1 /* 2 * Management Module Support for MPT (Message Passing Technology) based 3 * controllers 4 * 5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_ctl.c 6 * Copyright (C) 2012-2014 LSI Corporation 7 * Copyright (C) 2013-2014 Avago Technologies 8 * (mailto: MPT-FusionLinux.pdl@avagotech.com) 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License 12 * as published by the Free Software Foundation; either version 2 13 * of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * NO WARRANTY 21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR 22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT 23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, 24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is 25 * solely responsible for determining the appropriateness of using and 26 * distributing the Program and assumes all risks associated with its 27 * exercise of rights under this Agreement, including but not limited to 28 * the risks and costs of program errors, damage to or loss of data, 29 * programs or equipment, and unavailability or interruption of operations. 30 31 * DISCLAIMER OF LIABILITY 32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY 33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND 35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED 38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES 39 40 * You should have received a copy of the GNU General Public License 41 * along with this program; if not, write to the Free Software 42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, 43 * USA. 44 */ 45 46 #include <linux/kernel.h> 47 #include <linux/module.h> 48 #include <linux/errno.h> 49 #include <linux/init.h> 50 #include <linux/slab.h> 51 #include <linux/types.h> 52 #include <linux/pci.h> 53 #include <linux/delay.h> 54 #include <linux/compat.h> 55 #include <linux/poll.h> 56 57 #include <linux/io.h> 58 #include <linux/uaccess.h> 59 60 #include "mpt3sas_base.h" 61 #include "mpt3sas_ctl.h" 62 63 64 static struct fasync_struct *async_queue; 65 static DECLARE_WAIT_QUEUE_HEAD(ctl_poll_wait); 66 67 68 /** 69 * enum block_state - blocking state 70 * @NON_BLOCKING: non blocking 71 * @BLOCKING: blocking 72 * 73 * These states are for ioctls that need to wait for a response 74 * from firmware, so they probably require sleep. 75 */ 76 enum block_state { 77 NON_BLOCKING, 78 BLOCKING, 79 }; 80 81 /** 82 * _ctl_display_some_debug - debug routine 83 * @ioc: per adapter object 84 * @smid: system request message index 85 * @calling_function_name: string pass from calling function 86 * @mpi_reply: reply message frame 87 * Context: none. 88 * 89 * Function for displaying debug info helpful when debugging issues 90 * in this module. 91 */ 92 static void 93 _ctl_display_some_debug(struct MPT3SAS_ADAPTER *ioc, u16 smid, 94 char *calling_function_name, MPI2DefaultReply_t *mpi_reply) 95 { 96 Mpi2ConfigRequest_t *mpi_request; 97 char *desc = NULL; 98 99 if (!(ioc->logging_level & MPT_DEBUG_IOCTL)) 100 return; 101 102 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 103 switch (mpi_request->Function) { 104 case MPI2_FUNCTION_SCSI_IO_REQUEST: 105 { 106 Mpi2SCSIIORequest_t *scsi_request = 107 (Mpi2SCSIIORequest_t *)mpi_request; 108 109 snprintf(ioc->tmp_string, MPT_STRING_LENGTH, 110 "scsi_io, cmd(0x%02x), cdb_len(%d)", 111 scsi_request->CDB.CDB32[0], 112 le16_to_cpu(scsi_request->IoFlags) & 0xF); 113 desc = ioc->tmp_string; 114 break; 115 } 116 case MPI2_FUNCTION_SCSI_TASK_MGMT: 117 desc = "task_mgmt"; 118 break; 119 case MPI2_FUNCTION_IOC_INIT: 120 desc = "ioc_init"; 121 break; 122 case MPI2_FUNCTION_IOC_FACTS: 123 desc = "ioc_facts"; 124 break; 125 case MPI2_FUNCTION_CONFIG: 126 { 127 Mpi2ConfigRequest_t *config_request = 128 (Mpi2ConfigRequest_t *)mpi_request; 129 130 snprintf(ioc->tmp_string, MPT_STRING_LENGTH, 131 "config, type(0x%02x), ext_type(0x%02x), number(%d)", 132 (config_request->Header.PageType & 133 MPI2_CONFIG_PAGETYPE_MASK), config_request->ExtPageType, 134 config_request->Header.PageNumber); 135 desc = ioc->tmp_string; 136 break; 137 } 138 case MPI2_FUNCTION_PORT_FACTS: 139 desc = "port_facts"; 140 break; 141 case MPI2_FUNCTION_PORT_ENABLE: 142 desc = "port_enable"; 143 break; 144 case MPI2_FUNCTION_EVENT_NOTIFICATION: 145 desc = "event_notification"; 146 break; 147 case MPI2_FUNCTION_FW_DOWNLOAD: 148 desc = "fw_download"; 149 break; 150 case MPI2_FUNCTION_FW_UPLOAD: 151 desc = "fw_upload"; 152 break; 153 case MPI2_FUNCTION_RAID_ACTION: 154 desc = "raid_action"; 155 break; 156 case MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH: 157 { 158 Mpi2SCSIIORequest_t *scsi_request = 159 (Mpi2SCSIIORequest_t *)mpi_request; 160 161 snprintf(ioc->tmp_string, MPT_STRING_LENGTH, 162 "raid_pass, cmd(0x%02x), cdb_len(%d)", 163 scsi_request->CDB.CDB32[0], 164 le16_to_cpu(scsi_request->IoFlags) & 0xF); 165 desc = ioc->tmp_string; 166 break; 167 } 168 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL: 169 desc = "sas_iounit_cntl"; 170 break; 171 case MPI2_FUNCTION_SATA_PASSTHROUGH: 172 desc = "sata_pass"; 173 break; 174 case MPI2_FUNCTION_DIAG_BUFFER_POST: 175 desc = "diag_buffer_post"; 176 break; 177 case MPI2_FUNCTION_DIAG_RELEASE: 178 desc = "diag_release"; 179 break; 180 case MPI2_FUNCTION_SMP_PASSTHROUGH: 181 desc = "smp_passthrough"; 182 break; 183 case MPI2_FUNCTION_TOOLBOX: 184 desc = "toolbox"; 185 break; 186 case MPI2_FUNCTION_NVME_ENCAPSULATED: 187 desc = "nvme_encapsulated"; 188 break; 189 } 190 191 if (!desc) 192 return; 193 194 ioc_info(ioc, "%s: %s, smid(%d)\n", calling_function_name, desc, smid); 195 196 if (!mpi_reply) 197 return; 198 199 if (mpi_reply->IOCStatus || mpi_reply->IOCLogInfo) 200 ioc_info(ioc, "\tiocstatus(0x%04x), loginfo(0x%08x)\n", 201 le16_to_cpu(mpi_reply->IOCStatus), 202 le32_to_cpu(mpi_reply->IOCLogInfo)); 203 204 if (mpi_request->Function == MPI2_FUNCTION_SCSI_IO_REQUEST || 205 mpi_request->Function == 206 MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH) { 207 Mpi2SCSIIOReply_t *scsi_reply = 208 (Mpi2SCSIIOReply_t *)mpi_reply; 209 struct _sas_device *sas_device = NULL; 210 struct _pcie_device *pcie_device = NULL; 211 212 sas_device = mpt3sas_get_sdev_by_handle(ioc, 213 le16_to_cpu(scsi_reply->DevHandle)); 214 if (sas_device) { 215 ioc_warn(ioc, "\tsas_address(0x%016llx), phy(%d)\n", 216 (u64)sas_device->sas_address, 217 sas_device->phy); 218 ioc_warn(ioc, "\tenclosure_logical_id(0x%016llx), slot(%d)\n", 219 (u64)sas_device->enclosure_logical_id, 220 sas_device->slot); 221 sas_device_put(sas_device); 222 } 223 if (!sas_device) { 224 pcie_device = mpt3sas_get_pdev_by_handle(ioc, 225 le16_to_cpu(scsi_reply->DevHandle)); 226 if (pcie_device) { 227 ioc_warn(ioc, "\tWWID(0x%016llx), port(%d)\n", 228 (unsigned long long)pcie_device->wwid, 229 pcie_device->port_num); 230 if (pcie_device->enclosure_handle != 0) 231 ioc_warn(ioc, "\tenclosure_logical_id(0x%016llx), slot(%d)\n", 232 (u64)pcie_device->enclosure_logical_id, 233 pcie_device->slot); 234 pcie_device_put(pcie_device); 235 } 236 } 237 if (scsi_reply->SCSIState || scsi_reply->SCSIStatus) 238 ioc_info(ioc, "\tscsi_state(0x%02x), scsi_status(0x%02x)\n", 239 scsi_reply->SCSIState, 240 scsi_reply->SCSIStatus); 241 } 242 } 243 244 /** 245 * mpt3sas_ctl_done - ctl module completion routine 246 * @ioc: per adapter object 247 * @smid: system request message index 248 * @msix_index: MSIX table index supplied by the OS 249 * @reply: reply message frame(lower 32bit addr) 250 * Context: none. 251 * 252 * The callback handler when using ioc->ctl_cb_idx. 253 * 254 * Return: 1 meaning mf should be freed from _base_interrupt 255 * 0 means the mf is freed from this function. 256 */ 257 u8 258 mpt3sas_ctl_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 259 u32 reply) 260 { 261 MPI2DefaultReply_t *mpi_reply; 262 Mpi2SCSIIOReply_t *scsiio_reply; 263 Mpi26NVMeEncapsulatedErrorReply_t *nvme_error_reply; 264 const void *sense_data; 265 u32 sz; 266 267 if (ioc->ctl_cmds.status == MPT3_CMD_NOT_USED) 268 return 1; 269 if (ioc->ctl_cmds.smid != smid) 270 return 1; 271 ioc->ctl_cmds.status |= MPT3_CMD_COMPLETE; 272 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 273 if (mpi_reply) { 274 memcpy(ioc->ctl_cmds.reply, mpi_reply, mpi_reply->MsgLength*4); 275 ioc->ctl_cmds.status |= MPT3_CMD_REPLY_VALID; 276 /* get sense data */ 277 if (mpi_reply->Function == MPI2_FUNCTION_SCSI_IO_REQUEST || 278 mpi_reply->Function == 279 MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH) { 280 scsiio_reply = (Mpi2SCSIIOReply_t *)mpi_reply; 281 if (scsiio_reply->SCSIState & 282 MPI2_SCSI_STATE_AUTOSENSE_VALID) { 283 sz = min_t(u32, SCSI_SENSE_BUFFERSIZE, 284 le32_to_cpu(scsiio_reply->SenseCount)); 285 sense_data = mpt3sas_base_get_sense_buffer(ioc, 286 smid); 287 memcpy(ioc->ctl_cmds.sense, sense_data, sz); 288 } 289 } 290 /* 291 * Get Error Response data for NVMe device. The ctl_cmds.sense 292 * buffer is used to store the Error Response data. 293 */ 294 if (mpi_reply->Function == MPI2_FUNCTION_NVME_ENCAPSULATED) { 295 nvme_error_reply = 296 (Mpi26NVMeEncapsulatedErrorReply_t *)mpi_reply; 297 sz = min_t(u32, NVME_ERROR_RESPONSE_SIZE, 298 le16_to_cpu(nvme_error_reply->ErrorResponseCount)); 299 sense_data = mpt3sas_base_get_sense_buffer(ioc, smid); 300 memcpy(ioc->ctl_cmds.sense, sense_data, sz); 301 } 302 } 303 304 _ctl_display_some_debug(ioc, smid, "ctl_done", mpi_reply); 305 ioc->ctl_cmds.status &= ~MPT3_CMD_PENDING; 306 complete(&ioc->ctl_cmds.done); 307 return 1; 308 } 309 310 /** 311 * _ctl_check_event_type - determines when an event needs logging 312 * @ioc: per adapter object 313 * @event: firmware event 314 * 315 * The bitmask in ioc->event_type[] indicates which events should be 316 * be saved in the driver event_log. This bitmask is set by application. 317 * 318 * Return: 1 when event should be captured, or zero means no match. 319 */ 320 static int 321 _ctl_check_event_type(struct MPT3SAS_ADAPTER *ioc, u16 event) 322 { 323 u16 i; 324 u32 desired_event; 325 326 if (event >= 128 || !event || !ioc->event_log) 327 return 0; 328 329 desired_event = (1 << (event % 32)); 330 if (!desired_event) 331 desired_event = 1; 332 i = event / 32; 333 return desired_event & ioc->event_type[i]; 334 } 335 336 /** 337 * mpt3sas_ctl_add_to_event_log - add event 338 * @ioc: per adapter object 339 * @mpi_reply: reply message frame 340 */ 341 void 342 mpt3sas_ctl_add_to_event_log(struct MPT3SAS_ADAPTER *ioc, 343 Mpi2EventNotificationReply_t *mpi_reply) 344 { 345 struct MPT3_IOCTL_EVENTS *event_log; 346 u16 event; 347 int i; 348 u32 sz, event_data_sz; 349 u8 send_aen = 0; 350 351 if (!ioc->event_log) 352 return; 353 354 event = le16_to_cpu(mpi_reply->Event); 355 356 if (_ctl_check_event_type(ioc, event)) { 357 358 /* insert entry into circular event_log */ 359 i = ioc->event_context % MPT3SAS_CTL_EVENT_LOG_SIZE; 360 event_log = ioc->event_log; 361 event_log[i].event = event; 362 event_log[i].context = ioc->event_context++; 363 364 event_data_sz = le16_to_cpu(mpi_reply->EventDataLength)*4; 365 sz = min_t(u32, event_data_sz, MPT3_EVENT_DATA_SIZE); 366 memset(event_log[i].data, 0, MPT3_EVENT_DATA_SIZE); 367 memcpy(event_log[i].data, mpi_reply->EventData, sz); 368 send_aen = 1; 369 } 370 371 /* This aen_event_read_flag flag is set until the 372 * application has read the event log. 373 * For MPI2_EVENT_LOG_ENTRY_ADDED, we always notify. 374 */ 375 if (event == MPI2_EVENT_LOG_ENTRY_ADDED || 376 (send_aen && !ioc->aen_event_read_flag)) { 377 ioc->aen_event_read_flag = 1; 378 wake_up_interruptible(&ctl_poll_wait); 379 if (async_queue) 380 kill_fasync(&async_queue, SIGIO, POLL_IN); 381 } 382 } 383 384 /** 385 * mpt3sas_ctl_event_callback - firmware event handler (called at ISR time) 386 * @ioc: per adapter object 387 * @msix_index: MSIX table index supplied by the OS 388 * @reply: reply message frame(lower 32bit addr) 389 * Context: interrupt. 390 * 391 * This function merely adds a new work task into ioc->firmware_event_thread. 392 * The tasks are worked from _firmware_event_work in user context. 393 * 394 * Return: 1 meaning mf should be freed from _base_interrupt 395 * 0 means the mf is freed from this function. 396 */ 397 u8 398 mpt3sas_ctl_event_callback(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, 399 u32 reply) 400 { 401 Mpi2EventNotificationReply_t *mpi_reply; 402 403 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 404 if (mpi_reply) 405 mpt3sas_ctl_add_to_event_log(ioc, mpi_reply); 406 return 1; 407 } 408 409 /** 410 * _ctl_verify_adapter - validates ioc_number passed from application 411 * @ioc_number: ? 412 * @iocpp: The ioc pointer is returned in this. 413 * @mpi_version: will be MPI2_VERSION for mpt2ctl ioctl device & 414 * MPI25_VERSION | MPI26_VERSION for mpt3ctl ioctl device. 415 * 416 * Return: (-1) means error, else ioc_number. 417 */ 418 static int 419 _ctl_verify_adapter(int ioc_number, struct MPT3SAS_ADAPTER **iocpp, 420 int mpi_version) 421 { 422 struct MPT3SAS_ADAPTER *ioc; 423 int version = 0; 424 /* global ioc lock to protect controller on list operations */ 425 spin_lock(&gioc_lock); 426 list_for_each_entry(ioc, &mpt3sas_ioc_list, list) { 427 if (ioc->id != ioc_number) 428 continue; 429 /* Check whether this ioctl command is from right 430 * ioctl device or not, if not continue the search. 431 */ 432 version = ioc->hba_mpi_version_belonged; 433 /* MPI25_VERSION and MPI26_VERSION uses same ioctl 434 * device. 435 */ 436 if (mpi_version == (MPI25_VERSION | MPI26_VERSION)) { 437 if ((version == MPI25_VERSION) || 438 (version == MPI26_VERSION)) 439 goto out; 440 else 441 continue; 442 } else { 443 if (version != mpi_version) 444 continue; 445 } 446 out: 447 spin_unlock(&gioc_lock); 448 *iocpp = ioc; 449 return ioc_number; 450 } 451 spin_unlock(&gioc_lock); 452 *iocpp = NULL; 453 return -1; 454 } 455 456 /** 457 * mpt3sas_ctl_pre_reset_handler - reset callback handler (for ctl) 458 * @ioc: per adapter object 459 * 460 * The handler for doing any required cleanup or initialization. 461 */ 462 void mpt3sas_ctl_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc) 463 { 464 int i; 465 u8 issue_reset; 466 467 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__)); 468 for (i = 0; i < MPI2_DIAG_BUF_TYPE_COUNT; i++) { 469 if (!(ioc->diag_buffer_status[i] & 470 MPT3_DIAG_BUFFER_IS_REGISTERED)) 471 continue; 472 if ((ioc->diag_buffer_status[i] & 473 MPT3_DIAG_BUFFER_IS_RELEASED)) 474 continue; 475 476 /* 477 * add a log message to indicate the release 478 */ 479 ioc_info(ioc, 480 "%s: Releasing the trace buffer due to adapter reset.", 481 __func__); 482 ioc->htb_rel.buffer_rel_condition = 483 MPT3_DIAG_BUFFER_REL_TRIGGER; 484 mpt3sas_send_diag_release(ioc, i, &issue_reset); 485 } 486 } 487 488 /** 489 * mpt3sas_ctl_clear_outstanding_ioctls - clears outstanding ioctl cmd. 490 * @ioc: per adapter object 491 * 492 * The handler for doing any required cleanup or initialization. 493 */ 494 void mpt3sas_ctl_clear_outstanding_ioctls(struct MPT3SAS_ADAPTER *ioc) 495 { 496 dtmprintk(ioc, 497 ioc_info(ioc, "%s: clear outstanding ioctl cmd\n", __func__)); 498 if (ioc->ctl_cmds.status & MPT3_CMD_PENDING) { 499 ioc->ctl_cmds.status |= MPT3_CMD_RESET; 500 mpt3sas_base_free_smid(ioc, ioc->ctl_cmds.smid); 501 complete(&ioc->ctl_cmds.done); 502 } 503 } 504 505 /** 506 * mpt3sas_ctl_reset_done_handler - reset callback handler (for ctl) 507 * @ioc: per adapter object 508 * 509 * The handler for doing any required cleanup or initialization. 510 */ 511 void mpt3sas_ctl_reset_done_handler(struct MPT3SAS_ADAPTER *ioc) 512 { 513 int i; 514 515 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__)); 516 517 for (i = 0; i < MPI2_DIAG_BUF_TYPE_COUNT; i++) { 518 if (!(ioc->diag_buffer_status[i] & 519 MPT3_DIAG_BUFFER_IS_REGISTERED)) 520 continue; 521 if ((ioc->diag_buffer_status[i] & 522 MPT3_DIAG_BUFFER_IS_RELEASED)) 523 continue; 524 ioc->diag_buffer_status[i] |= 525 MPT3_DIAG_BUFFER_IS_DIAG_RESET; 526 } 527 } 528 529 /** 530 * _ctl_fasync - 531 * @fd: ? 532 * @filep: ? 533 * @mode: ? 534 * 535 * Called when application request fasyn callback handler. 536 */ 537 static int 538 _ctl_fasync(int fd, struct file *filep, int mode) 539 { 540 return fasync_helper(fd, filep, mode, &async_queue); 541 } 542 543 /** 544 * _ctl_poll - 545 * @filep: ? 546 * @wait: ? 547 * 548 */ 549 static __poll_t 550 _ctl_poll(struct file *filep, poll_table *wait) 551 { 552 struct MPT3SAS_ADAPTER *ioc; 553 554 poll_wait(filep, &ctl_poll_wait, wait); 555 556 /* global ioc lock to protect controller on list operations */ 557 spin_lock(&gioc_lock); 558 list_for_each_entry(ioc, &mpt3sas_ioc_list, list) { 559 if (ioc->aen_event_read_flag) { 560 spin_unlock(&gioc_lock); 561 return EPOLLIN | EPOLLRDNORM; 562 } 563 } 564 spin_unlock(&gioc_lock); 565 return 0; 566 } 567 568 /** 569 * _ctl_set_task_mid - assign an active smid to tm request 570 * @ioc: per adapter object 571 * @karg: (struct mpt3_ioctl_command) 572 * @tm_request: pointer to mf from user space 573 * 574 * Return: 0 when an smid if found, else fail. 575 * during failure, the reply frame is filled. 576 */ 577 static int 578 _ctl_set_task_mid(struct MPT3SAS_ADAPTER *ioc, struct mpt3_ioctl_command *karg, 579 Mpi2SCSITaskManagementRequest_t *tm_request) 580 { 581 bool found = false; 582 u16 smid; 583 u16 handle; 584 struct scsi_cmnd *scmd; 585 struct MPT3SAS_DEVICE *priv_data; 586 Mpi2SCSITaskManagementReply_t *tm_reply; 587 u32 sz; 588 u32 lun; 589 char *desc = NULL; 590 591 if (tm_request->TaskType == MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK) 592 desc = "abort_task"; 593 else if (tm_request->TaskType == MPI2_SCSITASKMGMT_TASKTYPE_QUERY_TASK) 594 desc = "query_task"; 595 else 596 return 0; 597 598 lun = scsilun_to_int((struct scsi_lun *)tm_request->LUN); 599 600 handle = le16_to_cpu(tm_request->DevHandle); 601 for (smid = ioc->scsiio_depth; smid && !found; smid--) { 602 struct scsiio_tracker *st; 603 __le16 task_mid; 604 605 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid); 606 if (!scmd) 607 continue; 608 if (lun != scmd->device->lun) 609 continue; 610 priv_data = scmd->device->hostdata; 611 if (priv_data->sas_target == NULL) 612 continue; 613 if (priv_data->sas_target->handle != handle) 614 continue; 615 st = scsi_cmd_priv(scmd); 616 617 /* 618 * If the given TaskMID from the user space is zero, then the 619 * first outstanding smid will be picked up. Otherwise, 620 * targeted smid will be the one. 621 */ 622 task_mid = cpu_to_le16(st->smid); 623 if (!tm_request->TaskMID) 624 tm_request->TaskMID = task_mid; 625 found = tm_request->TaskMID == task_mid; 626 } 627 628 if (!found) { 629 dctlprintk(ioc, 630 ioc_info(ioc, "%s: handle(0x%04x), lun(%d), no active mid!!\n", 631 desc, le16_to_cpu(tm_request->DevHandle), 632 lun)); 633 tm_reply = ioc->ctl_cmds.reply; 634 tm_reply->DevHandle = tm_request->DevHandle; 635 tm_reply->Function = MPI2_FUNCTION_SCSI_TASK_MGMT; 636 tm_reply->TaskType = tm_request->TaskType; 637 tm_reply->MsgLength = sizeof(Mpi2SCSITaskManagementReply_t)/4; 638 tm_reply->VP_ID = tm_request->VP_ID; 639 tm_reply->VF_ID = tm_request->VF_ID; 640 sz = min_t(u32, karg->max_reply_bytes, ioc->reply_sz); 641 if (copy_to_user(karg->reply_frame_buf_ptr, ioc->ctl_cmds.reply, 642 sz)) 643 pr_err("failure at %s:%d/%s()!\n", __FILE__, 644 __LINE__, __func__); 645 return 1; 646 } 647 648 dctlprintk(ioc, 649 ioc_info(ioc, "%s: handle(0x%04x), lun(%d), task_mid(%d)\n", 650 desc, le16_to_cpu(tm_request->DevHandle), lun, 651 le16_to_cpu(tm_request->TaskMID))); 652 return 0; 653 } 654 655 /** 656 * _ctl_do_mpt_command - main handler for MPT3COMMAND opcode 657 * @ioc: per adapter object 658 * @karg: (struct mpt3_ioctl_command) 659 * @mf: pointer to mf in user space 660 */ 661 static long 662 _ctl_do_mpt_command(struct MPT3SAS_ADAPTER *ioc, struct mpt3_ioctl_command karg, 663 void __user *mf) 664 { 665 MPI2RequestHeader_t *mpi_request = NULL, *request; 666 MPI2DefaultReply_t *mpi_reply; 667 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request = NULL; 668 struct _pcie_device *pcie_device = NULL; 669 u16 smid; 670 unsigned long timeout; 671 u8 issue_reset; 672 u32 sz, sz_arg; 673 void *psge; 674 void *data_out = NULL; 675 dma_addr_t data_out_dma = 0; 676 size_t data_out_sz = 0; 677 void *data_in = NULL; 678 dma_addr_t data_in_dma = 0; 679 size_t data_in_sz = 0; 680 long ret; 681 u16 device_handle = MPT3SAS_INVALID_DEVICE_HANDLE; 682 683 issue_reset = 0; 684 685 if (ioc->ctl_cmds.status != MPT3_CMD_NOT_USED) { 686 ioc_err(ioc, "%s: ctl_cmd in use\n", __func__); 687 ret = -EAGAIN; 688 goto out; 689 } 690 691 ret = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT); 692 if (ret) 693 goto out; 694 695 mpi_request = kzalloc(ioc->request_sz, GFP_KERNEL); 696 if (!mpi_request) { 697 ioc_err(ioc, "%s: failed obtaining a memory for mpi_request\n", 698 __func__); 699 ret = -ENOMEM; 700 goto out; 701 } 702 703 /* Check for overflow and wraparound */ 704 if (karg.data_sge_offset * 4 > ioc->request_sz || 705 karg.data_sge_offset > (UINT_MAX / 4)) { 706 ret = -EINVAL; 707 goto out; 708 } 709 710 /* copy in request message frame from user */ 711 if (copy_from_user(mpi_request, mf, karg.data_sge_offset*4)) { 712 pr_err("failure at %s:%d/%s()!\n", __FILE__, __LINE__, 713 __func__); 714 ret = -EFAULT; 715 goto out; 716 } 717 718 if (mpi_request->Function == MPI2_FUNCTION_SCSI_TASK_MGMT) { 719 smid = mpt3sas_base_get_smid_hpr(ioc, ioc->ctl_cb_idx); 720 if (!smid) { 721 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 722 ret = -EAGAIN; 723 goto out; 724 } 725 } else { 726 /* Use first reserved smid for passthrough ioctls */ 727 smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1; 728 } 729 730 ret = 0; 731 ioc->ctl_cmds.status = MPT3_CMD_PENDING; 732 memset(ioc->ctl_cmds.reply, 0, ioc->reply_sz); 733 request = mpt3sas_base_get_msg_frame(ioc, smid); 734 memset(request, 0, ioc->request_sz); 735 memcpy(request, mpi_request, karg.data_sge_offset*4); 736 ioc->ctl_cmds.smid = smid; 737 data_out_sz = karg.data_out_size; 738 data_in_sz = karg.data_in_size; 739 740 if (mpi_request->Function == MPI2_FUNCTION_SCSI_IO_REQUEST || 741 mpi_request->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH || 742 mpi_request->Function == MPI2_FUNCTION_SCSI_TASK_MGMT || 743 mpi_request->Function == MPI2_FUNCTION_SATA_PASSTHROUGH || 744 mpi_request->Function == MPI2_FUNCTION_NVME_ENCAPSULATED) { 745 746 device_handle = le16_to_cpu(mpi_request->FunctionDependent1); 747 if (!device_handle || (device_handle > 748 ioc->facts.MaxDevHandle)) { 749 ret = -EINVAL; 750 mpt3sas_base_free_smid(ioc, smid); 751 goto out; 752 } 753 } 754 755 /* obtain dma-able memory for data transfer */ 756 if (data_out_sz) /* WRITE */ { 757 data_out = dma_alloc_coherent(&ioc->pdev->dev, data_out_sz, 758 &data_out_dma, GFP_KERNEL); 759 if (!data_out) { 760 pr_err("failure at %s:%d/%s()!\n", __FILE__, 761 __LINE__, __func__); 762 ret = -ENOMEM; 763 mpt3sas_base_free_smid(ioc, smid); 764 goto out; 765 } 766 if (copy_from_user(data_out, karg.data_out_buf_ptr, 767 data_out_sz)) { 768 pr_err("failure at %s:%d/%s()!\n", __FILE__, 769 __LINE__, __func__); 770 ret = -EFAULT; 771 mpt3sas_base_free_smid(ioc, smid); 772 goto out; 773 } 774 } 775 776 if (data_in_sz) /* READ */ { 777 data_in = dma_alloc_coherent(&ioc->pdev->dev, data_in_sz, 778 &data_in_dma, GFP_KERNEL); 779 if (!data_in) { 780 pr_err("failure at %s:%d/%s()!\n", __FILE__, 781 __LINE__, __func__); 782 ret = -ENOMEM; 783 mpt3sas_base_free_smid(ioc, smid); 784 goto out; 785 } 786 } 787 788 psge = (void *)request + (karg.data_sge_offset*4); 789 790 /* send command to firmware */ 791 _ctl_display_some_debug(ioc, smid, "ctl_request", NULL); 792 793 init_completion(&ioc->ctl_cmds.done); 794 switch (mpi_request->Function) { 795 case MPI2_FUNCTION_NVME_ENCAPSULATED: 796 { 797 nvme_encap_request = (Mpi26NVMeEncapsulatedRequest_t *)request; 798 if (!ioc->pcie_sg_lookup) { 799 dtmprintk(ioc, ioc_info(ioc, 800 "HBA doesn't support NVMe. Rejecting NVMe Encapsulated request.\n" 801 )); 802 803 if (ioc->logging_level & MPT_DEBUG_TM) 804 _debug_dump_mf(nvme_encap_request, 805 ioc->request_sz/4); 806 mpt3sas_base_free_smid(ioc, smid); 807 ret = -EINVAL; 808 goto out; 809 } 810 /* 811 * Get the Physical Address of the sense buffer. 812 * Use Error Response buffer address field to hold the sense 813 * buffer address. 814 * Clear the internal sense buffer, which will potentially hold 815 * the Completion Queue Entry on return, or 0 if no Entry. 816 * Build the PRPs and set direction bits. 817 * Send the request. 818 */ 819 nvme_encap_request->ErrorResponseBaseAddress = 820 cpu_to_le64(ioc->sense_dma & 0xFFFFFFFF00000000UL); 821 nvme_encap_request->ErrorResponseBaseAddress |= 822 cpu_to_le64(le32_to_cpu( 823 mpt3sas_base_get_sense_buffer_dma(ioc, smid))); 824 nvme_encap_request->ErrorResponseAllocationLength = 825 cpu_to_le16(NVME_ERROR_RESPONSE_SIZE); 826 memset(ioc->ctl_cmds.sense, 0, NVME_ERROR_RESPONSE_SIZE); 827 ioc->build_nvme_prp(ioc, smid, nvme_encap_request, 828 data_out_dma, data_out_sz, data_in_dma, data_in_sz); 829 if (test_bit(device_handle, ioc->device_remove_in_progress)) { 830 dtmprintk(ioc, 831 ioc_info(ioc, "handle(0x%04x): ioctl failed due to device removal in progress\n", 832 device_handle)); 833 mpt3sas_base_free_smid(ioc, smid); 834 ret = -EINVAL; 835 goto out; 836 } 837 mpt3sas_base_put_smid_nvme_encap(ioc, smid); 838 break; 839 } 840 case MPI2_FUNCTION_SCSI_IO_REQUEST: 841 case MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH: 842 { 843 Mpi2SCSIIORequest_t *scsiio_request = 844 (Mpi2SCSIIORequest_t *)request; 845 scsiio_request->SenseBufferLength = SCSI_SENSE_BUFFERSIZE; 846 scsiio_request->SenseBufferLowAddress = 847 mpt3sas_base_get_sense_buffer_dma(ioc, smid); 848 memset(ioc->ctl_cmds.sense, 0, SCSI_SENSE_BUFFERSIZE); 849 if (test_bit(device_handle, ioc->device_remove_in_progress)) { 850 dtmprintk(ioc, 851 ioc_info(ioc, "handle(0x%04x) :ioctl failed due to device removal in progress\n", 852 device_handle)); 853 mpt3sas_base_free_smid(ioc, smid); 854 ret = -EINVAL; 855 goto out; 856 } 857 ioc->build_sg(ioc, psge, data_out_dma, data_out_sz, 858 data_in_dma, data_in_sz); 859 if (mpi_request->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) 860 ioc->put_smid_scsi_io(ioc, smid, device_handle); 861 else 862 ioc->put_smid_default(ioc, smid); 863 break; 864 } 865 case MPI2_FUNCTION_SCSI_TASK_MGMT: 866 { 867 Mpi2SCSITaskManagementRequest_t *tm_request = 868 (Mpi2SCSITaskManagementRequest_t *)request; 869 870 dtmprintk(ioc, 871 ioc_info(ioc, "TASK_MGMT: handle(0x%04x), task_type(0x%02x)\n", 872 le16_to_cpu(tm_request->DevHandle), 873 tm_request->TaskType)); 874 ioc->got_task_abort_from_ioctl = 1; 875 if (tm_request->TaskType == 876 MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK || 877 tm_request->TaskType == 878 MPI2_SCSITASKMGMT_TASKTYPE_QUERY_TASK) { 879 if (_ctl_set_task_mid(ioc, &karg, tm_request)) { 880 mpt3sas_base_free_smid(ioc, smid); 881 ioc->got_task_abort_from_ioctl = 0; 882 goto out; 883 } 884 } 885 ioc->got_task_abort_from_ioctl = 0; 886 887 if (test_bit(device_handle, ioc->device_remove_in_progress)) { 888 dtmprintk(ioc, 889 ioc_info(ioc, "handle(0x%04x) :ioctl failed due to device removal in progress\n", 890 device_handle)); 891 mpt3sas_base_free_smid(ioc, smid); 892 ret = -EINVAL; 893 goto out; 894 } 895 mpt3sas_scsih_set_tm_flag(ioc, le16_to_cpu( 896 tm_request->DevHandle)); 897 ioc->build_sg_mpi(ioc, psge, data_out_dma, data_out_sz, 898 data_in_dma, data_in_sz); 899 ioc->put_smid_hi_priority(ioc, smid, 0); 900 break; 901 } 902 case MPI2_FUNCTION_SMP_PASSTHROUGH: 903 { 904 Mpi2SmpPassthroughRequest_t *smp_request = 905 (Mpi2SmpPassthroughRequest_t *)mpi_request; 906 u8 *data; 907 908 if (!ioc->multipath_on_hba) { 909 /* ioc determines which port to use */ 910 smp_request->PhysicalPort = 0xFF; 911 } 912 if (smp_request->PassthroughFlags & 913 MPI2_SMP_PT_REQ_PT_FLAGS_IMMEDIATE) 914 data = (u8 *)&smp_request->SGL; 915 else { 916 if (unlikely(data_out == NULL)) { 917 pr_err("failure at %s:%d/%s()!\n", 918 __FILE__, __LINE__, __func__); 919 mpt3sas_base_free_smid(ioc, smid); 920 ret = -EINVAL; 921 goto out; 922 } 923 data = data_out; 924 } 925 926 if (data[1] == 0x91 && (data[10] == 1 || data[10] == 2)) { 927 ioc->ioc_link_reset_in_progress = 1; 928 ioc->ignore_loginfos = 1; 929 } 930 ioc->build_sg(ioc, psge, data_out_dma, data_out_sz, data_in_dma, 931 data_in_sz); 932 ioc->put_smid_default(ioc, smid); 933 break; 934 } 935 case MPI2_FUNCTION_SATA_PASSTHROUGH: 936 { 937 if (test_bit(device_handle, ioc->device_remove_in_progress)) { 938 dtmprintk(ioc, 939 ioc_info(ioc, "handle(0x%04x) :ioctl failed due to device removal in progress\n", 940 device_handle)); 941 mpt3sas_base_free_smid(ioc, smid); 942 ret = -EINVAL; 943 goto out; 944 } 945 ioc->build_sg(ioc, psge, data_out_dma, data_out_sz, data_in_dma, 946 data_in_sz); 947 ioc->put_smid_default(ioc, smid); 948 break; 949 } 950 case MPI2_FUNCTION_FW_DOWNLOAD: 951 case MPI2_FUNCTION_FW_UPLOAD: 952 { 953 ioc->build_sg(ioc, psge, data_out_dma, data_out_sz, data_in_dma, 954 data_in_sz); 955 ioc->put_smid_default(ioc, smid); 956 break; 957 } 958 case MPI2_FUNCTION_TOOLBOX: 959 { 960 Mpi2ToolboxCleanRequest_t *toolbox_request = 961 (Mpi2ToolboxCleanRequest_t *)mpi_request; 962 963 if ((toolbox_request->Tool == MPI2_TOOLBOX_DIAGNOSTIC_CLI_TOOL) 964 || (toolbox_request->Tool == 965 MPI26_TOOLBOX_BACKEND_PCIE_LANE_MARGIN)) 966 ioc->build_sg(ioc, psge, data_out_dma, data_out_sz, 967 data_in_dma, data_in_sz); 968 else if (toolbox_request->Tool == 969 MPI2_TOOLBOX_MEMORY_MOVE_TOOL) { 970 Mpi2ToolboxMemMoveRequest_t *mem_move_request = 971 (Mpi2ToolboxMemMoveRequest_t *)request; 972 Mpi2SGESimple64_t tmp, *src = NULL, *dst = NULL; 973 974 ioc->build_sg_mpi(ioc, psge, data_out_dma, 975 data_out_sz, data_in_dma, data_in_sz); 976 if (data_out_sz && !data_in_sz) { 977 dst = 978 (Mpi2SGESimple64_t *)&mem_move_request->SGL; 979 src = (void *)dst + ioc->sge_size; 980 981 memcpy(&tmp, src, ioc->sge_size); 982 memcpy(src, dst, ioc->sge_size); 983 memcpy(dst, &tmp, ioc->sge_size); 984 } 985 if (ioc->logging_level & MPT_DEBUG_TM) { 986 ioc_info(ioc, 987 "Mpi2ToolboxMemMoveRequest_t request msg\n"); 988 _debug_dump_mf(mem_move_request, 989 ioc->request_sz/4); 990 } 991 } else 992 ioc->build_sg_mpi(ioc, psge, data_out_dma, data_out_sz, 993 data_in_dma, data_in_sz); 994 ioc->put_smid_default(ioc, smid); 995 break; 996 } 997 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL: 998 { 999 Mpi2SasIoUnitControlRequest_t *sasiounit_request = 1000 (Mpi2SasIoUnitControlRequest_t *)mpi_request; 1001 1002 if (sasiounit_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET 1003 || sasiounit_request->Operation == 1004 MPI2_SAS_OP_PHY_LINK_RESET) { 1005 ioc->ioc_link_reset_in_progress = 1; 1006 ioc->ignore_loginfos = 1; 1007 } 1008 /* drop to default case for posting the request */ 1009 } 1010 fallthrough; 1011 default: 1012 ioc->build_sg_mpi(ioc, psge, data_out_dma, data_out_sz, 1013 data_in_dma, data_in_sz); 1014 ioc->put_smid_default(ioc, smid); 1015 break; 1016 } 1017 1018 if (karg.timeout < MPT3_IOCTL_DEFAULT_TIMEOUT) 1019 timeout = MPT3_IOCTL_DEFAULT_TIMEOUT; 1020 else 1021 timeout = karg.timeout; 1022 wait_for_completion_timeout(&ioc->ctl_cmds.done, timeout*HZ); 1023 if (mpi_request->Function == MPI2_FUNCTION_SCSI_TASK_MGMT) { 1024 Mpi2SCSITaskManagementRequest_t *tm_request = 1025 (Mpi2SCSITaskManagementRequest_t *)mpi_request; 1026 mpt3sas_scsih_clear_tm_flag(ioc, le16_to_cpu( 1027 tm_request->DevHandle)); 1028 mpt3sas_trigger_master(ioc, MASTER_TRIGGER_TASK_MANAGMENT); 1029 } else if ((mpi_request->Function == MPI2_FUNCTION_SMP_PASSTHROUGH || 1030 mpi_request->Function == MPI2_FUNCTION_SAS_IO_UNIT_CONTROL) && 1031 ioc->ioc_link_reset_in_progress) { 1032 ioc->ioc_link_reset_in_progress = 0; 1033 ioc->ignore_loginfos = 0; 1034 } 1035 if (!(ioc->ctl_cmds.status & MPT3_CMD_COMPLETE)) { 1036 mpt3sas_check_cmd_timeout(ioc, 1037 ioc->ctl_cmds.status, mpi_request, 1038 karg.data_sge_offset, issue_reset); 1039 goto issue_host_reset; 1040 } 1041 1042 mpi_reply = ioc->ctl_cmds.reply; 1043 1044 if (mpi_reply->Function == MPI2_FUNCTION_SCSI_TASK_MGMT && 1045 (ioc->logging_level & MPT_DEBUG_TM)) { 1046 Mpi2SCSITaskManagementReply_t *tm_reply = 1047 (Mpi2SCSITaskManagementReply_t *)mpi_reply; 1048 1049 ioc_info(ioc, "TASK_MGMT: IOCStatus(0x%04x), IOCLogInfo(0x%08x), TerminationCount(0x%08x)\n", 1050 le16_to_cpu(tm_reply->IOCStatus), 1051 le32_to_cpu(tm_reply->IOCLogInfo), 1052 le32_to_cpu(tm_reply->TerminationCount)); 1053 } 1054 1055 /* copy out xdata to user */ 1056 if (data_in_sz) { 1057 if (copy_to_user(karg.data_in_buf_ptr, data_in, 1058 data_in_sz)) { 1059 pr_err("failure at %s:%d/%s()!\n", __FILE__, 1060 __LINE__, __func__); 1061 ret = -ENODATA; 1062 goto out; 1063 } 1064 } 1065 1066 /* copy out reply message frame to user */ 1067 if (karg.max_reply_bytes) { 1068 sz = min_t(u32, karg.max_reply_bytes, ioc->reply_sz); 1069 if (copy_to_user(karg.reply_frame_buf_ptr, ioc->ctl_cmds.reply, 1070 sz)) { 1071 pr_err("failure at %s:%d/%s()!\n", __FILE__, 1072 __LINE__, __func__); 1073 ret = -ENODATA; 1074 goto out; 1075 } 1076 } 1077 1078 /* copy out sense/NVMe Error Response to user */ 1079 if (karg.max_sense_bytes && (mpi_request->Function == 1080 MPI2_FUNCTION_SCSI_IO_REQUEST || mpi_request->Function == 1081 MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH || mpi_request->Function == 1082 MPI2_FUNCTION_NVME_ENCAPSULATED)) { 1083 if (karg.sense_data_ptr == NULL) { 1084 ioc_info(ioc, "Response buffer provided by application is NULL; Response data will not be returned\n"); 1085 goto out; 1086 } 1087 sz_arg = (mpi_request->Function == 1088 MPI2_FUNCTION_NVME_ENCAPSULATED) ? NVME_ERROR_RESPONSE_SIZE : 1089 SCSI_SENSE_BUFFERSIZE; 1090 sz = min_t(u32, karg.max_sense_bytes, sz_arg); 1091 if (copy_to_user(karg.sense_data_ptr, ioc->ctl_cmds.sense, 1092 sz)) { 1093 pr_err("failure at %s:%d/%s()!\n", __FILE__, 1094 __LINE__, __func__); 1095 ret = -ENODATA; 1096 goto out; 1097 } 1098 } 1099 1100 issue_host_reset: 1101 if (issue_reset) { 1102 ret = -ENODATA; 1103 if ((mpi_request->Function == MPI2_FUNCTION_SCSI_IO_REQUEST || 1104 mpi_request->Function == 1105 MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH || 1106 mpi_request->Function == MPI2_FUNCTION_SATA_PASSTHROUGH)) { 1107 ioc_info(ioc, "issue target reset: handle = (0x%04x)\n", 1108 le16_to_cpu(mpi_request->FunctionDependent1)); 1109 mpt3sas_halt_firmware(ioc); 1110 pcie_device = mpt3sas_get_pdev_by_handle(ioc, 1111 le16_to_cpu(mpi_request->FunctionDependent1)); 1112 if (pcie_device && (!ioc->tm_custom_handling) && 1113 (!(mpt3sas_scsih_is_pcie_scsi_device( 1114 pcie_device->device_info)))) 1115 mpt3sas_scsih_issue_locked_tm(ioc, 1116 le16_to_cpu(mpi_request->FunctionDependent1), 1117 0, 0, 0, 1118 MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET, 0, 1119 0, pcie_device->reset_timeout, 1120 MPI26_SCSITASKMGMT_MSGFLAGS_PROTOCOL_LVL_RST_PCIE); 1121 else 1122 mpt3sas_scsih_issue_locked_tm(ioc, 1123 le16_to_cpu(mpi_request->FunctionDependent1), 1124 0, 0, 0, 1125 MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET, 0, 1126 0, 30, MPI2_SCSITASKMGMT_MSGFLAGS_LINK_RESET); 1127 } else 1128 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 1129 } 1130 1131 out: 1132 if (pcie_device) 1133 pcie_device_put(pcie_device); 1134 1135 /* free memory associated with sg buffers */ 1136 if (data_in) 1137 dma_free_coherent(&ioc->pdev->dev, data_in_sz, data_in, 1138 data_in_dma); 1139 1140 if (data_out) 1141 dma_free_coherent(&ioc->pdev->dev, data_out_sz, data_out, 1142 data_out_dma); 1143 1144 kfree(mpi_request); 1145 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED; 1146 return ret; 1147 } 1148 1149 /** 1150 * _ctl_getiocinfo - main handler for MPT3IOCINFO opcode 1151 * @ioc: per adapter object 1152 * @arg: user space buffer containing ioctl content 1153 */ 1154 static long 1155 _ctl_getiocinfo(struct MPT3SAS_ADAPTER *ioc, void __user *arg) 1156 { 1157 struct mpt3_ioctl_iocinfo karg; 1158 1159 dctlprintk(ioc, ioc_info(ioc, "%s: enter\n", 1160 __func__)); 1161 1162 memset(&karg, 0 , sizeof(karg)); 1163 if (ioc->pfacts) 1164 karg.port_number = ioc->pfacts[0].PortNumber; 1165 karg.hw_rev = ioc->pdev->revision; 1166 karg.pci_id = ioc->pdev->device; 1167 karg.subsystem_device = ioc->pdev->subsystem_device; 1168 karg.subsystem_vendor = ioc->pdev->subsystem_vendor; 1169 karg.pci_information.u.bits.bus = ioc->pdev->bus->number; 1170 karg.pci_information.u.bits.device = PCI_SLOT(ioc->pdev->devfn); 1171 karg.pci_information.u.bits.function = PCI_FUNC(ioc->pdev->devfn); 1172 karg.pci_information.segment_id = pci_domain_nr(ioc->pdev->bus); 1173 karg.firmware_version = ioc->facts.FWVersion.Word; 1174 strcpy(karg.driver_version, ioc->driver_name); 1175 strcat(karg.driver_version, "-"); 1176 switch (ioc->hba_mpi_version_belonged) { 1177 case MPI2_VERSION: 1178 if (ioc->is_warpdrive) 1179 karg.adapter_type = MPT2_IOCTL_INTERFACE_SAS2_SSS6200; 1180 else 1181 karg.adapter_type = MPT2_IOCTL_INTERFACE_SAS2; 1182 strcat(karg.driver_version, MPT2SAS_DRIVER_VERSION); 1183 break; 1184 case MPI25_VERSION: 1185 case MPI26_VERSION: 1186 if (ioc->is_gen35_ioc) 1187 karg.adapter_type = MPT3_IOCTL_INTERFACE_SAS35; 1188 else 1189 karg.adapter_type = MPT3_IOCTL_INTERFACE_SAS3; 1190 strcat(karg.driver_version, MPT3SAS_DRIVER_VERSION); 1191 break; 1192 } 1193 karg.bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion); 1194 1195 if (copy_to_user(arg, &karg, sizeof(karg))) { 1196 pr_err("failure at %s:%d/%s()!\n", 1197 __FILE__, __LINE__, __func__); 1198 return -EFAULT; 1199 } 1200 return 0; 1201 } 1202 1203 /** 1204 * _ctl_eventquery - main handler for MPT3EVENTQUERY opcode 1205 * @ioc: per adapter object 1206 * @arg: user space buffer containing ioctl content 1207 */ 1208 static long 1209 _ctl_eventquery(struct MPT3SAS_ADAPTER *ioc, void __user *arg) 1210 { 1211 struct mpt3_ioctl_eventquery karg; 1212 1213 if (copy_from_user(&karg, arg, sizeof(karg))) { 1214 pr_err("failure at %s:%d/%s()!\n", 1215 __FILE__, __LINE__, __func__); 1216 return -EFAULT; 1217 } 1218 1219 dctlprintk(ioc, ioc_info(ioc, "%s: enter\n", 1220 __func__)); 1221 1222 karg.event_entries = MPT3SAS_CTL_EVENT_LOG_SIZE; 1223 memcpy(karg.event_types, ioc->event_type, 1224 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS * sizeof(u32)); 1225 1226 if (copy_to_user(arg, &karg, sizeof(karg))) { 1227 pr_err("failure at %s:%d/%s()!\n", 1228 __FILE__, __LINE__, __func__); 1229 return -EFAULT; 1230 } 1231 return 0; 1232 } 1233 1234 /** 1235 * _ctl_eventenable - main handler for MPT3EVENTENABLE opcode 1236 * @ioc: per adapter object 1237 * @arg: user space buffer containing ioctl content 1238 */ 1239 static long 1240 _ctl_eventenable(struct MPT3SAS_ADAPTER *ioc, void __user *arg) 1241 { 1242 struct mpt3_ioctl_eventenable karg; 1243 1244 if (copy_from_user(&karg, arg, sizeof(karg))) { 1245 pr_err("failure at %s:%d/%s()!\n", 1246 __FILE__, __LINE__, __func__); 1247 return -EFAULT; 1248 } 1249 1250 dctlprintk(ioc, ioc_info(ioc, "%s: enter\n", 1251 __func__)); 1252 1253 memcpy(ioc->event_type, karg.event_types, 1254 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS * sizeof(u32)); 1255 mpt3sas_base_validate_event_type(ioc, ioc->event_type); 1256 1257 if (ioc->event_log) 1258 return 0; 1259 /* initialize event_log */ 1260 ioc->event_context = 0; 1261 ioc->aen_event_read_flag = 0; 1262 ioc->event_log = kcalloc(MPT3SAS_CTL_EVENT_LOG_SIZE, 1263 sizeof(struct MPT3_IOCTL_EVENTS), GFP_KERNEL); 1264 if (!ioc->event_log) { 1265 pr_err("failure at %s:%d/%s()!\n", 1266 __FILE__, __LINE__, __func__); 1267 return -ENOMEM; 1268 } 1269 return 0; 1270 } 1271 1272 /** 1273 * _ctl_eventreport - main handler for MPT3EVENTREPORT opcode 1274 * @ioc: per adapter object 1275 * @arg: user space buffer containing ioctl content 1276 */ 1277 static long 1278 _ctl_eventreport(struct MPT3SAS_ADAPTER *ioc, void __user *arg) 1279 { 1280 struct mpt3_ioctl_eventreport karg; 1281 u32 number_bytes, max_events, max; 1282 struct mpt3_ioctl_eventreport __user *uarg = arg; 1283 1284 if (copy_from_user(&karg, arg, sizeof(karg))) { 1285 pr_err("failure at %s:%d/%s()!\n", 1286 __FILE__, __LINE__, __func__); 1287 return -EFAULT; 1288 } 1289 1290 dctlprintk(ioc, ioc_info(ioc, "%s: enter\n", 1291 __func__)); 1292 1293 number_bytes = karg.hdr.max_data_size - 1294 sizeof(struct mpt3_ioctl_header); 1295 max_events = number_bytes/sizeof(struct MPT3_IOCTL_EVENTS); 1296 max = min_t(u32, MPT3SAS_CTL_EVENT_LOG_SIZE, max_events); 1297 1298 /* If fewer than 1 event is requested, there must have 1299 * been some type of error. 1300 */ 1301 if (!max || !ioc->event_log) 1302 return -ENODATA; 1303 1304 number_bytes = max * sizeof(struct MPT3_IOCTL_EVENTS); 1305 if (copy_to_user(uarg->event_data, ioc->event_log, number_bytes)) { 1306 pr_err("failure at %s:%d/%s()!\n", 1307 __FILE__, __LINE__, __func__); 1308 return -EFAULT; 1309 } 1310 1311 /* reset flag so SIGIO can restart */ 1312 ioc->aen_event_read_flag = 0; 1313 return 0; 1314 } 1315 1316 /** 1317 * _ctl_do_reset - main handler for MPT3HARDRESET opcode 1318 * @ioc: per adapter object 1319 * @arg: user space buffer containing ioctl content 1320 */ 1321 static long 1322 _ctl_do_reset(struct MPT3SAS_ADAPTER *ioc, void __user *arg) 1323 { 1324 struct mpt3_ioctl_diag_reset karg; 1325 int retval; 1326 1327 if (copy_from_user(&karg, arg, sizeof(karg))) { 1328 pr_err("failure at %s:%d/%s()!\n", 1329 __FILE__, __LINE__, __func__); 1330 return -EFAULT; 1331 } 1332 1333 if (ioc->shost_recovery || ioc->pci_error_recovery || 1334 ioc->is_driver_loading) 1335 return -EAGAIN; 1336 1337 dctlprintk(ioc, ioc_info(ioc, "%s: enter\n", 1338 __func__)); 1339 1340 ioc->reset_from_user = 1; 1341 retval = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 1342 ioc_info(ioc, 1343 "Ioctl: host reset: %s\n", ((!retval) ? "SUCCESS" : "FAILED")); 1344 return 0; 1345 } 1346 1347 /** 1348 * _ctl_btdh_search_sas_device - searching for sas device 1349 * @ioc: per adapter object 1350 * @btdh: btdh ioctl payload 1351 */ 1352 static int 1353 _ctl_btdh_search_sas_device(struct MPT3SAS_ADAPTER *ioc, 1354 struct mpt3_ioctl_btdh_mapping *btdh) 1355 { 1356 struct _sas_device *sas_device; 1357 unsigned long flags; 1358 int rc = 0; 1359 1360 if (list_empty(&ioc->sas_device_list)) 1361 return rc; 1362 1363 spin_lock_irqsave(&ioc->sas_device_lock, flags); 1364 list_for_each_entry(sas_device, &ioc->sas_device_list, list) { 1365 if (btdh->bus == 0xFFFFFFFF && btdh->id == 0xFFFFFFFF && 1366 btdh->handle == sas_device->handle) { 1367 btdh->bus = sas_device->channel; 1368 btdh->id = sas_device->id; 1369 rc = 1; 1370 goto out; 1371 } else if (btdh->bus == sas_device->channel && btdh->id == 1372 sas_device->id && btdh->handle == 0xFFFF) { 1373 btdh->handle = sas_device->handle; 1374 rc = 1; 1375 goto out; 1376 } 1377 } 1378 out: 1379 spin_unlock_irqrestore(&ioc->sas_device_lock, flags); 1380 return rc; 1381 } 1382 1383 /** 1384 * _ctl_btdh_search_pcie_device - searching for pcie device 1385 * @ioc: per adapter object 1386 * @btdh: btdh ioctl payload 1387 */ 1388 static int 1389 _ctl_btdh_search_pcie_device(struct MPT3SAS_ADAPTER *ioc, 1390 struct mpt3_ioctl_btdh_mapping *btdh) 1391 { 1392 struct _pcie_device *pcie_device; 1393 unsigned long flags; 1394 int rc = 0; 1395 1396 if (list_empty(&ioc->pcie_device_list)) 1397 return rc; 1398 1399 spin_lock_irqsave(&ioc->pcie_device_lock, flags); 1400 list_for_each_entry(pcie_device, &ioc->pcie_device_list, list) { 1401 if (btdh->bus == 0xFFFFFFFF && btdh->id == 0xFFFFFFFF && 1402 btdh->handle == pcie_device->handle) { 1403 btdh->bus = pcie_device->channel; 1404 btdh->id = pcie_device->id; 1405 rc = 1; 1406 goto out; 1407 } else if (btdh->bus == pcie_device->channel && btdh->id == 1408 pcie_device->id && btdh->handle == 0xFFFF) { 1409 btdh->handle = pcie_device->handle; 1410 rc = 1; 1411 goto out; 1412 } 1413 } 1414 out: 1415 spin_unlock_irqrestore(&ioc->pcie_device_lock, flags); 1416 return rc; 1417 } 1418 1419 /** 1420 * _ctl_btdh_search_raid_device - searching for raid device 1421 * @ioc: per adapter object 1422 * @btdh: btdh ioctl payload 1423 */ 1424 static int 1425 _ctl_btdh_search_raid_device(struct MPT3SAS_ADAPTER *ioc, 1426 struct mpt3_ioctl_btdh_mapping *btdh) 1427 { 1428 struct _raid_device *raid_device; 1429 unsigned long flags; 1430 int rc = 0; 1431 1432 if (list_empty(&ioc->raid_device_list)) 1433 return rc; 1434 1435 spin_lock_irqsave(&ioc->raid_device_lock, flags); 1436 list_for_each_entry(raid_device, &ioc->raid_device_list, list) { 1437 if (btdh->bus == 0xFFFFFFFF && btdh->id == 0xFFFFFFFF && 1438 btdh->handle == raid_device->handle) { 1439 btdh->bus = raid_device->channel; 1440 btdh->id = raid_device->id; 1441 rc = 1; 1442 goto out; 1443 } else if (btdh->bus == raid_device->channel && btdh->id == 1444 raid_device->id && btdh->handle == 0xFFFF) { 1445 btdh->handle = raid_device->handle; 1446 rc = 1; 1447 goto out; 1448 } 1449 } 1450 out: 1451 spin_unlock_irqrestore(&ioc->raid_device_lock, flags); 1452 return rc; 1453 } 1454 1455 /** 1456 * _ctl_btdh_mapping - main handler for MPT3BTDHMAPPING opcode 1457 * @ioc: per adapter object 1458 * @arg: user space buffer containing ioctl content 1459 */ 1460 static long 1461 _ctl_btdh_mapping(struct MPT3SAS_ADAPTER *ioc, void __user *arg) 1462 { 1463 struct mpt3_ioctl_btdh_mapping karg; 1464 int rc; 1465 1466 if (copy_from_user(&karg, arg, sizeof(karg))) { 1467 pr_err("failure at %s:%d/%s()!\n", 1468 __FILE__, __LINE__, __func__); 1469 return -EFAULT; 1470 } 1471 1472 dctlprintk(ioc, ioc_info(ioc, "%s\n", 1473 __func__)); 1474 1475 rc = _ctl_btdh_search_sas_device(ioc, &karg); 1476 if (!rc) 1477 rc = _ctl_btdh_search_pcie_device(ioc, &karg); 1478 if (!rc) 1479 _ctl_btdh_search_raid_device(ioc, &karg); 1480 1481 if (copy_to_user(arg, &karg, sizeof(karg))) { 1482 pr_err("failure at %s:%d/%s()!\n", 1483 __FILE__, __LINE__, __func__); 1484 return -EFAULT; 1485 } 1486 return 0; 1487 } 1488 1489 /** 1490 * _ctl_diag_capability - return diag buffer capability 1491 * @ioc: per adapter object 1492 * @buffer_type: specifies either TRACE, SNAPSHOT, or EXTENDED 1493 * 1494 * returns 1 when diag buffer support is enabled in firmware 1495 */ 1496 static u8 1497 _ctl_diag_capability(struct MPT3SAS_ADAPTER *ioc, u8 buffer_type) 1498 { 1499 u8 rc = 0; 1500 1501 switch (buffer_type) { 1502 case MPI2_DIAG_BUF_TYPE_TRACE: 1503 if (ioc->facts.IOCCapabilities & 1504 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) 1505 rc = 1; 1506 break; 1507 case MPI2_DIAG_BUF_TYPE_SNAPSHOT: 1508 if (ioc->facts.IOCCapabilities & 1509 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) 1510 rc = 1; 1511 break; 1512 case MPI2_DIAG_BUF_TYPE_EXTENDED: 1513 if (ioc->facts.IOCCapabilities & 1514 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) 1515 rc = 1; 1516 } 1517 1518 return rc; 1519 } 1520 1521 /** 1522 * _ctl_diag_get_bufftype - return diag buffer type 1523 * either TRACE, SNAPSHOT, or EXTENDED 1524 * @ioc: per adapter object 1525 * @unique_id: specifies the unique_id for the buffer 1526 * 1527 * returns MPT3_DIAG_UID_NOT_FOUND if the id not found 1528 */ 1529 static u8 1530 _ctl_diag_get_bufftype(struct MPT3SAS_ADAPTER *ioc, u32 unique_id) 1531 { 1532 u8 index; 1533 1534 for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) { 1535 if (ioc->unique_id[index] == unique_id) 1536 return index; 1537 } 1538 1539 return MPT3_DIAG_UID_NOT_FOUND; 1540 } 1541 1542 /** 1543 * _ctl_diag_register_2 - wrapper for registering diag buffer support 1544 * @ioc: per adapter object 1545 * @diag_register: the diag_register struct passed in from user space 1546 * 1547 */ 1548 static long 1549 _ctl_diag_register_2(struct MPT3SAS_ADAPTER *ioc, 1550 struct mpt3_diag_register *diag_register) 1551 { 1552 int rc, i; 1553 void *request_data = NULL; 1554 dma_addr_t request_data_dma; 1555 u32 request_data_sz = 0; 1556 Mpi2DiagBufferPostRequest_t *mpi_request; 1557 Mpi2DiagBufferPostReply_t *mpi_reply; 1558 u8 buffer_type; 1559 u16 smid; 1560 u16 ioc_status; 1561 u32 ioc_state; 1562 u8 issue_reset = 0; 1563 1564 dctlprintk(ioc, ioc_info(ioc, "%s\n", 1565 __func__)); 1566 1567 ioc_state = mpt3sas_base_get_iocstate(ioc, 1); 1568 if (ioc_state != MPI2_IOC_STATE_OPERATIONAL) { 1569 ioc_err(ioc, "%s: failed due to ioc not operational\n", 1570 __func__); 1571 rc = -EAGAIN; 1572 goto out; 1573 } 1574 1575 if (ioc->ctl_cmds.status != MPT3_CMD_NOT_USED) { 1576 ioc_err(ioc, "%s: ctl_cmd in use\n", __func__); 1577 rc = -EAGAIN; 1578 goto out; 1579 } 1580 1581 buffer_type = diag_register->buffer_type; 1582 if (!_ctl_diag_capability(ioc, buffer_type)) { 1583 ioc_err(ioc, "%s: doesn't have capability for buffer_type(0x%02x)\n", 1584 __func__, buffer_type); 1585 return -EPERM; 1586 } 1587 1588 if (diag_register->unique_id == 0) { 1589 ioc_err(ioc, 1590 "%s: Invalid UID(0x%08x), buffer_type(0x%02x)\n", __func__, 1591 diag_register->unique_id, buffer_type); 1592 return -EINVAL; 1593 } 1594 1595 if ((ioc->diag_buffer_status[buffer_type] & 1596 MPT3_DIAG_BUFFER_IS_APP_OWNED) && 1597 !(ioc->diag_buffer_status[buffer_type] & 1598 MPT3_DIAG_BUFFER_IS_RELEASED)) { 1599 ioc_err(ioc, 1600 "%s: buffer_type(0x%02x) is already registered by application with UID(0x%08x)\n", 1601 __func__, buffer_type, ioc->unique_id[buffer_type]); 1602 return -EINVAL; 1603 } 1604 1605 if (ioc->diag_buffer_status[buffer_type] & 1606 MPT3_DIAG_BUFFER_IS_REGISTERED) { 1607 /* 1608 * If driver posts buffer initially, then an application wants 1609 * to Register that buffer (own it) without Releasing first, 1610 * the application Register command MUST have the same buffer 1611 * type and size in the Register command (obtained from the 1612 * Query command). Otherwise that Register command will be 1613 * failed. If the application has released the buffer but wants 1614 * to re-register it, it should be allowed as long as the 1615 * Unique-Id/Size match. 1616 */ 1617 1618 if (ioc->unique_id[buffer_type] == MPT3DIAGBUFFUNIQUEID && 1619 ioc->diag_buffer_sz[buffer_type] == 1620 diag_register->requested_buffer_size) { 1621 1622 if (!(ioc->diag_buffer_status[buffer_type] & 1623 MPT3_DIAG_BUFFER_IS_RELEASED)) { 1624 dctlprintk(ioc, ioc_info(ioc, 1625 "%s: diag_buffer (%d) ownership changed. old-ID(0x%08x), new-ID(0x%08x)\n", 1626 __func__, buffer_type, 1627 ioc->unique_id[buffer_type], 1628 diag_register->unique_id)); 1629 1630 /* 1631 * Application wants to own the buffer with 1632 * the same size. 1633 */ 1634 ioc->unique_id[buffer_type] = 1635 diag_register->unique_id; 1636 rc = 0; /* success */ 1637 goto out; 1638 } 1639 } else if (ioc->unique_id[buffer_type] != 1640 MPT3DIAGBUFFUNIQUEID) { 1641 if (ioc->unique_id[buffer_type] != 1642 diag_register->unique_id || 1643 ioc->diag_buffer_sz[buffer_type] != 1644 diag_register->requested_buffer_size || 1645 !(ioc->diag_buffer_status[buffer_type] & 1646 MPT3_DIAG_BUFFER_IS_RELEASED)) { 1647 ioc_err(ioc, 1648 "%s: already has a registered buffer for buffer_type(0x%02x)\n", 1649 __func__, buffer_type); 1650 return -EINVAL; 1651 } 1652 } else { 1653 ioc_err(ioc, "%s: already has a registered buffer for buffer_type(0x%02x)\n", 1654 __func__, buffer_type); 1655 return -EINVAL; 1656 } 1657 } else if (ioc->diag_buffer_status[buffer_type] & 1658 MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED) { 1659 1660 if (ioc->unique_id[buffer_type] != MPT3DIAGBUFFUNIQUEID || 1661 ioc->diag_buffer_sz[buffer_type] != 1662 diag_register->requested_buffer_size) { 1663 1664 ioc_err(ioc, 1665 "%s: already a buffer is allocated for buffer_type(0x%02x) of size %d bytes, so please try registering again with same size\n", 1666 __func__, buffer_type, 1667 ioc->diag_buffer_sz[buffer_type]); 1668 return -EINVAL; 1669 } 1670 } 1671 1672 if (diag_register->requested_buffer_size % 4) { 1673 ioc_err(ioc, "%s: the requested_buffer_size is not 4 byte aligned\n", 1674 __func__); 1675 return -EINVAL; 1676 } 1677 1678 smid = mpt3sas_base_get_smid(ioc, ioc->ctl_cb_idx); 1679 if (!smid) { 1680 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 1681 rc = -EAGAIN; 1682 goto out; 1683 } 1684 1685 rc = 0; 1686 ioc->ctl_cmds.status = MPT3_CMD_PENDING; 1687 memset(ioc->ctl_cmds.reply, 0, ioc->reply_sz); 1688 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 1689 ioc->ctl_cmds.smid = smid; 1690 1691 request_data = ioc->diag_buffer[buffer_type]; 1692 request_data_sz = diag_register->requested_buffer_size; 1693 ioc->unique_id[buffer_type] = diag_register->unique_id; 1694 /* Reset ioc variables used for additional query commands */ 1695 ioc->reset_from_user = 0; 1696 memset(&ioc->htb_rel, 0, sizeof(struct htb_rel_query)); 1697 ioc->diag_buffer_status[buffer_type] &= 1698 MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED; 1699 memcpy(ioc->product_specific[buffer_type], 1700 diag_register->product_specific, MPT3_PRODUCT_SPECIFIC_DWORDS); 1701 ioc->diagnostic_flags[buffer_type] = diag_register->diagnostic_flags; 1702 1703 if (request_data) { 1704 request_data_dma = ioc->diag_buffer_dma[buffer_type]; 1705 if (request_data_sz != ioc->diag_buffer_sz[buffer_type]) { 1706 dma_free_coherent(&ioc->pdev->dev, 1707 ioc->diag_buffer_sz[buffer_type], 1708 request_data, request_data_dma); 1709 request_data = NULL; 1710 } 1711 } 1712 1713 if (request_data == NULL) { 1714 ioc->diag_buffer_sz[buffer_type] = 0; 1715 ioc->diag_buffer_dma[buffer_type] = 0; 1716 request_data = dma_alloc_coherent(&ioc->pdev->dev, 1717 request_data_sz, &request_data_dma, GFP_KERNEL); 1718 if (request_data == NULL) { 1719 ioc_err(ioc, "%s: failed allocating memory for diag buffers, requested size(%d)\n", 1720 __func__, request_data_sz); 1721 mpt3sas_base_free_smid(ioc, smid); 1722 rc = -ENOMEM; 1723 goto out; 1724 } 1725 ioc->diag_buffer[buffer_type] = request_data; 1726 ioc->diag_buffer_sz[buffer_type] = request_data_sz; 1727 ioc->diag_buffer_dma[buffer_type] = request_data_dma; 1728 } 1729 1730 mpi_request->Function = MPI2_FUNCTION_DIAG_BUFFER_POST; 1731 mpi_request->BufferType = diag_register->buffer_type; 1732 mpi_request->Flags = cpu_to_le32(diag_register->diagnostic_flags); 1733 mpi_request->BufferAddress = cpu_to_le64(request_data_dma); 1734 mpi_request->BufferLength = cpu_to_le32(request_data_sz); 1735 mpi_request->VF_ID = 0; /* TODO */ 1736 mpi_request->VP_ID = 0; 1737 1738 dctlprintk(ioc, 1739 ioc_info(ioc, "%s: diag_buffer(0x%p), dma(0x%llx), sz(%d)\n", 1740 __func__, request_data, 1741 (unsigned long long)request_data_dma, 1742 le32_to_cpu(mpi_request->BufferLength))); 1743 1744 for (i = 0; i < MPT3_PRODUCT_SPECIFIC_DWORDS; i++) 1745 mpi_request->ProductSpecific[i] = 1746 cpu_to_le32(ioc->product_specific[buffer_type][i]); 1747 1748 init_completion(&ioc->ctl_cmds.done); 1749 ioc->put_smid_default(ioc, smid); 1750 wait_for_completion_timeout(&ioc->ctl_cmds.done, 1751 MPT3_IOCTL_DEFAULT_TIMEOUT*HZ); 1752 1753 if (!(ioc->ctl_cmds.status & MPT3_CMD_COMPLETE)) { 1754 mpt3sas_check_cmd_timeout(ioc, 1755 ioc->ctl_cmds.status, mpi_request, 1756 sizeof(Mpi2DiagBufferPostRequest_t)/4, issue_reset); 1757 goto issue_host_reset; 1758 } 1759 1760 /* process the completed Reply Message Frame */ 1761 if ((ioc->ctl_cmds.status & MPT3_CMD_REPLY_VALID) == 0) { 1762 ioc_err(ioc, "%s: no reply message\n", __func__); 1763 rc = -EFAULT; 1764 goto out; 1765 } 1766 1767 mpi_reply = ioc->ctl_cmds.reply; 1768 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 1769 1770 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 1771 ioc->diag_buffer_status[buffer_type] |= 1772 MPT3_DIAG_BUFFER_IS_REGISTERED; 1773 dctlprintk(ioc, ioc_info(ioc, "%s: success\n", __func__)); 1774 } else { 1775 ioc_info(ioc, "%s: ioc_status(0x%04x) log_info(0x%08x)\n", 1776 __func__, 1777 ioc_status, le32_to_cpu(mpi_reply->IOCLogInfo)); 1778 rc = -EFAULT; 1779 } 1780 1781 issue_host_reset: 1782 if (issue_reset) 1783 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 1784 1785 out: 1786 1787 if (rc && request_data) { 1788 dma_free_coherent(&ioc->pdev->dev, request_data_sz, 1789 request_data, request_data_dma); 1790 ioc->diag_buffer_status[buffer_type] &= 1791 ~MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED; 1792 } 1793 1794 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED; 1795 return rc; 1796 } 1797 1798 /** 1799 * mpt3sas_enable_diag_buffer - enabling diag_buffers support driver load time 1800 * @ioc: per adapter object 1801 * @bits_to_register: bitwise field where trace is bit 0, and snapshot is bit 1 1802 * 1803 * This is called when command line option diag_buffer_enable is enabled 1804 * at driver load time. 1805 */ 1806 void 1807 mpt3sas_enable_diag_buffer(struct MPT3SAS_ADAPTER *ioc, u8 bits_to_register) 1808 { 1809 struct mpt3_diag_register diag_register; 1810 u32 ret_val; 1811 u32 trace_buff_size = ioc->manu_pg11.HostTraceBufferMaxSizeKB<<10; 1812 u32 min_trace_buff_size = 0; 1813 u32 decr_trace_buff_size = 0; 1814 1815 memset(&diag_register, 0, sizeof(struct mpt3_diag_register)); 1816 1817 if (bits_to_register & 1) { 1818 ioc_info(ioc, "registering trace buffer support\n"); 1819 ioc->diag_trigger_master.MasterData = 1820 (MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET); 1821 diag_register.buffer_type = MPI2_DIAG_BUF_TYPE_TRACE; 1822 diag_register.unique_id = 1823 (ioc->hba_mpi_version_belonged == MPI2_VERSION) ? 1824 (MPT2DIAGBUFFUNIQUEID):(MPT3DIAGBUFFUNIQUEID); 1825 1826 if (trace_buff_size != 0) { 1827 diag_register.requested_buffer_size = trace_buff_size; 1828 min_trace_buff_size = 1829 ioc->manu_pg11.HostTraceBufferMinSizeKB<<10; 1830 decr_trace_buff_size = 1831 ioc->manu_pg11.HostTraceBufferDecrementSizeKB<<10; 1832 1833 if (min_trace_buff_size > trace_buff_size) { 1834 /* The buff size is not set correctly */ 1835 ioc_err(ioc, 1836 "Min Trace Buff size (%d KB) greater than Max Trace Buff size (%d KB)\n", 1837 min_trace_buff_size>>10, 1838 trace_buff_size>>10); 1839 ioc_err(ioc, 1840 "Using zero Min Trace Buff Size\n"); 1841 min_trace_buff_size = 0; 1842 } 1843 1844 if (decr_trace_buff_size == 0) { 1845 /* 1846 * retry the min size if decrement 1847 * is not available. 1848 */ 1849 decr_trace_buff_size = 1850 trace_buff_size - min_trace_buff_size; 1851 } 1852 } else { 1853 /* register for 2MB buffers */ 1854 diag_register.requested_buffer_size = 2 * (1024 * 1024); 1855 } 1856 1857 do { 1858 ret_val = _ctl_diag_register_2(ioc, &diag_register); 1859 1860 if (ret_val == -ENOMEM && min_trace_buff_size && 1861 (trace_buff_size - decr_trace_buff_size) >= 1862 min_trace_buff_size) { 1863 /* adjust the buffer size */ 1864 trace_buff_size -= decr_trace_buff_size; 1865 diag_register.requested_buffer_size = 1866 trace_buff_size; 1867 } else 1868 break; 1869 } while (true); 1870 1871 if (ret_val == -ENOMEM) 1872 ioc_err(ioc, 1873 "Cannot allocate trace buffer memory. Last memory tried = %d KB\n", 1874 diag_register.requested_buffer_size>>10); 1875 else if (ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] 1876 & MPT3_DIAG_BUFFER_IS_REGISTERED) { 1877 ioc_err(ioc, "Trace buffer memory %d KB allocated\n", 1878 diag_register.requested_buffer_size>>10); 1879 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) 1880 ioc->diag_buffer_status[ 1881 MPI2_DIAG_BUF_TYPE_TRACE] |= 1882 MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED; 1883 } 1884 } 1885 1886 if (bits_to_register & 2) { 1887 ioc_info(ioc, "registering snapshot buffer support\n"); 1888 diag_register.buffer_type = MPI2_DIAG_BUF_TYPE_SNAPSHOT; 1889 /* register for 2MB buffers */ 1890 diag_register.requested_buffer_size = 2 * (1024 * 1024); 1891 diag_register.unique_id = 0x7075901; 1892 _ctl_diag_register_2(ioc, &diag_register); 1893 } 1894 1895 if (bits_to_register & 4) { 1896 ioc_info(ioc, "registering extended buffer support\n"); 1897 diag_register.buffer_type = MPI2_DIAG_BUF_TYPE_EXTENDED; 1898 /* register for 2MB buffers */ 1899 diag_register.requested_buffer_size = 2 * (1024 * 1024); 1900 diag_register.unique_id = 0x7075901; 1901 _ctl_diag_register_2(ioc, &diag_register); 1902 } 1903 } 1904 1905 /** 1906 * _ctl_diag_register - application register with driver 1907 * @ioc: per adapter object 1908 * @arg: user space buffer containing ioctl content 1909 * 1910 * This will allow the driver to setup any required buffers that will be 1911 * needed by firmware to communicate with the driver. 1912 */ 1913 static long 1914 _ctl_diag_register(struct MPT3SAS_ADAPTER *ioc, void __user *arg) 1915 { 1916 struct mpt3_diag_register karg; 1917 long rc; 1918 1919 if (copy_from_user(&karg, arg, sizeof(karg))) { 1920 pr_err("failure at %s:%d/%s()!\n", 1921 __FILE__, __LINE__, __func__); 1922 return -EFAULT; 1923 } 1924 1925 rc = _ctl_diag_register_2(ioc, &karg); 1926 1927 if (!rc && (ioc->diag_buffer_status[karg.buffer_type] & 1928 MPT3_DIAG_BUFFER_IS_REGISTERED)) 1929 ioc->diag_buffer_status[karg.buffer_type] |= 1930 MPT3_DIAG_BUFFER_IS_APP_OWNED; 1931 1932 return rc; 1933 } 1934 1935 /** 1936 * _ctl_diag_unregister - application unregister with driver 1937 * @ioc: per adapter object 1938 * @arg: user space buffer containing ioctl content 1939 * 1940 * This will allow the driver to cleanup any memory allocated for diag 1941 * messages and to free up any resources. 1942 */ 1943 static long 1944 _ctl_diag_unregister(struct MPT3SAS_ADAPTER *ioc, void __user *arg) 1945 { 1946 struct mpt3_diag_unregister karg; 1947 void *request_data; 1948 dma_addr_t request_data_dma; 1949 u32 request_data_sz; 1950 u8 buffer_type; 1951 1952 if (copy_from_user(&karg, arg, sizeof(karg))) { 1953 pr_err("failure at %s:%d/%s()!\n", 1954 __FILE__, __LINE__, __func__); 1955 return -EFAULT; 1956 } 1957 1958 dctlprintk(ioc, ioc_info(ioc, "%s\n", 1959 __func__)); 1960 1961 buffer_type = _ctl_diag_get_bufftype(ioc, karg.unique_id); 1962 if (buffer_type == MPT3_DIAG_UID_NOT_FOUND) { 1963 ioc_err(ioc, "%s: buffer with unique_id(0x%08x) not found\n", 1964 __func__, karg.unique_id); 1965 return -EINVAL; 1966 } 1967 1968 if (!_ctl_diag_capability(ioc, buffer_type)) { 1969 ioc_err(ioc, "%s: doesn't have capability for buffer_type(0x%02x)\n", 1970 __func__, buffer_type); 1971 return -EPERM; 1972 } 1973 1974 if ((ioc->diag_buffer_status[buffer_type] & 1975 MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) { 1976 ioc_err(ioc, "%s: buffer_type(0x%02x) is not registered\n", 1977 __func__, buffer_type); 1978 return -EINVAL; 1979 } 1980 if ((ioc->diag_buffer_status[buffer_type] & 1981 MPT3_DIAG_BUFFER_IS_RELEASED) == 0) { 1982 ioc_err(ioc, "%s: buffer_type(0x%02x) has not been released\n", 1983 __func__, buffer_type); 1984 return -EINVAL; 1985 } 1986 1987 if (karg.unique_id != ioc->unique_id[buffer_type]) { 1988 ioc_err(ioc, "%s: unique_id(0x%08x) is not registered\n", 1989 __func__, karg.unique_id); 1990 return -EINVAL; 1991 } 1992 1993 request_data = ioc->diag_buffer[buffer_type]; 1994 if (!request_data) { 1995 ioc_err(ioc, "%s: doesn't have memory allocated for buffer_type(0x%02x)\n", 1996 __func__, buffer_type); 1997 return -ENOMEM; 1998 } 1999 2000 if (ioc->diag_buffer_status[buffer_type] & 2001 MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED) { 2002 ioc->unique_id[buffer_type] = MPT3DIAGBUFFUNIQUEID; 2003 ioc->diag_buffer_status[buffer_type] &= 2004 ~MPT3_DIAG_BUFFER_IS_APP_OWNED; 2005 ioc->diag_buffer_status[buffer_type] &= 2006 ~MPT3_DIAG_BUFFER_IS_REGISTERED; 2007 } else { 2008 request_data_sz = ioc->diag_buffer_sz[buffer_type]; 2009 request_data_dma = ioc->diag_buffer_dma[buffer_type]; 2010 dma_free_coherent(&ioc->pdev->dev, request_data_sz, 2011 request_data, request_data_dma); 2012 ioc->diag_buffer[buffer_type] = NULL; 2013 ioc->diag_buffer_status[buffer_type] = 0; 2014 } 2015 return 0; 2016 } 2017 2018 /** 2019 * _ctl_diag_query - query relevant info associated with diag buffers 2020 * @ioc: per adapter object 2021 * @arg: user space buffer containing ioctl content 2022 * 2023 * The application will send only buffer_type and unique_id. Driver will 2024 * inspect unique_id first, if valid, fill in all the info. If unique_id is 2025 * 0x00, the driver will return info specified by Buffer Type. 2026 */ 2027 static long 2028 _ctl_diag_query(struct MPT3SAS_ADAPTER *ioc, void __user *arg) 2029 { 2030 struct mpt3_diag_query karg; 2031 void *request_data; 2032 int i; 2033 u8 buffer_type; 2034 2035 if (copy_from_user(&karg, arg, sizeof(karg))) { 2036 pr_err("failure at %s:%d/%s()!\n", 2037 __FILE__, __LINE__, __func__); 2038 return -EFAULT; 2039 } 2040 2041 dctlprintk(ioc, ioc_info(ioc, "%s\n", 2042 __func__)); 2043 2044 karg.application_flags = 0; 2045 buffer_type = karg.buffer_type; 2046 2047 if (!_ctl_diag_capability(ioc, buffer_type)) { 2048 ioc_err(ioc, "%s: doesn't have capability for buffer_type(0x%02x)\n", 2049 __func__, buffer_type); 2050 return -EPERM; 2051 } 2052 2053 if (!(ioc->diag_buffer_status[buffer_type] & 2054 MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED)) { 2055 if ((ioc->diag_buffer_status[buffer_type] & 2056 MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) { 2057 ioc_err(ioc, "%s: buffer_type(0x%02x) is not registered\n", 2058 __func__, buffer_type); 2059 return -EINVAL; 2060 } 2061 } 2062 2063 if (karg.unique_id) { 2064 if (karg.unique_id != ioc->unique_id[buffer_type]) { 2065 ioc_err(ioc, "%s: unique_id(0x%08x) is not registered\n", 2066 __func__, karg.unique_id); 2067 return -EINVAL; 2068 } 2069 } 2070 2071 request_data = ioc->diag_buffer[buffer_type]; 2072 if (!request_data) { 2073 ioc_err(ioc, "%s: doesn't have buffer for buffer_type(0x%02x)\n", 2074 __func__, buffer_type); 2075 return -ENOMEM; 2076 } 2077 2078 if ((ioc->diag_buffer_status[buffer_type] & 2079 MPT3_DIAG_BUFFER_IS_REGISTERED)) 2080 karg.application_flags |= MPT3_APP_FLAGS_BUFFER_VALID; 2081 2082 if (!(ioc->diag_buffer_status[buffer_type] & 2083 MPT3_DIAG_BUFFER_IS_RELEASED)) 2084 karg.application_flags |= MPT3_APP_FLAGS_FW_BUFFER_ACCESS; 2085 2086 if (!(ioc->diag_buffer_status[buffer_type] & 2087 MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED)) 2088 karg.application_flags |= MPT3_APP_FLAGS_DYNAMIC_BUFFER_ALLOC; 2089 2090 if ((ioc->diag_buffer_status[buffer_type] & 2091 MPT3_DIAG_BUFFER_IS_APP_OWNED)) 2092 karg.application_flags |= MPT3_APP_FLAGS_APP_OWNED; 2093 2094 for (i = 0; i < MPT3_PRODUCT_SPECIFIC_DWORDS; i++) 2095 karg.product_specific[i] = 2096 ioc->product_specific[buffer_type][i]; 2097 2098 karg.total_buffer_size = ioc->diag_buffer_sz[buffer_type]; 2099 karg.driver_added_buffer_size = 0; 2100 karg.unique_id = ioc->unique_id[buffer_type]; 2101 karg.diagnostic_flags = ioc->diagnostic_flags[buffer_type]; 2102 2103 if (copy_to_user(arg, &karg, sizeof(struct mpt3_diag_query))) { 2104 ioc_err(ioc, "%s: unable to write mpt3_diag_query data @ %p\n", 2105 __func__, arg); 2106 return -EFAULT; 2107 } 2108 return 0; 2109 } 2110 2111 /** 2112 * mpt3sas_send_diag_release - Diag Release Message 2113 * @ioc: per adapter object 2114 * @buffer_type: specifies either TRACE, SNAPSHOT, or EXTENDED 2115 * @issue_reset: specifies whether host reset is required. 2116 * 2117 */ 2118 int 2119 mpt3sas_send_diag_release(struct MPT3SAS_ADAPTER *ioc, u8 buffer_type, 2120 u8 *issue_reset) 2121 { 2122 Mpi2DiagReleaseRequest_t *mpi_request; 2123 Mpi2DiagReleaseReply_t *mpi_reply; 2124 u16 smid; 2125 u16 ioc_status; 2126 u32 ioc_state; 2127 int rc; 2128 u8 reset_needed = 0; 2129 2130 dctlprintk(ioc, ioc_info(ioc, "%s\n", 2131 __func__)); 2132 2133 rc = 0; 2134 *issue_reset = 0; 2135 2136 2137 ioc_state = mpt3sas_base_get_iocstate(ioc, 1); 2138 if (ioc_state != MPI2_IOC_STATE_OPERATIONAL) { 2139 if (ioc->diag_buffer_status[buffer_type] & 2140 MPT3_DIAG_BUFFER_IS_REGISTERED) 2141 ioc->diag_buffer_status[buffer_type] |= 2142 MPT3_DIAG_BUFFER_IS_RELEASED; 2143 dctlprintk(ioc, 2144 ioc_info(ioc, "%s: skipping due to FAULT state\n", 2145 __func__)); 2146 rc = -EAGAIN; 2147 goto out; 2148 } 2149 2150 if (ioc->ctl_cmds.status != MPT3_CMD_NOT_USED) { 2151 ioc_err(ioc, "%s: ctl_cmd in use\n", __func__); 2152 rc = -EAGAIN; 2153 goto out; 2154 } 2155 2156 smid = mpt3sas_base_get_smid(ioc, ioc->ctl_cb_idx); 2157 if (!smid) { 2158 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 2159 rc = -EAGAIN; 2160 goto out; 2161 } 2162 2163 ioc->ctl_cmds.status = MPT3_CMD_PENDING; 2164 memset(ioc->ctl_cmds.reply, 0, ioc->reply_sz); 2165 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 2166 ioc->ctl_cmds.smid = smid; 2167 2168 mpi_request->Function = MPI2_FUNCTION_DIAG_RELEASE; 2169 mpi_request->BufferType = buffer_type; 2170 mpi_request->VF_ID = 0; /* TODO */ 2171 mpi_request->VP_ID = 0; 2172 2173 init_completion(&ioc->ctl_cmds.done); 2174 ioc->put_smid_default(ioc, smid); 2175 wait_for_completion_timeout(&ioc->ctl_cmds.done, 2176 MPT3_IOCTL_DEFAULT_TIMEOUT*HZ); 2177 2178 if (!(ioc->ctl_cmds.status & MPT3_CMD_COMPLETE)) { 2179 mpt3sas_check_cmd_timeout(ioc, 2180 ioc->ctl_cmds.status, mpi_request, 2181 sizeof(Mpi2DiagReleaseRequest_t)/4, reset_needed); 2182 *issue_reset = reset_needed; 2183 rc = -EFAULT; 2184 goto out; 2185 } 2186 2187 /* process the completed Reply Message Frame */ 2188 if ((ioc->ctl_cmds.status & MPT3_CMD_REPLY_VALID) == 0) { 2189 ioc_err(ioc, "%s: no reply message\n", __func__); 2190 rc = -EFAULT; 2191 goto out; 2192 } 2193 2194 mpi_reply = ioc->ctl_cmds.reply; 2195 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 2196 2197 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 2198 ioc->diag_buffer_status[buffer_type] |= 2199 MPT3_DIAG_BUFFER_IS_RELEASED; 2200 dctlprintk(ioc, ioc_info(ioc, "%s: success\n", __func__)); 2201 } else { 2202 ioc_info(ioc, "%s: ioc_status(0x%04x) log_info(0x%08x)\n", 2203 __func__, 2204 ioc_status, le32_to_cpu(mpi_reply->IOCLogInfo)); 2205 rc = -EFAULT; 2206 } 2207 2208 out: 2209 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED; 2210 return rc; 2211 } 2212 2213 /** 2214 * _ctl_diag_release - request to send Diag Release Message to firmware 2215 * @ioc: ? 2216 * @arg: user space buffer containing ioctl content 2217 * 2218 * This allows ownership of the specified buffer to returned to the driver, 2219 * allowing an application to read the buffer without fear that firmware is 2220 * overwriting information in the buffer. 2221 */ 2222 static long 2223 _ctl_diag_release(struct MPT3SAS_ADAPTER *ioc, void __user *arg) 2224 { 2225 struct mpt3_diag_release karg; 2226 void *request_data; 2227 int rc; 2228 u8 buffer_type; 2229 u8 issue_reset = 0; 2230 2231 if (copy_from_user(&karg, arg, sizeof(karg))) { 2232 pr_err("failure at %s:%d/%s()!\n", 2233 __FILE__, __LINE__, __func__); 2234 return -EFAULT; 2235 } 2236 2237 dctlprintk(ioc, ioc_info(ioc, "%s\n", 2238 __func__)); 2239 2240 buffer_type = _ctl_diag_get_bufftype(ioc, karg.unique_id); 2241 if (buffer_type == MPT3_DIAG_UID_NOT_FOUND) { 2242 ioc_err(ioc, "%s: buffer with unique_id(0x%08x) not found\n", 2243 __func__, karg.unique_id); 2244 return -EINVAL; 2245 } 2246 2247 if (!_ctl_diag_capability(ioc, buffer_type)) { 2248 ioc_err(ioc, "%s: doesn't have capability for buffer_type(0x%02x)\n", 2249 __func__, buffer_type); 2250 return -EPERM; 2251 } 2252 2253 if ((ioc->diag_buffer_status[buffer_type] & 2254 MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) { 2255 ioc_err(ioc, "%s: buffer_type(0x%02x) is not registered\n", 2256 __func__, buffer_type); 2257 return -EINVAL; 2258 } 2259 2260 if (karg.unique_id != ioc->unique_id[buffer_type]) { 2261 ioc_err(ioc, "%s: unique_id(0x%08x) is not registered\n", 2262 __func__, karg.unique_id); 2263 return -EINVAL; 2264 } 2265 2266 if (ioc->diag_buffer_status[buffer_type] & 2267 MPT3_DIAG_BUFFER_IS_RELEASED) { 2268 ioc_err(ioc, "%s: buffer_type(0x%02x) is already released\n", 2269 __func__, buffer_type); 2270 return -EINVAL; 2271 } 2272 2273 request_data = ioc->diag_buffer[buffer_type]; 2274 2275 if (!request_data) { 2276 ioc_err(ioc, "%s: doesn't have memory allocated for buffer_type(0x%02x)\n", 2277 __func__, buffer_type); 2278 return -ENOMEM; 2279 } 2280 2281 /* buffers were released by due to host reset */ 2282 if ((ioc->diag_buffer_status[buffer_type] & 2283 MPT3_DIAG_BUFFER_IS_DIAG_RESET)) { 2284 ioc->diag_buffer_status[buffer_type] |= 2285 MPT3_DIAG_BUFFER_IS_RELEASED; 2286 ioc->diag_buffer_status[buffer_type] &= 2287 ~MPT3_DIAG_BUFFER_IS_DIAG_RESET; 2288 ioc_err(ioc, "%s: buffer_type(0x%02x) was released due to host reset\n", 2289 __func__, buffer_type); 2290 return 0; 2291 } 2292 2293 rc = mpt3sas_send_diag_release(ioc, buffer_type, &issue_reset); 2294 2295 if (issue_reset) 2296 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 2297 2298 return rc; 2299 } 2300 2301 /** 2302 * _ctl_diag_read_buffer - request for copy of the diag buffer 2303 * @ioc: per adapter object 2304 * @arg: user space buffer containing ioctl content 2305 */ 2306 static long 2307 _ctl_diag_read_buffer(struct MPT3SAS_ADAPTER *ioc, void __user *arg) 2308 { 2309 struct mpt3_diag_read_buffer karg; 2310 struct mpt3_diag_read_buffer __user *uarg = arg; 2311 void *request_data, *diag_data; 2312 Mpi2DiagBufferPostRequest_t *mpi_request; 2313 Mpi2DiagBufferPostReply_t *mpi_reply; 2314 int rc, i; 2315 u8 buffer_type; 2316 unsigned long request_size, copy_size; 2317 u16 smid; 2318 u16 ioc_status; 2319 u8 issue_reset = 0; 2320 2321 if (copy_from_user(&karg, arg, sizeof(karg))) { 2322 pr_err("failure at %s:%d/%s()!\n", 2323 __FILE__, __LINE__, __func__); 2324 return -EFAULT; 2325 } 2326 2327 dctlprintk(ioc, ioc_info(ioc, "%s\n", 2328 __func__)); 2329 2330 buffer_type = _ctl_diag_get_bufftype(ioc, karg.unique_id); 2331 if (buffer_type == MPT3_DIAG_UID_NOT_FOUND) { 2332 ioc_err(ioc, "%s: buffer with unique_id(0x%08x) not found\n", 2333 __func__, karg.unique_id); 2334 return -EINVAL; 2335 } 2336 2337 if (!_ctl_diag_capability(ioc, buffer_type)) { 2338 ioc_err(ioc, "%s: doesn't have capability for buffer_type(0x%02x)\n", 2339 __func__, buffer_type); 2340 return -EPERM; 2341 } 2342 2343 if (karg.unique_id != ioc->unique_id[buffer_type]) { 2344 ioc_err(ioc, "%s: unique_id(0x%08x) is not registered\n", 2345 __func__, karg.unique_id); 2346 return -EINVAL; 2347 } 2348 2349 request_data = ioc->diag_buffer[buffer_type]; 2350 if (!request_data) { 2351 ioc_err(ioc, "%s: doesn't have buffer for buffer_type(0x%02x)\n", 2352 __func__, buffer_type); 2353 return -ENOMEM; 2354 } 2355 2356 request_size = ioc->diag_buffer_sz[buffer_type]; 2357 2358 if ((karg.starting_offset % 4) || (karg.bytes_to_read % 4)) { 2359 ioc_err(ioc, "%s: either the starting_offset or bytes_to_read are not 4 byte aligned\n", 2360 __func__); 2361 return -EINVAL; 2362 } 2363 2364 if (karg.starting_offset > request_size) 2365 return -EINVAL; 2366 2367 diag_data = (void *)(request_data + karg.starting_offset); 2368 dctlprintk(ioc, 2369 ioc_info(ioc, "%s: diag_buffer(%p), offset(%d), sz(%d)\n", 2370 __func__, diag_data, karg.starting_offset, 2371 karg.bytes_to_read)); 2372 2373 /* Truncate data on requests that are too large */ 2374 if ((diag_data + karg.bytes_to_read < diag_data) || 2375 (diag_data + karg.bytes_to_read > request_data + request_size)) 2376 copy_size = request_size - karg.starting_offset; 2377 else 2378 copy_size = karg.bytes_to_read; 2379 2380 if (copy_to_user((void __user *)uarg->diagnostic_data, 2381 diag_data, copy_size)) { 2382 ioc_err(ioc, "%s: Unable to write mpt_diag_read_buffer_t data @ %p\n", 2383 __func__, diag_data); 2384 return -EFAULT; 2385 } 2386 2387 if ((karg.flags & MPT3_FLAGS_REREGISTER) == 0) 2388 return 0; 2389 2390 dctlprintk(ioc, 2391 ioc_info(ioc, "%s: Reregister buffer_type(0x%02x)\n", 2392 __func__, buffer_type)); 2393 if ((ioc->diag_buffer_status[buffer_type] & 2394 MPT3_DIAG_BUFFER_IS_RELEASED) == 0) { 2395 dctlprintk(ioc, 2396 ioc_info(ioc, "%s: buffer_type(0x%02x) is still registered\n", 2397 __func__, buffer_type)); 2398 return 0; 2399 } 2400 /* Get a free request frame and save the message context. 2401 */ 2402 2403 if (ioc->ctl_cmds.status != MPT3_CMD_NOT_USED) { 2404 ioc_err(ioc, "%s: ctl_cmd in use\n", __func__); 2405 rc = -EAGAIN; 2406 goto out; 2407 } 2408 2409 smid = mpt3sas_base_get_smid(ioc, ioc->ctl_cb_idx); 2410 if (!smid) { 2411 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 2412 rc = -EAGAIN; 2413 goto out; 2414 } 2415 2416 rc = 0; 2417 ioc->ctl_cmds.status = MPT3_CMD_PENDING; 2418 memset(ioc->ctl_cmds.reply, 0, ioc->reply_sz); 2419 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 2420 ioc->ctl_cmds.smid = smid; 2421 2422 mpi_request->Function = MPI2_FUNCTION_DIAG_BUFFER_POST; 2423 mpi_request->BufferType = buffer_type; 2424 mpi_request->BufferLength = 2425 cpu_to_le32(ioc->diag_buffer_sz[buffer_type]); 2426 mpi_request->BufferAddress = 2427 cpu_to_le64(ioc->diag_buffer_dma[buffer_type]); 2428 for (i = 0; i < MPT3_PRODUCT_SPECIFIC_DWORDS; i++) 2429 mpi_request->ProductSpecific[i] = 2430 cpu_to_le32(ioc->product_specific[buffer_type][i]); 2431 mpi_request->VF_ID = 0; /* TODO */ 2432 mpi_request->VP_ID = 0; 2433 2434 init_completion(&ioc->ctl_cmds.done); 2435 ioc->put_smid_default(ioc, smid); 2436 wait_for_completion_timeout(&ioc->ctl_cmds.done, 2437 MPT3_IOCTL_DEFAULT_TIMEOUT*HZ); 2438 2439 if (!(ioc->ctl_cmds.status & MPT3_CMD_COMPLETE)) { 2440 mpt3sas_check_cmd_timeout(ioc, 2441 ioc->ctl_cmds.status, mpi_request, 2442 sizeof(Mpi2DiagBufferPostRequest_t)/4, issue_reset); 2443 goto issue_host_reset; 2444 } 2445 2446 /* process the completed Reply Message Frame */ 2447 if ((ioc->ctl_cmds.status & MPT3_CMD_REPLY_VALID) == 0) { 2448 ioc_err(ioc, "%s: no reply message\n", __func__); 2449 rc = -EFAULT; 2450 goto out; 2451 } 2452 2453 mpi_reply = ioc->ctl_cmds.reply; 2454 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 2455 2456 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 2457 ioc->diag_buffer_status[buffer_type] |= 2458 MPT3_DIAG_BUFFER_IS_REGISTERED; 2459 ioc->diag_buffer_status[buffer_type] &= 2460 ~MPT3_DIAG_BUFFER_IS_RELEASED; 2461 dctlprintk(ioc, ioc_info(ioc, "%s: success\n", __func__)); 2462 } else { 2463 ioc_info(ioc, "%s: ioc_status(0x%04x) log_info(0x%08x)\n", 2464 __func__, ioc_status, 2465 le32_to_cpu(mpi_reply->IOCLogInfo)); 2466 rc = -EFAULT; 2467 } 2468 2469 issue_host_reset: 2470 if (issue_reset) 2471 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 2472 2473 out: 2474 2475 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED; 2476 return rc; 2477 } 2478 2479 /** 2480 * _ctl_addnl_diag_query - query relevant info associated with diag buffers 2481 * @ioc: per adapter object 2482 * @arg: user space buffer containing ioctl content 2483 * 2484 * The application will send only unique_id. Driver will 2485 * inspect unique_id first, if valid, fill the details related to cause 2486 * for diag buffer release. 2487 */ 2488 static long 2489 _ctl_addnl_diag_query(struct MPT3SAS_ADAPTER *ioc, void __user *arg) 2490 { 2491 struct mpt3_addnl_diag_query karg; 2492 u32 buffer_type = 0; 2493 2494 if (copy_from_user(&karg, arg, sizeof(karg))) { 2495 pr_err("%s: failure at %s:%d/%s()!\n", 2496 ioc->name, __FILE__, __LINE__, __func__); 2497 return -EFAULT; 2498 } 2499 dctlprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 2500 if (karg.unique_id == 0) { 2501 ioc_err(ioc, "%s: unique_id is(0x%08x)\n", 2502 __func__, karg.unique_id); 2503 return -EPERM; 2504 } 2505 buffer_type = _ctl_diag_get_bufftype(ioc, karg.unique_id); 2506 if (buffer_type == MPT3_DIAG_UID_NOT_FOUND) { 2507 ioc_err(ioc, "%s: buffer with unique_id(0x%08x) not found\n", 2508 __func__, karg.unique_id); 2509 return -EPERM; 2510 } 2511 memset(&karg.rel_query, 0, sizeof(karg.rel_query)); 2512 if ((ioc->diag_buffer_status[buffer_type] & 2513 MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) { 2514 ioc_info(ioc, "%s: buffer_type(0x%02x) is not registered\n", 2515 __func__, buffer_type); 2516 goto out; 2517 } 2518 if ((ioc->diag_buffer_status[buffer_type] & 2519 MPT3_DIAG_BUFFER_IS_RELEASED) == 0) { 2520 ioc_err(ioc, "%s: buffer_type(0x%02x) is not released\n", 2521 __func__, buffer_type); 2522 return -EPERM; 2523 } 2524 memcpy(&karg.rel_query, &ioc->htb_rel, sizeof(karg.rel_query)); 2525 out: 2526 if (copy_to_user(arg, &karg, sizeof(struct mpt3_addnl_diag_query))) { 2527 ioc_err(ioc, "%s: unable to write mpt3_addnl_diag_query data @ %p\n", 2528 __func__, arg); 2529 return -EFAULT; 2530 } 2531 return 0; 2532 } 2533 2534 #ifdef CONFIG_COMPAT 2535 /** 2536 * _ctl_compat_mpt_command - convert 32bit pointers to 64bit. 2537 * @ioc: per adapter object 2538 * @cmd: ioctl opcode 2539 * @arg: (struct mpt3_ioctl_command32) 2540 * 2541 * MPT3COMMAND32 - Handle 32bit applications running on 64bit os. 2542 */ 2543 static long 2544 _ctl_compat_mpt_command(struct MPT3SAS_ADAPTER *ioc, unsigned cmd, 2545 void __user *arg) 2546 { 2547 struct mpt3_ioctl_command32 karg32; 2548 struct mpt3_ioctl_command32 __user *uarg; 2549 struct mpt3_ioctl_command karg; 2550 2551 if (_IOC_SIZE(cmd) != sizeof(struct mpt3_ioctl_command32)) 2552 return -EINVAL; 2553 2554 uarg = (struct mpt3_ioctl_command32 __user *) arg; 2555 2556 if (copy_from_user(&karg32, (char __user *)arg, sizeof(karg32))) { 2557 pr_err("failure at %s:%d/%s()!\n", 2558 __FILE__, __LINE__, __func__); 2559 return -EFAULT; 2560 } 2561 2562 memset(&karg, 0, sizeof(struct mpt3_ioctl_command)); 2563 karg.hdr.ioc_number = karg32.hdr.ioc_number; 2564 karg.hdr.port_number = karg32.hdr.port_number; 2565 karg.hdr.max_data_size = karg32.hdr.max_data_size; 2566 karg.timeout = karg32.timeout; 2567 karg.max_reply_bytes = karg32.max_reply_bytes; 2568 karg.data_in_size = karg32.data_in_size; 2569 karg.data_out_size = karg32.data_out_size; 2570 karg.max_sense_bytes = karg32.max_sense_bytes; 2571 karg.data_sge_offset = karg32.data_sge_offset; 2572 karg.reply_frame_buf_ptr = compat_ptr(karg32.reply_frame_buf_ptr); 2573 karg.data_in_buf_ptr = compat_ptr(karg32.data_in_buf_ptr); 2574 karg.data_out_buf_ptr = compat_ptr(karg32.data_out_buf_ptr); 2575 karg.sense_data_ptr = compat_ptr(karg32.sense_data_ptr); 2576 return _ctl_do_mpt_command(ioc, karg, &uarg->mf); 2577 } 2578 #endif 2579 2580 /** 2581 * _ctl_ioctl_main - main ioctl entry point 2582 * @file: (struct file) 2583 * @cmd: ioctl opcode 2584 * @arg: user space data buffer 2585 * @compat: handles 32 bit applications in 64bit os 2586 * @mpi_version: will be MPI2_VERSION for mpt2ctl ioctl device & 2587 * MPI25_VERSION | MPI26_VERSION for mpt3ctl ioctl device. 2588 */ 2589 static long 2590 _ctl_ioctl_main(struct file *file, unsigned int cmd, void __user *arg, 2591 u8 compat, u16 mpi_version) 2592 { 2593 struct MPT3SAS_ADAPTER *ioc; 2594 struct mpt3_ioctl_header ioctl_header; 2595 enum block_state state; 2596 long ret = -ENOIOCTLCMD; 2597 2598 /* get IOCTL header */ 2599 if (copy_from_user(&ioctl_header, (char __user *)arg, 2600 sizeof(struct mpt3_ioctl_header))) { 2601 pr_err("failure at %s:%d/%s()!\n", 2602 __FILE__, __LINE__, __func__); 2603 return -EFAULT; 2604 } 2605 2606 if (_ctl_verify_adapter(ioctl_header.ioc_number, 2607 &ioc, mpi_version) == -1 || !ioc) 2608 return -ENODEV; 2609 2610 /* pci_access_mutex lock acquired by ioctl path */ 2611 mutex_lock(&ioc->pci_access_mutex); 2612 2613 if (ioc->shost_recovery || ioc->pci_error_recovery || 2614 ioc->is_driver_loading || ioc->remove_host) { 2615 ret = -EAGAIN; 2616 goto out_unlock_pciaccess; 2617 } 2618 2619 state = (file->f_flags & O_NONBLOCK) ? NON_BLOCKING : BLOCKING; 2620 if (state == NON_BLOCKING) { 2621 if (!mutex_trylock(&ioc->ctl_cmds.mutex)) { 2622 ret = -EAGAIN; 2623 goto out_unlock_pciaccess; 2624 } 2625 } else if (mutex_lock_interruptible(&ioc->ctl_cmds.mutex)) { 2626 ret = -ERESTARTSYS; 2627 goto out_unlock_pciaccess; 2628 } 2629 2630 2631 switch (cmd) { 2632 case MPT3IOCINFO: 2633 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_iocinfo)) 2634 ret = _ctl_getiocinfo(ioc, arg); 2635 break; 2636 #ifdef CONFIG_COMPAT 2637 case MPT3COMMAND32: 2638 #endif 2639 case MPT3COMMAND: 2640 { 2641 struct mpt3_ioctl_command __user *uarg; 2642 struct mpt3_ioctl_command karg; 2643 2644 #ifdef CONFIG_COMPAT 2645 if (compat) { 2646 ret = _ctl_compat_mpt_command(ioc, cmd, arg); 2647 break; 2648 } 2649 #endif 2650 if (copy_from_user(&karg, arg, sizeof(karg))) { 2651 pr_err("failure at %s:%d/%s()!\n", 2652 __FILE__, __LINE__, __func__); 2653 ret = -EFAULT; 2654 break; 2655 } 2656 2657 if (karg.hdr.ioc_number != ioctl_header.ioc_number) { 2658 ret = -EINVAL; 2659 break; 2660 } 2661 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_command)) { 2662 uarg = arg; 2663 ret = _ctl_do_mpt_command(ioc, karg, &uarg->mf); 2664 } 2665 break; 2666 } 2667 case MPT3EVENTQUERY: 2668 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_eventquery)) 2669 ret = _ctl_eventquery(ioc, arg); 2670 break; 2671 case MPT3EVENTENABLE: 2672 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_eventenable)) 2673 ret = _ctl_eventenable(ioc, arg); 2674 break; 2675 case MPT3EVENTREPORT: 2676 ret = _ctl_eventreport(ioc, arg); 2677 break; 2678 case MPT3HARDRESET: 2679 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_diag_reset)) 2680 ret = _ctl_do_reset(ioc, arg); 2681 break; 2682 case MPT3BTDHMAPPING: 2683 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_btdh_mapping)) 2684 ret = _ctl_btdh_mapping(ioc, arg); 2685 break; 2686 case MPT3DIAGREGISTER: 2687 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_diag_register)) 2688 ret = _ctl_diag_register(ioc, arg); 2689 break; 2690 case MPT3DIAGUNREGISTER: 2691 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_diag_unregister)) 2692 ret = _ctl_diag_unregister(ioc, arg); 2693 break; 2694 case MPT3DIAGQUERY: 2695 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_diag_query)) 2696 ret = _ctl_diag_query(ioc, arg); 2697 break; 2698 case MPT3DIAGRELEASE: 2699 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_diag_release)) 2700 ret = _ctl_diag_release(ioc, arg); 2701 break; 2702 case MPT3DIAGREADBUFFER: 2703 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_diag_read_buffer)) 2704 ret = _ctl_diag_read_buffer(ioc, arg); 2705 break; 2706 case MPT3ADDNLDIAGQUERY: 2707 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_addnl_diag_query)) 2708 ret = _ctl_addnl_diag_query(ioc, arg); 2709 break; 2710 default: 2711 dctlprintk(ioc, 2712 ioc_info(ioc, "unsupported ioctl opcode(0x%08x)\n", 2713 cmd)); 2714 break; 2715 } 2716 2717 mutex_unlock(&ioc->ctl_cmds.mutex); 2718 out_unlock_pciaccess: 2719 mutex_unlock(&ioc->pci_access_mutex); 2720 return ret; 2721 } 2722 2723 /** 2724 * _ctl_ioctl - mpt3ctl main ioctl entry point (unlocked) 2725 * @file: (struct file) 2726 * @cmd: ioctl opcode 2727 * @arg: ? 2728 */ 2729 static long 2730 _ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2731 { 2732 long ret; 2733 2734 /* pass MPI25_VERSION | MPI26_VERSION value, 2735 * to indicate that this ioctl cmd 2736 * came from mpt3ctl ioctl device. 2737 */ 2738 ret = _ctl_ioctl_main(file, cmd, (void __user *)arg, 0, 2739 MPI25_VERSION | MPI26_VERSION); 2740 return ret; 2741 } 2742 2743 /** 2744 * _ctl_mpt2_ioctl - mpt2ctl main ioctl entry point (unlocked) 2745 * @file: (struct file) 2746 * @cmd: ioctl opcode 2747 * @arg: ? 2748 */ 2749 static long 2750 _ctl_mpt2_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2751 { 2752 long ret; 2753 2754 /* pass MPI2_VERSION value, to indicate that this ioctl cmd 2755 * came from mpt2ctl ioctl device. 2756 */ 2757 ret = _ctl_ioctl_main(file, cmd, (void __user *)arg, 0, MPI2_VERSION); 2758 return ret; 2759 } 2760 #ifdef CONFIG_COMPAT 2761 /** 2762 * _ctl_ioctl_compat - main ioctl entry point (compat) 2763 * @file: ? 2764 * @cmd: ? 2765 * @arg: ? 2766 * 2767 * This routine handles 32 bit applications in 64bit os. 2768 */ 2769 static long 2770 _ctl_ioctl_compat(struct file *file, unsigned cmd, unsigned long arg) 2771 { 2772 long ret; 2773 2774 ret = _ctl_ioctl_main(file, cmd, (void __user *)arg, 1, 2775 MPI25_VERSION | MPI26_VERSION); 2776 return ret; 2777 } 2778 2779 /** 2780 * _ctl_mpt2_ioctl_compat - main ioctl entry point (compat) 2781 * @file: ? 2782 * @cmd: ? 2783 * @arg: ? 2784 * 2785 * This routine handles 32 bit applications in 64bit os. 2786 */ 2787 static long 2788 _ctl_mpt2_ioctl_compat(struct file *file, unsigned cmd, unsigned long arg) 2789 { 2790 long ret; 2791 2792 ret = _ctl_ioctl_main(file, cmd, (void __user *)arg, 1, MPI2_VERSION); 2793 return ret; 2794 } 2795 #endif 2796 2797 /* scsi host attributes */ 2798 /** 2799 * version_fw_show - firmware version 2800 * @cdev: pointer to embedded class device 2801 * @attr: ? 2802 * @buf: the buffer returned 2803 * 2804 * A sysfs 'read-only' shost attribute. 2805 */ 2806 static ssize_t 2807 version_fw_show(struct device *cdev, struct device_attribute *attr, 2808 char *buf) 2809 { 2810 struct Scsi_Host *shost = class_to_shost(cdev); 2811 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2812 2813 return snprintf(buf, PAGE_SIZE, "%02d.%02d.%02d.%02d\n", 2814 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24, 2815 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16, 2816 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8, 2817 ioc->facts.FWVersion.Word & 0x000000FF); 2818 } 2819 static DEVICE_ATTR_RO(version_fw); 2820 2821 /** 2822 * version_bios_show - bios version 2823 * @cdev: pointer to embedded class device 2824 * @attr: ? 2825 * @buf: the buffer returned 2826 * 2827 * A sysfs 'read-only' shost attribute. 2828 */ 2829 static ssize_t 2830 version_bios_show(struct device *cdev, struct device_attribute *attr, 2831 char *buf) 2832 { 2833 struct Scsi_Host *shost = class_to_shost(cdev); 2834 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2835 2836 u32 version = le32_to_cpu(ioc->bios_pg3.BiosVersion); 2837 2838 return snprintf(buf, PAGE_SIZE, "%02d.%02d.%02d.%02d\n", 2839 (version & 0xFF000000) >> 24, 2840 (version & 0x00FF0000) >> 16, 2841 (version & 0x0000FF00) >> 8, 2842 version & 0x000000FF); 2843 } 2844 static DEVICE_ATTR_RO(version_bios); 2845 2846 /** 2847 * version_mpi_show - MPI (message passing interface) version 2848 * @cdev: pointer to embedded class device 2849 * @attr: ? 2850 * @buf: the buffer returned 2851 * 2852 * A sysfs 'read-only' shost attribute. 2853 */ 2854 static ssize_t 2855 version_mpi_show(struct device *cdev, struct device_attribute *attr, 2856 char *buf) 2857 { 2858 struct Scsi_Host *shost = class_to_shost(cdev); 2859 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2860 2861 return snprintf(buf, PAGE_SIZE, "%03x.%02x\n", 2862 ioc->facts.MsgVersion, ioc->facts.HeaderVersion >> 8); 2863 } 2864 static DEVICE_ATTR_RO(version_mpi); 2865 2866 /** 2867 * version_product_show - product name 2868 * @cdev: pointer to embedded class device 2869 * @attr: ? 2870 * @buf: the buffer returned 2871 * 2872 * A sysfs 'read-only' shost attribute. 2873 */ 2874 static ssize_t 2875 version_product_show(struct device *cdev, struct device_attribute *attr, 2876 char *buf) 2877 { 2878 struct Scsi_Host *shost = class_to_shost(cdev); 2879 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2880 2881 return snprintf(buf, 16, "%s\n", ioc->manu_pg0.ChipName); 2882 } 2883 static DEVICE_ATTR_RO(version_product); 2884 2885 /** 2886 * version_nvdata_persistent_show - ndvata persistent version 2887 * @cdev: pointer to embedded class device 2888 * @attr: ? 2889 * @buf: the buffer returned 2890 * 2891 * A sysfs 'read-only' shost attribute. 2892 */ 2893 static ssize_t 2894 version_nvdata_persistent_show(struct device *cdev, 2895 struct device_attribute *attr, char *buf) 2896 { 2897 struct Scsi_Host *shost = class_to_shost(cdev); 2898 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2899 2900 return snprintf(buf, PAGE_SIZE, "%08xh\n", 2901 le32_to_cpu(ioc->iounit_pg0.NvdataVersionPersistent.Word)); 2902 } 2903 static DEVICE_ATTR_RO(version_nvdata_persistent); 2904 2905 /** 2906 * version_nvdata_default_show - nvdata default version 2907 * @cdev: pointer to embedded class device 2908 * @attr: ? 2909 * @buf: the buffer returned 2910 * 2911 * A sysfs 'read-only' shost attribute. 2912 */ 2913 static ssize_t 2914 version_nvdata_default_show(struct device *cdev, struct device_attribute 2915 *attr, char *buf) 2916 { 2917 struct Scsi_Host *shost = class_to_shost(cdev); 2918 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2919 2920 return snprintf(buf, PAGE_SIZE, "%08xh\n", 2921 le32_to_cpu(ioc->iounit_pg0.NvdataVersionDefault.Word)); 2922 } 2923 static DEVICE_ATTR_RO(version_nvdata_default); 2924 2925 /** 2926 * board_name_show - board name 2927 * @cdev: pointer to embedded class device 2928 * @attr: ? 2929 * @buf: the buffer returned 2930 * 2931 * A sysfs 'read-only' shost attribute. 2932 */ 2933 static ssize_t 2934 board_name_show(struct device *cdev, struct device_attribute *attr, 2935 char *buf) 2936 { 2937 struct Scsi_Host *shost = class_to_shost(cdev); 2938 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2939 2940 return snprintf(buf, 16, "%s\n", ioc->manu_pg0.BoardName); 2941 } 2942 static DEVICE_ATTR_RO(board_name); 2943 2944 /** 2945 * board_assembly_show - board assembly name 2946 * @cdev: pointer to embedded class device 2947 * @attr: ? 2948 * @buf: the buffer returned 2949 * 2950 * A sysfs 'read-only' shost attribute. 2951 */ 2952 static ssize_t 2953 board_assembly_show(struct device *cdev, struct device_attribute *attr, 2954 char *buf) 2955 { 2956 struct Scsi_Host *shost = class_to_shost(cdev); 2957 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2958 2959 return snprintf(buf, 16, "%s\n", ioc->manu_pg0.BoardAssembly); 2960 } 2961 static DEVICE_ATTR_RO(board_assembly); 2962 2963 /** 2964 * board_tracer_show - board tracer number 2965 * @cdev: pointer to embedded class device 2966 * @attr: ? 2967 * @buf: the buffer returned 2968 * 2969 * A sysfs 'read-only' shost attribute. 2970 */ 2971 static ssize_t 2972 board_tracer_show(struct device *cdev, struct device_attribute *attr, 2973 char *buf) 2974 { 2975 struct Scsi_Host *shost = class_to_shost(cdev); 2976 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2977 2978 return snprintf(buf, 16, "%s\n", ioc->manu_pg0.BoardTracerNumber); 2979 } 2980 static DEVICE_ATTR_RO(board_tracer); 2981 2982 /** 2983 * io_delay_show - io missing delay 2984 * @cdev: pointer to embedded class device 2985 * @attr: ? 2986 * @buf: the buffer returned 2987 * 2988 * This is for firmware implemention for deboucing device 2989 * removal events. 2990 * 2991 * A sysfs 'read-only' shost attribute. 2992 */ 2993 static ssize_t 2994 io_delay_show(struct device *cdev, struct device_attribute *attr, 2995 char *buf) 2996 { 2997 struct Scsi_Host *shost = class_to_shost(cdev); 2998 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2999 3000 return snprintf(buf, PAGE_SIZE, "%02d\n", ioc->io_missing_delay); 3001 } 3002 static DEVICE_ATTR_RO(io_delay); 3003 3004 /** 3005 * device_delay_show - device missing delay 3006 * @cdev: pointer to embedded class device 3007 * @attr: ? 3008 * @buf: the buffer returned 3009 * 3010 * This is for firmware implemention for deboucing device 3011 * removal events. 3012 * 3013 * A sysfs 'read-only' shost attribute. 3014 */ 3015 static ssize_t 3016 device_delay_show(struct device *cdev, struct device_attribute *attr, 3017 char *buf) 3018 { 3019 struct Scsi_Host *shost = class_to_shost(cdev); 3020 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3021 3022 return snprintf(buf, PAGE_SIZE, "%02d\n", ioc->device_missing_delay); 3023 } 3024 static DEVICE_ATTR_RO(device_delay); 3025 3026 /** 3027 * fw_queue_depth_show - global credits 3028 * @cdev: pointer to embedded class device 3029 * @attr: ? 3030 * @buf: the buffer returned 3031 * 3032 * This is firmware queue depth limit 3033 * 3034 * A sysfs 'read-only' shost attribute. 3035 */ 3036 static ssize_t 3037 fw_queue_depth_show(struct device *cdev, struct device_attribute *attr, 3038 char *buf) 3039 { 3040 struct Scsi_Host *shost = class_to_shost(cdev); 3041 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3042 3043 return snprintf(buf, PAGE_SIZE, "%02d\n", ioc->facts.RequestCredit); 3044 } 3045 static DEVICE_ATTR_RO(fw_queue_depth); 3046 3047 /** 3048 * host_sas_address_show - sas address 3049 * @cdev: pointer to embedded class device 3050 * @attr: ? 3051 * @buf: the buffer returned 3052 * 3053 * This is the controller sas address 3054 * 3055 * A sysfs 'read-only' shost attribute. 3056 */ 3057 static ssize_t 3058 host_sas_address_show(struct device *cdev, struct device_attribute *attr, 3059 char *buf) 3060 3061 { 3062 struct Scsi_Host *shost = class_to_shost(cdev); 3063 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3064 3065 return snprintf(buf, PAGE_SIZE, "0x%016llx\n", 3066 (unsigned long long)ioc->sas_hba.sas_address); 3067 } 3068 static DEVICE_ATTR_RO(host_sas_address); 3069 3070 /** 3071 * logging_level_show - logging level 3072 * @cdev: pointer to embedded class device 3073 * @attr: ? 3074 * @buf: the buffer returned 3075 * 3076 * A sysfs 'read/write' shost attribute. 3077 */ 3078 static ssize_t 3079 logging_level_show(struct device *cdev, struct device_attribute *attr, 3080 char *buf) 3081 { 3082 struct Scsi_Host *shost = class_to_shost(cdev); 3083 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3084 3085 return snprintf(buf, PAGE_SIZE, "%08xh\n", ioc->logging_level); 3086 } 3087 static ssize_t 3088 logging_level_store(struct device *cdev, struct device_attribute *attr, 3089 const char *buf, size_t count) 3090 { 3091 struct Scsi_Host *shost = class_to_shost(cdev); 3092 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3093 int val = 0; 3094 3095 if (sscanf(buf, "%x", &val) != 1) 3096 return -EINVAL; 3097 3098 ioc->logging_level = val; 3099 ioc_info(ioc, "logging_level=%08xh\n", 3100 ioc->logging_level); 3101 return strlen(buf); 3102 } 3103 static DEVICE_ATTR_RW(logging_level); 3104 3105 /** 3106 * fwfault_debug_show - show/store fwfault_debug 3107 * @cdev: pointer to embedded class device 3108 * @attr: ? 3109 * @buf: the buffer returned 3110 * 3111 * mpt3sas_fwfault_debug is command line option 3112 * A sysfs 'read/write' shost attribute. 3113 */ 3114 static ssize_t 3115 fwfault_debug_show(struct device *cdev, struct device_attribute *attr, 3116 char *buf) 3117 { 3118 struct Scsi_Host *shost = class_to_shost(cdev); 3119 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3120 3121 return snprintf(buf, PAGE_SIZE, "%d\n", ioc->fwfault_debug); 3122 } 3123 static ssize_t 3124 fwfault_debug_store(struct device *cdev, struct device_attribute *attr, 3125 const char *buf, size_t count) 3126 { 3127 struct Scsi_Host *shost = class_to_shost(cdev); 3128 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3129 int val = 0; 3130 3131 if (sscanf(buf, "%d", &val) != 1) 3132 return -EINVAL; 3133 3134 ioc->fwfault_debug = val; 3135 ioc_info(ioc, "fwfault_debug=%d\n", 3136 ioc->fwfault_debug); 3137 return strlen(buf); 3138 } 3139 static DEVICE_ATTR_RW(fwfault_debug); 3140 3141 /** 3142 * ioc_reset_count_show - ioc reset count 3143 * @cdev: pointer to embedded class device 3144 * @attr: ? 3145 * @buf: the buffer returned 3146 * 3147 * This is firmware queue depth limit 3148 * 3149 * A sysfs 'read-only' shost attribute. 3150 */ 3151 static ssize_t 3152 ioc_reset_count_show(struct device *cdev, struct device_attribute *attr, 3153 char *buf) 3154 { 3155 struct Scsi_Host *shost = class_to_shost(cdev); 3156 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3157 3158 return snprintf(buf, PAGE_SIZE, "%d\n", ioc->ioc_reset_count); 3159 } 3160 static DEVICE_ATTR_RO(ioc_reset_count); 3161 3162 /** 3163 * reply_queue_count_show - number of reply queues 3164 * @cdev: pointer to embedded class device 3165 * @attr: ? 3166 * @buf: the buffer returned 3167 * 3168 * This is number of reply queues 3169 * 3170 * A sysfs 'read-only' shost attribute. 3171 */ 3172 static ssize_t 3173 reply_queue_count_show(struct device *cdev, 3174 struct device_attribute *attr, char *buf) 3175 { 3176 u8 reply_queue_count; 3177 struct Scsi_Host *shost = class_to_shost(cdev); 3178 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3179 3180 if ((ioc->facts.IOCCapabilities & 3181 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable) 3182 reply_queue_count = ioc->reply_queue_count; 3183 else 3184 reply_queue_count = 1; 3185 3186 return snprintf(buf, PAGE_SIZE, "%d\n", reply_queue_count); 3187 } 3188 static DEVICE_ATTR_RO(reply_queue_count); 3189 3190 /** 3191 * BRM_status_show - Backup Rail Monitor Status 3192 * @cdev: pointer to embedded class device 3193 * @attr: ? 3194 * @buf: the buffer returned 3195 * 3196 * This is number of reply queues 3197 * 3198 * A sysfs 'read-only' shost attribute. 3199 */ 3200 static ssize_t 3201 BRM_status_show(struct device *cdev, struct device_attribute *attr, 3202 char *buf) 3203 { 3204 struct Scsi_Host *shost = class_to_shost(cdev); 3205 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3206 Mpi2IOUnitPage3_t io_unit_pg3; 3207 Mpi2ConfigReply_t mpi_reply; 3208 u16 backup_rail_monitor_status = 0; 3209 u16 ioc_status; 3210 int sz; 3211 ssize_t rc = 0; 3212 3213 if (!ioc->is_warpdrive) { 3214 ioc_err(ioc, "%s: BRM attribute is only for warpdrive\n", 3215 __func__); 3216 return 0; 3217 } 3218 /* pci_access_mutex lock acquired by sysfs show path */ 3219 mutex_lock(&ioc->pci_access_mutex); 3220 if (ioc->pci_error_recovery || ioc->remove_host) 3221 goto out; 3222 3223 sz = sizeof(io_unit_pg3); 3224 memset(&io_unit_pg3, 0, sz); 3225 3226 if (mpt3sas_config_get_iounit_pg3(ioc, &mpi_reply, &io_unit_pg3, sz) != 3227 0) { 3228 ioc_err(ioc, "%s: failed reading iounit_pg3\n", 3229 __func__); 3230 rc = -EINVAL; 3231 goto out; 3232 } 3233 3234 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK; 3235 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 3236 ioc_err(ioc, "%s: iounit_pg3 failed with ioc_status(0x%04x)\n", 3237 __func__, ioc_status); 3238 rc = -EINVAL; 3239 goto out; 3240 } 3241 3242 if (io_unit_pg3.GPIOCount < 25) { 3243 ioc_err(ioc, "%s: iounit_pg3.GPIOCount less than 25 entries, detected (%d) entries\n", 3244 __func__, io_unit_pg3.GPIOCount); 3245 rc = -EINVAL; 3246 goto out; 3247 } 3248 3249 /* BRM status is in bit zero of GPIOVal[24] */ 3250 backup_rail_monitor_status = le16_to_cpu(io_unit_pg3.GPIOVal[24]); 3251 rc = snprintf(buf, PAGE_SIZE, "%d\n", (backup_rail_monitor_status & 1)); 3252 3253 out: 3254 mutex_unlock(&ioc->pci_access_mutex); 3255 return rc; 3256 } 3257 static DEVICE_ATTR_RO(BRM_status); 3258 3259 struct DIAG_BUFFER_START { 3260 __le32 Size; 3261 __le32 DiagVersion; 3262 u8 BufferType; 3263 u8 Reserved[3]; 3264 __le32 Reserved1; 3265 __le32 Reserved2; 3266 __le32 Reserved3; 3267 }; 3268 3269 /** 3270 * host_trace_buffer_size_show - host buffer size (trace only) 3271 * @cdev: pointer to embedded class device 3272 * @attr: ? 3273 * @buf: the buffer returned 3274 * 3275 * A sysfs 'read-only' shost attribute. 3276 */ 3277 static ssize_t 3278 host_trace_buffer_size_show(struct device *cdev, 3279 struct device_attribute *attr, char *buf) 3280 { 3281 struct Scsi_Host *shost = class_to_shost(cdev); 3282 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3283 u32 size = 0; 3284 struct DIAG_BUFFER_START *request_data; 3285 3286 if (!ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) { 3287 ioc_err(ioc, "%s: host_trace_buffer is not registered\n", 3288 __func__); 3289 return 0; 3290 } 3291 3292 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 3293 MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) { 3294 ioc_err(ioc, "%s: host_trace_buffer is not registered\n", 3295 __func__); 3296 return 0; 3297 } 3298 3299 request_data = (struct DIAG_BUFFER_START *) 3300 ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]; 3301 if ((le32_to_cpu(request_data->DiagVersion) == 0x00000000 || 3302 le32_to_cpu(request_data->DiagVersion) == 0x01000000 || 3303 le32_to_cpu(request_data->DiagVersion) == 0x01010000) && 3304 le32_to_cpu(request_data->Reserved3) == 0x4742444c) 3305 size = le32_to_cpu(request_data->Size); 3306 3307 ioc->ring_buffer_sz = size; 3308 return snprintf(buf, PAGE_SIZE, "%d\n", size); 3309 } 3310 static DEVICE_ATTR_RO(host_trace_buffer_size); 3311 3312 /** 3313 * host_trace_buffer_show - firmware ring buffer (trace only) 3314 * @cdev: pointer to embedded class device 3315 * @attr: ? 3316 * @buf: the buffer returned 3317 * 3318 * A sysfs 'read/write' shost attribute. 3319 * 3320 * You will only be able to read 4k bytes of ring buffer at a time. 3321 * In order to read beyond 4k bytes, you will have to write out the 3322 * offset to the same attribute, it will move the pointer. 3323 */ 3324 static ssize_t 3325 host_trace_buffer_show(struct device *cdev, struct device_attribute *attr, 3326 char *buf) 3327 { 3328 struct Scsi_Host *shost = class_to_shost(cdev); 3329 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3330 void *request_data; 3331 u32 size; 3332 3333 if (!ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) { 3334 ioc_err(ioc, "%s: host_trace_buffer is not registered\n", 3335 __func__); 3336 return 0; 3337 } 3338 3339 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 3340 MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) { 3341 ioc_err(ioc, "%s: host_trace_buffer is not registered\n", 3342 __func__); 3343 return 0; 3344 } 3345 3346 if (ioc->ring_buffer_offset > ioc->ring_buffer_sz) 3347 return 0; 3348 3349 size = ioc->ring_buffer_sz - ioc->ring_buffer_offset; 3350 size = (size >= PAGE_SIZE) ? (PAGE_SIZE - 1) : size; 3351 request_data = ioc->diag_buffer[0] + ioc->ring_buffer_offset; 3352 memcpy(buf, request_data, size); 3353 return size; 3354 } 3355 3356 static ssize_t 3357 host_trace_buffer_store(struct device *cdev, struct device_attribute *attr, 3358 const char *buf, size_t count) 3359 { 3360 struct Scsi_Host *shost = class_to_shost(cdev); 3361 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3362 int val = 0; 3363 3364 if (sscanf(buf, "%d", &val) != 1) 3365 return -EINVAL; 3366 3367 ioc->ring_buffer_offset = val; 3368 return strlen(buf); 3369 } 3370 static DEVICE_ATTR_RW(host_trace_buffer); 3371 3372 3373 /*****************************************/ 3374 3375 /** 3376 * host_trace_buffer_enable_show - firmware ring buffer (trace only) 3377 * @cdev: pointer to embedded class device 3378 * @attr: ? 3379 * @buf: the buffer returned 3380 * 3381 * A sysfs 'read/write' shost attribute. 3382 * 3383 * This is a mechnism to post/release host_trace_buffers 3384 */ 3385 static ssize_t 3386 host_trace_buffer_enable_show(struct device *cdev, 3387 struct device_attribute *attr, char *buf) 3388 { 3389 struct Scsi_Host *shost = class_to_shost(cdev); 3390 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3391 3392 if ((!ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) || 3393 ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 3394 MPT3_DIAG_BUFFER_IS_REGISTERED) == 0)) 3395 return snprintf(buf, PAGE_SIZE, "off\n"); 3396 else if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 3397 MPT3_DIAG_BUFFER_IS_RELEASED)) 3398 return snprintf(buf, PAGE_SIZE, "release\n"); 3399 else 3400 return snprintf(buf, PAGE_SIZE, "post\n"); 3401 } 3402 3403 static ssize_t 3404 host_trace_buffer_enable_store(struct device *cdev, 3405 struct device_attribute *attr, const char *buf, size_t count) 3406 { 3407 struct Scsi_Host *shost = class_to_shost(cdev); 3408 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3409 char str[10] = ""; 3410 struct mpt3_diag_register diag_register; 3411 u8 issue_reset = 0; 3412 3413 /* don't allow post/release occurr while recovery is active */ 3414 if (ioc->shost_recovery || ioc->remove_host || 3415 ioc->pci_error_recovery || ioc->is_driver_loading) 3416 return -EBUSY; 3417 3418 if (sscanf(buf, "%9s", str) != 1) 3419 return -EINVAL; 3420 3421 if (!strcmp(str, "post")) { 3422 /* exit out if host buffers are already posted */ 3423 if ((ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) && 3424 (ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 3425 MPT3_DIAG_BUFFER_IS_REGISTERED) && 3426 ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 3427 MPT3_DIAG_BUFFER_IS_RELEASED) == 0)) 3428 goto out; 3429 memset(&diag_register, 0, sizeof(struct mpt3_diag_register)); 3430 ioc_info(ioc, "posting host trace buffers\n"); 3431 diag_register.buffer_type = MPI2_DIAG_BUF_TYPE_TRACE; 3432 3433 if (ioc->manu_pg11.HostTraceBufferMaxSizeKB != 0 && 3434 ioc->diag_buffer_sz[MPI2_DIAG_BUF_TYPE_TRACE] != 0) { 3435 /* post the same buffer allocated previously */ 3436 diag_register.requested_buffer_size = 3437 ioc->diag_buffer_sz[MPI2_DIAG_BUF_TYPE_TRACE]; 3438 } else { 3439 /* 3440 * Free the diag buffer memory which was previously 3441 * allocated by an application. 3442 */ 3443 if ((ioc->diag_buffer_sz[MPI2_DIAG_BUF_TYPE_TRACE] != 0) 3444 && 3445 (ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 3446 MPT3_DIAG_BUFFER_IS_APP_OWNED)) { 3447 dma_free_coherent(&ioc->pdev->dev, 3448 ioc->diag_buffer_sz[MPI2_DIAG_BUF_TYPE_TRACE], 3449 ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE], 3450 ioc->diag_buffer_dma[MPI2_DIAG_BUF_TYPE_TRACE]); 3451 ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE] = 3452 NULL; 3453 } 3454 3455 diag_register.requested_buffer_size = (1024 * 1024); 3456 } 3457 3458 diag_register.unique_id = 3459 (ioc->hba_mpi_version_belonged == MPI2_VERSION) ? 3460 (MPT2DIAGBUFFUNIQUEID):(MPT3DIAGBUFFUNIQUEID); 3461 ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] = 0; 3462 _ctl_diag_register_2(ioc, &diag_register); 3463 if (ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 3464 MPT3_DIAG_BUFFER_IS_REGISTERED) { 3465 ioc_info(ioc, 3466 "Trace buffer %d KB allocated through sysfs\n", 3467 diag_register.requested_buffer_size>>10); 3468 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) 3469 ioc->diag_buffer_status[ 3470 MPI2_DIAG_BUF_TYPE_TRACE] |= 3471 MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED; 3472 } 3473 } else if (!strcmp(str, "release")) { 3474 /* exit out if host buffers are already released */ 3475 if (!ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) 3476 goto out; 3477 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 3478 MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) 3479 goto out; 3480 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 3481 MPT3_DIAG_BUFFER_IS_RELEASED)) 3482 goto out; 3483 ioc_info(ioc, "releasing host trace buffer\n"); 3484 ioc->htb_rel.buffer_rel_condition = MPT3_DIAG_BUFFER_REL_SYSFS; 3485 mpt3sas_send_diag_release(ioc, MPI2_DIAG_BUF_TYPE_TRACE, 3486 &issue_reset); 3487 } 3488 3489 out: 3490 return strlen(buf); 3491 } 3492 static DEVICE_ATTR_RW(host_trace_buffer_enable); 3493 3494 /*********** diagnostic trigger suppport *********************************/ 3495 3496 /** 3497 * diag_trigger_master_show - show the diag_trigger_master attribute 3498 * @cdev: pointer to embedded class device 3499 * @attr: ? 3500 * @buf: the buffer returned 3501 * 3502 * A sysfs 'read/write' shost attribute. 3503 */ 3504 static ssize_t 3505 diag_trigger_master_show(struct device *cdev, 3506 struct device_attribute *attr, char *buf) 3507 3508 { 3509 struct Scsi_Host *shost = class_to_shost(cdev); 3510 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3511 unsigned long flags; 3512 ssize_t rc; 3513 3514 spin_lock_irqsave(&ioc->diag_trigger_lock, flags); 3515 rc = sizeof(struct SL_WH_MASTER_TRIGGER_T); 3516 memcpy(buf, &ioc->diag_trigger_master, rc); 3517 spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags); 3518 return rc; 3519 } 3520 3521 /** 3522 * diag_trigger_master_store - store the diag_trigger_master attribute 3523 * @cdev: pointer to embedded class device 3524 * @attr: ? 3525 * @buf: the buffer returned 3526 * @count: ? 3527 * 3528 * A sysfs 'read/write' shost attribute. 3529 */ 3530 static ssize_t 3531 diag_trigger_master_store(struct device *cdev, 3532 struct device_attribute *attr, const char *buf, size_t count) 3533 3534 { 3535 struct Scsi_Host *shost = class_to_shost(cdev); 3536 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3537 struct SL_WH_MASTER_TRIGGER_T *master_tg; 3538 unsigned long flags; 3539 ssize_t rc; 3540 bool set = 1; 3541 3542 rc = min(sizeof(struct SL_WH_MASTER_TRIGGER_T), count); 3543 3544 if (ioc->supports_trigger_pages) { 3545 master_tg = kzalloc(sizeof(struct SL_WH_MASTER_TRIGGER_T), 3546 GFP_KERNEL); 3547 if (!master_tg) 3548 return -ENOMEM; 3549 3550 memcpy(master_tg, buf, rc); 3551 if (!master_tg->MasterData) 3552 set = 0; 3553 if (mpt3sas_config_update_driver_trigger_pg1(ioc, master_tg, 3554 set)) { 3555 kfree(master_tg); 3556 return -EFAULT; 3557 } 3558 kfree(master_tg); 3559 } 3560 3561 spin_lock_irqsave(&ioc->diag_trigger_lock, flags); 3562 memset(&ioc->diag_trigger_master, 0, 3563 sizeof(struct SL_WH_MASTER_TRIGGER_T)); 3564 memcpy(&ioc->diag_trigger_master, buf, rc); 3565 ioc->diag_trigger_master.MasterData |= 3566 (MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET); 3567 spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags); 3568 return rc; 3569 } 3570 static DEVICE_ATTR_RW(diag_trigger_master); 3571 3572 3573 /** 3574 * diag_trigger_event_show - show the diag_trigger_event attribute 3575 * @cdev: pointer to embedded class device 3576 * @attr: ? 3577 * @buf: the buffer returned 3578 * 3579 * A sysfs 'read/write' shost attribute. 3580 */ 3581 static ssize_t 3582 diag_trigger_event_show(struct device *cdev, 3583 struct device_attribute *attr, char *buf) 3584 { 3585 struct Scsi_Host *shost = class_to_shost(cdev); 3586 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3587 unsigned long flags; 3588 ssize_t rc; 3589 3590 spin_lock_irqsave(&ioc->diag_trigger_lock, flags); 3591 rc = sizeof(struct SL_WH_EVENT_TRIGGERS_T); 3592 memcpy(buf, &ioc->diag_trigger_event, rc); 3593 spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags); 3594 return rc; 3595 } 3596 3597 /** 3598 * diag_trigger_event_store - store the diag_trigger_event attribute 3599 * @cdev: pointer to embedded class device 3600 * @attr: ? 3601 * @buf: the buffer returned 3602 * @count: ? 3603 * 3604 * A sysfs 'read/write' shost attribute. 3605 */ 3606 static ssize_t 3607 diag_trigger_event_store(struct device *cdev, 3608 struct device_attribute *attr, const char *buf, size_t count) 3609 3610 { 3611 struct Scsi_Host *shost = class_to_shost(cdev); 3612 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3613 struct SL_WH_EVENT_TRIGGERS_T *event_tg; 3614 unsigned long flags; 3615 ssize_t sz; 3616 bool set = 1; 3617 3618 sz = min(sizeof(struct SL_WH_EVENT_TRIGGERS_T), count); 3619 if (ioc->supports_trigger_pages) { 3620 event_tg = kzalloc(sizeof(struct SL_WH_EVENT_TRIGGERS_T), 3621 GFP_KERNEL); 3622 if (!event_tg) 3623 return -ENOMEM; 3624 3625 memcpy(event_tg, buf, sz); 3626 if (!event_tg->ValidEntries) 3627 set = 0; 3628 if (mpt3sas_config_update_driver_trigger_pg2(ioc, event_tg, 3629 set)) { 3630 kfree(event_tg); 3631 return -EFAULT; 3632 } 3633 kfree(event_tg); 3634 } 3635 3636 spin_lock_irqsave(&ioc->diag_trigger_lock, flags); 3637 3638 memset(&ioc->diag_trigger_event, 0, 3639 sizeof(struct SL_WH_EVENT_TRIGGERS_T)); 3640 memcpy(&ioc->diag_trigger_event, buf, sz); 3641 if (ioc->diag_trigger_event.ValidEntries > NUM_VALID_ENTRIES) 3642 ioc->diag_trigger_event.ValidEntries = NUM_VALID_ENTRIES; 3643 spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags); 3644 return sz; 3645 } 3646 static DEVICE_ATTR_RW(diag_trigger_event); 3647 3648 3649 /** 3650 * diag_trigger_scsi_show - show the diag_trigger_scsi attribute 3651 * @cdev: pointer to embedded class device 3652 * @attr: ? 3653 * @buf: the buffer returned 3654 * 3655 * A sysfs 'read/write' shost attribute. 3656 */ 3657 static ssize_t 3658 diag_trigger_scsi_show(struct device *cdev, 3659 struct device_attribute *attr, char *buf) 3660 { 3661 struct Scsi_Host *shost = class_to_shost(cdev); 3662 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3663 unsigned long flags; 3664 ssize_t rc; 3665 3666 spin_lock_irqsave(&ioc->diag_trigger_lock, flags); 3667 rc = sizeof(struct SL_WH_SCSI_TRIGGERS_T); 3668 memcpy(buf, &ioc->diag_trigger_scsi, rc); 3669 spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags); 3670 return rc; 3671 } 3672 3673 /** 3674 * diag_trigger_scsi_store - store the diag_trigger_scsi attribute 3675 * @cdev: pointer to embedded class device 3676 * @attr: ? 3677 * @buf: the buffer returned 3678 * @count: ? 3679 * 3680 * A sysfs 'read/write' shost attribute. 3681 */ 3682 static ssize_t 3683 diag_trigger_scsi_store(struct device *cdev, 3684 struct device_attribute *attr, const char *buf, size_t count) 3685 { 3686 struct Scsi_Host *shost = class_to_shost(cdev); 3687 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3688 struct SL_WH_SCSI_TRIGGERS_T *scsi_tg; 3689 unsigned long flags; 3690 ssize_t sz; 3691 bool set = 1; 3692 3693 sz = min(sizeof(struct SL_WH_SCSI_TRIGGERS_T), count); 3694 if (ioc->supports_trigger_pages) { 3695 scsi_tg = kzalloc(sizeof(struct SL_WH_SCSI_TRIGGERS_T), 3696 GFP_KERNEL); 3697 if (!scsi_tg) 3698 return -ENOMEM; 3699 3700 memcpy(scsi_tg, buf, sz); 3701 if (!scsi_tg->ValidEntries) 3702 set = 0; 3703 if (mpt3sas_config_update_driver_trigger_pg3(ioc, scsi_tg, 3704 set)) { 3705 kfree(scsi_tg); 3706 return -EFAULT; 3707 } 3708 kfree(scsi_tg); 3709 } 3710 3711 spin_lock_irqsave(&ioc->diag_trigger_lock, flags); 3712 3713 memset(&ioc->diag_trigger_scsi, 0, sizeof(ioc->diag_trigger_scsi)); 3714 memcpy(&ioc->diag_trigger_scsi, buf, sz); 3715 if (ioc->diag_trigger_scsi.ValidEntries > NUM_VALID_ENTRIES) 3716 ioc->diag_trigger_scsi.ValidEntries = NUM_VALID_ENTRIES; 3717 spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags); 3718 return sz; 3719 } 3720 static DEVICE_ATTR_RW(diag_trigger_scsi); 3721 3722 3723 /** 3724 * diag_trigger_mpi_show - show the diag_trigger_mpi attribute 3725 * @cdev: pointer to embedded class device 3726 * @attr: ? 3727 * @buf: the buffer returned 3728 * 3729 * A sysfs 'read/write' shost attribute. 3730 */ 3731 static ssize_t 3732 diag_trigger_mpi_show(struct device *cdev, 3733 struct device_attribute *attr, char *buf) 3734 { 3735 struct Scsi_Host *shost = class_to_shost(cdev); 3736 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3737 unsigned long flags; 3738 ssize_t rc; 3739 3740 spin_lock_irqsave(&ioc->diag_trigger_lock, flags); 3741 rc = sizeof(struct SL_WH_MPI_TRIGGERS_T); 3742 memcpy(buf, &ioc->diag_trigger_mpi, rc); 3743 spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags); 3744 return rc; 3745 } 3746 3747 /** 3748 * diag_trigger_mpi_store - store the diag_trigger_mpi attribute 3749 * @cdev: pointer to embedded class device 3750 * @attr: ? 3751 * @buf: the buffer returned 3752 * @count: ? 3753 * 3754 * A sysfs 'read/write' shost attribute. 3755 */ 3756 static ssize_t 3757 diag_trigger_mpi_store(struct device *cdev, 3758 struct device_attribute *attr, const char *buf, size_t count) 3759 { 3760 struct Scsi_Host *shost = class_to_shost(cdev); 3761 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3762 struct SL_WH_MPI_TRIGGERS_T *mpi_tg; 3763 unsigned long flags; 3764 ssize_t sz; 3765 bool set = 1; 3766 3767 sz = min(sizeof(struct SL_WH_MPI_TRIGGERS_T), count); 3768 if (ioc->supports_trigger_pages) { 3769 mpi_tg = kzalloc(sizeof(struct SL_WH_MPI_TRIGGERS_T), 3770 GFP_KERNEL); 3771 if (!mpi_tg) 3772 return -ENOMEM; 3773 3774 memcpy(mpi_tg, buf, sz); 3775 if (!mpi_tg->ValidEntries) 3776 set = 0; 3777 if (mpt3sas_config_update_driver_trigger_pg4(ioc, mpi_tg, 3778 set)) { 3779 kfree(mpi_tg); 3780 return -EFAULT; 3781 } 3782 kfree(mpi_tg); 3783 } 3784 3785 spin_lock_irqsave(&ioc->diag_trigger_lock, flags); 3786 memset(&ioc->diag_trigger_mpi, 0, 3787 sizeof(ioc->diag_trigger_mpi)); 3788 memcpy(&ioc->diag_trigger_mpi, buf, sz); 3789 if (ioc->diag_trigger_mpi.ValidEntries > NUM_VALID_ENTRIES) 3790 ioc->diag_trigger_mpi.ValidEntries = NUM_VALID_ENTRIES; 3791 spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags); 3792 return sz; 3793 } 3794 3795 static DEVICE_ATTR_RW(diag_trigger_mpi); 3796 3797 /*********** diagnostic trigger suppport *** END ****************************/ 3798 3799 /*****************************************/ 3800 3801 /** 3802 * drv_support_bitmap_show - driver supported feature bitmap 3803 * @cdev: pointer to embedded class device 3804 * @attr: unused 3805 * @buf: the buffer returned 3806 * 3807 * A sysfs 'read-only' shost attribute. 3808 */ 3809 static ssize_t 3810 drv_support_bitmap_show(struct device *cdev, 3811 struct device_attribute *attr, char *buf) 3812 { 3813 struct Scsi_Host *shost = class_to_shost(cdev); 3814 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3815 3816 return snprintf(buf, PAGE_SIZE, "0x%08x\n", ioc->drv_support_bitmap); 3817 } 3818 static DEVICE_ATTR_RO(drv_support_bitmap); 3819 3820 /** 3821 * enable_sdev_max_qd_show - display whether sdev max qd is enabled/disabled 3822 * @cdev: pointer to embedded class device 3823 * @attr: unused 3824 * @buf: the buffer returned 3825 * 3826 * A sysfs read/write shost attribute. This attribute is used to set the 3827 * targets queue depth to HBA IO queue depth if this attribute is enabled. 3828 */ 3829 static ssize_t 3830 enable_sdev_max_qd_show(struct device *cdev, 3831 struct device_attribute *attr, char *buf) 3832 { 3833 struct Scsi_Host *shost = class_to_shost(cdev); 3834 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3835 3836 return snprintf(buf, PAGE_SIZE, "%d\n", ioc->enable_sdev_max_qd); 3837 } 3838 3839 /** 3840 * enable_sdev_max_qd_store - Enable/disable sdev max qd 3841 * @cdev: pointer to embedded class device 3842 * @attr: unused 3843 * @buf: the buffer returned 3844 * @count: unused 3845 * 3846 * A sysfs read/write shost attribute. This attribute is used to set the 3847 * targets queue depth to HBA IO queue depth if this attribute is enabled. 3848 * If this attribute is disabled then targets will have corresponding default 3849 * queue depth. 3850 */ 3851 static ssize_t 3852 enable_sdev_max_qd_store(struct device *cdev, 3853 struct device_attribute *attr, const char *buf, size_t count) 3854 { 3855 struct Scsi_Host *shost = class_to_shost(cdev); 3856 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3857 struct MPT3SAS_DEVICE *sas_device_priv_data; 3858 struct MPT3SAS_TARGET *sas_target_priv_data; 3859 int val = 0; 3860 struct scsi_device *sdev; 3861 struct _raid_device *raid_device; 3862 int qdepth; 3863 3864 if (kstrtoint(buf, 0, &val) != 0) 3865 return -EINVAL; 3866 3867 switch (val) { 3868 case 0: 3869 ioc->enable_sdev_max_qd = 0; 3870 shost_for_each_device(sdev, ioc->shost) { 3871 sas_device_priv_data = sdev->hostdata; 3872 if (!sas_device_priv_data) 3873 continue; 3874 sas_target_priv_data = sas_device_priv_data->sas_target; 3875 if (!sas_target_priv_data) 3876 continue; 3877 3878 if (sas_target_priv_data->flags & 3879 MPT_TARGET_FLAGS_VOLUME) { 3880 raid_device = 3881 mpt3sas_raid_device_find_by_handle(ioc, 3882 sas_target_priv_data->handle); 3883 3884 switch (raid_device->volume_type) { 3885 case MPI2_RAID_VOL_TYPE_RAID0: 3886 if (raid_device->device_info & 3887 MPI2_SAS_DEVICE_INFO_SSP_TARGET) 3888 qdepth = 3889 MPT3SAS_SAS_QUEUE_DEPTH; 3890 else 3891 qdepth = 3892 MPT3SAS_SATA_QUEUE_DEPTH; 3893 break; 3894 case MPI2_RAID_VOL_TYPE_RAID1E: 3895 case MPI2_RAID_VOL_TYPE_RAID1: 3896 case MPI2_RAID_VOL_TYPE_RAID10: 3897 case MPI2_RAID_VOL_TYPE_UNKNOWN: 3898 default: 3899 qdepth = MPT3SAS_RAID_QUEUE_DEPTH; 3900 } 3901 } else if (sas_target_priv_data->flags & 3902 MPT_TARGET_FLAGS_PCIE_DEVICE) 3903 qdepth = ioc->max_nvme_qd; 3904 else 3905 qdepth = (sas_target_priv_data->sas_dev->port_type > 1) ? 3906 ioc->max_wideport_qd : ioc->max_narrowport_qd; 3907 3908 mpt3sas_scsih_change_queue_depth(sdev, qdepth); 3909 } 3910 break; 3911 case 1: 3912 ioc->enable_sdev_max_qd = 1; 3913 shost_for_each_device(sdev, ioc->shost) 3914 mpt3sas_scsih_change_queue_depth(sdev, 3915 shost->can_queue); 3916 break; 3917 default: 3918 return -EINVAL; 3919 } 3920 3921 return strlen(buf); 3922 } 3923 static DEVICE_ATTR_RW(enable_sdev_max_qd); 3924 3925 static struct attribute *mpt3sas_host_attrs[] = { 3926 &dev_attr_version_fw.attr, 3927 &dev_attr_version_bios.attr, 3928 &dev_attr_version_mpi.attr, 3929 &dev_attr_version_product.attr, 3930 &dev_attr_version_nvdata_persistent.attr, 3931 &dev_attr_version_nvdata_default.attr, 3932 &dev_attr_board_name.attr, 3933 &dev_attr_board_assembly.attr, 3934 &dev_attr_board_tracer.attr, 3935 &dev_attr_io_delay.attr, 3936 &dev_attr_device_delay.attr, 3937 &dev_attr_logging_level.attr, 3938 &dev_attr_fwfault_debug.attr, 3939 &dev_attr_fw_queue_depth.attr, 3940 &dev_attr_host_sas_address.attr, 3941 &dev_attr_ioc_reset_count.attr, 3942 &dev_attr_host_trace_buffer_size.attr, 3943 &dev_attr_host_trace_buffer.attr, 3944 &dev_attr_host_trace_buffer_enable.attr, 3945 &dev_attr_reply_queue_count.attr, 3946 &dev_attr_diag_trigger_master.attr, 3947 &dev_attr_diag_trigger_event.attr, 3948 &dev_attr_diag_trigger_scsi.attr, 3949 &dev_attr_diag_trigger_mpi.attr, 3950 &dev_attr_drv_support_bitmap.attr, 3951 &dev_attr_BRM_status.attr, 3952 &dev_attr_enable_sdev_max_qd.attr, 3953 NULL, 3954 }; 3955 3956 static const struct attribute_group mpt3sas_host_attr_group = { 3957 .attrs = mpt3sas_host_attrs 3958 }; 3959 3960 const struct attribute_group *mpt3sas_host_groups[] = { 3961 &mpt3sas_host_attr_group, 3962 NULL 3963 }; 3964 3965 /* device attributes */ 3966 3967 /** 3968 * sas_address_show - sas address 3969 * @dev: pointer to embedded class device 3970 * @attr: ? 3971 * @buf: the buffer returned 3972 * 3973 * This is the sas address for the target 3974 * 3975 * A sysfs 'read-only' shost attribute. 3976 */ 3977 static ssize_t 3978 sas_address_show(struct device *dev, struct device_attribute *attr, 3979 char *buf) 3980 { 3981 struct scsi_device *sdev = to_scsi_device(dev); 3982 struct MPT3SAS_DEVICE *sas_device_priv_data = sdev->hostdata; 3983 3984 return snprintf(buf, PAGE_SIZE, "0x%016llx\n", 3985 (unsigned long long)sas_device_priv_data->sas_target->sas_address); 3986 } 3987 static DEVICE_ATTR_RO(sas_address); 3988 3989 /** 3990 * sas_device_handle_show - device handle 3991 * @dev: pointer to embedded class device 3992 * @attr: ? 3993 * @buf: the buffer returned 3994 * 3995 * This is the firmware assigned device handle 3996 * 3997 * A sysfs 'read-only' shost attribute. 3998 */ 3999 static ssize_t 4000 sas_device_handle_show(struct device *dev, struct device_attribute *attr, 4001 char *buf) 4002 { 4003 struct scsi_device *sdev = to_scsi_device(dev); 4004 struct MPT3SAS_DEVICE *sas_device_priv_data = sdev->hostdata; 4005 4006 return snprintf(buf, PAGE_SIZE, "0x%04x\n", 4007 sas_device_priv_data->sas_target->handle); 4008 } 4009 static DEVICE_ATTR_RO(sas_device_handle); 4010 4011 /** 4012 * sas_ncq_prio_supported_show - Indicate if device supports NCQ priority 4013 * @dev: pointer to embedded device 4014 * @attr: sas_ncq_prio_supported attribute descriptor 4015 * @buf: the buffer returned 4016 * 4017 * A sysfs 'read-only' sdev attribute, only works with SATA 4018 */ 4019 static ssize_t 4020 sas_ncq_prio_supported_show(struct device *dev, 4021 struct device_attribute *attr, char *buf) 4022 { 4023 struct scsi_device *sdev = to_scsi_device(dev); 4024 4025 return sysfs_emit(buf, "%d\n", scsih_ncq_prio_supp(sdev)); 4026 } 4027 static DEVICE_ATTR_RO(sas_ncq_prio_supported); 4028 4029 /** 4030 * sas_ncq_prio_enable_show - send prioritized io commands to device 4031 * @dev: pointer to embedded device 4032 * @attr: ? 4033 * @buf: the buffer returned 4034 * 4035 * A sysfs 'read/write' sdev attribute, only works with SATA 4036 */ 4037 static ssize_t 4038 sas_ncq_prio_enable_show(struct device *dev, 4039 struct device_attribute *attr, char *buf) 4040 { 4041 struct scsi_device *sdev = to_scsi_device(dev); 4042 struct MPT3SAS_DEVICE *sas_device_priv_data = sdev->hostdata; 4043 4044 return snprintf(buf, PAGE_SIZE, "%d\n", 4045 sas_device_priv_data->ncq_prio_enable); 4046 } 4047 4048 static ssize_t 4049 sas_ncq_prio_enable_store(struct device *dev, 4050 struct device_attribute *attr, 4051 const char *buf, size_t count) 4052 { 4053 struct scsi_device *sdev = to_scsi_device(dev); 4054 struct MPT3SAS_DEVICE *sas_device_priv_data = sdev->hostdata; 4055 bool ncq_prio_enable = 0; 4056 4057 if (kstrtobool(buf, &ncq_prio_enable)) 4058 return -EINVAL; 4059 4060 if (!scsih_ncq_prio_supp(sdev)) 4061 return -EINVAL; 4062 4063 sas_device_priv_data->ncq_prio_enable = ncq_prio_enable; 4064 return strlen(buf); 4065 } 4066 static DEVICE_ATTR_RW(sas_ncq_prio_enable); 4067 4068 static struct attribute *mpt3sas_dev_attrs[] = { 4069 &dev_attr_sas_address.attr, 4070 &dev_attr_sas_device_handle.attr, 4071 &dev_attr_sas_ncq_prio_supported.attr, 4072 &dev_attr_sas_ncq_prio_enable.attr, 4073 NULL, 4074 }; 4075 4076 static const struct attribute_group mpt3sas_dev_attr_group = { 4077 .attrs = mpt3sas_dev_attrs 4078 }; 4079 4080 const struct attribute_group *mpt3sas_dev_groups[] = { 4081 &mpt3sas_dev_attr_group, 4082 NULL 4083 }; 4084 4085 /* file operations table for mpt3ctl device */ 4086 static const struct file_operations ctl_fops = { 4087 .owner = THIS_MODULE, 4088 .unlocked_ioctl = _ctl_ioctl, 4089 .poll = _ctl_poll, 4090 .fasync = _ctl_fasync, 4091 #ifdef CONFIG_COMPAT 4092 .compat_ioctl = _ctl_ioctl_compat, 4093 #endif 4094 }; 4095 4096 /* file operations table for mpt2ctl device */ 4097 static const struct file_operations ctl_gen2_fops = { 4098 .owner = THIS_MODULE, 4099 .unlocked_ioctl = _ctl_mpt2_ioctl, 4100 .poll = _ctl_poll, 4101 .fasync = _ctl_fasync, 4102 #ifdef CONFIG_COMPAT 4103 .compat_ioctl = _ctl_mpt2_ioctl_compat, 4104 #endif 4105 }; 4106 4107 static struct miscdevice ctl_dev = { 4108 .minor = MPT3SAS_MINOR, 4109 .name = MPT3SAS_DEV_NAME, 4110 .fops = &ctl_fops, 4111 }; 4112 4113 static struct miscdevice gen2_ctl_dev = { 4114 .minor = MPT2SAS_MINOR, 4115 .name = MPT2SAS_DEV_NAME, 4116 .fops = &ctl_gen2_fops, 4117 }; 4118 4119 /** 4120 * mpt3sas_ctl_init - main entry point for ctl. 4121 * @hbas_to_enumerate: ? 4122 */ 4123 void 4124 mpt3sas_ctl_init(ushort hbas_to_enumerate) 4125 { 4126 async_queue = NULL; 4127 4128 /* Don't register mpt3ctl ioctl device if 4129 * hbas_to_enumarate is one. 4130 */ 4131 if (hbas_to_enumerate != 1) 4132 if (misc_register(&ctl_dev) < 0) 4133 pr_err("%s can't register misc device [minor=%d]\n", 4134 MPT3SAS_DRIVER_NAME, MPT3SAS_MINOR); 4135 4136 /* Don't register mpt3ctl ioctl device if 4137 * hbas_to_enumarate is two. 4138 */ 4139 if (hbas_to_enumerate != 2) 4140 if (misc_register(&gen2_ctl_dev) < 0) 4141 pr_err("%s can't register misc device [minor=%d]\n", 4142 MPT2SAS_DRIVER_NAME, MPT2SAS_MINOR); 4143 4144 init_waitqueue_head(&ctl_poll_wait); 4145 } 4146 4147 /** 4148 * mpt3sas_ctl_exit - exit point for ctl 4149 * @hbas_to_enumerate: ? 4150 */ 4151 void 4152 mpt3sas_ctl_exit(ushort hbas_to_enumerate) 4153 { 4154 struct MPT3SAS_ADAPTER *ioc; 4155 int i; 4156 4157 list_for_each_entry(ioc, &mpt3sas_ioc_list, list) { 4158 4159 /* free memory associated to diag buffers */ 4160 for (i = 0; i < MPI2_DIAG_BUF_TYPE_COUNT; i++) { 4161 if (!ioc->diag_buffer[i]) 4162 continue; 4163 dma_free_coherent(&ioc->pdev->dev, 4164 ioc->diag_buffer_sz[i], 4165 ioc->diag_buffer[i], 4166 ioc->diag_buffer_dma[i]); 4167 ioc->diag_buffer[i] = NULL; 4168 ioc->diag_buffer_status[i] = 0; 4169 } 4170 4171 kfree(ioc->event_log); 4172 } 4173 if (hbas_to_enumerate != 1) 4174 misc_deregister(&ctl_dev); 4175 if (hbas_to_enumerate != 2) 4176 misc_deregister(&gen2_ctl_dev); 4177 } 4178