1 /*
2  * This is the Fusion MPT base driver providing common API layer interface
3  * for access to MPT (Message Passing Technology) firmware.
4  *
5  * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6  * Copyright (C) 2012-2014  LSI Corporation
7  * Copyright (C) 2013-2014 Avago Technologies
8  *  (mailto: MPT-FusionLinux.pdl@avagotech.com)
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version 2
13  * of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * NO WARRANTY
21  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25  * solely responsible for determining the appropriateness of using and
26  * distributing the Program and assumes all risks associated with its
27  * exercise of rights under this Agreement, including but not limited to
28  * the risks and costs of program errors, damage to or loss of data,
29  * programs or equipment, and unavailability or interruption of operations.
30 
31  * DISCLAIMER OF LIABILITY
32  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39 
40  * You should have received a copy of the GNU General Public License
41  * along with this program; if not, write to the Free Software
42  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
43  * USA.
44  */
45 
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <asm/page.h>        /* To get host page size per arch */
63 #include <linux/aer.h>
64 
65 
66 #include "mpt3sas_base.h"
67 
68 static MPT_CALLBACK	mpt_callbacks[MPT_MAX_CALLBACKS];
69 
70 
71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
72 
73  /* maximum controller queue depth */
74 #define MAX_HBA_QUEUE_DEPTH	30000
75 #define MAX_CHAIN_DEPTH		100000
76 static int max_queue_depth = -1;
77 module_param(max_queue_depth, int, 0);
78 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
79 
80 static int max_sgl_entries = -1;
81 module_param(max_sgl_entries, int, 0);
82 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
83 
84 static int msix_disable = -1;
85 module_param(msix_disable, int, 0);
86 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
87 
88 static int smp_affinity_enable = 1;
89 module_param(smp_affinity_enable, int, S_IRUGO);
90 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)");
91 
92 static int max_msix_vectors = -1;
93 module_param(max_msix_vectors, int, 0);
94 MODULE_PARM_DESC(max_msix_vectors,
95 	" max msix vectors");
96 
97 static int mpt3sas_fwfault_debug;
98 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
99 	" enable detection of firmware fault and halt firmware - (default=0)");
100 
101 static int
102 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
103 
104 /**
105  * mpt3sas_base_check_cmd_timeout - Function
106  *		to check timeout and command termination due
107  *		to Host reset.
108  *
109  * @ioc:	per adapter object.
110  * @status:	Status of issued command.
111  * @mpi_request:mf request pointer.
112  * @sz:		size of buffer.
113  *
114  * @Returns - 1/0 Reset to be done or Not
115  */
116 u8
117 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc,
118 		u8 status, void *mpi_request, int sz)
119 {
120 	u8 issue_reset = 0;
121 
122 	if (!(status & MPT3_CMD_RESET))
123 		issue_reset = 1;
124 
125 	pr_err(MPT3SAS_FMT "Command %s\n", ioc->name,
126 	    ((issue_reset == 0) ? "terminated due to Host Reset" : "Timeout"));
127 	_debug_dump_mf(mpi_request, sz);
128 
129 	return issue_reset;
130 }
131 
132 /**
133  * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
134  * @val: ?
135  * @kp: ?
136  *
137  * Return: ?
138  */
139 static int
140 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp)
141 {
142 	int ret = param_set_int(val, kp);
143 	struct MPT3SAS_ADAPTER *ioc;
144 
145 	if (ret)
146 		return ret;
147 
148 	/* global ioc spinlock to protect controller list on list operations */
149 	pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
150 	spin_lock(&gioc_lock);
151 	list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
152 		ioc->fwfault_debug = mpt3sas_fwfault_debug;
153 	spin_unlock(&gioc_lock);
154 	return 0;
155 }
156 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
157 	param_get_int, &mpt3sas_fwfault_debug, 0644);
158 
159 /**
160  * _base_clone_reply_to_sys_mem - copies reply to reply free iomem
161  *				  in BAR0 space.
162  *
163  * @ioc: per adapter object
164  * @reply: reply message frame(lower 32bit addr)
165  * @index: System request message index.
166  */
167 static void
168 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply,
169 		u32 index)
170 {
171 	/*
172 	 * 256 is offset within sys register.
173 	 * 256 offset MPI frame starts. Max MPI frame supported is 32.
174 	 * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts
175 	 */
176 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
177 	void __iomem *reply_free_iomem = (void __iomem *)ioc->chip +
178 			MPI_FRAME_START_OFFSET +
179 			(cmd_credit * ioc->request_sz) + (index * sizeof(u32));
180 
181 	writel(reply, reply_free_iomem);
182 }
183 
184 /**
185  * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames
186  *				to system/BAR0 region.
187  *
188  * @dst_iomem: Pointer to the destination location in BAR0 space.
189  * @src: Pointer to the Source data.
190  * @size: Size of data to be copied.
191  */
192 static void
193 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size)
194 {
195 	int i;
196 	u32 *src_virt_mem = (u32 *)src;
197 
198 	for (i = 0; i < size/4; i++)
199 		writel((u32)src_virt_mem[i],
200 				(void __iomem *)dst_iomem + (i * 4));
201 }
202 
203 /**
204  * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region
205  *
206  * @dst_iomem: Pointer to the destination location in BAR0 space.
207  * @src: Pointer to the Source data.
208  * @size: Size of data to be copied.
209  */
210 static void
211 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size)
212 {
213 	int i;
214 	u32 *src_virt_mem = (u32 *)(src);
215 
216 	for (i = 0; i < size/4; i++)
217 		writel((u32)src_virt_mem[i],
218 			(void __iomem *)dst_iomem + (i * 4));
219 }
220 
221 /**
222  * _base_get_chain - Calculates and Returns virtual chain address
223  *			 for the provided smid in BAR0 space.
224  *
225  * @ioc: per adapter object
226  * @smid: system request message index
227  * @sge_chain_count: Scatter gather chain count.
228  *
229  * Return: the chain address.
230  */
231 static inline void __iomem*
232 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid,
233 		u8 sge_chain_count)
234 {
235 	void __iomem *base_chain, *chain_virt;
236 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
237 
238 	base_chain  = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET +
239 		(cmd_credit * ioc->request_sz) +
240 		REPLY_FREE_POOL_SIZE;
241 	chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth *
242 			ioc->request_sz) + (sge_chain_count * ioc->request_sz);
243 	return chain_virt;
244 }
245 
246 /**
247  * _base_get_chain_phys - Calculates and Returns physical address
248  *			in BAR0 for scatter gather chains, for
249  *			the provided smid.
250  *
251  * @ioc: per adapter object
252  * @smid: system request message index
253  * @sge_chain_count: Scatter gather chain count.
254  *
255  * Return: Physical chain address.
256  */
257 static inline phys_addr_t
258 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid,
259 		u8 sge_chain_count)
260 {
261 	phys_addr_t base_chain_phys, chain_phys;
262 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
263 
264 	base_chain_phys  = ioc->chip_phys + MPI_FRAME_START_OFFSET +
265 		(cmd_credit * ioc->request_sz) +
266 		REPLY_FREE_POOL_SIZE;
267 	chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth *
268 			ioc->request_sz) + (sge_chain_count * ioc->request_sz);
269 	return chain_phys;
270 }
271 
272 /**
273  * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host
274  *			buffer address for the provided smid.
275  *			(Each smid can have 64K starts from 17024)
276  *
277  * @ioc: per adapter object
278  * @smid: system request message index
279  *
280  * Return: Pointer to buffer location in BAR0.
281  */
282 
283 static void __iomem *
284 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
285 {
286 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
287 	// Added extra 1 to reach end of chain.
288 	void __iomem *chain_end = _base_get_chain(ioc,
289 			cmd_credit + 1,
290 			ioc->facts.MaxChainDepth);
291 	return chain_end + (smid * 64 * 1024);
292 }
293 
294 /**
295  * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped
296  *		Host buffer Physical address for the provided smid.
297  *		(Each smid can have 64K starts from 17024)
298  *
299  * @ioc: per adapter object
300  * @smid: system request message index
301  *
302  * Return: Pointer to buffer location in BAR0.
303  */
304 static phys_addr_t
305 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
306 {
307 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
308 	phys_addr_t chain_end_phys = _base_get_chain_phys(ioc,
309 			cmd_credit + 1,
310 			ioc->facts.MaxChainDepth);
311 	return chain_end_phys + (smid * 64 * 1024);
312 }
313 
314 /**
315  * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain
316  *			lookup list and Provides chain_buffer
317  *			address for the matching dma address.
318  *			(Each smid can have 64K starts from 17024)
319  *
320  * @ioc: per adapter object
321  * @chain_buffer_dma: Chain buffer dma address.
322  *
323  * Return: Pointer to chain buffer. Or Null on Failure.
324  */
325 static void *
326 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc,
327 		dma_addr_t chain_buffer_dma)
328 {
329 	u16 index, j;
330 	struct chain_tracker *ct;
331 
332 	for (index = 0; index < ioc->scsiio_depth; index++) {
333 		for (j = 0; j < ioc->chains_needed_per_io; j++) {
334 			ct = &ioc->chain_lookup[index].chains_per_smid[j];
335 			if (ct && ct->chain_buffer_dma == chain_buffer_dma)
336 				return ct->chain_buffer;
337 		}
338 	}
339 	pr_info(MPT3SAS_FMT
340 	    "Provided chain_buffer_dma address is not in the lookup list\n",
341 	    ioc->name);
342 	return NULL;
343 }
344 
345 /**
346  * _clone_sg_entries -	MPI EP's scsiio and config requests
347  *			are handled here. Base function for
348  *			double buffering, before submitting
349  *			the requests.
350  *
351  * @ioc: per adapter object.
352  * @mpi_request: mf request pointer.
353  * @smid: system request message index.
354  */
355 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc,
356 		void *mpi_request, u16 smid)
357 {
358 	Mpi2SGESimple32_t *sgel, *sgel_next;
359 	u32  sgl_flags, sge_chain_count = 0;
360 	bool is_write = 0;
361 	u16 i = 0;
362 	void __iomem *buffer_iomem;
363 	phys_addr_t buffer_iomem_phys;
364 	void __iomem *buff_ptr;
365 	phys_addr_t buff_ptr_phys;
366 	void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO];
367 	void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO];
368 	phys_addr_t dst_addr_phys;
369 	MPI2RequestHeader_t *request_hdr;
370 	struct scsi_cmnd *scmd;
371 	struct scatterlist *sg_scmd = NULL;
372 	int is_scsiio_req = 0;
373 
374 	request_hdr = (MPI2RequestHeader_t *) mpi_request;
375 
376 	if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
377 		Mpi25SCSIIORequest_t *scsiio_request =
378 			(Mpi25SCSIIORequest_t *)mpi_request;
379 		sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL;
380 		is_scsiio_req = 1;
381 	} else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
382 		Mpi2ConfigRequest_t  *config_req =
383 			(Mpi2ConfigRequest_t *)mpi_request;
384 		sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE;
385 	} else
386 		return;
387 
388 	/* From smid we can get scsi_cmd, once we have sg_scmd,
389 	 * we just need to get sg_virt and sg_next to get virual
390 	 * address associated with sgel->Address.
391 	 */
392 
393 	if (is_scsiio_req) {
394 		/* Get scsi_cmd using smid */
395 		scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
396 		if (scmd == NULL) {
397 			pr_err(MPT3SAS_FMT "scmd is NULL\n", ioc->name);
398 			return;
399 		}
400 
401 		/* Get sg_scmd from scmd provided */
402 		sg_scmd = scsi_sglist(scmd);
403 	}
404 
405 	/*
406 	 * 0 - 255	System register
407 	 * 256 - 4352	MPI Frame. (This is based on maxCredit 32)
408 	 * 4352 - 4864	Reply_free pool (512 byte is reserved
409 	 *		considering maxCredit 32. Reply need extra
410 	 *		room, for mCPU case kept four times of
411 	 *		maxCredit).
412 	 * 4864 - 17152	SGE chain element. (32cmd * 3 chain of
413 	 *		128 byte size = 12288)
414 	 * 17152 - x	Host buffer mapped with smid.
415 	 *		(Each smid can have 64K Max IO.)
416 	 * BAR0+Last 1K MSIX Addr and Data
417 	 * Total size in use 2113664 bytes of 4MB BAR0
418 	 */
419 
420 	buffer_iomem = _base_get_buffer_bar0(ioc, smid);
421 	buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid);
422 
423 	buff_ptr = buffer_iomem;
424 	buff_ptr_phys = buffer_iomem_phys;
425 	WARN_ON(buff_ptr_phys > U32_MAX);
426 
427 	if (le32_to_cpu(sgel->FlagsLength) &
428 			(MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT))
429 		is_write = 1;
430 
431 	for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) {
432 
433 		sgl_flags =
434 		    (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT);
435 
436 		switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) {
437 		case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
438 			/*
439 			 * Helper function which on passing
440 			 * chain_buffer_dma returns chain_buffer. Get
441 			 * the virtual address for sgel->Address
442 			 */
443 			sgel_next =
444 				_base_get_chain_buffer_dma_to_chain_buffer(ioc,
445 						le32_to_cpu(sgel->Address));
446 			if (sgel_next == NULL)
447 				return;
448 			/*
449 			 * This is coping 128 byte chain
450 			 * frame (not a host buffer)
451 			 */
452 			dst_chain_addr[sge_chain_count] =
453 				_base_get_chain(ioc,
454 					smid, sge_chain_count);
455 			src_chain_addr[sge_chain_count] =
456 						(void *) sgel_next;
457 			dst_addr_phys = _base_get_chain_phys(ioc,
458 						smid, sge_chain_count);
459 			WARN_ON(dst_addr_phys > U32_MAX);
460 			sgel->Address =
461 				cpu_to_le32(lower_32_bits(dst_addr_phys));
462 			sgel = sgel_next;
463 			sge_chain_count++;
464 			break;
465 		case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
466 			if (is_write) {
467 				if (is_scsiio_req) {
468 					_base_clone_to_sys_mem(buff_ptr,
469 					    sg_virt(sg_scmd),
470 					    (le32_to_cpu(sgel->FlagsLength) &
471 					    0x00ffffff));
472 					/*
473 					 * FIXME: this relies on a a zero
474 					 * PCI mem_offset.
475 					 */
476 					sgel->Address =
477 					    cpu_to_le32((u32)buff_ptr_phys);
478 				} else {
479 					_base_clone_to_sys_mem(buff_ptr,
480 					    ioc->config_vaddr,
481 					    (le32_to_cpu(sgel->FlagsLength) &
482 					    0x00ffffff));
483 					sgel->Address =
484 					    cpu_to_le32((u32)buff_ptr_phys);
485 				}
486 			}
487 			buff_ptr += (le32_to_cpu(sgel->FlagsLength) &
488 			    0x00ffffff);
489 			buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) &
490 			    0x00ffffff);
491 			if ((le32_to_cpu(sgel->FlagsLength) &
492 			    (MPI2_SGE_FLAGS_END_OF_BUFFER
493 					<< MPI2_SGE_FLAGS_SHIFT)))
494 				goto eob_clone_chain;
495 			else {
496 				/*
497 				 * Every single element in MPT will have
498 				 * associated sg_next. Better to sanity that
499 				 * sg_next is not NULL, but it will be a bug
500 				 * if it is null.
501 				 */
502 				if (is_scsiio_req) {
503 					sg_scmd = sg_next(sg_scmd);
504 					if (sg_scmd)
505 						sgel++;
506 					else
507 						goto eob_clone_chain;
508 				}
509 			}
510 			break;
511 		}
512 	}
513 
514 eob_clone_chain:
515 	for (i = 0; i < sge_chain_count; i++) {
516 		if (is_scsiio_req)
517 			_base_clone_to_sys_mem(dst_chain_addr[i],
518 				src_chain_addr[i], ioc->request_sz);
519 	}
520 }
521 
522 /**
523  *  mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
524  * @arg: input argument, used to derive ioc
525  *
526  * Return:
527  * 0 if controller is removed from pci subsystem.
528  * -1 for other case.
529  */
530 static int mpt3sas_remove_dead_ioc_func(void *arg)
531 {
532 	struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
533 	struct pci_dev *pdev;
534 
535 	if ((ioc == NULL))
536 		return -1;
537 
538 	pdev = ioc->pdev;
539 	if ((pdev == NULL))
540 		return -1;
541 	pci_stop_and_remove_bus_device_locked(pdev);
542 	return 0;
543 }
544 
545 /**
546  * _base_fault_reset_work - workq handling ioc fault conditions
547  * @work: input argument, used to derive ioc
548  *
549  * Context: sleep.
550  */
551 static void
552 _base_fault_reset_work(struct work_struct *work)
553 {
554 	struct MPT3SAS_ADAPTER *ioc =
555 	    container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
556 	unsigned long	 flags;
557 	u32 doorbell;
558 	int rc;
559 	struct task_struct *p;
560 
561 
562 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
563 	if (ioc->shost_recovery || ioc->pci_error_recovery)
564 		goto rearm_timer;
565 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
566 
567 	doorbell = mpt3sas_base_get_iocstate(ioc, 0);
568 	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
569 		pr_err(MPT3SAS_FMT "SAS host is non-operational !!!!\n",
570 		    ioc->name);
571 
572 		/* It may be possible that EEH recovery can resolve some of
573 		 * pci bus failure issues rather removing the dead ioc function
574 		 * by considering controller is in a non-operational state. So
575 		 * here priority is given to the EEH recovery. If it doesn't
576 		 * not resolve this issue, mpt3sas driver will consider this
577 		 * controller to non-operational state and remove the dead ioc
578 		 * function.
579 		 */
580 		if (ioc->non_operational_loop++ < 5) {
581 			spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
582 							 flags);
583 			goto rearm_timer;
584 		}
585 
586 		/*
587 		 * Call _scsih_flush_pending_cmds callback so that we flush all
588 		 * pending commands back to OS. This call is required to aovid
589 		 * deadlock at block layer. Dead IOC will fail to do diag reset,
590 		 * and this call is safe since dead ioc will never return any
591 		 * command back from HW.
592 		 */
593 		ioc->schedule_dead_ioc_flush_running_cmds(ioc);
594 		/*
595 		 * Set remove_host flag early since kernel thread will
596 		 * take some time to execute.
597 		 */
598 		ioc->remove_host = 1;
599 		/*Remove the Dead Host */
600 		p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
601 		    "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
602 		if (IS_ERR(p))
603 			pr_err(MPT3SAS_FMT
604 			"%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
605 			ioc->name, __func__);
606 		else
607 			pr_err(MPT3SAS_FMT
608 			"%s: Running mpt3sas_dead_ioc thread success !!!!\n",
609 			ioc->name, __func__);
610 		return; /* don't rearm timer */
611 	}
612 
613 	ioc->non_operational_loop = 0;
614 
615 	if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
616 		rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
617 		pr_warn(MPT3SAS_FMT "%s: hard reset: %s\n", ioc->name,
618 		    __func__, (rc == 0) ? "success" : "failed");
619 		doorbell = mpt3sas_base_get_iocstate(ioc, 0);
620 		if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
621 			mpt3sas_base_fault_info(ioc, doorbell &
622 			    MPI2_DOORBELL_DATA_MASK);
623 		if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
624 		    MPI2_IOC_STATE_OPERATIONAL)
625 			return; /* don't rearm timer */
626 	}
627 
628 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
629  rearm_timer:
630 	if (ioc->fault_reset_work_q)
631 		queue_delayed_work(ioc->fault_reset_work_q,
632 		    &ioc->fault_reset_work,
633 		    msecs_to_jiffies(FAULT_POLLING_INTERVAL));
634 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
635 }
636 
637 /**
638  * mpt3sas_base_start_watchdog - start the fault_reset_work_q
639  * @ioc: per adapter object
640  *
641  * Context: sleep.
642  */
643 void
644 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
645 {
646 	unsigned long	 flags;
647 
648 	if (ioc->fault_reset_work_q)
649 		return;
650 
651 	/* initialize fault polling */
652 
653 	INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
654 	snprintf(ioc->fault_reset_work_q_name,
655 	    sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
656 	    ioc->driver_name, ioc->id);
657 	ioc->fault_reset_work_q =
658 		create_singlethread_workqueue(ioc->fault_reset_work_q_name);
659 	if (!ioc->fault_reset_work_q) {
660 		pr_err(MPT3SAS_FMT "%s: failed (line=%d)\n",
661 		    ioc->name, __func__, __LINE__);
662 		return;
663 	}
664 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
665 	if (ioc->fault_reset_work_q)
666 		queue_delayed_work(ioc->fault_reset_work_q,
667 		    &ioc->fault_reset_work,
668 		    msecs_to_jiffies(FAULT_POLLING_INTERVAL));
669 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
670 }
671 
672 /**
673  * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
674  * @ioc: per adapter object
675  *
676  * Context: sleep.
677  */
678 void
679 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
680 {
681 	unsigned long flags;
682 	struct workqueue_struct *wq;
683 
684 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
685 	wq = ioc->fault_reset_work_q;
686 	ioc->fault_reset_work_q = NULL;
687 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
688 	if (wq) {
689 		if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
690 			flush_workqueue(wq);
691 		destroy_workqueue(wq);
692 	}
693 }
694 
695 /**
696  * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
697  * @ioc: per adapter object
698  * @fault_code: fault code
699  */
700 void
701 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
702 {
703 	pr_err(MPT3SAS_FMT "fault_state(0x%04x)!\n",
704 	    ioc->name, fault_code);
705 }
706 
707 /**
708  * mpt3sas_halt_firmware - halt's mpt controller firmware
709  * @ioc: per adapter object
710  *
711  * For debugging timeout related issues.  Writing 0xCOFFEE00
712  * to the doorbell register will halt controller firmware. With
713  * the purpose to stop both driver and firmware, the enduser can
714  * obtain a ring buffer from controller UART.
715  */
716 void
717 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
718 {
719 	u32 doorbell;
720 
721 	if (!ioc->fwfault_debug)
722 		return;
723 
724 	dump_stack();
725 
726 	doorbell = readl(&ioc->chip->Doorbell);
727 	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
728 		mpt3sas_base_fault_info(ioc , doorbell);
729 	else {
730 		writel(0xC0FFEE00, &ioc->chip->Doorbell);
731 		pr_err(MPT3SAS_FMT "Firmware is halted due to command timeout\n",
732 			ioc->name);
733 	}
734 
735 	if (ioc->fwfault_debug == 2)
736 		for (;;)
737 			;
738 	else
739 		panic("panic in %s\n", __func__);
740 }
741 
742 /**
743  * _base_sas_ioc_info - verbose translation of the ioc status
744  * @ioc: per adapter object
745  * @mpi_reply: reply mf payload returned from firmware
746  * @request_hdr: request mf
747  */
748 static void
749 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
750 	MPI2RequestHeader_t *request_hdr)
751 {
752 	u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
753 	    MPI2_IOCSTATUS_MASK;
754 	char *desc = NULL;
755 	u16 frame_sz;
756 	char *func_str = NULL;
757 
758 	/* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
759 	if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
760 	    request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
761 	    request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
762 		return;
763 
764 	if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
765 		return;
766 
767 	switch (ioc_status) {
768 
769 /****************************************************************************
770 *  Common IOCStatus values for all replies
771 ****************************************************************************/
772 
773 	case MPI2_IOCSTATUS_INVALID_FUNCTION:
774 		desc = "invalid function";
775 		break;
776 	case MPI2_IOCSTATUS_BUSY:
777 		desc = "busy";
778 		break;
779 	case MPI2_IOCSTATUS_INVALID_SGL:
780 		desc = "invalid sgl";
781 		break;
782 	case MPI2_IOCSTATUS_INTERNAL_ERROR:
783 		desc = "internal error";
784 		break;
785 	case MPI2_IOCSTATUS_INVALID_VPID:
786 		desc = "invalid vpid";
787 		break;
788 	case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
789 		desc = "insufficient resources";
790 		break;
791 	case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
792 		desc = "insufficient power";
793 		break;
794 	case MPI2_IOCSTATUS_INVALID_FIELD:
795 		desc = "invalid field";
796 		break;
797 	case MPI2_IOCSTATUS_INVALID_STATE:
798 		desc = "invalid state";
799 		break;
800 	case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
801 		desc = "op state not supported";
802 		break;
803 
804 /****************************************************************************
805 *  Config IOCStatus values
806 ****************************************************************************/
807 
808 	case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
809 		desc = "config invalid action";
810 		break;
811 	case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
812 		desc = "config invalid type";
813 		break;
814 	case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
815 		desc = "config invalid page";
816 		break;
817 	case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
818 		desc = "config invalid data";
819 		break;
820 	case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
821 		desc = "config no defaults";
822 		break;
823 	case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
824 		desc = "config cant commit";
825 		break;
826 
827 /****************************************************************************
828 *  SCSI IO Reply
829 ****************************************************************************/
830 
831 	case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
832 	case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
833 	case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
834 	case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
835 	case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
836 	case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
837 	case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
838 	case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
839 	case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
840 	case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
841 	case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
842 	case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
843 		break;
844 
845 /****************************************************************************
846 *  For use by SCSI Initiator and SCSI Target end-to-end data protection
847 ****************************************************************************/
848 
849 	case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
850 		desc = "eedp guard error";
851 		break;
852 	case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
853 		desc = "eedp ref tag error";
854 		break;
855 	case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
856 		desc = "eedp app tag error";
857 		break;
858 
859 /****************************************************************************
860 *  SCSI Target values
861 ****************************************************************************/
862 
863 	case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
864 		desc = "target invalid io index";
865 		break;
866 	case MPI2_IOCSTATUS_TARGET_ABORTED:
867 		desc = "target aborted";
868 		break;
869 	case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
870 		desc = "target no conn retryable";
871 		break;
872 	case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
873 		desc = "target no connection";
874 		break;
875 	case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
876 		desc = "target xfer count mismatch";
877 		break;
878 	case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
879 		desc = "target data offset error";
880 		break;
881 	case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
882 		desc = "target too much write data";
883 		break;
884 	case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
885 		desc = "target iu too short";
886 		break;
887 	case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
888 		desc = "target ack nak timeout";
889 		break;
890 	case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
891 		desc = "target nak received";
892 		break;
893 
894 /****************************************************************************
895 *  Serial Attached SCSI values
896 ****************************************************************************/
897 
898 	case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
899 		desc = "smp request failed";
900 		break;
901 	case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
902 		desc = "smp data overrun";
903 		break;
904 
905 /****************************************************************************
906 *  Diagnostic Buffer Post / Diagnostic Release values
907 ****************************************************************************/
908 
909 	case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
910 		desc = "diagnostic released";
911 		break;
912 	default:
913 		break;
914 	}
915 
916 	if (!desc)
917 		return;
918 
919 	switch (request_hdr->Function) {
920 	case MPI2_FUNCTION_CONFIG:
921 		frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
922 		func_str = "config_page";
923 		break;
924 	case MPI2_FUNCTION_SCSI_TASK_MGMT:
925 		frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
926 		func_str = "task_mgmt";
927 		break;
928 	case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
929 		frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
930 		func_str = "sas_iounit_ctl";
931 		break;
932 	case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
933 		frame_sz = sizeof(Mpi2SepRequest_t);
934 		func_str = "enclosure";
935 		break;
936 	case MPI2_FUNCTION_IOC_INIT:
937 		frame_sz = sizeof(Mpi2IOCInitRequest_t);
938 		func_str = "ioc_init";
939 		break;
940 	case MPI2_FUNCTION_PORT_ENABLE:
941 		frame_sz = sizeof(Mpi2PortEnableRequest_t);
942 		func_str = "port_enable";
943 		break;
944 	case MPI2_FUNCTION_SMP_PASSTHROUGH:
945 		frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
946 		func_str = "smp_passthru";
947 		break;
948 	case MPI2_FUNCTION_NVME_ENCAPSULATED:
949 		frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) +
950 		    ioc->sge_size;
951 		func_str = "nvme_encapsulated";
952 		break;
953 	default:
954 		frame_sz = 32;
955 		func_str = "unknown";
956 		break;
957 	}
958 
959 	pr_warn(MPT3SAS_FMT "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
960 		ioc->name, desc, ioc_status, request_hdr, func_str);
961 
962 	_debug_dump_mf(request_hdr, frame_sz/4);
963 }
964 
965 /**
966  * _base_display_event_data - verbose translation of firmware asyn events
967  * @ioc: per adapter object
968  * @mpi_reply: reply mf payload returned from firmware
969  */
970 static void
971 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
972 	Mpi2EventNotificationReply_t *mpi_reply)
973 {
974 	char *desc = NULL;
975 	u16 event;
976 
977 	if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
978 		return;
979 
980 	event = le16_to_cpu(mpi_reply->Event);
981 
982 	switch (event) {
983 	case MPI2_EVENT_LOG_DATA:
984 		desc = "Log Data";
985 		break;
986 	case MPI2_EVENT_STATE_CHANGE:
987 		desc = "Status Change";
988 		break;
989 	case MPI2_EVENT_HARD_RESET_RECEIVED:
990 		desc = "Hard Reset Received";
991 		break;
992 	case MPI2_EVENT_EVENT_CHANGE:
993 		desc = "Event Change";
994 		break;
995 	case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
996 		desc = "Device Status Change";
997 		break;
998 	case MPI2_EVENT_IR_OPERATION_STATUS:
999 		if (!ioc->hide_ir_msg)
1000 			desc = "IR Operation Status";
1001 		break;
1002 	case MPI2_EVENT_SAS_DISCOVERY:
1003 	{
1004 		Mpi2EventDataSasDiscovery_t *event_data =
1005 		    (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
1006 		pr_info(MPT3SAS_FMT "Discovery: (%s)", ioc->name,
1007 		    (event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED) ?
1008 		    "start" : "stop");
1009 		if (event_data->DiscoveryStatus)
1010 			pr_cont(" discovery_status(0x%08x)",
1011 			    le32_to_cpu(event_data->DiscoveryStatus));
1012 		pr_cont("\n");
1013 		return;
1014 	}
1015 	case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
1016 		desc = "SAS Broadcast Primitive";
1017 		break;
1018 	case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
1019 		desc = "SAS Init Device Status Change";
1020 		break;
1021 	case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
1022 		desc = "SAS Init Table Overflow";
1023 		break;
1024 	case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
1025 		desc = "SAS Topology Change List";
1026 		break;
1027 	case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
1028 		desc = "SAS Enclosure Device Status Change";
1029 		break;
1030 	case MPI2_EVENT_IR_VOLUME:
1031 		if (!ioc->hide_ir_msg)
1032 			desc = "IR Volume";
1033 		break;
1034 	case MPI2_EVENT_IR_PHYSICAL_DISK:
1035 		if (!ioc->hide_ir_msg)
1036 			desc = "IR Physical Disk";
1037 		break;
1038 	case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
1039 		if (!ioc->hide_ir_msg)
1040 			desc = "IR Configuration Change List";
1041 		break;
1042 	case MPI2_EVENT_LOG_ENTRY_ADDED:
1043 		if (!ioc->hide_ir_msg)
1044 			desc = "Log Entry Added";
1045 		break;
1046 	case MPI2_EVENT_TEMP_THRESHOLD:
1047 		desc = "Temperature Threshold";
1048 		break;
1049 	case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
1050 		desc = "Cable Event";
1051 		break;
1052 	case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR:
1053 		desc = "SAS Device Discovery Error";
1054 		break;
1055 	case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE:
1056 		desc = "PCIE Device Status Change";
1057 		break;
1058 	case MPI2_EVENT_PCIE_ENUMERATION:
1059 	{
1060 		Mpi26EventDataPCIeEnumeration_t *event_data =
1061 			(Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData;
1062 		pr_info(MPT3SAS_FMT "PCIE Enumeration: (%s)", ioc->name,
1063 			   (event_data->ReasonCode ==
1064 				MPI26_EVENT_PCIE_ENUM_RC_STARTED) ?
1065 				"start" : "stop");
1066 		if (event_data->EnumerationStatus)
1067 			pr_info("enumeration_status(0x%08x)",
1068 				   le32_to_cpu(event_data->EnumerationStatus));
1069 		pr_info("\n");
1070 		return;
1071 	}
1072 	case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST:
1073 		desc = "PCIE Topology Change List";
1074 		break;
1075 	}
1076 
1077 	if (!desc)
1078 		return;
1079 
1080 	pr_info(MPT3SAS_FMT "%s\n", ioc->name, desc);
1081 }
1082 
1083 /**
1084  * _base_sas_log_info - verbose translation of firmware log info
1085  * @ioc: per adapter object
1086  * @log_info: log info
1087  */
1088 static void
1089 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
1090 {
1091 	union loginfo_type {
1092 		u32	loginfo;
1093 		struct {
1094 			u32	subcode:16;
1095 			u32	code:8;
1096 			u32	originator:4;
1097 			u32	bus_type:4;
1098 		} dw;
1099 	};
1100 	union loginfo_type sas_loginfo;
1101 	char *originator_str = NULL;
1102 
1103 	sas_loginfo.loginfo = log_info;
1104 	if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
1105 		return;
1106 
1107 	/* each nexus loss loginfo */
1108 	if (log_info == 0x31170000)
1109 		return;
1110 
1111 	/* eat the loginfos associated with task aborts */
1112 	if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
1113 	    0x31140000 || log_info == 0x31130000))
1114 		return;
1115 
1116 	switch (sas_loginfo.dw.originator) {
1117 	case 0:
1118 		originator_str = "IOP";
1119 		break;
1120 	case 1:
1121 		originator_str = "PL";
1122 		break;
1123 	case 2:
1124 		if (!ioc->hide_ir_msg)
1125 			originator_str = "IR";
1126 		else
1127 			originator_str = "WarpDrive";
1128 		break;
1129 	}
1130 
1131 	pr_warn(MPT3SAS_FMT
1132 		"log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
1133 		ioc->name, log_info,
1134 	     originator_str, sas_loginfo.dw.code,
1135 	     sas_loginfo.dw.subcode);
1136 }
1137 
1138 /**
1139  * _base_display_reply_info -
1140  * @ioc: per adapter object
1141  * @smid: system request message index
1142  * @msix_index: MSIX table index supplied by the OS
1143  * @reply: reply message frame(lower 32bit addr)
1144  */
1145 static void
1146 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1147 	u32 reply)
1148 {
1149 	MPI2DefaultReply_t *mpi_reply;
1150 	u16 ioc_status;
1151 	u32 loginfo = 0;
1152 
1153 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1154 	if (unlikely(!mpi_reply)) {
1155 		pr_err(MPT3SAS_FMT "mpi_reply not valid at %s:%d/%s()!\n",
1156 		    ioc->name, __FILE__, __LINE__, __func__);
1157 		return;
1158 	}
1159 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
1160 
1161 	if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
1162 	    (ioc->logging_level & MPT_DEBUG_REPLY)) {
1163 		_base_sas_ioc_info(ioc , mpi_reply,
1164 		   mpt3sas_base_get_msg_frame(ioc, smid));
1165 	}
1166 
1167 	if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
1168 		loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
1169 		_base_sas_log_info(ioc, loginfo);
1170 	}
1171 
1172 	if (ioc_status || loginfo) {
1173 		ioc_status &= MPI2_IOCSTATUS_MASK;
1174 		mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
1175 	}
1176 }
1177 
1178 /**
1179  * mpt3sas_base_done - base internal command completion routine
1180  * @ioc: per adapter object
1181  * @smid: system request message index
1182  * @msix_index: MSIX table index supplied by the OS
1183  * @reply: reply message frame(lower 32bit addr)
1184  *
1185  * Return:
1186  * 1 meaning mf should be freed from _base_interrupt
1187  * 0 means the mf is freed from this function.
1188  */
1189 u8
1190 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1191 	u32 reply)
1192 {
1193 	MPI2DefaultReply_t *mpi_reply;
1194 
1195 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1196 	if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
1197 		return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
1198 
1199 	if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
1200 		return 1;
1201 
1202 	ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
1203 	if (mpi_reply) {
1204 		ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
1205 		memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
1206 	}
1207 	ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
1208 
1209 	complete(&ioc->base_cmds.done);
1210 	return 1;
1211 }
1212 
1213 /**
1214  * _base_async_event - main callback handler for firmware asyn events
1215  * @ioc: per adapter object
1216  * @msix_index: MSIX table index supplied by the OS
1217  * @reply: reply message frame(lower 32bit addr)
1218  *
1219  * Return:
1220  * 1 meaning mf should be freed from _base_interrupt
1221  * 0 means the mf is freed from this function.
1222  */
1223 static u8
1224 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
1225 {
1226 	Mpi2EventNotificationReply_t *mpi_reply;
1227 	Mpi2EventAckRequest_t *ack_request;
1228 	u16 smid;
1229 	struct _event_ack_list *delayed_event_ack;
1230 
1231 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1232 	if (!mpi_reply)
1233 		return 1;
1234 	if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
1235 		return 1;
1236 
1237 	_base_display_event_data(ioc, mpi_reply);
1238 
1239 	if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
1240 		goto out;
1241 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
1242 	if (!smid) {
1243 		delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
1244 					GFP_ATOMIC);
1245 		if (!delayed_event_ack)
1246 			goto out;
1247 		INIT_LIST_HEAD(&delayed_event_ack->list);
1248 		delayed_event_ack->Event = mpi_reply->Event;
1249 		delayed_event_ack->EventContext = mpi_reply->EventContext;
1250 		list_add_tail(&delayed_event_ack->list,
1251 				&ioc->delayed_event_ack_list);
1252 		dewtprintk(ioc, pr_info(MPT3SAS_FMT
1253 				"DELAYED: EVENT ACK: event (0x%04x)\n",
1254 				ioc->name, le16_to_cpu(mpi_reply->Event)));
1255 		goto out;
1256 	}
1257 
1258 	ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
1259 	memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
1260 	ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
1261 	ack_request->Event = mpi_reply->Event;
1262 	ack_request->EventContext = mpi_reply->EventContext;
1263 	ack_request->VF_ID = 0;  /* TODO */
1264 	ack_request->VP_ID = 0;
1265 	mpt3sas_base_put_smid_default(ioc, smid);
1266 
1267  out:
1268 
1269 	/* scsih callback handler */
1270 	mpt3sas_scsih_event_callback(ioc, msix_index, reply);
1271 
1272 	/* ctl callback handler */
1273 	mpt3sas_ctl_event_callback(ioc, msix_index, reply);
1274 
1275 	return 1;
1276 }
1277 
1278 static struct scsiio_tracker *
1279 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1280 {
1281 	struct scsi_cmnd *cmd;
1282 
1283 	if (WARN_ON(!smid) ||
1284 	    WARN_ON(smid >= ioc->hi_priority_smid))
1285 		return NULL;
1286 
1287 	cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
1288 	if (cmd)
1289 		return scsi_cmd_priv(cmd);
1290 
1291 	return NULL;
1292 }
1293 
1294 /**
1295  * _base_get_cb_idx - obtain the callback index
1296  * @ioc: per adapter object
1297  * @smid: system request message index
1298  *
1299  * Return: callback index.
1300  */
1301 static u8
1302 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1303 {
1304 	int i;
1305 	u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1;
1306 	u8 cb_idx = 0xFF;
1307 
1308 	if (smid < ioc->hi_priority_smid) {
1309 		struct scsiio_tracker *st;
1310 
1311 		if (smid < ctl_smid) {
1312 			st = _get_st_from_smid(ioc, smid);
1313 			if (st)
1314 				cb_idx = st->cb_idx;
1315 		} else if (smid == ctl_smid)
1316 			cb_idx = ioc->ctl_cb_idx;
1317 	} else if (smid < ioc->internal_smid) {
1318 		i = smid - ioc->hi_priority_smid;
1319 		cb_idx = ioc->hpr_lookup[i].cb_idx;
1320 	} else if (smid <= ioc->hba_queue_depth) {
1321 		i = smid - ioc->internal_smid;
1322 		cb_idx = ioc->internal_lookup[i].cb_idx;
1323 	}
1324 	return cb_idx;
1325 }
1326 
1327 /**
1328  * _base_mask_interrupts - disable interrupts
1329  * @ioc: per adapter object
1330  *
1331  * Disabling ResetIRQ, Reply and Doorbell Interrupts
1332  */
1333 static void
1334 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1335 {
1336 	u32 him_register;
1337 
1338 	ioc->mask_interrupts = 1;
1339 	him_register = readl(&ioc->chip->HostInterruptMask);
1340 	him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
1341 	writel(him_register, &ioc->chip->HostInterruptMask);
1342 	readl(&ioc->chip->HostInterruptMask);
1343 }
1344 
1345 /**
1346  * _base_unmask_interrupts - enable interrupts
1347  * @ioc: per adapter object
1348  *
1349  * Enabling only Reply Interrupts
1350  */
1351 static void
1352 _base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1353 {
1354 	u32 him_register;
1355 
1356 	him_register = readl(&ioc->chip->HostInterruptMask);
1357 	him_register &= ~MPI2_HIM_RIM;
1358 	writel(him_register, &ioc->chip->HostInterruptMask);
1359 	ioc->mask_interrupts = 0;
1360 }
1361 
1362 union reply_descriptor {
1363 	u64 word;
1364 	struct {
1365 		u32 low;
1366 		u32 high;
1367 	} u;
1368 };
1369 
1370 /**
1371  * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
1372  * @irq: irq number (not used)
1373  * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
1374  *
1375  * Return: IRQ_HANDLED if processed, else IRQ_NONE.
1376  */
1377 static irqreturn_t
1378 _base_interrupt(int irq, void *bus_id)
1379 {
1380 	struct adapter_reply_queue *reply_q = bus_id;
1381 	union reply_descriptor rd;
1382 	u32 completed_cmds;
1383 	u8 request_desript_type;
1384 	u16 smid;
1385 	u8 cb_idx;
1386 	u32 reply;
1387 	u8 msix_index = reply_q->msix_index;
1388 	struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1389 	Mpi2ReplyDescriptorsUnion_t *rpf;
1390 	u8 rc;
1391 
1392 	if (ioc->mask_interrupts)
1393 		return IRQ_NONE;
1394 
1395 	if (!atomic_add_unless(&reply_q->busy, 1, 1))
1396 		return IRQ_NONE;
1397 
1398 	rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
1399 	request_desript_type = rpf->Default.ReplyFlags
1400 	     & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1401 	if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
1402 		atomic_dec(&reply_q->busy);
1403 		return IRQ_NONE;
1404 	}
1405 
1406 	completed_cmds = 0;
1407 	cb_idx = 0xFF;
1408 	do {
1409 		rd.word = le64_to_cpu(rpf->Words);
1410 		if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
1411 			goto out;
1412 		reply = 0;
1413 		smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
1414 		if (request_desript_type ==
1415 		    MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
1416 		    request_desript_type ==
1417 		    MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS ||
1418 		    request_desript_type ==
1419 		    MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) {
1420 			cb_idx = _base_get_cb_idx(ioc, smid);
1421 			if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1422 			    (likely(mpt_callbacks[cb_idx] != NULL))) {
1423 				rc = mpt_callbacks[cb_idx](ioc, smid,
1424 				    msix_index, 0);
1425 				if (rc)
1426 					mpt3sas_base_free_smid(ioc, smid);
1427 			}
1428 		} else if (request_desript_type ==
1429 		    MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
1430 			reply = le32_to_cpu(
1431 			    rpf->AddressReply.ReplyFrameAddress);
1432 			if (reply > ioc->reply_dma_max_address ||
1433 			    reply < ioc->reply_dma_min_address)
1434 				reply = 0;
1435 			if (smid) {
1436 				cb_idx = _base_get_cb_idx(ioc, smid);
1437 				if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1438 				    (likely(mpt_callbacks[cb_idx] != NULL))) {
1439 					rc = mpt_callbacks[cb_idx](ioc, smid,
1440 					    msix_index, reply);
1441 					if (reply)
1442 						_base_display_reply_info(ioc,
1443 						    smid, msix_index, reply);
1444 					if (rc)
1445 						mpt3sas_base_free_smid(ioc,
1446 						    smid);
1447 				}
1448 			} else {
1449 				_base_async_event(ioc, msix_index, reply);
1450 			}
1451 
1452 			/* reply free queue handling */
1453 			if (reply) {
1454 				ioc->reply_free_host_index =
1455 				    (ioc->reply_free_host_index ==
1456 				    (ioc->reply_free_queue_depth - 1)) ?
1457 				    0 : ioc->reply_free_host_index + 1;
1458 				ioc->reply_free[ioc->reply_free_host_index] =
1459 				    cpu_to_le32(reply);
1460 				if (ioc->is_mcpu_endpoint)
1461 					_base_clone_reply_to_sys_mem(ioc,
1462 						reply,
1463 						ioc->reply_free_host_index);
1464 				writel(ioc->reply_free_host_index,
1465 				    &ioc->chip->ReplyFreeHostIndex);
1466 			}
1467 		}
1468 
1469 		rpf->Words = cpu_to_le64(ULLONG_MAX);
1470 		reply_q->reply_post_host_index =
1471 		    (reply_q->reply_post_host_index ==
1472 		    (ioc->reply_post_queue_depth - 1)) ? 0 :
1473 		    reply_q->reply_post_host_index + 1;
1474 		request_desript_type =
1475 		    reply_q->reply_post_free[reply_q->reply_post_host_index].
1476 		    Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1477 		completed_cmds++;
1478 		/* Update the reply post host index after continuously
1479 		 * processing the threshold number of Reply Descriptors.
1480 		 * So that FW can find enough entries to post the Reply
1481 		 * Descriptors in the reply descriptor post queue.
1482 		 */
1483 		if (completed_cmds > ioc->hba_queue_depth/3) {
1484 			if (ioc->combined_reply_queue) {
1485 				writel(reply_q->reply_post_host_index |
1486 						((msix_index  & 7) <<
1487 						 MPI2_RPHI_MSIX_INDEX_SHIFT),
1488 				    ioc->replyPostRegisterIndex[msix_index/8]);
1489 			} else {
1490 				writel(reply_q->reply_post_host_index |
1491 						(msix_index <<
1492 						 MPI2_RPHI_MSIX_INDEX_SHIFT),
1493 						&ioc->chip->ReplyPostHostIndex);
1494 			}
1495 			completed_cmds = 1;
1496 		}
1497 		if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1498 			goto out;
1499 		if (!reply_q->reply_post_host_index)
1500 			rpf = reply_q->reply_post_free;
1501 		else
1502 			rpf++;
1503 	} while (1);
1504 
1505  out:
1506 
1507 	if (!completed_cmds) {
1508 		atomic_dec(&reply_q->busy);
1509 		return IRQ_NONE;
1510 	}
1511 
1512 	if (ioc->is_warpdrive) {
1513 		writel(reply_q->reply_post_host_index,
1514 		ioc->reply_post_host_index[msix_index]);
1515 		atomic_dec(&reply_q->busy);
1516 		return IRQ_HANDLED;
1517 	}
1518 
1519 	/* Update Reply Post Host Index.
1520 	 * For those HBA's which support combined reply queue feature
1521 	 * 1. Get the correct Supplemental Reply Post Host Index Register.
1522 	 *    i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1523 	 *    Index Register address bank i.e replyPostRegisterIndex[],
1524 	 * 2. Then update this register with new reply host index value
1525 	 *    in ReplyPostIndex field and the MSIxIndex field with
1526 	 *    msix_index value reduced to a value between 0 and 7,
1527 	 *    using a modulo 8 operation. Since each Supplemental Reply Post
1528 	 *    Host Index Register supports 8 MSI-X vectors.
1529 	 *
1530 	 * For other HBA's just update the Reply Post Host Index register with
1531 	 * new reply host index value in ReplyPostIndex Field and msix_index
1532 	 * value in MSIxIndex field.
1533 	 */
1534 	if (ioc->combined_reply_queue)
1535 		writel(reply_q->reply_post_host_index | ((msix_index  & 7) <<
1536 			MPI2_RPHI_MSIX_INDEX_SHIFT),
1537 			ioc->replyPostRegisterIndex[msix_index/8]);
1538 	else
1539 		writel(reply_q->reply_post_host_index | (msix_index <<
1540 			MPI2_RPHI_MSIX_INDEX_SHIFT),
1541 			&ioc->chip->ReplyPostHostIndex);
1542 	atomic_dec(&reply_q->busy);
1543 	return IRQ_HANDLED;
1544 }
1545 
1546 /**
1547  * _base_is_controller_msix_enabled - is controller support muli-reply queues
1548  * @ioc: per adapter object
1549  *
1550  * Return: Whether or not MSI/X is enabled.
1551  */
1552 static inline int
1553 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1554 {
1555 	return (ioc->facts.IOCCapabilities &
1556 	    MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1557 }
1558 
1559 /**
1560  * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1561  * @ioc: per adapter object
1562  * Context: non ISR conext
1563  *
1564  * Called when a Task Management request has completed.
1565  */
1566 void
1567 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc)
1568 {
1569 	struct adapter_reply_queue *reply_q;
1570 
1571 	/* If MSIX capability is turned off
1572 	 * then multi-queues are not enabled
1573 	 */
1574 	if (!_base_is_controller_msix_enabled(ioc))
1575 		return;
1576 
1577 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1578 		if (ioc->shost_recovery || ioc->remove_host ||
1579 				ioc->pci_error_recovery)
1580 			return;
1581 		/* TMs are on msix_index == 0 */
1582 		if (reply_q->msix_index == 0)
1583 			continue;
1584 		synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
1585 	}
1586 }
1587 
1588 /**
1589  * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1590  * @cb_idx: callback index
1591  */
1592 void
1593 mpt3sas_base_release_callback_handler(u8 cb_idx)
1594 {
1595 	mpt_callbacks[cb_idx] = NULL;
1596 }
1597 
1598 /**
1599  * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1600  * @cb_func: callback function
1601  *
1602  * Return: Index of @cb_func.
1603  */
1604 u8
1605 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1606 {
1607 	u8 cb_idx;
1608 
1609 	for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1610 		if (mpt_callbacks[cb_idx] == NULL)
1611 			break;
1612 
1613 	mpt_callbacks[cb_idx] = cb_func;
1614 	return cb_idx;
1615 }
1616 
1617 /**
1618  * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1619  */
1620 void
1621 mpt3sas_base_initialize_callback_handler(void)
1622 {
1623 	u8 cb_idx;
1624 
1625 	for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1626 		mpt3sas_base_release_callback_handler(cb_idx);
1627 }
1628 
1629 
1630 /**
1631  * _base_build_zero_len_sge - build zero length sg entry
1632  * @ioc: per adapter object
1633  * @paddr: virtual address for SGE
1634  *
1635  * Create a zero length scatter gather entry to insure the IOCs hardware has
1636  * something to use if the target device goes brain dead and tries
1637  * to send data even when none is asked for.
1638  */
1639 static void
1640 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1641 {
1642 	u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1643 	    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1644 	    MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1645 	    MPI2_SGE_FLAGS_SHIFT);
1646 	ioc->base_add_sg_single(paddr, flags_length, -1);
1647 }
1648 
1649 /**
1650  * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1651  * @paddr: virtual address for SGE
1652  * @flags_length: SGE flags and data transfer length
1653  * @dma_addr: Physical address
1654  */
1655 static void
1656 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1657 {
1658 	Mpi2SGESimple32_t *sgel = paddr;
1659 
1660 	flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1661 	    MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1662 	sgel->FlagsLength = cpu_to_le32(flags_length);
1663 	sgel->Address = cpu_to_le32(dma_addr);
1664 }
1665 
1666 
1667 /**
1668  * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1669  * @paddr: virtual address for SGE
1670  * @flags_length: SGE flags and data transfer length
1671  * @dma_addr: Physical address
1672  */
1673 static void
1674 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1675 {
1676 	Mpi2SGESimple64_t *sgel = paddr;
1677 
1678 	flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
1679 	    MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1680 	sgel->FlagsLength = cpu_to_le32(flags_length);
1681 	sgel->Address = cpu_to_le64(dma_addr);
1682 }
1683 
1684 /**
1685  * _base_get_chain_buffer_tracker - obtain chain tracker
1686  * @ioc: per adapter object
1687  * @scmd: SCSI commands of the IO request
1688  *
1689  * Return: chain tracker from chain_lookup table using key as
1690  * smid and smid's chain_offset.
1691  */
1692 static struct chain_tracker *
1693 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc,
1694 			       struct scsi_cmnd *scmd)
1695 {
1696 	struct chain_tracker *chain_req;
1697 	struct scsiio_tracker *st = scsi_cmd_priv(scmd);
1698 	u16 smid = st->smid;
1699 	u8 chain_offset =
1700 	   atomic_read(&ioc->chain_lookup[smid - 1].chain_offset);
1701 
1702 	if (chain_offset == ioc->chains_needed_per_io)
1703 		return NULL;
1704 
1705 	chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset];
1706 	atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset);
1707 	return chain_req;
1708 }
1709 
1710 
1711 /**
1712  * _base_build_sg - build generic sg
1713  * @ioc: per adapter object
1714  * @psge: virtual address for SGE
1715  * @data_out_dma: physical address for WRITES
1716  * @data_out_sz: data xfer size for WRITES
1717  * @data_in_dma: physical address for READS
1718  * @data_in_sz: data xfer size for READS
1719  */
1720 static void
1721 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
1722 	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1723 	size_t data_in_sz)
1724 {
1725 	u32 sgl_flags;
1726 
1727 	if (!data_out_sz && !data_in_sz) {
1728 		_base_build_zero_len_sge(ioc, psge);
1729 		return;
1730 	}
1731 
1732 	if (data_out_sz && data_in_sz) {
1733 		/* WRITE sgel first */
1734 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1735 		    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
1736 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1737 		ioc->base_add_sg_single(psge, sgl_flags |
1738 		    data_out_sz, data_out_dma);
1739 
1740 		/* incr sgel */
1741 		psge += ioc->sge_size;
1742 
1743 		/* READ sgel last */
1744 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1745 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1746 		    MPI2_SGE_FLAGS_END_OF_LIST);
1747 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1748 		ioc->base_add_sg_single(psge, sgl_flags |
1749 		    data_in_sz, data_in_dma);
1750 	} else if (data_out_sz) /* WRITE */ {
1751 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1752 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1753 		    MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
1754 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1755 		ioc->base_add_sg_single(psge, sgl_flags |
1756 		    data_out_sz, data_out_dma);
1757 	} else if (data_in_sz) /* READ */ {
1758 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1759 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1760 		    MPI2_SGE_FLAGS_END_OF_LIST);
1761 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1762 		ioc->base_add_sg_single(psge, sgl_flags |
1763 		    data_in_sz, data_in_dma);
1764 	}
1765 }
1766 
1767 /* IEEE format sgls */
1768 
1769 /**
1770  * _base_build_nvme_prp - This function is called for NVMe end devices to build
1771  * a native SGL (NVMe PRP). The native SGL is built starting in the first PRP
1772  * entry of the NVMe message (PRP1).  If the data buffer is small enough to be
1773  * described entirely using PRP1, then PRP2 is not used.  If needed, PRP2 is
1774  * used to describe a larger data buffer.  If the data buffer is too large to
1775  * describe using the two PRP entriess inside the NVMe message, then PRP1
1776  * describes the first data memory segment, and PRP2 contains a pointer to a PRP
1777  * list located elsewhere in memory to describe the remaining data memory
1778  * segments.  The PRP list will be contiguous.
1779  *
1780  * The native SGL for NVMe devices is a Physical Region Page (PRP).  A PRP
1781  * consists of a list of PRP entries to describe a number of noncontigous
1782  * physical memory segments as a single memory buffer, just as a SGL does.  Note
1783  * however, that this function is only used by the IOCTL call, so the memory
1784  * given will be guaranteed to be contiguous.  There is no need to translate
1785  * non-contiguous SGL into a PRP in this case.  All PRPs will describe
1786  * contiguous space that is one page size each.
1787  *
1788  * Each NVMe message contains two PRP entries.  The first (PRP1) either contains
1789  * a PRP list pointer or a PRP element, depending upon the command.  PRP2
1790  * contains the second PRP element if the memory being described fits within 2
1791  * PRP entries, or a PRP list pointer if the PRP spans more than two entries.
1792  *
1793  * A PRP list pointer contains the address of a PRP list, structured as a linear
1794  * array of PRP entries.  Each PRP entry in this list describes a segment of
1795  * physical memory.
1796  *
1797  * Each 64-bit PRP entry comprises an address and an offset field.  The address
1798  * always points at the beginning of a 4KB physical memory page, and the offset
1799  * describes where within that 4KB page the memory segment begins.  Only the
1800  * first element in a PRP list may contain a non-zero offest, implying that all
1801  * memory segments following the first begin at the start of a 4KB page.
1802  *
1803  * Each PRP element normally describes 4KB of physical memory, with exceptions
1804  * for the first and last elements in the list.  If the memory being described
1805  * by the list begins at a non-zero offset within the first 4KB page, then the
1806  * first PRP element will contain a non-zero offset indicating where the region
1807  * begins within the 4KB page.  The last memory segment may end before the end
1808  * of the 4KB segment, depending upon the overall size of the memory being
1809  * described by the PRP list.
1810  *
1811  * Since PRP entries lack any indication of size, the overall data buffer length
1812  * is used to determine where the end of the data memory buffer is located, and
1813  * how many PRP entries are required to describe it.
1814  *
1815  * @ioc: per adapter object
1816  * @smid: system request message index for getting asscociated SGL
1817  * @nvme_encap_request: the NVMe request msg frame pointer
1818  * @data_out_dma: physical address for WRITES
1819  * @data_out_sz: data xfer size for WRITES
1820  * @data_in_dma: physical address for READS
1821  * @data_in_sz: data xfer size for READS
1822  */
1823 static void
1824 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
1825 	Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request,
1826 	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1827 	size_t data_in_sz)
1828 {
1829 	int		prp_size = NVME_PRP_SIZE;
1830 	__le64		*prp_entry, *prp1_entry, *prp2_entry;
1831 	__le64		*prp_page;
1832 	dma_addr_t	prp_entry_dma, prp_page_dma, dma_addr;
1833 	u32		offset, entry_len;
1834 	u32		page_mask_result, page_mask;
1835 	size_t		length;
1836 	struct mpt3sas_nvme_cmd *nvme_cmd =
1837 		(void *)nvme_encap_request->NVMe_Command;
1838 
1839 	/*
1840 	 * Not all commands require a data transfer. If no data, just return
1841 	 * without constructing any PRP.
1842 	 */
1843 	if (!data_in_sz && !data_out_sz)
1844 		return;
1845 	prp1_entry = &nvme_cmd->prp1;
1846 	prp2_entry = &nvme_cmd->prp2;
1847 	prp_entry = prp1_entry;
1848 	/*
1849 	 * For the PRP entries, use the specially allocated buffer of
1850 	 * contiguous memory.
1851 	 */
1852 	prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid);
1853 	prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
1854 
1855 	/*
1856 	 * Check if we are within 1 entry of a page boundary we don't
1857 	 * want our first entry to be a PRP List entry.
1858 	 */
1859 	page_mask = ioc->page_size - 1;
1860 	page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
1861 	if (!page_mask_result) {
1862 		/* Bump up to next page boundary. */
1863 		prp_page = (__le64 *)((u8 *)prp_page + prp_size);
1864 		prp_page_dma = prp_page_dma + prp_size;
1865 	}
1866 
1867 	/*
1868 	 * Set PRP physical pointer, which initially points to the current PRP
1869 	 * DMA memory page.
1870 	 */
1871 	prp_entry_dma = prp_page_dma;
1872 
1873 	/* Get physical address and length of the data buffer. */
1874 	if (data_in_sz) {
1875 		dma_addr = data_in_dma;
1876 		length = data_in_sz;
1877 	} else {
1878 		dma_addr = data_out_dma;
1879 		length = data_out_sz;
1880 	}
1881 
1882 	/* Loop while the length is not zero. */
1883 	while (length) {
1884 		/*
1885 		 * Check if we need to put a list pointer here if we are at
1886 		 * page boundary - prp_size (8 bytes).
1887 		 */
1888 		page_mask_result = (prp_entry_dma + prp_size) & page_mask;
1889 		if (!page_mask_result) {
1890 			/*
1891 			 * This is the last entry in a PRP List, so we need to
1892 			 * put a PRP list pointer here.  What this does is:
1893 			 *   - bump the current memory pointer to the next
1894 			 *     address, which will be the next full page.
1895 			 *   - set the PRP Entry to point to that page.  This
1896 			 *     is now the PRP List pointer.
1897 			 *   - bump the PRP Entry pointer the start of the
1898 			 *     next page.  Since all of this PRP memory is
1899 			 *     contiguous, no need to get a new page - it's
1900 			 *     just the next address.
1901 			 */
1902 			prp_entry_dma++;
1903 			*prp_entry = cpu_to_le64(prp_entry_dma);
1904 			prp_entry++;
1905 		}
1906 
1907 		/* Need to handle if entry will be part of a page. */
1908 		offset = dma_addr & page_mask;
1909 		entry_len = ioc->page_size - offset;
1910 
1911 		if (prp_entry == prp1_entry) {
1912 			/*
1913 			 * Must fill in the first PRP pointer (PRP1) before
1914 			 * moving on.
1915 			 */
1916 			*prp1_entry = cpu_to_le64(dma_addr);
1917 
1918 			/*
1919 			 * Now point to the second PRP entry within the
1920 			 * command (PRP2).
1921 			 */
1922 			prp_entry = prp2_entry;
1923 		} else if (prp_entry == prp2_entry) {
1924 			/*
1925 			 * Should the PRP2 entry be a PRP List pointer or just
1926 			 * a regular PRP pointer?  If there is more than one
1927 			 * more page of data, must use a PRP List pointer.
1928 			 */
1929 			if (length > ioc->page_size) {
1930 				/*
1931 				 * PRP2 will contain a PRP List pointer because
1932 				 * more PRP's are needed with this command. The
1933 				 * list will start at the beginning of the
1934 				 * contiguous buffer.
1935 				 */
1936 				*prp2_entry = cpu_to_le64(prp_entry_dma);
1937 
1938 				/*
1939 				 * The next PRP Entry will be the start of the
1940 				 * first PRP List.
1941 				 */
1942 				prp_entry = prp_page;
1943 			} else {
1944 				/*
1945 				 * After this, the PRP Entries are complete.
1946 				 * This command uses 2 PRP's and no PRP list.
1947 				 */
1948 				*prp2_entry = cpu_to_le64(dma_addr);
1949 			}
1950 		} else {
1951 			/*
1952 			 * Put entry in list and bump the addresses.
1953 			 *
1954 			 * After PRP1 and PRP2 are filled in, this will fill in
1955 			 * all remaining PRP entries in a PRP List, one per
1956 			 * each time through the loop.
1957 			 */
1958 			*prp_entry = cpu_to_le64(dma_addr);
1959 			prp_entry++;
1960 			prp_entry_dma++;
1961 		}
1962 
1963 		/*
1964 		 * Bump the phys address of the command's data buffer by the
1965 		 * entry_len.
1966 		 */
1967 		dma_addr += entry_len;
1968 
1969 		/* Decrement length accounting for last partial page. */
1970 		if (entry_len > length)
1971 			length = 0;
1972 		else
1973 			length -= entry_len;
1974 	}
1975 }
1976 
1977 /**
1978  * base_make_prp_nvme -
1979  * Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only
1980  *
1981  * @ioc:		per adapter object
1982  * @scmd:		SCSI command from the mid-layer
1983  * @mpi_request:	mpi request
1984  * @smid:		msg Index
1985  * @sge_count:		scatter gather element count.
1986  *
1987  * Return:		true: PRPs are built
1988  *			false: IEEE SGLs needs to be built
1989  */
1990 static void
1991 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
1992 		struct scsi_cmnd *scmd,
1993 		Mpi25SCSIIORequest_t *mpi_request,
1994 		u16 smid, int sge_count)
1995 {
1996 	int sge_len, num_prp_in_chain = 0;
1997 	Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl;
1998 	__le64 *curr_buff;
1999 	dma_addr_t msg_dma, sge_addr, offset;
2000 	u32 page_mask, page_mask_result;
2001 	struct scatterlist *sg_scmd;
2002 	u32 first_prp_len;
2003 	int data_len = scsi_bufflen(scmd);
2004 	u32 nvme_pg_size;
2005 
2006 	nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE);
2007 	/*
2008 	 * Nvme has a very convoluted prp format.  One prp is required
2009 	 * for each page or partial page. Driver need to split up OS sg_list
2010 	 * entries if it is longer than one page or cross a page
2011 	 * boundary.  Driver also have to insert a PRP list pointer entry as
2012 	 * the last entry in each physical page of the PRP list.
2013 	 *
2014 	 * NOTE: The first PRP "entry" is actually placed in the first
2015 	 * SGL entry in the main message as IEEE 64 format.  The 2nd
2016 	 * entry in the main message is the chain element, and the rest
2017 	 * of the PRP entries are built in the contiguous pcie buffer.
2018 	 */
2019 	page_mask = nvme_pg_size - 1;
2020 
2021 	/*
2022 	 * Native SGL is needed.
2023 	 * Put a chain element in main message frame that points to the first
2024 	 * chain buffer.
2025 	 *
2026 	 * NOTE:  The ChainOffset field must be 0 when using a chain pointer to
2027 	 *        a native SGL.
2028 	 */
2029 
2030 	/* Set main message chain element pointer */
2031 	main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2032 	/*
2033 	 * For NVMe the chain element needs to be the 2nd SG entry in the main
2034 	 * message.
2035 	 */
2036 	main_chain_element = (Mpi25IeeeSgeChain64_t *)
2037 		((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
2038 
2039 	/*
2040 	 * For the PRP entries, use the specially allocated buffer of
2041 	 * contiguous memory.  Normal chain buffers can't be used
2042 	 * because each chain buffer would need to be the size of an OS
2043 	 * page (4k).
2044 	 */
2045 	curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid);
2046 	msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2047 
2048 	main_chain_element->Address = cpu_to_le64(msg_dma);
2049 	main_chain_element->NextChainOffset = 0;
2050 	main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2051 			MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2052 			MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
2053 
2054 	/* Build first prp, sge need not to be page aligned*/
2055 	ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2056 	sg_scmd = scsi_sglist(scmd);
2057 	sge_addr = sg_dma_address(sg_scmd);
2058 	sge_len = sg_dma_len(sg_scmd);
2059 
2060 	offset = sge_addr & page_mask;
2061 	first_prp_len = nvme_pg_size - offset;
2062 
2063 	ptr_first_sgl->Address = cpu_to_le64(sge_addr);
2064 	ptr_first_sgl->Length = cpu_to_le32(first_prp_len);
2065 
2066 	data_len -= first_prp_len;
2067 
2068 	if (sge_len > first_prp_len) {
2069 		sge_addr += first_prp_len;
2070 		sge_len -= first_prp_len;
2071 	} else if (data_len && (sge_len == first_prp_len)) {
2072 		sg_scmd = sg_next(sg_scmd);
2073 		sge_addr = sg_dma_address(sg_scmd);
2074 		sge_len = sg_dma_len(sg_scmd);
2075 	}
2076 
2077 	for (;;) {
2078 		offset = sge_addr & page_mask;
2079 
2080 		/* Put PRP pointer due to page boundary*/
2081 		page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask;
2082 		if (unlikely(!page_mask_result)) {
2083 			scmd_printk(KERN_NOTICE,
2084 				scmd, "page boundary curr_buff: 0x%p\n",
2085 				curr_buff);
2086 			msg_dma += 8;
2087 			*curr_buff = cpu_to_le64(msg_dma);
2088 			curr_buff++;
2089 			num_prp_in_chain++;
2090 		}
2091 
2092 		*curr_buff = cpu_to_le64(sge_addr);
2093 		curr_buff++;
2094 		msg_dma += 8;
2095 		num_prp_in_chain++;
2096 
2097 		sge_addr += nvme_pg_size;
2098 		sge_len -= nvme_pg_size;
2099 		data_len -= nvme_pg_size;
2100 
2101 		if (data_len <= 0)
2102 			break;
2103 
2104 		if (sge_len > 0)
2105 			continue;
2106 
2107 		sg_scmd = sg_next(sg_scmd);
2108 		sge_addr = sg_dma_address(sg_scmd);
2109 		sge_len = sg_dma_len(sg_scmd);
2110 	}
2111 
2112 	main_chain_element->Length =
2113 		cpu_to_le32(num_prp_in_chain * sizeof(u64));
2114 	return;
2115 }
2116 
2117 static bool
2118 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc,
2119 	struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count)
2120 {
2121 	u32 data_length = 0;
2122 	bool build_prp = true;
2123 
2124 	data_length = scsi_bufflen(scmd);
2125 
2126 	/* If Datalenth is <= 16K and number of SGE’s entries are <= 2
2127 	 * we built IEEE SGL
2128 	 */
2129 	if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2))
2130 		build_prp = false;
2131 
2132 	return build_prp;
2133 }
2134 
2135 /**
2136  * _base_check_pcie_native_sgl - This function is called for PCIe end devices to
2137  * determine if the driver needs to build a native SGL.  If so, that native
2138  * SGL is built in the special contiguous buffers allocated especially for
2139  * PCIe SGL creation.  If the driver will not build a native SGL, return
2140  * TRUE and a normal IEEE SGL will be built.  Currently this routine
2141  * supports NVMe.
2142  * @ioc: per adapter object
2143  * @mpi_request: mf request pointer
2144  * @smid: system request message index
2145  * @scmd: scsi command
2146  * @pcie_device: points to the PCIe device's info
2147  *
2148  * Return: 0 if native SGL was built, 1 if no SGL was built
2149  */
2150 static int
2151 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc,
2152 	Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd,
2153 	struct _pcie_device *pcie_device)
2154 {
2155 	int sges_left;
2156 
2157 	/* Get the SG list pointer and info. */
2158 	sges_left = scsi_dma_map(scmd);
2159 	if (sges_left < 0) {
2160 		sdev_printk(KERN_ERR, scmd->device,
2161 			"scsi_dma_map failed: request for %d bytes!\n",
2162 			scsi_bufflen(scmd));
2163 		return 1;
2164 	}
2165 
2166 	/* Check if we need to build a native SG list. */
2167 	if (base_is_prp_possible(ioc, pcie_device,
2168 				scmd, sges_left) == 0) {
2169 		/* We built a native SG list, just return. */
2170 		goto out;
2171 	}
2172 
2173 	/*
2174 	 * Build native NVMe PRP.
2175 	 */
2176 	base_make_prp_nvme(ioc, scmd, mpi_request,
2177 			smid, sges_left);
2178 
2179 	return 0;
2180 out:
2181 	scsi_dma_unmap(scmd);
2182 	return 1;
2183 }
2184 
2185 /**
2186  * _base_add_sg_single_ieee - add sg element for IEEE format
2187  * @paddr: virtual address for SGE
2188  * @flags: SGE flags
2189  * @chain_offset: number of 128 byte elements from start of segment
2190  * @length: data transfer length
2191  * @dma_addr: Physical address
2192  */
2193 static void
2194 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
2195 	dma_addr_t dma_addr)
2196 {
2197 	Mpi25IeeeSgeChain64_t *sgel = paddr;
2198 
2199 	sgel->Flags = flags;
2200 	sgel->NextChainOffset = chain_offset;
2201 	sgel->Length = cpu_to_le32(length);
2202 	sgel->Address = cpu_to_le64(dma_addr);
2203 }
2204 
2205 /**
2206  * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
2207  * @ioc: per adapter object
2208  * @paddr: virtual address for SGE
2209  *
2210  * Create a zero length scatter gather entry to insure the IOCs hardware has
2211  * something to use if the target device goes brain dead and tries
2212  * to send data even when none is asked for.
2213  */
2214 static void
2215 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2216 {
2217 	u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2218 		MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2219 		MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
2220 
2221 	_base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
2222 }
2223 
2224 /**
2225  * _base_build_sg_scmd - main sg creation routine
2226  *		pcie_device is unused here!
2227  * @ioc: per adapter object
2228  * @scmd: scsi command
2229  * @smid: system request message index
2230  * @unused: unused pcie_device pointer
2231  * Context: none.
2232  *
2233  * The main routine that builds scatter gather table from a given
2234  * scsi request sent via the .queuecommand main handler.
2235  *
2236  * Return: 0 success, anything else error
2237  */
2238 static int
2239 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
2240 	struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused)
2241 {
2242 	Mpi2SCSIIORequest_t *mpi_request;
2243 	dma_addr_t chain_dma;
2244 	struct scatterlist *sg_scmd;
2245 	void *sg_local, *chain;
2246 	u32 chain_offset;
2247 	u32 chain_length;
2248 	u32 chain_flags;
2249 	int sges_left;
2250 	u32 sges_in_segment;
2251 	u32 sgl_flags;
2252 	u32 sgl_flags_last_element;
2253 	u32 sgl_flags_end_buffer;
2254 	struct chain_tracker *chain_req;
2255 
2256 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2257 
2258 	/* init scatter gather flags */
2259 	sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
2260 	if (scmd->sc_data_direction == DMA_TO_DEVICE)
2261 		sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2262 	sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
2263 	    << MPI2_SGE_FLAGS_SHIFT;
2264 	sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
2265 	    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
2266 	    << MPI2_SGE_FLAGS_SHIFT;
2267 	sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2268 
2269 	sg_scmd = scsi_sglist(scmd);
2270 	sges_left = scsi_dma_map(scmd);
2271 	if (sges_left < 0) {
2272 		sdev_printk(KERN_ERR, scmd->device,
2273 		 "pci_map_sg failed: request for %d bytes!\n",
2274 		 scsi_bufflen(scmd));
2275 		return -ENOMEM;
2276 	}
2277 
2278 	sg_local = &mpi_request->SGL;
2279 	sges_in_segment = ioc->max_sges_in_main_message;
2280 	if (sges_left <= sges_in_segment)
2281 		goto fill_in_last_segment;
2282 
2283 	mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
2284 	    (sges_in_segment * ioc->sge_size))/4;
2285 
2286 	/* fill in main message segment when there is a chain following */
2287 	while (sges_in_segment) {
2288 		if (sges_in_segment == 1)
2289 			ioc->base_add_sg_single(sg_local,
2290 			    sgl_flags_last_element | sg_dma_len(sg_scmd),
2291 			    sg_dma_address(sg_scmd));
2292 		else
2293 			ioc->base_add_sg_single(sg_local, sgl_flags |
2294 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2295 		sg_scmd = sg_next(sg_scmd);
2296 		sg_local += ioc->sge_size;
2297 		sges_left--;
2298 		sges_in_segment--;
2299 	}
2300 
2301 	/* initializing the chain flags and pointers */
2302 	chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
2303 	chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2304 	if (!chain_req)
2305 		return -1;
2306 	chain = chain_req->chain_buffer;
2307 	chain_dma = chain_req->chain_buffer_dma;
2308 	do {
2309 		sges_in_segment = (sges_left <=
2310 		    ioc->max_sges_in_chain_message) ? sges_left :
2311 		    ioc->max_sges_in_chain_message;
2312 		chain_offset = (sges_left == sges_in_segment) ?
2313 		    0 : (sges_in_segment * ioc->sge_size)/4;
2314 		chain_length = sges_in_segment * ioc->sge_size;
2315 		if (chain_offset) {
2316 			chain_offset = chain_offset <<
2317 			    MPI2_SGE_CHAIN_OFFSET_SHIFT;
2318 			chain_length += ioc->sge_size;
2319 		}
2320 		ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
2321 		    chain_length, chain_dma);
2322 		sg_local = chain;
2323 		if (!chain_offset)
2324 			goto fill_in_last_segment;
2325 
2326 		/* fill in chain segments */
2327 		while (sges_in_segment) {
2328 			if (sges_in_segment == 1)
2329 				ioc->base_add_sg_single(sg_local,
2330 				    sgl_flags_last_element |
2331 				    sg_dma_len(sg_scmd),
2332 				    sg_dma_address(sg_scmd));
2333 			else
2334 				ioc->base_add_sg_single(sg_local, sgl_flags |
2335 				    sg_dma_len(sg_scmd),
2336 				    sg_dma_address(sg_scmd));
2337 			sg_scmd = sg_next(sg_scmd);
2338 			sg_local += ioc->sge_size;
2339 			sges_left--;
2340 			sges_in_segment--;
2341 		}
2342 
2343 		chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2344 		if (!chain_req)
2345 			return -1;
2346 		chain = chain_req->chain_buffer;
2347 		chain_dma = chain_req->chain_buffer_dma;
2348 	} while (1);
2349 
2350 
2351  fill_in_last_segment:
2352 
2353 	/* fill the last segment */
2354 	while (sges_left) {
2355 		if (sges_left == 1)
2356 			ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
2357 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2358 		else
2359 			ioc->base_add_sg_single(sg_local, sgl_flags |
2360 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2361 		sg_scmd = sg_next(sg_scmd);
2362 		sg_local += ioc->sge_size;
2363 		sges_left--;
2364 	}
2365 
2366 	return 0;
2367 }
2368 
2369 /**
2370  * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
2371  * @ioc: per adapter object
2372  * @scmd: scsi command
2373  * @smid: system request message index
2374  * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
2375  * constructed on need.
2376  * Context: none.
2377  *
2378  * The main routine that builds scatter gather table from a given
2379  * scsi request sent via the .queuecommand main handler.
2380  *
2381  * Return: 0 success, anything else error
2382  */
2383 static int
2384 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
2385 	struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device)
2386 {
2387 	Mpi25SCSIIORequest_t *mpi_request;
2388 	dma_addr_t chain_dma;
2389 	struct scatterlist *sg_scmd;
2390 	void *sg_local, *chain;
2391 	u32 chain_offset;
2392 	u32 chain_length;
2393 	int sges_left;
2394 	u32 sges_in_segment;
2395 	u8 simple_sgl_flags;
2396 	u8 simple_sgl_flags_last;
2397 	u8 chain_sgl_flags;
2398 	struct chain_tracker *chain_req;
2399 
2400 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2401 
2402 	/* init scatter gather flags */
2403 	simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2404 	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2405 	simple_sgl_flags_last = simple_sgl_flags |
2406 	    MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2407 	chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2408 	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2409 
2410 	/* Check if we need to build a native SG list. */
2411 	if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request,
2412 			smid, scmd, pcie_device) == 0)) {
2413 		/* We built a native SG list, just return. */
2414 		return 0;
2415 	}
2416 
2417 	sg_scmd = scsi_sglist(scmd);
2418 	sges_left = scsi_dma_map(scmd);
2419 	if (sges_left < 0) {
2420 		sdev_printk(KERN_ERR, scmd->device,
2421 			"pci_map_sg failed: request for %d bytes!\n",
2422 			scsi_bufflen(scmd));
2423 		return -ENOMEM;
2424 	}
2425 
2426 	sg_local = &mpi_request->SGL;
2427 	sges_in_segment = (ioc->request_sz -
2428 		   offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
2429 	if (sges_left <= sges_in_segment)
2430 		goto fill_in_last_segment;
2431 
2432 	mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
2433 	    (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
2434 
2435 	/* fill in main message segment when there is a chain following */
2436 	while (sges_in_segment > 1) {
2437 		_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2438 		    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2439 		sg_scmd = sg_next(sg_scmd);
2440 		sg_local += ioc->sge_size_ieee;
2441 		sges_left--;
2442 		sges_in_segment--;
2443 	}
2444 
2445 	/* initializing the pointers */
2446 	chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2447 	if (!chain_req)
2448 		return -1;
2449 	chain = chain_req->chain_buffer;
2450 	chain_dma = chain_req->chain_buffer_dma;
2451 	do {
2452 		sges_in_segment = (sges_left <=
2453 		    ioc->max_sges_in_chain_message) ? sges_left :
2454 		    ioc->max_sges_in_chain_message;
2455 		chain_offset = (sges_left == sges_in_segment) ?
2456 		    0 : sges_in_segment;
2457 		chain_length = sges_in_segment * ioc->sge_size_ieee;
2458 		if (chain_offset)
2459 			chain_length += ioc->sge_size_ieee;
2460 		_base_add_sg_single_ieee(sg_local, chain_sgl_flags,
2461 		    chain_offset, chain_length, chain_dma);
2462 
2463 		sg_local = chain;
2464 		if (!chain_offset)
2465 			goto fill_in_last_segment;
2466 
2467 		/* fill in chain segments */
2468 		while (sges_in_segment) {
2469 			_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2470 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2471 			sg_scmd = sg_next(sg_scmd);
2472 			sg_local += ioc->sge_size_ieee;
2473 			sges_left--;
2474 			sges_in_segment--;
2475 		}
2476 
2477 		chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2478 		if (!chain_req)
2479 			return -1;
2480 		chain = chain_req->chain_buffer;
2481 		chain_dma = chain_req->chain_buffer_dma;
2482 	} while (1);
2483 
2484 
2485  fill_in_last_segment:
2486 
2487 	/* fill the last segment */
2488 	while (sges_left > 0) {
2489 		if (sges_left == 1)
2490 			_base_add_sg_single_ieee(sg_local,
2491 			    simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
2492 			    sg_dma_address(sg_scmd));
2493 		else
2494 			_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2495 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2496 		sg_scmd = sg_next(sg_scmd);
2497 		sg_local += ioc->sge_size_ieee;
2498 		sges_left--;
2499 	}
2500 
2501 	return 0;
2502 }
2503 
2504 /**
2505  * _base_build_sg_ieee - build generic sg for IEEE format
2506  * @ioc: per adapter object
2507  * @psge: virtual address for SGE
2508  * @data_out_dma: physical address for WRITES
2509  * @data_out_sz: data xfer size for WRITES
2510  * @data_in_dma: physical address for READS
2511  * @data_in_sz: data xfer size for READS
2512  */
2513 static void
2514 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
2515 	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2516 	size_t data_in_sz)
2517 {
2518 	u8 sgl_flags;
2519 
2520 	if (!data_out_sz && !data_in_sz) {
2521 		_base_build_zero_len_sge_ieee(ioc, psge);
2522 		return;
2523 	}
2524 
2525 	if (data_out_sz && data_in_sz) {
2526 		/* WRITE sgel first */
2527 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2528 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2529 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2530 		    data_out_dma);
2531 
2532 		/* incr sgel */
2533 		psge += ioc->sge_size_ieee;
2534 
2535 		/* READ sgel last */
2536 		sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2537 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2538 		    data_in_dma);
2539 	} else if (data_out_sz) /* WRITE */ {
2540 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2541 		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2542 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2543 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2544 		    data_out_dma);
2545 	} else if (data_in_sz) /* READ */ {
2546 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2547 		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2548 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2549 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2550 		    data_in_dma);
2551 	}
2552 }
2553 
2554 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
2555 
2556 /**
2557  * _base_config_dma_addressing - set dma addressing
2558  * @ioc: per adapter object
2559  * @pdev: PCI device struct
2560  *
2561  * Return: 0 for success, non-zero for failure.
2562  */
2563 static int
2564 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
2565 {
2566 	struct sysinfo s;
2567 	u64 consistent_dma_mask;
2568 
2569 	if (ioc->is_mcpu_endpoint)
2570 		goto try_32bit;
2571 
2572 	if (ioc->dma_mask)
2573 		consistent_dma_mask = DMA_BIT_MASK(64);
2574 	else
2575 		consistent_dma_mask = DMA_BIT_MASK(32);
2576 
2577 	if (sizeof(dma_addr_t) > 4) {
2578 		const uint64_t required_mask =
2579 		    dma_get_required_mask(&pdev->dev);
2580 		if ((required_mask > DMA_BIT_MASK(32)) &&
2581 		    !pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
2582 		    !pci_set_consistent_dma_mask(pdev, consistent_dma_mask)) {
2583 			ioc->base_add_sg_single = &_base_add_sg_single_64;
2584 			ioc->sge_size = sizeof(Mpi2SGESimple64_t);
2585 			ioc->dma_mask = 64;
2586 			goto out;
2587 		}
2588 	}
2589 
2590  try_32bit:
2591 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))
2592 	    && !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
2593 		ioc->base_add_sg_single = &_base_add_sg_single_32;
2594 		ioc->sge_size = sizeof(Mpi2SGESimple32_t);
2595 		ioc->dma_mask = 32;
2596 	} else
2597 		return -ENODEV;
2598 
2599  out:
2600 	si_meminfo(&s);
2601 	pr_info(MPT3SAS_FMT
2602 		"%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
2603 		ioc->name, ioc->dma_mask, convert_to_kb(s.totalram));
2604 
2605 	return 0;
2606 }
2607 
2608 static int
2609 _base_change_consistent_dma_mask(struct MPT3SAS_ADAPTER *ioc,
2610 				      struct pci_dev *pdev)
2611 {
2612 	if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
2613 		if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
2614 			return -ENODEV;
2615 	}
2616 	return 0;
2617 }
2618 
2619 /**
2620  * _base_check_enable_msix - checks MSIX capabable.
2621  * @ioc: per adapter object
2622  *
2623  * Check to see if card is capable of MSIX, and set number
2624  * of available msix vectors
2625  */
2626 static int
2627 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
2628 {
2629 	int base;
2630 	u16 message_control;
2631 
2632 	/* Check whether controller SAS2008 B0 controller,
2633 	 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
2634 	 */
2635 	if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
2636 	    ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
2637 		return -EINVAL;
2638 	}
2639 
2640 	base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
2641 	if (!base) {
2642 		dfailprintk(ioc, pr_info(MPT3SAS_FMT "msix not supported\n",
2643 			ioc->name));
2644 		return -EINVAL;
2645 	}
2646 
2647 	/* get msix vector count */
2648 	/* NUMA_IO not supported for older controllers */
2649 	if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
2650 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
2651 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
2652 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
2653 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
2654 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
2655 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
2656 		ioc->msix_vector_count = 1;
2657 	else {
2658 		pci_read_config_word(ioc->pdev, base + 2, &message_control);
2659 		ioc->msix_vector_count = (message_control & 0x3FF) + 1;
2660 	}
2661 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
2662 		"msix is supported, vector_count(%d)\n",
2663 		ioc->name, ioc->msix_vector_count));
2664 	return 0;
2665 }
2666 
2667 /**
2668  * _base_free_irq - free irq
2669  * @ioc: per adapter object
2670  *
2671  * Freeing respective reply_queue from the list.
2672  */
2673 static void
2674 _base_free_irq(struct MPT3SAS_ADAPTER *ioc)
2675 {
2676 	struct adapter_reply_queue *reply_q, *next;
2677 
2678 	if (list_empty(&ioc->reply_queue_list))
2679 		return;
2680 
2681 	list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
2682 		list_del(&reply_q->list);
2683 		free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
2684 			 reply_q);
2685 		kfree(reply_q);
2686 	}
2687 }
2688 
2689 /**
2690  * _base_request_irq - request irq
2691  * @ioc: per adapter object
2692  * @index: msix index into vector table
2693  *
2694  * Inserting respective reply_queue into the list.
2695  */
2696 static int
2697 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
2698 {
2699 	struct pci_dev *pdev = ioc->pdev;
2700 	struct adapter_reply_queue *reply_q;
2701 	int r;
2702 
2703 	reply_q =  kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
2704 	if (!reply_q) {
2705 		pr_err(MPT3SAS_FMT "unable to allocate memory %d!\n",
2706 		    ioc->name, (int)sizeof(struct adapter_reply_queue));
2707 		return -ENOMEM;
2708 	}
2709 	reply_q->ioc = ioc;
2710 	reply_q->msix_index = index;
2711 
2712 	atomic_set(&reply_q->busy, 0);
2713 	if (ioc->msix_enable)
2714 		snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
2715 		    ioc->driver_name, ioc->id, index);
2716 	else
2717 		snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
2718 		    ioc->driver_name, ioc->id);
2719 	r = request_irq(pci_irq_vector(pdev, index), _base_interrupt,
2720 			IRQF_SHARED, reply_q->name, reply_q);
2721 	if (r) {
2722 		pr_err(MPT3SAS_FMT "unable to allocate interrupt %d!\n",
2723 		       reply_q->name, pci_irq_vector(pdev, index));
2724 		kfree(reply_q);
2725 		return -EBUSY;
2726 	}
2727 
2728 	INIT_LIST_HEAD(&reply_q->list);
2729 	list_add_tail(&reply_q->list, &ioc->reply_queue_list);
2730 	return 0;
2731 }
2732 
2733 /**
2734  * _base_assign_reply_queues - assigning msix index for each cpu
2735  * @ioc: per adapter object
2736  *
2737  * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
2738  *
2739  * It would nice if we could call irq_set_affinity, however it is not
2740  * an exported symbol
2741  */
2742 static void
2743 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
2744 {
2745 	unsigned int cpu, nr_cpus, nr_msix, index = 0;
2746 	struct adapter_reply_queue *reply_q;
2747 
2748 	if (!_base_is_controller_msix_enabled(ioc))
2749 		return;
2750 
2751 	memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
2752 
2753 	nr_cpus = num_online_cpus();
2754 	nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
2755 					       ioc->facts.MaxMSIxVectors);
2756 	if (!nr_msix)
2757 		return;
2758 
2759 	if (smp_affinity_enable) {
2760 		list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
2761 			const cpumask_t *mask = pci_irq_get_affinity(ioc->pdev,
2762 							reply_q->msix_index);
2763 			if (!mask) {
2764 				pr_warn(MPT3SAS_FMT "no affinity for msi %x\n",
2765 					ioc->name, reply_q->msix_index);
2766 				continue;
2767 			}
2768 
2769 			for_each_cpu_and(cpu, mask, cpu_online_mask) {
2770 				if (cpu >= ioc->cpu_msix_table_sz)
2771 					break;
2772 				ioc->cpu_msix_table[cpu] = reply_q->msix_index;
2773 			}
2774 		}
2775 		return;
2776 	}
2777 	cpu = cpumask_first(cpu_online_mask);
2778 
2779 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
2780 
2781 		unsigned int i, group = nr_cpus / nr_msix;
2782 
2783 		if (cpu >= nr_cpus)
2784 			break;
2785 
2786 		if (index < nr_cpus % nr_msix)
2787 			group++;
2788 
2789 		for (i = 0 ; i < group ; i++) {
2790 			ioc->cpu_msix_table[cpu] = reply_q->msix_index;
2791 			cpu = cpumask_next(cpu, cpu_online_mask);
2792 		}
2793 		index++;
2794 	}
2795 }
2796 
2797 /**
2798  * _base_disable_msix - disables msix
2799  * @ioc: per adapter object
2800  *
2801  */
2802 static void
2803 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
2804 {
2805 	if (!ioc->msix_enable)
2806 		return;
2807 	pci_disable_msix(ioc->pdev);
2808 	ioc->msix_enable = 0;
2809 }
2810 
2811 /**
2812  * _base_enable_msix - enables msix, failback to io_apic
2813  * @ioc: per adapter object
2814  *
2815  */
2816 static int
2817 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
2818 {
2819 	int r;
2820 	int i, local_max_msix_vectors;
2821 	u8 try_msix = 0;
2822 	unsigned int irq_flags = PCI_IRQ_MSIX;
2823 
2824 	if (msix_disable == -1 || msix_disable == 0)
2825 		try_msix = 1;
2826 
2827 	if (!try_msix)
2828 		goto try_ioapic;
2829 
2830 	if (_base_check_enable_msix(ioc) != 0)
2831 		goto try_ioapic;
2832 
2833 	ioc->reply_queue_count = min_t(int, ioc->cpu_count,
2834 		ioc->msix_vector_count);
2835 
2836 	printk(MPT3SAS_FMT "MSI-X vectors supported: %d, no of cores"
2837 	  ": %d, max_msix_vectors: %d\n", ioc->name, ioc->msix_vector_count,
2838 	  ioc->cpu_count, max_msix_vectors);
2839 
2840 	if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
2841 		local_max_msix_vectors = (reset_devices) ? 1 : 8;
2842 	else
2843 		local_max_msix_vectors = max_msix_vectors;
2844 
2845 	if (local_max_msix_vectors > 0)
2846 		ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
2847 			ioc->reply_queue_count);
2848 	else if (local_max_msix_vectors == 0)
2849 		goto try_ioapic;
2850 
2851 	if (ioc->msix_vector_count < ioc->cpu_count)
2852 		smp_affinity_enable = 0;
2853 
2854 	if (smp_affinity_enable)
2855 		irq_flags |= PCI_IRQ_AFFINITY;
2856 
2857 	r = pci_alloc_irq_vectors(ioc->pdev, 1, ioc->reply_queue_count,
2858 				  irq_flags);
2859 	if (r < 0) {
2860 		dfailprintk(ioc, pr_info(MPT3SAS_FMT
2861 			"pci_alloc_irq_vectors failed (r=%d) !!!\n",
2862 			ioc->name, r));
2863 		goto try_ioapic;
2864 	}
2865 
2866 	ioc->msix_enable = 1;
2867 	ioc->reply_queue_count = r;
2868 	for (i = 0; i < ioc->reply_queue_count; i++) {
2869 		r = _base_request_irq(ioc, i);
2870 		if (r) {
2871 			_base_free_irq(ioc);
2872 			_base_disable_msix(ioc);
2873 			goto try_ioapic;
2874 		}
2875 	}
2876 
2877 	return 0;
2878 
2879 /* failback to io_apic interrupt routing */
2880  try_ioapic:
2881 
2882 	ioc->reply_queue_count = 1;
2883 	r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY);
2884 	if (r < 0) {
2885 		dfailprintk(ioc, pr_info(MPT3SAS_FMT
2886 			"pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
2887 			ioc->name, r));
2888 	} else
2889 		r = _base_request_irq(ioc, 0);
2890 
2891 	return r;
2892 }
2893 
2894 /**
2895  * mpt3sas_base_unmap_resources - free controller resources
2896  * @ioc: per adapter object
2897  */
2898 static void
2899 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
2900 {
2901 	struct pci_dev *pdev = ioc->pdev;
2902 
2903 	dexitprintk(ioc, printk(MPT3SAS_FMT "%s\n",
2904 		ioc->name, __func__));
2905 
2906 	_base_free_irq(ioc);
2907 	_base_disable_msix(ioc);
2908 
2909 	kfree(ioc->replyPostRegisterIndex);
2910 	ioc->replyPostRegisterIndex = NULL;
2911 
2912 
2913 	if (ioc->chip_phys) {
2914 		iounmap(ioc->chip);
2915 		ioc->chip_phys = 0;
2916 	}
2917 
2918 	if (pci_is_enabled(pdev)) {
2919 		pci_release_selected_regions(ioc->pdev, ioc->bars);
2920 		pci_disable_pcie_error_reporting(pdev);
2921 		pci_disable_device(pdev);
2922 	}
2923 }
2924 
2925 /**
2926  * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
2927  * @ioc: per adapter object
2928  *
2929  * Return: 0 for success, non-zero for failure.
2930  */
2931 int
2932 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
2933 {
2934 	struct pci_dev *pdev = ioc->pdev;
2935 	u32 memap_sz;
2936 	u32 pio_sz;
2937 	int i, r = 0;
2938 	u64 pio_chip = 0;
2939 	phys_addr_t chip_phys = 0;
2940 	struct adapter_reply_queue *reply_q;
2941 
2942 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n",
2943 	    ioc->name, __func__));
2944 
2945 	ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
2946 	if (pci_enable_device_mem(pdev)) {
2947 		pr_warn(MPT3SAS_FMT "pci_enable_device_mem: failed\n",
2948 			ioc->name);
2949 		ioc->bars = 0;
2950 		return -ENODEV;
2951 	}
2952 
2953 
2954 	if (pci_request_selected_regions(pdev, ioc->bars,
2955 	    ioc->driver_name)) {
2956 		pr_warn(MPT3SAS_FMT "pci_request_selected_regions: failed\n",
2957 			ioc->name);
2958 		ioc->bars = 0;
2959 		r = -ENODEV;
2960 		goto out_fail;
2961 	}
2962 
2963 /* AER (Advanced Error Reporting) hooks */
2964 	pci_enable_pcie_error_reporting(pdev);
2965 
2966 	pci_set_master(pdev);
2967 
2968 
2969 	if (_base_config_dma_addressing(ioc, pdev) != 0) {
2970 		pr_warn(MPT3SAS_FMT "no suitable DMA mask for %s\n",
2971 		    ioc->name, pci_name(pdev));
2972 		r = -ENODEV;
2973 		goto out_fail;
2974 	}
2975 
2976 	for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
2977 	     (!memap_sz || !pio_sz); i++) {
2978 		if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
2979 			if (pio_sz)
2980 				continue;
2981 			pio_chip = (u64)pci_resource_start(pdev, i);
2982 			pio_sz = pci_resource_len(pdev, i);
2983 		} else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
2984 			if (memap_sz)
2985 				continue;
2986 			ioc->chip_phys = pci_resource_start(pdev, i);
2987 			chip_phys = ioc->chip_phys;
2988 			memap_sz = pci_resource_len(pdev, i);
2989 			ioc->chip = ioremap(ioc->chip_phys, memap_sz);
2990 		}
2991 	}
2992 
2993 	if (ioc->chip == NULL) {
2994 		pr_err(MPT3SAS_FMT "unable to map adapter memory! "
2995 			" or resource not found\n", ioc->name);
2996 		r = -EINVAL;
2997 		goto out_fail;
2998 	}
2999 
3000 	_base_mask_interrupts(ioc);
3001 
3002 	r = _base_get_ioc_facts(ioc);
3003 	if (r)
3004 		goto out_fail;
3005 
3006 	if (!ioc->rdpq_array_enable_assigned) {
3007 		ioc->rdpq_array_enable = ioc->rdpq_array_capable;
3008 		ioc->rdpq_array_enable_assigned = 1;
3009 	}
3010 
3011 	r = _base_enable_msix(ioc);
3012 	if (r)
3013 		goto out_fail;
3014 
3015 	/* Use the Combined reply queue feature only for SAS3 C0 & higher
3016 	 * revision HBAs and also only when reply queue count is greater than 8
3017 	 */
3018 	if (ioc->combined_reply_queue) {
3019 		/* Determine the Supplemental Reply Post Host Index Registers
3020 		 * Addresse. Supplemental Reply Post Host Index Registers
3021 		 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
3022 		 * each register is at offset bytes of
3023 		 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
3024 		 */
3025 		ioc->replyPostRegisterIndex = kcalloc(
3026 		     ioc->combined_reply_index_count,
3027 		     sizeof(resource_size_t *), GFP_KERNEL);
3028 		if (!ioc->replyPostRegisterIndex) {
3029 			dfailprintk(ioc, printk(MPT3SAS_FMT
3030 			"allocation for reply Post Register Index failed!!!\n",
3031 								   ioc->name));
3032 			r = -ENOMEM;
3033 			goto out_fail;
3034 		}
3035 
3036 		for (i = 0; i < ioc->combined_reply_index_count; i++) {
3037 			ioc->replyPostRegisterIndex[i] = (resource_size_t *)
3038 			     ((u8 __force *)&ioc->chip->Doorbell +
3039 			     MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
3040 			     (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
3041 		}
3042 	}
3043 
3044 	if (ioc->is_warpdrive) {
3045 		ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
3046 		    &ioc->chip->ReplyPostHostIndex;
3047 
3048 		for (i = 1; i < ioc->cpu_msix_table_sz; i++)
3049 			ioc->reply_post_host_index[i] =
3050 			(resource_size_t __iomem *)
3051 			((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
3052 			* 4)));
3053 	}
3054 
3055 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
3056 		pr_info(MPT3SAS_FMT "%s: IRQ %d\n",
3057 		    reply_q->name,  ((ioc->msix_enable) ? "PCI-MSI-X enabled" :
3058 		    "IO-APIC enabled"),
3059 		    pci_irq_vector(ioc->pdev, reply_q->msix_index));
3060 
3061 	pr_info(MPT3SAS_FMT "iomem(%pap), mapped(0x%p), size(%d)\n",
3062 	    ioc->name, &chip_phys, ioc->chip, memap_sz);
3063 	pr_info(MPT3SAS_FMT "ioport(0x%016llx), size(%d)\n",
3064 	    ioc->name, (unsigned long long)pio_chip, pio_sz);
3065 
3066 	/* Save PCI configuration state for recovery from PCI AER/EEH errors */
3067 	pci_save_state(pdev);
3068 	return 0;
3069 
3070  out_fail:
3071 	mpt3sas_base_unmap_resources(ioc);
3072 	return r;
3073 }
3074 
3075 /**
3076  * mpt3sas_base_get_msg_frame - obtain request mf pointer
3077  * @ioc: per adapter object
3078  * @smid: system request message index(smid zero is invalid)
3079  *
3080  * Return: virt pointer to message frame.
3081  */
3082 void *
3083 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3084 {
3085 	return (void *)(ioc->request + (smid * ioc->request_sz));
3086 }
3087 
3088 /**
3089  * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
3090  * @ioc: per adapter object
3091  * @smid: system request message index
3092  *
3093  * Return: virt pointer to sense buffer.
3094  */
3095 void *
3096 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3097 {
3098 	return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
3099 }
3100 
3101 /**
3102  * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
3103  * @ioc: per adapter object
3104  * @smid: system request message index
3105  *
3106  * Return: phys pointer to the low 32bit address of the sense buffer.
3107  */
3108 __le32
3109 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3110 {
3111 	return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
3112 	    SCSI_SENSE_BUFFERSIZE));
3113 }
3114 
3115 /**
3116  * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
3117  * @ioc: per adapter object
3118  * @smid: system request message index
3119  *
3120  * Return: virt pointer to a PCIe SGL.
3121  */
3122 void *
3123 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3124 {
3125 	return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl);
3126 }
3127 
3128 /**
3129  * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
3130  * @ioc: per adapter object
3131  * @smid: system request message index
3132  *
3133  * Return: phys pointer to the address of the PCIe buffer.
3134  */
3135 dma_addr_t
3136 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3137 {
3138 	return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma;
3139 }
3140 
3141 /**
3142  * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
3143  * @ioc: per adapter object
3144  * @phys_addr: lower 32 physical addr of the reply
3145  *
3146  * Converts 32bit lower physical addr into a virt address.
3147  */
3148 void *
3149 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
3150 {
3151 	if (!phys_addr)
3152 		return NULL;
3153 	return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
3154 }
3155 
3156 static inline u8
3157 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc)
3158 {
3159 	return ioc->cpu_msix_table[raw_smp_processor_id()];
3160 }
3161 
3162 /**
3163  * mpt3sas_base_get_smid - obtain a free smid from internal queue
3164  * @ioc: per adapter object
3165  * @cb_idx: callback index
3166  *
3167  * Return: smid (zero is invalid)
3168  */
3169 u16
3170 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3171 {
3172 	unsigned long flags;
3173 	struct request_tracker *request;
3174 	u16 smid;
3175 
3176 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3177 	if (list_empty(&ioc->internal_free_list)) {
3178 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3179 		pr_err(MPT3SAS_FMT "%s: smid not available\n",
3180 		    ioc->name, __func__);
3181 		return 0;
3182 	}
3183 
3184 	request = list_entry(ioc->internal_free_list.next,
3185 	    struct request_tracker, tracker_list);
3186 	request->cb_idx = cb_idx;
3187 	smid = request->smid;
3188 	list_del(&request->tracker_list);
3189 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3190 	return smid;
3191 }
3192 
3193 /**
3194  * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
3195  * @ioc: per adapter object
3196  * @cb_idx: callback index
3197  * @scmd: pointer to scsi command object
3198  *
3199  * Return: smid (zero is invalid)
3200  */
3201 u16
3202 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
3203 	struct scsi_cmnd *scmd)
3204 {
3205 	struct scsiio_tracker *request = scsi_cmd_priv(scmd);
3206 	unsigned int tag = scmd->request->tag;
3207 	u16 smid;
3208 
3209 	smid = tag + 1;
3210 	request->cb_idx = cb_idx;
3211 	request->msix_io = _base_get_msix_index(ioc);
3212 	request->smid = smid;
3213 	INIT_LIST_HEAD(&request->chain_list);
3214 	return smid;
3215 }
3216 
3217 /**
3218  * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
3219  * @ioc: per adapter object
3220  * @cb_idx: callback index
3221  *
3222  * Return: smid (zero is invalid)
3223  */
3224 u16
3225 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3226 {
3227 	unsigned long flags;
3228 	struct request_tracker *request;
3229 	u16 smid;
3230 
3231 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3232 	if (list_empty(&ioc->hpr_free_list)) {
3233 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3234 		return 0;
3235 	}
3236 
3237 	request = list_entry(ioc->hpr_free_list.next,
3238 	    struct request_tracker, tracker_list);
3239 	request->cb_idx = cb_idx;
3240 	smid = request->smid;
3241 	list_del(&request->tracker_list);
3242 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3243 	return smid;
3244 }
3245 
3246 static void
3247 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc)
3248 {
3249 	/*
3250 	 * See _wait_for_commands_to_complete() call with regards to this code.
3251 	 */
3252 	if (ioc->shost_recovery && ioc->pending_io_count) {
3253 		ioc->pending_io_count = scsi_host_busy(ioc->shost);
3254 		if (ioc->pending_io_count == 0)
3255 			wake_up(&ioc->reset_wq);
3256 	}
3257 }
3258 
3259 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc,
3260 			   struct scsiio_tracker *st)
3261 {
3262 	if (WARN_ON(st->smid == 0))
3263 		return;
3264 	st->cb_idx = 0xFF;
3265 	st->direct_io = 0;
3266 	atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0);
3267 	st->smid = 0;
3268 }
3269 
3270 /**
3271  * mpt3sas_base_free_smid - put smid back on free_list
3272  * @ioc: per adapter object
3273  * @smid: system request message index
3274  */
3275 void
3276 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3277 {
3278 	unsigned long flags;
3279 	int i;
3280 
3281 	if (smid < ioc->hi_priority_smid) {
3282 		struct scsiio_tracker *st;
3283 
3284 		st = _get_st_from_smid(ioc, smid);
3285 		if (!st) {
3286 			_base_recovery_check(ioc);
3287 			return;
3288 		}
3289 		mpt3sas_base_clear_st(ioc, st);
3290 		_base_recovery_check(ioc);
3291 		return;
3292 	}
3293 
3294 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3295 	if (smid < ioc->internal_smid) {
3296 		/* hi-priority */
3297 		i = smid - ioc->hi_priority_smid;
3298 		ioc->hpr_lookup[i].cb_idx = 0xFF;
3299 		list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
3300 	} else if (smid <= ioc->hba_queue_depth) {
3301 		/* internal queue */
3302 		i = smid - ioc->internal_smid;
3303 		ioc->internal_lookup[i].cb_idx = 0xFF;
3304 		list_add(&ioc->internal_lookup[i].tracker_list,
3305 		    &ioc->internal_free_list);
3306 	}
3307 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3308 }
3309 
3310 /**
3311  * _base_mpi_ep_writeq - 32 bit write to MMIO
3312  * @b: data payload
3313  * @addr: address in MMIO space
3314  * @writeq_lock: spin lock
3315  *
3316  * This special handling for MPI EP to take care of 32 bit
3317  * environment where its not quarenteed to send the entire word
3318  * in one transfer.
3319  */
3320 static inline void
3321 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr,
3322 					spinlock_t *writeq_lock)
3323 {
3324 	unsigned long flags;
3325 
3326 	spin_lock_irqsave(writeq_lock, flags);
3327 	__raw_writel((u32)(b), addr);
3328 	__raw_writel((u32)(b >> 32), (addr + 4));
3329 	mmiowb();
3330 	spin_unlock_irqrestore(writeq_lock, flags);
3331 }
3332 
3333 /**
3334  * _base_writeq - 64 bit write to MMIO
3335  * @b: data payload
3336  * @addr: address in MMIO space
3337  * @writeq_lock: spin lock
3338  *
3339  * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
3340  * care of 32 bit environment where its not quarenteed to send the entire word
3341  * in one transfer.
3342  */
3343 #if defined(writeq) && defined(CONFIG_64BIT)
3344 static inline void
3345 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
3346 {
3347 	__raw_writeq(b, addr);
3348 	mmiowb();
3349 }
3350 #else
3351 static inline void
3352 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
3353 {
3354 	_base_mpi_ep_writeq(b, addr, writeq_lock);
3355 }
3356 #endif
3357 
3358 /**
3359  * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware
3360  * @ioc: per adapter object
3361  * @smid: system request message index
3362  * @handle: device handle
3363  */
3364 static void
3365 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
3366 {
3367 	Mpi2RequestDescriptorUnion_t descriptor;
3368 	u64 *request = (u64 *)&descriptor;
3369 	void *mpi_req_iomem;
3370 	__le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3371 
3372 	_clone_sg_entries(ioc, (void *) mfp, smid);
3373 	mpi_req_iomem = (void __force *)ioc->chip +
3374 			MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
3375 	_base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3376 					ioc->request_sz);
3377 	descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3378 	descriptor.SCSIIO.MSIxIndex =  _base_get_msix_index(ioc);
3379 	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3380 	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3381 	descriptor.SCSIIO.LMID = 0;
3382 	_base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3383 	    &ioc->scsi_lookup_lock);
3384 }
3385 
3386 /**
3387  * _base_put_smid_scsi_io - send SCSI_IO request to firmware
3388  * @ioc: per adapter object
3389  * @smid: system request message index
3390  * @handle: device handle
3391  */
3392 static void
3393 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
3394 {
3395 	Mpi2RequestDescriptorUnion_t descriptor;
3396 	u64 *request = (u64 *)&descriptor;
3397 
3398 
3399 	descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3400 	descriptor.SCSIIO.MSIxIndex =  _base_get_msix_index(ioc);
3401 	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3402 	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3403 	descriptor.SCSIIO.LMID = 0;
3404 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3405 	    &ioc->scsi_lookup_lock);
3406 }
3407 
3408 /**
3409  * mpt3sas_base_put_smid_fast_path - send fast path request to firmware
3410  * @ioc: per adapter object
3411  * @smid: system request message index
3412  * @handle: device handle
3413  */
3414 void
3415 mpt3sas_base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3416 	u16 handle)
3417 {
3418 	Mpi2RequestDescriptorUnion_t descriptor;
3419 	u64 *request = (u64 *)&descriptor;
3420 
3421 	descriptor.SCSIIO.RequestFlags =
3422 	    MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
3423 	descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
3424 	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3425 	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3426 	descriptor.SCSIIO.LMID = 0;
3427 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3428 	    &ioc->scsi_lookup_lock);
3429 }
3430 
3431 /**
3432  * mpt3sas_base_put_smid_hi_priority - send Task Management request to firmware
3433  * @ioc: per adapter object
3434  * @smid: system request message index
3435  * @msix_task: msix_task will be same as msix of IO incase of task abort else 0.
3436  */
3437 void
3438 mpt3sas_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3439 	u16 msix_task)
3440 {
3441 	Mpi2RequestDescriptorUnion_t descriptor;
3442 	void *mpi_req_iomem;
3443 	u64 *request;
3444 
3445 	if (ioc->is_mcpu_endpoint) {
3446 		__le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3447 
3448 		/* TBD 256 is offset within sys register. */
3449 		mpi_req_iomem = (void __force *)ioc->chip
3450 					+ MPI_FRAME_START_OFFSET
3451 					+ (smid * ioc->request_sz);
3452 		_base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3453 							ioc->request_sz);
3454 	}
3455 
3456 	request = (u64 *)&descriptor;
3457 
3458 	descriptor.HighPriority.RequestFlags =
3459 	    MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
3460 	descriptor.HighPriority.MSIxIndex =  msix_task;
3461 	descriptor.HighPriority.SMID = cpu_to_le16(smid);
3462 	descriptor.HighPriority.LMID = 0;
3463 	descriptor.HighPriority.Reserved1 = 0;
3464 	if (ioc->is_mcpu_endpoint)
3465 		_base_mpi_ep_writeq(*request,
3466 				&ioc->chip->RequestDescriptorPostLow,
3467 				&ioc->scsi_lookup_lock);
3468 	else
3469 		_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3470 		    &ioc->scsi_lookup_lock);
3471 }
3472 
3473 /**
3474  * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to
3475  *  firmware
3476  * @ioc: per adapter object
3477  * @smid: system request message index
3478  */
3479 void
3480 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3481 {
3482 	Mpi2RequestDescriptorUnion_t descriptor;
3483 	u64 *request = (u64 *)&descriptor;
3484 
3485 	descriptor.Default.RequestFlags =
3486 		MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
3487 	descriptor.Default.MSIxIndex =  _base_get_msix_index(ioc);
3488 	descriptor.Default.SMID = cpu_to_le16(smid);
3489 	descriptor.Default.LMID = 0;
3490 	descriptor.Default.DescriptorTypeDependent = 0;
3491 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3492 	    &ioc->scsi_lookup_lock);
3493 }
3494 
3495 /**
3496  * mpt3sas_base_put_smid_default - Default, primarily used for config pages
3497  * @ioc: per adapter object
3498  * @smid: system request message index
3499  */
3500 void
3501 mpt3sas_base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3502 {
3503 	Mpi2RequestDescriptorUnion_t descriptor;
3504 	void *mpi_req_iomem;
3505 	u64 *request;
3506 
3507 	if (ioc->is_mcpu_endpoint) {
3508 		__le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3509 
3510 		_clone_sg_entries(ioc, (void *) mfp, smid);
3511 		/* TBD 256 is offset within sys register */
3512 		mpi_req_iomem = (void __force *)ioc->chip +
3513 			MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
3514 		_base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3515 							ioc->request_sz);
3516 	}
3517 	request = (u64 *)&descriptor;
3518 	descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
3519 	descriptor.Default.MSIxIndex =  _base_get_msix_index(ioc);
3520 	descriptor.Default.SMID = cpu_to_le16(smid);
3521 	descriptor.Default.LMID = 0;
3522 	descriptor.Default.DescriptorTypeDependent = 0;
3523 	if (ioc->is_mcpu_endpoint)
3524 		_base_mpi_ep_writeq(*request,
3525 				&ioc->chip->RequestDescriptorPostLow,
3526 				&ioc->scsi_lookup_lock);
3527 	else
3528 		_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3529 				&ioc->scsi_lookup_lock);
3530 }
3531 
3532 /**
3533  * _base_display_OEMs_branding - Display branding string
3534  * @ioc: per adapter object
3535  */
3536 static void
3537 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
3538 {
3539 	if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
3540 		return;
3541 
3542 	switch (ioc->pdev->subsystem_vendor) {
3543 	case PCI_VENDOR_ID_INTEL:
3544 		switch (ioc->pdev->device) {
3545 		case MPI2_MFGPAGE_DEVID_SAS2008:
3546 			switch (ioc->pdev->subsystem_device) {
3547 			case MPT2SAS_INTEL_RMS2LL080_SSDID:
3548 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3549 				    MPT2SAS_INTEL_RMS2LL080_BRANDING);
3550 				break;
3551 			case MPT2SAS_INTEL_RMS2LL040_SSDID:
3552 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3553 				    MPT2SAS_INTEL_RMS2LL040_BRANDING);
3554 				break;
3555 			case MPT2SAS_INTEL_SSD910_SSDID:
3556 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3557 				    MPT2SAS_INTEL_SSD910_BRANDING);
3558 				break;
3559 			default:
3560 				pr_info(MPT3SAS_FMT
3561 				 "Intel(R) Controller: Subsystem ID: 0x%X\n",
3562 				 ioc->name, ioc->pdev->subsystem_device);
3563 				break;
3564 			}
3565 		case MPI2_MFGPAGE_DEVID_SAS2308_2:
3566 			switch (ioc->pdev->subsystem_device) {
3567 			case MPT2SAS_INTEL_RS25GB008_SSDID:
3568 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3569 				    MPT2SAS_INTEL_RS25GB008_BRANDING);
3570 				break;
3571 			case MPT2SAS_INTEL_RMS25JB080_SSDID:
3572 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3573 				    MPT2SAS_INTEL_RMS25JB080_BRANDING);
3574 				break;
3575 			case MPT2SAS_INTEL_RMS25JB040_SSDID:
3576 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3577 				    MPT2SAS_INTEL_RMS25JB040_BRANDING);
3578 				break;
3579 			case MPT2SAS_INTEL_RMS25KB080_SSDID:
3580 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3581 				    MPT2SAS_INTEL_RMS25KB080_BRANDING);
3582 				break;
3583 			case MPT2SAS_INTEL_RMS25KB040_SSDID:
3584 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3585 				    MPT2SAS_INTEL_RMS25KB040_BRANDING);
3586 				break;
3587 			case MPT2SAS_INTEL_RMS25LB040_SSDID:
3588 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3589 				    MPT2SAS_INTEL_RMS25LB040_BRANDING);
3590 				break;
3591 			case MPT2SAS_INTEL_RMS25LB080_SSDID:
3592 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3593 				    MPT2SAS_INTEL_RMS25LB080_BRANDING);
3594 				break;
3595 			default:
3596 				pr_info(MPT3SAS_FMT
3597 				 "Intel(R) Controller: Subsystem ID: 0x%X\n",
3598 				 ioc->name, ioc->pdev->subsystem_device);
3599 				break;
3600 			}
3601 		case MPI25_MFGPAGE_DEVID_SAS3008:
3602 			switch (ioc->pdev->subsystem_device) {
3603 			case MPT3SAS_INTEL_RMS3JC080_SSDID:
3604 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3605 					MPT3SAS_INTEL_RMS3JC080_BRANDING);
3606 				break;
3607 
3608 			case MPT3SAS_INTEL_RS3GC008_SSDID:
3609 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3610 					MPT3SAS_INTEL_RS3GC008_BRANDING);
3611 				break;
3612 			case MPT3SAS_INTEL_RS3FC044_SSDID:
3613 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3614 					MPT3SAS_INTEL_RS3FC044_BRANDING);
3615 				break;
3616 			case MPT3SAS_INTEL_RS3UC080_SSDID:
3617 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3618 					MPT3SAS_INTEL_RS3UC080_BRANDING);
3619 				break;
3620 			default:
3621 				pr_info(MPT3SAS_FMT
3622 				 "Intel(R) Controller: Subsystem ID: 0x%X\n",
3623 				 ioc->name, ioc->pdev->subsystem_device);
3624 				break;
3625 			}
3626 			break;
3627 		default:
3628 			pr_info(MPT3SAS_FMT
3629 			 "Intel(R) Controller: Subsystem ID: 0x%X\n",
3630 			 ioc->name, ioc->pdev->subsystem_device);
3631 			break;
3632 		}
3633 		break;
3634 	case PCI_VENDOR_ID_DELL:
3635 		switch (ioc->pdev->device) {
3636 		case MPI2_MFGPAGE_DEVID_SAS2008:
3637 			switch (ioc->pdev->subsystem_device) {
3638 			case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
3639 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3640 				 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
3641 				break;
3642 			case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
3643 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3644 				 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
3645 				break;
3646 			case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
3647 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3648 				 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
3649 				break;
3650 			case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
3651 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3652 				 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
3653 				break;
3654 			case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
3655 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3656 				 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
3657 				break;
3658 			case MPT2SAS_DELL_PERC_H200_SSDID:
3659 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3660 				 MPT2SAS_DELL_PERC_H200_BRANDING);
3661 				break;
3662 			case MPT2SAS_DELL_6GBPS_SAS_SSDID:
3663 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3664 				 MPT2SAS_DELL_6GBPS_SAS_BRANDING);
3665 				break;
3666 			default:
3667 				pr_info(MPT3SAS_FMT
3668 				   "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
3669 				   ioc->name, ioc->pdev->subsystem_device);
3670 				break;
3671 			}
3672 			break;
3673 		case MPI25_MFGPAGE_DEVID_SAS3008:
3674 			switch (ioc->pdev->subsystem_device) {
3675 			case MPT3SAS_DELL_12G_HBA_SSDID:
3676 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3677 					MPT3SAS_DELL_12G_HBA_BRANDING);
3678 				break;
3679 			default:
3680 				pr_info(MPT3SAS_FMT
3681 				   "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
3682 				   ioc->name, ioc->pdev->subsystem_device);
3683 				break;
3684 			}
3685 			break;
3686 		default:
3687 			pr_info(MPT3SAS_FMT
3688 			   "Dell HBA: Subsystem ID: 0x%X\n", ioc->name,
3689 			   ioc->pdev->subsystem_device);
3690 			break;
3691 		}
3692 		break;
3693 	case PCI_VENDOR_ID_CISCO:
3694 		switch (ioc->pdev->device) {
3695 		case MPI25_MFGPAGE_DEVID_SAS3008:
3696 			switch (ioc->pdev->subsystem_device) {
3697 			case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
3698 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3699 					MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
3700 				break;
3701 			case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
3702 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3703 					MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
3704 				break;
3705 			case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
3706 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3707 					MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
3708 				break;
3709 			default:
3710 				pr_info(MPT3SAS_FMT
3711 				  "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
3712 				  ioc->name, ioc->pdev->subsystem_device);
3713 				break;
3714 			}
3715 			break;
3716 		case MPI25_MFGPAGE_DEVID_SAS3108_1:
3717 			switch (ioc->pdev->subsystem_device) {
3718 			case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
3719 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3720 				MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
3721 				break;
3722 			case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
3723 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3724 				MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING
3725 				);
3726 				break;
3727 			default:
3728 				pr_info(MPT3SAS_FMT
3729 				 "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
3730 				 ioc->name, ioc->pdev->subsystem_device);
3731 				break;
3732 			}
3733 			break;
3734 		default:
3735 			pr_info(MPT3SAS_FMT
3736 			   "Cisco SAS HBA: Subsystem ID: 0x%X\n",
3737 			   ioc->name, ioc->pdev->subsystem_device);
3738 			break;
3739 		}
3740 		break;
3741 	case MPT2SAS_HP_3PAR_SSVID:
3742 		switch (ioc->pdev->device) {
3743 		case MPI2_MFGPAGE_DEVID_SAS2004:
3744 			switch (ioc->pdev->subsystem_device) {
3745 			case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
3746 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3747 				    MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
3748 				break;
3749 			default:
3750 				pr_info(MPT3SAS_FMT
3751 				   "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
3752 				   ioc->name, ioc->pdev->subsystem_device);
3753 				break;
3754 			}
3755 		case MPI2_MFGPAGE_DEVID_SAS2308_2:
3756 			switch (ioc->pdev->subsystem_device) {
3757 			case MPT2SAS_HP_2_4_INTERNAL_SSDID:
3758 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3759 				    MPT2SAS_HP_2_4_INTERNAL_BRANDING);
3760 				break;
3761 			case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
3762 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3763 				    MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
3764 				break;
3765 			case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
3766 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3767 				 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
3768 				break;
3769 			case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
3770 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3771 				    MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
3772 				break;
3773 			default:
3774 				pr_info(MPT3SAS_FMT
3775 				   "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
3776 				   ioc->name, ioc->pdev->subsystem_device);
3777 				break;
3778 			}
3779 		default:
3780 			pr_info(MPT3SAS_FMT
3781 			   "HP SAS HBA: Subsystem ID: 0x%X\n",
3782 			   ioc->name, ioc->pdev->subsystem_device);
3783 			break;
3784 		}
3785 	default:
3786 		break;
3787 	}
3788 }
3789 
3790 /**
3791  * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg
3792  *				version from FW Image Header.
3793  * @ioc: per adapter object
3794  *
3795  * Return: 0 for success, non-zero for failure.
3796  */
3797 	static int
3798 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc)
3799 {
3800 	Mpi2FWImageHeader_t *FWImgHdr;
3801 	Mpi25FWUploadRequest_t *mpi_request;
3802 	Mpi2FWUploadReply_t mpi_reply;
3803 	int r = 0;
3804 	void *fwpkg_data = NULL;
3805 	dma_addr_t fwpkg_data_dma;
3806 	u16 smid, ioc_status;
3807 	size_t data_length;
3808 
3809 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3810 				__func__));
3811 
3812 	if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
3813 		pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
3814 				ioc->name, __func__);
3815 		return -EAGAIN;
3816 	}
3817 
3818 	data_length = sizeof(Mpi2FWImageHeader_t);
3819 	fwpkg_data = pci_alloc_consistent(ioc->pdev, data_length,
3820 			&fwpkg_data_dma);
3821 	if (!fwpkg_data) {
3822 		pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
3823 				ioc->name, __FILE__, __LINE__, __func__);
3824 		return -ENOMEM;
3825 	}
3826 
3827 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
3828 	if (!smid) {
3829 		pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
3830 				ioc->name, __func__);
3831 		r = -EAGAIN;
3832 		goto out;
3833 	}
3834 
3835 	ioc->base_cmds.status = MPT3_CMD_PENDING;
3836 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
3837 	ioc->base_cmds.smid = smid;
3838 	memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t));
3839 	mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD;
3840 	mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH;
3841 	mpi_request->ImageSize = cpu_to_le32(data_length);
3842 	ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma,
3843 			data_length);
3844 	init_completion(&ioc->base_cmds.done);
3845 	mpt3sas_base_put_smid_default(ioc, smid);
3846 	/* Wait for 15 seconds */
3847 	wait_for_completion_timeout(&ioc->base_cmds.done,
3848 			FW_IMG_HDR_READ_TIMEOUT*HZ);
3849 	pr_info(MPT3SAS_FMT "%s: complete\n",
3850 			ioc->name, __func__);
3851 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
3852 		pr_err(MPT3SAS_FMT "%s: timeout\n",
3853 				ioc->name, __func__);
3854 		_debug_dump_mf(mpi_request,
3855 				sizeof(Mpi25FWUploadRequest_t)/4);
3856 		r = -ETIME;
3857 	} else {
3858 		memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t));
3859 		if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) {
3860 			memcpy(&mpi_reply, ioc->base_cmds.reply,
3861 					sizeof(Mpi2FWUploadReply_t));
3862 			ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
3863 						MPI2_IOCSTATUS_MASK;
3864 			if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
3865 				FWImgHdr = (Mpi2FWImageHeader_t *)fwpkg_data;
3866 				if (FWImgHdr->PackageVersion.Word) {
3867 					pr_info(MPT3SAS_FMT "FW Package Version"
3868 					"(%02d.%02d.%02d.%02d)\n",
3869 					ioc->name,
3870 					FWImgHdr->PackageVersion.Struct.Major,
3871 					FWImgHdr->PackageVersion.Struct.Minor,
3872 					FWImgHdr->PackageVersion.Struct.Unit,
3873 					FWImgHdr->PackageVersion.Struct.Dev);
3874 				}
3875 			} else {
3876 				_debug_dump_mf(&mpi_reply,
3877 						sizeof(Mpi2FWUploadReply_t)/4);
3878 			}
3879 		}
3880 	}
3881 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
3882 out:
3883 	if (fwpkg_data)
3884 		pci_free_consistent(ioc->pdev, data_length, fwpkg_data,
3885 				fwpkg_data_dma);
3886 	return r;
3887 }
3888 
3889 /**
3890  * _base_display_ioc_capabilities - Disply IOC's capabilities.
3891  * @ioc: per adapter object
3892  */
3893 static void
3894 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
3895 {
3896 	int i = 0;
3897 	char desc[16];
3898 	u32 iounit_pg1_flags;
3899 	u32 bios_version;
3900 
3901 	bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
3902 	strncpy(desc, ioc->manu_pg0.ChipName, 16);
3903 	pr_info(MPT3SAS_FMT "%s: FWVersion(%02d.%02d.%02d.%02d), "\
3904 	   "ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
3905 	    ioc->name, desc,
3906 	   (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
3907 	   (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
3908 	   (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
3909 	   ioc->facts.FWVersion.Word & 0x000000FF,
3910 	   ioc->pdev->revision,
3911 	   (bios_version & 0xFF000000) >> 24,
3912 	   (bios_version & 0x00FF0000) >> 16,
3913 	   (bios_version & 0x0000FF00) >> 8,
3914 	    bios_version & 0x000000FF);
3915 
3916 	_base_display_OEMs_branding(ioc);
3917 
3918 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
3919 		pr_info("%sNVMe", i ? "," : "");
3920 		i++;
3921 	}
3922 
3923 	pr_info(MPT3SAS_FMT "Protocol=(", ioc->name);
3924 
3925 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
3926 		pr_info("Initiator");
3927 		i++;
3928 	}
3929 
3930 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
3931 		pr_info("%sTarget", i ? "," : "");
3932 		i++;
3933 	}
3934 
3935 	i = 0;
3936 	pr_info("), ");
3937 	pr_info("Capabilities=(");
3938 
3939 	if (!ioc->hide_ir_msg) {
3940 		if (ioc->facts.IOCCapabilities &
3941 		    MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
3942 			pr_info("Raid");
3943 			i++;
3944 		}
3945 	}
3946 
3947 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
3948 		pr_info("%sTLR", i ? "," : "");
3949 		i++;
3950 	}
3951 
3952 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
3953 		pr_info("%sMulticast", i ? "," : "");
3954 		i++;
3955 	}
3956 
3957 	if (ioc->facts.IOCCapabilities &
3958 	    MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
3959 		pr_info("%sBIDI Target", i ? "," : "");
3960 		i++;
3961 	}
3962 
3963 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
3964 		pr_info("%sEEDP", i ? "," : "");
3965 		i++;
3966 	}
3967 
3968 	if (ioc->facts.IOCCapabilities &
3969 	    MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
3970 		pr_info("%sSnapshot Buffer", i ? "," : "");
3971 		i++;
3972 	}
3973 
3974 	if (ioc->facts.IOCCapabilities &
3975 	    MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
3976 		pr_info("%sDiag Trace Buffer", i ? "," : "");
3977 		i++;
3978 	}
3979 
3980 	if (ioc->facts.IOCCapabilities &
3981 	    MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
3982 		pr_info("%sDiag Extended Buffer", i ? "," : "");
3983 		i++;
3984 	}
3985 
3986 	if (ioc->facts.IOCCapabilities &
3987 	    MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
3988 		pr_info("%sTask Set Full", i ? "," : "");
3989 		i++;
3990 	}
3991 
3992 	iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
3993 	if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
3994 		pr_info("%sNCQ", i ? "," : "");
3995 		i++;
3996 	}
3997 
3998 	pr_info(")\n");
3999 }
4000 
4001 /**
4002  * mpt3sas_base_update_missing_delay - change the missing delay timers
4003  * @ioc: per adapter object
4004  * @device_missing_delay: amount of time till device is reported missing
4005  * @io_missing_delay: interval IO is returned when there is a missing device
4006  *
4007  * Passed on the command line, this function will modify the device missing
4008  * delay, as well as the io missing delay. This should be called at driver
4009  * load time.
4010  */
4011 void
4012 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
4013 	u16 device_missing_delay, u8 io_missing_delay)
4014 {
4015 	u16 dmd, dmd_new, dmd_orignal;
4016 	u8 io_missing_delay_original;
4017 	u16 sz;
4018 	Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
4019 	Mpi2ConfigReply_t mpi_reply;
4020 	u8 num_phys = 0;
4021 	u16 ioc_status;
4022 
4023 	mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
4024 	if (!num_phys)
4025 		return;
4026 
4027 	sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
4028 	    sizeof(Mpi2SasIOUnit1PhyData_t));
4029 	sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
4030 	if (!sas_iounit_pg1) {
4031 		pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
4032 		    ioc->name, __FILE__, __LINE__, __func__);
4033 		goto out;
4034 	}
4035 	if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
4036 	    sas_iounit_pg1, sz))) {
4037 		pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
4038 		    ioc->name, __FILE__, __LINE__, __func__);
4039 		goto out;
4040 	}
4041 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4042 	    MPI2_IOCSTATUS_MASK;
4043 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4044 		pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
4045 		    ioc->name, __FILE__, __LINE__, __func__);
4046 		goto out;
4047 	}
4048 
4049 	/* device missing delay */
4050 	dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
4051 	if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4052 		dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4053 	else
4054 		dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4055 	dmd_orignal = dmd;
4056 	if (device_missing_delay > 0x7F) {
4057 		dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
4058 		    device_missing_delay;
4059 		dmd = dmd / 16;
4060 		dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
4061 	} else
4062 		dmd = device_missing_delay;
4063 	sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
4064 
4065 	/* io missing delay */
4066 	io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
4067 	sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
4068 
4069 	if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
4070 	    sz)) {
4071 		if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4072 			dmd_new = (dmd &
4073 			    MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4074 		else
4075 			dmd_new =
4076 		    dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4077 		pr_info(MPT3SAS_FMT "device_missing_delay: old(%d), new(%d)\n",
4078 			ioc->name, dmd_orignal, dmd_new);
4079 		pr_info(MPT3SAS_FMT "ioc_missing_delay: old(%d), new(%d)\n",
4080 			ioc->name, io_missing_delay_original,
4081 		    io_missing_delay);
4082 		ioc->device_missing_delay = dmd_new;
4083 		ioc->io_missing_delay = io_missing_delay;
4084 	}
4085 
4086 out:
4087 	kfree(sas_iounit_pg1);
4088 }
4089 
4090 /**
4091  * _base_static_config_pages - static start of day config pages
4092  * @ioc: per adapter object
4093  */
4094 static void
4095 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
4096 {
4097 	Mpi2ConfigReply_t mpi_reply;
4098 	u32 iounit_pg1_flags;
4099 
4100 	ioc->nvme_abort_timeout = 30;
4101 	mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
4102 	if (ioc->ir_firmware)
4103 		mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
4104 		    &ioc->manu_pg10);
4105 
4106 	/*
4107 	 * Ensure correct T10 PI operation if vendor left EEDPTagMode
4108 	 * flag unset in NVDATA.
4109 	 */
4110 	mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
4111 	if (ioc->manu_pg11.EEDPTagMode == 0) {
4112 		pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
4113 		    ioc->name);
4114 		ioc->manu_pg11.EEDPTagMode &= ~0x3;
4115 		ioc->manu_pg11.EEDPTagMode |= 0x1;
4116 		mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
4117 		    &ioc->manu_pg11);
4118 	}
4119 	if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK)
4120 		ioc->tm_custom_handling = 1;
4121 	else {
4122 		ioc->tm_custom_handling = 0;
4123 		if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT)
4124 			ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT;
4125 		else if (ioc->manu_pg11.NVMeAbortTO >
4126 					NVME_TASK_ABORT_MAX_TIMEOUT)
4127 			ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT;
4128 		else
4129 			ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO;
4130 	}
4131 
4132 	mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
4133 	mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
4134 	mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
4135 	mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
4136 	mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
4137 	mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
4138 	_base_display_ioc_capabilities(ioc);
4139 
4140 	/*
4141 	 * Enable task_set_full handling in iounit_pg1 when the
4142 	 * facts capabilities indicate that its supported.
4143 	 */
4144 	iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4145 	if ((ioc->facts.IOCCapabilities &
4146 	    MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
4147 		iounit_pg1_flags &=
4148 		    ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
4149 	else
4150 		iounit_pg1_flags |=
4151 		    MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
4152 	ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
4153 	mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
4154 
4155 	if (ioc->iounit_pg8.NumSensors)
4156 		ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
4157 }
4158 
4159 /**
4160  * mpt3sas_free_enclosure_list - release memory
4161  * @ioc: per adapter object
4162  *
4163  * Free memory allocated during encloure add.
4164  */
4165 void
4166 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc)
4167 {
4168 	struct _enclosure_node *enclosure_dev, *enclosure_dev_next;
4169 
4170 	/* Free enclosure list */
4171 	list_for_each_entry_safe(enclosure_dev,
4172 			enclosure_dev_next, &ioc->enclosure_list, list) {
4173 		list_del(&enclosure_dev->list);
4174 		kfree(enclosure_dev);
4175 	}
4176 }
4177 
4178 /**
4179  * _base_release_memory_pools - release memory
4180  * @ioc: per adapter object
4181  *
4182  * Free memory allocated from _base_allocate_memory_pools.
4183  */
4184 static void
4185 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
4186 {
4187 	int i = 0;
4188 	int j = 0;
4189 	struct chain_tracker *ct;
4190 	struct reply_post_struct *rps;
4191 
4192 	dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4193 	    __func__));
4194 
4195 	if (ioc->request) {
4196 		pci_free_consistent(ioc->pdev, ioc->request_dma_sz,
4197 		    ioc->request,  ioc->request_dma);
4198 		dexitprintk(ioc, pr_info(MPT3SAS_FMT
4199 			"request_pool(0x%p): free\n",
4200 			ioc->name, ioc->request));
4201 		ioc->request = NULL;
4202 	}
4203 
4204 	if (ioc->sense) {
4205 		dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
4206 		dma_pool_destroy(ioc->sense_dma_pool);
4207 		dexitprintk(ioc, pr_info(MPT3SAS_FMT
4208 			"sense_pool(0x%p): free\n",
4209 			ioc->name, ioc->sense));
4210 		ioc->sense = NULL;
4211 	}
4212 
4213 	if (ioc->reply) {
4214 		dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
4215 		dma_pool_destroy(ioc->reply_dma_pool);
4216 		dexitprintk(ioc, pr_info(MPT3SAS_FMT
4217 			"reply_pool(0x%p): free\n",
4218 			ioc->name, ioc->reply));
4219 		ioc->reply = NULL;
4220 	}
4221 
4222 	if (ioc->reply_free) {
4223 		dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
4224 		    ioc->reply_free_dma);
4225 		dma_pool_destroy(ioc->reply_free_dma_pool);
4226 		dexitprintk(ioc, pr_info(MPT3SAS_FMT
4227 			"reply_free_pool(0x%p): free\n",
4228 			ioc->name, ioc->reply_free));
4229 		ioc->reply_free = NULL;
4230 	}
4231 
4232 	if (ioc->reply_post) {
4233 		do {
4234 			rps = &ioc->reply_post[i];
4235 			if (rps->reply_post_free) {
4236 				dma_pool_free(
4237 				    ioc->reply_post_free_dma_pool,
4238 				    rps->reply_post_free,
4239 				    rps->reply_post_free_dma);
4240 				dexitprintk(ioc, pr_info(MPT3SAS_FMT
4241 				    "reply_post_free_pool(0x%p): free\n",
4242 				    ioc->name, rps->reply_post_free));
4243 				rps->reply_post_free = NULL;
4244 			}
4245 		} while (ioc->rdpq_array_enable &&
4246 			   (++i < ioc->reply_queue_count));
4247 		if (ioc->reply_post_free_array &&
4248 			ioc->rdpq_array_enable) {
4249 			dma_pool_free(ioc->reply_post_free_array_dma_pool,
4250 				ioc->reply_post_free_array,
4251 				ioc->reply_post_free_array_dma);
4252 			ioc->reply_post_free_array = NULL;
4253 		}
4254 		dma_pool_destroy(ioc->reply_post_free_array_dma_pool);
4255 		dma_pool_destroy(ioc->reply_post_free_dma_pool);
4256 		kfree(ioc->reply_post);
4257 	}
4258 
4259 	if (ioc->pcie_sgl_dma_pool) {
4260 		for (i = 0; i < ioc->scsiio_depth; i++) {
4261 			dma_pool_free(ioc->pcie_sgl_dma_pool,
4262 					ioc->pcie_sg_lookup[i].pcie_sgl,
4263 					ioc->pcie_sg_lookup[i].pcie_sgl_dma);
4264 		}
4265 		if (ioc->pcie_sgl_dma_pool)
4266 			dma_pool_destroy(ioc->pcie_sgl_dma_pool);
4267 	}
4268 
4269 	if (ioc->config_page) {
4270 		dexitprintk(ioc, pr_info(MPT3SAS_FMT
4271 		    "config_page(0x%p): free\n", ioc->name,
4272 		    ioc->config_page));
4273 		pci_free_consistent(ioc->pdev, ioc->config_page_sz,
4274 		    ioc->config_page, ioc->config_page_dma);
4275 	}
4276 
4277 	kfree(ioc->hpr_lookup);
4278 	kfree(ioc->internal_lookup);
4279 	if (ioc->chain_lookup) {
4280 		for (i = 0; i < ioc->scsiio_depth; i++) {
4281 			for (j = ioc->chains_per_prp_buffer;
4282 			    j < ioc->chains_needed_per_io; j++) {
4283 				ct = &ioc->chain_lookup[i].chains_per_smid[j];
4284 				if (ct && ct->chain_buffer)
4285 					dma_pool_free(ioc->chain_dma_pool,
4286 						ct->chain_buffer,
4287 						ct->chain_buffer_dma);
4288 			}
4289 			kfree(ioc->chain_lookup[i].chains_per_smid);
4290 		}
4291 		dma_pool_destroy(ioc->chain_dma_pool);
4292 		kfree(ioc->chain_lookup);
4293 		ioc->chain_lookup = NULL;
4294 	}
4295 }
4296 
4297 /**
4298  * is_MSB_are_same - checks whether all reply queues in a set are
4299  *	having same upper 32bits in their base memory address.
4300  * @reply_pool_start_address: Base address of a reply queue set
4301  * @pool_sz: Size of single Reply Descriptor Post Queues pool size
4302  *
4303  * Return: 1 if reply queues in a set have a same upper 32bits in their base
4304  * memory address, else 0.
4305  */
4306 
4307 static int
4308 is_MSB_are_same(long reply_pool_start_address, u32 pool_sz)
4309 {
4310 	long reply_pool_end_address;
4311 
4312 	reply_pool_end_address = reply_pool_start_address + pool_sz;
4313 
4314 	if (upper_32_bits(reply_pool_start_address) ==
4315 		upper_32_bits(reply_pool_end_address))
4316 		return 1;
4317 	else
4318 		return 0;
4319 }
4320 
4321 /**
4322  * _base_allocate_memory_pools - allocate start of day memory pools
4323  * @ioc: per adapter object
4324  *
4325  * Return: 0 success, anything else error.
4326  */
4327 static int
4328 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
4329 {
4330 	struct mpt3sas_facts *facts;
4331 	u16 max_sge_elements;
4332 	u16 chains_needed_per_io;
4333 	u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz;
4334 	u32 retry_sz;
4335 	u16 max_request_credit, nvme_blocks_needed;
4336 	unsigned short sg_tablesize;
4337 	u16 sge_size;
4338 	int i, j;
4339 	struct chain_tracker *ct;
4340 
4341 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4342 	    __func__));
4343 
4344 
4345 	retry_sz = 0;
4346 	facts = &ioc->facts;
4347 
4348 	/* command line tunables for max sgl entries */
4349 	if (max_sgl_entries != -1)
4350 		sg_tablesize = max_sgl_entries;
4351 	else {
4352 		if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
4353 			sg_tablesize = MPT2SAS_SG_DEPTH;
4354 		else
4355 			sg_tablesize = MPT3SAS_SG_DEPTH;
4356 	}
4357 
4358 	/* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
4359 	if (reset_devices)
4360 		sg_tablesize = min_t(unsigned short, sg_tablesize,
4361 		   MPT_KDUMP_MIN_PHYS_SEGMENTS);
4362 
4363 	if (ioc->is_mcpu_endpoint)
4364 		ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
4365 	else {
4366 		if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
4367 			sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
4368 		else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
4369 			sg_tablesize = min_t(unsigned short, sg_tablesize,
4370 					SG_MAX_SEGMENTS);
4371 			pr_warn(MPT3SAS_FMT
4372 				"sg_tablesize(%u) is bigger than kernel "
4373 				"defined SG_CHUNK_SIZE(%u)\n", ioc->name,
4374 				sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
4375 		}
4376 		ioc->shost->sg_tablesize = sg_tablesize;
4377 	}
4378 
4379 	ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
4380 		(facts->RequestCredit / 4));
4381 	if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
4382 		if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
4383 				INTERNAL_SCSIIO_CMDS_COUNT)) {
4384 			pr_err(MPT3SAS_FMT "IOC doesn't have enough Request \
4385 			    Credits, it has just %d number of credits\n",
4386 			    ioc->name, facts->RequestCredit);
4387 			return -ENOMEM;
4388 		}
4389 		ioc->internal_depth = 10;
4390 	}
4391 
4392 	ioc->hi_priority_depth = ioc->internal_depth - (5);
4393 	/* command line tunables  for max controller queue depth */
4394 	if (max_queue_depth != -1 && max_queue_depth != 0) {
4395 		max_request_credit = min_t(u16, max_queue_depth +
4396 			ioc->internal_depth, facts->RequestCredit);
4397 		if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
4398 			max_request_credit =  MAX_HBA_QUEUE_DEPTH;
4399 	} else if (reset_devices)
4400 		max_request_credit = min_t(u16, facts->RequestCredit,
4401 		    (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth));
4402 	else
4403 		max_request_credit = min_t(u16, facts->RequestCredit,
4404 		    MAX_HBA_QUEUE_DEPTH);
4405 
4406 	/* Firmware maintains additional facts->HighPriorityCredit number of
4407 	 * credits for HiPriprity Request messages, so hba queue depth will be
4408 	 * sum of max_request_credit and high priority queue depth.
4409 	 */
4410 	ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
4411 
4412 	/* request frame size */
4413 	ioc->request_sz = facts->IOCRequestFrameSize * 4;
4414 
4415 	/* reply frame size */
4416 	ioc->reply_sz = facts->ReplyFrameSize * 4;
4417 
4418 	/* chain segment size */
4419 	if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
4420 		if (facts->IOCMaxChainSegmentSize)
4421 			ioc->chain_segment_sz =
4422 					facts->IOCMaxChainSegmentSize *
4423 					MAX_CHAIN_ELEMT_SZ;
4424 		else
4425 		/* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
4426 			ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
4427 						    MAX_CHAIN_ELEMT_SZ;
4428 	} else
4429 		ioc->chain_segment_sz = ioc->request_sz;
4430 
4431 	/* calculate the max scatter element size */
4432 	sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
4433 
4434  retry_allocation:
4435 	total_sz = 0;
4436 	/* calculate number of sg elements left over in the 1st frame */
4437 	max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
4438 	    sizeof(Mpi2SGEIOUnion_t)) + sge_size);
4439 	ioc->max_sges_in_main_message = max_sge_elements/sge_size;
4440 
4441 	/* now do the same for a chain buffer */
4442 	max_sge_elements = ioc->chain_segment_sz - sge_size;
4443 	ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
4444 
4445 	/*
4446 	 *  MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
4447 	 */
4448 	chains_needed_per_io = ((ioc->shost->sg_tablesize -
4449 	   ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
4450 	    + 1;
4451 	if (chains_needed_per_io > facts->MaxChainDepth) {
4452 		chains_needed_per_io = facts->MaxChainDepth;
4453 		ioc->shost->sg_tablesize = min_t(u16,
4454 		ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
4455 		* chains_needed_per_io), ioc->shost->sg_tablesize);
4456 	}
4457 	ioc->chains_needed_per_io = chains_needed_per_io;
4458 
4459 	/* reply free queue sizing - taking into account for 64 FW events */
4460 	ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
4461 
4462 	/* mCPU manage single counters for simplicity */
4463 	if (ioc->is_mcpu_endpoint)
4464 		ioc->reply_post_queue_depth = ioc->reply_free_queue_depth;
4465 	else {
4466 		/* calculate reply descriptor post queue depth */
4467 		ioc->reply_post_queue_depth = ioc->hba_queue_depth +
4468 			ioc->reply_free_queue_depth +  1;
4469 		/* align the reply post queue on the next 16 count boundary */
4470 		if (ioc->reply_post_queue_depth % 16)
4471 			ioc->reply_post_queue_depth += 16 -
4472 				(ioc->reply_post_queue_depth % 16);
4473 	}
4474 
4475 	if (ioc->reply_post_queue_depth >
4476 	    facts->MaxReplyDescriptorPostQueueDepth) {
4477 		ioc->reply_post_queue_depth =
4478 				facts->MaxReplyDescriptorPostQueueDepth -
4479 		    (facts->MaxReplyDescriptorPostQueueDepth % 16);
4480 		ioc->hba_queue_depth =
4481 				((ioc->reply_post_queue_depth - 64) / 2) - 1;
4482 		ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
4483 	}
4484 
4485 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "scatter gather: " \
4486 	    "sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), "
4487 	    "chains_per_io(%d)\n", ioc->name, ioc->max_sges_in_main_message,
4488 	    ioc->max_sges_in_chain_message, ioc->shost->sg_tablesize,
4489 	    ioc->chains_needed_per_io));
4490 
4491 	/* reply post queue, 16 byte align */
4492 	reply_post_free_sz = ioc->reply_post_queue_depth *
4493 	    sizeof(Mpi2DefaultReplyDescriptor_t);
4494 
4495 	sz = reply_post_free_sz;
4496 	if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
4497 		sz *= ioc->reply_queue_count;
4498 
4499 	ioc->reply_post = kcalloc((ioc->rdpq_array_enable) ?
4500 	    (ioc->reply_queue_count):1,
4501 	    sizeof(struct reply_post_struct), GFP_KERNEL);
4502 
4503 	if (!ioc->reply_post) {
4504 		pr_err(MPT3SAS_FMT "reply_post_free pool: kcalloc failed\n",
4505 			ioc->name);
4506 		goto out;
4507 	}
4508 	ioc->reply_post_free_dma_pool = dma_pool_create("reply_post_free pool",
4509 	    &ioc->pdev->dev, sz, 16, 0);
4510 	if (!ioc->reply_post_free_dma_pool) {
4511 		pr_err(MPT3SAS_FMT
4512 		 "reply_post_free pool: dma_pool_create failed\n",
4513 		 ioc->name);
4514 		goto out;
4515 	}
4516 	i = 0;
4517 	do {
4518 		ioc->reply_post[i].reply_post_free =
4519 		    dma_pool_alloc(ioc->reply_post_free_dma_pool,
4520 		    GFP_KERNEL,
4521 		    &ioc->reply_post[i].reply_post_free_dma);
4522 		if (!ioc->reply_post[i].reply_post_free) {
4523 			pr_err(MPT3SAS_FMT
4524 			"reply_post_free pool: dma_pool_alloc failed\n",
4525 			ioc->name);
4526 			goto out;
4527 		}
4528 		memset(ioc->reply_post[i].reply_post_free, 0, sz);
4529 		dinitprintk(ioc, pr_info(MPT3SAS_FMT
4530 		    "reply post free pool (0x%p): depth(%d),"
4531 		    "element_size(%d), pool_size(%d kB)\n", ioc->name,
4532 		    ioc->reply_post[i].reply_post_free,
4533 		    ioc->reply_post_queue_depth, 8, sz/1024));
4534 		dinitprintk(ioc, pr_info(MPT3SAS_FMT
4535 		    "reply_post_free_dma = (0x%llx)\n", ioc->name,
4536 		    (unsigned long long)
4537 		    ioc->reply_post[i].reply_post_free_dma));
4538 		total_sz += sz;
4539 	} while (ioc->rdpq_array_enable && (++i < ioc->reply_queue_count));
4540 
4541 	if (ioc->dma_mask == 64) {
4542 		if (_base_change_consistent_dma_mask(ioc, ioc->pdev) != 0) {
4543 			pr_warn(MPT3SAS_FMT
4544 			    "no suitable consistent DMA mask for %s\n",
4545 			    ioc->name, pci_name(ioc->pdev));
4546 			goto out;
4547 		}
4548 	}
4549 
4550 	ioc->scsiio_depth = ioc->hba_queue_depth -
4551 	    ioc->hi_priority_depth - ioc->internal_depth;
4552 
4553 	/* set the scsi host can_queue depth
4554 	 * with some internal commands that could be outstanding
4555 	 */
4556 	ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
4557 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
4558 		"scsi host: can_queue depth (%d)\n",
4559 		ioc->name, ioc->shost->can_queue));
4560 
4561 
4562 	/* contiguous pool for request and chains, 16 byte align, one extra "
4563 	 * "frame for smid=0
4564 	 */
4565 	ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
4566 	sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
4567 
4568 	/* hi-priority queue */
4569 	sz += (ioc->hi_priority_depth * ioc->request_sz);
4570 
4571 	/* internal queue */
4572 	sz += (ioc->internal_depth * ioc->request_sz);
4573 
4574 	ioc->request_dma_sz = sz;
4575 	ioc->request = pci_alloc_consistent(ioc->pdev, sz, &ioc->request_dma);
4576 	if (!ioc->request) {
4577 		pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
4578 		    "failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
4579 		    "total(%d kB)\n", ioc->name, ioc->hba_queue_depth,
4580 		    ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
4581 		if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
4582 			goto out;
4583 		retry_sz = 64;
4584 		ioc->hba_queue_depth -= retry_sz;
4585 		_base_release_memory_pools(ioc);
4586 		goto retry_allocation;
4587 	}
4588 
4589 	if (retry_sz)
4590 		pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
4591 		    "succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
4592 		    "total(%d kb)\n", ioc->name, ioc->hba_queue_depth,
4593 		    ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
4594 
4595 	/* hi-priority queue */
4596 	ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
4597 	    ioc->request_sz);
4598 	ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
4599 	    ioc->request_sz);
4600 
4601 	/* internal queue */
4602 	ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
4603 	    ioc->request_sz);
4604 	ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
4605 	    ioc->request_sz);
4606 
4607 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
4608 		"request pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
4609 		ioc->name, ioc->request, ioc->hba_queue_depth, ioc->request_sz,
4610 	    (ioc->hba_queue_depth * ioc->request_sz)/1024));
4611 
4612 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "request pool: dma(0x%llx)\n",
4613 	    ioc->name, (unsigned long long) ioc->request_dma));
4614 	total_sz += sz;
4615 
4616 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "scsiio(0x%p): depth(%d)\n",
4617 		ioc->name, ioc->request, ioc->scsiio_depth));
4618 
4619 	ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
4620 	sz = ioc->scsiio_depth * sizeof(struct chain_lookup);
4621 	ioc->chain_lookup = kzalloc(sz, GFP_KERNEL);
4622 	if (!ioc->chain_lookup) {
4623 		pr_err(MPT3SAS_FMT "chain_lookup: __get_free_pages "
4624 				"failed\n", ioc->name);
4625 		goto out;
4626 	}
4627 
4628 	sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker);
4629 	for (i = 0; i < ioc->scsiio_depth; i++) {
4630 		ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL);
4631 		if (!ioc->chain_lookup[i].chains_per_smid) {
4632 			pr_err(MPT3SAS_FMT "chain_lookup: "
4633 					" kzalloc failed\n", ioc->name);
4634 			goto out;
4635 		}
4636 	}
4637 
4638 	/* initialize hi-priority queue smid's */
4639 	ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
4640 	    sizeof(struct request_tracker), GFP_KERNEL);
4641 	if (!ioc->hpr_lookup) {
4642 		pr_err(MPT3SAS_FMT "hpr_lookup: kcalloc failed\n",
4643 		    ioc->name);
4644 		goto out;
4645 	}
4646 	ioc->hi_priority_smid = ioc->scsiio_depth + 1;
4647 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
4648 		"hi_priority(0x%p): depth(%d), start smid(%d)\n",
4649 		ioc->name, ioc->hi_priority,
4650 	    ioc->hi_priority_depth, ioc->hi_priority_smid));
4651 
4652 	/* initialize internal queue smid's */
4653 	ioc->internal_lookup = kcalloc(ioc->internal_depth,
4654 	    sizeof(struct request_tracker), GFP_KERNEL);
4655 	if (!ioc->internal_lookup) {
4656 		pr_err(MPT3SAS_FMT "internal_lookup: kcalloc failed\n",
4657 		    ioc->name);
4658 		goto out;
4659 	}
4660 	ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
4661 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
4662 		"internal(0x%p): depth(%d), start smid(%d)\n",
4663 		ioc->name, ioc->internal,
4664 	    ioc->internal_depth, ioc->internal_smid));
4665 	/*
4666 	 * The number of NVMe page sized blocks needed is:
4667 	 *     (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
4668 	 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
4669 	 * that is placed in the main message frame.  8 is the size of each PRP
4670 	 * entry or PRP list pointer entry.  8 is subtracted from page_size
4671 	 * because of the PRP list pointer entry at the end of a page, so this
4672 	 * is not counted as a PRP entry.  The 1 added page is a round up.
4673 	 *
4674 	 * To avoid allocation failures due to the amount of memory that could
4675 	 * be required for NVMe PRP's, only each set of NVMe blocks will be
4676 	 * contiguous, so a new set is allocated for each possible I/O.
4677 	 */
4678 	ioc->chains_per_prp_buffer = 0;
4679 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
4680 		nvme_blocks_needed =
4681 			(ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1;
4682 		nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE);
4683 		nvme_blocks_needed++;
4684 
4685 		sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth;
4686 		ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL);
4687 		if (!ioc->pcie_sg_lookup) {
4688 			pr_info(MPT3SAS_FMT
4689 			    "PCIe SGL lookup: kzalloc failed\n", ioc->name);
4690 			goto out;
4691 		}
4692 		sz = nvme_blocks_needed * ioc->page_size;
4693 		ioc->pcie_sgl_dma_pool =
4694 			dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz, 16, 0);
4695 		if (!ioc->pcie_sgl_dma_pool) {
4696 			pr_info(MPT3SAS_FMT
4697 			    "PCIe SGL pool: dma_pool_create failed\n",
4698 			    ioc->name);
4699 			goto out;
4700 		}
4701 
4702 		ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz;
4703 		ioc->chains_per_prp_buffer = min(ioc->chains_per_prp_buffer,
4704 						ioc->chains_needed_per_io);
4705 
4706 		for (i = 0; i < ioc->scsiio_depth; i++) {
4707 			ioc->pcie_sg_lookup[i].pcie_sgl = dma_pool_alloc(
4708 				ioc->pcie_sgl_dma_pool, GFP_KERNEL,
4709 				&ioc->pcie_sg_lookup[i].pcie_sgl_dma);
4710 			if (!ioc->pcie_sg_lookup[i].pcie_sgl) {
4711 				pr_info(MPT3SAS_FMT
4712 				    "PCIe SGL pool: dma_pool_alloc failed\n",
4713 				    ioc->name);
4714 				goto out;
4715 			}
4716 			for (j = 0; j < ioc->chains_per_prp_buffer; j++) {
4717 				ct = &ioc->chain_lookup[i].chains_per_smid[j];
4718 				ct->chain_buffer =
4719 				    ioc->pcie_sg_lookup[i].pcie_sgl +
4720 				    (j * ioc->chain_segment_sz);
4721 				ct->chain_buffer_dma =
4722 				    ioc->pcie_sg_lookup[i].pcie_sgl_dma +
4723 				    (j * ioc->chain_segment_sz);
4724 			}
4725 		}
4726 
4727 		dinitprintk(ioc, pr_info(MPT3SAS_FMT "PCIe sgl pool depth(%d), "
4728 			"element_size(%d), pool_size(%d kB)\n", ioc->name,
4729 			ioc->scsiio_depth, sz, (sz * ioc->scsiio_depth)/1024));
4730 		dinitprintk(ioc, pr_info(MPT3SAS_FMT "Number of chains can "
4731 		    "fit in a PRP page(%d)\n", ioc->name,
4732 		    ioc->chains_per_prp_buffer));
4733 		total_sz += sz * ioc->scsiio_depth;
4734 	}
4735 
4736 	ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev,
4737 	    ioc->chain_segment_sz, 16, 0);
4738 	if (!ioc->chain_dma_pool) {
4739 		pr_err(MPT3SAS_FMT "chain_dma_pool: dma_pool_create failed\n",
4740 			ioc->name);
4741 		goto out;
4742 	}
4743 	for (i = 0; i < ioc->scsiio_depth; i++) {
4744 		for (j = ioc->chains_per_prp_buffer;
4745 				j < ioc->chains_needed_per_io; j++) {
4746 			ct = &ioc->chain_lookup[i].chains_per_smid[j];
4747 			ct->chain_buffer = dma_pool_alloc(
4748 					ioc->chain_dma_pool, GFP_KERNEL,
4749 					&ct->chain_buffer_dma);
4750 			if (!ct->chain_buffer) {
4751 				pr_err(MPT3SAS_FMT "chain_lookup: "
4752 				" pci_pool_alloc failed\n", ioc->name);
4753 				_base_release_memory_pools(ioc);
4754 				goto out;
4755 			}
4756 		}
4757 		total_sz += ioc->chain_segment_sz;
4758 	}
4759 
4760 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
4761 		"chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
4762 		ioc->name, ioc->chain_depth, ioc->chain_segment_sz,
4763 		((ioc->chain_depth *  ioc->chain_segment_sz))/1024));
4764 
4765 	/* sense buffers, 4 byte align */
4766 	sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
4767 	ioc->sense_dma_pool = dma_pool_create("sense pool", &ioc->pdev->dev, sz,
4768 					      4, 0);
4769 	if (!ioc->sense_dma_pool) {
4770 		pr_err(MPT3SAS_FMT "sense pool: dma_pool_create failed\n",
4771 		    ioc->name);
4772 		goto out;
4773 	}
4774 	ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
4775 	    &ioc->sense_dma);
4776 	if (!ioc->sense) {
4777 		pr_err(MPT3SAS_FMT "sense pool: dma_pool_alloc failed\n",
4778 		    ioc->name);
4779 		goto out;
4780 	}
4781 	/* sense buffer requires to be in same 4 gb region.
4782 	 * Below function will check the same.
4783 	 * In case of failure, new pci pool will be created with updated
4784 	 * alignment. Older allocation and pool will be destroyed.
4785 	 * Alignment will be used such a way that next allocation if
4786 	 * success, will always meet same 4gb region requirement.
4787 	 * Actual requirement is not alignment, but we need start and end of
4788 	 * DMA address must have same upper 32 bit address.
4789 	 */
4790 	if (!is_MSB_are_same((long)ioc->sense, sz)) {
4791 		//Release Sense pool & Reallocate
4792 		dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
4793 		dma_pool_destroy(ioc->sense_dma_pool);
4794 		ioc->sense = NULL;
4795 
4796 		ioc->sense_dma_pool =
4797 			dma_pool_create("sense pool", &ioc->pdev->dev, sz,
4798 						roundup_pow_of_two(sz), 0);
4799 		if (!ioc->sense_dma_pool) {
4800 			pr_err(MPT3SAS_FMT "sense pool: pci_pool_create failed\n",
4801 					ioc->name);
4802 			goto out;
4803 		}
4804 		ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
4805 				&ioc->sense_dma);
4806 		if (!ioc->sense) {
4807 			pr_err(MPT3SAS_FMT "sense pool: pci_pool_alloc failed\n",
4808 					ioc->name);
4809 			goto out;
4810 		}
4811 	}
4812 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
4813 	    "sense pool(0x%p): depth(%d), element_size(%d), pool_size"
4814 	    "(%d kB)\n", ioc->name, ioc->sense, ioc->scsiio_depth,
4815 	    SCSI_SENSE_BUFFERSIZE, sz/1024));
4816 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "sense_dma(0x%llx)\n",
4817 	    ioc->name, (unsigned long long)ioc->sense_dma));
4818 	total_sz += sz;
4819 
4820 	/* reply pool, 4 byte align */
4821 	sz = ioc->reply_free_queue_depth * ioc->reply_sz;
4822 	ioc->reply_dma_pool = dma_pool_create("reply pool", &ioc->pdev->dev, sz,
4823 					      4, 0);
4824 	if (!ioc->reply_dma_pool) {
4825 		pr_err(MPT3SAS_FMT "reply pool: dma_pool_create failed\n",
4826 		    ioc->name);
4827 		goto out;
4828 	}
4829 	ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL,
4830 	    &ioc->reply_dma);
4831 	if (!ioc->reply) {
4832 		pr_err(MPT3SAS_FMT "reply pool: dma_pool_alloc failed\n",
4833 		    ioc->name);
4834 		goto out;
4835 	}
4836 	ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
4837 	ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
4838 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
4839 		"reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
4840 		ioc->name, ioc->reply,
4841 	    ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024));
4842 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_dma(0x%llx)\n",
4843 	    ioc->name, (unsigned long long)ioc->reply_dma));
4844 	total_sz += sz;
4845 
4846 	/* reply free queue, 16 byte align */
4847 	sz = ioc->reply_free_queue_depth * 4;
4848 	ioc->reply_free_dma_pool = dma_pool_create("reply_free pool",
4849 	    &ioc->pdev->dev, sz, 16, 0);
4850 	if (!ioc->reply_free_dma_pool) {
4851 		pr_err(MPT3SAS_FMT "reply_free pool: dma_pool_create failed\n",
4852 			ioc->name);
4853 		goto out;
4854 	}
4855 	ioc->reply_free = dma_pool_alloc(ioc->reply_free_dma_pool, GFP_KERNEL,
4856 	    &ioc->reply_free_dma);
4857 	if (!ioc->reply_free) {
4858 		pr_err(MPT3SAS_FMT "reply_free pool: dma_pool_alloc failed\n",
4859 			ioc->name);
4860 		goto out;
4861 	}
4862 	memset(ioc->reply_free, 0, sz);
4863 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_free pool(0x%p): " \
4864 	    "depth(%d), element_size(%d), pool_size(%d kB)\n", ioc->name,
4865 	    ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
4866 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
4867 		"reply_free_dma (0x%llx)\n",
4868 		ioc->name, (unsigned long long)ioc->reply_free_dma));
4869 	total_sz += sz;
4870 
4871 	if (ioc->rdpq_array_enable) {
4872 		reply_post_free_array_sz = ioc->reply_queue_count *
4873 		    sizeof(Mpi2IOCInitRDPQArrayEntry);
4874 		ioc->reply_post_free_array_dma_pool =
4875 		    dma_pool_create("reply_post_free_array pool",
4876 		    &ioc->pdev->dev, reply_post_free_array_sz, 16, 0);
4877 		if (!ioc->reply_post_free_array_dma_pool) {
4878 			dinitprintk(ioc,
4879 			    pr_info(MPT3SAS_FMT "reply_post_free_array pool: "
4880 			    "dma_pool_create failed\n", ioc->name));
4881 			goto out;
4882 		}
4883 		ioc->reply_post_free_array =
4884 		    dma_pool_alloc(ioc->reply_post_free_array_dma_pool,
4885 		    GFP_KERNEL, &ioc->reply_post_free_array_dma);
4886 		if (!ioc->reply_post_free_array) {
4887 			dinitprintk(ioc,
4888 			    pr_info(MPT3SAS_FMT "reply_post_free_array pool: "
4889 			    "dma_pool_alloc failed\n", ioc->name));
4890 			goto out;
4891 		}
4892 	}
4893 	ioc->config_page_sz = 512;
4894 	ioc->config_page = pci_alloc_consistent(ioc->pdev,
4895 	    ioc->config_page_sz, &ioc->config_page_dma);
4896 	if (!ioc->config_page) {
4897 		pr_err(MPT3SAS_FMT
4898 			"config page: dma_pool_alloc failed\n",
4899 			ioc->name);
4900 		goto out;
4901 	}
4902 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
4903 		"config page(0x%p): size(%d)\n",
4904 		ioc->name, ioc->config_page, ioc->config_page_sz));
4905 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "config_page_dma(0x%llx)\n",
4906 		ioc->name, (unsigned long long)ioc->config_page_dma));
4907 	total_sz += ioc->config_page_sz;
4908 
4909 	pr_info(MPT3SAS_FMT "Allocated physical memory: size(%d kB)\n",
4910 	    ioc->name, total_sz/1024);
4911 	pr_info(MPT3SAS_FMT
4912 		"Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
4913 	    ioc->name, ioc->shost->can_queue, facts->RequestCredit);
4914 	pr_info(MPT3SAS_FMT "Scatter Gather Elements per IO(%d)\n",
4915 	    ioc->name, ioc->shost->sg_tablesize);
4916 	return 0;
4917 
4918  out:
4919 	return -ENOMEM;
4920 }
4921 
4922 /**
4923  * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
4924  * @ioc: Pointer to MPT_ADAPTER structure
4925  * @cooked: Request raw or cooked IOC state
4926  *
4927  * Return: all IOC Doorbell register bits if cooked==0, else just the
4928  * Doorbell bits in MPI_IOC_STATE_MASK.
4929  */
4930 u32
4931 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
4932 {
4933 	u32 s, sc;
4934 
4935 	s = readl(&ioc->chip->Doorbell);
4936 	sc = s & MPI2_IOC_STATE_MASK;
4937 	return cooked ? sc : s;
4938 }
4939 
4940 /**
4941  * _base_wait_on_iocstate - waiting on a particular ioc state
4942  * @ioc: ?
4943  * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
4944  * @timeout: timeout in second
4945  *
4946  * Return: 0 for success, non-zero for failure.
4947  */
4948 static int
4949 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
4950 {
4951 	u32 count, cntdn;
4952 	u32 current_state;
4953 
4954 	count = 0;
4955 	cntdn = 1000 * timeout;
4956 	do {
4957 		current_state = mpt3sas_base_get_iocstate(ioc, 1);
4958 		if (current_state == ioc_state)
4959 			return 0;
4960 		if (count && current_state == MPI2_IOC_STATE_FAULT)
4961 			break;
4962 
4963 		usleep_range(1000, 1500);
4964 		count++;
4965 	} while (--cntdn);
4966 
4967 	return current_state;
4968 }
4969 
4970 /**
4971  * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
4972  * a write to the doorbell)
4973  * @ioc: per adapter object
4974  *
4975  * Return: 0 for success, non-zero for failure.
4976  *
4977  * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
4978  */
4979 static int
4980 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
4981 
4982 static int
4983 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
4984 {
4985 	u32 cntdn, count;
4986 	u32 int_status;
4987 
4988 	count = 0;
4989 	cntdn = 1000 * timeout;
4990 	do {
4991 		int_status = readl(&ioc->chip->HostInterruptStatus);
4992 		if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
4993 			dhsprintk(ioc, pr_info(MPT3SAS_FMT
4994 				"%s: successful count(%d), timeout(%d)\n",
4995 				ioc->name, __func__, count, timeout));
4996 			return 0;
4997 		}
4998 
4999 		usleep_range(1000, 1500);
5000 		count++;
5001 	} while (--cntdn);
5002 
5003 	pr_err(MPT3SAS_FMT
5004 		"%s: failed due to timeout count(%d), int_status(%x)!\n",
5005 		ioc->name, __func__, count, int_status);
5006 	return -EFAULT;
5007 }
5008 
5009 static int
5010 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
5011 {
5012 	u32 cntdn, count;
5013 	u32 int_status;
5014 
5015 	count = 0;
5016 	cntdn = 2000 * timeout;
5017 	do {
5018 		int_status = readl(&ioc->chip->HostInterruptStatus);
5019 		if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5020 			dhsprintk(ioc, pr_info(MPT3SAS_FMT
5021 				"%s: successful count(%d), timeout(%d)\n",
5022 				ioc->name, __func__, count, timeout));
5023 			return 0;
5024 		}
5025 
5026 		udelay(500);
5027 		count++;
5028 	} while (--cntdn);
5029 
5030 	pr_err(MPT3SAS_FMT
5031 		"%s: failed due to timeout count(%d), int_status(%x)!\n",
5032 		ioc->name, __func__, count, int_status);
5033 	return -EFAULT;
5034 
5035 }
5036 
5037 /**
5038  * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
5039  * @ioc: per adapter object
5040  * @timeout: timeout in second
5041  *
5042  * Return: 0 for success, non-zero for failure.
5043  *
5044  * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
5045  * doorbell.
5046  */
5047 static int
5048 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
5049 {
5050 	u32 cntdn, count;
5051 	u32 int_status;
5052 	u32 doorbell;
5053 
5054 	count = 0;
5055 	cntdn = 1000 * timeout;
5056 	do {
5057 		int_status = readl(&ioc->chip->HostInterruptStatus);
5058 		if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
5059 			dhsprintk(ioc, pr_info(MPT3SAS_FMT
5060 				"%s: successful count(%d), timeout(%d)\n",
5061 				ioc->name, __func__, count, timeout));
5062 			return 0;
5063 		} else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5064 			doorbell = readl(&ioc->chip->Doorbell);
5065 			if ((doorbell & MPI2_IOC_STATE_MASK) ==
5066 			    MPI2_IOC_STATE_FAULT) {
5067 				mpt3sas_base_fault_info(ioc , doorbell);
5068 				return -EFAULT;
5069 			}
5070 		} else if (int_status == 0xFFFFFFFF)
5071 			goto out;
5072 
5073 		usleep_range(1000, 1500);
5074 		count++;
5075 	} while (--cntdn);
5076 
5077  out:
5078 	pr_err(MPT3SAS_FMT
5079 	 "%s: failed due to timeout count(%d), int_status(%x)!\n",
5080 	 ioc->name, __func__, count, int_status);
5081 	return -EFAULT;
5082 }
5083 
5084 /**
5085  * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
5086  * @ioc: per adapter object
5087  * @timeout: timeout in second
5088  *
5089  * Return: 0 for success, non-zero for failure.
5090  */
5091 static int
5092 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
5093 {
5094 	u32 cntdn, count;
5095 	u32 doorbell_reg;
5096 
5097 	count = 0;
5098 	cntdn = 1000 * timeout;
5099 	do {
5100 		doorbell_reg = readl(&ioc->chip->Doorbell);
5101 		if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
5102 			dhsprintk(ioc, pr_info(MPT3SAS_FMT
5103 				"%s: successful count(%d), timeout(%d)\n",
5104 				ioc->name, __func__, count, timeout));
5105 			return 0;
5106 		}
5107 
5108 		usleep_range(1000, 1500);
5109 		count++;
5110 	} while (--cntdn);
5111 
5112 	pr_err(MPT3SAS_FMT
5113 		"%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
5114 		ioc->name, __func__, count, doorbell_reg);
5115 	return -EFAULT;
5116 }
5117 
5118 /**
5119  * _base_send_ioc_reset - send doorbell reset
5120  * @ioc: per adapter object
5121  * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
5122  * @timeout: timeout in second
5123  *
5124  * Return: 0 for success, non-zero for failure.
5125  */
5126 static int
5127 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
5128 {
5129 	u32 ioc_state;
5130 	int r = 0;
5131 
5132 	if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
5133 		pr_err(MPT3SAS_FMT "%s: unknown reset_type\n",
5134 		    ioc->name, __func__);
5135 		return -EFAULT;
5136 	}
5137 
5138 	if (!(ioc->facts.IOCCapabilities &
5139 	   MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
5140 		return -EFAULT;
5141 
5142 	pr_info(MPT3SAS_FMT "sending message unit reset !!\n", ioc->name);
5143 
5144 	writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
5145 	    &ioc->chip->Doorbell);
5146 	if ((_base_wait_for_doorbell_ack(ioc, 15))) {
5147 		r = -EFAULT;
5148 		goto out;
5149 	}
5150 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
5151 	if (ioc_state) {
5152 		pr_err(MPT3SAS_FMT
5153 			"%s: failed going to ready state (ioc_state=0x%x)\n",
5154 			ioc->name, __func__, ioc_state);
5155 		r = -EFAULT;
5156 		goto out;
5157 	}
5158  out:
5159 	pr_info(MPT3SAS_FMT "message unit reset: %s\n",
5160 	    ioc->name, ((r == 0) ? "SUCCESS" : "FAILED"));
5161 	return r;
5162 }
5163 
5164 /**
5165  * _base_handshake_req_reply_wait - send request thru doorbell interface
5166  * @ioc: per adapter object
5167  * @request_bytes: request length
5168  * @request: pointer having request payload
5169  * @reply_bytes: reply length
5170  * @reply: pointer to reply payload
5171  * @timeout: timeout in second
5172  *
5173  * Return: 0 for success, non-zero for failure.
5174  */
5175 static int
5176 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
5177 	u32 *request, int reply_bytes, u16 *reply, int timeout)
5178 {
5179 	MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
5180 	int i;
5181 	u8 failed;
5182 	__le32 *mfp;
5183 
5184 	/* make sure doorbell is not in use */
5185 	if ((readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
5186 		pr_err(MPT3SAS_FMT
5187 			"doorbell is in use (line=%d)\n",
5188 			ioc->name, __LINE__);
5189 		return -EFAULT;
5190 	}
5191 
5192 	/* clear pending doorbell interrupts from previous state changes */
5193 	if (readl(&ioc->chip->HostInterruptStatus) &
5194 	    MPI2_HIS_IOC2SYS_DB_STATUS)
5195 		writel(0, &ioc->chip->HostInterruptStatus);
5196 
5197 	/* send message to ioc */
5198 	writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
5199 	    ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
5200 	    &ioc->chip->Doorbell);
5201 
5202 	if ((_base_spin_on_doorbell_int(ioc, 5))) {
5203 		pr_err(MPT3SAS_FMT
5204 			"doorbell handshake int failed (line=%d)\n",
5205 			ioc->name, __LINE__);
5206 		return -EFAULT;
5207 	}
5208 	writel(0, &ioc->chip->HostInterruptStatus);
5209 
5210 	if ((_base_wait_for_doorbell_ack(ioc, 5))) {
5211 		pr_err(MPT3SAS_FMT
5212 			"doorbell handshake ack failed (line=%d)\n",
5213 			ioc->name, __LINE__);
5214 		return -EFAULT;
5215 	}
5216 
5217 	/* send message 32-bits at a time */
5218 	for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
5219 		writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
5220 		if ((_base_wait_for_doorbell_ack(ioc, 5)))
5221 			failed = 1;
5222 	}
5223 
5224 	if (failed) {
5225 		pr_err(MPT3SAS_FMT
5226 			"doorbell handshake sending request failed (line=%d)\n",
5227 			ioc->name, __LINE__);
5228 		return -EFAULT;
5229 	}
5230 
5231 	/* now wait for the reply */
5232 	if ((_base_wait_for_doorbell_int(ioc, timeout))) {
5233 		pr_err(MPT3SAS_FMT
5234 			"doorbell handshake int failed (line=%d)\n",
5235 			ioc->name, __LINE__);
5236 		return -EFAULT;
5237 	}
5238 
5239 	/* read the first two 16-bits, it gives the total length of the reply */
5240 	reply[0] = le16_to_cpu(readl(&ioc->chip->Doorbell)
5241 	    & MPI2_DOORBELL_DATA_MASK);
5242 	writel(0, &ioc->chip->HostInterruptStatus);
5243 	if ((_base_wait_for_doorbell_int(ioc, 5))) {
5244 		pr_err(MPT3SAS_FMT
5245 			"doorbell handshake int failed (line=%d)\n",
5246 			ioc->name, __LINE__);
5247 		return -EFAULT;
5248 	}
5249 	reply[1] = le16_to_cpu(readl(&ioc->chip->Doorbell)
5250 	    & MPI2_DOORBELL_DATA_MASK);
5251 	writel(0, &ioc->chip->HostInterruptStatus);
5252 
5253 	for (i = 2; i < default_reply->MsgLength * 2; i++)  {
5254 		if ((_base_wait_for_doorbell_int(ioc, 5))) {
5255 			pr_err(MPT3SAS_FMT
5256 				"doorbell handshake int failed (line=%d)\n",
5257 				ioc->name, __LINE__);
5258 			return -EFAULT;
5259 		}
5260 		if (i >=  reply_bytes/2) /* overflow case */
5261 			readl(&ioc->chip->Doorbell);
5262 		else
5263 			reply[i] = le16_to_cpu(readl(&ioc->chip->Doorbell)
5264 			    & MPI2_DOORBELL_DATA_MASK);
5265 		writel(0, &ioc->chip->HostInterruptStatus);
5266 	}
5267 
5268 	_base_wait_for_doorbell_int(ioc, 5);
5269 	if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
5270 		dhsprintk(ioc, pr_info(MPT3SAS_FMT
5271 			"doorbell is in use (line=%d)\n", ioc->name, __LINE__));
5272 	}
5273 	writel(0, &ioc->chip->HostInterruptStatus);
5274 
5275 	if (ioc->logging_level & MPT_DEBUG_INIT) {
5276 		mfp = (__le32 *)reply;
5277 		pr_info("\toffset:data\n");
5278 		for (i = 0; i < reply_bytes/4; i++)
5279 			pr_info("\t[0x%02x]:%08x\n", i*4,
5280 			    le32_to_cpu(mfp[i]));
5281 	}
5282 	return 0;
5283 }
5284 
5285 /**
5286  * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
5287  * @ioc: per adapter object
5288  * @mpi_reply: the reply payload from FW
5289  * @mpi_request: the request payload sent to FW
5290  *
5291  * The SAS IO Unit Control Request message allows the host to perform low-level
5292  * operations, such as resets on the PHYs of the IO Unit, also allows the host
5293  * to obtain the IOC assigned device handles for a device if it has other
5294  * identifying information about the device, in addition allows the host to
5295  * remove IOC resources associated with the device.
5296  *
5297  * Return: 0 for success, non-zero for failure.
5298  */
5299 int
5300 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
5301 	Mpi2SasIoUnitControlReply_t *mpi_reply,
5302 	Mpi2SasIoUnitControlRequest_t *mpi_request)
5303 {
5304 	u16 smid;
5305 	u32 ioc_state;
5306 	u8 issue_reset = 0;
5307 	int rc;
5308 	void *request;
5309 	u16 wait_state_count;
5310 
5311 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5312 	    __func__));
5313 
5314 	mutex_lock(&ioc->base_cmds.mutex);
5315 
5316 	if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
5317 		pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
5318 		    ioc->name, __func__);
5319 		rc = -EAGAIN;
5320 		goto out;
5321 	}
5322 
5323 	wait_state_count = 0;
5324 	ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
5325 	while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
5326 		if (wait_state_count++ == 10) {
5327 			pr_err(MPT3SAS_FMT
5328 			    "%s: failed due to ioc not operational\n",
5329 			    ioc->name, __func__);
5330 			rc = -EFAULT;
5331 			goto out;
5332 		}
5333 		ssleep(1);
5334 		ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
5335 		pr_info(MPT3SAS_FMT
5336 			"%s: waiting for operational state(count=%d)\n",
5337 			ioc->name, __func__, wait_state_count);
5338 	}
5339 
5340 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
5341 	if (!smid) {
5342 		pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
5343 		    ioc->name, __func__);
5344 		rc = -EAGAIN;
5345 		goto out;
5346 	}
5347 
5348 	rc = 0;
5349 	ioc->base_cmds.status = MPT3_CMD_PENDING;
5350 	request = mpt3sas_base_get_msg_frame(ioc, smid);
5351 	ioc->base_cmds.smid = smid;
5352 	memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
5353 	if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
5354 	    mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
5355 		ioc->ioc_link_reset_in_progress = 1;
5356 	init_completion(&ioc->base_cmds.done);
5357 	mpt3sas_base_put_smid_default(ioc, smid);
5358 	wait_for_completion_timeout(&ioc->base_cmds.done,
5359 	    msecs_to_jiffies(10000));
5360 	if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
5361 	    mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
5362 	    ioc->ioc_link_reset_in_progress)
5363 		ioc->ioc_link_reset_in_progress = 0;
5364 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
5365 		issue_reset =
5366 			mpt3sas_base_check_cmd_timeout(ioc,
5367 				ioc->base_cmds.status, mpi_request,
5368 				sizeof(Mpi2SasIoUnitControlRequest_t)/4);
5369 		goto issue_host_reset;
5370 	}
5371 	if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
5372 		memcpy(mpi_reply, ioc->base_cmds.reply,
5373 		    sizeof(Mpi2SasIoUnitControlReply_t));
5374 	else
5375 		memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
5376 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5377 	goto out;
5378 
5379  issue_host_reset:
5380 	if (issue_reset)
5381 		mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
5382 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5383 	rc = -EFAULT;
5384  out:
5385 	mutex_unlock(&ioc->base_cmds.mutex);
5386 	return rc;
5387 }
5388 
5389 /**
5390  * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
5391  * @ioc: per adapter object
5392  * @mpi_reply: the reply payload from FW
5393  * @mpi_request: the request payload sent to FW
5394  *
5395  * The SCSI Enclosure Processor request message causes the IOC to
5396  * communicate with SES devices to control LED status signals.
5397  *
5398  * Return: 0 for success, non-zero for failure.
5399  */
5400 int
5401 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
5402 	Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
5403 {
5404 	u16 smid;
5405 	u32 ioc_state;
5406 	u8 issue_reset = 0;
5407 	int rc;
5408 	void *request;
5409 	u16 wait_state_count;
5410 
5411 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5412 	    __func__));
5413 
5414 	mutex_lock(&ioc->base_cmds.mutex);
5415 
5416 	if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
5417 		pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
5418 		    ioc->name, __func__);
5419 		rc = -EAGAIN;
5420 		goto out;
5421 	}
5422 
5423 	wait_state_count = 0;
5424 	ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
5425 	while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
5426 		if (wait_state_count++ == 10) {
5427 			pr_err(MPT3SAS_FMT
5428 			    "%s: failed due to ioc not operational\n",
5429 			    ioc->name, __func__);
5430 			rc = -EFAULT;
5431 			goto out;
5432 		}
5433 		ssleep(1);
5434 		ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
5435 		pr_info(MPT3SAS_FMT
5436 			"%s: waiting for operational state(count=%d)\n",
5437 			ioc->name,
5438 		    __func__, wait_state_count);
5439 	}
5440 
5441 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
5442 	if (!smid) {
5443 		pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
5444 		    ioc->name, __func__);
5445 		rc = -EAGAIN;
5446 		goto out;
5447 	}
5448 
5449 	rc = 0;
5450 	ioc->base_cmds.status = MPT3_CMD_PENDING;
5451 	request = mpt3sas_base_get_msg_frame(ioc, smid);
5452 	ioc->base_cmds.smid = smid;
5453 	memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
5454 	init_completion(&ioc->base_cmds.done);
5455 	mpt3sas_base_put_smid_default(ioc, smid);
5456 	wait_for_completion_timeout(&ioc->base_cmds.done,
5457 	    msecs_to_jiffies(10000));
5458 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
5459 		issue_reset =
5460 			mpt3sas_base_check_cmd_timeout(ioc,
5461 				ioc->base_cmds.status, mpi_request,
5462 				sizeof(Mpi2SepRequest_t)/4);
5463 		goto issue_host_reset;
5464 	}
5465 	if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
5466 		memcpy(mpi_reply, ioc->base_cmds.reply,
5467 		    sizeof(Mpi2SepReply_t));
5468 	else
5469 		memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
5470 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5471 	goto out;
5472 
5473  issue_host_reset:
5474 	if (issue_reset)
5475 		mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
5476 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5477 	rc = -EFAULT;
5478  out:
5479 	mutex_unlock(&ioc->base_cmds.mutex);
5480 	return rc;
5481 }
5482 
5483 /**
5484  * _base_get_port_facts - obtain port facts reply and save in ioc
5485  * @ioc: per adapter object
5486  * @port: ?
5487  *
5488  * Return: 0 for success, non-zero for failure.
5489  */
5490 static int
5491 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
5492 {
5493 	Mpi2PortFactsRequest_t mpi_request;
5494 	Mpi2PortFactsReply_t mpi_reply;
5495 	struct mpt3sas_port_facts *pfacts;
5496 	int mpi_reply_sz, mpi_request_sz, r;
5497 
5498 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5499 	    __func__));
5500 
5501 	mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
5502 	mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
5503 	memset(&mpi_request, 0, mpi_request_sz);
5504 	mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
5505 	mpi_request.PortNumber = port;
5506 	r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
5507 	    (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
5508 
5509 	if (r != 0) {
5510 		pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
5511 		    ioc->name, __func__, r);
5512 		return r;
5513 	}
5514 
5515 	pfacts = &ioc->pfacts[port];
5516 	memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
5517 	pfacts->PortNumber = mpi_reply.PortNumber;
5518 	pfacts->VP_ID = mpi_reply.VP_ID;
5519 	pfacts->VF_ID = mpi_reply.VF_ID;
5520 	pfacts->MaxPostedCmdBuffers =
5521 	    le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
5522 
5523 	return 0;
5524 }
5525 
5526 /**
5527  * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
5528  * @ioc: per adapter object
5529  * @timeout:
5530  *
5531  * Return: 0 for success, non-zero for failure.
5532  */
5533 static int
5534 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
5535 {
5536 	u32 ioc_state;
5537 	int rc;
5538 
5539 	dinitprintk(ioc, printk(MPT3SAS_FMT "%s\n", ioc->name,
5540 	    __func__));
5541 
5542 	if (ioc->pci_error_recovery) {
5543 		dfailprintk(ioc, printk(MPT3SAS_FMT
5544 		    "%s: host in pci error recovery\n", ioc->name, __func__));
5545 		return -EFAULT;
5546 	}
5547 
5548 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5549 	dhsprintk(ioc, printk(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
5550 	    ioc->name, __func__, ioc_state));
5551 
5552 	if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
5553 	    (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
5554 		return 0;
5555 
5556 	if (ioc_state & MPI2_DOORBELL_USED) {
5557 		dhsprintk(ioc, printk(MPT3SAS_FMT
5558 		    "unexpected doorbell active!\n", ioc->name));
5559 		goto issue_diag_reset;
5560 	}
5561 
5562 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
5563 		mpt3sas_base_fault_info(ioc, ioc_state &
5564 		    MPI2_DOORBELL_DATA_MASK);
5565 		goto issue_diag_reset;
5566 	}
5567 
5568 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
5569 	if (ioc_state) {
5570 		dfailprintk(ioc, printk(MPT3SAS_FMT
5571 		    "%s: failed going to ready state (ioc_state=0x%x)\n",
5572 		    ioc->name, __func__, ioc_state));
5573 		return -EFAULT;
5574 	}
5575 
5576  issue_diag_reset:
5577 	rc = _base_diag_reset(ioc);
5578 	return rc;
5579 }
5580 
5581 /**
5582  * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
5583  * @ioc: per adapter object
5584  *
5585  * Return: 0 for success, non-zero for failure.
5586  */
5587 static int
5588 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
5589 {
5590 	Mpi2IOCFactsRequest_t mpi_request;
5591 	Mpi2IOCFactsReply_t mpi_reply;
5592 	struct mpt3sas_facts *facts;
5593 	int mpi_reply_sz, mpi_request_sz, r;
5594 
5595 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5596 	    __func__));
5597 
5598 	r = _base_wait_for_iocstate(ioc, 10);
5599 	if (r) {
5600 		dfailprintk(ioc, printk(MPT3SAS_FMT
5601 		    "%s: failed getting to correct state\n",
5602 		    ioc->name, __func__));
5603 		return r;
5604 	}
5605 	mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
5606 	mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
5607 	memset(&mpi_request, 0, mpi_request_sz);
5608 	mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
5609 	r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
5610 	    (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
5611 
5612 	if (r != 0) {
5613 		pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
5614 		    ioc->name, __func__, r);
5615 		return r;
5616 	}
5617 
5618 	facts = &ioc->facts;
5619 	memset(facts, 0, sizeof(struct mpt3sas_facts));
5620 	facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
5621 	facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
5622 	facts->VP_ID = mpi_reply.VP_ID;
5623 	facts->VF_ID = mpi_reply.VF_ID;
5624 	facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
5625 	facts->MaxChainDepth = mpi_reply.MaxChainDepth;
5626 	facts->WhoInit = mpi_reply.WhoInit;
5627 	facts->NumberOfPorts = mpi_reply.NumberOfPorts;
5628 	facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
5629 	if (ioc->msix_enable && (facts->MaxMSIxVectors <=
5630 	    MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc)))
5631 		ioc->combined_reply_queue = 0;
5632 	facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
5633 	facts->MaxReplyDescriptorPostQueueDepth =
5634 	    le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
5635 	facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
5636 	facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
5637 	if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
5638 		ioc->ir_firmware = 1;
5639 	if ((facts->IOCCapabilities &
5640 	      MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices))
5641 		ioc->rdpq_array_capable = 1;
5642 	facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
5643 	facts->IOCRequestFrameSize =
5644 	    le16_to_cpu(mpi_reply.IOCRequestFrameSize);
5645 	if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
5646 		facts->IOCMaxChainSegmentSize =
5647 			le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
5648 	}
5649 	facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
5650 	facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
5651 	ioc->shost->max_id = -1;
5652 	facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
5653 	facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
5654 	facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
5655 	facts->HighPriorityCredit =
5656 	    le16_to_cpu(mpi_reply.HighPriorityCredit);
5657 	facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
5658 	facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
5659 	facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize;
5660 
5661 	/*
5662 	 * Get the Page Size from IOC Facts. If it's 0, default to 4k.
5663 	 */
5664 	ioc->page_size = 1 << facts->CurrentHostPageSize;
5665 	if (ioc->page_size == 1) {
5666 		pr_info(MPT3SAS_FMT "CurrentHostPageSize is 0: Setting "
5667 			"default host page size to 4k\n", ioc->name);
5668 		ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K;
5669 	}
5670 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "CurrentHostPageSize(%d)\n",
5671 		ioc->name, facts->CurrentHostPageSize));
5672 
5673 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
5674 		"hba queue depth(%d), max chains per io(%d)\n",
5675 		ioc->name, facts->RequestCredit,
5676 	    facts->MaxChainDepth));
5677 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
5678 		"request frame size(%d), reply frame size(%d)\n", ioc->name,
5679 	    facts->IOCRequestFrameSize * 4, facts->ReplyFrameSize * 4));
5680 	return 0;
5681 }
5682 
5683 /**
5684  * _base_send_ioc_init - send ioc_init to firmware
5685  * @ioc: per adapter object
5686  *
5687  * Return: 0 for success, non-zero for failure.
5688  */
5689 static int
5690 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
5691 {
5692 	Mpi2IOCInitRequest_t mpi_request;
5693 	Mpi2IOCInitReply_t mpi_reply;
5694 	int i, r = 0;
5695 	ktime_t current_time;
5696 	u16 ioc_status;
5697 	u32 reply_post_free_array_sz = 0;
5698 
5699 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5700 	    __func__));
5701 
5702 	memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
5703 	mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
5704 	mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
5705 	mpi_request.VF_ID = 0; /* TODO */
5706 	mpi_request.VP_ID = 0;
5707 	mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
5708 	mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
5709 	mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K;
5710 
5711 	if (_base_is_controller_msix_enabled(ioc))
5712 		mpi_request.HostMSIxVectors = ioc->reply_queue_count;
5713 	mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
5714 	mpi_request.ReplyDescriptorPostQueueDepth =
5715 	    cpu_to_le16(ioc->reply_post_queue_depth);
5716 	mpi_request.ReplyFreeQueueDepth =
5717 	    cpu_to_le16(ioc->reply_free_queue_depth);
5718 
5719 	mpi_request.SenseBufferAddressHigh =
5720 	    cpu_to_le32((u64)ioc->sense_dma >> 32);
5721 	mpi_request.SystemReplyAddressHigh =
5722 	    cpu_to_le32((u64)ioc->reply_dma >> 32);
5723 	mpi_request.SystemRequestFrameBaseAddress =
5724 	    cpu_to_le64((u64)ioc->request_dma);
5725 	mpi_request.ReplyFreeQueueAddress =
5726 	    cpu_to_le64((u64)ioc->reply_free_dma);
5727 
5728 	if (ioc->rdpq_array_enable) {
5729 		reply_post_free_array_sz = ioc->reply_queue_count *
5730 		    sizeof(Mpi2IOCInitRDPQArrayEntry);
5731 		memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz);
5732 		for (i = 0; i < ioc->reply_queue_count; i++)
5733 			ioc->reply_post_free_array[i].RDPQBaseAddress =
5734 			    cpu_to_le64(
5735 				(u64)ioc->reply_post[i].reply_post_free_dma);
5736 		mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
5737 		mpi_request.ReplyDescriptorPostQueueAddress =
5738 		    cpu_to_le64((u64)ioc->reply_post_free_array_dma);
5739 	} else {
5740 		mpi_request.ReplyDescriptorPostQueueAddress =
5741 		    cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
5742 	}
5743 
5744 	/* This time stamp specifies number of milliseconds
5745 	 * since epoch ~ midnight January 1, 1970.
5746 	 */
5747 	current_time = ktime_get_real();
5748 	mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
5749 
5750 	if (ioc->logging_level & MPT_DEBUG_INIT) {
5751 		__le32 *mfp;
5752 		int i;
5753 
5754 		mfp = (__le32 *)&mpi_request;
5755 		pr_info("\toffset:data\n");
5756 		for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
5757 			pr_info("\t[0x%02x]:%08x\n", i*4,
5758 			    le32_to_cpu(mfp[i]));
5759 	}
5760 
5761 	r = _base_handshake_req_reply_wait(ioc,
5762 	    sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
5763 	    sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10);
5764 
5765 	if (r != 0) {
5766 		pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
5767 		    ioc->name, __func__, r);
5768 		return r;
5769 	}
5770 
5771 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
5772 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
5773 	    mpi_reply.IOCLogInfo) {
5774 		pr_err(MPT3SAS_FMT "%s: failed\n", ioc->name, __func__);
5775 		r = -EIO;
5776 	}
5777 
5778 	return r;
5779 }
5780 
5781 /**
5782  * mpt3sas_port_enable_done - command completion routine for port enable
5783  * @ioc: per adapter object
5784  * @smid: system request message index
5785  * @msix_index: MSIX table index supplied by the OS
5786  * @reply: reply message frame(lower 32bit addr)
5787  *
5788  * Return: 1 meaning mf should be freed from _base_interrupt
5789  *          0 means the mf is freed from this function.
5790  */
5791 u8
5792 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
5793 	u32 reply)
5794 {
5795 	MPI2DefaultReply_t *mpi_reply;
5796 	u16 ioc_status;
5797 
5798 	if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
5799 		return 1;
5800 
5801 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
5802 	if (!mpi_reply)
5803 		return 1;
5804 
5805 	if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
5806 		return 1;
5807 
5808 	ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
5809 	ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
5810 	ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
5811 	memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
5812 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
5813 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
5814 		ioc->port_enable_failed = 1;
5815 
5816 	if (ioc->is_driver_loading) {
5817 		if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
5818 			mpt3sas_port_enable_complete(ioc);
5819 			return 1;
5820 		} else {
5821 			ioc->start_scan_failed = ioc_status;
5822 			ioc->start_scan = 0;
5823 			return 1;
5824 		}
5825 	}
5826 	complete(&ioc->port_enable_cmds.done);
5827 	return 1;
5828 }
5829 
5830 /**
5831  * _base_send_port_enable - send port_enable(discovery stuff) to firmware
5832  * @ioc: per adapter object
5833  *
5834  * Return: 0 for success, non-zero for failure.
5835  */
5836 static int
5837 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
5838 {
5839 	Mpi2PortEnableRequest_t *mpi_request;
5840 	Mpi2PortEnableReply_t *mpi_reply;
5841 	int r = 0;
5842 	u16 smid;
5843 	u16 ioc_status;
5844 
5845 	pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
5846 
5847 	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
5848 		pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
5849 		    ioc->name, __func__);
5850 		return -EAGAIN;
5851 	}
5852 
5853 	smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
5854 	if (!smid) {
5855 		pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
5856 		    ioc->name, __func__);
5857 		return -EAGAIN;
5858 	}
5859 
5860 	ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
5861 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
5862 	ioc->port_enable_cmds.smid = smid;
5863 	memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
5864 	mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
5865 
5866 	init_completion(&ioc->port_enable_cmds.done);
5867 	mpt3sas_base_put_smid_default(ioc, smid);
5868 	wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
5869 	if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
5870 		pr_err(MPT3SAS_FMT "%s: timeout\n",
5871 		    ioc->name, __func__);
5872 		_debug_dump_mf(mpi_request,
5873 		    sizeof(Mpi2PortEnableRequest_t)/4);
5874 		if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
5875 			r = -EFAULT;
5876 		else
5877 			r = -ETIME;
5878 		goto out;
5879 	}
5880 
5881 	mpi_reply = ioc->port_enable_cmds.reply;
5882 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
5883 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5884 		pr_err(MPT3SAS_FMT "%s: failed with (ioc_status=0x%08x)\n",
5885 		    ioc->name, __func__, ioc_status);
5886 		r = -EFAULT;
5887 		goto out;
5888 	}
5889 
5890  out:
5891 	ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
5892 	pr_info(MPT3SAS_FMT "port enable: %s\n", ioc->name, ((r == 0) ?
5893 	    "SUCCESS" : "FAILED"));
5894 	return r;
5895 }
5896 
5897 /**
5898  * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
5899  * @ioc: per adapter object
5900  *
5901  * Return: 0 for success, non-zero for failure.
5902  */
5903 int
5904 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
5905 {
5906 	Mpi2PortEnableRequest_t *mpi_request;
5907 	u16 smid;
5908 
5909 	pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
5910 
5911 	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
5912 		pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
5913 		    ioc->name, __func__);
5914 		return -EAGAIN;
5915 	}
5916 
5917 	smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
5918 	if (!smid) {
5919 		pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
5920 		    ioc->name, __func__);
5921 		return -EAGAIN;
5922 	}
5923 
5924 	ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
5925 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
5926 	ioc->port_enable_cmds.smid = smid;
5927 	memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
5928 	mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
5929 
5930 	mpt3sas_base_put_smid_default(ioc, smid);
5931 	return 0;
5932 }
5933 
5934 /**
5935  * _base_determine_wait_on_discovery - desposition
5936  * @ioc: per adapter object
5937  *
5938  * Decide whether to wait on discovery to complete. Used to either
5939  * locate boot device, or report volumes ahead of physical devices.
5940  *
5941  * Return: 1 for wait, 0 for don't wait.
5942  */
5943 static int
5944 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
5945 {
5946 	/* We wait for discovery to complete if IR firmware is loaded.
5947 	 * The sas topology events arrive before PD events, so we need time to
5948 	 * turn on the bit in ioc->pd_handles to indicate PD
5949 	 * Also, it maybe required to report Volumes ahead of physical
5950 	 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
5951 	 */
5952 	if (ioc->ir_firmware)
5953 		return 1;
5954 
5955 	/* if no Bios, then we don't need to wait */
5956 	if (!ioc->bios_pg3.BiosVersion)
5957 		return 0;
5958 
5959 	/* Bios is present, then we drop down here.
5960 	 *
5961 	 * If there any entries in the Bios Page 2, then we wait
5962 	 * for discovery to complete.
5963 	 */
5964 
5965 	/* Current Boot Device */
5966 	if ((ioc->bios_pg2.CurrentBootDeviceForm &
5967 	    MPI2_BIOSPAGE2_FORM_MASK) ==
5968 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
5969 	/* Request Boot Device */
5970 	   (ioc->bios_pg2.ReqBootDeviceForm &
5971 	    MPI2_BIOSPAGE2_FORM_MASK) ==
5972 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
5973 	/* Alternate Request Boot Device */
5974 	   (ioc->bios_pg2.ReqAltBootDeviceForm &
5975 	    MPI2_BIOSPAGE2_FORM_MASK) ==
5976 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
5977 		return 0;
5978 
5979 	return 1;
5980 }
5981 
5982 /**
5983  * _base_unmask_events - turn on notification for this event
5984  * @ioc: per adapter object
5985  * @event: firmware event
5986  *
5987  * The mask is stored in ioc->event_masks.
5988  */
5989 static void
5990 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
5991 {
5992 	u32 desired_event;
5993 
5994 	if (event >= 128)
5995 		return;
5996 
5997 	desired_event = (1 << (event % 32));
5998 
5999 	if (event < 32)
6000 		ioc->event_masks[0] &= ~desired_event;
6001 	else if (event < 64)
6002 		ioc->event_masks[1] &= ~desired_event;
6003 	else if (event < 96)
6004 		ioc->event_masks[2] &= ~desired_event;
6005 	else if (event < 128)
6006 		ioc->event_masks[3] &= ~desired_event;
6007 }
6008 
6009 /**
6010  * _base_event_notification - send event notification
6011  * @ioc: per adapter object
6012  *
6013  * Return: 0 for success, non-zero for failure.
6014  */
6015 static int
6016 _base_event_notification(struct MPT3SAS_ADAPTER *ioc)
6017 {
6018 	Mpi2EventNotificationRequest_t *mpi_request;
6019 	u16 smid;
6020 	int r = 0;
6021 	int i;
6022 
6023 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
6024 	    __func__));
6025 
6026 	if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
6027 		pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
6028 		    ioc->name, __func__);
6029 		return -EAGAIN;
6030 	}
6031 
6032 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
6033 	if (!smid) {
6034 		pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
6035 		    ioc->name, __func__);
6036 		return -EAGAIN;
6037 	}
6038 	ioc->base_cmds.status = MPT3_CMD_PENDING;
6039 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
6040 	ioc->base_cmds.smid = smid;
6041 	memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
6042 	mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
6043 	mpi_request->VF_ID = 0; /* TODO */
6044 	mpi_request->VP_ID = 0;
6045 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
6046 		mpi_request->EventMasks[i] =
6047 		    cpu_to_le32(ioc->event_masks[i]);
6048 	init_completion(&ioc->base_cmds.done);
6049 	mpt3sas_base_put_smid_default(ioc, smid);
6050 	wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
6051 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
6052 		pr_err(MPT3SAS_FMT "%s: timeout\n",
6053 		    ioc->name, __func__);
6054 		_debug_dump_mf(mpi_request,
6055 		    sizeof(Mpi2EventNotificationRequest_t)/4);
6056 		if (ioc->base_cmds.status & MPT3_CMD_RESET)
6057 			r = -EFAULT;
6058 		else
6059 			r = -ETIME;
6060 	} else
6061 		dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s: complete\n",
6062 		    ioc->name, __func__));
6063 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6064 	return r;
6065 }
6066 
6067 /**
6068  * mpt3sas_base_validate_event_type - validating event types
6069  * @ioc: per adapter object
6070  * @event_type: firmware event
6071  *
6072  * This will turn on firmware event notification when application
6073  * ask for that event. We don't mask events that are already enabled.
6074  */
6075 void
6076 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
6077 {
6078 	int i, j;
6079 	u32 event_mask, desired_event;
6080 	u8 send_update_to_fw;
6081 
6082 	for (i = 0, send_update_to_fw = 0; i <
6083 	    MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
6084 		event_mask = ~event_type[i];
6085 		desired_event = 1;
6086 		for (j = 0; j < 32; j++) {
6087 			if (!(event_mask & desired_event) &&
6088 			    (ioc->event_masks[i] & desired_event)) {
6089 				ioc->event_masks[i] &= ~desired_event;
6090 				send_update_to_fw = 1;
6091 			}
6092 			desired_event = (desired_event << 1);
6093 		}
6094 	}
6095 
6096 	if (!send_update_to_fw)
6097 		return;
6098 
6099 	mutex_lock(&ioc->base_cmds.mutex);
6100 	_base_event_notification(ioc);
6101 	mutex_unlock(&ioc->base_cmds.mutex);
6102 }
6103 
6104 /**
6105  * _base_diag_reset - the "big hammer" start of day reset
6106  * @ioc: per adapter object
6107  *
6108  * Return: 0 for success, non-zero for failure.
6109  */
6110 static int
6111 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
6112 {
6113 	u32 host_diagnostic;
6114 	u32 ioc_state;
6115 	u32 count;
6116 	u32 hcb_size;
6117 
6118 	pr_info(MPT3SAS_FMT "sending diag reset !!\n", ioc->name);
6119 
6120 	drsprintk(ioc, pr_info(MPT3SAS_FMT "clear interrupts\n",
6121 	    ioc->name));
6122 
6123 	count = 0;
6124 	do {
6125 		/* Write magic sequence to WriteSequence register
6126 		 * Loop until in diagnostic mode
6127 		 */
6128 		drsprintk(ioc, pr_info(MPT3SAS_FMT
6129 			"write magic sequence\n", ioc->name));
6130 		writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
6131 		writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
6132 		writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
6133 		writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
6134 		writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
6135 		writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
6136 		writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
6137 
6138 		/* wait 100 msec */
6139 		msleep(100);
6140 
6141 		if (count++ > 20)
6142 			goto out;
6143 
6144 		host_diagnostic = readl(&ioc->chip->HostDiagnostic);
6145 		drsprintk(ioc, pr_info(MPT3SAS_FMT
6146 			"wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
6147 		    ioc->name, count, host_diagnostic));
6148 
6149 	} while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
6150 
6151 	hcb_size = readl(&ioc->chip->HCBSize);
6152 
6153 	drsprintk(ioc, pr_info(MPT3SAS_FMT "diag reset: issued\n",
6154 	    ioc->name));
6155 	writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
6156 	     &ioc->chip->HostDiagnostic);
6157 
6158 	/*This delay allows the chip PCIe hardware time to finish reset tasks*/
6159 	msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
6160 
6161 	/* Approximately 300 second max wait */
6162 	for (count = 0; count < (300000000 /
6163 		MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
6164 
6165 		host_diagnostic = readl(&ioc->chip->HostDiagnostic);
6166 
6167 		if (host_diagnostic == 0xFFFFFFFF)
6168 			goto out;
6169 		if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
6170 			break;
6171 
6172 		msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000);
6173 	}
6174 
6175 	if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
6176 
6177 		drsprintk(ioc, pr_info(MPT3SAS_FMT
6178 		"restart the adapter assuming the HCB Address points to good F/W\n",
6179 		    ioc->name));
6180 		host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
6181 		host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
6182 		writel(host_diagnostic, &ioc->chip->HostDiagnostic);
6183 
6184 		drsprintk(ioc, pr_info(MPT3SAS_FMT
6185 		    "re-enable the HCDW\n", ioc->name));
6186 		writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
6187 		    &ioc->chip->HCBSize);
6188 	}
6189 
6190 	drsprintk(ioc, pr_info(MPT3SAS_FMT "restart the adapter\n",
6191 	    ioc->name));
6192 	writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
6193 	    &ioc->chip->HostDiagnostic);
6194 
6195 	drsprintk(ioc, pr_info(MPT3SAS_FMT
6196 		"disable writes to the diagnostic register\n", ioc->name));
6197 	writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
6198 
6199 	drsprintk(ioc, pr_info(MPT3SAS_FMT
6200 		"Wait for FW to go to the READY state\n", ioc->name));
6201 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
6202 	if (ioc_state) {
6203 		pr_err(MPT3SAS_FMT
6204 			"%s: failed going to ready state (ioc_state=0x%x)\n",
6205 			ioc->name, __func__, ioc_state);
6206 		goto out;
6207 	}
6208 
6209 	pr_info(MPT3SAS_FMT "diag reset: SUCCESS\n", ioc->name);
6210 	return 0;
6211 
6212  out:
6213 	pr_err(MPT3SAS_FMT "diag reset: FAILED\n", ioc->name);
6214 	return -EFAULT;
6215 }
6216 
6217 /**
6218  * _base_make_ioc_ready - put controller in READY state
6219  * @ioc: per adapter object
6220  * @type: FORCE_BIG_HAMMER or SOFT_RESET
6221  *
6222  * Return: 0 for success, non-zero for failure.
6223  */
6224 static int
6225 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
6226 {
6227 	u32 ioc_state;
6228 	int rc;
6229 	int count;
6230 
6231 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
6232 	    __func__));
6233 
6234 	if (ioc->pci_error_recovery)
6235 		return 0;
6236 
6237 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6238 	dhsprintk(ioc, pr_info(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
6239 	    ioc->name, __func__, ioc_state));
6240 
6241 	/* if in RESET state, it should move to READY state shortly */
6242 	count = 0;
6243 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
6244 		while ((ioc_state & MPI2_IOC_STATE_MASK) !=
6245 		    MPI2_IOC_STATE_READY) {
6246 			if (count++ == 10) {
6247 				pr_err(MPT3SAS_FMT
6248 					"%s: failed going to ready state (ioc_state=0x%x)\n",
6249 				    ioc->name, __func__, ioc_state);
6250 				return -EFAULT;
6251 			}
6252 			ssleep(1);
6253 			ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6254 		}
6255 	}
6256 
6257 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
6258 		return 0;
6259 
6260 	if (ioc_state & MPI2_DOORBELL_USED) {
6261 		dhsprintk(ioc, pr_info(MPT3SAS_FMT
6262 			"unexpected doorbell active!\n",
6263 			ioc->name));
6264 		goto issue_diag_reset;
6265 	}
6266 
6267 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
6268 		mpt3sas_base_fault_info(ioc, ioc_state &
6269 		    MPI2_DOORBELL_DATA_MASK);
6270 		goto issue_diag_reset;
6271 	}
6272 
6273 	if (type == FORCE_BIG_HAMMER)
6274 		goto issue_diag_reset;
6275 
6276 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
6277 		if (!(_base_send_ioc_reset(ioc,
6278 		    MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
6279 			return 0;
6280 	}
6281 
6282  issue_diag_reset:
6283 	rc = _base_diag_reset(ioc);
6284 	return rc;
6285 }
6286 
6287 /**
6288  * _base_make_ioc_operational - put controller in OPERATIONAL state
6289  * @ioc: per adapter object
6290  *
6291  * Return: 0 for success, non-zero for failure.
6292  */
6293 static int
6294 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
6295 {
6296 	int r, i, index;
6297 	unsigned long	flags;
6298 	u32 reply_address;
6299 	u16 smid;
6300 	struct _tr_list *delayed_tr, *delayed_tr_next;
6301 	struct _sc_list *delayed_sc, *delayed_sc_next;
6302 	struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
6303 	u8 hide_flag;
6304 	struct adapter_reply_queue *reply_q;
6305 	Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
6306 
6307 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
6308 	    __func__));
6309 
6310 	/* clean the delayed target reset list */
6311 	list_for_each_entry_safe(delayed_tr, delayed_tr_next,
6312 	    &ioc->delayed_tr_list, list) {
6313 		list_del(&delayed_tr->list);
6314 		kfree(delayed_tr);
6315 	}
6316 
6317 
6318 	list_for_each_entry_safe(delayed_tr, delayed_tr_next,
6319 	    &ioc->delayed_tr_volume_list, list) {
6320 		list_del(&delayed_tr->list);
6321 		kfree(delayed_tr);
6322 	}
6323 
6324 	list_for_each_entry_safe(delayed_sc, delayed_sc_next,
6325 	    &ioc->delayed_sc_list, list) {
6326 		list_del(&delayed_sc->list);
6327 		kfree(delayed_sc);
6328 	}
6329 
6330 	list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
6331 	    &ioc->delayed_event_ack_list, list) {
6332 		list_del(&delayed_event_ack->list);
6333 		kfree(delayed_event_ack);
6334 	}
6335 
6336 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
6337 
6338 	/* hi-priority queue */
6339 	INIT_LIST_HEAD(&ioc->hpr_free_list);
6340 	smid = ioc->hi_priority_smid;
6341 	for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
6342 		ioc->hpr_lookup[i].cb_idx = 0xFF;
6343 		ioc->hpr_lookup[i].smid = smid;
6344 		list_add_tail(&ioc->hpr_lookup[i].tracker_list,
6345 		    &ioc->hpr_free_list);
6346 	}
6347 
6348 	/* internal queue */
6349 	INIT_LIST_HEAD(&ioc->internal_free_list);
6350 	smid = ioc->internal_smid;
6351 	for (i = 0; i < ioc->internal_depth; i++, smid++) {
6352 		ioc->internal_lookup[i].cb_idx = 0xFF;
6353 		ioc->internal_lookup[i].smid = smid;
6354 		list_add_tail(&ioc->internal_lookup[i].tracker_list,
6355 		    &ioc->internal_free_list);
6356 	}
6357 
6358 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
6359 
6360 	/* initialize Reply Free Queue */
6361 	for (i = 0, reply_address = (u32)ioc->reply_dma ;
6362 	    i < ioc->reply_free_queue_depth ; i++, reply_address +=
6363 	    ioc->reply_sz) {
6364 		ioc->reply_free[i] = cpu_to_le32(reply_address);
6365 		if (ioc->is_mcpu_endpoint)
6366 			_base_clone_reply_to_sys_mem(ioc,
6367 					reply_address, i);
6368 	}
6369 
6370 	/* initialize reply queues */
6371 	if (ioc->is_driver_loading)
6372 		_base_assign_reply_queues(ioc);
6373 
6374 	/* initialize Reply Post Free Queue */
6375 	index = 0;
6376 	reply_post_free_contig = ioc->reply_post[0].reply_post_free;
6377 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
6378 		/*
6379 		 * If RDPQ is enabled, switch to the next allocation.
6380 		 * Otherwise advance within the contiguous region.
6381 		 */
6382 		if (ioc->rdpq_array_enable) {
6383 			reply_q->reply_post_free =
6384 				ioc->reply_post[index++].reply_post_free;
6385 		} else {
6386 			reply_q->reply_post_free = reply_post_free_contig;
6387 			reply_post_free_contig += ioc->reply_post_queue_depth;
6388 		}
6389 
6390 		reply_q->reply_post_host_index = 0;
6391 		for (i = 0; i < ioc->reply_post_queue_depth; i++)
6392 			reply_q->reply_post_free[i].Words =
6393 			    cpu_to_le64(ULLONG_MAX);
6394 		if (!_base_is_controller_msix_enabled(ioc))
6395 			goto skip_init_reply_post_free_queue;
6396 	}
6397  skip_init_reply_post_free_queue:
6398 
6399 	r = _base_send_ioc_init(ioc);
6400 	if (r)
6401 		return r;
6402 
6403 	/* initialize reply free host index */
6404 	ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
6405 	writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
6406 
6407 	/* initialize reply post host index */
6408 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
6409 		if (ioc->combined_reply_queue)
6410 			writel((reply_q->msix_index & 7)<<
6411 			   MPI2_RPHI_MSIX_INDEX_SHIFT,
6412 			   ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
6413 		else
6414 			writel(reply_q->msix_index <<
6415 				MPI2_RPHI_MSIX_INDEX_SHIFT,
6416 				&ioc->chip->ReplyPostHostIndex);
6417 
6418 		if (!_base_is_controller_msix_enabled(ioc))
6419 			goto skip_init_reply_post_host_index;
6420 	}
6421 
6422  skip_init_reply_post_host_index:
6423 
6424 	_base_unmask_interrupts(ioc);
6425 
6426 	if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
6427 		r = _base_display_fwpkg_version(ioc);
6428 		if (r)
6429 			return r;
6430 	}
6431 
6432 	_base_static_config_pages(ioc);
6433 	r = _base_event_notification(ioc);
6434 	if (r)
6435 		return r;
6436 
6437 	if (ioc->is_driver_loading) {
6438 
6439 		if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
6440 		    == 0x80) {
6441 			hide_flag = (u8) (
6442 			    le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
6443 			    MFG_PAGE10_HIDE_SSDS_MASK);
6444 			if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
6445 				ioc->mfg_pg10_hide_flag = hide_flag;
6446 		}
6447 
6448 		ioc->wait_for_discovery_to_complete =
6449 		    _base_determine_wait_on_discovery(ioc);
6450 
6451 		return r; /* scan_start and scan_finished support */
6452 	}
6453 
6454 	r = _base_send_port_enable(ioc);
6455 	if (r)
6456 		return r;
6457 
6458 	return r;
6459 }
6460 
6461 /**
6462  * mpt3sas_base_free_resources - free resources controller resources
6463  * @ioc: per adapter object
6464  */
6465 void
6466 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
6467 {
6468 	dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
6469 	    __func__));
6470 
6471 	/* synchronizing freeing resource with pci_access_mutex lock */
6472 	mutex_lock(&ioc->pci_access_mutex);
6473 	if (ioc->chip_phys && ioc->chip) {
6474 		_base_mask_interrupts(ioc);
6475 		ioc->shost_recovery = 1;
6476 		_base_make_ioc_ready(ioc, SOFT_RESET);
6477 		ioc->shost_recovery = 0;
6478 	}
6479 
6480 	mpt3sas_base_unmap_resources(ioc);
6481 	mutex_unlock(&ioc->pci_access_mutex);
6482 	return;
6483 }
6484 
6485 /**
6486  * mpt3sas_base_attach - attach controller instance
6487  * @ioc: per adapter object
6488  *
6489  * Return: 0 for success, non-zero for failure.
6490  */
6491 int
6492 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
6493 {
6494 	int r, i;
6495 	int cpu_id, last_cpu_id = 0;
6496 
6497 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
6498 	    __func__));
6499 
6500 	/* setup cpu_msix_table */
6501 	ioc->cpu_count = num_online_cpus();
6502 	for_each_online_cpu(cpu_id)
6503 		last_cpu_id = cpu_id;
6504 	ioc->cpu_msix_table_sz = last_cpu_id + 1;
6505 	ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
6506 	ioc->reply_queue_count = 1;
6507 	if (!ioc->cpu_msix_table) {
6508 		dfailprintk(ioc, pr_info(MPT3SAS_FMT
6509 			"allocation for cpu_msix_table failed!!!\n",
6510 			ioc->name));
6511 		r = -ENOMEM;
6512 		goto out_free_resources;
6513 	}
6514 
6515 	if (ioc->is_warpdrive) {
6516 		ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
6517 		    sizeof(resource_size_t *), GFP_KERNEL);
6518 		if (!ioc->reply_post_host_index) {
6519 			dfailprintk(ioc, pr_info(MPT3SAS_FMT "allocation "
6520 				"for reply_post_host_index failed!!!\n",
6521 				ioc->name));
6522 			r = -ENOMEM;
6523 			goto out_free_resources;
6524 		}
6525 	}
6526 
6527 	ioc->rdpq_array_enable_assigned = 0;
6528 	ioc->dma_mask = 0;
6529 	r = mpt3sas_base_map_resources(ioc);
6530 	if (r)
6531 		goto out_free_resources;
6532 
6533 	pci_set_drvdata(ioc->pdev, ioc->shost);
6534 	r = _base_get_ioc_facts(ioc);
6535 	if (r)
6536 		goto out_free_resources;
6537 
6538 	switch (ioc->hba_mpi_version_belonged) {
6539 	case MPI2_VERSION:
6540 		ioc->build_sg_scmd = &_base_build_sg_scmd;
6541 		ioc->build_sg = &_base_build_sg;
6542 		ioc->build_zero_len_sge = &_base_build_zero_len_sge;
6543 		break;
6544 	case MPI25_VERSION:
6545 	case MPI26_VERSION:
6546 		/*
6547 		 * In SAS3.0,
6548 		 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
6549 		 * Target Status - all require the IEEE formated scatter gather
6550 		 * elements.
6551 		 */
6552 		ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
6553 		ioc->build_sg = &_base_build_sg_ieee;
6554 		ioc->build_nvme_prp = &_base_build_nvme_prp;
6555 		ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
6556 		ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
6557 
6558 		break;
6559 	}
6560 
6561 	if (ioc->is_mcpu_endpoint)
6562 		ioc->put_smid_scsi_io = &_base_put_smid_mpi_ep_scsi_io;
6563 	else
6564 		ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
6565 
6566 	/*
6567 	 * These function pointers for other requests that don't
6568 	 * the require IEEE scatter gather elements.
6569 	 *
6570 	 * For example Configuration Pages and SAS IOUNIT Control don't.
6571 	 */
6572 	ioc->build_sg_mpi = &_base_build_sg;
6573 	ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
6574 
6575 	r = _base_make_ioc_ready(ioc, SOFT_RESET);
6576 	if (r)
6577 		goto out_free_resources;
6578 
6579 	ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
6580 	    sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
6581 	if (!ioc->pfacts) {
6582 		r = -ENOMEM;
6583 		goto out_free_resources;
6584 	}
6585 
6586 	for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
6587 		r = _base_get_port_facts(ioc, i);
6588 		if (r)
6589 			goto out_free_resources;
6590 	}
6591 
6592 	r = _base_allocate_memory_pools(ioc);
6593 	if (r)
6594 		goto out_free_resources;
6595 
6596 	init_waitqueue_head(&ioc->reset_wq);
6597 
6598 	/* allocate memory pd handle bitmask list */
6599 	ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
6600 	if (ioc->facts.MaxDevHandle % 8)
6601 		ioc->pd_handles_sz++;
6602 	ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
6603 	    GFP_KERNEL);
6604 	if (!ioc->pd_handles) {
6605 		r = -ENOMEM;
6606 		goto out_free_resources;
6607 	}
6608 	ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
6609 	    GFP_KERNEL);
6610 	if (!ioc->blocking_handles) {
6611 		r = -ENOMEM;
6612 		goto out_free_resources;
6613 	}
6614 
6615 	/* allocate memory for pending OS device add list */
6616 	ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
6617 	if (ioc->facts.MaxDevHandle % 8)
6618 		ioc->pend_os_device_add_sz++;
6619 	ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
6620 	    GFP_KERNEL);
6621 	if (!ioc->pend_os_device_add)
6622 		goto out_free_resources;
6623 
6624 	ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
6625 	ioc->device_remove_in_progress =
6626 		kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
6627 	if (!ioc->device_remove_in_progress)
6628 		goto out_free_resources;
6629 
6630 	ioc->fwfault_debug = mpt3sas_fwfault_debug;
6631 
6632 	/* base internal command bits */
6633 	mutex_init(&ioc->base_cmds.mutex);
6634 	ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6635 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6636 
6637 	/* port_enable command bits */
6638 	ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6639 	ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
6640 
6641 	/* transport internal command bits */
6642 	ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6643 	ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
6644 	mutex_init(&ioc->transport_cmds.mutex);
6645 
6646 	/* scsih internal command bits */
6647 	ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6648 	ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
6649 	mutex_init(&ioc->scsih_cmds.mutex);
6650 
6651 	/* task management internal command bits */
6652 	ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6653 	ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
6654 	mutex_init(&ioc->tm_cmds.mutex);
6655 
6656 	/* config page internal command bits */
6657 	ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6658 	ioc->config_cmds.status = MPT3_CMD_NOT_USED;
6659 	mutex_init(&ioc->config_cmds.mutex);
6660 
6661 	/* ctl module internal command bits */
6662 	ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6663 	ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
6664 	ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
6665 	mutex_init(&ioc->ctl_cmds.mutex);
6666 
6667 	if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
6668 	    !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
6669 	    !ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
6670 	    !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) {
6671 		r = -ENOMEM;
6672 		goto out_free_resources;
6673 	}
6674 
6675 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
6676 		ioc->event_masks[i] = -1;
6677 
6678 	/* here we enable the events we care about */
6679 	_base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
6680 	_base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
6681 	_base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
6682 	_base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
6683 	_base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
6684 	_base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
6685 	_base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
6686 	_base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
6687 	_base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
6688 	_base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
6689 	_base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
6690 	_base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
6691 	_base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR);
6692 	if (ioc->hba_mpi_version_belonged == MPI26_VERSION) {
6693 		if (ioc->is_gen35_ioc) {
6694 			_base_unmask_events(ioc,
6695 				MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE);
6696 			_base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION);
6697 			_base_unmask_events(ioc,
6698 				MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
6699 		}
6700 	}
6701 	r = _base_make_ioc_operational(ioc);
6702 	if (r)
6703 		goto out_free_resources;
6704 
6705 	ioc->non_operational_loop = 0;
6706 	ioc->got_task_abort_from_ioctl = 0;
6707 	return 0;
6708 
6709  out_free_resources:
6710 
6711 	ioc->remove_host = 1;
6712 
6713 	mpt3sas_base_free_resources(ioc);
6714 	_base_release_memory_pools(ioc);
6715 	pci_set_drvdata(ioc->pdev, NULL);
6716 	kfree(ioc->cpu_msix_table);
6717 	if (ioc->is_warpdrive)
6718 		kfree(ioc->reply_post_host_index);
6719 	kfree(ioc->pd_handles);
6720 	kfree(ioc->blocking_handles);
6721 	kfree(ioc->device_remove_in_progress);
6722 	kfree(ioc->pend_os_device_add);
6723 	kfree(ioc->tm_cmds.reply);
6724 	kfree(ioc->transport_cmds.reply);
6725 	kfree(ioc->scsih_cmds.reply);
6726 	kfree(ioc->config_cmds.reply);
6727 	kfree(ioc->base_cmds.reply);
6728 	kfree(ioc->port_enable_cmds.reply);
6729 	kfree(ioc->ctl_cmds.reply);
6730 	kfree(ioc->ctl_cmds.sense);
6731 	kfree(ioc->pfacts);
6732 	ioc->ctl_cmds.reply = NULL;
6733 	ioc->base_cmds.reply = NULL;
6734 	ioc->tm_cmds.reply = NULL;
6735 	ioc->scsih_cmds.reply = NULL;
6736 	ioc->transport_cmds.reply = NULL;
6737 	ioc->config_cmds.reply = NULL;
6738 	ioc->pfacts = NULL;
6739 	return r;
6740 }
6741 
6742 
6743 /**
6744  * mpt3sas_base_detach - remove controller instance
6745  * @ioc: per adapter object
6746  */
6747 void
6748 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
6749 {
6750 	dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
6751 	    __func__));
6752 
6753 	mpt3sas_base_stop_watchdog(ioc);
6754 	mpt3sas_base_free_resources(ioc);
6755 	_base_release_memory_pools(ioc);
6756 	mpt3sas_free_enclosure_list(ioc);
6757 	pci_set_drvdata(ioc->pdev, NULL);
6758 	kfree(ioc->cpu_msix_table);
6759 	if (ioc->is_warpdrive)
6760 		kfree(ioc->reply_post_host_index);
6761 	kfree(ioc->pd_handles);
6762 	kfree(ioc->blocking_handles);
6763 	kfree(ioc->device_remove_in_progress);
6764 	kfree(ioc->pend_os_device_add);
6765 	kfree(ioc->pfacts);
6766 	kfree(ioc->ctl_cmds.reply);
6767 	kfree(ioc->ctl_cmds.sense);
6768 	kfree(ioc->base_cmds.reply);
6769 	kfree(ioc->port_enable_cmds.reply);
6770 	kfree(ioc->tm_cmds.reply);
6771 	kfree(ioc->transport_cmds.reply);
6772 	kfree(ioc->scsih_cmds.reply);
6773 	kfree(ioc->config_cmds.reply);
6774 }
6775 
6776 /**
6777  * _base_pre_reset_handler - pre reset handler
6778  * @ioc: per adapter object
6779  */
6780 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc)
6781 {
6782 	mpt3sas_scsih_pre_reset_handler(ioc);
6783 	mpt3sas_ctl_pre_reset_handler(ioc);
6784 	dtmprintk(ioc, pr_info(MPT3SAS_FMT
6785 			"%s: MPT3_IOC_PRE_RESET\n", ioc->name, __func__));
6786 }
6787 
6788 /**
6789  * _base_after_reset_handler - after reset handler
6790  * @ioc: per adapter object
6791  */
6792 static void _base_after_reset_handler(struct MPT3SAS_ADAPTER *ioc)
6793 {
6794 	mpt3sas_scsih_after_reset_handler(ioc);
6795 	mpt3sas_ctl_after_reset_handler(ioc);
6796 	dtmprintk(ioc, pr_info(MPT3SAS_FMT
6797 			"%s: MPT3_IOC_AFTER_RESET\n", ioc->name, __func__));
6798 	if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
6799 		ioc->transport_cmds.status |= MPT3_CMD_RESET;
6800 		mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
6801 		complete(&ioc->transport_cmds.done);
6802 	}
6803 	if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
6804 		ioc->base_cmds.status |= MPT3_CMD_RESET;
6805 		mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
6806 		complete(&ioc->base_cmds.done);
6807 	}
6808 	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
6809 		ioc->port_enable_failed = 1;
6810 		ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
6811 		mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
6812 		if (ioc->is_driver_loading) {
6813 			ioc->start_scan_failed =
6814 				MPI2_IOCSTATUS_INTERNAL_ERROR;
6815 			ioc->start_scan = 0;
6816 			ioc->port_enable_cmds.status =
6817 				MPT3_CMD_NOT_USED;
6818 		} else {
6819 			complete(&ioc->port_enable_cmds.done);
6820 		}
6821 	}
6822 	if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
6823 		ioc->config_cmds.status |= MPT3_CMD_RESET;
6824 		mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
6825 		ioc->config_cmds.smid = USHRT_MAX;
6826 		complete(&ioc->config_cmds.done);
6827 	}
6828 }
6829 
6830 /**
6831  * _base_reset_done_handler - reset done handler
6832  * @ioc: per adapter object
6833  */
6834 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc)
6835 {
6836 	mpt3sas_scsih_reset_done_handler(ioc);
6837 	mpt3sas_ctl_reset_done_handler(ioc);
6838 	dtmprintk(ioc, pr_info(MPT3SAS_FMT
6839 			"%s: MPT3_IOC_DONE_RESET\n", ioc->name, __func__));
6840 }
6841 
6842 /**
6843  * mpt3sas_wait_for_commands_to_complete - reset controller
6844  * @ioc: Pointer to MPT_ADAPTER structure
6845  *
6846  * This function is waiting 10s for all pending commands to complete
6847  * prior to putting controller in reset.
6848  */
6849 void
6850 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
6851 {
6852 	u32 ioc_state;
6853 
6854 	ioc->pending_io_count = 0;
6855 
6856 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6857 	if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
6858 		return;
6859 
6860 	/* pending command count */
6861 	ioc->pending_io_count = scsi_host_busy(ioc->shost);
6862 
6863 	if (!ioc->pending_io_count)
6864 		return;
6865 
6866 	/* wait for pending commands to complete */
6867 	wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
6868 }
6869 
6870 /**
6871  * mpt3sas_base_hard_reset_handler - reset controller
6872  * @ioc: Pointer to MPT_ADAPTER structure
6873  * @type: FORCE_BIG_HAMMER or SOFT_RESET
6874  *
6875  * Return: 0 for success, non-zero for failure.
6876  */
6877 int
6878 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
6879 	enum reset_type type)
6880 {
6881 	int r;
6882 	unsigned long flags;
6883 	u32 ioc_state;
6884 	u8 is_fault = 0, is_trigger = 0;
6885 
6886 	dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: enter\n", ioc->name,
6887 	    __func__));
6888 
6889 	if (ioc->pci_error_recovery) {
6890 		pr_err(MPT3SAS_FMT "%s: pci error recovery reset\n",
6891 		    ioc->name, __func__);
6892 		r = 0;
6893 		goto out_unlocked;
6894 	}
6895 
6896 	if (mpt3sas_fwfault_debug)
6897 		mpt3sas_halt_firmware(ioc);
6898 
6899 	/* wait for an active reset in progress to complete */
6900 	mutex_lock(&ioc->reset_in_progress_mutex);
6901 
6902 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
6903 	ioc->shost_recovery = 1;
6904 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
6905 
6906 	if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
6907 	    MPT3_DIAG_BUFFER_IS_REGISTERED) &&
6908 	    (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
6909 	    MPT3_DIAG_BUFFER_IS_RELEASED))) {
6910 		is_trigger = 1;
6911 		ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6912 		if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
6913 			is_fault = 1;
6914 	}
6915 	_base_pre_reset_handler(ioc);
6916 	mpt3sas_wait_for_commands_to_complete(ioc);
6917 	_base_mask_interrupts(ioc);
6918 	r = _base_make_ioc_ready(ioc, type);
6919 	if (r)
6920 		goto out;
6921 	_base_after_reset_handler(ioc);
6922 
6923 	/* If this hard reset is called while port enable is active, then
6924 	 * there is no reason to call make_ioc_operational
6925 	 */
6926 	if (ioc->is_driver_loading && ioc->port_enable_failed) {
6927 		ioc->remove_host = 1;
6928 		r = -EFAULT;
6929 		goto out;
6930 	}
6931 	r = _base_get_ioc_facts(ioc);
6932 	if (r)
6933 		goto out;
6934 
6935 	if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
6936 		panic("%s: Issue occurred with flashing controller firmware."
6937 		      "Please reboot the system and ensure that the correct"
6938 		      " firmware version is running\n", ioc->name);
6939 
6940 	r = _base_make_ioc_operational(ioc);
6941 	if (!r)
6942 		_base_reset_done_handler(ioc);
6943 
6944  out:
6945 	dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: %s\n",
6946 	    ioc->name, __func__, ((r == 0) ? "SUCCESS" : "FAILED")));
6947 
6948 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
6949 	ioc->shost_recovery = 0;
6950 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
6951 	ioc->ioc_reset_count++;
6952 	mutex_unlock(&ioc->reset_in_progress_mutex);
6953 
6954  out_unlocked:
6955 	if ((r == 0) && is_trigger) {
6956 		if (is_fault)
6957 			mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
6958 		else
6959 			mpt3sas_trigger_master(ioc,
6960 			    MASTER_TRIGGER_ADAPTER_RESET);
6961 	}
6962 	dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
6963 	    __func__));
6964 	return r;
6965 }
6966