1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /******************************************************************************
3 ** Device driver for the PCI-SCSI NCR538XX controller family.
4 **
5 ** Copyright (C) 1994 Wolfgang Stanglmeier
6 **
7 **
8 **-----------------------------------------------------------------------------
9 **
10 ** This driver has been ported to Linux from the FreeBSD NCR53C8XX driver
11 ** and is currently maintained by
12 **
13 ** Gerard Roudier <groudier@free.fr>
14 **
15 ** Being given that this driver originates from the FreeBSD version, and
16 ** in order to keep synergy on both, any suggested enhancements and corrections
17 ** received on Linux are automatically a potential candidate for the FreeBSD
18 ** version.
19 **
20 ** The original driver has been written for 386bsd and FreeBSD by
21 ** Wolfgang Stanglmeier <wolf@cologne.de>
22 ** Stefan Esser <se@mi.Uni-Koeln.de>
23 **
24 ** And has been ported to NetBSD by
25 ** Charles M. Hannum <mycroft@gnu.ai.mit.edu>
26 **
27 **-----------------------------------------------------------------------------
28 **
29 ** Brief history
30 **
31 ** December 10 1995 by Gerard Roudier:
32 ** Initial port to Linux.
33 **
34 ** June 23 1996 by Gerard Roudier:
35 ** Support for 64 bits architectures (Alpha).
36 **
37 ** November 30 1996 by Gerard Roudier:
38 ** Support for Fast-20 scsi.
39 ** Support for large DMA fifo and 128 dwords bursting.
40 **
41 ** February 27 1997 by Gerard Roudier:
42 ** Support for Fast-40 scsi.
43 ** Support for on-Board RAM.
44 **
45 ** May 3 1997 by Gerard Roudier:
46 ** Full support for scsi scripts instructions pre-fetching.
47 **
48 ** May 19 1997 by Richard Waltham <dormouse@farsrobt.demon.co.uk>:
49 ** Support for NvRAM detection and reading.
50 **
51 ** August 18 1997 by Cort <cort@cs.nmt.edu>:
52 ** Support for Power/PC (Big Endian).
53 **
54 ** June 20 1998 by Gerard Roudier
55 ** Support for up to 64 tags per lun.
56 ** O(1) everywhere (C and SCRIPTS) for normal cases.
57 ** Low PCI traffic for command handling when on-chip RAM is present.
58 ** Aggressive SCSI SCRIPTS optimizations.
59 **
60 ** 2005 by Matthew Wilcox and James Bottomley
61 ** PCI-ectomy. This driver now supports only the 720 chip (see the
62 ** NCR_Q720 and zalon drivers for the bus probe logic).
63 **
64 *******************************************************************************
65 */
66
67 /*
68 ** Supported SCSI-II features:
69 ** Synchronous negotiation
70 ** Wide negotiation (depends on the NCR Chip)
71 ** Enable disconnection
72 ** Tagged command queuing
73 ** Parity checking
74 ** Etc...
75 **
76 ** Supported NCR/SYMBIOS chips:
77 ** 53C720 (Wide, Fast SCSI-2, intfly problems)
78 */
79
80 /* Name and version of the driver */
81 #define SCSI_NCR_DRIVER_NAME "ncr53c8xx-3.4.3g"
82
83 #define SCSI_NCR_DEBUG_FLAGS (0)
84
85 #include <linux/blkdev.h>
86 #include <linux/delay.h>
87 #include <linux/dma-mapping.h>
88 #include <linux/errno.h>
89 #include <linux/gfp.h>
90 #include <linux/init.h>
91 #include <linux/interrupt.h>
92 #include <linux/ioport.h>
93 #include <linux/mm.h>
94 #include <linux/module.h>
95 #include <linux/sched.h>
96 #include <linux/signal.h>
97 #include <linux/spinlock.h>
98 #include <linux/stat.h>
99 #include <linux/string.h>
100 #include <linux/time.h>
101 #include <linux/timer.h>
102 #include <linux/types.h>
103
104 #include <asm/dma.h>
105 #include <asm/io.h>
106
107 #include <scsi/scsi.h>
108 #include <scsi/scsi_cmnd.h>
109 #include <scsi/scsi_dbg.h>
110 #include <scsi/scsi_device.h>
111 #include <scsi/scsi_tcq.h>
112 #include <scsi/scsi_transport.h>
113 #include <scsi/scsi_transport_spi.h>
114
115 #include "ncr53c8xx.h"
116
117 #define NAME53C8XX "ncr53c8xx"
118
119 /*==========================================================
120 **
121 ** Debugging tags
122 **
123 **==========================================================
124 */
125
126 #define DEBUG_ALLOC (0x0001)
127 #define DEBUG_PHASE (0x0002)
128 #define DEBUG_QUEUE (0x0008)
129 #define DEBUG_RESULT (0x0010)
130 #define DEBUG_POINTER (0x0020)
131 #define DEBUG_SCRIPT (0x0040)
132 #define DEBUG_TINY (0x0080)
133 #define DEBUG_TIMING (0x0100)
134 #define DEBUG_NEGO (0x0200)
135 #define DEBUG_TAGS (0x0400)
136 #define DEBUG_SCATTER (0x0800)
137 #define DEBUG_IC (0x1000)
138
139 /*
140 ** Enable/Disable debug messages.
141 ** Can be changed at runtime too.
142 */
143
144 #ifdef SCSI_NCR_DEBUG_INFO_SUPPORT
145 static int ncr_debug = SCSI_NCR_DEBUG_FLAGS;
146 #define DEBUG_FLAGS ncr_debug
147 #else
148 #define DEBUG_FLAGS SCSI_NCR_DEBUG_FLAGS
149 #endif
150
151 /*
152 * Locally used status flag
153 */
154 #define SAM_STAT_ILLEGAL 0xff
155
ncr_list_pop(struct list_head * head)156 static inline struct list_head *ncr_list_pop(struct list_head *head)
157 {
158 if (!list_empty(head)) {
159 struct list_head *elem = head->next;
160
161 list_del(elem);
162 return elem;
163 }
164
165 return NULL;
166 }
167
168 /*==========================================================
169 **
170 ** Simple power of two buddy-like allocator.
171 **
172 ** This simple code is not intended to be fast, but to
173 ** provide power of 2 aligned memory allocations.
174 ** Since the SCRIPTS processor only supplies 8 bit
175 ** arithmetic, this allocator allows simple and fast
176 ** address calculations from the SCRIPTS code.
177 ** In addition, cache line alignment is guaranteed for
178 ** power of 2 cache line size.
179 ** Enhanced in linux-2.3.44 to provide a memory pool
180 ** per pcidev to support dynamic dma mapping. (I would
181 ** have preferred a real bus abstraction, btw).
182 **
183 **==========================================================
184 */
185
186 #define MEMO_SHIFT 4 /* 16 bytes minimum memory chunk */
187 #if PAGE_SIZE >= 8192
188 #define MEMO_PAGE_ORDER 0 /* 1 PAGE maximum */
189 #else
190 #define MEMO_PAGE_ORDER 1 /* 2 PAGES maximum */
191 #endif
192 #define MEMO_FREE_UNUSED /* Free unused pages immediately */
193 #define MEMO_WARN 1
194 #define MEMO_GFP_FLAGS GFP_ATOMIC
195 #define MEMO_CLUSTER_SHIFT (PAGE_SHIFT+MEMO_PAGE_ORDER)
196 #define MEMO_CLUSTER_SIZE (1UL << MEMO_CLUSTER_SHIFT)
197 #define MEMO_CLUSTER_MASK (MEMO_CLUSTER_SIZE-1)
198
199 typedef u_long m_addr_t; /* Enough bits to bit-hack addresses */
200 typedef struct device *m_bush_t; /* Something that addresses DMAable */
201
202 typedef struct m_link { /* Link between free memory chunks */
203 struct m_link *next;
204 } m_link_s;
205
206 typedef struct m_vtob { /* Virtual to Bus address translation */
207 struct m_vtob *next;
208 m_addr_t vaddr;
209 m_addr_t baddr;
210 } m_vtob_s;
211 #define VTOB_HASH_SHIFT 5
212 #define VTOB_HASH_SIZE (1UL << VTOB_HASH_SHIFT)
213 #define VTOB_HASH_MASK (VTOB_HASH_SIZE-1)
214 #define VTOB_HASH_CODE(m) \
215 ((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK)
216
217 typedef struct m_pool { /* Memory pool of a given kind */
218 m_bush_t bush;
219 m_addr_t (*getp)(struct m_pool *);
220 void (*freep)(struct m_pool *, m_addr_t);
221 int nump;
222 m_vtob_s *(vtob[VTOB_HASH_SIZE]);
223 struct m_pool *next;
224 struct m_link h[PAGE_SHIFT-MEMO_SHIFT+MEMO_PAGE_ORDER+1];
225 } m_pool_s;
226
___m_alloc(m_pool_s * mp,int size)227 static void *___m_alloc(m_pool_s *mp, int size)
228 {
229 int i = 0;
230 int s = (1 << MEMO_SHIFT);
231 int j;
232 m_addr_t a;
233 m_link_s *h = mp->h;
234
235 if (size > (PAGE_SIZE << MEMO_PAGE_ORDER))
236 return NULL;
237
238 while (size > s) {
239 s <<= 1;
240 ++i;
241 }
242
243 j = i;
244 while (!h[j].next) {
245 if (s == (PAGE_SIZE << MEMO_PAGE_ORDER)) {
246 h[j].next = (m_link_s *)mp->getp(mp);
247 if (h[j].next)
248 h[j].next->next = NULL;
249 break;
250 }
251 ++j;
252 s <<= 1;
253 }
254 a = (m_addr_t) h[j].next;
255 if (a) {
256 h[j].next = h[j].next->next;
257 while (j > i) {
258 j -= 1;
259 s >>= 1;
260 h[j].next = (m_link_s *) (a+s);
261 h[j].next->next = NULL;
262 }
263 }
264 #ifdef DEBUG
265 printk("___m_alloc(%d) = %p\n", size, (void *) a);
266 #endif
267 return (void *) a;
268 }
269
___m_free(m_pool_s * mp,void * ptr,int size)270 static void ___m_free(m_pool_s *mp, void *ptr, int size)
271 {
272 int i = 0;
273 int s = (1 << MEMO_SHIFT);
274 m_link_s *q;
275 m_addr_t a, b;
276 m_link_s *h = mp->h;
277
278 #ifdef DEBUG
279 printk("___m_free(%p, %d)\n", ptr, size);
280 #endif
281
282 if (size > (PAGE_SIZE << MEMO_PAGE_ORDER))
283 return;
284
285 while (size > s) {
286 s <<= 1;
287 ++i;
288 }
289
290 a = (m_addr_t) ptr;
291
292 while (1) {
293 #ifdef MEMO_FREE_UNUSED
294 if (s == (PAGE_SIZE << MEMO_PAGE_ORDER)) {
295 mp->freep(mp, a);
296 break;
297 }
298 #endif
299 b = a ^ s;
300 q = &h[i];
301 while (q->next && q->next != (m_link_s *) b) {
302 q = q->next;
303 }
304 if (!q->next) {
305 ((m_link_s *) a)->next = h[i].next;
306 h[i].next = (m_link_s *) a;
307 break;
308 }
309 q->next = q->next->next;
310 a = a & b;
311 s <<= 1;
312 ++i;
313 }
314 }
315
316 static DEFINE_SPINLOCK(ncr53c8xx_lock);
317
__m_calloc2(m_pool_s * mp,int size,char * name,int uflags)318 static void *__m_calloc2(m_pool_s *mp, int size, char *name, int uflags)
319 {
320 void *p;
321
322 p = ___m_alloc(mp, size);
323
324 if (DEBUG_FLAGS & DEBUG_ALLOC)
325 printk ("new %-10s[%4d] @%p.\n", name, size, p);
326
327 if (p)
328 memset(p, 0, size);
329 else if (uflags & MEMO_WARN)
330 printk (NAME53C8XX ": failed to allocate %s[%d]\n", name, size);
331
332 return p;
333 }
334
335 #define __m_calloc(mp, s, n) __m_calloc2(mp, s, n, MEMO_WARN)
336
__m_free(m_pool_s * mp,void * ptr,int size,char * name)337 static void __m_free(m_pool_s *mp, void *ptr, int size, char *name)
338 {
339 if (DEBUG_FLAGS & DEBUG_ALLOC)
340 printk ("freeing %-10s[%4d] @%p.\n", name, size, ptr);
341
342 ___m_free(mp, ptr, size);
343
344 }
345
346 /*
347 * With pci bus iommu support, we use a default pool of unmapped memory
348 * for memory we donnot need to DMA from/to and one pool per pcidev for
349 * memory accessed by the PCI chip. `mp0' is the default not DMAable pool.
350 */
351
___mp0_getp(m_pool_s * mp)352 static m_addr_t ___mp0_getp(m_pool_s *mp)
353 {
354 m_addr_t m = __get_free_pages(MEMO_GFP_FLAGS, MEMO_PAGE_ORDER);
355 if (m)
356 ++mp->nump;
357 return m;
358 }
359
___mp0_freep(m_pool_s * mp,m_addr_t m)360 static void ___mp0_freep(m_pool_s *mp, m_addr_t m)
361 {
362 free_pages(m, MEMO_PAGE_ORDER);
363 --mp->nump;
364 }
365
366 static m_pool_s mp0 = {NULL, ___mp0_getp, ___mp0_freep};
367
368 /*
369 * DMAable pools.
370 */
371
372 /*
373 * With pci bus iommu support, we maintain one pool per pcidev and a
374 * hashed reverse table for virtual to bus physical address translations.
375 */
___dma_getp(m_pool_s * mp)376 static m_addr_t ___dma_getp(m_pool_s *mp)
377 {
378 m_addr_t vp;
379 m_vtob_s *vbp;
380
381 vbp = __m_calloc(&mp0, sizeof(*vbp), "VTOB");
382 if (vbp) {
383 dma_addr_t daddr;
384 vp = (m_addr_t) dma_alloc_coherent(mp->bush,
385 PAGE_SIZE<<MEMO_PAGE_ORDER,
386 &daddr, GFP_ATOMIC);
387 if (vp) {
388 int hc = VTOB_HASH_CODE(vp);
389 vbp->vaddr = vp;
390 vbp->baddr = daddr;
391 vbp->next = mp->vtob[hc];
392 mp->vtob[hc] = vbp;
393 ++mp->nump;
394 return vp;
395 }
396 }
397 if (vbp)
398 __m_free(&mp0, vbp, sizeof(*vbp), "VTOB");
399 return 0;
400 }
401
___dma_freep(m_pool_s * mp,m_addr_t m)402 static void ___dma_freep(m_pool_s *mp, m_addr_t m)
403 {
404 m_vtob_s **vbpp, *vbp;
405 int hc = VTOB_HASH_CODE(m);
406
407 vbpp = &mp->vtob[hc];
408 while (*vbpp && (*vbpp)->vaddr != m)
409 vbpp = &(*vbpp)->next;
410 if (*vbpp) {
411 vbp = *vbpp;
412 *vbpp = (*vbpp)->next;
413 dma_free_coherent(mp->bush, PAGE_SIZE<<MEMO_PAGE_ORDER,
414 (void *)vbp->vaddr, (dma_addr_t)vbp->baddr);
415 __m_free(&mp0, vbp, sizeof(*vbp), "VTOB");
416 --mp->nump;
417 }
418 }
419
___get_dma_pool(m_bush_t bush)420 static inline m_pool_s *___get_dma_pool(m_bush_t bush)
421 {
422 m_pool_s *mp;
423 for (mp = mp0.next; mp && mp->bush != bush; mp = mp->next);
424 return mp;
425 }
426
___cre_dma_pool(m_bush_t bush)427 static m_pool_s *___cre_dma_pool(m_bush_t bush)
428 {
429 m_pool_s *mp;
430 mp = __m_calloc(&mp0, sizeof(*mp), "MPOOL");
431 if (mp) {
432 memset(mp, 0, sizeof(*mp));
433 mp->bush = bush;
434 mp->getp = ___dma_getp;
435 mp->freep = ___dma_freep;
436 mp->next = mp0.next;
437 mp0.next = mp;
438 }
439 return mp;
440 }
441
___del_dma_pool(m_pool_s * p)442 static void ___del_dma_pool(m_pool_s *p)
443 {
444 struct m_pool **pp = &mp0.next;
445
446 while (*pp && *pp != p)
447 pp = &(*pp)->next;
448 if (*pp) {
449 *pp = (*pp)->next;
450 __m_free(&mp0, p, sizeof(*p), "MPOOL");
451 }
452 }
453
__m_calloc_dma(m_bush_t bush,int size,char * name)454 static void *__m_calloc_dma(m_bush_t bush, int size, char *name)
455 {
456 u_long flags;
457 struct m_pool *mp;
458 void *m = NULL;
459
460 spin_lock_irqsave(&ncr53c8xx_lock, flags);
461 mp = ___get_dma_pool(bush);
462 if (!mp)
463 mp = ___cre_dma_pool(bush);
464 if (mp)
465 m = __m_calloc(mp, size, name);
466 if (mp && !mp->nump)
467 ___del_dma_pool(mp);
468 spin_unlock_irqrestore(&ncr53c8xx_lock, flags);
469
470 return m;
471 }
472
__m_free_dma(m_bush_t bush,void * m,int size,char * name)473 static void __m_free_dma(m_bush_t bush, void *m, int size, char *name)
474 {
475 u_long flags;
476 struct m_pool *mp;
477
478 spin_lock_irqsave(&ncr53c8xx_lock, flags);
479 mp = ___get_dma_pool(bush);
480 if (mp)
481 __m_free(mp, m, size, name);
482 if (mp && !mp->nump)
483 ___del_dma_pool(mp);
484 spin_unlock_irqrestore(&ncr53c8xx_lock, flags);
485 }
486
__vtobus(m_bush_t bush,void * m)487 static m_addr_t __vtobus(m_bush_t bush, void *m)
488 {
489 u_long flags;
490 m_pool_s *mp;
491 int hc = VTOB_HASH_CODE(m);
492 m_vtob_s *vp = NULL;
493 m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK;
494
495 spin_lock_irqsave(&ncr53c8xx_lock, flags);
496 mp = ___get_dma_pool(bush);
497 if (mp) {
498 vp = mp->vtob[hc];
499 while (vp && (m_addr_t) vp->vaddr != a)
500 vp = vp->next;
501 }
502 spin_unlock_irqrestore(&ncr53c8xx_lock, flags);
503 return vp ? vp->baddr + (((m_addr_t) m) - a) : 0;
504 }
505
506 #define _m_calloc_dma(np, s, n) __m_calloc_dma(np->dev, s, n)
507 #define _m_free_dma(np, p, s, n) __m_free_dma(np->dev, p, s, n)
508 #define m_calloc_dma(s, n) _m_calloc_dma(np, s, n)
509 #define m_free_dma(p, s, n) _m_free_dma(np, p, s, n)
510 #define _vtobus(np, p) __vtobus(np->dev, p)
511 #define vtobus(p) _vtobus(np, p)
512
513 /*
514 * Deal with DMA mapping/unmapping.
515 */
516
__unmap_scsi_data(struct device * dev,struct scsi_cmnd * cmd)517 static void __unmap_scsi_data(struct device *dev, struct scsi_cmnd *cmd)
518 {
519 struct ncr_cmd_priv *cmd_priv = scsi_cmd_priv(cmd);
520
521 switch(cmd_priv->data_mapped) {
522 case 2:
523 scsi_dma_unmap(cmd);
524 break;
525 }
526 cmd_priv->data_mapped = 0;
527 }
528
__map_scsi_sg_data(struct device * dev,struct scsi_cmnd * cmd)529 static int __map_scsi_sg_data(struct device *dev, struct scsi_cmnd *cmd)
530 {
531 struct ncr_cmd_priv *cmd_priv = scsi_cmd_priv(cmd);
532 int use_sg;
533
534 use_sg = scsi_dma_map(cmd);
535 if (!use_sg)
536 return 0;
537
538 cmd_priv->data_mapped = 2;
539 cmd_priv->data_mapping = use_sg;
540
541 return use_sg;
542 }
543
544 #define unmap_scsi_data(np, cmd) __unmap_scsi_data(np->dev, cmd)
545 #define map_scsi_sg_data(np, cmd) __map_scsi_sg_data(np->dev, cmd)
546
547 /*==========================================================
548 **
549 ** Driver setup.
550 **
551 ** This structure is initialized from linux config
552 ** options. It can be overridden at boot-up by the boot
553 ** command line.
554 **
555 **==========================================================
556 */
557 static struct ncr_driver_setup
558 driver_setup = SCSI_NCR_DRIVER_SETUP;
559
560 #ifndef MODULE
561 #ifdef SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT
562 static struct ncr_driver_setup
563 driver_safe_setup __initdata = SCSI_NCR_DRIVER_SAFE_SETUP;
564 #endif
565 #endif /* !MODULE */
566
567 #define initverbose (driver_setup.verbose)
568 #define bootverbose (np->verbose)
569
570
571 /*===================================================================
572 **
573 ** Driver setup from the boot command line
574 **
575 **===================================================================
576 */
577
578 #ifdef MODULE
579 #define ARG_SEP ' '
580 #else
581 #define ARG_SEP ','
582 #endif
583
584 #define OPT_TAGS 1
585 #define OPT_MASTER_PARITY 2
586 #define OPT_SCSI_PARITY 3
587 #define OPT_DISCONNECTION 4
588 #define OPT_SPECIAL_FEATURES 5
589 #define OPT_UNUSED_1 6
590 #define OPT_FORCE_SYNC_NEGO 7
591 #define OPT_REVERSE_PROBE 8
592 #define OPT_DEFAULT_SYNC 9
593 #define OPT_VERBOSE 10
594 #define OPT_DEBUG 11
595 #define OPT_BURST_MAX 12
596 #define OPT_LED_PIN 13
597 #define OPT_MAX_WIDE 14
598 #define OPT_SETTLE_DELAY 15
599 #define OPT_DIFF_SUPPORT 16
600 #define OPT_IRQM 17
601 #define OPT_PCI_FIX_UP 18
602 #define OPT_BUS_CHECK 19
603 #define OPT_OPTIMIZE 20
604 #define OPT_RECOVERY 21
605 #define OPT_SAFE_SETUP 22
606 #define OPT_USE_NVRAM 23
607 #define OPT_EXCLUDE 24
608 #define OPT_HOST_ID 25
609
610 #ifdef SCSI_NCR_IARB_SUPPORT
611 #define OPT_IARB 26
612 #endif
613
614 #ifdef MODULE
615 #define ARG_SEP ' '
616 #else
617 #define ARG_SEP ','
618 #endif
619
620 #ifndef MODULE
621 static char setup_token[] __initdata =
622 "tags:" "mpar:"
623 "spar:" "disc:"
624 "specf:" "ultra:"
625 "fsn:" "revprob:"
626 "sync:" "verb:"
627 "debug:" "burst:"
628 "led:" "wide:"
629 "settle:" "diff:"
630 "irqm:" "pcifix:"
631 "buschk:" "optim:"
632 "recovery:"
633 "safe:" "nvram:"
634 "excl:" "hostid:"
635 #ifdef SCSI_NCR_IARB_SUPPORT
636 "iarb:"
637 #endif
638 ; /* DONNOT REMOVE THIS ';' */
639
get_setup_token(char * p)640 static int __init get_setup_token(char *p)
641 {
642 char *cur = setup_token;
643 char *pc;
644 int i = 0;
645
646 while (cur != NULL && (pc = strchr(cur, ':')) != NULL) {
647 ++pc;
648 ++i;
649 if (!strncmp(p, cur, pc - cur))
650 return i;
651 cur = pc;
652 }
653 return 0;
654 }
655
sym53c8xx__setup(char * str)656 static int __init sym53c8xx__setup(char *str)
657 {
658 #ifdef SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT
659 char *cur = str;
660 char *pc, *pv;
661 int i, val, c;
662 int xi = 0;
663
664 while (cur != NULL && (pc = strchr(cur, ':')) != NULL) {
665 char *pe;
666
667 val = 0;
668 pv = pc;
669 c = *++pv;
670
671 if (c == 'n')
672 val = 0;
673 else if (c == 'y')
674 val = 1;
675 else
676 val = (int) simple_strtoul(pv, &pe, 0);
677
678 switch (get_setup_token(cur)) {
679 case OPT_TAGS:
680 driver_setup.default_tags = val;
681 if (pe && *pe == '/') {
682 i = 0;
683 while (*pe && *pe != ARG_SEP &&
684 i < sizeof(driver_setup.tag_ctrl)-1) {
685 driver_setup.tag_ctrl[i++] = *pe++;
686 }
687 driver_setup.tag_ctrl[i] = '\0';
688 }
689 break;
690 case OPT_MASTER_PARITY:
691 driver_setup.master_parity = val;
692 break;
693 case OPT_SCSI_PARITY:
694 driver_setup.scsi_parity = val;
695 break;
696 case OPT_DISCONNECTION:
697 driver_setup.disconnection = val;
698 break;
699 case OPT_SPECIAL_FEATURES:
700 driver_setup.special_features = val;
701 break;
702 case OPT_FORCE_SYNC_NEGO:
703 driver_setup.force_sync_nego = val;
704 break;
705 case OPT_REVERSE_PROBE:
706 driver_setup.reverse_probe = val;
707 break;
708 case OPT_DEFAULT_SYNC:
709 driver_setup.default_sync = val;
710 break;
711 case OPT_VERBOSE:
712 driver_setup.verbose = val;
713 break;
714 case OPT_DEBUG:
715 driver_setup.debug = val;
716 break;
717 case OPT_BURST_MAX:
718 driver_setup.burst_max = val;
719 break;
720 case OPT_LED_PIN:
721 driver_setup.led_pin = val;
722 break;
723 case OPT_MAX_WIDE:
724 driver_setup.max_wide = val? 1:0;
725 break;
726 case OPT_SETTLE_DELAY:
727 driver_setup.settle_delay = val;
728 break;
729 case OPT_DIFF_SUPPORT:
730 driver_setup.diff_support = val;
731 break;
732 case OPT_IRQM:
733 driver_setup.irqm = val;
734 break;
735 case OPT_PCI_FIX_UP:
736 driver_setup.pci_fix_up = val;
737 break;
738 case OPT_BUS_CHECK:
739 driver_setup.bus_check = val;
740 break;
741 case OPT_OPTIMIZE:
742 driver_setup.optimize = val;
743 break;
744 case OPT_RECOVERY:
745 driver_setup.recovery = val;
746 break;
747 case OPT_USE_NVRAM:
748 driver_setup.use_nvram = val;
749 break;
750 case OPT_SAFE_SETUP:
751 memcpy(&driver_setup, &driver_safe_setup,
752 sizeof(driver_setup));
753 break;
754 case OPT_EXCLUDE:
755 if (xi < SCSI_NCR_MAX_EXCLUDES)
756 driver_setup.excludes[xi++] = val;
757 break;
758 case OPT_HOST_ID:
759 driver_setup.host_id = val;
760 break;
761 #ifdef SCSI_NCR_IARB_SUPPORT
762 case OPT_IARB:
763 driver_setup.iarb = val;
764 break;
765 #endif
766 default:
767 printk("sym53c8xx_setup: unexpected boot option '%.*s' ignored\n", (int)(pc-cur+1), cur);
768 break;
769 }
770
771 if ((cur = strchr(cur, ARG_SEP)) != NULL)
772 ++cur;
773 }
774 #endif /* SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT */
775 return 1;
776 }
777 #endif /* !MODULE */
778
779 /*===================================================================
780 **
781 ** Get device queue depth from boot command line.
782 **
783 **===================================================================
784 */
785 #define DEF_DEPTH (driver_setup.default_tags)
786 #define ALL_TARGETS -2
787 #define NO_TARGET -1
788 #define ALL_LUNS -2
789 #define NO_LUN -1
790
device_queue_depth(int unit,int target,int lun)791 static int device_queue_depth(int unit, int target, int lun)
792 {
793 int c, h, t, u, v;
794 char *p = driver_setup.tag_ctrl;
795 char *ep;
796
797 h = -1;
798 t = NO_TARGET;
799 u = NO_LUN;
800 while ((c = *p++) != 0) {
801 v = simple_strtoul(p, &ep, 0);
802 switch(c) {
803 case '/':
804 ++h;
805 t = ALL_TARGETS;
806 u = ALL_LUNS;
807 break;
808 case 't':
809 if (t != target)
810 t = (target == v) ? v : NO_TARGET;
811 u = ALL_LUNS;
812 break;
813 case 'u':
814 if (u != lun)
815 u = (lun == v) ? v : NO_LUN;
816 break;
817 case 'q':
818 if (h == unit &&
819 (t == ALL_TARGETS || t == target) &&
820 (u == ALL_LUNS || u == lun))
821 return v;
822 break;
823 case '-':
824 t = ALL_TARGETS;
825 u = ALL_LUNS;
826 break;
827 default:
828 break;
829 }
830 p = ep;
831 }
832 return DEF_DEPTH;
833 }
834
835
836 /*==========================================================
837 **
838 ** The CCB done queue uses an array of CCB virtual
839 ** addresses. Empty entries are flagged using the bogus
840 ** virtual address 0xffffffff.
841 **
842 ** Since PCI ensures that only aligned DWORDs are accessed
843 ** atomically, 64 bit little-endian architecture requires
844 ** to test the high order DWORD of the entry to determine
845 ** if it is empty or valid.
846 **
847 ** BTW, I will make things differently as soon as I will
848 ** have a better idea, but this is simple and should work.
849 **
850 **==========================================================
851 */
852
853 #define SCSI_NCR_CCB_DONE_SUPPORT
854 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
855
856 #define MAX_DONE 24
857 #define CCB_DONE_EMPTY 0xffffffffUL
858
859 /* All 32 bit architectures */
860 #if BITS_PER_LONG == 32
861 #define CCB_DONE_VALID(cp) (((u_long) cp) != CCB_DONE_EMPTY)
862
863 /* All > 32 bit (64 bit) architectures regardless endian-ness */
864 #else
865 #define CCB_DONE_VALID(cp) \
866 ((((u_long) cp) & 0xffffffff00000000ul) && \
867 (((u_long) cp) & 0xfffffffful) != CCB_DONE_EMPTY)
868 #endif
869
870 #endif /* SCSI_NCR_CCB_DONE_SUPPORT */
871
872 /*==========================================================
873 **
874 ** Configuration and Debugging
875 **
876 **==========================================================
877 */
878
879 /*
880 ** SCSI address of this device.
881 ** The boot routines should have set it.
882 ** If not, use this.
883 */
884
885 #ifndef SCSI_NCR_MYADDR
886 #define SCSI_NCR_MYADDR (7)
887 #endif
888
889 /*
890 ** The maximum number of tags per logic unit.
891 ** Used only for disk devices that support tags.
892 */
893
894 #ifndef SCSI_NCR_MAX_TAGS
895 #define SCSI_NCR_MAX_TAGS (8)
896 #endif
897
898 /*
899 ** TAGS are actually limited to 64 tags/lun.
900 ** We need to deal with power of 2, for alignment constraints.
901 */
902 #if SCSI_NCR_MAX_TAGS > 64
903 #define MAX_TAGS (64)
904 #else
905 #define MAX_TAGS SCSI_NCR_MAX_TAGS
906 #endif
907
908 #define NO_TAG (255)
909
910 /*
911 ** Choose appropriate type for tag bitmap.
912 */
913 #if MAX_TAGS > 32
914 typedef u64 tagmap_t;
915 #else
916 typedef u32 tagmap_t;
917 #endif
918
919 /*
920 ** Number of targets supported by the driver.
921 ** n permits target numbers 0..n-1.
922 ** Default is 16, meaning targets #0..#15.
923 ** #7 .. is myself.
924 */
925
926 #ifdef SCSI_NCR_MAX_TARGET
927 #define MAX_TARGET (SCSI_NCR_MAX_TARGET)
928 #else
929 #define MAX_TARGET (16)
930 #endif
931
932 /*
933 ** Number of logic units supported by the driver.
934 ** n enables logic unit numbers 0..n-1.
935 ** The common SCSI devices require only
936 ** one lun, so take 1 as the default.
937 */
938
939 #ifdef SCSI_NCR_MAX_LUN
940 #define MAX_LUN SCSI_NCR_MAX_LUN
941 #else
942 #define MAX_LUN (1)
943 #endif
944
945 /*
946 ** Asynchronous pre-scaler (ns). Shall be 40
947 */
948
949 #ifndef SCSI_NCR_MIN_ASYNC
950 #define SCSI_NCR_MIN_ASYNC (40)
951 #endif
952
953 /*
954 ** The maximum number of jobs scheduled for starting.
955 ** There should be one slot per target, and one slot
956 ** for each tag of each target in use.
957 ** The calculation below is actually quite silly ...
958 */
959
960 #ifdef SCSI_NCR_CAN_QUEUE
961 #define MAX_START (SCSI_NCR_CAN_QUEUE + 4)
962 #else
963 #define MAX_START (MAX_TARGET + 7 * MAX_TAGS)
964 #endif
965
966 /*
967 ** We limit the max number of pending IO to 250.
968 ** since we donnot want to allocate more than 1
969 ** PAGE for 'scripth'.
970 */
971 #if MAX_START > 250
972 #undef MAX_START
973 #define MAX_START 250
974 #endif
975
976 /*
977 ** The maximum number of segments a transfer is split into.
978 ** We support up to 127 segments for both read and write.
979 ** The data scripts are broken into 2 sub-scripts.
980 ** 80 (MAX_SCATTERL) segments are moved from a sub-script
981 ** in on-chip RAM. This makes data transfers shorter than
982 ** 80k (assuming 1k fs) as fast as possible.
983 */
984
985 #define MAX_SCATTER (SCSI_NCR_MAX_SCATTER)
986
987 #if (MAX_SCATTER > 80)
988 #define MAX_SCATTERL 80
989 #define MAX_SCATTERH (MAX_SCATTER - MAX_SCATTERL)
990 #else
991 #define MAX_SCATTERL (MAX_SCATTER-1)
992 #define MAX_SCATTERH 1
993 #endif
994
995 /*
996 ** other
997 */
998
999 #define NCR_SNOOP_TIMEOUT (1000000)
1000
1001 /*
1002 ** Other definitions
1003 */
1004
1005 #define initverbose (driver_setup.verbose)
1006 #define bootverbose (np->verbose)
1007
1008 /*==========================================================
1009 **
1010 ** Command control block states.
1011 **
1012 **==========================================================
1013 */
1014
1015 #define HS_IDLE (0)
1016 #define HS_BUSY (1)
1017 #define HS_NEGOTIATE (2) /* sync/wide data transfer*/
1018 #define HS_DISCONNECT (3) /* Disconnected by target */
1019
1020 #define HS_DONEMASK (0x80)
1021 #define HS_COMPLETE (4|HS_DONEMASK)
1022 #define HS_SEL_TIMEOUT (5|HS_DONEMASK) /* Selection timeout */
1023 #define HS_RESET (6|HS_DONEMASK) /* SCSI reset */
1024 #define HS_ABORTED (7|HS_DONEMASK) /* Transfer aborted */
1025 #define HS_TIMEOUT (8|HS_DONEMASK) /* Software timeout */
1026 #define HS_FAIL (9|HS_DONEMASK) /* SCSI or PCI bus errors */
1027 #define HS_UNEXPECTED (10|HS_DONEMASK)/* Unexpected disconnect */
1028
1029 /*
1030 ** Invalid host status values used by the SCRIPTS processor
1031 ** when the nexus is not fully identified.
1032 ** Shall never appear in a CCB.
1033 */
1034
1035 #define HS_INVALMASK (0x40)
1036 #define HS_SELECTING (0|HS_INVALMASK)
1037 #define HS_IN_RESELECT (1|HS_INVALMASK)
1038 #define HS_STARTING (2|HS_INVALMASK)
1039
1040 /*
1041 ** Flags set by the SCRIPT processor for commands
1042 ** that have been skipped.
1043 */
1044 #define HS_SKIPMASK (0x20)
1045
1046 /*==========================================================
1047 **
1048 ** Software Interrupt Codes
1049 **
1050 **==========================================================
1051 */
1052
1053 #define SIR_BAD_STATUS (1)
1054 #define SIR_XXXXXXXXXX (2)
1055 #define SIR_NEGO_SYNC (3)
1056 #define SIR_NEGO_WIDE (4)
1057 #define SIR_NEGO_FAILED (5)
1058 #define SIR_NEGO_PROTO (6)
1059 #define SIR_REJECT_RECEIVED (7)
1060 #define SIR_REJECT_SENT (8)
1061 #define SIR_IGN_RESIDUE (9)
1062 #define SIR_MISSING_SAVE (10)
1063 #define SIR_RESEL_NO_MSG_IN (11)
1064 #define SIR_RESEL_NO_IDENTIFY (12)
1065 #define SIR_RESEL_BAD_LUN (13)
1066 #define SIR_RESEL_BAD_TARGET (14)
1067 #define SIR_RESEL_BAD_I_T_L (15)
1068 #define SIR_RESEL_BAD_I_T_L_Q (16)
1069 #define SIR_DONE_OVERFLOW (17)
1070 #define SIR_INTFLY (18)
1071 #define SIR_MAX (18)
1072
1073 /*==========================================================
1074 **
1075 ** Extended error codes.
1076 ** xerr_status field of struct ccb.
1077 **
1078 **==========================================================
1079 */
1080
1081 #define XE_OK (0)
1082 #define XE_EXTRA_DATA (1) /* unexpected data phase */
1083 #define XE_BAD_PHASE (2) /* illegal phase (4/5) */
1084
1085 /*==========================================================
1086 **
1087 ** Negotiation status.
1088 ** nego_status field of struct ccb.
1089 **
1090 **==========================================================
1091 */
1092
1093 #define NS_NOCHANGE (0)
1094 #define NS_SYNC (1)
1095 #define NS_WIDE (2)
1096 #define NS_PPR (4)
1097
1098 /*==========================================================
1099 **
1100 ** Misc.
1101 **
1102 **==========================================================
1103 */
1104
1105 #define CCB_MAGIC (0xf2691ad2)
1106
1107 /*==========================================================
1108 **
1109 ** Declaration of structs.
1110 **
1111 **==========================================================
1112 */
1113
1114 static struct scsi_transport_template *ncr53c8xx_transport_template = NULL;
1115
1116 struct tcb;
1117 struct lcb;
1118 struct ccb;
1119 struct ncb;
1120 struct script;
1121
1122 struct link {
1123 ncrcmd l_cmd;
1124 ncrcmd l_paddr;
1125 };
1126
1127 struct usrcmd {
1128 u_long target;
1129 u_long lun;
1130 u_long data;
1131 u_long cmd;
1132 };
1133
1134 #define UC_SETSYNC 10
1135 #define UC_SETTAGS 11
1136 #define UC_SETDEBUG 12
1137 #define UC_SETORDER 13
1138 #define UC_SETWIDE 14
1139 #define UC_SETFLAG 15
1140 #define UC_SETVERBOSE 17
1141
1142 #define UF_TRACE (0x01)
1143 #define UF_NODISC (0x02)
1144 #define UF_NOSCAN (0x04)
1145
1146 /*========================================================================
1147 **
1148 ** Declaration of structs: target control block
1149 **
1150 **========================================================================
1151 */
1152 struct tcb {
1153 /*----------------------------------------------------------------
1154 ** During reselection the ncr jumps to this point with SFBR
1155 ** set to the encoded target number with bit 7 set.
1156 ** if it's not this target, jump to the next.
1157 **
1158 ** JUMP IF (SFBR != #target#), @(next tcb)
1159 **----------------------------------------------------------------
1160 */
1161 struct link jump_tcb;
1162
1163 /*----------------------------------------------------------------
1164 ** Load the actual values for the sxfer and the scntl3
1165 ** register (sync/wide mode).
1166 **
1167 ** SCR_COPY (1), @(sval field of this tcb), @(sxfer register)
1168 ** SCR_COPY (1), @(wval field of this tcb), @(scntl3 register)
1169 **----------------------------------------------------------------
1170 */
1171 ncrcmd getscr[6];
1172
1173 /*----------------------------------------------------------------
1174 ** Get the IDENTIFY message and load the LUN to SFBR.
1175 **
1176 ** CALL, <RESEL_LUN>
1177 **----------------------------------------------------------------
1178 */
1179 struct link call_lun;
1180
1181 /*----------------------------------------------------------------
1182 ** Now look for the right lun.
1183 **
1184 ** For i = 0 to 3
1185 ** SCR_JUMP ^ IFTRUE(MASK(i, 3)), @(first lcb mod. i)
1186 **
1187 ** Recent chips will prefetch the 4 JUMPS using only 1 burst.
1188 ** It is kind of hashcoding.
1189 **----------------------------------------------------------------
1190 */
1191 struct link jump_lcb[4]; /* JUMPs for reselection */
1192 struct lcb * lp[MAX_LUN]; /* The lcb's of this tcb */
1193
1194 /*----------------------------------------------------------------
1195 ** Pointer to the ccb used for negotiation.
1196 ** Prevent from starting a negotiation for all queued commands
1197 ** when tagged command queuing is enabled.
1198 **----------------------------------------------------------------
1199 */
1200 struct ccb * nego_cp;
1201
1202 /*----------------------------------------------------------------
1203 ** statistical data
1204 **----------------------------------------------------------------
1205 */
1206 u_long transfers;
1207 u_long bytes;
1208
1209 /*----------------------------------------------------------------
1210 ** negotiation of wide and synch transfer and device quirks.
1211 **----------------------------------------------------------------
1212 */
1213 #ifdef SCSI_NCR_BIG_ENDIAN
1214 /*0*/ u16 period;
1215 /*2*/ u_char sval;
1216 /*3*/ u_char minsync;
1217 /*0*/ u_char wval;
1218 /*1*/ u_char widedone;
1219 /*2*/ u_char quirks;
1220 /*3*/ u_char maxoffs;
1221 #else
1222 /*0*/ u_char minsync;
1223 /*1*/ u_char sval;
1224 /*2*/ u16 period;
1225 /*0*/ u_char maxoffs;
1226 /*1*/ u_char quirks;
1227 /*2*/ u_char widedone;
1228 /*3*/ u_char wval;
1229 #endif
1230
1231 /* User settable limits and options. */
1232 u_char usrsync;
1233 u_char usrwide;
1234 u_char usrtags;
1235 u_char usrflag;
1236 struct scsi_target *starget;
1237 };
1238
1239 /*========================================================================
1240 **
1241 ** Declaration of structs: lun control block
1242 **
1243 **========================================================================
1244 */
1245 struct lcb {
1246 /*----------------------------------------------------------------
1247 ** During reselection the ncr jumps to this point
1248 ** with SFBR set to the "Identify" message.
1249 ** if it's not this lun, jump to the next.
1250 **
1251 ** JUMP IF (SFBR != #lun#), @(next lcb of this target)
1252 **
1253 ** It is this lun. Load TEMP with the nexus jumps table
1254 ** address and jump to RESEL_TAG (or RESEL_NOTAG).
1255 **
1256 ** SCR_COPY (4), p_jump_ccb, TEMP,
1257 ** SCR_JUMP, <RESEL_TAG>
1258 **----------------------------------------------------------------
1259 */
1260 struct link jump_lcb;
1261 ncrcmd load_jump_ccb[3];
1262 struct link jump_tag;
1263 ncrcmd p_jump_ccb; /* Jump table bus address */
1264
1265 /*----------------------------------------------------------------
1266 ** Jump table used by the script processor to directly jump
1267 ** to the CCB corresponding to the reselected nexus.
1268 ** Address is allocated on 256 bytes boundary in order to
1269 ** allow 8 bit calculation of the tag jump entry for up to
1270 ** 64 possible tags.
1271 **----------------------------------------------------------------
1272 */
1273 u32 jump_ccb_0; /* Default table if no tags */
1274 u32 *jump_ccb; /* Virtual address */
1275
1276 /*----------------------------------------------------------------
1277 ** CCB queue management.
1278 **----------------------------------------------------------------
1279 */
1280 struct list_head free_ccbq; /* Queue of available CCBs */
1281 struct list_head busy_ccbq; /* Queue of busy CCBs */
1282 struct list_head wait_ccbq; /* Queue of waiting for IO CCBs */
1283 struct list_head skip_ccbq; /* Queue of skipped CCBs */
1284 u_char actccbs; /* Number of allocated CCBs */
1285 u_char busyccbs; /* CCBs busy for this lun */
1286 u_char queuedccbs; /* CCBs queued to the controller*/
1287 u_char queuedepth; /* Queue depth for this lun */
1288 u_char scdev_depth; /* SCSI device queue depth */
1289 u_char maxnxs; /* Max possible nexuses */
1290
1291 /*----------------------------------------------------------------
1292 ** Control of tagged command queuing.
1293 ** Tags allocation is performed using a circular buffer.
1294 ** This avoids using a loop for tag allocation.
1295 **----------------------------------------------------------------
1296 */
1297 u_char ia_tag; /* Allocation index */
1298 u_char if_tag; /* Freeing index */
1299 u_char cb_tags[MAX_TAGS]; /* Circular tags buffer */
1300 u_char usetags; /* Command queuing is active */
1301 u_char maxtags; /* Max nr of tags asked by user */
1302 u_char numtags; /* Current number of tags */
1303
1304 /*----------------------------------------------------------------
1305 ** QUEUE FULL control and ORDERED tag control.
1306 **----------------------------------------------------------------
1307 */
1308 /*----------------------------------------------------------------
1309 ** QUEUE FULL and ORDERED tag control.
1310 **----------------------------------------------------------------
1311 */
1312 u16 num_good; /* Nr of GOOD since QUEUE FULL */
1313 tagmap_t tags_umap; /* Used tags bitmap */
1314 tagmap_t tags_smap; /* Tags in use at 'tag_stime' */
1315 u_long tags_stime; /* Last time we set smap=umap */
1316 struct ccb * held_ccb; /* CCB held for QUEUE FULL */
1317 };
1318
1319 /*========================================================================
1320 **
1321 ** Declaration of structs: the launch script.
1322 **
1323 **========================================================================
1324 **
1325 ** It is part of the CCB and is called by the scripts processor to
1326 ** start or restart the data structure (nexus).
1327 ** This 6 DWORDs mini script makes use of prefetching.
1328 **
1329 **------------------------------------------------------------------------
1330 */
1331 struct launch {
1332 /*----------------------------------------------------------------
1333 ** SCR_COPY(4), @(p_phys), @(dsa register)
1334 ** SCR_JUMP, @(scheduler_point)
1335 **----------------------------------------------------------------
1336 */
1337 ncrcmd setup_dsa[3]; /* Copy 'phys' address to dsa */
1338 struct link schedule; /* Jump to scheduler point */
1339 ncrcmd p_phys; /* 'phys' header bus address */
1340 };
1341
1342 /*========================================================================
1343 **
1344 ** Declaration of structs: global HEADER.
1345 **
1346 **========================================================================
1347 **
1348 ** This substructure is copied from the ccb to a global address after
1349 ** selection (or reselection) and copied back before disconnect.
1350 **
1351 ** These fields are accessible to the script processor.
1352 **
1353 **------------------------------------------------------------------------
1354 */
1355
1356 struct head {
1357 /*----------------------------------------------------------------
1358 ** Saved data pointer.
1359 ** Points to the position in the script responsible for the
1360 ** actual transfer transfer of data.
1361 ** It's written after reception of a SAVE_DATA_POINTER message.
1362 ** The goalpointer points after the last transfer command.
1363 **----------------------------------------------------------------
1364 */
1365 u32 savep;
1366 u32 lastp;
1367 u32 goalp;
1368
1369 /*----------------------------------------------------------------
1370 ** Alternate data pointer.
1371 ** They are copied back to savep/lastp/goalp by the SCRIPTS
1372 ** when the direction is unknown and the device claims data out.
1373 **----------------------------------------------------------------
1374 */
1375 u32 wlastp;
1376 u32 wgoalp;
1377
1378 /*----------------------------------------------------------------
1379 ** The virtual address of the ccb containing this header.
1380 **----------------------------------------------------------------
1381 */
1382 struct ccb * cp;
1383
1384 /*----------------------------------------------------------------
1385 ** Status fields.
1386 **----------------------------------------------------------------
1387 */
1388 u_char scr_st[4]; /* script status */
1389 u_char status[4]; /* host status. must be the */
1390 /* last DWORD of the header. */
1391 };
1392
1393 /*
1394 ** The status bytes are used by the host and the script processor.
1395 **
1396 ** The byte corresponding to the host_status must be stored in the
1397 ** last DWORD of the CCB header since it is used for command
1398 ** completion (ncr_wakeup()). Doing so, we are sure that the header
1399 ** has been entirely copied back to the CCB when the host_status is
1400 ** seen complete by the CPU.
1401 **
1402 ** The last four bytes (status[4]) are copied to the scratchb register
1403 ** (declared as scr0..scr3 in ncr_reg.h) just after the select/reselect,
1404 ** and copied back just after disconnecting.
1405 ** Inside the script the XX_REG are used.
1406 **
1407 ** The first four bytes (scr_st[4]) are used inside the script by
1408 ** "COPY" commands.
1409 ** Because source and destination must have the same alignment
1410 ** in a DWORD, the fields HAVE to be at the chosen offsets.
1411 ** xerr_st 0 (0x34) scratcha
1412 ** sync_st 1 (0x05) sxfer
1413 ** wide_st 3 (0x03) scntl3
1414 */
1415
1416 /*
1417 ** Last four bytes (script)
1418 */
1419 #define QU_REG scr0
1420 #define HS_REG scr1
1421 #define HS_PRT nc_scr1
1422 #define SS_REG scr2
1423 #define SS_PRT nc_scr2
1424 #define PS_REG scr3
1425
1426 /*
1427 ** Last four bytes (host)
1428 */
1429 #ifdef SCSI_NCR_BIG_ENDIAN
1430 #define actualquirks phys.header.status[3]
1431 #define host_status phys.header.status[2]
1432 #define scsi_status phys.header.status[1]
1433 #define parity_status phys.header.status[0]
1434 #else
1435 #define actualquirks phys.header.status[0]
1436 #define host_status phys.header.status[1]
1437 #define scsi_status phys.header.status[2]
1438 #define parity_status phys.header.status[3]
1439 #endif
1440
1441 /*
1442 ** First four bytes (script)
1443 */
1444 #define xerr_st header.scr_st[0]
1445 #define sync_st header.scr_st[1]
1446 #define nego_st header.scr_st[2]
1447 #define wide_st header.scr_st[3]
1448
1449 /*
1450 ** First four bytes (host)
1451 */
1452 #define xerr_status phys.xerr_st
1453 #define nego_status phys.nego_st
1454
1455 /*==========================================================
1456 **
1457 ** Declaration of structs: Data structure block
1458 **
1459 **==========================================================
1460 **
1461 ** During execution of a ccb by the script processor,
1462 ** the DSA (data structure address) register points
1463 ** to this substructure of the ccb.
1464 ** This substructure contains the header with
1465 ** the script-processor-changeable data and
1466 ** data blocks for the indirect move commands.
1467 **
1468 **----------------------------------------------------------
1469 */
1470
1471 struct dsb {
1472
1473 /*
1474 ** Header.
1475 */
1476
1477 struct head header;
1478
1479 /*
1480 ** Table data for Script
1481 */
1482
1483 struct scr_tblsel select;
1484 struct scr_tblmove smsg ;
1485 struct scr_tblmove cmd ;
1486 struct scr_tblmove sense ;
1487 struct scr_tblmove data[MAX_SCATTER];
1488 };
1489
1490
1491 /*========================================================================
1492 **
1493 ** Declaration of structs: Command control block.
1494 **
1495 **========================================================================
1496 */
1497 struct ccb {
1498 /*----------------------------------------------------------------
1499 ** This is the data structure which is pointed by the DSA
1500 ** register when it is executed by the script processor.
1501 ** It must be the first entry because it contains the header
1502 ** as first entry that must be cache line aligned.
1503 **----------------------------------------------------------------
1504 */
1505 struct dsb phys;
1506
1507 /*----------------------------------------------------------------
1508 ** Mini-script used at CCB execution start-up.
1509 ** Load the DSA with the data structure address (phys) and
1510 ** jump to SELECT. Jump to CANCEL if CCB is to be canceled.
1511 **----------------------------------------------------------------
1512 */
1513 struct launch start;
1514
1515 /*----------------------------------------------------------------
1516 ** Mini-script used at CCB relection to restart the nexus.
1517 ** Load the DSA with the data structure address (phys) and
1518 ** jump to RESEL_DSA. Jump to ABORT if CCB is to be aborted.
1519 **----------------------------------------------------------------
1520 */
1521 struct launch restart;
1522
1523 /*----------------------------------------------------------------
1524 ** If a data transfer phase is terminated too early
1525 ** (after reception of a message (i.e. DISCONNECT)),
1526 ** we have to prepare a mini script to transfer
1527 ** the rest of the data.
1528 **----------------------------------------------------------------
1529 */
1530 ncrcmd patch[8];
1531
1532 /*----------------------------------------------------------------
1533 ** The general SCSI driver provides a
1534 ** pointer to a control block.
1535 **----------------------------------------------------------------
1536 */
1537 struct scsi_cmnd *cmd; /* SCSI command */
1538 u_char cdb_buf[16]; /* Copy of CDB */
1539 u_char sense_buf[64];
1540 int data_len; /* Total data length */
1541
1542 /*----------------------------------------------------------------
1543 ** Message areas.
1544 ** We prepare a message to be sent after selection.
1545 ** We may use a second one if the command is rescheduled
1546 ** due to GETCC or QFULL.
1547 ** Contents are IDENTIFY and SIMPLE_TAG.
1548 ** While negotiating sync or wide transfer,
1549 ** a SDTR or WDTR message is appended.
1550 **----------------------------------------------------------------
1551 */
1552 u_char scsi_smsg [8];
1553 u_char scsi_smsg2[8];
1554
1555 /*----------------------------------------------------------------
1556 ** Other fields.
1557 **----------------------------------------------------------------
1558 */
1559 u_long p_ccb; /* BUS address of this CCB */
1560 u_char sensecmd[6]; /* Sense command */
1561 u_char tag; /* Tag for this transfer */
1562 /* 255 means no tag */
1563 u_char target;
1564 u_char lun;
1565 u_char queued;
1566 u_char auto_sense;
1567 struct ccb * link_ccb; /* Host adapter CCB chain */
1568 struct list_head link_ccbq; /* Link to unit CCB queue */
1569 u32 startp; /* Initial data pointer */
1570 u_long magic; /* Free / busy CCB flag */
1571 };
1572
1573 #define CCB_PHYS(cp,lbl) (cp->p_ccb + offsetof(struct ccb, lbl))
1574
1575
1576 /*========================================================================
1577 **
1578 ** Declaration of structs: NCR device descriptor
1579 **
1580 **========================================================================
1581 */
1582 struct ncb {
1583 /*----------------------------------------------------------------
1584 ** The global header.
1585 ** It is accessible to both the host and the script processor.
1586 ** Must be cache line size aligned (32 for x86) in order to
1587 ** allow cache line bursting when it is copied to/from CCB.
1588 **----------------------------------------------------------------
1589 */
1590 struct head header;
1591
1592 /*----------------------------------------------------------------
1593 ** CCBs management queues.
1594 **----------------------------------------------------------------
1595 */
1596 struct scsi_cmnd *waiting_list; /* Commands waiting for a CCB */
1597 /* when lcb is not allocated. */
1598 struct scsi_cmnd *done_list; /* Commands waiting for done() */
1599 /* callback to be invoked. */
1600 spinlock_t smp_lock; /* Lock for SMP threading */
1601
1602 /*----------------------------------------------------------------
1603 ** Chip and controller identification.
1604 **----------------------------------------------------------------
1605 */
1606 int unit; /* Unit number */
1607 char inst_name[16]; /* ncb instance name */
1608
1609 /*----------------------------------------------------------------
1610 ** Initial value of some IO register bits.
1611 ** These values are assumed to have been set by BIOS, and may
1612 ** be used for probing adapter implementation differences.
1613 **----------------------------------------------------------------
1614 */
1615 u_char sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest0, sv_ctest3,
1616 sv_ctest4, sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4;
1617
1618 /*----------------------------------------------------------------
1619 ** Actual initial value of IO register bits used by the
1620 ** driver. They are loaded at initialisation according to
1621 ** features that are to be enabled.
1622 **----------------------------------------------------------------
1623 */
1624 u_char rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest0, rv_ctest3,
1625 rv_ctest4, rv_ctest5, rv_stest2;
1626
1627 /*----------------------------------------------------------------
1628 ** Targets management.
1629 ** During reselection the ncr jumps to jump_tcb.
1630 ** The SFBR register is loaded with the encoded target id.
1631 ** For i = 0 to 3
1632 ** SCR_JUMP ^ IFTRUE(MASK(i, 3)), @(next tcb mod. i)
1633 **
1634 ** Recent chips will prefetch the 4 JUMPS using only 1 burst.
1635 ** It is kind of hashcoding.
1636 **----------------------------------------------------------------
1637 */
1638 struct link jump_tcb[4]; /* JUMPs for reselection */
1639 struct tcb target[MAX_TARGET]; /* Target data */
1640
1641 /*----------------------------------------------------------------
1642 ** Virtual and physical bus addresses of the chip.
1643 **----------------------------------------------------------------
1644 */
1645 void __iomem *vaddr; /* Virtual and bus address of */
1646 unsigned long paddr; /* chip's IO registers. */
1647 unsigned long paddr2; /* On-chip RAM bus address. */
1648 volatile /* Pointer to volatile for */
1649 struct ncr_reg __iomem *reg; /* memory mapped IO. */
1650
1651 /*----------------------------------------------------------------
1652 ** SCRIPTS virtual and physical bus addresses.
1653 ** 'script' is loaded in the on-chip RAM if present.
1654 ** 'scripth' stays in main memory.
1655 **----------------------------------------------------------------
1656 */
1657 struct script *script0; /* Copies of script and scripth */
1658 struct scripth *scripth0; /* relocated for this ncb. */
1659 struct scripth *scripth; /* Actual scripth virt. address */
1660 u_long p_script; /* Actual script and scripth */
1661 u_long p_scripth; /* bus addresses. */
1662
1663 /*----------------------------------------------------------------
1664 ** General controller parameters and configuration.
1665 **----------------------------------------------------------------
1666 */
1667 struct device *dev;
1668 u_char revision_id; /* PCI device revision id */
1669 u32 irq; /* IRQ level */
1670 u32 features; /* Chip features map */
1671 u_char myaddr; /* SCSI id of the adapter */
1672 u_char maxburst; /* log base 2 of dwords burst */
1673 u_char maxwide; /* Maximum transfer width */
1674 u_char minsync; /* Minimum sync period factor */
1675 u_char maxsync; /* Maximum sync period factor */
1676 u_char maxoffs; /* Max scsi offset */
1677 u_char multiplier; /* Clock multiplier (1,2,4) */
1678 u_char clock_divn; /* Number of clock divisors */
1679 u_long clock_khz; /* SCSI clock frequency in KHz */
1680
1681 /*----------------------------------------------------------------
1682 ** Start queue management.
1683 ** It is filled up by the host processor and accessed by the
1684 ** SCRIPTS processor in order to start SCSI commands.
1685 **----------------------------------------------------------------
1686 */
1687 u16 squeueput; /* Next free slot of the queue */
1688 u16 actccbs; /* Number of allocated CCBs */
1689 u16 queuedccbs; /* Number of CCBs in start queue*/
1690 u16 queuedepth; /* Start queue depth */
1691
1692 /*----------------------------------------------------------------
1693 ** Timeout handler.
1694 **----------------------------------------------------------------
1695 */
1696 struct timer_list timer; /* Timer handler link header */
1697 u_long lasttime;
1698 u_long settle_time; /* Resetting the SCSI BUS */
1699
1700 /*----------------------------------------------------------------
1701 ** Debugging and profiling.
1702 **----------------------------------------------------------------
1703 */
1704 struct ncr_reg regdump; /* Register dump */
1705 u_long regtime; /* Time it has been done */
1706
1707 /*----------------------------------------------------------------
1708 ** Miscellaneous buffers accessed by the scripts-processor.
1709 ** They shall be DWORD aligned, because they may be read or
1710 ** written with a SCR_COPY script command.
1711 **----------------------------------------------------------------
1712 */
1713 u_char msgout[8]; /* Buffer for MESSAGE OUT */
1714 u_char msgin [8]; /* Buffer for MESSAGE IN */
1715 u32 lastmsg; /* Last SCSI message sent */
1716 u_char scratch; /* Scratch for SCSI receive */
1717
1718 /*----------------------------------------------------------------
1719 ** Miscellaneous configuration and status parameters.
1720 **----------------------------------------------------------------
1721 */
1722 u_char disc; /* Disconnection allowed */
1723 u_char scsi_mode; /* Current SCSI BUS mode */
1724 u_char order; /* Tag order to use */
1725 u_char verbose; /* Verbosity for this controller*/
1726 int ncr_cache; /* Used for cache test at init. */
1727 u_long p_ncb; /* BUS address of this NCB */
1728
1729 /*----------------------------------------------------------------
1730 ** Command completion handling.
1731 **----------------------------------------------------------------
1732 */
1733 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
1734 struct ccb *(ccb_done[MAX_DONE]);
1735 int ccb_done_ic;
1736 #endif
1737 /*----------------------------------------------------------------
1738 ** Fields that should be removed or changed.
1739 **----------------------------------------------------------------
1740 */
1741 struct ccb *ccb; /* Global CCB */
1742 struct usrcmd user; /* Command from user */
1743 volatile u_char release_stage; /* Synchronisation stage on release */
1744 };
1745
1746 #define NCB_SCRIPT_PHYS(np,lbl) (np->p_script + offsetof (struct script, lbl))
1747 #define NCB_SCRIPTH_PHYS(np,lbl) (np->p_scripth + offsetof (struct scripth,lbl))
1748
1749 /*==========================================================
1750 **
1751 **
1752 ** Script for NCR-Processor.
1753 **
1754 ** Use ncr_script_fill() to create the variable parts.
1755 ** Use ncr_script_copy_and_bind() to make a copy and
1756 ** bind to physical addresses.
1757 **
1758 **
1759 **==========================================================
1760 **
1761 ** We have to know the offsets of all labels before
1762 ** we reach them (for forward jumps).
1763 ** Therefore we declare a struct here.
1764 ** If you make changes inside the script,
1765 ** DONT FORGET TO CHANGE THE LENGTHS HERE!
1766 **
1767 **----------------------------------------------------------
1768 */
1769
1770 /*
1771 ** For HP Zalon/53c720 systems, the Zalon interface
1772 ** between CPU and 53c720 does prefetches, which causes
1773 ** problems with self modifying scripts. The problem
1774 ** is overcome by calling a dummy subroutine after each
1775 ** modification, to force a refetch of the script on
1776 ** return from the subroutine.
1777 */
1778
1779 #ifdef CONFIG_NCR53C8XX_PREFETCH
1780 #define PREFETCH_FLUSH_CNT 2
1781 #define PREFETCH_FLUSH SCR_CALL, PADDRH (wait_dma),
1782 #else
1783 #define PREFETCH_FLUSH_CNT 0
1784 #define PREFETCH_FLUSH
1785 #endif
1786
1787 /*
1788 ** Script fragments which are loaded into the on-chip RAM
1789 ** of 825A, 875 and 895 chips.
1790 */
1791 struct script {
1792 ncrcmd start [ 5];
1793 ncrcmd startpos [ 1];
1794 ncrcmd select [ 6];
1795 ncrcmd select2 [ 9 + PREFETCH_FLUSH_CNT];
1796 ncrcmd loadpos [ 4];
1797 ncrcmd send_ident [ 9];
1798 ncrcmd prepare [ 6];
1799 ncrcmd prepare2 [ 7];
1800 ncrcmd command [ 6];
1801 ncrcmd dispatch [ 32];
1802 ncrcmd clrack [ 4];
1803 ncrcmd no_data [ 17];
1804 ncrcmd status [ 8];
1805 ncrcmd msg_in [ 2];
1806 ncrcmd msg_in2 [ 16];
1807 ncrcmd msg_bad [ 4];
1808 ncrcmd setmsg [ 7];
1809 ncrcmd cleanup [ 6];
1810 ncrcmd complete [ 9];
1811 ncrcmd cleanup_ok [ 8 + PREFETCH_FLUSH_CNT];
1812 ncrcmd cleanup0 [ 1];
1813 #ifndef SCSI_NCR_CCB_DONE_SUPPORT
1814 ncrcmd signal [ 12];
1815 #else
1816 ncrcmd signal [ 9];
1817 ncrcmd done_pos [ 1];
1818 ncrcmd done_plug [ 2];
1819 ncrcmd done_end [ 7];
1820 #endif
1821 ncrcmd save_dp [ 7];
1822 ncrcmd restore_dp [ 5];
1823 ncrcmd disconnect [ 10];
1824 ncrcmd msg_out [ 9];
1825 ncrcmd msg_out_done [ 7];
1826 ncrcmd idle [ 2];
1827 ncrcmd reselect [ 8];
1828 ncrcmd reselected [ 8];
1829 ncrcmd resel_dsa [ 6 + PREFETCH_FLUSH_CNT];
1830 ncrcmd loadpos1 [ 4];
1831 ncrcmd resel_lun [ 6];
1832 ncrcmd resel_tag [ 6];
1833 ncrcmd jump_to_nexus [ 4 + PREFETCH_FLUSH_CNT];
1834 ncrcmd nexus_indirect [ 4];
1835 ncrcmd resel_notag [ 4];
1836 ncrcmd data_in [MAX_SCATTERL * 4];
1837 ncrcmd data_in2 [ 4];
1838 ncrcmd data_out [MAX_SCATTERL * 4];
1839 ncrcmd data_out2 [ 4];
1840 };
1841
1842 /*
1843 ** Script fragments which stay in main memory for all chips.
1844 */
1845 struct scripth {
1846 ncrcmd tryloop [MAX_START*2];
1847 ncrcmd tryloop2 [ 2];
1848 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
1849 ncrcmd done_queue [MAX_DONE*5];
1850 ncrcmd done_queue2 [ 2];
1851 #endif
1852 ncrcmd select_no_atn [ 8];
1853 ncrcmd cancel [ 4];
1854 ncrcmd skip [ 9 + PREFETCH_FLUSH_CNT];
1855 ncrcmd skip2 [ 19];
1856 ncrcmd par_err_data_in [ 6];
1857 ncrcmd par_err_other [ 4];
1858 ncrcmd msg_reject [ 8];
1859 ncrcmd msg_ign_residue [ 24];
1860 ncrcmd msg_extended [ 10];
1861 ncrcmd msg_ext_2 [ 10];
1862 ncrcmd msg_wdtr [ 14];
1863 ncrcmd send_wdtr [ 7];
1864 ncrcmd msg_ext_3 [ 10];
1865 ncrcmd msg_sdtr [ 14];
1866 ncrcmd send_sdtr [ 7];
1867 ncrcmd nego_bad_phase [ 4];
1868 ncrcmd msg_out_abort [ 10];
1869 ncrcmd hdata_in [MAX_SCATTERH * 4];
1870 ncrcmd hdata_in2 [ 2];
1871 ncrcmd hdata_out [MAX_SCATTERH * 4];
1872 ncrcmd hdata_out2 [ 2];
1873 ncrcmd reset [ 4];
1874 ncrcmd aborttag [ 4];
1875 ncrcmd abort [ 2];
1876 ncrcmd abort_resel [ 20];
1877 ncrcmd resend_ident [ 4];
1878 ncrcmd clratn_go_on [ 3];
1879 ncrcmd nxtdsp_go_on [ 1];
1880 ncrcmd sdata_in [ 8];
1881 ncrcmd data_io [ 18];
1882 ncrcmd bad_identify [ 12];
1883 ncrcmd bad_i_t_l [ 4];
1884 ncrcmd bad_i_t_l_q [ 4];
1885 ncrcmd bad_target [ 8];
1886 ncrcmd bad_status [ 8];
1887 ncrcmd start_ram [ 4 + PREFETCH_FLUSH_CNT];
1888 ncrcmd start_ram0 [ 4];
1889 ncrcmd sto_restart [ 5];
1890 ncrcmd wait_dma [ 2];
1891 ncrcmd snooptest [ 9];
1892 ncrcmd snoopend [ 2];
1893 };
1894
1895 /*==========================================================
1896 **
1897 **
1898 ** Function headers.
1899 **
1900 **
1901 **==========================================================
1902 */
1903
1904 static void ncr_alloc_ccb (struct ncb *np, u_char tn, u_char ln);
1905 static void ncr_complete (struct ncb *np, struct ccb *cp);
1906 static void ncr_exception (struct ncb *np);
1907 static void ncr_free_ccb (struct ncb *np, struct ccb *cp);
1908 static void ncr_init_ccb (struct ncb *np, struct ccb *cp);
1909 static void ncr_init_tcb (struct ncb *np, u_char tn);
1910 static struct lcb * ncr_alloc_lcb (struct ncb *np, u_char tn, u_char ln);
1911 static struct lcb * ncr_setup_lcb (struct ncb *np, struct scsi_device *sdev);
1912 static void ncr_getclock (struct ncb *np, int mult);
1913 static void ncr_selectclock (struct ncb *np, u_char scntl3);
1914 static struct ccb *ncr_get_ccb (struct ncb *np, struct scsi_cmnd *cmd);
1915 static void ncr_chip_reset (struct ncb *np, int delay);
1916 static void ncr_init (struct ncb *np, int reset, char * msg, u_long code);
1917 static int ncr_int_sbmc (struct ncb *np);
1918 static int ncr_int_par (struct ncb *np);
1919 static void ncr_int_ma (struct ncb *np);
1920 static void ncr_int_sir (struct ncb *np);
1921 static void ncr_int_sto (struct ncb *np);
1922 static void ncr_negotiate (struct ncb* np, struct tcb* tp);
1923 static int ncr_prepare_nego(struct ncb *np, struct ccb *cp, u_char *msgptr);
1924
1925 static void ncr_script_copy_and_bind
1926 (struct ncb *np, ncrcmd *src, ncrcmd *dst, int len);
1927 static void ncr_script_fill (struct script * scr, struct scripth * scripth);
1928 static int ncr_scatter (struct ncb *np, struct ccb *cp, struct scsi_cmnd *cmd);
1929 static void ncr_getsync (struct ncb *np, u_char sfac, u_char *fakp, u_char *scntl3p);
1930 static void ncr_setsync (struct ncb *np, struct ccb *cp, u_char scntl3, u_char sxfer);
1931 static void ncr_setup_tags (struct ncb *np, struct scsi_device *sdev);
1932 static void ncr_setwide (struct ncb *np, struct ccb *cp, u_char wide, u_char ack);
1933 static int ncr_snooptest (struct ncb *np);
1934 static void ncr_timeout (struct ncb *np);
1935 static void ncr_wakeup (struct ncb *np, u_long code);
1936 static void ncr_wakeup_done (struct ncb *np);
1937 static void ncr_start_next_ccb (struct ncb *np, struct lcb * lp, int maxn);
1938 static void ncr_put_start_queue(struct ncb *np, struct ccb *cp);
1939
1940 static void insert_into_waiting_list(struct ncb *np, struct scsi_cmnd *cmd);
1941 static void process_waiting_list(struct ncb *np, int sts);
1942
1943 #define requeue_waiting_list(np) process_waiting_list((np), DID_OK)
1944 #define reset_waiting_list(np) process_waiting_list((np), DID_RESET)
1945
ncr_name(struct ncb * np)1946 static inline char *ncr_name (struct ncb *np)
1947 {
1948 return np->inst_name;
1949 }
1950
1951
1952 /*==========================================================
1953 **
1954 **
1955 ** Scripts for NCR-Processor.
1956 **
1957 ** Use ncr_script_bind for binding to physical addresses.
1958 **
1959 **
1960 **==========================================================
1961 **
1962 ** NADDR generates a reference to a field of the controller data.
1963 ** PADDR generates a reference to another part of the script.
1964 ** RADDR generates a reference to a script processor register.
1965 ** FADDR generates a reference to a script processor register
1966 ** with offset.
1967 **
1968 **----------------------------------------------------------
1969 */
1970
1971 #define RELOC_SOFTC 0x40000000
1972 #define RELOC_LABEL 0x50000000
1973 #define RELOC_REGISTER 0x60000000
1974 #define RELOC_LABELH 0x80000000
1975 #define RELOC_MASK 0xf0000000
1976
1977 #define NADDR(label) (RELOC_SOFTC | offsetof(struct ncb, label))
1978 #define PADDR(label) (RELOC_LABEL | offsetof(struct script, label))
1979 #define PADDRH(label) (RELOC_LABELH | offsetof(struct scripth, label))
1980 #define RADDR(label) (RELOC_REGISTER | REG(label))
1981 #define FADDR(label,ofs)(RELOC_REGISTER | ((REG(label))+(ofs)))
1982
1983
1984 static struct script script0 __initdata = {
1985 /*--------------------------< START >-----------------------*/ {
1986 /*
1987 ** This NOP will be patched with LED ON
1988 ** SCR_REG_REG (gpreg, SCR_AND, 0xfe)
1989 */
1990 SCR_NO_OP,
1991 0,
1992 /*
1993 ** Clear SIGP.
1994 */
1995 SCR_FROM_REG (ctest2),
1996 0,
1997 /*
1998 ** Then jump to a certain point in tryloop.
1999 ** Due to the lack of indirect addressing the code
2000 ** is self modifying here.
2001 */
2002 SCR_JUMP,
2003 }/*-------------------------< STARTPOS >--------------------*/,{
2004 PADDRH(tryloop),
2005
2006 }/*-------------------------< SELECT >----------------------*/,{
2007 /*
2008 ** DSA contains the address of a scheduled
2009 ** data structure.
2010 **
2011 ** SCRATCHA contains the address of the script,
2012 ** which starts the next entry.
2013 **
2014 ** Set Initiator mode.
2015 **
2016 ** (Target mode is left as an exercise for the reader)
2017 */
2018
2019 SCR_CLR (SCR_TRG),
2020 0,
2021 SCR_LOAD_REG (HS_REG, HS_SELECTING),
2022 0,
2023
2024 /*
2025 ** And try to select this target.
2026 */
2027 SCR_SEL_TBL_ATN ^ offsetof (struct dsb, select),
2028 PADDR (reselect),
2029
2030 }/*-------------------------< SELECT2 >----------------------*/,{
2031 /*
2032 ** Now there are 4 possibilities:
2033 **
2034 ** (1) The ncr loses arbitration.
2035 ** This is ok, because it will try again,
2036 ** when the bus becomes idle.
2037 ** (But beware of the timeout function!)
2038 **
2039 ** (2) The ncr is reselected.
2040 ** Then the script processor takes the jump
2041 ** to the RESELECT label.
2042 **
2043 ** (3) The ncr wins arbitration.
2044 ** Then it will execute SCRIPTS instruction until
2045 ** the next instruction that checks SCSI phase.
2046 ** Then will stop and wait for selection to be
2047 ** complete or selection time-out to occur.
2048 ** As a result the SCRIPTS instructions until
2049 ** LOADPOS + 2 should be executed in parallel with
2050 ** the SCSI core performing selection.
2051 */
2052
2053 /*
2054 ** The MESSAGE_REJECT problem seems to be due to a selection
2055 ** timing problem.
2056 ** Wait immediately for the selection to complete.
2057 ** (2.5x behaves so)
2058 */
2059 SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_OUT)),
2060 0,
2061
2062 /*
2063 ** Next time use the next slot.
2064 */
2065 SCR_COPY (4),
2066 RADDR (temp),
2067 PADDR (startpos),
2068 /*
2069 ** The ncr doesn't have an indirect load
2070 ** or store command. So we have to
2071 ** copy part of the control block to a
2072 ** fixed place, where we can access it.
2073 **
2074 ** We patch the address part of a
2075 ** COPY command with the DSA-register.
2076 */
2077 SCR_COPY_F (4),
2078 RADDR (dsa),
2079 PADDR (loadpos),
2080 /*
2081 ** Flush script prefetch if required
2082 */
2083 PREFETCH_FLUSH
2084 /*
2085 ** then we do the actual copy.
2086 */
2087 SCR_COPY (sizeof (struct head)),
2088 /*
2089 ** continued after the next label ...
2090 */
2091 }/*-------------------------< LOADPOS >---------------------*/,{
2092 0,
2093 NADDR (header),
2094 /*
2095 ** Wait for the next phase or the selection
2096 ** to complete or time-out.
2097 */
2098 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
2099 PADDR (prepare),
2100
2101 }/*-------------------------< SEND_IDENT >----------------------*/,{
2102 /*
2103 ** Selection complete.
2104 ** Send the IDENTIFY and SIMPLE_TAG messages
2105 ** (and the EXTENDED_SDTR message)
2106 */
2107 SCR_MOVE_TBL ^ SCR_MSG_OUT,
2108 offsetof (struct dsb, smsg),
2109 SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
2110 PADDRH (resend_ident),
2111 SCR_LOAD_REG (scratcha, 0x80),
2112 0,
2113 SCR_COPY (1),
2114 RADDR (scratcha),
2115 NADDR (lastmsg),
2116 }/*-------------------------< PREPARE >----------------------*/,{
2117 /*
2118 ** load the savep (saved pointer) into
2119 ** the TEMP register (actual pointer)
2120 */
2121 SCR_COPY (4),
2122 NADDR (header.savep),
2123 RADDR (temp),
2124 /*
2125 ** Initialize the status registers
2126 */
2127 SCR_COPY (4),
2128 NADDR (header.status),
2129 RADDR (scr0),
2130 }/*-------------------------< PREPARE2 >---------------------*/,{
2131 /*
2132 ** Initialize the msgout buffer with a NOOP message.
2133 */
2134 SCR_LOAD_REG (scratcha, NOP),
2135 0,
2136 SCR_COPY (1),
2137 RADDR (scratcha),
2138 NADDR (msgout),
2139 /*
2140 ** Anticipate the COMMAND phase.
2141 ** This is the normal case for initial selection.
2142 */
2143 SCR_JUMP ^ IFFALSE (WHEN (SCR_COMMAND)),
2144 PADDR (dispatch),
2145
2146 }/*-------------------------< COMMAND >--------------------*/,{
2147 /*
2148 ** ... and send the command
2149 */
2150 SCR_MOVE_TBL ^ SCR_COMMAND,
2151 offsetof (struct dsb, cmd),
2152 /*
2153 ** If status is still HS_NEGOTIATE, negotiation failed.
2154 ** We check this here, since we want to do that
2155 ** only once.
2156 */
2157 SCR_FROM_REG (HS_REG),
2158 0,
2159 SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)),
2160 SIR_NEGO_FAILED,
2161
2162 }/*-----------------------< DISPATCH >----------------------*/,{
2163 /*
2164 ** MSG_IN is the only phase that shall be
2165 ** entered at least once for each (re)selection.
2166 ** So we test it first.
2167 */
2168 SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
2169 PADDR (msg_in),
2170
2171 SCR_RETURN ^ IFTRUE (IF (SCR_DATA_OUT)),
2172 0,
2173 /*
2174 ** DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 4.
2175 ** Possible data corruption during Memory Write and Invalidate.
2176 ** This work-around resets the addressing logic prior to the
2177 ** start of the first MOVE of a DATA IN phase.
2178 ** (See Documentation/scsi/ncr53c8xx.rst for more information)
2179 */
2180 SCR_JUMPR ^ IFFALSE (IF (SCR_DATA_IN)),
2181 20,
2182 SCR_COPY (4),
2183 RADDR (scratcha),
2184 RADDR (scratcha),
2185 SCR_RETURN,
2186 0,
2187 SCR_JUMP ^ IFTRUE (IF (SCR_STATUS)),
2188 PADDR (status),
2189 SCR_JUMP ^ IFTRUE (IF (SCR_COMMAND)),
2190 PADDR (command),
2191 SCR_JUMP ^ IFTRUE (IF (SCR_MSG_OUT)),
2192 PADDR (msg_out),
2193 /*
2194 ** Discard one illegal phase byte, if required.
2195 */
2196 SCR_LOAD_REG (scratcha, XE_BAD_PHASE),
2197 0,
2198 SCR_COPY (1),
2199 RADDR (scratcha),
2200 NADDR (xerr_st),
2201 SCR_JUMPR ^ IFFALSE (IF (SCR_ILG_OUT)),
2202 8,
2203 SCR_MOVE_ABS (1) ^ SCR_ILG_OUT,
2204 NADDR (scratch),
2205 SCR_JUMPR ^ IFFALSE (IF (SCR_ILG_IN)),
2206 8,
2207 SCR_MOVE_ABS (1) ^ SCR_ILG_IN,
2208 NADDR (scratch),
2209 SCR_JUMP,
2210 PADDR (dispatch),
2211
2212 }/*-------------------------< CLRACK >----------------------*/,{
2213 /*
2214 ** Terminate possible pending message phase.
2215 */
2216 SCR_CLR (SCR_ACK),
2217 0,
2218 SCR_JUMP,
2219 PADDR (dispatch),
2220
2221 }/*-------------------------< NO_DATA >--------------------*/,{
2222 /*
2223 ** The target wants to tranfer too much data
2224 ** or in the wrong direction.
2225 ** Remember that in extended error.
2226 */
2227 SCR_LOAD_REG (scratcha, XE_EXTRA_DATA),
2228 0,
2229 SCR_COPY (1),
2230 RADDR (scratcha),
2231 NADDR (xerr_st),
2232 /*
2233 ** Discard one data byte, if required.
2234 */
2235 SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_OUT)),
2236 8,
2237 SCR_MOVE_ABS (1) ^ SCR_DATA_OUT,
2238 NADDR (scratch),
2239 SCR_JUMPR ^ IFFALSE (IF (SCR_DATA_IN)),
2240 8,
2241 SCR_MOVE_ABS (1) ^ SCR_DATA_IN,
2242 NADDR (scratch),
2243 /*
2244 ** .. and repeat as required.
2245 */
2246 SCR_CALL,
2247 PADDR (dispatch),
2248 SCR_JUMP,
2249 PADDR (no_data),
2250
2251 }/*-------------------------< STATUS >--------------------*/,{
2252 /*
2253 ** get the status
2254 */
2255 SCR_MOVE_ABS (1) ^ SCR_STATUS,
2256 NADDR (scratch),
2257 /*
2258 ** save status to scsi_status.
2259 ** mark as complete.
2260 */
2261 SCR_TO_REG (SS_REG),
2262 0,
2263 SCR_LOAD_REG (HS_REG, HS_COMPLETE),
2264 0,
2265 SCR_JUMP,
2266 PADDR (dispatch),
2267 }/*-------------------------< MSG_IN >--------------------*/,{
2268 /*
2269 ** Get the first byte of the message
2270 ** and save it to SCRATCHA.
2271 **
2272 ** The script processor doesn't negate the
2273 ** ACK signal after this transfer.
2274 */
2275 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
2276 NADDR (msgin[0]),
2277 }/*-------------------------< MSG_IN2 >--------------------*/,{
2278 /*
2279 ** Handle this message.
2280 */
2281 SCR_JUMP ^ IFTRUE (DATA (COMMAND_COMPLETE)),
2282 PADDR (complete),
2283 SCR_JUMP ^ IFTRUE (DATA (DISCONNECT)),
2284 PADDR (disconnect),
2285 SCR_JUMP ^ IFTRUE (DATA (SAVE_POINTERS)),
2286 PADDR (save_dp),
2287 SCR_JUMP ^ IFTRUE (DATA (RESTORE_POINTERS)),
2288 PADDR (restore_dp),
2289 SCR_JUMP ^ IFTRUE (DATA (EXTENDED_MESSAGE)),
2290 PADDRH (msg_extended),
2291 SCR_JUMP ^ IFTRUE (DATA (NOP)),
2292 PADDR (clrack),
2293 SCR_JUMP ^ IFTRUE (DATA (MESSAGE_REJECT)),
2294 PADDRH (msg_reject),
2295 SCR_JUMP ^ IFTRUE (DATA (IGNORE_WIDE_RESIDUE)),
2296 PADDRH (msg_ign_residue),
2297 /*
2298 ** Rest of the messages left as
2299 ** an exercise ...
2300 **
2301 ** Unimplemented messages:
2302 ** fall through to MSG_BAD.
2303 */
2304 }/*-------------------------< MSG_BAD >------------------*/,{
2305 /*
2306 ** unimplemented message - reject it.
2307 */
2308 SCR_INT,
2309 SIR_REJECT_SENT,
2310 SCR_LOAD_REG (scratcha, MESSAGE_REJECT),
2311 0,
2312 }/*-------------------------< SETMSG >----------------------*/,{
2313 SCR_COPY (1),
2314 RADDR (scratcha),
2315 NADDR (msgout),
2316 SCR_SET (SCR_ATN),
2317 0,
2318 SCR_JUMP,
2319 PADDR (clrack),
2320 }/*-------------------------< CLEANUP >-------------------*/,{
2321 /*
2322 ** dsa: Pointer to ccb
2323 ** or xxxxxxFF (no ccb)
2324 **
2325 ** HS_REG: Host-Status (<>0!)
2326 */
2327 SCR_FROM_REG (dsa),
2328 0,
2329 SCR_JUMP ^ IFTRUE (DATA (0xff)),
2330 PADDR (start),
2331 /*
2332 ** dsa is valid.
2333 ** complete the cleanup.
2334 */
2335 SCR_JUMP,
2336 PADDR (cleanup_ok),
2337
2338 }/*-------------------------< COMPLETE >-----------------*/,{
2339 /*
2340 ** Complete message.
2341 **
2342 ** Copy TEMP register to LASTP in header.
2343 */
2344 SCR_COPY (4),
2345 RADDR (temp),
2346 NADDR (header.lastp),
2347 /*
2348 ** When we terminate the cycle by clearing ACK,
2349 ** the target may disconnect immediately.
2350 **
2351 ** We don't want to be told of an
2352 ** "unexpected disconnect",
2353 ** so we disable this feature.
2354 */
2355 SCR_REG_REG (scntl2, SCR_AND, 0x7f),
2356 0,
2357 /*
2358 ** Terminate cycle ...
2359 */
2360 SCR_CLR (SCR_ACK|SCR_ATN),
2361 0,
2362 /*
2363 ** ... and wait for the disconnect.
2364 */
2365 SCR_WAIT_DISC,
2366 0,
2367 }/*-------------------------< CLEANUP_OK >----------------*/,{
2368 /*
2369 ** Save host status to header.
2370 */
2371 SCR_COPY (4),
2372 RADDR (scr0),
2373 NADDR (header.status),
2374 /*
2375 ** and copy back the header to the ccb.
2376 */
2377 SCR_COPY_F (4),
2378 RADDR (dsa),
2379 PADDR (cleanup0),
2380 /*
2381 ** Flush script prefetch if required
2382 */
2383 PREFETCH_FLUSH
2384 SCR_COPY (sizeof (struct head)),
2385 NADDR (header),
2386 }/*-------------------------< CLEANUP0 >--------------------*/,{
2387 0,
2388 }/*-------------------------< SIGNAL >----------------------*/,{
2389 /*
2390 ** if job not completed ...
2391 */
2392 SCR_FROM_REG (HS_REG),
2393 0,
2394 /*
2395 ** ... start the next command.
2396 */
2397 SCR_JUMP ^ IFTRUE (MASK (0, (HS_DONEMASK|HS_SKIPMASK))),
2398 PADDR(start),
2399 /*
2400 ** If command resulted in not GOOD status,
2401 ** call the C code if needed.
2402 */
2403 SCR_FROM_REG (SS_REG),
2404 0,
2405 SCR_CALL ^ IFFALSE (DATA (SAM_STAT_GOOD)),
2406 PADDRH (bad_status),
2407
2408 #ifndef SCSI_NCR_CCB_DONE_SUPPORT
2409
2410 /*
2411 ** ... signal completion to the host
2412 */
2413 SCR_INT,
2414 SIR_INTFLY,
2415 /*
2416 ** Auf zu neuen Schandtaten!
2417 */
2418 SCR_JUMP,
2419 PADDR(start),
2420
2421 #else /* defined SCSI_NCR_CCB_DONE_SUPPORT */
2422
2423 /*
2424 ** ... signal completion to the host
2425 */
2426 SCR_JUMP,
2427 }/*------------------------< DONE_POS >---------------------*/,{
2428 PADDRH (done_queue),
2429 }/*------------------------< DONE_PLUG >--------------------*/,{
2430 SCR_INT,
2431 SIR_DONE_OVERFLOW,
2432 }/*------------------------< DONE_END >---------------------*/,{
2433 SCR_INT,
2434 SIR_INTFLY,
2435 SCR_COPY (4),
2436 RADDR (temp),
2437 PADDR (done_pos),
2438 SCR_JUMP,
2439 PADDR (start),
2440
2441 #endif /* SCSI_NCR_CCB_DONE_SUPPORT */
2442
2443 }/*-------------------------< SAVE_DP >------------------*/,{
2444 /*
2445 ** SAVE_DP message:
2446 ** Copy TEMP register to SAVEP in header.
2447 */
2448 SCR_COPY (4),
2449 RADDR (temp),
2450 NADDR (header.savep),
2451 SCR_CLR (SCR_ACK),
2452 0,
2453 SCR_JUMP,
2454 PADDR (dispatch),
2455 }/*-------------------------< RESTORE_DP >---------------*/,{
2456 /*
2457 ** RESTORE_DP message:
2458 ** Copy SAVEP in header to TEMP register.
2459 */
2460 SCR_COPY (4),
2461 NADDR (header.savep),
2462 RADDR (temp),
2463 SCR_JUMP,
2464 PADDR (clrack),
2465
2466 }/*-------------------------< DISCONNECT >---------------*/,{
2467 /*
2468 ** DISCONNECTing ...
2469 **
2470 ** disable the "unexpected disconnect" feature,
2471 ** and remove the ACK signal.
2472 */
2473 SCR_REG_REG (scntl2, SCR_AND, 0x7f),
2474 0,
2475 SCR_CLR (SCR_ACK|SCR_ATN),
2476 0,
2477 /*
2478 ** Wait for the disconnect.
2479 */
2480 SCR_WAIT_DISC,
2481 0,
2482 /*
2483 ** Status is: DISCONNECTED.
2484 */
2485 SCR_LOAD_REG (HS_REG, HS_DISCONNECT),
2486 0,
2487 SCR_JUMP,
2488 PADDR (cleanup_ok),
2489
2490 }/*-------------------------< MSG_OUT >-------------------*/,{
2491 /*
2492 ** The target requests a message.
2493 */
2494 SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
2495 NADDR (msgout),
2496 SCR_COPY (1),
2497 NADDR (msgout),
2498 NADDR (lastmsg),
2499 /*
2500 ** If it was no ABORT message ...
2501 */
2502 SCR_JUMP ^ IFTRUE (DATA (ABORT_TASK_SET)),
2503 PADDRH (msg_out_abort),
2504 /*
2505 ** ... wait for the next phase
2506 ** if it's a message out, send it again, ...
2507 */
2508 SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
2509 PADDR (msg_out),
2510 }/*-------------------------< MSG_OUT_DONE >--------------*/,{
2511 /*
2512 ** ... else clear the message ...
2513 */
2514 SCR_LOAD_REG (scratcha, NOP),
2515 0,
2516 SCR_COPY (4),
2517 RADDR (scratcha),
2518 NADDR (msgout),
2519 /*
2520 ** ... and process the next phase
2521 */
2522 SCR_JUMP,
2523 PADDR (dispatch),
2524 }/*-------------------------< IDLE >------------------------*/,{
2525 /*
2526 ** Nothing to do?
2527 ** Wait for reselect.
2528 ** This NOP will be patched with LED OFF
2529 ** SCR_REG_REG (gpreg, SCR_OR, 0x01)
2530 */
2531 SCR_NO_OP,
2532 0,
2533 }/*-------------------------< RESELECT >--------------------*/,{
2534 /*
2535 ** make the DSA invalid.
2536 */
2537 SCR_LOAD_REG (dsa, 0xff),
2538 0,
2539 SCR_CLR (SCR_TRG),
2540 0,
2541 SCR_LOAD_REG (HS_REG, HS_IN_RESELECT),
2542 0,
2543 /*
2544 ** Sleep waiting for a reselection.
2545 ** If SIGP is set, special treatment.
2546 **
2547 ** Zu allem bereit ..
2548 */
2549 SCR_WAIT_RESEL,
2550 PADDR(start),
2551 }/*-------------------------< RESELECTED >------------------*/,{
2552 /*
2553 ** This NOP will be patched with LED ON
2554 ** SCR_REG_REG (gpreg, SCR_AND, 0xfe)
2555 */
2556 SCR_NO_OP,
2557 0,
2558 /*
2559 ** ... zu nichts zu gebrauchen ?
2560 **
2561 ** load the target id into the SFBR
2562 ** and jump to the control block.
2563 **
2564 ** Look at the declarations of
2565 ** - struct ncb
2566 ** - struct tcb
2567 ** - struct lcb
2568 ** - struct ccb
2569 ** to understand what's going on.
2570 */
2571 SCR_REG_SFBR (ssid, SCR_AND, 0x8F),
2572 0,
2573 SCR_TO_REG (sdid),
2574 0,
2575 SCR_JUMP,
2576 NADDR (jump_tcb),
2577
2578 }/*-------------------------< RESEL_DSA >-------------------*/,{
2579 /*
2580 ** Ack the IDENTIFY or TAG previously received.
2581 */
2582 SCR_CLR (SCR_ACK),
2583 0,
2584 /*
2585 ** The ncr doesn't have an indirect load
2586 ** or store command. So we have to
2587 ** copy part of the control block to a
2588 ** fixed place, where we can access it.
2589 **
2590 ** We patch the address part of a
2591 ** COPY command with the DSA-register.
2592 */
2593 SCR_COPY_F (4),
2594 RADDR (dsa),
2595 PADDR (loadpos1),
2596 /*
2597 ** Flush script prefetch if required
2598 */
2599 PREFETCH_FLUSH
2600 /*
2601 ** then we do the actual copy.
2602 */
2603 SCR_COPY (sizeof (struct head)),
2604 /*
2605 ** continued after the next label ...
2606 */
2607
2608 }/*-------------------------< LOADPOS1 >-------------------*/,{
2609 0,
2610 NADDR (header),
2611 /*
2612 ** The DSA contains the data structure address.
2613 */
2614 SCR_JUMP,
2615 PADDR (prepare),
2616
2617 }/*-------------------------< RESEL_LUN >-------------------*/,{
2618 /*
2619 ** come back to this point
2620 ** to get an IDENTIFY message
2621 ** Wait for a msg_in phase.
2622 */
2623 SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)),
2624 SIR_RESEL_NO_MSG_IN,
2625 /*
2626 ** message phase.
2627 ** Read the data directly from the BUS DATA lines.
2628 ** This helps to support very old SCSI devices that
2629 ** may reselect without sending an IDENTIFY.
2630 */
2631 SCR_FROM_REG (sbdl),
2632 0,
2633 /*
2634 ** It should be an Identify message.
2635 */
2636 SCR_RETURN,
2637 0,
2638 }/*-------------------------< RESEL_TAG >-------------------*/,{
2639 /*
2640 ** Read IDENTIFY + SIMPLE + TAG using a single MOVE.
2641 ** Aggressive optimization, is'nt it?
2642 ** No need to test the SIMPLE TAG message, since the
2643 ** driver only supports conformant devices for tags. ;-)
2644 */
2645 SCR_MOVE_ABS (3) ^ SCR_MSG_IN,
2646 NADDR (msgin),
2647 /*
2648 ** Read the TAG from the SIDL.
2649 ** Still an aggressive optimization. ;-)
2650 ** Compute the CCB indirect jump address which
2651 ** is (#TAG*2 & 0xfc) due to tag numbering using
2652 ** 1,3,5..MAXTAGS*2+1 actual values.
2653 */
2654 SCR_REG_SFBR (sidl, SCR_SHL, 0),
2655 0,
2656 SCR_SFBR_REG (temp, SCR_AND, 0xfc),
2657 0,
2658 }/*-------------------------< JUMP_TO_NEXUS >-------------------*/,{
2659 SCR_COPY_F (4),
2660 RADDR (temp),
2661 PADDR (nexus_indirect),
2662 /*
2663 ** Flush script prefetch if required
2664 */
2665 PREFETCH_FLUSH
2666 SCR_COPY (4),
2667 }/*-------------------------< NEXUS_INDIRECT >-------------------*/,{
2668 0,
2669 RADDR (temp),
2670 SCR_RETURN,
2671 0,
2672 }/*-------------------------< RESEL_NOTAG >-------------------*/,{
2673 /*
2674 ** No tag expected.
2675 ** Read an throw away the IDENTIFY.
2676 */
2677 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
2678 NADDR (msgin),
2679 SCR_JUMP,
2680 PADDR (jump_to_nexus),
2681 }/*-------------------------< DATA_IN >--------------------*/,{
2682 /*
2683 ** Because the size depends on the
2684 ** #define MAX_SCATTERL parameter,
2685 ** it is filled in at runtime.
2686 **
2687 ** ##===========< i=0; i<MAX_SCATTERL >=========
2688 ** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)),
2689 ** || PADDR (dispatch),
2690 ** || SCR_MOVE_TBL ^ SCR_DATA_IN,
2691 ** || offsetof (struct dsb, data[ i]),
2692 ** ##==========================================
2693 **
2694 **---------------------------------------------------------
2695 */
2696 0
2697 }/*-------------------------< DATA_IN2 >-------------------*/,{
2698 SCR_CALL,
2699 PADDR (dispatch),
2700 SCR_JUMP,
2701 PADDR (no_data),
2702 }/*-------------------------< DATA_OUT >--------------------*/,{
2703 /*
2704 ** Because the size depends on the
2705 ** #define MAX_SCATTERL parameter,
2706 ** it is filled in at runtime.
2707 **
2708 ** ##===========< i=0; i<MAX_SCATTERL >=========
2709 ** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT)),
2710 ** || PADDR (dispatch),
2711 ** || SCR_MOVE_TBL ^ SCR_DATA_OUT,
2712 ** || offsetof (struct dsb, data[ i]),
2713 ** ##==========================================
2714 **
2715 **---------------------------------------------------------
2716 */
2717 0
2718 }/*-------------------------< DATA_OUT2 >-------------------*/,{
2719 SCR_CALL,
2720 PADDR (dispatch),
2721 SCR_JUMP,
2722 PADDR (no_data),
2723 }/*--------------------------------------------------------*/
2724 };
2725
2726 static struct scripth scripth0 __initdata = {
2727 /*-------------------------< TRYLOOP >---------------------*/{
2728 /*
2729 ** Start the next entry.
2730 ** Called addresses point to the launch script in the CCB.
2731 ** They are patched by the main processor.
2732 **
2733 ** Because the size depends on the
2734 ** #define MAX_START parameter, it is filled
2735 ** in at runtime.
2736 **
2737 **-----------------------------------------------------------
2738 **
2739 ** ##===========< I=0; i<MAX_START >===========
2740 ** || SCR_CALL,
2741 ** || PADDR (idle),
2742 ** ##==========================================
2743 **
2744 **-----------------------------------------------------------
2745 */
2746 0
2747 }/*------------------------< TRYLOOP2 >---------------------*/,{
2748 SCR_JUMP,
2749 PADDRH(tryloop),
2750
2751 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
2752
2753 }/*------------------------< DONE_QUEUE >-------------------*/,{
2754 /*
2755 ** Copy the CCB address to the next done entry.
2756 ** Because the size depends on the
2757 ** #define MAX_DONE parameter, it is filled
2758 ** in at runtime.
2759 **
2760 **-----------------------------------------------------------
2761 **
2762 ** ##===========< I=0; i<MAX_DONE >===========
2763 ** || SCR_COPY (sizeof(struct ccb *),
2764 ** || NADDR (header.cp),
2765 ** || NADDR (ccb_done[i]),
2766 ** || SCR_CALL,
2767 ** || PADDR (done_end),
2768 ** ##==========================================
2769 **
2770 **-----------------------------------------------------------
2771 */
2772 0
2773 }/*------------------------< DONE_QUEUE2 >------------------*/,{
2774 SCR_JUMP,
2775 PADDRH (done_queue),
2776
2777 #endif /* SCSI_NCR_CCB_DONE_SUPPORT */
2778 }/*------------------------< SELECT_NO_ATN >-----------------*/,{
2779 /*
2780 ** Set Initiator mode.
2781 ** And try to select this target without ATN.
2782 */
2783
2784 SCR_CLR (SCR_TRG),
2785 0,
2786 SCR_LOAD_REG (HS_REG, HS_SELECTING),
2787 0,
2788 SCR_SEL_TBL ^ offsetof (struct dsb, select),
2789 PADDR (reselect),
2790 SCR_JUMP,
2791 PADDR (select2),
2792
2793 }/*-------------------------< CANCEL >------------------------*/,{
2794
2795 SCR_LOAD_REG (scratcha, HS_ABORTED),
2796 0,
2797 SCR_JUMPR,
2798 8,
2799 }/*-------------------------< SKIP >------------------------*/,{
2800 SCR_LOAD_REG (scratcha, 0),
2801 0,
2802 /*
2803 ** This entry has been canceled.
2804 ** Next time use the next slot.
2805 */
2806 SCR_COPY (4),
2807 RADDR (temp),
2808 PADDR (startpos),
2809 /*
2810 ** The ncr doesn't have an indirect load
2811 ** or store command. So we have to
2812 ** copy part of the control block to a
2813 ** fixed place, where we can access it.
2814 **
2815 ** We patch the address part of a
2816 ** COPY command with the DSA-register.
2817 */
2818 SCR_COPY_F (4),
2819 RADDR (dsa),
2820 PADDRH (skip2),
2821 /*
2822 ** Flush script prefetch if required
2823 */
2824 PREFETCH_FLUSH
2825 /*
2826 ** then we do the actual copy.
2827 */
2828 SCR_COPY (sizeof (struct head)),
2829 /*
2830 ** continued after the next label ...
2831 */
2832 }/*-------------------------< SKIP2 >---------------------*/,{
2833 0,
2834 NADDR (header),
2835 /*
2836 ** Initialize the status registers
2837 */
2838 SCR_COPY (4),
2839 NADDR (header.status),
2840 RADDR (scr0),
2841 /*
2842 ** Force host status.
2843 */
2844 SCR_FROM_REG (scratcha),
2845 0,
2846 SCR_JUMPR ^ IFFALSE (MASK (0, HS_DONEMASK)),
2847 16,
2848 SCR_REG_REG (HS_REG, SCR_OR, HS_SKIPMASK),
2849 0,
2850 SCR_JUMPR,
2851 8,
2852 SCR_TO_REG (HS_REG),
2853 0,
2854 SCR_LOAD_REG (SS_REG, SAM_STAT_GOOD),
2855 0,
2856 SCR_JUMP,
2857 PADDR (cleanup_ok),
2858
2859 },/*-------------------------< PAR_ERR_DATA_IN >---------------*/{
2860 /*
2861 ** Ignore all data in byte, until next phase
2862 */
2863 SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)),
2864 PADDRH (par_err_other),
2865 SCR_MOVE_ABS (1) ^ SCR_DATA_IN,
2866 NADDR (scratch),
2867 SCR_JUMPR,
2868 -24,
2869 },/*-------------------------< PAR_ERR_OTHER >------------------*/{
2870 /*
2871 ** count it.
2872 */
2873 SCR_REG_REG (PS_REG, SCR_ADD, 0x01),
2874 0,
2875 /*
2876 ** jump to dispatcher.
2877 */
2878 SCR_JUMP,
2879 PADDR (dispatch),
2880 }/*-------------------------< MSG_REJECT >---------------*/,{
2881 /*
2882 ** If a negotiation was in progress,
2883 ** negotiation failed.
2884 ** Otherwise, let the C code print
2885 ** some message.
2886 */
2887 SCR_FROM_REG (HS_REG),
2888 0,
2889 SCR_INT ^ IFFALSE (DATA (HS_NEGOTIATE)),
2890 SIR_REJECT_RECEIVED,
2891 SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)),
2892 SIR_NEGO_FAILED,
2893 SCR_JUMP,
2894 PADDR (clrack),
2895
2896 }/*-------------------------< MSG_IGN_RESIDUE >----------*/,{
2897 /*
2898 ** Terminate cycle
2899 */
2900 SCR_CLR (SCR_ACK),
2901 0,
2902 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
2903 PADDR (dispatch),
2904 /*
2905 ** get residue size.
2906 */
2907 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
2908 NADDR (msgin[1]),
2909 /*
2910 ** Size is 0 .. ignore message.
2911 */
2912 SCR_JUMP ^ IFTRUE (DATA (0)),
2913 PADDR (clrack),
2914 /*
2915 ** Size is not 1 .. have to interrupt.
2916 */
2917 SCR_JUMPR ^ IFFALSE (DATA (1)),
2918 40,
2919 /*
2920 ** Check for residue byte in swide register
2921 */
2922 SCR_FROM_REG (scntl2),
2923 0,
2924 SCR_JUMPR ^ IFFALSE (MASK (WSR, WSR)),
2925 16,
2926 /*
2927 ** There IS data in the swide register.
2928 ** Discard it.
2929 */
2930 SCR_REG_REG (scntl2, SCR_OR, WSR),
2931 0,
2932 SCR_JUMP,
2933 PADDR (clrack),
2934 /*
2935 ** Load again the size to the sfbr register.
2936 */
2937 SCR_FROM_REG (scratcha),
2938 0,
2939 SCR_INT,
2940 SIR_IGN_RESIDUE,
2941 SCR_JUMP,
2942 PADDR (clrack),
2943
2944 }/*-------------------------< MSG_EXTENDED >-------------*/,{
2945 /*
2946 ** Terminate cycle
2947 */
2948 SCR_CLR (SCR_ACK),
2949 0,
2950 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
2951 PADDR (dispatch),
2952 /*
2953 ** get length.
2954 */
2955 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
2956 NADDR (msgin[1]),
2957 /*
2958 */
2959 SCR_JUMP ^ IFTRUE (DATA (3)),
2960 PADDRH (msg_ext_3),
2961 SCR_JUMP ^ IFFALSE (DATA (2)),
2962 PADDR (msg_bad),
2963 }/*-------------------------< MSG_EXT_2 >----------------*/,{
2964 SCR_CLR (SCR_ACK),
2965 0,
2966 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
2967 PADDR (dispatch),
2968 /*
2969 ** get extended message code.
2970 */
2971 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
2972 NADDR (msgin[2]),
2973 SCR_JUMP ^ IFTRUE (DATA (EXTENDED_WDTR)),
2974 PADDRH (msg_wdtr),
2975 /*
2976 ** unknown extended message
2977 */
2978 SCR_JUMP,
2979 PADDR (msg_bad)
2980 }/*-------------------------< MSG_WDTR >-----------------*/,{
2981 SCR_CLR (SCR_ACK),
2982 0,
2983 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
2984 PADDR (dispatch),
2985 /*
2986 ** get data bus width
2987 */
2988 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
2989 NADDR (msgin[3]),
2990 /*
2991 ** let the host do the real work.
2992 */
2993 SCR_INT,
2994 SIR_NEGO_WIDE,
2995 /*
2996 ** let the target fetch our answer.
2997 */
2998 SCR_SET (SCR_ATN),
2999 0,
3000 SCR_CLR (SCR_ACK),
3001 0,
3002 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
3003 PADDRH (nego_bad_phase),
3004
3005 }/*-------------------------< SEND_WDTR >----------------*/,{
3006 /*
3007 ** Send the EXTENDED_WDTR
3008 */
3009 SCR_MOVE_ABS (4) ^ SCR_MSG_OUT,
3010 NADDR (msgout),
3011 SCR_COPY (1),
3012 NADDR (msgout),
3013 NADDR (lastmsg),
3014 SCR_JUMP,
3015 PADDR (msg_out_done),
3016
3017 }/*-------------------------< MSG_EXT_3 >----------------*/,{
3018 SCR_CLR (SCR_ACK),
3019 0,
3020 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
3021 PADDR (dispatch),
3022 /*
3023 ** get extended message code.
3024 */
3025 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3026 NADDR (msgin[2]),
3027 SCR_JUMP ^ IFTRUE (DATA (EXTENDED_SDTR)),
3028 PADDRH (msg_sdtr),
3029 /*
3030 ** unknown extended message
3031 */
3032 SCR_JUMP,
3033 PADDR (msg_bad)
3034
3035 }/*-------------------------< MSG_SDTR >-----------------*/,{
3036 SCR_CLR (SCR_ACK),
3037 0,
3038 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
3039 PADDR (dispatch),
3040 /*
3041 ** get period and offset
3042 */
3043 SCR_MOVE_ABS (2) ^ SCR_MSG_IN,
3044 NADDR (msgin[3]),
3045 /*
3046 ** let the host do the real work.
3047 */
3048 SCR_INT,
3049 SIR_NEGO_SYNC,
3050 /*
3051 ** let the target fetch our answer.
3052 */
3053 SCR_SET (SCR_ATN),
3054 0,
3055 SCR_CLR (SCR_ACK),
3056 0,
3057 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
3058 PADDRH (nego_bad_phase),
3059
3060 }/*-------------------------< SEND_SDTR >-------------*/,{
3061 /*
3062 ** Send the EXTENDED_SDTR
3063 */
3064 SCR_MOVE_ABS (5) ^ SCR_MSG_OUT,
3065 NADDR (msgout),
3066 SCR_COPY (1),
3067 NADDR (msgout),
3068 NADDR (lastmsg),
3069 SCR_JUMP,
3070 PADDR (msg_out_done),
3071
3072 }/*-------------------------< NEGO_BAD_PHASE >------------*/,{
3073 SCR_INT,
3074 SIR_NEGO_PROTO,
3075 SCR_JUMP,
3076 PADDR (dispatch),
3077
3078 }/*-------------------------< MSG_OUT_ABORT >-------------*/,{
3079 /*
3080 ** After ABORT message,
3081 **
3082 ** expect an immediate disconnect, ...
3083 */
3084 SCR_REG_REG (scntl2, SCR_AND, 0x7f),
3085 0,
3086 SCR_CLR (SCR_ACK|SCR_ATN),
3087 0,
3088 SCR_WAIT_DISC,
3089 0,
3090 /*
3091 ** ... and set the status to "ABORTED"
3092 */
3093 SCR_LOAD_REG (HS_REG, HS_ABORTED),
3094 0,
3095 SCR_JUMP,
3096 PADDR (cleanup),
3097
3098 }/*-------------------------< HDATA_IN >-------------------*/,{
3099 /*
3100 ** Because the size depends on the
3101 ** #define MAX_SCATTERH parameter,
3102 ** it is filled in at runtime.
3103 **
3104 ** ##==< i=MAX_SCATTERL; i<MAX_SCATTERL+MAX_SCATTERH >==
3105 ** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)),
3106 ** || PADDR (dispatch),
3107 ** || SCR_MOVE_TBL ^ SCR_DATA_IN,
3108 ** || offsetof (struct dsb, data[ i]),
3109 ** ##===================================================
3110 **
3111 **---------------------------------------------------------
3112 */
3113 0
3114 }/*-------------------------< HDATA_IN2 >------------------*/,{
3115 SCR_JUMP,
3116 PADDR (data_in),
3117
3118 }/*-------------------------< HDATA_OUT >-------------------*/,{
3119 /*
3120 ** Because the size depends on the
3121 ** #define MAX_SCATTERH parameter,
3122 ** it is filled in at runtime.
3123 **
3124 ** ##==< i=MAX_SCATTERL; i<MAX_SCATTERL+MAX_SCATTERH >==
3125 ** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT)),
3126 ** || PADDR (dispatch),
3127 ** || SCR_MOVE_TBL ^ SCR_DATA_OUT,
3128 ** || offsetof (struct dsb, data[ i]),
3129 ** ##===================================================
3130 **
3131 **---------------------------------------------------------
3132 */
3133 0
3134 }/*-------------------------< HDATA_OUT2 >------------------*/,{
3135 SCR_JUMP,
3136 PADDR (data_out),
3137
3138 }/*-------------------------< RESET >----------------------*/,{
3139 /*
3140 ** Send a TARGET_RESET message if bad IDENTIFY
3141 ** received on reselection.
3142 */
3143 SCR_LOAD_REG (scratcha, ABORT_TASK),
3144 0,
3145 SCR_JUMP,
3146 PADDRH (abort_resel),
3147 }/*-------------------------< ABORTTAG >-------------------*/,{
3148 /*
3149 ** Abort a wrong tag received on reselection.
3150 */
3151 SCR_LOAD_REG (scratcha, ABORT_TASK),
3152 0,
3153 SCR_JUMP,
3154 PADDRH (abort_resel),
3155 }/*-------------------------< ABORT >----------------------*/,{
3156 /*
3157 ** Abort a reselection when no active CCB.
3158 */
3159 SCR_LOAD_REG (scratcha, ABORT_TASK_SET),
3160 0,
3161 }/*-------------------------< ABORT_RESEL >----------------*/,{
3162 SCR_COPY (1),
3163 RADDR (scratcha),
3164 NADDR (msgout),
3165 SCR_SET (SCR_ATN),
3166 0,
3167 SCR_CLR (SCR_ACK),
3168 0,
3169 /*
3170 ** and send it.
3171 ** we expect an immediate disconnect
3172 */
3173 SCR_REG_REG (scntl2, SCR_AND, 0x7f),
3174 0,
3175 SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
3176 NADDR (msgout),
3177 SCR_COPY (1),
3178 NADDR (msgout),
3179 NADDR (lastmsg),
3180 SCR_CLR (SCR_ACK|SCR_ATN),
3181 0,
3182 SCR_WAIT_DISC,
3183 0,
3184 SCR_JUMP,
3185 PADDR (start),
3186 }/*-------------------------< RESEND_IDENT >-------------------*/,{
3187 /*
3188 ** The target stays in MSG OUT phase after having acked
3189 ** Identify [+ Tag [+ Extended message ]]. Targets shall
3190 ** behave this way on parity error.
3191 ** We must send it again all the messages.
3192 */
3193 SCR_SET (SCR_ATN), /* Shall be asserted 2 deskew delays before the */
3194 0, /* 1rst ACK = 90 ns. Hope the NCR is'nt too fast */
3195 SCR_JUMP,
3196 PADDR (send_ident),
3197 }/*-------------------------< CLRATN_GO_ON >-------------------*/,{
3198 SCR_CLR (SCR_ATN),
3199 0,
3200 SCR_JUMP,
3201 }/*-------------------------< NXTDSP_GO_ON >-------------------*/,{
3202 0,
3203 }/*-------------------------< SDATA_IN >-------------------*/,{
3204 SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)),
3205 PADDR (dispatch),
3206 SCR_MOVE_TBL ^ SCR_DATA_IN,
3207 offsetof (struct dsb, sense),
3208 SCR_CALL,
3209 PADDR (dispatch),
3210 SCR_JUMP,
3211 PADDR (no_data),
3212 }/*-------------------------< DATA_IO >--------------------*/,{
3213 /*
3214 ** We jump here if the data direction was unknown at the
3215 ** time we had to queue the command to the scripts processor.
3216 ** Pointers had been set as follow in this situation:
3217 ** savep --> DATA_IO
3218 ** lastp --> start pointer when DATA_IN
3219 ** goalp --> goal pointer when DATA_IN
3220 ** wlastp --> start pointer when DATA_OUT
3221 ** wgoalp --> goal pointer when DATA_OUT
3222 ** This script sets savep/lastp/goalp according to the
3223 ** direction chosen by the target.
3224 */
3225 SCR_JUMPR ^ IFTRUE (WHEN (SCR_DATA_OUT)),
3226 32,
3227 /*
3228 ** Direction is DATA IN.
3229 ** Warning: we jump here, even when phase is DATA OUT.
3230 */
3231 SCR_COPY (4),
3232 NADDR (header.lastp),
3233 NADDR (header.savep),
3234
3235 /*
3236 ** Jump to the SCRIPTS according to actual direction.
3237 */
3238 SCR_COPY (4),
3239 NADDR (header.savep),
3240 RADDR (temp),
3241 SCR_RETURN,
3242 0,
3243 /*
3244 ** Direction is DATA OUT.
3245 */
3246 SCR_COPY (4),
3247 NADDR (header.wlastp),
3248 NADDR (header.lastp),
3249 SCR_COPY (4),
3250 NADDR (header.wgoalp),
3251 NADDR (header.goalp),
3252 SCR_JUMPR,
3253 -64,
3254 }/*-------------------------< BAD_IDENTIFY >---------------*/,{
3255 /*
3256 ** If message phase but not an IDENTIFY,
3257 ** get some help from the C code.
3258 ** Old SCSI device may behave so.
3259 */
3260 SCR_JUMPR ^ IFTRUE (MASK (0x80, 0x80)),
3261 16,
3262 SCR_INT,
3263 SIR_RESEL_NO_IDENTIFY,
3264 SCR_JUMP,
3265 PADDRH (reset),
3266 /*
3267 ** Message is an IDENTIFY, but lun is unknown.
3268 ** Read the message, since we got it directly
3269 ** from the SCSI BUS data lines.
3270 ** Signal problem to C code for logging the event.
3271 ** Send an ABORT_TASK_SET to clear all pending tasks.
3272 */
3273 SCR_INT,
3274 SIR_RESEL_BAD_LUN,
3275 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3276 NADDR (msgin),
3277 SCR_JUMP,
3278 PADDRH (abort),
3279 }/*-------------------------< BAD_I_T_L >------------------*/,{
3280 /*
3281 ** We donnot have a task for that I_T_L.
3282 ** Signal problem to C code for logging the event.
3283 ** Send an ABORT_TASK_SET message.
3284 */
3285 SCR_INT,
3286 SIR_RESEL_BAD_I_T_L,
3287 SCR_JUMP,
3288 PADDRH (abort),
3289 }/*-------------------------< BAD_I_T_L_Q >----------------*/,{
3290 /*
3291 ** We donnot have a task that matches the tag.
3292 ** Signal problem to C code for logging the event.
3293 ** Send an ABORT_TASK message.
3294 */
3295 SCR_INT,
3296 SIR_RESEL_BAD_I_T_L_Q,
3297 SCR_JUMP,
3298 PADDRH (aborttag),
3299 }/*-------------------------< BAD_TARGET >-----------------*/,{
3300 /*
3301 ** We donnot know the target that reselected us.
3302 ** Grab the first message if any (IDENTIFY).
3303 ** Signal problem to C code for logging the event.
3304 ** TARGET_RESET message.
3305 */
3306 SCR_INT,
3307 SIR_RESEL_BAD_TARGET,
3308 SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_IN)),
3309 8,
3310 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3311 NADDR (msgin),
3312 SCR_JUMP,
3313 PADDRH (reset),
3314 }/*-------------------------< BAD_STATUS >-----------------*/,{
3315 /*
3316 ** If command resulted in either TASK_SET FULL,
3317 ** CHECK CONDITION or COMMAND TERMINATED,
3318 ** call the C code.
3319 */
3320 SCR_INT ^ IFTRUE (DATA (SAM_STAT_TASK_SET_FULL)),
3321 SIR_BAD_STATUS,
3322 SCR_INT ^ IFTRUE (DATA (SAM_STAT_CHECK_CONDITION)),
3323 SIR_BAD_STATUS,
3324 SCR_INT ^ IFTRUE (DATA (SAM_STAT_COMMAND_TERMINATED)),
3325 SIR_BAD_STATUS,
3326 SCR_RETURN,
3327 0,
3328 }/*-------------------------< START_RAM >-------------------*/,{
3329 /*
3330 ** Load the script into on-chip RAM,
3331 ** and jump to start point.
3332 */
3333 SCR_COPY_F (4),
3334 RADDR (scratcha),
3335 PADDRH (start_ram0),
3336 /*
3337 ** Flush script prefetch if required
3338 */
3339 PREFETCH_FLUSH
3340 SCR_COPY (sizeof (struct script)),
3341 }/*-------------------------< START_RAM0 >--------------------*/,{
3342 0,
3343 PADDR (start),
3344 SCR_JUMP,
3345 PADDR (start),
3346 }/*-------------------------< STO_RESTART >-------------------*/,{
3347 /*
3348 **
3349 ** Repair start queue (e.g. next time use the next slot)
3350 ** and jump to start point.
3351 */
3352 SCR_COPY (4),
3353 RADDR (temp),
3354 PADDR (startpos),
3355 SCR_JUMP,
3356 PADDR (start),
3357 }/*-------------------------< WAIT_DMA >-------------------*/,{
3358 /*
3359 ** For HP Zalon/53c720 systems, the Zalon interface
3360 ** between CPU and 53c720 does prefetches, which causes
3361 ** problems with self modifying scripts. The problem
3362 ** is overcome by calling a dummy subroutine after each
3363 ** modification, to force a refetch of the script on
3364 ** return from the subroutine.
3365 */
3366 SCR_RETURN,
3367 0,
3368 }/*-------------------------< SNOOPTEST >-------------------*/,{
3369 /*
3370 ** Read the variable.
3371 */
3372 SCR_COPY (4),
3373 NADDR(ncr_cache),
3374 RADDR (scratcha),
3375 /*
3376 ** Write the variable.
3377 */
3378 SCR_COPY (4),
3379 RADDR (temp),
3380 NADDR(ncr_cache),
3381 /*
3382 ** Read back the variable.
3383 */
3384 SCR_COPY (4),
3385 NADDR(ncr_cache),
3386 RADDR (temp),
3387 }/*-------------------------< SNOOPEND >-------------------*/,{
3388 /*
3389 ** And stop.
3390 */
3391 SCR_INT,
3392 99,
3393 }/*--------------------------------------------------------*/
3394 };
3395
3396 /*==========================================================
3397 **
3398 **
3399 ** Fill in #define dependent parts of the script
3400 **
3401 **
3402 **==========================================================
3403 */
3404
ncr_script_fill(struct script * scr,struct scripth * scrh)3405 void __init ncr_script_fill (struct script * scr, struct scripth * scrh)
3406 {
3407 int i;
3408 ncrcmd *p;
3409
3410 p = scrh->tryloop;
3411 for (i=0; i<MAX_START; i++) {
3412 *p++ =SCR_CALL;
3413 *p++ =PADDR (idle);
3414 }
3415
3416 BUG_ON((u_long)p != (u_long)&scrh->tryloop + sizeof (scrh->tryloop));
3417
3418 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
3419
3420 p = scrh->done_queue;
3421 for (i = 0; i<MAX_DONE; i++) {
3422 *p++ =SCR_COPY (sizeof(struct ccb *));
3423 *p++ =NADDR (header.cp);
3424 *p++ =NADDR (ccb_done[i]);
3425 *p++ =SCR_CALL;
3426 *p++ =PADDR (done_end);
3427 }
3428
3429 BUG_ON((u_long)p != (u_long)&scrh->done_queue+sizeof(scrh->done_queue));
3430
3431 #endif /* SCSI_NCR_CCB_DONE_SUPPORT */
3432
3433 p = scrh->hdata_in;
3434 for (i=0; i<MAX_SCATTERH; i++) {
3435 *p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN));
3436 *p++ =PADDR (dispatch);
3437 *p++ =SCR_MOVE_TBL ^ SCR_DATA_IN;
3438 *p++ =offsetof (struct dsb, data[i]);
3439 }
3440
3441 BUG_ON((u_long)p != (u_long)&scrh->hdata_in + sizeof (scrh->hdata_in));
3442
3443 p = scr->data_in;
3444 for (i=MAX_SCATTERH; i<MAX_SCATTERH+MAX_SCATTERL; i++) {
3445 *p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN));
3446 *p++ =PADDR (dispatch);
3447 *p++ =SCR_MOVE_TBL ^ SCR_DATA_IN;
3448 *p++ =offsetof (struct dsb, data[i]);
3449 }
3450
3451 BUG_ON((u_long)p != (u_long)&scr->data_in + sizeof (scr->data_in));
3452
3453 p = scrh->hdata_out;
3454 for (i=0; i<MAX_SCATTERH; i++) {
3455 *p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT));
3456 *p++ =PADDR (dispatch);
3457 *p++ =SCR_MOVE_TBL ^ SCR_DATA_OUT;
3458 *p++ =offsetof (struct dsb, data[i]);
3459 }
3460
3461 BUG_ON((u_long)p != (u_long)&scrh->hdata_out + sizeof (scrh->hdata_out));
3462
3463 p = scr->data_out;
3464 for (i=MAX_SCATTERH; i<MAX_SCATTERH+MAX_SCATTERL; i++) {
3465 *p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT));
3466 *p++ =PADDR (dispatch);
3467 *p++ =SCR_MOVE_TBL ^ SCR_DATA_OUT;
3468 *p++ =offsetof (struct dsb, data[i]);
3469 }
3470
3471 BUG_ON((u_long) p != (u_long)&scr->data_out + sizeof (scr->data_out));
3472 }
3473
3474 /*==========================================================
3475 **
3476 **
3477 ** Copy and rebind a script.
3478 **
3479 **
3480 **==========================================================
3481 */
3482
3483 static void __init
ncr_script_copy_and_bind(struct ncb * np,ncrcmd * src,ncrcmd * dst,int len)3484 ncr_script_copy_and_bind (struct ncb *np, ncrcmd *src, ncrcmd *dst, int len)
3485 {
3486 ncrcmd opcode, new, old, tmp1, tmp2;
3487 ncrcmd *start, *end;
3488 int relocs;
3489 int opchanged = 0;
3490
3491 start = src;
3492 end = src + len/4;
3493
3494 while (src < end) {
3495
3496 opcode = *src++;
3497 *dst++ = cpu_to_scr(opcode);
3498
3499 /*
3500 ** If we forget to change the length
3501 ** in struct script, a field will be
3502 ** padded with 0. This is an illegal
3503 ** command.
3504 */
3505
3506 if (opcode == 0) {
3507 printk (KERN_ERR "%s: ERROR0 IN SCRIPT at %d.\n",
3508 ncr_name(np), (int) (src-start-1));
3509 mdelay(1000);
3510 }
3511
3512 if (DEBUG_FLAGS & DEBUG_SCRIPT)
3513 printk (KERN_DEBUG "%p: <%x>\n",
3514 (src-1), (unsigned)opcode);
3515
3516 /*
3517 ** We don't have to decode ALL commands
3518 */
3519 switch (opcode >> 28) {
3520
3521 case 0xc:
3522 /*
3523 ** COPY has TWO arguments.
3524 */
3525 relocs = 2;
3526 tmp1 = src[0];
3527 #ifdef RELOC_KVAR
3528 if ((tmp1 & RELOC_MASK) == RELOC_KVAR)
3529 tmp1 = 0;
3530 #endif
3531 tmp2 = src[1];
3532 #ifdef RELOC_KVAR
3533 if ((tmp2 & RELOC_MASK) == RELOC_KVAR)
3534 tmp2 = 0;
3535 #endif
3536 if ((tmp1 ^ tmp2) & 3) {
3537 printk (KERN_ERR"%s: ERROR1 IN SCRIPT at %d.\n",
3538 ncr_name(np), (int) (src-start-1));
3539 mdelay(1000);
3540 }
3541 /*
3542 ** If PREFETCH feature not enabled, remove
3543 ** the NO FLUSH bit if present.
3544 */
3545 if ((opcode & SCR_NO_FLUSH) && !(np->features & FE_PFEN)) {
3546 dst[-1] = cpu_to_scr(opcode & ~SCR_NO_FLUSH);
3547 ++opchanged;
3548 }
3549 break;
3550
3551 case 0x0:
3552 /*
3553 ** MOVE (absolute address)
3554 */
3555 relocs = 1;
3556 break;
3557
3558 case 0x8:
3559 /*
3560 ** JUMP / CALL
3561 ** don't relocate if relative :-)
3562 */
3563 if (opcode & 0x00800000)
3564 relocs = 0;
3565 else
3566 relocs = 1;
3567 break;
3568
3569 case 0x4:
3570 case 0x5:
3571 case 0x6:
3572 case 0x7:
3573 relocs = 1;
3574 break;
3575
3576 default:
3577 relocs = 0;
3578 break;
3579 }
3580
3581 if (relocs) {
3582 while (relocs--) {
3583 old = *src++;
3584
3585 switch (old & RELOC_MASK) {
3586 case RELOC_REGISTER:
3587 new = (old & ~RELOC_MASK) + np->paddr;
3588 break;
3589 case RELOC_LABEL:
3590 new = (old & ~RELOC_MASK) + np->p_script;
3591 break;
3592 case RELOC_LABELH:
3593 new = (old & ~RELOC_MASK) + np->p_scripth;
3594 break;
3595 case RELOC_SOFTC:
3596 new = (old & ~RELOC_MASK) + np->p_ncb;
3597 break;
3598 #ifdef RELOC_KVAR
3599 case RELOC_KVAR:
3600 if (((old & ~RELOC_MASK) <
3601 SCRIPT_KVAR_FIRST) ||
3602 ((old & ~RELOC_MASK) >
3603 SCRIPT_KVAR_LAST))
3604 panic("ncr KVAR out of range");
3605 new = vtophys(script_kvars[old &
3606 ~RELOC_MASK]);
3607 break;
3608 #endif
3609 case 0:
3610 /* Don't relocate a 0 address. */
3611 if (old == 0) {
3612 new = old;
3613 break;
3614 }
3615 fallthrough;
3616 default:
3617 panic("ncr_script_copy_and_bind: weird relocation %x\n", old);
3618 break;
3619 }
3620
3621 *dst++ = cpu_to_scr(new);
3622 }
3623 } else
3624 *dst++ = cpu_to_scr(*src++);
3625
3626 }
3627 }
3628
3629 /*
3630 ** Linux host data structure
3631 */
3632
3633 struct host_data {
3634 struct ncb *ncb;
3635 };
3636
3637 #define PRINT_ADDR(cmd, arg...) dev_info(&cmd->device->sdev_gendev , ## arg)
3638
ncr_print_msg(struct ccb * cp,char * label,u_char * msg)3639 static void ncr_print_msg(struct ccb *cp, char *label, u_char *msg)
3640 {
3641 PRINT_ADDR(cp->cmd, "%s: ", label);
3642
3643 spi_print_msg(msg);
3644 printk("\n");
3645 }
3646
3647 /*==========================================================
3648 **
3649 ** NCR chip clock divisor table.
3650 ** Divisors are multiplied by 10,000,000 in order to make
3651 ** calculations more simple.
3652 **
3653 **==========================================================
3654 */
3655
3656 #define _5M 5000000
3657 static u_long div_10M[] =
3658 {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
3659
3660
3661 /*===============================================================
3662 **
3663 ** Prepare io register values used by ncr_init() according
3664 ** to selected and supported features.
3665 **
3666 ** NCR chips allow burst lengths of 2, 4, 8, 16, 32, 64, 128
3667 ** transfers. 32,64,128 are only supported by 875 and 895 chips.
3668 ** We use log base 2 (burst length) as internal code, with
3669 ** value 0 meaning "burst disabled".
3670 **
3671 **===============================================================
3672 */
3673
3674 /*
3675 * Burst length from burst code.
3676 */
3677 #define burst_length(bc) (!(bc))? 0 : 1 << (bc)
3678
3679 /*
3680 * Burst code from io register bits. Burst enable is ctest0 for c720
3681 */
3682 #define burst_code(dmode, ctest0) \
3683 (ctest0) & 0x80 ? 0 : (((dmode) & 0xc0) >> 6) + 1
3684
3685 /*
3686 * Set initial io register bits from burst code.
3687 */
ncr_init_burst(struct ncb * np,u_char bc)3688 static inline void ncr_init_burst(struct ncb *np, u_char bc)
3689 {
3690 u_char *be = &np->rv_ctest0;
3691 *be &= ~0x80;
3692 np->rv_dmode &= ~(0x3 << 6);
3693 np->rv_ctest5 &= ~0x4;
3694
3695 if (!bc) {
3696 *be |= 0x80;
3697 } else {
3698 --bc;
3699 np->rv_dmode |= ((bc & 0x3) << 6);
3700 np->rv_ctest5 |= (bc & 0x4);
3701 }
3702 }
3703
ncr_prepare_setting(struct ncb * np)3704 static void __init ncr_prepare_setting(struct ncb *np)
3705 {
3706 u_char burst_max;
3707 u_long period;
3708 int i;
3709
3710 /*
3711 ** Save assumed BIOS setting
3712 */
3713
3714 np->sv_scntl0 = INB(nc_scntl0) & 0x0a;
3715 np->sv_scntl3 = INB(nc_scntl3) & 0x07;
3716 np->sv_dmode = INB(nc_dmode) & 0xce;
3717 np->sv_dcntl = INB(nc_dcntl) & 0xa8;
3718 np->sv_ctest0 = INB(nc_ctest0) & 0x84;
3719 np->sv_ctest3 = INB(nc_ctest3) & 0x01;
3720 np->sv_ctest4 = INB(nc_ctest4) & 0x80;
3721 np->sv_ctest5 = INB(nc_ctest5) & 0x24;
3722 np->sv_gpcntl = INB(nc_gpcntl);
3723 np->sv_stest2 = INB(nc_stest2) & 0x20;
3724 np->sv_stest4 = INB(nc_stest4);
3725
3726 /*
3727 ** Wide ?
3728 */
3729
3730 np->maxwide = (np->features & FE_WIDE)? 1 : 0;
3731
3732 /*
3733 * Guess the frequency of the chip's clock.
3734 */
3735 if (np->features & FE_ULTRA)
3736 np->clock_khz = 80000;
3737 else
3738 np->clock_khz = 40000;
3739
3740 /*
3741 * Get the clock multiplier factor.
3742 */
3743 if (np->features & FE_QUAD)
3744 np->multiplier = 4;
3745 else if (np->features & FE_DBLR)
3746 np->multiplier = 2;
3747 else
3748 np->multiplier = 1;
3749
3750 /*
3751 * Measure SCSI clock frequency for chips
3752 * it may vary from assumed one.
3753 */
3754 if (np->features & FE_VARCLK)
3755 ncr_getclock(np, np->multiplier);
3756
3757 /*
3758 * Divisor to be used for async (timer pre-scaler).
3759 */
3760 i = np->clock_divn - 1;
3761 while (--i >= 0) {
3762 if (10ul * SCSI_NCR_MIN_ASYNC * np->clock_khz > div_10M[i]) {
3763 ++i;
3764 break;
3765 }
3766 }
3767 np->rv_scntl3 = i+1;
3768
3769 /*
3770 * Minimum synchronous period factor supported by the chip.
3771 * Btw, 'period' is in tenths of nanoseconds.
3772 */
3773
3774 period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
3775 if (period <= 250) np->minsync = 10;
3776 else if (period <= 303) np->minsync = 11;
3777 else if (period <= 500) np->minsync = 12;
3778 else np->minsync = (period + 40 - 1) / 40;
3779
3780 /*
3781 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
3782 */
3783
3784 if (np->minsync < 25 && !(np->features & FE_ULTRA))
3785 np->minsync = 25;
3786
3787 /*
3788 * Maximum synchronous period factor supported by the chip.
3789 */
3790
3791 period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
3792 np->maxsync = period > 2540 ? 254 : period / 10;
3793
3794 /*
3795 ** Prepare initial value of other IO registers
3796 */
3797 #if defined SCSI_NCR_TRUST_BIOS_SETTING
3798 np->rv_scntl0 = np->sv_scntl0;
3799 np->rv_dmode = np->sv_dmode;
3800 np->rv_dcntl = np->sv_dcntl;
3801 np->rv_ctest0 = np->sv_ctest0;
3802 np->rv_ctest3 = np->sv_ctest3;
3803 np->rv_ctest4 = np->sv_ctest4;
3804 np->rv_ctest5 = np->sv_ctest5;
3805 burst_max = burst_code(np->sv_dmode, np->sv_ctest0);
3806 #else
3807
3808 /*
3809 ** Select burst length (dwords)
3810 */
3811 burst_max = driver_setup.burst_max;
3812 if (burst_max == 255)
3813 burst_max = burst_code(np->sv_dmode, np->sv_ctest0);
3814 if (burst_max > 7)
3815 burst_max = 7;
3816 if (burst_max > np->maxburst)
3817 burst_max = np->maxburst;
3818
3819 /*
3820 ** Select all supported special features
3821 */
3822 if (np->features & FE_ERL)
3823 np->rv_dmode |= ERL; /* Enable Read Line */
3824 if (np->features & FE_BOF)
3825 np->rv_dmode |= BOF; /* Burst Opcode Fetch */
3826 if (np->features & FE_ERMP)
3827 np->rv_dmode |= ERMP; /* Enable Read Multiple */
3828 if (np->features & FE_PFEN)
3829 np->rv_dcntl |= PFEN; /* Prefetch Enable */
3830 if (np->features & FE_CLSE)
3831 np->rv_dcntl |= CLSE; /* Cache Line Size Enable */
3832 if (np->features & FE_WRIE)
3833 np->rv_ctest3 |= WRIE; /* Write and Invalidate */
3834 if (np->features & FE_DFS)
3835 np->rv_ctest5 |= DFS; /* Dma Fifo Size */
3836 if (np->features & FE_MUX)
3837 np->rv_ctest4 |= MUX; /* Host bus multiplex mode */
3838 if (np->features & FE_EA)
3839 np->rv_dcntl |= EA; /* Enable ACK */
3840 if (np->features & FE_EHP)
3841 np->rv_ctest0 |= EHP; /* Even host parity */
3842
3843 /*
3844 ** Select some other
3845 */
3846 if (driver_setup.master_parity)
3847 np->rv_ctest4 |= MPEE; /* Master parity checking */
3848 if (driver_setup.scsi_parity)
3849 np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */
3850
3851 /*
3852 ** Get SCSI addr of host adapter (set by bios?).
3853 */
3854 if (np->myaddr == 255) {
3855 np->myaddr = INB(nc_scid) & 0x07;
3856 if (!np->myaddr)
3857 np->myaddr = SCSI_NCR_MYADDR;
3858 }
3859
3860 #endif /* SCSI_NCR_TRUST_BIOS_SETTING */
3861
3862 /*
3863 * Prepare initial io register bits for burst length
3864 */
3865 ncr_init_burst(np, burst_max);
3866
3867 /*
3868 ** Set SCSI BUS mode.
3869 **
3870 ** - ULTRA2 chips (895/895A/896) report the current
3871 ** BUS mode through the STEST4 IO register.
3872 ** - For previous generation chips (825/825A/875),
3873 ** user has to tell us how to check against HVD,
3874 ** since a 100% safe algorithm is not possible.
3875 */
3876 np->scsi_mode = SMODE_SE;
3877 if (np->features & FE_DIFF) {
3878 switch(driver_setup.diff_support) {
3879 case 4: /* Trust previous settings if present, then GPIO3 */
3880 if (np->sv_scntl3) {
3881 if (np->sv_stest2 & 0x20)
3882 np->scsi_mode = SMODE_HVD;
3883 break;
3884 }
3885 fallthrough;
3886 case 3: /* SYMBIOS controllers report HVD through GPIO3 */
3887 if (INB(nc_gpreg) & 0x08)
3888 break;
3889 fallthrough;
3890 case 2: /* Set HVD unconditionally */
3891 np->scsi_mode = SMODE_HVD;
3892 fallthrough;
3893 case 1: /* Trust previous settings for HVD */
3894 if (np->sv_stest2 & 0x20)
3895 np->scsi_mode = SMODE_HVD;
3896 break;
3897 default:/* Don't care about HVD */
3898 break;
3899 }
3900 }
3901 if (np->scsi_mode == SMODE_HVD)
3902 np->rv_stest2 |= 0x20;
3903
3904 /*
3905 ** Set LED support from SCRIPTS.
3906 ** Ignore this feature for boards known to use a
3907 ** specific GPIO wiring and for the 895A or 896
3908 ** that drive the LED directly.
3909 ** Also probe initial setting of GPIO0 as output.
3910 */
3911 if ((driver_setup.led_pin) &&
3912 !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
3913 np->features |= FE_LED0;
3914
3915 /*
3916 ** Set irq mode.
3917 */
3918 switch(driver_setup.irqm & 3) {
3919 case 2:
3920 np->rv_dcntl |= IRQM;
3921 break;
3922 case 1:
3923 np->rv_dcntl |= (np->sv_dcntl & IRQM);
3924 break;
3925 default:
3926 break;
3927 }
3928
3929 /*
3930 ** Configure targets according to driver setup.
3931 ** Allow to override sync, wide and NOSCAN from
3932 ** boot command line.
3933 */
3934 for (i = 0 ; i < MAX_TARGET ; i++) {
3935 struct tcb *tp = &np->target[i];
3936
3937 tp->usrsync = driver_setup.default_sync;
3938 tp->usrwide = driver_setup.max_wide;
3939 tp->usrtags = MAX_TAGS;
3940 tp->period = 0xffff;
3941 if (!driver_setup.disconnection)
3942 np->target[i].usrflag = UF_NODISC;
3943 }
3944
3945 /*
3946 ** Announce all that stuff to user.
3947 */
3948
3949 printk(KERN_INFO "%s: ID %d, Fast-%d%s%s\n", ncr_name(np),
3950 np->myaddr,
3951 np->minsync < 12 ? 40 : (np->minsync < 25 ? 20 : 10),
3952 (np->rv_scntl0 & 0xa) ? ", Parity Checking" : ", NO Parity",
3953 (np->rv_stest2 & 0x20) ? ", Differential" : "");
3954
3955 if (bootverbose > 1) {
3956 printk (KERN_INFO "%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
3957 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
3958 ncr_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
3959 np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
3960
3961 printk (KERN_INFO "%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
3962 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
3963 ncr_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
3964 np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
3965 }
3966
3967 if (bootverbose && np->paddr2)
3968 printk (KERN_INFO "%s: on-chip RAM at 0x%lx\n",
3969 ncr_name(np), np->paddr2);
3970 }
3971
3972 /*==========================================================
3973 **
3974 **
3975 ** Done SCSI commands list management.
3976 **
3977 ** We donnot enter the scsi_done() callback immediately
3978 ** after a command has been seen as completed but we
3979 ** insert it into a list which is flushed outside any kind
3980 ** of driver critical section.
3981 ** This allows to do minimal stuff under interrupt and
3982 ** inside critical sections and to also avoid locking up
3983 ** on recursive calls to driver entry points under SMP.
3984 ** In fact, the only kernel point which is entered by the
3985 ** driver with a driver lock set is kmalloc(GFP_ATOMIC)
3986 ** that shall not reenter the driver under any circumstances,
3987 ** AFAIK.
3988 **
3989 **==========================================================
3990 */
ncr_queue_done_cmd(struct ncb * np,struct scsi_cmnd * cmd)3991 static inline void ncr_queue_done_cmd(struct ncb *np, struct scsi_cmnd *cmd)
3992 {
3993 unmap_scsi_data(np, cmd);
3994 cmd->host_scribble = (char *) np->done_list;
3995 np->done_list = cmd;
3996 }
3997
ncr_flush_done_cmds(struct scsi_cmnd * lcmd)3998 static inline void ncr_flush_done_cmds(struct scsi_cmnd *lcmd)
3999 {
4000 struct scsi_cmnd *cmd;
4001
4002 while (lcmd) {
4003 cmd = lcmd;
4004 lcmd = (struct scsi_cmnd *) cmd->host_scribble;
4005 scsi_done(cmd);
4006 }
4007 }
4008
4009 /*==========================================================
4010 **
4011 **
4012 ** Prepare the next negotiation message if needed.
4013 **
4014 ** Fill in the part of message buffer that contains the
4015 ** negotiation and the nego_status field of the CCB.
4016 ** Returns the size of the message in bytes.
4017 **
4018 **
4019 **==========================================================
4020 */
4021
4022
ncr_prepare_nego(struct ncb * np,struct ccb * cp,u_char * msgptr)4023 static int ncr_prepare_nego(struct ncb *np, struct ccb *cp, u_char *msgptr)
4024 {
4025 struct tcb *tp = &np->target[cp->target];
4026 int msglen = 0;
4027 int nego = 0;
4028 struct scsi_target *starget = tp->starget;
4029
4030 /* negotiate wide transfers ? */
4031 if (!tp->widedone) {
4032 if (spi_support_wide(starget)) {
4033 nego = NS_WIDE;
4034 } else
4035 tp->widedone=1;
4036 }
4037
4038 /* negotiate synchronous transfers? */
4039 if (!nego && !tp->period) {
4040 if (spi_support_sync(starget)) {
4041 nego = NS_SYNC;
4042 } else {
4043 tp->period =0xffff;
4044 dev_info(&starget->dev, "target did not report SYNC.\n");
4045 }
4046 }
4047
4048 switch (nego) {
4049 case NS_SYNC:
4050 msglen += spi_populate_sync_msg(msgptr + msglen,
4051 tp->maxoffs ? tp->minsync : 0, tp->maxoffs);
4052 break;
4053 case NS_WIDE:
4054 msglen += spi_populate_width_msg(msgptr + msglen, tp->usrwide);
4055 break;
4056 }
4057
4058 cp->nego_status = nego;
4059
4060 if (nego) {
4061 tp->nego_cp = cp;
4062 if (DEBUG_FLAGS & DEBUG_NEGO) {
4063 ncr_print_msg(cp, nego == NS_WIDE ?
4064 "wide msgout":"sync_msgout", msgptr);
4065 }
4066 }
4067
4068 return msglen;
4069 }
4070
4071
4072
4073 /*==========================================================
4074 **
4075 **
4076 ** Start execution of a SCSI command.
4077 ** This is called from the generic SCSI driver.
4078 **
4079 **
4080 **==========================================================
4081 */
ncr_queue_command(struct ncb * np,struct scsi_cmnd * cmd)4082 static int ncr_queue_command (struct ncb *np, struct scsi_cmnd *cmd)
4083 {
4084 struct scsi_device *sdev = cmd->device;
4085 struct tcb *tp = &np->target[sdev->id];
4086 struct lcb *lp = tp->lp[sdev->lun];
4087 struct ccb *cp;
4088
4089 int segments;
4090 u_char idmsg, *msgptr;
4091 u32 msglen;
4092 int direction;
4093 u32 lastp, goalp;
4094
4095 /*---------------------------------------------
4096 **
4097 ** Some shortcuts ...
4098 **
4099 **---------------------------------------------
4100 */
4101 if ((sdev->id == np->myaddr ) ||
4102 (sdev->id >= MAX_TARGET) ||
4103 (sdev->lun >= MAX_LUN )) {
4104 return(DID_BAD_TARGET);
4105 }
4106
4107 /*---------------------------------------------
4108 **
4109 ** Complete the 1st TEST UNIT READY command
4110 ** with error condition if the device is
4111 ** flagged NOSCAN, in order to speed up
4112 ** the boot.
4113 **
4114 **---------------------------------------------
4115 */
4116 if ((cmd->cmnd[0] == 0 || cmd->cmnd[0] == 0x12) &&
4117 (tp->usrflag & UF_NOSCAN)) {
4118 tp->usrflag &= ~UF_NOSCAN;
4119 return DID_BAD_TARGET;
4120 }
4121
4122 if (DEBUG_FLAGS & DEBUG_TINY) {
4123 PRINT_ADDR(cmd, "CMD=%x ", cmd->cmnd[0]);
4124 }
4125
4126 /*---------------------------------------------------
4127 **
4128 ** Assign a ccb / bind cmd.
4129 ** If resetting, shorten settle_time if necessary
4130 ** in order to avoid spurious timeouts.
4131 ** If resetting or no free ccb,
4132 ** insert cmd into the waiting list.
4133 **
4134 **----------------------------------------------------
4135 */
4136 if (np->settle_time && scsi_cmd_to_rq(cmd)->timeout >= HZ) {
4137 u_long tlimit = jiffies + scsi_cmd_to_rq(cmd)->timeout - HZ;
4138 if (time_after(np->settle_time, tlimit))
4139 np->settle_time = tlimit;
4140 }
4141
4142 if (np->settle_time || !(cp=ncr_get_ccb (np, cmd))) {
4143 insert_into_waiting_list(np, cmd);
4144 return(DID_OK);
4145 }
4146 cp->cmd = cmd;
4147
4148 /*----------------------------------------------------
4149 **
4150 ** Build the identify / tag / sdtr message
4151 **
4152 **----------------------------------------------------
4153 */
4154
4155 idmsg = IDENTIFY(0, sdev->lun);
4156
4157 if (cp ->tag != NO_TAG ||
4158 (cp != np->ccb && np->disc && !(tp->usrflag & UF_NODISC)))
4159 idmsg |= 0x40;
4160
4161 msgptr = cp->scsi_smsg;
4162 msglen = 0;
4163 msgptr[msglen++] = idmsg;
4164
4165 if (cp->tag != NO_TAG) {
4166 char order = np->order;
4167
4168 /*
4169 ** Force ordered tag if necessary to avoid timeouts
4170 ** and to preserve interactivity.
4171 */
4172 if (lp && time_after(jiffies, lp->tags_stime)) {
4173 if (lp->tags_smap) {
4174 order = ORDERED_QUEUE_TAG;
4175 if ((DEBUG_FLAGS & DEBUG_TAGS)||bootverbose>2){
4176 PRINT_ADDR(cmd,
4177 "ordered tag forced.\n");
4178 }
4179 }
4180 lp->tags_stime = jiffies + 3*HZ;
4181 lp->tags_smap = lp->tags_umap;
4182 }
4183
4184 if (order == 0) {
4185 /*
4186 ** Ordered write ops, unordered read ops.
4187 */
4188 switch (cmd->cmnd[0]) {
4189 case 0x08: /* READ_SMALL (6) */
4190 case 0x28: /* READ_BIG (10) */
4191 case 0xa8: /* READ_HUGE (12) */
4192 order = SIMPLE_QUEUE_TAG;
4193 break;
4194 default:
4195 order = ORDERED_QUEUE_TAG;
4196 }
4197 }
4198 msgptr[msglen++] = order;
4199 /*
4200 ** Actual tags are numbered 1,3,5,..2*MAXTAGS+1,
4201 ** since we may have to deal with devices that have
4202 ** problems with #TAG 0 or too great #TAG numbers.
4203 */
4204 msgptr[msglen++] = (cp->tag << 1) + 1;
4205 }
4206
4207 /*----------------------------------------------------
4208 **
4209 ** Build the data descriptors
4210 **
4211 **----------------------------------------------------
4212 */
4213
4214 direction = cmd->sc_data_direction;
4215 if (direction != DMA_NONE) {
4216 segments = ncr_scatter(np, cp, cp->cmd);
4217 if (segments < 0) {
4218 ncr_free_ccb(np, cp);
4219 return(DID_ERROR);
4220 }
4221 }
4222 else {
4223 cp->data_len = 0;
4224 segments = 0;
4225 }
4226
4227 /*---------------------------------------------------
4228 **
4229 ** negotiation required?
4230 **
4231 ** (nego_status is filled by ncr_prepare_nego())
4232 **
4233 **---------------------------------------------------
4234 */
4235
4236 cp->nego_status = 0;
4237
4238 if ((!tp->widedone || !tp->period) && !tp->nego_cp && lp) {
4239 msglen += ncr_prepare_nego (np, cp, msgptr + msglen);
4240 }
4241
4242 /*----------------------------------------------------
4243 **
4244 ** Determine xfer direction.
4245 **
4246 **----------------------------------------------------
4247 */
4248 if (!cp->data_len)
4249 direction = DMA_NONE;
4250
4251 /*
4252 ** If data direction is BIDIRECTIONAL, speculate FROM_DEVICE
4253 ** but prepare alternate pointers for TO_DEVICE in case
4254 ** of our speculation will be just wrong.
4255 ** SCRIPTS will swap values if needed.
4256 */
4257 switch(direction) {
4258 case DMA_BIDIRECTIONAL:
4259 case DMA_TO_DEVICE:
4260 goalp = NCB_SCRIPT_PHYS (np, data_out2) + 8;
4261 if (segments <= MAX_SCATTERL)
4262 lastp = goalp - 8 - (segments * 16);
4263 else {
4264 lastp = NCB_SCRIPTH_PHYS (np, hdata_out2);
4265 lastp -= (segments - MAX_SCATTERL) * 16;
4266 }
4267 if (direction != DMA_BIDIRECTIONAL)
4268 break;
4269 cp->phys.header.wgoalp = cpu_to_scr(goalp);
4270 cp->phys.header.wlastp = cpu_to_scr(lastp);
4271 fallthrough;
4272 case DMA_FROM_DEVICE:
4273 goalp = NCB_SCRIPT_PHYS (np, data_in2) + 8;
4274 if (segments <= MAX_SCATTERL)
4275 lastp = goalp - 8 - (segments * 16);
4276 else {
4277 lastp = NCB_SCRIPTH_PHYS (np, hdata_in2);
4278 lastp -= (segments - MAX_SCATTERL) * 16;
4279 }
4280 break;
4281 default:
4282 case DMA_NONE:
4283 lastp = goalp = NCB_SCRIPT_PHYS (np, no_data);
4284 break;
4285 }
4286
4287 /*
4288 ** Set all pointers values needed by SCRIPTS.
4289 ** If direction is unknown, start at data_io.
4290 */
4291 cp->phys.header.lastp = cpu_to_scr(lastp);
4292 cp->phys.header.goalp = cpu_to_scr(goalp);
4293
4294 if (direction == DMA_BIDIRECTIONAL)
4295 cp->phys.header.savep =
4296 cpu_to_scr(NCB_SCRIPTH_PHYS (np, data_io));
4297 else
4298 cp->phys.header.savep= cpu_to_scr(lastp);
4299
4300 /*
4301 ** Save the initial data pointer in order to be able
4302 ** to redo the command.
4303 */
4304 cp->startp = cp->phys.header.savep;
4305
4306 /*----------------------------------------------------
4307 **
4308 ** fill in ccb
4309 **
4310 **----------------------------------------------------
4311 **
4312 **
4313 ** physical -> virtual backlink
4314 ** Generic SCSI command
4315 */
4316
4317 /*
4318 ** Startqueue
4319 */
4320 cp->start.schedule.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, select));
4321 cp->restart.schedule.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_dsa));
4322 /*
4323 ** select
4324 */
4325 cp->phys.select.sel_id = sdev_id(sdev);
4326 cp->phys.select.sel_scntl3 = tp->wval;
4327 cp->phys.select.sel_sxfer = tp->sval;
4328 /*
4329 ** message
4330 */
4331 cp->phys.smsg.addr = cpu_to_scr(CCB_PHYS (cp, scsi_smsg));
4332 cp->phys.smsg.size = cpu_to_scr(msglen);
4333
4334 /*
4335 ** command
4336 */
4337 memcpy(cp->cdb_buf, cmd->cmnd, min_t(int, cmd->cmd_len, sizeof(cp->cdb_buf)));
4338 cp->phys.cmd.addr = cpu_to_scr(CCB_PHYS (cp, cdb_buf[0]));
4339 cp->phys.cmd.size = cpu_to_scr(cmd->cmd_len);
4340
4341 /*
4342 ** status
4343 */
4344 cp->actualquirks = 0;
4345 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
4346 cp->scsi_status = SAM_STAT_ILLEGAL;
4347 cp->parity_status = 0;
4348
4349 cp->xerr_status = XE_OK;
4350
4351 /*----------------------------------------------------
4352 **
4353 ** Critical region: start this job.
4354 **
4355 **----------------------------------------------------
4356 */
4357
4358 /* activate this job. */
4359 cp->magic = CCB_MAGIC;
4360
4361 /*
4362 ** insert next CCBs into start queue.
4363 ** 2 max at a time is enough to flush the CCB wait queue.
4364 */
4365 cp->auto_sense = 0;
4366 if (lp)
4367 ncr_start_next_ccb(np, lp, 2);
4368 else
4369 ncr_put_start_queue(np, cp);
4370
4371 /* Command is successfully queued. */
4372
4373 return DID_OK;
4374 }
4375
4376
4377 /*==========================================================
4378 **
4379 **
4380 ** Insert a CCB into the start queue and wake up the
4381 ** SCRIPTS processor.
4382 **
4383 **
4384 **==========================================================
4385 */
4386
ncr_start_next_ccb(struct ncb * np,struct lcb * lp,int maxn)4387 static void ncr_start_next_ccb(struct ncb *np, struct lcb *lp, int maxn)
4388 {
4389 struct list_head *qp;
4390 struct ccb *cp;
4391
4392 if (lp->held_ccb)
4393 return;
4394
4395 while (maxn-- && lp->queuedccbs < lp->queuedepth) {
4396 qp = ncr_list_pop(&lp->wait_ccbq);
4397 if (!qp)
4398 break;
4399 ++lp->queuedccbs;
4400 cp = list_entry(qp, struct ccb, link_ccbq);
4401 list_add_tail(qp, &lp->busy_ccbq);
4402 lp->jump_ccb[cp->tag == NO_TAG ? 0 : cp->tag] =
4403 cpu_to_scr(CCB_PHYS (cp, restart));
4404 ncr_put_start_queue(np, cp);
4405 }
4406 }
4407
ncr_put_start_queue(struct ncb * np,struct ccb * cp)4408 static void ncr_put_start_queue(struct ncb *np, struct ccb *cp)
4409 {
4410 u16 qidx;
4411
4412 /*
4413 ** insert into start queue.
4414 */
4415 if (!np->squeueput) np->squeueput = 1;
4416 qidx = np->squeueput + 2;
4417 if (qidx >= MAX_START + MAX_START) qidx = 1;
4418
4419 np->scripth->tryloop [qidx] = cpu_to_scr(NCB_SCRIPT_PHYS (np, idle));
4420 MEMORY_BARRIER();
4421 np->scripth->tryloop [np->squeueput] = cpu_to_scr(CCB_PHYS (cp, start));
4422
4423 np->squeueput = qidx;
4424 ++np->queuedccbs;
4425 cp->queued = 1;
4426
4427 if (DEBUG_FLAGS & DEBUG_QUEUE)
4428 printk ("%s: queuepos=%d.\n", ncr_name (np), np->squeueput);
4429
4430 /*
4431 ** Script processor may be waiting for reselect.
4432 ** Wake it up.
4433 */
4434 MEMORY_BARRIER();
4435 OUTB (nc_istat, SIGP);
4436 }
4437
4438
ncr_reset_scsi_bus(struct ncb * np,int enab_int,int settle_delay)4439 static int ncr_reset_scsi_bus(struct ncb *np, int enab_int, int settle_delay)
4440 {
4441 u32 term;
4442 int retv = 0;
4443
4444 np->settle_time = jiffies + settle_delay * HZ;
4445
4446 if (bootverbose > 1)
4447 printk("%s: resetting, "
4448 "command processing suspended for %d seconds\n",
4449 ncr_name(np), settle_delay);
4450
4451 ncr_chip_reset(np, 100);
4452 udelay(2000); /* The 895 needs time for the bus mode to settle */
4453 if (enab_int)
4454 OUTW (nc_sien, RST);
4455 /*
4456 ** Enable Tolerant, reset IRQD if present and
4457 ** properly set IRQ mode, prior to resetting the bus.
4458 */
4459 OUTB (nc_stest3, TE);
4460 OUTB (nc_scntl1, CRST);
4461 udelay(200);
4462
4463 if (!driver_setup.bus_check)
4464 goto out;
4465 /*
4466 ** Check for no terminators or SCSI bus shorts to ground.
4467 ** Read SCSI data bus, data parity bits and control signals.
4468 ** We are expecting RESET to be TRUE and other signals to be
4469 ** FALSE.
4470 */
4471
4472 term = INB(nc_sstat0);
4473 term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */
4474 term |= ((INB(nc_sstat2) & 0x01) << 26) | /* sdp1 */
4475 ((INW(nc_sbdl) & 0xff) << 9) | /* d7-0 */
4476 ((INW(nc_sbdl) & 0xff00) << 10) | /* d15-8 */
4477 INB(nc_sbcl); /* req ack bsy sel atn msg cd io */
4478
4479 if (!(np->features & FE_WIDE))
4480 term &= 0x3ffff;
4481
4482 if (term != (2<<7)) {
4483 printk("%s: suspicious SCSI data while resetting the BUS.\n",
4484 ncr_name(np));
4485 printk("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
4486 "0x%lx, expecting 0x%lx\n",
4487 ncr_name(np),
4488 (np->features & FE_WIDE) ? "dp1,d15-8," : "",
4489 (u_long)term, (u_long)(2<<7));
4490 if (driver_setup.bus_check == 1)
4491 retv = 1;
4492 }
4493 out:
4494 OUTB (nc_scntl1, 0);
4495 return retv;
4496 }
4497
4498 /*
4499 * Start reset process.
4500 * If reset in progress do nothing.
4501 * The interrupt handler will reinitialize the chip.
4502 * The timeout handler will wait for settle_time before
4503 * clearing it and so resuming command processing.
4504 */
ncr_start_reset(struct ncb * np)4505 static void ncr_start_reset(struct ncb *np)
4506 {
4507 if (!np->settle_time) {
4508 ncr_reset_scsi_bus(np, 1, driver_setup.settle_delay);
4509 }
4510 }
4511
4512 /*==========================================================
4513 **
4514 **
4515 ** Reset the SCSI BUS.
4516 ** This is called from the generic SCSI driver.
4517 **
4518 **
4519 **==========================================================
4520 */
ncr_reset_bus(struct ncb * np)4521 static int ncr_reset_bus (struct ncb *np)
4522 {
4523 /*
4524 * Return immediately if reset is in progress.
4525 */
4526 if (np->settle_time) {
4527 return FAILED;
4528 }
4529 /*
4530 * Start the reset process.
4531 * The script processor is then assumed to be stopped.
4532 * Commands will now be queued in the waiting list until a settle
4533 * delay of 2 seconds will be completed.
4534 */
4535 ncr_start_reset(np);
4536 /*
4537 * Wake-up all awaiting commands with DID_RESET.
4538 */
4539 reset_waiting_list(np);
4540 /*
4541 * Wake-up all pending commands with HS_RESET -> DID_RESET.
4542 */
4543 ncr_wakeup(np, HS_RESET);
4544
4545 return SUCCESS;
4546 }
4547
ncr_detach(struct ncb * np)4548 static void ncr_detach(struct ncb *np)
4549 {
4550 struct ccb *cp;
4551 struct tcb *tp;
4552 struct lcb *lp;
4553 int target, lun;
4554 int i;
4555 char inst_name[16];
4556
4557 /* Local copy so we don't access np after freeing it! */
4558 strscpy(inst_name, ncr_name(np), sizeof(inst_name));
4559
4560 printk("%s: releasing host resources\n", ncr_name(np));
4561
4562 /*
4563 ** Stop the ncr_timeout process
4564 ** Set release_stage to 1 and wait that ncr_timeout() set it to 2.
4565 */
4566
4567 #ifdef DEBUG_NCR53C8XX
4568 printk("%s: stopping the timer\n", ncr_name(np));
4569 #endif
4570 np->release_stage = 1;
4571 for (i = 50 ; i && np->release_stage != 2 ; i--)
4572 mdelay(100);
4573 if (np->release_stage != 2)
4574 printk("%s: the timer seems to be already stopped\n", ncr_name(np));
4575 else np->release_stage = 2;
4576
4577 /*
4578 ** Disable chip interrupts
4579 */
4580
4581 #ifdef DEBUG_NCR53C8XX
4582 printk("%s: disabling chip interrupts\n", ncr_name(np));
4583 #endif
4584 OUTW (nc_sien , 0);
4585 OUTB (nc_dien , 0);
4586
4587 /*
4588 ** Reset NCR chip
4589 ** Restore bios setting for automatic clock detection.
4590 */
4591
4592 printk("%s: resetting chip\n", ncr_name(np));
4593 ncr_chip_reset(np, 100);
4594
4595 OUTB(nc_dmode, np->sv_dmode);
4596 OUTB(nc_dcntl, np->sv_dcntl);
4597 OUTB(nc_ctest0, np->sv_ctest0);
4598 OUTB(nc_ctest3, np->sv_ctest3);
4599 OUTB(nc_ctest4, np->sv_ctest4);
4600 OUTB(nc_ctest5, np->sv_ctest5);
4601 OUTB(nc_gpcntl, np->sv_gpcntl);
4602 OUTB(nc_stest2, np->sv_stest2);
4603
4604 ncr_selectclock(np, np->sv_scntl3);
4605
4606 /*
4607 ** Free allocated ccb(s)
4608 */
4609
4610 while ((cp=np->ccb->link_ccb) != NULL) {
4611 np->ccb->link_ccb = cp->link_ccb;
4612 if (cp->host_status) {
4613 printk("%s: shall free an active ccb (host_status=%d)\n",
4614 ncr_name(np), cp->host_status);
4615 }
4616 #ifdef DEBUG_NCR53C8XX
4617 printk("%s: freeing ccb (%lx)\n", ncr_name(np), (u_long) cp);
4618 #endif
4619 m_free_dma(cp, sizeof(*cp), "CCB");
4620 }
4621
4622 /* Free allocated tp(s) */
4623
4624 for (target = 0; target < MAX_TARGET ; target++) {
4625 tp=&np->target[target];
4626 for (lun = 0 ; lun < MAX_LUN ; lun++) {
4627 lp = tp->lp[lun];
4628 if (lp) {
4629 #ifdef DEBUG_NCR53C8XX
4630 printk("%s: freeing lp (%lx)\n", ncr_name(np), (u_long) lp);
4631 #endif
4632 if (lp->jump_ccb != &lp->jump_ccb_0)
4633 m_free_dma(lp->jump_ccb,256,"JUMP_CCB");
4634 m_free_dma(lp, sizeof(*lp), "LCB");
4635 }
4636 }
4637 }
4638
4639 if (np->scripth0)
4640 m_free_dma(np->scripth0, sizeof(struct scripth), "SCRIPTH");
4641 if (np->script0)
4642 m_free_dma(np->script0, sizeof(struct script), "SCRIPT");
4643 if (np->ccb)
4644 m_free_dma(np->ccb, sizeof(struct ccb), "CCB");
4645 m_free_dma(np, sizeof(struct ncb), "NCB");
4646
4647 printk("%s: host resources successfully released\n", inst_name);
4648 }
4649
4650 /*==========================================================
4651 **
4652 **
4653 ** Complete execution of a SCSI command.
4654 ** Signal completion to the generic SCSI driver.
4655 **
4656 **
4657 **==========================================================
4658 */
4659
ncr_complete(struct ncb * np,struct ccb * cp)4660 void ncr_complete (struct ncb *np, struct ccb *cp)
4661 {
4662 struct scsi_cmnd *cmd;
4663 struct tcb *tp;
4664 struct lcb *lp;
4665
4666 /*
4667 ** Sanity check
4668 */
4669
4670 if (!cp || cp->magic != CCB_MAGIC || !cp->cmd)
4671 return;
4672
4673 /*
4674 ** Print minimal debug information.
4675 */
4676
4677 if (DEBUG_FLAGS & DEBUG_TINY)
4678 printk ("CCB=%lx STAT=%x/%x\n", (unsigned long)cp,
4679 cp->host_status,cp->scsi_status);
4680
4681 /*
4682 ** Get command, target and lun pointers.
4683 */
4684
4685 cmd = cp->cmd;
4686 cp->cmd = NULL;
4687 tp = &np->target[cmd->device->id];
4688 lp = tp->lp[cmd->device->lun];
4689
4690 /*
4691 ** We donnot queue more than 1 ccb per target
4692 ** with negotiation at any time. If this ccb was
4693 ** used for negotiation, clear this info in the tcb.
4694 */
4695
4696 if (cp == tp->nego_cp)
4697 tp->nego_cp = NULL;
4698
4699 /*
4700 ** If auto-sense performed, change scsi status.
4701 */
4702 if (cp->auto_sense) {
4703 cp->scsi_status = cp->auto_sense;
4704 }
4705
4706 /*
4707 ** If we were recovering from queue full or performing
4708 ** auto-sense, requeue skipped CCBs to the wait queue.
4709 */
4710
4711 if (lp && lp->held_ccb) {
4712 if (cp == lp->held_ccb) {
4713 list_splice_init(&lp->skip_ccbq, &lp->wait_ccbq);
4714 lp->held_ccb = NULL;
4715 }
4716 }
4717
4718 /*
4719 ** Check for parity errors.
4720 */
4721
4722 if (cp->parity_status > 1) {
4723 PRINT_ADDR(cmd, "%d parity error(s).\n",cp->parity_status);
4724 }
4725
4726 /*
4727 ** Check for extended errors.
4728 */
4729
4730 if (cp->xerr_status != XE_OK) {
4731 switch (cp->xerr_status) {
4732 case XE_EXTRA_DATA:
4733 PRINT_ADDR(cmd, "extraneous data discarded.\n");
4734 break;
4735 case XE_BAD_PHASE:
4736 PRINT_ADDR(cmd, "invalid scsi phase (4/5).\n");
4737 break;
4738 default:
4739 PRINT_ADDR(cmd, "extended error %d.\n",
4740 cp->xerr_status);
4741 break;
4742 }
4743 if (cp->host_status==HS_COMPLETE)
4744 cp->host_status = HS_FAIL;
4745 }
4746
4747 /*
4748 ** Print out any error for debugging purpose.
4749 */
4750 if (DEBUG_FLAGS & (DEBUG_RESULT|DEBUG_TINY)) {
4751 if (cp->host_status != HS_COMPLETE ||
4752 cp->scsi_status != SAM_STAT_GOOD) {
4753 PRINT_ADDR(cmd, "ERROR: cmd=%x host_status=%x "
4754 "scsi_status=%x\n", cmd->cmnd[0],
4755 cp->host_status, cp->scsi_status);
4756 }
4757 }
4758
4759 /*
4760 ** Check the status.
4761 */
4762 cmd->result = 0;
4763 if ( (cp->host_status == HS_COMPLETE)
4764 && (cp->scsi_status == SAM_STAT_GOOD ||
4765 cp->scsi_status == SAM_STAT_CONDITION_MET)) {
4766 /*
4767 * All went well (GOOD status).
4768 * CONDITION MET status is returned on
4769 * `Pre-Fetch' or `Search data' success.
4770 */
4771 set_status_byte(cmd, cp->scsi_status);
4772
4773 /*
4774 ** @RESID@
4775 ** Could dig out the correct value for resid,
4776 ** but it would be quite complicated.
4777 */
4778 /* if (cp->phys.header.lastp != cp->phys.header.goalp) */
4779
4780 /*
4781 ** Allocate the lcb if not yet.
4782 */
4783 if (!lp)
4784 ncr_alloc_lcb (np, cmd->device->id, cmd->device->lun);
4785
4786 tp->bytes += cp->data_len;
4787 tp->transfers ++;
4788
4789 /*
4790 ** If tags was reduced due to queue full,
4791 ** increase tags if 1000 good status received.
4792 */
4793 if (lp && lp->usetags && lp->numtags < lp->maxtags) {
4794 ++lp->num_good;
4795 if (lp->num_good >= 1000) {
4796 lp->num_good = 0;
4797 ++lp->numtags;
4798 ncr_setup_tags (np, cmd->device);
4799 }
4800 }
4801 } else if ((cp->host_status == HS_COMPLETE)
4802 && (cp->scsi_status == SAM_STAT_CHECK_CONDITION)) {
4803 /*
4804 ** Check condition code
4805 */
4806 set_status_byte(cmd, SAM_STAT_CHECK_CONDITION);
4807
4808 /*
4809 ** Copy back sense data to caller's buffer.
4810 */
4811 memcpy(cmd->sense_buffer, cp->sense_buf,
4812 min_t(size_t, SCSI_SENSE_BUFFERSIZE,
4813 sizeof(cp->sense_buf)));
4814
4815 if (DEBUG_FLAGS & (DEBUG_RESULT|DEBUG_TINY)) {
4816 u_char *p = cmd->sense_buffer;
4817 int i;
4818 PRINT_ADDR(cmd, "sense data:");
4819 for (i=0; i<14; i++) printk (" %x", *p++);
4820 printk (".\n");
4821 }
4822 } else if ((cp->host_status == HS_COMPLETE)
4823 && (cp->scsi_status == SAM_STAT_RESERVATION_CONFLICT)) {
4824 /*
4825 ** Reservation Conflict condition code
4826 */
4827 set_status_byte(cmd, SAM_STAT_RESERVATION_CONFLICT);
4828
4829 } else if ((cp->host_status == HS_COMPLETE)
4830 && (cp->scsi_status == SAM_STAT_BUSY ||
4831 cp->scsi_status == SAM_STAT_TASK_SET_FULL)) {
4832
4833 /*
4834 ** Target is busy.
4835 */
4836 set_status_byte(cmd, cp->scsi_status);
4837
4838 } else if ((cp->host_status == HS_SEL_TIMEOUT)
4839 || (cp->host_status == HS_TIMEOUT)) {
4840
4841 /*
4842 ** No response
4843 */
4844 set_status_byte(cmd, cp->scsi_status);
4845 set_host_byte(cmd, DID_TIME_OUT);
4846
4847 } else if (cp->host_status == HS_RESET) {
4848
4849 /*
4850 ** SCSI bus reset
4851 */
4852 set_status_byte(cmd, cp->scsi_status);
4853 set_host_byte(cmd, DID_RESET);
4854
4855 } else if (cp->host_status == HS_ABORTED) {
4856
4857 /*
4858 ** Transfer aborted
4859 */
4860 set_status_byte(cmd, cp->scsi_status);
4861 set_host_byte(cmd, DID_ABORT);
4862
4863 } else {
4864
4865 /*
4866 ** Other protocol messes
4867 */
4868 PRINT_ADDR(cmd, "COMMAND FAILED (%x %x) @%p.\n",
4869 cp->host_status, cp->scsi_status, cp);
4870
4871 set_status_byte(cmd, cp->scsi_status);
4872 set_host_byte(cmd, DID_ERROR);
4873 }
4874
4875 /*
4876 ** trace output
4877 */
4878
4879 if (tp->usrflag & UF_TRACE) {
4880 u_char * p;
4881 int i;
4882 PRINT_ADDR(cmd, " CMD:");
4883 p = (u_char*) &cmd->cmnd[0];
4884 for (i=0; i<cmd->cmd_len; i++) printk (" %x", *p++);
4885
4886 if (cp->host_status==HS_COMPLETE) {
4887 switch (cp->scsi_status) {
4888 case SAM_STAT_GOOD:
4889 printk (" GOOD");
4890 break;
4891 case SAM_STAT_CHECK_CONDITION:
4892 printk (" SENSE:");
4893 p = (u_char*) &cmd->sense_buffer;
4894 for (i=0; i<14; i++)
4895 printk (" %x", *p++);
4896 break;
4897 default:
4898 printk (" STAT: %x\n", cp->scsi_status);
4899 break;
4900 }
4901 } else printk (" HOSTERROR: %x", cp->host_status);
4902 printk ("\n");
4903 }
4904
4905 /*
4906 ** Free this ccb
4907 */
4908 ncr_free_ccb (np, cp);
4909
4910 /*
4911 ** requeue awaiting scsi commands for this lun.
4912 */
4913 if (lp && lp->queuedccbs < lp->queuedepth &&
4914 !list_empty(&lp->wait_ccbq))
4915 ncr_start_next_ccb(np, lp, 2);
4916
4917 /*
4918 ** requeue awaiting scsi commands for this controller.
4919 */
4920 if (np->waiting_list)
4921 requeue_waiting_list(np);
4922
4923 /*
4924 ** signal completion to generic driver.
4925 */
4926 ncr_queue_done_cmd(np, cmd);
4927 }
4928
4929 /*==========================================================
4930 **
4931 **
4932 ** Signal all (or one) control block done.
4933 **
4934 **
4935 **==========================================================
4936 */
4937
4938 /*
4939 ** This CCB has been skipped by the NCR.
4940 ** Queue it in the corresponding unit queue.
4941 */
ncr_ccb_skipped(struct ncb * np,struct ccb * cp)4942 static void ncr_ccb_skipped(struct ncb *np, struct ccb *cp)
4943 {
4944 struct tcb *tp = &np->target[cp->target];
4945 struct lcb *lp = tp->lp[cp->lun];
4946
4947 if (lp && cp != np->ccb) {
4948 cp->host_status &= ~HS_SKIPMASK;
4949 cp->start.schedule.l_paddr =
4950 cpu_to_scr(NCB_SCRIPT_PHYS (np, select));
4951 list_move_tail(&cp->link_ccbq, &lp->skip_ccbq);
4952 if (cp->queued) {
4953 --lp->queuedccbs;
4954 }
4955 }
4956 if (cp->queued) {
4957 --np->queuedccbs;
4958 cp->queued = 0;
4959 }
4960 }
4961
4962 /*
4963 ** The NCR has completed CCBs.
4964 ** Look at the DONE QUEUE if enabled, otherwise scan all CCBs
4965 */
ncr_wakeup_done(struct ncb * np)4966 void ncr_wakeup_done (struct ncb *np)
4967 {
4968 struct ccb *cp;
4969 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
4970 int i, j;
4971
4972 i = np->ccb_done_ic;
4973 while (1) {
4974 j = i+1;
4975 if (j >= MAX_DONE)
4976 j = 0;
4977
4978 cp = np->ccb_done[j];
4979 if (!CCB_DONE_VALID(cp))
4980 break;
4981
4982 np->ccb_done[j] = (struct ccb *)CCB_DONE_EMPTY;
4983 np->scripth->done_queue[5*j + 4] =
4984 cpu_to_scr(NCB_SCRIPT_PHYS (np, done_plug));
4985 MEMORY_BARRIER();
4986 np->scripth->done_queue[5*i + 4] =
4987 cpu_to_scr(NCB_SCRIPT_PHYS (np, done_end));
4988
4989 if (cp->host_status & HS_DONEMASK)
4990 ncr_complete (np, cp);
4991 else if (cp->host_status & HS_SKIPMASK)
4992 ncr_ccb_skipped (np, cp);
4993
4994 i = j;
4995 }
4996 np->ccb_done_ic = i;
4997 #else
4998 cp = np->ccb;
4999 while (cp) {
5000 if (cp->host_status & HS_DONEMASK)
5001 ncr_complete (np, cp);
5002 else if (cp->host_status & HS_SKIPMASK)
5003 ncr_ccb_skipped (np, cp);
5004 cp = cp->link_ccb;
5005 }
5006 #endif
5007 }
5008
5009 /*
5010 ** Complete all active CCBs.
5011 */
ncr_wakeup(struct ncb * np,u_long code)5012 void ncr_wakeup (struct ncb *np, u_long code)
5013 {
5014 struct ccb *cp = np->ccb;
5015
5016 while (cp) {
5017 if (cp->host_status != HS_IDLE) {
5018 cp->host_status = code;
5019 ncr_complete (np, cp);
5020 }
5021 cp = cp->link_ccb;
5022 }
5023 }
5024
5025 /*
5026 ** Reset ncr chip.
5027 */
5028
5029 /* Some initialisation must be done immediately following reset, for 53c720,
5030 * at least. EA (dcntl bit 5) isn't set here as it is set once only in
5031 * the _detect function.
5032 */
ncr_chip_reset(struct ncb * np,int delay)5033 static void ncr_chip_reset(struct ncb *np, int delay)
5034 {
5035 OUTB (nc_istat, SRST);
5036 udelay(delay);
5037 OUTB (nc_istat, 0 );
5038
5039 if (np->features & FE_EHP)
5040 OUTB (nc_ctest0, EHP);
5041 if (np->features & FE_MUX)
5042 OUTB (nc_ctest4, MUX);
5043 }
5044
5045
5046 /*==========================================================
5047 **
5048 **
5049 ** Start NCR chip.
5050 **
5051 **
5052 **==========================================================
5053 */
5054
ncr_init(struct ncb * np,int reset,char * msg,u_long code)5055 void ncr_init (struct ncb *np, int reset, char * msg, u_long code)
5056 {
5057 int i;
5058
5059 /*
5060 ** Reset chip if asked, otherwise just clear fifos.
5061 */
5062
5063 if (reset) {
5064 OUTB (nc_istat, SRST);
5065 udelay(100);
5066 }
5067 else {
5068 OUTB (nc_stest3, TE|CSF);
5069 OUTONB (nc_ctest3, CLF);
5070 }
5071
5072 /*
5073 ** Message.
5074 */
5075
5076 if (msg) printk (KERN_INFO "%s: restart (%s).\n", ncr_name (np), msg);
5077
5078 /*
5079 ** Clear Start Queue
5080 */
5081 np->queuedepth = MAX_START - 1; /* 1 entry needed as end marker */
5082 for (i = 1; i < MAX_START + MAX_START; i += 2)
5083 np->scripth0->tryloop[i] =
5084 cpu_to_scr(NCB_SCRIPT_PHYS (np, idle));
5085
5086 /*
5087 ** Start at first entry.
5088 */
5089 np->squeueput = 0;
5090 np->script0->startpos[0] = cpu_to_scr(NCB_SCRIPTH_PHYS (np, tryloop));
5091
5092 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
5093 /*
5094 ** Clear Done Queue
5095 */
5096 for (i = 0; i < MAX_DONE; i++) {
5097 np->ccb_done[i] = (struct ccb *)CCB_DONE_EMPTY;
5098 np->scripth0->done_queue[5*i + 4] =
5099 cpu_to_scr(NCB_SCRIPT_PHYS (np, done_end));
5100 }
5101 #endif
5102
5103 /*
5104 ** Start at first entry.
5105 */
5106 np->script0->done_pos[0] = cpu_to_scr(NCB_SCRIPTH_PHYS (np,done_queue));
5107 np->ccb_done_ic = MAX_DONE-1;
5108 np->scripth0->done_queue[5*(MAX_DONE-1) + 4] =
5109 cpu_to_scr(NCB_SCRIPT_PHYS (np, done_plug));
5110
5111 /*
5112 ** Wakeup all pending jobs.
5113 */
5114 ncr_wakeup (np, code);
5115
5116 /*
5117 ** Init chip.
5118 */
5119
5120 /*
5121 ** Remove reset; big delay because the 895 needs time for the
5122 ** bus mode to settle
5123 */
5124 ncr_chip_reset(np, 2000);
5125
5126 OUTB (nc_scntl0, np->rv_scntl0 | 0xc0);
5127 /* full arb., ena parity, par->ATN */
5128 OUTB (nc_scntl1, 0x00); /* odd parity, and remove CRST!! */
5129
5130 ncr_selectclock(np, np->rv_scntl3); /* Select SCSI clock */
5131
5132 OUTB (nc_scid , RRE|np->myaddr); /* Adapter SCSI address */
5133 OUTW (nc_respid, 1ul<<np->myaddr); /* Id to respond to */
5134 OUTB (nc_istat , SIGP ); /* Signal Process */
5135 OUTB (nc_dmode , np->rv_dmode); /* Burst length, dma mode */
5136 OUTB (nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */
5137
5138 OUTB (nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */
5139 OUTB (nc_ctest0, np->rv_ctest0); /* 720: CDIS and EHP */
5140 OUTB (nc_ctest3, np->rv_ctest3); /* Write and invalidate */
5141 OUTB (nc_ctest4, np->rv_ctest4); /* Master parity checking */
5142
5143 OUTB (nc_stest2, EXT|np->rv_stest2); /* Extended Sreq/Sack filtering */
5144 OUTB (nc_stest3, TE); /* TolerANT enable */
5145 OUTB (nc_stime0, 0x0c ); /* HTH disabled STO 0.25 sec */
5146
5147 /*
5148 ** Disable disconnects.
5149 */
5150
5151 np->disc = 0;
5152
5153 /*
5154 ** Enable GPIO0 pin for writing if LED support.
5155 */
5156
5157 if (np->features & FE_LED0) {
5158 OUTOFFB (nc_gpcntl, 0x01);
5159 }
5160
5161 /*
5162 ** enable ints
5163 */
5164
5165 OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
5166 OUTB (nc_dien , MDPE|BF|ABRT|SSI|SIR|IID);
5167
5168 /*
5169 ** Fill in target structure.
5170 ** Reinitialize usrsync.
5171 ** Reinitialize usrwide.
5172 ** Prepare sync negotiation according to actual SCSI bus mode.
5173 */
5174
5175 for (i=0;i<MAX_TARGET;i++) {
5176 struct tcb *tp = &np->target[i];
5177
5178 tp->sval = 0;
5179 tp->wval = np->rv_scntl3;
5180
5181 if (tp->usrsync != 255) {
5182 if (tp->usrsync <= np->maxsync) {
5183 if (tp->usrsync < np->minsync) {
5184 tp->usrsync = np->minsync;
5185 }
5186 }
5187 else
5188 tp->usrsync = 255;
5189 }
5190
5191 if (tp->usrwide > np->maxwide)
5192 tp->usrwide = np->maxwide;
5193
5194 }
5195
5196 /*
5197 ** Start script processor.
5198 */
5199 if (np->paddr2) {
5200 if (bootverbose)
5201 printk ("%s: Downloading SCSI SCRIPTS.\n",
5202 ncr_name(np));
5203 OUTL (nc_scratcha, vtobus(np->script0));
5204 OUTL_DSP (NCB_SCRIPTH_PHYS (np, start_ram));
5205 }
5206 else
5207 OUTL_DSP (NCB_SCRIPT_PHYS (np, start));
5208 }
5209
5210 /*==========================================================
5211 **
5212 ** Prepare the negotiation values for wide and
5213 ** synchronous transfers.
5214 **
5215 **==========================================================
5216 */
5217
ncr_negotiate(struct ncb * np,struct tcb * tp)5218 static void ncr_negotiate (struct ncb* np, struct tcb* tp)
5219 {
5220 /*
5221 ** minsync unit is 4ns !
5222 */
5223
5224 u_long minsync = tp->usrsync;
5225
5226 /*
5227 ** SCSI bus mode limit
5228 */
5229
5230 if (np->scsi_mode && np->scsi_mode == SMODE_SE) {
5231 if (minsync < 12) minsync = 12;
5232 }
5233
5234 /*
5235 ** our limit ..
5236 */
5237
5238 if (minsync < np->minsync)
5239 minsync = np->minsync;
5240
5241 /*
5242 ** divider limit
5243 */
5244
5245 if (minsync > np->maxsync)
5246 minsync = 255;
5247
5248 if (tp->maxoffs > np->maxoffs)
5249 tp->maxoffs = np->maxoffs;
5250
5251 tp->minsync = minsync;
5252 tp->maxoffs = (minsync<255 ? tp->maxoffs : 0);
5253
5254 /*
5255 ** period=0: has to negotiate sync transfer
5256 */
5257
5258 tp->period=0;
5259
5260 /*
5261 ** widedone=0: has to negotiate wide transfer
5262 */
5263 tp->widedone=0;
5264 }
5265
5266 /*==========================================================
5267 **
5268 ** Get clock factor and sync divisor for a given
5269 ** synchronous factor period.
5270 ** Returns the clock factor (in sxfer) and scntl3
5271 ** synchronous divisor field.
5272 **
5273 **==========================================================
5274 */
5275
ncr_getsync(struct ncb * np,u_char sfac,u_char * fakp,u_char * scntl3p)5276 static void ncr_getsync(struct ncb *np, u_char sfac, u_char *fakp, u_char *scntl3p)
5277 {
5278 u_long clk = np->clock_khz; /* SCSI clock frequency in kHz */
5279 int div = np->clock_divn; /* Number of divisors supported */
5280 u_long fak; /* Sync factor in sxfer */
5281 u_long per; /* Period in tenths of ns */
5282 u_long kpc; /* (per * clk) */
5283
5284 /*
5285 ** Compute the synchronous period in tenths of nano-seconds
5286 */
5287 if (sfac <= 10) per = 250;
5288 else if (sfac == 11) per = 303;
5289 else if (sfac == 12) per = 500;
5290 else per = 40 * sfac;
5291
5292 /*
5293 ** Look for the greatest clock divisor that allows an
5294 ** input speed faster than the period.
5295 */
5296 kpc = per * clk;
5297 while (--div > 0)
5298 if (kpc >= (div_10M[div] << 2)) break;
5299
5300 /*
5301 ** Calculate the lowest clock factor that allows an output
5302 ** speed not faster than the period.
5303 */
5304 fak = (kpc - 1) / div_10M[div] + 1;
5305
5306 if (fak < 4) fak = 4; /* Should never happen, too bad ... */
5307
5308 /*
5309 ** Compute and return sync parameters for the ncr
5310 */
5311 *fakp = fak - 4;
5312 *scntl3p = ((div+1) << 4) + (sfac < 25 ? 0x80 : 0);
5313 }
5314
5315
5316 /*==========================================================
5317 **
5318 ** Set actual values, sync status and patch all ccbs of
5319 ** a target according to new sync/wide agreement.
5320 **
5321 **==========================================================
5322 */
5323
ncr_set_sync_wide_status(struct ncb * np,u_char target)5324 static void ncr_set_sync_wide_status (struct ncb *np, u_char target)
5325 {
5326 struct ccb *cp;
5327 struct tcb *tp = &np->target[target];
5328
5329 /*
5330 ** set actual value and sync_status
5331 */
5332 OUTB (nc_sxfer, tp->sval);
5333 np->sync_st = tp->sval;
5334 OUTB (nc_scntl3, tp->wval);
5335 np->wide_st = tp->wval;
5336
5337 /*
5338 ** patch ALL ccbs of this target.
5339 */
5340 for (cp = np->ccb; cp; cp = cp->link_ccb) {
5341 if (!cp->cmd) continue;
5342 if (scmd_id(cp->cmd) != target) continue;
5343 cp->phys.select.sel_scntl3 = tp->wval;
5344 cp->phys.select.sel_sxfer = tp->sval;
5345 }
5346 }
5347
5348 /*==========================================================
5349 **
5350 ** Switch sync mode for current job and it's target
5351 **
5352 **==========================================================
5353 */
5354
ncr_setsync(struct ncb * np,struct ccb * cp,u_char scntl3,u_char sxfer)5355 static void ncr_setsync (struct ncb *np, struct ccb *cp, u_char scntl3, u_char sxfer)
5356 {
5357 struct scsi_cmnd *cmd = cp->cmd;
5358 struct tcb *tp;
5359 u_char target = INB (nc_sdid) & 0x0f;
5360 u_char idiv;
5361
5362 BUG_ON(target != (scmd_id(cmd) & 0xf));
5363
5364 tp = &np->target[target];
5365
5366 if (!scntl3 || !(sxfer & 0x1f))
5367 scntl3 = np->rv_scntl3;
5368 scntl3 = (scntl3 & 0xf0) | (tp->wval & EWS) | (np->rv_scntl3 & 0x07);
5369
5370 /*
5371 ** Deduce the value of controller sync period from scntl3.
5372 ** period is in tenths of nano-seconds.
5373 */
5374
5375 idiv = ((scntl3 >> 4) & 0x7);
5376 if ((sxfer & 0x1f) && idiv)
5377 tp->period = (((sxfer>>5)+4)*div_10M[idiv-1])/np->clock_khz;
5378 else
5379 tp->period = 0xffff;
5380
5381 /* Stop there if sync parameters are unchanged */
5382 if (tp->sval == sxfer && tp->wval == scntl3)
5383 return;
5384 tp->sval = sxfer;
5385 tp->wval = scntl3;
5386
5387 if (sxfer & 0x01f) {
5388 /* Disable extended Sreq/Sack filtering */
5389 if (tp->period <= 2000)
5390 OUTOFFB(nc_stest2, EXT);
5391 }
5392
5393 spi_display_xfer_agreement(tp->starget);
5394
5395 /*
5396 ** set actual value and sync_status
5397 ** patch ALL ccbs of this target.
5398 */
5399 ncr_set_sync_wide_status(np, target);
5400 }
5401
5402 /*==========================================================
5403 **
5404 ** Switch wide mode for current job and it's target
5405 ** SCSI specs say: a SCSI device that accepts a WDTR
5406 ** message shall reset the synchronous agreement to
5407 ** asynchronous mode.
5408 **
5409 **==========================================================
5410 */
5411
ncr_setwide(struct ncb * np,struct ccb * cp,u_char wide,u_char ack)5412 static void ncr_setwide (struct ncb *np, struct ccb *cp, u_char wide, u_char ack)
5413 {
5414 struct scsi_cmnd *cmd = cp->cmd;
5415 u16 target = INB (nc_sdid) & 0x0f;
5416 struct tcb *tp;
5417 u_char scntl3;
5418 u_char sxfer;
5419
5420 BUG_ON(target != (scmd_id(cmd) & 0xf));
5421
5422 tp = &np->target[target];
5423 tp->widedone = wide+1;
5424 scntl3 = (tp->wval & (~EWS)) | (wide ? EWS : 0);
5425
5426 sxfer = ack ? 0 : tp->sval;
5427
5428 /*
5429 ** Stop there if sync/wide parameters are unchanged
5430 */
5431 if (tp->sval == sxfer && tp->wval == scntl3) return;
5432 tp->sval = sxfer;
5433 tp->wval = scntl3;
5434
5435 /*
5436 ** Bells and whistles ;-)
5437 */
5438 if (bootverbose >= 2) {
5439 dev_info(&cmd->device->sdev_target->dev, "WIDE SCSI %sabled.\n",
5440 (scntl3 & EWS) ? "en" : "dis");
5441 }
5442
5443 /*
5444 ** set actual value and sync_status
5445 ** patch ALL ccbs of this target.
5446 */
5447 ncr_set_sync_wide_status(np, target);
5448 }
5449
5450 /*==========================================================
5451 **
5452 ** Switch tagged mode for a target.
5453 **
5454 **==========================================================
5455 */
5456
ncr_setup_tags(struct ncb * np,struct scsi_device * sdev)5457 static void ncr_setup_tags (struct ncb *np, struct scsi_device *sdev)
5458 {
5459 unsigned char tn = sdev->id, ln = sdev->lun;
5460 struct tcb *tp = &np->target[tn];
5461 struct lcb *lp = tp->lp[ln];
5462 u_char reqtags, maxdepth;
5463
5464 /*
5465 ** Just in case ...
5466 */
5467 if ((!tp) || (!lp) || !sdev)
5468 return;
5469
5470 /*
5471 ** If SCSI device queue depth is not yet set, leave here.
5472 */
5473 if (!lp->scdev_depth)
5474 return;
5475
5476 /*
5477 ** Donnot allow more tags than the SCSI driver can queue
5478 ** for this device.
5479 ** Donnot allow more tags than we can handle.
5480 */
5481 maxdepth = lp->scdev_depth;
5482 if (maxdepth > lp->maxnxs) maxdepth = lp->maxnxs;
5483 if (lp->maxtags > maxdepth) lp->maxtags = maxdepth;
5484 if (lp->numtags > maxdepth) lp->numtags = maxdepth;
5485
5486 /*
5487 ** only devices conformant to ANSI Version >= 2
5488 ** only devices capable of tagged commands
5489 ** only if enabled by user ..
5490 */
5491 if (sdev->tagged_supported && lp->numtags > 1) {
5492 reqtags = lp->numtags;
5493 } else {
5494 reqtags = 1;
5495 }
5496
5497 /*
5498 ** Update max number of tags
5499 */
5500 lp->numtags = reqtags;
5501 if (lp->numtags > lp->maxtags)
5502 lp->maxtags = lp->numtags;
5503
5504 /*
5505 ** If we want to switch tag mode, we must wait
5506 ** for no CCB to be active.
5507 */
5508 if (reqtags > 1 && lp->usetags) { /* Stay in tagged mode */
5509 if (lp->queuedepth == reqtags) /* Already announced */
5510 return;
5511 lp->queuedepth = reqtags;
5512 }
5513 else if (reqtags <= 1 && !lp->usetags) { /* Stay in untagged mode */
5514 lp->queuedepth = reqtags;
5515 return;
5516 }
5517 else { /* Want to switch tag mode */
5518 if (lp->busyccbs) /* If not yet safe, return */
5519 return;
5520 lp->queuedepth = reqtags;
5521 lp->usetags = reqtags > 1 ? 1 : 0;
5522 }
5523
5524 /*
5525 ** Patch the lun mini-script, according to tag mode.
5526 */
5527 lp->jump_tag.l_paddr = lp->usetags?
5528 cpu_to_scr(NCB_SCRIPT_PHYS(np, resel_tag)) :
5529 cpu_to_scr(NCB_SCRIPT_PHYS(np, resel_notag));
5530
5531 /*
5532 ** Announce change to user.
5533 */
5534 if (bootverbose) {
5535 if (lp->usetags) {
5536 dev_info(&sdev->sdev_gendev,
5537 "tagged command queue depth set to %d\n",
5538 reqtags);
5539 } else {
5540 dev_info(&sdev->sdev_gendev,
5541 "tagged command queueing disabled\n");
5542 }
5543 }
5544 }
5545
5546 /*==========================================================
5547 **
5548 **
5549 ** ncr timeout handler.
5550 **
5551 **
5552 **==========================================================
5553 **
5554 ** Misused to keep the driver running when
5555 ** interrupts are not configured correctly.
5556 **
5557 **----------------------------------------------------------
5558 */
5559
ncr_timeout(struct ncb * np)5560 static void ncr_timeout (struct ncb *np)
5561 {
5562 u_long thistime = jiffies;
5563
5564 /*
5565 ** If release process in progress, let's go
5566 ** Set the release stage from 1 to 2 to synchronize
5567 ** with the release process.
5568 */
5569
5570 if (np->release_stage) {
5571 if (np->release_stage == 1) np->release_stage = 2;
5572 return;
5573 }
5574
5575 np->timer.expires = jiffies + SCSI_NCR_TIMER_INTERVAL;
5576 add_timer(&np->timer);
5577
5578 /*
5579 ** If we are resetting the ncr, wait for settle_time before
5580 ** clearing it. Then command processing will be resumed.
5581 */
5582 if (np->settle_time) {
5583 if (np->settle_time <= thistime) {
5584 if (bootverbose > 1)
5585 printk("%s: command processing resumed\n", ncr_name(np));
5586 np->settle_time = 0;
5587 np->disc = 1;
5588 requeue_waiting_list(np);
5589 }
5590 return;
5591 }
5592
5593 /*
5594 ** Since the generic scsi driver only allows us 0.5 second
5595 ** to perform abort of a command, we must look at ccbs about
5596 ** every 0.25 second.
5597 */
5598 if (np->lasttime + 4*HZ < thistime) {
5599 /*
5600 ** block ncr interrupts
5601 */
5602 np->lasttime = thistime;
5603 }
5604
5605 #ifdef SCSI_NCR_BROKEN_INTR
5606 if (INB(nc_istat) & (INTF|SIP|DIP)) {
5607
5608 /*
5609 ** Process pending interrupts.
5610 */
5611 if (DEBUG_FLAGS & DEBUG_TINY) printk ("{");
5612 ncr_exception (np);
5613 if (DEBUG_FLAGS & DEBUG_TINY) printk ("}");
5614 }
5615 #endif /* SCSI_NCR_BROKEN_INTR */
5616 }
5617
5618 /*==========================================================
5619 **
5620 ** log message for real hard errors
5621 **
5622 ** "ncr0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc)."
5623 ** " reg: r0 r1 r2 r3 r4 r5 r6 ..... rf."
5624 **
5625 ** exception register:
5626 ** ds: dstat
5627 ** si: sist
5628 **
5629 ** SCSI bus lines:
5630 ** so: control lines as driver by NCR.
5631 ** si: control lines as seen by NCR.
5632 ** sd: scsi data lines as seen by NCR.
5633 **
5634 ** wide/fastmode:
5635 ** sxfer: (see the manual)
5636 ** scntl3: (see the manual)
5637 **
5638 ** current script command:
5639 ** dsp: script address (relative to start of script).
5640 ** dbc: first word of script command.
5641 **
5642 ** First 16 register of the chip:
5643 ** r0..rf
5644 **
5645 **==========================================================
5646 */
5647
ncr_log_hard_error(struct ncb * np,u16 sist,u_char dstat)5648 static void ncr_log_hard_error(struct ncb *np, u16 sist, u_char dstat)
5649 {
5650 u32 dsp;
5651 int script_ofs;
5652 int script_size;
5653 char *script_name;
5654 u_char *script_base;
5655 int i;
5656
5657 dsp = INL (nc_dsp);
5658
5659 if (dsp > np->p_script && dsp <= np->p_script + sizeof(struct script)) {
5660 script_ofs = dsp - np->p_script;
5661 script_size = sizeof(struct script);
5662 script_base = (u_char *) np->script0;
5663 script_name = "script";
5664 }
5665 else if (np->p_scripth < dsp &&
5666 dsp <= np->p_scripth + sizeof(struct scripth)) {
5667 script_ofs = dsp - np->p_scripth;
5668 script_size = sizeof(struct scripth);
5669 script_base = (u_char *) np->scripth0;
5670 script_name = "scripth";
5671 } else {
5672 script_ofs = dsp;
5673 script_size = 0;
5674 script_base = NULL;
5675 script_name = "mem";
5676 }
5677
5678 printk ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n",
5679 ncr_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist,
5680 (unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl), (unsigned)INB (nc_sbdl),
5681 (unsigned)INB (nc_sxfer),(unsigned)INB (nc_scntl3), script_name, script_ofs,
5682 (unsigned)INL (nc_dbc));
5683
5684 if (((script_ofs & 3) == 0) &&
5685 (unsigned)script_ofs < script_size) {
5686 printk ("%s: script cmd = %08x\n", ncr_name(np),
5687 scr_to_cpu((int) *(ncrcmd *)(script_base + script_ofs)));
5688 }
5689
5690 printk ("%s: regdump:", ncr_name(np));
5691 for (i=0; i<16;i++)
5692 printk (" %02x", (unsigned)INB_OFF(i));
5693 printk (".\n");
5694 }
5695
5696 /*============================================================
5697 **
5698 ** ncr chip exception handler.
5699 **
5700 **============================================================
5701 **
5702 ** In normal cases, interrupt conditions occur one at a
5703 ** time. The ncr is able to stack in some extra registers
5704 ** other interrupts that will occur after the first one.
5705 ** But, several interrupts may occur at the same time.
5706 **
5707 ** We probably should only try to deal with the normal
5708 ** case, but it seems that multiple interrupts occur in
5709 ** some cases that are not abnormal at all.
5710 **
5711 ** The most frequent interrupt condition is Phase Mismatch.
5712 ** We should want to service this interrupt quickly.
5713 ** A SCSI parity error may be delivered at the same time.
5714 ** The SIR interrupt is not very frequent in this driver,
5715 ** since the INTFLY is likely used for command completion
5716 ** signaling.
5717 ** The Selection Timeout interrupt may be triggered with
5718 ** IID and/or UDC.
5719 ** The SBMC interrupt (SCSI Bus Mode Change) may probably
5720 ** occur at any time.
5721 **
5722 ** This handler try to deal as cleverly as possible with all
5723 ** the above.
5724 **
5725 **============================================================
5726 */
5727
ncr_exception(struct ncb * np)5728 void ncr_exception (struct ncb *np)
5729 {
5730 u_char istat, dstat;
5731 u16 sist;
5732 int i;
5733
5734 /*
5735 ** interrupt on the fly ?
5736 ** Since the global header may be copied back to a CCB
5737 ** using a posted PCI memory write, the last operation on
5738 ** the istat register is a READ in order to flush posted
5739 ** PCI write commands.
5740 */
5741 istat = INB (nc_istat);
5742 if (istat & INTF) {
5743 OUTB (nc_istat, (istat & SIGP) | INTF);
5744 istat = INB (nc_istat);
5745 if (DEBUG_FLAGS & DEBUG_TINY) printk ("F ");
5746 ncr_wakeup_done (np);
5747 }
5748
5749 if (!(istat & (SIP|DIP)))
5750 return;
5751
5752 if (istat & CABRT)
5753 OUTB (nc_istat, CABRT);
5754
5755 /*
5756 ** Steinbach's Guideline for Systems Programming:
5757 ** Never test for an error condition you don't know how to handle.
5758 */
5759
5760 sist = (istat & SIP) ? INW (nc_sist) : 0;
5761 dstat = (istat & DIP) ? INB (nc_dstat) : 0;
5762
5763 if (DEBUG_FLAGS & DEBUG_TINY)
5764 printk ("<%d|%x:%x|%x:%x>",
5765 (int)INB(nc_scr0),
5766 dstat,sist,
5767 (unsigned)INL(nc_dsp),
5768 (unsigned)INL(nc_dbc));
5769
5770 /*========================================================
5771 ** First, interrupts we want to service cleanly.
5772 **
5773 ** Phase mismatch is the most frequent interrupt, and
5774 ** so we have to service it as quickly and as cleanly
5775 ** as possible.
5776 ** Programmed interrupts are rarely used in this driver,
5777 ** but we must handle them cleanly anyway.
5778 ** We try to deal with PAR and SBMC combined with
5779 ** some other interrupt(s).
5780 **=========================================================
5781 */
5782
5783 if (!(sist & (STO|GEN|HTH|SGE|UDC|RST)) &&
5784 !(dstat & (MDPE|BF|ABRT|IID))) {
5785 if ((sist & SBMC) && ncr_int_sbmc (np))
5786 return;
5787 if ((sist & PAR) && ncr_int_par (np))
5788 return;
5789 if (sist & MA) {
5790 ncr_int_ma (np);
5791 return;
5792 }
5793 if (dstat & SIR) {
5794 ncr_int_sir (np);
5795 return;
5796 }
5797 /*
5798 ** DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 2.
5799 */
5800 if (!(sist & (SBMC|PAR)) && !(dstat & SSI)) {
5801 printk( "%s: unknown interrupt(s) ignored, "
5802 "ISTAT=%x DSTAT=%x SIST=%x\n",
5803 ncr_name(np), istat, dstat, sist);
5804 return;
5805 }
5806 OUTONB_STD ();
5807 return;
5808 }
5809
5810 /*========================================================
5811 ** Now, interrupts that need some fixing up.
5812 ** Order and multiple interrupts is so less important.
5813 **
5814 ** If SRST has been asserted, we just reset the chip.
5815 **
5816 ** Selection is intirely handled by the chip. If the
5817 ** chip says STO, we trust it. Seems some other
5818 ** interrupts may occur at the same time (UDC, IID), so
5819 ** we ignore them. In any case we do enough fix-up
5820 ** in the service routine.
5821 ** We just exclude some fatal dma errors.
5822 **=========================================================
5823 */
5824
5825 if (sist & RST) {
5826 ncr_init (np, 1, bootverbose ? "scsi reset" : NULL, HS_RESET);
5827 return;
5828 }
5829
5830 if ((sist & STO) &&
5831 !(dstat & (MDPE|BF|ABRT))) {
5832 /*
5833 ** DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 1.
5834 */
5835 OUTONB (nc_ctest3, CLF);
5836
5837 ncr_int_sto (np);
5838 return;
5839 }
5840
5841 /*=========================================================
5842 ** Now, interrupts we are not able to recover cleanly.
5843 ** (At least for the moment).
5844 **
5845 ** Do the register dump.
5846 ** Log message for real hard errors.
5847 ** Clear all fifos.
5848 ** For MDPE, BF, ABORT, IID, SGE and HTH we reset the
5849 ** BUS and the chip.
5850 ** We are more soft for UDC.
5851 **=========================================================
5852 */
5853
5854 if (time_after(jiffies, np->regtime)) {
5855 np->regtime = jiffies + 10*HZ;
5856 for (i = 0; i<sizeof(np->regdump); i++)
5857 ((char*)&np->regdump)[i] = INB_OFF(i);
5858 np->regdump.nc_dstat = dstat;
5859 np->regdump.nc_sist = sist;
5860 }
5861
5862 ncr_log_hard_error(np, sist, dstat);
5863
5864 printk ("%s: have to clear fifos.\n", ncr_name (np));
5865 OUTB (nc_stest3, TE|CSF);
5866 OUTONB (nc_ctest3, CLF);
5867
5868 if ((sist & (SGE)) ||
5869 (dstat & (MDPE|BF|ABRT|IID))) {
5870 ncr_start_reset(np);
5871 return;
5872 }
5873
5874 if (sist & HTH) {
5875 printk ("%s: handshake timeout\n", ncr_name(np));
5876 ncr_start_reset(np);
5877 return;
5878 }
5879
5880 if (sist & UDC) {
5881 printk ("%s: unexpected disconnect\n", ncr_name(np));
5882 OUTB (HS_PRT, HS_UNEXPECTED);
5883 OUTL_DSP (NCB_SCRIPT_PHYS (np, cleanup));
5884 return;
5885 }
5886
5887 /*=========================================================
5888 ** We just miss the cause of the interrupt. :(
5889 ** Print a message. The timeout will do the real work.
5890 **=========================================================
5891 */
5892 printk ("%s: unknown interrupt\n", ncr_name(np));
5893 }
5894
5895 /*==========================================================
5896 **
5897 ** ncr chip exception handler for selection timeout
5898 **
5899 **==========================================================
5900 **
5901 ** There seems to be a bug in the 53c810.
5902 ** Although a STO-Interrupt is pending,
5903 ** it continues executing script commands.
5904 ** But it will fail and interrupt (IID) on
5905 ** the next instruction where it's looking
5906 ** for a valid phase.
5907 **
5908 **----------------------------------------------------------
5909 */
5910
ncr_int_sto(struct ncb * np)5911 void ncr_int_sto (struct ncb *np)
5912 {
5913 u_long dsa;
5914 struct ccb *cp;
5915 if (DEBUG_FLAGS & DEBUG_TINY) printk ("T");
5916
5917 /*
5918 ** look for ccb and set the status.
5919 */
5920
5921 dsa = INL (nc_dsa);
5922 cp = np->ccb;
5923 while (cp && (CCB_PHYS (cp, phys) != dsa))
5924 cp = cp->link_ccb;
5925
5926 if (cp) {
5927 cp-> host_status = HS_SEL_TIMEOUT;
5928 ncr_complete (np, cp);
5929 }
5930
5931 /*
5932 ** repair start queue and jump to start point.
5933 */
5934
5935 OUTL_DSP (NCB_SCRIPTH_PHYS (np, sto_restart));
5936 return;
5937 }
5938
5939 /*==========================================================
5940 **
5941 ** ncr chip exception handler for SCSI bus mode change
5942 **
5943 **==========================================================
5944 **
5945 ** spi2-r12 11.2.3 says a transceiver mode change must
5946 ** generate a reset event and a device that detects a reset
5947 ** event shall initiate a hard reset. It says also that a
5948 ** device that detects a mode change shall set data transfer
5949 ** mode to eight bit asynchronous, etc...
5950 ** So, just resetting should be enough.
5951 **
5952 **
5953 **----------------------------------------------------------
5954 */
5955
ncr_int_sbmc(struct ncb * np)5956 static int ncr_int_sbmc (struct ncb *np)
5957 {
5958 u_char scsi_mode = INB (nc_stest4) & SMODE;
5959
5960 if (scsi_mode != np->scsi_mode) {
5961 printk("%s: SCSI bus mode change from %x to %x.\n",
5962 ncr_name(np), np->scsi_mode, scsi_mode);
5963
5964 np->scsi_mode = scsi_mode;
5965
5966
5967 /*
5968 ** Suspend command processing for 1 second and
5969 ** reinitialize all except the chip.
5970 */
5971 np->settle_time = jiffies + HZ;
5972 ncr_init (np, 0, bootverbose ? "scsi mode change" : NULL, HS_RESET);
5973 return 1;
5974 }
5975 return 0;
5976 }
5977
5978 /*==========================================================
5979 **
5980 ** ncr chip exception handler for SCSI parity error.
5981 **
5982 **==========================================================
5983 **
5984 **
5985 **----------------------------------------------------------
5986 */
5987
ncr_int_par(struct ncb * np)5988 static int ncr_int_par (struct ncb *np)
5989 {
5990 u_char hsts = INB (HS_PRT);
5991 u32 dbc = INL (nc_dbc);
5992 u_char sstat1 = INB (nc_sstat1);
5993 int phase = -1;
5994 int msg = -1;
5995 u32 jmp;
5996
5997 printk("%s: SCSI parity error detected: SCR1=%d DBC=%x SSTAT1=%x\n",
5998 ncr_name(np), hsts, dbc, sstat1);
5999
6000 /*
6001 * Ignore the interrupt if the NCR is not connected
6002 * to the SCSI bus, since the right work should have
6003 * been done on unexpected disconnection handling.
6004 */
6005 if (!(INB (nc_scntl1) & ISCON))
6006 return 0;
6007
6008 /*
6009 * If the nexus is not clearly identified, reset the bus.
6010 * We will try to do better later.
6011 */
6012 if (hsts & HS_INVALMASK)
6013 goto reset_all;
6014
6015 /*
6016 * If the SCSI parity error occurs in MSG IN phase, prepare a
6017 * MSG PARITY message. Otherwise, prepare a INITIATOR DETECTED
6018 * ERROR message and let the device decide to retry the command
6019 * or to terminate with check condition. If we were in MSG IN
6020 * phase waiting for the response of a negotiation, we will
6021 * get SIR_NEGO_FAILED at dispatch.
6022 */
6023 if (!(dbc & 0xc0000000))
6024 phase = (dbc >> 24) & 7;
6025 if (phase == 7)
6026 msg = MSG_PARITY_ERROR;
6027 else
6028 msg = INITIATOR_ERROR;
6029
6030
6031 /*
6032 * If the NCR stopped on a MOVE ^ DATA_IN, we jump to a
6033 * script that will ignore all data in bytes until phase
6034 * change, since we are not sure the chip will wait the phase
6035 * change prior to delivering the interrupt.
6036 */
6037 if (phase == 1)
6038 jmp = NCB_SCRIPTH_PHYS (np, par_err_data_in);
6039 else
6040 jmp = NCB_SCRIPTH_PHYS (np, par_err_other);
6041
6042 OUTONB (nc_ctest3, CLF ); /* clear dma fifo */
6043 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */
6044
6045 np->msgout[0] = msg;
6046 OUTL_DSP (jmp);
6047 return 1;
6048
6049 reset_all:
6050 ncr_start_reset(np);
6051 return 1;
6052 }
6053
6054 /*==========================================================
6055 **
6056 **
6057 ** ncr chip exception handler for phase errors.
6058 **
6059 **
6060 **==========================================================
6061 **
6062 ** We have to construct a new transfer descriptor,
6063 ** to transfer the rest of the current block.
6064 **
6065 **----------------------------------------------------------
6066 */
6067
ncr_int_ma(struct ncb * np)6068 static void ncr_int_ma (struct ncb *np)
6069 {
6070 u32 dbc;
6071 u32 rest;
6072 u32 dsp;
6073 u32 dsa;
6074 u32 nxtdsp;
6075 u32 newtmp;
6076 u32 *vdsp;
6077 u32 oadr, olen;
6078 u32 *tblp;
6079 ncrcmd *newcmd;
6080 u_char cmd, sbcl;
6081 struct ccb *cp;
6082
6083 dsp = INL (nc_dsp);
6084 dbc = INL (nc_dbc);
6085 sbcl = INB (nc_sbcl);
6086
6087 cmd = dbc >> 24;
6088 rest = dbc & 0xffffff;
6089
6090 /*
6091 ** Take into account dma fifo and various buffers and latches,
6092 ** only if the interrupted phase is an OUTPUT phase.
6093 */
6094
6095 if ((cmd & 1) == 0) {
6096 u_char ctest5, ss0, ss2;
6097 u16 delta;
6098
6099 ctest5 = (np->rv_ctest5 & DFS) ? INB (nc_ctest5) : 0;
6100 if (ctest5 & DFS)
6101 delta=(((ctest5 << 8) | (INB (nc_dfifo) & 0xff)) - rest) & 0x3ff;
6102 else
6103 delta=(INB (nc_dfifo) - rest) & 0x7f;
6104
6105 /*
6106 ** The data in the dma fifo has not been transferred to
6107 ** the target -> add the amount to the rest
6108 ** and clear the data.
6109 ** Check the sstat2 register in case of wide transfer.
6110 */
6111
6112 rest += delta;
6113 ss0 = INB (nc_sstat0);
6114 if (ss0 & OLF) rest++;
6115 if (ss0 & ORF) rest++;
6116 if (INB(nc_scntl3) & EWS) {
6117 ss2 = INB (nc_sstat2);
6118 if (ss2 & OLF1) rest++;
6119 if (ss2 & ORF1) rest++;
6120 }
6121
6122 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
6123 printk ("P%x%x RL=%d D=%d SS0=%x ", cmd&7, sbcl&7,
6124 (unsigned) rest, (unsigned) delta, ss0);
6125
6126 } else {
6127 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
6128 printk ("P%x%x RL=%d ", cmd&7, sbcl&7, rest);
6129 }
6130
6131 /*
6132 ** Clear fifos.
6133 */
6134 OUTONB (nc_ctest3, CLF ); /* clear dma fifo */
6135 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */
6136
6137 /*
6138 ** locate matching cp.
6139 ** if the interrupted phase is DATA IN or DATA OUT,
6140 ** trust the global header.
6141 */
6142 dsa = INL (nc_dsa);
6143 if (!(cmd & 6)) {
6144 cp = np->header.cp;
6145 if (CCB_PHYS(cp, phys) != dsa)
6146 cp = NULL;
6147 } else {
6148 cp = np->ccb;
6149 while (cp && (CCB_PHYS (cp, phys) != dsa))
6150 cp = cp->link_ccb;
6151 }
6152
6153 /*
6154 ** try to find the interrupted script command,
6155 ** and the address at which to continue.
6156 */
6157 vdsp = NULL;
6158 nxtdsp = 0;
6159 if (dsp > np->p_script &&
6160 dsp <= np->p_script + sizeof(struct script)) {
6161 vdsp = (u32 *)((char*)np->script0 + (dsp-np->p_script-8));
6162 nxtdsp = dsp;
6163 }
6164 else if (dsp > np->p_scripth &&
6165 dsp <= np->p_scripth + sizeof(struct scripth)) {
6166 vdsp = (u32 *)((char*)np->scripth0 + (dsp-np->p_scripth-8));
6167 nxtdsp = dsp;
6168 }
6169 else if (cp) {
6170 if (dsp == CCB_PHYS (cp, patch[2])) {
6171 vdsp = &cp->patch[0];
6172 nxtdsp = scr_to_cpu(vdsp[3]);
6173 }
6174 else if (dsp == CCB_PHYS (cp, patch[6])) {
6175 vdsp = &cp->patch[4];
6176 nxtdsp = scr_to_cpu(vdsp[3]);
6177 }
6178 }
6179
6180 /*
6181 ** log the information
6182 */
6183
6184 if (DEBUG_FLAGS & DEBUG_PHASE) {
6185 printk ("\nCP=%p CP2=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
6186 cp, np->header.cp,
6187 (unsigned)dsp,
6188 (unsigned)nxtdsp, vdsp, cmd);
6189 }
6190
6191 /*
6192 ** cp=0 means that the DSA does not point to a valid control
6193 ** block. This should not happen since we donnot use multi-byte
6194 ** move while we are being reselected ot after command complete.
6195 ** We are not able to recover from such a phase error.
6196 */
6197 if (!cp) {
6198 printk ("%s: SCSI phase error fixup: "
6199 "CCB already dequeued (0x%08lx)\n",
6200 ncr_name (np), (u_long) np->header.cp);
6201 goto reset_all;
6202 }
6203
6204 /*
6205 ** get old startaddress and old length.
6206 */
6207
6208 oadr = scr_to_cpu(vdsp[1]);
6209
6210 if (cmd & 0x10) { /* Table indirect */
6211 tblp = (u32 *) ((char*) &cp->phys + oadr);
6212 olen = scr_to_cpu(tblp[0]);
6213 oadr = scr_to_cpu(tblp[1]);
6214 } else {
6215 tblp = (u32 *) 0;
6216 olen = scr_to_cpu(vdsp[0]) & 0xffffff;
6217 }
6218
6219 if (DEBUG_FLAGS & DEBUG_PHASE) {
6220 printk ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
6221 (unsigned) (scr_to_cpu(vdsp[0]) >> 24),
6222 tblp,
6223 (unsigned) olen,
6224 (unsigned) oadr);
6225 }
6226
6227 /*
6228 ** check cmd against assumed interrupted script command.
6229 */
6230
6231 if (cmd != (scr_to_cpu(vdsp[0]) >> 24)) {
6232 PRINT_ADDR(cp->cmd, "internal error: cmd=%02x != %02x=(vdsp[0] "
6233 ">> 24)\n", cmd, scr_to_cpu(vdsp[0]) >> 24);
6234
6235 goto reset_all;
6236 }
6237
6238 /*
6239 ** cp != np->header.cp means that the header of the CCB
6240 ** currently being processed has not yet been copied to
6241 ** the global header area. That may happen if the device did
6242 ** not accept all our messages after having been selected.
6243 */
6244 if (cp != np->header.cp) {
6245 printk ("%s: SCSI phase error fixup: "
6246 "CCB address mismatch (0x%08lx != 0x%08lx)\n",
6247 ncr_name (np), (u_long) cp, (u_long) np->header.cp);
6248 }
6249
6250 /*
6251 ** if old phase not dataphase, leave here.
6252 */
6253
6254 if (cmd & 0x06) {
6255 PRINT_ADDR(cp->cmd, "phase change %x-%x %d@%08x resid=%d.\n",
6256 cmd&7, sbcl&7, (unsigned)olen,
6257 (unsigned)oadr, (unsigned)rest);
6258 goto unexpected_phase;
6259 }
6260
6261 /*
6262 ** choose the correct patch area.
6263 ** if savep points to one, choose the other.
6264 */
6265
6266 newcmd = cp->patch;
6267 newtmp = CCB_PHYS (cp, patch);
6268 if (newtmp == scr_to_cpu(cp->phys.header.savep)) {
6269 newcmd = &cp->patch[4];
6270 newtmp = CCB_PHYS (cp, patch[4]);
6271 }
6272
6273 /*
6274 ** fillin the commands
6275 */
6276
6277 newcmd[0] = cpu_to_scr(((cmd & 0x0f) << 24) | rest);
6278 newcmd[1] = cpu_to_scr(oadr + olen - rest);
6279 newcmd[2] = cpu_to_scr(SCR_JUMP);
6280 newcmd[3] = cpu_to_scr(nxtdsp);
6281
6282 if (DEBUG_FLAGS & DEBUG_PHASE) {
6283 PRINT_ADDR(cp->cmd, "newcmd[%d] %x %x %x %x.\n",
6284 (int) (newcmd - cp->patch),
6285 (unsigned)scr_to_cpu(newcmd[0]),
6286 (unsigned)scr_to_cpu(newcmd[1]),
6287 (unsigned)scr_to_cpu(newcmd[2]),
6288 (unsigned)scr_to_cpu(newcmd[3]));
6289 }
6290 /*
6291 ** fake the return address (to the patch).
6292 ** and restart script processor at dispatcher.
6293 */
6294 OUTL (nc_temp, newtmp);
6295 OUTL_DSP (NCB_SCRIPT_PHYS (np, dispatch));
6296 return;
6297
6298 /*
6299 ** Unexpected phase changes that occurs when the current phase
6300 ** is not a DATA IN or DATA OUT phase are due to error conditions.
6301 ** Such event may only happen when the SCRIPTS is using a
6302 ** multibyte SCSI MOVE.
6303 **
6304 ** Phase change Some possible cause
6305 **
6306 ** COMMAND --> MSG IN SCSI parity error detected by target.
6307 ** COMMAND --> STATUS Bad command or refused by target.
6308 ** MSG OUT --> MSG IN Message rejected by target.
6309 ** MSG OUT --> COMMAND Bogus target that discards extended
6310 ** negotiation messages.
6311 **
6312 ** The code below does not care of the new phase and so
6313 ** trusts the target. Why to annoy it ?
6314 ** If the interrupted phase is COMMAND phase, we restart at
6315 ** dispatcher.
6316 ** If a target does not get all the messages after selection,
6317 ** the code assumes blindly that the target discards extended
6318 ** messages and clears the negotiation status.
6319 ** If the target does not want all our response to negotiation,
6320 ** we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
6321 ** bloat for such a should_not_happen situation).
6322 ** In all other situation, we reset the BUS.
6323 ** Are these assumptions reasonable ? (Wait and see ...)
6324 */
6325 unexpected_phase:
6326 dsp -= 8;
6327 nxtdsp = 0;
6328
6329 switch (cmd & 7) {
6330 case 2: /* COMMAND phase */
6331 nxtdsp = NCB_SCRIPT_PHYS (np, dispatch);
6332 break;
6333 #if 0
6334 case 3: /* STATUS phase */
6335 nxtdsp = NCB_SCRIPT_PHYS (np, dispatch);
6336 break;
6337 #endif
6338 case 6: /* MSG OUT phase */
6339 np->scripth->nxtdsp_go_on[0] = cpu_to_scr(dsp + 8);
6340 if (dsp == NCB_SCRIPT_PHYS (np, send_ident)) {
6341 cp->host_status = HS_BUSY;
6342 nxtdsp = NCB_SCRIPTH_PHYS (np, clratn_go_on);
6343 }
6344 else if (dsp == NCB_SCRIPTH_PHYS (np, send_wdtr) ||
6345 dsp == NCB_SCRIPTH_PHYS (np, send_sdtr)) {
6346 nxtdsp = NCB_SCRIPTH_PHYS (np, nego_bad_phase);
6347 }
6348 break;
6349 #if 0
6350 case 7: /* MSG IN phase */
6351 nxtdsp = NCB_SCRIPT_PHYS (np, clrack);
6352 break;
6353 #endif
6354 }
6355
6356 if (nxtdsp) {
6357 OUTL_DSP (nxtdsp);
6358 return;
6359 }
6360
6361 reset_all:
6362 ncr_start_reset(np);
6363 }
6364
6365
ncr_sir_to_redo(struct ncb * np,int num,struct ccb * cp)6366 static void ncr_sir_to_redo(struct ncb *np, int num, struct ccb *cp)
6367 {
6368 struct scsi_cmnd *cmd = cp->cmd;
6369 struct tcb *tp = &np->target[cmd->device->id];
6370 struct lcb *lp = tp->lp[cmd->device->lun];
6371 struct list_head *qp;
6372 struct ccb * cp2;
6373 int disc_cnt = 0;
6374 int busy_cnt = 0;
6375 u32 startp;
6376 u_char s_status = INB (SS_PRT);
6377
6378 /*
6379 ** Let the SCRIPTS processor skip all not yet started CCBs,
6380 ** and count disconnected CCBs. Since the busy queue is in
6381 ** the same order as the chip start queue, disconnected CCBs
6382 ** are before cp and busy ones after.
6383 */
6384 if (lp) {
6385 qp = lp->busy_ccbq.prev;
6386 while (qp != &lp->busy_ccbq) {
6387 cp2 = list_entry(qp, struct ccb, link_ccbq);
6388 qp = qp->prev;
6389 ++busy_cnt;
6390 if (cp2 == cp)
6391 break;
6392 cp2->start.schedule.l_paddr =
6393 cpu_to_scr(NCB_SCRIPTH_PHYS (np, skip));
6394 }
6395 lp->held_ccb = cp; /* Requeue when this one completes */
6396 disc_cnt = lp->queuedccbs - busy_cnt;
6397 }
6398
6399 switch(s_status) {
6400 default: /* Just for safety, should never happen */
6401 case SAM_STAT_TASK_SET_FULL:
6402 /*
6403 ** Decrease number of tags to the number of
6404 ** disconnected commands.
6405 */
6406 if (!lp)
6407 goto out;
6408 if (bootverbose >= 1) {
6409 PRINT_ADDR(cmd, "QUEUE FULL! %d busy, %d disconnected "
6410 "CCBs\n", busy_cnt, disc_cnt);
6411 }
6412 if (disc_cnt < lp->numtags) {
6413 lp->numtags = disc_cnt > 2 ? disc_cnt : 2;
6414 lp->num_good = 0;
6415 ncr_setup_tags (np, cmd->device);
6416 }
6417 /*
6418 ** Requeue the command to the start queue.
6419 ** If any disconnected commands,
6420 ** Clear SIGP.
6421 ** Jump to reselect.
6422 */
6423 cp->phys.header.savep = cp->startp;
6424 cp->host_status = HS_BUSY;
6425 cp->scsi_status = SAM_STAT_ILLEGAL;
6426
6427 ncr_put_start_queue(np, cp);
6428 if (disc_cnt)
6429 INB (nc_ctest2); /* Clear SIGP */
6430 OUTL_DSP (NCB_SCRIPT_PHYS (np, reselect));
6431 return;
6432 case SAM_STAT_COMMAND_TERMINATED:
6433 case SAM_STAT_CHECK_CONDITION:
6434 /*
6435 ** If we were requesting sense, give up.
6436 */
6437 if (cp->auto_sense)
6438 goto out;
6439
6440 /*
6441 ** Device returned CHECK CONDITION status.
6442 ** Prepare all needed data strutures for getting
6443 ** sense data.
6444 **
6445 ** identify message
6446 */
6447 cp->scsi_smsg2[0] = IDENTIFY(0, cmd->device->lun);
6448 cp->phys.smsg.addr = cpu_to_scr(CCB_PHYS (cp, scsi_smsg2));
6449 cp->phys.smsg.size = cpu_to_scr(1);
6450
6451 /*
6452 ** sense command
6453 */
6454 cp->phys.cmd.addr = cpu_to_scr(CCB_PHYS (cp, sensecmd));
6455 cp->phys.cmd.size = cpu_to_scr(6);
6456
6457 /*
6458 ** patch requested size into sense command
6459 */
6460 cp->sensecmd[0] = 0x03;
6461 cp->sensecmd[1] = (cmd->device->lun & 0x7) << 5;
6462 cp->sensecmd[4] = sizeof(cp->sense_buf);
6463
6464 /*
6465 ** sense data
6466 */
6467 memset(cp->sense_buf, 0, sizeof(cp->sense_buf));
6468 cp->phys.sense.addr = cpu_to_scr(CCB_PHYS(cp,sense_buf[0]));
6469 cp->phys.sense.size = cpu_to_scr(sizeof(cp->sense_buf));
6470
6471 /*
6472 ** requeue the command.
6473 */
6474 startp = cpu_to_scr(NCB_SCRIPTH_PHYS (np, sdata_in));
6475
6476 cp->phys.header.savep = startp;
6477 cp->phys.header.goalp = startp + 24;
6478 cp->phys.header.lastp = startp;
6479 cp->phys.header.wgoalp = startp + 24;
6480 cp->phys.header.wlastp = startp;
6481
6482 cp->host_status = HS_BUSY;
6483 cp->scsi_status = SAM_STAT_ILLEGAL;
6484 cp->auto_sense = s_status;
6485
6486 cp->start.schedule.l_paddr =
6487 cpu_to_scr(NCB_SCRIPT_PHYS (np, select));
6488
6489 /*
6490 ** Select without ATN for quirky devices.
6491 */
6492 if (cmd->device->select_no_atn)
6493 cp->start.schedule.l_paddr =
6494 cpu_to_scr(NCB_SCRIPTH_PHYS (np, select_no_atn));
6495
6496 ncr_put_start_queue(np, cp);
6497
6498 OUTL_DSP (NCB_SCRIPT_PHYS (np, start));
6499 return;
6500 }
6501
6502 out:
6503 OUTONB_STD ();
6504 return;
6505 }
6506
6507
6508 /*==========================================================
6509 **
6510 **
6511 ** ncr chip exception handler for programmed interrupts.
6512 **
6513 **
6514 **==========================================================
6515 */
6516
ncr_int_sir(struct ncb * np)6517 void ncr_int_sir (struct ncb *np)
6518 {
6519 u_char scntl3;
6520 u_char chg, ofs, per, fak, wide;
6521 u_char num = INB (nc_dsps);
6522 struct ccb *cp=NULL;
6523 u_long dsa = INL (nc_dsa);
6524 u_char target = INB (nc_sdid) & 0x0f;
6525 struct tcb *tp = &np->target[target];
6526 struct scsi_target *starget = tp->starget;
6527
6528 if (DEBUG_FLAGS & DEBUG_TINY) printk ("I#%d", num);
6529
6530 switch (num) {
6531 case SIR_INTFLY:
6532 /*
6533 ** This is used for HP Zalon/53c720 where INTFLY
6534 ** operation is currently broken.
6535 */
6536 ncr_wakeup_done(np);
6537 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
6538 OUTL(nc_dsp, NCB_SCRIPT_PHYS (np, done_end) + 8);
6539 #else
6540 OUTL(nc_dsp, NCB_SCRIPT_PHYS (np, start));
6541 #endif
6542 return;
6543 case SIR_RESEL_NO_MSG_IN:
6544 case SIR_RESEL_NO_IDENTIFY:
6545 /*
6546 ** If devices reselecting without sending an IDENTIFY
6547 ** message still exist, this should help.
6548 ** We just assume lun=0, 1 CCB, no tag.
6549 */
6550 if (tp->lp[0]) {
6551 OUTL_DSP (scr_to_cpu(tp->lp[0]->jump_ccb[0]));
6552 return;
6553 }
6554 fallthrough;
6555 case SIR_RESEL_BAD_TARGET: /* Will send a TARGET RESET message */
6556 case SIR_RESEL_BAD_LUN: /* Will send a TARGET RESET message */
6557 case SIR_RESEL_BAD_I_T_L_Q: /* Will send an ABORT TAG message */
6558 case SIR_RESEL_BAD_I_T_L: /* Will send an ABORT message */
6559 printk ("%s:%d: SIR %d, "
6560 "incorrect nexus identification on reselection\n",
6561 ncr_name (np), target, num);
6562 goto out;
6563 case SIR_DONE_OVERFLOW:
6564 printk ("%s:%d: SIR %d, "
6565 "CCB done queue overflow\n",
6566 ncr_name (np), target, num);
6567 goto out;
6568 case SIR_BAD_STATUS:
6569 cp = np->header.cp;
6570 if (!cp || CCB_PHYS (cp, phys) != dsa)
6571 goto out;
6572 ncr_sir_to_redo(np, num, cp);
6573 return;
6574 default:
6575 /*
6576 ** lookup the ccb
6577 */
6578 cp = np->ccb;
6579 while (cp && (CCB_PHYS (cp, phys) != dsa))
6580 cp = cp->link_ccb;
6581
6582 BUG_ON(!cp);
6583 BUG_ON(cp != np->header.cp);
6584
6585 if (!cp || cp != np->header.cp)
6586 goto out;
6587 }
6588
6589 switch (num) {
6590 /*-----------------------------------------------------------------------------
6591 **
6592 ** Was Sie schon immer ueber transfermode negotiation wissen wollten ...
6593 ** ("Everything you've always wanted to know about transfer mode
6594 ** negotiation")
6595 **
6596 ** We try to negotiate sync and wide transfer only after
6597 ** a successful inquire command. We look at byte 7 of the
6598 ** inquire data to determine the capabilities of the target.
6599 **
6600 ** When we try to negotiate, we append the negotiation message
6601 ** to the identify and (maybe) simple tag message.
6602 ** The host status field is set to HS_NEGOTIATE to mark this
6603 ** situation.
6604 **
6605 ** If the target doesn't answer this message immediately
6606 ** (as required by the standard), the SIR_NEGO_FAIL interrupt
6607 ** will be raised eventually.
6608 ** The handler removes the HS_NEGOTIATE status, and sets the
6609 ** negotiated value to the default (async / nowide).
6610 **
6611 ** If we receive a matching answer immediately, we check it
6612 ** for validity, and set the values.
6613 **
6614 ** If we receive a Reject message immediately, we assume the
6615 ** negotiation has failed, and fall back to standard values.
6616 **
6617 ** If we receive a negotiation message while not in HS_NEGOTIATE
6618 ** state, it's a target initiated negotiation. We prepare a
6619 ** (hopefully) valid answer, set our parameters, and send back
6620 ** this answer to the target.
6621 **
6622 ** If the target doesn't fetch the answer (no message out phase),
6623 ** we assume the negotiation has failed, and fall back to default
6624 ** settings.
6625 **
6626 ** When we set the values, we adjust them in all ccbs belonging
6627 ** to this target, in the controller's register, and in the "phys"
6628 ** field of the controller's struct ncb.
6629 **
6630 ** Possible cases: hs sir msg_in value send goto
6631 ** We try to negotiate:
6632 ** -> target doesn't msgin NEG FAIL noop defa. - dispatch
6633 ** -> target rejected our msg NEG FAIL reject defa. - dispatch
6634 ** -> target answered (ok) NEG SYNC sdtr set - clrack
6635 ** -> target answered (!ok) NEG SYNC sdtr defa. REJ--->msg_bad
6636 ** -> target answered (ok) NEG WIDE wdtr set - clrack
6637 ** -> target answered (!ok) NEG WIDE wdtr defa. REJ--->msg_bad
6638 ** -> any other msgin NEG FAIL noop defa. - dispatch
6639 **
6640 ** Target tries to negotiate:
6641 ** -> incoming message --- SYNC sdtr set SDTR -
6642 ** -> incoming message --- WIDE wdtr set WDTR -
6643 ** We sent our answer:
6644 ** -> target doesn't msgout --- PROTO ? defa. - dispatch
6645 **
6646 **-----------------------------------------------------------------------------
6647 */
6648
6649 case SIR_NEGO_FAILED:
6650 /*-------------------------------------------------------
6651 **
6652 ** Negotiation failed.
6653 ** Target doesn't send an answer message,
6654 ** or target rejected our message.
6655 **
6656 ** Remove negotiation request.
6657 **
6658 **-------------------------------------------------------
6659 */
6660 OUTB (HS_PRT, HS_BUSY);
6661
6662 fallthrough;
6663
6664 case SIR_NEGO_PROTO:
6665 /*-------------------------------------------------------
6666 **
6667 ** Negotiation failed.
6668 ** Target doesn't fetch the answer message.
6669 **
6670 **-------------------------------------------------------
6671 */
6672
6673 if (DEBUG_FLAGS & DEBUG_NEGO) {
6674 PRINT_ADDR(cp->cmd, "negotiation failed sir=%x "
6675 "status=%x.\n", num, cp->nego_status);
6676 }
6677
6678 /*
6679 ** any error in negotiation:
6680 ** fall back to default mode.
6681 */
6682 switch (cp->nego_status) {
6683
6684 case NS_SYNC:
6685 spi_period(starget) = 0;
6686 spi_offset(starget) = 0;
6687 ncr_setsync (np, cp, 0, 0xe0);
6688 break;
6689
6690 case NS_WIDE:
6691 spi_width(starget) = 0;
6692 ncr_setwide (np, cp, 0, 0);
6693 break;
6694
6695 }
6696 np->msgin [0] = NOP;
6697 np->msgout[0] = NOP;
6698 cp->nego_status = 0;
6699 break;
6700
6701 case SIR_NEGO_SYNC:
6702 if (DEBUG_FLAGS & DEBUG_NEGO) {
6703 ncr_print_msg(cp, "sync msgin", np->msgin);
6704 }
6705
6706 chg = 0;
6707 per = np->msgin[3];
6708 ofs = np->msgin[4];
6709 if (ofs==0) per=255;
6710
6711 /*
6712 ** if target sends SDTR message,
6713 ** it CAN transfer synch.
6714 */
6715
6716 if (ofs && starget)
6717 spi_support_sync(starget) = 1;
6718
6719 /*
6720 ** check values against driver limits.
6721 */
6722
6723 if (per < np->minsync)
6724 {chg = 1; per = np->minsync;}
6725 if (per < tp->minsync)
6726 {chg = 1; per = tp->minsync;}
6727 if (ofs > tp->maxoffs)
6728 {chg = 1; ofs = tp->maxoffs;}
6729
6730 /*
6731 ** Check against controller limits.
6732 */
6733 fak = 7;
6734 scntl3 = 0;
6735 if (ofs != 0) {
6736 ncr_getsync(np, per, &fak, &scntl3);
6737 if (fak > 7) {
6738 chg = 1;
6739 ofs = 0;
6740 }
6741 }
6742 if (ofs == 0) {
6743 fak = 7;
6744 per = 0;
6745 scntl3 = 0;
6746 tp->minsync = 0;
6747 }
6748
6749 if (DEBUG_FLAGS & DEBUG_NEGO) {
6750 PRINT_ADDR(cp->cmd, "sync: per=%d scntl3=0x%x ofs=%d "
6751 "fak=%d chg=%d.\n", per, scntl3, ofs, fak, chg);
6752 }
6753
6754 if (INB (HS_PRT) == HS_NEGOTIATE) {
6755 OUTB (HS_PRT, HS_BUSY);
6756 switch (cp->nego_status) {
6757
6758 case NS_SYNC:
6759 /* This was an answer message */
6760 if (chg) {
6761 /* Answer wasn't acceptable. */
6762 spi_period(starget) = 0;
6763 spi_offset(starget) = 0;
6764 ncr_setsync(np, cp, 0, 0xe0);
6765 OUTL_DSP(NCB_SCRIPT_PHYS (np, msg_bad));
6766 } else {
6767 /* Answer is ok. */
6768 spi_period(starget) = per;
6769 spi_offset(starget) = ofs;
6770 ncr_setsync(np, cp, scntl3, (fak<<5)|ofs);
6771 OUTL_DSP(NCB_SCRIPT_PHYS (np, clrack));
6772 }
6773 return;
6774
6775 case NS_WIDE:
6776 spi_width(starget) = 0;
6777 ncr_setwide(np, cp, 0, 0);
6778 break;
6779 }
6780 }
6781
6782 /*
6783 ** It was a request. Set value and
6784 ** prepare an answer message
6785 */
6786
6787 spi_period(starget) = per;
6788 spi_offset(starget) = ofs;
6789 ncr_setsync(np, cp, scntl3, (fak<<5)|ofs);
6790
6791 spi_populate_sync_msg(np->msgout, per, ofs);
6792 cp->nego_status = NS_SYNC;
6793
6794 if (DEBUG_FLAGS & DEBUG_NEGO) {
6795 ncr_print_msg(cp, "sync msgout", np->msgout);
6796 }
6797
6798 if (!ofs) {
6799 OUTL_DSP (NCB_SCRIPT_PHYS (np, msg_bad));
6800 return;
6801 }
6802 np->msgin [0] = NOP;
6803
6804 break;
6805
6806 case SIR_NEGO_WIDE:
6807 /*
6808 ** Wide request message received.
6809 */
6810 if (DEBUG_FLAGS & DEBUG_NEGO) {
6811 ncr_print_msg(cp, "wide msgin", np->msgin);
6812 }
6813
6814 /*
6815 ** get requested values.
6816 */
6817
6818 chg = 0;
6819 wide = np->msgin[3];
6820
6821 /*
6822 ** if target sends WDTR message,
6823 ** it CAN transfer wide.
6824 */
6825
6826 if (wide && starget)
6827 spi_support_wide(starget) = 1;
6828
6829 /*
6830 ** check values against driver limits.
6831 */
6832
6833 if (wide > tp->usrwide)
6834 {chg = 1; wide = tp->usrwide;}
6835
6836 if (DEBUG_FLAGS & DEBUG_NEGO) {
6837 PRINT_ADDR(cp->cmd, "wide: wide=%d chg=%d.\n", wide,
6838 chg);
6839 }
6840
6841 if (INB (HS_PRT) == HS_NEGOTIATE) {
6842 OUTB (HS_PRT, HS_BUSY);
6843 switch (cp->nego_status) {
6844
6845 case NS_WIDE:
6846 /*
6847 ** This was an answer message
6848 */
6849 if (chg) {
6850 /* Answer wasn't acceptable. */
6851 spi_width(starget) = 0;
6852 ncr_setwide(np, cp, 0, 1);
6853 OUTL_DSP (NCB_SCRIPT_PHYS (np, msg_bad));
6854 } else {
6855 /* Answer is ok. */
6856 spi_width(starget) = wide;
6857 ncr_setwide(np, cp, wide, 1);
6858 OUTL_DSP (NCB_SCRIPT_PHYS (np, clrack));
6859 }
6860 return;
6861
6862 case NS_SYNC:
6863 spi_period(starget) = 0;
6864 spi_offset(starget) = 0;
6865 ncr_setsync(np, cp, 0, 0xe0);
6866 break;
6867 }
6868 }
6869
6870 /*
6871 ** It was a request, set value and
6872 ** prepare an answer message
6873 */
6874
6875 spi_width(starget) = wide;
6876 ncr_setwide(np, cp, wide, 1);
6877 spi_populate_width_msg(np->msgout, wide);
6878
6879 np->msgin [0] = NOP;
6880
6881 cp->nego_status = NS_WIDE;
6882
6883 if (DEBUG_FLAGS & DEBUG_NEGO) {
6884 ncr_print_msg(cp, "wide msgout", np->msgin);
6885 }
6886 break;
6887
6888 /*--------------------------------------------------------------------
6889 **
6890 ** Processing of special messages
6891 **
6892 **--------------------------------------------------------------------
6893 */
6894
6895 case SIR_REJECT_RECEIVED:
6896 /*-----------------------------------------------
6897 **
6898 ** We received a MESSAGE_REJECT.
6899 **
6900 **-----------------------------------------------
6901 */
6902
6903 PRINT_ADDR(cp->cmd, "MESSAGE_REJECT received (%x:%x).\n",
6904 (unsigned)scr_to_cpu(np->lastmsg), np->msgout[0]);
6905 break;
6906
6907 case SIR_REJECT_SENT:
6908 /*-----------------------------------------------
6909 **
6910 ** We received an unknown message
6911 **
6912 **-----------------------------------------------
6913 */
6914
6915 ncr_print_msg(cp, "MESSAGE_REJECT sent for", np->msgin);
6916 break;
6917
6918 /*--------------------------------------------------------------------
6919 **
6920 ** Processing of special messages
6921 **
6922 **--------------------------------------------------------------------
6923 */
6924
6925 case SIR_IGN_RESIDUE:
6926 /*-----------------------------------------------
6927 **
6928 ** We received an IGNORE RESIDUE message,
6929 ** which couldn't be handled by the script.
6930 **
6931 **-----------------------------------------------
6932 */
6933
6934 PRINT_ADDR(cp->cmd, "IGNORE_WIDE_RESIDUE received, but not yet "
6935 "implemented.\n");
6936 break;
6937 #if 0
6938 case SIR_MISSING_SAVE:
6939 /*-----------------------------------------------
6940 **
6941 ** We received an DISCONNECT message,
6942 ** but the datapointer wasn't saved before.
6943 **
6944 **-----------------------------------------------
6945 */
6946
6947 PRINT_ADDR(cp->cmd, "DISCONNECT received, but datapointer "
6948 "not saved: data=%x save=%x goal=%x.\n",
6949 (unsigned) INL (nc_temp),
6950 (unsigned) scr_to_cpu(np->header.savep),
6951 (unsigned) scr_to_cpu(np->header.goalp));
6952 break;
6953 #endif
6954 }
6955
6956 out:
6957 OUTONB_STD ();
6958 }
6959
6960 /*==========================================================
6961 **
6962 **
6963 ** Acquire a control block
6964 **
6965 **
6966 **==========================================================
6967 */
6968
ncr_get_ccb(struct ncb * np,struct scsi_cmnd * cmd)6969 static struct ccb *ncr_get_ccb(struct ncb *np, struct scsi_cmnd *cmd)
6970 {
6971 u_char tn = cmd->device->id;
6972 u_char ln = cmd->device->lun;
6973 struct tcb *tp = &np->target[tn];
6974 struct lcb *lp = tp->lp[ln];
6975 u_char tag = NO_TAG;
6976 struct ccb *cp = NULL;
6977
6978 /*
6979 ** Lun structure available ?
6980 */
6981 if (lp) {
6982 struct list_head *qp;
6983 /*
6984 ** Keep from using more tags than we can handle.
6985 */
6986 if (lp->usetags && lp->busyccbs >= lp->maxnxs)
6987 return NULL;
6988
6989 /*
6990 ** Allocate a new CCB if needed.
6991 */
6992 if (list_empty(&lp->free_ccbq))
6993 ncr_alloc_ccb(np, tn, ln);
6994
6995 /*
6996 ** Look for free CCB
6997 */
6998 qp = ncr_list_pop(&lp->free_ccbq);
6999 if (qp) {
7000 cp = list_entry(qp, struct ccb, link_ccbq);
7001 if (cp->magic) {
7002 PRINT_ADDR(cmd, "ccb free list corrupted "
7003 "(@%p)\n", cp);
7004 cp = NULL;
7005 } else {
7006 list_add_tail(qp, &lp->wait_ccbq);
7007 ++lp->busyccbs;
7008 }
7009 }
7010
7011 /*
7012 ** If a CCB is available,
7013 ** Get a tag for this nexus if required.
7014 */
7015 if (cp) {
7016 if (lp->usetags)
7017 tag = lp->cb_tags[lp->ia_tag];
7018 }
7019 else if (lp->actccbs > 0)
7020 return NULL;
7021 }
7022
7023 /*
7024 ** if nothing available, take the default.
7025 */
7026 if (!cp)
7027 cp = np->ccb;
7028
7029 /*
7030 ** Wait until available.
7031 */
7032 #if 0
7033 while (cp->magic) {
7034 if (flags & SCSI_NOSLEEP) break;
7035 if (tsleep ((caddr_t)cp, PRIBIO|PCATCH, "ncr", 0))
7036 break;
7037 }
7038 #endif
7039
7040 if (cp->magic)
7041 return NULL;
7042
7043 cp->magic = 1;
7044
7045 /*
7046 ** Move to next available tag if tag used.
7047 */
7048 if (lp) {
7049 if (tag != NO_TAG) {
7050 ++lp->ia_tag;
7051 if (lp->ia_tag == MAX_TAGS)
7052 lp->ia_tag = 0;
7053 lp->tags_umap |= (((tagmap_t) 1) << tag);
7054 }
7055 }
7056
7057 /*
7058 ** Remember all informations needed to free this CCB.
7059 */
7060 cp->tag = tag;
7061 cp->target = tn;
7062 cp->lun = ln;
7063
7064 if (DEBUG_FLAGS & DEBUG_TAGS) {
7065 PRINT_ADDR(cmd, "ccb @%p using tag %d.\n", cp, tag);
7066 }
7067
7068 return cp;
7069 }
7070
7071 /*==========================================================
7072 **
7073 **
7074 ** Release one control block
7075 **
7076 **
7077 **==========================================================
7078 */
7079
ncr_free_ccb(struct ncb * np,struct ccb * cp)7080 static void ncr_free_ccb (struct ncb *np, struct ccb *cp)
7081 {
7082 struct tcb *tp = &np->target[cp->target];
7083 struct lcb *lp = tp->lp[cp->lun];
7084
7085 if (DEBUG_FLAGS & DEBUG_TAGS) {
7086 PRINT_ADDR(cp->cmd, "ccb @%p freeing tag %d.\n", cp, cp->tag);
7087 }
7088
7089 /*
7090 ** If lun control block available,
7091 ** decrement active commands and increment credit,
7092 ** free the tag if any and remove the JUMP for reselect.
7093 */
7094 if (lp) {
7095 if (cp->tag != NO_TAG) {
7096 lp->cb_tags[lp->if_tag++] = cp->tag;
7097 if (lp->if_tag == MAX_TAGS)
7098 lp->if_tag = 0;
7099 lp->tags_umap &= ~(((tagmap_t) 1) << cp->tag);
7100 lp->tags_smap &= lp->tags_umap;
7101 lp->jump_ccb[cp->tag] =
7102 cpu_to_scr(NCB_SCRIPTH_PHYS(np, bad_i_t_l_q));
7103 } else {
7104 lp->jump_ccb[0] =
7105 cpu_to_scr(NCB_SCRIPTH_PHYS(np, bad_i_t_l));
7106 }
7107 }
7108
7109 /*
7110 ** Make this CCB available.
7111 */
7112
7113 if (lp) {
7114 if (cp != np->ccb)
7115 list_move(&cp->link_ccbq, &lp->free_ccbq);
7116 --lp->busyccbs;
7117 if (cp->queued) {
7118 --lp->queuedccbs;
7119 }
7120 }
7121 cp -> host_status = HS_IDLE;
7122 cp -> magic = 0;
7123 if (cp->queued) {
7124 --np->queuedccbs;
7125 cp->queued = 0;
7126 }
7127
7128 #if 0
7129 if (cp == np->ccb)
7130 wakeup ((caddr_t) cp);
7131 #endif
7132 }
7133
7134
7135 #define ncr_reg_bus_addr(r) (np->paddr + offsetof (struct ncr_reg, r))
7136
7137 /*------------------------------------------------------------------------
7138 ** Initialize the fixed part of a CCB structure.
7139 **------------------------------------------------------------------------
7140 **------------------------------------------------------------------------
7141 */
ncr_init_ccb(struct ncb * np,struct ccb * cp)7142 static void ncr_init_ccb(struct ncb *np, struct ccb *cp)
7143 {
7144 ncrcmd copy_4 = np->features & FE_PFEN ? SCR_COPY(4) : SCR_COPY_F(4);
7145
7146 /*
7147 ** Remember virtual and bus address of this ccb.
7148 */
7149 cp->p_ccb = vtobus(cp);
7150 cp->phys.header.cp = cp;
7151
7152 /*
7153 ** This allows list_del to work for the default ccb.
7154 */
7155 INIT_LIST_HEAD(&cp->link_ccbq);
7156
7157 /*
7158 ** Initialyze the start and restart launch script.
7159 **
7160 ** COPY(4) @(...p_phys), @(dsa)
7161 ** JUMP @(sched_point)
7162 */
7163 cp->start.setup_dsa[0] = cpu_to_scr(copy_4);
7164 cp->start.setup_dsa[1] = cpu_to_scr(CCB_PHYS(cp, start.p_phys));
7165 cp->start.setup_dsa[2] = cpu_to_scr(ncr_reg_bus_addr(nc_dsa));
7166 cp->start.schedule.l_cmd = cpu_to_scr(SCR_JUMP);
7167 cp->start.p_phys = cpu_to_scr(CCB_PHYS(cp, phys));
7168
7169 memcpy(&cp->restart, &cp->start, sizeof(cp->restart));
7170
7171 cp->start.schedule.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, idle));
7172 cp->restart.schedule.l_paddr = cpu_to_scr(NCB_SCRIPTH_PHYS (np, abort));
7173 }
7174
7175
7176 /*------------------------------------------------------------------------
7177 ** Allocate a CCB and initialize its fixed part.
7178 **------------------------------------------------------------------------
7179 **------------------------------------------------------------------------
7180 */
ncr_alloc_ccb(struct ncb * np,u_char tn,u_char ln)7181 static void ncr_alloc_ccb(struct ncb *np, u_char tn, u_char ln)
7182 {
7183 struct tcb *tp = &np->target[tn];
7184 struct lcb *lp = tp->lp[ln];
7185 struct ccb *cp = NULL;
7186
7187 /*
7188 ** Allocate memory for this CCB.
7189 */
7190 cp = m_calloc_dma(sizeof(struct ccb), "CCB");
7191 if (!cp)
7192 return;
7193
7194 /*
7195 ** Count it and initialyze it.
7196 */
7197 lp->actccbs++;
7198 np->actccbs++;
7199 memset(cp, 0, sizeof (*cp));
7200 ncr_init_ccb(np, cp);
7201
7202 /*
7203 ** Chain into wakeup list and free ccb queue and take it
7204 ** into account for tagged commands.
7205 */
7206 cp->link_ccb = np->ccb->link_ccb;
7207 np->ccb->link_ccb = cp;
7208
7209 list_add(&cp->link_ccbq, &lp->free_ccbq);
7210 }
7211
7212 /*==========================================================
7213 **
7214 **
7215 ** Allocation of resources for Targets/Luns/Tags.
7216 **
7217 **
7218 **==========================================================
7219 */
7220
7221
7222 /*------------------------------------------------------------------------
7223 ** Target control block initialisation.
7224 **------------------------------------------------------------------------
7225 ** This data structure is fully initialized after a SCSI command
7226 ** has been successfully completed for this target.
7227 ** It contains a SCRIPT that is called on target reselection.
7228 **------------------------------------------------------------------------
7229 */
ncr_init_tcb(struct ncb * np,u_char tn)7230 static void ncr_init_tcb (struct ncb *np, u_char tn)
7231 {
7232 struct tcb *tp = &np->target[tn];
7233 ncrcmd copy_1 = np->features & FE_PFEN ? SCR_COPY(1) : SCR_COPY_F(1);
7234 int th = tn & 3;
7235 int i;
7236
7237 /*
7238 ** Jump to next tcb if SFBR does not match this target.
7239 ** JUMP IF (SFBR != #target#), @(next tcb)
7240 */
7241 tp->jump_tcb.l_cmd =
7242 cpu_to_scr((SCR_JUMP ^ IFFALSE (DATA (0x80 + tn))));
7243 tp->jump_tcb.l_paddr = np->jump_tcb[th].l_paddr;
7244
7245 /*
7246 ** Load the synchronous transfer register.
7247 ** COPY @(tp->sval), @(sxfer)
7248 */
7249 tp->getscr[0] = cpu_to_scr(copy_1);
7250 tp->getscr[1] = cpu_to_scr(vtobus (&tp->sval));
7251 #ifdef SCSI_NCR_BIG_ENDIAN
7252 tp->getscr[2] = cpu_to_scr(ncr_reg_bus_addr(nc_sxfer) ^ 3);
7253 #else
7254 tp->getscr[2] = cpu_to_scr(ncr_reg_bus_addr(nc_sxfer));
7255 #endif
7256
7257 /*
7258 ** Load the timing register.
7259 ** COPY @(tp->wval), @(scntl3)
7260 */
7261 tp->getscr[3] = cpu_to_scr(copy_1);
7262 tp->getscr[4] = cpu_to_scr(vtobus (&tp->wval));
7263 #ifdef SCSI_NCR_BIG_ENDIAN
7264 tp->getscr[5] = cpu_to_scr(ncr_reg_bus_addr(nc_scntl3) ^ 3);
7265 #else
7266 tp->getscr[5] = cpu_to_scr(ncr_reg_bus_addr(nc_scntl3));
7267 #endif
7268
7269 /*
7270 ** Get the IDENTIFY message and the lun.
7271 ** CALL @script(resel_lun)
7272 */
7273 tp->call_lun.l_cmd = cpu_to_scr(SCR_CALL);
7274 tp->call_lun.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_lun));
7275
7276 /*
7277 ** Look for the lun control block of this nexus.
7278 ** For i = 0 to 3
7279 ** JUMP ^ IFTRUE (MASK (i, 3)), @(next_lcb)
7280 */
7281 for (i = 0 ; i < 4 ; i++) {
7282 tp->jump_lcb[i].l_cmd =
7283 cpu_to_scr((SCR_JUMP ^ IFTRUE (MASK (i, 3))));
7284 tp->jump_lcb[i].l_paddr =
7285 cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_identify));
7286 }
7287
7288 /*
7289 ** Link this target control block to the JUMP chain.
7290 */
7291 np->jump_tcb[th].l_paddr = cpu_to_scr(vtobus (&tp->jump_tcb));
7292
7293 /*
7294 ** These assert's should be moved at driver initialisations.
7295 */
7296 #ifdef SCSI_NCR_BIG_ENDIAN
7297 BUG_ON(((offsetof(struct ncr_reg, nc_sxfer) ^
7298 offsetof(struct tcb , sval )) &3) != 3);
7299 BUG_ON(((offsetof(struct ncr_reg, nc_scntl3) ^
7300 offsetof(struct tcb , wval )) &3) != 3);
7301 #else
7302 BUG_ON(((offsetof(struct ncr_reg, nc_sxfer) ^
7303 offsetof(struct tcb , sval )) &3) != 0);
7304 BUG_ON(((offsetof(struct ncr_reg, nc_scntl3) ^
7305 offsetof(struct tcb , wval )) &3) != 0);
7306 #endif
7307 }
7308
7309
7310 /*------------------------------------------------------------------------
7311 ** Lun control block allocation and initialization.
7312 **------------------------------------------------------------------------
7313 ** This data structure is allocated and initialized after a SCSI
7314 ** command has been successfully completed for this target/lun.
7315 **------------------------------------------------------------------------
7316 */
ncr_alloc_lcb(struct ncb * np,u_char tn,u_char ln)7317 static struct lcb *ncr_alloc_lcb (struct ncb *np, u_char tn, u_char ln)
7318 {
7319 struct tcb *tp = &np->target[tn];
7320 struct lcb *lp = tp->lp[ln];
7321 ncrcmd copy_4 = np->features & FE_PFEN ? SCR_COPY(4) : SCR_COPY_F(4);
7322 int lh = ln & 3;
7323
7324 /*
7325 ** Already done, return.
7326 */
7327 if (lp)
7328 return lp;
7329
7330 /*
7331 ** Allocate the lcb.
7332 */
7333 lp = m_calloc_dma(sizeof(struct lcb), "LCB");
7334 if (!lp)
7335 goto fail;
7336 memset(lp, 0, sizeof(*lp));
7337 tp->lp[ln] = lp;
7338
7339 /*
7340 ** Initialize the target control block if not yet.
7341 */
7342 if (!tp->jump_tcb.l_cmd)
7343 ncr_init_tcb(np, tn);
7344
7345 /*
7346 ** Initialize the CCB queue headers.
7347 */
7348 INIT_LIST_HEAD(&lp->free_ccbq);
7349 INIT_LIST_HEAD(&lp->busy_ccbq);
7350 INIT_LIST_HEAD(&lp->wait_ccbq);
7351 INIT_LIST_HEAD(&lp->skip_ccbq);
7352
7353 /*
7354 ** Set max CCBs to 1 and use the default 1 entry
7355 ** jump table by default.
7356 */
7357 lp->maxnxs = 1;
7358 lp->jump_ccb = &lp->jump_ccb_0;
7359 lp->p_jump_ccb = cpu_to_scr(vtobus(lp->jump_ccb));
7360
7361 /*
7362 ** Initilialyze the reselect script:
7363 **
7364 ** Jump to next lcb if SFBR does not match this lun.
7365 ** Load TEMP with the CCB direct jump table bus address.
7366 ** Get the SIMPLE TAG message and the tag.
7367 **
7368 ** JUMP IF (SFBR != #lun#), @(next lcb)
7369 ** COPY @(lp->p_jump_ccb), @(temp)
7370 ** JUMP @script(resel_notag)
7371 */
7372 lp->jump_lcb.l_cmd =
7373 cpu_to_scr((SCR_JUMP ^ IFFALSE (MASK (0x80+ln, 0xff))));
7374 lp->jump_lcb.l_paddr = tp->jump_lcb[lh].l_paddr;
7375
7376 lp->load_jump_ccb[0] = cpu_to_scr(copy_4);
7377 lp->load_jump_ccb[1] = cpu_to_scr(vtobus (&lp->p_jump_ccb));
7378 lp->load_jump_ccb[2] = cpu_to_scr(ncr_reg_bus_addr(nc_temp));
7379
7380 lp->jump_tag.l_cmd = cpu_to_scr(SCR_JUMP);
7381 lp->jump_tag.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_notag));
7382
7383 /*
7384 ** Link this lun control block to the JUMP chain.
7385 */
7386 tp->jump_lcb[lh].l_paddr = cpu_to_scr(vtobus (&lp->jump_lcb));
7387
7388 /*
7389 ** Initialize command queuing control.
7390 */
7391 lp->busyccbs = 1;
7392 lp->queuedccbs = 1;
7393 lp->queuedepth = 1;
7394 fail:
7395 return lp;
7396 }
7397
7398
7399 /*------------------------------------------------------------------------
7400 ** Lun control block setup on INQUIRY data received.
7401 **------------------------------------------------------------------------
7402 ** We only support WIDE, SYNC for targets and CMDQ for logical units.
7403 ** This setup is done on each INQUIRY since we are expecting user
7404 ** will play with CHANGE DEFINITION commands. :-)
7405 **------------------------------------------------------------------------
7406 */
ncr_setup_lcb(struct ncb * np,struct scsi_device * sdev)7407 static struct lcb *ncr_setup_lcb (struct ncb *np, struct scsi_device *sdev)
7408 {
7409 unsigned char tn = sdev->id, ln = sdev->lun;
7410 struct tcb *tp = &np->target[tn];
7411 struct lcb *lp = tp->lp[ln];
7412
7413 /* If no lcb, try to allocate it. */
7414 if (!lp && !(lp = ncr_alloc_lcb(np, tn, ln)))
7415 goto fail;
7416
7417 /*
7418 ** If unit supports tagged commands, allocate the
7419 ** CCB JUMP table if not yet.
7420 */
7421 if (sdev->tagged_supported && lp->jump_ccb == &lp->jump_ccb_0) {
7422 int i;
7423 lp->jump_ccb = m_calloc_dma(256, "JUMP_CCB");
7424 if (!lp->jump_ccb) {
7425 lp->jump_ccb = &lp->jump_ccb_0;
7426 goto fail;
7427 }
7428 lp->p_jump_ccb = cpu_to_scr(vtobus(lp->jump_ccb));
7429 for (i = 0 ; i < 64 ; i++)
7430 lp->jump_ccb[i] =
7431 cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_i_t_l_q));
7432 for (i = 0 ; i < MAX_TAGS ; i++)
7433 lp->cb_tags[i] = i;
7434 lp->maxnxs = MAX_TAGS;
7435 lp->tags_stime = jiffies + 3*HZ;
7436 ncr_setup_tags (np, sdev);
7437 }
7438
7439
7440 fail:
7441 return lp;
7442 }
7443
7444 /*==========================================================
7445 **
7446 **
7447 ** Build Scatter Gather Block
7448 **
7449 **
7450 **==========================================================
7451 **
7452 ** The transfer area may be scattered among
7453 ** several non adjacent physical pages.
7454 **
7455 ** We may use MAX_SCATTER blocks.
7456 **
7457 **----------------------------------------------------------
7458 */
7459
7460 /*
7461 ** We try to reduce the number of interrupts caused
7462 ** by unexpected phase changes due to disconnects.
7463 ** A typical harddisk may disconnect before ANY block.
7464 ** If we wanted to avoid unexpected phase changes at all
7465 ** we had to use a break point every 512 bytes.
7466 ** Of course the number of scatter/gather blocks is
7467 ** limited.
7468 ** Under Linux, the scatter/gatter blocks are provided by
7469 ** the generic driver. We just have to copy addresses and
7470 ** sizes to the data segment array.
7471 */
7472
ncr_scatter(struct ncb * np,struct ccb * cp,struct scsi_cmnd * cmd)7473 static int ncr_scatter(struct ncb *np, struct ccb *cp, struct scsi_cmnd *cmd)
7474 {
7475 int segment = 0;
7476 int use_sg = scsi_sg_count(cmd);
7477
7478 cp->data_len = 0;
7479
7480 use_sg = map_scsi_sg_data(np, cmd);
7481 if (use_sg > 0) {
7482 struct scatterlist *sg;
7483 struct scr_tblmove *data;
7484
7485 if (use_sg > MAX_SCATTER) {
7486 unmap_scsi_data(np, cmd);
7487 return -1;
7488 }
7489
7490 data = &cp->phys.data[MAX_SCATTER - use_sg];
7491
7492 scsi_for_each_sg(cmd, sg, use_sg, segment) {
7493 dma_addr_t baddr = sg_dma_address(sg);
7494 unsigned int len = sg_dma_len(sg);
7495
7496 ncr_build_sge(np, &data[segment], baddr, len);
7497 cp->data_len += len;
7498 }
7499 } else
7500 segment = -2;
7501
7502 return segment;
7503 }
7504
7505 /*==========================================================
7506 **
7507 **
7508 ** Test the bus snoop logic :-(
7509 **
7510 ** Has to be called with interrupts disabled.
7511 **
7512 **
7513 **==========================================================
7514 */
7515
ncr_regtest(struct ncb * np)7516 static int __init ncr_regtest (struct ncb* np)
7517 {
7518 register volatile u32 data;
7519 /*
7520 ** ncr registers may NOT be cached.
7521 ** write 0xffffffff to a read only register area,
7522 ** and try to read it back.
7523 */
7524 data = 0xffffffff;
7525 OUTL_OFF(offsetof(struct ncr_reg, nc_dstat), data);
7526 data = INL_OFF(offsetof(struct ncr_reg, nc_dstat));
7527 #if 1
7528 if (data == 0xffffffff) {
7529 #else
7530 if ((data & 0xe2f0fffd) != 0x02000080) {
7531 #endif
7532 printk ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
7533 (unsigned) data);
7534 return (0x10);
7535 }
7536 return (0);
7537 }
7538
7539 static int __init ncr_snooptest (struct ncb* np)
7540 {
7541 u32 ncr_rd, ncr_wr, ncr_bk, host_rd, host_wr, pc;
7542 int i, err=0;
7543 if (np->reg) {
7544 err |= ncr_regtest (np);
7545 if (err)
7546 return (err);
7547 }
7548
7549 /* init */
7550 pc = NCB_SCRIPTH_PHYS (np, snooptest);
7551 host_wr = 1;
7552 ncr_wr = 2;
7553 /*
7554 ** Set memory and register.
7555 */
7556 np->ncr_cache = cpu_to_scr(host_wr);
7557 OUTL (nc_temp, ncr_wr);
7558 /*
7559 ** Start script (exchange values)
7560 */
7561 OUTL_DSP (pc);
7562 /*
7563 ** Wait 'til done (with timeout)
7564 */
7565 for (i=0; i<NCR_SNOOP_TIMEOUT; i++)
7566 if (INB(nc_istat) & (INTF|SIP|DIP))
7567 break;
7568 /*
7569 ** Save termination position.
7570 */
7571 pc = INL (nc_dsp);
7572 /*
7573 ** Read memory and register.
7574 */
7575 host_rd = scr_to_cpu(np->ncr_cache);
7576 ncr_rd = INL (nc_scratcha);
7577 ncr_bk = INL (nc_temp);
7578 /*
7579 ** Reset ncr chip
7580 */
7581 ncr_chip_reset(np, 100);
7582 /*
7583 ** check for timeout
7584 */
7585 if (i>=NCR_SNOOP_TIMEOUT) {
7586 printk ("CACHE TEST FAILED: timeout.\n");
7587 return (0x20);
7588 }
7589 /*
7590 ** Check termination position.
7591 */
7592 if (pc != NCB_SCRIPTH_PHYS (np, snoopend)+8) {
7593 printk ("CACHE TEST FAILED: script execution failed.\n");
7594 printk ("start=%08lx, pc=%08lx, end=%08lx\n",
7595 (u_long) NCB_SCRIPTH_PHYS (np, snooptest), (u_long) pc,
7596 (u_long) NCB_SCRIPTH_PHYS (np, snoopend) +8);
7597 return (0x40);
7598 }
7599 /*
7600 ** Show results.
7601 */
7602 if (host_wr != ncr_rd) {
7603 printk ("CACHE TEST FAILED: host wrote %d, ncr read %d.\n",
7604 (int) host_wr, (int) ncr_rd);
7605 err |= 1;
7606 }
7607 if (host_rd != ncr_wr) {
7608 printk ("CACHE TEST FAILED: ncr wrote %d, host read %d.\n",
7609 (int) ncr_wr, (int) host_rd);
7610 err |= 2;
7611 }
7612 if (ncr_bk != ncr_wr) {
7613 printk ("CACHE TEST FAILED: ncr wrote %d, read back %d.\n",
7614 (int) ncr_wr, (int) ncr_bk);
7615 err |= 4;
7616 }
7617 return (err);
7618 }
7619
7620 /*==========================================================
7621 **
7622 ** Determine the ncr's clock frequency.
7623 ** This is essential for the negotiation
7624 ** of the synchronous transfer rate.
7625 **
7626 **==========================================================
7627 **
7628 ** Note: we have to return the correct value.
7629 ** THERE IS NO SAFE DEFAULT VALUE.
7630 **
7631 ** Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
7632 ** 53C860 and 53C875 rev. 1 support fast20 transfers but
7633 ** do not have a clock doubler and so are provided with a
7634 ** 80 MHz clock. All other fast20 boards incorporate a doubler
7635 ** and so should be delivered with a 40 MHz clock.
7636 ** The future fast40 chips (895/895) use a 40 Mhz base clock
7637 ** and provide a clock quadrupler (160 Mhz). The code below
7638 ** tries to deal as cleverly as possible with all this stuff.
7639 **
7640 **----------------------------------------------------------
7641 */
7642
7643 /*
7644 * Select NCR SCSI clock frequency
7645 */
7646 static void ncr_selectclock(struct ncb *np, u_char scntl3)
7647 {
7648 if (np->multiplier < 2) {
7649 OUTB(nc_scntl3, scntl3);
7650 return;
7651 }
7652
7653 if (bootverbose >= 2)
7654 printk ("%s: enabling clock multiplier\n", ncr_name(np));
7655
7656 OUTB(nc_stest1, DBLEN); /* Enable clock multiplier */
7657 if (np->multiplier > 2) { /* Poll bit 5 of stest4 for quadrupler */
7658 int i = 20;
7659 while (!(INB(nc_stest4) & LCKFRQ) && --i > 0)
7660 udelay(20);
7661 if (!i)
7662 printk("%s: the chip cannot lock the frequency\n", ncr_name(np));
7663 } else /* Wait 20 micro-seconds for doubler */
7664 udelay(20);
7665 OUTB(nc_stest3, HSC); /* Halt the scsi clock */
7666 OUTB(nc_scntl3, scntl3);
7667 OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */
7668 OUTB(nc_stest3, 0x00); /* Restart scsi clock */
7669 }
7670
7671
7672 /*
7673 * calculate NCR SCSI clock frequency (in KHz)
7674 */
7675 static unsigned __init ncrgetfreq (struct ncb *np, int gen)
7676 {
7677 unsigned ms = 0;
7678 char count = 0;
7679
7680 /*
7681 * Measure GEN timer delay in order
7682 * to calculate SCSI clock frequency
7683 *
7684 * This code will never execute too
7685 * many loop iterations (if DELAY is
7686 * reasonably correct). It could get
7687 * too low a delay (too high a freq.)
7688 * if the CPU is slow executing the
7689 * loop for some reason (an NMI, for
7690 * example). For this reason we will
7691 * if multiple measurements are to be
7692 * performed trust the higher delay
7693 * (lower frequency returned).
7694 */
7695 OUTB (nc_stest1, 0); /* make sure clock doubler is OFF */
7696 OUTW (nc_sien , 0); /* mask all scsi interrupts */
7697 (void) INW (nc_sist); /* clear pending scsi interrupt */
7698 OUTB (nc_dien , 0); /* mask all dma interrupts */
7699 (void) INW (nc_sist); /* another one, just to be sure :) */
7700 OUTB (nc_scntl3, 4); /* set pre-scaler to divide by 3 */
7701 OUTB (nc_stime1, 0); /* disable general purpose timer */
7702 OUTB (nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */
7703 while (!(INW(nc_sist) & GEN) && ms++ < 100000) {
7704 for (count = 0; count < 10; count ++)
7705 udelay(100); /* count ms */
7706 }
7707 OUTB (nc_stime1, 0); /* disable general purpose timer */
7708 /*
7709 * set prescaler to divide by whatever 0 means
7710 * 0 ought to choose divide by 2, but appears
7711 * to set divide by 3.5 mode in my 53c810 ...
7712 */
7713 OUTB (nc_scntl3, 0);
7714
7715 if (bootverbose >= 2)
7716 printk ("%s: Delay (GEN=%d): %u msec\n", ncr_name(np), gen, ms);
7717 /*
7718 * adjust for prescaler, and convert into KHz
7719 */
7720 return ms ? ((1 << gen) * 4340) / ms : 0;
7721 }
7722
7723 /*
7724 * Get/probe NCR SCSI clock frequency
7725 */
7726 static void __init ncr_getclock (struct ncb *np, int mult)
7727 {
7728 unsigned char scntl3 = INB(nc_scntl3);
7729 unsigned char stest1 = INB(nc_stest1);
7730 unsigned f1;
7731
7732 np->multiplier = 1;
7733 f1 = 40000;
7734
7735 /*
7736 ** True with 875 or 895 with clock multiplier selected
7737 */
7738 if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
7739 if (bootverbose >= 2)
7740 printk ("%s: clock multiplier found\n", ncr_name(np));
7741 np->multiplier = mult;
7742 }
7743
7744 /*
7745 ** If multiplier not found or scntl3 not 7,5,3,
7746 ** reset chip and get frequency from general purpose timer.
7747 ** Otherwise trust scntl3 BIOS setting.
7748 */
7749 if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
7750 unsigned f2;
7751
7752 ncr_chip_reset(np, 5);
7753
7754 (void) ncrgetfreq (np, 11); /* throw away first result */
7755 f1 = ncrgetfreq (np, 11);
7756 f2 = ncrgetfreq (np, 11);
7757
7758 if(bootverbose)
7759 printk ("%s: NCR clock is %uKHz, %uKHz\n", ncr_name(np), f1, f2);
7760
7761 if (f1 > f2) f1 = f2; /* trust lower result */
7762
7763 if (f1 < 45000) f1 = 40000;
7764 else if (f1 < 55000) f1 = 50000;
7765 else f1 = 80000;
7766
7767 if (f1 < 80000 && mult > 1) {
7768 if (bootverbose >= 2)
7769 printk ("%s: clock multiplier assumed\n", ncr_name(np));
7770 np->multiplier = mult;
7771 }
7772 } else {
7773 if ((scntl3 & 7) == 3) f1 = 40000;
7774 else if ((scntl3 & 7) == 5) f1 = 80000;
7775 else f1 = 160000;
7776
7777 f1 /= np->multiplier;
7778 }
7779
7780 /*
7781 ** Compute controller synchronous parameters.
7782 */
7783 f1 *= np->multiplier;
7784 np->clock_khz = f1;
7785 }
7786
7787 /*===================== LINUX ENTRY POINTS SECTION ==========================*/
7788
7789 static int ncr53c8xx_slave_alloc(struct scsi_device *device)
7790 {
7791 struct Scsi_Host *host = device->host;
7792 struct ncb *np = ((struct host_data *) host->hostdata)->ncb;
7793 struct tcb *tp = &np->target[device->id];
7794 tp->starget = device->sdev_target;
7795
7796 return 0;
7797 }
7798
7799 static int ncr53c8xx_slave_configure(struct scsi_device *device)
7800 {
7801 struct Scsi_Host *host = device->host;
7802 struct ncb *np = ((struct host_data *) host->hostdata)->ncb;
7803 struct tcb *tp = &np->target[device->id];
7804 struct lcb *lp = tp->lp[device->lun];
7805 int numtags, depth_to_use;
7806
7807 ncr_setup_lcb(np, device);
7808
7809 /*
7810 ** Select queue depth from driver setup.
7811 ** Donnot use more than configured by user.
7812 ** Use at least 2.
7813 ** Donnot use more than our maximum.
7814 */
7815 numtags = device_queue_depth(np->unit, device->id, device->lun);
7816 if (numtags > tp->usrtags)
7817 numtags = tp->usrtags;
7818 if (!device->tagged_supported)
7819 numtags = 1;
7820 depth_to_use = numtags;
7821 if (depth_to_use < 2)
7822 depth_to_use = 2;
7823 if (depth_to_use > MAX_TAGS)
7824 depth_to_use = MAX_TAGS;
7825
7826 scsi_change_queue_depth(device, depth_to_use);
7827
7828 /*
7829 ** Since the queue depth is not tunable under Linux,
7830 ** we need to know this value in order not to
7831 ** announce stupid things to user.
7832 **
7833 ** XXX(hch): As of Linux 2.6 it certainly _is_ tunable..
7834 ** In fact we just tuned it, or did I miss
7835 ** something important? :)
7836 */
7837 if (lp) {
7838 lp->numtags = lp->maxtags = numtags;
7839 lp->scdev_depth = depth_to_use;
7840 }
7841 ncr_setup_tags (np, device);
7842
7843 #ifdef DEBUG_NCR53C8XX
7844 printk("ncr53c8xx_select_queue_depth: host=%d, id=%d, lun=%d, depth=%d\n",
7845 np->unit, device->id, device->lun, depth_to_use);
7846 #endif
7847
7848 if (spi_support_sync(device->sdev_target) &&
7849 !spi_initial_dv(device->sdev_target))
7850 spi_dv_device(device);
7851 return 0;
7852 }
7853
7854 static int ncr53c8xx_queue_command_lck(struct scsi_cmnd *cmd)
7855 {
7856 struct ncr_cmd_priv *cmd_priv = scsi_cmd_priv(cmd);
7857 void (*done)(struct scsi_cmnd *) = scsi_done;
7858 struct ncb *np = ((struct host_data *) cmd->device->host->hostdata)->ncb;
7859 unsigned long flags;
7860 int sts;
7861
7862 #ifdef DEBUG_NCR53C8XX
7863 printk("ncr53c8xx_queue_command\n");
7864 #endif
7865
7866 cmd->host_scribble = NULL;
7867 cmd_priv->data_mapped = 0;
7868 cmd_priv->data_mapping = 0;
7869
7870 spin_lock_irqsave(&np->smp_lock, flags);
7871
7872 if ((sts = ncr_queue_command(np, cmd)) != DID_OK) {
7873 set_host_byte(cmd, sts);
7874 #ifdef DEBUG_NCR53C8XX
7875 printk("ncr53c8xx : command not queued - result=%d\n", sts);
7876 #endif
7877 }
7878 #ifdef DEBUG_NCR53C8XX
7879 else
7880 printk("ncr53c8xx : command successfully queued\n");
7881 #endif
7882
7883 spin_unlock_irqrestore(&np->smp_lock, flags);
7884
7885 if (sts != DID_OK) {
7886 unmap_scsi_data(np, cmd);
7887 done(cmd);
7888 sts = 0;
7889 }
7890
7891 return sts;
7892 }
7893
7894 static DEF_SCSI_QCMD(ncr53c8xx_queue_command)
7895
7896 irqreturn_t ncr53c8xx_intr(int irq, void *dev_id)
7897 {
7898 unsigned long flags;
7899 struct Scsi_Host *shost = (struct Scsi_Host *)dev_id;
7900 struct host_data *host_data = (struct host_data *)shost->hostdata;
7901 struct ncb *np = host_data->ncb;
7902 struct scsi_cmnd *done_list;
7903
7904 #ifdef DEBUG_NCR53C8XX
7905 printk("ncr53c8xx : interrupt received\n");
7906 #endif
7907
7908 if (DEBUG_FLAGS & DEBUG_TINY) printk ("[");
7909
7910 spin_lock_irqsave(&np->smp_lock, flags);
7911 ncr_exception(np);
7912 done_list = np->done_list;
7913 np->done_list = NULL;
7914 spin_unlock_irqrestore(&np->smp_lock, flags);
7915
7916 if (DEBUG_FLAGS & DEBUG_TINY) printk ("]\n");
7917
7918 if (done_list)
7919 ncr_flush_done_cmds(done_list);
7920 return IRQ_HANDLED;
7921 }
7922
7923 static void ncr53c8xx_timeout(struct timer_list *t)
7924 {
7925 struct ncb *np = from_timer(np, t, timer);
7926 unsigned long flags;
7927 struct scsi_cmnd *done_list;
7928
7929 spin_lock_irqsave(&np->smp_lock, flags);
7930 ncr_timeout(np);
7931 done_list = np->done_list;
7932 np->done_list = NULL;
7933 spin_unlock_irqrestore(&np->smp_lock, flags);
7934
7935 if (done_list)
7936 ncr_flush_done_cmds(done_list);
7937 }
7938
7939 static int ncr53c8xx_bus_reset(struct scsi_cmnd *cmd)
7940 {
7941 struct ncb *np = ((struct host_data *) cmd->device->host->hostdata)->ncb;
7942 int sts;
7943 unsigned long flags;
7944 struct scsi_cmnd *done_list;
7945
7946 /*
7947 * If the mid-level driver told us reset is synchronous, it seems
7948 * that we must call the done() callback for the involved command,
7949 * even if this command was not queued to the low-level driver,
7950 * before returning SUCCESS.
7951 */
7952
7953 spin_lock_irqsave(&np->smp_lock, flags);
7954 sts = ncr_reset_bus(np);
7955
7956 done_list = np->done_list;
7957 np->done_list = NULL;
7958 spin_unlock_irqrestore(&np->smp_lock, flags);
7959
7960 ncr_flush_done_cmds(done_list);
7961
7962 return sts;
7963 }
7964
7965
7966 /*
7967 ** Scsi command waiting list management.
7968 **
7969 ** It may happen that we cannot insert a scsi command into the start queue,
7970 ** in the following circumstances.
7971 ** Too few preallocated ccb(s),
7972 ** maxtags < cmd_per_lun of the Linux host control block,
7973 ** etc...
7974 ** Such scsi commands are inserted into a waiting list.
7975 ** When a scsi command complete, we try to requeue the commands of the
7976 ** waiting list.
7977 */
7978
7979 #define next_wcmd host_scribble
7980
7981 static void insert_into_waiting_list(struct ncb *np, struct scsi_cmnd *cmd)
7982 {
7983 struct scsi_cmnd *wcmd;
7984
7985 #ifdef DEBUG_WAITING_LIST
7986 printk("%s: cmd %lx inserted into waiting list\n", ncr_name(np), (u_long) cmd);
7987 #endif
7988 cmd->next_wcmd = NULL;
7989 if (!(wcmd = np->waiting_list)) np->waiting_list = cmd;
7990 else {
7991 while (wcmd->next_wcmd)
7992 wcmd = (struct scsi_cmnd *) wcmd->next_wcmd;
7993 wcmd->next_wcmd = (char *) cmd;
7994 }
7995 }
7996
7997 static void process_waiting_list(struct ncb *np, int sts)
7998 {
7999 struct scsi_cmnd *waiting_list, *wcmd;
8000
8001 waiting_list = np->waiting_list;
8002 np->waiting_list = NULL;
8003
8004 #ifdef DEBUG_WAITING_LIST
8005 if (waiting_list) printk("%s: waiting_list=%lx processing sts=%d\n", ncr_name(np), (u_long) waiting_list, sts);
8006 #endif
8007 while ((wcmd = waiting_list) != NULL) {
8008 waiting_list = (struct scsi_cmnd *) wcmd->next_wcmd;
8009 wcmd->next_wcmd = NULL;
8010 if (sts == DID_OK) {
8011 #ifdef DEBUG_WAITING_LIST
8012 printk("%s: cmd %lx trying to requeue\n", ncr_name(np), (u_long) wcmd);
8013 #endif
8014 sts = ncr_queue_command(np, wcmd);
8015 }
8016 if (sts != DID_OK) {
8017 #ifdef DEBUG_WAITING_LIST
8018 printk("%s: cmd %lx done forced sts=%d\n", ncr_name(np), (u_long) wcmd, sts);
8019 #endif
8020 set_host_byte(wcmd, sts);
8021 ncr_queue_done_cmd(np, wcmd);
8022 }
8023 }
8024 }
8025
8026 #undef next_wcmd
8027
8028 static ssize_t show_ncr53c8xx_revision(struct device *dev,
8029 struct device_attribute *attr, char *buf)
8030 {
8031 struct Scsi_Host *host = class_to_shost(dev);
8032 struct host_data *host_data = (struct host_data *)host->hostdata;
8033
8034 return snprintf(buf, 20, "0x%x\n", host_data->ncb->revision_id);
8035 }
8036
8037 static struct device_attribute ncr53c8xx_revision_attr = {
8038 .attr = { .name = "revision", .mode = S_IRUGO, },
8039 .show = show_ncr53c8xx_revision,
8040 };
8041
8042 static struct attribute *ncr53c8xx_host_attrs[] = {
8043 &ncr53c8xx_revision_attr.attr,
8044 NULL
8045 };
8046
8047 ATTRIBUTE_GROUPS(ncr53c8xx_host);
8048
8049 /*==========================================================
8050 **
8051 ** Boot command line.
8052 **
8053 **==========================================================
8054 */
8055 #ifdef MODULE
8056 char *ncr53c8xx; /* command line passed by insmod */
8057 module_param(ncr53c8xx, charp, 0);
8058 #endif
8059
8060 #ifndef MODULE
8061 static int __init ncr53c8xx_setup(char *str)
8062 {
8063 return sym53c8xx__setup(str);
8064 }
8065
8066 __setup("ncr53c8xx=", ncr53c8xx_setup);
8067 #endif
8068
8069
8070 /*
8071 * Host attach and initialisations.
8072 *
8073 * Allocate host data and ncb structure.
8074 * Request IO region and remap MMIO region.
8075 * Do chip initialization.
8076 * If all is OK, install interrupt handling and
8077 * start the timer daemon.
8078 */
8079 struct Scsi_Host * __init ncr_attach(struct scsi_host_template *tpnt,
8080 int unit, struct ncr_device *device)
8081 {
8082 struct host_data *host_data;
8083 struct ncb *np = NULL;
8084 struct Scsi_Host *instance = NULL;
8085 u_long flags = 0;
8086 int i;
8087
8088 WARN_ON_ONCE(tpnt->cmd_size < sizeof(struct ncr_cmd_priv));
8089
8090 if (!tpnt->name)
8091 tpnt->name = SCSI_NCR_DRIVER_NAME;
8092 if (!tpnt->shost_groups)
8093 tpnt->shost_groups = ncr53c8xx_host_groups;
8094
8095 tpnt->queuecommand = ncr53c8xx_queue_command;
8096 tpnt->slave_configure = ncr53c8xx_slave_configure;
8097 tpnt->slave_alloc = ncr53c8xx_slave_alloc;
8098 tpnt->eh_bus_reset_handler = ncr53c8xx_bus_reset;
8099 tpnt->can_queue = SCSI_NCR_CAN_QUEUE;
8100 tpnt->this_id = 7;
8101 tpnt->sg_tablesize = SCSI_NCR_SG_TABLESIZE;
8102 tpnt->cmd_per_lun = SCSI_NCR_CMD_PER_LUN;
8103
8104 if (device->differential)
8105 driver_setup.diff_support = device->differential;
8106
8107 printk(KERN_INFO "ncr53c720-%d: rev 0x%x irq %d\n",
8108 unit, device->chip.revision_id, device->slot.irq);
8109
8110 instance = scsi_host_alloc(tpnt, sizeof(*host_data));
8111 if (!instance)
8112 goto attach_error;
8113 host_data = (struct host_data *) instance->hostdata;
8114
8115 np = __m_calloc_dma(device->dev, sizeof(struct ncb), "NCB");
8116 if (!np)
8117 goto attach_error;
8118 spin_lock_init(&np->smp_lock);
8119 np->dev = device->dev;
8120 np->p_ncb = vtobus(np);
8121 host_data->ncb = np;
8122
8123 np->ccb = m_calloc_dma(sizeof(struct ccb), "CCB");
8124 if (!np->ccb)
8125 goto attach_error;
8126
8127 /* Store input information in the host data structure. */
8128 np->unit = unit;
8129 np->verbose = driver_setup.verbose;
8130 sprintf(np->inst_name, "ncr53c720-%d", np->unit);
8131 np->revision_id = device->chip.revision_id;
8132 np->features = device->chip.features;
8133 np->clock_divn = device->chip.nr_divisor;
8134 np->maxoffs = device->chip.offset_max;
8135 np->maxburst = device->chip.burst_max;
8136 np->myaddr = device->host_id;
8137
8138 /* Allocate SCRIPTS areas. */
8139 np->script0 = m_calloc_dma(sizeof(struct script), "SCRIPT");
8140 if (!np->script0)
8141 goto attach_error;
8142 np->scripth0 = m_calloc_dma(sizeof(struct scripth), "SCRIPTH");
8143 if (!np->scripth0)
8144 goto attach_error;
8145
8146 timer_setup(&np->timer, ncr53c8xx_timeout, 0);
8147
8148 /* Try to map the controller chip to virtual and physical memory. */
8149
8150 np->paddr = device->slot.base;
8151 np->paddr2 = (np->features & FE_RAM) ? device->slot.base_2 : 0;
8152
8153 if (device->slot.base_v)
8154 np->vaddr = device->slot.base_v;
8155 else
8156 np->vaddr = ioremap(device->slot.base_c, 128);
8157
8158 if (!np->vaddr) {
8159 printk(KERN_ERR
8160 "%s: can't map memory mapped IO region\n",ncr_name(np));
8161 goto attach_error;
8162 } else {
8163 if (bootverbose > 1)
8164 printk(KERN_INFO
8165 "%s: using memory mapped IO at virtual address 0x%lx\n", ncr_name(np), (u_long) np->vaddr);
8166 }
8167
8168 /* Make the controller's registers available. Now the INB INW INL
8169 * OUTB OUTW OUTL macros can be used safely.
8170 */
8171
8172 np->reg = (struct ncr_reg __iomem *)np->vaddr;
8173
8174 /* Do chip dependent initialization. */
8175 ncr_prepare_setting(np);
8176
8177 if (np->paddr2 && sizeof(struct script) > 4096) {
8178 np->paddr2 = 0;
8179 printk(KERN_WARNING "%s: script too large, NOT using on chip RAM.\n",
8180 ncr_name(np));
8181 }
8182
8183 instance->max_channel = 0;
8184 instance->this_id = np->myaddr;
8185 instance->max_id = np->maxwide ? 16 : 8;
8186 instance->max_lun = SCSI_NCR_MAX_LUN;
8187 instance->base = (unsigned long) np->reg;
8188 instance->irq = device->slot.irq;
8189 instance->unique_id = device->slot.base;
8190 instance->dma_channel = 0;
8191 instance->cmd_per_lun = MAX_TAGS;
8192 instance->can_queue = (MAX_START-4);
8193 /* This can happen if you forget to call ncr53c8xx_init from
8194 * your module_init */
8195 BUG_ON(!ncr53c8xx_transport_template);
8196 instance->transportt = ncr53c8xx_transport_template;
8197
8198 /* Patch script to physical addresses */
8199 ncr_script_fill(&script0, &scripth0);
8200
8201 np->scripth = np->scripth0;
8202 np->p_scripth = vtobus(np->scripth);
8203 np->p_script = (np->paddr2) ? np->paddr2 : vtobus(np->script0);
8204
8205 ncr_script_copy_and_bind(np, (ncrcmd *) &script0,
8206 (ncrcmd *) np->script0, sizeof(struct script));
8207 ncr_script_copy_and_bind(np, (ncrcmd *) &scripth0,
8208 (ncrcmd *) np->scripth0, sizeof(struct scripth));
8209 np->ccb->p_ccb = vtobus (np->ccb);
8210
8211 /* Patch the script for LED support. */
8212
8213 if (np->features & FE_LED0) {
8214 np->script0->idle[0] =
8215 cpu_to_scr(SCR_REG_REG(gpreg, SCR_OR, 0x01));
8216 np->script0->reselected[0] =
8217 cpu_to_scr(SCR_REG_REG(gpreg, SCR_AND, 0xfe));
8218 np->script0->start[0] =
8219 cpu_to_scr(SCR_REG_REG(gpreg, SCR_AND, 0xfe));
8220 }
8221
8222 /*
8223 * Look for the target control block of this nexus.
8224 * For i = 0 to 3
8225 * JUMP ^ IFTRUE (MASK (i, 3)), @(next_lcb)
8226 */
8227 for (i = 0 ; i < 4 ; i++) {
8228 np->jump_tcb[i].l_cmd =
8229 cpu_to_scr((SCR_JUMP ^ IFTRUE (MASK (i, 3))));
8230 np->jump_tcb[i].l_paddr =
8231 cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_target));
8232 }
8233
8234 ncr_chip_reset(np, 100);
8235
8236 /* Now check the cache handling of the chipset. */
8237
8238 if (ncr_snooptest(np)) {
8239 printk(KERN_ERR "CACHE INCORRECTLY CONFIGURED.\n");
8240 goto attach_error;
8241 }
8242
8243 /* Install the interrupt handler. */
8244 np->irq = device->slot.irq;
8245
8246 /* Initialize the fixed part of the default ccb. */
8247 ncr_init_ccb(np, np->ccb);
8248
8249 /*
8250 * After SCSI devices have been opened, we cannot reset the bus
8251 * safely, so we do it here. Interrupt handler does the real work.
8252 * Process the reset exception if interrupts are not enabled yet.
8253 * Then enable disconnects.
8254 */
8255 spin_lock_irqsave(&np->smp_lock, flags);
8256 if (ncr_reset_scsi_bus(np, 0, driver_setup.settle_delay) != 0) {
8257 printk(KERN_ERR "%s: FATAL ERROR: CHECK SCSI BUS - CABLES, TERMINATION, DEVICE POWER etc.!\n", ncr_name(np));
8258
8259 spin_unlock_irqrestore(&np->smp_lock, flags);
8260 goto attach_error;
8261 }
8262 ncr_exception(np);
8263
8264 np->disc = 1;
8265
8266 /*
8267 * The middle-level SCSI driver does not wait for devices to settle.
8268 * Wait synchronously if more than 2 seconds.
8269 */
8270 if (driver_setup.settle_delay > 2) {
8271 printk(KERN_INFO "%s: waiting %d seconds for scsi devices to settle...\n",
8272 ncr_name(np), driver_setup.settle_delay);
8273 mdelay(1000 * driver_setup.settle_delay);
8274 }
8275
8276 /* start the timeout daemon */
8277 np->lasttime=0;
8278 ncr_timeout (np);
8279
8280 /* use SIMPLE TAG messages by default */
8281 #ifdef SCSI_NCR_ALWAYS_SIMPLE_TAG
8282 np->order = SIMPLE_QUEUE_TAG;
8283 #endif
8284
8285 spin_unlock_irqrestore(&np->smp_lock, flags);
8286
8287 return instance;
8288
8289 attach_error:
8290 if (!instance)
8291 return NULL;
8292 printk(KERN_INFO "%s: detaching...\n", ncr_name(np));
8293 if (!np)
8294 goto unregister;
8295 if (np->scripth0)
8296 m_free_dma(np->scripth0, sizeof(struct scripth), "SCRIPTH");
8297 if (np->script0)
8298 m_free_dma(np->script0, sizeof(struct script), "SCRIPT");
8299 if (np->ccb)
8300 m_free_dma(np->ccb, sizeof(struct ccb), "CCB");
8301 m_free_dma(np, sizeof(struct ncb), "NCB");
8302 host_data->ncb = NULL;
8303
8304 unregister:
8305 scsi_host_put(instance);
8306
8307 return NULL;
8308 }
8309
8310
8311 void ncr53c8xx_release(struct Scsi_Host *host)
8312 {
8313 struct host_data *host_data = shost_priv(host);
8314 #ifdef DEBUG_NCR53C8XX
8315 printk("ncr53c8xx: release\n");
8316 #endif
8317 if (host_data->ncb)
8318 ncr_detach(host_data->ncb);
8319 scsi_host_put(host);
8320 }
8321
8322 static void ncr53c8xx_set_period(struct scsi_target *starget, int period)
8323 {
8324 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
8325 struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
8326 struct tcb *tp = &np->target[starget->id];
8327
8328 if (period > np->maxsync)
8329 period = np->maxsync;
8330 else if (period < np->minsync)
8331 period = np->minsync;
8332
8333 tp->usrsync = period;
8334
8335 ncr_negotiate(np, tp);
8336 }
8337
8338 static void ncr53c8xx_set_offset(struct scsi_target *starget, int offset)
8339 {
8340 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
8341 struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
8342 struct tcb *tp = &np->target[starget->id];
8343
8344 if (offset > np->maxoffs)
8345 offset = np->maxoffs;
8346 else if (offset < 0)
8347 offset = 0;
8348
8349 tp->maxoffs = offset;
8350
8351 ncr_negotiate(np, tp);
8352 }
8353
8354 static void ncr53c8xx_set_width(struct scsi_target *starget, int width)
8355 {
8356 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
8357 struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
8358 struct tcb *tp = &np->target[starget->id];
8359
8360 if (width > np->maxwide)
8361 width = np->maxwide;
8362 else if (width < 0)
8363 width = 0;
8364
8365 tp->usrwide = width;
8366
8367 ncr_negotiate(np, tp);
8368 }
8369
8370 static void ncr53c8xx_get_signalling(struct Scsi_Host *shost)
8371 {
8372 struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
8373 enum spi_signal_type type;
8374
8375 switch (np->scsi_mode) {
8376 case SMODE_SE:
8377 type = SPI_SIGNAL_SE;
8378 break;
8379 case SMODE_HVD:
8380 type = SPI_SIGNAL_HVD;
8381 break;
8382 default:
8383 type = SPI_SIGNAL_UNKNOWN;
8384 break;
8385 }
8386 spi_signalling(shost) = type;
8387 }
8388
8389 static struct spi_function_template ncr53c8xx_transport_functions = {
8390 .set_period = ncr53c8xx_set_period,
8391 .show_period = 1,
8392 .set_offset = ncr53c8xx_set_offset,
8393 .show_offset = 1,
8394 .set_width = ncr53c8xx_set_width,
8395 .show_width = 1,
8396 .get_signalling = ncr53c8xx_get_signalling,
8397 };
8398
8399 int __init ncr53c8xx_init(void)
8400 {
8401 ncr53c8xx_transport_template = spi_attach_transport(&ncr53c8xx_transport_functions);
8402 if (!ncr53c8xx_transport_template)
8403 return -ENODEV;
8404 return 0;
8405 }
8406
8407 void ncr53c8xx_exit(void)
8408 {
8409 spi_release_transport(ncr53c8xx_transport_template);
8410 }
8411