1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Linux Driver for Mylex DAC960/AcceleRAID/eXtremeRAID PCI RAID Controllers 4 * 5 * This driver supports the newer, SCSI-based firmware interface only. 6 * 7 * Copyright 2017 Hannes Reinecke, SUSE Linux GmbH <hare@suse.com> 8 * 9 * Based on the original DAC960 driver, which has 10 * Copyright 1998-2001 by Leonard N. Zubkoff <lnz@dandelion.com> 11 * Portions Copyright 2002 by Mylex (An IBM Business Unit) 12 */ 13 14 #include <linux/module.h> 15 #include <linux/types.h> 16 #include <linux/delay.h> 17 #include <linux/interrupt.h> 18 #include <linux/pci.h> 19 #include <linux/raid_class.h> 20 #include <asm/unaligned.h> 21 #include <scsi/scsi.h> 22 #include <scsi/scsi_host.h> 23 #include <scsi/scsi_device.h> 24 #include <scsi/scsi_cmnd.h> 25 #include <scsi/scsi_tcq.h> 26 #include "myrs.h" 27 28 static struct raid_template *myrs_raid_template; 29 30 static struct myrs_devstate_name_entry { 31 enum myrs_devstate state; 32 char *name; 33 } myrs_devstate_name_list[] = { 34 { MYRS_DEVICE_UNCONFIGURED, "Unconfigured" }, 35 { MYRS_DEVICE_ONLINE, "Online" }, 36 { MYRS_DEVICE_REBUILD, "Rebuild" }, 37 { MYRS_DEVICE_MISSING, "Missing" }, 38 { MYRS_DEVICE_SUSPECTED_CRITICAL, "SuspectedCritical" }, 39 { MYRS_DEVICE_OFFLINE, "Offline" }, 40 { MYRS_DEVICE_CRITICAL, "Critical" }, 41 { MYRS_DEVICE_SUSPECTED_DEAD, "SuspectedDead" }, 42 { MYRS_DEVICE_COMMANDED_OFFLINE, "CommandedOffline" }, 43 { MYRS_DEVICE_STANDBY, "Standby" }, 44 { MYRS_DEVICE_INVALID_STATE, "Invalid" }, 45 }; 46 47 static char *myrs_devstate_name(enum myrs_devstate state) 48 { 49 struct myrs_devstate_name_entry *entry = myrs_devstate_name_list; 50 int i; 51 52 for (i = 0; i < ARRAY_SIZE(myrs_devstate_name_list); i++) { 53 if (entry[i].state == state) 54 return entry[i].name; 55 } 56 return NULL; 57 } 58 59 static struct myrs_raid_level_name_entry { 60 enum myrs_raid_level level; 61 char *name; 62 } myrs_raid_level_name_list[] = { 63 { MYRS_RAID_LEVEL0, "RAID0" }, 64 { MYRS_RAID_LEVEL1, "RAID1" }, 65 { MYRS_RAID_LEVEL3, "RAID3 right asymmetric parity" }, 66 { MYRS_RAID_LEVEL5, "RAID5 right asymmetric parity" }, 67 { MYRS_RAID_LEVEL6, "RAID6" }, 68 { MYRS_RAID_JBOD, "JBOD" }, 69 { MYRS_RAID_NEWSPAN, "New Mylex SPAN" }, 70 { MYRS_RAID_LEVEL3F, "RAID3 fixed parity" }, 71 { MYRS_RAID_LEVEL3L, "RAID3 left symmetric parity" }, 72 { MYRS_RAID_SPAN, "Mylex SPAN" }, 73 { MYRS_RAID_LEVEL5L, "RAID5 left symmetric parity" }, 74 { MYRS_RAID_LEVELE, "RAIDE (concatenation)" }, 75 { MYRS_RAID_PHYSICAL, "Physical device" }, 76 }; 77 78 static char *myrs_raid_level_name(enum myrs_raid_level level) 79 { 80 struct myrs_raid_level_name_entry *entry = myrs_raid_level_name_list; 81 int i; 82 83 for (i = 0; i < ARRAY_SIZE(myrs_raid_level_name_list); i++) { 84 if (entry[i].level == level) 85 return entry[i].name; 86 } 87 return NULL; 88 } 89 90 /* 91 * myrs_reset_cmd - clears critical fields in struct myrs_cmdblk 92 */ 93 static inline void myrs_reset_cmd(struct myrs_cmdblk *cmd_blk) 94 { 95 union myrs_cmd_mbox *mbox = &cmd_blk->mbox; 96 97 memset(mbox, 0, sizeof(union myrs_cmd_mbox)); 98 cmd_blk->status = 0; 99 } 100 101 /* 102 * myrs_qcmd - queues Command for DAC960 V2 Series Controllers. 103 */ 104 static void myrs_qcmd(struct myrs_hba *cs, struct myrs_cmdblk *cmd_blk) 105 { 106 void __iomem *base = cs->io_base; 107 union myrs_cmd_mbox *mbox = &cmd_blk->mbox; 108 union myrs_cmd_mbox *next_mbox = cs->next_cmd_mbox; 109 110 cs->write_cmd_mbox(next_mbox, mbox); 111 112 if (cs->prev_cmd_mbox1->words[0] == 0 || 113 cs->prev_cmd_mbox2->words[0] == 0) 114 cs->get_cmd_mbox(base); 115 116 cs->prev_cmd_mbox2 = cs->prev_cmd_mbox1; 117 cs->prev_cmd_mbox1 = next_mbox; 118 119 if (++next_mbox > cs->last_cmd_mbox) 120 next_mbox = cs->first_cmd_mbox; 121 122 cs->next_cmd_mbox = next_mbox; 123 } 124 125 /* 126 * myrs_exec_cmd - executes V2 Command and waits for completion. 127 */ 128 static void myrs_exec_cmd(struct myrs_hba *cs, 129 struct myrs_cmdblk *cmd_blk) 130 { 131 DECLARE_COMPLETION_ONSTACK(complete); 132 unsigned long flags; 133 134 cmd_blk->complete = &complete; 135 spin_lock_irqsave(&cs->queue_lock, flags); 136 myrs_qcmd(cs, cmd_blk); 137 spin_unlock_irqrestore(&cs->queue_lock, flags); 138 139 WARN_ON(in_interrupt()); 140 wait_for_completion(&complete); 141 } 142 143 /* 144 * myrs_report_progress - prints progress message 145 */ 146 static void myrs_report_progress(struct myrs_hba *cs, unsigned short ldev_num, 147 unsigned char *msg, unsigned long blocks, 148 unsigned long size) 149 { 150 shost_printk(KERN_INFO, cs->host, 151 "Logical Drive %d: %s in Progress: %d%% completed\n", 152 ldev_num, msg, 153 (100 * (int)(blocks >> 7)) / (int)(size >> 7)); 154 } 155 156 /* 157 * myrs_get_ctlr_info - executes a Controller Information IOCTL Command 158 */ 159 static unsigned char myrs_get_ctlr_info(struct myrs_hba *cs) 160 { 161 struct myrs_cmdblk *cmd_blk = &cs->dcmd_blk; 162 union myrs_cmd_mbox *mbox = &cmd_blk->mbox; 163 dma_addr_t ctlr_info_addr; 164 union myrs_sgl *sgl; 165 unsigned char status; 166 unsigned short ldev_present, ldev_critical, ldev_offline; 167 168 ldev_present = cs->ctlr_info->ldev_present; 169 ldev_critical = cs->ctlr_info->ldev_critical; 170 ldev_offline = cs->ctlr_info->ldev_offline; 171 172 ctlr_info_addr = dma_map_single(&cs->pdev->dev, cs->ctlr_info, 173 sizeof(struct myrs_ctlr_info), 174 DMA_FROM_DEVICE); 175 if (dma_mapping_error(&cs->pdev->dev, ctlr_info_addr)) 176 return MYRS_STATUS_FAILED; 177 178 mutex_lock(&cs->dcmd_mutex); 179 myrs_reset_cmd(cmd_blk); 180 mbox->ctlr_info.id = MYRS_DCMD_TAG; 181 mbox->ctlr_info.opcode = MYRS_CMD_OP_IOCTL; 182 mbox->ctlr_info.control.dma_ctrl_to_host = true; 183 mbox->ctlr_info.control.no_autosense = true; 184 mbox->ctlr_info.dma_size = sizeof(struct myrs_ctlr_info); 185 mbox->ctlr_info.ctlr_num = 0; 186 mbox->ctlr_info.ioctl_opcode = MYRS_IOCTL_GET_CTLR_INFO; 187 sgl = &mbox->ctlr_info.dma_addr; 188 sgl->sge[0].sge_addr = ctlr_info_addr; 189 sgl->sge[0].sge_count = mbox->ctlr_info.dma_size; 190 dev_dbg(&cs->host->shost_gendev, "Sending GetControllerInfo\n"); 191 myrs_exec_cmd(cs, cmd_blk); 192 status = cmd_blk->status; 193 mutex_unlock(&cs->dcmd_mutex); 194 dma_unmap_single(&cs->pdev->dev, ctlr_info_addr, 195 sizeof(struct myrs_ctlr_info), DMA_FROM_DEVICE); 196 if (status == MYRS_STATUS_SUCCESS) { 197 if (cs->ctlr_info->bg_init_active + 198 cs->ctlr_info->ldev_init_active + 199 cs->ctlr_info->pdev_init_active + 200 cs->ctlr_info->cc_active + 201 cs->ctlr_info->rbld_active + 202 cs->ctlr_info->exp_active != 0) 203 cs->needs_update = true; 204 if (cs->ctlr_info->ldev_present != ldev_present || 205 cs->ctlr_info->ldev_critical != ldev_critical || 206 cs->ctlr_info->ldev_offline != ldev_offline) 207 shost_printk(KERN_INFO, cs->host, 208 "Logical drive count changes (%d/%d/%d)\n", 209 cs->ctlr_info->ldev_critical, 210 cs->ctlr_info->ldev_offline, 211 cs->ctlr_info->ldev_present); 212 } 213 214 return status; 215 } 216 217 /* 218 * myrs_get_ldev_info - executes a Logical Device Information IOCTL Command 219 */ 220 static unsigned char myrs_get_ldev_info(struct myrs_hba *cs, 221 unsigned short ldev_num, struct myrs_ldev_info *ldev_info) 222 { 223 struct myrs_cmdblk *cmd_blk = &cs->dcmd_blk; 224 union myrs_cmd_mbox *mbox = &cmd_blk->mbox; 225 dma_addr_t ldev_info_addr; 226 struct myrs_ldev_info ldev_info_orig; 227 union myrs_sgl *sgl; 228 unsigned char status; 229 230 memcpy(&ldev_info_orig, ldev_info, sizeof(struct myrs_ldev_info)); 231 ldev_info_addr = dma_map_single(&cs->pdev->dev, ldev_info, 232 sizeof(struct myrs_ldev_info), 233 DMA_FROM_DEVICE); 234 if (dma_mapping_error(&cs->pdev->dev, ldev_info_addr)) 235 return MYRS_STATUS_FAILED; 236 237 mutex_lock(&cs->dcmd_mutex); 238 myrs_reset_cmd(cmd_blk); 239 mbox->ldev_info.id = MYRS_DCMD_TAG; 240 mbox->ldev_info.opcode = MYRS_CMD_OP_IOCTL; 241 mbox->ldev_info.control.dma_ctrl_to_host = true; 242 mbox->ldev_info.control.no_autosense = true; 243 mbox->ldev_info.dma_size = sizeof(struct myrs_ldev_info); 244 mbox->ldev_info.ldev.ldev_num = ldev_num; 245 mbox->ldev_info.ioctl_opcode = MYRS_IOCTL_GET_LDEV_INFO_VALID; 246 sgl = &mbox->ldev_info.dma_addr; 247 sgl->sge[0].sge_addr = ldev_info_addr; 248 sgl->sge[0].sge_count = mbox->ldev_info.dma_size; 249 dev_dbg(&cs->host->shost_gendev, 250 "Sending GetLogicalDeviceInfoValid for ldev %d\n", ldev_num); 251 myrs_exec_cmd(cs, cmd_blk); 252 status = cmd_blk->status; 253 mutex_unlock(&cs->dcmd_mutex); 254 dma_unmap_single(&cs->pdev->dev, ldev_info_addr, 255 sizeof(struct myrs_ldev_info), DMA_FROM_DEVICE); 256 if (status == MYRS_STATUS_SUCCESS) { 257 unsigned short ldev_num = ldev_info->ldev_num; 258 struct myrs_ldev_info *new = ldev_info; 259 struct myrs_ldev_info *old = &ldev_info_orig; 260 unsigned long ldev_size = new->cfg_devsize; 261 262 if (new->dev_state != old->dev_state) { 263 const char *name; 264 265 name = myrs_devstate_name(new->dev_state); 266 shost_printk(KERN_INFO, cs->host, 267 "Logical Drive %d is now %s\n", 268 ldev_num, name ? name : "Invalid"); 269 } 270 if ((new->soft_errs != old->soft_errs) || 271 (new->cmds_failed != old->cmds_failed) || 272 (new->deferred_write_errs != old->deferred_write_errs)) 273 shost_printk(KERN_INFO, cs->host, 274 "Logical Drive %d Errors: Soft = %d, Failed = %d, Deferred Write = %d\n", 275 ldev_num, new->soft_errs, 276 new->cmds_failed, 277 new->deferred_write_errs); 278 if (new->bg_init_active) 279 myrs_report_progress(cs, ldev_num, 280 "Background Initialization", 281 new->bg_init_lba, ldev_size); 282 else if (new->fg_init_active) 283 myrs_report_progress(cs, ldev_num, 284 "Foreground Initialization", 285 new->fg_init_lba, ldev_size); 286 else if (new->migration_active) 287 myrs_report_progress(cs, ldev_num, 288 "Data Migration", 289 new->migration_lba, ldev_size); 290 else if (new->patrol_active) 291 myrs_report_progress(cs, ldev_num, 292 "Patrol Operation", 293 new->patrol_lba, ldev_size); 294 if (old->bg_init_active && !new->bg_init_active) 295 shost_printk(KERN_INFO, cs->host, 296 "Logical Drive %d: Background Initialization %s\n", 297 ldev_num, 298 (new->ldev_control.ldev_init_done ? 299 "Completed" : "Failed")); 300 } 301 return status; 302 } 303 304 /* 305 * myrs_get_pdev_info - executes a "Read Physical Device Information" Command 306 */ 307 static unsigned char myrs_get_pdev_info(struct myrs_hba *cs, 308 unsigned char channel, unsigned char target, unsigned char lun, 309 struct myrs_pdev_info *pdev_info) 310 { 311 struct myrs_cmdblk *cmd_blk = &cs->dcmd_blk; 312 union myrs_cmd_mbox *mbox = &cmd_blk->mbox; 313 dma_addr_t pdev_info_addr; 314 union myrs_sgl *sgl; 315 unsigned char status; 316 317 pdev_info_addr = dma_map_single(&cs->pdev->dev, pdev_info, 318 sizeof(struct myrs_pdev_info), 319 DMA_FROM_DEVICE); 320 if (dma_mapping_error(&cs->pdev->dev, pdev_info_addr)) 321 return MYRS_STATUS_FAILED; 322 323 mutex_lock(&cs->dcmd_mutex); 324 myrs_reset_cmd(cmd_blk); 325 mbox->pdev_info.opcode = MYRS_CMD_OP_IOCTL; 326 mbox->pdev_info.id = MYRS_DCMD_TAG; 327 mbox->pdev_info.control.dma_ctrl_to_host = true; 328 mbox->pdev_info.control.no_autosense = true; 329 mbox->pdev_info.dma_size = sizeof(struct myrs_pdev_info); 330 mbox->pdev_info.pdev.lun = lun; 331 mbox->pdev_info.pdev.target = target; 332 mbox->pdev_info.pdev.channel = channel; 333 mbox->pdev_info.ioctl_opcode = MYRS_IOCTL_GET_PDEV_INFO_VALID; 334 sgl = &mbox->pdev_info.dma_addr; 335 sgl->sge[0].sge_addr = pdev_info_addr; 336 sgl->sge[0].sge_count = mbox->pdev_info.dma_size; 337 dev_dbg(&cs->host->shost_gendev, 338 "Sending GetPhysicalDeviceInfoValid for pdev %d:%d:%d\n", 339 channel, target, lun); 340 myrs_exec_cmd(cs, cmd_blk); 341 status = cmd_blk->status; 342 mutex_unlock(&cs->dcmd_mutex); 343 dma_unmap_single(&cs->pdev->dev, pdev_info_addr, 344 sizeof(struct myrs_pdev_info), DMA_FROM_DEVICE); 345 return status; 346 } 347 348 /* 349 * myrs_dev_op - executes a "Device Operation" Command 350 */ 351 static unsigned char myrs_dev_op(struct myrs_hba *cs, 352 enum myrs_ioctl_opcode opcode, enum myrs_opdev opdev) 353 { 354 struct myrs_cmdblk *cmd_blk = &cs->dcmd_blk; 355 union myrs_cmd_mbox *mbox = &cmd_blk->mbox; 356 unsigned char status; 357 358 mutex_lock(&cs->dcmd_mutex); 359 myrs_reset_cmd(cmd_blk); 360 mbox->dev_op.opcode = MYRS_CMD_OP_IOCTL; 361 mbox->dev_op.id = MYRS_DCMD_TAG; 362 mbox->dev_op.control.dma_ctrl_to_host = true; 363 mbox->dev_op.control.no_autosense = true; 364 mbox->dev_op.ioctl_opcode = opcode; 365 mbox->dev_op.opdev = opdev; 366 myrs_exec_cmd(cs, cmd_blk); 367 status = cmd_blk->status; 368 mutex_unlock(&cs->dcmd_mutex); 369 return status; 370 } 371 372 /* 373 * myrs_translate_pdev - translates a Physical Device Channel and 374 * TargetID into a Logical Device. 375 */ 376 static unsigned char myrs_translate_pdev(struct myrs_hba *cs, 377 unsigned char channel, unsigned char target, unsigned char lun, 378 struct myrs_devmap *devmap) 379 { 380 struct pci_dev *pdev = cs->pdev; 381 dma_addr_t devmap_addr; 382 struct myrs_cmdblk *cmd_blk; 383 union myrs_cmd_mbox *mbox; 384 union myrs_sgl *sgl; 385 unsigned char status; 386 387 memset(devmap, 0x0, sizeof(struct myrs_devmap)); 388 devmap_addr = dma_map_single(&pdev->dev, devmap, 389 sizeof(struct myrs_devmap), 390 DMA_FROM_DEVICE); 391 if (dma_mapping_error(&pdev->dev, devmap_addr)) 392 return MYRS_STATUS_FAILED; 393 394 mutex_lock(&cs->dcmd_mutex); 395 cmd_blk = &cs->dcmd_blk; 396 mbox = &cmd_blk->mbox; 397 mbox->pdev_info.opcode = MYRS_CMD_OP_IOCTL; 398 mbox->pdev_info.control.dma_ctrl_to_host = true; 399 mbox->pdev_info.control.no_autosense = true; 400 mbox->pdev_info.dma_size = sizeof(struct myrs_devmap); 401 mbox->pdev_info.pdev.target = target; 402 mbox->pdev_info.pdev.channel = channel; 403 mbox->pdev_info.pdev.lun = lun; 404 mbox->pdev_info.ioctl_opcode = MYRS_IOCTL_XLATE_PDEV_TO_LDEV; 405 sgl = &mbox->pdev_info.dma_addr; 406 sgl->sge[0].sge_addr = devmap_addr; 407 sgl->sge[0].sge_count = mbox->pdev_info.dma_size; 408 409 myrs_exec_cmd(cs, cmd_blk); 410 status = cmd_blk->status; 411 mutex_unlock(&cs->dcmd_mutex); 412 dma_unmap_single(&pdev->dev, devmap_addr, 413 sizeof(struct myrs_devmap), DMA_FROM_DEVICE); 414 return status; 415 } 416 417 /* 418 * myrs_get_event - executes a Get Event Command 419 */ 420 static unsigned char myrs_get_event(struct myrs_hba *cs, 421 unsigned int event_num, struct myrs_event *event_buf) 422 { 423 struct pci_dev *pdev = cs->pdev; 424 dma_addr_t event_addr; 425 struct myrs_cmdblk *cmd_blk = &cs->mcmd_blk; 426 union myrs_cmd_mbox *mbox = &cmd_blk->mbox; 427 union myrs_sgl *sgl; 428 unsigned char status; 429 430 event_addr = dma_map_single(&pdev->dev, event_buf, 431 sizeof(struct myrs_event), DMA_FROM_DEVICE); 432 if (dma_mapping_error(&pdev->dev, event_addr)) 433 return MYRS_STATUS_FAILED; 434 435 mbox->get_event.opcode = MYRS_CMD_OP_IOCTL; 436 mbox->get_event.dma_size = sizeof(struct myrs_event); 437 mbox->get_event.evnum_upper = event_num >> 16; 438 mbox->get_event.ctlr_num = 0; 439 mbox->get_event.ioctl_opcode = MYRS_IOCTL_GET_EVENT; 440 mbox->get_event.evnum_lower = event_num & 0xFFFF; 441 sgl = &mbox->get_event.dma_addr; 442 sgl->sge[0].sge_addr = event_addr; 443 sgl->sge[0].sge_count = mbox->get_event.dma_size; 444 myrs_exec_cmd(cs, cmd_blk); 445 status = cmd_blk->status; 446 dma_unmap_single(&pdev->dev, event_addr, 447 sizeof(struct myrs_event), DMA_FROM_DEVICE); 448 449 return status; 450 } 451 452 /* 453 * myrs_get_fwstatus - executes a Get Health Status Command 454 */ 455 static unsigned char myrs_get_fwstatus(struct myrs_hba *cs) 456 { 457 struct myrs_cmdblk *cmd_blk = &cs->mcmd_blk; 458 union myrs_cmd_mbox *mbox = &cmd_blk->mbox; 459 union myrs_sgl *sgl; 460 unsigned char status = cmd_blk->status; 461 462 myrs_reset_cmd(cmd_blk); 463 mbox->common.opcode = MYRS_CMD_OP_IOCTL; 464 mbox->common.id = MYRS_MCMD_TAG; 465 mbox->common.control.dma_ctrl_to_host = true; 466 mbox->common.control.no_autosense = true; 467 mbox->common.dma_size = sizeof(struct myrs_fwstat); 468 mbox->common.ioctl_opcode = MYRS_IOCTL_GET_HEALTH_STATUS; 469 sgl = &mbox->common.dma_addr; 470 sgl->sge[0].sge_addr = cs->fwstat_addr; 471 sgl->sge[0].sge_count = mbox->ctlr_info.dma_size; 472 dev_dbg(&cs->host->shost_gendev, "Sending GetHealthStatus\n"); 473 myrs_exec_cmd(cs, cmd_blk); 474 status = cmd_blk->status; 475 476 return status; 477 } 478 479 /* 480 * myrs_enable_mmio_mbox - enables the Memory Mailbox Interface 481 */ 482 static bool myrs_enable_mmio_mbox(struct myrs_hba *cs, 483 enable_mbox_t enable_mbox_fn) 484 { 485 void __iomem *base = cs->io_base; 486 struct pci_dev *pdev = cs->pdev; 487 union myrs_cmd_mbox *cmd_mbox; 488 struct myrs_stat_mbox *stat_mbox; 489 union myrs_cmd_mbox *mbox; 490 dma_addr_t mbox_addr; 491 unsigned char status = MYRS_STATUS_FAILED; 492 493 if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) 494 if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) { 495 dev_err(&pdev->dev, "DMA mask out of range\n"); 496 return false; 497 } 498 499 /* Temporary dma mapping, used only in the scope of this function */ 500 mbox = dma_alloc_coherent(&pdev->dev, sizeof(union myrs_cmd_mbox), 501 &mbox_addr, GFP_KERNEL); 502 if (dma_mapping_error(&pdev->dev, mbox_addr)) 503 return false; 504 505 /* These are the base addresses for the command memory mailbox array */ 506 cs->cmd_mbox_size = MYRS_MAX_CMD_MBOX * sizeof(union myrs_cmd_mbox); 507 cmd_mbox = dma_alloc_coherent(&pdev->dev, cs->cmd_mbox_size, 508 &cs->cmd_mbox_addr, GFP_KERNEL); 509 if (dma_mapping_error(&pdev->dev, cs->cmd_mbox_addr)) { 510 dev_err(&pdev->dev, "Failed to map command mailbox\n"); 511 goto out_free; 512 } 513 cs->first_cmd_mbox = cmd_mbox; 514 cmd_mbox += MYRS_MAX_CMD_MBOX - 1; 515 cs->last_cmd_mbox = cmd_mbox; 516 cs->next_cmd_mbox = cs->first_cmd_mbox; 517 cs->prev_cmd_mbox1 = cs->last_cmd_mbox; 518 cs->prev_cmd_mbox2 = cs->last_cmd_mbox - 1; 519 520 /* These are the base addresses for the status memory mailbox array */ 521 cs->stat_mbox_size = MYRS_MAX_STAT_MBOX * sizeof(struct myrs_stat_mbox); 522 stat_mbox = dma_alloc_coherent(&pdev->dev, cs->stat_mbox_size, 523 &cs->stat_mbox_addr, GFP_KERNEL); 524 if (dma_mapping_error(&pdev->dev, cs->stat_mbox_addr)) { 525 dev_err(&pdev->dev, "Failed to map status mailbox\n"); 526 goto out_free; 527 } 528 529 cs->first_stat_mbox = stat_mbox; 530 stat_mbox += MYRS_MAX_STAT_MBOX - 1; 531 cs->last_stat_mbox = stat_mbox; 532 cs->next_stat_mbox = cs->first_stat_mbox; 533 534 cs->fwstat_buf = dma_alloc_coherent(&pdev->dev, 535 sizeof(struct myrs_fwstat), 536 &cs->fwstat_addr, GFP_KERNEL); 537 if (dma_mapping_error(&pdev->dev, cs->fwstat_addr)) { 538 dev_err(&pdev->dev, "Failed to map firmware health buffer\n"); 539 cs->fwstat_buf = NULL; 540 goto out_free; 541 } 542 cs->ctlr_info = kzalloc(sizeof(struct myrs_ctlr_info), 543 GFP_KERNEL | GFP_DMA); 544 if (!cs->ctlr_info) 545 goto out_free; 546 547 cs->event_buf = kzalloc(sizeof(struct myrs_event), 548 GFP_KERNEL | GFP_DMA); 549 if (!cs->event_buf) 550 goto out_free; 551 552 /* Enable the Memory Mailbox Interface. */ 553 memset(mbox, 0, sizeof(union myrs_cmd_mbox)); 554 mbox->set_mbox.id = 1; 555 mbox->set_mbox.opcode = MYRS_CMD_OP_IOCTL; 556 mbox->set_mbox.control.no_autosense = true; 557 mbox->set_mbox.first_cmd_mbox_size_kb = 558 (MYRS_MAX_CMD_MBOX * sizeof(union myrs_cmd_mbox)) >> 10; 559 mbox->set_mbox.first_stat_mbox_size_kb = 560 (MYRS_MAX_STAT_MBOX * sizeof(struct myrs_stat_mbox)) >> 10; 561 mbox->set_mbox.second_cmd_mbox_size_kb = 0; 562 mbox->set_mbox.second_stat_mbox_size_kb = 0; 563 mbox->set_mbox.sense_len = 0; 564 mbox->set_mbox.ioctl_opcode = MYRS_IOCTL_SET_MEM_MBOX; 565 mbox->set_mbox.fwstat_buf_size_kb = 1; 566 mbox->set_mbox.fwstat_buf_addr = cs->fwstat_addr; 567 mbox->set_mbox.first_cmd_mbox_addr = cs->cmd_mbox_addr; 568 mbox->set_mbox.first_stat_mbox_addr = cs->stat_mbox_addr; 569 status = enable_mbox_fn(base, mbox_addr); 570 571 out_free: 572 dma_free_coherent(&pdev->dev, sizeof(union myrs_cmd_mbox), 573 mbox, mbox_addr); 574 if (status != MYRS_STATUS_SUCCESS) 575 dev_err(&pdev->dev, "Failed to enable mailbox, status %X\n", 576 status); 577 return (status == MYRS_STATUS_SUCCESS); 578 } 579 580 /* 581 * myrs_get_config - reads the Configuration Information 582 */ 583 static int myrs_get_config(struct myrs_hba *cs) 584 { 585 struct myrs_ctlr_info *info = cs->ctlr_info; 586 struct Scsi_Host *shost = cs->host; 587 unsigned char status; 588 unsigned char model[20]; 589 unsigned char fw_version[12]; 590 int i, model_len; 591 592 /* Get data into dma-able area, then copy into permanent location */ 593 mutex_lock(&cs->cinfo_mutex); 594 status = myrs_get_ctlr_info(cs); 595 mutex_unlock(&cs->cinfo_mutex); 596 if (status != MYRS_STATUS_SUCCESS) { 597 shost_printk(KERN_ERR, shost, 598 "Failed to get controller information\n"); 599 return -ENODEV; 600 } 601 602 /* Initialize the Controller Model Name and Full Model Name fields. */ 603 model_len = sizeof(info->ctlr_name); 604 if (model_len > sizeof(model)-1) 605 model_len = sizeof(model)-1; 606 memcpy(model, info->ctlr_name, model_len); 607 model_len--; 608 while (model[model_len] == ' ' || model[model_len] == '\0') 609 model_len--; 610 model[++model_len] = '\0'; 611 strcpy(cs->model_name, "DAC960 "); 612 strcat(cs->model_name, model); 613 /* Initialize the Controller Firmware Version field. */ 614 sprintf(fw_version, "%d.%02d-%02d", 615 info->fw_major_version, info->fw_minor_version, 616 info->fw_turn_number); 617 if (info->fw_major_version == 6 && 618 info->fw_minor_version == 0 && 619 info->fw_turn_number < 1) { 620 shost_printk(KERN_WARNING, shost, 621 "FIRMWARE VERSION %s DOES NOT PROVIDE THE CONTROLLER\n" 622 "STATUS MONITORING FUNCTIONALITY NEEDED BY THIS DRIVER.\n" 623 "PLEASE UPGRADE TO VERSION 6.00-01 OR ABOVE.\n", 624 fw_version); 625 return -ENODEV; 626 } 627 /* Initialize the Controller Channels and Targets. */ 628 shost->max_channel = info->physchan_present + info->virtchan_present; 629 shost->max_id = info->max_targets[0]; 630 for (i = 1; i < 16; i++) { 631 if (!info->max_targets[i]) 632 continue; 633 if (shost->max_id < info->max_targets[i]) 634 shost->max_id = info->max_targets[i]; 635 } 636 637 /* 638 * Initialize the Controller Queue Depth, Driver Queue Depth, 639 * Logical Drive Count, Maximum Blocks per Command, Controller 640 * Scatter/Gather Limit, and Driver Scatter/Gather Limit. 641 * The Driver Queue Depth must be at most three less than 642 * the Controller Queue Depth; tag '1' is reserved for 643 * direct commands, and tag '2' for monitoring commands. 644 */ 645 shost->can_queue = info->max_tcq - 3; 646 if (shost->can_queue > MYRS_MAX_CMD_MBOX - 3) 647 shost->can_queue = MYRS_MAX_CMD_MBOX - 3; 648 shost->max_sectors = info->max_transfer_size; 649 shost->sg_tablesize = info->max_sge; 650 if (shost->sg_tablesize > MYRS_SG_LIMIT) 651 shost->sg_tablesize = MYRS_SG_LIMIT; 652 653 shost_printk(KERN_INFO, shost, 654 "Configuring %s PCI RAID Controller\n", model); 655 shost_printk(KERN_INFO, shost, 656 " Firmware Version: %s, Channels: %d, Memory Size: %dMB\n", 657 fw_version, info->physchan_present, info->mem_size_mb); 658 659 shost_printk(KERN_INFO, shost, 660 " Controller Queue Depth: %d, Maximum Blocks per Command: %d\n", 661 shost->can_queue, shost->max_sectors); 662 663 shost_printk(KERN_INFO, shost, 664 " Driver Queue Depth: %d, Scatter/Gather Limit: %d of %d Segments\n", 665 shost->can_queue, shost->sg_tablesize, MYRS_SG_LIMIT); 666 for (i = 0; i < info->physchan_max; i++) { 667 if (!info->max_targets[i]) 668 continue; 669 shost_printk(KERN_INFO, shost, 670 " Device Channel %d: max %d devices\n", 671 i, info->max_targets[i]); 672 } 673 shost_printk(KERN_INFO, shost, 674 " Physical: %d/%d channels, %d disks, %d devices\n", 675 info->physchan_present, info->physchan_max, 676 info->pdisk_present, info->pdev_present); 677 678 shost_printk(KERN_INFO, shost, 679 " Logical: %d/%d channels, %d disks\n", 680 info->virtchan_present, info->virtchan_max, 681 info->ldev_present); 682 return 0; 683 } 684 685 /* 686 * myrs_log_event - prints a Controller Event message 687 */ 688 static struct { 689 int ev_code; 690 unsigned char *ev_msg; 691 } myrs_ev_list[] = { 692 /* Physical Device Events (0x0000 - 0x007F) */ 693 { 0x0001, "P Online" }, 694 { 0x0002, "P Standby" }, 695 { 0x0005, "P Automatic Rebuild Started" }, 696 { 0x0006, "P Manual Rebuild Started" }, 697 { 0x0007, "P Rebuild Completed" }, 698 { 0x0008, "P Rebuild Cancelled" }, 699 { 0x0009, "P Rebuild Failed for Unknown Reasons" }, 700 { 0x000A, "P Rebuild Failed due to New Physical Device" }, 701 { 0x000B, "P Rebuild Failed due to Logical Drive Failure" }, 702 { 0x000C, "S Offline" }, 703 { 0x000D, "P Found" }, 704 { 0x000E, "P Removed" }, 705 { 0x000F, "P Unconfigured" }, 706 { 0x0010, "P Expand Capacity Started" }, 707 { 0x0011, "P Expand Capacity Completed" }, 708 { 0x0012, "P Expand Capacity Failed" }, 709 { 0x0013, "P Command Timed Out" }, 710 { 0x0014, "P Command Aborted" }, 711 { 0x0015, "P Command Retried" }, 712 { 0x0016, "P Parity Error" }, 713 { 0x0017, "P Soft Error" }, 714 { 0x0018, "P Miscellaneous Error" }, 715 { 0x0019, "P Reset" }, 716 { 0x001A, "P Active Spare Found" }, 717 { 0x001B, "P Warm Spare Found" }, 718 { 0x001C, "S Sense Data Received" }, 719 { 0x001D, "P Initialization Started" }, 720 { 0x001E, "P Initialization Completed" }, 721 { 0x001F, "P Initialization Failed" }, 722 { 0x0020, "P Initialization Cancelled" }, 723 { 0x0021, "P Failed because Write Recovery Failed" }, 724 { 0x0022, "P Failed because SCSI Bus Reset Failed" }, 725 { 0x0023, "P Failed because of Double Check Condition" }, 726 { 0x0024, "P Failed because Device Cannot Be Accessed" }, 727 { 0x0025, "P Failed because of Gross Error on SCSI Processor" }, 728 { 0x0026, "P Failed because of Bad Tag from Device" }, 729 { 0x0027, "P Failed because of Command Timeout" }, 730 { 0x0028, "P Failed because of System Reset" }, 731 { 0x0029, "P Failed because of Busy Status or Parity Error" }, 732 { 0x002A, "P Failed because Host Set Device to Failed State" }, 733 { 0x002B, "P Failed because of Selection Timeout" }, 734 { 0x002C, "P Failed because of SCSI Bus Phase Error" }, 735 { 0x002D, "P Failed because Device Returned Unknown Status" }, 736 { 0x002E, "P Failed because Device Not Ready" }, 737 { 0x002F, "P Failed because Device Not Found at Startup" }, 738 { 0x0030, "P Failed because COD Write Operation Failed" }, 739 { 0x0031, "P Failed because BDT Write Operation Failed" }, 740 { 0x0039, "P Missing at Startup" }, 741 { 0x003A, "P Start Rebuild Failed due to Physical Drive Too Small" }, 742 { 0x003C, "P Temporarily Offline Device Automatically Made Online" }, 743 { 0x003D, "P Standby Rebuild Started" }, 744 /* Logical Device Events (0x0080 - 0x00FF) */ 745 { 0x0080, "M Consistency Check Started" }, 746 { 0x0081, "M Consistency Check Completed" }, 747 { 0x0082, "M Consistency Check Cancelled" }, 748 { 0x0083, "M Consistency Check Completed With Errors" }, 749 { 0x0084, "M Consistency Check Failed due to Logical Drive Failure" }, 750 { 0x0085, "M Consistency Check Failed due to Physical Device Failure" }, 751 { 0x0086, "L Offline" }, 752 { 0x0087, "L Critical" }, 753 { 0x0088, "L Online" }, 754 { 0x0089, "M Automatic Rebuild Started" }, 755 { 0x008A, "M Manual Rebuild Started" }, 756 { 0x008B, "M Rebuild Completed" }, 757 { 0x008C, "M Rebuild Cancelled" }, 758 { 0x008D, "M Rebuild Failed for Unknown Reasons" }, 759 { 0x008E, "M Rebuild Failed due to New Physical Device" }, 760 { 0x008F, "M Rebuild Failed due to Logical Drive Failure" }, 761 { 0x0090, "M Initialization Started" }, 762 { 0x0091, "M Initialization Completed" }, 763 { 0x0092, "M Initialization Cancelled" }, 764 { 0x0093, "M Initialization Failed" }, 765 { 0x0094, "L Found" }, 766 { 0x0095, "L Deleted" }, 767 { 0x0096, "M Expand Capacity Started" }, 768 { 0x0097, "M Expand Capacity Completed" }, 769 { 0x0098, "M Expand Capacity Failed" }, 770 { 0x0099, "L Bad Block Found" }, 771 { 0x009A, "L Size Changed" }, 772 { 0x009B, "L Type Changed" }, 773 { 0x009C, "L Bad Data Block Found" }, 774 { 0x009E, "L Read of Data Block in BDT" }, 775 { 0x009F, "L Write Back Data for Disk Block Lost" }, 776 { 0x00A0, "L Temporarily Offline RAID-5/3 Drive Made Online" }, 777 { 0x00A1, "L Temporarily Offline RAID-6/1/0/7 Drive Made Online" }, 778 { 0x00A2, "L Standby Rebuild Started" }, 779 /* Fault Management Events (0x0100 - 0x017F) */ 780 { 0x0140, "E Fan %d Failed" }, 781 { 0x0141, "E Fan %d OK" }, 782 { 0x0142, "E Fan %d Not Present" }, 783 { 0x0143, "E Power Supply %d Failed" }, 784 { 0x0144, "E Power Supply %d OK" }, 785 { 0x0145, "E Power Supply %d Not Present" }, 786 { 0x0146, "E Temperature Sensor %d Temperature Exceeds Safe Limit" }, 787 { 0x0147, "E Temperature Sensor %d Temperature Exceeds Working Limit" }, 788 { 0x0148, "E Temperature Sensor %d Temperature Normal" }, 789 { 0x0149, "E Temperature Sensor %d Not Present" }, 790 { 0x014A, "E Enclosure Management Unit %d Access Critical" }, 791 { 0x014B, "E Enclosure Management Unit %d Access OK" }, 792 { 0x014C, "E Enclosure Management Unit %d Access Offline" }, 793 /* Controller Events (0x0180 - 0x01FF) */ 794 { 0x0181, "C Cache Write Back Error" }, 795 { 0x0188, "C Battery Backup Unit Found" }, 796 { 0x0189, "C Battery Backup Unit Charge Level Low" }, 797 { 0x018A, "C Battery Backup Unit Charge Level OK" }, 798 { 0x0193, "C Installation Aborted" }, 799 { 0x0195, "C Battery Backup Unit Physically Removed" }, 800 { 0x0196, "C Memory Error During Warm Boot" }, 801 { 0x019E, "C Memory Soft ECC Error Corrected" }, 802 { 0x019F, "C Memory Hard ECC Error Corrected" }, 803 { 0x01A2, "C Battery Backup Unit Failed" }, 804 { 0x01AB, "C Mirror Race Recovery Failed" }, 805 { 0x01AC, "C Mirror Race on Critical Drive" }, 806 /* Controller Internal Processor Events */ 807 { 0x0380, "C Internal Controller Hung" }, 808 { 0x0381, "C Internal Controller Firmware Breakpoint" }, 809 { 0x0390, "C Internal Controller i960 Processor Specific Error" }, 810 { 0x03A0, "C Internal Controller StrongARM Processor Specific Error" }, 811 { 0, "" } 812 }; 813 814 static void myrs_log_event(struct myrs_hba *cs, struct myrs_event *ev) 815 { 816 unsigned char msg_buf[MYRS_LINE_BUFFER_SIZE]; 817 int ev_idx = 0, ev_code; 818 unsigned char ev_type, *ev_msg; 819 struct Scsi_Host *shost = cs->host; 820 struct scsi_device *sdev; 821 struct scsi_sense_hdr sshdr = {0}; 822 unsigned char sense_info[4]; 823 unsigned char cmd_specific[4]; 824 825 if (ev->ev_code == 0x1C) { 826 if (!scsi_normalize_sense(ev->sense_data, 40, &sshdr)) { 827 memset(&sshdr, 0x0, sizeof(sshdr)); 828 memset(sense_info, 0x0, sizeof(sense_info)); 829 memset(cmd_specific, 0x0, sizeof(cmd_specific)); 830 } else { 831 memcpy(sense_info, &ev->sense_data[3], 4); 832 memcpy(cmd_specific, &ev->sense_data[7], 4); 833 } 834 } 835 if (sshdr.sense_key == VENDOR_SPECIFIC && 836 (sshdr.asc == 0x80 || sshdr.asc == 0x81)) 837 ev->ev_code = ((sshdr.asc - 0x80) << 8 | sshdr.ascq); 838 while (true) { 839 ev_code = myrs_ev_list[ev_idx].ev_code; 840 if (ev_code == ev->ev_code || ev_code == 0) 841 break; 842 ev_idx++; 843 } 844 ev_type = myrs_ev_list[ev_idx].ev_msg[0]; 845 ev_msg = &myrs_ev_list[ev_idx].ev_msg[2]; 846 if (ev_code == 0) { 847 shost_printk(KERN_WARNING, shost, 848 "Unknown Controller Event Code %04X\n", 849 ev->ev_code); 850 return; 851 } 852 switch (ev_type) { 853 case 'P': 854 sdev = scsi_device_lookup(shost, ev->channel, 855 ev->target, 0); 856 sdev_printk(KERN_INFO, sdev, "event %d: Physical Device %s\n", 857 ev->ev_seq, ev_msg); 858 if (sdev && sdev->hostdata && 859 sdev->channel < cs->ctlr_info->physchan_present) { 860 struct myrs_pdev_info *pdev_info = sdev->hostdata; 861 862 switch (ev->ev_code) { 863 case 0x0001: 864 case 0x0007: 865 pdev_info->dev_state = MYRS_DEVICE_ONLINE; 866 break; 867 case 0x0002: 868 pdev_info->dev_state = MYRS_DEVICE_STANDBY; 869 break; 870 case 0x000C: 871 pdev_info->dev_state = MYRS_DEVICE_OFFLINE; 872 break; 873 case 0x000E: 874 pdev_info->dev_state = MYRS_DEVICE_MISSING; 875 break; 876 case 0x000F: 877 pdev_info->dev_state = MYRS_DEVICE_UNCONFIGURED; 878 break; 879 } 880 } 881 break; 882 case 'L': 883 shost_printk(KERN_INFO, shost, 884 "event %d: Logical Drive %d %s\n", 885 ev->ev_seq, ev->lun, ev_msg); 886 cs->needs_update = true; 887 break; 888 case 'M': 889 shost_printk(KERN_INFO, shost, 890 "event %d: Logical Drive %d %s\n", 891 ev->ev_seq, ev->lun, ev_msg); 892 cs->needs_update = true; 893 break; 894 case 'S': 895 if (sshdr.sense_key == NO_SENSE || 896 (sshdr.sense_key == NOT_READY && 897 sshdr.asc == 0x04 && (sshdr.ascq == 0x01 || 898 sshdr.ascq == 0x02))) 899 break; 900 shost_printk(KERN_INFO, shost, 901 "event %d: Physical Device %d:%d %s\n", 902 ev->ev_seq, ev->channel, ev->target, ev_msg); 903 shost_printk(KERN_INFO, shost, 904 "Physical Device %d:%d Sense Key = %X, ASC = %02X, ASCQ = %02X\n", 905 ev->channel, ev->target, 906 sshdr.sense_key, sshdr.asc, sshdr.ascq); 907 shost_printk(KERN_INFO, shost, 908 "Physical Device %d:%d Sense Information = %02X%02X%02X%02X %02X%02X%02X%02X\n", 909 ev->channel, ev->target, 910 sense_info[0], sense_info[1], 911 sense_info[2], sense_info[3], 912 cmd_specific[0], cmd_specific[1], 913 cmd_specific[2], cmd_specific[3]); 914 break; 915 case 'E': 916 if (cs->disable_enc_msg) 917 break; 918 sprintf(msg_buf, ev_msg, ev->lun); 919 shost_printk(KERN_INFO, shost, "event %d: Enclosure %d %s\n", 920 ev->ev_seq, ev->target, msg_buf); 921 break; 922 case 'C': 923 shost_printk(KERN_INFO, shost, "event %d: Controller %s\n", 924 ev->ev_seq, ev_msg); 925 break; 926 default: 927 shost_printk(KERN_INFO, shost, 928 "event %d: Unknown Event Code %04X\n", 929 ev->ev_seq, ev->ev_code); 930 break; 931 } 932 } 933 934 /* 935 * SCSI sysfs interface functions 936 */ 937 static ssize_t raid_state_show(struct device *dev, 938 struct device_attribute *attr, char *buf) 939 { 940 struct scsi_device *sdev = to_scsi_device(dev); 941 struct myrs_hba *cs = shost_priv(sdev->host); 942 int ret; 943 944 if (!sdev->hostdata) 945 return snprintf(buf, 16, "Unknown\n"); 946 947 if (sdev->channel >= cs->ctlr_info->physchan_present) { 948 struct myrs_ldev_info *ldev_info = sdev->hostdata; 949 const char *name; 950 951 name = myrs_devstate_name(ldev_info->dev_state); 952 if (name) 953 ret = snprintf(buf, 32, "%s\n", name); 954 else 955 ret = snprintf(buf, 32, "Invalid (%02X)\n", 956 ldev_info->dev_state); 957 } else { 958 struct myrs_pdev_info *pdev_info; 959 const char *name; 960 961 pdev_info = sdev->hostdata; 962 name = myrs_devstate_name(pdev_info->dev_state); 963 if (name) 964 ret = snprintf(buf, 32, "%s\n", name); 965 else 966 ret = snprintf(buf, 32, "Invalid (%02X)\n", 967 pdev_info->dev_state); 968 } 969 return ret; 970 } 971 972 static ssize_t raid_state_store(struct device *dev, 973 struct device_attribute *attr, const char *buf, size_t count) 974 { 975 struct scsi_device *sdev = to_scsi_device(dev); 976 struct myrs_hba *cs = shost_priv(sdev->host); 977 struct myrs_cmdblk *cmd_blk; 978 union myrs_cmd_mbox *mbox; 979 enum myrs_devstate new_state; 980 unsigned short ldev_num; 981 unsigned char status; 982 983 if (!strncmp(buf, "offline", 7) || 984 !strncmp(buf, "kill", 4)) 985 new_state = MYRS_DEVICE_OFFLINE; 986 else if (!strncmp(buf, "online", 6)) 987 new_state = MYRS_DEVICE_ONLINE; 988 else if (!strncmp(buf, "standby", 7)) 989 new_state = MYRS_DEVICE_STANDBY; 990 else 991 return -EINVAL; 992 993 if (sdev->channel < cs->ctlr_info->physchan_present) { 994 struct myrs_pdev_info *pdev_info = sdev->hostdata; 995 struct myrs_devmap *pdev_devmap = 996 (struct myrs_devmap *)&pdev_info->rsvd13; 997 998 if (pdev_info->dev_state == new_state) { 999 sdev_printk(KERN_INFO, sdev, 1000 "Device already in %s\n", 1001 myrs_devstate_name(new_state)); 1002 return count; 1003 } 1004 status = myrs_translate_pdev(cs, sdev->channel, sdev->id, 1005 sdev->lun, pdev_devmap); 1006 if (status != MYRS_STATUS_SUCCESS) 1007 return -ENXIO; 1008 ldev_num = pdev_devmap->ldev_num; 1009 } else { 1010 struct myrs_ldev_info *ldev_info = sdev->hostdata; 1011 1012 if (ldev_info->dev_state == new_state) { 1013 sdev_printk(KERN_INFO, sdev, 1014 "Device already in %s\n", 1015 myrs_devstate_name(new_state)); 1016 return count; 1017 } 1018 ldev_num = ldev_info->ldev_num; 1019 } 1020 mutex_lock(&cs->dcmd_mutex); 1021 cmd_blk = &cs->dcmd_blk; 1022 myrs_reset_cmd(cmd_blk); 1023 mbox = &cmd_blk->mbox; 1024 mbox->common.opcode = MYRS_CMD_OP_IOCTL; 1025 mbox->common.id = MYRS_DCMD_TAG; 1026 mbox->common.control.dma_ctrl_to_host = true; 1027 mbox->common.control.no_autosense = true; 1028 mbox->set_devstate.ioctl_opcode = MYRS_IOCTL_SET_DEVICE_STATE; 1029 mbox->set_devstate.state = new_state; 1030 mbox->set_devstate.ldev.ldev_num = ldev_num; 1031 myrs_exec_cmd(cs, cmd_blk); 1032 status = cmd_blk->status; 1033 mutex_unlock(&cs->dcmd_mutex); 1034 if (status == MYRS_STATUS_SUCCESS) { 1035 if (sdev->channel < cs->ctlr_info->physchan_present) { 1036 struct myrs_pdev_info *pdev_info = sdev->hostdata; 1037 1038 pdev_info->dev_state = new_state; 1039 } else { 1040 struct myrs_ldev_info *ldev_info = sdev->hostdata; 1041 1042 ldev_info->dev_state = new_state; 1043 } 1044 sdev_printk(KERN_INFO, sdev, 1045 "Set device state to %s\n", 1046 myrs_devstate_name(new_state)); 1047 return count; 1048 } 1049 sdev_printk(KERN_INFO, sdev, 1050 "Failed to set device state to %s, status 0x%02x\n", 1051 myrs_devstate_name(new_state), status); 1052 return -EINVAL; 1053 } 1054 static DEVICE_ATTR_RW(raid_state); 1055 1056 static ssize_t raid_level_show(struct device *dev, 1057 struct device_attribute *attr, char *buf) 1058 { 1059 struct scsi_device *sdev = to_scsi_device(dev); 1060 struct myrs_hba *cs = shost_priv(sdev->host); 1061 const char *name = NULL; 1062 1063 if (!sdev->hostdata) 1064 return snprintf(buf, 16, "Unknown\n"); 1065 1066 if (sdev->channel >= cs->ctlr_info->physchan_present) { 1067 struct myrs_ldev_info *ldev_info; 1068 1069 ldev_info = sdev->hostdata; 1070 name = myrs_raid_level_name(ldev_info->raid_level); 1071 if (!name) 1072 return snprintf(buf, 32, "Invalid (%02X)\n", 1073 ldev_info->dev_state); 1074 1075 } else 1076 name = myrs_raid_level_name(MYRS_RAID_PHYSICAL); 1077 1078 return snprintf(buf, 32, "%s\n", name); 1079 } 1080 static DEVICE_ATTR_RO(raid_level); 1081 1082 static ssize_t rebuild_show(struct device *dev, 1083 struct device_attribute *attr, char *buf) 1084 { 1085 struct scsi_device *sdev = to_scsi_device(dev); 1086 struct myrs_hba *cs = shost_priv(sdev->host); 1087 struct myrs_ldev_info *ldev_info; 1088 unsigned short ldev_num; 1089 unsigned char status; 1090 1091 if (sdev->channel < cs->ctlr_info->physchan_present) 1092 return snprintf(buf, 32, "physical device - not rebuilding\n"); 1093 1094 ldev_info = sdev->hostdata; 1095 ldev_num = ldev_info->ldev_num; 1096 status = myrs_get_ldev_info(cs, ldev_num, ldev_info); 1097 if (status != MYRS_STATUS_SUCCESS) { 1098 sdev_printk(KERN_INFO, sdev, 1099 "Failed to get device information, status 0x%02x\n", 1100 status); 1101 return -EIO; 1102 } 1103 if (ldev_info->rbld_active) { 1104 return snprintf(buf, 32, "rebuilding block %zu of %zu\n", 1105 (size_t)ldev_info->rbld_lba, 1106 (size_t)ldev_info->cfg_devsize); 1107 } else 1108 return snprintf(buf, 32, "not rebuilding\n"); 1109 } 1110 1111 static ssize_t rebuild_store(struct device *dev, 1112 struct device_attribute *attr, const char *buf, size_t count) 1113 { 1114 struct scsi_device *sdev = to_scsi_device(dev); 1115 struct myrs_hba *cs = shost_priv(sdev->host); 1116 struct myrs_ldev_info *ldev_info; 1117 struct myrs_cmdblk *cmd_blk; 1118 union myrs_cmd_mbox *mbox; 1119 unsigned short ldev_num; 1120 unsigned char status; 1121 int rebuild, ret; 1122 1123 if (sdev->channel < cs->ctlr_info->physchan_present) 1124 return -EINVAL; 1125 1126 ldev_info = sdev->hostdata; 1127 if (!ldev_info) 1128 return -ENXIO; 1129 ldev_num = ldev_info->ldev_num; 1130 1131 ret = kstrtoint(buf, 0, &rebuild); 1132 if (ret) 1133 return ret; 1134 1135 status = myrs_get_ldev_info(cs, ldev_num, ldev_info); 1136 if (status != MYRS_STATUS_SUCCESS) { 1137 sdev_printk(KERN_INFO, sdev, 1138 "Failed to get device information, status 0x%02x\n", 1139 status); 1140 return -EIO; 1141 } 1142 1143 if (rebuild && ldev_info->rbld_active) { 1144 sdev_printk(KERN_INFO, sdev, 1145 "Rebuild Not Initiated; already in progress\n"); 1146 return -EALREADY; 1147 } 1148 if (!rebuild && !ldev_info->rbld_active) { 1149 sdev_printk(KERN_INFO, sdev, 1150 "Rebuild Not Cancelled; no rebuild in progress\n"); 1151 return count; 1152 } 1153 1154 mutex_lock(&cs->dcmd_mutex); 1155 cmd_blk = &cs->dcmd_blk; 1156 myrs_reset_cmd(cmd_blk); 1157 mbox = &cmd_blk->mbox; 1158 mbox->common.opcode = MYRS_CMD_OP_IOCTL; 1159 mbox->common.id = MYRS_DCMD_TAG; 1160 mbox->common.control.dma_ctrl_to_host = true; 1161 mbox->common.control.no_autosense = true; 1162 if (rebuild) { 1163 mbox->ldev_info.ldev.ldev_num = ldev_num; 1164 mbox->ldev_info.ioctl_opcode = MYRS_IOCTL_RBLD_DEVICE_START; 1165 } else { 1166 mbox->ldev_info.ldev.ldev_num = ldev_num; 1167 mbox->ldev_info.ioctl_opcode = MYRS_IOCTL_RBLD_DEVICE_STOP; 1168 } 1169 myrs_exec_cmd(cs, cmd_blk); 1170 status = cmd_blk->status; 1171 mutex_unlock(&cs->dcmd_mutex); 1172 if (status) { 1173 sdev_printk(KERN_INFO, sdev, 1174 "Rebuild Not %s, status 0x%02x\n", 1175 rebuild ? "Initiated" : "Cancelled", status); 1176 ret = -EIO; 1177 } else { 1178 sdev_printk(KERN_INFO, sdev, "Rebuild %s\n", 1179 rebuild ? "Initiated" : "Cancelled"); 1180 ret = count; 1181 } 1182 1183 return ret; 1184 } 1185 static DEVICE_ATTR_RW(rebuild); 1186 1187 static ssize_t consistency_check_show(struct device *dev, 1188 struct device_attribute *attr, char *buf) 1189 { 1190 struct scsi_device *sdev = to_scsi_device(dev); 1191 struct myrs_hba *cs = shost_priv(sdev->host); 1192 struct myrs_ldev_info *ldev_info; 1193 unsigned short ldev_num; 1194 unsigned char status; 1195 1196 if (sdev->channel < cs->ctlr_info->physchan_present) 1197 return snprintf(buf, 32, "physical device - not checking\n"); 1198 1199 ldev_info = sdev->hostdata; 1200 if (!ldev_info) 1201 return -ENXIO; 1202 ldev_num = ldev_info->ldev_num; 1203 status = myrs_get_ldev_info(cs, ldev_num, ldev_info); 1204 if (ldev_info->cc_active) 1205 return snprintf(buf, 32, "checking block %zu of %zu\n", 1206 (size_t)ldev_info->cc_lba, 1207 (size_t)ldev_info->cfg_devsize); 1208 else 1209 return snprintf(buf, 32, "not checking\n"); 1210 } 1211 1212 static ssize_t consistency_check_store(struct device *dev, 1213 struct device_attribute *attr, const char *buf, size_t count) 1214 { 1215 struct scsi_device *sdev = to_scsi_device(dev); 1216 struct myrs_hba *cs = shost_priv(sdev->host); 1217 struct myrs_ldev_info *ldev_info; 1218 struct myrs_cmdblk *cmd_blk; 1219 union myrs_cmd_mbox *mbox; 1220 unsigned short ldev_num; 1221 unsigned char status; 1222 int check, ret; 1223 1224 if (sdev->channel < cs->ctlr_info->physchan_present) 1225 return -EINVAL; 1226 1227 ldev_info = sdev->hostdata; 1228 if (!ldev_info) 1229 return -ENXIO; 1230 ldev_num = ldev_info->ldev_num; 1231 1232 ret = kstrtoint(buf, 0, &check); 1233 if (ret) 1234 return ret; 1235 1236 status = myrs_get_ldev_info(cs, ldev_num, ldev_info); 1237 if (status != MYRS_STATUS_SUCCESS) { 1238 sdev_printk(KERN_INFO, sdev, 1239 "Failed to get device information, status 0x%02x\n", 1240 status); 1241 return -EIO; 1242 } 1243 if (check && ldev_info->cc_active) { 1244 sdev_printk(KERN_INFO, sdev, 1245 "Consistency Check Not Initiated; " 1246 "already in progress\n"); 1247 return -EALREADY; 1248 } 1249 if (!check && !ldev_info->cc_active) { 1250 sdev_printk(KERN_INFO, sdev, 1251 "Consistency Check Not Cancelled; " 1252 "check not in progress\n"); 1253 return count; 1254 } 1255 1256 mutex_lock(&cs->dcmd_mutex); 1257 cmd_blk = &cs->dcmd_blk; 1258 myrs_reset_cmd(cmd_blk); 1259 mbox = &cmd_blk->mbox; 1260 mbox->common.opcode = MYRS_CMD_OP_IOCTL; 1261 mbox->common.id = MYRS_DCMD_TAG; 1262 mbox->common.control.dma_ctrl_to_host = true; 1263 mbox->common.control.no_autosense = true; 1264 if (check) { 1265 mbox->cc.ldev.ldev_num = ldev_num; 1266 mbox->cc.ioctl_opcode = MYRS_IOCTL_CC_START; 1267 mbox->cc.restore_consistency = true; 1268 mbox->cc.initialized_area_only = false; 1269 } else { 1270 mbox->cc.ldev.ldev_num = ldev_num; 1271 mbox->cc.ioctl_opcode = MYRS_IOCTL_CC_STOP; 1272 } 1273 myrs_exec_cmd(cs, cmd_blk); 1274 status = cmd_blk->status; 1275 mutex_unlock(&cs->dcmd_mutex); 1276 if (status != MYRS_STATUS_SUCCESS) { 1277 sdev_printk(KERN_INFO, sdev, 1278 "Consistency Check Not %s, status 0x%02x\n", 1279 check ? "Initiated" : "Cancelled", status); 1280 ret = -EIO; 1281 } else { 1282 sdev_printk(KERN_INFO, sdev, "Consistency Check %s\n", 1283 check ? "Initiated" : "Cancelled"); 1284 ret = count; 1285 } 1286 1287 return ret; 1288 } 1289 static DEVICE_ATTR_RW(consistency_check); 1290 1291 static struct device_attribute *myrs_sdev_attrs[] = { 1292 &dev_attr_consistency_check, 1293 &dev_attr_rebuild, 1294 &dev_attr_raid_state, 1295 &dev_attr_raid_level, 1296 NULL, 1297 }; 1298 1299 static ssize_t serial_show(struct device *dev, 1300 struct device_attribute *attr, char *buf) 1301 { 1302 struct Scsi_Host *shost = class_to_shost(dev); 1303 struct myrs_hba *cs = shost_priv(shost); 1304 char serial[17]; 1305 1306 memcpy(serial, cs->ctlr_info->serial_number, 16); 1307 serial[16] = '\0'; 1308 return snprintf(buf, 16, "%s\n", serial); 1309 } 1310 static DEVICE_ATTR_RO(serial); 1311 1312 static ssize_t ctlr_num_show(struct device *dev, 1313 struct device_attribute *attr, char *buf) 1314 { 1315 struct Scsi_Host *shost = class_to_shost(dev); 1316 struct myrs_hba *cs = shost_priv(shost); 1317 1318 return snprintf(buf, 20, "%d\n", cs->host->host_no); 1319 } 1320 static DEVICE_ATTR_RO(ctlr_num); 1321 1322 static struct myrs_cpu_type_tbl { 1323 enum myrs_cpu_type type; 1324 char *name; 1325 } myrs_cpu_type_names[] = { 1326 { MYRS_CPUTYPE_i960CA, "i960CA" }, 1327 { MYRS_CPUTYPE_i960RD, "i960RD" }, 1328 { MYRS_CPUTYPE_i960RN, "i960RN" }, 1329 { MYRS_CPUTYPE_i960RP, "i960RP" }, 1330 { MYRS_CPUTYPE_NorthBay, "NorthBay" }, 1331 { MYRS_CPUTYPE_StrongArm, "StrongARM" }, 1332 { MYRS_CPUTYPE_i960RM, "i960RM" }, 1333 }; 1334 1335 static ssize_t processor_show(struct device *dev, 1336 struct device_attribute *attr, char *buf) 1337 { 1338 struct Scsi_Host *shost = class_to_shost(dev); 1339 struct myrs_hba *cs = shost_priv(shost); 1340 struct myrs_cpu_type_tbl *tbl; 1341 const char *first_processor = NULL; 1342 const char *second_processor = NULL; 1343 struct myrs_ctlr_info *info = cs->ctlr_info; 1344 ssize_t ret; 1345 int i; 1346 1347 if (info->cpu[0].cpu_count) { 1348 tbl = myrs_cpu_type_names; 1349 for (i = 0; i < ARRAY_SIZE(myrs_cpu_type_names); i++) { 1350 if (tbl[i].type == info->cpu[0].cpu_type) { 1351 first_processor = tbl[i].name; 1352 break; 1353 } 1354 } 1355 } 1356 if (info->cpu[1].cpu_count) { 1357 tbl = myrs_cpu_type_names; 1358 for (i = 0; i < ARRAY_SIZE(myrs_cpu_type_names); i++) { 1359 if (tbl[i].type == info->cpu[1].cpu_type) { 1360 second_processor = tbl[i].name; 1361 break; 1362 } 1363 } 1364 } 1365 if (first_processor && second_processor) 1366 ret = snprintf(buf, 64, "1: %s (%s, %d cpus)\n" 1367 "2: %s (%s, %d cpus)\n", 1368 info->cpu[0].cpu_name, 1369 first_processor, info->cpu[0].cpu_count, 1370 info->cpu[1].cpu_name, 1371 second_processor, info->cpu[1].cpu_count); 1372 else if (first_processor && !second_processor) 1373 ret = snprintf(buf, 64, "1: %s (%s, %d cpus)\n2: absent\n", 1374 info->cpu[0].cpu_name, 1375 first_processor, info->cpu[0].cpu_count); 1376 else if (!first_processor && second_processor) 1377 ret = snprintf(buf, 64, "1: absent\n2: %s (%s, %d cpus)\n", 1378 info->cpu[1].cpu_name, 1379 second_processor, info->cpu[1].cpu_count); 1380 else 1381 ret = snprintf(buf, 64, "1: absent\n2: absent\n"); 1382 1383 return ret; 1384 } 1385 static DEVICE_ATTR_RO(processor); 1386 1387 static ssize_t model_show(struct device *dev, 1388 struct device_attribute *attr, char *buf) 1389 { 1390 struct Scsi_Host *shost = class_to_shost(dev); 1391 struct myrs_hba *cs = shost_priv(shost); 1392 1393 return snprintf(buf, 28, "%s\n", cs->model_name); 1394 } 1395 static DEVICE_ATTR_RO(model); 1396 1397 static ssize_t ctlr_type_show(struct device *dev, 1398 struct device_attribute *attr, char *buf) 1399 { 1400 struct Scsi_Host *shost = class_to_shost(dev); 1401 struct myrs_hba *cs = shost_priv(shost); 1402 1403 return snprintf(buf, 4, "%d\n", cs->ctlr_info->ctlr_type); 1404 } 1405 static DEVICE_ATTR_RO(ctlr_type); 1406 1407 static ssize_t cache_size_show(struct device *dev, 1408 struct device_attribute *attr, char *buf) 1409 { 1410 struct Scsi_Host *shost = class_to_shost(dev); 1411 struct myrs_hba *cs = shost_priv(shost); 1412 1413 return snprintf(buf, 8, "%d MB\n", cs->ctlr_info->cache_size_mb); 1414 } 1415 static DEVICE_ATTR_RO(cache_size); 1416 1417 static ssize_t firmware_show(struct device *dev, 1418 struct device_attribute *attr, char *buf) 1419 { 1420 struct Scsi_Host *shost = class_to_shost(dev); 1421 struct myrs_hba *cs = shost_priv(shost); 1422 1423 return snprintf(buf, 16, "%d.%02d-%02d\n", 1424 cs->ctlr_info->fw_major_version, 1425 cs->ctlr_info->fw_minor_version, 1426 cs->ctlr_info->fw_turn_number); 1427 } 1428 static DEVICE_ATTR_RO(firmware); 1429 1430 static ssize_t discovery_store(struct device *dev, 1431 struct device_attribute *attr, const char *buf, size_t count) 1432 { 1433 struct Scsi_Host *shost = class_to_shost(dev); 1434 struct myrs_hba *cs = shost_priv(shost); 1435 struct myrs_cmdblk *cmd_blk; 1436 union myrs_cmd_mbox *mbox; 1437 unsigned char status; 1438 1439 mutex_lock(&cs->dcmd_mutex); 1440 cmd_blk = &cs->dcmd_blk; 1441 myrs_reset_cmd(cmd_blk); 1442 mbox = &cmd_blk->mbox; 1443 mbox->common.opcode = MYRS_CMD_OP_IOCTL; 1444 mbox->common.id = MYRS_DCMD_TAG; 1445 mbox->common.control.dma_ctrl_to_host = true; 1446 mbox->common.control.no_autosense = true; 1447 mbox->common.ioctl_opcode = MYRS_IOCTL_START_DISCOVERY; 1448 myrs_exec_cmd(cs, cmd_blk); 1449 status = cmd_blk->status; 1450 mutex_unlock(&cs->dcmd_mutex); 1451 if (status != MYRS_STATUS_SUCCESS) { 1452 shost_printk(KERN_INFO, shost, 1453 "Discovery Not Initiated, status %02X\n", 1454 status); 1455 return -EINVAL; 1456 } 1457 shost_printk(KERN_INFO, shost, "Discovery Initiated\n"); 1458 cs->next_evseq = 0; 1459 cs->needs_update = true; 1460 queue_delayed_work(cs->work_q, &cs->monitor_work, 1); 1461 flush_delayed_work(&cs->monitor_work); 1462 shost_printk(KERN_INFO, shost, "Discovery Completed\n"); 1463 1464 return count; 1465 } 1466 static DEVICE_ATTR_WO(discovery); 1467 1468 static ssize_t flush_cache_store(struct device *dev, 1469 struct device_attribute *attr, const char *buf, size_t count) 1470 { 1471 struct Scsi_Host *shost = class_to_shost(dev); 1472 struct myrs_hba *cs = shost_priv(shost); 1473 unsigned char status; 1474 1475 status = myrs_dev_op(cs, MYRS_IOCTL_FLUSH_DEVICE_DATA, 1476 MYRS_RAID_CONTROLLER); 1477 if (status == MYRS_STATUS_SUCCESS) { 1478 shost_printk(KERN_INFO, shost, "Cache Flush Completed\n"); 1479 return count; 1480 } 1481 shost_printk(KERN_INFO, shost, 1482 "Cache Flush failed, status 0x%02x\n", status); 1483 return -EIO; 1484 } 1485 static DEVICE_ATTR_WO(flush_cache); 1486 1487 static ssize_t disable_enclosure_messages_show(struct device *dev, 1488 struct device_attribute *attr, char *buf) 1489 { 1490 struct Scsi_Host *shost = class_to_shost(dev); 1491 struct myrs_hba *cs = shost_priv(shost); 1492 1493 return snprintf(buf, 3, "%d\n", cs->disable_enc_msg); 1494 } 1495 1496 static ssize_t disable_enclosure_messages_store(struct device *dev, 1497 struct device_attribute *attr, const char *buf, size_t count) 1498 { 1499 struct scsi_device *sdev = to_scsi_device(dev); 1500 struct myrs_hba *cs = shost_priv(sdev->host); 1501 int value, ret; 1502 1503 ret = kstrtoint(buf, 0, &value); 1504 if (ret) 1505 return ret; 1506 1507 if (value > 2) 1508 return -EINVAL; 1509 1510 cs->disable_enc_msg = value; 1511 return count; 1512 } 1513 static DEVICE_ATTR_RW(disable_enclosure_messages); 1514 1515 static struct device_attribute *myrs_shost_attrs[] = { 1516 &dev_attr_serial, 1517 &dev_attr_ctlr_num, 1518 &dev_attr_processor, 1519 &dev_attr_model, 1520 &dev_attr_ctlr_type, 1521 &dev_attr_cache_size, 1522 &dev_attr_firmware, 1523 &dev_attr_discovery, 1524 &dev_attr_flush_cache, 1525 &dev_attr_disable_enclosure_messages, 1526 NULL, 1527 }; 1528 1529 /* 1530 * SCSI midlayer interface 1531 */ 1532 int myrs_host_reset(struct scsi_cmnd *scmd) 1533 { 1534 struct Scsi_Host *shost = scmd->device->host; 1535 struct myrs_hba *cs = shost_priv(shost); 1536 1537 cs->reset(cs->io_base); 1538 return SUCCESS; 1539 } 1540 1541 static void myrs_mode_sense(struct myrs_hba *cs, struct scsi_cmnd *scmd, 1542 struct myrs_ldev_info *ldev_info) 1543 { 1544 unsigned char modes[32], *mode_pg; 1545 bool dbd; 1546 size_t mode_len; 1547 1548 dbd = (scmd->cmnd[1] & 0x08) == 0x08; 1549 if (dbd) { 1550 mode_len = 24; 1551 mode_pg = &modes[4]; 1552 } else { 1553 mode_len = 32; 1554 mode_pg = &modes[12]; 1555 } 1556 memset(modes, 0, sizeof(modes)); 1557 modes[0] = mode_len - 1; 1558 modes[2] = 0x10; /* Enable FUA */ 1559 if (ldev_info->ldev_control.wce == MYRS_LOGICALDEVICE_RO) 1560 modes[2] |= 0x80; 1561 if (!dbd) { 1562 unsigned char *block_desc = &modes[4]; 1563 1564 modes[3] = 8; 1565 put_unaligned_be32(ldev_info->cfg_devsize, &block_desc[0]); 1566 put_unaligned_be32(ldev_info->devsize_bytes, &block_desc[5]); 1567 } 1568 mode_pg[0] = 0x08; 1569 mode_pg[1] = 0x12; 1570 if (ldev_info->ldev_control.rce == MYRS_READCACHE_DISABLED) 1571 mode_pg[2] |= 0x01; 1572 if (ldev_info->ldev_control.wce == MYRS_WRITECACHE_ENABLED || 1573 ldev_info->ldev_control.wce == MYRS_INTELLIGENT_WRITECACHE_ENABLED) 1574 mode_pg[2] |= 0x04; 1575 if (ldev_info->cacheline_size) { 1576 mode_pg[2] |= 0x08; 1577 put_unaligned_be16(1 << ldev_info->cacheline_size, 1578 &mode_pg[14]); 1579 } 1580 1581 scsi_sg_copy_from_buffer(scmd, modes, mode_len); 1582 } 1583 1584 static int myrs_queuecommand(struct Scsi_Host *shost, 1585 struct scsi_cmnd *scmd) 1586 { 1587 struct myrs_hba *cs = shost_priv(shost); 1588 struct myrs_cmdblk *cmd_blk = scsi_cmd_priv(scmd); 1589 union myrs_cmd_mbox *mbox = &cmd_blk->mbox; 1590 struct scsi_device *sdev = scmd->device; 1591 union myrs_sgl *hw_sge; 1592 dma_addr_t sense_addr; 1593 struct scatterlist *sgl; 1594 unsigned long flags, timeout; 1595 int nsge; 1596 1597 if (!scmd->device->hostdata) { 1598 scmd->result = (DID_NO_CONNECT << 16); 1599 scmd->scsi_done(scmd); 1600 return 0; 1601 } 1602 1603 switch (scmd->cmnd[0]) { 1604 case REPORT_LUNS: 1605 scsi_build_sense_buffer(0, scmd->sense_buffer, ILLEGAL_REQUEST, 1606 0x20, 0x0); 1607 scmd->result = (DRIVER_SENSE << 24) | SAM_STAT_CHECK_CONDITION; 1608 scmd->scsi_done(scmd); 1609 return 0; 1610 case MODE_SENSE: 1611 if (scmd->device->channel >= cs->ctlr_info->physchan_present) { 1612 struct myrs_ldev_info *ldev_info = sdev->hostdata; 1613 1614 if ((scmd->cmnd[2] & 0x3F) != 0x3F && 1615 (scmd->cmnd[2] & 0x3F) != 0x08) { 1616 /* Illegal request, invalid field in CDB */ 1617 scsi_build_sense_buffer(0, scmd->sense_buffer, 1618 ILLEGAL_REQUEST, 0x24, 0); 1619 scmd->result = (DRIVER_SENSE << 24) | 1620 SAM_STAT_CHECK_CONDITION; 1621 } else { 1622 myrs_mode_sense(cs, scmd, ldev_info); 1623 scmd->result = (DID_OK << 16); 1624 } 1625 scmd->scsi_done(scmd); 1626 return 0; 1627 } 1628 break; 1629 } 1630 1631 myrs_reset_cmd(cmd_blk); 1632 cmd_blk->sense = dma_pool_alloc(cs->sense_pool, GFP_ATOMIC, 1633 &sense_addr); 1634 if (!cmd_blk->sense) 1635 return SCSI_MLQUEUE_HOST_BUSY; 1636 cmd_blk->sense_addr = sense_addr; 1637 1638 timeout = scmd->request->timeout; 1639 if (scmd->cmd_len <= 10) { 1640 if (scmd->device->channel >= cs->ctlr_info->physchan_present) { 1641 struct myrs_ldev_info *ldev_info = sdev->hostdata; 1642 1643 mbox->SCSI_10.opcode = MYRS_CMD_OP_SCSI_10; 1644 mbox->SCSI_10.pdev.lun = ldev_info->lun; 1645 mbox->SCSI_10.pdev.target = ldev_info->target; 1646 mbox->SCSI_10.pdev.channel = ldev_info->channel; 1647 mbox->SCSI_10.pdev.ctlr = 0; 1648 } else { 1649 mbox->SCSI_10.opcode = MYRS_CMD_OP_SCSI_10_PASSTHRU; 1650 mbox->SCSI_10.pdev.lun = sdev->lun; 1651 mbox->SCSI_10.pdev.target = sdev->id; 1652 mbox->SCSI_10.pdev.channel = sdev->channel; 1653 } 1654 mbox->SCSI_10.id = scmd->request->tag + 3; 1655 mbox->SCSI_10.control.dma_ctrl_to_host = 1656 (scmd->sc_data_direction == DMA_FROM_DEVICE); 1657 if (scmd->request->cmd_flags & REQ_FUA) 1658 mbox->SCSI_10.control.fua = true; 1659 mbox->SCSI_10.dma_size = scsi_bufflen(scmd); 1660 mbox->SCSI_10.sense_addr = cmd_blk->sense_addr; 1661 mbox->SCSI_10.sense_len = MYRS_SENSE_SIZE; 1662 mbox->SCSI_10.cdb_len = scmd->cmd_len; 1663 if (timeout > 60) { 1664 mbox->SCSI_10.tmo.tmo_scale = MYRS_TMO_SCALE_MINUTES; 1665 mbox->SCSI_10.tmo.tmo_val = timeout / 60; 1666 } else { 1667 mbox->SCSI_10.tmo.tmo_scale = MYRS_TMO_SCALE_SECONDS; 1668 mbox->SCSI_10.tmo.tmo_val = timeout; 1669 } 1670 memcpy(&mbox->SCSI_10.cdb, scmd->cmnd, scmd->cmd_len); 1671 hw_sge = &mbox->SCSI_10.dma_addr; 1672 cmd_blk->dcdb = NULL; 1673 } else { 1674 dma_addr_t dcdb_dma; 1675 1676 cmd_blk->dcdb = dma_pool_alloc(cs->dcdb_pool, GFP_ATOMIC, 1677 &dcdb_dma); 1678 if (!cmd_blk->dcdb) { 1679 dma_pool_free(cs->sense_pool, cmd_blk->sense, 1680 cmd_blk->sense_addr); 1681 cmd_blk->sense = NULL; 1682 cmd_blk->sense_addr = 0; 1683 return SCSI_MLQUEUE_HOST_BUSY; 1684 } 1685 cmd_blk->dcdb_dma = dcdb_dma; 1686 if (scmd->device->channel >= cs->ctlr_info->physchan_present) { 1687 struct myrs_ldev_info *ldev_info = sdev->hostdata; 1688 1689 mbox->SCSI_255.opcode = MYRS_CMD_OP_SCSI_256; 1690 mbox->SCSI_255.pdev.lun = ldev_info->lun; 1691 mbox->SCSI_255.pdev.target = ldev_info->target; 1692 mbox->SCSI_255.pdev.channel = ldev_info->channel; 1693 mbox->SCSI_255.pdev.ctlr = 0; 1694 } else { 1695 mbox->SCSI_255.opcode = MYRS_CMD_OP_SCSI_255_PASSTHRU; 1696 mbox->SCSI_255.pdev.lun = sdev->lun; 1697 mbox->SCSI_255.pdev.target = sdev->id; 1698 mbox->SCSI_255.pdev.channel = sdev->channel; 1699 } 1700 mbox->SCSI_255.id = scmd->request->tag + 3; 1701 mbox->SCSI_255.control.dma_ctrl_to_host = 1702 (scmd->sc_data_direction == DMA_FROM_DEVICE); 1703 if (scmd->request->cmd_flags & REQ_FUA) 1704 mbox->SCSI_255.control.fua = true; 1705 mbox->SCSI_255.dma_size = scsi_bufflen(scmd); 1706 mbox->SCSI_255.sense_addr = cmd_blk->sense_addr; 1707 mbox->SCSI_255.sense_len = MYRS_SENSE_SIZE; 1708 mbox->SCSI_255.cdb_len = scmd->cmd_len; 1709 mbox->SCSI_255.cdb_addr = cmd_blk->dcdb_dma; 1710 if (timeout > 60) { 1711 mbox->SCSI_255.tmo.tmo_scale = MYRS_TMO_SCALE_MINUTES; 1712 mbox->SCSI_255.tmo.tmo_val = timeout / 60; 1713 } else { 1714 mbox->SCSI_255.tmo.tmo_scale = MYRS_TMO_SCALE_SECONDS; 1715 mbox->SCSI_255.tmo.tmo_val = timeout; 1716 } 1717 memcpy(cmd_blk->dcdb, scmd->cmnd, scmd->cmd_len); 1718 hw_sge = &mbox->SCSI_255.dma_addr; 1719 } 1720 if (scmd->sc_data_direction == DMA_NONE) 1721 goto submit; 1722 nsge = scsi_dma_map(scmd); 1723 if (nsge == 1) { 1724 sgl = scsi_sglist(scmd); 1725 hw_sge->sge[0].sge_addr = (u64)sg_dma_address(sgl); 1726 hw_sge->sge[0].sge_count = (u64)sg_dma_len(sgl); 1727 } else { 1728 struct myrs_sge *hw_sgl; 1729 dma_addr_t hw_sgl_addr; 1730 int i; 1731 1732 if (nsge > 2) { 1733 hw_sgl = dma_pool_alloc(cs->sg_pool, GFP_ATOMIC, 1734 &hw_sgl_addr); 1735 if (WARN_ON(!hw_sgl)) { 1736 if (cmd_blk->dcdb) { 1737 dma_pool_free(cs->dcdb_pool, 1738 cmd_blk->dcdb, 1739 cmd_blk->dcdb_dma); 1740 cmd_blk->dcdb = NULL; 1741 cmd_blk->dcdb_dma = 0; 1742 } 1743 dma_pool_free(cs->sense_pool, 1744 cmd_blk->sense, 1745 cmd_blk->sense_addr); 1746 cmd_blk->sense = NULL; 1747 cmd_blk->sense_addr = 0; 1748 return SCSI_MLQUEUE_HOST_BUSY; 1749 } 1750 cmd_blk->sgl = hw_sgl; 1751 cmd_blk->sgl_addr = hw_sgl_addr; 1752 if (scmd->cmd_len <= 10) 1753 mbox->SCSI_10.control.add_sge_mem = true; 1754 else 1755 mbox->SCSI_255.control.add_sge_mem = true; 1756 hw_sge->ext.sge0_len = nsge; 1757 hw_sge->ext.sge0_addr = cmd_blk->sgl_addr; 1758 } else 1759 hw_sgl = hw_sge->sge; 1760 1761 scsi_for_each_sg(scmd, sgl, nsge, i) { 1762 if (WARN_ON(!hw_sgl)) { 1763 scsi_dma_unmap(scmd); 1764 scmd->result = (DID_ERROR << 16); 1765 scmd->scsi_done(scmd); 1766 return 0; 1767 } 1768 hw_sgl->sge_addr = (u64)sg_dma_address(sgl); 1769 hw_sgl->sge_count = (u64)sg_dma_len(sgl); 1770 hw_sgl++; 1771 } 1772 } 1773 submit: 1774 spin_lock_irqsave(&cs->queue_lock, flags); 1775 myrs_qcmd(cs, cmd_blk); 1776 spin_unlock_irqrestore(&cs->queue_lock, flags); 1777 1778 return 0; 1779 } 1780 1781 static unsigned short myrs_translate_ldev(struct myrs_hba *cs, 1782 struct scsi_device *sdev) 1783 { 1784 unsigned short ldev_num; 1785 unsigned int chan_offset = 1786 sdev->channel - cs->ctlr_info->physchan_present; 1787 1788 ldev_num = sdev->id + chan_offset * sdev->host->max_id; 1789 1790 return ldev_num; 1791 } 1792 1793 static int myrs_slave_alloc(struct scsi_device *sdev) 1794 { 1795 struct myrs_hba *cs = shost_priv(sdev->host); 1796 unsigned char status; 1797 1798 if (sdev->channel > sdev->host->max_channel) 1799 return 0; 1800 1801 if (sdev->channel >= cs->ctlr_info->physchan_present) { 1802 struct myrs_ldev_info *ldev_info; 1803 unsigned short ldev_num; 1804 1805 if (sdev->lun > 0) 1806 return -ENXIO; 1807 1808 ldev_num = myrs_translate_ldev(cs, sdev); 1809 1810 ldev_info = kzalloc(sizeof(*ldev_info), GFP_KERNEL|GFP_DMA); 1811 if (!ldev_info) 1812 return -ENOMEM; 1813 1814 status = myrs_get_ldev_info(cs, ldev_num, ldev_info); 1815 if (status != MYRS_STATUS_SUCCESS) { 1816 sdev->hostdata = NULL; 1817 kfree(ldev_info); 1818 } else { 1819 enum raid_level level; 1820 1821 dev_dbg(&sdev->sdev_gendev, 1822 "Logical device mapping %d:%d:%d -> %d\n", 1823 ldev_info->channel, ldev_info->target, 1824 ldev_info->lun, ldev_info->ldev_num); 1825 1826 sdev->hostdata = ldev_info; 1827 switch (ldev_info->raid_level) { 1828 case MYRS_RAID_LEVEL0: 1829 level = RAID_LEVEL_LINEAR; 1830 break; 1831 case MYRS_RAID_LEVEL1: 1832 level = RAID_LEVEL_1; 1833 break; 1834 case MYRS_RAID_LEVEL3: 1835 case MYRS_RAID_LEVEL3F: 1836 case MYRS_RAID_LEVEL3L: 1837 level = RAID_LEVEL_3; 1838 break; 1839 case MYRS_RAID_LEVEL5: 1840 case MYRS_RAID_LEVEL5L: 1841 level = RAID_LEVEL_5; 1842 break; 1843 case MYRS_RAID_LEVEL6: 1844 level = RAID_LEVEL_6; 1845 break; 1846 case MYRS_RAID_LEVELE: 1847 case MYRS_RAID_NEWSPAN: 1848 case MYRS_RAID_SPAN: 1849 level = RAID_LEVEL_LINEAR; 1850 break; 1851 case MYRS_RAID_JBOD: 1852 level = RAID_LEVEL_JBOD; 1853 break; 1854 default: 1855 level = RAID_LEVEL_UNKNOWN; 1856 break; 1857 } 1858 raid_set_level(myrs_raid_template, 1859 &sdev->sdev_gendev, level); 1860 if (ldev_info->dev_state != MYRS_DEVICE_ONLINE) { 1861 const char *name; 1862 1863 name = myrs_devstate_name(ldev_info->dev_state); 1864 sdev_printk(KERN_DEBUG, sdev, 1865 "logical device in state %s\n", 1866 name ? name : "Invalid"); 1867 } 1868 } 1869 } else { 1870 struct myrs_pdev_info *pdev_info; 1871 1872 pdev_info = kzalloc(sizeof(*pdev_info), GFP_KERNEL|GFP_DMA); 1873 if (!pdev_info) 1874 return -ENOMEM; 1875 1876 status = myrs_get_pdev_info(cs, sdev->channel, 1877 sdev->id, sdev->lun, 1878 pdev_info); 1879 if (status != MYRS_STATUS_SUCCESS) { 1880 sdev->hostdata = NULL; 1881 kfree(pdev_info); 1882 return -ENXIO; 1883 } 1884 sdev->hostdata = pdev_info; 1885 } 1886 return 0; 1887 } 1888 1889 static int myrs_slave_configure(struct scsi_device *sdev) 1890 { 1891 struct myrs_hba *cs = shost_priv(sdev->host); 1892 struct myrs_ldev_info *ldev_info; 1893 1894 if (sdev->channel > sdev->host->max_channel) 1895 return -ENXIO; 1896 1897 if (sdev->channel < cs->ctlr_info->physchan_present) { 1898 /* Skip HBA device */ 1899 if (sdev->type == TYPE_RAID) 1900 return -ENXIO; 1901 sdev->no_uld_attach = 1; 1902 return 0; 1903 } 1904 if (sdev->lun != 0) 1905 return -ENXIO; 1906 1907 ldev_info = sdev->hostdata; 1908 if (!ldev_info) 1909 return -ENXIO; 1910 if (ldev_info->ldev_control.wce == MYRS_WRITECACHE_ENABLED || 1911 ldev_info->ldev_control.wce == MYRS_INTELLIGENT_WRITECACHE_ENABLED) 1912 sdev->wce_default_on = 1; 1913 sdev->tagged_supported = 1; 1914 return 0; 1915 } 1916 1917 static void myrs_slave_destroy(struct scsi_device *sdev) 1918 { 1919 kfree(sdev->hostdata); 1920 } 1921 1922 struct scsi_host_template myrs_template = { 1923 .module = THIS_MODULE, 1924 .name = "DAC960", 1925 .proc_name = "myrs", 1926 .queuecommand = myrs_queuecommand, 1927 .eh_host_reset_handler = myrs_host_reset, 1928 .slave_alloc = myrs_slave_alloc, 1929 .slave_configure = myrs_slave_configure, 1930 .slave_destroy = myrs_slave_destroy, 1931 .cmd_size = sizeof(struct myrs_cmdblk), 1932 .shost_attrs = myrs_shost_attrs, 1933 .sdev_attrs = myrs_sdev_attrs, 1934 .this_id = -1, 1935 }; 1936 1937 static struct myrs_hba *myrs_alloc_host(struct pci_dev *pdev, 1938 const struct pci_device_id *entry) 1939 { 1940 struct Scsi_Host *shost; 1941 struct myrs_hba *cs; 1942 1943 shost = scsi_host_alloc(&myrs_template, sizeof(struct myrs_hba)); 1944 if (!shost) 1945 return NULL; 1946 1947 shost->max_cmd_len = 16; 1948 shost->max_lun = 256; 1949 cs = shost_priv(shost); 1950 mutex_init(&cs->dcmd_mutex); 1951 mutex_init(&cs->cinfo_mutex); 1952 cs->host = shost; 1953 1954 return cs; 1955 } 1956 1957 /* 1958 * RAID template functions 1959 */ 1960 1961 /** 1962 * myrs_is_raid - return boolean indicating device is raid volume 1963 * @dev the device struct object 1964 */ 1965 static int 1966 myrs_is_raid(struct device *dev) 1967 { 1968 struct scsi_device *sdev = to_scsi_device(dev); 1969 struct myrs_hba *cs = shost_priv(sdev->host); 1970 1971 return (sdev->channel >= cs->ctlr_info->physchan_present) ? 1 : 0; 1972 } 1973 1974 /** 1975 * myrs_get_resync - get raid volume resync percent complete 1976 * @dev the device struct object 1977 */ 1978 static void 1979 myrs_get_resync(struct device *dev) 1980 { 1981 struct scsi_device *sdev = to_scsi_device(dev); 1982 struct myrs_hba *cs = shost_priv(sdev->host); 1983 struct myrs_ldev_info *ldev_info = sdev->hostdata; 1984 u64 percent_complete = 0; 1985 u8 status; 1986 1987 if (sdev->channel < cs->ctlr_info->physchan_present || !ldev_info) 1988 return; 1989 if (ldev_info->rbld_active) { 1990 unsigned short ldev_num = ldev_info->ldev_num; 1991 1992 status = myrs_get_ldev_info(cs, ldev_num, ldev_info); 1993 percent_complete = ldev_info->rbld_lba * 100; 1994 do_div(percent_complete, ldev_info->cfg_devsize); 1995 } 1996 raid_set_resync(myrs_raid_template, dev, percent_complete); 1997 } 1998 1999 /** 2000 * myrs_get_state - get raid volume status 2001 * @dev the device struct object 2002 */ 2003 static void 2004 myrs_get_state(struct device *dev) 2005 { 2006 struct scsi_device *sdev = to_scsi_device(dev); 2007 struct myrs_hba *cs = shost_priv(sdev->host); 2008 struct myrs_ldev_info *ldev_info = sdev->hostdata; 2009 enum raid_state state = RAID_STATE_UNKNOWN; 2010 2011 if (sdev->channel < cs->ctlr_info->physchan_present || !ldev_info) 2012 state = RAID_STATE_UNKNOWN; 2013 else { 2014 switch (ldev_info->dev_state) { 2015 case MYRS_DEVICE_ONLINE: 2016 state = RAID_STATE_ACTIVE; 2017 break; 2018 case MYRS_DEVICE_SUSPECTED_CRITICAL: 2019 case MYRS_DEVICE_CRITICAL: 2020 state = RAID_STATE_DEGRADED; 2021 break; 2022 case MYRS_DEVICE_REBUILD: 2023 state = RAID_STATE_RESYNCING; 2024 break; 2025 case MYRS_DEVICE_UNCONFIGURED: 2026 case MYRS_DEVICE_INVALID_STATE: 2027 state = RAID_STATE_UNKNOWN; 2028 break; 2029 default: 2030 state = RAID_STATE_OFFLINE; 2031 } 2032 } 2033 raid_set_state(myrs_raid_template, dev, state); 2034 } 2035 2036 struct raid_function_template myrs_raid_functions = { 2037 .cookie = &myrs_template, 2038 .is_raid = myrs_is_raid, 2039 .get_resync = myrs_get_resync, 2040 .get_state = myrs_get_state, 2041 }; 2042 2043 /* 2044 * PCI interface functions 2045 */ 2046 void myrs_flush_cache(struct myrs_hba *cs) 2047 { 2048 myrs_dev_op(cs, MYRS_IOCTL_FLUSH_DEVICE_DATA, MYRS_RAID_CONTROLLER); 2049 } 2050 2051 static void myrs_handle_scsi(struct myrs_hba *cs, struct myrs_cmdblk *cmd_blk, 2052 struct scsi_cmnd *scmd) 2053 { 2054 unsigned char status; 2055 2056 if (!cmd_blk) 2057 return; 2058 2059 scsi_dma_unmap(scmd); 2060 status = cmd_blk->status; 2061 if (cmd_blk->sense) { 2062 if (status == MYRS_STATUS_FAILED && cmd_blk->sense_len) { 2063 unsigned int sense_len = SCSI_SENSE_BUFFERSIZE; 2064 2065 if (sense_len > cmd_blk->sense_len) 2066 sense_len = cmd_blk->sense_len; 2067 memcpy(scmd->sense_buffer, cmd_blk->sense, sense_len); 2068 } 2069 dma_pool_free(cs->sense_pool, cmd_blk->sense, 2070 cmd_blk->sense_addr); 2071 cmd_blk->sense = NULL; 2072 cmd_blk->sense_addr = 0; 2073 } 2074 if (cmd_blk->dcdb) { 2075 dma_pool_free(cs->dcdb_pool, cmd_blk->dcdb, 2076 cmd_blk->dcdb_dma); 2077 cmd_blk->dcdb = NULL; 2078 cmd_blk->dcdb_dma = 0; 2079 } 2080 if (cmd_blk->sgl) { 2081 dma_pool_free(cs->sg_pool, cmd_blk->sgl, 2082 cmd_blk->sgl_addr); 2083 cmd_blk->sgl = NULL; 2084 cmd_blk->sgl_addr = 0; 2085 } 2086 if (cmd_blk->residual) 2087 scsi_set_resid(scmd, cmd_blk->residual); 2088 if (status == MYRS_STATUS_DEVICE_NON_RESPONSIVE || 2089 status == MYRS_STATUS_DEVICE_NON_RESPONSIVE2) 2090 scmd->result = (DID_BAD_TARGET << 16); 2091 else 2092 scmd->result = (DID_OK << 16) | status; 2093 scmd->scsi_done(scmd); 2094 } 2095 2096 static void myrs_handle_cmdblk(struct myrs_hba *cs, struct myrs_cmdblk *cmd_blk) 2097 { 2098 if (!cmd_blk) 2099 return; 2100 2101 if (cmd_blk->complete) { 2102 complete(cmd_blk->complete); 2103 cmd_blk->complete = NULL; 2104 } 2105 } 2106 2107 static void myrs_monitor(struct work_struct *work) 2108 { 2109 struct myrs_hba *cs = container_of(work, struct myrs_hba, 2110 monitor_work.work); 2111 struct Scsi_Host *shost = cs->host; 2112 struct myrs_ctlr_info *info = cs->ctlr_info; 2113 unsigned int epoch = cs->fwstat_buf->epoch; 2114 unsigned long interval = MYRS_PRIMARY_MONITOR_INTERVAL; 2115 unsigned char status; 2116 2117 dev_dbg(&shost->shost_gendev, "monitor tick\n"); 2118 2119 status = myrs_get_fwstatus(cs); 2120 2121 if (cs->needs_update) { 2122 cs->needs_update = false; 2123 mutex_lock(&cs->cinfo_mutex); 2124 status = myrs_get_ctlr_info(cs); 2125 mutex_unlock(&cs->cinfo_mutex); 2126 } 2127 if (cs->fwstat_buf->next_evseq - cs->next_evseq > 0) { 2128 status = myrs_get_event(cs, cs->next_evseq, 2129 cs->event_buf); 2130 if (status == MYRS_STATUS_SUCCESS) { 2131 myrs_log_event(cs, cs->event_buf); 2132 cs->next_evseq++; 2133 interval = 1; 2134 } 2135 } 2136 2137 if (time_after(jiffies, cs->secondary_monitor_time 2138 + MYRS_SECONDARY_MONITOR_INTERVAL)) 2139 cs->secondary_monitor_time = jiffies; 2140 2141 if (info->bg_init_active + 2142 info->ldev_init_active + 2143 info->pdev_init_active + 2144 info->cc_active + 2145 info->rbld_active + 2146 info->exp_active != 0) { 2147 struct scsi_device *sdev; 2148 2149 shost_for_each_device(sdev, shost) { 2150 struct myrs_ldev_info *ldev_info; 2151 int ldev_num; 2152 2153 if (sdev->channel < info->physchan_present) 2154 continue; 2155 ldev_info = sdev->hostdata; 2156 if (!ldev_info) 2157 continue; 2158 ldev_num = ldev_info->ldev_num; 2159 myrs_get_ldev_info(cs, ldev_num, ldev_info); 2160 } 2161 cs->needs_update = true; 2162 } 2163 if (epoch == cs->epoch && 2164 cs->fwstat_buf->next_evseq == cs->next_evseq && 2165 (cs->needs_update == false || 2166 time_before(jiffies, cs->primary_monitor_time 2167 + MYRS_PRIMARY_MONITOR_INTERVAL))) { 2168 interval = MYRS_SECONDARY_MONITOR_INTERVAL; 2169 } 2170 2171 if (interval > 1) 2172 cs->primary_monitor_time = jiffies; 2173 queue_delayed_work(cs->work_q, &cs->monitor_work, interval); 2174 } 2175 2176 static bool myrs_create_mempools(struct pci_dev *pdev, struct myrs_hba *cs) 2177 { 2178 struct Scsi_Host *shost = cs->host; 2179 size_t elem_size, elem_align; 2180 2181 elem_align = sizeof(struct myrs_sge); 2182 elem_size = shost->sg_tablesize * elem_align; 2183 cs->sg_pool = dma_pool_create("myrs_sg", &pdev->dev, 2184 elem_size, elem_align, 0); 2185 if (cs->sg_pool == NULL) { 2186 shost_printk(KERN_ERR, shost, 2187 "Failed to allocate SG pool\n"); 2188 return false; 2189 } 2190 2191 cs->sense_pool = dma_pool_create("myrs_sense", &pdev->dev, 2192 MYRS_SENSE_SIZE, sizeof(int), 0); 2193 if (cs->sense_pool == NULL) { 2194 dma_pool_destroy(cs->sg_pool); 2195 cs->sg_pool = NULL; 2196 shost_printk(KERN_ERR, shost, 2197 "Failed to allocate sense data pool\n"); 2198 return false; 2199 } 2200 2201 cs->dcdb_pool = dma_pool_create("myrs_dcdb", &pdev->dev, 2202 MYRS_DCDB_SIZE, 2203 sizeof(unsigned char), 0); 2204 if (!cs->dcdb_pool) { 2205 dma_pool_destroy(cs->sg_pool); 2206 cs->sg_pool = NULL; 2207 dma_pool_destroy(cs->sense_pool); 2208 cs->sense_pool = NULL; 2209 shost_printk(KERN_ERR, shost, 2210 "Failed to allocate DCDB pool\n"); 2211 return false; 2212 } 2213 2214 snprintf(cs->work_q_name, sizeof(cs->work_q_name), 2215 "myrs_wq_%d", shost->host_no); 2216 cs->work_q = create_singlethread_workqueue(cs->work_q_name); 2217 if (!cs->work_q) { 2218 dma_pool_destroy(cs->dcdb_pool); 2219 cs->dcdb_pool = NULL; 2220 dma_pool_destroy(cs->sg_pool); 2221 cs->sg_pool = NULL; 2222 dma_pool_destroy(cs->sense_pool); 2223 cs->sense_pool = NULL; 2224 shost_printk(KERN_ERR, shost, 2225 "Failed to create workqueue\n"); 2226 return false; 2227 } 2228 2229 /* Initialize the Monitoring Timer. */ 2230 INIT_DELAYED_WORK(&cs->monitor_work, myrs_monitor); 2231 queue_delayed_work(cs->work_q, &cs->monitor_work, 1); 2232 2233 return true; 2234 } 2235 2236 static void myrs_destroy_mempools(struct myrs_hba *cs) 2237 { 2238 cancel_delayed_work_sync(&cs->monitor_work); 2239 destroy_workqueue(cs->work_q); 2240 2241 dma_pool_destroy(cs->sg_pool); 2242 dma_pool_destroy(cs->dcdb_pool); 2243 dma_pool_destroy(cs->sense_pool); 2244 } 2245 2246 static void myrs_unmap(struct myrs_hba *cs) 2247 { 2248 kfree(cs->event_buf); 2249 kfree(cs->ctlr_info); 2250 if (cs->fwstat_buf) { 2251 dma_free_coherent(&cs->pdev->dev, sizeof(struct myrs_fwstat), 2252 cs->fwstat_buf, cs->fwstat_addr); 2253 cs->fwstat_buf = NULL; 2254 } 2255 if (cs->first_stat_mbox) { 2256 dma_free_coherent(&cs->pdev->dev, cs->stat_mbox_size, 2257 cs->first_stat_mbox, cs->stat_mbox_addr); 2258 cs->first_stat_mbox = NULL; 2259 } 2260 if (cs->first_cmd_mbox) { 2261 dma_free_coherent(&cs->pdev->dev, cs->cmd_mbox_size, 2262 cs->first_cmd_mbox, cs->cmd_mbox_addr); 2263 cs->first_cmd_mbox = NULL; 2264 } 2265 } 2266 2267 static void myrs_cleanup(struct myrs_hba *cs) 2268 { 2269 struct pci_dev *pdev = cs->pdev; 2270 2271 /* Free the memory mailbox, status, and related structures */ 2272 myrs_unmap(cs); 2273 2274 if (cs->mmio_base) { 2275 cs->disable_intr(cs); 2276 iounmap(cs->mmio_base); 2277 } 2278 if (cs->irq) 2279 free_irq(cs->irq, cs); 2280 if (cs->io_addr) 2281 release_region(cs->io_addr, 0x80); 2282 iounmap(cs->mmio_base); 2283 pci_set_drvdata(pdev, NULL); 2284 pci_disable_device(pdev); 2285 scsi_host_put(cs->host); 2286 } 2287 2288 static struct myrs_hba *myrs_detect(struct pci_dev *pdev, 2289 const struct pci_device_id *entry) 2290 { 2291 struct myrs_privdata *privdata = 2292 (struct myrs_privdata *)entry->driver_data; 2293 irq_handler_t irq_handler = privdata->irq_handler; 2294 unsigned int mmio_size = privdata->mmio_size; 2295 struct myrs_hba *cs = NULL; 2296 2297 cs = myrs_alloc_host(pdev, entry); 2298 if (!cs) { 2299 dev_err(&pdev->dev, "Unable to allocate Controller\n"); 2300 return NULL; 2301 } 2302 cs->pdev = pdev; 2303 2304 if (pci_enable_device(pdev)) 2305 goto Failure; 2306 2307 cs->pci_addr = pci_resource_start(pdev, 0); 2308 2309 pci_set_drvdata(pdev, cs); 2310 spin_lock_init(&cs->queue_lock); 2311 /* Map the Controller Register Window. */ 2312 if (mmio_size < PAGE_SIZE) 2313 mmio_size = PAGE_SIZE; 2314 cs->mmio_base = ioremap(cs->pci_addr & PAGE_MASK, mmio_size); 2315 if (cs->mmio_base == NULL) { 2316 dev_err(&pdev->dev, 2317 "Unable to map Controller Register Window\n"); 2318 goto Failure; 2319 } 2320 2321 cs->io_base = cs->mmio_base + (cs->pci_addr & ~PAGE_MASK); 2322 if (privdata->hw_init(pdev, cs, cs->io_base)) 2323 goto Failure; 2324 2325 /* Acquire shared access to the IRQ Channel. */ 2326 if (request_irq(pdev->irq, irq_handler, IRQF_SHARED, "myrs", cs) < 0) { 2327 dev_err(&pdev->dev, 2328 "Unable to acquire IRQ Channel %d\n", pdev->irq); 2329 goto Failure; 2330 } 2331 cs->irq = pdev->irq; 2332 return cs; 2333 2334 Failure: 2335 dev_err(&pdev->dev, 2336 "Failed to initialize Controller\n"); 2337 myrs_cleanup(cs); 2338 return NULL; 2339 } 2340 2341 /* 2342 * myrs_err_status reports Controller BIOS Messages passed through 2343 * the Error Status Register when the driver performs the BIOS handshaking. 2344 * It returns true for fatal errors and false otherwise. 2345 */ 2346 2347 static bool myrs_err_status(struct myrs_hba *cs, unsigned char status, 2348 unsigned char parm0, unsigned char parm1) 2349 { 2350 struct pci_dev *pdev = cs->pdev; 2351 2352 switch (status) { 2353 case 0x00: 2354 dev_info(&pdev->dev, 2355 "Physical Device %d:%d Not Responding\n", 2356 parm1, parm0); 2357 break; 2358 case 0x08: 2359 dev_notice(&pdev->dev, "Spinning Up Drives\n"); 2360 break; 2361 case 0x30: 2362 dev_notice(&pdev->dev, "Configuration Checksum Error\n"); 2363 break; 2364 case 0x60: 2365 dev_notice(&pdev->dev, "Mirror Race Recovery Failed\n"); 2366 break; 2367 case 0x70: 2368 dev_notice(&pdev->dev, "Mirror Race Recovery In Progress\n"); 2369 break; 2370 case 0x90: 2371 dev_notice(&pdev->dev, "Physical Device %d:%d COD Mismatch\n", 2372 parm1, parm0); 2373 break; 2374 case 0xA0: 2375 dev_notice(&pdev->dev, "Logical Drive Installation Aborted\n"); 2376 break; 2377 case 0xB0: 2378 dev_notice(&pdev->dev, "Mirror Race On A Critical Logical Drive\n"); 2379 break; 2380 case 0xD0: 2381 dev_notice(&pdev->dev, "New Controller Configuration Found\n"); 2382 break; 2383 case 0xF0: 2384 dev_err(&pdev->dev, "Fatal Memory Parity Error\n"); 2385 return true; 2386 default: 2387 dev_err(&pdev->dev, "Unknown Initialization Error %02X\n", 2388 status); 2389 return true; 2390 } 2391 return false; 2392 } 2393 2394 /* 2395 * Hardware-specific functions 2396 */ 2397 2398 /* 2399 * DAC960 GEM Series Controllers. 2400 */ 2401 2402 static inline void DAC960_GEM_hw_mbox_new_cmd(void __iomem *base) 2403 { 2404 __le32 val = cpu_to_le32(DAC960_GEM_IDB_HWMBOX_NEW_CMD << 24); 2405 2406 writel(val, base + DAC960_GEM_IDB_READ_OFFSET); 2407 } 2408 2409 static inline void DAC960_GEM_ack_hw_mbox_status(void __iomem *base) 2410 { 2411 __le32 val = cpu_to_le32(DAC960_GEM_IDB_HWMBOX_ACK_STS << 24); 2412 2413 writel(val, base + DAC960_GEM_IDB_CLEAR_OFFSET); 2414 } 2415 2416 static inline void DAC960_GEM_gen_intr(void __iomem *base) 2417 { 2418 __le32 val = cpu_to_le32(DAC960_GEM_IDB_GEN_IRQ << 24); 2419 2420 writel(val, base + DAC960_GEM_IDB_READ_OFFSET); 2421 } 2422 2423 static inline void DAC960_GEM_reset_ctrl(void __iomem *base) 2424 { 2425 __le32 val = cpu_to_le32(DAC960_GEM_IDB_CTRL_RESET << 24); 2426 2427 writel(val, base + DAC960_GEM_IDB_READ_OFFSET); 2428 } 2429 2430 static inline void DAC960_GEM_mem_mbox_new_cmd(void __iomem *base) 2431 { 2432 __le32 val = cpu_to_le32(DAC960_GEM_IDB_HWMBOX_NEW_CMD << 24); 2433 2434 writel(val, base + DAC960_GEM_IDB_READ_OFFSET); 2435 } 2436 2437 static inline bool DAC960_GEM_hw_mbox_is_full(void __iomem *base) 2438 { 2439 __le32 val; 2440 2441 val = readl(base + DAC960_GEM_IDB_READ_OFFSET); 2442 return (le32_to_cpu(val) >> 24) & DAC960_GEM_IDB_HWMBOX_FULL; 2443 } 2444 2445 static inline bool DAC960_GEM_init_in_progress(void __iomem *base) 2446 { 2447 __le32 val; 2448 2449 val = readl(base + DAC960_GEM_IDB_READ_OFFSET); 2450 return (le32_to_cpu(val) >> 24) & DAC960_GEM_IDB_INIT_IN_PROGRESS; 2451 } 2452 2453 static inline void DAC960_GEM_ack_hw_mbox_intr(void __iomem *base) 2454 { 2455 __le32 val = cpu_to_le32(DAC960_GEM_ODB_HWMBOX_ACK_IRQ << 24); 2456 2457 writel(val, base + DAC960_GEM_ODB_CLEAR_OFFSET); 2458 } 2459 2460 static inline void DAC960_GEM_ack_mem_mbox_intr(void __iomem *base) 2461 { 2462 __le32 val = cpu_to_le32(DAC960_GEM_ODB_MMBOX_ACK_IRQ << 24); 2463 2464 writel(val, base + DAC960_GEM_ODB_CLEAR_OFFSET); 2465 } 2466 2467 static inline void DAC960_GEM_ack_intr(void __iomem *base) 2468 { 2469 __le32 val = cpu_to_le32((DAC960_GEM_ODB_HWMBOX_ACK_IRQ | 2470 DAC960_GEM_ODB_MMBOX_ACK_IRQ) << 24); 2471 2472 writel(val, base + DAC960_GEM_ODB_CLEAR_OFFSET); 2473 } 2474 2475 static inline bool DAC960_GEM_hw_mbox_status_available(void __iomem *base) 2476 { 2477 __le32 val; 2478 2479 val = readl(base + DAC960_GEM_ODB_READ_OFFSET); 2480 return (le32_to_cpu(val) >> 24) & DAC960_GEM_ODB_HWMBOX_STS_AVAIL; 2481 } 2482 2483 static inline bool DAC960_GEM_mem_mbox_status_available(void __iomem *base) 2484 { 2485 __le32 val; 2486 2487 val = readl(base + DAC960_GEM_ODB_READ_OFFSET); 2488 return (le32_to_cpu(val) >> 24) & DAC960_GEM_ODB_MMBOX_STS_AVAIL; 2489 } 2490 2491 static inline void DAC960_GEM_enable_intr(void __iomem *base) 2492 { 2493 __le32 val = cpu_to_le32((DAC960_GEM_IRQMASK_HWMBOX_IRQ | 2494 DAC960_GEM_IRQMASK_MMBOX_IRQ) << 24); 2495 writel(val, base + DAC960_GEM_IRQMASK_CLEAR_OFFSET); 2496 } 2497 2498 static inline void DAC960_GEM_disable_intr(void __iomem *base) 2499 { 2500 __le32 val = 0; 2501 2502 writel(val, base + DAC960_GEM_IRQMASK_READ_OFFSET); 2503 } 2504 2505 static inline bool DAC960_GEM_intr_enabled(void __iomem *base) 2506 { 2507 __le32 val; 2508 2509 val = readl(base + DAC960_GEM_IRQMASK_READ_OFFSET); 2510 return !((le32_to_cpu(val) >> 24) & 2511 (DAC960_GEM_IRQMASK_HWMBOX_IRQ | 2512 DAC960_GEM_IRQMASK_MMBOX_IRQ)); 2513 } 2514 2515 static inline void DAC960_GEM_write_cmd_mbox(union myrs_cmd_mbox *mem_mbox, 2516 union myrs_cmd_mbox *mbox) 2517 { 2518 memcpy(&mem_mbox->words[1], &mbox->words[1], 2519 sizeof(union myrs_cmd_mbox) - sizeof(unsigned int)); 2520 /* Barrier to avoid reordering */ 2521 wmb(); 2522 mem_mbox->words[0] = mbox->words[0]; 2523 /* Barrier to force PCI access */ 2524 mb(); 2525 } 2526 2527 static inline void DAC960_GEM_write_hw_mbox(void __iomem *base, 2528 dma_addr_t cmd_mbox_addr) 2529 { 2530 dma_addr_writeql(cmd_mbox_addr, base + DAC960_GEM_CMDMBX_OFFSET); 2531 } 2532 2533 static inline unsigned short DAC960_GEM_read_cmd_ident(void __iomem *base) 2534 { 2535 return readw(base + DAC960_GEM_CMDSTS_OFFSET); 2536 } 2537 2538 static inline unsigned char DAC960_GEM_read_cmd_status(void __iomem *base) 2539 { 2540 return readw(base + DAC960_GEM_CMDSTS_OFFSET + 2); 2541 } 2542 2543 static inline bool 2544 DAC960_GEM_read_error_status(void __iomem *base, unsigned char *error, 2545 unsigned char *param0, unsigned char *param1) 2546 { 2547 __le32 val; 2548 2549 val = readl(base + DAC960_GEM_ERRSTS_READ_OFFSET); 2550 if (!((le32_to_cpu(val) >> 24) & DAC960_GEM_ERRSTS_PENDING)) 2551 return false; 2552 *error = val & ~(DAC960_GEM_ERRSTS_PENDING << 24); 2553 *param0 = readb(base + DAC960_GEM_CMDMBX_OFFSET + 0); 2554 *param1 = readb(base + DAC960_GEM_CMDMBX_OFFSET + 1); 2555 writel(0x03000000, base + DAC960_GEM_ERRSTS_CLEAR_OFFSET); 2556 return true; 2557 } 2558 2559 static inline unsigned char 2560 DAC960_GEM_mbox_init(void __iomem *base, dma_addr_t mbox_addr) 2561 { 2562 unsigned char status; 2563 2564 while (DAC960_GEM_hw_mbox_is_full(base)) 2565 udelay(1); 2566 DAC960_GEM_write_hw_mbox(base, mbox_addr); 2567 DAC960_GEM_hw_mbox_new_cmd(base); 2568 while (!DAC960_GEM_hw_mbox_status_available(base)) 2569 udelay(1); 2570 status = DAC960_GEM_read_cmd_status(base); 2571 DAC960_GEM_ack_hw_mbox_intr(base); 2572 DAC960_GEM_ack_hw_mbox_status(base); 2573 2574 return status; 2575 } 2576 2577 static int DAC960_GEM_hw_init(struct pci_dev *pdev, 2578 struct myrs_hba *cs, void __iomem *base) 2579 { 2580 int timeout = 0; 2581 unsigned char status, parm0, parm1; 2582 2583 DAC960_GEM_disable_intr(base); 2584 DAC960_GEM_ack_hw_mbox_status(base); 2585 udelay(1000); 2586 while (DAC960_GEM_init_in_progress(base) && 2587 timeout < MYRS_MAILBOX_TIMEOUT) { 2588 if (DAC960_GEM_read_error_status(base, &status, 2589 &parm0, &parm1) && 2590 myrs_err_status(cs, status, parm0, parm1)) 2591 return -EIO; 2592 udelay(10); 2593 timeout++; 2594 } 2595 if (timeout == MYRS_MAILBOX_TIMEOUT) { 2596 dev_err(&pdev->dev, 2597 "Timeout waiting for Controller Initialisation\n"); 2598 return -ETIMEDOUT; 2599 } 2600 if (!myrs_enable_mmio_mbox(cs, DAC960_GEM_mbox_init)) { 2601 dev_err(&pdev->dev, 2602 "Unable to Enable Memory Mailbox Interface\n"); 2603 DAC960_GEM_reset_ctrl(base); 2604 return -EAGAIN; 2605 } 2606 DAC960_GEM_enable_intr(base); 2607 cs->write_cmd_mbox = DAC960_GEM_write_cmd_mbox; 2608 cs->get_cmd_mbox = DAC960_GEM_mem_mbox_new_cmd; 2609 cs->disable_intr = DAC960_GEM_disable_intr; 2610 cs->reset = DAC960_GEM_reset_ctrl; 2611 return 0; 2612 } 2613 2614 static irqreturn_t DAC960_GEM_intr_handler(int irq, void *arg) 2615 { 2616 struct myrs_hba *cs = arg; 2617 void __iomem *base = cs->io_base; 2618 struct myrs_stat_mbox *next_stat_mbox; 2619 unsigned long flags; 2620 2621 spin_lock_irqsave(&cs->queue_lock, flags); 2622 DAC960_GEM_ack_intr(base); 2623 next_stat_mbox = cs->next_stat_mbox; 2624 while (next_stat_mbox->id > 0) { 2625 unsigned short id = next_stat_mbox->id; 2626 struct scsi_cmnd *scmd = NULL; 2627 struct myrs_cmdblk *cmd_blk = NULL; 2628 2629 if (id == MYRS_DCMD_TAG) 2630 cmd_blk = &cs->dcmd_blk; 2631 else if (id == MYRS_MCMD_TAG) 2632 cmd_blk = &cs->mcmd_blk; 2633 else { 2634 scmd = scsi_host_find_tag(cs->host, id - 3); 2635 if (scmd) 2636 cmd_blk = scsi_cmd_priv(scmd); 2637 } 2638 if (cmd_blk) { 2639 cmd_blk->status = next_stat_mbox->status; 2640 cmd_blk->sense_len = next_stat_mbox->sense_len; 2641 cmd_blk->residual = next_stat_mbox->residual; 2642 } else 2643 dev_err(&cs->pdev->dev, 2644 "Unhandled command completion %d\n", id); 2645 2646 memset(next_stat_mbox, 0, sizeof(struct myrs_stat_mbox)); 2647 if (++next_stat_mbox > cs->last_stat_mbox) 2648 next_stat_mbox = cs->first_stat_mbox; 2649 2650 if (cmd_blk) { 2651 if (id < 3) 2652 myrs_handle_cmdblk(cs, cmd_blk); 2653 else 2654 myrs_handle_scsi(cs, cmd_blk, scmd); 2655 } 2656 } 2657 cs->next_stat_mbox = next_stat_mbox; 2658 spin_unlock_irqrestore(&cs->queue_lock, flags); 2659 return IRQ_HANDLED; 2660 } 2661 2662 struct myrs_privdata DAC960_GEM_privdata = { 2663 .hw_init = DAC960_GEM_hw_init, 2664 .irq_handler = DAC960_GEM_intr_handler, 2665 .mmio_size = DAC960_GEM_mmio_size, 2666 }; 2667 2668 /* 2669 * DAC960 BA Series Controllers. 2670 */ 2671 2672 static inline void DAC960_BA_hw_mbox_new_cmd(void __iomem *base) 2673 { 2674 writeb(DAC960_BA_IDB_HWMBOX_NEW_CMD, base + DAC960_BA_IDB_OFFSET); 2675 } 2676 2677 static inline void DAC960_BA_ack_hw_mbox_status(void __iomem *base) 2678 { 2679 writeb(DAC960_BA_IDB_HWMBOX_ACK_STS, base + DAC960_BA_IDB_OFFSET); 2680 } 2681 2682 static inline void DAC960_BA_gen_intr(void __iomem *base) 2683 { 2684 writeb(DAC960_BA_IDB_GEN_IRQ, base + DAC960_BA_IDB_OFFSET); 2685 } 2686 2687 static inline void DAC960_BA_reset_ctrl(void __iomem *base) 2688 { 2689 writeb(DAC960_BA_IDB_CTRL_RESET, base + DAC960_BA_IDB_OFFSET); 2690 } 2691 2692 static inline void DAC960_BA_mem_mbox_new_cmd(void __iomem *base) 2693 { 2694 writeb(DAC960_BA_IDB_MMBOX_NEW_CMD, base + DAC960_BA_IDB_OFFSET); 2695 } 2696 2697 static inline bool DAC960_BA_hw_mbox_is_full(void __iomem *base) 2698 { 2699 u8 val; 2700 2701 val = readb(base + DAC960_BA_IDB_OFFSET); 2702 return !(val & DAC960_BA_IDB_HWMBOX_EMPTY); 2703 } 2704 2705 static inline bool DAC960_BA_init_in_progress(void __iomem *base) 2706 { 2707 u8 val; 2708 2709 val = readb(base + DAC960_BA_IDB_OFFSET); 2710 return !(val & DAC960_BA_IDB_INIT_DONE); 2711 } 2712 2713 static inline void DAC960_BA_ack_hw_mbox_intr(void __iomem *base) 2714 { 2715 writeb(DAC960_BA_ODB_HWMBOX_ACK_IRQ, base + DAC960_BA_ODB_OFFSET); 2716 } 2717 2718 static inline void DAC960_BA_ack_mem_mbox_intr(void __iomem *base) 2719 { 2720 writeb(DAC960_BA_ODB_MMBOX_ACK_IRQ, base + DAC960_BA_ODB_OFFSET); 2721 } 2722 2723 static inline void DAC960_BA_ack_intr(void __iomem *base) 2724 { 2725 writeb(DAC960_BA_ODB_HWMBOX_ACK_IRQ | DAC960_BA_ODB_MMBOX_ACK_IRQ, 2726 base + DAC960_BA_ODB_OFFSET); 2727 } 2728 2729 static inline bool DAC960_BA_hw_mbox_status_available(void __iomem *base) 2730 { 2731 u8 val; 2732 2733 val = readb(base + DAC960_BA_ODB_OFFSET); 2734 return val & DAC960_BA_ODB_HWMBOX_STS_AVAIL; 2735 } 2736 2737 static inline bool DAC960_BA_mem_mbox_status_available(void __iomem *base) 2738 { 2739 u8 val; 2740 2741 val = readb(base + DAC960_BA_ODB_OFFSET); 2742 return val & DAC960_BA_ODB_MMBOX_STS_AVAIL; 2743 } 2744 2745 static inline void DAC960_BA_enable_intr(void __iomem *base) 2746 { 2747 writeb(~DAC960_BA_IRQMASK_DISABLE_IRQ, base + DAC960_BA_IRQMASK_OFFSET); 2748 } 2749 2750 static inline void DAC960_BA_disable_intr(void __iomem *base) 2751 { 2752 writeb(0xFF, base + DAC960_BA_IRQMASK_OFFSET); 2753 } 2754 2755 static inline bool DAC960_BA_intr_enabled(void __iomem *base) 2756 { 2757 u8 val; 2758 2759 val = readb(base + DAC960_BA_IRQMASK_OFFSET); 2760 return !(val & DAC960_BA_IRQMASK_DISABLE_IRQ); 2761 } 2762 2763 static inline void DAC960_BA_write_cmd_mbox(union myrs_cmd_mbox *mem_mbox, 2764 union myrs_cmd_mbox *mbox) 2765 { 2766 memcpy(&mem_mbox->words[1], &mbox->words[1], 2767 sizeof(union myrs_cmd_mbox) - sizeof(unsigned int)); 2768 /* Barrier to avoid reordering */ 2769 wmb(); 2770 mem_mbox->words[0] = mbox->words[0]; 2771 /* Barrier to force PCI access */ 2772 mb(); 2773 } 2774 2775 2776 static inline void DAC960_BA_write_hw_mbox(void __iomem *base, 2777 dma_addr_t cmd_mbox_addr) 2778 { 2779 dma_addr_writeql(cmd_mbox_addr, base + DAC960_BA_CMDMBX_OFFSET); 2780 } 2781 2782 static inline unsigned short DAC960_BA_read_cmd_ident(void __iomem *base) 2783 { 2784 return readw(base + DAC960_BA_CMDSTS_OFFSET); 2785 } 2786 2787 static inline unsigned char DAC960_BA_read_cmd_status(void __iomem *base) 2788 { 2789 return readw(base + DAC960_BA_CMDSTS_OFFSET + 2); 2790 } 2791 2792 static inline bool 2793 DAC960_BA_read_error_status(void __iomem *base, unsigned char *error, 2794 unsigned char *param0, unsigned char *param1) 2795 { 2796 u8 val; 2797 2798 val = readb(base + DAC960_BA_ERRSTS_OFFSET); 2799 if (!(val & DAC960_BA_ERRSTS_PENDING)) 2800 return false; 2801 val &= ~DAC960_BA_ERRSTS_PENDING; 2802 *error = val; 2803 *param0 = readb(base + DAC960_BA_CMDMBX_OFFSET + 0); 2804 *param1 = readb(base + DAC960_BA_CMDMBX_OFFSET + 1); 2805 writeb(0xFF, base + DAC960_BA_ERRSTS_OFFSET); 2806 return true; 2807 } 2808 2809 static inline unsigned char 2810 DAC960_BA_mbox_init(void __iomem *base, dma_addr_t mbox_addr) 2811 { 2812 unsigned char status; 2813 2814 while (DAC960_BA_hw_mbox_is_full(base)) 2815 udelay(1); 2816 DAC960_BA_write_hw_mbox(base, mbox_addr); 2817 DAC960_BA_hw_mbox_new_cmd(base); 2818 while (!DAC960_BA_hw_mbox_status_available(base)) 2819 udelay(1); 2820 status = DAC960_BA_read_cmd_status(base); 2821 DAC960_BA_ack_hw_mbox_intr(base); 2822 DAC960_BA_ack_hw_mbox_status(base); 2823 2824 return status; 2825 } 2826 2827 static int DAC960_BA_hw_init(struct pci_dev *pdev, 2828 struct myrs_hba *cs, void __iomem *base) 2829 { 2830 int timeout = 0; 2831 unsigned char status, parm0, parm1; 2832 2833 DAC960_BA_disable_intr(base); 2834 DAC960_BA_ack_hw_mbox_status(base); 2835 udelay(1000); 2836 while (DAC960_BA_init_in_progress(base) && 2837 timeout < MYRS_MAILBOX_TIMEOUT) { 2838 if (DAC960_BA_read_error_status(base, &status, 2839 &parm0, &parm1) && 2840 myrs_err_status(cs, status, parm0, parm1)) 2841 return -EIO; 2842 udelay(10); 2843 timeout++; 2844 } 2845 if (timeout == MYRS_MAILBOX_TIMEOUT) { 2846 dev_err(&pdev->dev, 2847 "Timeout waiting for Controller Initialisation\n"); 2848 return -ETIMEDOUT; 2849 } 2850 if (!myrs_enable_mmio_mbox(cs, DAC960_BA_mbox_init)) { 2851 dev_err(&pdev->dev, 2852 "Unable to Enable Memory Mailbox Interface\n"); 2853 DAC960_BA_reset_ctrl(base); 2854 return -EAGAIN; 2855 } 2856 DAC960_BA_enable_intr(base); 2857 cs->write_cmd_mbox = DAC960_BA_write_cmd_mbox; 2858 cs->get_cmd_mbox = DAC960_BA_mem_mbox_new_cmd; 2859 cs->disable_intr = DAC960_BA_disable_intr; 2860 cs->reset = DAC960_BA_reset_ctrl; 2861 return 0; 2862 } 2863 2864 static irqreturn_t DAC960_BA_intr_handler(int irq, void *arg) 2865 { 2866 struct myrs_hba *cs = arg; 2867 void __iomem *base = cs->io_base; 2868 struct myrs_stat_mbox *next_stat_mbox; 2869 unsigned long flags; 2870 2871 spin_lock_irqsave(&cs->queue_lock, flags); 2872 DAC960_BA_ack_intr(base); 2873 next_stat_mbox = cs->next_stat_mbox; 2874 while (next_stat_mbox->id > 0) { 2875 unsigned short id = next_stat_mbox->id; 2876 struct scsi_cmnd *scmd = NULL; 2877 struct myrs_cmdblk *cmd_blk = NULL; 2878 2879 if (id == MYRS_DCMD_TAG) 2880 cmd_blk = &cs->dcmd_blk; 2881 else if (id == MYRS_MCMD_TAG) 2882 cmd_blk = &cs->mcmd_blk; 2883 else { 2884 scmd = scsi_host_find_tag(cs->host, id - 3); 2885 if (scmd) 2886 cmd_blk = scsi_cmd_priv(scmd); 2887 } 2888 if (cmd_blk) { 2889 cmd_blk->status = next_stat_mbox->status; 2890 cmd_blk->sense_len = next_stat_mbox->sense_len; 2891 cmd_blk->residual = next_stat_mbox->residual; 2892 } else 2893 dev_err(&cs->pdev->dev, 2894 "Unhandled command completion %d\n", id); 2895 2896 memset(next_stat_mbox, 0, sizeof(struct myrs_stat_mbox)); 2897 if (++next_stat_mbox > cs->last_stat_mbox) 2898 next_stat_mbox = cs->first_stat_mbox; 2899 2900 if (cmd_blk) { 2901 if (id < 3) 2902 myrs_handle_cmdblk(cs, cmd_blk); 2903 else 2904 myrs_handle_scsi(cs, cmd_blk, scmd); 2905 } 2906 } 2907 cs->next_stat_mbox = next_stat_mbox; 2908 spin_unlock_irqrestore(&cs->queue_lock, flags); 2909 return IRQ_HANDLED; 2910 } 2911 2912 struct myrs_privdata DAC960_BA_privdata = { 2913 .hw_init = DAC960_BA_hw_init, 2914 .irq_handler = DAC960_BA_intr_handler, 2915 .mmio_size = DAC960_BA_mmio_size, 2916 }; 2917 2918 /* 2919 * DAC960 LP Series Controllers. 2920 */ 2921 2922 static inline void DAC960_LP_hw_mbox_new_cmd(void __iomem *base) 2923 { 2924 writeb(DAC960_LP_IDB_HWMBOX_NEW_CMD, base + DAC960_LP_IDB_OFFSET); 2925 } 2926 2927 static inline void DAC960_LP_ack_hw_mbox_status(void __iomem *base) 2928 { 2929 writeb(DAC960_LP_IDB_HWMBOX_ACK_STS, base + DAC960_LP_IDB_OFFSET); 2930 } 2931 2932 static inline void DAC960_LP_gen_intr(void __iomem *base) 2933 { 2934 writeb(DAC960_LP_IDB_GEN_IRQ, base + DAC960_LP_IDB_OFFSET); 2935 } 2936 2937 static inline void DAC960_LP_reset_ctrl(void __iomem *base) 2938 { 2939 writeb(DAC960_LP_IDB_CTRL_RESET, base + DAC960_LP_IDB_OFFSET); 2940 } 2941 2942 static inline void DAC960_LP_mem_mbox_new_cmd(void __iomem *base) 2943 { 2944 writeb(DAC960_LP_IDB_MMBOX_NEW_CMD, base + DAC960_LP_IDB_OFFSET); 2945 } 2946 2947 static inline bool DAC960_LP_hw_mbox_is_full(void __iomem *base) 2948 { 2949 u8 val; 2950 2951 val = readb(base + DAC960_LP_IDB_OFFSET); 2952 return val & DAC960_LP_IDB_HWMBOX_FULL; 2953 } 2954 2955 static inline bool DAC960_LP_init_in_progress(void __iomem *base) 2956 { 2957 u8 val; 2958 2959 val = readb(base + DAC960_LP_IDB_OFFSET); 2960 return val & DAC960_LP_IDB_INIT_IN_PROGRESS; 2961 } 2962 2963 static inline void DAC960_LP_ack_hw_mbox_intr(void __iomem *base) 2964 { 2965 writeb(DAC960_LP_ODB_HWMBOX_ACK_IRQ, base + DAC960_LP_ODB_OFFSET); 2966 } 2967 2968 static inline void DAC960_LP_ack_mem_mbox_intr(void __iomem *base) 2969 { 2970 writeb(DAC960_LP_ODB_MMBOX_ACK_IRQ, base + DAC960_LP_ODB_OFFSET); 2971 } 2972 2973 static inline void DAC960_LP_ack_intr(void __iomem *base) 2974 { 2975 writeb(DAC960_LP_ODB_HWMBOX_ACK_IRQ | DAC960_LP_ODB_MMBOX_ACK_IRQ, 2976 base + DAC960_LP_ODB_OFFSET); 2977 } 2978 2979 static inline bool DAC960_LP_hw_mbox_status_available(void __iomem *base) 2980 { 2981 u8 val; 2982 2983 val = readb(base + DAC960_LP_ODB_OFFSET); 2984 return val & DAC960_LP_ODB_HWMBOX_STS_AVAIL; 2985 } 2986 2987 static inline bool DAC960_LP_mem_mbox_status_available(void __iomem *base) 2988 { 2989 u8 val; 2990 2991 val = readb(base + DAC960_LP_ODB_OFFSET); 2992 return val & DAC960_LP_ODB_MMBOX_STS_AVAIL; 2993 } 2994 2995 static inline void DAC960_LP_enable_intr(void __iomem *base) 2996 { 2997 writeb(~DAC960_LP_IRQMASK_DISABLE_IRQ, base + DAC960_LP_IRQMASK_OFFSET); 2998 } 2999 3000 static inline void DAC960_LP_disable_intr(void __iomem *base) 3001 { 3002 writeb(0xFF, base + DAC960_LP_IRQMASK_OFFSET); 3003 } 3004 3005 static inline bool DAC960_LP_intr_enabled(void __iomem *base) 3006 { 3007 u8 val; 3008 3009 val = readb(base + DAC960_LP_IRQMASK_OFFSET); 3010 return !(val & DAC960_LP_IRQMASK_DISABLE_IRQ); 3011 } 3012 3013 static inline void DAC960_LP_write_cmd_mbox(union myrs_cmd_mbox *mem_mbox, 3014 union myrs_cmd_mbox *mbox) 3015 { 3016 memcpy(&mem_mbox->words[1], &mbox->words[1], 3017 sizeof(union myrs_cmd_mbox) - sizeof(unsigned int)); 3018 /* Barrier to avoid reordering */ 3019 wmb(); 3020 mem_mbox->words[0] = mbox->words[0]; 3021 /* Barrier to force PCI access */ 3022 mb(); 3023 } 3024 3025 static inline void DAC960_LP_write_hw_mbox(void __iomem *base, 3026 dma_addr_t cmd_mbox_addr) 3027 { 3028 dma_addr_writeql(cmd_mbox_addr, base + DAC960_LP_CMDMBX_OFFSET); 3029 } 3030 3031 static inline unsigned short DAC960_LP_read_cmd_ident(void __iomem *base) 3032 { 3033 return readw(base + DAC960_LP_CMDSTS_OFFSET); 3034 } 3035 3036 static inline unsigned char DAC960_LP_read_cmd_status(void __iomem *base) 3037 { 3038 return readw(base + DAC960_LP_CMDSTS_OFFSET + 2); 3039 } 3040 3041 static inline bool 3042 DAC960_LP_read_error_status(void __iomem *base, unsigned char *error, 3043 unsigned char *param0, unsigned char *param1) 3044 { 3045 u8 val; 3046 3047 val = readb(base + DAC960_LP_ERRSTS_OFFSET); 3048 if (!(val & DAC960_LP_ERRSTS_PENDING)) 3049 return false; 3050 val &= ~DAC960_LP_ERRSTS_PENDING; 3051 *error = val; 3052 *param0 = readb(base + DAC960_LP_CMDMBX_OFFSET + 0); 3053 *param1 = readb(base + DAC960_LP_CMDMBX_OFFSET + 1); 3054 writeb(0xFF, base + DAC960_LP_ERRSTS_OFFSET); 3055 return true; 3056 } 3057 3058 static inline unsigned char 3059 DAC960_LP_mbox_init(void __iomem *base, dma_addr_t mbox_addr) 3060 { 3061 unsigned char status; 3062 3063 while (DAC960_LP_hw_mbox_is_full(base)) 3064 udelay(1); 3065 DAC960_LP_write_hw_mbox(base, mbox_addr); 3066 DAC960_LP_hw_mbox_new_cmd(base); 3067 while (!DAC960_LP_hw_mbox_status_available(base)) 3068 udelay(1); 3069 status = DAC960_LP_read_cmd_status(base); 3070 DAC960_LP_ack_hw_mbox_intr(base); 3071 DAC960_LP_ack_hw_mbox_status(base); 3072 3073 return status; 3074 } 3075 3076 static int DAC960_LP_hw_init(struct pci_dev *pdev, 3077 struct myrs_hba *cs, void __iomem *base) 3078 { 3079 int timeout = 0; 3080 unsigned char status, parm0, parm1; 3081 3082 DAC960_LP_disable_intr(base); 3083 DAC960_LP_ack_hw_mbox_status(base); 3084 udelay(1000); 3085 while (DAC960_LP_init_in_progress(base) && 3086 timeout < MYRS_MAILBOX_TIMEOUT) { 3087 if (DAC960_LP_read_error_status(base, &status, 3088 &parm0, &parm1) && 3089 myrs_err_status(cs, status, parm0, parm1)) 3090 return -EIO; 3091 udelay(10); 3092 timeout++; 3093 } 3094 if (timeout == MYRS_MAILBOX_TIMEOUT) { 3095 dev_err(&pdev->dev, 3096 "Timeout waiting for Controller Initialisation\n"); 3097 return -ETIMEDOUT; 3098 } 3099 if (!myrs_enable_mmio_mbox(cs, DAC960_LP_mbox_init)) { 3100 dev_err(&pdev->dev, 3101 "Unable to Enable Memory Mailbox Interface\n"); 3102 DAC960_LP_reset_ctrl(base); 3103 return -ENODEV; 3104 } 3105 DAC960_LP_enable_intr(base); 3106 cs->write_cmd_mbox = DAC960_LP_write_cmd_mbox; 3107 cs->get_cmd_mbox = DAC960_LP_mem_mbox_new_cmd; 3108 cs->disable_intr = DAC960_LP_disable_intr; 3109 cs->reset = DAC960_LP_reset_ctrl; 3110 3111 return 0; 3112 } 3113 3114 static irqreturn_t DAC960_LP_intr_handler(int irq, void *arg) 3115 { 3116 struct myrs_hba *cs = arg; 3117 void __iomem *base = cs->io_base; 3118 struct myrs_stat_mbox *next_stat_mbox; 3119 unsigned long flags; 3120 3121 spin_lock_irqsave(&cs->queue_lock, flags); 3122 DAC960_LP_ack_intr(base); 3123 next_stat_mbox = cs->next_stat_mbox; 3124 while (next_stat_mbox->id > 0) { 3125 unsigned short id = next_stat_mbox->id; 3126 struct scsi_cmnd *scmd = NULL; 3127 struct myrs_cmdblk *cmd_blk = NULL; 3128 3129 if (id == MYRS_DCMD_TAG) 3130 cmd_blk = &cs->dcmd_blk; 3131 else if (id == MYRS_MCMD_TAG) 3132 cmd_blk = &cs->mcmd_blk; 3133 else { 3134 scmd = scsi_host_find_tag(cs->host, id - 3); 3135 if (scmd) 3136 cmd_blk = scsi_cmd_priv(scmd); 3137 } 3138 if (cmd_blk) { 3139 cmd_blk->status = next_stat_mbox->status; 3140 cmd_blk->sense_len = next_stat_mbox->sense_len; 3141 cmd_blk->residual = next_stat_mbox->residual; 3142 } else 3143 dev_err(&cs->pdev->dev, 3144 "Unhandled command completion %d\n", id); 3145 3146 memset(next_stat_mbox, 0, sizeof(struct myrs_stat_mbox)); 3147 if (++next_stat_mbox > cs->last_stat_mbox) 3148 next_stat_mbox = cs->first_stat_mbox; 3149 3150 if (cmd_blk) { 3151 if (id < 3) 3152 myrs_handle_cmdblk(cs, cmd_blk); 3153 else 3154 myrs_handle_scsi(cs, cmd_blk, scmd); 3155 } 3156 } 3157 cs->next_stat_mbox = next_stat_mbox; 3158 spin_unlock_irqrestore(&cs->queue_lock, flags); 3159 return IRQ_HANDLED; 3160 } 3161 3162 struct myrs_privdata DAC960_LP_privdata = { 3163 .hw_init = DAC960_LP_hw_init, 3164 .irq_handler = DAC960_LP_intr_handler, 3165 .mmio_size = DAC960_LP_mmio_size, 3166 }; 3167 3168 /* 3169 * Module functions 3170 */ 3171 static int 3172 myrs_probe(struct pci_dev *dev, const struct pci_device_id *entry) 3173 { 3174 struct myrs_hba *cs; 3175 int ret; 3176 3177 cs = myrs_detect(dev, entry); 3178 if (!cs) 3179 return -ENODEV; 3180 3181 ret = myrs_get_config(cs); 3182 if (ret < 0) { 3183 myrs_cleanup(cs); 3184 return ret; 3185 } 3186 3187 if (!myrs_create_mempools(dev, cs)) { 3188 ret = -ENOMEM; 3189 goto failed; 3190 } 3191 3192 ret = scsi_add_host(cs->host, &dev->dev); 3193 if (ret) { 3194 dev_err(&dev->dev, "scsi_add_host failed with %d\n", ret); 3195 myrs_destroy_mempools(cs); 3196 goto failed; 3197 } 3198 scsi_scan_host(cs->host); 3199 return 0; 3200 failed: 3201 myrs_cleanup(cs); 3202 return ret; 3203 } 3204 3205 3206 static void myrs_remove(struct pci_dev *pdev) 3207 { 3208 struct myrs_hba *cs = pci_get_drvdata(pdev); 3209 3210 if (cs == NULL) 3211 return; 3212 3213 shost_printk(KERN_NOTICE, cs->host, "Flushing Cache..."); 3214 myrs_flush_cache(cs); 3215 myrs_destroy_mempools(cs); 3216 myrs_cleanup(cs); 3217 } 3218 3219 3220 static const struct pci_device_id myrs_id_table[] = { 3221 { 3222 PCI_DEVICE_SUB(PCI_VENDOR_ID_MYLEX, 3223 PCI_DEVICE_ID_MYLEX_DAC960_GEM, 3224 PCI_VENDOR_ID_MYLEX, PCI_ANY_ID), 3225 .driver_data = (unsigned long) &DAC960_GEM_privdata, 3226 }, 3227 { 3228 PCI_DEVICE_DATA(MYLEX, DAC960_BA, &DAC960_BA_privdata), 3229 }, 3230 { 3231 PCI_DEVICE_DATA(MYLEX, DAC960_LP, &DAC960_LP_privdata), 3232 }, 3233 {0, }, 3234 }; 3235 3236 MODULE_DEVICE_TABLE(pci, myrs_id_table); 3237 3238 static struct pci_driver myrs_pci_driver = { 3239 .name = "myrs", 3240 .id_table = myrs_id_table, 3241 .probe = myrs_probe, 3242 .remove = myrs_remove, 3243 }; 3244 3245 static int __init myrs_init_module(void) 3246 { 3247 int ret; 3248 3249 myrs_raid_template = raid_class_attach(&myrs_raid_functions); 3250 if (!myrs_raid_template) 3251 return -ENODEV; 3252 3253 ret = pci_register_driver(&myrs_pci_driver); 3254 if (ret) 3255 raid_class_release(myrs_raid_template); 3256 3257 return ret; 3258 } 3259 3260 static void __exit myrs_cleanup_module(void) 3261 { 3262 pci_unregister_driver(&myrs_pci_driver); 3263 raid_class_release(myrs_raid_template); 3264 } 3265 3266 module_init(myrs_init_module); 3267 module_exit(myrs_cleanup_module); 3268 3269 MODULE_DESCRIPTION("Mylex DAC960/AcceleRAID/eXtremeRAID driver (SCSI Interface)"); 3270 MODULE_AUTHOR("Hannes Reinecke <hare@suse.com>"); 3271 MODULE_LICENSE("GPL"); 3272