xref: /openbmc/linux/drivers/scsi/mvsas/mv_sas.c (revision a09d2831)
1 /*
2  * Marvell 88SE64xx/88SE94xx main function
3  *
4  * Copyright 2007 Red Hat, Inc.
5  * Copyright 2008 Marvell. <kewei@marvell.com>
6  *
7  * This file is licensed under GPLv2.
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License as
11  * published by the Free Software Foundation; version 2 of the
12  * License.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
22  * USA
23 */
24 
25 #include "mv_sas.h"
26 
27 static int mvs_find_tag(struct mvs_info *mvi, struct sas_task *task, u32 *tag)
28 {
29 	if (task->lldd_task) {
30 		struct mvs_slot_info *slot;
31 		slot = task->lldd_task;
32 		*tag = slot->slot_tag;
33 		return 1;
34 	}
35 	return 0;
36 }
37 
38 void mvs_tag_clear(struct mvs_info *mvi, u32 tag)
39 {
40 	void *bitmap = &mvi->tags;
41 	clear_bit(tag, bitmap);
42 }
43 
44 void mvs_tag_free(struct mvs_info *mvi, u32 tag)
45 {
46 	mvs_tag_clear(mvi, tag);
47 }
48 
49 void mvs_tag_set(struct mvs_info *mvi, unsigned int tag)
50 {
51 	void *bitmap = &mvi->tags;
52 	set_bit(tag, bitmap);
53 }
54 
55 inline int mvs_tag_alloc(struct mvs_info *mvi, u32 *tag_out)
56 {
57 	unsigned int index, tag;
58 	void *bitmap = &mvi->tags;
59 
60 	index = find_first_zero_bit(bitmap, mvi->tags_num);
61 	tag = index;
62 	if (tag >= mvi->tags_num)
63 		return -SAS_QUEUE_FULL;
64 	mvs_tag_set(mvi, tag);
65 	*tag_out = tag;
66 	return 0;
67 }
68 
69 void mvs_tag_init(struct mvs_info *mvi)
70 {
71 	int i;
72 	for (i = 0; i < mvi->tags_num; ++i)
73 		mvs_tag_clear(mvi, i);
74 }
75 
76 void mvs_hexdump(u32 size, u8 *data, u32 baseaddr)
77 {
78 	u32 i;
79 	u32 run;
80 	u32 offset;
81 
82 	offset = 0;
83 	while (size) {
84 		printk(KERN_DEBUG"%08X : ", baseaddr + offset);
85 		if (size >= 16)
86 			run = 16;
87 		else
88 			run = size;
89 		size -= run;
90 		for (i = 0; i < 16; i++) {
91 			if (i < run)
92 				printk(KERN_DEBUG"%02X ", (u32)data[i]);
93 			else
94 				printk(KERN_DEBUG"   ");
95 		}
96 		printk(KERN_DEBUG": ");
97 		for (i = 0; i < run; i++)
98 			printk(KERN_DEBUG"%c",
99 				isalnum(data[i]) ? data[i] : '.');
100 		printk(KERN_DEBUG"\n");
101 		data = &data[16];
102 		offset += run;
103 	}
104 	printk(KERN_DEBUG"\n");
105 }
106 
107 #if (_MV_DUMP > 1)
108 static void mvs_hba_sb_dump(struct mvs_info *mvi, u32 tag,
109 				   enum sas_protocol proto)
110 {
111 	u32 offset;
112 	struct mvs_slot_info *slot = &mvi->slot_info[tag];
113 
114 	offset = slot->cmd_size + MVS_OAF_SZ +
115 	    MVS_CHIP_DISP->prd_size() * slot->n_elem;
116 	dev_printk(KERN_DEBUG, mvi->dev, "+---->Status buffer[%d] :\n",
117 			tag);
118 	mvs_hexdump(32, (u8 *) slot->response,
119 		    (u32) slot->buf_dma + offset);
120 }
121 #endif
122 
123 static void mvs_hba_memory_dump(struct mvs_info *mvi, u32 tag,
124 				enum sas_protocol proto)
125 {
126 #if (_MV_DUMP > 1)
127 	u32 sz, w_ptr;
128 	u64 addr;
129 	struct mvs_slot_info *slot = &mvi->slot_info[tag];
130 
131 	/*Delivery Queue */
132 	sz = MVS_CHIP_SLOT_SZ;
133 	w_ptr = slot->tx;
134 	addr = mvi->tx_dma;
135 	dev_printk(KERN_DEBUG, mvi->dev,
136 		"Delivery Queue Size=%04d , WRT_PTR=%04X\n", sz, w_ptr);
137 	dev_printk(KERN_DEBUG, mvi->dev,
138 		"Delivery Queue Base Address=0x%llX (PA)"
139 		"(tx_dma=0x%llX), Entry=%04d\n",
140 		addr, (unsigned long long)mvi->tx_dma, w_ptr);
141 	mvs_hexdump(sizeof(u32), (u8 *)(&mvi->tx[mvi->tx_prod]),
142 			(u32) mvi->tx_dma + sizeof(u32) * w_ptr);
143 	/*Command List */
144 	addr = mvi->slot_dma;
145 	dev_printk(KERN_DEBUG, mvi->dev,
146 		"Command List Base Address=0x%llX (PA)"
147 		"(slot_dma=0x%llX), Header=%03d\n",
148 		addr, (unsigned long long)slot->buf_dma, tag);
149 	dev_printk(KERN_DEBUG, mvi->dev, "Command Header[%03d]:\n", tag);
150 	/*mvs_cmd_hdr */
151 	mvs_hexdump(sizeof(struct mvs_cmd_hdr), (u8 *)(&mvi->slot[tag]),
152 		(u32) mvi->slot_dma + tag * sizeof(struct mvs_cmd_hdr));
153 	/*1.command table area */
154 	dev_printk(KERN_DEBUG, mvi->dev, "+---->Command Table :\n");
155 	mvs_hexdump(slot->cmd_size, (u8 *) slot->buf, (u32) slot->buf_dma);
156 	/*2.open address frame area */
157 	dev_printk(KERN_DEBUG, mvi->dev, "+---->Open Address Frame :\n");
158 	mvs_hexdump(MVS_OAF_SZ, (u8 *) slot->buf + slot->cmd_size,
159 				(u32) slot->buf_dma + slot->cmd_size);
160 	/*3.status buffer */
161 	mvs_hba_sb_dump(mvi, tag, proto);
162 	/*4.PRD table */
163 	dev_printk(KERN_DEBUG, mvi->dev, "+---->PRD table :\n");
164 	mvs_hexdump(MVS_CHIP_DISP->prd_size() * slot->n_elem,
165 		(u8 *) slot->buf + slot->cmd_size + MVS_OAF_SZ,
166 		(u32) slot->buf_dma + slot->cmd_size + MVS_OAF_SZ);
167 #endif
168 }
169 
170 static void mvs_hba_cq_dump(struct mvs_info *mvi)
171 {
172 #if (_MV_DUMP > 2)
173 	u64 addr;
174 	void __iomem *regs = mvi->regs;
175 	u32 entry = mvi->rx_cons + 1;
176 	u32 rx_desc = le32_to_cpu(mvi->rx[entry]);
177 
178 	/*Completion Queue */
179 	addr = mr32(RX_HI) << 16 << 16 | mr32(RX_LO);
180 	dev_printk(KERN_DEBUG, mvi->dev, "Completion Task = 0x%p\n",
181 		   mvi->slot_info[rx_desc & RXQ_SLOT_MASK].task);
182 	dev_printk(KERN_DEBUG, mvi->dev,
183 		"Completion List Base Address=0x%llX (PA), "
184 		"CQ_Entry=%04d, CQ_WP=0x%08X\n",
185 		addr, entry - 1, mvi->rx[0]);
186 	mvs_hexdump(sizeof(u32), (u8 *)(&rx_desc),
187 		    mvi->rx_dma + sizeof(u32) * entry);
188 #endif
189 }
190 
191 void mvs_get_sas_addr(void *buf, u32 buflen)
192 {
193 	/*memcpy(buf, "\x50\x05\x04\x30\x11\xab\x64\x40", 8);*/
194 }
195 
196 struct mvs_info *mvs_find_dev_mvi(struct domain_device *dev)
197 {
198 	unsigned long i = 0, j = 0, hi = 0;
199 	struct sas_ha_struct *sha = dev->port->ha;
200 	struct mvs_info *mvi = NULL;
201 	struct asd_sas_phy *phy;
202 
203 	while (sha->sas_port[i]) {
204 		if (sha->sas_port[i] == dev->port) {
205 			phy =  container_of(sha->sas_port[i]->phy_list.next,
206 				struct asd_sas_phy, port_phy_el);
207 			j = 0;
208 			while (sha->sas_phy[j]) {
209 				if (sha->sas_phy[j] == phy)
210 					break;
211 				j++;
212 			}
213 			break;
214 		}
215 		i++;
216 	}
217 	hi = j/((struct mvs_prv_info *)sha->lldd_ha)->n_phy;
218 	mvi = ((struct mvs_prv_info *)sha->lldd_ha)->mvi[hi];
219 
220 	return mvi;
221 
222 }
223 
224 /* FIXME */
225 int mvs_find_dev_phyno(struct domain_device *dev, int *phyno)
226 {
227 	unsigned long i = 0, j = 0, n = 0, num = 0;
228 	struct mvs_device *mvi_dev = (struct mvs_device *)dev->lldd_dev;
229 	struct mvs_info *mvi = mvi_dev->mvi_info;
230 	struct sas_ha_struct *sha = dev->port->ha;
231 
232 	while (sha->sas_port[i]) {
233 		if (sha->sas_port[i] == dev->port) {
234 			struct asd_sas_phy *phy;
235 			list_for_each_entry(phy,
236 				&sha->sas_port[i]->phy_list, port_phy_el) {
237 				j = 0;
238 				while (sha->sas_phy[j]) {
239 					if (sha->sas_phy[j] == phy)
240 						break;
241 					j++;
242 				}
243 				phyno[n] = (j >= mvi->chip->n_phy) ?
244 					(j - mvi->chip->n_phy) : j;
245 				num++;
246 				n++;
247 			}
248 			break;
249 		}
250 		i++;
251 	}
252 	return num;
253 }
254 
255 static inline void mvs_free_reg_set(struct mvs_info *mvi,
256 				struct mvs_device *dev)
257 {
258 	if (!dev) {
259 		mv_printk("device has been free.\n");
260 		return;
261 	}
262 	if (dev->runing_req != 0)
263 		return;
264 	if (dev->taskfileset == MVS_ID_NOT_MAPPED)
265 		return;
266 	MVS_CHIP_DISP->free_reg_set(mvi, &dev->taskfileset);
267 }
268 
269 static inline u8 mvs_assign_reg_set(struct mvs_info *mvi,
270 				struct mvs_device *dev)
271 {
272 	if (dev->taskfileset != MVS_ID_NOT_MAPPED)
273 		return 0;
274 	return MVS_CHIP_DISP->assign_reg_set(mvi, &dev->taskfileset);
275 }
276 
277 void mvs_phys_reset(struct mvs_info *mvi, u32 phy_mask, int hard)
278 {
279 	u32 no;
280 	for_each_phy(phy_mask, phy_mask, no) {
281 		if (!(phy_mask & 1))
282 			continue;
283 		MVS_CHIP_DISP->phy_reset(mvi, no, hard);
284 	}
285 }
286 
287 /* FIXME: locking? */
288 int mvs_phy_control(struct asd_sas_phy *sas_phy, enum phy_func func,
289 			void *funcdata)
290 {
291 	int rc = 0, phy_id = sas_phy->id;
292 	u32 tmp, i = 0, hi;
293 	struct sas_ha_struct *sha = sas_phy->ha;
294 	struct mvs_info *mvi = NULL;
295 
296 	while (sha->sas_phy[i]) {
297 		if (sha->sas_phy[i] == sas_phy)
298 			break;
299 		i++;
300 	}
301 	hi = i/((struct mvs_prv_info *)sha->lldd_ha)->n_phy;
302 	mvi = ((struct mvs_prv_info *)sha->lldd_ha)->mvi[hi];
303 
304 	switch (func) {
305 	case PHY_FUNC_SET_LINK_RATE:
306 		MVS_CHIP_DISP->phy_set_link_rate(mvi, phy_id, funcdata);
307 		break;
308 
309 	case PHY_FUNC_HARD_RESET:
310 		tmp = MVS_CHIP_DISP->read_phy_ctl(mvi, phy_id);
311 		if (tmp & PHY_RST_HARD)
312 			break;
313 		MVS_CHIP_DISP->phy_reset(mvi, phy_id, 1);
314 		break;
315 
316 	case PHY_FUNC_LINK_RESET:
317 		MVS_CHIP_DISP->phy_enable(mvi, phy_id);
318 		MVS_CHIP_DISP->phy_reset(mvi, phy_id, 0);
319 		break;
320 
321 	case PHY_FUNC_DISABLE:
322 		MVS_CHIP_DISP->phy_disable(mvi, phy_id);
323 		break;
324 	case PHY_FUNC_RELEASE_SPINUP_HOLD:
325 	default:
326 		rc = -EOPNOTSUPP;
327 	}
328 	msleep(200);
329 	return rc;
330 }
331 
332 void __devinit mvs_set_sas_addr(struct mvs_info *mvi, int port_id,
333 				u32 off_lo, u32 off_hi, u64 sas_addr)
334 {
335 	u32 lo = (u32)sas_addr;
336 	u32 hi = (u32)(sas_addr>>32);
337 
338 	MVS_CHIP_DISP->write_port_cfg_addr(mvi, port_id, off_lo);
339 	MVS_CHIP_DISP->write_port_cfg_data(mvi, port_id, lo);
340 	MVS_CHIP_DISP->write_port_cfg_addr(mvi, port_id, off_hi);
341 	MVS_CHIP_DISP->write_port_cfg_data(mvi, port_id, hi);
342 }
343 
344 static void mvs_bytes_dmaed(struct mvs_info *mvi, int i)
345 {
346 	struct mvs_phy *phy = &mvi->phy[i];
347 	struct asd_sas_phy *sas_phy = &phy->sas_phy;
348 	struct sas_ha_struct *sas_ha;
349 	if (!phy->phy_attached)
350 		return;
351 
352 	if (!(phy->att_dev_info & PORT_DEV_TRGT_MASK)
353 		&& phy->phy_type & PORT_TYPE_SAS) {
354 		return;
355 	}
356 
357 	sas_ha = mvi->sas;
358 	sas_ha->notify_phy_event(sas_phy, PHYE_OOB_DONE);
359 
360 	if (sas_phy->phy) {
361 		struct sas_phy *sphy = sas_phy->phy;
362 
363 		sphy->negotiated_linkrate = sas_phy->linkrate;
364 		sphy->minimum_linkrate = phy->minimum_linkrate;
365 		sphy->minimum_linkrate_hw = SAS_LINK_RATE_1_5_GBPS;
366 		sphy->maximum_linkrate = phy->maximum_linkrate;
367 		sphy->maximum_linkrate_hw = MVS_CHIP_DISP->phy_max_link_rate();
368 	}
369 
370 	if (phy->phy_type & PORT_TYPE_SAS) {
371 		struct sas_identify_frame *id;
372 
373 		id = (struct sas_identify_frame *)phy->frame_rcvd;
374 		id->dev_type = phy->identify.device_type;
375 		id->initiator_bits = SAS_PROTOCOL_ALL;
376 		id->target_bits = phy->identify.target_port_protocols;
377 	} else if (phy->phy_type & PORT_TYPE_SATA) {
378 		/*Nothing*/
379 	}
380 	mv_dprintk("phy %d byte dmaded.\n", i + mvi->id * mvi->chip->n_phy);
381 
382 	sas_phy->frame_rcvd_size = phy->frame_rcvd_size;
383 
384 	mvi->sas->notify_port_event(sas_phy,
385 				   PORTE_BYTES_DMAED);
386 }
387 
388 int mvs_slave_alloc(struct scsi_device *scsi_dev)
389 {
390 	struct domain_device *dev = sdev_to_domain_dev(scsi_dev);
391 	if (dev_is_sata(dev)) {
392 		/* We don't need to rescan targets
393 		 * if REPORT_LUNS request is failed
394 		 */
395 		if (scsi_dev->lun > 0)
396 			return -ENXIO;
397 		scsi_dev->tagged_supported = 1;
398 	}
399 
400 	return sas_slave_alloc(scsi_dev);
401 }
402 
403 int mvs_slave_configure(struct scsi_device *sdev)
404 {
405 	struct domain_device *dev = sdev_to_domain_dev(sdev);
406 	int ret = sas_slave_configure(sdev);
407 
408 	if (ret)
409 		return ret;
410 	if (dev_is_sata(dev)) {
411 		/* may set PIO mode */
412 	#if MV_DISABLE_NCQ
413 		struct ata_port *ap = dev->sata_dev.ap;
414 		struct ata_device *adev = ap->link.device;
415 		adev->flags |= ATA_DFLAG_NCQ_OFF;
416 		scsi_adjust_queue_depth(sdev, MSG_SIMPLE_TAG, 1);
417 	#endif
418 	}
419 	return 0;
420 }
421 
422 void mvs_scan_start(struct Scsi_Host *shost)
423 {
424 	int i, j;
425 	unsigned short core_nr;
426 	struct mvs_info *mvi;
427 	struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
428 
429 	core_nr = ((struct mvs_prv_info *)sha->lldd_ha)->n_host;
430 
431 	for (j = 0; j < core_nr; j++) {
432 		mvi = ((struct mvs_prv_info *)sha->lldd_ha)->mvi[j];
433 		for (i = 0; i < mvi->chip->n_phy; ++i)
434 			mvs_bytes_dmaed(mvi, i);
435 	}
436 }
437 
438 int mvs_scan_finished(struct Scsi_Host *shost, unsigned long time)
439 {
440 	/* give the phy enabling interrupt event time to come in (1s
441 	 * is empirically about all it takes) */
442 	if (time < HZ)
443 		return 0;
444 	/* Wait for discovery to finish */
445 	scsi_flush_work(shost);
446 	return 1;
447 }
448 
449 static int mvs_task_prep_smp(struct mvs_info *mvi,
450 			     struct mvs_task_exec_info *tei)
451 {
452 	int elem, rc, i;
453 	struct sas_task *task = tei->task;
454 	struct mvs_cmd_hdr *hdr = tei->hdr;
455 	struct domain_device *dev = task->dev;
456 	struct asd_sas_port *sas_port = dev->port;
457 	struct scatterlist *sg_req, *sg_resp;
458 	u32 req_len, resp_len, tag = tei->tag;
459 	void *buf_tmp;
460 	u8 *buf_oaf;
461 	dma_addr_t buf_tmp_dma;
462 	void *buf_prd;
463 	struct mvs_slot_info *slot = &mvi->slot_info[tag];
464 	u32 flags = (tei->n_elem << MCH_PRD_LEN_SHIFT);
465 #if _MV_DUMP
466 	u8 *buf_cmd;
467 	void *from;
468 #endif
469 	/*
470 	 * DMA-map SMP request, response buffers
471 	 */
472 	sg_req = &task->smp_task.smp_req;
473 	elem = dma_map_sg(mvi->dev, sg_req, 1, PCI_DMA_TODEVICE);
474 	if (!elem)
475 		return -ENOMEM;
476 	req_len = sg_dma_len(sg_req);
477 
478 	sg_resp = &task->smp_task.smp_resp;
479 	elem = dma_map_sg(mvi->dev, sg_resp, 1, PCI_DMA_FROMDEVICE);
480 	if (!elem) {
481 		rc = -ENOMEM;
482 		goto err_out;
483 	}
484 	resp_len = SB_RFB_MAX;
485 
486 	/* must be in dwords */
487 	if ((req_len & 0x3) || (resp_len & 0x3)) {
488 		rc = -EINVAL;
489 		goto err_out_2;
490 	}
491 
492 	/*
493 	 * arrange MVS_SLOT_BUF_SZ-sized DMA buffer according to our needs
494 	 */
495 
496 	/* region 1: command table area (MVS_SSP_CMD_SZ bytes) ***** */
497 	buf_tmp = slot->buf;
498 	buf_tmp_dma = slot->buf_dma;
499 
500 #if _MV_DUMP
501 	buf_cmd = buf_tmp;
502 	hdr->cmd_tbl = cpu_to_le64(buf_tmp_dma);
503 	buf_tmp += req_len;
504 	buf_tmp_dma += req_len;
505 	slot->cmd_size = req_len;
506 #else
507 	hdr->cmd_tbl = cpu_to_le64(sg_dma_address(sg_req));
508 #endif
509 
510 	/* region 2: open address frame area (MVS_OAF_SZ bytes) ********* */
511 	buf_oaf = buf_tmp;
512 	hdr->open_frame = cpu_to_le64(buf_tmp_dma);
513 
514 	buf_tmp += MVS_OAF_SZ;
515 	buf_tmp_dma += MVS_OAF_SZ;
516 
517 	/* region 3: PRD table *********************************** */
518 	buf_prd = buf_tmp;
519 	if (tei->n_elem)
520 		hdr->prd_tbl = cpu_to_le64(buf_tmp_dma);
521 	else
522 		hdr->prd_tbl = 0;
523 
524 	i = MVS_CHIP_DISP->prd_size() * tei->n_elem;
525 	buf_tmp += i;
526 	buf_tmp_dma += i;
527 
528 	/* region 4: status buffer (larger the PRD, smaller this buf) ****** */
529 	slot->response = buf_tmp;
530 	hdr->status_buf = cpu_to_le64(buf_tmp_dma);
531 	if (mvi->flags & MVF_FLAG_SOC)
532 		hdr->reserved[0] = 0;
533 
534 	/*
535 	 * Fill in TX ring and command slot header
536 	 */
537 	slot->tx = mvi->tx_prod;
538 	mvi->tx[mvi->tx_prod] = cpu_to_le32((TXQ_CMD_SMP << TXQ_CMD_SHIFT) |
539 					TXQ_MODE_I | tag |
540 					(sas_port->phy_mask << TXQ_PHY_SHIFT));
541 
542 	hdr->flags |= flags;
543 	hdr->lens = cpu_to_le32(((resp_len / 4) << 16) | ((req_len - 4) / 4));
544 	hdr->tags = cpu_to_le32(tag);
545 	hdr->data_len = 0;
546 
547 	/* generate open address frame hdr (first 12 bytes) */
548 	/* initiator, SMP, ftype 1h */
549 	buf_oaf[0] = (1 << 7) | (PROTOCOL_SMP << 4) | 0x01;
550 	buf_oaf[1] = dev->linkrate & 0xf;
551 	*(u16 *)(buf_oaf + 2) = 0xFFFF;		/* SAS SPEC */
552 	memcpy(buf_oaf + 4, dev->sas_addr, SAS_ADDR_SIZE);
553 
554 	/* fill in PRD (scatter/gather) table, if any */
555 	MVS_CHIP_DISP->make_prd(task->scatter, tei->n_elem, buf_prd);
556 
557 #if _MV_DUMP
558 	/* copy cmd table */
559 	from = kmap_atomic(sg_page(sg_req), KM_IRQ0);
560 	memcpy(buf_cmd, from + sg_req->offset, req_len);
561 	kunmap_atomic(from, KM_IRQ0);
562 #endif
563 	return 0;
564 
565 err_out_2:
566 	dma_unmap_sg(mvi->dev, &tei->task->smp_task.smp_resp, 1,
567 		     PCI_DMA_FROMDEVICE);
568 err_out:
569 	dma_unmap_sg(mvi->dev, &tei->task->smp_task.smp_req, 1,
570 		     PCI_DMA_TODEVICE);
571 	return rc;
572 }
573 
574 static u32 mvs_get_ncq_tag(struct sas_task *task, u32 *tag)
575 {
576 	struct ata_queued_cmd *qc = task->uldd_task;
577 
578 	if (qc) {
579 		if (qc->tf.command == ATA_CMD_FPDMA_WRITE ||
580 			qc->tf.command == ATA_CMD_FPDMA_READ) {
581 			*tag = qc->tag;
582 			return 1;
583 		}
584 	}
585 
586 	return 0;
587 }
588 
589 static int mvs_task_prep_ata(struct mvs_info *mvi,
590 			     struct mvs_task_exec_info *tei)
591 {
592 	struct sas_task *task = tei->task;
593 	struct domain_device *dev = task->dev;
594 	struct mvs_device *mvi_dev = dev->lldd_dev;
595 	struct mvs_cmd_hdr *hdr = tei->hdr;
596 	struct asd_sas_port *sas_port = dev->port;
597 	struct mvs_slot_info *slot;
598 	void *buf_prd;
599 	u32 tag = tei->tag, hdr_tag;
600 	u32 flags, del_q;
601 	void *buf_tmp;
602 	u8 *buf_cmd, *buf_oaf;
603 	dma_addr_t buf_tmp_dma;
604 	u32 i, req_len, resp_len;
605 	const u32 max_resp_len = SB_RFB_MAX;
606 
607 	if (mvs_assign_reg_set(mvi, mvi_dev) == MVS_ID_NOT_MAPPED) {
608 		mv_dprintk("Have not enough regiset for dev %d.\n",
609 			mvi_dev->device_id);
610 		return -EBUSY;
611 	}
612 	slot = &mvi->slot_info[tag];
613 	slot->tx = mvi->tx_prod;
614 	del_q = TXQ_MODE_I | tag |
615 		(TXQ_CMD_STP << TXQ_CMD_SHIFT) |
616 		(sas_port->phy_mask << TXQ_PHY_SHIFT) |
617 		(mvi_dev->taskfileset << TXQ_SRS_SHIFT);
618 	mvi->tx[mvi->tx_prod] = cpu_to_le32(del_q);
619 
620 #ifndef DISABLE_HOTPLUG_DMA_FIX
621 	if (task->data_dir == DMA_FROM_DEVICE)
622 		flags = (MVS_CHIP_DISP->prd_count() << MCH_PRD_LEN_SHIFT);
623 	else
624 		flags = (tei->n_elem << MCH_PRD_LEN_SHIFT);
625 #else
626 	flags = (tei->n_elem << MCH_PRD_LEN_SHIFT);
627 #endif
628 	if (task->ata_task.use_ncq)
629 		flags |= MCH_FPDMA;
630 	if (dev->sata_dev.command_set == ATAPI_COMMAND_SET) {
631 		if (task->ata_task.fis.command != ATA_CMD_ID_ATAPI)
632 			flags |= MCH_ATAPI;
633 	}
634 
635 	/* FIXME: fill in port multiplier number */
636 
637 	hdr->flags = cpu_to_le32(flags);
638 
639 	/* FIXME: the low order order 5 bits for the TAG if enable NCQ */
640 	if (task->ata_task.use_ncq && mvs_get_ncq_tag(task, &hdr_tag))
641 		task->ata_task.fis.sector_count |= (u8) (hdr_tag << 3);
642 	else
643 		hdr_tag = tag;
644 
645 	hdr->tags = cpu_to_le32(hdr_tag);
646 
647 	hdr->data_len = cpu_to_le32(task->total_xfer_len);
648 
649 	/*
650 	 * arrange MVS_SLOT_BUF_SZ-sized DMA buffer according to our needs
651 	 */
652 
653 	/* region 1: command table area (MVS_ATA_CMD_SZ bytes) ************** */
654 	buf_cmd = buf_tmp = slot->buf;
655 	buf_tmp_dma = slot->buf_dma;
656 
657 	hdr->cmd_tbl = cpu_to_le64(buf_tmp_dma);
658 
659 	buf_tmp += MVS_ATA_CMD_SZ;
660 	buf_tmp_dma += MVS_ATA_CMD_SZ;
661 #if _MV_DUMP
662 	slot->cmd_size = MVS_ATA_CMD_SZ;
663 #endif
664 
665 	/* region 2: open address frame area (MVS_OAF_SZ bytes) ********* */
666 	/* used for STP.  unused for SATA? */
667 	buf_oaf = buf_tmp;
668 	hdr->open_frame = cpu_to_le64(buf_tmp_dma);
669 
670 	buf_tmp += MVS_OAF_SZ;
671 	buf_tmp_dma += MVS_OAF_SZ;
672 
673 	/* region 3: PRD table ********************************************* */
674 	buf_prd = buf_tmp;
675 
676 	if (tei->n_elem)
677 		hdr->prd_tbl = cpu_to_le64(buf_tmp_dma);
678 	else
679 		hdr->prd_tbl = 0;
680 	i = MVS_CHIP_DISP->prd_size() * MVS_CHIP_DISP->prd_count();
681 
682 	buf_tmp += i;
683 	buf_tmp_dma += i;
684 
685 	/* region 4: status buffer (larger the PRD, smaller this buf) ****** */
686 	/* FIXME: probably unused, for SATA.  kept here just in case
687 	 * we get a STP/SATA error information record
688 	 */
689 	slot->response = buf_tmp;
690 	hdr->status_buf = cpu_to_le64(buf_tmp_dma);
691 	if (mvi->flags & MVF_FLAG_SOC)
692 		hdr->reserved[0] = 0;
693 
694 	req_len = sizeof(struct host_to_dev_fis);
695 	resp_len = MVS_SLOT_BUF_SZ - MVS_ATA_CMD_SZ -
696 	    sizeof(struct mvs_err_info) - i;
697 
698 	/* request, response lengths */
699 	resp_len = min(resp_len, max_resp_len);
700 	hdr->lens = cpu_to_le32(((resp_len / 4) << 16) | (req_len / 4));
701 
702 	if (likely(!task->ata_task.device_control_reg_update))
703 		task->ata_task.fis.flags |= 0x80; /* C=1: update ATA cmd reg */
704 	/* fill in command FIS and ATAPI CDB */
705 	memcpy(buf_cmd, &task->ata_task.fis, sizeof(struct host_to_dev_fis));
706 	if (dev->sata_dev.command_set == ATAPI_COMMAND_SET)
707 		memcpy(buf_cmd + STP_ATAPI_CMD,
708 			task->ata_task.atapi_packet, 16);
709 
710 	/* generate open address frame hdr (first 12 bytes) */
711 	/* initiator, STP, ftype 1h */
712 	buf_oaf[0] = (1 << 7) | (PROTOCOL_STP << 4) | 0x1;
713 	buf_oaf[1] = dev->linkrate & 0xf;
714 	*(u16 *)(buf_oaf + 2) = cpu_to_be16(mvi_dev->device_id + 1);
715 	memcpy(buf_oaf + 4, dev->sas_addr, SAS_ADDR_SIZE);
716 
717 	/* fill in PRD (scatter/gather) table, if any */
718 	MVS_CHIP_DISP->make_prd(task->scatter, tei->n_elem, buf_prd);
719 #ifndef DISABLE_HOTPLUG_DMA_FIX
720 	if (task->data_dir == DMA_FROM_DEVICE)
721 		MVS_CHIP_DISP->dma_fix(mvi->bulk_buffer_dma,
722 				TRASH_BUCKET_SIZE, tei->n_elem, buf_prd);
723 #endif
724 	return 0;
725 }
726 
727 static int mvs_task_prep_ssp(struct mvs_info *mvi,
728 			     struct mvs_task_exec_info *tei, int is_tmf,
729 			     struct mvs_tmf_task *tmf)
730 {
731 	struct sas_task *task = tei->task;
732 	struct mvs_cmd_hdr *hdr = tei->hdr;
733 	struct mvs_port *port = tei->port;
734 	struct domain_device *dev = task->dev;
735 	struct mvs_device *mvi_dev = dev->lldd_dev;
736 	struct asd_sas_port *sas_port = dev->port;
737 	struct mvs_slot_info *slot;
738 	void *buf_prd;
739 	struct ssp_frame_hdr *ssp_hdr;
740 	void *buf_tmp;
741 	u8 *buf_cmd, *buf_oaf, fburst = 0;
742 	dma_addr_t buf_tmp_dma;
743 	u32 flags;
744 	u32 resp_len, req_len, i, tag = tei->tag;
745 	const u32 max_resp_len = SB_RFB_MAX;
746 	u32 phy_mask;
747 
748 	slot = &mvi->slot_info[tag];
749 
750 	phy_mask = ((port->wide_port_phymap) ? port->wide_port_phymap :
751 		sas_port->phy_mask) & TXQ_PHY_MASK;
752 
753 	slot->tx = mvi->tx_prod;
754 	mvi->tx[mvi->tx_prod] = cpu_to_le32(TXQ_MODE_I | tag |
755 				(TXQ_CMD_SSP << TXQ_CMD_SHIFT) |
756 				(phy_mask << TXQ_PHY_SHIFT));
757 
758 	flags = MCH_RETRY;
759 	if (task->ssp_task.enable_first_burst) {
760 		flags |= MCH_FBURST;
761 		fburst = (1 << 7);
762 	}
763 	if (is_tmf)
764 		flags |= (MCH_SSP_FR_TASK << MCH_SSP_FR_TYPE_SHIFT);
765 	else
766 		flags |= (MCH_SSP_FR_CMD << MCH_SSP_FR_TYPE_SHIFT);
767 	hdr->flags = cpu_to_le32(flags | (tei->n_elem << MCH_PRD_LEN_SHIFT));
768 	hdr->tags = cpu_to_le32(tag);
769 	hdr->data_len = cpu_to_le32(task->total_xfer_len);
770 
771 	/*
772 	 * arrange MVS_SLOT_BUF_SZ-sized DMA buffer according to our needs
773 	 */
774 
775 	/* region 1: command table area (MVS_SSP_CMD_SZ bytes) ************** */
776 	buf_cmd = buf_tmp = slot->buf;
777 	buf_tmp_dma = slot->buf_dma;
778 
779 	hdr->cmd_tbl = cpu_to_le64(buf_tmp_dma);
780 
781 	buf_tmp += MVS_SSP_CMD_SZ;
782 	buf_tmp_dma += MVS_SSP_CMD_SZ;
783 #if _MV_DUMP
784 	slot->cmd_size = MVS_SSP_CMD_SZ;
785 #endif
786 
787 	/* region 2: open address frame area (MVS_OAF_SZ bytes) ********* */
788 	buf_oaf = buf_tmp;
789 	hdr->open_frame = cpu_to_le64(buf_tmp_dma);
790 
791 	buf_tmp += MVS_OAF_SZ;
792 	buf_tmp_dma += MVS_OAF_SZ;
793 
794 	/* region 3: PRD table ********************************************* */
795 	buf_prd = buf_tmp;
796 	if (tei->n_elem)
797 		hdr->prd_tbl = cpu_to_le64(buf_tmp_dma);
798 	else
799 		hdr->prd_tbl = 0;
800 
801 	i = MVS_CHIP_DISP->prd_size() * tei->n_elem;
802 	buf_tmp += i;
803 	buf_tmp_dma += i;
804 
805 	/* region 4: status buffer (larger the PRD, smaller this buf) ****** */
806 	slot->response = buf_tmp;
807 	hdr->status_buf = cpu_to_le64(buf_tmp_dma);
808 	if (mvi->flags & MVF_FLAG_SOC)
809 		hdr->reserved[0] = 0;
810 
811 	resp_len = MVS_SLOT_BUF_SZ - MVS_SSP_CMD_SZ - MVS_OAF_SZ -
812 	    sizeof(struct mvs_err_info) - i;
813 	resp_len = min(resp_len, max_resp_len);
814 
815 	req_len = sizeof(struct ssp_frame_hdr) + 28;
816 
817 	/* request, response lengths */
818 	hdr->lens = cpu_to_le32(((resp_len / 4) << 16) | (req_len / 4));
819 
820 	/* generate open address frame hdr (first 12 bytes) */
821 	/* initiator, SSP, ftype 1h */
822 	buf_oaf[0] = (1 << 7) | (PROTOCOL_SSP << 4) | 0x1;
823 	buf_oaf[1] = dev->linkrate & 0xf;
824 	*(u16 *)(buf_oaf + 2) = cpu_to_be16(mvi_dev->device_id + 1);
825 	memcpy(buf_oaf + 4, dev->sas_addr, SAS_ADDR_SIZE);
826 
827 	/* fill in SSP frame header (Command Table.SSP frame header) */
828 	ssp_hdr = (struct ssp_frame_hdr *)buf_cmd;
829 
830 	if (is_tmf)
831 		ssp_hdr->frame_type = SSP_TASK;
832 	else
833 		ssp_hdr->frame_type = SSP_COMMAND;
834 
835 	memcpy(ssp_hdr->hashed_dest_addr, dev->hashed_sas_addr,
836 	       HASHED_SAS_ADDR_SIZE);
837 	memcpy(ssp_hdr->hashed_src_addr,
838 	       dev->hashed_sas_addr, HASHED_SAS_ADDR_SIZE);
839 	ssp_hdr->tag = cpu_to_be16(tag);
840 
841 	/* fill in IU for TASK and Command Frame */
842 	buf_cmd += sizeof(*ssp_hdr);
843 	memcpy(buf_cmd, &task->ssp_task.LUN, 8);
844 
845 	if (ssp_hdr->frame_type != SSP_TASK) {
846 		buf_cmd[9] = fburst | task->ssp_task.task_attr |
847 				(task->ssp_task.task_prio << 3);
848 		memcpy(buf_cmd + 12, &task->ssp_task.cdb, 16);
849 	} else{
850 		buf_cmd[10] = tmf->tmf;
851 		switch (tmf->tmf) {
852 		case TMF_ABORT_TASK:
853 		case TMF_QUERY_TASK:
854 			buf_cmd[12] =
855 				(tmf->tag_of_task_to_be_managed >> 8) & 0xff;
856 			buf_cmd[13] =
857 				tmf->tag_of_task_to_be_managed & 0xff;
858 			break;
859 		default:
860 			break;
861 		}
862 	}
863 	/* fill in PRD (scatter/gather) table, if any */
864 	MVS_CHIP_DISP->make_prd(task->scatter, tei->n_elem, buf_prd);
865 	return 0;
866 }
867 
868 #define	DEV_IS_GONE(mvi_dev)	((!mvi_dev || (mvi_dev->dev_type == NO_DEVICE)))
869 static int mvs_task_exec(struct sas_task *task, const int num, gfp_t gfp_flags,
870 				struct completion *completion,int is_tmf,
871 				struct mvs_tmf_task *tmf)
872 {
873 	struct domain_device *dev = task->dev;
874 	struct mvs_device *mvi_dev = (struct mvs_device *)dev->lldd_dev;
875 	struct mvs_info *mvi = mvi_dev->mvi_info;
876 	struct mvs_task_exec_info tei;
877 	struct sas_task *t = task;
878 	struct mvs_slot_info *slot;
879 	u32 tag = 0xdeadbeef, rc, n_elem = 0;
880 	u32 n = num, pass = 0;
881 	unsigned long flags = 0;
882 
883 	if (!dev->port) {
884 		struct task_status_struct *tsm = &t->task_status;
885 
886 		tsm->resp = SAS_TASK_UNDELIVERED;
887 		tsm->stat = SAS_PHY_DOWN;
888 		t->task_done(t);
889 		return 0;
890 	}
891 
892 	spin_lock_irqsave(&mvi->lock, flags);
893 	do {
894 		dev = t->dev;
895 		mvi_dev = dev->lldd_dev;
896 		if (DEV_IS_GONE(mvi_dev)) {
897 			if (mvi_dev)
898 				mv_dprintk("device %d not ready.\n",
899 					mvi_dev->device_id);
900 			else
901 				mv_dprintk("device %016llx not ready.\n",
902 					SAS_ADDR(dev->sas_addr));
903 
904 			rc = SAS_PHY_DOWN;
905 			goto out_done;
906 		}
907 
908 		if (dev->port->id >= mvi->chip->n_phy)
909 			tei.port = &mvi->port[dev->port->id - mvi->chip->n_phy];
910 		else
911 			tei.port = &mvi->port[dev->port->id];
912 
913 		if (!tei.port->port_attached) {
914 			if (sas_protocol_ata(t->task_proto)) {
915 				mv_dprintk("port %d does not"
916 					"attached device.\n", dev->port->id);
917 				rc = SAS_PHY_DOWN;
918 				goto out_done;
919 			} else {
920 				struct task_status_struct *ts = &t->task_status;
921 				ts->resp = SAS_TASK_UNDELIVERED;
922 				ts->stat = SAS_PHY_DOWN;
923 				t->task_done(t);
924 				if (n > 1)
925 					t = list_entry(t->list.next,
926 							struct sas_task, list);
927 				continue;
928 			}
929 		}
930 
931 		if (!sas_protocol_ata(t->task_proto)) {
932 			if (t->num_scatter) {
933 				n_elem = dma_map_sg(mvi->dev,
934 						    t->scatter,
935 						    t->num_scatter,
936 						    t->data_dir);
937 				if (!n_elem) {
938 					rc = -ENOMEM;
939 					goto err_out;
940 				}
941 			}
942 		} else {
943 			n_elem = t->num_scatter;
944 		}
945 
946 		rc = mvs_tag_alloc(mvi, &tag);
947 		if (rc)
948 			goto err_out;
949 
950 		slot = &mvi->slot_info[tag];
951 
952 
953 		t->lldd_task = NULL;
954 		slot->n_elem = n_elem;
955 		slot->slot_tag = tag;
956 		memset(slot->buf, 0, MVS_SLOT_BUF_SZ);
957 
958 		tei.task = t;
959 		tei.hdr = &mvi->slot[tag];
960 		tei.tag = tag;
961 		tei.n_elem = n_elem;
962 		switch (t->task_proto) {
963 		case SAS_PROTOCOL_SMP:
964 			rc = mvs_task_prep_smp(mvi, &tei);
965 			break;
966 		case SAS_PROTOCOL_SSP:
967 			rc = mvs_task_prep_ssp(mvi, &tei, is_tmf, tmf);
968 			break;
969 		case SAS_PROTOCOL_SATA:
970 		case SAS_PROTOCOL_STP:
971 		case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP:
972 			rc = mvs_task_prep_ata(mvi, &tei);
973 			break;
974 		default:
975 			dev_printk(KERN_ERR, mvi->dev,
976 				"unknown sas_task proto: 0x%x\n",
977 				t->task_proto);
978 			rc = -EINVAL;
979 			break;
980 		}
981 
982 		if (rc) {
983 			mv_dprintk("rc is %x\n", rc);
984 			goto err_out_tag;
985 		}
986 		slot->task = t;
987 		slot->port = tei.port;
988 		t->lldd_task = slot;
989 		list_add_tail(&slot->entry, &tei.port->list);
990 		/* TODO: select normal or high priority */
991 		spin_lock(&t->task_state_lock);
992 		t->task_state_flags |= SAS_TASK_AT_INITIATOR;
993 		spin_unlock(&t->task_state_lock);
994 
995 		mvs_hba_memory_dump(mvi, tag, t->task_proto);
996 		mvi_dev->runing_req++;
997 		++pass;
998 		mvi->tx_prod = (mvi->tx_prod + 1) & (MVS_CHIP_SLOT_SZ - 1);
999 		if (n > 1)
1000 			t = list_entry(t->list.next, struct sas_task, list);
1001 	} while (--n);
1002 	rc = 0;
1003 	goto out_done;
1004 
1005 err_out_tag:
1006 	mvs_tag_free(mvi, tag);
1007 err_out:
1008 
1009 	dev_printk(KERN_ERR, mvi->dev, "mvsas exec failed[%d]!\n", rc);
1010 	if (!sas_protocol_ata(t->task_proto))
1011 		if (n_elem)
1012 			dma_unmap_sg(mvi->dev, t->scatter, n_elem,
1013 				     t->data_dir);
1014 out_done:
1015 	if (likely(pass)) {
1016 		MVS_CHIP_DISP->start_delivery(mvi,
1017 			(mvi->tx_prod - 1) & (MVS_CHIP_SLOT_SZ - 1));
1018 	}
1019 	spin_unlock_irqrestore(&mvi->lock, flags);
1020 	return rc;
1021 }
1022 
1023 int mvs_queue_command(struct sas_task *task, const int num,
1024 			gfp_t gfp_flags)
1025 {
1026 	return mvs_task_exec(task, num, gfp_flags, NULL, 0, NULL);
1027 }
1028 
1029 static void mvs_slot_free(struct mvs_info *mvi, u32 rx_desc)
1030 {
1031 	u32 slot_idx = rx_desc & RXQ_SLOT_MASK;
1032 	mvs_tag_clear(mvi, slot_idx);
1033 }
1034 
1035 static void mvs_slot_task_free(struct mvs_info *mvi, struct sas_task *task,
1036 			  struct mvs_slot_info *slot, u32 slot_idx)
1037 {
1038 	if (!slot->task)
1039 		return;
1040 	if (!sas_protocol_ata(task->task_proto))
1041 		if (slot->n_elem)
1042 			dma_unmap_sg(mvi->dev, task->scatter,
1043 				     slot->n_elem, task->data_dir);
1044 
1045 	switch (task->task_proto) {
1046 	case SAS_PROTOCOL_SMP:
1047 		dma_unmap_sg(mvi->dev, &task->smp_task.smp_resp, 1,
1048 			     PCI_DMA_FROMDEVICE);
1049 		dma_unmap_sg(mvi->dev, &task->smp_task.smp_req, 1,
1050 			     PCI_DMA_TODEVICE);
1051 		break;
1052 
1053 	case SAS_PROTOCOL_SATA:
1054 	case SAS_PROTOCOL_STP:
1055 	case SAS_PROTOCOL_SSP:
1056 	default:
1057 		/* do nothing */
1058 		break;
1059 	}
1060 	list_del_init(&slot->entry);
1061 	task->lldd_task = NULL;
1062 	slot->task = NULL;
1063 	slot->port = NULL;
1064 	slot->slot_tag = 0xFFFFFFFF;
1065 	mvs_slot_free(mvi, slot_idx);
1066 }
1067 
1068 static void mvs_update_wideport(struct mvs_info *mvi, int i)
1069 {
1070 	struct mvs_phy *phy = &mvi->phy[i];
1071 	struct mvs_port *port = phy->port;
1072 	int j, no;
1073 
1074 	for_each_phy(port->wide_port_phymap, j, no) {
1075 		if (j & 1) {
1076 			MVS_CHIP_DISP->write_port_cfg_addr(mvi, no,
1077 						PHYR_WIDE_PORT);
1078 			MVS_CHIP_DISP->write_port_cfg_data(mvi, no,
1079 						port->wide_port_phymap);
1080 		} else {
1081 			MVS_CHIP_DISP->write_port_cfg_addr(mvi, no,
1082 						PHYR_WIDE_PORT);
1083 			MVS_CHIP_DISP->write_port_cfg_data(mvi, no,
1084 						0);
1085 		}
1086 	}
1087 }
1088 
1089 static u32 mvs_is_phy_ready(struct mvs_info *mvi, int i)
1090 {
1091 	u32 tmp;
1092 	struct mvs_phy *phy = &mvi->phy[i];
1093 	struct mvs_port *port = phy->port;
1094 
1095 	tmp = MVS_CHIP_DISP->read_phy_ctl(mvi, i);
1096 	if ((tmp & PHY_READY_MASK) && !(phy->irq_status & PHYEV_POOF)) {
1097 		if (!port)
1098 			phy->phy_attached = 1;
1099 		return tmp;
1100 	}
1101 
1102 	if (port) {
1103 		if (phy->phy_type & PORT_TYPE_SAS) {
1104 			port->wide_port_phymap &= ~(1U << i);
1105 			if (!port->wide_port_phymap)
1106 				port->port_attached = 0;
1107 			mvs_update_wideport(mvi, i);
1108 		} else if (phy->phy_type & PORT_TYPE_SATA)
1109 			port->port_attached = 0;
1110 		phy->port = NULL;
1111 		phy->phy_attached = 0;
1112 		phy->phy_type &= ~(PORT_TYPE_SAS | PORT_TYPE_SATA);
1113 	}
1114 	return 0;
1115 }
1116 
1117 static void *mvs_get_d2h_reg(struct mvs_info *mvi, int i, void *buf)
1118 {
1119 	u32 *s = (u32 *) buf;
1120 
1121 	if (!s)
1122 		return NULL;
1123 
1124 	MVS_CHIP_DISP->write_port_cfg_addr(mvi, i, PHYR_SATA_SIG3);
1125 	s[3] = MVS_CHIP_DISP->read_port_cfg_data(mvi, i);
1126 
1127 	MVS_CHIP_DISP->write_port_cfg_addr(mvi, i, PHYR_SATA_SIG2);
1128 	s[2] = MVS_CHIP_DISP->read_port_cfg_data(mvi, i);
1129 
1130 	MVS_CHIP_DISP->write_port_cfg_addr(mvi, i, PHYR_SATA_SIG1);
1131 	s[1] = MVS_CHIP_DISP->read_port_cfg_data(mvi, i);
1132 
1133 	MVS_CHIP_DISP->write_port_cfg_addr(mvi, i, PHYR_SATA_SIG0);
1134 	s[0] = MVS_CHIP_DISP->read_port_cfg_data(mvi, i);
1135 
1136 	/* Workaround: take some ATAPI devices for ATA */
1137 	if (((s[1] & 0x00FFFFFF) == 0x00EB1401) && (*(u8 *)&s[3] == 0x01))
1138 		s[1] = 0x00EB1401 | (*((u8 *)&s[1] + 3) & 0x10);
1139 
1140 	return s;
1141 }
1142 
1143 static u32 mvs_is_sig_fis_received(u32 irq_status)
1144 {
1145 	return irq_status & PHYEV_SIG_FIS;
1146 }
1147 
1148 void mvs_update_phyinfo(struct mvs_info *mvi, int i, int get_st)
1149 {
1150 	struct mvs_phy *phy = &mvi->phy[i];
1151 	struct sas_identify_frame *id;
1152 
1153 	id = (struct sas_identify_frame *)phy->frame_rcvd;
1154 
1155 	if (get_st) {
1156 		phy->irq_status = MVS_CHIP_DISP->read_port_irq_stat(mvi, i);
1157 		phy->phy_status = mvs_is_phy_ready(mvi, i);
1158 	}
1159 
1160 	if (phy->phy_status) {
1161 		int oob_done = 0;
1162 		struct asd_sas_phy *sas_phy = &mvi->phy[i].sas_phy;
1163 
1164 		oob_done = MVS_CHIP_DISP->oob_done(mvi, i);
1165 
1166 		MVS_CHIP_DISP->fix_phy_info(mvi, i, id);
1167 		if (phy->phy_type & PORT_TYPE_SATA) {
1168 			phy->identify.target_port_protocols = SAS_PROTOCOL_STP;
1169 			if (mvs_is_sig_fis_received(phy->irq_status)) {
1170 				phy->phy_attached = 1;
1171 				phy->att_dev_sas_addr =
1172 					i + mvi->id * mvi->chip->n_phy;
1173 				if (oob_done)
1174 					sas_phy->oob_mode = SATA_OOB_MODE;
1175 				phy->frame_rcvd_size =
1176 				    sizeof(struct dev_to_host_fis);
1177 				mvs_get_d2h_reg(mvi, i, id);
1178 			} else {
1179 				u32 tmp;
1180 				dev_printk(KERN_DEBUG, mvi->dev,
1181 					"Phy%d : No sig fis\n", i);
1182 				tmp = MVS_CHIP_DISP->read_port_irq_mask(mvi, i);
1183 				MVS_CHIP_DISP->write_port_irq_mask(mvi, i,
1184 						tmp | PHYEV_SIG_FIS);
1185 				phy->phy_attached = 0;
1186 				phy->phy_type &= ~PORT_TYPE_SATA;
1187 				MVS_CHIP_DISP->phy_reset(mvi, i, 0);
1188 				goto out_done;
1189 			}
1190 		}		else if (phy->phy_type & PORT_TYPE_SAS
1191 			|| phy->att_dev_info & PORT_SSP_INIT_MASK) {
1192 			phy->phy_attached = 1;
1193 			phy->identify.device_type =
1194 				phy->att_dev_info & PORT_DEV_TYPE_MASK;
1195 
1196 			if (phy->identify.device_type == SAS_END_DEV)
1197 				phy->identify.target_port_protocols =
1198 							SAS_PROTOCOL_SSP;
1199 			else if (phy->identify.device_type != NO_DEVICE)
1200 				phy->identify.target_port_protocols =
1201 							SAS_PROTOCOL_SMP;
1202 			if (oob_done)
1203 				sas_phy->oob_mode = SAS_OOB_MODE;
1204 			phy->frame_rcvd_size =
1205 			    sizeof(struct sas_identify_frame);
1206 		}
1207 		memcpy(sas_phy->attached_sas_addr,
1208 			&phy->att_dev_sas_addr, SAS_ADDR_SIZE);
1209 
1210 		if (MVS_CHIP_DISP->phy_work_around)
1211 			MVS_CHIP_DISP->phy_work_around(mvi, i);
1212 	}
1213 	mv_dprintk("port %d attach dev info is %x\n",
1214 		i + mvi->id * mvi->chip->n_phy, phy->att_dev_info);
1215 	mv_dprintk("port %d attach sas addr is %llx\n",
1216 		i + mvi->id * mvi->chip->n_phy, phy->att_dev_sas_addr);
1217 out_done:
1218 	if (get_st)
1219 		MVS_CHIP_DISP->write_port_irq_stat(mvi, i, phy->irq_status);
1220 }
1221 
1222 static void mvs_port_notify_formed(struct asd_sas_phy *sas_phy, int lock)
1223 {
1224 	struct sas_ha_struct *sas_ha = sas_phy->ha;
1225 	struct mvs_info *mvi = NULL; int i = 0, hi;
1226 	struct mvs_phy *phy = sas_phy->lldd_phy;
1227 	struct asd_sas_port *sas_port = sas_phy->port;
1228 	struct mvs_port *port;
1229 	unsigned long flags = 0;
1230 	if (!sas_port)
1231 		return;
1232 
1233 	while (sas_ha->sas_phy[i]) {
1234 		if (sas_ha->sas_phy[i] == sas_phy)
1235 			break;
1236 		i++;
1237 	}
1238 	hi = i/((struct mvs_prv_info *)sas_ha->lldd_ha)->n_phy;
1239 	mvi = ((struct mvs_prv_info *)sas_ha->lldd_ha)->mvi[hi];
1240 	if (sas_port->id >= mvi->chip->n_phy)
1241 		port = &mvi->port[sas_port->id - mvi->chip->n_phy];
1242 	else
1243 		port = &mvi->port[sas_port->id];
1244 	if (lock)
1245 		spin_lock_irqsave(&mvi->lock, flags);
1246 	port->port_attached = 1;
1247 	phy->port = port;
1248 	if (phy->phy_type & PORT_TYPE_SAS) {
1249 		port->wide_port_phymap = sas_port->phy_mask;
1250 		mv_printk("set wide port phy map %x\n", sas_port->phy_mask);
1251 		mvs_update_wideport(mvi, sas_phy->id);
1252 	}
1253 	if (lock)
1254 		spin_unlock_irqrestore(&mvi->lock, flags);
1255 }
1256 
1257 static void mvs_port_notify_deformed(struct asd_sas_phy *sas_phy, int lock)
1258 {
1259 	/*Nothing*/
1260 }
1261 
1262 
1263 void mvs_port_formed(struct asd_sas_phy *sas_phy)
1264 {
1265 	mvs_port_notify_formed(sas_phy, 1);
1266 }
1267 
1268 void mvs_port_deformed(struct asd_sas_phy *sas_phy)
1269 {
1270 	mvs_port_notify_deformed(sas_phy, 1);
1271 }
1272 
1273 struct mvs_device *mvs_alloc_dev(struct mvs_info *mvi)
1274 {
1275 	u32 dev;
1276 	for (dev = 0; dev < MVS_MAX_DEVICES; dev++) {
1277 		if (mvi->devices[dev].dev_type == NO_DEVICE) {
1278 			mvi->devices[dev].device_id = dev;
1279 			return &mvi->devices[dev];
1280 		}
1281 	}
1282 
1283 	if (dev == MVS_MAX_DEVICES)
1284 		mv_printk("max support %d devices, ignore ..\n",
1285 			MVS_MAX_DEVICES);
1286 
1287 	return NULL;
1288 }
1289 
1290 void mvs_free_dev(struct mvs_device *mvi_dev)
1291 {
1292 	u32 id = mvi_dev->device_id;
1293 	memset(mvi_dev, 0, sizeof(*mvi_dev));
1294 	mvi_dev->device_id = id;
1295 	mvi_dev->dev_type = NO_DEVICE;
1296 	mvi_dev->dev_status = MVS_DEV_NORMAL;
1297 	mvi_dev->taskfileset = MVS_ID_NOT_MAPPED;
1298 }
1299 
1300 int mvs_dev_found_notify(struct domain_device *dev, int lock)
1301 {
1302 	unsigned long flags = 0;
1303 	int res = 0;
1304 	struct mvs_info *mvi = NULL;
1305 	struct domain_device *parent_dev = dev->parent;
1306 	struct mvs_device *mvi_device;
1307 
1308 	mvi = mvs_find_dev_mvi(dev);
1309 
1310 	if (lock)
1311 		spin_lock_irqsave(&mvi->lock, flags);
1312 
1313 	mvi_device = mvs_alloc_dev(mvi);
1314 	if (!mvi_device) {
1315 		res = -1;
1316 		goto found_out;
1317 	}
1318 	dev->lldd_dev = mvi_device;
1319 	mvi_device->dev_type = dev->dev_type;
1320 	mvi_device->mvi_info = mvi;
1321 	if (parent_dev && DEV_IS_EXPANDER(parent_dev->dev_type)) {
1322 		int phy_id;
1323 		u8 phy_num = parent_dev->ex_dev.num_phys;
1324 		struct ex_phy *phy;
1325 		for (phy_id = 0; phy_id < phy_num; phy_id++) {
1326 			phy = &parent_dev->ex_dev.ex_phy[phy_id];
1327 			if (SAS_ADDR(phy->attached_sas_addr) ==
1328 				SAS_ADDR(dev->sas_addr)) {
1329 				mvi_device->attached_phy = phy_id;
1330 				break;
1331 			}
1332 		}
1333 
1334 		if (phy_id == phy_num) {
1335 			mv_printk("Error: no attached dev:%016llx"
1336 				"at ex:%016llx.\n",
1337 				SAS_ADDR(dev->sas_addr),
1338 				SAS_ADDR(parent_dev->sas_addr));
1339 			res = -1;
1340 		}
1341 	}
1342 
1343 found_out:
1344 	if (lock)
1345 		spin_unlock_irqrestore(&mvi->lock, flags);
1346 	return res;
1347 }
1348 
1349 int mvs_dev_found(struct domain_device *dev)
1350 {
1351 	return mvs_dev_found_notify(dev, 1);
1352 }
1353 
1354 void mvs_dev_gone_notify(struct domain_device *dev, int lock)
1355 {
1356 	unsigned long flags = 0;
1357 	struct mvs_device *mvi_dev = dev->lldd_dev;
1358 	struct mvs_info *mvi = mvi_dev->mvi_info;
1359 
1360 	if (lock)
1361 		spin_lock_irqsave(&mvi->lock, flags);
1362 
1363 	if (mvi_dev) {
1364 		mv_dprintk("found dev[%d:%x] is gone.\n",
1365 			mvi_dev->device_id, mvi_dev->dev_type);
1366 		mvs_free_reg_set(mvi, mvi_dev);
1367 		mvs_free_dev(mvi_dev);
1368 	} else {
1369 		mv_dprintk("found dev has gone.\n");
1370 	}
1371 	dev->lldd_dev = NULL;
1372 
1373 	if (lock)
1374 		spin_unlock_irqrestore(&mvi->lock, flags);
1375 }
1376 
1377 
1378 void mvs_dev_gone(struct domain_device *dev)
1379 {
1380 	mvs_dev_gone_notify(dev, 1);
1381 }
1382 
1383 static  struct sas_task *mvs_alloc_task(void)
1384 {
1385 	struct sas_task *task = kzalloc(sizeof(struct sas_task), GFP_KERNEL);
1386 
1387 	if (task) {
1388 		INIT_LIST_HEAD(&task->list);
1389 		spin_lock_init(&task->task_state_lock);
1390 		task->task_state_flags = SAS_TASK_STATE_PENDING;
1391 		init_timer(&task->timer);
1392 		init_completion(&task->completion);
1393 	}
1394 	return task;
1395 }
1396 
1397 static  void mvs_free_task(struct sas_task *task)
1398 {
1399 	if (task) {
1400 		BUG_ON(!list_empty(&task->list));
1401 		kfree(task);
1402 	}
1403 }
1404 
1405 static void mvs_task_done(struct sas_task *task)
1406 {
1407 	if (!del_timer(&task->timer))
1408 		return;
1409 	complete(&task->completion);
1410 }
1411 
1412 static void mvs_tmf_timedout(unsigned long data)
1413 {
1414 	struct sas_task *task = (struct sas_task *)data;
1415 
1416 	task->task_state_flags |= SAS_TASK_STATE_ABORTED;
1417 	complete(&task->completion);
1418 }
1419 
1420 /* XXX */
1421 #define MVS_TASK_TIMEOUT 20
1422 static int mvs_exec_internal_tmf_task(struct domain_device *dev,
1423 			void *parameter, u32 para_len, struct mvs_tmf_task *tmf)
1424 {
1425 	int res, retry;
1426 	struct sas_task *task = NULL;
1427 
1428 	for (retry = 0; retry < 3; retry++) {
1429 		task = mvs_alloc_task();
1430 		if (!task)
1431 			return -ENOMEM;
1432 
1433 		task->dev = dev;
1434 		task->task_proto = dev->tproto;
1435 
1436 		memcpy(&task->ssp_task, parameter, para_len);
1437 		task->task_done = mvs_task_done;
1438 
1439 		task->timer.data = (unsigned long) task;
1440 		task->timer.function = mvs_tmf_timedout;
1441 		task->timer.expires = jiffies + MVS_TASK_TIMEOUT*HZ;
1442 		add_timer(&task->timer);
1443 
1444 		res = mvs_task_exec(task, 1, GFP_KERNEL, NULL, 1, tmf);
1445 
1446 		if (res) {
1447 			del_timer(&task->timer);
1448 			mv_printk("executing internel task failed:%d\n", res);
1449 			goto ex_err;
1450 		}
1451 
1452 		wait_for_completion(&task->completion);
1453 		res = -TMF_RESP_FUNC_FAILED;
1454 		/* Even TMF timed out, return direct. */
1455 		if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
1456 			if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
1457 				mv_printk("TMF task[%x] timeout.\n", tmf->tmf);
1458 				goto ex_err;
1459 			}
1460 		}
1461 
1462 		if (task->task_status.resp == SAS_TASK_COMPLETE &&
1463 		    task->task_status.stat == SAM_GOOD) {
1464 			res = TMF_RESP_FUNC_COMPLETE;
1465 			break;
1466 		}
1467 
1468 		if (task->task_status.resp == SAS_TASK_COMPLETE &&
1469 		      task->task_status.stat == SAS_DATA_UNDERRUN) {
1470 			/* no error, but return the number of bytes of
1471 			 * underrun */
1472 			res = task->task_status.residual;
1473 			break;
1474 		}
1475 
1476 		if (task->task_status.resp == SAS_TASK_COMPLETE &&
1477 		      task->task_status.stat == SAS_DATA_OVERRUN) {
1478 			mv_dprintk("blocked task error.\n");
1479 			res = -EMSGSIZE;
1480 			break;
1481 		} else {
1482 			mv_dprintk(" task to dev %016llx response: 0x%x "
1483 				    "status 0x%x\n",
1484 				    SAS_ADDR(dev->sas_addr),
1485 				    task->task_status.resp,
1486 				    task->task_status.stat);
1487 			mvs_free_task(task);
1488 			task = NULL;
1489 
1490 		}
1491 	}
1492 ex_err:
1493 	BUG_ON(retry == 3 && task != NULL);
1494 	if (task != NULL)
1495 		mvs_free_task(task);
1496 	return res;
1497 }
1498 
1499 static int mvs_debug_issue_ssp_tmf(struct domain_device *dev,
1500 				u8 *lun, struct mvs_tmf_task *tmf)
1501 {
1502 	struct sas_ssp_task ssp_task;
1503 	DECLARE_COMPLETION_ONSTACK(completion);
1504 	if (!(dev->tproto & SAS_PROTOCOL_SSP))
1505 		return TMF_RESP_FUNC_ESUPP;
1506 
1507 	strncpy((u8 *)&ssp_task.LUN, lun, 8);
1508 
1509 	return mvs_exec_internal_tmf_task(dev, &ssp_task,
1510 				sizeof(ssp_task), tmf);
1511 }
1512 
1513 
1514 /*  Standard mandates link reset for ATA  (type 0)
1515     and hard reset for SSP (type 1) , only for RECOVERY */
1516 static int mvs_debug_I_T_nexus_reset(struct domain_device *dev)
1517 {
1518 	int rc;
1519 	struct sas_phy *phy = sas_find_local_phy(dev);
1520 	int reset_type = (dev->dev_type == SATA_DEV ||
1521 			(dev->tproto & SAS_PROTOCOL_STP)) ? 0 : 1;
1522 	rc = sas_phy_reset(phy, reset_type);
1523 	msleep(2000);
1524 	return rc;
1525 }
1526 
1527 /* mandatory SAM-3 */
1528 int mvs_lu_reset(struct domain_device *dev, u8 *lun)
1529 {
1530 	unsigned long flags;
1531 	int i, phyno[WIDE_PORT_MAX_PHY], num , rc = TMF_RESP_FUNC_FAILED;
1532 	struct mvs_tmf_task tmf_task;
1533 	struct mvs_device * mvi_dev = dev->lldd_dev;
1534 	struct mvs_info *mvi = mvi_dev->mvi_info;
1535 
1536 	tmf_task.tmf = TMF_LU_RESET;
1537 	mvi_dev->dev_status = MVS_DEV_EH;
1538 	rc = mvs_debug_issue_ssp_tmf(dev, lun, &tmf_task);
1539 	if (rc == TMF_RESP_FUNC_COMPLETE) {
1540 		num = mvs_find_dev_phyno(dev, phyno);
1541 		spin_lock_irqsave(&mvi->lock, flags);
1542 		for (i = 0; i < num; i++)
1543 			mvs_release_task(mvi, phyno[i], dev);
1544 		spin_unlock_irqrestore(&mvi->lock, flags);
1545 	}
1546 	/* If failed, fall-through I_T_Nexus reset */
1547 	mv_printk("%s for device[%x]:rc= %d\n", __func__,
1548 			mvi_dev->device_id, rc);
1549 	return rc;
1550 }
1551 
1552 int mvs_I_T_nexus_reset(struct domain_device *dev)
1553 {
1554 	unsigned long flags;
1555 	int i, phyno[WIDE_PORT_MAX_PHY], num , rc = TMF_RESP_FUNC_FAILED;
1556 	struct mvs_device * mvi_dev = (struct mvs_device *)dev->lldd_dev;
1557 	struct mvs_info *mvi = mvi_dev->mvi_info;
1558 
1559 	if (mvi_dev->dev_status != MVS_DEV_EH)
1560 		return TMF_RESP_FUNC_COMPLETE;
1561 	rc = mvs_debug_I_T_nexus_reset(dev);
1562 	mv_printk("%s for device[%x]:rc= %d\n",
1563 		__func__, mvi_dev->device_id, rc);
1564 
1565 	/* housekeeper */
1566 	num = mvs_find_dev_phyno(dev, phyno);
1567 	spin_lock_irqsave(&mvi->lock, flags);
1568 	for (i = 0; i < num; i++)
1569 		mvs_release_task(mvi, phyno[i], dev);
1570 	spin_unlock_irqrestore(&mvi->lock, flags);
1571 
1572 	return rc;
1573 }
1574 /* optional SAM-3 */
1575 int mvs_query_task(struct sas_task *task)
1576 {
1577 	u32 tag;
1578 	struct scsi_lun lun;
1579 	struct mvs_tmf_task tmf_task;
1580 	int rc = TMF_RESP_FUNC_FAILED;
1581 
1582 	if (task->lldd_task && task->task_proto & SAS_PROTOCOL_SSP) {
1583 		struct scsi_cmnd * cmnd = (struct scsi_cmnd *)task->uldd_task;
1584 		struct domain_device *dev = task->dev;
1585 		struct mvs_device *mvi_dev = (struct mvs_device *)dev->lldd_dev;
1586 		struct mvs_info *mvi = mvi_dev->mvi_info;
1587 
1588 		int_to_scsilun(cmnd->device->lun, &lun);
1589 		rc = mvs_find_tag(mvi, task, &tag);
1590 		if (rc == 0) {
1591 			rc = TMF_RESP_FUNC_FAILED;
1592 			return rc;
1593 		}
1594 
1595 		tmf_task.tmf = TMF_QUERY_TASK;
1596 		tmf_task.tag_of_task_to_be_managed = cpu_to_le16(tag);
1597 
1598 		rc = mvs_debug_issue_ssp_tmf(dev, lun.scsi_lun, &tmf_task);
1599 		switch (rc) {
1600 		/* The task is still in Lun, release it then */
1601 		case TMF_RESP_FUNC_SUCC:
1602 		/* The task is not in Lun or failed, reset the phy */
1603 		case TMF_RESP_FUNC_FAILED:
1604 		case TMF_RESP_FUNC_COMPLETE:
1605 			break;
1606 		}
1607 	}
1608 	mv_printk("%s:rc= %d\n", __func__, rc);
1609 	return rc;
1610 }
1611 
1612 /*  mandatory SAM-3, still need free task/slot info */
1613 int mvs_abort_task(struct sas_task *task)
1614 {
1615 	struct scsi_lun lun;
1616 	struct mvs_tmf_task tmf_task;
1617 	struct domain_device *dev = task->dev;
1618 	struct mvs_device *mvi_dev = (struct mvs_device *)dev->lldd_dev;
1619 	struct mvs_info *mvi = mvi_dev->mvi_info;
1620 	int rc = TMF_RESP_FUNC_FAILED;
1621 	unsigned long flags;
1622 	u32 tag;
1623 
1624 	if (mvi->exp_req)
1625 		mvi->exp_req--;
1626 	spin_lock_irqsave(&task->task_state_lock, flags);
1627 	if (task->task_state_flags & SAS_TASK_STATE_DONE) {
1628 		spin_unlock_irqrestore(&task->task_state_lock, flags);
1629 		rc = TMF_RESP_FUNC_COMPLETE;
1630 		goto out;
1631 	}
1632 	spin_unlock_irqrestore(&task->task_state_lock, flags);
1633 	if (task->lldd_task && task->task_proto & SAS_PROTOCOL_SSP) {
1634 		struct scsi_cmnd * cmnd = (struct scsi_cmnd *)task->uldd_task;
1635 
1636 		int_to_scsilun(cmnd->device->lun, &lun);
1637 		rc = mvs_find_tag(mvi, task, &tag);
1638 		if (rc == 0) {
1639 			mv_printk("No such tag in %s\n", __func__);
1640 			rc = TMF_RESP_FUNC_FAILED;
1641 			return rc;
1642 		}
1643 
1644 		tmf_task.tmf = TMF_ABORT_TASK;
1645 		tmf_task.tag_of_task_to_be_managed = cpu_to_le16(tag);
1646 
1647 		rc = mvs_debug_issue_ssp_tmf(dev, lun.scsi_lun, &tmf_task);
1648 
1649 		/* if successful, clear the task and callback forwards.*/
1650 		if (rc == TMF_RESP_FUNC_COMPLETE) {
1651 			u32 slot_no;
1652 			struct mvs_slot_info *slot;
1653 
1654 			if (task->lldd_task) {
1655 				slot = task->lldd_task;
1656 				slot_no = (u32) (slot - mvi->slot_info);
1657 				mvs_slot_complete(mvi, slot_no, 1);
1658 			}
1659 		}
1660 	} else if (task->task_proto & SAS_PROTOCOL_SATA ||
1661 		task->task_proto & SAS_PROTOCOL_STP) {
1662 		/* to do free register_set */
1663 	} else {
1664 		/* SMP */
1665 
1666 	}
1667 out:
1668 	if (rc != TMF_RESP_FUNC_COMPLETE)
1669 		mv_printk("%s:rc= %d\n", __func__, rc);
1670 	return rc;
1671 }
1672 
1673 int mvs_abort_task_set(struct domain_device *dev, u8 *lun)
1674 {
1675 	int rc = TMF_RESP_FUNC_FAILED;
1676 	struct mvs_tmf_task tmf_task;
1677 
1678 	tmf_task.tmf = TMF_ABORT_TASK_SET;
1679 	rc = mvs_debug_issue_ssp_tmf(dev, lun, &tmf_task);
1680 
1681 	return rc;
1682 }
1683 
1684 int mvs_clear_aca(struct domain_device *dev, u8 *lun)
1685 {
1686 	int rc = TMF_RESP_FUNC_FAILED;
1687 	struct mvs_tmf_task tmf_task;
1688 
1689 	tmf_task.tmf = TMF_CLEAR_ACA;
1690 	rc = mvs_debug_issue_ssp_tmf(dev, lun, &tmf_task);
1691 
1692 	return rc;
1693 }
1694 
1695 int mvs_clear_task_set(struct domain_device *dev, u8 *lun)
1696 {
1697 	int rc = TMF_RESP_FUNC_FAILED;
1698 	struct mvs_tmf_task tmf_task;
1699 
1700 	tmf_task.tmf = TMF_CLEAR_TASK_SET;
1701 	rc = mvs_debug_issue_ssp_tmf(dev, lun, &tmf_task);
1702 
1703 	return rc;
1704 }
1705 
1706 static int mvs_sata_done(struct mvs_info *mvi, struct sas_task *task,
1707 			u32 slot_idx, int err)
1708 {
1709 	struct mvs_device *mvi_dev = task->dev->lldd_dev;
1710 	struct task_status_struct *tstat = &task->task_status;
1711 	struct ata_task_resp *resp = (struct ata_task_resp *)tstat->buf;
1712 	int stat = SAM_GOOD;
1713 
1714 
1715 	resp->frame_len = sizeof(struct dev_to_host_fis);
1716 	memcpy(&resp->ending_fis[0],
1717 	       SATA_RECEIVED_D2H_FIS(mvi_dev->taskfileset),
1718 	       sizeof(struct dev_to_host_fis));
1719 	tstat->buf_valid_size = sizeof(*resp);
1720 	if (unlikely(err))
1721 		stat = SAS_PROTO_RESPONSE;
1722 	return stat;
1723 }
1724 
1725 static int mvs_slot_err(struct mvs_info *mvi, struct sas_task *task,
1726 			 u32 slot_idx)
1727 {
1728 	struct mvs_slot_info *slot = &mvi->slot_info[slot_idx];
1729 	int stat;
1730 	u32 err_dw0 = le32_to_cpu(*(u32 *) (slot->response));
1731 	u32 tfs = 0;
1732 	enum mvs_port_type type = PORT_TYPE_SAS;
1733 
1734 	if (err_dw0 & CMD_ISS_STPD)
1735 		MVS_CHIP_DISP->issue_stop(mvi, type, tfs);
1736 
1737 	MVS_CHIP_DISP->command_active(mvi, slot_idx);
1738 
1739 	stat = SAM_CHECK_COND;
1740 	switch (task->task_proto) {
1741 	case SAS_PROTOCOL_SSP:
1742 		stat = SAS_ABORTED_TASK;
1743 		break;
1744 	case SAS_PROTOCOL_SMP:
1745 		stat = SAM_CHECK_COND;
1746 		break;
1747 
1748 	case SAS_PROTOCOL_SATA:
1749 	case SAS_PROTOCOL_STP:
1750 	case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP:
1751 	{
1752 		if (err_dw0 == 0x80400002)
1753 			mv_printk("find reserved error, why?\n");
1754 
1755 		task->ata_task.use_ncq = 0;
1756 		stat = SAS_PROTO_RESPONSE;
1757 		mvs_sata_done(mvi, task, slot_idx, 1);
1758 
1759 	}
1760 		break;
1761 	default:
1762 		break;
1763 	}
1764 
1765 	return stat;
1766 }
1767 
1768 int mvs_slot_complete(struct mvs_info *mvi, u32 rx_desc, u32 flags)
1769 {
1770 	u32 slot_idx = rx_desc & RXQ_SLOT_MASK;
1771 	struct mvs_slot_info *slot = &mvi->slot_info[slot_idx];
1772 	struct sas_task *task = slot->task;
1773 	struct mvs_device *mvi_dev = NULL;
1774 	struct task_status_struct *tstat;
1775 
1776 	bool aborted;
1777 	void *to;
1778 	enum exec_status sts;
1779 
1780 	if (mvi->exp_req)
1781 		mvi->exp_req--;
1782 	if (unlikely(!task || !task->lldd_task))
1783 		return -1;
1784 
1785 	tstat = &task->task_status;
1786 	mvi_dev = task->dev->lldd_dev;
1787 
1788 	mvs_hba_cq_dump(mvi);
1789 
1790 	spin_lock(&task->task_state_lock);
1791 	task->task_state_flags &=
1792 		~(SAS_TASK_STATE_PENDING | SAS_TASK_AT_INITIATOR);
1793 	task->task_state_flags |= SAS_TASK_STATE_DONE;
1794 	/* race condition*/
1795 	aborted = task->task_state_flags & SAS_TASK_STATE_ABORTED;
1796 	spin_unlock(&task->task_state_lock);
1797 
1798 	memset(tstat, 0, sizeof(*tstat));
1799 	tstat->resp = SAS_TASK_COMPLETE;
1800 
1801 	if (unlikely(aborted)) {
1802 		tstat->stat = SAS_ABORTED_TASK;
1803 		if (mvi_dev)
1804 			mvi_dev->runing_req--;
1805 		if (sas_protocol_ata(task->task_proto))
1806 			mvs_free_reg_set(mvi, mvi_dev);
1807 
1808 		mvs_slot_task_free(mvi, task, slot, slot_idx);
1809 		return -1;
1810 	}
1811 
1812 	if (unlikely(!mvi_dev || !slot->port->port_attached || flags)) {
1813 		mv_dprintk("port has not device.\n");
1814 		tstat->stat = SAS_PHY_DOWN;
1815 		goto out;
1816 	}
1817 
1818 	/*
1819 	if (unlikely((rx_desc & RXQ_ERR) || (*(u64 *) slot->response))) {
1820 		 mv_dprintk("Find device[%016llx] RXQ_ERR %X,
1821 		 err info:%016llx\n",
1822 		 SAS_ADDR(task->dev->sas_addr),
1823 		 rx_desc, (u64)(*(u64 *) slot->response));
1824 	}
1825 	*/
1826 
1827 	/* error info record present */
1828 	if (unlikely((rx_desc & RXQ_ERR) && (*(u64 *) slot->response))) {
1829 		tstat->stat = mvs_slot_err(mvi, task, slot_idx);
1830 		goto out;
1831 	}
1832 
1833 	switch (task->task_proto) {
1834 	case SAS_PROTOCOL_SSP:
1835 		/* hw says status == 0, datapres == 0 */
1836 		if (rx_desc & RXQ_GOOD) {
1837 			tstat->stat = SAM_GOOD;
1838 			tstat->resp = SAS_TASK_COMPLETE;
1839 		}
1840 		/* response frame present */
1841 		else if (rx_desc & RXQ_RSP) {
1842 			struct ssp_response_iu *iu = slot->response +
1843 						sizeof(struct mvs_err_info);
1844 			sas_ssp_task_response(mvi->dev, task, iu);
1845 		} else
1846 			tstat->stat = SAM_CHECK_COND;
1847 		break;
1848 
1849 	case SAS_PROTOCOL_SMP: {
1850 			struct scatterlist *sg_resp = &task->smp_task.smp_resp;
1851 			tstat->stat = SAM_GOOD;
1852 			to = kmap_atomic(sg_page(sg_resp), KM_IRQ0);
1853 			memcpy(to + sg_resp->offset,
1854 				slot->response + sizeof(struct mvs_err_info),
1855 				sg_dma_len(sg_resp));
1856 			kunmap_atomic(to, KM_IRQ0);
1857 			break;
1858 		}
1859 
1860 	case SAS_PROTOCOL_SATA:
1861 	case SAS_PROTOCOL_STP:
1862 	case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP: {
1863 			tstat->stat = mvs_sata_done(mvi, task, slot_idx, 0);
1864 			break;
1865 		}
1866 
1867 	default:
1868 		tstat->stat = SAM_CHECK_COND;
1869 		break;
1870 	}
1871 
1872 out:
1873 	if (mvi_dev) {
1874 		mvi_dev->runing_req--;
1875 		if (sas_protocol_ata(task->task_proto))
1876 			mvs_free_reg_set(mvi, mvi_dev);
1877 	}
1878 	mvs_slot_task_free(mvi, task, slot, slot_idx);
1879 	sts = tstat->stat;
1880 
1881 	spin_unlock(&mvi->lock);
1882 	if (task->task_done)
1883 		task->task_done(task);
1884 	else
1885 		mv_dprintk("why has not task_done.\n");
1886 	spin_lock(&mvi->lock);
1887 
1888 	return sts;
1889 }
1890 
1891 void mvs_release_task(struct mvs_info *mvi,
1892 		int phy_no, struct domain_device *dev)
1893 {
1894 	int i = 0; u32 slot_idx;
1895 	struct mvs_phy *phy;
1896 	struct mvs_port *port;
1897 	struct mvs_slot_info *slot, *slot2;
1898 
1899 	phy = &mvi->phy[phy_no];
1900 	port = phy->port;
1901 	if (!port)
1902 		return;
1903 
1904 	list_for_each_entry_safe(slot, slot2, &port->list, entry) {
1905 		struct sas_task *task;
1906 		slot_idx = (u32) (slot - mvi->slot_info);
1907 		task = slot->task;
1908 
1909 		if (dev && task->dev != dev)
1910 			continue;
1911 
1912 		mv_printk("Release slot [%x] tag[%x], task [%p]:\n",
1913 			slot_idx, slot->slot_tag, task);
1914 
1915 		if (task->task_proto & SAS_PROTOCOL_SSP) {
1916 			mv_printk("attached with SSP task CDB[");
1917 			for (i = 0; i < 16; i++)
1918 				mv_printk(" %02x", task->ssp_task.cdb[i]);
1919 			mv_printk(" ]\n");
1920 		}
1921 
1922 		mvs_slot_complete(mvi, slot_idx, 1);
1923 	}
1924 }
1925 
1926 static void mvs_phy_disconnected(struct mvs_phy *phy)
1927 {
1928 	phy->phy_attached = 0;
1929 	phy->att_dev_info = 0;
1930 	phy->att_dev_sas_addr = 0;
1931 }
1932 
1933 static void mvs_work_queue(struct work_struct *work)
1934 {
1935 	struct delayed_work *dw = container_of(work, struct delayed_work, work);
1936 	struct mvs_wq *mwq = container_of(dw, struct mvs_wq, work_q);
1937 	struct mvs_info *mvi = mwq->mvi;
1938 	unsigned long flags;
1939 
1940 	spin_lock_irqsave(&mvi->lock, flags);
1941 	if (mwq->handler & PHY_PLUG_EVENT) {
1942 		u32 phy_no = (unsigned long) mwq->data;
1943 		struct sas_ha_struct *sas_ha = mvi->sas;
1944 		struct mvs_phy *phy = &mvi->phy[phy_no];
1945 		struct asd_sas_phy *sas_phy = &phy->sas_phy;
1946 
1947 		if (phy->phy_event & PHY_PLUG_OUT) {
1948 			u32 tmp;
1949 			struct sas_identify_frame *id;
1950 			id = (struct sas_identify_frame *)phy->frame_rcvd;
1951 			tmp = MVS_CHIP_DISP->read_phy_ctl(mvi, phy_no);
1952 			phy->phy_event &= ~PHY_PLUG_OUT;
1953 			if (!(tmp & PHY_READY_MASK)) {
1954 				sas_phy_disconnected(sas_phy);
1955 				mvs_phy_disconnected(phy);
1956 				sas_ha->notify_phy_event(sas_phy,
1957 					PHYE_LOSS_OF_SIGNAL);
1958 				mv_dprintk("phy%d Removed Device\n", phy_no);
1959 			} else {
1960 				MVS_CHIP_DISP->detect_porttype(mvi, phy_no);
1961 				mvs_update_phyinfo(mvi, phy_no, 1);
1962 				mvs_bytes_dmaed(mvi, phy_no);
1963 				mvs_port_notify_formed(sas_phy, 0);
1964 				mv_dprintk("phy%d Attached Device\n", phy_no);
1965 			}
1966 		}
1967 	}
1968 	list_del(&mwq->entry);
1969 	spin_unlock_irqrestore(&mvi->lock, flags);
1970 	kfree(mwq);
1971 }
1972 
1973 static int mvs_handle_event(struct mvs_info *mvi, void *data, int handler)
1974 {
1975 	struct mvs_wq *mwq;
1976 	int ret = 0;
1977 
1978 	mwq = kmalloc(sizeof(struct mvs_wq), GFP_ATOMIC);
1979 	if (mwq) {
1980 		mwq->mvi = mvi;
1981 		mwq->data = data;
1982 		mwq->handler = handler;
1983 		MV_INIT_DELAYED_WORK(&mwq->work_q, mvs_work_queue, mwq);
1984 		list_add_tail(&mwq->entry, &mvi->wq_list);
1985 		schedule_delayed_work(&mwq->work_q, HZ * 2);
1986 	} else
1987 		ret = -ENOMEM;
1988 
1989 	return ret;
1990 }
1991 
1992 static void mvs_sig_time_out(unsigned long tphy)
1993 {
1994 	struct mvs_phy *phy = (struct mvs_phy *)tphy;
1995 	struct mvs_info *mvi = phy->mvi;
1996 	u8 phy_no;
1997 
1998 	for (phy_no = 0; phy_no < mvi->chip->n_phy; phy_no++) {
1999 		if (&mvi->phy[phy_no] == phy) {
2000 			mv_dprintk("Get signature time out, reset phy %d\n",
2001 				phy_no+mvi->id*mvi->chip->n_phy);
2002 			MVS_CHIP_DISP->phy_reset(mvi, phy_no, 1);
2003 		}
2004 	}
2005 }
2006 
2007 static void mvs_sig_remove_timer(struct mvs_phy *phy)
2008 {
2009 	if (phy->timer.function)
2010 		del_timer(&phy->timer);
2011 	phy->timer.function = NULL;
2012 }
2013 
2014 void mvs_int_port(struct mvs_info *mvi, int phy_no, u32 events)
2015 {
2016 	u32 tmp;
2017 	struct sas_ha_struct *sas_ha = mvi->sas;
2018 	struct mvs_phy *phy = &mvi->phy[phy_no];
2019 	struct asd_sas_phy *sas_phy = &phy->sas_phy;
2020 
2021 	phy->irq_status = MVS_CHIP_DISP->read_port_irq_stat(mvi, phy_no);
2022 	mv_dprintk("port %d ctrl sts=0x%X.\n", phy_no+mvi->id*mvi->chip->n_phy,
2023 		MVS_CHIP_DISP->read_phy_ctl(mvi, phy_no));
2024 	mv_dprintk("Port %d irq sts = 0x%X\n", phy_no+mvi->id*mvi->chip->n_phy,
2025 		phy->irq_status);
2026 
2027 	/*
2028 	* events is port event now ,
2029 	* we need check the interrupt status which belongs to per port.
2030 	*/
2031 
2032 	if (phy->irq_status & PHYEV_DCDR_ERR)
2033 		mv_dprintk("port %d STP decoding error.\n",
2034 		phy_no+mvi->id*mvi->chip->n_phy);
2035 
2036 	if (phy->irq_status & PHYEV_POOF) {
2037 		if (!(phy->phy_event & PHY_PLUG_OUT)) {
2038 			int dev_sata = phy->phy_type & PORT_TYPE_SATA;
2039 			int ready;
2040 			mvs_release_task(mvi, phy_no, NULL);
2041 			phy->phy_event |= PHY_PLUG_OUT;
2042 			mvs_handle_event(mvi,
2043 				(void *)(unsigned long)phy_no,
2044 				PHY_PLUG_EVENT);
2045 			ready = mvs_is_phy_ready(mvi, phy_no);
2046 			if (!ready)
2047 				mv_dprintk("phy%d Unplug Notice\n",
2048 					phy_no +
2049 					mvi->id * mvi->chip->n_phy);
2050 			if (ready || dev_sata) {
2051 				if (MVS_CHIP_DISP->stp_reset)
2052 					MVS_CHIP_DISP->stp_reset(mvi,
2053 							phy_no);
2054 				else
2055 					MVS_CHIP_DISP->phy_reset(mvi,
2056 							phy_no, 0);
2057 				return;
2058 			}
2059 		}
2060 	}
2061 
2062 	if (phy->irq_status & PHYEV_COMWAKE) {
2063 		tmp = MVS_CHIP_DISP->read_port_irq_mask(mvi, phy_no);
2064 		MVS_CHIP_DISP->write_port_irq_mask(mvi, phy_no,
2065 					tmp | PHYEV_SIG_FIS);
2066 		if (phy->timer.function == NULL) {
2067 			phy->timer.data = (unsigned long)phy;
2068 			phy->timer.function = mvs_sig_time_out;
2069 			phy->timer.expires = jiffies + 10*HZ;
2070 			add_timer(&phy->timer);
2071 		}
2072 	}
2073 	if (phy->irq_status & (PHYEV_SIG_FIS | PHYEV_ID_DONE)) {
2074 		phy->phy_status = mvs_is_phy_ready(mvi, phy_no);
2075 		mvs_sig_remove_timer(phy);
2076 		mv_dprintk("notify plug in on phy[%d]\n", phy_no);
2077 		if (phy->phy_status) {
2078 			mdelay(10);
2079 			MVS_CHIP_DISP->detect_porttype(mvi, phy_no);
2080 			if (phy->phy_type & PORT_TYPE_SATA) {
2081 				tmp = MVS_CHIP_DISP->read_port_irq_mask(
2082 						mvi, phy_no);
2083 				tmp &= ~PHYEV_SIG_FIS;
2084 				MVS_CHIP_DISP->write_port_irq_mask(mvi,
2085 							phy_no, tmp);
2086 			}
2087 			mvs_update_phyinfo(mvi, phy_no, 0);
2088 			mvs_bytes_dmaed(mvi, phy_no);
2089 			/* whether driver is going to handle hot plug */
2090 			if (phy->phy_event & PHY_PLUG_OUT) {
2091 				mvs_port_notify_formed(sas_phy, 0);
2092 				phy->phy_event &= ~PHY_PLUG_OUT;
2093 			}
2094 		} else {
2095 			mv_dprintk("plugin interrupt but phy%d is gone\n",
2096 				phy_no + mvi->id*mvi->chip->n_phy);
2097 		}
2098 	} else if (phy->irq_status & PHYEV_BROAD_CH) {
2099 		mv_dprintk("port %d broadcast change.\n",
2100 			phy_no + mvi->id*mvi->chip->n_phy);
2101 		/* exception for Samsung disk drive*/
2102 		mdelay(1000);
2103 		sas_ha->notify_port_event(sas_phy, PORTE_BROADCAST_RCVD);
2104 	}
2105 	MVS_CHIP_DISP->write_port_irq_stat(mvi, phy_no, phy->irq_status);
2106 }
2107 
2108 int mvs_int_rx(struct mvs_info *mvi, bool self_clear)
2109 {
2110 	u32 rx_prod_idx, rx_desc;
2111 	bool attn = false;
2112 
2113 	/* the first dword in the RX ring is special: it contains
2114 	 * a mirror of the hardware's RX producer index, so that
2115 	 * we don't have to stall the CPU reading that register.
2116 	 * The actual RX ring is offset by one dword, due to this.
2117 	 */
2118 	rx_prod_idx = mvi->rx_cons;
2119 	mvi->rx_cons = le32_to_cpu(mvi->rx[0]);
2120 	if (mvi->rx_cons == 0xfff)	/* h/w hasn't touched RX ring yet */
2121 		return 0;
2122 
2123 	/* The CMPL_Q may come late, read from register and try again
2124 	* note: if coalescing is enabled,
2125 	* it will need to read from register every time for sure
2126 	*/
2127 	if (unlikely(mvi->rx_cons == rx_prod_idx))
2128 		mvi->rx_cons = MVS_CHIP_DISP->rx_update(mvi) & RX_RING_SZ_MASK;
2129 
2130 	if (mvi->rx_cons == rx_prod_idx)
2131 		return 0;
2132 
2133 	while (mvi->rx_cons != rx_prod_idx) {
2134 		/* increment our internal RX consumer pointer */
2135 		rx_prod_idx = (rx_prod_idx + 1) & (MVS_RX_RING_SZ - 1);
2136 		rx_desc = le32_to_cpu(mvi->rx[rx_prod_idx + 1]);
2137 
2138 		if (likely(rx_desc & RXQ_DONE))
2139 			mvs_slot_complete(mvi, rx_desc, 0);
2140 		if (rx_desc & RXQ_ATTN) {
2141 			attn = true;
2142 		} else if (rx_desc & RXQ_ERR) {
2143 			if (!(rx_desc & RXQ_DONE))
2144 				mvs_slot_complete(mvi, rx_desc, 0);
2145 		} else if (rx_desc & RXQ_SLOT_RESET) {
2146 			mvs_slot_free(mvi, rx_desc);
2147 		}
2148 	}
2149 
2150 	if (attn && self_clear)
2151 		MVS_CHIP_DISP->int_full(mvi);
2152 	return 0;
2153 }
2154 
2155