xref: /openbmc/linux/drivers/scsi/myrs.c (revision 0b26ca68)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Linux Driver for Mylex DAC960/AcceleRAID/eXtremeRAID PCI RAID Controllers
4  *
5  * This driver supports the newer, SCSI-based firmware interface only.
6  *
7  * Copyright 2017 Hannes Reinecke, SUSE Linux GmbH <hare@suse.com>
8  *
9  * Based on the original DAC960 driver, which has
10  * Copyright 1998-2001 by Leonard N. Zubkoff <lnz@dandelion.com>
11  * Portions Copyright 2002 by Mylex (An IBM Business Unit)
12  */
13 
14 #include <linux/module.h>
15 #include <linux/types.h>
16 #include <linux/delay.h>
17 #include <linux/interrupt.h>
18 #include <linux/pci.h>
19 #include <linux/raid_class.h>
20 #include <asm/unaligned.h>
21 #include <scsi/scsi.h>
22 #include <scsi/scsi_host.h>
23 #include <scsi/scsi_device.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_tcq.h>
26 #include "myrs.h"
27 
28 static struct raid_template *myrs_raid_template;
29 
30 static struct myrs_devstate_name_entry {
31 	enum myrs_devstate state;
32 	char *name;
33 } myrs_devstate_name_list[] = {
34 	{ MYRS_DEVICE_UNCONFIGURED, "Unconfigured" },
35 	{ MYRS_DEVICE_ONLINE, "Online" },
36 	{ MYRS_DEVICE_REBUILD, "Rebuild" },
37 	{ MYRS_DEVICE_MISSING, "Missing" },
38 	{ MYRS_DEVICE_SUSPECTED_CRITICAL, "SuspectedCritical" },
39 	{ MYRS_DEVICE_OFFLINE, "Offline" },
40 	{ MYRS_DEVICE_CRITICAL, "Critical" },
41 	{ MYRS_DEVICE_SUSPECTED_DEAD, "SuspectedDead" },
42 	{ MYRS_DEVICE_COMMANDED_OFFLINE, "CommandedOffline" },
43 	{ MYRS_DEVICE_STANDBY, "Standby" },
44 	{ MYRS_DEVICE_INVALID_STATE, "Invalid" },
45 };
46 
47 static char *myrs_devstate_name(enum myrs_devstate state)
48 {
49 	struct myrs_devstate_name_entry *entry = myrs_devstate_name_list;
50 	int i;
51 
52 	for (i = 0; i < ARRAY_SIZE(myrs_devstate_name_list); i++) {
53 		if (entry[i].state == state)
54 			return entry[i].name;
55 	}
56 	return NULL;
57 }
58 
59 static struct myrs_raid_level_name_entry {
60 	enum myrs_raid_level level;
61 	char *name;
62 } myrs_raid_level_name_list[] = {
63 	{ MYRS_RAID_LEVEL0, "RAID0" },
64 	{ MYRS_RAID_LEVEL1, "RAID1" },
65 	{ MYRS_RAID_LEVEL3, "RAID3 right asymmetric parity" },
66 	{ MYRS_RAID_LEVEL5, "RAID5 right asymmetric parity" },
67 	{ MYRS_RAID_LEVEL6, "RAID6" },
68 	{ MYRS_RAID_JBOD, "JBOD" },
69 	{ MYRS_RAID_NEWSPAN, "New Mylex SPAN" },
70 	{ MYRS_RAID_LEVEL3F, "RAID3 fixed parity" },
71 	{ MYRS_RAID_LEVEL3L, "RAID3 left symmetric parity" },
72 	{ MYRS_RAID_SPAN, "Mylex SPAN" },
73 	{ MYRS_RAID_LEVEL5L, "RAID5 left symmetric parity" },
74 	{ MYRS_RAID_LEVELE, "RAIDE (concatenation)" },
75 	{ MYRS_RAID_PHYSICAL, "Physical device" },
76 };
77 
78 static char *myrs_raid_level_name(enum myrs_raid_level level)
79 {
80 	struct myrs_raid_level_name_entry *entry = myrs_raid_level_name_list;
81 	int i;
82 
83 	for (i = 0; i < ARRAY_SIZE(myrs_raid_level_name_list); i++) {
84 		if (entry[i].level == level)
85 			return entry[i].name;
86 	}
87 	return NULL;
88 }
89 
90 /*
91  * myrs_reset_cmd - clears critical fields in struct myrs_cmdblk
92  */
93 static inline void myrs_reset_cmd(struct myrs_cmdblk *cmd_blk)
94 {
95 	union myrs_cmd_mbox *mbox = &cmd_blk->mbox;
96 
97 	memset(mbox, 0, sizeof(union myrs_cmd_mbox));
98 	cmd_blk->status = 0;
99 }
100 
101 /*
102  * myrs_qcmd - queues Command for DAC960 V2 Series Controllers.
103  */
104 static void myrs_qcmd(struct myrs_hba *cs, struct myrs_cmdblk *cmd_blk)
105 {
106 	void __iomem *base = cs->io_base;
107 	union myrs_cmd_mbox *mbox = &cmd_blk->mbox;
108 	union myrs_cmd_mbox *next_mbox = cs->next_cmd_mbox;
109 
110 	cs->write_cmd_mbox(next_mbox, mbox);
111 
112 	if (cs->prev_cmd_mbox1->words[0] == 0 ||
113 	    cs->prev_cmd_mbox2->words[0] == 0)
114 		cs->get_cmd_mbox(base);
115 
116 	cs->prev_cmd_mbox2 = cs->prev_cmd_mbox1;
117 	cs->prev_cmd_mbox1 = next_mbox;
118 
119 	if (++next_mbox > cs->last_cmd_mbox)
120 		next_mbox = cs->first_cmd_mbox;
121 
122 	cs->next_cmd_mbox = next_mbox;
123 }
124 
125 /*
126  * myrs_exec_cmd - executes V2 Command and waits for completion.
127  */
128 static void myrs_exec_cmd(struct myrs_hba *cs,
129 		struct myrs_cmdblk *cmd_blk)
130 {
131 	DECLARE_COMPLETION_ONSTACK(complete);
132 	unsigned long flags;
133 
134 	cmd_blk->complete = &complete;
135 	spin_lock_irqsave(&cs->queue_lock, flags);
136 	myrs_qcmd(cs, cmd_blk);
137 	spin_unlock_irqrestore(&cs->queue_lock, flags);
138 
139 	wait_for_completion(&complete);
140 }
141 
142 /*
143  * myrs_report_progress - prints progress message
144  */
145 static void myrs_report_progress(struct myrs_hba *cs, unsigned short ldev_num,
146 		unsigned char *msg, unsigned long blocks,
147 		unsigned long size)
148 {
149 	shost_printk(KERN_INFO, cs->host,
150 		     "Logical Drive %d: %s in Progress: %d%% completed\n",
151 		     ldev_num, msg,
152 		     (100 * (int)(blocks >> 7)) / (int)(size >> 7));
153 }
154 
155 /*
156  * myrs_get_ctlr_info - executes a Controller Information IOCTL Command
157  */
158 static unsigned char myrs_get_ctlr_info(struct myrs_hba *cs)
159 {
160 	struct myrs_cmdblk *cmd_blk = &cs->dcmd_blk;
161 	union myrs_cmd_mbox *mbox = &cmd_blk->mbox;
162 	dma_addr_t ctlr_info_addr;
163 	union myrs_sgl *sgl;
164 	unsigned char status;
165 	unsigned short ldev_present, ldev_critical, ldev_offline;
166 
167 	ldev_present = cs->ctlr_info->ldev_present;
168 	ldev_critical = cs->ctlr_info->ldev_critical;
169 	ldev_offline = cs->ctlr_info->ldev_offline;
170 
171 	ctlr_info_addr = dma_map_single(&cs->pdev->dev, cs->ctlr_info,
172 					sizeof(struct myrs_ctlr_info),
173 					DMA_FROM_DEVICE);
174 	if (dma_mapping_error(&cs->pdev->dev, ctlr_info_addr))
175 		return MYRS_STATUS_FAILED;
176 
177 	mutex_lock(&cs->dcmd_mutex);
178 	myrs_reset_cmd(cmd_blk);
179 	mbox->ctlr_info.id = MYRS_DCMD_TAG;
180 	mbox->ctlr_info.opcode = MYRS_CMD_OP_IOCTL;
181 	mbox->ctlr_info.control.dma_ctrl_to_host = true;
182 	mbox->ctlr_info.control.no_autosense = true;
183 	mbox->ctlr_info.dma_size = sizeof(struct myrs_ctlr_info);
184 	mbox->ctlr_info.ctlr_num = 0;
185 	mbox->ctlr_info.ioctl_opcode = MYRS_IOCTL_GET_CTLR_INFO;
186 	sgl = &mbox->ctlr_info.dma_addr;
187 	sgl->sge[0].sge_addr = ctlr_info_addr;
188 	sgl->sge[0].sge_count = mbox->ctlr_info.dma_size;
189 	dev_dbg(&cs->host->shost_gendev, "Sending GetControllerInfo\n");
190 	myrs_exec_cmd(cs, cmd_blk);
191 	status = cmd_blk->status;
192 	mutex_unlock(&cs->dcmd_mutex);
193 	dma_unmap_single(&cs->pdev->dev, ctlr_info_addr,
194 			 sizeof(struct myrs_ctlr_info), DMA_FROM_DEVICE);
195 	if (status == MYRS_STATUS_SUCCESS) {
196 		if (cs->ctlr_info->bg_init_active +
197 		    cs->ctlr_info->ldev_init_active +
198 		    cs->ctlr_info->pdev_init_active +
199 		    cs->ctlr_info->cc_active +
200 		    cs->ctlr_info->rbld_active +
201 		    cs->ctlr_info->exp_active != 0)
202 			cs->needs_update = true;
203 		if (cs->ctlr_info->ldev_present != ldev_present ||
204 		    cs->ctlr_info->ldev_critical != ldev_critical ||
205 		    cs->ctlr_info->ldev_offline != ldev_offline)
206 			shost_printk(KERN_INFO, cs->host,
207 				     "Logical drive count changes (%d/%d/%d)\n",
208 				     cs->ctlr_info->ldev_critical,
209 				     cs->ctlr_info->ldev_offline,
210 				     cs->ctlr_info->ldev_present);
211 	}
212 
213 	return status;
214 }
215 
216 /*
217  * myrs_get_ldev_info - executes a Logical Device Information IOCTL Command
218  */
219 static unsigned char myrs_get_ldev_info(struct myrs_hba *cs,
220 		unsigned short ldev_num, struct myrs_ldev_info *ldev_info)
221 {
222 	struct myrs_cmdblk *cmd_blk = &cs->dcmd_blk;
223 	union myrs_cmd_mbox *mbox = &cmd_blk->mbox;
224 	dma_addr_t ldev_info_addr;
225 	struct myrs_ldev_info ldev_info_orig;
226 	union myrs_sgl *sgl;
227 	unsigned char status;
228 
229 	memcpy(&ldev_info_orig, ldev_info, sizeof(struct myrs_ldev_info));
230 	ldev_info_addr = dma_map_single(&cs->pdev->dev, ldev_info,
231 					sizeof(struct myrs_ldev_info),
232 					DMA_FROM_DEVICE);
233 	if (dma_mapping_error(&cs->pdev->dev, ldev_info_addr))
234 		return MYRS_STATUS_FAILED;
235 
236 	mutex_lock(&cs->dcmd_mutex);
237 	myrs_reset_cmd(cmd_blk);
238 	mbox->ldev_info.id = MYRS_DCMD_TAG;
239 	mbox->ldev_info.opcode = MYRS_CMD_OP_IOCTL;
240 	mbox->ldev_info.control.dma_ctrl_to_host = true;
241 	mbox->ldev_info.control.no_autosense = true;
242 	mbox->ldev_info.dma_size = sizeof(struct myrs_ldev_info);
243 	mbox->ldev_info.ldev.ldev_num = ldev_num;
244 	mbox->ldev_info.ioctl_opcode = MYRS_IOCTL_GET_LDEV_INFO_VALID;
245 	sgl = &mbox->ldev_info.dma_addr;
246 	sgl->sge[0].sge_addr = ldev_info_addr;
247 	sgl->sge[0].sge_count = mbox->ldev_info.dma_size;
248 	dev_dbg(&cs->host->shost_gendev,
249 		"Sending GetLogicalDeviceInfoValid for ldev %d\n", ldev_num);
250 	myrs_exec_cmd(cs, cmd_blk);
251 	status = cmd_blk->status;
252 	mutex_unlock(&cs->dcmd_mutex);
253 	dma_unmap_single(&cs->pdev->dev, ldev_info_addr,
254 			 sizeof(struct myrs_ldev_info), DMA_FROM_DEVICE);
255 	if (status == MYRS_STATUS_SUCCESS) {
256 		unsigned short ldev_num = ldev_info->ldev_num;
257 		struct myrs_ldev_info *new = ldev_info;
258 		struct myrs_ldev_info *old = &ldev_info_orig;
259 		unsigned long ldev_size = new->cfg_devsize;
260 
261 		if (new->dev_state != old->dev_state) {
262 			const char *name;
263 
264 			name = myrs_devstate_name(new->dev_state);
265 			shost_printk(KERN_INFO, cs->host,
266 				     "Logical Drive %d is now %s\n",
267 				     ldev_num, name ? name : "Invalid");
268 		}
269 		if ((new->soft_errs != old->soft_errs) ||
270 		    (new->cmds_failed != old->cmds_failed) ||
271 		    (new->deferred_write_errs != old->deferred_write_errs))
272 			shost_printk(KERN_INFO, cs->host,
273 				     "Logical Drive %d Errors: Soft = %d, Failed = %d, Deferred Write = %d\n",
274 				     ldev_num, new->soft_errs,
275 				     new->cmds_failed,
276 				     new->deferred_write_errs);
277 		if (new->bg_init_active)
278 			myrs_report_progress(cs, ldev_num,
279 					     "Background Initialization",
280 					     new->bg_init_lba, ldev_size);
281 		else if (new->fg_init_active)
282 			myrs_report_progress(cs, ldev_num,
283 					     "Foreground Initialization",
284 					     new->fg_init_lba, ldev_size);
285 		else if (new->migration_active)
286 			myrs_report_progress(cs, ldev_num,
287 					     "Data Migration",
288 					     new->migration_lba, ldev_size);
289 		else if (new->patrol_active)
290 			myrs_report_progress(cs, ldev_num,
291 					     "Patrol Operation",
292 					     new->patrol_lba, ldev_size);
293 		if (old->bg_init_active && !new->bg_init_active)
294 			shost_printk(KERN_INFO, cs->host,
295 				     "Logical Drive %d: Background Initialization %s\n",
296 				     ldev_num,
297 				     (new->ldev_control.ldev_init_done ?
298 				      "Completed" : "Failed"));
299 	}
300 	return status;
301 }
302 
303 /*
304  * myrs_get_pdev_info - executes a "Read Physical Device Information" Command
305  */
306 static unsigned char myrs_get_pdev_info(struct myrs_hba *cs,
307 		unsigned char channel, unsigned char target, unsigned char lun,
308 		struct myrs_pdev_info *pdev_info)
309 {
310 	struct myrs_cmdblk *cmd_blk = &cs->dcmd_blk;
311 	union myrs_cmd_mbox *mbox = &cmd_blk->mbox;
312 	dma_addr_t pdev_info_addr;
313 	union myrs_sgl *sgl;
314 	unsigned char status;
315 
316 	pdev_info_addr = dma_map_single(&cs->pdev->dev, pdev_info,
317 					sizeof(struct myrs_pdev_info),
318 					DMA_FROM_DEVICE);
319 	if (dma_mapping_error(&cs->pdev->dev, pdev_info_addr))
320 		return MYRS_STATUS_FAILED;
321 
322 	mutex_lock(&cs->dcmd_mutex);
323 	myrs_reset_cmd(cmd_blk);
324 	mbox->pdev_info.opcode = MYRS_CMD_OP_IOCTL;
325 	mbox->pdev_info.id = MYRS_DCMD_TAG;
326 	mbox->pdev_info.control.dma_ctrl_to_host = true;
327 	mbox->pdev_info.control.no_autosense = true;
328 	mbox->pdev_info.dma_size = sizeof(struct myrs_pdev_info);
329 	mbox->pdev_info.pdev.lun = lun;
330 	mbox->pdev_info.pdev.target = target;
331 	mbox->pdev_info.pdev.channel = channel;
332 	mbox->pdev_info.ioctl_opcode = MYRS_IOCTL_GET_PDEV_INFO_VALID;
333 	sgl = &mbox->pdev_info.dma_addr;
334 	sgl->sge[0].sge_addr = pdev_info_addr;
335 	sgl->sge[0].sge_count = mbox->pdev_info.dma_size;
336 	dev_dbg(&cs->host->shost_gendev,
337 		"Sending GetPhysicalDeviceInfoValid for pdev %d:%d:%d\n",
338 		channel, target, lun);
339 	myrs_exec_cmd(cs, cmd_blk);
340 	status = cmd_blk->status;
341 	mutex_unlock(&cs->dcmd_mutex);
342 	dma_unmap_single(&cs->pdev->dev, pdev_info_addr,
343 			 sizeof(struct myrs_pdev_info), DMA_FROM_DEVICE);
344 	return status;
345 }
346 
347 /*
348  * myrs_dev_op - executes a "Device Operation" Command
349  */
350 static unsigned char myrs_dev_op(struct myrs_hba *cs,
351 		enum myrs_ioctl_opcode opcode, enum myrs_opdev opdev)
352 {
353 	struct myrs_cmdblk *cmd_blk = &cs->dcmd_blk;
354 	union myrs_cmd_mbox *mbox = &cmd_blk->mbox;
355 	unsigned char status;
356 
357 	mutex_lock(&cs->dcmd_mutex);
358 	myrs_reset_cmd(cmd_blk);
359 	mbox->dev_op.opcode = MYRS_CMD_OP_IOCTL;
360 	mbox->dev_op.id = MYRS_DCMD_TAG;
361 	mbox->dev_op.control.dma_ctrl_to_host = true;
362 	mbox->dev_op.control.no_autosense = true;
363 	mbox->dev_op.ioctl_opcode = opcode;
364 	mbox->dev_op.opdev = opdev;
365 	myrs_exec_cmd(cs, cmd_blk);
366 	status = cmd_blk->status;
367 	mutex_unlock(&cs->dcmd_mutex);
368 	return status;
369 }
370 
371 /*
372  * myrs_translate_pdev - translates a Physical Device Channel and
373  * TargetID into a Logical Device.
374  */
375 static unsigned char myrs_translate_pdev(struct myrs_hba *cs,
376 		unsigned char channel, unsigned char target, unsigned char lun,
377 		struct myrs_devmap *devmap)
378 {
379 	struct pci_dev *pdev = cs->pdev;
380 	dma_addr_t devmap_addr;
381 	struct myrs_cmdblk *cmd_blk;
382 	union myrs_cmd_mbox *mbox;
383 	union myrs_sgl *sgl;
384 	unsigned char status;
385 
386 	memset(devmap, 0x0, sizeof(struct myrs_devmap));
387 	devmap_addr = dma_map_single(&pdev->dev, devmap,
388 				     sizeof(struct myrs_devmap),
389 				     DMA_FROM_DEVICE);
390 	if (dma_mapping_error(&pdev->dev, devmap_addr))
391 		return MYRS_STATUS_FAILED;
392 
393 	mutex_lock(&cs->dcmd_mutex);
394 	cmd_blk = &cs->dcmd_blk;
395 	mbox = &cmd_blk->mbox;
396 	mbox->pdev_info.opcode = MYRS_CMD_OP_IOCTL;
397 	mbox->pdev_info.control.dma_ctrl_to_host = true;
398 	mbox->pdev_info.control.no_autosense = true;
399 	mbox->pdev_info.dma_size = sizeof(struct myrs_devmap);
400 	mbox->pdev_info.pdev.target = target;
401 	mbox->pdev_info.pdev.channel = channel;
402 	mbox->pdev_info.pdev.lun = lun;
403 	mbox->pdev_info.ioctl_opcode = MYRS_IOCTL_XLATE_PDEV_TO_LDEV;
404 	sgl = &mbox->pdev_info.dma_addr;
405 	sgl->sge[0].sge_addr = devmap_addr;
406 	sgl->sge[0].sge_count = mbox->pdev_info.dma_size;
407 
408 	myrs_exec_cmd(cs, cmd_blk);
409 	status = cmd_blk->status;
410 	mutex_unlock(&cs->dcmd_mutex);
411 	dma_unmap_single(&pdev->dev, devmap_addr,
412 			 sizeof(struct myrs_devmap), DMA_FROM_DEVICE);
413 	return status;
414 }
415 
416 /*
417  * myrs_get_event - executes a Get Event Command
418  */
419 static unsigned char myrs_get_event(struct myrs_hba *cs,
420 		unsigned int event_num, struct myrs_event *event_buf)
421 {
422 	struct pci_dev *pdev = cs->pdev;
423 	dma_addr_t event_addr;
424 	struct myrs_cmdblk *cmd_blk = &cs->mcmd_blk;
425 	union myrs_cmd_mbox *mbox = &cmd_blk->mbox;
426 	union myrs_sgl *sgl;
427 	unsigned char status;
428 
429 	event_addr = dma_map_single(&pdev->dev, event_buf,
430 				    sizeof(struct myrs_event), DMA_FROM_DEVICE);
431 	if (dma_mapping_error(&pdev->dev, event_addr))
432 		return MYRS_STATUS_FAILED;
433 
434 	mbox->get_event.opcode = MYRS_CMD_OP_IOCTL;
435 	mbox->get_event.dma_size = sizeof(struct myrs_event);
436 	mbox->get_event.evnum_upper = event_num >> 16;
437 	mbox->get_event.ctlr_num = 0;
438 	mbox->get_event.ioctl_opcode = MYRS_IOCTL_GET_EVENT;
439 	mbox->get_event.evnum_lower = event_num & 0xFFFF;
440 	sgl = &mbox->get_event.dma_addr;
441 	sgl->sge[0].sge_addr = event_addr;
442 	sgl->sge[0].sge_count = mbox->get_event.dma_size;
443 	myrs_exec_cmd(cs, cmd_blk);
444 	status = cmd_blk->status;
445 	dma_unmap_single(&pdev->dev, event_addr,
446 			 sizeof(struct myrs_event), DMA_FROM_DEVICE);
447 
448 	return status;
449 }
450 
451 /*
452  * myrs_get_fwstatus - executes a Get Health Status Command
453  */
454 static unsigned char myrs_get_fwstatus(struct myrs_hba *cs)
455 {
456 	struct myrs_cmdblk *cmd_blk = &cs->mcmd_blk;
457 	union myrs_cmd_mbox *mbox = &cmd_blk->mbox;
458 	union myrs_sgl *sgl;
459 	unsigned char status = cmd_blk->status;
460 
461 	myrs_reset_cmd(cmd_blk);
462 	mbox->common.opcode = MYRS_CMD_OP_IOCTL;
463 	mbox->common.id = MYRS_MCMD_TAG;
464 	mbox->common.control.dma_ctrl_to_host = true;
465 	mbox->common.control.no_autosense = true;
466 	mbox->common.dma_size = sizeof(struct myrs_fwstat);
467 	mbox->common.ioctl_opcode = MYRS_IOCTL_GET_HEALTH_STATUS;
468 	sgl = &mbox->common.dma_addr;
469 	sgl->sge[0].sge_addr = cs->fwstat_addr;
470 	sgl->sge[0].sge_count = mbox->ctlr_info.dma_size;
471 	dev_dbg(&cs->host->shost_gendev, "Sending GetHealthStatus\n");
472 	myrs_exec_cmd(cs, cmd_blk);
473 	status = cmd_blk->status;
474 
475 	return status;
476 }
477 
478 /*
479  * myrs_enable_mmio_mbox - enables the Memory Mailbox Interface
480  */
481 static bool myrs_enable_mmio_mbox(struct myrs_hba *cs,
482 		enable_mbox_t enable_mbox_fn)
483 {
484 	void __iomem *base = cs->io_base;
485 	struct pci_dev *pdev = cs->pdev;
486 	union myrs_cmd_mbox *cmd_mbox;
487 	struct myrs_stat_mbox *stat_mbox;
488 	union myrs_cmd_mbox *mbox;
489 	dma_addr_t mbox_addr;
490 	unsigned char status = MYRS_STATUS_FAILED;
491 
492 	if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)))
493 		if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) {
494 			dev_err(&pdev->dev, "DMA mask out of range\n");
495 			return false;
496 		}
497 
498 	/* Temporary dma mapping, used only in the scope of this function */
499 	mbox = dma_alloc_coherent(&pdev->dev, sizeof(union myrs_cmd_mbox),
500 				  &mbox_addr, GFP_KERNEL);
501 	if (dma_mapping_error(&pdev->dev, mbox_addr))
502 		return false;
503 
504 	/* These are the base addresses for the command memory mailbox array */
505 	cs->cmd_mbox_size = MYRS_MAX_CMD_MBOX * sizeof(union myrs_cmd_mbox);
506 	cmd_mbox = dma_alloc_coherent(&pdev->dev, cs->cmd_mbox_size,
507 				      &cs->cmd_mbox_addr, GFP_KERNEL);
508 	if (dma_mapping_error(&pdev->dev, cs->cmd_mbox_addr)) {
509 		dev_err(&pdev->dev, "Failed to map command mailbox\n");
510 		goto out_free;
511 	}
512 	cs->first_cmd_mbox = cmd_mbox;
513 	cmd_mbox += MYRS_MAX_CMD_MBOX - 1;
514 	cs->last_cmd_mbox = cmd_mbox;
515 	cs->next_cmd_mbox = cs->first_cmd_mbox;
516 	cs->prev_cmd_mbox1 = cs->last_cmd_mbox;
517 	cs->prev_cmd_mbox2 = cs->last_cmd_mbox - 1;
518 
519 	/* These are the base addresses for the status memory mailbox array */
520 	cs->stat_mbox_size = MYRS_MAX_STAT_MBOX * sizeof(struct myrs_stat_mbox);
521 	stat_mbox = dma_alloc_coherent(&pdev->dev, cs->stat_mbox_size,
522 				       &cs->stat_mbox_addr, GFP_KERNEL);
523 	if (dma_mapping_error(&pdev->dev, cs->stat_mbox_addr)) {
524 		dev_err(&pdev->dev, "Failed to map status mailbox\n");
525 		goto out_free;
526 	}
527 
528 	cs->first_stat_mbox = stat_mbox;
529 	stat_mbox += MYRS_MAX_STAT_MBOX - 1;
530 	cs->last_stat_mbox = stat_mbox;
531 	cs->next_stat_mbox = cs->first_stat_mbox;
532 
533 	cs->fwstat_buf = dma_alloc_coherent(&pdev->dev,
534 					    sizeof(struct myrs_fwstat),
535 					    &cs->fwstat_addr, GFP_KERNEL);
536 	if (dma_mapping_error(&pdev->dev, cs->fwstat_addr)) {
537 		dev_err(&pdev->dev, "Failed to map firmware health buffer\n");
538 		cs->fwstat_buf = NULL;
539 		goto out_free;
540 	}
541 	cs->ctlr_info = kzalloc(sizeof(struct myrs_ctlr_info),
542 				GFP_KERNEL | GFP_DMA);
543 	if (!cs->ctlr_info)
544 		goto out_free;
545 
546 	cs->event_buf = kzalloc(sizeof(struct myrs_event),
547 				GFP_KERNEL | GFP_DMA);
548 	if (!cs->event_buf)
549 		goto out_free;
550 
551 	/* Enable the Memory Mailbox Interface. */
552 	memset(mbox, 0, sizeof(union myrs_cmd_mbox));
553 	mbox->set_mbox.id = 1;
554 	mbox->set_mbox.opcode = MYRS_CMD_OP_IOCTL;
555 	mbox->set_mbox.control.no_autosense = true;
556 	mbox->set_mbox.first_cmd_mbox_size_kb =
557 		(MYRS_MAX_CMD_MBOX * sizeof(union myrs_cmd_mbox)) >> 10;
558 	mbox->set_mbox.first_stat_mbox_size_kb =
559 		(MYRS_MAX_STAT_MBOX * sizeof(struct myrs_stat_mbox)) >> 10;
560 	mbox->set_mbox.second_cmd_mbox_size_kb = 0;
561 	mbox->set_mbox.second_stat_mbox_size_kb = 0;
562 	mbox->set_mbox.sense_len = 0;
563 	mbox->set_mbox.ioctl_opcode = MYRS_IOCTL_SET_MEM_MBOX;
564 	mbox->set_mbox.fwstat_buf_size_kb = 1;
565 	mbox->set_mbox.fwstat_buf_addr = cs->fwstat_addr;
566 	mbox->set_mbox.first_cmd_mbox_addr = cs->cmd_mbox_addr;
567 	mbox->set_mbox.first_stat_mbox_addr = cs->stat_mbox_addr;
568 	status = enable_mbox_fn(base, mbox_addr);
569 
570 out_free:
571 	dma_free_coherent(&pdev->dev, sizeof(union myrs_cmd_mbox),
572 			  mbox, mbox_addr);
573 	if (status != MYRS_STATUS_SUCCESS)
574 		dev_err(&pdev->dev, "Failed to enable mailbox, status %X\n",
575 			status);
576 	return (status == MYRS_STATUS_SUCCESS);
577 }
578 
579 /*
580  * myrs_get_config - reads the Configuration Information
581  */
582 static int myrs_get_config(struct myrs_hba *cs)
583 {
584 	struct myrs_ctlr_info *info = cs->ctlr_info;
585 	struct Scsi_Host *shost = cs->host;
586 	unsigned char status;
587 	unsigned char model[20];
588 	unsigned char fw_version[12];
589 	int i, model_len;
590 
591 	/* Get data into dma-able area, then copy into permanent location */
592 	mutex_lock(&cs->cinfo_mutex);
593 	status = myrs_get_ctlr_info(cs);
594 	mutex_unlock(&cs->cinfo_mutex);
595 	if (status != MYRS_STATUS_SUCCESS) {
596 		shost_printk(KERN_ERR, shost,
597 			     "Failed to get controller information\n");
598 		return -ENODEV;
599 	}
600 
601 	/* Initialize the Controller Model Name and Full Model Name fields. */
602 	model_len = sizeof(info->ctlr_name);
603 	if (model_len > sizeof(model)-1)
604 		model_len = sizeof(model)-1;
605 	memcpy(model, info->ctlr_name, model_len);
606 	model_len--;
607 	while (model[model_len] == ' ' || model[model_len] == '\0')
608 		model_len--;
609 	model[++model_len] = '\0';
610 	strcpy(cs->model_name, "DAC960 ");
611 	strcat(cs->model_name, model);
612 	/* Initialize the Controller Firmware Version field. */
613 	sprintf(fw_version, "%d.%02d-%02d",
614 		info->fw_major_version, info->fw_minor_version,
615 		info->fw_turn_number);
616 	if (info->fw_major_version == 6 &&
617 	    info->fw_minor_version == 0 &&
618 	    info->fw_turn_number < 1) {
619 		shost_printk(KERN_WARNING, shost,
620 			"FIRMWARE VERSION %s DOES NOT PROVIDE THE CONTROLLER\n"
621 			"STATUS MONITORING FUNCTIONALITY NEEDED BY THIS DRIVER.\n"
622 			"PLEASE UPGRADE TO VERSION 6.00-01 OR ABOVE.\n",
623 			fw_version);
624 		return -ENODEV;
625 	}
626 	/* Initialize the Controller Channels and Targets. */
627 	shost->max_channel = info->physchan_present + info->virtchan_present;
628 	shost->max_id = info->max_targets[0];
629 	for (i = 1; i < 16; i++) {
630 		if (!info->max_targets[i])
631 			continue;
632 		if (shost->max_id < info->max_targets[i])
633 			shost->max_id = info->max_targets[i];
634 	}
635 
636 	/*
637 	 * Initialize the Controller Queue Depth, Driver Queue Depth,
638 	 * Logical Drive Count, Maximum Blocks per Command, Controller
639 	 * Scatter/Gather Limit, and Driver Scatter/Gather Limit.
640 	 * The Driver Queue Depth must be at most three less than
641 	 * the Controller Queue Depth; tag '1' is reserved for
642 	 * direct commands, and tag '2' for monitoring commands.
643 	 */
644 	shost->can_queue = info->max_tcq - 3;
645 	if (shost->can_queue > MYRS_MAX_CMD_MBOX - 3)
646 		shost->can_queue = MYRS_MAX_CMD_MBOX - 3;
647 	shost->max_sectors = info->max_transfer_size;
648 	shost->sg_tablesize = info->max_sge;
649 	if (shost->sg_tablesize > MYRS_SG_LIMIT)
650 		shost->sg_tablesize = MYRS_SG_LIMIT;
651 
652 	shost_printk(KERN_INFO, shost,
653 		"Configuring %s PCI RAID Controller\n", model);
654 	shost_printk(KERN_INFO, shost,
655 		"  Firmware Version: %s, Channels: %d, Memory Size: %dMB\n",
656 		fw_version, info->physchan_present, info->mem_size_mb);
657 
658 	shost_printk(KERN_INFO, shost,
659 		     "  Controller Queue Depth: %d, Maximum Blocks per Command: %d\n",
660 		     shost->can_queue, shost->max_sectors);
661 
662 	shost_printk(KERN_INFO, shost,
663 		     "  Driver Queue Depth: %d, Scatter/Gather Limit: %d of %d Segments\n",
664 		     shost->can_queue, shost->sg_tablesize, MYRS_SG_LIMIT);
665 	for (i = 0; i < info->physchan_max; i++) {
666 		if (!info->max_targets[i])
667 			continue;
668 		shost_printk(KERN_INFO, shost,
669 			     "  Device Channel %d: max %d devices\n",
670 			     i, info->max_targets[i]);
671 	}
672 	shost_printk(KERN_INFO, shost,
673 		     "  Physical: %d/%d channels, %d disks, %d devices\n",
674 		     info->physchan_present, info->physchan_max,
675 		     info->pdisk_present, info->pdev_present);
676 
677 	shost_printk(KERN_INFO, shost,
678 		     "  Logical: %d/%d channels, %d disks\n",
679 		     info->virtchan_present, info->virtchan_max,
680 		     info->ldev_present);
681 	return 0;
682 }
683 
684 /*
685  * myrs_log_event - prints a Controller Event message
686  */
687 static struct {
688 	int ev_code;
689 	unsigned char *ev_msg;
690 } myrs_ev_list[] = {
691 	/* Physical Device Events (0x0000 - 0x007F) */
692 	{ 0x0001, "P Online" },
693 	{ 0x0002, "P Standby" },
694 	{ 0x0005, "P Automatic Rebuild Started" },
695 	{ 0x0006, "P Manual Rebuild Started" },
696 	{ 0x0007, "P Rebuild Completed" },
697 	{ 0x0008, "P Rebuild Cancelled" },
698 	{ 0x0009, "P Rebuild Failed for Unknown Reasons" },
699 	{ 0x000A, "P Rebuild Failed due to New Physical Device" },
700 	{ 0x000B, "P Rebuild Failed due to Logical Drive Failure" },
701 	{ 0x000C, "S Offline" },
702 	{ 0x000D, "P Found" },
703 	{ 0x000E, "P Removed" },
704 	{ 0x000F, "P Unconfigured" },
705 	{ 0x0010, "P Expand Capacity Started" },
706 	{ 0x0011, "P Expand Capacity Completed" },
707 	{ 0x0012, "P Expand Capacity Failed" },
708 	{ 0x0013, "P Command Timed Out" },
709 	{ 0x0014, "P Command Aborted" },
710 	{ 0x0015, "P Command Retried" },
711 	{ 0x0016, "P Parity Error" },
712 	{ 0x0017, "P Soft Error" },
713 	{ 0x0018, "P Miscellaneous Error" },
714 	{ 0x0019, "P Reset" },
715 	{ 0x001A, "P Active Spare Found" },
716 	{ 0x001B, "P Warm Spare Found" },
717 	{ 0x001C, "S Sense Data Received" },
718 	{ 0x001D, "P Initialization Started" },
719 	{ 0x001E, "P Initialization Completed" },
720 	{ 0x001F, "P Initialization Failed" },
721 	{ 0x0020, "P Initialization Cancelled" },
722 	{ 0x0021, "P Failed because Write Recovery Failed" },
723 	{ 0x0022, "P Failed because SCSI Bus Reset Failed" },
724 	{ 0x0023, "P Failed because of Double Check Condition" },
725 	{ 0x0024, "P Failed because Device Cannot Be Accessed" },
726 	{ 0x0025, "P Failed because of Gross Error on SCSI Processor" },
727 	{ 0x0026, "P Failed because of Bad Tag from Device" },
728 	{ 0x0027, "P Failed because of Command Timeout" },
729 	{ 0x0028, "P Failed because of System Reset" },
730 	{ 0x0029, "P Failed because of Busy Status or Parity Error" },
731 	{ 0x002A, "P Failed because Host Set Device to Failed State" },
732 	{ 0x002B, "P Failed because of Selection Timeout" },
733 	{ 0x002C, "P Failed because of SCSI Bus Phase Error" },
734 	{ 0x002D, "P Failed because Device Returned Unknown Status" },
735 	{ 0x002E, "P Failed because Device Not Ready" },
736 	{ 0x002F, "P Failed because Device Not Found at Startup" },
737 	{ 0x0030, "P Failed because COD Write Operation Failed" },
738 	{ 0x0031, "P Failed because BDT Write Operation Failed" },
739 	{ 0x0039, "P Missing at Startup" },
740 	{ 0x003A, "P Start Rebuild Failed due to Physical Drive Too Small" },
741 	{ 0x003C, "P Temporarily Offline Device Automatically Made Online" },
742 	{ 0x003D, "P Standby Rebuild Started" },
743 	/* Logical Device Events (0x0080 - 0x00FF) */
744 	{ 0x0080, "M Consistency Check Started" },
745 	{ 0x0081, "M Consistency Check Completed" },
746 	{ 0x0082, "M Consistency Check Cancelled" },
747 	{ 0x0083, "M Consistency Check Completed With Errors" },
748 	{ 0x0084, "M Consistency Check Failed due to Logical Drive Failure" },
749 	{ 0x0085, "M Consistency Check Failed due to Physical Device Failure" },
750 	{ 0x0086, "L Offline" },
751 	{ 0x0087, "L Critical" },
752 	{ 0x0088, "L Online" },
753 	{ 0x0089, "M Automatic Rebuild Started" },
754 	{ 0x008A, "M Manual Rebuild Started" },
755 	{ 0x008B, "M Rebuild Completed" },
756 	{ 0x008C, "M Rebuild Cancelled" },
757 	{ 0x008D, "M Rebuild Failed for Unknown Reasons" },
758 	{ 0x008E, "M Rebuild Failed due to New Physical Device" },
759 	{ 0x008F, "M Rebuild Failed due to Logical Drive Failure" },
760 	{ 0x0090, "M Initialization Started" },
761 	{ 0x0091, "M Initialization Completed" },
762 	{ 0x0092, "M Initialization Cancelled" },
763 	{ 0x0093, "M Initialization Failed" },
764 	{ 0x0094, "L Found" },
765 	{ 0x0095, "L Deleted" },
766 	{ 0x0096, "M Expand Capacity Started" },
767 	{ 0x0097, "M Expand Capacity Completed" },
768 	{ 0x0098, "M Expand Capacity Failed" },
769 	{ 0x0099, "L Bad Block Found" },
770 	{ 0x009A, "L Size Changed" },
771 	{ 0x009B, "L Type Changed" },
772 	{ 0x009C, "L Bad Data Block Found" },
773 	{ 0x009E, "L Read of Data Block in BDT" },
774 	{ 0x009F, "L Write Back Data for Disk Block Lost" },
775 	{ 0x00A0, "L Temporarily Offline RAID-5/3 Drive Made Online" },
776 	{ 0x00A1, "L Temporarily Offline RAID-6/1/0/7 Drive Made Online" },
777 	{ 0x00A2, "L Standby Rebuild Started" },
778 	/* Fault Management Events (0x0100 - 0x017F) */
779 	{ 0x0140, "E Fan %d Failed" },
780 	{ 0x0141, "E Fan %d OK" },
781 	{ 0x0142, "E Fan %d Not Present" },
782 	{ 0x0143, "E Power Supply %d Failed" },
783 	{ 0x0144, "E Power Supply %d OK" },
784 	{ 0x0145, "E Power Supply %d Not Present" },
785 	{ 0x0146, "E Temperature Sensor %d Temperature Exceeds Safe Limit" },
786 	{ 0x0147, "E Temperature Sensor %d Temperature Exceeds Working Limit" },
787 	{ 0x0148, "E Temperature Sensor %d Temperature Normal" },
788 	{ 0x0149, "E Temperature Sensor %d Not Present" },
789 	{ 0x014A, "E Enclosure Management Unit %d Access Critical" },
790 	{ 0x014B, "E Enclosure Management Unit %d Access OK" },
791 	{ 0x014C, "E Enclosure Management Unit %d Access Offline" },
792 	/* Controller Events (0x0180 - 0x01FF) */
793 	{ 0x0181, "C Cache Write Back Error" },
794 	{ 0x0188, "C Battery Backup Unit Found" },
795 	{ 0x0189, "C Battery Backup Unit Charge Level Low" },
796 	{ 0x018A, "C Battery Backup Unit Charge Level OK" },
797 	{ 0x0193, "C Installation Aborted" },
798 	{ 0x0195, "C Battery Backup Unit Physically Removed" },
799 	{ 0x0196, "C Memory Error During Warm Boot" },
800 	{ 0x019E, "C Memory Soft ECC Error Corrected" },
801 	{ 0x019F, "C Memory Hard ECC Error Corrected" },
802 	{ 0x01A2, "C Battery Backup Unit Failed" },
803 	{ 0x01AB, "C Mirror Race Recovery Failed" },
804 	{ 0x01AC, "C Mirror Race on Critical Drive" },
805 	/* Controller Internal Processor Events */
806 	{ 0x0380, "C Internal Controller Hung" },
807 	{ 0x0381, "C Internal Controller Firmware Breakpoint" },
808 	{ 0x0390, "C Internal Controller i960 Processor Specific Error" },
809 	{ 0x03A0, "C Internal Controller StrongARM Processor Specific Error" },
810 	{ 0, "" }
811 };
812 
813 static void myrs_log_event(struct myrs_hba *cs, struct myrs_event *ev)
814 {
815 	unsigned char msg_buf[MYRS_LINE_BUFFER_SIZE];
816 	int ev_idx = 0, ev_code;
817 	unsigned char ev_type, *ev_msg;
818 	struct Scsi_Host *shost = cs->host;
819 	struct scsi_device *sdev;
820 	struct scsi_sense_hdr sshdr = {0};
821 	unsigned char sense_info[4];
822 	unsigned char cmd_specific[4];
823 
824 	if (ev->ev_code == 0x1C) {
825 		if (!scsi_normalize_sense(ev->sense_data, 40, &sshdr)) {
826 			memset(&sshdr, 0x0, sizeof(sshdr));
827 			memset(sense_info, 0x0, sizeof(sense_info));
828 			memset(cmd_specific, 0x0, sizeof(cmd_specific));
829 		} else {
830 			memcpy(sense_info, &ev->sense_data[3], 4);
831 			memcpy(cmd_specific, &ev->sense_data[7], 4);
832 		}
833 	}
834 	if (sshdr.sense_key == VENDOR_SPECIFIC &&
835 	    (sshdr.asc == 0x80 || sshdr.asc == 0x81))
836 		ev->ev_code = ((sshdr.asc - 0x80) << 8 | sshdr.ascq);
837 	while (true) {
838 		ev_code = myrs_ev_list[ev_idx].ev_code;
839 		if (ev_code == ev->ev_code || ev_code == 0)
840 			break;
841 		ev_idx++;
842 	}
843 	ev_type = myrs_ev_list[ev_idx].ev_msg[0];
844 	ev_msg = &myrs_ev_list[ev_idx].ev_msg[2];
845 	if (ev_code == 0) {
846 		shost_printk(KERN_WARNING, shost,
847 			     "Unknown Controller Event Code %04X\n",
848 			     ev->ev_code);
849 		return;
850 	}
851 	switch (ev_type) {
852 	case 'P':
853 		sdev = scsi_device_lookup(shost, ev->channel,
854 					  ev->target, 0);
855 		sdev_printk(KERN_INFO, sdev, "event %d: Physical Device %s\n",
856 			    ev->ev_seq, ev_msg);
857 		if (sdev && sdev->hostdata &&
858 		    sdev->channel < cs->ctlr_info->physchan_present) {
859 			struct myrs_pdev_info *pdev_info = sdev->hostdata;
860 
861 			switch (ev->ev_code) {
862 			case 0x0001:
863 			case 0x0007:
864 				pdev_info->dev_state = MYRS_DEVICE_ONLINE;
865 				break;
866 			case 0x0002:
867 				pdev_info->dev_state = MYRS_DEVICE_STANDBY;
868 				break;
869 			case 0x000C:
870 				pdev_info->dev_state = MYRS_DEVICE_OFFLINE;
871 				break;
872 			case 0x000E:
873 				pdev_info->dev_state = MYRS_DEVICE_MISSING;
874 				break;
875 			case 0x000F:
876 				pdev_info->dev_state = MYRS_DEVICE_UNCONFIGURED;
877 				break;
878 			}
879 		}
880 		break;
881 	case 'L':
882 		shost_printk(KERN_INFO, shost,
883 			     "event %d: Logical Drive %d %s\n",
884 			     ev->ev_seq, ev->lun, ev_msg);
885 		cs->needs_update = true;
886 		break;
887 	case 'M':
888 		shost_printk(KERN_INFO, shost,
889 			     "event %d: Logical Drive %d %s\n",
890 			     ev->ev_seq, ev->lun, ev_msg);
891 		cs->needs_update = true;
892 		break;
893 	case 'S':
894 		if (sshdr.sense_key == NO_SENSE ||
895 		    (sshdr.sense_key == NOT_READY &&
896 		     sshdr.asc == 0x04 && (sshdr.ascq == 0x01 ||
897 					    sshdr.ascq == 0x02)))
898 			break;
899 		shost_printk(KERN_INFO, shost,
900 			     "event %d: Physical Device %d:%d %s\n",
901 			     ev->ev_seq, ev->channel, ev->target, ev_msg);
902 		shost_printk(KERN_INFO, shost,
903 			     "Physical Device %d:%d Sense Key = %X, ASC = %02X, ASCQ = %02X\n",
904 			     ev->channel, ev->target,
905 			     sshdr.sense_key, sshdr.asc, sshdr.ascq);
906 		shost_printk(KERN_INFO, shost,
907 			     "Physical Device %d:%d Sense Information = %02X%02X%02X%02X %02X%02X%02X%02X\n",
908 			     ev->channel, ev->target,
909 			     sense_info[0], sense_info[1],
910 			     sense_info[2], sense_info[3],
911 			     cmd_specific[0], cmd_specific[1],
912 			     cmd_specific[2], cmd_specific[3]);
913 		break;
914 	case 'E':
915 		if (cs->disable_enc_msg)
916 			break;
917 		sprintf(msg_buf, ev_msg, ev->lun);
918 		shost_printk(KERN_INFO, shost, "event %d: Enclosure %d %s\n",
919 			     ev->ev_seq, ev->target, msg_buf);
920 		break;
921 	case 'C':
922 		shost_printk(KERN_INFO, shost, "event %d: Controller %s\n",
923 			     ev->ev_seq, ev_msg);
924 		break;
925 	default:
926 		shost_printk(KERN_INFO, shost,
927 			     "event %d: Unknown Event Code %04X\n",
928 			     ev->ev_seq, ev->ev_code);
929 		break;
930 	}
931 }
932 
933 /*
934  * SCSI sysfs interface functions
935  */
936 static ssize_t raid_state_show(struct device *dev,
937 		struct device_attribute *attr, char *buf)
938 {
939 	struct scsi_device *sdev = to_scsi_device(dev);
940 	struct myrs_hba *cs = shost_priv(sdev->host);
941 	int ret;
942 
943 	if (!sdev->hostdata)
944 		return snprintf(buf, 16, "Unknown\n");
945 
946 	if (sdev->channel >= cs->ctlr_info->physchan_present) {
947 		struct myrs_ldev_info *ldev_info = sdev->hostdata;
948 		const char *name;
949 
950 		name = myrs_devstate_name(ldev_info->dev_state);
951 		if (name)
952 			ret = snprintf(buf, 32, "%s\n", name);
953 		else
954 			ret = snprintf(buf, 32, "Invalid (%02X)\n",
955 				       ldev_info->dev_state);
956 	} else {
957 		struct myrs_pdev_info *pdev_info;
958 		const char *name;
959 
960 		pdev_info = sdev->hostdata;
961 		name = myrs_devstate_name(pdev_info->dev_state);
962 		if (name)
963 			ret = snprintf(buf, 32, "%s\n", name);
964 		else
965 			ret = snprintf(buf, 32, "Invalid (%02X)\n",
966 				       pdev_info->dev_state);
967 	}
968 	return ret;
969 }
970 
971 static ssize_t raid_state_store(struct device *dev,
972 		struct device_attribute *attr, const char *buf, size_t count)
973 {
974 	struct scsi_device *sdev = to_scsi_device(dev);
975 	struct myrs_hba *cs = shost_priv(sdev->host);
976 	struct myrs_cmdblk *cmd_blk;
977 	union myrs_cmd_mbox *mbox;
978 	enum myrs_devstate new_state;
979 	unsigned short ldev_num;
980 	unsigned char status;
981 
982 	if (!strncmp(buf, "offline", 7) ||
983 	    !strncmp(buf, "kill", 4))
984 		new_state = MYRS_DEVICE_OFFLINE;
985 	else if (!strncmp(buf, "online", 6))
986 		new_state = MYRS_DEVICE_ONLINE;
987 	else if (!strncmp(buf, "standby", 7))
988 		new_state = MYRS_DEVICE_STANDBY;
989 	else
990 		return -EINVAL;
991 
992 	if (sdev->channel < cs->ctlr_info->physchan_present) {
993 		struct myrs_pdev_info *pdev_info = sdev->hostdata;
994 		struct myrs_devmap *pdev_devmap =
995 			(struct myrs_devmap *)&pdev_info->rsvd13;
996 
997 		if (pdev_info->dev_state == new_state) {
998 			sdev_printk(KERN_INFO, sdev,
999 				    "Device already in %s\n",
1000 				    myrs_devstate_name(new_state));
1001 			return count;
1002 		}
1003 		status = myrs_translate_pdev(cs, sdev->channel, sdev->id,
1004 					     sdev->lun, pdev_devmap);
1005 		if (status != MYRS_STATUS_SUCCESS)
1006 			return -ENXIO;
1007 		ldev_num = pdev_devmap->ldev_num;
1008 	} else {
1009 		struct myrs_ldev_info *ldev_info = sdev->hostdata;
1010 
1011 		if (ldev_info->dev_state == new_state) {
1012 			sdev_printk(KERN_INFO, sdev,
1013 				    "Device already in %s\n",
1014 				    myrs_devstate_name(new_state));
1015 			return count;
1016 		}
1017 		ldev_num = ldev_info->ldev_num;
1018 	}
1019 	mutex_lock(&cs->dcmd_mutex);
1020 	cmd_blk = &cs->dcmd_blk;
1021 	myrs_reset_cmd(cmd_blk);
1022 	mbox = &cmd_blk->mbox;
1023 	mbox->common.opcode = MYRS_CMD_OP_IOCTL;
1024 	mbox->common.id = MYRS_DCMD_TAG;
1025 	mbox->common.control.dma_ctrl_to_host = true;
1026 	mbox->common.control.no_autosense = true;
1027 	mbox->set_devstate.ioctl_opcode = MYRS_IOCTL_SET_DEVICE_STATE;
1028 	mbox->set_devstate.state = new_state;
1029 	mbox->set_devstate.ldev.ldev_num = ldev_num;
1030 	myrs_exec_cmd(cs, cmd_blk);
1031 	status = cmd_blk->status;
1032 	mutex_unlock(&cs->dcmd_mutex);
1033 	if (status == MYRS_STATUS_SUCCESS) {
1034 		if (sdev->channel < cs->ctlr_info->physchan_present) {
1035 			struct myrs_pdev_info *pdev_info = sdev->hostdata;
1036 
1037 			pdev_info->dev_state = new_state;
1038 		} else {
1039 			struct myrs_ldev_info *ldev_info = sdev->hostdata;
1040 
1041 			ldev_info->dev_state = new_state;
1042 		}
1043 		sdev_printk(KERN_INFO, sdev,
1044 			    "Set device state to %s\n",
1045 			    myrs_devstate_name(new_state));
1046 		return count;
1047 	}
1048 	sdev_printk(KERN_INFO, sdev,
1049 		    "Failed to set device state to %s, status 0x%02x\n",
1050 		    myrs_devstate_name(new_state), status);
1051 	return -EINVAL;
1052 }
1053 static DEVICE_ATTR_RW(raid_state);
1054 
1055 static ssize_t raid_level_show(struct device *dev,
1056 		struct device_attribute *attr, char *buf)
1057 {
1058 	struct scsi_device *sdev = to_scsi_device(dev);
1059 	struct myrs_hba *cs = shost_priv(sdev->host);
1060 	const char *name = NULL;
1061 
1062 	if (!sdev->hostdata)
1063 		return snprintf(buf, 16, "Unknown\n");
1064 
1065 	if (sdev->channel >= cs->ctlr_info->physchan_present) {
1066 		struct myrs_ldev_info *ldev_info;
1067 
1068 		ldev_info = sdev->hostdata;
1069 		name = myrs_raid_level_name(ldev_info->raid_level);
1070 		if (!name)
1071 			return snprintf(buf, 32, "Invalid (%02X)\n",
1072 					ldev_info->dev_state);
1073 
1074 	} else
1075 		name = myrs_raid_level_name(MYRS_RAID_PHYSICAL);
1076 
1077 	return snprintf(buf, 32, "%s\n", name);
1078 }
1079 static DEVICE_ATTR_RO(raid_level);
1080 
1081 static ssize_t rebuild_show(struct device *dev,
1082 		struct device_attribute *attr, char *buf)
1083 {
1084 	struct scsi_device *sdev = to_scsi_device(dev);
1085 	struct myrs_hba *cs = shost_priv(sdev->host);
1086 	struct myrs_ldev_info *ldev_info;
1087 	unsigned short ldev_num;
1088 	unsigned char status;
1089 
1090 	if (sdev->channel < cs->ctlr_info->physchan_present)
1091 		return snprintf(buf, 32, "physical device - not rebuilding\n");
1092 
1093 	ldev_info = sdev->hostdata;
1094 	ldev_num = ldev_info->ldev_num;
1095 	status = myrs_get_ldev_info(cs, ldev_num, ldev_info);
1096 	if (status != MYRS_STATUS_SUCCESS) {
1097 		sdev_printk(KERN_INFO, sdev,
1098 			    "Failed to get device information, status 0x%02x\n",
1099 			    status);
1100 		return -EIO;
1101 	}
1102 	if (ldev_info->rbld_active) {
1103 		return snprintf(buf, 32, "rebuilding block %zu of %zu\n",
1104 				(size_t)ldev_info->rbld_lba,
1105 				(size_t)ldev_info->cfg_devsize);
1106 	} else
1107 		return snprintf(buf, 32, "not rebuilding\n");
1108 }
1109 
1110 static ssize_t rebuild_store(struct device *dev,
1111 		struct device_attribute *attr, const char *buf, size_t count)
1112 {
1113 	struct scsi_device *sdev = to_scsi_device(dev);
1114 	struct myrs_hba *cs = shost_priv(sdev->host);
1115 	struct myrs_ldev_info *ldev_info;
1116 	struct myrs_cmdblk *cmd_blk;
1117 	union myrs_cmd_mbox *mbox;
1118 	unsigned short ldev_num;
1119 	unsigned char status;
1120 	int rebuild, ret;
1121 
1122 	if (sdev->channel < cs->ctlr_info->physchan_present)
1123 		return -EINVAL;
1124 
1125 	ldev_info = sdev->hostdata;
1126 	if (!ldev_info)
1127 		return -ENXIO;
1128 	ldev_num = ldev_info->ldev_num;
1129 
1130 	ret = kstrtoint(buf, 0, &rebuild);
1131 	if (ret)
1132 		return ret;
1133 
1134 	status = myrs_get_ldev_info(cs, ldev_num, ldev_info);
1135 	if (status != MYRS_STATUS_SUCCESS) {
1136 		sdev_printk(KERN_INFO, sdev,
1137 			    "Failed to get device information, status 0x%02x\n",
1138 			    status);
1139 		return -EIO;
1140 	}
1141 
1142 	if (rebuild && ldev_info->rbld_active) {
1143 		sdev_printk(KERN_INFO, sdev,
1144 			    "Rebuild Not Initiated; already in progress\n");
1145 		return -EALREADY;
1146 	}
1147 	if (!rebuild && !ldev_info->rbld_active) {
1148 		sdev_printk(KERN_INFO, sdev,
1149 			    "Rebuild Not Cancelled; no rebuild in progress\n");
1150 		return count;
1151 	}
1152 
1153 	mutex_lock(&cs->dcmd_mutex);
1154 	cmd_blk = &cs->dcmd_blk;
1155 	myrs_reset_cmd(cmd_blk);
1156 	mbox = &cmd_blk->mbox;
1157 	mbox->common.opcode = MYRS_CMD_OP_IOCTL;
1158 	mbox->common.id = MYRS_DCMD_TAG;
1159 	mbox->common.control.dma_ctrl_to_host = true;
1160 	mbox->common.control.no_autosense = true;
1161 	if (rebuild) {
1162 		mbox->ldev_info.ldev.ldev_num = ldev_num;
1163 		mbox->ldev_info.ioctl_opcode = MYRS_IOCTL_RBLD_DEVICE_START;
1164 	} else {
1165 		mbox->ldev_info.ldev.ldev_num = ldev_num;
1166 		mbox->ldev_info.ioctl_opcode = MYRS_IOCTL_RBLD_DEVICE_STOP;
1167 	}
1168 	myrs_exec_cmd(cs, cmd_blk);
1169 	status = cmd_blk->status;
1170 	mutex_unlock(&cs->dcmd_mutex);
1171 	if (status) {
1172 		sdev_printk(KERN_INFO, sdev,
1173 			    "Rebuild Not %s, status 0x%02x\n",
1174 			    rebuild ? "Initiated" : "Cancelled", status);
1175 		ret = -EIO;
1176 	} else {
1177 		sdev_printk(KERN_INFO, sdev, "Rebuild %s\n",
1178 			    rebuild ? "Initiated" : "Cancelled");
1179 		ret = count;
1180 	}
1181 
1182 	return ret;
1183 }
1184 static DEVICE_ATTR_RW(rebuild);
1185 
1186 static ssize_t consistency_check_show(struct device *dev,
1187 		struct device_attribute *attr, char *buf)
1188 {
1189 	struct scsi_device *sdev = to_scsi_device(dev);
1190 	struct myrs_hba *cs = shost_priv(sdev->host);
1191 	struct myrs_ldev_info *ldev_info;
1192 	unsigned short ldev_num;
1193 	unsigned char status;
1194 
1195 	if (sdev->channel < cs->ctlr_info->physchan_present)
1196 		return snprintf(buf, 32, "physical device - not checking\n");
1197 
1198 	ldev_info = sdev->hostdata;
1199 	if (!ldev_info)
1200 		return -ENXIO;
1201 	ldev_num = ldev_info->ldev_num;
1202 	status = myrs_get_ldev_info(cs, ldev_num, ldev_info);
1203 	if (ldev_info->cc_active)
1204 		return snprintf(buf, 32, "checking block %zu of %zu\n",
1205 				(size_t)ldev_info->cc_lba,
1206 				(size_t)ldev_info->cfg_devsize);
1207 	else
1208 		return snprintf(buf, 32, "not checking\n");
1209 }
1210 
1211 static ssize_t consistency_check_store(struct device *dev,
1212 		struct device_attribute *attr, const char *buf, size_t count)
1213 {
1214 	struct scsi_device *sdev = to_scsi_device(dev);
1215 	struct myrs_hba *cs = shost_priv(sdev->host);
1216 	struct myrs_ldev_info *ldev_info;
1217 	struct myrs_cmdblk *cmd_blk;
1218 	union myrs_cmd_mbox *mbox;
1219 	unsigned short ldev_num;
1220 	unsigned char status;
1221 	int check, ret;
1222 
1223 	if (sdev->channel < cs->ctlr_info->physchan_present)
1224 		return -EINVAL;
1225 
1226 	ldev_info = sdev->hostdata;
1227 	if (!ldev_info)
1228 		return -ENXIO;
1229 	ldev_num = ldev_info->ldev_num;
1230 
1231 	ret = kstrtoint(buf, 0, &check);
1232 	if (ret)
1233 		return ret;
1234 
1235 	status = myrs_get_ldev_info(cs, ldev_num, ldev_info);
1236 	if (status != MYRS_STATUS_SUCCESS) {
1237 		sdev_printk(KERN_INFO, sdev,
1238 			    "Failed to get device information, status 0x%02x\n",
1239 			    status);
1240 		return -EIO;
1241 	}
1242 	if (check && ldev_info->cc_active) {
1243 		sdev_printk(KERN_INFO, sdev,
1244 			    "Consistency Check Not Initiated; "
1245 			    "already in progress\n");
1246 		return -EALREADY;
1247 	}
1248 	if (!check && !ldev_info->cc_active) {
1249 		sdev_printk(KERN_INFO, sdev,
1250 			    "Consistency Check Not Cancelled; "
1251 			    "check not in progress\n");
1252 		return count;
1253 	}
1254 
1255 	mutex_lock(&cs->dcmd_mutex);
1256 	cmd_blk = &cs->dcmd_blk;
1257 	myrs_reset_cmd(cmd_blk);
1258 	mbox = &cmd_blk->mbox;
1259 	mbox->common.opcode = MYRS_CMD_OP_IOCTL;
1260 	mbox->common.id = MYRS_DCMD_TAG;
1261 	mbox->common.control.dma_ctrl_to_host = true;
1262 	mbox->common.control.no_autosense = true;
1263 	if (check) {
1264 		mbox->cc.ldev.ldev_num = ldev_num;
1265 		mbox->cc.ioctl_opcode = MYRS_IOCTL_CC_START;
1266 		mbox->cc.restore_consistency = true;
1267 		mbox->cc.initialized_area_only = false;
1268 	} else {
1269 		mbox->cc.ldev.ldev_num = ldev_num;
1270 		mbox->cc.ioctl_opcode = MYRS_IOCTL_CC_STOP;
1271 	}
1272 	myrs_exec_cmd(cs, cmd_blk);
1273 	status = cmd_blk->status;
1274 	mutex_unlock(&cs->dcmd_mutex);
1275 	if (status != MYRS_STATUS_SUCCESS) {
1276 		sdev_printk(KERN_INFO, sdev,
1277 			    "Consistency Check Not %s, status 0x%02x\n",
1278 			    check ? "Initiated" : "Cancelled", status);
1279 		ret = -EIO;
1280 	} else {
1281 		sdev_printk(KERN_INFO, sdev, "Consistency Check %s\n",
1282 			    check ? "Initiated" : "Cancelled");
1283 		ret = count;
1284 	}
1285 
1286 	return ret;
1287 }
1288 static DEVICE_ATTR_RW(consistency_check);
1289 
1290 static struct device_attribute *myrs_sdev_attrs[] = {
1291 	&dev_attr_consistency_check,
1292 	&dev_attr_rebuild,
1293 	&dev_attr_raid_state,
1294 	&dev_attr_raid_level,
1295 	NULL,
1296 };
1297 
1298 static ssize_t serial_show(struct device *dev,
1299 		struct device_attribute *attr, char *buf)
1300 {
1301 	struct Scsi_Host *shost = class_to_shost(dev);
1302 	struct myrs_hba *cs = shost_priv(shost);
1303 	char serial[17];
1304 
1305 	memcpy(serial, cs->ctlr_info->serial_number, 16);
1306 	serial[16] = '\0';
1307 	return snprintf(buf, 16, "%s\n", serial);
1308 }
1309 static DEVICE_ATTR_RO(serial);
1310 
1311 static ssize_t ctlr_num_show(struct device *dev,
1312 		struct device_attribute *attr, char *buf)
1313 {
1314 	struct Scsi_Host *shost = class_to_shost(dev);
1315 	struct myrs_hba *cs = shost_priv(shost);
1316 
1317 	return snprintf(buf, 20, "%d\n", cs->host->host_no);
1318 }
1319 static DEVICE_ATTR_RO(ctlr_num);
1320 
1321 static struct myrs_cpu_type_tbl {
1322 	enum myrs_cpu_type type;
1323 	char *name;
1324 } myrs_cpu_type_names[] = {
1325 	{ MYRS_CPUTYPE_i960CA, "i960CA" },
1326 	{ MYRS_CPUTYPE_i960RD, "i960RD" },
1327 	{ MYRS_CPUTYPE_i960RN, "i960RN" },
1328 	{ MYRS_CPUTYPE_i960RP, "i960RP" },
1329 	{ MYRS_CPUTYPE_NorthBay, "NorthBay" },
1330 	{ MYRS_CPUTYPE_StrongArm, "StrongARM" },
1331 	{ MYRS_CPUTYPE_i960RM, "i960RM" },
1332 };
1333 
1334 static ssize_t processor_show(struct device *dev,
1335 		struct device_attribute *attr, char *buf)
1336 {
1337 	struct Scsi_Host *shost = class_to_shost(dev);
1338 	struct myrs_hba *cs = shost_priv(shost);
1339 	struct myrs_cpu_type_tbl *tbl;
1340 	const char *first_processor = NULL;
1341 	const char *second_processor = NULL;
1342 	struct myrs_ctlr_info *info = cs->ctlr_info;
1343 	ssize_t ret;
1344 	int i;
1345 
1346 	if (info->cpu[0].cpu_count) {
1347 		tbl = myrs_cpu_type_names;
1348 		for (i = 0; i < ARRAY_SIZE(myrs_cpu_type_names); i++) {
1349 			if (tbl[i].type == info->cpu[0].cpu_type) {
1350 				first_processor = tbl[i].name;
1351 				break;
1352 			}
1353 		}
1354 	}
1355 	if (info->cpu[1].cpu_count) {
1356 		tbl = myrs_cpu_type_names;
1357 		for (i = 0; i < ARRAY_SIZE(myrs_cpu_type_names); i++) {
1358 			if (tbl[i].type == info->cpu[1].cpu_type) {
1359 				second_processor = tbl[i].name;
1360 				break;
1361 			}
1362 		}
1363 	}
1364 	if (first_processor && second_processor)
1365 		ret = snprintf(buf, 64, "1: %s (%s, %d cpus)\n"
1366 			       "2: %s (%s, %d cpus)\n",
1367 			       info->cpu[0].cpu_name,
1368 			       first_processor, info->cpu[0].cpu_count,
1369 			       info->cpu[1].cpu_name,
1370 			       second_processor, info->cpu[1].cpu_count);
1371 	else if (first_processor && !second_processor)
1372 		ret = snprintf(buf, 64, "1: %s (%s, %d cpus)\n2: absent\n",
1373 			       info->cpu[0].cpu_name,
1374 			       first_processor, info->cpu[0].cpu_count);
1375 	else if (!first_processor && second_processor)
1376 		ret = snprintf(buf, 64, "1: absent\n2: %s (%s, %d cpus)\n",
1377 			       info->cpu[1].cpu_name,
1378 			       second_processor, info->cpu[1].cpu_count);
1379 	else
1380 		ret = snprintf(buf, 64, "1: absent\n2: absent\n");
1381 
1382 	return ret;
1383 }
1384 static DEVICE_ATTR_RO(processor);
1385 
1386 static ssize_t model_show(struct device *dev,
1387 		struct device_attribute *attr, char *buf)
1388 {
1389 	struct Scsi_Host *shost = class_to_shost(dev);
1390 	struct myrs_hba *cs = shost_priv(shost);
1391 
1392 	return snprintf(buf, 28, "%s\n", cs->model_name);
1393 }
1394 static DEVICE_ATTR_RO(model);
1395 
1396 static ssize_t ctlr_type_show(struct device *dev,
1397 		struct device_attribute *attr, char *buf)
1398 {
1399 	struct Scsi_Host *shost = class_to_shost(dev);
1400 	struct myrs_hba *cs = shost_priv(shost);
1401 
1402 	return snprintf(buf, 4, "%d\n", cs->ctlr_info->ctlr_type);
1403 }
1404 static DEVICE_ATTR_RO(ctlr_type);
1405 
1406 static ssize_t cache_size_show(struct device *dev,
1407 		struct device_attribute *attr, char *buf)
1408 {
1409 	struct Scsi_Host *shost = class_to_shost(dev);
1410 	struct myrs_hba *cs = shost_priv(shost);
1411 
1412 	return snprintf(buf, 8, "%d MB\n", cs->ctlr_info->cache_size_mb);
1413 }
1414 static DEVICE_ATTR_RO(cache_size);
1415 
1416 static ssize_t firmware_show(struct device *dev,
1417 		struct device_attribute *attr, char *buf)
1418 {
1419 	struct Scsi_Host *shost = class_to_shost(dev);
1420 	struct myrs_hba *cs = shost_priv(shost);
1421 
1422 	return snprintf(buf, 16, "%d.%02d-%02d\n",
1423 			cs->ctlr_info->fw_major_version,
1424 			cs->ctlr_info->fw_minor_version,
1425 			cs->ctlr_info->fw_turn_number);
1426 }
1427 static DEVICE_ATTR_RO(firmware);
1428 
1429 static ssize_t discovery_store(struct device *dev,
1430 		struct device_attribute *attr, const char *buf, size_t count)
1431 {
1432 	struct Scsi_Host *shost = class_to_shost(dev);
1433 	struct myrs_hba *cs = shost_priv(shost);
1434 	struct myrs_cmdblk *cmd_blk;
1435 	union myrs_cmd_mbox *mbox;
1436 	unsigned char status;
1437 
1438 	mutex_lock(&cs->dcmd_mutex);
1439 	cmd_blk = &cs->dcmd_blk;
1440 	myrs_reset_cmd(cmd_blk);
1441 	mbox = &cmd_blk->mbox;
1442 	mbox->common.opcode = MYRS_CMD_OP_IOCTL;
1443 	mbox->common.id = MYRS_DCMD_TAG;
1444 	mbox->common.control.dma_ctrl_to_host = true;
1445 	mbox->common.control.no_autosense = true;
1446 	mbox->common.ioctl_opcode = MYRS_IOCTL_START_DISCOVERY;
1447 	myrs_exec_cmd(cs, cmd_blk);
1448 	status = cmd_blk->status;
1449 	mutex_unlock(&cs->dcmd_mutex);
1450 	if (status != MYRS_STATUS_SUCCESS) {
1451 		shost_printk(KERN_INFO, shost,
1452 			     "Discovery Not Initiated, status %02X\n",
1453 			     status);
1454 		return -EINVAL;
1455 	}
1456 	shost_printk(KERN_INFO, shost, "Discovery Initiated\n");
1457 	cs->next_evseq = 0;
1458 	cs->needs_update = true;
1459 	queue_delayed_work(cs->work_q, &cs->monitor_work, 1);
1460 	flush_delayed_work(&cs->monitor_work);
1461 	shost_printk(KERN_INFO, shost, "Discovery Completed\n");
1462 
1463 	return count;
1464 }
1465 static DEVICE_ATTR_WO(discovery);
1466 
1467 static ssize_t flush_cache_store(struct device *dev,
1468 		struct device_attribute *attr, const char *buf, size_t count)
1469 {
1470 	struct Scsi_Host *shost = class_to_shost(dev);
1471 	struct myrs_hba *cs = shost_priv(shost);
1472 	unsigned char status;
1473 
1474 	status = myrs_dev_op(cs, MYRS_IOCTL_FLUSH_DEVICE_DATA,
1475 			     MYRS_RAID_CONTROLLER);
1476 	if (status == MYRS_STATUS_SUCCESS) {
1477 		shost_printk(KERN_INFO, shost, "Cache Flush Completed\n");
1478 		return count;
1479 	}
1480 	shost_printk(KERN_INFO, shost,
1481 		     "Cache Flush failed, status 0x%02x\n", status);
1482 	return -EIO;
1483 }
1484 static DEVICE_ATTR_WO(flush_cache);
1485 
1486 static ssize_t disable_enclosure_messages_show(struct device *dev,
1487 		struct device_attribute *attr, char *buf)
1488 {
1489 	struct Scsi_Host *shost = class_to_shost(dev);
1490 	struct myrs_hba *cs = shost_priv(shost);
1491 
1492 	return snprintf(buf, 3, "%d\n", cs->disable_enc_msg);
1493 }
1494 
1495 static ssize_t disable_enclosure_messages_store(struct device *dev,
1496 		struct device_attribute *attr, const char *buf, size_t count)
1497 {
1498 	struct scsi_device *sdev = to_scsi_device(dev);
1499 	struct myrs_hba *cs = shost_priv(sdev->host);
1500 	int value, ret;
1501 
1502 	ret = kstrtoint(buf, 0, &value);
1503 	if (ret)
1504 		return ret;
1505 
1506 	if (value > 2)
1507 		return -EINVAL;
1508 
1509 	cs->disable_enc_msg = value;
1510 	return count;
1511 }
1512 static DEVICE_ATTR_RW(disable_enclosure_messages);
1513 
1514 static struct device_attribute *myrs_shost_attrs[] = {
1515 	&dev_attr_serial,
1516 	&dev_attr_ctlr_num,
1517 	&dev_attr_processor,
1518 	&dev_attr_model,
1519 	&dev_attr_ctlr_type,
1520 	&dev_attr_cache_size,
1521 	&dev_attr_firmware,
1522 	&dev_attr_discovery,
1523 	&dev_attr_flush_cache,
1524 	&dev_attr_disable_enclosure_messages,
1525 	NULL,
1526 };
1527 
1528 /*
1529  * SCSI midlayer interface
1530  */
1531 static int myrs_host_reset(struct scsi_cmnd *scmd)
1532 {
1533 	struct Scsi_Host *shost = scmd->device->host;
1534 	struct myrs_hba *cs = shost_priv(shost);
1535 
1536 	cs->reset(cs->io_base);
1537 	return SUCCESS;
1538 }
1539 
1540 static void myrs_mode_sense(struct myrs_hba *cs, struct scsi_cmnd *scmd,
1541 		struct myrs_ldev_info *ldev_info)
1542 {
1543 	unsigned char modes[32], *mode_pg;
1544 	bool dbd;
1545 	size_t mode_len;
1546 
1547 	dbd = (scmd->cmnd[1] & 0x08) == 0x08;
1548 	if (dbd) {
1549 		mode_len = 24;
1550 		mode_pg = &modes[4];
1551 	} else {
1552 		mode_len = 32;
1553 		mode_pg = &modes[12];
1554 	}
1555 	memset(modes, 0, sizeof(modes));
1556 	modes[0] = mode_len - 1;
1557 	modes[2] = 0x10; /* Enable FUA */
1558 	if (ldev_info->ldev_control.wce == MYRS_LOGICALDEVICE_RO)
1559 		modes[2] |= 0x80;
1560 	if (!dbd) {
1561 		unsigned char *block_desc = &modes[4];
1562 
1563 		modes[3] = 8;
1564 		put_unaligned_be32(ldev_info->cfg_devsize, &block_desc[0]);
1565 		put_unaligned_be32(ldev_info->devsize_bytes, &block_desc[5]);
1566 	}
1567 	mode_pg[0] = 0x08;
1568 	mode_pg[1] = 0x12;
1569 	if (ldev_info->ldev_control.rce == MYRS_READCACHE_DISABLED)
1570 		mode_pg[2] |= 0x01;
1571 	if (ldev_info->ldev_control.wce == MYRS_WRITECACHE_ENABLED ||
1572 	    ldev_info->ldev_control.wce == MYRS_INTELLIGENT_WRITECACHE_ENABLED)
1573 		mode_pg[2] |= 0x04;
1574 	if (ldev_info->cacheline_size) {
1575 		mode_pg[2] |= 0x08;
1576 		put_unaligned_be16(1 << ldev_info->cacheline_size,
1577 				   &mode_pg[14]);
1578 	}
1579 
1580 	scsi_sg_copy_from_buffer(scmd, modes, mode_len);
1581 }
1582 
1583 static int myrs_queuecommand(struct Scsi_Host *shost,
1584 		struct scsi_cmnd *scmd)
1585 {
1586 	struct myrs_hba *cs = shost_priv(shost);
1587 	struct myrs_cmdblk *cmd_blk = scsi_cmd_priv(scmd);
1588 	union myrs_cmd_mbox *mbox = &cmd_blk->mbox;
1589 	struct scsi_device *sdev = scmd->device;
1590 	union myrs_sgl *hw_sge;
1591 	dma_addr_t sense_addr;
1592 	struct scatterlist *sgl;
1593 	unsigned long flags, timeout;
1594 	int nsge;
1595 
1596 	if (!scmd->device->hostdata) {
1597 		scmd->result = (DID_NO_CONNECT << 16);
1598 		scmd->scsi_done(scmd);
1599 		return 0;
1600 	}
1601 
1602 	switch (scmd->cmnd[0]) {
1603 	case REPORT_LUNS:
1604 		scsi_build_sense_buffer(0, scmd->sense_buffer, ILLEGAL_REQUEST,
1605 					0x20, 0x0);
1606 		scmd->result = (DRIVER_SENSE << 24) | SAM_STAT_CHECK_CONDITION;
1607 		scmd->scsi_done(scmd);
1608 		return 0;
1609 	case MODE_SENSE:
1610 		if (scmd->device->channel >= cs->ctlr_info->physchan_present) {
1611 			struct myrs_ldev_info *ldev_info = sdev->hostdata;
1612 
1613 			if ((scmd->cmnd[2] & 0x3F) != 0x3F &&
1614 			    (scmd->cmnd[2] & 0x3F) != 0x08) {
1615 				/* Illegal request, invalid field in CDB */
1616 				scsi_build_sense_buffer(0, scmd->sense_buffer,
1617 					ILLEGAL_REQUEST, 0x24, 0);
1618 				scmd->result = (DRIVER_SENSE << 24) |
1619 					SAM_STAT_CHECK_CONDITION;
1620 			} else {
1621 				myrs_mode_sense(cs, scmd, ldev_info);
1622 				scmd->result = (DID_OK << 16);
1623 			}
1624 			scmd->scsi_done(scmd);
1625 			return 0;
1626 		}
1627 		break;
1628 	}
1629 
1630 	myrs_reset_cmd(cmd_blk);
1631 	cmd_blk->sense = dma_pool_alloc(cs->sense_pool, GFP_ATOMIC,
1632 					&sense_addr);
1633 	if (!cmd_blk->sense)
1634 		return SCSI_MLQUEUE_HOST_BUSY;
1635 	cmd_blk->sense_addr = sense_addr;
1636 
1637 	timeout = scmd->request->timeout;
1638 	if (scmd->cmd_len <= 10) {
1639 		if (scmd->device->channel >= cs->ctlr_info->physchan_present) {
1640 			struct myrs_ldev_info *ldev_info = sdev->hostdata;
1641 
1642 			mbox->SCSI_10.opcode = MYRS_CMD_OP_SCSI_10;
1643 			mbox->SCSI_10.pdev.lun = ldev_info->lun;
1644 			mbox->SCSI_10.pdev.target = ldev_info->target;
1645 			mbox->SCSI_10.pdev.channel = ldev_info->channel;
1646 			mbox->SCSI_10.pdev.ctlr = 0;
1647 		} else {
1648 			mbox->SCSI_10.opcode = MYRS_CMD_OP_SCSI_10_PASSTHRU;
1649 			mbox->SCSI_10.pdev.lun = sdev->lun;
1650 			mbox->SCSI_10.pdev.target = sdev->id;
1651 			mbox->SCSI_10.pdev.channel = sdev->channel;
1652 		}
1653 		mbox->SCSI_10.id = scmd->request->tag + 3;
1654 		mbox->SCSI_10.control.dma_ctrl_to_host =
1655 			(scmd->sc_data_direction == DMA_FROM_DEVICE);
1656 		if (scmd->request->cmd_flags & REQ_FUA)
1657 			mbox->SCSI_10.control.fua = true;
1658 		mbox->SCSI_10.dma_size = scsi_bufflen(scmd);
1659 		mbox->SCSI_10.sense_addr = cmd_blk->sense_addr;
1660 		mbox->SCSI_10.sense_len = MYRS_SENSE_SIZE;
1661 		mbox->SCSI_10.cdb_len = scmd->cmd_len;
1662 		if (timeout > 60) {
1663 			mbox->SCSI_10.tmo.tmo_scale = MYRS_TMO_SCALE_MINUTES;
1664 			mbox->SCSI_10.tmo.tmo_val = timeout / 60;
1665 		} else {
1666 			mbox->SCSI_10.tmo.tmo_scale = MYRS_TMO_SCALE_SECONDS;
1667 			mbox->SCSI_10.tmo.tmo_val = timeout;
1668 		}
1669 		memcpy(&mbox->SCSI_10.cdb, scmd->cmnd, scmd->cmd_len);
1670 		hw_sge = &mbox->SCSI_10.dma_addr;
1671 		cmd_blk->dcdb = NULL;
1672 	} else {
1673 		dma_addr_t dcdb_dma;
1674 
1675 		cmd_blk->dcdb = dma_pool_alloc(cs->dcdb_pool, GFP_ATOMIC,
1676 					       &dcdb_dma);
1677 		if (!cmd_blk->dcdb) {
1678 			dma_pool_free(cs->sense_pool, cmd_blk->sense,
1679 				      cmd_blk->sense_addr);
1680 			cmd_blk->sense = NULL;
1681 			cmd_blk->sense_addr = 0;
1682 			return SCSI_MLQUEUE_HOST_BUSY;
1683 		}
1684 		cmd_blk->dcdb_dma = dcdb_dma;
1685 		if (scmd->device->channel >= cs->ctlr_info->physchan_present) {
1686 			struct myrs_ldev_info *ldev_info = sdev->hostdata;
1687 
1688 			mbox->SCSI_255.opcode = MYRS_CMD_OP_SCSI_256;
1689 			mbox->SCSI_255.pdev.lun = ldev_info->lun;
1690 			mbox->SCSI_255.pdev.target = ldev_info->target;
1691 			mbox->SCSI_255.pdev.channel = ldev_info->channel;
1692 			mbox->SCSI_255.pdev.ctlr = 0;
1693 		} else {
1694 			mbox->SCSI_255.opcode = MYRS_CMD_OP_SCSI_255_PASSTHRU;
1695 			mbox->SCSI_255.pdev.lun = sdev->lun;
1696 			mbox->SCSI_255.pdev.target = sdev->id;
1697 			mbox->SCSI_255.pdev.channel = sdev->channel;
1698 		}
1699 		mbox->SCSI_255.id = scmd->request->tag + 3;
1700 		mbox->SCSI_255.control.dma_ctrl_to_host =
1701 			(scmd->sc_data_direction == DMA_FROM_DEVICE);
1702 		if (scmd->request->cmd_flags & REQ_FUA)
1703 			mbox->SCSI_255.control.fua = true;
1704 		mbox->SCSI_255.dma_size = scsi_bufflen(scmd);
1705 		mbox->SCSI_255.sense_addr = cmd_blk->sense_addr;
1706 		mbox->SCSI_255.sense_len = MYRS_SENSE_SIZE;
1707 		mbox->SCSI_255.cdb_len = scmd->cmd_len;
1708 		mbox->SCSI_255.cdb_addr = cmd_blk->dcdb_dma;
1709 		if (timeout > 60) {
1710 			mbox->SCSI_255.tmo.tmo_scale = MYRS_TMO_SCALE_MINUTES;
1711 			mbox->SCSI_255.tmo.tmo_val = timeout / 60;
1712 		} else {
1713 			mbox->SCSI_255.tmo.tmo_scale = MYRS_TMO_SCALE_SECONDS;
1714 			mbox->SCSI_255.tmo.tmo_val = timeout;
1715 		}
1716 		memcpy(cmd_blk->dcdb, scmd->cmnd, scmd->cmd_len);
1717 		hw_sge = &mbox->SCSI_255.dma_addr;
1718 	}
1719 	if (scmd->sc_data_direction == DMA_NONE)
1720 		goto submit;
1721 	nsge = scsi_dma_map(scmd);
1722 	if (nsge == 1) {
1723 		sgl = scsi_sglist(scmd);
1724 		hw_sge->sge[0].sge_addr = (u64)sg_dma_address(sgl);
1725 		hw_sge->sge[0].sge_count = (u64)sg_dma_len(sgl);
1726 	} else {
1727 		struct myrs_sge *hw_sgl;
1728 		dma_addr_t hw_sgl_addr;
1729 		int i;
1730 
1731 		if (nsge > 2) {
1732 			hw_sgl = dma_pool_alloc(cs->sg_pool, GFP_ATOMIC,
1733 						&hw_sgl_addr);
1734 			if (WARN_ON(!hw_sgl)) {
1735 				if (cmd_blk->dcdb) {
1736 					dma_pool_free(cs->dcdb_pool,
1737 						      cmd_blk->dcdb,
1738 						      cmd_blk->dcdb_dma);
1739 					cmd_blk->dcdb = NULL;
1740 					cmd_blk->dcdb_dma = 0;
1741 				}
1742 				dma_pool_free(cs->sense_pool,
1743 					      cmd_blk->sense,
1744 					      cmd_blk->sense_addr);
1745 				cmd_blk->sense = NULL;
1746 				cmd_blk->sense_addr = 0;
1747 				return SCSI_MLQUEUE_HOST_BUSY;
1748 			}
1749 			cmd_blk->sgl = hw_sgl;
1750 			cmd_blk->sgl_addr = hw_sgl_addr;
1751 			if (scmd->cmd_len <= 10)
1752 				mbox->SCSI_10.control.add_sge_mem = true;
1753 			else
1754 				mbox->SCSI_255.control.add_sge_mem = true;
1755 			hw_sge->ext.sge0_len = nsge;
1756 			hw_sge->ext.sge0_addr = cmd_blk->sgl_addr;
1757 		} else
1758 			hw_sgl = hw_sge->sge;
1759 
1760 		scsi_for_each_sg(scmd, sgl, nsge, i) {
1761 			if (WARN_ON(!hw_sgl)) {
1762 				scsi_dma_unmap(scmd);
1763 				scmd->result = (DID_ERROR << 16);
1764 				scmd->scsi_done(scmd);
1765 				return 0;
1766 			}
1767 			hw_sgl->sge_addr = (u64)sg_dma_address(sgl);
1768 			hw_sgl->sge_count = (u64)sg_dma_len(sgl);
1769 			hw_sgl++;
1770 		}
1771 	}
1772 submit:
1773 	spin_lock_irqsave(&cs->queue_lock, flags);
1774 	myrs_qcmd(cs, cmd_blk);
1775 	spin_unlock_irqrestore(&cs->queue_lock, flags);
1776 
1777 	return 0;
1778 }
1779 
1780 static unsigned short myrs_translate_ldev(struct myrs_hba *cs,
1781 		struct scsi_device *sdev)
1782 {
1783 	unsigned short ldev_num;
1784 	unsigned int chan_offset =
1785 		sdev->channel - cs->ctlr_info->physchan_present;
1786 
1787 	ldev_num = sdev->id + chan_offset * sdev->host->max_id;
1788 
1789 	return ldev_num;
1790 }
1791 
1792 static int myrs_slave_alloc(struct scsi_device *sdev)
1793 {
1794 	struct myrs_hba *cs = shost_priv(sdev->host);
1795 	unsigned char status;
1796 
1797 	if (sdev->channel > sdev->host->max_channel)
1798 		return 0;
1799 
1800 	if (sdev->channel >= cs->ctlr_info->physchan_present) {
1801 		struct myrs_ldev_info *ldev_info;
1802 		unsigned short ldev_num;
1803 
1804 		if (sdev->lun > 0)
1805 			return -ENXIO;
1806 
1807 		ldev_num = myrs_translate_ldev(cs, sdev);
1808 
1809 		ldev_info = kzalloc(sizeof(*ldev_info), GFP_KERNEL|GFP_DMA);
1810 		if (!ldev_info)
1811 			return -ENOMEM;
1812 
1813 		status = myrs_get_ldev_info(cs, ldev_num, ldev_info);
1814 		if (status != MYRS_STATUS_SUCCESS) {
1815 			sdev->hostdata = NULL;
1816 			kfree(ldev_info);
1817 		} else {
1818 			enum raid_level level;
1819 
1820 			dev_dbg(&sdev->sdev_gendev,
1821 				"Logical device mapping %d:%d:%d -> %d\n",
1822 				ldev_info->channel, ldev_info->target,
1823 				ldev_info->lun, ldev_info->ldev_num);
1824 
1825 			sdev->hostdata = ldev_info;
1826 			switch (ldev_info->raid_level) {
1827 			case MYRS_RAID_LEVEL0:
1828 				level = RAID_LEVEL_LINEAR;
1829 				break;
1830 			case MYRS_RAID_LEVEL1:
1831 				level = RAID_LEVEL_1;
1832 				break;
1833 			case MYRS_RAID_LEVEL3:
1834 			case MYRS_RAID_LEVEL3F:
1835 			case MYRS_RAID_LEVEL3L:
1836 				level = RAID_LEVEL_3;
1837 				break;
1838 			case MYRS_RAID_LEVEL5:
1839 			case MYRS_RAID_LEVEL5L:
1840 				level = RAID_LEVEL_5;
1841 				break;
1842 			case MYRS_RAID_LEVEL6:
1843 				level = RAID_LEVEL_6;
1844 				break;
1845 			case MYRS_RAID_LEVELE:
1846 			case MYRS_RAID_NEWSPAN:
1847 			case MYRS_RAID_SPAN:
1848 				level = RAID_LEVEL_LINEAR;
1849 				break;
1850 			case MYRS_RAID_JBOD:
1851 				level = RAID_LEVEL_JBOD;
1852 				break;
1853 			default:
1854 				level = RAID_LEVEL_UNKNOWN;
1855 				break;
1856 			}
1857 			raid_set_level(myrs_raid_template,
1858 				       &sdev->sdev_gendev, level);
1859 			if (ldev_info->dev_state != MYRS_DEVICE_ONLINE) {
1860 				const char *name;
1861 
1862 				name = myrs_devstate_name(ldev_info->dev_state);
1863 				sdev_printk(KERN_DEBUG, sdev,
1864 					    "logical device in state %s\n",
1865 					    name ? name : "Invalid");
1866 			}
1867 		}
1868 	} else {
1869 		struct myrs_pdev_info *pdev_info;
1870 
1871 		pdev_info = kzalloc(sizeof(*pdev_info), GFP_KERNEL|GFP_DMA);
1872 		if (!pdev_info)
1873 			return -ENOMEM;
1874 
1875 		status = myrs_get_pdev_info(cs, sdev->channel,
1876 					    sdev->id, sdev->lun,
1877 					    pdev_info);
1878 		if (status != MYRS_STATUS_SUCCESS) {
1879 			sdev->hostdata = NULL;
1880 			kfree(pdev_info);
1881 			return -ENXIO;
1882 		}
1883 		sdev->hostdata = pdev_info;
1884 	}
1885 	return 0;
1886 }
1887 
1888 static int myrs_slave_configure(struct scsi_device *sdev)
1889 {
1890 	struct myrs_hba *cs = shost_priv(sdev->host);
1891 	struct myrs_ldev_info *ldev_info;
1892 
1893 	if (sdev->channel > sdev->host->max_channel)
1894 		return -ENXIO;
1895 
1896 	if (sdev->channel < cs->ctlr_info->physchan_present) {
1897 		/* Skip HBA device */
1898 		if (sdev->type == TYPE_RAID)
1899 			return -ENXIO;
1900 		sdev->no_uld_attach = 1;
1901 		return 0;
1902 	}
1903 	if (sdev->lun != 0)
1904 		return -ENXIO;
1905 
1906 	ldev_info = sdev->hostdata;
1907 	if (!ldev_info)
1908 		return -ENXIO;
1909 	if (ldev_info->ldev_control.wce == MYRS_WRITECACHE_ENABLED ||
1910 	    ldev_info->ldev_control.wce == MYRS_INTELLIGENT_WRITECACHE_ENABLED)
1911 		sdev->wce_default_on = 1;
1912 	sdev->tagged_supported = 1;
1913 	return 0;
1914 }
1915 
1916 static void myrs_slave_destroy(struct scsi_device *sdev)
1917 {
1918 	kfree(sdev->hostdata);
1919 }
1920 
1921 static struct scsi_host_template myrs_template = {
1922 	.module			= THIS_MODULE,
1923 	.name			= "DAC960",
1924 	.proc_name		= "myrs",
1925 	.queuecommand		= myrs_queuecommand,
1926 	.eh_host_reset_handler	= myrs_host_reset,
1927 	.slave_alloc		= myrs_slave_alloc,
1928 	.slave_configure	= myrs_slave_configure,
1929 	.slave_destroy		= myrs_slave_destroy,
1930 	.cmd_size		= sizeof(struct myrs_cmdblk),
1931 	.shost_attrs		= myrs_shost_attrs,
1932 	.sdev_attrs		= myrs_sdev_attrs,
1933 	.this_id		= -1,
1934 };
1935 
1936 static struct myrs_hba *myrs_alloc_host(struct pci_dev *pdev,
1937 		const struct pci_device_id *entry)
1938 {
1939 	struct Scsi_Host *shost;
1940 	struct myrs_hba *cs;
1941 
1942 	shost = scsi_host_alloc(&myrs_template, sizeof(struct myrs_hba));
1943 	if (!shost)
1944 		return NULL;
1945 
1946 	shost->max_cmd_len = 16;
1947 	shost->max_lun = 256;
1948 	cs = shost_priv(shost);
1949 	mutex_init(&cs->dcmd_mutex);
1950 	mutex_init(&cs->cinfo_mutex);
1951 	cs->host = shost;
1952 
1953 	return cs;
1954 }
1955 
1956 /*
1957  * RAID template functions
1958  */
1959 
1960 /**
1961  * myrs_is_raid - return boolean indicating device is raid volume
1962  * @dev the device struct object
1963  */
1964 static int
1965 myrs_is_raid(struct device *dev)
1966 {
1967 	struct scsi_device *sdev = to_scsi_device(dev);
1968 	struct myrs_hba *cs = shost_priv(sdev->host);
1969 
1970 	return (sdev->channel >= cs->ctlr_info->physchan_present) ? 1 : 0;
1971 }
1972 
1973 /**
1974  * myrs_get_resync - get raid volume resync percent complete
1975  * @dev the device struct object
1976  */
1977 static void
1978 myrs_get_resync(struct device *dev)
1979 {
1980 	struct scsi_device *sdev = to_scsi_device(dev);
1981 	struct myrs_hba *cs = shost_priv(sdev->host);
1982 	struct myrs_ldev_info *ldev_info = sdev->hostdata;
1983 	u64 percent_complete = 0;
1984 	u8 status;
1985 
1986 	if (sdev->channel < cs->ctlr_info->physchan_present || !ldev_info)
1987 		return;
1988 	if (ldev_info->rbld_active) {
1989 		unsigned short ldev_num = ldev_info->ldev_num;
1990 
1991 		status = myrs_get_ldev_info(cs, ldev_num, ldev_info);
1992 		percent_complete = ldev_info->rbld_lba * 100;
1993 		do_div(percent_complete, ldev_info->cfg_devsize);
1994 	}
1995 	raid_set_resync(myrs_raid_template, dev, percent_complete);
1996 }
1997 
1998 /**
1999  * myrs_get_state - get raid volume status
2000  * @dev the device struct object
2001  */
2002 static void
2003 myrs_get_state(struct device *dev)
2004 {
2005 	struct scsi_device *sdev = to_scsi_device(dev);
2006 	struct myrs_hba *cs = shost_priv(sdev->host);
2007 	struct myrs_ldev_info *ldev_info = sdev->hostdata;
2008 	enum raid_state state = RAID_STATE_UNKNOWN;
2009 
2010 	if (sdev->channel < cs->ctlr_info->physchan_present || !ldev_info)
2011 		state = RAID_STATE_UNKNOWN;
2012 	else {
2013 		switch (ldev_info->dev_state) {
2014 		case MYRS_DEVICE_ONLINE:
2015 			state = RAID_STATE_ACTIVE;
2016 			break;
2017 		case MYRS_DEVICE_SUSPECTED_CRITICAL:
2018 		case MYRS_DEVICE_CRITICAL:
2019 			state = RAID_STATE_DEGRADED;
2020 			break;
2021 		case MYRS_DEVICE_REBUILD:
2022 			state = RAID_STATE_RESYNCING;
2023 			break;
2024 		case MYRS_DEVICE_UNCONFIGURED:
2025 		case MYRS_DEVICE_INVALID_STATE:
2026 			state = RAID_STATE_UNKNOWN;
2027 			break;
2028 		default:
2029 			state = RAID_STATE_OFFLINE;
2030 		}
2031 	}
2032 	raid_set_state(myrs_raid_template, dev, state);
2033 }
2034 
2035 static struct raid_function_template myrs_raid_functions = {
2036 	.cookie		= &myrs_template,
2037 	.is_raid	= myrs_is_raid,
2038 	.get_resync	= myrs_get_resync,
2039 	.get_state	= myrs_get_state,
2040 };
2041 
2042 /*
2043  * PCI interface functions
2044  */
2045 static void myrs_flush_cache(struct myrs_hba *cs)
2046 {
2047 	myrs_dev_op(cs, MYRS_IOCTL_FLUSH_DEVICE_DATA, MYRS_RAID_CONTROLLER);
2048 }
2049 
2050 static void myrs_handle_scsi(struct myrs_hba *cs, struct myrs_cmdblk *cmd_blk,
2051 		struct scsi_cmnd *scmd)
2052 {
2053 	unsigned char status;
2054 
2055 	if (!cmd_blk)
2056 		return;
2057 
2058 	scsi_dma_unmap(scmd);
2059 	status = cmd_blk->status;
2060 	if (cmd_blk->sense) {
2061 		if (status == MYRS_STATUS_FAILED && cmd_blk->sense_len) {
2062 			unsigned int sense_len = SCSI_SENSE_BUFFERSIZE;
2063 
2064 			if (sense_len > cmd_blk->sense_len)
2065 				sense_len = cmd_blk->sense_len;
2066 			memcpy(scmd->sense_buffer, cmd_blk->sense, sense_len);
2067 		}
2068 		dma_pool_free(cs->sense_pool, cmd_blk->sense,
2069 			      cmd_blk->sense_addr);
2070 		cmd_blk->sense = NULL;
2071 		cmd_blk->sense_addr = 0;
2072 	}
2073 	if (cmd_blk->dcdb) {
2074 		dma_pool_free(cs->dcdb_pool, cmd_blk->dcdb,
2075 			      cmd_blk->dcdb_dma);
2076 		cmd_blk->dcdb = NULL;
2077 		cmd_blk->dcdb_dma = 0;
2078 	}
2079 	if (cmd_blk->sgl) {
2080 		dma_pool_free(cs->sg_pool, cmd_blk->sgl,
2081 			      cmd_blk->sgl_addr);
2082 		cmd_blk->sgl = NULL;
2083 		cmd_blk->sgl_addr = 0;
2084 	}
2085 	if (cmd_blk->residual)
2086 		scsi_set_resid(scmd, cmd_blk->residual);
2087 	if (status == MYRS_STATUS_DEVICE_NON_RESPONSIVE ||
2088 	    status == MYRS_STATUS_DEVICE_NON_RESPONSIVE2)
2089 		scmd->result = (DID_BAD_TARGET << 16);
2090 	else
2091 		scmd->result = (DID_OK << 16) | status;
2092 	scmd->scsi_done(scmd);
2093 }
2094 
2095 static void myrs_handle_cmdblk(struct myrs_hba *cs, struct myrs_cmdblk *cmd_blk)
2096 {
2097 	if (!cmd_blk)
2098 		return;
2099 
2100 	if (cmd_blk->complete) {
2101 		complete(cmd_blk->complete);
2102 		cmd_blk->complete = NULL;
2103 	}
2104 }
2105 
2106 static void myrs_monitor(struct work_struct *work)
2107 {
2108 	struct myrs_hba *cs = container_of(work, struct myrs_hba,
2109 					   monitor_work.work);
2110 	struct Scsi_Host *shost = cs->host;
2111 	struct myrs_ctlr_info *info = cs->ctlr_info;
2112 	unsigned int epoch = cs->fwstat_buf->epoch;
2113 	unsigned long interval = MYRS_PRIMARY_MONITOR_INTERVAL;
2114 	unsigned char status;
2115 
2116 	dev_dbg(&shost->shost_gendev, "monitor tick\n");
2117 
2118 	status = myrs_get_fwstatus(cs);
2119 
2120 	if (cs->needs_update) {
2121 		cs->needs_update = false;
2122 		mutex_lock(&cs->cinfo_mutex);
2123 		status = myrs_get_ctlr_info(cs);
2124 		mutex_unlock(&cs->cinfo_mutex);
2125 	}
2126 	if (cs->fwstat_buf->next_evseq - cs->next_evseq > 0) {
2127 		status = myrs_get_event(cs, cs->next_evseq,
2128 					cs->event_buf);
2129 		if (status == MYRS_STATUS_SUCCESS) {
2130 			myrs_log_event(cs, cs->event_buf);
2131 			cs->next_evseq++;
2132 			interval = 1;
2133 		}
2134 	}
2135 
2136 	if (time_after(jiffies, cs->secondary_monitor_time
2137 		       + MYRS_SECONDARY_MONITOR_INTERVAL))
2138 		cs->secondary_monitor_time = jiffies;
2139 
2140 	if (info->bg_init_active +
2141 	    info->ldev_init_active +
2142 	    info->pdev_init_active +
2143 	    info->cc_active +
2144 	    info->rbld_active +
2145 	    info->exp_active != 0) {
2146 		struct scsi_device *sdev;
2147 
2148 		shost_for_each_device(sdev, shost) {
2149 			struct myrs_ldev_info *ldev_info;
2150 			int ldev_num;
2151 
2152 			if (sdev->channel < info->physchan_present)
2153 				continue;
2154 			ldev_info = sdev->hostdata;
2155 			if (!ldev_info)
2156 				continue;
2157 			ldev_num = ldev_info->ldev_num;
2158 			myrs_get_ldev_info(cs, ldev_num, ldev_info);
2159 		}
2160 		cs->needs_update = true;
2161 	}
2162 	if (epoch == cs->epoch &&
2163 	    cs->fwstat_buf->next_evseq == cs->next_evseq &&
2164 	    (cs->needs_update == false ||
2165 	     time_before(jiffies, cs->primary_monitor_time
2166 			 + MYRS_PRIMARY_MONITOR_INTERVAL))) {
2167 		interval = MYRS_SECONDARY_MONITOR_INTERVAL;
2168 	}
2169 
2170 	if (interval > 1)
2171 		cs->primary_monitor_time = jiffies;
2172 	queue_delayed_work(cs->work_q, &cs->monitor_work, interval);
2173 }
2174 
2175 static bool myrs_create_mempools(struct pci_dev *pdev, struct myrs_hba *cs)
2176 {
2177 	struct Scsi_Host *shost = cs->host;
2178 	size_t elem_size, elem_align;
2179 
2180 	elem_align = sizeof(struct myrs_sge);
2181 	elem_size = shost->sg_tablesize * elem_align;
2182 	cs->sg_pool = dma_pool_create("myrs_sg", &pdev->dev,
2183 				      elem_size, elem_align, 0);
2184 	if (cs->sg_pool == NULL) {
2185 		shost_printk(KERN_ERR, shost,
2186 			     "Failed to allocate SG pool\n");
2187 		return false;
2188 	}
2189 
2190 	cs->sense_pool = dma_pool_create("myrs_sense", &pdev->dev,
2191 					 MYRS_SENSE_SIZE, sizeof(int), 0);
2192 	if (cs->sense_pool == NULL) {
2193 		dma_pool_destroy(cs->sg_pool);
2194 		cs->sg_pool = NULL;
2195 		shost_printk(KERN_ERR, shost,
2196 			     "Failed to allocate sense data pool\n");
2197 		return false;
2198 	}
2199 
2200 	cs->dcdb_pool = dma_pool_create("myrs_dcdb", &pdev->dev,
2201 					MYRS_DCDB_SIZE,
2202 					sizeof(unsigned char), 0);
2203 	if (!cs->dcdb_pool) {
2204 		dma_pool_destroy(cs->sg_pool);
2205 		cs->sg_pool = NULL;
2206 		dma_pool_destroy(cs->sense_pool);
2207 		cs->sense_pool = NULL;
2208 		shost_printk(KERN_ERR, shost,
2209 			     "Failed to allocate DCDB pool\n");
2210 		return false;
2211 	}
2212 
2213 	snprintf(cs->work_q_name, sizeof(cs->work_q_name),
2214 		 "myrs_wq_%d", shost->host_no);
2215 	cs->work_q = create_singlethread_workqueue(cs->work_q_name);
2216 	if (!cs->work_q) {
2217 		dma_pool_destroy(cs->dcdb_pool);
2218 		cs->dcdb_pool = NULL;
2219 		dma_pool_destroy(cs->sg_pool);
2220 		cs->sg_pool = NULL;
2221 		dma_pool_destroy(cs->sense_pool);
2222 		cs->sense_pool = NULL;
2223 		shost_printk(KERN_ERR, shost,
2224 			     "Failed to create workqueue\n");
2225 		return false;
2226 	}
2227 
2228 	/* Initialize the Monitoring Timer. */
2229 	INIT_DELAYED_WORK(&cs->monitor_work, myrs_monitor);
2230 	queue_delayed_work(cs->work_q, &cs->monitor_work, 1);
2231 
2232 	return true;
2233 }
2234 
2235 static void myrs_destroy_mempools(struct myrs_hba *cs)
2236 {
2237 	cancel_delayed_work_sync(&cs->monitor_work);
2238 	destroy_workqueue(cs->work_q);
2239 
2240 	dma_pool_destroy(cs->sg_pool);
2241 	dma_pool_destroy(cs->dcdb_pool);
2242 	dma_pool_destroy(cs->sense_pool);
2243 }
2244 
2245 static void myrs_unmap(struct myrs_hba *cs)
2246 {
2247 	kfree(cs->event_buf);
2248 	kfree(cs->ctlr_info);
2249 	if (cs->fwstat_buf) {
2250 		dma_free_coherent(&cs->pdev->dev, sizeof(struct myrs_fwstat),
2251 				  cs->fwstat_buf, cs->fwstat_addr);
2252 		cs->fwstat_buf = NULL;
2253 	}
2254 	if (cs->first_stat_mbox) {
2255 		dma_free_coherent(&cs->pdev->dev, cs->stat_mbox_size,
2256 				  cs->first_stat_mbox, cs->stat_mbox_addr);
2257 		cs->first_stat_mbox = NULL;
2258 	}
2259 	if (cs->first_cmd_mbox) {
2260 		dma_free_coherent(&cs->pdev->dev, cs->cmd_mbox_size,
2261 				  cs->first_cmd_mbox, cs->cmd_mbox_addr);
2262 		cs->first_cmd_mbox = NULL;
2263 	}
2264 }
2265 
2266 static void myrs_cleanup(struct myrs_hba *cs)
2267 {
2268 	struct pci_dev *pdev = cs->pdev;
2269 
2270 	/* Free the memory mailbox, status, and related structures */
2271 	myrs_unmap(cs);
2272 
2273 	if (cs->mmio_base) {
2274 		cs->disable_intr(cs);
2275 		iounmap(cs->mmio_base);
2276 	}
2277 	if (cs->irq)
2278 		free_irq(cs->irq, cs);
2279 	if (cs->io_addr)
2280 		release_region(cs->io_addr, 0x80);
2281 	iounmap(cs->mmio_base);
2282 	pci_set_drvdata(pdev, NULL);
2283 	pci_disable_device(pdev);
2284 	scsi_host_put(cs->host);
2285 }
2286 
2287 static struct myrs_hba *myrs_detect(struct pci_dev *pdev,
2288 		const struct pci_device_id *entry)
2289 {
2290 	struct myrs_privdata *privdata =
2291 		(struct myrs_privdata *)entry->driver_data;
2292 	irq_handler_t irq_handler = privdata->irq_handler;
2293 	unsigned int mmio_size = privdata->mmio_size;
2294 	struct myrs_hba *cs = NULL;
2295 
2296 	cs = myrs_alloc_host(pdev, entry);
2297 	if (!cs) {
2298 		dev_err(&pdev->dev, "Unable to allocate Controller\n");
2299 		return NULL;
2300 	}
2301 	cs->pdev = pdev;
2302 
2303 	if (pci_enable_device(pdev))
2304 		goto Failure;
2305 
2306 	cs->pci_addr = pci_resource_start(pdev, 0);
2307 
2308 	pci_set_drvdata(pdev, cs);
2309 	spin_lock_init(&cs->queue_lock);
2310 	/* Map the Controller Register Window. */
2311 	if (mmio_size < PAGE_SIZE)
2312 		mmio_size = PAGE_SIZE;
2313 	cs->mmio_base = ioremap(cs->pci_addr & PAGE_MASK, mmio_size);
2314 	if (cs->mmio_base == NULL) {
2315 		dev_err(&pdev->dev,
2316 			"Unable to map Controller Register Window\n");
2317 		goto Failure;
2318 	}
2319 
2320 	cs->io_base = cs->mmio_base + (cs->pci_addr & ~PAGE_MASK);
2321 	if (privdata->hw_init(pdev, cs, cs->io_base))
2322 		goto Failure;
2323 
2324 	/* Acquire shared access to the IRQ Channel. */
2325 	if (request_irq(pdev->irq, irq_handler, IRQF_SHARED, "myrs", cs) < 0) {
2326 		dev_err(&pdev->dev,
2327 			"Unable to acquire IRQ Channel %d\n", pdev->irq);
2328 		goto Failure;
2329 	}
2330 	cs->irq = pdev->irq;
2331 	return cs;
2332 
2333 Failure:
2334 	dev_err(&pdev->dev,
2335 		"Failed to initialize Controller\n");
2336 	myrs_cleanup(cs);
2337 	return NULL;
2338 }
2339 
2340 /*
2341  * myrs_err_status reports Controller BIOS Messages passed through
2342  * the Error Status Register when the driver performs the BIOS handshaking.
2343  * It returns true for fatal errors and false otherwise.
2344  */
2345 
2346 static bool myrs_err_status(struct myrs_hba *cs, unsigned char status,
2347 		unsigned char parm0, unsigned char parm1)
2348 {
2349 	struct pci_dev *pdev = cs->pdev;
2350 
2351 	switch (status) {
2352 	case 0x00:
2353 		dev_info(&pdev->dev,
2354 			 "Physical Device %d:%d Not Responding\n",
2355 			 parm1, parm0);
2356 		break;
2357 	case 0x08:
2358 		dev_notice(&pdev->dev, "Spinning Up Drives\n");
2359 		break;
2360 	case 0x30:
2361 		dev_notice(&pdev->dev, "Configuration Checksum Error\n");
2362 		break;
2363 	case 0x60:
2364 		dev_notice(&pdev->dev, "Mirror Race Recovery Failed\n");
2365 		break;
2366 	case 0x70:
2367 		dev_notice(&pdev->dev, "Mirror Race Recovery In Progress\n");
2368 		break;
2369 	case 0x90:
2370 		dev_notice(&pdev->dev, "Physical Device %d:%d COD Mismatch\n",
2371 			   parm1, parm0);
2372 		break;
2373 	case 0xA0:
2374 		dev_notice(&pdev->dev, "Logical Drive Installation Aborted\n");
2375 		break;
2376 	case 0xB0:
2377 		dev_notice(&pdev->dev, "Mirror Race On A Critical Logical Drive\n");
2378 		break;
2379 	case 0xD0:
2380 		dev_notice(&pdev->dev, "New Controller Configuration Found\n");
2381 		break;
2382 	case 0xF0:
2383 		dev_err(&pdev->dev, "Fatal Memory Parity Error\n");
2384 		return true;
2385 	default:
2386 		dev_err(&pdev->dev, "Unknown Initialization Error %02X\n",
2387 			status);
2388 		return true;
2389 	}
2390 	return false;
2391 }
2392 
2393 /*
2394  * Hardware-specific functions
2395  */
2396 
2397 /*
2398  * DAC960 GEM Series Controllers.
2399  */
2400 
2401 static inline void DAC960_GEM_hw_mbox_new_cmd(void __iomem *base)
2402 {
2403 	__le32 val = cpu_to_le32(DAC960_GEM_IDB_HWMBOX_NEW_CMD << 24);
2404 
2405 	writel(val, base + DAC960_GEM_IDB_READ_OFFSET);
2406 }
2407 
2408 static inline void DAC960_GEM_ack_hw_mbox_status(void __iomem *base)
2409 {
2410 	__le32 val = cpu_to_le32(DAC960_GEM_IDB_HWMBOX_ACK_STS << 24);
2411 
2412 	writel(val, base + DAC960_GEM_IDB_CLEAR_OFFSET);
2413 }
2414 
2415 static inline void DAC960_GEM_gen_intr(void __iomem *base)
2416 {
2417 	__le32 val = cpu_to_le32(DAC960_GEM_IDB_GEN_IRQ << 24);
2418 
2419 	writel(val, base + DAC960_GEM_IDB_READ_OFFSET);
2420 }
2421 
2422 static inline void DAC960_GEM_reset_ctrl(void __iomem *base)
2423 {
2424 	__le32 val = cpu_to_le32(DAC960_GEM_IDB_CTRL_RESET << 24);
2425 
2426 	writel(val, base + DAC960_GEM_IDB_READ_OFFSET);
2427 }
2428 
2429 static inline void DAC960_GEM_mem_mbox_new_cmd(void __iomem *base)
2430 {
2431 	__le32 val = cpu_to_le32(DAC960_GEM_IDB_HWMBOX_NEW_CMD << 24);
2432 
2433 	writel(val, base + DAC960_GEM_IDB_READ_OFFSET);
2434 }
2435 
2436 static inline bool DAC960_GEM_hw_mbox_is_full(void __iomem *base)
2437 {
2438 	__le32 val;
2439 
2440 	val = readl(base + DAC960_GEM_IDB_READ_OFFSET);
2441 	return (le32_to_cpu(val) >> 24) & DAC960_GEM_IDB_HWMBOX_FULL;
2442 }
2443 
2444 static inline bool DAC960_GEM_init_in_progress(void __iomem *base)
2445 {
2446 	__le32 val;
2447 
2448 	val = readl(base + DAC960_GEM_IDB_READ_OFFSET);
2449 	return (le32_to_cpu(val) >> 24) & DAC960_GEM_IDB_INIT_IN_PROGRESS;
2450 }
2451 
2452 static inline void DAC960_GEM_ack_hw_mbox_intr(void __iomem *base)
2453 {
2454 	__le32 val = cpu_to_le32(DAC960_GEM_ODB_HWMBOX_ACK_IRQ << 24);
2455 
2456 	writel(val, base + DAC960_GEM_ODB_CLEAR_OFFSET);
2457 }
2458 
2459 static inline void DAC960_GEM_ack_mem_mbox_intr(void __iomem *base)
2460 {
2461 	__le32 val = cpu_to_le32(DAC960_GEM_ODB_MMBOX_ACK_IRQ << 24);
2462 
2463 	writel(val, base + DAC960_GEM_ODB_CLEAR_OFFSET);
2464 }
2465 
2466 static inline void DAC960_GEM_ack_intr(void __iomem *base)
2467 {
2468 	__le32 val = cpu_to_le32((DAC960_GEM_ODB_HWMBOX_ACK_IRQ |
2469 				  DAC960_GEM_ODB_MMBOX_ACK_IRQ) << 24);
2470 
2471 	writel(val, base + DAC960_GEM_ODB_CLEAR_OFFSET);
2472 }
2473 
2474 static inline bool DAC960_GEM_hw_mbox_status_available(void __iomem *base)
2475 {
2476 	__le32 val;
2477 
2478 	val = readl(base + DAC960_GEM_ODB_READ_OFFSET);
2479 	return (le32_to_cpu(val) >> 24) & DAC960_GEM_ODB_HWMBOX_STS_AVAIL;
2480 }
2481 
2482 static inline bool DAC960_GEM_mem_mbox_status_available(void __iomem *base)
2483 {
2484 	__le32 val;
2485 
2486 	val = readl(base + DAC960_GEM_ODB_READ_OFFSET);
2487 	return (le32_to_cpu(val) >> 24) & DAC960_GEM_ODB_MMBOX_STS_AVAIL;
2488 }
2489 
2490 static inline void DAC960_GEM_enable_intr(void __iomem *base)
2491 {
2492 	__le32 val = cpu_to_le32((DAC960_GEM_IRQMASK_HWMBOX_IRQ |
2493 				  DAC960_GEM_IRQMASK_MMBOX_IRQ) << 24);
2494 	writel(val, base + DAC960_GEM_IRQMASK_CLEAR_OFFSET);
2495 }
2496 
2497 static inline void DAC960_GEM_disable_intr(void __iomem *base)
2498 {
2499 	__le32 val = 0;
2500 
2501 	writel(val, base + DAC960_GEM_IRQMASK_READ_OFFSET);
2502 }
2503 
2504 static inline bool DAC960_GEM_intr_enabled(void __iomem *base)
2505 {
2506 	__le32 val;
2507 
2508 	val = readl(base + DAC960_GEM_IRQMASK_READ_OFFSET);
2509 	return !((le32_to_cpu(val) >> 24) &
2510 		 (DAC960_GEM_IRQMASK_HWMBOX_IRQ |
2511 		  DAC960_GEM_IRQMASK_MMBOX_IRQ));
2512 }
2513 
2514 static inline void DAC960_GEM_write_cmd_mbox(union myrs_cmd_mbox *mem_mbox,
2515 		union myrs_cmd_mbox *mbox)
2516 {
2517 	memcpy(&mem_mbox->words[1], &mbox->words[1],
2518 	       sizeof(union myrs_cmd_mbox) - sizeof(unsigned int));
2519 	/* Barrier to avoid reordering */
2520 	wmb();
2521 	mem_mbox->words[0] = mbox->words[0];
2522 	/* Barrier to force PCI access */
2523 	mb();
2524 }
2525 
2526 static inline void DAC960_GEM_write_hw_mbox(void __iomem *base,
2527 		dma_addr_t cmd_mbox_addr)
2528 {
2529 	dma_addr_writeql(cmd_mbox_addr, base + DAC960_GEM_CMDMBX_OFFSET);
2530 }
2531 
2532 static inline unsigned short DAC960_GEM_read_cmd_ident(void __iomem *base)
2533 {
2534 	return readw(base + DAC960_GEM_CMDSTS_OFFSET);
2535 }
2536 
2537 static inline unsigned char DAC960_GEM_read_cmd_status(void __iomem *base)
2538 {
2539 	return readw(base + DAC960_GEM_CMDSTS_OFFSET + 2);
2540 }
2541 
2542 static inline bool
2543 DAC960_GEM_read_error_status(void __iomem *base, unsigned char *error,
2544 		unsigned char *param0, unsigned char *param1)
2545 {
2546 	__le32 val;
2547 
2548 	val = readl(base + DAC960_GEM_ERRSTS_READ_OFFSET);
2549 	if (!((le32_to_cpu(val) >> 24) & DAC960_GEM_ERRSTS_PENDING))
2550 		return false;
2551 	*error = val & ~(DAC960_GEM_ERRSTS_PENDING << 24);
2552 	*param0 = readb(base + DAC960_GEM_CMDMBX_OFFSET + 0);
2553 	*param1 = readb(base + DAC960_GEM_CMDMBX_OFFSET + 1);
2554 	writel(0x03000000, base + DAC960_GEM_ERRSTS_CLEAR_OFFSET);
2555 	return true;
2556 }
2557 
2558 static inline unsigned char
2559 DAC960_GEM_mbox_init(void __iomem *base, dma_addr_t mbox_addr)
2560 {
2561 	unsigned char status;
2562 
2563 	while (DAC960_GEM_hw_mbox_is_full(base))
2564 		udelay(1);
2565 	DAC960_GEM_write_hw_mbox(base, mbox_addr);
2566 	DAC960_GEM_hw_mbox_new_cmd(base);
2567 	while (!DAC960_GEM_hw_mbox_status_available(base))
2568 		udelay(1);
2569 	status = DAC960_GEM_read_cmd_status(base);
2570 	DAC960_GEM_ack_hw_mbox_intr(base);
2571 	DAC960_GEM_ack_hw_mbox_status(base);
2572 
2573 	return status;
2574 }
2575 
2576 static int DAC960_GEM_hw_init(struct pci_dev *pdev,
2577 		struct myrs_hba *cs, void __iomem *base)
2578 {
2579 	int timeout = 0;
2580 	unsigned char status, parm0, parm1;
2581 
2582 	DAC960_GEM_disable_intr(base);
2583 	DAC960_GEM_ack_hw_mbox_status(base);
2584 	udelay(1000);
2585 	while (DAC960_GEM_init_in_progress(base) &&
2586 	       timeout < MYRS_MAILBOX_TIMEOUT) {
2587 		if (DAC960_GEM_read_error_status(base, &status,
2588 						 &parm0, &parm1) &&
2589 		    myrs_err_status(cs, status, parm0, parm1))
2590 			return -EIO;
2591 		udelay(10);
2592 		timeout++;
2593 	}
2594 	if (timeout == MYRS_MAILBOX_TIMEOUT) {
2595 		dev_err(&pdev->dev,
2596 			"Timeout waiting for Controller Initialisation\n");
2597 		return -ETIMEDOUT;
2598 	}
2599 	if (!myrs_enable_mmio_mbox(cs, DAC960_GEM_mbox_init)) {
2600 		dev_err(&pdev->dev,
2601 			"Unable to Enable Memory Mailbox Interface\n");
2602 		DAC960_GEM_reset_ctrl(base);
2603 		return -EAGAIN;
2604 	}
2605 	DAC960_GEM_enable_intr(base);
2606 	cs->write_cmd_mbox = DAC960_GEM_write_cmd_mbox;
2607 	cs->get_cmd_mbox = DAC960_GEM_mem_mbox_new_cmd;
2608 	cs->disable_intr = DAC960_GEM_disable_intr;
2609 	cs->reset = DAC960_GEM_reset_ctrl;
2610 	return 0;
2611 }
2612 
2613 static irqreturn_t DAC960_GEM_intr_handler(int irq, void *arg)
2614 {
2615 	struct myrs_hba *cs = arg;
2616 	void __iomem *base = cs->io_base;
2617 	struct myrs_stat_mbox *next_stat_mbox;
2618 	unsigned long flags;
2619 
2620 	spin_lock_irqsave(&cs->queue_lock, flags);
2621 	DAC960_GEM_ack_intr(base);
2622 	next_stat_mbox = cs->next_stat_mbox;
2623 	while (next_stat_mbox->id > 0) {
2624 		unsigned short id = next_stat_mbox->id;
2625 		struct scsi_cmnd *scmd = NULL;
2626 		struct myrs_cmdblk *cmd_blk = NULL;
2627 
2628 		if (id == MYRS_DCMD_TAG)
2629 			cmd_blk = &cs->dcmd_blk;
2630 		else if (id == MYRS_MCMD_TAG)
2631 			cmd_blk = &cs->mcmd_blk;
2632 		else {
2633 			scmd = scsi_host_find_tag(cs->host, id - 3);
2634 			if (scmd)
2635 				cmd_blk = scsi_cmd_priv(scmd);
2636 		}
2637 		if (cmd_blk) {
2638 			cmd_blk->status = next_stat_mbox->status;
2639 			cmd_blk->sense_len = next_stat_mbox->sense_len;
2640 			cmd_blk->residual = next_stat_mbox->residual;
2641 		} else
2642 			dev_err(&cs->pdev->dev,
2643 				"Unhandled command completion %d\n", id);
2644 
2645 		memset(next_stat_mbox, 0, sizeof(struct myrs_stat_mbox));
2646 		if (++next_stat_mbox > cs->last_stat_mbox)
2647 			next_stat_mbox = cs->first_stat_mbox;
2648 
2649 		if (cmd_blk) {
2650 			if (id < 3)
2651 				myrs_handle_cmdblk(cs, cmd_blk);
2652 			else
2653 				myrs_handle_scsi(cs, cmd_blk, scmd);
2654 		}
2655 	}
2656 	cs->next_stat_mbox = next_stat_mbox;
2657 	spin_unlock_irqrestore(&cs->queue_lock, flags);
2658 	return IRQ_HANDLED;
2659 }
2660 
2661 struct myrs_privdata DAC960_GEM_privdata = {
2662 	.hw_init =		DAC960_GEM_hw_init,
2663 	.irq_handler =		DAC960_GEM_intr_handler,
2664 	.mmio_size =		DAC960_GEM_mmio_size,
2665 };
2666 
2667 /*
2668  * DAC960 BA Series Controllers.
2669  */
2670 
2671 static inline void DAC960_BA_hw_mbox_new_cmd(void __iomem *base)
2672 {
2673 	writeb(DAC960_BA_IDB_HWMBOX_NEW_CMD, base + DAC960_BA_IDB_OFFSET);
2674 }
2675 
2676 static inline void DAC960_BA_ack_hw_mbox_status(void __iomem *base)
2677 {
2678 	writeb(DAC960_BA_IDB_HWMBOX_ACK_STS, base + DAC960_BA_IDB_OFFSET);
2679 }
2680 
2681 static inline void DAC960_BA_gen_intr(void __iomem *base)
2682 {
2683 	writeb(DAC960_BA_IDB_GEN_IRQ, base + DAC960_BA_IDB_OFFSET);
2684 }
2685 
2686 static inline void DAC960_BA_reset_ctrl(void __iomem *base)
2687 {
2688 	writeb(DAC960_BA_IDB_CTRL_RESET, base + DAC960_BA_IDB_OFFSET);
2689 }
2690 
2691 static inline void DAC960_BA_mem_mbox_new_cmd(void __iomem *base)
2692 {
2693 	writeb(DAC960_BA_IDB_MMBOX_NEW_CMD, base + DAC960_BA_IDB_OFFSET);
2694 }
2695 
2696 static inline bool DAC960_BA_hw_mbox_is_full(void __iomem *base)
2697 {
2698 	u8 val;
2699 
2700 	val = readb(base + DAC960_BA_IDB_OFFSET);
2701 	return !(val & DAC960_BA_IDB_HWMBOX_EMPTY);
2702 }
2703 
2704 static inline bool DAC960_BA_init_in_progress(void __iomem *base)
2705 {
2706 	u8 val;
2707 
2708 	val = readb(base + DAC960_BA_IDB_OFFSET);
2709 	return !(val & DAC960_BA_IDB_INIT_DONE);
2710 }
2711 
2712 static inline void DAC960_BA_ack_hw_mbox_intr(void __iomem *base)
2713 {
2714 	writeb(DAC960_BA_ODB_HWMBOX_ACK_IRQ, base + DAC960_BA_ODB_OFFSET);
2715 }
2716 
2717 static inline void DAC960_BA_ack_mem_mbox_intr(void __iomem *base)
2718 {
2719 	writeb(DAC960_BA_ODB_MMBOX_ACK_IRQ, base + DAC960_BA_ODB_OFFSET);
2720 }
2721 
2722 static inline void DAC960_BA_ack_intr(void __iomem *base)
2723 {
2724 	writeb(DAC960_BA_ODB_HWMBOX_ACK_IRQ | DAC960_BA_ODB_MMBOX_ACK_IRQ,
2725 	       base + DAC960_BA_ODB_OFFSET);
2726 }
2727 
2728 static inline bool DAC960_BA_hw_mbox_status_available(void __iomem *base)
2729 {
2730 	u8 val;
2731 
2732 	val = readb(base + DAC960_BA_ODB_OFFSET);
2733 	return val & DAC960_BA_ODB_HWMBOX_STS_AVAIL;
2734 }
2735 
2736 static inline bool DAC960_BA_mem_mbox_status_available(void __iomem *base)
2737 {
2738 	u8 val;
2739 
2740 	val = readb(base + DAC960_BA_ODB_OFFSET);
2741 	return val & DAC960_BA_ODB_MMBOX_STS_AVAIL;
2742 }
2743 
2744 static inline void DAC960_BA_enable_intr(void __iomem *base)
2745 {
2746 	writeb(~DAC960_BA_IRQMASK_DISABLE_IRQ, base + DAC960_BA_IRQMASK_OFFSET);
2747 }
2748 
2749 static inline void DAC960_BA_disable_intr(void __iomem *base)
2750 {
2751 	writeb(0xFF, base + DAC960_BA_IRQMASK_OFFSET);
2752 }
2753 
2754 static inline bool DAC960_BA_intr_enabled(void __iomem *base)
2755 {
2756 	u8 val;
2757 
2758 	val = readb(base + DAC960_BA_IRQMASK_OFFSET);
2759 	return !(val & DAC960_BA_IRQMASK_DISABLE_IRQ);
2760 }
2761 
2762 static inline void DAC960_BA_write_cmd_mbox(union myrs_cmd_mbox *mem_mbox,
2763 		union myrs_cmd_mbox *mbox)
2764 {
2765 	memcpy(&mem_mbox->words[1], &mbox->words[1],
2766 	       sizeof(union myrs_cmd_mbox) - sizeof(unsigned int));
2767 	/* Barrier to avoid reordering */
2768 	wmb();
2769 	mem_mbox->words[0] = mbox->words[0];
2770 	/* Barrier to force PCI access */
2771 	mb();
2772 }
2773 
2774 
2775 static inline void DAC960_BA_write_hw_mbox(void __iomem *base,
2776 		dma_addr_t cmd_mbox_addr)
2777 {
2778 	dma_addr_writeql(cmd_mbox_addr, base + DAC960_BA_CMDMBX_OFFSET);
2779 }
2780 
2781 static inline unsigned short DAC960_BA_read_cmd_ident(void __iomem *base)
2782 {
2783 	return readw(base + DAC960_BA_CMDSTS_OFFSET);
2784 }
2785 
2786 static inline unsigned char DAC960_BA_read_cmd_status(void __iomem *base)
2787 {
2788 	return readw(base + DAC960_BA_CMDSTS_OFFSET + 2);
2789 }
2790 
2791 static inline bool
2792 DAC960_BA_read_error_status(void __iomem *base, unsigned char *error,
2793 		unsigned char *param0, unsigned char *param1)
2794 {
2795 	u8 val;
2796 
2797 	val = readb(base + DAC960_BA_ERRSTS_OFFSET);
2798 	if (!(val & DAC960_BA_ERRSTS_PENDING))
2799 		return false;
2800 	val &= ~DAC960_BA_ERRSTS_PENDING;
2801 	*error = val;
2802 	*param0 = readb(base + DAC960_BA_CMDMBX_OFFSET + 0);
2803 	*param1 = readb(base + DAC960_BA_CMDMBX_OFFSET + 1);
2804 	writeb(0xFF, base + DAC960_BA_ERRSTS_OFFSET);
2805 	return true;
2806 }
2807 
2808 static inline unsigned char
2809 DAC960_BA_mbox_init(void __iomem *base, dma_addr_t mbox_addr)
2810 {
2811 	unsigned char status;
2812 
2813 	while (DAC960_BA_hw_mbox_is_full(base))
2814 		udelay(1);
2815 	DAC960_BA_write_hw_mbox(base, mbox_addr);
2816 	DAC960_BA_hw_mbox_new_cmd(base);
2817 	while (!DAC960_BA_hw_mbox_status_available(base))
2818 		udelay(1);
2819 	status = DAC960_BA_read_cmd_status(base);
2820 	DAC960_BA_ack_hw_mbox_intr(base);
2821 	DAC960_BA_ack_hw_mbox_status(base);
2822 
2823 	return status;
2824 }
2825 
2826 static int DAC960_BA_hw_init(struct pci_dev *pdev,
2827 		struct myrs_hba *cs, void __iomem *base)
2828 {
2829 	int timeout = 0;
2830 	unsigned char status, parm0, parm1;
2831 
2832 	DAC960_BA_disable_intr(base);
2833 	DAC960_BA_ack_hw_mbox_status(base);
2834 	udelay(1000);
2835 	while (DAC960_BA_init_in_progress(base) &&
2836 	       timeout < MYRS_MAILBOX_TIMEOUT) {
2837 		if (DAC960_BA_read_error_status(base, &status,
2838 					      &parm0, &parm1) &&
2839 		    myrs_err_status(cs, status, parm0, parm1))
2840 			return -EIO;
2841 		udelay(10);
2842 		timeout++;
2843 	}
2844 	if (timeout == MYRS_MAILBOX_TIMEOUT) {
2845 		dev_err(&pdev->dev,
2846 			"Timeout waiting for Controller Initialisation\n");
2847 		return -ETIMEDOUT;
2848 	}
2849 	if (!myrs_enable_mmio_mbox(cs, DAC960_BA_mbox_init)) {
2850 		dev_err(&pdev->dev,
2851 			"Unable to Enable Memory Mailbox Interface\n");
2852 		DAC960_BA_reset_ctrl(base);
2853 		return -EAGAIN;
2854 	}
2855 	DAC960_BA_enable_intr(base);
2856 	cs->write_cmd_mbox = DAC960_BA_write_cmd_mbox;
2857 	cs->get_cmd_mbox = DAC960_BA_mem_mbox_new_cmd;
2858 	cs->disable_intr = DAC960_BA_disable_intr;
2859 	cs->reset = DAC960_BA_reset_ctrl;
2860 	return 0;
2861 }
2862 
2863 static irqreturn_t DAC960_BA_intr_handler(int irq, void *arg)
2864 {
2865 	struct myrs_hba *cs = arg;
2866 	void __iomem *base = cs->io_base;
2867 	struct myrs_stat_mbox *next_stat_mbox;
2868 	unsigned long flags;
2869 
2870 	spin_lock_irqsave(&cs->queue_lock, flags);
2871 	DAC960_BA_ack_intr(base);
2872 	next_stat_mbox = cs->next_stat_mbox;
2873 	while (next_stat_mbox->id > 0) {
2874 		unsigned short id = next_stat_mbox->id;
2875 		struct scsi_cmnd *scmd = NULL;
2876 		struct myrs_cmdblk *cmd_blk = NULL;
2877 
2878 		if (id == MYRS_DCMD_TAG)
2879 			cmd_blk = &cs->dcmd_blk;
2880 		else if (id == MYRS_MCMD_TAG)
2881 			cmd_blk = &cs->mcmd_blk;
2882 		else {
2883 			scmd = scsi_host_find_tag(cs->host, id - 3);
2884 			if (scmd)
2885 				cmd_blk = scsi_cmd_priv(scmd);
2886 		}
2887 		if (cmd_blk) {
2888 			cmd_blk->status = next_stat_mbox->status;
2889 			cmd_blk->sense_len = next_stat_mbox->sense_len;
2890 			cmd_blk->residual = next_stat_mbox->residual;
2891 		} else
2892 			dev_err(&cs->pdev->dev,
2893 				"Unhandled command completion %d\n", id);
2894 
2895 		memset(next_stat_mbox, 0, sizeof(struct myrs_stat_mbox));
2896 		if (++next_stat_mbox > cs->last_stat_mbox)
2897 			next_stat_mbox = cs->first_stat_mbox;
2898 
2899 		if (cmd_blk) {
2900 			if (id < 3)
2901 				myrs_handle_cmdblk(cs, cmd_blk);
2902 			else
2903 				myrs_handle_scsi(cs, cmd_blk, scmd);
2904 		}
2905 	}
2906 	cs->next_stat_mbox = next_stat_mbox;
2907 	spin_unlock_irqrestore(&cs->queue_lock, flags);
2908 	return IRQ_HANDLED;
2909 }
2910 
2911 struct myrs_privdata DAC960_BA_privdata = {
2912 	.hw_init =		DAC960_BA_hw_init,
2913 	.irq_handler =		DAC960_BA_intr_handler,
2914 	.mmio_size =		DAC960_BA_mmio_size,
2915 };
2916 
2917 /*
2918  * DAC960 LP Series Controllers.
2919  */
2920 
2921 static inline void DAC960_LP_hw_mbox_new_cmd(void __iomem *base)
2922 {
2923 	writeb(DAC960_LP_IDB_HWMBOX_NEW_CMD, base + DAC960_LP_IDB_OFFSET);
2924 }
2925 
2926 static inline void DAC960_LP_ack_hw_mbox_status(void __iomem *base)
2927 {
2928 	writeb(DAC960_LP_IDB_HWMBOX_ACK_STS, base + DAC960_LP_IDB_OFFSET);
2929 }
2930 
2931 static inline void DAC960_LP_gen_intr(void __iomem *base)
2932 {
2933 	writeb(DAC960_LP_IDB_GEN_IRQ, base + DAC960_LP_IDB_OFFSET);
2934 }
2935 
2936 static inline void DAC960_LP_reset_ctrl(void __iomem *base)
2937 {
2938 	writeb(DAC960_LP_IDB_CTRL_RESET, base + DAC960_LP_IDB_OFFSET);
2939 }
2940 
2941 static inline void DAC960_LP_mem_mbox_new_cmd(void __iomem *base)
2942 {
2943 	writeb(DAC960_LP_IDB_MMBOX_NEW_CMD, base + DAC960_LP_IDB_OFFSET);
2944 }
2945 
2946 static inline bool DAC960_LP_hw_mbox_is_full(void __iomem *base)
2947 {
2948 	u8 val;
2949 
2950 	val = readb(base + DAC960_LP_IDB_OFFSET);
2951 	return val & DAC960_LP_IDB_HWMBOX_FULL;
2952 }
2953 
2954 static inline bool DAC960_LP_init_in_progress(void __iomem *base)
2955 {
2956 	u8 val;
2957 
2958 	val = readb(base + DAC960_LP_IDB_OFFSET);
2959 	return val & DAC960_LP_IDB_INIT_IN_PROGRESS;
2960 }
2961 
2962 static inline void DAC960_LP_ack_hw_mbox_intr(void __iomem *base)
2963 {
2964 	writeb(DAC960_LP_ODB_HWMBOX_ACK_IRQ, base + DAC960_LP_ODB_OFFSET);
2965 }
2966 
2967 static inline void DAC960_LP_ack_mem_mbox_intr(void __iomem *base)
2968 {
2969 	writeb(DAC960_LP_ODB_MMBOX_ACK_IRQ, base + DAC960_LP_ODB_OFFSET);
2970 }
2971 
2972 static inline void DAC960_LP_ack_intr(void __iomem *base)
2973 {
2974 	writeb(DAC960_LP_ODB_HWMBOX_ACK_IRQ | DAC960_LP_ODB_MMBOX_ACK_IRQ,
2975 	       base + DAC960_LP_ODB_OFFSET);
2976 }
2977 
2978 static inline bool DAC960_LP_hw_mbox_status_available(void __iomem *base)
2979 {
2980 	u8 val;
2981 
2982 	val = readb(base + DAC960_LP_ODB_OFFSET);
2983 	return val & DAC960_LP_ODB_HWMBOX_STS_AVAIL;
2984 }
2985 
2986 static inline bool DAC960_LP_mem_mbox_status_available(void __iomem *base)
2987 {
2988 	u8 val;
2989 
2990 	val = readb(base + DAC960_LP_ODB_OFFSET);
2991 	return val & DAC960_LP_ODB_MMBOX_STS_AVAIL;
2992 }
2993 
2994 static inline void DAC960_LP_enable_intr(void __iomem *base)
2995 {
2996 	writeb(~DAC960_LP_IRQMASK_DISABLE_IRQ, base + DAC960_LP_IRQMASK_OFFSET);
2997 }
2998 
2999 static inline void DAC960_LP_disable_intr(void __iomem *base)
3000 {
3001 	writeb(0xFF, base + DAC960_LP_IRQMASK_OFFSET);
3002 }
3003 
3004 static inline bool DAC960_LP_intr_enabled(void __iomem *base)
3005 {
3006 	u8 val;
3007 
3008 	val = readb(base + DAC960_LP_IRQMASK_OFFSET);
3009 	return !(val & DAC960_LP_IRQMASK_DISABLE_IRQ);
3010 }
3011 
3012 static inline void DAC960_LP_write_cmd_mbox(union myrs_cmd_mbox *mem_mbox,
3013 		union myrs_cmd_mbox *mbox)
3014 {
3015 	memcpy(&mem_mbox->words[1], &mbox->words[1],
3016 	       sizeof(union myrs_cmd_mbox) - sizeof(unsigned int));
3017 	/* Barrier to avoid reordering */
3018 	wmb();
3019 	mem_mbox->words[0] = mbox->words[0];
3020 	/* Barrier to force PCI access */
3021 	mb();
3022 }
3023 
3024 static inline void DAC960_LP_write_hw_mbox(void __iomem *base,
3025 		dma_addr_t cmd_mbox_addr)
3026 {
3027 	dma_addr_writeql(cmd_mbox_addr, base + DAC960_LP_CMDMBX_OFFSET);
3028 }
3029 
3030 static inline unsigned short DAC960_LP_read_cmd_ident(void __iomem *base)
3031 {
3032 	return readw(base + DAC960_LP_CMDSTS_OFFSET);
3033 }
3034 
3035 static inline unsigned char DAC960_LP_read_cmd_status(void __iomem *base)
3036 {
3037 	return readw(base + DAC960_LP_CMDSTS_OFFSET + 2);
3038 }
3039 
3040 static inline bool
3041 DAC960_LP_read_error_status(void __iomem *base, unsigned char *error,
3042 		unsigned char *param0, unsigned char *param1)
3043 {
3044 	u8 val;
3045 
3046 	val = readb(base + DAC960_LP_ERRSTS_OFFSET);
3047 	if (!(val & DAC960_LP_ERRSTS_PENDING))
3048 		return false;
3049 	val &= ~DAC960_LP_ERRSTS_PENDING;
3050 	*error = val;
3051 	*param0 = readb(base + DAC960_LP_CMDMBX_OFFSET + 0);
3052 	*param1 = readb(base + DAC960_LP_CMDMBX_OFFSET + 1);
3053 	writeb(0xFF, base + DAC960_LP_ERRSTS_OFFSET);
3054 	return true;
3055 }
3056 
3057 static inline unsigned char
3058 DAC960_LP_mbox_init(void __iomem *base, dma_addr_t mbox_addr)
3059 {
3060 	unsigned char status;
3061 
3062 	while (DAC960_LP_hw_mbox_is_full(base))
3063 		udelay(1);
3064 	DAC960_LP_write_hw_mbox(base, mbox_addr);
3065 	DAC960_LP_hw_mbox_new_cmd(base);
3066 	while (!DAC960_LP_hw_mbox_status_available(base))
3067 		udelay(1);
3068 	status = DAC960_LP_read_cmd_status(base);
3069 	DAC960_LP_ack_hw_mbox_intr(base);
3070 	DAC960_LP_ack_hw_mbox_status(base);
3071 
3072 	return status;
3073 }
3074 
3075 static int DAC960_LP_hw_init(struct pci_dev *pdev,
3076 		struct myrs_hba *cs, void __iomem *base)
3077 {
3078 	int timeout = 0;
3079 	unsigned char status, parm0, parm1;
3080 
3081 	DAC960_LP_disable_intr(base);
3082 	DAC960_LP_ack_hw_mbox_status(base);
3083 	udelay(1000);
3084 	while (DAC960_LP_init_in_progress(base) &&
3085 	       timeout < MYRS_MAILBOX_TIMEOUT) {
3086 		if (DAC960_LP_read_error_status(base, &status,
3087 					      &parm0, &parm1) &&
3088 		    myrs_err_status(cs, status, parm0, parm1))
3089 			return -EIO;
3090 		udelay(10);
3091 		timeout++;
3092 	}
3093 	if (timeout == MYRS_MAILBOX_TIMEOUT) {
3094 		dev_err(&pdev->dev,
3095 			"Timeout waiting for Controller Initialisation\n");
3096 		return -ETIMEDOUT;
3097 	}
3098 	if (!myrs_enable_mmio_mbox(cs, DAC960_LP_mbox_init)) {
3099 		dev_err(&pdev->dev,
3100 			"Unable to Enable Memory Mailbox Interface\n");
3101 		DAC960_LP_reset_ctrl(base);
3102 		return -ENODEV;
3103 	}
3104 	DAC960_LP_enable_intr(base);
3105 	cs->write_cmd_mbox = DAC960_LP_write_cmd_mbox;
3106 	cs->get_cmd_mbox = DAC960_LP_mem_mbox_new_cmd;
3107 	cs->disable_intr = DAC960_LP_disable_intr;
3108 	cs->reset = DAC960_LP_reset_ctrl;
3109 
3110 	return 0;
3111 }
3112 
3113 static irqreturn_t DAC960_LP_intr_handler(int irq, void *arg)
3114 {
3115 	struct myrs_hba *cs = arg;
3116 	void __iomem *base = cs->io_base;
3117 	struct myrs_stat_mbox *next_stat_mbox;
3118 	unsigned long flags;
3119 
3120 	spin_lock_irqsave(&cs->queue_lock, flags);
3121 	DAC960_LP_ack_intr(base);
3122 	next_stat_mbox = cs->next_stat_mbox;
3123 	while (next_stat_mbox->id > 0) {
3124 		unsigned short id = next_stat_mbox->id;
3125 		struct scsi_cmnd *scmd = NULL;
3126 		struct myrs_cmdblk *cmd_blk = NULL;
3127 
3128 		if (id == MYRS_DCMD_TAG)
3129 			cmd_blk = &cs->dcmd_blk;
3130 		else if (id == MYRS_MCMD_TAG)
3131 			cmd_blk = &cs->mcmd_blk;
3132 		else {
3133 			scmd = scsi_host_find_tag(cs->host, id - 3);
3134 			if (scmd)
3135 				cmd_blk = scsi_cmd_priv(scmd);
3136 		}
3137 		if (cmd_blk) {
3138 			cmd_blk->status = next_stat_mbox->status;
3139 			cmd_blk->sense_len = next_stat_mbox->sense_len;
3140 			cmd_blk->residual = next_stat_mbox->residual;
3141 		} else
3142 			dev_err(&cs->pdev->dev,
3143 				"Unhandled command completion %d\n", id);
3144 
3145 		memset(next_stat_mbox, 0, sizeof(struct myrs_stat_mbox));
3146 		if (++next_stat_mbox > cs->last_stat_mbox)
3147 			next_stat_mbox = cs->first_stat_mbox;
3148 
3149 		if (cmd_blk) {
3150 			if (id < 3)
3151 				myrs_handle_cmdblk(cs, cmd_blk);
3152 			else
3153 				myrs_handle_scsi(cs, cmd_blk, scmd);
3154 		}
3155 	}
3156 	cs->next_stat_mbox = next_stat_mbox;
3157 	spin_unlock_irqrestore(&cs->queue_lock, flags);
3158 	return IRQ_HANDLED;
3159 }
3160 
3161 struct myrs_privdata DAC960_LP_privdata = {
3162 	.hw_init =		DAC960_LP_hw_init,
3163 	.irq_handler =		DAC960_LP_intr_handler,
3164 	.mmio_size =		DAC960_LP_mmio_size,
3165 };
3166 
3167 /*
3168  * Module functions
3169  */
3170 static int
3171 myrs_probe(struct pci_dev *dev, const struct pci_device_id *entry)
3172 {
3173 	struct myrs_hba *cs;
3174 	int ret;
3175 
3176 	cs = myrs_detect(dev, entry);
3177 	if (!cs)
3178 		return -ENODEV;
3179 
3180 	ret = myrs_get_config(cs);
3181 	if (ret < 0) {
3182 		myrs_cleanup(cs);
3183 		return ret;
3184 	}
3185 
3186 	if (!myrs_create_mempools(dev, cs)) {
3187 		ret = -ENOMEM;
3188 		goto failed;
3189 	}
3190 
3191 	ret = scsi_add_host(cs->host, &dev->dev);
3192 	if (ret) {
3193 		dev_err(&dev->dev, "scsi_add_host failed with %d\n", ret);
3194 		myrs_destroy_mempools(cs);
3195 		goto failed;
3196 	}
3197 	scsi_scan_host(cs->host);
3198 	return 0;
3199 failed:
3200 	myrs_cleanup(cs);
3201 	return ret;
3202 }
3203 
3204 
3205 static void myrs_remove(struct pci_dev *pdev)
3206 {
3207 	struct myrs_hba *cs = pci_get_drvdata(pdev);
3208 
3209 	if (cs == NULL)
3210 		return;
3211 
3212 	shost_printk(KERN_NOTICE, cs->host, "Flushing Cache...");
3213 	myrs_flush_cache(cs);
3214 	myrs_destroy_mempools(cs);
3215 	myrs_cleanup(cs);
3216 }
3217 
3218 
3219 static const struct pci_device_id myrs_id_table[] = {
3220 	{
3221 		PCI_DEVICE_SUB(PCI_VENDOR_ID_MYLEX,
3222 			       PCI_DEVICE_ID_MYLEX_DAC960_GEM,
3223 			       PCI_VENDOR_ID_MYLEX, PCI_ANY_ID),
3224 		.driver_data	= (unsigned long) &DAC960_GEM_privdata,
3225 	},
3226 	{
3227 		PCI_DEVICE_DATA(MYLEX, DAC960_BA, &DAC960_BA_privdata),
3228 	},
3229 	{
3230 		PCI_DEVICE_DATA(MYLEX, DAC960_LP, &DAC960_LP_privdata),
3231 	},
3232 	{0, },
3233 };
3234 
3235 MODULE_DEVICE_TABLE(pci, myrs_id_table);
3236 
3237 static struct pci_driver myrs_pci_driver = {
3238 	.name		= "myrs",
3239 	.id_table	= myrs_id_table,
3240 	.probe		= myrs_probe,
3241 	.remove		= myrs_remove,
3242 };
3243 
3244 static int __init myrs_init_module(void)
3245 {
3246 	int ret;
3247 
3248 	myrs_raid_template = raid_class_attach(&myrs_raid_functions);
3249 	if (!myrs_raid_template)
3250 		return -ENODEV;
3251 
3252 	ret = pci_register_driver(&myrs_pci_driver);
3253 	if (ret)
3254 		raid_class_release(myrs_raid_template);
3255 
3256 	return ret;
3257 }
3258 
3259 static void __exit myrs_cleanup_module(void)
3260 {
3261 	pci_unregister_driver(&myrs_pci_driver);
3262 	raid_class_release(myrs_raid_template);
3263 }
3264 
3265 module_init(myrs_init_module);
3266 module_exit(myrs_cleanup_module);
3267 
3268 MODULE_DESCRIPTION("Mylex DAC960/AcceleRAID/eXtremeRAID driver (SCSI Interface)");
3269 MODULE_AUTHOR("Hannes Reinecke <hare@suse.com>");
3270 MODULE_LICENSE("GPL");
3271