1 /* 2 * This is the Fusion MPT base driver providing common API layer interface 3 * for access to MPT (Message Passing Technology) firmware. 4 * 5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c 6 * Copyright (C) 2012-2014 LSI Corporation 7 * Copyright (C) 2013-2014 Avago Technologies 8 * (mailto: MPT-FusionLinux.pdl@avagotech.com) 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License 12 * as published by the Free Software Foundation; either version 2 13 * of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * NO WARRANTY 21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR 22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT 23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, 24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is 25 * solely responsible for determining the appropriateness of using and 26 * distributing the Program and assumes all risks associated with its 27 * exercise of rights under this Agreement, including but not limited to 28 * the risks and costs of program errors, damage to or loss of data, 29 * programs or equipment, and unavailability or interruption of operations. 30 31 * DISCLAIMER OF LIABILITY 32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY 33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND 35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED 38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES 39 40 * You should have received a copy of the GNU General Public License 41 * along with this program; if not, write to the Free Software 42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, 43 * USA. 44 */ 45 46 #include <linux/kernel.h> 47 #include <linux/module.h> 48 #include <linux/errno.h> 49 #include <linux/init.h> 50 #include <linux/slab.h> 51 #include <linux/types.h> 52 #include <linux/pci.h> 53 #include <linux/kdev_t.h> 54 #include <linux/blkdev.h> 55 #include <linux/delay.h> 56 #include <linux/interrupt.h> 57 #include <linux/dma-mapping.h> 58 #include <linux/io.h> 59 #include <linux/time.h> 60 #include <linux/ktime.h> 61 #include <linux/kthread.h> 62 #include <linux/aer.h> 63 64 65 #include "mpt3sas_base.h" 66 67 static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS]; 68 69 70 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */ 71 72 /* maximum controller queue depth */ 73 #define MAX_HBA_QUEUE_DEPTH 30000 74 #define MAX_CHAIN_DEPTH 100000 75 static int max_queue_depth = -1; 76 module_param(max_queue_depth, int, 0); 77 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth "); 78 79 static int max_sgl_entries = -1; 80 module_param(max_sgl_entries, int, 0); 81 MODULE_PARM_DESC(max_sgl_entries, " max sg entries "); 82 83 static int msix_disable = -1; 84 module_param(msix_disable, int, 0); 85 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)"); 86 87 static int smp_affinity_enable = 1; 88 module_param(smp_affinity_enable, int, S_IRUGO); 89 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disbale Default: enable(1)"); 90 91 static int max_msix_vectors = -1; 92 module_param(max_msix_vectors, int, 0); 93 MODULE_PARM_DESC(max_msix_vectors, 94 " max msix vectors"); 95 96 static int mpt3sas_fwfault_debug; 97 MODULE_PARM_DESC(mpt3sas_fwfault_debug, 98 " enable detection of firmware fault and halt firmware - (default=0)"); 99 100 static int 101 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc, int sleep_flag); 102 103 /** 104 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug. 105 * 106 */ 107 static int 108 _scsih_set_fwfault_debug(const char *val, struct kernel_param *kp) 109 { 110 int ret = param_set_int(val, kp); 111 struct MPT3SAS_ADAPTER *ioc; 112 113 if (ret) 114 return ret; 115 116 /* global ioc spinlock to protect controller list on list operations */ 117 pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug); 118 spin_lock(&gioc_lock); 119 list_for_each_entry(ioc, &mpt3sas_ioc_list, list) 120 ioc->fwfault_debug = mpt3sas_fwfault_debug; 121 spin_unlock(&gioc_lock); 122 return 0; 123 } 124 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug, 125 param_get_int, &mpt3sas_fwfault_debug, 0644); 126 127 /** 128 * mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc 129 * @arg: input argument, used to derive ioc 130 * 131 * Return 0 if controller is removed from pci subsystem. 132 * Return -1 for other case. 133 */ 134 static int mpt3sas_remove_dead_ioc_func(void *arg) 135 { 136 struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg; 137 struct pci_dev *pdev; 138 139 if ((ioc == NULL)) 140 return -1; 141 142 pdev = ioc->pdev; 143 if ((pdev == NULL)) 144 return -1; 145 pci_stop_and_remove_bus_device_locked(pdev); 146 return 0; 147 } 148 149 /** 150 * _base_fault_reset_work - workq handling ioc fault conditions 151 * @work: input argument, used to derive ioc 152 * Context: sleep. 153 * 154 * Return nothing. 155 */ 156 static void 157 _base_fault_reset_work(struct work_struct *work) 158 { 159 struct MPT3SAS_ADAPTER *ioc = 160 container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work); 161 unsigned long flags; 162 u32 doorbell; 163 int rc; 164 struct task_struct *p; 165 166 167 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 168 if (ioc->shost_recovery || ioc->pci_error_recovery) 169 goto rearm_timer; 170 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 171 172 doorbell = mpt3sas_base_get_iocstate(ioc, 0); 173 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) { 174 pr_err(MPT3SAS_FMT "SAS host is non-operational !!!!\n", 175 ioc->name); 176 177 /* It may be possible that EEH recovery can resolve some of 178 * pci bus failure issues rather removing the dead ioc function 179 * by considering controller is in a non-operational state. So 180 * here priority is given to the EEH recovery. If it doesn't 181 * not resolve this issue, mpt3sas driver will consider this 182 * controller to non-operational state and remove the dead ioc 183 * function. 184 */ 185 if (ioc->non_operational_loop++ < 5) { 186 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, 187 flags); 188 goto rearm_timer; 189 } 190 191 /* 192 * Call _scsih_flush_pending_cmds callback so that we flush all 193 * pending commands back to OS. This call is required to aovid 194 * deadlock at block layer. Dead IOC will fail to do diag reset, 195 * and this call is safe since dead ioc will never return any 196 * command back from HW. 197 */ 198 ioc->schedule_dead_ioc_flush_running_cmds(ioc); 199 /* 200 * Set remove_host flag early since kernel thread will 201 * take some time to execute. 202 */ 203 ioc->remove_host = 1; 204 /*Remove the Dead Host */ 205 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc, 206 "%s_dead_ioc_%d", ioc->driver_name, ioc->id); 207 if (IS_ERR(p)) 208 pr_err(MPT3SAS_FMT 209 "%s: Running mpt3sas_dead_ioc thread failed !!!!\n", 210 ioc->name, __func__); 211 else 212 pr_err(MPT3SAS_FMT 213 "%s: Running mpt3sas_dead_ioc thread success !!!!\n", 214 ioc->name, __func__); 215 return; /* don't rearm timer */ 216 } 217 218 ioc->non_operational_loop = 0; 219 220 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) { 221 rc = mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP, 222 FORCE_BIG_HAMMER); 223 pr_warn(MPT3SAS_FMT "%s: hard reset: %s\n", ioc->name, 224 __func__, (rc == 0) ? "success" : "failed"); 225 doorbell = mpt3sas_base_get_iocstate(ioc, 0); 226 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) 227 mpt3sas_base_fault_info(ioc, doorbell & 228 MPI2_DOORBELL_DATA_MASK); 229 if (rc && (doorbell & MPI2_IOC_STATE_MASK) != 230 MPI2_IOC_STATE_OPERATIONAL) 231 return; /* don't rearm timer */ 232 } 233 234 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 235 rearm_timer: 236 if (ioc->fault_reset_work_q) 237 queue_delayed_work(ioc->fault_reset_work_q, 238 &ioc->fault_reset_work, 239 msecs_to_jiffies(FAULT_POLLING_INTERVAL)); 240 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 241 } 242 243 /** 244 * mpt3sas_base_start_watchdog - start the fault_reset_work_q 245 * @ioc: per adapter object 246 * Context: sleep. 247 * 248 * Return nothing. 249 */ 250 void 251 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc) 252 { 253 unsigned long flags; 254 255 if (ioc->fault_reset_work_q) 256 return; 257 258 /* initialize fault polling */ 259 260 INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work); 261 snprintf(ioc->fault_reset_work_q_name, 262 sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status", 263 ioc->driver_name, ioc->id); 264 ioc->fault_reset_work_q = 265 create_singlethread_workqueue(ioc->fault_reset_work_q_name); 266 if (!ioc->fault_reset_work_q) { 267 pr_err(MPT3SAS_FMT "%s: failed (line=%d)\n", 268 ioc->name, __func__, __LINE__); 269 return; 270 } 271 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 272 if (ioc->fault_reset_work_q) 273 queue_delayed_work(ioc->fault_reset_work_q, 274 &ioc->fault_reset_work, 275 msecs_to_jiffies(FAULT_POLLING_INTERVAL)); 276 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 277 } 278 279 /** 280 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q 281 * @ioc: per adapter object 282 * Context: sleep. 283 * 284 * Return nothing. 285 */ 286 void 287 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc) 288 { 289 unsigned long flags; 290 struct workqueue_struct *wq; 291 292 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 293 wq = ioc->fault_reset_work_q; 294 ioc->fault_reset_work_q = NULL; 295 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 296 if (wq) { 297 if (!cancel_delayed_work_sync(&ioc->fault_reset_work)) 298 flush_workqueue(wq); 299 destroy_workqueue(wq); 300 } 301 } 302 303 /** 304 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code 305 * @ioc: per adapter object 306 * @fault_code: fault code 307 * 308 * Return nothing. 309 */ 310 void 311 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code) 312 { 313 pr_err(MPT3SAS_FMT "fault_state(0x%04x)!\n", 314 ioc->name, fault_code); 315 } 316 317 /** 318 * mpt3sas_halt_firmware - halt's mpt controller firmware 319 * @ioc: per adapter object 320 * 321 * For debugging timeout related issues. Writing 0xCOFFEE00 322 * to the doorbell register will halt controller firmware. With 323 * the purpose to stop both driver and firmware, the enduser can 324 * obtain a ring buffer from controller UART. 325 */ 326 void 327 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc) 328 { 329 u32 doorbell; 330 331 if (!ioc->fwfault_debug) 332 return; 333 334 dump_stack(); 335 336 doorbell = readl(&ioc->chip->Doorbell); 337 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) 338 mpt3sas_base_fault_info(ioc , doorbell); 339 else { 340 writel(0xC0FFEE00, &ioc->chip->Doorbell); 341 pr_err(MPT3SAS_FMT "Firmware is halted due to command timeout\n", 342 ioc->name); 343 } 344 345 if (ioc->fwfault_debug == 2) 346 for (;;) 347 ; 348 else 349 panic("panic in %s\n", __func__); 350 } 351 352 /** 353 * _base_sas_ioc_info - verbose translation of the ioc status 354 * @ioc: per adapter object 355 * @mpi_reply: reply mf payload returned from firmware 356 * @request_hdr: request mf 357 * 358 * Return nothing. 359 */ 360 static void 361 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply, 362 MPI2RequestHeader_t *request_hdr) 363 { 364 u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & 365 MPI2_IOCSTATUS_MASK; 366 char *desc = NULL; 367 u16 frame_sz; 368 char *func_str = NULL; 369 370 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */ 371 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST || 372 request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH || 373 request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION) 374 return; 375 376 if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE) 377 return; 378 379 switch (ioc_status) { 380 381 /**************************************************************************** 382 * Common IOCStatus values for all replies 383 ****************************************************************************/ 384 385 case MPI2_IOCSTATUS_INVALID_FUNCTION: 386 desc = "invalid function"; 387 break; 388 case MPI2_IOCSTATUS_BUSY: 389 desc = "busy"; 390 break; 391 case MPI2_IOCSTATUS_INVALID_SGL: 392 desc = "invalid sgl"; 393 break; 394 case MPI2_IOCSTATUS_INTERNAL_ERROR: 395 desc = "internal error"; 396 break; 397 case MPI2_IOCSTATUS_INVALID_VPID: 398 desc = "invalid vpid"; 399 break; 400 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES: 401 desc = "insufficient resources"; 402 break; 403 case MPI2_IOCSTATUS_INSUFFICIENT_POWER: 404 desc = "insufficient power"; 405 break; 406 case MPI2_IOCSTATUS_INVALID_FIELD: 407 desc = "invalid field"; 408 break; 409 case MPI2_IOCSTATUS_INVALID_STATE: 410 desc = "invalid state"; 411 break; 412 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED: 413 desc = "op state not supported"; 414 break; 415 416 /**************************************************************************** 417 * Config IOCStatus values 418 ****************************************************************************/ 419 420 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION: 421 desc = "config invalid action"; 422 break; 423 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE: 424 desc = "config invalid type"; 425 break; 426 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE: 427 desc = "config invalid page"; 428 break; 429 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA: 430 desc = "config invalid data"; 431 break; 432 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS: 433 desc = "config no defaults"; 434 break; 435 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT: 436 desc = "config cant commit"; 437 break; 438 439 /**************************************************************************** 440 * SCSI IO Reply 441 ****************************************************************************/ 442 443 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR: 444 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE: 445 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE: 446 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN: 447 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN: 448 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR: 449 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR: 450 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED: 451 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH: 452 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED: 453 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED: 454 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED: 455 break; 456 457 /**************************************************************************** 458 * For use by SCSI Initiator and SCSI Target end-to-end data protection 459 ****************************************************************************/ 460 461 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR: 462 desc = "eedp guard error"; 463 break; 464 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR: 465 desc = "eedp ref tag error"; 466 break; 467 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR: 468 desc = "eedp app tag error"; 469 break; 470 471 /**************************************************************************** 472 * SCSI Target values 473 ****************************************************************************/ 474 475 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX: 476 desc = "target invalid io index"; 477 break; 478 case MPI2_IOCSTATUS_TARGET_ABORTED: 479 desc = "target aborted"; 480 break; 481 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE: 482 desc = "target no conn retryable"; 483 break; 484 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION: 485 desc = "target no connection"; 486 break; 487 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH: 488 desc = "target xfer count mismatch"; 489 break; 490 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR: 491 desc = "target data offset error"; 492 break; 493 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA: 494 desc = "target too much write data"; 495 break; 496 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT: 497 desc = "target iu too short"; 498 break; 499 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT: 500 desc = "target ack nak timeout"; 501 break; 502 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED: 503 desc = "target nak received"; 504 break; 505 506 /**************************************************************************** 507 * Serial Attached SCSI values 508 ****************************************************************************/ 509 510 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED: 511 desc = "smp request failed"; 512 break; 513 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN: 514 desc = "smp data overrun"; 515 break; 516 517 /**************************************************************************** 518 * Diagnostic Buffer Post / Diagnostic Release values 519 ****************************************************************************/ 520 521 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED: 522 desc = "diagnostic released"; 523 break; 524 default: 525 break; 526 } 527 528 if (!desc) 529 return; 530 531 switch (request_hdr->Function) { 532 case MPI2_FUNCTION_CONFIG: 533 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size; 534 func_str = "config_page"; 535 break; 536 case MPI2_FUNCTION_SCSI_TASK_MGMT: 537 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t); 538 func_str = "task_mgmt"; 539 break; 540 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL: 541 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t); 542 func_str = "sas_iounit_ctl"; 543 break; 544 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR: 545 frame_sz = sizeof(Mpi2SepRequest_t); 546 func_str = "enclosure"; 547 break; 548 case MPI2_FUNCTION_IOC_INIT: 549 frame_sz = sizeof(Mpi2IOCInitRequest_t); 550 func_str = "ioc_init"; 551 break; 552 case MPI2_FUNCTION_PORT_ENABLE: 553 frame_sz = sizeof(Mpi2PortEnableRequest_t); 554 func_str = "port_enable"; 555 break; 556 case MPI2_FUNCTION_SMP_PASSTHROUGH: 557 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size; 558 func_str = "smp_passthru"; 559 break; 560 default: 561 frame_sz = 32; 562 func_str = "unknown"; 563 break; 564 } 565 566 pr_warn(MPT3SAS_FMT "ioc_status: %s(0x%04x), request(0x%p),(%s)\n", 567 ioc->name, desc, ioc_status, request_hdr, func_str); 568 569 _debug_dump_mf(request_hdr, frame_sz/4); 570 } 571 572 /** 573 * _base_display_event_data - verbose translation of firmware asyn events 574 * @ioc: per adapter object 575 * @mpi_reply: reply mf payload returned from firmware 576 * 577 * Return nothing. 578 */ 579 static void 580 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc, 581 Mpi2EventNotificationReply_t *mpi_reply) 582 { 583 char *desc = NULL; 584 u16 event; 585 586 if (!(ioc->logging_level & MPT_DEBUG_EVENTS)) 587 return; 588 589 event = le16_to_cpu(mpi_reply->Event); 590 591 switch (event) { 592 case MPI2_EVENT_LOG_DATA: 593 desc = "Log Data"; 594 break; 595 case MPI2_EVENT_STATE_CHANGE: 596 desc = "Status Change"; 597 break; 598 case MPI2_EVENT_HARD_RESET_RECEIVED: 599 desc = "Hard Reset Received"; 600 break; 601 case MPI2_EVENT_EVENT_CHANGE: 602 desc = "Event Change"; 603 break; 604 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE: 605 desc = "Device Status Change"; 606 break; 607 case MPI2_EVENT_IR_OPERATION_STATUS: 608 if (!ioc->hide_ir_msg) 609 desc = "IR Operation Status"; 610 break; 611 case MPI2_EVENT_SAS_DISCOVERY: 612 { 613 Mpi2EventDataSasDiscovery_t *event_data = 614 (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData; 615 pr_info(MPT3SAS_FMT "Discovery: (%s)", ioc->name, 616 (event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED) ? 617 "start" : "stop"); 618 if (event_data->DiscoveryStatus) 619 pr_info("discovery_status(0x%08x)", 620 le32_to_cpu(event_data->DiscoveryStatus)); 621 pr_info("\n"); 622 return; 623 } 624 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE: 625 desc = "SAS Broadcast Primitive"; 626 break; 627 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE: 628 desc = "SAS Init Device Status Change"; 629 break; 630 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW: 631 desc = "SAS Init Table Overflow"; 632 break; 633 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST: 634 desc = "SAS Topology Change List"; 635 break; 636 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE: 637 desc = "SAS Enclosure Device Status Change"; 638 break; 639 case MPI2_EVENT_IR_VOLUME: 640 if (!ioc->hide_ir_msg) 641 desc = "IR Volume"; 642 break; 643 case MPI2_EVENT_IR_PHYSICAL_DISK: 644 if (!ioc->hide_ir_msg) 645 desc = "IR Physical Disk"; 646 break; 647 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST: 648 if (!ioc->hide_ir_msg) 649 desc = "IR Configuration Change List"; 650 break; 651 case MPI2_EVENT_LOG_ENTRY_ADDED: 652 if (!ioc->hide_ir_msg) 653 desc = "Log Entry Added"; 654 break; 655 case MPI2_EVENT_TEMP_THRESHOLD: 656 desc = "Temperature Threshold"; 657 break; 658 case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION: 659 desc = "Active cable exception"; 660 break; 661 } 662 663 if (!desc) 664 return; 665 666 pr_info(MPT3SAS_FMT "%s\n", ioc->name, desc); 667 } 668 669 /** 670 * _base_sas_log_info - verbose translation of firmware log info 671 * @ioc: per adapter object 672 * @log_info: log info 673 * 674 * Return nothing. 675 */ 676 static void 677 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info) 678 { 679 union loginfo_type { 680 u32 loginfo; 681 struct { 682 u32 subcode:16; 683 u32 code:8; 684 u32 originator:4; 685 u32 bus_type:4; 686 } dw; 687 }; 688 union loginfo_type sas_loginfo; 689 char *originator_str = NULL; 690 691 sas_loginfo.loginfo = log_info; 692 if (sas_loginfo.dw.bus_type != 3 /*SAS*/) 693 return; 694 695 /* each nexus loss loginfo */ 696 if (log_info == 0x31170000) 697 return; 698 699 /* eat the loginfos associated with task aborts */ 700 if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info == 701 0x31140000 || log_info == 0x31130000)) 702 return; 703 704 switch (sas_loginfo.dw.originator) { 705 case 0: 706 originator_str = "IOP"; 707 break; 708 case 1: 709 originator_str = "PL"; 710 break; 711 case 2: 712 if (!ioc->hide_ir_msg) 713 originator_str = "IR"; 714 else 715 originator_str = "WarpDrive"; 716 break; 717 } 718 719 pr_warn(MPT3SAS_FMT 720 "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n", 721 ioc->name, log_info, 722 originator_str, sas_loginfo.dw.code, 723 sas_loginfo.dw.subcode); 724 } 725 726 /** 727 * _base_display_reply_info - 728 * @ioc: per adapter object 729 * @smid: system request message index 730 * @msix_index: MSIX table index supplied by the OS 731 * @reply: reply message frame(lower 32bit addr) 732 * 733 * Return nothing. 734 */ 735 static void 736 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 737 u32 reply) 738 { 739 MPI2DefaultReply_t *mpi_reply; 740 u16 ioc_status; 741 u32 loginfo = 0; 742 743 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 744 if (unlikely(!mpi_reply)) { 745 pr_err(MPT3SAS_FMT "mpi_reply not valid at %s:%d/%s()!\n", 746 ioc->name, __FILE__, __LINE__, __func__); 747 return; 748 } 749 ioc_status = le16_to_cpu(mpi_reply->IOCStatus); 750 751 if ((ioc_status & MPI2_IOCSTATUS_MASK) && 752 (ioc->logging_level & MPT_DEBUG_REPLY)) { 753 _base_sas_ioc_info(ioc , mpi_reply, 754 mpt3sas_base_get_msg_frame(ioc, smid)); 755 } 756 757 if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) { 758 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo); 759 _base_sas_log_info(ioc, loginfo); 760 } 761 762 if (ioc_status || loginfo) { 763 ioc_status &= MPI2_IOCSTATUS_MASK; 764 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo); 765 } 766 } 767 768 /** 769 * mpt3sas_base_done - base internal command completion routine 770 * @ioc: per adapter object 771 * @smid: system request message index 772 * @msix_index: MSIX table index supplied by the OS 773 * @reply: reply message frame(lower 32bit addr) 774 * 775 * Return 1 meaning mf should be freed from _base_interrupt 776 * 0 means the mf is freed from this function. 777 */ 778 u8 779 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 780 u32 reply) 781 { 782 MPI2DefaultReply_t *mpi_reply; 783 784 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 785 if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK) 786 return mpt3sas_check_for_pending_internal_cmds(ioc, smid); 787 788 if (ioc->base_cmds.status == MPT3_CMD_NOT_USED) 789 return 1; 790 791 ioc->base_cmds.status |= MPT3_CMD_COMPLETE; 792 if (mpi_reply) { 793 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID; 794 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4); 795 } 796 ioc->base_cmds.status &= ~MPT3_CMD_PENDING; 797 798 complete(&ioc->base_cmds.done); 799 return 1; 800 } 801 802 /** 803 * _base_async_event - main callback handler for firmware asyn events 804 * @ioc: per adapter object 805 * @msix_index: MSIX table index supplied by the OS 806 * @reply: reply message frame(lower 32bit addr) 807 * 808 * Return 1 meaning mf should be freed from _base_interrupt 809 * 0 means the mf is freed from this function. 810 */ 811 static u8 812 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply) 813 { 814 Mpi2EventNotificationReply_t *mpi_reply; 815 Mpi2EventAckRequest_t *ack_request; 816 u16 smid; 817 struct _event_ack_list *delayed_event_ack; 818 819 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 820 if (!mpi_reply) 821 return 1; 822 if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION) 823 return 1; 824 825 _base_display_event_data(ioc, mpi_reply); 826 827 if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED)) 828 goto out; 829 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 830 if (!smid) { 831 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack), 832 GFP_ATOMIC); 833 if (!delayed_event_ack) 834 goto out; 835 INIT_LIST_HEAD(&delayed_event_ack->list); 836 delayed_event_ack->Event = mpi_reply->Event; 837 delayed_event_ack->EventContext = mpi_reply->EventContext; 838 list_add_tail(&delayed_event_ack->list, 839 &ioc->delayed_event_ack_list); 840 dewtprintk(ioc, pr_info(MPT3SAS_FMT 841 "DELAYED: EVENT ACK: event (0x%04x)\n", 842 ioc->name, le16_to_cpu(mpi_reply->Event))); 843 goto out; 844 } 845 846 ack_request = mpt3sas_base_get_msg_frame(ioc, smid); 847 memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t)); 848 ack_request->Function = MPI2_FUNCTION_EVENT_ACK; 849 ack_request->Event = mpi_reply->Event; 850 ack_request->EventContext = mpi_reply->EventContext; 851 ack_request->VF_ID = 0; /* TODO */ 852 ack_request->VP_ID = 0; 853 mpt3sas_base_put_smid_default(ioc, smid); 854 855 out: 856 857 /* scsih callback handler */ 858 mpt3sas_scsih_event_callback(ioc, msix_index, reply); 859 860 /* ctl callback handler */ 861 mpt3sas_ctl_event_callback(ioc, msix_index, reply); 862 863 return 1; 864 } 865 866 /** 867 * _base_get_cb_idx - obtain the callback index 868 * @ioc: per adapter object 869 * @smid: system request message index 870 * 871 * Return callback index. 872 */ 873 static u8 874 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid) 875 { 876 int i; 877 u8 cb_idx; 878 879 if (smid < ioc->hi_priority_smid) { 880 i = smid - 1; 881 cb_idx = ioc->scsi_lookup[i].cb_idx; 882 } else if (smid < ioc->internal_smid) { 883 i = smid - ioc->hi_priority_smid; 884 cb_idx = ioc->hpr_lookup[i].cb_idx; 885 } else if (smid <= ioc->hba_queue_depth) { 886 i = smid - ioc->internal_smid; 887 cb_idx = ioc->internal_lookup[i].cb_idx; 888 } else 889 cb_idx = 0xFF; 890 return cb_idx; 891 } 892 893 /** 894 * _base_mask_interrupts - disable interrupts 895 * @ioc: per adapter object 896 * 897 * Disabling ResetIRQ, Reply and Doorbell Interrupts 898 * 899 * Return nothing. 900 */ 901 static void 902 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc) 903 { 904 u32 him_register; 905 906 ioc->mask_interrupts = 1; 907 him_register = readl(&ioc->chip->HostInterruptMask); 908 him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK; 909 writel(him_register, &ioc->chip->HostInterruptMask); 910 readl(&ioc->chip->HostInterruptMask); 911 } 912 913 /** 914 * _base_unmask_interrupts - enable interrupts 915 * @ioc: per adapter object 916 * 917 * Enabling only Reply Interrupts 918 * 919 * Return nothing. 920 */ 921 static void 922 _base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc) 923 { 924 u32 him_register; 925 926 him_register = readl(&ioc->chip->HostInterruptMask); 927 him_register &= ~MPI2_HIM_RIM; 928 writel(him_register, &ioc->chip->HostInterruptMask); 929 ioc->mask_interrupts = 0; 930 } 931 932 union reply_descriptor { 933 u64 word; 934 struct { 935 u32 low; 936 u32 high; 937 } u; 938 }; 939 940 /** 941 * _base_interrupt - MPT adapter (IOC) specific interrupt handler. 942 * @irq: irq number (not used) 943 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure 944 * @r: pt_regs pointer (not used) 945 * 946 * Return IRQ_HANDLE if processed, else IRQ_NONE. 947 */ 948 static irqreturn_t 949 _base_interrupt(int irq, void *bus_id) 950 { 951 struct adapter_reply_queue *reply_q = bus_id; 952 union reply_descriptor rd; 953 u32 completed_cmds; 954 u8 request_desript_type; 955 u16 smid; 956 u8 cb_idx; 957 u32 reply; 958 u8 msix_index = reply_q->msix_index; 959 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc; 960 Mpi2ReplyDescriptorsUnion_t *rpf; 961 u8 rc; 962 963 if (ioc->mask_interrupts) 964 return IRQ_NONE; 965 966 if (!atomic_add_unless(&reply_q->busy, 1, 1)) 967 return IRQ_NONE; 968 969 rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index]; 970 request_desript_type = rpf->Default.ReplyFlags 971 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 972 if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) { 973 atomic_dec(&reply_q->busy); 974 return IRQ_NONE; 975 } 976 977 completed_cmds = 0; 978 cb_idx = 0xFF; 979 do { 980 rd.word = le64_to_cpu(rpf->Words); 981 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX) 982 goto out; 983 reply = 0; 984 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1); 985 if (request_desript_type == 986 MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS || 987 request_desript_type == 988 MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS) { 989 cb_idx = _base_get_cb_idx(ioc, smid); 990 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) && 991 (likely(mpt_callbacks[cb_idx] != NULL))) { 992 rc = mpt_callbacks[cb_idx](ioc, smid, 993 msix_index, 0); 994 if (rc) 995 mpt3sas_base_free_smid(ioc, smid); 996 } 997 } else if (request_desript_type == 998 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) { 999 reply = le32_to_cpu( 1000 rpf->AddressReply.ReplyFrameAddress); 1001 if (reply > ioc->reply_dma_max_address || 1002 reply < ioc->reply_dma_min_address) 1003 reply = 0; 1004 if (smid) { 1005 cb_idx = _base_get_cb_idx(ioc, smid); 1006 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) && 1007 (likely(mpt_callbacks[cb_idx] != NULL))) { 1008 rc = mpt_callbacks[cb_idx](ioc, smid, 1009 msix_index, reply); 1010 if (reply) 1011 _base_display_reply_info(ioc, 1012 smid, msix_index, reply); 1013 if (rc) 1014 mpt3sas_base_free_smid(ioc, 1015 smid); 1016 } 1017 } else { 1018 _base_async_event(ioc, msix_index, reply); 1019 } 1020 1021 /* reply free queue handling */ 1022 if (reply) { 1023 ioc->reply_free_host_index = 1024 (ioc->reply_free_host_index == 1025 (ioc->reply_free_queue_depth - 1)) ? 1026 0 : ioc->reply_free_host_index + 1; 1027 ioc->reply_free[ioc->reply_free_host_index] = 1028 cpu_to_le32(reply); 1029 wmb(); 1030 writel(ioc->reply_free_host_index, 1031 &ioc->chip->ReplyFreeHostIndex); 1032 } 1033 } 1034 1035 rpf->Words = cpu_to_le64(ULLONG_MAX); 1036 reply_q->reply_post_host_index = 1037 (reply_q->reply_post_host_index == 1038 (ioc->reply_post_queue_depth - 1)) ? 0 : 1039 reply_q->reply_post_host_index + 1; 1040 request_desript_type = 1041 reply_q->reply_post_free[reply_q->reply_post_host_index]. 1042 Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 1043 completed_cmds++; 1044 if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) 1045 goto out; 1046 if (!reply_q->reply_post_host_index) 1047 rpf = reply_q->reply_post_free; 1048 else 1049 rpf++; 1050 } while (1); 1051 1052 out: 1053 1054 if (!completed_cmds) { 1055 atomic_dec(&reply_q->busy); 1056 return IRQ_NONE; 1057 } 1058 1059 wmb(); 1060 if (ioc->is_warpdrive) { 1061 writel(reply_q->reply_post_host_index, 1062 ioc->reply_post_host_index[msix_index]); 1063 atomic_dec(&reply_q->busy); 1064 return IRQ_HANDLED; 1065 } 1066 1067 /* Update Reply Post Host Index. 1068 * For those HBA's which support combined reply queue feature 1069 * 1. Get the correct Supplemental Reply Post Host Index Register. 1070 * i.e. (msix_index / 8)th entry from Supplemental Reply Post Host 1071 * Index Register address bank i.e replyPostRegisterIndex[], 1072 * 2. Then update this register with new reply host index value 1073 * in ReplyPostIndex field and the MSIxIndex field with 1074 * msix_index value reduced to a value between 0 and 7, 1075 * using a modulo 8 operation. Since each Supplemental Reply Post 1076 * Host Index Register supports 8 MSI-X vectors. 1077 * 1078 * For other HBA's just update the Reply Post Host Index register with 1079 * new reply host index value in ReplyPostIndex Field and msix_index 1080 * value in MSIxIndex field. 1081 */ 1082 if (ioc->msix96_vector) 1083 writel(reply_q->reply_post_host_index | ((msix_index & 7) << 1084 MPI2_RPHI_MSIX_INDEX_SHIFT), 1085 ioc->replyPostRegisterIndex[msix_index/8]); 1086 else 1087 writel(reply_q->reply_post_host_index | (msix_index << 1088 MPI2_RPHI_MSIX_INDEX_SHIFT), 1089 &ioc->chip->ReplyPostHostIndex); 1090 atomic_dec(&reply_q->busy); 1091 return IRQ_HANDLED; 1092 } 1093 1094 /** 1095 * _base_is_controller_msix_enabled - is controller support muli-reply queues 1096 * @ioc: per adapter object 1097 * 1098 */ 1099 static inline int 1100 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc) 1101 { 1102 return (ioc->facts.IOCCapabilities & 1103 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable; 1104 } 1105 1106 /** 1107 * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts 1108 * @ioc: per adapter object 1109 * Context: non ISR conext 1110 * 1111 * Called when a Task Management request has completed. 1112 * 1113 * Return nothing. 1114 */ 1115 void 1116 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc) 1117 { 1118 struct adapter_reply_queue *reply_q; 1119 1120 /* If MSIX capability is turned off 1121 * then multi-queues are not enabled 1122 */ 1123 if (!_base_is_controller_msix_enabled(ioc)) 1124 return; 1125 1126 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 1127 if (ioc->shost_recovery || ioc->remove_host || 1128 ioc->pci_error_recovery) 1129 return; 1130 /* TMs are on msix_index == 0 */ 1131 if (reply_q->msix_index == 0) 1132 continue; 1133 synchronize_irq(reply_q->vector); 1134 } 1135 } 1136 1137 /** 1138 * mpt3sas_base_release_callback_handler - clear interrupt callback handler 1139 * @cb_idx: callback index 1140 * 1141 * Return nothing. 1142 */ 1143 void 1144 mpt3sas_base_release_callback_handler(u8 cb_idx) 1145 { 1146 mpt_callbacks[cb_idx] = NULL; 1147 } 1148 1149 /** 1150 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler 1151 * @cb_func: callback function 1152 * 1153 * Returns cb_func. 1154 */ 1155 u8 1156 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func) 1157 { 1158 u8 cb_idx; 1159 1160 for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--) 1161 if (mpt_callbacks[cb_idx] == NULL) 1162 break; 1163 1164 mpt_callbacks[cb_idx] = cb_func; 1165 return cb_idx; 1166 } 1167 1168 /** 1169 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler 1170 * 1171 * Return nothing. 1172 */ 1173 void 1174 mpt3sas_base_initialize_callback_handler(void) 1175 { 1176 u8 cb_idx; 1177 1178 for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++) 1179 mpt3sas_base_release_callback_handler(cb_idx); 1180 } 1181 1182 1183 /** 1184 * _base_build_zero_len_sge - build zero length sg entry 1185 * @ioc: per adapter object 1186 * @paddr: virtual address for SGE 1187 * 1188 * Create a zero length scatter gather entry to insure the IOCs hardware has 1189 * something to use if the target device goes brain dead and tries 1190 * to send data even when none is asked for. 1191 * 1192 * Return nothing. 1193 */ 1194 static void 1195 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr) 1196 { 1197 u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT | 1198 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST | 1199 MPI2_SGE_FLAGS_SIMPLE_ELEMENT) << 1200 MPI2_SGE_FLAGS_SHIFT); 1201 ioc->base_add_sg_single(paddr, flags_length, -1); 1202 } 1203 1204 /** 1205 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr. 1206 * @paddr: virtual address for SGE 1207 * @flags_length: SGE flags and data transfer length 1208 * @dma_addr: Physical address 1209 * 1210 * Return nothing. 1211 */ 1212 static void 1213 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr) 1214 { 1215 Mpi2SGESimple32_t *sgel = paddr; 1216 1217 flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING | 1218 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT; 1219 sgel->FlagsLength = cpu_to_le32(flags_length); 1220 sgel->Address = cpu_to_le32(dma_addr); 1221 } 1222 1223 1224 /** 1225 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr. 1226 * @paddr: virtual address for SGE 1227 * @flags_length: SGE flags and data transfer length 1228 * @dma_addr: Physical address 1229 * 1230 * Return nothing. 1231 */ 1232 static void 1233 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr) 1234 { 1235 Mpi2SGESimple64_t *sgel = paddr; 1236 1237 flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING | 1238 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT; 1239 sgel->FlagsLength = cpu_to_le32(flags_length); 1240 sgel->Address = cpu_to_le64(dma_addr); 1241 } 1242 1243 /** 1244 * _base_get_chain_buffer_tracker - obtain chain tracker 1245 * @ioc: per adapter object 1246 * @smid: smid associated to an IO request 1247 * 1248 * Returns chain tracker(from ioc->free_chain_list) 1249 */ 1250 static struct chain_tracker * 1251 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc, u16 smid) 1252 { 1253 struct chain_tracker *chain_req; 1254 unsigned long flags; 1255 1256 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 1257 if (list_empty(&ioc->free_chain_list)) { 1258 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 1259 dfailprintk(ioc, pr_warn(MPT3SAS_FMT 1260 "chain buffers not available\n", ioc->name)); 1261 return NULL; 1262 } 1263 chain_req = list_entry(ioc->free_chain_list.next, 1264 struct chain_tracker, tracker_list); 1265 list_del_init(&chain_req->tracker_list); 1266 list_add_tail(&chain_req->tracker_list, 1267 &ioc->scsi_lookup[smid - 1].chain_list); 1268 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 1269 return chain_req; 1270 } 1271 1272 1273 /** 1274 * _base_build_sg - build generic sg 1275 * @ioc: per adapter object 1276 * @psge: virtual address for SGE 1277 * @data_out_dma: physical address for WRITES 1278 * @data_out_sz: data xfer size for WRITES 1279 * @data_in_dma: physical address for READS 1280 * @data_in_sz: data xfer size for READS 1281 * 1282 * Return nothing. 1283 */ 1284 static void 1285 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge, 1286 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 1287 size_t data_in_sz) 1288 { 1289 u32 sgl_flags; 1290 1291 if (!data_out_sz && !data_in_sz) { 1292 _base_build_zero_len_sge(ioc, psge); 1293 return; 1294 } 1295 1296 if (data_out_sz && data_in_sz) { 1297 /* WRITE sgel first */ 1298 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 1299 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC); 1300 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 1301 ioc->base_add_sg_single(psge, sgl_flags | 1302 data_out_sz, data_out_dma); 1303 1304 /* incr sgel */ 1305 psge += ioc->sge_size; 1306 1307 /* READ sgel last */ 1308 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 1309 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 1310 MPI2_SGE_FLAGS_END_OF_LIST); 1311 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 1312 ioc->base_add_sg_single(psge, sgl_flags | 1313 data_in_sz, data_in_dma); 1314 } else if (data_out_sz) /* WRITE */ { 1315 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 1316 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 1317 MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC); 1318 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 1319 ioc->base_add_sg_single(psge, sgl_flags | 1320 data_out_sz, data_out_dma); 1321 } else if (data_in_sz) /* READ */ { 1322 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 1323 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 1324 MPI2_SGE_FLAGS_END_OF_LIST); 1325 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 1326 ioc->base_add_sg_single(psge, sgl_flags | 1327 data_in_sz, data_in_dma); 1328 } 1329 } 1330 1331 /* IEEE format sgls */ 1332 1333 /** 1334 * _base_add_sg_single_ieee - add sg element for IEEE format 1335 * @paddr: virtual address for SGE 1336 * @flags: SGE flags 1337 * @chain_offset: number of 128 byte elements from start of segment 1338 * @length: data transfer length 1339 * @dma_addr: Physical address 1340 * 1341 * Return nothing. 1342 */ 1343 static void 1344 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length, 1345 dma_addr_t dma_addr) 1346 { 1347 Mpi25IeeeSgeChain64_t *sgel = paddr; 1348 1349 sgel->Flags = flags; 1350 sgel->NextChainOffset = chain_offset; 1351 sgel->Length = cpu_to_le32(length); 1352 sgel->Address = cpu_to_le64(dma_addr); 1353 } 1354 1355 /** 1356 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format 1357 * @ioc: per adapter object 1358 * @paddr: virtual address for SGE 1359 * 1360 * Create a zero length scatter gather entry to insure the IOCs hardware has 1361 * something to use if the target device goes brain dead and tries 1362 * to send data even when none is asked for. 1363 * 1364 * Return nothing. 1365 */ 1366 static void 1367 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr) 1368 { 1369 u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 1370 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | 1371 MPI25_IEEE_SGE_FLAGS_END_OF_LIST); 1372 1373 _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1); 1374 } 1375 1376 /** 1377 * _base_build_sg_scmd - main sg creation routine 1378 * @ioc: per adapter object 1379 * @scmd: scsi command 1380 * @smid: system request message index 1381 * Context: none. 1382 * 1383 * The main routine that builds scatter gather table from a given 1384 * scsi request sent via the .queuecommand main handler. 1385 * 1386 * Returns 0 success, anything else error 1387 */ 1388 static int 1389 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc, 1390 struct scsi_cmnd *scmd, u16 smid) 1391 { 1392 Mpi2SCSIIORequest_t *mpi_request; 1393 dma_addr_t chain_dma; 1394 struct scatterlist *sg_scmd; 1395 void *sg_local, *chain; 1396 u32 chain_offset; 1397 u32 chain_length; 1398 u32 chain_flags; 1399 int sges_left; 1400 u32 sges_in_segment; 1401 u32 sgl_flags; 1402 u32 sgl_flags_last_element; 1403 u32 sgl_flags_end_buffer; 1404 struct chain_tracker *chain_req; 1405 1406 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 1407 1408 /* init scatter gather flags */ 1409 sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT; 1410 if (scmd->sc_data_direction == DMA_TO_DEVICE) 1411 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC; 1412 sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT) 1413 << MPI2_SGE_FLAGS_SHIFT; 1414 sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT | 1415 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST) 1416 << MPI2_SGE_FLAGS_SHIFT; 1417 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 1418 1419 sg_scmd = scsi_sglist(scmd); 1420 sges_left = scsi_dma_map(scmd); 1421 if (sges_left < 0) { 1422 sdev_printk(KERN_ERR, scmd->device, 1423 "pci_map_sg failed: request for %d bytes!\n", 1424 scsi_bufflen(scmd)); 1425 return -ENOMEM; 1426 } 1427 1428 sg_local = &mpi_request->SGL; 1429 sges_in_segment = ioc->max_sges_in_main_message; 1430 if (sges_left <= sges_in_segment) 1431 goto fill_in_last_segment; 1432 1433 mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) + 1434 (sges_in_segment * ioc->sge_size))/4; 1435 1436 /* fill in main message segment when there is a chain following */ 1437 while (sges_in_segment) { 1438 if (sges_in_segment == 1) 1439 ioc->base_add_sg_single(sg_local, 1440 sgl_flags_last_element | sg_dma_len(sg_scmd), 1441 sg_dma_address(sg_scmd)); 1442 else 1443 ioc->base_add_sg_single(sg_local, sgl_flags | 1444 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 1445 sg_scmd = sg_next(sg_scmd); 1446 sg_local += ioc->sge_size; 1447 sges_left--; 1448 sges_in_segment--; 1449 } 1450 1451 /* initializing the chain flags and pointers */ 1452 chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT; 1453 chain_req = _base_get_chain_buffer_tracker(ioc, smid); 1454 if (!chain_req) 1455 return -1; 1456 chain = chain_req->chain_buffer; 1457 chain_dma = chain_req->chain_buffer_dma; 1458 do { 1459 sges_in_segment = (sges_left <= 1460 ioc->max_sges_in_chain_message) ? sges_left : 1461 ioc->max_sges_in_chain_message; 1462 chain_offset = (sges_left == sges_in_segment) ? 1463 0 : (sges_in_segment * ioc->sge_size)/4; 1464 chain_length = sges_in_segment * ioc->sge_size; 1465 if (chain_offset) { 1466 chain_offset = chain_offset << 1467 MPI2_SGE_CHAIN_OFFSET_SHIFT; 1468 chain_length += ioc->sge_size; 1469 } 1470 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset | 1471 chain_length, chain_dma); 1472 sg_local = chain; 1473 if (!chain_offset) 1474 goto fill_in_last_segment; 1475 1476 /* fill in chain segments */ 1477 while (sges_in_segment) { 1478 if (sges_in_segment == 1) 1479 ioc->base_add_sg_single(sg_local, 1480 sgl_flags_last_element | 1481 sg_dma_len(sg_scmd), 1482 sg_dma_address(sg_scmd)); 1483 else 1484 ioc->base_add_sg_single(sg_local, sgl_flags | 1485 sg_dma_len(sg_scmd), 1486 sg_dma_address(sg_scmd)); 1487 sg_scmd = sg_next(sg_scmd); 1488 sg_local += ioc->sge_size; 1489 sges_left--; 1490 sges_in_segment--; 1491 } 1492 1493 chain_req = _base_get_chain_buffer_tracker(ioc, smid); 1494 if (!chain_req) 1495 return -1; 1496 chain = chain_req->chain_buffer; 1497 chain_dma = chain_req->chain_buffer_dma; 1498 } while (1); 1499 1500 1501 fill_in_last_segment: 1502 1503 /* fill the last segment */ 1504 while (sges_left) { 1505 if (sges_left == 1) 1506 ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer | 1507 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 1508 else 1509 ioc->base_add_sg_single(sg_local, sgl_flags | 1510 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 1511 sg_scmd = sg_next(sg_scmd); 1512 sg_local += ioc->sge_size; 1513 sges_left--; 1514 } 1515 1516 return 0; 1517 } 1518 1519 /** 1520 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format 1521 * @ioc: per adapter object 1522 * @scmd: scsi command 1523 * @smid: system request message index 1524 * Context: none. 1525 * 1526 * The main routine that builds scatter gather table from a given 1527 * scsi request sent via the .queuecommand main handler. 1528 * 1529 * Returns 0 success, anything else error 1530 */ 1531 static int 1532 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc, 1533 struct scsi_cmnd *scmd, u16 smid) 1534 { 1535 Mpi2SCSIIORequest_t *mpi_request; 1536 dma_addr_t chain_dma; 1537 struct scatterlist *sg_scmd; 1538 void *sg_local, *chain; 1539 u32 chain_offset; 1540 u32 chain_length; 1541 int sges_left; 1542 u32 sges_in_segment; 1543 u8 simple_sgl_flags; 1544 u8 simple_sgl_flags_last; 1545 u8 chain_sgl_flags; 1546 struct chain_tracker *chain_req; 1547 1548 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 1549 1550 /* init scatter gather flags */ 1551 simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 1552 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 1553 simple_sgl_flags_last = simple_sgl_flags | 1554 MPI25_IEEE_SGE_FLAGS_END_OF_LIST; 1555 chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 1556 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 1557 1558 sg_scmd = scsi_sglist(scmd); 1559 sges_left = scsi_dma_map(scmd); 1560 if (sges_left < 0) { 1561 sdev_printk(KERN_ERR, scmd->device, 1562 "pci_map_sg failed: request for %d bytes!\n", 1563 scsi_bufflen(scmd)); 1564 return -ENOMEM; 1565 } 1566 1567 sg_local = &mpi_request->SGL; 1568 sges_in_segment = (ioc->request_sz - 1569 offsetof(Mpi2SCSIIORequest_t, SGL))/ioc->sge_size_ieee; 1570 if (sges_left <= sges_in_segment) 1571 goto fill_in_last_segment; 1572 1573 mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) + 1574 (offsetof(Mpi2SCSIIORequest_t, SGL)/ioc->sge_size_ieee); 1575 1576 /* fill in main message segment when there is a chain following */ 1577 while (sges_in_segment > 1) { 1578 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 1579 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 1580 sg_scmd = sg_next(sg_scmd); 1581 sg_local += ioc->sge_size_ieee; 1582 sges_left--; 1583 sges_in_segment--; 1584 } 1585 1586 /* initializing the pointers */ 1587 chain_req = _base_get_chain_buffer_tracker(ioc, smid); 1588 if (!chain_req) 1589 return -1; 1590 chain = chain_req->chain_buffer; 1591 chain_dma = chain_req->chain_buffer_dma; 1592 do { 1593 sges_in_segment = (sges_left <= 1594 ioc->max_sges_in_chain_message) ? sges_left : 1595 ioc->max_sges_in_chain_message; 1596 chain_offset = (sges_left == sges_in_segment) ? 1597 0 : sges_in_segment; 1598 chain_length = sges_in_segment * ioc->sge_size_ieee; 1599 if (chain_offset) 1600 chain_length += ioc->sge_size_ieee; 1601 _base_add_sg_single_ieee(sg_local, chain_sgl_flags, 1602 chain_offset, chain_length, chain_dma); 1603 1604 sg_local = chain; 1605 if (!chain_offset) 1606 goto fill_in_last_segment; 1607 1608 /* fill in chain segments */ 1609 while (sges_in_segment) { 1610 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 1611 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 1612 sg_scmd = sg_next(sg_scmd); 1613 sg_local += ioc->sge_size_ieee; 1614 sges_left--; 1615 sges_in_segment--; 1616 } 1617 1618 chain_req = _base_get_chain_buffer_tracker(ioc, smid); 1619 if (!chain_req) 1620 return -1; 1621 chain = chain_req->chain_buffer; 1622 chain_dma = chain_req->chain_buffer_dma; 1623 } while (1); 1624 1625 1626 fill_in_last_segment: 1627 1628 /* fill the last segment */ 1629 while (sges_left > 0) { 1630 if (sges_left == 1) 1631 _base_add_sg_single_ieee(sg_local, 1632 simple_sgl_flags_last, 0, sg_dma_len(sg_scmd), 1633 sg_dma_address(sg_scmd)); 1634 else 1635 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 1636 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 1637 sg_scmd = sg_next(sg_scmd); 1638 sg_local += ioc->sge_size_ieee; 1639 sges_left--; 1640 } 1641 1642 return 0; 1643 } 1644 1645 /** 1646 * _base_build_sg_ieee - build generic sg for IEEE format 1647 * @ioc: per adapter object 1648 * @psge: virtual address for SGE 1649 * @data_out_dma: physical address for WRITES 1650 * @data_out_sz: data xfer size for WRITES 1651 * @data_in_dma: physical address for READS 1652 * @data_in_sz: data xfer size for READS 1653 * 1654 * Return nothing. 1655 */ 1656 static void 1657 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge, 1658 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 1659 size_t data_in_sz) 1660 { 1661 u8 sgl_flags; 1662 1663 if (!data_out_sz && !data_in_sz) { 1664 _base_build_zero_len_sge_ieee(ioc, psge); 1665 return; 1666 } 1667 1668 if (data_out_sz && data_in_sz) { 1669 /* WRITE sgel first */ 1670 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 1671 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 1672 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz, 1673 data_out_dma); 1674 1675 /* incr sgel */ 1676 psge += ioc->sge_size_ieee; 1677 1678 /* READ sgel last */ 1679 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST; 1680 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz, 1681 data_in_dma); 1682 } else if (data_out_sz) /* WRITE */ { 1683 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 1684 MPI25_IEEE_SGE_FLAGS_END_OF_LIST | 1685 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 1686 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz, 1687 data_out_dma); 1688 } else if (data_in_sz) /* READ */ { 1689 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 1690 MPI25_IEEE_SGE_FLAGS_END_OF_LIST | 1691 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 1692 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz, 1693 data_in_dma); 1694 } 1695 } 1696 1697 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10)) 1698 1699 /** 1700 * _base_config_dma_addressing - set dma addressing 1701 * @ioc: per adapter object 1702 * @pdev: PCI device struct 1703 * 1704 * Returns 0 for success, non-zero for failure. 1705 */ 1706 static int 1707 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev) 1708 { 1709 struct sysinfo s; 1710 u64 consistent_dma_mask; 1711 1712 if (ioc->dma_mask) 1713 consistent_dma_mask = DMA_BIT_MASK(64); 1714 else 1715 consistent_dma_mask = DMA_BIT_MASK(32); 1716 1717 if (sizeof(dma_addr_t) > 4) { 1718 const uint64_t required_mask = 1719 dma_get_required_mask(&pdev->dev); 1720 if ((required_mask > DMA_BIT_MASK(32)) && 1721 !pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) && 1722 !pci_set_consistent_dma_mask(pdev, consistent_dma_mask)) { 1723 ioc->base_add_sg_single = &_base_add_sg_single_64; 1724 ioc->sge_size = sizeof(Mpi2SGESimple64_t); 1725 ioc->dma_mask = 64; 1726 goto out; 1727 } 1728 } 1729 1730 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) 1731 && !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) { 1732 ioc->base_add_sg_single = &_base_add_sg_single_32; 1733 ioc->sge_size = sizeof(Mpi2SGESimple32_t); 1734 ioc->dma_mask = 32; 1735 } else 1736 return -ENODEV; 1737 1738 out: 1739 si_meminfo(&s); 1740 pr_info(MPT3SAS_FMT 1741 "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n", 1742 ioc->name, ioc->dma_mask, convert_to_kb(s.totalram)); 1743 1744 return 0; 1745 } 1746 1747 static int 1748 _base_change_consistent_dma_mask(struct MPT3SAS_ADAPTER *ioc, 1749 struct pci_dev *pdev) 1750 { 1751 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) { 1752 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) 1753 return -ENODEV; 1754 } 1755 return 0; 1756 } 1757 1758 /** 1759 * _base_check_enable_msix - checks MSIX capabable. 1760 * @ioc: per adapter object 1761 * 1762 * Check to see if card is capable of MSIX, and set number 1763 * of available msix vectors 1764 */ 1765 static int 1766 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc) 1767 { 1768 int base; 1769 u16 message_control; 1770 1771 /* Check whether controller SAS2008 B0 controller, 1772 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX 1773 */ 1774 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 && 1775 ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) { 1776 return -EINVAL; 1777 } 1778 1779 base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX); 1780 if (!base) { 1781 dfailprintk(ioc, pr_info(MPT3SAS_FMT "msix not supported\n", 1782 ioc->name)); 1783 return -EINVAL; 1784 } 1785 1786 /* get msix vector count */ 1787 /* NUMA_IO not supported for older controllers */ 1788 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 || 1789 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 || 1790 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 || 1791 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 || 1792 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 || 1793 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 || 1794 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2) 1795 ioc->msix_vector_count = 1; 1796 else { 1797 pci_read_config_word(ioc->pdev, base + 2, &message_control); 1798 ioc->msix_vector_count = (message_control & 0x3FF) + 1; 1799 } 1800 dinitprintk(ioc, pr_info(MPT3SAS_FMT 1801 "msix is supported, vector_count(%d)\n", 1802 ioc->name, ioc->msix_vector_count)); 1803 return 0; 1804 } 1805 1806 /** 1807 * _base_free_irq - free irq 1808 * @ioc: per adapter object 1809 * 1810 * Freeing respective reply_queue from the list. 1811 */ 1812 static void 1813 _base_free_irq(struct MPT3SAS_ADAPTER *ioc) 1814 { 1815 struct adapter_reply_queue *reply_q, *next; 1816 1817 if (list_empty(&ioc->reply_queue_list)) 1818 return; 1819 1820 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) { 1821 list_del(&reply_q->list); 1822 if (smp_affinity_enable) { 1823 irq_set_affinity_hint(reply_q->vector, NULL); 1824 free_cpumask_var(reply_q->affinity_hint); 1825 } 1826 free_irq(reply_q->vector, reply_q); 1827 kfree(reply_q); 1828 } 1829 } 1830 1831 /** 1832 * _base_request_irq - request irq 1833 * @ioc: per adapter object 1834 * @index: msix index into vector table 1835 * @vector: irq vector 1836 * 1837 * Inserting respective reply_queue into the list. 1838 */ 1839 static int 1840 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index, u32 vector) 1841 { 1842 struct adapter_reply_queue *reply_q; 1843 int r; 1844 1845 reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL); 1846 if (!reply_q) { 1847 pr_err(MPT3SAS_FMT "unable to allocate memory %d!\n", 1848 ioc->name, (int)sizeof(struct adapter_reply_queue)); 1849 return -ENOMEM; 1850 } 1851 reply_q->ioc = ioc; 1852 reply_q->msix_index = index; 1853 reply_q->vector = vector; 1854 1855 if (smp_affinity_enable) { 1856 if (!zalloc_cpumask_var(&reply_q->affinity_hint, GFP_KERNEL)) { 1857 kfree(reply_q); 1858 return -ENOMEM; 1859 } 1860 } 1861 1862 atomic_set(&reply_q->busy, 0); 1863 if (ioc->msix_enable) 1864 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d", 1865 ioc->driver_name, ioc->id, index); 1866 else 1867 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d", 1868 ioc->driver_name, ioc->id); 1869 r = request_irq(vector, _base_interrupt, IRQF_SHARED, reply_q->name, 1870 reply_q); 1871 if (r) { 1872 pr_err(MPT3SAS_FMT "unable to allocate interrupt %d!\n", 1873 reply_q->name, vector); 1874 free_cpumask_var(reply_q->affinity_hint); 1875 kfree(reply_q); 1876 return -EBUSY; 1877 } 1878 1879 INIT_LIST_HEAD(&reply_q->list); 1880 list_add_tail(&reply_q->list, &ioc->reply_queue_list); 1881 return 0; 1882 } 1883 1884 /** 1885 * _base_assign_reply_queues - assigning msix index for each cpu 1886 * @ioc: per adapter object 1887 * 1888 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity 1889 * 1890 * It would nice if we could call irq_set_affinity, however it is not 1891 * an exported symbol 1892 */ 1893 static void 1894 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc) 1895 { 1896 unsigned int cpu, nr_cpus, nr_msix, index = 0; 1897 struct adapter_reply_queue *reply_q; 1898 1899 if (!_base_is_controller_msix_enabled(ioc)) 1900 return; 1901 1902 memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz); 1903 1904 nr_cpus = num_online_cpus(); 1905 nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count, 1906 ioc->facts.MaxMSIxVectors); 1907 if (!nr_msix) 1908 return; 1909 1910 cpu = cpumask_first(cpu_online_mask); 1911 1912 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 1913 1914 unsigned int i, group = nr_cpus / nr_msix; 1915 1916 if (cpu >= nr_cpus) 1917 break; 1918 1919 if (index < nr_cpus % nr_msix) 1920 group++; 1921 1922 for (i = 0 ; i < group ; i++) { 1923 ioc->cpu_msix_table[cpu] = index; 1924 if (smp_affinity_enable) 1925 cpumask_or(reply_q->affinity_hint, 1926 reply_q->affinity_hint, get_cpu_mask(cpu)); 1927 cpu = cpumask_next(cpu, cpu_online_mask); 1928 } 1929 if (smp_affinity_enable) 1930 if (irq_set_affinity_hint(reply_q->vector, 1931 reply_q->affinity_hint)) 1932 dinitprintk(ioc, pr_info(MPT3SAS_FMT 1933 "Err setting affinity hint to irq vector %d\n", 1934 ioc->name, reply_q->vector)); 1935 index++; 1936 } 1937 } 1938 1939 /** 1940 * _base_disable_msix - disables msix 1941 * @ioc: per adapter object 1942 * 1943 */ 1944 static void 1945 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc) 1946 { 1947 if (!ioc->msix_enable) 1948 return; 1949 pci_disable_msix(ioc->pdev); 1950 ioc->msix_enable = 0; 1951 } 1952 1953 /** 1954 * _base_enable_msix - enables msix, failback to io_apic 1955 * @ioc: per adapter object 1956 * 1957 */ 1958 static int 1959 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc) 1960 { 1961 struct msix_entry *entries, *a; 1962 int r; 1963 int i; 1964 u8 try_msix = 0; 1965 1966 if (msix_disable == -1 || msix_disable == 0) 1967 try_msix = 1; 1968 1969 if (!try_msix) 1970 goto try_ioapic; 1971 1972 if (_base_check_enable_msix(ioc) != 0) 1973 goto try_ioapic; 1974 1975 ioc->reply_queue_count = min_t(int, ioc->cpu_count, 1976 ioc->msix_vector_count); 1977 1978 printk(MPT3SAS_FMT "MSI-X vectors supported: %d, no of cores" 1979 ": %d, max_msix_vectors: %d\n", ioc->name, ioc->msix_vector_count, 1980 ioc->cpu_count, max_msix_vectors); 1981 1982 if (!ioc->rdpq_array_enable && max_msix_vectors == -1) 1983 max_msix_vectors = 8; 1984 1985 if (max_msix_vectors > 0) { 1986 ioc->reply_queue_count = min_t(int, max_msix_vectors, 1987 ioc->reply_queue_count); 1988 ioc->msix_vector_count = ioc->reply_queue_count; 1989 } else if (max_msix_vectors == 0) 1990 goto try_ioapic; 1991 1992 if (ioc->msix_vector_count < ioc->cpu_count) 1993 smp_affinity_enable = 0; 1994 1995 entries = kcalloc(ioc->reply_queue_count, sizeof(struct msix_entry), 1996 GFP_KERNEL); 1997 if (!entries) { 1998 dfailprintk(ioc, pr_info(MPT3SAS_FMT 1999 "kcalloc failed @ at %s:%d/%s() !!!\n", 2000 ioc->name, __FILE__, __LINE__, __func__)); 2001 goto try_ioapic; 2002 } 2003 2004 for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++) 2005 a->entry = i; 2006 2007 r = pci_enable_msix_exact(ioc->pdev, entries, ioc->reply_queue_count); 2008 if (r) { 2009 dfailprintk(ioc, pr_info(MPT3SAS_FMT 2010 "pci_enable_msix_exact failed (r=%d) !!!\n", 2011 ioc->name, r)); 2012 kfree(entries); 2013 goto try_ioapic; 2014 } 2015 2016 ioc->msix_enable = 1; 2017 for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++) { 2018 r = _base_request_irq(ioc, i, a->vector); 2019 if (r) { 2020 _base_free_irq(ioc); 2021 _base_disable_msix(ioc); 2022 kfree(entries); 2023 goto try_ioapic; 2024 } 2025 } 2026 2027 kfree(entries); 2028 return 0; 2029 2030 /* failback to io_apic interrupt routing */ 2031 try_ioapic: 2032 2033 ioc->reply_queue_count = 1; 2034 r = _base_request_irq(ioc, 0, ioc->pdev->irq); 2035 2036 return r; 2037 } 2038 2039 /** 2040 * mpt3sas_base_unmap_resources - free controller resources 2041 * @ioc: per adapter object 2042 */ 2043 void 2044 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc) 2045 { 2046 struct pci_dev *pdev = ioc->pdev; 2047 2048 dexitprintk(ioc, printk(MPT3SAS_FMT "%s\n", 2049 ioc->name, __func__)); 2050 2051 _base_free_irq(ioc); 2052 _base_disable_msix(ioc); 2053 2054 if (ioc->msix96_vector) { 2055 kfree(ioc->replyPostRegisterIndex); 2056 ioc->replyPostRegisterIndex = NULL; 2057 } 2058 2059 if (ioc->chip_phys) { 2060 iounmap(ioc->chip); 2061 ioc->chip_phys = 0; 2062 } 2063 2064 if (pci_is_enabled(pdev)) { 2065 pci_release_selected_regions(ioc->pdev, ioc->bars); 2066 pci_disable_pcie_error_reporting(pdev); 2067 pci_disable_device(pdev); 2068 } 2069 } 2070 2071 /** 2072 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap) 2073 * @ioc: per adapter object 2074 * 2075 * Returns 0 for success, non-zero for failure. 2076 */ 2077 int 2078 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc) 2079 { 2080 struct pci_dev *pdev = ioc->pdev; 2081 u32 memap_sz; 2082 u32 pio_sz; 2083 int i, r = 0; 2084 u64 pio_chip = 0; 2085 u64 chip_phys = 0; 2086 struct adapter_reply_queue *reply_q; 2087 2088 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", 2089 ioc->name, __func__)); 2090 2091 ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM); 2092 if (pci_enable_device_mem(pdev)) { 2093 pr_warn(MPT3SAS_FMT "pci_enable_device_mem: failed\n", 2094 ioc->name); 2095 ioc->bars = 0; 2096 return -ENODEV; 2097 } 2098 2099 2100 if (pci_request_selected_regions(pdev, ioc->bars, 2101 ioc->driver_name)) { 2102 pr_warn(MPT3SAS_FMT "pci_request_selected_regions: failed\n", 2103 ioc->name); 2104 ioc->bars = 0; 2105 r = -ENODEV; 2106 goto out_fail; 2107 } 2108 2109 /* AER (Advanced Error Reporting) hooks */ 2110 pci_enable_pcie_error_reporting(pdev); 2111 2112 pci_set_master(pdev); 2113 2114 2115 if (_base_config_dma_addressing(ioc, pdev) != 0) { 2116 pr_warn(MPT3SAS_FMT "no suitable DMA mask for %s\n", 2117 ioc->name, pci_name(pdev)); 2118 r = -ENODEV; 2119 goto out_fail; 2120 } 2121 2122 for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) && 2123 (!memap_sz || !pio_sz); i++) { 2124 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { 2125 if (pio_sz) 2126 continue; 2127 pio_chip = (u64)pci_resource_start(pdev, i); 2128 pio_sz = pci_resource_len(pdev, i); 2129 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) { 2130 if (memap_sz) 2131 continue; 2132 ioc->chip_phys = pci_resource_start(pdev, i); 2133 chip_phys = (u64)ioc->chip_phys; 2134 memap_sz = pci_resource_len(pdev, i); 2135 ioc->chip = ioremap(ioc->chip_phys, memap_sz); 2136 } 2137 } 2138 2139 if (ioc->chip == NULL) { 2140 pr_err(MPT3SAS_FMT "unable to map adapter memory! " 2141 " or resource not found\n", ioc->name); 2142 r = -EINVAL; 2143 goto out_fail; 2144 } 2145 2146 _base_mask_interrupts(ioc); 2147 2148 r = _base_get_ioc_facts(ioc, CAN_SLEEP); 2149 if (r) 2150 goto out_fail; 2151 2152 if (!ioc->rdpq_array_enable_assigned) { 2153 ioc->rdpq_array_enable = ioc->rdpq_array_capable; 2154 ioc->rdpq_array_enable_assigned = 1; 2155 } 2156 2157 r = _base_enable_msix(ioc); 2158 if (r) 2159 goto out_fail; 2160 2161 /* Use the Combined reply queue feature only for SAS3 C0 & higher 2162 * revision HBAs and also only when reply queue count is greater than 8 2163 */ 2164 if (ioc->msix96_vector && ioc->reply_queue_count > 8) { 2165 /* Determine the Supplemental Reply Post Host Index Registers 2166 * Addresse. Supplemental Reply Post Host Index Registers 2167 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and 2168 * each register is at offset bytes of 2169 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one. 2170 */ 2171 ioc->replyPostRegisterIndex = kcalloc( 2172 MPT3_SUP_REPLY_POST_HOST_INDEX_REG_COUNT, 2173 sizeof(resource_size_t *), GFP_KERNEL); 2174 if (!ioc->replyPostRegisterIndex) { 2175 dfailprintk(ioc, printk(MPT3SAS_FMT 2176 "allocation for reply Post Register Index failed!!!\n", 2177 ioc->name)); 2178 r = -ENOMEM; 2179 goto out_fail; 2180 } 2181 2182 for (i = 0; i < MPT3_SUP_REPLY_POST_HOST_INDEX_REG_COUNT; i++) { 2183 ioc->replyPostRegisterIndex[i] = (resource_size_t *) 2184 ((u8 *)&ioc->chip->Doorbell + 2185 MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET + 2186 (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET)); 2187 } 2188 } else 2189 ioc->msix96_vector = 0; 2190 2191 if (ioc->is_warpdrive) { 2192 ioc->reply_post_host_index[0] = (resource_size_t __iomem *) 2193 &ioc->chip->ReplyPostHostIndex; 2194 2195 for (i = 1; i < ioc->cpu_msix_table_sz; i++) 2196 ioc->reply_post_host_index[i] = 2197 (resource_size_t __iomem *) 2198 ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1) 2199 * 4))); 2200 } 2201 2202 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) 2203 pr_info(MPT3SAS_FMT "%s: IRQ %d\n", 2204 reply_q->name, ((ioc->msix_enable) ? "PCI-MSI-X enabled" : 2205 "IO-APIC enabled"), reply_q->vector); 2206 2207 pr_info(MPT3SAS_FMT "iomem(0x%016llx), mapped(0x%p), size(%d)\n", 2208 ioc->name, (unsigned long long)chip_phys, ioc->chip, memap_sz); 2209 pr_info(MPT3SAS_FMT "ioport(0x%016llx), size(%d)\n", 2210 ioc->name, (unsigned long long)pio_chip, pio_sz); 2211 2212 /* Save PCI configuration state for recovery from PCI AER/EEH errors */ 2213 pci_save_state(pdev); 2214 return 0; 2215 2216 out_fail: 2217 mpt3sas_base_unmap_resources(ioc); 2218 return r; 2219 } 2220 2221 /** 2222 * mpt3sas_base_get_msg_frame - obtain request mf pointer 2223 * @ioc: per adapter object 2224 * @smid: system request message index(smid zero is invalid) 2225 * 2226 * Returns virt pointer to message frame. 2227 */ 2228 void * 2229 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid) 2230 { 2231 return (void *)(ioc->request + (smid * ioc->request_sz)); 2232 } 2233 2234 /** 2235 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr 2236 * @ioc: per adapter object 2237 * @smid: system request message index 2238 * 2239 * Returns virt pointer to sense buffer. 2240 */ 2241 void * 2242 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid) 2243 { 2244 return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE)); 2245 } 2246 2247 /** 2248 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr 2249 * @ioc: per adapter object 2250 * @smid: system request message index 2251 * 2252 * Returns phys pointer to the low 32bit address of the sense buffer. 2253 */ 2254 __le32 2255 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid) 2256 { 2257 return cpu_to_le32(ioc->sense_dma + ((smid - 1) * 2258 SCSI_SENSE_BUFFERSIZE)); 2259 } 2260 2261 /** 2262 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address 2263 * @ioc: per adapter object 2264 * @phys_addr: lower 32 physical addr of the reply 2265 * 2266 * Converts 32bit lower physical addr into a virt address. 2267 */ 2268 void * 2269 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr) 2270 { 2271 if (!phys_addr) 2272 return NULL; 2273 return ioc->reply + (phys_addr - (u32)ioc->reply_dma); 2274 } 2275 2276 static inline u8 2277 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc) 2278 { 2279 return ioc->cpu_msix_table[raw_smp_processor_id()]; 2280 } 2281 2282 /** 2283 * mpt3sas_base_get_smid - obtain a free smid from internal queue 2284 * @ioc: per adapter object 2285 * @cb_idx: callback index 2286 * 2287 * Returns smid (zero is invalid) 2288 */ 2289 u16 2290 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx) 2291 { 2292 unsigned long flags; 2293 struct request_tracker *request; 2294 u16 smid; 2295 2296 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 2297 if (list_empty(&ioc->internal_free_list)) { 2298 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 2299 pr_err(MPT3SAS_FMT "%s: smid not available\n", 2300 ioc->name, __func__); 2301 return 0; 2302 } 2303 2304 request = list_entry(ioc->internal_free_list.next, 2305 struct request_tracker, tracker_list); 2306 request->cb_idx = cb_idx; 2307 smid = request->smid; 2308 list_del(&request->tracker_list); 2309 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 2310 return smid; 2311 } 2312 2313 /** 2314 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue 2315 * @ioc: per adapter object 2316 * @cb_idx: callback index 2317 * @scmd: pointer to scsi command object 2318 * 2319 * Returns smid (zero is invalid) 2320 */ 2321 u16 2322 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx, 2323 struct scsi_cmnd *scmd) 2324 { 2325 unsigned long flags; 2326 struct scsiio_tracker *request; 2327 u16 smid; 2328 2329 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 2330 if (list_empty(&ioc->free_list)) { 2331 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 2332 pr_err(MPT3SAS_FMT "%s: smid not available\n", 2333 ioc->name, __func__); 2334 return 0; 2335 } 2336 2337 request = list_entry(ioc->free_list.next, 2338 struct scsiio_tracker, tracker_list); 2339 request->scmd = scmd; 2340 request->cb_idx = cb_idx; 2341 smid = request->smid; 2342 request->msix_io = _base_get_msix_index(ioc); 2343 list_del(&request->tracker_list); 2344 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 2345 return smid; 2346 } 2347 2348 /** 2349 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue 2350 * @ioc: per adapter object 2351 * @cb_idx: callback index 2352 * 2353 * Returns smid (zero is invalid) 2354 */ 2355 u16 2356 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx) 2357 { 2358 unsigned long flags; 2359 struct request_tracker *request; 2360 u16 smid; 2361 2362 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 2363 if (list_empty(&ioc->hpr_free_list)) { 2364 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 2365 return 0; 2366 } 2367 2368 request = list_entry(ioc->hpr_free_list.next, 2369 struct request_tracker, tracker_list); 2370 request->cb_idx = cb_idx; 2371 smid = request->smid; 2372 list_del(&request->tracker_list); 2373 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 2374 return smid; 2375 } 2376 2377 /** 2378 * mpt3sas_base_free_smid - put smid back on free_list 2379 * @ioc: per adapter object 2380 * @smid: system request message index 2381 * 2382 * Return nothing. 2383 */ 2384 void 2385 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid) 2386 { 2387 unsigned long flags; 2388 int i; 2389 struct chain_tracker *chain_req, *next; 2390 2391 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 2392 if (smid < ioc->hi_priority_smid) { 2393 /* scsiio queue */ 2394 i = smid - 1; 2395 if (!list_empty(&ioc->scsi_lookup[i].chain_list)) { 2396 list_for_each_entry_safe(chain_req, next, 2397 &ioc->scsi_lookup[i].chain_list, tracker_list) { 2398 list_del_init(&chain_req->tracker_list); 2399 list_add(&chain_req->tracker_list, 2400 &ioc->free_chain_list); 2401 } 2402 } 2403 ioc->scsi_lookup[i].cb_idx = 0xFF; 2404 ioc->scsi_lookup[i].scmd = NULL; 2405 ioc->scsi_lookup[i].direct_io = 0; 2406 list_add(&ioc->scsi_lookup[i].tracker_list, &ioc->free_list); 2407 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 2408 2409 /* 2410 * See _wait_for_commands_to_complete() call with regards 2411 * to this code. 2412 */ 2413 if (ioc->shost_recovery && ioc->pending_io_count) { 2414 if (ioc->pending_io_count == 1) 2415 wake_up(&ioc->reset_wq); 2416 ioc->pending_io_count--; 2417 } 2418 return; 2419 } else if (smid < ioc->internal_smid) { 2420 /* hi-priority */ 2421 i = smid - ioc->hi_priority_smid; 2422 ioc->hpr_lookup[i].cb_idx = 0xFF; 2423 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list); 2424 } else if (smid <= ioc->hba_queue_depth) { 2425 /* internal queue */ 2426 i = smid - ioc->internal_smid; 2427 ioc->internal_lookup[i].cb_idx = 0xFF; 2428 list_add(&ioc->internal_lookup[i].tracker_list, 2429 &ioc->internal_free_list); 2430 } 2431 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 2432 } 2433 2434 /** 2435 * _base_writeq - 64 bit write to MMIO 2436 * @ioc: per adapter object 2437 * @b: data payload 2438 * @addr: address in MMIO space 2439 * @writeq_lock: spin lock 2440 * 2441 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes 2442 * care of 32 bit environment where its not quarenteed to send the entire word 2443 * in one transfer. 2444 */ 2445 #if defined(writeq) && defined(CONFIG_64BIT) 2446 static inline void 2447 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock) 2448 { 2449 writeq(cpu_to_le64(b), addr); 2450 } 2451 #else 2452 static inline void 2453 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock) 2454 { 2455 unsigned long flags; 2456 __u64 data_out = cpu_to_le64(b); 2457 2458 spin_lock_irqsave(writeq_lock, flags); 2459 writel((u32)(data_out), addr); 2460 writel((u32)(data_out >> 32), (addr + 4)); 2461 spin_unlock_irqrestore(writeq_lock, flags); 2462 } 2463 #endif 2464 2465 /** 2466 * mpt3sas_base_put_smid_scsi_io - send SCSI_IO request to firmware 2467 * @ioc: per adapter object 2468 * @smid: system request message index 2469 * @handle: device handle 2470 * 2471 * Return nothing. 2472 */ 2473 void 2474 mpt3sas_base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle) 2475 { 2476 Mpi2RequestDescriptorUnion_t descriptor; 2477 u64 *request = (u64 *)&descriptor; 2478 2479 2480 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 2481 descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc); 2482 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 2483 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 2484 descriptor.SCSIIO.LMID = 0; 2485 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 2486 &ioc->scsi_lookup_lock); 2487 } 2488 2489 /** 2490 * mpt3sas_base_put_smid_fast_path - send fast path request to firmware 2491 * @ioc: per adapter object 2492 * @smid: system request message index 2493 * @handle: device handle 2494 * 2495 * Return nothing. 2496 */ 2497 void 2498 mpt3sas_base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid, 2499 u16 handle) 2500 { 2501 Mpi2RequestDescriptorUnion_t descriptor; 2502 u64 *request = (u64 *)&descriptor; 2503 2504 descriptor.SCSIIO.RequestFlags = 2505 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 2506 descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc); 2507 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 2508 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 2509 descriptor.SCSIIO.LMID = 0; 2510 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 2511 &ioc->scsi_lookup_lock); 2512 } 2513 2514 /** 2515 * mpt3sas_base_put_smid_hi_priority - send Task Managment request to firmware 2516 * @ioc: per adapter object 2517 * @smid: system request message index 2518 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0. 2519 * Return nothing. 2520 */ 2521 void 2522 mpt3sas_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid, 2523 u16 msix_task) 2524 { 2525 Mpi2RequestDescriptorUnion_t descriptor; 2526 u64 *request = (u64 *)&descriptor; 2527 2528 descriptor.HighPriority.RequestFlags = 2529 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 2530 descriptor.HighPriority.MSIxIndex = msix_task; 2531 descriptor.HighPriority.SMID = cpu_to_le16(smid); 2532 descriptor.HighPriority.LMID = 0; 2533 descriptor.HighPriority.Reserved1 = 0; 2534 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 2535 &ioc->scsi_lookup_lock); 2536 } 2537 2538 /** 2539 * mpt3sas_base_put_smid_default - Default, primarily used for config pages 2540 * @ioc: per adapter object 2541 * @smid: system request message index 2542 * 2543 * Return nothing. 2544 */ 2545 void 2546 mpt3sas_base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid) 2547 { 2548 Mpi2RequestDescriptorUnion_t descriptor; 2549 u64 *request = (u64 *)&descriptor; 2550 2551 descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 2552 descriptor.Default.MSIxIndex = _base_get_msix_index(ioc); 2553 descriptor.Default.SMID = cpu_to_le16(smid); 2554 descriptor.Default.LMID = 0; 2555 descriptor.Default.DescriptorTypeDependent = 0; 2556 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 2557 &ioc->scsi_lookup_lock); 2558 } 2559 2560 /** 2561 * _base_display_OEMs_branding - Display branding string 2562 * @ioc: per adapter object 2563 * 2564 * Return nothing. 2565 */ 2566 static void 2567 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc) 2568 { 2569 if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL) 2570 return; 2571 2572 switch (ioc->pdev->subsystem_vendor) { 2573 case PCI_VENDOR_ID_INTEL: 2574 switch (ioc->pdev->device) { 2575 case MPI2_MFGPAGE_DEVID_SAS2008: 2576 switch (ioc->pdev->subsystem_device) { 2577 case MPT2SAS_INTEL_RMS2LL080_SSDID: 2578 pr_info(MPT3SAS_FMT "%s\n", ioc->name, 2579 MPT2SAS_INTEL_RMS2LL080_BRANDING); 2580 break; 2581 case MPT2SAS_INTEL_RMS2LL040_SSDID: 2582 pr_info(MPT3SAS_FMT "%s\n", ioc->name, 2583 MPT2SAS_INTEL_RMS2LL040_BRANDING); 2584 break; 2585 case MPT2SAS_INTEL_SSD910_SSDID: 2586 pr_info(MPT3SAS_FMT "%s\n", ioc->name, 2587 MPT2SAS_INTEL_SSD910_BRANDING); 2588 break; 2589 default: 2590 pr_info(MPT3SAS_FMT 2591 "Intel(R) Controller: Subsystem ID: 0x%X\n", 2592 ioc->name, ioc->pdev->subsystem_device); 2593 break; 2594 } 2595 case MPI2_MFGPAGE_DEVID_SAS2308_2: 2596 switch (ioc->pdev->subsystem_device) { 2597 case MPT2SAS_INTEL_RS25GB008_SSDID: 2598 pr_info(MPT3SAS_FMT "%s\n", ioc->name, 2599 MPT2SAS_INTEL_RS25GB008_BRANDING); 2600 break; 2601 case MPT2SAS_INTEL_RMS25JB080_SSDID: 2602 pr_info(MPT3SAS_FMT "%s\n", ioc->name, 2603 MPT2SAS_INTEL_RMS25JB080_BRANDING); 2604 break; 2605 case MPT2SAS_INTEL_RMS25JB040_SSDID: 2606 pr_info(MPT3SAS_FMT "%s\n", ioc->name, 2607 MPT2SAS_INTEL_RMS25JB040_BRANDING); 2608 break; 2609 case MPT2SAS_INTEL_RMS25KB080_SSDID: 2610 pr_info(MPT3SAS_FMT "%s\n", ioc->name, 2611 MPT2SAS_INTEL_RMS25KB080_BRANDING); 2612 break; 2613 case MPT2SAS_INTEL_RMS25KB040_SSDID: 2614 pr_info(MPT3SAS_FMT "%s\n", ioc->name, 2615 MPT2SAS_INTEL_RMS25KB040_BRANDING); 2616 break; 2617 case MPT2SAS_INTEL_RMS25LB040_SSDID: 2618 pr_info(MPT3SAS_FMT "%s\n", ioc->name, 2619 MPT2SAS_INTEL_RMS25LB040_BRANDING); 2620 break; 2621 case MPT2SAS_INTEL_RMS25LB080_SSDID: 2622 pr_info(MPT3SAS_FMT "%s\n", ioc->name, 2623 MPT2SAS_INTEL_RMS25LB080_BRANDING); 2624 break; 2625 default: 2626 pr_info(MPT3SAS_FMT 2627 "Intel(R) Controller: Subsystem ID: 0x%X\n", 2628 ioc->name, ioc->pdev->subsystem_device); 2629 break; 2630 } 2631 case MPI25_MFGPAGE_DEVID_SAS3008: 2632 switch (ioc->pdev->subsystem_device) { 2633 case MPT3SAS_INTEL_RMS3JC080_SSDID: 2634 pr_info(MPT3SAS_FMT "%s\n", ioc->name, 2635 MPT3SAS_INTEL_RMS3JC080_BRANDING); 2636 break; 2637 2638 case MPT3SAS_INTEL_RS3GC008_SSDID: 2639 pr_info(MPT3SAS_FMT "%s\n", ioc->name, 2640 MPT3SAS_INTEL_RS3GC008_BRANDING); 2641 break; 2642 case MPT3SAS_INTEL_RS3FC044_SSDID: 2643 pr_info(MPT3SAS_FMT "%s\n", ioc->name, 2644 MPT3SAS_INTEL_RS3FC044_BRANDING); 2645 break; 2646 case MPT3SAS_INTEL_RS3UC080_SSDID: 2647 pr_info(MPT3SAS_FMT "%s\n", ioc->name, 2648 MPT3SAS_INTEL_RS3UC080_BRANDING); 2649 break; 2650 default: 2651 pr_info(MPT3SAS_FMT 2652 "Intel(R) Controller: Subsystem ID: 0x%X\n", 2653 ioc->name, ioc->pdev->subsystem_device); 2654 break; 2655 } 2656 break; 2657 default: 2658 pr_info(MPT3SAS_FMT 2659 "Intel(R) Controller: Subsystem ID: 0x%X\n", 2660 ioc->name, ioc->pdev->subsystem_device); 2661 break; 2662 } 2663 break; 2664 case PCI_VENDOR_ID_DELL: 2665 switch (ioc->pdev->device) { 2666 case MPI2_MFGPAGE_DEVID_SAS2008: 2667 switch (ioc->pdev->subsystem_device) { 2668 case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID: 2669 pr_info(MPT3SAS_FMT "%s\n", ioc->name, 2670 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING); 2671 break; 2672 case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID: 2673 pr_info(MPT3SAS_FMT "%s\n", ioc->name, 2674 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING); 2675 break; 2676 case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID: 2677 pr_info(MPT3SAS_FMT "%s\n", ioc->name, 2678 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING); 2679 break; 2680 case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID: 2681 pr_info(MPT3SAS_FMT "%s\n", ioc->name, 2682 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING); 2683 break; 2684 case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID: 2685 pr_info(MPT3SAS_FMT "%s\n", ioc->name, 2686 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING); 2687 break; 2688 case MPT2SAS_DELL_PERC_H200_SSDID: 2689 pr_info(MPT3SAS_FMT "%s\n", ioc->name, 2690 MPT2SAS_DELL_PERC_H200_BRANDING); 2691 break; 2692 case MPT2SAS_DELL_6GBPS_SAS_SSDID: 2693 pr_info(MPT3SAS_FMT "%s\n", ioc->name, 2694 MPT2SAS_DELL_6GBPS_SAS_BRANDING); 2695 break; 2696 default: 2697 pr_info(MPT3SAS_FMT 2698 "Dell 6Gbps HBA: Subsystem ID: 0x%X\n", 2699 ioc->name, ioc->pdev->subsystem_device); 2700 break; 2701 } 2702 break; 2703 case MPI25_MFGPAGE_DEVID_SAS3008: 2704 switch (ioc->pdev->subsystem_device) { 2705 case MPT3SAS_DELL_12G_HBA_SSDID: 2706 pr_info(MPT3SAS_FMT "%s\n", ioc->name, 2707 MPT3SAS_DELL_12G_HBA_BRANDING); 2708 break; 2709 default: 2710 pr_info(MPT3SAS_FMT 2711 "Dell 12Gbps HBA: Subsystem ID: 0x%X\n", 2712 ioc->name, ioc->pdev->subsystem_device); 2713 break; 2714 } 2715 break; 2716 default: 2717 pr_info(MPT3SAS_FMT 2718 "Dell HBA: Subsystem ID: 0x%X\n", ioc->name, 2719 ioc->pdev->subsystem_device); 2720 break; 2721 } 2722 break; 2723 case PCI_VENDOR_ID_CISCO: 2724 switch (ioc->pdev->device) { 2725 case MPI25_MFGPAGE_DEVID_SAS3008: 2726 switch (ioc->pdev->subsystem_device) { 2727 case MPT3SAS_CISCO_12G_8E_HBA_SSDID: 2728 pr_info(MPT3SAS_FMT "%s\n", ioc->name, 2729 MPT3SAS_CISCO_12G_8E_HBA_BRANDING); 2730 break; 2731 case MPT3SAS_CISCO_12G_8I_HBA_SSDID: 2732 pr_info(MPT3SAS_FMT "%s\n", ioc->name, 2733 MPT3SAS_CISCO_12G_8I_HBA_BRANDING); 2734 break; 2735 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID: 2736 pr_info(MPT3SAS_FMT "%s\n", ioc->name, 2737 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING); 2738 break; 2739 default: 2740 pr_info(MPT3SAS_FMT 2741 "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n", 2742 ioc->name, ioc->pdev->subsystem_device); 2743 break; 2744 } 2745 break; 2746 case MPI25_MFGPAGE_DEVID_SAS3108_1: 2747 switch (ioc->pdev->subsystem_device) { 2748 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID: 2749 pr_info(MPT3SAS_FMT "%s\n", ioc->name, 2750 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING); 2751 break; 2752 case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID: 2753 pr_info(MPT3SAS_FMT "%s\n", ioc->name, 2754 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING 2755 ); 2756 break; 2757 default: 2758 pr_info(MPT3SAS_FMT 2759 "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n", 2760 ioc->name, ioc->pdev->subsystem_device); 2761 break; 2762 } 2763 break; 2764 default: 2765 pr_info(MPT3SAS_FMT 2766 "Cisco SAS HBA: Subsystem ID: 0x%X\n", 2767 ioc->name, ioc->pdev->subsystem_device); 2768 break; 2769 } 2770 break; 2771 case MPT2SAS_HP_3PAR_SSVID: 2772 switch (ioc->pdev->device) { 2773 case MPI2_MFGPAGE_DEVID_SAS2004: 2774 switch (ioc->pdev->subsystem_device) { 2775 case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID: 2776 pr_info(MPT3SAS_FMT "%s\n", ioc->name, 2777 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING); 2778 break; 2779 default: 2780 pr_info(MPT3SAS_FMT 2781 "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n", 2782 ioc->name, ioc->pdev->subsystem_device); 2783 break; 2784 } 2785 case MPI2_MFGPAGE_DEVID_SAS2308_2: 2786 switch (ioc->pdev->subsystem_device) { 2787 case MPT2SAS_HP_2_4_INTERNAL_SSDID: 2788 pr_info(MPT3SAS_FMT "%s\n", ioc->name, 2789 MPT2SAS_HP_2_4_INTERNAL_BRANDING); 2790 break; 2791 case MPT2SAS_HP_2_4_EXTERNAL_SSDID: 2792 pr_info(MPT3SAS_FMT "%s\n", ioc->name, 2793 MPT2SAS_HP_2_4_EXTERNAL_BRANDING); 2794 break; 2795 case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID: 2796 pr_info(MPT3SAS_FMT "%s\n", ioc->name, 2797 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING); 2798 break; 2799 case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID: 2800 pr_info(MPT3SAS_FMT "%s\n", ioc->name, 2801 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING); 2802 break; 2803 default: 2804 pr_info(MPT3SAS_FMT 2805 "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n", 2806 ioc->name, ioc->pdev->subsystem_device); 2807 break; 2808 } 2809 default: 2810 pr_info(MPT3SAS_FMT 2811 "HP SAS HBA: Subsystem ID: 0x%X\n", 2812 ioc->name, ioc->pdev->subsystem_device); 2813 break; 2814 } 2815 default: 2816 break; 2817 } 2818 } 2819 2820 /** 2821 * _base_display_ioc_capabilities - Disply IOC's capabilities. 2822 * @ioc: per adapter object 2823 * 2824 * Return nothing. 2825 */ 2826 static void 2827 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc) 2828 { 2829 int i = 0; 2830 char desc[16]; 2831 u32 iounit_pg1_flags; 2832 u32 bios_version; 2833 2834 bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion); 2835 strncpy(desc, ioc->manu_pg0.ChipName, 16); 2836 pr_info(MPT3SAS_FMT "%s: FWVersion(%02d.%02d.%02d.%02d), "\ 2837 "ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n", 2838 ioc->name, desc, 2839 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24, 2840 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16, 2841 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8, 2842 ioc->facts.FWVersion.Word & 0x000000FF, 2843 ioc->pdev->revision, 2844 (bios_version & 0xFF000000) >> 24, 2845 (bios_version & 0x00FF0000) >> 16, 2846 (bios_version & 0x0000FF00) >> 8, 2847 bios_version & 0x000000FF); 2848 2849 _base_display_OEMs_branding(ioc); 2850 2851 pr_info(MPT3SAS_FMT "Protocol=(", ioc->name); 2852 2853 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) { 2854 pr_info("Initiator"); 2855 i++; 2856 } 2857 2858 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) { 2859 pr_info("%sTarget", i ? "," : ""); 2860 i++; 2861 } 2862 2863 i = 0; 2864 pr_info("), "); 2865 pr_info("Capabilities=("); 2866 2867 if (!ioc->hide_ir_msg) { 2868 if (ioc->facts.IOCCapabilities & 2869 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) { 2870 pr_info("Raid"); 2871 i++; 2872 } 2873 } 2874 2875 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) { 2876 pr_info("%sTLR", i ? "," : ""); 2877 i++; 2878 } 2879 2880 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) { 2881 pr_info("%sMulticast", i ? "," : ""); 2882 i++; 2883 } 2884 2885 if (ioc->facts.IOCCapabilities & 2886 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) { 2887 pr_info("%sBIDI Target", i ? "," : ""); 2888 i++; 2889 } 2890 2891 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) { 2892 pr_info("%sEEDP", i ? "," : ""); 2893 i++; 2894 } 2895 2896 if (ioc->facts.IOCCapabilities & 2897 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) { 2898 pr_info("%sSnapshot Buffer", i ? "," : ""); 2899 i++; 2900 } 2901 2902 if (ioc->facts.IOCCapabilities & 2903 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) { 2904 pr_info("%sDiag Trace Buffer", i ? "," : ""); 2905 i++; 2906 } 2907 2908 if (ioc->facts.IOCCapabilities & 2909 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) { 2910 pr_info("%sDiag Extended Buffer", i ? "," : ""); 2911 i++; 2912 } 2913 2914 if (ioc->facts.IOCCapabilities & 2915 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) { 2916 pr_info("%sTask Set Full", i ? "," : ""); 2917 i++; 2918 } 2919 2920 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags); 2921 if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) { 2922 pr_info("%sNCQ", i ? "," : ""); 2923 i++; 2924 } 2925 2926 pr_info(")\n"); 2927 } 2928 2929 /** 2930 * mpt3sas_base_update_missing_delay - change the missing delay timers 2931 * @ioc: per adapter object 2932 * @device_missing_delay: amount of time till device is reported missing 2933 * @io_missing_delay: interval IO is returned when there is a missing device 2934 * 2935 * Return nothing. 2936 * 2937 * Passed on the command line, this function will modify the device missing 2938 * delay, as well as the io missing delay. This should be called at driver 2939 * load time. 2940 */ 2941 void 2942 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc, 2943 u16 device_missing_delay, u8 io_missing_delay) 2944 { 2945 u16 dmd, dmd_new, dmd_orignal; 2946 u8 io_missing_delay_original; 2947 u16 sz; 2948 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL; 2949 Mpi2ConfigReply_t mpi_reply; 2950 u8 num_phys = 0; 2951 u16 ioc_status; 2952 2953 mpt3sas_config_get_number_hba_phys(ioc, &num_phys); 2954 if (!num_phys) 2955 return; 2956 2957 sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys * 2958 sizeof(Mpi2SasIOUnit1PhyData_t)); 2959 sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL); 2960 if (!sas_iounit_pg1) { 2961 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n", 2962 ioc->name, __FILE__, __LINE__, __func__); 2963 goto out; 2964 } 2965 if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply, 2966 sas_iounit_pg1, sz))) { 2967 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n", 2968 ioc->name, __FILE__, __LINE__, __func__); 2969 goto out; 2970 } 2971 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 2972 MPI2_IOCSTATUS_MASK; 2973 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 2974 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n", 2975 ioc->name, __FILE__, __LINE__, __func__); 2976 goto out; 2977 } 2978 2979 /* device missing delay */ 2980 dmd = sas_iounit_pg1->ReportDeviceMissingDelay; 2981 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16) 2982 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16; 2983 else 2984 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK; 2985 dmd_orignal = dmd; 2986 if (device_missing_delay > 0x7F) { 2987 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 : 2988 device_missing_delay; 2989 dmd = dmd / 16; 2990 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16; 2991 } else 2992 dmd = device_missing_delay; 2993 sas_iounit_pg1->ReportDeviceMissingDelay = dmd; 2994 2995 /* io missing delay */ 2996 io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay; 2997 sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay; 2998 2999 if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1, 3000 sz)) { 3001 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16) 3002 dmd_new = (dmd & 3003 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16; 3004 else 3005 dmd_new = 3006 dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK; 3007 pr_info(MPT3SAS_FMT "device_missing_delay: old(%d), new(%d)\n", 3008 ioc->name, dmd_orignal, dmd_new); 3009 pr_info(MPT3SAS_FMT "ioc_missing_delay: old(%d), new(%d)\n", 3010 ioc->name, io_missing_delay_original, 3011 io_missing_delay); 3012 ioc->device_missing_delay = dmd_new; 3013 ioc->io_missing_delay = io_missing_delay; 3014 } 3015 3016 out: 3017 kfree(sas_iounit_pg1); 3018 } 3019 /** 3020 * _base_static_config_pages - static start of day config pages 3021 * @ioc: per adapter object 3022 * 3023 * Return nothing. 3024 */ 3025 static void 3026 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc) 3027 { 3028 Mpi2ConfigReply_t mpi_reply; 3029 u32 iounit_pg1_flags; 3030 3031 mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0); 3032 if (ioc->ir_firmware) 3033 mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply, 3034 &ioc->manu_pg10); 3035 3036 /* 3037 * Ensure correct T10 PI operation if vendor left EEDPTagMode 3038 * flag unset in NVDATA. 3039 */ 3040 mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11); 3041 if (ioc->manu_pg11.EEDPTagMode == 0) { 3042 pr_err("%s: overriding NVDATA EEDPTagMode setting\n", 3043 ioc->name); 3044 ioc->manu_pg11.EEDPTagMode &= ~0x3; 3045 ioc->manu_pg11.EEDPTagMode |= 0x1; 3046 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply, 3047 &ioc->manu_pg11); 3048 } 3049 3050 mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2); 3051 mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3); 3052 mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8); 3053 mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0); 3054 mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1); 3055 mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8); 3056 _base_display_ioc_capabilities(ioc); 3057 3058 /* 3059 * Enable task_set_full handling in iounit_pg1 when the 3060 * facts capabilities indicate that its supported. 3061 */ 3062 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags); 3063 if ((ioc->facts.IOCCapabilities & 3064 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING)) 3065 iounit_pg1_flags &= 3066 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING; 3067 else 3068 iounit_pg1_flags |= 3069 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING; 3070 ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags); 3071 mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1); 3072 3073 if (ioc->iounit_pg8.NumSensors) 3074 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors; 3075 } 3076 3077 /** 3078 * _base_release_memory_pools - release memory 3079 * @ioc: per adapter object 3080 * 3081 * Free memory allocated from _base_allocate_memory_pools. 3082 * 3083 * Return nothing. 3084 */ 3085 static void 3086 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc) 3087 { 3088 int i = 0; 3089 struct reply_post_struct *rps; 3090 3091 dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name, 3092 __func__)); 3093 3094 if (ioc->request) { 3095 pci_free_consistent(ioc->pdev, ioc->request_dma_sz, 3096 ioc->request, ioc->request_dma); 3097 dexitprintk(ioc, pr_info(MPT3SAS_FMT 3098 "request_pool(0x%p): free\n", 3099 ioc->name, ioc->request)); 3100 ioc->request = NULL; 3101 } 3102 3103 if (ioc->sense) { 3104 pci_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma); 3105 if (ioc->sense_dma_pool) 3106 pci_pool_destroy(ioc->sense_dma_pool); 3107 dexitprintk(ioc, pr_info(MPT3SAS_FMT 3108 "sense_pool(0x%p): free\n", 3109 ioc->name, ioc->sense)); 3110 ioc->sense = NULL; 3111 } 3112 3113 if (ioc->reply) { 3114 pci_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma); 3115 if (ioc->reply_dma_pool) 3116 pci_pool_destroy(ioc->reply_dma_pool); 3117 dexitprintk(ioc, pr_info(MPT3SAS_FMT 3118 "reply_pool(0x%p): free\n", 3119 ioc->name, ioc->reply)); 3120 ioc->reply = NULL; 3121 } 3122 3123 if (ioc->reply_free) { 3124 pci_pool_free(ioc->reply_free_dma_pool, ioc->reply_free, 3125 ioc->reply_free_dma); 3126 if (ioc->reply_free_dma_pool) 3127 pci_pool_destroy(ioc->reply_free_dma_pool); 3128 dexitprintk(ioc, pr_info(MPT3SAS_FMT 3129 "reply_free_pool(0x%p): free\n", 3130 ioc->name, ioc->reply_free)); 3131 ioc->reply_free = NULL; 3132 } 3133 3134 if (ioc->reply_post) { 3135 do { 3136 rps = &ioc->reply_post[i]; 3137 if (rps->reply_post_free) { 3138 pci_pool_free( 3139 ioc->reply_post_free_dma_pool, 3140 rps->reply_post_free, 3141 rps->reply_post_free_dma); 3142 dexitprintk(ioc, pr_info(MPT3SAS_FMT 3143 "reply_post_free_pool(0x%p): free\n", 3144 ioc->name, rps->reply_post_free)); 3145 rps->reply_post_free = NULL; 3146 } 3147 } while (ioc->rdpq_array_enable && 3148 (++i < ioc->reply_queue_count)); 3149 3150 if (ioc->reply_post_free_dma_pool) 3151 pci_pool_destroy(ioc->reply_post_free_dma_pool); 3152 kfree(ioc->reply_post); 3153 } 3154 3155 if (ioc->config_page) { 3156 dexitprintk(ioc, pr_info(MPT3SAS_FMT 3157 "config_page(0x%p): free\n", ioc->name, 3158 ioc->config_page)); 3159 pci_free_consistent(ioc->pdev, ioc->config_page_sz, 3160 ioc->config_page, ioc->config_page_dma); 3161 } 3162 3163 if (ioc->scsi_lookup) { 3164 free_pages((ulong)ioc->scsi_lookup, ioc->scsi_lookup_pages); 3165 ioc->scsi_lookup = NULL; 3166 } 3167 kfree(ioc->hpr_lookup); 3168 kfree(ioc->internal_lookup); 3169 if (ioc->chain_lookup) { 3170 for (i = 0; i < ioc->chain_depth; i++) { 3171 if (ioc->chain_lookup[i].chain_buffer) 3172 pci_pool_free(ioc->chain_dma_pool, 3173 ioc->chain_lookup[i].chain_buffer, 3174 ioc->chain_lookup[i].chain_buffer_dma); 3175 } 3176 if (ioc->chain_dma_pool) 3177 pci_pool_destroy(ioc->chain_dma_pool); 3178 free_pages((ulong)ioc->chain_lookup, ioc->chain_pages); 3179 ioc->chain_lookup = NULL; 3180 } 3181 } 3182 3183 /** 3184 * _base_allocate_memory_pools - allocate start of day memory pools 3185 * @ioc: per adapter object 3186 * @sleep_flag: CAN_SLEEP or NO_SLEEP 3187 * 3188 * Returns 0 success, anything else error 3189 */ 3190 static int 3191 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc, int sleep_flag) 3192 { 3193 struct mpt3sas_facts *facts; 3194 u16 max_sge_elements; 3195 u16 chains_needed_per_io; 3196 u32 sz, total_sz, reply_post_free_sz; 3197 u32 retry_sz; 3198 u16 max_request_credit; 3199 unsigned short sg_tablesize; 3200 u16 sge_size; 3201 int i; 3202 3203 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name, 3204 __func__)); 3205 3206 3207 retry_sz = 0; 3208 facts = &ioc->facts; 3209 3210 /* command line tunables for max sgl entries */ 3211 if (max_sgl_entries != -1) 3212 sg_tablesize = max_sgl_entries; 3213 else { 3214 if (ioc->hba_mpi_version_belonged == MPI2_VERSION) 3215 sg_tablesize = MPT2SAS_SG_DEPTH; 3216 else 3217 sg_tablesize = MPT3SAS_SG_DEPTH; 3218 } 3219 3220 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS) 3221 sg_tablesize = MPT_MIN_PHYS_SEGMENTS; 3222 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) { 3223 sg_tablesize = min_t(unsigned short, sg_tablesize, 3224 SG_MAX_SEGMENTS); 3225 pr_warn(MPT3SAS_FMT 3226 "sg_tablesize(%u) is bigger than kernel" 3227 " defined SG_CHUNK_SIZE(%u)\n", ioc->name, 3228 sg_tablesize, MPT_MAX_PHYS_SEGMENTS); 3229 } 3230 ioc->shost->sg_tablesize = sg_tablesize; 3231 3232 ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)), 3233 (facts->RequestCredit / 4)); 3234 if (ioc->internal_depth < INTERNAL_CMDS_COUNT) { 3235 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT + 3236 INTERNAL_SCSIIO_CMDS_COUNT)) { 3237 pr_err(MPT3SAS_FMT "IOC doesn't have enough Request \ 3238 Credits, it has just %d number of credits\n", 3239 ioc->name, facts->RequestCredit); 3240 return -ENOMEM; 3241 } 3242 ioc->internal_depth = 10; 3243 } 3244 3245 ioc->hi_priority_depth = ioc->internal_depth - (5); 3246 /* command line tunables for max controller queue depth */ 3247 if (max_queue_depth != -1 && max_queue_depth != 0) { 3248 max_request_credit = min_t(u16, max_queue_depth + 3249 ioc->internal_depth, facts->RequestCredit); 3250 if (max_request_credit > MAX_HBA_QUEUE_DEPTH) 3251 max_request_credit = MAX_HBA_QUEUE_DEPTH; 3252 } else 3253 max_request_credit = min_t(u16, facts->RequestCredit, 3254 MAX_HBA_QUEUE_DEPTH); 3255 3256 /* Firmware maintains additional facts->HighPriorityCredit number of 3257 * credits for HiPriprity Request messages, so hba queue depth will be 3258 * sum of max_request_credit and high priority queue depth. 3259 */ 3260 ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth; 3261 3262 /* request frame size */ 3263 ioc->request_sz = facts->IOCRequestFrameSize * 4; 3264 3265 /* reply frame size */ 3266 ioc->reply_sz = facts->ReplyFrameSize * 4; 3267 3268 /* chain segment size */ 3269 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 3270 if (facts->IOCMaxChainSegmentSize) 3271 ioc->chain_segment_sz = 3272 facts->IOCMaxChainSegmentSize * 3273 MAX_CHAIN_ELEMT_SZ; 3274 else 3275 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */ 3276 ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS * 3277 MAX_CHAIN_ELEMT_SZ; 3278 } else 3279 ioc->chain_segment_sz = ioc->request_sz; 3280 3281 /* calculate the max scatter element size */ 3282 sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee); 3283 3284 retry_allocation: 3285 total_sz = 0; 3286 /* calculate number of sg elements left over in the 1st frame */ 3287 max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) - 3288 sizeof(Mpi2SGEIOUnion_t)) + sge_size); 3289 ioc->max_sges_in_main_message = max_sge_elements/sge_size; 3290 3291 /* now do the same for a chain buffer */ 3292 max_sge_elements = ioc->chain_segment_sz - sge_size; 3293 ioc->max_sges_in_chain_message = max_sge_elements/sge_size; 3294 3295 /* 3296 * MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE 3297 */ 3298 chains_needed_per_io = ((ioc->shost->sg_tablesize - 3299 ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message) 3300 + 1; 3301 if (chains_needed_per_io > facts->MaxChainDepth) { 3302 chains_needed_per_io = facts->MaxChainDepth; 3303 ioc->shost->sg_tablesize = min_t(u16, 3304 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message 3305 * chains_needed_per_io), ioc->shost->sg_tablesize); 3306 } 3307 ioc->chains_needed_per_io = chains_needed_per_io; 3308 3309 /* reply free queue sizing - taking into account for 64 FW events */ 3310 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64; 3311 3312 /* calculate reply descriptor post queue depth */ 3313 ioc->reply_post_queue_depth = ioc->hba_queue_depth + 3314 ioc->reply_free_queue_depth + 1 ; 3315 /* align the reply post queue on the next 16 count boundary */ 3316 if (ioc->reply_post_queue_depth % 16) 3317 ioc->reply_post_queue_depth += 16 - 3318 (ioc->reply_post_queue_depth % 16); 3319 3320 if (ioc->reply_post_queue_depth > 3321 facts->MaxReplyDescriptorPostQueueDepth) { 3322 ioc->reply_post_queue_depth = 3323 facts->MaxReplyDescriptorPostQueueDepth - 3324 (facts->MaxReplyDescriptorPostQueueDepth % 16); 3325 ioc->hba_queue_depth = 3326 ((ioc->reply_post_queue_depth - 64) / 2) - 1; 3327 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64; 3328 } 3329 3330 dinitprintk(ioc, pr_info(MPT3SAS_FMT "scatter gather: " \ 3331 "sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), " 3332 "chains_per_io(%d)\n", ioc->name, ioc->max_sges_in_main_message, 3333 ioc->max_sges_in_chain_message, ioc->shost->sg_tablesize, 3334 ioc->chains_needed_per_io)); 3335 3336 /* reply post queue, 16 byte align */ 3337 reply_post_free_sz = ioc->reply_post_queue_depth * 3338 sizeof(Mpi2DefaultReplyDescriptor_t); 3339 3340 sz = reply_post_free_sz; 3341 if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable) 3342 sz *= ioc->reply_queue_count; 3343 3344 ioc->reply_post = kcalloc((ioc->rdpq_array_enable) ? 3345 (ioc->reply_queue_count):1, 3346 sizeof(struct reply_post_struct), GFP_KERNEL); 3347 3348 if (!ioc->reply_post) { 3349 pr_err(MPT3SAS_FMT "reply_post_free pool: kcalloc failed\n", 3350 ioc->name); 3351 goto out; 3352 } 3353 ioc->reply_post_free_dma_pool = pci_pool_create("reply_post_free pool", 3354 ioc->pdev, sz, 16, 0); 3355 if (!ioc->reply_post_free_dma_pool) { 3356 pr_err(MPT3SAS_FMT 3357 "reply_post_free pool: pci_pool_create failed\n", 3358 ioc->name); 3359 goto out; 3360 } 3361 i = 0; 3362 do { 3363 ioc->reply_post[i].reply_post_free = 3364 pci_pool_alloc(ioc->reply_post_free_dma_pool, 3365 GFP_KERNEL, 3366 &ioc->reply_post[i].reply_post_free_dma); 3367 if (!ioc->reply_post[i].reply_post_free) { 3368 pr_err(MPT3SAS_FMT 3369 "reply_post_free pool: pci_pool_alloc failed\n", 3370 ioc->name); 3371 goto out; 3372 } 3373 memset(ioc->reply_post[i].reply_post_free, 0, sz); 3374 dinitprintk(ioc, pr_info(MPT3SAS_FMT 3375 "reply post free pool (0x%p): depth(%d)," 3376 "element_size(%d), pool_size(%d kB)\n", ioc->name, 3377 ioc->reply_post[i].reply_post_free, 3378 ioc->reply_post_queue_depth, 8, sz/1024)); 3379 dinitprintk(ioc, pr_info(MPT3SAS_FMT 3380 "reply_post_free_dma = (0x%llx)\n", ioc->name, 3381 (unsigned long long) 3382 ioc->reply_post[i].reply_post_free_dma)); 3383 total_sz += sz; 3384 } while (ioc->rdpq_array_enable && (++i < ioc->reply_queue_count)); 3385 3386 if (ioc->dma_mask == 64) { 3387 if (_base_change_consistent_dma_mask(ioc, ioc->pdev) != 0) { 3388 pr_warn(MPT3SAS_FMT 3389 "no suitable consistent DMA mask for %s\n", 3390 ioc->name, pci_name(ioc->pdev)); 3391 goto out; 3392 } 3393 } 3394 3395 ioc->scsiio_depth = ioc->hba_queue_depth - 3396 ioc->hi_priority_depth - ioc->internal_depth; 3397 3398 /* set the scsi host can_queue depth 3399 * with some internal commands that could be outstanding 3400 */ 3401 ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT; 3402 dinitprintk(ioc, pr_info(MPT3SAS_FMT 3403 "scsi host: can_queue depth (%d)\n", 3404 ioc->name, ioc->shost->can_queue)); 3405 3406 3407 /* contiguous pool for request and chains, 16 byte align, one extra " 3408 * "frame for smid=0 3409 */ 3410 ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth; 3411 sz = ((ioc->scsiio_depth + 1) * ioc->request_sz); 3412 3413 /* hi-priority queue */ 3414 sz += (ioc->hi_priority_depth * ioc->request_sz); 3415 3416 /* internal queue */ 3417 sz += (ioc->internal_depth * ioc->request_sz); 3418 3419 ioc->request_dma_sz = sz; 3420 ioc->request = pci_alloc_consistent(ioc->pdev, sz, &ioc->request_dma); 3421 if (!ioc->request) { 3422 pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \ 3423 "failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), " 3424 "total(%d kB)\n", ioc->name, ioc->hba_queue_depth, 3425 ioc->chains_needed_per_io, ioc->request_sz, sz/1024); 3426 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH) 3427 goto out; 3428 retry_sz = 64; 3429 ioc->hba_queue_depth -= retry_sz; 3430 _base_release_memory_pools(ioc); 3431 goto retry_allocation; 3432 } 3433 3434 if (retry_sz) 3435 pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \ 3436 "succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), " 3437 "total(%d kb)\n", ioc->name, ioc->hba_queue_depth, 3438 ioc->chains_needed_per_io, ioc->request_sz, sz/1024); 3439 3440 /* hi-priority queue */ 3441 ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) * 3442 ioc->request_sz); 3443 ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) * 3444 ioc->request_sz); 3445 3446 /* internal queue */ 3447 ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth * 3448 ioc->request_sz); 3449 ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth * 3450 ioc->request_sz); 3451 3452 dinitprintk(ioc, pr_info(MPT3SAS_FMT 3453 "request pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n", 3454 ioc->name, ioc->request, ioc->hba_queue_depth, ioc->request_sz, 3455 (ioc->hba_queue_depth * ioc->request_sz)/1024)); 3456 3457 dinitprintk(ioc, pr_info(MPT3SAS_FMT "request pool: dma(0x%llx)\n", 3458 ioc->name, (unsigned long long) ioc->request_dma)); 3459 total_sz += sz; 3460 3461 sz = ioc->scsiio_depth * sizeof(struct scsiio_tracker); 3462 ioc->scsi_lookup_pages = get_order(sz); 3463 ioc->scsi_lookup = (struct scsiio_tracker *)__get_free_pages( 3464 GFP_KERNEL, ioc->scsi_lookup_pages); 3465 if (!ioc->scsi_lookup) { 3466 pr_err(MPT3SAS_FMT "scsi_lookup: get_free_pages failed, sz(%d)\n", 3467 ioc->name, (int)sz); 3468 goto out; 3469 } 3470 3471 dinitprintk(ioc, pr_info(MPT3SAS_FMT "scsiio(0x%p): depth(%d)\n", 3472 ioc->name, ioc->request, ioc->scsiio_depth)); 3473 3474 ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH); 3475 sz = ioc->chain_depth * sizeof(struct chain_tracker); 3476 ioc->chain_pages = get_order(sz); 3477 ioc->chain_lookup = (struct chain_tracker *)__get_free_pages( 3478 GFP_KERNEL, ioc->chain_pages); 3479 if (!ioc->chain_lookup) { 3480 pr_err(MPT3SAS_FMT "chain_lookup: __get_free_pages failed\n", 3481 ioc->name); 3482 goto out; 3483 } 3484 ioc->chain_dma_pool = pci_pool_create("chain pool", ioc->pdev, 3485 ioc->chain_segment_sz, 16, 0); 3486 if (!ioc->chain_dma_pool) { 3487 pr_err(MPT3SAS_FMT "chain_dma_pool: pci_pool_create failed\n", 3488 ioc->name); 3489 goto out; 3490 } 3491 for (i = 0; i < ioc->chain_depth; i++) { 3492 ioc->chain_lookup[i].chain_buffer = pci_pool_alloc( 3493 ioc->chain_dma_pool , GFP_KERNEL, 3494 &ioc->chain_lookup[i].chain_buffer_dma); 3495 if (!ioc->chain_lookup[i].chain_buffer) { 3496 ioc->chain_depth = i; 3497 goto chain_done; 3498 } 3499 total_sz += ioc->chain_segment_sz; 3500 } 3501 chain_done: 3502 dinitprintk(ioc, pr_info(MPT3SAS_FMT 3503 "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n", 3504 ioc->name, ioc->chain_depth, ioc->chain_segment_sz, 3505 ((ioc->chain_depth * ioc->chain_segment_sz))/1024)); 3506 3507 /* initialize hi-priority queue smid's */ 3508 ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth, 3509 sizeof(struct request_tracker), GFP_KERNEL); 3510 if (!ioc->hpr_lookup) { 3511 pr_err(MPT3SAS_FMT "hpr_lookup: kcalloc failed\n", 3512 ioc->name); 3513 goto out; 3514 } 3515 ioc->hi_priority_smid = ioc->scsiio_depth + 1; 3516 dinitprintk(ioc, pr_info(MPT3SAS_FMT 3517 "hi_priority(0x%p): depth(%d), start smid(%d)\n", 3518 ioc->name, ioc->hi_priority, 3519 ioc->hi_priority_depth, ioc->hi_priority_smid)); 3520 3521 /* initialize internal queue smid's */ 3522 ioc->internal_lookup = kcalloc(ioc->internal_depth, 3523 sizeof(struct request_tracker), GFP_KERNEL); 3524 if (!ioc->internal_lookup) { 3525 pr_err(MPT3SAS_FMT "internal_lookup: kcalloc failed\n", 3526 ioc->name); 3527 goto out; 3528 } 3529 ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth; 3530 dinitprintk(ioc, pr_info(MPT3SAS_FMT 3531 "internal(0x%p): depth(%d), start smid(%d)\n", 3532 ioc->name, ioc->internal, 3533 ioc->internal_depth, ioc->internal_smid)); 3534 3535 /* sense buffers, 4 byte align */ 3536 sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE; 3537 ioc->sense_dma_pool = pci_pool_create("sense pool", ioc->pdev, sz, 4, 3538 0); 3539 if (!ioc->sense_dma_pool) { 3540 pr_err(MPT3SAS_FMT "sense pool: pci_pool_create failed\n", 3541 ioc->name); 3542 goto out; 3543 } 3544 ioc->sense = pci_pool_alloc(ioc->sense_dma_pool , GFP_KERNEL, 3545 &ioc->sense_dma); 3546 if (!ioc->sense) { 3547 pr_err(MPT3SAS_FMT "sense pool: pci_pool_alloc failed\n", 3548 ioc->name); 3549 goto out; 3550 } 3551 dinitprintk(ioc, pr_info(MPT3SAS_FMT 3552 "sense pool(0x%p): depth(%d), element_size(%d), pool_size" 3553 "(%d kB)\n", ioc->name, ioc->sense, ioc->scsiio_depth, 3554 SCSI_SENSE_BUFFERSIZE, sz/1024)); 3555 dinitprintk(ioc, pr_info(MPT3SAS_FMT "sense_dma(0x%llx)\n", 3556 ioc->name, (unsigned long long)ioc->sense_dma)); 3557 total_sz += sz; 3558 3559 /* reply pool, 4 byte align */ 3560 sz = ioc->reply_free_queue_depth * ioc->reply_sz; 3561 ioc->reply_dma_pool = pci_pool_create("reply pool", ioc->pdev, sz, 4, 3562 0); 3563 if (!ioc->reply_dma_pool) { 3564 pr_err(MPT3SAS_FMT "reply pool: pci_pool_create failed\n", 3565 ioc->name); 3566 goto out; 3567 } 3568 ioc->reply = pci_pool_alloc(ioc->reply_dma_pool , GFP_KERNEL, 3569 &ioc->reply_dma); 3570 if (!ioc->reply) { 3571 pr_err(MPT3SAS_FMT "reply pool: pci_pool_alloc failed\n", 3572 ioc->name); 3573 goto out; 3574 } 3575 ioc->reply_dma_min_address = (u32)(ioc->reply_dma); 3576 ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz; 3577 dinitprintk(ioc, pr_info(MPT3SAS_FMT 3578 "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n", 3579 ioc->name, ioc->reply, 3580 ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024)); 3581 dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_dma(0x%llx)\n", 3582 ioc->name, (unsigned long long)ioc->reply_dma)); 3583 total_sz += sz; 3584 3585 /* reply free queue, 16 byte align */ 3586 sz = ioc->reply_free_queue_depth * 4; 3587 ioc->reply_free_dma_pool = pci_pool_create("reply_free pool", 3588 ioc->pdev, sz, 16, 0); 3589 if (!ioc->reply_free_dma_pool) { 3590 pr_err(MPT3SAS_FMT "reply_free pool: pci_pool_create failed\n", 3591 ioc->name); 3592 goto out; 3593 } 3594 ioc->reply_free = pci_pool_alloc(ioc->reply_free_dma_pool , GFP_KERNEL, 3595 &ioc->reply_free_dma); 3596 if (!ioc->reply_free) { 3597 pr_err(MPT3SAS_FMT "reply_free pool: pci_pool_alloc failed\n", 3598 ioc->name); 3599 goto out; 3600 } 3601 memset(ioc->reply_free, 0, sz); 3602 dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_free pool(0x%p): " \ 3603 "depth(%d), element_size(%d), pool_size(%d kB)\n", ioc->name, 3604 ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024)); 3605 dinitprintk(ioc, pr_info(MPT3SAS_FMT 3606 "reply_free_dma (0x%llx)\n", 3607 ioc->name, (unsigned long long)ioc->reply_free_dma)); 3608 total_sz += sz; 3609 3610 ioc->config_page_sz = 512; 3611 ioc->config_page = pci_alloc_consistent(ioc->pdev, 3612 ioc->config_page_sz, &ioc->config_page_dma); 3613 if (!ioc->config_page) { 3614 pr_err(MPT3SAS_FMT 3615 "config page: pci_pool_alloc failed\n", 3616 ioc->name); 3617 goto out; 3618 } 3619 dinitprintk(ioc, pr_info(MPT3SAS_FMT 3620 "config page(0x%p): size(%d)\n", 3621 ioc->name, ioc->config_page, ioc->config_page_sz)); 3622 dinitprintk(ioc, pr_info(MPT3SAS_FMT "config_page_dma(0x%llx)\n", 3623 ioc->name, (unsigned long long)ioc->config_page_dma)); 3624 total_sz += ioc->config_page_sz; 3625 3626 pr_info(MPT3SAS_FMT "Allocated physical memory: size(%d kB)\n", 3627 ioc->name, total_sz/1024); 3628 pr_info(MPT3SAS_FMT 3629 "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n", 3630 ioc->name, ioc->shost->can_queue, facts->RequestCredit); 3631 pr_info(MPT3SAS_FMT "Scatter Gather Elements per IO(%d)\n", 3632 ioc->name, ioc->shost->sg_tablesize); 3633 return 0; 3634 3635 out: 3636 return -ENOMEM; 3637 } 3638 3639 /** 3640 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter. 3641 * @ioc: Pointer to MPT_ADAPTER structure 3642 * @cooked: Request raw or cooked IOC state 3643 * 3644 * Returns all IOC Doorbell register bits if cooked==0, else just the 3645 * Doorbell bits in MPI_IOC_STATE_MASK. 3646 */ 3647 u32 3648 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked) 3649 { 3650 u32 s, sc; 3651 3652 s = readl(&ioc->chip->Doorbell); 3653 sc = s & MPI2_IOC_STATE_MASK; 3654 return cooked ? sc : s; 3655 } 3656 3657 /** 3658 * _base_wait_on_iocstate - waiting on a particular ioc state 3659 * @ioc_state: controller state { READY, OPERATIONAL, or RESET } 3660 * @timeout: timeout in second 3661 * @sleep_flag: CAN_SLEEP or NO_SLEEP 3662 * 3663 * Returns 0 for success, non-zero for failure. 3664 */ 3665 static int 3666 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout, 3667 int sleep_flag) 3668 { 3669 u32 count, cntdn; 3670 u32 current_state; 3671 3672 count = 0; 3673 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout; 3674 do { 3675 current_state = mpt3sas_base_get_iocstate(ioc, 1); 3676 if (current_state == ioc_state) 3677 return 0; 3678 if (count && current_state == MPI2_IOC_STATE_FAULT) 3679 break; 3680 if (sleep_flag == CAN_SLEEP) 3681 usleep_range(1000, 1500); 3682 else 3683 udelay(500); 3684 count++; 3685 } while (--cntdn); 3686 3687 return current_state; 3688 } 3689 3690 /** 3691 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by 3692 * a write to the doorbell) 3693 * @ioc: per adapter object 3694 * @timeout: timeout in second 3695 * @sleep_flag: CAN_SLEEP or NO_SLEEP 3696 * 3697 * Returns 0 for success, non-zero for failure. 3698 * 3699 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell. 3700 */ 3701 static int 3702 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc, int sleep_flag); 3703 3704 static int 3705 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout, 3706 int sleep_flag) 3707 { 3708 u32 cntdn, count; 3709 u32 int_status; 3710 3711 count = 0; 3712 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout; 3713 do { 3714 int_status = readl(&ioc->chip->HostInterruptStatus); 3715 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 3716 dhsprintk(ioc, pr_info(MPT3SAS_FMT 3717 "%s: successful count(%d), timeout(%d)\n", 3718 ioc->name, __func__, count, timeout)); 3719 return 0; 3720 } 3721 if (sleep_flag == CAN_SLEEP) 3722 usleep_range(1000, 1500); 3723 else 3724 udelay(500); 3725 count++; 3726 } while (--cntdn); 3727 3728 pr_err(MPT3SAS_FMT 3729 "%s: failed due to timeout count(%d), int_status(%x)!\n", 3730 ioc->name, __func__, count, int_status); 3731 return -EFAULT; 3732 } 3733 3734 /** 3735 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell. 3736 * @ioc: per adapter object 3737 * @timeout: timeout in second 3738 * @sleep_flag: CAN_SLEEP or NO_SLEEP 3739 * 3740 * Returns 0 for success, non-zero for failure. 3741 * 3742 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to 3743 * doorbell. 3744 */ 3745 static int 3746 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout, 3747 int sleep_flag) 3748 { 3749 u32 cntdn, count; 3750 u32 int_status; 3751 u32 doorbell; 3752 3753 count = 0; 3754 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout; 3755 do { 3756 int_status = readl(&ioc->chip->HostInterruptStatus); 3757 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) { 3758 dhsprintk(ioc, pr_info(MPT3SAS_FMT 3759 "%s: successful count(%d), timeout(%d)\n", 3760 ioc->name, __func__, count, timeout)); 3761 return 0; 3762 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 3763 doorbell = readl(&ioc->chip->Doorbell); 3764 if ((doorbell & MPI2_IOC_STATE_MASK) == 3765 MPI2_IOC_STATE_FAULT) { 3766 mpt3sas_base_fault_info(ioc , doorbell); 3767 return -EFAULT; 3768 } 3769 } else if (int_status == 0xFFFFFFFF) 3770 goto out; 3771 3772 if (sleep_flag == CAN_SLEEP) 3773 usleep_range(1000, 1500); 3774 else 3775 udelay(500); 3776 count++; 3777 } while (--cntdn); 3778 3779 out: 3780 pr_err(MPT3SAS_FMT 3781 "%s: failed due to timeout count(%d), int_status(%x)!\n", 3782 ioc->name, __func__, count, int_status); 3783 return -EFAULT; 3784 } 3785 3786 /** 3787 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use 3788 * @ioc: per adapter object 3789 * @timeout: timeout in second 3790 * @sleep_flag: CAN_SLEEP or NO_SLEEP 3791 * 3792 * Returns 0 for success, non-zero for failure. 3793 * 3794 */ 3795 static int 3796 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout, 3797 int sleep_flag) 3798 { 3799 u32 cntdn, count; 3800 u32 doorbell_reg; 3801 3802 count = 0; 3803 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout; 3804 do { 3805 doorbell_reg = readl(&ioc->chip->Doorbell); 3806 if (!(doorbell_reg & MPI2_DOORBELL_USED)) { 3807 dhsprintk(ioc, pr_info(MPT3SAS_FMT 3808 "%s: successful count(%d), timeout(%d)\n", 3809 ioc->name, __func__, count, timeout)); 3810 return 0; 3811 } 3812 if (sleep_flag == CAN_SLEEP) 3813 usleep_range(1000, 1500); 3814 else 3815 udelay(500); 3816 count++; 3817 } while (--cntdn); 3818 3819 pr_err(MPT3SAS_FMT 3820 "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n", 3821 ioc->name, __func__, count, doorbell_reg); 3822 return -EFAULT; 3823 } 3824 3825 /** 3826 * _base_send_ioc_reset - send doorbell reset 3827 * @ioc: per adapter object 3828 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET 3829 * @timeout: timeout in second 3830 * @sleep_flag: CAN_SLEEP or NO_SLEEP 3831 * 3832 * Returns 0 for success, non-zero for failure. 3833 */ 3834 static int 3835 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout, 3836 int sleep_flag) 3837 { 3838 u32 ioc_state; 3839 int r = 0; 3840 3841 if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) { 3842 pr_err(MPT3SAS_FMT "%s: unknown reset_type\n", 3843 ioc->name, __func__); 3844 return -EFAULT; 3845 } 3846 3847 if (!(ioc->facts.IOCCapabilities & 3848 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY)) 3849 return -EFAULT; 3850 3851 pr_info(MPT3SAS_FMT "sending message unit reset !!\n", ioc->name); 3852 3853 writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT, 3854 &ioc->chip->Doorbell); 3855 if ((_base_wait_for_doorbell_ack(ioc, 15, sleep_flag))) { 3856 r = -EFAULT; 3857 goto out; 3858 } 3859 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 3860 timeout, sleep_flag); 3861 if (ioc_state) { 3862 pr_err(MPT3SAS_FMT 3863 "%s: failed going to ready state (ioc_state=0x%x)\n", 3864 ioc->name, __func__, ioc_state); 3865 r = -EFAULT; 3866 goto out; 3867 } 3868 out: 3869 pr_info(MPT3SAS_FMT "message unit reset: %s\n", 3870 ioc->name, ((r == 0) ? "SUCCESS" : "FAILED")); 3871 return r; 3872 } 3873 3874 /** 3875 * _base_handshake_req_reply_wait - send request thru doorbell interface 3876 * @ioc: per adapter object 3877 * @request_bytes: request length 3878 * @request: pointer having request payload 3879 * @reply_bytes: reply length 3880 * @reply: pointer to reply payload 3881 * @timeout: timeout in second 3882 * @sleep_flag: CAN_SLEEP or NO_SLEEP 3883 * 3884 * Returns 0 for success, non-zero for failure. 3885 */ 3886 static int 3887 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes, 3888 u32 *request, int reply_bytes, u16 *reply, int timeout, int sleep_flag) 3889 { 3890 MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply; 3891 int i; 3892 u8 failed; 3893 u16 dummy; 3894 __le32 *mfp; 3895 3896 /* make sure doorbell is not in use */ 3897 if ((readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) { 3898 pr_err(MPT3SAS_FMT 3899 "doorbell is in use (line=%d)\n", 3900 ioc->name, __LINE__); 3901 return -EFAULT; 3902 } 3903 3904 /* clear pending doorbell interrupts from previous state changes */ 3905 if (readl(&ioc->chip->HostInterruptStatus) & 3906 MPI2_HIS_IOC2SYS_DB_STATUS) 3907 writel(0, &ioc->chip->HostInterruptStatus); 3908 3909 /* send message to ioc */ 3910 writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) | 3911 ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)), 3912 &ioc->chip->Doorbell); 3913 3914 if ((_base_wait_for_doorbell_int(ioc, 5, NO_SLEEP))) { 3915 pr_err(MPT3SAS_FMT 3916 "doorbell handshake int failed (line=%d)\n", 3917 ioc->name, __LINE__); 3918 return -EFAULT; 3919 } 3920 writel(0, &ioc->chip->HostInterruptStatus); 3921 3922 if ((_base_wait_for_doorbell_ack(ioc, 5, sleep_flag))) { 3923 pr_err(MPT3SAS_FMT 3924 "doorbell handshake ack failed (line=%d)\n", 3925 ioc->name, __LINE__); 3926 return -EFAULT; 3927 } 3928 3929 /* send message 32-bits at a time */ 3930 for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) { 3931 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell); 3932 if ((_base_wait_for_doorbell_ack(ioc, 5, sleep_flag))) 3933 failed = 1; 3934 } 3935 3936 if (failed) { 3937 pr_err(MPT3SAS_FMT 3938 "doorbell handshake sending request failed (line=%d)\n", 3939 ioc->name, __LINE__); 3940 return -EFAULT; 3941 } 3942 3943 /* now wait for the reply */ 3944 if ((_base_wait_for_doorbell_int(ioc, timeout, sleep_flag))) { 3945 pr_err(MPT3SAS_FMT 3946 "doorbell handshake int failed (line=%d)\n", 3947 ioc->name, __LINE__); 3948 return -EFAULT; 3949 } 3950 3951 /* read the first two 16-bits, it gives the total length of the reply */ 3952 reply[0] = le16_to_cpu(readl(&ioc->chip->Doorbell) 3953 & MPI2_DOORBELL_DATA_MASK); 3954 writel(0, &ioc->chip->HostInterruptStatus); 3955 if ((_base_wait_for_doorbell_int(ioc, 5, sleep_flag))) { 3956 pr_err(MPT3SAS_FMT 3957 "doorbell handshake int failed (line=%d)\n", 3958 ioc->name, __LINE__); 3959 return -EFAULT; 3960 } 3961 reply[1] = le16_to_cpu(readl(&ioc->chip->Doorbell) 3962 & MPI2_DOORBELL_DATA_MASK); 3963 writel(0, &ioc->chip->HostInterruptStatus); 3964 3965 for (i = 2; i < default_reply->MsgLength * 2; i++) { 3966 if ((_base_wait_for_doorbell_int(ioc, 5, sleep_flag))) { 3967 pr_err(MPT3SAS_FMT 3968 "doorbell handshake int failed (line=%d)\n", 3969 ioc->name, __LINE__); 3970 return -EFAULT; 3971 } 3972 if (i >= reply_bytes/2) /* overflow case */ 3973 dummy = readl(&ioc->chip->Doorbell); 3974 else 3975 reply[i] = le16_to_cpu(readl(&ioc->chip->Doorbell) 3976 & MPI2_DOORBELL_DATA_MASK); 3977 writel(0, &ioc->chip->HostInterruptStatus); 3978 } 3979 3980 _base_wait_for_doorbell_int(ioc, 5, sleep_flag); 3981 if (_base_wait_for_doorbell_not_used(ioc, 5, sleep_flag) != 0) { 3982 dhsprintk(ioc, pr_info(MPT3SAS_FMT 3983 "doorbell is in use (line=%d)\n", ioc->name, __LINE__)); 3984 } 3985 writel(0, &ioc->chip->HostInterruptStatus); 3986 3987 if (ioc->logging_level & MPT_DEBUG_INIT) { 3988 mfp = (__le32 *)reply; 3989 pr_info("\toffset:data\n"); 3990 for (i = 0; i < reply_bytes/4; i++) 3991 pr_info("\t[0x%02x]:%08x\n", i*4, 3992 le32_to_cpu(mfp[i])); 3993 } 3994 return 0; 3995 } 3996 3997 /** 3998 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW 3999 * @ioc: per adapter object 4000 * @mpi_reply: the reply payload from FW 4001 * @mpi_request: the request payload sent to FW 4002 * 4003 * The SAS IO Unit Control Request message allows the host to perform low-level 4004 * operations, such as resets on the PHYs of the IO Unit, also allows the host 4005 * to obtain the IOC assigned device handles for a device if it has other 4006 * identifying information about the device, in addition allows the host to 4007 * remove IOC resources associated with the device. 4008 * 4009 * Returns 0 for success, non-zero for failure. 4010 */ 4011 int 4012 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc, 4013 Mpi2SasIoUnitControlReply_t *mpi_reply, 4014 Mpi2SasIoUnitControlRequest_t *mpi_request) 4015 { 4016 u16 smid; 4017 u32 ioc_state; 4018 unsigned long timeleft; 4019 bool issue_reset = false; 4020 int rc; 4021 void *request; 4022 u16 wait_state_count; 4023 4024 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name, 4025 __func__)); 4026 4027 mutex_lock(&ioc->base_cmds.mutex); 4028 4029 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) { 4030 pr_err(MPT3SAS_FMT "%s: base_cmd in use\n", 4031 ioc->name, __func__); 4032 rc = -EAGAIN; 4033 goto out; 4034 } 4035 4036 wait_state_count = 0; 4037 ioc_state = mpt3sas_base_get_iocstate(ioc, 1); 4038 while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) { 4039 if (wait_state_count++ == 10) { 4040 pr_err(MPT3SAS_FMT 4041 "%s: failed due to ioc not operational\n", 4042 ioc->name, __func__); 4043 rc = -EFAULT; 4044 goto out; 4045 } 4046 ssleep(1); 4047 ioc_state = mpt3sas_base_get_iocstate(ioc, 1); 4048 pr_info(MPT3SAS_FMT 4049 "%s: waiting for operational state(count=%d)\n", 4050 ioc->name, __func__, wait_state_count); 4051 } 4052 4053 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 4054 if (!smid) { 4055 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n", 4056 ioc->name, __func__); 4057 rc = -EAGAIN; 4058 goto out; 4059 } 4060 4061 rc = 0; 4062 ioc->base_cmds.status = MPT3_CMD_PENDING; 4063 request = mpt3sas_base_get_msg_frame(ioc, smid); 4064 ioc->base_cmds.smid = smid; 4065 memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)); 4066 if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET || 4067 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) 4068 ioc->ioc_link_reset_in_progress = 1; 4069 init_completion(&ioc->base_cmds.done); 4070 mpt3sas_base_put_smid_default(ioc, smid); 4071 timeleft = wait_for_completion_timeout(&ioc->base_cmds.done, 4072 msecs_to_jiffies(10000)); 4073 if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET || 4074 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) && 4075 ioc->ioc_link_reset_in_progress) 4076 ioc->ioc_link_reset_in_progress = 0; 4077 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 4078 pr_err(MPT3SAS_FMT "%s: timeout\n", 4079 ioc->name, __func__); 4080 _debug_dump_mf(mpi_request, 4081 sizeof(Mpi2SasIoUnitControlRequest_t)/4); 4082 if (!(ioc->base_cmds.status & MPT3_CMD_RESET)) 4083 issue_reset = true; 4084 goto issue_host_reset; 4085 } 4086 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) 4087 memcpy(mpi_reply, ioc->base_cmds.reply, 4088 sizeof(Mpi2SasIoUnitControlReply_t)); 4089 else 4090 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t)); 4091 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 4092 goto out; 4093 4094 issue_host_reset: 4095 if (issue_reset) 4096 mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP, 4097 FORCE_BIG_HAMMER); 4098 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 4099 rc = -EFAULT; 4100 out: 4101 mutex_unlock(&ioc->base_cmds.mutex); 4102 return rc; 4103 } 4104 4105 /** 4106 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device 4107 * @ioc: per adapter object 4108 * @mpi_reply: the reply payload from FW 4109 * @mpi_request: the request payload sent to FW 4110 * 4111 * The SCSI Enclosure Processor request message causes the IOC to 4112 * communicate with SES devices to control LED status signals. 4113 * 4114 * Returns 0 for success, non-zero for failure. 4115 */ 4116 int 4117 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc, 4118 Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request) 4119 { 4120 u16 smid; 4121 u32 ioc_state; 4122 unsigned long timeleft; 4123 bool issue_reset = false; 4124 int rc; 4125 void *request; 4126 u16 wait_state_count; 4127 4128 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name, 4129 __func__)); 4130 4131 mutex_lock(&ioc->base_cmds.mutex); 4132 4133 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) { 4134 pr_err(MPT3SAS_FMT "%s: base_cmd in use\n", 4135 ioc->name, __func__); 4136 rc = -EAGAIN; 4137 goto out; 4138 } 4139 4140 wait_state_count = 0; 4141 ioc_state = mpt3sas_base_get_iocstate(ioc, 1); 4142 while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) { 4143 if (wait_state_count++ == 10) { 4144 pr_err(MPT3SAS_FMT 4145 "%s: failed due to ioc not operational\n", 4146 ioc->name, __func__); 4147 rc = -EFAULT; 4148 goto out; 4149 } 4150 ssleep(1); 4151 ioc_state = mpt3sas_base_get_iocstate(ioc, 1); 4152 pr_info(MPT3SAS_FMT 4153 "%s: waiting for operational state(count=%d)\n", 4154 ioc->name, 4155 __func__, wait_state_count); 4156 } 4157 4158 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 4159 if (!smid) { 4160 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n", 4161 ioc->name, __func__); 4162 rc = -EAGAIN; 4163 goto out; 4164 } 4165 4166 rc = 0; 4167 ioc->base_cmds.status = MPT3_CMD_PENDING; 4168 request = mpt3sas_base_get_msg_frame(ioc, smid); 4169 ioc->base_cmds.smid = smid; 4170 memcpy(request, mpi_request, sizeof(Mpi2SepReply_t)); 4171 init_completion(&ioc->base_cmds.done); 4172 mpt3sas_base_put_smid_default(ioc, smid); 4173 timeleft = wait_for_completion_timeout(&ioc->base_cmds.done, 4174 msecs_to_jiffies(10000)); 4175 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 4176 pr_err(MPT3SAS_FMT "%s: timeout\n", 4177 ioc->name, __func__); 4178 _debug_dump_mf(mpi_request, 4179 sizeof(Mpi2SepRequest_t)/4); 4180 if (!(ioc->base_cmds.status & MPT3_CMD_RESET)) 4181 issue_reset = false; 4182 goto issue_host_reset; 4183 } 4184 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) 4185 memcpy(mpi_reply, ioc->base_cmds.reply, 4186 sizeof(Mpi2SepReply_t)); 4187 else 4188 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t)); 4189 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 4190 goto out; 4191 4192 issue_host_reset: 4193 if (issue_reset) 4194 mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP, 4195 FORCE_BIG_HAMMER); 4196 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 4197 rc = -EFAULT; 4198 out: 4199 mutex_unlock(&ioc->base_cmds.mutex); 4200 return rc; 4201 } 4202 4203 /** 4204 * _base_get_port_facts - obtain port facts reply and save in ioc 4205 * @ioc: per adapter object 4206 * @sleep_flag: CAN_SLEEP or NO_SLEEP 4207 * 4208 * Returns 0 for success, non-zero for failure. 4209 */ 4210 static int 4211 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port, int sleep_flag) 4212 { 4213 Mpi2PortFactsRequest_t mpi_request; 4214 Mpi2PortFactsReply_t mpi_reply; 4215 struct mpt3sas_port_facts *pfacts; 4216 int mpi_reply_sz, mpi_request_sz, r; 4217 4218 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name, 4219 __func__)); 4220 4221 mpi_reply_sz = sizeof(Mpi2PortFactsReply_t); 4222 mpi_request_sz = sizeof(Mpi2PortFactsRequest_t); 4223 memset(&mpi_request, 0, mpi_request_sz); 4224 mpi_request.Function = MPI2_FUNCTION_PORT_FACTS; 4225 mpi_request.PortNumber = port; 4226 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz, 4227 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5, CAN_SLEEP); 4228 4229 if (r != 0) { 4230 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n", 4231 ioc->name, __func__, r); 4232 return r; 4233 } 4234 4235 pfacts = &ioc->pfacts[port]; 4236 memset(pfacts, 0, sizeof(struct mpt3sas_port_facts)); 4237 pfacts->PortNumber = mpi_reply.PortNumber; 4238 pfacts->VP_ID = mpi_reply.VP_ID; 4239 pfacts->VF_ID = mpi_reply.VF_ID; 4240 pfacts->MaxPostedCmdBuffers = 4241 le16_to_cpu(mpi_reply.MaxPostedCmdBuffers); 4242 4243 return 0; 4244 } 4245 4246 /** 4247 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL 4248 * @ioc: per adapter object 4249 * @timeout: 4250 * @sleep_flag: CAN_SLEEP or NO_SLEEP 4251 * 4252 * Returns 0 for success, non-zero for failure. 4253 */ 4254 static int 4255 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout, 4256 int sleep_flag) 4257 { 4258 u32 ioc_state; 4259 int rc; 4260 4261 dinitprintk(ioc, printk(MPT3SAS_FMT "%s\n", ioc->name, 4262 __func__)); 4263 4264 if (ioc->pci_error_recovery) { 4265 dfailprintk(ioc, printk(MPT3SAS_FMT 4266 "%s: host in pci error recovery\n", ioc->name, __func__)); 4267 return -EFAULT; 4268 } 4269 4270 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 4271 dhsprintk(ioc, printk(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n", 4272 ioc->name, __func__, ioc_state)); 4273 4274 if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) || 4275 (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL) 4276 return 0; 4277 4278 if (ioc_state & MPI2_DOORBELL_USED) { 4279 dhsprintk(ioc, printk(MPT3SAS_FMT 4280 "unexpected doorbell active!\n", ioc->name)); 4281 goto issue_diag_reset; 4282 } 4283 4284 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 4285 mpt3sas_base_fault_info(ioc, ioc_state & 4286 MPI2_DOORBELL_DATA_MASK); 4287 goto issue_diag_reset; 4288 } 4289 4290 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 4291 timeout, sleep_flag); 4292 if (ioc_state) { 4293 dfailprintk(ioc, printk(MPT3SAS_FMT 4294 "%s: failed going to ready state (ioc_state=0x%x)\n", 4295 ioc->name, __func__, ioc_state)); 4296 return -EFAULT; 4297 } 4298 4299 issue_diag_reset: 4300 rc = _base_diag_reset(ioc, sleep_flag); 4301 return rc; 4302 } 4303 4304 /** 4305 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc 4306 * @ioc: per adapter object 4307 * @sleep_flag: CAN_SLEEP or NO_SLEEP 4308 * 4309 * Returns 0 for success, non-zero for failure. 4310 */ 4311 static int 4312 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc, int sleep_flag) 4313 { 4314 Mpi2IOCFactsRequest_t mpi_request; 4315 Mpi2IOCFactsReply_t mpi_reply; 4316 struct mpt3sas_facts *facts; 4317 int mpi_reply_sz, mpi_request_sz, r; 4318 4319 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name, 4320 __func__)); 4321 4322 r = _base_wait_for_iocstate(ioc, 10, sleep_flag); 4323 if (r) { 4324 dfailprintk(ioc, printk(MPT3SAS_FMT 4325 "%s: failed getting to correct state\n", 4326 ioc->name, __func__)); 4327 return r; 4328 } 4329 mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t); 4330 mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t); 4331 memset(&mpi_request, 0, mpi_request_sz); 4332 mpi_request.Function = MPI2_FUNCTION_IOC_FACTS; 4333 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz, 4334 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5, CAN_SLEEP); 4335 4336 if (r != 0) { 4337 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n", 4338 ioc->name, __func__, r); 4339 return r; 4340 } 4341 4342 facts = &ioc->facts; 4343 memset(facts, 0, sizeof(struct mpt3sas_facts)); 4344 facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion); 4345 facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion); 4346 facts->VP_ID = mpi_reply.VP_ID; 4347 facts->VF_ID = mpi_reply.VF_ID; 4348 facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions); 4349 facts->MaxChainDepth = mpi_reply.MaxChainDepth; 4350 facts->WhoInit = mpi_reply.WhoInit; 4351 facts->NumberOfPorts = mpi_reply.NumberOfPorts; 4352 facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors; 4353 facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit); 4354 facts->MaxReplyDescriptorPostQueueDepth = 4355 le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth); 4356 facts->ProductID = le16_to_cpu(mpi_reply.ProductID); 4357 facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities); 4358 if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)) 4359 ioc->ir_firmware = 1; 4360 if ((facts->IOCCapabilities & 4361 MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE)) 4362 ioc->rdpq_array_capable = 1; 4363 facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word); 4364 facts->IOCRequestFrameSize = 4365 le16_to_cpu(mpi_reply.IOCRequestFrameSize); 4366 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 4367 facts->IOCMaxChainSegmentSize = 4368 le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize); 4369 } 4370 facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators); 4371 facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets); 4372 ioc->shost->max_id = -1; 4373 facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders); 4374 facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures); 4375 facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags); 4376 facts->HighPriorityCredit = 4377 le16_to_cpu(mpi_reply.HighPriorityCredit); 4378 facts->ReplyFrameSize = mpi_reply.ReplyFrameSize; 4379 facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle); 4380 4381 dinitprintk(ioc, pr_info(MPT3SAS_FMT 4382 "hba queue depth(%d), max chains per io(%d)\n", 4383 ioc->name, facts->RequestCredit, 4384 facts->MaxChainDepth)); 4385 dinitprintk(ioc, pr_info(MPT3SAS_FMT 4386 "request frame size(%d), reply frame size(%d)\n", ioc->name, 4387 facts->IOCRequestFrameSize * 4, facts->ReplyFrameSize * 4)); 4388 return 0; 4389 } 4390 4391 /** 4392 * _base_send_ioc_init - send ioc_init to firmware 4393 * @ioc: per adapter object 4394 * @sleep_flag: CAN_SLEEP or NO_SLEEP 4395 * 4396 * Returns 0 for success, non-zero for failure. 4397 */ 4398 static int 4399 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc, int sleep_flag) 4400 { 4401 Mpi2IOCInitRequest_t mpi_request; 4402 Mpi2IOCInitReply_t mpi_reply; 4403 int i, r = 0; 4404 ktime_t current_time; 4405 u16 ioc_status; 4406 u32 reply_post_free_array_sz = 0; 4407 Mpi2IOCInitRDPQArrayEntry *reply_post_free_array = NULL; 4408 dma_addr_t reply_post_free_array_dma; 4409 4410 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name, 4411 __func__)); 4412 4413 memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t)); 4414 mpi_request.Function = MPI2_FUNCTION_IOC_INIT; 4415 mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER; 4416 mpi_request.VF_ID = 0; /* TODO */ 4417 mpi_request.VP_ID = 0; 4418 mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged); 4419 mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION); 4420 4421 if (_base_is_controller_msix_enabled(ioc)) 4422 mpi_request.HostMSIxVectors = ioc->reply_queue_count; 4423 mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4); 4424 mpi_request.ReplyDescriptorPostQueueDepth = 4425 cpu_to_le16(ioc->reply_post_queue_depth); 4426 mpi_request.ReplyFreeQueueDepth = 4427 cpu_to_le16(ioc->reply_free_queue_depth); 4428 4429 mpi_request.SenseBufferAddressHigh = 4430 cpu_to_le32((u64)ioc->sense_dma >> 32); 4431 mpi_request.SystemReplyAddressHigh = 4432 cpu_to_le32((u64)ioc->reply_dma >> 32); 4433 mpi_request.SystemRequestFrameBaseAddress = 4434 cpu_to_le64((u64)ioc->request_dma); 4435 mpi_request.ReplyFreeQueueAddress = 4436 cpu_to_le64((u64)ioc->reply_free_dma); 4437 4438 if (ioc->rdpq_array_enable) { 4439 reply_post_free_array_sz = ioc->reply_queue_count * 4440 sizeof(Mpi2IOCInitRDPQArrayEntry); 4441 reply_post_free_array = pci_alloc_consistent(ioc->pdev, 4442 reply_post_free_array_sz, &reply_post_free_array_dma); 4443 if (!reply_post_free_array) { 4444 pr_err(MPT3SAS_FMT 4445 "reply_post_free_array: pci_alloc_consistent failed\n", 4446 ioc->name); 4447 r = -ENOMEM; 4448 goto out; 4449 } 4450 memset(reply_post_free_array, 0, reply_post_free_array_sz); 4451 for (i = 0; i < ioc->reply_queue_count; i++) 4452 reply_post_free_array[i].RDPQBaseAddress = 4453 cpu_to_le64( 4454 (u64)ioc->reply_post[i].reply_post_free_dma); 4455 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE; 4456 mpi_request.ReplyDescriptorPostQueueAddress = 4457 cpu_to_le64((u64)reply_post_free_array_dma); 4458 } else { 4459 mpi_request.ReplyDescriptorPostQueueAddress = 4460 cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma); 4461 } 4462 4463 /* This time stamp specifies number of milliseconds 4464 * since epoch ~ midnight January 1, 1970. 4465 */ 4466 current_time = ktime_get_real(); 4467 mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time)); 4468 4469 if (ioc->logging_level & MPT_DEBUG_INIT) { 4470 __le32 *mfp; 4471 int i; 4472 4473 mfp = (__le32 *)&mpi_request; 4474 pr_info("\toffset:data\n"); 4475 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++) 4476 pr_info("\t[0x%02x]:%08x\n", i*4, 4477 le32_to_cpu(mfp[i])); 4478 } 4479 4480 r = _base_handshake_req_reply_wait(ioc, 4481 sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request, 4482 sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10, 4483 sleep_flag); 4484 4485 if (r != 0) { 4486 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n", 4487 ioc->name, __func__, r); 4488 goto out; 4489 } 4490 4491 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK; 4492 if (ioc_status != MPI2_IOCSTATUS_SUCCESS || 4493 mpi_reply.IOCLogInfo) { 4494 pr_err(MPT3SAS_FMT "%s: failed\n", ioc->name, __func__); 4495 r = -EIO; 4496 } 4497 4498 out: 4499 if (reply_post_free_array) 4500 pci_free_consistent(ioc->pdev, reply_post_free_array_sz, 4501 reply_post_free_array, 4502 reply_post_free_array_dma); 4503 return r; 4504 } 4505 4506 /** 4507 * mpt3sas_port_enable_done - command completion routine for port enable 4508 * @ioc: per adapter object 4509 * @smid: system request message index 4510 * @msix_index: MSIX table index supplied by the OS 4511 * @reply: reply message frame(lower 32bit addr) 4512 * 4513 * Return 1 meaning mf should be freed from _base_interrupt 4514 * 0 means the mf is freed from this function. 4515 */ 4516 u8 4517 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 4518 u32 reply) 4519 { 4520 MPI2DefaultReply_t *mpi_reply; 4521 u16 ioc_status; 4522 4523 if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED) 4524 return 1; 4525 4526 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 4527 if (!mpi_reply) 4528 return 1; 4529 4530 if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE) 4531 return 1; 4532 4533 ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING; 4534 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE; 4535 ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID; 4536 memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4); 4537 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 4538 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) 4539 ioc->port_enable_failed = 1; 4540 4541 if (ioc->is_driver_loading) { 4542 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 4543 mpt3sas_port_enable_complete(ioc); 4544 return 1; 4545 } else { 4546 ioc->start_scan_failed = ioc_status; 4547 ioc->start_scan = 0; 4548 return 1; 4549 } 4550 } 4551 complete(&ioc->port_enable_cmds.done); 4552 return 1; 4553 } 4554 4555 /** 4556 * _base_send_port_enable - send port_enable(discovery stuff) to firmware 4557 * @ioc: per adapter object 4558 * @sleep_flag: CAN_SLEEP or NO_SLEEP 4559 * 4560 * Returns 0 for success, non-zero for failure. 4561 */ 4562 static int 4563 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc, int sleep_flag) 4564 { 4565 Mpi2PortEnableRequest_t *mpi_request; 4566 Mpi2PortEnableReply_t *mpi_reply; 4567 unsigned long timeleft; 4568 int r = 0; 4569 u16 smid; 4570 u16 ioc_status; 4571 4572 pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name); 4573 4574 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 4575 pr_err(MPT3SAS_FMT "%s: internal command already in use\n", 4576 ioc->name, __func__); 4577 return -EAGAIN; 4578 } 4579 4580 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx); 4581 if (!smid) { 4582 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n", 4583 ioc->name, __func__); 4584 return -EAGAIN; 4585 } 4586 4587 ioc->port_enable_cmds.status = MPT3_CMD_PENDING; 4588 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 4589 ioc->port_enable_cmds.smid = smid; 4590 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t)); 4591 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE; 4592 4593 init_completion(&ioc->port_enable_cmds.done); 4594 mpt3sas_base_put_smid_default(ioc, smid); 4595 timeleft = wait_for_completion_timeout(&ioc->port_enable_cmds.done, 4596 300*HZ); 4597 if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) { 4598 pr_err(MPT3SAS_FMT "%s: timeout\n", 4599 ioc->name, __func__); 4600 _debug_dump_mf(mpi_request, 4601 sizeof(Mpi2PortEnableRequest_t)/4); 4602 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET) 4603 r = -EFAULT; 4604 else 4605 r = -ETIME; 4606 goto out; 4607 } 4608 4609 mpi_reply = ioc->port_enable_cmds.reply; 4610 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 4611 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 4612 pr_err(MPT3SAS_FMT "%s: failed with (ioc_status=0x%08x)\n", 4613 ioc->name, __func__, ioc_status); 4614 r = -EFAULT; 4615 goto out; 4616 } 4617 4618 out: 4619 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED; 4620 pr_info(MPT3SAS_FMT "port enable: %s\n", ioc->name, ((r == 0) ? 4621 "SUCCESS" : "FAILED")); 4622 return r; 4623 } 4624 4625 /** 4626 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply) 4627 * @ioc: per adapter object 4628 * 4629 * Returns 0 for success, non-zero for failure. 4630 */ 4631 int 4632 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc) 4633 { 4634 Mpi2PortEnableRequest_t *mpi_request; 4635 u16 smid; 4636 4637 pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name); 4638 4639 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 4640 pr_err(MPT3SAS_FMT "%s: internal command already in use\n", 4641 ioc->name, __func__); 4642 return -EAGAIN; 4643 } 4644 4645 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx); 4646 if (!smid) { 4647 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n", 4648 ioc->name, __func__); 4649 return -EAGAIN; 4650 } 4651 4652 ioc->port_enable_cmds.status = MPT3_CMD_PENDING; 4653 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 4654 ioc->port_enable_cmds.smid = smid; 4655 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t)); 4656 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE; 4657 4658 mpt3sas_base_put_smid_default(ioc, smid); 4659 return 0; 4660 } 4661 4662 /** 4663 * _base_determine_wait_on_discovery - desposition 4664 * @ioc: per adapter object 4665 * 4666 * Decide whether to wait on discovery to complete. Used to either 4667 * locate boot device, or report volumes ahead of physical devices. 4668 * 4669 * Returns 1 for wait, 0 for don't wait 4670 */ 4671 static int 4672 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc) 4673 { 4674 /* We wait for discovery to complete if IR firmware is loaded. 4675 * The sas topology events arrive before PD events, so we need time to 4676 * turn on the bit in ioc->pd_handles to indicate PD 4677 * Also, it maybe required to report Volumes ahead of physical 4678 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set. 4679 */ 4680 if (ioc->ir_firmware) 4681 return 1; 4682 4683 /* if no Bios, then we don't need to wait */ 4684 if (!ioc->bios_pg3.BiosVersion) 4685 return 0; 4686 4687 /* Bios is present, then we drop down here. 4688 * 4689 * If there any entries in the Bios Page 2, then we wait 4690 * for discovery to complete. 4691 */ 4692 4693 /* Current Boot Device */ 4694 if ((ioc->bios_pg2.CurrentBootDeviceForm & 4695 MPI2_BIOSPAGE2_FORM_MASK) == 4696 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED && 4697 /* Request Boot Device */ 4698 (ioc->bios_pg2.ReqBootDeviceForm & 4699 MPI2_BIOSPAGE2_FORM_MASK) == 4700 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED && 4701 /* Alternate Request Boot Device */ 4702 (ioc->bios_pg2.ReqAltBootDeviceForm & 4703 MPI2_BIOSPAGE2_FORM_MASK) == 4704 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED) 4705 return 0; 4706 4707 return 1; 4708 } 4709 4710 /** 4711 * _base_unmask_events - turn on notification for this event 4712 * @ioc: per adapter object 4713 * @event: firmware event 4714 * 4715 * The mask is stored in ioc->event_masks. 4716 */ 4717 static void 4718 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event) 4719 { 4720 u32 desired_event; 4721 4722 if (event >= 128) 4723 return; 4724 4725 desired_event = (1 << (event % 32)); 4726 4727 if (event < 32) 4728 ioc->event_masks[0] &= ~desired_event; 4729 else if (event < 64) 4730 ioc->event_masks[1] &= ~desired_event; 4731 else if (event < 96) 4732 ioc->event_masks[2] &= ~desired_event; 4733 else if (event < 128) 4734 ioc->event_masks[3] &= ~desired_event; 4735 } 4736 4737 /** 4738 * _base_event_notification - send event notification 4739 * @ioc: per adapter object 4740 * @sleep_flag: CAN_SLEEP or NO_SLEEP 4741 * 4742 * Returns 0 for success, non-zero for failure. 4743 */ 4744 static int 4745 _base_event_notification(struct MPT3SAS_ADAPTER *ioc, int sleep_flag) 4746 { 4747 Mpi2EventNotificationRequest_t *mpi_request; 4748 unsigned long timeleft; 4749 u16 smid; 4750 int r = 0; 4751 int i; 4752 4753 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name, 4754 __func__)); 4755 4756 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 4757 pr_err(MPT3SAS_FMT "%s: internal command already in use\n", 4758 ioc->name, __func__); 4759 return -EAGAIN; 4760 } 4761 4762 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 4763 if (!smid) { 4764 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n", 4765 ioc->name, __func__); 4766 return -EAGAIN; 4767 } 4768 ioc->base_cmds.status = MPT3_CMD_PENDING; 4769 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 4770 ioc->base_cmds.smid = smid; 4771 memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t)); 4772 mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION; 4773 mpi_request->VF_ID = 0; /* TODO */ 4774 mpi_request->VP_ID = 0; 4775 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 4776 mpi_request->EventMasks[i] = 4777 cpu_to_le32(ioc->event_masks[i]); 4778 init_completion(&ioc->base_cmds.done); 4779 mpt3sas_base_put_smid_default(ioc, smid); 4780 timeleft = wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ); 4781 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 4782 pr_err(MPT3SAS_FMT "%s: timeout\n", 4783 ioc->name, __func__); 4784 _debug_dump_mf(mpi_request, 4785 sizeof(Mpi2EventNotificationRequest_t)/4); 4786 if (ioc->base_cmds.status & MPT3_CMD_RESET) 4787 r = -EFAULT; 4788 else 4789 r = -ETIME; 4790 } else 4791 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s: complete\n", 4792 ioc->name, __func__)); 4793 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 4794 return r; 4795 } 4796 4797 /** 4798 * mpt3sas_base_validate_event_type - validating event types 4799 * @ioc: per adapter object 4800 * @event: firmware event 4801 * 4802 * This will turn on firmware event notification when application 4803 * ask for that event. We don't mask events that are already enabled. 4804 */ 4805 void 4806 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type) 4807 { 4808 int i, j; 4809 u32 event_mask, desired_event; 4810 u8 send_update_to_fw; 4811 4812 for (i = 0, send_update_to_fw = 0; i < 4813 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) { 4814 event_mask = ~event_type[i]; 4815 desired_event = 1; 4816 for (j = 0; j < 32; j++) { 4817 if (!(event_mask & desired_event) && 4818 (ioc->event_masks[i] & desired_event)) { 4819 ioc->event_masks[i] &= ~desired_event; 4820 send_update_to_fw = 1; 4821 } 4822 desired_event = (desired_event << 1); 4823 } 4824 } 4825 4826 if (!send_update_to_fw) 4827 return; 4828 4829 mutex_lock(&ioc->base_cmds.mutex); 4830 _base_event_notification(ioc, CAN_SLEEP); 4831 mutex_unlock(&ioc->base_cmds.mutex); 4832 } 4833 4834 /** 4835 * _base_diag_reset - the "big hammer" start of day reset 4836 * @ioc: per adapter object 4837 * @sleep_flag: CAN_SLEEP or NO_SLEEP 4838 * 4839 * Returns 0 for success, non-zero for failure. 4840 */ 4841 static int 4842 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc, int sleep_flag) 4843 { 4844 u32 host_diagnostic; 4845 u32 ioc_state; 4846 u32 count; 4847 u32 hcb_size; 4848 4849 pr_info(MPT3SAS_FMT "sending diag reset !!\n", ioc->name); 4850 4851 drsprintk(ioc, pr_info(MPT3SAS_FMT "clear interrupts\n", 4852 ioc->name)); 4853 4854 count = 0; 4855 do { 4856 /* Write magic sequence to WriteSequence register 4857 * Loop until in diagnostic mode 4858 */ 4859 drsprintk(ioc, pr_info(MPT3SAS_FMT 4860 "write magic sequence\n", ioc->name)); 4861 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence); 4862 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence); 4863 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence); 4864 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence); 4865 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence); 4866 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence); 4867 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence); 4868 4869 /* wait 100 msec */ 4870 if (sleep_flag == CAN_SLEEP) 4871 msleep(100); 4872 else 4873 mdelay(100); 4874 4875 if (count++ > 20) 4876 goto out; 4877 4878 host_diagnostic = readl(&ioc->chip->HostDiagnostic); 4879 drsprintk(ioc, pr_info(MPT3SAS_FMT 4880 "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n", 4881 ioc->name, count, host_diagnostic)); 4882 4883 } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0); 4884 4885 hcb_size = readl(&ioc->chip->HCBSize); 4886 4887 drsprintk(ioc, pr_info(MPT3SAS_FMT "diag reset: issued\n", 4888 ioc->name)); 4889 writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER, 4890 &ioc->chip->HostDiagnostic); 4891 4892 /*This delay allows the chip PCIe hardware time to finish reset tasks*/ 4893 if (sleep_flag == CAN_SLEEP) 4894 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000); 4895 else 4896 mdelay(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000); 4897 4898 /* Approximately 300 second max wait */ 4899 for (count = 0; count < (300000000 / 4900 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) { 4901 4902 host_diagnostic = readl(&ioc->chip->HostDiagnostic); 4903 4904 if (host_diagnostic == 0xFFFFFFFF) 4905 goto out; 4906 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER)) 4907 break; 4908 4909 /* Wait to pass the second read delay window */ 4910 if (sleep_flag == CAN_SLEEP) 4911 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC 4912 / 1000); 4913 else 4914 mdelay(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC 4915 / 1000); 4916 } 4917 4918 if (host_diagnostic & MPI2_DIAG_HCB_MODE) { 4919 4920 drsprintk(ioc, pr_info(MPT3SAS_FMT 4921 "restart the adapter assuming the HCB Address points to good F/W\n", 4922 ioc->name)); 4923 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK; 4924 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW; 4925 writel(host_diagnostic, &ioc->chip->HostDiagnostic); 4926 4927 drsprintk(ioc, pr_info(MPT3SAS_FMT 4928 "re-enable the HCDW\n", ioc->name)); 4929 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE, 4930 &ioc->chip->HCBSize); 4931 } 4932 4933 drsprintk(ioc, pr_info(MPT3SAS_FMT "restart the adapter\n", 4934 ioc->name)); 4935 writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET, 4936 &ioc->chip->HostDiagnostic); 4937 4938 drsprintk(ioc, pr_info(MPT3SAS_FMT 4939 "disable writes to the diagnostic register\n", ioc->name)); 4940 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence); 4941 4942 drsprintk(ioc, pr_info(MPT3SAS_FMT 4943 "Wait for FW to go to the READY state\n", ioc->name)); 4944 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20, 4945 sleep_flag); 4946 if (ioc_state) { 4947 pr_err(MPT3SAS_FMT 4948 "%s: failed going to ready state (ioc_state=0x%x)\n", 4949 ioc->name, __func__, ioc_state); 4950 goto out; 4951 } 4952 4953 pr_info(MPT3SAS_FMT "diag reset: SUCCESS\n", ioc->name); 4954 return 0; 4955 4956 out: 4957 pr_err(MPT3SAS_FMT "diag reset: FAILED\n", ioc->name); 4958 return -EFAULT; 4959 } 4960 4961 /** 4962 * _base_make_ioc_ready - put controller in READY state 4963 * @ioc: per adapter object 4964 * @sleep_flag: CAN_SLEEP or NO_SLEEP 4965 * @type: FORCE_BIG_HAMMER or SOFT_RESET 4966 * 4967 * Returns 0 for success, non-zero for failure. 4968 */ 4969 static int 4970 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, int sleep_flag, 4971 enum reset_type type) 4972 { 4973 u32 ioc_state; 4974 int rc; 4975 int count; 4976 4977 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name, 4978 __func__)); 4979 4980 if (ioc->pci_error_recovery) 4981 return 0; 4982 4983 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 4984 dhsprintk(ioc, pr_info(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n", 4985 ioc->name, __func__, ioc_state)); 4986 4987 /* if in RESET state, it should move to READY state shortly */ 4988 count = 0; 4989 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) { 4990 while ((ioc_state & MPI2_IOC_STATE_MASK) != 4991 MPI2_IOC_STATE_READY) { 4992 if (count++ == 10) { 4993 pr_err(MPT3SAS_FMT 4994 "%s: failed going to ready state (ioc_state=0x%x)\n", 4995 ioc->name, __func__, ioc_state); 4996 return -EFAULT; 4997 } 4998 if (sleep_flag == CAN_SLEEP) 4999 ssleep(1); 5000 else 5001 mdelay(1000); 5002 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 5003 } 5004 } 5005 5006 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) 5007 return 0; 5008 5009 if (ioc_state & MPI2_DOORBELL_USED) { 5010 dhsprintk(ioc, pr_info(MPT3SAS_FMT 5011 "unexpected doorbell active!\n", 5012 ioc->name)); 5013 goto issue_diag_reset; 5014 } 5015 5016 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 5017 mpt3sas_base_fault_info(ioc, ioc_state & 5018 MPI2_DOORBELL_DATA_MASK); 5019 goto issue_diag_reset; 5020 } 5021 5022 if (type == FORCE_BIG_HAMMER) 5023 goto issue_diag_reset; 5024 5025 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL) 5026 if (!(_base_send_ioc_reset(ioc, 5027 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15, CAN_SLEEP))) { 5028 return 0; 5029 } 5030 5031 issue_diag_reset: 5032 rc = _base_diag_reset(ioc, CAN_SLEEP); 5033 return rc; 5034 } 5035 5036 /** 5037 * _base_make_ioc_operational - put controller in OPERATIONAL state 5038 * @ioc: per adapter object 5039 * @sleep_flag: CAN_SLEEP or NO_SLEEP 5040 * 5041 * Returns 0 for success, non-zero for failure. 5042 */ 5043 static int 5044 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc, int sleep_flag) 5045 { 5046 int r, i, index; 5047 unsigned long flags; 5048 u32 reply_address; 5049 u16 smid; 5050 struct _tr_list *delayed_tr, *delayed_tr_next; 5051 struct _sc_list *delayed_sc, *delayed_sc_next; 5052 struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next; 5053 u8 hide_flag; 5054 struct adapter_reply_queue *reply_q; 5055 Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig; 5056 5057 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name, 5058 __func__)); 5059 5060 /* clean the delayed target reset list */ 5061 list_for_each_entry_safe(delayed_tr, delayed_tr_next, 5062 &ioc->delayed_tr_list, list) { 5063 list_del(&delayed_tr->list); 5064 kfree(delayed_tr); 5065 } 5066 5067 5068 list_for_each_entry_safe(delayed_tr, delayed_tr_next, 5069 &ioc->delayed_tr_volume_list, list) { 5070 list_del(&delayed_tr->list); 5071 kfree(delayed_tr); 5072 } 5073 5074 list_for_each_entry_safe(delayed_sc, delayed_sc_next, 5075 &ioc->delayed_sc_list, list) { 5076 list_del(&delayed_sc->list); 5077 kfree(delayed_sc); 5078 } 5079 5080 list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next, 5081 &ioc->delayed_event_ack_list, list) { 5082 list_del(&delayed_event_ack->list); 5083 kfree(delayed_event_ack); 5084 } 5085 5086 /* initialize the scsi lookup free list */ 5087 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 5088 INIT_LIST_HEAD(&ioc->free_list); 5089 smid = 1; 5090 for (i = 0; i < ioc->scsiio_depth; i++, smid++) { 5091 INIT_LIST_HEAD(&ioc->scsi_lookup[i].chain_list); 5092 ioc->scsi_lookup[i].cb_idx = 0xFF; 5093 ioc->scsi_lookup[i].smid = smid; 5094 ioc->scsi_lookup[i].scmd = NULL; 5095 ioc->scsi_lookup[i].direct_io = 0; 5096 list_add_tail(&ioc->scsi_lookup[i].tracker_list, 5097 &ioc->free_list); 5098 } 5099 5100 /* hi-priority queue */ 5101 INIT_LIST_HEAD(&ioc->hpr_free_list); 5102 smid = ioc->hi_priority_smid; 5103 for (i = 0; i < ioc->hi_priority_depth; i++, smid++) { 5104 ioc->hpr_lookup[i].cb_idx = 0xFF; 5105 ioc->hpr_lookup[i].smid = smid; 5106 list_add_tail(&ioc->hpr_lookup[i].tracker_list, 5107 &ioc->hpr_free_list); 5108 } 5109 5110 /* internal queue */ 5111 INIT_LIST_HEAD(&ioc->internal_free_list); 5112 smid = ioc->internal_smid; 5113 for (i = 0; i < ioc->internal_depth; i++, smid++) { 5114 ioc->internal_lookup[i].cb_idx = 0xFF; 5115 ioc->internal_lookup[i].smid = smid; 5116 list_add_tail(&ioc->internal_lookup[i].tracker_list, 5117 &ioc->internal_free_list); 5118 } 5119 5120 /* chain pool */ 5121 INIT_LIST_HEAD(&ioc->free_chain_list); 5122 for (i = 0; i < ioc->chain_depth; i++) 5123 list_add_tail(&ioc->chain_lookup[i].tracker_list, 5124 &ioc->free_chain_list); 5125 5126 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 5127 5128 /* initialize Reply Free Queue */ 5129 for (i = 0, reply_address = (u32)ioc->reply_dma ; 5130 i < ioc->reply_free_queue_depth ; i++, reply_address += 5131 ioc->reply_sz) 5132 ioc->reply_free[i] = cpu_to_le32(reply_address); 5133 5134 /* initialize reply queues */ 5135 if (ioc->is_driver_loading) 5136 _base_assign_reply_queues(ioc); 5137 5138 /* initialize Reply Post Free Queue */ 5139 index = 0; 5140 reply_post_free_contig = ioc->reply_post[0].reply_post_free; 5141 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 5142 /* 5143 * If RDPQ is enabled, switch to the next allocation. 5144 * Otherwise advance within the contiguous region. 5145 */ 5146 if (ioc->rdpq_array_enable) { 5147 reply_q->reply_post_free = 5148 ioc->reply_post[index++].reply_post_free; 5149 } else { 5150 reply_q->reply_post_free = reply_post_free_contig; 5151 reply_post_free_contig += ioc->reply_post_queue_depth; 5152 } 5153 5154 reply_q->reply_post_host_index = 0; 5155 for (i = 0; i < ioc->reply_post_queue_depth; i++) 5156 reply_q->reply_post_free[i].Words = 5157 cpu_to_le64(ULLONG_MAX); 5158 if (!_base_is_controller_msix_enabled(ioc)) 5159 goto skip_init_reply_post_free_queue; 5160 } 5161 skip_init_reply_post_free_queue: 5162 5163 r = _base_send_ioc_init(ioc, sleep_flag); 5164 if (r) 5165 return r; 5166 5167 /* initialize reply free host index */ 5168 ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1; 5169 writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex); 5170 5171 /* initialize reply post host index */ 5172 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 5173 if (ioc->msix96_vector) 5174 writel((reply_q->msix_index & 7)<< 5175 MPI2_RPHI_MSIX_INDEX_SHIFT, 5176 ioc->replyPostRegisterIndex[reply_q->msix_index/8]); 5177 else 5178 writel(reply_q->msix_index << 5179 MPI2_RPHI_MSIX_INDEX_SHIFT, 5180 &ioc->chip->ReplyPostHostIndex); 5181 5182 if (!_base_is_controller_msix_enabled(ioc)) 5183 goto skip_init_reply_post_host_index; 5184 } 5185 5186 skip_init_reply_post_host_index: 5187 5188 _base_unmask_interrupts(ioc); 5189 r = _base_event_notification(ioc, sleep_flag); 5190 if (r) 5191 return r; 5192 5193 if (sleep_flag == CAN_SLEEP) 5194 _base_static_config_pages(ioc); 5195 5196 5197 if (ioc->is_driver_loading) { 5198 5199 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier 5200 == 0x80) { 5201 hide_flag = (u8) ( 5202 le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) & 5203 MFG_PAGE10_HIDE_SSDS_MASK); 5204 if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK) 5205 ioc->mfg_pg10_hide_flag = hide_flag; 5206 } 5207 5208 ioc->wait_for_discovery_to_complete = 5209 _base_determine_wait_on_discovery(ioc); 5210 5211 return r; /* scan_start and scan_finished support */ 5212 } 5213 5214 r = _base_send_port_enable(ioc, sleep_flag); 5215 if (r) 5216 return r; 5217 5218 return r; 5219 } 5220 5221 /** 5222 * mpt3sas_base_free_resources - free resources controller resources 5223 * @ioc: per adapter object 5224 * 5225 * Return nothing. 5226 */ 5227 void 5228 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc) 5229 { 5230 dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name, 5231 __func__)); 5232 5233 /* synchronizing freeing resource with pci_access_mutex lock */ 5234 mutex_lock(&ioc->pci_access_mutex); 5235 if (ioc->chip_phys && ioc->chip) { 5236 _base_mask_interrupts(ioc); 5237 ioc->shost_recovery = 1; 5238 _base_make_ioc_ready(ioc, CAN_SLEEP, SOFT_RESET); 5239 ioc->shost_recovery = 0; 5240 } 5241 5242 mpt3sas_base_unmap_resources(ioc); 5243 mutex_unlock(&ioc->pci_access_mutex); 5244 return; 5245 } 5246 5247 /** 5248 * mpt3sas_base_attach - attach controller instance 5249 * @ioc: per adapter object 5250 * 5251 * Returns 0 for success, non-zero for failure. 5252 */ 5253 int 5254 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc) 5255 { 5256 int r, i; 5257 int cpu_id, last_cpu_id = 0; 5258 5259 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name, 5260 __func__)); 5261 5262 /* setup cpu_msix_table */ 5263 ioc->cpu_count = num_online_cpus(); 5264 for_each_online_cpu(cpu_id) 5265 last_cpu_id = cpu_id; 5266 ioc->cpu_msix_table_sz = last_cpu_id + 1; 5267 ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL); 5268 ioc->reply_queue_count = 1; 5269 if (!ioc->cpu_msix_table) { 5270 dfailprintk(ioc, pr_info(MPT3SAS_FMT 5271 "allocation for cpu_msix_table failed!!!\n", 5272 ioc->name)); 5273 r = -ENOMEM; 5274 goto out_free_resources; 5275 } 5276 5277 if (ioc->is_warpdrive) { 5278 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz, 5279 sizeof(resource_size_t *), GFP_KERNEL); 5280 if (!ioc->reply_post_host_index) { 5281 dfailprintk(ioc, pr_info(MPT3SAS_FMT "allocation " 5282 "for cpu_msix_table failed!!!\n", ioc->name)); 5283 r = -ENOMEM; 5284 goto out_free_resources; 5285 } 5286 } 5287 5288 ioc->rdpq_array_enable_assigned = 0; 5289 ioc->dma_mask = 0; 5290 r = mpt3sas_base_map_resources(ioc); 5291 if (r) 5292 goto out_free_resources; 5293 5294 pci_set_drvdata(ioc->pdev, ioc->shost); 5295 r = _base_get_ioc_facts(ioc, CAN_SLEEP); 5296 if (r) 5297 goto out_free_resources; 5298 5299 switch (ioc->hba_mpi_version_belonged) { 5300 case MPI2_VERSION: 5301 ioc->build_sg_scmd = &_base_build_sg_scmd; 5302 ioc->build_sg = &_base_build_sg; 5303 ioc->build_zero_len_sge = &_base_build_zero_len_sge; 5304 break; 5305 case MPI25_VERSION: 5306 case MPI26_VERSION: 5307 /* 5308 * In SAS3.0, 5309 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and 5310 * Target Status - all require the IEEE formated scatter gather 5311 * elements. 5312 */ 5313 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee; 5314 ioc->build_sg = &_base_build_sg_ieee; 5315 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee; 5316 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t); 5317 break; 5318 } 5319 5320 /* 5321 * These function pointers for other requests that don't 5322 * the require IEEE scatter gather elements. 5323 * 5324 * For example Configuration Pages and SAS IOUNIT Control don't. 5325 */ 5326 ioc->build_sg_mpi = &_base_build_sg; 5327 ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge; 5328 5329 r = _base_make_ioc_ready(ioc, CAN_SLEEP, SOFT_RESET); 5330 if (r) 5331 goto out_free_resources; 5332 5333 ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts, 5334 sizeof(struct mpt3sas_port_facts), GFP_KERNEL); 5335 if (!ioc->pfacts) { 5336 r = -ENOMEM; 5337 goto out_free_resources; 5338 } 5339 5340 for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) { 5341 r = _base_get_port_facts(ioc, i, CAN_SLEEP); 5342 if (r) 5343 goto out_free_resources; 5344 } 5345 5346 r = _base_allocate_memory_pools(ioc, CAN_SLEEP); 5347 if (r) 5348 goto out_free_resources; 5349 5350 init_waitqueue_head(&ioc->reset_wq); 5351 5352 /* allocate memory pd handle bitmask list */ 5353 ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8); 5354 if (ioc->facts.MaxDevHandle % 8) 5355 ioc->pd_handles_sz++; 5356 ioc->pd_handles = kzalloc(ioc->pd_handles_sz, 5357 GFP_KERNEL); 5358 if (!ioc->pd_handles) { 5359 r = -ENOMEM; 5360 goto out_free_resources; 5361 } 5362 ioc->blocking_handles = kzalloc(ioc->pd_handles_sz, 5363 GFP_KERNEL); 5364 if (!ioc->blocking_handles) { 5365 r = -ENOMEM; 5366 goto out_free_resources; 5367 } 5368 5369 ioc->fwfault_debug = mpt3sas_fwfault_debug; 5370 5371 /* base internal command bits */ 5372 mutex_init(&ioc->base_cmds.mutex); 5373 ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 5374 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 5375 5376 /* port_enable command bits */ 5377 ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 5378 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED; 5379 5380 /* transport internal command bits */ 5381 ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 5382 ioc->transport_cmds.status = MPT3_CMD_NOT_USED; 5383 mutex_init(&ioc->transport_cmds.mutex); 5384 5385 /* scsih internal command bits */ 5386 ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 5387 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED; 5388 mutex_init(&ioc->scsih_cmds.mutex); 5389 5390 /* task management internal command bits */ 5391 ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 5392 ioc->tm_cmds.status = MPT3_CMD_NOT_USED; 5393 mutex_init(&ioc->tm_cmds.mutex); 5394 5395 /* config page internal command bits */ 5396 ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 5397 ioc->config_cmds.status = MPT3_CMD_NOT_USED; 5398 mutex_init(&ioc->config_cmds.mutex); 5399 5400 /* ctl module internal command bits */ 5401 ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 5402 ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL); 5403 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED; 5404 mutex_init(&ioc->ctl_cmds.mutex); 5405 5406 if (!ioc->base_cmds.reply || !ioc->transport_cmds.reply || 5407 !ioc->scsih_cmds.reply || !ioc->tm_cmds.reply || 5408 !ioc->config_cmds.reply || !ioc->ctl_cmds.reply || 5409 !ioc->ctl_cmds.sense) { 5410 r = -ENOMEM; 5411 goto out_free_resources; 5412 } 5413 5414 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 5415 ioc->event_masks[i] = -1; 5416 5417 /* here we enable the events we care about */ 5418 _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY); 5419 _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE); 5420 _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST); 5421 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE); 5422 _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE); 5423 _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST); 5424 _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME); 5425 _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK); 5426 _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS); 5427 _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED); 5428 _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD); 5429 if (ioc->hba_mpi_version_belonged == MPI26_VERSION) 5430 _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION); 5431 5432 r = _base_make_ioc_operational(ioc, CAN_SLEEP); 5433 if (r) 5434 goto out_free_resources; 5435 5436 ioc->non_operational_loop = 0; 5437 return 0; 5438 5439 out_free_resources: 5440 5441 ioc->remove_host = 1; 5442 5443 mpt3sas_base_free_resources(ioc); 5444 _base_release_memory_pools(ioc); 5445 pci_set_drvdata(ioc->pdev, NULL); 5446 kfree(ioc->cpu_msix_table); 5447 if (ioc->is_warpdrive) 5448 kfree(ioc->reply_post_host_index); 5449 kfree(ioc->pd_handles); 5450 kfree(ioc->blocking_handles); 5451 kfree(ioc->tm_cmds.reply); 5452 kfree(ioc->transport_cmds.reply); 5453 kfree(ioc->scsih_cmds.reply); 5454 kfree(ioc->config_cmds.reply); 5455 kfree(ioc->base_cmds.reply); 5456 kfree(ioc->port_enable_cmds.reply); 5457 kfree(ioc->ctl_cmds.reply); 5458 kfree(ioc->ctl_cmds.sense); 5459 kfree(ioc->pfacts); 5460 ioc->ctl_cmds.reply = NULL; 5461 ioc->base_cmds.reply = NULL; 5462 ioc->tm_cmds.reply = NULL; 5463 ioc->scsih_cmds.reply = NULL; 5464 ioc->transport_cmds.reply = NULL; 5465 ioc->config_cmds.reply = NULL; 5466 ioc->pfacts = NULL; 5467 return r; 5468 } 5469 5470 5471 /** 5472 * mpt3sas_base_detach - remove controller instance 5473 * @ioc: per adapter object 5474 * 5475 * Return nothing. 5476 */ 5477 void 5478 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc) 5479 { 5480 dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name, 5481 __func__)); 5482 5483 mpt3sas_base_stop_watchdog(ioc); 5484 mpt3sas_base_free_resources(ioc); 5485 _base_release_memory_pools(ioc); 5486 pci_set_drvdata(ioc->pdev, NULL); 5487 kfree(ioc->cpu_msix_table); 5488 if (ioc->is_warpdrive) 5489 kfree(ioc->reply_post_host_index); 5490 kfree(ioc->pd_handles); 5491 kfree(ioc->blocking_handles); 5492 kfree(ioc->pfacts); 5493 kfree(ioc->ctl_cmds.reply); 5494 kfree(ioc->ctl_cmds.sense); 5495 kfree(ioc->base_cmds.reply); 5496 kfree(ioc->port_enable_cmds.reply); 5497 kfree(ioc->tm_cmds.reply); 5498 kfree(ioc->transport_cmds.reply); 5499 kfree(ioc->scsih_cmds.reply); 5500 kfree(ioc->config_cmds.reply); 5501 } 5502 5503 /** 5504 * _base_reset_handler - reset callback handler (for base) 5505 * @ioc: per adapter object 5506 * @reset_phase: phase 5507 * 5508 * The handler for doing any required cleanup or initialization. 5509 * 5510 * The reset phase can be MPT3_IOC_PRE_RESET, MPT3_IOC_AFTER_RESET, 5511 * MPT3_IOC_DONE_RESET 5512 * 5513 * Return nothing. 5514 */ 5515 static void 5516 _base_reset_handler(struct MPT3SAS_ADAPTER *ioc, int reset_phase) 5517 { 5518 mpt3sas_scsih_reset_handler(ioc, reset_phase); 5519 mpt3sas_ctl_reset_handler(ioc, reset_phase); 5520 switch (reset_phase) { 5521 case MPT3_IOC_PRE_RESET: 5522 dtmprintk(ioc, pr_info(MPT3SAS_FMT 5523 "%s: MPT3_IOC_PRE_RESET\n", ioc->name, __func__)); 5524 break; 5525 case MPT3_IOC_AFTER_RESET: 5526 dtmprintk(ioc, pr_info(MPT3SAS_FMT 5527 "%s: MPT3_IOC_AFTER_RESET\n", ioc->name, __func__)); 5528 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) { 5529 ioc->transport_cmds.status |= MPT3_CMD_RESET; 5530 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid); 5531 complete(&ioc->transport_cmds.done); 5532 } 5533 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 5534 ioc->base_cmds.status |= MPT3_CMD_RESET; 5535 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid); 5536 complete(&ioc->base_cmds.done); 5537 } 5538 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 5539 ioc->port_enable_failed = 1; 5540 ioc->port_enable_cmds.status |= MPT3_CMD_RESET; 5541 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid); 5542 if (ioc->is_driver_loading) { 5543 ioc->start_scan_failed = 5544 MPI2_IOCSTATUS_INTERNAL_ERROR; 5545 ioc->start_scan = 0; 5546 ioc->port_enable_cmds.status = 5547 MPT3_CMD_NOT_USED; 5548 } else 5549 complete(&ioc->port_enable_cmds.done); 5550 } 5551 if (ioc->config_cmds.status & MPT3_CMD_PENDING) { 5552 ioc->config_cmds.status |= MPT3_CMD_RESET; 5553 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid); 5554 ioc->config_cmds.smid = USHRT_MAX; 5555 complete(&ioc->config_cmds.done); 5556 } 5557 break; 5558 case MPT3_IOC_DONE_RESET: 5559 dtmprintk(ioc, pr_info(MPT3SAS_FMT 5560 "%s: MPT3_IOC_DONE_RESET\n", ioc->name, __func__)); 5561 break; 5562 } 5563 } 5564 5565 /** 5566 * _wait_for_commands_to_complete - reset controller 5567 * @ioc: Pointer to MPT_ADAPTER structure 5568 * @sleep_flag: CAN_SLEEP or NO_SLEEP 5569 * 5570 * This function waiting(3s) for all pending commands to complete 5571 * prior to putting controller in reset. 5572 */ 5573 static void 5574 _wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc, int sleep_flag) 5575 { 5576 u32 ioc_state; 5577 unsigned long flags; 5578 u16 i; 5579 5580 ioc->pending_io_count = 0; 5581 if (sleep_flag != CAN_SLEEP) 5582 return; 5583 5584 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 5585 if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) 5586 return; 5587 5588 /* pending command count */ 5589 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 5590 for (i = 0; i < ioc->scsiio_depth; i++) 5591 if (ioc->scsi_lookup[i].cb_idx != 0xFF) 5592 ioc->pending_io_count++; 5593 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 5594 5595 if (!ioc->pending_io_count) 5596 return; 5597 5598 /* wait for pending commands to complete */ 5599 wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ); 5600 } 5601 5602 /** 5603 * mpt3sas_base_hard_reset_handler - reset controller 5604 * @ioc: Pointer to MPT_ADAPTER structure 5605 * @sleep_flag: CAN_SLEEP or NO_SLEEP 5606 * @type: FORCE_BIG_HAMMER or SOFT_RESET 5607 * 5608 * Returns 0 for success, non-zero for failure. 5609 */ 5610 int 5611 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc, int sleep_flag, 5612 enum reset_type type) 5613 { 5614 int r; 5615 unsigned long flags; 5616 u32 ioc_state; 5617 u8 is_fault = 0, is_trigger = 0; 5618 5619 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: enter\n", ioc->name, 5620 __func__)); 5621 5622 if (ioc->pci_error_recovery) { 5623 pr_err(MPT3SAS_FMT "%s: pci error recovery reset\n", 5624 ioc->name, __func__); 5625 r = 0; 5626 goto out_unlocked; 5627 } 5628 5629 if (mpt3sas_fwfault_debug) 5630 mpt3sas_halt_firmware(ioc); 5631 5632 /* TODO - What we really should be doing is pulling 5633 * out all the code associated with NO_SLEEP; its never used. 5634 * That is legacy code from mpt fusion driver, ported over. 5635 * I will leave this BUG_ON here for now till its been resolved. 5636 */ 5637 BUG_ON(sleep_flag == NO_SLEEP); 5638 5639 /* wait for an active reset in progress to complete */ 5640 if (!mutex_trylock(&ioc->reset_in_progress_mutex)) { 5641 do { 5642 ssleep(1); 5643 } while (ioc->shost_recovery == 1); 5644 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name, 5645 __func__)); 5646 return ioc->ioc_reset_in_progress_status; 5647 } 5648 5649 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 5650 ioc->shost_recovery = 1; 5651 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 5652 5653 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 5654 MPT3_DIAG_BUFFER_IS_REGISTERED) && 5655 (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 5656 MPT3_DIAG_BUFFER_IS_RELEASED))) { 5657 is_trigger = 1; 5658 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 5659 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) 5660 is_fault = 1; 5661 } 5662 _base_reset_handler(ioc, MPT3_IOC_PRE_RESET); 5663 _wait_for_commands_to_complete(ioc, sleep_flag); 5664 _base_mask_interrupts(ioc); 5665 r = _base_make_ioc_ready(ioc, sleep_flag, type); 5666 if (r) 5667 goto out; 5668 _base_reset_handler(ioc, MPT3_IOC_AFTER_RESET); 5669 5670 /* If this hard reset is called while port enable is active, then 5671 * there is no reason to call make_ioc_operational 5672 */ 5673 if (ioc->is_driver_loading && ioc->port_enable_failed) { 5674 ioc->remove_host = 1; 5675 r = -EFAULT; 5676 goto out; 5677 } 5678 r = _base_get_ioc_facts(ioc, CAN_SLEEP); 5679 if (r) 5680 goto out; 5681 5682 if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable) 5683 panic("%s: Issue occurred with flashing controller firmware." 5684 "Please reboot the system and ensure that the correct" 5685 " firmware version is running\n", ioc->name); 5686 5687 r = _base_make_ioc_operational(ioc, sleep_flag); 5688 if (!r) 5689 _base_reset_handler(ioc, MPT3_IOC_DONE_RESET); 5690 5691 out: 5692 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: %s\n", 5693 ioc->name, __func__, ((r == 0) ? "SUCCESS" : "FAILED"))); 5694 5695 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 5696 ioc->ioc_reset_in_progress_status = r; 5697 ioc->shost_recovery = 0; 5698 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 5699 ioc->ioc_reset_count++; 5700 mutex_unlock(&ioc->reset_in_progress_mutex); 5701 5702 out_unlocked: 5703 if ((r == 0) && is_trigger) { 5704 if (is_fault) 5705 mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT); 5706 else 5707 mpt3sas_trigger_master(ioc, 5708 MASTER_TRIGGER_ADAPTER_RESET); 5709 } 5710 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name, 5711 __func__)); 5712 return r; 5713 } 5714