1 /*
2  * Management Module Support for MPT (Message Passing Technology) based
3  * controllers
4  *
5  * This code is based on drivers/scsi/mpt3sas/mpt3sas_ctl.c
6  * Copyright (C) 2012-2014  LSI Corporation
7  * Copyright (C) 2013-2014 Avago Technologies
8  *  (mailto: MPT-FusionLinux.pdl@avagotech.com)
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version 2
13  * of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * NO WARRANTY
21  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25  * solely responsible for determining the appropriateness of using and
26  * distributing the Program and assumes all risks associated with its
27  * exercise of rights under this Agreement, including but not limited to
28  * the risks and costs of program errors, damage to or loss of data,
29  * programs or equipment, and unavailability or interruption of operations.
30 
31  * DISCLAIMER OF LIABILITY
32  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39 
40  * You should have received a copy of the GNU General Public License
41  * along with this program; if not, write to the Free Software
42  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
43  * USA.
44  */
45 
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/delay.h>
54 #include <linux/compat.h>
55 #include <linux/poll.h>
56 
57 #include <linux/io.h>
58 #include <linux/uaccess.h>
59 
60 #include "mpt3sas_base.h"
61 #include "mpt3sas_ctl.h"
62 
63 
64 static struct fasync_struct *async_queue;
65 static DECLARE_WAIT_QUEUE_HEAD(ctl_poll_wait);
66 
67 
68 /**
69  * enum block_state - blocking state
70  * @NON_BLOCKING: non blocking
71  * @BLOCKING: blocking
72  *
73  * These states are for ioctls that need to wait for a response
74  * from firmware, so they probably require sleep.
75  */
76 enum block_state {
77 	NON_BLOCKING,
78 	BLOCKING,
79 };
80 
81 /**
82  * _ctl_display_some_debug - debug routine
83  * @ioc: per adapter object
84  * @smid: system request message index
85  * @calling_function_name: string pass from calling function
86  * @mpi_reply: reply message frame
87  * Context: none.
88  *
89  * Function for displaying debug info helpful when debugging issues
90  * in this module.
91  */
92 static void
93 _ctl_display_some_debug(struct MPT3SAS_ADAPTER *ioc, u16 smid,
94 	char *calling_function_name, MPI2DefaultReply_t *mpi_reply)
95 {
96 	Mpi2ConfigRequest_t *mpi_request;
97 	char *desc = NULL;
98 
99 	if (!(ioc->logging_level & MPT_DEBUG_IOCTL))
100 		return;
101 
102 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
103 	switch (mpi_request->Function) {
104 	case MPI2_FUNCTION_SCSI_IO_REQUEST:
105 	{
106 		Mpi2SCSIIORequest_t *scsi_request =
107 		    (Mpi2SCSIIORequest_t *)mpi_request;
108 
109 		snprintf(ioc->tmp_string, MPT_STRING_LENGTH,
110 		    "scsi_io, cmd(0x%02x), cdb_len(%d)",
111 		    scsi_request->CDB.CDB32[0],
112 		    le16_to_cpu(scsi_request->IoFlags) & 0xF);
113 		desc = ioc->tmp_string;
114 		break;
115 	}
116 	case MPI2_FUNCTION_SCSI_TASK_MGMT:
117 		desc = "task_mgmt";
118 		break;
119 	case MPI2_FUNCTION_IOC_INIT:
120 		desc = "ioc_init";
121 		break;
122 	case MPI2_FUNCTION_IOC_FACTS:
123 		desc = "ioc_facts";
124 		break;
125 	case MPI2_FUNCTION_CONFIG:
126 	{
127 		Mpi2ConfigRequest_t *config_request =
128 		    (Mpi2ConfigRequest_t *)mpi_request;
129 
130 		snprintf(ioc->tmp_string, MPT_STRING_LENGTH,
131 		    "config, type(0x%02x), ext_type(0x%02x), number(%d)",
132 		    (config_request->Header.PageType &
133 		     MPI2_CONFIG_PAGETYPE_MASK), config_request->ExtPageType,
134 		    config_request->Header.PageNumber);
135 		desc = ioc->tmp_string;
136 		break;
137 	}
138 	case MPI2_FUNCTION_PORT_FACTS:
139 		desc = "port_facts";
140 		break;
141 	case MPI2_FUNCTION_PORT_ENABLE:
142 		desc = "port_enable";
143 		break;
144 	case MPI2_FUNCTION_EVENT_NOTIFICATION:
145 		desc = "event_notification";
146 		break;
147 	case MPI2_FUNCTION_FW_DOWNLOAD:
148 		desc = "fw_download";
149 		break;
150 	case MPI2_FUNCTION_FW_UPLOAD:
151 		desc = "fw_upload";
152 		break;
153 	case MPI2_FUNCTION_RAID_ACTION:
154 		desc = "raid_action";
155 		break;
156 	case MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH:
157 	{
158 		Mpi2SCSIIORequest_t *scsi_request =
159 		    (Mpi2SCSIIORequest_t *)mpi_request;
160 
161 		snprintf(ioc->tmp_string, MPT_STRING_LENGTH,
162 		    "raid_pass, cmd(0x%02x), cdb_len(%d)",
163 		    scsi_request->CDB.CDB32[0],
164 		    le16_to_cpu(scsi_request->IoFlags) & 0xF);
165 		desc = ioc->tmp_string;
166 		break;
167 	}
168 	case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
169 		desc = "sas_iounit_cntl";
170 		break;
171 	case MPI2_FUNCTION_SATA_PASSTHROUGH:
172 		desc = "sata_pass";
173 		break;
174 	case MPI2_FUNCTION_DIAG_BUFFER_POST:
175 		desc = "diag_buffer_post";
176 		break;
177 	case MPI2_FUNCTION_DIAG_RELEASE:
178 		desc = "diag_release";
179 		break;
180 	case MPI2_FUNCTION_SMP_PASSTHROUGH:
181 		desc = "smp_passthrough";
182 		break;
183 	case MPI2_FUNCTION_TOOLBOX:
184 		desc = "toolbox";
185 		break;
186 	case MPI2_FUNCTION_NVME_ENCAPSULATED:
187 		desc = "nvme_encapsulated";
188 		break;
189 	}
190 
191 	if (!desc)
192 		return;
193 
194 	ioc_info(ioc, "%s: %s, smid(%d)\n", calling_function_name, desc, smid);
195 
196 	if (!mpi_reply)
197 		return;
198 
199 	if (mpi_reply->IOCStatus || mpi_reply->IOCLogInfo)
200 		ioc_info(ioc, "\tiocstatus(0x%04x), loginfo(0x%08x)\n",
201 			 le16_to_cpu(mpi_reply->IOCStatus),
202 			 le32_to_cpu(mpi_reply->IOCLogInfo));
203 
204 	if (mpi_request->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
205 	    mpi_request->Function ==
206 	    MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH) {
207 		Mpi2SCSIIOReply_t *scsi_reply =
208 		    (Mpi2SCSIIOReply_t *)mpi_reply;
209 		struct _sas_device *sas_device = NULL;
210 		struct _pcie_device *pcie_device = NULL;
211 
212 		sas_device = mpt3sas_get_sdev_by_handle(ioc,
213 		    le16_to_cpu(scsi_reply->DevHandle));
214 		if (sas_device) {
215 			ioc_warn(ioc, "\tsas_address(0x%016llx), phy(%d)\n",
216 				 (u64)sas_device->sas_address,
217 				 sas_device->phy);
218 			ioc_warn(ioc, "\tenclosure_logical_id(0x%016llx), slot(%d)\n",
219 				 (u64)sas_device->enclosure_logical_id,
220 				 sas_device->slot);
221 			sas_device_put(sas_device);
222 		}
223 		if (!sas_device) {
224 			pcie_device = mpt3sas_get_pdev_by_handle(ioc,
225 				le16_to_cpu(scsi_reply->DevHandle));
226 			if (pcie_device) {
227 				ioc_warn(ioc, "\tWWID(0x%016llx), port(%d)\n",
228 					 (unsigned long long)pcie_device->wwid,
229 					 pcie_device->port_num);
230 				if (pcie_device->enclosure_handle != 0)
231 					ioc_warn(ioc, "\tenclosure_logical_id(0x%016llx), slot(%d)\n",
232 						 (u64)pcie_device->enclosure_logical_id,
233 						 pcie_device->slot);
234 				pcie_device_put(pcie_device);
235 			}
236 		}
237 		if (scsi_reply->SCSIState || scsi_reply->SCSIStatus)
238 			ioc_info(ioc, "\tscsi_state(0x%02x), scsi_status(0x%02x)\n",
239 				 scsi_reply->SCSIState,
240 				 scsi_reply->SCSIStatus);
241 	}
242 }
243 
244 /**
245  * mpt3sas_ctl_done - ctl module completion routine
246  * @ioc: per adapter object
247  * @smid: system request message index
248  * @msix_index: MSIX table index supplied by the OS
249  * @reply: reply message frame(lower 32bit addr)
250  * Context: none.
251  *
252  * The callback handler when using ioc->ctl_cb_idx.
253  *
254  * Return: 1 meaning mf should be freed from _base_interrupt
255  *         0 means the mf is freed from this function.
256  */
257 u8
258 mpt3sas_ctl_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
259 	u32 reply)
260 {
261 	MPI2DefaultReply_t *mpi_reply;
262 	Mpi2SCSIIOReply_t *scsiio_reply;
263 	Mpi26NVMeEncapsulatedErrorReply_t *nvme_error_reply;
264 	const void *sense_data;
265 	u32 sz;
266 
267 	if (ioc->ctl_cmds.status == MPT3_CMD_NOT_USED)
268 		return 1;
269 	if (ioc->ctl_cmds.smid != smid)
270 		return 1;
271 	ioc->ctl_cmds.status |= MPT3_CMD_COMPLETE;
272 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
273 	if (mpi_reply) {
274 		memcpy(ioc->ctl_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
275 		ioc->ctl_cmds.status |= MPT3_CMD_REPLY_VALID;
276 		/* get sense data */
277 		if (mpi_reply->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
278 		    mpi_reply->Function ==
279 		    MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH) {
280 			scsiio_reply = (Mpi2SCSIIOReply_t *)mpi_reply;
281 			if (scsiio_reply->SCSIState &
282 			    MPI2_SCSI_STATE_AUTOSENSE_VALID) {
283 				sz = min_t(u32, SCSI_SENSE_BUFFERSIZE,
284 				    le32_to_cpu(scsiio_reply->SenseCount));
285 				sense_data = mpt3sas_base_get_sense_buffer(ioc,
286 				    smid);
287 				memcpy(ioc->ctl_cmds.sense, sense_data, sz);
288 			}
289 		}
290 		/*
291 		 * Get Error Response data for NVMe device. The ctl_cmds.sense
292 		 * buffer is used to store the Error Response data.
293 		 */
294 		if (mpi_reply->Function == MPI2_FUNCTION_NVME_ENCAPSULATED) {
295 			nvme_error_reply =
296 			    (Mpi26NVMeEncapsulatedErrorReply_t *)mpi_reply;
297 			sz = min_t(u32, NVME_ERROR_RESPONSE_SIZE,
298 			    le16_to_cpu(nvme_error_reply->ErrorResponseCount));
299 			sense_data = mpt3sas_base_get_sense_buffer(ioc, smid);
300 			memcpy(ioc->ctl_cmds.sense, sense_data, sz);
301 		}
302 	}
303 
304 	_ctl_display_some_debug(ioc, smid, "ctl_done", mpi_reply);
305 	ioc->ctl_cmds.status &= ~MPT3_CMD_PENDING;
306 	complete(&ioc->ctl_cmds.done);
307 	return 1;
308 }
309 
310 /**
311  * _ctl_check_event_type - determines when an event needs logging
312  * @ioc: per adapter object
313  * @event: firmware event
314  *
315  * The bitmask in ioc->event_type[] indicates which events should be
316  * be saved in the driver event_log.  This bitmask is set by application.
317  *
318  * Return: 1 when event should be captured, or zero means no match.
319  */
320 static int
321 _ctl_check_event_type(struct MPT3SAS_ADAPTER *ioc, u16 event)
322 {
323 	u16 i;
324 	u32 desired_event;
325 
326 	if (event >= 128 || !event || !ioc->event_log)
327 		return 0;
328 
329 	desired_event = (1 << (event % 32));
330 	if (!desired_event)
331 		desired_event = 1;
332 	i = event / 32;
333 	return desired_event & ioc->event_type[i];
334 }
335 
336 /**
337  * mpt3sas_ctl_add_to_event_log - add event
338  * @ioc: per adapter object
339  * @mpi_reply: reply message frame
340  */
341 void
342 mpt3sas_ctl_add_to_event_log(struct MPT3SAS_ADAPTER *ioc,
343 	Mpi2EventNotificationReply_t *mpi_reply)
344 {
345 	struct MPT3_IOCTL_EVENTS *event_log;
346 	u16 event;
347 	int i;
348 	u32 sz, event_data_sz;
349 	u8 send_aen = 0;
350 
351 	if (!ioc->event_log)
352 		return;
353 
354 	event = le16_to_cpu(mpi_reply->Event);
355 
356 	if (_ctl_check_event_type(ioc, event)) {
357 
358 		/* insert entry into circular event_log */
359 		i = ioc->event_context % MPT3SAS_CTL_EVENT_LOG_SIZE;
360 		event_log = ioc->event_log;
361 		event_log[i].event = event;
362 		event_log[i].context = ioc->event_context++;
363 
364 		event_data_sz = le16_to_cpu(mpi_reply->EventDataLength)*4;
365 		sz = min_t(u32, event_data_sz, MPT3_EVENT_DATA_SIZE);
366 		memset(event_log[i].data, 0, MPT3_EVENT_DATA_SIZE);
367 		memcpy(event_log[i].data, mpi_reply->EventData, sz);
368 		send_aen = 1;
369 	}
370 
371 	/* This aen_event_read_flag flag is set until the
372 	 * application has read the event log.
373 	 * For MPI2_EVENT_LOG_ENTRY_ADDED, we always notify.
374 	 */
375 	if (event == MPI2_EVENT_LOG_ENTRY_ADDED ||
376 	    (send_aen && !ioc->aen_event_read_flag)) {
377 		ioc->aen_event_read_flag = 1;
378 		wake_up_interruptible(&ctl_poll_wait);
379 		if (async_queue)
380 			kill_fasync(&async_queue, SIGIO, POLL_IN);
381 	}
382 }
383 
384 /**
385  * mpt3sas_ctl_event_callback - firmware event handler (called at ISR time)
386  * @ioc: per adapter object
387  * @msix_index: MSIX table index supplied by the OS
388  * @reply: reply message frame(lower 32bit addr)
389  * Context: interrupt.
390  *
391  * This function merely adds a new work task into ioc->firmware_event_thread.
392  * The tasks are worked from _firmware_event_work in user context.
393  *
394  * Return: 1 meaning mf should be freed from _base_interrupt
395  *         0 means the mf is freed from this function.
396  */
397 u8
398 mpt3sas_ctl_event_callback(struct MPT3SAS_ADAPTER *ioc, u8 msix_index,
399 	u32 reply)
400 {
401 	Mpi2EventNotificationReply_t *mpi_reply;
402 
403 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
404 	if (mpi_reply)
405 		mpt3sas_ctl_add_to_event_log(ioc, mpi_reply);
406 	return 1;
407 }
408 
409 /**
410  * _ctl_verify_adapter - validates ioc_number passed from application
411  * @ioc_number: ?
412  * @iocpp: The ioc pointer is returned in this.
413  * @mpi_version: will be MPI2_VERSION for mpt2ctl ioctl device &
414  * MPI25_VERSION | MPI26_VERSION for mpt3ctl ioctl device.
415  *
416  * Return: (-1) means error, else ioc_number.
417  */
418 static int
419 _ctl_verify_adapter(int ioc_number, struct MPT3SAS_ADAPTER **iocpp,
420 							int mpi_version)
421 {
422 	struct MPT3SAS_ADAPTER *ioc;
423 	int version = 0;
424 	/* global ioc lock to protect controller on list operations */
425 	spin_lock(&gioc_lock);
426 	list_for_each_entry(ioc, &mpt3sas_ioc_list, list) {
427 		if (ioc->id != ioc_number)
428 			continue;
429 		/* Check whether this ioctl command is from right
430 		 * ioctl device or not, if not continue the search.
431 		 */
432 		version = ioc->hba_mpi_version_belonged;
433 		/* MPI25_VERSION and MPI26_VERSION uses same ioctl
434 		 * device.
435 		 */
436 		if (mpi_version == (MPI25_VERSION | MPI26_VERSION)) {
437 			if ((version == MPI25_VERSION) ||
438 				(version == MPI26_VERSION))
439 				goto out;
440 			else
441 				continue;
442 		} else {
443 			if (version != mpi_version)
444 				continue;
445 		}
446 out:
447 		spin_unlock(&gioc_lock);
448 		*iocpp = ioc;
449 		return ioc_number;
450 	}
451 	spin_unlock(&gioc_lock);
452 	*iocpp = NULL;
453 	return -1;
454 }
455 
456 /**
457  * mpt3sas_ctl_reset_handler - reset callback handler (for ctl)
458  * @ioc: per adapter object
459  *
460  * The handler for doing any required cleanup or initialization.
461  */
462 void mpt3sas_ctl_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc)
463 {
464 	int i;
465 	u8 issue_reset;
466 
467 	dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__));
468 	for (i = 0; i < MPI2_DIAG_BUF_TYPE_COUNT; i++) {
469 		if (!(ioc->diag_buffer_status[i] &
470 		      MPT3_DIAG_BUFFER_IS_REGISTERED))
471 			continue;
472 		if ((ioc->diag_buffer_status[i] &
473 		     MPT3_DIAG_BUFFER_IS_RELEASED))
474 			continue;
475 
476 		/*
477 		 * add a log message to indicate the release
478 		 */
479 		ioc_info(ioc,
480 		    "%s: Releasing the trace buffer due to adapter reset.",
481 		    __func__);
482 		ioc->htb_rel.buffer_rel_condition =
483 		    MPT3_DIAG_BUFFER_REL_TRIGGER;
484 		mpt3sas_send_diag_release(ioc, i, &issue_reset);
485 	}
486 }
487 
488 /**
489  * mpt3sas_ctl_reset_handler - clears outstanding ioctl cmd.
490  * @ioc: per adapter object
491  *
492  * The handler for doing any required cleanup or initialization.
493  */
494 void mpt3sas_ctl_clear_outstanding_ioctls(struct MPT3SAS_ADAPTER *ioc)
495 {
496 	dtmprintk(ioc,
497 	    ioc_info(ioc, "%s: clear outstanding ioctl cmd\n", __func__));
498 	if (ioc->ctl_cmds.status & MPT3_CMD_PENDING) {
499 		ioc->ctl_cmds.status |= MPT3_CMD_RESET;
500 		mpt3sas_base_free_smid(ioc, ioc->ctl_cmds.smid);
501 		complete(&ioc->ctl_cmds.done);
502 	}
503 }
504 
505 /**
506  * mpt3sas_ctl_reset_handler - reset callback handler (for ctl)
507  * @ioc: per adapter object
508  *
509  * The handler for doing any required cleanup or initialization.
510  */
511 void mpt3sas_ctl_reset_done_handler(struct MPT3SAS_ADAPTER *ioc)
512 {
513 	int i;
514 
515 	dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__));
516 
517 	for (i = 0; i < MPI2_DIAG_BUF_TYPE_COUNT; i++) {
518 		if (!(ioc->diag_buffer_status[i] &
519 		      MPT3_DIAG_BUFFER_IS_REGISTERED))
520 			continue;
521 		if ((ioc->diag_buffer_status[i] &
522 		     MPT3_DIAG_BUFFER_IS_RELEASED))
523 			continue;
524 		ioc->diag_buffer_status[i] |=
525 			MPT3_DIAG_BUFFER_IS_DIAG_RESET;
526 	}
527 }
528 
529 /**
530  * _ctl_fasync -
531  * @fd: ?
532  * @filep: ?
533  * @mode: ?
534  *
535  * Called when application request fasyn callback handler.
536  */
537 static int
538 _ctl_fasync(int fd, struct file *filep, int mode)
539 {
540 	return fasync_helper(fd, filep, mode, &async_queue);
541 }
542 
543 /**
544  * _ctl_poll -
545  * @filep: ?
546  * @wait: ?
547  *
548  */
549 static __poll_t
550 _ctl_poll(struct file *filep, poll_table *wait)
551 {
552 	struct MPT3SAS_ADAPTER *ioc;
553 
554 	poll_wait(filep, &ctl_poll_wait, wait);
555 
556 	/* global ioc lock to protect controller on list operations */
557 	spin_lock(&gioc_lock);
558 	list_for_each_entry(ioc, &mpt3sas_ioc_list, list) {
559 		if (ioc->aen_event_read_flag) {
560 			spin_unlock(&gioc_lock);
561 			return EPOLLIN | EPOLLRDNORM;
562 		}
563 	}
564 	spin_unlock(&gioc_lock);
565 	return 0;
566 }
567 
568 /**
569  * _ctl_set_task_mid - assign an active smid to tm request
570  * @ioc: per adapter object
571  * @karg: (struct mpt3_ioctl_command)
572  * @tm_request: pointer to mf from user space
573  *
574  * Return: 0 when an smid if found, else fail.
575  * during failure, the reply frame is filled.
576  */
577 static int
578 _ctl_set_task_mid(struct MPT3SAS_ADAPTER *ioc, struct mpt3_ioctl_command *karg,
579 	Mpi2SCSITaskManagementRequest_t *tm_request)
580 {
581 	u8 found = 0;
582 	u16 smid;
583 	u16 handle;
584 	struct scsi_cmnd *scmd;
585 	struct MPT3SAS_DEVICE *priv_data;
586 	Mpi2SCSITaskManagementReply_t *tm_reply;
587 	u32 sz;
588 	u32 lun;
589 	char *desc = NULL;
590 
591 	if (tm_request->TaskType == MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK)
592 		desc = "abort_task";
593 	else if (tm_request->TaskType == MPI2_SCSITASKMGMT_TASKTYPE_QUERY_TASK)
594 		desc = "query_task";
595 	else
596 		return 0;
597 
598 	lun = scsilun_to_int((struct scsi_lun *)tm_request->LUN);
599 
600 	handle = le16_to_cpu(tm_request->DevHandle);
601 	for (smid = ioc->scsiio_depth; smid && !found; smid--) {
602 		struct scsiio_tracker *st;
603 
604 		scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
605 		if (!scmd)
606 			continue;
607 		if (lun != scmd->device->lun)
608 			continue;
609 		priv_data = scmd->device->hostdata;
610 		if (priv_data->sas_target == NULL)
611 			continue;
612 		if (priv_data->sas_target->handle != handle)
613 			continue;
614 		st = scsi_cmd_priv(scmd);
615 
616 		/*
617 		 * If the given TaskMID from the user space is zero, then the
618 		 * first outstanding smid will be picked up.  Otherwise,
619 		 * targeted smid will be the one.
620 		 */
621 		if (!tm_request->TaskMID || tm_request->TaskMID == st->smid) {
622 			tm_request->TaskMID = cpu_to_le16(st->smid);
623 			found = 1;
624 		}
625 	}
626 
627 	if (!found) {
628 		dctlprintk(ioc,
629 			   ioc_info(ioc, "%s: handle(0x%04x), lun(%d), no active mid!!\n",
630 				    desc, le16_to_cpu(tm_request->DevHandle),
631 				    lun));
632 		tm_reply = ioc->ctl_cmds.reply;
633 		tm_reply->DevHandle = tm_request->DevHandle;
634 		tm_reply->Function = MPI2_FUNCTION_SCSI_TASK_MGMT;
635 		tm_reply->TaskType = tm_request->TaskType;
636 		tm_reply->MsgLength = sizeof(Mpi2SCSITaskManagementReply_t)/4;
637 		tm_reply->VP_ID = tm_request->VP_ID;
638 		tm_reply->VF_ID = tm_request->VF_ID;
639 		sz = min_t(u32, karg->max_reply_bytes, ioc->reply_sz);
640 		if (copy_to_user(karg->reply_frame_buf_ptr, ioc->ctl_cmds.reply,
641 		    sz))
642 			pr_err("failure at %s:%d/%s()!\n", __FILE__,
643 			    __LINE__, __func__);
644 		return 1;
645 	}
646 
647 	dctlprintk(ioc,
648 		   ioc_info(ioc, "%s: handle(0x%04x), lun(%d), task_mid(%d)\n",
649 			    desc, le16_to_cpu(tm_request->DevHandle), lun,
650 			    le16_to_cpu(tm_request->TaskMID)));
651 	return 0;
652 }
653 
654 /**
655  * _ctl_do_mpt_command - main handler for MPT3COMMAND opcode
656  * @ioc: per adapter object
657  * @karg: (struct mpt3_ioctl_command)
658  * @mf: pointer to mf in user space
659  */
660 static long
661 _ctl_do_mpt_command(struct MPT3SAS_ADAPTER *ioc, struct mpt3_ioctl_command karg,
662 	void __user *mf)
663 {
664 	MPI2RequestHeader_t *mpi_request = NULL, *request;
665 	MPI2DefaultReply_t *mpi_reply;
666 	Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request = NULL;
667 	struct _pcie_device *pcie_device = NULL;
668 	u16 smid;
669 	unsigned long timeout;
670 	u8 issue_reset;
671 	u32 sz, sz_arg;
672 	void *psge;
673 	void *data_out = NULL;
674 	dma_addr_t data_out_dma = 0;
675 	size_t data_out_sz = 0;
676 	void *data_in = NULL;
677 	dma_addr_t data_in_dma = 0;
678 	size_t data_in_sz = 0;
679 	long ret;
680 	u16 device_handle = MPT3SAS_INVALID_DEVICE_HANDLE;
681 
682 	issue_reset = 0;
683 
684 	if (ioc->ctl_cmds.status != MPT3_CMD_NOT_USED) {
685 		ioc_err(ioc, "%s: ctl_cmd in use\n", __func__);
686 		ret = -EAGAIN;
687 		goto out;
688 	}
689 
690 	ret = mpt3sas_wait_for_ioc(ioc,	IOC_OPERATIONAL_WAIT_COUNT);
691 	if (ret)
692 		goto out;
693 
694 	mpi_request = kzalloc(ioc->request_sz, GFP_KERNEL);
695 	if (!mpi_request) {
696 		ioc_err(ioc, "%s: failed obtaining a memory for mpi_request\n",
697 			__func__);
698 		ret = -ENOMEM;
699 		goto out;
700 	}
701 
702 	/* Check for overflow and wraparound */
703 	if (karg.data_sge_offset * 4 > ioc->request_sz ||
704 	    karg.data_sge_offset > (UINT_MAX / 4)) {
705 		ret = -EINVAL;
706 		goto out;
707 	}
708 
709 	/* copy in request message frame from user */
710 	if (copy_from_user(mpi_request, mf, karg.data_sge_offset*4)) {
711 		pr_err("failure at %s:%d/%s()!\n", __FILE__, __LINE__,
712 		    __func__);
713 		ret = -EFAULT;
714 		goto out;
715 	}
716 
717 	if (mpi_request->Function == MPI2_FUNCTION_SCSI_TASK_MGMT) {
718 		smid = mpt3sas_base_get_smid_hpr(ioc, ioc->ctl_cb_idx);
719 		if (!smid) {
720 			ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
721 			ret = -EAGAIN;
722 			goto out;
723 		}
724 	} else {
725 		/* Use first reserved smid for passthrough ioctls */
726 		smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1;
727 	}
728 
729 	ret = 0;
730 	ioc->ctl_cmds.status = MPT3_CMD_PENDING;
731 	memset(ioc->ctl_cmds.reply, 0, ioc->reply_sz);
732 	request = mpt3sas_base_get_msg_frame(ioc, smid);
733 	memset(request, 0, ioc->request_sz);
734 	memcpy(request, mpi_request, karg.data_sge_offset*4);
735 	ioc->ctl_cmds.smid = smid;
736 	data_out_sz = karg.data_out_size;
737 	data_in_sz = karg.data_in_size;
738 
739 	if (mpi_request->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
740 	    mpi_request->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
741 	    mpi_request->Function == MPI2_FUNCTION_SCSI_TASK_MGMT ||
742 	    mpi_request->Function == MPI2_FUNCTION_SATA_PASSTHROUGH ||
743 	    mpi_request->Function == MPI2_FUNCTION_NVME_ENCAPSULATED) {
744 
745 		device_handle = le16_to_cpu(mpi_request->FunctionDependent1);
746 		if (!device_handle || (device_handle >
747 		    ioc->facts.MaxDevHandle)) {
748 			ret = -EINVAL;
749 			mpt3sas_base_free_smid(ioc, smid);
750 			goto out;
751 		}
752 	}
753 
754 	/* obtain dma-able memory for data transfer */
755 	if (data_out_sz) /* WRITE */ {
756 		data_out = dma_alloc_coherent(&ioc->pdev->dev, data_out_sz,
757 				&data_out_dma, GFP_KERNEL);
758 		if (!data_out) {
759 			pr_err("failure at %s:%d/%s()!\n", __FILE__,
760 			    __LINE__, __func__);
761 			ret = -ENOMEM;
762 			mpt3sas_base_free_smid(ioc, smid);
763 			goto out;
764 		}
765 		if (copy_from_user(data_out, karg.data_out_buf_ptr,
766 			data_out_sz)) {
767 			pr_err("failure at %s:%d/%s()!\n", __FILE__,
768 			    __LINE__, __func__);
769 			ret =  -EFAULT;
770 			mpt3sas_base_free_smid(ioc, smid);
771 			goto out;
772 		}
773 	}
774 
775 	if (data_in_sz) /* READ */ {
776 		data_in = dma_alloc_coherent(&ioc->pdev->dev, data_in_sz,
777 				&data_in_dma, GFP_KERNEL);
778 		if (!data_in) {
779 			pr_err("failure at %s:%d/%s()!\n", __FILE__,
780 			    __LINE__, __func__);
781 			ret = -ENOMEM;
782 			mpt3sas_base_free_smid(ioc, smid);
783 			goto out;
784 		}
785 	}
786 
787 	psge = (void *)request + (karg.data_sge_offset*4);
788 
789 	/* send command to firmware */
790 	_ctl_display_some_debug(ioc, smid, "ctl_request", NULL);
791 
792 	init_completion(&ioc->ctl_cmds.done);
793 	switch (mpi_request->Function) {
794 	case MPI2_FUNCTION_NVME_ENCAPSULATED:
795 	{
796 		nvme_encap_request = (Mpi26NVMeEncapsulatedRequest_t *)request;
797 		if (!ioc->pcie_sg_lookup) {
798 			dtmprintk(ioc, ioc_info(ioc,
799 			    "HBA doesn't support NVMe. Rejecting NVMe Encapsulated request.\n"
800 			    ));
801 
802 			if (ioc->logging_level & MPT_DEBUG_TM)
803 				_debug_dump_mf(nvme_encap_request,
804 				    ioc->request_sz/4);
805 			mpt3sas_base_free_smid(ioc, smid);
806 			ret = -EINVAL;
807 			goto out;
808 		}
809 		/*
810 		 * Get the Physical Address of the sense buffer.
811 		 * Use Error Response buffer address field to hold the sense
812 		 * buffer address.
813 		 * Clear the internal sense buffer, which will potentially hold
814 		 * the Completion Queue Entry on return, or 0 if no Entry.
815 		 * Build the PRPs and set direction bits.
816 		 * Send the request.
817 		 */
818 		nvme_encap_request->ErrorResponseBaseAddress =
819 		    cpu_to_le64(ioc->sense_dma & 0xFFFFFFFF00000000UL);
820 		nvme_encap_request->ErrorResponseBaseAddress |=
821 		   cpu_to_le64(le32_to_cpu(
822 		   mpt3sas_base_get_sense_buffer_dma(ioc, smid)));
823 		nvme_encap_request->ErrorResponseAllocationLength =
824 					cpu_to_le16(NVME_ERROR_RESPONSE_SIZE);
825 		memset(ioc->ctl_cmds.sense, 0, NVME_ERROR_RESPONSE_SIZE);
826 		ioc->build_nvme_prp(ioc, smid, nvme_encap_request,
827 		    data_out_dma, data_out_sz, data_in_dma, data_in_sz);
828 		if (test_bit(device_handle, ioc->device_remove_in_progress)) {
829 			dtmprintk(ioc,
830 				  ioc_info(ioc, "handle(0x%04x): ioctl failed due to device removal in progress\n",
831 					   device_handle));
832 			mpt3sas_base_free_smid(ioc, smid);
833 			ret = -EINVAL;
834 			goto out;
835 		}
836 		mpt3sas_base_put_smid_nvme_encap(ioc, smid);
837 		break;
838 	}
839 	case MPI2_FUNCTION_SCSI_IO_REQUEST:
840 	case MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH:
841 	{
842 		Mpi2SCSIIORequest_t *scsiio_request =
843 		    (Mpi2SCSIIORequest_t *)request;
844 		scsiio_request->SenseBufferLength = SCSI_SENSE_BUFFERSIZE;
845 		scsiio_request->SenseBufferLowAddress =
846 		    mpt3sas_base_get_sense_buffer_dma(ioc, smid);
847 		memset(ioc->ctl_cmds.sense, 0, SCSI_SENSE_BUFFERSIZE);
848 		if (test_bit(device_handle, ioc->device_remove_in_progress)) {
849 			dtmprintk(ioc,
850 				  ioc_info(ioc, "handle(0x%04x) :ioctl failed due to device removal in progress\n",
851 					   device_handle));
852 			mpt3sas_base_free_smid(ioc, smid);
853 			ret = -EINVAL;
854 			goto out;
855 		}
856 		ioc->build_sg(ioc, psge, data_out_dma, data_out_sz,
857 		    data_in_dma, data_in_sz);
858 		if (mpi_request->Function == MPI2_FUNCTION_SCSI_IO_REQUEST)
859 			ioc->put_smid_scsi_io(ioc, smid, device_handle);
860 		else
861 			ioc->put_smid_default(ioc, smid);
862 		break;
863 	}
864 	case MPI2_FUNCTION_SCSI_TASK_MGMT:
865 	{
866 		Mpi2SCSITaskManagementRequest_t *tm_request =
867 		    (Mpi2SCSITaskManagementRequest_t *)request;
868 
869 		dtmprintk(ioc,
870 			  ioc_info(ioc, "TASK_MGMT: handle(0x%04x), task_type(0x%02x)\n",
871 				   le16_to_cpu(tm_request->DevHandle),
872 				   tm_request->TaskType));
873 		ioc->got_task_abort_from_ioctl = 1;
874 		if (tm_request->TaskType ==
875 		    MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK ||
876 		    tm_request->TaskType ==
877 		    MPI2_SCSITASKMGMT_TASKTYPE_QUERY_TASK) {
878 			if (_ctl_set_task_mid(ioc, &karg, tm_request)) {
879 				mpt3sas_base_free_smid(ioc, smid);
880 				ioc->got_task_abort_from_ioctl = 0;
881 				goto out;
882 			}
883 		}
884 		ioc->got_task_abort_from_ioctl = 0;
885 
886 		if (test_bit(device_handle, ioc->device_remove_in_progress)) {
887 			dtmprintk(ioc,
888 				  ioc_info(ioc, "handle(0x%04x) :ioctl failed due to device removal in progress\n",
889 					   device_handle));
890 			mpt3sas_base_free_smid(ioc, smid);
891 			ret = -EINVAL;
892 			goto out;
893 		}
894 		mpt3sas_scsih_set_tm_flag(ioc, le16_to_cpu(
895 		    tm_request->DevHandle));
896 		ioc->build_sg_mpi(ioc, psge, data_out_dma, data_out_sz,
897 		    data_in_dma, data_in_sz);
898 		ioc->put_smid_hi_priority(ioc, smid, 0);
899 		break;
900 	}
901 	case MPI2_FUNCTION_SMP_PASSTHROUGH:
902 	{
903 		Mpi2SmpPassthroughRequest_t *smp_request =
904 		    (Mpi2SmpPassthroughRequest_t *)mpi_request;
905 		u8 *data;
906 
907 		if (!ioc->multipath_on_hba) {
908 			/* ioc determines which port to use */
909 			smp_request->PhysicalPort = 0xFF;
910 		}
911 		if (smp_request->PassthroughFlags &
912 		    MPI2_SMP_PT_REQ_PT_FLAGS_IMMEDIATE)
913 			data = (u8 *)&smp_request->SGL;
914 		else {
915 			if (unlikely(data_out == NULL)) {
916 				pr_err("failure at %s:%d/%s()!\n",
917 				    __FILE__, __LINE__, __func__);
918 				mpt3sas_base_free_smid(ioc, smid);
919 				ret = -EINVAL;
920 				goto out;
921 			}
922 			data = data_out;
923 		}
924 
925 		if (data[1] == 0x91 && (data[10] == 1 || data[10] == 2)) {
926 			ioc->ioc_link_reset_in_progress = 1;
927 			ioc->ignore_loginfos = 1;
928 		}
929 		ioc->build_sg(ioc, psge, data_out_dma, data_out_sz, data_in_dma,
930 		    data_in_sz);
931 		ioc->put_smid_default(ioc, smid);
932 		break;
933 	}
934 	case MPI2_FUNCTION_SATA_PASSTHROUGH:
935 	{
936 		if (test_bit(device_handle, ioc->device_remove_in_progress)) {
937 			dtmprintk(ioc,
938 				  ioc_info(ioc, "handle(0x%04x) :ioctl failed due to device removal in progress\n",
939 					   device_handle));
940 			mpt3sas_base_free_smid(ioc, smid);
941 			ret = -EINVAL;
942 			goto out;
943 		}
944 		ioc->build_sg(ioc, psge, data_out_dma, data_out_sz, data_in_dma,
945 		    data_in_sz);
946 		ioc->put_smid_default(ioc, smid);
947 		break;
948 	}
949 	case MPI2_FUNCTION_FW_DOWNLOAD:
950 	case MPI2_FUNCTION_FW_UPLOAD:
951 	{
952 		ioc->build_sg(ioc, psge, data_out_dma, data_out_sz, data_in_dma,
953 		    data_in_sz);
954 		ioc->put_smid_default(ioc, smid);
955 		break;
956 	}
957 	case MPI2_FUNCTION_TOOLBOX:
958 	{
959 		Mpi2ToolboxCleanRequest_t *toolbox_request =
960 			(Mpi2ToolboxCleanRequest_t *)mpi_request;
961 
962 		if ((toolbox_request->Tool == MPI2_TOOLBOX_DIAGNOSTIC_CLI_TOOL)
963 		    || (toolbox_request->Tool ==
964 		    MPI26_TOOLBOX_BACKEND_PCIE_LANE_MARGIN))
965 			ioc->build_sg(ioc, psge, data_out_dma, data_out_sz,
966 				data_in_dma, data_in_sz);
967 		else if (toolbox_request->Tool ==
968 				MPI2_TOOLBOX_MEMORY_MOVE_TOOL) {
969 			Mpi2ToolboxMemMoveRequest_t *mem_move_request =
970 					(Mpi2ToolboxMemMoveRequest_t *)request;
971 			Mpi2SGESimple64_t tmp, *src = NULL, *dst = NULL;
972 
973 			ioc->build_sg_mpi(ioc, psge, data_out_dma,
974 					data_out_sz, data_in_dma, data_in_sz);
975 			if (data_out_sz && !data_in_sz) {
976 				dst =
977 				    (Mpi2SGESimple64_t *)&mem_move_request->SGL;
978 				src = (void *)dst + ioc->sge_size;
979 
980 				memcpy(&tmp, src, ioc->sge_size);
981 				memcpy(src, dst, ioc->sge_size);
982 				memcpy(dst, &tmp, ioc->sge_size);
983 			}
984 			if (ioc->logging_level & MPT_DEBUG_TM) {
985 				ioc_info(ioc,
986 				  "Mpi2ToolboxMemMoveRequest_t request msg\n");
987 				_debug_dump_mf(mem_move_request,
988 							ioc->request_sz/4);
989 			}
990 		} else
991 			ioc->build_sg_mpi(ioc, psge, data_out_dma, data_out_sz,
992 			    data_in_dma, data_in_sz);
993 		ioc->put_smid_default(ioc, smid);
994 		break;
995 	}
996 	case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
997 	{
998 		Mpi2SasIoUnitControlRequest_t *sasiounit_request =
999 		    (Mpi2SasIoUnitControlRequest_t *)mpi_request;
1000 
1001 		if (sasiounit_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET
1002 		    || sasiounit_request->Operation ==
1003 		    MPI2_SAS_OP_PHY_LINK_RESET) {
1004 			ioc->ioc_link_reset_in_progress = 1;
1005 			ioc->ignore_loginfos = 1;
1006 		}
1007 		/* drop to default case for posting the request */
1008 	}
1009 		fallthrough;
1010 	default:
1011 		ioc->build_sg_mpi(ioc, psge, data_out_dma, data_out_sz,
1012 		    data_in_dma, data_in_sz);
1013 		ioc->put_smid_default(ioc, smid);
1014 		break;
1015 	}
1016 
1017 	if (karg.timeout < MPT3_IOCTL_DEFAULT_TIMEOUT)
1018 		timeout = MPT3_IOCTL_DEFAULT_TIMEOUT;
1019 	else
1020 		timeout = karg.timeout;
1021 	wait_for_completion_timeout(&ioc->ctl_cmds.done, timeout*HZ);
1022 	if (mpi_request->Function == MPI2_FUNCTION_SCSI_TASK_MGMT) {
1023 		Mpi2SCSITaskManagementRequest_t *tm_request =
1024 		    (Mpi2SCSITaskManagementRequest_t *)mpi_request;
1025 		mpt3sas_scsih_clear_tm_flag(ioc, le16_to_cpu(
1026 		    tm_request->DevHandle));
1027 		mpt3sas_trigger_master(ioc, MASTER_TRIGGER_TASK_MANAGMENT);
1028 	} else if ((mpi_request->Function == MPI2_FUNCTION_SMP_PASSTHROUGH ||
1029 	    mpi_request->Function == MPI2_FUNCTION_SAS_IO_UNIT_CONTROL) &&
1030 		ioc->ioc_link_reset_in_progress) {
1031 		ioc->ioc_link_reset_in_progress = 0;
1032 		ioc->ignore_loginfos = 0;
1033 	}
1034 	if (!(ioc->ctl_cmds.status & MPT3_CMD_COMPLETE)) {
1035 		mpt3sas_check_cmd_timeout(ioc,
1036 		    ioc->ctl_cmds.status, mpi_request,
1037 		    karg.data_sge_offset, issue_reset);
1038 		goto issue_host_reset;
1039 	}
1040 
1041 	mpi_reply = ioc->ctl_cmds.reply;
1042 
1043 	if (mpi_reply->Function == MPI2_FUNCTION_SCSI_TASK_MGMT &&
1044 	    (ioc->logging_level & MPT_DEBUG_TM)) {
1045 		Mpi2SCSITaskManagementReply_t *tm_reply =
1046 		    (Mpi2SCSITaskManagementReply_t *)mpi_reply;
1047 
1048 		ioc_info(ioc, "TASK_MGMT: IOCStatus(0x%04x), IOCLogInfo(0x%08x), TerminationCount(0x%08x)\n",
1049 			 le16_to_cpu(tm_reply->IOCStatus),
1050 			 le32_to_cpu(tm_reply->IOCLogInfo),
1051 			 le32_to_cpu(tm_reply->TerminationCount));
1052 	}
1053 
1054 	/* copy out xdata to user */
1055 	if (data_in_sz) {
1056 		if (copy_to_user(karg.data_in_buf_ptr, data_in,
1057 		    data_in_sz)) {
1058 			pr_err("failure at %s:%d/%s()!\n", __FILE__,
1059 			    __LINE__, __func__);
1060 			ret = -ENODATA;
1061 			goto out;
1062 		}
1063 	}
1064 
1065 	/* copy out reply message frame to user */
1066 	if (karg.max_reply_bytes) {
1067 		sz = min_t(u32, karg.max_reply_bytes, ioc->reply_sz);
1068 		if (copy_to_user(karg.reply_frame_buf_ptr, ioc->ctl_cmds.reply,
1069 		    sz)) {
1070 			pr_err("failure at %s:%d/%s()!\n", __FILE__,
1071 			    __LINE__, __func__);
1072 			ret = -ENODATA;
1073 			goto out;
1074 		}
1075 	}
1076 
1077 	/* copy out sense/NVMe Error Response to user */
1078 	if (karg.max_sense_bytes && (mpi_request->Function ==
1079 	    MPI2_FUNCTION_SCSI_IO_REQUEST || mpi_request->Function ==
1080 	    MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH || mpi_request->Function ==
1081 	    MPI2_FUNCTION_NVME_ENCAPSULATED)) {
1082 		if (karg.sense_data_ptr == NULL) {
1083 			ioc_info(ioc, "Response buffer provided by application is NULL; Response data will not be returned\n");
1084 			goto out;
1085 		}
1086 		sz_arg = (mpi_request->Function ==
1087 		MPI2_FUNCTION_NVME_ENCAPSULATED) ? NVME_ERROR_RESPONSE_SIZE :
1088 							SCSI_SENSE_BUFFERSIZE;
1089 		sz = min_t(u32, karg.max_sense_bytes, sz_arg);
1090 		if (copy_to_user(karg.sense_data_ptr, ioc->ctl_cmds.sense,
1091 		    sz)) {
1092 			pr_err("failure at %s:%d/%s()!\n", __FILE__,
1093 				__LINE__, __func__);
1094 			ret = -ENODATA;
1095 			goto out;
1096 		}
1097 	}
1098 
1099  issue_host_reset:
1100 	if (issue_reset) {
1101 		ret = -ENODATA;
1102 		if ((mpi_request->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
1103 		    mpi_request->Function ==
1104 		    MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
1105 		    mpi_request->Function == MPI2_FUNCTION_SATA_PASSTHROUGH)) {
1106 			ioc_info(ioc, "issue target reset: handle = (0x%04x)\n",
1107 				 le16_to_cpu(mpi_request->FunctionDependent1));
1108 			mpt3sas_halt_firmware(ioc);
1109 			pcie_device = mpt3sas_get_pdev_by_handle(ioc,
1110 				le16_to_cpu(mpi_request->FunctionDependent1));
1111 			if (pcie_device && (!ioc->tm_custom_handling) &&
1112 			    (!(mpt3sas_scsih_is_pcie_scsi_device(
1113 			    pcie_device->device_info))))
1114 				mpt3sas_scsih_issue_locked_tm(ioc,
1115 				  le16_to_cpu(mpi_request->FunctionDependent1),
1116 				  0, 0, 0,
1117 				  MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET, 0,
1118 				  0, pcie_device->reset_timeout,
1119 			MPI26_SCSITASKMGMT_MSGFLAGS_PROTOCOL_LVL_RST_PCIE);
1120 			else
1121 				mpt3sas_scsih_issue_locked_tm(ioc,
1122 				  le16_to_cpu(mpi_request->FunctionDependent1),
1123 				  0, 0, 0,
1124 				  MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET, 0,
1125 				  0, 30, MPI2_SCSITASKMGMT_MSGFLAGS_LINK_RESET);
1126 		} else
1127 			mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
1128 	}
1129 
1130  out:
1131 	if (pcie_device)
1132 		pcie_device_put(pcie_device);
1133 
1134 	/* free memory associated with sg buffers */
1135 	if (data_in)
1136 		dma_free_coherent(&ioc->pdev->dev, data_in_sz, data_in,
1137 		    data_in_dma);
1138 
1139 	if (data_out)
1140 		dma_free_coherent(&ioc->pdev->dev, data_out_sz, data_out,
1141 		    data_out_dma);
1142 
1143 	kfree(mpi_request);
1144 	ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
1145 	return ret;
1146 }
1147 
1148 /**
1149  * _ctl_getiocinfo - main handler for MPT3IOCINFO opcode
1150  * @ioc: per adapter object
1151  * @arg: user space buffer containing ioctl content
1152  */
1153 static long
1154 _ctl_getiocinfo(struct MPT3SAS_ADAPTER *ioc, void __user *arg)
1155 {
1156 	struct mpt3_ioctl_iocinfo karg;
1157 
1158 	dctlprintk(ioc, ioc_info(ioc, "%s: enter\n",
1159 				 __func__));
1160 
1161 	memset(&karg, 0 , sizeof(karg));
1162 	if (ioc->pfacts)
1163 		karg.port_number = ioc->pfacts[0].PortNumber;
1164 	karg.hw_rev = ioc->pdev->revision;
1165 	karg.pci_id = ioc->pdev->device;
1166 	karg.subsystem_device = ioc->pdev->subsystem_device;
1167 	karg.subsystem_vendor = ioc->pdev->subsystem_vendor;
1168 	karg.pci_information.u.bits.bus = ioc->pdev->bus->number;
1169 	karg.pci_information.u.bits.device = PCI_SLOT(ioc->pdev->devfn);
1170 	karg.pci_information.u.bits.function = PCI_FUNC(ioc->pdev->devfn);
1171 	karg.pci_information.segment_id = pci_domain_nr(ioc->pdev->bus);
1172 	karg.firmware_version = ioc->facts.FWVersion.Word;
1173 	strcpy(karg.driver_version, ioc->driver_name);
1174 	strcat(karg.driver_version, "-");
1175 	switch  (ioc->hba_mpi_version_belonged) {
1176 	case MPI2_VERSION:
1177 		if (ioc->is_warpdrive)
1178 			karg.adapter_type = MPT2_IOCTL_INTERFACE_SAS2_SSS6200;
1179 		else
1180 			karg.adapter_type = MPT2_IOCTL_INTERFACE_SAS2;
1181 		strcat(karg.driver_version, MPT2SAS_DRIVER_VERSION);
1182 		break;
1183 	case MPI25_VERSION:
1184 	case MPI26_VERSION:
1185 		if (ioc->is_gen35_ioc)
1186 			karg.adapter_type = MPT3_IOCTL_INTERFACE_SAS35;
1187 		else
1188 			karg.adapter_type = MPT3_IOCTL_INTERFACE_SAS3;
1189 		strcat(karg.driver_version, MPT3SAS_DRIVER_VERSION);
1190 		break;
1191 	}
1192 	karg.bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
1193 
1194 	if (copy_to_user(arg, &karg, sizeof(karg))) {
1195 		pr_err("failure at %s:%d/%s()!\n",
1196 		    __FILE__, __LINE__, __func__);
1197 		return -EFAULT;
1198 	}
1199 	return 0;
1200 }
1201 
1202 /**
1203  * _ctl_eventquery - main handler for MPT3EVENTQUERY opcode
1204  * @ioc: per adapter object
1205  * @arg: user space buffer containing ioctl content
1206  */
1207 static long
1208 _ctl_eventquery(struct MPT3SAS_ADAPTER *ioc, void __user *arg)
1209 {
1210 	struct mpt3_ioctl_eventquery karg;
1211 
1212 	if (copy_from_user(&karg, arg, sizeof(karg))) {
1213 		pr_err("failure at %s:%d/%s()!\n",
1214 		    __FILE__, __LINE__, __func__);
1215 		return -EFAULT;
1216 	}
1217 
1218 	dctlprintk(ioc, ioc_info(ioc, "%s: enter\n",
1219 				 __func__));
1220 
1221 	karg.event_entries = MPT3SAS_CTL_EVENT_LOG_SIZE;
1222 	memcpy(karg.event_types, ioc->event_type,
1223 	    MPI2_EVENT_NOTIFY_EVENTMASK_WORDS * sizeof(u32));
1224 
1225 	if (copy_to_user(arg, &karg, sizeof(karg))) {
1226 		pr_err("failure at %s:%d/%s()!\n",
1227 		    __FILE__, __LINE__, __func__);
1228 		return -EFAULT;
1229 	}
1230 	return 0;
1231 }
1232 
1233 /**
1234  * _ctl_eventenable - main handler for MPT3EVENTENABLE opcode
1235  * @ioc: per adapter object
1236  * @arg: user space buffer containing ioctl content
1237  */
1238 static long
1239 _ctl_eventenable(struct MPT3SAS_ADAPTER *ioc, void __user *arg)
1240 {
1241 	struct mpt3_ioctl_eventenable karg;
1242 
1243 	if (copy_from_user(&karg, arg, sizeof(karg))) {
1244 		pr_err("failure at %s:%d/%s()!\n",
1245 		    __FILE__, __LINE__, __func__);
1246 		return -EFAULT;
1247 	}
1248 
1249 	dctlprintk(ioc, ioc_info(ioc, "%s: enter\n",
1250 				 __func__));
1251 
1252 	memcpy(ioc->event_type, karg.event_types,
1253 	    MPI2_EVENT_NOTIFY_EVENTMASK_WORDS * sizeof(u32));
1254 	mpt3sas_base_validate_event_type(ioc, ioc->event_type);
1255 
1256 	if (ioc->event_log)
1257 		return 0;
1258 	/* initialize event_log */
1259 	ioc->event_context = 0;
1260 	ioc->aen_event_read_flag = 0;
1261 	ioc->event_log = kcalloc(MPT3SAS_CTL_EVENT_LOG_SIZE,
1262 	    sizeof(struct MPT3_IOCTL_EVENTS), GFP_KERNEL);
1263 	if (!ioc->event_log) {
1264 		pr_err("failure at %s:%d/%s()!\n",
1265 		    __FILE__, __LINE__, __func__);
1266 		return -ENOMEM;
1267 	}
1268 	return 0;
1269 }
1270 
1271 /**
1272  * _ctl_eventreport - main handler for MPT3EVENTREPORT opcode
1273  * @ioc: per adapter object
1274  * @arg: user space buffer containing ioctl content
1275  */
1276 static long
1277 _ctl_eventreport(struct MPT3SAS_ADAPTER *ioc, void __user *arg)
1278 {
1279 	struct mpt3_ioctl_eventreport karg;
1280 	u32 number_bytes, max_events, max;
1281 	struct mpt3_ioctl_eventreport __user *uarg = arg;
1282 
1283 	if (copy_from_user(&karg, arg, sizeof(karg))) {
1284 		pr_err("failure at %s:%d/%s()!\n",
1285 		    __FILE__, __LINE__, __func__);
1286 		return -EFAULT;
1287 	}
1288 
1289 	dctlprintk(ioc, ioc_info(ioc, "%s: enter\n",
1290 				 __func__));
1291 
1292 	number_bytes = karg.hdr.max_data_size -
1293 	    sizeof(struct mpt3_ioctl_header);
1294 	max_events = number_bytes/sizeof(struct MPT3_IOCTL_EVENTS);
1295 	max = min_t(u32, MPT3SAS_CTL_EVENT_LOG_SIZE, max_events);
1296 
1297 	/* If fewer than 1 event is requested, there must have
1298 	 * been some type of error.
1299 	 */
1300 	if (!max || !ioc->event_log)
1301 		return -ENODATA;
1302 
1303 	number_bytes = max * sizeof(struct MPT3_IOCTL_EVENTS);
1304 	if (copy_to_user(uarg->event_data, ioc->event_log, number_bytes)) {
1305 		pr_err("failure at %s:%d/%s()!\n",
1306 		    __FILE__, __LINE__, __func__);
1307 		return -EFAULT;
1308 	}
1309 
1310 	/* reset flag so SIGIO can restart */
1311 	ioc->aen_event_read_flag = 0;
1312 	return 0;
1313 }
1314 
1315 /**
1316  * _ctl_do_reset - main handler for MPT3HARDRESET opcode
1317  * @ioc: per adapter object
1318  * @arg: user space buffer containing ioctl content
1319  */
1320 static long
1321 _ctl_do_reset(struct MPT3SAS_ADAPTER *ioc, void __user *arg)
1322 {
1323 	struct mpt3_ioctl_diag_reset karg;
1324 	int retval;
1325 
1326 	if (copy_from_user(&karg, arg, sizeof(karg))) {
1327 		pr_err("failure at %s:%d/%s()!\n",
1328 		    __FILE__, __LINE__, __func__);
1329 		return -EFAULT;
1330 	}
1331 
1332 	if (ioc->shost_recovery || ioc->pci_error_recovery ||
1333 	    ioc->is_driver_loading)
1334 		return -EAGAIN;
1335 
1336 	dctlprintk(ioc, ioc_info(ioc, "%s: enter\n",
1337 				 __func__));
1338 
1339 	ioc->reset_from_user = 1;
1340 	retval = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
1341 	ioc_info(ioc,
1342 	    "Ioctl: host reset: %s\n", ((!retval) ? "SUCCESS" : "FAILED"));
1343 	return 0;
1344 }
1345 
1346 /**
1347  * _ctl_btdh_search_sas_device - searching for sas device
1348  * @ioc: per adapter object
1349  * @btdh: btdh ioctl payload
1350  */
1351 static int
1352 _ctl_btdh_search_sas_device(struct MPT3SAS_ADAPTER *ioc,
1353 	struct mpt3_ioctl_btdh_mapping *btdh)
1354 {
1355 	struct _sas_device *sas_device;
1356 	unsigned long flags;
1357 	int rc = 0;
1358 
1359 	if (list_empty(&ioc->sas_device_list))
1360 		return rc;
1361 
1362 	spin_lock_irqsave(&ioc->sas_device_lock, flags);
1363 	list_for_each_entry(sas_device, &ioc->sas_device_list, list) {
1364 		if (btdh->bus == 0xFFFFFFFF && btdh->id == 0xFFFFFFFF &&
1365 		    btdh->handle == sas_device->handle) {
1366 			btdh->bus = sas_device->channel;
1367 			btdh->id = sas_device->id;
1368 			rc = 1;
1369 			goto out;
1370 		} else if (btdh->bus == sas_device->channel && btdh->id ==
1371 		    sas_device->id && btdh->handle == 0xFFFF) {
1372 			btdh->handle = sas_device->handle;
1373 			rc = 1;
1374 			goto out;
1375 		}
1376 	}
1377  out:
1378 	spin_unlock_irqrestore(&ioc->sas_device_lock, flags);
1379 	return rc;
1380 }
1381 
1382 /**
1383  * _ctl_btdh_search_pcie_device - searching for pcie device
1384  * @ioc: per adapter object
1385  * @btdh: btdh ioctl payload
1386  */
1387 static int
1388 _ctl_btdh_search_pcie_device(struct MPT3SAS_ADAPTER *ioc,
1389 	struct mpt3_ioctl_btdh_mapping *btdh)
1390 {
1391 	struct _pcie_device *pcie_device;
1392 	unsigned long flags;
1393 	int rc = 0;
1394 
1395 	if (list_empty(&ioc->pcie_device_list))
1396 		return rc;
1397 
1398 	spin_lock_irqsave(&ioc->pcie_device_lock, flags);
1399 	list_for_each_entry(pcie_device, &ioc->pcie_device_list, list) {
1400 		if (btdh->bus == 0xFFFFFFFF && btdh->id == 0xFFFFFFFF &&
1401 			   btdh->handle == pcie_device->handle) {
1402 			btdh->bus = pcie_device->channel;
1403 			btdh->id = pcie_device->id;
1404 			rc = 1;
1405 			goto out;
1406 		} else if (btdh->bus == pcie_device->channel && btdh->id ==
1407 			   pcie_device->id && btdh->handle == 0xFFFF) {
1408 			btdh->handle = pcie_device->handle;
1409 			rc = 1;
1410 			goto out;
1411 		}
1412 	}
1413  out:
1414 	spin_unlock_irqrestore(&ioc->pcie_device_lock, flags);
1415 	return rc;
1416 }
1417 
1418 /**
1419  * _ctl_btdh_search_raid_device - searching for raid device
1420  * @ioc: per adapter object
1421  * @btdh: btdh ioctl payload
1422  */
1423 static int
1424 _ctl_btdh_search_raid_device(struct MPT3SAS_ADAPTER *ioc,
1425 	struct mpt3_ioctl_btdh_mapping *btdh)
1426 {
1427 	struct _raid_device *raid_device;
1428 	unsigned long flags;
1429 	int rc = 0;
1430 
1431 	if (list_empty(&ioc->raid_device_list))
1432 		return rc;
1433 
1434 	spin_lock_irqsave(&ioc->raid_device_lock, flags);
1435 	list_for_each_entry(raid_device, &ioc->raid_device_list, list) {
1436 		if (btdh->bus == 0xFFFFFFFF && btdh->id == 0xFFFFFFFF &&
1437 		    btdh->handle == raid_device->handle) {
1438 			btdh->bus = raid_device->channel;
1439 			btdh->id = raid_device->id;
1440 			rc = 1;
1441 			goto out;
1442 		} else if (btdh->bus == raid_device->channel && btdh->id ==
1443 		    raid_device->id && btdh->handle == 0xFFFF) {
1444 			btdh->handle = raid_device->handle;
1445 			rc = 1;
1446 			goto out;
1447 		}
1448 	}
1449  out:
1450 	spin_unlock_irqrestore(&ioc->raid_device_lock, flags);
1451 	return rc;
1452 }
1453 
1454 /**
1455  * _ctl_btdh_mapping - main handler for MPT3BTDHMAPPING opcode
1456  * @ioc: per adapter object
1457  * @arg: user space buffer containing ioctl content
1458  */
1459 static long
1460 _ctl_btdh_mapping(struct MPT3SAS_ADAPTER *ioc, void __user *arg)
1461 {
1462 	struct mpt3_ioctl_btdh_mapping karg;
1463 	int rc;
1464 
1465 	if (copy_from_user(&karg, arg, sizeof(karg))) {
1466 		pr_err("failure at %s:%d/%s()!\n",
1467 		    __FILE__, __LINE__, __func__);
1468 		return -EFAULT;
1469 	}
1470 
1471 	dctlprintk(ioc, ioc_info(ioc, "%s\n",
1472 				 __func__));
1473 
1474 	rc = _ctl_btdh_search_sas_device(ioc, &karg);
1475 	if (!rc)
1476 		rc = _ctl_btdh_search_pcie_device(ioc, &karg);
1477 	if (!rc)
1478 		_ctl_btdh_search_raid_device(ioc, &karg);
1479 
1480 	if (copy_to_user(arg, &karg, sizeof(karg))) {
1481 		pr_err("failure at %s:%d/%s()!\n",
1482 		    __FILE__, __LINE__, __func__);
1483 		return -EFAULT;
1484 	}
1485 	return 0;
1486 }
1487 
1488 /**
1489  * _ctl_diag_capability - return diag buffer capability
1490  * @ioc: per adapter object
1491  * @buffer_type: specifies either TRACE, SNAPSHOT, or EXTENDED
1492  *
1493  * returns 1 when diag buffer support is enabled in firmware
1494  */
1495 static u8
1496 _ctl_diag_capability(struct MPT3SAS_ADAPTER *ioc, u8 buffer_type)
1497 {
1498 	u8 rc = 0;
1499 
1500 	switch (buffer_type) {
1501 	case MPI2_DIAG_BUF_TYPE_TRACE:
1502 		if (ioc->facts.IOCCapabilities &
1503 		    MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER)
1504 			rc = 1;
1505 		break;
1506 	case MPI2_DIAG_BUF_TYPE_SNAPSHOT:
1507 		if (ioc->facts.IOCCapabilities &
1508 		    MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER)
1509 			rc = 1;
1510 		break;
1511 	case MPI2_DIAG_BUF_TYPE_EXTENDED:
1512 		if (ioc->facts.IOCCapabilities &
1513 		    MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER)
1514 			rc = 1;
1515 	}
1516 
1517 	return rc;
1518 }
1519 
1520 /**
1521  * _ctl_diag_get_bufftype - return diag buffer type
1522  *              either TRACE, SNAPSHOT, or EXTENDED
1523  * @ioc: per adapter object
1524  * @unique_id: specifies the unique_id for the buffer
1525  *
1526  * returns MPT3_DIAG_UID_NOT_FOUND if the id not found
1527  */
1528 static u8
1529 _ctl_diag_get_bufftype(struct MPT3SAS_ADAPTER *ioc, u32 unique_id)
1530 {
1531 	u8  index;
1532 
1533 	for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) {
1534 		if (ioc->unique_id[index] == unique_id)
1535 			return index;
1536 	}
1537 
1538 	return MPT3_DIAG_UID_NOT_FOUND;
1539 }
1540 
1541 /**
1542  * _ctl_diag_register_2 - wrapper for registering diag buffer support
1543  * @ioc: per adapter object
1544  * @diag_register: the diag_register struct passed in from user space
1545  *
1546  */
1547 static long
1548 _ctl_diag_register_2(struct MPT3SAS_ADAPTER *ioc,
1549 	struct mpt3_diag_register *diag_register)
1550 {
1551 	int rc, i;
1552 	void *request_data = NULL;
1553 	dma_addr_t request_data_dma;
1554 	u32 request_data_sz = 0;
1555 	Mpi2DiagBufferPostRequest_t *mpi_request;
1556 	Mpi2DiagBufferPostReply_t *mpi_reply;
1557 	u8 buffer_type;
1558 	u16 smid;
1559 	u16 ioc_status;
1560 	u32 ioc_state;
1561 	u8 issue_reset = 0;
1562 
1563 	dctlprintk(ioc, ioc_info(ioc, "%s\n",
1564 				 __func__));
1565 
1566 	ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
1567 	if (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
1568 		ioc_err(ioc, "%s: failed due to ioc not operational\n",
1569 			__func__);
1570 		rc = -EAGAIN;
1571 		goto out;
1572 	}
1573 
1574 	if (ioc->ctl_cmds.status != MPT3_CMD_NOT_USED) {
1575 		ioc_err(ioc, "%s: ctl_cmd in use\n", __func__);
1576 		rc = -EAGAIN;
1577 		goto out;
1578 	}
1579 
1580 	buffer_type = diag_register->buffer_type;
1581 	if (!_ctl_diag_capability(ioc, buffer_type)) {
1582 		ioc_err(ioc, "%s: doesn't have capability for buffer_type(0x%02x)\n",
1583 			__func__, buffer_type);
1584 		return -EPERM;
1585 	}
1586 
1587 	if (diag_register->unique_id == 0) {
1588 		ioc_err(ioc,
1589 		    "%s: Invalid UID(0x%08x), buffer_type(0x%02x)\n", __func__,
1590 		    diag_register->unique_id, buffer_type);
1591 		return -EINVAL;
1592 	}
1593 
1594 	if ((ioc->diag_buffer_status[buffer_type] &
1595 	    MPT3_DIAG_BUFFER_IS_APP_OWNED) &&
1596 	    !(ioc->diag_buffer_status[buffer_type] &
1597 	    MPT3_DIAG_BUFFER_IS_RELEASED)) {
1598 		ioc_err(ioc,
1599 		    "%s: buffer_type(0x%02x) is already registered by application with UID(0x%08x)\n",
1600 		    __func__, buffer_type, ioc->unique_id[buffer_type]);
1601 		return -EINVAL;
1602 	}
1603 
1604 	if (ioc->diag_buffer_status[buffer_type] &
1605 	    MPT3_DIAG_BUFFER_IS_REGISTERED) {
1606 		/*
1607 		 * If driver posts buffer initially, then an application wants
1608 		 * to Register that buffer (own it) without Releasing first,
1609 		 * the application Register command MUST have the same buffer
1610 		 * type and size in the Register command (obtained from the
1611 		 * Query command). Otherwise that Register command will be
1612 		 * failed. If the application has released the buffer but wants
1613 		 * to re-register it, it should be allowed as long as the
1614 		 * Unique-Id/Size match.
1615 		 */
1616 
1617 		if (ioc->unique_id[buffer_type] == MPT3DIAGBUFFUNIQUEID &&
1618 		    ioc->diag_buffer_sz[buffer_type] ==
1619 		    diag_register->requested_buffer_size) {
1620 
1621 			if (!(ioc->diag_buffer_status[buffer_type] &
1622 			     MPT3_DIAG_BUFFER_IS_RELEASED)) {
1623 				dctlprintk(ioc, ioc_info(ioc,
1624 				    "%s: diag_buffer (%d) ownership changed. old-ID(0x%08x), new-ID(0x%08x)\n",
1625 				    __func__, buffer_type,
1626 				    ioc->unique_id[buffer_type],
1627 				    diag_register->unique_id));
1628 
1629 				/*
1630 				 * Application wants to own the buffer with
1631 				 * the same size.
1632 				 */
1633 				ioc->unique_id[buffer_type] =
1634 				    diag_register->unique_id;
1635 				rc = 0; /* success */
1636 				goto out;
1637 			}
1638 		} else if (ioc->unique_id[buffer_type] !=
1639 		    MPT3DIAGBUFFUNIQUEID) {
1640 			if (ioc->unique_id[buffer_type] !=
1641 			    diag_register->unique_id ||
1642 			    ioc->diag_buffer_sz[buffer_type] !=
1643 			    diag_register->requested_buffer_size ||
1644 			    !(ioc->diag_buffer_status[buffer_type] &
1645 			    MPT3_DIAG_BUFFER_IS_RELEASED)) {
1646 				ioc_err(ioc,
1647 				    "%s: already has a registered buffer for buffer_type(0x%02x)\n",
1648 				    __func__, buffer_type);
1649 				return -EINVAL;
1650 			}
1651 		} else {
1652 			ioc_err(ioc, "%s: already has a registered buffer for buffer_type(0x%02x)\n",
1653 			    __func__, buffer_type);
1654 			return -EINVAL;
1655 		}
1656 	} else if (ioc->diag_buffer_status[buffer_type] &
1657 	    MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED) {
1658 
1659 		if (ioc->unique_id[buffer_type] != MPT3DIAGBUFFUNIQUEID ||
1660 		    ioc->diag_buffer_sz[buffer_type] !=
1661 		    diag_register->requested_buffer_size) {
1662 
1663 			ioc_err(ioc,
1664 			    "%s: already a buffer is allocated for buffer_type(0x%02x) of size %d bytes, so please try registering again with same size\n",
1665 			     __func__, buffer_type,
1666 			    ioc->diag_buffer_sz[buffer_type]);
1667 			return -EINVAL;
1668 		}
1669 	}
1670 
1671 	if (diag_register->requested_buffer_size % 4)  {
1672 		ioc_err(ioc, "%s: the requested_buffer_size is not 4 byte aligned\n",
1673 			__func__);
1674 		return -EINVAL;
1675 	}
1676 
1677 	smid = mpt3sas_base_get_smid(ioc, ioc->ctl_cb_idx);
1678 	if (!smid) {
1679 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
1680 		rc = -EAGAIN;
1681 		goto out;
1682 	}
1683 
1684 	rc = 0;
1685 	ioc->ctl_cmds.status = MPT3_CMD_PENDING;
1686 	memset(ioc->ctl_cmds.reply, 0, ioc->reply_sz);
1687 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
1688 	ioc->ctl_cmds.smid = smid;
1689 
1690 	request_data = ioc->diag_buffer[buffer_type];
1691 	request_data_sz = diag_register->requested_buffer_size;
1692 	ioc->unique_id[buffer_type] = diag_register->unique_id;
1693 	/* Reset ioc variables used for additional query commands */
1694 	ioc->reset_from_user = 0;
1695 	memset(&ioc->htb_rel, 0, sizeof(struct htb_rel_query));
1696 	ioc->diag_buffer_status[buffer_type] &=
1697 	    MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED;
1698 	memcpy(ioc->product_specific[buffer_type],
1699 	    diag_register->product_specific, MPT3_PRODUCT_SPECIFIC_DWORDS);
1700 	ioc->diagnostic_flags[buffer_type] = diag_register->diagnostic_flags;
1701 
1702 	if (request_data) {
1703 		request_data_dma = ioc->diag_buffer_dma[buffer_type];
1704 		if (request_data_sz != ioc->diag_buffer_sz[buffer_type]) {
1705 			dma_free_coherent(&ioc->pdev->dev,
1706 					ioc->diag_buffer_sz[buffer_type],
1707 					request_data, request_data_dma);
1708 			request_data = NULL;
1709 		}
1710 	}
1711 
1712 	if (request_data == NULL) {
1713 		ioc->diag_buffer_sz[buffer_type] = 0;
1714 		ioc->diag_buffer_dma[buffer_type] = 0;
1715 		request_data = dma_alloc_coherent(&ioc->pdev->dev,
1716 				request_data_sz, &request_data_dma, GFP_KERNEL);
1717 		if (request_data == NULL) {
1718 			ioc_err(ioc, "%s: failed allocating memory for diag buffers, requested size(%d)\n",
1719 				__func__, request_data_sz);
1720 			mpt3sas_base_free_smid(ioc, smid);
1721 			rc = -ENOMEM;
1722 			goto out;
1723 		}
1724 		ioc->diag_buffer[buffer_type] = request_data;
1725 		ioc->diag_buffer_sz[buffer_type] = request_data_sz;
1726 		ioc->diag_buffer_dma[buffer_type] = request_data_dma;
1727 	}
1728 
1729 	mpi_request->Function = MPI2_FUNCTION_DIAG_BUFFER_POST;
1730 	mpi_request->BufferType = diag_register->buffer_type;
1731 	mpi_request->Flags = cpu_to_le32(diag_register->diagnostic_flags);
1732 	mpi_request->BufferAddress = cpu_to_le64(request_data_dma);
1733 	mpi_request->BufferLength = cpu_to_le32(request_data_sz);
1734 	mpi_request->VF_ID = 0; /* TODO */
1735 	mpi_request->VP_ID = 0;
1736 
1737 	dctlprintk(ioc,
1738 		   ioc_info(ioc, "%s: diag_buffer(0x%p), dma(0x%llx), sz(%d)\n",
1739 			    __func__, request_data,
1740 			    (unsigned long long)request_data_dma,
1741 			    le32_to_cpu(mpi_request->BufferLength)));
1742 
1743 	for (i = 0; i < MPT3_PRODUCT_SPECIFIC_DWORDS; i++)
1744 		mpi_request->ProductSpecific[i] =
1745 			cpu_to_le32(ioc->product_specific[buffer_type][i]);
1746 
1747 	init_completion(&ioc->ctl_cmds.done);
1748 	ioc->put_smid_default(ioc, smid);
1749 	wait_for_completion_timeout(&ioc->ctl_cmds.done,
1750 	    MPT3_IOCTL_DEFAULT_TIMEOUT*HZ);
1751 
1752 	if (!(ioc->ctl_cmds.status & MPT3_CMD_COMPLETE)) {
1753 		mpt3sas_check_cmd_timeout(ioc,
1754 		    ioc->ctl_cmds.status, mpi_request,
1755 		    sizeof(Mpi2DiagBufferPostRequest_t)/4, issue_reset);
1756 		goto issue_host_reset;
1757 	}
1758 
1759 	/* process the completed Reply Message Frame */
1760 	if ((ioc->ctl_cmds.status & MPT3_CMD_REPLY_VALID) == 0) {
1761 		ioc_err(ioc, "%s: no reply message\n", __func__);
1762 		rc = -EFAULT;
1763 		goto out;
1764 	}
1765 
1766 	mpi_reply = ioc->ctl_cmds.reply;
1767 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
1768 
1769 	if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
1770 		ioc->diag_buffer_status[buffer_type] |=
1771 			MPT3_DIAG_BUFFER_IS_REGISTERED;
1772 		dctlprintk(ioc, ioc_info(ioc, "%s: success\n", __func__));
1773 	} else {
1774 		ioc_info(ioc, "%s: ioc_status(0x%04x) log_info(0x%08x)\n",
1775 			 __func__,
1776 			 ioc_status, le32_to_cpu(mpi_reply->IOCLogInfo));
1777 		rc = -EFAULT;
1778 	}
1779 
1780  issue_host_reset:
1781 	if (issue_reset)
1782 		mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
1783 
1784  out:
1785 
1786 	if (rc && request_data) {
1787 		dma_free_coherent(&ioc->pdev->dev, request_data_sz,
1788 		    request_data, request_data_dma);
1789 		ioc->diag_buffer_status[buffer_type] &=
1790 		    ~MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED;
1791 	}
1792 
1793 	ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
1794 	return rc;
1795 }
1796 
1797 /**
1798  * mpt3sas_enable_diag_buffer - enabling diag_buffers support driver load time
1799  * @ioc: per adapter object
1800  * @bits_to_register: bitwise field where trace is bit 0, and snapshot is bit 1
1801  *
1802  * This is called when command line option diag_buffer_enable is enabled
1803  * at driver load time.
1804  */
1805 void
1806 mpt3sas_enable_diag_buffer(struct MPT3SAS_ADAPTER *ioc, u8 bits_to_register)
1807 {
1808 	struct mpt3_diag_register diag_register;
1809 	u32 ret_val;
1810 	u32 trace_buff_size = ioc->manu_pg11.HostTraceBufferMaxSizeKB<<10;
1811 	u32 min_trace_buff_size = 0;
1812 	u32 decr_trace_buff_size = 0;
1813 
1814 	memset(&diag_register, 0, sizeof(struct mpt3_diag_register));
1815 
1816 	if (bits_to_register & 1) {
1817 		ioc_info(ioc, "registering trace buffer support\n");
1818 		ioc->diag_trigger_master.MasterData =
1819 		    (MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET);
1820 		diag_register.buffer_type = MPI2_DIAG_BUF_TYPE_TRACE;
1821 		diag_register.unique_id =
1822 		    (ioc->hba_mpi_version_belonged == MPI2_VERSION) ?
1823 		    (MPT2DIAGBUFFUNIQUEID):(MPT3DIAGBUFFUNIQUEID);
1824 
1825 		if (trace_buff_size != 0) {
1826 			diag_register.requested_buffer_size = trace_buff_size;
1827 			min_trace_buff_size =
1828 			    ioc->manu_pg11.HostTraceBufferMinSizeKB<<10;
1829 			decr_trace_buff_size =
1830 			    ioc->manu_pg11.HostTraceBufferDecrementSizeKB<<10;
1831 
1832 			if (min_trace_buff_size > trace_buff_size) {
1833 				/* The buff size is not set correctly */
1834 				ioc_err(ioc,
1835 				    "Min Trace Buff size (%d KB) greater than Max Trace Buff size (%d KB)\n",
1836 				     min_trace_buff_size>>10,
1837 				     trace_buff_size>>10);
1838 				ioc_err(ioc,
1839 				    "Using zero Min Trace Buff Size\n");
1840 				min_trace_buff_size = 0;
1841 			}
1842 
1843 			if (decr_trace_buff_size == 0) {
1844 				/*
1845 				 * retry the min size if decrement
1846 				 * is not available.
1847 				 */
1848 				decr_trace_buff_size =
1849 				    trace_buff_size - min_trace_buff_size;
1850 			}
1851 		} else {
1852 			/* register for 2MB buffers  */
1853 			diag_register.requested_buffer_size = 2 * (1024 * 1024);
1854 		}
1855 
1856 		do {
1857 			ret_val = _ctl_diag_register_2(ioc,  &diag_register);
1858 
1859 			if (ret_val == -ENOMEM && min_trace_buff_size &&
1860 			    (trace_buff_size - decr_trace_buff_size) >=
1861 			    min_trace_buff_size) {
1862 				/* adjust the buffer size */
1863 				trace_buff_size -= decr_trace_buff_size;
1864 				diag_register.requested_buffer_size =
1865 				    trace_buff_size;
1866 			} else
1867 				break;
1868 		} while (true);
1869 
1870 		if (ret_val == -ENOMEM)
1871 			ioc_err(ioc,
1872 			    "Cannot allocate trace buffer memory. Last memory tried = %d KB\n",
1873 			    diag_register.requested_buffer_size>>10);
1874 		else if (ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE]
1875 		    & MPT3_DIAG_BUFFER_IS_REGISTERED) {
1876 			ioc_err(ioc, "Trace buffer memory %d KB allocated\n",
1877 			    diag_register.requested_buffer_size>>10);
1878 			if (ioc->hba_mpi_version_belonged != MPI2_VERSION)
1879 				ioc->diag_buffer_status[
1880 				    MPI2_DIAG_BUF_TYPE_TRACE] |=
1881 				    MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED;
1882 		}
1883 	}
1884 
1885 	if (bits_to_register & 2) {
1886 		ioc_info(ioc, "registering snapshot buffer support\n");
1887 		diag_register.buffer_type = MPI2_DIAG_BUF_TYPE_SNAPSHOT;
1888 		/* register for 2MB buffers  */
1889 		diag_register.requested_buffer_size = 2 * (1024 * 1024);
1890 		diag_register.unique_id = 0x7075901;
1891 		_ctl_diag_register_2(ioc,  &diag_register);
1892 	}
1893 
1894 	if (bits_to_register & 4) {
1895 		ioc_info(ioc, "registering extended buffer support\n");
1896 		diag_register.buffer_type = MPI2_DIAG_BUF_TYPE_EXTENDED;
1897 		/* register for 2MB buffers  */
1898 		diag_register.requested_buffer_size = 2 * (1024 * 1024);
1899 		diag_register.unique_id = 0x7075901;
1900 		_ctl_diag_register_2(ioc,  &diag_register);
1901 	}
1902 }
1903 
1904 /**
1905  * _ctl_diag_register - application register with driver
1906  * @ioc: per adapter object
1907  * @arg: user space buffer containing ioctl content
1908  *
1909  * This will allow the driver to setup any required buffers that will be
1910  * needed by firmware to communicate with the driver.
1911  */
1912 static long
1913 _ctl_diag_register(struct MPT3SAS_ADAPTER *ioc, void __user *arg)
1914 {
1915 	struct mpt3_diag_register karg;
1916 	long rc;
1917 
1918 	if (copy_from_user(&karg, arg, sizeof(karg))) {
1919 		pr_err("failure at %s:%d/%s()!\n",
1920 		    __FILE__, __LINE__, __func__);
1921 		return -EFAULT;
1922 	}
1923 
1924 	rc = _ctl_diag_register_2(ioc, &karg);
1925 
1926 	if (!rc && (ioc->diag_buffer_status[karg.buffer_type] &
1927 	    MPT3_DIAG_BUFFER_IS_REGISTERED))
1928 		ioc->diag_buffer_status[karg.buffer_type] |=
1929 		    MPT3_DIAG_BUFFER_IS_APP_OWNED;
1930 
1931 	return rc;
1932 }
1933 
1934 /**
1935  * _ctl_diag_unregister - application unregister with driver
1936  * @ioc: per adapter object
1937  * @arg: user space buffer containing ioctl content
1938  *
1939  * This will allow the driver to cleanup any memory allocated for diag
1940  * messages and to free up any resources.
1941  */
1942 static long
1943 _ctl_diag_unregister(struct MPT3SAS_ADAPTER *ioc, void __user *arg)
1944 {
1945 	struct mpt3_diag_unregister karg;
1946 	void *request_data;
1947 	dma_addr_t request_data_dma;
1948 	u32 request_data_sz;
1949 	u8 buffer_type;
1950 
1951 	if (copy_from_user(&karg, arg, sizeof(karg))) {
1952 		pr_err("failure at %s:%d/%s()!\n",
1953 		    __FILE__, __LINE__, __func__);
1954 		return -EFAULT;
1955 	}
1956 
1957 	dctlprintk(ioc, ioc_info(ioc, "%s\n",
1958 				 __func__));
1959 
1960 	buffer_type = _ctl_diag_get_bufftype(ioc, karg.unique_id);
1961 	if (buffer_type == MPT3_DIAG_UID_NOT_FOUND) {
1962 		ioc_err(ioc, "%s: buffer with unique_id(0x%08x) not found\n",
1963 		    __func__, karg.unique_id);
1964 		return -EINVAL;
1965 	}
1966 
1967 	if (!_ctl_diag_capability(ioc, buffer_type)) {
1968 		ioc_err(ioc, "%s: doesn't have capability for buffer_type(0x%02x)\n",
1969 			__func__, buffer_type);
1970 		return -EPERM;
1971 	}
1972 
1973 	if ((ioc->diag_buffer_status[buffer_type] &
1974 	    MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) {
1975 		ioc_err(ioc, "%s: buffer_type(0x%02x) is not registered\n",
1976 			__func__, buffer_type);
1977 		return -EINVAL;
1978 	}
1979 	if ((ioc->diag_buffer_status[buffer_type] &
1980 	    MPT3_DIAG_BUFFER_IS_RELEASED) == 0) {
1981 		ioc_err(ioc, "%s: buffer_type(0x%02x) has not been released\n",
1982 			__func__, buffer_type);
1983 		return -EINVAL;
1984 	}
1985 
1986 	if (karg.unique_id != ioc->unique_id[buffer_type]) {
1987 		ioc_err(ioc, "%s: unique_id(0x%08x) is not registered\n",
1988 			__func__, karg.unique_id);
1989 		return -EINVAL;
1990 	}
1991 
1992 	request_data = ioc->diag_buffer[buffer_type];
1993 	if (!request_data) {
1994 		ioc_err(ioc, "%s: doesn't have memory allocated for buffer_type(0x%02x)\n",
1995 			__func__, buffer_type);
1996 		return -ENOMEM;
1997 	}
1998 
1999 	if (ioc->diag_buffer_status[buffer_type] &
2000 	    MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED) {
2001 		ioc->unique_id[buffer_type] = MPT3DIAGBUFFUNIQUEID;
2002 		ioc->diag_buffer_status[buffer_type] &=
2003 		    ~MPT3_DIAG_BUFFER_IS_APP_OWNED;
2004 		ioc->diag_buffer_status[buffer_type] &=
2005 		    ~MPT3_DIAG_BUFFER_IS_REGISTERED;
2006 	} else {
2007 		request_data_sz = ioc->diag_buffer_sz[buffer_type];
2008 		request_data_dma = ioc->diag_buffer_dma[buffer_type];
2009 		dma_free_coherent(&ioc->pdev->dev, request_data_sz,
2010 				request_data, request_data_dma);
2011 		ioc->diag_buffer[buffer_type] = NULL;
2012 		ioc->diag_buffer_status[buffer_type] = 0;
2013 	}
2014 	return 0;
2015 }
2016 
2017 /**
2018  * _ctl_diag_query - query relevant info associated with diag buffers
2019  * @ioc: per adapter object
2020  * @arg: user space buffer containing ioctl content
2021  *
2022  * The application will send only buffer_type and unique_id.  Driver will
2023  * inspect unique_id first, if valid, fill in all the info.  If unique_id is
2024  * 0x00, the driver will return info specified by Buffer Type.
2025  */
2026 static long
2027 _ctl_diag_query(struct MPT3SAS_ADAPTER *ioc, void __user *arg)
2028 {
2029 	struct mpt3_diag_query karg;
2030 	void *request_data;
2031 	int i;
2032 	u8 buffer_type;
2033 
2034 	if (copy_from_user(&karg, arg, sizeof(karg))) {
2035 		pr_err("failure at %s:%d/%s()!\n",
2036 		    __FILE__, __LINE__, __func__);
2037 		return -EFAULT;
2038 	}
2039 
2040 	dctlprintk(ioc, ioc_info(ioc, "%s\n",
2041 				 __func__));
2042 
2043 	karg.application_flags = 0;
2044 	buffer_type = karg.buffer_type;
2045 
2046 	if (!_ctl_diag_capability(ioc, buffer_type)) {
2047 		ioc_err(ioc, "%s: doesn't have capability for buffer_type(0x%02x)\n",
2048 			__func__, buffer_type);
2049 		return -EPERM;
2050 	}
2051 
2052 	if (!(ioc->diag_buffer_status[buffer_type] &
2053 	    MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED)) {
2054 		if ((ioc->diag_buffer_status[buffer_type] &
2055 		    MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) {
2056 			ioc_err(ioc, "%s: buffer_type(0x%02x) is not registered\n",
2057 				__func__, buffer_type);
2058 			return -EINVAL;
2059 		}
2060 	}
2061 
2062 	if (karg.unique_id) {
2063 		if (karg.unique_id != ioc->unique_id[buffer_type]) {
2064 			ioc_err(ioc, "%s: unique_id(0x%08x) is not registered\n",
2065 				__func__, karg.unique_id);
2066 			return -EINVAL;
2067 		}
2068 	}
2069 
2070 	request_data = ioc->diag_buffer[buffer_type];
2071 	if (!request_data) {
2072 		ioc_err(ioc, "%s: doesn't have buffer for buffer_type(0x%02x)\n",
2073 			__func__, buffer_type);
2074 		return -ENOMEM;
2075 	}
2076 
2077 	if ((ioc->diag_buffer_status[buffer_type] &
2078 	    MPT3_DIAG_BUFFER_IS_REGISTERED))
2079 		karg.application_flags |= MPT3_APP_FLAGS_BUFFER_VALID;
2080 
2081 	if (!(ioc->diag_buffer_status[buffer_type] &
2082 	     MPT3_DIAG_BUFFER_IS_RELEASED))
2083 		karg.application_flags |= MPT3_APP_FLAGS_FW_BUFFER_ACCESS;
2084 
2085 	if (!(ioc->diag_buffer_status[buffer_type] &
2086 	    MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED))
2087 		karg.application_flags |= MPT3_APP_FLAGS_DYNAMIC_BUFFER_ALLOC;
2088 
2089 	if ((ioc->diag_buffer_status[buffer_type] &
2090 	    MPT3_DIAG_BUFFER_IS_APP_OWNED))
2091 		karg.application_flags |= MPT3_APP_FLAGS_APP_OWNED;
2092 
2093 	for (i = 0; i < MPT3_PRODUCT_SPECIFIC_DWORDS; i++)
2094 		karg.product_specific[i] =
2095 		    ioc->product_specific[buffer_type][i];
2096 
2097 	karg.total_buffer_size = ioc->diag_buffer_sz[buffer_type];
2098 	karg.driver_added_buffer_size = 0;
2099 	karg.unique_id = ioc->unique_id[buffer_type];
2100 	karg.diagnostic_flags = ioc->diagnostic_flags[buffer_type];
2101 
2102 	if (copy_to_user(arg, &karg, sizeof(struct mpt3_diag_query))) {
2103 		ioc_err(ioc, "%s: unable to write mpt3_diag_query data @ %p\n",
2104 			__func__, arg);
2105 		return -EFAULT;
2106 	}
2107 	return 0;
2108 }
2109 
2110 /**
2111  * mpt3sas_send_diag_release - Diag Release Message
2112  * @ioc: per adapter object
2113  * @buffer_type: specifies either TRACE, SNAPSHOT, or EXTENDED
2114  * @issue_reset: specifies whether host reset is required.
2115  *
2116  */
2117 int
2118 mpt3sas_send_diag_release(struct MPT3SAS_ADAPTER *ioc, u8 buffer_type,
2119 	u8 *issue_reset)
2120 {
2121 	Mpi2DiagReleaseRequest_t *mpi_request;
2122 	Mpi2DiagReleaseReply_t *mpi_reply;
2123 	u16 smid;
2124 	u16 ioc_status;
2125 	u32 ioc_state;
2126 	int rc;
2127 	u8 reset_needed = 0;
2128 
2129 	dctlprintk(ioc, ioc_info(ioc, "%s\n",
2130 				 __func__));
2131 
2132 	rc = 0;
2133 	*issue_reset = 0;
2134 
2135 
2136 	ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
2137 	if (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
2138 		if (ioc->diag_buffer_status[buffer_type] &
2139 		    MPT3_DIAG_BUFFER_IS_REGISTERED)
2140 			ioc->diag_buffer_status[buffer_type] |=
2141 			    MPT3_DIAG_BUFFER_IS_RELEASED;
2142 		dctlprintk(ioc,
2143 			   ioc_info(ioc, "%s: skipping due to FAULT state\n",
2144 				    __func__));
2145 		rc = -EAGAIN;
2146 		goto out;
2147 	}
2148 
2149 	if (ioc->ctl_cmds.status != MPT3_CMD_NOT_USED) {
2150 		ioc_err(ioc, "%s: ctl_cmd in use\n", __func__);
2151 		rc = -EAGAIN;
2152 		goto out;
2153 	}
2154 
2155 	smid = mpt3sas_base_get_smid(ioc, ioc->ctl_cb_idx);
2156 	if (!smid) {
2157 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
2158 		rc = -EAGAIN;
2159 		goto out;
2160 	}
2161 
2162 	ioc->ctl_cmds.status = MPT3_CMD_PENDING;
2163 	memset(ioc->ctl_cmds.reply, 0, ioc->reply_sz);
2164 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2165 	ioc->ctl_cmds.smid = smid;
2166 
2167 	mpi_request->Function = MPI2_FUNCTION_DIAG_RELEASE;
2168 	mpi_request->BufferType = buffer_type;
2169 	mpi_request->VF_ID = 0; /* TODO */
2170 	mpi_request->VP_ID = 0;
2171 
2172 	init_completion(&ioc->ctl_cmds.done);
2173 	ioc->put_smid_default(ioc, smid);
2174 	wait_for_completion_timeout(&ioc->ctl_cmds.done,
2175 	    MPT3_IOCTL_DEFAULT_TIMEOUT*HZ);
2176 
2177 	if (!(ioc->ctl_cmds.status & MPT3_CMD_COMPLETE)) {
2178 		mpt3sas_check_cmd_timeout(ioc,
2179 		    ioc->ctl_cmds.status, mpi_request,
2180 		    sizeof(Mpi2DiagReleaseRequest_t)/4, reset_needed);
2181 		 *issue_reset = reset_needed;
2182 		rc = -EFAULT;
2183 		goto out;
2184 	}
2185 
2186 	/* process the completed Reply Message Frame */
2187 	if ((ioc->ctl_cmds.status & MPT3_CMD_REPLY_VALID) == 0) {
2188 		ioc_err(ioc, "%s: no reply message\n", __func__);
2189 		rc = -EFAULT;
2190 		goto out;
2191 	}
2192 
2193 	mpi_reply = ioc->ctl_cmds.reply;
2194 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
2195 
2196 	if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
2197 		ioc->diag_buffer_status[buffer_type] |=
2198 		    MPT3_DIAG_BUFFER_IS_RELEASED;
2199 		dctlprintk(ioc, ioc_info(ioc, "%s: success\n", __func__));
2200 	} else {
2201 		ioc_info(ioc, "%s: ioc_status(0x%04x) log_info(0x%08x)\n",
2202 			 __func__,
2203 			 ioc_status, le32_to_cpu(mpi_reply->IOCLogInfo));
2204 		rc = -EFAULT;
2205 	}
2206 
2207  out:
2208 	ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
2209 	return rc;
2210 }
2211 
2212 /**
2213  * _ctl_diag_release - request to send Diag Release Message to firmware
2214  * @ioc: ?
2215  * @arg: user space buffer containing ioctl content
2216  *
2217  * This allows ownership of the specified buffer to returned to the driver,
2218  * allowing an application to read the buffer without fear that firmware is
2219  * overwriting information in the buffer.
2220  */
2221 static long
2222 _ctl_diag_release(struct MPT3SAS_ADAPTER *ioc, void __user *arg)
2223 {
2224 	struct mpt3_diag_release karg;
2225 	void *request_data;
2226 	int rc;
2227 	u8 buffer_type;
2228 	u8 issue_reset = 0;
2229 
2230 	if (copy_from_user(&karg, arg, sizeof(karg))) {
2231 		pr_err("failure at %s:%d/%s()!\n",
2232 		    __FILE__, __LINE__, __func__);
2233 		return -EFAULT;
2234 	}
2235 
2236 	dctlprintk(ioc, ioc_info(ioc, "%s\n",
2237 				 __func__));
2238 
2239 	buffer_type = _ctl_diag_get_bufftype(ioc, karg.unique_id);
2240 	if (buffer_type == MPT3_DIAG_UID_NOT_FOUND) {
2241 		ioc_err(ioc, "%s: buffer with unique_id(0x%08x) not found\n",
2242 		    __func__, karg.unique_id);
2243 		return -EINVAL;
2244 	}
2245 
2246 	if (!_ctl_diag_capability(ioc, buffer_type)) {
2247 		ioc_err(ioc, "%s: doesn't have capability for buffer_type(0x%02x)\n",
2248 			__func__, buffer_type);
2249 		return -EPERM;
2250 	}
2251 
2252 	if ((ioc->diag_buffer_status[buffer_type] &
2253 	    MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) {
2254 		ioc_err(ioc, "%s: buffer_type(0x%02x) is not registered\n",
2255 			__func__, buffer_type);
2256 		return -EINVAL;
2257 	}
2258 
2259 	if (karg.unique_id != ioc->unique_id[buffer_type]) {
2260 		ioc_err(ioc, "%s: unique_id(0x%08x) is not registered\n",
2261 			__func__, karg.unique_id);
2262 		return -EINVAL;
2263 	}
2264 
2265 	if (ioc->diag_buffer_status[buffer_type] &
2266 	    MPT3_DIAG_BUFFER_IS_RELEASED) {
2267 		ioc_err(ioc, "%s: buffer_type(0x%02x) is already released\n",
2268 			__func__, buffer_type);
2269 		return -EINVAL;
2270 	}
2271 
2272 	request_data = ioc->diag_buffer[buffer_type];
2273 
2274 	if (!request_data) {
2275 		ioc_err(ioc, "%s: doesn't have memory allocated for buffer_type(0x%02x)\n",
2276 			__func__, buffer_type);
2277 		return -ENOMEM;
2278 	}
2279 
2280 	/* buffers were released by due to host reset */
2281 	if ((ioc->diag_buffer_status[buffer_type] &
2282 	    MPT3_DIAG_BUFFER_IS_DIAG_RESET)) {
2283 		ioc->diag_buffer_status[buffer_type] |=
2284 		    MPT3_DIAG_BUFFER_IS_RELEASED;
2285 		ioc->diag_buffer_status[buffer_type] &=
2286 		    ~MPT3_DIAG_BUFFER_IS_DIAG_RESET;
2287 		ioc_err(ioc, "%s: buffer_type(0x%02x) was released due to host reset\n",
2288 			__func__, buffer_type);
2289 		return 0;
2290 	}
2291 
2292 	rc = mpt3sas_send_diag_release(ioc, buffer_type, &issue_reset);
2293 
2294 	if (issue_reset)
2295 		mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
2296 
2297 	return rc;
2298 }
2299 
2300 /**
2301  * _ctl_diag_read_buffer - request for copy of the diag buffer
2302  * @ioc: per adapter object
2303  * @arg: user space buffer containing ioctl content
2304  */
2305 static long
2306 _ctl_diag_read_buffer(struct MPT3SAS_ADAPTER *ioc, void __user *arg)
2307 {
2308 	struct mpt3_diag_read_buffer karg;
2309 	struct mpt3_diag_read_buffer __user *uarg = arg;
2310 	void *request_data, *diag_data;
2311 	Mpi2DiagBufferPostRequest_t *mpi_request;
2312 	Mpi2DiagBufferPostReply_t *mpi_reply;
2313 	int rc, i;
2314 	u8 buffer_type;
2315 	unsigned long request_size, copy_size;
2316 	u16 smid;
2317 	u16 ioc_status;
2318 	u8 issue_reset = 0;
2319 
2320 	if (copy_from_user(&karg, arg, sizeof(karg))) {
2321 		pr_err("failure at %s:%d/%s()!\n",
2322 		    __FILE__, __LINE__, __func__);
2323 		return -EFAULT;
2324 	}
2325 
2326 	dctlprintk(ioc, ioc_info(ioc, "%s\n",
2327 				 __func__));
2328 
2329 	buffer_type = _ctl_diag_get_bufftype(ioc, karg.unique_id);
2330 	if (buffer_type == MPT3_DIAG_UID_NOT_FOUND) {
2331 		ioc_err(ioc, "%s: buffer with unique_id(0x%08x) not found\n",
2332 		    __func__, karg.unique_id);
2333 		return -EINVAL;
2334 	}
2335 
2336 	if (!_ctl_diag_capability(ioc, buffer_type)) {
2337 		ioc_err(ioc, "%s: doesn't have capability for buffer_type(0x%02x)\n",
2338 			__func__, buffer_type);
2339 		return -EPERM;
2340 	}
2341 
2342 	if (karg.unique_id != ioc->unique_id[buffer_type]) {
2343 		ioc_err(ioc, "%s: unique_id(0x%08x) is not registered\n",
2344 			__func__, karg.unique_id);
2345 		return -EINVAL;
2346 	}
2347 
2348 	request_data = ioc->diag_buffer[buffer_type];
2349 	if (!request_data) {
2350 		ioc_err(ioc, "%s: doesn't have buffer for buffer_type(0x%02x)\n",
2351 			__func__, buffer_type);
2352 		return -ENOMEM;
2353 	}
2354 
2355 	request_size = ioc->diag_buffer_sz[buffer_type];
2356 
2357 	if ((karg.starting_offset % 4) || (karg.bytes_to_read % 4)) {
2358 		ioc_err(ioc, "%s: either the starting_offset or bytes_to_read are not 4 byte aligned\n",
2359 			__func__);
2360 		return -EINVAL;
2361 	}
2362 
2363 	if (karg.starting_offset > request_size)
2364 		return -EINVAL;
2365 
2366 	diag_data = (void *)(request_data + karg.starting_offset);
2367 	dctlprintk(ioc,
2368 		   ioc_info(ioc, "%s: diag_buffer(%p), offset(%d), sz(%d)\n",
2369 			    __func__, diag_data, karg.starting_offset,
2370 			    karg.bytes_to_read));
2371 
2372 	/* Truncate data on requests that are too large */
2373 	if ((diag_data + karg.bytes_to_read < diag_data) ||
2374 	    (diag_data + karg.bytes_to_read > request_data + request_size))
2375 		copy_size = request_size - karg.starting_offset;
2376 	else
2377 		copy_size = karg.bytes_to_read;
2378 
2379 	if (copy_to_user((void __user *)uarg->diagnostic_data,
2380 	    diag_data, copy_size)) {
2381 		ioc_err(ioc, "%s: Unable to write mpt_diag_read_buffer_t data @ %p\n",
2382 			__func__, diag_data);
2383 		return -EFAULT;
2384 	}
2385 
2386 	if ((karg.flags & MPT3_FLAGS_REREGISTER) == 0)
2387 		return 0;
2388 
2389 	dctlprintk(ioc,
2390 		   ioc_info(ioc, "%s: Reregister buffer_type(0x%02x)\n",
2391 			    __func__, buffer_type));
2392 	if ((ioc->diag_buffer_status[buffer_type] &
2393 	    MPT3_DIAG_BUFFER_IS_RELEASED) == 0) {
2394 		dctlprintk(ioc,
2395 			   ioc_info(ioc, "%s: buffer_type(0x%02x) is still registered\n",
2396 				    __func__, buffer_type));
2397 		return 0;
2398 	}
2399 	/* Get a free request frame and save the message context.
2400 	*/
2401 
2402 	if (ioc->ctl_cmds.status != MPT3_CMD_NOT_USED) {
2403 		ioc_err(ioc, "%s: ctl_cmd in use\n", __func__);
2404 		rc = -EAGAIN;
2405 		goto out;
2406 	}
2407 
2408 	smid = mpt3sas_base_get_smid(ioc, ioc->ctl_cb_idx);
2409 	if (!smid) {
2410 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
2411 		rc = -EAGAIN;
2412 		goto out;
2413 	}
2414 
2415 	rc = 0;
2416 	ioc->ctl_cmds.status = MPT3_CMD_PENDING;
2417 	memset(ioc->ctl_cmds.reply, 0, ioc->reply_sz);
2418 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2419 	ioc->ctl_cmds.smid = smid;
2420 
2421 	mpi_request->Function = MPI2_FUNCTION_DIAG_BUFFER_POST;
2422 	mpi_request->BufferType = buffer_type;
2423 	mpi_request->BufferLength =
2424 	    cpu_to_le32(ioc->diag_buffer_sz[buffer_type]);
2425 	mpi_request->BufferAddress =
2426 	    cpu_to_le64(ioc->diag_buffer_dma[buffer_type]);
2427 	for (i = 0; i < MPT3_PRODUCT_SPECIFIC_DWORDS; i++)
2428 		mpi_request->ProductSpecific[i] =
2429 			cpu_to_le32(ioc->product_specific[buffer_type][i]);
2430 	mpi_request->VF_ID = 0; /* TODO */
2431 	mpi_request->VP_ID = 0;
2432 
2433 	init_completion(&ioc->ctl_cmds.done);
2434 	ioc->put_smid_default(ioc, smid);
2435 	wait_for_completion_timeout(&ioc->ctl_cmds.done,
2436 	    MPT3_IOCTL_DEFAULT_TIMEOUT*HZ);
2437 
2438 	if (!(ioc->ctl_cmds.status & MPT3_CMD_COMPLETE)) {
2439 		mpt3sas_check_cmd_timeout(ioc,
2440 		    ioc->ctl_cmds.status, mpi_request,
2441 		    sizeof(Mpi2DiagBufferPostRequest_t)/4, issue_reset);
2442 		goto issue_host_reset;
2443 	}
2444 
2445 	/* process the completed Reply Message Frame */
2446 	if ((ioc->ctl_cmds.status & MPT3_CMD_REPLY_VALID) == 0) {
2447 		ioc_err(ioc, "%s: no reply message\n", __func__);
2448 		rc = -EFAULT;
2449 		goto out;
2450 	}
2451 
2452 	mpi_reply = ioc->ctl_cmds.reply;
2453 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
2454 
2455 	if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
2456 		ioc->diag_buffer_status[buffer_type] |=
2457 		    MPT3_DIAG_BUFFER_IS_REGISTERED;
2458 		ioc->diag_buffer_status[buffer_type] &=
2459 		    ~MPT3_DIAG_BUFFER_IS_RELEASED;
2460 		dctlprintk(ioc, ioc_info(ioc, "%s: success\n", __func__));
2461 	} else {
2462 		ioc_info(ioc, "%s: ioc_status(0x%04x) log_info(0x%08x)\n",
2463 			 __func__, ioc_status,
2464 			 le32_to_cpu(mpi_reply->IOCLogInfo));
2465 		rc = -EFAULT;
2466 	}
2467 
2468  issue_host_reset:
2469 	if (issue_reset)
2470 		mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
2471 
2472  out:
2473 
2474 	ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
2475 	return rc;
2476 }
2477 
2478 /**
2479  * _ctl_addnl_diag_query - query relevant info associated with diag buffers
2480  * @ioc: per adapter object
2481  * @arg: user space buffer containing ioctl content
2482  *
2483  * The application will send only unique_id.  Driver will
2484  * inspect unique_id first, if valid, fill the details related to cause
2485  * for diag buffer release.
2486  */
2487 static long
2488 _ctl_addnl_diag_query(struct MPT3SAS_ADAPTER *ioc, void __user *arg)
2489 {
2490 	struct mpt3_addnl_diag_query karg;
2491 	u32 buffer_type = 0;
2492 
2493 	if (copy_from_user(&karg, arg, sizeof(karg))) {
2494 		pr_err("%s: failure at %s:%d/%s()!\n",
2495 		    ioc->name, __FILE__, __LINE__, __func__);
2496 		return -EFAULT;
2497 	}
2498 	dctlprintk(ioc, ioc_info(ioc, "%s\n",  __func__));
2499 	if (karg.unique_id == 0) {
2500 		ioc_err(ioc, "%s: unique_id is(0x%08x)\n",
2501 		    __func__, karg.unique_id);
2502 		return -EPERM;
2503 	}
2504 	buffer_type = _ctl_diag_get_bufftype(ioc, karg.unique_id);
2505 	if (buffer_type == MPT3_DIAG_UID_NOT_FOUND) {
2506 		ioc_err(ioc, "%s: buffer with unique_id(0x%08x) not found\n",
2507 		    __func__, karg.unique_id);
2508 		return -EPERM;
2509 	}
2510 	memset(&karg.buffer_rel_condition, 0, sizeof(struct htb_rel_query));
2511 	if ((ioc->diag_buffer_status[buffer_type] &
2512 	    MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) {
2513 		ioc_info(ioc, "%s: buffer_type(0x%02x) is not registered\n",
2514 		    __func__, buffer_type);
2515 		goto out;
2516 	}
2517 	if ((ioc->diag_buffer_status[buffer_type] &
2518 	    MPT3_DIAG_BUFFER_IS_RELEASED) == 0) {
2519 		ioc_err(ioc, "%s: buffer_type(0x%02x) is not released\n",
2520 		    __func__, buffer_type);
2521 		return -EPERM;
2522 	}
2523 	memcpy(&karg.buffer_rel_condition, &ioc->htb_rel,
2524 	    sizeof(struct  htb_rel_query));
2525 out:
2526 	if (copy_to_user(arg, &karg, sizeof(struct mpt3_addnl_diag_query))) {
2527 		ioc_err(ioc, "%s: unable to write mpt3_addnl_diag_query data @ %p\n",
2528 		    __func__, arg);
2529 		return -EFAULT;
2530 	}
2531 	return 0;
2532 }
2533 
2534 #ifdef CONFIG_COMPAT
2535 /**
2536  * _ctl_compat_mpt_command - convert 32bit pointers to 64bit.
2537  * @ioc: per adapter object
2538  * @cmd: ioctl opcode
2539  * @arg: (struct mpt3_ioctl_command32)
2540  *
2541  * MPT3COMMAND32 - Handle 32bit applications running on 64bit os.
2542  */
2543 static long
2544 _ctl_compat_mpt_command(struct MPT3SAS_ADAPTER *ioc, unsigned cmd,
2545 	void __user *arg)
2546 {
2547 	struct mpt3_ioctl_command32 karg32;
2548 	struct mpt3_ioctl_command32 __user *uarg;
2549 	struct mpt3_ioctl_command karg;
2550 
2551 	if (_IOC_SIZE(cmd) != sizeof(struct mpt3_ioctl_command32))
2552 		return -EINVAL;
2553 
2554 	uarg = (struct mpt3_ioctl_command32 __user *) arg;
2555 
2556 	if (copy_from_user(&karg32, (char __user *)arg, sizeof(karg32))) {
2557 		pr_err("failure at %s:%d/%s()!\n",
2558 		    __FILE__, __LINE__, __func__);
2559 		return -EFAULT;
2560 	}
2561 
2562 	memset(&karg, 0, sizeof(struct mpt3_ioctl_command));
2563 	karg.hdr.ioc_number = karg32.hdr.ioc_number;
2564 	karg.hdr.port_number = karg32.hdr.port_number;
2565 	karg.hdr.max_data_size = karg32.hdr.max_data_size;
2566 	karg.timeout = karg32.timeout;
2567 	karg.max_reply_bytes = karg32.max_reply_bytes;
2568 	karg.data_in_size = karg32.data_in_size;
2569 	karg.data_out_size = karg32.data_out_size;
2570 	karg.max_sense_bytes = karg32.max_sense_bytes;
2571 	karg.data_sge_offset = karg32.data_sge_offset;
2572 	karg.reply_frame_buf_ptr = compat_ptr(karg32.reply_frame_buf_ptr);
2573 	karg.data_in_buf_ptr = compat_ptr(karg32.data_in_buf_ptr);
2574 	karg.data_out_buf_ptr = compat_ptr(karg32.data_out_buf_ptr);
2575 	karg.sense_data_ptr = compat_ptr(karg32.sense_data_ptr);
2576 	return _ctl_do_mpt_command(ioc, karg, &uarg->mf);
2577 }
2578 #endif
2579 
2580 /**
2581  * _ctl_ioctl_main - main ioctl entry point
2582  * @file:  (struct file)
2583  * @cmd:  ioctl opcode
2584  * @arg:  user space data buffer
2585  * @compat:  handles 32 bit applications in 64bit os
2586  * @mpi_version: will be MPI2_VERSION for mpt2ctl ioctl device &
2587  * MPI25_VERSION | MPI26_VERSION for mpt3ctl ioctl device.
2588  */
2589 static long
2590 _ctl_ioctl_main(struct file *file, unsigned int cmd, void __user *arg,
2591 	u8 compat, u16 mpi_version)
2592 {
2593 	struct MPT3SAS_ADAPTER *ioc;
2594 	struct mpt3_ioctl_header ioctl_header;
2595 	enum block_state state;
2596 	long ret = -ENOIOCTLCMD;
2597 
2598 	/* get IOCTL header */
2599 	if (copy_from_user(&ioctl_header, (char __user *)arg,
2600 	    sizeof(struct mpt3_ioctl_header))) {
2601 		pr_err("failure at %s:%d/%s()!\n",
2602 		    __FILE__, __LINE__, __func__);
2603 		return -EFAULT;
2604 	}
2605 
2606 	if (_ctl_verify_adapter(ioctl_header.ioc_number,
2607 				&ioc, mpi_version) == -1 || !ioc)
2608 		return -ENODEV;
2609 
2610 	/* pci_access_mutex lock acquired by ioctl path */
2611 	mutex_lock(&ioc->pci_access_mutex);
2612 
2613 	if (ioc->shost_recovery || ioc->pci_error_recovery ||
2614 	    ioc->is_driver_loading || ioc->remove_host) {
2615 		ret = -EAGAIN;
2616 		goto out_unlock_pciaccess;
2617 	}
2618 
2619 	state = (file->f_flags & O_NONBLOCK) ? NON_BLOCKING : BLOCKING;
2620 	if (state == NON_BLOCKING) {
2621 		if (!mutex_trylock(&ioc->ctl_cmds.mutex)) {
2622 			ret = -EAGAIN;
2623 			goto out_unlock_pciaccess;
2624 		}
2625 	} else if (mutex_lock_interruptible(&ioc->ctl_cmds.mutex)) {
2626 		ret = -ERESTARTSYS;
2627 		goto out_unlock_pciaccess;
2628 	}
2629 
2630 
2631 	switch (cmd) {
2632 	case MPT3IOCINFO:
2633 		if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_iocinfo))
2634 			ret = _ctl_getiocinfo(ioc, arg);
2635 		break;
2636 #ifdef CONFIG_COMPAT
2637 	case MPT3COMMAND32:
2638 #endif
2639 	case MPT3COMMAND:
2640 	{
2641 		struct mpt3_ioctl_command __user *uarg;
2642 		struct mpt3_ioctl_command karg;
2643 
2644 #ifdef CONFIG_COMPAT
2645 		if (compat) {
2646 			ret = _ctl_compat_mpt_command(ioc, cmd, arg);
2647 			break;
2648 		}
2649 #endif
2650 		if (copy_from_user(&karg, arg, sizeof(karg))) {
2651 			pr_err("failure at %s:%d/%s()!\n",
2652 			    __FILE__, __LINE__, __func__);
2653 			ret = -EFAULT;
2654 			break;
2655 		}
2656 
2657 		if (karg.hdr.ioc_number != ioctl_header.ioc_number) {
2658 			ret = -EINVAL;
2659 			break;
2660 		}
2661 		if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_command)) {
2662 			uarg = arg;
2663 			ret = _ctl_do_mpt_command(ioc, karg, &uarg->mf);
2664 		}
2665 		break;
2666 	}
2667 	case MPT3EVENTQUERY:
2668 		if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_eventquery))
2669 			ret = _ctl_eventquery(ioc, arg);
2670 		break;
2671 	case MPT3EVENTENABLE:
2672 		if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_eventenable))
2673 			ret = _ctl_eventenable(ioc, arg);
2674 		break;
2675 	case MPT3EVENTREPORT:
2676 		ret = _ctl_eventreport(ioc, arg);
2677 		break;
2678 	case MPT3HARDRESET:
2679 		if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_diag_reset))
2680 			ret = _ctl_do_reset(ioc, arg);
2681 		break;
2682 	case MPT3BTDHMAPPING:
2683 		if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_btdh_mapping))
2684 			ret = _ctl_btdh_mapping(ioc, arg);
2685 		break;
2686 	case MPT3DIAGREGISTER:
2687 		if (_IOC_SIZE(cmd) == sizeof(struct mpt3_diag_register))
2688 			ret = _ctl_diag_register(ioc, arg);
2689 		break;
2690 	case MPT3DIAGUNREGISTER:
2691 		if (_IOC_SIZE(cmd) == sizeof(struct mpt3_diag_unregister))
2692 			ret = _ctl_diag_unregister(ioc, arg);
2693 		break;
2694 	case MPT3DIAGQUERY:
2695 		if (_IOC_SIZE(cmd) == sizeof(struct mpt3_diag_query))
2696 			ret = _ctl_diag_query(ioc, arg);
2697 		break;
2698 	case MPT3DIAGRELEASE:
2699 		if (_IOC_SIZE(cmd) == sizeof(struct mpt3_diag_release))
2700 			ret = _ctl_diag_release(ioc, arg);
2701 		break;
2702 	case MPT3DIAGREADBUFFER:
2703 		if (_IOC_SIZE(cmd) == sizeof(struct mpt3_diag_read_buffer))
2704 			ret = _ctl_diag_read_buffer(ioc, arg);
2705 		break;
2706 	case MPT3ADDNLDIAGQUERY:
2707 		if (_IOC_SIZE(cmd) == sizeof(struct mpt3_addnl_diag_query))
2708 			ret = _ctl_addnl_diag_query(ioc, arg);
2709 		break;
2710 	default:
2711 		dctlprintk(ioc,
2712 			   ioc_info(ioc, "unsupported ioctl opcode(0x%08x)\n",
2713 				    cmd));
2714 		break;
2715 	}
2716 
2717 	mutex_unlock(&ioc->ctl_cmds.mutex);
2718 out_unlock_pciaccess:
2719 	mutex_unlock(&ioc->pci_access_mutex);
2720 	return ret;
2721 }
2722 
2723 /**
2724  * _ctl_ioctl - mpt3ctl main ioctl entry point (unlocked)
2725  * @file: (struct file)
2726  * @cmd: ioctl opcode
2727  * @arg: ?
2728  */
2729 static long
2730 _ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2731 {
2732 	long ret;
2733 
2734 	/* pass MPI25_VERSION | MPI26_VERSION value,
2735 	 * to indicate that this ioctl cmd
2736 	 * came from mpt3ctl ioctl device.
2737 	 */
2738 	ret = _ctl_ioctl_main(file, cmd, (void __user *)arg, 0,
2739 		MPI25_VERSION | MPI26_VERSION);
2740 	return ret;
2741 }
2742 
2743 /**
2744  * _ctl_mpt2_ioctl - mpt2ctl main ioctl entry point (unlocked)
2745  * @file: (struct file)
2746  * @cmd: ioctl opcode
2747  * @arg: ?
2748  */
2749 static long
2750 _ctl_mpt2_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2751 {
2752 	long ret;
2753 
2754 	/* pass MPI2_VERSION value, to indicate that this ioctl cmd
2755 	 * came from mpt2ctl ioctl device.
2756 	 */
2757 	ret = _ctl_ioctl_main(file, cmd, (void __user *)arg, 0, MPI2_VERSION);
2758 	return ret;
2759 }
2760 #ifdef CONFIG_COMPAT
2761 /**
2762  *_ ctl_ioctl_compat - main ioctl entry point (compat)
2763  * @file: ?
2764  * @cmd: ?
2765  * @arg: ?
2766  *
2767  * This routine handles 32 bit applications in 64bit os.
2768  */
2769 static long
2770 _ctl_ioctl_compat(struct file *file, unsigned cmd, unsigned long arg)
2771 {
2772 	long ret;
2773 
2774 	ret = _ctl_ioctl_main(file, cmd, (void __user *)arg, 1,
2775 		MPI25_VERSION | MPI26_VERSION);
2776 	return ret;
2777 }
2778 
2779 /**
2780  *_ ctl_mpt2_ioctl_compat - main ioctl entry point (compat)
2781  * @file: ?
2782  * @cmd: ?
2783  * @arg: ?
2784  *
2785  * This routine handles 32 bit applications in 64bit os.
2786  */
2787 static long
2788 _ctl_mpt2_ioctl_compat(struct file *file, unsigned cmd, unsigned long arg)
2789 {
2790 	long ret;
2791 
2792 	ret = _ctl_ioctl_main(file, cmd, (void __user *)arg, 1, MPI2_VERSION);
2793 	return ret;
2794 }
2795 #endif
2796 
2797 /* scsi host attributes */
2798 /**
2799  * version_fw_show - firmware version
2800  * @cdev: pointer to embedded class device
2801  * @attr: ?
2802  * @buf: the buffer returned
2803  *
2804  * A sysfs 'read-only' shost attribute.
2805  */
2806 static ssize_t
2807 version_fw_show(struct device *cdev, struct device_attribute *attr,
2808 	char *buf)
2809 {
2810 	struct Scsi_Host *shost = class_to_shost(cdev);
2811 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
2812 
2813 	return snprintf(buf, PAGE_SIZE, "%02d.%02d.%02d.%02d\n",
2814 	    (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
2815 	    (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
2816 	    (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
2817 	    ioc->facts.FWVersion.Word & 0x000000FF);
2818 }
2819 static DEVICE_ATTR_RO(version_fw);
2820 
2821 /**
2822  * version_bios_show - bios version
2823  * @cdev: pointer to embedded class device
2824  * @attr: ?
2825  * @buf: the buffer returned
2826  *
2827  * A sysfs 'read-only' shost attribute.
2828  */
2829 static ssize_t
2830 version_bios_show(struct device *cdev, struct device_attribute *attr,
2831 	char *buf)
2832 {
2833 	struct Scsi_Host *shost = class_to_shost(cdev);
2834 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
2835 
2836 	u32 version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
2837 
2838 	return snprintf(buf, PAGE_SIZE, "%02d.%02d.%02d.%02d\n",
2839 	    (version & 0xFF000000) >> 24,
2840 	    (version & 0x00FF0000) >> 16,
2841 	    (version & 0x0000FF00) >> 8,
2842 	    version & 0x000000FF);
2843 }
2844 static DEVICE_ATTR_RO(version_bios);
2845 
2846 /**
2847  * version_mpi_show - MPI (message passing interface) version
2848  * @cdev: pointer to embedded class device
2849  * @attr: ?
2850  * @buf: the buffer returned
2851  *
2852  * A sysfs 'read-only' shost attribute.
2853  */
2854 static ssize_t
2855 version_mpi_show(struct device *cdev, struct device_attribute *attr,
2856 	char *buf)
2857 {
2858 	struct Scsi_Host *shost = class_to_shost(cdev);
2859 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
2860 
2861 	return snprintf(buf, PAGE_SIZE, "%03x.%02x\n",
2862 	    ioc->facts.MsgVersion, ioc->facts.HeaderVersion >> 8);
2863 }
2864 static DEVICE_ATTR_RO(version_mpi);
2865 
2866 /**
2867  * version_product_show - product name
2868  * @cdev: pointer to embedded class device
2869  * @attr: ?
2870  * @buf: the buffer returned
2871  *
2872  * A sysfs 'read-only' shost attribute.
2873  */
2874 static ssize_t
2875 version_product_show(struct device *cdev, struct device_attribute *attr,
2876 	char *buf)
2877 {
2878 	struct Scsi_Host *shost = class_to_shost(cdev);
2879 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
2880 
2881 	return snprintf(buf, 16, "%s\n", ioc->manu_pg0.ChipName);
2882 }
2883 static DEVICE_ATTR_RO(version_product);
2884 
2885 /**
2886  * version_nvdata_persistent_show - ndvata persistent version
2887  * @cdev: pointer to embedded class device
2888  * @attr: ?
2889  * @buf: the buffer returned
2890  *
2891  * A sysfs 'read-only' shost attribute.
2892  */
2893 static ssize_t
2894 version_nvdata_persistent_show(struct device *cdev,
2895 	struct device_attribute *attr, char *buf)
2896 {
2897 	struct Scsi_Host *shost = class_to_shost(cdev);
2898 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
2899 
2900 	return snprintf(buf, PAGE_SIZE, "%08xh\n",
2901 	    le32_to_cpu(ioc->iounit_pg0.NvdataVersionPersistent.Word));
2902 }
2903 static DEVICE_ATTR_RO(version_nvdata_persistent);
2904 
2905 /**
2906  * version_nvdata_default_show - nvdata default version
2907  * @cdev: pointer to embedded class device
2908  * @attr: ?
2909  * @buf: the buffer returned
2910  *
2911  * A sysfs 'read-only' shost attribute.
2912  */
2913 static ssize_t
2914 version_nvdata_default_show(struct device *cdev, struct device_attribute
2915 	*attr, char *buf)
2916 {
2917 	struct Scsi_Host *shost = class_to_shost(cdev);
2918 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
2919 
2920 	return snprintf(buf, PAGE_SIZE, "%08xh\n",
2921 	    le32_to_cpu(ioc->iounit_pg0.NvdataVersionDefault.Word));
2922 }
2923 static DEVICE_ATTR_RO(version_nvdata_default);
2924 
2925 /**
2926  * board_name_show - board name
2927  * @cdev: pointer to embedded class device
2928  * @attr: ?
2929  * @buf: the buffer returned
2930  *
2931  * A sysfs 'read-only' shost attribute.
2932  */
2933 static ssize_t
2934 board_name_show(struct device *cdev, struct device_attribute *attr,
2935 	char *buf)
2936 {
2937 	struct Scsi_Host *shost = class_to_shost(cdev);
2938 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
2939 
2940 	return snprintf(buf, 16, "%s\n", ioc->manu_pg0.BoardName);
2941 }
2942 static DEVICE_ATTR_RO(board_name);
2943 
2944 /**
2945  * board_assembly_show - board assembly name
2946  * @cdev: pointer to embedded class device
2947  * @attr: ?
2948  * @buf: the buffer returned
2949  *
2950  * A sysfs 'read-only' shost attribute.
2951  */
2952 static ssize_t
2953 board_assembly_show(struct device *cdev, struct device_attribute *attr,
2954 	char *buf)
2955 {
2956 	struct Scsi_Host *shost = class_to_shost(cdev);
2957 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
2958 
2959 	return snprintf(buf, 16, "%s\n", ioc->manu_pg0.BoardAssembly);
2960 }
2961 static DEVICE_ATTR_RO(board_assembly);
2962 
2963 /**
2964  * board_tracer_show - board tracer number
2965  * @cdev: pointer to embedded class device
2966  * @attr: ?
2967  * @buf: the buffer returned
2968  *
2969  * A sysfs 'read-only' shost attribute.
2970  */
2971 static ssize_t
2972 board_tracer_show(struct device *cdev, struct device_attribute *attr,
2973 	char *buf)
2974 {
2975 	struct Scsi_Host *shost = class_to_shost(cdev);
2976 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
2977 
2978 	return snprintf(buf, 16, "%s\n", ioc->manu_pg0.BoardTracerNumber);
2979 }
2980 static DEVICE_ATTR_RO(board_tracer);
2981 
2982 /**
2983  * io_delay_show - io missing delay
2984  * @cdev: pointer to embedded class device
2985  * @attr: ?
2986  * @buf: the buffer returned
2987  *
2988  * This is for firmware implemention for deboucing device
2989  * removal events.
2990  *
2991  * A sysfs 'read-only' shost attribute.
2992  */
2993 static ssize_t
2994 io_delay_show(struct device *cdev, struct device_attribute *attr,
2995 	char *buf)
2996 {
2997 	struct Scsi_Host *shost = class_to_shost(cdev);
2998 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
2999 
3000 	return snprintf(buf, PAGE_SIZE, "%02d\n", ioc->io_missing_delay);
3001 }
3002 static DEVICE_ATTR_RO(io_delay);
3003 
3004 /**
3005  * device_delay_show - device missing delay
3006  * @cdev: pointer to embedded class device
3007  * @attr: ?
3008  * @buf: the buffer returned
3009  *
3010  * This is for firmware implemention for deboucing device
3011  * removal events.
3012  *
3013  * A sysfs 'read-only' shost attribute.
3014  */
3015 static ssize_t
3016 device_delay_show(struct device *cdev, struct device_attribute *attr,
3017 	char *buf)
3018 {
3019 	struct Scsi_Host *shost = class_to_shost(cdev);
3020 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3021 
3022 	return snprintf(buf, PAGE_SIZE, "%02d\n", ioc->device_missing_delay);
3023 }
3024 static DEVICE_ATTR_RO(device_delay);
3025 
3026 /**
3027  * fw_queue_depth_show - global credits
3028  * @cdev: pointer to embedded class device
3029  * @attr: ?
3030  * @buf: the buffer returned
3031  *
3032  * This is firmware queue depth limit
3033  *
3034  * A sysfs 'read-only' shost attribute.
3035  */
3036 static ssize_t
3037 fw_queue_depth_show(struct device *cdev, struct device_attribute *attr,
3038 	char *buf)
3039 {
3040 	struct Scsi_Host *shost = class_to_shost(cdev);
3041 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3042 
3043 	return snprintf(buf, PAGE_SIZE, "%02d\n", ioc->facts.RequestCredit);
3044 }
3045 static DEVICE_ATTR_RO(fw_queue_depth);
3046 
3047 /**
3048  * sas_address_show - sas address
3049  * @cdev: pointer to embedded class device
3050  * @attr: ?
3051  * @buf: the buffer returned
3052  *
3053  * This is the controller sas address
3054  *
3055  * A sysfs 'read-only' shost attribute.
3056  */
3057 static ssize_t
3058 host_sas_address_show(struct device *cdev, struct device_attribute *attr,
3059 	char *buf)
3060 
3061 {
3062 	struct Scsi_Host *shost = class_to_shost(cdev);
3063 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3064 
3065 	return snprintf(buf, PAGE_SIZE, "0x%016llx\n",
3066 	    (unsigned long long)ioc->sas_hba.sas_address);
3067 }
3068 static DEVICE_ATTR_RO(host_sas_address);
3069 
3070 /**
3071  * logging_level_show - logging level
3072  * @cdev: pointer to embedded class device
3073  * @attr: ?
3074  * @buf: the buffer returned
3075  *
3076  * A sysfs 'read/write' shost attribute.
3077  */
3078 static ssize_t
3079 logging_level_show(struct device *cdev, struct device_attribute *attr,
3080 	char *buf)
3081 {
3082 	struct Scsi_Host *shost = class_to_shost(cdev);
3083 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3084 
3085 	return snprintf(buf, PAGE_SIZE, "%08xh\n", ioc->logging_level);
3086 }
3087 static ssize_t
3088 logging_level_store(struct device *cdev, struct device_attribute *attr,
3089 	const char *buf, size_t count)
3090 {
3091 	struct Scsi_Host *shost = class_to_shost(cdev);
3092 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3093 	int val = 0;
3094 
3095 	if (sscanf(buf, "%x", &val) != 1)
3096 		return -EINVAL;
3097 
3098 	ioc->logging_level = val;
3099 	ioc_info(ioc, "logging_level=%08xh\n",
3100 		 ioc->logging_level);
3101 	return strlen(buf);
3102 }
3103 static DEVICE_ATTR_RW(logging_level);
3104 
3105 /**
3106  * fwfault_debug_show - show/store fwfault_debug
3107  * @cdev: pointer to embedded class device
3108  * @attr: ?
3109  * @buf: the buffer returned
3110  *
3111  * mpt3sas_fwfault_debug is command line option
3112  * A sysfs 'read/write' shost attribute.
3113  */
3114 static ssize_t
3115 fwfault_debug_show(struct device *cdev, struct device_attribute *attr,
3116 	char *buf)
3117 {
3118 	struct Scsi_Host *shost = class_to_shost(cdev);
3119 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3120 
3121 	return snprintf(buf, PAGE_SIZE, "%d\n", ioc->fwfault_debug);
3122 }
3123 static ssize_t
3124 fwfault_debug_store(struct device *cdev, struct device_attribute *attr,
3125 	const char *buf, size_t count)
3126 {
3127 	struct Scsi_Host *shost = class_to_shost(cdev);
3128 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3129 	int val = 0;
3130 
3131 	if (sscanf(buf, "%d", &val) != 1)
3132 		return -EINVAL;
3133 
3134 	ioc->fwfault_debug = val;
3135 	ioc_info(ioc, "fwfault_debug=%d\n",
3136 		 ioc->fwfault_debug);
3137 	return strlen(buf);
3138 }
3139 static DEVICE_ATTR_RW(fwfault_debug);
3140 
3141 /**
3142  * ioc_reset_count_show - ioc reset count
3143  * @cdev: pointer to embedded class device
3144  * @attr: ?
3145  * @buf: the buffer returned
3146  *
3147  * This is firmware queue depth limit
3148  *
3149  * A sysfs 'read-only' shost attribute.
3150  */
3151 static ssize_t
3152 ioc_reset_count_show(struct device *cdev, struct device_attribute *attr,
3153 	char *buf)
3154 {
3155 	struct Scsi_Host *shost = class_to_shost(cdev);
3156 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3157 
3158 	return snprintf(buf, PAGE_SIZE, "%d\n", ioc->ioc_reset_count);
3159 }
3160 static DEVICE_ATTR_RO(ioc_reset_count);
3161 
3162 /**
3163  * reply_queue_count_show - number of reply queues
3164  * @cdev: pointer to embedded class device
3165  * @attr: ?
3166  * @buf: the buffer returned
3167  *
3168  * This is number of reply queues
3169  *
3170  * A sysfs 'read-only' shost attribute.
3171  */
3172 static ssize_t
3173 reply_queue_count_show(struct device *cdev,
3174 	struct device_attribute *attr, char *buf)
3175 {
3176 	u8 reply_queue_count;
3177 	struct Scsi_Host *shost = class_to_shost(cdev);
3178 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3179 
3180 	if ((ioc->facts.IOCCapabilities &
3181 	    MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable)
3182 		reply_queue_count = ioc->reply_queue_count;
3183 	else
3184 		reply_queue_count = 1;
3185 
3186 	return snprintf(buf, PAGE_SIZE, "%d\n", reply_queue_count);
3187 }
3188 static DEVICE_ATTR_RO(reply_queue_count);
3189 
3190 /**
3191  * BRM_status_show - Backup Rail Monitor Status
3192  * @cdev: pointer to embedded class device
3193  * @attr: ?
3194  * @buf: the buffer returned
3195  *
3196  * This is number of reply queues
3197  *
3198  * A sysfs 'read-only' shost attribute.
3199  */
3200 static ssize_t
3201 BRM_status_show(struct device *cdev, struct device_attribute *attr,
3202 	char *buf)
3203 {
3204 	struct Scsi_Host *shost = class_to_shost(cdev);
3205 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3206 	Mpi2IOUnitPage3_t *io_unit_pg3 = NULL;
3207 	Mpi2ConfigReply_t mpi_reply;
3208 	u16 backup_rail_monitor_status = 0;
3209 	u16 ioc_status;
3210 	int sz;
3211 	ssize_t rc = 0;
3212 
3213 	if (!ioc->is_warpdrive) {
3214 		ioc_err(ioc, "%s: BRM attribute is only for warpdrive\n",
3215 			__func__);
3216 		return 0;
3217 	}
3218 	/* pci_access_mutex lock acquired by sysfs show path */
3219 	mutex_lock(&ioc->pci_access_mutex);
3220 	if (ioc->pci_error_recovery || ioc->remove_host)
3221 		goto out;
3222 
3223 	/* allocate upto GPIOVal 36 entries */
3224 	sz = offsetof(Mpi2IOUnitPage3_t, GPIOVal) + (sizeof(u16) * 36);
3225 	io_unit_pg3 = kzalloc(sz, GFP_KERNEL);
3226 	if (!io_unit_pg3) {
3227 		rc = -ENOMEM;
3228 		ioc_err(ioc, "%s: failed allocating memory for iounit_pg3: (%d) bytes\n",
3229 			__func__, sz);
3230 		goto out;
3231 	}
3232 
3233 	if (mpt3sas_config_get_iounit_pg3(ioc, &mpi_reply, io_unit_pg3, sz) !=
3234 	    0) {
3235 		ioc_err(ioc, "%s: failed reading iounit_pg3\n",
3236 			__func__);
3237 		rc = -EINVAL;
3238 		goto out;
3239 	}
3240 
3241 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
3242 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
3243 		ioc_err(ioc, "%s: iounit_pg3 failed with ioc_status(0x%04x)\n",
3244 			__func__, ioc_status);
3245 		rc = -EINVAL;
3246 		goto out;
3247 	}
3248 
3249 	if (io_unit_pg3->GPIOCount < 25) {
3250 		ioc_err(ioc, "%s: iounit_pg3->GPIOCount less than 25 entries, detected (%d) entries\n",
3251 			__func__, io_unit_pg3->GPIOCount);
3252 		rc = -EINVAL;
3253 		goto out;
3254 	}
3255 
3256 	/* BRM status is in bit zero of GPIOVal[24] */
3257 	backup_rail_monitor_status = le16_to_cpu(io_unit_pg3->GPIOVal[24]);
3258 	rc = snprintf(buf, PAGE_SIZE, "%d\n", (backup_rail_monitor_status & 1));
3259 
3260  out:
3261 	kfree(io_unit_pg3);
3262 	mutex_unlock(&ioc->pci_access_mutex);
3263 	return rc;
3264 }
3265 static DEVICE_ATTR_RO(BRM_status);
3266 
3267 struct DIAG_BUFFER_START {
3268 	__le32	Size;
3269 	__le32	DiagVersion;
3270 	u8	BufferType;
3271 	u8	Reserved[3];
3272 	__le32	Reserved1;
3273 	__le32	Reserved2;
3274 	__le32	Reserved3;
3275 };
3276 
3277 /**
3278  * host_trace_buffer_size_show - host buffer size (trace only)
3279  * @cdev: pointer to embedded class device
3280  * @attr: ?
3281  * @buf: the buffer returned
3282  *
3283  * A sysfs 'read-only' shost attribute.
3284  */
3285 static ssize_t
3286 host_trace_buffer_size_show(struct device *cdev,
3287 	struct device_attribute *attr, char *buf)
3288 {
3289 	struct Scsi_Host *shost = class_to_shost(cdev);
3290 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3291 	u32 size = 0;
3292 	struct DIAG_BUFFER_START *request_data;
3293 
3294 	if (!ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) {
3295 		ioc_err(ioc, "%s: host_trace_buffer is not registered\n",
3296 			__func__);
3297 		return 0;
3298 	}
3299 
3300 	if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
3301 	    MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) {
3302 		ioc_err(ioc, "%s: host_trace_buffer is not registered\n",
3303 			__func__);
3304 		return 0;
3305 	}
3306 
3307 	request_data = (struct DIAG_BUFFER_START *)
3308 	    ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE];
3309 	if ((le32_to_cpu(request_data->DiagVersion) == 0x00000000 ||
3310 	    le32_to_cpu(request_data->DiagVersion) == 0x01000000 ||
3311 	    le32_to_cpu(request_data->DiagVersion) == 0x01010000) &&
3312 	    le32_to_cpu(request_data->Reserved3) == 0x4742444c)
3313 		size = le32_to_cpu(request_data->Size);
3314 
3315 	ioc->ring_buffer_sz = size;
3316 	return snprintf(buf, PAGE_SIZE, "%d\n", size);
3317 }
3318 static DEVICE_ATTR_RO(host_trace_buffer_size);
3319 
3320 /**
3321  * host_trace_buffer_show - firmware ring buffer (trace only)
3322  * @cdev: pointer to embedded class device
3323  * @attr: ?
3324  * @buf: the buffer returned
3325  *
3326  * A sysfs 'read/write' shost attribute.
3327  *
3328  * You will only be able to read 4k bytes of ring buffer at a time.
3329  * In order to read beyond 4k bytes, you will have to write out the
3330  * offset to the same attribute, it will move the pointer.
3331  */
3332 static ssize_t
3333 host_trace_buffer_show(struct device *cdev, struct device_attribute *attr,
3334 	char *buf)
3335 {
3336 	struct Scsi_Host *shost = class_to_shost(cdev);
3337 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3338 	void *request_data;
3339 	u32 size;
3340 
3341 	if (!ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) {
3342 		ioc_err(ioc, "%s: host_trace_buffer is not registered\n",
3343 			__func__);
3344 		return 0;
3345 	}
3346 
3347 	if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
3348 	    MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) {
3349 		ioc_err(ioc, "%s: host_trace_buffer is not registered\n",
3350 			__func__);
3351 		return 0;
3352 	}
3353 
3354 	if (ioc->ring_buffer_offset > ioc->ring_buffer_sz)
3355 		return 0;
3356 
3357 	size = ioc->ring_buffer_sz - ioc->ring_buffer_offset;
3358 	size = (size >= PAGE_SIZE) ? (PAGE_SIZE - 1) : size;
3359 	request_data = ioc->diag_buffer[0] + ioc->ring_buffer_offset;
3360 	memcpy(buf, request_data, size);
3361 	return size;
3362 }
3363 
3364 static ssize_t
3365 host_trace_buffer_store(struct device *cdev, struct device_attribute *attr,
3366 	const char *buf, size_t count)
3367 {
3368 	struct Scsi_Host *shost = class_to_shost(cdev);
3369 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3370 	int val = 0;
3371 
3372 	if (sscanf(buf, "%d", &val) != 1)
3373 		return -EINVAL;
3374 
3375 	ioc->ring_buffer_offset = val;
3376 	return strlen(buf);
3377 }
3378 static DEVICE_ATTR_RW(host_trace_buffer);
3379 
3380 
3381 /*****************************************/
3382 
3383 /**
3384  * host_trace_buffer_enable_show - firmware ring buffer (trace only)
3385  * @cdev: pointer to embedded class device
3386  * @attr: ?
3387  * @buf: the buffer returned
3388  *
3389  * A sysfs 'read/write' shost attribute.
3390  *
3391  * This is a mechnism to post/release host_trace_buffers
3392  */
3393 static ssize_t
3394 host_trace_buffer_enable_show(struct device *cdev,
3395 	struct device_attribute *attr, char *buf)
3396 {
3397 	struct Scsi_Host *shost = class_to_shost(cdev);
3398 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3399 
3400 	if ((!ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) ||
3401 	   ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
3402 	    MPT3_DIAG_BUFFER_IS_REGISTERED) == 0))
3403 		return snprintf(buf, PAGE_SIZE, "off\n");
3404 	else if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
3405 	    MPT3_DIAG_BUFFER_IS_RELEASED))
3406 		return snprintf(buf, PAGE_SIZE, "release\n");
3407 	else
3408 		return snprintf(buf, PAGE_SIZE, "post\n");
3409 }
3410 
3411 static ssize_t
3412 host_trace_buffer_enable_store(struct device *cdev,
3413 	struct device_attribute *attr, const char *buf, size_t count)
3414 {
3415 	struct Scsi_Host *shost = class_to_shost(cdev);
3416 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3417 	char str[10] = "";
3418 	struct mpt3_diag_register diag_register;
3419 	u8 issue_reset = 0;
3420 
3421 	/* don't allow post/release occurr while recovery is active */
3422 	if (ioc->shost_recovery || ioc->remove_host ||
3423 	    ioc->pci_error_recovery || ioc->is_driver_loading)
3424 		return -EBUSY;
3425 
3426 	if (sscanf(buf, "%9s", str) != 1)
3427 		return -EINVAL;
3428 
3429 	if (!strcmp(str, "post")) {
3430 		/* exit out if host buffers are already posted */
3431 		if ((ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) &&
3432 		    (ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
3433 		    MPT3_DIAG_BUFFER_IS_REGISTERED) &&
3434 		    ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
3435 		    MPT3_DIAG_BUFFER_IS_RELEASED) == 0))
3436 			goto out;
3437 		memset(&diag_register, 0, sizeof(struct mpt3_diag_register));
3438 		ioc_info(ioc, "posting host trace buffers\n");
3439 		diag_register.buffer_type = MPI2_DIAG_BUF_TYPE_TRACE;
3440 
3441 		if (ioc->manu_pg11.HostTraceBufferMaxSizeKB != 0 &&
3442 		    ioc->diag_buffer_sz[MPI2_DIAG_BUF_TYPE_TRACE] != 0) {
3443 			/* post the same buffer allocated previously */
3444 			diag_register.requested_buffer_size =
3445 			    ioc->diag_buffer_sz[MPI2_DIAG_BUF_TYPE_TRACE];
3446 		} else {
3447 			/*
3448 			 * Free the diag buffer memory which was previously
3449 			 * allocated by an application.
3450 			 */
3451 			if ((ioc->diag_buffer_sz[MPI2_DIAG_BUF_TYPE_TRACE] != 0)
3452 			    &&
3453 			    (ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
3454 			    MPT3_DIAG_BUFFER_IS_APP_OWNED)) {
3455 				dma_free_coherent(&ioc->pdev->dev,
3456 						  ioc->diag_buffer_sz[MPI2_DIAG_BUF_TYPE_TRACE],
3457 						  ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE],
3458 						  ioc->diag_buffer_dma[MPI2_DIAG_BUF_TYPE_TRACE]);
3459 				ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE] =
3460 				    NULL;
3461 			}
3462 
3463 			diag_register.requested_buffer_size = (1024 * 1024);
3464 		}
3465 
3466 		diag_register.unique_id =
3467 		    (ioc->hba_mpi_version_belonged == MPI2_VERSION) ?
3468 		    (MPT2DIAGBUFFUNIQUEID):(MPT3DIAGBUFFUNIQUEID);
3469 		ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] = 0;
3470 		_ctl_diag_register_2(ioc,  &diag_register);
3471 		if (ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
3472 		    MPT3_DIAG_BUFFER_IS_REGISTERED) {
3473 			ioc_info(ioc,
3474 			    "Trace buffer %d KB allocated through sysfs\n",
3475 			    diag_register.requested_buffer_size>>10);
3476 			if (ioc->hba_mpi_version_belonged != MPI2_VERSION)
3477 				ioc->diag_buffer_status[
3478 				    MPI2_DIAG_BUF_TYPE_TRACE] |=
3479 				    MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED;
3480 		}
3481 	} else if (!strcmp(str, "release")) {
3482 		/* exit out if host buffers are already released */
3483 		if (!ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE])
3484 			goto out;
3485 		if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
3486 		    MPT3_DIAG_BUFFER_IS_REGISTERED) == 0)
3487 			goto out;
3488 		if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
3489 		    MPT3_DIAG_BUFFER_IS_RELEASED))
3490 			goto out;
3491 		ioc_info(ioc, "releasing host trace buffer\n");
3492 		ioc->htb_rel.buffer_rel_condition = MPT3_DIAG_BUFFER_REL_SYSFS;
3493 		mpt3sas_send_diag_release(ioc, MPI2_DIAG_BUF_TYPE_TRACE,
3494 		    &issue_reset);
3495 	}
3496 
3497  out:
3498 	return strlen(buf);
3499 }
3500 static DEVICE_ATTR_RW(host_trace_buffer_enable);
3501 
3502 /*********** diagnostic trigger suppport *********************************/
3503 
3504 /**
3505  * diag_trigger_master_show - show the diag_trigger_master attribute
3506  * @cdev: pointer to embedded class device
3507  * @attr: ?
3508  * @buf: the buffer returned
3509  *
3510  * A sysfs 'read/write' shost attribute.
3511  */
3512 static ssize_t
3513 diag_trigger_master_show(struct device *cdev,
3514 	struct device_attribute *attr, char *buf)
3515 
3516 {
3517 	struct Scsi_Host *shost = class_to_shost(cdev);
3518 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3519 	unsigned long flags;
3520 	ssize_t rc;
3521 
3522 	spin_lock_irqsave(&ioc->diag_trigger_lock, flags);
3523 	rc = sizeof(struct SL_WH_MASTER_TRIGGER_T);
3524 	memcpy(buf, &ioc->diag_trigger_master, rc);
3525 	spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags);
3526 	return rc;
3527 }
3528 
3529 /**
3530  * diag_trigger_master_store - store the diag_trigger_master attribute
3531  * @cdev: pointer to embedded class device
3532  * @attr: ?
3533  * @buf: the buffer returned
3534  * @count: ?
3535  *
3536  * A sysfs 'read/write' shost attribute.
3537  */
3538 static ssize_t
3539 diag_trigger_master_store(struct device *cdev,
3540 	struct device_attribute *attr, const char *buf, size_t count)
3541 
3542 {
3543 	struct Scsi_Host *shost = class_to_shost(cdev);
3544 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3545 	unsigned long flags;
3546 	ssize_t rc;
3547 
3548 	spin_lock_irqsave(&ioc->diag_trigger_lock, flags);
3549 	rc = min(sizeof(struct SL_WH_MASTER_TRIGGER_T), count);
3550 	memset(&ioc->diag_trigger_master, 0,
3551 	    sizeof(struct SL_WH_MASTER_TRIGGER_T));
3552 	memcpy(&ioc->diag_trigger_master, buf, rc);
3553 	ioc->diag_trigger_master.MasterData |=
3554 	    (MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET);
3555 	spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags);
3556 	return rc;
3557 }
3558 static DEVICE_ATTR_RW(diag_trigger_master);
3559 
3560 
3561 /**
3562  * diag_trigger_event_show - show the diag_trigger_event attribute
3563  * @cdev: pointer to embedded class device
3564  * @attr: ?
3565  * @buf: the buffer returned
3566  *
3567  * A sysfs 'read/write' shost attribute.
3568  */
3569 static ssize_t
3570 diag_trigger_event_show(struct device *cdev,
3571 	struct device_attribute *attr, char *buf)
3572 {
3573 	struct Scsi_Host *shost = class_to_shost(cdev);
3574 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3575 	unsigned long flags;
3576 	ssize_t rc;
3577 
3578 	spin_lock_irqsave(&ioc->diag_trigger_lock, flags);
3579 	rc = sizeof(struct SL_WH_EVENT_TRIGGERS_T);
3580 	memcpy(buf, &ioc->diag_trigger_event, rc);
3581 	spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags);
3582 	return rc;
3583 }
3584 
3585 /**
3586  * diag_trigger_event_store - store the diag_trigger_event attribute
3587  * @cdev: pointer to embedded class device
3588  * @attr: ?
3589  * @buf: the buffer returned
3590  * @count: ?
3591  *
3592  * A sysfs 'read/write' shost attribute.
3593  */
3594 static ssize_t
3595 diag_trigger_event_store(struct device *cdev,
3596 	struct device_attribute *attr, const char *buf, size_t count)
3597 
3598 {
3599 	struct Scsi_Host *shost = class_to_shost(cdev);
3600 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3601 	unsigned long flags;
3602 	ssize_t sz;
3603 
3604 	spin_lock_irqsave(&ioc->diag_trigger_lock, flags);
3605 	sz = min(sizeof(struct SL_WH_EVENT_TRIGGERS_T), count);
3606 	memset(&ioc->diag_trigger_event, 0,
3607 	    sizeof(struct SL_WH_EVENT_TRIGGERS_T));
3608 	memcpy(&ioc->diag_trigger_event, buf, sz);
3609 	if (ioc->diag_trigger_event.ValidEntries > NUM_VALID_ENTRIES)
3610 		ioc->diag_trigger_event.ValidEntries = NUM_VALID_ENTRIES;
3611 	spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags);
3612 	return sz;
3613 }
3614 static DEVICE_ATTR_RW(diag_trigger_event);
3615 
3616 
3617 /**
3618  * diag_trigger_scsi_show - show the diag_trigger_scsi attribute
3619  * @cdev: pointer to embedded class device
3620  * @attr: ?
3621  * @buf: the buffer returned
3622  *
3623  * A sysfs 'read/write' shost attribute.
3624  */
3625 static ssize_t
3626 diag_trigger_scsi_show(struct device *cdev,
3627 	struct device_attribute *attr, char *buf)
3628 {
3629 	struct Scsi_Host *shost = class_to_shost(cdev);
3630 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3631 	unsigned long flags;
3632 	ssize_t rc;
3633 
3634 	spin_lock_irqsave(&ioc->diag_trigger_lock, flags);
3635 	rc = sizeof(struct SL_WH_SCSI_TRIGGERS_T);
3636 	memcpy(buf, &ioc->diag_trigger_scsi, rc);
3637 	spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags);
3638 	return rc;
3639 }
3640 
3641 /**
3642  * diag_trigger_scsi_store - store the diag_trigger_scsi attribute
3643  * @cdev: pointer to embedded class device
3644  * @attr: ?
3645  * @buf: the buffer returned
3646  * @count: ?
3647  *
3648  * A sysfs 'read/write' shost attribute.
3649  */
3650 static ssize_t
3651 diag_trigger_scsi_store(struct device *cdev,
3652 	struct device_attribute *attr, const char *buf, size_t count)
3653 {
3654 	struct Scsi_Host *shost = class_to_shost(cdev);
3655 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3656 	unsigned long flags;
3657 	ssize_t sz;
3658 
3659 	spin_lock_irqsave(&ioc->diag_trigger_lock, flags);
3660 	sz = min(sizeof(ioc->diag_trigger_scsi), count);
3661 	memset(&ioc->diag_trigger_scsi, 0, sizeof(ioc->diag_trigger_scsi));
3662 	memcpy(&ioc->diag_trigger_scsi, buf, sz);
3663 	if (ioc->diag_trigger_scsi.ValidEntries > NUM_VALID_ENTRIES)
3664 		ioc->diag_trigger_scsi.ValidEntries = NUM_VALID_ENTRIES;
3665 	spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags);
3666 	return sz;
3667 }
3668 static DEVICE_ATTR_RW(diag_trigger_scsi);
3669 
3670 
3671 /**
3672  * diag_trigger_scsi_show - show the diag_trigger_mpi attribute
3673  * @cdev: pointer to embedded class device
3674  * @attr: ?
3675  * @buf: the buffer returned
3676  *
3677  * A sysfs 'read/write' shost attribute.
3678  */
3679 static ssize_t
3680 diag_trigger_mpi_show(struct device *cdev,
3681 	struct device_attribute *attr, char *buf)
3682 {
3683 	struct Scsi_Host *shost = class_to_shost(cdev);
3684 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3685 	unsigned long flags;
3686 	ssize_t rc;
3687 
3688 	spin_lock_irqsave(&ioc->diag_trigger_lock, flags);
3689 	rc = sizeof(struct SL_WH_MPI_TRIGGERS_T);
3690 	memcpy(buf, &ioc->diag_trigger_mpi, rc);
3691 	spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags);
3692 	return rc;
3693 }
3694 
3695 /**
3696  * diag_trigger_mpi_store - store the diag_trigger_mpi attribute
3697  * @cdev: pointer to embedded class device
3698  * @attr: ?
3699  * @buf: the buffer returned
3700  * @count: ?
3701  *
3702  * A sysfs 'read/write' shost attribute.
3703  */
3704 static ssize_t
3705 diag_trigger_mpi_store(struct device *cdev,
3706 	struct device_attribute *attr, const char *buf, size_t count)
3707 {
3708 	struct Scsi_Host *shost = class_to_shost(cdev);
3709 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3710 	unsigned long flags;
3711 	ssize_t sz;
3712 
3713 	spin_lock_irqsave(&ioc->diag_trigger_lock, flags);
3714 	sz = min(sizeof(struct SL_WH_MPI_TRIGGERS_T), count);
3715 	memset(&ioc->diag_trigger_mpi, 0,
3716 	    sizeof(ioc->diag_trigger_mpi));
3717 	memcpy(&ioc->diag_trigger_mpi, buf, sz);
3718 	if (ioc->diag_trigger_mpi.ValidEntries > NUM_VALID_ENTRIES)
3719 		ioc->diag_trigger_mpi.ValidEntries = NUM_VALID_ENTRIES;
3720 	spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags);
3721 	return sz;
3722 }
3723 
3724 static DEVICE_ATTR_RW(diag_trigger_mpi);
3725 
3726 /*********** diagnostic trigger suppport *** END ****************************/
3727 
3728 /*****************************************/
3729 
3730 /**
3731  * drv_support_bitmap_show - driver supported feature bitmap
3732  * @cdev: pointer to embedded class device
3733  * @attr: unused
3734  * @buf: the buffer returned
3735  *
3736  * A sysfs 'read-only' shost attribute.
3737  */
3738 static ssize_t
3739 drv_support_bitmap_show(struct device *cdev,
3740 	struct device_attribute *attr, char *buf)
3741 {
3742 	struct Scsi_Host *shost = class_to_shost(cdev);
3743 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3744 
3745 	return snprintf(buf, PAGE_SIZE, "0x%08x\n", ioc->drv_support_bitmap);
3746 }
3747 static DEVICE_ATTR_RO(drv_support_bitmap);
3748 
3749 /**
3750  * enable_sdev_max_qd_show - display whether sdev max qd is enabled/disabled
3751  * @cdev: pointer to embedded class device
3752  * @attr: unused
3753  * @buf: the buffer returned
3754  *
3755  * A sysfs read/write shost attribute. This attribute is used to set the
3756  * targets queue depth to HBA IO queue depth if this attribute is enabled.
3757  */
3758 static ssize_t
3759 enable_sdev_max_qd_show(struct device *cdev,
3760 	struct device_attribute *attr, char *buf)
3761 {
3762 	struct Scsi_Host *shost = class_to_shost(cdev);
3763 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3764 
3765 	return snprintf(buf, PAGE_SIZE, "%d\n", ioc->enable_sdev_max_qd);
3766 }
3767 
3768 /**
3769  * enable_sdev_max_qd_store - Enable/disable sdev max qd
3770  * @cdev: pointer to embedded class device
3771  * @attr: unused
3772  * @buf: the buffer returned
3773  * @count: unused
3774  *
3775  * A sysfs read/write shost attribute. This attribute is used to set the
3776  * targets queue depth to HBA IO queue depth if this attribute is enabled.
3777  * If this attribute is disabled then targets will have corresponding default
3778  * queue depth.
3779  */
3780 static ssize_t
3781 enable_sdev_max_qd_store(struct device *cdev,
3782 	struct device_attribute *attr, const char *buf, size_t count)
3783 {
3784 	struct Scsi_Host *shost = class_to_shost(cdev);
3785 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3786 	struct MPT3SAS_DEVICE *sas_device_priv_data;
3787 	struct MPT3SAS_TARGET *sas_target_priv_data;
3788 	int val = 0;
3789 	struct scsi_device *sdev;
3790 	struct _raid_device *raid_device;
3791 	int qdepth;
3792 
3793 	if (kstrtoint(buf, 0, &val) != 0)
3794 		return -EINVAL;
3795 
3796 	switch (val) {
3797 	case 0:
3798 		ioc->enable_sdev_max_qd = 0;
3799 		shost_for_each_device(sdev, ioc->shost) {
3800 			sas_device_priv_data = sdev->hostdata;
3801 			if (!sas_device_priv_data)
3802 				continue;
3803 			sas_target_priv_data = sas_device_priv_data->sas_target;
3804 			if (!sas_target_priv_data)
3805 				continue;
3806 
3807 			if (sas_target_priv_data->flags &
3808 			    MPT_TARGET_FLAGS_VOLUME) {
3809 				raid_device =
3810 				    mpt3sas_raid_device_find_by_handle(ioc,
3811 				    sas_target_priv_data->handle);
3812 
3813 				switch (raid_device->volume_type) {
3814 				case MPI2_RAID_VOL_TYPE_RAID0:
3815 					if (raid_device->device_info &
3816 					    MPI2_SAS_DEVICE_INFO_SSP_TARGET)
3817 						qdepth =
3818 						    MPT3SAS_SAS_QUEUE_DEPTH;
3819 					else
3820 						qdepth =
3821 						    MPT3SAS_SATA_QUEUE_DEPTH;
3822 					break;
3823 				case MPI2_RAID_VOL_TYPE_RAID1E:
3824 				case MPI2_RAID_VOL_TYPE_RAID1:
3825 				case MPI2_RAID_VOL_TYPE_RAID10:
3826 				case MPI2_RAID_VOL_TYPE_UNKNOWN:
3827 				default:
3828 					qdepth = MPT3SAS_RAID_QUEUE_DEPTH;
3829 				}
3830 			} else if (sas_target_priv_data->flags &
3831 			    MPT_TARGET_FLAGS_PCIE_DEVICE)
3832 				qdepth = MPT3SAS_NVME_QUEUE_DEPTH;
3833 			else
3834 				qdepth = MPT3SAS_SAS_QUEUE_DEPTH;
3835 
3836 			mpt3sas_scsih_change_queue_depth(sdev, qdepth);
3837 		}
3838 		break;
3839 	case 1:
3840 		ioc->enable_sdev_max_qd = 1;
3841 		shost_for_each_device(sdev, ioc->shost)
3842 			mpt3sas_scsih_change_queue_depth(sdev,
3843 			    shost->can_queue);
3844 		break;
3845 	default:
3846 		return -EINVAL;
3847 	}
3848 
3849 	return strlen(buf);
3850 }
3851 static DEVICE_ATTR_RW(enable_sdev_max_qd);
3852 
3853 struct device_attribute *mpt3sas_host_attrs[] = {
3854 	&dev_attr_version_fw,
3855 	&dev_attr_version_bios,
3856 	&dev_attr_version_mpi,
3857 	&dev_attr_version_product,
3858 	&dev_attr_version_nvdata_persistent,
3859 	&dev_attr_version_nvdata_default,
3860 	&dev_attr_board_name,
3861 	&dev_attr_board_assembly,
3862 	&dev_attr_board_tracer,
3863 	&dev_attr_io_delay,
3864 	&dev_attr_device_delay,
3865 	&dev_attr_logging_level,
3866 	&dev_attr_fwfault_debug,
3867 	&dev_attr_fw_queue_depth,
3868 	&dev_attr_host_sas_address,
3869 	&dev_attr_ioc_reset_count,
3870 	&dev_attr_host_trace_buffer_size,
3871 	&dev_attr_host_trace_buffer,
3872 	&dev_attr_host_trace_buffer_enable,
3873 	&dev_attr_reply_queue_count,
3874 	&dev_attr_diag_trigger_master,
3875 	&dev_attr_diag_trigger_event,
3876 	&dev_attr_diag_trigger_scsi,
3877 	&dev_attr_diag_trigger_mpi,
3878 	&dev_attr_drv_support_bitmap,
3879 	&dev_attr_BRM_status,
3880 	&dev_attr_enable_sdev_max_qd,
3881 	NULL,
3882 };
3883 
3884 /* device attributes */
3885 
3886 /**
3887  * sas_address_show - sas address
3888  * @dev: pointer to embedded class device
3889  * @attr: ?
3890  * @buf: the buffer returned
3891  *
3892  * This is the sas address for the target
3893  *
3894  * A sysfs 'read-only' shost attribute.
3895  */
3896 static ssize_t
3897 sas_address_show(struct device *dev, struct device_attribute *attr,
3898 	char *buf)
3899 {
3900 	struct scsi_device *sdev = to_scsi_device(dev);
3901 	struct MPT3SAS_DEVICE *sas_device_priv_data = sdev->hostdata;
3902 
3903 	return snprintf(buf, PAGE_SIZE, "0x%016llx\n",
3904 	    (unsigned long long)sas_device_priv_data->sas_target->sas_address);
3905 }
3906 static DEVICE_ATTR_RO(sas_address);
3907 
3908 /**
3909  * sas_device_handle_show - device handle
3910  * @dev: pointer to embedded class device
3911  * @attr: ?
3912  * @buf: the buffer returned
3913  *
3914  * This is the firmware assigned device handle
3915  *
3916  * A sysfs 'read-only' shost attribute.
3917  */
3918 static ssize_t
3919 sas_device_handle_show(struct device *dev, struct device_attribute *attr,
3920 	char *buf)
3921 {
3922 	struct scsi_device *sdev = to_scsi_device(dev);
3923 	struct MPT3SAS_DEVICE *sas_device_priv_data = sdev->hostdata;
3924 
3925 	return snprintf(buf, PAGE_SIZE, "0x%04x\n",
3926 	    sas_device_priv_data->sas_target->handle);
3927 }
3928 static DEVICE_ATTR_RO(sas_device_handle);
3929 
3930 /**
3931  * sas_ncq_io_prio_show - send prioritized io commands to device
3932  * @dev: pointer to embedded device
3933  * @attr: ?
3934  * @buf: the buffer returned
3935  *
3936  * A sysfs 'read/write' sdev attribute, only works with SATA
3937  */
3938 static ssize_t
3939 sas_ncq_prio_enable_show(struct device *dev,
3940 				 struct device_attribute *attr, char *buf)
3941 {
3942 	struct scsi_device *sdev = to_scsi_device(dev);
3943 	struct MPT3SAS_DEVICE *sas_device_priv_data = sdev->hostdata;
3944 
3945 	return snprintf(buf, PAGE_SIZE, "%d\n",
3946 			sas_device_priv_data->ncq_prio_enable);
3947 }
3948 
3949 static ssize_t
3950 sas_ncq_prio_enable_store(struct device *dev,
3951 				  struct device_attribute *attr,
3952 				  const char *buf, size_t count)
3953 {
3954 	struct scsi_device *sdev = to_scsi_device(dev);
3955 	struct MPT3SAS_DEVICE *sas_device_priv_data = sdev->hostdata;
3956 	bool ncq_prio_enable = 0;
3957 
3958 	if (kstrtobool(buf, &ncq_prio_enable))
3959 		return -EINVAL;
3960 
3961 	if (!scsih_ncq_prio_supp(sdev))
3962 		return -EINVAL;
3963 
3964 	sas_device_priv_data->ncq_prio_enable = ncq_prio_enable;
3965 	return strlen(buf);
3966 }
3967 static DEVICE_ATTR_RW(sas_ncq_prio_enable);
3968 
3969 struct device_attribute *mpt3sas_dev_attrs[] = {
3970 	&dev_attr_sas_address,
3971 	&dev_attr_sas_device_handle,
3972 	&dev_attr_sas_ncq_prio_enable,
3973 	NULL,
3974 };
3975 
3976 /* file operations table for mpt3ctl device */
3977 static const struct file_operations ctl_fops = {
3978 	.owner = THIS_MODULE,
3979 	.unlocked_ioctl = _ctl_ioctl,
3980 	.poll = _ctl_poll,
3981 	.fasync = _ctl_fasync,
3982 #ifdef CONFIG_COMPAT
3983 	.compat_ioctl = _ctl_ioctl_compat,
3984 #endif
3985 };
3986 
3987 /* file operations table for mpt2ctl device */
3988 static const struct file_operations ctl_gen2_fops = {
3989 	.owner = THIS_MODULE,
3990 	.unlocked_ioctl = _ctl_mpt2_ioctl,
3991 	.poll = _ctl_poll,
3992 	.fasync = _ctl_fasync,
3993 #ifdef CONFIG_COMPAT
3994 	.compat_ioctl = _ctl_mpt2_ioctl_compat,
3995 #endif
3996 };
3997 
3998 static struct miscdevice ctl_dev = {
3999 	.minor  = MPT3SAS_MINOR,
4000 	.name   = MPT3SAS_DEV_NAME,
4001 	.fops   = &ctl_fops,
4002 };
4003 
4004 static struct miscdevice gen2_ctl_dev = {
4005 	.minor  = MPT2SAS_MINOR,
4006 	.name   = MPT2SAS_DEV_NAME,
4007 	.fops   = &ctl_gen2_fops,
4008 };
4009 
4010 /**
4011  * mpt3sas_ctl_init - main entry point for ctl.
4012  * @hbas_to_enumerate: ?
4013  */
4014 void
4015 mpt3sas_ctl_init(ushort hbas_to_enumerate)
4016 {
4017 	async_queue = NULL;
4018 
4019 	/* Don't register mpt3ctl ioctl device if
4020 	 * hbas_to_enumarate is one.
4021 	 */
4022 	if (hbas_to_enumerate != 1)
4023 		if (misc_register(&ctl_dev) < 0)
4024 			pr_err("%s can't register misc device [minor=%d]\n",
4025 			    MPT3SAS_DRIVER_NAME, MPT3SAS_MINOR);
4026 
4027 	/* Don't register mpt3ctl ioctl device if
4028 	 * hbas_to_enumarate is two.
4029 	 */
4030 	if (hbas_to_enumerate != 2)
4031 		if (misc_register(&gen2_ctl_dev) < 0)
4032 			pr_err("%s can't register misc device [minor=%d]\n",
4033 			    MPT2SAS_DRIVER_NAME, MPT2SAS_MINOR);
4034 
4035 	init_waitqueue_head(&ctl_poll_wait);
4036 }
4037 
4038 /**
4039  * mpt3sas_ctl_exit - exit point for ctl
4040  * @hbas_to_enumerate: ?
4041  */
4042 void
4043 mpt3sas_ctl_exit(ushort hbas_to_enumerate)
4044 {
4045 	struct MPT3SAS_ADAPTER *ioc;
4046 	int i;
4047 
4048 	list_for_each_entry(ioc, &mpt3sas_ioc_list, list) {
4049 
4050 		/* free memory associated to diag buffers */
4051 		for (i = 0; i < MPI2_DIAG_BUF_TYPE_COUNT; i++) {
4052 			if (!ioc->diag_buffer[i])
4053 				continue;
4054 			dma_free_coherent(&ioc->pdev->dev,
4055 					  ioc->diag_buffer_sz[i],
4056 					  ioc->diag_buffer[i],
4057 					  ioc->diag_buffer_dma[i]);
4058 			ioc->diag_buffer[i] = NULL;
4059 			ioc->diag_buffer_status[i] = 0;
4060 		}
4061 
4062 		kfree(ioc->event_log);
4063 	}
4064 	if (hbas_to_enumerate != 1)
4065 		misc_deregister(&ctl_dev);
4066 	if (hbas_to_enumerate != 2)
4067 		misc_deregister(&gen2_ctl_dev);
4068 }
4069