1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Linux Driver for Mylex DAC960/AcceleRAID/eXtremeRAID PCI RAID Controllers
4 *
5 * This driver supports the newer, SCSI-based firmware interface only.
6 *
7 * Copyright 2017 Hannes Reinecke, SUSE Linux GmbH <hare@suse.com>
8 *
9 * Based on the original DAC960 driver, which has
10 * Copyright 1998-2001 by Leonard N. Zubkoff <lnz@dandelion.com>
11 * Portions Copyright 2002 by Mylex (An IBM Business Unit)
12 */
13
14 #include <linux/module.h>
15 #include <linux/types.h>
16 #include <linux/delay.h>
17 #include <linux/interrupt.h>
18 #include <linux/pci.h>
19 #include <linux/raid_class.h>
20 #include <asm/unaligned.h>
21 #include <scsi/scsi.h>
22 #include <scsi/scsi_host.h>
23 #include <scsi/scsi_device.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_tcq.h>
26 #include "myrs.h"
27
28 static struct raid_template *myrs_raid_template;
29
30 static struct myrs_devstate_name_entry {
31 enum myrs_devstate state;
32 char *name;
33 } myrs_devstate_name_list[] = {
34 { MYRS_DEVICE_UNCONFIGURED, "Unconfigured" },
35 { MYRS_DEVICE_ONLINE, "Online" },
36 { MYRS_DEVICE_REBUILD, "Rebuild" },
37 { MYRS_DEVICE_MISSING, "Missing" },
38 { MYRS_DEVICE_SUSPECTED_CRITICAL, "SuspectedCritical" },
39 { MYRS_DEVICE_OFFLINE, "Offline" },
40 { MYRS_DEVICE_CRITICAL, "Critical" },
41 { MYRS_DEVICE_SUSPECTED_DEAD, "SuspectedDead" },
42 { MYRS_DEVICE_COMMANDED_OFFLINE, "CommandedOffline" },
43 { MYRS_DEVICE_STANDBY, "Standby" },
44 { MYRS_DEVICE_INVALID_STATE, "Invalid" },
45 };
46
myrs_devstate_name(enum myrs_devstate state)47 static char *myrs_devstate_name(enum myrs_devstate state)
48 {
49 struct myrs_devstate_name_entry *entry = myrs_devstate_name_list;
50 int i;
51
52 for (i = 0; i < ARRAY_SIZE(myrs_devstate_name_list); i++) {
53 if (entry[i].state == state)
54 return entry[i].name;
55 }
56 return NULL;
57 }
58
59 static struct myrs_raid_level_name_entry {
60 enum myrs_raid_level level;
61 char *name;
62 } myrs_raid_level_name_list[] = {
63 { MYRS_RAID_LEVEL0, "RAID0" },
64 { MYRS_RAID_LEVEL1, "RAID1" },
65 { MYRS_RAID_LEVEL3, "RAID3 right asymmetric parity" },
66 { MYRS_RAID_LEVEL5, "RAID5 right asymmetric parity" },
67 { MYRS_RAID_LEVEL6, "RAID6" },
68 { MYRS_RAID_JBOD, "JBOD" },
69 { MYRS_RAID_NEWSPAN, "New Mylex SPAN" },
70 { MYRS_RAID_LEVEL3F, "RAID3 fixed parity" },
71 { MYRS_RAID_LEVEL3L, "RAID3 left symmetric parity" },
72 { MYRS_RAID_SPAN, "Mylex SPAN" },
73 { MYRS_RAID_LEVEL5L, "RAID5 left symmetric parity" },
74 { MYRS_RAID_LEVELE, "RAIDE (concatenation)" },
75 { MYRS_RAID_PHYSICAL, "Physical device" },
76 };
77
myrs_raid_level_name(enum myrs_raid_level level)78 static char *myrs_raid_level_name(enum myrs_raid_level level)
79 {
80 struct myrs_raid_level_name_entry *entry = myrs_raid_level_name_list;
81 int i;
82
83 for (i = 0; i < ARRAY_SIZE(myrs_raid_level_name_list); i++) {
84 if (entry[i].level == level)
85 return entry[i].name;
86 }
87 return NULL;
88 }
89
90 /*
91 * myrs_reset_cmd - clears critical fields in struct myrs_cmdblk
92 */
myrs_reset_cmd(struct myrs_cmdblk * cmd_blk)93 static inline void myrs_reset_cmd(struct myrs_cmdblk *cmd_blk)
94 {
95 union myrs_cmd_mbox *mbox = &cmd_blk->mbox;
96
97 memset(mbox, 0, sizeof(union myrs_cmd_mbox));
98 cmd_blk->status = 0;
99 }
100
101 /*
102 * myrs_qcmd - queues Command for DAC960 V2 Series Controllers.
103 */
myrs_qcmd(struct myrs_hba * cs,struct myrs_cmdblk * cmd_blk)104 static void myrs_qcmd(struct myrs_hba *cs, struct myrs_cmdblk *cmd_blk)
105 {
106 void __iomem *base = cs->io_base;
107 union myrs_cmd_mbox *mbox = &cmd_blk->mbox;
108 union myrs_cmd_mbox *next_mbox = cs->next_cmd_mbox;
109
110 cs->write_cmd_mbox(next_mbox, mbox);
111
112 if (cs->prev_cmd_mbox1->words[0] == 0 ||
113 cs->prev_cmd_mbox2->words[0] == 0)
114 cs->get_cmd_mbox(base);
115
116 cs->prev_cmd_mbox2 = cs->prev_cmd_mbox1;
117 cs->prev_cmd_mbox1 = next_mbox;
118
119 if (++next_mbox > cs->last_cmd_mbox)
120 next_mbox = cs->first_cmd_mbox;
121
122 cs->next_cmd_mbox = next_mbox;
123 }
124
125 /*
126 * myrs_exec_cmd - executes V2 Command and waits for completion.
127 */
myrs_exec_cmd(struct myrs_hba * cs,struct myrs_cmdblk * cmd_blk)128 static void myrs_exec_cmd(struct myrs_hba *cs,
129 struct myrs_cmdblk *cmd_blk)
130 {
131 DECLARE_COMPLETION_ONSTACK(complete);
132 unsigned long flags;
133
134 cmd_blk->complete = &complete;
135 spin_lock_irqsave(&cs->queue_lock, flags);
136 myrs_qcmd(cs, cmd_blk);
137 spin_unlock_irqrestore(&cs->queue_lock, flags);
138
139 wait_for_completion(&complete);
140 }
141
142 /*
143 * myrs_report_progress - prints progress message
144 */
myrs_report_progress(struct myrs_hba * cs,unsigned short ldev_num,unsigned char * msg,unsigned long blocks,unsigned long size)145 static void myrs_report_progress(struct myrs_hba *cs, unsigned short ldev_num,
146 unsigned char *msg, unsigned long blocks,
147 unsigned long size)
148 {
149 shost_printk(KERN_INFO, cs->host,
150 "Logical Drive %d: %s in Progress: %d%% completed\n",
151 ldev_num, msg,
152 (100 * (int)(blocks >> 7)) / (int)(size >> 7));
153 }
154
155 /*
156 * myrs_get_ctlr_info - executes a Controller Information IOCTL Command
157 */
myrs_get_ctlr_info(struct myrs_hba * cs)158 static unsigned char myrs_get_ctlr_info(struct myrs_hba *cs)
159 {
160 struct myrs_cmdblk *cmd_blk = &cs->dcmd_blk;
161 union myrs_cmd_mbox *mbox = &cmd_blk->mbox;
162 dma_addr_t ctlr_info_addr;
163 union myrs_sgl *sgl;
164 unsigned char status;
165 unsigned short ldev_present, ldev_critical, ldev_offline;
166
167 ldev_present = cs->ctlr_info->ldev_present;
168 ldev_critical = cs->ctlr_info->ldev_critical;
169 ldev_offline = cs->ctlr_info->ldev_offline;
170
171 ctlr_info_addr = dma_map_single(&cs->pdev->dev, cs->ctlr_info,
172 sizeof(struct myrs_ctlr_info),
173 DMA_FROM_DEVICE);
174 if (dma_mapping_error(&cs->pdev->dev, ctlr_info_addr))
175 return MYRS_STATUS_FAILED;
176
177 mutex_lock(&cs->dcmd_mutex);
178 myrs_reset_cmd(cmd_blk);
179 mbox->ctlr_info.id = MYRS_DCMD_TAG;
180 mbox->ctlr_info.opcode = MYRS_CMD_OP_IOCTL;
181 mbox->ctlr_info.control.dma_ctrl_to_host = true;
182 mbox->ctlr_info.control.no_autosense = true;
183 mbox->ctlr_info.dma_size = sizeof(struct myrs_ctlr_info);
184 mbox->ctlr_info.ctlr_num = 0;
185 mbox->ctlr_info.ioctl_opcode = MYRS_IOCTL_GET_CTLR_INFO;
186 sgl = &mbox->ctlr_info.dma_addr;
187 sgl->sge[0].sge_addr = ctlr_info_addr;
188 sgl->sge[0].sge_count = mbox->ctlr_info.dma_size;
189 dev_dbg(&cs->host->shost_gendev, "Sending GetControllerInfo\n");
190 myrs_exec_cmd(cs, cmd_blk);
191 status = cmd_blk->status;
192 mutex_unlock(&cs->dcmd_mutex);
193 dma_unmap_single(&cs->pdev->dev, ctlr_info_addr,
194 sizeof(struct myrs_ctlr_info), DMA_FROM_DEVICE);
195 if (status == MYRS_STATUS_SUCCESS) {
196 if (cs->ctlr_info->bg_init_active +
197 cs->ctlr_info->ldev_init_active +
198 cs->ctlr_info->pdev_init_active +
199 cs->ctlr_info->cc_active +
200 cs->ctlr_info->rbld_active +
201 cs->ctlr_info->exp_active != 0)
202 cs->needs_update = true;
203 if (cs->ctlr_info->ldev_present != ldev_present ||
204 cs->ctlr_info->ldev_critical != ldev_critical ||
205 cs->ctlr_info->ldev_offline != ldev_offline)
206 shost_printk(KERN_INFO, cs->host,
207 "Logical drive count changes (%d/%d/%d)\n",
208 cs->ctlr_info->ldev_critical,
209 cs->ctlr_info->ldev_offline,
210 cs->ctlr_info->ldev_present);
211 }
212
213 return status;
214 }
215
216 /*
217 * myrs_get_ldev_info - executes a Logical Device Information IOCTL Command
218 */
myrs_get_ldev_info(struct myrs_hba * cs,unsigned short ldev_num,struct myrs_ldev_info * ldev_info)219 static unsigned char myrs_get_ldev_info(struct myrs_hba *cs,
220 unsigned short ldev_num, struct myrs_ldev_info *ldev_info)
221 {
222 struct myrs_cmdblk *cmd_blk = &cs->dcmd_blk;
223 union myrs_cmd_mbox *mbox = &cmd_blk->mbox;
224 dma_addr_t ldev_info_addr;
225 struct myrs_ldev_info ldev_info_orig;
226 union myrs_sgl *sgl;
227 unsigned char status;
228
229 memcpy(&ldev_info_orig, ldev_info, sizeof(struct myrs_ldev_info));
230 ldev_info_addr = dma_map_single(&cs->pdev->dev, ldev_info,
231 sizeof(struct myrs_ldev_info),
232 DMA_FROM_DEVICE);
233 if (dma_mapping_error(&cs->pdev->dev, ldev_info_addr))
234 return MYRS_STATUS_FAILED;
235
236 mutex_lock(&cs->dcmd_mutex);
237 myrs_reset_cmd(cmd_blk);
238 mbox->ldev_info.id = MYRS_DCMD_TAG;
239 mbox->ldev_info.opcode = MYRS_CMD_OP_IOCTL;
240 mbox->ldev_info.control.dma_ctrl_to_host = true;
241 mbox->ldev_info.control.no_autosense = true;
242 mbox->ldev_info.dma_size = sizeof(struct myrs_ldev_info);
243 mbox->ldev_info.ldev.ldev_num = ldev_num;
244 mbox->ldev_info.ioctl_opcode = MYRS_IOCTL_GET_LDEV_INFO_VALID;
245 sgl = &mbox->ldev_info.dma_addr;
246 sgl->sge[0].sge_addr = ldev_info_addr;
247 sgl->sge[0].sge_count = mbox->ldev_info.dma_size;
248 dev_dbg(&cs->host->shost_gendev,
249 "Sending GetLogicalDeviceInfoValid for ldev %d\n", ldev_num);
250 myrs_exec_cmd(cs, cmd_blk);
251 status = cmd_blk->status;
252 mutex_unlock(&cs->dcmd_mutex);
253 dma_unmap_single(&cs->pdev->dev, ldev_info_addr,
254 sizeof(struct myrs_ldev_info), DMA_FROM_DEVICE);
255 if (status == MYRS_STATUS_SUCCESS) {
256 unsigned short ldev_num = ldev_info->ldev_num;
257 struct myrs_ldev_info *new = ldev_info;
258 struct myrs_ldev_info *old = &ldev_info_orig;
259 unsigned long ldev_size = new->cfg_devsize;
260
261 if (new->dev_state != old->dev_state) {
262 const char *name;
263
264 name = myrs_devstate_name(new->dev_state);
265 shost_printk(KERN_INFO, cs->host,
266 "Logical Drive %d is now %s\n",
267 ldev_num, name ? name : "Invalid");
268 }
269 if ((new->soft_errs != old->soft_errs) ||
270 (new->cmds_failed != old->cmds_failed) ||
271 (new->deferred_write_errs != old->deferred_write_errs))
272 shost_printk(KERN_INFO, cs->host,
273 "Logical Drive %d Errors: Soft = %d, Failed = %d, Deferred Write = %d\n",
274 ldev_num, new->soft_errs,
275 new->cmds_failed,
276 new->deferred_write_errs);
277 if (new->bg_init_active)
278 myrs_report_progress(cs, ldev_num,
279 "Background Initialization",
280 new->bg_init_lba, ldev_size);
281 else if (new->fg_init_active)
282 myrs_report_progress(cs, ldev_num,
283 "Foreground Initialization",
284 new->fg_init_lba, ldev_size);
285 else if (new->migration_active)
286 myrs_report_progress(cs, ldev_num,
287 "Data Migration",
288 new->migration_lba, ldev_size);
289 else if (new->patrol_active)
290 myrs_report_progress(cs, ldev_num,
291 "Patrol Operation",
292 new->patrol_lba, ldev_size);
293 if (old->bg_init_active && !new->bg_init_active)
294 shost_printk(KERN_INFO, cs->host,
295 "Logical Drive %d: Background Initialization %s\n",
296 ldev_num,
297 (new->ldev_control.ldev_init_done ?
298 "Completed" : "Failed"));
299 }
300 return status;
301 }
302
303 /*
304 * myrs_get_pdev_info - executes a "Read Physical Device Information" Command
305 */
myrs_get_pdev_info(struct myrs_hba * cs,unsigned char channel,unsigned char target,unsigned char lun,struct myrs_pdev_info * pdev_info)306 static unsigned char myrs_get_pdev_info(struct myrs_hba *cs,
307 unsigned char channel, unsigned char target, unsigned char lun,
308 struct myrs_pdev_info *pdev_info)
309 {
310 struct myrs_cmdblk *cmd_blk = &cs->dcmd_blk;
311 union myrs_cmd_mbox *mbox = &cmd_blk->mbox;
312 dma_addr_t pdev_info_addr;
313 union myrs_sgl *sgl;
314 unsigned char status;
315
316 pdev_info_addr = dma_map_single(&cs->pdev->dev, pdev_info,
317 sizeof(struct myrs_pdev_info),
318 DMA_FROM_DEVICE);
319 if (dma_mapping_error(&cs->pdev->dev, pdev_info_addr))
320 return MYRS_STATUS_FAILED;
321
322 mutex_lock(&cs->dcmd_mutex);
323 myrs_reset_cmd(cmd_blk);
324 mbox->pdev_info.opcode = MYRS_CMD_OP_IOCTL;
325 mbox->pdev_info.id = MYRS_DCMD_TAG;
326 mbox->pdev_info.control.dma_ctrl_to_host = true;
327 mbox->pdev_info.control.no_autosense = true;
328 mbox->pdev_info.dma_size = sizeof(struct myrs_pdev_info);
329 mbox->pdev_info.pdev.lun = lun;
330 mbox->pdev_info.pdev.target = target;
331 mbox->pdev_info.pdev.channel = channel;
332 mbox->pdev_info.ioctl_opcode = MYRS_IOCTL_GET_PDEV_INFO_VALID;
333 sgl = &mbox->pdev_info.dma_addr;
334 sgl->sge[0].sge_addr = pdev_info_addr;
335 sgl->sge[0].sge_count = mbox->pdev_info.dma_size;
336 dev_dbg(&cs->host->shost_gendev,
337 "Sending GetPhysicalDeviceInfoValid for pdev %d:%d:%d\n",
338 channel, target, lun);
339 myrs_exec_cmd(cs, cmd_blk);
340 status = cmd_blk->status;
341 mutex_unlock(&cs->dcmd_mutex);
342 dma_unmap_single(&cs->pdev->dev, pdev_info_addr,
343 sizeof(struct myrs_pdev_info), DMA_FROM_DEVICE);
344 return status;
345 }
346
347 /*
348 * myrs_dev_op - executes a "Device Operation" Command
349 */
myrs_dev_op(struct myrs_hba * cs,enum myrs_ioctl_opcode opcode,enum myrs_opdev opdev)350 static unsigned char myrs_dev_op(struct myrs_hba *cs,
351 enum myrs_ioctl_opcode opcode, enum myrs_opdev opdev)
352 {
353 struct myrs_cmdblk *cmd_blk = &cs->dcmd_blk;
354 union myrs_cmd_mbox *mbox = &cmd_blk->mbox;
355 unsigned char status;
356
357 mutex_lock(&cs->dcmd_mutex);
358 myrs_reset_cmd(cmd_blk);
359 mbox->dev_op.opcode = MYRS_CMD_OP_IOCTL;
360 mbox->dev_op.id = MYRS_DCMD_TAG;
361 mbox->dev_op.control.dma_ctrl_to_host = true;
362 mbox->dev_op.control.no_autosense = true;
363 mbox->dev_op.ioctl_opcode = opcode;
364 mbox->dev_op.opdev = opdev;
365 myrs_exec_cmd(cs, cmd_blk);
366 status = cmd_blk->status;
367 mutex_unlock(&cs->dcmd_mutex);
368 return status;
369 }
370
371 /*
372 * myrs_translate_pdev - translates a Physical Device Channel and
373 * TargetID into a Logical Device.
374 */
myrs_translate_pdev(struct myrs_hba * cs,unsigned char channel,unsigned char target,unsigned char lun,struct myrs_devmap * devmap)375 static unsigned char myrs_translate_pdev(struct myrs_hba *cs,
376 unsigned char channel, unsigned char target, unsigned char lun,
377 struct myrs_devmap *devmap)
378 {
379 struct pci_dev *pdev = cs->pdev;
380 dma_addr_t devmap_addr;
381 struct myrs_cmdblk *cmd_blk;
382 union myrs_cmd_mbox *mbox;
383 union myrs_sgl *sgl;
384 unsigned char status;
385
386 memset(devmap, 0x0, sizeof(struct myrs_devmap));
387 devmap_addr = dma_map_single(&pdev->dev, devmap,
388 sizeof(struct myrs_devmap),
389 DMA_FROM_DEVICE);
390 if (dma_mapping_error(&pdev->dev, devmap_addr))
391 return MYRS_STATUS_FAILED;
392
393 mutex_lock(&cs->dcmd_mutex);
394 cmd_blk = &cs->dcmd_blk;
395 mbox = &cmd_blk->mbox;
396 mbox->pdev_info.opcode = MYRS_CMD_OP_IOCTL;
397 mbox->pdev_info.control.dma_ctrl_to_host = true;
398 mbox->pdev_info.control.no_autosense = true;
399 mbox->pdev_info.dma_size = sizeof(struct myrs_devmap);
400 mbox->pdev_info.pdev.target = target;
401 mbox->pdev_info.pdev.channel = channel;
402 mbox->pdev_info.pdev.lun = lun;
403 mbox->pdev_info.ioctl_opcode = MYRS_IOCTL_XLATE_PDEV_TO_LDEV;
404 sgl = &mbox->pdev_info.dma_addr;
405 sgl->sge[0].sge_addr = devmap_addr;
406 sgl->sge[0].sge_count = mbox->pdev_info.dma_size;
407
408 myrs_exec_cmd(cs, cmd_blk);
409 status = cmd_blk->status;
410 mutex_unlock(&cs->dcmd_mutex);
411 dma_unmap_single(&pdev->dev, devmap_addr,
412 sizeof(struct myrs_devmap), DMA_FROM_DEVICE);
413 return status;
414 }
415
416 /*
417 * myrs_get_event - executes a Get Event Command
418 */
myrs_get_event(struct myrs_hba * cs,unsigned int event_num,struct myrs_event * event_buf)419 static unsigned char myrs_get_event(struct myrs_hba *cs,
420 unsigned int event_num, struct myrs_event *event_buf)
421 {
422 struct pci_dev *pdev = cs->pdev;
423 dma_addr_t event_addr;
424 struct myrs_cmdblk *cmd_blk = &cs->mcmd_blk;
425 union myrs_cmd_mbox *mbox = &cmd_blk->mbox;
426 union myrs_sgl *sgl;
427 unsigned char status;
428
429 event_addr = dma_map_single(&pdev->dev, event_buf,
430 sizeof(struct myrs_event), DMA_FROM_DEVICE);
431 if (dma_mapping_error(&pdev->dev, event_addr))
432 return MYRS_STATUS_FAILED;
433
434 mbox->get_event.opcode = MYRS_CMD_OP_IOCTL;
435 mbox->get_event.dma_size = sizeof(struct myrs_event);
436 mbox->get_event.evnum_upper = event_num >> 16;
437 mbox->get_event.ctlr_num = 0;
438 mbox->get_event.ioctl_opcode = MYRS_IOCTL_GET_EVENT;
439 mbox->get_event.evnum_lower = event_num & 0xFFFF;
440 sgl = &mbox->get_event.dma_addr;
441 sgl->sge[0].sge_addr = event_addr;
442 sgl->sge[0].sge_count = mbox->get_event.dma_size;
443 myrs_exec_cmd(cs, cmd_blk);
444 status = cmd_blk->status;
445 dma_unmap_single(&pdev->dev, event_addr,
446 sizeof(struct myrs_event), DMA_FROM_DEVICE);
447
448 return status;
449 }
450
451 /*
452 * myrs_get_fwstatus - executes a Get Health Status Command
453 */
myrs_get_fwstatus(struct myrs_hba * cs)454 static unsigned char myrs_get_fwstatus(struct myrs_hba *cs)
455 {
456 struct myrs_cmdblk *cmd_blk = &cs->mcmd_blk;
457 union myrs_cmd_mbox *mbox = &cmd_blk->mbox;
458 union myrs_sgl *sgl;
459 unsigned char status = cmd_blk->status;
460
461 myrs_reset_cmd(cmd_blk);
462 mbox->common.opcode = MYRS_CMD_OP_IOCTL;
463 mbox->common.id = MYRS_MCMD_TAG;
464 mbox->common.control.dma_ctrl_to_host = true;
465 mbox->common.control.no_autosense = true;
466 mbox->common.dma_size = sizeof(struct myrs_fwstat);
467 mbox->common.ioctl_opcode = MYRS_IOCTL_GET_HEALTH_STATUS;
468 sgl = &mbox->common.dma_addr;
469 sgl->sge[0].sge_addr = cs->fwstat_addr;
470 sgl->sge[0].sge_count = mbox->ctlr_info.dma_size;
471 dev_dbg(&cs->host->shost_gendev, "Sending GetHealthStatus\n");
472 myrs_exec_cmd(cs, cmd_blk);
473 status = cmd_blk->status;
474
475 return status;
476 }
477
478 /*
479 * myrs_enable_mmio_mbox - enables the Memory Mailbox Interface
480 */
myrs_enable_mmio_mbox(struct myrs_hba * cs,enable_mbox_t enable_mbox_fn)481 static bool myrs_enable_mmio_mbox(struct myrs_hba *cs,
482 enable_mbox_t enable_mbox_fn)
483 {
484 void __iomem *base = cs->io_base;
485 struct pci_dev *pdev = cs->pdev;
486 union myrs_cmd_mbox *cmd_mbox;
487 struct myrs_stat_mbox *stat_mbox;
488 union myrs_cmd_mbox *mbox;
489 dma_addr_t mbox_addr;
490 unsigned char status = MYRS_STATUS_FAILED;
491
492 if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)))
493 if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) {
494 dev_err(&pdev->dev, "DMA mask out of range\n");
495 return false;
496 }
497
498 /* Temporary dma mapping, used only in the scope of this function */
499 mbox = dma_alloc_coherent(&pdev->dev, sizeof(union myrs_cmd_mbox),
500 &mbox_addr, GFP_KERNEL);
501 if (dma_mapping_error(&pdev->dev, mbox_addr))
502 return false;
503
504 /* These are the base addresses for the command memory mailbox array */
505 cs->cmd_mbox_size = MYRS_MAX_CMD_MBOX * sizeof(union myrs_cmd_mbox);
506 cmd_mbox = dma_alloc_coherent(&pdev->dev, cs->cmd_mbox_size,
507 &cs->cmd_mbox_addr, GFP_KERNEL);
508 if (dma_mapping_error(&pdev->dev, cs->cmd_mbox_addr)) {
509 dev_err(&pdev->dev, "Failed to map command mailbox\n");
510 goto out_free;
511 }
512 cs->first_cmd_mbox = cmd_mbox;
513 cmd_mbox += MYRS_MAX_CMD_MBOX - 1;
514 cs->last_cmd_mbox = cmd_mbox;
515 cs->next_cmd_mbox = cs->first_cmd_mbox;
516 cs->prev_cmd_mbox1 = cs->last_cmd_mbox;
517 cs->prev_cmd_mbox2 = cs->last_cmd_mbox - 1;
518
519 /* These are the base addresses for the status memory mailbox array */
520 cs->stat_mbox_size = MYRS_MAX_STAT_MBOX * sizeof(struct myrs_stat_mbox);
521 stat_mbox = dma_alloc_coherent(&pdev->dev, cs->stat_mbox_size,
522 &cs->stat_mbox_addr, GFP_KERNEL);
523 if (dma_mapping_error(&pdev->dev, cs->stat_mbox_addr)) {
524 dev_err(&pdev->dev, "Failed to map status mailbox\n");
525 goto out_free;
526 }
527
528 cs->first_stat_mbox = stat_mbox;
529 stat_mbox += MYRS_MAX_STAT_MBOX - 1;
530 cs->last_stat_mbox = stat_mbox;
531 cs->next_stat_mbox = cs->first_stat_mbox;
532
533 cs->fwstat_buf = dma_alloc_coherent(&pdev->dev,
534 sizeof(struct myrs_fwstat),
535 &cs->fwstat_addr, GFP_KERNEL);
536 if (dma_mapping_error(&pdev->dev, cs->fwstat_addr)) {
537 dev_err(&pdev->dev, "Failed to map firmware health buffer\n");
538 cs->fwstat_buf = NULL;
539 goto out_free;
540 }
541 cs->ctlr_info = kzalloc(sizeof(struct myrs_ctlr_info), GFP_KERNEL);
542 if (!cs->ctlr_info)
543 goto out_free;
544
545 cs->event_buf = kzalloc(sizeof(struct myrs_event), GFP_KERNEL);
546 if (!cs->event_buf)
547 goto out_free;
548
549 /* Enable the Memory Mailbox Interface. */
550 memset(mbox, 0, sizeof(union myrs_cmd_mbox));
551 mbox->set_mbox.id = 1;
552 mbox->set_mbox.opcode = MYRS_CMD_OP_IOCTL;
553 mbox->set_mbox.control.no_autosense = true;
554 mbox->set_mbox.first_cmd_mbox_size_kb =
555 (MYRS_MAX_CMD_MBOX * sizeof(union myrs_cmd_mbox)) >> 10;
556 mbox->set_mbox.first_stat_mbox_size_kb =
557 (MYRS_MAX_STAT_MBOX * sizeof(struct myrs_stat_mbox)) >> 10;
558 mbox->set_mbox.second_cmd_mbox_size_kb = 0;
559 mbox->set_mbox.second_stat_mbox_size_kb = 0;
560 mbox->set_mbox.sense_len = 0;
561 mbox->set_mbox.ioctl_opcode = MYRS_IOCTL_SET_MEM_MBOX;
562 mbox->set_mbox.fwstat_buf_size_kb = 1;
563 mbox->set_mbox.fwstat_buf_addr = cs->fwstat_addr;
564 mbox->set_mbox.first_cmd_mbox_addr = cs->cmd_mbox_addr;
565 mbox->set_mbox.first_stat_mbox_addr = cs->stat_mbox_addr;
566 status = enable_mbox_fn(base, mbox_addr);
567
568 out_free:
569 dma_free_coherent(&pdev->dev, sizeof(union myrs_cmd_mbox),
570 mbox, mbox_addr);
571 if (status != MYRS_STATUS_SUCCESS)
572 dev_err(&pdev->dev, "Failed to enable mailbox, status %X\n",
573 status);
574 return (status == MYRS_STATUS_SUCCESS);
575 }
576
577 /*
578 * myrs_get_config - reads the Configuration Information
579 */
myrs_get_config(struct myrs_hba * cs)580 static int myrs_get_config(struct myrs_hba *cs)
581 {
582 struct myrs_ctlr_info *info = cs->ctlr_info;
583 struct Scsi_Host *shost = cs->host;
584 unsigned char status;
585 unsigned char model[20];
586 unsigned char fw_version[12];
587 int i, model_len;
588
589 /* Get data into dma-able area, then copy into permanent location */
590 mutex_lock(&cs->cinfo_mutex);
591 status = myrs_get_ctlr_info(cs);
592 mutex_unlock(&cs->cinfo_mutex);
593 if (status != MYRS_STATUS_SUCCESS) {
594 shost_printk(KERN_ERR, shost,
595 "Failed to get controller information\n");
596 return -ENODEV;
597 }
598
599 /* Initialize the Controller Model Name and Full Model Name fields. */
600 model_len = sizeof(info->ctlr_name);
601 if (model_len > sizeof(model)-1)
602 model_len = sizeof(model)-1;
603 memcpy(model, info->ctlr_name, model_len);
604 model_len--;
605 while (model[model_len] == ' ' || model[model_len] == '\0')
606 model_len--;
607 model[++model_len] = '\0';
608 strcpy(cs->model_name, "DAC960 ");
609 strcat(cs->model_name, model);
610 /* Initialize the Controller Firmware Version field. */
611 sprintf(fw_version, "%d.%02d-%02d",
612 info->fw_major_version, info->fw_minor_version,
613 info->fw_turn_number);
614 if (info->fw_major_version == 6 &&
615 info->fw_minor_version == 0 &&
616 info->fw_turn_number < 1) {
617 shost_printk(KERN_WARNING, shost,
618 "FIRMWARE VERSION %s DOES NOT PROVIDE THE CONTROLLER\n"
619 "STATUS MONITORING FUNCTIONALITY NEEDED BY THIS DRIVER.\n"
620 "PLEASE UPGRADE TO VERSION 6.00-01 OR ABOVE.\n",
621 fw_version);
622 return -ENODEV;
623 }
624 /* Initialize the Controller Channels and Targets. */
625 shost->max_channel = info->physchan_present + info->virtchan_present;
626 shost->max_id = info->max_targets[0];
627 for (i = 1; i < 16; i++) {
628 if (!info->max_targets[i])
629 continue;
630 if (shost->max_id < info->max_targets[i])
631 shost->max_id = info->max_targets[i];
632 }
633
634 /*
635 * Initialize the Controller Queue Depth, Driver Queue Depth,
636 * Logical Drive Count, Maximum Blocks per Command, Controller
637 * Scatter/Gather Limit, and Driver Scatter/Gather Limit.
638 * The Driver Queue Depth must be at most three less than
639 * the Controller Queue Depth; tag '1' is reserved for
640 * direct commands, and tag '2' for monitoring commands.
641 */
642 shost->can_queue = info->max_tcq - 3;
643 if (shost->can_queue > MYRS_MAX_CMD_MBOX - 3)
644 shost->can_queue = MYRS_MAX_CMD_MBOX - 3;
645 shost->max_sectors = info->max_transfer_size;
646 shost->sg_tablesize = info->max_sge;
647 if (shost->sg_tablesize > MYRS_SG_LIMIT)
648 shost->sg_tablesize = MYRS_SG_LIMIT;
649
650 shost_printk(KERN_INFO, shost,
651 "Configuring %s PCI RAID Controller\n", model);
652 shost_printk(KERN_INFO, shost,
653 " Firmware Version: %s, Channels: %d, Memory Size: %dMB\n",
654 fw_version, info->physchan_present, info->mem_size_mb);
655
656 shost_printk(KERN_INFO, shost,
657 " Controller Queue Depth: %d, Maximum Blocks per Command: %d\n",
658 shost->can_queue, shost->max_sectors);
659
660 shost_printk(KERN_INFO, shost,
661 " Driver Queue Depth: %d, Scatter/Gather Limit: %d of %d Segments\n",
662 shost->can_queue, shost->sg_tablesize, MYRS_SG_LIMIT);
663 for (i = 0; i < info->physchan_max; i++) {
664 if (!info->max_targets[i])
665 continue;
666 shost_printk(KERN_INFO, shost,
667 " Device Channel %d: max %d devices\n",
668 i, info->max_targets[i]);
669 }
670 shost_printk(KERN_INFO, shost,
671 " Physical: %d/%d channels, %d disks, %d devices\n",
672 info->physchan_present, info->physchan_max,
673 info->pdisk_present, info->pdev_present);
674
675 shost_printk(KERN_INFO, shost,
676 " Logical: %d/%d channels, %d disks\n",
677 info->virtchan_present, info->virtchan_max,
678 info->ldev_present);
679 return 0;
680 }
681
682 /*
683 * myrs_log_event - prints a Controller Event message
684 */
685 static struct {
686 int ev_code;
687 unsigned char *ev_msg;
688 } myrs_ev_list[] = {
689 /* Physical Device Events (0x0000 - 0x007F) */
690 { 0x0001, "P Online" },
691 { 0x0002, "P Standby" },
692 { 0x0005, "P Automatic Rebuild Started" },
693 { 0x0006, "P Manual Rebuild Started" },
694 { 0x0007, "P Rebuild Completed" },
695 { 0x0008, "P Rebuild Cancelled" },
696 { 0x0009, "P Rebuild Failed for Unknown Reasons" },
697 { 0x000A, "P Rebuild Failed due to New Physical Device" },
698 { 0x000B, "P Rebuild Failed due to Logical Drive Failure" },
699 { 0x000C, "S Offline" },
700 { 0x000D, "P Found" },
701 { 0x000E, "P Removed" },
702 { 0x000F, "P Unconfigured" },
703 { 0x0010, "P Expand Capacity Started" },
704 { 0x0011, "P Expand Capacity Completed" },
705 { 0x0012, "P Expand Capacity Failed" },
706 { 0x0013, "P Command Timed Out" },
707 { 0x0014, "P Command Aborted" },
708 { 0x0015, "P Command Retried" },
709 { 0x0016, "P Parity Error" },
710 { 0x0017, "P Soft Error" },
711 { 0x0018, "P Miscellaneous Error" },
712 { 0x0019, "P Reset" },
713 { 0x001A, "P Active Spare Found" },
714 { 0x001B, "P Warm Spare Found" },
715 { 0x001C, "S Sense Data Received" },
716 { 0x001D, "P Initialization Started" },
717 { 0x001E, "P Initialization Completed" },
718 { 0x001F, "P Initialization Failed" },
719 { 0x0020, "P Initialization Cancelled" },
720 { 0x0021, "P Failed because Write Recovery Failed" },
721 { 0x0022, "P Failed because SCSI Bus Reset Failed" },
722 { 0x0023, "P Failed because of Double Check Condition" },
723 { 0x0024, "P Failed because Device Cannot Be Accessed" },
724 { 0x0025, "P Failed because of Gross Error on SCSI Processor" },
725 { 0x0026, "P Failed because of Bad Tag from Device" },
726 { 0x0027, "P Failed because of Command Timeout" },
727 { 0x0028, "P Failed because of System Reset" },
728 { 0x0029, "P Failed because of Busy Status or Parity Error" },
729 { 0x002A, "P Failed because Host Set Device to Failed State" },
730 { 0x002B, "P Failed because of Selection Timeout" },
731 { 0x002C, "P Failed because of SCSI Bus Phase Error" },
732 { 0x002D, "P Failed because Device Returned Unknown Status" },
733 { 0x002E, "P Failed because Device Not Ready" },
734 { 0x002F, "P Failed because Device Not Found at Startup" },
735 { 0x0030, "P Failed because COD Write Operation Failed" },
736 { 0x0031, "P Failed because BDT Write Operation Failed" },
737 { 0x0039, "P Missing at Startup" },
738 { 0x003A, "P Start Rebuild Failed due to Physical Drive Too Small" },
739 { 0x003C, "P Temporarily Offline Device Automatically Made Online" },
740 { 0x003D, "P Standby Rebuild Started" },
741 /* Logical Device Events (0x0080 - 0x00FF) */
742 { 0x0080, "M Consistency Check Started" },
743 { 0x0081, "M Consistency Check Completed" },
744 { 0x0082, "M Consistency Check Cancelled" },
745 { 0x0083, "M Consistency Check Completed With Errors" },
746 { 0x0084, "M Consistency Check Failed due to Logical Drive Failure" },
747 { 0x0085, "M Consistency Check Failed due to Physical Device Failure" },
748 { 0x0086, "L Offline" },
749 { 0x0087, "L Critical" },
750 { 0x0088, "L Online" },
751 { 0x0089, "M Automatic Rebuild Started" },
752 { 0x008A, "M Manual Rebuild Started" },
753 { 0x008B, "M Rebuild Completed" },
754 { 0x008C, "M Rebuild Cancelled" },
755 { 0x008D, "M Rebuild Failed for Unknown Reasons" },
756 { 0x008E, "M Rebuild Failed due to New Physical Device" },
757 { 0x008F, "M Rebuild Failed due to Logical Drive Failure" },
758 { 0x0090, "M Initialization Started" },
759 { 0x0091, "M Initialization Completed" },
760 { 0x0092, "M Initialization Cancelled" },
761 { 0x0093, "M Initialization Failed" },
762 { 0x0094, "L Found" },
763 { 0x0095, "L Deleted" },
764 { 0x0096, "M Expand Capacity Started" },
765 { 0x0097, "M Expand Capacity Completed" },
766 { 0x0098, "M Expand Capacity Failed" },
767 { 0x0099, "L Bad Block Found" },
768 { 0x009A, "L Size Changed" },
769 { 0x009B, "L Type Changed" },
770 { 0x009C, "L Bad Data Block Found" },
771 { 0x009E, "L Read of Data Block in BDT" },
772 { 0x009F, "L Write Back Data for Disk Block Lost" },
773 { 0x00A0, "L Temporarily Offline RAID-5/3 Drive Made Online" },
774 { 0x00A1, "L Temporarily Offline RAID-6/1/0/7 Drive Made Online" },
775 { 0x00A2, "L Standby Rebuild Started" },
776 /* Fault Management Events (0x0100 - 0x017F) */
777 { 0x0140, "E Fan %d Failed" },
778 { 0x0141, "E Fan %d OK" },
779 { 0x0142, "E Fan %d Not Present" },
780 { 0x0143, "E Power Supply %d Failed" },
781 { 0x0144, "E Power Supply %d OK" },
782 { 0x0145, "E Power Supply %d Not Present" },
783 { 0x0146, "E Temperature Sensor %d Temperature Exceeds Safe Limit" },
784 { 0x0147, "E Temperature Sensor %d Temperature Exceeds Working Limit" },
785 { 0x0148, "E Temperature Sensor %d Temperature Normal" },
786 { 0x0149, "E Temperature Sensor %d Not Present" },
787 { 0x014A, "E Enclosure Management Unit %d Access Critical" },
788 { 0x014B, "E Enclosure Management Unit %d Access OK" },
789 { 0x014C, "E Enclosure Management Unit %d Access Offline" },
790 /* Controller Events (0x0180 - 0x01FF) */
791 { 0x0181, "C Cache Write Back Error" },
792 { 0x0188, "C Battery Backup Unit Found" },
793 { 0x0189, "C Battery Backup Unit Charge Level Low" },
794 { 0x018A, "C Battery Backup Unit Charge Level OK" },
795 { 0x0193, "C Installation Aborted" },
796 { 0x0195, "C Battery Backup Unit Physically Removed" },
797 { 0x0196, "C Memory Error During Warm Boot" },
798 { 0x019E, "C Memory Soft ECC Error Corrected" },
799 { 0x019F, "C Memory Hard ECC Error Corrected" },
800 { 0x01A2, "C Battery Backup Unit Failed" },
801 { 0x01AB, "C Mirror Race Recovery Failed" },
802 { 0x01AC, "C Mirror Race on Critical Drive" },
803 /* Controller Internal Processor Events */
804 { 0x0380, "C Internal Controller Hung" },
805 { 0x0381, "C Internal Controller Firmware Breakpoint" },
806 { 0x0390, "C Internal Controller i960 Processor Specific Error" },
807 { 0x03A0, "C Internal Controller StrongARM Processor Specific Error" },
808 { 0, "" }
809 };
810
myrs_log_event(struct myrs_hba * cs,struct myrs_event * ev)811 static void myrs_log_event(struct myrs_hba *cs, struct myrs_event *ev)
812 {
813 unsigned char msg_buf[MYRS_LINE_BUFFER_SIZE];
814 int ev_idx = 0, ev_code;
815 unsigned char ev_type, *ev_msg;
816 struct Scsi_Host *shost = cs->host;
817 struct scsi_device *sdev;
818 struct scsi_sense_hdr sshdr = {0};
819 unsigned char sense_info[4];
820 unsigned char cmd_specific[4];
821
822 if (ev->ev_code == 0x1C) {
823 if (!scsi_normalize_sense(ev->sense_data, 40, &sshdr)) {
824 memset(&sshdr, 0x0, sizeof(sshdr));
825 memset(sense_info, 0x0, sizeof(sense_info));
826 memset(cmd_specific, 0x0, sizeof(cmd_specific));
827 } else {
828 memcpy(sense_info, &ev->sense_data[3], 4);
829 memcpy(cmd_specific, &ev->sense_data[7], 4);
830 }
831 }
832 if (sshdr.sense_key == VENDOR_SPECIFIC &&
833 (sshdr.asc == 0x80 || sshdr.asc == 0x81))
834 ev->ev_code = ((sshdr.asc - 0x80) << 8 | sshdr.ascq);
835 while (true) {
836 ev_code = myrs_ev_list[ev_idx].ev_code;
837 if (ev_code == ev->ev_code || ev_code == 0)
838 break;
839 ev_idx++;
840 }
841 ev_type = myrs_ev_list[ev_idx].ev_msg[0];
842 ev_msg = &myrs_ev_list[ev_idx].ev_msg[2];
843 if (ev_code == 0) {
844 shost_printk(KERN_WARNING, shost,
845 "Unknown Controller Event Code %04X\n",
846 ev->ev_code);
847 return;
848 }
849 switch (ev_type) {
850 case 'P':
851 sdev = scsi_device_lookup(shost, ev->channel,
852 ev->target, 0);
853 sdev_printk(KERN_INFO, sdev, "event %d: Physical Device %s\n",
854 ev->ev_seq, ev_msg);
855 if (sdev && sdev->hostdata &&
856 sdev->channel < cs->ctlr_info->physchan_present) {
857 struct myrs_pdev_info *pdev_info = sdev->hostdata;
858
859 switch (ev->ev_code) {
860 case 0x0001:
861 case 0x0007:
862 pdev_info->dev_state = MYRS_DEVICE_ONLINE;
863 break;
864 case 0x0002:
865 pdev_info->dev_state = MYRS_DEVICE_STANDBY;
866 break;
867 case 0x000C:
868 pdev_info->dev_state = MYRS_DEVICE_OFFLINE;
869 break;
870 case 0x000E:
871 pdev_info->dev_state = MYRS_DEVICE_MISSING;
872 break;
873 case 0x000F:
874 pdev_info->dev_state = MYRS_DEVICE_UNCONFIGURED;
875 break;
876 }
877 }
878 break;
879 case 'L':
880 shost_printk(KERN_INFO, shost,
881 "event %d: Logical Drive %d %s\n",
882 ev->ev_seq, ev->lun, ev_msg);
883 cs->needs_update = true;
884 break;
885 case 'M':
886 shost_printk(KERN_INFO, shost,
887 "event %d: Logical Drive %d %s\n",
888 ev->ev_seq, ev->lun, ev_msg);
889 cs->needs_update = true;
890 break;
891 case 'S':
892 if (sshdr.sense_key == NO_SENSE ||
893 (sshdr.sense_key == NOT_READY &&
894 sshdr.asc == 0x04 && (sshdr.ascq == 0x01 ||
895 sshdr.ascq == 0x02)))
896 break;
897 shost_printk(KERN_INFO, shost,
898 "event %d: Physical Device %d:%d %s\n",
899 ev->ev_seq, ev->channel, ev->target, ev_msg);
900 shost_printk(KERN_INFO, shost,
901 "Physical Device %d:%d Sense Key = %X, ASC = %02X, ASCQ = %02X\n",
902 ev->channel, ev->target,
903 sshdr.sense_key, sshdr.asc, sshdr.ascq);
904 shost_printk(KERN_INFO, shost,
905 "Physical Device %d:%d Sense Information = %02X%02X%02X%02X %02X%02X%02X%02X\n",
906 ev->channel, ev->target,
907 sense_info[0], sense_info[1],
908 sense_info[2], sense_info[3],
909 cmd_specific[0], cmd_specific[1],
910 cmd_specific[2], cmd_specific[3]);
911 break;
912 case 'E':
913 if (cs->disable_enc_msg)
914 break;
915 sprintf(msg_buf, ev_msg, ev->lun);
916 shost_printk(KERN_INFO, shost, "event %d: Enclosure %d %s\n",
917 ev->ev_seq, ev->target, msg_buf);
918 break;
919 case 'C':
920 shost_printk(KERN_INFO, shost, "event %d: Controller %s\n",
921 ev->ev_seq, ev_msg);
922 break;
923 default:
924 shost_printk(KERN_INFO, shost,
925 "event %d: Unknown Event Code %04X\n",
926 ev->ev_seq, ev->ev_code);
927 break;
928 }
929 }
930
931 /*
932 * SCSI sysfs interface functions
933 */
raid_state_show(struct device * dev,struct device_attribute * attr,char * buf)934 static ssize_t raid_state_show(struct device *dev,
935 struct device_attribute *attr, char *buf)
936 {
937 struct scsi_device *sdev = to_scsi_device(dev);
938 struct myrs_hba *cs = shost_priv(sdev->host);
939 int ret;
940
941 if (!sdev->hostdata)
942 return snprintf(buf, 16, "Unknown\n");
943
944 if (sdev->channel >= cs->ctlr_info->physchan_present) {
945 struct myrs_ldev_info *ldev_info = sdev->hostdata;
946 const char *name;
947
948 name = myrs_devstate_name(ldev_info->dev_state);
949 if (name)
950 ret = snprintf(buf, 64, "%s\n", name);
951 else
952 ret = snprintf(buf, 64, "Invalid (%02X)\n",
953 ldev_info->dev_state);
954 } else {
955 struct myrs_pdev_info *pdev_info;
956 const char *name;
957
958 pdev_info = sdev->hostdata;
959 name = myrs_devstate_name(pdev_info->dev_state);
960 if (name)
961 ret = snprintf(buf, 64, "%s\n", name);
962 else
963 ret = snprintf(buf, 64, "Invalid (%02X)\n",
964 pdev_info->dev_state);
965 }
966 return ret;
967 }
968
raid_state_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)969 static ssize_t raid_state_store(struct device *dev,
970 struct device_attribute *attr, const char *buf, size_t count)
971 {
972 struct scsi_device *sdev = to_scsi_device(dev);
973 struct myrs_hba *cs = shost_priv(sdev->host);
974 struct myrs_cmdblk *cmd_blk;
975 union myrs_cmd_mbox *mbox;
976 enum myrs_devstate new_state;
977 unsigned short ldev_num;
978 unsigned char status;
979
980 if (!strncmp(buf, "offline", 7) ||
981 !strncmp(buf, "kill", 4))
982 new_state = MYRS_DEVICE_OFFLINE;
983 else if (!strncmp(buf, "online", 6))
984 new_state = MYRS_DEVICE_ONLINE;
985 else if (!strncmp(buf, "standby", 7))
986 new_state = MYRS_DEVICE_STANDBY;
987 else
988 return -EINVAL;
989
990 if (sdev->channel < cs->ctlr_info->physchan_present) {
991 struct myrs_pdev_info *pdev_info = sdev->hostdata;
992 struct myrs_devmap *pdev_devmap =
993 (struct myrs_devmap *)&pdev_info->rsvd13;
994
995 if (pdev_info->dev_state == new_state) {
996 sdev_printk(KERN_INFO, sdev,
997 "Device already in %s\n",
998 myrs_devstate_name(new_state));
999 return count;
1000 }
1001 status = myrs_translate_pdev(cs, sdev->channel, sdev->id,
1002 sdev->lun, pdev_devmap);
1003 if (status != MYRS_STATUS_SUCCESS)
1004 return -ENXIO;
1005 ldev_num = pdev_devmap->ldev_num;
1006 } else {
1007 struct myrs_ldev_info *ldev_info = sdev->hostdata;
1008
1009 if (ldev_info->dev_state == new_state) {
1010 sdev_printk(KERN_INFO, sdev,
1011 "Device already in %s\n",
1012 myrs_devstate_name(new_state));
1013 return count;
1014 }
1015 ldev_num = ldev_info->ldev_num;
1016 }
1017 mutex_lock(&cs->dcmd_mutex);
1018 cmd_blk = &cs->dcmd_blk;
1019 myrs_reset_cmd(cmd_blk);
1020 mbox = &cmd_blk->mbox;
1021 mbox->common.opcode = MYRS_CMD_OP_IOCTL;
1022 mbox->common.id = MYRS_DCMD_TAG;
1023 mbox->common.control.dma_ctrl_to_host = true;
1024 mbox->common.control.no_autosense = true;
1025 mbox->set_devstate.ioctl_opcode = MYRS_IOCTL_SET_DEVICE_STATE;
1026 mbox->set_devstate.state = new_state;
1027 mbox->set_devstate.ldev.ldev_num = ldev_num;
1028 myrs_exec_cmd(cs, cmd_blk);
1029 status = cmd_blk->status;
1030 mutex_unlock(&cs->dcmd_mutex);
1031 if (status == MYRS_STATUS_SUCCESS) {
1032 if (sdev->channel < cs->ctlr_info->physchan_present) {
1033 struct myrs_pdev_info *pdev_info = sdev->hostdata;
1034
1035 pdev_info->dev_state = new_state;
1036 } else {
1037 struct myrs_ldev_info *ldev_info = sdev->hostdata;
1038
1039 ldev_info->dev_state = new_state;
1040 }
1041 sdev_printk(KERN_INFO, sdev,
1042 "Set device state to %s\n",
1043 myrs_devstate_name(new_state));
1044 return count;
1045 }
1046 sdev_printk(KERN_INFO, sdev,
1047 "Failed to set device state to %s, status 0x%02x\n",
1048 myrs_devstate_name(new_state), status);
1049 return -EINVAL;
1050 }
1051 static DEVICE_ATTR_RW(raid_state);
1052
raid_level_show(struct device * dev,struct device_attribute * attr,char * buf)1053 static ssize_t raid_level_show(struct device *dev,
1054 struct device_attribute *attr, char *buf)
1055 {
1056 struct scsi_device *sdev = to_scsi_device(dev);
1057 struct myrs_hba *cs = shost_priv(sdev->host);
1058 const char *name = NULL;
1059
1060 if (!sdev->hostdata)
1061 return snprintf(buf, 16, "Unknown\n");
1062
1063 if (sdev->channel >= cs->ctlr_info->physchan_present) {
1064 struct myrs_ldev_info *ldev_info;
1065
1066 ldev_info = sdev->hostdata;
1067 name = myrs_raid_level_name(ldev_info->raid_level);
1068 if (!name)
1069 return snprintf(buf, 64, "Invalid (%02X)\n",
1070 ldev_info->dev_state);
1071
1072 } else
1073 name = myrs_raid_level_name(MYRS_RAID_PHYSICAL);
1074
1075 return snprintf(buf, 64, "%s\n", name);
1076 }
1077 static DEVICE_ATTR_RO(raid_level);
1078
rebuild_show(struct device * dev,struct device_attribute * attr,char * buf)1079 static ssize_t rebuild_show(struct device *dev,
1080 struct device_attribute *attr, char *buf)
1081 {
1082 struct scsi_device *sdev = to_scsi_device(dev);
1083 struct myrs_hba *cs = shost_priv(sdev->host);
1084 struct myrs_ldev_info *ldev_info;
1085 unsigned short ldev_num;
1086 unsigned char status;
1087
1088 if (sdev->channel < cs->ctlr_info->physchan_present)
1089 return snprintf(buf, 64, "physical device - not rebuilding\n");
1090
1091 ldev_info = sdev->hostdata;
1092 ldev_num = ldev_info->ldev_num;
1093 status = myrs_get_ldev_info(cs, ldev_num, ldev_info);
1094 if (status != MYRS_STATUS_SUCCESS) {
1095 sdev_printk(KERN_INFO, sdev,
1096 "Failed to get device information, status 0x%02x\n",
1097 status);
1098 return -EIO;
1099 }
1100 if (ldev_info->rbld_active) {
1101 return snprintf(buf, 64, "rebuilding block %zu of %zu\n",
1102 (size_t)ldev_info->rbld_lba,
1103 (size_t)ldev_info->cfg_devsize);
1104 } else
1105 return snprintf(buf, 64, "not rebuilding\n");
1106 }
1107
rebuild_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1108 static ssize_t rebuild_store(struct device *dev,
1109 struct device_attribute *attr, const char *buf, size_t count)
1110 {
1111 struct scsi_device *sdev = to_scsi_device(dev);
1112 struct myrs_hba *cs = shost_priv(sdev->host);
1113 struct myrs_ldev_info *ldev_info;
1114 struct myrs_cmdblk *cmd_blk;
1115 union myrs_cmd_mbox *mbox;
1116 unsigned short ldev_num;
1117 unsigned char status;
1118 int rebuild, ret;
1119
1120 if (sdev->channel < cs->ctlr_info->physchan_present)
1121 return -EINVAL;
1122
1123 ldev_info = sdev->hostdata;
1124 if (!ldev_info)
1125 return -ENXIO;
1126 ldev_num = ldev_info->ldev_num;
1127
1128 ret = kstrtoint(buf, 0, &rebuild);
1129 if (ret)
1130 return ret;
1131
1132 status = myrs_get_ldev_info(cs, ldev_num, ldev_info);
1133 if (status != MYRS_STATUS_SUCCESS) {
1134 sdev_printk(KERN_INFO, sdev,
1135 "Failed to get device information, status 0x%02x\n",
1136 status);
1137 return -EIO;
1138 }
1139
1140 if (rebuild && ldev_info->rbld_active) {
1141 sdev_printk(KERN_INFO, sdev,
1142 "Rebuild Not Initiated; already in progress\n");
1143 return -EALREADY;
1144 }
1145 if (!rebuild && !ldev_info->rbld_active) {
1146 sdev_printk(KERN_INFO, sdev,
1147 "Rebuild Not Cancelled; no rebuild in progress\n");
1148 return count;
1149 }
1150
1151 mutex_lock(&cs->dcmd_mutex);
1152 cmd_blk = &cs->dcmd_blk;
1153 myrs_reset_cmd(cmd_blk);
1154 mbox = &cmd_blk->mbox;
1155 mbox->common.opcode = MYRS_CMD_OP_IOCTL;
1156 mbox->common.id = MYRS_DCMD_TAG;
1157 mbox->common.control.dma_ctrl_to_host = true;
1158 mbox->common.control.no_autosense = true;
1159 if (rebuild) {
1160 mbox->ldev_info.ldev.ldev_num = ldev_num;
1161 mbox->ldev_info.ioctl_opcode = MYRS_IOCTL_RBLD_DEVICE_START;
1162 } else {
1163 mbox->ldev_info.ldev.ldev_num = ldev_num;
1164 mbox->ldev_info.ioctl_opcode = MYRS_IOCTL_RBLD_DEVICE_STOP;
1165 }
1166 myrs_exec_cmd(cs, cmd_blk);
1167 status = cmd_blk->status;
1168 mutex_unlock(&cs->dcmd_mutex);
1169 if (status) {
1170 sdev_printk(KERN_INFO, sdev,
1171 "Rebuild Not %s, status 0x%02x\n",
1172 rebuild ? "Initiated" : "Cancelled", status);
1173 ret = -EIO;
1174 } else {
1175 sdev_printk(KERN_INFO, sdev, "Rebuild %s\n",
1176 rebuild ? "Initiated" : "Cancelled");
1177 ret = count;
1178 }
1179
1180 return ret;
1181 }
1182 static DEVICE_ATTR_RW(rebuild);
1183
consistency_check_show(struct device * dev,struct device_attribute * attr,char * buf)1184 static ssize_t consistency_check_show(struct device *dev,
1185 struct device_attribute *attr, char *buf)
1186 {
1187 struct scsi_device *sdev = to_scsi_device(dev);
1188 struct myrs_hba *cs = shost_priv(sdev->host);
1189 struct myrs_ldev_info *ldev_info;
1190 unsigned short ldev_num;
1191
1192 if (sdev->channel < cs->ctlr_info->physchan_present)
1193 return snprintf(buf, 64, "physical device - not checking\n");
1194
1195 ldev_info = sdev->hostdata;
1196 if (!ldev_info)
1197 return -ENXIO;
1198 ldev_num = ldev_info->ldev_num;
1199 myrs_get_ldev_info(cs, ldev_num, ldev_info);
1200 if (ldev_info->cc_active)
1201 return snprintf(buf, 64, "checking block %zu of %zu\n",
1202 (size_t)ldev_info->cc_lba,
1203 (size_t)ldev_info->cfg_devsize);
1204 else
1205 return snprintf(buf, 64, "not checking\n");
1206 }
1207
consistency_check_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1208 static ssize_t consistency_check_store(struct device *dev,
1209 struct device_attribute *attr, const char *buf, size_t count)
1210 {
1211 struct scsi_device *sdev = to_scsi_device(dev);
1212 struct myrs_hba *cs = shost_priv(sdev->host);
1213 struct myrs_ldev_info *ldev_info;
1214 struct myrs_cmdblk *cmd_blk;
1215 union myrs_cmd_mbox *mbox;
1216 unsigned short ldev_num;
1217 unsigned char status;
1218 int check, ret;
1219
1220 if (sdev->channel < cs->ctlr_info->physchan_present)
1221 return -EINVAL;
1222
1223 ldev_info = sdev->hostdata;
1224 if (!ldev_info)
1225 return -ENXIO;
1226 ldev_num = ldev_info->ldev_num;
1227
1228 ret = kstrtoint(buf, 0, &check);
1229 if (ret)
1230 return ret;
1231
1232 status = myrs_get_ldev_info(cs, ldev_num, ldev_info);
1233 if (status != MYRS_STATUS_SUCCESS) {
1234 sdev_printk(KERN_INFO, sdev,
1235 "Failed to get device information, status 0x%02x\n",
1236 status);
1237 return -EIO;
1238 }
1239 if (check && ldev_info->cc_active) {
1240 sdev_printk(KERN_INFO, sdev,
1241 "Consistency Check Not Initiated; "
1242 "already in progress\n");
1243 return -EALREADY;
1244 }
1245 if (!check && !ldev_info->cc_active) {
1246 sdev_printk(KERN_INFO, sdev,
1247 "Consistency Check Not Cancelled; "
1248 "check not in progress\n");
1249 return count;
1250 }
1251
1252 mutex_lock(&cs->dcmd_mutex);
1253 cmd_blk = &cs->dcmd_blk;
1254 myrs_reset_cmd(cmd_blk);
1255 mbox = &cmd_blk->mbox;
1256 mbox->common.opcode = MYRS_CMD_OP_IOCTL;
1257 mbox->common.id = MYRS_DCMD_TAG;
1258 mbox->common.control.dma_ctrl_to_host = true;
1259 mbox->common.control.no_autosense = true;
1260 if (check) {
1261 mbox->cc.ldev.ldev_num = ldev_num;
1262 mbox->cc.ioctl_opcode = MYRS_IOCTL_CC_START;
1263 mbox->cc.restore_consistency = true;
1264 mbox->cc.initialized_area_only = false;
1265 } else {
1266 mbox->cc.ldev.ldev_num = ldev_num;
1267 mbox->cc.ioctl_opcode = MYRS_IOCTL_CC_STOP;
1268 }
1269 myrs_exec_cmd(cs, cmd_blk);
1270 status = cmd_blk->status;
1271 mutex_unlock(&cs->dcmd_mutex);
1272 if (status != MYRS_STATUS_SUCCESS) {
1273 sdev_printk(KERN_INFO, sdev,
1274 "Consistency Check Not %s, status 0x%02x\n",
1275 check ? "Initiated" : "Cancelled", status);
1276 ret = -EIO;
1277 } else {
1278 sdev_printk(KERN_INFO, sdev, "Consistency Check %s\n",
1279 check ? "Initiated" : "Cancelled");
1280 ret = count;
1281 }
1282
1283 return ret;
1284 }
1285 static DEVICE_ATTR_RW(consistency_check);
1286
1287 static struct attribute *myrs_sdev_attrs[] = {
1288 &dev_attr_consistency_check.attr,
1289 &dev_attr_rebuild.attr,
1290 &dev_attr_raid_state.attr,
1291 &dev_attr_raid_level.attr,
1292 NULL,
1293 };
1294
1295 ATTRIBUTE_GROUPS(myrs_sdev);
1296
serial_show(struct device * dev,struct device_attribute * attr,char * buf)1297 static ssize_t serial_show(struct device *dev,
1298 struct device_attribute *attr, char *buf)
1299 {
1300 struct Scsi_Host *shost = class_to_shost(dev);
1301 struct myrs_hba *cs = shost_priv(shost);
1302 char serial[17];
1303
1304 memcpy(serial, cs->ctlr_info->serial_number, 16);
1305 serial[16] = '\0';
1306 return snprintf(buf, 16, "%s\n", serial);
1307 }
1308 static DEVICE_ATTR_RO(serial);
1309
ctlr_num_show(struct device * dev,struct device_attribute * attr,char * buf)1310 static ssize_t ctlr_num_show(struct device *dev,
1311 struct device_attribute *attr, char *buf)
1312 {
1313 struct Scsi_Host *shost = class_to_shost(dev);
1314 struct myrs_hba *cs = shost_priv(shost);
1315
1316 return snprintf(buf, 20, "%d\n", cs->host->host_no);
1317 }
1318 static DEVICE_ATTR_RO(ctlr_num);
1319
1320 static struct myrs_cpu_type_tbl {
1321 enum myrs_cpu_type type;
1322 char *name;
1323 } myrs_cpu_type_names[] = {
1324 { MYRS_CPUTYPE_i960CA, "i960CA" },
1325 { MYRS_CPUTYPE_i960RD, "i960RD" },
1326 { MYRS_CPUTYPE_i960RN, "i960RN" },
1327 { MYRS_CPUTYPE_i960RP, "i960RP" },
1328 { MYRS_CPUTYPE_NorthBay, "NorthBay" },
1329 { MYRS_CPUTYPE_StrongArm, "StrongARM" },
1330 { MYRS_CPUTYPE_i960RM, "i960RM" },
1331 };
1332
processor_show(struct device * dev,struct device_attribute * attr,char * buf)1333 static ssize_t processor_show(struct device *dev,
1334 struct device_attribute *attr, char *buf)
1335 {
1336 struct Scsi_Host *shost = class_to_shost(dev);
1337 struct myrs_hba *cs = shost_priv(shost);
1338 struct myrs_cpu_type_tbl *tbl;
1339 const char *first_processor = NULL;
1340 const char *second_processor = NULL;
1341 struct myrs_ctlr_info *info = cs->ctlr_info;
1342 ssize_t ret;
1343 int i;
1344
1345 if (info->cpu[0].cpu_count) {
1346 tbl = myrs_cpu_type_names;
1347 for (i = 0; i < ARRAY_SIZE(myrs_cpu_type_names); i++) {
1348 if (tbl[i].type == info->cpu[0].cpu_type) {
1349 first_processor = tbl[i].name;
1350 break;
1351 }
1352 }
1353 }
1354 if (info->cpu[1].cpu_count) {
1355 tbl = myrs_cpu_type_names;
1356 for (i = 0; i < ARRAY_SIZE(myrs_cpu_type_names); i++) {
1357 if (tbl[i].type == info->cpu[1].cpu_type) {
1358 second_processor = tbl[i].name;
1359 break;
1360 }
1361 }
1362 }
1363 if (first_processor && second_processor)
1364 ret = snprintf(buf, 64, "1: %s (%s, %d cpus)\n"
1365 "2: %s (%s, %d cpus)\n",
1366 info->cpu[0].cpu_name,
1367 first_processor, info->cpu[0].cpu_count,
1368 info->cpu[1].cpu_name,
1369 second_processor, info->cpu[1].cpu_count);
1370 else if (first_processor && !second_processor)
1371 ret = snprintf(buf, 64, "1: %s (%s, %d cpus)\n2: absent\n",
1372 info->cpu[0].cpu_name,
1373 first_processor, info->cpu[0].cpu_count);
1374 else if (!first_processor && second_processor)
1375 ret = snprintf(buf, 64, "1: absent\n2: %s (%s, %d cpus)\n",
1376 info->cpu[1].cpu_name,
1377 second_processor, info->cpu[1].cpu_count);
1378 else
1379 ret = snprintf(buf, 64, "1: absent\n2: absent\n");
1380
1381 return ret;
1382 }
1383 static DEVICE_ATTR_RO(processor);
1384
model_show(struct device * dev,struct device_attribute * attr,char * buf)1385 static ssize_t model_show(struct device *dev,
1386 struct device_attribute *attr, char *buf)
1387 {
1388 struct Scsi_Host *shost = class_to_shost(dev);
1389 struct myrs_hba *cs = shost_priv(shost);
1390
1391 return snprintf(buf, 28, "%s\n", cs->model_name);
1392 }
1393 static DEVICE_ATTR_RO(model);
1394
ctlr_type_show(struct device * dev,struct device_attribute * attr,char * buf)1395 static ssize_t ctlr_type_show(struct device *dev,
1396 struct device_attribute *attr, char *buf)
1397 {
1398 struct Scsi_Host *shost = class_to_shost(dev);
1399 struct myrs_hba *cs = shost_priv(shost);
1400
1401 return snprintf(buf, 4, "%d\n", cs->ctlr_info->ctlr_type);
1402 }
1403 static DEVICE_ATTR_RO(ctlr_type);
1404
cache_size_show(struct device * dev,struct device_attribute * attr,char * buf)1405 static ssize_t cache_size_show(struct device *dev,
1406 struct device_attribute *attr, char *buf)
1407 {
1408 struct Scsi_Host *shost = class_to_shost(dev);
1409 struct myrs_hba *cs = shost_priv(shost);
1410
1411 return snprintf(buf, 8, "%d MB\n", cs->ctlr_info->cache_size_mb);
1412 }
1413 static DEVICE_ATTR_RO(cache_size);
1414
firmware_show(struct device * dev,struct device_attribute * attr,char * buf)1415 static ssize_t firmware_show(struct device *dev,
1416 struct device_attribute *attr, char *buf)
1417 {
1418 struct Scsi_Host *shost = class_to_shost(dev);
1419 struct myrs_hba *cs = shost_priv(shost);
1420
1421 return snprintf(buf, 16, "%d.%02d-%02d\n",
1422 cs->ctlr_info->fw_major_version,
1423 cs->ctlr_info->fw_minor_version,
1424 cs->ctlr_info->fw_turn_number);
1425 }
1426 static DEVICE_ATTR_RO(firmware);
1427
discovery_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1428 static ssize_t discovery_store(struct device *dev,
1429 struct device_attribute *attr, const char *buf, size_t count)
1430 {
1431 struct Scsi_Host *shost = class_to_shost(dev);
1432 struct myrs_hba *cs = shost_priv(shost);
1433 struct myrs_cmdblk *cmd_blk;
1434 union myrs_cmd_mbox *mbox;
1435 unsigned char status;
1436
1437 mutex_lock(&cs->dcmd_mutex);
1438 cmd_blk = &cs->dcmd_blk;
1439 myrs_reset_cmd(cmd_blk);
1440 mbox = &cmd_blk->mbox;
1441 mbox->common.opcode = MYRS_CMD_OP_IOCTL;
1442 mbox->common.id = MYRS_DCMD_TAG;
1443 mbox->common.control.dma_ctrl_to_host = true;
1444 mbox->common.control.no_autosense = true;
1445 mbox->common.ioctl_opcode = MYRS_IOCTL_START_DISCOVERY;
1446 myrs_exec_cmd(cs, cmd_blk);
1447 status = cmd_blk->status;
1448 mutex_unlock(&cs->dcmd_mutex);
1449 if (status != MYRS_STATUS_SUCCESS) {
1450 shost_printk(KERN_INFO, shost,
1451 "Discovery Not Initiated, status %02X\n",
1452 status);
1453 return -EINVAL;
1454 }
1455 shost_printk(KERN_INFO, shost, "Discovery Initiated\n");
1456 cs->next_evseq = 0;
1457 cs->needs_update = true;
1458 queue_delayed_work(cs->work_q, &cs->monitor_work, 1);
1459 flush_delayed_work(&cs->monitor_work);
1460 shost_printk(KERN_INFO, shost, "Discovery Completed\n");
1461
1462 return count;
1463 }
1464 static DEVICE_ATTR_WO(discovery);
1465
flush_cache_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1466 static ssize_t flush_cache_store(struct device *dev,
1467 struct device_attribute *attr, const char *buf, size_t count)
1468 {
1469 struct Scsi_Host *shost = class_to_shost(dev);
1470 struct myrs_hba *cs = shost_priv(shost);
1471 unsigned char status;
1472
1473 status = myrs_dev_op(cs, MYRS_IOCTL_FLUSH_DEVICE_DATA,
1474 MYRS_RAID_CONTROLLER);
1475 if (status == MYRS_STATUS_SUCCESS) {
1476 shost_printk(KERN_INFO, shost, "Cache Flush Completed\n");
1477 return count;
1478 }
1479 shost_printk(KERN_INFO, shost,
1480 "Cache Flush failed, status 0x%02x\n", status);
1481 return -EIO;
1482 }
1483 static DEVICE_ATTR_WO(flush_cache);
1484
disable_enclosure_messages_show(struct device * dev,struct device_attribute * attr,char * buf)1485 static ssize_t disable_enclosure_messages_show(struct device *dev,
1486 struct device_attribute *attr, char *buf)
1487 {
1488 struct Scsi_Host *shost = class_to_shost(dev);
1489 struct myrs_hba *cs = shost_priv(shost);
1490
1491 return snprintf(buf, 3, "%d\n", cs->disable_enc_msg);
1492 }
1493
disable_enclosure_messages_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1494 static ssize_t disable_enclosure_messages_store(struct device *dev,
1495 struct device_attribute *attr, const char *buf, size_t count)
1496 {
1497 struct scsi_device *sdev = to_scsi_device(dev);
1498 struct myrs_hba *cs = shost_priv(sdev->host);
1499 int value, ret;
1500
1501 ret = kstrtoint(buf, 0, &value);
1502 if (ret)
1503 return ret;
1504
1505 if (value > 2)
1506 return -EINVAL;
1507
1508 cs->disable_enc_msg = value;
1509 return count;
1510 }
1511 static DEVICE_ATTR_RW(disable_enclosure_messages);
1512
1513 static struct attribute *myrs_shost_attrs[] = {
1514 &dev_attr_serial.attr,
1515 &dev_attr_ctlr_num.attr,
1516 &dev_attr_processor.attr,
1517 &dev_attr_model.attr,
1518 &dev_attr_ctlr_type.attr,
1519 &dev_attr_cache_size.attr,
1520 &dev_attr_firmware.attr,
1521 &dev_attr_discovery.attr,
1522 &dev_attr_flush_cache.attr,
1523 &dev_attr_disable_enclosure_messages.attr,
1524 NULL,
1525 };
1526
1527 ATTRIBUTE_GROUPS(myrs_shost);
1528
1529 /*
1530 * SCSI midlayer interface
1531 */
myrs_host_reset(struct scsi_cmnd * scmd)1532 static int myrs_host_reset(struct scsi_cmnd *scmd)
1533 {
1534 struct Scsi_Host *shost = scmd->device->host;
1535 struct myrs_hba *cs = shost_priv(shost);
1536
1537 cs->reset(cs->io_base);
1538 return SUCCESS;
1539 }
1540
myrs_mode_sense(struct myrs_hba * cs,struct scsi_cmnd * scmd,struct myrs_ldev_info * ldev_info)1541 static void myrs_mode_sense(struct myrs_hba *cs, struct scsi_cmnd *scmd,
1542 struct myrs_ldev_info *ldev_info)
1543 {
1544 unsigned char modes[32], *mode_pg;
1545 bool dbd;
1546 size_t mode_len;
1547
1548 dbd = (scmd->cmnd[1] & 0x08) == 0x08;
1549 if (dbd) {
1550 mode_len = 24;
1551 mode_pg = &modes[4];
1552 } else {
1553 mode_len = 32;
1554 mode_pg = &modes[12];
1555 }
1556 memset(modes, 0, sizeof(modes));
1557 modes[0] = mode_len - 1;
1558 modes[2] = 0x10; /* Enable FUA */
1559 if (ldev_info->ldev_control.wce == MYRS_LOGICALDEVICE_RO)
1560 modes[2] |= 0x80;
1561 if (!dbd) {
1562 unsigned char *block_desc = &modes[4];
1563
1564 modes[3] = 8;
1565 put_unaligned_be32(ldev_info->cfg_devsize, &block_desc[0]);
1566 put_unaligned_be32(ldev_info->devsize_bytes, &block_desc[5]);
1567 }
1568 mode_pg[0] = 0x08;
1569 mode_pg[1] = 0x12;
1570 if (ldev_info->ldev_control.rce == MYRS_READCACHE_DISABLED)
1571 mode_pg[2] |= 0x01;
1572 if (ldev_info->ldev_control.wce == MYRS_WRITECACHE_ENABLED ||
1573 ldev_info->ldev_control.wce == MYRS_INTELLIGENT_WRITECACHE_ENABLED)
1574 mode_pg[2] |= 0x04;
1575 if (ldev_info->cacheline_size) {
1576 mode_pg[2] |= 0x08;
1577 put_unaligned_be16(1 << ldev_info->cacheline_size,
1578 &mode_pg[14]);
1579 }
1580
1581 scsi_sg_copy_from_buffer(scmd, modes, mode_len);
1582 }
1583
myrs_queuecommand(struct Scsi_Host * shost,struct scsi_cmnd * scmd)1584 static int myrs_queuecommand(struct Scsi_Host *shost,
1585 struct scsi_cmnd *scmd)
1586 {
1587 struct request *rq = scsi_cmd_to_rq(scmd);
1588 struct myrs_hba *cs = shost_priv(shost);
1589 struct myrs_cmdblk *cmd_blk = scsi_cmd_priv(scmd);
1590 union myrs_cmd_mbox *mbox = &cmd_blk->mbox;
1591 struct scsi_device *sdev = scmd->device;
1592 union myrs_sgl *hw_sge;
1593 dma_addr_t sense_addr;
1594 struct scatterlist *sgl;
1595 unsigned long flags, timeout;
1596 int nsge;
1597
1598 if (!scmd->device->hostdata) {
1599 scmd->result = (DID_NO_CONNECT << 16);
1600 scsi_done(scmd);
1601 return 0;
1602 }
1603
1604 switch (scmd->cmnd[0]) {
1605 case REPORT_LUNS:
1606 scsi_build_sense(scmd, 0, ILLEGAL_REQUEST, 0x20, 0x0);
1607 scsi_done(scmd);
1608 return 0;
1609 case MODE_SENSE:
1610 if (scmd->device->channel >= cs->ctlr_info->physchan_present) {
1611 struct myrs_ldev_info *ldev_info = sdev->hostdata;
1612
1613 if ((scmd->cmnd[2] & 0x3F) != 0x3F &&
1614 (scmd->cmnd[2] & 0x3F) != 0x08) {
1615 /* Illegal request, invalid field in CDB */
1616 scsi_build_sense(scmd, 0, ILLEGAL_REQUEST, 0x24, 0);
1617 } else {
1618 myrs_mode_sense(cs, scmd, ldev_info);
1619 scmd->result = (DID_OK << 16);
1620 }
1621 scsi_done(scmd);
1622 return 0;
1623 }
1624 break;
1625 }
1626
1627 myrs_reset_cmd(cmd_blk);
1628 cmd_blk->sense = dma_pool_alloc(cs->sense_pool, GFP_ATOMIC,
1629 &sense_addr);
1630 if (!cmd_blk->sense)
1631 return SCSI_MLQUEUE_HOST_BUSY;
1632 cmd_blk->sense_addr = sense_addr;
1633
1634 timeout = rq->timeout;
1635 if (scmd->cmd_len <= 10) {
1636 if (scmd->device->channel >= cs->ctlr_info->physchan_present) {
1637 struct myrs_ldev_info *ldev_info = sdev->hostdata;
1638
1639 mbox->SCSI_10.opcode = MYRS_CMD_OP_SCSI_10;
1640 mbox->SCSI_10.pdev.lun = ldev_info->lun;
1641 mbox->SCSI_10.pdev.target = ldev_info->target;
1642 mbox->SCSI_10.pdev.channel = ldev_info->channel;
1643 mbox->SCSI_10.pdev.ctlr = 0;
1644 } else {
1645 mbox->SCSI_10.opcode = MYRS_CMD_OP_SCSI_10_PASSTHRU;
1646 mbox->SCSI_10.pdev.lun = sdev->lun;
1647 mbox->SCSI_10.pdev.target = sdev->id;
1648 mbox->SCSI_10.pdev.channel = sdev->channel;
1649 }
1650 mbox->SCSI_10.id = rq->tag + 3;
1651 mbox->SCSI_10.control.dma_ctrl_to_host =
1652 (scmd->sc_data_direction == DMA_FROM_DEVICE);
1653 if (rq->cmd_flags & REQ_FUA)
1654 mbox->SCSI_10.control.fua = true;
1655 mbox->SCSI_10.dma_size = scsi_bufflen(scmd);
1656 mbox->SCSI_10.sense_addr = cmd_blk->sense_addr;
1657 mbox->SCSI_10.sense_len = MYRS_SENSE_SIZE;
1658 mbox->SCSI_10.cdb_len = scmd->cmd_len;
1659 if (timeout > 60) {
1660 mbox->SCSI_10.tmo.tmo_scale = MYRS_TMO_SCALE_MINUTES;
1661 mbox->SCSI_10.tmo.tmo_val = timeout / 60;
1662 } else {
1663 mbox->SCSI_10.tmo.tmo_scale = MYRS_TMO_SCALE_SECONDS;
1664 mbox->SCSI_10.tmo.tmo_val = timeout;
1665 }
1666 memcpy(&mbox->SCSI_10.cdb, scmd->cmnd, scmd->cmd_len);
1667 hw_sge = &mbox->SCSI_10.dma_addr;
1668 cmd_blk->dcdb = NULL;
1669 } else {
1670 dma_addr_t dcdb_dma;
1671
1672 cmd_blk->dcdb = dma_pool_alloc(cs->dcdb_pool, GFP_ATOMIC,
1673 &dcdb_dma);
1674 if (!cmd_blk->dcdb) {
1675 dma_pool_free(cs->sense_pool, cmd_blk->sense,
1676 cmd_blk->sense_addr);
1677 cmd_blk->sense = NULL;
1678 cmd_blk->sense_addr = 0;
1679 return SCSI_MLQUEUE_HOST_BUSY;
1680 }
1681 cmd_blk->dcdb_dma = dcdb_dma;
1682 if (scmd->device->channel >= cs->ctlr_info->physchan_present) {
1683 struct myrs_ldev_info *ldev_info = sdev->hostdata;
1684
1685 mbox->SCSI_255.opcode = MYRS_CMD_OP_SCSI_256;
1686 mbox->SCSI_255.pdev.lun = ldev_info->lun;
1687 mbox->SCSI_255.pdev.target = ldev_info->target;
1688 mbox->SCSI_255.pdev.channel = ldev_info->channel;
1689 mbox->SCSI_255.pdev.ctlr = 0;
1690 } else {
1691 mbox->SCSI_255.opcode = MYRS_CMD_OP_SCSI_255_PASSTHRU;
1692 mbox->SCSI_255.pdev.lun = sdev->lun;
1693 mbox->SCSI_255.pdev.target = sdev->id;
1694 mbox->SCSI_255.pdev.channel = sdev->channel;
1695 }
1696 mbox->SCSI_255.id = rq->tag + 3;
1697 mbox->SCSI_255.control.dma_ctrl_to_host =
1698 (scmd->sc_data_direction == DMA_FROM_DEVICE);
1699 if (rq->cmd_flags & REQ_FUA)
1700 mbox->SCSI_255.control.fua = true;
1701 mbox->SCSI_255.dma_size = scsi_bufflen(scmd);
1702 mbox->SCSI_255.sense_addr = cmd_blk->sense_addr;
1703 mbox->SCSI_255.sense_len = MYRS_SENSE_SIZE;
1704 mbox->SCSI_255.cdb_len = scmd->cmd_len;
1705 mbox->SCSI_255.cdb_addr = cmd_blk->dcdb_dma;
1706 if (timeout > 60) {
1707 mbox->SCSI_255.tmo.tmo_scale = MYRS_TMO_SCALE_MINUTES;
1708 mbox->SCSI_255.tmo.tmo_val = timeout / 60;
1709 } else {
1710 mbox->SCSI_255.tmo.tmo_scale = MYRS_TMO_SCALE_SECONDS;
1711 mbox->SCSI_255.tmo.tmo_val = timeout;
1712 }
1713 memcpy(cmd_blk->dcdb, scmd->cmnd, scmd->cmd_len);
1714 hw_sge = &mbox->SCSI_255.dma_addr;
1715 }
1716 if (scmd->sc_data_direction == DMA_NONE)
1717 goto submit;
1718 nsge = scsi_dma_map(scmd);
1719 if (nsge == 1) {
1720 sgl = scsi_sglist(scmd);
1721 hw_sge->sge[0].sge_addr = (u64)sg_dma_address(sgl);
1722 hw_sge->sge[0].sge_count = (u64)sg_dma_len(sgl);
1723 } else {
1724 struct myrs_sge *hw_sgl;
1725 dma_addr_t hw_sgl_addr;
1726 int i;
1727
1728 if (nsge > 2) {
1729 hw_sgl = dma_pool_alloc(cs->sg_pool, GFP_ATOMIC,
1730 &hw_sgl_addr);
1731 if (WARN_ON(!hw_sgl)) {
1732 if (cmd_blk->dcdb) {
1733 dma_pool_free(cs->dcdb_pool,
1734 cmd_blk->dcdb,
1735 cmd_blk->dcdb_dma);
1736 cmd_blk->dcdb = NULL;
1737 cmd_blk->dcdb_dma = 0;
1738 }
1739 dma_pool_free(cs->sense_pool,
1740 cmd_blk->sense,
1741 cmd_blk->sense_addr);
1742 cmd_blk->sense = NULL;
1743 cmd_blk->sense_addr = 0;
1744 return SCSI_MLQUEUE_HOST_BUSY;
1745 }
1746 cmd_blk->sgl = hw_sgl;
1747 cmd_blk->sgl_addr = hw_sgl_addr;
1748 if (scmd->cmd_len <= 10)
1749 mbox->SCSI_10.control.add_sge_mem = true;
1750 else
1751 mbox->SCSI_255.control.add_sge_mem = true;
1752 hw_sge->ext.sge0_len = nsge;
1753 hw_sge->ext.sge0_addr = cmd_blk->sgl_addr;
1754 } else
1755 hw_sgl = hw_sge->sge;
1756
1757 scsi_for_each_sg(scmd, sgl, nsge, i) {
1758 if (WARN_ON(!hw_sgl)) {
1759 scsi_dma_unmap(scmd);
1760 scmd->result = (DID_ERROR << 16);
1761 scsi_done(scmd);
1762 return 0;
1763 }
1764 hw_sgl->sge_addr = (u64)sg_dma_address(sgl);
1765 hw_sgl->sge_count = (u64)sg_dma_len(sgl);
1766 hw_sgl++;
1767 }
1768 }
1769 submit:
1770 spin_lock_irqsave(&cs->queue_lock, flags);
1771 myrs_qcmd(cs, cmd_blk);
1772 spin_unlock_irqrestore(&cs->queue_lock, flags);
1773
1774 return 0;
1775 }
1776
myrs_translate_ldev(struct myrs_hba * cs,struct scsi_device * sdev)1777 static unsigned short myrs_translate_ldev(struct myrs_hba *cs,
1778 struct scsi_device *sdev)
1779 {
1780 unsigned short ldev_num;
1781 unsigned int chan_offset =
1782 sdev->channel - cs->ctlr_info->physchan_present;
1783
1784 ldev_num = sdev->id + chan_offset * sdev->host->max_id;
1785
1786 return ldev_num;
1787 }
1788
myrs_slave_alloc(struct scsi_device * sdev)1789 static int myrs_slave_alloc(struct scsi_device *sdev)
1790 {
1791 struct myrs_hba *cs = shost_priv(sdev->host);
1792 unsigned char status;
1793
1794 if (sdev->channel > sdev->host->max_channel)
1795 return 0;
1796
1797 if (sdev->channel >= cs->ctlr_info->physchan_present) {
1798 struct myrs_ldev_info *ldev_info;
1799 unsigned short ldev_num;
1800
1801 if (sdev->lun > 0)
1802 return -ENXIO;
1803
1804 ldev_num = myrs_translate_ldev(cs, sdev);
1805
1806 ldev_info = kzalloc(sizeof(*ldev_info), GFP_KERNEL);
1807 if (!ldev_info)
1808 return -ENOMEM;
1809
1810 status = myrs_get_ldev_info(cs, ldev_num, ldev_info);
1811 if (status != MYRS_STATUS_SUCCESS) {
1812 sdev->hostdata = NULL;
1813 kfree(ldev_info);
1814 } else {
1815 enum raid_level level;
1816
1817 dev_dbg(&sdev->sdev_gendev,
1818 "Logical device mapping %d:%d:%d -> %d\n",
1819 ldev_info->channel, ldev_info->target,
1820 ldev_info->lun, ldev_info->ldev_num);
1821
1822 sdev->hostdata = ldev_info;
1823 switch (ldev_info->raid_level) {
1824 case MYRS_RAID_LEVEL0:
1825 level = RAID_LEVEL_LINEAR;
1826 break;
1827 case MYRS_RAID_LEVEL1:
1828 level = RAID_LEVEL_1;
1829 break;
1830 case MYRS_RAID_LEVEL3:
1831 case MYRS_RAID_LEVEL3F:
1832 case MYRS_RAID_LEVEL3L:
1833 level = RAID_LEVEL_3;
1834 break;
1835 case MYRS_RAID_LEVEL5:
1836 case MYRS_RAID_LEVEL5L:
1837 level = RAID_LEVEL_5;
1838 break;
1839 case MYRS_RAID_LEVEL6:
1840 level = RAID_LEVEL_6;
1841 break;
1842 case MYRS_RAID_LEVELE:
1843 case MYRS_RAID_NEWSPAN:
1844 case MYRS_RAID_SPAN:
1845 level = RAID_LEVEL_LINEAR;
1846 break;
1847 case MYRS_RAID_JBOD:
1848 level = RAID_LEVEL_JBOD;
1849 break;
1850 default:
1851 level = RAID_LEVEL_UNKNOWN;
1852 break;
1853 }
1854 raid_set_level(myrs_raid_template,
1855 &sdev->sdev_gendev, level);
1856 if (ldev_info->dev_state != MYRS_DEVICE_ONLINE) {
1857 const char *name;
1858
1859 name = myrs_devstate_name(ldev_info->dev_state);
1860 sdev_printk(KERN_DEBUG, sdev,
1861 "logical device in state %s\n",
1862 name ? name : "Invalid");
1863 }
1864 }
1865 } else {
1866 struct myrs_pdev_info *pdev_info;
1867
1868 pdev_info = kzalloc(sizeof(*pdev_info), GFP_KERNEL);
1869 if (!pdev_info)
1870 return -ENOMEM;
1871
1872 status = myrs_get_pdev_info(cs, sdev->channel,
1873 sdev->id, sdev->lun,
1874 pdev_info);
1875 if (status != MYRS_STATUS_SUCCESS) {
1876 sdev->hostdata = NULL;
1877 kfree(pdev_info);
1878 return -ENXIO;
1879 }
1880 sdev->hostdata = pdev_info;
1881 }
1882 return 0;
1883 }
1884
myrs_slave_configure(struct scsi_device * sdev)1885 static int myrs_slave_configure(struct scsi_device *sdev)
1886 {
1887 struct myrs_hba *cs = shost_priv(sdev->host);
1888 struct myrs_ldev_info *ldev_info;
1889
1890 if (sdev->channel > sdev->host->max_channel)
1891 return -ENXIO;
1892
1893 if (sdev->channel < cs->ctlr_info->physchan_present) {
1894 /* Skip HBA device */
1895 if (sdev->type == TYPE_RAID)
1896 return -ENXIO;
1897 sdev->no_uld_attach = 1;
1898 return 0;
1899 }
1900 if (sdev->lun != 0)
1901 return -ENXIO;
1902
1903 ldev_info = sdev->hostdata;
1904 if (!ldev_info)
1905 return -ENXIO;
1906 if (ldev_info->ldev_control.wce == MYRS_WRITECACHE_ENABLED ||
1907 ldev_info->ldev_control.wce == MYRS_INTELLIGENT_WRITECACHE_ENABLED)
1908 sdev->wce_default_on = 1;
1909 sdev->tagged_supported = 1;
1910 return 0;
1911 }
1912
myrs_slave_destroy(struct scsi_device * sdev)1913 static void myrs_slave_destroy(struct scsi_device *sdev)
1914 {
1915 kfree(sdev->hostdata);
1916 }
1917
1918 static const struct scsi_host_template myrs_template = {
1919 .module = THIS_MODULE,
1920 .name = "DAC960",
1921 .proc_name = "myrs",
1922 .queuecommand = myrs_queuecommand,
1923 .eh_host_reset_handler = myrs_host_reset,
1924 .slave_alloc = myrs_slave_alloc,
1925 .slave_configure = myrs_slave_configure,
1926 .slave_destroy = myrs_slave_destroy,
1927 .cmd_size = sizeof(struct myrs_cmdblk),
1928 .shost_groups = myrs_shost_groups,
1929 .sdev_groups = myrs_sdev_groups,
1930 .this_id = -1,
1931 };
1932
myrs_alloc_host(struct pci_dev * pdev,const struct pci_device_id * entry)1933 static struct myrs_hba *myrs_alloc_host(struct pci_dev *pdev,
1934 const struct pci_device_id *entry)
1935 {
1936 struct Scsi_Host *shost;
1937 struct myrs_hba *cs;
1938
1939 shost = scsi_host_alloc(&myrs_template, sizeof(struct myrs_hba));
1940 if (!shost)
1941 return NULL;
1942
1943 shost->max_cmd_len = 16;
1944 shost->max_lun = 256;
1945 cs = shost_priv(shost);
1946 mutex_init(&cs->dcmd_mutex);
1947 mutex_init(&cs->cinfo_mutex);
1948 cs->host = shost;
1949
1950 return cs;
1951 }
1952
1953 /*
1954 * RAID template functions
1955 */
1956
1957 /**
1958 * myrs_is_raid - return boolean indicating device is raid volume
1959 * @dev: the device struct object
1960 */
1961 static int
myrs_is_raid(struct device * dev)1962 myrs_is_raid(struct device *dev)
1963 {
1964 struct scsi_device *sdev = to_scsi_device(dev);
1965 struct myrs_hba *cs = shost_priv(sdev->host);
1966
1967 return (sdev->channel >= cs->ctlr_info->physchan_present) ? 1 : 0;
1968 }
1969
1970 /**
1971 * myrs_get_resync - get raid volume resync percent complete
1972 * @dev: the device struct object
1973 */
1974 static void
myrs_get_resync(struct device * dev)1975 myrs_get_resync(struct device *dev)
1976 {
1977 struct scsi_device *sdev = to_scsi_device(dev);
1978 struct myrs_hba *cs = shost_priv(sdev->host);
1979 struct myrs_ldev_info *ldev_info = sdev->hostdata;
1980 u64 percent_complete = 0;
1981
1982 if (sdev->channel < cs->ctlr_info->physchan_present || !ldev_info)
1983 return;
1984 if (ldev_info->rbld_active) {
1985 unsigned short ldev_num = ldev_info->ldev_num;
1986
1987 myrs_get_ldev_info(cs, ldev_num, ldev_info);
1988 percent_complete = ldev_info->rbld_lba * 100;
1989 do_div(percent_complete, ldev_info->cfg_devsize);
1990 }
1991 raid_set_resync(myrs_raid_template, dev, percent_complete);
1992 }
1993
1994 /**
1995 * myrs_get_state - get raid volume status
1996 * @dev: the device struct object
1997 */
1998 static void
myrs_get_state(struct device * dev)1999 myrs_get_state(struct device *dev)
2000 {
2001 struct scsi_device *sdev = to_scsi_device(dev);
2002 struct myrs_hba *cs = shost_priv(sdev->host);
2003 struct myrs_ldev_info *ldev_info = sdev->hostdata;
2004 enum raid_state state = RAID_STATE_UNKNOWN;
2005
2006 if (sdev->channel < cs->ctlr_info->physchan_present || !ldev_info)
2007 state = RAID_STATE_UNKNOWN;
2008 else {
2009 switch (ldev_info->dev_state) {
2010 case MYRS_DEVICE_ONLINE:
2011 state = RAID_STATE_ACTIVE;
2012 break;
2013 case MYRS_DEVICE_SUSPECTED_CRITICAL:
2014 case MYRS_DEVICE_CRITICAL:
2015 state = RAID_STATE_DEGRADED;
2016 break;
2017 case MYRS_DEVICE_REBUILD:
2018 state = RAID_STATE_RESYNCING;
2019 break;
2020 case MYRS_DEVICE_UNCONFIGURED:
2021 case MYRS_DEVICE_INVALID_STATE:
2022 state = RAID_STATE_UNKNOWN;
2023 break;
2024 default:
2025 state = RAID_STATE_OFFLINE;
2026 }
2027 }
2028 raid_set_state(myrs_raid_template, dev, state);
2029 }
2030
2031 static struct raid_function_template myrs_raid_functions = {
2032 .cookie = &myrs_template,
2033 .is_raid = myrs_is_raid,
2034 .get_resync = myrs_get_resync,
2035 .get_state = myrs_get_state,
2036 };
2037
2038 /*
2039 * PCI interface functions
2040 */
myrs_flush_cache(struct myrs_hba * cs)2041 static void myrs_flush_cache(struct myrs_hba *cs)
2042 {
2043 myrs_dev_op(cs, MYRS_IOCTL_FLUSH_DEVICE_DATA, MYRS_RAID_CONTROLLER);
2044 }
2045
myrs_handle_scsi(struct myrs_hba * cs,struct myrs_cmdblk * cmd_blk,struct scsi_cmnd * scmd)2046 static void myrs_handle_scsi(struct myrs_hba *cs, struct myrs_cmdblk *cmd_blk,
2047 struct scsi_cmnd *scmd)
2048 {
2049 unsigned char status;
2050
2051 if (!cmd_blk)
2052 return;
2053
2054 scsi_dma_unmap(scmd);
2055 status = cmd_blk->status;
2056 if (cmd_blk->sense) {
2057 if (status == MYRS_STATUS_FAILED && cmd_blk->sense_len) {
2058 unsigned int sense_len = SCSI_SENSE_BUFFERSIZE;
2059
2060 if (sense_len > cmd_blk->sense_len)
2061 sense_len = cmd_blk->sense_len;
2062 memcpy(scmd->sense_buffer, cmd_blk->sense, sense_len);
2063 }
2064 dma_pool_free(cs->sense_pool, cmd_blk->sense,
2065 cmd_blk->sense_addr);
2066 cmd_blk->sense = NULL;
2067 cmd_blk->sense_addr = 0;
2068 }
2069 if (cmd_blk->dcdb) {
2070 dma_pool_free(cs->dcdb_pool, cmd_blk->dcdb,
2071 cmd_blk->dcdb_dma);
2072 cmd_blk->dcdb = NULL;
2073 cmd_blk->dcdb_dma = 0;
2074 }
2075 if (cmd_blk->sgl) {
2076 dma_pool_free(cs->sg_pool, cmd_blk->sgl,
2077 cmd_blk->sgl_addr);
2078 cmd_blk->sgl = NULL;
2079 cmd_blk->sgl_addr = 0;
2080 }
2081 if (cmd_blk->residual)
2082 scsi_set_resid(scmd, cmd_blk->residual);
2083 if (status == MYRS_STATUS_DEVICE_NON_RESPONSIVE ||
2084 status == MYRS_STATUS_DEVICE_NON_RESPONSIVE2)
2085 scmd->result = (DID_BAD_TARGET << 16);
2086 else
2087 scmd->result = (DID_OK << 16) | status;
2088 scsi_done(scmd);
2089 }
2090
myrs_handle_cmdblk(struct myrs_hba * cs,struct myrs_cmdblk * cmd_blk)2091 static void myrs_handle_cmdblk(struct myrs_hba *cs, struct myrs_cmdblk *cmd_blk)
2092 {
2093 if (!cmd_blk)
2094 return;
2095
2096 if (cmd_blk->complete) {
2097 complete(cmd_blk->complete);
2098 cmd_blk->complete = NULL;
2099 }
2100 }
2101
myrs_monitor(struct work_struct * work)2102 static void myrs_monitor(struct work_struct *work)
2103 {
2104 struct myrs_hba *cs = container_of(work, struct myrs_hba,
2105 monitor_work.work);
2106 struct Scsi_Host *shost = cs->host;
2107 struct myrs_ctlr_info *info = cs->ctlr_info;
2108 unsigned int epoch = cs->fwstat_buf->epoch;
2109 unsigned long interval = MYRS_PRIMARY_MONITOR_INTERVAL;
2110 unsigned char status;
2111
2112 dev_dbg(&shost->shost_gendev, "monitor tick\n");
2113
2114 status = myrs_get_fwstatus(cs);
2115
2116 if (cs->needs_update) {
2117 cs->needs_update = false;
2118 mutex_lock(&cs->cinfo_mutex);
2119 status = myrs_get_ctlr_info(cs);
2120 mutex_unlock(&cs->cinfo_mutex);
2121 }
2122 if (cs->fwstat_buf->next_evseq - cs->next_evseq > 0) {
2123 status = myrs_get_event(cs, cs->next_evseq,
2124 cs->event_buf);
2125 if (status == MYRS_STATUS_SUCCESS) {
2126 myrs_log_event(cs, cs->event_buf);
2127 cs->next_evseq++;
2128 interval = 1;
2129 }
2130 }
2131
2132 if (time_after(jiffies, cs->secondary_monitor_time
2133 + MYRS_SECONDARY_MONITOR_INTERVAL))
2134 cs->secondary_monitor_time = jiffies;
2135
2136 if (info->bg_init_active +
2137 info->ldev_init_active +
2138 info->pdev_init_active +
2139 info->cc_active +
2140 info->rbld_active +
2141 info->exp_active != 0) {
2142 struct scsi_device *sdev;
2143
2144 shost_for_each_device(sdev, shost) {
2145 struct myrs_ldev_info *ldev_info;
2146 int ldev_num;
2147
2148 if (sdev->channel < info->physchan_present)
2149 continue;
2150 ldev_info = sdev->hostdata;
2151 if (!ldev_info)
2152 continue;
2153 ldev_num = ldev_info->ldev_num;
2154 myrs_get_ldev_info(cs, ldev_num, ldev_info);
2155 }
2156 cs->needs_update = true;
2157 }
2158 if (epoch == cs->epoch &&
2159 cs->fwstat_buf->next_evseq == cs->next_evseq &&
2160 (cs->needs_update == false ||
2161 time_before(jiffies, cs->primary_monitor_time
2162 + MYRS_PRIMARY_MONITOR_INTERVAL))) {
2163 interval = MYRS_SECONDARY_MONITOR_INTERVAL;
2164 }
2165
2166 if (interval > 1)
2167 cs->primary_monitor_time = jiffies;
2168 queue_delayed_work(cs->work_q, &cs->monitor_work, interval);
2169 }
2170
myrs_create_mempools(struct pci_dev * pdev,struct myrs_hba * cs)2171 static bool myrs_create_mempools(struct pci_dev *pdev, struct myrs_hba *cs)
2172 {
2173 struct Scsi_Host *shost = cs->host;
2174 size_t elem_size, elem_align;
2175
2176 elem_align = sizeof(struct myrs_sge);
2177 elem_size = shost->sg_tablesize * elem_align;
2178 cs->sg_pool = dma_pool_create("myrs_sg", &pdev->dev,
2179 elem_size, elem_align, 0);
2180 if (cs->sg_pool == NULL) {
2181 shost_printk(KERN_ERR, shost,
2182 "Failed to allocate SG pool\n");
2183 return false;
2184 }
2185
2186 cs->sense_pool = dma_pool_create("myrs_sense", &pdev->dev,
2187 MYRS_SENSE_SIZE, sizeof(int), 0);
2188 if (cs->sense_pool == NULL) {
2189 dma_pool_destroy(cs->sg_pool);
2190 cs->sg_pool = NULL;
2191 shost_printk(KERN_ERR, shost,
2192 "Failed to allocate sense data pool\n");
2193 return false;
2194 }
2195
2196 cs->dcdb_pool = dma_pool_create("myrs_dcdb", &pdev->dev,
2197 MYRS_DCDB_SIZE,
2198 sizeof(unsigned char), 0);
2199 if (!cs->dcdb_pool) {
2200 dma_pool_destroy(cs->sg_pool);
2201 cs->sg_pool = NULL;
2202 dma_pool_destroy(cs->sense_pool);
2203 cs->sense_pool = NULL;
2204 shost_printk(KERN_ERR, shost,
2205 "Failed to allocate DCDB pool\n");
2206 return false;
2207 }
2208
2209 snprintf(cs->work_q_name, sizeof(cs->work_q_name),
2210 "myrs_wq_%d", shost->host_no);
2211 cs->work_q = create_singlethread_workqueue(cs->work_q_name);
2212 if (!cs->work_q) {
2213 dma_pool_destroy(cs->dcdb_pool);
2214 cs->dcdb_pool = NULL;
2215 dma_pool_destroy(cs->sg_pool);
2216 cs->sg_pool = NULL;
2217 dma_pool_destroy(cs->sense_pool);
2218 cs->sense_pool = NULL;
2219 shost_printk(KERN_ERR, shost,
2220 "Failed to create workqueue\n");
2221 return false;
2222 }
2223
2224 /* Initialize the Monitoring Timer. */
2225 INIT_DELAYED_WORK(&cs->monitor_work, myrs_monitor);
2226 queue_delayed_work(cs->work_q, &cs->monitor_work, 1);
2227
2228 return true;
2229 }
2230
myrs_destroy_mempools(struct myrs_hba * cs)2231 static void myrs_destroy_mempools(struct myrs_hba *cs)
2232 {
2233 cancel_delayed_work_sync(&cs->monitor_work);
2234 destroy_workqueue(cs->work_q);
2235
2236 dma_pool_destroy(cs->sg_pool);
2237 dma_pool_destroy(cs->dcdb_pool);
2238 dma_pool_destroy(cs->sense_pool);
2239 }
2240
myrs_unmap(struct myrs_hba * cs)2241 static void myrs_unmap(struct myrs_hba *cs)
2242 {
2243 kfree(cs->event_buf);
2244 kfree(cs->ctlr_info);
2245 if (cs->fwstat_buf) {
2246 dma_free_coherent(&cs->pdev->dev, sizeof(struct myrs_fwstat),
2247 cs->fwstat_buf, cs->fwstat_addr);
2248 cs->fwstat_buf = NULL;
2249 }
2250 if (cs->first_stat_mbox) {
2251 dma_free_coherent(&cs->pdev->dev, cs->stat_mbox_size,
2252 cs->first_stat_mbox, cs->stat_mbox_addr);
2253 cs->first_stat_mbox = NULL;
2254 }
2255 if (cs->first_cmd_mbox) {
2256 dma_free_coherent(&cs->pdev->dev, cs->cmd_mbox_size,
2257 cs->first_cmd_mbox, cs->cmd_mbox_addr);
2258 cs->first_cmd_mbox = NULL;
2259 }
2260 }
2261
myrs_cleanup(struct myrs_hba * cs)2262 static void myrs_cleanup(struct myrs_hba *cs)
2263 {
2264 struct pci_dev *pdev = cs->pdev;
2265
2266 /* Free the memory mailbox, status, and related structures */
2267 myrs_unmap(cs);
2268
2269 if (cs->mmio_base) {
2270 if (cs->disable_intr)
2271 cs->disable_intr(cs);
2272 iounmap(cs->mmio_base);
2273 cs->mmio_base = NULL;
2274 }
2275 if (cs->irq)
2276 free_irq(cs->irq, cs);
2277 if (cs->io_addr)
2278 release_region(cs->io_addr, 0x80);
2279 pci_set_drvdata(pdev, NULL);
2280 pci_disable_device(pdev);
2281 scsi_host_put(cs->host);
2282 }
2283
myrs_detect(struct pci_dev * pdev,const struct pci_device_id * entry)2284 static struct myrs_hba *myrs_detect(struct pci_dev *pdev,
2285 const struct pci_device_id *entry)
2286 {
2287 struct myrs_privdata *privdata =
2288 (struct myrs_privdata *)entry->driver_data;
2289 irq_handler_t irq_handler = privdata->irq_handler;
2290 unsigned int mmio_size = privdata->mmio_size;
2291 struct myrs_hba *cs = NULL;
2292
2293 cs = myrs_alloc_host(pdev, entry);
2294 if (!cs) {
2295 dev_err(&pdev->dev, "Unable to allocate Controller\n");
2296 return NULL;
2297 }
2298 cs->pdev = pdev;
2299
2300 if (pci_enable_device(pdev))
2301 goto Failure;
2302
2303 cs->pci_addr = pci_resource_start(pdev, 0);
2304
2305 pci_set_drvdata(pdev, cs);
2306 spin_lock_init(&cs->queue_lock);
2307 /* Map the Controller Register Window. */
2308 if (mmio_size < PAGE_SIZE)
2309 mmio_size = PAGE_SIZE;
2310 cs->mmio_base = ioremap(cs->pci_addr & PAGE_MASK, mmio_size);
2311 if (cs->mmio_base == NULL) {
2312 dev_err(&pdev->dev,
2313 "Unable to map Controller Register Window\n");
2314 goto Failure;
2315 }
2316
2317 cs->io_base = cs->mmio_base + (cs->pci_addr & ~PAGE_MASK);
2318 if (privdata->hw_init(pdev, cs, cs->io_base))
2319 goto Failure;
2320
2321 /* Acquire shared access to the IRQ Channel. */
2322 if (request_irq(pdev->irq, irq_handler, IRQF_SHARED, "myrs", cs) < 0) {
2323 dev_err(&pdev->dev,
2324 "Unable to acquire IRQ Channel %d\n", pdev->irq);
2325 goto Failure;
2326 }
2327 cs->irq = pdev->irq;
2328 return cs;
2329
2330 Failure:
2331 dev_err(&pdev->dev,
2332 "Failed to initialize Controller\n");
2333 myrs_cleanup(cs);
2334 return NULL;
2335 }
2336
2337 /*
2338 * myrs_err_status reports Controller BIOS Messages passed through
2339 * the Error Status Register when the driver performs the BIOS handshaking.
2340 * It returns true for fatal errors and false otherwise.
2341 */
2342
myrs_err_status(struct myrs_hba * cs,unsigned char status,unsigned char parm0,unsigned char parm1)2343 static bool myrs_err_status(struct myrs_hba *cs, unsigned char status,
2344 unsigned char parm0, unsigned char parm1)
2345 {
2346 struct pci_dev *pdev = cs->pdev;
2347
2348 switch (status) {
2349 case 0x00:
2350 dev_info(&pdev->dev,
2351 "Physical Device %d:%d Not Responding\n",
2352 parm1, parm0);
2353 break;
2354 case 0x08:
2355 dev_notice(&pdev->dev, "Spinning Up Drives\n");
2356 break;
2357 case 0x30:
2358 dev_notice(&pdev->dev, "Configuration Checksum Error\n");
2359 break;
2360 case 0x60:
2361 dev_notice(&pdev->dev, "Mirror Race Recovery Failed\n");
2362 break;
2363 case 0x70:
2364 dev_notice(&pdev->dev, "Mirror Race Recovery In Progress\n");
2365 break;
2366 case 0x90:
2367 dev_notice(&pdev->dev, "Physical Device %d:%d COD Mismatch\n",
2368 parm1, parm0);
2369 break;
2370 case 0xA0:
2371 dev_notice(&pdev->dev, "Logical Drive Installation Aborted\n");
2372 break;
2373 case 0xB0:
2374 dev_notice(&pdev->dev, "Mirror Race On A Critical Logical Drive\n");
2375 break;
2376 case 0xD0:
2377 dev_notice(&pdev->dev, "New Controller Configuration Found\n");
2378 break;
2379 case 0xF0:
2380 dev_err(&pdev->dev, "Fatal Memory Parity Error\n");
2381 return true;
2382 default:
2383 dev_err(&pdev->dev, "Unknown Initialization Error %02X\n",
2384 status);
2385 return true;
2386 }
2387 return false;
2388 }
2389
2390 /*
2391 * Hardware-specific functions
2392 */
2393
2394 /*
2395 * DAC960 GEM Series Controllers.
2396 */
2397
DAC960_GEM_hw_mbox_new_cmd(void __iomem * base)2398 static inline void DAC960_GEM_hw_mbox_new_cmd(void __iomem *base)
2399 {
2400 __le32 val = cpu_to_le32(DAC960_GEM_IDB_HWMBOX_NEW_CMD << 24);
2401
2402 writel(val, base + DAC960_GEM_IDB_READ_OFFSET);
2403 }
2404
DAC960_GEM_ack_hw_mbox_status(void __iomem * base)2405 static inline void DAC960_GEM_ack_hw_mbox_status(void __iomem *base)
2406 {
2407 __le32 val = cpu_to_le32(DAC960_GEM_IDB_HWMBOX_ACK_STS << 24);
2408
2409 writel(val, base + DAC960_GEM_IDB_CLEAR_OFFSET);
2410 }
2411
DAC960_GEM_reset_ctrl(void __iomem * base)2412 static inline void DAC960_GEM_reset_ctrl(void __iomem *base)
2413 {
2414 __le32 val = cpu_to_le32(DAC960_GEM_IDB_CTRL_RESET << 24);
2415
2416 writel(val, base + DAC960_GEM_IDB_READ_OFFSET);
2417 }
2418
DAC960_GEM_mem_mbox_new_cmd(void __iomem * base)2419 static inline void DAC960_GEM_mem_mbox_new_cmd(void __iomem *base)
2420 {
2421 __le32 val = cpu_to_le32(DAC960_GEM_IDB_HWMBOX_NEW_CMD << 24);
2422
2423 writel(val, base + DAC960_GEM_IDB_READ_OFFSET);
2424 }
2425
DAC960_GEM_hw_mbox_is_full(void __iomem * base)2426 static inline bool DAC960_GEM_hw_mbox_is_full(void __iomem *base)
2427 {
2428 __le32 val;
2429
2430 val = readl(base + DAC960_GEM_IDB_READ_OFFSET);
2431 return (le32_to_cpu(val) >> 24) & DAC960_GEM_IDB_HWMBOX_FULL;
2432 }
2433
DAC960_GEM_init_in_progress(void __iomem * base)2434 static inline bool DAC960_GEM_init_in_progress(void __iomem *base)
2435 {
2436 __le32 val;
2437
2438 val = readl(base + DAC960_GEM_IDB_READ_OFFSET);
2439 return (le32_to_cpu(val) >> 24) & DAC960_GEM_IDB_INIT_IN_PROGRESS;
2440 }
2441
DAC960_GEM_ack_hw_mbox_intr(void __iomem * base)2442 static inline void DAC960_GEM_ack_hw_mbox_intr(void __iomem *base)
2443 {
2444 __le32 val = cpu_to_le32(DAC960_GEM_ODB_HWMBOX_ACK_IRQ << 24);
2445
2446 writel(val, base + DAC960_GEM_ODB_CLEAR_OFFSET);
2447 }
2448
DAC960_GEM_ack_intr(void __iomem * base)2449 static inline void DAC960_GEM_ack_intr(void __iomem *base)
2450 {
2451 __le32 val = cpu_to_le32((DAC960_GEM_ODB_HWMBOX_ACK_IRQ |
2452 DAC960_GEM_ODB_MMBOX_ACK_IRQ) << 24);
2453
2454 writel(val, base + DAC960_GEM_ODB_CLEAR_OFFSET);
2455 }
2456
DAC960_GEM_hw_mbox_status_available(void __iomem * base)2457 static inline bool DAC960_GEM_hw_mbox_status_available(void __iomem *base)
2458 {
2459 __le32 val;
2460
2461 val = readl(base + DAC960_GEM_ODB_READ_OFFSET);
2462 return (le32_to_cpu(val) >> 24) & DAC960_GEM_ODB_HWMBOX_STS_AVAIL;
2463 }
2464
DAC960_GEM_enable_intr(void __iomem * base)2465 static inline void DAC960_GEM_enable_intr(void __iomem *base)
2466 {
2467 __le32 val = cpu_to_le32((DAC960_GEM_IRQMASK_HWMBOX_IRQ |
2468 DAC960_GEM_IRQMASK_MMBOX_IRQ) << 24);
2469 writel(val, base + DAC960_GEM_IRQMASK_CLEAR_OFFSET);
2470 }
2471
DAC960_GEM_disable_intr(void __iomem * base)2472 static inline void DAC960_GEM_disable_intr(void __iomem *base)
2473 {
2474 __le32 val = 0;
2475
2476 writel(val, base + DAC960_GEM_IRQMASK_READ_OFFSET);
2477 }
2478
DAC960_GEM_write_cmd_mbox(union myrs_cmd_mbox * mem_mbox,union myrs_cmd_mbox * mbox)2479 static inline void DAC960_GEM_write_cmd_mbox(union myrs_cmd_mbox *mem_mbox,
2480 union myrs_cmd_mbox *mbox)
2481 {
2482 memcpy(&mem_mbox->words[1], &mbox->words[1],
2483 sizeof(union myrs_cmd_mbox) - sizeof(unsigned int));
2484 /* Barrier to avoid reordering */
2485 wmb();
2486 mem_mbox->words[0] = mbox->words[0];
2487 /* Barrier to force PCI access */
2488 mb();
2489 }
2490
DAC960_GEM_write_hw_mbox(void __iomem * base,dma_addr_t cmd_mbox_addr)2491 static inline void DAC960_GEM_write_hw_mbox(void __iomem *base,
2492 dma_addr_t cmd_mbox_addr)
2493 {
2494 dma_addr_writeql(cmd_mbox_addr, base + DAC960_GEM_CMDMBX_OFFSET);
2495 }
2496
DAC960_GEM_read_cmd_status(void __iomem * base)2497 static inline unsigned char DAC960_GEM_read_cmd_status(void __iomem *base)
2498 {
2499 return readw(base + DAC960_GEM_CMDSTS_OFFSET + 2);
2500 }
2501
2502 static inline bool
DAC960_GEM_read_error_status(void __iomem * base,unsigned char * error,unsigned char * param0,unsigned char * param1)2503 DAC960_GEM_read_error_status(void __iomem *base, unsigned char *error,
2504 unsigned char *param0, unsigned char *param1)
2505 {
2506 __le32 val;
2507
2508 val = readl(base + DAC960_GEM_ERRSTS_READ_OFFSET);
2509 if (!((le32_to_cpu(val) >> 24) & DAC960_GEM_ERRSTS_PENDING))
2510 return false;
2511 *error = val & ~(DAC960_GEM_ERRSTS_PENDING << 24);
2512 *param0 = readb(base + DAC960_GEM_CMDMBX_OFFSET + 0);
2513 *param1 = readb(base + DAC960_GEM_CMDMBX_OFFSET + 1);
2514 writel(0x03000000, base + DAC960_GEM_ERRSTS_CLEAR_OFFSET);
2515 return true;
2516 }
2517
2518 static inline unsigned char
DAC960_GEM_mbox_init(void __iomem * base,dma_addr_t mbox_addr)2519 DAC960_GEM_mbox_init(void __iomem *base, dma_addr_t mbox_addr)
2520 {
2521 unsigned char status;
2522
2523 while (DAC960_GEM_hw_mbox_is_full(base))
2524 udelay(1);
2525 DAC960_GEM_write_hw_mbox(base, mbox_addr);
2526 DAC960_GEM_hw_mbox_new_cmd(base);
2527 while (!DAC960_GEM_hw_mbox_status_available(base))
2528 udelay(1);
2529 status = DAC960_GEM_read_cmd_status(base);
2530 DAC960_GEM_ack_hw_mbox_intr(base);
2531 DAC960_GEM_ack_hw_mbox_status(base);
2532
2533 return status;
2534 }
2535
DAC960_GEM_hw_init(struct pci_dev * pdev,struct myrs_hba * cs,void __iomem * base)2536 static int DAC960_GEM_hw_init(struct pci_dev *pdev,
2537 struct myrs_hba *cs, void __iomem *base)
2538 {
2539 int timeout = 0;
2540 unsigned char status, parm0, parm1;
2541
2542 DAC960_GEM_disable_intr(base);
2543 DAC960_GEM_ack_hw_mbox_status(base);
2544 udelay(1000);
2545 while (DAC960_GEM_init_in_progress(base) &&
2546 timeout < MYRS_MAILBOX_TIMEOUT) {
2547 if (DAC960_GEM_read_error_status(base, &status,
2548 &parm0, &parm1) &&
2549 myrs_err_status(cs, status, parm0, parm1))
2550 return -EIO;
2551 udelay(10);
2552 timeout++;
2553 }
2554 if (timeout == MYRS_MAILBOX_TIMEOUT) {
2555 dev_err(&pdev->dev,
2556 "Timeout waiting for Controller Initialisation\n");
2557 return -ETIMEDOUT;
2558 }
2559 if (!myrs_enable_mmio_mbox(cs, DAC960_GEM_mbox_init)) {
2560 dev_err(&pdev->dev,
2561 "Unable to Enable Memory Mailbox Interface\n");
2562 DAC960_GEM_reset_ctrl(base);
2563 return -EAGAIN;
2564 }
2565 DAC960_GEM_enable_intr(base);
2566 cs->write_cmd_mbox = DAC960_GEM_write_cmd_mbox;
2567 cs->get_cmd_mbox = DAC960_GEM_mem_mbox_new_cmd;
2568 cs->disable_intr = DAC960_GEM_disable_intr;
2569 cs->reset = DAC960_GEM_reset_ctrl;
2570 return 0;
2571 }
2572
DAC960_GEM_intr_handler(int irq,void * arg)2573 static irqreturn_t DAC960_GEM_intr_handler(int irq, void *arg)
2574 {
2575 struct myrs_hba *cs = arg;
2576 void __iomem *base = cs->io_base;
2577 struct myrs_stat_mbox *next_stat_mbox;
2578 unsigned long flags;
2579
2580 spin_lock_irqsave(&cs->queue_lock, flags);
2581 DAC960_GEM_ack_intr(base);
2582 next_stat_mbox = cs->next_stat_mbox;
2583 while (next_stat_mbox->id > 0) {
2584 unsigned short id = next_stat_mbox->id;
2585 struct scsi_cmnd *scmd = NULL;
2586 struct myrs_cmdblk *cmd_blk = NULL;
2587
2588 if (id == MYRS_DCMD_TAG)
2589 cmd_blk = &cs->dcmd_blk;
2590 else if (id == MYRS_MCMD_TAG)
2591 cmd_blk = &cs->mcmd_blk;
2592 else {
2593 scmd = scsi_host_find_tag(cs->host, id - 3);
2594 if (scmd)
2595 cmd_blk = scsi_cmd_priv(scmd);
2596 }
2597 if (cmd_blk) {
2598 cmd_blk->status = next_stat_mbox->status;
2599 cmd_blk->sense_len = next_stat_mbox->sense_len;
2600 cmd_blk->residual = next_stat_mbox->residual;
2601 } else
2602 dev_err(&cs->pdev->dev,
2603 "Unhandled command completion %d\n", id);
2604
2605 memset(next_stat_mbox, 0, sizeof(struct myrs_stat_mbox));
2606 if (++next_stat_mbox > cs->last_stat_mbox)
2607 next_stat_mbox = cs->first_stat_mbox;
2608
2609 if (cmd_blk) {
2610 if (id < 3)
2611 myrs_handle_cmdblk(cs, cmd_blk);
2612 else
2613 myrs_handle_scsi(cs, cmd_blk, scmd);
2614 }
2615 }
2616 cs->next_stat_mbox = next_stat_mbox;
2617 spin_unlock_irqrestore(&cs->queue_lock, flags);
2618 return IRQ_HANDLED;
2619 }
2620
2621 static struct myrs_privdata DAC960_GEM_privdata = {
2622 .hw_init = DAC960_GEM_hw_init,
2623 .irq_handler = DAC960_GEM_intr_handler,
2624 .mmio_size = DAC960_GEM_mmio_size,
2625 };
2626
2627 /*
2628 * DAC960 BA Series Controllers.
2629 */
2630
DAC960_BA_hw_mbox_new_cmd(void __iomem * base)2631 static inline void DAC960_BA_hw_mbox_new_cmd(void __iomem *base)
2632 {
2633 writeb(DAC960_BA_IDB_HWMBOX_NEW_CMD, base + DAC960_BA_IDB_OFFSET);
2634 }
2635
DAC960_BA_ack_hw_mbox_status(void __iomem * base)2636 static inline void DAC960_BA_ack_hw_mbox_status(void __iomem *base)
2637 {
2638 writeb(DAC960_BA_IDB_HWMBOX_ACK_STS, base + DAC960_BA_IDB_OFFSET);
2639 }
2640
DAC960_BA_reset_ctrl(void __iomem * base)2641 static inline void DAC960_BA_reset_ctrl(void __iomem *base)
2642 {
2643 writeb(DAC960_BA_IDB_CTRL_RESET, base + DAC960_BA_IDB_OFFSET);
2644 }
2645
DAC960_BA_mem_mbox_new_cmd(void __iomem * base)2646 static inline void DAC960_BA_mem_mbox_new_cmd(void __iomem *base)
2647 {
2648 writeb(DAC960_BA_IDB_MMBOX_NEW_CMD, base + DAC960_BA_IDB_OFFSET);
2649 }
2650
DAC960_BA_hw_mbox_is_full(void __iomem * base)2651 static inline bool DAC960_BA_hw_mbox_is_full(void __iomem *base)
2652 {
2653 u8 val;
2654
2655 val = readb(base + DAC960_BA_IDB_OFFSET);
2656 return !(val & DAC960_BA_IDB_HWMBOX_EMPTY);
2657 }
2658
DAC960_BA_init_in_progress(void __iomem * base)2659 static inline bool DAC960_BA_init_in_progress(void __iomem *base)
2660 {
2661 u8 val;
2662
2663 val = readb(base + DAC960_BA_IDB_OFFSET);
2664 return !(val & DAC960_BA_IDB_INIT_DONE);
2665 }
2666
DAC960_BA_ack_hw_mbox_intr(void __iomem * base)2667 static inline void DAC960_BA_ack_hw_mbox_intr(void __iomem *base)
2668 {
2669 writeb(DAC960_BA_ODB_HWMBOX_ACK_IRQ, base + DAC960_BA_ODB_OFFSET);
2670 }
2671
DAC960_BA_ack_intr(void __iomem * base)2672 static inline void DAC960_BA_ack_intr(void __iomem *base)
2673 {
2674 writeb(DAC960_BA_ODB_HWMBOX_ACK_IRQ | DAC960_BA_ODB_MMBOX_ACK_IRQ,
2675 base + DAC960_BA_ODB_OFFSET);
2676 }
2677
DAC960_BA_hw_mbox_status_available(void __iomem * base)2678 static inline bool DAC960_BA_hw_mbox_status_available(void __iomem *base)
2679 {
2680 u8 val;
2681
2682 val = readb(base + DAC960_BA_ODB_OFFSET);
2683 return val & DAC960_BA_ODB_HWMBOX_STS_AVAIL;
2684 }
2685
DAC960_BA_enable_intr(void __iomem * base)2686 static inline void DAC960_BA_enable_intr(void __iomem *base)
2687 {
2688 writeb(~DAC960_BA_IRQMASK_DISABLE_IRQ, base + DAC960_BA_IRQMASK_OFFSET);
2689 }
2690
DAC960_BA_disable_intr(void __iomem * base)2691 static inline void DAC960_BA_disable_intr(void __iomem *base)
2692 {
2693 writeb(0xFF, base + DAC960_BA_IRQMASK_OFFSET);
2694 }
2695
DAC960_BA_write_cmd_mbox(union myrs_cmd_mbox * mem_mbox,union myrs_cmd_mbox * mbox)2696 static inline void DAC960_BA_write_cmd_mbox(union myrs_cmd_mbox *mem_mbox,
2697 union myrs_cmd_mbox *mbox)
2698 {
2699 memcpy(&mem_mbox->words[1], &mbox->words[1],
2700 sizeof(union myrs_cmd_mbox) - sizeof(unsigned int));
2701 /* Barrier to avoid reordering */
2702 wmb();
2703 mem_mbox->words[0] = mbox->words[0];
2704 /* Barrier to force PCI access */
2705 mb();
2706 }
2707
2708
DAC960_BA_write_hw_mbox(void __iomem * base,dma_addr_t cmd_mbox_addr)2709 static inline void DAC960_BA_write_hw_mbox(void __iomem *base,
2710 dma_addr_t cmd_mbox_addr)
2711 {
2712 dma_addr_writeql(cmd_mbox_addr, base + DAC960_BA_CMDMBX_OFFSET);
2713 }
2714
DAC960_BA_read_cmd_status(void __iomem * base)2715 static inline unsigned char DAC960_BA_read_cmd_status(void __iomem *base)
2716 {
2717 return readw(base + DAC960_BA_CMDSTS_OFFSET + 2);
2718 }
2719
2720 static inline bool
DAC960_BA_read_error_status(void __iomem * base,unsigned char * error,unsigned char * param0,unsigned char * param1)2721 DAC960_BA_read_error_status(void __iomem *base, unsigned char *error,
2722 unsigned char *param0, unsigned char *param1)
2723 {
2724 u8 val;
2725
2726 val = readb(base + DAC960_BA_ERRSTS_OFFSET);
2727 if (!(val & DAC960_BA_ERRSTS_PENDING))
2728 return false;
2729 val &= ~DAC960_BA_ERRSTS_PENDING;
2730 *error = val;
2731 *param0 = readb(base + DAC960_BA_CMDMBX_OFFSET + 0);
2732 *param1 = readb(base + DAC960_BA_CMDMBX_OFFSET + 1);
2733 writeb(0xFF, base + DAC960_BA_ERRSTS_OFFSET);
2734 return true;
2735 }
2736
2737 static inline unsigned char
DAC960_BA_mbox_init(void __iomem * base,dma_addr_t mbox_addr)2738 DAC960_BA_mbox_init(void __iomem *base, dma_addr_t mbox_addr)
2739 {
2740 unsigned char status;
2741
2742 while (DAC960_BA_hw_mbox_is_full(base))
2743 udelay(1);
2744 DAC960_BA_write_hw_mbox(base, mbox_addr);
2745 DAC960_BA_hw_mbox_new_cmd(base);
2746 while (!DAC960_BA_hw_mbox_status_available(base))
2747 udelay(1);
2748 status = DAC960_BA_read_cmd_status(base);
2749 DAC960_BA_ack_hw_mbox_intr(base);
2750 DAC960_BA_ack_hw_mbox_status(base);
2751
2752 return status;
2753 }
2754
DAC960_BA_hw_init(struct pci_dev * pdev,struct myrs_hba * cs,void __iomem * base)2755 static int DAC960_BA_hw_init(struct pci_dev *pdev,
2756 struct myrs_hba *cs, void __iomem *base)
2757 {
2758 int timeout = 0;
2759 unsigned char status, parm0, parm1;
2760
2761 DAC960_BA_disable_intr(base);
2762 DAC960_BA_ack_hw_mbox_status(base);
2763 udelay(1000);
2764 while (DAC960_BA_init_in_progress(base) &&
2765 timeout < MYRS_MAILBOX_TIMEOUT) {
2766 if (DAC960_BA_read_error_status(base, &status,
2767 &parm0, &parm1) &&
2768 myrs_err_status(cs, status, parm0, parm1))
2769 return -EIO;
2770 udelay(10);
2771 timeout++;
2772 }
2773 if (timeout == MYRS_MAILBOX_TIMEOUT) {
2774 dev_err(&pdev->dev,
2775 "Timeout waiting for Controller Initialisation\n");
2776 return -ETIMEDOUT;
2777 }
2778 if (!myrs_enable_mmio_mbox(cs, DAC960_BA_mbox_init)) {
2779 dev_err(&pdev->dev,
2780 "Unable to Enable Memory Mailbox Interface\n");
2781 DAC960_BA_reset_ctrl(base);
2782 return -EAGAIN;
2783 }
2784 DAC960_BA_enable_intr(base);
2785 cs->write_cmd_mbox = DAC960_BA_write_cmd_mbox;
2786 cs->get_cmd_mbox = DAC960_BA_mem_mbox_new_cmd;
2787 cs->disable_intr = DAC960_BA_disable_intr;
2788 cs->reset = DAC960_BA_reset_ctrl;
2789 return 0;
2790 }
2791
DAC960_BA_intr_handler(int irq,void * arg)2792 static irqreturn_t DAC960_BA_intr_handler(int irq, void *arg)
2793 {
2794 struct myrs_hba *cs = arg;
2795 void __iomem *base = cs->io_base;
2796 struct myrs_stat_mbox *next_stat_mbox;
2797 unsigned long flags;
2798
2799 spin_lock_irqsave(&cs->queue_lock, flags);
2800 DAC960_BA_ack_intr(base);
2801 next_stat_mbox = cs->next_stat_mbox;
2802 while (next_stat_mbox->id > 0) {
2803 unsigned short id = next_stat_mbox->id;
2804 struct scsi_cmnd *scmd = NULL;
2805 struct myrs_cmdblk *cmd_blk = NULL;
2806
2807 if (id == MYRS_DCMD_TAG)
2808 cmd_blk = &cs->dcmd_blk;
2809 else if (id == MYRS_MCMD_TAG)
2810 cmd_blk = &cs->mcmd_blk;
2811 else {
2812 scmd = scsi_host_find_tag(cs->host, id - 3);
2813 if (scmd)
2814 cmd_blk = scsi_cmd_priv(scmd);
2815 }
2816 if (cmd_blk) {
2817 cmd_blk->status = next_stat_mbox->status;
2818 cmd_blk->sense_len = next_stat_mbox->sense_len;
2819 cmd_blk->residual = next_stat_mbox->residual;
2820 } else
2821 dev_err(&cs->pdev->dev,
2822 "Unhandled command completion %d\n", id);
2823
2824 memset(next_stat_mbox, 0, sizeof(struct myrs_stat_mbox));
2825 if (++next_stat_mbox > cs->last_stat_mbox)
2826 next_stat_mbox = cs->first_stat_mbox;
2827
2828 if (cmd_blk) {
2829 if (id < 3)
2830 myrs_handle_cmdblk(cs, cmd_blk);
2831 else
2832 myrs_handle_scsi(cs, cmd_blk, scmd);
2833 }
2834 }
2835 cs->next_stat_mbox = next_stat_mbox;
2836 spin_unlock_irqrestore(&cs->queue_lock, flags);
2837 return IRQ_HANDLED;
2838 }
2839
2840 static struct myrs_privdata DAC960_BA_privdata = {
2841 .hw_init = DAC960_BA_hw_init,
2842 .irq_handler = DAC960_BA_intr_handler,
2843 .mmio_size = DAC960_BA_mmio_size,
2844 };
2845
2846 /*
2847 * DAC960 LP Series Controllers.
2848 */
2849
DAC960_LP_hw_mbox_new_cmd(void __iomem * base)2850 static inline void DAC960_LP_hw_mbox_new_cmd(void __iomem *base)
2851 {
2852 writeb(DAC960_LP_IDB_HWMBOX_NEW_CMD, base + DAC960_LP_IDB_OFFSET);
2853 }
2854
DAC960_LP_ack_hw_mbox_status(void __iomem * base)2855 static inline void DAC960_LP_ack_hw_mbox_status(void __iomem *base)
2856 {
2857 writeb(DAC960_LP_IDB_HWMBOX_ACK_STS, base + DAC960_LP_IDB_OFFSET);
2858 }
2859
DAC960_LP_reset_ctrl(void __iomem * base)2860 static inline void DAC960_LP_reset_ctrl(void __iomem *base)
2861 {
2862 writeb(DAC960_LP_IDB_CTRL_RESET, base + DAC960_LP_IDB_OFFSET);
2863 }
2864
DAC960_LP_mem_mbox_new_cmd(void __iomem * base)2865 static inline void DAC960_LP_mem_mbox_new_cmd(void __iomem *base)
2866 {
2867 writeb(DAC960_LP_IDB_MMBOX_NEW_CMD, base + DAC960_LP_IDB_OFFSET);
2868 }
2869
DAC960_LP_hw_mbox_is_full(void __iomem * base)2870 static inline bool DAC960_LP_hw_mbox_is_full(void __iomem *base)
2871 {
2872 u8 val;
2873
2874 val = readb(base + DAC960_LP_IDB_OFFSET);
2875 return val & DAC960_LP_IDB_HWMBOX_FULL;
2876 }
2877
DAC960_LP_init_in_progress(void __iomem * base)2878 static inline bool DAC960_LP_init_in_progress(void __iomem *base)
2879 {
2880 u8 val;
2881
2882 val = readb(base + DAC960_LP_IDB_OFFSET);
2883 return val & DAC960_LP_IDB_INIT_IN_PROGRESS;
2884 }
2885
DAC960_LP_ack_hw_mbox_intr(void __iomem * base)2886 static inline void DAC960_LP_ack_hw_mbox_intr(void __iomem *base)
2887 {
2888 writeb(DAC960_LP_ODB_HWMBOX_ACK_IRQ, base + DAC960_LP_ODB_OFFSET);
2889 }
2890
DAC960_LP_ack_intr(void __iomem * base)2891 static inline void DAC960_LP_ack_intr(void __iomem *base)
2892 {
2893 writeb(DAC960_LP_ODB_HWMBOX_ACK_IRQ | DAC960_LP_ODB_MMBOX_ACK_IRQ,
2894 base + DAC960_LP_ODB_OFFSET);
2895 }
2896
DAC960_LP_hw_mbox_status_available(void __iomem * base)2897 static inline bool DAC960_LP_hw_mbox_status_available(void __iomem *base)
2898 {
2899 u8 val;
2900
2901 val = readb(base + DAC960_LP_ODB_OFFSET);
2902 return val & DAC960_LP_ODB_HWMBOX_STS_AVAIL;
2903 }
2904
DAC960_LP_enable_intr(void __iomem * base)2905 static inline void DAC960_LP_enable_intr(void __iomem *base)
2906 {
2907 writeb(~DAC960_LP_IRQMASK_DISABLE_IRQ, base + DAC960_LP_IRQMASK_OFFSET);
2908 }
2909
DAC960_LP_disable_intr(void __iomem * base)2910 static inline void DAC960_LP_disable_intr(void __iomem *base)
2911 {
2912 writeb(0xFF, base + DAC960_LP_IRQMASK_OFFSET);
2913 }
2914
DAC960_LP_write_cmd_mbox(union myrs_cmd_mbox * mem_mbox,union myrs_cmd_mbox * mbox)2915 static inline void DAC960_LP_write_cmd_mbox(union myrs_cmd_mbox *mem_mbox,
2916 union myrs_cmd_mbox *mbox)
2917 {
2918 memcpy(&mem_mbox->words[1], &mbox->words[1],
2919 sizeof(union myrs_cmd_mbox) - sizeof(unsigned int));
2920 /* Barrier to avoid reordering */
2921 wmb();
2922 mem_mbox->words[0] = mbox->words[0];
2923 /* Barrier to force PCI access */
2924 mb();
2925 }
2926
DAC960_LP_write_hw_mbox(void __iomem * base,dma_addr_t cmd_mbox_addr)2927 static inline void DAC960_LP_write_hw_mbox(void __iomem *base,
2928 dma_addr_t cmd_mbox_addr)
2929 {
2930 dma_addr_writeql(cmd_mbox_addr, base + DAC960_LP_CMDMBX_OFFSET);
2931 }
2932
DAC960_LP_read_cmd_status(void __iomem * base)2933 static inline unsigned char DAC960_LP_read_cmd_status(void __iomem *base)
2934 {
2935 return readw(base + DAC960_LP_CMDSTS_OFFSET + 2);
2936 }
2937
2938 static inline bool
DAC960_LP_read_error_status(void __iomem * base,unsigned char * error,unsigned char * param0,unsigned char * param1)2939 DAC960_LP_read_error_status(void __iomem *base, unsigned char *error,
2940 unsigned char *param0, unsigned char *param1)
2941 {
2942 u8 val;
2943
2944 val = readb(base + DAC960_LP_ERRSTS_OFFSET);
2945 if (!(val & DAC960_LP_ERRSTS_PENDING))
2946 return false;
2947 val &= ~DAC960_LP_ERRSTS_PENDING;
2948 *error = val;
2949 *param0 = readb(base + DAC960_LP_CMDMBX_OFFSET + 0);
2950 *param1 = readb(base + DAC960_LP_CMDMBX_OFFSET + 1);
2951 writeb(0xFF, base + DAC960_LP_ERRSTS_OFFSET);
2952 return true;
2953 }
2954
2955 static inline unsigned char
DAC960_LP_mbox_init(void __iomem * base,dma_addr_t mbox_addr)2956 DAC960_LP_mbox_init(void __iomem *base, dma_addr_t mbox_addr)
2957 {
2958 unsigned char status;
2959
2960 while (DAC960_LP_hw_mbox_is_full(base))
2961 udelay(1);
2962 DAC960_LP_write_hw_mbox(base, mbox_addr);
2963 DAC960_LP_hw_mbox_new_cmd(base);
2964 while (!DAC960_LP_hw_mbox_status_available(base))
2965 udelay(1);
2966 status = DAC960_LP_read_cmd_status(base);
2967 DAC960_LP_ack_hw_mbox_intr(base);
2968 DAC960_LP_ack_hw_mbox_status(base);
2969
2970 return status;
2971 }
2972
DAC960_LP_hw_init(struct pci_dev * pdev,struct myrs_hba * cs,void __iomem * base)2973 static int DAC960_LP_hw_init(struct pci_dev *pdev,
2974 struct myrs_hba *cs, void __iomem *base)
2975 {
2976 int timeout = 0;
2977 unsigned char status, parm0, parm1;
2978
2979 DAC960_LP_disable_intr(base);
2980 DAC960_LP_ack_hw_mbox_status(base);
2981 udelay(1000);
2982 while (DAC960_LP_init_in_progress(base) &&
2983 timeout < MYRS_MAILBOX_TIMEOUT) {
2984 if (DAC960_LP_read_error_status(base, &status,
2985 &parm0, &parm1) &&
2986 myrs_err_status(cs, status, parm0, parm1))
2987 return -EIO;
2988 udelay(10);
2989 timeout++;
2990 }
2991 if (timeout == MYRS_MAILBOX_TIMEOUT) {
2992 dev_err(&pdev->dev,
2993 "Timeout waiting for Controller Initialisation\n");
2994 return -ETIMEDOUT;
2995 }
2996 if (!myrs_enable_mmio_mbox(cs, DAC960_LP_mbox_init)) {
2997 dev_err(&pdev->dev,
2998 "Unable to Enable Memory Mailbox Interface\n");
2999 DAC960_LP_reset_ctrl(base);
3000 return -ENODEV;
3001 }
3002 DAC960_LP_enable_intr(base);
3003 cs->write_cmd_mbox = DAC960_LP_write_cmd_mbox;
3004 cs->get_cmd_mbox = DAC960_LP_mem_mbox_new_cmd;
3005 cs->disable_intr = DAC960_LP_disable_intr;
3006 cs->reset = DAC960_LP_reset_ctrl;
3007
3008 return 0;
3009 }
3010
DAC960_LP_intr_handler(int irq,void * arg)3011 static irqreturn_t DAC960_LP_intr_handler(int irq, void *arg)
3012 {
3013 struct myrs_hba *cs = arg;
3014 void __iomem *base = cs->io_base;
3015 struct myrs_stat_mbox *next_stat_mbox;
3016 unsigned long flags;
3017
3018 spin_lock_irqsave(&cs->queue_lock, flags);
3019 DAC960_LP_ack_intr(base);
3020 next_stat_mbox = cs->next_stat_mbox;
3021 while (next_stat_mbox->id > 0) {
3022 unsigned short id = next_stat_mbox->id;
3023 struct scsi_cmnd *scmd = NULL;
3024 struct myrs_cmdblk *cmd_blk = NULL;
3025
3026 if (id == MYRS_DCMD_TAG)
3027 cmd_blk = &cs->dcmd_blk;
3028 else if (id == MYRS_MCMD_TAG)
3029 cmd_blk = &cs->mcmd_blk;
3030 else {
3031 scmd = scsi_host_find_tag(cs->host, id - 3);
3032 if (scmd)
3033 cmd_blk = scsi_cmd_priv(scmd);
3034 }
3035 if (cmd_blk) {
3036 cmd_blk->status = next_stat_mbox->status;
3037 cmd_blk->sense_len = next_stat_mbox->sense_len;
3038 cmd_blk->residual = next_stat_mbox->residual;
3039 } else
3040 dev_err(&cs->pdev->dev,
3041 "Unhandled command completion %d\n", id);
3042
3043 memset(next_stat_mbox, 0, sizeof(struct myrs_stat_mbox));
3044 if (++next_stat_mbox > cs->last_stat_mbox)
3045 next_stat_mbox = cs->first_stat_mbox;
3046
3047 if (cmd_blk) {
3048 if (id < 3)
3049 myrs_handle_cmdblk(cs, cmd_blk);
3050 else
3051 myrs_handle_scsi(cs, cmd_blk, scmd);
3052 }
3053 }
3054 cs->next_stat_mbox = next_stat_mbox;
3055 spin_unlock_irqrestore(&cs->queue_lock, flags);
3056 return IRQ_HANDLED;
3057 }
3058
3059 static struct myrs_privdata DAC960_LP_privdata = {
3060 .hw_init = DAC960_LP_hw_init,
3061 .irq_handler = DAC960_LP_intr_handler,
3062 .mmio_size = DAC960_LP_mmio_size,
3063 };
3064
3065 /*
3066 * Module functions
3067 */
3068 static int
myrs_probe(struct pci_dev * dev,const struct pci_device_id * entry)3069 myrs_probe(struct pci_dev *dev, const struct pci_device_id *entry)
3070 {
3071 struct myrs_hba *cs;
3072 int ret;
3073
3074 cs = myrs_detect(dev, entry);
3075 if (!cs)
3076 return -ENODEV;
3077
3078 ret = myrs_get_config(cs);
3079 if (ret < 0) {
3080 myrs_cleanup(cs);
3081 return ret;
3082 }
3083
3084 if (!myrs_create_mempools(dev, cs)) {
3085 ret = -ENOMEM;
3086 goto failed;
3087 }
3088
3089 ret = scsi_add_host(cs->host, &dev->dev);
3090 if (ret) {
3091 dev_err(&dev->dev, "scsi_add_host failed with %d\n", ret);
3092 myrs_destroy_mempools(cs);
3093 goto failed;
3094 }
3095 scsi_scan_host(cs->host);
3096 return 0;
3097 failed:
3098 myrs_cleanup(cs);
3099 return ret;
3100 }
3101
3102
myrs_remove(struct pci_dev * pdev)3103 static void myrs_remove(struct pci_dev *pdev)
3104 {
3105 struct myrs_hba *cs = pci_get_drvdata(pdev);
3106
3107 if (cs == NULL)
3108 return;
3109
3110 shost_printk(KERN_NOTICE, cs->host, "Flushing Cache...");
3111 myrs_flush_cache(cs);
3112 myrs_destroy_mempools(cs);
3113 myrs_cleanup(cs);
3114 }
3115
3116
3117 static const struct pci_device_id myrs_id_table[] = {
3118 {
3119 PCI_DEVICE_SUB(PCI_VENDOR_ID_MYLEX,
3120 PCI_DEVICE_ID_MYLEX_DAC960_GEM,
3121 PCI_VENDOR_ID_MYLEX, PCI_ANY_ID),
3122 .driver_data = (unsigned long) &DAC960_GEM_privdata,
3123 },
3124 {
3125 PCI_DEVICE_DATA(MYLEX, DAC960_BA, &DAC960_BA_privdata),
3126 },
3127 {
3128 PCI_DEVICE_DATA(MYLEX, DAC960_LP, &DAC960_LP_privdata),
3129 },
3130 {0, },
3131 };
3132
3133 MODULE_DEVICE_TABLE(pci, myrs_id_table);
3134
3135 static struct pci_driver myrs_pci_driver = {
3136 .name = "myrs",
3137 .id_table = myrs_id_table,
3138 .probe = myrs_probe,
3139 .remove = myrs_remove,
3140 };
3141
myrs_init_module(void)3142 static int __init myrs_init_module(void)
3143 {
3144 int ret;
3145
3146 myrs_raid_template = raid_class_attach(&myrs_raid_functions);
3147 if (!myrs_raid_template)
3148 return -ENODEV;
3149
3150 ret = pci_register_driver(&myrs_pci_driver);
3151 if (ret)
3152 raid_class_release(myrs_raid_template);
3153
3154 return ret;
3155 }
3156
myrs_cleanup_module(void)3157 static void __exit myrs_cleanup_module(void)
3158 {
3159 pci_unregister_driver(&myrs_pci_driver);
3160 raid_class_release(myrs_raid_template);
3161 }
3162
3163 module_init(myrs_init_module);
3164 module_exit(myrs_cleanup_module);
3165
3166 MODULE_DESCRIPTION("Mylex DAC960/AcceleRAID/eXtremeRAID driver (SCSI Interface)");
3167 MODULE_AUTHOR("Hannes Reinecke <hare@suse.com>");
3168 MODULE_LICENSE("GPL");
3169