1 /* 2 * Management Module Support for MPT (Message Passing Technology) based 3 * controllers 4 * 5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_ctl.c 6 * Copyright (C) 2012-2014 LSI Corporation 7 * Copyright (C) 2013-2014 Avago Technologies 8 * (mailto: MPT-FusionLinux.pdl@avagotech.com) 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License 12 * as published by the Free Software Foundation; either version 2 13 * of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * NO WARRANTY 21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR 22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT 23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, 24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is 25 * solely responsible for determining the appropriateness of using and 26 * distributing the Program and assumes all risks associated with its 27 * exercise of rights under this Agreement, including but not limited to 28 * the risks and costs of program errors, damage to or loss of data, 29 * programs or equipment, and unavailability or interruption of operations. 30 31 * DISCLAIMER OF LIABILITY 32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY 33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND 35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED 38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES 39 40 * You should have received a copy of the GNU General Public License 41 * along with this program; if not, write to the Free Software 42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, 43 * USA. 44 */ 45 46 #include <linux/kernel.h> 47 #include <linux/module.h> 48 #include <linux/errno.h> 49 #include <linux/init.h> 50 #include <linux/slab.h> 51 #include <linux/types.h> 52 #include <linux/pci.h> 53 #include <linux/delay.h> 54 #include <linux/compat.h> 55 #include <linux/poll.h> 56 57 #include <linux/io.h> 58 #include <linux/uaccess.h> 59 60 #include "mpt3sas_base.h" 61 #include "mpt3sas_ctl.h" 62 63 64 static struct fasync_struct *async_queue; 65 static DECLARE_WAIT_QUEUE_HEAD(ctl_poll_wait); 66 67 68 /** 69 * enum block_state - blocking state 70 * @NON_BLOCKING: non blocking 71 * @BLOCKING: blocking 72 * 73 * These states are for ioctls that need to wait for a response 74 * from firmware, so they probably require sleep. 75 */ 76 enum block_state { 77 NON_BLOCKING, 78 BLOCKING, 79 }; 80 81 /** 82 * _ctl_display_some_debug - debug routine 83 * @ioc: per adapter object 84 * @smid: system request message index 85 * @calling_function_name: string pass from calling function 86 * @mpi_reply: reply message frame 87 * Context: none. 88 * 89 * Function for displaying debug info helpful when debugging issues 90 * in this module. 91 */ 92 static void 93 _ctl_display_some_debug(struct MPT3SAS_ADAPTER *ioc, u16 smid, 94 char *calling_function_name, MPI2DefaultReply_t *mpi_reply) 95 { 96 Mpi2ConfigRequest_t *mpi_request; 97 char *desc = NULL; 98 99 if (!(ioc->logging_level & MPT_DEBUG_IOCTL)) 100 return; 101 102 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 103 switch (mpi_request->Function) { 104 case MPI2_FUNCTION_SCSI_IO_REQUEST: 105 { 106 Mpi2SCSIIORequest_t *scsi_request = 107 (Mpi2SCSIIORequest_t *)mpi_request; 108 109 snprintf(ioc->tmp_string, MPT_STRING_LENGTH, 110 "scsi_io, cmd(0x%02x), cdb_len(%d)", 111 scsi_request->CDB.CDB32[0], 112 le16_to_cpu(scsi_request->IoFlags) & 0xF); 113 desc = ioc->tmp_string; 114 break; 115 } 116 case MPI2_FUNCTION_SCSI_TASK_MGMT: 117 desc = "task_mgmt"; 118 break; 119 case MPI2_FUNCTION_IOC_INIT: 120 desc = "ioc_init"; 121 break; 122 case MPI2_FUNCTION_IOC_FACTS: 123 desc = "ioc_facts"; 124 break; 125 case MPI2_FUNCTION_CONFIG: 126 { 127 Mpi2ConfigRequest_t *config_request = 128 (Mpi2ConfigRequest_t *)mpi_request; 129 130 snprintf(ioc->tmp_string, MPT_STRING_LENGTH, 131 "config, type(0x%02x), ext_type(0x%02x), number(%d)", 132 (config_request->Header.PageType & 133 MPI2_CONFIG_PAGETYPE_MASK), config_request->ExtPageType, 134 config_request->Header.PageNumber); 135 desc = ioc->tmp_string; 136 break; 137 } 138 case MPI2_FUNCTION_PORT_FACTS: 139 desc = "port_facts"; 140 break; 141 case MPI2_FUNCTION_PORT_ENABLE: 142 desc = "port_enable"; 143 break; 144 case MPI2_FUNCTION_EVENT_NOTIFICATION: 145 desc = "event_notification"; 146 break; 147 case MPI2_FUNCTION_FW_DOWNLOAD: 148 desc = "fw_download"; 149 break; 150 case MPI2_FUNCTION_FW_UPLOAD: 151 desc = "fw_upload"; 152 break; 153 case MPI2_FUNCTION_RAID_ACTION: 154 desc = "raid_action"; 155 break; 156 case MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH: 157 { 158 Mpi2SCSIIORequest_t *scsi_request = 159 (Mpi2SCSIIORequest_t *)mpi_request; 160 161 snprintf(ioc->tmp_string, MPT_STRING_LENGTH, 162 "raid_pass, cmd(0x%02x), cdb_len(%d)", 163 scsi_request->CDB.CDB32[0], 164 le16_to_cpu(scsi_request->IoFlags) & 0xF); 165 desc = ioc->tmp_string; 166 break; 167 } 168 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL: 169 desc = "sas_iounit_cntl"; 170 break; 171 case MPI2_FUNCTION_SATA_PASSTHROUGH: 172 desc = "sata_pass"; 173 break; 174 case MPI2_FUNCTION_DIAG_BUFFER_POST: 175 desc = "diag_buffer_post"; 176 break; 177 case MPI2_FUNCTION_DIAG_RELEASE: 178 desc = "diag_release"; 179 break; 180 case MPI2_FUNCTION_SMP_PASSTHROUGH: 181 desc = "smp_passthrough"; 182 break; 183 case MPI2_FUNCTION_TOOLBOX: 184 desc = "toolbox"; 185 break; 186 case MPI2_FUNCTION_NVME_ENCAPSULATED: 187 desc = "nvme_encapsulated"; 188 break; 189 } 190 191 if (!desc) 192 return; 193 194 ioc_info(ioc, "%s: %s, smid(%d)\n", calling_function_name, desc, smid); 195 196 if (!mpi_reply) 197 return; 198 199 if (mpi_reply->IOCStatus || mpi_reply->IOCLogInfo) 200 ioc_info(ioc, "\tiocstatus(0x%04x), loginfo(0x%08x)\n", 201 le16_to_cpu(mpi_reply->IOCStatus), 202 le32_to_cpu(mpi_reply->IOCLogInfo)); 203 204 if (mpi_request->Function == MPI2_FUNCTION_SCSI_IO_REQUEST || 205 mpi_request->Function == 206 MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH) { 207 Mpi2SCSIIOReply_t *scsi_reply = 208 (Mpi2SCSIIOReply_t *)mpi_reply; 209 struct _sas_device *sas_device = NULL; 210 struct _pcie_device *pcie_device = NULL; 211 212 sas_device = mpt3sas_get_sdev_by_handle(ioc, 213 le16_to_cpu(scsi_reply->DevHandle)); 214 if (sas_device) { 215 ioc_warn(ioc, "\tsas_address(0x%016llx), phy(%d)\n", 216 (u64)sas_device->sas_address, 217 sas_device->phy); 218 ioc_warn(ioc, "\tenclosure_logical_id(0x%016llx), slot(%d)\n", 219 (u64)sas_device->enclosure_logical_id, 220 sas_device->slot); 221 sas_device_put(sas_device); 222 } 223 if (!sas_device) { 224 pcie_device = mpt3sas_get_pdev_by_handle(ioc, 225 le16_to_cpu(scsi_reply->DevHandle)); 226 if (pcie_device) { 227 ioc_warn(ioc, "\tWWID(0x%016llx), port(%d)\n", 228 (unsigned long long)pcie_device->wwid, 229 pcie_device->port_num); 230 if (pcie_device->enclosure_handle != 0) 231 ioc_warn(ioc, "\tenclosure_logical_id(0x%016llx), slot(%d)\n", 232 (u64)pcie_device->enclosure_logical_id, 233 pcie_device->slot); 234 pcie_device_put(pcie_device); 235 } 236 } 237 if (scsi_reply->SCSIState || scsi_reply->SCSIStatus) 238 ioc_info(ioc, "\tscsi_state(0x%02x), scsi_status(0x%02x)\n", 239 scsi_reply->SCSIState, 240 scsi_reply->SCSIStatus); 241 } 242 } 243 244 /** 245 * mpt3sas_ctl_done - ctl module completion routine 246 * @ioc: per adapter object 247 * @smid: system request message index 248 * @msix_index: MSIX table index supplied by the OS 249 * @reply: reply message frame(lower 32bit addr) 250 * Context: none. 251 * 252 * The callback handler when using ioc->ctl_cb_idx. 253 * 254 * Return: 1 meaning mf should be freed from _base_interrupt 255 * 0 means the mf is freed from this function. 256 */ 257 u8 258 mpt3sas_ctl_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 259 u32 reply) 260 { 261 MPI2DefaultReply_t *mpi_reply; 262 Mpi2SCSIIOReply_t *scsiio_reply; 263 Mpi26NVMeEncapsulatedErrorReply_t *nvme_error_reply; 264 const void *sense_data; 265 u32 sz; 266 267 if (ioc->ctl_cmds.status == MPT3_CMD_NOT_USED) 268 return 1; 269 if (ioc->ctl_cmds.smid != smid) 270 return 1; 271 ioc->ctl_cmds.status |= MPT3_CMD_COMPLETE; 272 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 273 if (mpi_reply) { 274 memcpy(ioc->ctl_cmds.reply, mpi_reply, mpi_reply->MsgLength*4); 275 ioc->ctl_cmds.status |= MPT3_CMD_REPLY_VALID; 276 /* get sense data */ 277 if (mpi_reply->Function == MPI2_FUNCTION_SCSI_IO_REQUEST || 278 mpi_reply->Function == 279 MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH) { 280 scsiio_reply = (Mpi2SCSIIOReply_t *)mpi_reply; 281 if (scsiio_reply->SCSIState & 282 MPI2_SCSI_STATE_AUTOSENSE_VALID) { 283 sz = min_t(u32, SCSI_SENSE_BUFFERSIZE, 284 le32_to_cpu(scsiio_reply->SenseCount)); 285 sense_data = mpt3sas_base_get_sense_buffer(ioc, 286 smid); 287 memcpy(ioc->ctl_cmds.sense, sense_data, sz); 288 } 289 } 290 /* 291 * Get Error Response data for NVMe device. The ctl_cmds.sense 292 * buffer is used to store the Error Response data. 293 */ 294 if (mpi_reply->Function == MPI2_FUNCTION_NVME_ENCAPSULATED) { 295 nvme_error_reply = 296 (Mpi26NVMeEncapsulatedErrorReply_t *)mpi_reply; 297 sz = min_t(u32, NVME_ERROR_RESPONSE_SIZE, 298 le16_to_cpu(nvme_error_reply->ErrorResponseCount)); 299 sense_data = mpt3sas_base_get_sense_buffer(ioc, smid); 300 memcpy(ioc->ctl_cmds.sense, sense_data, sz); 301 } 302 } 303 304 _ctl_display_some_debug(ioc, smid, "ctl_done", mpi_reply); 305 ioc->ctl_cmds.status &= ~MPT3_CMD_PENDING; 306 complete(&ioc->ctl_cmds.done); 307 return 1; 308 } 309 310 /** 311 * _ctl_check_event_type - determines when an event needs logging 312 * @ioc: per adapter object 313 * @event: firmware event 314 * 315 * The bitmask in ioc->event_type[] indicates which events should be 316 * be saved in the driver event_log. This bitmask is set by application. 317 * 318 * Return: 1 when event should be captured, or zero means no match. 319 */ 320 static int 321 _ctl_check_event_type(struct MPT3SAS_ADAPTER *ioc, u16 event) 322 { 323 u16 i; 324 u32 desired_event; 325 326 if (event >= 128 || !event || !ioc->event_log) 327 return 0; 328 329 desired_event = (1 << (event % 32)); 330 if (!desired_event) 331 desired_event = 1; 332 i = event / 32; 333 return desired_event & ioc->event_type[i]; 334 } 335 336 /** 337 * mpt3sas_ctl_add_to_event_log - add event 338 * @ioc: per adapter object 339 * @mpi_reply: reply message frame 340 */ 341 void 342 mpt3sas_ctl_add_to_event_log(struct MPT3SAS_ADAPTER *ioc, 343 Mpi2EventNotificationReply_t *mpi_reply) 344 { 345 struct MPT3_IOCTL_EVENTS *event_log; 346 u16 event; 347 int i; 348 u32 sz, event_data_sz; 349 u8 send_aen = 0; 350 351 if (!ioc->event_log) 352 return; 353 354 event = le16_to_cpu(mpi_reply->Event); 355 356 if (_ctl_check_event_type(ioc, event)) { 357 358 /* insert entry into circular event_log */ 359 i = ioc->event_context % MPT3SAS_CTL_EVENT_LOG_SIZE; 360 event_log = ioc->event_log; 361 event_log[i].event = event; 362 event_log[i].context = ioc->event_context++; 363 364 event_data_sz = le16_to_cpu(mpi_reply->EventDataLength)*4; 365 sz = min_t(u32, event_data_sz, MPT3_EVENT_DATA_SIZE); 366 memset(event_log[i].data, 0, MPT3_EVENT_DATA_SIZE); 367 memcpy(event_log[i].data, mpi_reply->EventData, sz); 368 send_aen = 1; 369 } 370 371 /* This aen_event_read_flag flag is set until the 372 * application has read the event log. 373 * For MPI2_EVENT_LOG_ENTRY_ADDED, we always notify. 374 */ 375 if (event == MPI2_EVENT_LOG_ENTRY_ADDED || 376 (send_aen && !ioc->aen_event_read_flag)) { 377 ioc->aen_event_read_flag = 1; 378 wake_up_interruptible(&ctl_poll_wait); 379 if (async_queue) 380 kill_fasync(&async_queue, SIGIO, POLL_IN); 381 } 382 } 383 384 /** 385 * mpt3sas_ctl_event_callback - firmware event handler (called at ISR time) 386 * @ioc: per adapter object 387 * @msix_index: MSIX table index supplied by the OS 388 * @reply: reply message frame(lower 32bit addr) 389 * Context: interrupt. 390 * 391 * This function merely adds a new work task into ioc->firmware_event_thread. 392 * The tasks are worked from _firmware_event_work in user context. 393 * 394 * Return: 1 meaning mf should be freed from _base_interrupt 395 * 0 means the mf is freed from this function. 396 */ 397 u8 398 mpt3sas_ctl_event_callback(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, 399 u32 reply) 400 { 401 Mpi2EventNotificationReply_t *mpi_reply; 402 403 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 404 if (mpi_reply) 405 mpt3sas_ctl_add_to_event_log(ioc, mpi_reply); 406 return 1; 407 } 408 409 /** 410 * _ctl_verify_adapter - validates ioc_number passed from application 411 * @ioc_number: ? 412 * @iocpp: The ioc pointer is returned in this. 413 * @mpi_version: will be MPI2_VERSION for mpt2ctl ioctl device & 414 * MPI25_VERSION | MPI26_VERSION for mpt3ctl ioctl device. 415 * 416 * Return: (-1) means error, else ioc_number. 417 */ 418 static int 419 _ctl_verify_adapter(int ioc_number, struct MPT3SAS_ADAPTER **iocpp, 420 int mpi_version) 421 { 422 struct MPT3SAS_ADAPTER *ioc; 423 int version = 0; 424 /* global ioc lock to protect controller on list operations */ 425 spin_lock(&gioc_lock); 426 list_for_each_entry(ioc, &mpt3sas_ioc_list, list) { 427 if (ioc->id != ioc_number) 428 continue; 429 /* Check whether this ioctl command is from right 430 * ioctl device or not, if not continue the search. 431 */ 432 version = ioc->hba_mpi_version_belonged; 433 /* MPI25_VERSION and MPI26_VERSION uses same ioctl 434 * device. 435 */ 436 if (mpi_version == (MPI25_VERSION | MPI26_VERSION)) { 437 if ((version == MPI25_VERSION) || 438 (version == MPI26_VERSION)) 439 goto out; 440 else 441 continue; 442 } else { 443 if (version != mpi_version) 444 continue; 445 } 446 out: 447 spin_unlock(&gioc_lock); 448 *iocpp = ioc; 449 return ioc_number; 450 } 451 spin_unlock(&gioc_lock); 452 *iocpp = NULL; 453 return -1; 454 } 455 456 /** 457 * mpt3sas_ctl_pre_reset_handler - reset callback handler (for ctl) 458 * @ioc: per adapter object 459 * 460 * The handler for doing any required cleanup or initialization. 461 */ 462 void mpt3sas_ctl_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc) 463 { 464 int i; 465 u8 issue_reset; 466 467 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__)); 468 for (i = 0; i < MPI2_DIAG_BUF_TYPE_COUNT; i++) { 469 if (!(ioc->diag_buffer_status[i] & 470 MPT3_DIAG_BUFFER_IS_REGISTERED)) 471 continue; 472 if ((ioc->diag_buffer_status[i] & 473 MPT3_DIAG_BUFFER_IS_RELEASED)) 474 continue; 475 476 /* 477 * add a log message to indicate the release 478 */ 479 ioc_info(ioc, 480 "%s: Releasing the trace buffer due to adapter reset.", 481 __func__); 482 ioc->htb_rel.buffer_rel_condition = 483 MPT3_DIAG_BUFFER_REL_TRIGGER; 484 mpt3sas_send_diag_release(ioc, i, &issue_reset); 485 } 486 } 487 488 /** 489 * mpt3sas_ctl_clear_outstanding_ioctls - clears outstanding ioctl cmd. 490 * @ioc: per adapter object 491 * 492 * The handler for doing any required cleanup or initialization. 493 */ 494 void mpt3sas_ctl_clear_outstanding_ioctls(struct MPT3SAS_ADAPTER *ioc) 495 { 496 dtmprintk(ioc, 497 ioc_info(ioc, "%s: clear outstanding ioctl cmd\n", __func__)); 498 if (ioc->ctl_cmds.status & MPT3_CMD_PENDING) { 499 ioc->ctl_cmds.status |= MPT3_CMD_RESET; 500 mpt3sas_base_free_smid(ioc, ioc->ctl_cmds.smid); 501 complete(&ioc->ctl_cmds.done); 502 } 503 } 504 505 /** 506 * mpt3sas_ctl_reset_done_handler - reset callback handler (for ctl) 507 * @ioc: per adapter object 508 * 509 * The handler for doing any required cleanup or initialization. 510 */ 511 void mpt3sas_ctl_reset_done_handler(struct MPT3SAS_ADAPTER *ioc) 512 { 513 int i; 514 515 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__)); 516 517 for (i = 0; i < MPI2_DIAG_BUF_TYPE_COUNT; i++) { 518 if (!(ioc->diag_buffer_status[i] & 519 MPT3_DIAG_BUFFER_IS_REGISTERED)) 520 continue; 521 if ((ioc->diag_buffer_status[i] & 522 MPT3_DIAG_BUFFER_IS_RELEASED)) 523 continue; 524 ioc->diag_buffer_status[i] |= 525 MPT3_DIAG_BUFFER_IS_DIAG_RESET; 526 } 527 } 528 529 /** 530 * _ctl_fasync - 531 * @fd: ? 532 * @filep: ? 533 * @mode: ? 534 * 535 * Called when application request fasyn callback handler. 536 */ 537 static int 538 _ctl_fasync(int fd, struct file *filep, int mode) 539 { 540 return fasync_helper(fd, filep, mode, &async_queue); 541 } 542 543 /** 544 * _ctl_poll - 545 * @filep: ? 546 * @wait: ? 547 * 548 */ 549 static __poll_t 550 _ctl_poll(struct file *filep, poll_table *wait) 551 { 552 struct MPT3SAS_ADAPTER *ioc; 553 554 poll_wait(filep, &ctl_poll_wait, wait); 555 556 /* global ioc lock to protect controller on list operations */ 557 spin_lock(&gioc_lock); 558 list_for_each_entry(ioc, &mpt3sas_ioc_list, list) { 559 if (ioc->aen_event_read_flag) { 560 spin_unlock(&gioc_lock); 561 return EPOLLIN | EPOLLRDNORM; 562 } 563 } 564 spin_unlock(&gioc_lock); 565 return 0; 566 } 567 568 /** 569 * _ctl_set_task_mid - assign an active smid to tm request 570 * @ioc: per adapter object 571 * @karg: (struct mpt3_ioctl_command) 572 * @tm_request: pointer to mf from user space 573 * 574 * Return: 0 when an smid if found, else fail. 575 * during failure, the reply frame is filled. 576 */ 577 static int 578 _ctl_set_task_mid(struct MPT3SAS_ADAPTER *ioc, struct mpt3_ioctl_command *karg, 579 Mpi2SCSITaskManagementRequest_t *tm_request) 580 { 581 bool found = false; 582 u16 smid; 583 u16 handle; 584 struct scsi_cmnd *scmd; 585 struct MPT3SAS_DEVICE *priv_data; 586 Mpi2SCSITaskManagementReply_t *tm_reply; 587 u32 sz; 588 u32 lun; 589 char *desc = NULL; 590 591 if (tm_request->TaskType == MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK) 592 desc = "abort_task"; 593 else if (tm_request->TaskType == MPI2_SCSITASKMGMT_TASKTYPE_QUERY_TASK) 594 desc = "query_task"; 595 else 596 return 0; 597 598 lun = scsilun_to_int((struct scsi_lun *)tm_request->LUN); 599 600 handle = le16_to_cpu(tm_request->DevHandle); 601 for (smid = ioc->scsiio_depth; smid && !found; smid--) { 602 struct scsiio_tracker *st; 603 __le16 task_mid; 604 605 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid); 606 if (!scmd) 607 continue; 608 if (lun != scmd->device->lun) 609 continue; 610 priv_data = scmd->device->hostdata; 611 if (priv_data->sas_target == NULL) 612 continue; 613 if (priv_data->sas_target->handle != handle) 614 continue; 615 st = scsi_cmd_priv(scmd); 616 617 /* 618 * If the given TaskMID from the user space is zero, then the 619 * first outstanding smid will be picked up. Otherwise, 620 * targeted smid will be the one. 621 */ 622 task_mid = cpu_to_le16(st->smid); 623 if (!tm_request->TaskMID) 624 tm_request->TaskMID = task_mid; 625 found = tm_request->TaskMID == task_mid; 626 } 627 628 if (!found) { 629 dctlprintk(ioc, 630 ioc_info(ioc, "%s: handle(0x%04x), lun(%d), no active mid!!\n", 631 desc, le16_to_cpu(tm_request->DevHandle), 632 lun)); 633 tm_reply = ioc->ctl_cmds.reply; 634 tm_reply->DevHandle = tm_request->DevHandle; 635 tm_reply->Function = MPI2_FUNCTION_SCSI_TASK_MGMT; 636 tm_reply->TaskType = tm_request->TaskType; 637 tm_reply->MsgLength = sizeof(Mpi2SCSITaskManagementReply_t)/4; 638 tm_reply->VP_ID = tm_request->VP_ID; 639 tm_reply->VF_ID = tm_request->VF_ID; 640 sz = min_t(u32, karg->max_reply_bytes, ioc->reply_sz); 641 if (copy_to_user(karg->reply_frame_buf_ptr, ioc->ctl_cmds.reply, 642 sz)) 643 pr_err("failure at %s:%d/%s()!\n", __FILE__, 644 __LINE__, __func__); 645 return 1; 646 } 647 648 dctlprintk(ioc, 649 ioc_info(ioc, "%s: handle(0x%04x), lun(%d), task_mid(%d)\n", 650 desc, le16_to_cpu(tm_request->DevHandle), lun, 651 le16_to_cpu(tm_request->TaskMID))); 652 return 0; 653 } 654 655 /** 656 * _ctl_do_mpt_command - main handler for MPT3COMMAND opcode 657 * @ioc: per adapter object 658 * @karg: (struct mpt3_ioctl_command) 659 * @mf: pointer to mf in user space 660 */ 661 static long 662 _ctl_do_mpt_command(struct MPT3SAS_ADAPTER *ioc, struct mpt3_ioctl_command karg, 663 void __user *mf) 664 { 665 MPI2RequestHeader_t *mpi_request = NULL, *request; 666 MPI2DefaultReply_t *mpi_reply; 667 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request = NULL; 668 struct _pcie_device *pcie_device = NULL; 669 u16 smid; 670 unsigned long timeout; 671 u8 issue_reset; 672 u32 sz, sz_arg; 673 void *psge; 674 void *data_out = NULL; 675 dma_addr_t data_out_dma = 0; 676 size_t data_out_sz = 0; 677 void *data_in = NULL; 678 dma_addr_t data_in_dma = 0; 679 size_t data_in_sz = 0; 680 long ret; 681 u16 device_handle = MPT3SAS_INVALID_DEVICE_HANDLE; 682 683 issue_reset = 0; 684 685 if (ioc->ctl_cmds.status != MPT3_CMD_NOT_USED) { 686 ioc_err(ioc, "%s: ctl_cmd in use\n", __func__); 687 ret = -EAGAIN; 688 goto out; 689 } 690 691 ret = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT); 692 if (ret) 693 goto out; 694 695 mpi_request = kzalloc(ioc->request_sz, GFP_KERNEL); 696 if (!mpi_request) { 697 ioc_err(ioc, "%s: failed obtaining a memory for mpi_request\n", 698 __func__); 699 ret = -ENOMEM; 700 goto out; 701 } 702 703 /* Check for overflow and wraparound */ 704 if (karg.data_sge_offset * 4 > ioc->request_sz || 705 karg.data_sge_offset > (UINT_MAX / 4)) { 706 ret = -EINVAL; 707 goto out; 708 } 709 710 /* copy in request message frame from user */ 711 if (copy_from_user(mpi_request, mf, karg.data_sge_offset*4)) { 712 pr_err("failure at %s:%d/%s()!\n", __FILE__, __LINE__, 713 __func__); 714 ret = -EFAULT; 715 goto out; 716 } 717 718 if (mpi_request->Function == MPI2_FUNCTION_SCSI_TASK_MGMT) { 719 smid = mpt3sas_base_get_smid_hpr(ioc, ioc->ctl_cb_idx); 720 if (!smid) { 721 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 722 ret = -EAGAIN; 723 goto out; 724 } 725 } else { 726 /* Use first reserved smid for passthrough ioctls */ 727 smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1; 728 } 729 730 ret = 0; 731 ioc->ctl_cmds.status = MPT3_CMD_PENDING; 732 memset(ioc->ctl_cmds.reply, 0, ioc->reply_sz); 733 request = mpt3sas_base_get_msg_frame(ioc, smid); 734 memset(request, 0, ioc->request_sz); 735 memcpy(request, mpi_request, karg.data_sge_offset*4); 736 ioc->ctl_cmds.smid = smid; 737 data_out_sz = karg.data_out_size; 738 data_in_sz = karg.data_in_size; 739 740 if (mpi_request->Function == MPI2_FUNCTION_SCSI_IO_REQUEST || 741 mpi_request->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH || 742 mpi_request->Function == MPI2_FUNCTION_SCSI_TASK_MGMT || 743 mpi_request->Function == MPI2_FUNCTION_SATA_PASSTHROUGH || 744 mpi_request->Function == MPI2_FUNCTION_NVME_ENCAPSULATED) { 745 746 device_handle = le16_to_cpu(mpi_request->FunctionDependent1); 747 if (!device_handle || (device_handle > 748 ioc->facts.MaxDevHandle)) { 749 ret = -EINVAL; 750 mpt3sas_base_free_smid(ioc, smid); 751 goto out; 752 } 753 } 754 755 /* obtain dma-able memory for data transfer */ 756 if (data_out_sz) /* WRITE */ { 757 data_out = dma_alloc_coherent(&ioc->pdev->dev, data_out_sz, 758 &data_out_dma, GFP_KERNEL); 759 if (!data_out) { 760 pr_err("failure at %s:%d/%s()!\n", __FILE__, 761 __LINE__, __func__); 762 ret = -ENOMEM; 763 mpt3sas_base_free_smid(ioc, smid); 764 goto out; 765 } 766 if (copy_from_user(data_out, karg.data_out_buf_ptr, 767 data_out_sz)) { 768 pr_err("failure at %s:%d/%s()!\n", __FILE__, 769 __LINE__, __func__); 770 ret = -EFAULT; 771 mpt3sas_base_free_smid(ioc, smid); 772 goto out; 773 } 774 } 775 776 if (data_in_sz) /* READ */ { 777 data_in = dma_alloc_coherent(&ioc->pdev->dev, data_in_sz, 778 &data_in_dma, GFP_KERNEL); 779 if (!data_in) { 780 pr_err("failure at %s:%d/%s()!\n", __FILE__, 781 __LINE__, __func__); 782 ret = -ENOMEM; 783 mpt3sas_base_free_smid(ioc, smid); 784 goto out; 785 } 786 } 787 788 psge = (void *)request + (karg.data_sge_offset*4); 789 790 /* send command to firmware */ 791 _ctl_display_some_debug(ioc, smid, "ctl_request", NULL); 792 793 init_completion(&ioc->ctl_cmds.done); 794 switch (mpi_request->Function) { 795 case MPI2_FUNCTION_NVME_ENCAPSULATED: 796 { 797 nvme_encap_request = (Mpi26NVMeEncapsulatedRequest_t *)request; 798 if (!ioc->pcie_sg_lookup) { 799 dtmprintk(ioc, ioc_info(ioc, 800 "HBA doesn't support NVMe. Rejecting NVMe Encapsulated request.\n" 801 )); 802 803 if (ioc->logging_level & MPT_DEBUG_TM) 804 _debug_dump_mf(nvme_encap_request, 805 ioc->request_sz/4); 806 mpt3sas_base_free_smid(ioc, smid); 807 ret = -EINVAL; 808 goto out; 809 } 810 /* 811 * Get the Physical Address of the sense buffer. 812 * Use Error Response buffer address field to hold the sense 813 * buffer address. 814 * Clear the internal sense buffer, which will potentially hold 815 * the Completion Queue Entry on return, or 0 if no Entry. 816 * Build the PRPs and set direction bits. 817 * Send the request. 818 */ 819 nvme_encap_request->ErrorResponseBaseAddress = 820 cpu_to_le64(ioc->sense_dma & 0xFFFFFFFF00000000UL); 821 nvme_encap_request->ErrorResponseBaseAddress |= 822 cpu_to_le64(le32_to_cpu( 823 mpt3sas_base_get_sense_buffer_dma(ioc, smid))); 824 nvme_encap_request->ErrorResponseAllocationLength = 825 cpu_to_le16(NVME_ERROR_RESPONSE_SIZE); 826 memset(ioc->ctl_cmds.sense, 0, NVME_ERROR_RESPONSE_SIZE); 827 ioc->build_nvme_prp(ioc, smid, nvme_encap_request, 828 data_out_dma, data_out_sz, data_in_dma, data_in_sz); 829 if (test_bit(device_handle, ioc->device_remove_in_progress)) { 830 dtmprintk(ioc, 831 ioc_info(ioc, "handle(0x%04x): ioctl failed due to device removal in progress\n", 832 device_handle)); 833 mpt3sas_base_free_smid(ioc, smid); 834 ret = -EINVAL; 835 goto out; 836 } 837 mpt3sas_base_put_smid_nvme_encap(ioc, smid); 838 break; 839 } 840 case MPI2_FUNCTION_SCSI_IO_REQUEST: 841 case MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH: 842 { 843 Mpi2SCSIIORequest_t *scsiio_request = 844 (Mpi2SCSIIORequest_t *)request; 845 scsiio_request->SenseBufferLength = SCSI_SENSE_BUFFERSIZE; 846 scsiio_request->SenseBufferLowAddress = 847 mpt3sas_base_get_sense_buffer_dma(ioc, smid); 848 memset(ioc->ctl_cmds.sense, 0, SCSI_SENSE_BUFFERSIZE); 849 if (test_bit(device_handle, ioc->device_remove_in_progress)) { 850 dtmprintk(ioc, 851 ioc_info(ioc, "handle(0x%04x) :ioctl failed due to device removal in progress\n", 852 device_handle)); 853 mpt3sas_base_free_smid(ioc, smid); 854 ret = -EINVAL; 855 goto out; 856 } 857 ioc->build_sg(ioc, psge, data_out_dma, data_out_sz, 858 data_in_dma, data_in_sz); 859 if (mpi_request->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) 860 ioc->put_smid_scsi_io(ioc, smid, device_handle); 861 else 862 ioc->put_smid_default(ioc, smid); 863 break; 864 } 865 case MPI2_FUNCTION_SCSI_TASK_MGMT: 866 { 867 Mpi2SCSITaskManagementRequest_t *tm_request = 868 (Mpi2SCSITaskManagementRequest_t *)request; 869 870 dtmprintk(ioc, 871 ioc_info(ioc, "TASK_MGMT: handle(0x%04x), task_type(0x%02x)\n", 872 le16_to_cpu(tm_request->DevHandle), 873 tm_request->TaskType)); 874 ioc->got_task_abort_from_ioctl = 1; 875 if (tm_request->TaskType == 876 MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK || 877 tm_request->TaskType == 878 MPI2_SCSITASKMGMT_TASKTYPE_QUERY_TASK) { 879 if (_ctl_set_task_mid(ioc, &karg, tm_request)) { 880 mpt3sas_base_free_smid(ioc, smid); 881 ioc->got_task_abort_from_ioctl = 0; 882 goto out; 883 } 884 } 885 ioc->got_task_abort_from_ioctl = 0; 886 887 if (test_bit(device_handle, ioc->device_remove_in_progress)) { 888 dtmprintk(ioc, 889 ioc_info(ioc, "handle(0x%04x) :ioctl failed due to device removal in progress\n", 890 device_handle)); 891 mpt3sas_base_free_smid(ioc, smid); 892 ret = -EINVAL; 893 goto out; 894 } 895 mpt3sas_scsih_set_tm_flag(ioc, le16_to_cpu( 896 tm_request->DevHandle)); 897 ioc->build_sg_mpi(ioc, psge, data_out_dma, data_out_sz, 898 data_in_dma, data_in_sz); 899 ioc->put_smid_hi_priority(ioc, smid, 0); 900 break; 901 } 902 case MPI2_FUNCTION_SMP_PASSTHROUGH: 903 { 904 Mpi2SmpPassthroughRequest_t *smp_request = 905 (Mpi2SmpPassthroughRequest_t *)mpi_request; 906 u8 *data; 907 908 if (!ioc->multipath_on_hba) { 909 /* ioc determines which port to use */ 910 smp_request->PhysicalPort = 0xFF; 911 } 912 if (smp_request->PassthroughFlags & 913 MPI2_SMP_PT_REQ_PT_FLAGS_IMMEDIATE) 914 data = (u8 *)&smp_request->SGL; 915 else { 916 if (unlikely(data_out == NULL)) { 917 pr_err("failure at %s:%d/%s()!\n", 918 __FILE__, __LINE__, __func__); 919 mpt3sas_base_free_smid(ioc, smid); 920 ret = -EINVAL; 921 goto out; 922 } 923 data = data_out; 924 } 925 926 if (data[1] == 0x91 && (data[10] == 1 || data[10] == 2)) { 927 ioc->ioc_link_reset_in_progress = 1; 928 ioc->ignore_loginfos = 1; 929 } 930 ioc->build_sg(ioc, psge, data_out_dma, data_out_sz, data_in_dma, 931 data_in_sz); 932 ioc->put_smid_default(ioc, smid); 933 break; 934 } 935 case MPI2_FUNCTION_SATA_PASSTHROUGH: 936 { 937 if (test_bit(device_handle, ioc->device_remove_in_progress)) { 938 dtmprintk(ioc, 939 ioc_info(ioc, "handle(0x%04x) :ioctl failed due to device removal in progress\n", 940 device_handle)); 941 mpt3sas_base_free_smid(ioc, smid); 942 ret = -EINVAL; 943 goto out; 944 } 945 ioc->build_sg(ioc, psge, data_out_dma, data_out_sz, data_in_dma, 946 data_in_sz); 947 ioc->put_smid_default(ioc, smid); 948 break; 949 } 950 case MPI2_FUNCTION_FW_DOWNLOAD: 951 { 952 if (ioc->pdev->vendor == MPI2_MFGPAGE_VENDORID_ATTO) { 953 ioc_info(ioc, "Firmware download not supported for ATTO HBA.\n"); 954 ret = -EPERM; 955 break; 956 } 957 fallthrough; 958 } 959 case MPI2_FUNCTION_FW_UPLOAD: 960 { 961 ioc->build_sg(ioc, psge, data_out_dma, data_out_sz, data_in_dma, 962 data_in_sz); 963 ioc->put_smid_default(ioc, smid); 964 break; 965 } 966 case MPI2_FUNCTION_TOOLBOX: 967 { 968 Mpi2ToolboxCleanRequest_t *toolbox_request = 969 (Mpi2ToolboxCleanRequest_t *)mpi_request; 970 971 if ((toolbox_request->Tool == MPI2_TOOLBOX_DIAGNOSTIC_CLI_TOOL) 972 || (toolbox_request->Tool == 973 MPI26_TOOLBOX_BACKEND_PCIE_LANE_MARGIN)) 974 ioc->build_sg(ioc, psge, data_out_dma, data_out_sz, 975 data_in_dma, data_in_sz); 976 else if (toolbox_request->Tool == 977 MPI2_TOOLBOX_MEMORY_MOVE_TOOL) { 978 Mpi2ToolboxMemMoveRequest_t *mem_move_request = 979 (Mpi2ToolboxMemMoveRequest_t *)request; 980 Mpi2SGESimple64_t tmp, *src = NULL, *dst = NULL; 981 982 ioc->build_sg_mpi(ioc, psge, data_out_dma, 983 data_out_sz, data_in_dma, data_in_sz); 984 if (data_out_sz && !data_in_sz) { 985 dst = 986 (Mpi2SGESimple64_t *)&mem_move_request->SGL; 987 src = (void *)dst + ioc->sge_size; 988 989 memcpy(&tmp, src, ioc->sge_size); 990 memcpy(src, dst, ioc->sge_size); 991 memcpy(dst, &tmp, ioc->sge_size); 992 } 993 if (ioc->logging_level & MPT_DEBUG_TM) { 994 ioc_info(ioc, 995 "Mpi2ToolboxMemMoveRequest_t request msg\n"); 996 _debug_dump_mf(mem_move_request, 997 ioc->request_sz/4); 998 } 999 } else 1000 ioc->build_sg_mpi(ioc, psge, data_out_dma, data_out_sz, 1001 data_in_dma, data_in_sz); 1002 ioc->put_smid_default(ioc, smid); 1003 break; 1004 } 1005 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL: 1006 { 1007 Mpi2SasIoUnitControlRequest_t *sasiounit_request = 1008 (Mpi2SasIoUnitControlRequest_t *)mpi_request; 1009 1010 if (sasiounit_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET 1011 || sasiounit_request->Operation == 1012 MPI2_SAS_OP_PHY_LINK_RESET) { 1013 ioc->ioc_link_reset_in_progress = 1; 1014 ioc->ignore_loginfos = 1; 1015 } 1016 /* drop to default case for posting the request */ 1017 } 1018 fallthrough; 1019 default: 1020 ioc->build_sg_mpi(ioc, psge, data_out_dma, data_out_sz, 1021 data_in_dma, data_in_sz); 1022 ioc->put_smid_default(ioc, smid); 1023 break; 1024 } 1025 1026 if (karg.timeout < MPT3_IOCTL_DEFAULT_TIMEOUT) 1027 timeout = MPT3_IOCTL_DEFAULT_TIMEOUT; 1028 else 1029 timeout = karg.timeout; 1030 wait_for_completion_timeout(&ioc->ctl_cmds.done, timeout*HZ); 1031 if (mpi_request->Function == MPI2_FUNCTION_SCSI_TASK_MGMT) { 1032 Mpi2SCSITaskManagementRequest_t *tm_request = 1033 (Mpi2SCSITaskManagementRequest_t *)mpi_request; 1034 mpt3sas_scsih_clear_tm_flag(ioc, le16_to_cpu( 1035 tm_request->DevHandle)); 1036 mpt3sas_trigger_master(ioc, MASTER_TRIGGER_TASK_MANAGMENT); 1037 } else if ((mpi_request->Function == MPI2_FUNCTION_SMP_PASSTHROUGH || 1038 mpi_request->Function == MPI2_FUNCTION_SAS_IO_UNIT_CONTROL) && 1039 ioc->ioc_link_reset_in_progress) { 1040 ioc->ioc_link_reset_in_progress = 0; 1041 ioc->ignore_loginfos = 0; 1042 } 1043 if (!(ioc->ctl_cmds.status & MPT3_CMD_COMPLETE)) { 1044 mpt3sas_check_cmd_timeout(ioc, 1045 ioc->ctl_cmds.status, mpi_request, 1046 karg.data_sge_offset, issue_reset); 1047 goto issue_host_reset; 1048 } 1049 1050 mpi_reply = ioc->ctl_cmds.reply; 1051 1052 if (mpi_reply->Function == MPI2_FUNCTION_SCSI_TASK_MGMT && 1053 (ioc->logging_level & MPT_DEBUG_TM)) { 1054 Mpi2SCSITaskManagementReply_t *tm_reply = 1055 (Mpi2SCSITaskManagementReply_t *)mpi_reply; 1056 1057 ioc_info(ioc, "TASK_MGMT: IOCStatus(0x%04x), IOCLogInfo(0x%08x), TerminationCount(0x%08x)\n", 1058 le16_to_cpu(tm_reply->IOCStatus), 1059 le32_to_cpu(tm_reply->IOCLogInfo), 1060 le32_to_cpu(tm_reply->TerminationCount)); 1061 } 1062 1063 /* copy out xdata to user */ 1064 if (data_in_sz) { 1065 if (copy_to_user(karg.data_in_buf_ptr, data_in, 1066 data_in_sz)) { 1067 pr_err("failure at %s:%d/%s()!\n", __FILE__, 1068 __LINE__, __func__); 1069 ret = -ENODATA; 1070 goto out; 1071 } 1072 } 1073 1074 /* copy out reply message frame to user */ 1075 if (karg.max_reply_bytes) { 1076 sz = min_t(u32, karg.max_reply_bytes, ioc->reply_sz); 1077 if (copy_to_user(karg.reply_frame_buf_ptr, ioc->ctl_cmds.reply, 1078 sz)) { 1079 pr_err("failure at %s:%d/%s()!\n", __FILE__, 1080 __LINE__, __func__); 1081 ret = -ENODATA; 1082 goto out; 1083 } 1084 } 1085 1086 /* copy out sense/NVMe Error Response to user */ 1087 if (karg.max_sense_bytes && (mpi_request->Function == 1088 MPI2_FUNCTION_SCSI_IO_REQUEST || mpi_request->Function == 1089 MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH || mpi_request->Function == 1090 MPI2_FUNCTION_NVME_ENCAPSULATED)) { 1091 if (karg.sense_data_ptr == NULL) { 1092 ioc_info(ioc, "Response buffer provided by application is NULL; Response data will not be returned\n"); 1093 goto out; 1094 } 1095 sz_arg = (mpi_request->Function == 1096 MPI2_FUNCTION_NVME_ENCAPSULATED) ? NVME_ERROR_RESPONSE_SIZE : 1097 SCSI_SENSE_BUFFERSIZE; 1098 sz = min_t(u32, karg.max_sense_bytes, sz_arg); 1099 if (copy_to_user(karg.sense_data_ptr, ioc->ctl_cmds.sense, 1100 sz)) { 1101 pr_err("failure at %s:%d/%s()!\n", __FILE__, 1102 __LINE__, __func__); 1103 ret = -ENODATA; 1104 goto out; 1105 } 1106 } 1107 1108 issue_host_reset: 1109 if (issue_reset) { 1110 ret = -ENODATA; 1111 if ((mpi_request->Function == MPI2_FUNCTION_SCSI_IO_REQUEST || 1112 mpi_request->Function == 1113 MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH || 1114 mpi_request->Function == MPI2_FUNCTION_SATA_PASSTHROUGH)) { 1115 ioc_info(ioc, "issue target reset: handle = (0x%04x)\n", 1116 le16_to_cpu(mpi_request->FunctionDependent1)); 1117 mpt3sas_halt_firmware(ioc); 1118 pcie_device = mpt3sas_get_pdev_by_handle(ioc, 1119 le16_to_cpu(mpi_request->FunctionDependent1)); 1120 if (pcie_device && (!ioc->tm_custom_handling) && 1121 (!(mpt3sas_scsih_is_pcie_scsi_device( 1122 pcie_device->device_info)))) 1123 mpt3sas_scsih_issue_locked_tm(ioc, 1124 le16_to_cpu(mpi_request->FunctionDependent1), 1125 0, 0, 0, 1126 MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET, 0, 1127 0, pcie_device->reset_timeout, 1128 MPI26_SCSITASKMGMT_MSGFLAGS_PROTOCOL_LVL_RST_PCIE); 1129 else 1130 mpt3sas_scsih_issue_locked_tm(ioc, 1131 le16_to_cpu(mpi_request->FunctionDependent1), 1132 0, 0, 0, 1133 MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET, 0, 1134 0, 30, MPI2_SCSITASKMGMT_MSGFLAGS_LINK_RESET); 1135 } else 1136 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 1137 } 1138 1139 out: 1140 if (pcie_device) 1141 pcie_device_put(pcie_device); 1142 1143 /* free memory associated with sg buffers */ 1144 if (data_in) 1145 dma_free_coherent(&ioc->pdev->dev, data_in_sz, data_in, 1146 data_in_dma); 1147 1148 if (data_out) 1149 dma_free_coherent(&ioc->pdev->dev, data_out_sz, data_out, 1150 data_out_dma); 1151 1152 kfree(mpi_request); 1153 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED; 1154 return ret; 1155 } 1156 1157 /** 1158 * _ctl_getiocinfo - main handler for MPT3IOCINFO opcode 1159 * @ioc: per adapter object 1160 * @arg: user space buffer containing ioctl content 1161 */ 1162 static long 1163 _ctl_getiocinfo(struct MPT3SAS_ADAPTER *ioc, void __user *arg) 1164 { 1165 struct mpt3_ioctl_iocinfo karg; 1166 1167 dctlprintk(ioc, ioc_info(ioc, "%s: enter\n", 1168 __func__)); 1169 1170 memset(&karg, 0 , sizeof(karg)); 1171 if (ioc->pfacts) 1172 karg.port_number = ioc->pfacts[0].PortNumber; 1173 karg.hw_rev = ioc->pdev->revision; 1174 karg.pci_id = ioc->pdev->device; 1175 karg.subsystem_device = ioc->pdev->subsystem_device; 1176 karg.subsystem_vendor = ioc->pdev->subsystem_vendor; 1177 karg.pci_information.u.bits.bus = ioc->pdev->bus->number; 1178 karg.pci_information.u.bits.device = PCI_SLOT(ioc->pdev->devfn); 1179 karg.pci_information.u.bits.function = PCI_FUNC(ioc->pdev->devfn); 1180 karg.pci_information.segment_id = pci_domain_nr(ioc->pdev->bus); 1181 karg.firmware_version = ioc->facts.FWVersion.Word; 1182 strcpy(karg.driver_version, ioc->driver_name); 1183 strcat(karg.driver_version, "-"); 1184 switch (ioc->hba_mpi_version_belonged) { 1185 case MPI2_VERSION: 1186 if (ioc->is_warpdrive) 1187 karg.adapter_type = MPT2_IOCTL_INTERFACE_SAS2_SSS6200; 1188 else 1189 karg.adapter_type = MPT2_IOCTL_INTERFACE_SAS2; 1190 strcat(karg.driver_version, MPT2SAS_DRIVER_VERSION); 1191 break; 1192 case MPI25_VERSION: 1193 case MPI26_VERSION: 1194 if (ioc->is_gen35_ioc) 1195 karg.adapter_type = MPT3_IOCTL_INTERFACE_SAS35; 1196 else 1197 karg.adapter_type = MPT3_IOCTL_INTERFACE_SAS3; 1198 strcat(karg.driver_version, MPT3SAS_DRIVER_VERSION); 1199 break; 1200 } 1201 karg.bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion); 1202 1203 if (copy_to_user(arg, &karg, sizeof(karg))) { 1204 pr_err("failure at %s:%d/%s()!\n", 1205 __FILE__, __LINE__, __func__); 1206 return -EFAULT; 1207 } 1208 return 0; 1209 } 1210 1211 /** 1212 * _ctl_eventquery - main handler for MPT3EVENTQUERY opcode 1213 * @ioc: per adapter object 1214 * @arg: user space buffer containing ioctl content 1215 */ 1216 static long 1217 _ctl_eventquery(struct MPT3SAS_ADAPTER *ioc, void __user *arg) 1218 { 1219 struct mpt3_ioctl_eventquery karg; 1220 1221 if (copy_from_user(&karg, arg, sizeof(karg))) { 1222 pr_err("failure at %s:%d/%s()!\n", 1223 __FILE__, __LINE__, __func__); 1224 return -EFAULT; 1225 } 1226 1227 dctlprintk(ioc, ioc_info(ioc, "%s: enter\n", 1228 __func__)); 1229 1230 karg.event_entries = MPT3SAS_CTL_EVENT_LOG_SIZE; 1231 memcpy(karg.event_types, ioc->event_type, 1232 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS * sizeof(u32)); 1233 1234 if (copy_to_user(arg, &karg, sizeof(karg))) { 1235 pr_err("failure at %s:%d/%s()!\n", 1236 __FILE__, __LINE__, __func__); 1237 return -EFAULT; 1238 } 1239 return 0; 1240 } 1241 1242 /** 1243 * _ctl_eventenable - main handler for MPT3EVENTENABLE opcode 1244 * @ioc: per adapter object 1245 * @arg: user space buffer containing ioctl content 1246 */ 1247 static long 1248 _ctl_eventenable(struct MPT3SAS_ADAPTER *ioc, void __user *arg) 1249 { 1250 struct mpt3_ioctl_eventenable karg; 1251 1252 if (copy_from_user(&karg, arg, sizeof(karg))) { 1253 pr_err("failure at %s:%d/%s()!\n", 1254 __FILE__, __LINE__, __func__); 1255 return -EFAULT; 1256 } 1257 1258 dctlprintk(ioc, ioc_info(ioc, "%s: enter\n", 1259 __func__)); 1260 1261 memcpy(ioc->event_type, karg.event_types, 1262 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS * sizeof(u32)); 1263 mpt3sas_base_validate_event_type(ioc, ioc->event_type); 1264 1265 if (ioc->event_log) 1266 return 0; 1267 /* initialize event_log */ 1268 ioc->event_context = 0; 1269 ioc->aen_event_read_flag = 0; 1270 ioc->event_log = kcalloc(MPT3SAS_CTL_EVENT_LOG_SIZE, 1271 sizeof(struct MPT3_IOCTL_EVENTS), GFP_KERNEL); 1272 if (!ioc->event_log) { 1273 pr_err("failure at %s:%d/%s()!\n", 1274 __FILE__, __LINE__, __func__); 1275 return -ENOMEM; 1276 } 1277 return 0; 1278 } 1279 1280 /** 1281 * _ctl_eventreport - main handler for MPT3EVENTREPORT opcode 1282 * @ioc: per adapter object 1283 * @arg: user space buffer containing ioctl content 1284 */ 1285 static long 1286 _ctl_eventreport(struct MPT3SAS_ADAPTER *ioc, void __user *arg) 1287 { 1288 struct mpt3_ioctl_eventreport karg; 1289 u32 number_bytes, max_events, max; 1290 struct mpt3_ioctl_eventreport __user *uarg = arg; 1291 1292 if (copy_from_user(&karg, arg, sizeof(karg))) { 1293 pr_err("failure at %s:%d/%s()!\n", 1294 __FILE__, __LINE__, __func__); 1295 return -EFAULT; 1296 } 1297 1298 dctlprintk(ioc, ioc_info(ioc, "%s: enter\n", 1299 __func__)); 1300 1301 number_bytes = karg.hdr.max_data_size - 1302 sizeof(struct mpt3_ioctl_header); 1303 max_events = number_bytes/sizeof(struct MPT3_IOCTL_EVENTS); 1304 max = min_t(u32, MPT3SAS_CTL_EVENT_LOG_SIZE, max_events); 1305 1306 /* If fewer than 1 event is requested, there must have 1307 * been some type of error. 1308 */ 1309 if (!max || !ioc->event_log) 1310 return -ENODATA; 1311 1312 number_bytes = max * sizeof(struct MPT3_IOCTL_EVENTS); 1313 if (copy_to_user(uarg->event_data, ioc->event_log, number_bytes)) { 1314 pr_err("failure at %s:%d/%s()!\n", 1315 __FILE__, __LINE__, __func__); 1316 return -EFAULT; 1317 } 1318 1319 /* reset flag so SIGIO can restart */ 1320 ioc->aen_event_read_flag = 0; 1321 return 0; 1322 } 1323 1324 /** 1325 * _ctl_do_reset - main handler for MPT3HARDRESET opcode 1326 * @ioc: per adapter object 1327 * @arg: user space buffer containing ioctl content 1328 */ 1329 static long 1330 _ctl_do_reset(struct MPT3SAS_ADAPTER *ioc, void __user *arg) 1331 { 1332 struct mpt3_ioctl_diag_reset karg; 1333 int retval; 1334 1335 if (copy_from_user(&karg, arg, sizeof(karg))) { 1336 pr_err("failure at %s:%d/%s()!\n", 1337 __FILE__, __LINE__, __func__); 1338 return -EFAULT; 1339 } 1340 1341 if (ioc->shost_recovery || ioc->pci_error_recovery || 1342 ioc->is_driver_loading) 1343 return -EAGAIN; 1344 1345 dctlprintk(ioc, ioc_info(ioc, "%s: enter\n", 1346 __func__)); 1347 1348 ioc->reset_from_user = 1; 1349 retval = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 1350 ioc_info(ioc, 1351 "Ioctl: host reset: %s\n", ((!retval) ? "SUCCESS" : "FAILED")); 1352 return 0; 1353 } 1354 1355 /** 1356 * _ctl_btdh_search_sas_device - searching for sas device 1357 * @ioc: per adapter object 1358 * @btdh: btdh ioctl payload 1359 */ 1360 static int 1361 _ctl_btdh_search_sas_device(struct MPT3SAS_ADAPTER *ioc, 1362 struct mpt3_ioctl_btdh_mapping *btdh) 1363 { 1364 struct _sas_device *sas_device; 1365 unsigned long flags; 1366 int rc = 0; 1367 1368 if (list_empty(&ioc->sas_device_list)) 1369 return rc; 1370 1371 spin_lock_irqsave(&ioc->sas_device_lock, flags); 1372 list_for_each_entry(sas_device, &ioc->sas_device_list, list) { 1373 if (btdh->bus == 0xFFFFFFFF && btdh->id == 0xFFFFFFFF && 1374 btdh->handle == sas_device->handle) { 1375 btdh->bus = sas_device->channel; 1376 btdh->id = sas_device->id; 1377 rc = 1; 1378 goto out; 1379 } else if (btdh->bus == sas_device->channel && btdh->id == 1380 sas_device->id && btdh->handle == 0xFFFF) { 1381 btdh->handle = sas_device->handle; 1382 rc = 1; 1383 goto out; 1384 } 1385 } 1386 out: 1387 spin_unlock_irqrestore(&ioc->sas_device_lock, flags); 1388 return rc; 1389 } 1390 1391 /** 1392 * _ctl_btdh_search_pcie_device - searching for pcie device 1393 * @ioc: per adapter object 1394 * @btdh: btdh ioctl payload 1395 */ 1396 static int 1397 _ctl_btdh_search_pcie_device(struct MPT3SAS_ADAPTER *ioc, 1398 struct mpt3_ioctl_btdh_mapping *btdh) 1399 { 1400 struct _pcie_device *pcie_device; 1401 unsigned long flags; 1402 int rc = 0; 1403 1404 if (list_empty(&ioc->pcie_device_list)) 1405 return rc; 1406 1407 spin_lock_irqsave(&ioc->pcie_device_lock, flags); 1408 list_for_each_entry(pcie_device, &ioc->pcie_device_list, list) { 1409 if (btdh->bus == 0xFFFFFFFF && btdh->id == 0xFFFFFFFF && 1410 btdh->handle == pcie_device->handle) { 1411 btdh->bus = pcie_device->channel; 1412 btdh->id = pcie_device->id; 1413 rc = 1; 1414 goto out; 1415 } else if (btdh->bus == pcie_device->channel && btdh->id == 1416 pcie_device->id && btdh->handle == 0xFFFF) { 1417 btdh->handle = pcie_device->handle; 1418 rc = 1; 1419 goto out; 1420 } 1421 } 1422 out: 1423 spin_unlock_irqrestore(&ioc->pcie_device_lock, flags); 1424 return rc; 1425 } 1426 1427 /** 1428 * _ctl_btdh_search_raid_device - searching for raid device 1429 * @ioc: per adapter object 1430 * @btdh: btdh ioctl payload 1431 */ 1432 static int 1433 _ctl_btdh_search_raid_device(struct MPT3SAS_ADAPTER *ioc, 1434 struct mpt3_ioctl_btdh_mapping *btdh) 1435 { 1436 struct _raid_device *raid_device; 1437 unsigned long flags; 1438 int rc = 0; 1439 1440 if (list_empty(&ioc->raid_device_list)) 1441 return rc; 1442 1443 spin_lock_irqsave(&ioc->raid_device_lock, flags); 1444 list_for_each_entry(raid_device, &ioc->raid_device_list, list) { 1445 if (btdh->bus == 0xFFFFFFFF && btdh->id == 0xFFFFFFFF && 1446 btdh->handle == raid_device->handle) { 1447 btdh->bus = raid_device->channel; 1448 btdh->id = raid_device->id; 1449 rc = 1; 1450 goto out; 1451 } else if (btdh->bus == raid_device->channel && btdh->id == 1452 raid_device->id && btdh->handle == 0xFFFF) { 1453 btdh->handle = raid_device->handle; 1454 rc = 1; 1455 goto out; 1456 } 1457 } 1458 out: 1459 spin_unlock_irqrestore(&ioc->raid_device_lock, flags); 1460 return rc; 1461 } 1462 1463 /** 1464 * _ctl_btdh_mapping - main handler for MPT3BTDHMAPPING opcode 1465 * @ioc: per adapter object 1466 * @arg: user space buffer containing ioctl content 1467 */ 1468 static long 1469 _ctl_btdh_mapping(struct MPT3SAS_ADAPTER *ioc, void __user *arg) 1470 { 1471 struct mpt3_ioctl_btdh_mapping karg; 1472 int rc; 1473 1474 if (copy_from_user(&karg, arg, sizeof(karg))) { 1475 pr_err("failure at %s:%d/%s()!\n", 1476 __FILE__, __LINE__, __func__); 1477 return -EFAULT; 1478 } 1479 1480 dctlprintk(ioc, ioc_info(ioc, "%s\n", 1481 __func__)); 1482 1483 rc = _ctl_btdh_search_sas_device(ioc, &karg); 1484 if (!rc) 1485 rc = _ctl_btdh_search_pcie_device(ioc, &karg); 1486 if (!rc) 1487 _ctl_btdh_search_raid_device(ioc, &karg); 1488 1489 if (copy_to_user(arg, &karg, sizeof(karg))) { 1490 pr_err("failure at %s:%d/%s()!\n", 1491 __FILE__, __LINE__, __func__); 1492 return -EFAULT; 1493 } 1494 return 0; 1495 } 1496 1497 /** 1498 * _ctl_diag_capability - return diag buffer capability 1499 * @ioc: per adapter object 1500 * @buffer_type: specifies either TRACE, SNAPSHOT, or EXTENDED 1501 * 1502 * returns 1 when diag buffer support is enabled in firmware 1503 */ 1504 static u8 1505 _ctl_diag_capability(struct MPT3SAS_ADAPTER *ioc, u8 buffer_type) 1506 { 1507 u8 rc = 0; 1508 1509 switch (buffer_type) { 1510 case MPI2_DIAG_BUF_TYPE_TRACE: 1511 if (ioc->facts.IOCCapabilities & 1512 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) 1513 rc = 1; 1514 break; 1515 case MPI2_DIAG_BUF_TYPE_SNAPSHOT: 1516 if (ioc->facts.IOCCapabilities & 1517 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) 1518 rc = 1; 1519 break; 1520 case MPI2_DIAG_BUF_TYPE_EXTENDED: 1521 if (ioc->facts.IOCCapabilities & 1522 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) 1523 rc = 1; 1524 } 1525 1526 return rc; 1527 } 1528 1529 /** 1530 * _ctl_diag_get_bufftype - return diag buffer type 1531 * either TRACE, SNAPSHOT, or EXTENDED 1532 * @ioc: per adapter object 1533 * @unique_id: specifies the unique_id for the buffer 1534 * 1535 * returns MPT3_DIAG_UID_NOT_FOUND if the id not found 1536 */ 1537 static u8 1538 _ctl_diag_get_bufftype(struct MPT3SAS_ADAPTER *ioc, u32 unique_id) 1539 { 1540 u8 index; 1541 1542 for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) { 1543 if (ioc->unique_id[index] == unique_id) 1544 return index; 1545 } 1546 1547 return MPT3_DIAG_UID_NOT_FOUND; 1548 } 1549 1550 /** 1551 * _ctl_diag_register_2 - wrapper for registering diag buffer support 1552 * @ioc: per adapter object 1553 * @diag_register: the diag_register struct passed in from user space 1554 * 1555 */ 1556 static long 1557 _ctl_diag_register_2(struct MPT3SAS_ADAPTER *ioc, 1558 struct mpt3_diag_register *diag_register) 1559 { 1560 int rc, i; 1561 void *request_data = NULL; 1562 dma_addr_t request_data_dma; 1563 u32 request_data_sz = 0; 1564 Mpi2DiagBufferPostRequest_t *mpi_request; 1565 Mpi2DiagBufferPostReply_t *mpi_reply; 1566 u8 buffer_type; 1567 u16 smid; 1568 u16 ioc_status; 1569 u32 ioc_state; 1570 u8 issue_reset = 0; 1571 1572 dctlprintk(ioc, ioc_info(ioc, "%s\n", 1573 __func__)); 1574 1575 ioc_state = mpt3sas_base_get_iocstate(ioc, 1); 1576 if (ioc_state != MPI2_IOC_STATE_OPERATIONAL) { 1577 ioc_err(ioc, "%s: failed due to ioc not operational\n", 1578 __func__); 1579 rc = -EAGAIN; 1580 goto out; 1581 } 1582 1583 if (ioc->ctl_cmds.status != MPT3_CMD_NOT_USED) { 1584 ioc_err(ioc, "%s: ctl_cmd in use\n", __func__); 1585 rc = -EAGAIN; 1586 goto out; 1587 } 1588 1589 buffer_type = diag_register->buffer_type; 1590 if (!_ctl_diag_capability(ioc, buffer_type)) { 1591 ioc_err(ioc, "%s: doesn't have capability for buffer_type(0x%02x)\n", 1592 __func__, buffer_type); 1593 return -EPERM; 1594 } 1595 1596 if (diag_register->unique_id == 0) { 1597 ioc_err(ioc, 1598 "%s: Invalid UID(0x%08x), buffer_type(0x%02x)\n", __func__, 1599 diag_register->unique_id, buffer_type); 1600 return -EINVAL; 1601 } 1602 1603 if ((ioc->diag_buffer_status[buffer_type] & 1604 MPT3_DIAG_BUFFER_IS_APP_OWNED) && 1605 !(ioc->diag_buffer_status[buffer_type] & 1606 MPT3_DIAG_BUFFER_IS_RELEASED)) { 1607 ioc_err(ioc, 1608 "%s: buffer_type(0x%02x) is already registered by application with UID(0x%08x)\n", 1609 __func__, buffer_type, ioc->unique_id[buffer_type]); 1610 return -EINVAL; 1611 } 1612 1613 if (ioc->diag_buffer_status[buffer_type] & 1614 MPT3_DIAG_BUFFER_IS_REGISTERED) { 1615 /* 1616 * If driver posts buffer initially, then an application wants 1617 * to Register that buffer (own it) without Releasing first, 1618 * the application Register command MUST have the same buffer 1619 * type and size in the Register command (obtained from the 1620 * Query command). Otherwise that Register command will be 1621 * failed. If the application has released the buffer but wants 1622 * to re-register it, it should be allowed as long as the 1623 * Unique-Id/Size match. 1624 */ 1625 1626 if (ioc->unique_id[buffer_type] == MPT3DIAGBUFFUNIQUEID && 1627 ioc->diag_buffer_sz[buffer_type] == 1628 diag_register->requested_buffer_size) { 1629 1630 if (!(ioc->diag_buffer_status[buffer_type] & 1631 MPT3_DIAG_BUFFER_IS_RELEASED)) { 1632 dctlprintk(ioc, ioc_info(ioc, 1633 "%s: diag_buffer (%d) ownership changed. old-ID(0x%08x), new-ID(0x%08x)\n", 1634 __func__, buffer_type, 1635 ioc->unique_id[buffer_type], 1636 diag_register->unique_id)); 1637 1638 /* 1639 * Application wants to own the buffer with 1640 * the same size. 1641 */ 1642 ioc->unique_id[buffer_type] = 1643 diag_register->unique_id; 1644 rc = 0; /* success */ 1645 goto out; 1646 } 1647 } else if (ioc->unique_id[buffer_type] != 1648 MPT3DIAGBUFFUNIQUEID) { 1649 if (ioc->unique_id[buffer_type] != 1650 diag_register->unique_id || 1651 ioc->diag_buffer_sz[buffer_type] != 1652 diag_register->requested_buffer_size || 1653 !(ioc->diag_buffer_status[buffer_type] & 1654 MPT3_DIAG_BUFFER_IS_RELEASED)) { 1655 ioc_err(ioc, 1656 "%s: already has a registered buffer for buffer_type(0x%02x)\n", 1657 __func__, buffer_type); 1658 return -EINVAL; 1659 } 1660 } else { 1661 ioc_err(ioc, "%s: already has a registered buffer for buffer_type(0x%02x)\n", 1662 __func__, buffer_type); 1663 return -EINVAL; 1664 } 1665 } else if (ioc->diag_buffer_status[buffer_type] & 1666 MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED) { 1667 1668 if (ioc->unique_id[buffer_type] != MPT3DIAGBUFFUNIQUEID || 1669 ioc->diag_buffer_sz[buffer_type] != 1670 diag_register->requested_buffer_size) { 1671 1672 ioc_err(ioc, 1673 "%s: already a buffer is allocated for buffer_type(0x%02x) of size %d bytes, so please try registering again with same size\n", 1674 __func__, buffer_type, 1675 ioc->diag_buffer_sz[buffer_type]); 1676 return -EINVAL; 1677 } 1678 } 1679 1680 if (diag_register->requested_buffer_size % 4) { 1681 ioc_err(ioc, "%s: the requested_buffer_size is not 4 byte aligned\n", 1682 __func__); 1683 return -EINVAL; 1684 } 1685 1686 smid = mpt3sas_base_get_smid(ioc, ioc->ctl_cb_idx); 1687 if (!smid) { 1688 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 1689 rc = -EAGAIN; 1690 goto out; 1691 } 1692 1693 rc = 0; 1694 ioc->ctl_cmds.status = MPT3_CMD_PENDING; 1695 memset(ioc->ctl_cmds.reply, 0, ioc->reply_sz); 1696 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 1697 memset(mpi_request, 0, ioc->request_sz); 1698 ioc->ctl_cmds.smid = smid; 1699 1700 request_data = ioc->diag_buffer[buffer_type]; 1701 request_data_sz = diag_register->requested_buffer_size; 1702 ioc->unique_id[buffer_type] = diag_register->unique_id; 1703 /* Reset ioc variables used for additional query commands */ 1704 ioc->reset_from_user = 0; 1705 memset(&ioc->htb_rel, 0, sizeof(struct htb_rel_query)); 1706 ioc->diag_buffer_status[buffer_type] &= 1707 MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED; 1708 memcpy(ioc->product_specific[buffer_type], 1709 diag_register->product_specific, MPT3_PRODUCT_SPECIFIC_DWORDS); 1710 ioc->diagnostic_flags[buffer_type] = diag_register->diagnostic_flags; 1711 1712 if (request_data) { 1713 request_data_dma = ioc->diag_buffer_dma[buffer_type]; 1714 if (request_data_sz != ioc->diag_buffer_sz[buffer_type]) { 1715 dma_free_coherent(&ioc->pdev->dev, 1716 ioc->diag_buffer_sz[buffer_type], 1717 request_data, request_data_dma); 1718 request_data = NULL; 1719 } 1720 } 1721 1722 if (request_data == NULL) { 1723 ioc->diag_buffer_sz[buffer_type] = 0; 1724 ioc->diag_buffer_dma[buffer_type] = 0; 1725 request_data = dma_alloc_coherent(&ioc->pdev->dev, 1726 request_data_sz, &request_data_dma, GFP_KERNEL); 1727 if (request_data == NULL) { 1728 ioc_err(ioc, "%s: failed allocating memory for diag buffers, requested size(%d)\n", 1729 __func__, request_data_sz); 1730 mpt3sas_base_free_smid(ioc, smid); 1731 rc = -ENOMEM; 1732 goto out; 1733 } 1734 ioc->diag_buffer[buffer_type] = request_data; 1735 ioc->diag_buffer_sz[buffer_type] = request_data_sz; 1736 ioc->diag_buffer_dma[buffer_type] = request_data_dma; 1737 } 1738 1739 mpi_request->Function = MPI2_FUNCTION_DIAG_BUFFER_POST; 1740 mpi_request->BufferType = diag_register->buffer_type; 1741 mpi_request->Flags = cpu_to_le32(diag_register->diagnostic_flags); 1742 mpi_request->BufferAddress = cpu_to_le64(request_data_dma); 1743 mpi_request->BufferLength = cpu_to_le32(request_data_sz); 1744 mpi_request->VF_ID = 0; /* TODO */ 1745 mpi_request->VP_ID = 0; 1746 1747 dctlprintk(ioc, 1748 ioc_info(ioc, "%s: diag_buffer(0x%p), dma(0x%llx), sz(%d)\n", 1749 __func__, request_data, 1750 (unsigned long long)request_data_dma, 1751 le32_to_cpu(mpi_request->BufferLength))); 1752 1753 for (i = 0; i < MPT3_PRODUCT_SPECIFIC_DWORDS; i++) 1754 mpi_request->ProductSpecific[i] = 1755 cpu_to_le32(ioc->product_specific[buffer_type][i]); 1756 1757 init_completion(&ioc->ctl_cmds.done); 1758 ioc->put_smid_default(ioc, smid); 1759 wait_for_completion_timeout(&ioc->ctl_cmds.done, 1760 MPT3_IOCTL_DEFAULT_TIMEOUT*HZ); 1761 1762 if (!(ioc->ctl_cmds.status & MPT3_CMD_COMPLETE)) { 1763 mpt3sas_check_cmd_timeout(ioc, 1764 ioc->ctl_cmds.status, mpi_request, 1765 sizeof(Mpi2DiagBufferPostRequest_t)/4, issue_reset); 1766 goto issue_host_reset; 1767 } 1768 1769 /* process the completed Reply Message Frame */ 1770 if ((ioc->ctl_cmds.status & MPT3_CMD_REPLY_VALID) == 0) { 1771 ioc_err(ioc, "%s: no reply message\n", __func__); 1772 rc = -EFAULT; 1773 goto out; 1774 } 1775 1776 mpi_reply = ioc->ctl_cmds.reply; 1777 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 1778 1779 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 1780 ioc->diag_buffer_status[buffer_type] |= 1781 MPT3_DIAG_BUFFER_IS_REGISTERED; 1782 dctlprintk(ioc, ioc_info(ioc, "%s: success\n", __func__)); 1783 } else { 1784 ioc_info(ioc, "%s: ioc_status(0x%04x) log_info(0x%08x)\n", 1785 __func__, 1786 ioc_status, le32_to_cpu(mpi_reply->IOCLogInfo)); 1787 rc = -EFAULT; 1788 } 1789 1790 issue_host_reset: 1791 if (issue_reset) 1792 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 1793 1794 out: 1795 1796 if (rc && request_data) { 1797 dma_free_coherent(&ioc->pdev->dev, request_data_sz, 1798 request_data, request_data_dma); 1799 ioc->diag_buffer[buffer_type] = NULL; 1800 ioc->diag_buffer_status[buffer_type] &= 1801 ~MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED; 1802 } 1803 1804 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED; 1805 return rc; 1806 } 1807 1808 /** 1809 * mpt3sas_enable_diag_buffer - enabling diag_buffers support driver load time 1810 * @ioc: per adapter object 1811 * @bits_to_register: bitwise field where trace is bit 0, and snapshot is bit 1 1812 * 1813 * This is called when command line option diag_buffer_enable is enabled 1814 * at driver load time. 1815 */ 1816 void 1817 mpt3sas_enable_diag_buffer(struct MPT3SAS_ADAPTER *ioc, u8 bits_to_register) 1818 { 1819 struct mpt3_diag_register diag_register; 1820 u32 ret_val; 1821 u32 trace_buff_size = ioc->manu_pg11.HostTraceBufferMaxSizeKB<<10; 1822 u32 min_trace_buff_size = 0; 1823 u32 decr_trace_buff_size = 0; 1824 1825 memset(&diag_register, 0, sizeof(struct mpt3_diag_register)); 1826 1827 if (bits_to_register & 1) { 1828 ioc_info(ioc, "registering trace buffer support\n"); 1829 ioc->diag_trigger_master.MasterData = 1830 (MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET); 1831 diag_register.buffer_type = MPI2_DIAG_BUF_TYPE_TRACE; 1832 diag_register.unique_id = 1833 (ioc->hba_mpi_version_belonged == MPI2_VERSION) ? 1834 (MPT2DIAGBUFFUNIQUEID):(MPT3DIAGBUFFUNIQUEID); 1835 1836 if (trace_buff_size != 0) { 1837 diag_register.requested_buffer_size = trace_buff_size; 1838 min_trace_buff_size = 1839 ioc->manu_pg11.HostTraceBufferMinSizeKB<<10; 1840 decr_trace_buff_size = 1841 ioc->manu_pg11.HostTraceBufferDecrementSizeKB<<10; 1842 1843 if (min_trace_buff_size > trace_buff_size) { 1844 /* The buff size is not set correctly */ 1845 ioc_err(ioc, 1846 "Min Trace Buff size (%d KB) greater than Max Trace Buff size (%d KB)\n", 1847 min_trace_buff_size>>10, 1848 trace_buff_size>>10); 1849 ioc_err(ioc, 1850 "Using zero Min Trace Buff Size\n"); 1851 min_trace_buff_size = 0; 1852 } 1853 1854 if (decr_trace_buff_size == 0) { 1855 /* 1856 * retry the min size if decrement 1857 * is not available. 1858 */ 1859 decr_trace_buff_size = 1860 trace_buff_size - min_trace_buff_size; 1861 } 1862 } else { 1863 /* register for 2MB buffers */ 1864 diag_register.requested_buffer_size = 2 * (1024 * 1024); 1865 } 1866 1867 do { 1868 ret_val = _ctl_diag_register_2(ioc, &diag_register); 1869 1870 if (ret_val == -ENOMEM && min_trace_buff_size && 1871 (trace_buff_size - decr_trace_buff_size) >= 1872 min_trace_buff_size) { 1873 /* adjust the buffer size */ 1874 trace_buff_size -= decr_trace_buff_size; 1875 diag_register.requested_buffer_size = 1876 trace_buff_size; 1877 } else 1878 break; 1879 } while (true); 1880 1881 if (ret_val == -ENOMEM) 1882 ioc_err(ioc, 1883 "Cannot allocate trace buffer memory. Last memory tried = %d KB\n", 1884 diag_register.requested_buffer_size>>10); 1885 else if (ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] 1886 & MPT3_DIAG_BUFFER_IS_REGISTERED) { 1887 ioc_info(ioc, "Trace buffer memory %d KB allocated\n", 1888 diag_register.requested_buffer_size>>10); 1889 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) 1890 ioc->diag_buffer_status[ 1891 MPI2_DIAG_BUF_TYPE_TRACE] |= 1892 MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED; 1893 } 1894 } 1895 1896 if (bits_to_register & 2) { 1897 ioc_info(ioc, "registering snapshot buffer support\n"); 1898 diag_register.buffer_type = MPI2_DIAG_BUF_TYPE_SNAPSHOT; 1899 /* register for 2MB buffers */ 1900 diag_register.requested_buffer_size = 2 * (1024 * 1024); 1901 diag_register.unique_id = 0x7075901; 1902 _ctl_diag_register_2(ioc, &diag_register); 1903 } 1904 1905 if (bits_to_register & 4) { 1906 ioc_info(ioc, "registering extended buffer support\n"); 1907 diag_register.buffer_type = MPI2_DIAG_BUF_TYPE_EXTENDED; 1908 /* register for 2MB buffers */ 1909 diag_register.requested_buffer_size = 2 * (1024 * 1024); 1910 diag_register.unique_id = 0x7075901; 1911 _ctl_diag_register_2(ioc, &diag_register); 1912 } 1913 } 1914 1915 /** 1916 * _ctl_diag_register - application register with driver 1917 * @ioc: per adapter object 1918 * @arg: user space buffer containing ioctl content 1919 * 1920 * This will allow the driver to setup any required buffers that will be 1921 * needed by firmware to communicate with the driver. 1922 */ 1923 static long 1924 _ctl_diag_register(struct MPT3SAS_ADAPTER *ioc, void __user *arg) 1925 { 1926 struct mpt3_diag_register karg; 1927 long rc; 1928 1929 if (copy_from_user(&karg, arg, sizeof(karg))) { 1930 pr_err("failure at %s:%d/%s()!\n", 1931 __FILE__, __LINE__, __func__); 1932 return -EFAULT; 1933 } 1934 1935 rc = _ctl_diag_register_2(ioc, &karg); 1936 1937 if (!rc && (ioc->diag_buffer_status[karg.buffer_type] & 1938 MPT3_DIAG_BUFFER_IS_REGISTERED)) 1939 ioc->diag_buffer_status[karg.buffer_type] |= 1940 MPT3_DIAG_BUFFER_IS_APP_OWNED; 1941 1942 return rc; 1943 } 1944 1945 /** 1946 * _ctl_diag_unregister - application unregister with driver 1947 * @ioc: per adapter object 1948 * @arg: user space buffer containing ioctl content 1949 * 1950 * This will allow the driver to cleanup any memory allocated for diag 1951 * messages and to free up any resources. 1952 */ 1953 static long 1954 _ctl_diag_unregister(struct MPT3SAS_ADAPTER *ioc, void __user *arg) 1955 { 1956 struct mpt3_diag_unregister karg; 1957 void *request_data; 1958 dma_addr_t request_data_dma; 1959 u32 request_data_sz; 1960 u8 buffer_type; 1961 1962 if (copy_from_user(&karg, arg, sizeof(karg))) { 1963 pr_err("failure at %s:%d/%s()!\n", 1964 __FILE__, __LINE__, __func__); 1965 return -EFAULT; 1966 } 1967 1968 dctlprintk(ioc, ioc_info(ioc, "%s\n", 1969 __func__)); 1970 1971 buffer_type = _ctl_diag_get_bufftype(ioc, karg.unique_id); 1972 if (buffer_type == MPT3_DIAG_UID_NOT_FOUND) { 1973 ioc_err(ioc, "%s: buffer with unique_id(0x%08x) not found\n", 1974 __func__, karg.unique_id); 1975 return -EINVAL; 1976 } 1977 1978 if (!_ctl_diag_capability(ioc, buffer_type)) { 1979 ioc_err(ioc, "%s: doesn't have capability for buffer_type(0x%02x)\n", 1980 __func__, buffer_type); 1981 return -EPERM; 1982 } 1983 1984 if ((ioc->diag_buffer_status[buffer_type] & 1985 MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) { 1986 ioc_err(ioc, "%s: buffer_type(0x%02x) is not registered\n", 1987 __func__, buffer_type); 1988 return -EINVAL; 1989 } 1990 if ((ioc->diag_buffer_status[buffer_type] & 1991 MPT3_DIAG_BUFFER_IS_RELEASED) == 0) { 1992 ioc_err(ioc, "%s: buffer_type(0x%02x) has not been released\n", 1993 __func__, buffer_type); 1994 return -EINVAL; 1995 } 1996 1997 if (karg.unique_id != ioc->unique_id[buffer_type]) { 1998 ioc_err(ioc, "%s: unique_id(0x%08x) is not registered\n", 1999 __func__, karg.unique_id); 2000 return -EINVAL; 2001 } 2002 2003 request_data = ioc->diag_buffer[buffer_type]; 2004 if (!request_data) { 2005 ioc_err(ioc, "%s: doesn't have memory allocated for buffer_type(0x%02x)\n", 2006 __func__, buffer_type); 2007 return -ENOMEM; 2008 } 2009 2010 if (ioc->diag_buffer_status[buffer_type] & 2011 MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED) { 2012 ioc->unique_id[buffer_type] = MPT3DIAGBUFFUNIQUEID; 2013 ioc->diag_buffer_status[buffer_type] &= 2014 ~MPT3_DIAG_BUFFER_IS_APP_OWNED; 2015 ioc->diag_buffer_status[buffer_type] &= 2016 ~MPT3_DIAG_BUFFER_IS_REGISTERED; 2017 } else { 2018 request_data_sz = ioc->diag_buffer_sz[buffer_type]; 2019 request_data_dma = ioc->diag_buffer_dma[buffer_type]; 2020 dma_free_coherent(&ioc->pdev->dev, request_data_sz, 2021 request_data, request_data_dma); 2022 ioc->diag_buffer[buffer_type] = NULL; 2023 ioc->diag_buffer_status[buffer_type] = 0; 2024 } 2025 return 0; 2026 } 2027 2028 /** 2029 * _ctl_diag_query - query relevant info associated with diag buffers 2030 * @ioc: per adapter object 2031 * @arg: user space buffer containing ioctl content 2032 * 2033 * The application will send only buffer_type and unique_id. Driver will 2034 * inspect unique_id first, if valid, fill in all the info. If unique_id is 2035 * 0x00, the driver will return info specified by Buffer Type. 2036 */ 2037 static long 2038 _ctl_diag_query(struct MPT3SAS_ADAPTER *ioc, void __user *arg) 2039 { 2040 struct mpt3_diag_query karg; 2041 void *request_data; 2042 int i; 2043 u8 buffer_type; 2044 2045 if (copy_from_user(&karg, arg, sizeof(karg))) { 2046 pr_err("failure at %s:%d/%s()!\n", 2047 __FILE__, __LINE__, __func__); 2048 return -EFAULT; 2049 } 2050 2051 dctlprintk(ioc, ioc_info(ioc, "%s\n", 2052 __func__)); 2053 2054 karg.application_flags = 0; 2055 buffer_type = karg.buffer_type; 2056 2057 if (!_ctl_diag_capability(ioc, buffer_type)) { 2058 ioc_err(ioc, "%s: doesn't have capability for buffer_type(0x%02x)\n", 2059 __func__, buffer_type); 2060 return -EPERM; 2061 } 2062 2063 if (!(ioc->diag_buffer_status[buffer_type] & 2064 MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED)) { 2065 if ((ioc->diag_buffer_status[buffer_type] & 2066 MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) { 2067 ioc_err(ioc, "%s: buffer_type(0x%02x) is not registered\n", 2068 __func__, buffer_type); 2069 return -EINVAL; 2070 } 2071 } 2072 2073 if (karg.unique_id) { 2074 if (karg.unique_id != ioc->unique_id[buffer_type]) { 2075 ioc_err(ioc, "%s: unique_id(0x%08x) is not registered\n", 2076 __func__, karg.unique_id); 2077 return -EINVAL; 2078 } 2079 } 2080 2081 request_data = ioc->diag_buffer[buffer_type]; 2082 if (!request_data) { 2083 ioc_err(ioc, "%s: doesn't have buffer for buffer_type(0x%02x)\n", 2084 __func__, buffer_type); 2085 return -ENOMEM; 2086 } 2087 2088 if ((ioc->diag_buffer_status[buffer_type] & 2089 MPT3_DIAG_BUFFER_IS_REGISTERED)) 2090 karg.application_flags |= MPT3_APP_FLAGS_BUFFER_VALID; 2091 2092 if (!(ioc->diag_buffer_status[buffer_type] & 2093 MPT3_DIAG_BUFFER_IS_RELEASED)) 2094 karg.application_flags |= MPT3_APP_FLAGS_FW_BUFFER_ACCESS; 2095 2096 if (!(ioc->diag_buffer_status[buffer_type] & 2097 MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED)) 2098 karg.application_flags |= MPT3_APP_FLAGS_DYNAMIC_BUFFER_ALLOC; 2099 2100 if ((ioc->diag_buffer_status[buffer_type] & 2101 MPT3_DIAG_BUFFER_IS_APP_OWNED)) 2102 karg.application_flags |= MPT3_APP_FLAGS_APP_OWNED; 2103 2104 for (i = 0; i < MPT3_PRODUCT_SPECIFIC_DWORDS; i++) 2105 karg.product_specific[i] = 2106 ioc->product_specific[buffer_type][i]; 2107 2108 karg.total_buffer_size = ioc->diag_buffer_sz[buffer_type]; 2109 karg.driver_added_buffer_size = 0; 2110 karg.unique_id = ioc->unique_id[buffer_type]; 2111 karg.diagnostic_flags = ioc->diagnostic_flags[buffer_type]; 2112 2113 if (copy_to_user(arg, &karg, sizeof(struct mpt3_diag_query))) { 2114 ioc_err(ioc, "%s: unable to write mpt3_diag_query data @ %p\n", 2115 __func__, arg); 2116 return -EFAULT; 2117 } 2118 return 0; 2119 } 2120 2121 /** 2122 * mpt3sas_send_diag_release - Diag Release Message 2123 * @ioc: per adapter object 2124 * @buffer_type: specifies either TRACE, SNAPSHOT, or EXTENDED 2125 * @issue_reset: specifies whether host reset is required. 2126 * 2127 */ 2128 int 2129 mpt3sas_send_diag_release(struct MPT3SAS_ADAPTER *ioc, u8 buffer_type, 2130 u8 *issue_reset) 2131 { 2132 Mpi2DiagReleaseRequest_t *mpi_request; 2133 Mpi2DiagReleaseReply_t *mpi_reply; 2134 u16 smid; 2135 u16 ioc_status; 2136 u32 ioc_state; 2137 int rc; 2138 u8 reset_needed = 0; 2139 2140 dctlprintk(ioc, ioc_info(ioc, "%s\n", 2141 __func__)); 2142 2143 rc = 0; 2144 *issue_reset = 0; 2145 2146 2147 ioc_state = mpt3sas_base_get_iocstate(ioc, 1); 2148 if (ioc_state != MPI2_IOC_STATE_OPERATIONAL) { 2149 if (ioc->diag_buffer_status[buffer_type] & 2150 MPT3_DIAG_BUFFER_IS_REGISTERED) 2151 ioc->diag_buffer_status[buffer_type] |= 2152 MPT3_DIAG_BUFFER_IS_RELEASED; 2153 dctlprintk(ioc, 2154 ioc_info(ioc, "%s: skipping due to FAULT state\n", 2155 __func__)); 2156 rc = -EAGAIN; 2157 goto out; 2158 } 2159 2160 if (ioc->ctl_cmds.status != MPT3_CMD_NOT_USED) { 2161 ioc_err(ioc, "%s: ctl_cmd in use\n", __func__); 2162 rc = -EAGAIN; 2163 goto out; 2164 } 2165 2166 smid = mpt3sas_base_get_smid(ioc, ioc->ctl_cb_idx); 2167 if (!smid) { 2168 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 2169 rc = -EAGAIN; 2170 goto out; 2171 } 2172 2173 ioc->ctl_cmds.status = MPT3_CMD_PENDING; 2174 memset(ioc->ctl_cmds.reply, 0, ioc->reply_sz); 2175 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 2176 memset(mpi_request, 0, ioc->request_sz); 2177 ioc->ctl_cmds.smid = smid; 2178 2179 mpi_request->Function = MPI2_FUNCTION_DIAG_RELEASE; 2180 mpi_request->BufferType = buffer_type; 2181 mpi_request->VF_ID = 0; /* TODO */ 2182 mpi_request->VP_ID = 0; 2183 2184 init_completion(&ioc->ctl_cmds.done); 2185 ioc->put_smid_default(ioc, smid); 2186 wait_for_completion_timeout(&ioc->ctl_cmds.done, 2187 MPT3_IOCTL_DEFAULT_TIMEOUT*HZ); 2188 2189 if (!(ioc->ctl_cmds.status & MPT3_CMD_COMPLETE)) { 2190 mpt3sas_check_cmd_timeout(ioc, 2191 ioc->ctl_cmds.status, mpi_request, 2192 sizeof(Mpi2DiagReleaseRequest_t)/4, reset_needed); 2193 *issue_reset = reset_needed; 2194 rc = -EFAULT; 2195 goto out; 2196 } 2197 2198 /* process the completed Reply Message Frame */ 2199 if ((ioc->ctl_cmds.status & MPT3_CMD_REPLY_VALID) == 0) { 2200 ioc_err(ioc, "%s: no reply message\n", __func__); 2201 rc = -EFAULT; 2202 goto out; 2203 } 2204 2205 mpi_reply = ioc->ctl_cmds.reply; 2206 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 2207 2208 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 2209 ioc->diag_buffer_status[buffer_type] |= 2210 MPT3_DIAG_BUFFER_IS_RELEASED; 2211 dctlprintk(ioc, ioc_info(ioc, "%s: success\n", __func__)); 2212 } else { 2213 ioc_info(ioc, "%s: ioc_status(0x%04x) log_info(0x%08x)\n", 2214 __func__, 2215 ioc_status, le32_to_cpu(mpi_reply->IOCLogInfo)); 2216 rc = -EFAULT; 2217 } 2218 2219 out: 2220 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED; 2221 return rc; 2222 } 2223 2224 /** 2225 * _ctl_diag_release - request to send Diag Release Message to firmware 2226 * @ioc: ? 2227 * @arg: user space buffer containing ioctl content 2228 * 2229 * This allows ownership of the specified buffer to returned to the driver, 2230 * allowing an application to read the buffer without fear that firmware is 2231 * overwriting information in the buffer. 2232 */ 2233 static long 2234 _ctl_diag_release(struct MPT3SAS_ADAPTER *ioc, void __user *arg) 2235 { 2236 struct mpt3_diag_release karg; 2237 void *request_data; 2238 int rc; 2239 u8 buffer_type; 2240 u8 issue_reset = 0; 2241 2242 if (copy_from_user(&karg, arg, sizeof(karg))) { 2243 pr_err("failure at %s:%d/%s()!\n", 2244 __FILE__, __LINE__, __func__); 2245 return -EFAULT; 2246 } 2247 2248 dctlprintk(ioc, ioc_info(ioc, "%s\n", 2249 __func__)); 2250 2251 buffer_type = _ctl_diag_get_bufftype(ioc, karg.unique_id); 2252 if (buffer_type == MPT3_DIAG_UID_NOT_FOUND) { 2253 ioc_err(ioc, "%s: buffer with unique_id(0x%08x) not found\n", 2254 __func__, karg.unique_id); 2255 return -EINVAL; 2256 } 2257 2258 if (!_ctl_diag_capability(ioc, buffer_type)) { 2259 ioc_err(ioc, "%s: doesn't have capability for buffer_type(0x%02x)\n", 2260 __func__, buffer_type); 2261 return -EPERM; 2262 } 2263 2264 if ((ioc->diag_buffer_status[buffer_type] & 2265 MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) { 2266 ioc_err(ioc, "%s: buffer_type(0x%02x) is not registered\n", 2267 __func__, buffer_type); 2268 return -EINVAL; 2269 } 2270 2271 if (karg.unique_id != ioc->unique_id[buffer_type]) { 2272 ioc_err(ioc, "%s: unique_id(0x%08x) is not registered\n", 2273 __func__, karg.unique_id); 2274 return -EINVAL; 2275 } 2276 2277 if (ioc->diag_buffer_status[buffer_type] & 2278 MPT3_DIAG_BUFFER_IS_RELEASED) { 2279 ioc_err(ioc, "%s: buffer_type(0x%02x) is already released\n", 2280 __func__, buffer_type); 2281 return -EINVAL; 2282 } 2283 2284 request_data = ioc->diag_buffer[buffer_type]; 2285 2286 if (!request_data) { 2287 ioc_err(ioc, "%s: doesn't have memory allocated for buffer_type(0x%02x)\n", 2288 __func__, buffer_type); 2289 return -ENOMEM; 2290 } 2291 2292 /* buffers were released by due to host reset */ 2293 if ((ioc->diag_buffer_status[buffer_type] & 2294 MPT3_DIAG_BUFFER_IS_DIAG_RESET)) { 2295 ioc->diag_buffer_status[buffer_type] |= 2296 MPT3_DIAG_BUFFER_IS_RELEASED; 2297 ioc->diag_buffer_status[buffer_type] &= 2298 ~MPT3_DIAG_BUFFER_IS_DIAG_RESET; 2299 ioc_err(ioc, "%s: buffer_type(0x%02x) was released due to host reset\n", 2300 __func__, buffer_type); 2301 return 0; 2302 } 2303 2304 rc = mpt3sas_send_diag_release(ioc, buffer_type, &issue_reset); 2305 2306 if (issue_reset) 2307 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 2308 2309 return rc; 2310 } 2311 2312 /** 2313 * _ctl_diag_read_buffer - request for copy of the diag buffer 2314 * @ioc: per adapter object 2315 * @arg: user space buffer containing ioctl content 2316 */ 2317 static long 2318 _ctl_diag_read_buffer(struct MPT3SAS_ADAPTER *ioc, void __user *arg) 2319 { 2320 struct mpt3_diag_read_buffer karg; 2321 struct mpt3_diag_read_buffer __user *uarg = arg; 2322 void *request_data, *diag_data; 2323 Mpi2DiagBufferPostRequest_t *mpi_request; 2324 Mpi2DiagBufferPostReply_t *mpi_reply; 2325 int rc, i; 2326 u8 buffer_type; 2327 unsigned long request_size, copy_size; 2328 u16 smid; 2329 u16 ioc_status; 2330 u8 issue_reset = 0; 2331 2332 if (copy_from_user(&karg, arg, sizeof(karg))) { 2333 pr_err("failure at %s:%d/%s()!\n", 2334 __FILE__, __LINE__, __func__); 2335 return -EFAULT; 2336 } 2337 2338 dctlprintk(ioc, ioc_info(ioc, "%s\n", 2339 __func__)); 2340 2341 buffer_type = _ctl_diag_get_bufftype(ioc, karg.unique_id); 2342 if (buffer_type == MPT3_DIAG_UID_NOT_FOUND) { 2343 ioc_err(ioc, "%s: buffer with unique_id(0x%08x) not found\n", 2344 __func__, karg.unique_id); 2345 return -EINVAL; 2346 } 2347 2348 if (!_ctl_diag_capability(ioc, buffer_type)) { 2349 ioc_err(ioc, "%s: doesn't have capability for buffer_type(0x%02x)\n", 2350 __func__, buffer_type); 2351 return -EPERM; 2352 } 2353 2354 if (karg.unique_id != ioc->unique_id[buffer_type]) { 2355 ioc_err(ioc, "%s: unique_id(0x%08x) is not registered\n", 2356 __func__, karg.unique_id); 2357 return -EINVAL; 2358 } 2359 2360 request_data = ioc->diag_buffer[buffer_type]; 2361 if (!request_data) { 2362 ioc_err(ioc, "%s: doesn't have buffer for buffer_type(0x%02x)\n", 2363 __func__, buffer_type); 2364 return -ENOMEM; 2365 } 2366 2367 request_size = ioc->diag_buffer_sz[buffer_type]; 2368 2369 if ((karg.starting_offset % 4) || (karg.bytes_to_read % 4)) { 2370 ioc_err(ioc, "%s: either the starting_offset or bytes_to_read are not 4 byte aligned\n", 2371 __func__); 2372 return -EINVAL; 2373 } 2374 2375 if (karg.starting_offset > request_size) 2376 return -EINVAL; 2377 2378 diag_data = (void *)(request_data + karg.starting_offset); 2379 dctlprintk(ioc, 2380 ioc_info(ioc, "%s: diag_buffer(%p), offset(%d), sz(%d)\n", 2381 __func__, diag_data, karg.starting_offset, 2382 karg.bytes_to_read)); 2383 2384 /* Truncate data on requests that are too large */ 2385 if ((diag_data + karg.bytes_to_read < diag_data) || 2386 (diag_data + karg.bytes_to_read > request_data + request_size)) 2387 copy_size = request_size - karg.starting_offset; 2388 else 2389 copy_size = karg.bytes_to_read; 2390 2391 if (copy_to_user((void __user *)uarg->diagnostic_data, 2392 diag_data, copy_size)) { 2393 ioc_err(ioc, "%s: Unable to write mpt_diag_read_buffer_t data @ %p\n", 2394 __func__, diag_data); 2395 return -EFAULT; 2396 } 2397 2398 if ((karg.flags & MPT3_FLAGS_REREGISTER) == 0) 2399 return 0; 2400 2401 dctlprintk(ioc, 2402 ioc_info(ioc, "%s: Reregister buffer_type(0x%02x)\n", 2403 __func__, buffer_type)); 2404 if ((ioc->diag_buffer_status[buffer_type] & 2405 MPT3_DIAG_BUFFER_IS_RELEASED) == 0) { 2406 dctlprintk(ioc, 2407 ioc_info(ioc, "%s: buffer_type(0x%02x) is still registered\n", 2408 __func__, buffer_type)); 2409 return 0; 2410 } 2411 /* Get a free request frame and save the message context. 2412 */ 2413 2414 if (ioc->ctl_cmds.status != MPT3_CMD_NOT_USED) { 2415 ioc_err(ioc, "%s: ctl_cmd in use\n", __func__); 2416 rc = -EAGAIN; 2417 goto out; 2418 } 2419 2420 smid = mpt3sas_base_get_smid(ioc, ioc->ctl_cb_idx); 2421 if (!smid) { 2422 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 2423 rc = -EAGAIN; 2424 goto out; 2425 } 2426 2427 rc = 0; 2428 ioc->ctl_cmds.status = MPT3_CMD_PENDING; 2429 memset(ioc->ctl_cmds.reply, 0, ioc->reply_sz); 2430 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 2431 memset(mpi_request, 0, ioc->request_sz); 2432 ioc->ctl_cmds.smid = smid; 2433 2434 mpi_request->Function = MPI2_FUNCTION_DIAG_BUFFER_POST; 2435 mpi_request->BufferType = buffer_type; 2436 mpi_request->BufferLength = 2437 cpu_to_le32(ioc->diag_buffer_sz[buffer_type]); 2438 mpi_request->BufferAddress = 2439 cpu_to_le64(ioc->diag_buffer_dma[buffer_type]); 2440 for (i = 0; i < MPT3_PRODUCT_SPECIFIC_DWORDS; i++) 2441 mpi_request->ProductSpecific[i] = 2442 cpu_to_le32(ioc->product_specific[buffer_type][i]); 2443 mpi_request->VF_ID = 0; /* TODO */ 2444 mpi_request->VP_ID = 0; 2445 2446 init_completion(&ioc->ctl_cmds.done); 2447 ioc->put_smid_default(ioc, smid); 2448 wait_for_completion_timeout(&ioc->ctl_cmds.done, 2449 MPT3_IOCTL_DEFAULT_TIMEOUT*HZ); 2450 2451 if (!(ioc->ctl_cmds.status & MPT3_CMD_COMPLETE)) { 2452 mpt3sas_check_cmd_timeout(ioc, 2453 ioc->ctl_cmds.status, mpi_request, 2454 sizeof(Mpi2DiagBufferPostRequest_t)/4, issue_reset); 2455 goto issue_host_reset; 2456 } 2457 2458 /* process the completed Reply Message Frame */ 2459 if ((ioc->ctl_cmds.status & MPT3_CMD_REPLY_VALID) == 0) { 2460 ioc_err(ioc, "%s: no reply message\n", __func__); 2461 rc = -EFAULT; 2462 goto out; 2463 } 2464 2465 mpi_reply = ioc->ctl_cmds.reply; 2466 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 2467 2468 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 2469 ioc->diag_buffer_status[buffer_type] |= 2470 MPT3_DIAG_BUFFER_IS_REGISTERED; 2471 ioc->diag_buffer_status[buffer_type] &= 2472 ~MPT3_DIAG_BUFFER_IS_RELEASED; 2473 dctlprintk(ioc, ioc_info(ioc, "%s: success\n", __func__)); 2474 } else { 2475 ioc_info(ioc, "%s: ioc_status(0x%04x) log_info(0x%08x)\n", 2476 __func__, ioc_status, 2477 le32_to_cpu(mpi_reply->IOCLogInfo)); 2478 rc = -EFAULT; 2479 } 2480 2481 issue_host_reset: 2482 if (issue_reset) 2483 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 2484 2485 out: 2486 2487 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED; 2488 return rc; 2489 } 2490 2491 /** 2492 * _ctl_addnl_diag_query - query relevant info associated with diag buffers 2493 * @ioc: per adapter object 2494 * @arg: user space buffer containing ioctl content 2495 * 2496 * The application will send only unique_id. Driver will 2497 * inspect unique_id first, if valid, fill the details related to cause 2498 * for diag buffer release. 2499 */ 2500 static long 2501 _ctl_addnl_diag_query(struct MPT3SAS_ADAPTER *ioc, void __user *arg) 2502 { 2503 struct mpt3_addnl_diag_query karg; 2504 u32 buffer_type = 0; 2505 2506 if (copy_from_user(&karg, arg, sizeof(karg))) { 2507 pr_err("%s: failure at %s:%d/%s()!\n", 2508 ioc->name, __FILE__, __LINE__, __func__); 2509 return -EFAULT; 2510 } 2511 dctlprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 2512 if (karg.unique_id == 0) { 2513 ioc_err(ioc, "%s: unique_id is(0x%08x)\n", 2514 __func__, karg.unique_id); 2515 return -EPERM; 2516 } 2517 buffer_type = _ctl_diag_get_bufftype(ioc, karg.unique_id); 2518 if (buffer_type == MPT3_DIAG_UID_NOT_FOUND) { 2519 ioc_err(ioc, "%s: buffer with unique_id(0x%08x) not found\n", 2520 __func__, karg.unique_id); 2521 return -EPERM; 2522 } 2523 memset(&karg.rel_query, 0, sizeof(karg.rel_query)); 2524 if ((ioc->diag_buffer_status[buffer_type] & 2525 MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) { 2526 ioc_info(ioc, "%s: buffer_type(0x%02x) is not registered\n", 2527 __func__, buffer_type); 2528 goto out; 2529 } 2530 if ((ioc->diag_buffer_status[buffer_type] & 2531 MPT3_DIAG_BUFFER_IS_RELEASED) == 0) { 2532 ioc_err(ioc, "%s: buffer_type(0x%02x) is not released\n", 2533 __func__, buffer_type); 2534 return -EPERM; 2535 } 2536 memcpy(&karg.rel_query, &ioc->htb_rel, sizeof(karg.rel_query)); 2537 out: 2538 if (copy_to_user(arg, &karg, sizeof(struct mpt3_addnl_diag_query))) { 2539 ioc_err(ioc, "%s: unable to write mpt3_addnl_diag_query data @ %p\n", 2540 __func__, arg); 2541 return -EFAULT; 2542 } 2543 return 0; 2544 } 2545 2546 #ifdef CONFIG_COMPAT 2547 /** 2548 * _ctl_compat_mpt_command - convert 32bit pointers to 64bit. 2549 * @ioc: per adapter object 2550 * @cmd: ioctl opcode 2551 * @arg: (struct mpt3_ioctl_command32) 2552 * 2553 * MPT3COMMAND32 - Handle 32bit applications running on 64bit os. 2554 */ 2555 static long 2556 _ctl_compat_mpt_command(struct MPT3SAS_ADAPTER *ioc, unsigned cmd, 2557 void __user *arg) 2558 { 2559 struct mpt3_ioctl_command32 karg32; 2560 struct mpt3_ioctl_command32 __user *uarg; 2561 struct mpt3_ioctl_command karg; 2562 2563 if (_IOC_SIZE(cmd) != sizeof(struct mpt3_ioctl_command32)) 2564 return -EINVAL; 2565 2566 uarg = (struct mpt3_ioctl_command32 __user *) arg; 2567 2568 if (copy_from_user(&karg32, (char __user *)arg, sizeof(karg32))) { 2569 pr_err("failure at %s:%d/%s()!\n", 2570 __FILE__, __LINE__, __func__); 2571 return -EFAULT; 2572 } 2573 2574 memset(&karg, 0, sizeof(struct mpt3_ioctl_command)); 2575 karg.hdr.ioc_number = karg32.hdr.ioc_number; 2576 karg.hdr.port_number = karg32.hdr.port_number; 2577 karg.hdr.max_data_size = karg32.hdr.max_data_size; 2578 karg.timeout = karg32.timeout; 2579 karg.max_reply_bytes = karg32.max_reply_bytes; 2580 karg.data_in_size = karg32.data_in_size; 2581 karg.data_out_size = karg32.data_out_size; 2582 karg.max_sense_bytes = karg32.max_sense_bytes; 2583 karg.data_sge_offset = karg32.data_sge_offset; 2584 karg.reply_frame_buf_ptr = compat_ptr(karg32.reply_frame_buf_ptr); 2585 karg.data_in_buf_ptr = compat_ptr(karg32.data_in_buf_ptr); 2586 karg.data_out_buf_ptr = compat_ptr(karg32.data_out_buf_ptr); 2587 karg.sense_data_ptr = compat_ptr(karg32.sense_data_ptr); 2588 return _ctl_do_mpt_command(ioc, karg, &uarg->mf); 2589 } 2590 #endif 2591 2592 /** 2593 * _ctl_ioctl_main - main ioctl entry point 2594 * @file: (struct file) 2595 * @cmd: ioctl opcode 2596 * @arg: user space data buffer 2597 * @compat: handles 32 bit applications in 64bit os 2598 * @mpi_version: will be MPI2_VERSION for mpt2ctl ioctl device & 2599 * MPI25_VERSION | MPI26_VERSION for mpt3ctl ioctl device. 2600 */ 2601 static long 2602 _ctl_ioctl_main(struct file *file, unsigned int cmd, void __user *arg, 2603 u8 compat, u16 mpi_version) 2604 { 2605 struct MPT3SAS_ADAPTER *ioc; 2606 struct mpt3_ioctl_header ioctl_header; 2607 enum block_state state; 2608 long ret = -ENOIOCTLCMD; 2609 2610 /* get IOCTL header */ 2611 if (copy_from_user(&ioctl_header, (char __user *)arg, 2612 sizeof(struct mpt3_ioctl_header))) { 2613 pr_err("failure at %s:%d/%s()!\n", 2614 __FILE__, __LINE__, __func__); 2615 return -EFAULT; 2616 } 2617 2618 if (_ctl_verify_adapter(ioctl_header.ioc_number, 2619 &ioc, mpi_version) == -1 || !ioc) 2620 return -ENODEV; 2621 2622 /* pci_access_mutex lock acquired by ioctl path */ 2623 mutex_lock(&ioc->pci_access_mutex); 2624 2625 if (ioc->shost_recovery || ioc->pci_error_recovery || 2626 ioc->is_driver_loading || ioc->remove_host) { 2627 ret = -EAGAIN; 2628 goto out_unlock_pciaccess; 2629 } 2630 2631 state = (file->f_flags & O_NONBLOCK) ? NON_BLOCKING : BLOCKING; 2632 if (state == NON_BLOCKING) { 2633 if (!mutex_trylock(&ioc->ctl_cmds.mutex)) { 2634 ret = -EAGAIN; 2635 goto out_unlock_pciaccess; 2636 } 2637 } else if (mutex_lock_interruptible(&ioc->ctl_cmds.mutex)) { 2638 ret = -ERESTARTSYS; 2639 goto out_unlock_pciaccess; 2640 } 2641 2642 2643 switch (cmd) { 2644 case MPT3IOCINFO: 2645 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_iocinfo)) 2646 ret = _ctl_getiocinfo(ioc, arg); 2647 break; 2648 #ifdef CONFIG_COMPAT 2649 case MPT3COMMAND32: 2650 #endif 2651 case MPT3COMMAND: 2652 { 2653 struct mpt3_ioctl_command __user *uarg; 2654 struct mpt3_ioctl_command karg; 2655 2656 #ifdef CONFIG_COMPAT 2657 if (compat) { 2658 ret = _ctl_compat_mpt_command(ioc, cmd, arg); 2659 break; 2660 } 2661 #endif 2662 if (copy_from_user(&karg, arg, sizeof(karg))) { 2663 pr_err("failure at %s:%d/%s()!\n", 2664 __FILE__, __LINE__, __func__); 2665 ret = -EFAULT; 2666 break; 2667 } 2668 2669 if (karg.hdr.ioc_number != ioctl_header.ioc_number) { 2670 ret = -EINVAL; 2671 break; 2672 } 2673 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_command)) { 2674 uarg = arg; 2675 ret = _ctl_do_mpt_command(ioc, karg, &uarg->mf); 2676 } 2677 break; 2678 } 2679 case MPT3EVENTQUERY: 2680 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_eventquery)) 2681 ret = _ctl_eventquery(ioc, arg); 2682 break; 2683 case MPT3EVENTENABLE: 2684 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_eventenable)) 2685 ret = _ctl_eventenable(ioc, arg); 2686 break; 2687 case MPT3EVENTREPORT: 2688 ret = _ctl_eventreport(ioc, arg); 2689 break; 2690 case MPT3HARDRESET: 2691 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_diag_reset)) 2692 ret = _ctl_do_reset(ioc, arg); 2693 break; 2694 case MPT3BTDHMAPPING: 2695 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_btdh_mapping)) 2696 ret = _ctl_btdh_mapping(ioc, arg); 2697 break; 2698 case MPT3DIAGREGISTER: 2699 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_diag_register)) 2700 ret = _ctl_diag_register(ioc, arg); 2701 break; 2702 case MPT3DIAGUNREGISTER: 2703 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_diag_unregister)) 2704 ret = _ctl_diag_unregister(ioc, arg); 2705 break; 2706 case MPT3DIAGQUERY: 2707 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_diag_query)) 2708 ret = _ctl_diag_query(ioc, arg); 2709 break; 2710 case MPT3DIAGRELEASE: 2711 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_diag_release)) 2712 ret = _ctl_diag_release(ioc, arg); 2713 break; 2714 case MPT3DIAGREADBUFFER: 2715 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_diag_read_buffer)) 2716 ret = _ctl_diag_read_buffer(ioc, arg); 2717 break; 2718 case MPT3ADDNLDIAGQUERY: 2719 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_addnl_diag_query)) 2720 ret = _ctl_addnl_diag_query(ioc, arg); 2721 break; 2722 default: 2723 dctlprintk(ioc, 2724 ioc_info(ioc, "unsupported ioctl opcode(0x%08x)\n", 2725 cmd)); 2726 break; 2727 } 2728 2729 mutex_unlock(&ioc->ctl_cmds.mutex); 2730 out_unlock_pciaccess: 2731 mutex_unlock(&ioc->pci_access_mutex); 2732 return ret; 2733 } 2734 2735 /** 2736 * _ctl_ioctl - mpt3ctl main ioctl entry point (unlocked) 2737 * @file: (struct file) 2738 * @cmd: ioctl opcode 2739 * @arg: ? 2740 */ 2741 static long 2742 _ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2743 { 2744 long ret; 2745 2746 /* pass MPI25_VERSION | MPI26_VERSION value, 2747 * to indicate that this ioctl cmd 2748 * came from mpt3ctl ioctl device. 2749 */ 2750 ret = _ctl_ioctl_main(file, cmd, (void __user *)arg, 0, 2751 MPI25_VERSION | MPI26_VERSION); 2752 return ret; 2753 } 2754 2755 /** 2756 * _ctl_mpt2_ioctl - mpt2ctl main ioctl entry point (unlocked) 2757 * @file: (struct file) 2758 * @cmd: ioctl opcode 2759 * @arg: ? 2760 */ 2761 static long 2762 _ctl_mpt2_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2763 { 2764 long ret; 2765 2766 /* pass MPI2_VERSION value, to indicate that this ioctl cmd 2767 * came from mpt2ctl ioctl device. 2768 */ 2769 ret = _ctl_ioctl_main(file, cmd, (void __user *)arg, 0, MPI2_VERSION); 2770 return ret; 2771 } 2772 #ifdef CONFIG_COMPAT 2773 /** 2774 * _ctl_ioctl_compat - main ioctl entry point (compat) 2775 * @file: ? 2776 * @cmd: ? 2777 * @arg: ? 2778 * 2779 * This routine handles 32 bit applications in 64bit os. 2780 */ 2781 static long 2782 _ctl_ioctl_compat(struct file *file, unsigned cmd, unsigned long arg) 2783 { 2784 long ret; 2785 2786 ret = _ctl_ioctl_main(file, cmd, (void __user *)arg, 1, 2787 MPI25_VERSION | MPI26_VERSION); 2788 return ret; 2789 } 2790 2791 /** 2792 * _ctl_mpt2_ioctl_compat - main ioctl entry point (compat) 2793 * @file: ? 2794 * @cmd: ? 2795 * @arg: ? 2796 * 2797 * This routine handles 32 bit applications in 64bit os. 2798 */ 2799 static long 2800 _ctl_mpt2_ioctl_compat(struct file *file, unsigned cmd, unsigned long arg) 2801 { 2802 long ret; 2803 2804 ret = _ctl_ioctl_main(file, cmd, (void __user *)arg, 1, MPI2_VERSION); 2805 return ret; 2806 } 2807 #endif 2808 2809 /* scsi host attributes */ 2810 /** 2811 * version_fw_show - firmware version 2812 * @cdev: pointer to embedded class device 2813 * @attr: ? 2814 * @buf: the buffer returned 2815 * 2816 * A sysfs 'read-only' shost attribute. 2817 */ 2818 static ssize_t 2819 version_fw_show(struct device *cdev, struct device_attribute *attr, 2820 char *buf) 2821 { 2822 struct Scsi_Host *shost = class_to_shost(cdev); 2823 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2824 2825 return snprintf(buf, PAGE_SIZE, "%02d.%02d.%02d.%02d\n", 2826 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24, 2827 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16, 2828 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8, 2829 ioc->facts.FWVersion.Word & 0x000000FF); 2830 } 2831 static DEVICE_ATTR_RO(version_fw); 2832 2833 /** 2834 * version_bios_show - bios version 2835 * @cdev: pointer to embedded class device 2836 * @attr: ? 2837 * @buf: the buffer returned 2838 * 2839 * A sysfs 'read-only' shost attribute. 2840 */ 2841 static ssize_t 2842 version_bios_show(struct device *cdev, struct device_attribute *attr, 2843 char *buf) 2844 { 2845 struct Scsi_Host *shost = class_to_shost(cdev); 2846 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2847 2848 u32 version = le32_to_cpu(ioc->bios_pg3.BiosVersion); 2849 2850 return snprintf(buf, PAGE_SIZE, "%02d.%02d.%02d.%02d\n", 2851 (version & 0xFF000000) >> 24, 2852 (version & 0x00FF0000) >> 16, 2853 (version & 0x0000FF00) >> 8, 2854 version & 0x000000FF); 2855 } 2856 static DEVICE_ATTR_RO(version_bios); 2857 2858 /** 2859 * version_mpi_show - MPI (message passing interface) version 2860 * @cdev: pointer to embedded class device 2861 * @attr: ? 2862 * @buf: the buffer returned 2863 * 2864 * A sysfs 'read-only' shost attribute. 2865 */ 2866 static ssize_t 2867 version_mpi_show(struct device *cdev, struct device_attribute *attr, 2868 char *buf) 2869 { 2870 struct Scsi_Host *shost = class_to_shost(cdev); 2871 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2872 2873 return snprintf(buf, PAGE_SIZE, "%03x.%02x\n", 2874 ioc->facts.MsgVersion, ioc->facts.HeaderVersion >> 8); 2875 } 2876 static DEVICE_ATTR_RO(version_mpi); 2877 2878 /** 2879 * version_product_show - product name 2880 * @cdev: pointer to embedded class device 2881 * @attr: ? 2882 * @buf: the buffer returned 2883 * 2884 * A sysfs 'read-only' shost attribute. 2885 */ 2886 static ssize_t 2887 version_product_show(struct device *cdev, struct device_attribute *attr, 2888 char *buf) 2889 { 2890 struct Scsi_Host *shost = class_to_shost(cdev); 2891 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2892 2893 return snprintf(buf, 16, "%s\n", ioc->manu_pg0.ChipName); 2894 } 2895 static DEVICE_ATTR_RO(version_product); 2896 2897 /** 2898 * version_nvdata_persistent_show - ndvata persistent version 2899 * @cdev: pointer to embedded class device 2900 * @attr: ? 2901 * @buf: the buffer returned 2902 * 2903 * A sysfs 'read-only' shost attribute. 2904 */ 2905 static ssize_t 2906 version_nvdata_persistent_show(struct device *cdev, 2907 struct device_attribute *attr, char *buf) 2908 { 2909 struct Scsi_Host *shost = class_to_shost(cdev); 2910 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2911 2912 return snprintf(buf, PAGE_SIZE, "%08xh\n", 2913 le32_to_cpu(ioc->iounit_pg0.NvdataVersionPersistent.Word)); 2914 } 2915 static DEVICE_ATTR_RO(version_nvdata_persistent); 2916 2917 /** 2918 * version_nvdata_default_show - nvdata default version 2919 * @cdev: pointer to embedded class device 2920 * @attr: ? 2921 * @buf: the buffer returned 2922 * 2923 * A sysfs 'read-only' shost attribute. 2924 */ 2925 static ssize_t 2926 version_nvdata_default_show(struct device *cdev, struct device_attribute 2927 *attr, char *buf) 2928 { 2929 struct Scsi_Host *shost = class_to_shost(cdev); 2930 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2931 2932 return snprintf(buf, PAGE_SIZE, "%08xh\n", 2933 le32_to_cpu(ioc->iounit_pg0.NvdataVersionDefault.Word)); 2934 } 2935 static DEVICE_ATTR_RO(version_nvdata_default); 2936 2937 /** 2938 * board_name_show - board name 2939 * @cdev: pointer to embedded class device 2940 * @attr: ? 2941 * @buf: the buffer returned 2942 * 2943 * A sysfs 'read-only' shost attribute. 2944 */ 2945 static ssize_t 2946 board_name_show(struct device *cdev, struct device_attribute *attr, 2947 char *buf) 2948 { 2949 struct Scsi_Host *shost = class_to_shost(cdev); 2950 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2951 2952 return snprintf(buf, 16, "%s\n", ioc->manu_pg0.BoardName); 2953 } 2954 static DEVICE_ATTR_RO(board_name); 2955 2956 /** 2957 * board_assembly_show - board assembly name 2958 * @cdev: pointer to embedded class device 2959 * @attr: ? 2960 * @buf: the buffer returned 2961 * 2962 * A sysfs 'read-only' shost attribute. 2963 */ 2964 static ssize_t 2965 board_assembly_show(struct device *cdev, struct device_attribute *attr, 2966 char *buf) 2967 { 2968 struct Scsi_Host *shost = class_to_shost(cdev); 2969 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2970 2971 return snprintf(buf, 16, "%s\n", ioc->manu_pg0.BoardAssembly); 2972 } 2973 static DEVICE_ATTR_RO(board_assembly); 2974 2975 /** 2976 * board_tracer_show - board tracer number 2977 * @cdev: pointer to embedded class device 2978 * @attr: ? 2979 * @buf: the buffer returned 2980 * 2981 * A sysfs 'read-only' shost attribute. 2982 */ 2983 static ssize_t 2984 board_tracer_show(struct device *cdev, struct device_attribute *attr, 2985 char *buf) 2986 { 2987 struct Scsi_Host *shost = class_to_shost(cdev); 2988 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2989 2990 return snprintf(buf, 16, "%s\n", ioc->manu_pg0.BoardTracerNumber); 2991 } 2992 static DEVICE_ATTR_RO(board_tracer); 2993 2994 /** 2995 * io_delay_show - io missing delay 2996 * @cdev: pointer to embedded class device 2997 * @attr: ? 2998 * @buf: the buffer returned 2999 * 3000 * This is for firmware implemention for deboucing device 3001 * removal events. 3002 * 3003 * A sysfs 'read-only' shost attribute. 3004 */ 3005 static ssize_t 3006 io_delay_show(struct device *cdev, struct device_attribute *attr, 3007 char *buf) 3008 { 3009 struct Scsi_Host *shost = class_to_shost(cdev); 3010 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3011 3012 return snprintf(buf, PAGE_SIZE, "%02d\n", ioc->io_missing_delay); 3013 } 3014 static DEVICE_ATTR_RO(io_delay); 3015 3016 /** 3017 * device_delay_show - device missing delay 3018 * @cdev: pointer to embedded class device 3019 * @attr: ? 3020 * @buf: the buffer returned 3021 * 3022 * This is for firmware implemention for deboucing device 3023 * removal events. 3024 * 3025 * A sysfs 'read-only' shost attribute. 3026 */ 3027 static ssize_t 3028 device_delay_show(struct device *cdev, struct device_attribute *attr, 3029 char *buf) 3030 { 3031 struct Scsi_Host *shost = class_to_shost(cdev); 3032 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3033 3034 return snprintf(buf, PAGE_SIZE, "%02d\n", ioc->device_missing_delay); 3035 } 3036 static DEVICE_ATTR_RO(device_delay); 3037 3038 /** 3039 * fw_queue_depth_show - global credits 3040 * @cdev: pointer to embedded class device 3041 * @attr: ? 3042 * @buf: the buffer returned 3043 * 3044 * This is firmware queue depth limit 3045 * 3046 * A sysfs 'read-only' shost attribute. 3047 */ 3048 static ssize_t 3049 fw_queue_depth_show(struct device *cdev, struct device_attribute *attr, 3050 char *buf) 3051 { 3052 struct Scsi_Host *shost = class_to_shost(cdev); 3053 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3054 3055 return snprintf(buf, PAGE_SIZE, "%02d\n", ioc->facts.RequestCredit); 3056 } 3057 static DEVICE_ATTR_RO(fw_queue_depth); 3058 3059 /** 3060 * host_sas_address_show - sas address 3061 * @cdev: pointer to embedded class device 3062 * @attr: ? 3063 * @buf: the buffer returned 3064 * 3065 * This is the controller sas address 3066 * 3067 * A sysfs 'read-only' shost attribute. 3068 */ 3069 static ssize_t 3070 host_sas_address_show(struct device *cdev, struct device_attribute *attr, 3071 char *buf) 3072 3073 { 3074 struct Scsi_Host *shost = class_to_shost(cdev); 3075 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3076 3077 return snprintf(buf, PAGE_SIZE, "0x%016llx\n", 3078 (unsigned long long)ioc->sas_hba.sas_address); 3079 } 3080 static DEVICE_ATTR_RO(host_sas_address); 3081 3082 /** 3083 * logging_level_show - logging level 3084 * @cdev: pointer to embedded class device 3085 * @attr: ? 3086 * @buf: the buffer returned 3087 * 3088 * A sysfs 'read/write' shost attribute. 3089 */ 3090 static ssize_t 3091 logging_level_show(struct device *cdev, struct device_attribute *attr, 3092 char *buf) 3093 { 3094 struct Scsi_Host *shost = class_to_shost(cdev); 3095 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3096 3097 return snprintf(buf, PAGE_SIZE, "%08xh\n", ioc->logging_level); 3098 } 3099 static ssize_t 3100 logging_level_store(struct device *cdev, struct device_attribute *attr, 3101 const char *buf, size_t count) 3102 { 3103 struct Scsi_Host *shost = class_to_shost(cdev); 3104 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3105 int val = 0; 3106 3107 if (sscanf(buf, "%x", &val) != 1) 3108 return -EINVAL; 3109 3110 ioc->logging_level = val; 3111 ioc_info(ioc, "logging_level=%08xh\n", 3112 ioc->logging_level); 3113 return strlen(buf); 3114 } 3115 static DEVICE_ATTR_RW(logging_level); 3116 3117 /** 3118 * fwfault_debug_show - show/store fwfault_debug 3119 * @cdev: pointer to embedded class device 3120 * @attr: ? 3121 * @buf: the buffer returned 3122 * 3123 * mpt3sas_fwfault_debug is command line option 3124 * A sysfs 'read/write' shost attribute. 3125 */ 3126 static ssize_t 3127 fwfault_debug_show(struct device *cdev, struct device_attribute *attr, 3128 char *buf) 3129 { 3130 struct Scsi_Host *shost = class_to_shost(cdev); 3131 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3132 3133 return snprintf(buf, PAGE_SIZE, "%d\n", ioc->fwfault_debug); 3134 } 3135 static ssize_t 3136 fwfault_debug_store(struct device *cdev, struct device_attribute *attr, 3137 const char *buf, size_t count) 3138 { 3139 struct Scsi_Host *shost = class_to_shost(cdev); 3140 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3141 int val = 0; 3142 3143 if (sscanf(buf, "%d", &val) != 1) 3144 return -EINVAL; 3145 3146 ioc->fwfault_debug = val; 3147 ioc_info(ioc, "fwfault_debug=%d\n", 3148 ioc->fwfault_debug); 3149 return strlen(buf); 3150 } 3151 static DEVICE_ATTR_RW(fwfault_debug); 3152 3153 /** 3154 * ioc_reset_count_show - ioc reset count 3155 * @cdev: pointer to embedded class device 3156 * @attr: ? 3157 * @buf: the buffer returned 3158 * 3159 * This is firmware queue depth limit 3160 * 3161 * A sysfs 'read-only' shost attribute. 3162 */ 3163 static ssize_t 3164 ioc_reset_count_show(struct device *cdev, struct device_attribute *attr, 3165 char *buf) 3166 { 3167 struct Scsi_Host *shost = class_to_shost(cdev); 3168 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3169 3170 return snprintf(buf, PAGE_SIZE, "%d\n", ioc->ioc_reset_count); 3171 } 3172 static DEVICE_ATTR_RO(ioc_reset_count); 3173 3174 /** 3175 * reply_queue_count_show - number of reply queues 3176 * @cdev: pointer to embedded class device 3177 * @attr: ? 3178 * @buf: the buffer returned 3179 * 3180 * This is number of reply queues 3181 * 3182 * A sysfs 'read-only' shost attribute. 3183 */ 3184 static ssize_t 3185 reply_queue_count_show(struct device *cdev, 3186 struct device_attribute *attr, char *buf) 3187 { 3188 u8 reply_queue_count; 3189 struct Scsi_Host *shost = class_to_shost(cdev); 3190 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3191 3192 if ((ioc->facts.IOCCapabilities & 3193 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable) 3194 reply_queue_count = ioc->reply_queue_count; 3195 else 3196 reply_queue_count = 1; 3197 3198 return snprintf(buf, PAGE_SIZE, "%d\n", reply_queue_count); 3199 } 3200 static DEVICE_ATTR_RO(reply_queue_count); 3201 3202 /** 3203 * BRM_status_show - Backup Rail Monitor Status 3204 * @cdev: pointer to embedded class device 3205 * @attr: ? 3206 * @buf: the buffer returned 3207 * 3208 * This is number of reply queues 3209 * 3210 * A sysfs 'read-only' shost attribute. 3211 */ 3212 static ssize_t 3213 BRM_status_show(struct device *cdev, struct device_attribute *attr, 3214 char *buf) 3215 { 3216 struct Scsi_Host *shost = class_to_shost(cdev); 3217 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3218 Mpi2IOUnitPage3_t io_unit_pg3; 3219 Mpi2ConfigReply_t mpi_reply; 3220 u16 backup_rail_monitor_status = 0; 3221 u16 ioc_status; 3222 int sz; 3223 ssize_t rc = 0; 3224 3225 if (!ioc->is_warpdrive) { 3226 ioc_err(ioc, "%s: BRM attribute is only for warpdrive\n", 3227 __func__); 3228 return 0; 3229 } 3230 /* pci_access_mutex lock acquired by sysfs show path */ 3231 mutex_lock(&ioc->pci_access_mutex); 3232 if (ioc->pci_error_recovery || ioc->remove_host) 3233 goto out; 3234 3235 sz = sizeof(io_unit_pg3); 3236 memset(&io_unit_pg3, 0, sz); 3237 3238 if (mpt3sas_config_get_iounit_pg3(ioc, &mpi_reply, &io_unit_pg3, sz) != 3239 0) { 3240 ioc_err(ioc, "%s: failed reading iounit_pg3\n", 3241 __func__); 3242 rc = -EINVAL; 3243 goto out; 3244 } 3245 3246 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK; 3247 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 3248 ioc_err(ioc, "%s: iounit_pg3 failed with ioc_status(0x%04x)\n", 3249 __func__, ioc_status); 3250 rc = -EINVAL; 3251 goto out; 3252 } 3253 3254 if (io_unit_pg3.GPIOCount < 25) { 3255 ioc_err(ioc, "%s: iounit_pg3.GPIOCount less than 25 entries, detected (%d) entries\n", 3256 __func__, io_unit_pg3.GPIOCount); 3257 rc = -EINVAL; 3258 goto out; 3259 } 3260 3261 /* BRM status is in bit zero of GPIOVal[24] */ 3262 backup_rail_monitor_status = le16_to_cpu(io_unit_pg3.GPIOVal[24]); 3263 rc = snprintf(buf, PAGE_SIZE, "%d\n", (backup_rail_monitor_status & 1)); 3264 3265 out: 3266 mutex_unlock(&ioc->pci_access_mutex); 3267 return rc; 3268 } 3269 static DEVICE_ATTR_RO(BRM_status); 3270 3271 struct DIAG_BUFFER_START { 3272 __le32 Size; 3273 __le32 DiagVersion; 3274 u8 BufferType; 3275 u8 Reserved[3]; 3276 __le32 Reserved1; 3277 __le32 Reserved2; 3278 __le32 Reserved3; 3279 }; 3280 3281 /** 3282 * host_trace_buffer_size_show - host buffer size (trace only) 3283 * @cdev: pointer to embedded class device 3284 * @attr: ? 3285 * @buf: the buffer returned 3286 * 3287 * A sysfs 'read-only' shost attribute. 3288 */ 3289 static ssize_t 3290 host_trace_buffer_size_show(struct device *cdev, 3291 struct device_attribute *attr, char *buf) 3292 { 3293 struct Scsi_Host *shost = class_to_shost(cdev); 3294 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3295 u32 size = 0; 3296 struct DIAG_BUFFER_START *request_data; 3297 3298 if (!ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) { 3299 ioc_err(ioc, "%s: host_trace_buffer is not registered\n", 3300 __func__); 3301 return 0; 3302 } 3303 3304 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 3305 MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) { 3306 ioc_err(ioc, "%s: host_trace_buffer is not registered\n", 3307 __func__); 3308 return 0; 3309 } 3310 3311 request_data = (struct DIAG_BUFFER_START *) 3312 ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]; 3313 if ((le32_to_cpu(request_data->DiagVersion) == 0x00000000 || 3314 le32_to_cpu(request_data->DiagVersion) == 0x01000000 || 3315 le32_to_cpu(request_data->DiagVersion) == 0x01010000) && 3316 le32_to_cpu(request_data->Reserved3) == 0x4742444c) 3317 size = le32_to_cpu(request_data->Size); 3318 3319 ioc->ring_buffer_sz = size; 3320 return snprintf(buf, PAGE_SIZE, "%d\n", size); 3321 } 3322 static DEVICE_ATTR_RO(host_trace_buffer_size); 3323 3324 /** 3325 * host_trace_buffer_show - firmware ring buffer (trace only) 3326 * @cdev: pointer to embedded class device 3327 * @attr: ? 3328 * @buf: the buffer returned 3329 * 3330 * A sysfs 'read/write' shost attribute. 3331 * 3332 * You will only be able to read 4k bytes of ring buffer at a time. 3333 * In order to read beyond 4k bytes, you will have to write out the 3334 * offset to the same attribute, it will move the pointer. 3335 */ 3336 static ssize_t 3337 host_trace_buffer_show(struct device *cdev, struct device_attribute *attr, 3338 char *buf) 3339 { 3340 struct Scsi_Host *shost = class_to_shost(cdev); 3341 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3342 void *request_data; 3343 u32 size; 3344 3345 if (!ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) { 3346 ioc_err(ioc, "%s: host_trace_buffer is not registered\n", 3347 __func__); 3348 return 0; 3349 } 3350 3351 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 3352 MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) { 3353 ioc_err(ioc, "%s: host_trace_buffer is not registered\n", 3354 __func__); 3355 return 0; 3356 } 3357 3358 if (ioc->ring_buffer_offset > ioc->ring_buffer_sz) 3359 return 0; 3360 3361 size = ioc->ring_buffer_sz - ioc->ring_buffer_offset; 3362 size = (size >= PAGE_SIZE) ? (PAGE_SIZE - 1) : size; 3363 request_data = ioc->diag_buffer[0] + ioc->ring_buffer_offset; 3364 memcpy(buf, request_data, size); 3365 return size; 3366 } 3367 3368 static ssize_t 3369 host_trace_buffer_store(struct device *cdev, struct device_attribute *attr, 3370 const char *buf, size_t count) 3371 { 3372 struct Scsi_Host *shost = class_to_shost(cdev); 3373 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3374 int val = 0; 3375 3376 if (sscanf(buf, "%d", &val) != 1) 3377 return -EINVAL; 3378 3379 ioc->ring_buffer_offset = val; 3380 return strlen(buf); 3381 } 3382 static DEVICE_ATTR_RW(host_trace_buffer); 3383 3384 3385 /*****************************************/ 3386 3387 /** 3388 * host_trace_buffer_enable_show - firmware ring buffer (trace only) 3389 * @cdev: pointer to embedded class device 3390 * @attr: ? 3391 * @buf: the buffer returned 3392 * 3393 * A sysfs 'read/write' shost attribute. 3394 * 3395 * This is a mechnism to post/release host_trace_buffers 3396 */ 3397 static ssize_t 3398 host_trace_buffer_enable_show(struct device *cdev, 3399 struct device_attribute *attr, char *buf) 3400 { 3401 struct Scsi_Host *shost = class_to_shost(cdev); 3402 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3403 3404 if ((!ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) || 3405 ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 3406 MPT3_DIAG_BUFFER_IS_REGISTERED) == 0)) 3407 return snprintf(buf, PAGE_SIZE, "off\n"); 3408 else if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 3409 MPT3_DIAG_BUFFER_IS_RELEASED)) 3410 return snprintf(buf, PAGE_SIZE, "release\n"); 3411 else 3412 return snprintf(buf, PAGE_SIZE, "post\n"); 3413 } 3414 3415 static ssize_t 3416 host_trace_buffer_enable_store(struct device *cdev, 3417 struct device_attribute *attr, const char *buf, size_t count) 3418 { 3419 struct Scsi_Host *shost = class_to_shost(cdev); 3420 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3421 char str[10] = ""; 3422 struct mpt3_diag_register diag_register; 3423 u8 issue_reset = 0; 3424 3425 /* don't allow post/release occurr while recovery is active */ 3426 if (ioc->shost_recovery || ioc->remove_host || 3427 ioc->pci_error_recovery || ioc->is_driver_loading) 3428 return -EBUSY; 3429 3430 if (sscanf(buf, "%9s", str) != 1) 3431 return -EINVAL; 3432 3433 if (!strcmp(str, "post")) { 3434 /* exit out if host buffers are already posted */ 3435 if ((ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) && 3436 (ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 3437 MPT3_DIAG_BUFFER_IS_REGISTERED) && 3438 ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 3439 MPT3_DIAG_BUFFER_IS_RELEASED) == 0)) 3440 goto out; 3441 memset(&diag_register, 0, sizeof(struct mpt3_diag_register)); 3442 ioc_info(ioc, "posting host trace buffers\n"); 3443 diag_register.buffer_type = MPI2_DIAG_BUF_TYPE_TRACE; 3444 3445 if (ioc->manu_pg11.HostTraceBufferMaxSizeKB != 0 && 3446 ioc->diag_buffer_sz[MPI2_DIAG_BUF_TYPE_TRACE] != 0) { 3447 /* post the same buffer allocated previously */ 3448 diag_register.requested_buffer_size = 3449 ioc->diag_buffer_sz[MPI2_DIAG_BUF_TYPE_TRACE]; 3450 } else { 3451 /* 3452 * Free the diag buffer memory which was previously 3453 * allocated by an application. 3454 */ 3455 if ((ioc->diag_buffer_sz[MPI2_DIAG_BUF_TYPE_TRACE] != 0) 3456 && 3457 (ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 3458 MPT3_DIAG_BUFFER_IS_APP_OWNED)) { 3459 dma_free_coherent(&ioc->pdev->dev, 3460 ioc->diag_buffer_sz[MPI2_DIAG_BUF_TYPE_TRACE], 3461 ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE], 3462 ioc->diag_buffer_dma[MPI2_DIAG_BUF_TYPE_TRACE]); 3463 ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE] = 3464 NULL; 3465 } 3466 3467 diag_register.requested_buffer_size = (1024 * 1024); 3468 } 3469 3470 diag_register.unique_id = 3471 (ioc->hba_mpi_version_belonged == MPI2_VERSION) ? 3472 (MPT2DIAGBUFFUNIQUEID):(MPT3DIAGBUFFUNIQUEID); 3473 ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] = 0; 3474 _ctl_diag_register_2(ioc, &diag_register); 3475 if (ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 3476 MPT3_DIAG_BUFFER_IS_REGISTERED) { 3477 ioc_info(ioc, 3478 "Trace buffer %d KB allocated through sysfs\n", 3479 diag_register.requested_buffer_size>>10); 3480 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) 3481 ioc->diag_buffer_status[ 3482 MPI2_DIAG_BUF_TYPE_TRACE] |= 3483 MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED; 3484 } 3485 } else if (!strcmp(str, "release")) { 3486 /* exit out if host buffers are already released */ 3487 if (!ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) 3488 goto out; 3489 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 3490 MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) 3491 goto out; 3492 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 3493 MPT3_DIAG_BUFFER_IS_RELEASED)) 3494 goto out; 3495 ioc_info(ioc, "releasing host trace buffer\n"); 3496 ioc->htb_rel.buffer_rel_condition = MPT3_DIAG_BUFFER_REL_SYSFS; 3497 mpt3sas_send_diag_release(ioc, MPI2_DIAG_BUF_TYPE_TRACE, 3498 &issue_reset); 3499 } 3500 3501 out: 3502 return strlen(buf); 3503 } 3504 static DEVICE_ATTR_RW(host_trace_buffer_enable); 3505 3506 /*********** diagnostic trigger suppport *********************************/ 3507 3508 /** 3509 * diag_trigger_master_show - show the diag_trigger_master attribute 3510 * @cdev: pointer to embedded class device 3511 * @attr: ? 3512 * @buf: the buffer returned 3513 * 3514 * A sysfs 'read/write' shost attribute. 3515 */ 3516 static ssize_t 3517 diag_trigger_master_show(struct device *cdev, 3518 struct device_attribute *attr, char *buf) 3519 3520 { 3521 struct Scsi_Host *shost = class_to_shost(cdev); 3522 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3523 unsigned long flags; 3524 ssize_t rc; 3525 3526 spin_lock_irqsave(&ioc->diag_trigger_lock, flags); 3527 rc = sizeof(struct SL_WH_MASTER_TRIGGER_T); 3528 memcpy(buf, &ioc->diag_trigger_master, rc); 3529 spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags); 3530 return rc; 3531 } 3532 3533 /** 3534 * diag_trigger_master_store - store the diag_trigger_master attribute 3535 * @cdev: pointer to embedded class device 3536 * @attr: ? 3537 * @buf: the buffer returned 3538 * @count: ? 3539 * 3540 * A sysfs 'read/write' shost attribute. 3541 */ 3542 static ssize_t 3543 diag_trigger_master_store(struct device *cdev, 3544 struct device_attribute *attr, const char *buf, size_t count) 3545 3546 { 3547 struct Scsi_Host *shost = class_to_shost(cdev); 3548 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3549 struct SL_WH_MASTER_TRIGGER_T *master_tg; 3550 unsigned long flags; 3551 ssize_t rc; 3552 bool set = 1; 3553 3554 rc = min(sizeof(struct SL_WH_MASTER_TRIGGER_T), count); 3555 3556 if (ioc->supports_trigger_pages) { 3557 master_tg = kzalloc(sizeof(struct SL_WH_MASTER_TRIGGER_T), 3558 GFP_KERNEL); 3559 if (!master_tg) 3560 return -ENOMEM; 3561 3562 memcpy(master_tg, buf, rc); 3563 if (!master_tg->MasterData) 3564 set = 0; 3565 if (mpt3sas_config_update_driver_trigger_pg1(ioc, master_tg, 3566 set)) { 3567 kfree(master_tg); 3568 return -EFAULT; 3569 } 3570 kfree(master_tg); 3571 } 3572 3573 spin_lock_irqsave(&ioc->diag_trigger_lock, flags); 3574 memset(&ioc->diag_trigger_master, 0, 3575 sizeof(struct SL_WH_MASTER_TRIGGER_T)); 3576 memcpy(&ioc->diag_trigger_master, buf, rc); 3577 ioc->diag_trigger_master.MasterData |= 3578 (MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET); 3579 spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags); 3580 return rc; 3581 } 3582 static DEVICE_ATTR_RW(diag_trigger_master); 3583 3584 3585 /** 3586 * diag_trigger_event_show - show the diag_trigger_event attribute 3587 * @cdev: pointer to embedded class device 3588 * @attr: ? 3589 * @buf: the buffer returned 3590 * 3591 * A sysfs 'read/write' shost attribute. 3592 */ 3593 static ssize_t 3594 diag_trigger_event_show(struct device *cdev, 3595 struct device_attribute *attr, char *buf) 3596 { 3597 struct Scsi_Host *shost = class_to_shost(cdev); 3598 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3599 unsigned long flags; 3600 ssize_t rc; 3601 3602 spin_lock_irqsave(&ioc->diag_trigger_lock, flags); 3603 rc = sizeof(struct SL_WH_EVENT_TRIGGERS_T); 3604 memcpy(buf, &ioc->diag_trigger_event, rc); 3605 spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags); 3606 return rc; 3607 } 3608 3609 /** 3610 * diag_trigger_event_store - store the diag_trigger_event attribute 3611 * @cdev: pointer to embedded class device 3612 * @attr: ? 3613 * @buf: the buffer returned 3614 * @count: ? 3615 * 3616 * A sysfs 'read/write' shost attribute. 3617 */ 3618 static ssize_t 3619 diag_trigger_event_store(struct device *cdev, 3620 struct device_attribute *attr, const char *buf, size_t count) 3621 3622 { 3623 struct Scsi_Host *shost = class_to_shost(cdev); 3624 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3625 struct SL_WH_EVENT_TRIGGERS_T *event_tg; 3626 unsigned long flags; 3627 ssize_t sz; 3628 bool set = 1; 3629 3630 sz = min(sizeof(struct SL_WH_EVENT_TRIGGERS_T), count); 3631 if (ioc->supports_trigger_pages) { 3632 event_tg = kzalloc(sizeof(struct SL_WH_EVENT_TRIGGERS_T), 3633 GFP_KERNEL); 3634 if (!event_tg) 3635 return -ENOMEM; 3636 3637 memcpy(event_tg, buf, sz); 3638 if (!event_tg->ValidEntries) 3639 set = 0; 3640 if (mpt3sas_config_update_driver_trigger_pg2(ioc, event_tg, 3641 set)) { 3642 kfree(event_tg); 3643 return -EFAULT; 3644 } 3645 kfree(event_tg); 3646 } 3647 3648 spin_lock_irqsave(&ioc->diag_trigger_lock, flags); 3649 3650 memset(&ioc->diag_trigger_event, 0, 3651 sizeof(struct SL_WH_EVENT_TRIGGERS_T)); 3652 memcpy(&ioc->diag_trigger_event, buf, sz); 3653 if (ioc->diag_trigger_event.ValidEntries > NUM_VALID_ENTRIES) 3654 ioc->diag_trigger_event.ValidEntries = NUM_VALID_ENTRIES; 3655 spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags); 3656 return sz; 3657 } 3658 static DEVICE_ATTR_RW(diag_trigger_event); 3659 3660 3661 /** 3662 * diag_trigger_scsi_show - show the diag_trigger_scsi attribute 3663 * @cdev: pointer to embedded class device 3664 * @attr: ? 3665 * @buf: the buffer returned 3666 * 3667 * A sysfs 'read/write' shost attribute. 3668 */ 3669 static ssize_t 3670 diag_trigger_scsi_show(struct device *cdev, 3671 struct device_attribute *attr, char *buf) 3672 { 3673 struct Scsi_Host *shost = class_to_shost(cdev); 3674 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3675 unsigned long flags; 3676 ssize_t rc; 3677 3678 spin_lock_irqsave(&ioc->diag_trigger_lock, flags); 3679 rc = sizeof(struct SL_WH_SCSI_TRIGGERS_T); 3680 memcpy(buf, &ioc->diag_trigger_scsi, rc); 3681 spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags); 3682 return rc; 3683 } 3684 3685 /** 3686 * diag_trigger_scsi_store - store the diag_trigger_scsi attribute 3687 * @cdev: pointer to embedded class device 3688 * @attr: ? 3689 * @buf: the buffer returned 3690 * @count: ? 3691 * 3692 * A sysfs 'read/write' shost attribute. 3693 */ 3694 static ssize_t 3695 diag_trigger_scsi_store(struct device *cdev, 3696 struct device_attribute *attr, const char *buf, size_t count) 3697 { 3698 struct Scsi_Host *shost = class_to_shost(cdev); 3699 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3700 struct SL_WH_SCSI_TRIGGERS_T *scsi_tg; 3701 unsigned long flags; 3702 ssize_t sz; 3703 bool set = 1; 3704 3705 sz = min(sizeof(struct SL_WH_SCSI_TRIGGERS_T), count); 3706 if (ioc->supports_trigger_pages) { 3707 scsi_tg = kzalloc(sizeof(struct SL_WH_SCSI_TRIGGERS_T), 3708 GFP_KERNEL); 3709 if (!scsi_tg) 3710 return -ENOMEM; 3711 3712 memcpy(scsi_tg, buf, sz); 3713 if (!scsi_tg->ValidEntries) 3714 set = 0; 3715 if (mpt3sas_config_update_driver_trigger_pg3(ioc, scsi_tg, 3716 set)) { 3717 kfree(scsi_tg); 3718 return -EFAULT; 3719 } 3720 kfree(scsi_tg); 3721 } 3722 3723 spin_lock_irqsave(&ioc->diag_trigger_lock, flags); 3724 3725 memset(&ioc->diag_trigger_scsi, 0, sizeof(ioc->diag_trigger_scsi)); 3726 memcpy(&ioc->diag_trigger_scsi, buf, sz); 3727 if (ioc->diag_trigger_scsi.ValidEntries > NUM_VALID_ENTRIES) 3728 ioc->diag_trigger_scsi.ValidEntries = NUM_VALID_ENTRIES; 3729 spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags); 3730 return sz; 3731 } 3732 static DEVICE_ATTR_RW(diag_trigger_scsi); 3733 3734 3735 /** 3736 * diag_trigger_mpi_show - show the diag_trigger_mpi attribute 3737 * @cdev: pointer to embedded class device 3738 * @attr: ? 3739 * @buf: the buffer returned 3740 * 3741 * A sysfs 'read/write' shost attribute. 3742 */ 3743 static ssize_t 3744 diag_trigger_mpi_show(struct device *cdev, 3745 struct device_attribute *attr, char *buf) 3746 { 3747 struct Scsi_Host *shost = class_to_shost(cdev); 3748 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3749 unsigned long flags; 3750 ssize_t rc; 3751 3752 spin_lock_irqsave(&ioc->diag_trigger_lock, flags); 3753 rc = sizeof(struct SL_WH_MPI_TRIGGERS_T); 3754 memcpy(buf, &ioc->diag_trigger_mpi, rc); 3755 spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags); 3756 return rc; 3757 } 3758 3759 /** 3760 * diag_trigger_mpi_store - store the diag_trigger_mpi attribute 3761 * @cdev: pointer to embedded class device 3762 * @attr: ? 3763 * @buf: the buffer returned 3764 * @count: ? 3765 * 3766 * A sysfs 'read/write' shost attribute. 3767 */ 3768 static ssize_t 3769 diag_trigger_mpi_store(struct device *cdev, 3770 struct device_attribute *attr, const char *buf, size_t count) 3771 { 3772 struct Scsi_Host *shost = class_to_shost(cdev); 3773 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3774 struct SL_WH_MPI_TRIGGERS_T *mpi_tg; 3775 unsigned long flags; 3776 ssize_t sz; 3777 bool set = 1; 3778 3779 sz = min(sizeof(struct SL_WH_MPI_TRIGGERS_T), count); 3780 if (ioc->supports_trigger_pages) { 3781 mpi_tg = kzalloc(sizeof(struct SL_WH_MPI_TRIGGERS_T), 3782 GFP_KERNEL); 3783 if (!mpi_tg) 3784 return -ENOMEM; 3785 3786 memcpy(mpi_tg, buf, sz); 3787 if (!mpi_tg->ValidEntries) 3788 set = 0; 3789 if (mpt3sas_config_update_driver_trigger_pg4(ioc, mpi_tg, 3790 set)) { 3791 kfree(mpi_tg); 3792 return -EFAULT; 3793 } 3794 kfree(mpi_tg); 3795 } 3796 3797 spin_lock_irqsave(&ioc->diag_trigger_lock, flags); 3798 memset(&ioc->diag_trigger_mpi, 0, 3799 sizeof(ioc->diag_trigger_mpi)); 3800 memcpy(&ioc->diag_trigger_mpi, buf, sz); 3801 if (ioc->diag_trigger_mpi.ValidEntries > NUM_VALID_ENTRIES) 3802 ioc->diag_trigger_mpi.ValidEntries = NUM_VALID_ENTRIES; 3803 spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags); 3804 return sz; 3805 } 3806 3807 static DEVICE_ATTR_RW(diag_trigger_mpi); 3808 3809 /*********** diagnostic trigger suppport *** END ****************************/ 3810 3811 /*****************************************/ 3812 3813 /** 3814 * drv_support_bitmap_show - driver supported feature bitmap 3815 * @cdev: pointer to embedded class device 3816 * @attr: unused 3817 * @buf: the buffer returned 3818 * 3819 * A sysfs 'read-only' shost attribute. 3820 */ 3821 static ssize_t 3822 drv_support_bitmap_show(struct device *cdev, 3823 struct device_attribute *attr, char *buf) 3824 { 3825 struct Scsi_Host *shost = class_to_shost(cdev); 3826 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3827 3828 return snprintf(buf, PAGE_SIZE, "0x%08x\n", ioc->drv_support_bitmap); 3829 } 3830 static DEVICE_ATTR_RO(drv_support_bitmap); 3831 3832 /** 3833 * enable_sdev_max_qd_show - display whether sdev max qd is enabled/disabled 3834 * @cdev: pointer to embedded class device 3835 * @attr: unused 3836 * @buf: the buffer returned 3837 * 3838 * A sysfs read/write shost attribute. This attribute is used to set the 3839 * targets queue depth to HBA IO queue depth if this attribute is enabled. 3840 */ 3841 static ssize_t 3842 enable_sdev_max_qd_show(struct device *cdev, 3843 struct device_attribute *attr, char *buf) 3844 { 3845 struct Scsi_Host *shost = class_to_shost(cdev); 3846 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3847 3848 return snprintf(buf, PAGE_SIZE, "%d\n", ioc->enable_sdev_max_qd); 3849 } 3850 3851 /** 3852 * enable_sdev_max_qd_store - Enable/disable sdev max qd 3853 * @cdev: pointer to embedded class device 3854 * @attr: unused 3855 * @buf: the buffer returned 3856 * @count: unused 3857 * 3858 * A sysfs read/write shost attribute. This attribute is used to set the 3859 * targets queue depth to HBA IO queue depth if this attribute is enabled. 3860 * If this attribute is disabled then targets will have corresponding default 3861 * queue depth. 3862 */ 3863 static ssize_t 3864 enable_sdev_max_qd_store(struct device *cdev, 3865 struct device_attribute *attr, const char *buf, size_t count) 3866 { 3867 struct Scsi_Host *shost = class_to_shost(cdev); 3868 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3869 struct MPT3SAS_DEVICE *sas_device_priv_data; 3870 struct MPT3SAS_TARGET *sas_target_priv_data; 3871 int val = 0; 3872 struct scsi_device *sdev; 3873 struct _raid_device *raid_device; 3874 int qdepth; 3875 3876 if (kstrtoint(buf, 0, &val) != 0) 3877 return -EINVAL; 3878 3879 switch (val) { 3880 case 0: 3881 ioc->enable_sdev_max_qd = 0; 3882 shost_for_each_device(sdev, ioc->shost) { 3883 sas_device_priv_data = sdev->hostdata; 3884 if (!sas_device_priv_data) 3885 continue; 3886 sas_target_priv_data = sas_device_priv_data->sas_target; 3887 if (!sas_target_priv_data) 3888 continue; 3889 3890 if (sas_target_priv_data->flags & 3891 MPT_TARGET_FLAGS_VOLUME) { 3892 raid_device = 3893 mpt3sas_raid_device_find_by_handle(ioc, 3894 sas_target_priv_data->handle); 3895 3896 switch (raid_device->volume_type) { 3897 case MPI2_RAID_VOL_TYPE_RAID0: 3898 if (raid_device->device_info & 3899 MPI2_SAS_DEVICE_INFO_SSP_TARGET) 3900 qdepth = 3901 MPT3SAS_SAS_QUEUE_DEPTH; 3902 else 3903 qdepth = 3904 MPT3SAS_SATA_QUEUE_DEPTH; 3905 break; 3906 case MPI2_RAID_VOL_TYPE_RAID1E: 3907 case MPI2_RAID_VOL_TYPE_RAID1: 3908 case MPI2_RAID_VOL_TYPE_RAID10: 3909 case MPI2_RAID_VOL_TYPE_UNKNOWN: 3910 default: 3911 qdepth = MPT3SAS_RAID_QUEUE_DEPTH; 3912 } 3913 } else if (sas_target_priv_data->flags & 3914 MPT_TARGET_FLAGS_PCIE_DEVICE) 3915 qdepth = ioc->max_nvme_qd; 3916 else 3917 qdepth = (sas_target_priv_data->sas_dev->port_type > 1) ? 3918 ioc->max_wideport_qd : ioc->max_narrowport_qd; 3919 3920 mpt3sas_scsih_change_queue_depth(sdev, qdepth); 3921 } 3922 break; 3923 case 1: 3924 ioc->enable_sdev_max_qd = 1; 3925 shost_for_each_device(sdev, ioc->shost) 3926 mpt3sas_scsih_change_queue_depth(sdev, 3927 shost->can_queue); 3928 break; 3929 default: 3930 return -EINVAL; 3931 } 3932 3933 return strlen(buf); 3934 } 3935 static DEVICE_ATTR_RW(enable_sdev_max_qd); 3936 3937 static struct attribute *mpt3sas_host_attrs[] = { 3938 &dev_attr_version_fw.attr, 3939 &dev_attr_version_bios.attr, 3940 &dev_attr_version_mpi.attr, 3941 &dev_attr_version_product.attr, 3942 &dev_attr_version_nvdata_persistent.attr, 3943 &dev_attr_version_nvdata_default.attr, 3944 &dev_attr_board_name.attr, 3945 &dev_attr_board_assembly.attr, 3946 &dev_attr_board_tracer.attr, 3947 &dev_attr_io_delay.attr, 3948 &dev_attr_device_delay.attr, 3949 &dev_attr_logging_level.attr, 3950 &dev_attr_fwfault_debug.attr, 3951 &dev_attr_fw_queue_depth.attr, 3952 &dev_attr_host_sas_address.attr, 3953 &dev_attr_ioc_reset_count.attr, 3954 &dev_attr_host_trace_buffer_size.attr, 3955 &dev_attr_host_trace_buffer.attr, 3956 &dev_attr_host_trace_buffer_enable.attr, 3957 &dev_attr_reply_queue_count.attr, 3958 &dev_attr_diag_trigger_master.attr, 3959 &dev_attr_diag_trigger_event.attr, 3960 &dev_attr_diag_trigger_scsi.attr, 3961 &dev_attr_diag_trigger_mpi.attr, 3962 &dev_attr_drv_support_bitmap.attr, 3963 &dev_attr_BRM_status.attr, 3964 &dev_attr_enable_sdev_max_qd.attr, 3965 NULL, 3966 }; 3967 3968 static const struct attribute_group mpt3sas_host_attr_group = { 3969 .attrs = mpt3sas_host_attrs 3970 }; 3971 3972 const struct attribute_group *mpt3sas_host_groups[] = { 3973 &mpt3sas_host_attr_group, 3974 NULL 3975 }; 3976 3977 /* device attributes */ 3978 3979 /** 3980 * sas_address_show - sas address 3981 * @dev: pointer to embedded class device 3982 * @attr: ? 3983 * @buf: the buffer returned 3984 * 3985 * This is the sas address for the target 3986 * 3987 * A sysfs 'read-only' shost attribute. 3988 */ 3989 static ssize_t 3990 sas_address_show(struct device *dev, struct device_attribute *attr, 3991 char *buf) 3992 { 3993 struct scsi_device *sdev = to_scsi_device(dev); 3994 struct MPT3SAS_DEVICE *sas_device_priv_data = sdev->hostdata; 3995 3996 return snprintf(buf, PAGE_SIZE, "0x%016llx\n", 3997 (unsigned long long)sas_device_priv_data->sas_target->sas_address); 3998 } 3999 static DEVICE_ATTR_RO(sas_address); 4000 4001 /** 4002 * sas_device_handle_show - device handle 4003 * @dev: pointer to embedded class device 4004 * @attr: ? 4005 * @buf: the buffer returned 4006 * 4007 * This is the firmware assigned device handle 4008 * 4009 * A sysfs 'read-only' shost attribute. 4010 */ 4011 static ssize_t 4012 sas_device_handle_show(struct device *dev, struct device_attribute *attr, 4013 char *buf) 4014 { 4015 struct scsi_device *sdev = to_scsi_device(dev); 4016 struct MPT3SAS_DEVICE *sas_device_priv_data = sdev->hostdata; 4017 4018 return snprintf(buf, PAGE_SIZE, "0x%04x\n", 4019 sas_device_priv_data->sas_target->handle); 4020 } 4021 static DEVICE_ATTR_RO(sas_device_handle); 4022 4023 /** 4024 * sas_ncq_prio_supported_show - Indicate if device supports NCQ priority 4025 * @dev: pointer to embedded device 4026 * @attr: sas_ncq_prio_supported attribute descriptor 4027 * @buf: the buffer returned 4028 * 4029 * A sysfs 'read-only' sdev attribute, only works with SATA 4030 */ 4031 static ssize_t 4032 sas_ncq_prio_supported_show(struct device *dev, 4033 struct device_attribute *attr, char *buf) 4034 { 4035 struct scsi_device *sdev = to_scsi_device(dev); 4036 4037 return sysfs_emit(buf, "%d\n", scsih_ncq_prio_supp(sdev)); 4038 } 4039 static DEVICE_ATTR_RO(sas_ncq_prio_supported); 4040 4041 /** 4042 * sas_ncq_prio_enable_show - send prioritized io commands to device 4043 * @dev: pointer to embedded device 4044 * @attr: ? 4045 * @buf: the buffer returned 4046 * 4047 * A sysfs 'read/write' sdev attribute, only works with SATA 4048 */ 4049 static ssize_t 4050 sas_ncq_prio_enable_show(struct device *dev, 4051 struct device_attribute *attr, char *buf) 4052 { 4053 struct scsi_device *sdev = to_scsi_device(dev); 4054 struct MPT3SAS_DEVICE *sas_device_priv_data = sdev->hostdata; 4055 4056 return snprintf(buf, PAGE_SIZE, "%d\n", 4057 sas_device_priv_data->ncq_prio_enable); 4058 } 4059 4060 static ssize_t 4061 sas_ncq_prio_enable_store(struct device *dev, 4062 struct device_attribute *attr, 4063 const char *buf, size_t count) 4064 { 4065 struct scsi_device *sdev = to_scsi_device(dev); 4066 struct MPT3SAS_DEVICE *sas_device_priv_data = sdev->hostdata; 4067 bool ncq_prio_enable = 0; 4068 4069 if (kstrtobool(buf, &ncq_prio_enable)) 4070 return -EINVAL; 4071 4072 if (!scsih_ncq_prio_supp(sdev)) 4073 return -EINVAL; 4074 4075 sas_device_priv_data->ncq_prio_enable = ncq_prio_enable; 4076 return strlen(buf); 4077 } 4078 static DEVICE_ATTR_RW(sas_ncq_prio_enable); 4079 4080 static struct attribute *mpt3sas_dev_attrs[] = { 4081 &dev_attr_sas_address.attr, 4082 &dev_attr_sas_device_handle.attr, 4083 &dev_attr_sas_ncq_prio_supported.attr, 4084 &dev_attr_sas_ncq_prio_enable.attr, 4085 NULL, 4086 }; 4087 4088 static const struct attribute_group mpt3sas_dev_attr_group = { 4089 .attrs = mpt3sas_dev_attrs 4090 }; 4091 4092 const struct attribute_group *mpt3sas_dev_groups[] = { 4093 &mpt3sas_dev_attr_group, 4094 NULL 4095 }; 4096 4097 /* file operations table for mpt3ctl device */ 4098 static const struct file_operations ctl_fops = { 4099 .owner = THIS_MODULE, 4100 .unlocked_ioctl = _ctl_ioctl, 4101 .poll = _ctl_poll, 4102 .fasync = _ctl_fasync, 4103 #ifdef CONFIG_COMPAT 4104 .compat_ioctl = _ctl_ioctl_compat, 4105 #endif 4106 }; 4107 4108 /* file operations table for mpt2ctl device */ 4109 static const struct file_operations ctl_gen2_fops = { 4110 .owner = THIS_MODULE, 4111 .unlocked_ioctl = _ctl_mpt2_ioctl, 4112 .poll = _ctl_poll, 4113 .fasync = _ctl_fasync, 4114 #ifdef CONFIG_COMPAT 4115 .compat_ioctl = _ctl_mpt2_ioctl_compat, 4116 #endif 4117 }; 4118 4119 static struct miscdevice ctl_dev = { 4120 .minor = MPT3SAS_MINOR, 4121 .name = MPT3SAS_DEV_NAME, 4122 .fops = &ctl_fops, 4123 }; 4124 4125 static struct miscdevice gen2_ctl_dev = { 4126 .minor = MPT2SAS_MINOR, 4127 .name = MPT2SAS_DEV_NAME, 4128 .fops = &ctl_gen2_fops, 4129 }; 4130 4131 /** 4132 * mpt3sas_ctl_init - main entry point for ctl. 4133 * @hbas_to_enumerate: ? 4134 */ 4135 void 4136 mpt3sas_ctl_init(ushort hbas_to_enumerate) 4137 { 4138 async_queue = NULL; 4139 4140 /* Don't register mpt3ctl ioctl device if 4141 * hbas_to_enumarate is one. 4142 */ 4143 if (hbas_to_enumerate != 1) 4144 if (misc_register(&ctl_dev) < 0) 4145 pr_err("%s can't register misc device [minor=%d]\n", 4146 MPT3SAS_DRIVER_NAME, MPT3SAS_MINOR); 4147 4148 /* Don't register mpt3ctl ioctl device if 4149 * hbas_to_enumarate is two. 4150 */ 4151 if (hbas_to_enumerate != 2) 4152 if (misc_register(&gen2_ctl_dev) < 0) 4153 pr_err("%s can't register misc device [minor=%d]\n", 4154 MPT2SAS_DRIVER_NAME, MPT2SAS_MINOR); 4155 4156 init_waitqueue_head(&ctl_poll_wait); 4157 } 4158 4159 /** 4160 * mpt3sas_ctl_exit - exit point for ctl 4161 * @hbas_to_enumerate: ? 4162 */ 4163 void 4164 mpt3sas_ctl_exit(ushort hbas_to_enumerate) 4165 { 4166 struct MPT3SAS_ADAPTER *ioc; 4167 int i; 4168 4169 list_for_each_entry(ioc, &mpt3sas_ioc_list, list) { 4170 4171 /* free memory associated to diag buffers */ 4172 for (i = 0; i < MPI2_DIAG_BUF_TYPE_COUNT; i++) { 4173 if (!ioc->diag_buffer[i]) 4174 continue; 4175 dma_free_coherent(&ioc->pdev->dev, 4176 ioc->diag_buffer_sz[i], 4177 ioc->diag_buffer[i], 4178 ioc->diag_buffer_dma[i]); 4179 ioc->diag_buffer[i] = NULL; 4180 ioc->diag_buffer_status[i] = 0; 4181 } 4182 4183 kfree(ioc->event_log); 4184 } 4185 if (hbas_to_enumerate != 1) 4186 misc_deregister(&ctl_dev); 4187 if (hbas_to_enumerate != 2) 4188 misc_deregister(&gen2_ctl_dev); 4189 } 4190