1 /*
2  * Management Module Support for MPT (Message Passing Technology) based
3  * controllers
4  *
5  * This code is based on drivers/scsi/mpt3sas/mpt3sas_ctl.c
6  * Copyright (C) 2012-2014  LSI Corporation
7  * Copyright (C) 2013-2014 Avago Technologies
8  *  (mailto: MPT-FusionLinux.pdl@avagotech.com)
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version 2
13  * of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * NO WARRANTY
21  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25  * solely responsible for determining the appropriateness of using and
26  * distributing the Program and assumes all risks associated with its
27  * exercise of rights under this Agreement, including but not limited to
28  * the risks and costs of program errors, damage to or loss of data,
29  * programs or equipment, and unavailability or interruption of operations.
30 
31  * DISCLAIMER OF LIABILITY
32  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39 
40  * You should have received a copy of the GNU General Public License
41  * along with this program; if not, write to the Free Software
42  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
43  * USA.
44  */
45 
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/delay.h>
54 #include <linux/compat.h>
55 #include <linux/poll.h>
56 
57 #include <linux/io.h>
58 #include <linux/uaccess.h>
59 
60 #include "mpt3sas_base.h"
61 #include "mpt3sas_ctl.h"
62 
63 
64 static struct fasync_struct *async_queue;
65 static DECLARE_WAIT_QUEUE_HEAD(ctl_poll_wait);
66 
67 
68 /**
69  * enum block_state - blocking state
70  * @NON_BLOCKING: non blocking
71  * @BLOCKING: blocking
72  *
73  * These states are for ioctls that need to wait for a response
74  * from firmware, so they probably require sleep.
75  */
76 enum block_state {
77 	NON_BLOCKING,
78 	BLOCKING,
79 };
80 
81 /**
82  * _ctl_display_some_debug - debug routine
83  * @ioc: per adapter object
84  * @smid: system request message index
85  * @calling_function_name: string pass from calling function
86  * @mpi_reply: reply message frame
87  * Context: none.
88  *
89  * Function for displaying debug info helpful when debugging issues
90  * in this module.
91  */
92 static void
93 _ctl_display_some_debug(struct MPT3SAS_ADAPTER *ioc, u16 smid,
94 	char *calling_function_name, MPI2DefaultReply_t *mpi_reply)
95 {
96 	Mpi2ConfigRequest_t *mpi_request;
97 	char *desc = NULL;
98 
99 	if (!(ioc->logging_level & MPT_DEBUG_IOCTL))
100 		return;
101 
102 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
103 	switch (mpi_request->Function) {
104 	case MPI2_FUNCTION_SCSI_IO_REQUEST:
105 	{
106 		Mpi2SCSIIORequest_t *scsi_request =
107 		    (Mpi2SCSIIORequest_t *)mpi_request;
108 
109 		snprintf(ioc->tmp_string, MPT_STRING_LENGTH,
110 		    "scsi_io, cmd(0x%02x), cdb_len(%d)",
111 		    scsi_request->CDB.CDB32[0],
112 		    le16_to_cpu(scsi_request->IoFlags) & 0xF);
113 		desc = ioc->tmp_string;
114 		break;
115 	}
116 	case MPI2_FUNCTION_SCSI_TASK_MGMT:
117 		desc = "task_mgmt";
118 		break;
119 	case MPI2_FUNCTION_IOC_INIT:
120 		desc = "ioc_init";
121 		break;
122 	case MPI2_FUNCTION_IOC_FACTS:
123 		desc = "ioc_facts";
124 		break;
125 	case MPI2_FUNCTION_CONFIG:
126 	{
127 		Mpi2ConfigRequest_t *config_request =
128 		    (Mpi2ConfigRequest_t *)mpi_request;
129 
130 		snprintf(ioc->tmp_string, MPT_STRING_LENGTH,
131 		    "config, type(0x%02x), ext_type(0x%02x), number(%d)",
132 		    (config_request->Header.PageType &
133 		     MPI2_CONFIG_PAGETYPE_MASK), config_request->ExtPageType,
134 		    config_request->Header.PageNumber);
135 		desc = ioc->tmp_string;
136 		break;
137 	}
138 	case MPI2_FUNCTION_PORT_FACTS:
139 		desc = "port_facts";
140 		break;
141 	case MPI2_FUNCTION_PORT_ENABLE:
142 		desc = "port_enable";
143 		break;
144 	case MPI2_FUNCTION_EVENT_NOTIFICATION:
145 		desc = "event_notification";
146 		break;
147 	case MPI2_FUNCTION_FW_DOWNLOAD:
148 		desc = "fw_download";
149 		break;
150 	case MPI2_FUNCTION_FW_UPLOAD:
151 		desc = "fw_upload";
152 		break;
153 	case MPI2_FUNCTION_RAID_ACTION:
154 		desc = "raid_action";
155 		break;
156 	case MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH:
157 	{
158 		Mpi2SCSIIORequest_t *scsi_request =
159 		    (Mpi2SCSIIORequest_t *)mpi_request;
160 
161 		snprintf(ioc->tmp_string, MPT_STRING_LENGTH,
162 		    "raid_pass, cmd(0x%02x), cdb_len(%d)",
163 		    scsi_request->CDB.CDB32[0],
164 		    le16_to_cpu(scsi_request->IoFlags) & 0xF);
165 		desc = ioc->tmp_string;
166 		break;
167 	}
168 	case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
169 		desc = "sas_iounit_cntl";
170 		break;
171 	case MPI2_FUNCTION_SATA_PASSTHROUGH:
172 		desc = "sata_pass";
173 		break;
174 	case MPI2_FUNCTION_DIAG_BUFFER_POST:
175 		desc = "diag_buffer_post";
176 		break;
177 	case MPI2_FUNCTION_DIAG_RELEASE:
178 		desc = "diag_release";
179 		break;
180 	case MPI2_FUNCTION_SMP_PASSTHROUGH:
181 		desc = "smp_passthrough";
182 		break;
183 	case MPI2_FUNCTION_TOOLBOX:
184 		desc = "toolbox";
185 		break;
186 	case MPI2_FUNCTION_NVME_ENCAPSULATED:
187 		desc = "nvme_encapsulated";
188 		break;
189 	}
190 
191 	if (!desc)
192 		return;
193 
194 	ioc_info(ioc, "%s: %s, smid(%d)\n", calling_function_name, desc, smid);
195 
196 	if (!mpi_reply)
197 		return;
198 
199 	if (mpi_reply->IOCStatus || mpi_reply->IOCLogInfo)
200 		ioc_info(ioc, "\tiocstatus(0x%04x), loginfo(0x%08x)\n",
201 			 le16_to_cpu(mpi_reply->IOCStatus),
202 			 le32_to_cpu(mpi_reply->IOCLogInfo));
203 
204 	if (mpi_request->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
205 	    mpi_request->Function ==
206 	    MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH) {
207 		Mpi2SCSIIOReply_t *scsi_reply =
208 		    (Mpi2SCSIIOReply_t *)mpi_reply;
209 		struct _sas_device *sas_device = NULL;
210 		struct _pcie_device *pcie_device = NULL;
211 
212 		sas_device = mpt3sas_get_sdev_by_handle(ioc,
213 		    le16_to_cpu(scsi_reply->DevHandle));
214 		if (sas_device) {
215 			ioc_warn(ioc, "\tsas_address(0x%016llx), phy(%d)\n",
216 				 (u64)sas_device->sas_address,
217 				 sas_device->phy);
218 			ioc_warn(ioc, "\tenclosure_logical_id(0x%016llx), slot(%d)\n",
219 				 (u64)sas_device->enclosure_logical_id,
220 				 sas_device->slot);
221 			sas_device_put(sas_device);
222 		}
223 		if (!sas_device) {
224 			pcie_device = mpt3sas_get_pdev_by_handle(ioc,
225 				le16_to_cpu(scsi_reply->DevHandle));
226 			if (pcie_device) {
227 				ioc_warn(ioc, "\tWWID(0x%016llx), port(%d)\n",
228 					 (unsigned long long)pcie_device->wwid,
229 					 pcie_device->port_num);
230 				if (pcie_device->enclosure_handle != 0)
231 					ioc_warn(ioc, "\tenclosure_logical_id(0x%016llx), slot(%d)\n",
232 						 (u64)pcie_device->enclosure_logical_id,
233 						 pcie_device->slot);
234 				pcie_device_put(pcie_device);
235 			}
236 		}
237 		if (scsi_reply->SCSIState || scsi_reply->SCSIStatus)
238 			ioc_info(ioc, "\tscsi_state(0x%02x), scsi_status(0x%02x)\n",
239 				 scsi_reply->SCSIState,
240 				 scsi_reply->SCSIStatus);
241 	}
242 }
243 
244 /**
245  * mpt3sas_ctl_done - ctl module completion routine
246  * @ioc: per adapter object
247  * @smid: system request message index
248  * @msix_index: MSIX table index supplied by the OS
249  * @reply: reply message frame(lower 32bit addr)
250  * Context: none.
251  *
252  * The callback handler when using ioc->ctl_cb_idx.
253  *
254  * Return: 1 meaning mf should be freed from _base_interrupt
255  *         0 means the mf is freed from this function.
256  */
257 u8
258 mpt3sas_ctl_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
259 	u32 reply)
260 {
261 	MPI2DefaultReply_t *mpi_reply;
262 	Mpi2SCSIIOReply_t *scsiio_reply;
263 	Mpi26NVMeEncapsulatedErrorReply_t *nvme_error_reply;
264 	const void *sense_data;
265 	u32 sz;
266 
267 	if (ioc->ctl_cmds.status == MPT3_CMD_NOT_USED)
268 		return 1;
269 	if (ioc->ctl_cmds.smid != smid)
270 		return 1;
271 	ioc->ctl_cmds.status |= MPT3_CMD_COMPLETE;
272 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
273 	if (mpi_reply) {
274 		memcpy(ioc->ctl_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
275 		ioc->ctl_cmds.status |= MPT3_CMD_REPLY_VALID;
276 		/* get sense data */
277 		if (mpi_reply->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
278 		    mpi_reply->Function ==
279 		    MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH) {
280 			scsiio_reply = (Mpi2SCSIIOReply_t *)mpi_reply;
281 			if (scsiio_reply->SCSIState &
282 			    MPI2_SCSI_STATE_AUTOSENSE_VALID) {
283 				sz = min_t(u32, SCSI_SENSE_BUFFERSIZE,
284 				    le32_to_cpu(scsiio_reply->SenseCount));
285 				sense_data = mpt3sas_base_get_sense_buffer(ioc,
286 				    smid);
287 				memcpy(ioc->ctl_cmds.sense, sense_data, sz);
288 			}
289 		}
290 		/*
291 		 * Get Error Response data for NVMe device. The ctl_cmds.sense
292 		 * buffer is used to store the Error Response data.
293 		 */
294 		if (mpi_reply->Function == MPI2_FUNCTION_NVME_ENCAPSULATED) {
295 			nvme_error_reply =
296 			    (Mpi26NVMeEncapsulatedErrorReply_t *)mpi_reply;
297 			sz = min_t(u32, NVME_ERROR_RESPONSE_SIZE,
298 			    le16_to_cpu(nvme_error_reply->ErrorResponseCount));
299 			sense_data = mpt3sas_base_get_sense_buffer(ioc, smid);
300 			memcpy(ioc->ctl_cmds.sense, sense_data, sz);
301 		}
302 	}
303 
304 	_ctl_display_some_debug(ioc, smid, "ctl_done", mpi_reply);
305 	ioc->ctl_cmds.status &= ~MPT3_CMD_PENDING;
306 	complete(&ioc->ctl_cmds.done);
307 	return 1;
308 }
309 
310 /**
311  * _ctl_check_event_type - determines when an event needs logging
312  * @ioc: per adapter object
313  * @event: firmware event
314  *
315  * The bitmask in ioc->event_type[] indicates which events should be
316  * be saved in the driver event_log.  This bitmask is set by application.
317  *
318  * Return: 1 when event should be captured, or zero means no match.
319  */
320 static int
321 _ctl_check_event_type(struct MPT3SAS_ADAPTER *ioc, u16 event)
322 {
323 	u16 i;
324 	u32 desired_event;
325 
326 	if (event >= 128 || !event || !ioc->event_log)
327 		return 0;
328 
329 	desired_event = (1 << (event % 32));
330 	if (!desired_event)
331 		desired_event = 1;
332 	i = event / 32;
333 	return desired_event & ioc->event_type[i];
334 }
335 
336 /**
337  * mpt3sas_ctl_add_to_event_log - add event
338  * @ioc: per adapter object
339  * @mpi_reply: reply message frame
340  */
341 void
342 mpt3sas_ctl_add_to_event_log(struct MPT3SAS_ADAPTER *ioc,
343 	Mpi2EventNotificationReply_t *mpi_reply)
344 {
345 	struct MPT3_IOCTL_EVENTS *event_log;
346 	u16 event;
347 	int i;
348 	u32 sz, event_data_sz;
349 	u8 send_aen = 0;
350 
351 	if (!ioc->event_log)
352 		return;
353 
354 	event = le16_to_cpu(mpi_reply->Event);
355 
356 	if (_ctl_check_event_type(ioc, event)) {
357 
358 		/* insert entry into circular event_log */
359 		i = ioc->event_context % MPT3SAS_CTL_EVENT_LOG_SIZE;
360 		event_log = ioc->event_log;
361 		event_log[i].event = event;
362 		event_log[i].context = ioc->event_context++;
363 
364 		event_data_sz = le16_to_cpu(mpi_reply->EventDataLength)*4;
365 		sz = min_t(u32, event_data_sz, MPT3_EVENT_DATA_SIZE);
366 		memset(event_log[i].data, 0, MPT3_EVENT_DATA_SIZE);
367 		memcpy(event_log[i].data, mpi_reply->EventData, sz);
368 		send_aen = 1;
369 	}
370 
371 	/* This aen_event_read_flag flag is set until the
372 	 * application has read the event log.
373 	 * For MPI2_EVENT_LOG_ENTRY_ADDED, we always notify.
374 	 */
375 	if (event == MPI2_EVENT_LOG_ENTRY_ADDED ||
376 	    (send_aen && !ioc->aen_event_read_flag)) {
377 		ioc->aen_event_read_flag = 1;
378 		wake_up_interruptible(&ctl_poll_wait);
379 		if (async_queue)
380 			kill_fasync(&async_queue, SIGIO, POLL_IN);
381 	}
382 }
383 
384 /**
385  * mpt3sas_ctl_event_callback - firmware event handler (called at ISR time)
386  * @ioc: per adapter object
387  * @msix_index: MSIX table index supplied by the OS
388  * @reply: reply message frame(lower 32bit addr)
389  * Context: interrupt.
390  *
391  * This function merely adds a new work task into ioc->firmware_event_thread.
392  * The tasks are worked from _firmware_event_work in user context.
393  *
394  * Return: 1 meaning mf should be freed from _base_interrupt
395  *         0 means the mf is freed from this function.
396  */
397 u8
398 mpt3sas_ctl_event_callback(struct MPT3SAS_ADAPTER *ioc, u8 msix_index,
399 	u32 reply)
400 {
401 	Mpi2EventNotificationReply_t *mpi_reply;
402 
403 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
404 	if (mpi_reply)
405 		mpt3sas_ctl_add_to_event_log(ioc, mpi_reply);
406 	return 1;
407 }
408 
409 /**
410  * _ctl_verify_adapter - validates ioc_number passed from application
411  * @ioc_number: ?
412  * @iocpp: The ioc pointer is returned in this.
413  * @mpi_version: will be MPI2_VERSION for mpt2ctl ioctl device &
414  * MPI25_VERSION | MPI26_VERSION for mpt3ctl ioctl device.
415  *
416  * Return: (-1) means error, else ioc_number.
417  */
418 static int
419 _ctl_verify_adapter(int ioc_number, struct MPT3SAS_ADAPTER **iocpp,
420 							int mpi_version)
421 {
422 	struct MPT3SAS_ADAPTER *ioc;
423 	int version = 0;
424 	/* global ioc lock to protect controller on list operations */
425 	spin_lock(&gioc_lock);
426 	list_for_each_entry(ioc, &mpt3sas_ioc_list, list) {
427 		if (ioc->id != ioc_number)
428 			continue;
429 		/* Check whether this ioctl command is from right
430 		 * ioctl device or not, if not continue the search.
431 		 */
432 		version = ioc->hba_mpi_version_belonged;
433 		/* MPI25_VERSION and MPI26_VERSION uses same ioctl
434 		 * device.
435 		 */
436 		if (mpi_version == (MPI25_VERSION | MPI26_VERSION)) {
437 			if ((version == MPI25_VERSION) ||
438 				(version == MPI26_VERSION))
439 				goto out;
440 			else
441 				continue;
442 		} else {
443 			if (version != mpi_version)
444 				continue;
445 		}
446 out:
447 		spin_unlock(&gioc_lock);
448 		*iocpp = ioc;
449 		return ioc_number;
450 	}
451 	spin_unlock(&gioc_lock);
452 	*iocpp = NULL;
453 	return -1;
454 }
455 
456 /**
457  * mpt3sas_ctl_reset_handler - reset callback handler (for ctl)
458  * @ioc: per adapter object
459  *
460  * The handler for doing any required cleanup or initialization.
461  */
462 void mpt3sas_ctl_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc)
463 {
464 	int i;
465 	u8 issue_reset;
466 
467 	dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__));
468 	for (i = 0; i < MPI2_DIAG_BUF_TYPE_COUNT; i++) {
469 		if (!(ioc->diag_buffer_status[i] &
470 		      MPT3_DIAG_BUFFER_IS_REGISTERED))
471 			continue;
472 		if ((ioc->diag_buffer_status[i] &
473 		     MPT3_DIAG_BUFFER_IS_RELEASED))
474 			continue;
475 
476 		/*
477 		 * add a log message to indicate the release
478 		 */
479 		ioc_info(ioc,
480 		    "%s: Releasing the trace buffer due to adapter reset.",
481 		    __func__);
482 		mpt3sas_send_diag_release(ioc, i, &issue_reset);
483 	}
484 }
485 
486 /**
487  * mpt3sas_ctl_reset_handler - clears outstanding ioctl cmd.
488  * @ioc: per adapter object
489  *
490  * The handler for doing any required cleanup or initialization.
491  */
492 void mpt3sas_ctl_clear_outstanding_ioctls(struct MPT3SAS_ADAPTER *ioc)
493 {
494 	dtmprintk(ioc,
495 	    ioc_info(ioc, "%s: clear outstanding ioctl cmd\n", __func__));
496 	if (ioc->ctl_cmds.status & MPT3_CMD_PENDING) {
497 		ioc->ctl_cmds.status |= MPT3_CMD_RESET;
498 		mpt3sas_base_free_smid(ioc, ioc->ctl_cmds.smid);
499 		complete(&ioc->ctl_cmds.done);
500 	}
501 }
502 
503 /**
504  * mpt3sas_ctl_reset_handler - reset callback handler (for ctl)
505  * @ioc: per adapter object
506  *
507  * The handler for doing any required cleanup or initialization.
508  */
509 void mpt3sas_ctl_reset_done_handler(struct MPT3SAS_ADAPTER *ioc)
510 {
511 	int i;
512 
513 	dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__));
514 
515 	for (i = 0; i < MPI2_DIAG_BUF_TYPE_COUNT; i++) {
516 		if (!(ioc->diag_buffer_status[i] &
517 		      MPT3_DIAG_BUFFER_IS_REGISTERED))
518 			continue;
519 		if ((ioc->diag_buffer_status[i] &
520 		     MPT3_DIAG_BUFFER_IS_RELEASED))
521 			continue;
522 		ioc->diag_buffer_status[i] |=
523 			MPT3_DIAG_BUFFER_IS_DIAG_RESET;
524 	}
525 }
526 
527 /**
528  * _ctl_fasync -
529  * @fd: ?
530  * @filep: ?
531  * @mode: ?
532  *
533  * Called when application request fasyn callback handler.
534  */
535 static int
536 _ctl_fasync(int fd, struct file *filep, int mode)
537 {
538 	return fasync_helper(fd, filep, mode, &async_queue);
539 }
540 
541 /**
542  * _ctl_poll -
543  * @filep: ?
544  * @wait: ?
545  *
546  */
547 static __poll_t
548 _ctl_poll(struct file *filep, poll_table *wait)
549 {
550 	struct MPT3SAS_ADAPTER *ioc;
551 
552 	poll_wait(filep, &ctl_poll_wait, wait);
553 
554 	/* global ioc lock to protect controller on list operations */
555 	spin_lock(&gioc_lock);
556 	list_for_each_entry(ioc, &mpt3sas_ioc_list, list) {
557 		if (ioc->aen_event_read_flag) {
558 			spin_unlock(&gioc_lock);
559 			return EPOLLIN | EPOLLRDNORM;
560 		}
561 	}
562 	spin_unlock(&gioc_lock);
563 	return 0;
564 }
565 
566 /**
567  * _ctl_set_task_mid - assign an active smid to tm request
568  * @ioc: per adapter object
569  * @karg: (struct mpt3_ioctl_command)
570  * @tm_request: pointer to mf from user space
571  *
572  * Return: 0 when an smid if found, else fail.
573  * during failure, the reply frame is filled.
574  */
575 static int
576 _ctl_set_task_mid(struct MPT3SAS_ADAPTER *ioc, struct mpt3_ioctl_command *karg,
577 	Mpi2SCSITaskManagementRequest_t *tm_request)
578 {
579 	u8 found = 0;
580 	u16 smid;
581 	u16 handle;
582 	struct scsi_cmnd *scmd;
583 	struct MPT3SAS_DEVICE *priv_data;
584 	Mpi2SCSITaskManagementReply_t *tm_reply;
585 	u32 sz;
586 	u32 lun;
587 	char *desc = NULL;
588 
589 	if (tm_request->TaskType == MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK)
590 		desc = "abort_task";
591 	else if (tm_request->TaskType == MPI2_SCSITASKMGMT_TASKTYPE_QUERY_TASK)
592 		desc = "query_task";
593 	else
594 		return 0;
595 
596 	lun = scsilun_to_int((struct scsi_lun *)tm_request->LUN);
597 
598 	handle = le16_to_cpu(tm_request->DevHandle);
599 	for (smid = ioc->scsiio_depth; smid && !found; smid--) {
600 		struct scsiio_tracker *st;
601 
602 		scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
603 		if (!scmd)
604 			continue;
605 		if (lun != scmd->device->lun)
606 			continue;
607 		priv_data = scmd->device->hostdata;
608 		if (priv_data->sas_target == NULL)
609 			continue;
610 		if (priv_data->sas_target->handle != handle)
611 			continue;
612 		st = scsi_cmd_priv(scmd);
613 
614 		/*
615 		 * If the given TaskMID from the user space is zero, then the
616 		 * first outstanding smid will be picked up.  Otherwise,
617 		 * targeted smid will be the one.
618 		 */
619 		if (!tm_request->TaskMID || tm_request->TaskMID == st->smid) {
620 			tm_request->TaskMID = cpu_to_le16(st->smid);
621 			found = 1;
622 		}
623 	}
624 
625 	if (!found) {
626 		dctlprintk(ioc,
627 			   ioc_info(ioc, "%s: handle(0x%04x), lun(%d), no active mid!!\n",
628 				    desc, le16_to_cpu(tm_request->DevHandle),
629 				    lun));
630 		tm_reply = ioc->ctl_cmds.reply;
631 		tm_reply->DevHandle = tm_request->DevHandle;
632 		tm_reply->Function = MPI2_FUNCTION_SCSI_TASK_MGMT;
633 		tm_reply->TaskType = tm_request->TaskType;
634 		tm_reply->MsgLength = sizeof(Mpi2SCSITaskManagementReply_t)/4;
635 		tm_reply->VP_ID = tm_request->VP_ID;
636 		tm_reply->VF_ID = tm_request->VF_ID;
637 		sz = min_t(u32, karg->max_reply_bytes, ioc->reply_sz);
638 		if (copy_to_user(karg->reply_frame_buf_ptr, ioc->ctl_cmds.reply,
639 		    sz))
640 			pr_err("failure at %s:%d/%s()!\n", __FILE__,
641 			    __LINE__, __func__);
642 		return 1;
643 	}
644 
645 	dctlprintk(ioc,
646 		   ioc_info(ioc, "%s: handle(0x%04x), lun(%d), task_mid(%d)\n",
647 			    desc, le16_to_cpu(tm_request->DevHandle), lun,
648 			    le16_to_cpu(tm_request->TaskMID)));
649 	return 0;
650 }
651 
652 /**
653  * _ctl_do_mpt_command - main handler for MPT3COMMAND opcode
654  * @ioc: per adapter object
655  * @karg: (struct mpt3_ioctl_command)
656  * @mf: pointer to mf in user space
657  */
658 static long
659 _ctl_do_mpt_command(struct MPT3SAS_ADAPTER *ioc, struct mpt3_ioctl_command karg,
660 	void __user *mf)
661 {
662 	MPI2RequestHeader_t *mpi_request = NULL, *request;
663 	MPI2DefaultReply_t *mpi_reply;
664 	Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request = NULL;
665 	struct _pcie_device *pcie_device = NULL;
666 	u16 smid;
667 	u8 timeout;
668 	u8 issue_reset;
669 	u32 sz, sz_arg;
670 	void *psge;
671 	void *data_out = NULL;
672 	dma_addr_t data_out_dma = 0;
673 	size_t data_out_sz = 0;
674 	void *data_in = NULL;
675 	dma_addr_t data_in_dma = 0;
676 	size_t data_in_sz = 0;
677 	long ret;
678 	u16 device_handle = MPT3SAS_INVALID_DEVICE_HANDLE;
679 
680 	issue_reset = 0;
681 
682 	if (ioc->ctl_cmds.status != MPT3_CMD_NOT_USED) {
683 		ioc_err(ioc, "%s: ctl_cmd in use\n", __func__);
684 		ret = -EAGAIN;
685 		goto out;
686 	}
687 
688 	ret = mpt3sas_wait_for_ioc(ioc,	IOC_OPERATIONAL_WAIT_COUNT);
689 	if (ret)
690 		goto out;
691 
692 	mpi_request = kzalloc(ioc->request_sz, GFP_KERNEL);
693 	if (!mpi_request) {
694 		ioc_err(ioc, "%s: failed obtaining a memory for mpi_request\n",
695 			__func__);
696 		ret = -ENOMEM;
697 		goto out;
698 	}
699 
700 	/* Check for overflow and wraparound */
701 	if (karg.data_sge_offset * 4 > ioc->request_sz ||
702 	    karg.data_sge_offset > (UINT_MAX / 4)) {
703 		ret = -EINVAL;
704 		goto out;
705 	}
706 
707 	/* copy in request message frame from user */
708 	if (copy_from_user(mpi_request, mf, karg.data_sge_offset*4)) {
709 		pr_err("failure at %s:%d/%s()!\n", __FILE__, __LINE__,
710 		    __func__);
711 		ret = -EFAULT;
712 		goto out;
713 	}
714 
715 	if (mpi_request->Function == MPI2_FUNCTION_SCSI_TASK_MGMT) {
716 		smid = mpt3sas_base_get_smid_hpr(ioc, ioc->ctl_cb_idx);
717 		if (!smid) {
718 			ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
719 			ret = -EAGAIN;
720 			goto out;
721 		}
722 	} else {
723 		/* Use first reserved smid for passthrough ioctls */
724 		smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1;
725 	}
726 
727 	ret = 0;
728 	ioc->ctl_cmds.status = MPT3_CMD_PENDING;
729 	memset(ioc->ctl_cmds.reply, 0, ioc->reply_sz);
730 	request = mpt3sas_base_get_msg_frame(ioc, smid);
731 	memset(request, 0, ioc->request_sz);
732 	memcpy(request, mpi_request, karg.data_sge_offset*4);
733 	ioc->ctl_cmds.smid = smid;
734 	data_out_sz = karg.data_out_size;
735 	data_in_sz = karg.data_in_size;
736 
737 	if (mpi_request->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
738 	    mpi_request->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
739 	    mpi_request->Function == MPI2_FUNCTION_SCSI_TASK_MGMT ||
740 	    mpi_request->Function == MPI2_FUNCTION_SATA_PASSTHROUGH ||
741 	    mpi_request->Function == MPI2_FUNCTION_NVME_ENCAPSULATED) {
742 
743 		device_handle = le16_to_cpu(mpi_request->FunctionDependent1);
744 		if (!device_handle || (device_handle >
745 		    ioc->facts.MaxDevHandle)) {
746 			ret = -EINVAL;
747 			mpt3sas_base_free_smid(ioc, smid);
748 			goto out;
749 		}
750 	}
751 
752 	/* obtain dma-able memory for data transfer */
753 	if (data_out_sz) /* WRITE */ {
754 		data_out = dma_alloc_coherent(&ioc->pdev->dev, data_out_sz,
755 				&data_out_dma, GFP_KERNEL);
756 		if (!data_out) {
757 			pr_err("failure at %s:%d/%s()!\n", __FILE__,
758 			    __LINE__, __func__);
759 			ret = -ENOMEM;
760 			mpt3sas_base_free_smid(ioc, smid);
761 			goto out;
762 		}
763 		if (copy_from_user(data_out, karg.data_out_buf_ptr,
764 			data_out_sz)) {
765 			pr_err("failure at %s:%d/%s()!\n", __FILE__,
766 			    __LINE__, __func__);
767 			ret =  -EFAULT;
768 			mpt3sas_base_free_smid(ioc, smid);
769 			goto out;
770 		}
771 	}
772 
773 	if (data_in_sz) /* READ */ {
774 		data_in = dma_alloc_coherent(&ioc->pdev->dev, data_in_sz,
775 				&data_in_dma, GFP_KERNEL);
776 		if (!data_in) {
777 			pr_err("failure at %s:%d/%s()!\n", __FILE__,
778 			    __LINE__, __func__);
779 			ret = -ENOMEM;
780 			mpt3sas_base_free_smid(ioc, smid);
781 			goto out;
782 		}
783 	}
784 
785 	psge = (void *)request + (karg.data_sge_offset*4);
786 
787 	/* send command to firmware */
788 	_ctl_display_some_debug(ioc, smid, "ctl_request", NULL);
789 
790 	init_completion(&ioc->ctl_cmds.done);
791 	switch (mpi_request->Function) {
792 	case MPI2_FUNCTION_NVME_ENCAPSULATED:
793 	{
794 		nvme_encap_request = (Mpi26NVMeEncapsulatedRequest_t *)request;
795 		if (!ioc->pcie_sg_lookup) {
796 			dtmprintk(ioc, ioc_info(ioc,
797 			    "HBA doesn't support NVMe. Rejecting NVMe Encapsulated request.\n"
798 			    ));
799 
800 			if (ioc->logging_level & MPT_DEBUG_TM)
801 				_debug_dump_mf(nvme_encap_request,
802 				    ioc->request_sz/4);
803 			mpt3sas_base_free_smid(ioc, smid);
804 			ret = -EINVAL;
805 			goto out;
806 		}
807 		/*
808 		 * Get the Physical Address of the sense buffer.
809 		 * Use Error Response buffer address field to hold the sense
810 		 * buffer address.
811 		 * Clear the internal sense buffer, which will potentially hold
812 		 * the Completion Queue Entry on return, or 0 if no Entry.
813 		 * Build the PRPs and set direction bits.
814 		 * Send the request.
815 		 */
816 		nvme_encap_request->ErrorResponseBaseAddress =
817 		    cpu_to_le64(ioc->sense_dma & 0xFFFFFFFF00000000UL);
818 		nvme_encap_request->ErrorResponseBaseAddress |=
819 		   cpu_to_le64(le32_to_cpu(
820 		   mpt3sas_base_get_sense_buffer_dma(ioc, smid)));
821 		nvme_encap_request->ErrorResponseAllocationLength =
822 					cpu_to_le16(NVME_ERROR_RESPONSE_SIZE);
823 		memset(ioc->ctl_cmds.sense, 0, NVME_ERROR_RESPONSE_SIZE);
824 		ioc->build_nvme_prp(ioc, smid, nvme_encap_request,
825 		    data_out_dma, data_out_sz, data_in_dma, data_in_sz);
826 		if (test_bit(device_handle, ioc->device_remove_in_progress)) {
827 			dtmprintk(ioc,
828 				  ioc_info(ioc, "handle(0x%04x): ioctl failed due to device removal in progress\n",
829 					   device_handle));
830 			mpt3sas_base_free_smid(ioc, smid);
831 			ret = -EINVAL;
832 			goto out;
833 		}
834 		mpt3sas_base_put_smid_nvme_encap(ioc, smid);
835 		break;
836 	}
837 	case MPI2_FUNCTION_SCSI_IO_REQUEST:
838 	case MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH:
839 	{
840 		Mpi2SCSIIORequest_t *scsiio_request =
841 		    (Mpi2SCSIIORequest_t *)request;
842 		scsiio_request->SenseBufferLength = SCSI_SENSE_BUFFERSIZE;
843 		scsiio_request->SenseBufferLowAddress =
844 		    mpt3sas_base_get_sense_buffer_dma(ioc, smid);
845 		memset(ioc->ctl_cmds.sense, 0, SCSI_SENSE_BUFFERSIZE);
846 		if (test_bit(device_handle, ioc->device_remove_in_progress)) {
847 			dtmprintk(ioc,
848 				  ioc_info(ioc, "handle(0x%04x) :ioctl failed due to device removal in progress\n",
849 					   device_handle));
850 			mpt3sas_base_free_smid(ioc, smid);
851 			ret = -EINVAL;
852 			goto out;
853 		}
854 		ioc->build_sg(ioc, psge, data_out_dma, data_out_sz,
855 		    data_in_dma, data_in_sz);
856 		if (mpi_request->Function == MPI2_FUNCTION_SCSI_IO_REQUEST)
857 			ioc->put_smid_scsi_io(ioc, smid, device_handle);
858 		else
859 			ioc->put_smid_default(ioc, smid);
860 		break;
861 	}
862 	case MPI2_FUNCTION_SCSI_TASK_MGMT:
863 	{
864 		Mpi2SCSITaskManagementRequest_t *tm_request =
865 		    (Mpi2SCSITaskManagementRequest_t *)request;
866 
867 		dtmprintk(ioc,
868 			  ioc_info(ioc, "TASK_MGMT: handle(0x%04x), task_type(0x%02x)\n",
869 				   le16_to_cpu(tm_request->DevHandle),
870 				   tm_request->TaskType));
871 		ioc->got_task_abort_from_ioctl = 1;
872 		if (tm_request->TaskType ==
873 		    MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK ||
874 		    tm_request->TaskType ==
875 		    MPI2_SCSITASKMGMT_TASKTYPE_QUERY_TASK) {
876 			if (_ctl_set_task_mid(ioc, &karg, tm_request)) {
877 				mpt3sas_base_free_smid(ioc, smid);
878 				ioc->got_task_abort_from_ioctl = 0;
879 				goto out;
880 			}
881 		}
882 		ioc->got_task_abort_from_ioctl = 0;
883 
884 		if (test_bit(device_handle, ioc->device_remove_in_progress)) {
885 			dtmprintk(ioc,
886 				  ioc_info(ioc, "handle(0x%04x) :ioctl failed due to device removal in progress\n",
887 					   device_handle));
888 			mpt3sas_base_free_smid(ioc, smid);
889 			ret = -EINVAL;
890 			goto out;
891 		}
892 		mpt3sas_scsih_set_tm_flag(ioc, le16_to_cpu(
893 		    tm_request->DevHandle));
894 		ioc->build_sg_mpi(ioc, psge, data_out_dma, data_out_sz,
895 		    data_in_dma, data_in_sz);
896 		ioc->put_smid_hi_priority(ioc, smid, 0);
897 		break;
898 	}
899 	case MPI2_FUNCTION_SMP_PASSTHROUGH:
900 	{
901 		Mpi2SmpPassthroughRequest_t *smp_request =
902 		    (Mpi2SmpPassthroughRequest_t *)mpi_request;
903 		u8 *data;
904 
905 		/* ioc determines which port to use */
906 		smp_request->PhysicalPort = 0xFF;
907 		if (smp_request->PassthroughFlags &
908 		    MPI2_SMP_PT_REQ_PT_FLAGS_IMMEDIATE)
909 			data = (u8 *)&smp_request->SGL;
910 		else {
911 			if (unlikely(data_out == NULL)) {
912 				pr_err("failure at %s:%d/%s()!\n",
913 				    __FILE__, __LINE__, __func__);
914 				mpt3sas_base_free_smid(ioc, smid);
915 				ret = -EINVAL;
916 				goto out;
917 			}
918 			data = data_out;
919 		}
920 
921 		if (data[1] == 0x91 && (data[10] == 1 || data[10] == 2)) {
922 			ioc->ioc_link_reset_in_progress = 1;
923 			ioc->ignore_loginfos = 1;
924 		}
925 		ioc->build_sg(ioc, psge, data_out_dma, data_out_sz, data_in_dma,
926 		    data_in_sz);
927 		ioc->put_smid_default(ioc, smid);
928 		break;
929 	}
930 	case MPI2_FUNCTION_SATA_PASSTHROUGH:
931 	{
932 		if (test_bit(device_handle, ioc->device_remove_in_progress)) {
933 			dtmprintk(ioc,
934 				  ioc_info(ioc, "handle(0x%04x) :ioctl failed due to device removal in progress\n",
935 					   device_handle));
936 			mpt3sas_base_free_smid(ioc, smid);
937 			ret = -EINVAL;
938 			goto out;
939 		}
940 		ioc->build_sg(ioc, psge, data_out_dma, data_out_sz, data_in_dma,
941 		    data_in_sz);
942 		ioc->put_smid_default(ioc, smid);
943 		break;
944 	}
945 	case MPI2_FUNCTION_FW_DOWNLOAD:
946 	case MPI2_FUNCTION_FW_UPLOAD:
947 	{
948 		ioc->build_sg(ioc, psge, data_out_dma, data_out_sz, data_in_dma,
949 		    data_in_sz);
950 		ioc->put_smid_default(ioc, smid);
951 		break;
952 	}
953 	case MPI2_FUNCTION_TOOLBOX:
954 	{
955 		Mpi2ToolboxCleanRequest_t *toolbox_request =
956 			(Mpi2ToolboxCleanRequest_t *)mpi_request;
957 
958 		if ((toolbox_request->Tool == MPI2_TOOLBOX_DIAGNOSTIC_CLI_TOOL)
959 		    || (toolbox_request->Tool ==
960 		    MPI26_TOOLBOX_BACKEND_PCIE_LANE_MARGIN))
961 			ioc->build_sg(ioc, psge, data_out_dma, data_out_sz,
962 				data_in_dma, data_in_sz);
963 		else if (toolbox_request->Tool ==
964 				MPI2_TOOLBOX_MEMORY_MOVE_TOOL) {
965 			Mpi2ToolboxMemMoveRequest_t *mem_move_request =
966 					(Mpi2ToolboxMemMoveRequest_t *)request;
967 			Mpi2SGESimple64_t tmp, *src = NULL, *dst = NULL;
968 
969 			ioc->build_sg_mpi(ioc, psge, data_out_dma,
970 					data_out_sz, data_in_dma, data_in_sz);
971 			if (data_out_sz && !data_in_sz) {
972 				dst =
973 				    (Mpi2SGESimple64_t *)&mem_move_request->SGL;
974 				src = (void *)dst + ioc->sge_size;
975 
976 				memcpy(&tmp, src, ioc->sge_size);
977 				memcpy(src, dst, ioc->sge_size);
978 				memcpy(dst, &tmp, ioc->sge_size);
979 			}
980 			if (ioc->logging_level & MPT_DEBUG_TM) {
981 				ioc_info(ioc,
982 				  "Mpi2ToolboxMemMoveRequest_t request msg\n");
983 				_debug_dump_mf(mem_move_request,
984 							ioc->request_sz/4);
985 			}
986 		} else
987 			ioc->build_sg_mpi(ioc, psge, data_out_dma, data_out_sz,
988 			    data_in_dma, data_in_sz);
989 		ioc->put_smid_default(ioc, smid);
990 		break;
991 	}
992 	case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
993 	{
994 		Mpi2SasIoUnitControlRequest_t *sasiounit_request =
995 		    (Mpi2SasIoUnitControlRequest_t *)mpi_request;
996 
997 		if (sasiounit_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET
998 		    || sasiounit_request->Operation ==
999 		    MPI2_SAS_OP_PHY_LINK_RESET) {
1000 			ioc->ioc_link_reset_in_progress = 1;
1001 			ioc->ignore_loginfos = 1;
1002 		}
1003 		/* drop to default case for posting the request */
1004 	}
1005 		/* fall through */
1006 	default:
1007 		ioc->build_sg_mpi(ioc, psge, data_out_dma, data_out_sz,
1008 		    data_in_dma, data_in_sz);
1009 		ioc->put_smid_default(ioc, smid);
1010 		break;
1011 	}
1012 
1013 	if (karg.timeout < MPT3_IOCTL_DEFAULT_TIMEOUT)
1014 		timeout = MPT3_IOCTL_DEFAULT_TIMEOUT;
1015 	else
1016 		timeout = karg.timeout;
1017 	wait_for_completion_timeout(&ioc->ctl_cmds.done, timeout*HZ);
1018 	if (mpi_request->Function == MPI2_FUNCTION_SCSI_TASK_MGMT) {
1019 		Mpi2SCSITaskManagementRequest_t *tm_request =
1020 		    (Mpi2SCSITaskManagementRequest_t *)mpi_request;
1021 		mpt3sas_scsih_clear_tm_flag(ioc, le16_to_cpu(
1022 		    tm_request->DevHandle));
1023 		mpt3sas_trigger_master(ioc, MASTER_TRIGGER_TASK_MANAGMENT);
1024 	} else if ((mpi_request->Function == MPI2_FUNCTION_SMP_PASSTHROUGH ||
1025 	    mpi_request->Function == MPI2_FUNCTION_SAS_IO_UNIT_CONTROL) &&
1026 		ioc->ioc_link_reset_in_progress) {
1027 		ioc->ioc_link_reset_in_progress = 0;
1028 		ioc->ignore_loginfos = 0;
1029 	}
1030 	if (!(ioc->ctl_cmds.status & MPT3_CMD_COMPLETE)) {
1031 		mpt3sas_check_cmd_timeout(ioc,
1032 		    ioc->ctl_cmds.status, mpi_request,
1033 		    karg.data_sge_offset, issue_reset);
1034 		goto issue_host_reset;
1035 	}
1036 
1037 	mpi_reply = ioc->ctl_cmds.reply;
1038 
1039 	if (mpi_reply->Function == MPI2_FUNCTION_SCSI_TASK_MGMT &&
1040 	    (ioc->logging_level & MPT_DEBUG_TM)) {
1041 		Mpi2SCSITaskManagementReply_t *tm_reply =
1042 		    (Mpi2SCSITaskManagementReply_t *)mpi_reply;
1043 
1044 		ioc_info(ioc, "TASK_MGMT: IOCStatus(0x%04x), IOCLogInfo(0x%08x), TerminationCount(0x%08x)\n",
1045 			 le16_to_cpu(tm_reply->IOCStatus),
1046 			 le32_to_cpu(tm_reply->IOCLogInfo),
1047 			 le32_to_cpu(tm_reply->TerminationCount));
1048 	}
1049 
1050 	/* copy out xdata to user */
1051 	if (data_in_sz) {
1052 		if (copy_to_user(karg.data_in_buf_ptr, data_in,
1053 		    data_in_sz)) {
1054 			pr_err("failure at %s:%d/%s()!\n", __FILE__,
1055 			    __LINE__, __func__);
1056 			ret = -ENODATA;
1057 			goto out;
1058 		}
1059 	}
1060 
1061 	/* copy out reply message frame to user */
1062 	if (karg.max_reply_bytes) {
1063 		sz = min_t(u32, karg.max_reply_bytes, ioc->reply_sz);
1064 		if (copy_to_user(karg.reply_frame_buf_ptr, ioc->ctl_cmds.reply,
1065 		    sz)) {
1066 			pr_err("failure at %s:%d/%s()!\n", __FILE__,
1067 			    __LINE__, __func__);
1068 			ret = -ENODATA;
1069 			goto out;
1070 		}
1071 	}
1072 
1073 	/* copy out sense/NVMe Error Response to user */
1074 	if (karg.max_sense_bytes && (mpi_request->Function ==
1075 	    MPI2_FUNCTION_SCSI_IO_REQUEST || mpi_request->Function ==
1076 	    MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH || mpi_request->Function ==
1077 	    MPI2_FUNCTION_NVME_ENCAPSULATED)) {
1078 		if (karg.sense_data_ptr == NULL) {
1079 			ioc_info(ioc, "Response buffer provided by application is NULL; Response data will not be returned\n");
1080 			goto out;
1081 		}
1082 		sz_arg = (mpi_request->Function ==
1083 		MPI2_FUNCTION_NVME_ENCAPSULATED) ? NVME_ERROR_RESPONSE_SIZE :
1084 							SCSI_SENSE_BUFFERSIZE;
1085 		sz = min_t(u32, karg.max_sense_bytes, sz_arg);
1086 		if (copy_to_user(karg.sense_data_ptr, ioc->ctl_cmds.sense,
1087 		    sz)) {
1088 			pr_err("failure at %s:%d/%s()!\n", __FILE__,
1089 				__LINE__, __func__);
1090 			ret = -ENODATA;
1091 			goto out;
1092 		}
1093 	}
1094 
1095  issue_host_reset:
1096 	if (issue_reset) {
1097 		ret = -ENODATA;
1098 		if ((mpi_request->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
1099 		    mpi_request->Function ==
1100 		    MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
1101 		    mpi_request->Function == MPI2_FUNCTION_SATA_PASSTHROUGH)) {
1102 			ioc_info(ioc, "issue target reset: handle = (0x%04x)\n",
1103 				 le16_to_cpu(mpi_request->FunctionDependent1));
1104 			mpt3sas_halt_firmware(ioc);
1105 			pcie_device = mpt3sas_get_pdev_by_handle(ioc,
1106 				le16_to_cpu(mpi_request->FunctionDependent1));
1107 			if (pcie_device && (!ioc->tm_custom_handling) &&
1108 			    (!(mpt3sas_scsih_is_pcie_scsi_device(
1109 			    pcie_device->device_info))))
1110 				mpt3sas_scsih_issue_locked_tm(ioc,
1111 				  le16_to_cpu(mpi_request->FunctionDependent1),
1112 				  0, MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET, 0,
1113 				  0, pcie_device->reset_timeout,
1114 			MPI26_SCSITASKMGMT_MSGFLAGS_PROTOCOL_LVL_RST_PCIE);
1115 			else
1116 				mpt3sas_scsih_issue_locked_tm(ioc,
1117 				  le16_to_cpu(mpi_request->FunctionDependent1),
1118 				  0, MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET, 0,
1119 				  0, 30, MPI2_SCSITASKMGMT_MSGFLAGS_LINK_RESET);
1120 		} else
1121 			mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
1122 	}
1123 
1124  out:
1125 	if (pcie_device)
1126 		pcie_device_put(pcie_device);
1127 
1128 	/* free memory associated with sg buffers */
1129 	if (data_in)
1130 		dma_free_coherent(&ioc->pdev->dev, data_in_sz, data_in,
1131 		    data_in_dma);
1132 
1133 	if (data_out)
1134 		dma_free_coherent(&ioc->pdev->dev, data_out_sz, data_out,
1135 		    data_out_dma);
1136 
1137 	kfree(mpi_request);
1138 	ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
1139 	return ret;
1140 }
1141 
1142 /**
1143  * _ctl_getiocinfo - main handler for MPT3IOCINFO opcode
1144  * @ioc: per adapter object
1145  * @arg: user space buffer containing ioctl content
1146  */
1147 static long
1148 _ctl_getiocinfo(struct MPT3SAS_ADAPTER *ioc, void __user *arg)
1149 {
1150 	struct mpt3_ioctl_iocinfo karg;
1151 
1152 	dctlprintk(ioc, ioc_info(ioc, "%s: enter\n",
1153 				 __func__));
1154 
1155 	memset(&karg, 0 , sizeof(karg));
1156 	if (ioc->pfacts)
1157 		karg.port_number = ioc->pfacts[0].PortNumber;
1158 	karg.hw_rev = ioc->pdev->revision;
1159 	karg.pci_id = ioc->pdev->device;
1160 	karg.subsystem_device = ioc->pdev->subsystem_device;
1161 	karg.subsystem_vendor = ioc->pdev->subsystem_vendor;
1162 	karg.pci_information.u.bits.bus = ioc->pdev->bus->number;
1163 	karg.pci_information.u.bits.device = PCI_SLOT(ioc->pdev->devfn);
1164 	karg.pci_information.u.bits.function = PCI_FUNC(ioc->pdev->devfn);
1165 	karg.pci_information.segment_id = pci_domain_nr(ioc->pdev->bus);
1166 	karg.firmware_version = ioc->facts.FWVersion.Word;
1167 	strcpy(karg.driver_version, ioc->driver_name);
1168 	strcat(karg.driver_version, "-");
1169 	switch  (ioc->hba_mpi_version_belonged) {
1170 	case MPI2_VERSION:
1171 		if (ioc->is_warpdrive)
1172 			karg.adapter_type = MPT2_IOCTL_INTERFACE_SAS2_SSS6200;
1173 		else
1174 			karg.adapter_type = MPT2_IOCTL_INTERFACE_SAS2;
1175 		strcat(karg.driver_version, MPT2SAS_DRIVER_VERSION);
1176 		break;
1177 	case MPI25_VERSION:
1178 	case MPI26_VERSION:
1179 		if (ioc->is_gen35_ioc)
1180 			karg.adapter_type = MPT3_IOCTL_INTERFACE_SAS35;
1181 		else
1182 			karg.adapter_type = MPT3_IOCTL_INTERFACE_SAS3;
1183 		strcat(karg.driver_version, MPT3SAS_DRIVER_VERSION);
1184 		break;
1185 	}
1186 	karg.bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
1187 
1188 	if (copy_to_user(arg, &karg, sizeof(karg))) {
1189 		pr_err("failure at %s:%d/%s()!\n",
1190 		    __FILE__, __LINE__, __func__);
1191 		return -EFAULT;
1192 	}
1193 	return 0;
1194 }
1195 
1196 /**
1197  * _ctl_eventquery - main handler for MPT3EVENTQUERY opcode
1198  * @ioc: per adapter object
1199  * @arg: user space buffer containing ioctl content
1200  */
1201 static long
1202 _ctl_eventquery(struct MPT3SAS_ADAPTER *ioc, void __user *arg)
1203 {
1204 	struct mpt3_ioctl_eventquery karg;
1205 
1206 	if (copy_from_user(&karg, arg, sizeof(karg))) {
1207 		pr_err("failure at %s:%d/%s()!\n",
1208 		    __FILE__, __LINE__, __func__);
1209 		return -EFAULT;
1210 	}
1211 
1212 	dctlprintk(ioc, ioc_info(ioc, "%s: enter\n",
1213 				 __func__));
1214 
1215 	karg.event_entries = MPT3SAS_CTL_EVENT_LOG_SIZE;
1216 	memcpy(karg.event_types, ioc->event_type,
1217 	    MPI2_EVENT_NOTIFY_EVENTMASK_WORDS * sizeof(u32));
1218 
1219 	if (copy_to_user(arg, &karg, sizeof(karg))) {
1220 		pr_err("failure at %s:%d/%s()!\n",
1221 		    __FILE__, __LINE__, __func__);
1222 		return -EFAULT;
1223 	}
1224 	return 0;
1225 }
1226 
1227 /**
1228  * _ctl_eventenable - main handler for MPT3EVENTENABLE opcode
1229  * @ioc: per adapter object
1230  * @arg: user space buffer containing ioctl content
1231  */
1232 static long
1233 _ctl_eventenable(struct MPT3SAS_ADAPTER *ioc, void __user *arg)
1234 {
1235 	struct mpt3_ioctl_eventenable karg;
1236 
1237 	if (copy_from_user(&karg, arg, sizeof(karg))) {
1238 		pr_err("failure at %s:%d/%s()!\n",
1239 		    __FILE__, __LINE__, __func__);
1240 		return -EFAULT;
1241 	}
1242 
1243 	dctlprintk(ioc, ioc_info(ioc, "%s: enter\n",
1244 				 __func__));
1245 
1246 	memcpy(ioc->event_type, karg.event_types,
1247 	    MPI2_EVENT_NOTIFY_EVENTMASK_WORDS * sizeof(u32));
1248 	mpt3sas_base_validate_event_type(ioc, ioc->event_type);
1249 
1250 	if (ioc->event_log)
1251 		return 0;
1252 	/* initialize event_log */
1253 	ioc->event_context = 0;
1254 	ioc->aen_event_read_flag = 0;
1255 	ioc->event_log = kcalloc(MPT3SAS_CTL_EVENT_LOG_SIZE,
1256 	    sizeof(struct MPT3_IOCTL_EVENTS), GFP_KERNEL);
1257 	if (!ioc->event_log) {
1258 		pr_err("failure at %s:%d/%s()!\n",
1259 		    __FILE__, __LINE__, __func__);
1260 		return -ENOMEM;
1261 	}
1262 	return 0;
1263 }
1264 
1265 /**
1266  * _ctl_eventreport - main handler for MPT3EVENTREPORT opcode
1267  * @ioc: per adapter object
1268  * @arg: user space buffer containing ioctl content
1269  */
1270 static long
1271 _ctl_eventreport(struct MPT3SAS_ADAPTER *ioc, void __user *arg)
1272 {
1273 	struct mpt3_ioctl_eventreport karg;
1274 	u32 number_bytes, max_events, max;
1275 	struct mpt3_ioctl_eventreport __user *uarg = arg;
1276 
1277 	if (copy_from_user(&karg, arg, sizeof(karg))) {
1278 		pr_err("failure at %s:%d/%s()!\n",
1279 		    __FILE__, __LINE__, __func__);
1280 		return -EFAULT;
1281 	}
1282 
1283 	dctlprintk(ioc, ioc_info(ioc, "%s: enter\n",
1284 				 __func__));
1285 
1286 	number_bytes = karg.hdr.max_data_size -
1287 	    sizeof(struct mpt3_ioctl_header);
1288 	max_events = number_bytes/sizeof(struct MPT3_IOCTL_EVENTS);
1289 	max = min_t(u32, MPT3SAS_CTL_EVENT_LOG_SIZE, max_events);
1290 
1291 	/* If fewer than 1 event is requested, there must have
1292 	 * been some type of error.
1293 	 */
1294 	if (!max || !ioc->event_log)
1295 		return -ENODATA;
1296 
1297 	number_bytes = max * sizeof(struct MPT3_IOCTL_EVENTS);
1298 	if (copy_to_user(uarg->event_data, ioc->event_log, number_bytes)) {
1299 		pr_err("failure at %s:%d/%s()!\n",
1300 		    __FILE__, __LINE__, __func__);
1301 		return -EFAULT;
1302 	}
1303 
1304 	/* reset flag so SIGIO can restart */
1305 	ioc->aen_event_read_flag = 0;
1306 	return 0;
1307 }
1308 
1309 /**
1310  * _ctl_do_reset - main handler for MPT3HARDRESET opcode
1311  * @ioc: per adapter object
1312  * @arg: user space buffer containing ioctl content
1313  */
1314 static long
1315 _ctl_do_reset(struct MPT3SAS_ADAPTER *ioc, void __user *arg)
1316 {
1317 	struct mpt3_ioctl_diag_reset karg;
1318 	int retval;
1319 
1320 	if (copy_from_user(&karg, arg, sizeof(karg))) {
1321 		pr_err("failure at %s:%d/%s()!\n",
1322 		    __FILE__, __LINE__, __func__);
1323 		return -EFAULT;
1324 	}
1325 
1326 	if (ioc->shost_recovery || ioc->pci_error_recovery ||
1327 	    ioc->is_driver_loading)
1328 		return -EAGAIN;
1329 
1330 	dctlprintk(ioc, ioc_info(ioc, "%s: enter\n",
1331 				 __func__));
1332 
1333 	retval = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
1334 	ioc_info(ioc,
1335 	    "Ioctl: host reset: %s\n", ((!retval) ? "SUCCESS" : "FAILED"));
1336 	return 0;
1337 }
1338 
1339 /**
1340  * _ctl_btdh_search_sas_device - searching for sas device
1341  * @ioc: per adapter object
1342  * @btdh: btdh ioctl payload
1343  */
1344 static int
1345 _ctl_btdh_search_sas_device(struct MPT3SAS_ADAPTER *ioc,
1346 	struct mpt3_ioctl_btdh_mapping *btdh)
1347 {
1348 	struct _sas_device *sas_device;
1349 	unsigned long flags;
1350 	int rc = 0;
1351 
1352 	if (list_empty(&ioc->sas_device_list))
1353 		return rc;
1354 
1355 	spin_lock_irqsave(&ioc->sas_device_lock, flags);
1356 	list_for_each_entry(sas_device, &ioc->sas_device_list, list) {
1357 		if (btdh->bus == 0xFFFFFFFF && btdh->id == 0xFFFFFFFF &&
1358 		    btdh->handle == sas_device->handle) {
1359 			btdh->bus = sas_device->channel;
1360 			btdh->id = sas_device->id;
1361 			rc = 1;
1362 			goto out;
1363 		} else if (btdh->bus == sas_device->channel && btdh->id ==
1364 		    sas_device->id && btdh->handle == 0xFFFF) {
1365 			btdh->handle = sas_device->handle;
1366 			rc = 1;
1367 			goto out;
1368 		}
1369 	}
1370  out:
1371 	spin_unlock_irqrestore(&ioc->sas_device_lock, flags);
1372 	return rc;
1373 }
1374 
1375 /**
1376  * _ctl_btdh_search_pcie_device - searching for pcie device
1377  * @ioc: per adapter object
1378  * @btdh: btdh ioctl payload
1379  */
1380 static int
1381 _ctl_btdh_search_pcie_device(struct MPT3SAS_ADAPTER *ioc,
1382 	struct mpt3_ioctl_btdh_mapping *btdh)
1383 {
1384 	struct _pcie_device *pcie_device;
1385 	unsigned long flags;
1386 	int rc = 0;
1387 
1388 	if (list_empty(&ioc->pcie_device_list))
1389 		return rc;
1390 
1391 	spin_lock_irqsave(&ioc->pcie_device_lock, flags);
1392 	list_for_each_entry(pcie_device, &ioc->pcie_device_list, list) {
1393 		if (btdh->bus == 0xFFFFFFFF && btdh->id == 0xFFFFFFFF &&
1394 			   btdh->handle == pcie_device->handle) {
1395 			btdh->bus = pcie_device->channel;
1396 			btdh->id = pcie_device->id;
1397 			rc = 1;
1398 			goto out;
1399 		} else if (btdh->bus == pcie_device->channel && btdh->id ==
1400 			   pcie_device->id && btdh->handle == 0xFFFF) {
1401 			btdh->handle = pcie_device->handle;
1402 			rc = 1;
1403 			goto out;
1404 		}
1405 	}
1406  out:
1407 	spin_unlock_irqrestore(&ioc->pcie_device_lock, flags);
1408 	return rc;
1409 }
1410 
1411 /**
1412  * _ctl_btdh_search_raid_device - searching for raid device
1413  * @ioc: per adapter object
1414  * @btdh: btdh ioctl payload
1415  */
1416 static int
1417 _ctl_btdh_search_raid_device(struct MPT3SAS_ADAPTER *ioc,
1418 	struct mpt3_ioctl_btdh_mapping *btdh)
1419 {
1420 	struct _raid_device *raid_device;
1421 	unsigned long flags;
1422 	int rc = 0;
1423 
1424 	if (list_empty(&ioc->raid_device_list))
1425 		return rc;
1426 
1427 	spin_lock_irqsave(&ioc->raid_device_lock, flags);
1428 	list_for_each_entry(raid_device, &ioc->raid_device_list, list) {
1429 		if (btdh->bus == 0xFFFFFFFF && btdh->id == 0xFFFFFFFF &&
1430 		    btdh->handle == raid_device->handle) {
1431 			btdh->bus = raid_device->channel;
1432 			btdh->id = raid_device->id;
1433 			rc = 1;
1434 			goto out;
1435 		} else if (btdh->bus == raid_device->channel && btdh->id ==
1436 		    raid_device->id && btdh->handle == 0xFFFF) {
1437 			btdh->handle = raid_device->handle;
1438 			rc = 1;
1439 			goto out;
1440 		}
1441 	}
1442  out:
1443 	spin_unlock_irqrestore(&ioc->raid_device_lock, flags);
1444 	return rc;
1445 }
1446 
1447 /**
1448  * _ctl_btdh_mapping - main handler for MPT3BTDHMAPPING opcode
1449  * @ioc: per adapter object
1450  * @arg: user space buffer containing ioctl content
1451  */
1452 static long
1453 _ctl_btdh_mapping(struct MPT3SAS_ADAPTER *ioc, void __user *arg)
1454 {
1455 	struct mpt3_ioctl_btdh_mapping karg;
1456 	int rc;
1457 
1458 	if (copy_from_user(&karg, arg, sizeof(karg))) {
1459 		pr_err("failure at %s:%d/%s()!\n",
1460 		    __FILE__, __LINE__, __func__);
1461 		return -EFAULT;
1462 	}
1463 
1464 	dctlprintk(ioc, ioc_info(ioc, "%s\n",
1465 				 __func__));
1466 
1467 	rc = _ctl_btdh_search_sas_device(ioc, &karg);
1468 	if (!rc)
1469 		rc = _ctl_btdh_search_pcie_device(ioc, &karg);
1470 	if (!rc)
1471 		_ctl_btdh_search_raid_device(ioc, &karg);
1472 
1473 	if (copy_to_user(arg, &karg, sizeof(karg))) {
1474 		pr_err("failure at %s:%d/%s()!\n",
1475 		    __FILE__, __LINE__, __func__);
1476 		return -EFAULT;
1477 	}
1478 	return 0;
1479 }
1480 
1481 /**
1482  * _ctl_diag_capability - return diag buffer capability
1483  * @ioc: per adapter object
1484  * @buffer_type: specifies either TRACE, SNAPSHOT, or EXTENDED
1485  *
1486  * returns 1 when diag buffer support is enabled in firmware
1487  */
1488 static u8
1489 _ctl_diag_capability(struct MPT3SAS_ADAPTER *ioc, u8 buffer_type)
1490 {
1491 	u8 rc = 0;
1492 
1493 	switch (buffer_type) {
1494 	case MPI2_DIAG_BUF_TYPE_TRACE:
1495 		if (ioc->facts.IOCCapabilities &
1496 		    MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER)
1497 			rc = 1;
1498 		break;
1499 	case MPI2_DIAG_BUF_TYPE_SNAPSHOT:
1500 		if (ioc->facts.IOCCapabilities &
1501 		    MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER)
1502 			rc = 1;
1503 		break;
1504 	case MPI2_DIAG_BUF_TYPE_EXTENDED:
1505 		if (ioc->facts.IOCCapabilities &
1506 		    MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER)
1507 			rc = 1;
1508 	}
1509 
1510 	return rc;
1511 }
1512 
1513 /**
1514  * _ctl_diag_get_bufftype - return diag buffer type
1515  *              either TRACE, SNAPSHOT, or EXTENDED
1516  * @ioc: per adapter object
1517  * @unique_id: specifies the unique_id for the buffer
1518  *
1519  * returns MPT3_DIAG_UID_NOT_FOUND if the id not found
1520  */
1521 static u8
1522 _ctl_diag_get_bufftype(struct MPT3SAS_ADAPTER *ioc, u32 unique_id)
1523 {
1524 	u8  index;
1525 
1526 	for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) {
1527 		if (ioc->unique_id[index] == unique_id)
1528 			return index;
1529 	}
1530 
1531 	return MPT3_DIAG_UID_NOT_FOUND;
1532 }
1533 
1534 /**
1535  * _ctl_diag_register_2 - wrapper for registering diag buffer support
1536  * @ioc: per adapter object
1537  * @diag_register: the diag_register struct passed in from user space
1538  *
1539  */
1540 static long
1541 _ctl_diag_register_2(struct MPT3SAS_ADAPTER *ioc,
1542 	struct mpt3_diag_register *diag_register)
1543 {
1544 	int rc, i;
1545 	void *request_data = NULL;
1546 	dma_addr_t request_data_dma;
1547 	u32 request_data_sz = 0;
1548 	Mpi2DiagBufferPostRequest_t *mpi_request;
1549 	Mpi2DiagBufferPostReply_t *mpi_reply;
1550 	u8 buffer_type;
1551 	u16 smid;
1552 	u16 ioc_status;
1553 	u32 ioc_state;
1554 	u8 issue_reset = 0;
1555 
1556 	dctlprintk(ioc, ioc_info(ioc, "%s\n",
1557 				 __func__));
1558 
1559 	ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
1560 	if (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
1561 		ioc_err(ioc, "%s: failed due to ioc not operational\n",
1562 			__func__);
1563 		rc = -EAGAIN;
1564 		goto out;
1565 	}
1566 
1567 	if (ioc->ctl_cmds.status != MPT3_CMD_NOT_USED) {
1568 		ioc_err(ioc, "%s: ctl_cmd in use\n", __func__);
1569 		rc = -EAGAIN;
1570 		goto out;
1571 	}
1572 
1573 	buffer_type = diag_register->buffer_type;
1574 	if (!_ctl_diag_capability(ioc, buffer_type)) {
1575 		ioc_err(ioc, "%s: doesn't have capability for buffer_type(0x%02x)\n",
1576 			__func__, buffer_type);
1577 		return -EPERM;
1578 	}
1579 
1580 	if (diag_register->unique_id == 0) {
1581 		ioc_err(ioc,
1582 		    "%s: Invalid UID(0x%08x), buffer_type(0x%02x)\n", __func__,
1583 		    diag_register->unique_id, buffer_type);
1584 		return -EINVAL;
1585 	}
1586 
1587 	if ((ioc->diag_buffer_status[buffer_type] &
1588 	    MPT3_DIAG_BUFFER_IS_APP_OWNED) &&
1589 	    !(ioc->diag_buffer_status[buffer_type] &
1590 	    MPT3_DIAG_BUFFER_IS_RELEASED)) {
1591 		ioc_err(ioc,
1592 		    "%s: buffer_type(0x%02x) is already registered by application with UID(0x%08x)\n",
1593 		    __func__, buffer_type, ioc->unique_id[buffer_type]);
1594 		return -EINVAL;
1595 	}
1596 
1597 	if (ioc->diag_buffer_status[buffer_type] &
1598 	    MPT3_DIAG_BUFFER_IS_REGISTERED) {
1599 		/*
1600 		 * If driver posts buffer initially, then an application wants
1601 		 * to Register that buffer (own it) without Releasing first,
1602 		 * the application Register command MUST have the same buffer
1603 		 * type and size in the Register command (obtained from the
1604 		 * Query command). Otherwise that Register command will be
1605 		 * failed. If the application has released the buffer but wants
1606 		 * to re-register it, it should be allowed as long as the
1607 		 * Unique-Id/Size match.
1608 		 */
1609 
1610 		if (ioc->unique_id[buffer_type] == MPT3DIAGBUFFUNIQUEID &&
1611 		    ioc->diag_buffer_sz[buffer_type] ==
1612 		    diag_register->requested_buffer_size) {
1613 
1614 			if (!(ioc->diag_buffer_status[buffer_type] &
1615 			     MPT3_DIAG_BUFFER_IS_RELEASED)) {
1616 				dctlprintk(ioc, ioc_info(ioc,
1617 				    "%s: diag_buffer (%d) ownership changed. old-ID(0x%08x), new-ID(0x%08x)\n",
1618 				    __func__, buffer_type,
1619 				    ioc->unique_id[buffer_type],
1620 				    diag_register->unique_id));
1621 
1622 				/*
1623 				 * Application wants to own the buffer with
1624 				 * the same size.
1625 				 */
1626 				ioc->unique_id[buffer_type] =
1627 				    diag_register->unique_id;
1628 				rc = 0; /* success */
1629 				goto out;
1630 			}
1631 		} else if (ioc->unique_id[buffer_type] !=
1632 		    MPT3DIAGBUFFUNIQUEID) {
1633 			if (ioc->unique_id[buffer_type] !=
1634 			    diag_register->unique_id ||
1635 			    ioc->diag_buffer_sz[buffer_type] !=
1636 			    diag_register->requested_buffer_size ||
1637 			    !(ioc->diag_buffer_status[buffer_type] &
1638 			    MPT3_DIAG_BUFFER_IS_RELEASED)) {
1639 				ioc_err(ioc,
1640 				    "%s: already has a registered buffer for buffer_type(0x%02x)\n",
1641 				    __func__, buffer_type);
1642 				return -EINVAL;
1643 			}
1644 		} else {
1645 			ioc_err(ioc, "%s: already has a registered buffer for buffer_type(0x%02x)\n",
1646 			    __func__, buffer_type);
1647 			return -EINVAL;
1648 		}
1649 	} else if (ioc->diag_buffer_status[buffer_type] &
1650 	    MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED) {
1651 
1652 		if (ioc->unique_id[buffer_type] != MPT3DIAGBUFFUNIQUEID ||
1653 		    ioc->diag_buffer_sz[buffer_type] !=
1654 		    diag_register->requested_buffer_size) {
1655 
1656 			ioc_err(ioc,
1657 			    "%s: already a buffer is allocated for buffer_type(0x%02x) of size %d bytes, so please try registering again with same size\n",
1658 			     __func__, buffer_type,
1659 			    ioc->diag_buffer_sz[buffer_type]);
1660 			return -EINVAL;
1661 		}
1662 	}
1663 
1664 	if (diag_register->requested_buffer_size % 4)  {
1665 		ioc_err(ioc, "%s: the requested_buffer_size is not 4 byte aligned\n",
1666 			__func__);
1667 		return -EINVAL;
1668 	}
1669 
1670 	smid = mpt3sas_base_get_smid(ioc, ioc->ctl_cb_idx);
1671 	if (!smid) {
1672 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
1673 		rc = -EAGAIN;
1674 		goto out;
1675 	}
1676 
1677 	rc = 0;
1678 	ioc->ctl_cmds.status = MPT3_CMD_PENDING;
1679 	memset(ioc->ctl_cmds.reply, 0, ioc->reply_sz);
1680 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
1681 	ioc->ctl_cmds.smid = smid;
1682 
1683 	request_data = ioc->diag_buffer[buffer_type];
1684 	request_data_sz = diag_register->requested_buffer_size;
1685 	ioc->unique_id[buffer_type] = diag_register->unique_id;
1686 	ioc->diag_buffer_status[buffer_type] &=
1687 	    MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED;
1688 	memcpy(ioc->product_specific[buffer_type],
1689 	    diag_register->product_specific, MPT3_PRODUCT_SPECIFIC_DWORDS);
1690 	ioc->diagnostic_flags[buffer_type] = diag_register->diagnostic_flags;
1691 
1692 	if (request_data) {
1693 		request_data_dma = ioc->diag_buffer_dma[buffer_type];
1694 		if (request_data_sz != ioc->diag_buffer_sz[buffer_type]) {
1695 			dma_free_coherent(&ioc->pdev->dev,
1696 					ioc->diag_buffer_sz[buffer_type],
1697 					request_data, request_data_dma);
1698 			request_data = NULL;
1699 		}
1700 	}
1701 
1702 	if (request_data == NULL) {
1703 		ioc->diag_buffer_sz[buffer_type] = 0;
1704 		ioc->diag_buffer_dma[buffer_type] = 0;
1705 		request_data = dma_alloc_coherent(&ioc->pdev->dev,
1706 				request_data_sz, &request_data_dma, GFP_KERNEL);
1707 		if (request_data == NULL) {
1708 			ioc_err(ioc, "%s: failed allocating memory for diag buffers, requested size(%d)\n",
1709 				__func__, request_data_sz);
1710 			mpt3sas_base_free_smid(ioc, smid);
1711 			rc = -ENOMEM;
1712 			goto out;
1713 		}
1714 		ioc->diag_buffer[buffer_type] = request_data;
1715 		ioc->diag_buffer_sz[buffer_type] = request_data_sz;
1716 		ioc->diag_buffer_dma[buffer_type] = request_data_dma;
1717 	}
1718 
1719 	mpi_request->Function = MPI2_FUNCTION_DIAG_BUFFER_POST;
1720 	mpi_request->BufferType = diag_register->buffer_type;
1721 	mpi_request->Flags = cpu_to_le32(diag_register->diagnostic_flags);
1722 	mpi_request->BufferAddress = cpu_to_le64(request_data_dma);
1723 	mpi_request->BufferLength = cpu_to_le32(request_data_sz);
1724 	mpi_request->VF_ID = 0; /* TODO */
1725 	mpi_request->VP_ID = 0;
1726 
1727 	dctlprintk(ioc,
1728 		   ioc_info(ioc, "%s: diag_buffer(0x%p), dma(0x%llx), sz(%d)\n",
1729 			    __func__, request_data,
1730 			    (unsigned long long)request_data_dma,
1731 			    le32_to_cpu(mpi_request->BufferLength)));
1732 
1733 	for (i = 0; i < MPT3_PRODUCT_SPECIFIC_DWORDS; i++)
1734 		mpi_request->ProductSpecific[i] =
1735 			cpu_to_le32(ioc->product_specific[buffer_type][i]);
1736 
1737 	init_completion(&ioc->ctl_cmds.done);
1738 	ioc->put_smid_default(ioc, smid);
1739 	wait_for_completion_timeout(&ioc->ctl_cmds.done,
1740 	    MPT3_IOCTL_DEFAULT_TIMEOUT*HZ);
1741 
1742 	if (!(ioc->ctl_cmds.status & MPT3_CMD_COMPLETE)) {
1743 		mpt3sas_check_cmd_timeout(ioc,
1744 		    ioc->ctl_cmds.status, mpi_request,
1745 		    sizeof(Mpi2DiagBufferPostRequest_t)/4, issue_reset);
1746 		goto issue_host_reset;
1747 	}
1748 
1749 	/* process the completed Reply Message Frame */
1750 	if ((ioc->ctl_cmds.status & MPT3_CMD_REPLY_VALID) == 0) {
1751 		ioc_err(ioc, "%s: no reply message\n", __func__);
1752 		rc = -EFAULT;
1753 		goto out;
1754 	}
1755 
1756 	mpi_reply = ioc->ctl_cmds.reply;
1757 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
1758 
1759 	if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
1760 		ioc->diag_buffer_status[buffer_type] |=
1761 			MPT3_DIAG_BUFFER_IS_REGISTERED;
1762 		dctlprintk(ioc, ioc_info(ioc, "%s: success\n", __func__));
1763 	} else {
1764 		ioc_info(ioc, "%s: ioc_status(0x%04x) log_info(0x%08x)\n",
1765 			 __func__,
1766 			 ioc_status, le32_to_cpu(mpi_reply->IOCLogInfo));
1767 		rc = -EFAULT;
1768 	}
1769 
1770  issue_host_reset:
1771 	if (issue_reset)
1772 		mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
1773 
1774  out:
1775 
1776 	if (rc && request_data) {
1777 		dma_free_coherent(&ioc->pdev->dev, request_data_sz,
1778 		    request_data, request_data_dma);
1779 		ioc->diag_buffer_status[buffer_type] &=
1780 		    ~MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED;
1781 	}
1782 
1783 	ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
1784 	return rc;
1785 }
1786 
1787 /**
1788  * mpt3sas_enable_diag_buffer - enabling diag_buffers support driver load time
1789  * @ioc: per adapter object
1790  * @bits_to_register: bitwise field where trace is bit 0, and snapshot is bit 1
1791  *
1792  * This is called when command line option diag_buffer_enable is enabled
1793  * at driver load time.
1794  */
1795 void
1796 mpt3sas_enable_diag_buffer(struct MPT3SAS_ADAPTER *ioc, u8 bits_to_register)
1797 {
1798 	struct mpt3_diag_register diag_register;
1799 	u32 ret_val;
1800 	u32 trace_buff_size = ioc->manu_pg11.HostTraceBufferMaxSizeKB<<10;
1801 	u32 min_trace_buff_size = 0;
1802 	u32 decr_trace_buff_size = 0;
1803 
1804 	memset(&diag_register, 0, sizeof(struct mpt3_diag_register));
1805 
1806 	if (bits_to_register & 1) {
1807 		ioc_info(ioc, "registering trace buffer support\n");
1808 		ioc->diag_trigger_master.MasterData =
1809 		    (MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET);
1810 		diag_register.buffer_type = MPI2_DIAG_BUF_TYPE_TRACE;
1811 		diag_register.unique_id =
1812 		    (ioc->hba_mpi_version_belonged == MPI2_VERSION) ?
1813 		    (MPT2DIAGBUFFUNIQUEID):(MPT3DIAGBUFFUNIQUEID);
1814 
1815 		if (trace_buff_size != 0) {
1816 			diag_register.requested_buffer_size = trace_buff_size;
1817 			min_trace_buff_size =
1818 			    ioc->manu_pg11.HostTraceBufferMinSizeKB<<10;
1819 			decr_trace_buff_size =
1820 			    ioc->manu_pg11.HostTraceBufferDecrementSizeKB<<10;
1821 
1822 			if (min_trace_buff_size > trace_buff_size) {
1823 				/* The buff size is not set correctly */
1824 				ioc_err(ioc,
1825 				    "Min Trace Buff size (%d KB) greater than Max Trace Buff size (%d KB)\n",
1826 				     min_trace_buff_size>>10,
1827 				     trace_buff_size>>10);
1828 				ioc_err(ioc,
1829 				    "Using zero Min Trace Buff Size\n");
1830 				min_trace_buff_size = 0;
1831 			}
1832 
1833 			if (decr_trace_buff_size == 0) {
1834 				/*
1835 				 * retry the min size if decrement
1836 				 * is not available.
1837 				 */
1838 				decr_trace_buff_size =
1839 				    trace_buff_size - min_trace_buff_size;
1840 			}
1841 		} else {
1842 			/* register for 2MB buffers  */
1843 			diag_register.requested_buffer_size = 2 * (1024 * 1024);
1844 		}
1845 
1846 		do {
1847 			ret_val = _ctl_diag_register_2(ioc,  &diag_register);
1848 
1849 			if (ret_val == -ENOMEM && min_trace_buff_size &&
1850 			    (trace_buff_size - decr_trace_buff_size) >=
1851 			    min_trace_buff_size) {
1852 				/* adjust the buffer size */
1853 				trace_buff_size -= decr_trace_buff_size;
1854 				diag_register.requested_buffer_size =
1855 				    trace_buff_size;
1856 			} else
1857 				break;
1858 		} while (true);
1859 
1860 		if (ret_val == -ENOMEM)
1861 			ioc_err(ioc,
1862 			    "Cannot allocate trace buffer memory. Last memory tried = %d KB\n",
1863 			    diag_register.requested_buffer_size>>10);
1864 		else if (ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE]
1865 		    & MPT3_DIAG_BUFFER_IS_REGISTERED) {
1866 			ioc_err(ioc, "Trace buffer memory %d KB allocated\n",
1867 			    diag_register.requested_buffer_size>>10);
1868 			if (ioc->hba_mpi_version_belonged != MPI2_VERSION)
1869 				ioc->diag_buffer_status[
1870 				    MPI2_DIAG_BUF_TYPE_TRACE] |=
1871 				    MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED;
1872 		}
1873 	}
1874 
1875 	if (bits_to_register & 2) {
1876 		ioc_info(ioc, "registering snapshot buffer support\n");
1877 		diag_register.buffer_type = MPI2_DIAG_BUF_TYPE_SNAPSHOT;
1878 		/* register for 2MB buffers  */
1879 		diag_register.requested_buffer_size = 2 * (1024 * 1024);
1880 		diag_register.unique_id = 0x7075901;
1881 		_ctl_diag_register_2(ioc,  &diag_register);
1882 	}
1883 
1884 	if (bits_to_register & 4) {
1885 		ioc_info(ioc, "registering extended buffer support\n");
1886 		diag_register.buffer_type = MPI2_DIAG_BUF_TYPE_EXTENDED;
1887 		/* register for 2MB buffers  */
1888 		diag_register.requested_buffer_size = 2 * (1024 * 1024);
1889 		diag_register.unique_id = 0x7075901;
1890 		_ctl_diag_register_2(ioc,  &diag_register);
1891 	}
1892 }
1893 
1894 /**
1895  * _ctl_diag_register - application register with driver
1896  * @ioc: per adapter object
1897  * @arg: user space buffer containing ioctl content
1898  *
1899  * This will allow the driver to setup any required buffers that will be
1900  * needed by firmware to communicate with the driver.
1901  */
1902 static long
1903 _ctl_diag_register(struct MPT3SAS_ADAPTER *ioc, void __user *arg)
1904 {
1905 	struct mpt3_diag_register karg;
1906 	long rc;
1907 
1908 	if (copy_from_user(&karg, arg, sizeof(karg))) {
1909 		pr_err("failure at %s:%d/%s()!\n",
1910 		    __FILE__, __LINE__, __func__);
1911 		return -EFAULT;
1912 	}
1913 
1914 	rc = _ctl_diag_register_2(ioc, &karg);
1915 
1916 	if (!rc && (ioc->diag_buffer_status[karg.buffer_type] &
1917 	    MPT3_DIAG_BUFFER_IS_REGISTERED))
1918 		ioc->diag_buffer_status[karg.buffer_type] |=
1919 		    MPT3_DIAG_BUFFER_IS_APP_OWNED;
1920 
1921 	return rc;
1922 }
1923 
1924 /**
1925  * _ctl_diag_unregister - application unregister with driver
1926  * @ioc: per adapter object
1927  * @arg: user space buffer containing ioctl content
1928  *
1929  * This will allow the driver to cleanup any memory allocated for diag
1930  * messages and to free up any resources.
1931  */
1932 static long
1933 _ctl_diag_unregister(struct MPT3SAS_ADAPTER *ioc, void __user *arg)
1934 {
1935 	struct mpt3_diag_unregister karg;
1936 	void *request_data;
1937 	dma_addr_t request_data_dma;
1938 	u32 request_data_sz;
1939 	u8 buffer_type;
1940 
1941 	if (copy_from_user(&karg, arg, sizeof(karg))) {
1942 		pr_err("failure at %s:%d/%s()!\n",
1943 		    __FILE__, __LINE__, __func__);
1944 		return -EFAULT;
1945 	}
1946 
1947 	dctlprintk(ioc, ioc_info(ioc, "%s\n",
1948 				 __func__));
1949 
1950 	buffer_type = _ctl_diag_get_bufftype(ioc, karg.unique_id);
1951 	if (buffer_type == MPT3_DIAG_UID_NOT_FOUND) {
1952 		ioc_err(ioc, "%s: buffer with unique_id(0x%08x) not found\n",
1953 		    __func__, karg.unique_id);
1954 		return -EINVAL;
1955 	}
1956 
1957 	if (!_ctl_diag_capability(ioc, buffer_type)) {
1958 		ioc_err(ioc, "%s: doesn't have capability for buffer_type(0x%02x)\n",
1959 			__func__, buffer_type);
1960 		return -EPERM;
1961 	}
1962 
1963 	if ((ioc->diag_buffer_status[buffer_type] &
1964 	    MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) {
1965 		ioc_err(ioc, "%s: buffer_type(0x%02x) is not registered\n",
1966 			__func__, buffer_type);
1967 		return -EINVAL;
1968 	}
1969 	if ((ioc->diag_buffer_status[buffer_type] &
1970 	    MPT3_DIAG_BUFFER_IS_RELEASED) == 0) {
1971 		ioc_err(ioc, "%s: buffer_type(0x%02x) has not been released\n",
1972 			__func__, buffer_type);
1973 		return -EINVAL;
1974 	}
1975 
1976 	if (karg.unique_id != ioc->unique_id[buffer_type]) {
1977 		ioc_err(ioc, "%s: unique_id(0x%08x) is not registered\n",
1978 			__func__, karg.unique_id);
1979 		return -EINVAL;
1980 	}
1981 
1982 	request_data = ioc->diag_buffer[buffer_type];
1983 	if (!request_data) {
1984 		ioc_err(ioc, "%s: doesn't have memory allocated for buffer_type(0x%02x)\n",
1985 			__func__, buffer_type);
1986 		return -ENOMEM;
1987 	}
1988 
1989 	if (ioc->diag_buffer_status[buffer_type] &
1990 	    MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED) {
1991 		ioc->unique_id[buffer_type] = MPT3DIAGBUFFUNIQUEID;
1992 		ioc->diag_buffer_status[buffer_type] &=
1993 		    ~MPT3_DIAG_BUFFER_IS_APP_OWNED;
1994 		ioc->diag_buffer_status[buffer_type] &=
1995 		    ~MPT3_DIAG_BUFFER_IS_REGISTERED;
1996 	} else {
1997 		request_data_sz = ioc->diag_buffer_sz[buffer_type];
1998 		request_data_dma = ioc->diag_buffer_dma[buffer_type];
1999 		dma_free_coherent(&ioc->pdev->dev, request_data_sz,
2000 				request_data, request_data_dma);
2001 		ioc->diag_buffer[buffer_type] = NULL;
2002 		ioc->diag_buffer_status[buffer_type] = 0;
2003 	}
2004 	return 0;
2005 }
2006 
2007 /**
2008  * _ctl_diag_query - query relevant info associated with diag buffers
2009  * @ioc: per adapter object
2010  * @arg: user space buffer containing ioctl content
2011  *
2012  * The application will send only buffer_type and unique_id.  Driver will
2013  * inspect unique_id first, if valid, fill in all the info.  If unique_id is
2014  * 0x00, the driver will return info specified by Buffer Type.
2015  */
2016 static long
2017 _ctl_diag_query(struct MPT3SAS_ADAPTER *ioc, void __user *arg)
2018 {
2019 	struct mpt3_diag_query karg;
2020 	void *request_data;
2021 	int i;
2022 	u8 buffer_type;
2023 
2024 	if (copy_from_user(&karg, arg, sizeof(karg))) {
2025 		pr_err("failure at %s:%d/%s()!\n",
2026 		    __FILE__, __LINE__, __func__);
2027 		return -EFAULT;
2028 	}
2029 
2030 	dctlprintk(ioc, ioc_info(ioc, "%s\n",
2031 				 __func__));
2032 
2033 	karg.application_flags = 0;
2034 	buffer_type = karg.buffer_type;
2035 
2036 	if (!_ctl_diag_capability(ioc, buffer_type)) {
2037 		ioc_err(ioc, "%s: doesn't have capability for buffer_type(0x%02x)\n",
2038 			__func__, buffer_type);
2039 		return -EPERM;
2040 	}
2041 
2042 	if (!(ioc->diag_buffer_status[buffer_type] &
2043 	    MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED)) {
2044 		if ((ioc->diag_buffer_status[buffer_type] &
2045 		    MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) {
2046 			ioc_err(ioc, "%s: buffer_type(0x%02x) is not registered\n",
2047 				__func__, buffer_type);
2048 			return -EINVAL;
2049 		}
2050 	}
2051 
2052 	if (karg.unique_id) {
2053 		if (karg.unique_id != ioc->unique_id[buffer_type]) {
2054 			ioc_err(ioc, "%s: unique_id(0x%08x) is not registered\n",
2055 				__func__, karg.unique_id);
2056 			return -EINVAL;
2057 		}
2058 	}
2059 
2060 	request_data = ioc->diag_buffer[buffer_type];
2061 	if (!request_data) {
2062 		ioc_err(ioc, "%s: doesn't have buffer for buffer_type(0x%02x)\n",
2063 			__func__, buffer_type);
2064 		return -ENOMEM;
2065 	}
2066 
2067 	if ((ioc->diag_buffer_status[buffer_type] &
2068 	    MPT3_DIAG_BUFFER_IS_REGISTERED))
2069 		karg.application_flags |= MPT3_APP_FLAGS_BUFFER_VALID;
2070 
2071 	if (!(ioc->diag_buffer_status[buffer_type] &
2072 	     MPT3_DIAG_BUFFER_IS_RELEASED))
2073 		karg.application_flags |= MPT3_APP_FLAGS_FW_BUFFER_ACCESS;
2074 
2075 	if (!(ioc->diag_buffer_status[buffer_type] &
2076 	    MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED))
2077 		karg.application_flags |= MPT3_APP_FLAGS_DYNAMIC_BUFFER_ALLOC;
2078 
2079 	if ((ioc->diag_buffer_status[buffer_type] &
2080 	    MPT3_DIAG_BUFFER_IS_APP_OWNED))
2081 		karg.application_flags |= MPT3_APP_FLAGS_APP_OWNED;
2082 
2083 	for (i = 0; i < MPT3_PRODUCT_SPECIFIC_DWORDS; i++)
2084 		karg.product_specific[i] =
2085 		    ioc->product_specific[buffer_type][i];
2086 
2087 	karg.total_buffer_size = ioc->diag_buffer_sz[buffer_type];
2088 	karg.driver_added_buffer_size = 0;
2089 	karg.unique_id = ioc->unique_id[buffer_type];
2090 	karg.diagnostic_flags = ioc->diagnostic_flags[buffer_type];
2091 
2092 	if (copy_to_user(arg, &karg, sizeof(struct mpt3_diag_query))) {
2093 		ioc_err(ioc, "%s: unable to write mpt3_diag_query data @ %p\n",
2094 			__func__, arg);
2095 		return -EFAULT;
2096 	}
2097 	return 0;
2098 }
2099 
2100 /**
2101  * mpt3sas_send_diag_release - Diag Release Message
2102  * @ioc: per adapter object
2103  * @buffer_type: specifies either TRACE, SNAPSHOT, or EXTENDED
2104  * @issue_reset: specifies whether host reset is required.
2105  *
2106  */
2107 int
2108 mpt3sas_send_diag_release(struct MPT3SAS_ADAPTER *ioc, u8 buffer_type,
2109 	u8 *issue_reset)
2110 {
2111 	Mpi2DiagReleaseRequest_t *mpi_request;
2112 	Mpi2DiagReleaseReply_t *mpi_reply;
2113 	u16 smid;
2114 	u16 ioc_status;
2115 	u32 ioc_state;
2116 	int rc;
2117 	u8 reset_needed = 0;
2118 
2119 	dctlprintk(ioc, ioc_info(ioc, "%s\n",
2120 				 __func__));
2121 
2122 	rc = 0;
2123 	*issue_reset = 0;
2124 
2125 
2126 	ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
2127 	if (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
2128 		if (ioc->diag_buffer_status[buffer_type] &
2129 		    MPT3_DIAG_BUFFER_IS_REGISTERED)
2130 			ioc->diag_buffer_status[buffer_type] |=
2131 			    MPT3_DIAG_BUFFER_IS_RELEASED;
2132 		dctlprintk(ioc,
2133 			   ioc_info(ioc, "%s: skipping due to FAULT state\n",
2134 				    __func__));
2135 		rc = -EAGAIN;
2136 		goto out;
2137 	}
2138 
2139 	if (ioc->ctl_cmds.status != MPT3_CMD_NOT_USED) {
2140 		ioc_err(ioc, "%s: ctl_cmd in use\n", __func__);
2141 		rc = -EAGAIN;
2142 		goto out;
2143 	}
2144 
2145 	smid = mpt3sas_base_get_smid(ioc, ioc->ctl_cb_idx);
2146 	if (!smid) {
2147 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
2148 		rc = -EAGAIN;
2149 		goto out;
2150 	}
2151 
2152 	ioc->ctl_cmds.status = MPT3_CMD_PENDING;
2153 	memset(ioc->ctl_cmds.reply, 0, ioc->reply_sz);
2154 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2155 	ioc->ctl_cmds.smid = smid;
2156 
2157 	mpi_request->Function = MPI2_FUNCTION_DIAG_RELEASE;
2158 	mpi_request->BufferType = buffer_type;
2159 	mpi_request->VF_ID = 0; /* TODO */
2160 	mpi_request->VP_ID = 0;
2161 
2162 	init_completion(&ioc->ctl_cmds.done);
2163 	ioc->put_smid_default(ioc, smid);
2164 	wait_for_completion_timeout(&ioc->ctl_cmds.done,
2165 	    MPT3_IOCTL_DEFAULT_TIMEOUT*HZ);
2166 
2167 	if (!(ioc->ctl_cmds.status & MPT3_CMD_COMPLETE)) {
2168 		mpt3sas_check_cmd_timeout(ioc,
2169 		    ioc->ctl_cmds.status, mpi_request,
2170 		    sizeof(Mpi2DiagReleaseRequest_t)/4, reset_needed);
2171 		 *issue_reset = reset_needed;
2172 		rc = -EFAULT;
2173 		goto out;
2174 	}
2175 
2176 	/* process the completed Reply Message Frame */
2177 	if ((ioc->ctl_cmds.status & MPT3_CMD_REPLY_VALID) == 0) {
2178 		ioc_err(ioc, "%s: no reply message\n", __func__);
2179 		rc = -EFAULT;
2180 		goto out;
2181 	}
2182 
2183 	mpi_reply = ioc->ctl_cmds.reply;
2184 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
2185 
2186 	if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
2187 		ioc->diag_buffer_status[buffer_type] |=
2188 		    MPT3_DIAG_BUFFER_IS_RELEASED;
2189 		dctlprintk(ioc, ioc_info(ioc, "%s: success\n", __func__));
2190 	} else {
2191 		ioc_info(ioc, "%s: ioc_status(0x%04x) log_info(0x%08x)\n",
2192 			 __func__,
2193 			 ioc_status, le32_to_cpu(mpi_reply->IOCLogInfo));
2194 		rc = -EFAULT;
2195 	}
2196 
2197  out:
2198 	ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
2199 	return rc;
2200 }
2201 
2202 /**
2203  * _ctl_diag_release - request to send Diag Release Message to firmware
2204  * @ioc: ?
2205  * @arg: user space buffer containing ioctl content
2206  *
2207  * This allows ownership of the specified buffer to returned to the driver,
2208  * allowing an application to read the buffer without fear that firmware is
2209  * overwriting information in the buffer.
2210  */
2211 static long
2212 _ctl_diag_release(struct MPT3SAS_ADAPTER *ioc, void __user *arg)
2213 {
2214 	struct mpt3_diag_release karg;
2215 	void *request_data;
2216 	int rc;
2217 	u8 buffer_type;
2218 	u8 issue_reset = 0;
2219 
2220 	if (copy_from_user(&karg, arg, sizeof(karg))) {
2221 		pr_err("failure at %s:%d/%s()!\n",
2222 		    __FILE__, __LINE__, __func__);
2223 		return -EFAULT;
2224 	}
2225 
2226 	dctlprintk(ioc, ioc_info(ioc, "%s\n",
2227 				 __func__));
2228 
2229 	buffer_type = _ctl_diag_get_bufftype(ioc, karg.unique_id);
2230 	if (buffer_type == MPT3_DIAG_UID_NOT_FOUND) {
2231 		ioc_err(ioc, "%s: buffer with unique_id(0x%08x) not found\n",
2232 		    __func__, karg.unique_id);
2233 		return -EINVAL;
2234 	}
2235 
2236 	if (!_ctl_diag_capability(ioc, buffer_type)) {
2237 		ioc_err(ioc, "%s: doesn't have capability for buffer_type(0x%02x)\n",
2238 			__func__, buffer_type);
2239 		return -EPERM;
2240 	}
2241 
2242 	if ((ioc->diag_buffer_status[buffer_type] &
2243 	    MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) {
2244 		ioc_err(ioc, "%s: buffer_type(0x%02x) is not registered\n",
2245 			__func__, buffer_type);
2246 		return -EINVAL;
2247 	}
2248 
2249 	if (karg.unique_id != ioc->unique_id[buffer_type]) {
2250 		ioc_err(ioc, "%s: unique_id(0x%08x) is not registered\n",
2251 			__func__, karg.unique_id);
2252 		return -EINVAL;
2253 	}
2254 
2255 	if (ioc->diag_buffer_status[buffer_type] &
2256 	    MPT3_DIAG_BUFFER_IS_RELEASED) {
2257 		ioc_err(ioc, "%s: buffer_type(0x%02x) is already released\n",
2258 			__func__, buffer_type);
2259 		return -EINVAL;
2260 	}
2261 
2262 	request_data = ioc->diag_buffer[buffer_type];
2263 
2264 	if (!request_data) {
2265 		ioc_err(ioc, "%s: doesn't have memory allocated for buffer_type(0x%02x)\n",
2266 			__func__, buffer_type);
2267 		return -ENOMEM;
2268 	}
2269 
2270 	/* buffers were released by due to host reset */
2271 	if ((ioc->diag_buffer_status[buffer_type] &
2272 	    MPT3_DIAG_BUFFER_IS_DIAG_RESET)) {
2273 		ioc->diag_buffer_status[buffer_type] |=
2274 		    MPT3_DIAG_BUFFER_IS_RELEASED;
2275 		ioc->diag_buffer_status[buffer_type] &=
2276 		    ~MPT3_DIAG_BUFFER_IS_DIAG_RESET;
2277 		ioc_err(ioc, "%s: buffer_type(0x%02x) was released due to host reset\n",
2278 			__func__, buffer_type);
2279 		return 0;
2280 	}
2281 
2282 	rc = mpt3sas_send_diag_release(ioc, buffer_type, &issue_reset);
2283 
2284 	if (issue_reset)
2285 		mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
2286 
2287 	return rc;
2288 }
2289 
2290 /**
2291  * _ctl_diag_read_buffer - request for copy of the diag buffer
2292  * @ioc: per adapter object
2293  * @arg: user space buffer containing ioctl content
2294  */
2295 static long
2296 _ctl_diag_read_buffer(struct MPT3SAS_ADAPTER *ioc, void __user *arg)
2297 {
2298 	struct mpt3_diag_read_buffer karg;
2299 	struct mpt3_diag_read_buffer __user *uarg = arg;
2300 	void *request_data, *diag_data;
2301 	Mpi2DiagBufferPostRequest_t *mpi_request;
2302 	Mpi2DiagBufferPostReply_t *mpi_reply;
2303 	int rc, i;
2304 	u8 buffer_type;
2305 	unsigned long request_size, copy_size;
2306 	u16 smid;
2307 	u16 ioc_status;
2308 	u8 issue_reset = 0;
2309 
2310 	if (copy_from_user(&karg, arg, sizeof(karg))) {
2311 		pr_err("failure at %s:%d/%s()!\n",
2312 		    __FILE__, __LINE__, __func__);
2313 		return -EFAULT;
2314 	}
2315 
2316 	dctlprintk(ioc, ioc_info(ioc, "%s\n",
2317 				 __func__));
2318 
2319 	buffer_type = _ctl_diag_get_bufftype(ioc, karg.unique_id);
2320 	if (buffer_type == MPT3_DIAG_UID_NOT_FOUND) {
2321 		ioc_err(ioc, "%s: buffer with unique_id(0x%08x) not found\n",
2322 		    __func__, karg.unique_id);
2323 		return -EINVAL;
2324 	}
2325 
2326 	if (!_ctl_diag_capability(ioc, buffer_type)) {
2327 		ioc_err(ioc, "%s: doesn't have capability for buffer_type(0x%02x)\n",
2328 			__func__, buffer_type);
2329 		return -EPERM;
2330 	}
2331 
2332 	if (karg.unique_id != ioc->unique_id[buffer_type]) {
2333 		ioc_err(ioc, "%s: unique_id(0x%08x) is not registered\n",
2334 			__func__, karg.unique_id);
2335 		return -EINVAL;
2336 	}
2337 
2338 	request_data = ioc->diag_buffer[buffer_type];
2339 	if (!request_data) {
2340 		ioc_err(ioc, "%s: doesn't have buffer for buffer_type(0x%02x)\n",
2341 			__func__, buffer_type);
2342 		return -ENOMEM;
2343 	}
2344 
2345 	request_size = ioc->diag_buffer_sz[buffer_type];
2346 
2347 	if ((karg.starting_offset % 4) || (karg.bytes_to_read % 4)) {
2348 		ioc_err(ioc, "%s: either the starting_offset or bytes_to_read are not 4 byte aligned\n",
2349 			__func__);
2350 		return -EINVAL;
2351 	}
2352 
2353 	if (karg.starting_offset > request_size)
2354 		return -EINVAL;
2355 
2356 	diag_data = (void *)(request_data + karg.starting_offset);
2357 	dctlprintk(ioc,
2358 		   ioc_info(ioc, "%s: diag_buffer(%p), offset(%d), sz(%d)\n",
2359 			    __func__, diag_data, karg.starting_offset,
2360 			    karg.bytes_to_read));
2361 
2362 	/* Truncate data on requests that are too large */
2363 	if ((diag_data + karg.bytes_to_read < diag_data) ||
2364 	    (diag_data + karg.bytes_to_read > request_data + request_size))
2365 		copy_size = request_size - karg.starting_offset;
2366 	else
2367 		copy_size = karg.bytes_to_read;
2368 
2369 	if (copy_to_user((void __user *)uarg->diagnostic_data,
2370 	    diag_data, copy_size)) {
2371 		ioc_err(ioc, "%s: Unable to write mpt_diag_read_buffer_t data @ %p\n",
2372 			__func__, diag_data);
2373 		return -EFAULT;
2374 	}
2375 
2376 	if ((karg.flags & MPT3_FLAGS_REREGISTER) == 0)
2377 		return 0;
2378 
2379 	dctlprintk(ioc,
2380 		   ioc_info(ioc, "%s: Reregister buffer_type(0x%02x)\n",
2381 			    __func__, buffer_type));
2382 	if ((ioc->diag_buffer_status[buffer_type] &
2383 	    MPT3_DIAG_BUFFER_IS_RELEASED) == 0) {
2384 		dctlprintk(ioc,
2385 			   ioc_info(ioc, "%s: buffer_type(0x%02x) is still registered\n",
2386 				    __func__, buffer_type));
2387 		return 0;
2388 	}
2389 	/* Get a free request frame and save the message context.
2390 	*/
2391 
2392 	if (ioc->ctl_cmds.status != MPT3_CMD_NOT_USED) {
2393 		ioc_err(ioc, "%s: ctl_cmd in use\n", __func__);
2394 		rc = -EAGAIN;
2395 		goto out;
2396 	}
2397 
2398 	smid = mpt3sas_base_get_smid(ioc, ioc->ctl_cb_idx);
2399 	if (!smid) {
2400 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
2401 		rc = -EAGAIN;
2402 		goto out;
2403 	}
2404 
2405 	rc = 0;
2406 	ioc->ctl_cmds.status = MPT3_CMD_PENDING;
2407 	memset(ioc->ctl_cmds.reply, 0, ioc->reply_sz);
2408 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2409 	ioc->ctl_cmds.smid = smid;
2410 
2411 	mpi_request->Function = MPI2_FUNCTION_DIAG_BUFFER_POST;
2412 	mpi_request->BufferType = buffer_type;
2413 	mpi_request->BufferLength =
2414 	    cpu_to_le32(ioc->diag_buffer_sz[buffer_type]);
2415 	mpi_request->BufferAddress =
2416 	    cpu_to_le64(ioc->diag_buffer_dma[buffer_type]);
2417 	for (i = 0; i < MPT3_PRODUCT_SPECIFIC_DWORDS; i++)
2418 		mpi_request->ProductSpecific[i] =
2419 			cpu_to_le32(ioc->product_specific[buffer_type][i]);
2420 	mpi_request->VF_ID = 0; /* TODO */
2421 	mpi_request->VP_ID = 0;
2422 
2423 	init_completion(&ioc->ctl_cmds.done);
2424 	ioc->put_smid_default(ioc, smid);
2425 	wait_for_completion_timeout(&ioc->ctl_cmds.done,
2426 	    MPT3_IOCTL_DEFAULT_TIMEOUT*HZ);
2427 
2428 	if (!(ioc->ctl_cmds.status & MPT3_CMD_COMPLETE)) {
2429 		mpt3sas_check_cmd_timeout(ioc,
2430 		    ioc->ctl_cmds.status, mpi_request,
2431 		    sizeof(Mpi2DiagBufferPostRequest_t)/4, issue_reset);
2432 		goto issue_host_reset;
2433 	}
2434 
2435 	/* process the completed Reply Message Frame */
2436 	if ((ioc->ctl_cmds.status & MPT3_CMD_REPLY_VALID) == 0) {
2437 		ioc_err(ioc, "%s: no reply message\n", __func__);
2438 		rc = -EFAULT;
2439 		goto out;
2440 	}
2441 
2442 	mpi_reply = ioc->ctl_cmds.reply;
2443 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
2444 
2445 	if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
2446 		ioc->diag_buffer_status[buffer_type] |=
2447 		    MPT3_DIAG_BUFFER_IS_REGISTERED;
2448 		ioc->diag_buffer_status[buffer_type] &=
2449 		    ~MPT3_DIAG_BUFFER_IS_RELEASED;
2450 		dctlprintk(ioc, ioc_info(ioc, "%s: success\n", __func__));
2451 	} else {
2452 		ioc_info(ioc, "%s: ioc_status(0x%04x) log_info(0x%08x)\n",
2453 			 __func__, ioc_status,
2454 			 le32_to_cpu(mpi_reply->IOCLogInfo));
2455 		rc = -EFAULT;
2456 	}
2457 
2458  issue_host_reset:
2459 	if (issue_reset)
2460 		mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
2461 
2462  out:
2463 
2464 	ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
2465 	return rc;
2466 }
2467 
2468 
2469 
2470 #ifdef CONFIG_COMPAT
2471 /**
2472  * _ctl_compat_mpt_command - convert 32bit pointers to 64bit.
2473  * @ioc: per adapter object
2474  * @cmd: ioctl opcode
2475  * @arg: (struct mpt3_ioctl_command32)
2476  *
2477  * MPT3COMMAND32 - Handle 32bit applications running on 64bit os.
2478  */
2479 static long
2480 _ctl_compat_mpt_command(struct MPT3SAS_ADAPTER *ioc, unsigned cmd,
2481 	void __user *arg)
2482 {
2483 	struct mpt3_ioctl_command32 karg32;
2484 	struct mpt3_ioctl_command32 __user *uarg;
2485 	struct mpt3_ioctl_command karg;
2486 
2487 	if (_IOC_SIZE(cmd) != sizeof(struct mpt3_ioctl_command32))
2488 		return -EINVAL;
2489 
2490 	uarg = (struct mpt3_ioctl_command32 __user *) arg;
2491 
2492 	if (copy_from_user(&karg32, (char __user *)arg, sizeof(karg32))) {
2493 		pr_err("failure at %s:%d/%s()!\n",
2494 		    __FILE__, __LINE__, __func__);
2495 		return -EFAULT;
2496 	}
2497 
2498 	memset(&karg, 0, sizeof(struct mpt3_ioctl_command));
2499 	karg.hdr.ioc_number = karg32.hdr.ioc_number;
2500 	karg.hdr.port_number = karg32.hdr.port_number;
2501 	karg.hdr.max_data_size = karg32.hdr.max_data_size;
2502 	karg.timeout = karg32.timeout;
2503 	karg.max_reply_bytes = karg32.max_reply_bytes;
2504 	karg.data_in_size = karg32.data_in_size;
2505 	karg.data_out_size = karg32.data_out_size;
2506 	karg.max_sense_bytes = karg32.max_sense_bytes;
2507 	karg.data_sge_offset = karg32.data_sge_offset;
2508 	karg.reply_frame_buf_ptr = compat_ptr(karg32.reply_frame_buf_ptr);
2509 	karg.data_in_buf_ptr = compat_ptr(karg32.data_in_buf_ptr);
2510 	karg.data_out_buf_ptr = compat_ptr(karg32.data_out_buf_ptr);
2511 	karg.sense_data_ptr = compat_ptr(karg32.sense_data_ptr);
2512 	return _ctl_do_mpt_command(ioc, karg, &uarg->mf);
2513 }
2514 #endif
2515 
2516 /**
2517  * _ctl_ioctl_main - main ioctl entry point
2518  * @file:  (struct file)
2519  * @cmd:  ioctl opcode
2520  * @arg:  user space data buffer
2521  * @compat:  handles 32 bit applications in 64bit os
2522  * @mpi_version: will be MPI2_VERSION for mpt2ctl ioctl device &
2523  * MPI25_VERSION | MPI26_VERSION for mpt3ctl ioctl device.
2524  */
2525 static long
2526 _ctl_ioctl_main(struct file *file, unsigned int cmd, void __user *arg,
2527 	u8 compat, u16 mpi_version)
2528 {
2529 	struct MPT3SAS_ADAPTER *ioc;
2530 	struct mpt3_ioctl_header ioctl_header;
2531 	enum block_state state;
2532 	long ret = -EINVAL;
2533 
2534 	/* get IOCTL header */
2535 	if (copy_from_user(&ioctl_header, (char __user *)arg,
2536 	    sizeof(struct mpt3_ioctl_header))) {
2537 		pr_err("failure at %s:%d/%s()!\n",
2538 		    __FILE__, __LINE__, __func__);
2539 		return -EFAULT;
2540 	}
2541 
2542 	if (_ctl_verify_adapter(ioctl_header.ioc_number,
2543 				&ioc, mpi_version) == -1 || !ioc)
2544 		return -ENODEV;
2545 
2546 	/* pci_access_mutex lock acquired by ioctl path */
2547 	mutex_lock(&ioc->pci_access_mutex);
2548 
2549 	if (ioc->shost_recovery || ioc->pci_error_recovery ||
2550 	    ioc->is_driver_loading || ioc->remove_host) {
2551 		ret = -EAGAIN;
2552 		goto out_unlock_pciaccess;
2553 	}
2554 
2555 	state = (file->f_flags & O_NONBLOCK) ? NON_BLOCKING : BLOCKING;
2556 	if (state == NON_BLOCKING) {
2557 		if (!mutex_trylock(&ioc->ctl_cmds.mutex)) {
2558 			ret = -EAGAIN;
2559 			goto out_unlock_pciaccess;
2560 		}
2561 	} else if (mutex_lock_interruptible(&ioc->ctl_cmds.mutex)) {
2562 		ret = -ERESTARTSYS;
2563 		goto out_unlock_pciaccess;
2564 	}
2565 
2566 
2567 	switch (cmd) {
2568 	case MPT3IOCINFO:
2569 		if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_iocinfo))
2570 			ret = _ctl_getiocinfo(ioc, arg);
2571 		break;
2572 #ifdef CONFIG_COMPAT
2573 	case MPT3COMMAND32:
2574 #endif
2575 	case MPT3COMMAND:
2576 	{
2577 		struct mpt3_ioctl_command __user *uarg;
2578 		struct mpt3_ioctl_command karg;
2579 
2580 #ifdef CONFIG_COMPAT
2581 		if (compat) {
2582 			ret = _ctl_compat_mpt_command(ioc, cmd, arg);
2583 			break;
2584 		}
2585 #endif
2586 		if (copy_from_user(&karg, arg, sizeof(karg))) {
2587 			pr_err("failure at %s:%d/%s()!\n",
2588 			    __FILE__, __LINE__, __func__);
2589 			ret = -EFAULT;
2590 			break;
2591 		}
2592 
2593 		if (karg.hdr.ioc_number != ioctl_header.ioc_number) {
2594 			ret = -EINVAL;
2595 			break;
2596 		}
2597 		if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_command)) {
2598 			uarg = arg;
2599 			ret = _ctl_do_mpt_command(ioc, karg, &uarg->mf);
2600 		}
2601 		break;
2602 	}
2603 	case MPT3EVENTQUERY:
2604 		if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_eventquery))
2605 			ret = _ctl_eventquery(ioc, arg);
2606 		break;
2607 	case MPT3EVENTENABLE:
2608 		if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_eventenable))
2609 			ret = _ctl_eventenable(ioc, arg);
2610 		break;
2611 	case MPT3EVENTREPORT:
2612 		ret = _ctl_eventreport(ioc, arg);
2613 		break;
2614 	case MPT3HARDRESET:
2615 		if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_diag_reset))
2616 			ret = _ctl_do_reset(ioc, arg);
2617 		break;
2618 	case MPT3BTDHMAPPING:
2619 		if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_btdh_mapping))
2620 			ret = _ctl_btdh_mapping(ioc, arg);
2621 		break;
2622 	case MPT3DIAGREGISTER:
2623 		if (_IOC_SIZE(cmd) == sizeof(struct mpt3_diag_register))
2624 			ret = _ctl_diag_register(ioc, arg);
2625 		break;
2626 	case MPT3DIAGUNREGISTER:
2627 		if (_IOC_SIZE(cmd) == sizeof(struct mpt3_diag_unregister))
2628 			ret = _ctl_diag_unregister(ioc, arg);
2629 		break;
2630 	case MPT3DIAGQUERY:
2631 		if (_IOC_SIZE(cmd) == sizeof(struct mpt3_diag_query))
2632 			ret = _ctl_diag_query(ioc, arg);
2633 		break;
2634 	case MPT3DIAGRELEASE:
2635 		if (_IOC_SIZE(cmd) == sizeof(struct mpt3_diag_release))
2636 			ret = _ctl_diag_release(ioc, arg);
2637 		break;
2638 	case MPT3DIAGREADBUFFER:
2639 		if (_IOC_SIZE(cmd) == sizeof(struct mpt3_diag_read_buffer))
2640 			ret = _ctl_diag_read_buffer(ioc, arg);
2641 		break;
2642 	default:
2643 		dctlprintk(ioc,
2644 			   ioc_info(ioc, "unsupported ioctl opcode(0x%08x)\n",
2645 				    cmd));
2646 		break;
2647 	}
2648 
2649 	mutex_unlock(&ioc->ctl_cmds.mutex);
2650 out_unlock_pciaccess:
2651 	mutex_unlock(&ioc->pci_access_mutex);
2652 	return ret;
2653 }
2654 
2655 /**
2656  * _ctl_ioctl - mpt3ctl main ioctl entry point (unlocked)
2657  * @file: (struct file)
2658  * @cmd: ioctl opcode
2659  * @arg: ?
2660  */
2661 static long
2662 _ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2663 {
2664 	long ret;
2665 
2666 	/* pass MPI25_VERSION | MPI26_VERSION value,
2667 	 * to indicate that this ioctl cmd
2668 	 * came from mpt3ctl ioctl device.
2669 	 */
2670 	ret = _ctl_ioctl_main(file, cmd, (void __user *)arg, 0,
2671 		MPI25_VERSION | MPI26_VERSION);
2672 	return ret;
2673 }
2674 
2675 /**
2676  * _ctl_mpt2_ioctl - mpt2ctl main ioctl entry point (unlocked)
2677  * @file: (struct file)
2678  * @cmd: ioctl opcode
2679  * @arg: ?
2680  */
2681 static long
2682 _ctl_mpt2_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2683 {
2684 	long ret;
2685 
2686 	/* pass MPI2_VERSION value, to indicate that this ioctl cmd
2687 	 * came from mpt2ctl ioctl device.
2688 	 */
2689 	ret = _ctl_ioctl_main(file, cmd, (void __user *)arg, 0, MPI2_VERSION);
2690 	return ret;
2691 }
2692 #ifdef CONFIG_COMPAT
2693 /**
2694  *_ ctl_ioctl_compat - main ioctl entry point (compat)
2695  * @file: ?
2696  * @cmd: ?
2697  * @arg: ?
2698  *
2699  * This routine handles 32 bit applications in 64bit os.
2700  */
2701 static long
2702 _ctl_ioctl_compat(struct file *file, unsigned cmd, unsigned long arg)
2703 {
2704 	long ret;
2705 
2706 	ret = _ctl_ioctl_main(file, cmd, (void __user *)arg, 1,
2707 		MPI25_VERSION | MPI26_VERSION);
2708 	return ret;
2709 }
2710 
2711 /**
2712  *_ ctl_mpt2_ioctl_compat - main ioctl entry point (compat)
2713  * @file: ?
2714  * @cmd: ?
2715  * @arg: ?
2716  *
2717  * This routine handles 32 bit applications in 64bit os.
2718  */
2719 static long
2720 _ctl_mpt2_ioctl_compat(struct file *file, unsigned cmd, unsigned long arg)
2721 {
2722 	long ret;
2723 
2724 	ret = _ctl_ioctl_main(file, cmd, (void __user *)arg, 1, MPI2_VERSION);
2725 	return ret;
2726 }
2727 #endif
2728 
2729 /* scsi host attributes */
2730 /**
2731  * version_fw_show - firmware version
2732  * @cdev: pointer to embedded class device
2733  * @attr: ?
2734  * @buf: the buffer returned
2735  *
2736  * A sysfs 'read-only' shost attribute.
2737  */
2738 static ssize_t
2739 version_fw_show(struct device *cdev, struct device_attribute *attr,
2740 	char *buf)
2741 {
2742 	struct Scsi_Host *shost = class_to_shost(cdev);
2743 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
2744 
2745 	return snprintf(buf, PAGE_SIZE, "%02d.%02d.%02d.%02d\n",
2746 	    (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
2747 	    (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
2748 	    (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
2749 	    ioc->facts.FWVersion.Word & 0x000000FF);
2750 }
2751 static DEVICE_ATTR_RO(version_fw);
2752 
2753 /**
2754  * version_bios_show - bios version
2755  * @cdev: pointer to embedded class device
2756  * @attr: ?
2757  * @buf: the buffer returned
2758  *
2759  * A sysfs 'read-only' shost attribute.
2760  */
2761 static ssize_t
2762 version_bios_show(struct device *cdev, struct device_attribute *attr,
2763 	char *buf)
2764 {
2765 	struct Scsi_Host *shost = class_to_shost(cdev);
2766 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
2767 
2768 	u32 version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
2769 
2770 	return snprintf(buf, PAGE_SIZE, "%02d.%02d.%02d.%02d\n",
2771 	    (version & 0xFF000000) >> 24,
2772 	    (version & 0x00FF0000) >> 16,
2773 	    (version & 0x0000FF00) >> 8,
2774 	    version & 0x000000FF);
2775 }
2776 static DEVICE_ATTR_RO(version_bios);
2777 
2778 /**
2779  * version_mpi_show - MPI (message passing interface) version
2780  * @cdev: pointer to embedded class device
2781  * @attr: ?
2782  * @buf: the buffer returned
2783  *
2784  * A sysfs 'read-only' shost attribute.
2785  */
2786 static ssize_t
2787 version_mpi_show(struct device *cdev, struct device_attribute *attr,
2788 	char *buf)
2789 {
2790 	struct Scsi_Host *shost = class_to_shost(cdev);
2791 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
2792 
2793 	return snprintf(buf, PAGE_SIZE, "%03x.%02x\n",
2794 	    ioc->facts.MsgVersion, ioc->facts.HeaderVersion >> 8);
2795 }
2796 static DEVICE_ATTR_RO(version_mpi);
2797 
2798 /**
2799  * version_product_show - product name
2800  * @cdev: pointer to embedded class device
2801  * @attr: ?
2802  * @buf: the buffer returned
2803  *
2804  * A sysfs 'read-only' shost attribute.
2805  */
2806 static ssize_t
2807 version_product_show(struct device *cdev, struct device_attribute *attr,
2808 	char *buf)
2809 {
2810 	struct Scsi_Host *shost = class_to_shost(cdev);
2811 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
2812 
2813 	return snprintf(buf, 16, "%s\n", ioc->manu_pg0.ChipName);
2814 }
2815 static DEVICE_ATTR_RO(version_product);
2816 
2817 /**
2818  * version_nvdata_persistent_show - ndvata persistent version
2819  * @cdev: pointer to embedded class device
2820  * @attr: ?
2821  * @buf: the buffer returned
2822  *
2823  * A sysfs 'read-only' shost attribute.
2824  */
2825 static ssize_t
2826 version_nvdata_persistent_show(struct device *cdev,
2827 	struct device_attribute *attr, char *buf)
2828 {
2829 	struct Scsi_Host *shost = class_to_shost(cdev);
2830 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
2831 
2832 	return snprintf(buf, PAGE_SIZE, "%08xh\n",
2833 	    le32_to_cpu(ioc->iounit_pg0.NvdataVersionPersistent.Word));
2834 }
2835 static DEVICE_ATTR_RO(version_nvdata_persistent);
2836 
2837 /**
2838  * version_nvdata_default_show - nvdata default version
2839  * @cdev: pointer to embedded class device
2840  * @attr: ?
2841  * @buf: the buffer returned
2842  *
2843  * A sysfs 'read-only' shost attribute.
2844  */
2845 static ssize_t
2846 version_nvdata_default_show(struct device *cdev, struct device_attribute
2847 	*attr, char *buf)
2848 {
2849 	struct Scsi_Host *shost = class_to_shost(cdev);
2850 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
2851 
2852 	return snprintf(buf, PAGE_SIZE, "%08xh\n",
2853 	    le32_to_cpu(ioc->iounit_pg0.NvdataVersionDefault.Word));
2854 }
2855 static DEVICE_ATTR_RO(version_nvdata_default);
2856 
2857 /**
2858  * board_name_show - board name
2859  * @cdev: pointer to embedded class device
2860  * @attr: ?
2861  * @buf: the buffer returned
2862  *
2863  * A sysfs 'read-only' shost attribute.
2864  */
2865 static ssize_t
2866 board_name_show(struct device *cdev, struct device_attribute *attr,
2867 	char *buf)
2868 {
2869 	struct Scsi_Host *shost = class_to_shost(cdev);
2870 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
2871 
2872 	return snprintf(buf, 16, "%s\n", ioc->manu_pg0.BoardName);
2873 }
2874 static DEVICE_ATTR_RO(board_name);
2875 
2876 /**
2877  * board_assembly_show - board assembly name
2878  * @cdev: pointer to embedded class device
2879  * @attr: ?
2880  * @buf: the buffer returned
2881  *
2882  * A sysfs 'read-only' shost attribute.
2883  */
2884 static ssize_t
2885 board_assembly_show(struct device *cdev, struct device_attribute *attr,
2886 	char *buf)
2887 {
2888 	struct Scsi_Host *shost = class_to_shost(cdev);
2889 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
2890 
2891 	return snprintf(buf, 16, "%s\n", ioc->manu_pg0.BoardAssembly);
2892 }
2893 static DEVICE_ATTR_RO(board_assembly);
2894 
2895 /**
2896  * board_tracer_show - board tracer number
2897  * @cdev: pointer to embedded class device
2898  * @attr: ?
2899  * @buf: the buffer returned
2900  *
2901  * A sysfs 'read-only' shost attribute.
2902  */
2903 static ssize_t
2904 board_tracer_show(struct device *cdev, struct device_attribute *attr,
2905 	char *buf)
2906 {
2907 	struct Scsi_Host *shost = class_to_shost(cdev);
2908 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
2909 
2910 	return snprintf(buf, 16, "%s\n", ioc->manu_pg0.BoardTracerNumber);
2911 }
2912 static DEVICE_ATTR_RO(board_tracer);
2913 
2914 /**
2915  * io_delay_show - io missing delay
2916  * @cdev: pointer to embedded class device
2917  * @attr: ?
2918  * @buf: the buffer returned
2919  *
2920  * This is for firmware implemention for deboucing device
2921  * removal events.
2922  *
2923  * A sysfs 'read-only' shost attribute.
2924  */
2925 static ssize_t
2926 io_delay_show(struct device *cdev, struct device_attribute *attr,
2927 	char *buf)
2928 {
2929 	struct Scsi_Host *shost = class_to_shost(cdev);
2930 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
2931 
2932 	return snprintf(buf, PAGE_SIZE, "%02d\n", ioc->io_missing_delay);
2933 }
2934 static DEVICE_ATTR_RO(io_delay);
2935 
2936 /**
2937  * device_delay_show - device missing delay
2938  * @cdev: pointer to embedded class device
2939  * @attr: ?
2940  * @buf: the buffer returned
2941  *
2942  * This is for firmware implemention for deboucing device
2943  * removal events.
2944  *
2945  * A sysfs 'read-only' shost attribute.
2946  */
2947 static ssize_t
2948 device_delay_show(struct device *cdev, struct device_attribute *attr,
2949 	char *buf)
2950 {
2951 	struct Scsi_Host *shost = class_to_shost(cdev);
2952 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
2953 
2954 	return snprintf(buf, PAGE_SIZE, "%02d\n", ioc->device_missing_delay);
2955 }
2956 static DEVICE_ATTR_RO(device_delay);
2957 
2958 /**
2959  * fw_queue_depth_show - global credits
2960  * @cdev: pointer to embedded class device
2961  * @attr: ?
2962  * @buf: the buffer returned
2963  *
2964  * This is firmware queue depth limit
2965  *
2966  * A sysfs 'read-only' shost attribute.
2967  */
2968 static ssize_t
2969 fw_queue_depth_show(struct device *cdev, struct device_attribute *attr,
2970 	char *buf)
2971 {
2972 	struct Scsi_Host *shost = class_to_shost(cdev);
2973 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
2974 
2975 	return snprintf(buf, PAGE_SIZE, "%02d\n", ioc->facts.RequestCredit);
2976 }
2977 static DEVICE_ATTR_RO(fw_queue_depth);
2978 
2979 /**
2980  * sas_address_show - sas address
2981  * @cdev: pointer to embedded class device
2982  * @attr: ?
2983  * @buf: the buffer returned
2984  *
2985  * This is the controller sas address
2986  *
2987  * A sysfs 'read-only' shost attribute.
2988  */
2989 static ssize_t
2990 host_sas_address_show(struct device *cdev, struct device_attribute *attr,
2991 	char *buf)
2992 
2993 {
2994 	struct Scsi_Host *shost = class_to_shost(cdev);
2995 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
2996 
2997 	return snprintf(buf, PAGE_SIZE, "0x%016llx\n",
2998 	    (unsigned long long)ioc->sas_hba.sas_address);
2999 }
3000 static DEVICE_ATTR_RO(host_sas_address);
3001 
3002 /**
3003  * logging_level_show - logging level
3004  * @cdev: pointer to embedded class device
3005  * @attr: ?
3006  * @buf: the buffer returned
3007  *
3008  * A sysfs 'read/write' shost attribute.
3009  */
3010 static ssize_t
3011 logging_level_show(struct device *cdev, struct device_attribute *attr,
3012 	char *buf)
3013 {
3014 	struct Scsi_Host *shost = class_to_shost(cdev);
3015 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3016 
3017 	return snprintf(buf, PAGE_SIZE, "%08xh\n", ioc->logging_level);
3018 }
3019 static ssize_t
3020 logging_level_store(struct device *cdev, struct device_attribute *attr,
3021 	const char *buf, size_t count)
3022 {
3023 	struct Scsi_Host *shost = class_to_shost(cdev);
3024 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3025 	int val = 0;
3026 
3027 	if (sscanf(buf, "%x", &val) != 1)
3028 		return -EINVAL;
3029 
3030 	ioc->logging_level = val;
3031 	ioc_info(ioc, "logging_level=%08xh\n",
3032 		 ioc->logging_level);
3033 	return strlen(buf);
3034 }
3035 static DEVICE_ATTR_RW(logging_level);
3036 
3037 /**
3038  * fwfault_debug_show - show/store fwfault_debug
3039  * @cdev: pointer to embedded class device
3040  * @attr: ?
3041  * @buf: the buffer returned
3042  *
3043  * mpt3sas_fwfault_debug is command line option
3044  * A sysfs 'read/write' shost attribute.
3045  */
3046 static ssize_t
3047 fwfault_debug_show(struct device *cdev, struct device_attribute *attr,
3048 	char *buf)
3049 {
3050 	struct Scsi_Host *shost = class_to_shost(cdev);
3051 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3052 
3053 	return snprintf(buf, PAGE_SIZE, "%d\n", ioc->fwfault_debug);
3054 }
3055 static ssize_t
3056 fwfault_debug_store(struct device *cdev, struct device_attribute *attr,
3057 	const char *buf, size_t count)
3058 {
3059 	struct Scsi_Host *shost = class_to_shost(cdev);
3060 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3061 	int val = 0;
3062 
3063 	if (sscanf(buf, "%d", &val) != 1)
3064 		return -EINVAL;
3065 
3066 	ioc->fwfault_debug = val;
3067 	ioc_info(ioc, "fwfault_debug=%d\n",
3068 		 ioc->fwfault_debug);
3069 	return strlen(buf);
3070 }
3071 static DEVICE_ATTR_RW(fwfault_debug);
3072 
3073 /**
3074  * ioc_reset_count_show - ioc reset count
3075  * @cdev: pointer to embedded class device
3076  * @attr: ?
3077  * @buf: the buffer returned
3078  *
3079  * This is firmware queue depth limit
3080  *
3081  * A sysfs 'read-only' shost attribute.
3082  */
3083 static ssize_t
3084 ioc_reset_count_show(struct device *cdev, struct device_attribute *attr,
3085 	char *buf)
3086 {
3087 	struct Scsi_Host *shost = class_to_shost(cdev);
3088 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3089 
3090 	return snprintf(buf, PAGE_SIZE, "%d\n", ioc->ioc_reset_count);
3091 }
3092 static DEVICE_ATTR_RO(ioc_reset_count);
3093 
3094 /**
3095  * reply_queue_count_show - number of reply queues
3096  * @cdev: pointer to embedded class device
3097  * @attr: ?
3098  * @buf: the buffer returned
3099  *
3100  * This is number of reply queues
3101  *
3102  * A sysfs 'read-only' shost attribute.
3103  */
3104 static ssize_t
3105 reply_queue_count_show(struct device *cdev,
3106 	struct device_attribute *attr, char *buf)
3107 {
3108 	u8 reply_queue_count;
3109 	struct Scsi_Host *shost = class_to_shost(cdev);
3110 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3111 
3112 	if ((ioc->facts.IOCCapabilities &
3113 	    MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable)
3114 		reply_queue_count = ioc->reply_queue_count;
3115 	else
3116 		reply_queue_count = 1;
3117 
3118 	return snprintf(buf, PAGE_SIZE, "%d\n", reply_queue_count);
3119 }
3120 static DEVICE_ATTR_RO(reply_queue_count);
3121 
3122 /**
3123  * BRM_status_show - Backup Rail Monitor Status
3124  * @cdev: pointer to embedded class device
3125  * @attr: ?
3126  * @buf: the buffer returned
3127  *
3128  * This is number of reply queues
3129  *
3130  * A sysfs 'read-only' shost attribute.
3131  */
3132 static ssize_t
3133 BRM_status_show(struct device *cdev, struct device_attribute *attr,
3134 	char *buf)
3135 {
3136 	struct Scsi_Host *shost = class_to_shost(cdev);
3137 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3138 	Mpi2IOUnitPage3_t *io_unit_pg3 = NULL;
3139 	Mpi2ConfigReply_t mpi_reply;
3140 	u16 backup_rail_monitor_status = 0;
3141 	u16 ioc_status;
3142 	int sz;
3143 	ssize_t rc = 0;
3144 
3145 	if (!ioc->is_warpdrive) {
3146 		ioc_err(ioc, "%s: BRM attribute is only for warpdrive\n",
3147 			__func__);
3148 		goto out;
3149 	}
3150 	/* pci_access_mutex lock acquired by sysfs show path */
3151 	mutex_lock(&ioc->pci_access_mutex);
3152 	if (ioc->pci_error_recovery || ioc->remove_host) {
3153 		mutex_unlock(&ioc->pci_access_mutex);
3154 		return 0;
3155 	}
3156 
3157 	/* allocate upto GPIOVal 36 entries */
3158 	sz = offsetof(Mpi2IOUnitPage3_t, GPIOVal) + (sizeof(u16) * 36);
3159 	io_unit_pg3 = kzalloc(sz, GFP_KERNEL);
3160 	if (!io_unit_pg3) {
3161 		ioc_err(ioc, "%s: failed allocating memory for iounit_pg3: (%d) bytes\n",
3162 			__func__, sz);
3163 		goto out;
3164 	}
3165 
3166 	if (mpt3sas_config_get_iounit_pg3(ioc, &mpi_reply, io_unit_pg3, sz) !=
3167 	    0) {
3168 		ioc_err(ioc, "%s: failed reading iounit_pg3\n",
3169 			__func__);
3170 		goto out;
3171 	}
3172 
3173 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
3174 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
3175 		ioc_err(ioc, "%s: iounit_pg3 failed with ioc_status(0x%04x)\n",
3176 			__func__, ioc_status);
3177 		goto out;
3178 	}
3179 
3180 	if (io_unit_pg3->GPIOCount < 25) {
3181 		ioc_err(ioc, "%s: iounit_pg3->GPIOCount less than 25 entries, detected (%d) entries\n",
3182 			__func__, io_unit_pg3->GPIOCount);
3183 		goto out;
3184 	}
3185 
3186 	/* BRM status is in bit zero of GPIOVal[24] */
3187 	backup_rail_monitor_status = le16_to_cpu(io_unit_pg3->GPIOVal[24]);
3188 	rc = snprintf(buf, PAGE_SIZE, "%d\n", (backup_rail_monitor_status & 1));
3189 
3190  out:
3191 	kfree(io_unit_pg3);
3192 	mutex_unlock(&ioc->pci_access_mutex);
3193 	return rc;
3194 }
3195 static DEVICE_ATTR_RO(BRM_status);
3196 
3197 struct DIAG_BUFFER_START {
3198 	__le32	Size;
3199 	__le32	DiagVersion;
3200 	u8	BufferType;
3201 	u8	Reserved[3];
3202 	__le32	Reserved1;
3203 	__le32	Reserved2;
3204 	__le32	Reserved3;
3205 };
3206 
3207 /**
3208  * host_trace_buffer_size_show - host buffer size (trace only)
3209  * @cdev: pointer to embedded class device
3210  * @attr: ?
3211  * @buf: the buffer returned
3212  *
3213  * A sysfs 'read-only' shost attribute.
3214  */
3215 static ssize_t
3216 host_trace_buffer_size_show(struct device *cdev,
3217 	struct device_attribute *attr, char *buf)
3218 {
3219 	struct Scsi_Host *shost = class_to_shost(cdev);
3220 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3221 	u32 size = 0;
3222 	struct DIAG_BUFFER_START *request_data;
3223 
3224 	if (!ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) {
3225 		ioc_err(ioc, "%s: host_trace_buffer is not registered\n",
3226 			__func__);
3227 		return 0;
3228 	}
3229 
3230 	if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
3231 	    MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) {
3232 		ioc_err(ioc, "%s: host_trace_buffer is not registered\n",
3233 			__func__);
3234 		return 0;
3235 	}
3236 
3237 	request_data = (struct DIAG_BUFFER_START *)
3238 	    ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE];
3239 	if ((le32_to_cpu(request_data->DiagVersion) == 0x00000000 ||
3240 	    le32_to_cpu(request_data->DiagVersion) == 0x01000000 ||
3241 	    le32_to_cpu(request_data->DiagVersion) == 0x01010000) &&
3242 	    le32_to_cpu(request_data->Reserved3) == 0x4742444c)
3243 		size = le32_to_cpu(request_data->Size);
3244 
3245 	ioc->ring_buffer_sz = size;
3246 	return snprintf(buf, PAGE_SIZE, "%d\n", size);
3247 }
3248 static DEVICE_ATTR_RO(host_trace_buffer_size);
3249 
3250 /**
3251  * host_trace_buffer_show - firmware ring buffer (trace only)
3252  * @cdev: pointer to embedded class device
3253  * @attr: ?
3254  * @buf: the buffer returned
3255  *
3256  * A sysfs 'read/write' shost attribute.
3257  *
3258  * You will only be able to read 4k bytes of ring buffer at a time.
3259  * In order to read beyond 4k bytes, you will have to write out the
3260  * offset to the same attribute, it will move the pointer.
3261  */
3262 static ssize_t
3263 host_trace_buffer_show(struct device *cdev, struct device_attribute *attr,
3264 	char *buf)
3265 {
3266 	struct Scsi_Host *shost = class_to_shost(cdev);
3267 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3268 	void *request_data;
3269 	u32 size;
3270 
3271 	if (!ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) {
3272 		ioc_err(ioc, "%s: host_trace_buffer is not registered\n",
3273 			__func__);
3274 		return 0;
3275 	}
3276 
3277 	if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
3278 	    MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) {
3279 		ioc_err(ioc, "%s: host_trace_buffer is not registered\n",
3280 			__func__);
3281 		return 0;
3282 	}
3283 
3284 	if (ioc->ring_buffer_offset > ioc->ring_buffer_sz)
3285 		return 0;
3286 
3287 	size = ioc->ring_buffer_sz - ioc->ring_buffer_offset;
3288 	size = (size >= PAGE_SIZE) ? (PAGE_SIZE - 1) : size;
3289 	request_data = ioc->diag_buffer[0] + ioc->ring_buffer_offset;
3290 	memcpy(buf, request_data, size);
3291 	return size;
3292 }
3293 
3294 static ssize_t
3295 host_trace_buffer_store(struct device *cdev, struct device_attribute *attr,
3296 	const char *buf, size_t count)
3297 {
3298 	struct Scsi_Host *shost = class_to_shost(cdev);
3299 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3300 	int val = 0;
3301 
3302 	if (sscanf(buf, "%d", &val) != 1)
3303 		return -EINVAL;
3304 
3305 	ioc->ring_buffer_offset = val;
3306 	return strlen(buf);
3307 }
3308 static DEVICE_ATTR_RW(host_trace_buffer);
3309 
3310 
3311 /*****************************************/
3312 
3313 /**
3314  * host_trace_buffer_enable_show - firmware ring buffer (trace only)
3315  * @cdev: pointer to embedded class device
3316  * @attr: ?
3317  * @buf: the buffer returned
3318  *
3319  * A sysfs 'read/write' shost attribute.
3320  *
3321  * This is a mechnism to post/release host_trace_buffers
3322  */
3323 static ssize_t
3324 host_trace_buffer_enable_show(struct device *cdev,
3325 	struct device_attribute *attr, char *buf)
3326 {
3327 	struct Scsi_Host *shost = class_to_shost(cdev);
3328 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3329 
3330 	if ((!ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) ||
3331 	   ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
3332 	    MPT3_DIAG_BUFFER_IS_REGISTERED) == 0))
3333 		return snprintf(buf, PAGE_SIZE, "off\n");
3334 	else if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
3335 	    MPT3_DIAG_BUFFER_IS_RELEASED))
3336 		return snprintf(buf, PAGE_SIZE, "release\n");
3337 	else
3338 		return snprintf(buf, PAGE_SIZE, "post\n");
3339 }
3340 
3341 static ssize_t
3342 host_trace_buffer_enable_store(struct device *cdev,
3343 	struct device_attribute *attr, const char *buf, size_t count)
3344 {
3345 	struct Scsi_Host *shost = class_to_shost(cdev);
3346 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3347 	char str[10] = "";
3348 	struct mpt3_diag_register diag_register;
3349 	u8 issue_reset = 0;
3350 
3351 	/* don't allow post/release occurr while recovery is active */
3352 	if (ioc->shost_recovery || ioc->remove_host ||
3353 	    ioc->pci_error_recovery || ioc->is_driver_loading)
3354 		return -EBUSY;
3355 
3356 	if (sscanf(buf, "%9s", str) != 1)
3357 		return -EINVAL;
3358 
3359 	if (!strcmp(str, "post")) {
3360 		/* exit out if host buffers are already posted */
3361 		if ((ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) &&
3362 		    (ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
3363 		    MPT3_DIAG_BUFFER_IS_REGISTERED) &&
3364 		    ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
3365 		    MPT3_DIAG_BUFFER_IS_RELEASED) == 0))
3366 			goto out;
3367 		memset(&diag_register, 0, sizeof(struct mpt3_diag_register));
3368 		ioc_info(ioc, "posting host trace buffers\n");
3369 		diag_register.buffer_type = MPI2_DIAG_BUF_TYPE_TRACE;
3370 
3371 		if (ioc->manu_pg11.HostTraceBufferMaxSizeKB != 0 &&
3372 		    ioc->diag_buffer_sz[MPI2_DIAG_BUF_TYPE_TRACE] != 0) {
3373 			/* post the same buffer allocated previously */
3374 			diag_register.requested_buffer_size =
3375 			    ioc->diag_buffer_sz[MPI2_DIAG_BUF_TYPE_TRACE];
3376 		} else {
3377 			/*
3378 			 * Free the diag buffer memory which was previously
3379 			 * allocated by an application.
3380 			 */
3381 			if ((ioc->diag_buffer_sz[MPI2_DIAG_BUF_TYPE_TRACE] != 0)
3382 			    &&
3383 			    (ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
3384 			    MPT3_DIAG_BUFFER_IS_APP_OWNED)) {
3385 				pci_free_consistent(ioc->pdev,
3386 				    ioc->diag_buffer_sz[
3387 				    MPI2_DIAG_BUF_TYPE_TRACE],
3388 				    ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE],
3389 				    ioc->diag_buffer_dma[
3390 				    MPI2_DIAG_BUF_TYPE_TRACE]);
3391 				ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE] =
3392 				    NULL;
3393 			}
3394 
3395 			diag_register.requested_buffer_size = (1024 * 1024);
3396 		}
3397 
3398 		diag_register.unique_id =
3399 		    (ioc->hba_mpi_version_belonged == MPI2_VERSION) ?
3400 		    (MPT2DIAGBUFFUNIQUEID):(MPT3DIAGBUFFUNIQUEID);
3401 		ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] = 0;
3402 		_ctl_diag_register_2(ioc,  &diag_register);
3403 		if (ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
3404 		    MPT3_DIAG_BUFFER_IS_REGISTERED) {
3405 			ioc_info(ioc,
3406 			    "Trace buffer %d KB allocated through sysfs\n",
3407 			    diag_register.requested_buffer_size>>10);
3408 			if (ioc->hba_mpi_version_belonged != MPI2_VERSION)
3409 				ioc->diag_buffer_status[
3410 				    MPI2_DIAG_BUF_TYPE_TRACE] |=
3411 				    MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED;
3412 		}
3413 	} else if (!strcmp(str, "release")) {
3414 		/* exit out if host buffers are already released */
3415 		if (!ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE])
3416 			goto out;
3417 		if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
3418 		    MPT3_DIAG_BUFFER_IS_REGISTERED) == 0)
3419 			goto out;
3420 		if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
3421 		    MPT3_DIAG_BUFFER_IS_RELEASED))
3422 			goto out;
3423 		ioc_info(ioc, "releasing host trace buffer\n");
3424 		mpt3sas_send_diag_release(ioc, MPI2_DIAG_BUF_TYPE_TRACE,
3425 		    &issue_reset);
3426 	}
3427 
3428  out:
3429 	return strlen(buf);
3430 }
3431 static DEVICE_ATTR_RW(host_trace_buffer_enable);
3432 
3433 /*********** diagnostic trigger suppport *********************************/
3434 
3435 /**
3436  * diag_trigger_master_show - show the diag_trigger_master attribute
3437  * @cdev: pointer to embedded class device
3438  * @attr: ?
3439  * @buf: the buffer returned
3440  *
3441  * A sysfs 'read/write' shost attribute.
3442  */
3443 static ssize_t
3444 diag_trigger_master_show(struct device *cdev,
3445 	struct device_attribute *attr, char *buf)
3446 
3447 {
3448 	struct Scsi_Host *shost = class_to_shost(cdev);
3449 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3450 	unsigned long flags;
3451 	ssize_t rc;
3452 
3453 	spin_lock_irqsave(&ioc->diag_trigger_lock, flags);
3454 	rc = sizeof(struct SL_WH_MASTER_TRIGGER_T);
3455 	memcpy(buf, &ioc->diag_trigger_master, rc);
3456 	spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags);
3457 	return rc;
3458 }
3459 
3460 /**
3461  * diag_trigger_master_store - store the diag_trigger_master attribute
3462  * @cdev: pointer to embedded class device
3463  * @attr: ?
3464  * @buf: the buffer returned
3465  * @count: ?
3466  *
3467  * A sysfs 'read/write' shost attribute.
3468  */
3469 static ssize_t
3470 diag_trigger_master_store(struct device *cdev,
3471 	struct device_attribute *attr, const char *buf, size_t count)
3472 
3473 {
3474 	struct Scsi_Host *shost = class_to_shost(cdev);
3475 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3476 	unsigned long flags;
3477 	ssize_t rc;
3478 
3479 	spin_lock_irqsave(&ioc->diag_trigger_lock, flags);
3480 	rc = min(sizeof(struct SL_WH_MASTER_TRIGGER_T), count);
3481 	memset(&ioc->diag_trigger_master, 0,
3482 	    sizeof(struct SL_WH_MASTER_TRIGGER_T));
3483 	memcpy(&ioc->diag_trigger_master, buf, rc);
3484 	ioc->diag_trigger_master.MasterData |=
3485 	    (MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET);
3486 	spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags);
3487 	return rc;
3488 }
3489 static DEVICE_ATTR_RW(diag_trigger_master);
3490 
3491 
3492 /**
3493  * diag_trigger_event_show - show the diag_trigger_event attribute
3494  * @cdev: pointer to embedded class device
3495  * @attr: ?
3496  * @buf: the buffer returned
3497  *
3498  * A sysfs 'read/write' shost attribute.
3499  */
3500 static ssize_t
3501 diag_trigger_event_show(struct device *cdev,
3502 	struct device_attribute *attr, char *buf)
3503 {
3504 	struct Scsi_Host *shost = class_to_shost(cdev);
3505 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3506 	unsigned long flags;
3507 	ssize_t rc;
3508 
3509 	spin_lock_irqsave(&ioc->diag_trigger_lock, flags);
3510 	rc = sizeof(struct SL_WH_EVENT_TRIGGERS_T);
3511 	memcpy(buf, &ioc->diag_trigger_event, rc);
3512 	spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags);
3513 	return rc;
3514 }
3515 
3516 /**
3517  * diag_trigger_event_store - store the diag_trigger_event attribute
3518  * @cdev: pointer to embedded class device
3519  * @attr: ?
3520  * @buf: the buffer returned
3521  * @count: ?
3522  *
3523  * A sysfs 'read/write' shost attribute.
3524  */
3525 static ssize_t
3526 diag_trigger_event_store(struct device *cdev,
3527 	struct device_attribute *attr, const char *buf, size_t count)
3528 
3529 {
3530 	struct Scsi_Host *shost = class_to_shost(cdev);
3531 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3532 	unsigned long flags;
3533 	ssize_t sz;
3534 
3535 	spin_lock_irqsave(&ioc->diag_trigger_lock, flags);
3536 	sz = min(sizeof(struct SL_WH_EVENT_TRIGGERS_T), count);
3537 	memset(&ioc->diag_trigger_event, 0,
3538 	    sizeof(struct SL_WH_EVENT_TRIGGERS_T));
3539 	memcpy(&ioc->diag_trigger_event, buf, sz);
3540 	if (ioc->diag_trigger_event.ValidEntries > NUM_VALID_ENTRIES)
3541 		ioc->diag_trigger_event.ValidEntries = NUM_VALID_ENTRIES;
3542 	spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags);
3543 	return sz;
3544 }
3545 static DEVICE_ATTR_RW(diag_trigger_event);
3546 
3547 
3548 /**
3549  * diag_trigger_scsi_show - show the diag_trigger_scsi attribute
3550  * @cdev: pointer to embedded class device
3551  * @attr: ?
3552  * @buf: the buffer returned
3553  *
3554  * A sysfs 'read/write' shost attribute.
3555  */
3556 static ssize_t
3557 diag_trigger_scsi_show(struct device *cdev,
3558 	struct device_attribute *attr, char *buf)
3559 {
3560 	struct Scsi_Host *shost = class_to_shost(cdev);
3561 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3562 	unsigned long flags;
3563 	ssize_t rc;
3564 
3565 	spin_lock_irqsave(&ioc->diag_trigger_lock, flags);
3566 	rc = sizeof(struct SL_WH_SCSI_TRIGGERS_T);
3567 	memcpy(buf, &ioc->diag_trigger_scsi, rc);
3568 	spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags);
3569 	return rc;
3570 }
3571 
3572 /**
3573  * diag_trigger_scsi_store - store the diag_trigger_scsi attribute
3574  * @cdev: pointer to embedded class device
3575  * @attr: ?
3576  * @buf: the buffer returned
3577  * @count: ?
3578  *
3579  * A sysfs 'read/write' shost attribute.
3580  */
3581 static ssize_t
3582 diag_trigger_scsi_store(struct device *cdev,
3583 	struct device_attribute *attr, const char *buf, size_t count)
3584 {
3585 	struct Scsi_Host *shost = class_to_shost(cdev);
3586 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3587 	unsigned long flags;
3588 	ssize_t sz;
3589 
3590 	spin_lock_irqsave(&ioc->diag_trigger_lock, flags);
3591 	sz = min(sizeof(ioc->diag_trigger_scsi), count);
3592 	memset(&ioc->diag_trigger_scsi, 0, sizeof(ioc->diag_trigger_scsi));
3593 	memcpy(&ioc->diag_trigger_scsi, buf, sz);
3594 	if (ioc->diag_trigger_scsi.ValidEntries > NUM_VALID_ENTRIES)
3595 		ioc->diag_trigger_scsi.ValidEntries = NUM_VALID_ENTRIES;
3596 	spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags);
3597 	return sz;
3598 }
3599 static DEVICE_ATTR_RW(diag_trigger_scsi);
3600 
3601 
3602 /**
3603  * diag_trigger_scsi_show - show the diag_trigger_mpi attribute
3604  * @cdev: pointer to embedded class device
3605  * @attr: ?
3606  * @buf: the buffer returned
3607  *
3608  * A sysfs 'read/write' shost attribute.
3609  */
3610 static ssize_t
3611 diag_trigger_mpi_show(struct device *cdev,
3612 	struct device_attribute *attr, char *buf)
3613 {
3614 	struct Scsi_Host *shost = class_to_shost(cdev);
3615 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3616 	unsigned long flags;
3617 	ssize_t rc;
3618 
3619 	spin_lock_irqsave(&ioc->diag_trigger_lock, flags);
3620 	rc = sizeof(struct SL_WH_MPI_TRIGGERS_T);
3621 	memcpy(buf, &ioc->diag_trigger_mpi, rc);
3622 	spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags);
3623 	return rc;
3624 }
3625 
3626 /**
3627  * diag_trigger_mpi_store - store the diag_trigger_mpi attribute
3628  * @cdev: pointer to embedded class device
3629  * @attr: ?
3630  * @buf: the buffer returned
3631  * @count: ?
3632  *
3633  * A sysfs 'read/write' shost attribute.
3634  */
3635 static ssize_t
3636 diag_trigger_mpi_store(struct device *cdev,
3637 	struct device_attribute *attr, const char *buf, size_t count)
3638 {
3639 	struct Scsi_Host *shost = class_to_shost(cdev);
3640 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3641 	unsigned long flags;
3642 	ssize_t sz;
3643 
3644 	spin_lock_irqsave(&ioc->diag_trigger_lock, flags);
3645 	sz = min(sizeof(struct SL_WH_MPI_TRIGGERS_T), count);
3646 	memset(&ioc->diag_trigger_mpi, 0,
3647 	    sizeof(ioc->diag_trigger_mpi));
3648 	memcpy(&ioc->diag_trigger_mpi, buf, sz);
3649 	if (ioc->diag_trigger_mpi.ValidEntries > NUM_VALID_ENTRIES)
3650 		ioc->diag_trigger_mpi.ValidEntries = NUM_VALID_ENTRIES;
3651 	spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags);
3652 	return sz;
3653 }
3654 
3655 static DEVICE_ATTR_RW(diag_trigger_mpi);
3656 
3657 /*********** diagnostic trigger suppport *** END ****************************/
3658 
3659 /*****************************************/
3660 
3661 /**
3662  * drv_support_bitmap_show - driver supported feature bitmap
3663  * @cdev - pointer to embedded class device
3664  * @buf - the buffer returned
3665  *
3666  * A sysfs 'read-only' shost attribute.
3667  */
3668 static ssize_t
3669 drv_support_bitmap_show(struct device *cdev,
3670 	struct device_attribute *attr, char *buf)
3671 {
3672 	struct Scsi_Host *shost = class_to_shost(cdev);
3673 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3674 
3675 	return snprintf(buf, PAGE_SIZE, "0x%08x\n", ioc->drv_support_bitmap);
3676 }
3677 static DEVICE_ATTR_RO(drv_support_bitmap);
3678 
3679 /**
3680  * enable_sdev_max_qd_show - display whether sdev max qd is enabled/disabled
3681  * @cdev - pointer to embedded class device
3682  * @buf - the buffer returned
3683  *
3684  * A sysfs read/write shost attribute. This attribute is used to set the
3685  * targets queue depth to HBA IO queue depth if this attribute is enabled.
3686  */
3687 static ssize_t
3688 enable_sdev_max_qd_show(struct device *cdev,
3689 	struct device_attribute *attr, char *buf)
3690 {
3691 	struct Scsi_Host *shost = class_to_shost(cdev);
3692 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3693 
3694 	return snprintf(buf, PAGE_SIZE, "%d\n", ioc->enable_sdev_max_qd);
3695 }
3696 
3697 /**
3698  * enable_sdev_max_qd_store - Enable/disable sdev max qd
3699  * @cdev - pointer to embedded class device
3700  * @buf - the buffer returned
3701  *
3702  * A sysfs read/write shost attribute. This attribute is used to set the
3703  * targets queue depth to HBA IO queue depth if this attribute is enabled.
3704  * If this attribute is disabled then targets will have corresponding default
3705  * queue depth.
3706  */
3707 static ssize_t
3708 enable_sdev_max_qd_store(struct device *cdev,
3709 	struct device_attribute *attr, const char *buf, size_t count)
3710 {
3711 	struct Scsi_Host *shost = class_to_shost(cdev);
3712 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3713 	struct MPT3SAS_DEVICE *sas_device_priv_data;
3714 	struct MPT3SAS_TARGET *sas_target_priv_data;
3715 	int val = 0;
3716 	struct scsi_device *sdev;
3717 	struct _raid_device *raid_device;
3718 	int qdepth;
3719 
3720 	if (kstrtoint(buf, 0, &val) != 0)
3721 		return -EINVAL;
3722 
3723 	switch (val) {
3724 	case 0:
3725 		ioc->enable_sdev_max_qd = 0;
3726 		shost_for_each_device(sdev, ioc->shost) {
3727 			sas_device_priv_data = sdev->hostdata;
3728 			if (!sas_device_priv_data)
3729 				continue;
3730 			sas_target_priv_data = sas_device_priv_data->sas_target;
3731 			if (!sas_target_priv_data)
3732 				continue;
3733 
3734 			if (sas_target_priv_data->flags &
3735 			    MPT_TARGET_FLAGS_VOLUME) {
3736 				raid_device =
3737 				    mpt3sas_raid_device_find_by_handle(ioc,
3738 				    sas_target_priv_data->handle);
3739 
3740 				switch (raid_device->volume_type) {
3741 				case MPI2_RAID_VOL_TYPE_RAID0:
3742 					if (raid_device->device_info &
3743 					    MPI2_SAS_DEVICE_INFO_SSP_TARGET)
3744 						qdepth =
3745 						    MPT3SAS_SAS_QUEUE_DEPTH;
3746 					else
3747 						qdepth =
3748 						    MPT3SAS_SATA_QUEUE_DEPTH;
3749 					break;
3750 				case MPI2_RAID_VOL_TYPE_RAID1E:
3751 				case MPI2_RAID_VOL_TYPE_RAID1:
3752 				case MPI2_RAID_VOL_TYPE_RAID10:
3753 				case MPI2_RAID_VOL_TYPE_UNKNOWN:
3754 				default:
3755 					qdepth = MPT3SAS_RAID_QUEUE_DEPTH;
3756 				}
3757 			} else if (sas_target_priv_data->flags &
3758 			    MPT_TARGET_FLAGS_PCIE_DEVICE)
3759 				qdepth = MPT3SAS_NVME_QUEUE_DEPTH;
3760 			else
3761 				qdepth = MPT3SAS_SAS_QUEUE_DEPTH;
3762 
3763 			mpt3sas_scsih_change_queue_depth(sdev, qdepth);
3764 		}
3765 		break;
3766 	case 1:
3767 		ioc->enable_sdev_max_qd = 1;
3768 		shost_for_each_device(sdev, ioc->shost)
3769 			mpt3sas_scsih_change_queue_depth(sdev,
3770 			    shost->can_queue);
3771 		break;
3772 	default:
3773 		return -EINVAL;
3774 	}
3775 
3776 	return strlen(buf);
3777 }
3778 static DEVICE_ATTR_RW(enable_sdev_max_qd);
3779 
3780 struct device_attribute *mpt3sas_host_attrs[] = {
3781 	&dev_attr_version_fw,
3782 	&dev_attr_version_bios,
3783 	&dev_attr_version_mpi,
3784 	&dev_attr_version_product,
3785 	&dev_attr_version_nvdata_persistent,
3786 	&dev_attr_version_nvdata_default,
3787 	&dev_attr_board_name,
3788 	&dev_attr_board_assembly,
3789 	&dev_attr_board_tracer,
3790 	&dev_attr_io_delay,
3791 	&dev_attr_device_delay,
3792 	&dev_attr_logging_level,
3793 	&dev_attr_fwfault_debug,
3794 	&dev_attr_fw_queue_depth,
3795 	&dev_attr_host_sas_address,
3796 	&dev_attr_ioc_reset_count,
3797 	&dev_attr_host_trace_buffer_size,
3798 	&dev_attr_host_trace_buffer,
3799 	&dev_attr_host_trace_buffer_enable,
3800 	&dev_attr_reply_queue_count,
3801 	&dev_attr_diag_trigger_master,
3802 	&dev_attr_diag_trigger_event,
3803 	&dev_attr_diag_trigger_scsi,
3804 	&dev_attr_diag_trigger_mpi,
3805 	&dev_attr_drv_support_bitmap,
3806 	&dev_attr_BRM_status,
3807 	&dev_attr_enable_sdev_max_qd,
3808 	NULL,
3809 };
3810 
3811 /* device attributes */
3812 
3813 /**
3814  * sas_address_show - sas address
3815  * @dev: pointer to embedded class device
3816  * @attr: ?
3817  * @buf: the buffer returned
3818  *
3819  * This is the sas address for the target
3820  *
3821  * A sysfs 'read-only' shost attribute.
3822  */
3823 static ssize_t
3824 sas_address_show(struct device *dev, struct device_attribute *attr,
3825 	char *buf)
3826 {
3827 	struct scsi_device *sdev = to_scsi_device(dev);
3828 	struct MPT3SAS_DEVICE *sas_device_priv_data = sdev->hostdata;
3829 
3830 	return snprintf(buf, PAGE_SIZE, "0x%016llx\n",
3831 	    (unsigned long long)sas_device_priv_data->sas_target->sas_address);
3832 }
3833 static DEVICE_ATTR_RO(sas_address);
3834 
3835 /**
3836  * sas_device_handle_show - device handle
3837  * @dev: pointer to embedded class device
3838  * @attr: ?
3839  * @buf: the buffer returned
3840  *
3841  * This is the firmware assigned device handle
3842  *
3843  * A sysfs 'read-only' shost attribute.
3844  */
3845 static ssize_t
3846 sas_device_handle_show(struct device *dev, struct device_attribute *attr,
3847 	char *buf)
3848 {
3849 	struct scsi_device *sdev = to_scsi_device(dev);
3850 	struct MPT3SAS_DEVICE *sas_device_priv_data = sdev->hostdata;
3851 
3852 	return snprintf(buf, PAGE_SIZE, "0x%04x\n",
3853 	    sas_device_priv_data->sas_target->handle);
3854 }
3855 static DEVICE_ATTR_RO(sas_device_handle);
3856 
3857 /**
3858  * sas_ncq_io_prio_show - send prioritized io commands to device
3859  * @dev: pointer to embedded device
3860  * @attr: ?
3861  * @buf: the buffer returned
3862  *
3863  * A sysfs 'read/write' sdev attribute, only works with SATA
3864  */
3865 static ssize_t
3866 sas_ncq_prio_enable_show(struct device *dev,
3867 				 struct device_attribute *attr, char *buf)
3868 {
3869 	struct scsi_device *sdev = to_scsi_device(dev);
3870 	struct MPT3SAS_DEVICE *sas_device_priv_data = sdev->hostdata;
3871 
3872 	return snprintf(buf, PAGE_SIZE, "%d\n",
3873 			sas_device_priv_data->ncq_prio_enable);
3874 }
3875 
3876 static ssize_t
3877 sas_ncq_prio_enable_store(struct device *dev,
3878 				  struct device_attribute *attr,
3879 				  const char *buf, size_t count)
3880 {
3881 	struct scsi_device *sdev = to_scsi_device(dev);
3882 	struct MPT3SAS_DEVICE *sas_device_priv_data = sdev->hostdata;
3883 	bool ncq_prio_enable = 0;
3884 
3885 	if (kstrtobool(buf, &ncq_prio_enable))
3886 		return -EINVAL;
3887 
3888 	if (!scsih_ncq_prio_supp(sdev))
3889 		return -EINVAL;
3890 
3891 	sas_device_priv_data->ncq_prio_enable = ncq_prio_enable;
3892 	return strlen(buf);
3893 }
3894 static DEVICE_ATTR_RW(sas_ncq_prio_enable);
3895 
3896 struct device_attribute *mpt3sas_dev_attrs[] = {
3897 	&dev_attr_sas_address,
3898 	&dev_attr_sas_device_handle,
3899 	&dev_attr_sas_ncq_prio_enable,
3900 	NULL,
3901 };
3902 
3903 /* file operations table for mpt3ctl device */
3904 static const struct file_operations ctl_fops = {
3905 	.owner = THIS_MODULE,
3906 	.unlocked_ioctl = _ctl_ioctl,
3907 	.poll = _ctl_poll,
3908 	.fasync = _ctl_fasync,
3909 #ifdef CONFIG_COMPAT
3910 	.compat_ioctl = _ctl_ioctl_compat,
3911 #endif
3912 };
3913 
3914 /* file operations table for mpt2ctl device */
3915 static const struct file_operations ctl_gen2_fops = {
3916 	.owner = THIS_MODULE,
3917 	.unlocked_ioctl = _ctl_mpt2_ioctl,
3918 	.poll = _ctl_poll,
3919 	.fasync = _ctl_fasync,
3920 #ifdef CONFIG_COMPAT
3921 	.compat_ioctl = _ctl_mpt2_ioctl_compat,
3922 #endif
3923 };
3924 
3925 static struct miscdevice ctl_dev = {
3926 	.minor  = MPT3SAS_MINOR,
3927 	.name   = MPT3SAS_DEV_NAME,
3928 	.fops   = &ctl_fops,
3929 };
3930 
3931 static struct miscdevice gen2_ctl_dev = {
3932 	.minor  = MPT2SAS_MINOR,
3933 	.name   = MPT2SAS_DEV_NAME,
3934 	.fops   = &ctl_gen2_fops,
3935 };
3936 
3937 /**
3938  * mpt3sas_ctl_init - main entry point for ctl.
3939  * @hbas_to_enumerate: ?
3940  */
3941 void
3942 mpt3sas_ctl_init(ushort hbas_to_enumerate)
3943 {
3944 	async_queue = NULL;
3945 
3946 	/* Don't register mpt3ctl ioctl device if
3947 	 * hbas_to_enumarate is one.
3948 	 */
3949 	if (hbas_to_enumerate != 1)
3950 		if (misc_register(&ctl_dev) < 0)
3951 			pr_err("%s can't register misc device [minor=%d]\n",
3952 			    MPT3SAS_DRIVER_NAME, MPT3SAS_MINOR);
3953 
3954 	/* Don't register mpt3ctl ioctl device if
3955 	 * hbas_to_enumarate is two.
3956 	 */
3957 	if (hbas_to_enumerate != 2)
3958 		if (misc_register(&gen2_ctl_dev) < 0)
3959 			pr_err("%s can't register misc device [minor=%d]\n",
3960 			    MPT2SAS_DRIVER_NAME, MPT2SAS_MINOR);
3961 
3962 	init_waitqueue_head(&ctl_poll_wait);
3963 }
3964 
3965 /**
3966  * mpt3sas_ctl_exit - exit point for ctl
3967  * @hbas_to_enumerate: ?
3968  */
3969 void
3970 mpt3sas_ctl_exit(ushort hbas_to_enumerate)
3971 {
3972 	struct MPT3SAS_ADAPTER *ioc;
3973 	int i;
3974 
3975 	list_for_each_entry(ioc, &mpt3sas_ioc_list, list) {
3976 
3977 		/* free memory associated to diag buffers */
3978 		for (i = 0; i < MPI2_DIAG_BUF_TYPE_COUNT; i++) {
3979 			if (!ioc->diag_buffer[i])
3980 				continue;
3981 			dma_free_coherent(&ioc->pdev->dev,
3982 					  ioc->diag_buffer_sz[i],
3983 					  ioc->diag_buffer[i],
3984 					  ioc->diag_buffer_dma[i]);
3985 			ioc->diag_buffer[i] = NULL;
3986 			ioc->diag_buffer_status[i] = 0;
3987 		}
3988 
3989 		kfree(ioc->event_log);
3990 	}
3991 	if (hbas_to_enumerate != 1)
3992 		misc_deregister(&ctl_dev);
3993 	if (hbas_to_enumerate != 2)
3994 		misc_deregister(&gen2_ctl_dev);
3995 }
3996