1 /* 2 * This is the Fusion MPT base driver providing common API layer interface 3 * for access to MPT (Message Passing Technology) firmware. 4 * 5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c 6 * Copyright (C) 2012-2014 LSI Corporation 7 * Copyright (C) 2013-2014 Avago Technologies 8 * (mailto: MPT-FusionLinux.pdl@avagotech.com) 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License 12 * as published by the Free Software Foundation; either version 2 13 * of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * NO WARRANTY 21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR 22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT 23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, 24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is 25 * solely responsible for determining the appropriateness of using and 26 * distributing the Program and assumes all risks associated with its 27 * exercise of rights under this Agreement, including but not limited to 28 * the risks and costs of program errors, damage to or loss of data, 29 * programs or equipment, and unavailability or interruption of operations. 30 31 * DISCLAIMER OF LIABILITY 32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY 33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND 35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED 38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES 39 40 * You should have received a copy of the GNU General Public License 41 * along with this program; if not, write to the Free Software 42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, 43 * USA. 44 */ 45 46 #include <linux/kernel.h> 47 #include <linux/module.h> 48 #include <linux/errno.h> 49 #include <linux/init.h> 50 #include <linux/slab.h> 51 #include <linux/types.h> 52 #include <linux/pci.h> 53 #include <linux/kdev_t.h> 54 #include <linux/blkdev.h> 55 #include <linux/delay.h> 56 #include <linux/interrupt.h> 57 #include <linux/dma-mapping.h> 58 #include <linux/io.h> 59 #include <linux/time.h> 60 #include <linux/ktime.h> 61 #include <linux/kthread.h> 62 #include <asm/page.h> /* To get host page size per arch */ 63 #include <linux/aer.h> 64 65 66 #include "mpt3sas_base.h" 67 68 static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS]; 69 70 71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */ 72 73 /* maximum controller queue depth */ 74 #define MAX_HBA_QUEUE_DEPTH 30000 75 #define MAX_CHAIN_DEPTH 100000 76 static int max_queue_depth = -1; 77 module_param(max_queue_depth, int, 0444); 78 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth "); 79 80 static int max_sgl_entries = -1; 81 module_param(max_sgl_entries, int, 0444); 82 MODULE_PARM_DESC(max_sgl_entries, " max sg entries "); 83 84 static int msix_disable = -1; 85 module_param(msix_disable, int, 0444); 86 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)"); 87 88 static int smp_affinity_enable = 1; 89 module_param(smp_affinity_enable, int, 0444); 90 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)"); 91 92 static int max_msix_vectors = -1; 93 module_param(max_msix_vectors, int, 0444); 94 MODULE_PARM_DESC(max_msix_vectors, 95 " max msix vectors"); 96 97 static int irqpoll_weight = -1; 98 module_param(irqpoll_weight, int, 0444); 99 MODULE_PARM_DESC(irqpoll_weight, 100 "irq poll weight (default= one fourth of HBA queue depth)"); 101 102 static int mpt3sas_fwfault_debug; 103 MODULE_PARM_DESC(mpt3sas_fwfault_debug, 104 " enable detection of firmware fault and halt firmware - (default=0)"); 105 106 static int perf_mode = -1; 107 module_param(perf_mode, int, 0444); 108 MODULE_PARM_DESC(perf_mode, 109 "Performance mode (only for Aero/Sea Generation), options:\n\t\t" 110 "0 - balanced: high iops mode is enabled &\n\t\t" 111 "interrupt coalescing is enabled only on high iops queues,\n\t\t" 112 "1 - iops: high iops mode is disabled &\n\t\t" 113 "interrupt coalescing is enabled on all queues,\n\t\t" 114 "2 - latency: high iops mode is disabled &\n\t\t" 115 "interrupt coalescing is enabled on all queues with timeout value 0xA,\n" 116 "\t\tdefault - default perf_mode is 'balanced'" 117 ); 118 119 enum mpt3sas_perf_mode { 120 MPT_PERF_MODE_DEFAULT = -1, 121 MPT_PERF_MODE_BALANCED = 0, 122 MPT_PERF_MODE_IOPS = 1, 123 MPT_PERF_MODE_LATENCY = 2, 124 }; 125 126 static int 127 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, 128 u32 ioc_state, int timeout); 129 static int 130 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc); 131 static void 132 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc); 133 static void 134 _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc); 135 136 /** 137 * mpt3sas_base_check_cmd_timeout - Function 138 * to check timeout and command termination due 139 * to Host reset. 140 * 141 * @ioc: per adapter object. 142 * @status: Status of issued command. 143 * @mpi_request:mf request pointer. 144 * @sz: size of buffer. 145 * 146 * @Returns - 1/0 Reset to be done or Not 147 */ 148 u8 149 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc, 150 u8 status, void *mpi_request, int sz) 151 { 152 u8 issue_reset = 0; 153 154 if (!(status & MPT3_CMD_RESET)) 155 issue_reset = 1; 156 157 ioc_err(ioc, "Command %s\n", 158 issue_reset == 0 ? "terminated due to Host Reset" : "Timeout"); 159 _debug_dump_mf(mpi_request, sz); 160 161 return issue_reset; 162 } 163 164 /** 165 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug. 166 * @val: ? 167 * @kp: ? 168 * 169 * Return: ? 170 */ 171 static int 172 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp) 173 { 174 int ret = param_set_int(val, kp); 175 struct MPT3SAS_ADAPTER *ioc; 176 177 if (ret) 178 return ret; 179 180 /* global ioc spinlock to protect controller list on list operations */ 181 pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug); 182 spin_lock(&gioc_lock); 183 list_for_each_entry(ioc, &mpt3sas_ioc_list, list) 184 ioc->fwfault_debug = mpt3sas_fwfault_debug; 185 spin_unlock(&gioc_lock); 186 return 0; 187 } 188 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug, 189 param_get_int, &mpt3sas_fwfault_debug, 0644); 190 191 /** 192 * _base_readl_aero - retry readl for max three times. 193 * @addr: MPT Fusion system interface register address 194 * 195 * Retry the readl() for max three times if it gets zero value 196 * while reading the system interface register. 197 */ 198 static inline u32 199 _base_readl_aero(const volatile void __iomem *addr) 200 { 201 u32 i = 0, ret_val; 202 203 do { 204 ret_val = readl(addr); 205 i++; 206 } while (ret_val == 0 && i < 3); 207 208 return ret_val; 209 } 210 211 static inline u32 212 _base_readl(const volatile void __iomem *addr) 213 { 214 return readl(addr); 215 } 216 217 /** 218 * _base_clone_reply_to_sys_mem - copies reply to reply free iomem 219 * in BAR0 space. 220 * 221 * @ioc: per adapter object 222 * @reply: reply message frame(lower 32bit addr) 223 * @index: System request message index. 224 */ 225 static void 226 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply, 227 u32 index) 228 { 229 /* 230 * 256 is offset within sys register. 231 * 256 offset MPI frame starts. Max MPI frame supported is 32. 232 * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts 233 */ 234 u16 cmd_credit = ioc->facts.RequestCredit + 1; 235 void __iomem *reply_free_iomem = (void __iomem *)ioc->chip + 236 MPI_FRAME_START_OFFSET + 237 (cmd_credit * ioc->request_sz) + (index * sizeof(u32)); 238 239 writel(reply, reply_free_iomem); 240 } 241 242 /** 243 * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames 244 * to system/BAR0 region. 245 * 246 * @dst_iomem: Pointer to the destination location in BAR0 space. 247 * @src: Pointer to the Source data. 248 * @size: Size of data to be copied. 249 */ 250 static void 251 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size) 252 { 253 int i; 254 u32 *src_virt_mem = (u32 *)src; 255 256 for (i = 0; i < size/4; i++) 257 writel((u32)src_virt_mem[i], 258 (void __iomem *)dst_iomem + (i * 4)); 259 } 260 261 /** 262 * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region 263 * 264 * @dst_iomem: Pointer to the destination location in BAR0 space. 265 * @src: Pointer to the Source data. 266 * @size: Size of data to be copied. 267 */ 268 static void 269 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size) 270 { 271 int i; 272 u32 *src_virt_mem = (u32 *)(src); 273 274 for (i = 0; i < size/4; i++) 275 writel((u32)src_virt_mem[i], 276 (void __iomem *)dst_iomem + (i * 4)); 277 } 278 279 /** 280 * _base_get_chain - Calculates and Returns virtual chain address 281 * for the provided smid in BAR0 space. 282 * 283 * @ioc: per adapter object 284 * @smid: system request message index 285 * @sge_chain_count: Scatter gather chain count. 286 * 287 * Return: the chain address. 288 */ 289 static inline void __iomem* 290 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid, 291 u8 sge_chain_count) 292 { 293 void __iomem *base_chain, *chain_virt; 294 u16 cmd_credit = ioc->facts.RequestCredit + 1; 295 296 base_chain = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET + 297 (cmd_credit * ioc->request_sz) + 298 REPLY_FREE_POOL_SIZE; 299 chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth * 300 ioc->request_sz) + (sge_chain_count * ioc->request_sz); 301 return chain_virt; 302 } 303 304 /** 305 * _base_get_chain_phys - Calculates and Returns physical address 306 * in BAR0 for scatter gather chains, for 307 * the provided smid. 308 * 309 * @ioc: per adapter object 310 * @smid: system request message index 311 * @sge_chain_count: Scatter gather chain count. 312 * 313 * Return: Physical chain address. 314 */ 315 static inline phys_addr_t 316 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid, 317 u8 sge_chain_count) 318 { 319 phys_addr_t base_chain_phys, chain_phys; 320 u16 cmd_credit = ioc->facts.RequestCredit + 1; 321 322 base_chain_phys = ioc->chip_phys + MPI_FRAME_START_OFFSET + 323 (cmd_credit * ioc->request_sz) + 324 REPLY_FREE_POOL_SIZE; 325 chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth * 326 ioc->request_sz) + (sge_chain_count * ioc->request_sz); 327 return chain_phys; 328 } 329 330 /** 331 * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host 332 * buffer address for the provided smid. 333 * (Each smid can have 64K starts from 17024) 334 * 335 * @ioc: per adapter object 336 * @smid: system request message index 337 * 338 * Return: Pointer to buffer location in BAR0. 339 */ 340 341 static void __iomem * 342 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid) 343 { 344 u16 cmd_credit = ioc->facts.RequestCredit + 1; 345 // Added extra 1 to reach end of chain. 346 void __iomem *chain_end = _base_get_chain(ioc, 347 cmd_credit + 1, 348 ioc->facts.MaxChainDepth); 349 return chain_end + (smid * 64 * 1024); 350 } 351 352 /** 353 * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped 354 * Host buffer Physical address for the provided smid. 355 * (Each smid can have 64K starts from 17024) 356 * 357 * @ioc: per adapter object 358 * @smid: system request message index 359 * 360 * Return: Pointer to buffer location in BAR0. 361 */ 362 static phys_addr_t 363 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid) 364 { 365 u16 cmd_credit = ioc->facts.RequestCredit + 1; 366 phys_addr_t chain_end_phys = _base_get_chain_phys(ioc, 367 cmd_credit + 1, 368 ioc->facts.MaxChainDepth); 369 return chain_end_phys + (smid * 64 * 1024); 370 } 371 372 /** 373 * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain 374 * lookup list and Provides chain_buffer 375 * address for the matching dma address. 376 * (Each smid can have 64K starts from 17024) 377 * 378 * @ioc: per adapter object 379 * @chain_buffer_dma: Chain buffer dma address. 380 * 381 * Return: Pointer to chain buffer. Or Null on Failure. 382 */ 383 static void * 384 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc, 385 dma_addr_t chain_buffer_dma) 386 { 387 u16 index, j; 388 struct chain_tracker *ct; 389 390 for (index = 0; index < ioc->scsiio_depth; index++) { 391 for (j = 0; j < ioc->chains_needed_per_io; j++) { 392 ct = &ioc->chain_lookup[index].chains_per_smid[j]; 393 if (ct && ct->chain_buffer_dma == chain_buffer_dma) 394 return ct->chain_buffer; 395 } 396 } 397 ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n"); 398 return NULL; 399 } 400 401 /** 402 * _clone_sg_entries - MPI EP's scsiio and config requests 403 * are handled here. Base function for 404 * double buffering, before submitting 405 * the requests. 406 * 407 * @ioc: per adapter object. 408 * @mpi_request: mf request pointer. 409 * @smid: system request message index. 410 */ 411 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc, 412 void *mpi_request, u16 smid) 413 { 414 Mpi2SGESimple32_t *sgel, *sgel_next; 415 u32 sgl_flags, sge_chain_count = 0; 416 bool is_write = false; 417 u16 i = 0; 418 void __iomem *buffer_iomem; 419 phys_addr_t buffer_iomem_phys; 420 void __iomem *buff_ptr; 421 phys_addr_t buff_ptr_phys; 422 void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO]; 423 void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO]; 424 phys_addr_t dst_addr_phys; 425 MPI2RequestHeader_t *request_hdr; 426 struct scsi_cmnd *scmd; 427 struct scatterlist *sg_scmd = NULL; 428 int is_scsiio_req = 0; 429 430 request_hdr = (MPI2RequestHeader_t *) mpi_request; 431 432 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) { 433 Mpi25SCSIIORequest_t *scsiio_request = 434 (Mpi25SCSIIORequest_t *)mpi_request; 435 sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL; 436 is_scsiio_req = 1; 437 } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) { 438 Mpi2ConfigRequest_t *config_req = 439 (Mpi2ConfigRequest_t *)mpi_request; 440 sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE; 441 } else 442 return; 443 444 /* From smid we can get scsi_cmd, once we have sg_scmd, 445 * we just need to get sg_virt and sg_next to get virual 446 * address associated with sgel->Address. 447 */ 448 449 if (is_scsiio_req) { 450 /* Get scsi_cmd using smid */ 451 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid); 452 if (scmd == NULL) { 453 ioc_err(ioc, "scmd is NULL\n"); 454 return; 455 } 456 457 /* Get sg_scmd from scmd provided */ 458 sg_scmd = scsi_sglist(scmd); 459 } 460 461 /* 462 * 0 - 255 System register 463 * 256 - 4352 MPI Frame. (This is based on maxCredit 32) 464 * 4352 - 4864 Reply_free pool (512 byte is reserved 465 * considering maxCredit 32. Reply need extra 466 * room, for mCPU case kept four times of 467 * maxCredit). 468 * 4864 - 17152 SGE chain element. (32cmd * 3 chain of 469 * 128 byte size = 12288) 470 * 17152 - x Host buffer mapped with smid. 471 * (Each smid can have 64K Max IO.) 472 * BAR0+Last 1K MSIX Addr and Data 473 * Total size in use 2113664 bytes of 4MB BAR0 474 */ 475 476 buffer_iomem = _base_get_buffer_bar0(ioc, smid); 477 buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid); 478 479 buff_ptr = buffer_iomem; 480 buff_ptr_phys = buffer_iomem_phys; 481 WARN_ON(buff_ptr_phys > U32_MAX); 482 483 if (le32_to_cpu(sgel->FlagsLength) & 484 (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT)) 485 is_write = true; 486 487 for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) { 488 489 sgl_flags = 490 (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT); 491 492 switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) { 493 case MPI2_SGE_FLAGS_CHAIN_ELEMENT: 494 /* 495 * Helper function which on passing 496 * chain_buffer_dma returns chain_buffer. Get 497 * the virtual address for sgel->Address 498 */ 499 sgel_next = 500 _base_get_chain_buffer_dma_to_chain_buffer(ioc, 501 le32_to_cpu(sgel->Address)); 502 if (sgel_next == NULL) 503 return; 504 /* 505 * This is coping 128 byte chain 506 * frame (not a host buffer) 507 */ 508 dst_chain_addr[sge_chain_count] = 509 _base_get_chain(ioc, 510 smid, sge_chain_count); 511 src_chain_addr[sge_chain_count] = 512 (void *) sgel_next; 513 dst_addr_phys = _base_get_chain_phys(ioc, 514 smid, sge_chain_count); 515 WARN_ON(dst_addr_phys > U32_MAX); 516 sgel->Address = 517 cpu_to_le32(lower_32_bits(dst_addr_phys)); 518 sgel = sgel_next; 519 sge_chain_count++; 520 break; 521 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT: 522 if (is_write) { 523 if (is_scsiio_req) { 524 _base_clone_to_sys_mem(buff_ptr, 525 sg_virt(sg_scmd), 526 (le32_to_cpu(sgel->FlagsLength) & 527 0x00ffffff)); 528 /* 529 * FIXME: this relies on a a zero 530 * PCI mem_offset. 531 */ 532 sgel->Address = 533 cpu_to_le32((u32)buff_ptr_phys); 534 } else { 535 _base_clone_to_sys_mem(buff_ptr, 536 ioc->config_vaddr, 537 (le32_to_cpu(sgel->FlagsLength) & 538 0x00ffffff)); 539 sgel->Address = 540 cpu_to_le32((u32)buff_ptr_phys); 541 } 542 } 543 buff_ptr += (le32_to_cpu(sgel->FlagsLength) & 544 0x00ffffff); 545 buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) & 546 0x00ffffff); 547 if ((le32_to_cpu(sgel->FlagsLength) & 548 (MPI2_SGE_FLAGS_END_OF_BUFFER 549 << MPI2_SGE_FLAGS_SHIFT))) 550 goto eob_clone_chain; 551 else { 552 /* 553 * Every single element in MPT will have 554 * associated sg_next. Better to sanity that 555 * sg_next is not NULL, but it will be a bug 556 * if it is null. 557 */ 558 if (is_scsiio_req) { 559 sg_scmd = sg_next(sg_scmd); 560 if (sg_scmd) 561 sgel++; 562 else 563 goto eob_clone_chain; 564 } 565 } 566 break; 567 } 568 } 569 570 eob_clone_chain: 571 for (i = 0; i < sge_chain_count; i++) { 572 if (is_scsiio_req) 573 _base_clone_to_sys_mem(dst_chain_addr[i], 574 src_chain_addr[i], ioc->request_sz); 575 } 576 } 577 578 /** 579 * mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc 580 * @arg: input argument, used to derive ioc 581 * 582 * Return: 583 * 0 if controller is removed from pci subsystem. 584 * -1 for other case. 585 */ 586 static int mpt3sas_remove_dead_ioc_func(void *arg) 587 { 588 struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg; 589 struct pci_dev *pdev; 590 591 if (!ioc) 592 return -1; 593 594 pdev = ioc->pdev; 595 if (!pdev) 596 return -1; 597 pci_stop_and_remove_bus_device_locked(pdev); 598 return 0; 599 } 600 601 /** 602 * _base_fault_reset_work - workq handling ioc fault conditions 603 * @work: input argument, used to derive ioc 604 * 605 * Context: sleep. 606 */ 607 static void 608 _base_fault_reset_work(struct work_struct *work) 609 { 610 struct MPT3SAS_ADAPTER *ioc = 611 container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work); 612 unsigned long flags; 613 u32 doorbell; 614 int rc; 615 struct task_struct *p; 616 617 618 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 619 if ((ioc->shost_recovery && (ioc->ioc_coredump_loop == 0)) || 620 ioc->pci_error_recovery) 621 goto rearm_timer; 622 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 623 624 doorbell = mpt3sas_base_get_iocstate(ioc, 0); 625 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) { 626 ioc_err(ioc, "SAS host is non-operational !!!!\n"); 627 628 /* It may be possible that EEH recovery can resolve some of 629 * pci bus failure issues rather removing the dead ioc function 630 * by considering controller is in a non-operational state. So 631 * here priority is given to the EEH recovery. If it doesn't 632 * not resolve this issue, mpt3sas driver will consider this 633 * controller to non-operational state and remove the dead ioc 634 * function. 635 */ 636 if (ioc->non_operational_loop++ < 5) { 637 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, 638 flags); 639 goto rearm_timer; 640 } 641 642 /* 643 * Call _scsih_flush_pending_cmds callback so that we flush all 644 * pending commands back to OS. This call is required to aovid 645 * deadlock at block layer. Dead IOC will fail to do diag reset, 646 * and this call is safe since dead ioc will never return any 647 * command back from HW. 648 */ 649 ioc->schedule_dead_ioc_flush_running_cmds(ioc); 650 /* 651 * Set remove_host flag early since kernel thread will 652 * take some time to execute. 653 */ 654 ioc->remove_host = 1; 655 /*Remove the Dead Host */ 656 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc, 657 "%s_dead_ioc_%d", ioc->driver_name, ioc->id); 658 if (IS_ERR(p)) 659 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n", 660 __func__); 661 else 662 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n", 663 __func__); 664 return; /* don't rearm timer */ 665 } 666 667 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) { 668 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ? 669 ioc->manu_pg11.CoreDumpTOSec : 670 MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS; 671 672 timeout /= (FAULT_POLLING_INTERVAL/1000); 673 674 if (ioc->ioc_coredump_loop == 0) { 675 mpt3sas_print_coredump_info(ioc, 676 doorbell & MPI2_DOORBELL_DATA_MASK); 677 /* do not accept any IOs and disable the interrupts */ 678 spin_lock_irqsave( 679 &ioc->ioc_reset_in_progress_lock, flags); 680 ioc->shost_recovery = 1; 681 spin_unlock_irqrestore( 682 &ioc->ioc_reset_in_progress_lock, flags); 683 _base_mask_interrupts(ioc); 684 _base_clear_outstanding_commands(ioc); 685 } 686 687 ioc_info(ioc, "%s: CoreDump loop %d.", 688 __func__, ioc->ioc_coredump_loop); 689 690 /* Wait until CoreDump completes or times out */ 691 if (ioc->ioc_coredump_loop++ < timeout) { 692 spin_lock_irqsave( 693 &ioc->ioc_reset_in_progress_lock, flags); 694 goto rearm_timer; 695 } 696 } 697 698 if (ioc->ioc_coredump_loop) { 699 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_COREDUMP) 700 ioc_err(ioc, "%s: CoreDump completed. LoopCount: %d", 701 __func__, ioc->ioc_coredump_loop); 702 else 703 ioc_err(ioc, "%s: CoreDump Timed out. LoopCount: %d", 704 __func__, ioc->ioc_coredump_loop); 705 ioc->ioc_coredump_loop = MPT3SAS_COREDUMP_LOOP_DONE; 706 } 707 ioc->non_operational_loop = 0; 708 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) { 709 rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 710 ioc_warn(ioc, "%s: hard reset: %s\n", 711 __func__, rc == 0 ? "success" : "failed"); 712 doorbell = mpt3sas_base_get_iocstate(ioc, 0); 713 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 714 mpt3sas_print_fault_code(ioc, doorbell & 715 MPI2_DOORBELL_DATA_MASK); 716 } else if ((doorbell & MPI2_IOC_STATE_MASK) == 717 MPI2_IOC_STATE_COREDUMP) 718 mpt3sas_print_coredump_info(ioc, doorbell & 719 MPI2_DOORBELL_DATA_MASK); 720 if (rc && (doorbell & MPI2_IOC_STATE_MASK) != 721 MPI2_IOC_STATE_OPERATIONAL) 722 return; /* don't rearm timer */ 723 } 724 ioc->ioc_coredump_loop = 0; 725 726 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 727 rearm_timer: 728 if (ioc->fault_reset_work_q) 729 queue_delayed_work(ioc->fault_reset_work_q, 730 &ioc->fault_reset_work, 731 msecs_to_jiffies(FAULT_POLLING_INTERVAL)); 732 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 733 } 734 735 /** 736 * mpt3sas_base_start_watchdog - start the fault_reset_work_q 737 * @ioc: per adapter object 738 * 739 * Context: sleep. 740 */ 741 void 742 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc) 743 { 744 unsigned long flags; 745 746 if (ioc->fault_reset_work_q) 747 return; 748 749 /* initialize fault polling */ 750 751 INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work); 752 snprintf(ioc->fault_reset_work_q_name, 753 sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status", 754 ioc->driver_name, ioc->id); 755 ioc->fault_reset_work_q = 756 create_singlethread_workqueue(ioc->fault_reset_work_q_name); 757 if (!ioc->fault_reset_work_q) { 758 ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__); 759 return; 760 } 761 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 762 if (ioc->fault_reset_work_q) 763 queue_delayed_work(ioc->fault_reset_work_q, 764 &ioc->fault_reset_work, 765 msecs_to_jiffies(FAULT_POLLING_INTERVAL)); 766 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 767 } 768 769 /** 770 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q 771 * @ioc: per adapter object 772 * 773 * Context: sleep. 774 */ 775 void 776 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc) 777 { 778 unsigned long flags; 779 struct workqueue_struct *wq; 780 781 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 782 wq = ioc->fault_reset_work_q; 783 ioc->fault_reset_work_q = NULL; 784 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 785 if (wq) { 786 if (!cancel_delayed_work_sync(&ioc->fault_reset_work)) 787 flush_workqueue(wq); 788 destroy_workqueue(wq); 789 } 790 } 791 792 /** 793 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code 794 * @ioc: per adapter object 795 * @fault_code: fault code 796 */ 797 void 798 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code) 799 { 800 ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code); 801 } 802 803 /** 804 * mpt3sas_base_coredump_info - verbose translation of firmware CoreDump state 805 * @ioc: per adapter object 806 * @fault_code: fault code 807 * 808 * Return nothing. 809 */ 810 void 811 mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code) 812 { 813 ioc_err(ioc, "coredump_state(0x%04x)!\n", fault_code); 814 } 815 816 /** 817 * mpt3sas_base_wait_for_coredump_completion - Wait until coredump 818 * completes or times out 819 * @ioc: per adapter object 820 * @caller: caller function name 821 * 822 * Returns 0 for success, non-zero for failure. 823 */ 824 int 825 mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER *ioc, 826 const char *caller) 827 { 828 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ? 829 ioc->manu_pg11.CoreDumpTOSec : 830 MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS; 831 832 int ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_FAULT, 833 timeout); 834 835 if (ioc_state) 836 ioc_err(ioc, 837 "%s: CoreDump timed out. (ioc_state=0x%x)\n", 838 caller, ioc_state); 839 else 840 ioc_info(ioc, 841 "%s: CoreDump completed. (ioc_state=0x%x)\n", 842 caller, ioc_state); 843 844 return ioc_state; 845 } 846 847 /** 848 * mpt3sas_halt_firmware - halt's mpt controller firmware 849 * @ioc: per adapter object 850 * 851 * For debugging timeout related issues. Writing 0xCOFFEE00 852 * to the doorbell register will halt controller firmware. With 853 * the purpose to stop both driver and firmware, the enduser can 854 * obtain a ring buffer from controller UART. 855 */ 856 void 857 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc) 858 { 859 u32 doorbell; 860 861 if (!ioc->fwfault_debug) 862 return; 863 864 dump_stack(); 865 866 doorbell = ioc->base_readl(&ioc->chip->Doorbell); 867 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 868 mpt3sas_print_fault_code(ioc, doorbell & 869 MPI2_DOORBELL_DATA_MASK); 870 } else if ((doorbell & MPI2_IOC_STATE_MASK) == 871 MPI2_IOC_STATE_COREDUMP) { 872 mpt3sas_print_coredump_info(ioc, doorbell & 873 MPI2_DOORBELL_DATA_MASK); 874 } else { 875 writel(0xC0FFEE00, &ioc->chip->Doorbell); 876 ioc_err(ioc, "Firmware is halted due to command timeout\n"); 877 } 878 879 if (ioc->fwfault_debug == 2) 880 for (;;) 881 ; 882 else 883 panic("panic in %s\n", __func__); 884 } 885 886 /** 887 * _base_sas_ioc_info - verbose translation of the ioc status 888 * @ioc: per adapter object 889 * @mpi_reply: reply mf payload returned from firmware 890 * @request_hdr: request mf 891 */ 892 static void 893 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply, 894 MPI2RequestHeader_t *request_hdr) 895 { 896 u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & 897 MPI2_IOCSTATUS_MASK; 898 char *desc = NULL; 899 u16 frame_sz; 900 char *func_str = NULL; 901 902 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */ 903 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST || 904 request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH || 905 request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION) 906 return; 907 908 if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE) 909 return; 910 911 switch (ioc_status) { 912 913 /**************************************************************************** 914 * Common IOCStatus values for all replies 915 ****************************************************************************/ 916 917 case MPI2_IOCSTATUS_INVALID_FUNCTION: 918 desc = "invalid function"; 919 break; 920 case MPI2_IOCSTATUS_BUSY: 921 desc = "busy"; 922 break; 923 case MPI2_IOCSTATUS_INVALID_SGL: 924 desc = "invalid sgl"; 925 break; 926 case MPI2_IOCSTATUS_INTERNAL_ERROR: 927 desc = "internal error"; 928 break; 929 case MPI2_IOCSTATUS_INVALID_VPID: 930 desc = "invalid vpid"; 931 break; 932 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES: 933 desc = "insufficient resources"; 934 break; 935 case MPI2_IOCSTATUS_INSUFFICIENT_POWER: 936 desc = "insufficient power"; 937 break; 938 case MPI2_IOCSTATUS_INVALID_FIELD: 939 desc = "invalid field"; 940 break; 941 case MPI2_IOCSTATUS_INVALID_STATE: 942 desc = "invalid state"; 943 break; 944 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED: 945 desc = "op state not supported"; 946 break; 947 948 /**************************************************************************** 949 * Config IOCStatus values 950 ****************************************************************************/ 951 952 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION: 953 desc = "config invalid action"; 954 break; 955 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE: 956 desc = "config invalid type"; 957 break; 958 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE: 959 desc = "config invalid page"; 960 break; 961 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA: 962 desc = "config invalid data"; 963 break; 964 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS: 965 desc = "config no defaults"; 966 break; 967 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT: 968 desc = "config cant commit"; 969 break; 970 971 /**************************************************************************** 972 * SCSI IO Reply 973 ****************************************************************************/ 974 975 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR: 976 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE: 977 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE: 978 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN: 979 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN: 980 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR: 981 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR: 982 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED: 983 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH: 984 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED: 985 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED: 986 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED: 987 break; 988 989 /**************************************************************************** 990 * For use by SCSI Initiator and SCSI Target end-to-end data protection 991 ****************************************************************************/ 992 993 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR: 994 desc = "eedp guard error"; 995 break; 996 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR: 997 desc = "eedp ref tag error"; 998 break; 999 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR: 1000 desc = "eedp app tag error"; 1001 break; 1002 1003 /**************************************************************************** 1004 * SCSI Target values 1005 ****************************************************************************/ 1006 1007 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX: 1008 desc = "target invalid io index"; 1009 break; 1010 case MPI2_IOCSTATUS_TARGET_ABORTED: 1011 desc = "target aborted"; 1012 break; 1013 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE: 1014 desc = "target no conn retryable"; 1015 break; 1016 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION: 1017 desc = "target no connection"; 1018 break; 1019 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH: 1020 desc = "target xfer count mismatch"; 1021 break; 1022 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR: 1023 desc = "target data offset error"; 1024 break; 1025 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA: 1026 desc = "target too much write data"; 1027 break; 1028 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT: 1029 desc = "target iu too short"; 1030 break; 1031 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT: 1032 desc = "target ack nak timeout"; 1033 break; 1034 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED: 1035 desc = "target nak received"; 1036 break; 1037 1038 /**************************************************************************** 1039 * Serial Attached SCSI values 1040 ****************************************************************************/ 1041 1042 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED: 1043 desc = "smp request failed"; 1044 break; 1045 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN: 1046 desc = "smp data overrun"; 1047 break; 1048 1049 /**************************************************************************** 1050 * Diagnostic Buffer Post / Diagnostic Release values 1051 ****************************************************************************/ 1052 1053 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED: 1054 desc = "diagnostic released"; 1055 break; 1056 default: 1057 break; 1058 } 1059 1060 if (!desc) 1061 return; 1062 1063 switch (request_hdr->Function) { 1064 case MPI2_FUNCTION_CONFIG: 1065 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size; 1066 func_str = "config_page"; 1067 break; 1068 case MPI2_FUNCTION_SCSI_TASK_MGMT: 1069 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t); 1070 func_str = "task_mgmt"; 1071 break; 1072 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL: 1073 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t); 1074 func_str = "sas_iounit_ctl"; 1075 break; 1076 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR: 1077 frame_sz = sizeof(Mpi2SepRequest_t); 1078 func_str = "enclosure"; 1079 break; 1080 case MPI2_FUNCTION_IOC_INIT: 1081 frame_sz = sizeof(Mpi2IOCInitRequest_t); 1082 func_str = "ioc_init"; 1083 break; 1084 case MPI2_FUNCTION_PORT_ENABLE: 1085 frame_sz = sizeof(Mpi2PortEnableRequest_t); 1086 func_str = "port_enable"; 1087 break; 1088 case MPI2_FUNCTION_SMP_PASSTHROUGH: 1089 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size; 1090 func_str = "smp_passthru"; 1091 break; 1092 case MPI2_FUNCTION_NVME_ENCAPSULATED: 1093 frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) + 1094 ioc->sge_size; 1095 func_str = "nvme_encapsulated"; 1096 break; 1097 default: 1098 frame_sz = 32; 1099 func_str = "unknown"; 1100 break; 1101 } 1102 1103 ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n", 1104 desc, ioc_status, request_hdr, func_str); 1105 1106 _debug_dump_mf(request_hdr, frame_sz/4); 1107 } 1108 1109 /** 1110 * _base_display_event_data - verbose translation of firmware asyn events 1111 * @ioc: per adapter object 1112 * @mpi_reply: reply mf payload returned from firmware 1113 */ 1114 static void 1115 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc, 1116 Mpi2EventNotificationReply_t *mpi_reply) 1117 { 1118 char *desc = NULL; 1119 u16 event; 1120 1121 if (!(ioc->logging_level & MPT_DEBUG_EVENTS)) 1122 return; 1123 1124 event = le16_to_cpu(mpi_reply->Event); 1125 1126 switch (event) { 1127 case MPI2_EVENT_LOG_DATA: 1128 desc = "Log Data"; 1129 break; 1130 case MPI2_EVENT_STATE_CHANGE: 1131 desc = "Status Change"; 1132 break; 1133 case MPI2_EVENT_HARD_RESET_RECEIVED: 1134 desc = "Hard Reset Received"; 1135 break; 1136 case MPI2_EVENT_EVENT_CHANGE: 1137 desc = "Event Change"; 1138 break; 1139 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE: 1140 desc = "Device Status Change"; 1141 break; 1142 case MPI2_EVENT_IR_OPERATION_STATUS: 1143 if (!ioc->hide_ir_msg) 1144 desc = "IR Operation Status"; 1145 break; 1146 case MPI2_EVENT_SAS_DISCOVERY: 1147 { 1148 Mpi2EventDataSasDiscovery_t *event_data = 1149 (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData; 1150 ioc_info(ioc, "Discovery: (%s)", 1151 event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ? 1152 "start" : "stop"); 1153 if (event_data->DiscoveryStatus) 1154 pr_cont(" discovery_status(0x%08x)", 1155 le32_to_cpu(event_data->DiscoveryStatus)); 1156 pr_cont("\n"); 1157 return; 1158 } 1159 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE: 1160 desc = "SAS Broadcast Primitive"; 1161 break; 1162 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE: 1163 desc = "SAS Init Device Status Change"; 1164 break; 1165 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW: 1166 desc = "SAS Init Table Overflow"; 1167 break; 1168 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST: 1169 desc = "SAS Topology Change List"; 1170 break; 1171 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE: 1172 desc = "SAS Enclosure Device Status Change"; 1173 break; 1174 case MPI2_EVENT_IR_VOLUME: 1175 if (!ioc->hide_ir_msg) 1176 desc = "IR Volume"; 1177 break; 1178 case MPI2_EVENT_IR_PHYSICAL_DISK: 1179 if (!ioc->hide_ir_msg) 1180 desc = "IR Physical Disk"; 1181 break; 1182 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST: 1183 if (!ioc->hide_ir_msg) 1184 desc = "IR Configuration Change List"; 1185 break; 1186 case MPI2_EVENT_LOG_ENTRY_ADDED: 1187 if (!ioc->hide_ir_msg) 1188 desc = "Log Entry Added"; 1189 break; 1190 case MPI2_EVENT_TEMP_THRESHOLD: 1191 desc = "Temperature Threshold"; 1192 break; 1193 case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION: 1194 desc = "Cable Event"; 1195 break; 1196 case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR: 1197 desc = "SAS Device Discovery Error"; 1198 break; 1199 case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE: 1200 desc = "PCIE Device Status Change"; 1201 break; 1202 case MPI2_EVENT_PCIE_ENUMERATION: 1203 { 1204 Mpi26EventDataPCIeEnumeration_t *event_data = 1205 (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData; 1206 ioc_info(ioc, "PCIE Enumeration: (%s)", 1207 event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ? 1208 "start" : "stop"); 1209 if (event_data->EnumerationStatus) 1210 pr_cont("enumeration_status(0x%08x)", 1211 le32_to_cpu(event_data->EnumerationStatus)); 1212 pr_cont("\n"); 1213 return; 1214 } 1215 case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST: 1216 desc = "PCIE Topology Change List"; 1217 break; 1218 } 1219 1220 if (!desc) 1221 return; 1222 1223 ioc_info(ioc, "%s\n", desc); 1224 } 1225 1226 /** 1227 * _base_sas_log_info - verbose translation of firmware log info 1228 * @ioc: per adapter object 1229 * @log_info: log info 1230 */ 1231 static void 1232 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info) 1233 { 1234 union loginfo_type { 1235 u32 loginfo; 1236 struct { 1237 u32 subcode:16; 1238 u32 code:8; 1239 u32 originator:4; 1240 u32 bus_type:4; 1241 } dw; 1242 }; 1243 union loginfo_type sas_loginfo; 1244 char *originator_str = NULL; 1245 1246 sas_loginfo.loginfo = log_info; 1247 if (sas_loginfo.dw.bus_type != 3 /*SAS*/) 1248 return; 1249 1250 /* each nexus loss loginfo */ 1251 if (log_info == 0x31170000) 1252 return; 1253 1254 /* eat the loginfos associated with task aborts */ 1255 if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info == 1256 0x31140000 || log_info == 0x31130000)) 1257 return; 1258 1259 switch (sas_loginfo.dw.originator) { 1260 case 0: 1261 originator_str = "IOP"; 1262 break; 1263 case 1: 1264 originator_str = "PL"; 1265 break; 1266 case 2: 1267 if (!ioc->hide_ir_msg) 1268 originator_str = "IR"; 1269 else 1270 originator_str = "WarpDrive"; 1271 break; 1272 } 1273 1274 ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n", 1275 log_info, 1276 originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode); 1277 } 1278 1279 /** 1280 * _base_display_reply_info - 1281 * @ioc: per adapter object 1282 * @smid: system request message index 1283 * @msix_index: MSIX table index supplied by the OS 1284 * @reply: reply message frame(lower 32bit addr) 1285 */ 1286 static void 1287 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 1288 u32 reply) 1289 { 1290 MPI2DefaultReply_t *mpi_reply; 1291 u16 ioc_status; 1292 u32 loginfo = 0; 1293 1294 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1295 if (unlikely(!mpi_reply)) { 1296 ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n", 1297 __FILE__, __LINE__, __func__); 1298 return; 1299 } 1300 ioc_status = le16_to_cpu(mpi_reply->IOCStatus); 1301 1302 if ((ioc_status & MPI2_IOCSTATUS_MASK) && 1303 (ioc->logging_level & MPT_DEBUG_REPLY)) { 1304 _base_sas_ioc_info(ioc , mpi_reply, 1305 mpt3sas_base_get_msg_frame(ioc, smid)); 1306 } 1307 1308 if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) { 1309 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo); 1310 _base_sas_log_info(ioc, loginfo); 1311 } 1312 1313 if (ioc_status || loginfo) { 1314 ioc_status &= MPI2_IOCSTATUS_MASK; 1315 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo); 1316 } 1317 } 1318 1319 /** 1320 * mpt3sas_base_done - base internal command completion routine 1321 * @ioc: per adapter object 1322 * @smid: system request message index 1323 * @msix_index: MSIX table index supplied by the OS 1324 * @reply: reply message frame(lower 32bit addr) 1325 * 1326 * Return: 1327 * 1 meaning mf should be freed from _base_interrupt 1328 * 0 means the mf is freed from this function. 1329 */ 1330 u8 1331 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 1332 u32 reply) 1333 { 1334 MPI2DefaultReply_t *mpi_reply; 1335 1336 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1337 if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK) 1338 return mpt3sas_check_for_pending_internal_cmds(ioc, smid); 1339 1340 if (ioc->base_cmds.status == MPT3_CMD_NOT_USED) 1341 return 1; 1342 1343 ioc->base_cmds.status |= MPT3_CMD_COMPLETE; 1344 if (mpi_reply) { 1345 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID; 1346 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4); 1347 } 1348 ioc->base_cmds.status &= ~MPT3_CMD_PENDING; 1349 1350 complete(&ioc->base_cmds.done); 1351 return 1; 1352 } 1353 1354 /** 1355 * _base_async_event - main callback handler for firmware asyn events 1356 * @ioc: per adapter object 1357 * @msix_index: MSIX table index supplied by the OS 1358 * @reply: reply message frame(lower 32bit addr) 1359 * 1360 * Return: 1361 * 1 meaning mf should be freed from _base_interrupt 1362 * 0 means the mf is freed from this function. 1363 */ 1364 static u8 1365 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply) 1366 { 1367 Mpi2EventNotificationReply_t *mpi_reply; 1368 Mpi2EventAckRequest_t *ack_request; 1369 u16 smid; 1370 struct _event_ack_list *delayed_event_ack; 1371 1372 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1373 if (!mpi_reply) 1374 return 1; 1375 if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION) 1376 return 1; 1377 1378 _base_display_event_data(ioc, mpi_reply); 1379 1380 if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED)) 1381 goto out; 1382 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 1383 if (!smid) { 1384 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack), 1385 GFP_ATOMIC); 1386 if (!delayed_event_ack) 1387 goto out; 1388 INIT_LIST_HEAD(&delayed_event_ack->list); 1389 delayed_event_ack->Event = mpi_reply->Event; 1390 delayed_event_ack->EventContext = mpi_reply->EventContext; 1391 list_add_tail(&delayed_event_ack->list, 1392 &ioc->delayed_event_ack_list); 1393 dewtprintk(ioc, 1394 ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n", 1395 le16_to_cpu(mpi_reply->Event))); 1396 goto out; 1397 } 1398 1399 ack_request = mpt3sas_base_get_msg_frame(ioc, smid); 1400 memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t)); 1401 ack_request->Function = MPI2_FUNCTION_EVENT_ACK; 1402 ack_request->Event = mpi_reply->Event; 1403 ack_request->EventContext = mpi_reply->EventContext; 1404 ack_request->VF_ID = 0; /* TODO */ 1405 ack_request->VP_ID = 0; 1406 ioc->put_smid_default(ioc, smid); 1407 1408 out: 1409 1410 /* scsih callback handler */ 1411 mpt3sas_scsih_event_callback(ioc, msix_index, reply); 1412 1413 /* ctl callback handler */ 1414 mpt3sas_ctl_event_callback(ioc, msix_index, reply); 1415 1416 return 1; 1417 } 1418 1419 static struct scsiio_tracker * 1420 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid) 1421 { 1422 struct scsi_cmnd *cmd; 1423 1424 if (WARN_ON(!smid) || 1425 WARN_ON(smid >= ioc->hi_priority_smid)) 1426 return NULL; 1427 1428 cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid); 1429 if (cmd) 1430 return scsi_cmd_priv(cmd); 1431 1432 return NULL; 1433 } 1434 1435 /** 1436 * _base_get_cb_idx - obtain the callback index 1437 * @ioc: per adapter object 1438 * @smid: system request message index 1439 * 1440 * Return: callback index. 1441 */ 1442 static u8 1443 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid) 1444 { 1445 int i; 1446 u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1; 1447 u8 cb_idx = 0xFF; 1448 1449 if (smid < ioc->hi_priority_smid) { 1450 struct scsiio_tracker *st; 1451 1452 if (smid < ctl_smid) { 1453 st = _get_st_from_smid(ioc, smid); 1454 if (st) 1455 cb_idx = st->cb_idx; 1456 } else if (smid == ctl_smid) 1457 cb_idx = ioc->ctl_cb_idx; 1458 } else if (smid < ioc->internal_smid) { 1459 i = smid - ioc->hi_priority_smid; 1460 cb_idx = ioc->hpr_lookup[i].cb_idx; 1461 } else if (smid <= ioc->hba_queue_depth) { 1462 i = smid - ioc->internal_smid; 1463 cb_idx = ioc->internal_lookup[i].cb_idx; 1464 } 1465 return cb_idx; 1466 } 1467 1468 /** 1469 * _base_mask_interrupts - disable interrupts 1470 * @ioc: per adapter object 1471 * 1472 * Disabling ResetIRQ, Reply and Doorbell Interrupts 1473 */ 1474 static void 1475 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc) 1476 { 1477 u32 him_register; 1478 1479 ioc->mask_interrupts = 1; 1480 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask); 1481 him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK; 1482 writel(him_register, &ioc->chip->HostInterruptMask); 1483 ioc->base_readl(&ioc->chip->HostInterruptMask); 1484 } 1485 1486 /** 1487 * _base_unmask_interrupts - enable interrupts 1488 * @ioc: per adapter object 1489 * 1490 * Enabling only Reply Interrupts 1491 */ 1492 static void 1493 _base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc) 1494 { 1495 u32 him_register; 1496 1497 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask); 1498 him_register &= ~MPI2_HIM_RIM; 1499 writel(him_register, &ioc->chip->HostInterruptMask); 1500 ioc->mask_interrupts = 0; 1501 } 1502 1503 union reply_descriptor { 1504 u64 word; 1505 struct { 1506 u32 low; 1507 u32 high; 1508 } u; 1509 }; 1510 1511 static u32 base_mod64(u64 dividend, u32 divisor) 1512 { 1513 u32 remainder; 1514 1515 if (!divisor) 1516 pr_err("mpt3sas: DIVISOR is zero, in div fn\n"); 1517 remainder = do_div(dividend, divisor); 1518 return remainder; 1519 } 1520 1521 /** 1522 * _base_process_reply_queue - Process reply descriptors from reply 1523 * descriptor post queue. 1524 * @reply_q: per IRQ's reply queue object. 1525 * 1526 * Return: number of reply descriptors processed from reply 1527 * descriptor queue. 1528 */ 1529 static int 1530 _base_process_reply_queue(struct adapter_reply_queue *reply_q) 1531 { 1532 union reply_descriptor rd; 1533 u64 completed_cmds; 1534 u8 request_descript_type; 1535 u16 smid; 1536 u8 cb_idx; 1537 u32 reply; 1538 u8 msix_index = reply_q->msix_index; 1539 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc; 1540 Mpi2ReplyDescriptorsUnion_t *rpf; 1541 u8 rc; 1542 1543 completed_cmds = 0; 1544 if (!atomic_add_unless(&reply_q->busy, 1, 1)) 1545 return completed_cmds; 1546 1547 rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index]; 1548 request_descript_type = rpf->Default.ReplyFlags 1549 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 1550 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) { 1551 atomic_dec(&reply_q->busy); 1552 return completed_cmds; 1553 } 1554 1555 cb_idx = 0xFF; 1556 do { 1557 rd.word = le64_to_cpu(rpf->Words); 1558 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX) 1559 goto out; 1560 reply = 0; 1561 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1); 1562 if (request_descript_type == 1563 MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS || 1564 request_descript_type == 1565 MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS || 1566 request_descript_type == 1567 MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) { 1568 cb_idx = _base_get_cb_idx(ioc, smid); 1569 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) && 1570 (likely(mpt_callbacks[cb_idx] != NULL))) { 1571 rc = mpt_callbacks[cb_idx](ioc, smid, 1572 msix_index, 0); 1573 if (rc) 1574 mpt3sas_base_free_smid(ioc, smid); 1575 } 1576 } else if (request_descript_type == 1577 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) { 1578 reply = le32_to_cpu( 1579 rpf->AddressReply.ReplyFrameAddress); 1580 if (reply > ioc->reply_dma_max_address || 1581 reply < ioc->reply_dma_min_address) 1582 reply = 0; 1583 if (smid) { 1584 cb_idx = _base_get_cb_idx(ioc, smid); 1585 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) && 1586 (likely(mpt_callbacks[cb_idx] != NULL))) { 1587 rc = mpt_callbacks[cb_idx](ioc, smid, 1588 msix_index, reply); 1589 if (reply) 1590 _base_display_reply_info(ioc, 1591 smid, msix_index, reply); 1592 if (rc) 1593 mpt3sas_base_free_smid(ioc, 1594 smid); 1595 } 1596 } else { 1597 _base_async_event(ioc, msix_index, reply); 1598 } 1599 1600 /* reply free queue handling */ 1601 if (reply) { 1602 ioc->reply_free_host_index = 1603 (ioc->reply_free_host_index == 1604 (ioc->reply_free_queue_depth - 1)) ? 1605 0 : ioc->reply_free_host_index + 1; 1606 ioc->reply_free[ioc->reply_free_host_index] = 1607 cpu_to_le32(reply); 1608 if (ioc->is_mcpu_endpoint) 1609 _base_clone_reply_to_sys_mem(ioc, 1610 reply, 1611 ioc->reply_free_host_index); 1612 writel(ioc->reply_free_host_index, 1613 &ioc->chip->ReplyFreeHostIndex); 1614 } 1615 } 1616 1617 rpf->Words = cpu_to_le64(ULLONG_MAX); 1618 reply_q->reply_post_host_index = 1619 (reply_q->reply_post_host_index == 1620 (ioc->reply_post_queue_depth - 1)) ? 0 : 1621 reply_q->reply_post_host_index + 1; 1622 request_descript_type = 1623 reply_q->reply_post_free[reply_q->reply_post_host_index]. 1624 Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 1625 completed_cmds++; 1626 /* Update the reply post host index after continuously 1627 * processing the threshold number of Reply Descriptors. 1628 * So that FW can find enough entries to post the Reply 1629 * Descriptors in the reply descriptor post queue. 1630 */ 1631 if (!base_mod64(completed_cmds, ioc->thresh_hold)) { 1632 if (ioc->combined_reply_queue) { 1633 writel(reply_q->reply_post_host_index | 1634 ((msix_index & 7) << 1635 MPI2_RPHI_MSIX_INDEX_SHIFT), 1636 ioc->replyPostRegisterIndex[msix_index/8]); 1637 } else { 1638 writel(reply_q->reply_post_host_index | 1639 (msix_index << 1640 MPI2_RPHI_MSIX_INDEX_SHIFT), 1641 &ioc->chip->ReplyPostHostIndex); 1642 } 1643 if (!reply_q->irq_poll_scheduled) { 1644 reply_q->irq_poll_scheduled = true; 1645 irq_poll_sched(&reply_q->irqpoll); 1646 } 1647 atomic_dec(&reply_q->busy); 1648 return completed_cmds; 1649 } 1650 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) 1651 goto out; 1652 if (!reply_q->reply_post_host_index) 1653 rpf = reply_q->reply_post_free; 1654 else 1655 rpf++; 1656 } while (1); 1657 1658 out: 1659 1660 if (!completed_cmds) { 1661 atomic_dec(&reply_q->busy); 1662 return completed_cmds; 1663 } 1664 1665 if (ioc->is_warpdrive) { 1666 writel(reply_q->reply_post_host_index, 1667 ioc->reply_post_host_index[msix_index]); 1668 atomic_dec(&reply_q->busy); 1669 return completed_cmds; 1670 } 1671 1672 /* Update Reply Post Host Index. 1673 * For those HBA's which support combined reply queue feature 1674 * 1. Get the correct Supplemental Reply Post Host Index Register. 1675 * i.e. (msix_index / 8)th entry from Supplemental Reply Post Host 1676 * Index Register address bank i.e replyPostRegisterIndex[], 1677 * 2. Then update this register with new reply host index value 1678 * in ReplyPostIndex field and the MSIxIndex field with 1679 * msix_index value reduced to a value between 0 and 7, 1680 * using a modulo 8 operation. Since each Supplemental Reply Post 1681 * Host Index Register supports 8 MSI-X vectors. 1682 * 1683 * For other HBA's just update the Reply Post Host Index register with 1684 * new reply host index value in ReplyPostIndex Field and msix_index 1685 * value in MSIxIndex field. 1686 */ 1687 if (ioc->combined_reply_queue) 1688 writel(reply_q->reply_post_host_index | ((msix_index & 7) << 1689 MPI2_RPHI_MSIX_INDEX_SHIFT), 1690 ioc->replyPostRegisterIndex[msix_index/8]); 1691 else 1692 writel(reply_q->reply_post_host_index | (msix_index << 1693 MPI2_RPHI_MSIX_INDEX_SHIFT), 1694 &ioc->chip->ReplyPostHostIndex); 1695 atomic_dec(&reply_q->busy); 1696 return completed_cmds; 1697 } 1698 1699 /** 1700 * _base_interrupt - MPT adapter (IOC) specific interrupt handler. 1701 * @irq: irq number (not used) 1702 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure 1703 * 1704 * Return: IRQ_HANDLED if processed, else IRQ_NONE. 1705 */ 1706 static irqreturn_t 1707 _base_interrupt(int irq, void *bus_id) 1708 { 1709 struct adapter_reply_queue *reply_q = bus_id; 1710 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc; 1711 1712 if (ioc->mask_interrupts) 1713 return IRQ_NONE; 1714 if (reply_q->irq_poll_scheduled) 1715 return IRQ_HANDLED; 1716 return ((_base_process_reply_queue(reply_q) > 0) ? 1717 IRQ_HANDLED : IRQ_NONE); 1718 } 1719 1720 /** 1721 * _base_irqpoll - IRQ poll callback handler 1722 * @irqpoll: irq_poll object 1723 * @budget: irq poll weight 1724 * 1725 * returns number of reply descriptors processed 1726 */ 1727 static int 1728 _base_irqpoll(struct irq_poll *irqpoll, int budget) 1729 { 1730 struct adapter_reply_queue *reply_q; 1731 int num_entries = 0; 1732 1733 reply_q = container_of(irqpoll, struct adapter_reply_queue, 1734 irqpoll); 1735 if (reply_q->irq_line_enable) { 1736 disable_irq_nosync(reply_q->os_irq); 1737 reply_q->irq_line_enable = false; 1738 } 1739 num_entries = _base_process_reply_queue(reply_q); 1740 if (num_entries < budget) { 1741 irq_poll_complete(irqpoll); 1742 reply_q->irq_poll_scheduled = false; 1743 reply_q->irq_line_enable = true; 1744 enable_irq(reply_q->os_irq); 1745 } 1746 1747 return num_entries; 1748 } 1749 1750 /** 1751 * _base_init_irqpolls - initliaze IRQ polls 1752 * @ioc: per adapter object 1753 * 1754 * returns nothing 1755 */ 1756 static void 1757 _base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc) 1758 { 1759 struct adapter_reply_queue *reply_q, *next; 1760 1761 if (list_empty(&ioc->reply_queue_list)) 1762 return; 1763 1764 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) { 1765 irq_poll_init(&reply_q->irqpoll, 1766 ioc->hba_queue_depth/4, _base_irqpoll); 1767 reply_q->irq_poll_scheduled = false; 1768 reply_q->irq_line_enable = true; 1769 reply_q->os_irq = pci_irq_vector(ioc->pdev, 1770 reply_q->msix_index); 1771 } 1772 } 1773 1774 /** 1775 * _base_is_controller_msix_enabled - is controller support muli-reply queues 1776 * @ioc: per adapter object 1777 * 1778 * Return: Whether or not MSI/X is enabled. 1779 */ 1780 static inline int 1781 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc) 1782 { 1783 return (ioc->facts.IOCCapabilities & 1784 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable; 1785 } 1786 1787 /** 1788 * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts 1789 * @ioc: per adapter object 1790 * Context: non ISR conext 1791 * 1792 * Called when a Task Management request has completed. 1793 */ 1794 void 1795 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc) 1796 { 1797 struct adapter_reply_queue *reply_q; 1798 1799 /* If MSIX capability is turned off 1800 * then multi-queues are not enabled 1801 */ 1802 if (!_base_is_controller_msix_enabled(ioc)) 1803 return; 1804 1805 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 1806 if (ioc->shost_recovery || ioc->remove_host || 1807 ioc->pci_error_recovery) 1808 return; 1809 /* TMs are on msix_index == 0 */ 1810 if (reply_q->msix_index == 0) 1811 continue; 1812 if (reply_q->irq_poll_scheduled) { 1813 /* Calling irq_poll_disable will wait for any pending 1814 * callbacks to have completed. 1815 */ 1816 irq_poll_disable(&reply_q->irqpoll); 1817 irq_poll_enable(&reply_q->irqpoll); 1818 reply_q->irq_poll_scheduled = false; 1819 reply_q->irq_line_enable = true; 1820 enable_irq(reply_q->os_irq); 1821 continue; 1822 } 1823 synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index)); 1824 } 1825 } 1826 1827 /** 1828 * mpt3sas_base_release_callback_handler - clear interrupt callback handler 1829 * @cb_idx: callback index 1830 */ 1831 void 1832 mpt3sas_base_release_callback_handler(u8 cb_idx) 1833 { 1834 mpt_callbacks[cb_idx] = NULL; 1835 } 1836 1837 /** 1838 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler 1839 * @cb_func: callback function 1840 * 1841 * Return: Index of @cb_func. 1842 */ 1843 u8 1844 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func) 1845 { 1846 u8 cb_idx; 1847 1848 for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--) 1849 if (mpt_callbacks[cb_idx] == NULL) 1850 break; 1851 1852 mpt_callbacks[cb_idx] = cb_func; 1853 return cb_idx; 1854 } 1855 1856 /** 1857 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler 1858 */ 1859 void 1860 mpt3sas_base_initialize_callback_handler(void) 1861 { 1862 u8 cb_idx; 1863 1864 for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++) 1865 mpt3sas_base_release_callback_handler(cb_idx); 1866 } 1867 1868 1869 /** 1870 * _base_build_zero_len_sge - build zero length sg entry 1871 * @ioc: per adapter object 1872 * @paddr: virtual address for SGE 1873 * 1874 * Create a zero length scatter gather entry to insure the IOCs hardware has 1875 * something to use if the target device goes brain dead and tries 1876 * to send data even when none is asked for. 1877 */ 1878 static void 1879 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr) 1880 { 1881 u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT | 1882 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST | 1883 MPI2_SGE_FLAGS_SIMPLE_ELEMENT) << 1884 MPI2_SGE_FLAGS_SHIFT); 1885 ioc->base_add_sg_single(paddr, flags_length, -1); 1886 } 1887 1888 /** 1889 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr. 1890 * @paddr: virtual address for SGE 1891 * @flags_length: SGE flags and data transfer length 1892 * @dma_addr: Physical address 1893 */ 1894 static void 1895 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr) 1896 { 1897 Mpi2SGESimple32_t *sgel = paddr; 1898 1899 flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING | 1900 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT; 1901 sgel->FlagsLength = cpu_to_le32(flags_length); 1902 sgel->Address = cpu_to_le32(dma_addr); 1903 } 1904 1905 1906 /** 1907 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr. 1908 * @paddr: virtual address for SGE 1909 * @flags_length: SGE flags and data transfer length 1910 * @dma_addr: Physical address 1911 */ 1912 static void 1913 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr) 1914 { 1915 Mpi2SGESimple64_t *sgel = paddr; 1916 1917 flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING | 1918 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT; 1919 sgel->FlagsLength = cpu_to_le32(flags_length); 1920 sgel->Address = cpu_to_le64(dma_addr); 1921 } 1922 1923 /** 1924 * _base_get_chain_buffer_tracker - obtain chain tracker 1925 * @ioc: per adapter object 1926 * @scmd: SCSI commands of the IO request 1927 * 1928 * Return: chain tracker from chain_lookup table using key as 1929 * smid and smid's chain_offset. 1930 */ 1931 static struct chain_tracker * 1932 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc, 1933 struct scsi_cmnd *scmd) 1934 { 1935 struct chain_tracker *chain_req; 1936 struct scsiio_tracker *st = scsi_cmd_priv(scmd); 1937 u16 smid = st->smid; 1938 u8 chain_offset = 1939 atomic_read(&ioc->chain_lookup[smid - 1].chain_offset); 1940 1941 if (chain_offset == ioc->chains_needed_per_io) 1942 return NULL; 1943 1944 chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset]; 1945 atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset); 1946 return chain_req; 1947 } 1948 1949 1950 /** 1951 * _base_build_sg - build generic sg 1952 * @ioc: per adapter object 1953 * @psge: virtual address for SGE 1954 * @data_out_dma: physical address for WRITES 1955 * @data_out_sz: data xfer size for WRITES 1956 * @data_in_dma: physical address for READS 1957 * @data_in_sz: data xfer size for READS 1958 */ 1959 static void 1960 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge, 1961 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 1962 size_t data_in_sz) 1963 { 1964 u32 sgl_flags; 1965 1966 if (!data_out_sz && !data_in_sz) { 1967 _base_build_zero_len_sge(ioc, psge); 1968 return; 1969 } 1970 1971 if (data_out_sz && data_in_sz) { 1972 /* WRITE sgel first */ 1973 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 1974 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC); 1975 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 1976 ioc->base_add_sg_single(psge, sgl_flags | 1977 data_out_sz, data_out_dma); 1978 1979 /* incr sgel */ 1980 psge += ioc->sge_size; 1981 1982 /* READ sgel last */ 1983 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 1984 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 1985 MPI2_SGE_FLAGS_END_OF_LIST); 1986 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 1987 ioc->base_add_sg_single(psge, sgl_flags | 1988 data_in_sz, data_in_dma); 1989 } else if (data_out_sz) /* WRITE */ { 1990 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 1991 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 1992 MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC); 1993 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 1994 ioc->base_add_sg_single(psge, sgl_flags | 1995 data_out_sz, data_out_dma); 1996 } else if (data_in_sz) /* READ */ { 1997 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 1998 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 1999 MPI2_SGE_FLAGS_END_OF_LIST); 2000 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2001 ioc->base_add_sg_single(psge, sgl_flags | 2002 data_in_sz, data_in_dma); 2003 } 2004 } 2005 2006 /* IEEE format sgls */ 2007 2008 /** 2009 * _base_build_nvme_prp - This function is called for NVMe end devices to build 2010 * a native SGL (NVMe PRP). The native SGL is built starting in the first PRP 2011 * entry of the NVMe message (PRP1). If the data buffer is small enough to be 2012 * described entirely using PRP1, then PRP2 is not used. If needed, PRP2 is 2013 * used to describe a larger data buffer. If the data buffer is too large to 2014 * describe using the two PRP entriess inside the NVMe message, then PRP1 2015 * describes the first data memory segment, and PRP2 contains a pointer to a PRP 2016 * list located elsewhere in memory to describe the remaining data memory 2017 * segments. The PRP list will be contiguous. 2018 * 2019 * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP 2020 * consists of a list of PRP entries to describe a number of noncontigous 2021 * physical memory segments as a single memory buffer, just as a SGL does. Note 2022 * however, that this function is only used by the IOCTL call, so the memory 2023 * given will be guaranteed to be contiguous. There is no need to translate 2024 * non-contiguous SGL into a PRP in this case. All PRPs will describe 2025 * contiguous space that is one page size each. 2026 * 2027 * Each NVMe message contains two PRP entries. The first (PRP1) either contains 2028 * a PRP list pointer or a PRP element, depending upon the command. PRP2 2029 * contains the second PRP element if the memory being described fits within 2 2030 * PRP entries, or a PRP list pointer if the PRP spans more than two entries. 2031 * 2032 * A PRP list pointer contains the address of a PRP list, structured as a linear 2033 * array of PRP entries. Each PRP entry in this list describes a segment of 2034 * physical memory. 2035 * 2036 * Each 64-bit PRP entry comprises an address and an offset field. The address 2037 * always points at the beginning of a 4KB physical memory page, and the offset 2038 * describes where within that 4KB page the memory segment begins. Only the 2039 * first element in a PRP list may contain a non-zero offest, implying that all 2040 * memory segments following the first begin at the start of a 4KB page. 2041 * 2042 * Each PRP element normally describes 4KB of physical memory, with exceptions 2043 * for the first and last elements in the list. If the memory being described 2044 * by the list begins at a non-zero offset within the first 4KB page, then the 2045 * first PRP element will contain a non-zero offset indicating where the region 2046 * begins within the 4KB page. The last memory segment may end before the end 2047 * of the 4KB segment, depending upon the overall size of the memory being 2048 * described by the PRP list. 2049 * 2050 * Since PRP entries lack any indication of size, the overall data buffer length 2051 * is used to determine where the end of the data memory buffer is located, and 2052 * how many PRP entries are required to describe it. 2053 * 2054 * @ioc: per adapter object 2055 * @smid: system request message index for getting asscociated SGL 2056 * @nvme_encap_request: the NVMe request msg frame pointer 2057 * @data_out_dma: physical address for WRITES 2058 * @data_out_sz: data xfer size for WRITES 2059 * @data_in_dma: physical address for READS 2060 * @data_in_sz: data xfer size for READS 2061 */ 2062 static void 2063 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid, 2064 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request, 2065 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 2066 size_t data_in_sz) 2067 { 2068 int prp_size = NVME_PRP_SIZE; 2069 __le64 *prp_entry, *prp1_entry, *prp2_entry; 2070 __le64 *prp_page; 2071 dma_addr_t prp_entry_dma, prp_page_dma, dma_addr; 2072 u32 offset, entry_len; 2073 u32 page_mask_result, page_mask; 2074 size_t length; 2075 struct mpt3sas_nvme_cmd *nvme_cmd = 2076 (void *)nvme_encap_request->NVMe_Command; 2077 2078 /* 2079 * Not all commands require a data transfer. If no data, just return 2080 * without constructing any PRP. 2081 */ 2082 if (!data_in_sz && !data_out_sz) 2083 return; 2084 prp1_entry = &nvme_cmd->prp1; 2085 prp2_entry = &nvme_cmd->prp2; 2086 prp_entry = prp1_entry; 2087 /* 2088 * For the PRP entries, use the specially allocated buffer of 2089 * contiguous memory. 2090 */ 2091 prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid); 2092 prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid); 2093 2094 /* 2095 * Check if we are within 1 entry of a page boundary we don't 2096 * want our first entry to be a PRP List entry. 2097 */ 2098 page_mask = ioc->page_size - 1; 2099 page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask; 2100 if (!page_mask_result) { 2101 /* Bump up to next page boundary. */ 2102 prp_page = (__le64 *)((u8 *)prp_page + prp_size); 2103 prp_page_dma = prp_page_dma + prp_size; 2104 } 2105 2106 /* 2107 * Set PRP physical pointer, which initially points to the current PRP 2108 * DMA memory page. 2109 */ 2110 prp_entry_dma = prp_page_dma; 2111 2112 /* Get physical address and length of the data buffer. */ 2113 if (data_in_sz) { 2114 dma_addr = data_in_dma; 2115 length = data_in_sz; 2116 } else { 2117 dma_addr = data_out_dma; 2118 length = data_out_sz; 2119 } 2120 2121 /* Loop while the length is not zero. */ 2122 while (length) { 2123 /* 2124 * Check if we need to put a list pointer here if we are at 2125 * page boundary - prp_size (8 bytes). 2126 */ 2127 page_mask_result = (prp_entry_dma + prp_size) & page_mask; 2128 if (!page_mask_result) { 2129 /* 2130 * This is the last entry in a PRP List, so we need to 2131 * put a PRP list pointer here. What this does is: 2132 * - bump the current memory pointer to the next 2133 * address, which will be the next full page. 2134 * - set the PRP Entry to point to that page. This 2135 * is now the PRP List pointer. 2136 * - bump the PRP Entry pointer the start of the 2137 * next page. Since all of this PRP memory is 2138 * contiguous, no need to get a new page - it's 2139 * just the next address. 2140 */ 2141 prp_entry_dma++; 2142 *prp_entry = cpu_to_le64(prp_entry_dma); 2143 prp_entry++; 2144 } 2145 2146 /* Need to handle if entry will be part of a page. */ 2147 offset = dma_addr & page_mask; 2148 entry_len = ioc->page_size - offset; 2149 2150 if (prp_entry == prp1_entry) { 2151 /* 2152 * Must fill in the first PRP pointer (PRP1) before 2153 * moving on. 2154 */ 2155 *prp1_entry = cpu_to_le64(dma_addr); 2156 2157 /* 2158 * Now point to the second PRP entry within the 2159 * command (PRP2). 2160 */ 2161 prp_entry = prp2_entry; 2162 } else if (prp_entry == prp2_entry) { 2163 /* 2164 * Should the PRP2 entry be a PRP List pointer or just 2165 * a regular PRP pointer? If there is more than one 2166 * more page of data, must use a PRP List pointer. 2167 */ 2168 if (length > ioc->page_size) { 2169 /* 2170 * PRP2 will contain a PRP List pointer because 2171 * more PRP's are needed with this command. The 2172 * list will start at the beginning of the 2173 * contiguous buffer. 2174 */ 2175 *prp2_entry = cpu_to_le64(prp_entry_dma); 2176 2177 /* 2178 * The next PRP Entry will be the start of the 2179 * first PRP List. 2180 */ 2181 prp_entry = prp_page; 2182 } else { 2183 /* 2184 * After this, the PRP Entries are complete. 2185 * This command uses 2 PRP's and no PRP list. 2186 */ 2187 *prp2_entry = cpu_to_le64(dma_addr); 2188 } 2189 } else { 2190 /* 2191 * Put entry in list and bump the addresses. 2192 * 2193 * After PRP1 and PRP2 are filled in, this will fill in 2194 * all remaining PRP entries in a PRP List, one per 2195 * each time through the loop. 2196 */ 2197 *prp_entry = cpu_to_le64(dma_addr); 2198 prp_entry++; 2199 prp_entry_dma++; 2200 } 2201 2202 /* 2203 * Bump the phys address of the command's data buffer by the 2204 * entry_len. 2205 */ 2206 dma_addr += entry_len; 2207 2208 /* Decrement length accounting for last partial page. */ 2209 if (entry_len > length) 2210 length = 0; 2211 else 2212 length -= entry_len; 2213 } 2214 } 2215 2216 /** 2217 * base_make_prp_nvme - 2218 * Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only 2219 * 2220 * @ioc: per adapter object 2221 * @scmd: SCSI command from the mid-layer 2222 * @mpi_request: mpi request 2223 * @smid: msg Index 2224 * @sge_count: scatter gather element count. 2225 * 2226 * Return: true: PRPs are built 2227 * false: IEEE SGLs needs to be built 2228 */ 2229 static void 2230 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc, 2231 struct scsi_cmnd *scmd, 2232 Mpi25SCSIIORequest_t *mpi_request, 2233 u16 smid, int sge_count) 2234 { 2235 int sge_len, num_prp_in_chain = 0; 2236 Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl; 2237 __le64 *curr_buff; 2238 dma_addr_t msg_dma, sge_addr, offset; 2239 u32 page_mask, page_mask_result; 2240 struct scatterlist *sg_scmd; 2241 u32 first_prp_len; 2242 int data_len = scsi_bufflen(scmd); 2243 u32 nvme_pg_size; 2244 2245 nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE); 2246 /* 2247 * Nvme has a very convoluted prp format. One prp is required 2248 * for each page or partial page. Driver need to split up OS sg_list 2249 * entries if it is longer than one page or cross a page 2250 * boundary. Driver also have to insert a PRP list pointer entry as 2251 * the last entry in each physical page of the PRP list. 2252 * 2253 * NOTE: The first PRP "entry" is actually placed in the first 2254 * SGL entry in the main message as IEEE 64 format. The 2nd 2255 * entry in the main message is the chain element, and the rest 2256 * of the PRP entries are built in the contiguous pcie buffer. 2257 */ 2258 page_mask = nvme_pg_size - 1; 2259 2260 /* 2261 * Native SGL is needed. 2262 * Put a chain element in main message frame that points to the first 2263 * chain buffer. 2264 * 2265 * NOTE: The ChainOffset field must be 0 when using a chain pointer to 2266 * a native SGL. 2267 */ 2268 2269 /* Set main message chain element pointer */ 2270 main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL; 2271 /* 2272 * For NVMe the chain element needs to be the 2nd SG entry in the main 2273 * message. 2274 */ 2275 main_chain_element = (Mpi25IeeeSgeChain64_t *) 2276 ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64)); 2277 2278 /* 2279 * For the PRP entries, use the specially allocated buffer of 2280 * contiguous memory. Normal chain buffers can't be used 2281 * because each chain buffer would need to be the size of an OS 2282 * page (4k). 2283 */ 2284 curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid); 2285 msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid); 2286 2287 main_chain_element->Address = cpu_to_le64(msg_dma); 2288 main_chain_element->NextChainOffset = 0; 2289 main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 2290 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | 2291 MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP; 2292 2293 /* Build first prp, sge need not to be page aligned*/ 2294 ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL; 2295 sg_scmd = scsi_sglist(scmd); 2296 sge_addr = sg_dma_address(sg_scmd); 2297 sge_len = sg_dma_len(sg_scmd); 2298 2299 offset = sge_addr & page_mask; 2300 first_prp_len = nvme_pg_size - offset; 2301 2302 ptr_first_sgl->Address = cpu_to_le64(sge_addr); 2303 ptr_first_sgl->Length = cpu_to_le32(first_prp_len); 2304 2305 data_len -= first_prp_len; 2306 2307 if (sge_len > first_prp_len) { 2308 sge_addr += first_prp_len; 2309 sge_len -= first_prp_len; 2310 } else if (data_len && (sge_len == first_prp_len)) { 2311 sg_scmd = sg_next(sg_scmd); 2312 sge_addr = sg_dma_address(sg_scmd); 2313 sge_len = sg_dma_len(sg_scmd); 2314 } 2315 2316 for (;;) { 2317 offset = sge_addr & page_mask; 2318 2319 /* Put PRP pointer due to page boundary*/ 2320 page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask; 2321 if (unlikely(!page_mask_result)) { 2322 scmd_printk(KERN_NOTICE, 2323 scmd, "page boundary curr_buff: 0x%p\n", 2324 curr_buff); 2325 msg_dma += 8; 2326 *curr_buff = cpu_to_le64(msg_dma); 2327 curr_buff++; 2328 num_prp_in_chain++; 2329 } 2330 2331 *curr_buff = cpu_to_le64(sge_addr); 2332 curr_buff++; 2333 msg_dma += 8; 2334 num_prp_in_chain++; 2335 2336 sge_addr += nvme_pg_size; 2337 sge_len -= nvme_pg_size; 2338 data_len -= nvme_pg_size; 2339 2340 if (data_len <= 0) 2341 break; 2342 2343 if (sge_len > 0) 2344 continue; 2345 2346 sg_scmd = sg_next(sg_scmd); 2347 sge_addr = sg_dma_address(sg_scmd); 2348 sge_len = sg_dma_len(sg_scmd); 2349 } 2350 2351 main_chain_element->Length = 2352 cpu_to_le32(num_prp_in_chain * sizeof(u64)); 2353 return; 2354 } 2355 2356 static bool 2357 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc, 2358 struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count) 2359 { 2360 u32 data_length = 0; 2361 bool build_prp = true; 2362 2363 data_length = scsi_bufflen(scmd); 2364 if (pcie_device && 2365 (mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))) { 2366 build_prp = false; 2367 return build_prp; 2368 } 2369 2370 /* If Datalenth is <= 16K and number of SGE’s entries are <= 2 2371 * we built IEEE SGL 2372 */ 2373 if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2)) 2374 build_prp = false; 2375 2376 return build_prp; 2377 } 2378 2379 /** 2380 * _base_check_pcie_native_sgl - This function is called for PCIe end devices to 2381 * determine if the driver needs to build a native SGL. If so, that native 2382 * SGL is built in the special contiguous buffers allocated especially for 2383 * PCIe SGL creation. If the driver will not build a native SGL, return 2384 * TRUE and a normal IEEE SGL will be built. Currently this routine 2385 * supports NVMe. 2386 * @ioc: per adapter object 2387 * @mpi_request: mf request pointer 2388 * @smid: system request message index 2389 * @scmd: scsi command 2390 * @pcie_device: points to the PCIe device's info 2391 * 2392 * Return: 0 if native SGL was built, 1 if no SGL was built 2393 */ 2394 static int 2395 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc, 2396 Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd, 2397 struct _pcie_device *pcie_device) 2398 { 2399 int sges_left; 2400 2401 /* Get the SG list pointer and info. */ 2402 sges_left = scsi_dma_map(scmd); 2403 if (sges_left < 0) { 2404 sdev_printk(KERN_ERR, scmd->device, 2405 "scsi_dma_map failed: request for %d bytes!\n", 2406 scsi_bufflen(scmd)); 2407 return 1; 2408 } 2409 2410 /* Check if we need to build a native SG list. */ 2411 if (base_is_prp_possible(ioc, pcie_device, 2412 scmd, sges_left) == 0) { 2413 /* We built a native SG list, just return. */ 2414 goto out; 2415 } 2416 2417 /* 2418 * Build native NVMe PRP. 2419 */ 2420 base_make_prp_nvme(ioc, scmd, mpi_request, 2421 smid, sges_left); 2422 2423 return 0; 2424 out: 2425 scsi_dma_unmap(scmd); 2426 return 1; 2427 } 2428 2429 /** 2430 * _base_add_sg_single_ieee - add sg element for IEEE format 2431 * @paddr: virtual address for SGE 2432 * @flags: SGE flags 2433 * @chain_offset: number of 128 byte elements from start of segment 2434 * @length: data transfer length 2435 * @dma_addr: Physical address 2436 */ 2437 static void 2438 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length, 2439 dma_addr_t dma_addr) 2440 { 2441 Mpi25IeeeSgeChain64_t *sgel = paddr; 2442 2443 sgel->Flags = flags; 2444 sgel->NextChainOffset = chain_offset; 2445 sgel->Length = cpu_to_le32(length); 2446 sgel->Address = cpu_to_le64(dma_addr); 2447 } 2448 2449 /** 2450 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format 2451 * @ioc: per adapter object 2452 * @paddr: virtual address for SGE 2453 * 2454 * Create a zero length scatter gather entry to insure the IOCs hardware has 2455 * something to use if the target device goes brain dead and tries 2456 * to send data even when none is asked for. 2457 */ 2458 static void 2459 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr) 2460 { 2461 u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2462 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | 2463 MPI25_IEEE_SGE_FLAGS_END_OF_LIST); 2464 2465 _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1); 2466 } 2467 2468 /** 2469 * _base_build_sg_scmd - main sg creation routine 2470 * pcie_device is unused here! 2471 * @ioc: per adapter object 2472 * @scmd: scsi command 2473 * @smid: system request message index 2474 * @unused: unused pcie_device pointer 2475 * Context: none. 2476 * 2477 * The main routine that builds scatter gather table from a given 2478 * scsi request sent via the .queuecommand main handler. 2479 * 2480 * Return: 0 success, anything else error 2481 */ 2482 static int 2483 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc, 2484 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused) 2485 { 2486 Mpi2SCSIIORequest_t *mpi_request; 2487 dma_addr_t chain_dma; 2488 struct scatterlist *sg_scmd; 2489 void *sg_local, *chain; 2490 u32 chain_offset; 2491 u32 chain_length; 2492 u32 chain_flags; 2493 int sges_left; 2494 u32 sges_in_segment; 2495 u32 sgl_flags; 2496 u32 sgl_flags_last_element; 2497 u32 sgl_flags_end_buffer; 2498 struct chain_tracker *chain_req; 2499 2500 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 2501 2502 /* init scatter gather flags */ 2503 sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT; 2504 if (scmd->sc_data_direction == DMA_TO_DEVICE) 2505 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC; 2506 sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT) 2507 << MPI2_SGE_FLAGS_SHIFT; 2508 sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT | 2509 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST) 2510 << MPI2_SGE_FLAGS_SHIFT; 2511 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2512 2513 sg_scmd = scsi_sglist(scmd); 2514 sges_left = scsi_dma_map(scmd); 2515 if (sges_left < 0) { 2516 sdev_printk(KERN_ERR, scmd->device, 2517 "scsi_dma_map failed: request for %d bytes!\n", 2518 scsi_bufflen(scmd)); 2519 return -ENOMEM; 2520 } 2521 2522 sg_local = &mpi_request->SGL; 2523 sges_in_segment = ioc->max_sges_in_main_message; 2524 if (sges_left <= sges_in_segment) 2525 goto fill_in_last_segment; 2526 2527 mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) + 2528 (sges_in_segment * ioc->sge_size))/4; 2529 2530 /* fill in main message segment when there is a chain following */ 2531 while (sges_in_segment) { 2532 if (sges_in_segment == 1) 2533 ioc->base_add_sg_single(sg_local, 2534 sgl_flags_last_element | sg_dma_len(sg_scmd), 2535 sg_dma_address(sg_scmd)); 2536 else 2537 ioc->base_add_sg_single(sg_local, sgl_flags | 2538 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2539 sg_scmd = sg_next(sg_scmd); 2540 sg_local += ioc->sge_size; 2541 sges_left--; 2542 sges_in_segment--; 2543 } 2544 2545 /* initializing the chain flags and pointers */ 2546 chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT; 2547 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2548 if (!chain_req) 2549 return -1; 2550 chain = chain_req->chain_buffer; 2551 chain_dma = chain_req->chain_buffer_dma; 2552 do { 2553 sges_in_segment = (sges_left <= 2554 ioc->max_sges_in_chain_message) ? sges_left : 2555 ioc->max_sges_in_chain_message; 2556 chain_offset = (sges_left == sges_in_segment) ? 2557 0 : (sges_in_segment * ioc->sge_size)/4; 2558 chain_length = sges_in_segment * ioc->sge_size; 2559 if (chain_offset) { 2560 chain_offset = chain_offset << 2561 MPI2_SGE_CHAIN_OFFSET_SHIFT; 2562 chain_length += ioc->sge_size; 2563 } 2564 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset | 2565 chain_length, chain_dma); 2566 sg_local = chain; 2567 if (!chain_offset) 2568 goto fill_in_last_segment; 2569 2570 /* fill in chain segments */ 2571 while (sges_in_segment) { 2572 if (sges_in_segment == 1) 2573 ioc->base_add_sg_single(sg_local, 2574 sgl_flags_last_element | 2575 sg_dma_len(sg_scmd), 2576 sg_dma_address(sg_scmd)); 2577 else 2578 ioc->base_add_sg_single(sg_local, sgl_flags | 2579 sg_dma_len(sg_scmd), 2580 sg_dma_address(sg_scmd)); 2581 sg_scmd = sg_next(sg_scmd); 2582 sg_local += ioc->sge_size; 2583 sges_left--; 2584 sges_in_segment--; 2585 } 2586 2587 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2588 if (!chain_req) 2589 return -1; 2590 chain = chain_req->chain_buffer; 2591 chain_dma = chain_req->chain_buffer_dma; 2592 } while (1); 2593 2594 2595 fill_in_last_segment: 2596 2597 /* fill the last segment */ 2598 while (sges_left) { 2599 if (sges_left == 1) 2600 ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer | 2601 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2602 else 2603 ioc->base_add_sg_single(sg_local, sgl_flags | 2604 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2605 sg_scmd = sg_next(sg_scmd); 2606 sg_local += ioc->sge_size; 2607 sges_left--; 2608 } 2609 2610 return 0; 2611 } 2612 2613 /** 2614 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format 2615 * @ioc: per adapter object 2616 * @scmd: scsi command 2617 * @smid: system request message index 2618 * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be 2619 * constructed on need. 2620 * Context: none. 2621 * 2622 * The main routine that builds scatter gather table from a given 2623 * scsi request sent via the .queuecommand main handler. 2624 * 2625 * Return: 0 success, anything else error 2626 */ 2627 static int 2628 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc, 2629 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device) 2630 { 2631 Mpi25SCSIIORequest_t *mpi_request; 2632 dma_addr_t chain_dma; 2633 struct scatterlist *sg_scmd; 2634 void *sg_local, *chain; 2635 u32 chain_offset; 2636 u32 chain_length; 2637 int sges_left; 2638 u32 sges_in_segment; 2639 u8 simple_sgl_flags; 2640 u8 simple_sgl_flags_last; 2641 u8 chain_sgl_flags; 2642 struct chain_tracker *chain_req; 2643 2644 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 2645 2646 /* init scatter gather flags */ 2647 simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2648 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2649 simple_sgl_flags_last = simple_sgl_flags | 2650 MPI25_IEEE_SGE_FLAGS_END_OF_LIST; 2651 chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 2652 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2653 2654 /* Check if we need to build a native SG list. */ 2655 if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request, 2656 smid, scmd, pcie_device) == 0)) { 2657 /* We built a native SG list, just return. */ 2658 return 0; 2659 } 2660 2661 sg_scmd = scsi_sglist(scmd); 2662 sges_left = scsi_dma_map(scmd); 2663 if (sges_left < 0) { 2664 sdev_printk(KERN_ERR, scmd->device, 2665 "scsi_dma_map failed: request for %d bytes!\n", 2666 scsi_bufflen(scmd)); 2667 return -ENOMEM; 2668 } 2669 2670 sg_local = &mpi_request->SGL; 2671 sges_in_segment = (ioc->request_sz - 2672 offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee; 2673 if (sges_left <= sges_in_segment) 2674 goto fill_in_last_segment; 2675 2676 mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) + 2677 (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee); 2678 2679 /* fill in main message segment when there is a chain following */ 2680 while (sges_in_segment > 1) { 2681 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2682 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2683 sg_scmd = sg_next(sg_scmd); 2684 sg_local += ioc->sge_size_ieee; 2685 sges_left--; 2686 sges_in_segment--; 2687 } 2688 2689 /* initializing the pointers */ 2690 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2691 if (!chain_req) 2692 return -1; 2693 chain = chain_req->chain_buffer; 2694 chain_dma = chain_req->chain_buffer_dma; 2695 do { 2696 sges_in_segment = (sges_left <= 2697 ioc->max_sges_in_chain_message) ? sges_left : 2698 ioc->max_sges_in_chain_message; 2699 chain_offset = (sges_left == sges_in_segment) ? 2700 0 : sges_in_segment; 2701 chain_length = sges_in_segment * ioc->sge_size_ieee; 2702 if (chain_offset) 2703 chain_length += ioc->sge_size_ieee; 2704 _base_add_sg_single_ieee(sg_local, chain_sgl_flags, 2705 chain_offset, chain_length, chain_dma); 2706 2707 sg_local = chain; 2708 if (!chain_offset) 2709 goto fill_in_last_segment; 2710 2711 /* fill in chain segments */ 2712 while (sges_in_segment) { 2713 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2714 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2715 sg_scmd = sg_next(sg_scmd); 2716 sg_local += ioc->sge_size_ieee; 2717 sges_left--; 2718 sges_in_segment--; 2719 } 2720 2721 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2722 if (!chain_req) 2723 return -1; 2724 chain = chain_req->chain_buffer; 2725 chain_dma = chain_req->chain_buffer_dma; 2726 } while (1); 2727 2728 2729 fill_in_last_segment: 2730 2731 /* fill the last segment */ 2732 while (sges_left > 0) { 2733 if (sges_left == 1) 2734 _base_add_sg_single_ieee(sg_local, 2735 simple_sgl_flags_last, 0, sg_dma_len(sg_scmd), 2736 sg_dma_address(sg_scmd)); 2737 else 2738 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2739 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2740 sg_scmd = sg_next(sg_scmd); 2741 sg_local += ioc->sge_size_ieee; 2742 sges_left--; 2743 } 2744 2745 return 0; 2746 } 2747 2748 /** 2749 * _base_build_sg_ieee - build generic sg for IEEE format 2750 * @ioc: per adapter object 2751 * @psge: virtual address for SGE 2752 * @data_out_dma: physical address for WRITES 2753 * @data_out_sz: data xfer size for WRITES 2754 * @data_in_dma: physical address for READS 2755 * @data_in_sz: data xfer size for READS 2756 */ 2757 static void 2758 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge, 2759 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 2760 size_t data_in_sz) 2761 { 2762 u8 sgl_flags; 2763 2764 if (!data_out_sz && !data_in_sz) { 2765 _base_build_zero_len_sge_ieee(ioc, psge); 2766 return; 2767 } 2768 2769 if (data_out_sz && data_in_sz) { 2770 /* WRITE sgel first */ 2771 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2772 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2773 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz, 2774 data_out_dma); 2775 2776 /* incr sgel */ 2777 psge += ioc->sge_size_ieee; 2778 2779 /* READ sgel last */ 2780 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST; 2781 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz, 2782 data_in_dma); 2783 } else if (data_out_sz) /* WRITE */ { 2784 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2785 MPI25_IEEE_SGE_FLAGS_END_OF_LIST | 2786 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2787 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz, 2788 data_out_dma); 2789 } else if (data_in_sz) /* READ */ { 2790 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2791 MPI25_IEEE_SGE_FLAGS_END_OF_LIST | 2792 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2793 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz, 2794 data_in_dma); 2795 } 2796 } 2797 2798 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10)) 2799 2800 /** 2801 * _base_config_dma_addressing - set dma addressing 2802 * @ioc: per adapter object 2803 * @pdev: PCI device struct 2804 * 2805 * Return: 0 for success, non-zero for failure. 2806 */ 2807 static int 2808 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev) 2809 { 2810 struct sysinfo s; 2811 int dma_mask; 2812 2813 if (ioc->is_mcpu_endpoint || 2814 sizeof(dma_addr_t) == 4 || ioc->use_32bit_dma || 2815 dma_get_required_mask(&pdev->dev) <= 32) 2816 dma_mask = 32; 2817 /* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */ 2818 else if (ioc->hba_mpi_version_belonged > MPI2_VERSION) 2819 dma_mask = 63; 2820 else 2821 dma_mask = 64; 2822 2823 if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(dma_mask)) || 2824 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(dma_mask))) 2825 return -ENODEV; 2826 2827 if (dma_mask > 32) { 2828 ioc->base_add_sg_single = &_base_add_sg_single_64; 2829 ioc->sge_size = sizeof(Mpi2SGESimple64_t); 2830 } else { 2831 ioc->base_add_sg_single = &_base_add_sg_single_32; 2832 ioc->sge_size = sizeof(Mpi2SGESimple32_t); 2833 } 2834 2835 si_meminfo(&s); 2836 ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n", 2837 dma_mask, convert_to_kb(s.totalram)); 2838 2839 return 0; 2840 } 2841 2842 /** 2843 * _base_check_enable_msix - checks MSIX capabable. 2844 * @ioc: per adapter object 2845 * 2846 * Check to see if card is capable of MSIX, and set number 2847 * of available msix vectors 2848 */ 2849 static int 2850 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc) 2851 { 2852 int base; 2853 u16 message_control; 2854 2855 /* Check whether controller SAS2008 B0 controller, 2856 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX 2857 */ 2858 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 && 2859 ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) { 2860 return -EINVAL; 2861 } 2862 2863 base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX); 2864 if (!base) { 2865 dfailprintk(ioc, ioc_info(ioc, "msix not supported\n")); 2866 return -EINVAL; 2867 } 2868 2869 /* get msix vector count */ 2870 /* NUMA_IO not supported for older controllers */ 2871 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 || 2872 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 || 2873 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 || 2874 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 || 2875 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 || 2876 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 || 2877 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2) 2878 ioc->msix_vector_count = 1; 2879 else { 2880 pci_read_config_word(ioc->pdev, base + 2, &message_control); 2881 ioc->msix_vector_count = (message_control & 0x3FF) + 1; 2882 } 2883 dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n", 2884 ioc->msix_vector_count)); 2885 return 0; 2886 } 2887 2888 /** 2889 * _base_free_irq - free irq 2890 * @ioc: per adapter object 2891 * 2892 * Freeing respective reply_queue from the list. 2893 */ 2894 static void 2895 _base_free_irq(struct MPT3SAS_ADAPTER *ioc) 2896 { 2897 struct adapter_reply_queue *reply_q, *next; 2898 2899 if (list_empty(&ioc->reply_queue_list)) 2900 return; 2901 2902 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) { 2903 list_del(&reply_q->list); 2904 if (ioc->smp_affinity_enable) 2905 irq_set_affinity_hint(pci_irq_vector(ioc->pdev, 2906 reply_q->msix_index), NULL); 2907 free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index), 2908 reply_q); 2909 kfree(reply_q); 2910 } 2911 } 2912 2913 /** 2914 * _base_request_irq - request irq 2915 * @ioc: per adapter object 2916 * @index: msix index into vector table 2917 * 2918 * Inserting respective reply_queue into the list. 2919 */ 2920 static int 2921 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index) 2922 { 2923 struct pci_dev *pdev = ioc->pdev; 2924 struct adapter_reply_queue *reply_q; 2925 int r; 2926 2927 reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL); 2928 if (!reply_q) { 2929 ioc_err(ioc, "unable to allocate memory %zu!\n", 2930 sizeof(struct adapter_reply_queue)); 2931 return -ENOMEM; 2932 } 2933 reply_q->ioc = ioc; 2934 reply_q->msix_index = index; 2935 2936 atomic_set(&reply_q->busy, 0); 2937 if (ioc->msix_enable) 2938 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d", 2939 ioc->driver_name, ioc->id, index); 2940 else 2941 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d", 2942 ioc->driver_name, ioc->id); 2943 r = request_irq(pci_irq_vector(pdev, index), _base_interrupt, 2944 IRQF_SHARED, reply_q->name, reply_q); 2945 if (r) { 2946 pr_err("%s: unable to allocate interrupt %d!\n", 2947 reply_q->name, pci_irq_vector(pdev, index)); 2948 kfree(reply_q); 2949 return -EBUSY; 2950 } 2951 2952 INIT_LIST_HEAD(&reply_q->list); 2953 list_add_tail(&reply_q->list, &ioc->reply_queue_list); 2954 return 0; 2955 } 2956 2957 /** 2958 * _base_assign_reply_queues - assigning msix index for each cpu 2959 * @ioc: per adapter object 2960 * 2961 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity 2962 * 2963 * It would nice if we could call irq_set_affinity, however it is not 2964 * an exported symbol 2965 */ 2966 static void 2967 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc) 2968 { 2969 unsigned int cpu, nr_cpus, nr_msix, index = 0; 2970 struct adapter_reply_queue *reply_q; 2971 int local_numa_node; 2972 2973 if (!_base_is_controller_msix_enabled(ioc)) 2974 return; 2975 2976 if (ioc->msix_load_balance) 2977 return; 2978 2979 memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz); 2980 2981 nr_cpus = num_online_cpus(); 2982 nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count, 2983 ioc->facts.MaxMSIxVectors); 2984 if (!nr_msix) 2985 return; 2986 2987 if (ioc->smp_affinity_enable) { 2988 2989 /* 2990 * set irq affinity to local numa node for those irqs 2991 * corresponding to high iops queues. 2992 */ 2993 if (ioc->high_iops_queues) { 2994 local_numa_node = dev_to_node(&ioc->pdev->dev); 2995 for (index = 0; index < ioc->high_iops_queues; 2996 index++) { 2997 irq_set_affinity_hint(pci_irq_vector(ioc->pdev, 2998 index), cpumask_of_node(local_numa_node)); 2999 } 3000 } 3001 3002 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 3003 const cpumask_t *mask; 3004 3005 if (reply_q->msix_index < ioc->high_iops_queues) 3006 continue; 3007 3008 mask = pci_irq_get_affinity(ioc->pdev, 3009 reply_q->msix_index); 3010 if (!mask) { 3011 ioc_warn(ioc, "no affinity for msi %x\n", 3012 reply_q->msix_index); 3013 goto fall_back; 3014 } 3015 3016 for_each_cpu_and(cpu, mask, cpu_online_mask) { 3017 if (cpu >= ioc->cpu_msix_table_sz) 3018 break; 3019 ioc->cpu_msix_table[cpu] = reply_q->msix_index; 3020 } 3021 } 3022 return; 3023 } 3024 3025 fall_back: 3026 cpu = cpumask_first(cpu_online_mask); 3027 nr_msix -= ioc->high_iops_queues; 3028 index = 0; 3029 3030 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 3031 unsigned int i, group = nr_cpus / nr_msix; 3032 3033 if (reply_q->msix_index < ioc->high_iops_queues) 3034 continue; 3035 3036 if (cpu >= nr_cpus) 3037 break; 3038 3039 if (index < nr_cpus % nr_msix) 3040 group++; 3041 3042 for (i = 0 ; i < group ; i++) { 3043 ioc->cpu_msix_table[cpu] = reply_q->msix_index; 3044 cpu = cpumask_next(cpu, cpu_online_mask); 3045 } 3046 index++; 3047 } 3048 } 3049 3050 /** 3051 * _base_check_and_enable_high_iops_queues - enable high iops mode 3052 * @ioc: per adapter object 3053 * @hba_msix_vector_count: msix vectors supported by HBA 3054 * 3055 * Enable high iops queues only if 3056 * - HBA is a SEA/AERO controller and 3057 * - MSI-Xs vector supported by the HBA is 128 and 3058 * - total CPU count in the system >=16 and 3059 * - loaded driver with default max_msix_vectors module parameter and 3060 * - system booted in non kdump mode 3061 * 3062 * returns nothing. 3063 */ 3064 static void 3065 _base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc, 3066 int hba_msix_vector_count) 3067 { 3068 u16 lnksta, speed; 3069 3070 if (perf_mode == MPT_PERF_MODE_IOPS || 3071 perf_mode == MPT_PERF_MODE_LATENCY) { 3072 ioc->high_iops_queues = 0; 3073 return; 3074 } 3075 3076 if (perf_mode == MPT_PERF_MODE_DEFAULT) { 3077 3078 pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta); 3079 speed = lnksta & PCI_EXP_LNKSTA_CLS; 3080 3081 if (speed < 0x4) { 3082 ioc->high_iops_queues = 0; 3083 return; 3084 } 3085 } 3086 3087 if (!reset_devices && ioc->is_aero_ioc && 3088 hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES && 3089 num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES && 3090 max_msix_vectors == -1) 3091 ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES; 3092 else 3093 ioc->high_iops_queues = 0; 3094 } 3095 3096 /** 3097 * _base_disable_msix - disables msix 3098 * @ioc: per adapter object 3099 * 3100 */ 3101 static void 3102 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc) 3103 { 3104 if (!ioc->msix_enable) 3105 return; 3106 pci_free_irq_vectors(ioc->pdev); 3107 ioc->msix_enable = 0; 3108 } 3109 3110 /** 3111 * _base_alloc_irq_vectors - allocate msix vectors 3112 * @ioc: per adapter object 3113 * 3114 */ 3115 static int 3116 _base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc) 3117 { 3118 int i, irq_flags = PCI_IRQ_MSIX; 3119 struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues }; 3120 struct irq_affinity *descp = &desc; 3121 3122 if (ioc->smp_affinity_enable) 3123 irq_flags |= PCI_IRQ_AFFINITY; 3124 else 3125 descp = NULL; 3126 3127 ioc_info(ioc, " %d %d\n", ioc->high_iops_queues, 3128 ioc->reply_queue_count); 3129 3130 i = pci_alloc_irq_vectors_affinity(ioc->pdev, 3131 ioc->high_iops_queues, 3132 ioc->reply_queue_count, irq_flags, descp); 3133 3134 return i; 3135 } 3136 3137 /** 3138 * _base_enable_msix - enables msix, failback to io_apic 3139 * @ioc: per adapter object 3140 * 3141 */ 3142 static int 3143 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc) 3144 { 3145 int r; 3146 int i, local_max_msix_vectors; 3147 u8 try_msix = 0; 3148 3149 ioc->msix_load_balance = false; 3150 3151 if (msix_disable == -1 || msix_disable == 0) 3152 try_msix = 1; 3153 3154 if (!try_msix) 3155 goto try_ioapic; 3156 3157 if (_base_check_enable_msix(ioc) != 0) 3158 goto try_ioapic; 3159 3160 ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count); 3161 pr_info("\t no of cores: %d, max_msix_vectors: %d\n", 3162 ioc->cpu_count, max_msix_vectors); 3163 if (ioc->is_aero_ioc) 3164 _base_check_and_enable_high_iops_queues(ioc, 3165 ioc->msix_vector_count); 3166 ioc->reply_queue_count = 3167 min_t(int, ioc->cpu_count + ioc->high_iops_queues, 3168 ioc->msix_vector_count); 3169 3170 if (!ioc->rdpq_array_enable && max_msix_vectors == -1) 3171 local_max_msix_vectors = (reset_devices) ? 1 : 8; 3172 else 3173 local_max_msix_vectors = max_msix_vectors; 3174 3175 if (local_max_msix_vectors > 0) 3176 ioc->reply_queue_count = min_t(int, local_max_msix_vectors, 3177 ioc->reply_queue_count); 3178 else if (local_max_msix_vectors == 0) 3179 goto try_ioapic; 3180 3181 /* 3182 * Enable msix_load_balance only if combined reply queue mode is 3183 * disabled on SAS3 & above generation HBA devices. 3184 */ 3185 if (!ioc->combined_reply_queue && 3186 ioc->hba_mpi_version_belonged != MPI2_VERSION) { 3187 ioc_info(ioc, 3188 "combined ReplyQueue is off, Enabling msix load balance\n"); 3189 ioc->msix_load_balance = true; 3190 } 3191 3192 /* 3193 * smp affinity setting is not need when msix load balance 3194 * is enabled. 3195 */ 3196 if (ioc->msix_load_balance) 3197 ioc->smp_affinity_enable = 0; 3198 3199 r = _base_alloc_irq_vectors(ioc); 3200 if (r < 0) { 3201 ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", r); 3202 goto try_ioapic; 3203 } 3204 3205 ioc->msix_enable = 1; 3206 ioc->reply_queue_count = r; 3207 for (i = 0; i < ioc->reply_queue_count; i++) { 3208 r = _base_request_irq(ioc, i); 3209 if (r) { 3210 _base_free_irq(ioc); 3211 _base_disable_msix(ioc); 3212 goto try_ioapic; 3213 } 3214 } 3215 3216 ioc_info(ioc, "High IOPs queues : %s\n", 3217 ioc->high_iops_queues ? "enabled" : "disabled"); 3218 3219 return 0; 3220 3221 /* failback to io_apic interrupt routing */ 3222 try_ioapic: 3223 ioc->high_iops_queues = 0; 3224 ioc_info(ioc, "High IOPs queues : disabled\n"); 3225 ioc->reply_queue_count = 1; 3226 r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY); 3227 if (r < 0) { 3228 dfailprintk(ioc, 3229 ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n", 3230 r)); 3231 } else 3232 r = _base_request_irq(ioc, 0); 3233 3234 return r; 3235 } 3236 3237 /** 3238 * mpt3sas_base_unmap_resources - free controller resources 3239 * @ioc: per adapter object 3240 */ 3241 static void 3242 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc) 3243 { 3244 struct pci_dev *pdev = ioc->pdev; 3245 3246 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 3247 3248 _base_free_irq(ioc); 3249 _base_disable_msix(ioc); 3250 3251 kfree(ioc->replyPostRegisterIndex); 3252 ioc->replyPostRegisterIndex = NULL; 3253 3254 3255 if (ioc->chip_phys) { 3256 iounmap(ioc->chip); 3257 ioc->chip_phys = 0; 3258 } 3259 3260 if (pci_is_enabled(pdev)) { 3261 pci_release_selected_regions(ioc->pdev, ioc->bars); 3262 pci_disable_pcie_error_reporting(pdev); 3263 pci_disable_device(pdev); 3264 } 3265 } 3266 3267 static int 3268 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc); 3269 3270 /** 3271 * _base_check_for_fault_and_issue_reset - check if IOC is in fault state 3272 * and if it is in fault state then issue diag reset. 3273 * @ioc: per adapter object 3274 * 3275 * Returns: 0 for success, non-zero for failure. 3276 */ 3277 static int 3278 _base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc) 3279 { 3280 u32 ioc_state; 3281 int rc = -EFAULT; 3282 3283 dinitprintk(ioc, pr_info("%s\n", __func__)); 3284 if (ioc->pci_error_recovery) 3285 return 0; 3286 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 3287 dhsprintk(ioc, pr_info("%s: ioc_state(0x%08x)\n", __func__, ioc_state)); 3288 3289 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 3290 mpt3sas_print_fault_code(ioc, ioc_state & 3291 MPI2_DOORBELL_DATA_MASK); 3292 rc = _base_diag_reset(ioc); 3293 } else if ((ioc_state & MPI2_IOC_STATE_MASK) == 3294 MPI2_IOC_STATE_COREDUMP) { 3295 mpt3sas_print_coredump_info(ioc, ioc_state & 3296 MPI2_DOORBELL_DATA_MASK); 3297 mpt3sas_base_wait_for_coredump_completion(ioc, __func__); 3298 rc = _base_diag_reset(ioc); 3299 } 3300 3301 return rc; 3302 } 3303 3304 /** 3305 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap) 3306 * @ioc: per adapter object 3307 * 3308 * Return: 0 for success, non-zero for failure. 3309 */ 3310 int 3311 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc) 3312 { 3313 struct pci_dev *pdev = ioc->pdev; 3314 u32 memap_sz; 3315 u32 pio_sz; 3316 int i, r = 0, rc; 3317 u64 pio_chip = 0; 3318 phys_addr_t chip_phys = 0; 3319 struct adapter_reply_queue *reply_q; 3320 3321 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 3322 3323 ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM); 3324 if (pci_enable_device_mem(pdev)) { 3325 ioc_warn(ioc, "pci_enable_device_mem: failed\n"); 3326 ioc->bars = 0; 3327 return -ENODEV; 3328 } 3329 3330 3331 if (pci_request_selected_regions(pdev, ioc->bars, 3332 ioc->driver_name)) { 3333 ioc_warn(ioc, "pci_request_selected_regions: failed\n"); 3334 ioc->bars = 0; 3335 r = -ENODEV; 3336 goto out_fail; 3337 } 3338 3339 /* AER (Advanced Error Reporting) hooks */ 3340 pci_enable_pcie_error_reporting(pdev); 3341 3342 pci_set_master(pdev); 3343 3344 3345 if (_base_config_dma_addressing(ioc, pdev) != 0) { 3346 ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev)); 3347 r = -ENODEV; 3348 goto out_fail; 3349 } 3350 3351 for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) && 3352 (!memap_sz || !pio_sz); i++) { 3353 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { 3354 if (pio_sz) 3355 continue; 3356 pio_chip = (u64)pci_resource_start(pdev, i); 3357 pio_sz = pci_resource_len(pdev, i); 3358 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) { 3359 if (memap_sz) 3360 continue; 3361 ioc->chip_phys = pci_resource_start(pdev, i); 3362 chip_phys = ioc->chip_phys; 3363 memap_sz = pci_resource_len(pdev, i); 3364 ioc->chip = ioremap(ioc->chip_phys, memap_sz); 3365 } 3366 } 3367 3368 if (ioc->chip == NULL) { 3369 ioc_err(ioc, 3370 "unable to map adapter memory! or resource not found\n"); 3371 r = -EINVAL; 3372 goto out_fail; 3373 } 3374 3375 _base_mask_interrupts(ioc); 3376 3377 r = _base_get_ioc_facts(ioc); 3378 if (r) { 3379 rc = _base_check_for_fault_and_issue_reset(ioc); 3380 if (rc || (_base_get_ioc_facts(ioc))) 3381 goto out_fail; 3382 } 3383 3384 if (!ioc->rdpq_array_enable_assigned) { 3385 ioc->rdpq_array_enable = ioc->rdpq_array_capable; 3386 ioc->rdpq_array_enable_assigned = 1; 3387 } 3388 3389 r = _base_enable_msix(ioc); 3390 if (r) 3391 goto out_fail; 3392 3393 if (!ioc->is_driver_loading) 3394 _base_init_irqpolls(ioc); 3395 /* Use the Combined reply queue feature only for SAS3 C0 & higher 3396 * revision HBAs and also only when reply queue count is greater than 8 3397 */ 3398 if (ioc->combined_reply_queue) { 3399 /* Determine the Supplemental Reply Post Host Index Registers 3400 * Addresse. Supplemental Reply Post Host Index Registers 3401 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and 3402 * each register is at offset bytes of 3403 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one. 3404 */ 3405 ioc->replyPostRegisterIndex = kcalloc( 3406 ioc->combined_reply_index_count, 3407 sizeof(resource_size_t *), GFP_KERNEL); 3408 if (!ioc->replyPostRegisterIndex) { 3409 ioc_err(ioc, 3410 "allocation for replyPostRegisterIndex failed!\n"); 3411 r = -ENOMEM; 3412 goto out_fail; 3413 } 3414 3415 for (i = 0; i < ioc->combined_reply_index_count; i++) { 3416 ioc->replyPostRegisterIndex[i] = (resource_size_t *) 3417 ((u8 __force *)&ioc->chip->Doorbell + 3418 MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET + 3419 (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET)); 3420 } 3421 } 3422 3423 if (ioc->is_warpdrive) { 3424 ioc->reply_post_host_index[0] = (resource_size_t __iomem *) 3425 &ioc->chip->ReplyPostHostIndex; 3426 3427 for (i = 1; i < ioc->cpu_msix_table_sz; i++) 3428 ioc->reply_post_host_index[i] = 3429 (resource_size_t __iomem *) 3430 ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1) 3431 * 4))); 3432 } 3433 3434 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) 3435 pr_info("%s: %s enabled: IRQ %d\n", 3436 reply_q->name, 3437 ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC", 3438 pci_irq_vector(ioc->pdev, reply_q->msix_index)); 3439 3440 ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n", 3441 &chip_phys, ioc->chip, memap_sz); 3442 ioc_info(ioc, "ioport(0x%016llx), size(%d)\n", 3443 (unsigned long long)pio_chip, pio_sz); 3444 3445 /* Save PCI configuration state for recovery from PCI AER/EEH errors */ 3446 pci_save_state(pdev); 3447 return 0; 3448 3449 out_fail: 3450 mpt3sas_base_unmap_resources(ioc); 3451 return r; 3452 } 3453 3454 /** 3455 * mpt3sas_base_get_msg_frame - obtain request mf pointer 3456 * @ioc: per adapter object 3457 * @smid: system request message index(smid zero is invalid) 3458 * 3459 * Return: virt pointer to message frame. 3460 */ 3461 void * 3462 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3463 { 3464 return (void *)(ioc->request + (smid * ioc->request_sz)); 3465 } 3466 3467 /** 3468 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr 3469 * @ioc: per adapter object 3470 * @smid: system request message index 3471 * 3472 * Return: virt pointer to sense buffer. 3473 */ 3474 void * 3475 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3476 { 3477 return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE)); 3478 } 3479 3480 /** 3481 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr 3482 * @ioc: per adapter object 3483 * @smid: system request message index 3484 * 3485 * Return: phys pointer to the low 32bit address of the sense buffer. 3486 */ 3487 __le32 3488 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3489 { 3490 return cpu_to_le32(ioc->sense_dma + ((smid - 1) * 3491 SCSI_SENSE_BUFFERSIZE)); 3492 } 3493 3494 /** 3495 * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr 3496 * @ioc: per adapter object 3497 * @smid: system request message index 3498 * 3499 * Return: virt pointer to a PCIe SGL. 3500 */ 3501 void * 3502 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3503 { 3504 return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl); 3505 } 3506 3507 /** 3508 * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr 3509 * @ioc: per adapter object 3510 * @smid: system request message index 3511 * 3512 * Return: phys pointer to the address of the PCIe buffer. 3513 */ 3514 dma_addr_t 3515 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3516 { 3517 return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma; 3518 } 3519 3520 /** 3521 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address 3522 * @ioc: per adapter object 3523 * @phys_addr: lower 32 physical addr of the reply 3524 * 3525 * Converts 32bit lower physical addr into a virt address. 3526 */ 3527 void * 3528 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr) 3529 { 3530 if (!phys_addr) 3531 return NULL; 3532 return ioc->reply + (phys_addr - (u32)ioc->reply_dma); 3533 } 3534 3535 /** 3536 * _base_get_msix_index - get the msix index 3537 * @ioc: per adapter object 3538 * @scmd: scsi_cmnd object 3539 * 3540 * returns msix index of general reply queues, 3541 * i.e. reply queue on which IO request's reply 3542 * should be posted by the HBA firmware. 3543 */ 3544 static inline u8 3545 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc, 3546 struct scsi_cmnd *scmd) 3547 { 3548 /* Enables reply_queue load balancing */ 3549 if (ioc->msix_load_balance) 3550 return ioc->reply_queue_count ? 3551 base_mod64(atomic64_add_return(1, 3552 &ioc->total_io_cnt), ioc->reply_queue_count) : 0; 3553 3554 return ioc->cpu_msix_table[raw_smp_processor_id()]; 3555 } 3556 3557 /** 3558 * _base_sdev_nr_inflight_request -get number of inflight requests 3559 * of a request queue. 3560 * @q: request_queue object 3561 * 3562 * returns number of inflight request of a request queue. 3563 */ 3564 inline unsigned long 3565 _base_sdev_nr_inflight_request(struct request_queue *q) 3566 { 3567 struct blk_mq_hw_ctx *hctx = q->queue_hw_ctx[0]; 3568 3569 return atomic_read(&hctx->nr_active); 3570 } 3571 3572 3573 /** 3574 * _base_get_high_iops_msix_index - get the msix index of 3575 * high iops queues 3576 * @ioc: per adapter object 3577 * @scmd: scsi_cmnd object 3578 * 3579 * Returns: msix index of high iops reply queues. 3580 * i.e. high iops reply queue on which IO request's 3581 * reply should be posted by the HBA firmware. 3582 */ 3583 static inline u8 3584 _base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc, 3585 struct scsi_cmnd *scmd) 3586 { 3587 /** 3588 * Round robin the IO interrupts among the high iops 3589 * reply queues in terms of batch count 16 when outstanding 3590 * IOs on the target device is >=8. 3591 */ 3592 if (_base_sdev_nr_inflight_request(scmd->device->request_queue) > 3593 MPT3SAS_DEVICE_HIGH_IOPS_DEPTH) 3594 return base_mod64(( 3595 atomic64_add_return(1, &ioc->high_iops_outstanding) / 3596 MPT3SAS_HIGH_IOPS_BATCH_COUNT), 3597 MPT3SAS_HIGH_IOPS_REPLY_QUEUES); 3598 3599 return _base_get_msix_index(ioc, scmd); 3600 } 3601 3602 /** 3603 * mpt3sas_base_get_smid - obtain a free smid from internal queue 3604 * @ioc: per adapter object 3605 * @cb_idx: callback index 3606 * 3607 * Return: smid (zero is invalid) 3608 */ 3609 u16 3610 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx) 3611 { 3612 unsigned long flags; 3613 struct request_tracker *request; 3614 u16 smid; 3615 3616 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3617 if (list_empty(&ioc->internal_free_list)) { 3618 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3619 ioc_err(ioc, "%s: smid not available\n", __func__); 3620 return 0; 3621 } 3622 3623 request = list_entry(ioc->internal_free_list.next, 3624 struct request_tracker, tracker_list); 3625 request->cb_idx = cb_idx; 3626 smid = request->smid; 3627 list_del(&request->tracker_list); 3628 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3629 return smid; 3630 } 3631 3632 /** 3633 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue 3634 * @ioc: per adapter object 3635 * @cb_idx: callback index 3636 * @scmd: pointer to scsi command object 3637 * 3638 * Return: smid (zero is invalid) 3639 */ 3640 u16 3641 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx, 3642 struct scsi_cmnd *scmd) 3643 { 3644 struct scsiio_tracker *request = scsi_cmd_priv(scmd); 3645 unsigned int tag = scmd->request->tag; 3646 u16 smid; 3647 3648 smid = tag + 1; 3649 request->cb_idx = cb_idx; 3650 request->smid = smid; 3651 request->scmd = scmd; 3652 INIT_LIST_HEAD(&request->chain_list); 3653 return smid; 3654 } 3655 3656 /** 3657 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue 3658 * @ioc: per adapter object 3659 * @cb_idx: callback index 3660 * 3661 * Return: smid (zero is invalid) 3662 */ 3663 u16 3664 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx) 3665 { 3666 unsigned long flags; 3667 struct request_tracker *request; 3668 u16 smid; 3669 3670 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3671 if (list_empty(&ioc->hpr_free_list)) { 3672 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3673 return 0; 3674 } 3675 3676 request = list_entry(ioc->hpr_free_list.next, 3677 struct request_tracker, tracker_list); 3678 request->cb_idx = cb_idx; 3679 smid = request->smid; 3680 list_del(&request->tracker_list); 3681 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3682 return smid; 3683 } 3684 3685 static void 3686 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc) 3687 { 3688 /* 3689 * See _wait_for_commands_to_complete() call with regards to this code. 3690 */ 3691 if (ioc->shost_recovery && ioc->pending_io_count) { 3692 ioc->pending_io_count = scsi_host_busy(ioc->shost); 3693 if (ioc->pending_io_count == 0) 3694 wake_up(&ioc->reset_wq); 3695 } 3696 } 3697 3698 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc, 3699 struct scsiio_tracker *st) 3700 { 3701 if (WARN_ON(st->smid == 0)) 3702 return; 3703 st->cb_idx = 0xFF; 3704 st->direct_io = 0; 3705 st->scmd = NULL; 3706 atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0); 3707 st->smid = 0; 3708 } 3709 3710 /** 3711 * mpt3sas_base_free_smid - put smid back on free_list 3712 * @ioc: per adapter object 3713 * @smid: system request message index 3714 */ 3715 void 3716 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3717 { 3718 unsigned long flags; 3719 int i; 3720 3721 if (smid < ioc->hi_priority_smid) { 3722 struct scsiio_tracker *st; 3723 void *request; 3724 3725 st = _get_st_from_smid(ioc, smid); 3726 if (!st) { 3727 _base_recovery_check(ioc); 3728 return; 3729 } 3730 3731 /* Clear MPI request frame */ 3732 request = mpt3sas_base_get_msg_frame(ioc, smid); 3733 memset(request, 0, ioc->request_sz); 3734 3735 mpt3sas_base_clear_st(ioc, st); 3736 _base_recovery_check(ioc); 3737 return; 3738 } 3739 3740 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3741 if (smid < ioc->internal_smid) { 3742 /* hi-priority */ 3743 i = smid - ioc->hi_priority_smid; 3744 ioc->hpr_lookup[i].cb_idx = 0xFF; 3745 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list); 3746 } else if (smid <= ioc->hba_queue_depth) { 3747 /* internal queue */ 3748 i = smid - ioc->internal_smid; 3749 ioc->internal_lookup[i].cb_idx = 0xFF; 3750 list_add(&ioc->internal_lookup[i].tracker_list, 3751 &ioc->internal_free_list); 3752 } 3753 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3754 } 3755 3756 /** 3757 * _base_mpi_ep_writeq - 32 bit write to MMIO 3758 * @b: data payload 3759 * @addr: address in MMIO space 3760 * @writeq_lock: spin lock 3761 * 3762 * This special handling for MPI EP to take care of 32 bit 3763 * environment where its not quarenteed to send the entire word 3764 * in one transfer. 3765 */ 3766 static inline void 3767 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr, 3768 spinlock_t *writeq_lock) 3769 { 3770 unsigned long flags; 3771 3772 spin_lock_irqsave(writeq_lock, flags); 3773 __raw_writel((u32)(b), addr); 3774 __raw_writel((u32)(b >> 32), (addr + 4)); 3775 spin_unlock_irqrestore(writeq_lock, flags); 3776 } 3777 3778 /** 3779 * _base_writeq - 64 bit write to MMIO 3780 * @b: data payload 3781 * @addr: address in MMIO space 3782 * @writeq_lock: spin lock 3783 * 3784 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes 3785 * care of 32 bit environment where its not quarenteed to send the entire word 3786 * in one transfer. 3787 */ 3788 #if defined(writeq) && defined(CONFIG_64BIT) 3789 static inline void 3790 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock) 3791 { 3792 wmb(); 3793 __raw_writeq(b, addr); 3794 barrier(); 3795 } 3796 #else 3797 static inline void 3798 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock) 3799 { 3800 _base_mpi_ep_writeq(b, addr, writeq_lock); 3801 } 3802 #endif 3803 3804 /** 3805 * _base_set_and_get_msix_index - get the msix index and assign to msix_io 3806 * variable of scsi tracker 3807 * @ioc: per adapter object 3808 * @smid: system request message index 3809 * 3810 * returns msix index. 3811 */ 3812 static u8 3813 _base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3814 { 3815 struct scsiio_tracker *st = NULL; 3816 3817 if (smid < ioc->hi_priority_smid) 3818 st = _get_st_from_smid(ioc, smid); 3819 3820 if (st == NULL) 3821 return _base_get_msix_index(ioc, NULL); 3822 3823 st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd); 3824 return st->msix_io; 3825 } 3826 3827 /** 3828 * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware 3829 * @ioc: per adapter object 3830 * @smid: system request message index 3831 * @handle: device handle 3832 */ 3833 static void 3834 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc, 3835 u16 smid, u16 handle) 3836 { 3837 Mpi2RequestDescriptorUnion_t descriptor; 3838 u64 *request = (u64 *)&descriptor; 3839 void *mpi_req_iomem; 3840 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 3841 3842 _clone_sg_entries(ioc, (void *) mfp, smid); 3843 mpi_req_iomem = (void __force *)ioc->chip + 3844 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz); 3845 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 3846 ioc->request_sz); 3847 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 3848 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3849 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 3850 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 3851 descriptor.SCSIIO.LMID = 0; 3852 _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3853 &ioc->scsi_lookup_lock); 3854 } 3855 3856 /** 3857 * _base_put_smid_scsi_io - send SCSI_IO request to firmware 3858 * @ioc: per adapter object 3859 * @smid: system request message index 3860 * @handle: device handle 3861 */ 3862 static void 3863 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle) 3864 { 3865 Mpi2RequestDescriptorUnion_t descriptor; 3866 u64 *request = (u64 *)&descriptor; 3867 3868 3869 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 3870 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3871 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 3872 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 3873 descriptor.SCSIIO.LMID = 0; 3874 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3875 &ioc->scsi_lookup_lock); 3876 } 3877 3878 /** 3879 * _base_put_smid_fast_path - send fast path request to firmware 3880 * @ioc: per adapter object 3881 * @smid: system request message index 3882 * @handle: device handle 3883 */ 3884 static void 3885 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid, 3886 u16 handle) 3887 { 3888 Mpi2RequestDescriptorUnion_t descriptor; 3889 u64 *request = (u64 *)&descriptor; 3890 3891 descriptor.SCSIIO.RequestFlags = 3892 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 3893 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3894 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 3895 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 3896 descriptor.SCSIIO.LMID = 0; 3897 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3898 &ioc->scsi_lookup_lock); 3899 } 3900 3901 /** 3902 * _base_put_smid_hi_priority - send Task Management request to firmware 3903 * @ioc: per adapter object 3904 * @smid: system request message index 3905 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0. 3906 */ 3907 static void 3908 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid, 3909 u16 msix_task) 3910 { 3911 Mpi2RequestDescriptorUnion_t descriptor; 3912 void *mpi_req_iomem; 3913 u64 *request; 3914 3915 if (ioc->is_mcpu_endpoint) { 3916 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 3917 3918 /* TBD 256 is offset within sys register. */ 3919 mpi_req_iomem = (void __force *)ioc->chip 3920 + MPI_FRAME_START_OFFSET 3921 + (smid * ioc->request_sz); 3922 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 3923 ioc->request_sz); 3924 } 3925 3926 request = (u64 *)&descriptor; 3927 3928 descriptor.HighPriority.RequestFlags = 3929 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 3930 descriptor.HighPriority.MSIxIndex = msix_task; 3931 descriptor.HighPriority.SMID = cpu_to_le16(smid); 3932 descriptor.HighPriority.LMID = 0; 3933 descriptor.HighPriority.Reserved1 = 0; 3934 if (ioc->is_mcpu_endpoint) 3935 _base_mpi_ep_writeq(*request, 3936 &ioc->chip->RequestDescriptorPostLow, 3937 &ioc->scsi_lookup_lock); 3938 else 3939 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3940 &ioc->scsi_lookup_lock); 3941 } 3942 3943 /** 3944 * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to 3945 * firmware 3946 * @ioc: per adapter object 3947 * @smid: system request message index 3948 */ 3949 void 3950 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3951 { 3952 Mpi2RequestDescriptorUnion_t descriptor; 3953 u64 *request = (u64 *)&descriptor; 3954 3955 descriptor.Default.RequestFlags = 3956 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED; 3957 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3958 descriptor.Default.SMID = cpu_to_le16(smid); 3959 descriptor.Default.LMID = 0; 3960 descriptor.Default.DescriptorTypeDependent = 0; 3961 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3962 &ioc->scsi_lookup_lock); 3963 } 3964 3965 /** 3966 * _base_put_smid_default - Default, primarily used for config pages 3967 * @ioc: per adapter object 3968 * @smid: system request message index 3969 */ 3970 static void 3971 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3972 { 3973 Mpi2RequestDescriptorUnion_t descriptor; 3974 void *mpi_req_iomem; 3975 u64 *request; 3976 3977 if (ioc->is_mcpu_endpoint) { 3978 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 3979 3980 _clone_sg_entries(ioc, (void *) mfp, smid); 3981 /* TBD 256 is offset within sys register */ 3982 mpi_req_iomem = (void __force *)ioc->chip + 3983 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz); 3984 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 3985 ioc->request_sz); 3986 } 3987 request = (u64 *)&descriptor; 3988 descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 3989 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3990 descriptor.Default.SMID = cpu_to_le16(smid); 3991 descriptor.Default.LMID = 0; 3992 descriptor.Default.DescriptorTypeDependent = 0; 3993 if (ioc->is_mcpu_endpoint) 3994 _base_mpi_ep_writeq(*request, 3995 &ioc->chip->RequestDescriptorPostLow, 3996 &ioc->scsi_lookup_lock); 3997 else 3998 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3999 &ioc->scsi_lookup_lock); 4000 } 4001 4002 /** 4003 * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using 4004 * Atomic Request Descriptor 4005 * @ioc: per adapter object 4006 * @smid: system request message index 4007 * @handle: device handle, unused in this function, for function type match 4008 * 4009 * Return nothing. 4010 */ 4011 static void 4012 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4013 u16 handle) 4014 { 4015 Mpi26AtomicRequestDescriptor_t descriptor; 4016 u32 *request = (u32 *)&descriptor; 4017 4018 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 4019 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4020 descriptor.SMID = cpu_to_le16(smid); 4021 4022 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4023 } 4024 4025 /** 4026 * _base_put_smid_fast_path_atomic - send fast path request to firmware 4027 * using Atomic Request Descriptor 4028 * @ioc: per adapter object 4029 * @smid: system request message index 4030 * @handle: device handle, unused in this function, for function type match 4031 * Return nothing 4032 */ 4033 static void 4034 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4035 u16 handle) 4036 { 4037 Mpi26AtomicRequestDescriptor_t descriptor; 4038 u32 *request = (u32 *)&descriptor; 4039 4040 descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 4041 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4042 descriptor.SMID = cpu_to_le16(smid); 4043 4044 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4045 } 4046 4047 /** 4048 * _base_put_smid_hi_priority_atomic - send Task Management request to 4049 * firmware using Atomic Request Descriptor 4050 * @ioc: per adapter object 4051 * @smid: system request message index 4052 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0 4053 * 4054 * Return nothing. 4055 */ 4056 static void 4057 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4058 u16 msix_task) 4059 { 4060 Mpi26AtomicRequestDescriptor_t descriptor; 4061 u32 *request = (u32 *)&descriptor; 4062 4063 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 4064 descriptor.MSIxIndex = msix_task; 4065 descriptor.SMID = cpu_to_le16(smid); 4066 4067 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4068 } 4069 4070 /** 4071 * _base_put_smid_default - Default, primarily used for config pages 4072 * use Atomic Request Descriptor 4073 * @ioc: per adapter object 4074 * @smid: system request message index 4075 * 4076 * Return nothing. 4077 */ 4078 static void 4079 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid) 4080 { 4081 Mpi26AtomicRequestDescriptor_t descriptor; 4082 u32 *request = (u32 *)&descriptor; 4083 4084 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 4085 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4086 descriptor.SMID = cpu_to_le16(smid); 4087 4088 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4089 } 4090 4091 /** 4092 * _base_display_OEMs_branding - Display branding string 4093 * @ioc: per adapter object 4094 */ 4095 static void 4096 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc) 4097 { 4098 if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL) 4099 return; 4100 4101 switch (ioc->pdev->subsystem_vendor) { 4102 case PCI_VENDOR_ID_INTEL: 4103 switch (ioc->pdev->device) { 4104 case MPI2_MFGPAGE_DEVID_SAS2008: 4105 switch (ioc->pdev->subsystem_device) { 4106 case MPT2SAS_INTEL_RMS2LL080_SSDID: 4107 ioc_info(ioc, "%s\n", 4108 MPT2SAS_INTEL_RMS2LL080_BRANDING); 4109 break; 4110 case MPT2SAS_INTEL_RMS2LL040_SSDID: 4111 ioc_info(ioc, "%s\n", 4112 MPT2SAS_INTEL_RMS2LL040_BRANDING); 4113 break; 4114 case MPT2SAS_INTEL_SSD910_SSDID: 4115 ioc_info(ioc, "%s\n", 4116 MPT2SAS_INTEL_SSD910_BRANDING); 4117 break; 4118 default: 4119 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4120 ioc->pdev->subsystem_device); 4121 break; 4122 } 4123 break; 4124 case MPI2_MFGPAGE_DEVID_SAS2308_2: 4125 switch (ioc->pdev->subsystem_device) { 4126 case MPT2SAS_INTEL_RS25GB008_SSDID: 4127 ioc_info(ioc, "%s\n", 4128 MPT2SAS_INTEL_RS25GB008_BRANDING); 4129 break; 4130 case MPT2SAS_INTEL_RMS25JB080_SSDID: 4131 ioc_info(ioc, "%s\n", 4132 MPT2SAS_INTEL_RMS25JB080_BRANDING); 4133 break; 4134 case MPT2SAS_INTEL_RMS25JB040_SSDID: 4135 ioc_info(ioc, "%s\n", 4136 MPT2SAS_INTEL_RMS25JB040_BRANDING); 4137 break; 4138 case MPT2SAS_INTEL_RMS25KB080_SSDID: 4139 ioc_info(ioc, "%s\n", 4140 MPT2SAS_INTEL_RMS25KB080_BRANDING); 4141 break; 4142 case MPT2SAS_INTEL_RMS25KB040_SSDID: 4143 ioc_info(ioc, "%s\n", 4144 MPT2SAS_INTEL_RMS25KB040_BRANDING); 4145 break; 4146 case MPT2SAS_INTEL_RMS25LB040_SSDID: 4147 ioc_info(ioc, "%s\n", 4148 MPT2SAS_INTEL_RMS25LB040_BRANDING); 4149 break; 4150 case MPT2SAS_INTEL_RMS25LB080_SSDID: 4151 ioc_info(ioc, "%s\n", 4152 MPT2SAS_INTEL_RMS25LB080_BRANDING); 4153 break; 4154 default: 4155 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4156 ioc->pdev->subsystem_device); 4157 break; 4158 } 4159 break; 4160 case MPI25_MFGPAGE_DEVID_SAS3008: 4161 switch (ioc->pdev->subsystem_device) { 4162 case MPT3SAS_INTEL_RMS3JC080_SSDID: 4163 ioc_info(ioc, "%s\n", 4164 MPT3SAS_INTEL_RMS3JC080_BRANDING); 4165 break; 4166 4167 case MPT3SAS_INTEL_RS3GC008_SSDID: 4168 ioc_info(ioc, "%s\n", 4169 MPT3SAS_INTEL_RS3GC008_BRANDING); 4170 break; 4171 case MPT3SAS_INTEL_RS3FC044_SSDID: 4172 ioc_info(ioc, "%s\n", 4173 MPT3SAS_INTEL_RS3FC044_BRANDING); 4174 break; 4175 case MPT3SAS_INTEL_RS3UC080_SSDID: 4176 ioc_info(ioc, "%s\n", 4177 MPT3SAS_INTEL_RS3UC080_BRANDING); 4178 break; 4179 default: 4180 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4181 ioc->pdev->subsystem_device); 4182 break; 4183 } 4184 break; 4185 default: 4186 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4187 ioc->pdev->subsystem_device); 4188 break; 4189 } 4190 break; 4191 case PCI_VENDOR_ID_DELL: 4192 switch (ioc->pdev->device) { 4193 case MPI2_MFGPAGE_DEVID_SAS2008: 4194 switch (ioc->pdev->subsystem_device) { 4195 case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID: 4196 ioc_info(ioc, "%s\n", 4197 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING); 4198 break; 4199 case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID: 4200 ioc_info(ioc, "%s\n", 4201 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING); 4202 break; 4203 case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID: 4204 ioc_info(ioc, "%s\n", 4205 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING); 4206 break; 4207 case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID: 4208 ioc_info(ioc, "%s\n", 4209 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING); 4210 break; 4211 case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID: 4212 ioc_info(ioc, "%s\n", 4213 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING); 4214 break; 4215 case MPT2SAS_DELL_PERC_H200_SSDID: 4216 ioc_info(ioc, "%s\n", 4217 MPT2SAS_DELL_PERC_H200_BRANDING); 4218 break; 4219 case MPT2SAS_DELL_6GBPS_SAS_SSDID: 4220 ioc_info(ioc, "%s\n", 4221 MPT2SAS_DELL_6GBPS_SAS_BRANDING); 4222 break; 4223 default: 4224 ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n", 4225 ioc->pdev->subsystem_device); 4226 break; 4227 } 4228 break; 4229 case MPI25_MFGPAGE_DEVID_SAS3008: 4230 switch (ioc->pdev->subsystem_device) { 4231 case MPT3SAS_DELL_12G_HBA_SSDID: 4232 ioc_info(ioc, "%s\n", 4233 MPT3SAS_DELL_12G_HBA_BRANDING); 4234 break; 4235 default: 4236 ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n", 4237 ioc->pdev->subsystem_device); 4238 break; 4239 } 4240 break; 4241 default: 4242 ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n", 4243 ioc->pdev->subsystem_device); 4244 break; 4245 } 4246 break; 4247 case PCI_VENDOR_ID_CISCO: 4248 switch (ioc->pdev->device) { 4249 case MPI25_MFGPAGE_DEVID_SAS3008: 4250 switch (ioc->pdev->subsystem_device) { 4251 case MPT3SAS_CISCO_12G_8E_HBA_SSDID: 4252 ioc_info(ioc, "%s\n", 4253 MPT3SAS_CISCO_12G_8E_HBA_BRANDING); 4254 break; 4255 case MPT3SAS_CISCO_12G_8I_HBA_SSDID: 4256 ioc_info(ioc, "%s\n", 4257 MPT3SAS_CISCO_12G_8I_HBA_BRANDING); 4258 break; 4259 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID: 4260 ioc_info(ioc, "%s\n", 4261 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING); 4262 break; 4263 default: 4264 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n", 4265 ioc->pdev->subsystem_device); 4266 break; 4267 } 4268 break; 4269 case MPI25_MFGPAGE_DEVID_SAS3108_1: 4270 switch (ioc->pdev->subsystem_device) { 4271 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID: 4272 ioc_info(ioc, "%s\n", 4273 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING); 4274 break; 4275 case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID: 4276 ioc_info(ioc, "%s\n", 4277 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING); 4278 break; 4279 default: 4280 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n", 4281 ioc->pdev->subsystem_device); 4282 break; 4283 } 4284 break; 4285 default: 4286 ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n", 4287 ioc->pdev->subsystem_device); 4288 break; 4289 } 4290 break; 4291 case MPT2SAS_HP_3PAR_SSVID: 4292 switch (ioc->pdev->device) { 4293 case MPI2_MFGPAGE_DEVID_SAS2004: 4294 switch (ioc->pdev->subsystem_device) { 4295 case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID: 4296 ioc_info(ioc, "%s\n", 4297 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING); 4298 break; 4299 default: 4300 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n", 4301 ioc->pdev->subsystem_device); 4302 break; 4303 } 4304 break; 4305 case MPI2_MFGPAGE_DEVID_SAS2308_2: 4306 switch (ioc->pdev->subsystem_device) { 4307 case MPT2SAS_HP_2_4_INTERNAL_SSDID: 4308 ioc_info(ioc, "%s\n", 4309 MPT2SAS_HP_2_4_INTERNAL_BRANDING); 4310 break; 4311 case MPT2SAS_HP_2_4_EXTERNAL_SSDID: 4312 ioc_info(ioc, "%s\n", 4313 MPT2SAS_HP_2_4_EXTERNAL_BRANDING); 4314 break; 4315 case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID: 4316 ioc_info(ioc, "%s\n", 4317 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING); 4318 break; 4319 case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID: 4320 ioc_info(ioc, "%s\n", 4321 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING); 4322 break; 4323 default: 4324 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n", 4325 ioc->pdev->subsystem_device); 4326 break; 4327 } 4328 break; 4329 default: 4330 ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n", 4331 ioc->pdev->subsystem_device); 4332 break; 4333 } 4334 default: 4335 break; 4336 } 4337 } 4338 4339 /** 4340 * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg 4341 * version from FW Image Header. 4342 * @ioc: per adapter object 4343 * 4344 * Return: 0 for success, non-zero for failure. 4345 */ 4346 static int 4347 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc) 4348 { 4349 Mpi2FWImageHeader_t *fw_img_hdr; 4350 Mpi26ComponentImageHeader_t *cmp_img_hdr; 4351 Mpi25FWUploadRequest_t *mpi_request; 4352 Mpi2FWUploadReply_t mpi_reply; 4353 int r = 0; 4354 u32 package_version = 0; 4355 void *fwpkg_data = NULL; 4356 dma_addr_t fwpkg_data_dma; 4357 u16 smid, ioc_status; 4358 size_t data_length; 4359 4360 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 4361 4362 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 4363 ioc_err(ioc, "%s: internal command already in use\n", __func__); 4364 return -EAGAIN; 4365 } 4366 4367 data_length = sizeof(Mpi2FWImageHeader_t); 4368 fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length, 4369 &fwpkg_data_dma, GFP_KERNEL); 4370 if (!fwpkg_data) { 4371 ioc_err(ioc, 4372 "Memory allocation for fwpkg data failed at %s:%d/%s()!\n", 4373 __FILE__, __LINE__, __func__); 4374 return -ENOMEM; 4375 } 4376 4377 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 4378 if (!smid) { 4379 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 4380 r = -EAGAIN; 4381 goto out; 4382 } 4383 4384 ioc->base_cmds.status = MPT3_CMD_PENDING; 4385 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 4386 ioc->base_cmds.smid = smid; 4387 memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t)); 4388 mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD; 4389 mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH; 4390 mpi_request->ImageSize = cpu_to_le32(data_length); 4391 ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma, 4392 data_length); 4393 init_completion(&ioc->base_cmds.done); 4394 ioc->put_smid_default(ioc, smid); 4395 /* Wait for 15 seconds */ 4396 wait_for_completion_timeout(&ioc->base_cmds.done, 4397 FW_IMG_HDR_READ_TIMEOUT*HZ); 4398 ioc_info(ioc, "%s: complete\n", __func__); 4399 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 4400 ioc_err(ioc, "%s: timeout\n", __func__); 4401 _debug_dump_mf(mpi_request, 4402 sizeof(Mpi25FWUploadRequest_t)/4); 4403 r = -ETIME; 4404 } else { 4405 memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t)); 4406 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) { 4407 memcpy(&mpi_reply, ioc->base_cmds.reply, 4408 sizeof(Mpi2FWUploadReply_t)); 4409 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 4410 MPI2_IOCSTATUS_MASK; 4411 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 4412 fw_img_hdr = (Mpi2FWImageHeader_t *)fwpkg_data; 4413 if (le32_to_cpu(fw_img_hdr->Signature) == 4414 MPI26_IMAGE_HEADER_SIGNATURE0_MPI26) { 4415 cmp_img_hdr = 4416 (Mpi26ComponentImageHeader_t *) 4417 (fwpkg_data); 4418 package_version = 4419 le32_to_cpu( 4420 cmp_img_hdr->ApplicationSpecific); 4421 } else 4422 package_version = 4423 le32_to_cpu( 4424 fw_img_hdr->PackageVersion.Word); 4425 if (package_version) 4426 ioc_info(ioc, 4427 "FW Package Ver(%02d.%02d.%02d.%02d)\n", 4428 ((package_version) & 0xFF000000) >> 24, 4429 ((package_version) & 0x00FF0000) >> 16, 4430 ((package_version) & 0x0000FF00) >> 8, 4431 (package_version) & 0x000000FF); 4432 } else { 4433 _debug_dump_mf(&mpi_reply, 4434 sizeof(Mpi2FWUploadReply_t)/4); 4435 } 4436 } 4437 } 4438 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 4439 out: 4440 if (fwpkg_data) 4441 dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data, 4442 fwpkg_data_dma); 4443 return r; 4444 } 4445 4446 /** 4447 * _base_display_ioc_capabilities - Disply IOC's capabilities. 4448 * @ioc: per adapter object 4449 */ 4450 static void 4451 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc) 4452 { 4453 int i = 0; 4454 char desc[16]; 4455 u32 iounit_pg1_flags; 4456 u32 bios_version; 4457 4458 bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion); 4459 strncpy(desc, ioc->manu_pg0.ChipName, 16); 4460 ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n", 4461 desc, 4462 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24, 4463 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16, 4464 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8, 4465 ioc->facts.FWVersion.Word & 0x000000FF, 4466 ioc->pdev->revision, 4467 (bios_version & 0xFF000000) >> 24, 4468 (bios_version & 0x00FF0000) >> 16, 4469 (bios_version & 0x0000FF00) >> 8, 4470 bios_version & 0x000000FF); 4471 4472 _base_display_OEMs_branding(ioc); 4473 4474 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) { 4475 pr_info("%sNVMe", i ? "," : ""); 4476 i++; 4477 } 4478 4479 ioc_info(ioc, "Protocol=("); 4480 4481 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) { 4482 pr_cont("Initiator"); 4483 i++; 4484 } 4485 4486 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) { 4487 pr_cont("%sTarget", i ? "," : ""); 4488 i++; 4489 } 4490 4491 i = 0; 4492 pr_cont("), Capabilities=("); 4493 4494 if (!ioc->hide_ir_msg) { 4495 if (ioc->facts.IOCCapabilities & 4496 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) { 4497 pr_cont("Raid"); 4498 i++; 4499 } 4500 } 4501 4502 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) { 4503 pr_cont("%sTLR", i ? "," : ""); 4504 i++; 4505 } 4506 4507 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) { 4508 pr_cont("%sMulticast", i ? "," : ""); 4509 i++; 4510 } 4511 4512 if (ioc->facts.IOCCapabilities & 4513 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) { 4514 pr_cont("%sBIDI Target", i ? "," : ""); 4515 i++; 4516 } 4517 4518 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) { 4519 pr_cont("%sEEDP", i ? "," : ""); 4520 i++; 4521 } 4522 4523 if (ioc->facts.IOCCapabilities & 4524 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) { 4525 pr_cont("%sSnapshot Buffer", i ? "," : ""); 4526 i++; 4527 } 4528 4529 if (ioc->facts.IOCCapabilities & 4530 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) { 4531 pr_cont("%sDiag Trace Buffer", i ? "," : ""); 4532 i++; 4533 } 4534 4535 if (ioc->facts.IOCCapabilities & 4536 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) { 4537 pr_cont("%sDiag Extended Buffer", i ? "," : ""); 4538 i++; 4539 } 4540 4541 if (ioc->facts.IOCCapabilities & 4542 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) { 4543 pr_cont("%sTask Set Full", i ? "," : ""); 4544 i++; 4545 } 4546 4547 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags); 4548 if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) { 4549 pr_cont("%sNCQ", i ? "," : ""); 4550 i++; 4551 } 4552 4553 pr_cont(")\n"); 4554 } 4555 4556 /** 4557 * mpt3sas_base_update_missing_delay - change the missing delay timers 4558 * @ioc: per adapter object 4559 * @device_missing_delay: amount of time till device is reported missing 4560 * @io_missing_delay: interval IO is returned when there is a missing device 4561 * 4562 * Passed on the command line, this function will modify the device missing 4563 * delay, as well as the io missing delay. This should be called at driver 4564 * load time. 4565 */ 4566 void 4567 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc, 4568 u16 device_missing_delay, u8 io_missing_delay) 4569 { 4570 u16 dmd, dmd_new, dmd_orignal; 4571 u8 io_missing_delay_original; 4572 u16 sz; 4573 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL; 4574 Mpi2ConfigReply_t mpi_reply; 4575 u8 num_phys = 0; 4576 u16 ioc_status; 4577 4578 mpt3sas_config_get_number_hba_phys(ioc, &num_phys); 4579 if (!num_phys) 4580 return; 4581 4582 sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys * 4583 sizeof(Mpi2SasIOUnit1PhyData_t)); 4584 sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL); 4585 if (!sas_iounit_pg1) { 4586 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4587 __FILE__, __LINE__, __func__); 4588 goto out; 4589 } 4590 if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply, 4591 sas_iounit_pg1, sz))) { 4592 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4593 __FILE__, __LINE__, __func__); 4594 goto out; 4595 } 4596 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 4597 MPI2_IOCSTATUS_MASK; 4598 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 4599 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4600 __FILE__, __LINE__, __func__); 4601 goto out; 4602 } 4603 4604 /* device missing delay */ 4605 dmd = sas_iounit_pg1->ReportDeviceMissingDelay; 4606 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16) 4607 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16; 4608 else 4609 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK; 4610 dmd_orignal = dmd; 4611 if (device_missing_delay > 0x7F) { 4612 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 : 4613 device_missing_delay; 4614 dmd = dmd / 16; 4615 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16; 4616 } else 4617 dmd = device_missing_delay; 4618 sas_iounit_pg1->ReportDeviceMissingDelay = dmd; 4619 4620 /* io missing delay */ 4621 io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay; 4622 sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay; 4623 4624 if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1, 4625 sz)) { 4626 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16) 4627 dmd_new = (dmd & 4628 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16; 4629 else 4630 dmd_new = 4631 dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK; 4632 ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n", 4633 dmd_orignal, dmd_new); 4634 ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n", 4635 io_missing_delay_original, 4636 io_missing_delay); 4637 ioc->device_missing_delay = dmd_new; 4638 ioc->io_missing_delay = io_missing_delay; 4639 } 4640 4641 out: 4642 kfree(sas_iounit_pg1); 4643 } 4644 4645 /** 4646 * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields 4647 * according to performance mode. 4648 * @ioc : per adapter object 4649 * 4650 * Return nothing. 4651 */ 4652 static void 4653 _base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc) 4654 { 4655 Mpi2IOCPage1_t ioc_pg1; 4656 Mpi2ConfigReply_t mpi_reply; 4657 4658 mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy); 4659 memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t)); 4660 4661 switch (perf_mode) { 4662 case MPT_PERF_MODE_DEFAULT: 4663 case MPT_PERF_MODE_BALANCED: 4664 if (ioc->high_iops_queues) { 4665 ioc_info(ioc, 4666 "Enable interrupt coalescing only for first\t" 4667 "%d reply queues\n", 4668 MPT3SAS_HIGH_IOPS_REPLY_QUEUES); 4669 /* 4670 * If 31st bit is zero then interrupt coalescing is 4671 * enabled for all reply descriptor post queues. 4672 * If 31st bit is set to one then user can 4673 * enable/disable interrupt coalescing on per reply 4674 * descriptor post queue group(8) basis. So to enable 4675 * interrupt coalescing only on first reply descriptor 4676 * post queue group 31st bit and zero th bit is enabled. 4677 */ 4678 ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 | 4679 ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1)); 4680 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1); 4681 ioc_info(ioc, "performance mode: balanced\n"); 4682 return; 4683 } 4684 fallthrough; 4685 case MPT_PERF_MODE_LATENCY: 4686 /* 4687 * Enable interrupt coalescing on all reply queues 4688 * with timeout value 0xA 4689 */ 4690 ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa); 4691 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING); 4692 ioc_pg1.ProductSpecific = 0; 4693 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1); 4694 ioc_info(ioc, "performance mode: latency\n"); 4695 break; 4696 case MPT_PERF_MODE_IOPS: 4697 /* 4698 * Enable interrupt coalescing on all reply queues. 4699 */ 4700 ioc_info(ioc, 4701 "performance mode: iops with coalescing timeout: 0x%x\n", 4702 le32_to_cpu(ioc_pg1.CoalescingTimeout)); 4703 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING); 4704 ioc_pg1.ProductSpecific = 0; 4705 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1); 4706 break; 4707 } 4708 } 4709 4710 /** 4711 * _base_static_config_pages - static start of day config pages 4712 * @ioc: per adapter object 4713 */ 4714 static void 4715 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc) 4716 { 4717 Mpi2ConfigReply_t mpi_reply; 4718 u32 iounit_pg1_flags; 4719 4720 ioc->nvme_abort_timeout = 30; 4721 mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0); 4722 if (ioc->ir_firmware) 4723 mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply, 4724 &ioc->manu_pg10); 4725 4726 /* 4727 * Ensure correct T10 PI operation if vendor left EEDPTagMode 4728 * flag unset in NVDATA. 4729 */ 4730 mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11); 4731 if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) { 4732 pr_err("%s: overriding NVDATA EEDPTagMode setting\n", 4733 ioc->name); 4734 ioc->manu_pg11.EEDPTagMode &= ~0x3; 4735 ioc->manu_pg11.EEDPTagMode |= 0x1; 4736 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply, 4737 &ioc->manu_pg11); 4738 } 4739 if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK) 4740 ioc->tm_custom_handling = 1; 4741 else { 4742 ioc->tm_custom_handling = 0; 4743 if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT) 4744 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT; 4745 else if (ioc->manu_pg11.NVMeAbortTO > 4746 NVME_TASK_ABORT_MAX_TIMEOUT) 4747 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT; 4748 else 4749 ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO; 4750 } 4751 4752 mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2); 4753 mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3); 4754 mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8); 4755 mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0); 4756 mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1); 4757 mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8); 4758 _base_display_ioc_capabilities(ioc); 4759 4760 /* 4761 * Enable task_set_full handling in iounit_pg1 when the 4762 * facts capabilities indicate that its supported. 4763 */ 4764 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags); 4765 if ((ioc->facts.IOCCapabilities & 4766 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING)) 4767 iounit_pg1_flags &= 4768 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING; 4769 else 4770 iounit_pg1_flags |= 4771 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING; 4772 ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags); 4773 mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1); 4774 4775 if (ioc->iounit_pg8.NumSensors) 4776 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors; 4777 if (ioc->is_aero_ioc) 4778 _base_update_ioc_page1_inlinewith_perf_mode(ioc); 4779 } 4780 4781 /** 4782 * mpt3sas_free_enclosure_list - release memory 4783 * @ioc: per adapter object 4784 * 4785 * Free memory allocated during encloure add. 4786 */ 4787 void 4788 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc) 4789 { 4790 struct _enclosure_node *enclosure_dev, *enclosure_dev_next; 4791 4792 /* Free enclosure list */ 4793 list_for_each_entry_safe(enclosure_dev, 4794 enclosure_dev_next, &ioc->enclosure_list, list) { 4795 list_del(&enclosure_dev->list); 4796 kfree(enclosure_dev); 4797 } 4798 } 4799 4800 /** 4801 * _base_release_memory_pools - release memory 4802 * @ioc: per adapter object 4803 * 4804 * Free memory allocated from _base_allocate_memory_pools. 4805 */ 4806 static void 4807 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc) 4808 { 4809 int i = 0; 4810 int j = 0; 4811 int dma_alloc_count = 0; 4812 struct chain_tracker *ct; 4813 int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1; 4814 4815 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 4816 4817 if (ioc->request) { 4818 dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz, 4819 ioc->request, ioc->request_dma); 4820 dexitprintk(ioc, 4821 ioc_info(ioc, "request_pool(0x%p): free\n", 4822 ioc->request)); 4823 ioc->request = NULL; 4824 } 4825 4826 if (ioc->sense) { 4827 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma); 4828 dma_pool_destroy(ioc->sense_dma_pool); 4829 dexitprintk(ioc, 4830 ioc_info(ioc, "sense_pool(0x%p): free\n", 4831 ioc->sense)); 4832 ioc->sense = NULL; 4833 } 4834 4835 if (ioc->reply) { 4836 dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma); 4837 dma_pool_destroy(ioc->reply_dma_pool); 4838 dexitprintk(ioc, 4839 ioc_info(ioc, "reply_pool(0x%p): free\n", 4840 ioc->reply)); 4841 ioc->reply = NULL; 4842 } 4843 4844 if (ioc->reply_free) { 4845 dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free, 4846 ioc->reply_free_dma); 4847 dma_pool_destroy(ioc->reply_free_dma_pool); 4848 dexitprintk(ioc, 4849 ioc_info(ioc, "reply_free_pool(0x%p): free\n", 4850 ioc->reply_free)); 4851 ioc->reply_free = NULL; 4852 } 4853 4854 if (ioc->reply_post) { 4855 dma_alloc_count = DIV_ROUND_UP(count, 4856 RDPQ_MAX_INDEX_IN_ONE_CHUNK); 4857 for (i = 0; i < count; i++) { 4858 if (i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0 4859 && dma_alloc_count) { 4860 if (ioc->reply_post[i].reply_post_free) { 4861 dma_pool_free( 4862 ioc->reply_post_free_dma_pool, 4863 ioc->reply_post[i].reply_post_free, 4864 ioc->reply_post[i].reply_post_free_dma); 4865 dexitprintk(ioc, ioc_info(ioc, 4866 "reply_post_free_pool(0x%p): free\n", 4867 ioc->reply_post[i].reply_post_free)); 4868 ioc->reply_post[i].reply_post_free = 4869 NULL; 4870 } 4871 --dma_alloc_count; 4872 } 4873 } 4874 dma_pool_destroy(ioc->reply_post_free_dma_pool); 4875 if (ioc->reply_post_free_array && 4876 ioc->rdpq_array_enable) { 4877 dma_pool_free(ioc->reply_post_free_array_dma_pool, 4878 ioc->reply_post_free_array, 4879 ioc->reply_post_free_array_dma); 4880 ioc->reply_post_free_array = NULL; 4881 } 4882 dma_pool_destroy(ioc->reply_post_free_array_dma_pool); 4883 kfree(ioc->reply_post); 4884 } 4885 4886 if (ioc->pcie_sgl_dma_pool) { 4887 for (i = 0; i < ioc->scsiio_depth; i++) { 4888 dma_pool_free(ioc->pcie_sgl_dma_pool, 4889 ioc->pcie_sg_lookup[i].pcie_sgl, 4890 ioc->pcie_sg_lookup[i].pcie_sgl_dma); 4891 } 4892 dma_pool_destroy(ioc->pcie_sgl_dma_pool); 4893 } 4894 4895 if (ioc->config_page) { 4896 dexitprintk(ioc, 4897 ioc_info(ioc, "config_page(0x%p): free\n", 4898 ioc->config_page)); 4899 dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz, 4900 ioc->config_page, ioc->config_page_dma); 4901 } 4902 4903 kfree(ioc->hpr_lookup); 4904 ioc->hpr_lookup = NULL; 4905 kfree(ioc->internal_lookup); 4906 ioc->internal_lookup = NULL; 4907 if (ioc->chain_lookup) { 4908 for (i = 0; i < ioc->scsiio_depth; i++) { 4909 for (j = ioc->chains_per_prp_buffer; 4910 j < ioc->chains_needed_per_io; j++) { 4911 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 4912 if (ct && ct->chain_buffer) 4913 dma_pool_free(ioc->chain_dma_pool, 4914 ct->chain_buffer, 4915 ct->chain_buffer_dma); 4916 } 4917 kfree(ioc->chain_lookup[i].chains_per_smid); 4918 } 4919 dma_pool_destroy(ioc->chain_dma_pool); 4920 kfree(ioc->chain_lookup); 4921 ioc->chain_lookup = NULL; 4922 } 4923 } 4924 4925 /** 4926 * mpt3sas_check_same_4gb_region - checks whether all reply queues in a set are 4927 * having same upper 32bits in their base memory address. 4928 * @reply_pool_start_address: Base address of a reply queue set 4929 * @pool_sz: Size of single Reply Descriptor Post Queues pool size 4930 * 4931 * Return: 1 if reply queues in a set have a same upper 32bits in their base 4932 * memory address, else 0. 4933 */ 4934 4935 static int 4936 mpt3sas_check_same_4gb_region(long reply_pool_start_address, u32 pool_sz) 4937 { 4938 long reply_pool_end_address; 4939 4940 reply_pool_end_address = reply_pool_start_address + pool_sz; 4941 4942 if (upper_32_bits(reply_pool_start_address) == 4943 upper_32_bits(reply_pool_end_address)) 4944 return 1; 4945 else 4946 return 0; 4947 } 4948 4949 /** 4950 * base_alloc_rdpq_dma_pool - Allocating DMA'able memory 4951 * for reply queues. 4952 * @ioc: per adapter object 4953 * @sz: DMA Pool size 4954 * Return: 0 for success, non-zero for failure. 4955 */ 4956 static int 4957 base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER *ioc, int sz) 4958 { 4959 int i = 0; 4960 u32 dma_alloc_count = 0; 4961 int reply_post_free_sz = ioc->reply_post_queue_depth * 4962 sizeof(Mpi2DefaultReplyDescriptor_t); 4963 int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1; 4964 4965 ioc->reply_post = kcalloc(count, sizeof(struct reply_post_struct), 4966 GFP_KERNEL); 4967 if (!ioc->reply_post) 4968 return -ENOMEM; 4969 /* 4970 * For INVADER_SERIES each set of 8 reply queues(0-7, 8-15, ..) and 4971 * VENTURA_SERIES each set of 16 reply queues(0-15, 16-31, ..) should 4972 * be within 4GB boundary i.e reply queues in a set must have same 4973 * upper 32-bits in their memory address. so here driver is allocating 4974 * the DMA'able memory for reply queues according. 4975 * Driver uses limitation of 4976 * VENTURA_SERIES to manage INVADER_SERIES as well. 4977 */ 4978 dma_alloc_count = DIV_ROUND_UP(count, 4979 RDPQ_MAX_INDEX_IN_ONE_CHUNK); 4980 ioc->reply_post_free_dma_pool = 4981 dma_pool_create("reply_post_free pool", 4982 &ioc->pdev->dev, sz, 16, 0); 4983 if (!ioc->reply_post_free_dma_pool) 4984 return -ENOMEM; 4985 for (i = 0; i < count; i++) { 4986 if ((i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0) && dma_alloc_count) { 4987 ioc->reply_post[i].reply_post_free = 4988 dma_pool_zalloc(ioc->reply_post_free_dma_pool, 4989 GFP_KERNEL, 4990 &ioc->reply_post[i].reply_post_free_dma); 4991 if (!ioc->reply_post[i].reply_post_free) 4992 return -ENOMEM; 4993 /* 4994 * Each set of RDPQ pool must satisfy 4gb boundary 4995 * restriction. 4996 * 1) Check if allocated resources for RDPQ pool are in 4997 * the same 4GB range. 4998 * 2) If #1 is true, continue with 64 bit DMA. 4999 * 3) If #1 is false, return 1. which means free all the 5000 * resources and set DMA mask to 32 and allocate. 5001 */ 5002 if (!mpt3sas_check_same_4gb_region( 5003 (long)ioc->reply_post[i].reply_post_free, sz)) { 5004 dinitprintk(ioc, 5005 ioc_err(ioc, "bad Replypost free pool(0x%p)" 5006 "reply_post_free_dma = (0x%llx)\n", 5007 ioc->reply_post[i].reply_post_free, 5008 (unsigned long long) 5009 ioc->reply_post[i].reply_post_free_dma)); 5010 return -EAGAIN; 5011 } 5012 dma_alloc_count--; 5013 5014 } else { 5015 ioc->reply_post[i].reply_post_free = 5016 (Mpi2ReplyDescriptorsUnion_t *) 5017 ((long)ioc->reply_post[i-1].reply_post_free 5018 + reply_post_free_sz); 5019 ioc->reply_post[i].reply_post_free_dma = 5020 (dma_addr_t) 5021 (ioc->reply_post[i-1].reply_post_free_dma + 5022 reply_post_free_sz); 5023 } 5024 } 5025 return 0; 5026 } 5027 5028 /** 5029 * _base_allocate_memory_pools - allocate start of day memory pools 5030 * @ioc: per adapter object 5031 * 5032 * Return: 0 success, anything else error. 5033 */ 5034 static int 5035 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc) 5036 { 5037 struct mpt3sas_facts *facts; 5038 u16 max_sge_elements; 5039 u16 chains_needed_per_io; 5040 u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz; 5041 u32 retry_sz; 5042 u32 rdpq_sz = 0; 5043 u16 max_request_credit, nvme_blocks_needed; 5044 unsigned short sg_tablesize; 5045 u16 sge_size; 5046 int i, j; 5047 int ret = 0; 5048 struct chain_tracker *ct; 5049 5050 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 5051 5052 5053 retry_sz = 0; 5054 facts = &ioc->facts; 5055 5056 /* command line tunables for max sgl entries */ 5057 if (max_sgl_entries != -1) 5058 sg_tablesize = max_sgl_entries; 5059 else { 5060 if (ioc->hba_mpi_version_belonged == MPI2_VERSION) 5061 sg_tablesize = MPT2SAS_SG_DEPTH; 5062 else 5063 sg_tablesize = MPT3SAS_SG_DEPTH; 5064 } 5065 5066 /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */ 5067 if (reset_devices) 5068 sg_tablesize = min_t(unsigned short, sg_tablesize, 5069 MPT_KDUMP_MIN_PHYS_SEGMENTS); 5070 5071 if (ioc->is_mcpu_endpoint) 5072 ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS; 5073 else { 5074 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS) 5075 sg_tablesize = MPT_MIN_PHYS_SEGMENTS; 5076 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) { 5077 sg_tablesize = min_t(unsigned short, sg_tablesize, 5078 SG_MAX_SEGMENTS); 5079 ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n", 5080 sg_tablesize, MPT_MAX_PHYS_SEGMENTS); 5081 } 5082 ioc->shost->sg_tablesize = sg_tablesize; 5083 } 5084 5085 ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)), 5086 (facts->RequestCredit / 4)); 5087 if (ioc->internal_depth < INTERNAL_CMDS_COUNT) { 5088 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT + 5089 INTERNAL_SCSIIO_CMDS_COUNT)) { 5090 ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n", 5091 facts->RequestCredit); 5092 return -ENOMEM; 5093 } 5094 ioc->internal_depth = 10; 5095 } 5096 5097 ioc->hi_priority_depth = ioc->internal_depth - (5); 5098 /* command line tunables for max controller queue depth */ 5099 if (max_queue_depth != -1 && max_queue_depth != 0) { 5100 max_request_credit = min_t(u16, max_queue_depth + 5101 ioc->internal_depth, facts->RequestCredit); 5102 if (max_request_credit > MAX_HBA_QUEUE_DEPTH) 5103 max_request_credit = MAX_HBA_QUEUE_DEPTH; 5104 } else if (reset_devices) 5105 max_request_credit = min_t(u16, facts->RequestCredit, 5106 (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth)); 5107 else 5108 max_request_credit = min_t(u16, facts->RequestCredit, 5109 MAX_HBA_QUEUE_DEPTH); 5110 5111 /* Firmware maintains additional facts->HighPriorityCredit number of 5112 * credits for HiPriprity Request messages, so hba queue depth will be 5113 * sum of max_request_credit and high priority queue depth. 5114 */ 5115 ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth; 5116 5117 /* request frame size */ 5118 ioc->request_sz = facts->IOCRequestFrameSize * 4; 5119 5120 /* reply frame size */ 5121 ioc->reply_sz = facts->ReplyFrameSize * 4; 5122 5123 /* chain segment size */ 5124 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 5125 if (facts->IOCMaxChainSegmentSize) 5126 ioc->chain_segment_sz = 5127 facts->IOCMaxChainSegmentSize * 5128 MAX_CHAIN_ELEMT_SZ; 5129 else 5130 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */ 5131 ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS * 5132 MAX_CHAIN_ELEMT_SZ; 5133 } else 5134 ioc->chain_segment_sz = ioc->request_sz; 5135 5136 /* calculate the max scatter element size */ 5137 sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee); 5138 5139 retry_allocation: 5140 total_sz = 0; 5141 /* calculate number of sg elements left over in the 1st frame */ 5142 max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) - 5143 sizeof(Mpi2SGEIOUnion_t)) + sge_size); 5144 ioc->max_sges_in_main_message = max_sge_elements/sge_size; 5145 5146 /* now do the same for a chain buffer */ 5147 max_sge_elements = ioc->chain_segment_sz - sge_size; 5148 ioc->max_sges_in_chain_message = max_sge_elements/sge_size; 5149 5150 /* 5151 * MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE 5152 */ 5153 chains_needed_per_io = ((ioc->shost->sg_tablesize - 5154 ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message) 5155 + 1; 5156 if (chains_needed_per_io > facts->MaxChainDepth) { 5157 chains_needed_per_io = facts->MaxChainDepth; 5158 ioc->shost->sg_tablesize = min_t(u16, 5159 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message 5160 * chains_needed_per_io), ioc->shost->sg_tablesize); 5161 } 5162 ioc->chains_needed_per_io = chains_needed_per_io; 5163 5164 /* reply free queue sizing - taking into account for 64 FW events */ 5165 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64; 5166 5167 /* mCPU manage single counters for simplicity */ 5168 if (ioc->is_mcpu_endpoint) 5169 ioc->reply_post_queue_depth = ioc->reply_free_queue_depth; 5170 else { 5171 /* calculate reply descriptor post queue depth */ 5172 ioc->reply_post_queue_depth = ioc->hba_queue_depth + 5173 ioc->reply_free_queue_depth + 1; 5174 /* align the reply post queue on the next 16 count boundary */ 5175 if (ioc->reply_post_queue_depth % 16) 5176 ioc->reply_post_queue_depth += 16 - 5177 (ioc->reply_post_queue_depth % 16); 5178 } 5179 5180 if (ioc->reply_post_queue_depth > 5181 facts->MaxReplyDescriptorPostQueueDepth) { 5182 ioc->reply_post_queue_depth = 5183 facts->MaxReplyDescriptorPostQueueDepth - 5184 (facts->MaxReplyDescriptorPostQueueDepth % 16); 5185 ioc->hba_queue_depth = 5186 ((ioc->reply_post_queue_depth - 64) / 2) - 1; 5187 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64; 5188 } 5189 5190 ioc_info(ioc, 5191 "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), " 5192 "sge_per_io(%d), chains_per_io(%d)\n", 5193 ioc->max_sges_in_main_message, 5194 ioc->max_sges_in_chain_message, 5195 ioc->shost->sg_tablesize, 5196 ioc->chains_needed_per_io); 5197 5198 /* reply post queue, 16 byte align */ 5199 reply_post_free_sz = ioc->reply_post_queue_depth * 5200 sizeof(Mpi2DefaultReplyDescriptor_t); 5201 rdpq_sz = reply_post_free_sz * RDPQ_MAX_INDEX_IN_ONE_CHUNK; 5202 if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable) 5203 rdpq_sz = reply_post_free_sz * ioc->reply_queue_count; 5204 ret = base_alloc_rdpq_dma_pool(ioc, rdpq_sz); 5205 if (ret == -EAGAIN) { 5206 /* 5207 * Free allocated bad RDPQ memory pools. 5208 * Change dma coherent mask to 32 bit and reallocate RDPQ 5209 */ 5210 _base_release_memory_pools(ioc); 5211 ioc->use_32bit_dma = true; 5212 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) { 5213 ioc_err(ioc, 5214 "32 DMA mask failed %s\n", pci_name(ioc->pdev)); 5215 return -ENODEV; 5216 } 5217 if (base_alloc_rdpq_dma_pool(ioc, rdpq_sz)) 5218 return -ENOMEM; 5219 } else if (ret == -ENOMEM) 5220 return -ENOMEM; 5221 total_sz = rdpq_sz * (!ioc->rdpq_array_enable ? 1 : 5222 DIV_ROUND_UP(ioc->reply_queue_count, RDPQ_MAX_INDEX_IN_ONE_CHUNK)); 5223 ioc->scsiio_depth = ioc->hba_queue_depth - 5224 ioc->hi_priority_depth - ioc->internal_depth; 5225 5226 /* set the scsi host can_queue depth 5227 * with some internal commands that could be outstanding 5228 */ 5229 ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT; 5230 dinitprintk(ioc, 5231 ioc_info(ioc, "scsi host: can_queue depth (%d)\n", 5232 ioc->shost->can_queue)); 5233 5234 /* contiguous pool for request and chains, 16 byte align, one extra " 5235 * "frame for smid=0 5236 */ 5237 ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth; 5238 sz = ((ioc->scsiio_depth + 1) * ioc->request_sz); 5239 5240 /* hi-priority queue */ 5241 sz += (ioc->hi_priority_depth * ioc->request_sz); 5242 5243 /* internal queue */ 5244 sz += (ioc->internal_depth * ioc->request_sz); 5245 5246 ioc->request_dma_sz = sz; 5247 ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz, 5248 &ioc->request_dma, GFP_KERNEL); 5249 if (!ioc->request) { 5250 ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n", 5251 ioc->hba_queue_depth, ioc->chains_needed_per_io, 5252 ioc->request_sz, sz / 1024); 5253 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH) 5254 goto out; 5255 retry_sz = 64; 5256 ioc->hba_queue_depth -= retry_sz; 5257 _base_release_memory_pools(ioc); 5258 goto retry_allocation; 5259 } 5260 memset(ioc->request, 0, sz); 5261 5262 if (retry_sz) 5263 ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n", 5264 ioc->hba_queue_depth, ioc->chains_needed_per_io, 5265 ioc->request_sz, sz / 1024); 5266 5267 /* hi-priority queue */ 5268 ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) * 5269 ioc->request_sz); 5270 ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) * 5271 ioc->request_sz); 5272 5273 /* internal queue */ 5274 ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth * 5275 ioc->request_sz); 5276 ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth * 5277 ioc->request_sz); 5278 5279 ioc_info(ioc, 5280 "request pool(0x%p) - dma(0x%llx): " 5281 "depth(%d), frame_size(%d), pool_size(%d kB)\n", 5282 ioc->request, (unsigned long long) ioc->request_dma, 5283 ioc->hba_queue_depth, ioc->request_sz, 5284 (ioc->hba_queue_depth * ioc->request_sz) / 1024); 5285 5286 total_sz += sz; 5287 5288 dinitprintk(ioc, 5289 ioc_info(ioc, "scsiio(0x%p): depth(%d)\n", 5290 ioc->request, ioc->scsiio_depth)); 5291 5292 ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH); 5293 sz = ioc->scsiio_depth * sizeof(struct chain_lookup); 5294 ioc->chain_lookup = kzalloc(sz, GFP_KERNEL); 5295 if (!ioc->chain_lookup) { 5296 ioc_err(ioc, "chain_lookup: __get_free_pages failed\n"); 5297 goto out; 5298 } 5299 5300 sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker); 5301 for (i = 0; i < ioc->scsiio_depth; i++) { 5302 ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL); 5303 if (!ioc->chain_lookup[i].chains_per_smid) { 5304 ioc_err(ioc, "chain_lookup: kzalloc failed\n"); 5305 goto out; 5306 } 5307 } 5308 5309 /* initialize hi-priority queue smid's */ 5310 ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth, 5311 sizeof(struct request_tracker), GFP_KERNEL); 5312 if (!ioc->hpr_lookup) { 5313 ioc_err(ioc, "hpr_lookup: kcalloc failed\n"); 5314 goto out; 5315 } 5316 ioc->hi_priority_smid = ioc->scsiio_depth + 1; 5317 dinitprintk(ioc, 5318 ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n", 5319 ioc->hi_priority, 5320 ioc->hi_priority_depth, ioc->hi_priority_smid)); 5321 5322 /* initialize internal queue smid's */ 5323 ioc->internal_lookup = kcalloc(ioc->internal_depth, 5324 sizeof(struct request_tracker), GFP_KERNEL); 5325 if (!ioc->internal_lookup) { 5326 ioc_err(ioc, "internal_lookup: kcalloc failed\n"); 5327 goto out; 5328 } 5329 ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth; 5330 dinitprintk(ioc, 5331 ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n", 5332 ioc->internal, 5333 ioc->internal_depth, ioc->internal_smid)); 5334 /* 5335 * The number of NVMe page sized blocks needed is: 5336 * (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1 5337 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry 5338 * that is placed in the main message frame. 8 is the size of each PRP 5339 * entry or PRP list pointer entry. 8 is subtracted from page_size 5340 * because of the PRP list pointer entry at the end of a page, so this 5341 * is not counted as a PRP entry. The 1 added page is a round up. 5342 * 5343 * To avoid allocation failures due to the amount of memory that could 5344 * be required for NVMe PRP's, only each set of NVMe blocks will be 5345 * contiguous, so a new set is allocated for each possible I/O. 5346 */ 5347 ioc->chains_per_prp_buffer = 0; 5348 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) { 5349 nvme_blocks_needed = 5350 (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1; 5351 nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE); 5352 nvme_blocks_needed++; 5353 5354 sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth; 5355 ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL); 5356 if (!ioc->pcie_sg_lookup) { 5357 ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n"); 5358 goto out; 5359 } 5360 sz = nvme_blocks_needed * ioc->page_size; 5361 ioc->pcie_sgl_dma_pool = 5362 dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz, 16, 0); 5363 if (!ioc->pcie_sgl_dma_pool) { 5364 ioc_info(ioc, "PCIe SGL pool: dma_pool_create failed\n"); 5365 goto out; 5366 } 5367 5368 ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz; 5369 ioc->chains_per_prp_buffer = min(ioc->chains_per_prp_buffer, 5370 ioc->chains_needed_per_io); 5371 5372 for (i = 0; i < ioc->scsiio_depth; i++) { 5373 ioc->pcie_sg_lookup[i].pcie_sgl = dma_pool_alloc( 5374 ioc->pcie_sgl_dma_pool, GFP_KERNEL, 5375 &ioc->pcie_sg_lookup[i].pcie_sgl_dma); 5376 if (!ioc->pcie_sg_lookup[i].pcie_sgl) { 5377 ioc_info(ioc, "PCIe SGL pool: dma_pool_alloc failed\n"); 5378 goto out; 5379 } 5380 for (j = 0; j < ioc->chains_per_prp_buffer; j++) { 5381 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 5382 ct->chain_buffer = 5383 ioc->pcie_sg_lookup[i].pcie_sgl + 5384 (j * ioc->chain_segment_sz); 5385 ct->chain_buffer_dma = 5386 ioc->pcie_sg_lookup[i].pcie_sgl_dma + 5387 (j * ioc->chain_segment_sz); 5388 } 5389 } 5390 5391 dinitprintk(ioc, 5392 ioc_info(ioc, "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n", 5393 ioc->scsiio_depth, sz, 5394 (sz * ioc->scsiio_depth) / 1024)); 5395 dinitprintk(ioc, 5396 ioc_info(ioc, "Number of chains can fit in a PRP page(%d)\n", 5397 ioc->chains_per_prp_buffer)); 5398 total_sz += sz * ioc->scsiio_depth; 5399 } 5400 5401 ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev, 5402 ioc->chain_segment_sz, 16, 0); 5403 if (!ioc->chain_dma_pool) { 5404 ioc_err(ioc, "chain_dma_pool: dma_pool_create failed\n"); 5405 goto out; 5406 } 5407 for (i = 0; i < ioc->scsiio_depth; i++) { 5408 for (j = ioc->chains_per_prp_buffer; 5409 j < ioc->chains_needed_per_io; j++) { 5410 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 5411 ct->chain_buffer = dma_pool_alloc( 5412 ioc->chain_dma_pool, GFP_KERNEL, 5413 &ct->chain_buffer_dma); 5414 if (!ct->chain_buffer) { 5415 ioc_err(ioc, "chain_lookup: pci_pool_alloc failed\n"); 5416 goto out; 5417 } 5418 } 5419 total_sz += ioc->chain_segment_sz; 5420 } 5421 5422 dinitprintk(ioc, 5423 ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n", 5424 ioc->chain_depth, ioc->chain_segment_sz, 5425 (ioc->chain_depth * ioc->chain_segment_sz) / 1024)); 5426 5427 /* sense buffers, 4 byte align */ 5428 sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE; 5429 ioc->sense_dma_pool = dma_pool_create("sense pool", &ioc->pdev->dev, sz, 5430 4, 0); 5431 if (!ioc->sense_dma_pool) { 5432 ioc_err(ioc, "sense pool: dma_pool_create failed\n"); 5433 goto out; 5434 } 5435 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL, 5436 &ioc->sense_dma); 5437 if (!ioc->sense) { 5438 ioc_err(ioc, "sense pool: dma_pool_alloc failed\n"); 5439 goto out; 5440 } 5441 /* sense buffer requires to be in same 4 gb region. 5442 * Below function will check the same. 5443 * In case of failure, new pci pool will be created with updated 5444 * alignment. Older allocation and pool will be destroyed. 5445 * Alignment will be used such a way that next allocation if 5446 * success, will always meet same 4gb region requirement. 5447 * Actual requirement is not alignment, but we need start and end of 5448 * DMA address must have same upper 32 bit address. 5449 */ 5450 if (!mpt3sas_check_same_4gb_region((long)ioc->sense, sz)) { 5451 //Release Sense pool & Reallocate 5452 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma); 5453 dma_pool_destroy(ioc->sense_dma_pool); 5454 ioc->sense = NULL; 5455 5456 ioc->sense_dma_pool = 5457 dma_pool_create("sense pool", &ioc->pdev->dev, sz, 5458 roundup_pow_of_two(sz), 0); 5459 if (!ioc->sense_dma_pool) { 5460 ioc_err(ioc, "sense pool: pci_pool_create failed\n"); 5461 goto out; 5462 } 5463 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL, 5464 &ioc->sense_dma); 5465 if (!ioc->sense) { 5466 ioc_err(ioc, "sense pool: pci_pool_alloc failed\n"); 5467 goto out; 5468 } 5469 } 5470 ioc_info(ioc, 5471 "sense pool(0x%p)- dma(0x%llx): depth(%d)," 5472 "element_size(%d), pool_size(%d kB)\n", 5473 ioc->sense, (unsigned long long)ioc->sense_dma, ioc->scsiio_depth, 5474 SCSI_SENSE_BUFFERSIZE, sz / 1024); 5475 5476 total_sz += sz; 5477 5478 /* reply pool, 4 byte align */ 5479 sz = ioc->reply_free_queue_depth * ioc->reply_sz; 5480 ioc->reply_dma_pool = dma_pool_create("reply pool", &ioc->pdev->dev, sz, 5481 4, 0); 5482 if (!ioc->reply_dma_pool) { 5483 ioc_err(ioc, "reply pool: dma_pool_create failed\n"); 5484 goto out; 5485 } 5486 ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL, 5487 &ioc->reply_dma); 5488 if (!ioc->reply) { 5489 ioc_err(ioc, "reply pool: dma_pool_alloc failed\n"); 5490 goto out; 5491 } 5492 ioc->reply_dma_min_address = (u32)(ioc->reply_dma); 5493 ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz; 5494 dinitprintk(ioc, 5495 ioc_info(ioc, "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n", 5496 ioc->reply, ioc->reply_free_queue_depth, 5497 ioc->reply_sz, sz / 1024)); 5498 dinitprintk(ioc, 5499 ioc_info(ioc, "reply_dma(0x%llx)\n", 5500 (unsigned long long)ioc->reply_dma)); 5501 total_sz += sz; 5502 5503 /* reply free queue, 16 byte align */ 5504 sz = ioc->reply_free_queue_depth * 4; 5505 ioc->reply_free_dma_pool = dma_pool_create("reply_free pool", 5506 &ioc->pdev->dev, sz, 16, 0); 5507 if (!ioc->reply_free_dma_pool) { 5508 ioc_err(ioc, "reply_free pool: dma_pool_create failed\n"); 5509 goto out; 5510 } 5511 ioc->reply_free = dma_pool_zalloc(ioc->reply_free_dma_pool, GFP_KERNEL, 5512 &ioc->reply_free_dma); 5513 if (!ioc->reply_free) { 5514 ioc_err(ioc, "reply_free pool: dma_pool_alloc failed\n"); 5515 goto out; 5516 } 5517 dinitprintk(ioc, 5518 ioc_info(ioc, "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n", 5519 ioc->reply_free, ioc->reply_free_queue_depth, 5520 4, sz / 1024)); 5521 dinitprintk(ioc, 5522 ioc_info(ioc, "reply_free_dma (0x%llx)\n", 5523 (unsigned long long)ioc->reply_free_dma)); 5524 total_sz += sz; 5525 5526 if (ioc->rdpq_array_enable) { 5527 reply_post_free_array_sz = ioc->reply_queue_count * 5528 sizeof(Mpi2IOCInitRDPQArrayEntry); 5529 ioc->reply_post_free_array_dma_pool = 5530 dma_pool_create("reply_post_free_array pool", 5531 &ioc->pdev->dev, reply_post_free_array_sz, 16, 0); 5532 if (!ioc->reply_post_free_array_dma_pool) { 5533 dinitprintk(ioc, 5534 ioc_info(ioc, "reply_post_free_array pool: dma_pool_create failed\n")); 5535 goto out; 5536 } 5537 ioc->reply_post_free_array = 5538 dma_pool_alloc(ioc->reply_post_free_array_dma_pool, 5539 GFP_KERNEL, &ioc->reply_post_free_array_dma); 5540 if (!ioc->reply_post_free_array) { 5541 dinitprintk(ioc, 5542 ioc_info(ioc, "reply_post_free_array pool: dma_pool_alloc failed\n")); 5543 goto out; 5544 } 5545 } 5546 ioc->config_page_sz = 512; 5547 ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev, 5548 ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL); 5549 if (!ioc->config_page) { 5550 ioc_err(ioc, "config page: dma_pool_alloc failed\n"); 5551 goto out; 5552 } 5553 5554 ioc_info(ioc, "config page(0x%p) - dma(0x%llx): size(%d)\n", 5555 ioc->config_page, (unsigned long long)ioc->config_page_dma, 5556 ioc->config_page_sz); 5557 total_sz += ioc->config_page_sz; 5558 5559 ioc_info(ioc, "Allocated physical memory: size(%d kB)\n", 5560 total_sz / 1024); 5561 ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n", 5562 ioc->shost->can_queue, facts->RequestCredit); 5563 ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n", 5564 ioc->shost->sg_tablesize); 5565 return 0; 5566 5567 out: 5568 return -ENOMEM; 5569 } 5570 5571 /** 5572 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter. 5573 * @ioc: Pointer to MPT_ADAPTER structure 5574 * @cooked: Request raw or cooked IOC state 5575 * 5576 * Return: all IOC Doorbell register bits if cooked==0, else just the 5577 * Doorbell bits in MPI_IOC_STATE_MASK. 5578 */ 5579 u32 5580 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked) 5581 { 5582 u32 s, sc; 5583 5584 s = ioc->base_readl(&ioc->chip->Doorbell); 5585 sc = s & MPI2_IOC_STATE_MASK; 5586 return cooked ? sc : s; 5587 } 5588 5589 /** 5590 * _base_wait_on_iocstate - waiting on a particular ioc state 5591 * @ioc: ? 5592 * @ioc_state: controller state { READY, OPERATIONAL, or RESET } 5593 * @timeout: timeout in second 5594 * 5595 * Return: 0 for success, non-zero for failure. 5596 */ 5597 static int 5598 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout) 5599 { 5600 u32 count, cntdn; 5601 u32 current_state; 5602 5603 count = 0; 5604 cntdn = 1000 * timeout; 5605 do { 5606 current_state = mpt3sas_base_get_iocstate(ioc, 1); 5607 if (current_state == ioc_state) 5608 return 0; 5609 if (count && current_state == MPI2_IOC_STATE_FAULT) 5610 break; 5611 if (count && current_state == MPI2_IOC_STATE_COREDUMP) 5612 break; 5613 5614 usleep_range(1000, 1500); 5615 count++; 5616 } while (--cntdn); 5617 5618 return current_state; 5619 } 5620 5621 /** 5622 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by 5623 * a write to the doorbell) 5624 * @ioc: per adapter object 5625 * @timeout: timeout in seconds 5626 * 5627 * Return: 0 for success, non-zero for failure. 5628 * 5629 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell. 5630 */ 5631 5632 static int 5633 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout) 5634 { 5635 u32 cntdn, count; 5636 u32 int_status; 5637 5638 count = 0; 5639 cntdn = 1000 * timeout; 5640 do { 5641 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 5642 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 5643 dhsprintk(ioc, 5644 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 5645 __func__, count, timeout)); 5646 return 0; 5647 } 5648 5649 usleep_range(1000, 1500); 5650 count++; 5651 } while (--cntdn); 5652 5653 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 5654 __func__, count, int_status); 5655 return -EFAULT; 5656 } 5657 5658 static int 5659 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout) 5660 { 5661 u32 cntdn, count; 5662 u32 int_status; 5663 5664 count = 0; 5665 cntdn = 2000 * timeout; 5666 do { 5667 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 5668 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 5669 dhsprintk(ioc, 5670 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 5671 __func__, count, timeout)); 5672 return 0; 5673 } 5674 5675 udelay(500); 5676 count++; 5677 } while (--cntdn); 5678 5679 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 5680 __func__, count, int_status); 5681 return -EFAULT; 5682 5683 } 5684 5685 /** 5686 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell. 5687 * @ioc: per adapter object 5688 * @timeout: timeout in second 5689 * 5690 * Return: 0 for success, non-zero for failure. 5691 * 5692 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to 5693 * doorbell. 5694 */ 5695 static int 5696 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout) 5697 { 5698 u32 cntdn, count; 5699 u32 int_status; 5700 u32 doorbell; 5701 5702 count = 0; 5703 cntdn = 1000 * timeout; 5704 do { 5705 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 5706 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) { 5707 dhsprintk(ioc, 5708 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 5709 __func__, count, timeout)); 5710 return 0; 5711 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 5712 doorbell = ioc->base_readl(&ioc->chip->Doorbell); 5713 if ((doorbell & MPI2_IOC_STATE_MASK) == 5714 MPI2_IOC_STATE_FAULT) { 5715 mpt3sas_print_fault_code(ioc, doorbell); 5716 return -EFAULT; 5717 } 5718 if ((doorbell & MPI2_IOC_STATE_MASK) == 5719 MPI2_IOC_STATE_COREDUMP) { 5720 mpt3sas_print_coredump_info(ioc, doorbell); 5721 return -EFAULT; 5722 } 5723 } else if (int_status == 0xFFFFFFFF) 5724 goto out; 5725 5726 usleep_range(1000, 1500); 5727 count++; 5728 } while (--cntdn); 5729 5730 out: 5731 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 5732 __func__, count, int_status); 5733 return -EFAULT; 5734 } 5735 5736 /** 5737 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use 5738 * @ioc: per adapter object 5739 * @timeout: timeout in second 5740 * 5741 * Return: 0 for success, non-zero for failure. 5742 */ 5743 static int 5744 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout) 5745 { 5746 u32 cntdn, count; 5747 u32 doorbell_reg; 5748 5749 count = 0; 5750 cntdn = 1000 * timeout; 5751 do { 5752 doorbell_reg = ioc->base_readl(&ioc->chip->Doorbell); 5753 if (!(doorbell_reg & MPI2_DOORBELL_USED)) { 5754 dhsprintk(ioc, 5755 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 5756 __func__, count, timeout)); 5757 return 0; 5758 } 5759 5760 usleep_range(1000, 1500); 5761 count++; 5762 } while (--cntdn); 5763 5764 ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n", 5765 __func__, count, doorbell_reg); 5766 return -EFAULT; 5767 } 5768 5769 /** 5770 * _base_send_ioc_reset - send doorbell reset 5771 * @ioc: per adapter object 5772 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET 5773 * @timeout: timeout in second 5774 * 5775 * Return: 0 for success, non-zero for failure. 5776 */ 5777 static int 5778 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout) 5779 { 5780 u32 ioc_state; 5781 int r = 0; 5782 unsigned long flags; 5783 5784 if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) { 5785 ioc_err(ioc, "%s: unknown reset_type\n", __func__); 5786 return -EFAULT; 5787 } 5788 5789 if (!(ioc->facts.IOCCapabilities & 5790 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY)) 5791 return -EFAULT; 5792 5793 ioc_info(ioc, "sending message unit reset !!\n"); 5794 5795 writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT, 5796 &ioc->chip->Doorbell); 5797 if ((_base_wait_for_doorbell_ack(ioc, 15))) { 5798 r = -EFAULT; 5799 goto out; 5800 } 5801 5802 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout); 5803 if (ioc_state) { 5804 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 5805 __func__, ioc_state); 5806 r = -EFAULT; 5807 goto out; 5808 } 5809 out: 5810 if (r != 0) { 5811 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 5812 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 5813 /* 5814 * Wait for IOC state CoreDump to clear only during 5815 * HBA initialization & release time. 5816 */ 5817 if ((ioc_state & MPI2_IOC_STATE_MASK) == 5818 MPI2_IOC_STATE_COREDUMP && (ioc->is_driver_loading == 1 || 5819 ioc->fault_reset_work_q == NULL)) { 5820 spin_unlock_irqrestore( 5821 &ioc->ioc_reset_in_progress_lock, flags); 5822 mpt3sas_print_coredump_info(ioc, ioc_state); 5823 mpt3sas_base_wait_for_coredump_completion(ioc, 5824 __func__); 5825 spin_lock_irqsave( 5826 &ioc->ioc_reset_in_progress_lock, flags); 5827 } 5828 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 5829 } 5830 ioc_info(ioc, "message unit reset: %s\n", 5831 r == 0 ? "SUCCESS" : "FAILED"); 5832 return r; 5833 } 5834 5835 /** 5836 * mpt3sas_wait_for_ioc - IOC's operational state is checked here. 5837 * @ioc: per adapter object 5838 * @timeout: timeout in seconds 5839 * 5840 * Return: Waits up to timeout seconds for the IOC to 5841 * become operational. Returns 0 if IOC is present 5842 * and operational; otherwise returns -EFAULT. 5843 */ 5844 5845 int 5846 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout) 5847 { 5848 int wait_state_count = 0; 5849 u32 ioc_state; 5850 5851 do { 5852 ioc_state = mpt3sas_base_get_iocstate(ioc, 1); 5853 if (ioc_state == MPI2_IOC_STATE_OPERATIONAL) 5854 break; 5855 ssleep(1); 5856 ioc_info(ioc, "%s: waiting for operational state(count=%d)\n", 5857 __func__, ++wait_state_count); 5858 } while (--timeout); 5859 if (!timeout) { 5860 ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__); 5861 return -EFAULT; 5862 } 5863 if (wait_state_count) 5864 ioc_info(ioc, "ioc is operational\n"); 5865 return 0; 5866 } 5867 5868 /** 5869 * _base_handshake_req_reply_wait - send request thru doorbell interface 5870 * @ioc: per adapter object 5871 * @request_bytes: request length 5872 * @request: pointer having request payload 5873 * @reply_bytes: reply length 5874 * @reply: pointer to reply payload 5875 * @timeout: timeout in second 5876 * 5877 * Return: 0 for success, non-zero for failure. 5878 */ 5879 static int 5880 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes, 5881 u32 *request, int reply_bytes, u16 *reply, int timeout) 5882 { 5883 MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply; 5884 int i; 5885 u8 failed; 5886 __le32 *mfp; 5887 5888 /* make sure doorbell is not in use */ 5889 if ((ioc->base_readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) { 5890 ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__); 5891 return -EFAULT; 5892 } 5893 5894 /* clear pending doorbell interrupts from previous state changes */ 5895 if (ioc->base_readl(&ioc->chip->HostInterruptStatus) & 5896 MPI2_HIS_IOC2SYS_DB_STATUS) 5897 writel(0, &ioc->chip->HostInterruptStatus); 5898 5899 /* send message to ioc */ 5900 writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) | 5901 ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)), 5902 &ioc->chip->Doorbell); 5903 5904 if ((_base_spin_on_doorbell_int(ioc, 5))) { 5905 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 5906 __LINE__); 5907 return -EFAULT; 5908 } 5909 writel(0, &ioc->chip->HostInterruptStatus); 5910 5911 if ((_base_wait_for_doorbell_ack(ioc, 5))) { 5912 ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n", 5913 __LINE__); 5914 return -EFAULT; 5915 } 5916 5917 /* send message 32-bits at a time */ 5918 for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) { 5919 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell); 5920 if ((_base_wait_for_doorbell_ack(ioc, 5))) 5921 failed = 1; 5922 } 5923 5924 if (failed) { 5925 ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n", 5926 __LINE__); 5927 return -EFAULT; 5928 } 5929 5930 /* now wait for the reply */ 5931 if ((_base_wait_for_doorbell_int(ioc, timeout))) { 5932 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 5933 __LINE__); 5934 return -EFAULT; 5935 } 5936 5937 /* read the first two 16-bits, it gives the total length of the reply */ 5938 reply[0] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell) 5939 & MPI2_DOORBELL_DATA_MASK); 5940 writel(0, &ioc->chip->HostInterruptStatus); 5941 if ((_base_wait_for_doorbell_int(ioc, 5))) { 5942 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 5943 __LINE__); 5944 return -EFAULT; 5945 } 5946 reply[1] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell) 5947 & MPI2_DOORBELL_DATA_MASK); 5948 writel(0, &ioc->chip->HostInterruptStatus); 5949 5950 for (i = 2; i < default_reply->MsgLength * 2; i++) { 5951 if ((_base_wait_for_doorbell_int(ioc, 5))) { 5952 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 5953 __LINE__); 5954 return -EFAULT; 5955 } 5956 if (i >= reply_bytes/2) /* overflow case */ 5957 ioc->base_readl(&ioc->chip->Doorbell); 5958 else 5959 reply[i] = le16_to_cpu( 5960 ioc->base_readl(&ioc->chip->Doorbell) 5961 & MPI2_DOORBELL_DATA_MASK); 5962 writel(0, &ioc->chip->HostInterruptStatus); 5963 } 5964 5965 _base_wait_for_doorbell_int(ioc, 5); 5966 if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) { 5967 dhsprintk(ioc, 5968 ioc_info(ioc, "doorbell is in use (line=%d)\n", 5969 __LINE__)); 5970 } 5971 writel(0, &ioc->chip->HostInterruptStatus); 5972 5973 if (ioc->logging_level & MPT_DEBUG_INIT) { 5974 mfp = (__le32 *)reply; 5975 pr_info("\toffset:data\n"); 5976 for (i = 0; i < reply_bytes/4; i++) 5977 ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4, 5978 le32_to_cpu(mfp[i])); 5979 } 5980 return 0; 5981 } 5982 5983 /** 5984 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW 5985 * @ioc: per adapter object 5986 * @mpi_reply: the reply payload from FW 5987 * @mpi_request: the request payload sent to FW 5988 * 5989 * The SAS IO Unit Control Request message allows the host to perform low-level 5990 * operations, such as resets on the PHYs of the IO Unit, also allows the host 5991 * to obtain the IOC assigned device handles for a device if it has other 5992 * identifying information about the device, in addition allows the host to 5993 * remove IOC resources associated with the device. 5994 * 5995 * Return: 0 for success, non-zero for failure. 5996 */ 5997 int 5998 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc, 5999 Mpi2SasIoUnitControlReply_t *mpi_reply, 6000 Mpi2SasIoUnitControlRequest_t *mpi_request) 6001 { 6002 u16 smid; 6003 u8 issue_reset = 0; 6004 int rc; 6005 void *request; 6006 6007 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6008 6009 mutex_lock(&ioc->base_cmds.mutex); 6010 6011 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) { 6012 ioc_err(ioc, "%s: base_cmd in use\n", __func__); 6013 rc = -EAGAIN; 6014 goto out; 6015 } 6016 6017 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT); 6018 if (rc) 6019 goto out; 6020 6021 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 6022 if (!smid) { 6023 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 6024 rc = -EAGAIN; 6025 goto out; 6026 } 6027 6028 rc = 0; 6029 ioc->base_cmds.status = MPT3_CMD_PENDING; 6030 request = mpt3sas_base_get_msg_frame(ioc, smid); 6031 ioc->base_cmds.smid = smid; 6032 memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)); 6033 if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET || 6034 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) 6035 ioc->ioc_link_reset_in_progress = 1; 6036 init_completion(&ioc->base_cmds.done); 6037 ioc->put_smid_default(ioc, smid); 6038 wait_for_completion_timeout(&ioc->base_cmds.done, 6039 msecs_to_jiffies(10000)); 6040 if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET || 6041 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) && 6042 ioc->ioc_link_reset_in_progress) 6043 ioc->ioc_link_reset_in_progress = 0; 6044 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 6045 mpt3sas_check_cmd_timeout(ioc, ioc->base_cmds.status, 6046 mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)/4, 6047 issue_reset); 6048 goto issue_host_reset; 6049 } 6050 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) 6051 memcpy(mpi_reply, ioc->base_cmds.reply, 6052 sizeof(Mpi2SasIoUnitControlReply_t)); 6053 else 6054 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t)); 6055 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 6056 goto out; 6057 6058 issue_host_reset: 6059 if (issue_reset) 6060 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 6061 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 6062 rc = -EFAULT; 6063 out: 6064 mutex_unlock(&ioc->base_cmds.mutex); 6065 return rc; 6066 } 6067 6068 /** 6069 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device 6070 * @ioc: per adapter object 6071 * @mpi_reply: the reply payload from FW 6072 * @mpi_request: the request payload sent to FW 6073 * 6074 * The SCSI Enclosure Processor request message causes the IOC to 6075 * communicate with SES devices to control LED status signals. 6076 * 6077 * Return: 0 for success, non-zero for failure. 6078 */ 6079 int 6080 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc, 6081 Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request) 6082 { 6083 u16 smid; 6084 u8 issue_reset = 0; 6085 int rc; 6086 void *request; 6087 6088 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6089 6090 mutex_lock(&ioc->base_cmds.mutex); 6091 6092 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) { 6093 ioc_err(ioc, "%s: base_cmd in use\n", __func__); 6094 rc = -EAGAIN; 6095 goto out; 6096 } 6097 6098 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT); 6099 if (rc) 6100 goto out; 6101 6102 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 6103 if (!smid) { 6104 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 6105 rc = -EAGAIN; 6106 goto out; 6107 } 6108 6109 rc = 0; 6110 ioc->base_cmds.status = MPT3_CMD_PENDING; 6111 request = mpt3sas_base_get_msg_frame(ioc, smid); 6112 ioc->base_cmds.smid = smid; 6113 memset(request, 0, ioc->request_sz); 6114 memcpy(request, mpi_request, sizeof(Mpi2SepReply_t)); 6115 init_completion(&ioc->base_cmds.done); 6116 ioc->put_smid_default(ioc, smid); 6117 wait_for_completion_timeout(&ioc->base_cmds.done, 6118 msecs_to_jiffies(10000)); 6119 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 6120 mpt3sas_check_cmd_timeout(ioc, 6121 ioc->base_cmds.status, mpi_request, 6122 sizeof(Mpi2SepRequest_t)/4, issue_reset); 6123 goto issue_host_reset; 6124 } 6125 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) 6126 memcpy(mpi_reply, ioc->base_cmds.reply, 6127 sizeof(Mpi2SepReply_t)); 6128 else 6129 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t)); 6130 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 6131 goto out; 6132 6133 issue_host_reset: 6134 if (issue_reset) 6135 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 6136 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 6137 rc = -EFAULT; 6138 out: 6139 mutex_unlock(&ioc->base_cmds.mutex); 6140 return rc; 6141 } 6142 6143 /** 6144 * _base_get_port_facts - obtain port facts reply and save in ioc 6145 * @ioc: per adapter object 6146 * @port: ? 6147 * 6148 * Return: 0 for success, non-zero for failure. 6149 */ 6150 static int 6151 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port) 6152 { 6153 Mpi2PortFactsRequest_t mpi_request; 6154 Mpi2PortFactsReply_t mpi_reply; 6155 struct mpt3sas_port_facts *pfacts; 6156 int mpi_reply_sz, mpi_request_sz, r; 6157 6158 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6159 6160 mpi_reply_sz = sizeof(Mpi2PortFactsReply_t); 6161 mpi_request_sz = sizeof(Mpi2PortFactsRequest_t); 6162 memset(&mpi_request, 0, mpi_request_sz); 6163 mpi_request.Function = MPI2_FUNCTION_PORT_FACTS; 6164 mpi_request.PortNumber = port; 6165 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz, 6166 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5); 6167 6168 if (r != 0) { 6169 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 6170 return r; 6171 } 6172 6173 pfacts = &ioc->pfacts[port]; 6174 memset(pfacts, 0, sizeof(struct mpt3sas_port_facts)); 6175 pfacts->PortNumber = mpi_reply.PortNumber; 6176 pfacts->VP_ID = mpi_reply.VP_ID; 6177 pfacts->VF_ID = mpi_reply.VF_ID; 6178 pfacts->MaxPostedCmdBuffers = 6179 le16_to_cpu(mpi_reply.MaxPostedCmdBuffers); 6180 6181 return 0; 6182 } 6183 6184 /** 6185 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL 6186 * @ioc: per adapter object 6187 * @timeout: 6188 * 6189 * Return: 0 for success, non-zero for failure. 6190 */ 6191 static int 6192 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout) 6193 { 6194 u32 ioc_state; 6195 int rc; 6196 6197 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6198 6199 if (ioc->pci_error_recovery) { 6200 dfailprintk(ioc, 6201 ioc_info(ioc, "%s: host in pci error recovery\n", 6202 __func__)); 6203 return -EFAULT; 6204 } 6205 6206 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 6207 dhsprintk(ioc, 6208 ioc_info(ioc, "%s: ioc_state(0x%08x)\n", 6209 __func__, ioc_state)); 6210 6211 if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) || 6212 (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL) 6213 return 0; 6214 6215 if (ioc_state & MPI2_DOORBELL_USED) { 6216 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n")); 6217 goto issue_diag_reset; 6218 } 6219 6220 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 6221 mpt3sas_print_fault_code(ioc, ioc_state & 6222 MPI2_DOORBELL_DATA_MASK); 6223 goto issue_diag_reset; 6224 } else if ((ioc_state & MPI2_IOC_STATE_MASK) == 6225 MPI2_IOC_STATE_COREDUMP) { 6226 ioc_info(ioc, 6227 "%s: Skipping the diag reset here. (ioc_state=0x%x)\n", 6228 __func__, ioc_state); 6229 return -EFAULT; 6230 } 6231 6232 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout); 6233 if (ioc_state) { 6234 dfailprintk(ioc, 6235 ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 6236 __func__, ioc_state)); 6237 return -EFAULT; 6238 } 6239 6240 issue_diag_reset: 6241 rc = _base_diag_reset(ioc); 6242 return rc; 6243 } 6244 6245 /** 6246 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc 6247 * @ioc: per adapter object 6248 * 6249 * Return: 0 for success, non-zero for failure. 6250 */ 6251 static int 6252 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc) 6253 { 6254 Mpi2IOCFactsRequest_t mpi_request; 6255 Mpi2IOCFactsReply_t mpi_reply; 6256 struct mpt3sas_facts *facts; 6257 int mpi_reply_sz, mpi_request_sz, r; 6258 6259 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6260 6261 r = _base_wait_for_iocstate(ioc, 10); 6262 if (r) { 6263 dfailprintk(ioc, 6264 ioc_info(ioc, "%s: failed getting to correct state\n", 6265 __func__)); 6266 return r; 6267 } 6268 mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t); 6269 mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t); 6270 memset(&mpi_request, 0, mpi_request_sz); 6271 mpi_request.Function = MPI2_FUNCTION_IOC_FACTS; 6272 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz, 6273 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5); 6274 6275 if (r != 0) { 6276 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 6277 return r; 6278 } 6279 6280 facts = &ioc->facts; 6281 memset(facts, 0, sizeof(struct mpt3sas_facts)); 6282 facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion); 6283 facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion); 6284 facts->VP_ID = mpi_reply.VP_ID; 6285 facts->VF_ID = mpi_reply.VF_ID; 6286 facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions); 6287 facts->MaxChainDepth = mpi_reply.MaxChainDepth; 6288 facts->WhoInit = mpi_reply.WhoInit; 6289 facts->NumberOfPorts = mpi_reply.NumberOfPorts; 6290 facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors; 6291 if (ioc->msix_enable && (facts->MaxMSIxVectors <= 6292 MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc))) 6293 ioc->combined_reply_queue = 0; 6294 facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit); 6295 facts->MaxReplyDescriptorPostQueueDepth = 6296 le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth); 6297 facts->ProductID = le16_to_cpu(mpi_reply.ProductID); 6298 facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities); 6299 if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)) 6300 ioc->ir_firmware = 1; 6301 if ((facts->IOCCapabilities & 6302 MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices)) 6303 ioc->rdpq_array_capable = 1; 6304 if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ) 6305 && ioc->is_aero_ioc) 6306 ioc->atomic_desc_capable = 1; 6307 facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word); 6308 facts->IOCRequestFrameSize = 6309 le16_to_cpu(mpi_reply.IOCRequestFrameSize); 6310 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 6311 facts->IOCMaxChainSegmentSize = 6312 le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize); 6313 } 6314 facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators); 6315 facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets); 6316 ioc->shost->max_id = -1; 6317 facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders); 6318 facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures); 6319 facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags); 6320 facts->HighPriorityCredit = 6321 le16_to_cpu(mpi_reply.HighPriorityCredit); 6322 facts->ReplyFrameSize = mpi_reply.ReplyFrameSize; 6323 facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle); 6324 facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize; 6325 6326 /* 6327 * Get the Page Size from IOC Facts. If it's 0, default to 4k. 6328 */ 6329 ioc->page_size = 1 << facts->CurrentHostPageSize; 6330 if (ioc->page_size == 1) { 6331 ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n"); 6332 ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K; 6333 } 6334 dinitprintk(ioc, 6335 ioc_info(ioc, "CurrentHostPageSize(%d)\n", 6336 facts->CurrentHostPageSize)); 6337 6338 dinitprintk(ioc, 6339 ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n", 6340 facts->RequestCredit, facts->MaxChainDepth)); 6341 dinitprintk(ioc, 6342 ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n", 6343 facts->IOCRequestFrameSize * 4, 6344 facts->ReplyFrameSize * 4)); 6345 return 0; 6346 } 6347 6348 /** 6349 * _base_send_ioc_init - send ioc_init to firmware 6350 * @ioc: per adapter object 6351 * 6352 * Return: 0 for success, non-zero for failure. 6353 */ 6354 static int 6355 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc) 6356 { 6357 Mpi2IOCInitRequest_t mpi_request; 6358 Mpi2IOCInitReply_t mpi_reply; 6359 int i, r = 0; 6360 ktime_t current_time; 6361 u16 ioc_status; 6362 u32 reply_post_free_array_sz = 0; 6363 6364 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6365 6366 memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t)); 6367 mpi_request.Function = MPI2_FUNCTION_IOC_INIT; 6368 mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER; 6369 mpi_request.VF_ID = 0; /* TODO */ 6370 mpi_request.VP_ID = 0; 6371 mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged); 6372 mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION); 6373 mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K; 6374 6375 if (_base_is_controller_msix_enabled(ioc)) 6376 mpi_request.HostMSIxVectors = ioc->reply_queue_count; 6377 mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4); 6378 mpi_request.ReplyDescriptorPostQueueDepth = 6379 cpu_to_le16(ioc->reply_post_queue_depth); 6380 mpi_request.ReplyFreeQueueDepth = 6381 cpu_to_le16(ioc->reply_free_queue_depth); 6382 6383 mpi_request.SenseBufferAddressHigh = 6384 cpu_to_le32((u64)ioc->sense_dma >> 32); 6385 mpi_request.SystemReplyAddressHigh = 6386 cpu_to_le32((u64)ioc->reply_dma >> 32); 6387 mpi_request.SystemRequestFrameBaseAddress = 6388 cpu_to_le64((u64)ioc->request_dma); 6389 mpi_request.ReplyFreeQueueAddress = 6390 cpu_to_le64((u64)ioc->reply_free_dma); 6391 6392 if (ioc->rdpq_array_enable) { 6393 reply_post_free_array_sz = ioc->reply_queue_count * 6394 sizeof(Mpi2IOCInitRDPQArrayEntry); 6395 memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz); 6396 for (i = 0; i < ioc->reply_queue_count; i++) 6397 ioc->reply_post_free_array[i].RDPQBaseAddress = 6398 cpu_to_le64( 6399 (u64)ioc->reply_post[i].reply_post_free_dma); 6400 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE; 6401 mpi_request.ReplyDescriptorPostQueueAddress = 6402 cpu_to_le64((u64)ioc->reply_post_free_array_dma); 6403 } else { 6404 mpi_request.ReplyDescriptorPostQueueAddress = 6405 cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma); 6406 } 6407 6408 /* 6409 * Set the flag to enable CoreDump state feature in IOC firmware. 6410 */ 6411 mpi_request.ConfigurationFlags |= 6412 cpu_to_le16(MPI26_IOCINIT_CFGFLAGS_COREDUMP_ENABLE); 6413 6414 /* This time stamp specifies number of milliseconds 6415 * since epoch ~ midnight January 1, 1970. 6416 */ 6417 current_time = ktime_get_real(); 6418 mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time)); 6419 6420 if (ioc->logging_level & MPT_DEBUG_INIT) { 6421 __le32 *mfp; 6422 int i; 6423 6424 mfp = (__le32 *)&mpi_request; 6425 ioc_info(ioc, "\toffset:data\n"); 6426 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++) 6427 ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4, 6428 le32_to_cpu(mfp[i])); 6429 } 6430 6431 r = _base_handshake_req_reply_wait(ioc, 6432 sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request, 6433 sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10); 6434 6435 if (r != 0) { 6436 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 6437 return r; 6438 } 6439 6440 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK; 6441 if (ioc_status != MPI2_IOCSTATUS_SUCCESS || 6442 mpi_reply.IOCLogInfo) { 6443 ioc_err(ioc, "%s: failed\n", __func__); 6444 r = -EIO; 6445 } 6446 6447 return r; 6448 } 6449 6450 /** 6451 * mpt3sas_port_enable_done - command completion routine for port enable 6452 * @ioc: per adapter object 6453 * @smid: system request message index 6454 * @msix_index: MSIX table index supplied by the OS 6455 * @reply: reply message frame(lower 32bit addr) 6456 * 6457 * Return: 1 meaning mf should be freed from _base_interrupt 6458 * 0 means the mf is freed from this function. 6459 */ 6460 u8 6461 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 6462 u32 reply) 6463 { 6464 MPI2DefaultReply_t *mpi_reply; 6465 u16 ioc_status; 6466 6467 if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED) 6468 return 1; 6469 6470 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 6471 if (!mpi_reply) 6472 return 1; 6473 6474 if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE) 6475 return 1; 6476 6477 ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING; 6478 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE; 6479 ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID; 6480 memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4); 6481 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 6482 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) 6483 ioc->port_enable_failed = 1; 6484 6485 if (ioc->is_driver_loading) { 6486 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 6487 mpt3sas_port_enable_complete(ioc); 6488 return 1; 6489 } else { 6490 ioc->start_scan_failed = ioc_status; 6491 ioc->start_scan = 0; 6492 return 1; 6493 } 6494 } 6495 complete(&ioc->port_enable_cmds.done); 6496 return 1; 6497 } 6498 6499 /** 6500 * _base_send_port_enable - send port_enable(discovery stuff) to firmware 6501 * @ioc: per adapter object 6502 * 6503 * Return: 0 for success, non-zero for failure. 6504 */ 6505 static int 6506 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc) 6507 { 6508 Mpi2PortEnableRequest_t *mpi_request; 6509 Mpi2PortEnableReply_t *mpi_reply; 6510 int r = 0; 6511 u16 smid; 6512 u16 ioc_status; 6513 6514 ioc_info(ioc, "sending port enable !!\n"); 6515 6516 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 6517 ioc_err(ioc, "%s: internal command already in use\n", __func__); 6518 return -EAGAIN; 6519 } 6520 6521 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx); 6522 if (!smid) { 6523 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 6524 return -EAGAIN; 6525 } 6526 6527 ioc->port_enable_cmds.status = MPT3_CMD_PENDING; 6528 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 6529 ioc->port_enable_cmds.smid = smid; 6530 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t)); 6531 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE; 6532 6533 init_completion(&ioc->port_enable_cmds.done); 6534 ioc->put_smid_default(ioc, smid); 6535 wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ); 6536 if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) { 6537 ioc_err(ioc, "%s: timeout\n", __func__); 6538 _debug_dump_mf(mpi_request, 6539 sizeof(Mpi2PortEnableRequest_t)/4); 6540 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET) 6541 r = -EFAULT; 6542 else 6543 r = -ETIME; 6544 goto out; 6545 } 6546 6547 mpi_reply = ioc->port_enable_cmds.reply; 6548 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 6549 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 6550 ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n", 6551 __func__, ioc_status); 6552 r = -EFAULT; 6553 goto out; 6554 } 6555 6556 out: 6557 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED; 6558 ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED"); 6559 return r; 6560 } 6561 6562 /** 6563 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply) 6564 * @ioc: per adapter object 6565 * 6566 * Return: 0 for success, non-zero for failure. 6567 */ 6568 int 6569 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc) 6570 { 6571 Mpi2PortEnableRequest_t *mpi_request; 6572 u16 smid; 6573 6574 ioc_info(ioc, "sending port enable !!\n"); 6575 6576 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 6577 ioc_err(ioc, "%s: internal command already in use\n", __func__); 6578 return -EAGAIN; 6579 } 6580 6581 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx); 6582 if (!smid) { 6583 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 6584 return -EAGAIN; 6585 } 6586 6587 ioc->port_enable_cmds.status = MPT3_CMD_PENDING; 6588 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 6589 ioc->port_enable_cmds.smid = smid; 6590 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t)); 6591 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE; 6592 6593 ioc->put_smid_default(ioc, smid); 6594 return 0; 6595 } 6596 6597 /** 6598 * _base_determine_wait_on_discovery - desposition 6599 * @ioc: per adapter object 6600 * 6601 * Decide whether to wait on discovery to complete. Used to either 6602 * locate boot device, or report volumes ahead of physical devices. 6603 * 6604 * Return: 1 for wait, 0 for don't wait. 6605 */ 6606 static int 6607 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc) 6608 { 6609 /* We wait for discovery to complete if IR firmware is loaded. 6610 * The sas topology events arrive before PD events, so we need time to 6611 * turn on the bit in ioc->pd_handles to indicate PD 6612 * Also, it maybe required to report Volumes ahead of physical 6613 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set. 6614 */ 6615 if (ioc->ir_firmware) 6616 return 1; 6617 6618 /* if no Bios, then we don't need to wait */ 6619 if (!ioc->bios_pg3.BiosVersion) 6620 return 0; 6621 6622 /* Bios is present, then we drop down here. 6623 * 6624 * If there any entries in the Bios Page 2, then we wait 6625 * for discovery to complete. 6626 */ 6627 6628 /* Current Boot Device */ 6629 if ((ioc->bios_pg2.CurrentBootDeviceForm & 6630 MPI2_BIOSPAGE2_FORM_MASK) == 6631 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED && 6632 /* Request Boot Device */ 6633 (ioc->bios_pg2.ReqBootDeviceForm & 6634 MPI2_BIOSPAGE2_FORM_MASK) == 6635 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED && 6636 /* Alternate Request Boot Device */ 6637 (ioc->bios_pg2.ReqAltBootDeviceForm & 6638 MPI2_BIOSPAGE2_FORM_MASK) == 6639 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED) 6640 return 0; 6641 6642 return 1; 6643 } 6644 6645 /** 6646 * _base_unmask_events - turn on notification for this event 6647 * @ioc: per adapter object 6648 * @event: firmware event 6649 * 6650 * The mask is stored in ioc->event_masks. 6651 */ 6652 static void 6653 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event) 6654 { 6655 u32 desired_event; 6656 6657 if (event >= 128) 6658 return; 6659 6660 desired_event = (1 << (event % 32)); 6661 6662 if (event < 32) 6663 ioc->event_masks[0] &= ~desired_event; 6664 else if (event < 64) 6665 ioc->event_masks[1] &= ~desired_event; 6666 else if (event < 96) 6667 ioc->event_masks[2] &= ~desired_event; 6668 else if (event < 128) 6669 ioc->event_masks[3] &= ~desired_event; 6670 } 6671 6672 /** 6673 * _base_event_notification - send event notification 6674 * @ioc: per adapter object 6675 * 6676 * Return: 0 for success, non-zero for failure. 6677 */ 6678 static int 6679 _base_event_notification(struct MPT3SAS_ADAPTER *ioc) 6680 { 6681 Mpi2EventNotificationRequest_t *mpi_request; 6682 u16 smid; 6683 int r = 0; 6684 int i; 6685 6686 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6687 6688 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 6689 ioc_err(ioc, "%s: internal command already in use\n", __func__); 6690 return -EAGAIN; 6691 } 6692 6693 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 6694 if (!smid) { 6695 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 6696 return -EAGAIN; 6697 } 6698 ioc->base_cmds.status = MPT3_CMD_PENDING; 6699 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 6700 ioc->base_cmds.smid = smid; 6701 memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t)); 6702 mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION; 6703 mpi_request->VF_ID = 0; /* TODO */ 6704 mpi_request->VP_ID = 0; 6705 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 6706 mpi_request->EventMasks[i] = 6707 cpu_to_le32(ioc->event_masks[i]); 6708 init_completion(&ioc->base_cmds.done); 6709 ioc->put_smid_default(ioc, smid); 6710 wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ); 6711 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 6712 ioc_err(ioc, "%s: timeout\n", __func__); 6713 _debug_dump_mf(mpi_request, 6714 sizeof(Mpi2EventNotificationRequest_t)/4); 6715 if (ioc->base_cmds.status & MPT3_CMD_RESET) 6716 r = -EFAULT; 6717 else 6718 r = -ETIME; 6719 } else 6720 dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__)); 6721 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 6722 return r; 6723 } 6724 6725 /** 6726 * mpt3sas_base_validate_event_type - validating event types 6727 * @ioc: per adapter object 6728 * @event_type: firmware event 6729 * 6730 * This will turn on firmware event notification when application 6731 * ask for that event. We don't mask events that are already enabled. 6732 */ 6733 void 6734 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type) 6735 { 6736 int i, j; 6737 u32 event_mask, desired_event; 6738 u8 send_update_to_fw; 6739 6740 for (i = 0, send_update_to_fw = 0; i < 6741 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) { 6742 event_mask = ~event_type[i]; 6743 desired_event = 1; 6744 for (j = 0; j < 32; j++) { 6745 if (!(event_mask & desired_event) && 6746 (ioc->event_masks[i] & desired_event)) { 6747 ioc->event_masks[i] &= ~desired_event; 6748 send_update_to_fw = 1; 6749 } 6750 desired_event = (desired_event << 1); 6751 } 6752 } 6753 6754 if (!send_update_to_fw) 6755 return; 6756 6757 mutex_lock(&ioc->base_cmds.mutex); 6758 _base_event_notification(ioc); 6759 mutex_unlock(&ioc->base_cmds.mutex); 6760 } 6761 6762 /** 6763 * _base_diag_reset - the "big hammer" start of day reset 6764 * @ioc: per adapter object 6765 * 6766 * Return: 0 for success, non-zero for failure. 6767 */ 6768 static int 6769 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc) 6770 { 6771 u32 host_diagnostic; 6772 u32 ioc_state; 6773 u32 count; 6774 u32 hcb_size; 6775 6776 ioc_info(ioc, "sending diag reset !!\n"); 6777 6778 drsprintk(ioc, ioc_info(ioc, "clear interrupts\n")); 6779 6780 count = 0; 6781 do { 6782 /* Write magic sequence to WriteSequence register 6783 * Loop until in diagnostic mode 6784 */ 6785 drsprintk(ioc, ioc_info(ioc, "write magic sequence\n")); 6786 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence); 6787 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence); 6788 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence); 6789 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence); 6790 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence); 6791 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence); 6792 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence); 6793 6794 /* wait 100 msec */ 6795 msleep(100); 6796 6797 if (count++ > 20) { 6798 ioc_info(ioc, 6799 "Stop writing magic sequence after 20 retries\n"); 6800 goto out; 6801 } 6802 6803 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic); 6804 drsprintk(ioc, 6805 ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n", 6806 count, host_diagnostic)); 6807 6808 } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0); 6809 6810 hcb_size = ioc->base_readl(&ioc->chip->HCBSize); 6811 6812 drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n")); 6813 writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER, 6814 &ioc->chip->HostDiagnostic); 6815 6816 /*This delay allows the chip PCIe hardware time to finish reset tasks*/ 6817 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000); 6818 6819 /* Approximately 300 second max wait */ 6820 for (count = 0; count < (300000000 / 6821 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) { 6822 6823 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic); 6824 6825 if (host_diagnostic == 0xFFFFFFFF) { 6826 ioc_info(ioc, 6827 "Invalid host diagnostic register value\n"); 6828 goto out; 6829 } 6830 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER)) 6831 break; 6832 6833 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000); 6834 } 6835 6836 if (host_diagnostic & MPI2_DIAG_HCB_MODE) { 6837 6838 drsprintk(ioc, 6839 ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n")); 6840 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK; 6841 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW; 6842 writel(host_diagnostic, &ioc->chip->HostDiagnostic); 6843 6844 drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n")); 6845 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE, 6846 &ioc->chip->HCBSize); 6847 } 6848 6849 drsprintk(ioc, ioc_info(ioc, "restart the adapter\n")); 6850 writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET, 6851 &ioc->chip->HostDiagnostic); 6852 6853 drsprintk(ioc, 6854 ioc_info(ioc, "disable writes to the diagnostic register\n")); 6855 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence); 6856 6857 drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n")); 6858 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20); 6859 if (ioc_state) { 6860 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 6861 __func__, ioc_state); 6862 goto out; 6863 } 6864 6865 ioc_info(ioc, "diag reset: SUCCESS\n"); 6866 return 0; 6867 6868 out: 6869 ioc_err(ioc, "diag reset: FAILED\n"); 6870 return -EFAULT; 6871 } 6872 6873 /** 6874 * _base_make_ioc_ready - put controller in READY state 6875 * @ioc: per adapter object 6876 * @type: FORCE_BIG_HAMMER or SOFT_RESET 6877 * 6878 * Return: 0 for success, non-zero for failure. 6879 */ 6880 static int 6881 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type) 6882 { 6883 u32 ioc_state; 6884 int rc; 6885 int count; 6886 6887 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6888 6889 if (ioc->pci_error_recovery) 6890 return 0; 6891 6892 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 6893 dhsprintk(ioc, 6894 ioc_info(ioc, "%s: ioc_state(0x%08x)\n", 6895 __func__, ioc_state)); 6896 6897 /* if in RESET state, it should move to READY state shortly */ 6898 count = 0; 6899 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) { 6900 while ((ioc_state & MPI2_IOC_STATE_MASK) != 6901 MPI2_IOC_STATE_READY) { 6902 if (count++ == 10) { 6903 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 6904 __func__, ioc_state); 6905 return -EFAULT; 6906 } 6907 ssleep(1); 6908 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 6909 } 6910 } 6911 6912 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) 6913 return 0; 6914 6915 if (ioc_state & MPI2_DOORBELL_USED) { 6916 ioc_info(ioc, "unexpected doorbell active!\n"); 6917 goto issue_diag_reset; 6918 } 6919 6920 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 6921 mpt3sas_print_fault_code(ioc, ioc_state & 6922 MPI2_DOORBELL_DATA_MASK); 6923 goto issue_diag_reset; 6924 } 6925 6926 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) { 6927 /* 6928 * if host reset is invoked while watch dog thread is waiting 6929 * for IOC state to be changed to Fault state then driver has 6930 * to wait here for CoreDump state to clear otherwise reset 6931 * will be issued to the FW and FW move the IOC state to 6932 * reset state without copying the FW logs to coredump region. 6933 */ 6934 if (ioc->ioc_coredump_loop != MPT3SAS_COREDUMP_LOOP_DONE) { 6935 mpt3sas_print_coredump_info(ioc, ioc_state & 6936 MPI2_DOORBELL_DATA_MASK); 6937 mpt3sas_base_wait_for_coredump_completion(ioc, 6938 __func__); 6939 } 6940 goto issue_diag_reset; 6941 } 6942 6943 if (type == FORCE_BIG_HAMMER) 6944 goto issue_diag_reset; 6945 6946 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL) 6947 if (!(_base_send_ioc_reset(ioc, 6948 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) { 6949 return 0; 6950 } 6951 6952 issue_diag_reset: 6953 rc = _base_diag_reset(ioc); 6954 return rc; 6955 } 6956 6957 /** 6958 * _base_make_ioc_operational - put controller in OPERATIONAL state 6959 * @ioc: per adapter object 6960 * 6961 * Return: 0 for success, non-zero for failure. 6962 */ 6963 static int 6964 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc) 6965 { 6966 int r, i, index, rc; 6967 unsigned long flags; 6968 u32 reply_address; 6969 u16 smid; 6970 struct _tr_list *delayed_tr, *delayed_tr_next; 6971 struct _sc_list *delayed_sc, *delayed_sc_next; 6972 struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next; 6973 u8 hide_flag; 6974 struct adapter_reply_queue *reply_q; 6975 Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig; 6976 6977 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6978 6979 /* clean the delayed target reset list */ 6980 list_for_each_entry_safe(delayed_tr, delayed_tr_next, 6981 &ioc->delayed_tr_list, list) { 6982 list_del(&delayed_tr->list); 6983 kfree(delayed_tr); 6984 } 6985 6986 6987 list_for_each_entry_safe(delayed_tr, delayed_tr_next, 6988 &ioc->delayed_tr_volume_list, list) { 6989 list_del(&delayed_tr->list); 6990 kfree(delayed_tr); 6991 } 6992 6993 list_for_each_entry_safe(delayed_sc, delayed_sc_next, 6994 &ioc->delayed_sc_list, list) { 6995 list_del(&delayed_sc->list); 6996 kfree(delayed_sc); 6997 } 6998 6999 list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next, 7000 &ioc->delayed_event_ack_list, list) { 7001 list_del(&delayed_event_ack->list); 7002 kfree(delayed_event_ack); 7003 } 7004 7005 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 7006 7007 /* hi-priority queue */ 7008 INIT_LIST_HEAD(&ioc->hpr_free_list); 7009 smid = ioc->hi_priority_smid; 7010 for (i = 0; i < ioc->hi_priority_depth; i++, smid++) { 7011 ioc->hpr_lookup[i].cb_idx = 0xFF; 7012 ioc->hpr_lookup[i].smid = smid; 7013 list_add_tail(&ioc->hpr_lookup[i].tracker_list, 7014 &ioc->hpr_free_list); 7015 } 7016 7017 /* internal queue */ 7018 INIT_LIST_HEAD(&ioc->internal_free_list); 7019 smid = ioc->internal_smid; 7020 for (i = 0; i < ioc->internal_depth; i++, smid++) { 7021 ioc->internal_lookup[i].cb_idx = 0xFF; 7022 ioc->internal_lookup[i].smid = smid; 7023 list_add_tail(&ioc->internal_lookup[i].tracker_list, 7024 &ioc->internal_free_list); 7025 } 7026 7027 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 7028 7029 /* initialize Reply Free Queue */ 7030 for (i = 0, reply_address = (u32)ioc->reply_dma ; 7031 i < ioc->reply_free_queue_depth ; i++, reply_address += 7032 ioc->reply_sz) { 7033 ioc->reply_free[i] = cpu_to_le32(reply_address); 7034 if (ioc->is_mcpu_endpoint) 7035 _base_clone_reply_to_sys_mem(ioc, 7036 reply_address, i); 7037 } 7038 7039 /* initialize reply queues */ 7040 if (ioc->is_driver_loading) 7041 _base_assign_reply_queues(ioc); 7042 7043 /* initialize Reply Post Free Queue */ 7044 index = 0; 7045 reply_post_free_contig = ioc->reply_post[0].reply_post_free; 7046 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 7047 /* 7048 * If RDPQ is enabled, switch to the next allocation. 7049 * Otherwise advance within the contiguous region. 7050 */ 7051 if (ioc->rdpq_array_enable) { 7052 reply_q->reply_post_free = 7053 ioc->reply_post[index++].reply_post_free; 7054 } else { 7055 reply_q->reply_post_free = reply_post_free_contig; 7056 reply_post_free_contig += ioc->reply_post_queue_depth; 7057 } 7058 7059 reply_q->reply_post_host_index = 0; 7060 for (i = 0; i < ioc->reply_post_queue_depth; i++) 7061 reply_q->reply_post_free[i].Words = 7062 cpu_to_le64(ULLONG_MAX); 7063 if (!_base_is_controller_msix_enabled(ioc)) 7064 goto skip_init_reply_post_free_queue; 7065 } 7066 skip_init_reply_post_free_queue: 7067 7068 r = _base_send_ioc_init(ioc); 7069 if (r) { 7070 /* 7071 * No need to check IOC state for fault state & issue 7072 * diag reset during host reset. This check is need 7073 * only during driver load time. 7074 */ 7075 if (!ioc->is_driver_loading) 7076 return r; 7077 7078 rc = _base_check_for_fault_and_issue_reset(ioc); 7079 if (rc || (_base_send_ioc_init(ioc))) 7080 return r; 7081 } 7082 7083 /* initialize reply free host index */ 7084 ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1; 7085 writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex); 7086 7087 /* initialize reply post host index */ 7088 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 7089 if (ioc->combined_reply_queue) 7090 writel((reply_q->msix_index & 7)<< 7091 MPI2_RPHI_MSIX_INDEX_SHIFT, 7092 ioc->replyPostRegisterIndex[reply_q->msix_index/8]); 7093 else 7094 writel(reply_q->msix_index << 7095 MPI2_RPHI_MSIX_INDEX_SHIFT, 7096 &ioc->chip->ReplyPostHostIndex); 7097 7098 if (!_base_is_controller_msix_enabled(ioc)) 7099 goto skip_init_reply_post_host_index; 7100 } 7101 7102 skip_init_reply_post_host_index: 7103 7104 _base_unmask_interrupts(ioc); 7105 7106 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 7107 r = _base_display_fwpkg_version(ioc); 7108 if (r) 7109 return r; 7110 } 7111 7112 _base_static_config_pages(ioc); 7113 r = _base_event_notification(ioc); 7114 if (r) 7115 return r; 7116 7117 if (ioc->is_driver_loading) { 7118 7119 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier 7120 == 0x80) { 7121 hide_flag = (u8) ( 7122 le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) & 7123 MFG_PAGE10_HIDE_SSDS_MASK); 7124 if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK) 7125 ioc->mfg_pg10_hide_flag = hide_flag; 7126 } 7127 7128 ioc->wait_for_discovery_to_complete = 7129 _base_determine_wait_on_discovery(ioc); 7130 7131 return r; /* scan_start and scan_finished support */ 7132 } 7133 7134 r = _base_send_port_enable(ioc); 7135 if (r) 7136 return r; 7137 7138 return r; 7139 } 7140 7141 /** 7142 * mpt3sas_base_free_resources - free resources controller resources 7143 * @ioc: per adapter object 7144 */ 7145 void 7146 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc) 7147 { 7148 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7149 7150 /* synchronizing freeing resource with pci_access_mutex lock */ 7151 mutex_lock(&ioc->pci_access_mutex); 7152 if (ioc->chip_phys && ioc->chip) { 7153 _base_mask_interrupts(ioc); 7154 ioc->shost_recovery = 1; 7155 _base_make_ioc_ready(ioc, SOFT_RESET); 7156 ioc->shost_recovery = 0; 7157 } 7158 7159 mpt3sas_base_unmap_resources(ioc); 7160 mutex_unlock(&ioc->pci_access_mutex); 7161 return; 7162 } 7163 7164 /** 7165 * mpt3sas_base_attach - attach controller instance 7166 * @ioc: per adapter object 7167 * 7168 * Return: 0 for success, non-zero for failure. 7169 */ 7170 int 7171 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc) 7172 { 7173 int r, i, rc; 7174 int cpu_id, last_cpu_id = 0; 7175 7176 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7177 7178 /* setup cpu_msix_table */ 7179 ioc->cpu_count = num_online_cpus(); 7180 for_each_online_cpu(cpu_id) 7181 last_cpu_id = cpu_id; 7182 ioc->cpu_msix_table_sz = last_cpu_id + 1; 7183 ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL); 7184 ioc->reply_queue_count = 1; 7185 if (!ioc->cpu_msix_table) { 7186 ioc_info(ioc, "Allocation for cpu_msix_table failed!!!\n"); 7187 r = -ENOMEM; 7188 goto out_free_resources; 7189 } 7190 7191 if (ioc->is_warpdrive) { 7192 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz, 7193 sizeof(resource_size_t *), GFP_KERNEL); 7194 if (!ioc->reply_post_host_index) { 7195 ioc_info(ioc, "Allocation for reply_post_host_index failed!!!\n"); 7196 r = -ENOMEM; 7197 goto out_free_resources; 7198 } 7199 } 7200 7201 ioc->smp_affinity_enable = smp_affinity_enable; 7202 7203 ioc->rdpq_array_enable_assigned = 0; 7204 ioc->use_32bit_dma = false; 7205 if (ioc->is_aero_ioc) 7206 ioc->base_readl = &_base_readl_aero; 7207 else 7208 ioc->base_readl = &_base_readl; 7209 r = mpt3sas_base_map_resources(ioc); 7210 if (r) 7211 goto out_free_resources; 7212 7213 pci_set_drvdata(ioc->pdev, ioc->shost); 7214 r = _base_get_ioc_facts(ioc); 7215 if (r) { 7216 rc = _base_check_for_fault_and_issue_reset(ioc); 7217 if (rc || (_base_get_ioc_facts(ioc))) 7218 goto out_free_resources; 7219 } 7220 7221 switch (ioc->hba_mpi_version_belonged) { 7222 case MPI2_VERSION: 7223 ioc->build_sg_scmd = &_base_build_sg_scmd; 7224 ioc->build_sg = &_base_build_sg; 7225 ioc->build_zero_len_sge = &_base_build_zero_len_sge; 7226 ioc->get_msix_index_for_smlio = &_base_get_msix_index; 7227 break; 7228 case MPI25_VERSION: 7229 case MPI26_VERSION: 7230 /* 7231 * In SAS3.0, 7232 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and 7233 * Target Status - all require the IEEE formated scatter gather 7234 * elements. 7235 */ 7236 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee; 7237 ioc->build_sg = &_base_build_sg_ieee; 7238 ioc->build_nvme_prp = &_base_build_nvme_prp; 7239 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee; 7240 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t); 7241 if (ioc->high_iops_queues) 7242 ioc->get_msix_index_for_smlio = 7243 &_base_get_high_iops_msix_index; 7244 else 7245 ioc->get_msix_index_for_smlio = &_base_get_msix_index; 7246 break; 7247 } 7248 if (ioc->atomic_desc_capable) { 7249 ioc->put_smid_default = &_base_put_smid_default_atomic; 7250 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic; 7251 ioc->put_smid_fast_path = 7252 &_base_put_smid_fast_path_atomic; 7253 ioc->put_smid_hi_priority = 7254 &_base_put_smid_hi_priority_atomic; 7255 } else { 7256 ioc->put_smid_default = &_base_put_smid_default; 7257 ioc->put_smid_fast_path = &_base_put_smid_fast_path; 7258 ioc->put_smid_hi_priority = &_base_put_smid_hi_priority; 7259 if (ioc->is_mcpu_endpoint) 7260 ioc->put_smid_scsi_io = 7261 &_base_put_smid_mpi_ep_scsi_io; 7262 else 7263 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io; 7264 } 7265 /* 7266 * These function pointers for other requests that don't 7267 * the require IEEE scatter gather elements. 7268 * 7269 * For example Configuration Pages and SAS IOUNIT Control don't. 7270 */ 7271 ioc->build_sg_mpi = &_base_build_sg; 7272 ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge; 7273 7274 r = _base_make_ioc_ready(ioc, SOFT_RESET); 7275 if (r) 7276 goto out_free_resources; 7277 7278 ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts, 7279 sizeof(struct mpt3sas_port_facts), GFP_KERNEL); 7280 if (!ioc->pfacts) { 7281 r = -ENOMEM; 7282 goto out_free_resources; 7283 } 7284 7285 for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) { 7286 r = _base_get_port_facts(ioc, i); 7287 if (r) { 7288 rc = _base_check_for_fault_and_issue_reset(ioc); 7289 if (rc || (_base_get_port_facts(ioc, i))) 7290 goto out_free_resources; 7291 } 7292 } 7293 7294 r = _base_allocate_memory_pools(ioc); 7295 if (r) 7296 goto out_free_resources; 7297 7298 if (irqpoll_weight > 0) 7299 ioc->thresh_hold = irqpoll_weight; 7300 else 7301 ioc->thresh_hold = ioc->hba_queue_depth/4; 7302 7303 _base_init_irqpolls(ioc); 7304 init_waitqueue_head(&ioc->reset_wq); 7305 7306 /* allocate memory pd handle bitmask list */ 7307 ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8); 7308 if (ioc->facts.MaxDevHandle % 8) 7309 ioc->pd_handles_sz++; 7310 ioc->pd_handles = kzalloc(ioc->pd_handles_sz, 7311 GFP_KERNEL); 7312 if (!ioc->pd_handles) { 7313 r = -ENOMEM; 7314 goto out_free_resources; 7315 } 7316 ioc->blocking_handles = kzalloc(ioc->pd_handles_sz, 7317 GFP_KERNEL); 7318 if (!ioc->blocking_handles) { 7319 r = -ENOMEM; 7320 goto out_free_resources; 7321 } 7322 7323 /* allocate memory for pending OS device add list */ 7324 ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8); 7325 if (ioc->facts.MaxDevHandle % 8) 7326 ioc->pend_os_device_add_sz++; 7327 ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz, 7328 GFP_KERNEL); 7329 if (!ioc->pend_os_device_add) 7330 goto out_free_resources; 7331 7332 ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz; 7333 ioc->device_remove_in_progress = 7334 kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL); 7335 if (!ioc->device_remove_in_progress) 7336 goto out_free_resources; 7337 7338 ioc->fwfault_debug = mpt3sas_fwfault_debug; 7339 7340 /* base internal command bits */ 7341 mutex_init(&ioc->base_cmds.mutex); 7342 ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7343 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 7344 7345 /* port_enable command bits */ 7346 ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7347 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED; 7348 7349 /* transport internal command bits */ 7350 ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7351 ioc->transport_cmds.status = MPT3_CMD_NOT_USED; 7352 mutex_init(&ioc->transport_cmds.mutex); 7353 7354 /* scsih internal command bits */ 7355 ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7356 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED; 7357 mutex_init(&ioc->scsih_cmds.mutex); 7358 7359 /* task management internal command bits */ 7360 ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7361 ioc->tm_cmds.status = MPT3_CMD_NOT_USED; 7362 mutex_init(&ioc->tm_cmds.mutex); 7363 7364 /* config page internal command bits */ 7365 ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7366 ioc->config_cmds.status = MPT3_CMD_NOT_USED; 7367 mutex_init(&ioc->config_cmds.mutex); 7368 7369 /* ctl module internal command bits */ 7370 ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7371 ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL); 7372 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED; 7373 mutex_init(&ioc->ctl_cmds.mutex); 7374 7375 if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply || 7376 !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply || 7377 !ioc->tm_cmds.reply || !ioc->config_cmds.reply || 7378 !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) { 7379 r = -ENOMEM; 7380 goto out_free_resources; 7381 } 7382 7383 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 7384 ioc->event_masks[i] = -1; 7385 7386 /* here we enable the events we care about */ 7387 _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY); 7388 _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE); 7389 _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST); 7390 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE); 7391 _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE); 7392 _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST); 7393 _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME); 7394 _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK); 7395 _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS); 7396 _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED); 7397 _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD); 7398 _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION); 7399 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR); 7400 if (ioc->hba_mpi_version_belonged == MPI26_VERSION) { 7401 if (ioc->is_gen35_ioc) { 7402 _base_unmask_events(ioc, 7403 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE); 7404 _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION); 7405 _base_unmask_events(ioc, 7406 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST); 7407 } 7408 } 7409 r = _base_make_ioc_operational(ioc); 7410 if (r) 7411 goto out_free_resources; 7412 7413 /* 7414 * Copy current copy of IOCFacts in prev_fw_facts 7415 * and it will be used during online firmware upgrade. 7416 */ 7417 memcpy(&ioc->prev_fw_facts, &ioc->facts, 7418 sizeof(struct mpt3sas_facts)); 7419 7420 ioc->non_operational_loop = 0; 7421 ioc->ioc_coredump_loop = 0; 7422 ioc->got_task_abort_from_ioctl = 0; 7423 return 0; 7424 7425 out_free_resources: 7426 7427 ioc->remove_host = 1; 7428 7429 mpt3sas_base_free_resources(ioc); 7430 _base_release_memory_pools(ioc); 7431 pci_set_drvdata(ioc->pdev, NULL); 7432 kfree(ioc->cpu_msix_table); 7433 if (ioc->is_warpdrive) 7434 kfree(ioc->reply_post_host_index); 7435 kfree(ioc->pd_handles); 7436 kfree(ioc->blocking_handles); 7437 kfree(ioc->device_remove_in_progress); 7438 kfree(ioc->pend_os_device_add); 7439 kfree(ioc->tm_cmds.reply); 7440 kfree(ioc->transport_cmds.reply); 7441 kfree(ioc->scsih_cmds.reply); 7442 kfree(ioc->config_cmds.reply); 7443 kfree(ioc->base_cmds.reply); 7444 kfree(ioc->port_enable_cmds.reply); 7445 kfree(ioc->ctl_cmds.reply); 7446 kfree(ioc->ctl_cmds.sense); 7447 kfree(ioc->pfacts); 7448 ioc->ctl_cmds.reply = NULL; 7449 ioc->base_cmds.reply = NULL; 7450 ioc->tm_cmds.reply = NULL; 7451 ioc->scsih_cmds.reply = NULL; 7452 ioc->transport_cmds.reply = NULL; 7453 ioc->config_cmds.reply = NULL; 7454 ioc->pfacts = NULL; 7455 return r; 7456 } 7457 7458 7459 /** 7460 * mpt3sas_base_detach - remove controller instance 7461 * @ioc: per adapter object 7462 */ 7463 void 7464 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc) 7465 { 7466 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7467 7468 mpt3sas_base_stop_watchdog(ioc); 7469 mpt3sas_base_free_resources(ioc); 7470 _base_release_memory_pools(ioc); 7471 mpt3sas_free_enclosure_list(ioc); 7472 pci_set_drvdata(ioc->pdev, NULL); 7473 kfree(ioc->cpu_msix_table); 7474 if (ioc->is_warpdrive) 7475 kfree(ioc->reply_post_host_index); 7476 kfree(ioc->pd_handles); 7477 kfree(ioc->blocking_handles); 7478 kfree(ioc->device_remove_in_progress); 7479 kfree(ioc->pend_os_device_add); 7480 kfree(ioc->pfacts); 7481 kfree(ioc->ctl_cmds.reply); 7482 kfree(ioc->ctl_cmds.sense); 7483 kfree(ioc->base_cmds.reply); 7484 kfree(ioc->port_enable_cmds.reply); 7485 kfree(ioc->tm_cmds.reply); 7486 kfree(ioc->transport_cmds.reply); 7487 kfree(ioc->scsih_cmds.reply); 7488 kfree(ioc->config_cmds.reply); 7489 } 7490 7491 /** 7492 * _base_pre_reset_handler - pre reset handler 7493 * @ioc: per adapter object 7494 */ 7495 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc) 7496 { 7497 mpt3sas_scsih_pre_reset_handler(ioc); 7498 mpt3sas_ctl_pre_reset_handler(ioc); 7499 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__)); 7500 } 7501 7502 /** 7503 * _base_clear_outstanding_mpt_commands - clears outstanding mpt commands 7504 * @ioc: per adapter object 7505 */ 7506 static void 7507 _base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER *ioc) 7508 { 7509 dtmprintk(ioc, 7510 ioc_info(ioc, "%s: clear outstanding mpt cmds\n", __func__)); 7511 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) { 7512 ioc->transport_cmds.status |= MPT3_CMD_RESET; 7513 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid); 7514 complete(&ioc->transport_cmds.done); 7515 } 7516 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 7517 ioc->base_cmds.status |= MPT3_CMD_RESET; 7518 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid); 7519 complete(&ioc->base_cmds.done); 7520 } 7521 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 7522 ioc->port_enable_failed = 1; 7523 ioc->port_enable_cmds.status |= MPT3_CMD_RESET; 7524 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid); 7525 if (ioc->is_driver_loading) { 7526 ioc->start_scan_failed = 7527 MPI2_IOCSTATUS_INTERNAL_ERROR; 7528 ioc->start_scan = 0; 7529 ioc->port_enable_cmds.status = 7530 MPT3_CMD_NOT_USED; 7531 } else { 7532 complete(&ioc->port_enable_cmds.done); 7533 } 7534 } 7535 if (ioc->config_cmds.status & MPT3_CMD_PENDING) { 7536 ioc->config_cmds.status |= MPT3_CMD_RESET; 7537 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid); 7538 ioc->config_cmds.smid = USHRT_MAX; 7539 complete(&ioc->config_cmds.done); 7540 } 7541 } 7542 7543 /** 7544 * _base_clear_outstanding_commands - clear all outstanding commands 7545 * @ioc: per adapter object 7546 */ 7547 static void _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc) 7548 { 7549 mpt3sas_scsih_clear_outstanding_scsi_tm_commands(ioc); 7550 mpt3sas_ctl_clear_outstanding_ioctls(ioc); 7551 _base_clear_outstanding_mpt_commands(ioc); 7552 } 7553 7554 /** 7555 * _base_reset_done_handler - reset done handler 7556 * @ioc: per adapter object 7557 */ 7558 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc) 7559 { 7560 mpt3sas_scsih_reset_done_handler(ioc); 7561 mpt3sas_ctl_reset_done_handler(ioc); 7562 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__)); 7563 } 7564 7565 /** 7566 * mpt3sas_wait_for_commands_to_complete - reset controller 7567 * @ioc: Pointer to MPT_ADAPTER structure 7568 * 7569 * This function is waiting 10s for all pending commands to complete 7570 * prior to putting controller in reset. 7571 */ 7572 void 7573 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc) 7574 { 7575 u32 ioc_state; 7576 7577 ioc->pending_io_count = 0; 7578 7579 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 7580 if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) 7581 return; 7582 7583 /* pending command count */ 7584 ioc->pending_io_count = scsi_host_busy(ioc->shost); 7585 7586 if (!ioc->pending_io_count) 7587 return; 7588 7589 /* wait for pending commands to complete */ 7590 wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ); 7591 } 7592 7593 /** 7594 * _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts 7595 * attributes during online firmware upgrade and update the corresponding 7596 * IOC variables accordingly. 7597 * 7598 * @ioc: Pointer to MPT_ADAPTER structure 7599 */ 7600 static int 7601 _base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc) 7602 { 7603 u16 pd_handles_sz; 7604 void *pd_handles = NULL, *blocking_handles = NULL; 7605 void *pend_os_device_add = NULL, *device_remove_in_progress = NULL; 7606 struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts; 7607 7608 if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle) { 7609 pd_handles_sz = (ioc->facts.MaxDevHandle / 8); 7610 if (ioc->facts.MaxDevHandle % 8) 7611 pd_handles_sz++; 7612 7613 pd_handles = krealloc(ioc->pd_handles, pd_handles_sz, 7614 GFP_KERNEL); 7615 if (!pd_handles) { 7616 ioc_info(ioc, 7617 "Unable to allocate the memory for pd_handles of sz: %d\n", 7618 pd_handles_sz); 7619 return -ENOMEM; 7620 } 7621 memset(pd_handles + ioc->pd_handles_sz, 0, 7622 (pd_handles_sz - ioc->pd_handles_sz)); 7623 ioc->pd_handles = pd_handles; 7624 7625 blocking_handles = krealloc(ioc->blocking_handles, 7626 pd_handles_sz, GFP_KERNEL); 7627 if (!blocking_handles) { 7628 ioc_info(ioc, 7629 "Unable to allocate the memory for " 7630 "blocking_handles of sz: %d\n", 7631 pd_handles_sz); 7632 return -ENOMEM; 7633 } 7634 memset(blocking_handles + ioc->pd_handles_sz, 0, 7635 (pd_handles_sz - ioc->pd_handles_sz)); 7636 ioc->blocking_handles = blocking_handles; 7637 ioc->pd_handles_sz = pd_handles_sz; 7638 7639 pend_os_device_add = krealloc(ioc->pend_os_device_add, 7640 pd_handles_sz, GFP_KERNEL); 7641 if (!pend_os_device_add) { 7642 ioc_info(ioc, 7643 "Unable to allocate the memory for pend_os_device_add of sz: %d\n", 7644 pd_handles_sz); 7645 return -ENOMEM; 7646 } 7647 memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0, 7648 (pd_handles_sz - ioc->pend_os_device_add_sz)); 7649 ioc->pend_os_device_add = pend_os_device_add; 7650 ioc->pend_os_device_add_sz = pd_handles_sz; 7651 7652 device_remove_in_progress = krealloc( 7653 ioc->device_remove_in_progress, pd_handles_sz, GFP_KERNEL); 7654 if (!device_remove_in_progress) { 7655 ioc_info(ioc, 7656 "Unable to allocate the memory for " 7657 "device_remove_in_progress of sz: %d\n " 7658 , pd_handles_sz); 7659 return -ENOMEM; 7660 } 7661 memset(device_remove_in_progress + 7662 ioc->device_remove_in_progress_sz, 0, 7663 (pd_handles_sz - ioc->device_remove_in_progress_sz)); 7664 ioc->device_remove_in_progress = device_remove_in_progress; 7665 ioc->device_remove_in_progress_sz = pd_handles_sz; 7666 } 7667 7668 memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts)); 7669 return 0; 7670 } 7671 7672 /** 7673 * mpt3sas_base_hard_reset_handler - reset controller 7674 * @ioc: Pointer to MPT_ADAPTER structure 7675 * @type: FORCE_BIG_HAMMER or SOFT_RESET 7676 * 7677 * Return: 0 for success, non-zero for failure. 7678 */ 7679 int 7680 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc, 7681 enum reset_type type) 7682 { 7683 int r; 7684 unsigned long flags; 7685 u32 ioc_state; 7686 u8 is_fault = 0, is_trigger = 0; 7687 7688 dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__)); 7689 7690 if (ioc->pci_error_recovery) { 7691 ioc_err(ioc, "%s: pci error recovery reset\n", __func__); 7692 r = 0; 7693 goto out_unlocked; 7694 } 7695 7696 if (mpt3sas_fwfault_debug) 7697 mpt3sas_halt_firmware(ioc); 7698 7699 /* wait for an active reset in progress to complete */ 7700 mutex_lock(&ioc->reset_in_progress_mutex); 7701 7702 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 7703 ioc->shost_recovery = 1; 7704 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 7705 7706 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 7707 MPT3_DIAG_BUFFER_IS_REGISTERED) && 7708 (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 7709 MPT3_DIAG_BUFFER_IS_RELEASED))) { 7710 is_trigger = 1; 7711 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 7712 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT || 7713 (ioc_state & MPI2_IOC_STATE_MASK) == 7714 MPI2_IOC_STATE_COREDUMP) 7715 is_fault = 1; 7716 } 7717 _base_pre_reset_handler(ioc); 7718 mpt3sas_wait_for_commands_to_complete(ioc); 7719 _base_mask_interrupts(ioc); 7720 r = _base_make_ioc_ready(ioc, type); 7721 if (r) 7722 goto out; 7723 _base_clear_outstanding_commands(ioc); 7724 7725 /* If this hard reset is called while port enable is active, then 7726 * there is no reason to call make_ioc_operational 7727 */ 7728 if (ioc->is_driver_loading && ioc->port_enable_failed) { 7729 ioc->remove_host = 1; 7730 r = -EFAULT; 7731 goto out; 7732 } 7733 r = _base_get_ioc_facts(ioc); 7734 if (r) 7735 goto out; 7736 7737 r = _base_check_ioc_facts_changes(ioc); 7738 if (r) { 7739 ioc_info(ioc, 7740 "Some of the parameters got changed in this new firmware" 7741 " image and it requires system reboot\n"); 7742 goto out; 7743 } 7744 if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable) 7745 panic("%s: Issue occurred with flashing controller firmware." 7746 "Please reboot the system and ensure that the correct" 7747 " firmware version is running\n", ioc->name); 7748 7749 r = _base_make_ioc_operational(ioc); 7750 if (!r) 7751 _base_reset_done_handler(ioc); 7752 7753 out: 7754 ioc_info(ioc, "%s: %s\n", __func__, r == 0 ? "SUCCESS" : "FAILED"); 7755 7756 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 7757 ioc->shost_recovery = 0; 7758 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 7759 ioc->ioc_reset_count++; 7760 mutex_unlock(&ioc->reset_in_progress_mutex); 7761 7762 out_unlocked: 7763 if ((r == 0) && is_trigger) { 7764 if (is_fault) 7765 mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT); 7766 else 7767 mpt3sas_trigger_master(ioc, 7768 MASTER_TRIGGER_ADAPTER_RESET); 7769 } 7770 dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__)); 7771 return r; 7772 } 7773