1 /*
2  * This is the Fusion MPT base driver providing common API layer interface
3  * for access to MPT (Message Passing Technology) firmware.
4  *
5  * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6  * Copyright (C) 2012-2014  LSI Corporation
7  * Copyright (C) 2013-2014 Avago Technologies
8  *  (mailto: MPT-FusionLinux.pdl@avagotech.com)
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version 2
13  * of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * NO WARRANTY
21  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25  * solely responsible for determining the appropriateness of using and
26  * distributing the Program and assumes all risks associated with its
27  * exercise of rights under this Agreement, including but not limited to
28  * the risks and costs of program errors, damage to or loss of data,
29  * programs or equipment, and unavailability or interruption of operations.
30 
31  * DISCLAIMER OF LIABILITY
32  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39 
40  * You should have received a copy of the GNU General Public License
41  * along with this program; if not, write to the Free Software
42  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
43  * USA.
44  */
45 
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <asm/page.h>        /* To get host page size per arch */
63 #include <linux/aer.h>
64 
65 
66 #include "mpt3sas_base.h"
67 
68 static MPT_CALLBACK	mpt_callbacks[MPT_MAX_CALLBACKS];
69 
70 
71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
72 
73  /* maximum controller queue depth */
74 #define MAX_HBA_QUEUE_DEPTH	30000
75 #define MAX_CHAIN_DEPTH		100000
76 static int max_queue_depth = -1;
77 module_param(max_queue_depth, int, 0444);
78 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
79 
80 static int max_sgl_entries = -1;
81 module_param(max_sgl_entries, int, 0444);
82 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
83 
84 static int msix_disable = -1;
85 module_param(msix_disable, int, 0444);
86 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
87 
88 static int smp_affinity_enable = 1;
89 module_param(smp_affinity_enable, int, 0444);
90 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)");
91 
92 static int max_msix_vectors = -1;
93 module_param(max_msix_vectors, int, 0444);
94 MODULE_PARM_DESC(max_msix_vectors,
95 	" max msix vectors");
96 
97 static int irqpoll_weight = -1;
98 module_param(irqpoll_weight, int, 0444);
99 MODULE_PARM_DESC(irqpoll_weight,
100 	"irq poll weight (default= one fourth of HBA queue depth)");
101 
102 static int mpt3sas_fwfault_debug;
103 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
104 	" enable detection of firmware fault and halt firmware - (default=0)");
105 
106 static int perf_mode = -1;
107 module_param(perf_mode, int, 0444);
108 MODULE_PARM_DESC(perf_mode,
109 	"Performance mode (only for Aero/Sea Generation), options:\n\t\t"
110 	"0 - balanced: high iops mode is enabled &\n\t\t"
111 	"interrupt coalescing is enabled only on high iops queues,\n\t\t"
112 	"1 - iops: high iops mode is disabled &\n\t\t"
113 	"interrupt coalescing is enabled on all queues,\n\t\t"
114 	"2 - latency: high iops mode is disabled &\n\t\t"
115 	"interrupt coalescing is enabled on all queues with timeout value 0xA,\n"
116 	"\t\tdefault - default perf_mode is 'balanced'"
117 	);
118 
119 enum mpt3sas_perf_mode {
120 	MPT_PERF_MODE_DEFAULT	= -1,
121 	MPT_PERF_MODE_BALANCED	= 0,
122 	MPT_PERF_MODE_IOPS	= 1,
123 	MPT_PERF_MODE_LATENCY	= 2,
124 };
125 
126 static int
127 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc,
128 		u32 ioc_state, int timeout);
129 static int
130 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
131 static void
132 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc);
133 static void
134 _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc);
135 
136 /**
137  * mpt3sas_base_check_cmd_timeout - Function
138  *		to check timeout and command termination due
139  *		to Host reset.
140  *
141  * @ioc:	per adapter object.
142  * @status:	Status of issued command.
143  * @mpi_request:mf request pointer.
144  * @sz:		size of buffer.
145  *
146  * @Returns - 1/0 Reset to be done or Not
147  */
148 u8
149 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc,
150 		u8 status, void *mpi_request, int sz)
151 {
152 	u8 issue_reset = 0;
153 
154 	if (!(status & MPT3_CMD_RESET))
155 		issue_reset = 1;
156 
157 	ioc_err(ioc, "Command %s\n",
158 		issue_reset == 0 ? "terminated due to Host Reset" : "Timeout");
159 	_debug_dump_mf(mpi_request, sz);
160 
161 	return issue_reset;
162 }
163 
164 /**
165  * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
166  * @val: ?
167  * @kp: ?
168  *
169  * Return: ?
170  */
171 static int
172 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp)
173 {
174 	int ret = param_set_int(val, kp);
175 	struct MPT3SAS_ADAPTER *ioc;
176 
177 	if (ret)
178 		return ret;
179 
180 	/* global ioc spinlock to protect controller list on list operations */
181 	pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
182 	spin_lock(&gioc_lock);
183 	list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
184 		ioc->fwfault_debug = mpt3sas_fwfault_debug;
185 	spin_unlock(&gioc_lock);
186 	return 0;
187 }
188 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
189 	param_get_int, &mpt3sas_fwfault_debug, 0644);
190 
191 /**
192  * _base_readl_aero - retry readl for max three times.
193  * @addr: MPT Fusion system interface register address
194  *
195  * Retry the readl() for max three times if it gets zero value
196  * while reading the system interface register.
197  */
198 static inline u32
199 _base_readl_aero(const volatile void __iomem *addr)
200 {
201 	u32 i = 0, ret_val;
202 
203 	do {
204 		ret_val = readl(addr);
205 		i++;
206 	} while (ret_val == 0 && i < 3);
207 
208 	return ret_val;
209 }
210 
211 static inline u32
212 _base_readl(const volatile void __iomem *addr)
213 {
214 	return readl(addr);
215 }
216 
217 /**
218  * _base_clone_reply_to_sys_mem - copies reply to reply free iomem
219  *				  in BAR0 space.
220  *
221  * @ioc: per adapter object
222  * @reply: reply message frame(lower 32bit addr)
223  * @index: System request message index.
224  */
225 static void
226 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply,
227 		u32 index)
228 {
229 	/*
230 	 * 256 is offset within sys register.
231 	 * 256 offset MPI frame starts. Max MPI frame supported is 32.
232 	 * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts
233 	 */
234 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
235 	void __iomem *reply_free_iomem = (void __iomem *)ioc->chip +
236 			MPI_FRAME_START_OFFSET +
237 			(cmd_credit * ioc->request_sz) + (index * sizeof(u32));
238 
239 	writel(reply, reply_free_iomem);
240 }
241 
242 /**
243  * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames
244  *				to system/BAR0 region.
245  *
246  * @dst_iomem: Pointer to the destination location in BAR0 space.
247  * @src: Pointer to the Source data.
248  * @size: Size of data to be copied.
249  */
250 static void
251 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size)
252 {
253 	int i;
254 	u32 *src_virt_mem = (u32 *)src;
255 
256 	for (i = 0; i < size/4; i++)
257 		writel((u32)src_virt_mem[i],
258 				(void __iomem *)dst_iomem + (i * 4));
259 }
260 
261 /**
262  * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region
263  *
264  * @dst_iomem: Pointer to the destination location in BAR0 space.
265  * @src: Pointer to the Source data.
266  * @size: Size of data to be copied.
267  */
268 static void
269 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size)
270 {
271 	int i;
272 	u32 *src_virt_mem = (u32 *)(src);
273 
274 	for (i = 0; i < size/4; i++)
275 		writel((u32)src_virt_mem[i],
276 			(void __iomem *)dst_iomem + (i * 4));
277 }
278 
279 /**
280  * _base_get_chain - Calculates and Returns virtual chain address
281  *			 for the provided smid in BAR0 space.
282  *
283  * @ioc: per adapter object
284  * @smid: system request message index
285  * @sge_chain_count: Scatter gather chain count.
286  *
287  * Return: the chain address.
288  */
289 static inline void __iomem*
290 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid,
291 		u8 sge_chain_count)
292 {
293 	void __iomem *base_chain, *chain_virt;
294 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
295 
296 	base_chain  = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET +
297 		(cmd_credit * ioc->request_sz) +
298 		REPLY_FREE_POOL_SIZE;
299 	chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth *
300 			ioc->request_sz) + (sge_chain_count * ioc->request_sz);
301 	return chain_virt;
302 }
303 
304 /**
305  * _base_get_chain_phys - Calculates and Returns physical address
306  *			in BAR0 for scatter gather chains, for
307  *			the provided smid.
308  *
309  * @ioc: per adapter object
310  * @smid: system request message index
311  * @sge_chain_count: Scatter gather chain count.
312  *
313  * Return: Physical chain address.
314  */
315 static inline phys_addr_t
316 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid,
317 		u8 sge_chain_count)
318 {
319 	phys_addr_t base_chain_phys, chain_phys;
320 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
321 
322 	base_chain_phys  = ioc->chip_phys + MPI_FRAME_START_OFFSET +
323 		(cmd_credit * ioc->request_sz) +
324 		REPLY_FREE_POOL_SIZE;
325 	chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth *
326 			ioc->request_sz) + (sge_chain_count * ioc->request_sz);
327 	return chain_phys;
328 }
329 
330 /**
331  * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host
332  *			buffer address for the provided smid.
333  *			(Each smid can have 64K starts from 17024)
334  *
335  * @ioc: per adapter object
336  * @smid: system request message index
337  *
338  * Return: Pointer to buffer location in BAR0.
339  */
340 
341 static void __iomem *
342 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
343 {
344 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
345 	// Added extra 1 to reach end of chain.
346 	void __iomem *chain_end = _base_get_chain(ioc,
347 			cmd_credit + 1,
348 			ioc->facts.MaxChainDepth);
349 	return chain_end + (smid * 64 * 1024);
350 }
351 
352 /**
353  * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped
354  *		Host buffer Physical address for the provided smid.
355  *		(Each smid can have 64K starts from 17024)
356  *
357  * @ioc: per adapter object
358  * @smid: system request message index
359  *
360  * Return: Pointer to buffer location in BAR0.
361  */
362 static phys_addr_t
363 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
364 {
365 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
366 	phys_addr_t chain_end_phys = _base_get_chain_phys(ioc,
367 			cmd_credit + 1,
368 			ioc->facts.MaxChainDepth);
369 	return chain_end_phys + (smid * 64 * 1024);
370 }
371 
372 /**
373  * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain
374  *			lookup list and Provides chain_buffer
375  *			address for the matching dma address.
376  *			(Each smid can have 64K starts from 17024)
377  *
378  * @ioc: per adapter object
379  * @chain_buffer_dma: Chain buffer dma address.
380  *
381  * Return: Pointer to chain buffer. Or Null on Failure.
382  */
383 static void *
384 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc,
385 		dma_addr_t chain_buffer_dma)
386 {
387 	u16 index, j;
388 	struct chain_tracker *ct;
389 
390 	for (index = 0; index < ioc->scsiio_depth; index++) {
391 		for (j = 0; j < ioc->chains_needed_per_io; j++) {
392 			ct = &ioc->chain_lookup[index].chains_per_smid[j];
393 			if (ct && ct->chain_buffer_dma == chain_buffer_dma)
394 				return ct->chain_buffer;
395 		}
396 	}
397 	ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n");
398 	return NULL;
399 }
400 
401 /**
402  * _clone_sg_entries -	MPI EP's scsiio and config requests
403  *			are handled here. Base function for
404  *			double buffering, before submitting
405  *			the requests.
406  *
407  * @ioc: per adapter object.
408  * @mpi_request: mf request pointer.
409  * @smid: system request message index.
410  */
411 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc,
412 		void *mpi_request, u16 smid)
413 {
414 	Mpi2SGESimple32_t *sgel, *sgel_next;
415 	u32  sgl_flags, sge_chain_count = 0;
416 	bool is_write = false;
417 	u16 i = 0;
418 	void __iomem *buffer_iomem;
419 	phys_addr_t buffer_iomem_phys;
420 	void __iomem *buff_ptr;
421 	phys_addr_t buff_ptr_phys;
422 	void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO];
423 	void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO];
424 	phys_addr_t dst_addr_phys;
425 	MPI2RequestHeader_t *request_hdr;
426 	struct scsi_cmnd *scmd;
427 	struct scatterlist *sg_scmd = NULL;
428 	int is_scsiio_req = 0;
429 
430 	request_hdr = (MPI2RequestHeader_t *) mpi_request;
431 
432 	if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
433 		Mpi25SCSIIORequest_t *scsiio_request =
434 			(Mpi25SCSIIORequest_t *)mpi_request;
435 		sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL;
436 		is_scsiio_req = 1;
437 	} else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
438 		Mpi2ConfigRequest_t  *config_req =
439 			(Mpi2ConfigRequest_t *)mpi_request;
440 		sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE;
441 	} else
442 		return;
443 
444 	/* From smid we can get scsi_cmd, once we have sg_scmd,
445 	 * we just need to get sg_virt and sg_next to get virual
446 	 * address associated with sgel->Address.
447 	 */
448 
449 	if (is_scsiio_req) {
450 		/* Get scsi_cmd using smid */
451 		scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
452 		if (scmd == NULL) {
453 			ioc_err(ioc, "scmd is NULL\n");
454 			return;
455 		}
456 
457 		/* Get sg_scmd from scmd provided */
458 		sg_scmd = scsi_sglist(scmd);
459 	}
460 
461 	/*
462 	 * 0 - 255	System register
463 	 * 256 - 4352	MPI Frame. (This is based on maxCredit 32)
464 	 * 4352 - 4864	Reply_free pool (512 byte is reserved
465 	 *		considering maxCredit 32. Reply need extra
466 	 *		room, for mCPU case kept four times of
467 	 *		maxCredit).
468 	 * 4864 - 17152	SGE chain element. (32cmd * 3 chain of
469 	 *		128 byte size = 12288)
470 	 * 17152 - x	Host buffer mapped with smid.
471 	 *		(Each smid can have 64K Max IO.)
472 	 * BAR0+Last 1K MSIX Addr and Data
473 	 * Total size in use 2113664 bytes of 4MB BAR0
474 	 */
475 
476 	buffer_iomem = _base_get_buffer_bar0(ioc, smid);
477 	buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid);
478 
479 	buff_ptr = buffer_iomem;
480 	buff_ptr_phys = buffer_iomem_phys;
481 	WARN_ON(buff_ptr_phys > U32_MAX);
482 
483 	if (le32_to_cpu(sgel->FlagsLength) &
484 			(MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT))
485 		is_write = true;
486 
487 	for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) {
488 
489 		sgl_flags =
490 		    (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT);
491 
492 		switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) {
493 		case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
494 			/*
495 			 * Helper function which on passing
496 			 * chain_buffer_dma returns chain_buffer. Get
497 			 * the virtual address for sgel->Address
498 			 */
499 			sgel_next =
500 				_base_get_chain_buffer_dma_to_chain_buffer(ioc,
501 						le32_to_cpu(sgel->Address));
502 			if (sgel_next == NULL)
503 				return;
504 			/*
505 			 * This is coping 128 byte chain
506 			 * frame (not a host buffer)
507 			 */
508 			dst_chain_addr[sge_chain_count] =
509 				_base_get_chain(ioc,
510 					smid, sge_chain_count);
511 			src_chain_addr[sge_chain_count] =
512 						(void *) sgel_next;
513 			dst_addr_phys = _base_get_chain_phys(ioc,
514 						smid, sge_chain_count);
515 			WARN_ON(dst_addr_phys > U32_MAX);
516 			sgel->Address =
517 				cpu_to_le32(lower_32_bits(dst_addr_phys));
518 			sgel = sgel_next;
519 			sge_chain_count++;
520 			break;
521 		case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
522 			if (is_write) {
523 				if (is_scsiio_req) {
524 					_base_clone_to_sys_mem(buff_ptr,
525 					    sg_virt(sg_scmd),
526 					    (le32_to_cpu(sgel->FlagsLength) &
527 					    0x00ffffff));
528 					/*
529 					 * FIXME: this relies on a a zero
530 					 * PCI mem_offset.
531 					 */
532 					sgel->Address =
533 					    cpu_to_le32((u32)buff_ptr_phys);
534 				} else {
535 					_base_clone_to_sys_mem(buff_ptr,
536 					    ioc->config_vaddr,
537 					    (le32_to_cpu(sgel->FlagsLength) &
538 					    0x00ffffff));
539 					sgel->Address =
540 					    cpu_to_le32((u32)buff_ptr_phys);
541 				}
542 			}
543 			buff_ptr += (le32_to_cpu(sgel->FlagsLength) &
544 			    0x00ffffff);
545 			buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) &
546 			    0x00ffffff);
547 			if ((le32_to_cpu(sgel->FlagsLength) &
548 			    (MPI2_SGE_FLAGS_END_OF_BUFFER
549 					<< MPI2_SGE_FLAGS_SHIFT)))
550 				goto eob_clone_chain;
551 			else {
552 				/*
553 				 * Every single element in MPT will have
554 				 * associated sg_next. Better to sanity that
555 				 * sg_next is not NULL, but it will be a bug
556 				 * if it is null.
557 				 */
558 				if (is_scsiio_req) {
559 					sg_scmd = sg_next(sg_scmd);
560 					if (sg_scmd)
561 						sgel++;
562 					else
563 						goto eob_clone_chain;
564 				}
565 			}
566 			break;
567 		}
568 	}
569 
570 eob_clone_chain:
571 	for (i = 0; i < sge_chain_count; i++) {
572 		if (is_scsiio_req)
573 			_base_clone_to_sys_mem(dst_chain_addr[i],
574 				src_chain_addr[i], ioc->request_sz);
575 	}
576 }
577 
578 /**
579  *  mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
580  * @arg: input argument, used to derive ioc
581  *
582  * Return:
583  * 0 if controller is removed from pci subsystem.
584  * -1 for other case.
585  */
586 static int mpt3sas_remove_dead_ioc_func(void *arg)
587 {
588 	struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
589 	struct pci_dev *pdev;
590 
591 	if (!ioc)
592 		return -1;
593 
594 	pdev = ioc->pdev;
595 	if (!pdev)
596 		return -1;
597 	pci_stop_and_remove_bus_device_locked(pdev);
598 	return 0;
599 }
600 
601 /**
602  * _base_fault_reset_work - workq handling ioc fault conditions
603  * @work: input argument, used to derive ioc
604  *
605  * Context: sleep.
606  */
607 static void
608 _base_fault_reset_work(struct work_struct *work)
609 {
610 	struct MPT3SAS_ADAPTER *ioc =
611 	    container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
612 	unsigned long	 flags;
613 	u32 doorbell;
614 	int rc;
615 	struct task_struct *p;
616 
617 
618 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
619 	if ((ioc->shost_recovery && (ioc->ioc_coredump_loop == 0)) ||
620 			ioc->pci_error_recovery)
621 		goto rearm_timer;
622 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
623 
624 	doorbell = mpt3sas_base_get_iocstate(ioc, 0);
625 	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
626 		ioc_err(ioc, "SAS host is non-operational !!!!\n");
627 
628 		/* It may be possible that EEH recovery can resolve some of
629 		 * pci bus failure issues rather removing the dead ioc function
630 		 * by considering controller is in a non-operational state. So
631 		 * here priority is given to the EEH recovery. If it doesn't
632 		 * not resolve this issue, mpt3sas driver will consider this
633 		 * controller to non-operational state and remove the dead ioc
634 		 * function.
635 		 */
636 		if (ioc->non_operational_loop++ < 5) {
637 			spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
638 							 flags);
639 			goto rearm_timer;
640 		}
641 
642 		/*
643 		 * Call _scsih_flush_pending_cmds callback so that we flush all
644 		 * pending commands back to OS. This call is required to aovid
645 		 * deadlock at block layer. Dead IOC will fail to do diag reset,
646 		 * and this call is safe since dead ioc will never return any
647 		 * command back from HW.
648 		 */
649 		ioc->schedule_dead_ioc_flush_running_cmds(ioc);
650 		/*
651 		 * Set remove_host flag early since kernel thread will
652 		 * take some time to execute.
653 		 */
654 		ioc->remove_host = 1;
655 		/*Remove the Dead Host */
656 		p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
657 		    "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
658 		if (IS_ERR(p))
659 			ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
660 				__func__);
661 		else
662 			ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
663 				__func__);
664 		return; /* don't rearm timer */
665 	}
666 
667 	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
668 		u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
669 		    ioc->manu_pg11.CoreDumpTOSec :
670 		    MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
671 
672 		timeout /= (FAULT_POLLING_INTERVAL/1000);
673 
674 		if (ioc->ioc_coredump_loop == 0) {
675 			mpt3sas_print_coredump_info(ioc,
676 			    doorbell & MPI2_DOORBELL_DATA_MASK);
677 			/* do not accept any IOs and disable the interrupts */
678 			spin_lock_irqsave(
679 			    &ioc->ioc_reset_in_progress_lock, flags);
680 			ioc->shost_recovery = 1;
681 			spin_unlock_irqrestore(
682 			    &ioc->ioc_reset_in_progress_lock, flags);
683 			_base_mask_interrupts(ioc);
684 			_base_clear_outstanding_commands(ioc);
685 		}
686 
687 		ioc_info(ioc, "%s: CoreDump loop %d.",
688 		    __func__, ioc->ioc_coredump_loop);
689 
690 		/* Wait until CoreDump completes or times out */
691 		if (ioc->ioc_coredump_loop++ < timeout) {
692 			spin_lock_irqsave(
693 			    &ioc->ioc_reset_in_progress_lock, flags);
694 			goto rearm_timer;
695 		}
696 	}
697 
698 	if (ioc->ioc_coredump_loop) {
699 		if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_COREDUMP)
700 			ioc_err(ioc, "%s: CoreDump completed. LoopCount: %d",
701 			    __func__, ioc->ioc_coredump_loop);
702 		else
703 			ioc_err(ioc, "%s: CoreDump Timed out. LoopCount: %d",
704 			    __func__, ioc->ioc_coredump_loop);
705 		ioc->ioc_coredump_loop = MPT3SAS_COREDUMP_LOOP_DONE;
706 	}
707 	ioc->non_operational_loop = 0;
708 	if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
709 		rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
710 		ioc_warn(ioc, "%s: hard reset: %s\n",
711 			 __func__, rc == 0 ? "success" : "failed");
712 		doorbell = mpt3sas_base_get_iocstate(ioc, 0);
713 		if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
714 			mpt3sas_print_fault_code(ioc, doorbell &
715 			    MPI2_DOORBELL_DATA_MASK);
716 		} else if ((doorbell & MPI2_IOC_STATE_MASK) ==
717 		    MPI2_IOC_STATE_COREDUMP)
718 			mpt3sas_print_coredump_info(ioc, doorbell &
719 			    MPI2_DOORBELL_DATA_MASK);
720 		if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
721 		    MPI2_IOC_STATE_OPERATIONAL)
722 			return; /* don't rearm timer */
723 	}
724 	ioc->ioc_coredump_loop = 0;
725 
726 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
727  rearm_timer:
728 	if (ioc->fault_reset_work_q)
729 		queue_delayed_work(ioc->fault_reset_work_q,
730 		    &ioc->fault_reset_work,
731 		    msecs_to_jiffies(FAULT_POLLING_INTERVAL));
732 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
733 }
734 
735 /**
736  * mpt3sas_base_start_watchdog - start the fault_reset_work_q
737  * @ioc: per adapter object
738  *
739  * Context: sleep.
740  */
741 void
742 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
743 {
744 	unsigned long	 flags;
745 
746 	if (ioc->fault_reset_work_q)
747 		return;
748 
749 	/* initialize fault polling */
750 
751 	INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
752 	snprintf(ioc->fault_reset_work_q_name,
753 	    sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
754 	    ioc->driver_name, ioc->id);
755 	ioc->fault_reset_work_q =
756 		create_singlethread_workqueue(ioc->fault_reset_work_q_name);
757 	if (!ioc->fault_reset_work_q) {
758 		ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__);
759 		return;
760 	}
761 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
762 	if (ioc->fault_reset_work_q)
763 		queue_delayed_work(ioc->fault_reset_work_q,
764 		    &ioc->fault_reset_work,
765 		    msecs_to_jiffies(FAULT_POLLING_INTERVAL));
766 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
767 }
768 
769 /**
770  * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
771  * @ioc: per adapter object
772  *
773  * Context: sleep.
774  */
775 void
776 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
777 {
778 	unsigned long flags;
779 	struct workqueue_struct *wq;
780 
781 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
782 	wq = ioc->fault_reset_work_q;
783 	ioc->fault_reset_work_q = NULL;
784 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
785 	if (wq) {
786 		if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
787 			flush_workqueue(wq);
788 		destroy_workqueue(wq);
789 	}
790 }
791 
792 /**
793  * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
794  * @ioc: per adapter object
795  * @fault_code: fault code
796  */
797 void
798 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
799 {
800 	ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code);
801 }
802 
803 /**
804  * mpt3sas_base_coredump_info - verbose translation of firmware CoreDump state
805  * @ioc: per adapter object
806  * @fault_code: fault code
807  *
808  * Return nothing.
809  */
810 void
811 mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code)
812 {
813 	ioc_err(ioc, "coredump_state(0x%04x)!\n", fault_code);
814 }
815 
816 /**
817  * mpt3sas_base_wait_for_coredump_completion - Wait until coredump
818  * completes or times out
819  * @ioc: per adapter object
820  * @caller: caller function name
821  *
822  * Returns 0 for success, non-zero for failure.
823  */
824 int
825 mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER *ioc,
826 		const char *caller)
827 {
828 	u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
829 			ioc->manu_pg11.CoreDumpTOSec :
830 			MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
831 
832 	int ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_FAULT,
833 					timeout);
834 
835 	if (ioc_state)
836 		ioc_err(ioc,
837 		    "%s: CoreDump timed out. (ioc_state=0x%x)\n",
838 		    caller, ioc_state);
839 	else
840 		ioc_info(ioc,
841 		    "%s: CoreDump completed. (ioc_state=0x%x)\n",
842 		    caller, ioc_state);
843 
844 	return ioc_state;
845 }
846 
847 /**
848  * mpt3sas_halt_firmware - halt's mpt controller firmware
849  * @ioc: per adapter object
850  *
851  * For debugging timeout related issues.  Writing 0xCOFFEE00
852  * to the doorbell register will halt controller firmware. With
853  * the purpose to stop both driver and firmware, the enduser can
854  * obtain a ring buffer from controller UART.
855  */
856 void
857 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
858 {
859 	u32 doorbell;
860 
861 	if (!ioc->fwfault_debug)
862 		return;
863 
864 	dump_stack();
865 
866 	doorbell = ioc->base_readl(&ioc->chip->Doorbell);
867 	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
868 		mpt3sas_print_fault_code(ioc, doorbell &
869 		    MPI2_DOORBELL_DATA_MASK);
870 	} else if ((doorbell & MPI2_IOC_STATE_MASK) ==
871 	    MPI2_IOC_STATE_COREDUMP) {
872 		mpt3sas_print_coredump_info(ioc, doorbell &
873 		    MPI2_DOORBELL_DATA_MASK);
874 	} else {
875 		writel(0xC0FFEE00, &ioc->chip->Doorbell);
876 		ioc_err(ioc, "Firmware is halted due to command timeout\n");
877 	}
878 
879 	if (ioc->fwfault_debug == 2)
880 		for (;;)
881 			;
882 	else
883 		panic("panic in %s\n", __func__);
884 }
885 
886 /**
887  * _base_sas_ioc_info - verbose translation of the ioc status
888  * @ioc: per adapter object
889  * @mpi_reply: reply mf payload returned from firmware
890  * @request_hdr: request mf
891  */
892 static void
893 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
894 	MPI2RequestHeader_t *request_hdr)
895 {
896 	u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
897 	    MPI2_IOCSTATUS_MASK;
898 	char *desc = NULL;
899 	u16 frame_sz;
900 	char *func_str = NULL;
901 
902 	/* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
903 	if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
904 	    request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
905 	    request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
906 		return;
907 
908 	if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
909 		return;
910 
911 	switch (ioc_status) {
912 
913 /****************************************************************************
914 *  Common IOCStatus values for all replies
915 ****************************************************************************/
916 
917 	case MPI2_IOCSTATUS_INVALID_FUNCTION:
918 		desc = "invalid function";
919 		break;
920 	case MPI2_IOCSTATUS_BUSY:
921 		desc = "busy";
922 		break;
923 	case MPI2_IOCSTATUS_INVALID_SGL:
924 		desc = "invalid sgl";
925 		break;
926 	case MPI2_IOCSTATUS_INTERNAL_ERROR:
927 		desc = "internal error";
928 		break;
929 	case MPI2_IOCSTATUS_INVALID_VPID:
930 		desc = "invalid vpid";
931 		break;
932 	case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
933 		desc = "insufficient resources";
934 		break;
935 	case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
936 		desc = "insufficient power";
937 		break;
938 	case MPI2_IOCSTATUS_INVALID_FIELD:
939 		desc = "invalid field";
940 		break;
941 	case MPI2_IOCSTATUS_INVALID_STATE:
942 		desc = "invalid state";
943 		break;
944 	case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
945 		desc = "op state not supported";
946 		break;
947 
948 /****************************************************************************
949 *  Config IOCStatus values
950 ****************************************************************************/
951 
952 	case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
953 		desc = "config invalid action";
954 		break;
955 	case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
956 		desc = "config invalid type";
957 		break;
958 	case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
959 		desc = "config invalid page";
960 		break;
961 	case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
962 		desc = "config invalid data";
963 		break;
964 	case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
965 		desc = "config no defaults";
966 		break;
967 	case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
968 		desc = "config cant commit";
969 		break;
970 
971 /****************************************************************************
972 *  SCSI IO Reply
973 ****************************************************************************/
974 
975 	case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
976 	case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
977 	case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
978 	case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
979 	case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
980 	case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
981 	case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
982 	case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
983 	case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
984 	case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
985 	case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
986 	case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
987 		break;
988 
989 /****************************************************************************
990 *  For use by SCSI Initiator and SCSI Target end-to-end data protection
991 ****************************************************************************/
992 
993 	case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
994 		desc = "eedp guard error";
995 		break;
996 	case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
997 		desc = "eedp ref tag error";
998 		break;
999 	case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
1000 		desc = "eedp app tag error";
1001 		break;
1002 
1003 /****************************************************************************
1004 *  SCSI Target values
1005 ****************************************************************************/
1006 
1007 	case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
1008 		desc = "target invalid io index";
1009 		break;
1010 	case MPI2_IOCSTATUS_TARGET_ABORTED:
1011 		desc = "target aborted";
1012 		break;
1013 	case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
1014 		desc = "target no conn retryable";
1015 		break;
1016 	case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
1017 		desc = "target no connection";
1018 		break;
1019 	case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
1020 		desc = "target xfer count mismatch";
1021 		break;
1022 	case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
1023 		desc = "target data offset error";
1024 		break;
1025 	case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
1026 		desc = "target too much write data";
1027 		break;
1028 	case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
1029 		desc = "target iu too short";
1030 		break;
1031 	case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
1032 		desc = "target ack nak timeout";
1033 		break;
1034 	case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
1035 		desc = "target nak received";
1036 		break;
1037 
1038 /****************************************************************************
1039 *  Serial Attached SCSI values
1040 ****************************************************************************/
1041 
1042 	case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
1043 		desc = "smp request failed";
1044 		break;
1045 	case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
1046 		desc = "smp data overrun";
1047 		break;
1048 
1049 /****************************************************************************
1050 *  Diagnostic Buffer Post / Diagnostic Release values
1051 ****************************************************************************/
1052 
1053 	case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
1054 		desc = "diagnostic released";
1055 		break;
1056 	default:
1057 		break;
1058 	}
1059 
1060 	if (!desc)
1061 		return;
1062 
1063 	switch (request_hdr->Function) {
1064 	case MPI2_FUNCTION_CONFIG:
1065 		frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
1066 		func_str = "config_page";
1067 		break;
1068 	case MPI2_FUNCTION_SCSI_TASK_MGMT:
1069 		frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
1070 		func_str = "task_mgmt";
1071 		break;
1072 	case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
1073 		frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
1074 		func_str = "sas_iounit_ctl";
1075 		break;
1076 	case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
1077 		frame_sz = sizeof(Mpi2SepRequest_t);
1078 		func_str = "enclosure";
1079 		break;
1080 	case MPI2_FUNCTION_IOC_INIT:
1081 		frame_sz = sizeof(Mpi2IOCInitRequest_t);
1082 		func_str = "ioc_init";
1083 		break;
1084 	case MPI2_FUNCTION_PORT_ENABLE:
1085 		frame_sz = sizeof(Mpi2PortEnableRequest_t);
1086 		func_str = "port_enable";
1087 		break;
1088 	case MPI2_FUNCTION_SMP_PASSTHROUGH:
1089 		frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
1090 		func_str = "smp_passthru";
1091 		break;
1092 	case MPI2_FUNCTION_NVME_ENCAPSULATED:
1093 		frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) +
1094 		    ioc->sge_size;
1095 		func_str = "nvme_encapsulated";
1096 		break;
1097 	default:
1098 		frame_sz = 32;
1099 		func_str = "unknown";
1100 		break;
1101 	}
1102 
1103 	ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
1104 		 desc, ioc_status, request_hdr, func_str);
1105 
1106 	_debug_dump_mf(request_hdr, frame_sz/4);
1107 }
1108 
1109 /**
1110  * _base_display_event_data - verbose translation of firmware asyn events
1111  * @ioc: per adapter object
1112  * @mpi_reply: reply mf payload returned from firmware
1113  */
1114 static void
1115 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
1116 	Mpi2EventNotificationReply_t *mpi_reply)
1117 {
1118 	char *desc = NULL;
1119 	u16 event;
1120 
1121 	if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
1122 		return;
1123 
1124 	event = le16_to_cpu(mpi_reply->Event);
1125 
1126 	switch (event) {
1127 	case MPI2_EVENT_LOG_DATA:
1128 		desc = "Log Data";
1129 		break;
1130 	case MPI2_EVENT_STATE_CHANGE:
1131 		desc = "Status Change";
1132 		break;
1133 	case MPI2_EVENT_HARD_RESET_RECEIVED:
1134 		desc = "Hard Reset Received";
1135 		break;
1136 	case MPI2_EVENT_EVENT_CHANGE:
1137 		desc = "Event Change";
1138 		break;
1139 	case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
1140 		desc = "Device Status Change";
1141 		break;
1142 	case MPI2_EVENT_IR_OPERATION_STATUS:
1143 		if (!ioc->hide_ir_msg)
1144 			desc = "IR Operation Status";
1145 		break;
1146 	case MPI2_EVENT_SAS_DISCOVERY:
1147 	{
1148 		Mpi2EventDataSasDiscovery_t *event_data =
1149 		    (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
1150 		ioc_info(ioc, "Discovery: (%s)",
1151 			 event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ?
1152 			 "start" : "stop");
1153 		if (event_data->DiscoveryStatus)
1154 			pr_cont(" discovery_status(0x%08x)",
1155 			    le32_to_cpu(event_data->DiscoveryStatus));
1156 		pr_cont("\n");
1157 		return;
1158 	}
1159 	case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
1160 		desc = "SAS Broadcast Primitive";
1161 		break;
1162 	case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
1163 		desc = "SAS Init Device Status Change";
1164 		break;
1165 	case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
1166 		desc = "SAS Init Table Overflow";
1167 		break;
1168 	case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
1169 		desc = "SAS Topology Change List";
1170 		break;
1171 	case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
1172 		desc = "SAS Enclosure Device Status Change";
1173 		break;
1174 	case MPI2_EVENT_IR_VOLUME:
1175 		if (!ioc->hide_ir_msg)
1176 			desc = "IR Volume";
1177 		break;
1178 	case MPI2_EVENT_IR_PHYSICAL_DISK:
1179 		if (!ioc->hide_ir_msg)
1180 			desc = "IR Physical Disk";
1181 		break;
1182 	case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
1183 		if (!ioc->hide_ir_msg)
1184 			desc = "IR Configuration Change List";
1185 		break;
1186 	case MPI2_EVENT_LOG_ENTRY_ADDED:
1187 		if (!ioc->hide_ir_msg)
1188 			desc = "Log Entry Added";
1189 		break;
1190 	case MPI2_EVENT_TEMP_THRESHOLD:
1191 		desc = "Temperature Threshold";
1192 		break;
1193 	case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
1194 		desc = "Cable Event";
1195 		break;
1196 	case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR:
1197 		desc = "SAS Device Discovery Error";
1198 		break;
1199 	case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE:
1200 		desc = "PCIE Device Status Change";
1201 		break;
1202 	case MPI2_EVENT_PCIE_ENUMERATION:
1203 	{
1204 		Mpi26EventDataPCIeEnumeration_t *event_data =
1205 			(Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData;
1206 		ioc_info(ioc, "PCIE Enumeration: (%s)",
1207 			 event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ?
1208 			 "start" : "stop");
1209 		if (event_data->EnumerationStatus)
1210 			pr_cont("enumeration_status(0x%08x)",
1211 				le32_to_cpu(event_data->EnumerationStatus));
1212 		pr_cont("\n");
1213 		return;
1214 	}
1215 	case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST:
1216 		desc = "PCIE Topology Change List";
1217 		break;
1218 	}
1219 
1220 	if (!desc)
1221 		return;
1222 
1223 	ioc_info(ioc, "%s\n", desc);
1224 }
1225 
1226 /**
1227  * _base_sas_log_info - verbose translation of firmware log info
1228  * @ioc: per adapter object
1229  * @log_info: log info
1230  */
1231 static void
1232 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
1233 {
1234 	union loginfo_type {
1235 		u32	loginfo;
1236 		struct {
1237 			u32	subcode:16;
1238 			u32	code:8;
1239 			u32	originator:4;
1240 			u32	bus_type:4;
1241 		} dw;
1242 	};
1243 	union loginfo_type sas_loginfo;
1244 	char *originator_str = NULL;
1245 
1246 	sas_loginfo.loginfo = log_info;
1247 	if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
1248 		return;
1249 
1250 	/* each nexus loss loginfo */
1251 	if (log_info == 0x31170000)
1252 		return;
1253 
1254 	/* eat the loginfos associated with task aborts */
1255 	if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
1256 	    0x31140000 || log_info == 0x31130000))
1257 		return;
1258 
1259 	switch (sas_loginfo.dw.originator) {
1260 	case 0:
1261 		originator_str = "IOP";
1262 		break;
1263 	case 1:
1264 		originator_str = "PL";
1265 		break;
1266 	case 2:
1267 		if (!ioc->hide_ir_msg)
1268 			originator_str = "IR";
1269 		else
1270 			originator_str = "WarpDrive";
1271 		break;
1272 	}
1273 
1274 	ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
1275 		 log_info,
1276 		 originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode);
1277 }
1278 
1279 /**
1280  * _base_display_reply_info -
1281  * @ioc: per adapter object
1282  * @smid: system request message index
1283  * @msix_index: MSIX table index supplied by the OS
1284  * @reply: reply message frame(lower 32bit addr)
1285  */
1286 static void
1287 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1288 	u32 reply)
1289 {
1290 	MPI2DefaultReply_t *mpi_reply;
1291 	u16 ioc_status;
1292 	u32 loginfo = 0;
1293 
1294 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1295 	if (unlikely(!mpi_reply)) {
1296 		ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n",
1297 			__FILE__, __LINE__, __func__);
1298 		return;
1299 	}
1300 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
1301 
1302 	if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
1303 	    (ioc->logging_level & MPT_DEBUG_REPLY)) {
1304 		_base_sas_ioc_info(ioc , mpi_reply,
1305 		   mpt3sas_base_get_msg_frame(ioc, smid));
1306 	}
1307 
1308 	if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
1309 		loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
1310 		_base_sas_log_info(ioc, loginfo);
1311 	}
1312 
1313 	if (ioc_status || loginfo) {
1314 		ioc_status &= MPI2_IOCSTATUS_MASK;
1315 		mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
1316 	}
1317 }
1318 
1319 /**
1320  * mpt3sas_base_done - base internal command completion routine
1321  * @ioc: per adapter object
1322  * @smid: system request message index
1323  * @msix_index: MSIX table index supplied by the OS
1324  * @reply: reply message frame(lower 32bit addr)
1325  *
1326  * Return:
1327  * 1 meaning mf should be freed from _base_interrupt
1328  * 0 means the mf is freed from this function.
1329  */
1330 u8
1331 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1332 	u32 reply)
1333 {
1334 	MPI2DefaultReply_t *mpi_reply;
1335 
1336 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1337 	if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
1338 		return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
1339 
1340 	if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
1341 		return 1;
1342 
1343 	ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
1344 	if (mpi_reply) {
1345 		ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
1346 		memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
1347 	}
1348 	ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
1349 
1350 	complete(&ioc->base_cmds.done);
1351 	return 1;
1352 }
1353 
1354 /**
1355  * _base_async_event - main callback handler for firmware asyn events
1356  * @ioc: per adapter object
1357  * @msix_index: MSIX table index supplied by the OS
1358  * @reply: reply message frame(lower 32bit addr)
1359  *
1360  * Return:
1361  * 1 meaning mf should be freed from _base_interrupt
1362  * 0 means the mf is freed from this function.
1363  */
1364 static u8
1365 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
1366 {
1367 	Mpi2EventNotificationReply_t *mpi_reply;
1368 	Mpi2EventAckRequest_t *ack_request;
1369 	u16 smid;
1370 	struct _event_ack_list *delayed_event_ack;
1371 
1372 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1373 	if (!mpi_reply)
1374 		return 1;
1375 	if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
1376 		return 1;
1377 
1378 	_base_display_event_data(ioc, mpi_reply);
1379 
1380 	if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
1381 		goto out;
1382 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
1383 	if (!smid) {
1384 		delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
1385 					GFP_ATOMIC);
1386 		if (!delayed_event_ack)
1387 			goto out;
1388 		INIT_LIST_HEAD(&delayed_event_ack->list);
1389 		delayed_event_ack->Event = mpi_reply->Event;
1390 		delayed_event_ack->EventContext = mpi_reply->EventContext;
1391 		list_add_tail(&delayed_event_ack->list,
1392 				&ioc->delayed_event_ack_list);
1393 		dewtprintk(ioc,
1394 			   ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n",
1395 				    le16_to_cpu(mpi_reply->Event)));
1396 		goto out;
1397 	}
1398 
1399 	ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
1400 	memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
1401 	ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
1402 	ack_request->Event = mpi_reply->Event;
1403 	ack_request->EventContext = mpi_reply->EventContext;
1404 	ack_request->VF_ID = 0;  /* TODO */
1405 	ack_request->VP_ID = 0;
1406 	ioc->put_smid_default(ioc, smid);
1407 
1408  out:
1409 
1410 	/* scsih callback handler */
1411 	mpt3sas_scsih_event_callback(ioc, msix_index, reply);
1412 
1413 	/* ctl callback handler */
1414 	mpt3sas_ctl_event_callback(ioc, msix_index, reply);
1415 
1416 	return 1;
1417 }
1418 
1419 static struct scsiio_tracker *
1420 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1421 {
1422 	struct scsi_cmnd *cmd;
1423 
1424 	if (WARN_ON(!smid) ||
1425 	    WARN_ON(smid >= ioc->hi_priority_smid))
1426 		return NULL;
1427 
1428 	cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
1429 	if (cmd)
1430 		return scsi_cmd_priv(cmd);
1431 
1432 	return NULL;
1433 }
1434 
1435 /**
1436  * _base_get_cb_idx - obtain the callback index
1437  * @ioc: per adapter object
1438  * @smid: system request message index
1439  *
1440  * Return: callback index.
1441  */
1442 static u8
1443 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1444 {
1445 	int i;
1446 	u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1;
1447 	u8 cb_idx = 0xFF;
1448 
1449 	if (smid < ioc->hi_priority_smid) {
1450 		struct scsiio_tracker *st;
1451 
1452 		if (smid < ctl_smid) {
1453 			st = _get_st_from_smid(ioc, smid);
1454 			if (st)
1455 				cb_idx = st->cb_idx;
1456 		} else if (smid == ctl_smid)
1457 			cb_idx = ioc->ctl_cb_idx;
1458 	} else if (smid < ioc->internal_smid) {
1459 		i = smid - ioc->hi_priority_smid;
1460 		cb_idx = ioc->hpr_lookup[i].cb_idx;
1461 	} else if (smid <= ioc->hba_queue_depth) {
1462 		i = smid - ioc->internal_smid;
1463 		cb_idx = ioc->internal_lookup[i].cb_idx;
1464 	}
1465 	return cb_idx;
1466 }
1467 
1468 /**
1469  * _base_mask_interrupts - disable interrupts
1470  * @ioc: per adapter object
1471  *
1472  * Disabling ResetIRQ, Reply and Doorbell Interrupts
1473  */
1474 static void
1475 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1476 {
1477 	u32 him_register;
1478 
1479 	ioc->mask_interrupts = 1;
1480 	him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1481 	him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
1482 	writel(him_register, &ioc->chip->HostInterruptMask);
1483 	ioc->base_readl(&ioc->chip->HostInterruptMask);
1484 }
1485 
1486 /**
1487  * _base_unmask_interrupts - enable interrupts
1488  * @ioc: per adapter object
1489  *
1490  * Enabling only Reply Interrupts
1491  */
1492 static void
1493 _base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1494 {
1495 	u32 him_register;
1496 
1497 	him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1498 	him_register &= ~MPI2_HIM_RIM;
1499 	writel(him_register, &ioc->chip->HostInterruptMask);
1500 	ioc->mask_interrupts = 0;
1501 }
1502 
1503 union reply_descriptor {
1504 	u64 word;
1505 	struct {
1506 		u32 low;
1507 		u32 high;
1508 	} u;
1509 };
1510 
1511 static u32 base_mod64(u64 dividend, u32 divisor)
1512 {
1513 	u32 remainder;
1514 
1515 	if (!divisor)
1516 		pr_err("mpt3sas: DIVISOR is zero, in div fn\n");
1517 	remainder = do_div(dividend, divisor);
1518 	return remainder;
1519 }
1520 
1521 /**
1522  * _base_process_reply_queue - Process reply descriptors from reply
1523  *		descriptor post queue.
1524  * @reply_q: per IRQ's reply queue object.
1525  *
1526  * Return: number of reply descriptors processed from reply
1527  *		descriptor queue.
1528  */
1529 static int
1530 _base_process_reply_queue(struct adapter_reply_queue *reply_q)
1531 {
1532 	union reply_descriptor rd;
1533 	u64 completed_cmds;
1534 	u8 request_descript_type;
1535 	u16 smid;
1536 	u8 cb_idx;
1537 	u32 reply;
1538 	u8 msix_index = reply_q->msix_index;
1539 	struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1540 	Mpi2ReplyDescriptorsUnion_t *rpf;
1541 	u8 rc;
1542 
1543 	completed_cmds = 0;
1544 	if (!atomic_add_unless(&reply_q->busy, 1, 1))
1545 		return completed_cmds;
1546 
1547 	rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
1548 	request_descript_type = rpf->Default.ReplyFlags
1549 	     & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1550 	if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
1551 		atomic_dec(&reply_q->busy);
1552 		return completed_cmds;
1553 	}
1554 
1555 	cb_idx = 0xFF;
1556 	do {
1557 		rd.word = le64_to_cpu(rpf->Words);
1558 		if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
1559 			goto out;
1560 		reply = 0;
1561 		smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
1562 		if (request_descript_type ==
1563 		    MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
1564 		    request_descript_type ==
1565 		    MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS ||
1566 		    request_descript_type ==
1567 		    MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) {
1568 			cb_idx = _base_get_cb_idx(ioc, smid);
1569 			if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1570 			    (likely(mpt_callbacks[cb_idx] != NULL))) {
1571 				rc = mpt_callbacks[cb_idx](ioc, smid,
1572 				    msix_index, 0);
1573 				if (rc)
1574 					mpt3sas_base_free_smid(ioc, smid);
1575 			}
1576 		} else if (request_descript_type ==
1577 		    MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
1578 			reply = le32_to_cpu(
1579 			    rpf->AddressReply.ReplyFrameAddress);
1580 			if (reply > ioc->reply_dma_max_address ||
1581 			    reply < ioc->reply_dma_min_address)
1582 				reply = 0;
1583 			if (smid) {
1584 				cb_idx = _base_get_cb_idx(ioc, smid);
1585 				if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1586 				    (likely(mpt_callbacks[cb_idx] != NULL))) {
1587 					rc = mpt_callbacks[cb_idx](ioc, smid,
1588 					    msix_index, reply);
1589 					if (reply)
1590 						_base_display_reply_info(ioc,
1591 						    smid, msix_index, reply);
1592 					if (rc)
1593 						mpt3sas_base_free_smid(ioc,
1594 						    smid);
1595 				}
1596 			} else {
1597 				_base_async_event(ioc, msix_index, reply);
1598 			}
1599 
1600 			/* reply free queue handling */
1601 			if (reply) {
1602 				ioc->reply_free_host_index =
1603 				    (ioc->reply_free_host_index ==
1604 				    (ioc->reply_free_queue_depth - 1)) ?
1605 				    0 : ioc->reply_free_host_index + 1;
1606 				ioc->reply_free[ioc->reply_free_host_index] =
1607 				    cpu_to_le32(reply);
1608 				if (ioc->is_mcpu_endpoint)
1609 					_base_clone_reply_to_sys_mem(ioc,
1610 						reply,
1611 						ioc->reply_free_host_index);
1612 				writel(ioc->reply_free_host_index,
1613 				    &ioc->chip->ReplyFreeHostIndex);
1614 			}
1615 		}
1616 
1617 		rpf->Words = cpu_to_le64(ULLONG_MAX);
1618 		reply_q->reply_post_host_index =
1619 		    (reply_q->reply_post_host_index ==
1620 		    (ioc->reply_post_queue_depth - 1)) ? 0 :
1621 		    reply_q->reply_post_host_index + 1;
1622 		request_descript_type =
1623 		    reply_q->reply_post_free[reply_q->reply_post_host_index].
1624 		    Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1625 		completed_cmds++;
1626 		/* Update the reply post host index after continuously
1627 		 * processing the threshold number of Reply Descriptors.
1628 		 * So that FW can find enough entries to post the Reply
1629 		 * Descriptors in the reply descriptor post queue.
1630 		 */
1631 		if (!base_mod64(completed_cmds, ioc->thresh_hold)) {
1632 			if (ioc->combined_reply_queue) {
1633 				writel(reply_q->reply_post_host_index |
1634 						((msix_index  & 7) <<
1635 						 MPI2_RPHI_MSIX_INDEX_SHIFT),
1636 				    ioc->replyPostRegisterIndex[msix_index/8]);
1637 			} else {
1638 				writel(reply_q->reply_post_host_index |
1639 						(msix_index <<
1640 						 MPI2_RPHI_MSIX_INDEX_SHIFT),
1641 						&ioc->chip->ReplyPostHostIndex);
1642 			}
1643 			if (!reply_q->irq_poll_scheduled) {
1644 				reply_q->irq_poll_scheduled = true;
1645 				irq_poll_sched(&reply_q->irqpoll);
1646 			}
1647 			atomic_dec(&reply_q->busy);
1648 			return completed_cmds;
1649 		}
1650 		if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1651 			goto out;
1652 		if (!reply_q->reply_post_host_index)
1653 			rpf = reply_q->reply_post_free;
1654 		else
1655 			rpf++;
1656 	} while (1);
1657 
1658  out:
1659 
1660 	if (!completed_cmds) {
1661 		atomic_dec(&reply_q->busy);
1662 		return completed_cmds;
1663 	}
1664 
1665 	if (ioc->is_warpdrive) {
1666 		writel(reply_q->reply_post_host_index,
1667 		ioc->reply_post_host_index[msix_index]);
1668 		atomic_dec(&reply_q->busy);
1669 		return completed_cmds;
1670 	}
1671 
1672 	/* Update Reply Post Host Index.
1673 	 * For those HBA's which support combined reply queue feature
1674 	 * 1. Get the correct Supplemental Reply Post Host Index Register.
1675 	 *    i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1676 	 *    Index Register address bank i.e replyPostRegisterIndex[],
1677 	 * 2. Then update this register with new reply host index value
1678 	 *    in ReplyPostIndex field and the MSIxIndex field with
1679 	 *    msix_index value reduced to a value between 0 and 7,
1680 	 *    using a modulo 8 operation. Since each Supplemental Reply Post
1681 	 *    Host Index Register supports 8 MSI-X vectors.
1682 	 *
1683 	 * For other HBA's just update the Reply Post Host Index register with
1684 	 * new reply host index value in ReplyPostIndex Field and msix_index
1685 	 * value in MSIxIndex field.
1686 	 */
1687 	if (ioc->combined_reply_queue)
1688 		writel(reply_q->reply_post_host_index | ((msix_index  & 7) <<
1689 			MPI2_RPHI_MSIX_INDEX_SHIFT),
1690 			ioc->replyPostRegisterIndex[msix_index/8]);
1691 	else
1692 		writel(reply_q->reply_post_host_index | (msix_index <<
1693 			MPI2_RPHI_MSIX_INDEX_SHIFT),
1694 			&ioc->chip->ReplyPostHostIndex);
1695 	atomic_dec(&reply_q->busy);
1696 	return completed_cmds;
1697 }
1698 
1699 /**
1700  * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
1701  * @irq: irq number (not used)
1702  * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
1703  *
1704  * Return: IRQ_HANDLED if processed, else IRQ_NONE.
1705  */
1706 static irqreturn_t
1707 _base_interrupt(int irq, void *bus_id)
1708 {
1709 	struct adapter_reply_queue *reply_q = bus_id;
1710 	struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1711 
1712 	if (ioc->mask_interrupts)
1713 		return IRQ_NONE;
1714 	if (reply_q->irq_poll_scheduled)
1715 		return IRQ_HANDLED;
1716 	return ((_base_process_reply_queue(reply_q) > 0) ?
1717 			IRQ_HANDLED : IRQ_NONE);
1718 }
1719 
1720 /**
1721  * _base_irqpoll - IRQ poll callback handler
1722  * @irqpoll: irq_poll object
1723  * @budget: irq poll weight
1724  *
1725  * returns number of reply descriptors processed
1726  */
1727 static int
1728 _base_irqpoll(struct irq_poll *irqpoll, int budget)
1729 {
1730 	struct adapter_reply_queue *reply_q;
1731 	int num_entries = 0;
1732 
1733 	reply_q = container_of(irqpoll, struct adapter_reply_queue,
1734 			irqpoll);
1735 	if (reply_q->irq_line_enable) {
1736 		disable_irq_nosync(reply_q->os_irq);
1737 		reply_q->irq_line_enable = false;
1738 	}
1739 	num_entries = _base_process_reply_queue(reply_q);
1740 	if (num_entries < budget) {
1741 		irq_poll_complete(irqpoll);
1742 		reply_q->irq_poll_scheduled = false;
1743 		reply_q->irq_line_enable = true;
1744 		enable_irq(reply_q->os_irq);
1745 	}
1746 
1747 	return num_entries;
1748 }
1749 
1750 /**
1751  * _base_init_irqpolls - initliaze IRQ polls
1752  * @ioc: per adapter object
1753  *
1754  * returns nothing
1755  */
1756 static void
1757 _base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc)
1758 {
1759 	struct adapter_reply_queue *reply_q, *next;
1760 
1761 	if (list_empty(&ioc->reply_queue_list))
1762 		return;
1763 
1764 	list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1765 		irq_poll_init(&reply_q->irqpoll,
1766 			ioc->hba_queue_depth/4, _base_irqpoll);
1767 		reply_q->irq_poll_scheduled = false;
1768 		reply_q->irq_line_enable = true;
1769 		reply_q->os_irq = pci_irq_vector(ioc->pdev,
1770 		    reply_q->msix_index);
1771 	}
1772 }
1773 
1774 /**
1775  * _base_is_controller_msix_enabled - is controller support muli-reply queues
1776  * @ioc: per adapter object
1777  *
1778  * Return: Whether or not MSI/X is enabled.
1779  */
1780 static inline int
1781 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1782 {
1783 	return (ioc->facts.IOCCapabilities &
1784 	    MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1785 }
1786 
1787 /**
1788  * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1789  * @ioc: per adapter object
1790  * Context: non ISR conext
1791  *
1792  * Called when a Task Management request has completed.
1793  */
1794 void
1795 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc)
1796 {
1797 	struct adapter_reply_queue *reply_q;
1798 
1799 	/* If MSIX capability is turned off
1800 	 * then multi-queues are not enabled
1801 	 */
1802 	if (!_base_is_controller_msix_enabled(ioc))
1803 		return;
1804 
1805 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1806 		if (ioc->shost_recovery || ioc->remove_host ||
1807 				ioc->pci_error_recovery)
1808 			return;
1809 		/* TMs are on msix_index == 0 */
1810 		if (reply_q->msix_index == 0)
1811 			continue;
1812 		if (reply_q->irq_poll_scheduled) {
1813 			/* Calling irq_poll_disable will wait for any pending
1814 			 * callbacks to have completed.
1815 			 */
1816 			irq_poll_disable(&reply_q->irqpoll);
1817 			irq_poll_enable(&reply_q->irqpoll);
1818 			reply_q->irq_poll_scheduled = false;
1819 			reply_q->irq_line_enable = true;
1820 			enable_irq(reply_q->os_irq);
1821 			continue;
1822 		}
1823 		synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
1824 	}
1825 }
1826 
1827 /**
1828  * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1829  * @cb_idx: callback index
1830  */
1831 void
1832 mpt3sas_base_release_callback_handler(u8 cb_idx)
1833 {
1834 	mpt_callbacks[cb_idx] = NULL;
1835 }
1836 
1837 /**
1838  * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1839  * @cb_func: callback function
1840  *
1841  * Return: Index of @cb_func.
1842  */
1843 u8
1844 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1845 {
1846 	u8 cb_idx;
1847 
1848 	for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1849 		if (mpt_callbacks[cb_idx] == NULL)
1850 			break;
1851 
1852 	mpt_callbacks[cb_idx] = cb_func;
1853 	return cb_idx;
1854 }
1855 
1856 /**
1857  * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1858  */
1859 void
1860 mpt3sas_base_initialize_callback_handler(void)
1861 {
1862 	u8 cb_idx;
1863 
1864 	for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1865 		mpt3sas_base_release_callback_handler(cb_idx);
1866 }
1867 
1868 
1869 /**
1870  * _base_build_zero_len_sge - build zero length sg entry
1871  * @ioc: per adapter object
1872  * @paddr: virtual address for SGE
1873  *
1874  * Create a zero length scatter gather entry to insure the IOCs hardware has
1875  * something to use if the target device goes brain dead and tries
1876  * to send data even when none is asked for.
1877  */
1878 static void
1879 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1880 {
1881 	u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1882 	    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1883 	    MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1884 	    MPI2_SGE_FLAGS_SHIFT);
1885 	ioc->base_add_sg_single(paddr, flags_length, -1);
1886 }
1887 
1888 /**
1889  * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1890  * @paddr: virtual address for SGE
1891  * @flags_length: SGE flags and data transfer length
1892  * @dma_addr: Physical address
1893  */
1894 static void
1895 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1896 {
1897 	Mpi2SGESimple32_t *sgel = paddr;
1898 
1899 	flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1900 	    MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1901 	sgel->FlagsLength = cpu_to_le32(flags_length);
1902 	sgel->Address = cpu_to_le32(dma_addr);
1903 }
1904 
1905 
1906 /**
1907  * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1908  * @paddr: virtual address for SGE
1909  * @flags_length: SGE flags and data transfer length
1910  * @dma_addr: Physical address
1911  */
1912 static void
1913 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1914 {
1915 	Mpi2SGESimple64_t *sgel = paddr;
1916 
1917 	flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
1918 	    MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1919 	sgel->FlagsLength = cpu_to_le32(flags_length);
1920 	sgel->Address = cpu_to_le64(dma_addr);
1921 }
1922 
1923 /**
1924  * _base_get_chain_buffer_tracker - obtain chain tracker
1925  * @ioc: per adapter object
1926  * @scmd: SCSI commands of the IO request
1927  *
1928  * Return: chain tracker from chain_lookup table using key as
1929  * smid and smid's chain_offset.
1930  */
1931 static struct chain_tracker *
1932 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc,
1933 			       struct scsi_cmnd *scmd)
1934 {
1935 	struct chain_tracker *chain_req;
1936 	struct scsiio_tracker *st = scsi_cmd_priv(scmd);
1937 	u16 smid = st->smid;
1938 	u8 chain_offset =
1939 	   atomic_read(&ioc->chain_lookup[smid - 1].chain_offset);
1940 
1941 	if (chain_offset == ioc->chains_needed_per_io)
1942 		return NULL;
1943 
1944 	chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset];
1945 	atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset);
1946 	return chain_req;
1947 }
1948 
1949 
1950 /**
1951  * _base_build_sg - build generic sg
1952  * @ioc: per adapter object
1953  * @psge: virtual address for SGE
1954  * @data_out_dma: physical address for WRITES
1955  * @data_out_sz: data xfer size for WRITES
1956  * @data_in_dma: physical address for READS
1957  * @data_in_sz: data xfer size for READS
1958  */
1959 static void
1960 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
1961 	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1962 	size_t data_in_sz)
1963 {
1964 	u32 sgl_flags;
1965 
1966 	if (!data_out_sz && !data_in_sz) {
1967 		_base_build_zero_len_sge(ioc, psge);
1968 		return;
1969 	}
1970 
1971 	if (data_out_sz && data_in_sz) {
1972 		/* WRITE sgel first */
1973 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1974 		    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
1975 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1976 		ioc->base_add_sg_single(psge, sgl_flags |
1977 		    data_out_sz, data_out_dma);
1978 
1979 		/* incr sgel */
1980 		psge += ioc->sge_size;
1981 
1982 		/* READ sgel last */
1983 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1984 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1985 		    MPI2_SGE_FLAGS_END_OF_LIST);
1986 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1987 		ioc->base_add_sg_single(psge, sgl_flags |
1988 		    data_in_sz, data_in_dma);
1989 	} else if (data_out_sz) /* WRITE */ {
1990 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1991 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1992 		    MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
1993 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1994 		ioc->base_add_sg_single(psge, sgl_flags |
1995 		    data_out_sz, data_out_dma);
1996 	} else if (data_in_sz) /* READ */ {
1997 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1998 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1999 		    MPI2_SGE_FLAGS_END_OF_LIST);
2000 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2001 		ioc->base_add_sg_single(psge, sgl_flags |
2002 		    data_in_sz, data_in_dma);
2003 	}
2004 }
2005 
2006 /* IEEE format sgls */
2007 
2008 /**
2009  * _base_build_nvme_prp - This function is called for NVMe end devices to build
2010  * a native SGL (NVMe PRP). The native SGL is built starting in the first PRP
2011  * entry of the NVMe message (PRP1).  If the data buffer is small enough to be
2012  * described entirely using PRP1, then PRP2 is not used.  If needed, PRP2 is
2013  * used to describe a larger data buffer.  If the data buffer is too large to
2014  * describe using the two PRP entriess inside the NVMe message, then PRP1
2015  * describes the first data memory segment, and PRP2 contains a pointer to a PRP
2016  * list located elsewhere in memory to describe the remaining data memory
2017  * segments.  The PRP list will be contiguous.
2018  *
2019  * The native SGL for NVMe devices is a Physical Region Page (PRP).  A PRP
2020  * consists of a list of PRP entries to describe a number of noncontigous
2021  * physical memory segments as a single memory buffer, just as a SGL does.  Note
2022  * however, that this function is only used by the IOCTL call, so the memory
2023  * given will be guaranteed to be contiguous.  There is no need to translate
2024  * non-contiguous SGL into a PRP in this case.  All PRPs will describe
2025  * contiguous space that is one page size each.
2026  *
2027  * Each NVMe message contains two PRP entries.  The first (PRP1) either contains
2028  * a PRP list pointer or a PRP element, depending upon the command.  PRP2
2029  * contains the second PRP element if the memory being described fits within 2
2030  * PRP entries, or a PRP list pointer if the PRP spans more than two entries.
2031  *
2032  * A PRP list pointer contains the address of a PRP list, structured as a linear
2033  * array of PRP entries.  Each PRP entry in this list describes a segment of
2034  * physical memory.
2035  *
2036  * Each 64-bit PRP entry comprises an address and an offset field.  The address
2037  * always points at the beginning of a 4KB physical memory page, and the offset
2038  * describes where within that 4KB page the memory segment begins.  Only the
2039  * first element in a PRP list may contain a non-zero offest, implying that all
2040  * memory segments following the first begin at the start of a 4KB page.
2041  *
2042  * Each PRP element normally describes 4KB of physical memory, with exceptions
2043  * for the first and last elements in the list.  If the memory being described
2044  * by the list begins at a non-zero offset within the first 4KB page, then the
2045  * first PRP element will contain a non-zero offset indicating where the region
2046  * begins within the 4KB page.  The last memory segment may end before the end
2047  * of the 4KB segment, depending upon the overall size of the memory being
2048  * described by the PRP list.
2049  *
2050  * Since PRP entries lack any indication of size, the overall data buffer length
2051  * is used to determine where the end of the data memory buffer is located, and
2052  * how many PRP entries are required to describe it.
2053  *
2054  * @ioc: per adapter object
2055  * @smid: system request message index for getting asscociated SGL
2056  * @nvme_encap_request: the NVMe request msg frame pointer
2057  * @data_out_dma: physical address for WRITES
2058  * @data_out_sz: data xfer size for WRITES
2059  * @data_in_dma: physical address for READS
2060  * @data_in_sz: data xfer size for READS
2061  */
2062 static void
2063 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2064 	Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request,
2065 	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2066 	size_t data_in_sz)
2067 {
2068 	int		prp_size = NVME_PRP_SIZE;
2069 	__le64		*prp_entry, *prp1_entry, *prp2_entry;
2070 	__le64		*prp_page;
2071 	dma_addr_t	prp_entry_dma, prp_page_dma, dma_addr;
2072 	u32		offset, entry_len;
2073 	u32		page_mask_result, page_mask;
2074 	size_t		length;
2075 	struct mpt3sas_nvme_cmd *nvme_cmd =
2076 		(void *)nvme_encap_request->NVMe_Command;
2077 
2078 	/*
2079 	 * Not all commands require a data transfer. If no data, just return
2080 	 * without constructing any PRP.
2081 	 */
2082 	if (!data_in_sz && !data_out_sz)
2083 		return;
2084 	prp1_entry = &nvme_cmd->prp1;
2085 	prp2_entry = &nvme_cmd->prp2;
2086 	prp_entry = prp1_entry;
2087 	/*
2088 	 * For the PRP entries, use the specially allocated buffer of
2089 	 * contiguous memory.
2090 	 */
2091 	prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid);
2092 	prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2093 
2094 	/*
2095 	 * Check if we are within 1 entry of a page boundary we don't
2096 	 * want our first entry to be a PRP List entry.
2097 	 */
2098 	page_mask = ioc->page_size - 1;
2099 	page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
2100 	if (!page_mask_result) {
2101 		/* Bump up to next page boundary. */
2102 		prp_page = (__le64 *)((u8 *)prp_page + prp_size);
2103 		prp_page_dma = prp_page_dma + prp_size;
2104 	}
2105 
2106 	/*
2107 	 * Set PRP physical pointer, which initially points to the current PRP
2108 	 * DMA memory page.
2109 	 */
2110 	prp_entry_dma = prp_page_dma;
2111 
2112 	/* Get physical address and length of the data buffer. */
2113 	if (data_in_sz) {
2114 		dma_addr = data_in_dma;
2115 		length = data_in_sz;
2116 	} else {
2117 		dma_addr = data_out_dma;
2118 		length = data_out_sz;
2119 	}
2120 
2121 	/* Loop while the length is not zero. */
2122 	while (length) {
2123 		/*
2124 		 * Check if we need to put a list pointer here if we are at
2125 		 * page boundary - prp_size (8 bytes).
2126 		 */
2127 		page_mask_result = (prp_entry_dma + prp_size) & page_mask;
2128 		if (!page_mask_result) {
2129 			/*
2130 			 * This is the last entry in a PRP List, so we need to
2131 			 * put a PRP list pointer here.  What this does is:
2132 			 *   - bump the current memory pointer to the next
2133 			 *     address, which will be the next full page.
2134 			 *   - set the PRP Entry to point to that page.  This
2135 			 *     is now the PRP List pointer.
2136 			 *   - bump the PRP Entry pointer the start of the
2137 			 *     next page.  Since all of this PRP memory is
2138 			 *     contiguous, no need to get a new page - it's
2139 			 *     just the next address.
2140 			 */
2141 			prp_entry_dma++;
2142 			*prp_entry = cpu_to_le64(prp_entry_dma);
2143 			prp_entry++;
2144 		}
2145 
2146 		/* Need to handle if entry will be part of a page. */
2147 		offset = dma_addr & page_mask;
2148 		entry_len = ioc->page_size - offset;
2149 
2150 		if (prp_entry == prp1_entry) {
2151 			/*
2152 			 * Must fill in the first PRP pointer (PRP1) before
2153 			 * moving on.
2154 			 */
2155 			*prp1_entry = cpu_to_le64(dma_addr);
2156 
2157 			/*
2158 			 * Now point to the second PRP entry within the
2159 			 * command (PRP2).
2160 			 */
2161 			prp_entry = prp2_entry;
2162 		} else if (prp_entry == prp2_entry) {
2163 			/*
2164 			 * Should the PRP2 entry be a PRP List pointer or just
2165 			 * a regular PRP pointer?  If there is more than one
2166 			 * more page of data, must use a PRP List pointer.
2167 			 */
2168 			if (length > ioc->page_size) {
2169 				/*
2170 				 * PRP2 will contain a PRP List pointer because
2171 				 * more PRP's are needed with this command. The
2172 				 * list will start at the beginning of the
2173 				 * contiguous buffer.
2174 				 */
2175 				*prp2_entry = cpu_to_le64(prp_entry_dma);
2176 
2177 				/*
2178 				 * The next PRP Entry will be the start of the
2179 				 * first PRP List.
2180 				 */
2181 				prp_entry = prp_page;
2182 			} else {
2183 				/*
2184 				 * After this, the PRP Entries are complete.
2185 				 * This command uses 2 PRP's and no PRP list.
2186 				 */
2187 				*prp2_entry = cpu_to_le64(dma_addr);
2188 			}
2189 		} else {
2190 			/*
2191 			 * Put entry in list and bump the addresses.
2192 			 *
2193 			 * After PRP1 and PRP2 are filled in, this will fill in
2194 			 * all remaining PRP entries in a PRP List, one per
2195 			 * each time through the loop.
2196 			 */
2197 			*prp_entry = cpu_to_le64(dma_addr);
2198 			prp_entry++;
2199 			prp_entry_dma++;
2200 		}
2201 
2202 		/*
2203 		 * Bump the phys address of the command's data buffer by the
2204 		 * entry_len.
2205 		 */
2206 		dma_addr += entry_len;
2207 
2208 		/* Decrement length accounting for last partial page. */
2209 		if (entry_len > length)
2210 			length = 0;
2211 		else
2212 			length -= entry_len;
2213 	}
2214 }
2215 
2216 /**
2217  * base_make_prp_nvme -
2218  * Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only
2219  *
2220  * @ioc:		per adapter object
2221  * @scmd:		SCSI command from the mid-layer
2222  * @mpi_request:	mpi request
2223  * @smid:		msg Index
2224  * @sge_count:		scatter gather element count.
2225  *
2226  * Return:		true: PRPs are built
2227  *			false: IEEE SGLs needs to be built
2228  */
2229 static void
2230 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
2231 		struct scsi_cmnd *scmd,
2232 		Mpi25SCSIIORequest_t *mpi_request,
2233 		u16 smid, int sge_count)
2234 {
2235 	int sge_len, num_prp_in_chain = 0;
2236 	Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl;
2237 	__le64 *curr_buff;
2238 	dma_addr_t msg_dma, sge_addr, offset;
2239 	u32 page_mask, page_mask_result;
2240 	struct scatterlist *sg_scmd;
2241 	u32 first_prp_len;
2242 	int data_len = scsi_bufflen(scmd);
2243 	u32 nvme_pg_size;
2244 
2245 	nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE);
2246 	/*
2247 	 * Nvme has a very convoluted prp format.  One prp is required
2248 	 * for each page or partial page. Driver need to split up OS sg_list
2249 	 * entries if it is longer than one page or cross a page
2250 	 * boundary.  Driver also have to insert a PRP list pointer entry as
2251 	 * the last entry in each physical page of the PRP list.
2252 	 *
2253 	 * NOTE: The first PRP "entry" is actually placed in the first
2254 	 * SGL entry in the main message as IEEE 64 format.  The 2nd
2255 	 * entry in the main message is the chain element, and the rest
2256 	 * of the PRP entries are built in the contiguous pcie buffer.
2257 	 */
2258 	page_mask = nvme_pg_size - 1;
2259 
2260 	/*
2261 	 * Native SGL is needed.
2262 	 * Put a chain element in main message frame that points to the first
2263 	 * chain buffer.
2264 	 *
2265 	 * NOTE:  The ChainOffset field must be 0 when using a chain pointer to
2266 	 *        a native SGL.
2267 	 */
2268 
2269 	/* Set main message chain element pointer */
2270 	main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2271 	/*
2272 	 * For NVMe the chain element needs to be the 2nd SG entry in the main
2273 	 * message.
2274 	 */
2275 	main_chain_element = (Mpi25IeeeSgeChain64_t *)
2276 		((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
2277 
2278 	/*
2279 	 * For the PRP entries, use the specially allocated buffer of
2280 	 * contiguous memory.  Normal chain buffers can't be used
2281 	 * because each chain buffer would need to be the size of an OS
2282 	 * page (4k).
2283 	 */
2284 	curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid);
2285 	msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2286 
2287 	main_chain_element->Address = cpu_to_le64(msg_dma);
2288 	main_chain_element->NextChainOffset = 0;
2289 	main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2290 			MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2291 			MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
2292 
2293 	/* Build first prp, sge need not to be page aligned*/
2294 	ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2295 	sg_scmd = scsi_sglist(scmd);
2296 	sge_addr = sg_dma_address(sg_scmd);
2297 	sge_len = sg_dma_len(sg_scmd);
2298 
2299 	offset = sge_addr & page_mask;
2300 	first_prp_len = nvme_pg_size - offset;
2301 
2302 	ptr_first_sgl->Address = cpu_to_le64(sge_addr);
2303 	ptr_first_sgl->Length = cpu_to_le32(first_prp_len);
2304 
2305 	data_len -= first_prp_len;
2306 
2307 	if (sge_len > first_prp_len) {
2308 		sge_addr += first_prp_len;
2309 		sge_len -= first_prp_len;
2310 	} else if (data_len && (sge_len == first_prp_len)) {
2311 		sg_scmd = sg_next(sg_scmd);
2312 		sge_addr = sg_dma_address(sg_scmd);
2313 		sge_len = sg_dma_len(sg_scmd);
2314 	}
2315 
2316 	for (;;) {
2317 		offset = sge_addr & page_mask;
2318 
2319 		/* Put PRP pointer due to page boundary*/
2320 		page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask;
2321 		if (unlikely(!page_mask_result)) {
2322 			scmd_printk(KERN_NOTICE,
2323 				scmd, "page boundary curr_buff: 0x%p\n",
2324 				curr_buff);
2325 			msg_dma += 8;
2326 			*curr_buff = cpu_to_le64(msg_dma);
2327 			curr_buff++;
2328 			num_prp_in_chain++;
2329 		}
2330 
2331 		*curr_buff = cpu_to_le64(sge_addr);
2332 		curr_buff++;
2333 		msg_dma += 8;
2334 		num_prp_in_chain++;
2335 
2336 		sge_addr += nvme_pg_size;
2337 		sge_len -= nvme_pg_size;
2338 		data_len -= nvme_pg_size;
2339 
2340 		if (data_len <= 0)
2341 			break;
2342 
2343 		if (sge_len > 0)
2344 			continue;
2345 
2346 		sg_scmd = sg_next(sg_scmd);
2347 		sge_addr = sg_dma_address(sg_scmd);
2348 		sge_len = sg_dma_len(sg_scmd);
2349 	}
2350 
2351 	main_chain_element->Length =
2352 		cpu_to_le32(num_prp_in_chain * sizeof(u64));
2353 	return;
2354 }
2355 
2356 static bool
2357 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc,
2358 	struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count)
2359 {
2360 	u32 data_length = 0;
2361 	bool build_prp = true;
2362 
2363 	data_length = scsi_bufflen(scmd);
2364 	if (pcie_device &&
2365 	    (mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))) {
2366 		build_prp = false;
2367 		return build_prp;
2368 	}
2369 
2370 	/* If Datalenth is <= 16K and number of SGE’s entries are <= 2
2371 	 * we built IEEE SGL
2372 	 */
2373 	if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2))
2374 		build_prp = false;
2375 
2376 	return build_prp;
2377 }
2378 
2379 /**
2380  * _base_check_pcie_native_sgl - This function is called for PCIe end devices to
2381  * determine if the driver needs to build a native SGL.  If so, that native
2382  * SGL is built in the special contiguous buffers allocated especially for
2383  * PCIe SGL creation.  If the driver will not build a native SGL, return
2384  * TRUE and a normal IEEE SGL will be built.  Currently this routine
2385  * supports NVMe.
2386  * @ioc: per adapter object
2387  * @mpi_request: mf request pointer
2388  * @smid: system request message index
2389  * @scmd: scsi command
2390  * @pcie_device: points to the PCIe device's info
2391  *
2392  * Return: 0 if native SGL was built, 1 if no SGL was built
2393  */
2394 static int
2395 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc,
2396 	Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd,
2397 	struct _pcie_device *pcie_device)
2398 {
2399 	int sges_left;
2400 
2401 	/* Get the SG list pointer and info. */
2402 	sges_left = scsi_dma_map(scmd);
2403 	if (sges_left < 0) {
2404 		sdev_printk(KERN_ERR, scmd->device,
2405 			"scsi_dma_map failed: request for %d bytes!\n",
2406 			scsi_bufflen(scmd));
2407 		return 1;
2408 	}
2409 
2410 	/* Check if we need to build a native SG list. */
2411 	if (base_is_prp_possible(ioc, pcie_device,
2412 				scmd, sges_left) == 0) {
2413 		/* We built a native SG list, just return. */
2414 		goto out;
2415 	}
2416 
2417 	/*
2418 	 * Build native NVMe PRP.
2419 	 */
2420 	base_make_prp_nvme(ioc, scmd, mpi_request,
2421 			smid, sges_left);
2422 
2423 	return 0;
2424 out:
2425 	scsi_dma_unmap(scmd);
2426 	return 1;
2427 }
2428 
2429 /**
2430  * _base_add_sg_single_ieee - add sg element for IEEE format
2431  * @paddr: virtual address for SGE
2432  * @flags: SGE flags
2433  * @chain_offset: number of 128 byte elements from start of segment
2434  * @length: data transfer length
2435  * @dma_addr: Physical address
2436  */
2437 static void
2438 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
2439 	dma_addr_t dma_addr)
2440 {
2441 	Mpi25IeeeSgeChain64_t *sgel = paddr;
2442 
2443 	sgel->Flags = flags;
2444 	sgel->NextChainOffset = chain_offset;
2445 	sgel->Length = cpu_to_le32(length);
2446 	sgel->Address = cpu_to_le64(dma_addr);
2447 }
2448 
2449 /**
2450  * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
2451  * @ioc: per adapter object
2452  * @paddr: virtual address for SGE
2453  *
2454  * Create a zero length scatter gather entry to insure the IOCs hardware has
2455  * something to use if the target device goes brain dead and tries
2456  * to send data even when none is asked for.
2457  */
2458 static void
2459 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2460 {
2461 	u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2462 		MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2463 		MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
2464 
2465 	_base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
2466 }
2467 
2468 /**
2469  * _base_build_sg_scmd - main sg creation routine
2470  *		pcie_device is unused here!
2471  * @ioc: per adapter object
2472  * @scmd: scsi command
2473  * @smid: system request message index
2474  * @unused: unused pcie_device pointer
2475  * Context: none.
2476  *
2477  * The main routine that builds scatter gather table from a given
2478  * scsi request sent via the .queuecommand main handler.
2479  *
2480  * Return: 0 success, anything else error
2481  */
2482 static int
2483 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
2484 	struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused)
2485 {
2486 	Mpi2SCSIIORequest_t *mpi_request;
2487 	dma_addr_t chain_dma;
2488 	struct scatterlist *sg_scmd;
2489 	void *sg_local, *chain;
2490 	u32 chain_offset;
2491 	u32 chain_length;
2492 	u32 chain_flags;
2493 	int sges_left;
2494 	u32 sges_in_segment;
2495 	u32 sgl_flags;
2496 	u32 sgl_flags_last_element;
2497 	u32 sgl_flags_end_buffer;
2498 	struct chain_tracker *chain_req;
2499 
2500 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2501 
2502 	/* init scatter gather flags */
2503 	sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
2504 	if (scmd->sc_data_direction == DMA_TO_DEVICE)
2505 		sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2506 	sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
2507 	    << MPI2_SGE_FLAGS_SHIFT;
2508 	sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
2509 	    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
2510 	    << MPI2_SGE_FLAGS_SHIFT;
2511 	sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2512 
2513 	sg_scmd = scsi_sglist(scmd);
2514 	sges_left = scsi_dma_map(scmd);
2515 	if (sges_left < 0) {
2516 		sdev_printk(KERN_ERR, scmd->device,
2517 		 "scsi_dma_map failed: request for %d bytes!\n",
2518 		 scsi_bufflen(scmd));
2519 		return -ENOMEM;
2520 	}
2521 
2522 	sg_local = &mpi_request->SGL;
2523 	sges_in_segment = ioc->max_sges_in_main_message;
2524 	if (sges_left <= sges_in_segment)
2525 		goto fill_in_last_segment;
2526 
2527 	mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
2528 	    (sges_in_segment * ioc->sge_size))/4;
2529 
2530 	/* fill in main message segment when there is a chain following */
2531 	while (sges_in_segment) {
2532 		if (sges_in_segment == 1)
2533 			ioc->base_add_sg_single(sg_local,
2534 			    sgl_flags_last_element | sg_dma_len(sg_scmd),
2535 			    sg_dma_address(sg_scmd));
2536 		else
2537 			ioc->base_add_sg_single(sg_local, sgl_flags |
2538 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2539 		sg_scmd = sg_next(sg_scmd);
2540 		sg_local += ioc->sge_size;
2541 		sges_left--;
2542 		sges_in_segment--;
2543 	}
2544 
2545 	/* initializing the chain flags and pointers */
2546 	chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
2547 	chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2548 	if (!chain_req)
2549 		return -1;
2550 	chain = chain_req->chain_buffer;
2551 	chain_dma = chain_req->chain_buffer_dma;
2552 	do {
2553 		sges_in_segment = (sges_left <=
2554 		    ioc->max_sges_in_chain_message) ? sges_left :
2555 		    ioc->max_sges_in_chain_message;
2556 		chain_offset = (sges_left == sges_in_segment) ?
2557 		    0 : (sges_in_segment * ioc->sge_size)/4;
2558 		chain_length = sges_in_segment * ioc->sge_size;
2559 		if (chain_offset) {
2560 			chain_offset = chain_offset <<
2561 			    MPI2_SGE_CHAIN_OFFSET_SHIFT;
2562 			chain_length += ioc->sge_size;
2563 		}
2564 		ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
2565 		    chain_length, chain_dma);
2566 		sg_local = chain;
2567 		if (!chain_offset)
2568 			goto fill_in_last_segment;
2569 
2570 		/* fill in chain segments */
2571 		while (sges_in_segment) {
2572 			if (sges_in_segment == 1)
2573 				ioc->base_add_sg_single(sg_local,
2574 				    sgl_flags_last_element |
2575 				    sg_dma_len(sg_scmd),
2576 				    sg_dma_address(sg_scmd));
2577 			else
2578 				ioc->base_add_sg_single(sg_local, sgl_flags |
2579 				    sg_dma_len(sg_scmd),
2580 				    sg_dma_address(sg_scmd));
2581 			sg_scmd = sg_next(sg_scmd);
2582 			sg_local += ioc->sge_size;
2583 			sges_left--;
2584 			sges_in_segment--;
2585 		}
2586 
2587 		chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2588 		if (!chain_req)
2589 			return -1;
2590 		chain = chain_req->chain_buffer;
2591 		chain_dma = chain_req->chain_buffer_dma;
2592 	} while (1);
2593 
2594 
2595  fill_in_last_segment:
2596 
2597 	/* fill the last segment */
2598 	while (sges_left) {
2599 		if (sges_left == 1)
2600 			ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
2601 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2602 		else
2603 			ioc->base_add_sg_single(sg_local, sgl_flags |
2604 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2605 		sg_scmd = sg_next(sg_scmd);
2606 		sg_local += ioc->sge_size;
2607 		sges_left--;
2608 	}
2609 
2610 	return 0;
2611 }
2612 
2613 /**
2614  * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
2615  * @ioc: per adapter object
2616  * @scmd: scsi command
2617  * @smid: system request message index
2618  * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
2619  * constructed on need.
2620  * Context: none.
2621  *
2622  * The main routine that builds scatter gather table from a given
2623  * scsi request sent via the .queuecommand main handler.
2624  *
2625  * Return: 0 success, anything else error
2626  */
2627 static int
2628 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
2629 	struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device)
2630 {
2631 	Mpi25SCSIIORequest_t *mpi_request;
2632 	dma_addr_t chain_dma;
2633 	struct scatterlist *sg_scmd;
2634 	void *sg_local, *chain;
2635 	u32 chain_offset;
2636 	u32 chain_length;
2637 	int sges_left;
2638 	u32 sges_in_segment;
2639 	u8 simple_sgl_flags;
2640 	u8 simple_sgl_flags_last;
2641 	u8 chain_sgl_flags;
2642 	struct chain_tracker *chain_req;
2643 
2644 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2645 
2646 	/* init scatter gather flags */
2647 	simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2648 	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2649 	simple_sgl_flags_last = simple_sgl_flags |
2650 	    MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2651 	chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2652 	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2653 
2654 	/* Check if we need to build a native SG list. */
2655 	if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request,
2656 			smid, scmd, pcie_device) == 0)) {
2657 		/* We built a native SG list, just return. */
2658 		return 0;
2659 	}
2660 
2661 	sg_scmd = scsi_sglist(scmd);
2662 	sges_left = scsi_dma_map(scmd);
2663 	if (sges_left < 0) {
2664 		sdev_printk(KERN_ERR, scmd->device,
2665 			"scsi_dma_map failed: request for %d bytes!\n",
2666 			scsi_bufflen(scmd));
2667 		return -ENOMEM;
2668 	}
2669 
2670 	sg_local = &mpi_request->SGL;
2671 	sges_in_segment = (ioc->request_sz -
2672 		   offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
2673 	if (sges_left <= sges_in_segment)
2674 		goto fill_in_last_segment;
2675 
2676 	mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
2677 	    (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
2678 
2679 	/* fill in main message segment when there is a chain following */
2680 	while (sges_in_segment > 1) {
2681 		_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2682 		    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2683 		sg_scmd = sg_next(sg_scmd);
2684 		sg_local += ioc->sge_size_ieee;
2685 		sges_left--;
2686 		sges_in_segment--;
2687 	}
2688 
2689 	/* initializing the pointers */
2690 	chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2691 	if (!chain_req)
2692 		return -1;
2693 	chain = chain_req->chain_buffer;
2694 	chain_dma = chain_req->chain_buffer_dma;
2695 	do {
2696 		sges_in_segment = (sges_left <=
2697 		    ioc->max_sges_in_chain_message) ? sges_left :
2698 		    ioc->max_sges_in_chain_message;
2699 		chain_offset = (sges_left == sges_in_segment) ?
2700 		    0 : sges_in_segment;
2701 		chain_length = sges_in_segment * ioc->sge_size_ieee;
2702 		if (chain_offset)
2703 			chain_length += ioc->sge_size_ieee;
2704 		_base_add_sg_single_ieee(sg_local, chain_sgl_flags,
2705 		    chain_offset, chain_length, chain_dma);
2706 
2707 		sg_local = chain;
2708 		if (!chain_offset)
2709 			goto fill_in_last_segment;
2710 
2711 		/* fill in chain segments */
2712 		while (sges_in_segment) {
2713 			_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2714 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2715 			sg_scmd = sg_next(sg_scmd);
2716 			sg_local += ioc->sge_size_ieee;
2717 			sges_left--;
2718 			sges_in_segment--;
2719 		}
2720 
2721 		chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2722 		if (!chain_req)
2723 			return -1;
2724 		chain = chain_req->chain_buffer;
2725 		chain_dma = chain_req->chain_buffer_dma;
2726 	} while (1);
2727 
2728 
2729  fill_in_last_segment:
2730 
2731 	/* fill the last segment */
2732 	while (sges_left > 0) {
2733 		if (sges_left == 1)
2734 			_base_add_sg_single_ieee(sg_local,
2735 			    simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
2736 			    sg_dma_address(sg_scmd));
2737 		else
2738 			_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2739 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2740 		sg_scmd = sg_next(sg_scmd);
2741 		sg_local += ioc->sge_size_ieee;
2742 		sges_left--;
2743 	}
2744 
2745 	return 0;
2746 }
2747 
2748 /**
2749  * _base_build_sg_ieee - build generic sg for IEEE format
2750  * @ioc: per adapter object
2751  * @psge: virtual address for SGE
2752  * @data_out_dma: physical address for WRITES
2753  * @data_out_sz: data xfer size for WRITES
2754  * @data_in_dma: physical address for READS
2755  * @data_in_sz: data xfer size for READS
2756  */
2757 static void
2758 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
2759 	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2760 	size_t data_in_sz)
2761 {
2762 	u8 sgl_flags;
2763 
2764 	if (!data_out_sz && !data_in_sz) {
2765 		_base_build_zero_len_sge_ieee(ioc, psge);
2766 		return;
2767 	}
2768 
2769 	if (data_out_sz && data_in_sz) {
2770 		/* WRITE sgel first */
2771 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2772 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2773 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2774 		    data_out_dma);
2775 
2776 		/* incr sgel */
2777 		psge += ioc->sge_size_ieee;
2778 
2779 		/* READ sgel last */
2780 		sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2781 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2782 		    data_in_dma);
2783 	} else if (data_out_sz) /* WRITE */ {
2784 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2785 		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2786 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2787 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2788 		    data_out_dma);
2789 	} else if (data_in_sz) /* READ */ {
2790 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2791 		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2792 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2793 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2794 		    data_in_dma);
2795 	}
2796 }
2797 
2798 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
2799 
2800 /**
2801  * _base_config_dma_addressing - set dma addressing
2802  * @ioc: per adapter object
2803  * @pdev: PCI device struct
2804  *
2805  * Return: 0 for success, non-zero for failure.
2806  */
2807 static int
2808 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
2809 {
2810 	struct sysinfo s;
2811 	int dma_mask;
2812 
2813 	if (ioc->is_mcpu_endpoint ||
2814 	    sizeof(dma_addr_t) == 4 || ioc->use_32bit_dma ||
2815 	    dma_get_required_mask(&pdev->dev) <= 32)
2816 		dma_mask = 32;
2817 	/* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */
2818 	else if (ioc->hba_mpi_version_belonged > MPI2_VERSION)
2819 		dma_mask = 63;
2820 	else
2821 		dma_mask = 64;
2822 
2823 	if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(dma_mask)) ||
2824 	    dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(dma_mask)))
2825 		return -ENODEV;
2826 
2827 	if (dma_mask > 32) {
2828 		ioc->base_add_sg_single = &_base_add_sg_single_64;
2829 		ioc->sge_size = sizeof(Mpi2SGESimple64_t);
2830 	} else {
2831 		ioc->base_add_sg_single = &_base_add_sg_single_32;
2832 		ioc->sge_size = sizeof(Mpi2SGESimple32_t);
2833 	}
2834 
2835 	si_meminfo(&s);
2836 	ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
2837 		dma_mask, convert_to_kb(s.totalram));
2838 
2839 	return 0;
2840 }
2841 
2842 /**
2843  * _base_check_enable_msix - checks MSIX capabable.
2844  * @ioc: per adapter object
2845  *
2846  * Check to see if card is capable of MSIX, and set number
2847  * of available msix vectors
2848  */
2849 static int
2850 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
2851 {
2852 	int base;
2853 	u16 message_control;
2854 
2855 	/* Check whether controller SAS2008 B0 controller,
2856 	 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
2857 	 */
2858 	if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
2859 	    ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
2860 		return -EINVAL;
2861 	}
2862 
2863 	base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
2864 	if (!base) {
2865 		dfailprintk(ioc, ioc_info(ioc, "msix not supported\n"));
2866 		return -EINVAL;
2867 	}
2868 
2869 	/* get msix vector count */
2870 	/* NUMA_IO not supported for older controllers */
2871 	if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
2872 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
2873 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
2874 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
2875 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
2876 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
2877 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
2878 		ioc->msix_vector_count = 1;
2879 	else {
2880 		pci_read_config_word(ioc->pdev, base + 2, &message_control);
2881 		ioc->msix_vector_count = (message_control & 0x3FF) + 1;
2882 	}
2883 	dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n",
2884 				  ioc->msix_vector_count));
2885 	return 0;
2886 }
2887 
2888 /**
2889  * _base_free_irq - free irq
2890  * @ioc: per adapter object
2891  *
2892  * Freeing respective reply_queue from the list.
2893  */
2894 static void
2895 _base_free_irq(struct MPT3SAS_ADAPTER *ioc)
2896 {
2897 	struct adapter_reply_queue *reply_q, *next;
2898 
2899 	if (list_empty(&ioc->reply_queue_list))
2900 		return;
2901 
2902 	list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
2903 		list_del(&reply_q->list);
2904 		if (ioc->smp_affinity_enable)
2905 			irq_set_affinity_hint(pci_irq_vector(ioc->pdev,
2906 			    reply_q->msix_index), NULL);
2907 		free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
2908 			 reply_q);
2909 		kfree(reply_q);
2910 	}
2911 }
2912 
2913 /**
2914  * _base_request_irq - request irq
2915  * @ioc: per adapter object
2916  * @index: msix index into vector table
2917  *
2918  * Inserting respective reply_queue into the list.
2919  */
2920 static int
2921 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
2922 {
2923 	struct pci_dev *pdev = ioc->pdev;
2924 	struct adapter_reply_queue *reply_q;
2925 	int r;
2926 
2927 	reply_q =  kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
2928 	if (!reply_q) {
2929 		ioc_err(ioc, "unable to allocate memory %zu!\n",
2930 			sizeof(struct adapter_reply_queue));
2931 		return -ENOMEM;
2932 	}
2933 	reply_q->ioc = ioc;
2934 	reply_q->msix_index = index;
2935 
2936 	atomic_set(&reply_q->busy, 0);
2937 	if (ioc->msix_enable)
2938 		snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
2939 		    ioc->driver_name, ioc->id, index);
2940 	else
2941 		snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
2942 		    ioc->driver_name, ioc->id);
2943 	r = request_irq(pci_irq_vector(pdev, index), _base_interrupt,
2944 			IRQF_SHARED, reply_q->name, reply_q);
2945 	if (r) {
2946 		pr_err("%s: unable to allocate interrupt %d!\n",
2947 		       reply_q->name, pci_irq_vector(pdev, index));
2948 		kfree(reply_q);
2949 		return -EBUSY;
2950 	}
2951 
2952 	INIT_LIST_HEAD(&reply_q->list);
2953 	list_add_tail(&reply_q->list, &ioc->reply_queue_list);
2954 	return 0;
2955 }
2956 
2957 /**
2958  * _base_assign_reply_queues - assigning msix index for each cpu
2959  * @ioc: per adapter object
2960  *
2961  * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
2962  *
2963  * It would nice if we could call irq_set_affinity, however it is not
2964  * an exported symbol
2965  */
2966 static void
2967 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
2968 {
2969 	unsigned int cpu, nr_cpus, nr_msix, index = 0;
2970 	struct adapter_reply_queue *reply_q;
2971 	int local_numa_node;
2972 
2973 	if (!_base_is_controller_msix_enabled(ioc))
2974 		return;
2975 
2976 	if (ioc->msix_load_balance)
2977 		return;
2978 
2979 	memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
2980 
2981 	nr_cpus = num_online_cpus();
2982 	nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
2983 					       ioc->facts.MaxMSIxVectors);
2984 	if (!nr_msix)
2985 		return;
2986 
2987 	if (ioc->smp_affinity_enable) {
2988 
2989 		/*
2990 		 * set irq affinity to local numa node for those irqs
2991 		 * corresponding to high iops queues.
2992 		 */
2993 		if (ioc->high_iops_queues) {
2994 			local_numa_node = dev_to_node(&ioc->pdev->dev);
2995 			for (index = 0; index < ioc->high_iops_queues;
2996 			    index++) {
2997 				irq_set_affinity_hint(pci_irq_vector(ioc->pdev,
2998 				    index), cpumask_of_node(local_numa_node));
2999 			}
3000 		}
3001 
3002 		list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3003 			const cpumask_t *mask;
3004 
3005 			if (reply_q->msix_index < ioc->high_iops_queues)
3006 				continue;
3007 
3008 			mask = pci_irq_get_affinity(ioc->pdev,
3009 			    reply_q->msix_index);
3010 			if (!mask) {
3011 				ioc_warn(ioc, "no affinity for msi %x\n",
3012 					 reply_q->msix_index);
3013 				goto fall_back;
3014 			}
3015 
3016 			for_each_cpu_and(cpu, mask, cpu_online_mask) {
3017 				if (cpu >= ioc->cpu_msix_table_sz)
3018 					break;
3019 				ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3020 			}
3021 		}
3022 		return;
3023 	}
3024 
3025 fall_back:
3026 	cpu = cpumask_first(cpu_online_mask);
3027 	nr_msix -= ioc->high_iops_queues;
3028 	index = 0;
3029 
3030 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3031 		unsigned int i, group = nr_cpus / nr_msix;
3032 
3033 		if (reply_q->msix_index < ioc->high_iops_queues)
3034 			continue;
3035 
3036 		if (cpu >= nr_cpus)
3037 			break;
3038 
3039 		if (index < nr_cpus % nr_msix)
3040 			group++;
3041 
3042 		for (i = 0 ; i < group ; i++) {
3043 			ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3044 			cpu = cpumask_next(cpu, cpu_online_mask);
3045 		}
3046 		index++;
3047 	}
3048 }
3049 
3050 /**
3051  * _base_check_and_enable_high_iops_queues - enable high iops mode
3052  * @ioc: per adapter object
3053  * @hba_msix_vector_count: msix vectors supported by HBA
3054  *
3055  * Enable high iops queues only if
3056  *  - HBA is a SEA/AERO controller and
3057  *  - MSI-Xs vector supported by the HBA is 128 and
3058  *  - total CPU count in the system >=16 and
3059  *  - loaded driver with default max_msix_vectors module parameter and
3060  *  - system booted in non kdump mode
3061  *
3062  * returns nothing.
3063  */
3064 static void
3065 _base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc,
3066 		int hba_msix_vector_count)
3067 {
3068 	u16 lnksta, speed;
3069 
3070 	if (perf_mode == MPT_PERF_MODE_IOPS ||
3071 	    perf_mode == MPT_PERF_MODE_LATENCY) {
3072 		ioc->high_iops_queues = 0;
3073 		return;
3074 	}
3075 
3076 	if (perf_mode == MPT_PERF_MODE_DEFAULT) {
3077 
3078 		pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta);
3079 		speed = lnksta & PCI_EXP_LNKSTA_CLS;
3080 
3081 		if (speed < 0x4) {
3082 			ioc->high_iops_queues = 0;
3083 			return;
3084 		}
3085 	}
3086 
3087 	if (!reset_devices && ioc->is_aero_ioc &&
3088 	    hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES &&
3089 	    num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES &&
3090 	    max_msix_vectors == -1)
3091 		ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES;
3092 	else
3093 		ioc->high_iops_queues = 0;
3094 }
3095 
3096 /**
3097  * _base_disable_msix - disables msix
3098  * @ioc: per adapter object
3099  *
3100  */
3101 static void
3102 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
3103 {
3104 	if (!ioc->msix_enable)
3105 		return;
3106 	pci_free_irq_vectors(ioc->pdev);
3107 	ioc->msix_enable = 0;
3108 }
3109 
3110 /**
3111  * _base_alloc_irq_vectors - allocate msix vectors
3112  * @ioc: per adapter object
3113  *
3114  */
3115 static int
3116 _base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc)
3117 {
3118 	int i, irq_flags = PCI_IRQ_MSIX;
3119 	struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues };
3120 	struct irq_affinity *descp = &desc;
3121 
3122 	if (ioc->smp_affinity_enable)
3123 		irq_flags |= PCI_IRQ_AFFINITY;
3124 	else
3125 		descp = NULL;
3126 
3127 	ioc_info(ioc, " %d %d\n", ioc->high_iops_queues,
3128 	    ioc->reply_queue_count);
3129 
3130 	i = pci_alloc_irq_vectors_affinity(ioc->pdev,
3131 	    ioc->high_iops_queues,
3132 	    ioc->reply_queue_count, irq_flags, descp);
3133 
3134 	return i;
3135 }
3136 
3137 /**
3138  * _base_enable_msix - enables msix, failback to io_apic
3139  * @ioc: per adapter object
3140  *
3141  */
3142 static int
3143 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3144 {
3145 	int r;
3146 	int i, local_max_msix_vectors;
3147 	u8 try_msix = 0;
3148 
3149 	ioc->msix_load_balance = false;
3150 
3151 	if (msix_disable == -1 || msix_disable == 0)
3152 		try_msix = 1;
3153 
3154 	if (!try_msix)
3155 		goto try_ioapic;
3156 
3157 	if (_base_check_enable_msix(ioc) != 0)
3158 		goto try_ioapic;
3159 
3160 	ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count);
3161 	pr_info("\t no of cores: %d, max_msix_vectors: %d\n",
3162 		ioc->cpu_count, max_msix_vectors);
3163 	if (ioc->is_aero_ioc)
3164 		_base_check_and_enable_high_iops_queues(ioc,
3165 			ioc->msix_vector_count);
3166 	ioc->reply_queue_count =
3167 		min_t(int, ioc->cpu_count + ioc->high_iops_queues,
3168 		ioc->msix_vector_count);
3169 
3170 	if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
3171 		local_max_msix_vectors = (reset_devices) ? 1 : 8;
3172 	else
3173 		local_max_msix_vectors = max_msix_vectors;
3174 
3175 	if (local_max_msix_vectors > 0)
3176 		ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
3177 			ioc->reply_queue_count);
3178 	else if (local_max_msix_vectors == 0)
3179 		goto try_ioapic;
3180 
3181 	/*
3182 	 * Enable msix_load_balance only if combined reply queue mode is
3183 	 * disabled on SAS3 & above generation HBA devices.
3184 	 */
3185 	if (!ioc->combined_reply_queue &&
3186 	    ioc->hba_mpi_version_belonged != MPI2_VERSION) {
3187 		ioc_info(ioc,
3188 		    "combined ReplyQueue is off, Enabling msix load balance\n");
3189 		ioc->msix_load_balance = true;
3190 	}
3191 
3192 	/*
3193 	 * smp affinity setting is not need when msix load balance
3194 	 * is enabled.
3195 	 */
3196 	if (ioc->msix_load_balance)
3197 		ioc->smp_affinity_enable = 0;
3198 
3199 	r = _base_alloc_irq_vectors(ioc);
3200 	if (r < 0) {
3201 		ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", r);
3202 		goto try_ioapic;
3203 	}
3204 
3205 	ioc->msix_enable = 1;
3206 	ioc->reply_queue_count = r;
3207 	for (i = 0; i < ioc->reply_queue_count; i++) {
3208 		r = _base_request_irq(ioc, i);
3209 		if (r) {
3210 			_base_free_irq(ioc);
3211 			_base_disable_msix(ioc);
3212 			goto try_ioapic;
3213 		}
3214 	}
3215 
3216 	ioc_info(ioc, "High IOPs queues : %s\n",
3217 			ioc->high_iops_queues ? "enabled" : "disabled");
3218 
3219 	return 0;
3220 
3221 /* failback to io_apic interrupt routing */
3222  try_ioapic:
3223 	ioc->high_iops_queues = 0;
3224 	ioc_info(ioc, "High IOPs queues : disabled\n");
3225 	ioc->reply_queue_count = 1;
3226 	r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY);
3227 	if (r < 0) {
3228 		dfailprintk(ioc,
3229 			    ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
3230 				     r));
3231 	} else
3232 		r = _base_request_irq(ioc, 0);
3233 
3234 	return r;
3235 }
3236 
3237 /**
3238  * mpt3sas_base_unmap_resources - free controller resources
3239  * @ioc: per adapter object
3240  */
3241 static void
3242 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
3243 {
3244 	struct pci_dev *pdev = ioc->pdev;
3245 
3246 	dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3247 
3248 	_base_free_irq(ioc);
3249 	_base_disable_msix(ioc);
3250 
3251 	kfree(ioc->replyPostRegisterIndex);
3252 	ioc->replyPostRegisterIndex = NULL;
3253 
3254 
3255 	if (ioc->chip_phys) {
3256 		iounmap(ioc->chip);
3257 		ioc->chip_phys = 0;
3258 	}
3259 
3260 	if (pci_is_enabled(pdev)) {
3261 		pci_release_selected_regions(ioc->pdev, ioc->bars);
3262 		pci_disable_pcie_error_reporting(pdev);
3263 		pci_disable_device(pdev);
3264 	}
3265 }
3266 
3267 static int
3268 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
3269 
3270 /**
3271  * _base_check_for_fault_and_issue_reset - check if IOC is in fault state
3272  *     and if it is in fault state then issue diag reset.
3273  * @ioc: per adapter object
3274  *
3275  * Returns: 0 for success, non-zero for failure.
3276  */
3277 static int
3278 _base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc)
3279 {
3280 	u32 ioc_state;
3281 	int rc = -EFAULT;
3282 
3283 	dinitprintk(ioc, pr_info("%s\n", __func__));
3284 	if (ioc->pci_error_recovery)
3285 		return 0;
3286 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
3287 	dhsprintk(ioc, pr_info("%s: ioc_state(0x%08x)\n", __func__, ioc_state));
3288 
3289 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
3290 		mpt3sas_print_fault_code(ioc, ioc_state &
3291 		    MPI2_DOORBELL_DATA_MASK);
3292 		rc = _base_diag_reset(ioc);
3293 	} else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
3294 	    MPI2_IOC_STATE_COREDUMP) {
3295 		mpt3sas_print_coredump_info(ioc, ioc_state &
3296 		     MPI2_DOORBELL_DATA_MASK);
3297 		mpt3sas_base_wait_for_coredump_completion(ioc, __func__);
3298 		rc = _base_diag_reset(ioc);
3299 	}
3300 
3301 	return rc;
3302 }
3303 
3304 /**
3305  * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
3306  * @ioc: per adapter object
3307  *
3308  * Return: 0 for success, non-zero for failure.
3309  */
3310 int
3311 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
3312 {
3313 	struct pci_dev *pdev = ioc->pdev;
3314 	u32 memap_sz;
3315 	u32 pio_sz;
3316 	int i, r = 0, rc;
3317 	u64 pio_chip = 0;
3318 	phys_addr_t chip_phys = 0;
3319 	struct adapter_reply_queue *reply_q;
3320 
3321 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3322 
3323 	ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
3324 	if (pci_enable_device_mem(pdev)) {
3325 		ioc_warn(ioc, "pci_enable_device_mem: failed\n");
3326 		ioc->bars = 0;
3327 		return -ENODEV;
3328 	}
3329 
3330 
3331 	if (pci_request_selected_regions(pdev, ioc->bars,
3332 	    ioc->driver_name)) {
3333 		ioc_warn(ioc, "pci_request_selected_regions: failed\n");
3334 		ioc->bars = 0;
3335 		r = -ENODEV;
3336 		goto out_fail;
3337 	}
3338 
3339 /* AER (Advanced Error Reporting) hooks */
3340 	pci_enable_pcie_error_reporting(pdev);
3341 
3342 	pci_set_master(pdev);
3343 
3344 
3345 	if (_base_config_dma_addressing(ioc, pdev) != 0) {
3346 		ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev));
3347 		r = -ENODEV;
3348 		goto out_fail;
3349 	}
3350 
3351 	for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
3352 	     (!memap_sz || !pio_sz); i++) {
3353 		if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
3354 			if (pio_sz)
3355 				continue;
3356 			pio_chip = (u64)pci_resource_start(pdev, i);
3357 			pio_sz = pci_resource_len(pdev, i);
3358 		} else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3359 			if (memap_sz)
3360 				continue;
3361 			ioc->chip_phys = pci_resource_start(pdev, i);
3362 			chip_phys = ioc->chip_phys;
3363 			memap_sz = pci_resource_len(pdev, i);
3364 			ioc->chip = ioremap(ioc->chip_phys, memap_sz);
3365 		}
3366 	}
3367 
3368 	if (ioc->chip == NULL) {
3369 		ioc_err(ioc,
3370 		    "unable to map adapter memory! or resource not found\n");
3371 		r = -EINVAL;
3372 		goto out_fail;
3373 	}
3374 
3375 	_base_mask_interrupts(ioc);
3376 
3377 	r = _base_get_ioc_facts(ioc);
3378 	if (r) {
3379 		rc = _base_check_for_fault_and_issue_reset(ioc);
3380 		if (rc || (_base_get_ioc_facts(ioc)))
3381 			goto out_fail;
3382 	}
3383 
3384 	if (!ioc->rdpq_array_enable_assigned) {
3385 		ioc->rdpq_array_enable = ioc->rdpq_array_capable;
3386 		ioc->rdpq_array_enable_assigned = 1;
3387 	}
3388 
3389 	r = _base_enable_msix(ioc);
3390 	if (r)
3391 		goto out_fail;
3392 
3393 	if (!ioc->is_driver_loading)
3394 		_base_init_irqpolls(ioc);
3395 	/* Use the Combined reply queue feature only for SAS3 C0 & higher
3396 	 * revision HBAs and also only when reply queue count is greater than 8
3397 	 */
3398 	if (ioc->combined_reply_queue) {
3399 		/* Determine the Supplemental Reply Post Host Index Registers
3400 		 * Addresse. Supplemental Reply Post Host Index Registers
3401 		 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
3402 		 * each register is at offset bytes of
3403 		 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
3404 		 */
3405 		ioc->replyPostRegisterIndex = kcalloc(
3406 		     ioc->combined_reply_index_count,
3407 		     sizeof(resource_size_t *), GFP_KERNEL);
3408 		if (!ioc->replyPostRegisterIndex) {
3409 			ioc_err(ioc,
3410 			    "allocation for replyPostRegisterIndex failed!\n");
3411 			r = -ENOMEM;
3412 			goto out_fail;
3413 		}
3414 
3415 		for (i = 0; i < ioc->combined_reply_index_count; i++) {
3416 			ioc->replyPostRegisterIndex[i] = (resource_size_t *)
3417 			     ((u8 __force *)&ioc->chip->Doorbell +
3418 			     MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
3419 			     (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
3420 		}
3421 	}
3422 
3423 	if (ioc->is_warpdrive) {
3424 		ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
3425 		    &ioc->chip->ReplyPostHostIndex;
3426 
3427 		for (i = 1; i < ioc->cpu_msix_table_sz; i++)
3428 			ioc->reply_post_host_index[i] =
3429 			(resource_size_t __iomem *)
3430 			((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
3431 			* 4)));
3432 	}
3433 
3434 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
3435 		pr_info("%s: %s enabled: IRQ %d\n",
3436 			reply_q->name,
3437 			ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC",
3438 			pci_irq_vector(ioc->pdev, reply_q->msix_index));
3439 
3440 	ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n",
3441 		 &chip_phys, ioc->chip, memap_sz);
3442 	ioc_info(ioc, "ioport(0x%016llx), size(%d)\n",
3443 		 (unsigned long long)pio_chip, pio_sz);
3444 
3445 	/* Save PCI configuration state for recovery from PCI AER/EEH errors */
3446 	pci_save_state(pdev);
3447 	return 0;
3448 
3449  out_fail:
3450 	mpt3sas_base_unmap_resources(ioc);
3451 	return r;
3452 }
3453 
3454 /**
3455  * mpt3sas_base_get_msg_frame - obtain request mf pointer
3456  * @ioc: per adapter object
3457  * @smid: system request message index(smid zero is invalid)
3458  *
3459  * Return: virt pointer to message frame.
3460  */
3461 void *
3462 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3463 {
3464 	return (void *)(ioc->request + (smid * ioc->request_sz));
3465 }
3466 
3467 /**
3468  * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
3469  * @ioc: per adapter object
3470  * @smid: system request message index
3471  *
3472  * Return: virt pointer to sense buffer.
3473  */
3474 void *
3475 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3476 {
3477 	return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
3478 }
3479 
3480 /**
3481  * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
3482  * @ioc: per adapter object
3483  * @smid: system request message index
3484  *
3485  * Return: phys pointer to the low 32bit address of the sense buffer.
3486  */
3487 __le32
3488 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3489 {
3490 	return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
3491 	    SCSI_SENSE_BUFFERSIZE));
3492 }
3493 
3494 /**
3495  * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
3496  * @ioc: per adapter object
3497  * @smid: system request message index
3498  *
3499  * Return: virt pointer to a PCIe SGL.
3500  */
3501 void *
3502 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3503 {
3504 	return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl);
3505 }
3506 
3507 /**
3508  * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
3509  * @ioc: per adapter object
3510  * @smid: system request message index
3511  *
3512  * Return: phys pointer to the address of the PCIe buffer.
3513  */
3514 dma_addr_t
3515 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3516 {
3517 	return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma;
3518 }
3519 
3520 /**
3521  * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
3522  * @ioc: per adapter object
3523  * @phys_addr: lower 32 physical addr of the reply
3524  *
3525  * Converts 32bit lower physical addr into a virt address.
3526  */
3527 void *
3528 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
3529 {
3530 	if (!phys_addr)
3531 		return NULL;
3532 	return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
3533 }
3534 
3535 /**
3536  * _base_get_msix_index - get the msix index
3537  * @ioc: per adapter object
3538  * @scmd: scsi_cmnd object
3539  *
3540  * returns msix index of general reply queues,
3541  * i.e. reply queue on which IO request's reply
3542  * should be posted by the HBA firmware.
3543  */
3544 static inline u8
3545 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc,
3546 	struct scsi_cmnd *scmd)
3547 {
3548 	/* Enables reply_queue load balancing */
3549 	if (ioc->msix_load_balance)
3550 		return ioc->reply_queue_count ?
3551 		    base_mod64(atomic64_add_return(1,
3552 		    &ioc->total_io_cnt), ioc->reply_queue_count) : 0;
3553 
3554 	return ioc->cpu_msix_table[raw_smp_processor_id()];
3555 }
3556 
3557 /**
3558  * _base_sdev_nr_inflight_request -get number of inflight requests
3559  *				   of a request queue.
3560  * @q: request_queue object
3561  *
3562  * returns number of inflight request of a request queue.
3563  */
3564 inline unsigned long
3565 _base_sdev_nr_inflight_request(struct request_queue *q)
3566 {
3567 	struct blk_mq_hw_ctx *hctx = q->queue_hw_ctx[0];
3568 
3569 	return atomic_read(&hctx->nr_active);
3570 }
3571 
3572 
3573 /**
3574  * _base_get_high_iops_msix_index - get the msix index of
3575  *				high iops queues
3576  * @ioc: per adapter object
3577  * @scmd: scsi_cmnd object
3578  *
3579  * Returns: msix index of high iops reply queues.
3580  * i.e. high iops reply queue on which IO request's
3581  * reply should be posted by the HBA firmware.
3582  */
3583 static inline u8
3584 _base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc,
3585 	struct scsi_cmnd *scmd)
3586 {
3587 	/**
3588 	 * Round robin the IO interrupts among the high iops
3589 	 * reply queues in terms of batch count 16 when outstanding
3590 	 * IOs on the target device is >=8.
3591 	 */
3592 	if (_base_sdev_nr_inflight_request(scmd->device->request_queue) >
3593 	    MPT3SAS_DEVICE_HIGH_IOPS_DEPTH)
3594 		return base_mod64((
3595 		    atomic64_add_return(1, &ioc->high_iops_outstanding) /
3596 		    MPT3SAS_HIGH_IOPS_BATCH_COUNT),
3597 		    MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
3598 
3599 	return _base_get_msix_index(ioc, scmd);
3600 }
3601 
3602 /**
3603  * mpt3sas_base_get_smid - obtain a free smid from internal queue
3604  * @ioc: per adapter object
3605  * @cb_idx: callback index
3606  *
3607  * Return: smid (zero is invalid)
3608  */
3609 u16
3610 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3611 {
3612 	unsigned long flags;
3613 	struct request_tracker *request;
3614 	u16 smid;
3615 
3616 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3617 	if (list_empty(&ioc->internal_free_list)) {
3618 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3619 		ioc_err(ioc, "%s: smid not available\n", __func__);
3620 		return 0;
3621 	}
3622 
3623 	request = list_entry(ioc->internal_free_list.next,
3624 	    struct request_tracker, tracker_list);
3625 	request->cb_idx = cb_idx;
3626 	smid = request->smid;
3627 	list_del(&request->tracker_list);
3628 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3629 	return smid;
3630 }
3631 
3632 /**
3633  * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
3634  * @ioc: per adapter object
3635  * @cb_idx: callback index
3636  * @scmd: pointer to scsi command object
3637  *
3638  * Return: smid (zero is invalid)
3639  */
3640 u16
3641 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
3642 	struct scsi_cmnd *scmd)
3643 {
3644 	struct scsiio_tracker *request = scsi_cmd_priv(scmd);
3645 	unsigned int tag = scmd->request->tag;
3646 	u16 smid;
3647 
3648 	smid = tag + 1;
3649 	request->cb_idx = cb_idx;
3650 	request->smid = smid;
3651 	request->scmd = scmd;
3652 	INIT_LIST_HEAD(&request->chain_list);
3653 	return smid;
3654 }
3655 
3656 /**
3657  * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
3658  * @ioc: per adapter object
3659  * @cb_idx: callback index
3660  *
3661  * Return: smid (zero is invalid)
3662  */
3663 u16
3664 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3665 {
3666 	unsigned long flags;
3667 	struct request_tracker *request;
3668 	u16 smid;
3669 
3670 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3671 	if (list_empty(&ioc->hpr_free_list)) {
3672 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3673 		return 0;
3674 	}
3675 
3676 	request = list_entry(ioc->hpr_free_list.next,
3677 	    struct request_tracker, tracker_list);
3678 	request->cb_idx = cb_idx;
3679 	smid = request->smid;
3680 	list_del(&request->tracker_list);
3681 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3682 	return smid;
3683 }
3684 
3685 static void
3686 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc)
3687 {
3688 	/*
3689 	 * See _wait_for_commands_to_complete() call with regards to this code.
3690 	 */
3691 	if (ioc->shost_recovery && ioc->pending_io_count) {
3692 		ioc->pending_io_count = scsi_host_busy(ioc->shost);
3693 		if (ioc->pending_io_count == 0)
3694 			wake_up(&ioc->reset_wq);
3695 	}
3696 }
3697 
3698 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc,
3699 			   struct scsiio_tracker *st)
3700 {
3701 	if (WARN_ON(st->smid == 0))
3702 		return;
3703 	st->cb_idx = 0xFF;
3704 	st->direct_io = 0;
3705 	st->scmd = NULL;
3706 	atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0);
3707 	st->smid = 0;
3708 }
3709 
3710 /**
3711  * mpt3sas_base_free_smid - put smid back on free_list
3712  * @ioc: per adapter object
3713  * @smid: system request message index
3714  */
3715 void
3716 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3717 {
3718 	unsigned long flags;
3719 	int i;
3720 
3721 	if (smid < ioc->hi_priority_smid) {
3722 		struct scsiio_tracker *st;
3723 		void *request;
3724 
3725 		st = _get_st_from_smid(ioc, smid);
3726 		if (!st) {
3727 			_base_recovery_check(ioc);
3728 			return;
3729 		}
3730 
3731 		/* Clear MPI request frame */
3732 		request = mpt3sas_base_get_msg_frame(ioc, smid);
3733 		memset(request, 0, ioc->request_sz);
3734 
3735 		mpt3sas_base_clear_st(ioc, st);
3736 		_base_recovery_check(ioc);
3737 		return;
3738 	}
3739 
3740 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3741 	if (smid < ioc->internal_smid) {
3742 		/* hi-priority */
3743 		i = smid - ioc->hi_priority_smid;
3744 		ioc->hpr_lookup[i].cb_idx = 0xFF;
3745 		list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
3746 	} else if (smid <= ioc->hba_queue_depth) {
3747 		/* internal queue */
3748 		i = smid - ioc->internal_smid;
3749 		ioc->internal_lookup[i].cb_idx = 0xFF;
3750 		list_add(&ioc->internal_lookup[i].tracker_list,
3751 		    &ioc->internal_free_list);
3752 	}
3753 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3754 }
3755 
3756 /**
3757  * _base_mpi_ep_writeq - 32 bit write to MMIO
3758  * @b: data payload
3759  * @addr: address in MMIO space
3760  * @writeq_lock: spin lock
3761  *
3762  * This special handling for MPI EP to take care of 32 bit
3763  * environment where its not quarenteed to send the entire word
3764  * in one transfer.
3765  */
3766 static inline void
3767 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr,
3768 					spinlock_t *writeq_lock)
3769 {
3770 	unsigned long flags;
3771 
3772 	spin_lock_irqsave(writeq_lock, flags);
3773 	__raw_writel((u32)(b), addr);
3774 	__raw_writel((u32)(b >> 32), (addr + 4));
3775 	spin_unlock_irqrestore(writeq_lock, flags);
3776 }
3777 
3778 /**
3779  * _base_writeq - 64 bit write to MMIO
3780  * @b: data payload
3781  * @addr: address in MMIO space
3782  * @writeq_lock: spin lock
3783  *
3784  * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
3785  * care of 32 bit environment where its not quarenteed to send the entire word
3786  * in one transfer.
3787  */
3788 #if defined(writeq) && defined(CONFIG_64BIT)
3789 static inline void
3790 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
3791 {
3792 	wmb();
3793 	__raw_writeq(b, addr);
3794 	barrier();
3795 }
3796 #else
3797 static inline void
3798 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
3799 {
3800 	_base_mpi_ep_writeq(b, addr, writeq_lock);
3801 }
3802 #endif
3803 
3804 /**
3805  * _base_set_and_get_msix_index - get the msix index and assign to msix_io
3806  *                                variable of scsi tracker
3807  * @ioc: per adapter object
3808  * @smid: system request message index
3809  *
3810  * returns msix index.
3811  */
3812 static u8
3813 _base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3814 {
3815 	struct scsiio_tracker *st = NULL;
3816 
3817 	if (smid < ioc->hi_priority_smid)
3818 		st = _get_st_from_smid(ioc, smid);
3819 
3820 	if (st == NULL)
3821 		return  _base_get_msix_index(ioc, NULL);
3822 
3823 	st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd);
3824 	return st->msix_io;
3825 }
3826 
3827 /**
3828  * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware
3829  * @ioc: per adapter object
3830  * @smid: system request message index
3831  * @handle: device handle
3832  */
3833 static void
3834 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc,
3835 	u16 smid, u16 handle)
3836 {
3837 	Mpi2RequestDescriptorUnion_t descriptor;
3838 	u64 *request = (u64 *)&descriptor;
3839 	void *mpi_req_iomem;
3840 	__le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3841 
3842 	_clone_sg_entries(ioc, (void *) mfp, smid);
3843 	mpi_req_iomem = (void __force *)ioc->chip +
3844 			MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
3845 	_base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3846 					ioc->request_sz);
3847 	descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3848 	descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3849 	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3850 	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3851 	descriptor.SCSIIO.LMID = 0;
3852 	_base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3853 	    &ioc->scsi_lookup_lock);
3854 }
3855 
3856 /**
3857  * _base_put_smid_scsi_io - send SCSI_IO request to firmware
3858  * @ioc: per adapter object
3859  * @smid: system request message index
3860  * @handle: device handle
3861  */
3862 static void
3863 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
3864 {
3865 	Mpi2RequestDescriptorUnion_t descriptor;
3866 	u64 *request = (u64 *)&descriptor;
3867 
3868 
3869 	descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3870 	descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3871 	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3872 	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3873 	descriptor.SCSIIO.LMID = 0;
3874 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3875 	    &ioc->scsi_lookup_lock);
3876 }
3877 
3878 /**
3879  * _base_put_smid_fast_path - send fast path request to firmware
3880  * @ioc: per adapter object
3881  * @smid: system request message index
3882  * @handle: device handle
3883  */
3884 static void
3885 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3886 	u16 handle)
3887 {
3888 	Mpi2RequestDescriptorUnion_t descriptor;
3889 	u64 *request = (u64 *)&descriptor;
3890 
3891 	descriptor.SCSIIO.RequestFlags =
3892 	    MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
3893 	descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3894 	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3895 	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3896 	descriptor.SCSIIO.LMID = 0;
3897 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3898 	    &ioc->scsi_lookup_lock);
3899 }
3900 
3901 /**
3902  * _base_put_smid_hi_priority - send Task Management request to firmware
3903  * @ioc: per adapter object
3904  * @smid: system request message index
3905  * @msix_task: msix_task will be same as msix of IO incase of task abort else 0.
3906  */
3907 static void
3908 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3909 	u16 msix_task)
3910 {
3911 	Mpi2RequestDescriptorUnion_t descriptor;
3912 	void *mpi_req_iomem;
3913 	u64 *request;
3914 
3915 	if (ioc->is_mcpu_endpoint) {
3916 		__le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3917 
3918 		/* TBD 256 is offset within sys register. */
3919 		mpi_req_iomem = (void __force *)ioc->chip
3920 					+ MPI_FRAME_START_OFFSET
3921 					+ (smid * ioc->request_sz);
3922 		_base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3923 							ioc->request_sz);
3924 	}
3925 
3926 	request = (u64 *)&descriptor;
3927 
3928 	descriptor.HighPriority.RequestFlags =
3929 	    MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
3930 	descriptor.HighPriority.MSIxIndex =  msix_task;
3931 	descriptor.HighPriority.SMID = cpu_to_le16(smid);
3932 	descriptor.HighPriority.LMID = 0;
3933 	descriptor.HighPriority.Reserved1 = 0;
3934 	if (ioc->is_mcpu_endpoint)
3935 		_base_mpi_ep_writeq(*request,
3936 				&ioc->chip->RequestDescriptorPostLow,
3937 				&ioc->scsi_lookup_lock);
3938 	else
3939 		_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3940 		    &ioc->scsi_lookup_lock);
3941 }
3942 
3943 /**
3944  * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to
3945  *  firmware
3946  * @ioc: per adapter object
3947  * @smid: system request message index
3948  */
3949 void
3950 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3951 {
3952 	Mpi2RequestDescriptorUnion_t descriptor;
3953 	u64 *request = (u64 *)&descriptor;
3954 
3955 	descriptor.Default.RequestFlags =
3956 		MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
3957 	descriptor.Default.MSIxIndex =  _base_set_and_get_msix_index(ioc, smid);
3958 	descriptor.Default.SMID = cpu_to_le16(smid);
3959 	descriptor.Default.LMID = 0;
3960 	descriptor.Default.DescriptorTypeDependent = 0;
3961 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3962 	    &ioc->scsi_lookup_lock);
3963 }
3964 
3965 /**
3966  * _base_put_smid_default - Default, primarily used for config pages
3967  * @ioc: per adapter object
3968  * @smid: system request message index
3969  */
3970 static void
3971 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3972 {
3973 	Mpi2RequestDescriptorUnion_t descriptor;
3974 	void *mpi_req_iomem;
3975 	u64 *request;
3976 
3977 	if (ioc->is_mcpu_endpoint) {
3978 		__le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3979 
3980 		_clone_sg_entries(ioc, (void *) mfp, smid);
3981 		/* TBD 256 is offset within sys register */
3982 		mpi_req_iomem = (void __force *)ioc->chip +
3983 			MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
3984 		_base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3985 							ioc->request_sz);
3986 	}
3987 	request = (u64 *)&descriptor;
3988 	descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
3989 	descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3990 	descriptor.Default.SMID = cpu_to_le16(smid);
3991 	descriptor.Default.LMID = 0;
3992 	descriptor.Default.DescriptorTypeDependent = 0;
3993 	if (ioc->is_mcpu_endpoint)
3994 		_base_mpi_ep_writeq(*request,
3995 				&ioc->chip->RequestDescriptorPostLow,
3996 				&ioc->scsi_lookup_lock);
3997 	else
3998 		_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3999 				&ioc->scsi_lookup_lock);
4000 }
4001 
4002 /**
4003  * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using
4004  *   Atomic Request Descriptor
4005  * @ioc: per adapter object
4006  * @smid: system request message index
4007  * @handle: device handle, unused in this function, for function type match
4008  *
4009  * Return nothing.
4010  */
4011 static void
4012 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4013 	u16 handle)
4014 {
4015 	Mpi26AtomicRequestDescriptor_t descriptor;
4016 	u32 *request = (u32 *)&descriptor;
4017 
4018 	descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4019 	descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4020 	descriptor.SMID = cpu_to_le16(smid);
4021 
4022 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4023 }
4024 
4025 /**
4026  * _base_put_smid_fast_path_atomic - send fast path request to firmware
4027  * using Atomic Request Descriptor
4028  * @ioc: per adapter object
4029  * @smid: system request message index
4030  * @handle: device handle, unused in this function, for function type match
4031  * Return nothing
4032  */
4033 static void
4034 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4035 	u16 handle)
4036 {
4037 	Mpi26AtomicRequestDescriptor_t descriptor;
4038 	u32 *request = (u32 *)&descriptor;
4039 
4040 	descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4041 	descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4042 	descriptor.SMID = cpu_to_le16(smid);
4043 
4044 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4045 }
4046 
4047 /**
4048  * _base_put_smid_hi_priority_atomic - send Task Management request to
4049  * firmware using Atomic Request Descriptor
4050  * @ioc: per adapter object
4051  * @smid: system request message index
4052  * @msix_task: msix_task will be same as msix of IO incase of task abort else 0
4053  *
4054  * Return nothing.
4055  */
4056 static void
4057 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4058 	u16 msix_task)
4059 {
4060 	Mpi26AtomicRequestDescriptor_t descriptor;
4061 	u32 *request = (u32 *)&descriptor;
4062 
4063 	descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4064 	descriptor.MSIxIndex = msix_task;
4065 	descriptor.SMID = cpu_to_le16(smid);
4066 
4067 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4068 }
4069 
4070 /**
4071  * _base_put_smid_default - Default, primarily used for config pages
4072  * use Atomic Request Descriptor
4073  * @ioc: per adapter object
4074  * @smid: system request message index
4075  *
4076  * Return nothing.
4077  */
4078 static void
4079 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4080 {
4081 	Mpi26AtomicRequestDescriptor_t descriptor;
4082 	u32 *request = (u32 *)&descriptor;
4083 
4084 	descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4085 	descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4086 	descriptor.SMID = cpu_to_le16(smid);
4087 
4088 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4089 }
4090 
4091 /**
4092  * _base_display_OEMs_branding - Display branding string
4093  * @ioc: per adapter object
4094  */
4095 static void
4096 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
4097 {
4098 	if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
4099 		return;
4100 
4101 	switch (ioc->pdev->subsystem_vendor) {
4102 	case PCI_VENDOR_ID_INTEL:
4103 		switch (ioc->pdev->device) {
4104 		case MPI2_MFGPAGE_DEVID_SAS2008:
4105 			switch (ioc->pdev->subsystem_device) {
4106 			case MPT2SAS_INTEL_RMS2LL080_SSDID:
4107 				ioc_info(ioc, "%s\n",
4108 					 MPT2SAS_INTEL_RMS2LL080_BRANDING);
4109 				break;
4110 			case MPT2SAS_INTEL_RMS2LL040_SSDID:
4111 				ioc_info(ioc, "%s\n",
4112 					 MPT2SAS_INTEL_RMS2LL040_BRANDING);
4113 				break;
4114 			case MPT2SAS_INTEL_SSD910_SSDID:
4115 				ioc_info(ioc, "%s\n",
4116 					 MPT2SAS_INTEL_SSD910_BRANDING);
4117 				break;
4118 			default:
4119 				ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4120 					 ioc->pdev->subsystem_device);
4121 				break;
4122 			}
4123 			break;
4124 		case MPI2_MFGPAGE_DEVID_SAS2308_2:
4125 			switch (ioc->pdev->subsystem_device) {
4126 			case MPT2SAS_INTEL_RS25GB008_SSDID:
4127 				ioc_info(ioc, "%s\n",
4128 					 MPT2SAS_INTEL_RS25GB008_BRANDING);
4129 				break;
4130 			case MPT2SAS_INTEL_RMS25JB080_SSDID:
4131 				ioc_info(ioc, "%s\n",
4132 					 MPT2SAS_INTEL_RMS25JB080_BRANDING);
4133 				break;
4134 			case MPT2SAS_INTEL_RMS25JB040_SSDID:
4135 				ioc_info(ioc, "%s\n",
4136 					 MPT2SAS_INTEL_RMS25JB040_BRANDING);
4137 				break;
4138 			case MPT2SAS_INTEL_RMS25KB080_SSDID:
4139 				ioc_info(ioc, "%s\n",
4140 					 MPT2SAS_INTEL_RMS25KB080_BRANDING);
4141 				break;
4142 			case MPT2SAS_INTEL_RMS25KB040_SSDID:
4143 				ioc_info(ioc, "%s\n",
4144 					 MPT2SAS_INTEL_RMS25KB040_BRANDING);
4145 				break;
4146 			case MPT2SAS_INTEL_RMS25LB040_SSDID:
4147 				ioc_info(ioc, "%s\n",
4148 					 MPT2SAS_INTEL_RMS25LB040_BRANDING);
4149 				break;
4150 			case MPT2SAS_INTEL_RMS25LB080_SSDID:
4151 				ioc_info(ioc, "%s\n",
4152 					 MPT2SAS_INTEL_RMS25LB080_BRANDING);
4153 				break;
4154 			default:
4155 				ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4156 					 ioc->pdev->subsystem_device);
4157 				break;
4158 			}
4159 			break;
4160 		case MPI25_MFGPAGE_DEVID_SAS3008:
4161 			switch (ioc->pdev->subsystem_device) {
4162 			case MPT3SAS_INTEL_RMS3JC080_SSDID:
4163 				ioc_info(ioc, "%s\n",
4164 					 MPT3SAS_INTEL_RMS3JC080_BRANDING);
4165 				break;
4166 
4167 			case MPT3SAS_INTEL_RS3GC008_SSDID:
4168 				ioc_info(ioc, "%s\n",
4169 					 MPT3SAS_INTEL_RS3GC008_BRANDING);
4170 				break;
4171 			case MPT3SAS_INTEL_RS3FC044_SSDID:
4172 				ioc_info(ioc, "%s\n",
4173 					 MPT3SAS_INTEL_RS3FC044_BRANDING);
4174 				break;
4175 			case MPT3SAS_INTEL_RS3UC080_SSDID:
4176 				ioc_info(ioc, "%s\n",
4177 					 MPT3SAS_INTEL_RS3UC080_BRANDING);
4178 				break;
4179 			default:
4180 				ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4181 					 ioc->pdev->subsystem_device);
4182 				break;
4183 			}
4184 			break;
4185 		default:
4186 			ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4187 				 ioc->pdev->subsystem_device);
4188 			break;
4189 		}
4190 		break;
4191 	case PCI_VENDOR_ID_DELL:
4192 		switch (ioc->pdev->device) {
4193 		case MPI2_MFGPAGE_DEVID_SAS2008:
4194 			switch (ioc->pdev->subsystem_device) {
4195 			case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
4196 				ioc_info(ioc, "%s\n",
4197 					 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
4198 				break;
4199 			case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
4200 				ioc_info(ioc, "%s\n",
4201 					 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
4202 				break;
4203 			case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
4204 				ioc_info(ioc, "%s\n",
4205 					 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
4206 				break;
4207 			case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
4208 				ioc_info(ioc, "%s\n",
4209 					 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
4210 				break;
4211 			case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
4212 				ioc_info(ioc, "%s\n",
4213 					 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
4214 				break;
4215 			case MPT2SAS_DELL_PERC_H200_SSDID:
4216 				ioc_info(ioc, "%s\n",
4217 					 MPT2SAS_DELL_PERC_H200_BRANDING);
4218 				break;
4219 			case MPT2SAS_DELL_6GBPS_SAS_SSDID:
4220 				ioc_info(ioc, "%s\n",
4221 					 MPT2SAS_DELL_6GBPS_SAS_BRANDING);
4222 				break;
4223 			default:
4224 				ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
4225 					 ioc->pdev->subsystem_device);
4226 				break;
4227 			}
4228 			break;
4229 		case MPI25_MFGPAGE_DEVID_SAS3008:
4230 			switch (ioc->pdev->subsystem_device) {
4231 			case MPT3SAS_DELL_12G_HBA_SSDID:
4232 				ioc_info(ioc, "%s\n",
4233 					 MPT3SAS_DELL_12G_HBA_BRANDING);
4234 				break;
4235 			default:
4236 				ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
4237 					 ioc->pdev->subsystem_device);
4238 				break;
4239 			}
4240 			break;
4241 		default:
4242 			ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n",
4243 				 ioc->pdev->subsystem_device);
4244 			break;
4245 		}
4246 		break;
4247 	case PCI_VENDOR_ID_CISCO:
4248 		switch (ioc->pdev->device) {
4249 		case MPI25_MFGPAGE_DEVID_SAS3008:
4250 			switch (ioc->pdev->subsystem_device) {
4251 			case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
4252 				ioc_info(ioc, "%s\n",
4253 					 MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
4254 				break;
4255 			case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
4256 				ioc_info(ioc, "%s\n",
4257 					 MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
4258 				break;
4259 			case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4260 				ioc_info(ioc, "%s\n",
4261 					 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4262 				break;
4263 			default:
4264 				ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4265 					 ioc->pdev->subsystem_device);
4266 				break;
4267 			}
4268 			break;
4269 		case MPI25_MFGPAGE_DEVID_SAS3108_1:
4270 			switch (ioc->pdev->subsystem_device) {
4271 			case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4272 				ioc_info(ioc, "%s\n",
4273 					 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4274 				break;
4275 			case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
4276 				ioc_info(ioc, "%s\n",
4277 					 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING);
4278 				break;
4279 			default:
4280 				ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4281 					 ioc->pdev->subsystem_device);
4282 				break;
4283 			}
4284 			break;
4285 		default:
4286 			ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n",
4287 				 ioc->pdev->subsystem_device);
4288 			break;
4289 		}
4290 		break;
4291 	case MPT2SAS_HP_3PAR_SSVID:
4292 		switch (ioc->pdev->device) {
4293 		case MPI2_MFGPAGE_DEVID_SAS2004:
4294 			switch (ioc->pdev->subsystem_device) {
4295 			case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
4296 				ioc_info(ioc, "%s\n",
4297 					 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
4298 				break;
4299 			default:
4300 				ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4301 					 ioc->pdev->subsystem_device);
4302 				break;
4303 			}
4304 			break;
4305 		case MPI2_MFGPAGE_DEVID_SAS2308_2:
4306 			switch (ioc->pdev->subsystem_device) {
4307 			case MPT2SAS_HP_2_4_INTERNAL_SSDID:
4308 				ioc_info(ioc, "%s\n",
4309 					 MPT2SAS_HP_2_4_INTERNAL_BRANDING);
4310 				break;
4311 			case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
4312 				ioc_info(ioc, "%s\n",
4313 					 MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
4314 				break;
4315 			case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
4316 				ioc_info(ioc, "%s\n",
4317 					 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
4318 				break;
4319 			case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
4320 				ioc_info(ioc, "%s\n",
4321 					 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
4322 				break;
4323 			default:
4324 				ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4325 					 ioc->pdev->subsystem_device);
4326 				break;
4327 			}
4328 			break;
4329 		default:
4330 			ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n",
4331 				 ioc->pdev->subsystem_device);
4332 			break;
4333 		}
4334 	default:
4335 		break;
4336 	}
4337 }
4338 
4339 /**
4340  * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg
4341  *				version from FW Image Header.
4342  * @ioc: per adapter object
4343  *
4344  * Return: 0 for success, non-zero for failure.
4345  */
4346 	static int
4347 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc)
4348 {
4349 	Mpi2FWImageHeader_t *fw_img_hdr;
4350 	Mpi26ComponentImageHeader_t *cmp_img_hdr;
4351 	Mpi25FWUploadRequest_t *mpi_request;
4352 	Mpi2FWUploadReply_t mpi_reply;
4353 	int r = 0;
4354 	u32  package_version = 0;
4355 	void *fwpkg_data = NULL;
4356 	dma_addr_t fwpkg_data_dma;
4357 	u16 smid, ioc_status;
4358 	size_t data_length;
4359 
4360 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4361 
4362 	if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4363 		ioc_err(ioc, "%s: internal command already in use\n", __func__);
4364 		return -EAGAIN;
4365 	}
4366 
4367 	data_length = sizeof(Mpi2FWImageHeader_t);
4368 	fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length,
4369 			&fwpkg_data_dma, GFP_KERNEL);
4370 	if (!fwpkg_data) {
4371 		ioc_err(ioc,
4372 		    "Memory allocation for fwpkg data failed at %s:%d/%s()!\n",
4373 			__FILE__, __LINE__, __func__);
4374 		return -ENOMEM;
4375 	}
4376 
4377 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4378 	if (!smid) {
4379 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
4380 		r = -EAGAIN;
4381 		goto out;
4382 	}
4383 
4384 	ioc->base_cmds.status = MPT3_CMD_PENDING;
4385 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4386 	ioc->base_cmds.smid = smid;
4387 	memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t));
4388 	mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD;
4389 	mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH;
4390 	mpi_request->ImageSize = cpu_to_le32(data_length);
4391 	ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma,
4392 			data_length);
4393 	init_completion(&ioc->base_cmds.done);
4394 	ioc->put_smid_default(ioc, smid);
4395 	/* Wait for 15 seconds */
4396 	wait_for_completion_timeout(&ioc->base_cmds.done,
4397 			FW_IMG_HDR_READ_TIMEOUT*HZ);
4398 	ioc_info(ioc, "%s: complete\n", __func__);
4399 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4400 		ioc_err(ioc, "%s: timeout\n", __func__);
4401 		_debug_dump_mf(mpi_request,
4402 				sizeof(Mpi25FWUploadRequest_t)/4);
4403 		r = -ETIME;
4404 	} else {
4405 		memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t));
4406 		if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) {
4407 			memcpy(&mpi_reply, ioc->base_cmds.reply,
4408 					sizeof(Mpi2FWUploadReply_t));
4409 			ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4410 						MPI2_IOCSTATUS_MASK;
4411 			if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4412 				fw_img_hdr = (Mpi2FWImageHeader_t *)fwpkg_data;
4413 				if (le32_to_cpu(fw_img_hdr->Signature) ==
4414 				    MPI26_IMAGE_HEADER_SIGNATURE0_MPI26) {
4415 					cmp_img_hdr =
4416 					    (Mpi26ComponentImageHeader_t *)
4417 					    (fwpkg_data);
4418 					package_version =
4419 					    le32_to_cpu(
4420 					    cmp_img_hdr->ApplicationSpecific);
4421 				} else
4422 					package_version =
4423 					    le32_to_cpu(
4424 					    fw_img_hdr->PackageVersion.Word);
4425 				if (package_version)
4426 					ioc_info(ioc,
4427 					"FW Package Ver(%02d.%02d.%02d.%02d)\n",
4428 					((package_version) & 0xFF000000) >> 24,
4429 					((package_version) & 0x00FF0000) >> 16,
4430 					((package_version) & 0x0000FF00) >> 8,
4431 					(package_version) & 0x000000FF);
4432 			} else {
4433 				_debug_dump_mf(&mpi_reply,
4434 						sizeof(Mpi2FWUploadReply_t)/4);
4435 			}
4436 		}
4437 	}
4438 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4439 out:
4440 	if (fwpkg_data)
4441 		dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data,
4442 				fwpkg_data_dma);
4443 	return r;
4444 }
4445 
4446 /**
4447  * _base_display_ioc_capabilities - Disply IOC's capabilities.
4448  * @ioc: per adapter object
4449  */
4450 static void
4451 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
4452 {
4453 	int i = 0;
4454 	char desc[16];
4455 	u32 iounit_pg1_flags;
4456 	u32 bios_version;
4457 
4458 	bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
4459 	strncpy(desc, ioc->manu_pg0.ChipName, 16);
4460 	ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
4461 		 desc,
4462 		 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
4463 		 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
4464 		 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
4465 		 ioc->facts.FWVersion.Word & 0x000000FF,
4466 		 ioc->pdev->revision,
4467 		 (bios_version & 0xFF000000) >> 24,
4468 		 (bios_version & 0x00FF0000) >> 16,
4469 		 (bios_version & 0x0000FF00) >> 8,
4470 		 bios_version & 0x000000FF);
4471 
4472 	_base_display_OEMs_branding(ioc);
4473 
4474 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
4475 		pr_info("%sNVMe", i ? "," : "");
4476 		i++;
4477 	}
4478 
4479 	ioc_info(ioc, "Protocol=(");
4480 
4481 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
4482 		pr_cont("Initiator");
4483 		i++;
4484 	}
4485 
4486 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
4487 		pr_cont("%sTarget", i ? "," : "");
4488 		i++;
4489 	}
4490 
4491 	i = 0;
4492 	pr_cont("), Capabilities=(");
4493 
4494 	if (!ioc->hide_ir_msg) {
4495 		if (ioc->facts.IOCCapabilities &
4496 		    MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
4497 			pr_cont("Raid");
4498 			i++;
4499 		}
4500 	}
4501 
4502 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
4503 		pr_cont("%sTLR", i ? "," : "");
4504 		i++;
4505 	}
4506 
4507 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
4508 		pr_cont("%sMulticast", i ? "," : "");
4509 		i++;
4510 	}
4511 
4512 	if (ioc->facts.IOCCapabilities &
4513 	    MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
4514 		pr_cont("%sBIDI Target", i ? "," : "");
4515 		i++;
4516 	}
4517 
4518 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
4519 		pr_cont("%sEEDP", i ? "," : "");
4520 		i++;
4521 	}
4522 
4523 	if (ioc->facts.IOCCapabilities &
4524 	    MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
4525 		pr_cont("%sSnapshot Buffer", i ? "," : "");
4526 		i++;
4527 	}
4528 
4529 	if (ioc->facts.IOCCapabilities &
4530 	    MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
4531 		pr_cont("%sDiag Trace Buffer", i ? "," : "");
4532 		i++;
4533 	}
4534 
4535 	if (ioc->facts.IOCCapabilities &
4536 	    MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
4537 		pr_cont("%sDiag Extended Buffer", i ? "," : "");
4538 		i++;
4539 	}
4540 
4541 	if (ioc->facts.IOCCapabilities &
4542 	    MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
4543 		pr_cont("%sTask Set Full", i ? "," : "");
4544 		i++;
4545 	}
4546 
4547 	iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4548 	if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
4549 		pr_cont("%sNCQ", i ? "," : "");
4550 		i++;
4551 	}
4552 
4553 	pr_cont(")\n");
4554 }
4555 
4556 /**
4557  * mpt3sas_base_update_missing_delay - change the missing delay timers
4558  * @ioc: per adapter object
4559  * @device_missing_delay: amount of time till device is reported missing
4560  * @io_missing_delay: interval IO is returned when there is a missing device
4561  *
4562  * Passed on the command line, this function will modify the device missing
4563  * delay, as well as the io missing delay. This should be called at driver
4564  * load time.
4565  */
4566 void
4567 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
4568 	u16 device_missing_delay, u8 io_missing_delay)
4569 {
4570 	u16 dmd, dmd_new, dmd_orignal;
4571 	u8 io_missing_delay_original;
4572 	u16 sz;
4573 	Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
4574 	Mpi2ConfigReply_t mpi_reply;
4575 	u8 num_phys = 0;
4576 	u16 ioc_status;
4577 
4578 	mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
4579 	if (!num_phys)
4580 		return;
4581 
4582 	sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
4583 	    sizeof(Mpi2SasIOUnit1PhyData_t));
4584 	sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
4585 	if (!sas_iounit_pg1) {
4586 		ioc_err(ioc, "failure at %s:%d/%s()!\n",
4587 			__FILE__, __LINE__, __func__);
4588 		goto out;
4589 	}
4590 	if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
4591 	    sas_iounit_pg1, sz))) {
4592 		ioc_err(ioc, "failure at %s:%d/%s()!\n",
4593 			__FILE__, __LINE__, __func__);
4594 		goto out;
4595 	}
4596 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4597 	    MPI2_IOCSTATUS_MASK;
4598 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4599 		ioc_err(ioc, "failure at %s:%d/%s()!\n",
4600 			__FILE__, __LINE__, __func__);
4601 		goto out;
4602 	}
4603 
4604 	/* device missing delay */
4605 	dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
4606 	if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4607 		dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4608 	else
4609 		dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4610 	dmd_orignal = dmd;
4611 	if (device_missing_delay > 0x7F) {
4612 		dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
4613 		    device_missing_delay;
4614 		dmd = dmd / 16;
4615 		dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
4616 	} else
4617 		dmd = device_missing_delay;
4618 	sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
4619 
4620 	/* io missing delay */
4621 	io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
4622 	sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
4623 
4624 	if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
4625 	    sz)) {
4626 		if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4627 			dmd_new = (dmd &
4628 			    MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4629 		else
4630 			dmd_new =
4631 		    dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4632 		ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n",
4633 			 dmd_orignal, dmd_new);
4634 		ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n",
4635 			 io_missing_delay_original,
4636 			 io_missing_delay);
4637 		ioc->device_missing_delay = dmd_new;
4638 		ioc->io_missing_delay = io_missing_delay;
4639 	}
4640 
4641 out:
4642 	kfree(sas_iounit_pg1);
4643 }
4644 
4645 /**
4646  * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields
4647  *    according to performance mode.
4648  * @ioc : per adapter object
4649  *
4650  * Return nothing.
4651  */
4652 static void
4653 _base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc)
4654 {
4655 	Mpi2IOCPage1_t ioc_pg1;
4656 	Mpi2ConfigReply_t mpi_reply;
4657 
4658 	mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy);
4659 	memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t));
4660 
4661 	switch (perf_mode) {
4662 	case MPT_PERF_MODE_DEFAULT:
4663 	case MPT_PERF_MODE_BALANCED:
4664 		if (ioc->high_iops_queues) {
4665 			ioc_info(ioc,
4666 				"Enable interrupt coalescing only for first\t"
4667 				"%d reply queues\n",
4668 				MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
4669 			/*
4670 			 * If 31st bit is zero then interrupt coalescing is
4671 			 * enabled for all reply descriptor post queues.
4672 			 * If 31st bit is set to one then user can
4673 			 * enable/disable interrupt coalescing on per reply
4674 			 * descriptor post queue group(8) basis. So to enable
4675 			 * interrupt coalescing only on first reply descriptor
4676 			 * post queue group 31st bit and zero th bit is enabled.
4677 			 */
4678 			ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 |
4679 			    ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1));
4680 			mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4681 			ioc_info(ioc, "performance mode: balanced\n");
4682 			return;
4683 		}
4684 		fallthrough;
4685 	case MPT_PERF_MODE_LATENCY:
4686 		/*
4687 		 * Enable interrupt coalescing on all reply queues
4688 		 * with timeout value 0xA
4689 		 */
4690 		ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa);
4691 		ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
4692 		ioc_pg1.ProductSpecific = 0;
4693 		mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4694 		ioc_info(ioc, "performance mode: latency\n");
4695 		break;
4696 	case MPT_PERF_MODE_IOPS:
4697 		/*
4698 		 * Enable interrupt coalescing on all reply queues.
4699 		 */
4700 		ioc_info(ioc,
4701 		    "performance mode: iops with coalescing timeout: 0x%x\n",
4702 		    le32_to_cpu(ioc_pg1.CoalescingTimeout));
4703 		ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
4704 		ioc_pg1.ProductSpecific = 0;
4705 		mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4706 		break;
4707 	}
4708 }
4709 
4710 /**
4711  * _base_static_config_pages - static start of day config pages
4712  * @ioc: per adapter object
4713  */
4714 static void
4715 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
4716 {
4717 	Mpi2ConfigReply_t mpi_reply;
4718 	u32 iounit_pg1_flags;
4719 
4720 	ioc->nvme_abort_timeout = 30;
4721 	mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
4722 	if (ioc->ir_firmware)
4723 		mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
4724 		    &ioc->manu_pg10);
4725 
4726 	/*
4727 	 * Ensure correct T10 PI operation if vendor left EEDPTagMode
4728 	 * flag unset in NVDATA.
4729 	 */
4730 	mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
4731 	if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) {
4732 		pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
4733 		    ioc->name);
4734 		ioc->manu_pg11.EEDPTagMode &= ~0x3;
4735 		ioc->manu_pg11.EEDPTagMode |= 0x1;
4736 		mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
4737 		    &ioc->manu_pg11);
4738 	}
4739 	if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK)
4740 		ioc->tm_custom_handling = 1;
4741 	else {
4742 		ioc->tm_custom_handling = 0;
4743 		if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT)
4744 			ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT;
4745 		else if (ioc->manu_pg11.NVMeAbortTO >
4746 					NVME_TASK_ABORT_MAX_TIMEOUT)
4747 			ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT;
4748 		else
4749 			ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO;
4750 	}
4751 
4752 	mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
4753 	mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
4754 	mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
4755 	mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
4756 	mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
4757 	mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
4758 	_base_display_ioc_capabilities(ioc);
4759 
4760 	/*
4761 	 * Enable task_set_full handling in iounit_pg1 when the
4762 	 * facts capabilities indicate that its supported.
4763 	 */
4764 	iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4765 	if ((ioc->facts.IOCCapabilities &
4766 	    MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
4767 		iounit_pg1_flags &=
4768 		    ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
4769 	else
4770 		iounit_pg1_flags |=
4771 		    MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
4772 	ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
4773 	mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
4774 
4775 	if (ioc->iounit_pg8.NumSensors)
4776 		ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
4777 	if (ioc->is_aero_ioc)
4778 		_base_update_ioc_page1_inlinewith_perf_mode(ioc);
4779 }
4780 
4781 /**
4782  * mpt3sas_free_enclosure_list - release memory
4783  * @ioc: per adapter object
4784  *
4785  * Free memory allocated during encloure add.
4786  */
4787 void
4788 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc)
4789 {
4790 	struct _enclosure_node *enclosure_dev, *enclosure_dev_next;
4791 
4792 	/* Free enclosure list */
4793 	list_for_each_entry_safe(enclosure_dev,
4794 			enclosure_dev_next, &ioc->enclosure_list, list) {
4795 		list_del(&enclosure_dev->list);
4796 		kfree(enclosure_dev);
4797 	}
4798 }
4799 
4800 /**
4801  * _base_release_memory_pools - release memory
4802  * @ioc: per adapter object
4803  *
4804  * Free memory allocated from _base_allocate_memory_pools.
4805  */
4806 static void
4807 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
4808 {
4809 	int i = 0;
4810 	int j = 0;
4811 	int dma_alloc_count = 0;
4812 	struct chain_tracker *ct;
4813 	int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
4814 
4815 	dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4816 
4817 	if (ioc->request) {
4818 		dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz,
4819 		    ioc->request,  ioc->request_dma);
4820 		dexitprintk(ioc,
4821 			    ioc_info(ioc, "request_pool(0x%p): free\n",
4822 				     ioc->request));
4823 		ioc->request = NULL;
4824 	}
4825 
4826 	if (ioc->sense) {
4827 		dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
4828 		dma_pool_destroy(ioc->sense_dma_pool);
4829 		dexitprintk(ioc,
4830 			    ioc_info(ioc, "sense_pool(0x%p): free\n",
4831 				     ioc->sense));
4832 		ioc->sense = NULL;
4833 	}
4834 
4835 	if (ioc->reply) {
4836 		dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
4837 		dma_pool_destroy(ioc->reply_dma_pool);
4838 		dexitprintk(ioc,
4839 			    ioc_info(ioc, "reply_pool(0x%p): free\n",
4840 				     ioc->reply));
4841 		ioc->reply = NULL;
4842 	}
4843 
4844 	if (ioc->reply_free) {
4845 		dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
4846 		    ioc->reply_free_dma);
4847 		dma_pool_destroy(ioc->reply_free_dma_pool);
4848 		dexitprintk(ioc,
4849 			    ioc_info(ioc, "reply_free_pool(0x%p): free\n",
4850 				     ioc->reply_free));
4851 		ioc->reply_free = NULL;
4852 	}
4853 
4854 	if (ioc->reply_post) {
4855 		dma_alloc_count = DIV_ROUND_UP(count,
4856 				RDPQ_MAX_INDEX_IN_ONE_CHUNK);
4857 		for (i = 0; i < count; i++) {
4858 			if (i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0
4859 			    && dma_alloc_count) {
4860 				if (ioc->reply_post[i].reply_post_free) {
4861 					dma_pool_free(
4862 					    ioc->reply_post_free_dma_pool,
4863 					    ioc->reply_post[i].reply_post_free,
4864 					ioc->reply_post[i].reply_post_free_dma);
4865 					dexitprintk(ioc, ioc_info(ioc,
4866 					   "reply_post_free_pool(0x%p): free\n",
4867 					   ioc->reply_post[i].reply_post_free));
4868 					ioc->reply_post[i].reply_post_free =
4869 									NULL;
4870 				}
4871 				--dma_alloc_count;
4872 			}
4873 		}
4874 		dma_pool_destroy(ioc->reply_post_free_dma_pool);
4875 		if (ioc->reply_post_free_array &&
4876 			ioc->rdpq_array_enable) {
4877 			dma_pool_free(ioc->reply_post_free_array_dma_pool,
4878 			    ioc->reply_post_free_array,
4879 			    ioc->reply_post_free_array_dma);
4880 			ioc->reply_post_free_array = NULL;
4881 		}
4882 		dma_pool_destroy(ioc->reply_post_free_array_dma_pool);
4883 		kfree(ioc->reply_post);
4884 	}
4885 
4886 	if (ioc->pcie_sgl_dma_pool) {
4887 		for (i = 0; i < ioc->scsiio_depth; i++) {
4888 			dma_pool_free(ioc->pcie_sgl_dma_pool,
4889 					ioc->pcie_sg_lookup[i].pcie_sgl,
4890 					ioc->pcie_sg_lookup[i].pcie_sgl_dma);
4891 		}
4892 		dma_pool_destroy(ioc->pcie_sgl_dma_pool);
4893 	}
4894 
4895 	if (ioc->config_page) {
4896 		dexitprintk(ioc,
4897 			    ioc_info(ioc, "config_page(0x%p): free\n",
4898 				     ioc->config_page));
4899 		dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz,
4900 		    ioc->config_page, ioc->config_page_dma);
4901 	}
4902 
4903 	kfree(ioc->hpr_lookup);
4904 	ioc->hpr_lookup = NULL;
4905 	kfree(ioc->internal_lookup);
4906 	ioc->internal_lookup = NULL;
4907 	if (ioc->chain_lookup) {
4908 		for (i = 0; i < ioc->scsiio_depth; i++) {
4909 			for (j = ioc->chains_per_prp_buffer;
4910 			    j < ioc->chains_needed_per_io; j++) {
4911 				ct = &ioc->chain_lookup[i].chains_per_smid[j];
4912 				if (ct && ct->chain_buffer)
4913 					dma_pool_free(ioc->chain_dma_pool,
4914 						ct->chain_buffer,
4915 						ct->chain_buffer_dma);
4916 			}
4917 			kfree(ioc->chain_lookup[i].chains_per_smid);
4918 		}
4919 		dma_pool_destroy(ioc->chain_dma_pool);
4920 		kfree(ioc->chain_lookup);
4921 		ioc->chain_lookup = NULL;
4922 	}
4923 }
4924 
4925 /**
4926  * mpt3sas_check_same_4gb_region - checks whether all reply queues in a set are
4927  *	having same upper 32bits in their base memory address.
4928  * @reply_pool_start_address: Base address of a reply queue set
4929  * @pool_sz: Size of single Reply Descriptor Post Queues pool size
4930  *
4931  * Return: 1 if reply queues in a set have a same upper 32bits in their base
4932  * memory address, else 0.
4933  */
4934 
4935 static int
4936 mpt3sas_check_same_4gb_region(long reply_pool_start_address, u32 pool_sz)
4937 {
4938 	long reply_pool_end_address;
4939 
4940 	reply_pool_end_address = reply_pool_start_address + pool_sz;
4941 
4942 	if (upper_32_bits(reply_pool_start_address) ==
4943 		upper_32_bits(reply_pool_end_address))
4944 		return 1;
4945 	else
4946 		return 0;
4947 }
4948 
4949 /**
4950  * base_alloc_rdpq_dma_pool - Allocating DMA'able memory
4951  *                     for reply queues.
4952  * @ioc: per adapter object
4953  * @sz: DMA Pool size
4954  * Return: 0 for success, non-zero for failure.
4955  */
4956 static int
4957 base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER *ioc, int sz)
4958 {
4959 	int i = 0;
4960 	u32 dma_alloc_count = 0;
4961 	int reply_post_free_sz = ioc->reply_post_queue_depth *
4962 		sizeof(Mpi2DefaultReplyDescriptor_t);
4963 	int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
4964 
4965 	ioc->reply_post = kcalloc(count, sizeof(struct reply_post_struct),
4966 			GFP_KERNEL);
4967 	if (!ioc->reply_post)
4968 		return -ENOMEM;
4969 	/*
4970 	 *  For INVADER_SERIES each set of 8 reply queues(0-7, 8-15, ..) and
4971 	 *  VENTURA_SERIES each set of 16 reply queues(0-15, 16-31, ..) should
4972 	 *  be within 4GB boundary i.e reply queues in a set must have same
4973 	 *  upper 32-bits in their memory address. so here driver is allocating
4974 	 *  the DMA'able memory for reply queues according.
4975 	 *  Driver uses limitation of
4976 	 *  VENTURA_SERIES to manage INVADER_SERIES as well.
4977 	 */
4978 	dma_alloc_count = DIV_ROUND_UP(count,
4979 				RDPQ_MAX_INDEX_IN_ONE_CHUNK);
4980 	ioc->reply_post_free_dma_pool =
4981 		dma_pool_create("reply_post_free pool",
4982 		    &ioc->pdev->dev, sz, 16, 0);
4983 	if (!ioc->reply_post_free_dma_pool)
4984 		return -ENOMEM;
4985 	for (i = 0; i < count; i++) {
4986 		if ((i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0) && dma_alloc_count) {
4987 			ioc->reply_post[i].reply_post_free =
4988 			    dma_pool_zalloc(ioc->reply_post_free_dma_pool,
4989 				GFP_KERNEL,
4990 				&ioc->reply_post[i].reply_post_free_dma);
4991 			if (!ioc->reply_post[i].reply_post_free)
4992 				return -ENOMEM;
4993 			/*
4994 			 * Each set of RDPQ pool must satisfy 4gb boundary
4995 			 * restriction.
4996 			 * 1) Check if allocated resources for RDPQ pool are in
4997 			 *	the same 4GB range.
4998 			 * 2) If #1 is true, continue with 64 bit DMA.
4999 			 * 3) If #1 is false, return 1. which means free all the
5000 			 * resources and set DMA mask to 32 and allocate.
5001 			 */
5002 			if (!mpt3sas_check_same_4gb_region(
5003 				(long)ioc->reply_post[i].reply_post_free, sz)) {
5004 				dinitprintk(ioc,
5005 				    ioc_err(ioc, "bad Replypost free pool(0x%p)"
5006 				    "reply_post_free_dma = (0x%llx)\n",
5007 				    ioc->reply_post[i].reply_post_free,
5008 				    (unsigned long long)
5009 				    ioc->reply_post[i].reply_post_free_dma));
5010 				return -EAGAIN;
5011 			}
5012 			dma_alloc_count--;
5013 
5014 		} else {
5015 			ioc->reply_post[i].reply_post_free =
5016 			    (Mpi2ReplyDescriptorsUnion_t *)
5017 			    ((long)ioc->reply_post[i-1].reply_post_free
5018 			    + reply_post_free_sz);
5019 			ioc->reply_post[i].reply_post_free_dma =
5020 			    (dma_addr_t)
5021 			    (ioc->reply_post[i-1].reply_post_free_dma +
5022 			    reply_post_free_sz);
5023 		}
5024 	}
5025 	return 0;
5026 }
5027 
5028 /**
5029  * _base_allocate_memory_pools - allocate start of day memory pools
5030  * @ioc: per adapter object
5031  *
5032  * Return: 0 success, anything else error.
5033  */
5034 static int
5035 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
5036 {
5037 	struct mpt3sas_facts *facts;
5038 	u16 max_sge_elements;
5039 	u16 chains_needed_per_io;
5040 	u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz;
5041 	u32 retry_sz;
5042 	u32 rdpq_sz = 0;
5043 	u16 max_request_credit, nvme_blocks_needed;
5044 	unsigned short sg_tablesize;
5045 	u16 sge_size;
5046 	int i, j;
5047 	int ret = 0;
5048 	struct chain_tracker *ct;
5049 
5050 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5051 
5052 
5053 	retry_sz = 0;
5054 	facts = &ioc->facts;
5055 
5056 	/* command line tunables for max sgl entries */
5057 	if (max_sgl_entries != -1)
5058 		sg_tablesize = max_sgl_entries;
5059 	else {
5060 		if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
5061 			sg_tablesize = MPT2SAS_SG_DEPTH;
5062 		else
5063 			sg_tablesize = MPT3SAS_SG_DEPTH;
5064 	}
5065 
5066 	/* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
5067 	if (reset_devices)
5068 		sg_tablesize = min_t(unsigned short, sg_tablesize,
5069 		   MPT_KDUMP_MIN_PHYS_SEGMENTS);
5070 
5071 	if (ioc->is_mcpu_endpoint)
5072 		ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
5073 	else {
5074 		if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
5075 			sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
5076 		else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
5077 			sg_tablesize = min_t(unsigned short, sg_tablesize,
5078 					SG_MAX_SEGMENTS);
5079 			ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n",
5080 				 sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
5081 		}
5082 		ioc->shost->sg_tablesize = sg_tablesize;
5083 	}
5084 
5085 	ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
5086 		(facts->RequestCredit / 4));
5087 	if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
5088 		if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
5089 				INTERNAL_SCSIIO_CMDS_COUNT)) {
5090 			ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n",
5091 				facts->RequestCredit);
5092 			return -ENOMEM;
5093 		}
5094 		ioc->internal_depth = 10;
5095 	}
5096 
5097 	ioc->hi_priority_depth = ioc->internal_depth - (5);
5098 	/* command line tunables  for max controller queue depth */
5099 	if (max_queue_depth != -1 && max_queue_depth != 0) {
5100 		max_request_credit = min_t(u16, max_queue_depth +
5101 			ioc->internal_depth, facts->RequestCredit);
5102 		if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
5103 			max_request_credit =  MAX_HBA_QUEUE_DEPTH;
5104 	} else if (reset_devices)
5105 		max_request_credit = min_t(u16, facts->RequestCredit,
5106 		    (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth));
5107 	else
5108 		max_request_credit = min_t(u16, facts->RequestCredit,
5109 		    MAX_HBA_QUEUE_DEPTH);
5110 
5111 	/* Firmware maintains additional facts->HighPriorityCredit number of
5112 	 * credits for HiPriprity Request messages, so hba queue depth will be
5113 	 * sum of max_request_credit and high priority queue depth.
5114 	 */
5115 	ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
5116 
5117 	/* request frame size */
5118 	ioc->request_sz = facts->IOCRequestFrameSize * 4;
5119 
5120 	/* reply frame size */
5121 	ioc->reply_sz = facts->ReplyFrameSize * 4;
5122 
5123 	/* chain segment size */
5124 	if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
5125 		if (facts->IOCMaxChainSegmentSize)
5126 			ioc->chain_segment_sz =
5127 					facts->IOCMaxChainSegmentSize *
5128 					MAX_CHAIN_ELEMT_SZ;
5129 		else
5130 		/* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
5131 			ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
5132 						    MAX_CHAIN_ELEMT_SZ;
5133 	} else
5134 		ioc->chain_segment_sz = ioc->request_sz;
5135 
5136 	/* calculate the max scatter element size */
5137 	sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
5138 
5139  retry_allocation:
5140 	total_sz = 0;
5141 	/* calculate number of sg elements left over in the 1st frame */
5142 	max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
5143 	    sizeof(Mpi2SGEIOUnion_t)) + sge_size);
5144 	ioc->max_sges_in_main_message = max_sge_elements/sge_size;
5145 
5146 	/* now do the same for a chain buffer */
5147 	max_sge_elements = ioc->chain_segment_sz - sge_size;
5148 	ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
5149 
5150 	/*
5151 	 *  MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
5152 	 */
5153 	chains_needed_per_io = ((ioc->shost->sg_tablesize -
5154 	   ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
5155 	    + 1;
5156 	if (chains_needed_per_io > facts->MaxChainDepth) {
5157 		chains_needed_per_io = facts->MaxChainDepth;
5158 		ioc->shost->sg_tablesize = min_t(u16,
5159 		ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
5160 		* chains_needed_per_io), ioc->shost->sg_tablesize);
5161 	}
5162 	ioc->chains_needed_per_io = chains_needed_per_io;
5163 
5164 	/* reply free queue sizing - taking into account for 64 FW events */
5165 	ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
5166 
5167 	/* mCPU manage single counters for simplicity */
5168 	if (ioc->is_mcpu_endpoint)
5169 		ioc->reply_post_queue_depth = ioc->reply_free_queue_depth;
5170 	else {
5171 		/* calculate reply descriptor post queue depth */
5172 		ioc->reply_post_queue_depth = ioc->hba_queue_depth +
5173 			ioc->reply_free_queue_depth +  1;
5174 		/* align the reply post queue on the next 16 count boundary */
5175 		if (ioc->reply_post_queue_depth % 16)
5176 			ioc->reply_post_queue_depth += 16 -
5177 				(ioc->reply_post_queue_depth % 16);
5178 	}
5179 
5180 	if (ioc->reply_post_queue_depth >
5181 	    facts->MaxReplyDescriptorPostQueueDepth) {
5182 		ioc->reply_post_queue_depth =
5183 				facts->MaxReplyDescriptorPostQueueDepth -
5184 		    (facts->MaxReplyDescriptorPostQueueDepth % 16);
5185 		ioc->hba_queue_depth =
5186 				((ioc->reply_post_queue_depth - 64) / 2) - 1;
5187 		ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
5188 	}
5189 
5190 	ioc_info(ioc,
5191 	    "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), "
5192 	    "sge_per_io(%d), chains_per_io(%d)\n",
5193 	    ioc->max_sges_in_main_message,
5194 	    ioc->max_sges_in_chain_message,
5195 	    ioc->shost->sg_tablesize,
5196 	    ioc->chains_needed_per_io);
5197 
5198 	/* reply post queue, 16 byte align */
5199 	reply_post_free_sz = ioc->reply_post_queue_depth *
5200 	    sizeof(Mpi2DefaultReplyDescriptor_t);
5201 	rdpq_sz = reply_post_free_sz * RDPQ_MAX_INDEX_IN_ONE_CHUNK;
5202 	if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
5203 		rdpq_sz = reply_post_free_sz * ioc->reply_queue_count;
5204 	ret = base_alloc_rdpq_dma_pool(ioc, rdpq_sz);
5205 	if (ret == -EAGAIN) {
5206 		/*
5207 		 * Free allocated bad RDPQ memory pools.
5208 		 * Change dma coherent mask to 32 bit and reallocate RDPQ
5209 		 */
5210 		_base_release_memory_pools(ioc);
5211 		ioc->use_32bit_dma = true;
5212 		if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
5213 			ioc_err(ioc,
5214 			    "32 DMA mask failed %s\n", pci_name(ioc->pdev));
5215 			return -ENODEV;
5216 		}
5217 		if (base_alloc_rdpq_dma_pool(ioc, rdpq_sz))
5218 			return -ENOMEM;
5219 	} else if (ret == -ENOMEM)
5220 		return -ENOMEM;
5221 	total_sz = rdpq_sz * (!ioc->rdpq_array_enable ? 1 :
5222 	    DIV_ROUND_UP(ioc->reply_queue_count, RDPQ_MAX_INDEX_IN_ONE_CHUNK));
5223 	ioc->scsiio_depth = ioc->hba_queue_depth -
5224 	    ioc->hi_priority_depth - ioc->internal_depth;
5225 
5226 	/* set the scsi host can_queue depth
5227 	 * with some internal commands that could be outstanding
5228 	 */
5229 	ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
5230 	dinitprintk(ioc,
5231 		    ioc_info(ioc, "scsi host: can_queue depth (%d)\n",
5232 			     ioc->shost->can_queue));
5233 
5234 	/* contiguous pool for request and chains, 16 byte align, one extra "
5235 	 * "frame for smid=0
5236 	 */
5237 	ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
5238 	sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
5239 
5240 	/* hi-priority queue */
5241 	sz += (ioc->hi_priority_depth * ioc->request_sz);
5242 
5243 	/* internal queue */
5244 	sz += (ioc->internal_depth * ioc->request_sz);
5245 
5246 	ioc->request_dma_sz = sz;
5247 	ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz,
5248 			&ioc->request_dma, GFP_KERNEL);
5249 	if (!ioc->request) {
5250 		ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n",
5251 			ioc->hba_queue_depth, ioc->chains_needed_per_io,
5252 			ioc->request_sz, sz / 1024);
5253 		if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
5254 			goto out;
5255 		retry_sz = 64;
5256 		ioc->hba_queue_depth -= retry_sz;
5257 		_base_release_memory_pools(ioc);
5258 		goto retry_allocation;
5259 	}
5260 	memset(ioc->request, 0, sz);
5261 
5262 	if (retry_sz)
5263 		ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n",
5264 			ioc->hba_queue_depth, ioc->chains_needed_per_io,
5265 			ioc->request_sz, sz / 1024);
5266 
5267 	/* hi-priority queue */
5268 	ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
5269 	    ioc->request_sz);
5270 	ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
5271 	    ioc->request_sz);
5272 
5273 	/* internal queue */
5274 	ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
5275 	    ioc->request_sz);
5276 	ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
5277 	    ioc->request_sz);
5278 
5279 	ioc_info(ioc,
5280 	    "request pool(0x%p) - dma(0x%llx): "
5281 	    "depth(%d), frame_size(%d), pool_size(%d kB)\n",
5282 	    ioc->request, (unsigned long long) ioc->request_dma,
5283 	    ioc->hba_queue_depth, ioc->request_sz,
5284 	    (ioc->hba_queue_depth * ioc->request_sz) / 1024);
5285 
5286 	total_sz += sz;
5287 
5288 	dinitprintk(ioc,
5289 		    ioc_info(ioc, "scsiio(0x%p): depth(%d)\n",
5290 			     ioc->request, ioc->scsiio_depth));
5291 
5292 	ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
5293 	sz = ioc->scsiio_depth * sizeof(struct chain_lookup);
5294 	ioc->chain_lookup = kzalloc(sz, GFP_KERNEL);
5295 	if (!ioc->chain_lookup) {
5296 		ioc_err(ioc, "chain_lookup: __get_free_pages failed\n");
5297 		goto out;
5298 	}
5299 
5300 	sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker);
5301 	for (i = 0; i < ioc->scsiio_depth; i++) {
5302 		ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL);
5303 		if (!ioc->chain_lookup[i].chains_per_smid) {
5304 			ioc_err(ioc, "chain_lookup: kzalloc failed\n");
5305 			goto out;
5306 		}
5307 	}
5308 
5309 	/* initialize hi-priority queue smid's */
5310 	ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
5311 	    sizeof(struct request_tracker), GFP_KERNEL);
5312 	if (!ioc->hpr_lookup) {
5313 		ioc_err(ioc, "hpr_lookup: kcalloc failed\n");
5314 		goto out;
5315 	}
5316 	ioc->hi_priority_smid = ioc->scsiio_depth + 1;
5317 	dinitprintk(ioc,
5318 		    ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n",
5319 			     ioc->hi_priority,
5320 			     ioc->hi_priority_depth, ioc->hi_priority_smid));
5321 
5322 	/* initialize internal queue smid's */
5323 	ioc->internal_lookup = kcalloc(ioc->internal_depth,
5324 	    sizeof(struct request_tracker), GFP_KERNEL);
5325 	if (!ioc->internal_lookup) {
5326 		ioc_err(ioc, "internal_lookup: kcalloc failed\n");
5327 		goto out;
5328 	}
5329 	ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
5330 	dinitprintk(ioc,
5331 		    ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n",
5332 			     ioc->internal,
5333 			     ioc->internal_depth, ioc->internal_smid));
5334 	/*
5335 	 * The number of NVMe page sized blocks needed is:
5336 	 *     (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
5337 	 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
5338 	 * that is placed in the main message frame.  8 is the size of each PRP
5339 	 * entry or PRP list pointer entry.  8 is subtracted from page_size
5340 	 * because of the PRP list pointer entry at the end of a page, so this
5341 	 * is not counted as a PRP entry.  The 1 added page is a round up.
5342 	 *
5343 	 * To avoid allocation failures due to the amount of memory that could
5344 	 * be required for NVMe PRP's, only each set of NVMe blocks will be
5345 	 * contiguous, so a new set is allocated for each possible I/O.
5346 	 */
5347 	ioc->chains_per_prp_buffer = 0;
5348 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
5349 		nvme_blocks_needed =
5350 			(ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1;
5351 		nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE);
5352 		nvme_blocks_needed++;
5353 
5354 		sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth;
5355 		ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL);
5356 		if (!ioc->pcie_sg_lookup) {
5357 			ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n");
5358 			goto out;
5359 		}
5360 		sz = nvme_blocks_needed * ioc->page_size;
5361 		ioc->pcie_sgl_dma_pool =
5362 			dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz, 16, 0);
5363 		if (!ioc->pcie_sgl_dma_pool) {
5364 			ioc_info(ioc, "PCIe SGL pool: dma_pool_create failed\n");
5365 			goto out;
5366 		}
5367 
5368 		ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz;
5369 		ioc->chains_per_prp_buffer = min(ioc->chains_per_prp_buffer,
5370 						ioc->chains_needed_per_io);
5371 
5372 		for (i = 0; i < ioc->scsiio_depth; i++) {
5373 			ioc->pcie_sg_lookup[i].pcie_sgl = dma_pool_alloc(
5374 				ioc->pcie_sgl_dma_pool, GFP_KERNEL,
5375 				&ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5376 			if (!ioc->pcie_sg_lookup[i].pcie_sgl) {
5377 				ioc_info(ioc, "PCIe SGL pool: dma_pool_alloc failed\n");
5378 				goto out;
5379 			}
5380 			for (j = 0; j < ioc->chains_per_prp_buffer; j++) {
5381 				ct = &ioc->chain_lookup[i].chains_per_smid[j];
5382 				ct->chain_buffer =
5383 				    ioc->pcie_sg_lookup[i].pcie_sgl +
5384 				    (j * ioc->chain_segment_sz);
5385 				ct->chain_buffer_dma =
5386 				    ioc->pcie_sg_lookup[i].pcie_sgl_dma +
5387 				    (j * ioc->chain_segment_sz);
5388 			}
5389 		}
5390 
5391 		dinitprintk(ioc,
5392 			    ioc_info(ioc, "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n",
5393 				     ioc->scsiio_depth, sz,
5394 				     (sz * ioc->scsiio_depth) / 1024));
5395 		dinitprintk(ioc,
5396 			    ioc_info(ioc, "Number of chains can fit in a PRP page(%d)\n",
5397 				     ioc->chains_per_prp_buffer));
5398 		total_sz += sz * ioc->scsiio_depth;
5399 	}
5400 
5401 	ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev,
5402 	    ioc->chain_segment_sz, 16, 0);
5403 	if (!ioc->chain_dma_pool) {
5404 		ioc_err(ioc, "chain_dma_pool: dma_pool_create failed\n");
5405 		goto out;
5406 	}
5407 	for (i = 0; i < ioc->scsiio_depth; i++) {
5408 		for (j = ioc->chains_per_prp_buffer;
5409 				j < ioc->chains_needed_per_io; j++) {
5410 			ct = &ioc->chain_lookup[i].chains_per_smid[j];
5411 			ct->chain_buffer = dma_pool_alloc(
5412 					ioc->chain_dma_pool, GFP_KERNEL,
5413 					&ct->chain_buffer_dma);
5414 			if (!ct->chain_buffer) {
5415 				ioc_err(ioc, "chain_lookup: pci_pool_alloc failed\n");
5416 				goto out;
5417 			}
5418 		}
5419 		total_sz += ioc->chain_segment_sz;
5420 	}
5421 
5422 	dinitprintk(ioc,
5423 		    ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
5424 			     ioc->chain_depth, ioc->chain_segment_sz,
5425 			     (ioc->chain_depth * ioc->chain_segment_sz) / 1024));
5426 
5427 	/* sense buffers, 4 byte align */
5428 	sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
5429 	ioc->sense_dma_pool = dma_pool_create("sense pool", &ioc->pdev->dev, sz,
5430 					      4, 0);
5431 	if (!ioc->sense_dma_pool) {
5432 		ioc_err(ioc, "sense pool: dma_pool_create failed\n");
5433 		goto out;
5434 	}
5435 	ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
5436 	    &ioc->sense_dma);
5437 	if (!ioc->sense) {
5438 		ioc_err(ioc, "sense pool: dma_pool_alloc failed\n");
5439 		goto out;
5440 	}
5441 	/* sense buffer requires to be in same 4 gb region.
5442 	 * Below function will check the same.
5443 	 * In case of failure, new pci pool will be created with updated
5444 	 * alignment. Older allocation and pool will be destroyed.
5445 	 * Alignment will be used such a way that next allocation if
5446 	 * success, will always meet same 4gb region requirement.
5447 	 * Actual requirement is not alignment, but we need start and end of
5448 	 * DMA address must have same upper 32 bit address.
5449 	 */
5450 	if (!mpt3sas_check_same_4gb_region((long)ioc->sense, sz)) {
5451 		//Release Sense pool & Reallocate
5452 		dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
5453 		dma_pool_destroy(ioc->sense_dma_pool);
5454 		ioc->sense = NULL;
5455 
5456 		ioc->sense_dma_pool =
5457 			dma_pool_create("sense pool", &ioc->pdev->dev, sz,
5458 						roundup_pow_of_two(sz), 0);
5459 		if (!ioc->sense_dma_pool) {
5460 			ioc_err(ioc, "sense pool: pci_pool_create failed\n");
5461 			goto out;
5462 		}
5463 		ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
5464 				&ioc->sense_dma);
5465 		if (!ioc->sense) {
5466 			ioc_err(ioc, "sense pool: pci_pool_alloc failed\n");
5467 			goto out;
5468 		}
5469 	}
5470 	ioc_info(ioc,
5471 	    "sense pool(0x%p)- dma(0x%llx): depth(%d),"
5472 	    "element_size(%d), pool_size(%d kB)\n",
5473 	    ioc->sense, (unsigned long long)ioc->sense_dma, ioc->scsiio_depth,
5474 	    SCSI_SENSE_BUFFERSIZE, sz / 1024);
5475 
5476 	total_sz += sz;
5477 
5478 	/* reply pool, 4 byte align */
5479 	sz = ioc->reply_free_queue_depth * ioc->reply_sz;
5480 	ioc->reply_dma_pool = dma_pool_create("reply pool", &ioc->pdev->dev, sz,
5481 					      4, 0);
5482 	if (!ioc->reply_dma_pool) {
5483 		ioc_err(ioc, "reply pool: dma_pool_create failed\n");
5484 		goto out;
5485 	}
5486 	ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL,
5487 	    &ioc->reply_dma);
5488 	if (!ioc->reply) {
5489 		ioc_err(ioc, "reply pool: dma_pool_alloc failed\n");
5490 		goto out;
5491 	}
5492 	ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
5493 	ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
5494 	dinitprintk(ioc,
5495 		    ioc_info(ioc, "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
5496 			     ioc->reply, ioc->reply_free_queue_depth,
5497 			     ioc->reply_sz, sz / 1024));
5498 	dinitprintk(ioc,
5499 		    ioc_info(ioc, "reply_dma(0x%llx)\n",
5500 			     (unsigned long long)ioc->reply_dma));
5501 	total_sz += sz;
5502 
5503 	/* reply free queue, 16 byte align */
5504 	sz = ioc->reply_free_queue_depth * 4;
5505 	ioc->reply_free_dma_pool = dma_pool_create("reply_free pool",
5506 	    &ioc->pdev->dev, sz, 16, 0);
5507 	if (!ioc->reply_free_dma_pool) {
5508 		ioc_err(ioc, "reply_free pool: dma_pool_create failed\n");
5509 		goto out;
5510 	}
5511 	ioc->reply_free = dma_pool_zalloc(ioc->reply_free_dma_pool, GFP_KERNEL,
5512 	    &ioc->reply_free_dma);
5513 	if (!ioc->reply_free) {
5514 		ioc_err(ioc, "reply_free pool: dma_pool_alloc failed\n");
5515 		goto out;
5516 	}
5517 	dinitprintk(ioc,
5518 		    ioc_info(ioc, "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
5519 			     ioc->reply_free, ioc->reply_free_queue_depth,
5520 			     4, sz / 1024));
5521 	dinitprintk(ioc,
5522 		    ioc_info(ioc, "reply_free_dma (0x%llx)\n",
5523 			     (unsigned long long)ioc->reply_free_dma));
5524 	total_sz += sz;
5525 
5526 	if (ioc->rdpq_array_enable) {
5527 		reply_post_free_array_sz = ioc->reply_queue_count *
5528 		    sizeof(Mpi2IOCInitRDPQArrayEntry);
5529 		ioc->reply_post_free_array_dma_pool =
5530 		    dma_pool_create("reply_post_free_array pool",
5531 		    &ioc->pdev->dev, reply_post_free_array_sz, 16, 0);
5532 		if (!ioc->reply_post_free_array_dma_pool) {
5533 			dinitprintk(ioc,
5534 				    ioc_info(ioc, "reply_post_free_array pool: dma_pool_create failed\n"));
5535 			goto out;
5536 		}
5537 		ioc->reply_post_free_array =
5538 		    dma_pool_alloc(ioc->reply_post_free_array_dma_pool,
5539 		    GFP_KERNEL, &ioc->reply_post_free_array_dma);
5540 		if (!ioc->reply_post_free_array) {
5541 			dinitprintk(ioc,
5542 				    ioc_info(ioc, "reply_post_free_array pool: dma_pool_alloc failed\n"));
5543 			goto out;
5544 		}
5545 	}
5546 	ioc->config_page_sz = 512;
5547 	ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev,
5548 			ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL);
5549 	if (!ioc->config_page) {
5550 		ioc_err(ioc, "config page: dma_pool_alloc failed\n");
5551 		goto out;
5552 	}
5553 
5554 	ioc_info(ioc, "config page(0x%p) - dma(0x%llx): size(%d)\n",
5555 	    ioc->config_page, (unsigned long long)ioc->config_page_dma,
5556 	    ioc->config_page_sz);
5557 	total_sz += ioc->config_page_sz;
5558 
5559 	ioc_info(ioc, "Allocated physical memory: size(%d kB)\n",
5560 		 total_sz / 1024);
5561 	ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
5562 		 ioc->shost->can_queue, facts->RequestCredit);
5563 	ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n",
5564 		 ioc->shost->sg_tablesize);
5565 	return 0;
5566 
5567  out:
5568 	return -ENOMEM;
5569 }
5570 
5571 /**
5572  * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
5573  * @ioc: Pointer to MPT_ADAPTER structure
5574  * @cooked: Request raw or cooked IOC state
5575  *
5576  * Return: all IOC Doorbell register bits if cooked==0, else just the
5577  * Doorbell bits in MPI_IOC_STATE_MASK.
5578  */
5579 u32
5580 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
5581 {
5582 	u32 s, sc;
5583 
5584 	s = ioc->base_readl(&ioc->chip->Doorbell);
5585 	sc = s & MPI2_IOC_STATE_MASK;
5586 	return cooked ? sc : s;
5587 }
5588 
5589 /**
5590  * _base_wait_on_iocstate - waiting on a particular ioc state
5591  * @ioc: ?
5592  * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
5593  * @timeout: timeout in second
5594  *
5595  * Return: 0 for success, non-zero for failure.
5596  */
5597 static int
5598 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
5599 {
5600 	u32 count, cntdn;
5601 	u32 current_state;
5602 
5603 	count = 0;
5604 	cntdn = 1000 * timeout;
5605 	do {
5606 		current_state = mpt3sas_base_get_iocstate(ioc, 1);
5607 		if (current_state == ioc_state)
5608 			return 0;
5609 		if (count && current_state == MPI2_IOC_STATE_FAULT)
5610 			break;
5611 		if (count && current_state == MPI2_IOC_STATE_COREDUMP)
5612 			break;
5613 
5614 		usleep_range(1000, 1500);
5615 		count++;
5616 	} while (--cntdn);
5617 
5618 	return current_state;
5619 }
5620 
5621 /**
5622  * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
5623  * a write to the doorbell)
5624  * @ioc: per adapter object
5625  * @timeout: timeout in seconds
5626  *
5627  * Return: 0 for success, non-zero for failure.
5628  *
5629  * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
5630  */
5631 
5632 static int
5633 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
5634 {
5635 	u32 cntdn, count;
5636 	u32 int_status;
5637 
5638 	count = 0;
5639 	cntdn = 1000 * timeout;
5640 	do {
5641 		int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
5642 		if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5643 			dhsprintk(ioc,
5644 				  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5645 					   __func__, count, timeout));
5646 			return 0;
5647 		}
5648 
5649 		usleep_range(1000, 1500);
5650 		count++;
5651 	} while (--cntdn);
5652 
5653 	ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
5654 		__func__, count, int_status);
5655 	return -EFAULT;
5656 }
5657 
5658 static int
5659 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
5660 {
5661 	u32 cntdn, count;
5662 	u32 int_status;
5663 
5664 	count = 0;
5665 	cntdn = 2000 * timeout;
5666 	do {
5667 		int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
5668 		if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5669 			dhsprintk(ioc,
5670 				  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5671 					   __func__, count, timeout));
5672 			return 0;
5673 		}
5674 
5675 		udelay(500);
5676 		count++;
5677 	} while (--cntdn);
5678 
5679 	ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
5680 		__func__, count, int_status);
5681 	return -EFAULT;
5682 
5683 }
5684 
5685 /**
5686  * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
5687  * @ioc: per adapter object
5688  * @timeout: timeout in second
5689  *
5690  * Return: 0 for success, non-zero for failure.
5691  *
5692  * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
5693  * doorbell.
5694  */
5695 static int
5696 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
5697 {
5698 	u32 cntdn, count;
5699 	u32 int_status;
5700 	u32 doorbell;
5701 
5702 	count = 0;
5703 	cntdn = 1000 * timeout;
5704 	do {
5705 		int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
5706 		if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
5707 			dhsprintk(ioc,
5708 				  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5709 					   __func__, count, timeout));
5710 			return 0;
5711 		} else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5712 			doorbell = ioc->base_readl(&ioc->chip->Doorbell);
5713 			if ((doorbell & MPI2_IOC_STATE_MASK) ==
5714 			    MPI2_IOC_STATE_FAULT) {
5715 				mpt3sas_print_fault_code(ioc, doorbell);
5716 				return -EFAULT;
5717 			}
5718 			if ((doorbell & MPI2_IOC_STATE_MASK) ==
5719 			    MPI2_IOC_STATE_COREDUMP) {
5720 				mpt3sas_print_coredump_info(ioc, doorbell);
5721 				return -EFAULT;
5722 			}
5723 		} else if (int_status == 0xFFFFFFFF)
5724 			goto out;
5725 
5726 		usleep_range(1000, 1500);
5727 		count++;
5728 	} while (--cntdn);
5729 
5730  out:
5731 	ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
5732 		__func__, count, int_status);
5733 	return -EFAULT;
5734 }
5735 
5736 /**
5737  * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
5738  * @ioc: per adapter object
5739  * @timeout: timeout in second
5740  *
5741  * Return: 0 for success, non-zero for failure.
5742  */
5743 static int
5744 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
5745 {
5746 	u32 cntdn, count;
5747 	u32 doorbell_reg;
5748 
5749 	count = 0;
5750 	cntdn = 1000 * timeout;
5751 	do {
5752 		doorbell_reg = ioc->base_readl(&ioc->chip->Doorbell);
5753 		if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
5754 			dhsprintk(ioc,
5755 				  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5756 					   __func__, count, timeout));
5757 			return 0;
5758 		}
5759 
5760 		usleep_range(1000, 1500);
5761 		count++;
5762 	} while (--cntdn);
5763 
5764 	ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
5765 		__func__, count, doorbell_reg);
5766 	return -EFAULT;
5767 }
5768 
5769 /**
5770  * _base_send_ioc_reset - send doorbell reset
5771  * @ioc: per adapter object
5772  * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
5773  * @timeout: timeout in second
5774  *
5775  * Return: 0 for success, non-zero for failure.
5776  */
5777 static int
5778 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
5779 {
5780 	u32 ioc_state;
5781 	int r = 0;
5782 	unsigned long flags;
5783 
5784 	if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
5785 		ioc_err(ioc, "%s: unknown reset_type\n", __func__);
5786 		return -EFAULT;
5787 	}
5788 
5789 	if (!(ioc->facts.IOCCapabilities &
5790 	   MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
5791 		return -EFAULT;
5792 
5793 	ioc_info(ioc, "sending message unit reset !!\n");
5794 
5795 	writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
5796 	    &ioc->chip->Doorbell);
5797 	if ((_base_wait_for_doorbell_ack(ioc, 15))) {
5798 		r = -EFAULT;
5799 		goto out;
5800 	}
5801 
5802 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
5803 	if (ioc_state) {
5804 		ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
5805 			__func__, ioc_state);
5806 		r = -EFAULT;
5807 		goto out;
5808 	}
5809  out:
5810 	if (r != 0) {
5811 		ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5812 		spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5813 		/*
5814 		 * Wait for IOC state CoreDump to clear only during
5815 		 * HBA initialization & release time.
5816 		 */
5817 		if ((ioc_state & MPI2_IOC_STATE_MASK) ==
5818 		    MPI2_IOC_STATE_COREDUMP && (ioc->is_driver_loading == 1 ||
5819 		    ioc->fault_reset_work_q == NULL)) {
5820 			spin_unlock_irqrestore(
5821 			    &ioc->ioc_reset_in_progress_lock, flags);
5822 			mpt3sas_print_coredump_info(ioc, ioc_state);
5823 			mpt3sas_base_wait_for_coredump_completion(ioc,
5824 			    __func__);
5825 			spin_lock_irqsave(
5826 			    &ioc->ioc_reset_in_progress_lock, flags);
5827 		}
5828 		spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5829 	}
5830 	ioc_info(ioc, "message unit reset: %s\n",
5831 		 r == 0 ? "SUCCESS" : "FAILED");
5832 	return r;
5833 }
5834 
5835 /**
5836  * mpt3sas_wait_for_ioc - IOC's operational state is checked here.
5837  * @ioc: per adapter object
5838  * @timeout: timeout in seconds
5839  *
5840  * Return: Waits up to timeout seconds for the IOC to
5841  * become operational. Returns 0 if IOC is present
5842  * and operational; otherwise returns -EFAULT.
5843  */
5844 
5845 int
5846 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout)
5847 {
5848 	int wait_state_count = 0;
5849 	u32 ioc_state;
5850 
5851 	do {
5852 		ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
5853 		if (ioc_state == MPI2_IOC_STATE_OPERATIONAL)
5854 			break;
5855 		ssleep(1);
5856 		ioc_info(ioc, "%s: waiting for operational state(count=%d)\n",
5857 				__func__, ++wait_state_count);
5858 	} while (--timeout);
5859 	if (!timeout) {
5860 		ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__);
5861 		return -EFAULT;
5862 	}
5863 	if (wait_state_count)
5864 		ioc_info(ioc, "ioc is operational\n");
5865 	return 0;
5866 }
5867 
5868 /**
5869  * _base_handshake_req_reply_wait - send request thru doorbell interface
5870  * @ioc: per adapter object
5871  * @request_bytes: request length
5872  * @request: pointer having request payload
5873  * @reply_bytes: reply length
5874  * @reply: pointer to reply payload
5875  * @timeout: timeout in second
5876  *
5877  * Return: 0 for success, non-zero for failure.
5878  */
5879 static int
5880 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
5881 	u32 *request, int reply_bytes, u16 *reply, int timeout)
5882 {
5883 	MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
5884 	int i;
5885 	u8 failed;
5886 	__le32 *mfp;
5887 
5888 	/* make sure doorbell is not in use */
5889 	if ((ioc->base_readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
5890 		ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__);
5891 		return -EFAULT;
5892 	}
5893 
5894 	/* clear pending doorbell interrupts from previous state changes */
5895 	if (ioc->base_readl(&ioc->chip->HostInterruptStatus) &
5896 	    MPI2_HIS_IOC2SYS_DB_STATUS)
5897 		writel(0, &ioc->chip->HostInterruptStatus);
5898 
5899 	/* send message to ioc */
5900 	writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
5901 	    ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
5902 	    &ioc->chip->Doorbell);
5903 
5904 	if ((_base_spin_on_doorbell_int(ioc, 5))) {
5905 		ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
5906 			__LINE__);
5907 		return -EFAULT;
5908 	}
5909 	writel(0, &ioc->chip->HostInterruptStatus);
5910 
5911 	if ((_base_wait_for_doorbell_ack(ioc, 5))) {
5912 		ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n",
5913 			__LINE__);
5914 		return -EFAULT;
5915 	}
5916 
5917 	/* send message 32-bits at a time */
5918 	for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
5919 		writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
5920 		if ((_base_wait_for_doorbell_ack(ioc, 5)))
5921 			failed = 1;
5922 	}
5923 
5924 	if (failed) {
5925 		ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n",
5926 			__LINE__);
5927 		return -EFAULT;
5928 	}
5929 
5930 	/* now wait for the reply */
5931 	if ((_base_wait_for_doorbell_int(ioc, timeout))) {
5932 		ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
5933 			__LINE__);
5934 		return -EFAULT;
5935 	}
5936 
5937 	/* read the first two 16-bits, it gives the total length of the reply */
5938 	reply[0] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
5939 	    & MPI2_DOORBELL_DATA_MASK);
5940 	writel(0, &ioc->chip->HostInterruptStatus);
5941 	if ((_base_wait_for_doorbell_int(ioc, 5))) {
5942 		ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
5943 			__LINE__);
5944 		return -EFAULT;
5945 	}
5946 	reply[1] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
5947 	    & MPI2_DOORBELL_DATA_MASK);
5948 	writel(0, &ioc->chip->HostInterruptStatus);
5949 
5950 	for (i = 2; i < default_reply->MsgLength * 2; i++)  {
5951 		if ((_base_wait_for_doorbell_int(ioc, 5))) {
5952 			ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
5953 				__LINE__);
5954 			return -EFAULT;
5955 		}
5956 		if (i >=  reply_bytes/2) /* overflow case */
5957 			ioc->base_readl(&ioc->chip->Doorbell);
5958 		else
5959 			reply[i] = le16_to_cpu(
5960 			    ioc->base_readl(&ioc->chip->Doorbell)
5961 			    & MPI2_DOORBELL_DATA_MASK);
5962 		writel(0, &ioc->chip->HostInterruptStatus);
5963 	}
5964 
5965 	_base_wait_for_doorbell_int(ioc, 5);
5966 	if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
5967 		dhsprintk(ioc,
5968 			  ioc_info(ioc, "doorbell is in use (line=%d)\n",
5969 				   __LINE__));
5970 	}
5971 	writel(0, &ioc->chip->HostInterruptStatus);
5972 
5973 	if (ioc->logging_level & MPT_DEBUG_INIT) {
5974 		mfp = (__le32 *)reply;
5975 		pr_info("\toffset:data\n");
5976 		for (i = 0; i < reply_bytes/4; i++)
5977 			ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
5978 			    le32_to_cpu(mfp[i]));
5979 	}
5980 	return 0;
5981 }
5982 
5983 /**
5984  * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
5985  * @ioc: per adapter object
5986  * @mpi_reply: the reply payload from FW
5987  * @mpi_request: the request payload sent to FW
5988  *
5989  * The SAS IO Unit Control Request message allows the host to perform low-level
5990  * operations, such as resets on the PHYs of the IO Unit, also allows the host
5991  * to obtain the IOC assigned device handles for a device if it has other
5992  * identifying information about the device, in addition allows the host to
5993  * remove IOC resources associated with the device.
5994  *
5995  * Return: 0 for success, non-zero for failure.
5996  */
5997 int
5998 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
5999 	Mpi2SasIoUnitControlReply_t *mpi_reply,
6000 	Mpi2SasIoUnitControlRequest_t *mpi_request)
6001 {
6002 	u16 smid;
6003 	u8 issue_reset = 0;
6004 	int rc;
6005 	void *request;
6006 
6007 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6008 
6009 	mutex_lock(&ioc->base_cmds.mutex);
6010 
6011 	if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
6012 		ioc_err(ioc, "%s: base_cmd in use\n", __func__);
6013 		rc = -EAGAIN;
6014 		goto out;
6015 	}
6016 
6017 	rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
6018 	if (rc)
6019 		goto out;
6020 
6021 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
6022 	if (!smid) {
6023 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6024 		rc = -EAGAIN;
6025 		goto out;
6026 	}
6027 
6028 	rc = 0;
6029 	ioc->base_cmds.status = MPT3_CMD_PENDING;
6030 	request = mpt3sas_base_get_msg_frame(ioc, smid);
6031 	ioc->base_cmds.smid = smid;
6032 	memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
6033 	if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
6034 	    mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
6035 		ioc->ioc_link_reset_in_progress = 1;
6036 	init_completion(&ioc->base_cmds.done);
6037 	ioc->put_smid_default(ioc, smid);
6038 	wait_for_completion_timeout(&ioc->base_cmds.done,
6039 	    msecs_to_jiffies(10000));
6040 	if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
6041 	    mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
6042 	    ioc->ioc_link_reset_in_progress)
6043 		ioc->ioc_link_reset_in_progress = 0;
6044 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
6045 		mpt3sas_check_cmd_timeout(ioc, ioc->base_cmds.status,
6046 		    mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)/4,
6047 		    issue_reset);
6048 		goto issue_host_reset;
6049 	}
6050 	if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
6051 		memcpy(mpi_reply, ioc->base_cmds.reply,
6052 		    sizeof(Mpi2SasIoUnitControlReply_t));
6053 	else
6054 		memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
6055 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6056 	goto out;
6057 
6058  issue_host_reset:
6059 	if (issue_reset)
6060 		mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
6061 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6062 	rc = -EFAULT;
6063  out:
6064 	mutex_unlock(&ioc->base_cmds.mutex);
6065 	return rc;
6066 }
6067 
6068 /**
6069  * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
6070  * @ioc: per adapter object
6071  * @mpi_reply: the reply payload from FW
6072  * @mpi_request: the request payload sent to FW
6073  *
6074  * The SCSI Enclosure Processor request message causes the IOC to
6075  * communicate with SES devices to control LED status signals.
6076  *
6077  * Return: 0 for success, non-zero for failure.
6078  */
6079 int
6080 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
6081 	Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
6082 {
6083 	u16 smid;
6084 	u8 issue_reset = 0;
6085 	int rc;
6086 	void *request;
6087 
6088 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6089 
6090 	mutex_lock(&ioc->base_cmds.mutex);
6091 
6092 	if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
6093 		ioc_err(ioc, "%s: base_cmd in use\n", __func__);
6094 		rc = -EAGAIN;
6095 		goto out;
6096 	}
6097 
6098 	rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
6099 	if (rc)
6100 		goto out;
6101 
6102 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
6103 	if (!smid) {
6104 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6105 		rc = -EAGAIN;
6106 		goto out;
6107 	}
6108 
6109 	rc = 0;
6110 	ioc->base_cmds.status = MPT3_CMD_PENDING;
6111 	request = mpt3sas_base_get_msg_frame(ioc, smid);
6112 	ioc->base_cmds.smid = smid;
6113 	memset(request, 0, ioc->request_sz);
6114 	memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
6115 	init_completion(&ioc->base_cmds.done);
6116 	ioc->put_smid_default(ioc, smid);
6117 	wait_for_completion_timeout(&ioc->base_cmds.done,
6118 	    msecs_to_jiffies(10000));
6119 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
6120 		mpt3sas_check_cmd_timeout(ioc,
6121 		    ioc->base_cmds.status, mpi_request,
6122 		    sizeof(Mpi2SepRequest_t)/4, issue_reset);
6123 		goto issue_host_reset;
6124 	}
6125 	if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
6126 		memcpy(mpi_reply, ioc->base_cmds.reply,
6127 		    sizeof(Mpi2SepReply_t));
6128 	else
6129 		memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
6130 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6131 	goto out;
6132 
6133  issue_host_reset:
6134 	if (issue_reset)
6135 		mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
6136 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6137 	rc = -EFAULT;
6138  out:
6139 	mutex_unlock(&ioc->base_cmds.mutex);
6140 	return rc;
6141 }
6142 
6143 /**
6144  * _base_get_port_facts - obtain port facts reply and save in ioc
6145  * @ioc: per adapter object
6146  * @port: ?
6147  *
6148  * Return: 0 for success, non-zero for failure.
6149  */
6150 static int
6151 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
6152 {
6153 	Mpi2PortFactsRequest_t mpi_request;
6154 	Mpi2PortFactsReply_t mpi_reply;
6155 	struct mpt3sas_port_facts *pfacts;
6156 	int mpi_reply_sz, mpi_request_sz, r;
6157 
6158 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6159 
6160 	mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
6161 	mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
6162 	memset(&mpi_request, 0, mpi_request_sz);
6163 	mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
6164 	mpi_request.PortNumber = port;
6165 	r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
6166 	    (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
6167 
6168 	if (r != 0) {
6169 		ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
6170 		return r;
6171 	}
6172 
6173 	pfacts = &ioc->pfacts[port];
6174 	memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
6175 	pfacts->PortNumber = mpi_reply.PortNumber;
6176 	pfacts->VP_ID = mpi_reply.VP_ID;
6177 	pfacts->VF_ID = mpi_reply.VF_ID;
6178 	pfacts->MaxPostedCmdBuffers =
6179 	    le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
6180 
6181 	return 0;
6182 }
6183 
6184 /**
6185  * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
6186  * @ioc: per adapter object
6187  * @timeout:
6188  *
6189  * Return: 0 for success, non-zero for failure.
6190  */
6191 static int
6192 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
6193 {
6194 	u32 ioc_state;
6195 	int rc;
6196 
6197 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6198 
6199 	if (ioc->pci_error_recovery) {
6200 		dfailprintk(ioc,
6201 			    ioc_info(ioc, "%s: host in pci error recovery\n",
6202 				     __func__));
6203 		return -EFAULT;
6204 	}
6205 
6206 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6207 	dhsprintk(ioc,
6208 		  ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
6209 			   __func__, ioc_state));
6210 
6211 	if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
6212 	    (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
6213 		return 0;
6214 
6215 	if (ioc_state & MPI2_DOORBELL_USED) {
6216 		dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n"));
6217 		goto issue_diag_reset;
6218 	}
6219 
6220 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
6221 		mpt3sas_print_fault_code(ioc, ioc_state &
6222 		    MPI2_DOORBELL_DATA_MASK);
6223 		goto issue_diag_reset;
6224 	} else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
6225 	    MPI2_IOC_STATE_COREDUMP) {
6226 		ioc_info(ioc,
6227 		    "%s: Skipping the diag reset here. (ioc_state=0x%x)\n",
6228 		    __func__, ioc_state);
6229 		return -EFAULT;
6230 	}
6231 
6232 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
6233 	if (ioc_state) {
6234 		dfailprintk(ioc,
6235 			    ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6236 				     __func__, ioc_state));
6237 		return -EFAULT;
6238 	}
6239 
6240  issue_diag_reset:
6241 	rc = _base_diag_reset(ioc);
6242 	return rc;
6243 }
6244 
6245 /**
6246  * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
6247  * @ioc: per adapter object
6248  *
6249  * Return: 0 for success, non-zero for failure.
6250  */
6251 static int
6252 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
6253 {
6254 	Mpi2IOCFactsRequest_t mpi_request;
6255 	Mpi2IOCFactsReply_t mpi_reply;
6256 	struct mpt3sas_facts *facts;
6257 	int mpi_reply_sz, mpi_request_sz, r;
6258 
6259 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6260 
6261 	r = _base_wait_for_iocstate(ioc, 10);
6262 	if (r) {
6263 		dfailprintk(ioc,
6264 			    ioc_info(ioc, "%s: failed getting to correct state\n",
6265 				     __func__));
6266 		return r;
6267 	}
6268 	mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
6269 	mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
6270 	memset(&mpi_request, 0, mpi_request_sz);
6271 	mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
6272 	r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
6273 	    (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
6274 
6275 	if (r != 0) {
6276 		ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
6277 		return r;
6278 	}
6279 
6280 	facts = &ioc->facts;
6281 	memset(facts, 0, sizeof(struct mpt3sas_facts));
6282 	facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
6283 	facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
6284 	facts->VP_ID = mpi_reply.VP_ID;
6285 	facts->VF_ID = mpi_reply.VF_ID;
6286 	facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
6287 	facts->MaxChainDepth = mpi_reply.MaxChainDepth;
6288 	facts->WhoInit = mpi_reply.WhoInit;
6289 	facts->NumberOfPorts = mpi_reply.NumberOfPorts;
6290 	facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
6291 	if (ioc->msix_enable && (facts->MaxMSIxVectors <=
6292 	    MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc)))
6293 		ioc->combined_reply_queue = 0;
6294 	facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
6295 	facts->MaxReplyDescriptorPostQueueDepth =
6296 	    le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
6297 	facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
6298 	facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
6299 	if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
6300 		ioc->ir_firmware = 1;
6301 	if ((facts->IOCCapabilities &
6302 	      MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices))
6303 		ioc->rdpq_array_capable = 1;
6304 	if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
6305 	    && ioc->is_aero_ioc)
6306 		ioc->atomic_desc_capable = 1;
6307 	facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
6308 	facts->IOCRequestFrameSize =
6309 	    le16_to_cpu(mpi_reply.IOCRequestFrameSize);
6310 	if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
6311 		facts->IOCMaxChainSegmentSize =
6312 			le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
6313 	}
6314 	facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
6315 	facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
6316 	ioc->shost->max_id = -1;
6317 	facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
6318 	facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
6319 	facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
6320 	facts->HighPriorityCredit =
6321 	    le16_to_cpu(mpi_reply.HighPriorityCredit);
6322 	facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
6323 	facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
6324 	facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize;
6325 
6326 	/*
6327 	 * Get the Page Size from IOC Facts. If it's 0, default to 4k.
6328 	 */
6329 	ioc->page_size = 1 << facts->CurrentHostPageSize;
6330 	if (ioc->page_size == 1) {
6331 		ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n");
6332 		ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K;
6333 	}
6334 	dinitprintk(ioc,
6335 		    ioc_info(ioc, "CurrentHostPageSize(%d)\n",
6336 			     facts->CurrentHostPageSize));
6337 
6338 	dinitprintk(ioc,
6339 		    ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n",
6340 			     facts->RequestCredit, facts->MaxChainDepth));
6341 	dinitprintk(ioc,
6342 		    ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n",
6343 			     facts->IOCRequestFrameSize * 4,
6344 			     facts->ReplyFrameSize * 4));
6345 	return 0;
6346 }
6347 
6348 /**
6349  * _base_send_ioc_init - send ioc_init to firmware
6350  * @ioc: per adapter object
6351  *
6352  * Return: 0 for success, non-zero for failure.
6353  */
6354 static int
6355 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
6356 {
6357 	Mpi2IOCInitRequest_t mpi_request;
6358 	Mpi2IOCInitReply_t mpi_reply;
6359 	int i, r = 0;
6360 	ktime_t current_time;
6361 	u16 ioc_status;
6362 	u32 reply_post_free_array_sz = 0;
6363 
6364 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6365 
6366 	memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
6367 	mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
6368 	mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
6369 	mpi_request.VF_ID = 0; /* TODO */
6370 	mpi_request.VP_ID = 0;
6371 	mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
6372 	mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
6373 	mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K;
6374 
6375 	if (_base_is_controller_msix_enabled(ioc))
6376 		mpi_request.HostMSIxVectors = ioc->reply_queue_count;
6377 	mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
6378 	mpi_request.ReplyDescriptorPostQueueDepth =
6379 	    cpu_to_le16(ioc->reply_post_queue_depth);
6380 	mpi_request.ReplyFreeQueueDepth =
6381 	    cpu_to_le16(ioc->reply_free_queue_depth);
6382 
6383 	mpi_request.SenseBufferAddressHigh =
6384 	    cpu_to_le32((u64)ioc->sense_dma >> 32);
6385 	mpi_request.SystemReplyAddressHigh =
6386 	    cpu_to_le32((u64)ioc->reply_dma >> 32);
6387 	mpi_request.SystemRequestFrameBaseAddress =
6388 	    cpu_to_le64((u64)ioc->request_dma);
6389 	mpi_request.ReplyFreeQueueAddress =
6390 	    cpu_to_le64((u64)ioc->reply_free_dma);
6391 
6392 	if (ioc->rdpq_array_enable) {
6393 		reply_post_free_array_sz = ioc->reply_queue_count *
6394 		    sizeof(Mpi2IOCInitRDPQArrayEntry);
6395 		memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz);
6396 		for (i = 0; i < ioc->reply_queue_count; i++)
6397 			ioc->reply_post_free_array[i].RDPQBaseAddress =
6398 			    cpu_to_le64(
6399 				(u64)ioc->reply_post[i].reply_post_free_dma);
6400 		mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
6401 		mpi_request.ReplyDescriptorPostQueueAddress =
6402 		    cpu_to_le64((u64)ioc->reply_post_free_array_dma);
6403 	} else {
6404 		mpi_request.ReplyDescriptorPostQueueAddress =
6405 		    cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
6406 	}
6407 
6408 	/*
6409 	 * Set the flag to enable CoreDump state feature in IOC firmware.
6410 	 */
6411 	mpi_request.ConfigurationFlags |=
6412 	    cpu_to_le16(MPI26_IOCINIT_CFGFLAGS_COREDUMP_ENABLE);
6413 
6414 	/* This time stamp specifies number of milliseconds
6415 	 * since epoch ~ midnight January 1, 1970.
6416 	 */
6417 	current_time = ktime_get_real();
6418 	mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
6419 
6420 	if (ioc->logging_level & MPT_DEBUG_INIT) {
6421 		__le32 *mfp;
6422 		int i;
6423 
6424 		mfp = (__le32 *)&mpi_request;
6425 		ioc_info(ioc, "\toffset:data\n");
6426 		for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
6427 			ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
6428 			    le32_to_cpu(mfp[i]));
6429 	}
6430 
6431 	r = _base_handshake_req_reply_wait(ioc,
6432 	    sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
6433 	    sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10);
6434 
6435 	if (r != 0) {
6436 		ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
6437 		return r;
6438 	}
6439 
6440 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
6441 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
6442 	    mpi_reply.IOCLogInfo) {
6443 		ioc_err(ioc, "%s: failed\n", __func__);
6444 		r = -EIO;
6445 	}
6446 
6447 	return r;
6448 }
6449 
6450 /**
6451  * mpt3sas_port_enable_done - command completion routine for port enable
6452  * @ioc: per adapter object
6453  * @smid: system request message index
6454  * @msix_index: MSIX table index supplied by the OS
6455  * @reply: reply message frame(lower 32bit addr)
6456  *
6457  * Return: 1 meaning mf should be freed from _base_interrupt
6458  *          0 means the mf is freed from this function.
6459  */
6460 u8
6461 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
6462 	u32 reply)
6463 {
6464 	MPI2DefaultReply_t *mpi_reply;
6465 	u16 ioc_status;
6466 
6467 	if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
6468 		return 1;
6469 
6470 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
6471 	if (!mpi_reply)
6472 		return 1;
6473 
6474 	if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
6475 		return 1;
6476 
6477 	ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
6478 	ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
6479 	ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
6480 	memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
6481 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
6482 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
6483 		ioc->port_enable_failed = 1;
6484 
6485 	if (ioc->is_driver_loading) {
6486 		if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
6487 			mpt3sas_port_enable_complete(ioc);
6488 			return 1;
6489 		} else {
6490 			ioc->start_scan_failed = ioc_status;
6491 			ioc->start_scan = 0;
6492 			return 1;
6493 		}
6494 	}
6495 	complete(&ioc->port_enable_cmds.done);
6496 	return 1;
6497 }
6498 
6499 /**
6500  * _base_send_port_enable - send port_enable(discovery stuff) to firmware
6501  * @ioc: per adapter object
6502  *
6503  * Return: 0 for success, non-zero for failure.
6504  */
6505 static int
6506 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
6507 {
6508 	Mpi2PortEnableRequest_t *mpi_request;
6509 	Mpi2PortEnableReply_t *mpi_reply;
6510 	int r = 0;
6511 	u16 smid;
6512 	u16 ioc_status;
6513 
6514 	ioc_info(ioc, "sending port enable !!\n");
6515 
6516 	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
6517 		ioc_err(ioc, "%s: internal command already in use\n", __func__);
6518 		return -EAGAIN;
6519 	}
6520 
6521 	smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
6522 	if (!smid) {
6523 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6524 		return -EAGAIN;
6525 	}
6526 
6527 	ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
6528 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
6529 	ioc->port_enable_cmds.smid = smid;
6530 	memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
6531 	mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
6532 
6533 	init_completion(&ioc->port_enable_cmds.done);
6534 	ioc->put_smid_default(ioc, smid);
6535 	wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
6536 	if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
6537 		ioc_err(ioc, "%s: timeout\n", __func__);
6538 		_debug_dump_mf(mpi_request,
6539 		    sizeof(Mpi2PortEnableRequest_t)/4);
6540 		if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
6541 			r = -EFAULT;
6542 		else
6543 			r = -ETIME;
6544 		goto out;
6545 	}
6546 
6547 	mpi_reply = ioc->port_enable_cmds.reply;
6548 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
6549 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
6550 		ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n",
6551 			__func__, ioc_status);
6552 		r = -EFAULT;
6553 		goto out;
6554 	}
6555 
6556  out:
6557 	ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
6558 	ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED");
6559 	return r;
6560 }
6561 
6562 /**
6563  * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
6564  * @ioc: per adapter object
6565  *
6566  * Return: 0 for success, non-zero for failure.
6567  */
6568 int
6569 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
6570 {
6571 	Mpi2PortEnableRequest_t *mpi_request;
6572 	u16 smid;
6573 
6574 	ioc_info(ioc, "sending port enable !!\n");
6575 
6576 	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
6577 		ioc_err(ioc, "%s: internal command already in use\n", __func__);
6578 		return -EAGAIN;
6579 	}
6580 
6581 	smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
6582 	if (!smid) {
6583 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6584 		return -EAGAIN;
6585 	}
6586 
6587 	ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
6588 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
6589 	ioc->port_enable_cmds.smid = smid;
6590 	memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
6591 	mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
6592 
6593 	ioc->put_smid_default(ioc, smid);
6594 	return 0;
6595 }
6596 
6597 /**
6598  * _base_determine_wait_on_discovery - desposition
6599  * @ioc: per adapter object
6600  *
6601  * Decide whether to wait on discovery to complete. Used to either
6602  * locate boot device, or report volumes ahead of physical devices.
6603  *
6604  * Return: 1 for wait, 0 for don't wait.
6605  */
6606 static int
6607 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
6608 {
6609 	/* We wait for discovery to complete if IR firmware is loaded.
6610 	 * The sas topology events arrive before PD events, so we need time to
6611 	 * turn on the bit in ioc->pd_handles to indicate PD
6612 	 * Also, it maybe required to report Volumes ahead of physical
6613 	 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
6614 	 */
6615 	if (ioc->ir_firmware)
6616 		return 1;
6617 
6618 	/* if no Bios, then we don't need to wait */
6619 	if (!ioc->bios_pg3.BiosVersion)
6620 		return 0;
6621 
6622 	/* Bios is present, then we drop down here.
6623 	 *
6624 	 * If there any entries in the Bios Page 2, then we wait
6625 	 * for discovery to complete.
6626 	 */
6627 
6628 	/* Current Boot Device */
6629 	if ((ioc->bios_pg2.CurrentBootDeviceForm &
6630 	    MPI2_BIOSPAGE2_FORM_MASK) ==
6631 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
6632 	/* Request Boot Device */
6633 	   (ioc->bios_pg2.ReqBootDeviceForm &
6634 	    MPI2_BIOSPAGE2_FORM_MASK) ==
6635 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
6636 	/* Alternate Request Boot Device */
6637 	   (ioc->bios_pg2.ReqAltBootDeviceForm &
6638 	    MPI2_BIOSPAGE2_FORM_MASK) ==
6639 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
6640 		return 0;
6641 
6642 	return 1;
6643 }
6644 
6645 /**
6646  * _base_unmask_events - turn on notification for this event
6647  * @ioc: per adapter object
6648  * @event: firmware event
6649  *
6650  * The mask is stored in ioc->event_masks.
6651  */
6652 static void
6653 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
6654 {
6655 	u32 desired_event;
6656 
6657 	if (event >= 128)
6658 		return;
6659 
6660 	desired_event = (1 << (event % 32));
6661 
6662 	if (event < 32)
6663 		ioc->event_masks[0] &= ~desired_event;
6664 	else if (event < 64)
6665 		ioc->event_masks[1] &= ~desired_event;
6666 	else if (event < 96)
6667 		ioc->event_masks[2] &= ~desired_event;
6668 	else if (event < 128)
6669 		ioc->event_masks[3] &= ~desired_event;
6670 }
6671 
6672 /**
6673  * _base_event_notification - send event notification
6674  * @ioc: per adapter object
6675  *
6676  * Return: 0 for success, non-zero for failure.
6677  */
6678 static int
6679 _base_event_notification(struct MPT3SAS_ADAPTER *ioc)
6680 {
6681 	Mpi2EventNotificationRequest_t *mpi_request;
6682 	u16 smid;
6683 	int r = 0;
6684 	int i;
6685 
6686 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6687 
6688 	if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
6689 		ioc_err(ioc, "%s: internal command already in use\n", __func__);
6690 		return -EAGAIN;
6691 	}
6692 
6693 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
6694 	if (!smid) {
6695 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6696 		return -EAGAIN;
6697 	}
6698 	ioc->base_cmds.status = MPT3_CMD_PENDING;
6699 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
6700 	ioc->base_cmds.smid = smid;
6701 	memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
6702 	mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
6703 	mpi_request->VF_ID = 0; /* TODO */
6704 	mpi_request->VP_ID = 0;
6705 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
6706 		mpi_request->EventMasks[i] =
6707 		    cpu_to_le32(ioc->event_masks[i]);
6708 	init_completion(&ioc->base_cmds.done);
6709 	ioc->put_smid_default(ioc, smid);
6710 	wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
6711 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
6712 		ioc_err(ioc, "%s: timeout\n", __func__);
6713 		_debug_dump_mf(mpi_request,
6714 		    sizeof(Mpi2EventNotificationRequest_t)/4);
6715 		if (ioc->base_cmds.status & MPT3_CMD_RESET)
6716 			r = -EFAULT;
6717 		else
6718 			r = -ETIME;
6719 	} else
6720 		dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__));
6721 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6722 	return r;
6723 }
6724 
6725 /**
6726  * mpt3sas_base_validate_event_type - validating event types
6727  * @ioc: per adapter object
6728  * @event_type: firmware event
6729  *
6730  * This will turn on firmware event notification when application
6731  * ask for that event. We don't mask events that are already enabled.
6732  */
6733 void
6734 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
6735 {
6736 	int i, j;
6737 	u32 event_mask, desired_event;
6738 	u8 send_update_to_fw;
6739 
6740 	for (i = 0, send_update_to_fw = 0; i <
6741 	    MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
6742 		event_mask = ~event_type[i];
6743 		desired_event = 1;
6744 		for (j = 0; j < 32; j++) {
6745 			if (!(event_mask & desired_event) &&
6746 			    (ioc->event_masks[i] & desired_event)) {
6747 				ioc->event_masks[i] &= ~desired_event;
6748 				send_update_to_fw = 1;
6749 			}
6750 			desired_event = (desired_event << 1);
6751 		}
6752 	}
6753 
6754 	if (!send_update_to_fw)
6755 		return;
6756 
6757 	mutex_lock(&ioc->base_cmds.mutex);
6758 	_base_event_notification(ioc);
6759 	mutex_unlock(&ioc->base_cmds.mutex);
6760 }
6761 
6762 /**
6763  * _base_diag_reset - the "big hammer" start of day reset
6764  * @ioc: per adapter object
6765  *
6766  * Return: 0 for success, non-zero for failure.
6767  */
6768 static int
6769 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
6770 {
6771 	u32 host_diagnostic;
6772 	u32 ioc_state;
6773 	u32 count;
6774 	u32 hcb_size;
6775 
6776 	ioc_info(ioc, "sending diag reset !!\n");
6777 
6778 	drsprintk(ioc, ioc_info(ioc, "clear interrupts\n"));
6779 
6780 	count = 0;
6781 	do {
6782 		/* Write magic sequence to WriteSequence register
6783 		 * Loop until in diagnostic mode
6784 		 */
6785 		drsprintk(ioc, ioc_info(ioc, "write magic sequence\n"));
6786 		writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
6787 		writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
6788 		writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
6789 		writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
6790 		writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
6791 		writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
6792 		writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
6793 
6794 		/* wait 100 msec */
6795 		msleep(100);
6796 
6797 		if (count++ > 20) {
6798 			ioc_info(ioc,
6799 			    "Stop writing magic sequence after 20 retries\n");
6800 			goto out;
6801 		}
6802 
6803 		host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
6804 		drsprintk(ioc,
6805 			  ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
6806 				   count, host_diagnostic));
6807 
6808 	} while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
6809 
6810 	hcb_size = ioc->base_readl(&ioc->chip->HCBSize);
6811 
6812 	drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n"));
6813 	writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
6814 	     &ioc->chip->HostDiagnostic);
6815 
6816 	/*This delay allows the chip PCIe hardware time to finish reset tasks*/
6817 	msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
6818 
6819 	/* Approximately 300 second max wait */
6820 	for (count = 0; count < (300000000 /
6821 		MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
6822 
6823 		host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
6824 
6825 		if (host_diagnostic == 0xFFFFFFFF) {
6826 			ioc_info(ioc,
6827 			    "Invalid host diagnostic register value\n");
6828 			goto out;
6829 		}
6830 		if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
6831 			break;
6832 
6833 		msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000);
6834 	}
6835 
6836 	if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
6837 
6838 		drsprintk(ioc,
6839 			  ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n"));
6840 		host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
6841 		host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
6842 		writel(host_diagnostic, &ioc->chip->HostDiagnostic);
6843 
6844 		drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n"));
6845 		writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
6846 		    &ioc->chip->HCBSize);
6847 	}
6848 
6849 	drsprintk(ioc, ioc_info(ioc, "restart the adapter\n"));
6850 	writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
6851 	    &ioc->chip->HostDiagnostic);
6852 
6853 	drsprintk(ioc,
6854 		  ioc_info(ioc, "disable writes to the diagnostic register\n"));
6855 	writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
6856 
6857 	drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n"));
6858 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
6859 	if (ioc_state) {
6860 		ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6861 			__func__, ioc_state);
6862 		goto out;
6863 	}
6864 
6865 	ioc_info(ioc, "diag reset: SUCCESS\n");
6866 	return 0;
6867 
6868  out:
6869 	ioc_err(ioc, "diag reset: FAILED\n");
6870 	return -EFAULT;
6871 }
6872 
6873 /**
6874  * _base_make_ioc_ready - put controller in READY state
6875  * @ioc: per adapter object
6876  * @type: FORCE_BIG_HAMMER or SOFT_RESET
6877  *
6878  * Return: 0 for success, non-zero for failure.
6879  */
6880 static int
6881 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
6882 {
6883 	u32 ioc_state;
6884 	int rc;
6885 	int count;
6886 
6887 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6888 
6889 	if (ioc->pci_error_recovery)
6890 		return 0;
6891 
6892 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6893 	dhsprintk(ioc,
6894 		  ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
6895 			   __func__, ioc_state));
6896 
6897 	/* if in RESET state, it should move to READY state shortly */
6898 	count = 0;
6899 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
6900 		while ((ioc_state & MPI2_IOC_STATE_MASK) !=
6901 		    MPI2_IOC_STATE_READY) {
6902 			if (count++ == 10) {
6903 				ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6904 					__func__, ioc_state);
6905 				return -EFAULT;
6906 			}
6907 			ssleep(1);
6908 			ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6909 		}
6910 	}
6911 
6912 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
6913 		return 0;
6914 
6915 	if (ioc_state & MPI2_DOORBELL_USED) {
6916 		ioc_info(ioc, "unexpected doorbell active!\n");
6917 		goto issue_diag_reset;
6918 	}
6919 
6920 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
6921 		mpt3sas_print_fault_code(ioc, ioc_state &
6922 		    MPI2_DOORBELL_DATA_MASK);
6923 		goto issue_diag_reset;
6924 	}
6925 
6926 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
6927 		/*
6928 		 * if host reset is invoked while watch dog thread is waiting
6929 		 * for IOC state to be changed to Fault state then driver has
6930 		 * to wait here for CoreDump state to clear otherwise reset
6931 		 * will be issued to the FW and FW move the IOC state to
6932 		 * reset state without copying the FW logs to coredump region.
6933 		 */
6934 		if (ioc->ioc_coredump_loop != MPT3SAS_COREDUMP_LOOP_DONE) {
6935 			mpt3sas_print_coredump_info(ioc, ioc_state &
6936 			    MPI2_DOORBELL_DATA_MASK);
6937 			mpt3sas_base_wait_for_coredump_completion(ioc,
6938 			    __func__);
6939 		}
6940 		goto issue_diag_reset;
6941 	}
6942 
6943 	if (type == FORCE_BIG_HAMMER)
6944 		goto issue_diag_reset;
6945 
6946 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
6947 		if (!(_base_send_ioc_reset(ioc,
6948 		    MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
6949 			return 0;
6950 	}
6951 
6952  issue_diag_reset:
6953 	rc = _base_diag_reset(ioc);
6954 	return rc;
6955 }
6956 
6957 /**
6958  * _base_make_ioc_operational - put controller in OPERATIONAL state
6959  * @ioc: per adapter object
6960  *
6961  * Return: 0 for success, non-zero for failure.
6962  */
6963 static int
6964 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
6965 {
6966 	int r, i, index, rc;
6967 	unsigned long	flags;
6968 	u32 reply_address;
6969 	u16 smid;
6970 	struct _tr_list *delayed_tr, *delayed_tr_next;
6971 	struct _sc_list *delayed_sc, *delayed_sc_next;
6972 	struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
6973 	u8 hide_flag;
6974 	struct adapter_reply_queue *reply_q;
6975 	Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
6976 
6977 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6978 
6979 	/* clean the delayed target reset list */
6980 	list_for_each_entry_safe(delayed_tr, delayed_tr_next,
6981 	    &ioc->delayed_tr_list, list) {
6982 		list_del(&delayed_tr->list);
6983 		kfree(delayed_tr);
6984 	}
6985 
6986 
6987 	list_for_each_entry_safe(delayed_tr, delayed_tr_next,
6988 	    &ioc->delayed_tr_volume_list, list) {
6989 		list_del(&delayed_tr->list);
6990 		kfree(delayed_tr);
6991 	}
6992 
6993 	list_for_each_entry_safe(delayed_sc, delayed_sc_next,
6994 	    &ioc->delayed_sc_list, list) {
6995 		list_del(&delayed_sc->list);
6996 		kfree(delayed_sc);
6997 	}
6998 
6999 	list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
7000 	    &ioc->delayed_event_ack_list, list) {
7001 		list_del(&delayed_event_ack->list);
7002 		kfree(delayed_event_ack);
7003 	}
7004 
7005 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
7006 
7007 	/* hi-priority queue */
7008 	INIT_LIST_HEAD(&ioc->hpr_free_list);
7009 	smid = ioc->hi_priority_smid;
7010 	for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
7011 		ioc->hpr_lookup[i].cb_idx = 0xFF;
7012 		ioc->hpr_lookup[i].smid = smid;
7013 		list_add_tail(&ioc->hpr_lookup[i].tracker_list,
7014 		    &ioc->hpr_free_list);
7015 	}
7016 
7017 	/* internal queue */
7018 	INIT_LIST_HEAD(&ioc->internal_free_list);
7019 	smid = ioc->internal_smid;
7020 	for (i = 0; i < ioc->internal_depth; i++, smid++) {
7021 		ioc->internal_lookup[i].cb_idx = 0xFF;
7022 		ioc->internal_lookup[i].smid = smid;
7023 		list_add_tail(&ioc->internal_lookup[i].tracker_list,
7024 		    &ioc->internal_free_list);
7025 	}
7026 
7027 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
7028 
7029 	/* initialize Reply Free Queue */
7030 	for (i = 0, reply_address = (u32)ioc->reply_dma ;
7031 	    i < ioc->reply_free_queue_depth ; i++, reply_address +=
7032 	    ioc->reply_sz) {
7033 		ioc->reply_free[i] = cpu_to_le32(reply_address);
7034 		if (ioc->is_mcpu_endpoint)
7035 			_base_clone_reply_to_sys_mem(ioc,
7036 					reply_address, i);
7037 	}
7038 
7039 	/* initialize reply queues */
7040 	if (ioc->is_driver_loading)
7041 		_base_assign_reply_queues(ioc);
7042 
7043 	/* initialize Reply Post Free Queue */
7044 	index = 0;
7045 	reply_post_free_contig = ioc->reply_post[0].reply_post_free;
7046 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
7047 		/*
7048 		 * If RDPQ is enabled, switch to the next allocation.
7049 		 * Otherwise advance within the contiguous region.
7050 		 */
7051 		if (ioc->rdpq_array_enable) {
7052 			reply_q->reply_post_free =
7053 				ioc->reply_post[index++].reply_post_free;
7054 		} else {
7055 			reply_q->reply_post_free = reply_post_free_contig;
7056 			reply_post_free_contig += ioc->reply_post_queue_depth;
7057 		}
7058 
7059 		reply_q->reply_post_host_index = 0;
7060 		for (i = 0; i < ioc->reply_post_queue_depth; i++)
7061 			reply_q->reply_post_free[i].Words =
7062 			    cpu_to_le64(ULLONG_MAX);
7063 		if (!_base_is_controller_msix_enabled(ioc))
7064 			goto skip_init_reply_post_free_queue;
7065 	}
7066  skip_init_reply_post_free_queue:
7067 
7068 	r = _base_send_ioc_init(ioc);
7069 	if (r) {
7070 		/*
7071 		 * No need to check IOC state for fault state & issue
7072 		 * diag reset during host reset. This check is need
7073 		 * only during driver load time.
7074 		 */
7075 		if (!ioc->is_driver_loading)
7076 			return r;
7077 
7078 		rc = _base_check_for_fault_and_issue_reset(ioc);
7079 		if (rc || (_base_send_ioc_init(ioc)))
7080 			return r;
7081 	}
7082 
7083 	/* initialize reply free host index */
7084 	ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
7085 	writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
7086 
7087 	/* initialize reply post host index */
7088 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
7089 		if (ioc->combined_reply_queue)
7090 			writel((reply_q->msix_index & 7)<<
7091 			   MPI2_RPHI_MSIX_INDEX_SHIFT,
7092 			   ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
7093 		else
7094 			writel(reply_q->msix_index <<
7095 				MPI2_RPHI_MSIX_INDEX_SHIFT,
7096 				&ioc->chip->ReplyPostHostIndex);
7097 
7098 		if (!_base_is_controller_msix_enabled(ioc))
7099 			goto skip_init_reply_post_host_index;
7100 	}
7101 
7102  skip_init_reply_post_host_index:
7103 
7104 	_base_unmask_interrupts(ioc);
7105 
7106 	if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
7107 		r = _base_display_fwpkg_version(ioc);
7108 		if (r)
7109 			return r;
7110 	}
7111 
7112 	_base_static_config_pages(ioc);
7113 	r = _base_event_notification(ioc);
7114 	if (r)
7115 		return r;
7116 
7117 	if (ioc->is_driver_loading) {
7118 
7119 		if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
7120 		    == 0x80) {
7121 			hide_flag = (u8) (
7122 			    le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
7123 			    MFG_PAGE10_HIDE_SSDS_MASK);
7124 			if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
7125 				ioc->mfg_pg10_hide_flag = hide_flag;
7126 		}
7127 
7128 		ioc->wait_for_discovery_to_complete =
7129 		    _base_determine_wait_on_discovery(ioc);
7130 
7131 		return r; /* scan_start and scan_finished support */
7132 	}
7133 
7134 	r = _base_send_port_enable(ioc);
7135 	if (r)
7136 		return r;
7137 
7138 	return r;
7139 }
7140 
7141 /**
7142  * mpt3sas_base_free_resources - free resources controller resources
7143  * @ioc: per adapter object
7144  */
7145 void
7146 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
7147 {
7148 	dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7149 
7150 	/* synchronizing freeing resource with pci_access_mutex lock */
7151 	mutex_lock(&ioc->pci_access_mutex);
7152 	if (ioc->chip_phys && ioc->chip) {
7153 		_base_mask_interrupts(ioc);
7154 		ioc->shost_recovery = 1;
7155 		_base_make_ioc_ready(ioc, SOFT_RESET);
7156 		ioc->shost_recovery = 0;
7157 	}
7158 
7159 	mpt3sas_base_unmap_resources(ioc);
7160 	mutex_unlock(&ioc->pci_access_mutex);
7161 	return;
7162 }
7163 
7164 /**
7165  * mpt3sas_base_attach - attach controller instance
7166  * @ioc: per adapter object
7167  *
7168  * Return: 0 for success, non-zero for failure.
7169  */
7170 int
7171 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
7172 {
7173 	int r, i, rc;
7174 	int cpu_id, last_cpu_id = 0;
7175 
7176 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7177 
7178 	/* setup cpu_msix_table */
7179 	ioc->cpu_count = num_online_cpus();
7180 	for_each_online_cpu(cpu_id)
7181 		last_cpu_id = cpu_id;
7182 	ioc->cpu_msix_table_sz = last_cpu_id + 1;
7183 	ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
7184 	ioc->reply_queue_count = 1;
7185 	if (!ioc->cpu_msix_table) {
7186 		ioc_info(ioc, "Allocation for cpu_msix_table failed!!!\n");
7187 		r = -ENOMEM;
7188 		goto out_free_resources;
7189 	}
7190 
7191 	if (ioc->is_warpdrive) {
7192 		ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
7193 		    sizeof(resource_size_t *), GFP_KERNEL);
7194 		if (!ioc->reply_post_host_index) {
7195 			ioc_info(ioc, "Allocation for reply_post_host_index failed!!!\n");
7196 			r = -ENOMEM;
7197 			goto out_free_resources;
7198 		}
7199 	}
7200 
7201 	ioc->smp_affinity_enable = smp_affinity_enable;
7202 
7203 	ioc->rdpq_array_enable_assigned = 0;
7204 	ioc->use_32bit_dma = false;
7205 	if (ioc->is_aero_ioc)
7206 		ioc->base_readl = &_base_readl_aero;
7207 	else
7208 		ioc->base_readl = &_base_readl;
7209 	r = mpt3sas_base_map_resources(ioc);
7210 	if (r)
7211 		goto out_free_resources;
7212 
7213 	pci_set_drvdata(ioc->pdev, ioc->shost);
7214 	r = _base_get_ioc_facts(ioc);
7215 	if (r) {
7216 		rc = _base_check_for_fault_and_issue_reset(ioc);
7217 		if (rc || (_base_get_ioc_facts(ioc)))
7218 			goto out_free_resources;
7219 	}
7220 
7221 	switch (ioc->hba_mpi_version_belonged) {
7222 	case MPI2_VERSION:
7223 		ioc->build_sg_scmd = &_base_build_sg_scmd;
7224 		ioc->build_sg = &_base_build_sg;
7225 		ioc->build_zero_len_sge = &_base_build_zero_len_sge;
7226 		ioc->get_msix_index_for_smlio = &_base_get_msix_index;
7227 		break;
7228 	case MPI25_VERSION:
7229 	case MPI26_VERSION:
7230 		/*
7231 		 * In SAS3.0,
7232 		 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
7233 		 * Target Status - all require the IEEE formated scatter gather
7234 		 * elements.
7235 		 */
7236 		ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
7237 		ioc->build_sg = &_base_build_sg_ieee;
7238 		ioc->build_nvme_prp = &_base_build_nvme_prp;
7239 		ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
7240 		ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
7241 		if (ioc->high_iops_queues)
7242 			ioc->get_msix_index_for_smlio =
7243 					&_base_get_high_iops_msix_index;
7244 		else
7245 			ioc->get_msix_index_for_smlio = &_base_get_msix_index;
7246 		break;
7247 	}
7248 	if (ioc->atomic_desc_capable) {
7249 		ioc->put_smid_default = &_base_put_smid_default_atomic;
7250 		ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic;
7251 		ioc->put_smid_fast_path =
7252 				&_base_put_smid_fast_path_atomic;
7253 		ioc->put_smid_hi_priority =
7254 				&_base_put_smid_hi_priority_atomic;
7255 	} else {
7256 		ioc->put_smid_default = &_base_put_smid_default;
7257 		ioc->put_smid_fast_path = &_base_put_smid_fast_path;
7258 		ioc->put_smid_hi_priority = &_base_put_smid_hi_priority;
7259 		if (ioc->is_mcpu_endpoint)
7260 			ioc->put_smid_scsi_io =
7261 				&_base_put_smid_mpi_ep_scsi_io;
7262 		else
7263 			ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
7264 	}
7265 	/*
7266 	 * These function pointers for other requests that don't
7267 	 * the require IEEE scatter gather elements.
7268 	 *
7269 	 * For example Configuration Pages and SAS IOUNIT Control don't.
7270 	 */
7271 	ioc->build_sg_mpi = &_base_build_sg;
7272 	ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
7273 
7274 	r = _base_make_ioc_ready(ioc, SOFT_RESET);
7275 	if (r)
7276 		goto out_free_resources;
7277 
7278 	ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
7279 	    sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
7280 	if (!ioc->pfacts) {
7281 		r = -ENOMEM;
7282 		goto out_free_resources;
7283 	}
7284 
7285 	for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
7286 		r = _base_get_port_facts(ioc, i);
7287 		if (r) {
7288 			rc = _base_check_for_fault_and_issue_reset(ioc);
7289 			if (rc || (_base_get_port_facts(ioc, i)))
7290 				goto out_free_resources;
7291 		}
7292 	}
7293 
7294 	r = _base_allocate_memory_pools(ioc);
7295 	if (r)
7296 		goto out_free_resources;
7297 
7298 	if (irqpoll_weight > 0)
7299 		ioc->thresh_hold = irqpoll_weight;
7300 	else
7301 		ioc->thresh_hold = ioc->hba_queue_depth/4;
7302 
7303 	_base_init_irqpolls(ioc);
7304 	init_waitqueue_head(&ioc->reset_wq);
7305 
7306 	/* allocate memory pd handle bitmask list */
7307 	ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
7308 	if (ioc->facts.MaxDevHandle % 8)
7309 		ioc->pd_handles_sz++;
7310 	ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
7311 	    GFP_KERNEL);
7312 	if (!ioc->pd_handles) {
7313 		r = -ENOMEM;
7314 		goto out_free_resources;
7315 	}
7316 	ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
7317 	    GFP_KERNEL);
7318 	if (!ioc->blocking_handles) {
7319 		r = -ENOMEM;
7320 		goto out_free_resources;
7321 	}
7322 
7323 	/* allocate memory for pending OS device add list */
7324 	ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
7325 	if (ioc->facts.MaxDevHandle % 8)
7326 		ioc->pend_os_device_add_sz++;
7327 	ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
7328 	    GFP_KERNEL);
7329 	if (!ioc->pend_os_device_add)
7330 		goto out_free_resources;
7331 
7332 	ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
7333 	ioc->device_remove_in_progress =
7334 		kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
7335 	if (!ioc->device_remove_in_progress)
7336 		goto out_free_resources;
7337 
7338 	ioc->fwfault_debug = mpt3sas_fwfault_debug;
7339 
7340 	/* base internal command bits */
7341 	mutex_init(&ioc->base_cmds.mutex);
7342 	ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7343 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7344 
7345 	/* port_enable command bits */
7346 	ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7347 	ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
7348 
7349 	/* transport internal command bits */
7350 	ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7351 	ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
7352 	mutex_init(&ioc->transport_cmds.mutex);
7353 
7354 	/* scsih internal command bits */
7355 	ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7356 	ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
7357 	mutex_init(&ioc->scsih_cmds.mutex);
7358 
7359 	/* task management internal command bits */
7360 	ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7361 	ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
7362 	mutex_init(&ioc->tm_cmds.mutex);
7363 
7364 	/* config page internal command bits */
7365 	ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7366 	ioc->config_cmds.status = MPT3_CMD_NOT_USED;
7367 	mutex_init(&ioc->config_cmds.mutex);
7368 
7369 	/* ctl module internal command bits */
7370 	ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7371 	ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
7372 	ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
7373 	mutex_init(&ioc->ctl_cmds.mutex);
7374 
7375 	if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
7376 	    !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
7377 	    !ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
7378 	    !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) {
7379 		r = -ENOMEM;
7380 		goto out_free_resources;
7381 	}
7382 
7383 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
7384 		ioc->event_masks[i] = -1;
7385 
7386 	/* here we enable the events we care about */
7387 	_base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
7388 	_base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
7389 	_base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
7390 	_base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
7391 	_base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
7392 	_base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
7393 	_base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
7394 	_base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
7395 	_base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
7396 	_base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
7397 	_base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
7398 	_base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
7399 	_base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR);
7400 	if (ioc->hba_mpi_version_belonged == MPI26_VERSION) {
7401 		if (ioc->is_gen35_ioc) {
7402 			_base_unmask_events(ioc,
7403 				MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE);
7404 			_base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION);
7405 			_base_unmask_events(ioc,
7406 				MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
7407 		}
7408 	}
7409 	r = _base_make_ioc_operational(ioc);
7410 	if (r)
7411 		goto out_free_resources;
7412 
7413 	/*
7414 	 * Copy current copy of IOCFacts in prev_fw_facts
7415 	 * and it will be used during online firmware upgrade.
7416 	 */
7417 	memcpy(&ioc->prev_fw_facts, &ioc->facts,
7418 	    sizeof(struct mpt3sas_facts));
7419 
7420 	ioc->non_operational_loop = 0;
7421 	ioc->ioc_coredump_loop = 0;
7422 	ioc->got_task_abort_from_ioctl = 0;
7423 	return 0;
7424 
7425  out_free_resources:
7426 
7427 	ioc->remove_host = 1;
7428 
7429 	mpt3sas_base_free_resources(ioc);
7430 	_base_release_memory_pools(ioc);
7431 	pci_set_drvdata(ioc->pdev, NULL);
7432 	kfree(ioc->cpu_msix_table);
7433 	if (ioc->is_warpdrive)
7434 		kfree(ioc->reply_post_host_index);
7435 	kfree(ioc->pd_handles);
7436 	kfree(ioc->blocking_handles);
7437 	kfree(ioc->device_remove_in_progress);
7438 	kfree(ioc->pend_os_device_add);
7439 	kfree(ioc->tm_cmds.reply);
7440 	kfree(ioc->transport_cmds.reply);
7441 	kfree(ioc->scsih_cmds.reply);
7442 	kfree(ioc->config_cmds.reply);
7443 	kfree(ioc->base_cmds.reply);
7444 	kfree(ioc->port_enable_cmds.reply);
7445 	kfree(ioc->ctl_cmds.reply);
7446 	kfree(ioc->ctl_cmds.sense);
7447 	kfree(ioc->pfacts);
7448 	ioc->ctl_cmds.reply = NULL;
7449 	ioc->base_cmds.reply = NULL;
7450 	ioc->tm_cmds.reply = NULL;
7451 	ioc->scsih_cmds.reply = NULL;
7452 	ioc->transport_cmds.reply = NULL;
7453 	ioc->config_cmds.reply = NULL;
7454 	ioc->pfacts = NULL;
7455 	return r;
7456 }
7457 
7458 
7459 /**
7460  * mpt3sas_base_detach - remove controller instance
7461  * @ioc: per adapter object
7462  */
7463 void
7464 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
7465 {
7466 	dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7467 
7468 	mpt3sas_base_stop_watchdog(ioc);
7469 	mpt3sas_base_free_resources(ioc);
7470 	_base_release_memory_pools(ioc);
7471 	mpt3sas_free_enclosure_list(ioc);
7472 	pci_set_drvdata(ioc->pdev, NULL);
7473 	kfree(ioc->cpu_msix_table);
7474 	if (ioc->is_warpdrive)
7475 		kfree(ioc->reply_post_host_index);
7476 	kfree(ioc->pd_handles);
7477 	kfree(ioc->blocking_handles);
7478 	kfree(ioc->device_remove_in_progress);
7479 	kfree(ioc->pend_os_device_add);
7480 	kfree(ioc->pfacts);
7481 	kfree(ioc->ctl_cmds.reply);
7482 	kfree(ioc->ctl_cmds.sense);
7483 	kfree(ioc->base_cmds.reply);
7484 	kfree(ioc->port_enable_cmds.reply);
7485 	kfree(ioc->tm_cmds.reply);
7486 	kfree(ioc->transport_cmds.reply);
7487 	kfree(ioc->scsih_cmds.reply);
7488 	kfree(ioc->config_cmds.reply);
7489 }
7490 
7491 /**
7492  * _base_pre_reset_handler - pre reset handler
7493  * @ioc: per adapter object
7494  */
7495 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc)
7496 {
7497 	mpt3sas_scsih_pre_reset_handler(ioc);
7498 	mpt3sas_ctl_pre_reset_handler(ioc);
7499 	dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__));
7500 }
7501 
7502 /**
7503  * _base_clear_outstanding_mpt_commands - clears outstanding mpt commands
7504  * @ioc: per adapter object
7505  */
7506 static void
7507 _base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER *ioc)
7508 {
7509 	dtmprintk(ioc,
7510 	    ioc_info(ioc, "%s: clear outstanding mpt cmds\n", __func__));
7511 	if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
7512 		ioc->transport_cmds.status |= MPT3_CMD_RESET;
7513 		mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
7514 		complete(&ioc->transport_cmds.done);
7515 	}
7516 	if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
7517 		ioc->base_cmds.status |= MPT3_CMD_RESET;
7518 		mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
7519 		complete(&ioc->base_cmds.done);
7520 	}
7521 	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7522 		ioc->port_enable_failed = 1;
7523 		ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
7524 		mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
7525 		if (ioc->is_driver_loading) {
7526 			ioc->start_scan_failed =
7527 				MPI2_IOCSTATUS_INTERNAL_ERROR;
7528 			ioc->start_scan = 0;
7529 			ioc->port_enable_cmds.status =
7530 				MPT3_CMD_NOT_USED;
7531 		} else {
7532 			complete(&ioc->port_enable_cmds.done);
7533 		}
7534 	}
7535 	if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
7536 		ioc->config_cmds.status |= MPT3_CMD_RESET;
7537 		mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
7538 		ioc->config_cmds.smid = USHRT_MAX;
7539 		complete(&ioc->config_cmds.done);
7540 	}
7541 }
7542 
7543 /**
7544  * _base_clear_outstanding_commands - clear all outstanding commands
7545  * @ioc: per adapter object
7546  */
7547 static void _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc)
7548 {
7549 	mpt3sas_scsih_clear_outstanding_scsi_tm_commands(ioc);
7550 	mpt3sas_ctl_clear_outstanding_ioctls(ioc);
7551 	_base_clear_outstanding_mpt_commands(ioc);
7552 }
7553 
7554 /**
7555  * _base_reset_done_handler - reset done handler
7556  * @ioc: per adapter object
7557  */
7558 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc)
7559 {
7560 	mpt3sas_scsih_reset_done_handler(ioc);
7561 	mpt3sas_ctl_reset_done_handler(ioc);
7562 	dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__));
7563 }
7564 
7565 /**
7566  * mpt3sas_wait_for_commands_to_complete - reset controller
7567  * @ioc: Pointer to MPT_ADAPTER structure
7568  *
7569  * This function is waiting 10s for all pending commands to complete
7570  * prior to putting controller in reset.
7571  */
7572 void
7573 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
7574 {
7575 	u32 ioc_state;
7576 
7577 	ioc->pending_io_count = 0;
7578 
7579 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7580 	if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
7581 		return;
7582 
7583 	/* pending command count */
7584 	ioc->pending_io_count = scsi_host_busy(ioc->shost);
7585 
7586 	if (!ioc->pending_io_count)
7587 		return;
7588 
7589 	/* wait for pending commands to complete */
7590 	wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
7591 }
7592 
7593 /**
7594  * _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts
7595  *     attributes during online firmware upgrade and update the corresponding
7596  *     IOC variables accordingly.
7597  *
7598  * @ioc: Pointer to MPT_ADAPTER structure
7599  */
7600 static int
7601 _base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc)
7602 {
7603 	u16 pd_handles_sz;
7604 	void *pd_handles = NULL, *blocking_handles = NULL;
7605 	void *pend_os_device_add = NULL, *device_remove_in_progress = NULL;
7606 	struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts;
7607 
7608 	if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle) {
7609 		pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
7610 		if (ioc->facts.MaxDevHandle % 8)
7611 			pd_handles_sz++;
7612 
7613 		pd_handles = krealloc(ioc->pd_handles, pd_handles_sz,
7614 		    GFP_KERNEL);
7615 		if (!pd_handles) {
7616 			ioc_info(ioc,
7617 			    "Unable to allocate the memory for pd_handles of sz: %d\n",
7618 			    pd_handles_sz);
7619 			return -ENOMEM;
7620 		}
7621 		memset(pd_handles + ioc->pd_handles_sz, 0,
7622 		    (pd_handles_sz - ioc->pd_handles_sz));
7623 		ioc->pd_handles = pd_handles;
7624 
7625 		blocking_handles = krealloc(ioc->blocking_handles,
7626 		    pd_handles_sz, GFP_KERNEL);
7627 		if (!blocking_handles) {
7628 			ioc_info(ioc,
7629 			    "Unable to allocate the memory for "
7630 			    "blocking_handles of sz: %d\n",
7631 			    pd_handles_sz);
7632 			return -ENOMEM;
7633 		}
7634 		memset(blocking_handles + ioc->pd_handles_sz, 0,
7635 		    (pd_handles_sz - ioc->pd_handles_sz));
7636 		ioc->blocking_handles = blocking_handles;
7637 		ioc->pd_handles_sz = pd_handles_sz;
7638 
7639 		pend_os_device_add = krealloc(ioc->pend_os_device_add,
7640 		    pd_handles_sz, GFP_KERNEL);
7641 		if (!pend_os_device_add) {
7642 			ioc_info(ioc,
7643 			    "Unable to allocate the memory for pend_os_device_add of sz: %d\n",
7644 			    pd_handles_sz);
7645 			return -ENOMEM;
7646 		}
7647 		memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0,
7648 		    (pd_handles_sz - ioc->pend_os_device_add_sz));
7649 		ioc->pend_os_device_add = pend_os_device_add;
7650 		ioc->pend_os_device_add_sz = pd_handles_sz;
7651 
7652 		device_remove_in_progress = krealloc(
7653 		    ioc->device_remove_in_progress, pd_handles_sz, GFP_KERNEL);
7654 		if (!device_remove_in_progress) {
7655 			ioc_info(ioc,
7656 			    "Unable to allocate the memory for "
7657 			    "device_remove_in_progress of sz: %d\n "
7658 			    , pd_handles_sz);
7659 			return -ENOMEM;
7660 		}
7661 		memset(device_remove_in_progress +
7662 		    ioc->device_remove_in_progress_sz, 0,
7663 		    (pd_handles_sz - ioc->device_remove_in_progress_sz));
7664 		ioc->device_remove_in_progress = device_remove_in_progress;
7665 		ioc->device_remove_in_progress_sz = pd_handles_sz;
7666 	}
7667 
7668 	memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts));
7669 	return 0;
7670 }
7671 
7672 /**
7673  * mpt3sas_base_hard_reset_handler - reset controller
7674  * @ioc: Pointer to MPT_ADAPTER structure
7675  * @type: FORCE_BIG_HAMMER or SOFT_RESET
7676  *
7677  * Return: 0 for success, non-zero for failure.
7678  */
7679 int
7680 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
7681 	enum reset_type type)
7682 {
7683 	int r;
7684 	unsigned long flags;
7685 	u32 ioc_state;
7686 	u8 is_fault = 0, is_trigger = 0;
7687 
7688 	dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__));
7689 
7690 	if (ioc->pci_error_recovery) {
7691 		ioc_err(ioc, "%s: pci error recovery reset\n", __func__);
7692 		r = 0;
7693 		goto out_unlocked;
7694 	}
7695 
7696 	if (mpt3sas_fwfault_debug)
7697 		mpt3sas_halt_firmware(ioc);
7698 
7699 	/* wait for an active reset in progress to complete */
7700 	mutex_lock(&ioc->reset_in_progress_mutex);
7701 
7702 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
7703 	ioc->shost_recovery = 1;
7704 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
7705 
7706 	if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
7707 	    MPT3_DIAG_BUFFER_IS_REGISTERED) &&
7708 	    (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
7709 	    MPT3_DIAG_BUFFER_IS_RELEASED))) {
7710 		is_trigger = 1;
7711 		ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7712 		if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT ||
7713 		    (ioc_state & MPI2_IOC_STATE_MASK) ==
7714 		    MPI2_IOC_STATE_COREDUMP)
7715 			is_fault = 1;
7716 	}
7717 	_base_pre_reset_handler(ioc);
7718 	mpt3sas_wait_for_commands_to_complete(ioc);
7719 	_base_mask_interrupts(ioc);
7720 	r = _base_make_ioc_ready(ioc, type);
7721 	if (r)
7722 		goto out;
7723 	_base_clear_outstanding_commands(ioc);
7724 
7725 	/* If this hard reset is called while port enable is active, then
7726 	 * there is no reason to call make_ioc_operational
7727 	 */
7728 	if (ioc->is_driver_loading && ioc->port_enable_failed) {
7729 		ioc->remove_host = 1;
7730 		r = -EFAULT;
7731 		goto out;
7732 	}
7733 	r = _base_get_ioc_facts(ioc);
7734 	if (r)
7735 		goto out;
7736 
7737 	r = _base_check_ioc_facts_changes(ioc);
7738 	if (r) {
7739 		ioc_info(ioc,
7740 		    "Some of the parameters got changed in this new firmware"
7741 		    " image and it requires system reboot\n");
7742 		goto out;
7743 	}
7744 	if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
7745 		panic("%s: Issue occurred with flashing controller firmware."
7746 		      "Please reboot the system and ensure that the correct"
7747 		      " firmware version is running\n", ioc->name);
7748 
7749 	r = _base_make_ioc_operational(ioc);
7750 	if (!r)
7751 		_base_reset_done_handler(ioc);
7752 
7753  out:
7754 	ioc_info(ioc, "%s: %s\n", __func__, r == 0 ? "SUCCESS" : "FAILED");
7755 
7756 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
7757 	ioc->shost_recovery = 0;
7758 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
7759 	ioc->ioc_reset_count++;
7760 	mutex_unlock(&ioc->reset_in_progress_mutex);
7761 
7762  out_unlocked:
7763 	if ((r == 0) && is_trigger) {
7764 		if (is_fault)
7765 			mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
7766 		else
7767 			mpt3sas_trigger_master(ioc,
7768 			    MASTER_TRIGGER_ADAPTER_RESET);
7769 	}
7770 	dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__));
7771 	return r;
7772 }
7773