1 /* 2 * Management Module Support for MPT (Message Passing Technology) based 3 * controllers 4 * 5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_ctl.c 6 * Copyright (C) 2012-2014 LSI Corporation 7 * Copyright (C) 2013-2014 Avago Technologies 8 * (mailto: MPT-FusionLinux.pdl@avagotech.com) 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License 12 * as published by the Free Software Foundation; either version 2 13 * of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * NO WARRANTY 21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR 22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT 23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, 24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is 25 * solely responsible for determining the appropriateness of using and 26 * distributing the Program and assumes all risks associated with its 27 * exercise of rights under this Agreement, including but not limited to 28 * the risks and costs of program errors, damage to or loss of data, 29 * programs or equipment, and unavailability or interruption of operations. 30 31 * DISCLAIMER OF LIABILITY 32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY 33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND 35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED 38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES 39 40 * You should have received a copy of the GNU General Public License 41 * along with this program; if not, write to the Free Software 42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, 43 * USA. 44 */ 45 46 #include <linux/kernel.h> 47 #include <linux/module.h> 48 #include <linux/errno.h> 49 #include <linux/init.h> 50 #include <linux/slab.h> 51 #include <linux/types.h> 52 #include <linux/pci.h> 53 #include <linux/delay.h> 54 #include <linux/compat.h> 55 #include <linux/poll.h> 56 57 #include <linux/io.h> 58 #include <linux/uaccess.h> 59 60 #include "mpt3sas_base.h" 61 #include "mpt3sas_ctl.h" 62 63 64 static struct fasync_struct *async_queue; 65 static DECLARE_WAIT_QUEUE_HEAD(ctl_poll_wait); 66 67 68 /** 69 * enum block_state - blocking state 70 * @NON_BLOCKING: non blocking 71 * @BLOCKING: blocking 72 * 73 * These states are for ioctls that need to wait for a response 74 * from firmware, so they probably require sleep. 75 */ 76 enum block_state { 77 NON_BLOCKING, 78 BLOCKING, 79 }; 80 81 /** 82 * _ctl_display_some_debug - debug routine 83 * @ioc: per adapter object 84 * @smid: system request message index 85 * @calling_function_name: string pass from calling function 86 * @mpi_reply: reply message frame 87 * Context: none. 88 * 89 * Function for displaying debug info helpful when debugging issues 90 * in this module. 91 */ 92 static void 93 _ctl_display_some_debug(struct MPT3SAS_ADAPTER *ioc, u16 smid, 94 char *calling_function_name, MPI2DefaultReply_t *mpi_reply) 95 { 96 Mpi2ConfigRequest_t *mpi_request; 97 char *desc = NULL; 98 99 if (!(ioc->logging_level & MPT_DEBUG_IOCTL)) 100 return; 101 102 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 103 switch (mpi_request->Function) { 104 case MPI2_FUNCTION_SCSI_IO_REQUEST: 105 { 106 Mpi2SCSIIORequest_t *scsi_request = 107 (Mpi2SCSIIORequest_t *)mpi_request; 108 109 snprintf(ioc->tmp_string, MPT_STRING_LENGTH, 110 "scsi_io, cmd(0x%02x), cdb_len(%d)", 111 scsi_request->CDB.CDB32[0], 112 le16_to_cpu(scsi_request->IoFlags) & 0xF); 113 desc = ioc->tmp_string; 114 break; 115 } 116 case MPI2_FUNCTION_SCSI_TASK_MGMT: 117 desc = "task_mgmt"; 118 break; 119 case MPI2_FUNCTION_IOC_INIT: 120 desc = "ioc_init"; 121 break; 122 case MPI2_FUNCTION_IOC_FACTS: 123 desc = "ioc_facts"; 124 break; 125 case MPI2_FUNCTION_CONFIG: 126 { 127 Mpi2ConfigRequest_t *config_request = 128 (Mpi2ConfigRequest_t *)mpi_request; 129 130 snprintf(ioc->tmp_string, MPT_STRING_LENGTH, 131 "config, type(0x%02x), ext_type(0x%02x), number(%d)", 132 (config_request->Header.PageType & 133 MPI2_CONFIG_PAGETYPE_MASK), config_request->ExtPageType, 134 config_request->Header.PageNumber); 135 desc = ioc->tmp_string; 136 break; 137 } 138 case MPI2_FUNCTION_PORT_FACTS: 139 desc = "port_facts"; 140 break; 141 case MPI2_FUNCTION_PORT_ENABLE: 142 desc = "port_enable"; 143 break; 144 case MPI2_FUNCTION_EVENT_NOTIFICATION: 145 desc = "event_notification"; 146 break; 147 case MPI2_FUNCTION_FW_DOWNLOAD: 148 desc = "fw_download"; 149 break; 150 case MPI2_FUNCTION_FW_UPLOAD: 151 desc = "fw_upload"; 152 break; 153 case MPI2_FUNCTION_RAID_ACTION: 154 desc = "raid_action"; 155 break; 156 case MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH: 157 { 158 Mpi2SCSIIORequest_t *scsi_request = 159 (Mpi2SCSIIORequest_t *)mpi_request; 160 161 snprintf(ioc->tmp_string, MPT_STRING_LENGTH, 162 "raid_pass, cmd(0x%02x), cdb_len(%d)", 163 scsi_request->CDB.CDB32[0], 164 le16_to_cpu(scsi_request->IoFlags) & 0xF); 165 desc = ioc->tmp_string; 166 break; 167 } 168 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL: 169 desc = "sas_iounit_cntl"; 170 break; 171 case MPI2_FUNCTION_SATA_PASSTHROUGH: 172 desc = "sata_pass"; 173 break; 174 case MPI2_FUNCTION_DIAG_BUFFER_POST: 175 desc = "diag_buffer_post"; 176 break; 177 case MPI2_FUNCTION_DIAG_RELEASE: 178 desc = "diag_release"; 179 break; 180 case MPI2_FUNCTION_SMP_PASSTHROUGH: 181 desc = "smp_passthrough"; 182 break; 183 } 184 185 if (!desc) 186 return; 187 188 ioc_info(ioc, "%s: %s, smid(%d)\n", calling_function_name, desc, smid); 189 190 if (!mpi_reply) 191 return; 192 193 if (mpi_reply->IOCStatus || mpi_reply->IOCLogInfo) 194 ioc_info(ioc, "\tiocstatus(0x%04x), loginfo(0x%08x)\n", 195 le16_to_cpu(mpi_reply->IOCStatus), 196 le32_to_cpu(mpi_reply->IOCLogInfo)); 197 198 if (mpi_request->Function == MPI2_FUNCTION_SCSI_IO_REQUEST || 199 mpi_request->Function == 200 MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH) { 201 Mpi2SCSIIOReply_t *scsi_reply = 202 (Mpi2SCSIIOReply_t *)mpi_reply; 203 struct _sas_device *sas_device = NULL; 204 struct _pcie_device *pcie_device = NULL; 205 206 sas_device = mpt3sas_get_sdev_by_handle(ioc, 207 le16_to_cpu(scsi_reply->DevHandle)); 208 if (sas_device) { 209 ioc_warn(ioc, "\tsas_address(0x%016llx), phy(%d)\n", 210 (u64)sas_device->sas_address, 211 sas_device->phy); 212 ioc_warn(ioc, "\tenclosure_logical_id(0x%016llx), slot(%d)\n", 213 (u64)sas_device->enclosure_logical_id, 214 sas_device->slot); 215 sas_device_put(sas_device); 216 } 217 if (!sas_device) { 218 pcie_device = mpt3sas_get_pdev_by_handle(ioc, 219 le16_to_cpu(scsi_reply->DevHandle)); 220 if (pcie_device) { 221 ioc_warn(ioc, "\tWWID(0x%016llx), port(%d)\n", 222 (unsigned long long)pcie_device->wwid, 223 pcie_device->port_num); 224 if (pcie_device->enclosure_handle != 0) 225 ioc_warn(ioc, "\tenclosure_logical_id(0x%016llx), slot(%d)\n", 226 (u64)pcie_device->enclosure_logical_id, 227 pcie_device->slot); 228 pcie_device_put(pcie_device); 229 } 230 } 231 if (scsi_reply->SCSIState || scsi_reply->SCSIStatus) 232 ioc_info(ioc, "\tscsi_state(0x%02x), scsi_status(0x%02x)\n", 233 scsi_reply->SCSIState, 234 scsi_reply->SCSIStatus); 235 } 236 } 237 238 /** 239 * mpt3sas_ctl_done - ctl module completion routine 240 * @ioc: per adapter object 241 * @smid: system request message index 242 * @msix_index: MSIX table index supplied by the OS 243 * @reply: reply message frame(lower 32bit addr) 244 * Context: none. 245 * 246 * The callback handler when using ioc->ctl_cb_idx. 247 * 248 * Return: 1 meaning mf should be freed from _base_interrupt 249 * 0 means the mf is freed from this function. 250 */ 251 u8 252 mpt3sas_ctl_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 253 u32 reply) 254 { 255 MPI2DefaultReply_t *mpi_reply; 256 Mpi2SCSIIOReply_t *scsiio_reply; 257 Mpi26NVMeEncapsulatedErrorReply_t *nvme_error_reply; 258 const void *sense_data; 259 u32 sz; 260 261 if (ioc->ctl_cmds.status == MPT3_CMD_NOT_USED) 262 return 1; 263 if (ioc->ctl_cmds.smid != smid) 264 return 1; 265 ioc->ctl_cmds.status |= MPT3_CMD_COMPLETE; 266 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 267 if (mpi_reply) { 268 memcpy(ioc->ctl_cmds.reply, mpi_reply, mpi_reply->MsgLength*4); 269 ioc->ctl_cmds.status |= MPT3_CMD_REPLY_VALID; 270 /* get sense data */ 271 if (mpi_reply->Function == MPI2_FUNCTION_SCSI_IO_REQUEST || 272 mpi_reply->Function == 273 MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH) { 274 scsiio_reply = (Mpi2SCSIIOReply_t *)mpi_reply; 275 if (scsiio_reply->SCSIState & 276 MPI2_SCSI_STATE_AUTOSENSE_VALID) { 277 sz = min_t(u32, SCSI_SENSE_BUFFERSIZE, 278 le32_to_cpu(scsiio_reply->SenseCount)); 279 sense_data = mpt3sas_base_get_sense_buffer(ioc, 280 smid); 281 memcpy(ioc->ctl_cmds.sense, sense_data, sz); 282 } 283 } 284 /* 285 * Get Error Response data for NVMe device. The ctl_cmds.sense 286 * buffer is used to store the Error Response data. 287 */ 288 if (mpi_reply->Function == MPI2_FUNCTION_NVME_ENCAPSULATED) { 289 nvme_error_reply = 290 (Mpi26NVMeEncapsulatedErrorReply_t *)mpi_reply; 291 sz = min_t(u32, NVME_ERROR_RESPONSE_SIZE, 292 le16_to_cpu(nvme_error_reply->ErrorResponseCount)); 293 sense_data = mpt3sas_base_get_sense_buffer(ioc, smid); 294 memcpy(ioc->ctl_cmds.sense, sense_data, sz); 295 } 296 } 297 298 _ctl_display_some_debug(ioc, smid, "ctl_done", mpi_reply); 299 ioc->ctl_cmds.status &= ~MPT3_CMD_PENDING; 300 complete(&ioc->ctl_cmds.done); 301 return 1; 302 } 303 304 /** 305 * _ctl_check_event_type - determines when an event needs logging 306 * @ioc: per adapter object 307 * @event: firmware event 308 * 309 * The bitmask in ioc->event_type[] indicates which events should be 310 * be saved in the driver event_log. This bitmask is set by application. 311 * 312 * Return: 1 when event should be captured, or zero means no match. 313 */ 314 static int 315 _ctl_check_event_type(struct MPT3SAS_ADAPTER *ioc, u16 event) 316 { 317 u16 i; 318 u32 desired_event; 319 320 if (event >= 128 || !event || !ioc->event_log) 321 return 0; 322 323 desired_event = (1 << (event % 32)); 324 if (!desired_event) 325 desired_event = 1; 326 i = event / 32; 327 return desired_event & ioc->event_type[i]; 328 } 329 330 /** 331 * mpt3sas_ctl_add_to_event_log - add event 332 * @ioc: per adapter object 333 * @mpi_reply: reply message frame 334 */ 335 void 336 mpt3sas_ctl_add_to_event_log(struct MPT3SAS_ADAPTER *ioc, 337 Mpi2EventNotificationReply_t *mpi_reply) 338 { 339 struct MPT3_IOCTL_EVENTS *event_log; 340 u16 event; 341 int i; 342 u32 sz, event_data_sz; 343 u8 send_aen = 0; 344 345 if (!ioc->event_log) 346 return; 347 348 event = le16_to_cpu(mpi_reply->Event); 349 350 if (_ctl_check_event_type(ioc, event)) { 351 352 /* insert entry into circular event_log */ 353 i = ioc->event_context % MPT3SAS_CTL_EVENT_LOG_SIZE; 354 event_log = ioc->event_log; 355 event_log[i].event = event; 356 event_log[i].context = ioc->event_context++; 357 358 event_data_sz = le16_to_cpu(mpi_reply->EventDataLength)*4; 359 sz = min_t(u32, event_data_sz, MPT3_EVENT_DATA_SIZE); 360 memset(event_log[i].data, 0, MPT3_EVENT_DATA_SIZE); 361 memcpy(event_log[i].data, mpi_reply->EventData, sz); 362 send_aen = 1; 363 } 364 365 /* This aen_event_read_flag flag is set until the 366 * application has read the event log. 367 * For MPI2_EVENT_LOG_ENTRY_ADDED, we always notify. 368 */ 369 if (event == MPI2_EVENT_LOG_ENTRY_ADDED || 370 (send_aen && !ioc->aen_event_read_flag)) { 371 ioc->aen_event_read_flag = 1; 372 wake_up_interruptible(&ctl_poll_wait); 373 if (async_queue) 374 kill_fasync(&async_queue, SIGIO, POLL_IN); 375 } 376 } 377 378 /** 379 * mpt3sas_ctl_event_callback - firmware event handler (called at ISR time) 380 * @ioc: per adapter object 381 * @msix_index: MSIX table index supplied by the OS 382 * @reply: reply message frame(lower 32bit addr) 383 * Context: interrupt. 384 * 385 * This function merely adds a new work task into ioc->firmware_event_thread. 386 * The tasks are worked from _firmware_event_work in user context. 387 * 388 * Return: 1 meaning mf should be freed from _base_interrupt 389 * 0 means the mf is freed from this function. 390 */ 391 u8 392 mpt3sas_ctl_event_callback(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, 393 u32 reply) 394 { 395 Mpi2EventNotificationReply_t *mpi_reply; 396 397 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 398 if (mpi_reply) 399 mpt3sas_ctl_add_to_event_log(ioc, mpi_reply); 400 return 1; 401 } 402 403 /** 404 * _ctl_verify_adapter - validates ioc_number passed from application 405 * @ioc_number: ? 406 * @iocpp: The ioc pointer is returned in this. 407 * @mpi_version: will be MPI2_VERSION for mpt2ctl ioctl device & 408 * MPI25_VERSION | MPI26_VERSION for mpt3ctl ioctl device. 409 * 410 * Return: (-1) means error, else ioc_number. 411 */ 412 static int 413 _ctl_verify_adapter(int ioc_number, struct MPT3SAS_ADAPTER **iocpp, 414 int mpi_version) 415 { 416 struct MPT3SAS_ADAPTER *ioc; 417 int version = 0; 418 /* global ioc lock to protect controller on list operations */ 419 spin_lock(&gioc_lock); 420 list_for_each_entry(ioc, &mpt3sas_ioc_list, list) { 421 if (ioc->id != ioc_number) 422 continue; 423 /* Check whether this ioctl command is from right 424 * ioctl device or not, if not continue the search. 425 */ 426 version = ioc->hba_mpi_version_belonged; 427 /* MPI25_VERSION and MPI26_VERSION uses same ioctl 428 * device. 429 */ 430 if (mpi_version == (MPI25_VERSION | MPI26_VERSION)) { 431 if ((version == MPI25_VERSION) || 432 (version == MPI26_VERSION)) 433 goto out; 434 else 435 continue; 436 } else { 437 if (version != mpi_version) 438 continue; 439 } 440 out: 441 spin_unlock(&gioc_lock); 442 *iocpp = ioc; 443 return ioc_number; 444 } 445 spin_unlock(&gioc_lock); 446 *iocpp = NULL; 447 return -1; 448 } 449 450 /** 451 * mpt3sas_ctl_reset_handler - reset callback handler (for ctl) 452 * @ioc: per adapter object 453 * 454 * The handler for doing any required cleanup or initialization. 455 */ 456 void mpt3sas_ctl_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc) 457 { 458 int i; 459 u8 issue_reset; 460 461 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__)); 462 for (i = 0; i < MPI2_DIAG_BUF_TYPE_COUNT; i++) { 463 if (!(ioc->diag_buffer_status[i] & 464 MPT3_DIAG_BUFFER_IS_REGISTERED)) 465 continue; 466 if ((ioc->diag_buffer_status[i] & 467 MPT3_DIAG_BUFFER_IS_RELEASED)) 468 continue; 469 470 /* 471 * add a log message to indicate the release 472 */ 473 ioc_info(ioc, 474 "%s: Releasing the trace buffer due to adapter reset.", 475 __func__); 476 mpt3sas_send_diag_release(ioc, i, &issue_reset); 477 } 478 } 479 480 /** 481 * mpt3sas_ctl_reset_handler - reset callback handler (for ctl) 482 * @ioc: per adapter object 483 * 484 * The handler for doing any required cleanup or initialization. 485 */ 486 void mpt3sas_ctl_after_reset_handler(struct MPT3SAS_ADAPTER *ioc) 487 { 488 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_AFTER_RESET\n", __func__)); 489 if (ioc->ctl_cmds.status & MPT3_CMD_PENDING) { 490 ioc->ctl_cmds.status |= MPT3_CMD_RESET; 491 mpt3sas_base_free_smid(ioc, ioc->ctl_cmds.smid); 492 complete(&ioc->ctl_cmds.done); 493 } 494 } 495 496 /** 497 * mpt3sas_ctl_reset_handler - reset callback handler (for ctl) 498 * @ioc: per adapter object 499 * 500 * The handler for doing any required cleanup or initialization. 501 */ 502 void mpt3sas_ctl_reset_done_handler(struct MPT3SAS_ADAPTER *ioc) 503 { 504 int i; 505 506 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__)); 507 508 for (i = 0; i < MPI2_DIAG_BUF_TYPE_COUNT; i++) { 509 if (!(ioc->diag_buffer_status[i] & 510 MPT3_DIAG_BUFFER_IS_REGISTERED)) 511 continue; 512 if ((ioc->diag_buffer_status[i] & 513 MPT3_DIAG_BUFFER_IS_RELEASED)) 514 continue; 515 ioc->diag_buffer_status[i] |= 516 MPT3_DIAG_BUFFER_IS_DIAG_RESET; 517 } 518 } 519 520 /** 521 * _ctl_fasync - 522 * @fd: ? 523 * @filep: ? 524 * @mode: ? 525 * 526 * Called when application request fasyn callback handler. 527 */ 528 static int 529 _ctl_fasync(int fd, struct file *filep, int mode) 530 { 531 return fasync_helper(fd, filep, mode, &async_queue); 532 } 533 534 /** 535 * _ctl_poll - 536 * @filep: ? 537 * @wait: ? 538 * 539 */ 540 static __poll_t 541 _ctl_poll(struct file *filep, poll_table *wait) 542 { 543 struct MPT3SAS_ADAPTER *ioc; 544 545 poll_wait(filep, &ctl_poll_wait, wait); 546 547 /* global ioc lock to protect controller on list operations */ 548 spin_lock(&gioc_lock); 549 list_for_each_entry(ioc, &mpt3sas_ioc_list, list) { 550 if (ioc->aen_event_read_flag) { 551 spin_unlock(&gioc_lock); 552 return EPOLLIN | EPOLLRDNORM; 553 } 554 } 555 spin_unlock(&gioc_lock); 556 return 0; 557 } 558 559 /** 560 * _ctl_set_task_mid - assign an active smid to tm request 561 * @ioc: per adapter object 562 * @karg: (struct mpt3_ioctl_command) 563 * @tm_request: pointer to mf from user space 564 * 565 * Return: 0 when an smid if found, else fail. 566 * during failure, the reply frame is filled. 567 */ 568 static int 569 _ctl_set_task_mid(struct MPT3SAS_ADAPTER *ioc, struct mpt3_ioctl_command *karg, 570 Mpi2SCSITaskManagementRequest_t *tm_request) 571 { 572 u8 found = 0; 573 u16 smid; 574 u16 handle; 575 struct scsi_cmnd *scmd; 576 struct MPT3SAS_DEVICE *priv_data; 577 Mpi2SCSITaskManagementReply_t *tm_reply; 578 u32 sz; 579 u32 lun; 580 char *desc = NULL; 581 582 if (tm_request->TaskType == MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK) 583 desc = "abort_task"; 584 else if (tm_request->TaskType == MPI2_SCSITASKMGMT_TASKTYPE_QUERY_TASK) 585 desc = "query_task"; 586 else 587 return 0; 588 589 lun = scsilun_to_int((struct scsi_lun *)tm_request->LUN); 590 591 handle = le16_to_cpu(tm_request->DevHandle); 592 for (smid = ioc->scsiio_depth; smid && !found; smid--) { 593 struct scsiio_tracker *st; 594 595 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid); 596 if (!scmd) 597 continue; 598 if (lun != scmd->device->lun) 599 continue; 600 priv_data = scmd->device->hostdata; 601 if (priv_data->sas_target == NULL) 602 continue; 603 if (priv_data->sas_target->handle != handle) 604 continue; 605 st = scsi_cmd_priv(scmd); 606 607 /* 608 * If the given TaskMID from the user space is zero, then the 609 * first outstanding smid will be picked up. Otherwise, 610 * targeted smid will be the one. 611 */ 612 if (!tm_request->TaskMID || tm_request->TaskMID == st->smid) { 613 tm_request->TaskMID = cpu_to_le16(st->smid); 614 found = 1; 615 } 616 } 617 618 if (!found) { 619 dctlprintk(ioc, 620 ioc_info(ioc, "%s: handle(0x%04x), lun(%d), no active mid!!\n", 621 desc, le16_to_cpu(tm_request->DevHandle), 622 lun)); 623 tm_reply = ioc->ctl_cmds.reply; 624 tm_reply->DevHandle = tm_request->DevHandle; 625 tm_reply->Function = MPI2_FUNCTION_SCSI_TASK_MGMT; 626 tm_reply->TaskType = tm_request->TaskType; 627 tm_reply->MsgLength = sizeof(Mpi2SCSITaskManagementReply_t)/4; 628 tm_reply->VP_ID = tm_request->VP_ID; 629 tm_reply->VF_ID = tm_request->VF_ID; 630 sz = min_t(u32, karg->max_reply_bytes, ioc->reply_sz); 631 if (copy_to_user(karg->reply_frame_buf_ptr, ioc->ctl_cmds.reply, 632 sz)) 633 pr_err("failure at %s:%d/%s()!\n", __FILE__, 634 __LINE__, __func__); 635 return 1; 636 } 637 638 dctlprintk(ioc, 639 ioc_info(ioc, "%s: handle(0x%04x), lun(%d), task_mid(%d)\n", 640 desc, le16_to_cpu(tm_request->DevHandle), lun, 641 le16_to_cpu(tm_request->TaskMID))); 642 return 0; 643 } 644 645 /** 646 * _ctl_do_mpt_command - main handler for MPT3COMMAND opcode 647 * @ioc: per adapter object 648 * @karg: (struct mpt3_ioctl_command) 649 * @mf: pointer to mf in user space 650 */ 651 static long 652 _ctl_do_mpt_command(struct MPT3SAS_ADAPTER *ioc, struct mpt3_ioctl_command karg, 653 void __user *mf) 654 { 655 MPI2RequestHeader_t *mpi_request = NULL, *request; 656 MPI2DefaultReply_t *mpi_reply; 657 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request = NULL; 658 struct _pcie_device *pcie_device = NULL; 659 u16 smid; 660 u8 timeout; 661 u8 issue_reset; 662 u32 sz, sz_arg; 663 void *psge; 664 void *data_out = NULL; 665 dma_addr_t data_out_dma = 0; 666 size_t data_out_sz = 0; 667 void *data_in = NULL; 668 dma_addr_t data_in_dma = 0; 669 size_t data_in_sz = 0; 670 long ret; 671 u16 device_handle = MPT3SAS_INVALID_DEVICE_HANDLE; 672 673 issue_reset = 0; 674 675 if (ioc->ctl_cmds.status != MPT3_CMD_NOT_USED) { 676 ioc_err(ioc, "%s: ctl_cmd in use\n", __func__); 677 ret = -EAGAIN; 678 goto out; 679 } 680 681 ret = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT); 682 if (ret) 683 goto out; 684 685 mpi_request = kzalloc(ioc->request_sz, GFP_KERNEL); 686 if (!mpi_request) { 687 ioc_err(ioc, "%s: failed obtaining a memory for mpi_request\n", 688 __func__); 689 ret = -ENOMEM; 690 goto out; 691 } 692 693 /* Check for overflow and wraparound */ 694 if (karg.data_sge_offset * 4 > ioc->request_sz || 695 karg.data_sge_offset > (UINT_MAX / 4)) { 696 ret = -EINVAL; 697 goto out; 698 } 699 700 /* copy in request message frame from user */ 701 if (copy_from_user(mpi_request, mf, karg.data_sge_offset*4)) { 702 pr_err("failure at %s:%d/%s()!\n", __FILE__, __LINE__, 703 __func__); 704 ret = -EFAULT; 705 goto out; 706 } 707 708 if (mpi_request->Function == MPI2_FUNCTION_SCSI_TASK_MGMT) { 709 smid = mpt3sas_base_get_smid_hpr(ioc, ioc->ctl_cb_idx); 710 if (!smid) { 711 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 712 ret = -EAGAIN; 713 goto out; 714 } 715 } else { 716 /* Use first reserved smid for passthrough ioctls */ 717 smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1; 718 } 719 720 ret = 0; 721 ioc->ctl_cmds.status = MPT3_CMD_PENDING; 722 memset(ioc->ctl_cmds.reply, 0, ioc->reply_sz); 723 request = mpt3sas_base_get_msg_frame(ioc, smid); 724 memset(request, 0, ioc->request_sz); 725 memcpy(request, mpi_request, karg.data_sge_offset*4); 726 ioc->ctl_cmds.smid = smid; 727 data_out_sz = karg.data_out_size; 728 data_in_sz = karg.data_in_size; 729 730 if (mpi_request->Function == MPI2_FUNCTION_SCSI_IO_REQUEST || 731 mpi_request->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH || 732 mpi_request->Function == MPI2_FUNCTION_SCSI_TASK_MGMT || 733 mpi_request->Function == MPI2_FUNCTION_SATA_PASSTHROUGH || 734 mpi_request->Function == MPI2_FUNCTION_NVME_ENCAPSULATED) { 735 736 device_handle = le16_to_cpu(mpi_request->FunctionDependent1); 737 if (!device_handle || (device_handle > 738 ioc->facts.MaxDevHandle)) { 739 ret = -EINVAL; 740 mpt3sas_base_free_smid(ioc, smid); 741 goto out; 742 } 743 } 744 745 /* obtain dma-able memory for data transfer */ 746 if (data_out_sz) /* WRITE */ { 747 data_out = dma_alloc_coherent(&ioc->pdev->dev, data_out_sz, 748 &data_out_dma, GFP_KERNEL); 749 if (!data_out) { 750 pr_err("failure at %s:%d/%s()!\n", __FILE__, 751 __LINE__, __func__); 752 ret = -ENOMEM; 753 mpt3sas_base_free_smid(ioc, smid); 754 goto out; 755 } 756 if (copy_from_user(data_out, karg.data_out_buf_ptr, 757 data_out_sz)) { 758 pr_err("failure at %s:%d/%s()!\n", __FILE__, 759 __LINE__, __func__); 760 ret = -EFAULT; 761 mpt3sas_base_free_smid(ioc, smid); 762 goto out; 763 } 764 } 765 766 if (data_in_sz) /* READ */ { 767 data_in = dma_alloc_coherent(&ioc->pdev->dev, data_in_sz, 768 &data_in_dma, GFP_KERNEL); 769 if (!data_in) { 770 pr_err("failure at %s:%d/%s()!\n", __FILE__, 771 __LINE__, __func__); 772 ret = -ENOMEM; 773 mpt3sas_base_free_smid(ioc, smid); 774 goto out; 775 } 776 } 777 778 psge = (void *)request + (karg.data_sge_offset*4); 779 780 /* send command to firmware */ 781 _ctl_display_some_debug(ioc, smid, "ctl_request", NULL); 782 783 init_completion(&ioc->ctl_cmds.done); 784 switch (mpi_request->Function) { 785 case MPI2_FUNCTION_NVME_ENCAPSULATED: 786 { 787 nvme_encap_request = (Mpi26NVMeEncapsulatedRequest_t *)request; 788 if (!ioc->pcie_sg_lookup) { 789 dtmprintk(ioc, ioc_info(ioc, 790 "HBA doesn't support NVMe. Rejecting NVMe Encapsulated request.\n" 791 )); 792 793 if (ioc->logging_level & MPT_DEBUG_TM) 794 _debug_dump_mf(nvme_encap_request, 795 ioc->request_sz/4); 796 mpt3sas_base_free_smid(ioc, smid); 797 ret = -EINVAL; 798 goto out; 799 } 800 /* 801 * Get the Physical Address of the sense buffer. 802 * Use Error Response buffer address field to hold the sense 803 * buffer address. 804 * Clear the internal sense buffer, which will potentially hold 805 * the Completion Queue Entry on return, or 0 if no Entry. 806 * Build the PRPs and set direction bits. 807 * Send the request. 808 */ 809 nvme_encap_request->ErrorResponseBaseAddress = 810 cpu_to_le64(ioc->sense_dma & 0xFFFFFFFF00000000UL); 811 nvme_encap_request->ErrorResponseBaseAddress |= 812 cpu_to_le64(le32_to_cpu( 813 mpt3sas_base_get_sense_buffer_dma(ioc, smid))); 814 nvme_encap_request->ErrorResponseAllocationLength = 815 cpu_to_le16(NVME_ERROR_RESPONSE_SIZE); 816 memset(ioc->ctl_cmds.sense, 0, NVME_ERROR_RESPONSE_SIZE); 817 ioc->build_nvme_prp(ioc, smid, nvme_encap_request, 818 data_out_dma, data_out_sz, data_in_dma, data_in_sz); 819 if (test_bit(device_handle, ioc->device_remove_in_progress)) { 820 dtmprintk(ioc, 821 ioc_info(ioc, "handle(0x%04x): ioctl failed due to device removal in progress\n", 822 device_handle)); 823 mpt3sas_base_free_smid(ioc, smid); 824 ret = -EINVAL; 825 goto out; 826 } 827 mpt3sas_base_put_smid_nvme_encap(ioc, smid); 828 break; 829 } 830 case MPI2_FUNCTION_SCSI_IO_REQUEST: 831 case MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH: 832 { 833 Mpi2SCSIIORequest_t *scsiio_request = 834 (Mpi2SCSIIORequest_t *)request; 835 scsiio_request->SenseBufferLength = SCSI_SENSE_BUFFERSIZE; 836 scsiio_request->SenseBufferLowAddress = 837 mpt3sas_base_get_sense_buffer_dma(ioc, smid); 838 memset(ioc->ctl_cmds.sense, 0, SCSI_SENSE_BUFFERSIZE); 839 if (test_bit(device_handle, ioc->device_remove_in_progress)) { 840 dtmprintk(ioc, 841 ioc_info(ioc, "handle(0x%04x) :ioctl failed due to device removal in progress\n", 842 device_handle)); 843 mpt3sas_base_free_smid(ioc, smid); 844 ret = -EINVAL; 845 goto out; 846 } 847 ioc->build_sg(ioc, psge, data_out_dma, data_out_sz, 848 data_in_dma, data_in_sz); 849 if (mpi_request->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) 850 ioc->put_smid_scsi_io(ioc, smid, device_handle); 851 else 852 ioc->put_smid_default(ioc, smid); 853 break; 854 } 855 case MPI2_FUNCTION_SCSI_TASK_MGMT: 856 { 857 Mpi2SCSITaskManagementRequest_t *tm_request = 858 (Mpi2SCSITaskManagementRequest_t *)request; 859 860 dtmprintk(ioc, 861 ioc_info(ioc, "TASK_MGMT: handle(0x%04x), task_type(0x%02x)\n", 862 le16_to_cpu(tm_request->DevHandle), 863 tm_request->TaskType)); 864 ioc->got_task_abort_from_ioctl = 1; 865 if (tm_request->TaskType == 866 MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK || 867 tm_request->TaskType == 868 MPI2_SCSITASKMGMT_TASKTYPE_QUERY_TASK) { 869 if (_ctl_set_task_mid(ioc, &karg, tm_request)) { 870 mpt3sas_base_free_smid(ioc, smid); 871 ioc->got_task_abort_from_ioctl = 0; 872 goto out; 873 } 874 } 875 ioc->got_task_abort_from_ioctl = 0; 876 877 if (test_bit(device_handle, ioc->device_remove_in_progress)) { 878 dtmprintk(ioc, 879 ioc_info(ioc, "handle(0x%04x) :ioctl failed due to device removal in progress\n", 880 device_handle)); 881 mpt3sas_base_free_smid(ioc, smid); 882 ret = -EINVAL; 883 goto out; 884 } 885 mpt3sas_scsih_set_tm_flag(ioc, le16_to_cpu( 886 tm_request->DevHandle)); 887 ioc->build_sg_mpi(ioc, psge, data_out_dma, data_out_sz, 888 data_in_dma, data_in_sz); 889 ioc->put_smid_hi_priority(ioc, smid, 0); 890 break; 891 } 892 case MPI2_FUNCTION_SMP_PASSTHROUGH: 893 { 894 Mpi2SmpPassthroughRequest_t *smp_request = 895 (Mpi2SmpPassthroughRequest_t *)mpi_request; 896 u8 *data; 897 898 /* ioc determines which port to use */ 899 smp_request->PhysicalPort = 0xFF; 900 if (smp_request->PassthroughFlags & 901 MPI2_SMP_PT_REQ_PT_FLAGS_IMMEDIATE) 902 data = (u8 *)&smp_request->SGL; 903 else { 904 if (unlikely(data_out == NULL)) { 905 pr_err("failure at %s:%d/%s()!\n", 906 __FILE__, __LINE__, __func__); 907 mpt3sas_base_free_smid(ioc, smid); 908 ret = -EINVAL; 909 goto out; 910 } 911 data = data_out; 912 } 913 914 if (data[1] == 0x91 && (data[10] == 1 || data[10] == 2)) { 915 ioc->ioc_link_reset_in_progress = 1; 916 ioc->ignore_loginfos = 1; 917 } 918 ioc->build_sg(ioc, psge, data_out_dma, data_out_sz, data_in_dma, 919 data_in_sz); 920 ioc->put_smid_default(ioc, smid); 921 break; 922 } 923 case MPI2_FUNCTION_SATA_PASSTHROUGH: 924 { 925 if (test_bit(device_handle, ioc->device_remove_in_progress)) { 926 dtmprintk(ioc, 927 ioc_info(ioc, "handle(0x%04x) :ioctl failed due to device removal in progress\n", 928 device_handle)); 929 mpt3sas_base_free_smid(ioc, smid); 930 ret = -EINVAL; 931 goto out; 932 } 933 ioc->build_sg(ioc, psge, data_out_dma, data_out_sz, data_in_dma, 934 data_in_sz); 935 ioc->put_smid_default(ioc, smid); 936 break; 937 } 938 case MPI2_FUNCTION_FW_DOWNLOAD: 939 case MPI2_FUNCTION_FW_UPLOAD: 940 { 941 ioc->build_sg(ioc, psge, data_out_dma, data_out_sz, data_in_dma, 942 data_in_sz); 943 ioc->put_smid_default(ioc, smid); 944 break; 945 } 946 case MPI2_FUNCTION_TOOLBOX: 947 { 948 Mpi2ToolboxCleanRequest_t *toolbox_request = 949 (Mpi2ToolboxCleanRequest_t *)mpi_request; 950 951 if ((toolbox_request->Tool == MPI2_TOOLBOX_DIAGNOSTIC_CLI_TOOL) 952 || (toolbox_request->Tool == 953 MPI26_TOOLBOX_BACKEND_PCIE_LANE_MARGIN)) 954 ioc->build_sg(ioc, psge, data_out_dma, data_out_sz, 955 data_in_dma, data_in_sz); 956 else if (toolbox_request->Tool == 957 MPI2_TOOLBOX_MEMORY_MOVE_TOOL) { 958 Mpi2ToolboxMemMoveRequest_t *mem_move_request = 959 (Mpi2ToolboxMemMoveRequest_t *)request; 960 Mpi2SGESimple64_t tmp, *src = NULL, *dst = NULL; 961 962 ioc->build_sg_mpi(ioc, psge, data_out_dma, 963 data_out_sz, data_in_dma, data_in_sz); 964 if (data_out_sz && !data_in_sz) { 965 dst = 966 (Mpi2SGESimple64_t *)&mem_move_request->SGL; 967 src = (void *)dst + ioc->sge_size; 968 969 memcpy(&tmp, src, ioc->sge_size); 970 memcpy(src, dst, ioc->sge_size); 971 memcpy(dst, &tmp, ioc->sge_size); 972 } 973 if (ioc->logging_level & MPT_DEBUG_TM) { 974 ioc_info(ioc, 975 "Mpi2ToolboxMemMoveRequest_t request msg\n"); 976 _debug_dump_mf(mem_move_request, 977 ioc->request_sz/4); 978 } 979 } else 980 ioc->build_sg_mpi(ioc, psge, data_out_dma, data_out_sz, 981 data_in_dma, data_in_sz); 982 ioc->put_smid_default(ioc, smid); 983 break; 984 } 985 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL: 986 { 987 Mpi2SasIoUnitControlRequest_t *sasiounit_request = 988 (Mpi2SasIoUnitControlRequest_t *)mpi_request; 989 990 if (sasiounit_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET 991 || sasiounit_request->Operation == 992 MPI2_SAS_OP_PHY_LINK_RESET) { 993 ioc->ioc_link_reset_in_progress = 1; 994 ioc->ignore_loginfos = 1; 995 } 996 /* drop to default case for posting the request */ 997 } 998 /* fall through */ 999 default: 1000 ioc->build_sg_mpi(ioc, psge, data_out_dma, data_out_sz, 1001 data_in_dma, data_in_sz); 1002 ioc->put_smid_default(ioc, smid); 1003 break; 1004 } 1005 1006 if (karg.timeout < MPT3_IOCTL_DEFAULT_TIMEOUT) 1007 timeout = MPT3_IOCTL_DEFAULT_TIMEOUT; 1008 else 1009 timeout = karg.timeout; 1010 wait_for_completion_timeout(&ioc->ctl_cmds.done, timeout*HZ); 1011 if (mpi_request->Function == MPI2_FUNCTION_SCSI_TASK_MGMT) { 1012 Mpi2SCSITaskManagementRequest_t *tm_request = 1013 (Mpi2SCSITaskManagementRequest_t *)mpi_request; 1014 mpt3sas_scsih_clear_tm_flag(ioc, le16_to_cpu( 1015 tm_request->DevHandle)); 1016 mpt3sas_trigger_master(ioc, MASTER_TRIGGER_TASK_MANAGMENT); 1017 } else if ((mpi_request->Function == MPI2_FUNCTION_SMP_PASSTHROUGH || 1018 mpi_request->Function == MPI2_FUNCTION_SAS_IO_UNIT_CONTROL) && 1019 ioc->ioc_link_reset_in_progress) { 1020 ioc->ioc_link_reset_in_progress = 0; 1021 ioc->ignore_loginfos = 0; 1022 } 1023 if (!(ioc->ctl_cmds.status & MPT3_CMD_COMPLETE)) { 1024 issue_reset = 1025 mpt3sas_base_check_cmd_timeout(ioc, 1026 ioc->ctl_cmds.status, mpi_request, 1027 karg.data_sge_offset); 1028 goto issue_host_reset; 1029 } 1030 1031 mpi_reply = ioc->ctl_cmds.reply; 1032 1033 if (mpi_reply->Function == MPI2_FUNCTION_SCSI_TASK_MGMT && 1034 (ioc->logging_level & MPT_DEBUG_TM)) { 1035 Mpi2SCSITaskManagementReply_t *tm_reply = 1036 (Mpi2SCSITaskManagementReply_t *)mpi_reply; 1037 1038 ioc_info(ioc, "TASK_MGMT: IOCStatus(0x%04x), IOCLogInfo(0x%08x), TerminationCount(0x%08x)\n", 1039 le16_to_cpu(tm_reply->IOCStatus), 1040 le32_to_cpu(tm_reply->IOCLogInfo), 1041 le32_to_cpu(tm_reply->TerminationCount)); 1042 } 1043 1044 /* copy out xdata to user */ 1045 if (data_in_sz) { 1046 if (copy_to_user(karg.data_in_buf_ptr, data_in, 1047 data_in_sz)) { 1048 pr_err("failure at %s:%d/%s()!\n", __FILE__, 1049 __LINE__, __func__); 1050 ret = -ENODATA; 1051 goto out; 1052 } 1053 } 1054 1055 /* copy out reply message frame to user */ 1056 if (karg.max_reply_bytes) { 1057 sz = min_t(u32, karg.max_reply_bytes, ioc->reply_sz); 1058 if (copy_to_user(karg.reply_frame_buf_ptr, ioc->ctl_cmds.reply, 1059 sz)) { 1060 pr_err("failure at %s:%d/%s()!\n", __FILE__, 1061 __LINE__, __func__); 1062 ret = -ENODATA; 1063 goto out; 1064 } 1065 } 1066 1067 /* copy out sense/NVMe Error Response to user */ 1068 if (karg.max_sense_bytes && (mpi_request->Function == 1069 MPI2_FUNCTION_SCSI_IO_REQUEST || mpi_request->Function == 1070 MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH || mpi_request->Function == 1071 MPI2_FUNCTION_NVME_ENCAPSULATED)) { 1072 if (karg.sense_data_ptr == NULL) { 1073 ioc_info(ioc, "Response buffer provided by application is NULL; Response data will not be returned\n"); 1074 goto out; 1075 } 1076 sz_arg = (mpi_request->Function == 1077 MPI2_FUNCTION_NVME_ENCAPSULATED) ? NVME_ERROR_RESPONSE_SIZE : 1078 SCSI_SENSE_BUFFERSIZE; 1079 sz = min_t(u32, karg.max_sense_bytes, sz_arg); 1080 if (copy_to_user(karg.sense_data_ptr, ioc->ctl_cmds.sense, 1081 sz)) { 1082 pr_err("failure at %s:%d/%s()!\n", __FILE__, 1083 __LINE__, __func__); 1084 ret = -ENODATA; 1085 goto out; 1086 } 1087 } 1088 1089 issue_host_reset: 1090 if (issue_reset) { 1091 ret = -ENODATA; 1092 if ((mpi_request->Function == MPI2_FUNCTION_SCSI_IO_REQUEST || 1093 mpi_request->Function == 1094 MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH || 1095 mpi_request->Function == MPI2_FUNCTION_SATA_PASSTHROUGH)) { 1096 ioc_info(ioc, "issue target reset: handle = (0x%04x)\n", 1097 le16_to_cpu(mpi_request->FunctionDependent1)); 1098 mpt3sas_halt_firmware(ioc); 1099 pcie_device = mpt3sas_get_pdev_by_handle(ioc, 1100 le16_to_cpu(mpi_request->FunctionDependent1)); 1101 if (pcie_device && (!ioc->tm_custom_handling) && 1102 (!(mpt3sas_scsih_is_pcie_scsi_device( 1103 pcie_device->device_info)))) 1104 mpt3sas_scsih_issue_locked_tm(ioc, 1105 le16_to_cpu(mpi_request->FunctionDependent1), 1106 0, MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET, 0, 1107 0, pcie_device->reset_timeout, 1108 MPI26_SCSITASKMGMT_MSGFLAGS_PROTOCOL_LVL_RST_PCIE); 1109 else 1110 mpt3sas_scsih_issue_locked_tm(ioc, 1111 le16_to_cpu(mpi_request->FunctionDependent1), 1112 0, MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET, 0, 1113 0, 30, MPI2_SCSITASKMGMT_MSGFLAGS_LINK_RESET); 1114 } else 1115 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 1116 } 1117 1118 out: 1119 if (pcie_device) 1120 pcie_device_put(pcie_device); 1121 1122 /* free memory associated with sg buffers */ 1123 if (data_in) 1124 dma_free_coherent(&ioc->pdev->dev, data_in_sz, data_in, 1125 data_in_dma); 1126 1127 if (data_out) 1128 dma_free_coherent(&ioc->pdev->dev, data_out_sz, data_out, 1129 data_out_dma); 1130 1131 kfree(mpi_request); 1132 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED; 1133 return ret; 1134 } 1135 1136 /** 1137 * _ctl_getiocinfo - main handler for MPT3IOCINFO opcode 1138 * @ioc: per adapter object 1139 * @arg: user space buffer containing ioctl content 1140 */ 1141 static long 1142 _ctl_getiocinfo(struct MPT3SAS_ADAPTER *ioc, void __user *arg) 1143 { 1144 struct mpt3_ioctl_iocinfo karg; 1145 1146 dctlprintk(ioc, ioc_info(ioc, "%s: enter\n", 1147 __func__)); 1148 1149 memset(&karg, 0 , sizeof(karg)); 1150 if (ioc->pfacts) 1151 karg.port_number = ioc->pfacts[0].PortNumber; 1152 karg.hw_rev = ioc->pdev->revision; 1153 karg.pci_id = ioc->pdev->device; 1154 karg.subsystem_device = ioc->pdev->subsystem_device; 1155 karg.subsystem_vendor = ioc->pdev->subsystem_vendor; 1156 karg.pci_information.u.bits.bus = ioc->pdev->bus->number; 1157 karg.pci_information.u.bits.device = PCI_SLOT(ioc->pdev->devfn); 1158 karg.pci_information.u.bits.function = PCI_FUNC(ioc->pdev->devfn); 1159 karg.pci_information.segment_id = pci_domain_nr(ioc->pdev->bus); 1160 karg.firmware_version = ioc->facts.FWVersion.Word; 1161 strcpy(karg.driver_version, ioc->driver_name); 1162 strcat(karg.driver_version, "-"); 1163 switch (ioc->hba_mpi_version_belonged) { 1164 case MPI2_VERSION: 1165 if (ioc->is_warpdrive) 1166 karg.adapter_type = MPT2_IOCTL_INTERFACE_SAS2_SSS6200; 1167 else 1168 karg.adapter_type = MPT2_IOCTL_INTERFACE_SAS2; 1169 strcat(karg.driver_version, MPT2SAS_DRIVER_VERSION); 1170 break; 1171 case MPI25_VERSION: 1172 case MPI26_VERSION: 1173 if (ioc->is_gen35_ioc) 1174 karg.adapter_type = MPT3_IOCTL_INTERFACE_SAS35; 1175 else 1176 karg.adapter_type = MPT3_IOCTL_INTERFACE_SAS3; 1177 strcat(karg.driver_version, MPT3SAS_DRIVER_VERSION); 1178 break; 1179 } 1180 karg.bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion); 1181 1182 if (copy_to_user(arg, &karg, sizeof(karg))) { 1183 pr_err("failure at %s:%d/%s()!\n", 1184 __FILE__, __LINE__, __func__); 1185 return -EFAULT; 1186 } 1187 return 0; 1188 } 1189 1190 /** 1191 * _ctl_eventquery - main handler for MPT3EVENTQUERY opcode 1192 * @ioc: per adapter object 1193 * @arg: user space buffer containing ioctl content 1194 */ 1195 static long 1196 _ctl_eventquery(struct MPT3SAS_ADAPTER *ioc, void __user *arg) 1197 { 1198 struct mpt3_ioctl_eventquery karg; 1199 1200 if (copy_from_user(&karg, arg, sizeof(karg))) { 1201 pr_err("failure at %s:%d/%s()!\n", 1202 __FILE__, __LINE__, __func__); 1203 return -EFAULT; 1204 } 1205 1206 dctlprintk(ioc, ioc_info(ioc, "%s: enter\n", 1207 __func__)); 1208 1209 karg.event_entries = MPT3SAS_CTL_EVENT_LOG_SIZE; 1210 memcpy(karg.event_types, ioc->event_type, 1211 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS * sizeof(u32)); 1212 1213 if (copy_to_user(arg, &karg, sizeof(karg))) { 1214 pr_err("failure at %s:%d/%s()!\n", 1215 __FILE__, __LINE__, __func__); 1216 return -EFAULT; 1217 } 1218 return 0; 1219 } 1220 1221 /** 1222 * _ctl_eventenable - main handler for MPT3EVENTENABLE opcode 1223 * @ioc: per adapter object 1224 * @arg: user space buffer containing ioctl content 1225 */ 1226 static long 1227 _ctl_eventenable(struct MPT3SAS_ADAPTER *ioc, void __user *arg) 1228 { 1229 struct mpt3_ioctl_eventenable karg; 1230 1231 if (copy_from_user(&karg, arg, sizeof(karg))) { 1232 pr_err("failure at %s:%d/%s()!\n", 1233 __FILE__, __LINE__, __func__); 1234 return -EFAULT; 1235 } 1236 1237 dctlprintk(ioc, ioc_info(ioc, "%s: enter\n", 1238 __func__)); 1239 1240 memcpy(ioc->event_type, karg.event_types, 1241 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS * sizeof(u32)); 1242 mpt3sas_base_validate_event_type(ioc, ioc->event_type); 1243 1244 if (ioc->event_log) 1245 return 0; 1246 /* initialize event_log */ 1247 ioc->event_context = 0; 1248 ioc->aen_event_read_flag = 0; 1249 ioc->event_log = kcalloc(MPT3SAS_CTL_EVENT_LOG_SIZE, 1250 sizeof(struct MPT3_IOCTL_EVENTS), GFP_KERNEL); 1251 if (!ioc->event_log) { 1252 pr_err("failure at %s:%d/%s()!\n", 1253 __FILE__, __LINE__, __func__); 1254 return -ENOMEM; 1255 } 1256 return 0; 1257 } 1258 1259 /** 1260 * _ctl_eventreport - main handler for MPT3EVENTREPORT opcode 1261 * @ioc: per adapter object 1262 * @arg: user space buffer containing ioctl content 1263 */ 1264 static long 1265 _ctl_eventreport(struct MPT3SAS_ADAPTER *ioc, void __user *arg) 1266 { 1267 struct mpt3_ioctl_eventreport karg; 1268 u32 number_bytes, max_events, max; 1269 struct mpt3_ioctl_eventreport __user *uarg = arg; 1270 1271 if (copy_from_user(&karg, arg, sizeof(karg))) { 1272 pr_err("failure at %s:%d/%s()!\n", 1273 __FILE__, __LINE__, __func__); 1274 return -EFAULT; 1275 } 1276 1277 dctlprintk(ioc, ioc_info(ioc, "%s: enter\n", 1278 __func__)); 1279 1280 number_bytes = karg.hdr.max_data_size - 1281 sizeof(struct mpt3_ioctl_header); 1282 max_events = number_bytes/sizeof(struct MPT3_IOCTL_EVENTS); 1283 max = min_t(u32, MPT3SAS_CTL_EVENT_LOG_SIZE, max_events); 1284 1285 /* If fewer than 1 event is requested, there must have 1286 * been some type of error. 1287 */ 1288 if (!max || !ioc->event_log) 1289 return -ENODATA; 1290 1291 number_bytes = max * sizeof(struct MPT3_IOCTL_EVENTS); 1292 if (copy_to_user(uarg->event_data, ioc->event_log, number_bytes)) { 1293 pr_err("failure at %s:%d/%s()!\n", 1294 __FILE__, __LINE__, __func__); 1295 return -EFAULT; 1296 } 1297 1298 /* reset flag so SIGIO can restart */ 1299 ioc->aen_event_read_flag = 0; 1300 return 0; 1301 } 1302 1303 /** 1304 * _ctl_do_reset - main handler for MPT3HARDRESET opcode 1305 * @ioc: per adapter object 1306 * @arg: user space buffer containing ioctl content 1307 */ 1308 static long 1309 _ctl_do_reset(struct MPT3SAS_ADAPTER *ioc, void __user *arg) 1310 { 1311 struct mpt3_ioctl_diag_reset karg; 1312 int retval; 1313 1314 if (copy_from_user(&karg, arg, sizeof(karg))) { 1315 pr_err("failure at %s:%d/%s()!\n", 1316 __FILE__, __LINE__, __func__); 1317 return -EFAULT; 1318 } 1319 1320 if (ioc->shost_recovery || ioc->pci_error_recovery || 1321 ioc->is_driver_loading) 1322 return -EAGAIN; 1323 1324 dctlprintk(ioc, ioc_info(ioc, "%s: enter\n", 1325 __func__)); 1326 1327 retval = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 1328 ioc_info(ioc, "host reset: %s\n", ((!retval) ? "SUCCESS" : "FAILED")); 1329 return 0; 1330 } 1331 1332 /** 1333 * _ctl_btdh_search_sas_device - searching for sas device 1334 * @ioc: per adapter object 1335 * @btdh: btdh ioctl payload 1336 */ 1337 static int 1338 _ctl_btdh_search_sas_device(struct MPT3SAS_ADAPTER *ioc, 1339 struct mpt3_ioctl_btdh_mapping *btdh) 1340 { 1341 struct _sas_device *sas_device; 1342 unsigned long flags; 1343 int rc = 0; 1344 1345 if (list_empty(&ioc->sas_device_list)) 1346 return rc; 1347 1348 spin_lock_irqsave(&ioc->sas_device_lock, flags); 1349 list_for_each_entry(sas_device, &ioc->sas_device_list, list) { 1350 if (btdh->bus == 0xFFFFFFFF && btdh->id == 0xFFFFFFFF && 1351 btdh->handle == sas_device->handle) { 1352 btdh->bus = sas_device->channel; 1353 btdh->id = sas_device->id; 1354 rc = 1; 1355 goto out; 1356 } else if (btdh->bus == sas_device->channel && btdh->id == 1357 sas_device->id && btdh->handle == 0xFFFF) { 1358 btdh->handle = sas_device->handle; 1359 rc = 1; 1360 goto out; 1361 } 1362 } 1363 out: 1364 spin_unlock_irqrestore(&ioc->sas_device_lock, flags); 1365 return rc; 1366 } 1367 1368 /** 1369 * _ctl_btdh_search_pcie_device - searching for pcie device 1370 * @ioc: per adapter object 1371 * @btdh: btdh ioctl payload 1372 */ 1373 static int 1374 _ctl_btdh_search_pcie_device(struct MPT3SAS_ADAPTER *ioc, 1375 struct mpt3_ioctl_btdh_mapping *btdh) 1376 { 1377 struct _pcie_device *pcie_device; 1378 unsigned long flags; 1379 int rc = 0; 1380 1381 if (list_empty(&ioc->pcie_device_list)) 1382 return rc; 1383 1384 spin_lock_irqsave(&ioc->pcie_device_lock, flags); 1385 list_for_each_entry(pcie_device, &ioc->pcie_device_list, list) { 1386 if (btdh->bus == 0xFFFFFFFF && btdh->id == 0xFFFFFFFF && 1387 btdh->handle == pcie_device->handle) { 1388 btdh->bus = pcie_device->channel; 1389 btdh->id = pcie_device->id; 1390 rc = 1; 1391 goto out; 1392 } else if (btdh->bus == pcie_device->channel && btdh->id == 1393 pcie_device->id && btdh->handle == 0xFFFF) { 1394 btdh->handle = pcie_device->handle; 1395 rc = 1; 1396 goto out; 1397 } 1398 } 1399 out: 1400 spin_unlock_irqrestore(&ioc->pcie_device_lock, flags); 1401 return rc; 1402 } 1403 1404 /** 1405 * _ctl_btdh_search_raid_device - searching for raid device 1406 * @ioc: per adapter object 1407 * @btdh: btdh ioctl payload 1408 */ 1409 static int 1410 _ctl_btdh_search_raid_device(struct MPT3SAS_ADAPTER *ioc, 1411 struct mpt3_ioctl_btdh_mapping *btdh) 1412 { 1413 struct _raid_device *raid_device; 1414 unsigned long flags; 1415 int rc = 0; 1416 1417 if (list_empty(&ioc->raid_device_list)) 1418 return rc; 1419 1420 spin_lock_irqsave(&ioc->raid_device_lock, flags); 1421 list_for_each_entry(raid_device, &ioc->raid_device_list, list) { 1422 if (btdh->bus == 0xFFFFFFFF && btdh->id == 0xFFFFFFFF && 1423 btdh->handle == raid_device->handle) { 1424 btdh->bus = raid_device->channel; 1425 btdh->id = raid_device->id; 1426 rc = 1; 1427 goto out; 1428 } else if (btdh->bus == raid_device->channel && btdh->id == 1429 raid_device->id && btdh->handle == 0xFFFF) { 1430 btdh->handle = raid_device->handle; 1431 rc = 1; 1432 goto out; 1433 } 1434 } 1435 out: 1436 spin_unlock_irqrestore(&ioc->raid_device_lock, flags); 1437 return rc; 1438 } 1439 1440 /** 1441 * _ctl_btdh_mapping - main handler for MPT3BTDHMAPPING opcode 1442 * @ioc: per adapter object 1443 * @arg: user space buffer containing ioctl content 1444 */ 1445 static long 1446 _ctl_btdh_mapping(struct MPT3SAS_ADAPTER *ioc, void __user *arg) 1447 { 1448 struct mpt3_ioctl_btdh_mapping karg; 1449 int rc; 1450 1451 if (copy_from_user(&karg, arg, sizeof(karg))) { 1452 pr_err("failure at %s:%d/%s()!\n", 1453 __FILE__, __LINE__, __func__); 1454 return -EFAULT; 1455 } 1456 1457 dctlprintk(ioc, ioc_info(ioc, "%s\n", 1458 __func__)); 1459 1460 rc = _ctl_btdh_search_sas_device(ioc, &karg); 1461 if (!rc) 1462 rc = _ctl_btdh_search_pcie_device(ioc, &karg); 1463 if (!rc) 1464 _ctl_btdh_search_raid_device(ioc, &karg); 1465 1466 if (copy_to_user(arg, &karg, sizeof(karg))) { 1467 pr_err("failure at %s:%d/%s()!\n", 1468 __FILE__, __LINE__, __func__); 1469 return -EFAULT; 1470 } 1471 return 0; 1472 } 1473 1474 /** 1475 * _ctl_diag_capability - return diag buffer capability 1476 * @ioc: per adapter object 1477 * @buffer_type: specifies either TRACE, SNAPSHOT, or EXTENDED 1478 * 1479 * returns 1 when diag buffer support is enabled in firmware 1480 */ 1481 static u8 1482 _ctl_diag_capability(struct MPT3SAS_ADAPTER *ioc, u8 buffer_type) 1483 { 1484 u8 rc = 0; 1485 1486 switch (buffer_type) { 1487 case MPI2_DIAG_BUF_TYPE_TRACE: 1488 if (ioc->facts.IOCCapabilities & 1489 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) 1490 rc = 1; 1491 break; 1492 case MPI2_DIAG_BUF_TYPE_SNAPSHOT: 1493 if (ioc->facts.IOCCapabilities & 1494 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) 1495 rc = 1; 1496 break; 1497 case MPI2_DIAG_BUF_TYPE_EXTENDED: 1498 if (ioc->facts.IOCCapabilities & 1499 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) 1500 rc = 1; 1501 } 1502 1503 return rc; 1504 } 1505 1506 /** 1507 * _ctl_diag_get_bufftype - return diag buffer type 1508 * either TRACE, SNAPSHOT, or EXTENDED 1509 * @ioc: per adapter object 1510 * @unique_id: specifies the unique_id for the buffer 1511 * 1512 * returns MPT3_DIAG_UID_NOT_FOUND if the id not found 1513 */ 1514 static u8 1515 _ctl_diag_get_bufftype(struct MPT3SAS_ADAPTER *ioc, u32 unique_id) 1516 { 1517 u8 index; 1518 1519 for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) { 1520 if (ioc->unique_id[index] == unique_id) 1521 return index; 1522 } 1523 1524 return MPT3_DIAG_UID_NOT_FOUND; 1525 } 1526 1527 /** 1528 * _ctl_diag_register_2 - wrapper for registering diag buffer support 1529 * @ioc: per adapter object 1530 * @diag_register: the diag_register struct passed in from user space 1531 * 1532 */ 1533 static long 1534 _ctl_diag_register_2(struct MPT3SAS_ADAPTER *ioc, 1535 struct mpt3_diag_register *diag_register) 1536 { 1537 int rc, i; 1538 void *request_data = NULL; 1539 dma_addr_t request_data_dma; 1540 u32 request_data_sz = 0; 1541 Mpi2DiagBufferPostRequest_t *mpi_request; 1542 Mpi2DiagBufferPostReply_t *mpi_reply; 1543 u8 buffer_type; 1544 u16 smid; 1545 u16 ioc_status; 1546 u32 ioc_state; 1547 u8 issue_reset = 0; 1548 1549 dctlprintk(ioc, ioc_info(ioc, "%s\n", 1550 __func__)); 1551 1552 ioc_state = mpt3sas_base_get_iocstate(ioc, 1); 1553 if (ioc_state != MPI2_IOC_STATE_OPERATIONAL) { 1554 ioc_err(ioc, "%s: failed due to ioc not operational\n", 1555 __func__); 1556 rc = -EAGAIN; 1557 goto out; 1558 } 1559 1560 if (ioc->ctl_cmds.status != MPT3_CMD_NOT_USED) { 1561 ioc_err(ioc, "%s: ctl_cmd in use\n", __func__); 1562 rc = -EAGAIN; 1563 goto out; 1564 } 1565 1566 buffer_type = diag_register->buffer_type; 1567 if (!_ctl_diag_capability(ioc, buffer_type)) { 1568 ioc_err(ioc, "%s: doesn't have capability for buffer_type(0x%02x)\n", 1569 __func__, buffer_type); 1570 return -EPERM; 1571 } 1572 1573 if (diag_register->unique_id == 0) { 1574 ioc_err(ioc, 1575 "%s: Invalid UID(0x%08x), buffer_type(0x%02x)\n", __func__, 1576 diag_register->unique_id, buffer_type); 1577 return -EINVAL; 1578 } 1579 1580 if ((ioc->diag_buffer_status[buffer_type] & 1581 MPT3_DIAG_BUFFER_IS_APP_OWNED) && 1582 !(ioc->diag_buffer_status[buffer_type] & 1583 MPT3_DIAG_BUFFER_IS_RELEASED)) { 1584 ioc_err(ioc, 1585 "%s: buffer_type(0x%02x) is already registered by application with UID(0x%08x)\n", 1586 __func__, buffer_type, ioc->unique_id[buffer_type]); 1587 return -EINVAL; 1588 } 1589 1590 if (ioc->diag_buffer_status[buffer_type] & 1591 MPT3_DIAG_BUFFER_IS_REGISTERED) { 1592 /* 1593 * If driver posts buffer initially, then an application wants 1594 * to Register that buffer (own it) without Releasing first, 1595 * the application Register command MUST have the same buffer 1596 * type and size in the Register command (obtained from the 1597 * Query command). Otherwise that Register command will be 1598 * failed. If the application has released the buffer but wants 1599 * to re-register it, it should be allowed as long as the 1600 * Unique-Id/Size match. 1601 */ 1602 1603 if (ioc->unique_id[buffer_type] == MPT3DIAGBUFFUNIQUEID && 1604 ioc->diag_buffer_sz[buffer_type] == 1605 diag_register->requested_buffer_size) { 1606 1607 if (!(ioc->diag_buffer_status[buffer_type] & 1608 MPT3_DIAG_BUFFER_IS_RELEASED)) { 1609 dctlprintk(ioc, ioc_info(ioc, 1610 "%s: diag_buffer (%d) ownership changed. old-ID(0x%08x), new-ID(0x%08x)\n", 1611 __func__, buffer_type, 1612 ioc->unique_id[buffer_type], 1613 diag_register->unique_id)); 1614 1615 /* 1616 * Application wants to own the buffer with 1617 * the same size. 1618 */ 1619 ioc->unique_id[buffer_type] = 1620 diag_register->unique_id; 1621 rc = 0; /* success */ 1622 goto out; 1623 } 1624 } else if (ioc->unique_id[buffer_type] != 1625 MPT3DIAGBUFFUNIQUEID) { 1626 if (ioc->unique_id[buffer_type] != 1627 diag_register->unique_id || 1628 ioc->diag_buffer_sz[buffer_type] != 1629 diag_register->requested_buffer_size || 1630 !(ioc->diag_buffer_status[buffer_type] & 1631 MPT3_DIAG_BUFFER_IS_RELEASED)) { 1632 ioc_err(ioc, 1633 "%s: already has a registered buffer for buffer_type(0x%02x)\n", 1634 __func__, buffer_type); 1635 return -EINVAL; 1636 } 1637 } else { 1638 ioc_err(ioc, "%s: already has a registered buffer for buffer_type(0x%02x)\n", 1639 __func__, buffer_type); 1640 return -EINVAL; 1641 } 1642 } else if (ioc->diag_buffer_status[buffer_type] & 1643 MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED) { 1644 1645 if (ioc->unique_id[buffer_type] != MPT3DIAGBUFFUNIQUEID || 1646 ioc->diag_buffer_sz[buffer_type] != 1647 diag_register->requested_buffer_size) { 1648 1649 ioc_err(ioc, 1650 "%s: already a buffer is allocated for buffer_type(0x%02x) of size %d bytes, so please try registering again with same size\n", 1651 __func__, buffer_type, 1652 ioc->diag_buffer_sz[buffer_type]); 1653 return -EINVAL; 1654 } 1655 } 1656 1657 if (diag_register->requested_buffer_size % 4) { 1658 ioc_err(ioc, "%s: the requested_buffer_size is not 4 byte aligned\n", 1659 __func__); 1660 return -EINVAL; 1661 } 1662 1663 smid = mpt3sas_base_get_smid(ioc, ioc->ctl_cb_idx); 1664 if (!smid) { 1665 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 1666 rc = -EAGAIN; 1667 goto out; 1668 } 1669 1670 rc = 0; 1671 ioc->ctl_cmds.status = MPT3_CMD_PENDING; 1672 memset(ioc->ctl_cmds.reply, 0, ioc->reply_sz); 1673 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 1674 ioc->ctl_cmds.smid = smid; 1675 1676 request_data = ioc->diag_buffer[buffer_type]; 1677 request_data_sz = diag_register->requested_buffer_size; 1678 ioc->unique_id[buffer_type] = diag_register->unique_id; 1679 ioc->diag_buffer_status[buffer_type] &= 1680 MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED; 1681 memcpy(ioc->product_specific[buffer_type], 1682 diag_register->product_specific, MPT3_PRODUCT_SPECIFIC_DWORDS); 1683 ioc->diagnostic_flags[buffer_type] = diag_register->diagnostic_flags; 1684 1685 if (request_data) { 1686 request_data_dma = ioc->diag_buffer_dma[buffer_type]; 1687 if (request_data_sz != ioc->diag_buffer_sz[buffer_type]) { 1688 dma_free_coherent(&ioc->pdev->dev, 1689 ioc->diag_buffer_sz[buffer_type], 1690 request_data, request_data_dma); 1691 request_data = NULL; 1692 } 1693 } 1694 1695 if (request_data == NULL) { 1696 ioc->diag_buffer_sz[buffer_type] = 0; 1697 ioc->diag_buffer_dma[buffer_type] = 0; 1698 request_data = dma_alloc_coherent(&ioc->pdev->dev, 1699 request_data_sz, &request_data_dma, GFP_KERNEL); 1700 if (request_data == NULL) { 1701 ioc_err(ioc, "%s: failed allocating memory for diag buffers, requested size(%d)\n", 1702 __func__, request_data_sz); 1703 mpt3sas_base_free_smid(ioc, smid); 1704 rc = -ENOMEM; 1705 goto out; 1706 } 1707 ioc->diag_buffer[buffer_type] = request_data; 1708 ioc->diag_buffer_sz[buffer_type] = request_data_sz; 1709 ioc->diag_buffer_dma[buffer_type] = request_data_dma; 1710 } 1711 1712 mpi_request->Function = MPI2_FUNCTION_DIAG_BUFFER_POST; 1713 mpi_request->BufferType = diag_register->buffer_type; 1714 mpi_request->Flags = cpu_to_le32(diag_register->diagnostic_flags); 1715 mpi_request->BufferAddress = cpu_to_le64(request_data_dma); 1716 mpi_request->BufferLength = cpu_to_le32(request_data_sz); 1717 mpi_request->VF_ID = 0; /* TODO */ 1718 mpi_request->VP_ID = 0; 1719 1720 dctlprintk(ioc, 1721 ioc_info(ioc, "%s: diag_buffer(0x%p), dma(0x%llx), sz(%d)\n", 1722 __func__, request_data, 1723 (unsigned long long)request_data_dma, 1724 le32_to_cpu(mpi_request->BufferLength))); 1725 1726 for (i = 0; i < MPT3_PRODUCT_SPECIFIC_DWORDS; i++) 1727 mpi_request->ProductSpecific[i] = 1728 cpu_to_le32(ioc->product_specific[buffer_type][i]); 1729 1730 init_completion(&ioc->ctl_cmds.done); 1731 ioc->put_smid_default(ioc, smid); 1732 wait_for_completion_timeout(&ioc->ctl_cmds.done, 1733 MPT3_IOCTL_DEFAULT_TIMEOUT*HZ); 1734 1735 if (!(ioc->ctl_cmds.status & MPT3_CMD_COMPLETE)) { 1736 issue_reset = 1737 mpt3sas_base_check_cmd_timeout(ioc, 1738 ioc->ctl_cmds.status, mpi_request, 1739 sizeof(Mpi2DiagBufferPostRequest_t)/4); 1740 goto issue_host_reset; 1741 } 1742 1743 /* process the completed Reply Message Frame */ 1744 if ((ioc->ctl_cmds.status & MPT3_CMD_REPLY_VALID) == 0) { 1745 ioc_err(ioc, "%s: no reply message\n", __func__); 1746 rc = -EFAULT; 1747 goto out; 1748 } 1749 1750 mpi_reply = ioc->ctl_cmds.reply; 1751 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 1752 1753 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 1754 ioc->diag_buffer_status[buffer_type] |= 1755 MPT3_DIAG_BUFFER_IS_REGISTERED; 1756 dctlprintk(ioc, ioc_info(ioc, "%s: success\n", __func__)); 1757 } else { 1758 ioc_info(ioc, "%s: ioc_status(0x%04x) log_info(0x%08x)\n", 1759 __func__, 1760 ioc_status, le32_to_cpu(mpi_reply->IOCLogInfo)); 1761 rc = -EFAULT; 1762 } 1763 1764 issue_host_reset: 1765 if (issue_reset) 1766 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 1767 1768 out: 1769 1770 if (rc && request_data) { 1771 dma_free_coherent(&ioc->pdev->dev, request_data_sz, 1772 request_data, request_data_dma); 1773 ioc->diag_buffer_status[buffer_type] &= 1774 ~MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED; 1775 } 1776 1777 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED; 1778 return rc; 1779 } 1780 1781 /** 1782 * mpt3sas_enable_diag_buffer - enabling diag_buffers support driver load time 1783 * @ioc: per adapter object 1784 * @bits_to_register: bitwise field where trace is bit 0, and snapshot is bit 1 1785 * 1786 * This is called when command line option diag_buffer_enable is enabled 1787 * at driver load time. 1788 */ 1789 void 1790 mpt3sas_enable_diag_buffer(struct MPT3SAS_ADAPTER *ioc, u8 bits_to_register) 1791 { 1792 struct mpt3_diag_register diag_register; 1793 u32 ret_val; 1794 u32 trace_buff_size = ioc->manu_pg11.HostTraceBufferMaxSizeKB<<10; 1795 u32 min_trace_buff_size = 0; 1796 u32 decr_trace_buff_size = 0; 1797 1798 memset(&diag_register, 0, sizeof(struct mpt3_diag_register)); 1799 1800 if (bits_to_register & 1) { 1801 ioc_info(ioc, "registering trace buffer support\n"); 1802 ioc->diag_trigger_master.MasterData = 1803 (MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET); 1804 diag_register.buffer_type = MPI2_DIAG_BUF_TYPE_TRACE; 1805 diag_register.unique_id = 1806 (ioc->hba_mpi_version_belonged == MPI2_VERSION) ? 1807 (MPT2DIAGBUFFUNIQUEID):(MPT3DIAGBUFFUNIQUEID); 1808 1809 if (trace_buff_size != 0) { 1810 diag_register.requested_buffer_size = trace_buff_size; 1811 min_trace_buff_size = 1812 ioc->manu_pg11.HostTraceBufferMinSizeKB<<10; 1813 decr_trace_buff_size = 1814 ioc->manu_pg11.HostTraceBufferDecrementSizeKB<<10; 1815 1816 if (min_trace_buff_size > trace_buff_size) { 1817 /* The buff size is not set correctly */ 1818 ioc_err(ioc, 1819 "Min Trace Buff size (%d KB) greater than Max Trace Buff size (%d KB)\n", 1820 min_trace_buff_size>>10, 1821 trace_buff_size>>10); 1822 ioc_err(ioc, 1823 "Using zero Min Trace Buff Size\n"); 1824 min_trace_buff_size = 0; 1825 } 1826 1827 if (decr_trace_buff_size == 0) { 1828 /* 1829 * retry the min size if decrement 1830 * is not available. 1831 */ 1832 decr_trace_buff_size = 1833 trace_buff_size - min_trace_buff_size; 1834 } 1835 } else { 1836 /* register for 2MB buffers */ 1837 diag_register.requested_buffer_size = 2 * (1024 * 1024); 1838 } 1839 1840 do { 1841 ret_val = _ctl_diag_register_2(ioc, &diag_register); 1842 1843 if (ret_val == -ENOMEM && min_trace_buff_size && 1844 (trace_buff_size - decr_trace_buff_size) >= 1845 min_trace_buff_size) { 1846 /* adjust the buffer size */ 1847 trace_buff_size -= decr_trace_buff_size; 1848 diag_register.requested_buffer_size = 1849 trace_buff_size; 1850 } else 1851 break; 1852 } while (true); 1853 1854 if (ret_val == -ENOMEM) 1855 ioc_err(ioc, 1856 "Cannot allocate trace buffer memory. Last memory tried = %d KB\n", 1857 diag_register.requested_buffer_size>>10); 1858 else if (ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] 1859 & MPT3_DIAG_BUFFER_IS_REGISTERED) { 1860 ioc_err(ioc, "Trace buffer memory %d KB allocated\n", 1861 diag_register.requested_buffer_size>>10); 1862 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) 1863 ioc->diag_buffer_status[ 1864 MPI2_DIAG_BUF_TYPE_TRACE] |= 1865 MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED; 1866 } 1867 } 1868 1869 if (bits_to_register & 2) { 1870 ioc_info(ioc, "registering snapshot buffer support\n"); 1871 diag_register.buffer_type = MPI2_DIAG_BUF_TYPE_SNAPSHOT; 1872 /* register for 2MB buffers */ 1873 diag_register.requested_buffer_size = 2 * (1024 * 1024); 1874 diag_register.unique_id = 0x7075901; 1875 _ctl_diag_register_2(ioc, &diag_register); 1876 } 1877 1878 if (bits_to_register & 4) { 1879 ioc_info(ioc, "registering extended buffer support\n"); 1880 diag_register.buffer_type = MPI2_DIAG_BUF_TYPE_EXTENDED; 1881 /* register for 2MB buffers */ 1882 diag_register.requested_buffer_size = 2 * (1024 * 1024); 1883 diag_register.unique_id = 0x7075901; 1884 _ctl_diag_register_2(ioc, &diag_register); 1885 } 1886 } 1887 1888 /** 1889 * _ctl_diag_register - application register with driver 1890 * @ioc: per adapter object 1891 * @arg: user space buffer containing ioctl content 1892 * 1893 * This will allow the driver to setup any required buffers that will be 1894 * needed by firmware to communicate with the driver. 1895 */ 1896 static long 1897 _ctl_diag_register(struct MPT3SAS_ADAPTER *ioc, void __user *arg) 1898 { 1899 struct mpt3_diag_register karg; 1900 long rc; 1901 1902 if (copy_from_user(&karg, arg, sizeof(karg))) { 1903 pr_err("failure at %s:%d/%s()!\n", 1904 __FILE__, __LINE__, __func__); 1905 return -EFAULT; 1906 } 1907 1908 rc = _ctl_diag_register_2(ioc, &karg); 1909 1910 if (!rc && (ioc->diag_buffer_status[karg.buffer_type] & 1911 MPT3_DIAG_BUFFER_IS_REGISTERED)) 1912 ioc->diag_buffer_status[karg.buffer_type] |= 1913 MPT3_DIAG_BUFFER_IS_APP_OWNED; 1914 1915 return rc; 1916 } 1917 1918 /** 1919 * _ctl_diag_unregister - application unregister with driver 1920 * @ioc: per adapter object 1921 * @arg: user space buffer containing ioctl content 1922 * 1923 * This will allow the driver to cleanup any memory allocated for diag 1924 * messages and to free up any resources. 1925 */ 1926 static long 1927 _ctl_diag_unregister(struct MPT3SAS_ADAPTER *ioc, void __user *arg) 1928 { 1929 struct mpt3_diag_unregister karg; 1930 void *request_data; 1931 dma_addr_t request_data_dma; 1932 u32 request_data_sz; 1933 u8 buffer_type; 1934 1935 if (copy_from_user(&karg, arg, sizeof(karg))) { 1936 pr_err("failure at %s:%d/%s()!\n", 1937 __FILE__, __LINE__, __func__); 1938 return -EFAULT; 1939 } 1940 1941 dctlprintk(ioc, ioc_info(ioc, "%s\n", 1942 __func__)); 1943 1944 buffer_type = _ctl_diag_get_bufftype(ioc, karg.unique_id); 1945 if (buffer_type == MPT3_DIAG_UID_NOT_FOUND) { 1946 ioc_err(ioc, "%s: buffer with unique_id(0x%08x) not found\n", 1947 __func__, karg.unique_id); 1948 return -EINVAL; 1949 } 1950 1951 if (!_ctl_diag_capability(ioc, buffer_type)) { 1952 ioc_err(ioc, "%s: doesn't have capability for buffer_type(0x%02x)\n", 1953 __func__, buffer_type); 1954 return -EPERM; 1955 } 1956 1957 if ((ioc->diag_buffer_status[buffer_type] & 1958 MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) { 1959 ioc_err(ioc, "%s: buffer_type(0x%02x) is not registered\n", 1960 __func__, buffer_type); 1961 return -EINVAL; 1962 } 1963 if ((ioc->diag_buffer_status[buffer_type] & 1964 MPT3_DIAG_BUFFER_IS_RELEASED) == 0) { 1965 ioc_err(ioc, "%s: buffer_type(0x%02x) has not been released\n", 1966 __func__, buffer_type); 1967 return -EINVAL; 1968 } 1969 1970 if (karg.unique_id != ioc->unique_id[buffer_type]) { 1971 ioc_err(ioc, "%s: unique_id(0x%08x) is not registered\n", 1972 __func__, karg.unique_id); 1973 return -EINVAL; 1974 } 1975 1976 request_data = ioc->diag_buffer[buffer_type]; 1977 if (!request_data) { 1978 ioc_err(ioc, "%s: doesn't have memory allocated for buffer_type(0x%02x)\n", 1979 __func__, buffer_type); 1980 return -ENOMEM; 1981 } 1982 1983 if (ioc->diag_buffer_status[buffer_type] & 1984 MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED) { 1985 ioc->unique_id[buffer_type] = MPT3DIAGBUFFUNIQUEID; 1986 ioc->diag_buffer_status[buffer_type] &= 1987 ~MPT3_DIAG_BUFFER_IS_APP_OWNED; 1988 ioc->diag_buffer_status[buffer_type] &= 1989 ~MPT3_DIAG_BUFFER_IS_REGISTERED; 1990 } else { 1991 request_data_sz = ioc->diag_buffer_sz[buffer_type]; 1992 request_data_dma = ioc->diag_buffer_dma[buffer_type]; 1993 dma_free_coherent(&ioc->pdev->dev, request_data_sz, 1994 request_data, request_data_dma); 1995 ioc->diag_buffer[buffer_type] = NULL; 1996 ioc->diag_buffer_status[buffer_type] = 0; 1997 } 1998 return 0; 1999 } 2000 2001 /** 2002 * _ctl_diag_query - query relevant info associated with diag buffers 2003 * @ioc: per adapter object 2004 * @arg: user space buffer containing ioctl content 2005 * 2006 * The application will send only buffer_type and unique_id. Driver will 2007 * inspect unique_id first, if valid, fill in all the info. If unique_id is 2008 * 0x00, the driver will return info specified by Buffer Type. 2009 */ 2010 static long 2011 _ctl_diag_query(struct MPT3SAS_ADAPTER *ioc, void __user *arg) 2012 { 2013 struct mpt3_diag_query karg; 2014 void *request_data; 2015 int i; 2016 u8 buffer_type; 2017 2018 if (copy_from_user(&karg, arg, sizeof(karg))) { 2019 pr_err("failure at %s:%d/%s()!\n", 2020 __FILE__, __LINE__, __func__); 2021 return -EFAULT; 2022 } 2023 2024 dctlprintk(ioc, ioc_info(ioc, "%s\n", 2025 __func__)); 2026 2027 karg.application_flags = 0; 2028 buffer_type = karg.buffer_type; 2029 2030 if (!_ctl_diag_capability(ioc, buffer_type)) { 2031 ioc_err(ioc, "%s: doesn't have capability for buffer_type(0x%02x)\n", 2032 __func__, buffer_type); 2033 return -EPERM; 2034 } 2035 2036 if (!(ioc->diag_buffer_status[buffer_type] & 2037 MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED)) { 2038 if ((ioc->diag_buffer_status[buffer_type] & 2039 MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) { 2040 ioc_err(ioc, "%s: buffer_type(0x%02x) is not registered\n", 2041 __func__, buffer_type); 2042 return -EINVAL; 2043 } 2044 } 2045 2046 if (karg.unique_id) { 2047 if (karg.unique_id != ioc->unique_id[buffer_type]) { 2048 ioc_err(ioc, "%s: unique_id(0x%08x) is not registered\n", 2049 __func__, karg.unique_id); 2050 return -EINVAL; 2051 } 2052 } 2053 2054 request_data = ioc->diag_buffer[buffer_type]; 2055 if (!request_data) { 2056 ioc_err(ioc, "%s: doesn't have buffer for buffer_type(0x%02x)\n", 2057 __func__, buffer_type); 2058 return -ENOMEM; 2059 } 2060 2061 if ((ioc->diag_buffer_status[buffer_type] & 2062 MPT3_DIAG_BUFFER_IS_REGISTERED)) 2063 karg.application_flags |= MPT3_APP_FLAGS_BUFFER_VALID; 2064 2065 if (!(ioc->diag_buffer_status[buffer_type] & 2066 MPT3_DIAG_BUFFER_IS_RELEASED)) 2067 karg.application_flags |= MPT3_APP_FLAGS_FW_BUFFER_ACCESS; 2068 2069 if (!(ioc->diag_buffer_status[buffer_type] & 2070 MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED)) 2071 karg.application_flags |= MPT3_APP_FLAGS_DYNAMIC_BUFFER_ALLOC; 2072 2073 if ((ioc->diag_buffer_status[buffer_type] & 2074 MPT3_DIAG_BUFFER_IS_APP_OWNED)) 2075 karg.application_flags |= MPT3_APP_FLAGS_APP_OWNED; 2076 2077 for (i = 0; i < MPT3_PRODUCT_SPECIFIC_DWORDS; i++) 2078 karg.product_specific[i] = 2079 ioc->product_specific[buffer_type][i]; 2080 2081 karg.total_buffer_size = ioc->diag_buffer_sz[buffer_type]; 2082 karg.driver_added_buffer_size = 0; 2083 karg.unique_id = ioc->unique_id[buffer_type]; 2084 karg.diagnostic_flags = ioc->diagnostic_flags[buffer_type]; 2085 2086 if (copy_to_user(arg, &karg, sizeof(struct mpt3_diag_query))) { 2087 ioc_err(ioc, "%s: unable to write mpt3_diag_query data @ %p\n", 2088 __func__, arg); 2089 return -EFAULT; 2090 } 2091 return 0; 2092 } 2093 2094 /** 2095 * mpt3sas_send_diag_release - Diag Release Message 2096 * @ioc: per adapter object 2097 * @buffer_type: specifies either TRACE, SNAPSHOT, or EXTENDED 2098 * @issue_reset: specifies whether host reset is required. 2099 * 2100 */ 2101 int 2102 mpt3sas_send_diag_release(struct MPT3SAS_ADAPTER *ioc, u8 buffer_type, 2103 u8 *issue_reset) 2104 { 2105 Mpi2DiagReleaseRequest_t *mpi_request; 2106 Mpi2DiagReleaseReply_t *mpi_reply; 2107 u16 smid; 2108 u16 ioc_status; 2109 u32 ioc_state; 2110 int rc; 2111 2112 dctlprintk(ioc, ioc_info(ioc, "%s\n", 2113 __func__)); 2114 2115 rc = 0; 2116 *issue_reset = 0; 2117 2118 ioc_state = mpt3sas_base_get_iocstate(ioc, 1); 2119 if (ioc_state != MPI2_IOC_STATE_OPERATIONAL) { 2120 if (ioc->diag_buffer_status[buffer_type] & 2121 MPT3_DIAG_BUFFER_IS_REGISTERED) 2122 ioc->diag_buffer_status[buffer_type] |= 2123 MPT3_DIAG_BUFFER_IS_RELEASED; 2124 dctlprintk(ioc, 2125 ioc_info(ioc, "%s: skipping due to FAULT state\n", 2126 __func__)); 2127 rc = -EAGAIN; 2128 goto out; 2129 } 2130 2131 if (ioc->ctl_cmds.status != MPT3_CMD_NOT_USED) { 2132 ioc_err(ioc, "%s: ctl_cmd in use\n", __func__); 2133 rc = -EAGAIN; 2134 goto out; 2135 } 2136 2137 smid = mpt3sas_base_get_smid(ioc, ioc->ctl_cb_idx); 2138 if (!smid) { 2139 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 2140 rc = -EAGAIN; 2141 goto out; 2142 } 2143 2144 ioc->ctl_cmds.status = MPT3_CMD_PENDING; 2145 memset(ioc->ctl_cmds.reply, 0, ioc->reply_sz); 2146 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 2147 ioc->ctl_cmds.smid = smid; 2148 2149 mpi_request->Function = MPI2_FUNCTION_DIAG_RELEASE; 2150 mpi_request->BufferType = buffer_type; 2151 mpi_request->VF_ID = 0; /* TODO */ 2152 mpi_request->VP_ID = 0; 2153 2154 init_completion(&ioc->ctl_cmds.done); 2155 ioc->put_smid_default(ioc, smid); 2156 wait_for_completion_timeout(&ioc->ctl_cmds.done, 2157 MPT3_IOCTL_DEFAULT_TIMEOUT*HZ); 2158 2159 if (!(ioc->ctl_cmds.status & MPT3_CMD_COMPLETE)) { 2160 *issue_reset = mpt3sas_base_check_cmd_timeout(ioc, 2161 ioc->ctl_cmds.status, mpi_request, 2162 sizeof(Mpi2DiagReleaseRequest_t)/4); 2163 rc = -EFAULT; 2164 goto out; 2165 } 2166 2167 /* process the completed Reply Message Frame */ 2168 if ((ioc->ctl_cmds.status & MPT3_CMD_REPLY_VALID) == 0) { 2169 ioc_err(ioc, "%s: no reply message\n", __func__); 2170 rc = -EFAULT; 2171 goto out; 2172 } 2173 2174 mpi_reply = ioc->ctl_cmds.reply; 2175 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 2176 2177 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 2178 ioc->diag_buffer_status[buffer_type] |= 2179 MPT3_DIAG_BUFFER_IS_RELEASED; 2180 dctlprintk(ioc, ioc_info(ioc, "%s: success\n", __func__)); 2181 } else { 2182 ioc_info(ioc, "%s: ioc_status(0x%04x) log_info(0x%08x)\n", 2183 __func__, 2184 ioc_status, le32_to_cpu(mpi_reply->IOCLogInfo)); 2185 rc = -EFAULT; 2186 } 2187 2188 out: 2189 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED; 2190 return rc; 2191 } 2192 2193 /** 2194 * _ctl_diag_release - request to send Diag Release Message to firmware 2195 * @ioc: ? 2196 * @arg: user space buffer containing ioctl content 2197 * 2198 * This allows ownership of the specified buffer to returned to the driver, 2199 * allowing an application to read the buffer without fear that firmware is 2200 * overwriting information in the buffer. 2201 */ 2202 static long 2203 _ctl_diag_release(struct MPT3SAS_ADAPTER *ioc, void __user *arg) 2204 { 2205 struct mpt3_diag_release karg; 2206 void *request_data; 2207 int rc; 2208 u8 buffer_type; 2209 u8 issue_reset = 0; 2210 2211 if (copy_from_user(&karg, arg, sizeof(karg))) { 2212 pr_err("failure at %s:%d/%s()!\n", 2213 __FILE__, __LINE__, __func__); 2214 return -EFAULT; 2215 } 2216 2217 dctlprintk(ioc, ioc_info(ioc, "%s\n", 2218 __func__)); 2219 2220 buffer_type = _ctl_diag_get_bufftype(ioc, karg.unique_id); 2221 if (buffer_type == MPT3_DIAG_UID_NOT_FOUND) { 2222 ioc_err(ioc, "%s: buffer with unique_id(0x%08x) not found\n", 2223 __func__, karg.unique_id); 2224 return -EINVAL; 2225 } 2226 2227 if (!_ctl_diag_capability(ioc, buffer_type)) { 2228 ioc_err(ioc, "%s: doesn't have capability for buffer_type(0x%02x)\n", 2229 __func__, buffer_type); 2230 return -EPERM; 2231 } 2232 2233 if ((ioc->diag_buffer_status[buffer_type] & 2234 MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) { 2235 ioc_err(ioc, "%s: buffer_type(0x%02x) is not registered\n", 2236 __func__, buffer_type); 2237 return -EINVAL; 2238 } 2239 2240 if (karg.unique_id != ioc->unique_id[buffer_type]) { 2241 ioc_err(ioc, "%s: unique_id(0x%08x) is not registered\n", 2242 __func__, karg.unique_id); 2243 return -EINVAL; 2244 } 2245 2246 if (ioc->diag_buffer_status[buffer_type] & 2247 MPT3_DIAG_BUFFER_IS_RELEASED) { 2248 ioc_err(ioc, "%s: buffer_type(0x%02x) is already released\n", 2249 __func__, buffer_type); 2250 return -EINVAL; 2251 } 2252 2253 request_data = ioc->diag_buffer[buffer_type]; 2254 2255 if (!request_data) { 2256 ioc_err(ioc, "%s: doesn't have memory allocated for buffer_type(0x%02x)\n", 2257 __func__, buffer_type); 2258 return -ENOMEM; 2259 } 2260 2261 /* buffers were released by due to host reset */ 2262 if ((ioc->diag_buffer_status[buffer_type] & 2263 MPT3_DIAG_BUFFER_IS_DIAG_RESET)) { 2264 ioc->diag_buffer_status[buffer_type] |= 2265 MPT3_DIAG_BUFFER_IS_RELEASED; 2266 ioc->diag_buffer_status[buffer_type] &= 2267 ~MPT3_DIAG_BUFFER_IS_DIAG_RESET; 2268 ioc_err(ioc, "%s: buffer_type(0x%02x) was released due to host reset\n", 2269 __func__, buffer_type); 2270 return 0; 2271 } 2272 2273 rc = mpt3sas_send_diag_release(ioc, buffer_type, &issue_reset); 2274 2275 if (issue_reset) 2276 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 2277 2278 return rc; 2279 } 2280 2281 /** 2282 * _ctl_diag_read_buffer - request for copy of the diag buffer 2283 * @ioc: per adapter object 2284 * @arg: user space buffer containing ioctl content 2285 */ 2286 static long 2287 _ctl_diag_read_buffer(struct MPT3SAS_ADAPTER *ioc, void __user *arg) 2288 { 2289 struct mpt3_diag_read_buffer karg; 2290 struct mpt3_diag_read_buffer __user *uarg = arg; 2291 void *request_data, *diag_data; 2292 Mpi2DiagBufferPostRequest_t *mpi_request; 2293 Mpi2DiagBufferPostReply_t *mpi_reply; 2294 int rc, i; 2295 u8 buffer_type; 2296 unsigned long request_size, copy_size; 2297 u16 smid; 2298 u16 ioc_status; 2299 u8 issue_reset = 0; 2300 2301 if (copy_from_user(&karg, arg, sizeof(karg))) { 2302 pr_err("failure at %s:%d/%s()!\n", 2303 __FILE__, __LINE__, __func__); 2304 return -EFAULT; 2305 } 2306 2307 dctlprintk(ioc, ioc_info(ioc, "%s\n", 2308 __func__)); 2309 2310 buffer_type = _ctl_diag_get_bufftype(ioc, karg.unique_id); 2311 if (buffer_type == MPT3_DIAG_UID_NOT_FOUND) { 2312 ioc_err(ioc, "%s: buffer with unique_id(0x%08x) not found\n", 2313 __func__, karg.unique_id); 2314 return -EINVAL; 2315 } 2316 2317 if (!_ctl_diag_capability(ioc, buffer_type)) { 2318 ioc_err(ioc, "%s: doesn't have capability for buffer_type(0x%02x)\n", 2319 __func__, buffer_type); 2320 return -EPERM; 2321 } 2322 2323 if (karg.unique_id != ioc->unique_id[buffer_type]) { 2324 ioc_err(ioc, "%s: unique_id(0x%08x) is not registered\n", 2325 __func__, karg.unique_id); 2326 return -EINVAL; 2327 } 2328 2329 request_data = ioc->diag_buffer[buffer_type]; 2330 if (!request_data) { 2331 ioc_err(ioc, "%s: doesn't have buffer for buffer_type(0x%02x)\n", 2332 __func__, buffer_type); 2333 return -ENOMEM; 2334 } 2335 2336 request_size = ioc->diag_buffer_sz[buffer_type]; 2337 2338 if ((karg.starting_offset % 4) || (karg.bytes_to_read % 4)) { 2339 ioc_err(ioc, "%s: either the starting_offset or bytes_to_read are not 4 byte aligned\n", 2340 __func__); 2341 return -EINVAL; 2342 } 2343 2344 if (karg.starting_offset > request_size) 2345 return -EINVAL; 2346 2347 diag_data = (void *)(request_data + karg.starting_offset); 2348 dctlprintk(ioc, 2349 ioc_info(ioc, "%s: diag_buffer(%p), offset(%d), sz(%d)\n", 2350 __func__, diag_data, karg.starting_offset, 2351 karg.bytes_to_read)); 2352 2353 /* Truncate data on requests that are too large */ 2354 if ((diag_data + karg.bytes_to_read < diag_data) || 2355 (diag_data + karg.bytes_to_read > request_data + request_size)) 2356 copy_size = request_size - karg.starting_offset; 2357 else 2358 copy_size = karg.bytes_to_read; 2359 2360 if (copy_to_user((void __user *)uarg->diagnostic_data, 2361 diag_data, copy_size)) { 2362 ioc_err(ioc, "%s: Unable to write mpt_diag_read_buffer_t data @ %p\n", 2363 __func__, diag_data); 2364 return -EFAULT; 2365 } 2366 2367 if ((karg.flags & MPT3_FLAGS_REREGISTER) == 0) 2368 return 0; 2369 2370 dctlprintk(ioc, 2371 ioc_info(ioc, "%s: Reregister buffer_type(0x%02x)\n", 2372 __func__, buffer_type)); 2373 if ((ioc->diag_buffer_status[buffer_type] & 2374 MPT3_DIAG_BUFFER_IS_RELEASED) == 0) { 2375 dctlprintk(ioc, 2376 ioc_info(ioc, "%s: buffer_type(0x%02x) is still registered\n", 2377 __func__, buffer_type)); 2378 return 0; 2379 } 2380 /* Get a free request frame and save the message context. 2381 */ 2382 2383 if (ioc->ctl_cmds.status != MPT3_CMD_NOT_USED) { 2384 ioc_err(ioc, "%s: ctl_cmd in use\n", __func__); 2385 rc = -EAGAIN; 2386 goto out; 2387 } 2388 2389 smid = mpt3sas_base_get_smid(ioc, ioc->ctl_cb_idx); 2390 if (!smid) { 2391 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 2392 rc = -EAGAIN; 2393 goto out; 2394 } 2395 2396 rc = 0; 2397 ioc->ctl_cmds.status = MPT3_CMD_PENDING; 2398 memset(ioc->ctl_cmds.reply, 0, ioc->reply_sz); 2399 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 2400 ioc->ctl_cmds.smid = smid; 2401 2402 mpi_request->Function = MPI2_FUNCTION_DIAG_BUFFER_POST; 2403 mpi_request->BufferType = buffer_type; 2404 mpi_request->BufferLength = 2405 cpu_to_le32(ioc->diag_buffer_sz[buffer_type]); 2406 mpi_request->BufferAddress = 2407 cpu_to_le64(ioc->diag_buffer_dma[buffer_type]); 2408 for (i = 0; i < MPT3_PRODUCT_SPECIFIC_DWORDS; i++) 2409 mpi_request->ProductSpecific[i] = 2410 cpu_to_le32(ioc->product_specific[buffer_type][i]); 2411 mpi_request->VF_ID = 0; /* TODO */ 2412 mpi_request->VP_ID = 0; 2413 2414 init_completion(&ioc->ctl_cmds.done); 2415 ioc->put_smid_default(ioc, smid); 2416 wait_for_completion_timeout(&ioc->ctl_cmds.done, 2417 MPT3_IOCTL_DEFAULT_TIMEOUT*HZ); 2418 2419 if (!(ioc->ctl_cmds.status & MPT3_CMD_COMPLETE)) { 2420 issue_reset = 2421 mpt3sas_base_check_cmd_timeout(ioc, 2422 ioc->ctl_cmds.status, mpi_request, 2423 sizeof(Mpi2DiagBufferPostRequest_t)/4); 2424 goto issue_host_reset; 2425 } 2426 2427 /* process the completed Reply Message Frame */ 2428 if ((ioc->ctl_cmds.status & MPT3_CMD_REPLY_VALID) == 0) { 2429 ioc_err(ioc, "%s: no reply message\n", __func__); 2430 rc = -EFAULT; 2431 goto out; 2432 } 2433 2434 mpi_reply = ioc->ctl_cmds.reply; 2435 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 2436 2437 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 2438 ioc->diag_buffer_status[buffer_type] |= 2439 MPT3_DIAG_BUFFER_IS_REGISTERED; 2440 ioc->diag_buffer_status[buffer_type] &= 2441 ~MPT3_DIAG_BUFFER_IS_RELEASED; 2442 dctlprintk(ioc, ioc_info(ioc, "%s: success\n", __func__)); 2443 } else { 2444 ioc_info(ioc, "%s: ioc_status(0x%04x) log_info(0x%08x)\n", 2445 __func__, ioc_status, 2446 le32_to_cpu(mpi_reply->IOCLogInfo)); 2447 rc = -EFAULT; 2448 } 2449 2450 issue_host_reset: 2451 if (issue_reset) 2452 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 2453 2454 out: 2455 2456 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED; 2457 return rc; 2458 } 2459 2460 2461 2462 #ifdef CONFIG_COMPAT 2463 /** 2464 * _ctl_compat_mpt_command - convert 32bit pointers to 64bit. 2465 * @ioc: per adapter object 2466 * @cmd: ioctl opcode 2467 * @arg: (struct mpt3_ioctl_command32) 2468 * 2469 * MPT3COMMAND32 - Handle 32bit applications running on 64bit os. 2470 */ 2471 static long 2472 _ctl_compat_mpt_command(struct MPT3SAS_ADAPTER *ioc, unsigned cmd, 2473 void __user *arg) 2474 { 2475 struct mpt3_ioctl_command32 karg32; 2476 struct mpt3_ioctl_command32 __user *uarg; 2477 struct mpt3_ioctl_command karg; 2478 2479 if (_IOC_SIZE(cmd) != sizeof(struct mpt3_ioctl_command32)) 2480 return -EINVAL; 2481 2482 uarg = (struct mpt3_ioctl_command32 __user *) arg; 2483 2484 if (copy_from_user(&karg32, (char __user *)arg, sizeof(karg32))) { 2485 pr_err("failure at %s:%d/%s()!\n", 2486 __FILE__, __LINE__, __func__); 2487 return -EFAULT; 2488 } 2489 2490 memset(&karg, 0, sizeof(struct mpt3_ioctl_command)); 2491 karg.hdr.ioc_number = karg32.hdr.ioc_number; 2492 karg.hdr.port_number = karg32.hdr.port_number; 2493 karg.hdr.max_data_size = karg32.hdr.max_data_size; 2494 karg.timeout = karg32.timeout; 2495 karg.max_reply_bytes = karg32.max_reply_bytes; 2496 karg.data_in_size = karg32.data_in_size; 2497 karg.data_out_size = karg32.data_out_size; 2498 karg.max_sense_bytes = karg32.max_sense_bytes; 2499 karg.data_sge_offset = karg32.data_sge_offset; 2500 karg.reply_frame_buf_ptr = compat_ptr(karg32.reply_frame_buf_ptr); 2501 karg.data_in_buf_ptr = compat_ptr(karg32.data_in_buf_ptr); 2502 karg.data_out_buf_ptr = compat_ptr(karg32.data_out_buf_ptr); 2503 karg.sense_data_ptr = compat_ptr(karg32.sense_data_ptr); 2504 return _ctl_do_mpt_command(ioc, karg, &uarg->mf); 2505 } 2506 #endif 2507 2508 /** 2509 * _ctl_ioctl_main - main ioctl entry point 2510 * @file: (struct file) 2511 * @cmd: ioctl opcode 2512 * @arg: user space data buffer 2513 * @compat: handles 32 bit applications in 64bit os 2514 * @mpi_version: will be MPI2_VERSION for mpt2ctl ioctl device & 2515 * MPI25_VERSION | MPI26_VERSION for mpt3ctl ioctl device. 2516 */ 2517 static long 2518 _ctl_ioctl_main(struct file *file, unsigned int cmd, void __user *arg, 2519 u8 compat, u16 mpi_version) 2520 { 2521 struct MPT3SAS_ADAPTER *ioc; 2522 struct mpt3_ioctl_header ioctl_header; 2523 enum block_state state; 2524 long ret = -EINVAL; 2525 2526 /* get IOCTL header */ 2527 if (copy_from_user(&ioctl_header, (char __user *)arg, 2528 sizeof(struct mpt3_ioctl_header))) { 2529 pr_err("failure at %s:%d/%s()!\n", 2530 __FILE__, __LINE__, __func__); 2531 return -EFAULT; 2532 } 2533 2534 if (_ctl_verify_adapter(ioctl_header.ioc_number, 2535 &ioc, mpi_version) == -1 || !ioc) 2536 return -ENODEV; 2537 2538 /* pci_access_mutex lock acquired by ioctl path */ 2539 mutex_lock(&ioc->pci_access_mutex); 2540 2541 if (ioc->shost_recovery || ioc->pci_error_recovery || 2542 ioc->is_driver_loading || ioc->remove_host) { 2543 ret = -EAGAIN; 2544 goto out_unlock_pciaccess; 2545 } 2546 2547 state = (file->f_flags & O_NONBLOCK) ? NON_BLOCKING : BLOCKING; 2548 if (state == NON_BLOCKING) { 2549 if (!mutex_trylock(&ioc->ctl_cmds.mutex)) { 2550 ret = -EAGAIN; 2551 goto out_unlock_pciaccess; 2552 } 2553 } else if (mutex_lock_interruptible(&ioc->ctl_cmds.mutex)) { 2554 ret = -ERESTARTSYS; 2555 goto out_unlock_pciaccess; 2556 } 2557 2558 2559 switch (cmd) { 2560 case MPT3IOCINFO: 2561 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_iocinfo)) 2562 ret = _ctl_getiocinfo(ioc, arg); 2563 break; 2564 #ifdef CONFIG_COMPAT 2565 case MPT3COMMAND32: 2566 #endif 2567 case MPT3COMMAND: 2568 { 2569 struct mpt3_ioctl_command __user *uarg; 2570 struct mpt3_ioctl_command karg; 2571 2572 #ifdef CONFIG_COMPAT 2573 if (compat) { 2574 ret = _ctl_compat_mpt_command(ioc, cmd, arg); 2575 break; 2576 } 2577 #endif 2578 if (copy_from_user(&karg, arg, sizeof(karg))) { 2579 pr_err("failure at %s:%d/%s()!\n", 2580 __FILE__, __LINE__, __func__); 2581 ret = -EFAULT; 2582 break; 2583 } 2584 2585 if (karg.hdr.ioc_number != ioctl_header.ioc_number) { 2586 ret = -EINVAL; 2587 break; 2588 } 2589 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_command)) { 2590 uarg = arg; 2591 ret = _ctl_do_mpt_command(ioc, karg, &uarg->mf); 2592 } 2593 break; 2594 } 2595 case MPT3EVENTQUERY: 2596 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_eventquery)) 2597 ret = _ctl_eventquery(ioc, arg); 2598 break; 2599 case MPT3EVENTENABLE: 2600 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_eventenable)) 2601 ret = _ctl_eventenable(ioc, arg); 2602 break; 2603 case MPT3EVENTREPORT: 2604 ret = _ctl_eventreport(ioc, arg); 2605 break; 2606 case MPT3HARDRESET: 2607 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_diag_reset)) 2608 ret = _ctl_do_reset(ioc, arg); 2609 break; 2610 case MPT3BTDHMAPPING: 2611 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_btdh_mapping)) 2612 ret = _ctl_btdh_mapping(ioc, arg); 2613 break; 2614 case MPT3DIAGREGISTER: 2615 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_diag_register)) 2616 ret = _ctl_diag_register(ioc, arg); 2617 break; 2618 case MPT3DIAGUNREGISTER: 2619 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_diag_unregister)) 2620 ret = _ctl_diag_unregister(ioc, arg); 2621 break; 2622 case MPT3DIAGQUERY: 2623 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_diag_query)) 2624 ret = _ctl_diag_query(ioc, arg); 2625 break; 2626 case MPT3DIAGRELEASE: 2627 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_diag_release)) 2628 ret = _ctl_diag_release(ioc, arg); 2629 break; 2630 case MPT3DIAGREADBUFFER: 2631 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_diag_read_buffer)) 2632 ret = _ctl_diag_read_buffer(ioc, arg); 2633 break; 2634 default: 2635 dctlprintk(ioc, 2636 ioc_info(ioc, "unsupported ioctl opcode(0x%08x)\n", 2637 cmd)); 2638 break; 2639 } 2640 2641 mutex_unlock(&ioc->ctl_cmds.mutex); 2642 out_unlock_pciaccess: 2643 mutex_unlock(&ioc->pci_access_mutex); 2644 return ret; 2645 } 2646 2647 /** 2648 * _ctl_ioctl - mpt3ctl main ioctl entry point (unlocked) 2649 * @file: (struct file) 2650 * @cmd: ioctl opcode 2651 * @arg: ? 2652 */ 2653 static long 2654 _ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2655 { 2656 long ret; 2657 2658 /* pass MPI25_VERSION | MPI26_VERSION value, 2659 * to indicate that this ioctl cmd 2660 * came from mpt3ctl ioctl device. 2661 */ 2662 ret = _ctl_ioctl_main(file, cmd, (void __user *)arg, 0, 2663 MPI25_VERSION | MPI26_VERSION); 2664 return ret; 2665 } 2666 2667 /** 2668 * _ctl_mpt2_ioctl - mpt2ctl main ioctl entry point (unlocked) 2669 * @file: (struct file) 2670 * @cmd: ioctl opcode 2671 * @arg: ? 2672 */ 2673 static long 2674 _ctl_mpt2_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2675 { 2676 long ret; 2677 2678 /* pass MPI2_VERSION value, to indicate that this ioctl cmd 2679 * came from mpt2ctl ioctl device. 2680 */ 2681 ret = _ctl_ioctl_main(file, cmd, (void __user *)arg, 0, MPI2_VERSION); 2682 return ret; 2683 } 2684 #ifdef CONFIG_COMPAT 2685 /** 2686 *_ ctl_ioctl_compat - main ioctl entry point (compat) 2687 * @file: ? 2688 * @cmd: ? 2689 * @arg: ? 2690 * 2691 * This routine handles 32 bit applications in 64bit os. 2692 */ 2693 static long 2694 _ctl_ioctl_compat(struct file *file, unsigned cmd, unsigned long arg) 2695 { 2696 long ret; 2697 2698 ret = _ctl_ioctl_main(file, cmd, (void __user *)arg, 1, 2699 MPI25_VERSION | MPI26_VERSION); 2700 return ret; 2701 } 2702 2703 /** 2704 *_ ctl_mpt2_ioctl_compat - main ioctl entry point (compat) 2705 * @file: ? 2706 * @cmd: ? 2707 * @arg: ? 2708 * 2709 * This routine handles 32 bit applications in 64bit os. 2710 */ 2711 static long 2712 _ctl_mpt2_ioctl_compat(struct file *file, unsigned cmd, unsigned long arg) 2713 { 2714 long ret; 2715 2716 ret = _ctl_ioctl_main(file, cmd, (void __user *)arg, 1, MPI2_VERSION); 2717 return ret; 2718 } 2719 #endif 2720 2721 /* scsi host attributes */ 2722 /** 2723 * version_fw_show - firmware version 2724 * @cdev: pointer to embedded class device 2725 * @attr: ? 2726 * @buf: the buffer returned 2727 * 2728 * A sysfs 'read-only' shost attribute. 2729 */ 2730 static ssize_t 2731 version_fw_show(struct device *cdev, struct device_attribute *attr, 2732 char *buf) 2733 { 2734 struct Scsi_Host *shost = class_to_shost(cdev); 2735 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2736 2737 return snprintf(buf, PAGE_SIZE, "%02d.%02d.%02d.%02d\n", 2738 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24, 2739 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16, 2740 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8, 2741 ioc->facts.FWVersion.Word & 0x000000FF); 2742 } 2743 static DEVICE_ATTR_RO(version_fw); 2744 2745 /** 2746 * version_bios_show - bios version 2747 * @cdev: pointer to embedded class device 2748 * @attr: ? 2749 * @buf: the buffer returned 2750 * 2751 * A sysfs 'read-only' shost attribute. 2752 */ 2753 static ssize_t 2754 version_bios_show(struct device *cdev, struct device_attribute *attr, 2755 char *buf) 2756 { 2757 struct Scsi_Host *shost = class_to_shost(cdev); 2758 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2759 2760 u32 version = le32_to_cpu(ioc->bios_pg3.BiosVersion); 2761 2762 return snprintf(buf, PAGE_SIZE, "%02d.%02d.%02d.%02d\n", 2763 (version & 0xFF000000) >> 24, 2764 (version & 0x00FF0000) >> 16, 2765 (version & 0x0000FF00) >> 8, 2766 version & 0x000000FF); 2767 } 2768 static DEVICE_ATTR_RO(version_bios); 2769 2770 /** 2771 * version_mpi_show - MPI (message passing interface) version 2772 * @cdev: pointer to embedded class device 2773 * @attr: ? 2774 * @buf: the buffer returned 2775 * 2776 * A sysfs 'read-only' shost attribute. 2777 */ 2778 static ssize_t 2779 version_mpi_show(struct device *cdev, struct device_attribute *attr, 2780 char *buf) 2781 { 2782 struct Scsi_Host *shost = class_to_shost(cdev); 2783 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2784 2785 return snprintf(buf, PAGE_SIZE, "%03x.%02x\n", 2786 ioc->facts.MsgVersion, ioc->facts.HeaderVersion >> 8); 2787 } 2788 static DEVICE_ATTR_RO(version_mpi); 2789 2790 /** 2791 * version_product_show - product name 2792 * @cdev: pointer to embedded class device 2793 * @attr: ? 2794 * @buf: the buffer returned 2795 * 2796 * A sysfs 'read-only' shost attribute. 2797 */ 2798 static ssize_t 2799 version_product_show(struct device *cdev, struct device_attribute *attr, 2800 char *buf) 2801 { 2802 struct Scsi_Host *shost = class_to_shost(cdev); 2803 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2804 2805 return snprintf(buf, 16, "%s\n", ioc->manu_pg0.ChipName); 2806 } 2807 static DEVICE_ATTR_RO(version_product); 2808 2809 /** 2810 * version_nvdata_persistent_show - ndvata persistent version 2811 * @cdev: pointer to embedded class device 2812 * @attr: ? 2813 * @buf: the buffer returned 2814 * 2815 * A sysfs 'read-only' shost attribute. 2816 */ 2817 static ssize_t 2818 version_nvdata_persistent_show(struct device *cdev, 2819 struct device_attribute *attr, char *buf) 2820 { 2821 struct Scsi_Host *shost = class_to_shost(cdev); 2822 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2823 2824 return snprintf(buf, PAGE_SIZE, "%08xh\n", 2825 le32_to_cpu(ioc->iounit_pg0.NvdataVersionPersistent.Word)); 2826 } 2827 static DEVICE_ATTR_RO(version_nvdata_persistent); 2828 2829 /** 2830 * version_nvdata_default_show - nvdata default version 2831 * @cdev: pointer to embedded class device 2832 * @attr: ? 2833 * @buf: the buffer returned 2834 * 2835 * A sysfs 'read-only' shost attribute. 2836 */ 2837 static ssize_t 2838 version_nvdata_default_show(struct device *cdev, struct device_attribute 2839 *attr, char *buf) 2840 { 2841 struct Scsi_Host *shost = class_to_shost(cdev); 2842 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2843 2844 return snprintf(buf, PAGE_SIZE, "%08xh\n", 2845 le32_to_cpu(ioc->iounit_pg0.NvdataVersionDefault.Word)); 2846 } 2847 static DEVICE_ATTR_RO(version_nvdata_default); 2848 2849 /** 2850 * board_name_show - board name 2851 * @cdev: pointer to embedded class device 2852 * @attr: ? 2853 * @buf: the buffer returned 2854 * 2855 * A sysfs 'read-only' shost attribute. 2856 */ 2857 static ssize_t 2858 board_name_show(struct device *cdev, struct device_attribute *attr, 2859 char *buf) 2860 { 2861 struct Scsi_Host *shost = class_to_shost(cdev); 2862 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2863 2864 return snprintf(buf, 16, "%s\n", ioc->manu_pg0.BoardName); 2865 } 2866 static DEVICE_ATTR_RO(board_name); 2867 2868 /** 2869 * board_assembly_show - board assembly name 2870 * @cdev: pointer to embedded class device 2871 * @attr: ? 2872 * @buf: the buffer returned 2873 * 2874 * A sysfs 'read-only' shost attribute. 2875 */ 2876 static ssize_t 2877 board_assembly_show(struct device *cdev, struct device_attribute *attr, 2878 char *buf) 2879 { 2880 struct Scsi_Host *shost = class_to_shost(cdev); 2881 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2882 2883 return snprintf(buf, 16, "%s\n", ioc->manu_pg0.BoardAssembly); 2884 } 2885 static DEVICE_ATTR_RO(board_assembly); 2886 2887 /** 2888 * board_tracer_show - board tracer number 2889 * @cdev: pointer to embedded class device 2890 * @attr: ? 2891 * @buf: the buffer returned 2892 * 2893 * A sysfs 'read-only' shost attribute. 2894 */ 2895 static ssize_t 2896 board_tracer_show(struct device *cdev, struct device_attribute *attr, 2897 char *buf) 2898 { 2899 struct Scsi_Host *shost = class_to_shost(cdev); 2900 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2901 2902 return snprintf(buf, 16, "%s\n", ioc->manu_pg0.BoardTracerNumber); 2903 } 2904 static DEVICE_ATTR_RO(board_tracer); 2905 2906 /** 2907 * io_delay_show - io missing delay 2908 * @cdev: pointer to embedded class device 2909 * @attr: ? 2910 * @buf: the buffer returned 2911 * 2912 * This is for firmware implemention for deboucing device 2913 * removal events. 2914 * 2915 * A sysfs 'read-only' shost attribute. 2916 */ 2917 static ssize_t 2918 io_delay_show(struct device *cdev, struct device_attribute *attr, 2919 char *buf) 2920 { 2921 struct Scsi_Host *shost = class_to_shost(cdev); 2922 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2923 2924 return snprintf(buf, PAGE_SIZE, "%02d\n", ioc->io_missing_delay); 2925 } 2926 static DEVICE_ATTR_RO(io_delay); 2927 2928 /** 2929 * device_delay_show - device missing delay 2930 * @cdev: pointer to embedded class device 2931 * @attr: ? 2932 * @buf: the buffer returned 2933 * 2934 * This is for firmware implemention for deboucing device 2935 * removal events. 2936 * 2937 * A sysfs 'read-only' shost attribute. 2938 */ 2939 static ssize_t 2940 device_delay_show(struct device *cdev, struct device_attribute *attr, 2941 char *buf) 2942 { 2943 struct Scsi_Host *shost = class_to_shost(cdev); 2944 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2945 2946 return snprintf(buf, PAGE_SIZE, "%02d\n", ioc->device_missing_delay); 2947 } 2948 static DEVICE_ATTR_RO(device_delay); 2949 2950 /** 2951 * fw_queue_depth_show - global credits 2952 * @cdev: pointer to embedded class device 2953 * @attr: ? 2954 * @buf: the buffer returned 2955 * 2956 * This is firmware queue depth limit 2957 * 2958 * A sysfs 'read-only' shost attribute. 2959 */ 2960 static ssize_t 2961 fw_queue_depth_show(struct device *cdev, struct device_attribute *attr, 2962 char *buf) 2963 { 2964 struct Scsi_Host *shost = class_to_shost(cdev); 2965 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2966 2967 return snprintf(buf, PAGE_SIZE, "%02d\n", ioc->facts.RequestCredit); 2968 } 2969 static DEVICE_ATTR_RO(fw_queue_depth); 2970 2971 /** 2972 * sas_address_show - sas address 2973 * @cdev: pointer to embedded class device 2974 * @attr: ? 2975 * @buf: the buffer returned 2976 * 2977 * This is the controller sas address 2978 * 2979 * A sysfs 'read-only' shost attribute. 2980 */ 2981 static ssize_t 2982 host_sas_address_show(struct device *cdev, struct device_attribute *attr, 2983 char *buf) 2984 2985 { 2986 struct Scsi_Host *shost = class_to_shost(cdev); 2987 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2988 2989 return snprintf(buf, PAGE_SIZE, "0x%016llx\n", 2990 (unsigned long long)ioc->sas_hba.sas_address); 2991 } 2992 static DEVICE_ATTR_RO(host_sas_address); 2993 2994 /** 2995 * logging_level_show - logging level 2996 * @cdev: pointer to embedded class device 2997 * @attr: ? 2998 * @buf: the buffer returned 2999 * 3000 * A sysfs 'read/write' shost attribute. 3001 */ 3002 static ssize_t 3003 logging_level_show(struct device *cdev, struct device_attribute *attr, 3004 char *buf) 3005 { 3006 struct Scsi_Host *shost = class_to_shost(cdev); 3007 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3008 3009 return snprintf(buf, PAGE_SIZE, "%08xh\n", ioc->logging_level); 3010 } 3011 static ssize_t 3012 logging_level_store(struct device *cdev, struct device_attribute *attr, 3013 const char *buf, size_t count) 3014 { 3015 struct Scsi_Host *shost = class_to_shost(cdev); 3016 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3017 int val = 0; 3018 3019 if (sscanf(buf, "%x", &val) != 1) 3020 return -EINVAL; 3021 3022 ioc->logging_level = val; 3023 ioc_info(ioc, "logging_level=%08xh\n", 3024 ioc->logging_level); 3025 return strlen(buf); 3026 } 3027 static DEVICE_ATTR_RW(logging_level); 3028 3029 /** 3030 * fwfault_debug_show - show/store fwfault_debug 3031 * @cdev: pointer to embedded class device 3032 * @attr: ? 3033 * @buf: the buffer returned 3034 * 3035 * mpt3sas_fwfault_debug is command line option 3036 * A sysfs 'read/write' shost attribute. 3037 */ 3038 static ssize_t 3039 fwfault_debug_show(struct device *cdev, struct device_attribute *attr, 3040 char *buf) 3041 { 3042 struct Scsi_Host *shost = class_to_shost(cdev); 3043 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3044 3045 return snprintf(buf, PAGE_SIZE, "%d\n", ioc->fwfault_debug); 3046 } 3047 static ssize_t 3048 fwfault_debug_store(struct device *cdev, struct device_attribute *attr, 3049 const char *buf, size_t count) 3050 { 3051 struct Scsi_Host *shost = class_to_shost(cdev); 3052 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3053 int val = 0; 3054 3055 if (sscanf(buf, "%d", &val) != 1) 3056 return -EINVAL; 3057 3058 ioc->fwfault_debug = val; 3059 ioc_info(ioc, "fwfault_debug=%d\n", 3060 ioc->fwfault_debug); 3061 return strlen(buf); 3062 } 3063 static DEVICE_ATTR_RW(fwfault_debug); 3064 3065 /** 3066 * ioc_reset_count_show - ioc reset count 3067 * @cdev: pointer to embedded class device 3068 * @attr: ? 3069 * @buf: the buffer returned 3070 * 3071 * This is firmware queue depth limit 3072 * 3073 * A sysfs 'read-only' shost attribute. 3074 */ 3075 static ssize_t 3076 ioc_reset_count_show(struct device *cdev, struct device_attribute *attr, 3077 char *buf) 3078 { 3079 struct Scsi_Host *shost = class_to_shost(cdev); 3080 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3081 3082 return snprintf(buf, PAGE_SIZE, "%d\n", ioc->ioc_reset_count); 3083 } 3084 static DEVICE_ATTR_RO(ioc_reset_count); 3085 3086 /** 3087 * reply_queue_count_show - number of reply queues 3088 * @cdev: pointer to embedded class device 3089 * @attr: ? 3090 * @buf: the buffer returned 3091 * 3092 * This is number of reply queues 3093 * 3094 * A sysfs 'read-only' shost attribute. 3095 */ 3096 static ssize_t 3097 reply_queue_count_show(struct device *cdev, 3098 struct device_attribute *attr, char *buf) 3099 { 3100 u8 reply_queue_count; 3101 struct Scsi_Host *shost = class_to_shost(cdev); 3102 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3103 3104 if ((ioc->facts.IOCCapabilities & 3105 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable) 3106 reply_queue_count = ioc->reply_queue_count; 3107 else 3108 reply_queue_count = 1; 3109 3110 return snprintf(buf, PAGE_SIZE, "%d\n", reply_queue_count); 3111 } 3112 static DEVICE_ATTR_RO(reply_queue_count); 3113 3114 /** 3115 * BRM_status_show - Backup Rail Monitor Status 3116 * @cdev: pointer to embedded class device 3117 * @attr: ? 3118 * @buf: the buffer returned 3119 * 3120 * This is number of reply queues 3121 * 3122 * A sysfs 'read-only' shost attribute. 3123 */ 3124 static ssize_t 3125 BRM_status_show(struct device *cdev, struct device_attribute *attr, 3126 char *buf) 3127 { 3128 struct Scsi_Host *shost = class_to_shost(cdev); 3129 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3130 Mpi2IOUnitPage3_t *io_unit_pg3 = NULL; 3131 Mpi2ConfigReply_t mpi_reply; 3132 u16 backup_rail_monitor_status = 0; 3133 u16 ioc_status; 3134 int sz; 3135 ssize_t rc = 0; 3136 3137 if (!ioc->is_warpdrive) { 3138 ioc_err(ioc, "%s: BRM attribute is only for warpdrive\n", 3139 __func__); 3140 goto out; 3141 } 3142 /* pci_access_mutex lock acquired by sysfs show path */ 3143 mutex_lock(&ioc->pci_access_mutex); 3144 if (ioc->pci_error_recovery || ioc->remove_host) { 3145 mutex_unlock(&ioc->pci_access_mutex); 3146 return 0; 3147 } 3148 3149 /* allocate upto GPIOVal 36 entries */ 3150 sz = offsetof(Mpi2IOUnitPage3_t, GPIOVal) + (sizeof(u16) * 36); 3151 io_unit_pg3 = kzalloc(sz, GFP_KERNEL); 3152 if (!io_unit_pg3) { 3153 ioc_err(ioc, "%s: failed allocating memory for iounit_pg3: (%d) bytes\n", 3154 __func__, sz); 3155 goto out; 3156 } 3157 3158 if (mpt3sas_config_get_iounit_pg3(ioc, &mpi_reply, io_unit_pg3, sz) != 3159 0) { 3160 ioc_err(ioc, "%s: failed reading iounit_pg3\n", 3161 __func__); 3162 goto out; 3163 } 3164 3165 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK; 3166 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 3167 ioc_err(ioc, "%s: iounit_pg3 failed with ioc_status(0x%04x)\n", 3168 __func__, ioc_status); 3169 goto out; 3170 } 3171 3172 if (io_unit_pg3->GPIOCount < 25) { 3173 ioc_err(ioc, "%s: iounit_pg3->GPIOCount less than 25 entries, detected (%d) entries\n", 3174 __func__, io_unit_pg3->GPIOCount); 3175 goto out; 3176 } 3177 3178 /* BRM status is in bit zero of GPIOVal[24] */ 3179 backup_rail_monitor_status = le16_to_cpu(io_unit_pg3->GPIOVal[24]); 3180 rc = snprintf(buf, PAGE_SIZE, "%d\n", (backup_rail_monitor_status & 1)); 3181 3182 out: 3183 kfree(io_unit_pg3); 3184 mutex_unlock(&ioc->pci_access_mutex); 3185 return rc; 3186 } 3187 static DEVICE_ATTR_RO(BRM_status); 3188 3189 struct DIAG_BUFFER_START { 3190 __le32 Size; 3191 __le32 DiagVersion; 3192 u8 BufferType; 3193 u8 Reserved[3]; 3194 __le32 Reserved1; 3195 __le32 Reserved2; 3196 __le32 Reserved3; 3197 }; 3198 3199 /** 3200 * host_trace_buffer_size_show - host buffer size (trace only) 3201 * @cdev: pointer to embedded class device 3202 * @attr: ? 3203 * @buf: the buffer returned 3204 * 3205 * A sysfs 'read-only' shost attribute. 3206 */ 3207 static ssize_t 3208 host_trace_buffer_size_show(struct device *cdev, 3209 struct device_attribute *attr, char *buf) 3210 { 3211 struct Scsi_Host *shost = class_to_shost(cdev); 3212 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3213 u32 size = 0; 3214 struct DIAG_BUFFER_START *request_data; 3215 3216 if (!ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) { 3217 ioc_err(ioc, "%s: host_trace_buffer is not registered\n", 3218 __func__); 3219 return 0; 3220 } 3221 3222 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 3223 MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) { 3224 ioc_err(ioc, "%s: host_trace_buffer is not registered\n", 3225 __func__); 3226 return 0; 3227 } 3228 3229 request_data = (struct DIAG_BUFFER_START *) 3230 ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]; 3231 if ((le32_to_cpu(request_data->DiagVersion) == 0x00000000 || 3232 le32_to_cpu(request_data->DiagVersion) == 0x01000000 || 3233 le32_to_cpu(request_data->DiagVersion) == 0x01010000) && 3234 le32_to_cpu(request_data->Reserved3) == 0x4742444c) 3235 size = le32_to_cpu(request_data->Size); 3236 3237 ioc->ring_buffer_sz = size; 3238 return snprintf(buf, PAGE_SIZE, "%d\n", size); 3239 } 3240 static DEVICE_ATTR_RO(host_trace_buffer_size); 3241 3242 /** 3243 * host_trace_buffer_show - firmware ring buffer (trace only) 3244 * @cdev: pointer to embedded class device 3245 * @attr: ? 3246 * @buf: the buffer returned 3247 * 3248 * A sysfs 'read/write' shost attribute. 3249 * 3250 * You will only be able to read 4k bytes of ring buffer at a time. 3251 * In order to read beyond 4k bytes, you will have to write out the 3252 * offset to the same attribute, it will move the pointer. 3253 */ 3254 static ssize_t 3255 host_trace_buffer_show(struct device *cdev, struct device_attribute *attr, 3256 char *buf) 3257 { 3258 struct Scsi_Host *shost = class_to_shost(cdev); 3259 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3260 void *request_data; 3261 u32 size; 3262 3263 if (!ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) { 3264 ioc_err(ioc, "%s: host_trace_buffer is not registered\n", 3265 __func__); 3266 return 0; 3267 } 3268 3269 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 3270 MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) { 3271 ioc_err(ioc, "%s: host_trace_buffer is not registered\n", 3272 __func__); 3273 return 0; 3274 } 3275 3276 if (ioc->ring_buffer_offset > ioc->ring_buffer_sz) 3277 return 0; 3278 3279 size = ioc->ring_buffer_sz - ioc->ring_buffer_offset; 3280 size = (size >= PAGE_SIZE) ? (PAGE_SIZE - 1) : size; 3281 request_data = ioc->diag_buffer[0] + ioc->ring_buffer_offset; 3282 memcpy(buf, request_data, size); 3283 return size; 3284 } 3285 3286 static ssize_t 3287 host_trace_buffer_store(struct device *cdev, struct device_attribute *attr, 3288 const char *buf, size_t count) 3289 { 3290 struct Scsi_Host *shost = class_to_shost(cdev); 3291 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3292 int val = 0; 3293 3294 if (sscanf(buf, "%d", &val) != 1) 3295 return -EINVAL; 3296 3297 ioc->ring_buffer_offset = val; 3298 return strlen(buf); 3299 } 3300 static DEVICE_ATTR_RW(host_trace_buffer); 3301 3302 3303 /*****************************************/ 3304 3305 /** 3306 * host_trace_buffer_enable_show - firmware ring buffer (trace only) 3307 * @cdev: pointer to embedded class device 3308 * @attr: ? 3309 * @buf: the buffer returned 3310 * 3311 * A sysfs 'read/write' shost attribute. 3312 * 3313 * This is a mechnism to post/release host_trace_buffers 3314 */ 3315 static ssize_t 3316 host_trace_buffer_enable_show(struct device *cdev, 3317 struct device_attribute *attr, char *buf) 3318 { 3319 struct Scsi_Host *shost = class_to_shost(cdev); 3320 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3321 3322 if ((!ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) || 3323 ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 3324 MPT3_DIAG_BUFFER_IS_REGISTERED) == 0)) 3325 return snprintf(buf, PAGE_SIZE, "off\n"); 3326 else if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 3327 MPT3_DIAG_BUFFER_IS_RELEASED)) 3328 return snprintf(buf, PAGE_SIZE, "release\n"); 3329 else 3330 return snprintf(buf, PAGE_SIZE, "post\n"); 3331 } 3332 3333 static ssize_t 3334 host_trace_buffer_enable_store(struct device *cdev, 3335 struct device_attribute *attr, const char *buf, size_t count) 3336 { 3337 struct Scsi_Host *shost = class_to_shost(cdev); 3338 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3339 char str[10] = ""; 3340 struct mpt3_diag_register diag_register; 3341 u8 issue_reset = 0; 3342 3343 /* don't allow post/release occurr while recovery is active */ 3344 if (ioc->shost_recovery || ioc->remove_host || 3345 ioc->pci_error_recovery || ioc->is_driver_loading) 3346 return -EBUSY; 3347 3348 if (sscanf(buf, "%9s", str) != 1) 3349 return -EINVAL; 3350 3351 if (!strcmp(str, "post")) { 3352 /* exit out if host buffers are already posted */ 3353 if ((ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) && 3354 (ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 3355 MPT3_DIAG_BUFFER_IS_REGISTERED) && 3356 ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 3357 MPT3_DIAG_BUFFER_IS_RELEASED) == 0)) 3358 goto out; 3359 memset(&diag_register, 0, sizeof(struct mpt3_diag_register)); 3360 ioc_info(ioc, "posting host trace buffers\n"); 3361 diag_register.buffer_type = MPI2_DIAG_BUF_TYPE_TRACE; 3362 3363 if (ioc->manu_pg11.HostTraceBufferMaxSizeKB != 0 && 3364 ioc->diag_buffer_sz[MPI2_DIAG_BUF_TYPE_TRACE] != 0) { 3365 /* post the same buffer allocated previously */ 3366 diag_register.requested_buffer_size = 3367 ioc->diag_buffer_sz[MPI2_DIAG_BUF_TYPE_TRACE]; 3368 } else { 3369 /* 3370 * Free the diag buffer memory which was previously 3371 * allocated by an application. 3372 */ 3373 if ((ioc->diag_buffer_sz[MPI2_DIAG_BUF_TYPE_TRACE] != 0) 3374 && 3375 (ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 3376 MPT3_DIAG_BUFFER_IS_APP_OWNED)) { 3377 pci_free_consistent(ioc->pdev, 3378 ioc->diag_buffer_sz[ 3379 MPI2_DIAG_BUF_TYPE_TRACE], 3380 ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE], 3381 ioc->diag_buffer_dma[ 3382 MPI2_DIAG_BUF_TYPE_TRACE]); 3383 ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE] = 3384 NULL; 3385 } 3386 3387 diag_register.requested_buffer_size = (1024 * 1024); 3388 } 3389 3390 diag_register.unique_id = 3391 (ioc->hba_mpi_version_belonged == MPI2_VERSION) ? 3392 (MPT2DIAGBUFFUNIQUEID):(MPT3DIAGBUFFUNIQUEID); 3393 ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] = 0; 3394 _ctl_diag_register_2(ioc, &diag_register); 3395 if (ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 3396 MPT3_DIAG_BUFFER_IS_REGISTERED) { 3397 ioc_info(ioc, 3398 "Trace buffer %d KB allocated through sysfs\n", 3399 diag_register.requested_buffer_size>>10); 3400 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) 3401 ioc->diag_buffer_status[ 3402 MPI2_DIAG_BUF_TYPE_TRACE] |= 3403 MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED; 3404 } 3405 } else if (!strcmp(str, "release")) { 3406 /* exit out if host buffers are already released */ 3407 if (!ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) 3408 goto out; 3409 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 3410 MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) 3411 goto out; 3412 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 3413 MPT3_DIAG_BUFFER_IS_RELEASED)) 3414 goto out; 3415 ioc_info(ioc, "releasing host trace buffer\n"); 3416 mpt3sas_send_diag_release(ioc, MPI2_DIAG_BUF_TYPE_TRACE, 3417 &issue_reset); 3418 } 3419 3420 out: 3421 return strlen(buf); 3422 } 3423 static DEVICE_ATTR_RW(host_trace_buffer_enable); 3424 3425 /*********** diagnostic trigger suppport *********************************/ 3426 3427 /** 3428 * diag_trigger_master_show - show the diag_trigger_master attribute 3429 * @cdev: pointer to embedded class device 3430 * @attr: ? 3431 * @buf: the buffer returned 3432 * 3433 * A sysfs 'read/write' shost attribute. 3434 */ 3435 static ssize_t 3436 diag_trigger_master_show(struct device *cdev, 3437 struct device_attribute *attr, char *buf) 3438 3439 { 3440 struct Scsi_Host *shost = class_to_shost(cdev); 3441 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3442 unsigned long flags; 3443 ssize_t rc; 3444 3445 spin_lock_irqsave(&ioc->diag_trigger_lock, flags); 3446 rc = sizeof(struct SL_WH_MASTER_TRIGGER_T); 3447 memcpy(buf, &ioc->diag_trigger_master, rc); 3448 spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags); 3449 return rc; 3450 } 3451 3452 /** 3453 * diag_trigger_master_store - store the diag_trigger_master attribute 3454 * @cdev: pointer to embedded class device 3455 * @attr: ? 3456 * @buf: the buffer returned 3457 * @count: ? 3458 * 3459 * A sysfs 'read/write' shost attribute. 3460 */ 3461 static ssize_t 3462 diag_trigger_master_store(struct device *cdev, 3463 struct device_attribute *attr, const char *buf, size_t count) 3464 3465 { 3466 struct Scsi_Host *shost = class_to_shost(cdev); 3467 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3468 unsigned long flags; 3469 ssize_t rc; 3470 3471 spin_lock_irqsave(&ioc->diag_trigger_lock, flags); 3472 rc = min(sizeof(struct SL_WH_MASTER_TRIGGER_T), count); 3473 memset(&ioc->diag_trigger_master, 0, 3474 sizeof(struct SL_WH_MASTER_TRIGGER_T)); 3475 memcpy(&ioc->diag_trigger_master, buf, rc); 3476 ioc->diag_trigger_master.MasterData |= 3477 (MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET); 3478 spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags); 3479 return rc; 3480 } 3481 static DEVICE_ATTR_RW(diag_trigger_master); 3482 3483 3484 /** 3485 * diag_trigger_event_show - show the diag_trigger_event attribute 3486 * @cdev: pointer to embedded class device 3487 * @attr: ? 3488 * @buf: the buffer returned 3489 * 3490 * A sysfs 'read/write' shost attribute. 3491 */ 3492 static ssize_t 3493 diag_trigger_event_show(struct device *cdev, 3494 struct device_attribute *attr, char *buf) 3495 { 3496 struct Scsi_Host *shost = class_to_shost(cdev); 3497 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3498 unsigned long flags; 3499 ssize_t rc; 3500 3501 spin_lock_irqsave(&ioc->diag_trigger_lock, flags); 3502 rc = sizeof(struct SL_WH_EVENT_TRIGGERS_T); 3503 memcpy(buf, &ioc->diag_trigger_event, rc); 3504 spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags); 3505 return rc; 3506 } 3507 3508 /** 3509 * diag_trigger_event_store - store the diag_trigger_event attribute 3510 * @cdev: pointer to embedded class device 3511 * @attr: ? 3512 * @buf: the buffer returned 3513 * @count: ? 3514 * 3515 * A sysfs 'read/write' shost attribute. 3516 */ 3517 static ssize_t 3518 diag_trigger_event_store(struct device *cdev, 3519 struct device_attribute *attr, const char *buf, size_t count) 3520 3521 { 3522 struct Scsi_Host *shost = class_to_shost(cdev); 3523 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3524 unsigned long flags; 3525 ssize_t sz; 3526 3527 spin_lock_irqsave(&ioc->diag_trigger_lock, flags); 3528 sz = min(sizeof(struct SL_WH_EVENT_TRIGGERS_T), count); 3529 memset(&ioc->diag_trigger_event, 0, 3530 sizeof(struct SL_WH_EVENT_TRIGGERS_T)); 3531 memcpy(&ioc->diag_trigger_event, buf, sz); 3532 if (ioc->diag_trigger_event.ValidEntries > NUM_VALID_ENTRIES) 3533 ioc->diag_trigger_event.ValidEntries = NUM_VALID_ENTRIES; 3534 spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags); 3535 return sz; 3536 } 3537 static DEVICE_ATTR_RW(diag_trigger_event); 3538 3539 3540 /** 3541 * diag_trigger_scsi_show - show the diag_trigger_scsi attribute 3542 * @cdev: pointer to embedded class device 3543 * @attr: ? 3544 * @buf: the buffer returned 3545 * 3546 * A sysfs 'read/write' shost attribute. 3547 */ 3548 static ssize_t 3549 diag_trigger_scsi_show(struct device *cdev, 3550 struct device_attribute *attr, char *buf) 3551 { 3552 struct Scsi_Host *shost = class_to_shost(cdev); 3553 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3554 unsigned long flags; 3555 ssize_t rc; 3556 3557 spin_lock_irqsave(&ioc->diag_trigger_lock, flags); 3558 rc = sizeof(struct SL_WH_SCSI_TRIGGERS_T); 3559 memcpy(buf, &ioc->diag_trigger_scsi, rc); 3560 spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags); 3561 return rc; 3562 } 3563 3564 /** 3565 * diag_trigger_scsi_store - store the diag_trigger_scsi attribute 3566 * @cdev: pointer to embedded class device 3567 * @attr: ? 3568 * @buf: the buffer returned 3569 * @count: ? 3570 * 3571 * A sysfs 'read/write' shost attribute. 3572 */ 3573 static ssize_t 3574 diag_trigger_scsi_store(struct device *cdev, 3575 struct device_attribute *attr, const char *buf, size_t count) 3576 { 3577 struct Scsi_Host *shost = class_to_shost(cdev); 3578 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3579 unsigned long flags; 3580 ssize_t sz; 3581 3582 spin_lock_irqsave(&ioc->diag_trigger_lock, flags); 3583 sz = min(sizeof(ioc->diag_trigger_scsi), count); 3584 memset(&ioc->diag_trigger_scsi, 0, sizeof(ioc->diag_trigger_scsi)); 3585 memcpy(&ioc->diag_trigger_scsi, buf, sz); 3586 if (ioc->diag_trigger_scsi.ValidEntries > NUM_VALID_ENTRIES) 3587 ioc->diag_trigger_scsi.ValidEntries = NUM_VALID_ENTRIES; 3588 spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags); 3589 return sz; 3590 } 3591 static DEVICE_ATTR_RW(diag_trigger_scsi); 3592 3593 3594 /** 3595 * diag_trigger_scsi_show - show the diag_trigger_mpi attribute 3596 * @cdev: pointer to embedded class device 3597 * @attr: ? 3598 * @buf: the buffer returned 3599 * 3600 * A sysfs 'read/write' shost attribute. 3601 */ 3602 static ssize_t 3603 diag_trigger_mpi_show(struct device *cdev, 3604 struct device_attribute *attr, char *buf) 3605 { 3606 struct Scsi_Host *shost = class_to_shost(cdev); 3607 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3608 unsigned long flags; 3609 ssize_t rc; 3610 3611 spin_lock_irqsave(&ioc->diag_trigger_lock, flags); 3612 rc = sizeof(struct SL_WH_MPI_TRIGGERS_T); 3613 memcpy(buf, &ioc->diag_trigger_mpi, rc); 3614 spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags); 3615 return rc; 3616 } 3617 3618 /** 3619 * diag_trigger_mpi_store - store the diag_trigger_mpi attribute 3620 * @cdev: pointer to embedded class device 3621 * @attr: ? 3622 * @buf: the buffer returned 3623 * @count: ? 3624 * 3625 * A sysfs 'read/write' shost attribute. 3626 */ 3627 static ssize_t 3628 diag_trigger_mpi_store(struct device *cdev, 3629 struct device_attribute *attr, const char *buf, size_t count) 3630 { 3631 struct Scsi_Host *shost = class_to_shost(cdev); 3632 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3633 unsigned long flags; 3634 ssize_t sz; 3635 3636 spin_lock_irqsave(&ioc->diag_trigger_lock, flags); 3637 sz = min(sizeof(struct SL_WH_MPI_TRIGGERS_T), count); 3638 memset(&ioc->diag_trigger_mpi, 0, 3639 sizeof(ioc->diag_trigger_mpi)); 3640 memcpy(&ioc->diag_trigger_mpi, buf, sz); 3641 if (ioc->diag_trigger_mpi.ValidEntries > NUM_VALID_ENTRIES) 3642 ioc->diag_trigger_mpi.ValidEntries = NUM_VALID_ENTRIES; 3643 spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags); 3644 return sz; 3645 } 3646 3647 static DEVICE_ATTR_RW(diag_trigger_mpi); 3648 3649 /*********** diagnostic trigger suppport *** END ****************************/ 3650 3651 /*****************************************/ 3652 3653 /** 3654 * drv_support_bitmap_show - driver supported feature bitmap 3655 * @cdev - pointer to embedded class device 3656 * @buf - the buffer returned 3657 * 3658 * A sysfs 'read-only' shost attribute. 3659 */ 3660 static ssize_t 3661 drv_support_bitmap_show(struct device *cdev, 3662 struct device_attribute *attr, char *buf) 3663 { 3664 struct Scsi_Host *shost = class_to_shost(cdev); 3665 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3666 3667 return snprintf(buf, PAGE_SIZE, "0x%08x\n", ioc->drv_support_bitmap); 3668 } 3669 static DEVICE_ATTR_RO(drv_support_bitmap); 3670 3671 /** 3672 * enable_sdev_max_qd_show - display whether sdev max qd is enabled/disabled 3673 * @cdev - pointer to embedded class device 3674 * @buf - the buffer returned 3675 * 3676 * A sysfs read/write shost attribute. This attribute is used to set the 3677 * targets queue depth to HBA IO queue depth if this attribute is enabled. 3678 */ 3679 static ssize_t 3680 enable_sdev_max_qd_show(struct device *cdev, 3681 struct device_attribute *attr, char *buf) 3682 { 3683 struct Scsi_Host *shost = class_to_shost(cdev); 3684 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3685 3686 return snprintf(buf, PAGE_SIZE, "%d\n", ioc->enable_sdev_max_qd); 3687 } 3688 3689 /** 3690 * enable_sdev_max_qd_store - Enable/disable sdev max qd 3691 * @cdev - pointer to embedded class device 3692 * @buf - the buffer returned 3693 * 3694 * A sysfs read/write shost attribute. This attribute is used to set the 3695 * targets queue depth to HBA IO queue depth if this attribute is enabled. 3696 * If this attribute is disabled then targets will have corresponding default 3697 * queue depth. 3698 */ 3699 static ssize_t 3700 enable_sdev_max_qd_store(struct device *cdev, 3701 struct device_attribute *attr, const char *buf, size_t count) 3702 { 3703 struct Scsi_Host *shost = class_to_shost(cdev); 3704 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3705 struct MPT3SAS_DEVICE *sas_device_priv_data; 3706 struct MPT3SAS_TARGET *sas_target_priv_data; 3707 int val = 0; 3708 struct scsi_device *sdev; 3709 struct _raid_device *raid_device; 3710 int qdepth; 3711 3712 if (kstrtoint(buf, 0, &val) != 0) 3713 return -EINVAL; 3714 3715 switch (val) { 3716 case 0: 3717 ioc->enable_sdev_max_qd = 0; 3718 shost_for_each_device(sdev, ioc->shost) { 3719 sas_device_priv_data = sdev->hostdata; 3720 if (!sas_device_priv_data) 3721 continue; 3722 sas_target_priv_data = sas_device_priv_data->sas_target; 3723 if (!sas_target_priv_data) 3724 continue; 3725 3726 if (sas_target_priv_data->flags & 3727 MPT_TARGET_FLAGS_VOLUME) { 3728 raid_device = 3729 mpt3sas_raid_device_find_by_handle(ioc, 3730 sas_target_priv_data->handle); 3731 3732 switch (raid_device->volume_type) { 3733 case MPI2_RAID_VOL_TYPE_RAID0: 3734 if (raid_device->device_info & 3735 MPI2_SAS_DEVICE_INFO_SSP_TARGET) 3736 qdepth = 3737 MPT3SAS_SAS_QUEUE_DEPTH; 3738 else 3739 qdepth = 3740 MPT3SAS_SATA_QUEUE_DEPTH; 3741 break; 3742 case MPI2_RAID_VOL_TYPE_RAID1E: 3743 case MPI2_RAID_VOL_TYPE_RAID1: 3744 case MPI2_RAID_VOL_TYPE_RAID10: 3745 case MPI2_RAID_VOL_TYPE_UNKNOWN: 3746 default: 3747 qdepth = MPT3SAS_RAID_QUEUE_DEPTH; 3748 } 3749 } else if (sas_target_priv_data->flags & 3750 MPT_TARGET_FLAGS_PCIE_DEVICE) 3751 qdepth = MPT3SAS_NVME_QUEUE_DEPTH; 3752 else 3753 qdepth = MPT3SAS_SAS_QUEUE_DEPTH; 3754 3755 mpt3sas_scsih_change_queue_depth(sdev, qdepth); 3756 } 3757 break; 3758 case 1: 3759 ioc->enable_sdev_max_qd = 1; 3760 shost_for_each_device(sdev, ioc->shost) 3761 mpt3sas_scsih_change_queue_depth(sdev, 3762 shost->can_queue); 3763 break; 3764 default: 3765 return -EINVAL; 3766 } 3767 3768 return strlen(buf); 3769 } 3770 static DEVICE_ATTR_RW(enable_sdev_max_qd); 3771 3772 struct device_attribute *mpt3sas_host_attrs[] = { 3773 &dev_attr_version_fw, 3774 &dev_attr_version_bios, 3775 &dev_attr_version_mpi, 3776 &dev_attr_version_product, 3777 &dev_attr_version_nvdata_persistent, 3778 &dev_attr_version_nvdata_default, 3779 &dev_attr_board_name, 3780 &dev_attr_board_assembly, 3781 &dev_attr_board_tracer, 3782 &dev_attr_io_delay, 3783 &dev_attr_device_delay, 3784 &dev_attr_logging_level, 3785 &dev_attr_fwfault_debug, 3786 &dev_attr_fw_queue_depth, 3787 &dev_attr_host_sas_address, 3788 &dev_attr_ioc_reset_count, 3789 &dev_attr_host_trace_buffer_size, 3790 &dev_attr_host_trace_buffer, 3791 &dev_attr_host_trace_buffer_enable, 3792 &dev_attr_reply_queue_count, 3793 &dev_attr_diag_trigger_master, 3794 &dev_attr_diag_trigger_event, 3795 &dev_attr_diag_trigger_scsi, 3796 &dev_attr_diag_trigger_mpi, 3797 &dev_attr_drv_support_bitmap, 3798 &dev_attr_BRM_status, 3799 &dev_attr_enable_sdev_max_qd, 3800 NULL, 3801 }; 3802 3803 /* device attributes */ 3804 3805 /** 3806 * sas_address_show - sas address 3807 * @dev: pointer to embedded class device 3808 * @attr: ? 3809 * @buf: the buffer returned 3810 * 3811 * This is the sas address for the target 3812 * 3813 * A sysfs 'read-only' shost attribute. 3814 */ 3815 static ssize_t 3816 sas_address_show(struct device *dev, struct device_attribute *attr, 3817 char *buf) 3818 { 3819 struct scsi_device *sdev = to_scsi_device(dev); 3820 struct MPT3SAS_DEVICE *sas_device_priv_data = sdev->hostdata; 3821 3822 return snprintf(buf, PAGE_SIZE, "0x%016llx\n", 3823 (unsigned long long)sas_device_priv_data->sas_target->sas_address); 3824 } 3825 static DEVICE_ATTR_RO(sas_address); 3826 3827 /** 3828 * sas_device_handle_show - device handle 3829 * @dev: pointer to embedded class device 3830 * @attr: ? 3831 * @buf: the buffer returned 3832 * 3833 * This is the firmware assigned device handle 3834 * 3835 * A sysfs 'read-only' shost attribute. 3836 */ 3837 static ssize_t 3838 sas_device_handle_show(struct device *dev, struct device_attribute *attr, 3839 char *buf) 3840 { 3841 struct scsi_device *sdev = to_scsi_device(dev); 3842 struct MPT3SAS_DEVICE *sas_device_priv_data = sdev->hostdata; 3843 3844 return snprintf(buf, PAGE_SIZE, "0x%04x\n", 3845 sas_device_priv_data->sas_target->handle); 3846 } 3847 static DEVICE_ATTR_RO(sas_device_handle); 3848 3849 /** 3850 * sas_ncq_io_prio_show - send prioritized io commands to device 3851 * @dev: pointer to embedded device 3852 * @attr: ? 3853 * @buf: the buffer returned 3854 * 3855 * A sysfs 'read/write' sdev attribute, only works with SATA 3856 */ 3857 static ssize_t 3858 sas_ncq_prio_enable_show(struct device *dev, 3859 struct device_attribute *attr, char *buf) 3860 { 3861 struct scsi_device *sdev = to_scsi_device(dev); 3862 struct MPT3SAS_DEVICE *sas_device_priv_data = sdev->hostdata; 3863 3864 return snprintf(buf, PAGE_SIZE, "%d\n", 3865 sas_device_priv_data->ncq_prio_enable); 3866 } 3867 3868 static ssize_t 3869 sas_ncq_prio_enable_store(struct device *dev, 3870 struct device_attribute *attr, 3871 const char *buf, size_t count) 3872 { 3873 struct scsi_device *sdev = to_scsi_device(dev); 3874 struct MPT3SAS_DEVICE *sas_device_priv_data = sdev->hostdata; 3875 bool ncq_prio_enable = 0; 3876 3877 if (kstrtobool(buf, &ncq_prio_enable)) 3878 return -EINVAL; 3879 3880 if (!scsih_ncq_prio_supp(sdev)) 3881 return -EINVAL; 3882 3883 sas_device_priv_data->ncq_prio_enable = ncq_prio_enable; 3884 return strlen(buf); 3885 } 3886 static DEVICE_ATTR_RW(sas_ncq_prio_enable); 3887 3888 struct device_attribute *mpt3sas_dev_attrs[] = { 3889 &dev_attr_sas_address, 3890 &dev_attr_sas_device_handle, 3891 &dev_attr_sas_ncq_prio_enable, 3892 NULL, 3893 }; 3894 3895 /* file operations table for mpt3ctl device */ 3896 static const struct file_operations ctl_fops = { 3897 .owner = THIS_MODULE, 3898 .unlocked_ioctl = _ctl_ioctl, 3899 .poll = _ctl_poll, 3900 .fasync = _ctl_fasync, 3901 #ifdef CONFIG_COMPAT 3902 .compat_ioctl = _ctl_ioctl_compat, 3903 #endif 3904 }; 3905 3906 /* file operations table for mpt2ctl device */ 3907 static const struct file_operations ctl_gen2_fops = { 3908 .owner = THIS_MODULE, 3909 .unlocked_ioctl = _ctl_mpt2_ioctl, 3910 .poll = _ctl_poll, 3911 .fasync = _ctl_fasync, 3912 #ifdef CONFIG_COMPAT 3913 .compat_ioctl = _ctl_mpt2_ioctl_compat, 3914 #endif 3915 }; 3916 3917 static struct miscdevice ctl_dev = { 3918 .minor = MPT3SAS_MINOR, 3919 .name = MPT3SAS_DEV_NAME, 3920 .fops = &ctl_fops, 3921 }; 3922 3923 static struct miscdevice gen2_ctl_dev = { 3924 .minor = MPT2SAS_MINOR, 3925 .name = MPT2SAS_DEV_NAME, 3926 .fops = &ctl_gen2_fops, 3927 }; 3928 3929 /** 3930 * mpt3sas_ctl_init - main entry point for ctl. 3931 * @hbas_to_enumerate: ? 3932 */ 3933 void 3934 mpt3sas_ctl_init(ushort hbas_to_enumerate) 3935 { 3936 async_queue = NULL; 3937 3938 /* Don't register mpt3ctl ioctl device if 3939 * hbas_to_enumarate is one. 3940 */ 3941 if (hbas_to_enumerate != 1) 3942 if (misc_register(&ctl_dev) < 0) 3943 pr_err("%s can't register misc device [minor=%d]\n", 3944 MPT3SAS_DRIVER_NAME, MPT3SAS_MINOR); 3945 3946 /* Don't register mpt3ctl ioctl device if 3947 * hbas_to_enumarate is two. 3948 */ 3949 if (hbas_to_enumerate != 2) 3950 if (misc_register(&gen2_ctl_dev) < 0) 3951 pr_err("%s can't register misc device [minor=%d]\n", 3952 MPT2SAS_DRIVER_NAME, MPT2SAS_MINOR); 3953 3954 init_waitqueue_head(&ctl_poll_wait); 3955 } 3956 3957 /** 3958 * mpt3sas_ctl_exit - exit point for ctl 3959 * @hbas_to_enumerate: ? 3960 */ 3961 void 3962 mpt3sas_ctl_exit(ushort hbas_to_enumerate) 3963 { 3964 struct MPT3SAS_ADAPTER *ioc; 3965 int i; 3966 3967 list_for_each_entry(ioc, &mpt3sas_ioc_list, list) { 3968 3969 /* free memory associated to diag buffers */ 3970 for (i = 0; i < MPI2_DIAG_BUF_TYPE_COUNT; i++) { 3971 if (!ioc->diag_buffer[i]) 3972 continue; 3973 dma_free_coherent(&ioc->pdev->dev, 3974 ioc->diag_buffer_sz[i], 3975 ioc->diag_buffer[i], 3976 ioc->diag_buffer_dma[i]); 3977 ioc->diag_buffer[i] = NULL; 3978 ioc->diag_buffer_status[i] = 0; 3979 } 3980 3981 kfree(ioc->event_log); 3982 } 3983 if (hbas_to_enumerate != 1) 3984 misc_deregister(&ctl_dev); 3985 if (hbas_to_enumerate != 2) 3986 misc_deregister(&gen2_ctl_dev); 3987 } 3988