1 /*
2  * This is the Fusion MPT base driver providing common API layer interface
3  * for access to MPT (Message Passing Technology) firmware.
4  *
5  * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6  * Copyright (C) 2012-2014  LSI Corporation
7  * Copyright (C) 2013-2014 Avago Technologies
8  *  (mailto: MPT-FusionLinux.pdl@avagotech.com)
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version 2
13  * of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * NO WARRANTY
21  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25  * solely responsible for determining the appropriateness of using and
26  * distributing the Program and assumes all risks associated with its
27  * exercise of rights under this Agreement, including but not limited to
28  * the risks and costs of program errors, damage to or loss of data,
29  * programs or equipment, and unavailability or interruption of operations.
30 
31  * DISCLAIMER OF LIABILITY
32  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39 
40  * You should have received a copy of the GNU General Public License
41  * along with this program; if not, write to the Free Software
42  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
43  * USA.
44  */
45 
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <linux/aer.h>
63 
64 
65 #include "mpt3sas_base.h"
66 
67 static MPT_CALLBACK	mpt_callbacks[MPT_MAX_CALLBACKS];
68 
69 
70 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
71 
72  /* maximum controller queue depth */
73 #define MAX_HBA_QUEUE_DEPTH	30000
74 #define MAX_CHAIN_DEPTH		100000
75 static int max_queue_depth = -1;
76 module_param(max_queue_depth, int, 0);
77 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
78 
79 static int max_sgl_entries = -1;
80 module_param(max_sgl_entries, int, 0);
81 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
82 
83 static int msix_disable = -1;
84 module_param(msix_disable, int, 0);
85 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
86 
87 static int smp_affinity_enable = 1;
88 module_param(smp_affinity_enable, int, S_IRUGO);
89 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disbale Default: enable(1)");
90 
91 static int max_msix_vectors = -1;
92 module_param(max_msix_vectors, int, 0);
93 MODULE_PARM_DESC(max_msix_vectors,
94 	" max msix vectors");
95 
96 static int mpt3sas_fwfault_debug;
97 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
98 	" enable detection of firmware fault and halt firmware - (default=0)");
99 
100 static int
101 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
102 
103 /**
104  * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
105  *
106  */
107 static int
108 _scsih_set_fwfault_debug(const char *val, struct kernel_param *kp)
109 {
110 	int ret = param_set_int(val, kp);
111 	struct MPT3SAS_ADAPTER *ioc;
112 
113 	if (ret)
114 		return ret;
115 
116 	/* global ioc spinlock to protect controller list on list operations */
117 	pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
118 	spin_lock(&gioc_lock);
119 	list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
120 		ioc->fwfault_debug = mpt3sas_fwfault_debug;
121 	spin_unlock(&gioc_lock);
122 	return 0;
123 }
124 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
125 	param_get_int, &mpt3sas_fwfault_debug, 0644);
126 
127 /**
128  *  mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
129  * @arg: input argument, used to derive ioc
130  *
131  * Return 0 if controller is removed from pci subsystem.
132  * Return -1 for other case.
133  */
134 static int mpt3sas_remove_dead_ioc_func(void *arg)
135 {
136 	struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
137 	struct pci_dev *pdev;
138 
139 	if ((ioc == NULL))
140 		return -1;
141 
142 	pdev = ioc->pdev;
143 	if ((pdev == NULL))
144 		return -1;
145 	pci_stop_and_remove_bus_device_locked(pdev);
146 	return 0;
147 }
148 
149 /**
150  * _base_fault_reset_work - workq handling ioc fault conditions
151  * @work: input argument, used to derive ioc
152  * Context: sleep.
153  *
154  * Return nothing.
155  */
156 static void
157 _base_fault_reset_work(struct work_struct *work)
158 {
159 	struct MPT3SAS_ADAPTER *ioc =
160 	    container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
161 	unsigned long	 flags;
162 	u32 doorbell;
163 	int rc;
164 	struct task_struct *p;
165 
166 
167 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
168 	if (ioc->shost_recovery || ioc->pci_error_recovery)
169 		goto rearm_timer;
170 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
171 
172 	doorbell = mpt3sas_base_get_iocstate(ioc, 0);
173 	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
174 		pr_err(MPT3SAS_FMT "SAS host is non-operational !!!!\n",
175 		    ioc->name);
176 
177 		/* It may be possible that EEH recovery can resolve some of
178 		 * pci bus failure issues rather removing the dead ioc function
179 		 * by considering controller is in a non-operational state. So
180 		 * here priority is given to the EEH recovery. If it doesn't
181 		 * not resolve this issue, mpt3sas driver will consider this
182 		 * controller to non-operational state and remove the dead ioc
183 		 * function.
184 		 */
185 		if (ioc->non_operational_loop++ < 5) {
186 			spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
187 							 flags);
188 			goto rearm_timer;
189 		}
190 
191 		/*
192 		 * Call _scsih_flush_pending_cmds callback so that we flush all
193 		 * pending commands back to OS. This call is required to aovid
194 		 * deadlock at block layer. Dead IOC will fail to do diag reset,
195 		 * and this call is safe since dead ioc will never return any
196 		 * command back from HW.
197 		 */
198 		ioc->schedule_dead_ioc_flush_running_cmds(ioc);
199 		/*
200 		 * Set remove_host flag early since kernel thread will
201 		 * take some time to execute.
202 		 */
203 		ioc->remove_host = 1;
204 		/*Remove the Dead Host */
205 		p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
206 		    "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
207 		if (IS_ERR(p))
208 			pr_err(MPT3SAS_FMT
209 			"%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
210 			ioc->name, __func__);
211 		else
212 			pr_err(MPT3SAS_FMT
213 			"%s: Running mpt3sas_dead_ioc thread success !!!!\n",
214 			ioc->name, __func__);
215 		return; /* don't rearm timer */
216 	}
217 
218 	ioc->non_operational_loop = 0;
219 
220 	if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
221 		rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
222 		pr_warn(MPT3SAS_FMT "%s: hard reset: %s\n", ioc->name,
223 		    __func__, (rc == 0) ? "success" : "failed");
224 		doorbell = mpt3sas_base_get_iocstate(ioc, 0);
225 		if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
226 			mpt3sas_base_fault_info(ioc, doorbell &
227 			    MPI2_DOORBELL_DATA_MASK);
228 		if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
229 		    MPI2_IOC_STATE_OPERATIONAL)
230 			return; /* don't rearm timer */
231 	}
232 
233 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
234  rearm_timer:
235 	if (ioc->fault_reset_work_q)
236 		queue_delayed_work(ioc->fault_reset_work_q,
237 		    &ioc->fault_reset_work,
238 		    msecs_to_jiffies(FAULT_POLLING_INTERVAL));
239 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
240 }
241 
242 /**
243  * mpt3sas_base_start_watchdog - start the fault_reset_work_q
244  * @ioc: per adapter object
245  * Context: sleep.
246  *
247  * Return nothing.
248  */
249 void
250 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
251 {
252 	unsigned long	 flags;
253 
254 	if (ioc->fault_reset_work_q)
255 		return;
256 
257 	/* initialize fault polling */
258 
259 	INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
260 	snprintf(ioc->fault_reset_work_q_name,
261 	    sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
262 	    ioc->driver_name, ioc->id);
263 	ioc->fault_reset_work_q =
264 		create_singlethread_workqueue(ioc->fault_reset_work_q_name);
265 	if (!ioc->fault_reset_work_q) {
266 		pr_err(MPT3SAS_FMT "%s: failed (line=%d)\n",
267 		    ioc->name, __func__, __LINE__);
268 			return;
269 	}
270 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
271 	if (ioc->fault_reset_work_q)
272 		queue_delayed_work(ioc->fault_reset_work_q,
273 		    &ioc->fault_reset_work,
274 		    msecs_to_jiffies(FAULT_POLLING_INTERVAL));
275 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
276 }
277 
278 /**
279  * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
280  * @ioc: per adapter object
281  * Context: sleep.
282  *
283  * Return nothing.
284  */
285 void
286 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
287 {
288 	unsigned long flags;
289 	struct workqueue_struct *wq;
290 
291 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
292 	wq = ioc->fault_reset_work_q;
293 	ioc->fault_reset_work_q = NULL;
294 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
295 	if (wq) {
296 		if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
297 			flush_workqueue(wq);
298 		destroy_workqueue(wq);
299 	}
300 }
301 
302 /**
303  * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
304  * @ioc: per adapter object
305  * @fault_code: fault code
306  *
307  * Return nothing.
308  */
309 void
310 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
311 {
312 	pr_err(MPT3SAS_FMT "fault_state(0x%04x)!\n",
313 	    ioc->name, fault_code);
314 }
315 
316 /**
317  * mpt3sas_halt_firmware - halt's mpt controller firmware
318  * @ioc: per adapter object
319  *
320  * For debugging timeout related issues.  Writing 0xCOFFEE00
321  * to the doorbell register will halt controller firmware. With
322  * the purpose to stop both driver and firmware, the enduser can
323  * obtain a ring buffer from controller UART.
324  */
325 void
326 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
327 {
328 	u32 doorbell;
329 
330 	if (!ioc->fwfault_debug)
331 		return;
332 
333 	dump_stack();
334 
335 	doorbell = readl(&ioc->chip->Doorbell);
336 	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
337 		mpt3sas_base_fault_info(ioc , doorbell);
338 	else {
339 		writel(0xC0FFEE00, &ioc->chip->Doorbell);
340 		pr_err(MPT3SAS_FMT "Firmware is halted due to command timeout\n",
341 			ioc->name);
342 	}
343 
344 	if (ioc->fwfault_debug == 2)
345 		for (;;)
346 			;
347 	else
348 		panic("panic in %s\n", __func__);
349 }
350 
351 /**
352  * _base_sas_ioc_info - verbose translation of the ioc status
353  * @ioc: per adapter object
354  * @mpi_reply: reply mf payload returned from firmware
355  * @request_hdr: request mf
356  *
357  * Return nothing.
358  */
359 static void
360 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
361 	MPI2RequestHeader_t *request_hdr)
362 {
363 	u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
364 	    MPI2_IOCSTATUS_MASK;
365 	char *desc = NULL;
366 	u16 frame_sz;
367 	char *func_str = NULL;
368 
369 	/* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
370 	if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
371 	    request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
372 	    request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
373 		return;
374 
375 	if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
376 		return;
377 
378 	switch (ioc_status) {
379 
380 /****************************************************************************
381 *  Common IOCStatus values for all replies
382 ****************************************************************************/
383 
384 	case MPI2_IOCSTATUS_INVALID_FUNCTION:
385 		desc = "invalid function";
386 		break;
387 	case MPI2_IOCSTATUS_BUSY:
388 		desc = "busy";
389 		break;
390 	case MPI2_IOCSTATUS_INVALID_SGL:
391 		desc = "invalid sgl";
392 		break;
393 	case MPI2_IOCSTATUS_INTERNAL_ERROR:
394 		desc = "internal error";
395 		break;
396 	case MPI2_IOCSTATUS_INVALID_VPID:
397 		desc = "invalid vpid";
398 		break;
399 	case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
400 		desc = "insufficient resources";
401 		break;
402 	case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
403 		desc = "insufficient power";
404 		break;
405 	case MPI2_IOCSTATUS_INVALID_FIELD:
406 		desc = "invalid field";
407 		break;
408 	case MPI2_IOCSTATUS_INVALID_STATE:
409 		desc = "invalid state";
410 		break;
411 	case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
412 		desc = "op state not supported";
413 		break;
414 
415 /****************************************************************************
416 *  Config IOCStatus values
417 ****************************************************************************/
418 
419 	case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
420 		desc = "config invalid action";
421 		break;
422 	case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
423 		desc = "config invalid type";
424 		break;
425 	case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
426 		desc = "config invalid page";
427 		break;
428 	case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
429 		desc = "config invalid data";
430 		break;
431 	case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
432 		desc = "config no defaults";
433 		break;
434 	case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
435 		desc = "config cant commit";
436 		break;
437 
438 /****************************************************************************
439 *  SCSI IO Reply
440 ****************************************************************************/
441 
442 	case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
443 	case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
444 	case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
445 	case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
446 	case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
447 	case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
448 	case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
449 	case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
450 	case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
451 	case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
452 	case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
453 	case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
454 		break;
455 
456 /****************************************************************************
457 *  For use by SCSI Initiator and SCSI Target end-to-end data protection
458 ****************************************************************************/
459 
460 	case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
461 		desc = "eedp guard error";
462 		break;
463 	case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
464 		desc = "eedp ref tag error";
465 		break;
466 	case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
467 		desc = "eedp app tag error";
468 		break;
469 
470 /****************************************************************************
471 *  SCSI Target values
472 ****************************************************************************/
473 
474 	case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
475 		desc = "target invalid io index";
476 		break;
477 	case MPI2_IOCSTATUS_TARGET_ABORTED:
478 		desc = "target aborted";
479 		break;
480 	case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
481 		desc = "target no conn retryable";
482 		break;
483 	case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
484 		desc = "target no connection";
485 		break;
486 	case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
487 		desc = "target xfer count mismatch";
488 		break;
489 	case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
490 		desc = "target data offset error";
491 		break;
492 	case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
493 		desc = "target too much write data";
494 		break;
495 	case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
496 		desc = "target iu too short";
497 		break;
498 	case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
499 		desc = "target ack nak timeout";
500 		break;
501 	case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
502 		desc = "target nak received";
503 		break;
504 
505 /****************************************************************************
506 *  Serial Attached SCSI values
507 ****************************************************************************/
508 
509 	case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
510 		desc = "smp request failed";
511 		break;
512 	case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
513 		desc = "smp data overrun";
514 		break;
515 
516 /****************************************************************************
517 *  Diagnostic Buffer Post / Diagnostic Release values
518 ****************************************************************************/
519 
520 	case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
521 		desc = "diagnostic released";
522 		break;
523 	default:
524 		break;
525 	}
526 
527 	if (!desc)
528 		return;
529 
530 	switch (request_hdr->Function) {
531 	case MPI2_FUNCTION_CONFIG:
532 		frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
533 		func_str = "config_page";
534 		break;
535 	case MPI2_FUNCTION_SCSI_TASK_MGMT:
536 		frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
537 		func_str = "task_mgmt";
538 		break;
539 	case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
540 		frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
541 		func_str = "sas_iounit_ctl";
542 		break;
543 	case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
544 		frame_sz = sizeof(Mpi2SepRequest_t);
545 		func_str = "enclosure";
546 		break;
547 	case MPI2_FUNCTION_IOC_INIT:
548 		frame_sz = sizeof(Mpi2IOCInitRequest_t);
549 		func_str = "ioc_init";
550 		break;
551 	case MPI2_FUNCTION_PORT_ENABLE:
552 		frame_sz = sizeof(Mpi2PortEnableRequest_t);
553 		func_str = "port_enable";
554 		break;
555 	case MPI2_FUNCTION_SMP_PASSTHROUGH:
556 		frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
557 		func_str = "smp_passthru";
558 		break;
559 	default:
560 		frame_sz = 32;
561 		func_str = "unknown";
562 		break;
563 	}
564 
565 	pr_warn(MPT3SAS_FMT "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
566 		ioc->name, desc, ioc_status, request_hdr, func_str);
567 
568 	_debug_dump_mf(request_hdr, frame_sz/4);
569 }
570 
571 /**
572  * _base_display_event_data - verbose translation of firmware asyn events
573  * @ioc: per adapter object
574  * @mpi_reply: reply mf payload returned from firmware
575  *
576  * Return nothing.
577  */
578 static void
579 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
580 	Mpi2EventNotificationReply_t *mpi_reply)
581 {
582 	char *desc = NULL;
583 	u16 event;
584 
585 	if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
586 		return;
587 
588 	event = le16_to_cpu(mpi_reply->Event);
589 
590 	switch (event) {
591 	case MPI2_EVENT_LOG_DATA:
592 		desc = "Log Data";
593 		break;
594 	case MPI2_EVENT_STATE_CHANGE:
595 		desc = "Status Change";
596 		break;
597 	case MPI2_EVENT_HARD_RESET_RECEIVED:
598 		desc = "Hard Reset Received";
599 		break;
600 	case MPI2_EVENT_EVENT_CHANGE:
601 		desc = "Event Change";
602 		break;
603 	case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
604 		desc = "Device Status Change";
605 		break;
606 	case MPI2_EVENT_IR_OPERATION_STATUS:
607 		if (!ioc->hide_ir_msg)
608 			desc = "IR Operation Status";
609 		break;
610 	case MPI2_EVENT_SAS_DISCOVERY:
611 	{
612 		Mpi2EventDataSasDiscovery_t *event_data =
613 		    (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
614 		pr_info(MPT3SAS_FMT "Discovery: (%s)", ioc->name,
615 		    (event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED) ?
616 		    "start" : "stop");
617 		if (event_data->DiscoveryStatus)
618 			pr_info("discovery_status(0x%08x)",
619 			    le32_to_cpu(event_data->DiscoveryStatus));
620 			pr_info("\n");
621 		return;
622 	}
623 	case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
624 		desc = "SAS Broadcast Primitive";
625 		break;
626 	case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
627 		desc = "SAS Init Device Status Change";
628 		break;
629 	case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
630 		desc = "SAS Init Table Overflow";
631 		break;
632 	case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
633 		desc = "SAS Topology Change List";
634 		break;
635 	case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
636 		desc = "SAS Enclosure Device Status Change";
637 		break;
638 	case MPI2_EVENT_IR_VOLUME:
639 		if (!ioc->hide_ir_msg)
640 			desc = "IR Volume";
641 		break;
642 	case MPI2_EVENT_IR_PHYSICAL_DISK:
643 		if (!ioc->hide_ir_msg)
644 			desc = "IR Physical Disk";
645 		break;
646 	case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
647 		if (!ioc->hide_ir_msg)
648 			desc = "IR Configuration Change List";
649 		break;
650 	case MPI2_EVENT_LOG_ENTRY_ADDED:
651 		if (!ioc->hide_ir_msg)
652 			desc = "Log Entry Added";
653 		break;
654 	case MPI2_EVENT_TEMP_THRESHOLD:
655 		desc = "Temperature Threshold";
656 		break;
657 	case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
658 		desc = "Active cable exception";
659 		break;
660 	}
661 
662 	if (!desc)
663 		return;
664 
665 	pr_info(MPT3SAS_FMT "%s\n", ioc->name, desc);
666 }
667 
668 /**
669  * _base_sas_log_info - verbose translation of firmware log info
670  * @ioc: per adapter object
671  * @log_info: log info
672  *
673  * Return nothing.
674  */
675 static void
676 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
677 {
678 	union loginfo_type {
679 		u32	loginfo;
680 		struct {
681 			u32	subcode:16;
682 			u32	code:8;
683 			u32	originator:4;
684 			u32	bus_type:4;
685 		} dw;
686 	};
687 	union loginfo_type sas_loginfo;
688 	char *originator_str = NULL;
689 
690 	sas_loginfo.loginfo = log_info;
691 	if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
692 		return;
693 
694 	/* each nexus loss loginfo */
695 	if (log_info == 0x31170000)
696 		return;
697 
698 	/* eat the loginfos associated with task aborts */
699 	if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
700 	    0x31140000 || log_info == 0x31130000))
701 		return;
702 
703 	switch (sas_loginfo.dw.originator) {
704 	case 0:
705 		originator_str = "IOP";
706 		break;
707 	case 1:
708 		originator_str = "PL";
709 		break;
710 	case 2:
711 		if (!ioc->hide_ir_msg)
712 			originator_str = "IR";
713 		else
714 			originator_str = "WarpDrive";
715 		break;
716 	}
717 
718 	pr_warn(MPT3SAS_FMT
719 		"log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
720 		ioc->name, log_info,
721 	     originator_str, sas_loginfo.dw.code,
722 	     sas_loginfo.dw.subcode);
723 }
724 
725 /**
726  * _base_display_reply_info -
727  * @ioc: per adapter object
728  * @smid: system request message index
729  * @msix_index: MSIX table index supplied by the OS
730  * @reply: reply message frame(lower 32bit addr)
731  *
732  * Return nothing.
733  */
734 static void
735 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
736 	u32 reply)
737 {
738 	MPI2DefaultReply_t *mpi_reply;
739 	u16 ioc_status;
740 	u32 loginfo = 0;
741 
742 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
743 	if (unlikely(!mpi_reply)) {
744 		pr_err(MPT3SAS_FMT "mpi_reply not valid at %s:%d/%s()!\n",
745 		    ioc->name, __FILE__, __LINE__, __func__);
746 		return;
747 	}
748 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
749 
750 	if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
751 	    (ioc->logging_level & MPT_DEBUG_REPLY)) {
752 		_base_sas_ioc_info(ioc , mpi_reply,
753 		   mpt3sas_base_get_msg_frame(ioc, smid));
754 	}
755 
756 	if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
757 		loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
758 		_base_sas_log_info(ioc, loginfo);
759 	}
760 
761 	if (ioc_status || loginfo) {
762 		ioc_status &= MPI2_IOCSTATUS_MASK;
763 		mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
764 	}
765 }
766 
767 /**
768  * mpt3sas_base_done - base internal command completion routine
769  * @ioc: per adapter object
770  * @smid: system request message index
771  * @msix_index: MSIX table index supplied by the OS
772  * @reply: reply message frame(lower 32bit addr)
773  *
774  * Return 1 meaning mf should be freed from _base_interrupt
775  *        0 means the mf is freed from this function.
776  */
777 u8
778 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
779 	u32 reply)
780 {
781 	MPI2DefaultReply_t *mpi_reply;
782 
783 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
784 	if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
785 		return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
786 
787 	if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
788 		return 1;
789 
790 	ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
791 	if (mpi_reply) {
792 		ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
793 		memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
794 	}
795 	ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
796 
797 	complete(&ioc->base_cmds.done);
798 	return 1;
799 }
800 
801 /**
802  * _base_async_event - main callback handler for firmware asyn events
803  * @ioc: per adapter object
804  * @msix_index: MSIX table index supplied by the OS
805  * @reply: reply message frame(lower 32bit addr)
806  *
807  * Return 1 meaning mf should be freed from _base_interrupt
808  *        0 means the mf is freed from this function.
809  */
810 static u8
811 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
812 {
813 	Mpi2EventNotificationReply_t *mpi_reply;
814 	Mpi2EventAckRequest_t *ack_request;
815 	u16 smid;
816 	struct _event_ack_list *delayed_event_ack;
817 
818 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
819 	if (!mpi_reply)
820 		return 1;
821 	if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
822 		return 1;
823 
824 	_base_display_event_data(ioc, mpi_reply);
825 
826 	if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
827 		goto out;
828 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
829 	if (!smid) {
830 		delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
831 					GFP_ATOMIC);
832 		if (!delayed_event_ack)
833 			goto out;
834 		INIT_LIST_HEAD(&delayed_event_ack->list);
835 		delayed_event_ack->Event = mpi_reply->Event;
836 		delayed_event_ack->EventContext = mpi_reply->EventContext;
837 		list_add_tail(&delayed_event_ack->list,
838 				&ioc->delayed_event_ack_list);
839 		dewtprintk(ioc, pr_info(MPT3SAS_FMT
840 				"DELAYED: EVENT ACK: event (0x%04x)\n",
841 				ioc->name, le16_to_cpu(mpi_reply->Event)));
842 		goto out;
843 	}
844 
845 	ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
846 	memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
847 	ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
848 	ack_request->Event = mpi_reply->Event;
849 	ack_request->EventContext = mpi_reply->EventContext;
850 	ack_request->VF_ID = 0;  /* TODO */
851 	ack_request->VP_ID = 0;
852 	mpt3sas_base_put_smid_default(ioc, smid);
853 
854  out:
855 
856 	/* scsih callback handler */
857 	mpt3sas_scsih_event_callback(ioc, msix_index, reply);
858 
859 	/* ctl callback handler */
860 	mpt3sas_ctl_event_callback(ioc, msix_index, reply);
861 
862 	return 1;
863 }
864 
865 /**
866  * _base_get_cb_idx - obtain the callback index
867  * @ioc: per adapter object
868  * @smid: system request message index
869  *
870  * Return callback index.
871  */
872 static u8
873 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
874 {
875 	int i;
876 	u8 cb_idx;
877 
878 	if (smid < ioc->hi_priority_smid) {
879 		i = smid - 1;
880 		cb_idx = ioc->scsi_lookup[i].cb_idx;
881 	} else if (smid < ioc->internal_smid) {
882 		i = smid - ioc->hi_priority_smid;
883 		cb_idx = ioc->hpr_lookup[i].cb_idx;
884 	} else if (smid <= ioc->hba_queue_depth) {
885 		i = smid - ioc->internal_smid;
886 		cb_idx = ioc->internal_lookup[i].cb_idx;
887 	} else
888 		cb_idx = 0xFF;
889 	return cb_idx;
890 }
891 
892 /**
893  * _base_mask_interrupts - disable interrupts
894  * @ioc: per adapter object
895  *
896  * Disabling ResetIRQ, Reply and Doorbell Interrupts
897  *
898  * Return nothing.
899  */
900 static void
901 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
902 {
903 	u32 him_register;
904 
905 	ioc->mask_interrupts = 1;
906 	him_register = readl(&ioc->chip->HostInterruptMask);
907 	him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
908 	writel(him_register, &ioc->chip->HostInterruptMask);
909 	readl(&ioc->chip->HostInterruptMask);
910 }
911 
912 /**
913  * _base_unmask_interrupts - enable interrupts
914  * @ioc: per adapter object
915  *
916  * Enabling only Reply Interrupts
917  *
918  * Return nothing.
919  */
920 static void
921 _base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
922 {
923 	u32 him_register;
924 
925 	him_register = readl(&ioc->chip->HostInterruptMask);
926 	him_register &= ~MPI2_HIM_RIM;
927 	writel(him_register, &ioc->chip->HostInterruptMask);
928 	ioc->mask_interrupts = 0;
929 }
930 
931 union reply_descriptor {
932 	u64 word;
933 	struct {
934 		u32 low;
935 		u32 high;
936 	} u;
937 };
938 
939 /**
940  * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
941  * @irq: irq number (not used)
942  * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
943  * @r: pt_regs pointer (not used)
944  *
945  * Return IRQ_HANDLE if processed, else IRQ_NONE.
946  */
947 static irqreturn_t
948 _base_interrupt(int irq, void *bus_id)
949 {
950 	struct adapter_reply_queue *reply_q = bus_id;
951 	union reply_descriptor rd;
952 	u32 completed_cmds;
953 	u8 request_desript_type;
954 	u16 smid;
955 	u8 cb_idx;
956 	u32 reply;
957 	u8 msix_index = reply_q->msix_index;
958 	struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
959 	Mpi2ReplyDescriptorsUnion_t *rpf;
960 	u8 rc;
961 
962 	if (ioc->mask_interrupts)
963 		return IRQ_NONE;
964 
965 	if (!atomic_add_unless(&reply_q->busy, 1, 1))
966 		return IRQ_NONE;
967 
968 	rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
969 	request_desript_type = rpf->Default.ReplyFlags
970 	     & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
971 	if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
972 		atomic_dec(&reply_q->busy);
973 		return IRQ_NONE;
974 	}
975 
976 	completed_cmds = 0;
977 	cb_idx = 0xFF;
978 	do {
979 		rd.word = le64_to_cpu(rpf->Words);
980 		if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
981 			goto out;
982 		reply = 0;
983 		smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
984 		if (request_desript_type ==
985 		    MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
986 		    request_desript_type ==
987 		    MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS) {
988 			cb_idx = _base_get_cb_idx(ioc, smid);
989 			if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
990 			    (likely(mpt_callbacks[cb_idx] != NULL))) {
991 				rc = mpt_callbacks[cb_idx](ioc, smid,
992 				    msix_index, 0);
993 				if (rc)
994 					mpt3sas_base_free_smid(ioc, smid);
995 			}
996 		} else if (request_desript_type ==
997 		    MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
998 			reply = le32_to_cpu(
999 			    rpf->AddressReply.ReplyFrameAddress);
1000 			if (reply > ioc->reply_dma_max_address ||
1001 			    reply < ioc->reply_dma_min_address)
1002 				reply = 0;
1003 			if (smid) {
1004 				cb_idx = _base_get_cb_idx(ioc, smid);
1005 				if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1006 				    (likely(mpt_callbacks[cb_idx] != NULL))) {
1007 					rc = mpt_callbacks[cb_idx](ioc, smid,
1008 					    msix_index, reply);
1009 					if (reply)
1010 						_base_display_reply_info(ioc,
1011 						    smid, msix_index, reply);
1012 					if (rc)
1013 						mpt3sas_base_free_smid(ioc,
1014 						    smid);
1015 				}
1016 			} else {
1017 				_base_async_event(ioc, msix_index, reply);
1018 			}
1019 
1020 			/* reply free queue handling */
1021 			if (reply) {
1022 				ioc->reply_free_host_index =
1023 				    (ioc->reply_free_host_index ==
1024 				    (ioc->reply_free_queue_depth - 1)) ?
1025 				    0 : ioc->reply_free_host_index + 1;
1026 				ioc->reply_free[ioc->reply_free_host_index] =
1027 				    cpu_to_le32(reply);
1028 				wmb();
1029 				writel(ioc->reply_free_host_index,
1030 				    &ioc->chip->ReplyFreeHostIndex);
1031 			}
1032 		}
1033 
1034 		rpf->Words = cpu_to_le64(ULLONG_MAX);
1035 		reply_q->reply_post_host_index =
1036 		    (reply_q->reply_post_host_index ==
1037 		    (ioc->reply_post_queue_depth - 1)) ? 0 :
1038 		    reply_q->reply_post_host_index + 1;
1039 		request_desript_type =
1040 		    reply_q->reply_post_free[reply_q->reply_post_host_index].
1041 		    Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1042 		completed_cmds++;
1043 		if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1044 			goto out;
1045 		if (!reply_q->reply_post_host_index)
1046 			rpf = reply_q->reply_post_free;
1047 		else
1048 			rpf++;
1049 	} while (1);
1050 
1051  out:
1052 
1053 	if (!completed_cmds) {
1054 		atomic_dec(&reply_q->busy);
1055 		return IRQ_NONE;
1056 	}
1057 
1058 	wmb();
1059 	if (ioc->is_warpdrive) {
1060 		writel(reply_q->reply_post_host_index,
1061 		ioc->reply_post_host_index[msix_index]);
1062 		atomic_dec(&reply_q->busy);
1063 		return IRQ_HANDLED;
1064 	}
1065 
1066 	/* Update Reply Post Host Index.
1067 	 * For those HBA's which support combined reply queue feature
1068 	 * 1. Get the correct Supplemental Reply Post Host Index Register.
1069 	 *    i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1070 	 *    Index Register address bank i.e replyPostRegisterIndex[],
1071 	 * 2. Then update this register with new reply host index value
1072 	 *    in ReplyPostIndex field and the MSIxIndex field with
1073 	 *    msix_index value reduced to a value between 0 and 7,
1074 	 *    using a modulo 8 operation. Since each Supplemental Reply Post
1075 	 *    Host Index Register supports 8 MSI-X vectors.
1076 	 *
1077 	 * For other HBA's just update the Reply Post Host Index register with
1078 	 * new reply host index value in ReplyPostIndex Field and msix_index
1079 	 * value in MSIxIndex field.
1080 	 */
1081 	if (ioc->msix96_vector)
1082 		writel(reply_q->reply_post_host_index | ((msix_index  & 7) <<
1083 			MPI2_RPHI_MSIX_INDEX_SHIFT),
1084 			ioc->replyPostRegisterIndex[msix_index/8]);
1085 	else
1086 		writel(reply_q->reply_post_host_index | (msix_index <<
1087 			MPI2_RPHI_MSIX_INDEX_SHIFT),
1088 			&ioc->chip->ReplyPostHostIndex);
1089 	atomic_dec(&reply_q->busy);
1090 	return IRQ_HANDLED;
1091 }
1092 
1093 /**
1094  * _base_is_controller_msix_enabled - is controller support muli-reply queues
1095  * @ioc: per adapter object
1096  *
1097  */
1098 static inline int
1099 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1100 {
1101 	return (ioc->facts.IOCCapabilities &
1102 	    MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1103 }
1104 
1105 /**
1106  * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1107  * @ioc: per adapter object
1108  * Context: non ISR conext
1109  *
1110  * Called when a Task Management request has completed.
1111  *
1112  * Return nothing.
1113  */
1114 void
1115 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc)
1116 {
1117 	struct adapter_reply_queue *reply_q;
1118 
1119 	/* If MSIX capability is turned off
1120 	 * then multi-queues are not enabled
1121 	 */
1122 	if (!_base_is_controller_msix_enabled(ioc))
1123 		return;
1124 
1125 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1126 		if (ioc->shost_recovery || ioc->remove_host ||
1127 				ioc->pci_error_recovery)
1128 			return;
1129 		/* TMs are on msix_index == 0 */
1130 		if (reply_q->msix_index == 0)
1131 			continue;
1132 		synchronize_irq(reply_q->vector);
1133 	}
1134 }
1135 
1136 /**
1137  * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1138  * @cb_idx: callback index
1139  *
1140  * Return nothing.
1141  */
1142 void
1143 mpt3sas_base_release_callback_handler(u8 cb_idx)
1144 {
1145 	mpt_callbacks[cb_idx] = NULL;
1146 }
1147 
1148 /**
1149  * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1150  * @cb_func: callback function
1151  *
1152  * Returns cb_func.
1153  */
1154 u8
1155 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1156 {
1157 	u8 cb_idx;
1158 
1159 	for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1160 		if (mpt_callbacks[cb_idx] == NULL)
1161 			break;
1162 
1163 	mpt_callbacks[cb_idx] = cb_func;
1164 	return cb_idx;
1165 }
1166 
1167 /**
1168  * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1169  *
1170  * Return nothing.
1171  */
1172 void
1173 mpt3sas_base_initialize_callback_handler(void)
1174 {
1175 	u8 cb_idx;
1176 
1177 	for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1178 		mpt3sas_base_release_callback_handler(cb_idx);
1179 }
1180 
1181 
1182 /**
1183  * _base_build_zero_len_sge - build zero length sg entry
1184  * @ioc: per adapter object
1185  * @paddr: virtual address for SGE
1186  *
1187  * Create a zero length scatter gather entry to insure the IOCs hardware has
1188  * something to use if the target device goes brain dead and tries
1189  * to send data even when none is asked for.
1190  *
1191  * Return nothing.
1192  */
1193 static void
1194 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1195 {
1196 	u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1197 	    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1198 	    MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1199 	    MPI2_SGE_FLAGS_SHIFT);
1200 	ioc->base_add_sg_single(paddr, flags_length, -1);
1201 }
1202 
1203 /**
1204  * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1205  * @paddr: virtual address for SGE
1206  * @flags_length: SGE flags and data transfer length
1207  * @dma_addr: Physical address
1208  *
1209  * Return nothing.
1210  */
1211 static void
1212 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1213 {
1214 	Mpi2SGESimple32_t *sgel = paddr;
1215 
1216 	flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1217 	    MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1218 	sgel->FlagsLength = cpu_to_le32(flags_length);
1219 	sgel->Address = cpu_to_le32(dma_addr);
1220 }
1221 
1222 
1223 /**
1224  * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1225  * @paddr: virtual address for SGE
1226  * @flags_length: SGE flags and data transfer length
1227  * @dma_addr: Physical address
1228  *
1229  * Return nothing.
1230  */
1231 static void
1232 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1233 {
1234 	Mpi2SGESimple64_t *sgel = paddr;
1235 
1236 	flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
1237 	    MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1238 	sgel->FlagsLength = cpu_to_le32(flags_length);
1239 	sgel->Address = cpu_to_le64(dma_addr);
1240 }
1241 
1242 /**
1243  * _base_get_chain_buffer_tracker - obtain chain tracker
1244  * @ioc: per adapter object
1245  * @smid: smid associated to an IO request
1246  *
1247  * Returns chain tracker(from ioc->free_chain_list)
1248  */
1249 static struct chain_tracker *
1250 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1251 {
1252 	struct chain_tracker *chain_req;
1253 	unsigned long flags;
1254 
1255 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
1256 	if (list_empty(&ioc->free_chain_list)) {
1257 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1258 		dfailprintk(ioc, pr_warn(MPT3SAS_FMT
1259 			"chain buffers not available\n", ioc->name));
1260 		return NULL;
1261 	}
1262 	chain_req = list_entry(ioc->free_chain_list.next,
1263 	    struct chain_tracker, tracker_list);
1264 	list_del_init(&chain_req->tracker_list);
1265 	list_add_tail(&chain_req->tracker_list,
1266 	    &ioc->scsi_lookup[smid - 1].chain_list);
1267 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1268 	return chain_req;
1269 }
1270 
1271 
1272 /**
1273  * _base_build_sg - build generic sg
1274  * @ioc: per adapter object
1275  * @psge: virtual address for SGE
1276  * @data_out_dma: physical address for WRITES
1277  * @data_out_sz: data xfer size for WRITES
1278  * @data_in_dma: physical address for READS
1279  * @data_in_sz: data xfer size for READS
1280  *
1281  * Return nothing.
1282  */
1283 static void
1284 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
1285 	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1286 	size_t data_in_sz)
1287 {
1288 	u32 sgl_flags;
1289 
1290 	if (!data_out_sz && !data_in_sz) {
1291 		_base_build_zero_len_sge(ioc, psge);
1292 		return;
1293 	}
1294 
1295 	if (data_out_sz && data_in_sz) {
1296 		/* WRITE sgel first */
1297 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1298 		    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
1299 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1300 		ioc->base_add_sg_single(psge, sgl_flags |
1301 		    data_out_sz, data_out_dma);
1302 
1303 		/* incr sgel */
1304 		psge += ioc->sge_size;
1305 
1306 		/* READ sgel last */
1307 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1308 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1309 		    MPI2_SGE_FLAGS_END_OF_LIST);
1310 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1311 		ioc->base_add_sg_single(psge, sgl_flags |
1312 		    data_in_sz, data_in_dma);
1313 	} else if (data_out_sz) /* WRITE */ {
1314 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1315 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1316 		    MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
1317 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1318 		ioc->base_add_sg_single(psge, sgl_flags |
1319 		    data_out_sz, data_out_dma);
1320 	} else if (data_in_sz) /* READ */ {
1321 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1322 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1323 		    MPI2_SGE_FLAGS_END_OF_LIST);
1324 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1325 		ioc->base_add_sg_single(psge, sgl_flags |
1326 		    data_in_sz, data_in_dma);
1327 	}
1328 }
1329 
1330 /* IEEE format sgls */
1331 
1332 /**
1333  * _base_add_sg_single_ieee - add sg element for IEEE format
1334  * @paddr: virtual address for SGE
1335  * @flags: SGE flags
1336  * @chain_offset: number of 128 byte elements from start of segment
1337  * @length: data transfer length
1338  * @dma_addr: Physical address
1339  *
1340  * Return nothing.
1341  */
1342 static void
1343 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
1344 	dma_addr_t dma_addr)
1345 {
1346 	Mpi25IeeeSgeChain64_t *sgel = paddr;
1347 
1348 	sgel->Flags = flags;
1349 	sgel->NextChainOffset = chain_offset;
1350 	sgel->Length = cpu_to_le32(length);
1351 	sgel->Address = cpu_to_le64(dma_addr);
1352 }
1353 
1354 /**
1355  * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
1356  * @ioc: per adapter object
1357  * @paddr: virtual address for SGE
1358  *
1359  * Create a zero length scatter gather entry to insure the IOCs hardware has
1360  * something to use if the target device goes brain dead and tries
1361  * to send data even when none is asked for.
1362  *
1363  * Return nothing.
1364  */
1365 static void
1366 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1367 {
1368 	u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1369 		MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
1370 		MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
1371 
1372 	_base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
1373 }
1374 
1375 /**
1376  * _base_build_sg_scmd - main sg creation routine
1377  * @ioc: per adapter object
1378  * @scmd: scsi command
1379  * @smid: system request message index
1380  * Context: none.
1381  *
1382  * The main routine that builds scatter gather table from a given
1383  * scsi request sent via the .queuecommand main handler.
1384  *
1385  * Returns 0 success, anything else error
1386  */
1387 static int
1388 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
1389 		struct scsi_cmnd *scmd, u16 smid)
1390 {
1391 	Mpi2SCSIIORequest_t *mpi_request;
1392 	dma_addr_t chain_dma;
1393 	struct scatterlist *sg_scmd;
1394 	void *sg_local, *chain;
1395 	u32 chain_offset;
1396 	u32 chain_length;
1397 	u32 chain_flags;
1398 	int sges_left;
1399 	u32 sges_in_segment;
1400 	u32 sgl_flags;
1401 	u32 sgl_flags_last_element;
1402 	u32 sgl_flags_end_buffer;
1403 	struct chain_tracker *chain_req;
1404 
1405 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
1406 
1407 	/* init scatter gather flags */
1408 	sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
1409 	if (scmd->sc_data_direction == DMA_TO_DEVICE)
1410 		sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
1411 	sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
1412 	    << MPI2_SGE_FLAGS_SHIFT;
1413 	sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
1414 	    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
1415 	    << MPI2_SGE_FLAGS_SHIFT;
1416 	sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1417 
1418 	sg_scmd = scsi_sglist(scmd);
1419 	sges_left = scsi_dma_map(scmd);
1420 	if (sges_left < 0) {
1421 		sdev_printk(KERN_ERR, scmd->device,
1422 		 "pci_map_sg failed: request for %d bytes!\n",
1423 		 scsi_bufflen(scmd));
1424 		return -ENOMEM;
1425 	}
1426 
1427 	sg_local = &mpi_request->SGL;
1428 	sges_in_segment = ioc->max_sges_in_main_message;
1429 	if (sges_left <= sges_in_segment)
1430 		goto fill_in_last_segment;
1431 
1432 	mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
1433 	    (sges_in_segment * ioc->sge_size))/4;
1434 
1435 	/* fill in main message segment when there is a chain following */
1436 	while (sges_in_segment) {
1437 		if (sges_in_segment == 1)
1438 			ioc->base_add_sg_single(sg_local,
1439 			    sgl_flags_last_element | sg_dma_len(sg_scmd),
1440 			    sg_dma_address(sg_scmd));
1441 		else
1442 			ioc->base_add_sg_single(sg_local, sgl_flags |
1443 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1444 		sg_scmd = sg_next(sg_scmd);
1445 		sg_local += ioc->sge_size;
1446 		sges_left--;
1447 		sges_in_segment--;
1448 	}
1449 
1450 	/* initializing the chain flags and pointers */
1451 	chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
1452 	chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1453 	if (!chain_req)
1454 		return -1;
1455 	chain = chain_req->chain_buffer;
1456 	chain_dma = chain_req->chain_buffer_dma;
1457 	do {
1458 		sges_in_segment = (sges_left <=
1459 		    ioc->max_sges_in_chain_message) ? sges_left :
1460 		    ioc->max_sges_in_chain_message;
1461 		chain_offset = (sges_left == sges_in_segment) ?
1462 		    0 : (sges_in_segment * ioc->sge_size)/4;
1463 		chain_length = sges_in_segment * ioc->sge_size;
1464 		if (chain_offset) {
1465 			chain_offset = chain_offset <<
1466 			    MPI2_SGE_CHAIN_OFFSET_SHIFT;
1467 			chain_length += ioc->sge_size;
1468 		}
1469 		ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
1470 		    chain_length, chain_dma);
1471 		sg_local = chain;
1472 		if (!chain_offset)
1473 			goto fill_in_last_segment;
1474 
1475 		/* fill in chain segments */
1476 		while (sges_in_segment) {
1477 			if (sges_in_segment == 1)
1478 				ioc->base_add_sg_single(sg_local,
1479 				    sgl_flags_last_element |
1480 				    sg_dma_len(sg_scmd),
1481 				    sg_dma_address(sg_scmd));
1482 			else
1483 				ioc->base_add_sg_single(sg_local, sgl_flags |
1484 				    sg_dma_len(sg_scmd),
1485 				    sg_dma_address(sg_scmd));
1486 			sg_scmd = sg_next(sg_scmd);
1487 			sg_local += ioc->sge_size;
1488 			sges_left--;
1489 			sges_in_segment--;
1490 		}
1491 
1492 		chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1493 		if (!chain_req)
1494 			return -1;
1495 		chain = chain_req->chain_buffer;
1496 		chain_dma = chain_req->chain_buffer_dma;
1497 	} while (1);
1498 
1499 
1500  fill_in_last_segment:
1501 
1502 	/* fill the last segment */
1503 	while (sges_left) {
1504 		if (sges_left == 1)
1505 			ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
1506 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1507 		else
1508 			ioc->base_add_sg_single(sg_local, sgl_flags |
1509 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1510 		sg_scmd = sg_next(sg_scmd);
1511 		sg_local += ioc->sge_size;
1512 		sges_left--;
1513 	}
1514 
1515 	return 0;
1516 }
1517 
1518 /**
1519  * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
1520  * @ioc: per adapter object
1521  * @scmd: scsi command
1522  * @smid: system request message index
1523  * Context: none.
1524  *
1525  * The main routine that builds scatter gather table from a given
1526  * scsi request sent via the .queuecommand main handler.
1527  *
1528  * Returns 0 success, anything else error
1529  */
1530 static int
1531 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
1532 	struct scsi_cmnd *scmd, u16 smid)
1533 {
1534 	Mpi2SCSIIORequest_t *mpi_request;
1535 	dma_addr_t chain_dma;
1536 	struct scatterlist *sg_scmd;
1537 	void *sg_local, *chain;
1538 	u32 chain_offset;
1539 	u32 chain_length;
1540 	int sges_left;
1541 	u32 sges_in_segment;
1542 	u8 simple_sgl_flags;
1543 	u8 simple_sgl_flags_last;
1544 	u8 chain_sgl_flags;
1545 	struct chain_tracker *chain_req;
1546 
1547 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
1548 
1549 	/* init scatter gather flags */
1550 	simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1551 	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1552 	simple_sgl_flags_last = simple_sgl_flags |
1553 	    MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1554 	chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
1555 	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1556 
1557 	sg_scmd = scsi_sglist(scmd);
1558 	sges_left = scsi_dma_map(scmd);
1559 	if (sges_left < 0) {
1560 		sdev_printk(KERN_ERR, scmd->device,
1561 			"pci_map_sg failed: request for %d bytes!\n",
1562 			scsi_bufflen(scmd));
1563 		return -ENOMEM;
1564 	}
1565 
1566 	sg_local = &mpi_request->SGL;
1567 	sges_in_segment = (ioc->request_sz -
1568 	    offsetof(Mpi2SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
1569 	if (sges_left <= sges_in_segment)
1570 		goto fill_in_last_segment;
1571 
1572 	mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
1573 	    (offsetof(Mpi2SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
1574 
1575 	/* fill in main message segment when there is a chain following */
1576 	while (sges_in_segment > 1) {
1577 		_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1578 		    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1579 		sg_scmd = sg_next(sg_scmd);
1580 		sg_local += ioc->sge_size_ieee;
1581 		sges_left--;
1582 		sges_in_segment--;
1583 	}
1584 
1585 	/* initializing the pointers */
1586 	chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1587 	if (!chain_req)
1588 		return -1;
1589 	chain = chain_req->chain_buffer;
1590 	chain_dma = chain_req->chain_buffer_dma;
1591 	do {
1592 		sges_in_segment = (sges_left <=
1593 		    ioc->max_sges_in_chain_message) ? sges_left :
1594 		    ioc->max_sges_in_chain_message;
1595 		chain_offset = (sges_left == sges_in_segment) ?
1596 		    0 : sges_in_segment;
1597 		chain_length = sges_in_segment * ioc->sge_size_ieee;
1598 		if (chain_offset)
1599 			chain_length += ioc->sge_size_ieee;
1600 		_base_add_sg_single_ieee(sg_local, chain_sgl_flags,
1601 		    chain_offset, chain_length, chain_dma);
1602 
1603 		sg_local = chain;
1604 		if (!chain_offset)
1605 			goto fill_in_last_segment;
1606 
1607 		/* fill in chain segments */
1608 		while (sges_in_segment) {
1609 			_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1610 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1611 			sg_scmd = sg_next(sg_scmd);
1612 			sg_local += ioc->sge_size_ieee;
1613 			sges_left--;
1614 			sges_in_segment--;
1615 		}
1616 
1617 		chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1618 		if (!chain_req)
1619 			return -1;
1620 		chain = chain_req->chain_buffer;
1621 		chain_dma = chain_req->chain_buffer_dma;
1622 	} while (1);
1623 
1624 
1625  fill_in_last_segment:
1626 
1627 	/* fill the last segment */
1628 	while (sges_left > 0) {
1629 		if (sges_left == 1)
1630 			_base_add_sg_single_ieee(sg_local,
1631 			    simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
1632 			    sg_dma_address(sg_scmd));
1633 		else
1634 			_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1635 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1636 		sg_scmd = sg_next(sg_scmd);
1637 		sg_local += ioc->sge_size_ieee;
1638 		sges_left--;
1639 	}
1640 
1641 	return 0;
1642 }
1643 
1644 /**
1645  * _base_build_sg_ieee - build generic sg for IEEE format
1646  * @ioc: per adapter object
1647  * @psge: virtual address for SGE
1648  * @data_out_dma: physical address for WRITES
1649  * @data_out_sz: data xfer size for WRITES
1650  * @data_in_dma: physical address for READS
1651  * @data_in_sz: data xfer size for READS
1652  *
1653  * Return nothing.
1654  */
1655 static void
1656 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
1657 	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1658 	size_t data_in_sz)
1659 {
1660 	u8 sgl_flags;
1661 
1662 	if (!data_out_sz && !data_in_sz) {
1663 		_base_build_zero_len_sge_ieee(ioc, psge);
1664 		return;
1665 	}
1666 
1667 	if (data_out_sz && data_in_sz) {
1668 		/* WRITE sgel first */
1669 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1670 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1671 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1672 		    data_out_dma);
1673 
1674 		/* incr sgel */
1675 		psge += ioc->sge_size_ieee;
1676 
1677 		/* READ sgel last */
1678 		sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1679 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1680 		    data_in_dma);
1681 	} else if (data_out_sz) /* WRITE */ {
1682 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1683 		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1684 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1685 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1686 		    data_out_dma);
1687 	} else if (data_in_sz) /* READ */ {
1688 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1689 		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1690 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1691 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1692 		    data_in_dma);
1693 	}
1694 }
1695 
1696 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
1697 
1698 /**
1699  * _base_config_dma_addressing - set dma addressing
1700  * @ioc: per adapter object
1701  * @pdev: PCI device struct
1702  *
1703  * Returns 0 for success, non-zero for failure.
1704  */
1705 static int
1706 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
1707 {
1708 	struct sysinfo s;
1709 	u64 consistent_dma_mask;
1710 
1711 	if (ioc->dma_mask)
1712 		consistent_dma_mask = DMA_BIT_MASK(64);
1713 	else
1714 		consistent_dma_mask = DMA_BIT_MASK(32);
1715 
1716 	if (sizeof(dma_addr_t) > 4) {
1717 		const uint64_t required_mask =
1718 		    dma_get_required_mask(&pdev->dev);
1719 		if ((required_mask > DMA_BIT_MASK(32)) &&
1720 		    !pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
1721 		    !pci_set_consistent_dma_mask(pdev, consistent_dma_mask)) {
1722 			ioc->base_add_sg_single = &_base_add_sg_single_64;
1723 			ioc->sge_size = sizeof(Mpi2SGESimple64_t);
1724 			ioc->dma_mask = 64;
1725 			goto out;
1726 		}
1727 	}
1728 
1729 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))
1730 	    && !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
1731 		ioc->base_add_sg_single = &_base_add_sg_single_32;
1732 		ioc->sge_size = sizeof(Mpi2SGESimple32_t);
1733 		ioc->dma_mask = 32;
1734 	} else
1735 		return -ENODEV;
1736 
1737  out:
1738 	si_meminfo(&s);
1739 	pr_info(MPT3SAS_FMT
1740 		"%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
1741 		ioc->name, ioc->dma_mask, convert_to_kb(s.totalram));
1742 
1743 	return 0;
1744 }
1745 
1746 static int
1747 _base_change_consistent_dma_mask(struct MPT3SAS_ADAPTER *ioc,
1748 				      struct pci_dev *pdev)
1749 {
1750 	if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
1751 		if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
1752 			return -ENODEV;
1753 	}
1754 	return 0;
1755 }
1756 
1757 /**
1758  * _base_check_enable_msix - checks MSIX capabable.
1759  * @ioc: per adapter object
1760  *
1761  * Check to see if card is capable of MSIX, and set number
1762  * of available msix vectors
1763  */
1764 static int
1765 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1766 {
1767 	int base;
1768 	u16 message_control;
1769 
1770 	/* Check whether controller SAS2008 B0 controller,
1771 	 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
1772 	 */
1773 	if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
1774 	    ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
1775 		return -EINVAL;
1776 	}
1777 
1778 	base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
1779 	if (!base) {
1780 		dfailprintk(ioc, pr_info(MPT3SAS_FMT "msix not supported\n",
1781 			ioc->name));
1782 		return -EINVAL;
1783 	}
1784 
1785 	/* get msix vector count */
1786 	/* NUMA_IO not supported for older controllers */
1787 	if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
1788 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
1789 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
1790 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
1791 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
1792 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
1793 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
1794 		ioc->msix_vector_count = 1;
1795 	else {
1796 		pci_read_config_word(ioc->pdev, base + 2, &message_control);
1797 		ioc->msix_vector_count = (message_control & 0x3FF) + 1;
1798 	}
1799 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
1800 		"msix is supported, vector_count(%d)\n",
1801 		ioc->name, ioc->msix_vector_count));
1802 	return 0;
1803 }
1804 
1805 /**
1806  * _base_free_irq - free irq
1807  * @ioc: per adapter object
1808  *
1809  * Freeing respective reply_queue from the list.
1810  */
1811 static void
1812 _base_free_irq(struct MPT3SAS_ADAPTER *ioc)
1813 {
1814 	struct adapter_reply_queue *reply_q, *next;
1815 
1816 	if (list_empty(&ioc->reply_queue_list))
1817 		return;
1818 
1819 	list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1820 		list_del(&reply_q->list);
1821 		if (smp_affinity_enable) {
1822 			irq_set_affinity_hint(reply_q->vector, NULL);
1823 			free_cpumask_var(reply_q->affinity_hint);
1824 		}
1825 		free_irq(reply_q->vector, reply_q);
1826 		kfree(reply_q);
1827 	}
1828 }
1829 
1830 /**
1831  * _base_request_irq - request irq
1832  * @ioc: per adapter object
1833  * @index: msix index into vector table
1834  * @vector: irq vector
1835  *
1836  * Inserting respective reply_queue into the list.
1837  */
1838 static int
1839 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index, u32 vector)
1840 {
1841 	struct adapter_reply_queue *reply_q;
1842 	int r;
1843 
1844 	reply_q =  kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
1845 	if (!reply_q) {
1846 		pr_err(MPT3SAS_FMT "unable to allocate memory %d!\n",
1847 		    ioc->name, (int)sizeof(struct adapter_reply_queue));
1848 		return -ENOMEM;
1849 	}
1850 	reply_q->ioc = ioc;
1851 	reply_q->msix_index = index;
1852 	reply_q->vector = vector;
1853 
1854 	if (smp_affinity_enable) {
1855 		if (!zalloc_cpumask_var(&reply_q->affinity_hint, GFP_KERNEL)) {
1856 			kfree(reply_q);
1857 			return -ENOMEM;
1858 		}
1859 	}
1860 
1861 	atomic_set(&reply_q->busy, 0);
1862 	if (ioc->msix_enable)
1863 		snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
1864 		    ioc->driver_name, ioc->id, index);
1865 	else
1866 		snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
1867 		    ioc->driver_name, ioc->id);
1868 	r = request_irq(vector, _base_interrupt, IRQF_SHARED, reply_q->name,
1869 	    reply_q);
1870 	if (r) {
1871 		pr_err(MPT3SAS_FMT "unable to allocate interrupt %d!\n",
1872 		    reply_q->name, vector);
1873 		free_cpumask_var(reply_q->affinity_hint);
1874 		kfree(reply_q);
1875 		return -EBUSY;
1876 	}
1877 
1878 	INIT_LIST_HEAD(&reply_q->list);
1879 	list_add_tail(&reply_q->list, &ioc->reply_queue_list);
1880 	return 0;
1881 }
1882 
1883 /**
1884  * _base_assign_reply_queues - assigning msix index for each cpu
1885  * @ioc: per adapter object
1886  *
1887  * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
1888  *
1889  * It would nice if we could call irq_set_affinity, however it is not
1890  * an exported symbol
1891  */
1892 static void
1893 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
1894 {
1895 	unsigned int cpu, nr_cpus, nr_msix, index = 0;
1896 	struct adapter_reply_queue *reply_q;
1897 
1898 	if (!_base_is_controller_msix_enabled(ioc))
1899 		return;
1900 
1901 	memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
1902 
1903 	nr_cpus = num_online_cpus();
1904 	nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
1905 					       ioc->facts.MaxMSIxVectors);
1906 	if (!nr_msix)
1907 		return;
1908 
1909 	cpu = cpumask_first(cpu_online_mask);
1910 
1911 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1912 
1913 		unsigned int i, group = nr_cpus / nr_msix;
1914 
1915 		if (cpu >= nr_cpus)
1916 			break;
1917 
1918 		if (index < nr_cpus % nr_msix)
1919 			group++;
1920 
1921 		for (i = 0 ; i < group ; i++) {
1922 			ioc->cpu_msix_table[cpu] = index;
1923 			if (smp_affinity_enable)
1924 				cpumask_or(reply_q->affinity_hint,
1925 				   reply_q->affinity_hint, get_cpu_mask(cpu));
1926 			cpu = cpumask_next(cpu, cpu_online_mask);
1927 		}
1928 		if (smp_affinity_enable)
1929 			if (irq_set_affinity_hint(reply_q->vector,
1930 					   reply_q->affinity_hint))
1931 				dinitprintk(ioc, pr_info(MPT3SAS_FMT
1932 				 "Err setting affinity hint to irq vector %d\n",
1933 				 ioc->name, reply_q->vector));
1934 		index++;
1935 	}
1936 }
1937 
1938 /**
1939  * _base_disable_msix - disables msix
1940  * @ioc: per adapter object
1941  *
1942  */
1943 static void
1944 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
1945 {
1946 	if (!ioc->msix_enable)
1947 		return;
1948 	pci_disable_msix(ioc->pdev);
1949 	ioc->msix_enable = 0;
1950 }
1951 
1952 /**
1953  * _base_enable_msix - enables msix, failback to io_apic
1954  * @ioc: per adapter object
1955  *
1956  */
1957 static int
1958 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1959 {
1960 	struct msix_entry *entries, *a;
1961 	int r;
1962 	int i;
1963 	u8 try_msix = 0;
1964 
1965 	if (msix_disable == -1 || msix_disable == 0)
1966 		try_msix = 1;
1967 
1968 	if (!try_msix)
1969 		goto try_ioapic;
1970 
1971 	if (_base_check_enable_msix(ioc) != 0)
1972 		goto try_ioapic;
1973 
1974 	ioc->reply_queue_count = min_t(int, ioc->cpu_count,
1975 	    ioc->msix_vector_count);
1976 
1977 	printk(MPT3SAS_FMT "MSI-X vectors supported: %d, no of cores"
1978 	  ": %d, max_msix_vectors: %d\n", ioc->name, ioc->msix_vector_count,
1979 	  ioc->cpu_count, max_msix_vectors);
1980 
1981 	if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
1982 		max_msix_vectors = 8;
1983 
1984 	if (max_msix_vectors > 0) {
1985 		ioc->reply_queue_count = min_t(int, max_msix_vectors,
1986 			ioc->reply_queue_count);
1987 		ioc->msix_vector_count = ioc->reply_queue_count;
1988 	} else if (max_msix_vectors == 0)
1989 		goto try_ioapic;
1990 
1991 	if (ioc->msix_vector_count < ioc->cpu_count)
1992 		smp_affinity_enable = 0;
1993 
1994 	entries = kcalloc(ioc->reply_queue_count, sizeof(struct msix_entry),
1995 	    GFP_KERNEL);
1996 	if (!entries) {
1997 		dfailprintk(ioc, pr_info(MPT3SAS_FMT
1998 			"kcalloc failed @ at %s:%d/%s() !!!\n",
1999 			ioc->name, __FILE__, __LINE__, __func__));
2000 		goto try_ioapic;
2001 	}
2002 
2003 	for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++)
2004 		a->entry = i;
2005 
2006 	r = pci_enable_msix_exact(ioc->pdev, entries, ioc->reply_queue_count);
2007 	if (r) {
2008 		dfailprintk(ioc, pr_info(MPT3SAS_FMT
2009 			"pci_enable_msix_exact failed (r=%d) !!!\n",
2010 			ioc->name, r));
2011 		kfree(entries);
2012 		goto try_ioapic;
2013 	}
2014 
2015 	ioc->msix_enable = 1;
2016 	for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++) {
2017 		r = _base_request_irq(ioc, i, a->vector);
2018 		if (r) {
2019 			_base_free_irq(ioc);
2020 			_base_disable_msix(ioc);
2021 			kfree(entries);
2022 			goto try_ioapic;
2023 		}
2024 	}
2025 
2026 	kfree(entries);
2027 	return 0;
2028 
2029 /* failback to io_apic interrupt routing */
2030  try_ioapic:
2031 
2032 	ioc->reply_queue_count = 1;
2033 	r = _base_request_irq(ioc, 0, ioc->pdev->irq);
2034 
2035 	return r;
2036 }
2037 
2038 /**
2039  * mpt3sas_base_unmap_resources - free controller resources
2040  * @ioc: per adapter object
2041  */
2042 static void
2043 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
2044 {
2045 	struct pci_dev *pdev = ioc->pdev;
2046 
2047 	dexitprintk(ioc, printk(MPT3SAS_FMT "%s\n",
2048 		ioc->name, __func__));
2049 
2050 	_base_free_irq(ioc);
2051 	_base_disable_msix(ioc);
2052 
2053 	if (ioc->msix96_vector) {
2054 		kfree(ioc->replyPostRegisterIndex);
2055 		ioc->replyPostRegisterIndex = NULL;
2056 	}
2057 
2058 	if (ioc->chip_phys) {
2059 		iounmap(ioc->chip);
2060 		ioc->chip_phys = 0;
2061 	}
2062 
2063 	if (pci_is_enabled(pdev)) {
2064 		pci_release_selected_regions(ioc->pdev, ioc->bars);
2065 		pci_disable_pcie_error_reporting(pdev);
2066 		pci_disable_device(pdev);
2067 	}
2068 }
2069 
2070 /**
2071  * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
2072  * @ioc: per adapter object
2073  *
2074  * Returns 0 for success, non-zero for failure.
2075  */
2076 int
2077 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
2078 {
2079 	struct pci_dev *pdev = ioc->pdev;
2080 	u32 memap_sz;
2081 	u32 pio_sz;
2082 	int i, r = 0;
2083 	u64 pio_chip = 0;
2084 	u64 chip_phys = 0;
2085 	struct adapter_reply_queue *reply_q;
2086 
2087 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n",
2088 	    ioc->name, __func__));
2089 
2090 	ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
2091 	if (pci_enable_device_mem(pdev)) {
2092 		pr_warn(MPT3SAS_FMT "pci_enable_device_mem: failed\n",
2093 			ioc->name);
2094 		ioc->bars = 0;
2095 		return -ENODEV;
2096 	}
2097 
2098 
2099 	if (pci_request_selected_regions(pdev, ioc->bars,
2100 	    ioc->driver_name)) {
2101 		pr_warn(MPT3SAS_FMT "pci_request_selected_regions: failed\n",
2102 			ioc->name);
2103 		ioc->bars = 0;
2104 		r = -ENODEV;
2105 		goto out_fail;
2106 	}
2107 
2108 /* AER (Advanced Error Reporting) hooks */
2109 	pci_enable_pcie_error_reporting(pdev);
2110 
2111 	pci_set_master(pdev);
2112 
2113 
2114 	if (_base_config_dma_addressing(ioc, pdev) != 0) {
2115 		pr_warn(MPT3SAS_FMT "no suitable DMA mask for %s\n",
2116 		    ioc->name, pci_name(pdev));
2117 		r = -ENODEV;
2118 		goto out_fail;
2119 	}
2120 
2121 	for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
2122 	     (!memap_sz || !pio_sz); i++) {
2123 		if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
2124 			if (pio_sz)
2125 				continue;
2126 			pio_chip = (u64)pci_resource_start(pdev, i);
2127 			pio_sz = pci_resource_len(pdev, i);
2128 		} else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
2129 			if (memap_sz)
2130 				continue;
2131 			ioc->chip_phys = pci_resource_start(pdev, i);
2132 			chip_phys = (u64)ioc->chip_phys;
2133 			memap_sz = pci_resource_len(pdev, i);
2134 			ioc->chip = ioremap(ioc->chip_phys, memap_sz);
2135 		}
2136 	}
2137 
2138 	if (ioc->chip == NULL) {
2139 		pr_err(MPT3SAS_FMT "unable to map adapter memory! "
2140 			" or resource not found\n", ioc->name);
2141 		r = -EINVAL;
2142 		goto out_fail;
2143 	}
2144 
2145 	_base_mask_interrupts(ioc);
2146 
2147 	r = _base_get_ioc_facts(ioc);
2148 	if (r)
2149 		goto out_fail;
2150 
2151 	if (!ioc->rdpq_array_enable_assigned) {
2152 		ioc->rdpq_array_enable = ioc->rdpq_array_capable;
2153 		ioc->rdpq_array_enable_assigned = 1;
2154 	}
2155 
2156 	r = _base_enable_msix(ioc);
2157 	if (r)
2158 		goto out_fail;
2159 
2160 	/* Use the Combined reply queue feature only for SAS3 C0 & higher
2161 	 * revision HBAs and also only when reply queue count is greater than 8
2162 	 */
2163 	if (ioc->msix96_vector && ioc->reply_queue_count > 8) {
2164 		/* Determine the Supplemental Reply Post Host Index Registers
2165 		 * Addresse. Supplemental Reply Post Host Index Registers
2166 		 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
2167 		 * each register is at offset bytes of
2168 		 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
2169 		 */
2170 		ioc->replyPostRegisterIndex = kcalloc(
2171 		     MPT3_SUP_REPLY_POST_HOST_INDEX_REG_COUNT,
2172 		     sizeof(resource_size_t *), GFP_KERNEL);
2173 		if (!ioc->replyPostRegisterIndex) {
2174 			dfailprintk(ioc, printk(MPT3SAS_FMT
2175 			"allocation for reply Post Register Index failed!!!\n",
2176 								   ioc->name));
2177 			r = -ENOMEM;
2178 			goto out_fail;
2179 		}
2180 
2181 		for (i = 0; i < MPT3_SUP_REPLY_POST_HOST_INDEX_REG_COUNT; i++) {
2182 			ioc->replyPostRegisterIndex[i] = (resource_size_t *)
2183 			     ((u8 *)&ioc->chip->Doorbell +
2184 			     MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
2185 			     (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
2186 		}
2187 	} else
2188 		ioc->msix96_vector = 0;
2189 
2190 	if (ioc->is_warpdrive) {
2191 		ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
2192 		    &ioc->chip->ReplyPostHostIndex;
2193 
2194 		for (i = 1; i < ioc->cpu_msix_table_sz; i++)
2195 			ioc->reply_post_host_index[i] =
2196 			(resource_size_t __iomem *)
2197 			((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
2198 			* 4)));
2199 	}
2200 
2201 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
2202 		pr_info(MPT3SAS_FMT "%s: IRQ %d\n",
2203 		    reply_q->name,  ((ioc->msix_enable) ? "PCI-MSI-X enabled" :
2204 		    "IO-APIC enabled"), reply_q->vector);
2205 
2206 	pr_info(MPT3SAS_FMT "iomem(0x%016llx), mapped(0x%p), size(%d)\n",
2207 	    ioc->name, (unsigned long long)chip_phys, ioc->chip, memap_sz);
2208 	pr_info(MPT3SAS_FMT "ioport(0x%016llx), size(%d)\n",
2209 	    ioc->name, (unsigned long long)pio_chip, pio_sz);
2210 
2211 	/* Save PCI configuration state for recovery from PCI AER/EEH errors */
2212 	pci_save_state(pdev);
2213 	return 0;
2214 
2215  out_fail:
2216 	mpt3sas_base_unmap_resources(ioc);
2217 	return r;
2218 }
2219 
2220 /**
2221  * mpt3sas_base_get_msg_frame - obtain request mf pointer
2222  * @ioc: per adapter object
2223  * @smid: system request message index(smid zero is invalid)
2224  *
2225  * Returns virt pointer to message frame.
2226  */
2227 void *
2228 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2229 {
2230 	return (void *)(ioc->request + (smid * ioc->request_sz));
2231 }
2232 
2233 /**
2234  * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
2235  * @ioc: per adapter object
2236  * @smid: system request message index
2237  *
2238  * Returns virt pointer to sense buffer.
2239  */
2240 void *
2241 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2242 {
2243 	return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
2244 }
2245 
2246 /**
2247  * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
2248  * @ioc: per adapter object
2249  * @smid: system request message index
2250  *
2251  * Returns phys pointer to the low 32bit address of the sense buffer.
2252  */
2253 __le32
2254 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2255 {
2256 	return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
2257 	    SCSI_SENSE_BUFFERSIZE));
2258 }
2259 
2260 /**
2261  * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
2262  * @ioc: per adapter object
2263  * @phys_addr: lower 32 physical addr of the reply
2264  *
2265  * Converts 32bit lower physical addr into a virt address.
2266  */
2267 void *
2268 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
2269 {
2270 	if (!phys_addr)
2271 		return NULL;
2272 	return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
2273 }
2274 
2275 static inline u8
2276 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc)
2277 {
2278 	return ioc->cpu_msix_table[raw_smp_processor_id()];
2279 }
2280 
2281 /**
2282  * mpt3sas_base_get_smid - obtain a free smid from internal queue
2283  * @ioc: per adapter object
2284  * @cb_idx: callback index
2285  *
2286  * Returns smid (zero is invalid)
2287  */
2288 u16
2289 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
2290 {
2291 	unsigned long flags;
2292 	struct request_tracker *request;
2293 	u16 smid;
2294 
2295 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2296 	if (list_empty(&ioc->internal_free_list)) {
2297 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2298 		pr_err(MPT3SAS_FMT "%s: smid not available\n",
2299 		    ioc->name, __func__);
2300 		return 0;
2301 	}
2302 
2303 	request = list_entry(ioc->internal_free_list.next,
2304 	    struct request_tracker, tracker_list);
2305 	request->cb_idx = cb_idx;
2306 	smid = request->smid;
2307 	list_del(&request->tracker_list);
2308 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2309 	return smid;
2310 }
2311 
2312 /**
2313  * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
2314  * @ioc: per adapter object
2315  * @cb_idx: callback index
2316  * @scmd: pointer to scsi command object
2317  *
2318  * Returns smid (zero is invalid)
2319  */
2320 u16
2321 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
2322 	struct scsi_cmnd *scmd)
2323 {
2324 	unsigned long flags;
2325 	struct scsiio_tracker *request;
2326 	u16 smid;
2327 
2328 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2329 	if (list_empty(&ioc->free_list)) {
2330 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2331 		pr_err(MPT3SAS_FMT "%s: smid not available\n",
2332 		    ioc->name, __func__);
2333 		return 0;
2334 	}
2335 
2336 	request = list_entry(ioc->free_list.next,
2337 	    struct scsiio_tracker, tracker_list);
2338 	request->scmd = scmd;
2339 	request->cb_idx = cb_idx;
2340 	smid = request->smid;
2341 	request->msix_io = _base_get_msix_index(ioc);
2342 	list_del(&request->tracker_list);
2343 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2344 	return smid;
2345 }
2346 
2347 /**
2348  * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
2349  * @ioc: per adapter object
2350  * @cb_idx: callback index
2351  *
2352  * Returns smid (zero is invalid)
2353  */
2354 u16
2355 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
2356 {
2357 	unsigned long flags;
2358 	struct request_tracker *request;
2359 	u16 smid;
2360 
2361 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2362 	if (list_empty(&ioc->hpr_free_list)) {
2363 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2364 		return 0;
2365 	}
2366 
2367 	request = list_entry(ioc->hpr_free_list.next,
2368 	    struct request_tracker, tracker_list);
2369 	request->cb_idx = cb_idx;
2370 	smid = request->smid;
2371 	list_del(&request->tracker_list);
2372 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2373 	return smid;
2374 }
2375 
2376 /**
2377  * mpt3sas_base_free_smid - put smid back on free_list
2378  * @ioc: per adapter object
2379  * @smid: system request message index
2380  *
2381  * Return nothing.
2382  */
2383 void
2384 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2385 {
2386 	unsigned long flags;
2387 	int i;
2388 	struct chain_tracker *chain_req, *next;
2389 
2390 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2391 	if (smid < ioc->hi_priority_smid) {
2392 		/* scsiio queue */
2393 		i = smid - 1;
2394 		if (!list_empty(&ioc->scsi_lookup[i].chain_list)) {
2395 			list_for_each_entry_safe(chain_req, next,
2396 			    &ioc->scsi_lookup[i].chain_list, tracker_list) {
2397 				list_del_init(&chain_req->tracker_list);
2398 				list_add(&chain_req->tracker_list,
2399 				    &ioc->free_chain_list);
2400 			}
2401 		}
2402 		ioc->scsi_lookup[i].cb_idx = 0xFF;
2403 		ioc->scsi_lookup[i].scmd = NULL;
2404 		ioc->scsi_lookup[i].direct_io = 0;
2405 		list_add(&ioc->scsi_lookup[i].tracker_list, &ioc->free_list);
2406 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2407 
2408 		/*
2409 		 * See _wait_for_commands_to_complete() call with regards
2410 		 * to this code.
2411 		 */
2412 		if (ioc->shost_recovery && ioc->pending_io_count) {
2413 			if (ioc->pending_io_count == 1)
2414 				wake_up(&ioc->reset_wq);
2415 			ioc->pending_io_count--;
2416 		}
2417 		return;
2418 	} else if (smid < ioc->internal_smid) {
2419 		/* hi-priority */
2420 		i = smid - ioc->hi_priority_smid;
2421 		ioc->hpr_lookup[i].cb_idx = 0xFF;
2422 		list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
2423 	} else if (smid <= ioc->hba_queue_depth) {
2424 		/* internal queue */
2425 		i = smid - ioc->internal_smid;
2426 		ioc->internal_lookup[i].cb_idx = 0xFF;
2427 		list_add(&ioc->internal_lookup[i].tracker_list,
2428 		    &ioc->internal_free_list);
2429 	}
2430 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2431 }
2432 
2433 /**
2434  * _base_writeq - 64 bit write to MMIO
2435  * @ioc: per adapter object
2436  * @b: data payload
2437  * @addr: address in MMIO space
2438  * @writeq_lock: spin lock
2439  *
2440  * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
2441  * care of 32 bit environment where its not quarenteed to send the entire word
2442  * in one transfer.
2443  */
2444 #if defined(writeq) && defined(CONFIG_64BIT)
2445 static inline void
2446 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2447 {
2448 	writeq(cpu_to_le64(b), addr);
2449 }
2450 #else
2451 static inline void
2452 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2453 {
2454 	unsigned long flags;
2455 	__u64 data_out = cpu_to_le64(b);
2456 
2457 	spin_lock_irqsave(writeq_lock, flags);
2458 	writel((u32)(data_out), addr);
2459 	writel((u32)(data_out >> 32), (addr + 4));
2460 	spin_unlock_irqrestore(writeq_lock, flags);
2461 }
2462 #endif
2463 
2464 /**
2465  * mpt3sas_base_put_smid_scsi_io - send SCSI_IO request to firmware
2466  * @ioc: per adapter object
2467  * @smid: system request message index
2468  * @handle: device handle
2469  *
2470  * Return nothing.
2471  */
2472 void
2473 mpt3sas_base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
2474 {
2475 	Mpi2RequestDescriptorUnion_t descriptor;
2476 	u64 *request = (u64 *)&descriptor;
2477 
2478 
2479 	descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
2480 	descriptor.SCSIIO.MSIxIndex =  _base_get_msix_index(ioc);
2481 	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2482 	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2483 	descriptor.SCSIIO.LMID = 0;
2484 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2485 	    &ioc->scsi_lookup_lock);
2486 }
2487 
2488 /**
2489  * mpt3sas_base_put_smid_fast_path - send fast path request to firmware
2490  * @ioc: per adapter object
2491  * @smid: system request message index
2492  * @handle: device handle
2493  *
2494  * Return nothing.
2495  */
2496 void
2497 mpt3sas_base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2498 	u16 handle)
2499 {
2500 	Mpi2RequestDescriptorUnion_t descriptor;
2501 	u64 *request = (u64 *)&descriptor;
2502 
2503 	descriptor.SCSIIO.RequestFlags =
2504 	    MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
2505 	descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
2506 	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2507 	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2508 	descriptor.SCSIIO.LMID = 0;
2509 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2510 	    &ioc->scsi_lookup_lock);
2511 }
2512 
2513 /**
2514  * mpt3sas_base_put_smid_hi_priority - send Task Managment request to firmware
2515  * @ioc: per adapter object
2516  * @smid: system request message index
2517  * @msix_task: msix_task will be same as msix of IO incase of task abort else 0.
2518  * Return nothing.
2519  */
2520 void
2521 mpt3sas_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2522 	u16 msix_task)
2523 {
2524 	Mpi2RequestDescriptorUnion_t descriptor;
2525 	u64 *request = (u64 *)&descriptor;
2526 
2527 	descriptor.HighPriority.RequestFlags =
2528 	    MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
2529 	descriptor.HighPriority.MSIxIndex =  msix_task;
2530 	descriptor.HighPriority.SMID = cpu_to_le16(smid);
2531 	descriptor.HighPriority.LMID = 0;
2532 	descriptor.HighPriority.Reserved1 = 0;
2533 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2534 	    &ioc->scsi_lookup_lock);
2535 }
2536 
2537 /**
2538  * mpt3sas_base_put_smid_default - Default, primarily used for config pages
2539  * @ioc: per adapter object
2540  * @smid: system request message index
2541  *
2542  * Return nothing.
2543  */
2544 void
2545 mpt3sas_base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2546 {
2547 	Mpi2RequestDescriptorUnion_t descriptor;
2548 	u64 *request = (u64 *)&descriptor;
2549 
2550 	descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2551 	descriptor.Default.MSIxIndex =  _base_get_msix_index(ioc);
2552 	descriptor.Default.SMID = cpu_to_le16(smid);
2553 	descriptor.Default.LMID = 0;
2554 	descriptor.Default.DescriptorTypeDependent = 0;
2555 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2556 	    &ioc->scsi_lookup_lock);
2557 }
2558 
2559 /**
2560  * _base_display_OEMs_branding - Display branding string
2561  * @ioc: per adapter object
2562  *
2563  * Return nothing.
2564  */
2565 static void
2566 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
2567 {
2568 	if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
2569 		return;
2570 
2571 	switch (ioc->pdev->subsystem_vendor) {
2572 	case PCI_VENDOR_ID_INTEL:
2573 		switch (ioc->pdev->device) {
2574 		case MPI2_MFGPAGE_DEVID_SAS2008:
2575 			switch (ioc->pdev->subsystem_device) {
2576 			case MPT2SAS_INTEL_RMS2LL080_SSDID:
2577 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2578 				    MPT2SAS_INTEL_RMS2LL080_BRANDING);
2579 				break;
2580 			case MPT2SAS_INTEL_RMS2LL040_SSDID:
2581 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2582 				    MPT2SAS_INTEL_RMS2LL040_BRANDING);
2583 				break;
2584 			case MPT2SAS_INTEL_SSD910_SSDID:
2585 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2586 				    MPT2SAS_INTEL_SSD910_BRANDING);
2587 				break;
2588 			default:
2589 				pr_info(MPT3SAS_FMT
2590 				 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2591 				 ioc->name, ioc->pdev->subsystem_device);
2592 				break;
2593 			}
2594 		case MPI2_MFGPAGE_DEVID_SAS2308_2:
2595 			switch (ioc->pdev->subsystem_device) {
2596 			case MPT2SAS_INTEL_RS25GB008_SSDID:
2597 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2598 				    MPT2SAS_INTEL_RS25GB008_BRANDING);
2599 				break;
2600 			case MPT2SAS_INTEL_RMS25JB080_SSDID:
2601 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2602 				    MPT2SAS_INTEL_RMS25JB080_BRANDING);
2603 				break;
2604 			case MPT2SAS_INTEL_RMS25JB040_SSDID:
2605 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2606 				    MPT2SAS_INTEL_RMS25JB040_BRANDING);
2607 				break;
2608 			case MPT2SAS_INTEL_RMS25KB080_SSDID:
2609 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2610 				    MPT2SAS_INTEL_RMS25KB080_BRANDING);
2611 				break;
2612 			case MPT2SAS_INTEL_RMS25KB040_SSDID:
2613 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2614 				    MPT2SAS_INTEL_RMS25KB040_BRANDING);
2615 				break;
2616 			case MPT2SAS_INTEL_RMS25LB040_SSDID:
2617 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2618 				    MPT2SAS_INTEL_RMS25LB040_BRANDING);
2619 				break;
2620 			case MPT2SAS_INTEL_RMS25LB080_SSDID:
2621 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2622 				    MPT2SAS_INTEL_RMS25LB080_BRANDING);
2623 				break;
2624 			default:
2625 				pr_info(MPT3SAS_FMT
2626 				 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2627 				 ioc->name, ioc->pdev->subsystem_device);
2628 				break;
2629 			}
2630 		case MPI25_MFGPAGE_DEVID_SAS3008:
2631 			switch (ioc->pdev->subsystem_device) {
2632 			case MPT3SAS_INTEL_RMS3JC080_SSDID:
2633 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2634 					MPT3SAS_INTEL_RMS3JC080_BRANDING);
2635 				break;
2636 
2637 			case MPT3SAS_INTEL_RS3GC008_SSDID:
2638 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2639 					MPT3SAS_INTEL_RS3GC008_BRANDING);
2640 				break;
2641 			case MPT3SAS_INTEL_RS3FC044_SSDID:
2642 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2643 					MPT3SAS_INTEL_RS3FC044_BRANDING);
2644 				break;
2645 			case MPT3SAS_INTEL_RS3UC080_SSDID:
2646 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2647 					MPT3SAS_INTEL_RS3UC080_BRANDING);
2648 				break;
2649 			default:
2650 				pr_info(MPT3SAS_FMT
2651 				 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2652 				 ioc->name, ioc->pdev->subsystem_device);
2653 				break;
2654 			}
2655 			break;
2656 		default:
2657 			pr_info(MPT3SAS_FMT
2658 			 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2659 			 ioc->name, ioc->pdev->subsystem_device);
2660 			break;
2661 		}
2662 		break;
2663 	case PCI_VENDOR_ID_DELL:
2664 		switch (ioc->pdev->device) {
2665 		case MPI2_MFGPAGE_DEVID_SAS2008:
2666 			switch (ioc->pdev->subsystem_device) {
2667 			case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
2668 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2669 				 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
2670 				break;
2671 			case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
2672 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2673 				 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
2674 				break;
2675 			case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
2676 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2677 				 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
2678 				break;
2679 			case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
2680 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2681 				 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
2682 				break;
2683 			case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
2684 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2685 				 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
2686 				break;
2687 			case MPT2SAS_DELL_PERC_H200_SSDID:
2688 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2689 				 MPT2SAS_DELL_PERC_H200_BRANDING);
2690 				break;
2691 			case MPT2SAS_DELL_6GBPS_SAS_SSDID:
2692 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2693 				 MPT2SAS_DELL_6GBPS_SAS_BRANDING);
2694 				break;
2695 			default:
2696 				pr_info(MPT3SAS_FMT
2697 				   "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
2698 				   ioc->name, ioc->pdev->subsystem_device);
2699 				break;
2700 			}
2701 			break;
2702 		case MPI25_MFGPAGE_DEVID_SAS3008:
2703 			switch (ioc->pdev->subsystem_device) {
2704 			case MPT3SAS_DELL_12G_HBA_SSDID:
2705 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2706 					MPT3SAS_DELL_12G_HBA_BRANDING);
2707 				break;
2708 			default:
2709 				pr_info(MPT3SAS_FMT
2710 				   "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
2711 				   ioc->name, ioc->pdev->subsystem_device);
2712 				break;
2713 			}
2714 			break;
2715 		default:
2716 			pr_info(MPT3SAS_FMT
2717 			   "Dell HBA: Subsystem ID: 0x%X\n", ioc->name,
2718 			   ioc->pdev->subsystem_device);
2719 			break;
2720 		}
2721 		break;
2722 	case PCI_VENDOR_ID_CISCO:
2723 		switch (ioc->pdev->device) {
2724 		case MPI25_MFGPAGE_DEVID_SAS3008:
2725 			switch (ioc->pdev->subsystem_device) {
2726 			case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
2727 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2728 					MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
2729 				break;
2730 			case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
2731 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2732 					MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
2733 				break;
2734 			case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
2735 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2736 					MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
2737 				break;
2738 			default:
2739 				pr_info(MPT3SAS_FMT
2740 				  "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
2741 				  ioc->name, ioc->pdev->subsystem_device);
2742 				break;
2743 			}
2744 			break;
2745 		case MPI25_MFGPAGE_DEVID_SAS3108_1:
2746 			switch (ioc->pdev->subsystem_device) {
2747 			case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
2748 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2749 				MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
2750 				break;
2751 			case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
2752 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2753 				MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING
2754 				);
2755 				break;
2756 			default:
2757 				pr_info(MPT3SAS_FMT
2758 				 "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
2759 				 ioc->name, ioc->pdev->subsystem_device);
2760 				break;
2761 			}
2762 			break;
2763 		default:
2764 			pr_info(MPT3SAS_FMT
2765 			   "Cisco SAS HBA: Subsystem ID: 0x%X\n",
2766 			   ioc->name, ioc->pdev->subsystem_device);
2767 			break;
2768 		}
2769 		break;
2770 	case MPT2SAS_HP_3PAR_SSVID:
2771 		switch (ioc->pdev->device) {
2772 		case MPI2_MFGPAGE_DEVID_SAS2004:
2773 			switch (ioc->pdev->subsystem_device) {
2774 			case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
2775 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2776 				    MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
2777 				break;
2778 			default:
2779 				pr_info(MPT3SAS_FMT
2780 				   "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
2781 				   ioc->name, ioc->pdev->subsystem_device);
2782 				break;
2783 			}
2784 		case MPI2_MFGPAGE_DEVID_SAS2308_2:
2785 			switch (ioc->pdev->subsystem_device) {
2786 			case MPT2SAS_HP_2_4_INTERNAL_SSDID:
2787 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2788 				    MPT2SAS_HP_2_4_INTERNAL_BRANDING);
2789 				break;
2790 			case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
2791 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2792 				    MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
2793 				break;
2794 			case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
2795 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2796 				 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
2797 				break;
2798 			case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
2799 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2800 				    MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
2801 				break;
2802 			default:
2803 				pr_info(MPT3SAS_FMT
2804 				   "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
2805 				   ioc->name, ioc->pdev->subsystem_device);
2806 				break;
2807 			}
2808 		default:
2809 			pr_info(MPT3SAS_FMT
2810 			   "HP SAS HBA: Subsystem ID: 0x%X\n",
2811 			   ioc->name, ioc->pdev->subsystem_device);
2812 			break;
2813 		}
2814 	default:
2815 		break;
2816 	}
2817 }
2818 
2819 /**
2820  * _base_display_ioc_capabilities - Disply IOC's capabilities.
2821  * @ioc: per adapter object
2822  *
2823  * Return nothing.
2824  */
2825 static void
2826 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
2827 {
2828 	int i = 0;
2829 	char desc[16];
2830 	u32 iounit_pg1_flags;
2831 	u32 bios_version;
2832 
2833 	bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
2834 	strncpy(desc, ioc->manu_pg0.ChipName, 16);
2835 	pr_info(MPT3SAS_FMT "%s: FWVersion(%02d.%02d.%02d.%02d), "\
2836 	   "ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
2837 	    ioc->name, desc,
2838 	   (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
2839 	   (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
2840 	   (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
2841 	   ioc->facts.FWVersion.Word & 0x000000FF,
2842 	   ioc->pdev->revision,
2843 	   (bios_version & 0xFF000000) >> 24,
2844 	   (bios_version & 0x00FF0000) >> 16,
2845 	   (bios_version & 0x0000FF00) >> 8,
2846 	    bios_version & 0x000000FF);
2847 
2848 	_base_display_OEMs_branding(ioc);
2849 
2850 	pr_info(MPT3SAS_FMT "Protocol=(", ioc->name);
2851 
2852 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
2853 		pr_info("Initiator");
2854 		i++;
2855 	}
2856 
2857 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
2858 		pr_info("%sTarget", i ? "," : "");
2859 		i++;
2860 	}
2861 
2862 	i = 0;
2863 	pr_info("), ");
2864 	pr_info("Capabilities=(");
2865 
2866 	if (!ioc->hide_ir_msg) {
2867 		if (ioc->facts.IOCCapabilities &
2868 		    MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
2869 			pr_info("Raid");
2870 			i++;
2871 		}
2872 	}
2873 
2874 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
2875 		pr_info("%sTLR", i ? "," : "");
2876 		i++;
2877 	}
2878 
2879 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
2880 		pr_info("%sMulticast", i ? "," : "");
2881 		i++;
2882 	}
2883 
2884 	if (ioc->facts.IOCCapabilities &
2885 	    MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
2886 		pr_info("%sBIDI Target", i ? "," : "");
2887 		i++;
2888 	}
2889 
2890 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
2891 		pr_info("%sEEDP", i ? "," : "");
2892 		i++;
2893 	}
2894 
2895 	if (ioc->facts.IOCCapabilities &
2896 	    MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
2897 		pr_info("%sSnapshot Buffer", i ? "," : "");
2898 		i++;
2899 	}
2900 
2901 	if (ioc->facts.IOCCapabilities &
2902 	    MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
2903 		pr_info("%sDiag Trace Buffer", i ? "," : "");
2904 		i++;
2905 	}
2906 
2907 	if (ioc->facts.IOCCapabilities &
2908 	    MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
2909 		pr_info("%sDiag Extended Buffer", i ? "," : "");
2910 		i++;
2911 	}
2912 
2913 	if (ioc->facts.IOCCapabilities &
2914 	    MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
2915 		pr_info("%sTask Set Full", i ? "," : "");
2916 		i++;
2917 	}
2918 
2919 	iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
2920 	if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
2921 		pr_info("%sNCQ", i ? "," : "");
2922 		i++;
2923 	}
2924 
2925 	pr_info(")\n");
2926 }
2927 
2928 /**
2929  * mpt3sas_base_update_missing_delay - change the missing delay timers
2930  * @ioc: per adapter object
2931  * @device_missing_delay: amount of time till device is reported missing
2932  * @io_missing_delay: interval IO is returned when there is a missing device
2933  *
2934  * Return nothing.
2935  *
2936  * Passed on the command line, this function will modify the device missing
2937  * delay, as well as the io missing delay. This should be called at driver
2938  * load time.
2939  */
2940 void
2941 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
2942 	u16 device_missing_delay, u8 io_missing_delay)
2943 {
2944 	u16 dmd, dmd_new, dmd_orignal;
2945 	u8 io_missing_delay_original;
2946 	u16 sz;
2947 	Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
2948 	Mpi2ConfigReply_t mpi_reply;
2949 	u8 num_phys = 0;
2950 	u16 ioc_status;
2951 
2952 	mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
2953 	if (!num_phys)
2954 		return;
2955 
2956 	sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
2957 	    sizeof(Mpi2SasIOUnit1PhyData_t));
2958 	sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
2959 	if (!sas_iounit_pg1) {
2960 		pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2961 		    ioc->name, __FILE__, __LINE__, __func__);
2962 		goto out;
2963 	}
2964 	if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
2965 	    sas_iounit_pg1, sz))) {
2966 		pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2967 		    ioc->name, __FILE__, __LINE__, __func__);
2968 		goto out;
2969 	}
2970 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
2971 	    MPI2_IOCSTATUS_MASK;
2972 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
2973 		pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2974 		    ioc->name, __FILE__, __LINE__, __func__);
2975 		goto out;
2976 	}
2977 
2978 	/* device missing delay */
2979 	dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
2980 	if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
2981 		dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
2982 	else
2983 		dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
2984 	dmd_orignal = dmd;
2985 	if (device_missing_delay > 0x7F) {
2986 		dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
2987 		    device_missing_delay;
2988 		dmd = dmd / 16;
2989 		dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
2990 	} else
2991 		dmd = device_missing_delay;
2992 	sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
2993 
2994 	/* io missing delay */
2995 	io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
2996 	sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
2997 
2998 	if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
2999 	    sz)) {
3000 		if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
3001 			dmd_new = (dmd &
3002 			    MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
3003 		else
3004 			dmd_new =
3005 		    dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
3006 		pr_info(MPT3SAS_FMT "device_missing_delay: old(%d), new(%d)\n",
3007 			ioc->name, dmd_orignal, dmd_new);
3008 		pr_info(MPT3SAS_FMT "ioc_missing_delay: old(%d), new(%d)\n",
3009 			ioc->name, io_missing_delay_original,
3010 		    io_missing_delay);
3011 		ioc->device_missing_delay = dmd_new;
3012 		ioc->io_missing_delay = io_missing_delay;
3013 	}
3014 
3015 out:
3016 	kfree(sas_iounit_pg1);
3017 }
3018 /**
3019  * _base_static_config_pages - static start of day config pages
3020  * @ioc: per adapter object
3021  *
3022  * Return nothing.
3023  */
3024 static void
3025 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
3026 {
3027 	Mpi2ConfigReply_t mpi_reply;
3028 	u32 iounit_pg1_flags;
3029 
3030 	mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
3031 	if (ioc->ir_firmware)
3032 		mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
3033 		    &ioc->manu_pg10);
3034 
3035 	/*
3036 	 * Ensure correct T10 PI operation if vendor left EEDPTagMode
3037 	 * flag unset in NVDATA.
3038 	 */
3039 	mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
3040 	if (ioc->manu_pg11.EEDPTagMode == 0) {
3041 		pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
3042 		    ioc->name);
3043 		ioc->manu_pg11.EEDPTagMode &= ~0x3;
3044 		ioc->manu_pg11.EEDPTagMode |= 0x1;
3045 		mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
3046 		    &ioc->manu_pg11);
3047 	}
3048 
3049 	mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
3050 	mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
3051 	mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
3052 	mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
3053 	mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
3054 	mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
3055 	_base_display_ioc_capabilities(ioc);
3056 
3057 	/*
3058 	 * Enable task_set_full handling in iounit_pg1 when the
3059 	 * facts capabilities indicate that its supported.
3060 	 */
3061 	iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
3062 	if ((ioc->facts.IOCCapabilities &
3063 	    MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
3064 		iounit_pg1_flags &=
3065 		    ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
3066 	else
3067 		iounit_pg1_flags |=
3068 		    MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
3069 	ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
3070 	mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
3071 
3072 	if (ioc->iounit_pg8.NumSensors)
3073 		ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
3074 }
3075 
3076 /**
3077  * _base_release_memory_pools - release memory
3078  * @ioc: per adapter object
3079  *
3080  * Free memory allocated from _base_allocate_memory_pools.
3081  *
3082  * Return nothing.
3083  */
3084 static void
3085 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
3086 {
3087 	int i = 0;
3088 	struct reply_post_struct *rps;
3089 
3090 	dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3091 	    __func__));
3092 
3093 	if (ioc->request) {
3094 		pci_free_consistent(ioc->pdev, ioc->request_dma_sz,
3095 		    ioc->request,  ioc->request_dma);
3096 		dexitprintk(ioc, pr_info(MPT3SAS_FMT
3097 			"request_pool(0x%p): free\n",
3098 			ioc->name, ioc->request));
3099 		ioc->request = NULL;
3100 	}
3101 
3102 	if (ioc->sense) {
3103 		pci_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
3104 		if (ioc->sense_dma_pool)
3105 			pci_pool_destroy(ioc->sense_dma_pool);
3106 		dexitprintk(ioc, pr_info(MPT3SAS_FMT
3107 			"sense_pool(0x%p): free\n",
3108 			ioc->name, ioc->sense));
3109 		ioc->sense = NULL;
3110 	}
3111 
3112 	if (ioc->reply) {
3113 		pci_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
3114 		if (ioc->reply_dma_pool)
3115 			pci_pool_destroy(ioc->reply_dma_pool);
3116 		dexitprintk(ioc, pr_info(MPT3SAS_FMT
3117 			"reply_pool(0x%p): free\n",
3118 			ioc->name, ioc->reply));
3119 		ioc->reply = NULL;
3120 	}
3121 
3122 	if (ioc->reply_free) {
3123 		pci_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
3124 		    ioc->reply_free_dma);
3125 		if (ioc->reply_free_dma_pool)
3126 			pci_pool_destroy(ioc->reply_free_dma_pool);
3127 		dexitprintk(ioc, pr_info(MPT3SAS_FMT
3128 			"reply_free_pool(0x%p): free\n",
3129 			ioc->name, ioc->reply_free));
3130 		ioc->reply_free = NULL;
3131 	}
3132 
3133 	if (ioc->reply_post) {
3134 		do {
3135 			rps = &ioc->reply_post[i];
3136 			if (rps->reply_post_free) {
3137 				pci_pool_free(
3138 				    ioc->reply_post_free_dma_pool,
3139 				    rps->reply_post_free,
3140 				    rps->reply_post_free_dma);
3141 				dexitprintk(ioc, pr_info(MPT3SAS_FMT
3142 				    "reply_post_free_pool(0x%p): free\n",
3143 				    ioc->name, rps->reply_post_free));
3144 				rps->reply_post_free = NULL;
3145 			}
3146 		} while (ioc->rdpq_array_enable &&
3147 			   (++i < ioc->reply_queue_count));
3148 
3149 		if (ioc->reply_post_free_dma_pool)
3150 			pci_pool_destroy(ioc->reply_post_free_dma_pool);
3151 		kfree(ioc->reply_post);
3152 	}
3153 
3154 	if (ioc->config_page) {
3155 		dexitprintk(ioc, pr_info(MPT3SAS_FMT
3156 		    "config_page(0x%p): free\n", ioc->name,
3157 		    ioc->config_page));
3158 		pci_free_consistent(ioc->pdev, ioc->config_page_sz,
3159 		    ioc->config_page, ioc->config_page_dma);
3160 	}
3161 
3162 	if (ioc->scsi_lookup) {
3163 		free_pages((ulong)ioc->scsi_lookup, ioc->scsi_lookup_pages);
3164 		ioc->scsi_lookup = NULL;
3165 	}
3166 	kfree(ioc->hpr_lookup);
3167 	kfree(ioc->internal_lookup);
3168 	if (ioc->chain_lookup) {
3169 		for (i = 0; i < ioc->chain_depth; i++) {
3170 			if (ioc->chain_lookup[i].chain_buffer)
3171 				pci_pool_free(ioc->chain_dma_pool,
3172 				    ioc->chain_lookup[i].chain_buffer,
3173 				    ioc->chain_lookup[i].chain_buffer_dma);
3174 		}
3175 		if (ioc->chain_dma_pool)
3176 			pci_pool_destroy(ioc->chain_dma_pool);
3177 		free_pages((ulong)ioc->chain_lookup, ioc->chain_pages);
3178 		ioc->chain_lookup = NULL;
3179 	}
3180 }
3181 
3182 /**
3183  * _base_allocate_memory_pools - allocate start of day memory pools
3184  * @ioc: per adapter object
3185  *
3186  * Returns 0 success, anything else error
3187  */
3188 static int
3189 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
3190 {
3191 	struct mpt3sas_facts *facts;
3192 	u16 max_sge_elements;
3193 	u16 chains_needed_per_io;
3194 	u32 sz, total_sz, reply_post_free_sz;
3195 	u32 retry_sz;
3196 	u16 max_request_credit;
3197 	unsigned short sg_tablesize;
3198 	u16 sge_size;
3199 	int i;
3200 
3201 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3202 	    __func__));
3203 
3204 
3205 	retry_sz = 0;
3206 	facts = &ioc->facts;
3207 
3208 	/* command line tunables for max sgl entries */
3209 	if (max_sgl_entries != -1)
3210 		sg_tablesize = max_sgl_entries;
3211 	else {
3212 		if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
3213 			sg_tablesize = MPT2SAS_SG_DEPTH;
3214 		else
3215 			sg_tablesize = MPT3SAS_SG_DEPTH;
3216 	}
3217 
3218 	if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
3219 		sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
3220 	else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
3221 		sg_tablesize = min_t(unsigned short, sg_tablesize,
3222 				      SG_MAX_SEGMENTS);
3223 		pr_warn(MPT3SAS_FMT
3224 		 "sg_tablesize(%u) is bigger than kernel"
3225 		 " defined SG_CHUNK_SIZE(%u)\n", ioc->name,
3226 		 sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
3227 	}
3228 	ioc->shost->sg_tablesize = sg_tablesize;
3229 
3230 	ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
3231 		(facts->RequestCredit / 4));
3232 	if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
3233 		if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
3234 				INTERNAL_SCSIIO_CMDS_COUNT)) {
3235 			pr_err(MPT3SAS_FMT "IOC doesn't have enough Request \
3236 			    Credits, it has just %d number of credits\n",
3237 			    ioc->name, facts->RequestCredit);
3238 			return -ENOMEM;
3239 		}
3240 		ioc->internal_depth = 10;
3241 	}
3242 
3243 	ioc->hi_priority_depth = ioc->internal_depth - (5);
3244 	/* command line tunables  for max controller queue depth */
3245 	if (max_queue_depth != -1 && max_queue_depth != 0) {
3246 		max_request_credit = min_t(u16, max_queue_depth +
3247 			ioc->internal_depth, facts->RequestCredit);
3248 		if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
3249 			max_request_credit =  MAX_HBA_QUEUE_DEPTH;
3250 	} else
3251 		max_request_credit = min_t(u16, facts->RequestCredit,
3252 		    MAX_HBA_QUEUE_DEPTH);
3253 
3254 	/* Firmware maintains additional facts->HighPriorityCredit number of
3255 	 * credits for HiPriprity Request messages, so hba queue depth will be
3256 	 * sum of max_request_credit and high priority queue depth.
3257 	 */
3258 	ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
3259 
3260 	/* request frame size */
3261 	ioc->request_sz = facts->IOCRequestFrameSize * 4;
3262 
3263 	/* reply frame size */
3264 	ioc->reply_sz = facts->ReplyFrameSize * 4;
3265 
3266 	/* chain segment size */
3267 	if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
3268 		if (facts->IOCMaxChainSegmentSize)
3269 			ioc->chain_segment_sz =
3270 					facts->IOCMaxChainSegmentSize *
3271 					MAX_CHAIN_ELEMT_SZ;
3272 		else
3273 		/* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
3274 			ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
3275 						    MAX_CHAIN_ELEMT_SZ;
3276 	} else
3277 		ioc->chain_segment_sz = ioc->request_sz;
3278 
3279 	/* calculate the max scatter element size */
3280 	sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
3281 
3282  retry_allocation:
3283 	total_sz = 0;
3284 	/* calculate number of sg elements left over in the 1st frame */
3285 	max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
3286 	    sizeof(Mpi2SGEIOUnion_t)) + sge_size);
3287 	ioc->max_sges_in_main_message = max_sge_elements/sge_size;
3288 
3289 	/* now do the same for a chain buffer */
3290 	max_sge_elements = ioc->chain_segment_sz - sge_size;
3291 	ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
3292 
3293 	/*
3294 	 *  MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
3295 	 */
3296 	chains_needed_per_io = ((ioc->shost->sg_tablesize -
3297 	   ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
3298 	    + 1;
3299 	if (chains_needed_per_io > facts->MaxChainDepth) {
3300 		chains_needed_per_io = facts->MaxChainDepth;
3301 		ioc->shost->sg_tablesize = min_t(u16,
3302 		ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
3303 		* chains_needed_per_io), ioc->shost->sg_tablesize);
3304 	}
3305 	ioc->chains_needed_per_io = chains_needed_per_io;
3306 
3307 	/* reply free queue sizing - taking into account for 64 FW events */
3308 	ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
3309 
3310 	/* calculate reply descriptor post queue depth */
3311 	ioc->reply_post_queue_depth = ioc->hba_queue_depth +
3312 				ioc->reply_free_queue_depth +  1 ;
3313 	/* align the reply post queue on the next 16 count boundary */
3314 	if (ioc->reply_post_queue_depth % 16)
3315 		ioc->reply_post_queue_depth += 16 -
3316 		(ioc->reply_post_queue_depth % 16);
3317 
3318 	if (ioc->reply_post_queue_depth >
3319 	    facts->MaxReplyDescriptorPostQueueDepth) {
3320 		ioc->reply_post_queue_depth =
3321 				facts->MaxReplyDescriptorPostQueueDepth -
3322 		    (facts->MaxReplyDescriptorPostQueueDepth % 16);
3323 		ioc->hba_queue_depth =
3324 				((ioc->reply_post_queue_depth - 64) / 2) - 1;
3325 		ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
3326 	}
3327 
3328 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "scatter gather: " \
3329 	    "sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), "
3330 	    "chains_per_io(%d)\n", ioc->name, ioc->max_sges_in_main_message,
3331 	    ioc->max_sges_in_chain_message, ioc->shost->sg_tablesize,
3332 	    ioc->chains_needed_per_io));
3333 
3334 	/* reply post queue, 16 byte align */
3335 	reply_post_free_sz = ioc->reply_post_queue_depth *
3336 	    sizeof(Mpi2DefaultReplyDescriptor_t);
3337 
3338 	sz = reply_post_free_sz;
3339 	if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
3340 		sz *= ioc->reply_queue_count;
3341 
3342 	ioc->reply_post = kcalloc((ioc->rdpq_array_enable) ?
3343 	    (ioc->reply_queue_count):1,
3344 	    sizeof(struct reply_post_struct), GFP_KERNEL);
3345 
3346 	if (!ioc->reply_post) {
3347 		pr_err(MPT3SAS_FMT "reply_post_free pool: kcalloc failed\n",
3348 			ioc->name);
3349 		goto out;
3350 	}
3351 	ioc->reply_post_free_dma_pool = pci_pool_create("reply_post_free pool",
3352 	    ioc->pdev, sz, 16, 0);
3353 	if (!ioc->reply_post_free_dma_pool) {
3354 		pr_err(MPT3SAS_FMT
3355 		 "reply_post_free pool: pci_pool_create failed\n",
3356 		 ioc->name);
3357 		goto out;
3358 	}
3359 	i = 0;
3360 	do {
3361 		ioc->reply_post[i].reply_post_free =
3362 		    pci_pool_alloc(ioc->reply_post_free_dma_pool,
3363 		    GFP_KERNEL,
3364 		    &ioc->reply_post[i].reply_post_free_dma);
3365 		if (!ioc->reply_post[i].reply_post_free) {
3366 			pr_err(MPT3SAS_FMT
3367 			"reply_post_free pool: pci_pool_alloc failed\n",
3368 			ioc->name);
3369 			goto out;
3370 		}
3371 		memset(ioc->reply_post[i].reply_post_free, 0, sz);
3372 		dinitprintk(ioc, pr_info(MPT3SAS_FMT
3373 		    "reply post free pool (0x%p): depth(%d),"
3374 		    "element_size(%d), pool_size(%d kB)\n", ioc->name,
3375 		    ioc->reply_post[i].reply_post_free,
3376 		    ioc->reply_post_queue_depth, 8, sz/1024));
3377 		dinitprintk(ioc, pr_info(MPT3SAS_FMT
3378 		    "reply_post_free_dma = (0x%llx)\n", ioc->name,
3379 		    (unsigned long long)
3380 		    ioc->reply_post[i].reply_post_free_dma));
3381 		total_sz += sz;
3382 	} while (ioc->rdpq_array_enable && (++i < ioc->reply_queue_count));
3383 
3384 	if (ioc->dma_mask == 64) {
3385 		if (_base_change_consistent_dma_mask(ioc, ioc->pdev) != 0) {
3386 			pr_warn(MPT3SAS_FMT
3387 			    "no suitable consistent DMA mask for %s\n",
3388 			    ioc->name, pci_name(ioc->pdev));
3389 			goto out;
3390 		}
3391 	}
3392 
3393 	ioc->scsiio_depth = ioc->hba_queue_depth -
3394 	    ioc->hi_priority_depth - ioc->internal_depth;
3395 
3396 	/* set the scsi host can_queue depth
3397 	 * with some internal commands that could be outstanding
3398 	 */
3399 	ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
3400 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3401 		"scsi host: can_queue depth (%d)\n",
3402 		ioc->name, ioc->shost->can_queue));
3403 
3404 
3405 	/* contiguous pool for request and chains, 16 byte align, one extra "
3406 	 * "frame for smid=0
3407 	 */
3408 	ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
3409 	sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
3410 
3411 	/* hi-priority queue */
3412 	sz += (ioc->hi_priority_depth * ioc->request_sz);
3413 
3414 	/* internal queue */
3415 	sz += (ioc->internal_depth * ioc->request_sz);
3416 
3417 	ioc->request_dma_sz = sz;
3418 	ioc->request = pci_alloc_consistent(ioc->pdev, sz, &ioc->request_dma);
3419 	if (!ioc->request) {
3420 		pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
3421 		    "failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
3422 		    "total(%d kB)\n", ioc->name, ioc->hba_queue_depth,
3423 		    ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
3424 		if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
3425 			goto out;
3426 		retry_sz = 64;
3427 		ioc->hba_queue_depth -= retry_sz;
3428 		_base_release_memory_pools(ioc);
3429 		goto retry_allocation;
3430 	}
3431 
3432 	if (retry_sz)
3433 		pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
3434 		    "succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
3435 		    "total(%d kb)\n", ioc->name, ioc->hba_queue_depth,
3436 		    ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
3437 
3438 	/* hi-priority queue */
3439 	ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
3440 	    ioc->request_sz);
3441 	ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
3442 	    ioc->request_sz);
3443 
3444 	/* internal queue */
3445 	ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
3446 	    ioc->request_sz);
3447 	ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
3448 	    ioc->request_sz);
3449 
3450 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3451 		"request pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
3452 		ioc->name, ioc->request, ioc->hba_queue_depth, ioc->request_sz,
3453 	    (ioc->hba_queue_depth * ioc->request_sz)/1024));
3454 
3455 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "request pool: dma(0x%llx)\n",
3456 	    ioc->name, (unsigned long long) ioc->request_dma));
3457 	total_sz += sz;
3458 
3459 	sz = ioc->scsiio_depth * sizeof(struct scsiio_tracker);
3460 	ioc->scsi_lookup_pages = get_order(sz);
3461 	ioc->scsi_lookup = (struct scsiio_tracker *)__get_free_pages(
3462 	    GFP_KERNEL, ioc->scsi_lookup_pages);
3463 	if (!ioc->scsi_lookup) {
3464 		pr_err(MPT3SAS_FMT "scsi_lookup: get_free_pages failed, sz(%d)\n",
3465 			ioc->name, (int)sz);
3466 		goto out;
3467 	}
3468 
3469 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "scsiio(0x%p): depth(%d)\n",
3470 		ioc->name, ioc->request, ioc->scsiio_depth));
3471 
3472 	ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
3473 	sz = ioc->chain_depth * sizeof(struct chain_tracker);
3474 	ioc->chain_pages = get_order(sz);
3475 	ioc->chain_lookup = (struct chain_tracker *)__get_free_pages(
3476 	    GFP_KERNEL, ioc->chain_pages);
3477 	if (!ioc->chain_lookup) {
3478 		pr_err(MPT3SAS_FMT "chain_lookup: __get_free_pages failed\n",
3479 			ioc->name);
3480 		goto out;
3481 	}
3482 	ioc->chain_dma_pool = pci_pool_create("chain pool", ioc->pdev,
3483 	    ioc->chain_segment_sz, 16, 0);
3484 	if (!ioc->chain_dma_pool) {
3485 		pr_err(MPT3SAS_FMT "chain_dma_pool: pci_pool_create failed\n",
3486 			ioc->name);
3487 		goto out;
3488 	}
3489 	for (i = 0; i < ioc->chain_depth; i++) {
3490 		ioc->chain_lookup[i].chain_buffer = pci_pool_alloc(
3491 		    ioc->chain_dma_pool , GFP_KERNEL,
3492 		    &ioc->chain_lookup[i].chain_buffer_dma);
3493 		if (!ioc->chain_lookup[i].chain_buffer) {
3494 			ioc->chain_depth = i;
3495 			goto chain_done;
3496 		}
3497 		total_sz += ioc->chain_segment_sz;
3498 	}
3499  chain_done:
3500 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3501 		"chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
3502 		ioc->name, ioc->chain_depth, ioc->chain_segment_sz,
3503 		((ioc->chain_depth *  ioc->chain_segment_sz))/1024));
3504 
3505 	/* initialize hi-priority queue smid's */
3506 	ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
3507 	    sizeof(struct request_tracker), GFP_KERNEL);
3508 	if (!ioc->hpr_lookup) {
3509 		pr_err(MPT3SAS_FMT "hpr_lookup: kcalloc failed\n",
3510 		    ioc->name);
3511 		goto out;
3512 	}
3513 	ioc->hi_priority_smid = ioc->scsiio_depth + 1;
3514 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3515 		"hi_priority(0x%p): depth(%d), start smid(%d)\n",
3516 		ioc->name, ioc->hi_priority,
3517 	    ioc->hi_priority_depth, ioc->hi_priority_smid));
3518 
3519 	/* initialize internal queue smid's */
3520 	ioc->internal_lookup = kcalloc(ioc->internal_depth,
3521 	    sizeof(struct request_tracker), GFP_KERNEL);
3522 	if (!ioc->internal_lookup) {
3523 		pr_err(MPT3SAS_FMT "internal_lookup: kcalloc failed\n",
3524 		    ioc->name);
3525 		goto out;
3526 	}
3527 	ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
3528 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3529 		"internal(0x%p): depth(%d), start smid(%d)\n",
3530 		ioc->name, ioc->internal,
3531 	    ioc->internal_depth, ioc->internal_smid));
3532 
3533 	/* sense buffers, 4 byte align */
3534 	sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
3535 	ioc->sense_dma_pool = pci_pool_create("sense pool", ioc->pdev, sz, 4,
3536 	    0);
3537 	if (!ioc->sense_dma_pool) {
3538 		pr_err(MPT3SAS_FMT "sense pool: pci_pool_create failed\n",
3539 		    ioc->name);
3540 		goto out;
3541 	}
3542 	ioc->sense = pci_pool_alloc(ioc->sense_dma_pool , GFP_KERNEL,
3543 	    &ioc->sense_dma);
3544 	if (!ioc->sense) {
3545 		pr_err(MPT3SAS_FMT "sense pool: pci_pool_alloc failed\n",
3546 		    ioc->name);
3547 		goto out;
3548 	}
3549 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3550 	    "sense pool(0x%p): depth(%d), element_size(%d), pool_size"
3551 	    "(%d kB)\n", ioc->name, ioc->sense, ioc->scsiio_depth,
3552 	    SCSI_SENSE_BUFFERSIZE, sz/1024));
3553 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "sense_dma(0x%llx)\n",
3554 	    ioc->name, (unsigned long long)ioc->sense_dma));
3555 	total_sz += sz;
3556 
3557 	/* reply pool, 4 byte align */
3558 	sz = ioc->reply_free_queue_depth * ioc->reply_sz;
3559 	ioc->reply_dma_pool = pci_pool_create("reply pool", ioc->pdev, sz, 4,
3560 	    0);
3561 	if (!ioc->reply_dma_pool) {
3562 		pr_err(MPT3SAS_FMT "reply pool: pci_pool_create failed\n",
3563 		    ioc->name);
3564 		goto out;
3565 	}
3566 	ioc->reply = pci_pool_alloc(ioc->reply_dma_pool , GFP_KERNEL,
3567 	    &ioc->reply_dma);
3568 	if (!ioc->reply) {
3569 		pr_err(MPT3SAS_FMT "reply pool: pci_pool_alloc failed\n",
3570 		    ioc->name);
3571 		goto out;
3572 	}
3573 	ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
3574 	ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
3575 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3576 		"reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
3577 		ioc->name, ioc->reply,
3578 	    ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024));
3579 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_dma(0x%llx)\n",
3580 	    ioc->name, (unsigned long long)ioc->reply_dma));
3581 	total_sz += sz;
3582 
3583 	/* reply free queue, 16 byte align */
3584 	sz = ioc->reply_free_queue_depth * 4;
3585 	ioc->reply_free_dma_pool = pci_pool_create("reply_free pool",
3586 	    ioc->pdev, sz, 16, 0);
3587 	if (!ioc->reply_free_dma_pool) {
3588 		pr_err(MPT3SAS_FMT "reply_free pool: pci_pool_create failed\n",
3589 			ioc->name);
3590 		goto out;
3591 	}
3592 	ioc->reply_free = pci_pool_alloc(ioc->reply_free_dma_pool , GFP_KERNEL,
3593 	    &ioc->reply_free_dma);
3594 	if (!ioc->reply_free) {
3595 		pr_err(MPT3SAS_FMT "reply_free pool: pci_pool_alloc failed\n",
3596 			ioc->name);
3597 		goto out;
3598 	}
3599 	memset(ioc->reply_free, 0, sz);
3600 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_free pool(0x%p): " \
3601 	    "depth(%d), element_size(%d), pool_size(%d kB)\n", ioc->name,
3602 	    ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
3603 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3604 		"reply_free_dma (0x%llx)\n",
3605 		ioc->name, (unsigned long long)ioc->reply_free_dma));
3606 	total_sz += sz;
3607 
3608 	ioc->config_page_sz = 512;
3609 	ioc->config_page = pci_alloc_consistent(ioc->pdev,
3610 	    ioc->config_page_sz, &ioc->config_page_dma);
3611 	if (!ioc->config_page) {
3612 		pr_err(MPT3SAS_FMT
3613 			"config page: pci_pool_alloc failed\n",
3614 			ioc->name);
3615 		goto out;
3616 	}
3617 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3618 		"config page(0x%p): size(%d)\n",
3619 		ioc->name, ioc->config_page, ioc->config_page_sz));
3620 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "config_page_dma(0x%llx)\n",
3621 		ioc->name, (unsigned long long)ioc->config_page_dma));
3622 	total_sz += ioc->config_page_sz;
3623 
3624 	pr_info(MPT3SAS_FMT "Allocated physical memory: size(%d kB)\n",
3625 	    ioc->name, total_sz/1024);
3626 	pr_info(MPT3SAS_FMT
3627 		"Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
3628 	    ioc->name, ioc->shost->can_queue, facts->RequestCredit);
3629 	pr_info(MPT3SAS_FMT "Scatter Gather Elements per IO(%d)\n",
3630 	    ioc->name, ioc->shost->sg_tablesize);
3631 	return 0;
3632 
3633  out:
3634 	return -ENOMEM;
3635 }
3636 
3637 /**
3638  * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
3639  * @ioc: Pointer to MPT_ADAPTER structure
3640  * @cooked: Request raw or cooked IOC state
3641  *
3642  * Returns all IOC Doorbell register bits if cooked==0, else just the
3643  * Doorbell bits in MPI_IOC_STATE_MASK.
3644  */
3645 u32
3646 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
3647 {
3648 	u32 s, sc;
3649 
3650 	s = readl(&ioc->chip->Doorbell);
3651 	sc = s & MPI2_IOC_STATE_MASK;
3652 	return cooked ? sc : s;
3653 }
3654 
3655 /**
3656  * _base_wait_on_iocstate - waiting on a particular ioc state
3657  * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
3658  * @timeout: timeout in second
3659  *
3660  * Returns 0 for success, non-zero for failure.
3661  */
3662 static int
3663 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
3664 {
3665 	u32 count, cntdn;
3666 	u32 current_state;
3667 
3668 	count = 0;
3669 	cntdn = 1000 * timeout;
3670 	do {
3671 		current_state = mpt3sas_base_get_iocstate(ioc, 1);
3672 		if (current_state == ioc_state)
3673 			return 0;
3674 		if (count && current_state == MPI2_IOC_STATE_FAULT)
3675 			break;
3676 
3677 		usleep_range(1000, 1500);
3678 		count++;
3679 	} while (--cntdn);
3680 
3681 	return current_state;
3682 }
3683 
3684 /**
3685  * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
3686  * a write to the doorbell)
3687  * @ioc: per adapter object
3688  * @timeout: timeout in second
3689  *
3690  * Returns 0 for success, non-zero for failure.
3691  *
3692  * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
3693  */
3694 static int
3695 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
3696 
3697 static int
3698 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
3699 {
3700 	u32 cntdn, count;
3701 	u32 int_status;
3702 
3703 	count = 0;
3704 	cntdn = 1000 * timeout;
3705 	do {
3706 		int_status = readl(&ioc->chip->HostInterruptStatus);
3707 		if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3708 			dhsprintk(ioc, pr_info(MPT3SAS_FMT
3709 				"%s: successful count(%d), timeout(%d)\n",
3710 				ioc->name, __func__, count, timeout));
3711 			return 0;
3712 		}
3713 
3714 		usleep_range(1000, 1500);
3715 		count++;
3716 	} while (--cntdn);
3717 
3718 	pr_err(MPT3SAS_FMT
3719 		"%s: failed due to timeout count(%d), int_status(%x)!\n",
3720 		ioc->name, __func__, count, int_status);
3721 	return -EFAULT;
3722 }
3723 
3724 static int
3725 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
3726 {
3727 	u32 cntdn, count;
3728 	u32 int_status;
3729 
3730 	count = 0;
3731 	cntdn = 2000 * timeout;
3732 	do {
3733 		int_status = readl(&ioc->chip->HostInterruptStatus);
3734 		if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3735 			dhsprintk(ioc, pr_info(MPT3SAS_FMT
3736 				"%s: successful count(%d), timeout(%d)\n",
3737 				ioc->name, __func__, count, timeout));
3738 			return 0;
3739 		}
3740 
3741 		udelay(500);
3742 		count++;
3743 	} while (--cntdn);
3744 
3745 	pr_err(MPT3SAS_FMT
3746 		"%s: failed due to timeout count(%d), int_status(%x)!\n",
3747 		ioc->name, __func__, count, int_status);
3748 	return -EFAULT;
3749 
3750 }
3751 
3752 /**
3753  * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
3754  * @ioc: per adapter object
3755  * @timeout: timeout in second
3756  *
3757  * Returns 0 for success, non-zero for failure.
3758  *
3759  * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
3760  * doorbell.
3761  */
3762 static int
3763 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
3764 {
3765 	u32 cntdn, count;
3766 	u32 int_status;
3767 	u32 doorbell;
3768 
3769 	count = 0;
3770 	cntdn = 1000 * timeout;
3771 	do {
3772 		int_status = readl(&ioc->chip->HostInterruptStatus);
3773 		if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
3774 			dhsprintk(ioc, pr_info(MPT3SAS_FMT
3775 				"%s: successful count(%d), timeout(%d)\n",
3776 				ioc->name, __func__, count, timeout));
3777 			return 0;
3778 		} else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3779 			doorbell = readl(&ioc->chip->Doorbell);
3780 			if ((doorbell & MPI2_IOC_STATE_MASK) ==
3781 			    MPI2_IOC_STATE_FAULT) {
3782 				mpt3sas_base_fault_info(ioc , doorbell);
3783 				return -EFAULT;
3784 			}
3785 		} else if (int_status == 0xFFFFFFFF)
3786 			goto out;
3787 
3788 		usleep_range(1000, 1500);
3789 		count++;
3790 	} while (--cntdn);
3791 
3792  out:
3793 	pr_err(MPT3SAS_FMT
3794 	 "%s: failed due to timeout count(%d), int_status(%x)!\n",
3795 	 ioc->name, __func__, count, int_status);
3796 	return -EFAULT;
3797 }
3798 
3799 /**
3800  * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
3801  * @ioc: per adapter object
3802  * @timeout: timeout in second
3803  *
3804  * Returns 0 for success, non-zero for failure.
3805  *
3806  */
3807 static int
3808 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
3809 {
3810 	u32 cntdn, count;
3811 	u32 doorbell_reg;
3812 
3813 	count = 0;
3814 	cntdn = 1000 * timeout;
3815 	do {
3816 		doorbell_reg = readl(&ioc->chip->Doorbell);
3817 		if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
3818 			dhsprintk(ioc, pr_info(MPT3SAS_FMT
3819 				"%s: successful count(%d), timeout(%d)\n",
3820 				ioc->name, __func__, count, timeout));
3821 			return 0;
3822 		}
3823 
3824 		usleep_range(1000, 1500);
3825 		count++;
3826 	} while (--cntdn);
3827 
3828 	pr_err(MPT3SAS_FMT
3829 		"%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
3830 		ioc->name, __func__, count, doorbell_reg);
3831 	return -EFAULT;
3832 }
3833 
3834 /**
3835  * _base_send_ioc_reset - send doorbell reset
3836  * @ioc: per adapter object
3837  * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
3838  * @timeout: timeout in second
3839  *
3840  * Returns 0 for success, non-zero for failure.
3841  */
3842 static int
3843 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
3844 {
3845 	u32 ioc_state;
3846 	int r = 0;
3847 
3848 	if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
3849 		pr_err(MPT3SAS_FMT "%s: unknown reset_type\n",
3850 		    ioc->name, __func__);
3851 		return -EFAULT;
3852 	}
3853 
3854 	if (!(ioc->facts.IOCCapabilities &
3855 	   MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
3856 		return -EFAULT;
3857 
3858 	pr_info(MPT3SAS_FMT "sending message unit reset !!\n", ioc->name);
3859 
3860 	writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
3861 	    &ioc->chip->Doorbell);
3862 	if ((_base_wait_for_doorbell_ack(ioc, 15))) {
3863 		r = -EFAULT;
3864 		goto out;
3865 	}
3866 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
3867 	if (ioc_state) {
3868 		pr_err(MPT3SAS_FMT
3869 			"%s: failed going to ready state (ioc_state=0x%x)\n",
3870 			ioc->name, __func__, ioc_state);
3871 		r = -EFAULT;
3872 		goto out;
3873 	}
3874  out:
3875 	pr_info(MPT3SAS_FMT "message unit reset: %s\n",
3876 	    ioc->name, ((r == 0) ? "SUCCESS" : "FAILED"));
3877 	return r;
3878 }
3879 
3880 /**
3881  * _base_handshake_req_reply_wait - send request thru doorbell interface
3882  * @ioc: per adapter object
3883  * @request_bytes: request length
3884  * @request: pointer having request payload
3885  * @reply_bytes: reply length
3886  * @reply: pointer to reply payload
3887  * @timeout: timeout in second
3888  *
3889  * Returns 0 for success, non-zero for failure.
3890  */
3891 static int
3892 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
3893 	u32 *request, int reply_bytes, u16 *reply, int timeout)
3894 {
3895 	MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
3896 	int i;
3897 	u8 failed;
3898 	__le32 *mfp;
3899 
3900 	/* make sure doorbell is not in use */
3901 	if ((readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
3902 		pr_err(MPT3SAS_FMT
3903 			"doorbell is in use (line=%d)\n",
3904 			ioc->name, __LINE__);
3905 		return -EFAULT;
3906 	}
3907 
3908 	/* clear pending doorbell interrupts from previous state changes */
3909 	if (readl(&ioc->chip->HostInterruptStatus) &
3910 	    MPI2_HIS_IOC2SYS_DB_STATUS)
3911 		writel(0, &ioc->chip->HostInterruptStatus);
3912 
3913 	/* send message to ioc */
3914 	writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
3915 	    ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
3916 	    &ioc->chip->Doorbell);
3917 
3918 	if ((_base_spin_on_doorbell_int(ioc, 5))) {
3919 		pr_err(MPT3SAS_FMT
3920 			"doorbell handshake int failed (line=%d)\n",
3921 			ioc->name, __LINE__);
3922 		return -EFAULT;
3923 	}
3924 	writel(0, &ioc->chip->HostInterruptStatus);
3925 
3926 	if ((_base_wait_for_doorbell_ack(ioc, 5))) {
3927 		pr_err(MPT3SAS_FMT
3928 			"doorbell handshake ack failed (line=%d)\n",
3929 			ioc->name, __LINE__);
3930 		return -EFAULT;
3931 	}
3932 
3933 	/* send message 32-bits at a time */
3934 	for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
3935 		writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
3936 		if ((_base_wait_for_doorbell_ack(ioc, 5)))
3937 			failed = 1;
3938 	}
3939 
3940 	if (failed) {
3941 		pr_err(MPT3SAS_FMT
3942 			"doorbell handshake sending request failed (line=%d)\n",
3943 			ioc->name, __LINE__);
3944 		return -EFAULT;
3945 	}
3946 
3947 	/* now wait for the reply */
3948 	if ((_base_wait_for_doorbell_int(ioc, timeout))) {
3949 		pr_err(MPT3SAS_FMT
3950 			"doorbell handshake int failed (line=%d)\n",
3951 			ioc->name, __LINE__);
3952 		return -EFAULT;
3953 	}
3954 
3955 	/* read the first two 16-bits, it gives the total length of the reply */
3956 	reply[0] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3957 	    & MPI2_DOORBELL_DATA_MASK);
3958 	writel(0, &ioc->chip->HostInterruptStatus);
3959 	if ((_base_wait_for_doorbell_int(ioc, 5))) {
3960 		pr_err(MPT3SAS_FMT
3961 			"doorbell handshake int failed (line=%d)\n",
3962 			ioc->name, __LINE__);
3963 		return -EFAULT;
3964 	}
3965 	reply[1] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3966 	    & MPI2_DOORBELL_DATA_MASK);
3967 	writel(0, &ioc->chip->HostInterruptStatus);
3968 
3969 	for (i = 2; i < default_reply->MsgLength * 2; i++)  {
3970 		if ((_base_wait_for_doorbell_int(ioc, 5))) {
3971 			pr_err(MPT3SAS_FMT
3972 				"doorbell handshake int failed (line=%d)\n",
3973 				ioc->name, __LINE__);
3974 			return -EFAULT;
3975 		}
3976 		if (i >=  reply_bytes/2) /* overflow case */
3977 			readl(&ioc->chip->Doorbell);
3978 		else
3979 			reply[i] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3980 			    & MPI2_DOORBELL_DATA_MASK);
3981 		writel(0, &ioc->chip->HostInterruptStatus);
3982 	}
3983 
3984 	_base_wait_for_doorbell_int(ioc, 5);
3985 	if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
3986 		dhsprintk(ioc, pr_info(MPT3SAS_FMT
3987 			"doorbell is in use (line=%d)\n", ioc->name, __LINE__));
3988 	}
3989 	writel(0, &ioc->chip->HostInterruptStatus);
3990 
3991 	if (ioc->logging_level & MPT_DEBUG_INIT) {
3992 		mfp = (__le32 *)reply;
3993 		pr_info("\toffset:data\n");
3994 		for (i = 0; i < reply_bytes/4; i++)
3995 			pr_info("\t[0x%02x]:%08x\n", i*4,
3996 			    le32_to_cpu(mfp[i]));
3997 	}
3998 	return 0;
3999 }
4000 
4001 /**
4002  * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
4003  * @ioc: per adapter object
4004  * @mpi_reply: the reply payload from FW
4005  * @mpi_request: the request payload sent to FW
4006  *
4007  * The SAS IO Unit Control Request message allows the host to perform low-level
4008  * operations, such as resets on the PHYs of the IO Unit, also allows the host
4009  * to obtain the IOC assigned device handles for a device if it has other
4010  * identifying information about the device, in addition allows the host to
4011  * remove IOC resources associated with the device.
4012  *
4013  * Returns 0 for success, non-zero for failure.
4014  */
4015 int
4016 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
4017 	Mpi2SasIoUnitControlReply_t *mpi_reply,
4018 	Mpi2SasIoUnitControlRequest_t *mpi_request)
4019 {
4020 	u16 smid;
4021 	u32 ioc_state;
4022 	bool issue_reset = false;
4023 	int rc;
4024 	void *request;
4025 	u16 wait_state_count;
4026 
4027 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4028 	    __func__));
4029 
4030 	mutex_lock(&ioc->base_cmds.mutex);
4031 
4032 	if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
4033 		pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
4034 		    ioc->name, __func__);
4035 		rc = -EAGAIN;
4036 		goto out;
4037 	}
4038 
4039 	wait_state_count = 0;
4040 	ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4041 	while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
4042 		if (wait_state_count++ == 10) {
4043 			pr_err(MPT3SAS_FMT
4044 			    "%s: failed due to ioc not operational\n",
4045 			    ioc->name, __func__);
4046 			rc = -EFAULT;
4047 			goto out;
4048 		}
4049 		ssleep(1);
4050 		ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4051 		pr_info(MPT3SAS_FMT
4052 			"%s: waiting for operational state(count=%d)\n",
4053 			ioc->name, __func__, wait_state_count);
4054 	}
4055 
4056 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4057 	if (!smid) {
4058 		pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4059 		    ioc->name, __func__);
4060 		rc = -EAGAIN;
4061 		goto out;
4062 	}
4063 
4064 	rc = 0;
4065 	ioc->base_cmds.status = MPT3_CMD_PENDING;
4066 	request = mpt3sas_base_get_msg_frame(ioc, smid);
4067 	ioc->base_cmds.smid = smid;
4068 	memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
4069 	if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
4070 	    mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
4071 		ioc->ioc_link_reset_in_progress = 1;
4072 	init_completion(&ioc->base_cmds.done);
4073 	mpt3sas_base_put_smid_default(ioc, smid);
4074 	wait_for_completion_timeout(&ioc->base_cmds.done,
4075 	    msecs_to_jiffies(10000));
4076 	if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
4077 	    mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
4078 	    ioc->ioc_link_reset_in_progress)
4079 		ioc->ioc_link_reset_in_progress = 0;
4080 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4081 		pr_err(MPT3SAS_FMT "%s: timeout\n",
4082 		    ioc->name, __func__);
4083 		_debug_dump_mf(mpi_request,
4084 		    sizeof(Mpi2SasIoUnitControlRequest_t)/4);
4085 		if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
4086 			issue_reset = true;
4087 		goto issue_host_reset;
4088 	}
4089 	if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
4090 		memcpy(mpi_reply, ioc->base_cmds.reply,
4091 		    sizeof(Mpi2SasIoUnitControlReply_t));
4092 	else
4093 		memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
4094 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4095 	goto out;
4096 
4097  issue_host_reset:
4098 	if (issue_reset)
4099 		mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
4100 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4101 	rc = -EFAULT;
4102  out:
4103 	mutex_unlock(&ioc->base_cmds.mutex);
4104 	return rc;
4105 }
4106 
4107 /**
4108  * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
4109  * @ioc: per adapter object
4110  * @mpi_reply: the reply payload from FW
4111  * @mpi_request: the request payload sent to FW
4112  *
4113  * The SCSI Enclosure Processor request message causes the IOC to
4114  * communicate with SES devices to control LED status signals.
4115  *
4116  * Returns 0 for success, non-zero for failure.
4117  */
4118 int
4119 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
4120 	Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
4121 {
4122 	u16 smid;
4123 	u32 ioc_state;
4124 	bool issue_reset = false;
4125 	int rc;
4126 	void *request;
4127 	u16 wait_state_count;
4128 
4129 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4130 	    __func__));
4131 
4132 	mutex_lock(&ioc->base_cmds.mutex);
4133 
4134 	if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
4135 		pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
4136 		    ioc->name, __func__);
4137 		rc = -EAGAIN;
4138 		goto out;
4139 	}
4140 
4141 	wait_state_count = 0;
4142 	ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4143 	while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
4144 		if (wait_state_count++ == 10) {
4145 			pr_err(MPT3SAS_FMT
4146 			    "%s: failed due to ioc not operational\n",
4147 			    ioc->name, __func__);
4148 			rc = -EFAULT;
4149 			goto out;
4150 		}
4151 		ssleep(1);
4152 		ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4153 		pr_info(MPT3SAS_FMT
4154 			"%s: waiting for operational state(count=%d)\n",
4155 			ioc->name,
4156 		    __func__, wait_state_count);
4157 	}
4158 
4159 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4160 	if (!smid) {
4161 		pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4162 		    ioc->name, __func__);
4163 		rc = -EAGAIN;
4164 		goto out;
4165 	}
4166 
4167 	rc = 0;
4168 	ioc->base_cmds.status = MPT3_CMD_PENDING;
4169 	request = mpt3sas_base_get_msg_frame(ioc, smid);
4170 	ioc->base_cmds.smid = smid;
4171 	memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
4172 	init_completion(&ioc->base_cmds.done);
4173 	mpt3sas_base_put_smid_default(ioc, smid);
4174 	wait_for_completion_timeout(&ioc->base_cmds.done,
4175 	    msecs_to_jiffies(10000));
4176 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4177 		pr_err(MPT3SAS_FMT "%s: timeout\n",
4178 		    ioc->name, __func__);
4179 		_debug_dump_mf(mpi_request,
4180 		    sizeof(Mpi2SepRequest_t)/4);
4181 		if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
4182 			issue_reset = false;
4183 		goto issue_host_reset;
4184 	}
4185 	if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
4186 		memcpy(mpi_reply, ioc->base_cmds.reply,
4187 		    sizeof(Mpi2SepReply_t));
4188 	else
4189 		memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
4190 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4191 	goto out;
4192 
4193  issue_host_reset:
4194 	if (issue_reset)
4195 		mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
4196 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4197 	rc = -EFAULT;
4198  out:
4199 	mutex_unlock(&ioc->base_cmds.mutex);
4200 	return rc;
4201 }
4202 
4203 /**
4204  * _base_get_port_facts - obtain port facts reply and save in ioc
4205  * @ioc: per adapter object
4206  *
4207  * Returns 0 for success, non-zero for failure.
4208  */
4209 static int
4210 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
4211 {
4212 	Mpi2PortFactsRequest_t mpi_request;
4213 	Mpi2PortFactsReply_t mpi_reply;
4214 	struct mpt3sas_port_facts *pfacts;
4215 	int mpi_reply_sz, mpi_request_sz, r;
4216 
4217 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4218 	    __func__));
4219 
4220 	mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
4221 	mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
4222 	memset(&mpi_request, 0, mpi_request_sz);
4223 	mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
4224 	mpi_request.PortNumber = port;
4225 	r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
4226 	    (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
4227 
4228 	if (r != 0) {
4229 		pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4230 		    ioc->name, __func__, r);
4231 		return r;
4232 	}
4233 
4234 	pfacts = &ioc->pfacts[port];
4235 	memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
4236 	pfacts->PortNumber = mpi_reply.PortNumber;
4237 	pfacts->VP_ID = mpi_reply.VP_ID;
4238 	pfacts->VF_ID = mpi_reply.VF_ID;
4239 	pfacts->MaxPostedCmdBuffers =
4240 	    le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
4241 
4242 	return 0;
4243 }
4244 
4245 /**
4246  * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
4247  * @ioc: per adapter object
4248  * @timeout:
4249  *
4250  * Returns 0 for success, non-zero for failure.
4251  */
4252 static int
4253 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
4254 {
4255 	u32 ioc_state;
4256 	int rc;
4257 
4258 	dinitprintk(ioc, printk(MPT3SAS_FMT "%s\n", ioc->name,
4259 	    __func__));
4260 
4261 	if (ioc->pci_error_recovery) {
4262 		dfailprintk(ioc, printk(MPT3SAS_FMT
4263 		    "%s: host in pci error recovery\n", ioc->name, __func__));
4264 		return -EFAULT;
4265 	}
4266 
4267 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4268 	dhsprintk(ioc, printk(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
4269 	    ioc->name, __func__, ioc_state));
4270 
4271 	if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
4272 	    (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
4273 		return 0;
4274 
4275 	if (ioc_state & MPI2_DOORBELL_USED) {
4276 		dhsprintk(ioc, printk(MPT3SAS_FMT
4277 		    "unexpected doorbell active!\n", ioc->name));
4278 		goto issue_diag_reset;
4279 	}
4280 
4281 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
4282 		mpt3sas_base_fault_info(ioc, ioc_state &
4283 		    MPI2_DOORBELL_DATA_MASK);
4284 		goto issue_diag_reset;
4285 	}
4286 
4287 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
4288 	if (ioc_state) {
4289 		dfailprintk(ioc, printk(MPT3SAS_FMT
4290 		    "%s: failed going to ready state (ioc_state=0x%x)\n",
4291 		    ioc->name, __func__, ioc_state));
4292 		return -EFAULT;
4293 	}
4294 
4295  issue_diag_reset:
4296 	rc = _base_diag_reset(ioc);
4297 	return rc;
4298 }
4299 
4300 /**
4301  * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
4302  * @ioc: per adapter object
4303  *
4304  * Returns 0 for success, non-zero for failure.
4305  */
4306 static int
4307 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
4308 {
4309 	Mpi2IOCFactsRequest_t mpi_request;
4310 	Mpi2IOCFactsReply_t mpi_reply;
4311 	struct mpt3sas_facts *facts;
4312 	int mpi_reply_sz, mpi_request_sz, r;
4313 
4314 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4315 	    __func__));
4316 
4317 	r = _base_wait_for_iocstate(ioc, 10);
4318 	if (r) {
4319 		dfailprintk(ioc, printk(MPT3SAS_FMT
4320 		    "%s: failed getting to correct state\n",
4321 		    ioc->name, __func__));
4322 		return r;
4323 	}
4324 	mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
4325 	mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
4326 	memset(&mpi_request, 0, mpi_request_sz);
4327 	mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
4328 	r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
4329 	    (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
4330 
4331 	if (r != 0) {
4332 		pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4333 		    ioc->name, __func__, r);
4334 		return r;
4335 	}
4336 
4337 	facts = &ioc->facts;
4338 	memset(facts, 0, sizeof(struct mpt3sas_facts));
4339 	facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
4340 	facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
4341 	facts->VP_ID = mpi_reply.VP_ID;
4342 	facts->VF_ID = mpi_reply.VF_ID;
4343 	facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
4344 	facts->MaxChainDepth = mpi_reply.MaxChainDepth;
4345 	facts->WhoInit = mpi_reply.WhoInit;
4346 	facts->NumberOfPorts = mpi_reply.NumberOfPorts;
4347 	facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
4348 	facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
4349 	facts->MaxReplyDescriptorPostQueueDepth =
4350 	    le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
4351 	facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
4352 	facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
4353 	if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
4354 		ioc->ir_firmware = 1;
4355 	if ((facts->IOCCapabilities &
4356 	      MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE))
4357 		ioc->rdpq_array_capable = 1;
4358 	facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
4359 	facts->IOCRequestFrameSize =
4360 	    le16_to_cpu(mpi_reply.IOCRequestFrameSize);
4361 	if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
4362 		facts->IOCMaxChainSegmentSize =
4363 			le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
4364 	}
4365 	facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
4366 	facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
4367 	ioc->shost->max_id = -1;
4368 	facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
4369 	facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
4370 	facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
4371 	facts->HighPriorityCredit =
4372 	    le16_to_cpu(mpi_reply.HighPriorityCredit);
4373 	facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
4374 	facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
4375 
4376 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
4377 		"hba queue depth(%d), max chains per io(%d)\n",
4378 		ioc->name, facts->RequestCredit,
4379 	    facts->MaxChainDepth));
4380 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
4381 		"request frame size(%d), reply frame size(%d)\n", ioc->name,
4382 	    facts->IOCRequestFrameSize * 4, facts->ReplyFrameSize * 4));
4383 	return 0;
4384 }
4385 
4386 /**
4387  * _base_send_ioc_init - send ioc_init to firmware
4388  * @ioc: per adapter object
4389  *
4390  * Returns 0 for success, non-zero for failure.
4391  */
4392 static int
4393 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
4394 {
4395 	Mpi2IOCInitRequest_t mpi_request;
4396 	Mpi2IOCInitReply_t mpi_reply;
4397 	int i, r = 0;
4398 	ktime_t current_time;
4399 	u16 ioc_status;
4400 	u32 reply_post_free_array_sz = 0;
4401 	Mpi2IOCInitRDPQArrayEntry *reply_post_free_array = NULL;
4402 	dma_addr_t reply_post_free_array_dma;
4403 
4404 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4405 	    __func__));
4406 
4407 	memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
4408 	mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
4409 	mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
4410 	mpi_request.VF_ID = 0; /* TODO */
4411 	mpi_request.VP_ID = 0;
4412 	mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
4413 	mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
4414 
4415 	if (_base_is_controller_msix_enabled(ioc))
4416 		mpi_request.HostMSIxVectors = ioc->reply_queue_count;
4417 	mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
4418 	mpi_request.ReplyDescriptorPostQueueDepth =
4419 	    cpu_to_le16(ioc->reply_post_queue_depth);
4420 	mpi_request.ReplyFreeQueueDepth =
4421 	    cpu_to_le16(ioc->reply_free_queue_depth);
4422 
4423 	mpi_request.SenseBufferAddressHigh =
4424 	    cpu_to_le32((u64)ioc->sense_dma >> 32);
4425 	mpi_request.SystemReplyAddressHigh =
4426 	    cpu_to_le32((u64)ioc->reply_dma >> 32);
4427 	mpi_request.SystemRequestFrameBaseAddress =
4428 	    cpu_to_le64((u64)ioc->request_dma);
4429 	mpi_request.ReplyFreeQueueAddress =
4430 	    cpu_to_le64((u64)ioc->reply_free_dma);
4431 
4432 	if (ioc->rdpq_array_enable) {
4433 		reply_post_free_array_sz = ioc->reply_queue_count *
4434 		    sizeof(Mpi2IOCInitRDPQArrayEntry);
4435 		reply_post_free_array = pci_alloc_consistent(ioc->pdev,
4436 			reply_post_free_array_sz, &reply_post_free_array_dma);
4437 		if (!reply_post_free_array) {
4438 			pr_err(MPT3SAS_FMT
4439 			"reply_post_free_array: pci_alloc_consistent failed\n",
4440 			ioc->name);
4441 			r = -ENOMEM;
4442 			goto out;
4443 		}
4444 		memset(reply_post_free_array, 0, reply_post_free_array_sz);
4445 		for (i = 0; i < ioc->reply_queue_count; i++)
4446 			reply_post_free_array[i].RDPQBaseAddress =
4447 			    cpu_to_le64(
4448 				(u64)ioc->reply_post[i].reply_post_free_dma);
4449 		mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
4450 		mpi_request.ReplyDescriptorPostQueueAddress =
4451 		    cpu_to_le64((u64)reply_post_free_array_dma);
4452 	} else {
4453 		mpi_request.ReplyDescriptorPostQueueAddress =
4454 		    cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
4455 	}
4456 
4457 	/* This time stamp specifies number of milliseconds
4458 	 * since epoch ~ midnight January 1, 1970.
4459 	 */
4460 	current_time = ktime_get_real();
4461 	mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
4462 
4463 	if (ioc->logging_level & MPT_DEBUG_INIT) {
4464 		__le32 *mfp;
4465 		int i;
4466 
4467 		mfp = (__le32 *)&mpi_request;
4468 		pr_info("\toffset:data\n");
4469 		for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
4470 			pr_info("\t[0x%02x]:%08x\n", i*4,
4471 			    le32_to_cpu(mfp[i]));
4472 	}
4473 
4474 	r = _base_handshake_req_reply_wait(ioc,
4475 	    sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
4476 	    sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10);
4477 
4478 	if (r != 0) {
4479 		pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4480 		    ioc->name, __func__, r);
4481 		goto out;
4482 	}
4483 
4484 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
4485 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
4486 	    mpi_reply.IOCLogInfo) {
4487 		pr_err(MPT3SAS_FMT "%s: failed\n", ioc->name, __func__);
4488 		r = -EIO;
4489 	}
4490 
4491 out:
4492 	if (reply_post_free_array)
4493 		pci_free_consistent(ioc->pdev, reply_post_free_array_sz,
4494 				    reply_post_free_array,
4495 				    reply_post_free_array_dma);
4496 	return r;
4497 }
4498 
4499 /**
4500  * mpt3sas_port_enable_done - command completion routine for port enable
4501  * @ioc: per adapter object
4502  * @smid: system request message index
4503  * @msix_index: MSIX table index supplied by the OS
4504  * @reply: reply message frame(lower 32bit addr)
4505  *
4506  * Return 1 meaning mf should be freed from _base_interrupt
4507  *        0 means the mf is freed from this function.
4508  */
4509 u8
4510 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
4511 	u32 reply)
4512 {
4513 	MPI2DefaultReply_t *mpi_reply;
4514 	u16 ioc_status;
4515 
4516 	if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
4517 		return 1;
4518 
4519 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
4520 	if (!mpi_reply)
4521 		return 1;
4522 
4523 	if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
4524 		return 1;
4525 
4526 	ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
4527 	ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
4528 	ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
4529 	memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
4530 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
4531 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
4532 		ioc->port_enable_failed = 1;
4533 
4534 	if (ioc->is_driver_loading) {
4535 		if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4536 			mpt3sas_port_enable_complete(ioc);
4537 			return 1;
4538 		} else {
4539 			ioc->start_scan_failed = ioc_status;
4540 			ioc->start_scan = 0;
4541 			return 1;
4542 		}
4543 	}
4544 	complete(&ioc->port_enable_cmds.done);
4545 	return 1;
4546 }
4547 
4548 /**
4549  * _base_send_port_enable - send port_enable(discovery stuff) to firmware
4550  * @ioc: per adapter object
4551  *
4552  * Returns 0 for success, non-zero for failure.
4553  */
4554 static int
4555 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
4556 {
4557 	Mpi2PortEnableRequest_t *mpi_request;
4558 	Mpi2PortEnableReply_t *mpi_reply;
4559 	int r = 0;
4560 	u16 smid;
4561 	u16 ioc_status;
4562 
4563 	pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
4564 
4565 	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
4566 		pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4567 		    ioc->name, __func__);
4568 		return -EAGAIN;
4569 	}
4570 
4571 	smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
4572 	if (!smid) {
4573 		pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4574 		    ioc->name, __func__);
4575 		return -EAGAIN;
4576 	}
4577 
4578 	ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
4579 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4580 	ioc->port_enable_cmds.smid = smid;
4581 	memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
4582 	mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
4583 
4584 	init_completion(&ioc->port_enable_cmds.done);
4585 	mpt3sas_base_put_smid_default(ioc, smid);
4586 	wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
4587 	if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
4588 		pr_err(MPT3SAS_FMT "%s: timeout\n",
4589 		    ioc->name, __func__);
4590 		_debug_dump_mf(mpi_request,
4591 		    sizeof(Mpi2PortEnableRequest_t)/4);
4592 		if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
4593 			r = -EFAULT;
4594 		else
4595 			r = -ETIME;
4596 		goto out;
4597 	}
4598 
4599 	mpi_reply = ioc->port_enable_cmds.reply;
4600 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
4601 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4602 		pr_err(MPT3SAS_FMT "%s: failed with (ioc_status=0x%08x)\n",
4603 		    ioc->name, __func__, ioc_status);
4604 		r = -EFAULT;
4605 		goto out;
4606 	}
4607 
4608  out:
4609 	ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
4610 	pr_info(MPT3SAS_FMT "port enable: %s\n", ioc->name, ((r == 0) ?
4611 	    "SUCCESS" : "FAILED"));
4612 	return r;
4613 }
4614 
4615 /**
4616  * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
4617  * @ioc: per adapter object
4618  *
4619  * Returns 0 for success, non-zero for failure.
4620  */
4621 int
4622 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
4623 {
4624 	Mpi2PortEnableRequest_t *mpi_request;
4625 	u16 smid;
4626 
4627 	pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
4628 
4629 	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
4630 		pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4631 		    ioc->name, __func__);
4632 		return -EAGAIN;
4633 	}
4634 
4635 	smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
4636 	if (!smid) {
4637 		pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4638 		    ioc->name, __func__);
4639 		return -EAGAIN;
4640 	}
4641 
4642 	ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
4643 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4644 	ioc->port_enable_cmds.smid = smid;
4645 	memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
4646 	mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
4647 
4648 	mpt3sas_base_put_smid_default(ioc, smid);
4649 	return 0;
4650 }
4651 
4652 /**
4653  * _base_determine_wait_on_discovery - desposition
4654  * @ioc: per adapter object
4655  *
4656  * Decide whether to wait on discovery to complete. Used to either
4657  * locate boot device, or report volumes ahead of physical devices.
4658  *
4659  * Returns 1 for wait, 0 for don't wait
4660  */
4661 static int
4662 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
4663 {
4664 	/* We wait for discovery to complete if IR firmware is loaded.
4665 	 * The sas topology events arrive before PD events, so we need time to
4666 	 * turn on the bit in ioc->pd_handles to indicate PD
4667 	 * Also, it maybe required to report Volumes ahead of physical
4668 	 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
4669 	 */
4670 	if (ioc->ir_firmware)
4671 		return 1;
4672 
4673 	/* if no Bios, then we don't need to wait */
4674 	if (!ioc->bios_pg3.BiosVersion)
4675 		return 0;
4676 
4677 	/* Bios is present, then we drop down here.
4678 	 *
4679 	 * If there any entries in the Bios Page 2, then we wait
4680 	 * for discovery to complete.
4681 	 */
4682 
4683 	/* Current Boot Device */
4684 	if ((ioc->bios_pg2.CurrentBootDeviceForm &
4685 	    MPI2_BIOSPAGE2_FORM_MASK) ==
4686 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
4687 	/* Request Boot Device */
4688 	   (ioc->bios_pg2.ReqBootDeviceForm &
4689 	    MPI2_BIOSPAGE2_FORM_MASK) ==
4690 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
4691 	/* Alternate Request Boot Device */
4692 	   (ioc->bios_pg2.ReqAltBootDeviceForm &
4693 	    MPI2_BIOSPAGE2_FORM_MASK) ==
4694 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
4695 		return 0;
4696 
4697 	return 1;
4698 }
4699 
4700 /**
4701  * _base_unmask_events - turn on notification for this event
4702  * @ioc: per adapter object
4703  * @event: firmware event
4704  *
4705  * The mask is stored in ioc->event_masks.
4706  */
4707 static void
4708 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
4709 {
4710 	u32 desired_event;
4711 
4712 	if (event >= 128)
4713 		return;
4714 
4715 	desired_event = (1 << (event % 32));
4716 
4717 	if (event < 32)
4718 		ioc->event_masks[0] &= ~desired_event;
4719 	else if (event < 64)
4720 		ioc->event_masks[1] &= ~desired_event;
4721 	else if (event < 96)
4722 		ioc->event_masks[2] &= ~desired_event;
4723 	else if (event < 128)
4724 		ioc->event_masks[3] &= ~desired_event;
4725 }
4726 
4727 /**
4728  * _base_event_notification - send event notification
4729  * @ioc: per adapter object
4730  *
4731  * Returns 0 for success, non-zero for failure.
4732  */
4733 static int
4734 _base_event_notification(struct MPT3SAS_ADAPTER *ioc)
4735 {
4736 	Mpi2EventNotificationRequest_t *mpi_request;
4737 	u16 smid;
4738 	int r = 0;
4739 	int i;
4740 
4741 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4742 	    __func__));
4743 
4744 	if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4745 		pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4746 		    ioc->name, __func__);
4747 		return -EAGAIN;
4748 	}
4749 
4750 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4751 	if (!smid) {
4752 		pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4753 		    ioc->name, __func__);
4754 		return -EAGAIN;
4755 	}
4756 	ioc->base_cmds.status = MPT3_CMD_PENDING;
4757 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4758 	ioc->base_cmds.smid = smid;
4759 	memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
4760 	mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
4761 	mpi_request->VF_ID = 0; /* TODO */
4762 	mpi_request->VP_ID = 0;
4763 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
4764 		mpi_request->EventMasks[i] =
4765 		    cpu_to_le32(ioc->event_masks[i]);
4766 	init_completion(&ioc->base_cmds.done);
4767 	mpt3sas_base_put_smid_default(ioc, smid);
4768 	wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
4769 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4770 		pr_err(MPT3SAS_FMT "%s: timeout\n",
4771 		    ioc->name, __func__);
4772 		_debug_dump_mf(mpi_request,
4773 		    sizeof(Mpi2EventNotificationRequest_t)/4);
4774 		if (ioc->base_cmds.status & MPT3_CMD_RESET)
4775 			r = -EFAULT;
4776 		else
4777 			r = -ETIME;
4778 	} else
4779 		dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s: complete\n",
4780 		    ioc->name, __func__));
4781 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4782 	return r;
4783 }
4784 
4785 /**
4786  * mpt3sas_base_validate_event_type - validating event types
4787  * @ioc: per adapter object
4788  * @event: firmware event
4789  *
4790  * This will turn on firmware event notification when application
4791  * ask for that event. We don't mask events that are already enabled.
4792  */
4793 void
4794 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
4795 {
4796 	int i, j;
4797 	u32 event_mask, desired_event;
4798 	u8 send_update_to_fw;
4799 
4800 	for (i = 0, send_update_to_fw = 0; i <
4801 	    MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
4802 		event_mask = ~event_type[i];
4803 		desired_event = 1;
4804 		for (j = 0; j < 32; j++) {
4805 			if (!(event_mask & desired_event) &&
4806 			    (ioc->event_masks[i] & desired_event)) {
4807 				ioc->event_masks[i] &= ~desired_event;
4808 				send_update_to_fw = 1;
4809 			}
4810 			desired_event = (desired_event << 1);
4811 		}
4812 	}
4813 
4814 	if (!send_update_to_fw)
4815 		return;
4816 
4817 	mutex_lock(&ioc->base_cmds.mutex);
4818 	_base_event_notification(ioc);
4819 	mutex_unlock(&ioc->base_cmds.mutex);
4820 }
4821 
4822 /**
4823  * _base_diag_reset - the "big hammer" start of day reset
4824  * @ioc: per adapter object
4825  *
4826  * Returns 0 for success, non-zero for failure.
4827  */
4828 static int
4829 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
4830 {
4831 	u32 host_diagnostic;
4832 	u32 ioc_state;
4833 	u32 count;
4834 	u32 hcb_size;
4835 
4836 	pr_info(MPT3SAS_FMT "sending diag reset !!\n", ioc->name);
4837 
4838 	drsprintk(ioc, pr_info(MPT3SAS_FMT "clear interrupts\n",
4839 	    ioc->name));
4840 
4841 	count = 0;
4842 	do {
4843 		/* Write magic sequence to WriteSequence register
4844 		 * Loop until in diagnostic mode
4845 		 */
4846 		drsprintk(ioc, pr_info(MPT3SAS_FMT
4847 			"write magic sequence\n", ioc->name));
4848 		writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
4849 		writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
4850 		writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
4851 		writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
4852 		writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
4853 		writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
4854 		writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
4855 
4856 		/* wait 100 msec */
4857 		msleep(100);
4858 
4859 		if (count++ > 20)
4860 			goto out;
4861 
4862 		host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4863 		drsprintk(ioc, pr_info(MPT3SAS_FMT
4864 			"wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
4865 		    ioc->name, count, host_diagnostic));
4866 
4867 	} while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
4868 
4869 	hcb_size = readl(&ioc->chip->HCBSize);
4870 
4871 	drsprintk(ioc, pr_info(MPT3SAS_FMT "diag reset: issued\n",
4872 	    ioc->name));
4873 	writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
4874 	     &ioc->chip->HostDiagnostic);
4875 
4876 	/*This delay allows the chip PCIe hardware time to finish reset tasks*/
4877 	msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
4878 
4879 	/* Approximately 300 second max wait */
4880 	for (count = 0; count < (300000000 /
4881 		MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
4882 
4883 		host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4884 
4885 		if (host_diagnostic == 0xFFFFFFFF)
4886 			goto out;
4887 		if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
4888 			break;
4889 
4890 		msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000);
4891 	}
4892 
4893 	if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
4894 
4895 		drsprintk(ioc, pr_info(MPT3SAS_FMT
4896 		"restart the adapter assuming the HCB Address points to good F/W\n",
4897 		    ioc->name));
4898 		host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
4899 		host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
4900 		writel(host_diagnostic, &ioc->chip->HostDiagnostic);
4901 
4902 		drsprintk(ioc, pr_info(MPT3SAS_FMT
4903 		    "re-enable the HCDW\n", ioc->name));
4904 		writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
4905 		    &ioc->chip->HCBSize);
4906 	}
4907 
4908 	drsprintk(ioc, pr_info(MPT3SAS_FMT "restart the adapter\n",
4909 	    ioc->name));
4910 	writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
4911 	    &ioc->chip->HostDiagnostic);
4912 
4913 	drsprintk(ioc, pr_info(MPT3SAS_FMT
4914 		"disable writes to the diagnostic register\n", ioc->name));
4915 	writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
4916 
4917 	drsprintk(ioc, pr_info(MPT3SAS_FMT
4918 		"Wait for FW to go to the READY state\n", ioc->name));
4919 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
4920 	if (ioc_state) {
4921 		pr_err(MPT3SAS_FMT
4922 			"%s: failed going to ready state (ioc_state=0x%x)\n",
4923 			ioc->name, __func__, ioc_state);
4924 		goto out;
4925 	}
4926 
4927 	pr_info(MPT3SAS_FMT "diag reset: SUCCESS\n", ioc->name);
4928 	return 0;
4929 
4930  out:
4931 	pr_err(MPT3SAS_FMT "diag reset: FAILED\n", ioc->name);
4932 	return -EFAULT;
4933 }
4934 
4935 /**
4936  * _base_make_ioc_ready - put controller in READY state
4937  * @ioc: per adapter object
4938  * @type: FORCE_BIG_HAMMER or SOFT_RESET
4939  *
4940  * Returns 0 for success, non-zero for failure.
4941  */
4942 static int
4943 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
4944 {
4945 	u32 ioc_state;
4946 	int rc;
4947 	int count;
4948 
4949 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4950 	    __func__));
4951 
4952 	if (ioc->pci_error_recovery)
4953 		return 0;
4954 
4955 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4956 	dhsprintk(ioc, pr_info(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
4957 	    ioc->name, __func__, ioc_state));
4958 
4959 	/* if in RESET state, it should move to READY state shortly */
4960 	count = 0;
4961 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
4962 		while ((ioc_state & MPI2_IOC_STATE_MASK) !=
4963 		    MPI2_IOC_STATE_READY) {
4964 			if (count++ == 10) {
4965 				pr_err(MPT3SAS_FMT
4966 					"%s: failed going to ready state (ioc_state=0x%x)\n",
4967 				    ioc->name, __func__, ioc_state);
4968 				return -EFAULT;
4969 			}
4970 			ssleep(1);
4971 			ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4972 		}
4973 	}
4974 
4975 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
4976 		return 0;
4977 
4978 	if (ioc_state & MPI2_DOORBELL_USED) {
4979 		dhsprintk(ioc, pr_info(MPT3SAS_FMT
4980 			"unexpected doorbell active!\n",
4981 			ioc->name));
4982 		goto issue_diag_reset;
4983 	}
4984 
4985 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
4986 		mpt3sas_base_fault_info(ioc, ioc_state &
4987 		    MPI2_DOORBELL_DATA_MASK);
4988 		goto issue_diag_reset;
4989 	}
4990 
4991 	if (type == FORCE_BIG_HAMMER)
4992 		goto issue_diag_reset;
4993 
4994 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
4995 		if (!(_base_send_ioc_reset(ioc,
4996 		    MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
4997 			return 0;
4998 	}
4999 
5000  issue_diag_reset:
5001 	rc = _base_diag_reset(ioc);
5002 	return rc;
5003 }
5004 
5005 /**
5006  * _base_make_ioc_operational - put controller in OPERATIONAL state
5007  * @ioc: per adapter object
5008  *
5009  * Returns 0 for success, non-zero for failure.
5010  */
5011 static int
5012 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
5013 {
5014 	int r, i, index;
5015 	unsigned long	flags;
5016 	u32 reply_address;
5017 	u16 smid;
5018 	struct _tr_list *delayed_tr, *delayed_tr_next;
5019 	struct _sc_list *delayed_sc, *delayed_sc_next;
5020 	struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
5021 	u8 hide_flag;
5022 	struct adapter_reply_queue *reply_q;
5023 	Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
5024 
5025 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5026 	    __func__));
5027 
5028 	/* clean the delayed target reset list */
5029 	list_for_each_entry_safe(delayed_tr, delayed_tr_next,
5030 	    &ioc->delayed_tr_list, list) {
5031 		list_del(&delayed_tr->list);
5032 		kfree(delayed_tr);
5033 	}
5034 
5035 
5036 	list_for_each_entry_safe(delayed_tr, delayed_tr_next,
5037 	    &ioc->delayed_tr_volume_list, list) {
5038 		list_del(&delayed_tr->list);
5039 		kfree(delayed_tr);
5040 	}
5041 
5042 	list_for_each_entry_safe(delayed_sc, delayed_sc_next,
5043 	    &ioc->delayed_sc_list, list) {
5044 		list_del(&delayed_sc->list);
5045 		kfree(delayed_sc);
5046 	}
5047 
5048 	list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
5049 	    &ioc->delayed_event_ack_list, list) {
5050 		list_del(&delayed_event_ack->list);
5051 		kfree(delayed_event_ack);
5052 	}
5053 
5054 	/* initialize the scsi lookup free list */
5055 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
5056 	INIT_LIST_HEAD(&ioc->free_list);
5057 	smid = 1;
5058 	for (i = 0; i < ioc->scsiio_depth; i++, smid++) {
5059 		INIT_LIST_HEAD(&ioc->scsi_lookup[i].chain_list);
5060 		ioc->scsi_lookup[i].cb_idx = 0xFF;
5061 		ioc->scsi_lookup[i].smid = smid;
5062 		ioc->scsi_lookup[i].scmd = NULL;
5063 		ioc->scsi_lookup[i].direct_io = 0;
5064 		list_add_tail(&ioc->scsi_lookup[i].tracker_list,
5065 		    &ioc->free_list);
5066 	}
5067 
5068 	/* hi-priority queue */
5069 	INIT_LIST_HEAD(&ioc->hpr_free_list);
5070 	smid = ioc->hi_priority_smid;
5071 	for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
5072 		ioc->hpr_lookup[i].cb_idx = 0xFF;
5073 		ioc->hpr_lookup[i].smid = smid;
5074 		list_add_tail(&ioc->hpr_lookup[i].tracker_list,
5075 		    &ioc->hpr_free_list);
5076 	}
5077 
5078 	/* internal queue */
5079 	INIT_LIST_HEAD(&ioc->internal_free_list);
5080 	smid = ioc->internal_smid;
5081 	for (i = 0; i < ioc->internal_depth; i++, smid++) {
5082 		ioc->internal_lookup[i].cb_idx = 0xFF;
5083 		ioc->internal_lookup[i].smid = smid;
5084 		list_add_tail(&ioc->internal_lookup[i].tracker_list,
5085 		    &ioc->internal_free_list);
5086 	}
5087 
5088 	/* chain pool */
5089 	INIT_LIST_HEAD(&ioc->free_chain_list);
5090 	for (i = 0; i < ioc->chain_depth; i++)
5091 		list_add_tail(&ioc->chain_lookup[i].tracker_list,
5092 		    &ioc->free_chain_list);
5093 
5094 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
5095 
5096 	/* initialize Reply Free Queue */
5097 	for (i = 0, reply_address = (u32)ioc->reply_dma ;
5098 	    i < ioc->reply_free_queue_depth ; i++, reply_address +=
5099 	    ioc->reply_sz)
5100 		ioc->reply_free[i] = cpu_to_le32(reply_address);
5101 
5102 	/* initialize reply queues */
5103 	if (ioc->is_driver_loading)
5104 		_base_assign_reply_queues(ioc);
5105 
5106 	/* initialize Reply Post Free Queue */
5107 	index = 0;
5108 	reply_post_free_contig = ioc->reply_post[0].reply_post_free;
5109 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
5110 		/*
5111 		 * If RDPQ is enabled, switch to the next allocation.
5112 		 * Otherwise advance within the contiguous region.
5113 		 */
5114 		if (ioc->rdpq_array_enable) {
5115 			reply_q->reply_post_free =
5116 				ioc->reply_post[index++].reply_post_free;
5117 		} else {
5118 			reply_q->reply_post_free = reply_post_free_contig;
5119 			reply_post_free_contig += ioc->reply_post_queue_depth;
5120 		}
5121 
5122 		reply_q->reply_post_host_index = 0;
5123 		for (i = 0; i < ioc->reply_post_queue_depth; i++)
5124 			reply_q->reply_post_free[i].Words =
5125 			    cpu_to_le64(ULLONG_MAX);
5126 		if (!_base_is_controller_msix_enabled(ioc))
5127 			goto skip_init_reply_post_free_queue;
5128 	}
5129  skip_init_reply_post_free_queue:
5130 
5131 	r = _base_send_ioc_init(ioc);
5132 	if (r)
5133 		return r;
5134 
5135 	/* initialize reply free host index */
5136 	ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
5137 	writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
5138 
5139 	/* initialize reply post host index */
5140 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
5141 		if (ioc->msix96_vector)
5142 			writel((reply_q->msix_index & 7)<<
5143 			   MPI2_RPHI_MSIX_INDEX_SHIFT,
5144 			   ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
5145 		else
5146 			writel(reply_q->msix_index <<
5147 				MPI2_RPHI_MSIX_INDEX_SHIFT,
5148 				&ioc->chip->ReplyPostHostIndex);
5149 
5150 		if (!_base_is_controller_msix_enabled(ioc))
5151 			goto skip_init_reply_post_host_index;
5152 	}
5153 
5154  skip_init_reply_post_host_index:
5155 
5156 	_base_unmask_interrupts(ioc);
5157 	r = _base_event_notification(ioc);
5158 	if (r)
5159 		return r;
5160 
5161 	_base_static_config_pages(ioc);
5162 
5163 	if (ioc->is_driver_loading) {
5164 
5165 		if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
5166 		    == 0x80) {
5167 			hide_flag = (u8) (
5168 			    le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
5169 			    MFG_PAGE10_HIDE_SSDS_MASK);
5170 			if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
5171 				ioc->mfg_pg10_hide_flag = hide_flag;
5172 		}
5173 
5174 		ioc->wait_for_discovery_to_complete =
5175 		    _base_determine_wait_on_discovery(ioc);
5176 
5177 		return r; /* scan_start and scan_finished support */
5178 	}
5179 
5180 	r = _base_send_port_enable(ioc);
5181 	if (r)
5182 		return r;
5183 
5184 	return r;
5185 }
5186 
5187 /**
5188  * mpt3sas_base_free_resources - free resources controller resources
5189  * @ioc: per adapter object
5190  *
5191  * Return nothing.
5192  */
5193 void
5194 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
5195 {
5196 	dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5197 	    __func__));
5198 
5199 	/* synchronizing freeing resource with pci_access_mutex lock */
5200 	mutex_lock(&ioc->pci_access_mutex);
5201 	if (ioc->chip_phys && ioc->chip) {
5202 		_base_mask_interrupts(ioc);
5203 		ioc->shost_recovery = 1;
5204 		_base_make_ioc_ready(ioc, SOFT_RESET);
5205 		ioc->shost_recovery = 0;
5206 	}
5207 
5208 	mpt3sas_base_unmap_resources(ioc);
5209 	mutex_unlock(&ioc->pci_access_mutex);
5210 	return;
5211 }
5212 
5213 /**
5214  * mpt3sas_base_attach - attach controller instance
5215  * @ioc: per adapter object
5216  *
5217  * Returns 0 for success, non-zero for failure.
5218  */
5219 int
5220 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
5221 {
5222 	int r, i;
5223 	int cpu_id, last_cpu_id = 0;
5224 
5225 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5226 	    __func__));
5227 
5228 	/* setup cpu_msix_table */
5229 	ioc->cpu_count = num_online_cpus();
5230 	for_each_online_cpu(cpu_id)
5231 		last_cpu_id = cpu_id;
5232 	ioc->cpu_msix_table_sz = last_cpu_id + 1;
5233 	ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
5234 	ioc->reply_queue_count = 1;
5235 	if (!ioc->cpu_msix_table) {
5236 		dfailprintk(ioc, pr_info(MPT3SAS_FMT
5237 			"allocation for cpu_msix_table failed!!!\n",
5238 			ioc->name));
5239 		r = -ENOMEM;
5240 		goto out_free_resources;
5241 	}
5242 
5243 	if (ioc->is_warpdrive) {
5244 		ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
5245 		    sizeof(resource_size_t *), GFP_KERNEL);
5246 		if (!ioc->reply_post_host_index) {
5247 			dfailprintk(ioc, pr_info(MPT3SAS_FMT "allocation "
5248 				"for cpu_msix_table failed!!!\n", ioc->name));
5249 			r = -ENOMEM;
5250 			goto out_free_resources;
5251 		}
5252 	}
5253 
5254 	ioc->rdpq_array_enable_assigned = 0;
5255 	ioc->dma_mask = 0;
5256 	r = mpt3sas_base_map_resources(ioc);
5257 	if (r)
5258 		goto out_free_resources;
5259 
5260 	pci_set_drvdata(ioc->pdev, ioc->shost);
5261 	r = _base_get_ioc_facts(ioc);
5262 	if (r)
5263 		goto out_free_resources;
5264 
5265 	switch (ioc->hba_mpi_version_belonged) {
5266 	case MPI2_VERSION:
5267 		ioc->build_sg_scmd = &_base_build_sg_scmd;
5268 		ioc->build_sg = &_base_build_sg;
5269 		ioc->build_zero_len_sge = &_base_build_zero_len_sge;
5270 		break;
5271 	case MPI25_VERSION:
5272 	case MPI26_VERSION:
5273 		/*
5274 		 * In SAS3.0,
5275 		 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
5276 		 * Target Status - all require the IEEE formated scatter gather
5277 		 * elements.
5278 		 */
5279 		ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
5280 		ioc->build_sg = &_base_build_sg_ieee;
5281 		ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
5282 		ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
5283 		break;
5284 	}
5285 
5286 	/*
5287 	 * These function pointers for other requests that don't
5288 	 * the require IEEE scatter gather elements.
5289 	 *
5290 	 * For example Configuration Pages and SAS IOUNIT Control don't.
5291 	 */
5292 	ioc->build_sg_mpi = &_base_build_sg;
5293 	ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
5294 
5295 	r = _base_make_ioc_ready(ioc, SOFT_RESET);
5296 	if (r)
5297 		goto out_free_resources;
5298 
5299 	ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
5300 	    sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
5301 	if (!ioc->pfacts) {
5302 		r = -ENOMEM;
5303 		goto out_free_resources;
5304 	}
5305 
5306 	for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
5307 		r = _base_get_port_facts(ioc, i);
5308 		if (r)
5309 			goto out_free_resources;
5310 	}
5311 
5312 	r = _base_allocate_memory_pools(ioc);
5313 	if (r)
5314 		goto out_free_resources;
5315 
5316 	init_waitqueue_head(&ioc->reset_wq);
5317 
5318 	/* allocate memory pd handle bitmask list */
5319 	ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
5320 	if (ioc->facts.MaxDevHandle % 8)
5321 		ioc->pd_handles_sz++;
5322 	ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
5323 	    GFP_KERNEL);
5324 	if (!ioc->pd_handles) {
5325 		r = -ENOMEM;
5326 		goto out_free_resources;
5327 	}
5328 	ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
5329 	    GFP_KERNEL);
5330 	if (!ioc->blocking_handles) {
5331 		r = -ENOMEM;
5332 		goto out_free_resources;
5333 	}
5334 
5335 	ioc->fwfault_debug = mpt3sas_fwfault_debug;
5336 
5337 	/* base internal command bits */
5338 	mutex_init(&ioc->base_cmds.mutex);
5339 	ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5340 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5341 
5342 	/* port_enable command bits */
5343 	ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5344 	ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
5345 
5346 	/* transport internal command bits */
5347 	ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5348 	ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
5349 	mutex_init(&ioc->transport_cmds.mutex);
5350 
5351 	/* scsih internal command bits */
5352 	ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5353 	ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
5354 	mutex_init(&ioc->scsih_cmds.mutex);
5355 
5356 	/* task management internal command bits */
5357 	ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5358 	ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
5359 	mutex_init(&ioc->tm_cmds.mutex);
5360 
5361 	/* config page internal command bits */
5362 	ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5363 	ioc->config_cmds.status = MPT3_CMD_NOT_USED;
5364 	mutex_init(&ioc->config_cmds.mutex);
5365 
5366 	/* ctl module internal command bits */
5367 	ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5368 	ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
5369 	ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
5370 	mutex_init(&ioc->ctl_cmds.mutex);
5371 
5372 	if (!ioc->base_cmds.reply || !ioc->transport_cmds.reply ||
5373 	    !ioc->scsih_cmds.reply || !ioc->tm_cmds.reply ||
5374 	    !ioc->config_cmds.reply || !ioc->ctl_cmds.reply ||
5375 	    !ioc->ctl_cmds.sense) {
5376 		r = -ENOMEM;
5377 		goto out_free_resources;
5378 	}
5379 
5380 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
5381 		ioc->event_masks[i] = -1;
5382 
5383 	/* here we enable the events we care about */
5384 	_base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
5385 	_base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
5386 	_base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
5387 	_base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
5388 	_base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
5389 	_base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
5390 	_base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
5391 	_base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
5392 	_base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
5393 	_base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
5394 	_base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
5395 	if (ioc->hba_mpi_version_belonged == MPI26_VERSION)
5396 		_base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
5397 
5398 	r = _base_make_ioc_operational(ioc);
5399 	if (r)
5400 		goto out_free_resources;
5401 
5402 	ioc->non_operational_loop = 0;
5403 	return 0;
5404 
5405  out_free_resources:
5406 
5407 	ioc->remove_host = 1;
5408 
5409 	mpt3sas_base_free_resources(ioc);
5410 	_base_release_memory_pools(ioc);
5411 	pci_set_drvdata(ioc->pdev, NULL);
5412 	kfree(ioc->cpu_msix_table);
5413 	if (ioc->is_warpdrive)
5414 		kfree(ioc->reply_post_host_index);
5415 	kfree(ioc->pd_handles);
5416 	kfree(ioc->blocking_handles);
5417 	kfree(ioc->tm_cmds.reply);
5418 	kfree(ioc->transport_cmds.reply);
5419 	kfree(ioc->scsih_cmds.reply);
5420 	kfree(ioc->config_cmds.reply);
5421 	kfree(ioc->base_cmds.reply);
5422 	kfree(ioc->port_enable_cmds.reply);
5423 	kfree(ioc->ctl_cmds.reply);
5424 	kfree(ioc->ctl_cmds.sense);
5425 	kfree(ioc->pfacts);
5426 	ioc->ctl_cmds.reply = NULL;
5427 	ioc->base_cmds.reply = NULL;
5428 	ioc->tm_cmds.reply = NULL;
5429 	ioc->scsih_cmds.reply = NULL;
5430 	ioc->transport_cmds.reply = NULL;
5431 	ioc->config_cmds.reply = NULL;
5432 	ioc->pfacts = NULL;
5433 	return r;
5434 }
5435 
5436 
5437 /**
5438  * mpt3sas_base_detach - remove controller instance
5439  * @ioc: per adapter object
5440  *
5441  * Return nothing.
5442  */
5443 void
5444 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
5445 {
5446 	dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5447 	    __func__));
5448 
5449 	mpt3sas_base_stop_watchdog(ioc);
5450 	mpt3sas_base_free_resources(ioc);
5451 	_base_release_memory_pools(ioc);
5452 	pci_set_drvdata(ioc->pdev, NULL);
5453 	kfree(ioc->cpu_msix_table);
5454 	if (ioc->is_warpdrive)
5455 		kfree(ioc->reply_post_host_index);
5456 	kfree(ioc->pd_handles);
5457 	kfree(ioc->blocking_handles);
5458 	kfree(ioc->pfacts);
5459 	kfree(ioc->ctl_cmds.reply);
5460 	kfree(ioc->ctl_cmds.sense);
5461 	kfree(ioc->base_cmds.reply);
5462 	kfree(ioc->port_enable_cmds.reply);
5463 	kfree(ioc->tm_cmds.reply);
5464 	kfree(ioc->transport_cmds.reply);
5465 	kfree(ioc->scsih_cmds.reply);
5466 	kfree(ioc->config_cmds.reply);
5467 }
5468 
5469 /**
5470  * _base_reset_handler - reset callback handler (for base)
5471  * @ioc: per adapter object
5472  * @reset_phase: phase
5473  *
5474  * The handler for doing any required cleanup or initialization.
5475  *
5476  * The reset phase can be MPT3_IOC_PRE_RESET, MPT3_IOC_AFTER_RESET,
5477  * MPT3_IOC_DONE_RESET
5478  *
5479  * Return nothing.
5480  */
5481 static void
5482 _base_reset_handler(struct MPT3SAS_ADAPTER *ioc, int reset_phase)
5483 {
5484 	mpt3sas_scsih_reset_handler(ioc, reset_phase);
5485 	mpt3sas_ctl_reset_handler(ioc, reset_phase);
5486 	switch (reset_phase) {
5487 	case MPT3_IOC_PRE_RESET:
5488 		dtmprintk(ioc, pr_info(MPT3SAS_FMT
5489 		"%s: MPT3_IOC_PRE_RESET\n", ioc->name, __func__));
5490 		break;
5491 	case MPT3_IOC_AFTER_RESET:
5492 		dtmprintk(ioc, pr_info(MPT3SAS_FMT
5493 		"%s: MPT3_IOC_AFTER_RESET\n", ioc->name, __func__));
5494 		if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
5495 			ioc->transport_cmds.status |= MPT3_CMD_RESET;
5496 			mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
5497 			complete(&ioc->transport_cmds.done);
5498 		}
5499 		if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
5500 			ioc->base_cmds.status |= MPT3_CMD_RESET;
5501 			mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
5502 			complete(&ioc->base_cmds.done);
5503 		}
5504 		if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
5505 			ioc->port_enable_failed = 1;
5506 			ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
5507 			mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
5508 			if (ioc->is_driver_loading) {
5509 				ioc->start_scan_failed =
5510 				    MPI2_IOCSTATUS_INTERNAL_ERROR;
5511 				ioc->start_scan = 0;
5512 				ioc->port_enable_cmds.status =
5513 				    MPT3_CMD_NOT_USED;
5514 			} else
5515 				complete(&ioc->port_enable_cmds.done);
5516 		}
5517 		if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
5518 			ioc->config_cmds.status |= MPT3_CMD_RESET;
5519 			mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
5520 			ioc->config_cmds.smid = USHRT_MAX;
5521 			complete(&ioc->config_cmds.done);
5522 		}
5523 		break;
5524 	case MPT3_IOC_DONE_RESET:
5525 		dtmprintk(ioc, pr_info(MPT3SAS_FMT
5526 			"%s: MPT3_IOC_DONE_RESET\n", ioc->name, __func__));
5527 		break;
5528 	}
5529 }
5530 
5531 /**
5532  * _wait_for_commands_to_complete - reset controller
5533  * @ioc: Pointer to MPT_ADAPTER structure
5534  *
5535  * This function waiting(3s) for all pending commands to complete
5536  * prior to putting controller in reset.
5537  */
5538 static void
5539 _wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
5540 {
5541 	u32 ioc_state;
5542 	unsigned long flags;
5543 	u16 i;
5544 
5545 	ioc->pending_io_count = 0;
5546 
5547 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5548 	if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
5549 		return;
5550 
5551 	/* pending command count */
5552 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
5553 	for (i = 0; i < ioc->scsiio_depth; i++)
5554 		if (ioc->scsi_lookup[i].cb_idx != 0xFF)
5555 			ioc->pending_io_count++;
5556 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
5557 
5558 	if (!ioc->pending_io_count)
5559 		return;
5560 
5561 	/* wait for pending commands to complete */
5562 	wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
5563 }
5564 
5565 /**
5566  * mpt3sas_base_hard_reset_handler - reset controller
5567  * @ioc: Pointer to MPT_ADAPTER structure
5568  * @type: FORCE_BIG_HAMMER or SOFT_RESET
5569  *
5570  * Returns 0 for success, non-zero for failure.
5571  */
5572 int
5573 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
5574 	enum reset_type type)
5575 {
5576 	int r;
5577 	unsigned long flags;
5578 	u32 ioc_state;
5579 	u8 is_fault = 0, is_trigger = 0;
5580 
5581 	dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: enter\n", ioc->name,
5582 	    __func__));
5583 
5584 	if (ioc->pci_error_recovery) {
5585 		pr_err(MPT3SAS_FMT "%s: pci error recovery reset\n",
5586 		    ioc->name, __func__);
5587 		r = 0;
5588 		goto out_unlocked;
5589 	}
5590 
5591 	if (mpt3sas_fwfault_debug)
5592 		mpt3sas_halt_firmware(ioc);
5593 
5594 	/* wait for an active reset in progress to complete */
5595 	if (!mutex_trylock(&ioc->reset_in_progress_mutex)) {
5596 		do {
5597 			ssleep(1);
5598 		} while (ioc->shost_recovery == 1);
5599 		dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
5600 		    __func__));
5601 		return ioc->ioc_reset_in_progress_status;
5602 	}
5603 
5604 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5605 	ioc->shost_recovery = 1;
5606 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5607 
5608 	if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
5609 	    MPT3_DIAG_BUFFER_IS_REGISTERED) &&
5610 	    (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
5611 	    MPT3_DIAG_BUFFER_IS_RELEASED))) {
5612 		is_trigger = 1;
5613 		ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5614 		if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
5615 			is_fault = 1;
5616 	}
5617 	_base_reset_handler(ioc, MPT3_IOC_PRE_RESET);
5618 	_wait_for_commands_to_complete(ioc);
5619 	_base_mask_interrupts(ioc);
5620 	r = _base_make_ioc_ready(ioc, type);
5621 	if (r)
5622 		goto out;
5623 	_base_reset_handler(ioc, MPT3_IOC_AFTER_RESET);
5624 
5625 	/* If this hard reset is called while port enable is active, then
5626 	 * there is no reason to call make_ioc_operational
5627 	 */
5628 	if (ioc->is_driver_loading && ioc->port_enable_failed) {
5629 		ioc->remove_host = 1;
5630 		r = -EFAULT;
5631 		goto out;
5632 	}
5633 	r = _base_get_ioc_facts(ioc);
5634 	if (r)
5635 		goto out;
5636 
5637 	if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
5638 		panic("%s: Issue occurred with flashing controller firmware."
5639 		      "Please reboot the system and ensure that the correct"
5640 		      " firmware version is running\n", ioc->name);
5641 
5642 	r = _base_make_ioc_operational(ioc);
5643 	if (!r)
5644 		_base_reset_handler(ioc, MPT3_IOC_DONE_RESET);
5645 
5646  out:
5647 	dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: %s\n",
5648 	    ioc->name, __func__, ((r == 0) ? "SUCCESS" : "FAILED")));
5649 
5650 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5651 	ioc->ioc_reset_in_progress_status = r;
5652 	ioc->shost_recovery = 0;
5653 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5654 	ioc->ioc_reset_count++;
5655 	mutex_unlock(&ioc->reset_in_progress_mutex);
5656 
5657  out_unlocked:
5658 	if ((r == 0) && is_trigger) {
5659 		if (is_fault)
5660 			mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
5661 		else
5662 			mpt3sas_trigger_master(ioc,
5663 			    MASTER_TRIGGER_ADAPTER_RESET);
5664 	}
5665 	dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
5666 	    __func__));
5667 	return r;
5668 }
5669