1 /* 2 * Management Module Support for MPT (Message Passing Technology) based 3 * controllers 4 * 5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_ctl.c 6 * Copyright (C) 2012-2014 LSI Corporation 7 * Copyright (C) 2013-2014 Avago Technologies 8 * (mailto: MPT-FusionLinux.pdl@avagotech.com) 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License 12 * as published by the Free Software Foundation; either version 2 13 * of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * NO WARRANTY 21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR 22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT 23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, 24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is 25 * solely responsible for determining the appropriateness of using and 26 * distributing the Program and assumes all risks associated with its 27 * exercise of rights under this Agreement, including but not limited to 28 * the risks and costs of program errors, damage to or loss of data, 29 * programs or equipment, and unavailability or interruption of operations. 30 31 * DISCLAIMER OF LIABILITY 32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY 33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND 35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED 38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES 39 40 * You should have received a copy of the GNU General Public License 41 * along with this program; if not, write to the Free Software 42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, 43 * USA. 44 */ 45 46 #include <linux/kernel.h> 47 #include <linux/module.h> 48 #include <linux/errno.h> 49 #include <linux/init.h> 50 #include <linux/slab.h> 51 #include <linux/types.h> 52 #include <linux/pci.h> 53 #include <linux/delay.h> 54 #include <linux/compat.h> 55 #include <linux/poll.h> 56 57 #include <linux/io.h> 58 #include <linux/uaccess.h> 59 60 #include "mpt3sas_base.h" 61 #include "mpt3sas_ctl.h" 62 63 64 static struct fasync_struct *async_queue; 65 static DECLARE_WAIT_QUEUE_HEAD(ctl_poll_wait); 66 67 68 /** 69 * enum block_state - blocking state 70 * @NON_BLOCKING: non blocking 71 * @BLOCKING: blocking 72 * 73 * These states are for ioctls that need to wait for a response 74 * from firmware, so they probably require sleep. 75 */ 76 enum block_state { 77 NON_BLOCKING, 78 BLOCKING, 79 }; 80 81 /** 82 * _ctl_display_some_debug - debug routine 83 * @ioc: per adapter object 84 * @smid: system request message index 85 * @calling_function_name: string pass from calling function 86 * @mpi_reply: reply message frame 87 * Context: none. 88 * 89 * Function for displaying debug info helpful when debugging issues 90 * in this module. 91 */ 92 static void 93 _ctl_display_some_debug(struct MPT3SAS_ADAPTER *ioc, u16 smid, 94 char *calling_function_name, MPI2DefaultReply_t *mpi_reply) 95 { 96 Mpi2ConfigRequest_t *mpi_request; 97 char *desc = NULL; 98 99 if (!(ioc->logging_level & MPT_DEBUG_IOCTL)) 100 return; 101 102 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 103 switch (mpi_request->Function) { 104 case MPI2_FUNCTION_SCSI_IO_REQUEST: 105 { 106 Mpi2SCSIIORequest_t *scsi_request = 107 (Mpi2SCSIIORequest_t *)mpi_request; 108 109 snprintf(ioc->tmp_string, MPT_STRING_LENGTH, 110 "scsi_io, cmd(0x%02x), cdb_len(%d)", 111 scsi_request->CDB.CDB32[0], 112 le16_to_cpu(scsi_request->IoFlags) & 0xF); 113 desc = ioc->tmp_string; 114 break; 115 } 116 case MPI2_FUNCTION_SCSI_TASK_MGMT: 117 desc = "task_mgmt"; 118 break; 119 case MPI2_FUNCTION_IOC_INIT: 120 desc = "ioc_init"; 121 break; 122 case MPI2_FUNCTION_IOC_FACTS: 123 desc = "ioc_facts"; 124 break; 125 case MPI2_FUNCTION_CONFIG: 126 { 127 Mpi2ConfigRequest_t *config_request = 128 (Mpi2ConfigRequest_t *)mpi_request; 129 130 snprintf(ioc->tmp_string, MPT_STRING_LENGTH, 131 "config, type(0x%02x), ext_type(0x%02x), number(%d)", 132 (config_request->Header.PageType & 133 MPI2_CONFIG_PAGETYPE_MASK), config_request->ExtPageType, 134 config_request->Header.PageNumber); 135 desc = ioc->tmp_string; 136 break; 137 } 138 case MPI2_FUNCTION_PORT_FACTS: 139 desc = "port_facts"; 140 break; 141 case MPI2_FUNCTION_PORT_ENABLE: 142 desc = "port_enable"; 143 break; 144 case MPI2_FUNCTION_EVENT_NOTIFICATION: 145 desc = "event_notification"; 146 break; 147 case MPI2_FUNCTION_FW_DOWNLOAD: 148 desc = "fw_download"; 149 break; 150 case MPI2_FUNCTION_FW_UPLOAD: 151 desc = "fw_upload"; 152 break; 153 case MPI2_FUNCTION_RAID_ACTION: 154 desc = "raid_action"; 155 break; 156 case MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH: 157 { 158 Mpi2SCSIIORequest_t *scsi_request = 159 (Mpi2SCSIIORequest_t *)mpi_request; 160 161 snprintf(ioc->tmp_string, MPT_STRING_LENGTH, 162 "raid_pass, cmd(0x%02x), cdb_len(%d)", 163 scsi_request->CDB.CDB32[0], 164 le16_to_cpu(scsi_request->IoFlags) & 0xF); 165 desc = ioc->tmp_string; 166 break; 167 } 168 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL: 169 desc = "sas_iounit_cntl"; 170 break; 171 case MPI2_FUNCTION_SATA_PASSTHROUGH: 172 desc = "sata_pass"; 173 break; 174 case MPI2_FUNCTION_DIAG_BUFFER_POST: 175 desc = "diag_buffer_post"; 176 break; 177 case MPI2_FUNCTION_DIAG_RELEASE: 178 desc = "diag_release"; 179 break; 180 case MPI2_FUNCTION_SMP_PASSTHROUGH: 181 desc = "smp_passthrough"; 182 break; 183 } 184 185 if (!desc) 186 return; 187 188 ioc_info(ioc, "%s: %s, smid(%d)\n", calling_function_name, desc, smid); 189 190 if (!mpi_reply) 191 return; 192 193 if (mpi_reply->IOCStatus || mpi_reply->IOCLogInfo) 194 ioc_info(ioc, "\tiocstatus(0x%04x), loginfo(0x%08x)\n", 195 le16_to_cpu(mpi_reply->IOCStatus), 196 le32_to_cpu(mpi_reply->IOCLogInfo)); 197 198 if (mpi_request->Function == MPI2_FUNCTION_SCSI_IO_REQUEST || 199 mpi_request->Function == 200 MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH) { 201 Mpi2SCSIIOReply_t *scsi_reply = 202 (Mpi2SCSIIOReply_t *)mpi_reply; 203 struct _sas_device *sas_device = NULL; 204 struct _pcie_device *pcie_device = NULL; 205 206 sas_device = mpt3sas_get_sdev_by_handle(ioc, 207 le16_to_cpu(scsi_reply->DevHandle)); 208 if (sas_device) { 209 ioc_warn(ioc, "\tsas_address(0x%016llx), phy(%d)\n", 210 (u64)sas_device->sas_address, 211 sas_device->phy); 212 ioc_warn(ioc, "\tenclosure_logical_id(0x%016llx), slot(%d)\n", 213 (u64)sas_device->enclosure_logical_id, 214 sas_device->slot); 215 sas_device_put(sas_device); 216 } 217 if (!sas_device) { 218 pcie_device = mpt3sas_get_pdev_by_handle(ioc, 219 le16_to_cpu(scsi_reply->DevHandle)); 220 if (pcie_device) { 221 ioc_warn(ioc, "\tWWID(0x%016llx), port(%d)\n", 222 (unsigned long long)pcie_device->wwid, 223 pcie_device->port_num); 224 if (pcie_device->enclosure_handle != 0) 225 ioc_warn(ioc, "\tenclosure_logical_id(0x%016llx), slot(%d)\n", 226 (u64)pcie_device->enclosure_logical_id, 227 pcie_device->slot); 228 pcie_device_put(pcie_device); 229 } 230 } 231 if (scsi_reply->SCSIState || scsi_reply->SCSIStatus) 232 ioc_info(ioc, "\tscsi_state(0x%02x), scsi_status(0x%02x)\n", 233 scsi_reply->SCSIState, 234 scsi_reply->SCSIStatus); 235 } 236 } 237 238 /** 239 * mpt3sas_ctl_done - ctl module completion routine 240 * @ioc: per adapter object 241 * @smid: system request message index 242 * @msix_index: MSIX table index supplied by the OS 243 * @reply: reply message frame(lower 32bit addr) 244 * Context: none. 245 * 246 * The callback handler when using ioc->ctl_cb_idx. 247 * 248 * Return: 1 meaning mf should be freed from _base_interrupt 249 * 0 means the mf is freed from this function. 250 */ 251 u8 252 mpt3sas_ctl_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 253 u32 reply) 254 { 255 MPI2DefaultReply_t *mpi_reply; 256 Mpi2SCSIIOReply_t *scsiio_reply; 257 Mpi26NVMeEncapsulatedErrorReply_t *nvme_error_reply; 258 const void *sense_data; 259 u32 sz; 260 261 if (ioc->ctl_cmds.status == MPT3_CMD_NOT_USED) 262 return 1; 263 if (ioc->ctl_cmds.smid != smid) 264 return 1; 265 ioc->ctl_cmds.status |= MPT3_CMD_COMPLETE; 266 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 267 if (mpi_reply) { 268 memcpy(ioc->ctl_cmds.reply, mpi_reply, mpi_reply->MsgLength*4); 269 ioc->ctl_cmds.status |= MPT3_CMD_REPLY_VALID; 270 /* get sense data */ 271 if (mpi_reply->Function == MPI2_FUNCTION_SCSI_IO_REQUEST || 272 mpi_reply->Function == 273 MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH) { 274 scsiio_reply = (Mpi2SCSIIOReply_t *)mpi_reply; 275 if (scsiio_reply->SCSIState & 276 MPI2_SCSI_STATE_AUTOSENSE_VALID) { 277 sz = min_t(u32, SCSI_SENSE_BUFFERSIZE, 278 le32_to_cpu(scsiio_reply->SenseCount)); 279 sense_data = mpt3sas_base_get_sense_buffer(ioc, 280 smid); 281 memcpy(ioc->ctl_cmds.sense, sense_data, sz); 282 } 283 } 284 /* 285 * Get Error Response data for NVMe device. The ctl_cmds.sense 286 * buffer is used to store the Error Response data. 287 */ 288 if (mpi_reply->Function == MPI2_FUNCTION_NVME_ENCAPSULATED) { 289 nvme_error_reply = 290 (Mpi26NVMeEncapsulatedErrorReply_t *)mpi_reply; 291 sz = min_t(u32, NVME_ERROR_RESPONSE_SIZE, 292 le16_to_cpu(nvme_error_reply->ErrorResponseCount)); 293 sense_data = mpt3sas_base_get_sense_buffer(ioc, smid); 294 memcpy(ioc->ctl_cmds.sense, sense_data, sz); 295 } 296 } 297 298 _ctl_display_some_debug(ioc, smid, "ctl_done", mpi_reply); 299 ioc->ctl_cmds.status &= ~MPT3_CMD_PENDING; 300 complete(&ioc->ctl_cmds.done); 301 return 1; 302 } 303 304 /** 305 * _ctl_check_event_type - determines when an event needs logging 306 * @ioc: per adapter object 307 * @event: firmware event 308 * 309 * The bitmask in ioc->event_type[] indicates which events should be 310 * be saved in the driver event_log. This bitmask is set by application. 311 * 312 * Return: 1 when event should be captured, or zero means no match. 313 */ 314 static int 315 _ctl_check_event_type(struct MPT3SAS_ADAPTER *ioc, u16 event) 316 { 317 u16 i; 318 u32 desired_event; 319 320 if (event >= 128 || !event || !ioc->event_log) 321 return 0; 322 323 desired_event = (1 << (event % 32)); 324 if (!desired_event) 325 desired_event = 1; 326 i = event / 32; 327 return desired_event & ioc->event_type[i]; 328 } 329 330 /** 331 * mpt3sas_ctl_add_to_event_log - add event 332 * @ioc: per adapter object 333 * @mpi_reply: reply message frame 334 */ 335 void 336 mpt3sas_ctl_add_to_event_log(struct MPT3SAS_ADAPTER *ioc, 337 Mpi2EventNotificationReply_t *mpi_reply) 338 { 339 struct MPT3_IOCTL_EVENTS *event_log; 340 u16 event; 341 int i; 342 u32 sz, event_data_sz; 343 u8 send_aen = 0; 344 345 if (!ioc->event_log) 346 return; 347 348 event = le16_to_cpu(mpi_reply->Event); 349 350 if (_ctl_check_event_type(ioc, event)) { 351 352 /* insert entry into circular event_log */ 353 i = ioc->event_context % MPT3SAS_CTL_EVENT_LOG_SIZE; 354 event_log = ioc->event_log; 355 event_log[i].event = event; 356 event_log[i].context = ioc->event_context++; 357 358 event_data_sz = le16_to_cpu(mpi_reply->EventDataLength)*4; 359 sz = min_t(u32, event_data_sz, MPT3_EVENT_DATA_SIZE); 360 memset(event_log[i].data, 0, MPT3_EVENT_DATA_SIZE); 361 memcpy(event_log[i].data, mpi_reply->EventData, sz); 362 send_aen = 1; 363 } 364 365 /* This aen_event_read_flag flag is set until the 366 * application has read the event log. 367 * For MPI2_EVENT_LOG_ENTRY_ADDED, we always notify. 368 */ 369 if (event == MPI2_EVENT_LOG_ENTRY_ADDED || 370 (send_aen && !ioc->aen_event_read_flag)) { 371 ioc->aen_event_read_flag = 1; 372 wake_up_interruptible(&ctl_poll_wait); 373 if (async_queue) 374 kill_fasync(&async_queue, SIGIO, POLL_IN); 375 } 376 } 377 378 /** 379 * mpt3sas_ctl_event_callback - firmware event handler (called at ISR time) 380 * @ioc: per adapter object 381 * @msix_index: MSIX table index supplied by the OS 382 * @reply: reply message frame(lower 32bit addr) 383 * Context: interrupt. 384 * 385 * This function merely adds a new work task into ioc->firmware_event_thread. 386 * The tasks are worked from _firmware_event_work in user context. 387 * 388 * Return: 1 meaning mf should be freed from _base_interrupt 389 * 0 means the mf is freed from this function. 390 */ 391 u8 392 mpt3sas_ctl_event_callback(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, 393 u32 reply) 394 { 395 Mpi2EventNotificationReply_t *mpi_reply; 396 397 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 398 if (mpi_reply) 399 mpt3sas_ctl_add_to_event_log(ioc, mpi_reply); 400 return 1; 401 } 402 403 /** 404 * _ctl_verify_adapter - validates ioc_number passed from application 405 * @ioc_number: ? 406 * @iocpp: The ioc pointer is returned in this. 407 * @mpi_version: will be MPI2_VERSION for mpt2ctl ioctl device & 408 * MPI25_VERSION | MPI26_VERSION for mpt3ctl ioctl device. 409 * 410 * Return: (-1) means error, else ioc_number. 411 */ 412 static int 413 _ctl_verify_adapter(int ioc_number, struct MPT3SAS_ADAPTER **iocpp, 414 int mpi_version) 415 { 416 struct MPT3SAS_ADAPTER *ioc; 417 int version = 0; 418 /* global ioc lock to protect controller on list operations */ 419 spin_lock(&gioc_lock); 420 list_for_each_entry(ioc, &mpt3sas_ioc_list, list) { 421 if (ioc->id != ioc_number) 422 continue; 423 /* Check whether this ioctl command is from right 424 * ioctl device or not, if not continue the search. 425 */ 426 version = ioc->hba_mpi_version_belonged; 427 /* MPI25_VERSION and MPI26_VERSION uses same ioctl 428 * device. 429 */ 430 if (mpi_version == (MPI25_VERSION | MPI26_VERSION)) { 431 if ((version == MPI25_VERSION) || 432 (version == MPI26_VERSION)) 433 goto out; 434 else 435 continue; 436 } else { 437 if (version != mpi_version) 438 continue; 439 } 440 out: 441 spin_unlock(&gioc_lock); 442 *iocpp = ioc; 443 return ioc_number; 444 } 445 spin_unlock(&gioc_lock); 446 *iocpp = NULL; 447 return -1; 448 } 449 450 /** 451 * mpt3sas_ctl_reset_handler - reset callback handler (for ctl) 452 * @ioc: per adapter object 453 * 454 * The handler for doing any required cleanup or initialization. 455 */ 456 void mpt3sas_ctl_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc) 457 { 458 int i; 459 u8 issue_reset; 460 461 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__)); 462 for (i = 0; i < MPI2_DIAG_BUF_TYPE_COUNT; i++) { 463 if (!(ioc->diag_buffer_status[i] & 464 MPT3_DIAG_BUFFER_IS_REGISTERED)) 465 continue; 466 if ((ioc->diag_buffer_status[i] & 467 MPT3_DIAG_BUFFER_IS_RELEASED)) 468 continue; 469 mpt3sas_send_diag_release(ioc, i, &issue_reset); 470 } 471 } 472 473 /** 474 * mpt3sas_ctl_reset_handler - reset callback handler (for ctl) 475 * @ioc: per adapter object 476 * 477 * The handler for doing any required cleanup or initialization. 478 */ 479 void mpt3sas_ctl_after_reset_handler(struct MPT3SAS_ADAPTER *ioc) 480 { 481 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_AFTER_RESET\n", __func__)); 482 if (ioc->ctl_cmds.status & MPT3_CMD_PENDING) { 483 ioc->ctl_cmds.status |= MPT3_CMD_RESET; 484 mpt3sas_base_free_smid(ioc, ioc->ctl_cmds.smid); 485 complete(&ioc->ctl_cmds.done); 486 } 487 } 488 489 /** 490 * mpt3sas_ctl_reset_handler - reset callback handler (for ctl) 491 * @ioc: per adapter object 492 * 493 * The handler for doing any required cleanup or initialization. 494 */ 495 void mpt3sas_ctl_reset_done_handler(struct MPT3SAS_ADAPTER *ioc) 496 { 497 int i; 498 499 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__)); 500 501 for (i = 0; i < MPI2_DIAG_BUF_TYPE_COUNT; i++) { 502 if (!(ioc->diag_buffer_status[i] & 503 MPT3_DIAG_BUFFER_IS_REGISTERED)) 504 continue; 505 if ((ioc->diag_buffer_status[i] & 506 MPT3_DIAG_BUFFER_IS_RELEASED)) 507 continue; 508 ioc->diag_buffer_status[i] |= 509 MPT3_DIAG_BUFFER_IS_DIAG_RESET; 510 } 511 } 512 513 /** 514 * _ctl_fasync - 515 * @fd: ? 516 * @filep: ? 517 * @mode: ? 518 * 519 * Called when application request fasyn callback handler. 520 */ 521 static int 522 _ctl_fasync(int fd, struct file *filep, int mode) 523 { 524 return fasync_helper(fd, filep, mode, &async_queue); 525 } 526 527 /** 528 * _ctl_poll - 529 * @filep: ? 530 * @wait: ? 531 * 532 */ 533 static __poll_t 534 _ctl_poll(struct file *filep, poll_table *wait) 535 { 536 struct MPT3SAS_ADAPTER *ioc; 537 538 poll_wait(filep, &ctl_poll_wait, wait); 539 540 /* global ioc lock to protect controller on list operations */ 541 spin_lock(&gioc_lock); 542 list_for_each_entry(ioc, &mpt3sas_ioc_list, list) { 543 if (ioc->aen_event_read_flag) { 544 spin_unlock(&gioc_lock); 545 return EPOLLIN | EPOLLRDNORM; 546 } 547 } 548 spin_unlock(&gioc_lock); 549 return 0; 550 } 551 552 /** 553 * _ctl_set_task_mid - assign an active smid to tm request 554 * @ioc: per adapter object 555 * @karg: (struct mpt3_ioctl_command) 556 * @tm_request: pointer to mf from user space 557 * 558 * Return: 0 when an smid if found, else fail. 559 * during failure, the reply frame is filled. 560 */ 561 static int 562 _ctl_set_task_mid(struct MPT3SAS_ADAPTER *ioc, struct mpt3_ioctl_command *karg, 563 Mpi2SCSITaskManagementRequest_t *tm_request) 564 { 565 u8 found = 0; 566 u16 smid; 567 u16 handle; 568 struct scsi_cmnd *scmd; 569 struct MPT3SAS_DEVICE *priv_data; 570 Mpi2SCSITaskManagementReply_t *tm_reply; 571 u32 sz; 572 u32 lun; 573 char *desc = NULL; 574 575 if (tm_request->TaskType == MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK) 576 desc = "abort_task"; 577 else if (tm_request->TaskType == MPI2_SCSITASKMGMT_TASKTYPE_QUERY_TASK) 578 desc = "query_task"; 579 else 580 return 0; 581 582 lun = scsilun_to_int((struct scsi_lun *)tm_request->LUN); 583 584 handle = le16_to_cpu(tm_request->DevHandle); 585 for (smid = ioc->scsiio_depth; smid && !found; smid--) { 586 struct scsiio_tracker *st; 587 588 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid); 589 if (!scmd) 590 continue; 591 if (lun != scmd->device->lun) 592 continue; 593 priv_data = scmd->device->hostdata; 594 if (priv_data->sas_target == NULL) 595 continue; 596 if (priv_data->sas_target->handle != handle) 597 continue; 598 st = scsi_cmd_priv(scmd); 599 tm_request->TaskMID = cpu_to_le16(st->smid); 600 found = 1; 601 } 602 603 if (!found) { 604 dctlprintk(ioc, 605 ioc_info(ioc, "%s: handle(0x%04x), lun(%d), no active mid!!\n", 606 desc, le16_to_cpu(tm_request->DevHandle), 607 lun)); 608 tm_reply = ioc->ctl_cmds.reply; 609 tm_reply->DevHandle = tm_request->DevHandle; 610 tm_reply->Function = MPI2_FUNCTION_SCSI_TASK_MGMT; 611 tm_reply->TaskType = tm_request->TaskType; 612 tm_reply->MsgLength = sizeof(Mpi2SCSITaskManagementReply_t)/4; 613 tm_reply->VP_ID = tm_request->VP_ID; 614 tm_reply->VF_ID = tm_request->VF_ID; 615 sz = min_t(u32, karg->max_reply_bytes, ioc->reply_sz); 616 if (copy_to_user(karg->reply_frame_buf_ptr, ioc->ctl_cmds.reply, 617 sz)) 618 pr_err("failure at %s:%d/%s()!\n", __FILE__, 619 __LINE__, __func__); 620 return 1; 621 } 622 623 dctlprintk(ioc, 624 ioc_info(ioc, "%s: handle(0x%04x), lun(%d), task_mid(%d)\n", 625 desc, le16_to_cpu(tm_request->DevHandle), lun, 626 le16_to_cpu(tm_request->TaskMID))); 627 return 0; 628 } 629 630 /** 631 * _ctl_do_mpt_command - main handler for MPT3COMMAND opcode 632 * @ioc: per adapter object 633 * @karg: (struct mpt3_ioctl_command) 634 * @mf: pointer to mf in user space 635 */ 636 static long 637 _ctl_do_mpt_command(struct MPT3SAS_ADAPTER *ioc, struct mpt3_ioctl_command karg, 638 void __user *mf) 639 { 640 MPI2RequestHeader_t *mpi_request = NULL, *request; 641 MPI2DefaultReply_t *mpi_reply; 642 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request = NULL; 643 struct _pcie_device *pcie_device = NULL; 644 u32 ioc_state; 645 u16 smid; 646 u8 timeout; 647 u8 issue_reset; 648 u32 sz, sz_arg; 649 void *psge; 650 void *data_out = NULL; 651 dma_addr_t data_out_dma = 0; 652 size_t data_out_sz = 0; 653 void *data_in = NULL; 654 dma_addr_t data_in_dma = 0; 655 size_t data_in_sz = 0; 656 long ret; 657 u16 wait_state_count; 658 u16 device_handle = MPT3SAS_INVALID_DEVICE_HANDLE; 659 u8 tr_method = MPI26_SCSITASKMGMT_MSGFLAGS_PROTOCOL_LVL_RST_PCIE; 660 661 issue_reset = 0; 662 663 if (ioc->ctl_cmds.status != MPT3_CMD_NOT_USED) { 664 ioc_err(ioc, "%s: ctl_cmd in use\n", __func__); 665 ret = -EAGAIN; 666 goto out; 667 } 668 669 wait_state_count = 0; 670 ioc_state = mpt3sas_base_get_iocstate(ioc, 1); 671 while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) { 672 if (wait_state_count++ == 10) { 673 ioc_err(ioc, "%s: failed due to ioc not operational\n", 674 __func__); 675 ret = -EFAULT; 676 goto out; 677 } 678 ssleep(1); 679 ioc_state = mpt3sas_base_get_iocstate(ioc, 1); 680 ioc_info(ioc, "%s: waiting for operational state(count=%d)\n", 681 __func__, wait_state_count); 682 } 683 if (wait_state_count) 684 ioc_info(ioc, "%s: ioc is operational\n", __func__); 685 686 mpi_request = kzalloc(ioc->request_sz, GFP_KERNEL); 687 if (!mpi_request) { 688 ioc_err(ioc, "%s: failed obtaining a memory for mpi_request\n", 689 __func__); 690 ret = -ENOMEM; 691 goto out; 692 } 693 694 /* Check for overflow and wraparound */ 695 if (karg.data_sge_offset * 4 > ioc->request_sz || 696 karg.data_sge_offset > (UINT_MAX / 4)) { 697 ret = -EINVAL; 698 goto out; 699 } 700 701 /* copy in request message frame from user */ 702 if (copy_from_user(mpi_request, mf, karg.data_sge_offset*4)) { 703 pr_err("failure at %s:%d/%s()!\n", __FILE__, __LINE__, 704 __func__); 705 ret = -EFAULT; 706 goto out; 707 } 708 709 if (mpi_request->Function == MPI2_FUNCTION_SCSI_TASK_MGMT) { 710 smid = mpt3sas_base_get_smid_hpr(ioc, ioc->ctl_cb_idx); 711 if (!smid) { 712 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 713 ret = -EAGAIN; 714 goto out; 715 } 716 } else { 717 /* Use first reserved smid for passthrough ioctls */ 718 smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1; 719 } 720 721 ret = 0; 722 ioc->ctl_cmds.status = MPT3_CMD_PENDING; 723 memset(ioc->ctl_cmds.reply, 0, ioc->reply_sz); 724 request = mpt3sas_base_get_msg_frame(ioc, smid); 725 memcpy(request, mpi_request, karg.data_sge_offset*4); 726 ioc->ctl_cmds.smid = smid; 727 data_out_sz = karg.data_out_size; 728 data_in_sz = karg.data_in_size; 729 730 if (mpi_request->Function == MPI2_FUNCTION_SCSI_IO_REQUEST || 731 mpi_request->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH || 732 mpi_request->Function == MPI2_FUNCTION_SCSI_TASK_MGMT || 733 mpi_request->Function == MPI2_FUNCTION_SATA_PASSTHROUGH || 734 mpi_request->Function == MPI2_FUNCTION_NVME_ENCAPSULATED) { 735 736 device_handle = le16_to_cpu(mpi_request->FunctionDependent1); 737 if (!device_handle || (device_handle > 738 ioc->facts.MaxDevHandle)) { 739 ret = -EINVAL; 740 mpt3sas_base_free_smid(ioc, smid); 741 goto out; 742 } 743 } 744 745 /* obtain dma-able memory for data transfer */ 746 if (data_out_sz) /* WRITE */ { 747 data_out = dma_alloc_coherent(&ioc->pdev->dev, data_out_sz, 748 &data_out_dma, GFP_KERNEL); 749 if (!data_out) { 750 pr_err("failure at %s:%d/%s()!\n", __FILE__, 751 __LINE__, __func__); 752 ret = -ENOMEM; 753 mpt3sas_base_free_smid(ioc, smid); 754 goto out; 755 } 756 if (copy_from_user(data_out, karg.data_out_buf_ptr, 757 data_out_sz)) { 758 pr_err("failure at %s:%d/%s()!\n", __FILE__, 759 __LINE__, __func__); 760 ret = -EFAULT; 761 mpt3sas_base_free_smid(ioc, smid); 762 goto out; 763 } 764 } 765 766 if (data_in_sz) /* READ */ { 767 data_in = dma_alloc_coherent(&ioc->pdev->dev, data_in_sz, 768 &data_in_dma, GFP_KERNEL); 769 if (!data_in) { 770 pr_err("failure at %s:%d/%s()!\n", __FILE__, 771 __LINE__, __func__); 772 ret = -ENOMEM; 773 mpt3sas_base_free_smid(ioc, smid); 774 goto out; 775 } 776 } 777 778 psge = (void *)request + (karg.data_sge_offset*4); 779 780 /* send command to firmware */ 781 _ctl_display_some_debug(ioc, smid, "ctl_request", NULL); 782 783 init_completion(&ioc->ctl_cmds.done); 784 switch (mpi_request->Function) { 785 case MPI2_FUNCTION_NVME_ENCAPSULATED: 786 { 787 nvme_encap_request = (Mpi26NVMeEncapsulatedRequest_t *)request; 788 /* 789 * Get the Physical Address of the sense buffer. 790 * Use Error Response buffer address field to hold the sense 791 * buffer address. 792 * Clear the internal sense buffer, which will potentially hold 793 * the Completion Queue Entry on return, or 0 if no Entry. 794 * Build the PRPs and set direction bits. 795 * Send the request. 796 */ 797 nvme_encap_request->ErrorResponseBaseAddress = 798 cpu_to_le64(ioc->sense_dma & 0xFFFFFFFF00000000UL); 799 nvme_encap_request->ErrorResponseBaseAddress |= 800 cpu_to_le64(le32_to_cpu( 801 mpt3sas_base_get_sense_buffer_dma(ioc, smid))); 802 nvme_encap_request->ErrorResponseAllocationLength = 803 cpu_to_le16(NVME_ERROR_RESPONSE_SIZE); 804 memset(ioc->ctl_cmds.sense, 0, NVME_ERROR_RESPONSE_SIZE); 805 ioc->build_nvme_prp(ioc, smid, nvme_encap_request, 806 data_out_dma, data_out_sz, data_in_dma, data_in_sz); 807 if (test_bit(device_handle, ioc->device_remove_in_progress)) { 808 dtmprintk(ioc, 809 ioc_info(ioc, "handle(0x%04x): ioctl failed due to device removal in progress\n", 810 device_handle)); 811 mpt3sas_base_free_smid(ioc, smid); 812 ret = -EINVAL; 813 goto out; 814 } 815 mpt3sas_base_put_smid_nvme_encap(ioc, smid); 816 break; 817 } 818 case MPI2_FUNCTION_SCSI_IO_REQUEST: 819 case MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH: 820 { 821 Mpi2SCSIIORequest_t *scsiio_request = 822 (Mpi2SCSIIORequest_t *)request; 823 scsiio_request->SenseBufferLength = SCSI_SENSE_BUFFERSIZE; 824 scsiio_request->SenseBufferLowAddress = 825 mpt3sas_base_get_sense_buffer_dma(ioc, smid); 826 memset(ioc->ctl_cmds.sense, 0, SCSI_SENSE_BUFFERSIZE); 827 if (test_bit(device_handle, ioc->device_remove_in_progress)) { 828 dtmprintk(ioc, 829 ioc_info(ioc, "handle(0x%04x) :ioctl failed due to device removal in progress\n", 830 device_handle)); 831 mpt3sas_base_free_smid(ioc, smid); 832 ret = -EINVAL; 833 goto out; 834 } 835 ioc->build_sg(ioc, psge, data_out_dma, data_out_sz, 836 data_in_dma, data_in_sz); 837 if (mpi_request->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) 838 ioc->put_smid_scsi_io(ioc, smid, device_handle); 839 else 840 mpt3sas_base_put_smid_default(ioc, smid); 841 break; 842 } 843 case MPI2_FUNCTION_SCSI_TASK_MGMT: 844 { 845 Mpi2SCSITaskManagementRequest_t *tm_request = 846 (Mpi2SCSITaskManagementRequest_t *)request; 847 848 dtmprintk(ioc, 849 ioc_info(ioc, "TASK_MGMT: handle(0x%04x), task_type(0x%02x)\n", 850 le16_to_cpu(tm_request->DevHandle), 851 tm_request->TaskType)); 852 ioc->got_task_abort_from_ioctl = 1; 853 if (tm_request->TaskType == 854 MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK || 855 tm_request->TaskType == 856 MPI2_SCSITASKMGMT_TASKTYPE_QUERY_TASK) { 857 if (_ctl_set_task_mid(ioc, &karg, tm_request)) { 858 mpt3sas_base_free_smid(ioc, smid); 859 ioc->got_task_abort_from_ioctl = 0; 860 goto out; 861 } 862 } 863 ioc->got_task_abort_from_ioctl = 0; 864 865 if (test_bit(device_handle, ioc->device_remove_in_progress)) { 866 dtmprintk(ioc, 867 ioc_info(ioc, "handle(0x%04x) :ioctl failed due to device removal in progress\n", 868 device_handle)); 869 mpt3sas_base_free_smid(ioc, smid); 870 ret = -EINVAL; 871 goto out; 872 } 873 mpt3sas_scsih_set_tm_flag(ioc, le16_to_cpu( 874 tm_request->DevHandle)); 875 ioc->build_sg_mpi(ioc, psge, data_out_dma, data_out_sz, 876 data_in_dma, data_in_sz); 877 mpt3sas_base_put_smid_hi_priority(ioc, smid, 0); 878 break; 879 } 880 case MPI2_FUNCTION_SMP_PASSTHROUGH: 881 { 882 Mpi2SmpPassthroughRequest_t *smp_request = 883 (Mpi2SmpPassthroughRequest_t *)mpi_request; 884 u8 *data; 885 886 /* ioc determines which port to use */ 887 smp_request->PhysicalPort = 0xFF; 888 if (smp_request->PassthroughFlags & 889 MPI2_SMP_PT_REQ_PT_FLAGS_IMMEDIATE) 890 data = (u8 *)&smp_request->SGL; 891 else { 892 if (unlikely(data_out == NULL)) { 893 pr_err("failure at %s:%d/%s()!\n", 894 __FILE__, __LINE__, __func__); 895 mpt3sas_base_free_smid(ioc, smid); 896 ret = -EINVAL; 897 goto out; 898 } 899 data = data_out; 900 } 901 902 if (data[1] == 0x91 && (data[10] == 1 || data[10] == 2)) { 903 ioc->ioc_link_reset_in_progress = 1; 904 ioc->ignore_loginfos = 1; 905 } 906 ioc->build_sg(ioc, psge, data_out_dma, data_out_sz, data_in_dma, 907 data_in_sz); 908 mpt3sas_base_put_smid_default(ioc, smid); 909 break; 910 } 911 case MPI2_FUNCTION_SATA_PASSTHROUGH: 912 { 913 if (test_bit(device_handle, ioc->device_remove_in_progress)) { 914 dtmprintk(ioc, 915 ioc_info(ioc, "handle(0x%04x) :ioctl failed due to device removal in progress\n", 916 device_handle)); 917 mpt3sas_base_free_smid(ioc, smid); 918 ret = -EINVAL; 919 goto out; 920 } 921 ioc->build_sg(ioc, psge, data_out_dma, data_out_sz, data_in_dma, 922 data_in_sz); 923 mpt3sas_base_put_smid_default(ioc, smid); 924 break; 925 } 926 case MPI2_FUNCTION_FW_DOWNLOAD: 927 case MPI2_FUNCTION_FW_UPLOAD: 928 { 929 ioc->build_sg(ioc, psge, data_out_dma, data_out_sz, data_in_dma, 930 data_in_sz); 931 mpt3sas_base_put_smid_default(ioc, smid); 932 break; 933 } 934 case MPI2_FUNCTION_TOOLBOX: 935 { 936 Mpi2ToolboxCleanRequest_t *toolbox_request = 937 (Mpi2ToolboxCleanRequest_t *)mpi_request; 938 939 if (toolbox_request->Tool == MPI2_TOOLBOX_DIAGNOSTIC_CLI_TOOL) { 940 ioc->build_sg(ioc, psge, data_out_dma, data_out_sz, 941 data_in_dma, data_in_sz); 942 } else { 943 ioc->build_sg_mpi(ioc, psge, data_out_dma, data_out_sz, 944 data_in_dma, data_in_sz); 945 } 946 mpt3sas_base_put_smid_default(ioc, smid); 947 break; 948 } 949 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL: 950 { 951 Mpi2SasIoUnitControlRequest_t *sasiounit_request = 952 (Mpi2SasIoUnitControlRequest_t *)mpi_request; 953 954 if (sasiounit_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET 955 || sasiounit_request->Operation == 956 MPI2_SAS_OP_PHY_LINK_RESET) { 957 ioc->ioc_link_reset_in_progress = 1; 958 ioc->ignore_loginfos = 1; 959 } 960 /* drop to default case for posting the request */ 961 } 962 /* fall through */ 963 default: 964 ioc->build_sg_mpi(ioc, psge, data_out_dma, data_out_sz, 965 data_in_dma, data_in_sz); 966 mpt3sas_base_put_smid_default(ioc, smid); 967 break; 968 } 969 970 if (karg.timeout < MPT3_IOCTL_DEFAULT_TIMEOUT) 971 timeout = MPT3_IOCTL_DEFAULT_TIMEOUT; 972 else 973 timeout = karg.timeout; 974 wait_for_completion_timeout(&ioc->ctl_cmds.done, timeout*HZ); 975 if (mpi_request->Function == MPI2_FUNCTION_SCSI_TASK_MGMT) { 976 Mpi2SCSITaskManagementRequest_t *tm_request = 977 (Mpi2SCSITaskManagementRequest_t *)mpi_request; 978 mpt3sas_scsih_clear_tm_flag(ioc, le16_to_cpu( 979 tm_request->DevHandle)); 980 mpt3sas_trigger_master(ioc, MASTER_TRIGGER_TASK_MANAGMENT); 981 } else if ((mpi_request->Function == MPI2_FUNCTION_SMP_PASSTHROUGH || 982 mpi_request->Function == MPI2_FUNCTION_SAS_IO_UNIT_CONTROL) && 983 ioc->ioc_link_reset_in_progress) { 984 ioc->ioc_link_reset_in_progress = 0; 985 ioc->ignore_loginfos = 0; 986 } 987 if (!(ioc->ctl_cmds.status & MPT3_CMD_COMPLETE)) { 988 issue_reset = 989 mpt3sas_base_check_cmd_timeout(ioc, 990 ioc->ctl_cmds.status, mpi_request, 991 karg.data_sge_offset); 992 goto issue_host_reset; 993 } 994 995 mpi_reply = ioc->ctl_cmds.reply; 996 997 if (mpi_reply->Function == MPI2_FUNCTION_SCSI_TASK_MGMT && 998 (ioc->logging_level & MPT_DEBUG_TM)) { 999 Mpi2SCSITaskManagementReply_t *tm_reply = 1000 (Mpi2SCSITaskManagementReply_t *)mpi_reply; 1001 1002 ioc_info(ioc, "TASK_MGMT: IOCStatus(0x%04x), IOCLogInfo(0x%08x), TerminationCount(0x%08x)\n", 1003 le16_to_cpu(tm_reply->IOCStatus), 1004 le32_to_cpu(tm_reply->IOCLogInfo), 1005 le32_to_cpu(tm_reply->TerminationCount)); 1006 } 1007 1008 /* copy out xdata to user */ 1009 if (data_in_sz) { 1010 if (copy_to_user(karg.data_in_buf_ptr, data_in, 1011 data_in_sz)) { 1012 pr_err("failure at %s:%d/%s()!\n", __FILE__, 1013 __LINE__, __func__); 1014 ret = -ENODATA; 1015 goto out; 1016 } 1017 } 1018 1019 /* copy out reply message frame to user */ 1020 if (karg.max_reply_bytes) { 1021 sz = min_t(u32, karg.max_reply_bytes, ioc->reply_sz); 1022 if (copy_to_user(karg.reply_frame_buf_ptr, ioc->ctl_cmds.reply, 1023 sz)) { 1024 pr_err("failure at %s:%d/%s()!\n", __FILE__, 1025 __LINE__, __func__); 1026 ret = -ENODATA; 1027 goto out; 1028 } 1029 } 1030 1031 /* copy out sense/NVMe Error Response to user */ 1032 if (karg.max_sense_bytes && (mpi_request->Function == 1033 MPI2_FUNCTION_SCSI_IO_REQUEST || mpi_request->Function == 1034 MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH || mpi_request->Function == 1035 MPI2_FUNCTION_NVME_ENCAPSULATED)) { 1036 if (karg.sense_data_ptr == NULL) { 1037 ioc_info(ioc, "Response buffer provided by application is NULL; Response data will not be returned\n"); 1038 goto out; 1039 } 1040 sz_arg = (mpi_request->Function == 1041 MPI2_FUNCTION_NVME_ENCAPSULATED) ? NVME_ERROR_RESPONSE_SIZE : 1042 SCSI_SENSE_BUFFERSIZE; 1043 sz = min_t(u32, karg.max_sense_bytes, sz_arg); 1044 if (copy_to_user(karg.sense_data_ptr, ioc->ctl_cmds.sense, 1045 sz)) { 1046 pr_err("failure at %s:%d/%s()!\n", __FILE__, 1047 __LINE__, __func__); 1048 ret = -ENODATA; 1049 goto out; 1050 } 1051 } 1052 1053 issue_host_reset: 1054 if (issue_reset) { 1055 ret = -ENODATA; 1056 if ((mpi_request->Function == MPI2_FUNCTION_SCSI_IO_REQUEST || 1057 mpi_request->Function == 1058 MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH || 1059 mpi_request->Function == MPI2_FUNCTION_SATA_PASSTHROUGH)) { 1060 ioc_info(ioc, "issue target reset: handle = (0x%04x)\n", 1061 le16_to_cpu(mpi_request->FunctionDependent1)); 1062 mpt3sas_halt_firmware(ioc); 1063 pcie_device = mpt3sas_get_pdev_by_handle(ioc, 1064 le16_to_cpu(mpi_request->FunctionDependent1)); 1065 if (pcie_device && (!ioc->tm_custom_handling)) 1066 mpt3sas_scsih_issue_locked_tm(ioc, 1067 le16_to_cpu(mpi_request->FunctionDependent1), 1068 0, MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET, 0, 1069 0, pcie_device->reset_timeout, 1070 tr_method); 1071 else 1072 mpt3sas_scsih_issue_locked_tm(ioc, 1073 le16_to_cpu(mpi_request->FunctionDependent1), 1074 0, MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET, 0, 1075 0, 30, MPI2_SCSITASKMGMT_MSGFLAGS_LINK_RESET); 1076 } else 1077 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 1078 } 1079 1080 out: 1081 if (pcie_device) 1082 pcie_device_put(pcie_device); 1083 1084 /* free memory associated with sg buffers */ 1085 if (data_in) 1086 dma_free_coherent(&ioc->pdev->dev, data_in_sz, data_in, 1087 data_in_dma); 1088 1089 if (data_out) 1090 dma_free_coherent(&ioc->pdev->dev, data_out_sz, data_out, 1091 data_out_dma); 1092 1093 kfree(mpi_request); 1094 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED; 1095 return ret; 1096 } 1097 1098 /** 1099 * _ctl_getiocinfo - main handler for MPT3IOCINFO opcode 1100 * @ioc: per adapter object 1101 * @arg: user space buffer containing ioctl content 1102 */ 1103 static long 1104 _ctl_getiocinfo(struct MPT3SAS_ADAPTER *ioc, void __user *arg) 1105 { 1106 struct mpt3_ioctl_iocinfo karg; 1107 1108 dctlprintk(ioc, ioc_info(ioc, "%s: enter\n", 1109 __func__)); 1110 1111 memset(&karg, 0 , sizeof(karg)); 1112 if (ioc->pfacts) 1113 karg.port_number = ioc->pfacts[0].PortNumber; 1114 karg.hw_rev = ioc->pdev->revision; 1115 karg.pci_id = ioc->pdev->device; 1116 karg.subsystem_device = ioc->pdev->subsystem_device; 1117 karg.subsystem_vendor = ioc->pdev->subsystem_vendor; 1118 karg.pci_information.u.bits.bus = ioc->pdev->bus->number; 1119 karg.pci_information.u.bits.device = PCI_SLOT(ioc->pdev->devfn); 1120 karg.pci_information.u.bits.function = PCI_FUNC(ioc->pdev->devfn); 1121 karg.pci_information.segment_id = pci_domain_nr(ioc->pdev->bus); 1122 karg.firmware_version = ioc->facts.FWVersion.Word; 1123 strcpy(karg.driver_version, ioc->driver_name); 1124 strcat(karg.driver_version, "-"); 1125 switch (ioc->hba_mpi_version_belonged) { 1126 case MPI2_VERSION: 1127 if (ioc->is_warpdrive) 1128 karg.adapter_type = MPT2_IOCTL_INTERFACE_SAS2_SSS6200; 1129 else 1130 karg.adapter_type = MPT2_IOCTL_INTERFACE_SAS2; 1131 strcat(karg.driver_version, MPT2SAS_DRIVER_VERSION); 1132 break; 1133 case MPI25_VERSION: 1134 case MPI26_VERSION: 1135 if (ioc->is_gen35_ioc) 1136 karg.adapter_type = MPT3_IOCTL_INTERFACE_SAS35; 1137 else 1138 karg.adapter_type = MPT3_IOCTL_INTERFACE_SAS3; 1139 strcat(karg.driver_version, MPT3SAS_DRIVER_VERSION); 1140 break; 1141 } 1142 karg.bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion); 1143 1144 if (copy_to_user(arg, &karg, sizeof(karg))) { 1145 pr_err("failure at %s:%d/%s()!\n", 1146 __FILE__, __LINE__, __func__); 1147 return -EFAULT; 1148 } 1149 return 0; 1150 } 1151 1152 /** 1153 * _ctl_eventquery - main handler for MPT3EVENTQUERY opcode 1154 * @ioc: per adapter object 1155 * @arg: user space buffer containing ioctl content 1156 */ 1157 static long 1158 _ctl_eventquery(struct MPT3SAS_ADAPTER *ioc, void __user *arg) 1159 { 1160 struct mpt3_ioctl_eventquery karg; 1161 1162 if (copy_from_user(&karg, arg, sizeof(karg))) { 1163 pr_err("failure at %s:%d/%s()!\n", 1164 __FILE__, __LINE__, __func__); 1165 return -EFAULT; 1166 } 1167 1168 dctlprintk(ioc, ioc_info(ioc, "%s: enter\n", 1169 __func__)); 1170 1171 karg.event_entries = MPT3SAS_CTL_EVENT_LOG_SIZE; 1172 memcpy(karg.event_types, ioc->event_type, 1173 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS * sizeof(u32)); 1174 1175 if (copy_to_user(arg, &karg, sizeof(karg))) { 1176 pr_err("failure at %s:%d/%s()!\n", 1177 __FILE__, __LINE__, __func__); 1178 return -EFAULT; 1179 } 1180 return 0; 1181 } 1182 1183 /** 1184 * _ctl_eventenable - main handler for MPT3EVENTENABLE opcode 1185 * @ioc: per adapter object 1186 * @arg: user space buffer containing ioctl content 1187 */ 1188 static long 1189 _ctl_eventenable(struct MPT3SAS_ADAPTER *ioc, void __user *arg) 1190 { 1191 struct mpt3_ioctl_eventenable karg; 1192 1193 if (copy_from_user(&karg, arg, sizeof(karg))) { 1194 pr_err("failure at %s:%d/%s()!\n", 1195 __FILE__, __LINE__, __func__); 1196 return -EFAULT; 1197 } 1198 1199 dctlprintk(ioc, ioc_info(ioc, "%s: enter\n", 1200 __func__)); 1201 1202 memcpy(ioc->event_type, karg.event_types, 1203 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS * sizeof(u32)); 1204 mpt3sas_base_validate_event_type(ioc, ioc->event_type); 1205 1206 if (ioc->event_log) 1207 return 0; 1208 /* initialize event_log */ 1209 ioc->event_context = 0; 1210 ioc->aen_event_read_flag = 0; 1211 ioc->event_log = kcalloc(MPT3SAS_CTL_EVENT_LOG_SIZE, 1212 sizeof(struct MPT3_IOCTL_EVENTS), GFP_KERNEL); 1213 if (!ioc->event_log) { 1214 pr_err("failure at %s:%d/%s()!\n", 1215 __FILE__, __LINE__, __func__); 1216 return -ENOMEM; 1217 } 1218 return 0; 1219 } 1220 1221 /** 1222 * _ctl_eventreport - main handler for MPT3EVENTREPORT opcode 1223 * @ioc: per adapter object 1224 * @arg: user space buffer containing ioctl content 1225 */ 1226 static long 1227 _ctl_eventreport(struct MPT3SAS_ADAPTER *ioc, void __user *arg) 1228 { 1229 struct mpt3_ioctl_eventreport karg; 1230 u32 number_bytes, max_events, max; 1231 struct mpt3_ioctl_eventreport __user *uarg = arg; 1232 1233 if (copy_from_user(&karg, arg, sizeof(karg))) { 1234 pr_err("failure at %s:%d/%s()!\n", 1235 __FILE__, __LINE__, __func__); 1236 return -EFAULT; 1237 } 1238 1239 dctlprintk(ioc, ioc_info(ioc, "%s: enter\n", 1240 __func__)); 1241 1242 number_bytes = karg.hdr.max_data_size - 1243 sizeof(struct mpt3_ioctl_header); 1244 max_events = number_bytes/sizeof(struct MPT3_IOCTL_EVENTS); 1245 max = min_t(u32, MPT3SAS_CTL_EVENT_LOG_SIZE, max_events); 1246 1247 /* If fewer than 1 event is requested, there must have 1248 * been some type of error. 1249 */ 1250 if (!max || !ioc->event_log) 1251 return -ENODATA; 1252 1253 number_bytes = max * sizeof(struct MPT3_IOCTL_EVENTS); 1254 if (copy_to_user(uarg->event_data, ioc->event_log, number_bytes)) { 1255 pr_err("failure at %s:%d/%s()!\n", 1256 __FILE__, __LINE__, __func__); 1257 return -EFAULT; 1258 } 1259 1260 /* reset flag so SIGIO can restart */ 1261 ioc->aen_event_read_flag = 0; 1262 return 0; 1263 } 1264 1265 /** 1266 * _ctl_do_reset - main handler for MPT3HARDRESET opcode 1267 * @ioc: per adapter object 1268 * @arg: user space buffer containing ioctl content 1269 */ 1270 static long 1271 _ctl_do_reset(struct MPT3SAS_ADAPTER *ioc, void __user *arg) 1272 { 1273 struct mpt3_ioctl_diag_reset karg; 1274 int retval; 1275 1276 if (copy_from_user(&karg, arg, sizeof(karg))) { 1277 pr_err("failure at %s:%d/%s()!\n", 1278 __FILE__, __LINE__, __func__); 1279 return -EFAULT; 1280 } 1281 1282 if (ioc->shost_recovery || ioc->pci_error_recovery || 1283 ioc->is_driver_loading) 1284 return -EAGAIN; 1285 1286 dctlprintk(ioc, ioc_info(ioc, "%s: enter\n", 1287 __func__)); 1288 1289 retval = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 1290 ioc_info(ioc, "host reset: %s\n", ((!retval) ? "SUCCESS" : "FAILED")); 1291 return 0; 1292 } 1293 1294 /** 1295 * _ctl_btdh_search_sas_device - searching for sas device 1296 * @ioc: per adapter object 1297 * @btdh: btdh ioctl payload 1298 */ 1299 static int 1300 _ctl_btdh_search_sas_device(struct MPT3SAS_ADAPTER *ioc, 1301 struct mpt3_ioctl_btdh_mapping *btdh) 1302 { 1303 struct _sas_device *sas_device; 1304 unsigned long flags; 1305 int rc = 0; 1306 1307 if (list_empty(&ioc->sas_device_list)) 1308 return rc; 1309 1310 spin_lock_irqsave(&ioc->sas_device_lock, flags); 1311 list_for_each_entry(sas_device, &ioc->sas_device_list, list) { 1312 if (btdh->bus == 0xFFFFFFFF && btdh->id == 0xFFFFFFFF && 1313 btdh->handle == sas_device->handle) { 1314 btdh->bus = sas_device->channel; 1315 btdh->id = sas_device->id; 1316 rc = 1; 1317 goto out; 1318 } else if (btdh->bus == sas_device->channel && btdh->id == 1319 sas_device->id && btdh->handle == 0xFFFF) { 1320 btdh->handle = sas_device->handle; 1321 rc = 1; 1322 goto out; 1323 } 1324 } 1325 out: 1326 spin_unlock_irqrestore(&ioc->sas_device_lock, flags); 1327 return rc; 1328 } 1329 1330 /** 1331 * _ctl_btdh_search_pcie_device - searching for pcie device 1332 * @ioc: per adapter object 1333 * @btdh: btdh ioctl payload 1334 */ 1335 static int 1336 _ctl_btdh_search_pcie_device(struct MPT3SAS_ADAPTER *ioc, 1337 struct mpt3_ioctl_btdh_mapping *btdh) 1338 { 1339 struct _pcie_device *pcie_device; 1340 unsigned long flags; 1341 int rc = 0; 1342 1343 if (list_empty(&ioc->pcie_device_list)) 1344 return rc; 1345 1346 spin_lock_irqsave(&ioc->pcie_device_lock, flags); 1347 list_for_each_entry(pcie_device, &ioc->pcie_device_list, list) { 1348 if (btdh->bus == 0xFFFFFFFF && btdh->id == 0xFFFFFFFF && 1349 btdh->handle == pcie_device->handle) { 1350 btdh->bus = pcie_device->channel; 1351 btdh->id = pcie_device->id; 1352 rc = 1; 1353 goto out; 1354 } else if (btdh->bus == pcie_device->channel && btdh->id == 1355 pcie_device->id && btdh->handle == 0xFFFF) { 1356 btdh->handle = pcie_device->handle; 1357 rc = 1; 1358 goto out; 1359 } 1360 } 1361 out: 1362 spin_unlock_irqrestore(&ioc->pcie_device_lock, flags); 1363 return rc; 1364 } 1365 1366 /** 1367 * _ctl_btdh_search_raid_device - searching for raid device 1368 * @ioc: per adapter object 1369 * @btdh: btdh ioctl payload 1370 */ 1371 static int 1372 _ctl_btdh_search_raid_device(struct MPT3SAS_ADAPTER *ioc, 1373 struct mpt3_ioctl_btdh_mapping *btdh) 1374 { 1375 struct _raid_device *raid_device; 1376 unsigned long flags; 1377 int rc = 0; 1378 1379 if (list_empty(&ioc->raid_device_list)) 1380 return rc; 1381 1382 spin_lock_irqsave(&ioc->raid_device_lock, flags); 1383 list_for_each_entry(raid_device, &ioc->raid_device_list, list) { 1384 if (btdh->bus == 0xFFFFFFFF && btdh->id == 0xFFFFFFFF && 1385 btdh->handle == raid_device->handle) { 1386 btdh->bus = raid_device->channel; 1387 btdh->id = raid_device->id; 1388 rc = 1; 1389 goto out; 1390 } else if (btdh->bus == raid_device->channel && btdh->id == 1391 raid_device->id && btdh->handle == 0xFFFF) { 1392 btdh->handle = raid_device->handle; 1393 rc = 1; 1394 goto out; 1395 } 1396 } 1397 out: 1398 spin_unlock_irqrestore(&ioc->raid_device_lock, flags); 1399 return rc; 1400 } 1401 1402 /** 1403 * _ctl_btdh_mapping - main handler for MPT3BTDHMAPPING opcode 1404 * @ioc: per adapter object 1405 * @arg: user space buffer containing ioctl content 1406 */ 1407 static long 1408 _ctl_btdh_mapping(struct MPT3SAS_ADAPTER *ioc, void __user *arg) 1409 { 1410 struct mpt3_ioctl_btdh_mapping karg; 1411 int rc; 1412 1413 if (copy_from_user(&karg, arg, sizeof(karg))) { 1414 pr_err("failure at %s:%d/%s()!\n", 1415 __FILE__, __LINE__, __func__); 1416 return -EFAULT; 1417 } 1418 1419 dctlprintk(ioc, ioc_info(ioc, "%s\n", 1420 __func__)); 1421 1422 rc = _ctl_btdh_search_sas_device(ioc, &karg); 1423 if (!rc) 1424 rc = _ctl_btdh_search_pcie_device(ioc, &karg); 1425 if (!rc) 1426 _ctl_btdh_search_raid_device(ioc, &karg); 1427 1428 if (copy_to_user(arg, &karg, sizeof(karg))) { 1429 pr_err("failure at %s:%d/%s()!\n", 1430 __FILE__, __LINE__, __func__); 1431 return -EFAULT; 1432 } 1433 return 0; 1434 } 1435 1436 /** 1437 * _ctl_diag_capability - return diag buffer capability 1438 * @ioc: per adapter object 1439 * @buffer_type: specifies either TRACE, SNAPSHOT, or EXTENDED 1440 * 1441 * returns 1 when diag buffer support is enabled in firmware 1442 */ 1443 static u8 1444 _ctl_diag_capability(struct MPT3SAS_ADAPTER *ioc, u8 buffer_type) 1445 { 1446 u8 rc = 0; 1447 1448 switch (buffer_type) { 1449 case MPI2_DIAG_BUF_TYPE_TRACE: 1450 if (ioc->facts.IOCCapabilities & 1451 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) 1452 rc = 1; 1453 break; 1454 case MPI2_DIAG_BUF_TYPE_SNAPSHOT: 1455 if (ioc->facts.IOCCapabilities & 1456 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) 1457 rc = 1; 1458 break; 1459 case MPI2_DIAG_BUF_TYPE_EXTENDED: 1460 if (ioc->facts.IOCCapabilities & 1461 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) 1462 rc = 1; 1463 } 1464 1465 return rc; 1466 } 1467 1468 1469 /** 1470 * _ctl_diag_register_2 - wrapper for registering diag buffer support 1471 * @ioc: per adapter object 1472 * @diag_register: the diag_register struct passed in from user space 1473 * 1474 */ 1475 static long 1476 _ctl_diag_register_2(struct MPT3SAS_ADAPTER *ioc, 1477 struct mpt3_diag_register *diag_register) 1478 { 1479 int rc, i; 1480 void *request_data = NULL; 1481 dma_addr_t request_data_dma; 1482 u32 request_data_sz = 0; 1483 Mpi2DiagBufferPostRequest_t *mpi_request; 1484 Mpi2DiagBufferPostReply_t *mpi_reply; 1485 u8 buffer_type; 1486 u16 smid; 1487 u16 ioc_status; 1488 u32 ioc_state; 1489 u8 issue_reset = 0; 1490 1491 dctlprintk(ioc, ioc_info(ioc, "%s\n", 1492 __func__)); 1493 1494 ioc_state = mpt3sas_base_get_iocstate(ioc, 1); 1495 if (ioc_state != MPI2_IOC_STATE_OPERATIONAL) { 1496 ioc_err(ioc, "%s: failed due to ioc not operational\n", 1497 __func__); 1498 rc = -EAGAIN; 1499 goto out; 1500 } 1501 1502 if (ioc->ctl_cmds.status != MPT3_CMD_NOT_USED) { 1503 ioc_err(ioc, "%s: ctl_cmd in use\n", __func__); 1504 rc = -EAGAIN; 1505 goto out; 1506 } 1507 1508 buffer_type = diag_register->buffer_type; 1509 if (!_ctl_diag_capability(ioc, buffer_type)) { 1510 ioc_err(ioc, "%s: doesn't have capability for buffer_type(0x%02x)\n", 1511 __func__, buffer_type); 1512 return -EPERM; 1513 } 1514 1515 if (ioc->diag_buffer_status[buffer_type] & 1516 MPT3_DIAG_BUFFER_IS_REGISTERED) { 1517 ioc_err(ioc, "%s: already has a registered buffer for buffer_type(0x%02x)\n", 1518 __func__, buffer_type); 1519 return -EINVAL; 1520 } 1521 1522 if (diag_register->requested_buffer_size % 4) { 1523 ioc_err(ioc, "%s: the requested_buffer_size is not 4 byte aligned\n", 1524 __func__); 1525 return -EINVAL; 1526 } 1527 1528 smid = mpt3sas_base_get_smid(ioc, ioc->ctl_cb_idx); 1529 if (!smid) { 1530 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 1531 rc = -EAGAIN; 1532 goto out; 1533 } 1534 1535 rc = 0; 1536 ioc->ctl_cmds.status = MPT3_CMD_PENDING; 1537 memset(ioc->ctl_cmds.reply, 0, ioc->reply_sz); 1538 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 1539 ioc->ctl_cmds.smid = smid; 1540 1541 request_data = ioc->diag_buffer[buffer_type]; 1542 request_data_sz = diag_register->requested_buffer_size; 1543 ioc->unique_id[buffer_type] = diag_register->unique_id; 1544 ioc->diag_buffer_status[buffer_type] = 0; 1545 memcpy(ioc->product_specific[buffer_type], 1546 diag_register->product_specific, MPT3_PRODUCT_SPECIFIC_DWORDS); 1547 ioc->diagnostic_flags[buffer_type] = diag_register->diagnostic_flags; 1548 1549 if (request_data) { 1550 request_data_dma = ioc->diag_buffer_dma[buffer_type]; 1551 if (request_data_sz != ioc->diag_buffer_sz[buffer_type]) { 1552 dma_free_coherent(&ioc->pdev->dev, 1553 ioc->diag_buffer_sz[buffer_type], 1554 request_data, request_data_dma); 1555 request_data = NULL; 1556 } 1557 } 1558 1559 if (request_data == NULL) { 1560 ioc->diag_buffer_sz[buffer_type] = 0; 1561 ioc->diag_buffer_dma[buffer_type] = 0; 1562 request_data = dma_alloc_coherent(&ioc->pdev->dev, 1563 request_data_sz, &request_data_dma, GFP_KERNEL); 1564 if (request_data == NULL) { 1565 ioc_err(ioc, "%s: failed allocating memory for diag buffers, requested size(%d)\n", 1566 __func__, request_data_sz); 1567 mpt3sas_base_free_smid(ioc, smid); 1568 return -ENOMEM; 1569 } 1570 ioc->diag_buffer[buffer_type] = request_data; 1571 ioc->diag_buffer_sz[buffer_type] = request_data_sz; 1572 ioc->diag_buffer_dma[buffer_type] = request_data_dma; 1573 } 1574 1575 mpi_request->Function = MPI2_FUNCTION_DIAG_BUFFER_POST; 1576 mpi_request->BufferType = diag_register->buffer_type; 1577 mpi_request->Flags = cpu_to_le32(diag_register->diagnostic_flags); 1578 mpi_request->BufferAddress = cpu_to_le64(request_data_dma); 1579 mpi_request->BufferLength = cpu_to_le32(request_data_sz); 1580 mpi_request->VF_ID = 0; /* TODO */ 1581 mpi_request->VP_ID = 0; 1582 1583 dctlprintk(ioc, 1584 ioc_info(ioc, "%s: diag_buffer(0x%p), dma(0x%llx), sz(%d)\n", 1585 __func__, request_data, 1586 (unsigned long long)request_data_dma, 1587 le32_to_cpu(mpi_request->BufferLength))); 1588 1589 for (i = 0; i < MPT3_PRODUCT_SPECIFIC_DWORDS; i++) 1590 mpi_request->ProductSpecific[i] = 1591 cpu_to_le32(ioc->product_specific[buffer_type][i]); 1592 1593 init_completion(&ioc->ctl_cmds.done); 1594 mpt3sas_base_put_smid_default(ioc, smid); 1595 wait_for_completion_timeout(&ioc->ctl_cmds.done, 1596 MPT3_IOCTL_DEFAULT_TIMEOUT*HZ); 1597 1598 if (!(ioc->ctl_cmds.status & MPT3_CMD_COMPLETE)) { 1599 issue_reset = 1600 mpt3sas_base_check_cmd_timeout(ioc, 1601 ioc->ctl_cmds.status, mpi_request, 1602 sizeof(Mpi2DiagBufferPostRequest_t)/4); 1603 goto issue_host_reset; 1604 } 1605 1606 /* process the completed Reply Message Frame */ 1607 if ((ioc->ctl_cmds.status & MPT3_CMD_REPLY_VALID) == 0) { 1608 ioc_err(ioc, "%s: no reply message\n", __func__); 1609 rc = -EFAULT; 1610 goto out; 1611 } 1612 1613 mpi_reply = ioc->ctl_cmds.reply; 1614 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 1615 1616 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 1617 ioc->diag_buffer_status[buffer_type] |= 1618 MPT3_DIAG_BUFFER_IS_REGISTERED; 1619 dctlprintk(ioc, ioc_info(ioc, "%s: success\n", __func__)); 1620 } else { 1621 ioc_info(ioc, "%s: ioc_status(0x%04x) log_info(0x%08x)\n", 1622 __func__, 1623 ioc_status, le32_to_cpu(mpi_reply->IOCLogInfo)); 1624 rc = -EFAULT; 1625 } 1626 1627 issue_host_reset: 1628 if (issue_reset) 1629 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 1630 1631 out: 1632 1633 if (rc && request_data) 1634 dma_free_coherent(&ioc->pdev->dev, request_data_sz, 1635 request_data, request_data_dma); 1636 1637 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED; 1638 return rc; 1639 } 1640 1641 /** 1642 * mpt3sas_enable_diag_buffer - enabling diag_buffers support driver load time 1643 * @ioc: per adapter object 1644 * @bits_to_register: bitwise field where trace is bit 0, and snapshot is bit 1 1645 * 1646 * This is called when command line option diag_buffer_enable is enabled 1647 * at driver load time. 1648 */ 1649 void 1650 mpt3sas_enable_diag_buffer(struct MPT3SAS_ADAPTER *ioc, u8 bits_to_register) 1651 { 1652 struct mpt3_diag_register diag_register; 1653 1654 memset(&diag_register, 0, sizeof(struct mpt3_diag_register)); 1655 1656 if (bits_to_register & 1) { 1657 ioc_info(ioc, "registering trace buffer support\n"); 1658 ioc->diag_trigger_master.MasterData = 1659 (MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET); 1660 diag_register.buffer_type = MPI2_DIAG_BUF_TYPE_TRACE; 1661 /* register for 2MB buffers */ 1662 diag_register.requested_buffer_size = 2 * (1024 * 1024); 1663 diag_register.unique_id = 0x7075900; 1664 _ctl_diag_register_2(ioc, &diag_register); 1665 } 1666 1667 if (bits_to_register & 2) { 1668 ioc_info(ioc, "registering snapshot buffer support\n"); 1669 diag_register.buffer_type = MPI2_DIAG_BUF_TYPE_SNAPSHOT; 1670 /* register for 2MB buffers */ 1671 diag_register.requested_buffer_size = 2 * (1024 * 1024); 1672 diag_register.unique_id = 0x7075901; 1673 _ctl_diag_register_2(ioc, &diag_register); 1674 } 1675 1676 if (bits_to_register & 4) { 1677 ioc_info(ioc, "registering extended buffer support\n"); 1678 diag_register.buffer_type = MPI2_DIAG_BUF_TYPE_EXTENDED; 1679 /* register for 2MB buffers */ 1680 diag_register.requested_buffer_size = 2 * (1024 * 1024); 1681 diag_register.unique_id = 0x7075901; 1682 _ctl_diag_register_2(ioc, &diag_register); 1683 } 1684 } 1685 1686 /** 1687 * _ctl_diag_register - application register with driver 1688 * @ioc: per adapter object 1689 * @arg: user space buffer containing ioctl content 1690 * 1691 * This will allow the driver to setup any required buffers that will be 1692 * needed by firmware to communicate with the driver. 1693 */ 1694 static long 1695 _ctl_diag_register(struct MPT3SAS_ADAPTER *ioc, void __user *arg) 1696 { 1697 struct mpt3_diag_register karg; 1698 long rc; 1699 1700 if (copy_from_user(&karg, arg, sizeof(karg))) { 1701 pr_err("failure at %s:%d/%s()!\n", 1702 __FILE__, __LINE__, __func__); 1703 return -EFAULT; 1704 } 1705 1706 rc = _ctl_diag_register_2(ioc, &karg); 1707 return rc; 1708 } 1709 1710 /** 1711 * _ctl_diag_unregister - application unregister with driver 1712 * @ioc: per adapter object 1713 * @arg: user space buffer containing ioctl content 1714 * 1715 * This will allow the driver to cleanup any memory allocated for diag 1716 * messages and to free up any resources. 1717 */ 1718 static long 1719 _ctl_diag_unregister(struct MPT3SAS_ADAPTER *ioc, void __user *arg) 1720 { 1721 struct mpt3_diag_unregister karg; 1722 void *request_data; 1723 dma_addr_t request_data_dma; 1724 u32 request_data_sz; 1725 u8 buffer_type; 1726 1727 if (copy_from_user(&karg, arg, sizeof(karg))) { 1728 pr_err("failure at %s:%d/%s()!\n", 1729 __FILE__, __LINE__, __func__); 1730 return -EFAULT; 1731 } 1732 1733 dctlprintk(ioc, ioc_info(ioc, "%s\n", 1734 __func__)); 1735 1736 buffer_type = karg.unique_id & 0x000000ff; 1737 if (!_ctl_diag_capability(ioc, buffer_type)) { 1738 ioc_err(ioc, "%s: doesn't have capability for buffer_type(0x%02x)\n", 1739 __func__, buffer_type); 1740 return -EPERM; 1741 } 1742 1743 if ((ioc->diag_buffer_status[buffer_type] & 1744 MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) { 1745 ioc_err(ioc, "%s: buffer_type(0x%02x) is not registered\n", 1746 __func__, buffer_type); 1747 return -EINVAL; 1748 } 1749 if ((ioc->diag_buffer_status[buffer_type] & 1750 MPT3_DIAG_BUFFER_IS_RELEASED) == 0) { 1751 ioc_err(ioc, "%s: buffer_type(0x%02x) has not been released\n", 1752 __func__, buffer_type); 1753 return -EINVAL; 1754 } 1755 1756 if (karg.unique_id != ioc->unique_id[buffer_type]) { 1757 ioc_err(ioc, "%s: unique_id(0x%08x) is not registered\n", 1758 __func__, karg.unique_id); 1759 return -EINVAL; 1760 } 1761 1762 request_data = ioc->diag_buffer[buffer_type]; 1763 if (!request_data) { 1764 ioc_err(ioc, "%s: doesn't have memory allocated for buffer_type(0x%02x)\n", 1765 __func__, buffer_type); 1766 return -ENOMEM; 1767 } 1768 1769 request_data_sz = ioc->diag_buffer_sz[buffer_type]; 1770 request_data_dma = ioc->diag_buffer_dma[buffer_type]; 1771 dma_free_coherent(&ioc->pdev->dev, request_data_sz, 1772 request_data, request_data_dma); 1773 ioc->diag_buffer[buffer_type] = NULL; 1774 ioc->diag_buffer_status[buffer_type] = 0; 1775 return 0; 1776 } 1777 1778 /** 1779 * _ctl_diag_query - query relevant info associated with diag buffers 1780 * @ioc: per adapter object 1781 * @arg: user space buffer containing ioctl content 1782 * 1783 * The application will send only buffer_type and unique_id. Driver will 1784 * inspect unique_id first, if valid, fill in all the info. If unique_id is 1785 * 0x00, the driver will return info specified by Buffer Type. 1786 */ 1787 static long 1788 _ctl_diag_query(struct MPT3SAS_ADAPTER *ioc, void __user *arg) 1789 { 1790 struct mpt3_diag_query karg; 1791 void *request_data; 1792 int i; 1793 u8 buffer_type; 1794 1795 if (copy_from_user(&karg, arg, sizeof(karg))) { 1796 pr_err("failure at %s:%d/%s()!\n", 1797 __FILE__, __LINE__, __func__); 1798 return -EFAULT; 1799 } 1800 1801 dctlprintk(ioc, ioc_info(ioc, "%s\n", 1802 __func__)); 1803 1804 karg.application_flags = 0; 1805 buffer_type = karg.buffer_type; 1806 1807 if (!_ctl_diag_capability(ioc, buffer_type)) { 1808 ioc_err(ioc, "%s: doesn't have capability for buffer_type(0x%02x)\n", 1809 __func__, buffer_type); 1810 return -EPERM; 1811 } 1812 1813 if ((ioc->diag_buffer_status[buffer_type] & 1814 MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) { 1815 ioc_err(ioc, "%s: buffer_type(0x%02x) is not registered\n", 1816 __func__, buffer_type); 1817 return -EINVAL; 1818 } 1819 1820 if (karg.unique_id & 0xffffff00) { 1821 if (karg.unique_id != ioc->unique_id[buffer_type]) { 1822 ioc_err(ioc, "%s: unique_id(0x%08x) is not registered\n", 1823 __func__, karg.unique_id); 1824 return -EINVAL; 1825 } 1826 } 1827 1828 request_data = ioc->diag_buffer[buffer_type]; 1829 if (!request_data) { 1830 ioc_err(ioc, "%s: doesn't have buffer for buffer_type(0x%02x)\n", 1831 __func__, buffer_type); 1832 return -ENOMEM; 1833 } 1834 1835 if (ioc->diag_buffer_status[buffer_type] & MPT3_DIAG_BUFFER_IS_RELEASED) 1836 karg.application_flags = (MPT3_APP_FLAGS_APP_OWNED | 1837 MPT3_APP_FLAGS_BUFFER_VALID); 1838 else 1839 karg.application_flags = (MPT3_APP_FLAGS_APP_OWNED | 1840 MPT3_APP_FLAGS_BUFFER_VALID | 1841 MPT3_APP_FLAGS_FW_BUFFER_ACCESS); 1842 1843 for (i = 0; i < MPT3_PRODUCT_SPECIFIC_DWORDS; i++) 1844 karg.product_specific[i] = 1845 ioc->product_specific[buffer_type][i]; 1846 1847 karg.total_buffer_size = ioc->diag_buffer_sz[buffer_type]; 1848 karg.driver_added_buffer_size = 0; 1849 karg.unique_id = ioc->unique_id[buffer_type]; 1850 karg.diagnostic_flags = ioc->diagnostic_flags[buffer_type]; 1851 1852 if (copy_to_user(arg, &karg, sizeof(struct mpt3_diag_query))) { 1853 ioc_err(ioc, "%s: unable to write mpt3_diag_query data @ %p\n", 1854 __func__, arg); 1855 return -EFAULT; 1856 } 1857 return 0; 1858 } 1859 1860 /** 1861 * mpt3sas_send_diag_release - Diag Release Message 1862 * @ioc: per adapter object 1863 * @buffer_type: specifies either TRACE, SNAPSHOT, or EXTENDED 1864 * @issue_reset: specifies whether host reset is required. 1865 * 1866 */ 1867 int 1868 mpt3sas_send_diag_release(struct MPT3SAS_ADAPTER *ioc, u8 buffer_type, 1869 u8 *issue_reset) 1870 { 1871 Mpi2DiagReleaseRequest_t *mpi_request; 1872 Mpi2DiagReleaseReply_t *mpi_reply; 1873 u16 smid; 1874 u16 ioc_status; 1875 u32 ioc_state; 1876 int rc; 1877 1878 dctlprintk(ioc, ioc_info(ioc, "%s\n", 1879 __func__)); 1880 1881 rc = 0; 1882 *issue_reset = 0; 1883 1884 ioc_state = mpt3sas_base_get_iocstate(ioc, 1); 1885 if (ioc_state != MPI2_IOC_STATE_OPERATIONAL) { 1886 if (ioc->diag_buffer_status[buffer_type] & 1887 MPT3_DIAG_BUFFER_IS_REGISTERED) 1888 ioc->diag_buffer_status[buffer_type] |= 1889 MPT3_DIAG_BUFFER_IS_RELEASED; 1890 dctlprintk(ioc, 1891 ioc_info(ioc, "%s: skipping due to FAULT state\n", 1892 __func__)); 1893 rc = -EAGAIN; 1894 goto out; 1895 } 1896 1897 if (ioc->ctl_cmds.status != MPT3_CMD_NOT_USED) { 1898 ioc_err(ioc, "%s: ctl_cmd in use\n", __func__); 1899 rc = -EAGAIN; 1900 goto out; 1901 } 1902 1903 smid = mpt3sas_base_get_smid(ioc, ioc->ctl_cb_idx); 1904 if (!smid) { 1905 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 1906 rc = -EAGAIN; 1907 goto out; 1908 } 1909 1910 ioc->ctl_cmds.status = MPT3_CMD_PENDING; 1911 memset(ioc->ctl_cmds.reply, 0, ioc->reply_sz); 1912 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 1913 ioc->ctl_cmds.smid = smid; 1914 1915 mpi_request->Function = MPI2_FUNCTION_DIAG_RELEASE; 1916 mpi_request->BufferType = buffer_type; 1917 mpi_request->VF_ID = 0; /* TODO */ 1918 mpi_request->VP_ID = 0; 1919 1920 init_completion(&ioc->ctl_cmds.done); 1921 mpt3sas_base_put_smid_default(ioc, smid); 1922 wait_for_completion_timeout(&ioc->ctl_cmds.done, 1923 MPT3_IOCTL_DEFAULT_TIMEOUT*HZ); 1924 1925 if (!(ioc->ctl_cmds.status & MPT3_CMD_COMPLETE)) { 1926 *issue_reset = mpt3sas_base_check_cmd_timeout(ioc, 1927 ioc->ctl_cmds.status, mpi_request, 1928 sizeof(Mpi2DiagReleaseRequest_t)/4); 1929 rc = -EFAULT; 1930 goto out; 1931 } 1932 1933 /* process the completed Reply Message Frame */ 1934 if ((ioc->ctl_cmds.status & MPT3_CMD_REPLY_VALID) == 0) { 1935 ioc_err(ioc, "%s: no reply message\n", __func__); 1936 rc = -EFAULT; 1937 goto out; 1938 } 1939 1940 mpi_reply = ioc->ctl_cmds.reply; 1941 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 1942 1943 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 1944 ioc->diag_buffer_status[buffer_type] |= 1945 MPT3_DIAG_BUFFER_IS_RELEASED; 1946 dctlprintk(ioc, ioc_info(ioc, "%s: success\n", __func__)); 1947 } else { 1948 ioc_info(ioc, "%s: ioc_status(0x%04x) log_info(0x%08x)\n", 1949 __func__, 1950 ioc_status, le32_to_cpu(mpi_reply->IOCLogInfo)); 1951 rc = -EFAULT; 1952 } 1953 1954 out: 1955 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED; 1956 return rc; 1957 } 1958 1959 /** 1960 * _ctl_diag_release - request to send Diag Release Message to firmware 1961 * @ioc: ? 1962 * @arg: user space buffer containing ioctl content 1963 * 1964 * This allows ownership of the specified buffer to returned to the driver, 1965 * allowing an application to read the buffer without fear that firmware is 1966 * overwriting information in the buffer. 1967 */ 1968 static long 1969 _ctl_diag_release(struct MPT3SAS_ADAPTER *ioc, void __user *arg) 1970 { 1971 struct mpt3_diag_release karg; 1972 void *request_data; 1973 int rc; 1974 u8 buffer_type; 1975 u8 issue_reset = 0; 1976 1977 if (copy_from_user(&karg, arg, sizeof(karg))) { 1978 pr_err("failure at %s:%d/%s()!\n", 1979 __FILE__, __LINE__, __func__); 1980 return -EFAULT; 1981 } 1982 1983 dctlprintk(ioc, ioc_info(ioc, "%s\n", 1984 __func__)); 1985 1986 buffer_type = karg.unique_id & 0x000000ff; 1987 if (!_ctl_diag_capability(ioc, buffer_type)) { 1988 ioc_err(ioc, "%s: doesn't have capability for buffer_type(0x%02x)\n", 1989 __func__, buffer_type); 1990 return -EPERM; 1991 } 1992 1993 if ((ioc->diag_buffer_status[buffer_type] & 1994 MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) { 1995 ioc_err(ioc, "%s: buffer_type(0x%02x) is not registered\n", 1996 __func__, buffer_type); 1997 return -EINVAL; 1998 } 1999 2000 if (karg.unique_id != ioc->unique_id[buffer_type]) { 2001 ioc_err(ioc, "%s: unique_id(0x%08x) is not registered\n", 2002 __func__, karg.unique_id); 2003 return -EINVAL; 2004 } 2005 2006 if (ioc->diag_buffer_status[buffer_type] & 2007 MPT3_DIAG_BUFFER_IS_RELEASED) { 2008 ioc_err(ioc, "%s: buffer_type(0x%02x) is already released\n", 2009 __func__, buffer_type); 2010 return 0; 2011 } 2012 2013 request_data = ioc->diag_buffer[buffer_type]; 2014 2015 if (!request_data) { 2016 ioc_err(ioc, "%s: doesn't have memory allocated for buffer_type(0x%02x)\n", 2017 __func__, buffer_type); 2018 return -ENOMEM; 2019 } 2020 2021 /* buffers were released by due to host reset */ 2022 if ((ioc->diag_buffer_status[buffer_type] & 2023 MPT3_DIAG_BUFFER_IS_DIAG_RESET)) { 2024 ioc->diag_buffer_status[buffer_type] |= 2025 MPT3_DIAG_BUFFER_IS_RELEASED; 2026 ioc->diag_buffer_status[buffer_type] &= 2027 ~MPT3_DIAG_BUFFER_IS_DIAG_RESET; 2028 ioc_err(ioc, "%s: buffer_type(0x%02x) was released due to host reset\n", 2029 __func__, buffer_type); 2030 return 0; 2031 } 2032 2033 rc = mpt3sas_send_diag_release(ioc, buffer_type, &issue_reset); 2034 2035 if (issue_reset) 2036 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 2037 2038 return rc; 2039 } 2040 2041 /** 2042 * _ctl_diag_read_buffer - request for copy of the diag buffer 2043 * @ioc: per adapter object 2044 * @arg: user space buffer containing ioctl content 2045 */ 2046 static long 2047 _ctl_diag_read_buffer(struct MPT3SAS_ADAPTER *ioc, void __user *arg) 2048 { 2049 struct mpt3_diag_read_buffer karg; 2050 struct mpt3_diag_read_buffer __user *uarg = arg; 2051 void *request_data, *diag_data; 2052 Mpi2DiagBufferPostRequest_t *mpi_request; 2053 Mpi2DiagBufferPostReply_t *mpi_reply; 2054 int rc, i; 2055 u8 buffer_type; 2056 unsigned long request_size, copy_size; 2057 u16 smid; 2058 u16 ioc_status; 2059 u8 issue_reset = 0; 2060 2061 if (copy_from_user(&karg, arg, sizeof(karg))) { 2062 pr_err("failure at %s:%d/%s()!\n", 2063 __FILE__, __LINE__, __func__); 2064 return -EFAULT; 2065 } 2066 2067 dctlprintk(ioc, ioc_info(ioc, "%s\n", 2068 __func__)); 2069 2070 buffer_type = karg.unique_id & 0x000000ff; 2071 if (!_ctl_diag_capability(ioc, buffer_type)) { 2072 ioc_err(ioc, "%s: doesn't have capability for buffer_type(0x%02x)\n", 2073 __func__, buffer_type); 2074 return -EPERM; 2075 } 2076 2077 if (karg.unique_id != ioc->unique_id[buffer_type]) { 2078 ioc_err(ioc, "%s: unique_id(0x%08x) is not registered\n", 2079 __func__, karg.unique_id); 2080 return -EINVAL; 2081 } 2082 2083 request_data = ioc->diag_buffer[buffer_type]; 2084 if (!request_data) { 2085 ioc_err(ioc, "%s: doesn't have buffer for buffer_type(0x%02x)\n", 2086 __func__, buffer_type); 2087 return -ENOMEM; 2088 } 2089 2090 request_size = ioc->diag_buffer_sz[buffer_type]; 2091 2092 if ((karg.starting_offset % 4) || (karg.bytes_to_read % 4)) { 2093 ioc_err(ioc, "%s: either the starting_offset or bytes_to_read are not 4 byte aligned\n", 2094 __func__); 2095 return -EINVAL; 2096 } 2097 2098 if (karg.starting_offset > request_size) 2099 return -EINVAL; 2100 2101 diag_data = (void *)(request_data + karg.starting_offset); 2102 dctlprintk(ioc, 2103 ioc_info(ioc, "%s: diag_buffer(%p), offset(%d), sz(%d)\n", 2104 __func__, diag_data, karg.starting_offset, 2105 karg.bytes_to_read)); 2106 2107 /* Truncate data on requests that are too large */ 2108 if ((diag_data + karg.bytes_to_read < diag_data) || 2109 (diag_data + karg.bytes_to_read > request_data + request_size)) 2110 copy_size = request_size - karg.starting_offset; 2111 else 2112 copy_size = karg.bytes_to_read; 2113 2114 if (copy_to_user((void __user *)uarg->diagnostic_data, 2115 diag_data, copy_size)) { 2116 ioc_err(ioc, "%s: Unable to write mpt_diag_read_buffer_t data @ %p\n", 2117 __func__, diag_data); 2118 return -EFAULT; 2119 } 2120 2121 if ((karg.flags & MPT3_FLAGS_REREGISTER) == 0) 2122 return 0; 2123 2124 dctlprintk(ioc, 2125 ioc_info(ioc, "%s: Reregister buffer_type(0x%02x)\n", 2126 __func__, buffer_type)); 2127 if ((ioc->diag_buffer_status[buffer_type] & 2128 MPT3_DIAG_BUFFER_IS_RELEASED) == 0) { 2129 dctlprintk(ioc, 2130 ioc_info(ioc, "%s: buffer_type(0x%02x) is still registered\n", 2131 __func__, buffer_type)); 2132 return 0; 2133 } 2134 /* Get a free request frame and save the message context. 2135 */ 2136 2137 if (ioc->ctl_cmds.status != MPT3_CMD_NOT_USED) { 2138 ioc_err(ioc, "%s: ctl_cmd in use\n", __func__); 2139 rc = -EAGAIN; 2140 goto out; 2141 } 2142 2143 smid = mpt3sas_base_get_smid(ioc, ioc->ctl_cb_idx); 2144 if (!smid) { 2145 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 2146 rc = -EAGAIN; 2147 goto out; 2148 } 2149 2150 rc = 0; 2151 ioc->ctl_cmds.status = MPT3_CMD_PENDING; 2152 memset(ioc->ctl_cmds.reply, 0, ioc->reply_sz); 2153 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 2154 ioc->ctl_cmds.smid = smid; 2155 2156 mpi_request->Function = MPI2_FUNCTION_DIAG_BUFFER_POST; 2157 mpi_request->BufferType = buffer_type; 2158 mpi_request->BufferLength = 2159 cpu_to_le32(ioc->diag_buffer_sz[buffer_type]); 2160 mpi_request->BufferAddress = 2161 cpu_to_le64(ioc->diag_buffer_dma[buffer_type]); 2162 for (i = 0; i < MPT3_PRODUCT_SPECIFIC_DWORDS; i++) 2163 mpi_request->ProductSpecific[i] = 2164 cpu_to_le32(ioc->product_specific[buffer_type][i]); 2165 mpi_request->VF_ID = 0; /* TODO */ 2166 mpi_request->VP_ID = 0; 2167 2168 init_completion(&ioc->ctl_cmds.done); 2169 mpt3sas_base_put_smid_default(ioc, smid); 2170 wait_for_completion_timeout(&ioc->ctl_cmds.done, 2171 MPT3_IOCTL_DEFAULT_TIMEOUT*HZ); 2172 2173 if (!(ioc->ctl_cmds.status & MPT3_CMD_COMPLETE)) { 2174 issue_reset = 2175 mpt3sas_base_check_cmd_timeout(ioc, 2176 ioc->ctl_cmds.status, mpi_request, 2177 sizeof(Mpi2DiagBufferPostRequest_t)/4); 2178 goto issue_host_reset; 2179 } 2180 2181 /* process the completed Reply Message Frame */ 2182 if ((ioc->ctl_cmds.status & MPT3_CMD_REPLY_VALID) == 0) { 2183 ioc_err(ioc, "%s: no reply message\n", __func__); 2184 rc = -EFAULT; 2185 goto out; 2186 } 2187 2188 mpi_reply = ioc->ctl_cmds.reply; 2189 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 2190 2191 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 2192 ioc->diag_buffer_status[buffer_type] |= 2193 MPT3_DIAG_BUFFER_IS_REGISTERED; 2194 dctlprintk(ioc, ioc_info(ioc, "%s: success\n", __func__)); 2195 } else { 2196 ioc_info(ioc, "%s: ioc_status(0x%04x) log_info(0x%08x)\n", 2197 __func__, ioc_status, 2198 le32_to_cpu(mpi_reply->IOCLogInfo)); 2199 rc = -EFAULT; 2200 } 2201 2202 issue_host_reset: 2203 if (issue_reset) 2204 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 2205 2206 out: 2207 2208 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED; 2209 return rc; 2210 } 2211 2212 2213 2214 #ifdef CONFIG_COMPAT 2215 /** 2216 * _ctl_compat_mpt_command - convert 32bit pointers to 64bit. 2217 * @ioc: per adapter object 2218 * @cmd: ioctl opcode 2219 * @arg: (struct mpt3_ioctl_command32) 2220 * 2221 * MPT3COMMAND32 - Handle 32bit applications running on 64bit os. 2222 */ 2223 static long 2224 _ctl_compat_mpt_command(struct MPT3SAS_ADAPTER *ioc, unsigned cmd, 2225 void __user *arg) 2226 { 2227 struct mpt3_ioctl_command32 karg32; 2228 struct mpt3_ioctl_command32 __user *uarg; 2229 struct mpt3_ioctl_command karg; 2230 2231 if (_IOC_SIZE(cmd) != sizeof(struct mpt3_ioctl_command32)) 2232 return -EINVAL; 2233 2234 uarg = (struct mpt3_ioctl_command32 __user *) arg; 2235 2236 if (copy_from_user(&karg32, (char __user *)arg, sizeof(karg32))) { 2237 pr_err("failure at %s:%d/%s()!\n", 2238 __FILE__, __LINE__, __func__); 2239 return -EFAULT; 2240 } 2241 2242 memset(&karg, 0, sizeof(struct mpt3_ioctl_command)); 2243 karg.hdr.ioc_number = karg32.hdr.ioc_number; 2244 karg.hdr.port_number = karg32.hdr.port_number; 2245 karg.hdr.max_data_size = karg32.hdr.max_data_size; 2246 karg.timeout = karg32.timeout; 2247 karg.max_reply_bytes = karg32.max_reply_bytes; 2248 karg.data_in_size = karg32.data_in_size; 2249 karg.data_out_size = karg32.data_out_size; 2250 karg.max_sense_bytes = karg32.max_sense_bytes; 2251 karg.data_sge_offset = karg32.data_sge_offset; 2252 karg.reply_frame_buf_ptr = compat_ptr(karg32.reply_frame_buf_ptr); 2253 karg.data_in_buf_ptr = compat_ptr(karg32.data_in_buf_ptr); 2254 karg.data_out_buf_ptr = compat_ptr(karg32.data_out_buf_ptr); 2255 karg.sense_data_ptr = compat_ptr(karg32.sense_data_ptr); 2256 return _ctl_do_mpt_command(ioc, karg, &uarg->mf); 2257 } 2258 #endif 2259 2260 /** 2261 * _ctl_ioctl_main - main ioctl entry point 2262 * @file: (struct file) 2263 * @cmd: ioctl opcode 2264 * @arg: user space data buffer 2265 * @compat: handles 32 bit applications in 64bit os 2266 * @mpi_version: will be MPI2_VERSION for mpt2ctl ioctl device & 2267 * MPI25_VERSION | MPI26_VERSION for mpt3ctl ioctl device. 2268 */ 2269 static long 2270 _ctl_ioctl_main(struct file *file, unsigned int cmd, void __user *arg, 2271 u8 compat, u16 mpi_version) 2272 { 2273 struct MPT3SAS_ADAPTER *ioc; 2274 struct mpt3_ioctl_header ioctl_header; 2275 enum block_state state; 2276 long ret = -EINVAL; 2277 2278 /* get IOCTL header */ 2279 if (copy_from_user(&ioctl_header, (char __user *)arg, 2280 sizeof(struct mpt3_ioctl_header))) { 2281 pr_err("failure at %s:%d/%s()!\n", 2282 __FILE__, __LINE__, __func__); 2283 return -EFAULT; 2284 } 2285 2286 if (_ctl_verify_adapter(ioctl_header.ioc_number, 2287 &ioc, mpi_version) == -1 || !ioc) 2288 return -ENODEV; 2289 2290 /* pci_access_mutex lock acquired by ioctl path */ 2291 mutex_lock(&ioc->pci_access_mutex); 2292 2293 if (ioc->shost_recovery || ioc->pci_error_recovery || 2294 ioc->is_driver_loading || ioc->remove_host) { 2295 ret = -EAGAIN; 2296 goto out_unlock_pciaccess; 2297 } 2298 2299 state = (file->f_flags & O_NONBLOCK) ? NON_BLOCKING : BLOCKING; 2300 if (state == NON_BLOCKING) { 2301 if (!mutex_trylock(&ioc->ctl_cmds.mutex)) { 2302 ret = -EAGAIN; 2303 goto out_unlock_pciaccess; 2304 } 2305 } else if (mutex_lock_interruptible(&ioc->ctl_cmds.mutex)) { 2306 ret = -ERESTARTSYS; 2307 goto out_unlock_pciaccess; 2308 } 2309 2310 2311 switch (cmd) { 2312 case MPT3IOCINFO: 2313 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_iocinfo)) 2314 ret = _ctl_getiocinfo(ioc, arg); 2315 break; 2316 #ifdef CONFIG_COMPAT 2317 case MPT3COMMAND32: 2318 #endif 2319 case MPT3COMMAND: 2320 { 2321 struct mpt3_ioctl_command __user *uarg; 2322 struct mpt3_ioctl_command karg; 2323 2324 #ifdef CONFIG_COMPAT 2325 if (compat) { 2326 ret = _ctl_compat_mpt_command(ioc, cmd, arg); 2327 break; 2328 } 2329 #endif 2330 if (copy_from_user(&karg, arg, sizeof(karg))) { 2331 pr_err("failure at %s:%d/%s()!\n", 2332 __FILE__, __LINE__, __func__); 2333 ret = -EFAULT; 2334 break; 2335 } 2336 2337 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_command)) { 2338 uarg = arg; 2339 ret = _ctl_do_mpt_command(ioc, karg, &uarg->mf); 2340 } 2341 break; 2342 } 2343 case MPT3EVENTQUERY: 2344 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_eventquery)) 2345 ret = _ctl_eventquery(ioc, arg); 2346 break; 2347 case MPT3EVENTENABLE: 2348 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_eventenable)) 2349 ret = _ctl_eventenable(ioc, arg); 2350 break; 2351 case MPT3EVENTREPORT: 2352 ret = _ctl_eventreport(ioc, arg); 2353 break; 2354 case MPT3HARDRESET: 2355 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_diag_reset)) 2356 ret = _ctl_do_reset(ioc, arg); 2357 break; 2358 case MPT3BTDHMAPPING: 2359 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_btdh_mapping)) 2360 ret = _ctl_btdh_mapping(ioc, arg); 2361 break; 2362 case MPT3DIAGREGISTER: 2363 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_diag_register)) 2364 ret = _ctl_diag_register(ioc, arg); 2365 break; 2366 case MPT3DIAGUNREGISTER: 2367 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_diag_unregister)) 2368 ret = _ctl_diag_unregister(ioc, arg); 2369 break; 2370 case MPT3DIAGQUERY: 2371 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_diag_query)) 2372 ret = _ctl_diag_query(ioc, arg); 2373 break; 2374 case MPT3DIAGRELEASE: 2375 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_diag_release)) 2376 ret = _ctl_diag_release(ioc, arg); 2377 break; 2378 case MPT3DIAGREADBUFFER: 2379 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_diag_read_buffer)) 2380 ret = _ctl_diag_read_buffer(ioc, arg); 2381 break; 2382 default: 2383 dctlprintk(ioc, 2384 ioc_info(ioc, "unsupported ioctl opcode(0x%08x)\n", 2385 cmd)); 2386 break; 2387 } 2388 2389 mutex_unlock(&ioc->ctl_cmds.mutex); 2390 out_unlock_pciaccess: 2391 mutex_unlock(&ioc->pci_access_mutex); 2392 return ret; 2393 } 2394 2395 /** 2396 * _ctl_ioctl - mpt3ctl main ioctl entry point (unlocked) 2397 * @file: (struct file) 2398 * @cmd: ioctl opcode 2399 * @arg: ? 2400 */ 2401 static long 2402 _ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2403 { 2404 long ret; 2405 2406 /* pass MPI25_VERSION | MPI26_VERSION value, 2407 * to indicate that this ioctl cmd 2408 * came from mpt3ctl ioctl device. 2409 */ 2410 ret = _ctl_ioctl_main(file, cmd, (void __user *)arg, 0, 2411 MPI25_VERSION | MPI26_VERSION); 2412 return ret; 2413 } 2414 2415 /** 2416 * _ctl_mpt2_ioctl - mpt2ctl main ioctl entry point (unlocked) 2417 * @file: (struct file) 2418 * @cmd: ioctl opcode 2419 * @arg: ? 2420 */ 2421 static long 2422 _ctl_mpt2_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2423 { 2424 long ret; 2425 2426 /* pass MPI2_VERSION value, to indicate that this ioctl cmd 2427 * came from mpt2ctl ioctl device. 2428 */ 2429 ret = _ctl_ioctl_main(file, cmd, (void __user *)arg, 0, MPI2_VERSION); 2430 return ret; 2431 } 2432 #ifdef CONFIG_COMPAT 2433 /** 2434 *_ ctl_ioctl_compat - main ioctl entry point (compat) 2435 * @file: ? 2436 * @cmd: ? 2437 * @arg: ? 2438 * 2439 * This routine handles 32 bit applications in 64bit os. 2440 */ 2441 static long 2442 _ctl_ioctl_compat(struct file *file, unsigned cmd, unsigned long arg) 2443 { 2444 long ret; 2445 2446 ret = _ctl_ioctl_main(file, cmd, (void __user *)arg, 1, 2447 MPI25_VERSION | MPI26_VERSION); 2448 return ret; 2449 } 2450 2451 /** 2452 *_ ctl_mpt2_ioctl_compat - main ioctl entry point (compat) 2453 * @file: ? 2454 * @cmd: ? 2455 * @arg: ? 2456 * 2457 * This routine handles 32 bit applications in 64bit os. 2458 */ 2459 static long 2460 _ctl_mpt2_ioctl_compat(struct file *file, unsigned cmd, unsigned long arg) 2461 { 2462 long ret; 2463 2464 ret = _ctl_ioctl_main(file, cmd, (void __user *)arg, 1, MPI2_VERSION); 2465 return ret; 2466 } 2467 #endif 2468 2469 /* scsi host attributes */ 2470 /** 2471 * _ctl_version_fw_show - firmware version 2472 * @cdev: pointer to embedded class device 2473 * @attr: ? 2474 * @buf: the buffer returned 2475 * 2476 * A sysfs 'read-only' shost attribute. 2477 */ 2478 static ssize_t 2479 _ctl_version_fw_show(struct device *cdev, struct device_attribute *attr, 2480 char *buf) 2481 { 2482 struct Scsi_Host *shost = class_to_shost(cdev); 2483 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2484 2485 return snprintf(buf, PAGE_SIZE, "%02d.%02d.%02d.%02d\n", 2486 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24, 2487 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16, 2488 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8, 2489 ioc->facts.FWVersion.Word & 0x000000FF); 2490 } 2491 static DEVICE_ATTR(version_fw, S_IRUGO, _ctl_version_fw_show, NULL); 2492 2493 /** 2494 * _ctl_version_bios_show - bios version 2495 * @cdev: pointer to embedded class device 2496 * @attr: ? 2497 * @buf: the buffer returned 2498 * 2499 * A sysfs 'read-only' shost attribute. 2500 */ 2501 static ssize_t 2502 _ctl_version_bios_show(struct device *cdev, struct device_attribute *attr, 2503 char *buf) 2504 { 2505 struct Scsi_Host *shost = class_to_shost(cdev); 2506 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2507 2508 u32 version = le32_to_cpu(ioc->bios_pg3.BiosVersion); 2509 2510 return snprintf(buf, PAGE_SIZE, "%02d.%02d.%02d.%02d\n", 2511 (version & 0xFF000000) >> 24, 2512 (version & 0x00FF0000) >> 16, 2513 (version & 0x0000FF00) >> 8, 2514 version & 0x000000FF); 2515 } 2516 static DEVICE_ATTR(version_bios, S_IRUGO, _ctl_version_bios_show, NULL); 2517 2518 /** 2519 * _ctl_version_mpi_show - MPI (message passing interface) version 2520 * @cdev: pointer to embedded class device 2521 * @attr: ? 2522 * @buf: the buffer returned 2523 * 2524 * A sysfs 'read-only' shost attribute. 2525 */ 2526 static ssize_t 2527 _ctl_version_mpi_show(struct device *cdev, struct device_attribute *attr, 2528 char *buf) 2529 { 2530 struct Scsi_Host *shost = class_to_shost(cdev); 2531 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2532 2533 return snprintf(buf, PAGE_SIZE, "%03x.%02x\n", 2534 ioc->facts.MsgVersion, ioc->facts.HeaderVersion >> 8); 2535 } 2536 static DEVICE_ATTR(version_mpi, S_IRUGO, _ctl_version_mpi_show, NULL); 2537 2538 /** 2539 * _ctl_version_product_show - product name 2540 * @cdev: pointer to embedded class device 2541 * @attr: ? 2542 * @buf: the buffer returned 2543 * 2544 * A sysfs 'read-only' shost attribute. 2545 */ 2546 static ssize_t 2547 _ctl_version_product_show(struct device *cdev, struct device_attribute *attr, 2548 char *buf) 2549 { 2550 struct Scsi_Host *shost = class_to_shost(cdev); 2551 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2552 2553 return snprintf(buf, 16, "%s\n", ioc->manu_pg0.ChipName); 2554 } 2555 static DEVICE_ATTR(version_product, S_IRUGO, _ctl_version_product_show, NULL); 2556 2557 /** 2558 * _ctl_version_nvdata_persistent_show - ndvata persistent version 2559 * @cdev: pointer to embedded class device 2560 * @attr: ? 2561 * @buf: the buffer returned 2562 * 2563 * A sysfs 'read-only' shost attribute. 2564 */ 2565 static ssize_t 2566 _ctl_version_nvdata_persistent_show(struct device *cdev, 2567 struct device_attribute *attr, char *buf) 2568 { 2569 struct Scsi_Host *shost = class_to_shost(cdev); 2570 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2571 2572 return snprintf(buf, PAGE_SIZE, "%08xh\n", 2573 le32_to_cpu(ioc->iounit_pg0.NvdataVersionPersistent.Word)); 2574 } 2575 static DEVICE_ATTR(version_nvdata_persistent, S_IRUGO, 2576 _ctl_version_nvdata_persistent_show, NULL); 2577 2578 /** 2579 * _ctl_version_nvdata_default_show - nvdata default version 2580 * @cdev: pointer to embedded class device 2581 * @attr: ? 2582 * @buf: the buffer returned 2583 * 2584 * A sysfs 'read-only' shost attribute. 2585 */ 2586 static ssize_t 2587 _ctl_version_nvdata_default_show(struct device *cdev, struct device_attribute 2588 *attr, char *buf) 2589 { 2590 struct Scsi_Host *shost = class_to_shost(cdev); 2591 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2592 2593 return snprintf(buf, PAGE_SIZE, "%08xh\n", 2594 le32_to_cpu(ioc->iounit_pg0.NvdataVersionDefault.Word)); 2595 } 2596 static DEVICE_ATTR(version_nvdata_default, S_IRUGO, 2597 _ctl_version_nvdata_default_show, NULL); 2598 2599 /** 2600 * _ctl_board_name_show - board name 2601 * @cdev: pointer to embedded class device 2602 * @attr: ? 2603 * @buf: the buffer returned 2604 * 2605 * A sysfs 'read-only' shost attribute. 2606 */ 2607 static ssize_t 2608 _ctl_board_name_show(struct device *cdev, struct device_attribute *attr, 2609 char *buf) 2610 { 2611 struct Scsi_Host *shost = class_to_shost(cdev); 2612 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2613 2614 return snprintf(buf, 16, "%s\n", ioc->manu_pg0.BoardName); 2615 } 2616 static DEVICE_ATTR(board_name, S_IRUGO, _ctl_board_name_show, NULL); 2617 2618 /** 2619 * _ctl_board_assembly_show - board assembly name 2620 * @cdev: pointer to embedded class device 2621 * @attr: ? 2622 * @buf: the buffer returned 2623 * 2624 * A sysfs 'read-only' shost attribute. 2625 */ 2626 static ssize_t 2627 _ctl_board_assembly_show(struct device *cdev, struct device_attribute *attr, 2628 char *buf) 2629 { 2630 struct Scsi_Host *shost = class_to_shost(cdev); 2631 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2632 2633 return snprintf(buf, 16, "%s\n", ioc->manu_pg0.BoardAssembly); 2634 } 2635 static DEVICE_ATTR(board_assembly, S_IRUGO, _ctl_board_assembly_show, NULL); 2636 2637 /** 2638 * _ctl_board_tracer_show - board tracer number 2639 * @cdev: pointer to embedded class device 2640 * @attr: ? 2641 * @buf: the buffer returned 2642 * 2643 * A sysfs 'read-only' shost attribute. 2644 */ 2645 static ssize_t 2646 _ctl_board_tracer_show(struct device *cdev, struct device_attribute *attr, 2647 char *buf) 2648 { 2649 struct Scsi_Host *shost = class_to_shost(cdev); 2650 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2651 2652 return snprintf(buf, 16, "%s\n", ioc->manu_pg0.BoardTracerNumber); 2653 } 2654 static DEVICE_ATTR(board_tracer, S_IRUGO, _ctl_board_tracer_show, NULL); 2655 2656 /** 2657 * _ctl_io_delay_show - io missing delay 2658 * @cdev: pointer to embedded class device 2659 * @attr: ? 2660 * @buf: the buffer returned 2661 * 2662 * This is for firmware implemention for deboucing device 2663 * removal events. 2664 * 2665 * A sysfs 'read-only' shost attribute. 2666 */ 2667 static ssize_t 2668 _ctl_io_delay_show(struct device *cdev, struct device_attribute *attr, 2669 char *buf) 2670 { 2671 struct Scsi_Host *shost = class_to_shost(cdev); 2672 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2673 2674 return snprintf(buf, PAGE_SIZE, "%02d\n", ioc->io_missing_delay); 2675 } 2676 static DEVICE_ATTR(io_delay, S_IRUGO, _ctl_io_delay_show, NULL); 2677 2678 /** 2679 * _ctl_device_delay_show - device missing delay 2680 * @cdev: pointer to embedded class device 2681 * @attr: ? 2682 * @buf: the buffer returned 2683 * 2684 * This is for firmware implemention for deboucing device 2685 * removal events. 2686 * 2687 * A sysfs 'read-only' shost attribute. 2688 */ 2689 static ssize_t 2690 _ctl_device_delay_show(struct device *cdev, struct device_attribute *attr, 2691 char *buf) 2692 { 2693 struct Scsi_Host *shost = class_to_shost(cdev); 2694 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2695 2696 return snprintf(buf, PAGE_SIZE, "%02d\n", ioc->device_missing_delay); 2697 } 2698 static DEVICE_ATTR(device_delay, S_IRUGO, _ctl_device_delay_show, NULL); 2699 2700 /** 2701 * _ctl_fw_queue_depth_show - global credits 2702 * @cdev: pointer to embedded class device 2703 * @attr: ? 2704 * @buf: the buffer returned 2705 * 2706 * This is firmware queue depth limit 2707 * 2708 * A sysfs 'read-only' shost attribute. 2709 */ 2710 static ssize_t 2711 _ctl_fw_queue_depth_show(struct device *cdev, struct device_attribute *attr, 2712 char *buf) 2713 { 2714 struct Scsi_Host *shost = class_to_shost(cdev); 2715 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2716 2717 return snprintf(buf, PAGE_SIZE, "%02d\n", ioc->facts.RequestCredit); 2718 } 2719 static DEVICE_ATTR(fw_queue_depth, S_IRUGO, _ctl_fw_queue_depth_show, NULL); 2720 2721 /** 2722 * _ctl_sas_address_show - sas address 2723 * @cdev: pointer to embedded class device 2724 * @attr: ? 2725 * @buf: the buffer returned 2726 * 2727 * This is the controller sas address 2728 * 2729 * A sysfs 'read-only' shost attribute. 2730 */ 2731 static ssize_t 2732 _ctl_host_sas_address_show(struct device *cdev, struct device_attribute *attr, 2733 char *buf) 2734 2735 { 2736 struct Scsi_Host *shost = class_to_shost(cdev); 2737 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2738 2739 return snprintf(buf, PAGE_SIZE, "0x%016llx\n", 2740 (unsigned long long)ioc->sas_hba.sas_address); 2741 } 2742 static DEVICE_ATTR(host_sas_address, S_IRUGO, 2743 _ctl_host_sas_address_show, NULL); 2744 2745 /** 2746 * _ctl_logging_level_show - logging level 2747 * @cdev: pointer to embedded class device 2748 * @attr: ? 2749 * @buf: the buffer returned 2750 * 2751 * A sysfs 'read/write' shost attribute. 2752 */ 2753 static ssize_t 2754 _ctl_logging_level_show(struct device *cdev, struct device_attribute *attr, 2755 char *buf) 2756 { 2757 struct Scsi_Host *shost = class_to_shost(cdev); 2758 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2759 2760 return snprintf(buf, PAGE_SIZE, "%08xh\n", ioc->logging_level); 2761 } 2762 static ssize_t 2763 _ctl_logging_level_store(struct device *cdev, struct device_attribute *attr, 2764 const char *buf, size_t count) 2765 { 2766 struct Scsi_Host *shost = class_to_shost(cdev); 2767 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2768 int val = 0; 2769 2770 if (sscanf(buf, "%x", &val) != 1) 2771 return -EINVAL; 2772 2773 ioc->logging_level = val; 2774 ioc_info(ioc, "logging_level=%08xh\n", 2775 ioc->logging_level); 2776 return strlen(buf); 2777 } 2778 static DEVICE_ATTR(logging_level, S_IRUGO | S_IWUSR, _ctl_logging_level_show, 2779 _ctl_logging_level_store); 2780 2781 /** 2782 * _ctl_fwfault_debug_show - show/store fwfault_debug 2783 * @cdev: pointer to embedded class device 2784 * @attr: ? 2785 * @buf: the buffer returned 2786 * 2787 * mpt3sas_fwfault_debug is command line option 2788 * A sysfs 'read/write' shost attribute. 2789 */ 2790 static ssize_t 2791 _ctl_fwfault_debug_show(struct device *cdev, struct device_attribute *attr, 2792 char *buf) 2793 { 2794 struct Scsi_Host *shost = class_to_shost(cdev); 2795 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2796 2797 return snprintf(buf, PAGE_SIZE, "%d\n", ioc->fwfault_debug); 2798 } 2799 static ssize_t 2800 _ctl_fwfault_debug_store(struct device *cdev, struct device_attribute *attr, 2801 const char *buf, size_t count) 2802 { 2803 struct Scsi_Host *shost = class_to_shost(cdev); 2804 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2805 int val = 0; 2806 2807 if (sscanf(buf, "%d", &val) != 1) 2808 return -EINVAL; 2809 2810 ioc->fwfault_debug = val; 2811 ioc_info(ioc, "fwfault_debug=%d\n", 2812 ioc->fwfault_debug); 2813 return strlen(buf); 2814 } 2815 static DEVICE_ATTR(fwfault_debug, S_IRUGO | S_IWUSR, 2816 _ctl_fwfault_debug_show, _ctl_fwfault_debug_store); 2817 2818 /** 2819 * _ctl_ioc_reset_count_show - ioc reset count 2820 * @cdev: pointer to embedded class device 2821 * @attr: ? 2822 * @buf: the buffer returned 2823 * 2824 * This is firmware queue depth limit 2825 * 2826 * A sysfs 'read-only' shost attribute. 2827 */ 2828 static ssize_t 2829 _ctl_ioc_reset_count_show(struct device *cdev, struct device_attribute *attr, 2830 char *buf) 2831 { 2832 struct Scsi_Host *shost = class_to_shost(cdev); 2833 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2834 2835 return snprintf(buf, PAGE_SIZE, "%d\n", ioc->ioc_reset_count); 2836 } 2837 static DEVICE_ATTR(ioc_reset_count, S_IRUGO, _ctl_ioc_reset_count_show, NULL); 2838 2839 /** 2840 * _ctl_ioc_reply_queue_count_show - number of reply queues 2841 * @cdev: pointer to embedded class device 2842 * @attr: ? 2843 * @buf: the buffer returned 2844 * 2845 * This is number of reply queues 2846 * 2847 * A sysfs 'read-only' shost attribute. 2848 */ 2849 static ssize_t 2850 _ctl_ioc_reply_queue_count_show(struct device *cdev, 2851 struct device_attribute *attr, char *buf) 2852 { 2853 u8 reply_queue_count; 2854 struct Scsi_Host *shost = class_to_shost(cdev); 2855 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2856 2857 if ((ioc->facts.IOCCapabilities & 2858 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable) 2859 reply_queue_count = ioc->reply_queue_count; 2860 else 2861 reply_queue_count = 1; 2862 2863 return snprintf(buf, PAGE_SIZE, "%d\n", reply_queue_count); 2864 } 2865 static DEVICE_ATTR(reply_queue_count, S_IRUGO, _ctl_ioc_reply_queue_count_show, 2866 NULL); 2867 2868 /** 2869 * _ctl_BRM_status_show - Backup Rail Monitor Status 2870 * @cdev: pointer to embedded class device 2871 * @attr: ? 2872 * @buf: the buffer returned 2873 * 2874 * This is number of reply queues 2875 * 2876 * A sysfs 'read-only' shost attribute. 2877 */ 2878 static ssize_t 2879 _ctl_BRM_status_show(struct device *cdev, struct device_attribute *attr, 2880 char *buf) 2881 { 2882 struct Scsi_Host *shost = class_to_shost(cdev); 2883 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2884 Mpi2IOUnitPage3_t *io_unit_pg3 = NULL; 2885 Mpi2ConfigReply_t mpi_reply; 2886 u16 backup_rail_monitor_status = 0; 2887 u16 ioc_status; 2888 int sz; 2889 ssize_t rc = 0; 2890 2891 if (!ioc->is_warpdrive) { 2892 ioc_err(ioc, "%s: BRM attribute is only for warpdrive\n", 2893 __func__); 2894 goto out; 2895 } 2896 /* pci_access_mutex lock acquired by sysfs show path */ 2897 mutex_lock(&ioc->pci_access_mutex); 2898 if (ioc->pci_error_recovery || ioc->remove_host) { 2899 mutex_unlock(&ioc->pci_access_mutex); 2900 return 0; 2901 } 2902 2903 /* allocate upto GPIOVal 36 entries */ 2904 sz = offsetof(Mpi2IOUnitPage3_t, GPIOVal) + (sizeof(u16) * 36); 2905 io_unit_pg3 = kzalloc(sz, GFP_KERNEL); 2906 if (!io_unit_pg3) { 2907 ioc_err(ioc, "%s: failed allocating memory for iounit_pg3: (%d) bytes\n", 2908 __func__, sz); 2909 goto out; 2910 } 2911 2912 if (mpt3sas_config_get_iounit_pg3(ioc, &mpi_reply, io_unit_pg3, sz) != 2913 0) { 2914 ioc_err(ioc, "%s: failed reading iounit_pg3\n", 2915 __func__); 2916 goto out; 2917 } 2918 2919 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK; 2920 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 2921 ioc_err(ioc, "%s: iounit_pg3 failed with ioc_status(0x%04x)\n", 2922 __func__, ioc_status); 2923 goto out; 2924 } 2925 2926 if (io_unit_pg3->GPIOCount < 25) { 2927 ioc_err(ioc, "%s: iounit_pg3->GPIOCount less than 25 entries, detected (%d) entries\n", 2928 __func__, io_unit_pg3->GPIOCount); 2929 goto out; 2930 } 2931 2932 /* BRM status is in bit zero of GPIOVal[24] */ 2933 backup_rail_monitor_status = le16_to_cpu(io_unit_pg3->GPIOVal[24]); 2934 rc = snprintf(buf, PAGE_SIZE, "%d\n", (backup_rail_monitor_status & 1)); 2935 2936 out: 2937 kfree(io_unit_pg3); 2938 mutex_unlock(&ioc->pci_access_mutex); 2939 return rc; 2940 } 2941 static DEVICE_ATTR(BRM_status, S_IRUGO, _ctl_BRM_status_show, NULL); 2942 2943 struct DIAG_BUFFER_START { 2944 __le32 Size; 2945 __le32 DiagVersion; 2946 u8 BufferType; 2947 u8 Reserved[3]; 2948 __le32 Reserved1; 2949 __le32 Reserved2; 2950 __le32 Reserved3; 2951 }; 2952 2953 /** 2954 * _ctl_host_trace_buffer_size_show - host buffer size (trace only) 2955 * @cdev: pointer to embedded class device 2956 * @attr: ? 2957 * @buf: the buffer returned 2958 * 2959 * A sysfs 'read-only' shost attribute. 2960 */ 2961 static ssize_t 2962 _ctl_host_trace_buffer_size_show(struct device *cdev, 2963 struct device_attribute *attr, char *buf) 2964 { 2965 struct Scsi_Host *shost = class_to_shost(cdev); 2966 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2967 u32 size = 0; 2968 struct DIAG_BUFFER_START *request_data; 2969 2970 if (!ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) { 2971 ioc_err(ioc, "%s: host_trace_buffer is not registered\n", 2972 __func__); 2973 return 0; 2974 } 2975 2976 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 2977 MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) { 2978 ioc_err(ioc, "%s: host_trace_buffer is not registered\n", 2979 __func__); 2980 return 0; 2981 } 2982 2983 request_data = (struct DIAG_BUFFER_START *) 2984 ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]; 2985 if ((le32_to_cpu(request_data->DiagVersion) == 0x00000000 || 2986 le32_to_cpu(request_data->DiagVersion) == 0x01000000 || 2987 le32_to_cpu(request_data->DiagVersion) == 0x01010000) && 2988 le32_to_cpu(request_data->Reserved3) == 0x4742444c) 2989 size = le32_to_cpu(request_data->Size); 2990 2991 ioc->ring_buffer_sz = size; 2992 return snprintf(buf, PAGE_SIZE, "%d\n", size); 2993 } 2994 static DEVICE_ATTR(host_trace_buffer_size, S_IRUGO, 2995 _ctl_host_trace_buffer_size_show, NULL); 2996 2997 /** 2998 * _ctl_host_trace_buffer_show - firmware ring buffer (trace only) 2999 * @cdev: pointer to embedded class device 3000 * @attr: ? 3001 * @buf: the buffer returned 3002 * 3003 * A sysfs 'read/write' shost attribute. 3004 * 3005 * You will only be able to read 4k bytes of ring buffer at a time. 3006 * In order to read beyond 4k bytes, you will have to write out the 3007 * offset to the same attribute, it will move the pointer. 3008 */ 3009 static ssize_t 3010 _ctl_host_trace_buffer_show(struct device *cdev, struct device_attribute *attr, 3011 char *buf) 3012 { 3013 struct Scsi_Host *shost = class_to_shost(cdev); 3014 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3015 void *request_data; 3016 u32 size; 3017 3018 if (!ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) { 3019 ioc_err(ioc, "%s: host_trace_buffer is not registered\n", 3020 __func__); 3021 return 0; 3022 } 3023 3024 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 3025 MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) { 3026 ioc_err(ioc, "%s: host_trace_buffer is not registered\n", 3027 __func__); 3028 return 0; 3029 } 3030 3031 if (ioc->ring_buffer_offset > ioc->ring_buffer_sz) 3032 return 0; 3033 3034 size = ioc->ring_buffer_sz - ioc->ring_buffer_offset; 3035 size = (size >= PAGE_SIZE) ? (PAGE_SIZE - 1) : size; 3036 request_data = ioc->diag_buffer[0] + ioc->ring_buffer_offset; 3037 memcpy(buf, request_data, size); 3038 return size; 3039 } 3040 3041 static ssize_t 3042 _ctl_host_trace_buffer_store(struct device *cdev, struct device_attribute *attr, 3043 const char *buf, size_t count) 3044 { 3045 struct Scsi_Host *shost = class_to_shost(cdev); 3046 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3047 int val = 0; 3048 3049 if (sscanf(buf, "%d", &val) != 1) 3050 return -EINVAL; 3051 3052 ioc->ring_buffer_offset = val; 3053 return strlen(buf); 3054 } 3055 static DEVICE_ATTR(host_trace_buffer, S_IRUGO | S_IWUSR, 3056 _ctl_host_trace_buffer_show, _ctl_host_trace_buffer_store); 3057 3058 3059 /*****************************************/ 3060 3061 /** 3062 * _ctl_host_trace_buffer_enable_show - firmware ring buffer (trace only) 3063 * @cdev: pointer to embedded class device 3064 * @attr: ? 3065 * @buf: the buffer returned 3066 * 3067 * A sysfs 'read/write' shost attribute. 3068 * 3069 * This is a mechnism to post/release host_trace_buffers 3070 */ 3071 static ssize_t 3072 _ctl_host_trace_buffer_enable_show(struct device *cdev, 3073 struct device_attribute *attr, char *buf) 3074 { 3075 struct Scsi_Host *shost = class_to_shost(cdev); 3076 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3077 3078 if ((!ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) || 3079 ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 3080 MPT3_DIAG_BUFFER_IS_REGISTERED) == 0)) 3081 return snprintf(buf, PAGE_SIZE, "off\n"); 3082 else if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 3083 MPT3_DIAG_BUFFER_IS_RELEASED)) 3084 return snprintf(buf, PAGE_SIZE, "release\n"); 3085 else 3086 return snprintf(buf, PAGE_SIZE, "post\n"); 3087 } 3088 3089 static ssize_t 3090 _ctl_host_trace_buffer_enable_store(struct device *cdev, 3091 struct device_attribute *attr, const char *buf, size_t count) 3092 { 3093 struct Scsi_Host *shost = class_to_shost(cdev); 3094 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3095 char str[10] = ""; 3096 struct mpt3_diag_register diag_register; 3097 u8 issue_reset = 0; 3098 3099 /* don't allow post/release occurr while recovery is active */ 3100 if (ioc->shost_recovery || ioc->remove_host || 3101 ioc->pci_error_recovery || ioc->is_driver_loading) 3102 return -EBUSY; 3103 3104 if (sscanf(buf, "%9s", str) != 1) 3105 return -EINVAL; 3106 3107 if (!strcmp(str, "post")) { 3108 /* exit out if host buffers are already posted */ 3109 if ((ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) && 3110 (ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 3111 MPT3_DIAG_BUFFER_IS_REGISTERED) && 3112 ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 3113 MPT3_DIAG_BUFFER_IS_RELEASED) == 0)) 3114 goto out; 3115 memset(&diag_register, 0, sizeof(struct mpt3_diag_register)); 3116 ioc_info(ioc, "posting host trace buffers\n"); 3117 diag_register.buffer_type = MPI2_DIAG_BUF_TYPE_TRACE; 3118 diag_register.requested_buffer_size = (1024 * 1024); 3119 diag_register.unique_id = 0x7075900; 3120 ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] = 0; 3121 _ctl_diag_register_2(ioc, &diag_register); 3122 } else if (!strcmp(str, "release")) { 3123 /* exit out if host buffers are already released */ 3124 if (!ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) 3125 goto out; 3126 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 3127 MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) 3128 goto out; 3129 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 3130 MPT3_DIAG_BUFFER_IS_RELEASED)) 3131 goto out; 3132 ioc_info(ioc, "releasing host trace buffer\n"); 3133 mpt3sas_send_diag_release(ioc, MPI2_DIAG_BUF_TYPE_TRACE, 3134 &issue_reset); 3135 } 3136 3137 out: 3138 return strlen(buf); 3139 } 3140 static DEVICE_ATTR(host_trace_buffer_enable, S_IRUGO | S_IWUSR, 3141 _ctl_host_trace_buffer_enable_show, 3142 _ctl_host_trace_buffer_enable_store); 3143 3144 /*********** diagnostic trigger suppport *********************************/ 3145 3146 /** 3147 * _ctl_diag_trigger_master_show - show the diag_trigger_master attribute 3148 * @cdev: pointer to embedded class device 3149 * @attr: ? 3150 * @buf: the buffer returned 3151 * 3152 * A sysfs 'read/write' shost attribute. 3153 */ 3154 static ssize_t 3155 _ctl_diag_trigger_master_show(struct device *cdev, 3156 struct device_attribute *attr, char *buf) 3157 3158 { 3159 struct Scsi_Host *shost = class_to_shost(cdev); 3160 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3161 unsigned long flags; 3162 ssize_t rc; 3163 3164 spin_lock_irqsave(&ioc->diag_trigger_lock, flags); 3165 rc = sizeof(struct SL_WH_MASTER_TRIGGER_T); 3166 memcpy(buf, &ioc->diag_trigger_master, rc); 3167 spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags); 3168 return rc; 3169 } 3170 3171 /** 3172 * _ctl_diag_trigger_master_store - store the diag_trigger_master attribute 3173 * @cdev: pointer to embedded class device 3174 * @attr: ? 3175 * @buf: the buffer returned 3176 * @count: ? 3177 * 3178 * A sysfs 'read/write' shost attribute. 3179 */ 3180 static ssize_t 3181 _ctl_diag_trigger_master_store(struct device *cdev, 3182 struct device_attribute *attr, const char *buf, size_t count) 3183 3184 { 3185 struct Scsi_Host *shost = class_to_shost(cdev); 3186 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3187 unsigned long flags; 3188 ssize_t rc; 3189 3190 spin_lock_irqsave(&ioc->diag_trigger_lock, flags); 3191 rc = min(sizeof(struct SL_WH_MASTER_TRIGGER_T), count); 3192 memset(&ioc->diag_trigger_master, 0, 3193 sizeof(struct SL_WH_MASTER_TRIGGER_T)); 3194 memcpy(&ioc->diag_trigger_master, buf, rc); 3195 ioc->diag_trigger_master.MasterData |= 3196 (MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET); 3197 spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags); 3198 return rc; 3199 } 3200 static DEVICE_ATTR(diag_trigger_master, S_IRUGO | S_IWUSR, 3201 _ctl_diag_trigger_master_show, _ctl_diag_trigger_master_store); 3202 3203 3204 /** 3205 * _ctl_diag_trigger_event_show - show the diag_trigger_event attribute 3206 * @cdev: pointer to embedded class device 3207 * @attr: ? 3208 * @buf: the buffer returned 3209 * 3210 * A sysfs 'read/write' shost attribute. 3211 */ 3212 static ssize_t 3213 _ctl_diag_trigger_event_show(struct device *cdev, 3214 struct device_attribute *attr, char *buf) 3215 { 3216 struct Scsi_Host *shost = class_to_shost(cdev); 3217 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3218 unsigned long flags; 3219 ssize_t rc; 3220 3221 spin_lock_irqsave(&ioc->diag_trigger_lock, flags); 3222 rc = sizeof(struct SL_WH_EVENT_TRIGGERS_T); 3223 memcpy(buf, &ioc->diag_trigger_event, rc); 3224 spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags); 3225 return rc; 3226 } 3227 3228 /** 3229 * _ctl_diag_trigger_event_store - store the diag_trigger_event attribute 3230 * @cdev: pointer to embedded class device 3231 * @attr: ? 3232 * @buf: the buffer returned 3233 * @count: ? 3234 * 3235 * A sysfs 'read/write' shost attribute. 3236 */ 3237 static ssize_t 3238 _ctl_diag_trigger_event_store(struct device *cdev, 3239 struct device_attribute *attr, const char *buf, size_t count) 3240 3241 { 3242 struct Scsi_Host *shost = class_to_shost(cdev); 3243 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3244 unsigned long flags; 3245 ssize_t sz; 3246 3247 spin_lock_irqsave(&ioc->diag_trigger_lock, flags); 3248 sz = min(sizeof(struct SL_WH_EVENT_TRIGGERS_T), count); 3249 memset(&ioc->diag_trigger_event, 0, 3250 sizeof(struct SL_WH_EVENT_TRIGGERS_T)); 3251 memcpy(&ioc->diag_trigger_event, buf, sz); 3252 if (ioc->diag_trigger_event.ValidEntries > NUM_VALID_ENTRIES) 3253 ioc->diag_trigger_event.ValidEntries = NUM_VALID_ENTRIES; 3254 spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags); 3255 return sz; 3256 } 3257 static DEVICE_ATTR(diag_trigger_event, S_IRUGO | S_IWUSR, 3258 _ctl_diag_trigger_event_show, _ctl_diag_trigger_event_store); 3259 3260 3261 /** 3262 * _ctl_diag_trigger_scsi_show - show the diag_trigger_scsi attribute 3263 * @cdev: pointer to embedded class device 3264 * @attr: ? 3265 * @buf: the buffer returned 3266 * 3267 * A sysfs 'read/write' shost attribute. 3268 */ 3269 static ssize_t 3270 _ctl_diag_trigger_scsi_show(struct device *cdev, 3271 struct device_attribute *attr, char *buf) 3272 { 3273 struct Scsi_Host *shost = class_to_shost(cdev); 3274 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3275 unsigned long flags; 3276 ssize_t rc; 3277 3278 spin_lock_irqsave(&ioc->diag_trigger_lock, flags); 3279 rc = sizeof(struct SL_WH_SCSI_TRIGGERS_T); 3280 memcpy(buf, &ioc->diag_trigger_scsi, rc); 3281 spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags); 3282 return rc; 3283 } 3284 3285 /** 3286 * _ctl_diag_trigger_scsi_store - store the diag_trigger_scsi attribute 3287 * @cdev: pointer to embedded class device 3288 * @attr: ? 3289 * @buf: the buffer returned 3290 * @count: ? 3291 * 3292 * A sysfs 'read/write' shost attribute. 3293 */ 3294 static ssize_t 3295 _ctl_diag_trigger_scsi_store(struct device *cdev, 3296 struct device_attribute *attr, const char *buf, size_t count) 3297 { 3298 struct Scsi_Host *shost = class_to_shost(cdev); 3299 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3300 unsigned long flags; 3301 ssize_t sz; 3302 3303 spin_lock_irqsave(&ioc->diag_trigger_lock, flags); 3304 sz = min(sizeof(struct SL_WH_SCSI_TRIGGERS_T), count); 3305 memset(&ioc->diag_trigger_scsi, 0, 3306 sizeof(struct SL_WH_EVENT_TRIGGERS_T)); 3307 memcpy(&ioc->diag_trigger_scsi, buf, sz); 3308 if (ioc->diag_trigger_scsi.ValidEntries > NUM_VALID_ENTRIES) 3309 ioc->diag_trigger_scsi.ValidEntries = NUM_VALID_ENTRIES; 3310 spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags); 3311 return sz; 3312 } 3313 static DEVICE_ATTR(diag_trigger_scsi, S_IRUGO | S_IWUSR, 3314 _ctl_diag_trigger_scsi_show, _ctl_diag_trigger_scsi_store); 3315 3316 3317 /** 3318 * _ctl_diag_trigger_scsi_show - show the diag_trigger_mpi attribute 3319 * @cdev: pointer to embedded class device 3320 * @attr: ? 3321 * @buf: the buffer returned 3322 * 3323 * A sysfs 'read/write' shost attribute. 3324 */ 3325 static ssize_t 3326 _ctl_diag_trigger_mpi_show(struct device *cdev, 3327 struct device_attribute *attr, char *buf) 3328 { 3329 struct Scsi_Host *shost = class_to_shost(cdev); 3330 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3331 unsigned long flags; 3332 ssize_t rc; 3333 3334 spin_lock_irqsave(&ioc->diag_trigger_lock, flags); 3335 rc = sizeof(struct SL_WH_MPI_TRIGGERS_T); 3336 memcpy(buf, &ioc->diag_trigger_mpi, rc); 3337 spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags); 3338 return rc; 3339 } 3340 3341 /** 3342 * _ctl_diag_trigger_mpi_store - store the diag_trigger_mpi attribute 3343 * @cdev: pointer to embedded class device 3344 * @attr: ? 3345 * @buf: the buffer returned 3346 * @count: ? 3347 * 3348 * A sysfs 'read/write' shost attribute. 3349 */ 3350 static ssize_t 3351 _ctl_diag_trigger_mpi_store(struct device *cdev, 3352 struct device_attribute *attr, const char *buf, size_t count) 3353 { 3354 struct Scsi_Host *shost = class_to_shost(cdev); 3355 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3356 unsigned long flags; 3357 ssize_t sz; 3358 3359 spin_lock_irqsave(&ioc->diag_trigger_lock, flags); 3360 sz = min(sizeof(struct SL_WH_MPI_TRIGGERS_T), count); 3361 memset(&ioc->diag_trigger_mpi, 0, 3362 sizeof(ioc->diag_trigger_mpi)); 3363 memcpy(&ioc->diag_trigger_mpi, buf, sz); 3364 if (ioc->diag_trigger_mpi.ValidEntries > NUM_VALID_ENTRIES) 3365 ioc->diag_trigger_mpi.ValidEntries = NUM_VALID_ENTRIES; 3366 spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags); 3367 return sz; 3368 } 3369 3370 static DEVICE_ATTR(diag_trigger_mpi, S_IRUGO | S_IWUSR, 3371 _ctl_diag_trigger_mpi_show, _ctl_diag_trigger_mpi_store); 3372 3373 /*********** diagnostic trigger suppport *** END ****************************/ 3374 3375 /*****************************************/ 3376 3377 struct device_attribute *mpt3sas_host_attrs[] = { 3378 &dev_attr_version_fw, 3379 &dev_attr_version_bios, 3380 &dev_attr_version_mpi, 3381 &dev_attr_version_product, 3382 &dev_attr_version_nvdata_persistent, 3383 &dev_attr_version_nvdata_default, 3384 &dev_attr_board_name, 3385 &dev_attr_board_assembly, 3386 &dev_attr_board_tracer, 3387 &dev_attr_io_delay, 3388 &dev_attr_device_delay, 3389 &dev_attr_logging_level, 3390 &dev_attr_fwfault_debug, 3391 &dev_attr_fw_queue_depth, 3392 &dev_attr_host_sas_address, 3393 &dev_attr_ioc_reset_count, 3394 &dev_attr_host_trace_buffer_size, 3395 &dev_attr_host_trace_buffer, 3396 &dev_attr_host_trace_buffer_enable, 3397 &dev_attr_reply_queue_count, 3398 &dev_attr_diag_trigger_master, 3399 &dev_attr_diag_trigger_event, 3400 &dev_attr_diag_trigger_scsi, 3401 &dev_attr_diag_trigger_mpi, 3402 &dev_attr_BRM_status, 3403 NULL, 3404 }; 3405 3406 /* device attributes */ 3407 3408 /** 3409 * _ctl_device_sas_address_show - sas address 3410 * @dev: pointer to embedded class device 3411 * @attr: ? 3412 * @buf: the buffer returned 3413 * 3414 * This is the sas address for the target 3415 * 3416 * A sysfs 'read-only' shost attribute. 3417 */ 3418 static ssize_t 3419 _ctl_device_sas_address_show(struct device *dev, struct device_attribute *attr, 3420 char *buf) 3421 { 3422 struct scsi_device *sdev = to_scsi_device(dev); 3423 struct MPT3SAS_DEVICE *sas_device_priv_data = sdev->hostdata; 3424 3425 return snprintf(buf, PAGE_SIZE, "0x%016llx\n", 3426 (unsigned long long)sas_device_priv_data->sas_target->sas_address); 3427 } 3428 static DEVICE_ATTR(sas_address, S_IRUGO, _ctl_device_sas_address_show, NULL); 3429 3430 /** 3431 * _ctl_device_handle_show - device handle 3432 * @dev: pointer to embedded class device 3433 * @attr: ? 3434 * @buf: the buffer returned 3435 * 3436 * This is the firmware assigned device handle 3437 * 3438 * A sysfs 'read-only' shost attribute. 3439 */ 3440 static ssize_t 3441 _ctl_device_handle_show(struct device *dev, struct device_attribute *attr, 3442 char *buf) 3443 { 3444 struct scsi_device *sdev = to_scsi_device(dev); 3445 struct MPT3SAS_DEVICE *sas_device_priv_data = sdev->hostdata; 3446 3447 return snprintf(buf, PAGE_SIZE, "0x%04x\n", 3448 sas_device_priv_data->sas_target->handle); 3449 } 3450 static DEVICE_ATTR(sas_device_handle, S_IRUGO, _ctl_device_handle_show, NULL); 3451 3452 /** 3453 * _ctl_device_ncq_io_prio_show - send prioritized io commands to device 3454 * @dev: pointer to embedded device 3455 * @attr: ? 3456 * @buf: the buffer returned 3457 * 3458 * A sysfs 'read/write' sdev attribute, only works with SATA 3459 */ 3460 static ssize_t 3461 _ctl_device_ncq_prio_enable_show(struct device *dev, 3462 struct device_attribute *attr, char *buf) 3463 { 3464 struct scsi_device *sdev = to_scsi_device(dev); 3465 struct MPT3SAS_DEVICE *sas_device_priv_data = sdev->hostdata; 3466 3467 return snprintf(buf, PAGE_SIZE, "%d\n", 3468 sas_device_priv_data->ncq_prio_enable); 3469 } 3470 3471 static ssize_t 3472 _ctl_device_ncq_prio_enable_store(struct device *dev, 3473 struct device_attribute *attr, 3474 const char *buf, size_t count) 3475 { 3476 struct scsi_device *sdev = to_scsi_device(dev); 3477 struct MPT3SAS_DEVICE *sas_device_priv_data = sdev->hostdata; 3478 bool ncq_prio_enable = 0; 3479 3480 if (kstrtobool(buf, &ncq_prio_enable)) 3481 return -EINVAL; 3482 3483 if (!scsih_ncq_prio_supp(sdev)) 3484 return -EINVAL; 3485 3486 sas_device_priv_data->ncq_prio_enable = ncq_prio_enable; 3487 return strlen(buf); 3488 } 3489 static DEVICE_ATTR(sas_ncq_prio_enable, S_IRUGO | S_IWUSR, 3490 _ctl_device_ncq_prio_enable_show, 3491 _ctl_device_ncq_prio_enable_store); 3492 3493 struct device_attribute *mpt3sas_dev_attrs[] = { 3494 &dev_attr_sas_address, 3495 &dev_attr_sas_device_handle, 3496 &dev_attr_sas_ncq_prio_enable, 3497 NULL, 3498 }; 3499 3500 /* file operations table for mpt3ctl device */ 3501 static const struct file_operations ctl_fops = { 3502 .owner = THIS_MODULE, 3503 .unlocked_ioctl = _ctl_ioctl, 3504 .poll = _ctl_poll, 3505 .fasync = _ctl_fasync, 3506 #ifdef CONFIG_COMPAT 3507 .compat_ioctl = _ctl_ioctl_compat, 3508 #endif 3509 }; 3510 3511 /* file operations table for mpt2ctl device */ 3512 static const struct file_operations ctl_gen2_fops = { 3513 .owner = THIS_MODULE, 3514 .unlocked_ioctl = _ctl_mpt2_ioctl, 3515 .poll = _ctl_poll, 3516 .fasync = _ctl_fasync, 3517 #ifdef CONFIG_COMPAT 3518 .compat_ioctl = _ctl_mpt2_ioctl_compat, 3519 #endif 3520 }; 3521 3522 static struct miscdevice ctl_dev = { 3523 .minor = MPT3SAS_MINOR, 3524 .name = MPT3SAS_DEV_NAME, 3525 .fops = &ctl_fops, 3526 }; 3527 3528 static struct miscdevice gen2_ctl_dev = { 3529 .minor = MPT2SAS_MINOR, 3530 .name = MPT2SAS_DEV_NAME, 3531 .fops = &ctl_gen2_fops, 3532 }; 3533 3534 /** 3535 * mpt3sas_ctl_init - main entry point for ctl. 3536 * @hbas_to_enumerate: ? 3537 */ 3538 void 3539 mpt3sas_ctl_init(ushort hbas_to_enumerate) 3540 { 3541 async_queue = NULL; 3542 3543 /* Don't register mpt3ctl ioctl device if 3544 * hbas_to_enumarate is one. 3545 */ 3546 if (hbas_to_enumerate != 1) 3547 if (misc_register(&ctl_dev) < 0) 3548 pr_err("%s can't register misc device [minor=%d]\n", 3549 MPT3SAS_DRIVER_NAME, MPT3SAS_MINOR); 3550 3551 /* Don't register mpt3ctl ioctl device if 3552 * hbas_to_enumarate is two. 3553 */ 3554 if (hbas_to_enumerate != 2) 3555 if (misc_register(&gen2_ctl_dev) < 0) 3556 pr_err("%s can't register misc device [minor=%d]\n", 3557 MPT2SAS_DRIVER_NAME, MPT2SAS_MINOR); 3558 3559 init_waitqueue_head(&ctl_poll_wait); 3560 } 3561 3562 /** 3563 * mpt3sas_ctl_exit - exit point for ctl 3564 * @hbas_to_enumerate: ? 3565 */ 3566 void 3567 mpt3sas_ctl_exit(ushort hbas_to_enumerate) 3568 { 3569 struct MPT3SAS_ADAPTER *ioc; 3570 int i; 3571 3572 list_for_each_entry(ioc, &mpt3sas_ioc_list, list) { 3573 3574 /* free memory associated to diag buffers */ 3575 for (i = 0; i < MPI2_DIAG_BUF_TYPE_COUNT; i++) { 3576 if (!ioc->diag_buffer[i]) 3577 continue; 3578 if (!(ioc->diag_buffer_status[i] & 3579 MPT3_DIAG_BUFFER_IS_REGISTERED)) 3580 continue; 3581 if ((ioc->diag_buffer_status[i] & 3582 MPT3_DIAG_BUFFER_IS_RELEASED)) 3583 continue; 3584 dma_free_coherent(&ioc->pdev->dev, 3585 ioc->diag_buffer_sz[i], 3586 ioc->diag_buffer[i], 3587 ioc->diag_buffer_dma[i]); 3588 ioc->diag_buffer[i] = NULL; 3589 ioc->diag_buffer_status[i] = 0; 3590 } 3591 3592 kfree(ioc->event_log); 3593 } 3594 if (hbas_to_enumerate != 1) 3595 misc_deregister(&ctl_dev); 3596 if (hbas_to_enumerate != 2) 3597 misc_deregister(&gen2_ctl_dev); 3598 } 3599