	np->rv_ctest3	= np->sv_ctest3;
3867 	np->rv_ctest4	= np->sv_ctest4;
3868 	np->rv_ctest5	= np->sv_ctest5;
3869 	burst_max	= burst_code(np->sv_dmode, np->sv_ctest0);
3870 #else
3871 
3872 	/*
3873 	**	Select burst length (dwords)
3874 	*/
3875 	burst_max	= driver_setup.burst_max;
3876 	if (burst_max == 255)
3877 		burst_max = burst_code(np->sv_dmode, np->sv_ctest0);
3878 	if (burst_max > 7)
3879 		burst_max = 7;
3880 	if (burst_max > np->maxburst)
3881 		burst_max = np->maxburst;
3882 
3883 	/*
3884 	**	Select all supported special features
3885 	*/
3886 	if (np->features & FE_ERL)
3887 		np->rv_dmode	|= ERL;		/* Enable Read Line */
3888 	if (np->features & FE_BOF)
3889 		np->rv_dmode	|= BOF;		/* Burst Opcode Fetch */
3890 	if (np->features & FE_ERMP)
3891 		np->rv_dmode	|= ERMP;	/* Enable Read Multiple */
3892 	if (np->features & FE_PFEN)
3893 		np->rv_dcntl	|= PFEN;	/* Prefetch Enable */
3894 	if (np->features & FE_CLSE)
3895 		np->rv_dcntl	|= CLSE;	/* Cache Line Size Enable */
3896 	if (np->features & FE_WRIE)
3897 		np->rv_ctest3	|= WRIE;	/* Write and Invalidate */
3898 	if (np->features & FE_DFS)
3899 		np->rv_ctest5	|= DFS;		/* Dma Fifo Size */
3900 	if (np->features & FE_MUX)
3901 		np->rv_ctest4	|= MUX;		/* Host bus multiplex mode */
3902 	if (np->features & FE_EA)
3903 		np->rv_dcntl	|= EA;		/* Enable ACK */
3904 	if (np->features & FE_EHP)
3905 		np->rv_ctest0	|= EHP;		/* Even host parity */
3906 
3907 	/*
3908 	**	Select some other
3909 	*/
3910 	if (driver_setup.master_parity)
3911 		np->rv_ctest4	|= MPEE;	/* Master parity checking */
3912 	if (driver_setup.scsi_parity)
3913 		np->rv_scntl0	|= 0x0a;	/*  full arb., ena parity, par->ATN  */
3914 
3915 	/*
3916 	**  Get SCSI addr of host adapter (set by bios?).
3917 	*/
3918 	if (np->myaddr == 255) {
3919 		np->myaddr = INB(nc_scid) & 0x07;
3920 		if (!np->myaddr)
3921 			np->myaddr = SCSI_NCR_MYADDR;
3922 	}
3923 
3924 #endif /* SCSI_NCR_TRUST_BIOS_SETTING */
3925 
3926 	/*
3927 	 *	Prepare initial io register bits for burst length
3928 	 */
3929 	ncr_init_burst(np, burst_max);
3930 
3931 	/*
3932 	**	Set SCSI BUS mode.
3933 	**
3934 	**	- ULTRA2 chips (895/895A/896) report the current
3935 	**	  BUS mode through the STEST4 IO register.
3936 	**	- For previous generation chips (825/825A/875),
3937 	**	  user has to tell us how to check against HVD,
3938 	**	  since a 100% safe algorithm is not possible.
3939 	*/
3940 	np->scsi_mode = SMODE_SE;
3941 	if (np->features & FE_DIFF) {
3942 		switch(driver_setup.diff_support) {
3943 		case 4:	/* Trust previous settings if present, then GPIO3 */
3944 			if (np->sv_scntl3) {
3945 				if (np->sv_stest2 & 0x20)
3946 					np->scsi_mode = SMODE_HVD;
3947 				break;
3948 			}
3949 		case 3:	/* SYMBIOS controllers report HVD through GPIO3 */
3950 			if (INB(nc_gpreg) & 0x08)
3951 				break;
3952 		case 2:	/* Set HVD unconditionally */
3953 			np->scsi_mode = SMODE_HVD;
3954 		case 1:	/* Trust previous settings for HVD */
3955 			if (np->sv_stest2 & 0x20)
3956 				np->scsi_mode = SMODE_HVD;
3957 			break;
3958 		default:/* Don't care about HVD */
3959 			break;
3960 		}
3961 	}
3962 	if (np->scsi_mode == SMODE_HVD)
3963 		np->rv_stest2 |= 0x20;
3964 
3965 	/*
3966 	**	Set LED support from SCRIPTS.
3967 	**	Ignore this feature for boards known to use a
3968 	**	specific GPIO wiring and for the 895A or 896
3969 	**	that drive the LED directly.
3970 	**	Also probe initial setting of GPIO0 as output.
3971 	*/
3972 	if ((driver_setup.led_pin) &&
3973 	    !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
3974 		np->features |= FE_LED0;
3975 
3976 	/*
3977 	**	Set irq mode.
3978 	*/
3979 	switch(driver_setup.irqm & 3) {
3980 	case 2:
3981 		np->rv_dcntl	|= IRQM;
3982 		break;
3983 	case 1:
3984 		np->rv_dcntl	|= (np->sv_dcntl & IRQM);
3985 		break;
3986 	default:
3987 		break;
3988 	}
3989 
3990 	/*
3991 	**	Configure targets according to driver setup.
3992 	**	Allow to override sync, wide and NOSCAN from
3993 	**	boot command line.
3994 	*/
3995 	for (i = 0 ; i < MAX_TARGET ; i++) {
3996 		struct tcb *tp = &np->target[i];
3997 
3998 		tp->usrsync = driver_setup.default_sync;
3999 		tp->usrwide = driver_setup.max_wide;
4000 		tp->usrtags = MAX_TAGS;
4001 		tp->period = 0xffff;
4002 		if (!driver_setup.disconnection)
4003 			np->target[i].usrflag = UF_NODISC;
4004 	}
4005 
4006 	/*
4007 	**	Announce all that stuff to user.
4008 	*/
4009 
4010 	printk(KERN_INFO "%s: ID %d, Fast-%d%s%s\n", ncr_name(np),
4011 		np->myaddr,
4012 		np->minsync < 12 ? 40 : (np->minsync < 25 ? 20 : 10),
4013 		(np->rv_scntl0 & 0xa)	? ", Parity Checking"	: ", NO Parity",
4014 		(np->rv_stest2 & 0x20)	? ", Differential"	: "");
4015 
4016 	if (bootverbose > 1) {
4017 		printk (KERN_INFO "%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
4018 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
4019 			ncr_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
4020 			np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
4021 
4022 		printk (KERN_INFO "%s: final   SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
4023 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
4024 			ncr_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
4025 			np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
4026 	}
4027 
4028 	if (bootverbose && np->paddr2)
4029 		printk (KERN_INFO "%s: on-chip RAM at 0x%lx\n",
4030 			ncr_name(np), np->paddr2);
4031 }
4032 
4033 /*==========================================================
4034 **
4035 **
4036 **	Done SCSI commands list management.
4037 **
4038 **	We donnot enter the scsi_done() callback immediately
4039 **	after a command has been seen as completed but we
4040 **	insert it into a list which is flushed outside any kind
4041 **	of driver critical section.
4042 **	This allows to do minimal stuff under interrupt and
4043 **	inside critical sections and to also avoid locking up
4044 **	on recursive calls to driver entry points under SMP.
4045 **	In fact, the only kernel point which is entered by the
4046 **	driver with a driver lock set is kmalloc(GFP_ATOMIC)
4047 **	that shall not reenter the driver under any circumstances,
4048 **	AFAIK.
4049 **
4050 **==========================================================
4051 */
4052 static inline void ncr_queue_done_cmd(struct ncb *np, struct scsi_cmnd *cmd)
4053 {
4054 	unmap_scsi_data(np, cmd);
4055 	cmd->host_scribble = (char *) np->done_list;
4056 	np->done_list = cmd;
4057 }
4058 
4059 static inline void ncr_flush_done_cmds(struct scsi_cmnd *lcmd)
4060 {
4061 	struct scsi_cmnd *cmd;
4062 
4063 	while (lcmd) {
4064 		cmd = lcmd;
4065 		lcmd = (struct scsi_cmnd *) cmd->host_scribble;
4066 		cmd->scsi_done(cmd);
4067 	}
4068 }
4069 
4070 /*==========================================================
4071 **
4072 **
4073 **	Prepare the next negotiation message if needed.
4074 **
4075 **	Fill in the part of message buffer that contains the
4076 **	negotiation and the nego_status field of the CCB.
4077 **	Returns the size of the message in bytes.
4078 **
4079 **
4080 **==========================================================
4081 */
4082 
4083 
4084 static int ncr_prepare_nego(struct ncb *np, struct ccb *cp, u_char *msgptr)
4085 {
4086 	struct tcb *tp = &np->target[cp->target];
4087 	int msglen = 0;
4088 	int nego = 0;
4089 	struct scsi_target *starget = tp->starget;
4090 
4091 	/* negotiate wide transfers ?  */
4092 	if (!tp->widedone) {
4093 		if (spi_support_wide(starget)) {
4094 			nego = NS_WIDE;
4095 		} else
4096 			tp->widedone=1;
4097 	}
4098 
4099 	/* negotiate synchronous transfers?  */
4100 	if (!nego && !tp->period) {
4101 		if (spi_support_sync(starget)) {
4102 			nego = NS_SYNC;
4103 		} else {
4104 			tp->period  =0xffff;
4105 			dev_info(&starget->dev, "target did not report SYNC.\n");
4106 		}
4107 	}
4108 
4109 	switch (nego) {
4110 	case NS_SYNC:
4111 		msglen += spi_populate_sync_msg(msgptr + msglen,
4112 				tp->maxoffs ? tp->minsync : 0, tp->maxoffs);
4113 		break;
4114 	case NS_WIDE:
4115 		msglen += spi_populate_width_msg(msgptr + msglen, tp->usrwide);
4116 		break;
4117 	}
4118 
4119 	cp->nego_status = nego;
4120 
4121 	if (nego) {
4122 		tp->nego_cp = cp;
4123 		if (DEBUG_FLAGS & DEBUG_NEGO) {
4124 			ncr_print_msg(cp, nego == NS_WIDE ?
4125 					  "wide msgout":"sync_msgout", msgptr);
4126 		}
4127 	}
4128 
4129 	return msglen;
4130 }
4131 
4132 
4133 
4134 /*==========================================================
4135 **
4136 **
4137 **	Start execution of a SCSI command.
4138 **	This is called from the generic SCSI driver.
4139 **
4140 **
4141 **==========================================================
4142 */
4143 static int ncr_queue_command (struct ncb *np, struct scsi_cmnd *cmd)
4144 {
4145 	struct scsi_device *sdev = cmd->device;
4146 	struct tcb *tp = &np->target[sdev->id];
4147 	struct lcb *lp = tp->lp[sdev->lun];
4148 	struct ccb *cp;
4149 
4150 	int	segments;
4151 	u_char	idmsg, *msgptr;
4152 	u32	msglen;
4153 	int	direction;
4154 	u32	lastp, goalp;
4155 
4156 	/*---------------------------------------------
4157 	**
4158 	**      Some shortcuts ...
4159 	**
4160 	**---------------------------------------------
4161 	*/
4162 	if ((sdev->id == np->myaddr	  ) ||
4163 		(sdev->id >= MAX_TARGET) ||
4164 		(sdev->lun    >= MAX_LUN   )) {
4165 		return(DID_BAD_TARGET);
4166 	}
4167 
4168 	/*---------------------------------------------
4169 	**
4170 	**	Complete the 1st TEST UNIT READY command
4171 	**	with error condition if the device is
4172 	**	flagged NOSCAN, in order to speed up
4173 	**	the boot.
4174 	**
4175 	**---------------------------------------------
4176 	*/
4177 	if ((cmd->cmnd[0] == 0 || cmd->cmnd[0] == 0x12) &&
4178 	    (tp->usrflag & UF_NOSCAN)) {
4179 		tp->usrflag &= ~UF_NOSCAN;
4180 		return DID_BAD_TARGET;
4181 	}
4182 
4183 	if (DEBUG_FLAGS & DEBUG_TINY) {
4184 		PRINT_ADDR(cmd, "CMD=%x ", cmd->cmnd[0]);
4185 	}
4186 
4187 	/*---------------------------------------------------
4188 	**
4189 	**	Assign a ccb / bind cmd.
4190 	**	If resetting, shorten settle_time if necessary
4191 	**	in order to avoid spurious timeouts.
4192 	**	If resetting or no free ccb,
4193 	**	insert cmd into the waiting list.
4194 	**
4195 	**----------------------------------------------------
4196 	*/
4197 	if (np->settle_time && cmd->timeout_per_command >= HZ) {
4198 		u_long tlimit = jiffies + cmd->timeout_per_command - HZ;
4199 		if (time_after(np->settle_time, tlimit))
4200 			np->settle_time = tlimit;
4201 	}
4202 
4203 	if (np->settle_time || !(cp=ncr_get_ccb (np, cmd))) {
4204 		insert_into_waiting_list(np, cmd);
4205 		return(DID_OK);
4206 	}
4207 	cp->cmd = cmd;
4208 
4209 	/*----------------------------------------------------
4210 	**
4211 	**	Build the identify / tag / sdtr message
4212 	**
4213 	**----------------------------------------------------
4214 	*/
4215 
4216 	idmsg = IDENTIFY(0, sdev->lun);
4217 
4218 	if (cp ->tag != NO_TAG ||
4219 		(cp != np->ccb && np->disc && !(tp->usrflag & UF_NODISC)))
4220 		idmsg |= 0x40;
4221 
4222 	msgptr = cp->scsi_smsg;
4223 	msglen = 0;
4224 	msgptr[msglen++] = idmsg;
4225 
4226 	if (cp->tag != NO_TAG) {
4227 		char order = np->order;
4228 
4229 		/*
4230 		**	Force ordered tag if necessary to avoid timeouts
4231 		**	and to preserve interactivity.
4232 		*/
4233 		if (lp && time_after(jiffies, lp->tags_stime)) {
4234 			if (lp->tags_smap) {
4235 				order = ORDERED_QUEUE_TAG;
4236 				if ((DEBUG_FLAGS & DEBUG_TAGS)||bootverbose>2){
4237 					PRINT_ADDR(cmd,
4238 						"ordered tag forced.\n");
4239 				}
4240 			}
4241 			lp->tags_stime = jiffies + 3*HZ;
4242 			lp->tags_smap = lp->tags_umap;
4243 		}
4244 
4245 		if (order == 0) {
4246 			/*
4247 			**	Ordered write ops, unordered read ops.
4248 			*/
4249 			switch (cmd->cmnd[0]) {
4250 			case 0x08:  /* READ_SMALL (6) */
4251 			case 0x28:  /* READ_BIG  (10) */
4252 			case 0xa8:  /* READ_HUGE (12) */
4253 				order = SIMPLE_QUEUE_TAG;
4254 				break;
4255 			default:
4256 				order = ORDERED_QUEUE_TAG;
4257 			}
4258 		}
4259 		msgptr[msglen++] = order;
4260 		/*
4261 		**	Actual tags are numbered 1,3,5,..2*MAXTAGS+1,
4262 		**	since we may have to deal with devices that have
4263 		**	problems with #TAG 0 or too great #TAG numbers.
4264 		*/
4265 		msgptr[msglen++] = (cp->tag << 1) + 1;
4266 	}
4267 
4268 	/*----------------------------------------------------
4269 	**
4270 	**	Build the data descriptors
4271 	**
4272 	**----------------------------------------------------
4273 	*/
4274 
4275 	direction = cmd->sc_data_direction;
4276 	if (direction != DMA_NONE) {
4277 		segments = ncr_scatter(np, cp, cp->cmd);
4278 		if (segments < 0) {
4279 			ncr_free_ccb(np, cp);
4280 			return(DID_ERROR);
4281 		}
4282 	}
4283 	else {
4284 		cp->data_len = 0;
4285 		segments = 0;
4286 	}
4287 
4288 	/*---------------------------------------------------
4289 	**
4290 	**	negotiation required?
4291 	**
4292 	**	(nego_status is filled by ncr_prepare_nego())
4293 	**
4294 	**---------------------------------------------------
4295 	*/
4296 
4297 	cp->nego_status = 0;
4298 
4299 	if ((!tp->widedone || !tp->period) && !tp->nego_cp && lp) {
4300 		msglen += ncr_prepare_nego (np, cp, msgptr + msglen);
4301 	}
4302 
4303 	/*----------------------------------------------------
4304 	**
4305 	**	Determine xfer direction.
4306 	**
4307 	**----------------------------------------------------
4308 	*/
4309 	if (!cp->data_len)
4310 		direction = DMA_NONE;
4311 
4312 	/*
4313 	**	If data direction is BIDIRECTIONAL, speculate FROM_DEVICE
4314 	**	but prepare alternate pointers for TO_DEVICE in case
4315 	**	of our speculation will be just wrong.
4316 	**	SCRIPTS will swap values if needed.
4317 	*/
4318 	switch(direction) {
4319 	case DMA_BIDIRECTIONAL:
4320 	case DMA_TO_DEVICE:
4321 		goalp = NCB_SCRIPT_PHYS (np, data_out2) + 8;
4322 		if (segments <= MAX_SCATTERL)
4323 			lastp = goalp - 8 - (segments * 16);
4324 		else {
4325 			lastp = NCB_SCRIPTH_PHYS (np, hdata_out2);
4326 			lastp -= (segments - MAX_SCATTERL) * 16;
4327 		}
4328 		if (direction != DMA_BIDIRECTIONAL)
4329 			break;
4330 		cp->phys.header.wgoalp	= cpu_to_scr(goalp);
4331 		cp->phys.header.wlastp	= cpu_to_scr(lastp);
4332 		/* fall through */
4333 	case DMA_FROM_DEVICE:
4334 		goalp = NCB_SCRIPT_PHYS (np, data_in2) + 8;
4335 		if (segments <= MAX_SCATTERL)
4336 			lastp = goalp - 8 - (segments * 16);
4337 		else {
4338 			lastp = NCB_SCRIPTH_PHYS (np, hdata_in2);
4339 			lastp -= (segments - MAX_SCATTERL) * 16;
4340 		}
4341 		break;
4342 	default:
4343 	case DMA_NONE:
4344 		lastp = goalp = NCB_SCRIPT_PHYS (np, no_data);
4345 		break;
4346 	}
4347 
4348 	/*
4349 	**	Set all pointers values needed by SCRIPTS.
4350 	**	If direction is unknown, start at data_io.
4351 	*/
4352 	cp->phys.header.lastp = cpu_to_scr(lastp);
4353 	cp->phys.header.goalp = cpu_to_scr(goalp);
4354 
4355 	if (direction == DMA_BIDIRECTIONAL)
4356 		cp->phys.header.savep =
4357 			cpu_to_scr(NCB_SCRIPTH_PHYS (np, data_io));
4358 	else
4359 		cp->phys.header.savep= cpu_to_scr(lastp);
4360 
4361 	/*
4362 	**	Save the initial data pointer in order to be able
4363 	**	to redo the command.
4364 	*/
4365 	cp->startp = cp->phys.header.savep;
4366 
4367 	/*----------------------------------------------------
4368 	**
4369 	**	fill in ccb
4370 	**
4371 	**----------------------------------------------------
4372 	**
4373 	**
4374 	**	physical -> virtual backlink
4375 	**	Generic SCSI command
4376 	*/
4377 
4378 	/*
4379 	**	Startqueue
4380 	*/
4381 	cp->start.schedule.l_paddr   = cpu_to_scr(NCB_SCRIPT_PHYS (np, select));
4382 	cp->restart.schedule.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_dsa));
4383 	/*
4384 	**	select
4385 	*/
4386 	cp->phys.select.sel_id		= sdev_id(sdev);
4387 	cp->phys.select.sel_scntl3	= tp->wval;
4388 	cp->phys.select.sel_sxfer	= tp->sval;
4389 	/*
4390 	**	message
4391 	*/
4392 	cp->phys.smsg.addr		= cpu_to_scr(CCB_PHYS (cp, scsi_smsg));
4393 	cp->phys.smsg.size		= cpu_to_scr(msglen);
4394 
4395 	/*
4396 	**	command
4397 	*/
4398 	memcpy(cp->cdb_buf, cmd->cmnd, min_t(int, cmd->cmd_len, sizeof(cp->cdb_buf)));
4399 	cp->phys.cmd.addr		= cpu_to_scr(CCB_PHYS (cp, cdb_buf[0]));
4400 	cp->phys.cmd.size		= cpu_to_scr(cmd->cmd_len);
4401 
4402 	/*
4403 	**	status
4404 	*/
4405 	cp->actualquirks		= 0;
4406 	cp->host_status			= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
4407 	cp->scsi_status			= S_ILLEGAL;
4408 	cp->parity_status		= 0;
4409 
4410 	cp->xerr_status			= XE_OK;
4411 #if 0
4412 	cp->sync_status			= tp->sval;
4413 	cp->wide_status			= tp->wval;
4414 #endif
4415 
4416 	/*----------------------------------------------------
4417 	**
4418 	**	Critical region: start this job.
4419 	**
4420 	**----------------------------------------------------
4421 	*/
4422 
4423 	/* activate this job.  */
4424 	cp->magic		= CCB_MAGIC;
4425 
4426 	/*
4427 	**	insert next CCBs into start queue.
4428 	**	2 max at a time is enough to flush the CCB wait queue.
4429 	*/
4430 	cp->auto_sense = 0;
4431 	if (lp)
4432 		ncr_start_next_ccb(np, lp, 2);
4433 	else
4434 		ncr_put_start_queue(np, cp);
4435 
4436 	/* Command is successfully queued.  */
4437 
4438 	return DID_OK;
4439 }
4440 
4441 
4442 /*==========================================================
4443 **
4444 **
4445 **	Insert a CCB into the start queue and wake up the
4446 **	SCRIPTS processor.
4447 **
4448 **
4449 **==========================================================
4450 */
4451 
4452 static void ncr_start_next_ccb(struct ncb *np, struct lcb *lp, int maxn)
4453 {
4454 	struct list_head *qp;
4455 	struct ccb *cp;
4456 
4457 	if (lp->held_ccb)
4458 		return;
4459 
4460 	while (maxn-- && lp->queuedccbs < lp->queuedepth) {
4461 		qp = ncr_list_pop(&lp->wait_ccbq);
4462 		if (!qp)
4463 			break;
4464 		++lp->queuedccbs;
4465 		cp = list_entry(qp, struct ccb, link_ccbq);
4466 		list_add_tail(qp, &lp->busy_ccbq);
4467 		lp->jump_ccb[cp->tag == NO_TAG ? 0 : cp->tag] =
4468 			cpu_to_scr(CCB_PHYS (cp, restart));
4469 		ncr_put_start_queue(np, cp);
4470 	}
4471 }
4472 
4473 static void ncr_put_start_queue(struct ncb *np, struct ccb *cp)
4474 {
4475 	u16	qidx;
4476 
4477 	/*
4478 	**	insert into start queue.
4479 	*/
4480 	if (!np->squeueput) np->squeueput = 1;
4481 	qidx = np->squeueput + 2;
4482 	if (qidx >= MAX_START + MAX_START) qidx = 1;
4483 
4484 	np->scripth->tryloop [qidx] = cpu_to_scr(NCB_SCRIPT_PHYS (np, idle));
4485 	MEMORY_BARRIER();
4486 	np->scripth->tryloop [np->squeueput] = cpu_to_scr(CCB_PHYS (cp, start));
4487 
4488 	np->squeueput = qidx;
4489 	++np->queuedccbs;
4490 	cp->queued = 1;
4491 
4492 	if (DEBUG_FLAGS & DEBUG_QUEUE)
4493 		printk ("%s: queuepos=%d.\n", ncr_name (np), np->squeueput);
4494 
4495 	/*
4496 	**	Script processor may be waiting for reselect.
4497 	**	Wake it up.
4498 	*/
4499 	MEMORY_BARRIER();
4500 	OUTB (nc_istat, SIGP);
4501 }
4502 
4503 
4504 static int ncr_reset_scsi_bus(struct ncb *np, int enab_int, int settle_delay)
4505 {
4506 	u32 term;
4507 	int retv = 0;
4508 
4509 	np->settle_time	= jiffies + settle_delay * HZ;
4510 
4511 	if (bootverbose > 1)
4512 		printk("%s: resetting, "
4513 			"command processing suspended for %d seconds\n",
4514 			ncr_name(np), settle_delay);
4515 
4516 	ncr_chip_reset(np, 100);
4517 	udelay(2000);	/* The 895 needs time for the bus mode to settle */
4518 	if (enab_int)
4519 		OUTW (nc_sien, RST);
4520 	/*
4521 	**	Enable Tolerant, reset IRQD if present and
4522 	**	properly set IRQ mode, prior to resetting the bus.
4523 	*/
4524 	OUTB (nc_stest3, TE);
4525 	OUTB (nc_scntl1, CRST);
4526 	udelay(200);
4527 
4528 	if (!driver_setup.bus_check)
4529 		goto out;
4530 	/*
4531 	**	Check for no terminators or SCSI bus shorts to ground.
4532 	**	Read SCSI data bus, data parity bits and control signals.
4533 	**	We are expecting RESET to be TRUE and other signals to be
4534 	**	FALSE.
4535 	*/
4536 
4537 	term =	INB(nc_sstat0);
4538 	term =	((term & 2) << 7) + ((term & 1) << 17);	/* rst sdp0 */
4539 	term |= ((INB(nc_sstat2) & 0x01) << 26) |	/* sdp1     */
4540 		((INW(nc_sbdl) & 0xff)   << 9)  |	/* d7-0     */
4541 		((INW(nc_sbdl) & 0xff00) << 10) |	/* d15-8    */
4542 		INB(nc_sbcl);	/* req ack bsy sel atn msg cd io    */
4543 
4544 	if (!(np->features & FE_WIDE))
4545 		term &= 0x3ffff;
4546 
4547 	if (term != (2<<7)) {
4548 		printk("%s: suspicious SCSI data while resetting the BUS.\n",
4549 			ncr_name(np));
4550 		printk("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
4551 			"0x%lx, expecting 0x%lx\n",
4552 			ncr_name(np),
4553 			(np->features & FE_WIDE) ? "dp1,d15-8," : "",
4554 			(u_long)term, (u_long)(2<<7));
4555 		if (driver_setup.bus_check == 1)
4556 			retv = 1;
4557 	}
4558 out:
4559 	OUTB (nc_scntl1, 0);
4560 	return retv;
4561 }
4562 
4563 /*
4564  * Start reset process.
4565  * If reset in progress do nothing.
4566  * The interrupt handler will reinitialize the chip.
4567  * The timeout handler will wait for settle_time before
4568  * clearing it and so resuming command processing.
4569  */
4570 static void ncr_start_reset(struct ncb *np)
4571 {
4572 	if (!np->settle_time) {
4573 		ncr_reset_scsi_bus(np, 1, driver_setup.settle_delay);
4574  	}
4575 }
4576 
4577 /*==========================================================
4578 **
4579 **
4580 **	Reset the SCSI BUS.
4581 **	This is called from the generic SCSI driver.
4582 **
4583 **
4584 **==========================================================
4585 */
4586 static int ncr_reset_bus (struct ncb *np, struct scsi_cmnd *cmd, int sync_reset)
4587 {
4588 /*	struct scsi_device        *device    = cmd->device; */
4589 	struct ccb *cp;
4590 	int found;
4591 
4592 /*
4593  * Return immediately if reset is in progress.
4594  */
4595 	if (np->settle_time) {
4596 		return FAILED;
4597 	}
4598 /*
4599  * Start the reset process.
4600  * The script processor is then assumed to be stopped.
4601  * Commands will now be queued in the waiting list until a settle
4602  * delay of 2 seconds will be completed.
4603  */
4604 	ncr_start_reset(np);
4605 /*
4606  * First, look in the wakeup list
4607  */
4608 	for (found=0, cp=np->ccb; cp; cp=cp->link_ccb) {
4609 		/*
4610 		**	look for the ccb of this command.
4611 		*/
4612 		if (cp->host_status == HS_IDLE) continue;
4613 		if (cp->cmd == cmd) {
4614 			found = 1;
4615 			break;
4616 		}
4617 	}
4618 /*
4619  * Then, look in the waiting list
4620  */
4621 	if (!found && retrieve_from_waiting_list(0, np, cmd))
4622 		found = 1;
4623 /*
4624  * Wake-up all awaiting commands with DID_RESET.
4625  */
4626 	reset_waiting_list(np);
4627 /*
4628  * Wake-up all pending commands with HS_RESET -> DID_RESET.
4629  */
4630 	ncr_wakeup(np, HS_RESET);
4631 /*
4632  * If the involved command was not in a driver queue, and the
4633  * scsi driver told us reset is synchronous, and the command is not
4634  * currently in the waiting list, complete it with DID_RESET status,
4635  * in order to keep it alive.
4636  */
4637 	if (!found && sync_reset && !retrieve_from_waiting_list(0, np, cmd)) {
4638 		cmd->result = ScsiResult(DID_RESET, 0);
4639 		ncr_queue_done_cmd(np, cmd);
4640 	}
4641 
4642 	return SUCCESS;
4643 }
4644 
4645 #if 0 /* unused and broken.. */
4646 /*==========================================================
4647 **
4648 **
4649 **	Abort an SCSI command.
4650 **	This is called from the generic SCSI driver.
4651 **
4652 **
4653 **==========================================================
4654 */
4655 static int ncr_abort_command (struct ncb *np, struct scsi_cmnd *cmd)
4656 {
4657 /*	struct scsi_device        *device    = cmd->device; */
4658 	struct ccb *cp;
4659 	int found;
4660 	int retv;
4661 
4662 /*
4663  * First, look for the scsi command in the waiting list
4664  */
4665 	if (remove_from_waiting_list(np, cmd)) {
4666 		cmd->result = ScsiResult(DID_ABORT, 0);
4667 		ncr_queue_done_cmd(np, cmd);
4668 		return SCSI_ABORT_SUCCESS;
4669 	}
4670 
4671 /*
4672  * Then, look in the wakeup list
4673  */
4674 	for (found=0, cp=np->ccb; cp; cp=cp->link_ccb) {
4675 		/*
4676 		**	look for the ccb of this command.
4677 		*/
4678 		if (cp->host_status == HS_IDLE) continue;
4679 		if (cp->cmd == cmd) {
4680 			found = 1;
4681 			break;
4682 		}
4683 	}
4684 
4685 	if (!found) {
4686 		return SCSI_ABORT_NOT_RUNNING;
4687 	}
4688 
4689 	if (np->settle_time) {
4690 		return SCSI_ABORT_SNOOZE;
4691 	}
4692 
4693 	/*
4694 	**	If the CCB is active, patch schedule jumps for the
4695 	**	script to abort the command.
4696 	*/
4697 
4698 	switch(cp->host_status) {
4699 	case HS_BUSY:
4700 	case HS_NEGOTIATE:
4701 		printk ("%s: abort ccb=%p (cancel)\n", ncr_name (np), cp);
4702 			cp->start.schedule.l_paddr =
4703 				cpu_to_scr(NCB_SCRIPTH_PHYS (np, cancel));
4704 		retv = SCSI_ABORT_PENDING;
4705 		break;
4706 	case HS_DISCONNECT:
4707 		cp->restart.schedule.l_paddr =
4708 				cpu_to_scr(NCB_SCRIPTH_PHYS (np, abort));
4709 		retv = SCSI_ABORT_PENDING;
4710 		break;
4711 	default:
4712 		retv = SCSI_ABORT_NOT_RUNNING;
4713 		break;
4714 
4715 	}
4716 
4717 	/*
4718 	**      If there are no requests, the script
4719 	**      processor will sleep on SEL_WAIT_RESEL.
4720 	**      Let's wake it up, since it may have to work.
4721 	*/
4722 	OUTB (nc_istat, SIGP);
4723 
4724 	return retv;
4725 }
4726 #endif
4727 
4728 static void ncr_detach(struct ncb *np)
4729 {
4730 	struct ccb *cp;
4731 	struct tcb *tp;
4732 	struct lcb *lp;
4733 	int target, lun;
4734 	int i;
4735 	char inst_name[16];
4736 
4737 	/* Local copy so we don't access np after freeing it! */
4738 	strlcpy(inst_name, ncr_name(np), sizeof(inst_name));
4739 
4740 	printk("%s: releasing host resources\n", ncr_name(np));
4741 
4742 /*
4743 **	Stop the ncr_timeout process
4744 **	Set release_stage to 1 and wait that ncr_timeout() set it to 2.
4745 */
4746 
4747 #ifdef DEBUG_NCR53C8XX
4748 	printk("%s: stopping the timer\n", ncr_name(np));
4749 #endif
4750 	np->release_stage = 1;
4751 	for (i = 50 ; i && np->release_stage != 2 ; i--)
4752 		mdelay(100);
4753 	if (np->release_stage != 2)
4754 		printk("%s: the timer seems to be already stopped\n", ncr_name(np));
4755 	else np->release_stage = 2;
4756 
4757 /*
4758 **	Disable chip interrupts
4759 */
4760 
4761 #ifdef DEBUG_NCR53C8XX
4762 	printk("%s: disabling chip interrupts\n", ncr_name(np));
4763 #endif
4764 	OUTW (nc_sien , 0);
4765 	OUTB (nc_dien , 0);
4766 
4767 	/*
4768 	**	Reset NCR chip
4769 	**	Restore bios setting for automatic clock detection.
4770 	*/
4771 
4772 	printk("%s: resetting chip\n", ncr_name(np));
4773 	ncr_chip_reset(np, 100);
4774 
4775 	OUTB(nc_dmode,	np->sv_dmode);
4776 	OUTB(nc_dcntl,	np->sv_dcntl);
4777 	OUTB(nc_ctest0,	np->sv_ctest0);
4778 	OUTB(nc_ctest3,	np->sv_ctest3);
4779 	OUTB(nc_ctest4,	np->sv_ctest4);
4780 	OUTB(nc_ctest5,	np->sv_ctest5);
4781 	OUTB(nc_gpcntl,	np->sv_gpcntl);
4782 	OUTB(nc_stest2,	np->sv_stest2);
4783 
4784 	ncr_selectclock(np, np->sv_scntl3);
4785 
4786 	/*
4787 	**	Free allocated ccb(s)
4788 	*/
4789 
4790 	while ((cp=np->ccb->link_ccb) != NULL) {
4791 		np->ccb->link_ccb = cp->link_ccb;
4792 		if (cp->host_status) {
4793 		printk("%s: shall free an active ccb (host_status=%d)\n",
4794 			ncr_name(np), cp->host_status);
4795 		}
4796 #ifdef DEBUG_NCR53C8XX
4797 	printk("%s: freeing ccb (%lx)\n", ncr_name(np), (u_long) cp);
4798 #endif
4799 		m_free_dma(cp, sizeof(*cp), "CCB");
4800 	}
4801 
4802 	/* Free allocated tp(s) */
4803 
4804 	for (target = 0; target < MAX_TARGET ; target++) {
4805 		tp=&np->target[target];
4806 		for (lun = 0 ; lun < MAX_LUN ; lun++) {
4807 			lp = tp->lp[lun];
4808 			if (lp) {
4809 #ifdef DEBUG_NCR53C8XX
4810 	printk("%s: freeing lp (%lx)\n", ncr_name(np), (u_long) lp);
4811 #endif
4812 				if (lp->jump_ccb != &lp->jump_ccb_0)
4813 					m_free_dma(lp->jump_ccb,256,"JUMP_CCB");
4814 				m_free_dma(lp, sizeof(*lp), "LCB");
4815 			}
4816 		}
4817 	}
4818 
4819 	if (np->scripth0)
4820 		m_free_dma(np->scripth0, sizeof(struct scripth), "SCRIPTH");
4821 	if (np->script0)
4822 		m_free_dma(np->script0, sizeof(struct script), "SCRIPT");
4823 	if (np->ccb)
4824 		m_free_dma(np->ccb, sizeof(struct ccb), "CCB");
4825 	m_free_dma(np, sizeof(struct ncb), "NCB");
4826 
4827 	printk("%s: host resources successfully released\n", inst_name);
4828 }
4829 
4830 /*==========================================================
4831 **
4832 **
4833 **	Complete execution of a SCSI command.
4834 **	Signal completion to the generic SCSI driver.
4835 **
4836 **
4837 **==========================================================
4838 */
4839 
4840 void ncr_complete (struct ncb *np, struct ccb *cp)
4841 {
4842 	struct scsi_cmnd *cmd;
4843 	struct tcb *tp;
4844 	struct lcb *lp;
4845 
4846 	/*
4847 	**	Sanity check
4848 	*/
4849 
4850 	if (!cp || cp->magic != CCB_MAGIC || !cp->cmd)
4851 		return;
4852 
4853 	/*
4854 	**	Print minimal debug information.
4855 	*/
4856 
4857 	if (DEBUG_FLAGS & DEBUG_TINY)
4858 		printk ("CCB=%lx STAT=%x/%x\n", (unsigned long)cp,
4859 			cp->host_status,cp->scsi_status);
4860 
4861 	/*
4862 	**	Get command, target and lun pointers.
4863 	*/
4864 
4865 	cmd = cp->cmd;
4866 	cp->cmd = NULL;
4867 	tp = &np->target[cmd->device->id];
4868 	lp = tp->lp[cmd->device->lun];
4869 
4870 	/*
4871 	**	We donnot queue more than 1 ccb per target
4872 	**	with negotiation at any time. If this ccb was
4873 	**	used for negotiation, clear this info in the tcb.
4874 	*/
4875 
4876 	if (cp == tp->nego_cp)
4877 		tp->nego_cp = NULL;
4878 
4879 	/*
4880 	**	If auto-sense performed, change scsi status.
4881 	*/
4882 	if (cp->auto_sense) {
4883 		cp->scsi_status = cp->auto_sense;
4884 	}
4885 
4886 	/*
4887 	**	If we were recovering from queue full or performing
4888 	**	auto-sense, requeue skipped CCBs to the wait queue.
4889 	*/
4890 
4891 	if (lp && lp->held_ccb) {
4892 		if (cp == lp->held_ccb) {
4893 			list_splice_init(&lp->skip_ccbq, &lp->wait_ccbq);
4894 			lp->held_ccb = NULL;
4895 		}
4896 	}
4897 
4898 	/*
4899 	**	Check for parity errors.
4900 	*/
4901 
4902 	if (cp->parity_status > 1) {
4903 		PRINT_ADDR(cmd, "%d parity error(s).\n",cp->parity_status);
4904 	}
4905 
4906 	/*
4907 	**	Check for extended errors.
4908 	*/
4909 
4910 	if (cp->xerr_status != XE_OK) {
4911 		switch (cp->xerr_status) {
4912 		case XE_EXTRA_DATA:
4913 			PRINT_ADDR(cmd, "extraneous data discarded.\n");
4914 			break;
4915 		case XE_BAD_PHASE:
4916 			PRINT_ADDR(cmd, "invalid scsi phase (4/5).\n");
4917 			break;
4918 		default:
4919 			PRINT_ADDR(cmd, "extended error %d.\n",
4920 					cp->xerr_status);
4921 			break;
4922 		}
4923 		if (cp->host_status==HS_COMPLETE)
4924 			cp->host_status = HS_FAIL;
4925 	}
4926 
4927 	/*
4928 	**	Print out any error for debugging purpose.
4929 	*/
4930 	if (DEBUG_FLAGS & (DEBUG_RESULT|DEBUG_TINY)) {
4931 		if (cp->host_status!=HS_COMPLETE || cp->scsi_status!=S_GOOD) {
4932 			PRINT_ADDR(cmd, "ERROR: cmd=%x host_status=%x "
4933 					"scsi_status=%x\n", cmd->cmnd[0],
4934 					cp->host_status, cp->scsi_status);
4935 		}
4936 	}
4937 
4938 	/*
4939 	**	Check the status.
4940 	*/
4941 	if (   (cp->host_status == HS_COMPLETE)
4942 		&& (cp->scsi_status == S_GOOD ||
4943 		    cp->scsi_status == S_COND_MET)) {
4944 		/*
4945 		 *	All went well (GOOD status).
4946 		 *	CONDITION MET status is returned on
4947 		 *	`Pre-Fetch' or `Search data' success.
4948 		 */
4949 		cmd->result = ScsiResult(DID_OK, cp->scsi_status);
4950 
4951 		/*
4952 		**	@RESID@
4953 		**	Could dig out the correct value for resid,
4954 		**	but it would be quite complicated.
4955 		*/
4956 		/* if (cp->phys.header.lastp != cp->phys.header.goalp) */
4957 
4958 		/*
4959 		**	Allocate the lcb if not yet.
4960 		*/
4961 		if (!lp)
4962 			ncr_alloc_lcb (np, cmd->device->id, cmd->device->lun);
4963 
4964 		tp->bytes     += cp->data_len;
4965 		tp->transfers ++;
4966 
4967 		/*
4968 		**	If tags was reduced due to queue full,
4969 		**	increase tags if 1000 good status received.
4970 		*/
4971 		if (lp && lp->usetags && lp->numtags < lp->maxtags) {
4972 			++lp->num_good;
4973 			if (lp->num_good >= 1000) {
4974 				lp->num_good = 0;
4975 				++lp->numtags;
4976 				ncr_setup_tags (np, cmd->device);
4977 			}
4978 		}
4979 	} else if ((cp->host_status == HS_COMPLETE)
4980 		&& (cp->scsi_status == S_CHECK_COND)) {
4981 		/*
4982 		**   Check condition code
4983 		*/
4984 		cmd->result = ScsiResult(DID_OK, S_CHECK_COND);
4985 
4986 		/*
4987 		**	Copy back sense data to caller's buffer.
4988 		*/
4989 		memcpy(cmd->sense_buffer, cp->sense_buf,
4990 		       min(sizeof(cmd->sense_buffer), sizeof(cp->sense_buf)));
4991 
4992 		if (DEBUG_FLAGS & (DEBUG_RESULT|DEBUG_TINY)) {
4993 			u_char * p = (u_char*) & cmd->sense_buffer;
4994 			int i;
4995 			PRINT_ADDR(cmd, "sense data:");
4996 			for (i=0; i<14; i++) printk (" %x", *p++);
4997 			printk (".\n");
4998 		}
4999 	} else if ((cp->host_status == HS_COMPLETE)
5000 		&& (cp->scsi_status == S_CONFLICT)) {
5001 		/*
5002 		**   Reservation Conflict condition code
5003 		*/
5004 		cmd->result = ScsiResult(DID_OK, S_CONFLICT);
5005 
5006 	} else if ((cp->host_status == HS_COMPLETE)
5007 		&& (cp->scsi_status == S_BUSY ||
5008 		    cp->scsi_status == S_QUEUE_FULL)) {
5009 
5010 		/*
5011 		**   Target is busy.
5012 		*/
5013 		cmd->result = ScsiResult(DID_OK, cp->scsi_status);
5014 
5015 	} else if ((cp->host_status == HS_SEL_TIMEOUT)
5016 		|| (cp->host_status == HS_TIMEOUT)) {
5017 
5018 		/*
5019 		**   No response
5020 		*/
5021 		cmd->result = ScsiResult(DID_TIME_OUT, cp->scsi_status);
5022 
5023 	} else if (cp->host_status == HS_RESET) {
5024 
5025 		/*
5026 		**   SCSI bus reset
5027 		*/
5028 		cmd->result = ScsiResult(DID_RESET, cp->scsi_status);
5029 
5030 	} else if (cp->host_status == HS_ABORTED) {
5031 
5032 		/*
5033 		**   Transfer aborted
5034 		*/
5035 		cmd->result = ScsiResult(DID_ABORT, cp->scsi_status);
5036 
5037 	} else {
5038 
5039 		/*
5040 		**  Other protocol messes
5041 		*/
5042 		PRINT_ADDR(cmd, "COMMAND FAILED (%x %x) @%p.\n",
5043 			cp->host_status, cp->scsi_status, cp);
5044 
5045 		cmd->result = ScsiResult(DID_ERROR, cp->scsi_status);
5046 	}
5047 
5048 	/*
5049 	**	trace output
5050 	*/
5051 
5052 	if (tp->usrflag & UF_TRACE) {
5053 		u_char * p;
5054 		int i;
5055 		PRINT_ADDR(cmd, " CMD:");
5056 		p = (u_char*) &cmd->cmnd[0];
5057 		for (i=0; i<cmd->cmd_len; i++) printk (" %x", *p++);
5058 
5059 		if (cp->host_status==HS_COMPLETE) {
5060 			switch (cp->scsi_status) {
5061 			case S_GOOD:
5062 				printk ("  GOOD");
5063 				break;
5064 			case S_CHECK_COND:
5065 				printk ("  SENSE:");
5066 				p = (u_char*) &cmd->sense_buffer;
5067 				for (i=0; i<14; i++)
5068 					printk (" %x", *p++);
5069 				break;
5070 			default:
5071 				printk ("  STAT: %x\n", cp->scsi_status);
5072 				break;
5073 			}
5074 		} else printk ("  HOSTERROR: %x", cp->host_status);
5075 		printk ("\n");
5076 	}
5077 
5078 	/*
5079 	**	Free this ccb
5080 	*/
5081 	ncr_free_ccb (np, cp);
5082 
5083 	/*
5084 	**	requeue awaiting scsi commands for this lun.
5085 	*/
5086 	if (lp && lp->queuedccbs < lp->queuedepth &&
5087 	    !list_empty(&lp->wait_ccbq))
5088 		ncr_start_next_ccb(np, lp, 2);
5089 
5090 	/*
5091 	**	requeue awaiting scsi commands for this controller.
5092 	*/
5093 	if (np->waiting_list)
5094 		requeue_waiting_list(np);
5095 
5096 	/*
5097 	**	signal completion to generic driver.
5098 	*/
5099 	ncr_queue_done_cmd(np, cmd);
5100 }
5101 
5102 /*==========================================================
5103 **
5104 **
5105 **	Signal all (or one) control block done.
5106 **
5107 **
5108 **==========================================================
5109 */
5110 
5111 /*
5112 **	This CCB has been skipped by the NCR.
5113 **	Queue it in the corresponding unit queue.
5114 */
5115 static void ncr_ccb_skipped(struct ncb *np, struct ccb *cp)
5116 {
5117 	struct tcb *tp = &np->target[cp->target];
5118 	struct lcb *lp = tp->lp[cp->lun];
5119 
5120 	if (lp && cp != np->ccb) {
5121 		cp->host_status &= ~HS_SKIPMASK;
5122 		cp->start.schedule.l_paddr =
5123 			cpu_to_scr(NCB_SCRIPT_PHYS (np, select));
5124 		list_move_tail(&cp->link_ccbq, &lp->skip_ccbq);
5125 		if (cp->queued) {
5126 			--lp->queuedccbs;
5127 		}
5128 	}
5129 	if (cp->queued) {
5130 		--np->queuedccbs;
5131 		cp->queued = 0;
5132 	}
5133 }
5134 
5135 /*
5136 **	The NCR has completed CCBs.
5137 **	Look at the DONE QUEUE if enabled, otherwise scan all CCBs
5138 */
5139 void ncr_wakeup_done (struct ncb *np)
5140 {
5141 	struct ccb *cp;
5142 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
5143 	int i, j;
5144 
5145 	i = np->ccb_done_ic;
5146 	while (1) {
5147 		j = i+1;
5148 		if (j >= MAX_DONE)
5149 			j = 0;
5150 
5151 		cp = np->ccb_done[j];
5152 		if (!CCB_DONE_VALID(cp))
5153 			break;
5154 
5155 		np->ccb_done[j] = (struct ccb *)CCB_DONE_EMPTY;
5156 		np->scripth->done_queue[5*j + 4] =
5157 				cpu_to_scr(NCB_SCRIPT_PHYS (np, done_plug));
5158 		MEMORY_BARRIER();
5159 		np->scripth->done_queue[5*i + 4] =
5160 				cpu_to_scr(NCB_SCRIPT_PHYS (np, done_end));
5161 
5162 		if (cp->host_status & HS_DONEMASK)
5163 			ncr_complete (np, cp);
5164 		else if (cp->host_status & HS_SKIPMASK)
5165 			ncr_ccb_skipped (np, cp);
5166 
5167 		i = j;
5168 	}
5169 	np->ccb_done_ic = i;
5170 #else
5171 	cp = np->ccb;
5172 	while (cp) {
5173 		if (cp->host_status & HS_DONEMASK)
5174 			ncr_complete (np, cp);
5175 		else if (cp->host_status & HS_SKIPMASK)
5176 			ncr_ccb_skipped (np, cp);
5177 		cp = cp->link_ccb;
5178 	}
5179 #endif
5180 }
5181 
5182 /*
5183 **	Complete all active CCBs.
5184 */
5185 void ncr_wakeup (struct ncb *np, u_long code)
5186 {
5187 	struct ccb *cp = np->ccb;
5188 
5189 	while (cp) {
5190 		if (cp->host_status != HS_IDLE) {
5191 			cp->host_status = code;
5192 			ncr_complete (np, cp);
5193 		}
5194 		cp = cp->link_ccb;
5195 	}
5196 }
5197 
5198 /*
5199 ** Reset ncr chip.
5200 */
5201 
5202 /* Some initialisation must be done immediately following reset, for 53c720,
5203  * at least.  EA (dcntl bit 5) isn't set here as it is set once only in
5204  * the _detect function.
5205  */
5206 static void ncr_chip_reset(struct ncb *np, int delay)
5207 {
5208 	OUTB (nc_istat,  SRST);
5209 	udelay(delay);
5210 	OUTB (nc_istat,  0   );
5211 
5212 	if (np->features & FE_EHP)
5213 		OUTB (nc_ctest0, EHP);
5214 	if (np->features & FE_MUX)
5215 		OUTB (nc_ctest4, MUX);
5216 }
5217 
5218 
5219 /*==========================================================
5220 **
5221 **
5222 **	Start NCR chip.
5223 **
5224 **
5225 **==========================================================
5226 */
5227 
5228 void ncr_init (struct ncb *np, int reset, char * msg, u_long code)
5229 {
5230  	int	i;
5231 
5232  	/*
5233 	**	Reset chip if asked, otherwise just clear fifos.
5234  	*/
5235 
5236 	if (reset) {
5237 		OUTB (nc_istat,  SRST);
5238 		udelay(100);
5239 	}
5240 	else {
5241 		OUTB (nc_stest3, TE|CSF);
5242 		OUTONB (nc_ctest3, CLF);
5243 	}
5244 
5245 	/*
5246 	**	Message.
5247 	*/
5248 
5249 	if (msg) printk (KERN_INFO "%s: restart (%s).\n", ncr_name (np), msg);
5250 
5251 	/*
5252 	**	Clear Start Queue
5253 	*/
5254 	np->queuedepth = MAX_START - 1;	/* 1 entry needed as end marker */
5255 	for (i = 1; i < MAX_START + MAX_START; i += 2)
5256 		np->scripth0->tryloop[i] =
5257 				cpu_to_scr(NCB_SCRIPT_PHYS (np, idle));
5258 
5259 	/*
5260 	**	Start at first entry.
5261 	*/
5262 	np->squeueput = 0;
5263 	np->script0->startpos[0] = cpu_to_scr(NCB_SCRIPTH_PHYS (np, tryloop));
5264 
5265 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
5266 	/*
5267 	**	Clear Done Queue
5268 	*/
5269 	for (i = 0; i < MAX_DONE; i++) {
5270 		np->ccb_done[i] = (struct ccb *)CCB_DONE_EMPTY;
5271 		np->scripth0->done_queue[5*i + 4] =
5272 			cpu_to_scr(NCB_SCRIPT_PHYS (np, done_end));
5273 	}
5274 #endif
5275 
5276 	/*
5277 	**	Start at first entry.
5278 	*/
5279 	np->script0->done_pos[0] = cpu_to_scr(NCB_SCRIPTH_PHYS (np,done_queue));
5280 	np->ccb_done_ic = MAX_DONE-1;
5281 	np->scripth0->done_queue[5*(MAX_DONE-1) + 4] =
5282 			cpu_to_scr(NCB_SCRIPT_PHYS (np, done_plug));
5283 
5284 	/*
5285 	**	Wakeup all pending jobs.
5286 	*/
5287 	ncr_wakeup (np, code);
5288 
5289 	/*
5290 	**	Init chip.
5291 	*/
5292 
5293 	/*
5294 	** Remove reset; big delay because the 895 needs time for the
5295 	** bus mode to settle
5296 	*/
5297 	ncr_chip_reset(np, 2000);
5298 
5299 	OUTB (nc_scntl0, np->rv_scntl0 | 0xc0);
5300 					/*  full arb., ena parity, par->ATN  */
5301 	OUTB (nc_scntl1, 0x00);		/*  odd parity, and remove CRST!! */
5302 
5303 	ncr_selectclock(np, np->rv_scntl3);	/* Select SCSI clock */
5304 
5305 	OUTB (nc_scid  , RRE|np->myaddr);	/* Adapter SCSI address */
5306 	OUTW (nc_respid, 1ul<<np->myaddr);	/* Id to respond to */
5307 	OUTB (nc_istat , SIGP	);		/*  Signal Process */
5308 	OUTB (nc_dmode , np->rv_dmode);		/* Burst length, dma mode */
5309 	OUTB (nc_ctest5, np->rv_ctest5);	/* Large fifo + large burst */
5310 
5311 	OUTB (nc_dcntl , NOCOM|np->rv_dcntl);	/* Protect SFBR */
5312 	OUTB (nc_ctest0, np->rv_ctest0);	/* 720: CDIS and EHP */
5313 	OUTB (nc_ctest3, np->rv_ctest3);	/* Write and invalidate */
5314 	OUTB (nc_ctest4, np->rv_ctest4);	/* Master parity checking */
5315 
5316 	OUTB (nc_stest2, EXT|np->rv_stest2);	/* Extended Sreq/Sack filtering */
5317 	OUTB (nc_stest3, TE);			/* TolerANT enable */
5318 	OUTB (nc_stime0, 0x0c	);		/* HTH disabled  STO 0.25 sec */
5319 
5320 	/*
5321 	**	Disable disconnects.
5322 	*/
5323 
5324 	np->disc = 0;
5325 
5326 	/*
5327 	**    Enable GPIO0 pin for writing if LED support.
5328 	*/
5329 
5330 	if (np->features & FE_LED0) {
5331 		OUTOFFB (nc_gpcntl, 0x01);
5332 	}
5333 
5334 	/*
5335 	**      enable ints
5336 	*/
5337 
5338 	OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
5339 	OUTB (nc_dien , MDPE|BF|ABRT|SSI|SIR|IID);
5340 
5341 	/*
5342 	**	Fill in target structure.
5343 	**	Reinitialize usrsync.
5344 	**	Reinitialize usrwide.
5345 	**	Prepare sync negotiation according to actual SCSI bus mode.
5346 	*/
5347 
5348 	for (i=0;i<MAX_TARGET;i++) {
5349 		struct tcb *tp = &np->target[i];
5350 
5351 		tp->sval    = 0;
5352 		tp->wval    = np->rv_scntl3;
5353 
5354 		if (tp->usrsync != 255) {
5355 			if (tp->usrsync <= np->maxsync) {
5356 				if (tp->usrsync < np->minsync) {
5357 					tp->usrsync = np->minsync;
5358 				}
5359 			}
5360 			else
5361 				tp->usrsync = 255;
5362 		}
5363 
5364 		if (tp->usrwide > np->maxwide)
5365 			tp->usrwide = np->maxwide;
5366 
5367 	}
5368 
5369 	/*
5370 	**    Start script processor.
5371 	*/
5372 	if (np->paddr2) {
5373 		if (bootverbose)
5374 			printk ("%s: Downloading SCSI SCRIPTS.\n",
5375 				ncr_name(np));
5376 		OUTL (nc_scratcha, vtobus(np->script0));
5377 		OUTL_DSP (NCB_SCRIPTH_PHYS (np, start_ram));
5378 	}
5379 	else
5380 		OUTL_DSP (NCB_SCRIPT_PHYS (np, start));
5381 }
5382 
5383 /*==========================================================
5384 **
5385 **	Prepare the negotiation values for wide and
5386 **	synchronous transfers.
5387 **
5388 **==========================================================
5389 */
5390 
5391 static void ncr_negotiate (struct ncb* np, struct tcb* tp)
5392 {
5393 	/*
5394 	**	minsync unit is 4ns !
5395 	*/
5396 
5397 	u_long minsync = tp->usrsync;
5398 
5399 	/*
5400 	**	SCSI bus mode limit
5401 	*/
5402 
5403 	if (np->scsi_mode && np->scsi_mode == SMODE_SE) {
5404 		if (minsync < 12) minsync = 12;
5405 	}
5406 
5407 	/*
5408 	**	our limit ..
5409 	*/
5410 
5411 	if (minsync < np->minsync)
5412 		minsync = np->minsync;
5413 
5414 	/*
5415 	**	divider limit
5416 	*/
5417 
5418 	if (minsync > np->maxsync)
5419 		minsync = 255;
5420 
5421 	if (tp->maxoffs > np->maxoffs)
5422 		tp->maxoffs = np->maxoffs;
5423 
5424 	tp->minsync = minsync;
5425 	tp->maxoffs = (minsync<255 ? tp->maxoffs : 0);
5426 
5427 	/*
5428 	**	period=0: has to negotiate sync transfer
5429 	*/
5430 
5431 	tp->period=0;
5432 
5433 	/*
5434 	**	widedone=0: has to negotiate wide transfer
5435 	*/
5436 	tp->widedone=0;
5437 }
5438 
5439 /*==========================================================
5440 **
5441 **	Get clock factor and sync divisor for a given
5442 **	synchronous factor period.
5443 **	Returns the clock factor (in sxfer) and scntl3
5444 **	synchronous divisor field.
5445 **
5446 **==========================================================
5447 */
5448 
5449 static void ncr_getsync(struct ncb *np, u_char sfac, u_char *fakp, u_char *scntl3p)
5450 {
5451 	u_long	clk = np->clock_khz;	/* SCSI clock frequency in kHz	*/
5452 	int	div = np->clock_divn;	/* Number of divisors supported	*/
5453 	u_long	fak;			/* Sync factor in sxfer		*/
5454 	u_long	per;			/* Period in tenths of ns	*/
5455 	u_long	kpc;			/* (per * clk)			*/
5456 
5457 	/*
5458 	**	Compute the synchronous period in tenths of nano-seconds
5459 	*/
5460 	if	(sfac <= 10)	per = 250;
5461 	else if	(sfac == 11)	per = 303;
5462 	else if	(sfac == 12)	per = 500;
5463 	else			per = 40 * sfac;
5464 
5465 	/*
5466 	**	Look for the greatest clock divisor that allows an
5467 	**	input speed faster than the period.
5468 	*/
5469 	kpc = per * clk;
5470 	while (--div >= 0)
5471 		if (kpc >= (div_10M[div] << 2)) break;
5472 
5473 	/*
5474 	**	Calculate the lowest clock factor that allows an output
5475 	**	speed not faster than the period.
5476 	*/
5477 	fak = (kpc - 1) / div_10M[div] + 1;
5478 
5479 #if 0	/* This optimization does not seem very useful */
5480 
5481 	per = (fak * div_10M[div]) / clk;
5482 
5483 	/*
5484 	**	Why not to try the immediate lower divisor and to choose
5485 	**	the one that allows the fastest output speed ?
5486 	**	We don't want input speed too much greater than output speed.
5487 	*/
5488 	if (div >= 1 && fak < 8) {
5489 		u_long fak2, per2;
5490 		fak2 = (kpc - 1) / div_10M[div-1] + 1;
5491 		per2 = (fak2 * div_10M[div-1]) / clk;
5492 		if (per2 < per && fak2 <= 8) {
5493 			fak = fak2;
5494 			per = per2;
5495 			--div;
5496 		}
5497 	}
5498 #endif
5499 
5500 	if (fak < 4) fak = 4;	/* Should never happen, too bad ... */
5501 
5502 	/*
5503 	**	Compute and return sync parameters for the ncr
5504 	*/
5505 	*fakp		= fak - 4;
5506 	*scntl3p	= ((div+1) << 4) + (sfac < 25 ? 0x80 : 0);
5507 }
5508 
5509 
5510 /*==========================================================
5511 **
5512 **	Set actual values, sync status and patch all ccbs of
5513 **	a target according to new sync/wide agreement.
5514 **
5515 **==========================================================
5516 */
5517 
5518 static void ncr_set_sync_wide_status (struct ncb *np, u_char target)
5519 {
5520 	struct ccb *cp;
5521 	struct tcb *tp = &np->target[target];
5522 
5523 	/*
5524 	**	set actual value and sync_status
5525 	*/
5526 	OUTB (nc_sxfer, tp->sval);
5527 	np->sync_st = tp->sval;
5528 	OUTB (nc_scntl3, tp->wval);
5529 	np->wide_st = tp->wval;
5530 
5531 	/*
5532 	**	patch ALL ccbs of this target.
5533 	*/
5534 	for (cp = np->ccb; cp; cp = cp->link_ccb) {
5535 		if (!cp->cmd) continue;
5536 		if (scmd_id(cp->cmd) != target) continue;
5537 #if 0
5538 		cp->sync_status = tp->sval;
5539 		cp->wide_status = tp->wval;
5540 #endif
5541 		cp->phys.select.sel_scntl3 = tp->wval;
5542 		cp->phys.select.sel_sxfer  = tp->sval;
5543 	}
5544 }
5545 
5546 /*==========================================================
5547 **
5548 **	Switch sync mode for current job and it's target
5549 **
5550 **==========================================================
5551 */
5552 
5553 static void ncr_setsync (struct ncb *np, struct ccb *cp, u_char scntl3, u_char sxfer)
5554 {
5555 	struct scsi_cmnd *cmd = cp->cmd;
5556 	struct tcb *tp;
5557 	u_char target = INB (nc_sdid) & 0x0f;
5558 	u_char idiv;
5559 
5560 	BUG_ON(target != (scmd_id(cmd) & 0xf));
5561 
5562 	tp = &np->target[target];
5563 
5564 	if (!scntl3 || !(sxfer & 0x1f))
5565 		scntl3 = np->rv_scntl3;
5566 	scntl3 = (scntl3 & 0xf0) | (tp->wval & EWS) | (np->rv_scntl3 & 0x07);
5567 
5568 	/*
5569 	**	Deduce the value of controller sync period from scntl3.
5570 	**	period is in tenths of nano-seconds.
5571 	*/
5572 
5573 	idiv = ((scntl3 >> 4) & 0x7);
5574 	if ((sxfer & 0x1f) && idiv)
5575 		tp->period = (((sxfer>>5)+4)*div_10M[idiv-1])/np->clock_khz;
5576 	else
5577 		tp->period = 0xffff;
5578 
5579 	/* Stop there if sync parameters are unchanged */
5580 	if (tp->sval == sxfer && tp->wval == scntl3)
5581 		return;
5582 	tp->sval = sxfer;
5583 	tp->wval = scntl3;
5584 
5585 	if (sxfer & 0x01f) {
5586 		/* Disable extended Sreq/Sack filtering */
5587 		if (tp->period <= 2000)
5588 			OUTOFFB(nc_stest2, EXT);
5589 	}
5590 
5591 	spi_display_xfer_agreement(tp->starget);
5592 
5593 	/*
5594 	**	set actual value and sync_status
5595 	**	patch ALL ccbs of this target.
5596 	*/
5597 	ncr_set_sync_wide_status(np, target);
5598 }
5599 
5600 /*==========================================================
5601 **
5602 **	Switch wide mode for current job and it's target
5603 **	SCSI specs say: a SCSI device that accepts a WDTR
5604 **	message shall reset the synchronous agreement to
5605 **	asynchronous mode.
5606 **
5607 **==========================================================
5608 */
5609 
5610 static void ncr_setwide (struct ncb *np, struct ccb *cp, u_char wide, u_char ack)
5611 {
5612 	struct scsi_cmnd *cmd = cp->cmd;
5613 	u16 target = INB (nc_sdid) & 0x0f;
5614 	struct tcb *tp;
5615 	u_char	scntl3;
5616 	u_char	sxfer;
5617 
5618 	BUG_ON(target != (scmd_id(cmd) & 0xf));
5619 
5620 	tp = &np->target[target];
5621 	tp->widedone  =  wide+1;
5622 	scntl3 = (tp->wval & (~EWS)) | (wide ? EWS : 0);
5623 
5624 	sxfer = ack ? 0 : tp->sval;
5625 
5626 	/*
5627 	**	 Stop there if sync/wide parameters are unchanged
5628 	*/
5629 	if (tp->sval == sxfer && tp->wval == scntl3) return;
5630 	tp->sval = sxfer;
5631 	tp->wval = scntl3;
5632 
5633 	/*
5634 	**	Bells and whistles   ;-)
5635 	*/
5636 	if (bootverbose >= 2) {
5637 		dev_info(&cmd->device->sdev_target->dev, "WIDE SCSI %sabled.\n",
5638 				(scntl3 & EWS) ? "en" : "dis");
5639 	}
5640 
5641 	/*
5642 	**	set actual value and sync_status
5643 	**	patch ALL ccbs of this target.
5644 	*/
5645 	ncr_set_sync_wide_status(np, target);
5646 }
5647 
5648 /*==========================================================
5649 **
5650 **	Switch tagged mode for a target.
5651 **
5652 **==========================================================
5653 */
5654 
5655 static void ncr_setup_tags (struct ncb *np, struct scsi_device *sdev)
5656 {
5657 	unsigned char tn = sdev->id, ln = sdev->lun;
5658 	struct tcb *tp = &np->target[tn];
5659 	struct lcb *lp = tp->lp[ln];
5660 	u_char   reqtags, maxdepth;
5661 
5662 	/*
5663 	**	Just in case ...
5664 	*/
5665 	if ((!tp) || (!lp) || !sdev)
5666 		return;
5667 
5668 	/*
5669 	**	If SCSI device queue depth is not yet set, leave here.
5670 	*/
5671 	if (!lp->scdev_depth)
5672 		return;
5673 
5674 	/*
5675 	**	Donnot allow more tags than the SCSI driver can queue
5676 	**	for this device.
5677 	**	Donnot allow more tags than we can handle.
5678 	*/
5679 	maxdepth = lp->scdev_depth;
5680 	if (maxdepth > lp->maxnxs)	maxdepth    = lp->maxnxs;
5681 	if (lp->maxtags > maxdepth)	lp->maxtags = maxdepth;
5682 	if (lp->numtags > maxdepth)	lp->numtags = maxdepth;
5683 
5684 	/*
5685 	**	only devices conformant to ANSI Version >= 2
5686 	**	only devices capable of tagged commands
5687 	**	only if enabled by user ..
5688 	*/
5689 	if (sdev->tagged_supported && lp->numtags > 1) {
5690 		reqtags = lp->numtags;
5691 	} else {
5692 		reqtags = 1;
5693 	}
5694 
5695 	/*
5696 	**	Update max number of tags
5697 	*/
5698 	lp->numtags = reqtags;
5699 	if (lp->numtags > lp->maxtags)
5700 		lp->maxtags = lp->numtags;
5701 
5702 	/*
5703 	**	If we want to switch tag mode, we must wait
5704 	**	for no CCB to be active.
5705 	*/
5706 	if	(reqtags > 1 && lp->usetags) {	 /* Stay in tagged mode    */
5707 		if (lp->queuedepth == reqtags)	 /* Already announced	   */
5708 			return;
5709 		lp->queuedepth	= reqtags;
5710 	}
5711 	else if	(reqtags <= 1 && !lp->usetags) { /* Stay in untagged mode  */
5712 		lp->queuedepth	= reqtags;
5713 		return;
5714 	}
5715 	else {					 /* Want to switch tag mode */
5716 		if (lp->busyccbs)		 /* If not yet safe, return */
5717 			return;
5718 		lp->queuedepth	= reqtags;
5719 		lp->usetags	= reqtags > 1 ? 1 : 0;
5720 	}
5721 
5722 	/*
5723 	**	Patch the lun mini-script, according to tag mode.
5724 	*/
5725 	lp->jump_tag.l_paddr = lp->usetags?
5726 			cpu_to_scr(NCB_SCRIPT_PHYS(np, resel_tag)) :
5727 			cpu_to_scr(NCB_SCRIPT_PHYS(np, resel_notag));
5728 
5729 	/*
5730 	**	Announce change to user.
5731 	*/
5732 	if (bootverbose) {
5733 		if (lp->usetags) {
5734 			dev_info(&sdev->sdev_gendev,
5735 				"tagged command queue depth set to %d\n",
5736 				reqtags);
5737 		} else {
5738 			dev_info(&sdev->sdev_gendev,
5739 					"tagged command queueing disabled\n");
5740 		}
5741 	}
5742 }
5743 
5744 /*==========================================================
5745 **
5746 **
5747 **	ncr timeout handler.
5748 **
5749 **
5750 **==========================================================
5751 **
5752 **	Misused to keep the driver running when
5753 **	interrupts are not configured correctly.
5754 **
5755 **----------------------------------------------------------
5756 */
5757 
5758 static void ncr_timeout (struct ncb *np)
5759 {
5760 	u_long	thistime = jiffies;
5761 
5762 	/*
5763 	**	If release process in progress, let's go
5764 	**	Set the release stage from 1 to 2 to synchronize
5765 	**	with the release process.
5766 	*/
5767 
5768 	if (np->release_stage) {
5769 		if (np->release_stage == 1) np->release_stage = 2;
5770 		return;
5771 	}
5772 
5773 	np->timer.expires = jiffies + SCSI_NCR_TIMER_INTERVAL;
5774 	add_timer(&np->timer);
5775 
5776 	/*
5777 	**	If we are resetting the ncr, wait for settle_time before
5778 	**	clearing it. Then command processing will be resumed.
5779 	*/
5780 	if (np->settle_time) {
5781 		if (np->settle_time <= thistime) {
5782 			if (bootverbose > 1)
5783 				printk("%s: command processing resumed\n", ncr_name(np));
5784 			np->settle_time	= 0;
5785 			np->disc	= 1;
5786 			requeue_waiting_list(np);
5787 		}
5788 		return;
5789 	}
5790 
5791 	/*
5792 	**	Since the generic scsi driver only allows us 0.5 second
5793 	**	to perform abort of a command, we must look at ccbs about
5794 	**	every 0.25 second.
5795 	*/
5796 	if (np->lasttime + 4*HZ < thistime) {
5797 		/*
5798 		**	block ncr interrupts
5799 		*/
5800 		np->lasttime = thistime;
5801 	}
5802 
5803 #ifdef SCSI_NCR_BROKEN_INTR
5804 	if (INB(nc_istat) & (INTF|SIP|DIP)) {
5805 
5806 		/*
5807 		**	Process pending interrupts.
5808 		*/
5809 		if (DEBUG_FLAGS & DEBUG_TINY) printk ("{");
5810 		ncr_exception (np);
5811 		if (DEBUG_FLAGS & DEBUG_TINY) printk ("}");
5812 	}
5813 #endif /* SCSI_NCR_BROKEN_INTR */
5814 }
5815 
5816 /*==========================================================
5817 **
5818 **	log message for real hard errors
5819 **
5820 **	"ncr0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc)."
5821 **	"	      reg: r0 r1 r2 r3 r4 r5 r6 ..... rf."
5822 **
5823 **	exception register:
5824 **		ds:	dstat
5825 **		si:	sist
5826 **
5827 **	SCSI bus lines:
5828 **		so:	control lines as driver by NCR.
5829 **		si:	control lines as seen by NCR.
5830 **		sd:	scsi data lines as seen by NCR.
5831 **
5832 **	wide/fastmode:
5833 **		sxfer:	(see the manual)
5834 **		scntl3:	(see the manual)
5835 **
5836 **	current script command:
5837 **		dsp:	script address (relative to start of script).
5838 **		dbc:	first word of script command.
5839 **
5840 **	First 16 register of the chip:
5841 **		r0..rf
5842 **
5843 **==========================================================
5844 */
5845 
5846 static void ncr_log_hard_error(struct ncb *np, u16 sist, u_char dstat)
5847 {
5848 	u32	dsp;
5849 	int	script_ofs;
5850 	int	script_size;
5851 	char	*script_name;
5852 	u_char	*script_base;
5853 	int	i;
5854 
5855 	dsp	= INL (nc_dsp);
5856 
5857 	if (dsp > np->p_script && dsp <= np->p_script + sizeof(struct script)) {
5858 		script_ofs	= dsp - np->p_script;
5859 		script_size	= sizeof(struct script);
5860 		script_base	= (u_char *) np->script0;
5861 		script_name	= "script";
5862 	}
5863 	else if (np->p_scripth < dsp &&
5864 		 dsp <= np->p_scripth + sizeof(struct scripth)) {
5865 		script_ofs	= dsp - np->p_scripth;
5866 		script_size	= sizeof(struct scripth);
5867 		script_base	= (u_char *) np->scripth0;
5868 		script_name	= "scripth";
5869 	} else {
5870 		script_ofs	= dsp;
5871 		script_size	= 0;
5872 		script_base	= NULL;
5873 		script_name	= "mem";
5874 	}
5875 
5876 	printk ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n",
5877 		ncr_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist,
5878 		(unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl), (unsigned)INB (nc_sbdl),
5879 		(unsigned)INB (nc_sxfer),(unsigned)INB (nc_scntl3), script_name, script_ofs,
5880 		(unsigned)INL (nc_dbc));
5881 
5882 	if (((script_ofs & 3) == 0) &&
5883 	    (unsigned)script_ofs < script_size) {
5884 		printk ("%s: script cmd = %08x\n", ncr_name(np),
5885 			scr_to_cpu((int) *(ncrcmd *)(script_base + script_ofs)));
5886 	}
5887 
5888 	printk ("%s: regdump:", ncr_name(np));
5889 	for (i=0; i<16;i++)
5890             printk (" %02x", (unsigned)INB_OFF(i));
5891 	printk (".\n");
5892 }
5893 
5894 /*============================================================
5895 **
5896 **	ncr chip exception handler.
5897 **
5898 **============================================================
5899 **
5900 **	In normal cases, interrupt conditions occur one at a
5901 **	time. The ncr is able to stack in some extra registers
5902 **	other interrupts that will occur after the first one.
5903 **	But, several interrupts may occur at the same time.
5904 **
5905 **	We probably should only try to deal with the normal
5906 **	case, but it seems that multiple interrupts occur in
5907 **	some cases that are not abnormal at all.
5908 **
5909 **	The most frequent interrupt condition is Phase Mismatch.
5910 **	We should want to service this interrupt quickly.
5911 **	A SCSI parity error may be delivered at the same time.
5912 **	The SIR interrupt is not very frequent in this driver,
5913 **	since the INTFLY is likely used for command completion
5914 **	signaling.
5915 **	The Selection Timeout interrupt may be triggered with
5916 **	IID and/or UDC.
5917 **	The SBMC interrupt (SCSI Bus Mode Change) may probably
5918 **	occur at any time.
5919 **
5920 **	This handler try to deal as cleverly as possible with all
5921 **	the above.
5922 **
5923 **============================================================
5924 */
5925 
5926 void ncr_exception (struct ncb *np)
5927 {
5928 	u_char	istat, dstat;
5929 	u16	sist;
5930 	int	i;
5931 
5932 	/*
5933 	**	interrupt on the fly ?
5934 	**	Since the global header may be copied back to a CCB
5935 	**	using a posted PCI memory write, the last operation on
5936 	**	the istat register is a READ in order to flush posted
5937 	**	PCI write commands.
5938 	*/
5939 	istat = INB (nc_istat);
5940 	if (istat & INTF) {
5941 		OUTB (nc_istat, (istat & SIGP) | INTF);
5942 		istat = INB (nc_istat);
5943 		if (DEBUG_FLAGS & DEBUG_TINY) printk ("F ");
5944 		ncr_wakeup_done (np);
5945 	}
5946 
5947 	if (!(istat & (SIP|DIP)))
5948 		return;
5949 
5950 	if (istat & CABRT)
5951 		OUTB (nc_istat, CABRT);
5952 
5953 	/*
5954 	**	Steinbach's Guideline for Systems Programming:
5955 	**	Never test for an error condition you don't know how to handle.
5956 	*/
5957 
5958 	sist  = (istat & SIP) ? INW (nc_sist)  : 0;
5959 	dstat = (istat & DIP) ? INB (nc_dstat) : 0;
5960 
5961 	if (DEBUG_FLAGS & DEBUG_TINY)
5962 		printk ("<%d|%x:%x|%x:%x>",
5963 			(int)INB(nc_scr0),
5964 			dstat,sist,
5965 			(unsigned)INL(nc_dsp),
5966 			(unsigned)INL(nc_dbc));
5967 
5968 	/*========================================================
5969 	**	First, interrupts we want to service cleanly.
5970 	**
5971 	**	Phase mismatch is the most frequent interrupt, and
5972 	**	so we have to service it as quickly and as cleanly
5973 	**	as possible.
5974 	**	Programmed interrupts are rarely used in this driver,
5975 	**	but we must handle them cleanly anyway.
5976 	**	We try to deal with PAR and SBMC combined with
5977 	**	some other interrupt(s).
5978 	**=========================================================
5979 	*/
5980 
5981 	if (!(sist  & (STO|GEN|HTH|SGE|UDC|RST)) &&
5982 	    !(dstat & (MDPE|BF|ABRT|IID))) {
5983 		if ((sist & SBMC) && ncr_int_sbmc (np))
5984 			return;
5985 		if ((sist & PAR)  && ncr_int_par  (np))
5986 			return;
5987 		if (sist & MA) {
5988 			ncr_int_ma (np);
5989 			return;
5990 		}
5991 		if (dstat & SIR) {
5992 			ncr_int_sir (np);
5993 			return;
5994 		}
5995 		/*
5996 		**  DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 2.
5997 		*/
5998 		if (!(sist & (SBMC|PAR)) && !(dstat & SSI)) {
5999 			printk(	"%s: unknown interrupt(s) ignored, "
6000 				"ISTAT=%x DSTAT=%x SIST=%x\n",
6001 				ncr_name(np), istat, dstat, sist);
6002 			return;
6003 		}
6004 		OUTONB_STD ();
6005 		return;
6006 	}
6007 
6008 	/*========================================================
6009 	**	Now, interrupts that need some fixing up.
6010 	**	Order and multiple interrupts is so less important.
6011 	**
6012 	**	If SRST has been asserted, we just reset the chip.
6013 	**
6014 	**	Selection is intirely handled by the chip. If the
6015 	**	chip says STO, we trust it. Seems some other
6016 	**	interrupts may occur at the same time (UDC, IID), so
6017 	**	we ignore them. In any case we do enough fix-up
6018 	**	in the service routine.
6019 	**	We just exclude some fatal dma errors.
6020 	**=========================================================
6021 	*/
6022 
6023 	if (sist & RST) {
6024 		ncr_init (np, 1, bootverbose ? "scsi reset" : NULL, HS_RESET);
6025 		return;
6026 	}
6027 
6028 	if ((sist & STO) &&
6029 		!(dstat & (MDPE|BF|ABRT))) {
6030 	/*
6031 	**	DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 1.
6032 	*/
6033 		OUTONB (nc_ctest3, CLF);
6034 
6035 		ncr_int_sto (np);
6036 		return;
6037 	}
6038 
6039 	/*=========================================================
6040 	**	Now, interrupts we are not able to recover cleanly.
6041 	**	(At least for the moment).
6042 	**
6043 	**	Do the register dump.
6044 	**	Log message for real hard errors.
6045 	**	Clear all fifos.
6046 	**	For MDPE, BF, ABORT, IID, SGE and HTH we reset the
6047 	**	BUS and the chip.
6048 	**	We are more soft for UDC.
6049 	**=========================================================
6050 	*/
6051 
6052 	if (time_after(jiffies, np->regtime)) {
6053 		np->regtime = jiffies + 10*HZ;
6054 		for (i = 0; i<sizeof(np->regdump); i++)
6055 			((char*)&np->regdump)[i] = INB_OFF(i);
6056 		np->regdump.nc_dstat = dstat;
6057 		np->regdump.nc_sist  = sist;
6058 	}
6059 
6060 	ncr_log_hard_error(np, sist, dstat);
6061 
6062 	printk ("%s: have to clear fifos.\n", ncr_name (np));
6063 	OUTB (nc_stest3, TE|CSF);
6064 	OUTONB (nc_ctest3, CLF);
6065 
6066 	if ((sist & (SGE)) ||
6067 		(dstat & (MDPE|BF|ABRT|IID))) {
6068 		ncr_start_reset(np);
6069 		return;
6070 	}
6071 
6072 	if (sist & HTH) {
6073 		printk ("%s: handshake timeout\n", ncr_name(np));
6074 		ncr_start_reset(np);
6075 		return;
6076 	}
6077 
6078 	if (sist & UDC) {
6079 		printk ("%s: unexpected disconnect\n", ncr_name(np));
6080 		OUTB (HS_PRT, HS_UNEXPECTED);
6081 		OUTL_DSP (NCB_SCRIPT_PHYS (np, cleanup));
6082 		return;
6083 	}
6084 
6085 	/*=========================================================
6086 	**	We just miss the cause of the interrupt. :(
6087 	**	Print a message. The timeout will do the real work.
6088 	**=========================================================
6089 	*/
6090 	printk ("%s: unknown interrupt\n", ncr_name(np));
6091 }
6092 
6093 /*==========================================================
6094 **
6095 **	ncr chip exception handler for selection timeout
6096 **
6097 **==========================================================
6098 **
6099 **	There seems to be a bug in the 53c810.
6100 **	Although a STO-Interrupt is pending,
6101 **	it continues executing script commands.
6102 **	But it will fail and interrupt (IID) on
6103 **	the next instruction where it's looking
6104 **	for a valid phase.
6105 **
6106 **----------------------------------------------------------
6107 */
6108 
6109 void ncr_int_sto (struct ncb *np)
6110 {
6111 	u_long dsa;
6112 	struct ccb *cp;
6113 	if (DEBUG_FLAGS & DEBUG_TINY) printk ("T");
6114 
6115 	/*
6116 	**	look for ccb and set the status.
6117 	*/
6118 
6119 	dsa = INL (nc_dsa);
6120 	cp = np->ccb;
6121 	while (cp && (CCB_PHYS (cp, phys) != dsa))
6122 		cp = cp->link_ccb;
6123 
6124 	if (cp) {
6125 		cp-> host_status = HS_SEL_TIMEOUT;
6126 		ncr_complete (np, cp);
6127 	}
6128 
6129 	/*
6130 	**	repair start queue and jump to start point.
6131 	*/
6132 
6133 	OUTL_DSP (NCB_SCRIPTH_PHYS (np, sto_restart));
6134 	return;
6135 }
6136 
6137 /*==========================================================
6138 **
6139 **	ncr chip exception handler for SCSI bus mode change
6140 **
6141 **==========================================================
6142 **
6143 **	spi2-r12 11.2.3 says a transceiver mode change must
6144 **	generate a reset event and a device that detects a reset
6145 **	event shall initiate a hard reset. It says also that a
6146 **	device that detects a mode change shall set data transfer
6147 **	mode to eight bit asynchronous, etc...
6148 **	So, just resetting should be enough.
6149 **
6150 **
6151 **----------------------------------------------------------
6152 */
6153 
6154 static int ncr_int_sbmc (struct ncb *np)
6155 {
6156 	u_char scsi_mode = INB (nc_stest4) & SMODE;
6157 
6158 	if (scsi_mode != np->scsi_mode) {
6159 		printk("%s: SCSI bus mode change from %x to %x.\n",
6160 			ncr_name(np), np->scsi_mode, scsi_mode);
6161 
6162 		np->scsi_mode = scsi_mode;
6163 
6164 
6165 		/*
6166 		**	Suspend command processing for 1 second and
6167 		**	reinitialize all except the chip.
6168 		*/
6169 		np->settle_time	= jiffies + HZ;
6170 		ncr_init (np, 0, bootverbose ? "scsi mode change" : NULL, HS_RESET);
6171 		return 1;
6172 	}
6173 	return 0;
6174 }
6175 
6176 /*==========================================================
6177 **
6178 **	ncr chip exception handler for SCSI parity error.
6179 **
6180 **==========================================================
6181 **
6182 **
6183 **----------------------------------------------------------
6184 */
6185 
6186 static int ncr_int_par (struct ncb *np)
6187 {
6188 	u_char	hsts	= INB (HS_PRT);
6189 	u32	dbc	= INL (nc_dbc);
6190 	u_char	sstat1	= INB (nc_sstat1);
6191 	int phase	= -1;
6192 	int msg		= -1;
6193 	u32 jmp;
6194 
6195 	printk("%s: SCSI parity error detected: SCR1=%d DBC=%x SSTAT1=%x\n",
6196 		ncr_name(np), hsts, dbc, sstat1);
6197 
6198 	/*
6199 	 *	Ignore the interrupt if the NCR is not connected
6200 	 *	to the SCSI bus, since the right work should have
6201 	 *	been done on unexpected disconnection handling.
6202 	 */
6203 	if (!(INB (nc_scntl1) & ISCON))
6204 		return 0;
6205 
6206 	/*
6207 	 *	If the nexus is not clearly identified, reset the bus.
6208 	 *	We will try to do better later.
6209 	 */
6210 	if (hsts & HS_INVALMASK)
6211 		goto reset_all;
6212 
6213 	/*
6214 	 *	If the SCSI parity error occurs in MSG IN phase, prepare a
6215 	 *	MSG PARITY message. Otherwise, prepare a INITIATOR DETECTED
6216 	 *	ERROR message and let the device decide to retry the command
6217 	 *	or to terminate with check condition. If we were in MSG IN
6218 	 *	phase waiting for the response of a negotiation, we will
6219 	 *	get SIR_NEGO_FAILED at dispatch.
6220 	 */
6221 	if (!(dbc & 0xc0000000))
6222 		phase = (dbc >> 24) & 7;
6223 	if (phase == 7)
6224 		msg = MSG_PARITY_ERROR;
6225 	else
6226 		msg = INITIATOR_ERROR;
6227 
6228 
6229 	/*
6230 	 *	If the NCR stopped on a MOVE ^ DATA_IN, we jump to a
6231 	 *	script that will ignore all data in bytes until phase
6232 	 *	change, since we are not sure the chip will wait the phase
6233 	 *	change prior to delivering the interrupt.
6234 	 */
6235 	if (phase == 1)
6236 		jmp = NCB_SCRIPTH_PHYS (np, par_err_data_in);
6237 	else
6238 		jmp = NCB_SCRIPTH_PHYS (np, par_err_other);
6239 
6240 	OUTONB (nc_ctest3, CLF );	/* clear dma fifo  */
6241 	OUTB (nc_stest3, TE|CSF);	/* clear scsi fifo */
6242 
6243 	np->msgout[0] = msg;
6244 	OUTL_DSP (jmp);
6245 	return 1;
6246 
6247 reset_all:
6248 	ncr_start_reset(np);
6249 	return 1;
6250 }
6251 
6252 /*==========================================================
6253 **
6254 **
6255 **	ncr chip exception handler for phase errors.
6256 **
6257 **
6258 **==========================================================
6259 **
6260 **	We have to construct a new transfer descriptor,
6261 **	to transfer the rest of the current block.
6262 **
6263 **----------------------------------------------------------
6264 */
6265 
6266 static void ncr_int_ma (struct ncb *np)
6267 {
6268 	u32	dbc;
6269 	u32	rest;
6270 	u32	dsp;
6271 	u32	dsa;
6272 	u32	nxtdsp;
6273 	u32	newtmp;
6274 	u32	*vdsp;
6275 	u32	oadr, olen;
6276 	u32	*tblp;
6277 	ncrcmd *newcmd;
6278 	u_char	cmd, sbcl;
6279 	struct ccb *cp;
6280 
6281 	dsp	= INL (nc_dsp);
6282 	dbc	= INL (nc_dbc);
6283 	sbcl	= INB (nc_sbcl);
6284 
6285 	cmd	= dbc >> 24;
6286 	rest	= dbc & 0xffffff;
6287 
6288 	/*
6289 	**	Take into account dma fifo and various buffers and latches,
6290 	**	only if the interrupted phase is an OUTPUT phase.
6291 	*/
6292 
6293 	if ((cmd & 1) == 0) {
6294 		u_char	ctest5, ss0, ss2;
6295 		u16	delta;
6296 
6297 		ctest5 = (np->rv_ctest5 & DFS) ? INB (nc_ctest5) : 0;
6298 		if (ctest5 & DFS)
6299 			delta=(((ctest5 << 8) | (INB (nc_dfifo) & 0xff)) - rest) & 0x3ff;
6300 		else
6301 			delta=(INB (nc_dfifo) - rest) & 0x7f;
6302 
6303 		/*
6304 		**	The data in the dma fifo has not been transferred to
6305 		**	the target -> add the amount to the rest
6306 		**	and clear the data.
6307 		**	Check the sstat2 register in case of wide transfer.
6308 		*/
6309 
6310 		rest += delta;
6311 		ss0  = INB (nc_sstat0);
6312 		if (ss0 & OLF) rest++;
6313 		if (ss0 & ORF) rest++;
6314 		if (INB(nc_scntl3) & EWS) {
6315 			ss2 = INB (nc_sstat2);
6316 			if (ss2 & OLF1) rest++;
6317 			if (ss2 & ORF1) rest++;
6318 		}
6319 
6320 		if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
6321 			printk ("P%x%x RL=%d D=%d SS0=%x ", cmd&7, sbcl&7,
6322 				(unsigned) rest, (unsigned) delta, ss0);
6323 
6324 	} else	{
6325 		if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
6326 			printk ("P%x%x RL=%d ", cmd&7, sbcl&7, rest);
6327 	}
6328 
6329 	/*
6330 	**	Clear fifos.
6331 	*/
6332 	OUTONB (nc_ctest3, CLF );	/* clear dma fifo  */
6333 	OUTB (nc_stest3, TE|CSF);	/* clear scsi fifo */
6334 
6335 	/*
6336 	**	locate matching cp.
6337 	**	if the interrupted phase is DATA IN or DATA OUT,
6338 	**	trust the global header.
6339 	*/
6340 	dsa = INL (nc_dsa);
6341 	if (!(cmd & 6)) {
6342 		cp = np->header.cp;
6343 		if (CCB_PHYS(cp, phys) != dsa)
6344 			cp = NULL;
6345 	} else {
6346 		cp  = np->ccb;
6347 		while (cp && (CCB_PHYS (cp, phys) != dsa))
6348 			cp = cp->link_ccb;
6349 	}
6350 
6351 	/*
6352 	**	try to find the interrupted script command,
6353 	**	and the address at which to continue.
6354 	*/
6355 	vdsp	= NULL;
6356 	nxtdsp	= 0;
6357 	if	(dsp >  np->p_script &&
6358 		 dsp <= np->p_script + sizeof(struct script)) {
6359 		vdsp = (u32 *)((char*)np->script0 + (dsp-np->p_script-8));
6360 		nxtdsp = dsp;
6361 	}
6362 	else if	(dsp >  np->p_scripth &&
6363 		 dsp <= np->p_scripth + sizeof(struct scripth)) {
6364 		vdsp = (u32 *)((char*)np->scripth0 + (dsp-np->p_scripth-8));
6365 		nxtdsp = dsp;
6366 	}
6367 	else if (cp) {
6368 		if	(dsp == CCB_PHYS (cp, patch[2])) {
6369 			vdsp = &cp->patch[0];
6370 			nxtdsp = scr_to_cpu(vdsp[3]);
6371 		}
6372 		else if (dsp == CCB_PHYS (cp, patch[6])) {
6373 			vdsp = &cp->patch[4];
6374 			nxtdsp = scr_to_cpu(vdsp[3]);
6375 		}
6376 	}
6377 
6378 	/*
6379 	**	log the information
6380 	*/
6381 
6382 	if (DEBUG_FLAGS & DEBUG_PHASE) {
6383 		printk ("\nCP=%p CP2=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
6384 			cp, np->header.cp,
6385 			(unsigned)dsp,
6386 			(unsigned)nxtdsp, vdsp, cmd);
6387 	}
6388 
6389 	/*
6390 	**	cp=0 means that the DSA does not point to a valid control
6391 	**	block. This should not happen since we donnot use multi-byte
6392 	**	move while we are being reselected ot after command complete.
6393 	**	We are not able to recover from such a phase error.
6394 	*/
6395 	if (!cp) {
6396 		printk ("%s: SCSI phase error fixup: "
6397 			"CCB already dequeued (0x%08lx)\n",
6398 			ncr_name (np), (u_long) np->header.cp);
6399 		goto reset_all;
6400 	}
6401 
6402 	/*
6403 	**	get old startaddress and old length.
6404 	*/
6405 
6406 	oadr = scr_to_cpu(vdsp[1]);
6407 
6408 	if (cmd & 0x10) {	/* Table indirect */
6409 		tblp = (u32 *) ((char*) &cp->phys + oadr);
6410 		olen = scr_to_cpu(tblp[0]);
6411 		oadr = scr_to_cpu(tblp[1]);
6412 	} else {
6413 		tblp = (u32 *) 0;
6414 		olen = scr_to_cpu(vdsp[0]) & 0xffffff;
6415 	}
6416 
6417 	if (DEBUG_FLAGS & DEBUG_PHASE) {
6418 		printk ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
6419 			(unsigned) (scr_to_cpu(vdsp[0]) >> 24),
6420 			tblp,
6421 			(unsigned) olen,
6422 			(unsigned) oadr);
6423 	}
6424 
6425 	/*
6426 	**	check cmd against assumed interrupted script command.
6427 	*/
6428 
6429 	if (cmd != (scr_to_cpu(vdsp[0]) >> 24)) {
6430 		PRINT_ADDR(cp->cmd, "internal error: cmd=%02x != %02x=(vdsp[0] "
6431 				">> 24)\n", cmd, scr_to_cpu(vdsp[0]) >> 24);
6432 
6433 		goto reset_all;
6434 	}
6435 
6436 	/*
6437 	**	cp != np->header.cp means that the header of the CCB
6438 	**	currently being processed has not yet been copied to
6439 	**	the global header area. That may happen if the device did
6440 	**	not accept all our messages after having been selected.
6441 	*/
6442 	if (cp != np->header.cp) {
6443 		printk ("%s: SCSI phase error fixup: "
6444 			"CCB address mismatch (0x%08lx != 0x%08lx)\n",
6445 			ncr_name (np), (u_long) cp, (u_long) np->header.cp);
6446 	}
6447 
6448 	/*
6449 	**	if old phase not dataphase, leave here.
6450 	*/
6451 
6452 	if (cmd & 0x06) {
6453 		PRINT_ADDR(cp->cmd, "phase change %x-%x %d@%08x resid=%d.\n",
6454 			cmd&7, sbcl&7, (unsigned)olen,
6455 			(unsigned)oadr, (unsigned)rest);
6456 		goto unexpected_phase;
6457 	}
6458 
6459 	/*
6460 	**	choose the correct patch area.
6461 	**	if savep points to one, choose the other.
6462 	*/
6463 
6464 	newcmd = cp->patch;
6465 	newtmp = CCB_PHYS (cp, patch);
6466 	if (newtmp == scr_to_cpu(cp->phys.header.savep)) {
6467 		newcmd = &cp->patch[4];
6468 		newtmp = CCB_PHYS (cp, patch[4]);
6469 	}
6470 
6471 	/*
6472 	**	fillin the commands
6473 	*/
6474 
6475 	newcmd[0] = cpu_to_scr(((cmd & 0x0f) << 24) | rest);
6476 	newcmd[1] = cpu_to_scr(oadr + olen - rest);
6477 	newcmd[2] = cpu_to_scr(SCR_JUMP);
6478 	newcmd[3] = cpu_to_scr(nxtdsp);
6479 
6480 	if (DEBUG_FLAGS & DEBUG_PHASE) {
6481 		PRINT_ADDR(cp->cmd, "newcmd[%d] %x %x %x %x.\n",
6482 			(int) (newcmd - cp->patch),
6483 			(unsigned)scr_to_cpu(newcmd[0]),
6484 			(unsigned)scr_to_cpu(newcmd[1]),
6485 			(unsigned)scr_to_cpu(newcmd[2]),
6486 			(unsigned)scr_to_cpu(newcmd[3]));
6487 	}
6488 	/*
6489 	**	fake the return address (to the patch).
6490 	**	and restart script processor at dispatcher.
6491 	*/
6492 	OUTL (nc_temp, newtmp);
6493 	OUTL_DSP (NCB_SCRIPT_PHYS (np, dispatch));
6494 	return;
6495 
6496 	/*
6497 	**	Unexpected phase changes that occurs when the current phase
6498 	**	is not a DATA IN or DATA OUT phase are due to error conditions.
6499 	**	Such event may only happen when the SCRIPTS is using a
6500 	**	multibyte SCSI MOVE.
6501 	**
6502 	**	Phase change		Some possible cause
6503 	**
6504 	**	COMMAND  --> MSG IN	SCSI parity error detected by target.
6505 	**	COMMAND  --> STATUS	Bad command or refused by target.
6506 	**	MSG OUT  --> MSG IN     Message rejected by target.
6507 	**	MSG OUT  --> COMMAND    Bogus target that discards extended
6508 	**				negotiation messages.
6509 	**
6510 	**	The code below does not care of the new phase and so
6511 	**	trusts the target. Why to annoy it ?
6512 	**	If the interrupted phase is COMMAND phase, we restart at
6513 	**	dispatcher.
6514 	**	If a target does not get all the messages after selection,
6515 	**	the code assumes blindly that the target discards extended
6516 	**	messages and clears the negotiation status.
6517 	**	If the target does not want all our response to negotiation,
6518 	**	we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
6519 	**	bloat for such a should_not_happen situation).
6520 	**	In all other situation, we reset the BUS.
6521 	**	Are these assumptions reasonnable ? (Wait and see ...)
6522 	*/
6523 unexpected_phase:
6524 	dsp -= 8;
6525 	nxtdsp = 0;
6526 
6527 	switch (cmd & 7) {
6528 	case 2:	/* COMMAND phase */
6529 		nxtdsp = NCB_SCRIPT_PHYS (np, dispatch);
6530 		break;
6531 #if 0
6532 	case 3:	/* STATUS  phase */
6533 		nxtdsp = NCB_SCRIPT_PHYS (np, dispatch);
6534 		break;
6535 #endif
6536 	case 6:	/* MSG OUT phase */
6537 		np->scripth->nxtdsp_go_on[0] = cpu_to_scr(dsp + 8);
6538 		if	(dsp == NCB_SCRIPT_PHYS (np, send_ident)) {
6539 			cp->host_status = HS_BUSY;
6540 			nxtdsp = NCB_SCRIPTH_PHYS (np, clratn_go_on);
6541 		}
6542 		else if	(dsp == NCB_SCRIPTH_PHYS (np, send_wdtr) ||
6543 			 dsp == NCB_SCRIPTH_PHYS (np, send_sdtr)) {
6544 			nxtdsp = NCB_SCRIPTH_PHYS (np, nego_bad_phase);
6545 		}
6546 		break;
6547 #if 0
6548 	case 7:	/* MSG IN  phase */
6549 		nxtdsp = NCB_SCRIPT_PHYS (np, clrack);
6550 		break;
6551 #endif
6552 	}
6553 
6554 	if (nxtdsp) {
6555 		OUTL_DSP (nxtdsp);
6556 		return;
6557 	}
6558 
6559 reset_all:
6560 	ncr_start_reset(np);
6561 }
6562 
6563 
6564 static void ncr_sir_to_redo(struct ncb *np, int num, struct ccb *cp)
6565 {
6566 	struct scsi_cmnd *cmd	= cp->cmd;
6567 	struct tcb *tp	= &np->target[cmd->device->id];
6568 	struct lcb *lp	= tp->lp[cmd->device->lun];
6569 	struct list_head *qp;
6570 	struct ccb *	cp2;
6571 	int		disc_cnt = 0;
6572 	int		busy_cnt = 0;
6573 	u32		startp;
6574 	u_char		s_status = INB (SS_PRT);
6575 
6576 	/*
6577 	**	Let the SCRIPTS processor skip all not yet started CCBs,
6578 	**	and count disconnected CCBs. Since the busy queue is in
6579 	**	the same order as the chip start queue, disconnected CCBs
6580 	**	are before cp and busy ones after.
6581 	*/
6582 	if (lp) {
6583 		qp = lp->busy_ccbq.prev;
6584 		while (qp != &lp->busy_ccbq) {
6585 			cp2 = list_entry(qp, struct ccb, link_ccbq);
6586 			qp  = qp->prev;
6587 			++busy_cnt;
6588 			if (cp2 == cp)
6589 				break;
6590 			cp2->start.schedule.l_paddr =
6591 			cpu_to_scr(NCB_SCRIPTH_PHYS (np, skip));
6592 		}
6593 		lp->held_ccb = cp;	/* Requeue when this one completes */
6594 		disc_cnt = lp->queuedccbs - busy_cnt;
6595 	}
6596 
6597 	switch(s_status) {
6598 	default:	/* Just for safety, should never happen */
6599 	case S_QUEUE_FULL:
6600 		/*
6601 		**	Decrease number of tags to the number of
6602 		**	disconnected commands.
6603 		*/
6604 		if (!lp)
6605 			goto out;
6606 		if (bootverbose >= 1) {
6607 			PRINT_ADDR(cmd, "QUEUE FULL! %d busy, %d disconnected "
6608 					"CCBs\n", busy_cnt, disc_cnt);
6609 		}
6610 		if (disc_cnt < lp->numtags) {
6611 			lp->numtags	= disc_cnt > 2 ? disc_cnt : 2;
6612 			lp->num_good	= 0;
6613 			ncr_setup_tags (np, cmd->device);
6614 		}
6615 		/*
6616 		**	Requeue the command to the start queue.
6617 		**	If any disconnected commands,
6618 		**		Clear SIGP.
6619 		**		Jump to reselect.
6620 		*/
6621 		cp->phys.header.savep = cp->startp;
6622 		cp->host_status = HS_BUSY;
6623 		cp->scsi_status = S_ILLEGAL;
6624 
6625 		ncr_put_start_queue(np, cp);
6626 		if (disc_cnt)
6627 			INB (nc_ctest2);		/* Clear SIGP */
6628 		OUTL_DSP (NCB_SCRIPT_PHYS (np, reselect));
6629 		return;
6630 	case S_TERMINATED:
6631 	case S_CHECK_COND:
6632 		/*
6633 		**	If we were requesting sense, give up.
6634 		*/
6635 		if (cp->auto_sense)
6636 			goto out;
6637 
6638 		/*
6639 		**	Device returned CHECK CONDITION status.
6640 		**	Prepare all needed data strutures for getting
6641 		**	sense data.
6642 		**
6643 		**	identify message
6644 		*/
6645 		cp->scsi_smsg2[0]	= IDENTIFY(0, cmd->device->lun);
6646 		cp->phys.smsg.addr	= cpu_to_scr(CCB_PHYS (cp, scsi_smsg2));
6647 		cp->phys.smsg.size	= cpu_to_scr(1);
6648 
6649 		/*
6650 		**	sense command
6651 		*/
6652 		cp->phys.cmd.addr	= cpu_to_scr(CCB_PHYS (cp, sensecmd));
6653 		cp->phys.cmd.size	= cpu_to_scr(6);
6654 
6655 		/*
6656 		**	patch requested size into sense command
6657 		*/
6658 		cp->sensecmd[0]		= 0x03;
6659 		cp->sensecmd[1]		= cmd->device->lun << 5;
6660 		cp->sensecmd[4]		= sizeof(cp->sense_buf);
6661 
6662 		/*
6663 		**	sense data
6664 		*/
6665 		memset(cp->sense_buf, 0, sizeof(cp->sense_buf));
6666 		cp->phys.sense.addr	= cpu_to_scr(CCB_PHYS(cp,sense_buf[0]));
6667 		cp->phys.sense.size	= cpu_to_scr(sizeof(cp->sense_buf));
6668 
6669 		/*
6670 		**	requeue the command.
6671 		*/
6672 		startp = cpu_to_scr(NCB_SCRIPTH_PHYS (np, sdata_in));
6673 
6674 		cp->phys.header.savep	= startp;
6675 		cp->phys.header.goalp	= startp + 24;
6676 		cp->phys.header.lastp	= startp;
6677 		cp->phys.header.wgoalp	= startp + 24;
6678 		cp->phys.header.wlastp	= startp;
6679 
6680 		cp->host_status = HS_BUSY;
6681 		cp->scsi_status = S_ILLEGAL;
6682 		cp->auto_sense	= s_status;
6683 
6684 		cp->start.schedule.l_paddr =
6685 			cpu_to_scr(NCB_SCRIPT_PHYS (np, select));
6686 
6687 		/*
6688 		**	Select without ATN for quirky devices.
6689 		*/
6690 		if (cmd->device->select_no_atn)
6691 			cp->start.schedule.l_paddr =
6692 			cpu_to_scr(NCB_SCRIPTH_PHYS (np, select_no_atn));
6693 
6694 		ncr_put_start_queue(np, cp);
6695 
6696 		OUTL_DSP (NCB_SCRIPT_PHYS (np, start));
6697 		return;
6698 	}
6699 
6700 out:
6701 	OUTONB_STD ();
6702 	return;
6703 }
6704 
6705 
6706 /*==========================================================
6707 **
6708 **
6709 **      ncr chip exception handler for programmed interrupts.
6710 **
6711 **
6712 **==========================================================
6713 */
6714 
6715 void ncr_int_sir (struct ncb *np)
6716 {
6717 	u_char scntl3;
6718 	u_char chg, ofs, per, fak, wide;
6719 	u_char num = INB (nc_dsps);
6720 	struct ccb *cp=NULL;
6721 	u_long	dsa    = INL (nc_dsa);
6722 	u_char	target = INB (nc_sdid) & 0x0f;
6723 	struct tcb *tp     = &np->target[target];
6724 	struct scsi_target *starget = tp->starget;
6725 
6726 	if (DEBUG_FLAGS & DEBUG_TINY) printk ("I#%d", num);
6727 
6728 	switch (num) {
6729 	case SIR_INTFLY:
6730 		/*
6731 		**	This is used for HP Zalon/53c720 where INTFLY
6732 		**	operation is currently broken.
6733 		*/
6734 		ncr_wakeup_done(np);
6735 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
6736 		OUTL(nc_dsp, NCB_SCRIPT_PHYS (np, done_end) + 8);
6737 #else
6738 		OUTL(nc_dsp, NCB_SCRIPT_PHYS (np, start));
6739 #endif
6740 		return;
6741 	case SIR_RESEL_NO_MSG_IN:
6742 	case SIR_RESEL_NO_IDENTIFY:
6743 		/*
6744 		**	If devices reselecting without sending an IDENTIFY
6745 		**	message still exist, this should help.
6746 		**	We just assume lun=0, 1 CCB, no tag.
6747 		*/
6748 		if (tp->lp[0]) {
6749 			OUTL_DSP (scr_to_cpu(tp->lp[0]->jump_ccb[0]));
6750 			return;
6751 		}
6752 	case SIR_RESEL_BAD_TARGET:	/* Will send a TARGET RESET message */
6753 	case SIR_RESEL_BAD_LUN:		/* Will send a TARGET RESET message */
6754 	case SIR_RESEL_BAD_I_T_L_Q:	/* Will send an ABORT TAG message   */
6755 	case SIR_RESEL_BAD_I_T_L:	/* Will send an ABORT message	    */
6756 		printk ("%s:%d: SIR %d, "
6757 			"incorrect nexus identification on reselection\n",
6758 			ncr_name (np), target, num);
6759 		goto out;
6760 	case SIR_DONE_OVERFLOW:
6761 		printk ("%s:%d: SIR %d, "
6762 			"CCB done queue overflow\n",
6763 			ncr_name (np), target, num);
6764 		goto out;
6765 	case SIR_BAD_STATUS:
6766 		cp = np->header.cp;
6767 		if (!cp || CCB_PHYS (cp, phys) != dsa)
6768 			goto out;
6769 		ncr_sir_to_redo(np, num, cp);
6770 		return;
6771 	default:
6772 		/*
6773 		**	lookup the ccb
6774 		*/
6775 		cp = np->ccb;
6776 		while (cp && (CCB_PHYS (cp, phys) != dsa))
6777 			cp = cp->link_ccb;
6778 
6779 		BUG_ON(!cp);
6780 		BUG_ON(cp != np->header.cp);
6781 
6782 		if (!cp || cp != np->header.cp)
6783 			goto out;
6784 	}
6785 
6786 	switch (num) {
6787 /*-----------------------------------------------------------------------------
6788 **
6789 **	Was Sie schon immer ueber transfermode negotiation wissen wollten ...
6790 **	("Everything you've always wanted to know about transfer mode
6791 **	  negotiation")
6792 **
6793 **	We try to negotiate sync and wide transfer only after
6794 **	a successful inquire command. We look at byte 7 of the
6795 **	inquire data to determine the capabilities of the target.
6796 **
6797 **	When we try to negotiate, we append the negotiation message
6798 **	to the identify and (maybe) simple tag message.
6799 **	The host status field is set to HS_NEGOTIATE to mark this
6800 **	situation.
6801 **
6802 **	If the target doesn't answer this message immediately
6803 **	(as required by the standard), the SIR_NEGO_FAIL interrupt
6804 **	will be raised eventually.
6805 **	The handler removes the HS_NEGOTIATE status, and sets the
6806 **	negotiated value to the default (async / nowide).
6807 **
6808 **	If we receive a matching answer immediately, we check it
6809 **	for validity, and set the values.
6810 **
6811 **	If we receive a Reject message immediately, we assume the
6812 **	negotiation has failed, and fall back to standard values.
6813 **
6814 **	If we receive a negotiation message while not in HS_NEGOTIATE
6815 **	state, it's a target initiated negotiation. We prepare a
6816 **	(hopefully) valid answer, set our parameters, and send back
6817 **	this answer to the target.
6818 **
6819 **	If the target doesn't fetch the answer (no message out phase),
6820 **	we assume the negotiation has failed, and fall back to default
6821 **	settings.
6822 **
6823 **	When we set the values, we adjust them in all ccbs belonging
6824 **	to this target, in the controller's register, and in the "phys"
6825 **	field of the controller's struct ncb.
6826 **
6827 **	Possible cases:		   hs  sir   msg_in value  send   goto
6828 **	We try to negotiate:
6829 **	-> target doesn't msgin    NEG FAIL  noop   defa.  -      dispatch
6830 **	-> target rejected our msg NEG FAIL  reject defa.  -      dispatch
6831 **	-> target answered  (ok)   NEG SYNC  sdtr   set    -      clrack
6832 **	-> target answered (!ok)   NEG SYNC  sdtr   defa.  REJ--->msg_bad
6833 **	-> target answered  (ok)   NEG WIDE  wdtr   set    -      clrack
6834 **	-> target answered (!ok)   NEG WIDE  wdtr   defa.  REJ--->msg_bad
6835 **	-> any other msgin	   NEG FAIL  noop   defa.  -      dispatch
6836 **
6837 **	Target tries to negotiate:
6838 **	-> incoming message	   --- SYNC  sdtr   set    SDTR   -
6839 **	-> incoming message	   --- WIDE  wdtr   set    WDTR   -
6840 **      We sent our answer:
6841 **	-> target doesn't msgout   --- PROTO ?      defa.  -      dispatch
6842 **
6843 **-----------------------------------------------------------------------------
6844 */
6845 
6846 	case SIR_NEGO_FAILED:
6847 		/*-------------------------------------------------------
6848 		**
6849 		**	Negotiation failed.
6850 		**	Target doesn't send an answer message,
6851 		**	or target rejected our message.
6852 		**
6853 		**      Remove negotiation request.
6854 		**
6855 		**-------------------------------------------------------
6856 		*/
6857 		OUTB (HS_PRT, HS_BUSY);
6858 
6859 		/* fall through */
6860 
6861 	case SIR_NEGO_PROTO:
6862 		/*-------------------------------------------------------
6863 		**
6864 		**	Negotiation failed.
6865 		**	Target doesn't fetch the answer message.
6866 		**
6867 		**-------------------------------------------------------
6868 		*/
6869 
6870 		if (DEBUG_FLAGS & DEBUG_NEGO) {
6871 			PRINT_ADDR(cp->cmd, "negotiation failed sir=%x "
6872 					"status=%x.\n", num, cp->nego_status);
6873 		}
6874 
6875 		/*
6876 		**	any error in negotiation:
6877 		**	fall back to default mode.
6878 		*/
6879 		switch (cp->nego_status) {
6880 
6881 		case NS_SYNC:
6882 			spi_period(starget) = 0;
6883 			spi_offset(starget) = 0;
6884 			ncr_setsync (np, cp, 0, 0xe0);
6885 			break;
6886 
6887 		case NS_WIDE:
6888 			spi_width(starget) = 0;
6889 			ncr_setwide (np, cp, 0, 0);
6890 			break;
6891 
6892 		}
6893 		np->msgin [0] = NOP;
6894 		np->msgout[0] = NOP;
6895 		cp->nego_status = 0;
6896 		break;
6897 
6898 	case SIR_NEGO_SYNC:
6899 		if (DEBUG_FLAGS & DEBUG_NEGO) {
6900 			ncr_print_msg(cp, "sync msgin", np->msgin);
6901 		}
6902 
6903 		chg = 0;
6904 		per = np->msgin[3];
6905 		ofs = np->msgin[4];
6906 		if (ofs==0) per=255;
6907 
6908 		/*
6909 		**      if target sends SDTR message,
6910 		**	      it CAN transfer synch.
6911 		*/
6912 
6913 		if (ofs && starget)
6914 			spi_support_sync(starget) = 1;
6915 
6916 		/*
6917 		**	check values against driver limits.
6918 		*/
6919 
6920 		if (per < np->minsync)
6921 			{chg = 1; per = np->minsync;}
6922 		if (per < tp->minsync)
6923 			{chg = 1; per = tp->minsync;}
6924 		if (ofs > tp->maxoffs)
6925 			{chg = 1; ofs = tp->maxoffs;}
6926 
6927 		/*
6928 		**	Check against controller limits.
6929 		*/
6930 		fak	= 7;
6931 		scntl3	= 0;
6932 		if (ofs != 0) {
6933 			ncr_getsync(np, per, &fak, &scntl3);
6934 			if (fak > 7) {
6935 				chg = 1;
6936 				ofs = 0;
6937 			}
6938 		}
6939 		if (ofs == 0) {
6940 			fak	= 7;
6941 			per	= 0;
6942 			scntl3	= 0;
6943 			tp->minsync = 0;
6944 		}
6945 
6946 		if (DEBUG_FLAGS & DEBUG_NEGO) {
6947 			PRINT_ADDR(cp->cmd, "sync: per=%d scntl3=0x%x ofs=%d "
6948 				"fak=%d chg=%d.\n", per, scntl3, ofs, fak, chg);
6949 		}
6950 
6951 		if (INB (HS_PRT) == HS_NEGOTIATE) {
6952 			OUTB (HS_PRT, HS_BUSY);
6953 			switch (cp->nego_status) {
6954 
6955 			case NS_SYNC:
6956 				/* This was an answer message */
6957 				if (chg) {
6958 					/* Answer wasn't acceptable.  */
6959 					spi_period(starget) = 0;
6960 					spi_offset(starget) = 0;
6961 					ncr_setsync(np, cp, 0, 0xe0);
6962 					OUTL_DSP(NCB_SCRIPT_PHYS (np, msg_bad));
6963 				} else {
6964 					/* Answer is ok.  */
6965 					spi_period(starget) = per;
6966 					spi_offset(starget) = ofs;
6967 					ncr_setsync(np, cp, scntl3, (fak<<5)|ofs);
6968 					OUTL_DSP(NCB_SCRIPT_PHYS (np, clrack));
6969 				}
6970 				return;
6971 
6972 			case NS_WIDE:
6973 				spi_width(starget) = 0;
6974 				ncr_setwide(np, cp, 0, 0);
6975 				break;
6976 			}
6977 		}
6978 
6979 		/*
6980 		**	It was a request. Set value and
6981 		**      prepare an answer message
6982 		*/
6983 
6984 		spi_period(starget) = per;
6985 		spi_offset(starget) = ofs;
6986 		ncr_setsync(np, cp, scntl3, (fak<<5)|ofs);
6987 
6988 		spi_populate_sync_msg(np->msgout, per, ofs);
6989 		cp->nego_status = NS_SYNC;
6990 
6991 		if (DEBUG_FLAGS & DEBUG_NEGO) {
6992 			ncr_print_msg(cp, "sync msgout", np->msgout);
6993 		}
6994 
6995 		if (!ofs) {
6996 			OUTL_DSP (NCB_SCRIPT_PHYS (np, msg_bad));
6997 			return;
6998 		}
6999 		np->msgin [0] = NOP;
7000 
7001 		break;
7002 
7003 	case SIR_NEGO_WIDE:
7004 		/*
7005 		**	Wide request message received.
7006 		*/
7007 		if (DEBUG_FLAGS & DEBUG_NEGO) {
7008 			ncr_print_msg(cp, "wide msgin", np->msgin);
7009 		}
7010 
7011 		/*
7012 		**	get requested values.
7013 		*/
7014 
7015 		chg  = 0;
7016 		wide = np->msgin[3];
7017 
7018 		/*
7019 		**      if target sends WDTR message,
7020 		**	      it CAN transfer wide.
7021 		*/
7022 
7023 		if (wide && starget)
7024 			spi_support_wide(starget) = 1;
7025 
7026 		/*
7027 		**	check values against driver limits.
7028 		*/
7029 
7030 		if (wide > tp->usrwide)
7031 			{chg = 1; wide = tp->usrwide;}
7032 
7033 		if (DEBUG_FLAGS & DEBUG_NEGO) {
7034 			PRINT_ADDR(cp->cmd, "wide: wide=%d chg=%d.\n", wide,
7035 					chg);
7036 		}
7037 
7038 		if (INB (HS_PRT) == HS_NEGOTIATE) {
7039 			OUTB (HS_PRT, HS_BUSY);
7040 			switch (cp->nego_status) {
7041 
7042 			case NS_WIDE:
7043 				/*
7044 				**      This was an answer message
7045 				*/
7046 				if (chg) {
7047 					/* Answer wasn't acceptable.  */
7048 					spi_width(starget) = 0;
7049 					ncr_setwide(np, cp, 0, 1);
7050 					OUTL_DSP (NCB_SCRIPT_PHYS (np, msg_bad));
7051 				} else {
7052 					/* Answer is ok.  */
7053 					spi_width(starget) = wide;
7054 					ncr_setwide(np, cp, wide, 1);
7055 					OUTL_DSP (NCB_SCRIPT_PHYS (np, clrack));
7056 				}
7057 				return;
7058 
7059 			case NS_SYNC:
7060 				spi_period(starget) = 0;
7061 				spi_offset(starget) = 0;
7062 				ncr_setsync(np, cp, 0, 0xe0);
7063 				break;
7064 			}
7065 		}
7066 
7067 		/*
7068 		**	It was a request, set value and
7069 		**      prepare an answer message
7070 		*/
7071 
7072 		spi_width(starget) = wide;
7073 		ncr_setwide(np, cp, wide, 1);
7074 		spi_populate_width_msg(np->msgout, wide);
7075 
7076 		np->msgin [0] = NOP;
7077 
7078 		cp->nego_status = NS_WIDE;
7079 
7080 		if (DEBUG_FLAGS & DEBUG_NEGO) {
7081 			ncr_print_msg(cp, "wide msgout", np->msgin);
7082 		}
7083 		break;
7084 
7085 /*--------------------------------------------------------------------
7086 **
7087 **	Processing of special messages
7088 **
7089 **--------------------------------------------------------------------
7090 */
7091 
7092 	case SIR_REJECT_RECEIVED:
7093 		/*-----------------------------------------------
7094 		**
7095 		**	We received a MESSAGE_REJECT.
7096 		**
7097 		**-----------------------------------------------
7098 		*/
7099 
7100 		PRINT_ADDR(cp->cmd, "MESSAGE_REJECT received (%x:%x).\n",
7101 			(unsigned)scr_to_cpu(np->lastmsg), np->msgout[0]);
7102 		break;
7103 
7104 	case SIR_REJECT_SENT:
7105 		/*-----------------------------------------------
7106 		**
7107 		**	We received an unknown message
7108 		**
7109 		**-----------------------------------------------
7110 		*/
7111 
7112 		ncr_print_msg(cp, "MESSAGE_REJECT sent for", np->msgin);
7113 		break;
7114 
7115 /*--------------------------------------------------------------------
7116 **
7117 **	Processing of special messages
7118 **
7119 **--------------------------------------------------------------------
7120 */
7121 
7122 	case SIR_IGN_RESIDUE:
7123 		/*-----------------------------------------------
7124 		**
7125 		**	We received an IGNORE RESIDUE message,
7126 		**	which couldn't be handled by the script.
7127 		**
7128 		**-----------------------------------------------
7129 		*/
7130 
7131 		PRINT_ADDR(cp->cmd, "IGNORE_WIDE_RESIDUE received, but not yet "
7132 				"implemented.\n");
7133 		break;
7134 #if 0
7135 	case SIR_MISSING_SAVE:
7136 		/*-----------------------------------------------
7137 		**
7138 		**	We received an DISCONNECT message,
7139 		**	but the datapointer wasn't saved before.
7140 		**
7141 		**-----------------------------------------------
7142 		*/
7143 
7144 		PRINT_ADDR(cp->cmd, "DISCONNECT received, but datapointer "
7145 				"not saved: data=%x save=%x goal=%x.\n",
7146 			(unsigned) INL (nc_temp),
7147 			(unsigned) scr_to_cpu(np->header.savep),
7148 			(unsigned) scr_to_cpu(np->header.goalp));
7149 		break;
7150 #endif
7151 	}
7152 
7153 out:
7154 	OUTONB_STD ();
7155 }
7156 
7157 /*==========================================================
7158 **
7159 **
7160 **	Acquire a control block
7161 **
7162 **
7163 **==========================================================
7164 */
7165 
7166 static struct ccb *ncr_get_ccb(struct ncb *np, struct scsi_cmnd *cmd)
7167 {
7168 	u_char tn = cmd->device->id;
7169 	u_char ln = cmd->device->lun;
7170 	struct tcb *tp = &np->target[tn];
7171 	struct lcb *lp = tp->lp[ln];
7172 	u_char tag = NO_TAG;
7173 	struct ccb *cp = NULL;
7174 
7175 	/*
7176 	**	Lun structure available ?
7177 	*/
7178 	if (lp) {
7179 		struct list_head *qp;
7180 		/*
7181 		**	Keep from using more tags than we can handle.
7182 		*/
7183 		if (lp->usetags && lp->busyccbs >= lp->maxnxs)
7184 			return NULL;
7185 
7186 		/*
7187 		**	Allocate a new CCB if needed.
7188 		*/
7189 		if (list_empty(&lp->free_ccbq))
7190 			ncr_alloc_ccb(np, tn, ln);
7191 
7192 		/*
7193 		**	Look for free CCB
7194 		*/
7195 		qp = ncr_list_pop(&lp->free_ccbq);
7196 		if (qp) {
7197 			cp = list_entry(qp, struct ccb, link_ccbq);
7198 			if (cp->magic) {
7199 				PRINT_ADDR(cmd, "ccb free list corrupted "
7200 						"(@%p)\n", cp);
7201 				cp = NULL;
7202 			} else {
7203 				list_add_tail(qp, &lp->wait_ccbq);
7204 				++lp->busyccbs;
7205 			}
7206 		}
7207 
7208 		/*
7209 		**	If a CCB is available,
7210 		**	Get a tag for this nexus if required.
7211 		*/
7212 		if (cp) {
7213 			if (lp->usetags)
7214 				tag = lp->cb_tags[lp->ia_tag];
7215 		}
7216 		else if (lp->actccbs > 0)
7217 			return NULL;
7218 	}
7219 
7220 	/*
7221 	**	if nothing available, take the default.
7222 	*/
7223 	if (!cp)
7224 		cp = np->ccb;
7225 
7226 	/*
7227 	**	Wait until available.
7228 	*/
7229 #if 0
7230 	while (cp->magic) {
7231 		if (flags & SCSI_NOSLEEP) break;
7232 		if (tsleep ((caddr_t)cp, PRIBIO|PCATCH, "ncr", 0))
7233 			break;
7234 	}
7235 #endif
7236 
7237 	if (cp->magic)
7238 		return NULL;
7239 
7240 	cp->magic = 1;
7241 
7242 	/*
7243 	**	Move to next available tag if tag used.
7244 	*/
7245 	if (lp) {
7246 		if (tag != NO_TAG) {
7247 			++lp->ia_tag;
7248 			if (lp->ia_tag == MAX_TAGS)
7249 				lp->ia_tag = 0;
7250 			lp->tags_umap |= (((tagmap_t) 1) << tag);
7251 		}
7252 	}
7253 
7254 	/*
7255 	**	Remember all informations needed to free this CCB.
7256 	*/
7257 	cp->tag	   = tag;
7258 	cp->target = tn;
7259 	cp->lun    = ln;
7260 
7261 	if (DEBUG_FLAGS & DEBUG_TAGS) {
7262 		PRINT_ADDR(cmd, "ccb @%p using tag %d.\n", cp, tag);
7263 	}
7264 
7265 	return cp;
7266 }
7267 
7268 /*==========================================================
7269 **
7270 **
7271 **	Release one control block
7272 **
7273 **
7274 **==========================================================
7275 */
7276 
7277 static void ncr_free_ccb (struct ncb *np, struct ccb *cp)
7278 {
7279 	struct tcb *tp = &np->target[cp->target];
7280 	struct lcb *lp = tp->lp[cp->lun];
7281 
7282 	if (DEBUG_FLAGS & DEBUG_TAGS) {
7283 		PRINT_ADDR(cp->cmd, "ccb @%p freeing tag %d.\n", cp, cp->tag);
7284 	}
7285 
7286 	/*
7287 	**	If lun control block available,
7288 	**	decrement active commands and increment credit,
7289 	**	free the tag if any and remove the JUMP for reselect.
7290 	*/
7291 	if (lp) {
7292 		if (cp->tag != NO_TAG) {
7293 			lp->cb_tags[lp->if_tag++] = cp->tag;
7294 			if (lp->if_tag == MAX_TAGS)
7295 				lp->if_tag = 0;
7296 			lp->tags_umap &= ~(((tagmap_t) 1) << cp->tag);
7297 			lp->tags_smap &= lp->tags_umap;
7298 			lp->jump_ccb[cp->tag] =
7299 				cpu_to_scr(NCB_SCRIPTH_PHYS(np, bad_i_t_l_q));
7300 		} else {
7301 			lp->jump_ccb[0] =
7302 				cpu_to_scr(NCB_SCRIPTH_PHYS(np, bad_i_t_l));
7303 		}
7304 	}
7305 
7306 	/*
7307 	**	Make this CCB available.
7308 	*/
7309 
7310 	if (lp) {
7311 		if (cp != np->ccb)
7312 			list_move(&cp->link_ccbq, &lp->free_ccbq);
7313 		--lp->busyccbs;
7314 		if (cp->queued) {
7315 			--lp->queuedccbs;
7316 		}
7317 	}
7318 	cp -> host_status = HS_IDLE;
7319 	cp -> magic = 0;
7320 	if (cp->queued) {
7321 		--np->queuedccbs;
7322 		cp->queued = 0;
7323 	}
7324 
7325 #if 0
7326 	if (cp == np->ccb)
7327 		wakeup ((caddr_t) cp);
7328 #endif
7329 }
7330 
7331 
7332 #define ncr_reg_bus_addr(r) (np->paddr + offsetof (struct ncr_reg, r))
7333 
7334 /*------------------------------------------------------------------------
7335 **	Initialize the fixed part of a CCB structure.
7336 **------------------------------------------------------------------------
7337 **------------------------------------------------------------------------
7338 */
7339 static void ncr_init_ccb(struct ncb *np, struct ccb *cp)
7340 {
7341 	ncrcmd copy_4 = np->features & FE_PFEN ? SCR_COPY(4) : SCR_COPY_F(4);
7342 
7343 	/*
7344 	**	Remember virtual and bus address of this ccb.
7345 	*/
7346 	cp->p_ccb 	   = vtobus(cp);
7347 	cp->phys.header.cp = cp;
7348 
7349 	/*
7350 	**	This allows list_del to work for the default ccb.
7351 	*/
7352 	INIT_LIST_HEAD(&cp->link_ccbq);
7353 
7354 	/*
7355 	**	Initialyze the start and restart launch script.
7356 	**
7357 	**	COPY(4) @(...p_phys), @(dsa)
7358 	**	JUMP @(sched_point)
7359 	*/
7360 	cp->start.setup_dsa[0]	 = cpu_to_scr(copy_4);
7361 	cp->start.setup_dsa[1]	 = cpu_to_scr(CCB_PHYS(cp, start.p_phys));
7362 	cp->start.setup_dsa[2]	 = cpu_to_scr(ncr_reg_bus_addr(nc_dsa));
7363 	cp->start.schedule.l_cmd = cpu_to_scr(SCR_JUMP);
7364 	cp->start.p_phys	 = cpu_to_scr(CCB_PHYS(cp, phys));
7365 
7366 	memcpy(&cp->restart, &cp->start, sizeof(cp->restart));
7367 
7368 	cp->start.schedule.l_paddr   = cpu_to_scr(NCB_SCRIPT_PHYS (np, idle));
7369 	cp->restart.schedule.l_paddr = cpu_to_scr(NCB_SCRIPTH_PHYS (np, abort));
7370 }
7371 
7372 
7373 /*------------------------------------------------------------------------
7374 **	Allocate a CCB and initialize its fixed part.
7375 **------------------------------------------------------------------------
7376 **------------------------------------------------------------------------
7377 */
7378 static void ncr_alloc_ccb(struct ncb *np, u_char tn, u_char ln)
7379 {
7380 	struct tcb *tp = &np->target[tn];
7381 	struct lcb *lp = tp->lp[ln];
7382 	struct ccb *cp = NULL;
7383 
7384 	/*
7385 	**	Allocate memory for this CCB.
7386 	*/
7387 	cp = m_calloc_dma(sizeof(struct ccb), "CCB");
7388 	if (!cp)
7389 		return;
7390 
7391 	/*
7392 	**	Count it and initialyze it.
7393 	*/
7394 	lp->actccbs++;
7395 	np->actccbs++;
7396 	memset(cp, 0, sizeof (*cp));
7397 	ncr_init_ccb(np, cp);
7398 
7399 	/*
7400 	**	Chain into wakeup list and free ccb queue and take it
7401 	**	into account for tagged commands.
7402 	*/
7403 	cp->link_ccb      = np->ccb->link_ccb;
7404 	np->ccb->link_ccb = cp;
7405 
7406 	list_add(&cp->link_ccbq, &lp->free_ccbq);
7407 }
7408 
7409 /*==========================================================
7410 **
7411 **
7412 **      Allocation of resources for Targets/Luns/Tags.
7413 **
7414 **
7415 **==========================================================
7416 */
7417 
7418 
7419 /*------------------------------------------------------------------------
7420 **	Target control block initialisation.
7421 **------------------------------------------------------------------------
7422 **	This data structure is fully initialized after a SCSI command
7423 **	has been successfully completed for this target.
7424 **	It contains a SCRIPT that is called on target reselection.
7425 **------------------------------------------------------------------------
7426 */
7427 static void ncr_init_tcb (struct ncb *np, u_char tn)
7428 {
7429 	struct tcb *tp = &np->target[tn];
7430 	ncrcmd copy_1 = np->features & FE_PFEN ? SCR_COPY(1) : SCR_COPY_F(1);
7431 	int th = tn & 3;
7432 	int i;
7433 
7434 	/*
7435 	**	Jump to next tcb if SFBR does not match this target.
7436 	**	JUMP  IF (SFBR != #target#), @(next tcb)
7437 	*/
7438 	tp->jump_tcb.l_cmd   =
7439 		cpu_to_scr((SCR_JUMP ^ IFFALSE (DATA (0x80 + tn))));
7440 	tp->jump_tcb.l_paddr = np->jump_tcb[th].l_paddr;
7441 
7442 	/*
7443 	**	Load the synchronous transfer register.
7444 	**	COPY @(tp->sval), @(sxfer)
7445 	*/
7446 	tp->getscr[0] =	cpu_to_scr(copy_1);
7447 	tp->getscr[1] = cpu_to_scr(vtobus (&tp->sval));
7448 #ifdef SCSI_NCR_BIG_ENDIAN
7449 	tp->getscr[2] = cpu_to_scr(ncr_reg_bus_addr(nc_sxfer) ^ 3);
7450 #else
7451 	tp->getscr[2] = cpu_to_scr(ncr_reg_bus_addr(nc_sxfer));
7452 #endif
7453 
7454 	/*
7455 	**	Load the timing register.
7456 	**	COPY @(tp->wval), @(scntl3)
7457 	*/
7458 	tp->getscr[3] =	cpu_to_scr(copy_1);
7459 	tp->getscr[4] = cpu_to_scr(vtobus (&tp->wval));
7460 #ifdef SCSI_NCR_BIG_ENDIAN
7461 	tp->getscr[5] = cpu_to_scr(ncr_reg_bus_addr(nc_scntl3) ^ 3);
7462 #else
7463 	tp->getscr[5] = cpu_to_scr(ncr_reg_bus_addr(nc_scntl3));
7464 #endif
7465 
7466 	/*
7467 	**	Get the IDENTIFY message and the lun.
7468 	**	CALL @script(resel_lun)
7469 	*/
7470 	tp->call_lun.l_cmd   = cpu_to_scr(SCR_CALL);
7471 	tp->call_lun.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_lun));
7472 
7473 	/*
7474 	**	Look for the lun control block of this nexus.
7475 	**	For i = 0 to 3
7476 	**		JUMP ^ IFTRUE (MASK (i, 3)), @(next_lcb)
7477 	*/
7478 	for (i = 0 ; i < 4 ; i++) {
7479 		tp->jump_lcb[i].l_cmd   =
7480 				cpu_to_scr((SCR_JUMP ^ IFTRUE (MASK (i, 3))));
7481 		tp->jump_lcb[i].l_paddr =
7482 				cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_identify));
7483 	}
7484 
7485 	/*
7486 	**	Link this target control block to the JUMP chain.
7487 	*/
7488 	np->jump_tcb[th].l_paddr = cpu_to_scr(vtobus (&tp->jump_tcb));
7489 
7490 	/*
7491 	**	These assert's should be moved at driver initialisations.
7492 	*/
7493 #ifdef SCSI_NCR_BIG_ENDIAN
7494 	BUG_ON(((offsetof(struct ncr_reg, nc_sxfer) ^
7495 		 offsetof(struct tcb    , sval    )) &3) != 3);
7496 	BUG_ON(((offsetof(struct ncr_reg, nc_scntl3) ^
7497 		 offsetof(struct tcb    , wval    )) &3) != 3);
7498 #else
7499 	BUG_ON(((offsetof(struct ncr_reg, nc_sxfer) ^
7500 		 offsetof(struct tcb    , sval    )) &3) != 0);
7501 	BUG_ON(((offsetof(struct ncr_reg, nc_scntl3) ^
7502 		 offsetof(struct tcb    , wval    )) &3) != 0);
7503 #endif
7504 }
7505 
7506 
7507 /*------------------------------------------------------------------------
7508 **	Lun control block allocation and initialization.
7509 **------------------------------------------------------------------------
7510 **	This data structure is allocated and initialized after a SCSI
7511 **	command has been successfully completed for this target/lun.
7512 **------------------------------------------------------------------------
7513 */
7514 static struct lcb *ncr_alloc_lcb (struct ncb *np, u_char tn, u_char ln)
7515 {
7516 	struct tcb *tp = &np->target[tn];
7517 	struct lcb *lp = tp->lp[ln];
7518 	ncrcmd copy_4 = np->features & FE_PFEN ? SCR_COPY(4) : SCR_COPY_F(4);
7519 	int lh = ln & 3;
7520 
7521 	/*
7522 	**	Already done, return.
7523 	*/
7524 	if (lp)
7525 		return lp;
7526 
7527 	/*
7528 	**	Allocate the lcb.
7529 	*/
7530 	lp = m_calloc_dma(sizeof(struct lcb), "LCB");
7531 	if (!lp)
7532 		goto fail;
7533 	memset(lp, 0, sizeof(*lp));
7534 	tp->lp[ln] = lp;
7535 
7536 	/*
7537 	**	Initialize the target control block if not yet.
7538 	*/
7539 	if (!tp->jump_tcb.l_cmd)
7540 		ncr_init_tcb(np, tn);
7541 
7542 	/*
7543 	**	Initialize the CCB queue headers.
7544 	*/
7545 	INIT_LIST_HEAD(&lp->free_ccbq);
7546 	INIT_LIST_HEAD(&lp->busy_ccbq);
7547 	INIT_LIST_HEAD(&lp->wait_ccbq);
7548 	INIT_LIST_HEAD(&lp->skip_ccbq);
7549 
7550 	/*
7551 	**	Set max CCBs to 1 and use the default 1 entry
7552 	**	jump table by default.
7553 	*/
7554 	lp->maxnxs	= 1;
7555 	lp->jump_ccb	= &lp->jump_ccb_0;
7556 	lp->p_jump_ccb	= cpu_to_scr(vtobus(lp->jump_ccb));
7557 
7558 	/*
7559 	**	Initilialyze the reselect script:
7560 	**
7561 	**	Jump to next lcb if SFBR does not match this lun.
7562 	**	Load TEMP with the CCB direct jump table bus address.
7563 	**	Get the SIMPLE TAG message and the tag.
7564 	**
7565 	**	JUMP  IF (SFBR != #lun#), @(next lcb)
7566 	**	COPY @(lp->p_jump_ccb),	  @(temp)
7567 	**	JUMP @script(resel_notag)
7568 	*/
7569 	lp->jump_lcb.l_cmd   =
7570 		cpu_to_scr((SCR_JUMP ^ IFFALSE (MASK (0x80+ln, 0xff))));
7571 	lp->jump_lcb.l_paddr = tp->jump_lcb[lh].l_paddr;
7572 
7573 	lp->load_jump_ccb[0] = cpu_to_scr(copy_4);
7574 	lp->load_jump_ccb[1] = cpu_to_scr(vtobus (&lp->p_jump_ccb));
7575 	lp->load_jump_ccb[2] = cpu_to_scr(ncr_reg_bus_addr(nc_temp));
7576 
7577 	lp->jump_tag.l_cmd   = cpu_to_scr(SCR_JUMP);
7578 	lp->jump_tag.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_notag));
7579 
7580 	/*
7581 	**	Link this lun control block to the JUMP chain.
7582 	*/
7583 	tp->jump_lcb[lh].l_paddr = cpu_to_scr(vtobus (&lp->jump_lcb));
7584 
7585 	/*
7586 	**	Initialize command queuing control.
7587 	*/
7588 	lp->busyccbs	= 1;
7589 	lp->queuedccbs	= 1;
7590 	lp->queuedepth	= 1;
7591 fail:
7592 	return lp;
7593 }
7594 
7595 
7596 /*------------------------------------------------------------------------
7597 **	Lun control block setup on INQUIRY data received.
7598 **------------------------------------------------------------------------
7599 **	We only support WIDE, SYNC for targets and CMDQ for logical units.
7600 **	This setup is done on each INQUIRY since we are expecting user
7601 **	will play with CHANGE DEFINITION commands. :-)
7602 **------------------------------------------------------------------------
7603 */
7604 static struct lcb *ncr_setup_lcb (struct ncb *np, struct scsi_device *sdev)
7605 {
7606 	unsigned char tn = sdev->id, ln = sdev->lun;
7607 	struct tcb *tp = &np->target[tn];
7608 	struct lcb *lp = tp->lp[ln];
7609 
7610 	/* If no lcb, try to allocate it.  */
7611 	if (!lp && !(lp = ncr_alloc_lcb(np, tn, ln)))
7612 		goto fail;
7613 
7614 	/*
7615 	**	If unit supports tagged commands, allocate the
7616 	**	CCB JUMP table if not yet.
7617 	*/
7618 	if (sdev->tagged_supported && lp->jump_ccb == &lp->jump_ccb_0) {
7619 		int i;
7620 		lp->jump_ccb = m_calloc_dma(256, "JUMP_CCB");
7621 		if (!lp->jump_ccb) {
7622 			lp->jump_ccb = &lp->jump_ccb_0;
7623 			goto fail;
7624 		}
7625 		lp->p_jump_ccb = cpu_to_scr(vtobus(lp->jump_ccb));
7626 		for (i = 0 ; i < 64 ; i++)
7627 			lp->jump_ccb[i] =
7628 				cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_i_t_l_q));
7629 		for (i = 0 ; i < MAX_TAGS ; i++)
7630 			lp->cb_tags[i] = i;
7631 		lp->maxnxs = MAX_TAGS;
7632 		lp->tags_stime = jiffies + 3*HZ;
7633 		ncr_setup_tags (np, sdev);
7634 	}
7635 
7636 
7637 fail:
7638 	return lp;
7639 }
7640 
7641 /*==========================================================
7642 **
7643 **
7644 **	Build Scatter Gather Block
7645 **
7646 **
7647 **==========================================================
7648 **
7649 **	The transfer area may be scattered among
7650 **	several non adjacent physical pages.
7651 **
7652 **	We may use MAX_SCATTER blocks.
7653 **
7654 **----------------------------------------------------------
7655 */
7656 
7657 /*
7658 **	We try to reduce the number of interrupts caused
7659 **	by unexpected phase changes due to disconnects.
7660 **	A typical harddisk may disconnect before ANY block.
7661 **	If we wanted to avoid unexpected phase changes at all
7662 **	we had to use a break point every 512 bytes.
7663 **	Of course the number of scatter/gather blocks is
7664 **	limited.
7665 **	Under Linux, the scatter/gatter blocks are provided by
7666 **	the generic driver. We just have to copy addresses and
7667 **	sizes to the data segment array.
7668 */
7669 
7670 static int ncr_scatter_no_sglist(struct ncb *np, struct ccb *cp, struct scsi_cmnd *cmd)
7671 {
7672 	struct scr_tblmove *data = &cp->phys.data[MAX_SCATTER - 1];
7673 	int segment;
7674 
7675 	cp->data_len = cmd->request_bufflen;
7676 
7677 	if (cmd->request_bufflen) {
7678 		dma_addr_t baddr = map_scsi_single_data(np, cmd);
7679 		if (baddr) {
7680 			ncr_build_sge(np, data, baddr, cmd->request_bufflen);
7681 			segment = 1;
7682 		} else {
7683 			segment = -2;
7684 		}
7685 	} else {
7686 		segment = 0;
7687 	}
7688 
7689 	return segment;
7690 }
7691 
7692 static int ncr_scatter(struct ncb *np, struct ccb *cp, struct scsi_cmnd *cmd)
7693 {
7694 	int segment	= 0;
7695 	int use_sg	= (int) cmd->use_sg;
7696 
7697 	cp->data_len	= 0;
7698 
7699 	if (!use_sg)
7700 		segment = ncr_scatter_no_sglist(np, cp, cmd);
7701 	else if ((use_sg = map_scsi_sg_data(np, cmd)) > 0) {
7702 		struct scatterlist *scatter = (struct scatterlist *)cmd->request_buffer;
7703 		struct scr_tblmove *data;
7704 
7705 		if (use_sg > MAX_SCATTER) {
7706 			unmap_scsi_data(np, cmd);
7707 			return -1;
7708 		}
7709 
7710 		data = &cp->phys.data[MAX_SCATTER - use_sg];
7711 
7712 		for (segment = 0; segment < use_sg; segment++) {
7713 			dma_addr_t baddr = sg_dma_address(&scatter[segment]);
7714 			unsigned int len = sg_dma_len(&scatter[segment]);
7715 
7716 			ncr_build_sge(np, &data[segment], baddr, len);
7717 			cp->data_len += len;
7718 		}
7719 	} else {
7720 		segment = -2;
7721 	}
7722 
7723 	return segment;
7724 }
7725 
7726 /*==========================================================
7727 **
7728 **
7729 **	Test the bus snoop logic :-(
7730 **
7731 **	Has to be called with interrupts disabled.
7732 **
7733 **
7734 **==========================================================
7735 */
7736 
7737 static int __init ncr_regtest (struct ncb* np)
7738 {
7739 	register volatile u32 data;
7740 	/*
7741 	**	ncr registers may NOT be cached.
7742 	**	write 0xffffffff to a read only register area,
7743 	**	and try to read it back.
7744 	*/
7745 	data = 0xffffffff;
7746 	OUTL_OFF(offsetof(struct ncr_reg, nc_dstat), data);
7747 	data = INL_OFF(offsetof(struct ncr_reg, nc_dstat));
7748 #if 1
7749 	if (data == 0xffffffff) {
7750 #else
7751 	if ((data & 0xe2f0fffd) != 0x02000080) {
7752 #endif
7753 		printk ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
7754 			(unsigned) data);
7755 		return (0x10);
7756 	}
7757 	return (0);
7758 }
7759 
7760 static int __init ncr_snooptest (struct ncb* np)
7761 {
7762 	u32	ncr_rd, ncr_wr, ncr_bk, host_rd, host_wr, pc;
7763 	int	i, err=0;
7764 	if (np->reg) {
7765 		err |= ncr_regtest (np);
7766 		if (err)
7767 			return (err);
7768 	}
7769 
7770 	/* init */
7771 	pc  = NCB_SCRIPTH_PHYS (np, snooptest);
7772 	host_wr = 1;
7773 	ncr_wr  = 2;
7774 	/*
7775 	**	Set memory and register.
7776 	*/
7777 	np->ncr_cache = cpu_to_scr(host_wr);
7778 	OUTL (nc_temp, ncr_wr);
7779 	/*
7780 	**	Start script (exchange values)
7781 	*/
7782 	OUTL_DSP (pc);
7783 	/*
7784 	**	Wait 'til done (with timeout)
7785 	*/
7786 	for (i=0; i<NCR_SNOOP_TIMEOUT; i++)
7787 		if (INB(nc_istat) & (INTF|SIP|DIP))
7788 			break;
7789 	/*
7790 	**	Save termination position.
7791 	*/
7792 	pc = INL (nc_dsp);
7793 	/*
7794 	**	Read memory and register.
7795 	*/
7796 	host_rd = scr_to_cpu(np->ncr_cache);
7797 	ncr_rd  = INL (nc_scratcha);
7798 	ncr_bk  = INL (nc_temp);
7799 	/*
7800 	**	Reset ncr chip
7801 	*/
7802 	ncr_chip_reset(np, 100);
7803 	/*
7804 	**	check for timeout
7805 	*/
7806 	if (i>=NCR_SNOOP_TIMEOUT) {
7807 		printk ("CACHE TEST FAILED: timeout.\n");
7808 		return (0x20);
7809 	}
7810 	/*
7811 	**	Check termination position.
7812 	*/
7813 	if (pc != NCB_SCRIPTH_PHYS (np, snoopend)+8) {
7814 		printk ("CACHE TEST FAILED: script execution failed.\n");
7815 		printk ("start=%08lx, pc=%08lx, end=%08lx\n",
7816 			(u_long) NCB_SCRIPTH_PHYS (np, snooptest), (u_long) pc,
7817 			(u_long) NCB_SCRIPTH_PHYS (np, snoopend) +8);
7818 		return (0x40);
7819 	}
7820 	/*
7821 	**	Show results.
7822 	*/
7823 	if (host_wr != ncr_rd) {
7824 		printk ("CACHE TEST FAILED: host wrote %d, ncr read %d.\n",
7825 			(int) host_wr, (int) ncr_rd);
7826 		err |= 1;
7827 	}
7828 	if (host_rd != ncr_wr) {
7829 		printk ("CACHE TEST FAILED: ncr wrote %d, host read %d.\n",
7830 			(int) ncr_wr, (int) host_rd);
7831 		err |= 2;
7832 	}
7833 	if (ncr_bk != ncr_wr) {
7834 		printk ("CACHE TEST FAILED: ncr wrote %d, read back %d.\n",
7835 			(int) ncr_wr, (int) ncr_bk);
7836 		err |= 4;
7837 	}
7838 	return (err);
7839 }
7840 
7841 /*==========================================================
7842 **
7843 **	Determine the ncr's clock frequency.
7844 **	This is essential for the negotiation
7845 **	of the synchronous transfer rate.
7846 **
7847 **==========================================================
7848 **
7849 **	Note: we have to return the correct value.
7850 **	THERE IS NO SAFE DEFAULT VALUE.
7851 **
7852 **	Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
7853 **	53C860 and 53C875 rev. 1 support fast20 transfers but
7854 **	do not have a clock doubler and so are provided with a
7855 **	80 MHz clock. All other fast20 boards incorporate a doubler
7856 **	and so should be delivered with a 40 MHz clock.
7857 **	The future fast40 chips (895/895) use a 40 Mhz base clock
7858 **	and provide a clock quadrupler (160 Mhz). The code below
7859 **	tries to deal as cleverly as possible with all this stuff.
7860 **
7861 **----------------------------------------------------------
7862 */
7863 
7864 /*
7865  *	Select NCR SCSI clock frequency
7866  */
7867 static void ncr_selectclock(struct ncb *np, u_char scntl3)
7868 {
7869 	if (np->multiplier < 2) {
7870 		OUTB(nc_scntl3,	scntl3);
7871 		return;
7872 	}
7873 
7874 	if (bootverbose >= 2)
7875 		printk ("%s: enabling clock multiplier\n", ncr_name(np));
7876 
7877 	OUTB(nc_stest1, DBLEN);	   /* Enable clock multiplier		  */
7878 	if (np->multiplier > 2) {  /* Poll bit 5 of stest4 for quadrupler */
7879 		int i = 20;
7880 		while (!(INB(nc_stest4) & LCKFRQ) && --i > 0)
7881 			udelay(20);
7882 		if (!i)
7883 			printk("%s: the chip cannot lock the frequency\n", ncr_name(np));
7884 	} else			/* Wait 20 micro-seconds for doubler	*/
7885 		udelay(20);
7886 	OUTB(nc_stest3, HSC);		/* Halt the scsi clock		*/
7887 	OUTB(nc_scntl3,	scntl3);
7888 	OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier	*/
7889 	OUTB(nc_stest3, 0x00);		/* Restart scsi clock 		*/
7890 }
7891 
7892 
7893 /*
7894  *	calculate NCR SCSI clock frequency (in KHz)
7895  */
7896 static unsigned __init ncrgetfreq (struct ncb *np, int gen)
7897 {
7898 	unsigned ms = 0;
7899 	char count = 0;
7900 
7901 	/*
7902 	 * Measure GEN timer delay in order
7903 	 * to calculate SCSI clock frequency
7904 	 *
7905 	 * This code will never execute too
7906 	 * many loop iterations (if DELAY is
7907 	 * reasonably correct). It could get
7908 	 * too low a delay (too high a freq.)
7909 	 * if the CPU is slow executing the
7910 	 * loop for some reason (an NMI, for
7911 	 * example). For this reason we will
7912 	 * if multiple measurements are to be
7913 	 * performed trust the higher delay
7914 	 * (lower frequency returned).
7915 	 */
7916 	OUTB (nc_stest1, 0);	/* make sure clock doubler is OFF */
7917 	OUTW (nc_sien , 0);	/* mask all scsi interrupts */
7918 	(void) INW (nc_sist);	/* clear pending scsi interrupt */
7919 	OUTB (nc_dien , 0);	/* mask all dma interrupts */
7920 	(void) INW (nc_sist);	/* another one, just to be sure :) */
7921 	OUTB (nc_scntl3, 4);	/* set pre-scaler to divide by 3 */
7922 	OUTB (nc_stime1, 0);	/* disable general purpose timer */
7923 	OUTB (nc_stime1, gen);	/* set to nominal delay of 1<<gen * 125us */
7924 	while (!(INW(nc_sist) & GEN) && ms++ < 100000) {
7925 		for (count = 0; count < 10; count ++)
7926 			udelay(100);	/* count ms */
7927 	}
7928 	OUTB (nc_stime1, 0);	/* disable general purpose timer */
7929  	/*
7930  	 * set prescaler to divide by whatever 0 means
7931  	 * 0 ought to choose divide by 2, but appears
7932  	 * to set divide by 3.5 mode in my 53c810 ...
7933  	 */
7934  	OUTB (nc_scntl3, 0);
7935 
7936 	if (bootverbose >= 2)
7937 		printk ("%s: Delay (GEN=%d): %u msec\n", ncr_name(np), gen, ms);
7938   	/*
7939  	 * adjust for prescaler, and convert into KHz
7940   	 */
7941 	return ms ? ((1 << gen) * 4340) / ms : 0;
7942 }
7943 
7944 /*
7945  *	Get/probe NCR SCSI clock frequency
7946  */
7947 static void __init ncr_getclock (struct ncb *np, int mult)
7948 {
7949 	unsigned char scntl3 = INB(nc_scntl3);
7950 	unsigned char stest1 = INB(nc_stest1);
7951 	unsigned f1;
7952 
7953 	np->multiplier = 1;
7954 	f1 = 40000;
7955 
7956 	/*
7957 	**	True with 875 or 895 with clock multiplier selected
7958 	*/
7959 	if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
7960 		if (bootverbose >= 2)
7961 			printk ("%s: clock multiplier found\n", ncr_name(np));
7962 		np->multiplier = mult;
7963 	}
7964 
7965 	/*
7966 	**	If multiplier not found or scntl3 not 7,5,3,
7967 	**	reset chip and get frequency from general purpose timer.
7968 	**	Otherwise trust scntl3 BIOS setting.
7969 	*/
7970 	if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
7971 		unsigned f2;
7972 
7973 		ncr_chip_reset(np, 5);
7974 
7975 		(void) ncrgetfreq (np, 11);	/* throw away first result */
7976 		f1 = ncrgetfreq (np, 11);
7977 		f2 = ncrgetfreq (np, 11);
7978 
7979 		if(bootverbose)
7980 			printk ("%s: NCR clock is %uKHz, %uKHz\n", ncr_name(np), f1, f2);
7981 
7982 		if (f1 > f2) f1 = f2;		/* trust lower result	*/
7983 
7984 		if	(f1 <	45000)		f1 =  40000;
7985 		else if (f1 <	55000)		f1 =  50000;
7986 		else				f1 =  80000;
7987 
7988 		if (f1 < 80000 && mult > 1) {
7989 			if (bootverbose >= 2)
7990 				printk ("%s: clock multiplier assumed\n", ncr_name(np));
7991 			np->multiplier	= mult;
7992 		}
7993 	} else {
7994 		if	((scntl3 & 7) == 3)	f1 =  40000;
7995 		else if	((scntl3 & 7) == 5)	f1 =  80000;
7996 		else 				f1 = 160000;
7997 
7998 		f1 /= np->multiplier;
7999 	}
8000 
8001 	/*
8002 	**	Compute controller synchronous parameters.
8003 	*/
8004 	f1		*= np->multiplier;
8005 	np->clock_khz	= f1;
8006 }
8007 
8008 /*===================== LINUX ENTRY POINTS SECTION ==========================*/
8009 
8010 static int ncr53c8xx_slave_alloc(struct scsi_device *device)
8011 {
8012 	struct Scsi_Host *host = device->host;
8013 	struct ncb *np = ((struct host_data *) host->hostdata)->ncb;
8014 	struct tcb *tp = &np->target[device->id];
8015 	tp->starget = device->sdev_target;
8016 
8017 	return 0;
8018 }
8019 
8020 static int ncr53c8xx_slave_configure(struct scsi_device *device)
8021 {
8022 	struct Scsi_Host *host = device->host;
8023 	struct ncb *np = ((struct host_data *) host->hostdata)->ncb;
8024 	struct tcb *tp = &np->target[device->id];
8025 	struct lcb *lp = tp->lp[device->lun];
8026 	int numtags, depth_to_use;
8027 
8028 	ncr_setup_lcb(np, device);
8029 
8030 	/*
8031 	**	Select queue depth from driver setup.
8032 	**	Donnot use more than configured by user.
8033 	**	Use at least 2.
8034 	**	Donnot use more than our maximum.
8035 	*/
8036 	numtags = device_queue_depth(np->unit, device->id, device->lun);
8037 	if (numtags > tp->usrtags)
8038 		numtags = tp->usrtags;
8039 	if (!device->tagged_supported)
8040 		numtags = 1;
8041 	depth_to_use = numtags;
8042 	if (depth_to_use < 2)
8043 		depth_to_use = 2;
8044 	if (depth_to_use > MAX_TAGS)
8045 		depth_to_use = MAX_TAGS;
8046 
8047 	scsi_adjust_queue_depth(device,
8048 				(device->tagged_supported ?
8049 				 MSG_SIMPLE_TAG : 0),
8050 				depth_to_use);
8051 
8052 	/*
8053 	**	Since the queue depth is not tunable under Linux,
8054 	**	we need to know this value in order not to
8055 	**	announce stupid things to user.
8056 	**
8057 	**	XXX(hch): As of Linux 2.6 it certainly _is_ tunable..
8058 	**		  In fact we just tuned it, or did I miss
8059 	**		  something important? :)
8060 	*/
8061 	if (lp) {
8062 		lp->numtags = lp->maxtags = numtags;
8063 		lp->scdev_depth = depth_to_use;
8064 	}
8065 	ncr_setup_tags (np, device);
8066 
8067 #ifdef DEBUG_NCR53C8XX
8068 	printk("ncr53c8xx_select_queue_depth: host=%d, id=%d, lun=%d, depth=%d\n",
8069 	       np->unit, device->id, device->lun, depth_to_use);
8070 #endif
8071 
8072 	if (spi_support_sync(device->sdev_target) &&
8073 	    !spi_initial_dv(device->sdev_target))
8074 		spi_dv_device(device);
8075 	return 0;
8076 }
8077 
8078 static int ncr53c8xx_queue_command (struct scsi_cmnd *cmd, void (* done)(struct scsi_cmnd *))
8079 {
8080      struct ncb *np = ((struct host_data *) cmd->device->host->hostdata)->ncb;
8081      unsigned long flags;
8082      int sts;
8083 
8084 #ifdef DEBUG_NCR53C8XX
8085 printk("ncr53c8xx_queue_command\n");
8086 #endif
8087 
8088      cmd->scsi_done     = done;
8089      cmd->host_scribble = NULL;
8090      cmd->__data_mapped = 0;
8091      cmd->__data_mapping = 0;
8092 
8093      spin_lock_irqsave(&np->smp_lock, flags);
8094 
8095      if ((sts = ncr_queue_command(np, cmd)) != DID_OK) {
8096 	  cmd->result = ScsiResult(sts, 0);
8097 #ifdef DEBUG_NCR53C8XX
8098 printk("ncr53c8xx : command not queued - result=%d\n", sts);
8099 #endif
8100      }
8101 #ifdef DEBUG_NCR53C8XX
8102      else
8103 printk("ncr53c8xx : command successfully queued\n");
8104 #endif
8105 
8106      spin_unlock_irqrestore(&np->smp_lock, flags);
8107 
8108      if (sts != DID_OK) {
8109           unmap_scsi_data(np, cmd);
8110           done(cmd);
8111 	  sts = 0;
8112      }
8113 
8114      return sts;
8115 }
8116 
8117 irqreturn_t ncr53c8xx_intr(int irq, void *dev_id)
8118 {
8119      unsigned long flags;
8120      struct Scsi_Host *shost = (struct Scsi_Host *)dev_id;
8121      struct host_data *host_data = (struct host_data *)shost->hostdata;
8122      struct ncb *np = host_data->ncb;
8123      struct scsi_cmnd *done_list;
8124 
8125 #ifdef DEBUG_NCR53C8XX
8126      printk("ncr53c8xx : interrupt received\n");
8127 #endif
8128 
8129      if (DEBUG_FLAGS & DEBUG_TINY) printk ("[");
8130 
8131      spin_lock_irqsave(&np->smp_lock, flags);
8132      ncr_exception(np);
8133      done_list     = np->done_list;
8134      np->done_list = NULL;
8135      spin_unlock_irqrestore(&np->smp_lock, flags);
8136 
8137      if (DEBUG_FLAGS & DEBUG_TINY) printk ("]\n");
8138 
8139      if (done_list)
8140 	     ncr_flush_done_cmds(done_list);
8141      return IRQ_HANDLED;
8142 }
8143 
8144 static void ncr53c8xx_timeout(unsigned long npref)
8145 {
8146 	struct ncb *np = (struct ncb *) npref;
8147 	unsigned long flags;
8148 	struct scsi_cmnd *done_list;
8149 
8150 	spin_lock_irqsave(&np->smp_lock, flags);
8151 	ncr_timeout(np);
8152 	done_list     = np->done_list;
8153 	np->done_list = NULL;
8154 	spin_unlock_irqrestore(&np->smp_lock, flags);
8155 
8156 	if (done_list)
8157 		ncr_flush_done_cmds(done_list);
8158 }
8159 
8160 static int ncr53c8xx_bus_reset(struct scsi_cmnd *cmd)
8161 {
8162 	struct ncb *np = ((struct host_data *) cmd->device->host->hostdata)->ncb;
8163 	int sts;
8164 	unsigned long flags;
8165 	struct scsi_cmnd *done_list;
8166 
8167 	/*
8168 	 * If the mid-level driver told us reset is synchronous, it seems
8169 	 * that we must call the done() callback for the involved command,
8170 	 * even if this command was not queued to the low-level driver,
8171 	 * before returning SUCCESS.
8172 	 */
8173 
8174 	spin_lock_irqsave(&np->smp_lock, flags);
8175 	sts = ncr_reset_bus(np, cmd, 1);
8176 
8177 	done_list     = np->done_list;
8178 	np->done_list = NULL;
8179 	spin_unlock_irqrestore(&np->smp_lock, flags);
8180 
8181 	ncr_flush_done_cmds(done_list);
8182 
8183 	return sts;
8184 }
8185 
8186 #if 0 /* unused and broken */
8187 static int ncr53c8xx_abort(struct scsi_cmnd *cmd)
8188 {
8189 	struct ncb *np = ((struct host_data *) cmd->device->host->hostdata)->ncb;
8190 	int sts;
8191 	unsigned long flags;
8192 	struct scsi_cmnd *done_list;
8193 
8194 #if defined SCSI_RESET_SYNCHRONOUS && defined SCSI_RESET_ASYNCHRONOUS
8195 	printk("ncr53c8xx_abort: pid=%lu serial_number=%ld\n",
8196 		cmd->pid, cmd->serial_number);
8197 #else
8198 	printk("ncr53c8xx_abort: command pid %lu\n", cmd->pid);
8199 #endif
8200 
8201 	NCR_LOCK_NCB(np, flags);
8202 
8203 	sts = ncr_abort_command(np, cmd);
8204 out:
8205 	done_list     = np->done_list;
8206 	np->done_list = NULL;
8207 	NCR_UNLOCK_NCB(np, flags);
8208 
8209 	ncr_flush_done_cmds(done_list);
8210 
8211 	return sts;
8212 }
8213 #endif
8214 
8215 
8216 /*
8217 **	Scsi command waiting list management.
8218 **
8219 **	It may happen that we cannot insert a scsi command into the start queue,
8220 **	in the following circumstances.
8221 ** 		Too few preallocated ccb(s),
8222 **		maxtags < cmd_per_lun of the Linux host control block,
8223 **		etc...
8224 **	Such scsi commands are inserted into a waiting list.
8225 **	When a scsi command complete, we try to requeue the commands of the
8226 **	waiting list.
8227 */
8228 
8229 #define next_wcmd host_scribble
8230 
8231 static void insert_into_waiting_list(struct ncb *np, struct scsi_cmnd *cmd)
8232 {
8233 	struct scsi_cmnd *wcmd;
8234 
8235 #ifdef DEBUG_WAITING_LIST
8236 	printk("%s: cmd %lx inserted into waiting list\n", ncr_name(np), (u_long) cmd);
8237 #endif
8238 	cmd->next_wcmd = NULL;
8239 	if (!(wcmd = np->waiting_list)) np->waiting_list = cmd;
8240 	else {
8241 		while ((wcmd->next_wcmd) != 0)
8242 			wcmd = (struct scsi_cmnd *) wcmd->next_wcmd;
8243 		wcmd->next_wcmd = (char *) cmd;
8244 	}
8245 }
8246 
8247 static struct scsi_cmnd *retrieve_from_waiting_list(int to_remove, struct ncb *np, struct scsi_cmnd *cmd)
8248 {
8249 	struct scsi_cmnd **pcmd = &np->waiting_list;
8250 
8251 	while (*pcmd) {
8252 		if (cmd == *pcmd) {
8253 			if (to_remove) {
8254 				*pcmd = (struct scsi_cmnd *) cmd->next_wcmd;
8255 				cmd->next_wcmd = NULL;
8256 			}
8257 #ifdef DEBUG_WAITING_LIST
8258 	printk("%s: cmd %lx retrieved from waiting list\n", ncr_name(np), (u_long) cmd);
8259 #endif
8260 			return cmd;
8261 		}
8262 		pcmd = (struct scsi_cmnd **) &(*pcmd)->next_wcmd;
8263 	}
8264 	return NULL;
8265 }
8266 
8267 static void process_waiting_list(struct ncb *np, int sts)
8268 {
8269 	struct scsi_cmnd *waiting_list, *wcmd;
8270 
8271 	waiting_list = np->waiting_list;
8272 	np->waiting_list = NULL;
8273 
8274 #ifdef DEBUG_WAITING_LIST
8275 	if (waiting_list) printk("%s: waiting_list=%lx processing sts=%d\n", ncr_name(np), (u_long) waiting_list, sts);
8276 #endif
8277 	while ((wcmd = waiting_list) != 0) {
8278 		waiting_list = (struct scsi_cmnd *) wcmd->next_wcmd;
8279 		wcmd->next_wcmd = NULL;
8280 		if (sts == DID_OK) {
8281 #ifdef DEBUG_WAITING_LIST
8282 	printk("%s: cmd %lx trying to requeue\n", ncr_name(np), (u_long) wcmd);
8283 #endif
8284 			sts = ncr_queue_command(np, wcmd);
8285 		}
8286 		if (sts != DID_OK) {
8287 #ifdef DEBUG_WAITING_LIST
8288 	printk("%s: cmd %lx done forced sts=%d\n", ncr_name(np), (u_long) wcmd, sts);
8289 #endif
8290 			wcmd->result = ScsiResult(sts, 0);
8291 			ncr_queue_done_cmd(np, wcmd);
8292 		}
8293 	}
8294 }
8295 
8296 #undef next_wcmd
8297 
8298 static ssize_t show_ncr53c8xx_revision(struct class_device *dev, char *buf)
8299 {
8300 	struct Scsi_Host *host = class_to_shost(dev);
8301 	struct host_data *host_data = (struct host_data *)host->hostdata;
8302 
8303 	return snprintf(buf, 20, "0x%x\n", host_data->ncb->revision_id);
8304 }
8305 
8306 static struct class_device_attribute ncr53c8xx_revision_attr = {
8307 	.attr	= { .name = "revision", .mode = S_IRUGO, },
8308 	.show	= show_ncr53c8xx_revision,
8309 };
8310 
8311 static struct class_device_attribute *ncr53c8xx_host_attrs[] = {
8312 	&ncr53c8xx_revision_attr,
8313 	NULL
8314 };
8315 
8316 /*==========================================================
8317 **
8318 **	Boot command line.
8319 **
8320 **==========================================================
8321 */
8322 #ifdef	MODULE
8323 char *ncr53c8xx;	/* command line passed by insmod */
8324 module_param(ncr53c8xx, charp, 0);
8325 #endif
8326 
8327 #ifndef MODULE
8328 static int __init ncr53c8xx_setup(char *str)
8329 {
8330 	return sym53c8xx__setup(str);
8331 }
8332 
8333 __setup("ncr53c8xx=", ncr53c8xx_setup);
8334 #endif
8335 
8336 
8337 /*
8338  *	Host attach and initialisations.
8339  *
8340  *	Allocate host data and ncb structure.
8341  *	Request IO region and remap MMIO region.
8342  *	Do chip initialization.
8343  *	If all is OK, install interrupt handling and
8344  *	start the timer daemon.
8345  */
8346 struct Scsi_Host * __init ncr_attach(struct scsi_host_template *tpnt,
8347 					int unit, struct ncr_device *device)
8348 {
8349 	struct host_data *host_data;
8350 	struct ncb *np = NULL;
8351 	struct Scsi_Host *instance = NULL;
8352 	u_long flags = 0;
8353 	int i;
8354 
8355 	if (!tpnt->name)
8356 		tpnt->name	= SCSI_NCR_DRIVER_NAME;
8357 	if (!tpnt->shost_attrs)
8358 		tpnt->shost_attrs = ncr53c8xx_host_attrs;
8359 
8360 	tpnt->queuecommand	= ncr53c8xx_queue_command;
8361 	tpnt->slave_configure	= ncr53c8xx_slave_configure;
8362 	tpnt->slave_alloc	= ncr53c8xx_slave_alloc;
8363 	tpnt->eh_bus_reset_handler = ncr53c8xx_bus_reset;
8364 	tpnt->can_queue		= SCSI_NCR_CAN_QUEUE;
8365 	tpnt->this_id		= 7;
8366 	tpnt->sg_tablesize	= SCSI_NCR_SG_TABLESIZE;
8367 	tpnt->cmd_per_lun	= SCSI_NCR_CMD_PER_LUN;
8368 	tpnt->use_clustering	= ENABLE_CLUSTERING;
8369 
8370 	if (device->differential)
8371 		driver_setup.diff_support = device->differential;
8372 
8373 	printk(KERN_INFO "ncr53c720-%d: rev 0x%x irq %d\n",
8374 		unit, device->chip.revision_id, device->slot.irq);
8375 
8376 	instance = scsi_host_alloc(tpnt, sizeof(*host_data));
8377 	if (!instance)
8378 	        goto attach_error;
8379 	host_data = (struct host_data *) instance->hostdata;
8380 
8381 	np = __m_calloc_dma(device->dev, sizeof(struct ncb), "NCB");
8382 	if (!np)
8383 		goto attach_error;
8384 	spin_lock_init(&np->smp_lock);
8385 	np->dev = device->dev;
8386 	np->p_ncb = vtobus(np);
8387 	host_data->ncb = np;
8388 
8389 	np->ccb = m_calloc_dma(sizeof(struct ccb), "CCB");
8390 	if (!np->ccb)
8391 		goto attach_error;
8392 
8393 	/* Store input information in the host data structure.  */
8394 	np->unit	= unit;
8395 	np->verbose	= driver_setup.verbose;
8396 	sprintf(np->inst_name, "ncr53c720-%d", np->unit);
8397 	np->revision_id	= device->chip.revision_id;
8398 	np->features	= device->chip.features;
8399 	np->clock_divn	= device->chip.nr_divisor;
8400 	np->maxoffs	= device->chip.offset_max;
8401 	np->maxburst	= device->chip.burst_max;
8402 	np->myaddr	= device->host_id;
8403 
8404 	/* Allocate SCRIPTS areas.  */
8405 	np->script0 = m_calloc_dma(sizeof(struct script), "SCRIPT");
8406 	if (!np->script0)
8407 		goto attach_error;
8408 	np->scripth0 = m_calloc_dma(sizeof(struct scripth), "SCRIPTH");
8409 	if (!np->scripth0)
8410 		goto attach_error;
8411 
8412 	init_timer(&np->timer);
8413 	np->timer.data     = (unsigned long) np;
8414 	np->timer.function = ncr53c8xx_timeout;
8415 
8416 	/* Try to map the controller chip to virtual and physical memory. */
8417 
8418 	np->paddr	= device->slot.base;
8419 	np->paddr2	= (np->features & FE_RAM) ? device->slot.base_2 : 0;
8420 
8421 	if (device->slot.base_v)
8422 		np->vaddr = device->slot.base_v;
8423 	else
8424 		np->vaddr = ioremap(device->slot.base_c, 128);
8425 
8426 	if (!np->vaddr) {
8427 		printk(KERN_ERR
8428 			"%s: can't map memory mapped IO region\n",ncr_name(np));
8429 		goto attach_error;
8430 	} else {
8431 		if (bootverbose > 1)
8432 			printk(KERN_INFO
8433 				"%s: using memory mapped IO at virtual address 0x%lx\n", ncr_name(np), (u_long) np->vaddr);
8434 	}
8435 
8436 	/* Make the controller's registers available.  Now the INB INW INL
8437 	 * OUTB OUTW OUTL macros can be used safely.
8438 	 */
8439 
8440 	np->reg = (struct ncr_reg __iomem *)np->vaddr;
8441 
8442 	/* Do chip dependent initialization.  */
8443 	ncr_prepare_setting(np);
8444 
8445 	if (np->paddr2 && sizeof(struct script) > 4096) {
8446 		np->paddr2 = 0;
8447 		printk(KERN_WARNING "%s: script too large, NOT using on chip RAM.\n",
8448 			ncr_name(np));
8449 	}
8450 
8451 	instance->max_channel	= 0;
8452 	instance->this_id       = np->myaddr;
8453 	instance->max_id	= np->maxwide ? 16 : 8;
8454 	instance->max_lun	= SCSI_NCR_MAX_LUN;
8455 	instance->base		= (unsigned long) np->reg;
8456 	instance->irq		= device->slot.irq;
8457 	instance->unique_id	= device->slot.base;
8458 	instance->dma_channel	= 0;
8459 	instance->cmd_per_lun	= MAX_TAGS;
8460 	instance->can_queue	= (MAX_START-4);
8461 	/* This can happen if you forget to call ncr53c8xx_init from
8462 	 * your module_init */
8463 	BUG_ON(!ncr53c8xx_transport_template);
8464 	instance->transportt	= ncr53c8xx_transport_template;
8465 
8466 	/* Patch script to physical addresses */
8467 	ncr_script_fill(&script0, &scripth0);
8468 
8469 	np->scripth	= np->scripth0;
8470 	np->p_scripth	= vtobus(np->scripth);
8471 	np->p_script	= (np->paddr2) ?  np->paddr2 : vtobus(np->script0);
8472 
8473 	ncr_script_copy_and_bind(np, (ncrcmd *) &script0,
8474 			(ncrcmd *) np->script0, sizeof(struct script));
8475 	ncr_script_copy_and_bind(np, (ncrcmd *) &scripth0,
8476 			(ncrcmd *) np->scripth0, sizeof(struct scripth));
8477 	np->ccb->p_ccb	= vtobus (np->ccb);
8478 
8479 	/* Patch the script for LED support.  */
8480 
8481 	if (np->features & FE_LED0) {
8482 		np->script0->idle[0]  =
8483 				cpu_to_scr(SCR_REG_REG(gpreg, SCR_OR,  0x01));
8484 		np->script0->reselected[0] =
8485 				cpu_to_scr(SCR_REG_REG(gpreg, SCR_AND, 0xfe));
8486 		np->script0->start[0] =
8487 				cpu_to_scr(SCR_REG_REG(gpreg, SCR_AND, 0xfe));
8488 	}
8489 
8490 	/*
8491 	 * Look for the target control block of this nexus.
8492 	 * For i = 0 to 3
8493 	 *   JUMP ^ IFTRUE (MASK (i, 3)), @(next_lcb)
8494 	 */
8495 	for (i = 0 ; i < 4 ; i++) {
8496 		np->jump_tcb[i].l_cmd   =
8497 				cpu_to_scr((SCR_JUMP ^ IFTRUE (MASK (i, 3))));
8498 		np->jump_tcb[i].l_paddr =
8499 				cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_target));
8500 	}
8501 
8502 	ncr_chip_reset(np, 100);
8503 
8504 	/* Now check the cache handling of the chipset.  */
8505 
8506 	if (ncr_snooptest(np)) {
8507 		printk(KERN_ERR "CACHE INCORRECTLY CONFIGURED.\n");
8508 		goto attach_error;
8509 	}
8510 
8511 	/* Install the interrupt handler.  */
8512 	np->irq = device->slot.irq;
8513 
8514 	/* Initialize the fixed part of the default ccb.  */
8515 	ncr_init_ccb(np, np->ccb);
8516 
8517 	/*
8518 	 * After SCSI devices have been opened, we cannot reset the bus
8519 	 * safely, so we do it here.  Interrupt handler does the real work.
8520 	 * Process the reset exception if interrupts are not enabled yet.
8521 	 * Then enable disconnects.
8522 	 */
8523 	spin_lock_irqsave(&np->smp_lock, flags);
8524 	if (ncr_reset_scsi_bus(np, 0, driver_setup.settle_delay) != 0) {
8525 		printk(KERN_ERR "%s: FATAL ERROR: CHECK SCSI BUS - CABLES, TERMINATION, DEVICE POWER etc.!\n", ncr_name(np));
8526 
8527 		spin_unlock_irqrestore(&np->smp_lock, flags);
8528 		goto attach_error;
8529 	}
8530 	ncr_exception(np);
8531 
8532 	np->disc = 1;
8533 
8534 	/*
8535 	 * The middle-level SCSI driver does not wait for devices to settle.
8536 	 * Wait synchronously if more than 2 seconds.
8537 	 */
8538 	if (driver_setup.settle_delay > 2) {
8539 		printk(KERN_INFO "%s: waiting %d seconds for scsi devices to settle...\n",
8540 			ncr_name(np), driver_setup.settle_delay);
8541 		mdelay(1000 * driver_setup.settle_delay);
8542 	}
8543 
8544 	/* start the timeout daemon */
8545 	np->lasttime=0;
8546 	ncr_timeout (np);
8547 
8548 	/* use SIMPLE TAG messages by default */
8549 #ifdef SCSI_NCR_ALWAYS_SIMPLE_TAG
8550 	np->order = SIMPLE_QUEUE_TAG;
8551 #endif
8552 
8553 	spin_unlock_irqrestore(&np->smp_lock, flags);
8554 
8555 	return instance;
8556 
8557  attach_error:
8558 	if (!instance)
8559 		return NULL;
8560 	printk(KERN_INFO "%s: detaching...\n", ncr_name(np));
8561 	if (!np)
8562 		goto unregister;
8563 	if (np->scripth0)
8564 		m_free_dma(np->scripth0, sizeof(struct scripth), "SCRIPTH");
8565 	if (np->script0)
8566 		m_free_dma(np->script0, sizeof(struct script), "SCRIPT");
8567 	if (np->ccb)
8568 		m_free_dma(np->ccb, sizeof(struct ccb), "CCB");
8569 	m_free_dma(np, sizeof(struct ncb), "NCB");
8570 	host_data->ncb = NULL;
8571 
8572  unregister:
8573 	scsi_host_put(instance);
8574 
8575 	return NULL;
8576 }
8577 
8578 
8579 int ncr53c8xx_release(struct Scsi_Host *host)
8580 {
8581 	struct host_data *host_data;
8582 #ifdef DEBUG_NCR53C8XX
8583 	printk("ncr53c8xx: release\n");
8584 #endif
8585 	if (!host)
8586 		return 1;
8587 	host_data = (struct host_data *)host->hostdata;
8588 	if (host_data && host_data->ncb)
8589 		ncr_detach(host_data->ncb);
8590 	return 1;
8591 }
8592 
8593 static void ncr53c8xx_set_period(struct scsi_target *starget, int period)
8594 {
8595 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
8596 	struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
8597 	struct tcb *tp = &np->target[starget->id];
8598 
8599 	if (period > np->maxsync)
8600 		period = np->maxsync;
8601 	else if (period < np->minsync)
8602 		period = np->minsync;
8603 
8604 	tp->usrsync = period;
8605 
8606 	ncr_negotiate(np, tp);
8607 }
8608 
8609 static void ncr53c8xx_set_offset(struct scsi_target *starget, int offset)
8610 {
8611 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
8612 	struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
8613 	struct tcb *tp = &np->target[starget->id];
8614 
8615 	if (offset > np->maxoffs)
8616 		offset = np->maxoffs;
8617 	else if (offset < 0)
8618 		offset = 0;
8619 
8620 	tp->maxoffs = offset;
8621 
8622 	ncr_negotiate(np, tp);
8623 }
8624 
8625 static void ncr53c8xx_set_width(struct scsi_target *starget, int width)
8626 {
8627 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
8628 	struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
8629 	struct tcb *tp = &np->target[starget->id];
8630 
8631 	if (width > np->maxwide)
8632 		width = np->maxwide;
8633 	else if (width < 0)
8634 		width = 0;
8635 
8636 	tp->usrwide = width;
8637 
8638 	ncr_negotiate(np, tp);
8639 }
8640 
8641 static void ncr53c8xx_get_signalling(struct Scsi_Host *shost)
8642 {
8643 	struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
8644 	enum spi_signal_type type;
8645 
8646 	switch (np->scsi_mode) {
8647 	case SMODE_SE:
8648 		type = SPI_SIGNAL_SE;
8649 		break;
8650 	case SMODE_HVD:
8651 		type = SPI_SIGNAL_HVD;
8652 		break;
8653 	default:
8654 		type = SPI_SIGNAL_UNKNOWN;
8655 		break;
8656 	}
8657 	spi_signalling(shost) = type;
8658 }
8659 
8660 static struct spi_function_template ncr53c8xx_transport_functions =  {
8661 	.set_period	= ncr53c8xx_set_period,
8662 	.show_period	= 1,
8663 	.set_offset	= ncr53c8xx_set_offset,
8664 	.show_offset	= 1,
8665 	.set_width	= ncr53c8xx_set_width,
8666 	.show_width	= 1,
8667 	.get_signalling	= ncr53c8xx_get_signalling,
8668 };
8669 
8670 int __init ncr53c8xx_init(void)
8671 {
8672 	ncr53c8xx_transport_template = spi_attach_transport(&ncr53c8xx_transport_functions);
8673 	if (!ncr53c8xx_transport_template)
8674 		return -ENODEV;
8675 	return 0;
8676 }
8677 
8678 void ncr53c8xx_exit(void)
8679 {
8680 	spi_release_transport(ncr53c8xx_transport_template);
8681 }
8682