1 /* 2 * Management Module Support for MPT (Message Passing Technology) based 3 * controllers 4 * 5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_ctl.c 6 * Copyright (C) 2012-2014 LSI Corporation 7 * Copyright (C) 2013-2014 Avago Technologies 8 * (mailto: MPT-FusionLinux.pdl@avagotech.com) 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License 12 * as published by the Free Software Foundation; either version 2 13 * of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * NO WARRANTY 21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR 22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT 23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, 24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is 25 * solely responsible for determining the appropriateness of using and 26 * distributing the Program and assumes all risks associated with its 27 * exercise of rights under this Agreement, including but not limited to 28 * the risks and costs of program errors, damage to or loss of data, 29 * programs or equipment, and unavailability or interruption of operations. 30 31 * DISCLAIMER OF LIABILITY 32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY 33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND 35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED 38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES 39 40 * You should have received a copy of the GNU General Public License 41 * along with this program; if not, write to the Free Software 42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, 43 * USA. 44 */ 45 46 #include <linux/kernel.h> 47 #include <linux/module.h> 48 #include <linux/errno.h> 49 #include <linux/init.h> 50 #include <linux/slab.h> 51 #include <linux/types.h> 52 #include <linux/pci.h> 53 #include <linux/delay.h> 54 #include <linux/compat.h> 55 #include <linux/poll.h> 56 57 #include <linux/io.h> 58 #include <linux/uaccess.h> 59 60 #include "mpt3sas_base.h" 61 #include "mpt3sas_ctl.h" 62 63 64 static struct fasync_struct *async_queue; 65 static DECLARE_WAIT_QUEUE_HEAD(ctl_poll_wait); 66 67 68 /** 69 * enum block_state - blocking state 70 * @NON_BLOCKING: non blocking 71 * @BLOCKING: blocking 72 * 73 * These states are for ioctls that need to wait for a response 74 * from firmware, so they probably require sleep. 75 */ 76 enum block_state { 77 NON_BLOCKING, 78 BLOCKING, 79 }; 80 81 /** 82 * _ctl_display_some_debug - debug routine 83 * @ioc: per adapter object 84 * @smid: system request message index 85 * @calling_function_name: string pass from calling function 86 * @mpi_reply: reply message frame 87 * Context: none. 88 * 89 * Function for displaying debug info helpful when debugging issues 90 * in this module. 91 */ 92 static void 93 _ctl_display_some_debug(struct MPT3SAS_ADAPTER *ioc, u16 smid, 94 char *calling_function_name, MPI2DefaultReply_t *mpi_reply) 95 { 96 Mpi2ConfigRequest_t *mpi_request; 97 char *desc = NULL; 98 99 if (!(ioc->logging_level & MPT_DEBUG_IOCTL)) 100 return; 101 102 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 103 switch (mpi_request->Function) { 104 case MPI2_FUNCTION_SCSI_IO_REQUEST: 105 { 106 Mpi2SCSIIORequest_t *scsi_request = 107 (Mpi2SCSIIORequest_t *)mpi_request; 108 109 snprintf(ioc->tmp_string, MPT_STRING_LENGTH, 110 "scsi_io, cmd(0x%02x), cdb_len(%d)", 111 scsi_request->CDB.CDB32[0], 112 le16_to_cpu(scsi_request->IoFlags) & 0xF); 113 desc = ioc->tmp_string; 114 break; 115 } 116 case MPI2_FUNCTION_SCSI_TASK_MGMT: 117 desc = "task_mgmt"; 118 break; 119 case MPI2_FUNCTION_IOC_INIT: 120 desc = "ioc_init"; 121 break; 122 case MPI2_FUNCTION_IOC_FACTS: 123 desc = "ioc_facts"; 124 break; 125 case MPI2_FUNCTION_CONFIG: 126 { 127 Mpi2ConfigRequest_t *config_request = 128 (Mpi2ConfigRequest_t *)mpi_request; 129 130 snprintf(ioc->tmp_string, MPT_STRING_LENGTH, 131 "config, type(0x%02x), ext_type(0x%02x), number(%d)", 132 (config_request->Header.PageType & 133 MPI2_CONFIG_PAGETYPE_MASK), config_request->ExtPageType, 134 config_request->Header.PageNumber); 135 desc = ioc->tmp_string; 136 break; 137 } 138 case MPI2_FUNCTION_PORT_FACTS: 139 desc = "port_facts"; 140 break; 141 case MPI2_FUNCTION_PORT_ENABLE: 142 desc = "port_enable"; 143 break; 144 case MPI2_FUNCTION_EVENT_NOTIFICATION: 145 desc = "event_notification"; 146 break; 147 case MPI2_FUNCTION_FW_DOWNLOAD: 148 desc = "fw_download"; 149 break; 150 case MPI2_FUNCTION_FW_UPLOAD: 151 desc = "fw_upload"; 152 break; 153 case MPI2_FUNCTION_RAID_ACTION: 154 desc = "raid_action"; 155 break; 156 case MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH: 157 { 158 Mpi2SCSIIORequest_t *scsi_request = 159 (Mpi2SCSIIORequest_t *)mpi_request; 160 161 snprintf(ioc->tmp_string, MPT_STRING_LENGTH, 162 "raid_pass, cmd(0x%02x), cdb_len(%d)", 163 scsi_request->CDB.CDB32[0], 164 le16_to_cpu(scsi_request->IoFlags) & 0xF); 165 desc = ioc->tmp_string; 166 break; 167 } 168 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL: 169 desc = "sas_iounit_cntl"; 170 break; 171 case MPI2_FUNCTION_SATA_PASSTHROUGH: 172 desc = "sata_pass"; 173 break; 174 case MPI2_FUNCTION_DIAG_BUFFER_POST: 175 desc = "diag_buffer_post"; 176 break; 177 case MPI2_FUNCTION_DIAG_RELEASE: 178 desc = "diag_release"; 179 break; 180 case MPI2_FUNCTION_SMP_PASSTHROUGH: 181 desc = "smp_passthrough"; 182 break; 183 case MPI2_FUNCTION_TOOLBOX: 184 desc = "toolbox"; 185 break; 186 case MPI2_FUNCTION_NVME_ENCAPSULATED: 187 desc = "nvme_encapsulated"; 188 break; 189 } 190 191 if (!desc) 192 return; 193 194 ioc_info(ioc, "%s: %s, smid(%d)\n", calling_function_name, desc, smid); 195 196 if (!mpi_reply) 197 return; 198 199 if (mpi_reply->IOCStatus || mpi_reply->IOCLogInfo) 200 ioc_info(ioc, "\tiocstatus(0x%04x), loginfo(0x%08x)\n", 201 le16_to_cpu(mpi_reply->IOCStatus), 202 le32_to_cpu(mpi_reply->IOCLogInfo)); 203 204 if (mpi_request->Function == MPI2_FUNCTION_SCSI_IO_REQUEST || 205 mpi_request->Function == 206 MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH) { 207 Mpi2SCSIIOReply_t *scsi_reply = 208 (Mpi2SCSIIOReply_t *)mpi_reply; 209 struct _sas_device *sas_device = NULL; 210 struct _pcie_device *pcie_device = NULL; 211 212 sas_device = mpt3sas_get_sdev_by_handle(ioc, 213 le16_to_cpu(scsi_reply->DevHandle)); 214 if (sas_device) { 215 ioc_warn(ioc, "\tsas_address(0x%016llx), phy(%d)\n", 216 (u64)sas_device->sas_address, 217 sas_device->phy); 218 ioc_warn(ioc, "\tenclosure_logical_id(0x%016llx), slot(%d)\n", 219 (u64)sas_device->enclosure_logical_id, 220 sas_device->slot); 221 sas_device_put(sas_device); 222 } 223 if (!sas_device) { 224 pcie_device = mpt3sas_get_pdev_by_handle(ioc, 225 le16_to_cpu(scsi_reply->DevHandle)); 226 if (pcie_device) { 227 ioc_warn(ioc, "\tWWID(0x%016llx), port(%d)\n", 228 (unsigned long long)pcie_device->wwid, 229 pcie_device->port_num); 230 if (pcie_device->enclosure_handle != 0) 231 ioc_warn(ioc, "\tenclosure_logical_id(0x%016llx), slot(%d)\n", 232 (u64)pcie_device->enclosure_logical_id, 233 pcie_device->slot); 234 pcie_device_put(pcie_device); 235 } 236 } 237 if (scsi_reply->SCSIState || scsi_reply->SCSIStatus) 238 ioc_info(ioc, "\tscsi_state(0x%02x), scsi_status(0x%02x)\n", 239 scsi_reply->SCSIState, 240 scsi_reply->SCSIStatus); 241 } 242 } 243 244 /** 245 * mpt3sas_ctl_done - ctl module completion routine 246 * @ioc: per adapter object 247 * @smid: system request message index 248 * @msix_index: MSIX table index supplied by the OS 249 * @reply: reply message frame(lower 32bit addr) 250 * Context: none. 251 * 252 * The callback handler when using ioc->ctl_cb_idx. 253 * 254 * Return: 1 meaning mf should be freed from _base_interrupt 255 * 0 means the mf is freed from this function. 256 */ 257 u8 258 mpt3sas_ctl_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 259 u32 reply) 260 { 261 MPI2DefaultReply_t *mpi_reply; 262 Mpi2SCSIIOReply_t *scsiio_reply; 263 Mpi26NVMeEncapsulatedErrorReply_t *nvme_error_reply; 264 const void *sense_data; 265 u32 sz; 266 267 if (ioc->ctl_cmds.status == MPT3_CMD_NOT_USED) 268 return 1; 269 if (ioc->ctl_cmds.smid != smid) 270 return 1; 271 ioc->ctl_cmds.status |= MPT3_CMD_COMPLETE; 272 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 273 if (mpi_reply) { 274 memcpy(ioc->ctl_cmds.reply, mpi_reply, mpi_reply->MsgLength*4); 275 ioc->ctl_cmds.status |= MPT3_CMD_REPLY_VALID; 276 /* get sense data */ 277 if (mpi_reply->Function == MPI2_FUNCTION_SCSI_IO_REQUEST || 278 mpi_reply->Function == 279 MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH) { 280 scsiio_reply = (Mpi2SCSIIOReply_t *)mpi_reply; 281 if (scsiio_reply->SCSIState & 282 MPI2_SCSI_STATE_AUTOSENSE_VALID) { 283 sz = min_t(u32, SCSI_SENSE_BUFFERSIZE, 284 le32_to_cpu(scsiio_reply->SenseCount)); 285 sense_data = mpt3sas_base_get_sense_buffer(ioc, 286 smid); 287 memcpy(ioc->ctl_cmds.sense, sense_data, sz); 288 } 289 } 290 /* 291 * Get Error Response data for NVMe device. The ctl_cmds.sense 292 * buffer is used to store the Error Response data. 293 */ 294 if (mpi_reply->Function == MPI2_FUNCTION_NVME_ENCAPSULATED) { 295 nvme_error_reply = 296 (Mpi26NVMeEncapsulatedErrorReply_t *)mpi_reply; 297 sz = min_t(u32, NVME_ERROR_RESPONSE_SIZE, 298 le16_to_cpu(nvme_error_reply->ErrorResponseCount)); 299 sense_data = mpt3sas_base_get_sense_buffer(ioc, smid); 300 memcpy(ioc->ctl_cmds.sense, sense_data, sz); 301 } 302 } 303 304 _ctl_display_some_debug(ioc, smid, "ctl_done", mpi_reply); 305 ioc->ctl_cmds.status &= ~MPT3_CMD_PENDING; 306 complete(&ioc->ctl_cmds.done); 307 return 1; 308 } 309 310 /** 311 * _ctl_check_event_type - determines when an event needs logging 312 * @ioc: per adapter object 313 * @event: firmware event 314 * 315 * The bitmask in ioc->event_type[] indicates which events should be 316 * be saved in the driver event_log. This bitmask is set by application. 317 * 318 * Return: 1 when event should be captured, or zero means no match. 319 */ 320 static int 321 _ctl_check_event_type(struct MPT3SAS_ADAPTER *ioc, u16 event) 322 { 323 u16 i; 324 u32 desired_event; 325 326 if (event >= 128 || !event || !ioc->event_log) 327 return 0; 328 329 desired_event = (1 << (event % 32)); 330 if (!desired_event) 331 desired_event = 1; 332 i = event / 32; 333 return desired_event & ioc->event_type[i]; 334 } 335 336 /** 337 * mpt3sas_ctl_add_to_event_log - add event 338 * @ioc: per adapter object 339 * @mpi_reply: reply message frame 340 */ 341 void 342 mpt3sas_ctl_add_to_event_log(struct MPT3SAS_ADAPTER *ioc, 343 Mpi2EventNotificationReply_t *mpi_reply) 344 { 345 struct MPT3_IOCTL_EVENTS *event_log; 346 u16 event; 347 int i; 348 u32 sz, event_data_sz; 349 u8 send_aen = 0; 350 351 if (!ioc->event_log) 352 return; 353 354 event = le16_to_cpu(mpi_reply->Event); 355 356 if (_ctl_check_event_type(ioc, event)) { 357 358 /* insert entry into circular event_log */ 359 i = ioc->event_context % MPT3SAS_CTL_EVENT_LOG_SIZE; 360 event_log = ioc->event_log; 361 event_log[i].event = event; 362 event_log[i].context = ioc->event_context++; 363 364 event_data_sz = le16_to_cpu(mpi_reply->EventDataLength)*4; 365 sz = min_t(u32, event_data_sz, MPT3_EVENT_DATA_SIZE); 366 memset(event_log[i].data, 0, MPT3_EVENT_DATA_SIZE); 367 memcpy(event_log[i].data, mpi_reply->EventData, sz); 368 send_aen = 1; 369 } 370 371 /* This aen_event_read_flag flag is set until the 372 * application has read the event log. 373 * For MPI2_EVENT_LOG_ENTRY_ADDED, we always notify. 374 */ 375 if (event == MPI2_EVENT_LOG_ENTRY_ADDED || 376 (send_aen && !ioc->aen_event_read_flag)) { 377 ioc->aen_event_read_flag = 1; 378 wake_up_interruptible(&ctl_poll_wait); 379 if (async_queue) 380 kill_fasync(&async_queue, SIGIO, POLL_IN); 381 } 382 } 383 384 /** 385 * mpt3sas_ctl_event_callback - firmware event handler (called at ISR time) 386 * @ioc: per adapter object 387 * @msix_index: MSIX table index supplied by the OS 388 * @reply: reply message frame(lower 32bit addr) 389 * Context: interrupt. 390 * 391 * This function merely adds a new work task into ioc->firmware_event_thread. 392 * The tasks are worked from _firmware_event_work in user context. 393 * 394 * Return: 1 meaning mf should be freed from _base_interrupt 395 * 0 means the mf is freed from this function. 396 */ 397 u8 398 mpt3sas_ctl_event_callback(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, 399 u32 reply) 400 { 401 Mpi2EventNotificationReply_t *mpi_reply; 402 403 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 404 if (mpi_reply) 405 mpt3sas_ctl_add_to_event_log(ioc, mpi_reply); 406 return 1; 407 } 408 409 /** 410 * _ctl_verify_adapter - validates ioc_number passed from application 411 * @ioc_number: ? 412 * @iocpp: The ioc pointer is returned in this. 413 * @mpi_version: will be MPI2_VERSION for mpt2ctl ioctl device & 414 * MPI25_VERSION | MPI26_VERSION for mpt3ctl ioctl device. 415 * 416 * Return: (-1) means error, else ioc_number. 417 */ 418 static int 419 _ctl_verify_adapter(int ioc_number, struct MPT3SAS_ADAPTER **iocpp, 420 int mpi_version) 421 { 422 struct MPT3SAS_ADAPTER *ioc; 423 int version = 0; 424 /* global ioc lock to protect controller on list operations */ 425 spin_lock(&gioc_lock); 426 list_for_each_entry(ioc, &mpt3sas_ioc_list, list) { 427 if (ioc->id != ioc_number) 428 continue; 429 /* Check whether this ioctl command is from right 430 * ioctl device or not, if not continue the search. 431 */ 432 version = ioc->hba_mpi_version_belonged; 433 /* MPI25_VERSION and MPI26_VERSION uses same ioctl 434 * device. 435 */ 436 if (mpi_version == (MPI25_VERSION | MPI26_VERSION)) { 437 if ((version == MPI25_VERSION) || 438 (version == MPI26_VERSION)) 439 goto out; 440 else 441 continue; 442 } else { 443 if (version != mpi_version) 444 continue; 445 } 446 out: 447 spin_unlock(&gioc_lock); 448 *iocpp = ioc; 449 return ioc_number; 450 } 451 spin_unlock(&gioc_lock); 452 *iocpp = NULL; 453 return -1; 454 } 455 456 /** 457 * mpt3sas_ctl_reset_handler - reset callback handler (for ctl) 458 * @ioc: per adapter object 459 * 460 * The handler for doing any required cleanup or initialization. 461 */ 462 void mpt3sas_ctl_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc) 463 { 464 int i; 465 u8 issue_reset; 466 467 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__)); 468 for (i = 0; i < MPI2_DIAG_BUF_TYPE_COUNT; i++) { 469 if (!(ioc->diag_buffer_status[i] & 470 MPT3_DIAG_BUFFER_IS_REGISTERED)) 471 continue; 472 if ((ioc->diag_buffer_status[i] & 473 MPT3_DIAG_BUFFER_IS_RELEASED)) 474 continue; 475 476 /* 477 * add a log message to indicate the release 478 */ 479 ioc_info(ioc, 480 "%s: Releasing the trace buffer due to adapter reset.", 481 __func__); 482 mpt3sas_send_diag_release(ioc, i, &issue_reset); 483 } 484 } 485 486 /** 487 * mpt3sas_ctl_reset_handler - clears outstanding ioctl cmd. 488 * @ioc: per adapter object 489 * 490 * The handler for doing any required cleanup or initialization. 491 */ 492 void mpt3sas_ctl_clear_outstanding_ioctls(struct MPT3SAS_ADAPTER *ioc) 493 { 494 dtmprintk(ioc, 495 ioc_info(ioc, "%s: clear outstanding ioctl cmd\n", __func__)); 496 if (ioc->ctl_cmds.status & MPT3_CMD_PENDING) { 497 ioc->ctl_cmds.status |= MPT3_CMD_RESET; 498 mpt3sas_base_free_smid(ioc, ioc->ctl_cmds.smid); 499 complete(&ioc->ctl_cmds.done); 500 } 501 } 502 503 /** 504 * mpt3sas_ctl_reset_handler - reset callback handler (for ctl) 505 * @ioc: per adapter object 506 * 507 * The handler for doing any required cleanup or initialization. 508 */ 509 void mpt3sas_ctl_reset_done_handler(struct MPT3SAS_ADAPTER *ioc) 510 { 511 int i; 512 513 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__)); 514 515 for (i = 0; i < MPI2_DIAG_BUF_TYPE_COUNT; i++) { 516 if (!(ioc->diag_buffer_status[i] & 517 MPT3_DIAG_BUFFER_IS_REGISTERED)) 518 continue; 519 if ((ioc->diag_buffer_status[i] & 520 MPT3_DIAG_BUFFER_IS_RELEASED)) 521 continue; 522 ioc->diag_buffer_status[i] |= 523 MPT3_DIAG_BUFFER_IS_DIAG_RESET; 524 } 525 } 526 527 /** 528 * _ctl_fasync - 529 * @fd: ? 530 * @filep: ? 531 * @mode: ? 532 * 533 * Called when application request fasyn callback handler. 534 */ 535 static int 536 _ctl_fasync(int fd, struct file *filep, int mode) 537 { 538 return fasync_helper(fd, filep, mode, &async_queue); 539 } 540 541 /** 542 * _ctl_poll - 543 * @filep: ? 544 * @wait: ? 545 * 546 */ 547 static __poll_t 548 _ctl_poll(struct file *filep, poll_table *wait) 549 { 550 struct MPT3SAS_ADAPTER *ioc; 551 552 poll_wait(filep, &ctl_poll_wait, wait); 553 554 /* global ioc lock to protect controller on list operations */ 555 spin_lock(&gioc_lock); 556 list_for_each_entry(ioc, &mpt3sas_ioc_list, list) { 557 if (ioc->aen_event_read_flag) { 558 spin_unlock(&gioc_lock); 559 return EPOLLIN | EPOLLRDNORM; 560 } 561 } 562 spin_unlock(&gioc_lock); 563 return 0; 564 } 565 566 /** 567 * _ctl_set_task_mid - assign an active smid to tm request 568 * @ioc: per adapter object 569 * @karg: (struct mpt3_ioctl_command) 570 * @tm_request: pointer to mf from user space 571 * 572 * Return: 0 when an smid if found, else fail. 573 * during failure, the reply frame is filled. 574 */ 575 static int 576 _ctl_set_task_mid(struct MPT3SAS_ADAPTER *ioc, struct mpt3_ioctl_command *karg, 577 Mpi2SCSITaskManagementRequest_t *tm_request) 578 { 579 u8 found = 0; 580 u16 smid; 581 u16 handle; 582 struct scsi_cmnd *scmd; 583 struct MPT3SAS_DEVICE *priv_data; 584 Mpi2SCSITaskManagementReply_t *tm_reply; 585 u32 sz; 586 u32 lun; 587 char *desc = NULL; 588 589 if (tm_request->TaskType == MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK) 590 desc = "abort_task"; 591 else if (tm_request->TaskType == MPI2_SCSITASKMGMT_TASKTYPE_QUERY_TASK) 592 desc = "query_task"; 593 else 594 return 0; 595 596 lun = scsilun_to_int((struct scsi_lun *)tm_request->LUN); 597 598 handle = le16_to_cpu(tm_request->DevHandle); 599 for (smid = ioc->scsiio_depth; smid && !found; smid--) { 600 struct scsiio_tracker *st; 601 602 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid); 603 if (!scmd) 604 continue; 605 if (lun != scmd->device->lun) 606 continue; 607 priv_data = scmd->device->hostdata; 608 if (priv_data->sas_target == NULL) 609 continue; 610 if (priv_data->sas_target->handle != handle) 611 continue; 612 st = scsi_cmd_priv(scmd); 613 614 /* 615 * If the given TaskMID from the user space is zero, then the 616 * first outstanding smid will be picked up. Otherwise, 617 * targeted smid will be the one. 618 */ 619 if (!tm_request->TaskMID || tm_request->TaskMID == st->smid) { 620 tm_request->TaskMID = cpu_to_le16(st->smid); 621 found = 1; 622 } 623 } 624 625 if (!found) { 626 dctlprintk(ioc, 627 ioc_info(ioc, "%s: handle(0x%04x), lun(%d), no active mid!!\n", 628 desc, le16_to_cpu(tm_request->DevHandle), 629 lun)); 630 tm_reply = ioc->ctl_cmds.reply; 631 tm_reply->DevHandle = tm_request->DevHandle; 632 tm_reply->Function = MPI2_FUNCTION_SCSI_TASK_MGMT; 633 tm_reply->TaskType = tm_request->TaskType; 634 tm_reply->MsgLength = sizeof(Mpi2SCSITaskManagementReply_t)/4; 635 tm_reply->VP_ID = tm_request->VP_ID; 636 tm_reply->VF_ID = tm_request->VF_ID; 637 sz = min_t(u32, karg->max_reply_bytes, ioc->reply_sz); 638 if (copy_to_user(karg->reply_frame_buf_ptr, ioc->ctl_cmds.reply, 639 sz)) 640 pr_err("failure at %s:%d/%s()!\n", __FILE__, 641 __LINE__, __func__); 642 return 1; 643 } 644 645 dctlprintk(ioc, 646 ioc_info(ioc, "%s: handle(0x%04x), lun(%d), task_mid(%d)\n", 647 desc, le16_to_cpu(tm_request->DevHandle), lun, 648 le16_to_cpu(tm_request->TaskMID))); 649 return 0; 650 } 651 652 /** 653 * _ctl_do_mpt_command - main handler for MPT3COMMAND opcode 654 * @ioc: per adapter object 655 * @karg: (struct mpt3_ioctl_command) 656 * @mf: pointer to mf in user space 657 */ 658 static long 659 _ctl_do_mpt_command(struct MPT3SAS_ADAPTER *ioc, struct mpt3_ioctl_command karg, 660 void __user *mf) 661 { 662 MPI2RequestHeader_t *mpi_request = NULL, *request; 663 MPI2DefaultReply_t *mpi_reply; 664 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request = NULL; 665 struct _pcie_device *pcie_device = NULL; 666 u16 smid; 667 u8 timeout; 668 u8 issue_reset; 669 u32 sz, sz_arg; 670 void *psge; 671 void *data_out = NULL; 672 dma_addr_t data_out_dma = 0; 673 size_t data_out_sz = 0; 674 void *data_in = NULL; 675 dma_addr_t data_in_dma = 0; 676 size_t data_in_sz = 0; 677 long ret; 678 u16 device_handle = MPT3SAS_INVALID_DEVICE_HANDLE; 679 680 issue_reset = 0; 681 682 if (ioc->ctl_cmds.status != MPT3_CMD_NOT_USED) { 683 ioc_err(ioc, "%s: ctl_cmd in use\n", __func__); 684 ret = -EAGAIN; 685 goto out; 686 } 687 688 ret = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT); 689 if (ret) 690 goto out; 691 692 mpi_request = kzalloc(ioc->request_sz, GFP_KERNEL); 693 if (!mpi_request) { 694 ioc_err(ioc, "%s: failed obtaining a memory for mpi_request\n", 695 __func__); 696 ret = -ENOMEM; 697 goto out; 698 } 699 700 /* Check for overflow and wraparound */ 701 if (karg.data_sge_offset * 4 > ioc->request_sz || 702 karg.data_sge_offset > (UINT_MAX / 4)) { 703 ret = -EINVAL; 704 goto out; 705 } 706 707 /* copy in request message frame from user */ 708 if (copy_from_user(mpi_request, mf, karg.data_sge_offset*4)) { 709 pr_err("failure at %s:%d/%s()!\n", __FILE__, __LINE__, 710 __func__); 711 ret = -EFAULT; 712 goto out; 713 } 714 715 if (mpi_request->Function == MPI2_FUNCTION_SCSI_TASK_MGMT) { 716 smid = mpt3sas_base_get_smid_hpr(ioc, ioc->ctl_cb_idx); 717 if (!smid) { 718 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 719 ret = -EAGAIN; 720 goto out; 721 } 722 } else { 723 /* Use first reserved smid for passthrough ioctls */ 724 smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1; 725 } 726 727 ret = 0; 728 ioc->ctl_cmds.status = MPT3_CMD_PENDING; 729 memset(ioc->ctl_cmds.reply, 0, ioc->reply_sz); 730 request = mpt3sas_base_get_msg_frame(ioc, smid); 731 memset(request, 0, ioc->request_sz); 732 memcpy(request, mpi_request, karg.data_sge_offset*4); 733 ioc->ctl_cmds.smid = smid; 734 data_out_sz = karg.data_out_size; 735 data_in_sz = karg.data_in_size; 736 737 if (mpi_request->Function == MPI2_FUNCTION_SCSI_IO_REQUEST || 738 mpi_request->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH || 739 mpi_request->Function == MPI2_FUNCTION_SCSI_TASK_MGMT || 740 mpi_request->Function == MPI2_FUNCTION_SATA_PASSTHROUGH || 741 mpi_request->Function == MPI2_FUNCTION_NVME_ENCAPSULATED) { 742 743 device_handle = le16_to_cpu(mpi_request->FunctionDependent1); 744 if (!device_handle || (device_handle > 745 ioc->facts.MaxDevHandle)) { 746 ret = -EINVAL; 747 mpt3sas_base_free_smid(ioc, smid); 748 goto out; 749 } 750 } 751 752 /* obtain dma-able memory for data transfer */ 753 if (data_out_sz) /* WRITE */ { 754 data_out = dma_alloc_coherent(&ioc->pdev->dev, data_out_sz, 755 &data_out_dma, GFP_KERNEL); 756 if (!data_out) { 757 pr_err("failure at %s:%d/%s()!\n", __FILE__, 758 __LINE__, __func__); 759 ret = -ENOMEM; 760 mpt3sas_base_free_smid(ioc, smid); 761 goto out; 762 } 763 if (copy_from_user(data_out, karg.data_out_buf_ptr, 764 data_out_sz)) { 765 pr_err("failure at %s:%d/%s()!\n", __FILE__, 766 __LINE__, __func__); 767 ret = -EFAULT; 768 mpt3sas_base_free_smid(ioc, smid); 769 goto out; 770 } 771 } 772 773 if (data_in_sz) /* READ */ { 774 data_in = dma_alloc_coherent(&ioc->pdev->dev, data_in_sz, 775 &data_in_dma, GFP_KERNEL); 776 if (!data_in) { 777 pr_err("failure at %s:%d/%s()!\n", __FILE__, 778 __LINE__, __func__); 779 ret = -ENOMEM; 780 mpt3sas_base_free_smid(ioc, smid); 781 goto out; 782 } 783 } 784 785 psge = (void *)request + (karg.data_sge_offset*4); 786 787 /* send command to firmware */ 788 _ctl_display_some_debug(ioc, smid, "ctl_request", NULL); 789 790 init_completion(&ioc->ctl_cmds.done); 791 switch (mpi_request->Function) { 792 case MPI2_FUNCTION_NVME_ENCAPSULATED: 793 { 794 nvme_encap_request = (Mpi26NVMeEncapsulatedRequest_t *)request; 795 if (!ioc->pcie_sg_lookup) { 796 dtmprintk(ioc, ioc_info(ioc, 797 "HBA doesn't support NVMe. Rejecting NVMe Encapsulated request.\n" 798 )); 799 800 if (ioc->logging_level & MPT_DEBUG_TM) 801 _debug_dump_mf(nvme_encap_request, 802 ioc->request_sz/4); 803 mpt3sas_base_free_smid(ioc, smid); 804 ret = -EINVAL; 805 goto out; 806 } 807 /* 808 * Get the Physical Address of the sense buffer. 809 * Use Error Response buffer address field to hold the sense 810 * buffer address. 811 * Clear the internal sense buffer, which will potentially hold 812 * the Completion Queue Entry on return, or 0 if no Entry. 813 * Build the PRPs and set direction bits. 814 * Send the request. 815 */ 816 nvme_encap_request->ErrorResponseBaseAddress = 817 cpu_to_le64(ioc->sense_dma & 0xFFFFFFFF00000000UL); 818 nvme_encap_request->ErrorResponseBaseAddress |= 819 cpu_to_le64(le32_to_cpu( 820 mpt3sas_base_get_sense_buffer_dma(ioc, smid))); 821 nvme_encap_request->ErrorResponseAllocationLength = 822 cpu_to_le16(NVME_ERROR_RESPONSE_SIZE); 823 memset(ioc->ctl_cmds.sense, 0, NVME_ERROR_RESPONSE_SIZE); 824 ioc->build_nvme_prp(ioc, smid, nvme_encap_request, 825 data_out_dma, data_out_sz, data_in_dma, data_in_sz); 826 if (test_bit(device_handle, ioc->device_remove_in_progress)) { 827 dtmprintk(ioc, 828 ioc_info(ioc, "handle(0x%04x): ioctl failed due to device removal in progress\n", 829 device_handle)); 830 mpt3sas_base_free_smid(ioc, smid); 831 ret = -EINVAL; 832 goto out; 833 } 834 mpt3sas_base_put_smid_nvme_encap(ioc, smid); 835 break; 836 } 837 case MPI2_FUNCTION_SCSI_IO_REQUEST: 838 case MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH: 839 { 840 Mpi2SCSIIORequest_t *scsiio_request = 841 (Mpi2SCSIIORequest_t *)request; 842 scsiio_request->SenseBufferLength = SCSI_SENSE_BUFFERSIZE; 843 scsiio_request->SenseBufferLowAddress = 844 mpt3sas_base_get_sense_buffer_dma(ioc, smid); 845 memset(ioc->ctl_cmds.sense, 0, SCSI_SENSE_BUFFERSIZE); 846 if (test_bit(device_handle, ioc->device_remove_in_progress)) { 847 dtmprintk(ioc, 848 ioc_info(ioc, "handle(0x%04x) :ioctl failed due to device removal in progress\n", 849 device_handle)); 850 mpt3sas_base_free_smid(ioc, smid); 851 ret = -EINVAL; 852 goto out; 853 } 854 ioc->build_sg(ioc, psge, data_out_dma, data_out_sz, 855 data_in_dma, data_in_sz); 856 if (mpi_request->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) 857 ioc->put_smid_scsi_io(ioc, smid, device_handle); 858 else 859 ioc->put_smid_default(ioc, smid); 860 break; 861 } 862 case MPI2_FUNCTION_SCSI_TASK_MGMT: 863 { 864 Mpi2SCSITaskManagementRequest_t *tm_request = 865 (Mpi2SCSITaskManagementRequest_t *)request; 866 867 dtmprintk(ioc, 868 ioc_info(ioc, "TASK_MGMT: handle(0x%04x), task_type(0x%02x)\n", 869 le16_to_cpu(tm_request->DevHandle), 870 tm_request->TaskType)); 871 ioc->got_task_abort_from_ioctl = 1; 872 if (tm_request->TaskType == 873 MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK || 874 tm_request->TaskType == 875 MPI2_SCSITASKMGMT_TASKTYPE_QUERY_TASK) { 876 if (_ctl_set_task_mid(ioc, &karg, tm_request)) { 877 mpt3sas_base_free_smid(ioc, smid); 878 ioc->got_task_abort_from_ioctl = 0; 879 goto out; 880 } 881 } 882 ioc->got_task_abort_from_ioctl = 0; 883 884 if (test_bit(device_handle, ioc->device_remove_in_progress)) { 885 dtmprintk(ioc, 886 ioc_info(ioc, "handle(0x%04x) :ioctl failed due to device removal in progress\n", 887 device_handle)); 888 mpt3sas_base_free_smid(ioc, smid); 889 ret = -EINVAL; 890 goto out; 891 } 892 mpt3sas_scsih_set_tm_flag(ioc, le16_to_cpu( 893 tm_request->DevHandle)); 894 ioc->build_sg_mpi(ioc, psge, data_out_dma, data_out_sz, 895 data_in_dma, data_in_sz); 896 ioc->put_smid_hi_priority(ioc, smid, 0); 897 break; 898 } 899 case MPI2_FUNCTION_SMP_PASSTHROUGH: 900 { 901 Mpi2SmpPassthroughRequest_t *smp_request = 902 (Mpi2SmpPassthroughRequest_t *)mpi_request; 903 u8 *data; 904 905 /* ioc determines which port to use */ 906 smp_request->PhysicalPort = 0xFF; 907 if (smp_request->PassthroughFlags & 908 MPI2_SMP_PT_REQ_PT_FLAGS_IMMEDIATE) 909 data = (u8 *)&smp_request->SGL; 910 else { 911 if (unlikely(data_out == NULL)) { 912 pr_err("failure at %s:%d/%s()!\n", 913 __FILE__, __LINE__, __func__); 914 mpt3sas_base_free_smid(ioc, smid); 915 ret = -EINVAL; 916 goto out; 917 } 918 data = data_out; 919 } 920 921 if (data[1] == 0x91 && (data[10] == 1 || data[10] == 2)) { 922 ioc->ioc_link_reset_in_progress = 1; 923 ioc->ignore_loginfos = 1; 924 } 925 ioc->build_sg(ioc, psge, data_out_dma, data_out_sz, data_in_dma, 926 data_in_sz); 927 ioc->put_smid_default(ioc, smid); 928 break; 929 } 930 case MPI2_FUNCTION_SATA_PASSTHROUGH: 931 { 932 if (test_bit(device_handle, ioc->device_remove_in_progress)) { 933 dtmprintk(ioc, 934 ioc_info(ioc, "handle(0x%04x) :ioctl failed due to device removal in progress\n", 935 device_handle)); 936 mpt3sas_base_free_smid(ioc, smid); 937 ret = -EINVAL; 938 goto out; 939 } 940 ioc->build_sg(ioc, psge, data_out_dma, data_out_sz, data_in_dma, 941 data_in_sz); 942 ioc->put_smid_default(ioc, smid); 943 break; 944 } 945 case MPI2_FUNCTION_FW_DOWNLOAD: 946 case MPI2_FUNCTION_FW_UPLOAD: 947 { 948 ioc->build_sg(ioc, psge, data_out_dma, data_out_sz, data_in_dma, 949 data_in_sz); 950 ioc->put_smid_default(ioc, smid); 951 break; 952 } 953 case MPI2_FUNCTION_TOOLBOX: 954 { 955 Mpi2ToolboxCleanRequest_t *toolbox_request = 956 (Mpi2ToolboxCleanRequest_t *)mpi_request; 957 958 if ((toolbox_request->Tool == MPI2_TOOLBOX_DIAGNOSTIC_CLI_TOOL) 959 || (toolbox_request->Tool == 960 MPI26_TOOLBOX_BACKEND_PCIE_LANE_MARGIN)) 961 ioc->build_sg(ioc, psge, data_out_dma, data_out_sz, 962 data_in_dma, data_in_sz); 963 else if (toolbox_request->Tool == 964 MPI2_TOOLBOX_MEMORY_MOVE_TOOL) { 965 Mpi2ToolboxMemMoveRequest_t *mem_move_request = 966 (Mpi2ToolboxMemMoveRequest_t *)request; 967 Mpi2SGESimple64_t tmp, *src = NULL, *dst = NULL; 968 969 ioc->build_sg_mpi(ioc, psge, data_out_dma, 970 data_out_sz, data_in_dma, data_in_sz); 971 if (data_out_sz && !data_in_sz) { 972 dst = 973 (Mpi2SGESimple64_t *)&mem_move_request->SGL; 974 src = (void *)dst + ioc->sge_size; 975 976 memcpy(&tmp, src, ioc->sge_size); 977 memcpy(src, dst, ioc->sge_size); 978 memcpy(dst, &tmp, ioc->sge_size); 979 } 980 if (ioc->logging_level & MPT_DEBUG_TM) { 981 ioc_info(ioc, 982 "Mpi2ToolboxMemMoveRequest_t request msg\n"); 983 _debug_dump_mf(mem_move_request, 984 ioc->request_sz/4); 985 } 986 } else 987 ioc->build_sg_mpi(ioc, psge, data_out_dma, data_out_sz, 988 data_in_dma, data_in_sz); 989 ioc->put_smid_default(ioc, smid); 990 break; 991 } 992 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL: 993 { 994 Mpi2SasIoUnitControlRequest_t *sasiounit_request = 995 (Mpi2SasIoUnitControlRequest_t *)mpi_request; 996 997 if (sasiounit_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET 998 || sasiounit_request->Operation == 999 MPI2_SAS_OP_PHY_LINK_RESET) { 1000 ioc->ioc_link_reset_in_progress = 1; 1001 ioc->ignore_loginfos = 1; 1002 } 1003 /* drop to default case for posting the request */ 1004 } 1005 /* fall through */ 1006 default: 1007 ioc->build_sg_mpi(ioc, psge, data_out_dma, data_out_sz, 1008 data_in_dma, data_in_sz); 1009 ioc->put_smid_default(ioc, smid); 1010 break; 1011 } 1012 1013 if (karg.timeout < MPT3_IOCTL_DEFAULT_TIMEOUT) 1014 timeout = MPT3_IOCTL_DEFAULT_TIMEOUT; 1015 else 1016 timeout = karg.timeout; 1017 wait_for_completion_timeout(&ioc->ctl_cmds.done, timeout*HZ); 1018 if (mpi_request->Function == MPI2_FUNCTION_SCSI_TASK_MGMT) { 1019 Mpi2SCSITaskManagementRequest_t *tm_request = 1020 (Mpi2SCSITaskManagementRequest_t *)mpi_request; 1021 mpt3sas_scsih_clear_tm_flag(ioc, le16_to_cpu( 1022 tm_request->DevHandle)); 1023 mpt3sas_trigger_master(ioc, MASTER_TRIGGER_TASK_MANAGMENT); 1024 } else if ((mpi_request->Function == MPI2_FUNCTION_SMP_PASSTHROUGH || 1025 mpi_request->Function == MPI2_FUNCTION_SAS_IO_UNIT_CONTROL) && 1026 ioc->ioc_link_reset_in_progress) { 1027 ioc->ioc_link_reset_in_progress = 0; 1028 ioc->ignore_loginfos = 0; 1029 } 1030 if (!(ioc->ctl_cmds.status & MPT3_CMD_COMPLETE)) { 1031 mpt3sas_check_cmd_timeout(ioc, 1032 ioc->ctl_cmds.status, mpi_request, 1033 karg.data_sge_offset, issue_reset); 1034 goto issue_host_reset; 1035 } 1036 1037 mpi_reply = ioc->ctl_cmds.reply; 1038 1039 if (mpi_reply->Function == MPI2_FUNCTION_SCSI_TASK_MGMT && 1040 (ioc->logging_level & MPT_DEBUG_TM)) { 1041 Mpi2SCSITaskManagementReply_t *tm_reply = 1042 (Mpi2SCSITaskManagementReply_t *)mpi_reply; 1043 1044 ioc_info(ioc, "TASK_MGMT: IOCStatus(0x%04x), IOCLogInfo(0x%08x), TerminationCount(0x%08x)\n", 1045 le16_to_cpu(tm_reply->IOCStatus), 1046 le32_to_cpu(tm_reply->IOCLogInfo), 1047 le32_to_cpu(tm_reply->TerminationCount)); 1048 } 1049 1050 /* copy out xdata to user */ 1051 if (data_in_sz) { 1052 if (copy_to_user(karg.data_in_buf_ptr, data_in, 1053 data_in_sz)) { 1054 pr_err("failure at %s:%d/%s()!\n", __FILE__, 1055 __LINE__, __func__); 1056 ret = -ENODATA; 1057 goto out; 1058 } 1059 } 1060 1061 /* copy out reply message frame to user */ 1062 if (karg.max_reply_bytes) { 1063 sz = min_t(u32, karg.max_reply_bytes, ioc->reply_sz); 1064 if (copy_to_user(karg.reply_frame_buf_ptr, ioc->ctl_cmds.reply, 1065 sz)) { 1066 pr_err("failure at %s:%d/%s()!\n", __FILE__, 1067 __LINE__, __func__); 1068 ret = -ENODATA; 1069 goto out; 1070 } 1071 } 1072 1073 /* copy out sense/NVMe Error Response to user */ 1074 if (karg.max_sense_bytes && (mpi_request->Function == 1075 MPI2_FUNCTION_SCSI_IO_REQUEST || mpi_request->Function == 1076 MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH || mpi_request->Function == 1077 MPI2_FUNCTION_NVME_ENCAPSULATED)) { 1078 if (karg.sense_data_ptr == NULL) { 1079 ioc_info(ioc, "Response buffer provided by application is NULL; Response data will not be returned\n"); 1080 goto out; 1081 } 1082 sz_arg = (mpi_request->Function == 1083 MPI2_FUNCTION_NVME_ENCAPSULATED) ? NVME_ERROR_RESPONSE_SIZE : 1084 SCSI_SENSE_BUFFERSIZE; 1085 sz = min_t(u32, karg.max_sense_bytes, sz_arg); 1086 if (copy_to_user(karg.sense_data_ptr, ioc->ctl_cmds.sense, 1087 sz)) { 1088 pr_err("failure at %s:%d/%s()!\n", __FILE__, 1089 __LINE__, __func__); 1090 ret = -ENODATA; 1091 goto out; 1092 } 1093 } 1094 1095 issue_host_reset: 1096 if (issue_reset) { 1097 ret = -ENODATA; 1098 if ((mpi_request->Function == MPI2_FUNCTION_SCSI_IO_REQUEST || 1099 mpi_request->Function == 1100 MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH || 1101 mpi_request->Function == MPI2_FUNCTION_SATA_PASSTHROUGH)) { 1102 ioc_info(ioc, "issue target reset: handle = (0x%04x)\n", 1103 le16_to_cpu(mpi_request->FunctionDependent1)); 1104 mpt3sas_halt_firmware(ioc); 1105 pcie_device = mpt3sas_get_pdev_by_handle(ioc, 1106 le16_to_cpu(mpi_request->FunctionDependent1)); 1107 if (pcie_device && (!ioc->tm_custom_handling) && 1108 (!(mpt3sas_scsih_is_pcie_scsi_device( 1109 pcie_device->device_info)))) 1110 mpt3sas_scsih_issue_locked_tm(ioc, 1111 le16_to_cpu(mpi_request->FunctionDependent1), 1112 0, MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET, 0, 1113 0, pcie_device->reset_timeout, 1114 MPI26_SCSITASKMGMT_MSGFLAGS_PROTOCOL_LVL_RST_PCIE); 1115 else 1116 mpt3sas_scsih_issue_locked_tm(ioc, 1117 le16_to_cpu(mpi_request->FunctionDependent1), 1118 0, MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET, 0, 1119 0, 30, MPI2_SCSITASKMGMT_MSGFLAGS_LINK_RESET); 1120 } else 1121 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 1122 } 1123 1124 out: 1125 if (pcie_device) 1126 pcie_device_put(pcie_device); 1127 1128 /* free memory associated with sg buffers */ 1129 if (data_in) 1130 dma_free_coherent(&ioc->pdev->dev, data_in_sz, data_in, 1131 data_in_dma); 1132 1133 if (data_out) 1134 dma_free_coherent(&ioc->pdev->dev, data_out_sz, data_out, 1135 data_out_dma); 1136 1137 kfree(mpi_request); 1138 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED; 1139 return ret; 1140 } 1141 1142 /** 1143 * _ctl_getiocinfo - main handler for MPT3IOCINFO opcode 1144 * @ioc: per adapter object 1145 * @arg: user space buffer containing ioctl content 1146 */ 1147 static long 1148 _ctl_getiocinfo(struct MPT3SAS_ADAPTER *ioc, void __user *arg) 1149 { 1150 struct mpt3_ioctl_iocinfo karg; 1151 1152 dctlprintk(ioc, ioc_info(ioc, "%s: enter\n", 1153 __func__)); 1154 1155 memset(&karg, 0 , sizeof(karg)); 1156 if (ioc->pfacts) 1157 karg.port_number = ioc->pfacts[0].PortNumber; 1158 karg.hw_rev = ioc->pdev->revision; 1159 karg.pci_id = ioc->pdev->device; 1160 karg.subsystem_device = ioc->pdev->subsystem_device; 1161 karg.subsystem_vendor = ioc->pdev->subsystem_vendor; 1162 karg.pci_information.u.bits.bus = ioc->pdev->bus->number; 1163 karg.pci_information.u.bits.device = PCI_SLOT(ioc->pdev->devfn); 1164 karg.pci_information.u.bits.function = PCI_FUNC(ioc->pdev->devfn); 1165 karg.pci_information.segment_id = pci_domain_nr(ioc->pdev->bus); 1166 karg.firmware_version = ioc->facts.FWVersion.Word; 1167 strcpy(karg.driver_version, ioc->driver_name); 1168 strcat(karg.driver_version, "-"); 1169 switch (ioc->hba_mpi_version_belonged) { 1170 case MPI2_VERSION: 1171 if (ioc->is_warpdrive) 1172 karg.adapter_type = MPT2_IOCTL_INTERFACE_SAS2_SSS6200; 1173 else 1174 karg.adapter_type = MPT2_IOCTL_INTERFACE_SAS2; 1175 strcat(karg.driver_version, MPT2SAS_DRIVER_VERSION); 1176 break; 1177 case MPI25_VERSION: 1178 case MPI26_VERSION: 1179 if (ioc->is_gen35_ioc) 1180 karg.adapter_type = MPT3_IOCTL_INTERFACE_SAS35; 1181 else 1182 karg.adapter_type = MPT3_IOCTL_INTERFACE_SAS3; 1183 strcat(karg.driver_version, MPT3SAS_DRIVER_VERSION); 1184 break; 1185 } 1186 karg.bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion); 1187 1188 if (copy_to_user(arg, &karg, sizeof(karg))) { 1189 pr_err("failure at %s:%d/%s()!\n", 1190 __FILE__, __LINE__, __func__); 1191 return -EFAULT; 1192 } 1193 return 0; 1194 } 1195 1196 /** 1197 * _ctl_eventquery - main handler for MPT3EVENTQUERY opcode 1198 * @ioc: per adapter object 1199 * @arg: user space buffer containing ioctl content 1200 */ 1201 static long 1202 _ctl_eventquery(struct MPT3SAS_ADAPTER *ioc, void __user *arg) 1203 { 1204 struct mpt3_ioctl_eventquery karg; 1205 1206 if (copy_from_user(&karg, arg, sizeof(karg))) { 1207 pr_err("failure at %s:%d/%s()!\n", 1208 __FILE__, __LINE__, __func__); 1209 return -EFAULT; 1210 } 1211 1212 dctlprintk(ioc, ioc_info(ioc, "%s: enter\n", 1213 __func__)); 1214 1215 karg.event_entries = MPT3SAS_CTL_EVENT_LOG_SIZE; 1216 memcpy(karg.event_types, ioc->event_type, 1217 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS * sizeof(u32)); 1218 1219 if (copy_to_user(arg, &karg, sizeof(karg))) { 1220 pr_err("failure at %s:%d/%s()!\n", 1221 __FILE__, __LINE__, __func__); 1222 return -EFAULT; 1223 } 1224 return 0; 1225 } 1226 1227 /** 1228 * _ctl_eventenable - main handler for MPT3EVENTENABLE opcode 1229 * @ioc: per adapter object 1230 * @arg: user space buffer containing ioctl content 1231 */ 1232 static long 1233 _ctl_eventenable(struct MPT3SAS_ADAPTER *ioc, void __user *arg) 1234 { 1235 struct mpt3_ioctl_eventenable karg; 1236 1237 if (copy_from_user(&karg, arg, sizeof(karg))) { 1238 pr_err("failure at %s:%d/%s()!\n", 1239 __FILE__, __LINE__, __func__); 1240 return -EFAULT; 1241 } 1242 1243 dctlprintk(ioc, ioc_info(ioc, "%s: enter\n", 1244 __func__)); 1245 1246 memcpy(ioc->event_type, karg.event_types, 1247 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS * sizeof(u32)); 1248 mpt3sas_base_validate_event_type(ioc, ioc->event_type); 1249 1250 if (ioc->event_log) 1251 return 0; 1252 /* initialize event_log */ 1253 ioc->event_context = 0; 1254 ioc->aen_event_read_flag = 0; 1255 ioc->event_log = kcalloc(MPT3SAS_CTL_EVENT_LOG_SIZE, 1256 sizeof(struct MPT3_IOCTL_EVENTS), GFP_KERNEL); 1257 if (!ioc->event_log) { 1258 pr_err("failure at %s:%d/%s()!\n", 1259 __FILE__, __LINE__, __func__); 1260 return -ENOMEM; 1261 } 1262 return 0; 1263 } 1264 1265 /** 1266 * _ctl_eventreport - main handler for MPT3EVENTREPORT opcode 1267 * @ioc: per adapter object 1268 * @arg: user space buffer containing ioctl content 1269 */ 1270 static long 1271 _ctl_eventreport(struct MPT3SAS_ADAPTER *ioc, void __user *arg) 1272 { 1273 struct mpt3_ioctl_eventreport karg; 1274 u32 number_bytes, max_events, max; 1275 struct mpt3_ioctl_eventreport __user *uarg = arg; 1276 1277 if (copy_from_user(&karg, arg, sizeof(karg))) { 1278 pr_err("failure at %s:%d/%s()!\n", 1279 __FILE__, __LINE__, __func__); 1280 return -EFAULT; 1281 } 1282 1283 dctlprintk(ioc, ioc_info(ioc, "%s: enter\n", 1284 __func__)); 1285 1286 number_bytes = karg.hdr.max_data_size - 1287 sizeof(struct mpt3_ioctl_header); 1288 max_events = number_bytes/sizeof(struct MPT3_IOCTL_EVENTS); 1289 max = min_t(u32, MPT3SAS_CTL_EVENT_LOG_SIZE, max_events); 1290 1291 /* If fewer than 1 event is requested, there must have 1292 * been some type of error. 1293 */ 1294 if (!max || !ioc->event_log) 1295 return -ENODATA; 1296 1297 number_bytes = max * sizeof(struct MPT3_IOCTL_EVENTS); 1298 if (copy_to_user(uarg->event_data, ioc->event_log, number_bytes)) { 1299 pr_err("failure at %s:%d/%s()!\n", 1300 __FILE__, __LINE__, __func__); 1301 return -EFAULT; 1302 } 1303 1304 /* reset flag so SIGIO can restart */ 1305 ioc->aen_event_read_flag = 0; 1306 return 0; 1307 } 1308 1309 /** 1310 * _ctl_do_reset - main handler for MPT3HARDRESET opcode 1311 * @ioc: per adapter object 1312 * @arg: user space buffer containing ioctl content 1313 */ 1314 static long 1315 _ctl_do_reset(struct MPT3SAS_ADAPTER *ioc, void __user *arg) 1316 { 1317 struct mpt3_ioctl_diag_reset karg; 1318 int retval; 1319 1320 if (copy_from_user(&karg, arg, sizeof(karg))) { 1321 pr_err("failure at %s:%d/%s()!\n", 1322 __FILE__, __LINE__, __func__); 1323 return -EFAULT; 1324 } 1325 1326 if (ioc->shost_recovery || ioc->pci_error_recovery || 1327 ioc->is_driver_loading) 1328 return -EAGAIN; 1329 1330 dctlprintk(ioc, ioc_info(ioc, "%s: enter\n", 1331 __func__)); 1332 1333 retval = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 1334 ioc_info(ioc, 1335 "Ioctl: host reset: %s\n", ((!retval) ? "SUCCESS" : "FAILED")); 1336 return 0; 1337 } 1338 1339 /** 1340 * _ctl_btdh_search_sas_device - searching for sas device 1341 * @ioc: per adapter object 1342 * @btdh: btdh ioctl payload 1343 */ 1344 static int 1345 _ctl_btdh_search_sas_device(struct MPT3SAS_ADAPTER *ioc, 1346 struct mpt3_ioctl_btdh_mapping *btdh) 1347 { 1348 struct _sas_device *sas_device; 1349 unsigned long flags; 1350 int rc = 0; 1351 1352 if (list_empty(&ioc->sas_device_list)) 1353 return rc; 1354 1355 spin_lock_irqsave(&ioc->sas_device_lock, flags); 1356 list_for_each_entry(sas_device, &ioc->sas_device_list, list) { 1357 if (btdh->bus == 0xFFFFFFFF && btdh->id == 0xFFFFFFFF && 1358 btdh->handle == sas_device->handle) { 1359 btdh->bus = sas_device->channel; 1360 btdh->id = sas_device->id; 1361 rc = 1; 1362 goto out; 1363 } else if (btdh->bus == sas_device->channel && btdh->id == 1364 sas_device->id && btdh->handle == 0xFFFF) { 1365 btdh->handle = sas_device->handle; 1366 rc = 1; 1367 goto out; 1368 } 1369 } 1370 out: 1371 spin_unlock_irqrestore(&ioc->sas_device_lock, flags); 1372 return rc; 1373 } 1374 1375 /** 1376 * _ctl_btdh_search_pcie_device - searching for pcie device 1377 * @ioc: per adapter object 1378 * @btdh: btdh ioctl payload 1379 */ 1380 static int 1381 _ctl_btdh_search_pcie_device(struct MPT3SAS_ADAPTER *ioc, 1382 struct mpt3_ioctl_btdh_mapping *btdh) 1383 { 1384 struct _pcie_device *pcie_device; 1385 unsigned long flags; 1386 int rc = 0; 1387 1388 if (list_empty(&ioc->pcie_device_list)) 1389 return rc; 1390 1391 spin_lock_irqsave(&ioc->pcie_device_lock, flags); 1392 list_for_each_entry(pcie_device, &ioc->pcie_device_list, list) { 1393 if (btdh->bus == 0xFFFFFFFF && btdh->id == 0xFFFFFFFF && 1394 btdh->handle == pcie_device->handle) { 1395 btdh->bus = pcie_device->channel; 1396 btdh->id = pcie_device->id; 1397 rc = 1; 1398 goto out; 1399 } else if (btdh->bus == pcie_device->channel && btdh->id == 1400 pcie_device->id && btdh->handle == 0xFFFF) { 1401 btdh->handle = pcie_device->handle; 1402 rc = 1; 1403 goto out; 1404 } 1405 } 1406 out: 1407 spin_unlock_irqrestore(&ioc->pcie_device_lock, flags); 1408 return rc; 1409 } 1410 1411 /** 1412 * _ctl_btdh_search_raid_device - searching for raid device 1413 * @ioc: per adapter object 1414 * @btdh: btdh ioctl payload 1415 */ 1416 static int 1417 _ctl_btdh_search_raid_device(struct MPT3SAS_ADAPTER *ioc, 1418 struct mpt3_ioctl_btdh_mapping *btdh) 1419 { 1420 struct _raid_device *raid_device; 1421 unsigned long flags; 1422 int rc = 0; 1423 1424 if (list_empty(&ioc->raid_device_list)) 1425 return rc; 1426 1427 spin_lock_irqsave(&ioc->raid_device_lock, flags); 1428 list_for_each_entry(raid_device, &ioc->raid_device_list, list) { 1429 if (btdh->bus == 0xFFFFFFFF && btdh->id == 0xFFFFFFFF && 1430 btdh->handle == raid_device->handle) { 1431 btdh->bus = raid_device->channel; 1432 btdh->id = raid_device->id; 1433 rc = 1; 1434 goto out; 1435 } else if (btdh->bus == raid_device->channel && btdh->id == 1436 raid_device->id && btdh->handle == 0xFFFF) { 1437 btdh->handle = raid_device->handle; 1438 rc = 1; 1439 goto out; 1440 } 1441 } 1442 out: 1443 spin_unlock_irqrestore(&ioc->raid_device_lock, flags); 1444 return rc; 1445 } 1446 1447 /** 1448 * _ctl_btdh_mapping - main handler for MPT3BTDHMAPPING opcode 1449 * @ioc: per adapter object 1450 * @arg: user space buffer containing ioctl content 1451 */ 1452 static long 1453 _ctl_btdh_mapping(struct MPT3SAS_ADAPTER *ioc, void __user *arg) 1454 { 1455 struct mpt3_ioctl_btdh_mapping karg; 1456 int rc; 1457 1458 if (copy_from_user(&karg, arg, sizeof(karg))) { 1459 pr_err("failure at %s:%d/%s()!\n", 1460 __FILE__, __LINE__, __func__); 1461 return -EFAULT; 1462 } 1463 1464 dctlprintk(ioc, ioc_info(ioc, "%s\n", 1465 __func__)); 1466 1467 rc = _ctl_btdh_search_sas_device(ioc, &karg); 1468 if (!rc) 1469 rc = _ctl_btdh_search_pcie_device(ioc, &karg); 1470 if (!rc) 1471 _ctl_btdh_search_raid_device(ioc, &karg); 1472 1473 if (copy_to_user(arg, &karg, sizeof(karg))) { 1474 pr_err("failure at %s:%d/%s()!\n", 1475 __FILE__, __LINE__, __func__); 1476 return -EFAULT; 1477 } 1478 return 0; 1479 } 1480 1481 /** 1482 * _ctl_diag_capability - return diag buffer capability 1483 * @ioc: per adapter object 1484 * @buffer_type: specifies either TRACE, SNAPSHOT, or EXTENDED 1485 * 1486 * returns 1 when diag buffer support is enabled in firmware 1487 */ 1488 static u8 1489 _ctl_diag_capability(struct MPT3SAS_ADAPTER *ioc, u8 buffer_type) 1490 { 1491 u8 rc = 0; 1492 1493 switch (buffer_type) { 1494 case MPI2_DIAG_BUF_TYPE_TRACE: 1495 if (ioc->facts.IOCCapabilities & 1496 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) 1497 rc = 1; 1498 break; 1499 case MPI2_DIAG_BUF_TYPE_SNAPSHOT: 1500 if (ioc->facts.IOCCapabilities & 1501 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) 1502 rc = 1; 1503 break; 1504 case MPI2_DIAG_BUF_TYPE_EXTENDED: 1505 if (ioc->facts.IOCCapabilities & 1506 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) 1507 rc = 1; 1508 } 1509 1510 return rc; 1511 } 1512 1513 /** 1514 * _ctl_diag_get_bufftype - return diag buffer type 1515 * either TRACE, SNAPSHOT, or EXTENDED 1516 * @ioc: per adapter object 1517 * @unique_id: specifies the unique_id for the buffer 1518 * 1519 * returns MPT3_DIAG_UID_NOT_FOUND if the id not found 1520 */ 1521 static u8 1522 _ctl_diag_get_bufftype(struct MPT3SAS_ADAPTER *ioc, u32 unique_id) 1523 { 1524 u8 index; 1525 1526 for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) { 1527 if (ioc->unique_id[index] == unique_id) 1528 return index; 1529 } 1530 1531 return MPT3_DIAG_UID_NOT_FOUND; 1532 } 1533 1534 /** 1535 * _ctl_diag_register_2 - wrapper for registering diag buffer support 1536 * @ioc: per adapter object 1537 * @diag_register: the diag_register struct passed in from user space 1538 * 1539 */ 1540 static long 1541 _ctl_diag_register_2(struct MPT3SAS_ADAPTER *ioc, 1542 struct mpt3_diag_register *diag_register) 1543 { 1544 int rc, i; 1545 void *request_data = NULL; 1546 dma_addr_t request_data_dma; 1547 u32 request_data_sz = 0; 1548 Mpi2DiagBufferPostRequest_t *mpi_request; 1549 Mpi2DiagBufferPostReply_t *mpi_reply; 1550 u8 buffer_type; 1551 u16 smid; 1552 u16 ioc_status; 1553 u32 ioc_state; 1554 u8 issue_reset = 0; 1555 1556 dctlprintk(ioc, ioc_info(ioc, "%s\n", 1557 __func__)); 1558 1559 ioc_state = mpt3sas_base_get_iocstate(ioc, 1); 1560 if (ioc_state != MPI2_IOC_STATE_OPERATIONAL) { 1561 ioc_err(ioc, "%s: failed due to ioc not operational\n", 1562 __func__); 1563 rc = -EAGAIN; 1564 goto out; 1565 } 1566 1567 if (ioc->ctl_cmds.status != MPT3_CMD_NOT_USED) { 1568 ioc_err(ioc, "%s: ctl_cmd in use\n", __func__); 1569 rc = -EAGAIN; 1570 goto out; 1571 } 1572 1573 buffer_type = diag_register->buffer_type; 1574 if (!_ctl_diag_capability(ioc, buffer_type)) { 1575 ioc_err(ioc, "%s: doesn't have capability for buffer_type(0x%02x)\n", 1576 __func__, buffer_type); 1577 return -EPERM; 1578 } 1579 1580 if (diag_register->unique_id == 0) { 1581 ioc_err(ioc, 1582 "%s: Invalid UID(0x%08x), buffer_type(0x%02x)\n", __func__, 1583 diag_register->unique_id, buffer_type); 1584 return -EINVAL; 1585 } 1586 1587 if ((ioc->diag_buffer_status[buffer_type] & 1588 MPT3_DIAG_BUFFER_IS_APP_OWNED) && 1589 !(ioc->diag_buffer_status[buffer_type] & 1590 MPT3_DIAG_BUFFER_IS_RELEASED)) { 1591 ioc_err(ioc, 1592 "%s: buffer_type(0x%02x) is already registered by application with UID(0x%08x)\n", 1593 __func__, buffer_type, ioc->unique_id[buffer_type]); 1594 return -EINVAL; 1595 } 1596 1597 if (ioc->diag_buffer_status[buffer_type] & 1598 MPT3_DIAG_BUFFER_IS_REGISTERED) { 1599 /* 1600 * If driver posts buffer initially, then an application wants 1601 * to Register that buffer (own it) without Releasing first, 1602 * the application Register command MUST have the same buffer 1603 * type and size in the Register command (obtained from the 1604 * Query command). Otherwise that Register command will be 1605 * failed. If the application has released the buffer but wants 1606 * to re-register it, it should be allowed as long as the 1607 * Unique-Id/Size match. 1608 */ 1609 1610 if (ioc->unique_id[buffer_type] == MPT3DIAGBUFFUNIQUEID && 1611 ioc->diag_buffer_sz[buffer_type] == 1612 diag_register->requested_buffer_size) { 1613 1614 if (!(ioc->diag_buffer_status[buffer_type] & 1615 MPT3_DIAG_BUFFER_IS_RELEASED)) { 1616 dctlprintk(ioc, ioc_info(ioc, 1617 "%s: diag_buffer (%d) ownership changed. old-ID(0x%08x), new-ID(0x%08x)\n", 1618 __func__, buffer_type, 1619 ioc->unique_id[buffer_type], 1620 diag_register->unique_id)); 1621 1622 /* 1623 * Application wants to own the buffer with 1624 * the same size. 1625 */ 1626 ioc->unique_id[buffer_type] = 1627 diag_register->unique_id; 1628 rc = 0; /* success */ 1629 goto out; 1630 } 1631 } else if (ioc->unique_id[buffer_type] != 1632 MPT3DIAGBUFFUNIQUEID) { 1633 if (ioc->unique_id[buffer_type] != 1634 diag_register->unique_id || 1635 ioc->diag_buffer_sz[buffer_type] != 1636 diag_register->requested_buffer_size || 1637 !(ioc->diag_buffer_status[buffer_type] & 1638 MPT3_DIAG_BUFFER_IS_RELEASED)) { 1639 ioc_err(ioc, 1640 "%s: already has a registered buffer for buffer_type(0x%02x)\n", 1641 __func__, buffer_type); 1642 return -EINVAL; 1643 } 1644 } else { 1645 ioc_err(ioc, "%s: already has a registered buffer for buffer_type(0x%02x)\n", 1646 __func__, buffer_type); 1647 return -EINVAL; 1648 } 1649 } else if (ioc->diag_buffer_status[buffer_type] & 1650 MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED) { 1651 1652 if (ioc->unique_id[buffer_type] != MPT3DIAGBUFFUNIQUEID || 1653 ioc->diag_buffer_sz[buffer_type] != 1654 diag_register->requested_buffer_size) { 1655 1656 ioc_err(ioc, 1657 "%s: already a buffer is allocated for buffer_type(0x%02x) of size %d bytes, so please try registering again with same size\n", 1658 __func__, buffer_type, 1659 ioc->diag_buffer_sz[buffer_type]); 1660 return -EINVAL; 1661 } 1662 } 1663 1664 if (diag_register->requested_buffer_size % 4) { 1665 ioc_err(ioc, "%s: the requested_buffer_size is not 4 byte aligned\n", 1666 __func__); 1667 return -EINVAL; 1668 } 1669 1670 smid = mpt3sas_base_get_smid(ioc, ioc->ctl_cb_idx); 1671 if (!smid) { 1672 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 1673 rc = -EAGAIN; 1674 goto out; 1675 } 1676 1677 rc = 0; 1678 ioc->ctl_cmds.status = MPT3_CMD_PENDING; 1679 memset(ioc->ctl_cmds.reply, 0, ioc->reply_sz); 1680 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 1681 ioc->ctl_cmds.smid = smid; 1682 1683 request_data = ioc->diag_buffer[buffer_type]; 1684 request_data_sz = diag_register->requested_buffer_size; 1685 ioc->unique_id[buffer_type] = diag_register->unique_id; 1686 ioc->diag_buffer_status[buffer_type] &= 1687 MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED; 1688 memcpy(ioc->product_specific[buffer_type], 1689 diag_register->product_specific, MPT3_PRODUCT_SPECIFIC_DWORDS); 1690 ioc->diagnostic_flags[buffer_type] = diag_register->diagnostic_flags; 1691 1692 if (request_data) { 1693 request_data_dma = ioc->diag_buffer_dma[buffer_type]; 1694 if (request_data_sz != ioc->diag_buffer_sz[buffer_type]) { 1695 dma_free_coherent(&ioc->pdev->dev, 1696 ioc->diag_buffer_sz[buffer_type], 1697 request_data, request_data_dma); 1698 request_data = NULL; 1699 } 1700 } 1701 1702 if (request_data == NULL) { 1703 ioc->diag_buffer_sz[buffer_type] = 0; 1704 ioc->diag_buffer_dma[buffer_type] = 0; 1705 request_data = dma_alloc_coherent(&ioc->pdev->dev, 1706 request_data_sz, &request_data_dma, GFP_KERNEL); 1707 if (request_data == NULL) { 1708 ioc_err(ioc, "%s: failed allocating memory for diag buffers, requested size(%d)\n", 1709 __func__, request_data_sz); 1710 mpt3sas_base_free_smid(ioc, smid); 1711 rc = -ENOMEM; 1712 goto out; 1713 } 1714 ioc->diag_buffer[buffer_type] = request_data; 1715 ioc->diag_buffer_sz[buffer_type] = request_data_sz; 1716 ioc->diag_buffer_dma[buffer_type] = request_data_dma; 1717 } 1718 1719 mpi_request->Function = MPI2_FUNCTION_DIAG_BUFFER_POST; 1720 mpi_request->BufferType = diag_register->buffer_type; 1721 mpi_request->Flags = cpu_to_le32(diag_register->diagnostic_flags); 1722 mpi_request->BufferAddress = cpu_to_le64(request_data_dma); 1723 mpi_request->BufferLength = cpu_to_le32(request_data_sz); 1724 mpi_request->VF_ID = 0; /* TODO */ 1725 mpi_request->VP_ID = 0; 1726 1727 dctlprintk(ioc, 1728 ioc_info(ioc, "%s: diag_buffer(0x%p), dma(0x%llx), sz(%d)\n", 1729 __func__, request_data, 1730 (unsigned long long)request_data_dma, 1731 le32_to_cpu(mpi_request->BufferLength))); 1732 1733 for (i = 0; i < MPT3_PRODUCT_SPECIFIC_DWORDS; i++) 1734 mpi_request->ProductSpecific[i] = 1735 cpu_to_le32(ioc->product_specific[buffer_type][i]); 1736 1737 init_completion(&ioc->ctl_cmds.done); 1738 ioc->put_smid_default(ioc, smid); 1739 wait_for_completion_timeout(&ioc->ctl_cmds.done, 1740 MPT3_IOCTL_DEFAULT_TIMEOUT*HZ); 1741 1742 if (!(ioc->ctl_cmds.status & MPT3_CMD_COMPLETE)) { 1743 mpt3sas_check_cmd_timeout(ioc, 1744 ioc->ctl_cmds.status, mpi_request, 1745 sizeof(Mpi2DiagBufferPostRequest_t)/4, issue_reset); 1746 goto issue_host_reset; 1747 } 1748 1749 /* process the completed Reply Message Frame */ 1750 if ((ioc->ctl_cmds.status & MPT3_CMD_REPLY_VALID) == 0) { 1751 ioc_err(ioc, "%s: no reply message\n", __func__); 1752 rc = -EFAULT; 1753 goto out; 1754 } 1755 1756 mpi_reply = ioc->ctl_cmds.reply; 1757 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 1758 1759 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 1760 ioc->diag_buffer_status[buffer_type] |= 1761 MPT3_DIAG_BUFFER_IS_REGISTERED; 1762 dctlprintk(ioc, ioc_info(ioc, "%s: success\n", __func__)); 1763 } else { 1764 ioc_info(ioc, "%s: ioc_status(0x%04x) log_info(0x%08x)\n", 1765 __func__, 1766 ioc_status, le32_to_cpu(mpi_reply->IOCLogInfo)); 1767 rc = -EFAULT; 1768 } 1769 1770 issue_host_reset: 1771 if (issue_reset) 1772 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 1773 1774 out: 1775 1776 if (rc && request_data) { 1777 dma_free_coherent(&ioc->pdev->dev, request_data_sz, 1778 request_data, request_data_dma); 1779 ioc->diag_buffer_status[buffer_type] &= 1780 ~MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED; 1781 } 1782 1783 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED; 1784 return rc; 1785 } 1786 1787 /** 1788 * mpt3sas_enable_diag_buffer - enabling diag_buffers support driver load time 1789 * @ioc: per adapter object 1790 * @bits_to_register: bitwise field where trace is bit 0, and snapshot is bit 1 1791 * 1792 * This is called when command line option diag_buffer_enable is enabled 1793 * at driver load time. 1794 */ 1795 void 1796 mpt3sas_enable_diag_buffer(struct MPT3SAS_ADAPTER *ioc, u8 bits_to_register) 1797 { 1798 struct mpt3_diag_register diag_register; 1799 u32 ret_val; 1800 u32 trace_buff_size = ioc->manu_pg11.HostTraceBufferMaxSizeKB<<10; 1801 u32 min_trace_buff_size = 0; 1802 u32 decr_trace_buff_size = 0; 1803 1804 memset(&diag_register, 0, sizeof(struct mpt3_diag_register)); 1805 1806 if (bits_to_register & 1) { 1807 ioc_info(ioc, "registering trace buffer support\n"); 1808 ioc->diag_trigger_master.MasterData = 1809 (MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET); 1810 diag_register.buffer_type = MPI2_DIAG_BUF_TYPE_TRACE; 1811 diag_register.unique_id = 1812 (ioc->hba_mpi_version_belonged == MPI2_VERSION) ? 1813 (MPT2DIAGBUFFUNIQUEID):(MPT3DIAGBUFFUNIQUEID); 1814 1815 if (trace_buff_size != 0) { 1816 diag_register.requested_buffer_size = trace_buff_size; 1817 min_trace_buff_size = 1818 ioc->manu_pg11.HostTraceBufferMinSizeKB<<10; 1819 decr_trace_buff_size = 1820 ioc->manu_pg11.HostTraceBufferDecrementSizeKB<<10; 1821 1822 if (min_trace_buff_size > trace_buff_size) { 1823 /* The buff size is not set correctly */ 1824 ioc_err(ioc, 1825 "Min Trace Buff size (%d KB) greater than Max Trace Buff size (%d KB)\n", 1826 min_trace_buff_size>>10, 1827 trace_buff_size>>10); 1828 ioc_err(ioc, 1829 "Using zero Min Trace Buff Size\n"); 1830 min_trace_buff_size = 0; 1831 } 1832 1833 if (decr_trace_buff_size == 0) { 1834 /* 1835 * retry the min size if decrement 1836 * is not available. 1837 */ 1838 decr_trace_buff_size = 1839 trace_buff_size - min_trace_buff_size; 1840 } 1841 } else { 1842 /* register for 2MB buffers */ 1843 diag_register.requested_buffer_size = 2 * (1024 * 1024); 1844 } 1845 1846 do { 1847 ret_val = _ctl_diag_register_2(ioc, &diag_register); 1848 1849 if (ret_val == -ENOMEM && min_trace_buff_size && 1850 (trace_buff_size - decr_trace_buff_size) >= 1851 min_trace_buff_size) { 1852 /* adjust the buffer size */ 1853 trace_buff_size -= decr_trace_buff_size; 1854 diag_register.requested_buffer_size = 1855 trace_buff_size; 1856 } else 1857 break; 1858 } while (true); 1859 1860 if (ret_val == -ENOMEM) 1861 ioc_err(ioc, 1862 "Cannot allocate trace buffer memory. Last memory tried = %d KB\n", 1863 diag_register.requested_buffer_size>>10); 1864 else if (ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] 1865 & MPT3_DIAG_BUFFER_IS_REGISTERED) { 1866 ioc_err(ioc, "Trace buffer memory %d KB allocated\n", 1867 diag_register.requested_buffer_size>>10); 1868 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) 1869 ioc->diag_buffer_status[ 1870 MPI2_DIAG_BUF_TYPE_TRACE] |= 1871 MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED; 1872 } 1873 } 1874 1875 if (bits_to_register & 2) { 1876 ioc_info(ioc, "registering snapshot buffer support\n"); 1877 diag_register.buffer_type = MPI2_DIAG_BUF_TYPE_SNAPSHOT; 1878 /* register for 2MB buffers */ 1879 diag_register.requested_buffer_size = 2 * (1024 * 1024); 1880 diag_register.unique_id = 0x7075901; 1881 _ctl_diag_register_2(ioc, &diag_register); 1882 } 1883 1884 if (bits_to_register & 4) { 1885 ioc_info(ioc, "registering extended buffer support\n"); 1886 diag_register.buffer_type = MPI2_DIAG_BUF_TYPE_EXTENDED; 1887 /* register for 2MB buffers */ 1888 diag_register.requested_buffer_size = 2 * (1024 * 1024); 1889 diag_register.unique_id = 0x7075901; 1890 _ctl_diag_register_2(ioc, &diag_register); 1891 } 1892 } 1893 1894 /** 1895 * _ctl_diag_register - application register with driver 1896 * @ioc: per adapter object 1897 * @arg: user space buffer containing ioctl content 1898 * 1899 * This will allow the driver to setup any required buffers that will be 1900 * needed by firmware to communicate with the driver. 1901 */ 1902 static long 1903 _ctl_diag_register(struct MPT3SAS_ADAPTER *ioc, void __user *arg) 1904 { 1905 struct mpt3_diag_register karg; 1906 long rc; 1907 1908 if (copy_from_user(&karg, arg, sizeof(karg))) { 1909 pr_err("failure at %s:%d/%s()!\n", 1910 __FILE__, __LINE__, __func__); 1911 return -EFAULT; 1912 } 1913 1914 rc = _ctl_diag_register_2(ioc, &karg); 1915 1916 if (!rc && (ioc->diag_buffer_status[karg.buffer_type] & 1917 MPT3_DIAG_BUFFER_IS_REGISTERED)) 1918 ioc->diag_buffer_status[karg.buffer_type] |= 1919 MPT3_DIAG_BUFFER_IS_APP_OWNED; 1920 1921 return rc; 1922 } 1923 1924 /** 1925 * _ctl_diag_unregister - application unregister with driver 1926 * @ioc: per adapter object 1927 * @arg: user space buffer containing ioctl content 1928 * 1929 * This will allow the driver to cleanup any memory allocated for diag 1930 * messages and to free up any resources. 1931 */ 1932 static long 1933 _ctl_diag_unregister(struct MPT3SAS_ADAPTER *ioc, void __user *arg) 1934 { 1935 struct mpt3_diag_unregister karg; 1936 void *request_data; 1937 dma_addr_t request_data_dma; 1938 u32 request_data_sz; 1939 u8 buffer_type; 1940 1941 if (copy_from_user(&karg, arg, sizeof(karg))) { 1942 pr_err("failure at %s:%d/%s()!\n", 1943 __FILE__, __LINE__, __func__); 1944 return -EFAULT; 1945 } 1946 1947 dctlprintk(ioc, ioc_info(ioc, "%s\n", 1948 __func__)); 1949 1950 buffer_type = _ctl_diag_get_bufftype(ioc, karg.unique_id); 1951 if (buffer_type == MPT3_DIAG_UID_NOT_FOUND) { 1952 ioc_err(ioc, "%s: buffer with unique_id(0x%08x) not found\n", 1953 __func__, karg.unique_id); 1954 return -EINVAL; 1955 } 1956 1957 if (!_ctl_diag_capability(ioc, buffer_type)) { 1958 ioc_err(ioc, "%s: doesn't have capability for buffer_type(0x%02x)\n", 1959 __func__, buffer_type); 1960 return -EPERM; 1961 } 1962 1963 if ((ioc->diag_buffer_status[buffer_type] & 1964 MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) { 1965 ioc_err(ioc, "%s: buffer_type(0x%02x) is not registered\n", 1966 __func__, buffer_type); 1967 return -EINVAL; 1968 } 1969 if ((ioc->diag_buffer_status[buffer_type] & 1970 MPT3_DIAG_BUFFER_IS_RELEASED) == 0) { 1971 ioc_err(ioc, "%s: buffer_type(0x%02x) has not been released\n", 1972 __func__, buffer_type); 1973 return -EINVAL; 1974 } 1975 1976 if (karg.unique_id != ioc->unique_id[buffer_type]) { 1977 ioc_err(ioc, "%s: unique_id(0x%08x) is not registered\n", 1978 __func__, karg.unique_id); 1979 return -EINVAL; 1980 } 1981 1982 request_data = ioc->diag_buffer[buffer_type]; 1983 if (!request_data) { 1984 ioc_err(ioc, "%s: doesn't have memory allocated for buffer_type(0x%02x)\n", 1985 __func__, buffer_type); 1986 return -ENOMEM; 1987 } 1988 1989 if (ioc->diag_buffer_status[buffer_type] & 1990 MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED) { 1991 ioc->unique_id[buffer_type] = MPT3DIAGBUFFUNIQUEID; 1992 ioc->diag_buffer_status[buffer_type] &= 1993 ~MPT3_DIAG_BUFFER_IS_APP_OWNED; 1994 ioc->diag_buffer_status[buffer_type] &= 1995 ~MPT3_DIAG_BUFFER_IS_REGISTERED; 1996 } else { 1997 request_data_sz = ioc->diag_buffer_sz[buffer_type]; 1998 request_data_dma = ioc->diag_buffer_dma[buffer_type]; 1999 dma_free_coherent(&ioc->pdev->dev, request_data_sz, 2000 request_data, request_data_dma); 2001 ioc->diag_buffer[buffer_type] = NULL; 2002 ioc->diag_buffer_status[buffer_type] = 0; 2003 } 2004 return 0; 2005 } 2006 2007 /** 2008 * _ctl_diag_query - query relevant info associated with diag buffers 2009 * @ioc: per adapter object 2010 * @arg: user space buffer containing ioctl content 2011 * 2012 * The application will send only buffer_type and unique_id. Driver will 2013 * inspect unique_id first, if valid, fill in all the info. If unique_id is 2014 * 0x00, the driver will return info specified by Buffer Type. 2015 */ 2016 static long 2017 _ctl_diag_query(struct MPT3SAS_ADAPTER *ioc, void __user *arg) 2018 { 2019 struct mpt3_diag_query karg; 2020 void *request_data; 2021 int i; 2022 u8 buffer_type; 2023 2024 if (copy_from_user(&karg, arg, sizeof(karg))) { 2025 pr_err("failure at %s:%d/%s()!\n", 2026 __FILE__, __LINE__, __func__); 2027 return -EFAULT; 2028 } 2029 2030 dctlprintk(ioc, ioc_info(ioc, "%s\n", 2031 __func__)); 2032 2033 karg.application_flags = 0; 2034 buffer_type = karg.buffer_type; 2035 2036 if (!_ctl_diag_capability(ioc, buffer_type)) { 2037 ioc_err(ioc, "%s: doesn't have capability for buffer_type(0x%02x)\n", 2038 __func__, buffer_type); 2039 return -EPERM; 2040 } 2041 2042 if (!(ioc->diag_buffer_status[buffer_type] & 2043 MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED)) { 2044 if ((ioc->diag_buffer_status[buffer_type] & 2045 MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) { 2046 ioc_err(ioc, "%s: buffer_type(0x%02x) is not registered\n", 2047 __func__, buffer_type); 2048 return -EINVAL; 2049 } 2050 } 2051 2052 if (karg.unique_id) { 2053 if (karg.unique_id != ioc->unique_id[buffer_type]) { 2054 ioc_err(ioc, "%s: unique_id(0x%08x) is not registered\n", 2055 __func__, karg.unique_id); 2056 return -EINVAL; 2057 } 2058 } 2059 2060 request_data = ioc->diag_buffer[buffer_type]; 2061 if (!request_data) { 2062 ioc_err(ioc, "%s: doesn't have buffer for buffer_type(0x%02x)\n", 2063 __func__, buffer_type); 2064 return -ENOMEM; 2065 } 2066 2067 if ((ioc->diag_buffer_status[buffer_type] & 2068 MPT3_DIAG_BUFFER_IS_REGISTERED)) 2069 karg.application_flags |= MPT3_APP_FLAGS_BUFFER_VALID; 2070 2071 if (!(ioc->diag_buffer_status[buffer_type] & 2072 MPT3_DIAG_BUFFER_IS_RELEASED)) 2073 karg.application_flags |= MPT3_APP_FLAGS_FW_BUFFER_ACCESS; 2074 2075 if (!(ioc->diag_buffer_status[buffer_type] & 2076 MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED)) 2077 karg.application_flags |= MPT3_APP_FLAGS_DYNAMIC_BUFFER_ALLOC; 2078 2079 if ((ioc->diag_buffer_status[buffer_type] & 2080 MPT3_DIAG_BUFFER_IS_APP_OWNED)) 2081 karg.application_flags |= MPT3_APP_FLAGS_APP_OWNED; 2082 2083 for (i = 0; i < MPT3_PRODUCT_SPECIFIC_DWORDS; i++) 2084 karg.product_specific[i] = 2085 ioc->product_specific[buffer_type][i]; 2086 2087 karg.total_buffer_size = ioc->diag_buffer_sz[buffer_type]; 2088 karg.driver_added_buffer_size = 0; 2089 karg.unique_id = ioc->unique_id[buffer_type]; 2090 karg.diagnostic_flags = ioc->diagnostic_flags[buffer_type]; 2091 2092 if (copy_to_user(arg, &karg, sizeof(struct mpt3_diag_query))) { 2093 ioc_err(ioc, "%s: unable to write mpt3_diag_query data @ %p\n", 2094 __func__, arg); 2095 return -EFAULT; 2096 } 2097 return 0; 2098 } 2099 2100 /** 2101 * mpt3sas_send_diag_release - Diag Release Message 2102 * @ioc: per adapter object 2103 * @buffer_type: specifies either TRACE, SNAPSHOT, or EXTENDED 2104 * @issue_reset: specifies whether host reset is required. 2105 * 2106 */ 2107 int 2108 mpt3sas_send_diag_release(struct MPT3SAS_ADAPTER *ioc, u8 buffer_type, 2109 u8 *issue_reset) 2110 { 2111 Mpi2DiagReleaseRequest_t *mpi_request; 2112 Mpi2DiagReleaseReply_t *mpi_reply; 2113 u16 smid; 2114 u16 ioc_status; 2115 u32 ioc_state; 2116 int rc; 2117 u8 reset_needed = 0; 2118 2119 dctlprintk(ioc, ioc_info(ioc, "%s\n", 2120 __func__)); 2121 2122 rc = 0; 2123 *issue_reset = 0; 2124 2125 2126 ioc_state = mpt3sas_base_get_iocstate(ioc, 1); 2127 if (ioc_state != MPI2_IOC_STATE_OPERATIONAL) { 2128 if (ioc->diag_buffer_status[buffer_type] & 2129 MPT3_DIAG_BUFFER_IS_REGISTERED) 2130 ioc->diag_buffer_status[buffer_type] |= 2131 MPT3_DIAG_BUFFER_IS_RELEASED; 2132 dctlprintk(ioc, 2133 ioc_info(ioc, "%s: skipping due to FAULT state\n", 2134 __func__)); 2135 rc = -EAGAIN; 2136 goto out; 2137 } 2138 2139 if (ioc->ctl_cmds.status != MPT3_CMD_NOT_USED) { 2140 ioc_err(ioc, "%s: ctl_cmd in use\n", __func__); 2141 rc = -EAGAIN; 2142 goto out; 2143 } 2144 2145 smid = mpt3sas_base_get_smid(ioc, ioc->ctl_cb_idx); 2146 if (!smid) { 2147 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 2148 rc = -EAGAIN; 2149 goto out; 2150 } 2151 2152 ioc->ctl_cmds.status = MPT3_CMD_PENDING; 2153 memset(ioc->ctl_cmds.reply, 0, ioc->reply_sz); 2154 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 2155 ioc->ctl_cmds.smid = smid; 2156 2157 mpi_request->Function = MPI2_FUNCTION_DIAG_RELEASE; 2158 mpi_request->BufferType = buffer_type; 2159 mpi_request->VF_ID = 0; /* TODO */ 2160 mpi_request->VP_ID = 0; 2161 2162 init_completion(&ioc->ctl_cmds.done); 2163 ioc->put_smid_default(ioc, smid); 2164 wait_for_completion_timeout(&ioc->ctl_cmds.done, 2165 MPT3_IOCTL_DEFAULT_TIMEOUT*HZ); 2166 2167 if (!(ioc->ctl_cmds.status & MPT3_CMD_COMPLETE)) { 2168 mpt3sas_check_cmd_timeout(ioc, 2169 ioc->ctl_cmds.status, mpi_request, 2170 sizeof(Mpi2DiagReleaseRequest_t)/4, reset_needed); 2171 *issue_reset = reset_needed; 2172 rc = -EFAULT; 2173 goto out; 2174 } 2175 2176 /* process the completed Reply Message Frame */ 2177 if ((ioc->ctl_cmds.status & MPT3_CMD_REPLY_VALID) == 0) { 2178 ioc_err(ioc, "%s: no reply message\n", __func__); 2179 rc = -EFAULT; 2180 goto out; 2181 } 2182 2183 mpi_reply = ioc->ctl_cmds.reply; 2184 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 2185 2186 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 2187 ioc->diag_buffer_status[buffer_type] |= 2188 MPT3_DIAG_BUFFER_IS_RELEASED; 2189 dctlprintk(ioc, ioc_info(ioc, "%s: success\n", __func__)); 2190 } else { 2191 ioc_info(ioc, "%s: ioc_status(0x%04x) log_info(0x%08x)\n", 2192 __func__, 2193 ioc_status, le32_to_cpu(mpi_reply->IOCLogInfo)); 2194 rc = -EFAULT; 2195 } 2196 2197 out: 2198 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED; 2199 return rc; 2200 } 2201 2202 /** 2203 * _ctl_diag_release - request to send Diag Release Message to firmware 2204 * @ioc: ? 2205 * @arg: user space buffer containing ioctl content 2206 * 2207 * This allows ownership of the specified buffer to returned to the driver, 2208 * allowing an application to read the buffer without fear that firmware is 2209 * overwriting information in the buffer. 2210 */ 2211 static long 2212 _ctl_diag_release(struct MPT3SAS_ADAPTER *ioc, void __user *arg) 2213 { 2214 struct mpt3_diag_release karg; 2215 void *request_data; 2216 int rc; 2217 u8 buffer_type; 2218 u8 issue_reset = 0; 2219 2220 if (copy_from_user(&karg, arg, sizeof(karg))) { 2221 pr_err("failure at %s:%d/%s()!\n", 2222 __FILE__, __LINE__, __func__); 2223 return -EFAULT; 2224 } 2225 2226 dctlprintk(ioc, ioc_info(ioc, "%s\n", 2227 __func__)); 2228 2229 buffer_type = _ctl_diag_get_bufftype(ioc, karg.unique_id); 2230 if (buffer_type == MPT3_DIAG_UID_NOT_FOUND) { 2231 ioc_err(ioc, "%s: buffer with unique_id(0x%08x) not found\n", 2232 __func__, karg.unique_id); 2233 return -EINVAL; 2234 } 2235 2236 if (!_ctl_diag_capability(ioc, buffer_type)) { 2237 ioc_err(ioc, "%s: doesn't have capability for buffer_type(0x%02x)\n", 2238 __func__, buffer_type); 2239 return -EPERM; 2240 } 2241 2242 if ((ioc->diag_buffer_status[buffer_type] & 2243 MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) { 2244 ioc_err(ioc, "%s: buffer_type(0x%02x) is not registered\n", 2245 __func__, buffer_type); 2246 return -EINVAL; 2247 } 2248 2249 if (karg.unique_id != ioc->unique_id[buffer_type]) { 2250 ioc_err(ioc, "%s: unique_id(0x%08x) is not registered\n", 2251 __func__, karg.unique_id); 2252 return -EINVAL; 2253 } 2254 2255 if (ioc->diag_buffer_status[buffer_type] & 2256 MPT3_DIAG_BUFFER_IS_RELEASED) { 2257 ioc_err(ioc, "%s: buffer_type(0x%02x) is already released\n", 2258 __func__, buffer_type); 2259 return -EINVAL; 2260 } 2261 2262 request_data = ioc->diag_buffer[buffer_type]; 2263 2264 if (!request_data) { 2265 ioc_err(ioc, "%s: doesn't have memory allocated for buffer_type(0x%02x)\n", 2266 __func__, buffer_type); 2267 return -ENOMEM; 2268 } 2269 2270 /* buffers were released by due to host reset */ 2271 if ((ioc->diag_buffer_status[buffer_type] & 2272 MPT3_DIAG_BUFFER_IS_DIAG_RESET)) { 2273 ioc->diag_buffer_status[buffer_type] |= 2274 MPT3_DIAG_BUFFER_IS_RELEASED; 2275 ioc->diag_buffer_status[buffer_type] &= 2276 ~MPT3_DIAG_BUFFER_IS_DIAG_RESET; 2277 ioc_err(ioc, "%s: buffer_type(0x%02x) was released due to host reset\n", 2278 __func__, buffer_type); 2279 return 0; 2280 } 2281 2282 rc = mpt3sas_send_diag_release(ioc, buffer_type, &issue_reset); 2283 2284 if (issue_reset) 2285 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 2286 2287 return rc; 2288 } 2289 2290 /** 2291 * _ctl_diag_read_buffer - request for copy of the diag buffer 2292 * @ioc: per adapter object 2293 * @arg: user space buffer containing ioctl content 2294 */ 2295 static long 2296 _ctl_diag_read_buffer(struct MPT3SAS_ADAPTER *ioc, void __user *arg) 2297 { 2298 struct mpt3_diag_read_buffer karg; 2299 struct mpt3_diag_read_buffer __user *uarg = arg; 2300 void *request_data, *diag_data; 2301 Mpi2DiagBufferPostRequest_t *mpi_request; 2302 Mpi2DiagBufferPostReply_t *mpi_reply; 2303 int rc, i; 2304 u8 buffer_type; 2305 unsigned long request_size, copy_size; 2306 u16 smid; 2307 u16 ioc_status; 2308 u8 issue_reset = 0; 2309 2310 if (copy_from_user(&karg, arg, sizeof(karg))) { 2311 pr_err("failure at %s:%d/%s()!\n", 2312 __FILE__, __LINE__, __func__); 2313 return -EFAULT; 2314 } 2315 2316 dctlprintk(ioc, ioc_info(ioc, "%s\n", 2317 __func__)); 2318 2319 buffer_type = _ctl_diag_get_bufftype(ioc, karg.unique_id); 2320 if (buffer_type == MPT3_DIAG_UID_NOT_FOUND) { 2321 ioc_err(ioc, "%s: buffer with unique_id(0x%08x) not found\n", 2322 __func__, karg.unique_id); 2323 return -EINVAL; 2324 } 2325 2326 if (!_ctl_diag_capability(ioc, buffer_type)) { 2327 ioc_err(ioc, "%s: doesn't have capability for buffer_type(0x%02x)\n", 2328 __func__, buffer_type); 2329 return -EPERM; 2330 } 2331 2332 if (karg.unique_id != ioc->unique_id[buffer_type]) { 2333 ioc_err(ioc, "%s: unique_id(0x%08x) is not registered\n", 2334 __func__, karg.unique_id); 2335 return -EINVAL; 2336 } 2337 2338 request_data = ioc->diag_buffer[buffer_type]; 2339 if (!request_data) { 2340 ioc_err(ioc, "%s: doesn't have buffer for buffer_type(0x%02x)\n", 2341 __func__, buffer_type); 2342 return -ENOMEM; 2343 } 2344 2345 request_size = ioc->diag_buffer_sz[buffer_type]; 2346 2347 if ((karg.starting_offset % 4) || (karg.bytes_to_read % 4)) { 2348 ioc_err(ioc, "%s: either the starting_offset or bytes_to_read are not 4 byte aligned\n", 2349 __func__); 2350 return -EINVAL; 2351 } 2352 2353 if (karg.starting_offset > request_size) 2354 return -EINVAL; 2355 2356 diag_data = (void *)(request_data + karg.starting_offset); 2357 dctlprintk(ioc, 2358 ioc_info(ioc, "%s: diag_buffer(%p), offset(%d), sz(%d)\n", 2359 __func__, diag_data, karg.starting_offset, 2360 karg.bytes_to_read)); 2361 2362 /* Truncate data on requests that are too large */ 2363 if ((diag_data + karg.bytes_to_read < diag_data) || 2364 (diag_data + karg.bytes_to_read > request_data + request_size)) 2365 copy_size = request_size - karg.starting_offset; 2366 else 2367 copy_size = karg.bytes_to_read; 2368 2369 if (copy_to_user((void __user *)uarg->diagnostic_data, 2370 diag_data, copy_size)) { 2371 ioc_err(ioc, "%s: Unable to write mpt_diag_read_buffer_t data @ %p\n", 2372 __func__, diag_data); 2373 return -EFAULT; 2374 } 2375 2376 if ((karg.flags & MPT3_FLAGS_REREGISTER) == 0) 2377 return 0; 2378 2379 dctlprintk(ioc, 2380 ioc_info(ioc, "%s: Reregister buffer_type(0x%02x)\n", 2381 __func__, buffer_type)); 2382 if ((ioc->diag_buffer_status[buffer_type] & 2383 MPT3_DIAG_BUFFER_IS_RELEASED) == 0) { 2384 dctlprintk(ioc, 2385 ioc_info(ioc, "%s: buffer_type(0x%02x) is still registered\n", 2386 __func__, buffer_type)); 2387 return 0; 2388 } 2389 /* Get a free request frame and save the message context. 2390 */ 2391 2392 if (ioc->ctl_cmds.status != MPT3_CMD_NOT_USED) { 2393 ioc_err(ioc, "%s: ctl_cmd in use\n", __func__); 2394 rc = -EAGAIN; 2395 goto out; 2396 } 2397 2398 smid = mpt3sas_base_get_smid(ioc, ioc->ctl_cb_idx); 2399 if (!smid) { 2400 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 2401 rc = -EAGAIN; 2402 goto out; 2403 } 2404 2405 rc = 0; 2406 ioc->ctl_cmds.status = MPT3_CMD_PENDING; 2407 memset(ioc->ctl_cmds.reply, 0, ioc->reply_sz); 2408 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 2409 ioc->ctl_cmds.smid = smid; 2410 2411 mpi_request->Function = MPI2_FUNCTION_DIAG_BUFFER_POST; 2412 mpi_request->BufferType = buffer_type; 2413 mpi_request->BufferLength = 2414 cpu_to_le32(ioc->diag_buffer_sz[buffer_type]); 2415 mpi_request->BufferAddress = 2416 cpu_to_le64(ioc->diag_buffer_dma[buffer_type]); 2417 for (i = 0; i < MPT3_PRODUCT_SPECIFIC_DWORDS; i++) 2418 mpi_request->ProductSpecific[i] = 2419 cpu_to_le32(ioc->product_specific[buffer_type][i]); 2420 mpi_request->VF_ID = 0; /* TODO */ 2421 mpi_request->VP_ID = 0; 2422 2423 init_completion(&ioc->ctl_cmds.done); 2424 ioc->put_smid_default(ioc, smid); 2425 wait_for_completion_timeout(&ioc->ctl_cmds.done, 2426 MPT3_IOCTL_DEFAULT_TIMEOUT*HZ); 2427 2428 if (!(ioc->ctl_cmds.status & MPT3_CMD_COMPLETE)) { 2429 mpt3sas_check_cmd_timeout(ioc, 2430 ioc->ctl_cmds.status, mpi_request, 2431 sizeof(Mpi2DiagBufferPostRequest_t)/4, issue_reset); 2432 goto issue_host_reset; 2433 } 2434 2435 /* process the completed Reply Message Frame */ 2436 if ((ioc->ctl_cmds.status & MPT3_CMD_REPLY_VALID) == 0) { 2437 ioc_err(ioc, "%s: no reply message\n", __func__); 2438 rc = -EFAULT; 2439 goto out; 2440 } 2441 2442 mpi_reply = ioc->ctl_cmds.reply; 2443 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 2444 2445 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 2446 ioc->diag_buffer_status[buffer_type] |= 2447 MPT3_DIAG_BUFFER_IS_REGISTERED; 2448 ioc->diag_buffer_status[buffer_type] &= 2449 ~MPT3_DIAG_BUFFER_IS_RELEASED; 2450 dctlprintk(ioc, ioc_info(ioc, "%s: success\n", __func__)); 2451 } else { 2452 ioc_info(ioc, "%s: ioc_status(0x%04x) log_info(0x%08x)\n", 2453 __func__, ioc_status, 2454 le32_to_cpu(mpi_reply->IOCLogInfo)); 2455 rc = -EFAULT; 2456 } 2457 2458 issue_host_reset: 2459 if (issue_reset) 2460 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 2461 2462 out: 2463 2464 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED; 2465 return rc; 2466 } 2467 2468 2469 2470 #ifdef CONFIG_COMPAT 2471 /** 2472 * _ctl_compat_mpt_command - convert 32bit pointers to 64bit. 2473 * @ioc: per adapter object 2474 * @cmd: ioctl opcode 2475 * @arg: (struct mpt3_ioctl_command32) 2476 * 2477 * MPT3COMMAND32 - Handle 32bit applications running on 64bit os. 2478 */ 2479 static long 2480 _ctl_compat_mpt_command(struct MPT3SAS_ADAPTER *ioc, unsigned cmd, 2481 void __user *arg) 2482 { 2483 struct mpt3_ioctl_command32 karg32; 2484 struct mpt3_ioctl_command32 __user *uarg; 2485 struct mpt3_ioctl_command karg; 2486 2487 if (_IOC_SIZE(cmd) != sizeof(struct mpt3_ioctl_command32)) 2488 return -EINVAL; 2489 2490 uarg = (struct mpt3_ioctl_command32 __user *) arg; 2491 2492 if (copy_from_user(&karg32, (char __user *)arg, sizeof(karg32))) { 2493 pr_err("failure at %s:%d/%s()!\n", 2494 __FILE__, __LINE__, __func__); 2495 return -EFAULT; 2496 } 2497 2498 memset(&karg, 0, sizeof(struct mpt3_ioctl_command)); 2499 karg.hdr.ioc_number = karg32.hdr.ioc_number; 2500 karg.hdr.port_number = karg32.hdr.port_number; 2501 karg.hdr.max_data_size = karg32.hdr.max_data_size; 2502 karg.timeout = karg32.timeout; 2503 karg.max_reply_bytes = karg32.max_reply_bytes; 2504 karg.data_in_size = karg32.data_in_size; 2505 karg.data_out_size = karg32.data_out_size; 2506 karg.max_sense_bytes = karg32.max_sense_bytes; 2507 karg.data_sge_offset = karg32.data_sge_offset; 2508 karg.reply_frame_buf_ptr = compat_ptr(karg32.reply_frame_buf_ptr); 2509 karg.data_in_buf_ptr = compat_ptr(karg32.data_in_buf_ptr); 2510 karg.data_out_buf_ptr = compat_ptr(karg32.data_out_buf_ptr); 2511 karg.sense_data_ptr = compat_ptr(karg32.sense_data_ptr); 2512 return _ctl_do_mpt_command(ioc, karg, &uarg->mf); 2513 } 2514 #endif 2515 2516 /** 2517 * _ctl_ioctl_main - main ioctl entry point 2518 * @file: (struct file) 2519 * @cmd: ioctl opcode 2520 * @arg: user space data buffer 2521 * @compat: handles 32 bit applications in 64bit os 2522 * @mpi_version: will be MPI2_VERSION for mpt2ctl ioctl device & 2523 * MPI25_VERSION | MPI26_VERSION for mpt3ctl ioctl device. 2524 */ 2525 static long 2526 _ctl_ioctl_main(struct file *file, unsigned int cmd, void __user *arg, 2527 u8 compat, u16 mpi_version) 2528 { 2529 struct MPT3SAS_ADAPTER *ioc; 2530 struct mpt3_ioctl_header ioctl_header; 2531 enum block_state state; 2532 long ret = -EINVAL; 2533 2534 /* get IOCTL header */ 2535 if (copy_from_user(&ioctl_header, (char __user *)arg, 2536 sizeof(struct mpt3_ioctl_header))) { 2537 pr_err("failure at %s:%d/%s()!\n", 2538 __FILE__, __LINE__, __func__); 2539 return -EFAULT; 2540 } 2541 2542 if (_ctl_verify_adapter(ioctl_header.ioc_number, 2543 &ioc, mpi_version) == -1 || !ioc) 2544 return -ENODEV; 2545 2546 /* pci_access_mutex lock acquired by ioctl path */ 2547 mutex_lock(&ioc->pci_access_mutex); 2548 2549 if (ioc->shost_recovery || ioc->pci_error_recovery || 2550 ioc->is_driver_loading || ioc->remove_host) { 2551 ret = -EAGAIN; 2552 goto out_unlock_pciaccess; 2553 } 2554 2555 state = (file->f_flags & O_NONBLOCK) ? NON_BLOCKING : BLOCKING; 2556 if (state == NON_BLOCKING) { 2557 if (!mutex_trylock(&ioc->ctl_cmds.mutex)) { 2558 ret = -EAGAIN; 2559 goto out_unlock_pciaccess; 2560 } 2561 } else if (mutex_lock_interruptible(&ioc->ctl_cmds.mutex)) { 2562 ret = -ERESTARTSYS; 2563 goto out_unlock_pciaccess; 2564 } 2565 2566 2567 switch (cmd) { 2568 case MPT3IOCINFO: 2569 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_iocinfo)) 2570 ret = _ctl_getiocinfo(ioc, arg); 2571 break; 2572 #ifdef CONFIG_COMPAT 2573 case MPT3COMMAND32: 2574 #endif 2575 case MPT3COMMAND: 2576 { 2577 struct mpt3_ioctl_command __user *uarg; 2578 struct mpt3_ioctl_command karg; 2579 2580 #ifdef CONFIG_COMPAT 2581 if (compat) { 2582 ret = _ctl_compat_mpt_command(ioc, cmd, arg); 2583 break; 2584 } 2585 #endif 2586 if (copy_from_user(&karg, arg, sizeof(karg))) { 2587 pr_err("failure at %s:%d/%s()!\n", 2588 __FILE__, __LINE__, __func__); 2589 ret = -EFAULT; 2590 break; 2591 } 2592 2593 if (karg.hdr.ioc_number != ioctl_header.ioc_number) { 2594 ret = -EINVAL; 2595 break; 2596 } 2597 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_command)) { 2598 uarg = arg; 2599 ret = _ctl_do_mpt_command(ioc, karg, &uarg->mf); 2600 } 2601 break; 2602 } 2603 case MPT3EVENTQUERY: 2604 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_eventquery)) 2605 ret = _ctl_eventquery(ioc, arg); 2606 break; 2607 case MPT3EVENTENABLE: 2608 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_eventenable)) 2609 ret = _ctl_eventenable(ioc, arg); 2610 break; 2611 case MPT3EVENTREPORT: 2612 ret = _ctl_eventreport(ioc, arg); 2613 break; 2614 case MPT3HARDRESET: 2615 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_diag_reset)) 2616 ret = _ctl_do_reset(ioc, arg); 2617 break; 2618 case MPT3BTDHMAPPING: 2619 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_btdh_mapping)) 2620 ret = _ctl_btdh_mapping(ioc, arg); 2621 break; 2622 case MPT3DIAGREGISTER: 2623 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_diag_register)) 2624 ret = _ctl_diag_register(ioc, arg); 2625 break; 2626 case MPT3DIAGUNREGISTER: 2627 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_diag_unregister)) 2628 ret = _ctl_diag_unregister(ioc, arg); 2629 break; 2630 case MPT3DIAGQUERY: 2631 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_diag_query)) 2632 ret = _ctl_diag_query(ioc, arg); 2633 break; 2634 case MPT3DIAGRELEASE: 2635 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_diag_release)) 2636 ret = _ctl_diag_release(ioc, arg); 2637 break; 2638 case MPT3DIAGREADBUFFER: 2639 if (_IOC_SIZE(cmd) == sizeof(struct mpt3_diag_read_buffer)) 2640 ret = _ctl_diag_read_buffer(ioc, arg); 2641 break; 2642 default: 2643 dctlprintk(ioc, 2644 ioc_info(ioc, "unsupported ioctl opcode(0x%08x)\n", 2645 cmd)); 2646 break; 2647 } 2648 2649 mutex_unlock(&ioc->ctl_cmds.mutex); 2650 out_unlock_pciaccess: 2651 mutex_unlock(&ioc->pci_access_mutex); 2652 return ret; 2653 } 2654 2655 /** 2656 * _ctl_ioctl - mpt3ctl main ioctl entry point (unlocked) 2657 * @file: (struct file) 2658 * @cmd: ioctl opcode 2659 * @arg: ? 2660 */ 2661 static long 2662 _ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2663 { 2664 long ret; 2665 2666 /* pass MPI25_VERSION | MPI26_VERSION value, 2667 * to indicate that this ioctl cmd 2668 * came from mpt3ctl ioctl device. 2669 */ 2670 ret = _ctl_ioctl_main(file, cmd, (void __user *)arg, 0, 2671 MPI25_VERSION | MPI26_VERSION); 2672 return ret; 2673 } 2674 2675 /** 2676 * _ctl_mpt2_ioctl - mpt2ctl main ioctl entry point (unlocked) 2677 * @file: (struct file) 2678 * @cmd: ioctl opcode 2679 * @arg: ? 2680 */ 2681 static long 2682 _ctl_mpt2_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2683 { 2684 long ret; 2685 2686 /* pass MPI2_VERSION value, to indicate that this ioctl cmd 2687 * came from mpt2ctl ioctl device. 2688 */ 2689 ret = _ctl_ioctl_main(file, cmd, (void __user *)arg, 0, MPI2_VERSION); 2690 return ret; 2691 } 2692 #ifdef CONFIG_COMPAT 2693 /** 2694 *_ ctl_ioctl_compat - main ioctl entry point (compat) 2695 * @file: ? 2696 * @cmd: ? 2697 * @arg: ? 2698 * 2699 * This routine handles 32 bit applications in 64bit os. 2700 */ 2701 static long 2702 _ctl_ioctl_compat(struct file *file, unsigned cmd, unsigned long arg) 2703 { 2704 long ret; 2705 2706 ret = _ctl_ioctl_main(file, cmd, (void __user *)arg, 1, 2707 MPI25_VERSION | MPI26_VERSION); 2708 return ret; 2709 } 2710 2711 /** 2712 *_ ctl_mpt2_ioctl_compat - main ioctl entry point (compat) 2713 * @file: ? 2714 * @cmd: ? 2715 * @arg: ? 2716 * 2717 * This routine handles 32 bit applications in 64bit os. 2718 */ 2719 static long 2720 _ctl_mpt2_ioctl_compat(struct file *file, unsigned cmd, unsigned long arg) 2721 { 2722 long ret; 2723 2724 ret = _ctl_ioctl_main(file, cmd, (void __user *)arg, 1, MPI2_VERSION); 2725 return ret; 2726 } 2727 #endif 2728 2729 /* scsi host attributes */ 2730 /** 2731 * version_fw_show - firmware version 2732 * @cdev: pointer to embedded class device 2733 * @attr: ? 2734 * @buf: the buffer returned 2735 * 2736 * A sysfs 'read-only' shost attribute. 2737 */ 2738 static ssize_t 2739 version_fw_show(struct device *cdev, struct device_attribute *attr, 2740 char *buf) 2741 { 2742 struct Scsi_Host *shost = class_to_shost(cdev); 2743 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2744 2745 return snprintf(buf, PAGE_SIZE, "%02d.%02d.%02d.%02d\n", 2746 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24, 2747 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16, 2748 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8, 2749 ioc->facts.FWVersion.Word & 0x000000FF); 2750 } 2751 static DEVICE_ATTR_RO(version_fw); 2752 2753 /** 2754 * version_bios_show - bios version 2755 * @cdev: pointer to embedded class device 2756 * @attr: ? 2757 * @buf: the buffer returned 2758 * 2759 * A sysfs 'read-only' shost attribute. 2760 */ 2761 static ssize_t 2762 version_bios_show(struct device *cdev, struct device_attribute *attr, 2763 char *buf) 2764 { 2765 struct Scsi_Host *shost = class_to_shost(cdev); 2766 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2767 2768 u32 version = le32_to_cpu(ioc->bios_pg3.BiosVersion); 2769 2770 return snprintf(buf, PAGE_SIZE, "%02d.%02d.%02d.%02d\n", 2771 (version & 0xFF000000) >> 24, 2772 (version & 0x00FF0000) >> 16, 2773 (version & 0x0000FF00) >> 8, 2774 version & 0x000000FF); 2775 } 2776 static DEVICE_ATTR_RO(version_bios); 2777 2778 /** 2779 * version_mpi_show - MPI (message passing interface) version 2780 * @cdev: pointer to embedded class device 2781 * @attr: ? 2782 * @buf: the buffer returned 2783 * 2784 * A sysfs 'read-only' shost attribute. 2785 */ 2786 static ssize_t 2787 version_mpi_show(struct device *cdev, struct device_attribute *attr, 2788 char *buf) 2789 { 2790 struct Scsi_Host *shost = class_to_shost(cdev); 2791 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2792 2793 return snprintf(buf, PAGE_SIZE, "%03x.%02x\n", 2794 ioc->facts.MsgVersion, ioc->facts.HeaderVersion >> 8); 2795 } 2796 static DEVICE_ATTR_RO(version_mpi); 2797 2798 /** 2799 * version_product_show - product name 2800 * @cdev: pointer to embedded class device 2801 * @attr: ? 2802 * @buf: the buffer returned 2803 * 2804 * A sysfs 'read-only' shost attribute. 2805 */ 2806 static ssize_t 2807 version_product_show(struct device *cdev, struct device_attribute *attr, 2808 char *buf) 2809 { 2810 struct Scsi_Host *shost = class_to_shost(cdev); 2811 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2812 2813 return snprintf(buf, 16, "%s\n", ioc->manu_pg0.ChipName); 2814 } 2815 static DEVICE_ATTR_RO(version_product); 2816 2817 /** 2818 * version_nvdata_persistent_show - ndvata persistent version 2819 * @cdev: pointer to embedded class device 2820 * @attr: ? 2821 * @buf: the buffer returned 2822 * 2823 * A sysfs 'read-only' shost attribute. 2824 */ 2825 static ssize_t 2826 version_nvdata_persistent_show(struct device *cdev, 2827 struct device_attribute *attr, char *buf) 2828 { 2829 struct Scsi_Host *shost = class_to_shost(cdev); 2830 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2831 2832 return snprintf(buf, PAGE_SIZE, "%08xh\n", 2833 le32_to_cpu(ioc->iounit_pg0.NvdataVersionPersistent.Word)); 2834 } 2835 static DEVICE_ATTR_RO(version_nvdata_persistent); 2836 2837 /** 2838 * version_nvdata_default_show - nvdata default version 2839 * @cdev: pointer to embedded class device 2840 * @attr: ? 2841 * @buf: the buffer returned 2842 * 2843 * A sysfs 'read-only' shost attribute. 2844 */ 2845 static ssize_t 2846 version_nvdata_default_show(struct device *cdev, struct device_attribute 2847 *attr, char *buf) 2848 { 2849 struct Scsi_Host *shost = class_to_shost(cdev); 2850 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2851 2852 return snprintf(buf, PAGE_SIZE, "%08xh\n", 2853 le32_to_cpu(ioc->iounit_pg0.NvdataVersionDefault.Word)); 2854 } 2855 static DEVICE_ATTR_RO(version_nvdata_default); 2856 2857 /** 2858 * board_name_show - board name 2859 * @cdev: pointer to embedded class device 2860 * @attr: ? 2861 * @buf: the buffer returned 2862 * 2863 * A sysfs 'read-only' shost attribute. 2864 */ 2865 static ssize_t 2866 board_name_show(struct device *cdev, struct device_attribute *attr, 2867 char *buf) 2868 { 2869 struct Scsi_Host *shost = class_to_shost(cdev); 2870 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2871 2872 return snprintf(buf, 16, "%s\n", ioc->manu_pg0.BoardName); 2873 } 2874 static DEVICE_ATTR_RO(board_name); 2875 2876 /** 2877 * board_assembly_show - board assembly name 2878 * @cdev: pointer to embedded class device 2879 * @attr: ? 2880 * @buf: the buffer returned 2881 * 2882 * A sysfs 'read-only' shost attribute. 2883 */ 2884 static ssize_t 2885 board_assembly_show(struct device *cdev, struct device_attribute *attr, 2886 char *buf) 2887 { 2888 struct Scsi_Host *shost = class_to_shost(cdev); 2889 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2890 2891 return snprintf(buf, 16, "%s\n", ioc->manu_pg0.BoardAssembly); 2892 } 2893 static DEVICE_ATTR_RO(board_assembly); 2894 2895 /** 2896 * board_tracer_show - board tracer number 2897 * @cdev: pointer to embedded class device 2898 * @attr: ? 2899 * @buf: the buffer returned 2900 * 2901 * A sysfs 'read-only' shost attribute. 2902 */ 2903 static ssize_t 2904 board_tracer_show(struct device *cdev, struct device_attribute *attr, 2905 char *buf) 2906 { 2907 struct Scsi_Host *shost = class_to_shost(cdev); 2908 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2909 2910 return snprintf(buf, 16, "%s\n", ioc->manu_pg0.BoardTracerNumber); 2911 } 2912 static DEVICE_ATTR_RO(board_tracer); 2913 2914 /** 2915 * io_delay_show - io missing delay 2916 * @cdev: pointer to embedded class device 2917 * @attr: ? 2918 * @buf: the buffer returned 2919 * 2920 * This is for firmware implemention for deboucing device 2921 * removal events. 2922 * 2923 * A sysfs 'read-only' shost attribute. 2924 */ 2925 static ssize_t 2926 io_delay_show(struct device *cdev, struct device_attribute *attr, 2927 char *buf) 2928 { 2929 struct Scsi_Host *shost = class_to_shost(cdev); 2930 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2931 2932 return snprintf(buf, PAGE_SIZE, "%02d\n", ioc->io_missing_delay); 2933 } 2934 static DEVICE_ATTR_RO(io_delay); 2935 2936 /** 2937 * device_delay_show - device missing delay 2938 * @cdev: pointer to embedded class device 2939 * @attr: ? 2940 * @buf: the buffer returned 2941 * 2942 * This is for firmware implemention for deboucing device 2943 * removal events. 2944 * 2945 * A sysfs 'read-only' shost attribute. 2946 */ 2947 static ssize_t 2948 device_delay_show(struct device *cdev, struct device_attribute *attr, 2949 char *buf) 2950 { 2951 struct Scsi_Host *shost = class_to_shost(cdev); 2952 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2953 2954 return snprintf(buf, PAGE_SIZE, "%02d\n", ioc->device_missing_delay); 2955 } 2956 static DEVICE_ATTR_RO(device_delay); 2957 2958 /** 2959 * fw_queue_depth_show - global credits 2960 * @cdev: pointer to embedded class device 2961 * @attr: ? 2962 * @buf: the buffer returned 2963 * 2964 * This is firmware queue depth limit 2965 * 2966 * A sysfs 'read-only' shost attribute. 2967 */ 2968 static ssize_t 2969 fw_queue_depth_show(struct device *cdev, struct device_attribute *attr, 2970 char *buf) 2971 { 2972 struct Scsi_Host *shost = class_to_shost(cdev); 2973 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2974 2975 return snprintf(buf, PAGE_SIZE, "%02d\n", ioc->facts.RequestCredit); 2976 } 2977 static DEVICE_ATTR_RO(fw_queue_depth); 2978 2979 /** 2980 * sas_address_show - sas address 2981 * @cdev: pointer to embedded class device 2982 * @attr: ? 2983 * @buf: the buffer returned 2984 * 2985 * This is the controller sas address 2986 * 2987 * A sysfs 'read-only' shost attribute. 2988 */ 2989 static ssize_t 2990 host_sas_address_show(struct device *cdev, struct device_attribute *attr, 2991 char *buf) 2992 2993 { 2994 struct Scsi_Host *shost = class_to_shost(cdev); 2995 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 2996 2997 return snprintf(buf, PAGE_SIZE, "0x%016llx\n", 2998 (unsigned long long)ioc->sas_hba.sas_address); 2999 } 3000 static DEVICE_ATTR_RO(host_sas_address); 3001 3002 /** 3003 * logging_level_show - logging level 3004 * @cdev: pointer to embedded class device 3005 * @attr: ? 3006 * @buf: the buffer returned 3007 * 3008 * A sysfs 'read/write' shost attribute. 3009 */ 3010 static ssize_t 3011 logging_level_show(struct device *cdev, struct device_attribute *attr, 3012 char *buf) 3013 { 3014 struct Scsi_Host *shost = class_to_shost(cdev); 3015 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3016 3017 return snprintf(buf, PAGE_SIZE, "%08xh\n", ioc->logging_level); 3018 } 3019 static ssize_t 3020 logging_level_store(struct device *cdev, struct device_attribute *attr, 3021 const char *buf, size_t count) 3022 { 3023 struct Scsi_Host *shost = class_to_shost(cdev); 3024 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3025 int val = 0; 3026 3027 if (sscanf(buf, "%x", &val) != 1) 3028 return -EINVAL; 3029 3030 ioc->logging_level = val; 3031 ioc_info(ioc, "logging_level=%08xh\n", 3032 ioc->logging_level); 3033 return strlen(buf); 3034 } 3035 static DEVICE_ATTR_RW(logging_level); 3036 3037 /** 3038 * fwfault_debug_show - show/store fwfault_debug 3039 * @cdev: pointer to embedded class device 3040 * @attr: ? 3041 * @buf: the buffer returned 3042 * 3043 * mpt3sas_fwfault_debug is command line option 3044 * A sysfs 'read/write' shost attribute. 3045 */ 3046 static ssize_t 3047 fwfault_debug_show(struct device *cdev, struct device_attribute *attr, 3048 char *buf) 3049 { 3050 struct Scsi_Host *shost = class_to_shost(cdev); 3051 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3052 3053 return snprintf(buf, PAGE_SIZE, "%d\n", ioc->fwfault_debug); 3054 } 3055 static ssize_t 3056 fwfault_debug_store(struct device *cdev, struct device_attribute *attr, 3057 const char *buf, size_t count) 3058 { 3059 struct Scsi_Host *shost = class_to_shost(cdev); 3060 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3061 int val = 0; 3062 3063 if (sscanf(buf, "%d", &val) != 1) 3064 return -EINVAL; 3065 3066 ioc->fwfault_debug = val; 3067 ioc_info(ioc, "fwfault_debug=%d\n", 3068 ioc->fwfault_debug); 3069 return strlen(buf); 3070 } 3071 static DEVICE_ATTR_RW(fwfault_debug); 3072 3073 /** 3074 * ioc_reset_count_show - ioc reset count 3075 * @cdev: pointer to embedded class device 3076 * @attr: ? 3077 * @buf: the buffer returned 3078 * 3079 * This is firmware queue depth limit 3080 * 3081 * A sysfs 'read-only' shost attribute. 3082 */ 3083 static ssize_t 3084 ioc_reset_count_show(struct device *cdev, struct device_attribute *attr, 3085 char *buf) 3086 { 3087 struct Scsi_Host *shost = class_to_shost(cdev); 3088 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3089 3090 return snprintf(buf, PAGE_SIZE, "%d\n", ioc->ioc_reset_count); 3091 } 3092 static DEVICE_ATTR_RO(ioc_reset_count); 3093 3094 /** 3095 * reply_queue_count_show - number of reply queues 3096 * @cdev: pointer to embedded class device 3097 * @attr: ? 3098 * @buf: the buffer returned 3099 * 3100 * This is number of reply queues 3101 * 3102 * A sysfs 'read-only' shost attribute. 3103 */ 3104 static ssize_t 3105 reply_queue_count_show(struct device *cdev, 3106 struct device_attribute *attr, char *buf) 3107 { 3108 u8 reply_queue_count; 3109 struct Scsi_Host *shost = class_to_shost(cdev); 3110 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3111 3112 if ((ioc->facts.IOCCapabilities & 3113 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable) 3114 reply_queue_count = ioc->reply_queue_count; 3115 else 3116 reply_queue_count = 1; 3117 3118 return snprintf(buf, PAGE_SIZE, "%d\n", reply_queue_count); 3119 } 3120 static DEVICE_ATTR_RO(reply_queue_count); 3121 3122 /** 3123 * BRM_status_show - Backup Rail Monitor Status 3124 * @cdev: pointer to embedded class device 3125 * @attr: ? 3126 * @buf: the buffer returned 3127 * 3128 * This is number of reply queues 3129 * 3130 * A sysfs 'read-only' shost attribute. 3131 */ 3132 static ssize_t 3133 BRM_status_show(struct device *cdev, struct device_attribute *attr, 3134 char *buf) 3135 { 3136 struct Scsi_Host *shost = class_to_shost(cdev); 3137 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3138 Mpi2IOUnitPage3_t *io_unit_pg3 = NULL; 3139 Mpi2ConfigReply_t mpi_reply; 3140 u16 backup_rail_monitor_status = 0; 3141 u16 ioc_status; 3142 int sz; 3143 ssize_t rc = 0; 3144 3145 if (!ioc->is_warpdrive) { 3146 ioc_err(ioc, "%s: BRM attribute is only for warpdrive\n", 3147 __func__); 3148 return 0; 3149 } 3150 /* pci_access_mutex lock acquired by sysfs show path */ 3151 mutex_lock(&ioc->pci_access_mutex); 3152 if (ioc->pci_error_recovery || ioc->remove_host) 3153 goto out; 3154 3155 /* allocate upto GPIOVal 36 entries */ 3156 sz = offsetof(Mpi2IOUnitPage3_t, GPIOVal) + (sizeof(u16) * 36); 3157 io_unit_pg3 = kzalloc(sz, GFP_KERNEL); 3158 if (!io_unit_pg3) { 3159 rc = -ENOMEM; 3160 ioc_err(ioc, "%s: failed allocating memory for iounit_pg3: (%d) bytes\n", 3161 __func__, sz); 3162 goto out; 3163 } 3164 3165 if (mpt3sas_config_get_iounit_pg3(ioc, &mpi_reply, io_unit_pg3, sz) != 3166 0) { 3167 ioc_err(ioc, "%s: failed reading iounit_pg3\n", 3168 __func__); 3169 rc = -EINVAL; 3170 goto out; 3171 } 3172 3173 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK; 3174 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 3175 ioc_err(ioc, "%s: iounit_pg3 failed with ioc_status(0x%04x)\n", 3176 __func__, ioc_status); 3177 rc = -EINVAL; 3178 goto out; 3179 } 3180 3181 if (io_unit_pg3->GPIOCount < 25) { 3182 ioc_err(ioc, "%s: iounit_pg3->GPIOCount less than 25 entries, detected (%d) entries\n", 3183 __func__, io_unit_pg3->GPIOCount); 3184 rc = -EINVAL; 3185 goto out; 3186 } 3187 3188 /* BRM status is in bit zero of GPIOVal[24] */ 3189 backup_rail_monitor_status = le16_to_cpu(io_unit_pg3->GPIOVal[24]); 3190 rc = snprintf(buf, PAGE_SIZE, "%d\n", (backup_rail_monitor_status & 1)); 3191 3192 out: 3193 kfree(io_unit_pg3); 3194 mutex_unlock(&ioc->pci_access_mutex); 3195 return rc; 3196 } 3197 static DEVICE_ATTR_RO(BRM_status); 3198 3199 struct DIAG_BUFFER_START { 3200 __le32 Size; 3201 __le32 DiagVersion; 3202 u8 BufferType; 3203 u8 Reserved[3]; 3204 __le32 Reserved1; 3205 __le32 Reserved2; 3206 __le32 Reserved3; 3207 }; 3208 3209 /** 3210 * host_trace_buffer_size_show - host buffer size (trace only) 3211 * @cdev: pointer to embedded class device 3212 * @attr: ? 3213 * @buf: the buffer returned 3214 * 3215 * A sysfs 'read-only' shost attribute. 3216 */ 3217 static ssize_t 3218 host_trace_buffer_size_show(struct device *cdev, 3219 struct device_attribute *attr, char *buf) 3220 { 3221 struct Scsi_Host *shost = class_to_shost(cdev); 3222 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3223 u32 size = 0; 3224 struct DIAG_BUFFER_START *request_data; 3225 3226 if (!ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) { 3227 ioc_err(ioc, "%s: host_trace_buffer is not registered\n", 3228 __func__); 3229 return 0; 3230 } 3231 3232 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 3233 MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) { 3234 ioc_err(ioc, "%s: host_trace_buffer is not registered\n", 3235 __func__); 3236 return 0; 3237 } 3238 3239 request_data = (struct DIAG_BUFFER_START *) 3240 ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]; 3241 if ((le32_to_cpu(request_data->DiagVersion) == 0x00000000 || 3242 le32_to_cpu(request_data->DiagVersion) == 0x01000000 || 3243 le32_to_cpu(request_data->DiagVersion) == 0x01010000) && 3244 le32_to_cpu(request_data->Reserved3) == 0x4742444c) 3245 size = le32_to_cpu(request_data->Size); 3246 3247 ioc->ring_buffer_sz = size; 3248 return snprintf(buf, PAGE_SIZE, "%d\n", size); 3249 } 3250 static DEVICE_ATTR_RO(host_trace_buffer_size); 3251 3252 /** 3253 * host_trace_buffer_show - firmware ring buffer (trace only) 3254 * @cdev: pointer to embedded class device 3255 * @attr: ? 3256 * @buf: the buffer returned 3257 * 3258 * A sysfs 'read/write' shost attribute. 3259 * 3260 * You will only be able to read 4k bytes of ring buffer at a time. 3261 * In order to read beyond 4k bytes, you will have to write out the 3262 * offset to the same attribute, it will move the pointer. 3263 */ 3264 static ssize_t 3265 host_trace_buffer_show(struct device *cdev, struct device_attribute *attr, 3266 char *buf) 3267 { 3268 struct Scsi_Host *shost = class_to_shost(cdev); 3269 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3270 void *request_data; 3271 u32 size; 3272 3273 if (!ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) { 3274 ioc_err(ioc, "%s: host_trace_buffer is not registered\n", 3275 __func__); 3276 return 0; 3277 } 3278 3279 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 3280 MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) { 3281 ioc_err(ioc, "%s: host_trace_buffer is not registered\n", 3282 __func__); 3283 return 0; 3284 } 3285 3286 if (ioc->ring_buffer_offset > ioc->ring_buffer_sz) 3287 return 0; 3288 3289 size = ioc->ring_buffer_sz - ioc->ring_buffer_offset; 3290 size = (size >= PAGE_SIZE) ? (PAGE_SIZE - 1) : size; 3291 request_data = ioc->diag_buffer[0] + ioc->ring_buffer_offset; 3292 memcpy(buf, request_data, size); 3293 return size; 3294 } 3295 3296 static ssize_t 3297 host_trace_buffer_store(struct device *cdev, struct device_attribute *attr, 3298 const char *buf, size_t count) 3299 { 3300 struct Scsi_Host *shost = class_to_shost(cdev); 3301 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3302 int val = 0; 3303 3304 if (sscanf(buf, "%d", &val) != 1) 3305 return -EINVAL; 3306 3307 ioc->ring_buffer_offset = val; 3308 return strlen(buf); 3309 } 3310 static DEVICE_ATTR_RW(host_trace_buffer); 3311 3312 3313 /*****************************************/ 3314 3315 /** 3316 * host_trace_buffer_enable_show - firmware ring buffer (trace only) 3317 * @cdev: pointer to embedded class device 3318 * @attr: ? 3319 * @buf: the buffer returned 3320 * 3321 * A sysfs 'read/write' shost attribute. 3322 * 3323 * This is a mechnism to post/release host_trace_buffers 3324 */ 3325 static ssize_t 3326 host_trace_buffer_enable_show(struct device *cdev, 3327 struct device_attribute *attr, char *buf) 3328 { 3329 struct Scsi_Host *shost = class_to_shost(cdev); 3330 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3331 3332 if ((!ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) || 3333 ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 3334 MPT3_DIAG_BUFFER_IS_REGISTERED) == 0)) 3335 return snprintf(buf, PAGE_SIZE, "off\n"); 3336 else if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 3337 MPT3_DIAG_BUFFER_IS_RELEASED)) 3338 return snprintf(buf, PAGE_SIZE, "release\n"); 3339 else 3340 return snprintf(buf, PAGE_SIZE, "post\n"); 3341 } 3342 3343 static ssize_t 3344 host_trace_buffer_enable_store(struct device *cdev, 3345 struct device_attribute *attr, const char *buf, size_t count) 3346 { 3347 struct Scsi_Host *shost = class_to_shost(cdev); 3348 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3349 char str[10] = ""; 3350 struct mpt3_diag_register diag_register; 3351 u8 issue_reset = 0; 3352 3353 /* don't allow post/release occurr while recovery is active */ 3354 if (ioc->shost_recovery || ioc->remove_host || 3355 ioc->pci_error_recovery || ioc->is_driver_loading) 3356 return -EBUSY; 3357 3358 if (sscanf(buf, "%9s", str) != 1) 3359 return -EINVAL; 3360 3361 if (!strcmp(str, "post")) { 3362 /* exit out if host buffers are already posted */ 3363 if ((ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) && 3364 (ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 3365 MPT3_DIAG_BUFFER_IS_REGISTERED) && 3366 ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 3367 MPT3_DIAG_BUFFER_IS_RELEASED) == 0)) 3368 goto out; 3369 memset(&diag_register, 0, sizeof(struct mpt3_diag_register)); 3370 ioc_info(ioc, "posting host trace buffers\n"); 3371 diag_register.buffer_type = MPI2_DIAG_BUF_TYPE_TRACE; 3372 3373 if (ioc->manu_pg11.HostTraceBufferMaxSizeKB != 0 && 3374 ioc->diag_buffer_sz[MPI2_DIAG_BUF_TYPE_TRACE] != 0) { 3375 /* post the same buffer allocated previously */ 3376 diag_register.requested_buffer_size = 3377 ioc->diag_buffer_sz[MPI2_DIAG_BUF_TYPE_TRACE]; 3378 } else { 3379 /* 3380 * Free the diag buffer memory which was previously 3381 * allocated by an application. 3382 */ 3383 if ((ioc->diag_buffer_sz[MPI2_DIAG_BUF_TYPE_TRACE] != 0) 3384 && 3385 (ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 3386 MPT3_DIAG_BUFFER_IS_APP_OWNED)) { 3387 pci_free_consistent(ioc->pdev, 3388 ioc->diag_buffer_sz[ 3389 MPI2_DIAG_BUF_TYPE_TRACE], 3390 ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE], 3391 ioc->diag_buffer_dma[ 3392 MPI2_DIAG_BUF_TYPE_TRACE]); 3393 ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE] = 3394 NULL; 3395 } 3396 3397 diag_register.requested_buffer_size = (1024 * 1024); 3398 } 3399 3400 diag_register.unique_id = 3401 (ioc->hba_mpi_version_belonged == MPI2_VERSION) ? 3402 (MPT2DIAGBUFFUNIQUEID):(MPT3DIAGBUFFUNIQUEID); 3403 ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] = 0; 3404 _ctl_diag_register_2(ioc, &diag_register); 3405 if (ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 3406 MPT3_DIAG_BUFFER_IS_REGISTERED) { 3407 ioc_info(ioc, 3408 "Trace buffer %d KB allocated through sysfs\n", 3409 diag_register.requested_buffer_size>>10); 3410 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) 3411 ioc->diag_buffer_status[ 3412 MPI2_DIAG_BUF_TYPE_TRACE] |= 3413 MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED; 3414 } 3415 } else if (!strcmp(str, "release")) { 3416 /* exit out if host buffers are already released */ 3417 if (!ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) 3418 goto out; 3419 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 3420 MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) 3421 goto out; 3422 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 3423 MPT3_DIAG_BUFFER_IS_RELEASED)) 3424 goto out; 3425 ioc_info(ioc, "releasing host trace buffer\n"); 3426 mpt3sas_send_diag_release(ioc, MPI2_DIAG_BUF_TYPE_TRACE, 3427 &issue_reset); 3428 } 3429 3430 out: 3431 return strlen(buf); 3432 } 3433 static DEVICE_ATTR_RW(host_trace_buffer_enable); 3434 3435 /*********** diagnostic trigger suppport *********************************/ 3436 3437 /** 3438 * diag_trigger_master_show - show the diag_trigger_master attribute 3439 * @cdev: pointer to embedded class device 3440 * @attr: ? 3441 * @buf: the buffer returned 3442 * 3443 * A sysfs 'read/write' shost attribute. 3444 */ 3445 static ssize_t 3446 diag_trigger_master_show(struct device *cdev, 3447 struct device_attribute *attr, char *buf) 3448 3449 { 3450 struct Scsi_Host *shost = class_to_shost(cdev); 3451 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3452 unsigned long flags; 3453 ssize_t rc; 3454 3455 spin_lock_irqsave(&ioc->diag_trigger_lock, flags); 3456 rc = sizeof(struct SL_WH_MASTER_TRIGGER_T); 3457 memcpy(buf, &ioc->diag_trigger_master, rc); 3458 spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags); 3459 return rc; 3460 } 3461 3462 /** 3463 * diag_trigger_master_store - store the diag_trigger_master attribute 3464 * @cdev: pointer to embedded class device 3465 * @attr: ? 3466 * @buf: the buffer returned 3467 * @count: ? 3468 * 3469 * A sysfs 'read/write' shost attribute. 3470 */ 3471 static ssize_t 3472 diag_trigger_master_store(struct device *cdev, 3473 struct device_attribute *attr, const char *buf, size_t count) 3474 3475 { 3476 struct Scsi_Host *shost = class_to_shost(cdev); 3477 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3478 unsigned long flags; 3479 ssize_t rc; 3480 3481 spin_lock_irqsave(&ioc->diag_trigger_lock, flags); 3482 rc = min(sizeof(struct SL_WH_MASTER_TRIGGER_T), count); 3483 memset(&ioc->diag_trigger_master, 0, 3484 sizeof(struct SL_WH_MASTER_TRIGGER_T)); 3485 memcpy(&ioc->diag_trigger_master, buf, rc); 3486 ioc->diag_trigger_master.MasterData |= 3487 (MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET); 3488 spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags); 3489 return rc; 3490 } 3491 static DEVICE_ATTR_RW(diag_trigger_master); 3492 3493 3494 /** 3495 * diag_trigger_event_show - show the diag_trigger_event attribute 3496 * @cdev: pointer to embedded class device 3497 * @attr: ? 3498 * @buf: the buffer returned 3499 * 3500 * A sysfs 'read/write' shost attribute. 3501 */ 3502 static ssize_t 3503 diag_trigger_event_show(struct device *cdev, 3504 struct device_attribute *attr, char *buf) 3505 { 3506 struct Scsi_Host *shost = class_to_shost(cdev); 3507 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3508 unsigned long flags; 3509 ssize_t rc; 3510 3511 spin_lock_irqsave(&ioc->diag_trigger_lock, flags); 3512 rc = sizeof(struct SL_WH_EVENT_TRIGGERS_T); 3513 memcpy(buf, &ioc->diag_trigger_event, rc); 3514 spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags); 3515 return rc; 3516 } 3517 3518 /** 3519 * diag_trigger_event_store - store the diag_trigger_event attribute 3520 * @cdev: pointer to embedded class device 3521 * @attr: ? 3522 * @buf: the buffer returned 3523 * @count: ? 3524 * 3525 * A sysfs 'read/write' shost attribute. 3526 */ 3527 static ssize_t 3528 diag_trigger_event_store(struct device *cdev, 3529 struct device_attribute *attr, const char *buf, size_t count) 3530 3531 { 3532 struct Scsi_Host *shost = class_to_shost(cdev); 3533 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3534 unsigned long flags; 3535 ssize_t sz; 3536 3537 spin_lock_irqsave(&ioc->diag_trigger_lock, flags); 3538 sz = min(sizeof(struct SL_WH_EVENT_TRIGGERS_T), count); 3539 memset(&ioc->diag_trigger_event, 0, 3540 sizeof(struct SL_WH_EVENT_TRIGGERS_T)); 3541 memcpy(&ioc->diag_trigger_event, buf, sz); 3542 if (ioc->diag_trigger_event.ValidEntries > NUM_VALID_ENTRIES) 3543 ioc->diag_trigger_event.ValidEntries = NUM_VALID_ENTRIES; 3544 spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags); 3545 return sz; 3546 } 3547 static DEVICE_ATTR_RW(diag_trigger_event); 3548 3549 3550 /** 3551 * diag_trigger_scsi_show - show the diag_trigger_scsi attribute 3552 * @cdev: pointer to embedded class device 3553 * @attr: ? 3554 * @buf: the buffer returned 3555 * 3556 * A sysfs 'read/write' shost attribute. 3557 */ 3558 static ssize_t 3559 diag_trigger_scsi_show(struct device *cdev, 3560 struct device_attribute *attr, char *buf) 3561 { 3562 struct Scsi_Host *shost = class_to_shost(cdev); 3563 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3564 unsigned long flags; 3565 ssize_t rc; 3566 3567 spin_lock_irqsave(&ioc->diag_trigger_lock, flags); 3568 rc = sizeof(struct SL_WH_SCSI_TRIGGERS_T); 3569 memcpy(buf, &ioc->diag_trigger_scsi, rc); 3570 spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags); 3571 return rc; 3572 } 3573 3574 /** 3575 * diag_trigger_scsi_store - store the diag_trigger_scsi attribute 3576 * @cdev: pointer to embedded class device 3577 * @attr: ? 3578 * @buf: the buffer returned 3579 * @count: ? 3580 * 3581 * A sysfs 'read/write' shost attribute. 3582 */ 3583 static ssize_t 3584 diag_trigger_scsi_store(struct device *cdev, 3585 struct device_attribute *attr, const char *buf, size_t count) 3586 { 3587 struct Scsi_Host *shost = class_to_shost(cdev); 3588 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3589 unsigned long flags; 3590 ssize_t sz; 3591 3592 spin_lock_irqsave(&ioc->diag_trigger_lock, flags); 3593 sz = min(sizeof(ioc->diag_trigger_scsi), count); 3594 memset(&ioc->diag_trigger_scsi, 0, sizeof(ioc->diag_trigger_scsi)); 3595 memcpy(&ioc->diag_trigger_scsi, buf, sz); 3596 if (ioc->diag_trigger_scsi.ValidEntries > NUM_VALID_ENTRIES) 3597 ioc->diag_trigger_scsi.ValidEntries = NUM_VALID_ENTRIES; 3598 spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags); 3599 return sz; 3600 } 3601 static DEVICE_ATTR_RW(diag_trigger_scsi); 3602 3603 3604 /** 3605 * diag_trigger_scsi_show - show the diag_trigger_mpi attribute 3606 * @cdev: pointer to embedded class device 3607 * @attr: ? 3608 * @buf: the buffer returned 3609 * 3610 * A sysfs 'read/write' shost attribute. 3611 */ 3612 static ssize_t 3613 diag_trigger_mpi_show(struct device *cdev, 3614 struct device_attribute *attr, char *buf) 3615 { 3616 struct Scsi_Host *shost = class_to_shost(cdev); 3617 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3618 unsigned long flags; 3619 ssize_t rc; 3620 3621 spin_lock_irqsave(&ioc->diag_trigger_lock, flags); 3622 rc = sizeof(struct SL_WH_MPI_TRIGGERS_T); 3623 memcpy(buf, &ioc->diag_trigger_mpi, rc); 3624 spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags); 3625 return rc; 3626 } 3627 3628 /** 3629 * diag_trigger_mpi_store - store the diag_trigger_mpi attribute 3630 * @cdev: pointer to embedded class device 3631 * @attr: ? 3632 * @buf: the buffer returned 3633 * @count: ? 3634 * 3635 * A sysfs 'read/write' shost attribute. 3636 */ 3637 static ssize_t 3638 diag_trigger_mpi_store(struct device *cdev, 3639 struct device_attribute *attr, const char *buf, size_t count) 3640 { 3641 struct Scsi_Host *shost = class_to_shost(cdev); 3642 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3643 unsigned long flags; 3644 ssize_t sz; 3645 3646 spin_lock_irqsave(&ioc->diag_trigger_lock, flags); 3647 sz = min(sizeof(struct SL_WH_MPI_TRIGGERS_T), count); 3648 memset(&ioc->diag_trigger_mpi, 0, 3649 sizeof(ioc->diag_trigger_mpi)); 3650 memcpy(&ioc->diag_trigger_mpi, buf, sz); 3651 if (ioc->diag_trigger_mpi.ValidEntries > NUM_VALID_ENTRIES) 3652 ioc->diag_trigger_mpi.ValidEntries = NUM_VALID_ENTRIES; 3653 spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags); 3654 return sz; 3655 } 3656 3657 static DEVICE_ATTR_RW(diag_trigger_mpi); 3658 3659 /*********** diagnostic trigger suppport *** END ****************************/ 3660 3661 /*****************************************/ 3662 3663 /** 3664 * drv_support_bitmap_show - driver supported feature bitmap 3665 * @cdev: pointer to embedded class device 3666 * @attr: unused 3667 * @buf: the buffer returned 3668 * 3669 * A sysfs 'read-only' shost attribute. 3670 */ 3671 static ssize_t 3672 drv_support_bitmap_show(struct device *cdev, 3673 struct device_attribute *attr, char *buf) 3674 { 3675 struct Scsi_Host *shost = class_to_shost(cdev); 3676 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3677 3678 return snprintf(buf, PAGE_SIZE, "0x%08x\n", ioc->drv_support_bitmap); 3679 } 3680 static DEVICE_ATTR_RO(drv_support_bitmap); 3681 3682 /** 3683 * enable_sdev_max_qd_show - display whether sdev max qd is enabled/disabled 3684 * @cdev: pointer to embedded class device 3685 * @attr: unused 3686 * @buf: the buffer returned 3687 * 3688 * A sysfs read/write shost attribute. This attribute is used to set the 3689 * targets queue depth to HBA IO queue depth if this attribute is enabled. 3690 */ 3691 static ssize_t 3692 enable_sdev_max_qd_show(struct device *cdev, 3693 struct device_attribute *attr, char *buf) 3694 { 3695 struct Scsi_Host *shost = class_to_shost(cdev); 3696 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3697 3698 return snprintf(buf, PAGE_SIZE, "%d\n", ioc->enable_sdev_max_qd); 3699 } 3700 3701 /** 3702 * enable_sdev_max_qd_store - Enable/disable sdev max qd 3703 * @cdev: pointer to embedded class device 3704 * @attr: unused 3705 * @buf: the buffer returned 3706 * @count: unused 3707 * 3708 * A sysfs read/write shost attribute. This attribute is used to set the 3709 * targets queue depth to HBA IO queue depth if this attribute is enabled. 3710 * If this attribute is disabled then targets will have corresponding default 3711 * queue depth. 3712 */ 3713 static ssize_t 3714 enable_sdev_max_qd_store(struct device *cdev, 3715 struct device_attribute *attr, const char *buf, size_t count) 3716 { 3717 struct Scsi_Host *shost = class_to_shost(cdev); 3718 struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); 3719 struct MPT3SAS_DEVICE *sas_device_priv_data; 3720 struct MPT3SAS_TARGET *sas_target_priv_data; 3721 int val = 0; 3722 struct scsi_device *sdev; 3723 struct _raid_device *raid_device; 3724 int qdepth; 3725 3726 if (kstrtoint(buf, 0, &val) != 0) 3727 return -EINVAL; 3728 3729 switch (val) { 3730 case 0: 3731 ioc->enable_sdev_max_qd = 0; 3732 shost_for_each_device(sdev, ioc->shost) { 3733 sas_device_priv_data = sdev->hostdata; 3734 if (!sas_device_priv_data) 3735 continue; 3736 sas_target_priv_data = sas_device_priv_data->sas_target; 3737 if (!sas_target_priv_data) 3738 continue; 3739 3740 if (sas_target_priv_data->flags & 3741 MPT_TARGET_FLAGS_VOLUME) { 3742 raid_device = 3743 mpt3sas_raid_device_find_by_handle(ioc, 3744 sas_target_priv_data->handle); 3745 3746 switch (raid_device->volume_type) { 3747 case MPI2_RAID_VOL_TYPE_RAID0: 3748 if (raid_device->device_info & 3749 MPI2_SAS_DEVICE_INFO_SSP_TARGET) 3750 qdepth = 3751 MPT3SAS_SAS_QUEUE_DEPTH; 3752 else 3753 qdepth = 3754 MPT3SAS_SATA_QUEUE_DEPTH; 3755 break; 3756 case MPI2_RAID_VOL_TYPE_RAID1E: 3757 case MPI2_RAID_VOL_TYPE_RAID1: 3758 case MPI2_RAID_VOL_TYPE_RAID10: 3759 case MPI2_RAID_VOL_TYPE_UNKNOWN: 3760 default: 3761 qdepth = MPT3SAS_RAID_QUEUE_DEPTH; 3762 } 3763 } else if (sas_target_priv_data->flags & 3764 MPT_TARGET_FLAGS_PCIE_DEVICE) 3765 qdepth = MPT3SAS_NVME_QUEUE_DEPTH; 3766 else 3767 qdepth = MPT3SAS_SAS_QUEUE_DEPTH; 3768 3769 mpt3sas_scsih_change_queue_depth(sdev, qdepth); 3770 } 3771 break; 3772 case 1: 3773 ioc->enable_sdev_max_qd = 1; 3774 shost_for_each_device(sdev, ioc->shost) 3775 mpt3sas_scsih_change_queue_depth(sdev, 3776 shost->can_queue); 3777 break; 3778 default: 3779 return -EINVAL; 3780 } 3781 3782 return strlen(buf); 3783 } 3784 static DEVICE_ATTR_RW(enable_sdev_max_qd); 3785 3786 struct device_attribute *mpt3sas_host_attrs[] = { 3787 &dev_attr_version_fw, 3788 &dev_attr_version_bios, 3789 &dev_attr_version_mpi, 3790 &dev_attr_version_product, 3791 &dev_attr_version_nvdata_persistent, 3792 &dev_attr_version_nvdata_default, 3793 &dev_attr_board_name, 3794 &dev_attr_board_assembly, 3795 &dev_attr_board_tracer, 3796 &dev_attr_io_delay, 3797 &dev_attr_device_delay, 3798 &dev_attr_logging_level, 3799 &dev_attr_fwfault_debug, 3800 &dev_attr_fw_queue_depth, 3801 &dev_attr_host_sas_address, 3802 &dev_attr_ioc_reset_count, 3803 &dev_attr_host_trace_buffer_size, 3804 &dev_attr_host_trace_buffer, 3805 &dev_attr_host_trace_buffer_enable, 3806 &dev_attr_reply_queue_count, 3807 &dev_attr_diag_trigger_master, 3808 &dev_attr_diag_trigger_event, 3809 &dev_attr_diag_trigger_scsi, 3810 &dev_attr_diag_trigger_mpi, 3811 &dev_attr_drv_support_bitmap, 3812 &dev_attr_BRM_status, 3813 &dev_attr_enable_sdev_max_qd, 3814 NULL, 3815 }; 3816 3817 /* device attributes */ 3818 3819 /** 3820 * sas_address_show - sas address 3821 * @dev: pointer to embedded class device 3822 * @attr: ? 3823 * @buf: the buffer returned 3824 * 3825 * This is the sas address for the target 3826 * 3827 * A sysfs 'read-only' shost attribute. 3828 */ 3829 static ssize_t 3830 sas_address_show(struct device *dev, struct device_attribute *attr, 3831 char *buf) 3832 { 3833 struct scsi_device *sdev = to_scsi_device(dev); 3834 struct MPT3SAS_DEVICE *sas_device_priv_data = sdev->hostdata; 3835 3836 return snprintf(buf, PAGE_SIZE, "0x%016llx\n", 3837 (unsigned long long)sas_device_priv_data->sas_target->sas_address); 3838 } 3839 static DEVICE_ATTR_RO(sas_address); 3840 3841 /** 3842 * sas_device_handle_show - device handle 3843 * @dev: pointer to embedded class device 3844 * @attr: ? 3845 * @buf: the buffer returned 3846 * 3847 * This is the firmware assigned device handle 3848 * 3849 * A sysfs 'read-only' shost attribute. 3850 */ 3851 static ssize_t 3852 sas_device_handle_show(struct device *dev, struct device_attribute *attr, 3853 char *buf) 3854 { 3855 struct scsi_device *sdev = to_scsi_device(dev); 3856 struct MPT3SAS_DEVICE *sas_device_priv_data = sdev->hostdata; 3857 3858 return snprintf(buf, PAGE_SIZE, "0x%04x\n", 3859 sas_device_priv_data->sas_target->handle); 3860 } 3861 static DEVICE_ATTR_RO(sas_device_handle); 3862 3863 /** 3864 * sas_ncq_io_prio_show - send prioritized io commands to device 3865 * @dev: pointer to embedded device 3866 * @attr: ? 3867 * @buf: the buffer returned 3868 * 3869 * A sysfs 'read/write' sdev attribute, only works with SATA 3870 */ 3871 static ssize_t 3872 sas_ncq_prio_enable_show(struct device *dev, 3873 struct device_attribute *attr, char *buf) 3874 { 3875 struct scsi_device *sdev = to_scsi_device(dev); 3876 struct MPT3SAS_DEVICE *sas_device_priv_data = sdev->hostdata; 3877 3878 return snprintf(buf, PAGE_SIZE, "%d\n", 3879 sas_device_priv_data->ncq_prio_enable); 3880 } 3881 3882 static ssize_t 3883 sas_ncq_prio_enable_store(struct device *dev, 3884 struct device_attribute *attr, 3885 const char *buf, size_t count) 3886 { 3887 struct scsi_device *sdev = to_scsi_device(dev); 3888 struct MPT3SAS_DEVICE *sas_device_priv_data = sdev->hostdata; 3889 bool ncq_prio_enable = 0; 3890 3891 if (kstrtobool(buf, &ncq_prio_enable)) 3892 return -EINVAL; 3893 3894 if (!scsih_ncq_prio_supp(sdev)) 3895 return -EINVAL; 3896 3897 sas_device_priv_data->ncq_prio_enable = ncq_prio_enable; 3898 return strlen(buf); 3899 } 3900 static DEVICE_ATTR_RW(sas_ncq_prio_enable); 3901 3902 struct device_attribute *mpt3sas_dev_attrs[] = { 3903 &dev_attr_sas_address, 3904 &dev_attr_sas_device_handle, 3905 &dev_attr_sas_ncq_prio_enable, 3906 NULL, 3907 }; 3908 3909 /* file operations table for mpt3ctl device */ 3910 static const struct file_operations ctl_fops = { 3911 .owner = THIS_MODULE, 3912 .unlocked_ioctl = _ctl_ioctl, 3913 .poll = _ctl_poll, 3914 .fasync = _ctl_fasync, 3915 #ifdef CONFIG_COMPAT 3916 .compat_ioctl = _ctl_ioctl_compat, 3917 #endif 3918 }; 3919 3920 /* file operations table for mpt2ctl device */ 3921 static const struct file_operations ctl_gen2_fops = { 3922 .owner = THIS_MODULE, 3923 .unlocked_ioctl = _ctl_mpt2_ioctl, 3924 .poll = _ctl_poll, 3925 .fasync = _ctl_fasync, 3926 #ifdef CONFIG_COMPAT 3927 .compat_ioctl = _ctl_mpt2_ioctl_compat, 3928 #endif 3929 }; 3930 3931 static struct miscdevice ctl_dev = { 3932 .minor = MPT3SAS_MINOR, 3933 .name = MPT3SAS_DEV_NAME, 3934 .fops = &ctl_fops, 3935 }; 3936 3937 static struct miscdevice gen2_ctl_dev = { 3938 .minor = MPT2SAS_MINOR, 3939 .name = MPT2SAS_DEV_NAME, 3940 .fops = &ctl_gen2_fops, 3941 }; 3942 3943 /** 3944 * mpt3sas_ctl_init - main entry point for ctl. 3945 * @hbas_to_enumerate: ? 3946 */ 3947 void 3948 mpt3sas_ctl_init(ushort hbas_to_enumerate) 3949 { 3950 async_queue = NULL; 3951 3952 /* Don't register mpt3ctl ioctl device if 3953 * hbas_to_enumarate is one. 3954 */ 3955 if (hbas_to_enumerate != 1) 3956 if (misc_register(&ctl_dev) < 0) 3957 pr_err("%s can't register misc device [minor=%d]\n", 3958 MPT3SAS_DRIVER_NAME, MPT3SAS_MINOR); 3959 3960 /* Don't register mpt3ctl ioctl device if 3961 * hbas_to_enumarate is two. 3962 */ 3963 if (hbas_to_enumerate != 2) 3964 if (misc_register(&gen2_ctl_dev) < 0) 3965 pr_err("%s can't register misc device [minor=%d]\n", 3966 MPT2SAS_DRIVER_NAME, MPT2SAS_MINOR); 3967 3968 init_waitqueue_head(&ctl_poll_wait); 3969 } 3970 3971 /** 3972 * mpt3sas_ctl_exit - exit point for ctl 3973 * @hbas_to_enumerate: ? 3974 */ 3975 void 3976 mpt3sas_ctl_exit(ushort hbas_to_enumerate) 3977 { 3978 struct MPT3SAS_ADAPTER *ioc; 3979 int i; 3980 3981 list_for_each_entry(ioc, &mpt3sas_ioc_list, list) { 3982 3983 /* free memory associated to diag buffers */ 3984 for (i = 0; i < MPI2_DIAG_BUF_TYPE_COUNT; i++) { 3985 if (!ioc->diag_buffer[i]) 3986 continue; 3987 dma_free_coherent(&ioc->pdev->dev, 3988 ioc->diag_buffer_sz[i], 3989 ioc->diag_buffer[i], 3990 ioc->diag_buffer_dma[i]); 3991 ioc->diag_buffer[i] = NULL; 3992 ioc->diag_buffer_status[i] = 0; 3993 } 3994 3995 kfree(ioc->event_log); 3996 } 3997 if (hbas_to_enumerate != 1) 3998 misc_deregister(&ctl_dev); 3999 if (hbas_to_enumerate != 2) 4000 misc_deregister(&gen2_ctl_dev); 4001 } 4002