1 /* 2 * Marvell 88SE64xx/88SE94xx main function 3 * 4 * Copyright 2007 Red Hat, Inc. 5 * Copyright 2008 Marvell. <kewei@marvell.com> 6 * 7 * This file is licensed under GPLv2. 8 * 9 * This program is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU General Public License as 11 * published by the Free Software Foundation; version 2 of the 12 * License. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17 * General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 22 * USA 23 */ 24 25 #include "mv_sas.h" 26 27 static int mvs_find_tag(struct mvs_info *mvi, struct sas_task *task, u32 *tag) 28 { 29 if (task->lldd_task) { 30 struct mvs_slot_info *slot; 31 slot = task->lldd_task; 32 *tag = slot->slot_tag; 33 return 1; 34 } 35 return 0; 36 } 37 38 void mvs_tag_clear(struct mvs_info *mvi, u32 tag) 39 { 40 void *bitmap = &mvi->tags; 41 clear_bit(tag, bitmap); 42 } 43 44 void mvs_tag_free(struct mvs_info *mvi, u32 tag) 45 { 46 mvs_tag_clear(mvi, tag); 47 } 48 49 void mvs_tag_set(struct mvs_info *mvi, unsigned int tag) 50 { 51 void *bitmap = &mvi->tags; 52 set_bit(tag, bitmap); 53 } 54 55 inline int mvs_tag_alloc(struct mvs_info *mvi, u32 *tag_out) 56 { 57 unsigned int index, tag; 58 void *bitmap = &mvi->tags; 59 60 index = find_first_zero_bit(bitmap, mvi->tags_num); 61 tag = index; 62 if (tag >= mvi->tags_num) 63 return -SAS_QUEUE_FULL; 64 mvs_tag_set(mvi, tag); 65 *tag_out = tag; 66 return 0; 67 } 68 69 void mvs_tag_init(struct mvs_info *mvi) 70 { 71 int i; 72 for (i = 0; i < mvi->tags_num; ++i) 73 mvs_tag_clear(mvi, i); 74 } 75 76 void mvs_hexdump(u32 size, u8 *data, u32 baseaddr) 77 { 78 u32 i; 79 u32 run; 80 u32 offset; 81 82 offset = 0; 83 while (size) { 84 printk(KERN_DEBUG"%08X : ", baseaddr + offset); 85 if (size >= 16) 86 run = 16; 87 else 88 run = size; 89 size -= run; 90 for (i = 0; i < 16; i++) { 91 if (i < run) 92 printk(KERN_DEBUG"%02X ", (u32)data[i]); 93 else 94 printk(KERN_DEBUG" "); 95 } 96 printk(KERN_DEBUG": "); 97 for (i = 0; i < run; i++) 98 printk(KERN_DEBUG"%c", 99 isalnum(data[i]) ? data[i] : '.'); 100 printk(KERN_DEBUG"\n"); 101 data = &data[16]; 102 offset += run; 103 } 104 printk(KERN_DEBUG"\n"); 105 } 106 107 #if (_MV_DUMP > 1) 108 static void mvs_hba_sb_dump(struct mvs_info *mvi, u32 tag, 109 enum sas_protocol proto) 110 { 111 u32 offset; 112 struct mvs_slot_info *slot = &mvi->slot_info[tag]; 113 114 offset = slot->cmd_size + MVS_OAF_SZ + 115 MVS_CHIP_DISP->prd_size() * slot->n_elem; 116 dev_printk(KERN_DEBUG, mvi->dev, "+---->Status buffer[%d] :\n", 117 tag); 118 mvs_hexdump(32, (u8 *) slot->response, 119 (u32) slot->buf_dma + offset); 120 } 121 #endif 122 123 static void mvs_hba_memory_dump(struct mvs_info *mvi, u32 tag, 124 enum sas_protocol proto) 125 { 126 #if (_MV_DUMP > 1) 127 u32 sz, w_ptr; 128 u64 addr; 129 struct mvs_slot_info *slot = &mvi->slot_info[tag]; 130 131 /*Delivery Queue */ 132 sz = MVS_CHIP_SLOT_SZ; 133 w_ptr = slot->tx; 134 addr = mvi->tx_dma; 135 dev_printk(KERN_DEBUG, mvi->dev, 136 "Delivery Queue Size=%04d , WRT_PTR=%04X\n", sz, w_ptr); 137 dev_printk(KERN_DEBUG, mvi->dev, 138 "Delivery Queue Base Address=0x%llX (PA)" 139 "(tx_dma=0x%llX), Entry=%04d\n", 140 addr, (unsigned long long)mvi->tx_dma, w_ptr); 141 mvs_hexdump(sizeof(u32), (u8 *)(&mvi->tx[mvi->tx_prod]), 142 (u32) mvi->tx_dma + sizeof(u32) * w_ptr); 143 /*Command List */ 144 addr = mvi->slot_dma; 145 dev_printk(KERN_DEBUG, mvi->dev, 146 "Command List Base Address=0x%llX (PA)" 147 "(slot_dma=0x%llX), Header=%03d\n", 148 addr, (unsigned long long)slot->buf_dma, tag); 149 dev_printk(KERN_DEBUG, mvi->dev, "Command Header[%03d]:\n", tag); 150 /*mvs_cmd_hdr */ 151 mvs_hexdump(sizeof(struct mvs_cmd_hdr), (u8 *)(&mvi->slot[tag]), 152 (u32) mvi->slot_dma + tag * sizeof(struct mvs_cmd_hdr)); 153 /*1.command table area */ 154 dev_printk(KERN_DEBUG, mvi->dev, "+---->Command Table :\n"); 155 mvs_hexdump(slot->cmd_size, (u8 *) slot->buf, (u32) slot->buf_dma); 156 /*2.open address frame area */ 157 dev_printk(KERN_DEBUG, mvi->dev, "+---->Open Address Frame :\n"); 158 mvs_hexdump(MVS_OAF_SZ, (u8 *) slot->buf + slot->cmd_size, 159 (u32) slot->buf_dma + slot->cmd_size); 160 /*3.status buffer */ 161 mvs_hba_sb_dump(mvi, tag, proto); 162 /*4.PRD table */ 163 dev_printk(KERN_DEBUG, mvi->dev, "+---->PRD table :\n"); 164 mvs_hexdump(MVS_CHIP_DISP->prd_size() * slot->n_elem, 165 (u8 *) slot->buf + slot->cmd_size + MVS_OAF_SZ, 166 (u32) slot->buf_dma + slot->cmd_size + MVS_OAF_SZ); 167 #endif 168 } 169 170 static void mvs_hba_cq_dump(struct mvs_info *mvi) 171 { 172 #if (_MV_DUMP > 2) 173 u64 addr; 174 void __iomem *regs = mvi->regs; 175 u32 entry = mvi->rx_cons + 1; 176 u32 rx_desc = le32_to_cpu(mvi->rx[entry]); 177 178 /*Completion Queue */ 179 addr = mr32(RX_HI) << 16 << 16 | mr32(RX_LO); 180 dev_printk(KERN_DEBUG, mvi->dev, "Completion Task = 0x%p\n", 181 mvi->slot_info[rx_desc & RXQ_SLOT_MASK].task); 182 dev_printk(KERN_DEBUG, mvi->dev, 183 "Completion List Base Address=0x%llX (PA), " 184 "CQ_Entry=%04d, CQ_WP=0x%08X\n", 185 addr, entry - 1, mvi->rx[0]); 186 mvs_hexdump(sizeof(u32), (u8 *)(&rx_desc), 187 mvi->rx_dma + sizeof(u32) * entry); 188 #endif 189 } 190 191 void mvs_get_sas_addr(void *buf, u32 buflen) 192 { 193 /*memcpy(buf, "\x50\x05\x04\x30\x11\xab\x64\x40", 8);*/ 194 } 195 196 struct mvs_info *mvs_find_dev_mvi(struct domain_device *dev) 197 { 198 unsigned long i = 0, j = 0, hi = 0; 199 struct sas_ha_struct *sha = dev->port->ha; 200 struct mvs_info *mvi = NULL; 201 struct asd_sas_phy *phy; 202 203 while (sha->sas_port[i]) { 204 if (sha->sas_port[i] == dev->port) { 205 phy = container_of(sha->sas_port[i]->phy_list.next, 206 struct asd_sas_phy, port_phy_el); 207 j = 0; 208 while (sha->sas_phy[j]) { 209 if (sha->sas_phy[j] == phy) 210 break; 211 j++; 212 } 213 break; 214 } 215 i++; 216 } 217 hi = j/((struct mvs_prv_info *)sha->lldd_ha)->n_phy; 218 mvi = ((struct mvs_prv_info *)sha->lldd_ha)->mvi[hi]; 219 220 return mvi; 221 222 } 223 224 /* FIXME */ 225 int mvs_find_dev_phyno(struct domain_device *dev, int *phyno) 226 { 227 unsigned long i = 0, j = 0, n = 0, num = 0; 228 struct mvs_device *mvi_dev = (struct mvs_device *)dev->lldd_dev; 229 struct mvs_info *mvi = mvi_dev->mvi_info; 230 struct sas_ha_struct *sha = dev->port->ha; 231 232 while (sha->sas_port[i]) { 233 if (sha->sas_port[i] == dev->port) { 234 struct asd_sas_phy *phy; 235 list_for_each_entry(phy, 236 &sha->sas_port[i]->phy_list, port_phy_el) { 237 j = 0; 238 while (sha->sas_phy[j]) { 239 if (sha->sas_phy[j] == phy) 240 break; 241 j++; 242 } 243 phyno[n] = (j >= mvi->chip->n_phy) ? 244 (j - mvi->chip->n_phy) : j; 245 num++; 246 n++; 247 } 248 break; 249 } 250 i++; 251 } 252 return num; 253 } 254 255 static inline void mvs_free_reg_set(struct mvs_info *mvi, 256 struct mvs_device *dev) 257 { 258 if (!dev) { 259 mv_printk("device has been free.\n"); 260 return; 261 } 262 if (dev->runing_req != 0) 263 return; 264 if (dev->taskfileset == MVS_ID_NOT_MAPPED) 265 return; 266 MVS_CHIP_DISP->free_reg_set(mvi, &dev->taskfileset); 267 } 268 269 static inline u8 mvs_assign_reg_set(struct mvs_info *mvi, 270 struct mvs_device *dev) 271 { 272 if (dev->taskfileset != MVS_ID_NOT_MAPPED) 273 return 0; 274 return MVS_CHIP_DISP->assign_reg_set(mvi, &dev->taskfileset); 275 } 276 277 void mvs_phys_reset(struct mvs_info *mvi, u32 phy_mask, int hard) 278 { 279 u32 no; 280 for_each_phy(phy_mask, phy_mask, no) { 281 if (!(phy_mask & 1)) 282 continue; 283 MVS_CHIP_DISP->phy_reset(mvi, no, hard); 284 } 285 } 286 287 /* FIXME: locking? */ 288 int mvs_phy_control(struct asd_sas_phy *sas_phy, enum phy_func func, 289 void *funcdata) 290 { 291 int rc = 0, phy_id = sas_phy->id; 292 u32 tmp, i = 0, hi; 293 struct sas_ha_struct *sha = sas_phy->ha; 294 struct mvs_info *mvi = NULL; 295 296 while (sha->sas_phy[i]) { 297 if (sha->sas_phy[i] == sas_phy) 298 break; 299 i++; 300 } 301 hi = i/((struct mvs_prv_info *)sha->lldd_ha)->n_phy; 302 mvi = ((struct mvs_prv_info *)sha->lldd_ha)->mvi[hi]; 303 304 switch (func) { 305 case PHY_FUNC_SET_LINK_RATE: 306 MVS_CHIP_DISP->phy_set_link_rate(mvi, phy_id, funcdata); 307 break; 308 309 case PHY_FUNC_HARD_RESET: 310 tmp = MVS_CHIP_DISP->read_phy_ctl(mvi, phy_id); 311 if (tmp & PHY_RST_HARD) 312 break; 313 MVS_CHIP_DISP->phy_reset(mvi, phy_id, 1); 314 break; 315 316 case PHY_FUNC_LINK_RESET: 317 MVS_CHIP_DISP->phy_enable(mvi, phy_id); 318 MVS_CHIP_DISP->phy_reset(mvi, phy_id, 0); 319 break; 320 321 case PHY_FUNC_DISABLE: 322 MVS_CHIP_DISP->phy_disable(mvi, phy_id); 323 break; 324 case PHY_FUNC_RELEASE_SPINUP_HOLD: 325 default: 326 rc = -EOPNOTSUPP; 327 } 328 msleep(200); 329 return rc; 330 } 331 332 void __devinit mvs_set_sas_addr(struct mvs_info *mvi, int port_id, 333 u32 off_lo, u32 off_hi, u64 sas_addr) 334 { 335 u32 lo = (u32)sas_addr; 336 u32 hi = (u32)(sas_addr>>32); 337 338 MVS_CHIP_DISP->write_port_cfg_addr(mvi, port_id, off_lo); 339 MVS_CHIP_DISP->write_port_cfg_data(mvi, port_id, lo); 340 MVS_CHIP_DISP->write_port_cfg_addr(mvi, port_id, off_hi); 341 MVS_CHIP_DISP->write_port_cfg_data(mvi, port_id, hi); 342 } 343 344 static void mvs_bytes_dmaed(struct mvs_info *mvi, int i) 345 { 346 struct mvs_phy *phy = &mvi->phy[i]; 347 struct asd_sas_phy *sas_phy = &phy->sas_phy; 348 struct sas_ha_struct *sas_ha; 349 if (!phy->phy_attached) 350 return; 351 352 if (!(phy->att_dev_info & PORT_DEV_TRGT_MASK) 353 && phy->phy_type & PORT_TYPE_SAS) { 354 return; 355 } 356 357 sas_ha = mvi->sas; 358 sas_ha->notify_phy_event(sas_phy, PHYE_OOB_DONE); 359 360 if (sas_phy->phy) { 361 struct sas_phy *sphy = sas_phy->phy; 362 363 sphy->negotiated_linkrate = sas_phy->linkrate; 364 sphy->minimum_linkrate = phy->minimum_linkrate; 365 sphy->minimum_linkrate_hw = SAS_LINK_RATE_1_5_GBPS; 366 sphy->maximum_linkrate = phy->maximum_linkrate; 367 sphy->maximum_linkrate_hw = MVS_CHIP_DISP->phy_max_link_rate(); 368 } 369 370 if (phy->phy_type & PORT_TYPE_SAS) { 371 struct sas_identify_frame *id; 372 373 id = (struct sas_identify_frame *)phy->frame_rcvd; 374 id->dev_type = phy->identify.device_type; 375 id->initiator_bits = SAS_PROTOCOL_ALL; 376 id->target_bits = phy->identify.target_port_protocols; 377 } else if (phy->phy_type & PORT_TYPE_SATA) { 378 /*Nothing*/ 379 } 380 mv_dprintk("phy %d byte dmaded.\n", i + mvi->id * mvi->chip->n_phy); 381 382 sas_phy->frame_rcvd_size = phy->frame_rcvd_size; 383 384 mvi->sas->notify_port_event(sas_phy, 385 PORTE_BYTES_DMAED); 386 } 387 388 int mvs_slave_alloc(struct scsi_device *scsi_dev) 389 { 390 struct domain_device *dev = sdev_to_domain_dev(scsi_dev); 391 if (dev_is_sata(dev)) { 392 /* We don't need to rescan targets 393 * if REPORT_LUNS request is failed 394 */ 395 if (scsi_dev->lun > 0) 396 return -ENXIO; 397 scsi_dev->tagged_supported = 1; 398 } 399 400 return sas_slave_alloc(scsi_dev); 401 } 402 403 int mvs_slave_configure(struct scsi_device *sdev) 404 { 405 struct domain_device *dev = sdev_to_domain_dev(sdev); 406 int ret = sas_slave_configure(sdev); 407 408 if (ret) 409 return ret; 410 if (dev_is_sata(dev)) { 411 /* may set PIO mode */ 412 #if MV_DISABLE_NCQ 413 struct ata_port *ap = dev->sata_dev.ap; 414 struct ata_device *adev = ap->link.device; 415 adev->flags |= ATA_DFLAG_NCQ_OFF; 416 scsi_adjust_queue_depth(sdev, MSG_SIMPLE_TAG, 1); 417 #endif 418 } 419 return 0; 420 } 421 422 void mvs_scan_start(struct Scsi_Host *shost) 423 { 424 int i, j; 425 unsigned short core_nr; 426 struct mvs_info *mvi; 427 struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost); 428 429 core_nr = ((struct mvs_prv_info *)sha->lldd_ha)->n_host; 430 431 for (j = 0; j < core_nr; j++) { 432 mvi = ((struct mvs_prv_info *)sha->lldd_ha)->mvi[j]; 433 for (i = 0; i < mvi->chip->n_phy; ++i) 434 mvs_bytes_dmaed(mvi, i); 435 } 436 } 437 438 int mvs_scan_finished(struct Scsi_Host *shost, unsigned long time) 439 { 440 /* give the phy enabling interrupt event time to come in (1s 441 * is empirically about all it takes) */ 442 if (time < HZ) 443 return 0; 444 /* Wait for discovery to finish */ 445 scsi_flush_work(shost); 446 return 1; 447 } 448 449 static int mvs_task_prep_smp(struct mvs_info *mvi, 450 struct mvs_task_exec_info *tei) 451 { 452 int elem, rc, i; 453 struct sas_task *task = tei->task; 454 struct mvs_cmd_hdr *hdr = tei->hdr; 455 struct domain_device *dev = task->dev; 456 struct asd_sas_port *sas_port = dev->port; 457 struct scatterlist *sg_req, *sg_resp; 458 u32 req_len, resp_len, tag = tei->tag; 459 void *buf_tmp; 460 u8 *buf_oaf; 461 dma_addr_t buf_tmp_dma; 462 void *buf_prd; 463 struct mvs_slot_info *slot = &mvi->slot_info[tag]; 464 u32 flags = (tei->n_elem << MCH_PRD_LEN_SHIFT); 465 #if _MV_DUMP 466 u8 *buf_cmd; 467 void *from; 468 #endif 469 /* 470 * DMA-map SMP request, response buffers 471 */ 472 sg_req = &task->smp_task.smp_req; 473 elem = dma_map_sg(mvi->dev, sg_req, 1, PCI_DMA_TODEVICE); 474 if (!elem) 475 return -ENOMEM; 476 req_len = sg_dma_len(sg_req); 477 478 sg_resp = &task->smp_task.smp_resp; 479 elem = dma_map_sg(mvi->dev, sg_resp, 1, PCI_DMA_FROMDEVICE); 480 if (!elem) { 481 rc = -ENOMEM; 482 goto err_out; 483 } 484 resp_len = SB_RFB_MAX; 485 486 /* must be in dwords */ 487 if ((req_len & 0x3) || (resp_len & 0x3)) { 488 rc = -EINVAL; 489 goto err_out_2; 490 } 491 492 /* 493 * arrange MVS_SLOT_BUF_SZ-sized DMA buffer according to our needs 494 */ 495 496 /* region 1: command table area (MVS_SSP_CMD_SZ bytes) ***** */ 497 buf_tmp = slot->buf; 498 buf_tmp_dma = slot->buf_dma; 499 500 #if _MV_DUMP 501 buf_cmd = buf_tmp; 502 hdr->cmd_tbl = cpu_to_le64(buf_tmp_dma); 503 buf_tmp += req_len; 504 buf_tmp_dma += req_len; 505 slot->cmd_size = req_len; 506 #else 507 hdr->cmd_tbl = cpu_to_le64(sg_dma_address(sg_req)); 508 #endif 509 510 /* region 2: open address frame area (MVS_OAF_SZ bytes) ********* */ 511 buf_oaf = buf_tmp; 512 hdr->open_frame = cpu_to_le64(buf_tmp_dma); 513 514 buf_tmp += MVS_OAF_SZ; 515 buf_tmp_dma += MVS_OAF_SZ; 516 517 /* region 3: PRD table *********************************** */ 518 buf_prd = buf_tmp; 519 if (tei->n_elem) 520 hdr->prd_tbl = cpu_to_le64(buf_tmp_dma); 521 else 522 hdr->prd_tbl = 0; 523 524 i = MVS_CHIP_DISP->prd_size() * tei->n_elem; 525 buf_tmp += i; 526 buf_tmp_dma += i; 527 528 /* region 4: status buffer (larger the PRD, smaller this buf) ****** */ 529 slot->response = buf_tmp; 530 hdr->status_buf = cpu_to_le64(buf_tmp_dma); 531 if (mvi->flags & MVF_FLAG_SOC) 532 hdr->reserved[0] = 0; 533 534 /* 535 * Fill in TX ring and command slot header 536 */ 537 slot->tx = mvi->tx_prod; 538 mvi->tx[mvi->tx_prod] = cpu_to_le32((TXQ_CMD_SMP << TXQ_CMD_SHIFT) | 539 TXQ_MODE_I | tag | 540 (sas_port->phy_mask << TXQ_PHY_SHIFT)); 541 542 hdr->flags |= flags; 543 hdr->lens = cpu_to_le32(((resp_len / 4) << 16) | ((req_len - 4) / 4)); 544 hdr->tags = cpu_to_le32(tag); 545 hdr->data_len = 0; 546 547 /* generate open address frame hdr (first 12 bytes) */ 548 /* initiator, SMP, ftype 1h */ 549 buf_oaf[0] = (1 << 7) | (PROTOCOL_SMP << 4) | 0x01; 550 buf_oaf[1] = dev->linkrate & 0xf; 551 *(u16 *)(buf_oaf + 2) = 0xFFFF; /* SAS SPEC */ 552 memcpy(buf_oaf + 4, dev->sas_addr, SAS_ADDR_SIZE); 553 554 /* fill in PRD (scatter/gather) table, if any */ 555 MVS_CHIP_DISP->make_prd(task->scatter, tei->n_elem, buf_prd); 556 557 #if _MV_DUMP 558 /* copy cmd table */ 559 from = kmap_atomic(sg_page(sg_req), KM_IRQ0); 560 memcpy(buf_cmd, from + sg_req->offset, req_len); 561 kunmap_atomic(from, KM_IRQ0); 562 #endif 563 return 0; 564 565 err_out_2: 566 dma_unmap_sg(mvi->dev, &tei->task->smp_task.smp_resp, 1, 567 PCI_DMA_FROMDEVICE); 568 err_out: 569 dma_unmap_sg(mvi->dev, &tei->task->smp_task.smp_req, 1, 570 PCI_DMA_TODEVICE); 571 return rc; 572 } 573 574 static u32 mvs_get_ncq_tag(struct sas_task *task, u32 *tag) 575 { 576 struct ata_queued_cmd *qc = task->uldd_task; 577 578 if (qc) { 579 if (qc->tf.command == ATA_CMD_FPDMA_WRITE || 580 qc->tf.command == ATA_CMD_FPDMA_READ) { 581 *tag = qc->tag; 582 return 1; 583 } 584 } 585 586 return 0; 587 } 588 589 static int mvs_task_prep_ata(struct mvs_info *mvi, 590 struct mvs_task_exec_info *tei) 591 { 592 struct sas_task *task = tei->task; 593 struct domain_device *dev = task->dev; 594 struct mvs_device *mvi_dev = dev->lldd_dev; 595 struct mvs_cmd_hdr *hdr = tei->hdr; 596 struct asd_sas_port *sas_port = dev->port; 597 struct mvs_slot_info *slot; 598 void *buf_prd; 599 u32 tag = tei->tag, hdr_tag; 600 u32 flags, del_q; 601 void *buf_tmp; 602 u8 *buf_cmd, *buf_oaf; 603 dma_addr_t buf_tmp_dma; 604 u32 i, req_len, resp_len; 605 const u32 max_resp_len = SB_RFB_MAX; 606 607 if (mvs_assign_reg_set(mvi, mvi_dev) == MVS_ID_NOT_MAPPED) { 608 mv_dprintk("Have not enough regiset for dev %d.\n", 609 mvi_dev->device_id); 610 return -EBUSY; 611 } 612 slot = &mvi->slot_info[tag]; 613 slot->tx = mvi->tx_prod; 614 del_q = TXQ_MODE_I | tag | 615 (TXQ_CMD_STP << TXQ_CMD_SHIFT) | 616 (sas_port->phy_mask << TXQ_PHY_SHIFT) | 617 (mvi_dev->taskfileset << TXQ_SRS_SHIFT); 618 mvi->tx[mvi->tx_prod] = cpu_to_le32(del_q); 619 620 #ifndef DISABLE_HOTPLUG_DMA_FIX 621 if (task->data_dir == DMA_FROM_DEVICE) 622 flags = (MVS_CHIP_DISP->prd_count() << MCH_PRD_LEN_SHIFT); 623 else 624 flags = (tei->n_elem << MCH_PRD_LEN_SHIFT); 625 #else 626 flags = (tei->n_elem << MCH_PRD_LEN_SHIFT); 627 #endif 628 if (task->ata_task.use_ncq) 629 flags |= MCH_FPDMA; 630 if (dev->sata_dev.command_set == ATAPI_COMMAND_SET) { 631 if (task->ata_task.fis.command != ATA_CMD_ID_ATAPI) 632 flags |= MCH_ATAPI; 633 } 634 635 /* FIXME: fill in port multiplier number */ 636 637 hdr->flags = cpu_to_le32(flags); 638 639 /* FIXME: the low order order 5 bits for the TAG if enable NCQ */ 640 if (task->ata_task.use_ncq && mvs_get_ncq_tag(task, &hdr_tag)) 641 task->ata_task.fis.sector_count |= (u8) (hdr_tag << 3); 642 else 643 hdr_tag = tag; 644 645 hdr->tags = cpu_to_le32(hdr_tag); 646 647 hdr->data_len = cpu_to_le32(task->total_xfer_len); 648 649 /* 650 * arrange MVS_SLOT_BUF_SZ-sized DMA buffer according to our needs 651 */ 652 653 /* region 1: command table area (MVS_ATA_CMD_SZ bytes) ************** */ 654 buf_cmd = buf_tmp = slot->buf; 655 buf_tmp_dma = slot->buf_dma; 656 657 hdr->cmd_tbl = cpu_to_le64(buf_tmp_dma); 658 659 buf_tmp += MVS_ATA_CMD_SZ; 660 buf_tmp_dma += MVS_ATA_CMD_SZ; 661 #if _MV_DUMP 662 slot->cmd_size = MVS_ATA_CMD_SZ; 663 #endif 664 665 /* region 2: open address frame area (MVS_OAF_SZ bytes) ********* */ 666 /* used for STP. unused for SATA? */ 667 buf_oaf = buf_tmp; 668 hdr->open_frame = cpu_to_le64(buf_tmp_dma); 669 670 buf_tmp += MVS_OAF_SZ; 671 buf_tmp_dma += MVS_OAF_SZ; 672 673 /* region 3: PRD table ********************************************* */ 674 buf_prd = buf_tmp; 675 676 if (tei->n_elem) 677 hdr->prd_tbl = cpu_to_le64(buf_tmp_dma); 678 else 679 hdr->prd_tbl = 0; 680 i = MVS_CHIP_DISP->prd_size() * MVS_CHIP_DISP->prd_count(); 681 682 buf_tmp += i; 683 buf_tmp_dma += i; 684 685 /* region 4: status buffer (larger the PRD, smaller this buf) ****** */ 686 /* FIXME: probably unused, for SATA. kept here just in case 687 * we get a STP/SATA error information record 688 */ 689 slot->response = buf_tmp; 690 hdr->status_buf = cpu_to_le64(buf_tmp_dma); 691 if (mvi->flags & MVF_FLAG_SOC) 692 hdr->reserved[0] = 0; 693 694 req_len = sizeof(struct host_to_dev_fis); 695 resp_len = MVS_SLOT_BUF_SZ - MVS_ATA_CMD_SZ - 696 sizeof(struct mvs_err_info) - i; 697 698 /* request, response lengths */ 699 resp_len = min(resp_len, max_resp_len); 700 hdr->lens = cpu_to_le32(((resp_len / 4) << 16) | (req_len / 4)); 701 702 if (likely(!task->ata_task.device_control_reg_update)) 703 task->ata_task.fis.flags |= 0x80; /* C=1: update ATA cmd reg */ 704 /* fill in command FIS and ATAPI CDB */ 705 memcpy(buf_cmd, &task->ata_task.fis, sizeof(struct host_to_dev_fis)); 706 if (dev->sata_dev.command_set == ATAPI_COMMAND_SET) 707 memcpy(buf_cmd + STP_ATAPI_CMD, 708 task->ata_task.atapi_packet, 16); 709 710 /* generate open address frame hdr (first 12 bytes) */ 711 /* initiator, STP, ftype 1h */ 712 buf_oaf[0] = (1 << 7) | (PROTOCOL_STP << 4) | 0x1; 713 buf_oaf[1] = dev->linkrate & 0xf; 714 *(u16 *)(buf_oaf + 2) = cpu_to_be16(mvi_dev->device_id + 1); 715 memcpy(buf_oaf + 4, dev->sas_addr, SAS_ADDR_SIZE); 716 717 /* fill in PRD (scatter/gather) table, if any */ 718 MVS_CHIP_DISP->make_prd(task->scatter, tei->n_elem, buf_prd); 719 #ifndef DISABLE_HOTPLUG_DMA_FIX 720 if (task->data_dir == DMA_FROM_DEVICE) 721 MVS_CHIP_DISP->dma_fix(mvi->bulk_buffer_dma, 722 TRASH_BUCKET_SIZE, tei->n_elem, buf_prd); 723 #endif 724 return 0; 725 } 726 727 static int mvs_task_prep_ssp(struct mvs_info *mvi, 728 struct mvs_task_exec_info *tei, int is_tmf, 729 struct mvs_tmf_task *tmf) 730 { 731 struct sas_task *task = tei->task; 732 struct mvs_cmd_hdr *hdr = tei->hdr; 733 struct mvs_port *port = tei->port; 734 struct domain_device *dev = task->dev; 735 struct mvs_device *mvi_dev = dev->lldd_dev; 736 struct asd_sas_port *sas_port = dev->port; 737 struct mvs_slot_info *slot; 738 void *buf_prd; 739 struct ssp_frame_hdr *ssp_hdr; 740 void *buf_tmp; 741 u8 *buf_cmd, *buf_oaf, fburst = 0; 742 dma_addr_t buf_tmp_dma; 743 u32 flags; 744 u32 resp_len, req_len, i, tag = tei->tag; 745 const u32 max_resp_len = SB_RFB_MAX; 746 u32 phy_mask; 747 748 slot = &mvi->slot_info[tag]; 749 750 phy_mask = ((port->wide_port_phymap) ? port->wide_port_phymap : 751 sas_port->phy_mask) & TXQ_PHY_MASK; 752 753 slot->tx = mvi->tx_prod; 754 mvi->tx[mvi->tx_prod] = cpu_to_le32(TXQ_MODE_I | tag | 755 (TXQ_CMD_SSP << TXQ_CMD_SHIFT) | 756 (phy_mask << TXQ_PHY_SHIFT)); 757 758 flags = MCH_RETRY; 759 if (task->ssp_task.enable_first_burst) { 760 flags |= MCH_FBURST; 761 fburst = (1 << 7); 762 } 763 if (is_tmf) 764 flags |= (MCH_SSP_FR_TASK << MCH_SSP_FR_TYPE_SHIFT); 765 else 766 flags |= (MCH_SSP_FR_CMD << MCH_SSP_FR_TYPE_SHIFT); 767 hdr->flags = cpu_to_le32(flags | (tei->n_elem << MCH_PRD_LEN_SHIFT)); 768 hdr->tags = cpu_to_le32(tag); 769 hdr->data_len = cpu_to_le32(task->total_xfer_len); 770 771 /* 772 * arrange MVS_SLOT_BUF_SZ-sized DMA buffer according to our needs 773 */ 774 775 /* region 1: command table area (MVS_SSP_CMD_SZ bytes) ************** */ 776 buf_cmd = buf_tmp = slot->buf; 777 buf_tmp_dma = slot->buf_dma; 778 779 hdr->cmd_tbl = cpu_to_le64(buf_tmp_dma); 780 781 buf_tmp += MVS_SSP_CMD_SZ; 782 buf_tmp_dma += MVS_SSP_CMD_SZ; 783 #if _MV_DUMP 784 slot->cmd_size = MVS_SSP_CMD_SZ; 785 #endif 786 787 /* region 2: open address frame area (MVS_OAF_SZ bytes) ********* */ 788 buf_oaf = buf_tmp; 789 hdr->open_frame = cpu_to_le64(buf_tmp_dma); 790 791 buf_tmp += MVS_OAF_SZ; 792 buf_tmp_dma += MVS_OAF_SZ; 793 794 /* region 3: PRD table ********************************************* */ 795 buf_prd = buf_tmp; 796 if (tei->n_elem) 797 hdr->prd_tbl = cpu_to_le64(buf_tmp_dma); 798 else 799 hdr->prd_tbl = 0; 800 801 i = MVS_CHIP_DISP->prd_size() * tei->n_elem; 802 buf_tmp += i; 803 buf_tmp_dma += i; 804 805 /* region 4: status buffer (larger the PRD, smaller this buf) ****** */ 806 slot->response = buf_tmp; 807 hdr->status_buf = cpu_to_le64(buf_tmp_dma); 808 if (mvi->flags & MVF_FLAG_SOC) 809 hdr->reserved[0] = 0; 810 811 resp_len = MVS_SLOT_BUF_SZ - MVS_SSP_CMD_SZ - MVS_OAF_SZ - 812 sizeof(struct mvs_err_info) - i; 813 resp_len = min(resp_len, max_resp_len); 814 815 req_len = sizeof(struct ssp_frame_hdr) + 28; 816 817 /* request, response lengths */ 818 hdr->lens = cpu_to_le32(((resp_len / 4) << 16) | (req_len / 4)); 819 820 /* generate open address frame hdr (first 12 bytes) */ 821 /* initiator, SSP, ftype 1h */ 822 buf_oaf[0] = (1 << 7) | (PROTOCOL_SSP << 4) | 0x1; 823 buf_oaf[1] = dev->linkrate & 0xf; 824 *(u16 *)(buf_oaf + 2) = cpu_to_be16(mvi_dev->device_id + 1); 825 memcpy(buf_oaf + 4, dev->sas_addr, SAS_ADDR_SIZE); 826 827 /* fill in SSP frame header (Command Table.SSP frame header) */ 828 ssp_hdr = (struct ssp_frame_hdr *)buf_cmd; 829 830 if (is_tmf) 831 ssp_hdr->frame_type = SSP_TASK; 832 else 833 ssp_hdr->frame_type = SSP_COMMAND; 834 835 memcpy(ssp_hdr->hashed_dest_addr, dev->hashed_sas_addr, 836 HASHED_SAS_ADDR_SIZE); 837 memcpy(ssp_hdr->hashed_src_addr, 838 dev->hashed_sas_addr, HASHED_SAS_ADDR_SIZE); 839 ssp_hdr->tag = cpu_to_be16(tag); 840 841 /* fill in IU for TASK and Command Frame */ 842 buf_cmd += sizeof(*ssp_hdr); 843 memcpy(buf_cmd, &task->ssp_task.LUN, 8); 844 845 if (ssp_hdr->frame_type != SSP_TASK) { 846 buf_cmd[9] = fburst | task->ssp_task.task_attr | 847 (task->ssp_task.task_prio << 3); 848 memcpy(buf_cmd + 12, &task->ssp_task.cdb, 16); 849 } else{ 850 buf_cmd[10] = tmf->tmf; 851 switch (tmf->tmf) { 852 case TMF_ABORT_TASK: 853 case TMF_QUERY_TASK: 854 buf_cmd[12] = 855 (tmf->tag_of_task_to_be_managed >> 8) & 0xff; 856 buf_cmd[13] = 857 tmf->tag_of_task_to_be_managed & 0xff; 858 break; 859 default: 860 break; 861 } 862 } 863 /* fill in PRD (scatter/gather) table, if any */ 864 MVS_CHIP_DISP->make_prd(task->scatter, tei->n_elem, buf_prd); 865 return 0; 866 } 867 868 #define DEV_IS_GONE(mvi_dev) ((!mvi_dev || (mvi_dev->dev_type == NO_DEVICE))) 869 static int mvs_task_exec(struct sas_task *task, const int num, gfp_t gfp_flags, 870 struct completion *completion,int is_tmf, 871 struct mvs_tmf_task *tmf) 872 { 873 struct domain_device *dev = task->dev; 874 struct mvs_device *mvi_dev = (struct mvs_device *)dev->lldd_dev; 875 struct mvs_info *mvi = mvi_dev->mvi_info; 876 struct mvs_task_exec_info tei; 877 struct sas_task *t = task; 878 struct mvs_slot_info *slot; 879 u32 tag = 0xdeadbeef, rc, n_elem = 0; 880 u32 n = num, pass = 0; 881 unsigned long flags = 0; 882 883 if (!dev->port) { 884 struct task_status_struct *tsm = &t->task_status; 885 886 tsm->resp = SAS_TASK_UNDELIVERED; 887 tsm->stat = SAS_PHY_DOWN; 888 t->task_done(t); 889 return 0; 890 } 891 892 spin_lock_irqsave(&mvi->lock, flags); 893 do { 894 dev = t->dev; 895 mvi_dev = dev->lldd_dev; 896 if (DEV_IS_GONE(mvi_dev)) { 897 if (mvi_dev) 898 mv_dprintk("device %d not ready.\n", 899 mvi_dev->device_id); 900 else 901 mv_dprintk("device %016llx not ready.\n", 902 SAS_ADDR(dev->sas_addr)); 903 904 rc = SAS_PHY_DOWN; 905 goto out_done; 906 } 907 908 if (dev->port->id >= mvi->chip->n_phy) 909 tei.port = &mvi->port[dev->port->id - mvi->chip->n_phy]; 910 else 911 tei.port = &mvi->port[dev->port->id]; 912 913 if (!tei.port->port_attached) { 914 if (sas_protocol_ata(t->task_proto)) { 915 mv_dprintk("port %d does not" 916 "attached device.\n", dev->port->id); 917 rc = SAS_PHY_DOWN; 918 goto out_done; 919 } else { 920 struct task_status_struct *ts = &t->task_status; 921 ts->resp = SAS_TASK_UNDELIVERED; 922 ts->stat = SAS_PHY_DOWN; 923 t->task_done(t); 924 if (n > 1) 925 t = list_entry(t->list.next, 926 struct sas_task, list); 927 continue; 928 } 929 } 930 931 if (!sas_protocol_ata(t->task_proto)) { 932 if (t->num_scatter) { 933 n_elem = dma_map_sg(mvi->dev, 934 t->scatter, 935 t->num_scatter, 936 t->data_dir); 937 if (!n_elem) { 938 rc = -ENOMEM; 939 goto err_out; 940 } 941 } 942 } else { 943 n_elem = t->num_scatter; 944 } 945 946 rc = mvs_tag_alloc(mvi, &tag); 947 if (rc) 948 goto err_out; 949 950 slot = &mvi->slot_info[tag]; 951 952 953 t->lldd_task = NULL; 954 slot->n_elem = n_elem; 955 slot->slot_tag = tag; 956 memset(slot->buf, 0, MVS_SLOT_BUF_SZ); 957 958 tei.task = t; 959 tei.hdr = &mvi->slot[tag]; 960 tei.tag = tag; 961 tei.n_elem = n_elem; 962 switch (t->task_proto) { 963 case SAS_PROTOCOL_SMP: 964 rc = mvs_task_prep_smp(mvi, &tei); 965 break; 966 case SAS_PROTOCOL_SSP: 967 rc = mvs_task_prep_ssp(mvi, &tei, is_tmf, tmf); 968 break; 969 case SAS_PROTOCOL_SATA: 970 case SAS_PROTOCOL_STP: 971 case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP: 972 rc = mvs_task_prep_ata(mvi, &tei); 973 break; 974 default: 975 dev_printk(KERN_ERR, mvi->dev, 976 "unknown sas_task proto: 0x%x\n", 977 t->task_proto); 978 rc = -EINVAL; 979 break; 980 } 981 982 if (rc) { 983 mv_dprintk("rc is %x\n", rc); 984 goto err_out_tag; 985 } 986 slot->task = t; 987 slot->port = tei.port; 988 t->lldd_task = slot; 989 list_add_tail(&slot->entry, &tei.port->list); 990 /* TODO: select normal or high priority */ 991 spin_lock(&t->task_state_lock); 992 t->task_state_flags |= SAS_TASK_AT_INITIATOR; 993 spin_unlock(&t->task_state_lock); 994 995 mvs_hba_memory_dump(mvi, tag, t->task_proto); 996 mvi_dev->runing_req++; 997 ++pass; 998 mvi->tx_prod = (mvi->tx_prod + 1) & (MVS_CHIP_SLOT_SZ - 1); 999 if (n > 1) 1000 t = list_entry(t->list.next, struct sas_task, list); 1001 } while (--n); 1002 rc = 0; 1003 goto out_done; 1004 1005 err_out_tag: 1006 mvs_tag_free(mvi, tag); 1007 err_out: 1008 1009 dev_printk(KERN_ERR, mvi->dev, "mvsas exec failed[%d]!\n", rc); 1010 if (!sas_protocol_ata(t->task_proto)) 1011 if (n_elem) 1012 dma_unmap_sg(mvi->dev, t->scatter, n_elem, 1013 t->data_dir); 1014 out_done: 1015 if (likely(pass)) { 1016 MVS_CHIP_DISP->start_delivery(mvi, 1017 (mvi->tx_prod - 1) & (MVS_CHIP_SLOT_SZ - 1)); 1018 } 1019 spin_unlock_irqrestore(&mvi->lock, flags); 1020 return rc; 1021 } 1022 1023 int mvs_queue_command(struct sas_task *task, const int num, 1024 gfp_t gfp_flags) 1025 { 1026 return mvs_task_exec(task, num, gfp_flags, NULL, 0, NULL); 1027 } 1028 1029 static void mvs_slot_free(struct mvs_info *mvi, u32 rx_desc) 1030 { 1031 u32 slot_idx = rx_desc & RXQ_SLOT_MASK; 1032 mvs_tag_clear(mvi, slot_idx); 1033 } 1034 1035 static void mvs_slot_task_free(struct mvs_info *mvi, struct sas_task *task, 1036 struct mvs_slot_info *slot, u32 slot_idx) 1037 { 1038 if (!slot->task) 1039 return; 1040 if (!sas_protocol_ata(task->task_proto)) 1041 if (slot->n_elem) 1042 dma_unmap_sg(mvi->dev, task->scatter, 1043 slot->n_elem, task->data_dir); 1044 1045 switch (task->task_proto) { 1046 case SAS_PROTOCOL_SMP: 1047 dma_unmap_sg(mvi->dev, &task->smp_task.smp_resp, 1, 1048 PCI_DMA_FROMDEVICE); 1049 dma_unmap_sg(mvi->dev, &task->smp_task.smp_req, 1, 1050 PCI_DMA_TODEVICE); 1051 break; 1052 1053 case SAS_PROTOCOL_SATA: 1054 case SAS_PROTOCOL_STP: 1055 case SAS_PROTOCOL_SSP: 1056 default: 1057 /* do nothing */ 1058 break; 1059 } 1060 list_del_init(&slot->entry); 1061 task->lldd_task = NULL; 1062 slot->task = NULL; 1063 slot->port = NULL; 1064 slot->slot_tag = 0xFFFFFFFF; 1065 mvs_slot_free(mvi, slot_idx); 1066 } 1067 1068 static void mvs_update_wideport(struct mvs_info *mvi, int i) 1069 { 1070 struct mvs_phy *phy = &mvi->phy[i]; 1071 struct mvs_port *port = phy->port; 1072 int j, no; 1073 1074 for_each_phy(port->wide_port_phymap, j, no) { 1075 if (j & 1) { 1076 MVS_CHIP_DISP->write_port_cfg_addr(mvi, no, 1077 PHYR_WIDE_PORT); 1078 MVS_CHIP_DISP->write_port_cfg_data(mvi, no, 1079 port->wide_port_phymap); 1080 } else { 1081 MVS_CHIP_DISP->write_port_cfg_addr(mvi, no, 1082 PHYR_WIDE_PORT); 1083 MVS_CHIP_DISP->write_port_cfg_data(mvi, no, 1084 0); 1085 } 1086 } 1087 } 1088 1089 static u32 mvs_is_phy_ready(struct mvs_info *mvi, int i) 1090 { 1091 u32 tmp; 1092 struct mvs_phy *phy = &mvi->phy[i]; 1093 struct mvs_port *port = phy->port; 1094 1095 tmp = MVS_CHIP_DISP->read_phy_ctl(mvi, i); 1096 if ((tmp & PHY_READY_MASK) && !(phy->irq_status & PHYEV_POOF)) { 1097 if (!port) 1098 phy->phy_attached = 1; 1099 return tmp; 1100 } 1101 1102 if (port) { 1103 if (phy->phy_type & PORT_TYPE_SAS) { 1104 port->wide_port_phymap &= ~(1U << i); 1105 if (!port->wide_port_phymap) 1106 port->port_attached = 0; 1107 mvs_update_wideport(mvi, i); 1108 } else if (phy->phy_type & PORT_TYPE_SATA) 1109 port->port_attached = 0; 1110 phy->port = NULL; 1111 phy->phy_attached = 0; 1112 phy->phy_type &= ~(PORT_TYPE_SAS | PORT_TYPE_SATA); 1113 } 1114 return 0; 1115 } 1116 1117 static void *mvs_get_d2h_reg(struct mvs_info *mvi, int i, void *buf) 1118 { 1119 u32 *s = (u32 *) buf; 1120 1121 if (!s) 1122 return NULL; 1123 1124 MVS_CHIP_DISP->write_port_cfg_addr(mvi, i, PHYR_SATA_SIG3); 1125 s[3] = MVS_CHIP_DISP->read_port_cfg_data(mvi, i); 1126 1127 MVS_CHIP_DISP->write_port_cfg_addr(mvi, i, PHYR_SATA_SIG2); 1128 s[2] = MVS_CHIP_DISP->read_port_cfg_data(mvi, i); 1129 1130 MVS_CHIP_DISP->write_port_cfg_addr(mvi, i, PHYR_SATA_SIG1); 1131 s[1] = MVS_CHIP_DISP->read_port_cfg_data(mvi, i); 1132 1133 MVS_CHIP_DISP->write_port_cfg_addr(mvi, i, PHYR_SATA_SIG0); 1134 s[0] = MVS_CHIP_DISP->read_port_cfg_data(mvi, i); 1135 1136 /* Workaround: take some ATAPI devices for ATA */ 1137 if (((s[1] & 0x00FFFFFF) == 0x00EB1401) && (*(u8 *)&s[3] == 0x01)) 1138 s[1] = 0x00EB1401 | (*((u8 *)&s[1] + 3) & 0x10); 1139 1140 return s; 1141 } 1142 1143 static u32 mvs_is_sig_fis_received(u32 irq_status) 1144 { 1145 return irq_status & PHYEV_SIG_FIS; 1146 } 1147 1148 void mvs_update_phyinfo(struct mvs_info *mvi, int i, int get_st) 1149 { 1150 struct mvs_phy *phy = &mvi->phy[i]; 1151 struct sas_identify_frame *id; 1152 1153 id = (struct sas_identify_frame *)phy->frame_rcvd; 1154 1155 if (get_st) { 1156 phy->irq_status = MVS_CHIP_DISP->read_port_irq_stat(mvi, i); 1157 phy->phy_status = mvs_is_phy_ready(mvi, i); 1158 } 1159 1160 if (phy->phy_status) { 1161 int oob_done = 0; 1162 struct asd_sas_phy *sas_phy = &mvi->phy[i].sas_phy; 1163 1164 oob_done = MVS_CHIP_DISP->oob_done(mvi, i); 1165 1166 MVS_CHIP_DISP->fix_phy_info(mvi, i, id); 1167 if (phy->phy_type & PORT_TYPE_SATA) { 1168 phy->identify.target_port_protocols = SAS_PROTOCOL_STP; 1169 if (mvs_is_sig_fis_received(phy->irq_status)) { 1170 phy->phy_attached = 1; 1171 phy->att_dev_sas_addr = 1172 i + mvi->id * mvi->chip->n_phy; 1173 if (oob_done) 1174 sas_phy->oob_mode = SATA_OOB_MODE; 1175 phy->frame_rcvd_size = 1176 sizeof(struct dev_to_host_fis); 1177 mvs_get_d2h_reg(mvi, i, id); 1178 } else { 1179 u32 tmp; 1180 dev_printk(KERN_DEBUG, mvi->dev, 1181 "Phy%d : No sig fis\n", i); 1182 tmp = MVS_CHIP_DISP->read_port_irq_mask(mvi, i); 1183 MVS_CHIP_DISP->write_port_irq_mask(mvi, i, 1184 tmp | PHYEV_SIG_FIS); 1185 phy->phy_attached = 0; 1186 phy->phy_type &= ~PORT_TYPE_SATA; 1187 MVS_CHIP_DISP->phy_reset(mvi, i, 0); 1188 goto out_done; 1189 } 1190 } else if (phy->phy_type & PORT_TYPE_SAS 1191 || phy->att_dev_info & PORT_SSP_INIT_MASK) { 1192 phy->phy_attached = 1; 1193 phy->identify.device_type = 1194 phy->att_dev_info & PORT_DEV_TYPE_MASK; 1195 1196 if (phy->identify.device_type == SAS_END_DEV) 1197 phy->identify.target_port_protocols = 1198 SAS_PROTOCOL_SSP; 1199 else if (phy->identify.device_type != NO_DEVICE) 1200 phy->identify.target_port_protocols = 1201 SAS_PROTOCOL_SMP; 1202 if (oob_done) 1203 sas_phy->oob_mode = SAS_OOB_MODE; 1204 phy->frame_rcvd_size = 1205 sizeof(struct sas_identify_frame); 1206 } 1207 memcpy(sas_phy->attached_sas_addr, 1208 &phy->att_dev_sas_addr, SAS_ADDR_SIZE); 1209 1210 if (MVS_CHIP_DISP->phy_work_around) 1211 MVS_CHIP_DISP->phy_work_around(mvi, i); 1212 } 1213 mv_dprintk("port %d attach dev info is %x\n", 1214 i + mvi->id * mvi->chip->n_phy, phy->att_dev_info); 1215 mv_dprintk("port %d attach sas addr is %llx\n", 1216 i + mvi->id * mvi->chip->n_phy, phy->att_dev_sas_addr); 1217 out_done: 1218 if (get_st) 1219 MVS_CHIP_DISP->write_port_irq_stat(mvi, i, phy->irq_status); 1220 } 1221 1222 static void mvs_port_notify_formed(struct asd_sas_phy *sas_phy, int lock) 1223 { 1224 struct sas_ha_struct *sas_ha = sas_phy->ha; 1225 struct mvs_info *mvi = NULL; int i = 0, hi; 1226 struct mvs_phy *phy = sas_phy->lldd_phy; 1227 struct asd_sas_port *sas_port = sas_phy->port; 1228 struct mvs_port *port; 1229 unsigned long flags = 0; 1230 if (!sas_port) 1231 return; 1232 1233 while (sas_ha->sas_phy[i]) { 1234 if (sas_ha->sas_phy[i] == sas_phy) 1235 break; 1236 i++; 1237 } 1238 hi = i/((struct mvs_prv_info *)sas_ha->lldd_ha)->n_phy; 1239 mvi = ((struct mvs_prv_info *)sas_ha->lldd_ha)->mvi[hi]; 1240 if (sas_port->id >= mvi->chip->n_phy) 1241 port = &mvi->port[sas_port->id - mvi->chip->n_phy]; 1242 else 1243 port = &mvi->port[sas_port->id]; 1244 if (lock) 1245 spin_lock_irqsave(&mvi->lock, flags); 1246 port->port_attached = 1; 1247 phy->port = port; 1248 if (phy->phy_type & PORT_TYPE_SAS) { 1249 port->wide_port_phymap = sas_port->phy_mask; 1250 mv_printk("set wide port phy map %x\n", sas_port->phy_mask); 1251 mvs_update_wideport(mvi, sas_phy->id); 1252 } 1253 if (lock) 1254 spin_unlock_irqrestore(&mvi->lock, flags); 1255 } 1256 1257 static void mvs_port_notify_deformed(struct asd_sas_phy *sas_phy, int lock) 1258 { 1259 /*Nothing*/ 1260 } 1261 1262 1263 void mvs_port_formed(struct asd_sas_phy *sas_phy) 1264 { 1265 mvs_port_notify_formed(sas_phy, 1); 1266 } 1267 1268 void mvs_port_deformed(struct asd_sas_phy *sas_phy) 1269 { 1270 mvs_port_notify_deformed(sas_phy, 1); 1271 } 1272 1273 struct mvs_device *mvs_alloc_dev(struct mvs_info *mvi) 1274 { 1275 u32 dev; 1276 for (dev = 0; dev < MVS_MAX_DEVICES; dev++) { 1277 if (mvi->devices[dev].dev_type == NO_DEVICE) { 1278 mvi->devices[dev].device_id = dev; 1279 return &mvi->devices[dev]; 1280 } 1281 } 1282 1283 if (dev == MVS_MAX_DEVICES) 1284 mv_printk("max support %d devices, ignore ..\n", 1285 MVS_MAX_DEVICES); 1286 1287 return NULL; 1288 } 1289 1290 void mvs_free_dev(struct mvs_device *mvi_dev) 1291 { 1292 u32 id = mvi_dev->device_id; 1293 memset(mvi_dev, 0, sizeof(*mvi_dev)); 1294 mvi_dev->device_id = id; 1295 mvi_dev->dev_type = NO_DEVICE; 1296 mvi_dev->dev_status = MVS_DEV_NORMAL; 1297 mvi_dev->taskfileset = MVS_ID_NOT_MAPPED; 1298 } 1299 1300 int mvs_dev_found_notify(struct domain_device *dev, int lock) 1301 { 1302 unsigned long flags = 0; 1303 int res = 0; 1304 struct mvs_info *mvi = NULL; 1305 struct domain_device *parent_dev = dev->parent; 1306 struct mvs_device *mvi_device; 1307 1308 mvi = mvs_find_dev_mvi(dev); 1309 1310 if (lock) 1311 spin_lock_irqsave(&mvi->lock, flags); 1312 1313 mvi_device = mvs_alloc_dev(mvi); 1314 if (!mvi_device) { 1315 res = -1; 1316 goto found_out; 1317 } 1318 dev->lldd_dev = mvi_device; 1319 mvi_device->dev_type = dev->dev_type; 1320 mvi_device->mvi_info = mvi; 1321 if (parent_dev && DEV_IS_EXPANDER(parent_dev->dev_type)) { 1322 int phy_id; 1323 u8 phy_num = parent_dev->ex_dev.num_phys; 1324 struct ex_phy *phy; 1325 for (phy_id = 0; phy_id < phy_num; phy_id++) { 1326 phy = &parent_dev->ex_dev.ex_phy[phy_id]; 1327 if (SAS_ADDR(phy->attached_sas_addr) == 1328 SAS_ADDR(dev->sas_addr)) { 1329 mvi_device->attached_phy = phy_id; 1330 break; 1331 } 1332 } 1333 1334 if (phy_id == phy_num) { 1335 mv_printk("Error: no attached dev:%016llx" 1336 "at ex:%016llx.\n", 1337 SAS_ADDR(dev->sas_addr), 1338 SAS_ADDR(parent_dev->sas_addr)); 1339 res = -1; 1340 } 1341 } 1342 1343 found_out: 1344 if (lock) 1345 spin_unlock_irqrestore(&mvi->lock, flags); 1346 return res; 1347 } 1348 1349 int mvs_dev_found(struct domain_device *dev) 1350 { 1351 return mvs_dev_found_notify(dev, 1); 1352 } 1353 1354 void mvs_dev_gone_notify(struct domain_device *dev, int lock) 1355 { 1356 unsigned long flags = 0; 1357 struct mvs_device *mvi_dev = dev->lldd_dev; 1358 struct mvs_info *mvi = mvi_dev->mvi_info; 1359 1360 if (lock) 1361 spin_lock_irqsave(&mvi->lock, flags); 1362 1363 if (mvi_dev) { 1364 mv_dprintk("found dev[%d:%x] is gone.\n", 1365 mvi_dev->device_id, mvi_dev->dev_type); 1366 mvs_free_reg_set(mvi, mvi_dev); 1367 mvs_free_dev(mvi_dev); 1368 } else { 1369 mv_dprintk("found dev has gone.\n"); 1370 } 1371 dev->lldd_dev = NULL; 1372 1373 if (lock) 1374 spin_unlock_irqrestore(&mvi->lock, flags); 1375 } 1376 1377 1378 void mvs_dev_gone(struct domain_device *dev) 1379 { 1380 mvs_dev_gone_notify(dev, 1); 1381 } 1382 1383 static struct sas_task *mvs_alloc_task(void) 1384 { 1385 struct sas_task *task = kzalloc(sizeof(struct sas_task), GFP_KERNEL); 1386 1387 if (task) { 1388 INIT_LIST_HEAD(&task->list); 1389 spin_lock_init(&task->task_state_lock); 1390 task->task_state_flags = SAS_TASK_STATE_PENDING; 1391 init_timer(&task->timer); 1392 init_completion(&task->completion); 1393 } 1394 return task; 1395 } 1396 1397 static void mvs_free_task(struct sas_task *task) 1398 { 1399 if (task) { 1400 BUG_ON(!list_empty(&task->list)); 1401 kfree(task); 1402 } 1403 } 1404 1405 static void mvs_task_done(struct sas_task *task) 1406 { 1407 if (!del_timer(&task->timer)) 1408 return; 1409 complete(&task->completion); 1410 } 1411 1412 static void mvs_tmf_timedout(unsigned long data) 1413 { 1414 struct sas_task *task = (struct sas_task *)data; 1415 1416 task->task_state_flags |= SAS_TASK_STATE_ABORTED; 1417 complete(&task->completion); 1418 } 1419 1420 /* XXX */ 1421 #define MVS_TASK_TIMEOUT 20 1422 static int mvs_exec_internal_tmf_task(struct domain_device *dev, 1423 void *parameter, u32 para_len, struct mvs_tmf_task *tmf) 1424 { 1425 int res, retry; 1426 struct sas_task *task = NULL; 1427 1428 for (retry = 0; retry < 3; retry++) { 1429 task = mvs_alloc_task(); 1430 if (!task) 1431 return -ENOMEM; 1432 1433 task->dev = dev; 1434 task->task_proto = dev->tproto; 1435 1436 memcpy(&task->ssp_task, parameter, para_len); 1437 task->task_done = mvs_task_done; 1438 1439 task->timer.data = (unsigned long) task; 1440 task->timer.function = mvs_tmf_timedout; 1441 task->timer.expires = jiffies + MVS_TASK_TIMEOUT*HZ; 1442 add_timer(&task->timer); 1443 1444 res = mvs_task_exec(task, 1, GFP_KERNEL, NULL, 1, tmf); 1445 1446 if (res) { 1447 del_timer(&task->timer); 1448 mv_printk("executing internel task failed:%d\n", res); 1449 goto ex_err; 1450 } 1451 1452 wait_for_completion(&task->completion); 1453 res = -TMF_RESP_FUNC_FAILED; 1454 /* Even TMF timed out, return direct. */ 1455 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) { 1456 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) { 1457 mv_printk("TMF task[%x] timeout.\n", tmf->tmf); 1458 goto ex_err; 1459 } 1460 } 1461 1462 if (task->task_status.resp == SAS_TASK_COMPLETE && 1463 task->task_status.stat == SAM_GOOD) { 1464 res = TMF_RESP_FUNC_COMPLETE; 1465 break; 1466 } 1467 1468 if (task->task_status.resp == SAS_TASK_COMPLETE && 1469 task->task_status.stat == SAS_DATA_UNDERRUN) { 1470 /* no error, but return the number of bytes of 1471 * underrun */ 1472 res = task->task_status.residual; 1473 break; 1474 } 1475 1476 if (task->task_status.resp == SAS_TASK_COMPLETE && 1477 task->task_status.stat == SAS_DATA_OVERRUN) { 1478 mv_dprintk("blocked task error.\n"); 1479 res = -EMSGSIZE; 1480 break; 1481 } else { 1482 mv_dprintk(" task to dev %016llx response: 0x%x " 1483 "status 0x%x\n", 1484 SAS_ADDR(dev->sas_addr), 1485 task->task_status.resp, 1486 task->task_status.stat); 1487 mvs_free_task(task); 1488 task = NULL; 1489 1490 } 1491 } 1492 ex_err: 1493 BUG_ON(retry == 3 && task != NULL); 1494 if (task != NULL) 1495 mvs_free_task(task); 1496 return res; 1497 } 1498 1499 static int mvs_debug_issue_ssp_tmf(struct domain_device *dev, 1500 u8 *lun, struct mvs_tmf_task *tmf) 1501 { 1502 struct sas_ssp_task ssp_task; 1503 DECLARE_COMPLETION_ONSTACK(completion); 1504 if (!(dev->tproto & SAS_PROTOCOL_SSP)) 1505 return TMF_RESP_FUNC_ESUPP; 1506 1507 strncpy((u8 *)&ssp_task.LUN, lun, 8); 1508 1509 return mvs_exec_internal_tmf_task(dev, &ssp_task, 1510 sizeof(ssp_task), tmf); 1511 } 1512 1513 1514 /* Standard mandates link reset for ATA (type 0) 1515 and hard reset for SSP (type 1) , only for RECOVERY */ 1516 static int mvs_debug_I_T_nexus_reset(struct domain_device *dev) 1517 { 1518 int rc; 1519 struct sas_phy *phy = sas_find_local_phy(dev); 1520 int reset_type = (dev->dev_type == SATA_DEV || 1521 (dev->tproto & SAS_PROTOCOL_STP)) ? 0 : 1; 1522 rc = sas_phy_reset(phy, reset_type); 1523 msleep(2000); 1524 return rc; 1525 } 1526 1527 /* mandatory SAM-3 */ 1528 int mvs_lu_reset(struct domain_device *dev, u8 *lun) 1529 { 1530 unsigned long flags; 1531 int i, phyno[WIDE_PORT_MAX_PHY], num , rc = TMF_RESP_FUNC_FAILED; 1532 struct mvs_tmf_task tmf_task; 1533 struct mvs_device * mvi_dev = dev->lldd_dev; 1534 struct mvs_info *mvi = mvi_dev->mvi_info; 1535 1536 tmf_task.tmf = TMF_LU_RESET; 1537 mvi_dev->dev_status = MVS_DEV_EH; 1538 rc = mvs_debug_issue_ssp_tmf(dev, lun, &tmf_task); 1539 if (rc == TMF_RESP_FUNC_COMPLETE) { 1540 num = mvs_find_dev_phyno(dev, phyno); 1541 spin_lock_irqsave(&mvi->lock, flags); 1542 for (i = 0; i < num; i++) 1543 mvs_release_task(mvi, phyno[i], dev); 1544 spin_unlock_irqrestore(&mvi->lock, flags); 1545 } 1546 /* If failed, fall-through I_T_Nexus reset */ 1547 mv_printk("%s for device[%x]:rc= %d\n", __func__, 1548 mvi_dev->device_id, rc); 1549 return rc; 1550 } 1551 1552 int mvs_I_T_nexus_reset(struct domain_device *dev) 1553 { 1554 unsigned long flags; 1555 int i, phyno[WIDE_PORT_MAX_PHY], num , rc = TMF_RESP_FUNC_FAILED; 1556 struct mvs_device * mvi_dev = (struct mvs_device *)dev->lldd_dev; 1557 struct mvs_info *mvi = mvi_dev->mvi_info; 1558 1559 if (mvi_dev->dev_status != MVS_DEV_EH) 1560 return TMF_RESP_FUNC_COMPLETE; 1561 rc = mvs_debug_I_T_nexus_reset(dev); 1562 mv_printk("%s for device[%x]:rc= %d\n", 1563 __func__, mvi_dev->device_id, rc); 1564 1565 /* housekeeper */ 1566 num = mvs_find_dev_phyno(dev, phyno); 1567 spin_lock_irqsave(&mvi->lock, flags); 1568 for (i = 0; i < num; i++) 1569 mvs_release_task(mvi, phyno[i], dev); 1570 spin_unlock_irqrestore(&mvi->lock, flags); 1571 1572 return rc; 1573 } 1574 /* optional SAM-3 */ 1575 int mvs_query_task(struct sas_task *task) 1576 { 1577 u32 tag; 1578 struct scsi_lun lun; 1579 struct mvs_tmf_task tmf_task; 1580 int rc = TMF_RESP_FUNC_FAILED; 1581 1582 if (task->lldd_task && task->task_proto & SAS_PROTOCOL_SSP) { 1583 struct scsi_cmnd * cmnd = (struct scsi_cmnd *)task->uldd_task; 1584 struct domain_device *dev = task->dev; 1585 struct mvs_device *mvi_dev = (struct mvs_device *)dev->lldd_dev; 1586 struct mvs_info *mvi = mvi_dev->mvi_info; 1587 1588 int_to_scsilun(cmnd->device->lun, &lun); 1589 rc = mvs_find_tag(mvi, task, &tag); 1590 if (rc == 0) { 1591 rc = TMF_RESP_FUNC_FAILED; 1592 return rc; 1593 } 1594 1595 tmf_task.tmf = TMF_QUERY_TASK; 1596 tmf_task.tag_of_task_to_be_managed = cpu_to_le16(tag); 1597 1598 rc = mvs_debug_issue_ssp_tmf(dev, lun.scsi_lun, &tmf_task); 1599 switch (rc) { 1600 /* The task is still in Lun, release it then */ 1601 case TMF_RESP_FUNC_SUCC: 1602 /* The task is not in Lun or failed, reset the phy */ 1603 case TMF_RESP_FUNC_FAILED: 1604 case TMF_RESP_FUNC_COMPLETE: 1605 break; 1606 } 1607 } 1608 mv_printk("%s:rc= %d\n", __func__, rc); 1609 return rc; 1610 } 1611 1612 /* mandatory SAM-3, still need free task/slot info */ 1613 int mvs_abort_task(struct sas_task *task) 1614 { 1615 struct scsi_lun lun; 1616 struct mvs_tmf_task tmf_task; 1617 struct domain_device *dev = task->dev; 1618 struct mvs_device *mvi_dev = (struct mvs_device *)dev->lldd_dev; 1619 struct mvs_info *mvi = mvi_dev->mvi_info; 1620 int rc = TMF_RESP_FUNC_FAILED; 1621 unsigned long flags; 1622 u32 tag; 1623 1624 if (mvi->exp_req) 1625 mvi->exp_req--; 1626 spin_lock_irqsave(&task->task_state_lock, flags); 1627 if (task->task_state_flags & SAS_TASK_STATE_DONE) { 1628 spin_unlock_irqrestore(&task->task_state_lock, flags); 1629 rc = TMF_RESP_FUNC_COMPLETE; 1630 goto out; 1631 } 1632 spin_unlock_irqrestore(&task->task_state_lock, flags); 1633 if (task->lldd_task && task->task_proto & SAS_PROTOCOL_SSP) { 1634 struct scsi_cmnd * cmnd = (struct scsi_cmnd *)task->uldd_task; 1635 1636 int_to_scsilun(cmnd->device->lun, &lun); 1637 rc = mvs_find_tag(mvi, task, &tag); 1638 if (rc == 0) { 1639 mv_printk("No such tag in %s\n", __func__); 1640 rc = TMF_RESP_FUNC_FAILED; 1641 return rc; 1642 } 1643 1644 tmf_task.tmf = TMF_ABORT_TASK; 1645 tmf_task.tag_of_task_to_be_managed = cpu_to_le16(tag); 1646 1647 rc = mvs_debug_issue_ssp_tmf(dev, lun.scsi_lun, &tmf_task); 1648 1649 /* if successful, clear the task and callback forwards.*/ 1650 if (rc == TMF_RESP_FUNC_COMPLETE) { 1651 u32 slot_no; 1652 struct mvs_slot_info *slot; 1653 1654 if (task->lldd_task) { 1655 slot = task->lldd_task; 1656 slot_no = (u32) (slot - mvi->slot_info); 1657 mvs_slot_complete(mvi, slot_no, 1); 1658 } 1659 } 1660 } else if (task->task_proto & SAS_PROTOCOL_SATA || 1661 task->task_proto & SAS_PROTOCOL_STP) { 1662 /* to do free register_set */ 1663 } else { 1664 /* SMP */ 1665 1666 } 1667 out: 1668 if (rc != TMF_RESP_FUNC_COMPLETE) 1669 mv_printk("%s:rc= %d\n", __func__, rc); 1670 return rc; 1671 } 1672 1673 int mvs_abort_task_set(struct domain_device *dev, u8 *lun) 1674 { 1675 int rc = TMF_RESP_FUNC_FAILED; 1676 struct mvs_tmf_task tmf_task; 1677 1678 tmf_task.tmf = TMF_ABORT_TASK_SET; 1679 rc = mvs_debug_issue_ssp_tmf(dev, lun, &tmf_task); 1680 1681 return rc; 1682 } 1683 1684 int mvs_clear_aca(struct domain_device *dev, u8 *lun) 1685 { 1686 int rc = TMF_RESP_FUNC_FAILED; 1687 struct mvs_tmf_task tmf_task; 1688 1689 tmf_task.tmf = TMF_CLEAR_ACA; 1690 rc = mvs_debug_issue_ssp_tmf(dev, lun, &tmf_task); 1691 1692 return rc; 1693 } 1694 1695 int mvs_clear_task_set(struct domain_device *dev, u8 *lun) 1696 { 1697 int rc = TMF_RESP_FUNC_FAILED; 1698 struct mvs_tmf_task tmf_task; 1699 1700 tmf_task.tmf = TMF_CLEAR_TASK_SET; 1701 rc = mvs_debug_issue_ssp_tmf(dev, lun, &tmf_task); 1702 1703 return rc; 1704 } 1705 1706 static int mvs_sata_done(struct mvs_info *mvi, struct sas_task *task, 1707 u32 slot_idx, int err) 1708 { 1709 struct mvs_device *mvi_dev = task->dev->lldd_dev; 1710 struct task_status_struct *tstat = &task->task_status; 1711 struct ata_task_resp *resp = (struct ata_task_resp *)tstat->buf; 1712 int stat = SAM_GOOD; 1713 1714 1715 resp->frame_len = sizeof(struct dev_to_host_fis); 1716 memcpy(&resp->ending_fis[0], 1717 SATA_RECEIVED_D2H_FIS(mvi_dev->taskfileset), 1718 sizeof(struct dev_to_host_fis)); 1719 tstat->buf_valid_size = sizeof(*resp); 1720 if (unlikely(err)) 1721 stat = SAS_PROTO_RESPONSE; 1722 return stat; 1723 } 1724 1725 static int mvs_slot_err(struct mvs_info *mvi, struct sas_task *task, 1726 u32 slot_idx) 1727 { 1728 struct mvs_slot_info *slot = &mvi->slot_info[slot_idx]; 1729 int stat; 1730 u32 err_dw0 = le32_to_cpu(*(u32 *) (slot->response)); 1731 u32 tfs = 0; 1732 enum mvs_port_type type = PORT_TYPE_SAS; 1733 1734 if (err_dw0 & CMD_ISS_STPD) 1735 MVS_CHIP_DISP->issue_stop(mvi, type, tfs); 1736 1737 MVS_CHIP_DISP->command_active(mvi, slot_idx); 1738 1739 stat = SAM_CHECK_COND; 1740 switch (task->task_proto) { 1741 case SAS_PROTOCOL_SSP: 1742 stat = SAS_ABORTED_TASK; 1743 break; 1744 case SAS_PROTOCOL_SMP: 1745 stat = SAM_CHECK_COND; 1746 break; 1747 1748 case SAS_PROTOCOL_SATA: 1749 case SAS_PROTOCOL_STP: 1750 case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP: 1751 { 1752 if (err_dw0 == 0x80400002) 1753 mv_printk("find reserved error, why?\n"); 1754 1755 task->ata_task.use_ncq = 0; 1756 stat = SAS_PROTO_RESPONSE; 1757 mvs_sata_done(mvi, task, slot_idx, 1); 1758 1759 } 1760 break; 1761 default: 1762 break; 1763 } 1764 1765 return stat; 1766 } 1767 1768 int mvs_slot_complete(struct mvs_info *mvi, u32 rx_desc, u32 flags) 1769 { 1770 u32 slot_idx = rx_desc & RXQ_SLOT_MASK; 1771 struct mvs_slot_info *slot = &mvi->slot_info[slot_idx]; 1772 struct sas_task *task = slot->task; 1773 struct mvs_device *mvi_dev = NULL; 1774 struct task_status_struct *tstat; 1775 1776 bool aborted; 1777 void *to; 1778 enum exec_status sts; 1779 1780 if (mvi->exp_req) 1781 mvi->exp_req--; 1782 if (unlikely(!task || !task->lldd_task)) 1783 return -1; 1784 1785 tstat = &task->task_status; 1786 mvi_dev = task->dev->lldd_dev; 1787 1788 mvs_hba_cq_dump(mvi); 1789 1790 spin_lock(&task->task_state_lock); 1791 task->task_state_flags &= 1792 ~(SAS_TASK_STATE_PENDING | SAS_TASK_AT_INITIATOR); 1793 task->task_state_flags |= SAS_TASK_STATE_DONE; 1794 /* race condition*/ 1795 aborted = task->task_state_flags & SAS_TASK_STATE_ABORTED; 1796 spin_unlock(&task->task_state_lock); 1797 1798 memset(tstat, 0, sizeof(*tstat)); 1799 tstat->resp = SAS_TASK_COMPLETE; 1800 1801 if (unlikely(aborted)) { 1802 tstat->stat = SAS_ABORTED_TASK; 1803 if (mvi_dev) 1804 mvi_dev->runing_req--; 1805 if (sas_protocol_ata(task->task_proto)) 1806 mvs_free_reg_set(mvi, mvi_dev); 1807 1808 mvs_slot_task_free(mvi, task, slot, slot_idx); 1809 return -1; 1810 } 1811 1812 if (unlikely(!mvi_dev || !slot->port->port_attached || flags)) { 1813 mv_dprintk("port has not device.\n"); 1814 tstat->stat = SAS_PHY_DOWN; 1815 goto out; 1816 } 1817 1818 /* 1819 if (unlikely((rx_desc & RXQ_ERR) || (*(u64 *) slot->response))) { 1820 mv_dprintk("Find device[%016llx] RXQ_ERR %X, 1821 err info:%016llx\n", 1822 SAS_ADDR(task->dev->sas_addr), 1823 rx_desc, (u64)(*(u64 *) slot->response)); 1824 } 1825 */ 1826 1827 /* error info record present */ 1828 if (unlikely((rx_desc & RXQ_ERR) && (*(u64 *) slot->response))) { 1829 tstat->stat = mvs_slot_err(mvi, task, slot_idx); 1830 goto out; 1831 } 1832 1833 switch (task->task_proto) { 1834 case SAS_PROTOCOL_SSP: 1835 /* hw says status == 0, datapres == 0 */ 1836 if (rx_desc & RXQ_GOOD) { 1837 tstat->stat = SAM_GOOD; 1838 tstat->resp = SAS_TASK_COMPLETE; 1839 } 1840 /* response frame present */ 1841 else if (rx_desc & RXQ_RSP) { 1842 struct ssp_response_iu *iu = slot->response + 1843 sizeof(struct mvs_err_info); 1844 sas_ssp_task_response(mvi->dev, task, iu); 1845 } else 1846 tstat->stat = SAM_CHECK_COND; 1847 break; 1848 1849 case SAS_PROTOCOL_SMP: { 1850 struct scatterlist *sg_resp = &task->smp_task.smp_resp; 1851 tstat->stat = SAM_GOOD; 1852 to = kmap_atomic(sg_page(sg_resp), KM_IRQ0); 1853 memcpy(to + sg_resp->offset, 1854 slot->response + sizeof(struct mvs_err_info), 1855 sg_dma_len(sg_resp)); 1856 kunmap_atomic(to, KM_IRQ0); 1857 break; 1858 } 1859 1860 case SAS_PROTOCOL_SATA: 1861 case SAS_PROTOCOL_STP: 1862 case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP: { 1863 tstat->stat = mvs_sata_done(mvi, task, slot_idx, 0); 1864 break; 1865 } 1866 1867 default: 1868 tstat->stat = SAM_CHECK_COND; 1869 break; 1870 } 1871 1872 out: 1873 if (mvi_dev) { 1874 mvi_dev->runing_req--; 1875 if (sas_protocol_ata(task->task_proto)) 1876 mvs_free_reg_set(mvi, mvi_dev); 1877 } 1878 mvs_slot_task_free(mvi, task, slot, slot_idx); 1879 sts = tstat->stat; 1880 1881 spin_unlock(&mvi->lock); 1882 if (task->task_done) 1883 task->task_done(task); 1884 else 1885 mv_dprintk("why has not task_done.\n"); 1886 spin_lock(&mvi->lock); 1887 1888 return sts; 1889 } 1890 1891 void mvs_release_task(struct mvs_info *mvi, 1892 int phy_no, struct domain_device *dev) 1893 { 1894 int i = 0; u32 slot_idx; 1895 struct mvs_phy *phy; 1896 struct mvs_port *port; 1897 struct mvs_slot_info *slot, *slot2; 1898 1899 phy = &mvi->phy[phy_no]; 1900 port = phy->port; 1901 if (!port) 1902 return; 1903 1904 list_for_each_entry_safe(slot, slot2, &port->list, entry) { 1905 struct sas_task *task; 1906 slot_idx = (u32) (slot - mvi->slot_info); 1907 task = slot->task; 1908 1909 if (dev && task->dev != dev) 1910 continue; 1911 1912 mv_printk("Release slot [%x] tag[%x], task [%p]:\n", 1913 slot_idx, slot->slot_tag, task); 1914 1915 if (task->task_proto & SAS_PROTOCOL_SSP) { 1916 mv_printk("attached with SSP task CDB["); 1917 for (i = 0; i < 16; i++) 1918 mv_printk(" %02x", task->ssp_task.cdb[i]); 1919 mv_printk(" ]\n"); 1920 } 1921 1922 mvs_slot_complete(mvi, slot_idx, 1); 1923 } 1924 } 1925 1926 static void mvs_phy_disconnected(struct mvs_phy *phy) 1927 { 1928 phy->phy_attached = 0; 1929 phy->att_dev_info = 0; 1930 phy->att_dev_sas_addr = 0; 1931 } 1932 1933 static void mvs_work_queue(struct work_struct *work) 1934 { 1935 struct delayed_work *dw = container_of(work, struct delayed_work, work); 1936 struct mvs_wq *mwq = container_of(dw, struct mvs_wq, work_q); 1937 struct mvs_info *mvi = mwq->mvi; 1938 unsigned long flags; 1939 1940 spin_lock_irqsave(&mvi->lock, flags); 1941 if (mwq->handler & PHY_PLUG_EVENT) { 1942 u32 phy_no = (unsigned long) mwq->data; 1943 struct sas_ha_struct *sas_ha = mvi->sas; 1944 struct mvs_phy *phy = &mvi->phy[phy_no]; 1945 struct asd_sas_phy *sas_phy = &phy->sas_phy; 1946 1947 if (phy->phy_event & PHY_PLUG_OUT) { 1948 u32 tmp; 1949 struct sas_identify_frame *id; 1950 id = (struct sas_identify_frame *)phy->frame_rcvd; 1951 tmp = MVS_CHIP_DISP->read_phy_ctl(mvi, phy_no); 1952 phy->phy_event &= ~PHY_PLUG_OUT; 1953 if (!(tmp & PHY_READY_MASK)) { 1954 sas_phy_disconnected(sas_phy); 1955 mvs_phy_disconnected(phy); 1956 sas_ha->notify_phy_event(sas_phy, 1957 PHYE_LOSS_OF_SIGNAL); 1958 mv_dprintk("phy%d Removed Device\n", phy_no); 1959 } else { 1960 MVS_CHIP_DISP->detect_porttype(mvi, phy_no); 1961 mvs_update_phyinfo(mvi, phy_no, 1); 1962 mvs_bytes_dmaed(mvi, phy_no); 1963 mvs_port_notify_formed(sas_phy, 0); 1964 mv_dprintk("phy%d Attached Device\n", phy_no); 1965 } 1966 } 1967 } 1968 list_del(&mwq->entry); 1969 spin_unlock_irqrestore(&mvi->lock, flags); 1970 kfree(mwq); 1971 } 1972 1973 static int mvs_handle_event(struct mvs_info *mvi, void *data, int handler) 1974 { 1975 struct mvs_wq *mwq; 1976 int ret = 0; 1977 1978 mwq = kmalloc(sizeof(struct mvs_wq), GFP_ATOMIC); 1979 if (mwq) { 1980 mwq->mvi = mvi; 1981 mwq->data = data; 1982 mwq->handler = handler; 1983 MV_INIT_DELAYED_WORK(&mwq->work_q, mvs_work_queue, mwq); 1984 list_add_tail(&mwq->entry, &mvi->wq_list); 1985 schedule_delayed_work(&mwq->work_q, HZ * 2); 1986 } else 1987 ret = -ENOMEM; 1988 1989 return ret; 1990 } 1991 1992 static void mvs_sig_time_out(unsigned long tphy) 1993 { 1994 struct mvs_phy *phy = (struct mvs_phy *)tphy; 1995 struct mvs_info *mvi = phy->mvi; 1996 u8 phy_no; 1997 1998 for (phy_no = 0; phy_no < mvi->chip->n_phy; phy_no++) { 1999 if (&mvi->phy[phy_no] == phy) { 2000 mv_dprintk("Get signature time out, reset phy %d\n", 2001 phy_no+mvi->id*mvi->chip->n_phy); 2002 MVS_CHIP_DISP->phy_reset(mvi, phy_no, 1); 2003 } 2004 } 2005 } 2006 2007 static void mvs_sig_remove_timer(struct mvs_phy *phy) 2008 { 2009 if (phy->timer.function) 2010 del_timer(&phy->timer); 2011 phy->timer.function = NULL; 2012 } 2013 2014 void mvs_int_port(struct mvs_info *mvi, int phy_no, u32 events) 2015 { 2016 u32 tmp; 2017 struct sas_ha_struct *sas_ha = mvi->sas; 2018 struct mvs_phy *phy = &mvi->phy[phy_no]; 2019 struct asd_sas_phy *sas_phy = &phy->sas_phy; 2020 2021 phy->irq_status = MVS_CHIP_DISP->read_port_irq_stat(mvi, phy_no); 2022 mv_dprintk("port %d ctrl sts=0x%X.\n", phy_no+mvi->id*mvi->chip->n_phy, 2023 MVS_CHIP_DISP->read_phy_ctl(mvi, phy_no)); 2024 mv_dprintk("Port %d irq sts = 0x%X\n", phy_no+mvi->id*mvi->chip->n_phy, 2025 phy->irq_status); 2026 2027 /* 2028 * events is port event now , 2029 * we need check the interrupt status which belongs to per port. 2030 */ 2031 2032 if (phy->irq_status & PHYEV_DCDR_ERR) 2033 mv_dprintk("port %d STP decoding error.\n", 2034 phy_no+mvi->id*mvi->chip->n_phy); 2035 2036 if (phy->irq_status & PHYEV_POOF) { 2037 if (!(phy->phy_event & PHY_PLUG_OUT)) { 2038 int dev_sata = phy->phy_type & PORT_TYPE_SATA; 2039 int ready; 2040 mvs_release_task(mvi, phy_no, NULL); 2041 phy->phy_event |= PHY_PLUG_OUT; 2042 mvs_handle_event(mvi, 2043 (void *)(unsigned long)phy_no, 2044 PHY_PLUG_EVENT); 2045 ready = mvs_is_phy_ready(mvi, phy_no); 2046 if (!ready) 2047 mv_dprintk("phy%d Unplug Notice\n", 2048 phy_no + 2049 mvi->id * mvi->chip->n_phy); 2050 if (ready || dev_sata) { 2051 if (MVS_CHIP_DISP->stp_reset) 2052 MVS_CHIP_DISP->stp_reset(mvi, 2053 phy_no); 2054 else 2055 MVS_CHIP_DISP->phy_reset(mvi, 2056 phy_no, 0); 2057 return; 2058 } 2059 } 2060 } 2061 2062 if (phy->irq_status & PHYEV_COMWAKE) { 2063 tmp = MVS_CHIP_DISP->read_port_irq_mask(mvi, phy_no); 2064 MVS_CHIP_DISP->write_port_irq_mask(mvi, phy_no, 2065 tmp | PHYEV_SIG_FIS); 2066 if (phy->timer.function == NULL) { 2067 phy->timer.data = (unsigned long)phy; 2068 phy->timer.function = mvs_sig_time_out; 2069 phy->timer.expires = jiffies + 10*HZ; 2070 add_timer(&phy->timer); 2071 } 2072 } 2073 if (phy->irq_status & (PHYEV_SIG_FIS | PHYEV_ID_DONE)) { 2074 phy->phy_status = mvs_is_phy_ready(mvi, phy_no); 2075 mvs_sig_remove_timer(phy); 2076 mv_dprintk("notify plug in on phy[%d]\n", phy_no); 2077 if (phy->phy_status) { 2078 mdelay(10); 2079 MVS_CHIP_DISP->detect_porttype(mvi, phy_no); 2080 if (phy->phy_type & PORT_TYPE_SATA) { 2081 tmp = MVS_CHIP_DISP->read_port_irq_mask( 2082 mvi, phy_no); 2083 tmp &= ~PHYEV_SIG_FIS; 2084 MVS_CHIP_DISP->write_port_irq_mask(mvi, 2085 phy_no, tmp); 2086 } 2087 mvs_update_phyinfo(mvi, phy_no, 0); 2088 mvs_bytes_dmaed(mvi, phy_no); 2089 /* whether driver is going to handle hot plug */ 2090 if (phy->phy_event & PHY_PLUG_OUT) { 2091 mvs_port_notify_formed(sas_phy, 0); 2092 phy->phy_event &= ~PHY_PLUG_OUT; 2093 } 2094 } else { 2095 mv_dprintk("plugin interrupt but phy%d is gone\n", 2096 phy_no + mvi->id*mvi->chip->n_phy); 2097 } 2098 } else if (phy->irq_status & PHYEV_BROAD_CH) { 2099 mv_dprintk("port %d broadcast change.\n", 2100 phy_no + mvi->id*mvi->chip->n_phy); 2101 /* exception for Samsung disk drive*/ 2102 mdelay(1000); 2103 sas_ha->notify_port_event(sas_phy, PORTE_BROADCAST_RCVD); 2104 } 2105 MVS_CHIP_DISP->write_port_irq_stat(mvi, phy_no, phy->irq_status); 2106 } 2107 2108 int mvs_int_rx(struct mvs_info *mvi, bool self_clear) 2109 { 2110 u32 rx_prod_idx, rx_desc; 2111 bool attn = false; 2112 2113 /* the first dword in the RX ring is special: it contains 2114 * a mirror of the hardware's RX producer index, so that 2115 * we don't have to stall the CPU reading that register. 2116 * The actual RX ring is offset by one dword, due to this. 2117 */ 2118 rx_prod_idx = mvi->rx_cons; 2119 mvi->rx_cons = le32_to_cpu(mvi->rx[0]); 2120 if (mvi->rx_cons == 0xfff) /* h/w hasn't touched RX ring yet */ 2121 return 0; 2122 2123 /* The CMPL_Q may come late, read from register and try again 2124 * note: if coalescing is enabled, 2125 * it will need to read from register every time for sure 2126 */ 2127 if (unlikely(mvi->rx_cons == rx_prod_idx)) 2128 mvi->rx_cons = MVS_CHIP_DISP->rx_update(mvi) & RX_RING_SZ_MASK; 2129 2130 if (mvi->rx_cons == rx_prod_idx) 2131 return 0; 2132 2133 while (mvi->rx_cons != rx_prod_idx) { 2134 /* increment our internal RX consumer pointer */ 2135 rx_prod_idx = (rx_prod_idx + 1) & (MVS_RX_RING_SZ - 1); 2136 rx_desc = le32_to_cpu(mvi->rx[rx_prod_idx + 1]); 2137 2138 if (likely(rx_desc & RXQ_DONE)) 2139 mvs_slot_complete(mvi, rx_desc, 0); 2140 if (rx_desc & RXQ_ATTN) { 2141 attn = true; 2142 } else if (rx_desc & RXQ_ERR) { 2143 if (!(rx_desc & RXQ_DONE)) 2144 mvs_slot_complete(mvi, rx_desc, 0); 2145 } else if (rx_desc & RXQ_SLOT_RESET) { 2146 mvs_slot_free(mvi, rx_desc); 2147 } 2148 } 2149 2150 if (attn && self_clear) 2151 MVS_CHIP_DISP->int_full(mvi); 2152 return 0; 2153 } 2154 2155