1 /*
2  * This is the Fusion MPT base driver providing common API layer interface
3  * for access to MPT (Message Passing Technology) firmware.
4  *
5  * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6  * Copyright (C) 2012-2014  LSI Corporation
7  * Copyright (C) 2013-2014 Avago Technologies
8  *  (mailto: MPT-FusionLinux.pdl@avagotech.com)
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version 2
13  * of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * NO WARRANTY
21  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25  * solely responsible for determining the appropriateness of using and
26  * distributing the Program and assumes all risks associated with its
27  * exercise of rights under this Agreement, including but not limited to
28  * the risks and costs of program errors, damage to or loss of data,
29  * programs or equipment, and unavailability or interruption of operations.
30 
31  * DISCLAIMER OF LIABILITY
32  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39 
40  * You should have received a copy of the GNU General Public License
41  * along with this program; if not, write to the Free Software
42  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
43  * USA.
44  */
45 
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <linux/aer.h>
63 
64 
65 #include "mpt3sas_base.h"
66 
67 static MPT_CALLBACK	mpt_callbacks[MPT_MAX_CALLBACKS];
68 
69 
70 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
71 
72  /* maximum controller queue depth */
73 #define MAX_HBA_QUEUE_DEPTH	30000
74 #define MAX_CHAIN_DEPTH		100000
75 static int max_queue_depth = -1;
76 module_param(max_queue_depth, int, 0);
77 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
78 
79 static int max_sgl_entries = -1;
80 module_param(max_sgl_entries, int, 0);
81 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
82 
83 static int msix_disable = -1;
84 module_param(msix_disable, int, 0);
85 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
86 
87 static int smp_affinity_enable = 1;
88 module_param(smp_affinity_enable, int, S_IRUGO);
89 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disbale Default: enable(1)");
90 
91 static int max_msix_vectors = -1;
92 module_param(max_msix_vectors, int, 0);
93 MODULE_PARM_DESC(max_msix_vectors,
94 	" max msix vectors");
95 
96 static int mpt3sas_fwfault_debug;
97 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
98 	" enable detection of firmware fault and halt firmware - (default=0)");
99 
100 static int
101 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
102 
103 /**
104  * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
105  *
106  */
107 static int
108 _scsih_set_fwfault_debug(const char *val, struct kernel_param *kp)
109 {
110 	int ret = param_set_int(val, kp);
111 	struct MPT3SAS_ADAPTER *ioc;
112 
113 	if (ret)
114 		return ret;
115 
116 	/* global ioc spinlock to protect controller list on list operations */
117 	pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
118 	spin_lock(&gioc_lock);
119 	list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
120 		ioc->fwfault_debug = mpt3sas_fwfault_debug;
121 	spin_unlock(&gioc_lock);
122 	return 0;
123 }
124 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
125 	param_get_int, &mpt3sas_fwfault_debug, 0644);
126 
127 /**
128  *  mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
129  * @arg: input argument, used to derive ioc
130  *
131  * Return 0 if controller is removed from pci subsystem.
132  * Return -1 for other case.
133  */
134 static int mpt3sas_remove_dead_ioc_func(void *arg)
135 {
136 	struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
137 	struct pci_dev *pdev;
138 
139 	if ((ioc == NULL))
140 		return -1;
141 
142 	pdev = ioc->pdev;
143 	if ((pdev == NULL))
144 		return -1;
145 	pci_stop_and_remove_bus_device_locked(pdev);
146 	return 0;
147 }
148 
149 /**
150  * _base_fault_reset_work - workq handling ioc fault conditions
151  * @work: input argument, used to derive ioc
152  * Context: sleep.
153  *
154  * Return nothing.
155  */
156 static void
157 _base_fault_reset_work(struct work_struct *work)
158 {
159 	struct MPT3SAS_ADAPTER *ioc =
160 	    container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
161 	unsigned long	 flags;
162 	u32 doorbell;
163 	int rc;
164 	struct task_struct *p;
165 
166 
167 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
168 	if (ioc->shost_recovery || ioc->pci_error_recovery)
169 		goto rearm_timer;
170 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
171 
172 	doorbell = mpt3sas_base_get_iocstate(ioc, 0);
173 	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
174 		pr_err(MPT3SAS_FMT "SAS host is non-operational !!!!\n",
175 		    ioc->name);
176 
177 		/* It may be possible that EEH recovery can resolve some of
178 		 * pci bus failure issues rather removing the dead ioc function
179 		 * by considering controller is in a non-operational state. So
180 		 * here priority is given to the EEH recovery. If it doesn't
181 		 * not resolve this issue, mpt3sas driver will consider this
182 		 * controller to non-operational state and remove the dead ioc
183 		 * function.
184 		 */
185 		if (ioc->non_operational_loop++ < 5) {
186 			spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
187 							 flags);
188 			goto rearm_timer;
189 		}
190 
191 		/*
192 		 * Call _scsih_flush_pending_cmds callback so that we flush all
193 		 * pending commands back to OS. This call is required to aovid
194 		 * deadlock at block layer. Dead IOC will fail to do diag reset,
195 		 * and this call is safe since dead ioc will never return any
196 		 * command back from HW.
197 		 */
198 		ioc->schedule_dead_ioc_flush_running_cmds(ioc);
199 		/*
200 		 * Set remove_host flag early since kernel thread will
201 		 * take some time to execute.
202 		 */
203 		ioc->remove_host = 1;
204 		/*Remove the Dead Host */
205 		p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
206 		    "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
207 		if (IS_ERR(p))
208 			pr_err(MPT3SAS_FMT
209 			"%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
210 			ioc->name, __func__);
211 		else
212 			pr_err(MPT3SAS_FMT
213 			"%s: Running mpt3sas_dead_ioc thread success !!!!\n",
214 			ioc->name, __func__);
215 		return; /* don't rearm timer */
216 	}
217 
218 	ioc->non_operational_loop = 0;
219 
220 	if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
221 		rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
222 		pr_warn(MPT3SAS_FMT "%s: hard reset: %s\n", ioc->name,
223 		    __func__, (rc == 0) ? "success" : "failed");
224 		doorbell = mpt3sas_base_get_iocstate(ioc, 0);
225 		if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
226 			mpt3sas_base_fault_info(ioc, doorbell &
227 			    MPI2_DOORBELL_DATA_MASK);
228 		if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
229 		    MPI2_IOC_STATE_OPERATIONAL)
230 			return; /* don't rearm timer */
231 	}
232 
233 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
234  rearm_timer:
235 	if (ioc->fault_reset_work_q)
236 		queue_delayed_work(ioc->fault_reset_work_q,
237 		    &ioc->fault_reset_work,
238 		    msecs_to_jiffies(FAULT_POLLING_INTERVAL));
239 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
240 }
241 
242 /**
243  * mpt3sas_base_start_watchdog - start the fault_reset_work_q
244  * @ioc: per adapter object
245  * Context: sleep.
246  *
247  * Return nothing.
248  */
249 void
250 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
251 {
252 	unsigned long	 flags;
253 
254 	if (ioc->fault_reset_work_q)
255 		return;
256 
257 	/* initialize fault polling */
258 
259 	INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
260 	snprintf(ioc->fault_reset_work_q_name,
261 	    sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
262 	    ioc->driver_name, ioc->id);
263 	ioc->fault_reset_work_q =
264 		create_singlethread_workqueue(ioc->fault_reset_work_q_name);
265 	if (!ioc->fault_reset_work_q) {
266 		pr_err(MPT3SAS_FMT "%s: failed (line=%d)\n",
267 		    ioc->name, __func__, __LINE__);
268 			return;
269 	}
270 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
271 	if (ioc->fault_reset_work_q)
272 		queue_delayed_work(ioc->fault_reset_work_q,
273 		    &ioc->fault_reset_work,
274 		    msecs_to_jiffies(FAULT_POLLING_INTERVAL));
275 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
276 }
277 
278 /**
279  * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
280  * @ioc: per adapter object
281  * Context: sleep.
282  *
283  * Return nothing.
284  */
285 void
286 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
287 {
288 	unsigned long flags;
289 	struct workqueue_struct *wq;
290 
291 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
292 	wq = ioc->fault_reset_work_q;
293 	ioc->fault_reset_work_q = NULL;
294 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
295 	if (wq) {
296 		if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
297 			flush_workqueue(wq);
298 		destroy_workqueue(wq);
299 	}
300 }
301 
302 /**
303  * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
304  * @ioc: per adapter object
305  * @fault_code: fault code
306  *
307  * Return nothing.
308  */
309 void
310 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
311 {
312 	pr_err(MPT3SAS_FMT "fault_state(0x%04x)!\n",
313 	    ioc->name, fault_code);
314 }
315 
316 /**
317  * mpt3sas_halt_firmware - halt's mpt controller firmware
318  * @ioc: per adapter object
319  *
320  * For debugging timeout related issues.  Writing 0xCOFFEE00
321  * to the doorbell register will halt controller firmware. With
322  * the purpose to stop both driver and firmware, the enduser can
323  * obtain a ring buffer from controller UART.
324  */
325 void
326 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
327 {
328 	u32 doorbell;
329 
330 	if (!ioc->fwfault_debug)
331 		return;
332 
333 	dump_stack();
334 
335 	doorbell = readl(&ioc->chip->Doorbell);
336 	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
337 		mpt3sas_base_fault_info(ioc , doorbell);
338 	else {
339 		writel(0xC0FFEE00, &ioc->chip->Doorbell);
340 		pr_err(MPT3SAS_FMT "Firmware is halted due to command timeout\n",
341 			ioc->name);
342 	}
343 
344 	if (ioc->fwfault_debug == 2)
345 		for (;;)
346 			;
347 	else
348 		panic("panic in %s\n", __func__);
349 }
350 
351 /**
352  * _base_sas_ioc_info - verbose translation of the ioc status
353  * @ioc: per adapter object
354  * @mpi_reply: reply mf payload returned from firmware
355  * @request_hdr: request mf
356  *
357  * Return nothing.
358  */
359 static void
360 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
361 	MPI2RequestHeader_t *request_hdr)
362 {
363 	u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
364 	    MPI2_IOCSTATUS_MASK;
365 	char *desc = NULL;
366 	u16 frame_sz;
367 	char *func_str = NULL;
368 
369 	/* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
370 	if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
371 	    request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
372 	    request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
373 		return;
374 
375 	if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
376 		return;
377 
378 	switch (ioc_status) {
379 
380 /****************************************************************************
381 *  Common IOCStatus values for all replies
382 ****************************************************************************/
383 
384 	case MPI2_IOCSTATUS_INVALID_FUNCTION:
385 		desc = "invalid function";
386 		break;
387 	case MPI2_IOCSTATUS_BUSY:
388 		desc = "busy";
389 		break;
390 	case MPI2_IOCSTATUS_INVALID_SGL:
391 		desc = "invalid sgl";
392 		break;
393 	case MPI2_IOCSTATUS_INTERNAL_ERROR:
394 		desc = "internal error";
395 		break;
396 	case MPI2_IOCSTATUS_INVALID_VPID:
397 		desc = "invalid vpid";
398 		break;
399 	case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
400 		desc = "insufficient resources";
401 		break;
402 	case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
403 		desc = "insufficient power";
404 		break;
405 	case MPI2_IOCSTATUS_INVALID_FIELD:
406 		desc = "invalid field";
407 		break;
408 	case MPI2_IOCSTATUS_INVALID_STATE:
409 		desc = "invalid state";
410 		break;
411 	case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
412 		desc = "op state not supported";
413 		break;
414 
415 /****************************************************************************
416 *  Config IOCStatus values
417 ****************************************************************************/
418 
419 	case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
420 		desc = "config invalid action";
421 		break;
422 	case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
423 		desc = "config invalid type";
424 		break;
425 	case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
426 		desc = "config invalid page";
427 		break;
428 	case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
429 		desc = "config invalid data";
430 		break;
431 	case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
432 		desc = "config no defaults";
433 		break;
434 	case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
435 		desc = "config cant commit";
436 		break;
437 
438 /****************************************************************************
439 *  SCSI IO Reply
440 ****************************************************************************/
441 
442 	case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
443 	case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
444 	case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
445 	case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
446 	case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
447 	case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
448 	case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
449 	case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
450 	case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
451 	case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
452 	case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
453 	case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
454 		break;
455 
456 /****************************************************************************
457 *  For use by SCSI Initiator and SCSI Target end-to-end data protection
458 ****************************************************************************/
459 
460 	case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
461 		desc = "eedp guard error";
462 		break;
463 	case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
464 		desc = "eedp ref tag error";
465 		break;
466 	case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
467 		desc = "eedp app tag error";
468 		break;
469 
470 /****************************************************************************
471 *  SCSI Target values
472 ****************************************************************************/
473 
474 	case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
475 		desc = "target invalid io index";
476 		break;
477 	case MPI2_IOCSTATUS_TARGET_ABORTED:
478 		desc = "target aborted";
479 		break;
480 	case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
481 		desc = "target no conn retryable";
482 		break;
483 	case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
484 		desc = "target no connection";
485 		break;
486 	case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
487 		desc = "target xfer count mismatch";
488 		break;
489 	case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
490 		desc = "target data offset error";
491 		break;
492 	case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
493 		desc = "target too much write data";
494 		break;
495 	case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
496 		desc = "target iu too short";
497 		break;
498 	case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
499 		desc = "target ack nak timeout";
500 		break;
501 	case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
502 		desc = "target nak received";
503 		break;
504 
505 /****************************************************************************
506 *  Serial Attached SCSI values
507 ****************************************************************************/
508 
509 	case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
510 		desc = "smp request failed";
511 		break;
512 	case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
513 		desc = "smp data overrun";
514 		break;
515 
516 /****************************************************************************
517 *  Diagnostic Buffer Post / Diagnostic Release values
518 ****************************************************************************/
519 
520 	case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
521 		desc = "diagnostic released";
522 		break;
523 	default:
524 		break;
525 	}
526 
527 	if (!desc)
528 		return;
529 
530 	switch (request_hdr->Function) {
531 	case MPI2_FUNCTION_CONFIG:
532 		frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
533 		func_str = "config_page";
534 		break;
535 	case MPI2_FUNCTION_SCSI_TASK_MGMT:
536 		frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
537 		func_str = "task_mgmt";
538 		break;
539 	case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
540 		frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
541 		func_str = "sas_iounit_ctl";
542 		break;
543 	case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
544 		frame_sz = sizeof(Mpi2SepRequest_t);
545 		func_str = "enclosure";
546 		break;
547 	case MPI2_FUNCTION_IOC_INIT:
548 		frame_sz = sizeof(Mpi2IOCInitRequest_t);
549 		func_str = "ioc_init";
550 		break;
551 	case MPI2_FUNCTION_PORT_ENABLE:
552 		frame_sz = sizeof(Mpi2PortEnableRequest_t);
553 		func_str = "port_enable";
554 		break;
555 	case MPI2_FUNCTION_SMP_PASSTHROUGH:
556 		frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
557 		func_str = "smp_passthru";
558 		break;
559 	default:
560 		frame_sz = 32;
561 		func_str = "unknown";
562 		break;
563 	}
564 
565 	pr_warn(MPT3SAS_FMT "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
566 		ioc->name, desc, ioc_status, request_hdr, func_str);
567 
568 	_debug_dump_mf(request_hdr, frame_sz/4);
569 }
570 
571 /**
572  * _base_display_event_data - verbose translation of firmware asyn events
573  * @ioc: per adapter object
574  * @mpi_reply: reply mf payload returned from firmware
575  *
576  * Return nothing.
577  */
578 static void
579 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
580 	Mpi2EventNotificationReply_t *mpi_reply)
581 {
582 	char *desc = NULL;
583 	u16 event;
584 
585 	if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
586 		return;
587 
588 	event = le16_to_cpu(mpi_reply->Event);
589 
590 	switch (event) {
591 	case MPI2_EVENT_LOG_DATA:
592 		desc = "Log Data";
593 		break;
594 	case MPI2_EVENT_STATE_CHANGE:
595 		desc = "Status Change";
596 		break;
597 	case MPI2_EVENT_HARD_RESET_RECEIVED:
598 		desc = "Hard Reset Received";
599 		break;
600 	case MPI2_EVENT_EVENT_CHANGE:
601 		desc = "Event Change";
602 		break;
603 	case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
604 		desc = "Device Status Change";
605 		break;
606 	case MPI2_EVENT_IR_OPERATION_STATUS:
607 		if (!ioc->hide_ir_msg)
608 			desc = "IR Operation Status";
609 		break;
610 	case MPI2_EVENT_SAS_DISCOVERY:
611 	{
612 		Mpi2EventDataSasDiscovery_t *event_data =
613 		    (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
614 		pr_info(MPT3SAS_FMT "Discovery: (%s)", ioc->name,
615 		    (event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED) ?
616 		    "start" : "stop");
617 		if (event_data->DiscoveryStatus)
618 			pr_cont(" discovery_status(0x%08x)",
619 			    le32_to_cpu(event_data->DiscoveryStatus));
620 		pr_cont("\n");
621 		return;
622 	}
623 	case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
624 		desc = "SAS Broadcast Primitive";
625 		break;
626 	case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
627 		desc = "SAS Init Device Status Change";
628 		break;
629 	case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
630 		desc = "SAS Init Table Overflow";
631 		break;
632 	case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
633 		desc = "SAS Topology Change List";
634 		break;
635 	case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
636 		desc = "SAS Enclosure Device Status Change";
637 		break;
638 	case MPI2_EVENT_IR_VOLUME:
639 		if (!ioc->hide_ir_msg)
640 			desc = "IR Volume";
641 		break;
642 	case MPI2_EVENT_IR_PHYSICAL_DISK:
643 		if (!ioc->hide_ir_msg)
644 			desc = "IR Physical Disk";
645 		break;
646 	case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
647 		if (!ioc->hide_ir_msg)
648 			desc = "IR Configuration Change List";
649 		break;
650 	case MPI2_EVENT_LOG_ENTRY_ADDED:
651 		if (!ioc->hide_ir_msg)
652 			desc = "Log Entry Added";
653 		break;
654 	case MPI2_EVENT_TEMP_THRESHOLD:
655 		desc = "Temperature Threshold";
656 		break;
657 	case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
658 		desc = "Active cable exception";
659 		break;
660 	}
661 
662 	if (!desc)
663 		return;
664 
665 	pr_info(MPT3SAS_FMT "%s\n", ioc->name, desc);
666 }
667 
668 /**
669  * _base_sas_log_info - verbose translation of firmware log info
670  * @ioc: per adapter object
671  * @log_info: log info
672  *
673  * Return nothing.
674  */
675 static void
676 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
677 {
678 	union loginfo_type {
679 		u32	loginfo;
680 		struct {
681 			u32	subcode:16;
682 			u32	code:8;
683 			u32	originator:4;
684 			u32	bus_type:4;
685 		} dw;
686 	};
687 	union loginfo_type sas_loginfo;
688 	char *originator_str = NULL;
689 
690 	sas_loginfo.loginfo = log_info;
691 	if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
692 		return;
693 
694 	/* each nexus loss loginfo */
695 	if (log_info == 0x31170000)
696 		return;
697 
698 	/* eat the loginfos associated with task aborts */
699 	if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
700 	    0x31140000 || log_info == 0x31130000))
701 		return;
702 
703 	switch (sas_loginfo.dw.originator) {
704 	case 0:
705 		originator_str = "IOP";
706 		break;
707 	case 1:
708 		originator_str = "PL";
709 		break;
710 	case 2:
711 		if (!ioc->hide_ir_msg)
712 			originator_str = "IR";
713 		else
714 			originator_str = "WarpDrive";
715 		break;
716 	}
717 
718 	pr_warn(MPT3SAS_FMT
719 		"log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
720 		ioc->name, log_info,
721 	     originator_str, sas_loginfo.dw.code,
722 	     sas_loginfo.dw.subcode);
723 }
724 
725 /**
726  * _base_display_reply_info -
727  * @ioc: per adapter object
728  * @smid: system request message index
729  * @msix_index: MSIX table index supplied by the OS
730  * @reply: reply message frame(lower 32bit addr)
731  *
732  * Return nothing.
733  */
734 static void
735 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
736 	u32 reply)
737 {
738 	MPI2DefaultReply_t *mpi_reply;
739 	u16 ioc_status;
740 	u32 loginfo = 0;
741 
742 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
743 	if (unlikely(!mpi_reply)) {
744 		pr_err(MPT3SAS_FMT "mpi_reply not valid at %s:%d/%s()!\n",
745 		    ioc->name, __FILE__, __LINE__, __func__);
746 		return;
747 	}
748 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
749 
750 	if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
751 	    (ioc->logging_level & MPT_DEBUG_REPLY)) {
752 		_base_sas_ioc_info(ioc , mpi_reply,
753 		   mpt3sas_base_get_msg_frame(ioc, smid));
754 	}
755 
756 	if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
757 		loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
758 		_base_sas_log_info(ioc, loginfo);
759 	}
760 
761 	if (ioc_status || loginfo) {
762 		ioc_status &= MPI2_IOCSTATUS_MASK;
763 		mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
764 	}
765 }
766 
767 /**
768  * mpt3sas_base_done - base internal command completion routine
769  * @ioc: per adapter object
770  * @smid: system request message index
771  * @msix_index: MSIX table index supplied by the OS
772  * @reply: reply message frame(lower 32bit addr)
773  *
774  * Return 1 meaning mf should be freed from _base_interrupt
775  *        0 means the mf is freed from this function.
776  */
777 u8
778 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
779 	u32 reply)
780 {
781 	MPI2DefaultReply_t *mpi_reply;
782 
783 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
784 	if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
785 		return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
786 
787 	if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
788 		return 1;
789 
790 	ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
791 	if (mpi_reply) {
792 		ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
793 		memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
794 	}
795 	ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
796 
797 	complete(&ioc->base_cmds.done);
798 	return 1;
799 }
800 
801 /**
802  * _base_async_event - main callback handler for firmware asyn events
803  * @ioc: per adapter object
804  * @msix_index: MSIX table index supplied by the OS
805  * @reply: reply message frame(lower 32bit addr)
806  *
807  * Return 1 meaning mf should be freed from _base_interrupt
808  *        0 means the mf is freed from this function.
809  */
810 static u8
811 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
812 {
813 	Mpi2EventNotificationReply_t *mpi_reply;
814 	Mpi2EventAckRequest_t *ack_request;
815 	u16 smid;
816 	struct _event_ack_list *delayed_event_ack;
817 
818 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
819 	if (!mpi_reply)
820 		return 1;
821 	if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
822 		return 1;
823 
824 	_base_display_event_data(ioc, mpi_reply);
825 
826 	if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
827 		goto out;
828 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
829 	if (!smid) {
830 		delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
831 					GFP_ATOMIC);
832 		if (!delayed_event_ack)
833 			goto out;
834 		INIT_LIST_HEAD(&delayed_event_ack->list);
835 		delayed_event_ack->Event = mpi_reply->Event;
836 		delayed_event_ack->EventContext = mpi_reply->EventContext;
837 		list_add_tail(&delayed_event_ack->list,
838 				&ioc->delayed_event_ack_list);
839 		dewtprintk(ioc, pr_info(MPT3SAS_FMT
840 				"DELAYED: EVENT ACK: event (0x%04x)\n",
841 				ioc->name, le16_to_cpu(mpi_reply->Event)));
842 		goto out;
843 	}
844 
845 	ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
846 	memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
847 	ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
848 	ack_request->Event = mpi_reply->Event;
849 	ack_request->EventContext = mpi_reply->EventContext;
850 	ack_request->VF_ID = 0;  /* TODO */
851 	ack_request->VP_ID = 0;
852 	ioc->put_smid_default(ioc, smid);
853 
854  out:
855 
856 	/* scsih callback handler */
857 	mpt3sas_scsih_event_callback(ioc, msix_index, reply);
858 
859 	/* ctl callback handler */
860 	mpt3sas_ctl_event_callback(ioc, msix_index, reply);
861 
862 	return 1;
863 }
864 
865 /**
866  * _base_get_cb_idx - obtain the callback index
867  * @ioc: per adapter object
868  * @smid: system request message index
869  *
870  * Return callback index.
871  */
872 static u8
873 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
874 {
875 	int i;
876 	u8 cb_idx;
877 
878 	if (smid < ioc->hi_priority_smid) {
879 		i = smid - 1;
880 		cb_idx = ioc->scsi_lookup[i].cb_idx;
881 	} else if (smid < ioc->internal_smid) {
882 		i = smid - ioc->hi_priority_smid;
883 		cb_idx = ioc->hpr_lookup[i].cb_idx;
884 	} else if (smid <= ioc->hba_queue_depth) {
885 		i = smid - ioc->internal_smid;
886 		cb_idx = ioc->internal_lookup[i].cb_idx;
887 	} else
888 		cb_idx = 0xFF;
889 	return cb_idx;
890 }
891 
892 /**
893  * _base_mask_interrupts - disable interrupts
894  * @ioc: per adapter object
895  *
896  * Disabling ResetIRQ, Reply and Doorbell Interrupts
897  *
898  * Return nothing.
899  */
900 static void
901 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
902 {
903 	u32 him_register;
904 
905 	ioc->mask_interrupts = 1;
906 	him_register = readl(&ioc->chip->HostInterruptMask);
907 	him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
908 	writel(him_register, &ioc->chip->HostInterruptMask);
909 	readl(&ioc->chip->HostInterruptMask);
910 }
911 
912 /**
913  * _base_unmask_interrupts - enable interrupts
914  * @ioc: per adapter object
915  *
916  * Enabling only Reply Interrupts
917  *
918  * Return nothing.
919  */
920 static void
921 _base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
922 {
923 	u32 him_register;
924 
925 	him_register = readl(&ioc->chip->HostInterruptMask);
926 	him_register &= ~MPI2_HIM_RIM;
927 	writel(him_register, &ioc->chip->HostInterruptMask);
928 	ioc->mask_interrupts = 0;
929 }
930 
931 union reply_descriptor {
932 	u64 word;
933 	struct {
934 		u32 low;
935 		u32 high;
936 	} u;
937 };
938 
939 /**
940  * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
941  * @irq: irq number (not used)
942  * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
943  * @r: pt_regs pointer (not used)
944  *
945  * Return IRQ_HANDLE if processed, else IRQ_NONE.
946  */
947 static irqreturn_t
948 _base_interrupt(int irq, void *bus_id)
949 {
950 	struct adapter_reply_queue *reply_q = bus_id;
951 	union reply_descriptor rd;
952 	u32 completed_cmds;
953 	u8 request_desript_type;
954 	u16 smid;
955 	u8 cb_idx;
956 	u32 reply;
957 	u8 msix_index = reply_q->msix_index;
958 	struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
959 	Mpi2ReplyDescriptorsUnion_t *rpf;
960 	u8 rc;
961 
962 	if (ioc->mask_interrupts)
963 		return IRQ_NONE;
964 
965 	if (!atomic_add_unless(&reply_q->busy, 1, 1))
966 		return IRQ_NONE;
967 
968 	rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
969 	request_desript_type = rpf->Default.ReplyFlags
970 	     & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
971 	if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
972 		atomic_dec(&reply_q->busy);
973 		return IRQ_NONE;
974 	}
975 
976 	completed_cmds = 0;
977 	cb_idx = 0xFF;
978 	do {
979 		rd.word = le64_to_cpu(rpf->Words);
980 		if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
981 			goto out;
982 		reply = 0;
983 		smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
984 		if (request_desript_type ==
985 		    MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
986 		    request_desript_type ==
987 		    MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS) {
988 			cb_idx = _base_get_cb_idx(ioc, smid);
989 			if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
990 			    (likely(mpt_callbacks[cb_idx] != NULL))) {
991 				rc = mpt_callbacks[cb_idx](ioc, smid,
992 				    msix_index, 0);
993 				if (rc)
994 					mpt3sas_base_free_smid(ioc, smid);
995 			}
996 		} else if (request_desript_type ==
997 		    MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
998 			reply = le32_to_cpu(
999 			    rpf->AddressReply.ReplyFrameAddress);
1000 			if (reply > ioc->reply_dma_max_address ||
1001 			    reply < ioc->reply_dma_min_address)
1002 				reply = 0;
1003 			if (smid) {
1004 				cb_idx = _base_get_cb_idx(ioc, smid);
1005 				if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1006 				    (likely(mpt_callbacks[cb_idx] != NULL))) {
1007 					rc = mpt_callbacks[cb_idx](ioc, smid,
1008 					    msix_index, reply);
1009 					if (reply)
1010 						_base_display_reply_info(ioc,
1011 						    smid, msix_index, reply);
1012 					if (rc)
1013 						mpt3sas_base_free_smid(ioc,
1014 						    smid);
1015 				}
1016 			} else {
1017 				_base_async_event(ioc, msix_index, reply);
1018 			}
1019 
1020 			/* reply free queue handling */
1021 			if (reply) {
1022 				ioc->reply_free_host_index =
1023 				    (ioc->reply_free_host_index ==
1024 				    (ioc->reply_free_queue_depth - 1)) ?
1025 				    0 : ioc->reply_free_host_index + 1;
1026 				ioc->reply_free[ioc->reply_free_host_index] =
1027 				    cpu_to_le32(reply);
1028 				writel(ioc->reply_free_host_index,
1029 				    &ioc->chip->ReplyFreeHostIndex);
1030 			}
1031 		}
1032 
1033 		rpf->Words = cpu_to_le64(ULLONG_MAX);
1034 		reply_q->reply_post_host_index =
1035 		    (reply_q->reply_post_host_index ==
1036 		    (ioc->reply_post_queue_depth - 1)) ? 0 :
1037 		    reply_q->reply_post_host_index + 1;
1038 		request_desript_type =
1039 		    reply_q->reply_post_free[reply_q->reply_post_host_index].
1040 		    Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1041 		completed_cmds++;
1042 		/* Update the reply post host index after continuously
1043 		 * processing the threshold number of Reply Descriptors.
1044 		 * So that FW can find enough entries to post the Reply
1045 		 * Descriptors in the reply descriptor post queue.
1046 		 */
1047 		if (completed_cmds > ioc->hba_queue_depth/3) {
1048 			if (ioc->combined_reply_queue) {
1049 				writel(reply_q->reply_post_host_index |
1050 						((msix_index  & 7) <<
1051 						 MPI2_RPHI_MSIX_INDEX_SHIFT),
1052 				    ioc->replyPostRegisterIndex[msix_index/8]);
1053 			} else {
1054 				writel(reply_q->reply_post_host_index |
1055 						(msix_index <<
1056 						 MPI2_RPHI_MSIX_INDEX_SHIFT),
1057 						&ioc->chip->ReplyPostHostIndex);
1058 			}
1059 			completed_cmds = 1;
1060 		}
1061 		if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1062 			goto out;
1063 		if (!reply_q->reply_post_host_index)
1064 			rpf = reply_q->reply_post_free;
1065 		else
1066 			rpf++;
1067 	} while (1);
1068 
1069  out:
1070 
1071 	if (!completed_cmds) {
1072 		atomic_dec(&reply_q->busy);
1073 		return IRQ_NONE;
1074 	}
1075 
1076 	if (ioc->is_warpdrive) {
1077 		writel(reply_q->reply_post_host_index,
1078 		ioc->reply_post_host_index[msix_index]);
1079 		atomic_dec(&reply_q->busy);
1080 		return IRQ_HANDLED;
1081 	}
1082 
1083 	/* Update Reply Post Host Index.
1084 	 * For those HBA's which support combined reply queue feature
1085 	 * 1. Get the correct Supplemental Reply Post Host Index Register.
1086 	 *    i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1087 	 *    Index Register address bank i.e replyPostRegisterIndex[],
1088 	 * 2. Then update this register with new reply host index value
1089 	 *    in ReplyPostIndex field and the MSIxIndex field with
1090 	 *    msix_index value reduced to a value between 0 and 7,
1091 	 *    using a modulo 8 operation. Since each Supplemental Reply Post
1092 	 *    Host Index Register supports 8 MSI-X vectors.
1093 	 *
1094 	 * For other HBA's just update the Reply Post Host Index register with
1095 	 * new reply host index value in ReplyPostIndex Field and msix_index
1096 	 * value in MSIxIndex field.
1097 	 */
1098 	if (ioc->combined_reply_queue)
1099 		writel(reply_q->reply_post_host_index | ((msix_index  & 7) <<
1100 			MPI2_RPHI_MSIX_INDEX_SHIFT),
1101 			ioc->replyPostRegisterIndex[msix_index/8]);
1102 	else
1103 		writel(reply_q->reply_post_host_index | (msix_index <<
1104 			MPI2_RPHI_MSIX_INDEX_SHIFT),
1105 			&ioc->chip->ReplyPostHostIndex);
1106 	atomic_dec(&reply_q->busy);
1107 	return IRQ_HANDLED;
1108 }
1109 
1110 /**
1111  * _base_is_controller_msix_enabled - is controller support muli-reply queues
1112  * @ioc: per adapter object
1113  *
1114  */
1115 static inline int
1116 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1117 {
1118 	return (ioc->facts.IOCCapabilities &
1119 	    MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1120 }
1121 
1122 /**
1123  * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1124  * @ioc: per adapter object
1125  * Context: non ISR conext
1126  *
1127  * Called when a Task Management request has completed.
1128  *
1129  * Return nothing.
1130  */
1131 void
1132 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc)
1133 {
1134 	struct adapter_reply_queue *reply_q;
1135 
1136 	/* If MSIX capability is turned off
1137 	 * then multi-queues are not enabled
1138 	 */
1139 	if (!_base_is_controller_msix_enabled(ioc))
1140 		return;
1141 
1142 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1143 		if (ioc->shost_recovery || ioc->remove_host ||
1144 				ioc->pci_error_recovery)
1145 			return;
1146 		/* TMs are on msix_index == 0 */
1147 		if (reply_q->msix_index == 0)
1148 			continue;
1149 		synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
1150 	}
1151 }
1152 
1153 /**
1154  * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1155  * @cb_idx: callback index
1156  *
1157  * Return nothing.
1158  */
1159 void
1160 mpt3sas_base_release_callback_handler(u8 cb_idx)
1161 {
1162 	mpt_callbacks[cb_idx] = NULL;
1163 }
1164 
1165 /**
1166  * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1167  * @cb_func: callback function
1168  *
1169  * Returns cb_func.
1170  */
1171 u8
1172 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1173 {
1174 	u8 cb_idx;
1175 
1176 	for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1177 		if (mpt_callbacks[cb_idx] == NULL)
1178 			break;
1179 
1180 	mpt_callbacks[cb_idx] = cb_func;
1181 	return cb_idx;
1182 }
1183 
1184 /**
1185  * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1186  *
1187  * Return nothing.
1188  */
1189 void
1190 mpt3sas_base_initialize_callback_handler(void)
1191 {
1192 	u8 cb_idx;
1193 
1194 	for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1195 		mpt3sas_base_release_callback_handler(cb_idx);
1196 }
1197 
1198 
1199 /**
1200  * _base_build_zero_len_sge - build zero length sg entry
1201  * @ioc: per adapter object
1202  * @paddr: virtual address for SGE
1203  *
1204  * Create a zero length scatter gather entry to insure the IOCs hardware has
1205  * something to use if the target device goes brain dead and tries
1206  * to send data even when none is asked for.
1207  *
1208  * Return nothing.
1209  */
1210 static void
1211 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1212 {
1213 	u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1214 	    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1215 	    MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1216 	    MPI2_SGE_FLAGS_SHIFT);
1217 	ioc->base_add_sg_single(paddr, flags_length, -1);
1218 }
1219 
1220 /**
1221  * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1222  * @paddr: virtual address for SGE
1223  * @flags_length: SGE flags and data transfer length
1224  * @dma_addr: Physical address
1225  *
1226  * Return nothing.
1227  */
1228 static void
1229 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1230 {
1231 	Mpi2SGESimple32_t *sgel = paddr;
1232 
1233 	flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1234 	    MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1235 	sgel->FlagsLength = cpu_to_le32(flags_length);
1236 	sgel->Address = cpu_to_le32(dma_addr);
1237 }
1238 
1239 
1240 /**
1241  * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1242  * @paddr: virtual address for SGE
1243  * @flags_length: SGE flags and data transfer length
1244  * @dma_addr: Physical address
1245  *
1246  * Return nothing.
1247  */
1248 static void
1249 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1250 {
1251 	Mpi2SGESimple64_t *sgel = paddr;
1252 
1253 	flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
1254 	    MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1255 	sgel->FlagsLength = cpu_to_le32(flags_length);
1256 	sgel->Address = cpu_to_le64(dma_addr);
1257 }
1258 
1259 /**
1260  * _base_get_chain_buffer_tracker - obtain chain tracker
1261  * @ioc: per adapter object
1262  * @smid: smid associated to an IO request
1263  *
1264  * Returns chain tracker(from ioc->free_chain_list)
1265  */
1266 static struct chain_tracker *
1267 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1268 {
1269 	struct chain_tracker *chain_req;
1270 	unsigned long flags;
1271 
1272 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
1273 	if (list_empty(&ioc->free_chain_list)) {
1274 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1275 		dfailprintk(ioc, pr_warn(MPT3SAS_FMT
1276 			"chain buffers not available\n", ioc->name));
1277 		return NULL;
1278 	}
1279 	chain_req = list_entry(ioc->free_chain_list.next,
1280 	    struct chain_tracker, tracker_list);
1281 	list_del_init(&chain_req->tracker_list);
1282 	list_add_tail(&chain_req->tracker_list,
1283 	    &ioc->scsi_lookup[smid - 1].chain_list);
1284 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1285 	return chain_req;
1286 }
1287 
1288 
1289 /**
1290  * _base_build_sg - build generic sg
1291  * @ioc: per adapter object
1292  * @psge: virtual address for SGE
1293  * @data_out_dma: physical address for WRITES
1294  * @data_out_sz: data xfer size for WRITES
1295  * @data_in_dma: physical address for READS
1296  * @data_in_sz: data xfer size for READS
1297  *
1298  * Return nothing.
1299  */
1300 static void
1301 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
1302 	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1303 	size_t data_in_sz)
1304 {
1305 	u32 sgl_flags;
1306 
1307 	if (!data_out_sz && !data_in_sz) {
1308 		_base_build_zero_len_sge(ioc, psge);
1309 		return;
1310 	}
1311 
1312 	if (data_out_sz && data_in_sz) {
1313 		/* WRITE sgel first */
1314 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1315 		    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
1316 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1317 		ioc->base_add_sg_single(psge, sgl_flags |
1318 		    data_out_sz, data_out_dma);
1319 
1320 		/* incr sgel */
1321 		psge += ioc->sge_size;
1322 
1323 		/* READ sgel last */
1324 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1325 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1326 		    MPI2_SGE_FLAGS_END_OF_LIST);
1327 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1328 		ioc->base_add_sg_single(psge, sgl_flags |
1329 		    data_in_sz, data_in_dma);
1330 	} else if (data_out_sz) /* WRITE */ {
1331 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1332 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1333 		    MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
1334 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1335 		ioc->base_add_sg_single(psge, sgl_flags |
1336 		    data_out_sz, data_out_dma);
1337 	} else if (data_in_sz) /* READ */ {
1338 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1339 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1340 		    MPI2_SGE_FLAGS_END_OF_LIST);
1341 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1342 		ioc->base_add_sg_single(psge, sgl_flags |
1343 		    data_in_sz, data_in_dma);
1344 	}
1345 }
1346 
1347 /* IEEE format sgls */
1348 
1349 /**
1350  * _base_add_sg_single_ieee - add sg element for IEEE format
1351  * @paddr: virtual address for SGE
1352  * @flags: SGE flags
1353  * @chain_offset: number of 128 byte elements from start of segment
1354  * @length: data transfer length
1355  * @dma_addr: Physical address
1356  *
1357  * Return nothing.
1358  */
1359 static void
1360 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
1361 	dma_addr_t dma_addr)
1362 {
1363 	Mpi25IeeeSgeChain64_t *sgel = paddr;
1364 
1365 	sgel->Flags = flags;
1366 	sgel->NextChainOffset = chain_offset;
1367 	sgel->Length = cpu_to_le32(length);
1368 	sgel->Address = cpu_to_le64(dma_addr);
1369 }
1370 
1371 /**
1372  * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
1373  * @ioc: per adapter object
1374  * @paddr: virtual address for SGE
1375  *
1376  * Create a zero length scatter gather entry to insure the IOCs hardware has
1377  * something to use if the target device goes brain dead and tries
1378  * to send data even when none is asked for.
1379  *
1380  * Return nothing.
1381  */
1382 static void
1383 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1384 {
1385 	u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1386 		MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
1387 		MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
1388 
1389 	_base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
1390 }
1391 
1392 /**
1393  * _base_build_sg_scmd - main sg creation routine
1394  * @ioc: per adapter object
1395  * @scmd: scsi command
1396  * @smid: system request message index
1397  * Context: none.
1398  *
1399  * The main routine that builds scatter gather table from a given
1400  * scsi request sent via the .queuecommand main handler.
1401  *
1402  * Returns 0 success, anything else error
1403  */
1404 static int
1405 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
1406 		struct scsi_cmnd *scmd, u16 smid)
1407 {
1408 	Mpi2SCSIIORequest_t *mpi_request;
1409 	dma_addr_t chain_dma;
1410 	struct scatterlist *sg_scmd;
1411 	void *sg_local, *chain;
1412 	u32 chain_offset;
1413 	u32 chain_length;
1414 	u32 chain_flags;
1415 	int sges_left;
1416 	u32 sges_in_segment;
1417 	u32 sgl_flags;
1418 	u32 sgl_flags_last_element;
1419 	u32 sgl_flags_end_buffer;
1420 	struct chain_tracker *chain_req;
1421 
1422 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
1423 
1424 	/* init scatter gather flags */
1425 	sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
1426 	if (scmd->sc_data_direction == DMA_TO_DEVICE)
1427 		sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
1428 	sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
1429 	    << MPI2_SGE_FLAGS_SHIFT;
1430 	sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
1431 	    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
1432 	    << MPI2_SGE_FLAGS_SHIFT;
1433 	sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1434 
1435 	sg_scmd = scsi_sglist(scmd);
1436 	sges_left = scsi_dma_map(scmd);
1437 	if (sges_left < 0) {
1438 		sdev_printk(KERN_ERR, scmd->device,
1439 		 "pci_map_sg failed: request for %d bytes!\n",
1440 		 scsi_bufflen(scmd));
1441 		return -ENOMEM;
1442 	}
1443 
1444 	sg_local = &mpi_request->SGL;
1445 	sges_in_segment = ioc->max_sges_in_main_message;
1446 	if (sges_left <= sges_in_segment)
1447 		goto fill_in_last_segment;
1448 
1449 	mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
1450 	    (sges_in_segment * ioc->sge_size))/4;
1451 
1452 	/* fill in main message segment when there is a chain following */
1453 	while (sges_in_segment) {
1454 		if (sges_in_segment == 1)
1455 			ioc->base_add_sg_single(sg_local,
1456 			    sgl_flags_last_element | sg_dma_len(sg_scmd),
1457 			    sg_dma_address(sg_scmd));
1458 		else
1459 			ioc->base_add_sg_single(sg_local, sgl_flags |
1460 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1461 		sg_scmd = sg_next(sg_scmd);
1462 		sg_local += ioc->sge_size;
1463 		sges_left--;
1464 		sges_in_segment--;
1465 	}
1466 
1467 	/* initializing the chain flags and pointers */
1468 	chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
1469 	chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1470 	if (!chain_req)
1471 		return -1;
1472 	chain = chain_req->chain_buffer;
1473 	chain_dma = chain_req->chain_buffer_dma;
1474 	do {
1475 		sges_in_segment = (sges_left <=
1476 		    ioc->max_sges_in_chain_message) ? sges_left :
1477 		    ioc->max_sges_in_chain_message;
1478 		chain_offset = (sges_left == sges_in_segment) ?
1479 		    0 : (sges_in_segment * ioc->sge_size)/4;
1480 		chain_length = sges_in_segment * ioc->sge_size;
1481 		if (chain_offset) {
1482 			chain_offset = chain_offset <<
1483 			    MPI2_SGE_CHAIN_OFFSET_SHIFT;
1484 			chain_length += ioc->sge_size;
1485 		}
1486 		ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
1487 		    chain_length, chain_dma);
1488 		sg_local = chain;
1489 		if (!chain_offset)
1490 			goto fill_in_last_segment;
1491 
1492 		/* fill in chain segments */
1493 		while (sges_in_segment) {
1494 			if (sges_in_segment == 1)
1495 				ioc->base_add_sg_single(sg_local,
1496 				    sgl_flags_last_element |
1497 				    sg_dma_len(sg_scmd),
1498 				    sg_dma_address(sg_scmd));
1499 			else
1500 				ioc->base_add_sg_single(sg_local, sgl_flags |
1501 				    sg_dma_len(sg_scmd),
1502 				    sg_dma_address(sg_scmd));
1503 			sg_scmd = sg_next(sg_scmd);
1504 			sg_local += ioc->sge_size;
1505 			sges_left--;
1506 			sges_in_segment--;
1507 		}
1508 
1509 		chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1510 		if (!chain_req)
1511 			return -1;
1512 		chain = chain_req->chain_buffer;
1513 		chain_dma = chain_req->chain_buffer_dma;
1514 	} while (1);
1515 
1516 
1517  fill_in_last_segment:
1518 
1519 	/* fill the last segment */
1520 	while (sges_left) {
1521 		if (sges_left == 1)
1522 			ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
1523 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1524 		else
1525 			ioc->base_add_sg_single(sg_local, sgl_flags |
1526 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1527 		sg_scmd = sg_next(sg_scmd);
1528 		sg_local += ioc->sge_size;
1529 		sges_left--;
1530 	}
1531 
1532 	return 0;
1533 }
1534 
1535 /**
1536  * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
1537  * @ioc: per adapter object
1538  * @scmd: scsi command
1539  * @smid: system request message index
1540  * Context: none.
1541  *
1542  * The main routine that builds scatter gather table from a given
1543  * scsi request sent via the .queuecommand main handler.
1544  *
1545  * Returns 0 success, anything else error
1546  */
1547 static int
1548 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
1549 	struct scsi_cmnd *scmd, u16 smid)
1550 {
1551 	Mpi2SCSIIORequest_t *mpi_request;
1552 	dma_addr_t chain_dma;
1553 	struct scatterlist *sg_scmd;
1554 	void *sg_local, *chain;
1555 	u32 chain_offset;
1556 	u32 chain_length;
1557 	int sges_left;
1558 	u32 sges_in_segment;
1559 	u8 simple_sgl_flags;
1560 	u8 simple_sgl_flags_last;
1561 	u8 chain_sgl_flags;
1562 	struct chain_tracker *chain_req;
1563 
1564 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
1565 
1566 	/* init scatter gather flags */
1567 	simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1568 	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1569 	simple_sgl_flags_last = simple_sgl_flags |
1570 	    MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1571 	chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
1572 	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1573 
1574 	sg_scmd = scsi_sglist(scmd);
1575 	sges_left = scsi_dma_map(scmd);
1576 	if (sges_left < 0) {
1577 		sdev_printk(KERN_ERR, scmd->device,
1578 			"pci_map_sg failed: request for %d bytes!\n",
1579 			scsi_bufflen(scmd));
1580 		return -ENOMEM;
1581 	}
1582 
1583 	sg_local = &mpi_request->SGL;
1584 	sges_in_segment = (ioc->request_sz -
1585 	    offsetof(Mpi2SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
1586 	if (sges_left <= sges_in_segment)
1587 		goto fill_in_last_segment;
1588 
1589 	mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
1590 	    (offsetof(Mpi2SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
1591 
1592 	/* fill in main message segment when there is a chain following */
1593 	while (sges_in_segment > 1) {
1594 		_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1595 		    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1596 		sg_scmd = sg_next(sg_scmd);
1597 		sg_local += ioc->sge_size_ieee;
1598 		sges_left--;
1599 		sges_in_segment--;
1600 	}
1601 
1602 	/* initializing the pointers */
1603 	chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1604 	if (!chain_req)
1605 		return -1;
1606 	chain = chain_req->chain_buffer;
1607 	chain_dma = chain_req->chain_buffer_dma;
1608 	do {
1609 		sges_in_segment = (sges_left <=
1610 		    ioc->max_sges_in_chain_message) ? sges_left :
1611 		    ioc->max_sges_in_chain_message;
1612 		chain_offset = (sges_left == sges_in_segment) ?
1613 		    0 : sges_in_segment;
1614 		chain_length = sges_in_segment * ioc->sge_size_ieee;
1615 		if (chain_offset)
1616 			chain_length += ioc->sge_size_ieee;
1617 		_base_add_sg_single_ieee(sg_local, chain_sgl_flags,
1618 		    chain_offset, chain_length, chain_dma);
1619 
1620 		sg_local = chain;
1621 		if (!chain_offset)
1622 			goto fill_in_last_segment;
1623 
1624 		/* fill in chain segments */
1625 		while (sges_in_segment) {
1626 			_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1627 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1628 			sg_scmd = sg_next(sg_scmd);
1629 			sg_local += ioc->sge_size_ieee;
1630 			sges_left--;
1631 			sges_in_segment--;
1632 		}
1633 
1634 		chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1635 		if (!chain_req)
1636 			return -1;
1637 		chain = chain_req->chain_buffer;
1638 		chain_dma = chain_req->chain_buffer_dma;
1639 	} while (1);
1640 
1641 
1642  fill_in_last_segment:
1643 
1644 	/* fill the last segment */
1645 	while (sges_left > 0) {
1646 		if (sges_left == 1)
1647 			_base_add_sg_single_ieee(sg_local,
1648 			    simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
1649 			    sg_dma_address(sg_scmd));
1650 		else
1651 			_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1652 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1653 		sg_scmd = sg_next(sg_scmd);
1654 		sg_local += ioc->sge_size_ieee;
1655 		sges_left--;
1656 	}
1657 
1658 	return 0;
1659 }
1660 
1661 /**
1662  * _base_build_sg_ieee - build generic sg for IEEE format
1663  * @ioc: per adapter object
1664  * @psge: virtual address for SGE
1665  * @data_out_dma: physical address for WRITES
1666  * @data_out_sz: data xfer size for WRITES
1667  * @data_in_dma: physical address for READS
1668  * @data_in_sz: data xfer size for READS
1669  *
1670  * Return nothing.
1671  */
1672 static void
1673 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
1674 	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1675 	size_t data_in_sz)
1676 {
1677 	u8 sgl_flags;
1678 
1679 	if (!data_out_sz && !data_in_sz) {
1680 		_base_build_zero_len_sge_ieee(ioc, psge);
1681 		return;
1682 	}
1683 
1684 	if (data_out_sz && data_in_sz) {
1685 		/* WRITE sgel first */
1686 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1687 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1688 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1689 		    data_out_dma);
1690 
1691 		/* incr sgel */
1692 		psge += ioc->sge_size_ieee;
1693 
1694 		/* READ sgel last */
1695 		sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1696 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1697 		    data_in_dma);
1698 	} else if (data_out_sz) /* WRITE */ {
1699 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1700 		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1701 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1702 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1703 		    data_out_dma);
1704 	} else if (data_in_sz) /* READ */ {
1705 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1706 		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1707 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1708 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1709 		    data_in_dma);
1710 	}
1711 }
1712 
1713 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
1714 
1715 /**
1716  * _base_config_dma_addressing - set dma addressing
1717  * @ioc: per adapter object
1718  * @pdev: PCI device struct
1719  *
1720  * Returns 0 for success, non-zero for failure.
1721  */
1722 static int
1723 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
1724 {
1725 	struct sysinfo s;
1726 	u64 consistent_dma_mask;
1727 
1728 	if (ioc->dma_mask)
1729 		consistent_dma_mask = DMA_BIT_MASK(64);
1730 	else
1731 		consistent_dma_mask = DMA_BIT_MASK(32);
1732 
1733 	if (sizeof(dma_addr_t) > 4) {
1734 		const uint64_t required_mask =
1735 		    dma_get_required_mask(&pdev->dev);
1736 		if ((required_mask > DMA_BIT_MASK(32)) &&
1737 		    !pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
1738 		    !pci_set_consistent_dma_mask(pdev, consistent_dma_mask)) {
1739 			ioc->base_add_sg_single = &_base_add_sg_single_64;
1740 			ioc->sge_size = sizeof(Mpi2SGESimple64_t);
1741 			ioc->dma_mask = 64;
1742 			goto out;
1743 		}
1744 	}
1745 
1746 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))
1747 	    && !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
1748 		ioc->base_add_sg_single = &_base_add_sg_single_32;
1749 		ioc->sge_size = sizeof(Mpi2SGESimple32_t);
1750 		ioc->dma_mask = 32;
1751 	} else
1752 		return -ENODEV;
1753 
1754  out:
1755 	si_meminfo(&s);
1756 	pr_info(MPT3SAS_FMT
1757 		"%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
1758 		ioc->name, ioc->dma_mask, convert_to_kb(s.totalram));
1759 
1760 	return 0;
1761 }
1762 
1763 static int
1764 _base_change_consistent_dma_mask(struct MPT3SAS_ADAPTER *ioc,
1765 				      struct pci_dev *pdev)
1766 {
1767 	if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
1768 		if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
1769 			return -ENODEV;
1770 	}
1771 	return 0;
1772 }
1773 
1774 /**
1775  * _base_check_enable_msix - checks MSIX capabable.
1776  * @ioc: per adapter object
1777  *
1778  * Check to see if card is capable of MSIX, and set number
1779  * of available msix vectors
1780  */
1781 static int
1782 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1783 {
1784 	int base;
1785 	u16 message_control;
1786 
1787 	/* Check whether controller SAS2008 B0 controller,
1788 	 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
1789 	 */
1790 	if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
1791 	    ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
1792 		return -EINVAL;
1793 	}
1794 
1795 	base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
1796 	if (!base) {
1797 		dfailprintk(ioc, pr_info(MPT3SAS_FMT "msix not supported\n",
1798 			ioc->name));
1799 		return -EINVAL;
1800 	}
1801 
1802 	/* get msix vector count */
1803 	/* NUMA_IO not supported for older controllers */
1804 	if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
1805 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
1806 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
1807 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
1808 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
1809 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
1810 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
1811 		ioc->msix_vector_count = 1;
1812 	else {
1813 		pci_read_config_word(ioc->pdev, base + 2, &message_control);
1814 		ioc->msix_vector_count = (message_control & 0x3FF) + 1;
1815 	}
1816 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
1817 		"msix is supported, vector_count(%d)\n",
1818 		ioc->name, ioc->msix_vector_count));
1819 	return 0;
1820 }
1821 
1822 /**
1823  * _base_free_irq - free irq
1824  * @ioc: per adapter object
1825  *
1826  * Freeing respective reply_queue from the list.
1827  */
1828 static void
1829 _base_free_irq(struct MPT3SAS_ADAPTER *ioc)
1830 {
1831 	struct adapter_reply_queue *reply_q, *next;
1832 
1833 	if (list_empty(&ioc->reply_queue_list))
1834 		return;
1835 
1836 	list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1837 		list_del(&reply_q->list);
1838 		free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
1839 			 reply_q);
1840 		kfree(reply_q);
1841 	}
1842 }
1843 
1844 /**
1845  * _base_request_irq - request irq
1846  * @ioc: per adapter object
1847  * @index: msix index into vector table
1848  *
1849  * Inserting respective reply_queue into the list.
1850  */
1851 static int
1852 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
1853 {
1854 	struct pci_dev *pdev = ioc->pdev;
1855 	struct adapter_reply_queue *reply_q;
1856 	int r;
1857 
1858 	reply_q =  kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
1859 	if (!reply_q) {
1860 		pr_err(MPT3SAS_FMT "unable to allocate memory %d!\n",
1861 		    ioc->name, (int)sizeof(struct adapter_reply_queue));
1862 		return -ENOMEM;
1863 	}
1864 	reply_q->ioc = ioc;
1865 	reply_q->msix_index = index;
1866 
1867 	atomic_set(&reply_q->busy, 0);
1868 	if (ioc->msix_enable)
1869 		snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
1870 		    ioc->driver_name, ioc->id, index);
1871 	else
1872 		snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
1873 		    ioc->driver_name, ioc->id);
1874 	r = request_irq(pci_irq_vector(pdev, index), _base_interrupt,
1875 			IRQF_SHARED, reply_q->name, reply_q);
1876 	if (r) {
1877 		pr_err(MPT3SAS_FMT "unable to allocate interrupt %d!\n",
1878 		       reply_q->name, pci_irq_vector(pdev, index));
1879 		kfree(reply_q);
1880 		return -EBUSY;
1881 	}
1882 
1883 	INIT_LIST_HEAD(&reply_q->list);
1884 	list_add_tail(&reply_q->list, &ioc->reply_queue_list);
1885 	return 0;
1886 }
1887 
1888 /**
1889  * _base_assign_reply_queues - assigning msix index for each cpu
1890  * @ioc: per adapter object
1891  *
1892  * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
1893  *
1894  * It would nice if we could call irq_set_affinity, however it is not
1895  * an exported symbol
1896  */
1897 static void
1898 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
1899 {
1900 	unsigned int cpu, nr_cpus, nr_msix, index = 0;
1901 	struct adapter_reply_queue *reply_q;
1902 
1903 	if (!_base_is_controller_msix_enabled(ioc))
1904 		return;
1905 
1906 	memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
1907 
1908 	nr_cpus = num_online_cpus();
1909 	nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
1910 					       ioc->facts.MaxMSIxVectors);
1911 	if (!nr_msix)
1912 		return;
1913 
1914 	if (smp_affinity_enable) {
1915 		list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1916 			const cpumask_t *mask = pci_irq_get_affinity(ioc->pdev,
1917 							reply_q->msix_index);
1918 			if (!mask) {
1919 				pr_warn(MPT3SAS_FMT "no affinity for msi %x\n",
1920 					ioc->name, reply_q->msix_index);
1921 				continue;
1922 			}
1923 
1924 			for_each_cpu(cpu, mask)
1925 				ioc->cpu_msix_table[cpu] = reply_q->msix_index;
1926 		}
1927 		return;
1928 	}
1929 	cpu = cpumask_first(cpu_online_mask);
1930 
1931 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1932 
1933 		unsigned int i, group = nr_cpus / nr_msix;
1934 
1935 		if (cpu >= nr_cpus)
1936 			break;
1937 
1938 		if (index < nr_cpus % nr_msix)
1939 			group++;
1940 
1941 		for (i = 0 ; i < group ; i++) {
1942 			ioc->cpu_msix_table[cpu] = reply_q->msix_index;
1943 			cpu = cpumask_next(cpu, cpu_online_mask);
1944 		}
1945 		index++;
1946 	}
1947 }
1948 
1949 /**
1950  * _base_disable_msix - disables msix
1951  * @ioc: per adapter object
1952  *
1953  */
1954 static void
1955 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
1956 {
1957 	if (!ioc->msix_enable)
1958 		return;
1959 	pci_disable_msix(ioc->pdev);
1960 	ioc->msix_enable = 0;
1961 }
1962 
1963 /**
1964  * _base_enable_msix - enables msix, failback to io_apic
1965  * @ioc: per adapter object
1966  *
1967  */
1968 static int
1969 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1970 {
1971 	int r;
1972 	int i, local_max_msix_vectors;
1973 	u8 try_msix = 0;
1974 	unsigned int irq_flags = PCI_IRQ_MSIX;
1975 
1976 	if (msix_disable == -1 || msix_disable == 0)
1977 		try_msix = 1;
1978 
1979 	if (!try_msix)
1980 		goto try_ioapic;
1981 
1982 	if (_base_check_enable_msix(ioc) != 0)
1983 		goto try_ioapic;
1984 
1985 	ioc->reply_queue_count = min_t(int, ioc->cpu_count,
1986 		ioc->msix_vector_count);
1987 
1988 	printk(MPT3SAS_FMT "MSI-X vectors supported: %d, no of cores"
1989 	  ": %d, max_msix_vectors: %d\n", ioc->name, ioc->msix_vector_count,
1990 	  ioc->cpu_count, max_msix_vectors);
1991 
1992 	if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
1993 		local_max_msix_vectors = 8;
1994 	else
1995 		local_max_msix_vectors = max_msix_vectors;
1996 
1997 	if (local_max_msix_vectors > 0)
1998 		ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
1999 			ioc->reply_queue_count);
2000 	else if (local_max_msix_vectors == 0)
2001 		goto try_ioapic;
2002 
2003 	if (ioc->msix_vector_count < ioc->cpu_count)
2004 		smp_affinity_enable = 0;
2005 
2006 	if (smp_affinity_enable)
2007 		irq_flags |= PCI_IRQ_AFFINITY;
2008 
2009 	r = pci_alloc_irq_vectors(ioc->pdev, 1, ioc->reply_queue_count,
2010 				  irq_flags);
2011 	if (r < 0) {
2012 		dfailprintk(ioc, pr_info(MPT3SAS_FMT
2013 			"pci_alloc_irq_vectors failed (r=%d) !!!\n",
2014 			ioc->name, r));
2015 		goto try_ioapic;
2016 	}
2017 
2018 	ioc->msix_enable = 1;
2019 	ioc->reply_queue_count = r;
2020 	for (i = 0; i < ioc->reply_queue_count; i++) {
2021 		r = _base_request_irq(ioc, i);
2022 		if (r) {
2023 			_base_free_irq(ioc);
2024 			_base_disable_msix(ioc);
2025 			goto try_ioapic;
2026 		}
2027 	}
2028 
2029 	return 0;
2030 
2031 /* failback to io_apic interrupt routing */
2032  try_ioapic:
2033 
2034 	ioc->reply_queue_count = 1;
2035 	r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY);
2036 	if (r < 0) {
2037 		dfailprintk(ioc, pr_info(MPT3SAS_FMT
2038 			"pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
2039 			ioc->name, r));
2040 	} else
2041 		r = _base_request_irq(ioc, 0);
2042 
2043 	return r;
2044 }
2045 
2046 /**
2047  * mpt3sas_base_unmap_resources - free controller resources
2048  * @ioc: per adapter object
2049  */
2050 static void
2051 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
2052 {
2053 	struct pci_dev *pdev = ioc->pdev;
2054 
2055 	dexitprintk(ioc, printk(MPT3SAS_FMT "%s\n",
2056 		ioc->name, __func__));
2057 
2058 	_base_free_irq(ioc);
2059 	_base_disable_msix(ioc);
2060 
2061 	if (ioc->combined_reply_queue) {
2062 		kfree(ioc->replyPostRegisterIndex);
2063 		ioc->replyPostRegisterIndex = NULL;
2064 	}
2065 
2066 	if (ioc->chip_phys) {
2067 		iounmap(ioc->chip);
2068 		ioc->chip_phys = 0;
2069 	}
2070 
2071 	if (pci_is_enabled(pdev)) {
2072 		pci_release_selected_regions(ioc->pdev, ioc->bars);
2073 		pci_disable_pcie_error_reporting(pdev);
2074 		pci_disable_device(pdev);
2075 	}
2076 }
2077 
2078 /**
2079  * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
2080  * @ioc: per adapter object
2081  *
2082  * Returns 0 for success, non-zero for failure.
2083  */
2084 int
2085 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
2086 {
2087 	struct pci_dev *pdev = ioc->pdev;
2088 	u32 memap_sz;
2089 	u32 pio_sz;
2090 	int i, r = 0;
2091 	u64 pio_chip = 0;
2092 	u64 chip_phys = 0;
2093 	struct adapter_reply_queue *reply_q;
2094 
2095 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n",
2096 	    ioc->name, __func__));
2097 
2098 	ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
2099 	if (pci_enable_device_mem(pdev)) {
2100 		pr_warn(MPT3SAS_FMT "pci_enable_device_mem: failed\n",
2101 			ioc->name);
2102 		ioc->bars = 0;
2103 		return -ENODEV;
2104 	}
2105 
2106 
2107 	if (pci_request_selected_regions(pdev, ioc->bars,
2108 	    ioc->driver_name)) {
2109 		pr_warn(MPT3SAS_FMT "pci_request_selected_regions: failed\n",
2110 			ioc->name);
2111 		ioc->bars = 0;
2112 		r = -ENODEV;
2113 		goto out_fail;
2114 	}
2115 
2116 /* AER (Advanced Error Reporting) hooks */
2117 	pci_enable_pcie_error_reporting(pdev);
2118 
2119 	pci_set_master(pdev);
2120 
2121 
2122 	if (_base_config_dma_addressing(ioc, pdev) != 0) {
2123 		pr_warn(MPT3SAS_FMT "no suitable DMA mask for %s\n",
2124 		    ioc->name, pci_name(pdev));
2125 		r = -ENODEV;
2126 		goto out_fail;
2127 	}
2128 
2129 	for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
2130 	     (!memap_sz || !pio_sz); i++) {
2131 		if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
2132 			if (pio_sz)
2133 				continue;
2134 			pio_chip = (u64)pci_resource_start(pdev, i);
2135 			pio_sz = pci_resource_len(pdev, i);
2136 		} else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
2137 			if (memap_sz)
2138 				continue;
2139 			ioc->chip_phys = pci_resource_start(pdev, i);
2140 			chip_phys = (u64)ioc->chip_phys;
2141 			memap_sz = pci_resource_len(pdev, i);
2142 			ioc->chip = ioremap(ioc->chip_phys, memap_sz);
2143 		}
2144 	}
2145 
2146 	if (ioc->chip == NULL) {
2147 		pr_err(MPT3SAS_FMT "unable to map adapter memory! "
2148 			" or resource not found\n", ioc->name);
2149 		r = -EINVAL;
2150 		goto out_fail;
2151 	}
2152 
2153 	_base_mask_interrupts(ioc);
2154 
2155 	r = _base_get_ioc_facts(ioc);
2156 	if (r)
2157 		goto out_fail;
2158 
2159 	if (!ioc->rdpq_array_enable_assigned) {
2160 		ioc->rdpq_array_enable = ioc->rdpq_array_capable;
2161 		ioc->rdpq_array_enable_assigned = 1;
2162 	}
2163 
2164 	r = _base_enable_msix(ioc);
2165 	if (r)
2166 		goto out_fail;
2167 
2168 	/* Use the Combined reply queue feature only for SAS3 C0 & higher
2169 	 * revision HBAs and also only when reply queue count is greater than 8
2170 	 */
2171 	if (ioc->combined_reply_queue && ioc->reply_queue_count > 8) {
2172 		/* Determine the Supplemental Reply Post Host Index Registers
2173 		 * Addresse. Supplemental Reply Post Host Index Registers
2174 		 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
2175 		 * each register is at offset bytes of
2176 		 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
2177 		 */
2178 		ioc->replyPostRegisterIndex = kcalloc(
2179 		     ioc->combined_reply_index_count,
2180 		     sizeof(resource_size_t *), GFP_KERNEL);
2181 		if (!ioc->replyPostRegisterIndex) {
2182 			dfailprintk(ioc, printk(MPT3SAS_FMT
2183 			"allocation for reply Post Register Index failed!!!\n",
2184 								   ioc->name));
2185 			r = -ENOMEM;
2186 			goto out_fail;
2187 		}
2188 
2189 		for (i = 0; i < ioc->combined_reply_index_count; i++) {
2190 			ioc->replyPostRegisterIndex[i] = (resource_size_t *)
2191 			     ((u8 *)&ioc->chip->Doorbell +
2192 			     MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
2193 			     (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
2194 		}
2195 	} else
2196 		ioc->combined_reply_queue = 0;
2197 
2198 	if (ioc->is_warpdrive) {
2199 		ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
2200 		    &ioc->chip->ReplyPostHostIndex;
2201 
2202 		for (i = 1; i < ioc->cpu_msix_table_sz; i++)
2203 			ioc->reply_post_host_index[i] =
2204 			(resource_size_t __iomem *)
2205 			((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
2206 			* 4)));
2207 	}
2208 
2209 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
2210 		pr_info(MPT3SAS_FMT "%s: IRQ %d\n",
2211 		    reply_q->name,  ((ioc->msix_enable) ? "PCI-MSI-X enabled" :
2212 		    "IO-APIC enabled"),
2213 		    pci_irq_vector(ioc->pdev, reply_q->msix_index));
2214 
2215 	pr_info(MPT3SAS_FMT "iomem(0x%016llx), mapped(0x%p), size(%d)\n",
2216 	    ioc->name, (unsigned long long)chip_phys, ioc->chip, memap_sz);
2217 	pr_info(MPT3SAS_FMT "ioport(0x%016llx), size(%d)\n",
2218 	    ioc->name, (unsigned long long)pio_chip, pio_sz);
2219 
2220 	/* Save PCI configuration state for recovery from PCI AER/EEH errors */
2221 	pci_save_state(pdev);
2222 	return 0;
2223 
2224  out_fail:
2225 	mpt3sas_base_unmap_resources(ioc);
2226 	return r;
2227 }
2228 
2229 /**
2230  * mpt3sas_base_get_msg_frame - obtain request mf pointer
2231  * @ioc: per adapter object
2232  * @smid: system request message index(smid zero is invalid)
2233  *
2234  * Returns virt pointer to message frame.
2235  */
2236 void *
2237 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2238 {
2239 	return (void *)(ioc->request + (smid * ioc->request_sz));
2240 }
2241 
2242 /**
2243  * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
2244  * @ioc: per adapter object
2245  * @smid: system request message index
2246  *
2247  * Returns virt pointer to sense buffer.
2248  */
2249 void *
2250 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2251 {
2252 	return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
2253 }
2254 
2255 /**
2256  * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
2257  * @ioc: per adapter object
2258  * @smid: system request message index
2259  *
2260  * Returns phys pointer to the low 32bit address of the sense buffer.
2261  */
2262 __le32
2263 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2264 {
2265 	return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
2266 	    SCSI_SENSE_BUFFERSIZE));
2267 }
2268 
2269 /**
2270  * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
2271  * @ioc: per adapter object
2272  * @phys_addr: lower 32 physical addr of the reply
2273  *
2274  * Converts 32bit lower physical addr into a virt address.
2275  */
2276 void *
2277 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
2278 {
2279 	if (!phys_addr)
2280 		return NULL;
2281 	return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
2282 }
2283 
2284 static inline u8
2285 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc)
2286 {
2287 	return ioc->cpu_msix_table[raw_smp_processor_id()];
2288 }
2289 
2290 /**
2291  * mpt3sas_base_get_smid - obtain a free smid from internal queue
2292  * @ioc: per adapter object
2293  * @cb_idx: callback index
2294  *
2295  * Returns smid (zero is invalid)
2296  */
2297 u16
2298 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
2299 {
2300 	unsigned long flags;
2301 	struct request_tracker *request;
2302 	u16 smid;
2303 
2304 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2305 	if (list_empty(&ioc->internal_free_list)) {
2306 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2307 		pr_err(MPT3SAS_FMT "%s: smid not available\n",
2308 		    ioc->name, __func__);
2309 		return 0;
2310 	}
2311 
2312 	request = list_entry(ioc->internal_free_list.next,
2313 	    struct request_tracker, tracker_list);
2314 	request->cb_idx = cb_idx;
2315 	smid = request->smid;
2316 	list_del(&request->tracker_list);
2317 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2318 	return smid;
2319 }
2320 
2321 /**
2322  * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
2323  * @ioc: per adapter object
2324  * @cb_idx: callback index
2325  * @scmd: pointer to scsi command object
2326  *
2327  * Returns smid (zero is invalid)
2328  */
2329 u16
2330 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
2331 	struct scsi_cmnd *scmd)
2332 {
2333 	unsigned long flags;
2334 	struct scsiio_tracker *request;
2335 	u16 smid;
2336 
2337 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2338 	if (list_empty(&ioc->free_list)) {
2339 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2340 		pr_err(MPT3SAS_FMT "%s: smid not available\n",
2341 		    ioc->name, __func__);
2342 		return 0;
2343 	}
2344 
2345 	request = list_entry(ioc->free_list.next,
2346 	    struct scsiio_tracker, tracker_list);
2347 	request->scmd = scmd;
2348 	request->cb_idx = cb_idx;
2349 	smid = request->smid;
2350 	request->msix_io = _base_get_msix_index(ioc);
2351 	list_del(&request->tracker_list);
2352 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2353 	return smid;
2354 }
2355 
2356 /**
2357  * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
2358  * @ioc: per adapter object
2359  * @cb_idx: callback index
2360  *
2361  * Returns smid (zero is invalid)
2362  */
2363 u16
2364 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
2365 {
2366 	unsigned long flags;
2367 	struct request_tracker *request;
2368 	u16 smid;
2369 
2370 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2371 	if (list_empty(&ioc->hpr_free_list)) {
2372 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2373 		return 0;
2374 	}
2375 
2376 	request = list_entry(ioc->hpr_free_list.next,
2377 	    struct request_tracker, tracker_list);
2378 	request->cb_idx = cb_idx;
2379 	smid = request->smid;
2380 	list_del(&request->tracker_list);
2381 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2382 	return smid;
2383 }
2384 
2385 /**
2386  * mpt3sas_base_free_smid - put smid back on free_list
2387  * @ioc: per adapter object
2388  * @smid: system request message index
2389  *
2390  * Return nothing.
2391  */
2392 void
2393 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2394 {
2395 	unsigned long flags;
2396 	int i;
2397 	struct chain_tracker *chain_req, *next;
2398 
2399 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2400 	if (smid < ioc->hi_priority_smid) {
2401 		/* scsiio queue */
2402 		i = smid - 1;
2403 		if (!list_empty(&ioc->scsi_lookup[i].chain_list)) {
2404 			list_for_each_entry_safe(chain_req, next,
2405 			    &ioc->scsi_lookup[i].chain_list, tracker_list) {
2406 				list_del_init(&chain_req->tracker_list);
2407 				list_add(&chain_req->tracker_list,
2408 				    &ioc->free_chain_list);
2409 			}
2410 		}
2411 		ioc->scsi_lookup[i].cb_idx = 0xFF;
2412 		ioc->scsi_lookup[i].scmd = NULL;
2413 		ioc->scsi_lookup[i].direct_io = 0;
2414 		list_add(&ioc->scsi_lookup[i].tracker_list, &ioc->free_list);
2415 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2416 
2417 		/*
2418 		 * See _wait_for_commands_to_complete() call with regards
2419 		 * to this code.
2420 		 */
2421 		if (ioc->shost_recovery && ioc->pending_io_count) {
2422 			if (ioc->pending_io_count == 1)
2423 				wake_up(&ioc->reset_wq);
2424 			ioc->pending_io_count--;
2425 		}
2426 		return;
2427 	} else if (smid < ioc->internal_smid) {
2428 		/* hi-priority */
2429 		i = smid - ioc->hi_priority_smid;
2430 		ioc->hpr_lookup[i].cb_idx = 0xFF;
2431 		list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
2432 	} else if (smid <= ioc->hba_queue_depth) {
2433 		/* internal queue */
2434 		i = smid - ioc->internal_smid;
2435 		ioc->internal_lookup[i].cb_idx = 0xFF;
2436 		list_add(&ioc->internal_lookup[i].tracker_list,
2437 		    &ioc->internal_free_list);
2438 	}
2439 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2440 }
2441 
2442 /**
2443  * _base_writeq - 64 bit write to MMIO
2444  * @ioc: per adapter object
2445  * @b: data payload
2446  * @addr: address in MMIO space
2447  * @writeq_lock: spin lock
2448  *
2449  * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
2450  * care of 32 bit environment where its not quarenteed to send the entire word
2451  * in one transfer.
2452  */
2453 #if defined(writeq) && defined(CONFIG_64BIT)
2454 static inline void
2455 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2456 {
2457 	writeq(cpu_to_le64(b), addr);
2458 }
2459 #else
2460 static inline void
2461 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2462 {
2463 	unsigned long flags;
2464 	__u64 data_out = cpu_to_le64(b);
2465 
2466 	spin_lock_irqsave(writeq_lock, flags);
2467 	writel((u32)(data_out), addr);
2468 	writel((u32)(data_out >> 32), (addr + 4));
2469 	spin_unlock_irqrestore(writeq_lock, flags);
2470 }
2471 #endif
2472 
2473 /**
2474  * _base_put_smid_scsi_io - send SCSI_IO request to firmware
2475  * @ioc: per adapter object
2476  * @smid: system request message index
2477  * @handle: device handle
2478  *
2479  * Return nothing.
2480  */
2481 static void
2482 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
2483 {
2484 	Mpi2RequestDescriptorUnion_t descriptor;
2485 	u64 *request = (u64 *)&descriptor;
2486 
2487 
2488 	descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
2489 	descriptor.SCSIIO.MSIxIndex =  _base_get_msix_index(ioc);
2490 	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2491 	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2492 	descriptor.SCSIIO.LMID = 0;
2493 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2494 	    &ioc->scsi_lookup_lock);
2495 }
2496 
2497 /**
2498  * _base_put_smid_fast_path - send fast path request to firmware
2499  * @ioc: per adapter object
2500  * @smid: system request message index
2501  * @handle: device handle
2502  *
2503  * Return nothing.
2504  */
2505 static void
2506 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2507 	u16 handle)
2508 {
2509 	Mpi2RequestDescriptorUnion_t descriptor;
2510 	u64 *request = (u64 *)&descriptor;
2511 
2512 	descriptor.SCSIIO.RequestFlags =
2513 	    MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
2514 	descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
2515 	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2516 	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2517 	descriptor.SCSIIO.LMID = 0;
2518 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2519 	    &ioc->scsi_lookup_lock);
2520 }
2521 
2522 /**
2523  * _base_put_smid_hi_priority - send Task Management request to firmware
2524  * @ioc: per adapter object
2525  * @smid: system request message index
2526  * @msix_task: msix_task will be same as msix of IO incase of task abort else 0.
2527  * Return nothing.
2528  */
2529 static void
2530 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2531 	u16 msix_task)
2532 {
2533 	Mpi2RequestDescriptorUnion_t descriptor;
2534 	u64 *request = (u64 *)&descriptor;
2535 
2536 	descriptor.HighPriority.RequestFlags =
2537 	    MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
2538 	descriptor.HighPriority.MSIxIndex =  msix_task;
2539 	descriptor.HighPriority.SMID = cpu_to_le16(smid);
2540 	descriptor.HighPriority.LMID = 0;
2541 	descriptor.HighPriority.Reserved1 = 0;
2542 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2543 	    &ioc->scsi_lookup_lock);
2544 }
2545 
2546 /**
2547  * _base_put_smid_default - Default, primarily used for config pages
2548  * @ioc: per adapter object
2549  * @smid: system request message index
2550  *
2551  * Return nothing.
2552  */
2553 static void
2554 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2555 {
2556 	Mpi2RequestDescriptorUnion_t descriptor;
2557 	u64 *request = (u64 *)&descriptor;
2558 
2559 	descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2560 	descriptor.Default.MSIxIndex =  _base_get_msix_index(ioc);
2561 	descriptor.Default.SMID = cpu_to_le16(smid);
2562 	descriptor.Default.LMID = 0;
2563 	descriptor.Default.DescriptorTypeDependent = 0;
2564 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2565 	    &ioc->scsi_lookup_lock);
2566 }
2567 
2568 /**
2569 * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using
2570 *   Atomic Request Descriptor
2571 * @ioc: per adapter object
2572 * @smid: system request message index
2573 * @handle: device handle, unused in this function, for function type match
2574 *
2575 * Return nothing.
2576 */
2577 static void
2578 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2579 	u16 handle)
2580 {
2581 	Mpi26AtomicRequestDescriptor_t descriptor;
2582 	u32 *request = (u32 *)&descriptor;
2583 
2584 	descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
2585 	descriptor.MSIxIndex = _base_get_msix_index(ioc);
2586 	descriptor.SMID = cpu_to_le16(smid);
2587 
2588 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
2589 }
2590 
2591 /**
2592  * _base_put_smid_fast_path_atomic - send fast path request to firmware
2593  * using Atomic Request Descriptor
2594  * @ioc: per adapter object
2595  * @smid: system request message index
2596  * @handle: device handle, unused in this function, for function type match
2597  * Return nothing
2598  */
2599 static void
2600 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2601 	u16 handle)
2602 {
2603 	Mpi26AtomicRequestDescriptor_t descriptor;
2604 	u32 *request = (u32 *)&descriptor;
2605 
2606 	descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
2607 	descriptor.MSIxIndex = _base_get_msix_index(ioc);
2608 	descriptor.SMID = cpu_to_le16(smid);
2609 
2610 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
2611 }
2612 
2613 /**
2614  * _base_put_smid_hi_priority_atomic - send Task Management request to
2615  * firmware using Atomic Request Descriptor
2616  * @ioc: per adapter object
2617  * @smid: system request message index
2618  * @msix_task: msix_task will be same as msix of IO incase of task abort else 0
2619  *
2620  * Return nothing.
2621  */
2622 static void
2623 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2624 	u16 msix_task)
2625 {
2626 	Mpi26AtomicRequestDescriptor_t descriptor;
2627 	u32 *request = (u32 *)&descriptor;
2628 
2629 	descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
2630 	descriptor.MSIxIndex = msix_task;
2631 	descriptor.SMID = cpu_to_le16(smid);
2632 
2633 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
2634 }
2635 
2636 /**
2637  * _base_put_smid_default - Default, primarily used for config pages
2638  * use Atomic Request Descriptor
2639  * @ioc: per adapter object
2640  * @smid: system request message index
2641  *
2642  * Return nothing.
2643  */
2644 static void
2645 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2646 {
2647 	Mpi26AtomicRequestDescriptor_t descriptor;
2648 	u32 *request = (u32 *)&descriptor;
2649 
2650 	descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2651 	descriptor.MSIxIndex = _base_get_msix_index(ioc);
2652 	descriptor.SMID = cpu_to_le16(smid);
2653 
2654 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
2655 }
2656 
2657 /**
2658  * _base_display_OEMs_branding - Display branding string
2659  * @ioc: per adapter object
2660  *
2661  * Return nothing.
2662  */
2663 static void
2664 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
2665 {
2666 	if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
2667 		return;
2668 
2669 	switch (ioc->pdev->subsystem_vendor) {
2670 	case PCI_VENDOR_ID_INTEL:
2671 		switch (ioc->pdev->device) {
2672 		case MPI2_MFGPAGE_DEVID_SAS2008:
2673 			switch (ioc->pdev->subsystem_device) {
2674 			case MPT2SAS_INTEL_RMS2LL080_SSDID:
2675 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2676 				    MPT2SAS_INTEL_RMS2LL080_BRANDING);
2677 				break;
2678 			case MPT2SAS_INTEL_RMS2LL040_SSDID:
2679 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2680 				    MPT2SAS_INTEL_RMS2LL040_BRANDING);
2681 				break;
2682 			case MPT2SAS_INTEL_SSD910_SSDID:
2683 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2684 				    MPT2SAS_INTEL_SSD910_BRANDING);
2685 				break;
2686 			default:
2687 				pr_info(MPT3SAS_FMT
2688 				 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2689 				 ioc->name, ioc->pdev->subsystem_device);
2690 				break;
2691 			}
2692 		case MPI2_MFGPAGE_DEVID_SAS2308_2:
2693 			switch (ioc->pdev->subsystem_device) {
2694 			case MPT2SAS_INTEL_RS25GB008_SSDID:
2695 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2696 				    MPT2SAS_INTEL_RS25GB008_BRANDING);
2697 				break;
2698 			case MPT2SAS_INTEL_RMS25JB080_SSDID:
2699 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2700 				    MPT2SAS_INTEL_RMS25JB080_BRANDING);
2701 				break;
2702 			case MPT2SAS_INTEL_RMS25JB040_SSDID:
2703 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2704 				    MPT2SAS_INTEL_RMS25JB040_BRANDING);
2705 				break;
2706 			case MPT2SAS_INTEL_RMS25KB080_SSDID:
2707 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2708 				    MPT2SAS_INTEL_RMS25KB080_BRANDING);
2709 				break;
2710 			case MPT2SAS_INTEL_RMS25KB040_SSDID:
2711 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2712 				    MPT2SAS_INTEL_RMS25KB040_BRANDING);
2713 				break;
2714 			case MPT2SAS_INTEL_RMS25LB040_SSDID:
2715 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2716 				    MPT2SAS_INTEL_RMS25LB040_BRANDING);
2717 				break;
2718 			case MPT2SAS_INTEL_RMS25LB080_SSDID:
2719 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2720 				    MPT2SAS_INTEL_RMS25LB080_BRANDING);
2721 				break;
2722 			default:
2723 				pr_info(MPT3SAS_FMT
2724 				 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2725 				 ioc->name, ioc->pdev->subsystem_device);
2726 				break;
2727 			}
2728 		case MPI25_MFGPAGE_DEVID_SAS3008:
2729 			switch (ioc->pdev->subsystem_device) {
2730 			case MPT3SAS_INTEL_RMS3JC080_SSDID:
2731 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2732 					MPT3SAS_INTEL_RMS3JC080_BRANDING);
2733 				break;
2734 
2735 			case MPT3SAS_INTEL_RS3GC008_SSDID:
2736 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2737 					MPT3SAS_INTEL_RS3GC008_BRANDING);
2738 				break;
2739 			case MPT3SAS_INTEL_RS3FC044_SSDID:
2740 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2741 					MPT3SAS_INTEL_RS3FC044_BRANDING);
2742 				break;
2743 			case MPT3SAS_INTEL_RS3UC080_SSDID:
2744 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2745 					MPT3SAS_INTEL_RS3UC080_BRANDING);
2746 				break;
2747 			default:
2748 				pr_info(MPT3SAS_FMT
2749 				 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2750 				 ioc->name, ioc->pdev->subsystem_device);
2751 				break;
2752 			}
2753 			break;
2754 		default:
2755 			pr_info(MPT3SAS_FMT
2756 			 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2757 			 ioc->name, ioc->pdev->subsystem_device);
2758 			break;
2759 		}
2760 		break;
2761 	case PCI_VENDOR_ID_DELL:
2762 		switch (ioc->pdev->device) {
2763 		case MPI2_MFGPAGE_DEVID_SAS2008:
2764 			switch (ioc->pdev->subsystem_device) {
2765 			case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
2766 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2767 				 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
2768 				break;
2769 			case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
2770 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2771 				 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
2772 				break;
2773 			case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
2774 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2775 				 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
2776 				break;
2777 			case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
2778 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2779 				 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
2780 				break;
2781 			case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
2782 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2783 				 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
2784 				break;
2785 			case MPT2SAS_DELL_PERC_H200_SSDID:
2786 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2787 				 MPT2SAS_DELL_PERC_H200_BRANDING);
2788 				break;
2789 			case MPT2SAS_DELL_6GBPS_SAS_SSDID:
2790 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2791 				 MPT2SAS_DELL_6GBPS_SAS_BRANDING);
2792 				break;
2793 			default:
2794 				pr_info(MPT3SAS_FMT
2795 				   "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
2796 				   ioc->name, ioc->pdev->subsystem_device);
2797 				break;
2798 			}
2799 			break;
2800 		case MPI25_MFGPAGE_DEVID_SAS3008:
2801 			switch (ioc->pdev->subsystem_device) {
2802 			case MPT3SAS_DELL_12G_HBA_SSDID:
2803 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2804 					MPT3SAS_DELL_12G_HBA_BRANDING);
2805 				break;
2806 			default:
2807 				pr_info(MPT3SAS_FMT
2808 				   "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
2809 				   ioc->name, ioc->pdev->subsystem_device);
2810 				break;
2811 			}
2812 			break;
2813 		default:
2814 			pr_info(MPT3SAS_FMT
2815 			   "Dell HBA: Subsystem ID: 0x%X\n", ioc->name,
2816 			   ioc->pdev->subsystem_device);
2817 			break;
2818 		}
2819 		break;
2820 	case PCI_VENDOR_ID_CISCO:
2821 		switch (ioc->pdev->device) {
2822 		case MPI25_MFGPAGE_DEVID_SAS3008:
2823 			switch (ioc->pdev->subsystem_device) {
2824 			case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
2825 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2826 					MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
2827 				break;
2828 			case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
2829 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2830 					MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
2831 				break;
2832 			case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
2833 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2834 					MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
2835 				break;
2836 			default:
2837 				pr_info(MPT3SAS_FMT
2838 				  "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
2839 				  ioc->name, ioc->pdev->subsystem_device);
2840 				break;
2841 			}
2842 			break;
2843 		case MPI25_MFGPAGE_DEVID_SAS3108_1:
2844 			switch (ioc->pdev->subsystem_device) {
2845 			case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
2846 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2847 				MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
2848 				break;
2849 			case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
2850 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2851 				MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING
2852 				);
2853 				break;
2854 			default:
2855 				pr_info(MPT3SAS_FMT
2856 				 "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
2857 				 ioc->name, ioc->pdev->subsystem_device);
2858 				break;
2859 			}
2860 			break;
2861 		default:
2862 			pr_info(MPT3SAS_FMT
2863 			   "Cisco SAS HBA: Subsystem ID: 0x%X\n",
2864 			   ioc->name, ioc->pdev->subsystem_device);
2865 			break;
2866 		}
2867 		break;
2868 	case MPT2SAS_HP_3PAR_SSVID:
2869 		switch (ioc->pdev->device) {
2870 		case MPI2_MFGPAGE_DEVID_SAS2004:
2871 			switch (ioc->pdev->subsystem_device) {
2872 			case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
2873 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2874 				    MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
2875 				break;
2876 			default:
2877 				pr_info(MPT3SAS_FMT
2878 				   "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
2879 				   ioc->name, ioc->pdev->subsystem_device);
2880 				break;
2881 			}
2882 		case MPI2_MFGPAGE_DEVID_SAS2308_2:
2883 			switch (ioc->pdev->subsystem_device) {
2884 			case MPT2SAS_HP_2_4_INTERNAL_SSDID:
2885 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2886 				    MPT2SAS_HP_2_4_INTERNAL_BRANDING);
2887 				break;
2888 			case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
2889 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2890 				    MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
2891 				break;
2892 			case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
2893 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2894 				 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
2895 				break;
2896 			case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
2897 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2898 				    MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
2899 				break;
2900 			default:
2901 				pr_info(MPT3SAS_FMT
2902 				   "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
2903 				   ioc->name, ioc->pdev->subsystem_device);
2904 				break;
2905 			}
2906 		default:
2907 			pr_info(MPT3SAS_FMT
2908 			   "HP SAS HBA: Subsystem ID: 0x%X\n",
2909 			   ioc->name, ioc->pdev->subsystem_device);
2910 			break;
2911 		}
2912 	default:
2913 		break;
2914 	}
2915 }
2916 
2917 /**
2918  * _base_display_ioc_capabilities - Disply IOC's capabilities.
2919  * @ioc: per adapter object
2920  *
2921  * Return nothing.
2922  */
2923 static void
2924 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
2925 {
2926 	int i = 0;
2927 	char desc[16];
2928 	u32 iounit_pg1_flags;
2929 	u32 bios_version;
2930 
2931 	bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
2932 	strncpy(desc, ioc->manu_pg0.ChipName, 16);
2933 	pr_info(MPT3SAS_FMT "%s: FWVersion(%02d.%02d.%02d.%02d), "\
2934 	   "ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
2935 	    ioc->name, desc,
2936 	   (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
2937 	   (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
2938 	   (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
2939 	   ioc->facts.FWVersion.Word & 0x000000FF,
2940 	   ioc->pdev->revision,
2941 	   (bios_version & 0xFF000000) >> 24,
2942 	   (bios_version & 0x00FF0000) >> 16,
2943 	   (bios_version & 0x0000FF00) >> 8,
2944 	    bios_version & 0x000000FF);
2945 
2946 	_base_display_OEMs_branding(ioc);
2947 
2948 	pr_info(MPT3SAS_FMT "Protocol=(", ioc->name);
2949 
2950 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
2951 		pr_info("Initiator");
2952 		i++;
2953 	}
2954 
2955 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
2956 		pr_info("%sTarget", i ? "," : "");
2957 		i++;
2958 	}
2959 
2960 	i = 0;
2961 	pr_info("), ");
2962 	pr_info("Capabilities=(");
2963 
2964 	if (!ioc->hide_ir_msg) {
2965 		if (ioc->facts.IOCCapabilities &
2966 		    MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
2967 			pr_info("Raid");
2968 			i++;
2969 		}
2970 	}
2971 
2972 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
2973 		pr_info("%sTLR", i ? "," : "");
2974 		i++;
2975 	}
2976 
2977 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
2978 		pr_info("%sMulticast", i ? "," : "");
2979 		i++;
2980 	}
2981 
2982 	if (ioc->facts.IOCCapabilities &
2983 	    MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
2984 		pr_info("%sBIDI Target", i ? "," : "");
2985 		i++;
2986 	}
2987 
2988 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
2989 		pr_info("%sEEDP", i ? "," : "");
2990 		i++;
2991 	}
2992 
2993 	if (ioc->facts.IOCCapabilities &
2994 	    MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
2995 		pr_info("%sSnapshot Buffer", i ? "," : "");
2996 		i++;
2997 	}
2998 
2999 	if (ioc->facts.IOCCapabilities &
3000 	    MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
3001 		pr_info("%sDiag Trace Buffer", i ? "," : "");
3002 		i++;
3003 	}
3004 
3005 	if (ioc->facts.IOCCapabilities &
3006 	    MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
3007 		pr_info("%sDiag Extended Buffer", i ? "," : "");
3008 		i++;
3009 	}
3010 
3011 	if (ioc->facts.IOCCapabilities &
3012 	    MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
3013 		pr_info("%sTask Set Full", i ? "," : "");
3014 		i++;
3015 	}
3016 
3017 	iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
3018 	if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
3019 		pr_info("%sNCQ", i ? "," : "");
3020 		i++;
3021 	}
3022 
3023 	pr_info(")\n");
3024 }
3025 
3026 /**
3027  * mpt3sas_base_update_missing_delay - change the missing delay timers
3028  * @ioc: per adapter object
3029  * @device_missing_delay: amount of time till device is reported missing
3030  * @io_missing_delay: interval IO is returned when there is a missing device
3031  *
3032  * Return nothing.
3033  *
3034  * Passed on the command line, this function will modify the device missing
3035  * delay, as well as the io missing delay. This should be called at driver
3036  * load time.
3037  */
3038 void
3039 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
3040 	u16 device_missing_delay, u8 io_missing_delay)
3041 {
3042 	u16 dmd, dmd_new, dmd_orignal;
3043 	u8 io_missing_delay_original;
3044 	u16 sz;
3045 	Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
3046 	Mpi2ConfigReply_t mpi_reply;
3047 	u8 num_phys = 0;
3048 	u16 ioc_status;
3049 
3050 	mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
3051 	if (!num_phys)
3052 		return;
3053 
3054 	sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
3055 	    sizeof(Mpi2SasIOUnit1PhyData_t));
3056 	sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
3057 	if (!sas_iounit_pg1) {
3058 		pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
3059 		    ioc->name, __FILE__, __LINE__, __func__);
3060 		goto out;
3061 	}
3062 	if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
3063 	    sas_iounit_pg1, sz))) {
3064 		pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
3065 		    ioc->name, __FILE__, __LINE__, __func__);
3066 		goto out;
3067 	}
3068 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
3069 	    MPI2_IOCSTATUS_MASK;
3070 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
3071 		pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
3072 		    ioc->name, __FILE__, __LINE__, __func__);
3073 		goto out;
3074 	}
3075 
3076 	/* device missing delay */
3077 	dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
3078 	if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
3079 		dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
3080 	else
3081 		dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
3082 	dmd_orignal = dmd;
3083 	if (device_missing_delay > 0x7F) {
3084 		dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
3085 		    device_missing_delay;
3086 		dmd = dmd / 16;
3087 		dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
3088 	} else
3089 		dmd = device_missing_delay;
3090 	sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
3091 
3092 	/* io missing delay */
3093 	io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
3094 	sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
3095 
3096 	if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
3097 	    sz)) {
3098 		if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
3099 			dmd_new = (dmd &
3100 			    MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
3101 		else
3102 			dmd_new =
3103 		    dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
3104 		pr_info(MPT3SAS_FMT "device_missing_delay: old(%d), new(%d)\n",
3105 			ioc->name, dmd_orignal, dmd_new);
3106 		pr_info(MPT3SAS_FMT "ioc_missing_delay: old(%d), new(%d)\n",
3107 			ioc->name, io_missing_delay_original,
3108 		    io_missing_delay);
3109 		ioc->device_missing_delay = dmd_new;
3110 		ioc->io_missing_delay = io_missing_delay;
3111 	}
3112 
3113 out:
3114 	kfree(sas_iounit_pg1);
3115 }
3116 /**
3117  * _base_static_config_pages - static start of day config pages
3118  * @ioc: per adapter object
3119  *
3120  * Return nothing.
3121  */
3122 static void
3123 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
3124 {
3125 	Mpi2ConfigReply_t mpi_reply;
3126 	u32 iounit_pg1_flags;
3127 
3128 	mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
3129 	if (ioc->ir_firmware)
3130 		mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
3131 		    &ioc->manu_pg10);
3132 
3133 	/*
3134 	 * Ensure correct T10 PI operation if vendor left EEDPTagMode
3135 	 * flag unset in NVDATA.
3136 	 */
3137 	mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
3138 	if (ioc->manu_pg11.EEDPTagMode == 0) {
3139 		pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
3140 		    ioc->name);
3141 		ioc->manu_pg11.EEDPTagMode &= ~0x3;
3142 		ioc->manu_pg11.EEDPTagMode |= 0x1;
3143 		mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
3144 		    &ioc->manu_pg11);
3145 	}
3146 
3147 	mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
3148 	mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
3149 	mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
3150 	mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
3151 	mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
3152 	mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
3153 	_base_display_ioc_capabilities(ioc);
3154 
3155 	/*
3156 	 * Enable task_set_full handling in iounit_pg1 when the
3157 	 * facts capabilities indicate that its supported.
3158 	 */
3159 	iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
3160 	if ((ioc->facts.IOCCapabilities &
3161 	    MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
3162 		iounit_pg1_flags &=
3163 		    ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
3164 	else
3165 		iounit_pg1_flags |=
3166 		    MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
3167 	ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
3168 	mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
3169 
3170 	if (ioc->iounit_pg8.NumSensors)
3171 		ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
3172 }
3173 
3174 /**
3175  * _base_release_memory_pools - release memory
3176  * @ioc: per adapter object
3177  *
3178  * Free memory allocated from _base_allocate_memory_pools.
3179  *
3180  * Return nothing.
3181  */
3182 static void
3183 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
3184 {
3185 	int i = 0;
3186 	struct reply_post_struct *rps;
3187 
3188 	dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3189 	    __func__));
3190 
3191 	if (ioc->request) {
3192 		pci_free_consistent(ioc->pdev, ioc->request_dma_sz,
3193 		    ioc->request,  ioc->request_dma);
3194 		dexitprintk(ioc, pr_info(MPT3SAS_FMT
3195 			"request_pool(0x%p): free\n",
3196 			ioc->name, ioc->request));
3197 		ioc->request = NULL;
3198 	}
3199 
3200 	if (ioc->sense) {
3201 		dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
3202 		dma_pool_destroy(ioc->sense_dma_pool);
3203 		dexitprintk(ioc, pr_info(MPT3SAS_FMT
3204 			"sense_pool(0x%p): free\n",
3205 			ioc->name, ioc->sense));
3206 		ioc->sense = NULL;
3207 	}
3208 
3209 	if (ioc->reply) {
3210 		dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
3211 		dma_pool_destroy(ioc->reply_dma_pool);
3212 		dexitprintk(ioc, pr_info(MPT3SAS_FMT
3213 			"reply_pool(0x%p): free\n",
3214 			ioc->name, ioc->reply));
3215 		ioc->reply = NULL;
3216 	}
3217 
3218 	if (ioc->reply_free) {
3219 		dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
3220 		    ioc->reply_free_dma);
3221 		dma_pool_destroy(ioc->reply_free_dma_pool);
3222 		dexitprintk(ioc, pr_info(MPT3SAS_FMT
3223 			"reply_free_pool(0x%p): free\n",
3224 			ioc->name, ioc->reply_free));
3225 		ioc->reply_free = NULL;
3226 	}
3227 
3228 	if (ioc->reply_post) {
3229 		do {
3230 			rps = &ioc->reply_post[i];
3231 			if (rps->reply_post_free) {
3232 				dma_pool_free(
3233 				    ioc->reply_post_free_dma_pool,
3234 				    rps->reply_post_free,
3235 				    rps->reply_post_free_dma);
3236 				dexitprintk(ioc, pr_info(MPT3SAS_FMT
3237 				    "reply_post_free_pool(0x%p): free\n",
3238 				    ioc->name, rps->reply_post_free));
3239 				rps->reply_post_free = NULL;
3240 			}
3241 		} while (ioc->rdpq_array_enable &&
3242 			   (++i < ioc->reply_queue_count));
3243 
3244 		dma_pool_destroy(ioc->reply_post_free_dma_pool);
3245 		kfree(ioc->reply_post);
3246 	}
3247 
3248 	if (ioc->config_page) {
3249 		dexitprintk(ioc, pr_info(MPT3SAS_FMT
3250 		    "config_page(0x%p): free\n", ioc->name,
3251 		    ioc->config_page));
3252 		pci_free_consistent(ioc->pdev, ioc->config_page_sz,
3253 		    ioc->config_page, ioc->config_page_dma);
3254 	}
3255 
3256 	if (ioc->scsi_lookup) {
3257 		free_pages((ulong)ioc->scsi_lookup, ioc->scsi_lookup_pages);
3258 		ioc->scsi_lookup = NULL;
3259 	}
3260 	kfree(ioc->hpr_lookup);
3261 	kfree(ioc->internal_lookup);
3262 	if (ioc->chain_lookup) {
3263 		for (i = 0; i < ioc->chain_depth; i++) {
3264 			if (ioc->chain_lookup[i].chain_buffer)
3265 				dma_pool_free(ioc->chain_dma_pool,
3266 				    ioc->chain_lookup[i].chain_buffer,
3267 				    ioc->chain_lookup[i].chain_buffer_dma);
3268 		}
3269 		dma_pool_destroy(ioc->chain_dma_pool);
3270 		free_pages((ulong)ioc->chain_lookup, ioc->chain_pages);
3271 		ioc->chain_lookup = NULL;
3272 	}
3273 }
3274 
3275 /**
3276  * _base_allocate_memory_pools - allocate start of day memory pools
3277  * @ioc: per adapter object
3278  *
3279  * Returns 0 success, anything else error
3280  */
3281 static int
3282 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
3283 {
3284 	struct mpt3sas_facts *facts;
3285 	u16 max_sge_elements;
3286 	u16 chains_needed_per_io;
3287 	u32 sz, total_sz, reply_post_free_sz;
3288 	u32 retry_sz;
3289 	u16 max_request_credit;
3290 	unsigned short sg_tablesize;
3291 	u16 sge_size;
3292 	int i;
3293 
3294 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3295 	    __func__));
3296 
3297 
3298 	retry_sz = 0;
3299 	facts = &ioc->facts;
3300 
3301 	/* command line tunables for max sgl entries */
3302 	if (max_sgl_entries != -1)
3303 		sg_tablesize = max_sgl_entries;
3304 	else {
3305 		if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
3306 			sg_tablesize = MPT2SAS_SG_DEPTH;
3307 		else
3308 			sg_tablesize = MPT3SAS_SG_DEPTH;
3309 	}
3310 
3311 	if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
3312 		sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
3313 	else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
3314 		sg_tablesize = min_t(unsigned short, sg_tablesize,
3315 				      SG_MAX_SEGMENTS);
3316 		pr_warn(MPT3SAS_FMT
3317 		 "sg_tablesize(%u) is bigger than kernel"
3318 		 " defined SG_CHUNK_SIZE(%u)\n", ioc->name,
3319 		 sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
3320 	}
3321 	ioc->shost->sg_tablesize = sg_tablesize;
3322 
3323 	ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
3324 		(facts->RequestCredit / 4));
3325 	if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
3326 		if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
3327 				INTERNAL_SCSIIO_CMDS_COUNT)) {
3328 			pr_err(MPT3SAS_FMT "IOC doesn't have enough Request \
3329 			    Credits, it has just %d number of credits\n",
3330 			    ioc->name, facts->RequestCredit);
3331 			return -ENOMEM;
3332 		}
3333 		ioc->internal_depth = 10;
3334 	}
3335 
3336 	ioc->hi_priority_depth = ioc->internal_depth - (5);
3337 	/* command line tunables  for max controller queue depth */
3338 	if (max_queue_depth != -1 && max_queue_depth != 0) {
3339 		max_request_credit = min_t(u16, max_queue_depth +
3340 			ioc->internal_depth, facts->RequestCredit);
3341 		if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
3342 			max_request_credit =  MAX_HBA_QUEUE_DEPTH;
3343 	} else
3344 		max_request_credit = min_t(u16, facts->RequestCredit,
3345 		    MAX_HBA_QUEUE_DEPTH);
3346 
3347 	/* Firmware maintains additional facts->HighPriorityCredit number of
3348 	 * credits for HiPriprity Request messages, so hba queue depth will be
3349 	 * sum of max_request_credit and high priority queue depth.
3350 	 */
3351 	ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
3352 
3353 	/* request frame size */
3354 	ioc->request_sz = facts->IOCRequestFrameSize * 4;
3355 
3356 	/* reply frame size */
3357 	ioc->reply_sz = facts->ReplyFrameSize * 4;
3358 
3359 	/* chain segment size */
3360 	if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
3361 		if (facts->IOCMaxChainSegmentSize)
3362 			ioc->chain_segment_sz =
3363 					facts->IOCMaxChainSegmentSize *
3364 					MAX_CHAIN_ELEMT_SZ;
3365 		else
3366 		/* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
3367 			ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
3368 						    MAX_CHAIN_ELEMT_SZ;
3369 	} else
3370 		ioc->chain_segment_sz = ioc->request_sz;
3371 
3372 	/* calculate the max scatter element size */
3373 	sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
3374 
3375  retry_allocation:
3376 	total_sz = 0;
3377 	/* calculate number of sg elements left over in the 1st frame */
3378 	max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
3379 	    sizeof(Mpi2SGEIOUnion_t)) + sge_size);
3380 	ioc->max_sges_in_main_message = max_sge_elements/sge_size;
3381 
3382 	/* now do the same for a chain buffer */
3383 	max_sge_elements = ioc->chain_segment_sz - sge_size;
3384 	ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
3385 
3386 	/*
3387 	 *  MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
3388 	 */
3389 	chains_needed_per_io = ((ioc->shost->sg_tablesize -
3390 	   ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
3391 	    + 1;
3392 	if (chains_needed_per_io > facts->MaxChainDepth) {
3393 		chains_needed_per_io = facts->MaxChainDepth;
3394 		ioc->shost->sg_tablesize = min_t(u16,
3395 		ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
3396 		* chains_needed_per_io), ioc->shost->sg_tablesize);
3397 	}
3398 	ioc->chains_needed_per_io = chains_needed_per_io;
3399 
3400 	/* reply free queue sizing - taking into account for 64 FW events */
3401 	ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
3402 
3403 	/* calculate reply descriptor post queue depth */
3404 	ioc->reply_post_queue_depth = ioc->hba_queue_depth +
3405 				ioc->reply_free_queue_depth +  1 ;
3406 	/* align the reply post queue on the next 16 count boundary */
3407 	if (ioc->reply_post_queue_depth % 16)
3408 		ioc->reply_post_queue_depth += 16 -
3409 		(ioc->reply_post_queue_depth % 16);
3410 
3411 	if (ioc->reply_post_queue_depth >
3412 	    facts->MaxReplyDescriptorPostQueueDepth) {
3413 		ioc->reply_post_queue_depth =
3414 				facts->MaxReplyDescriptorPostQueueDepth -
3415 		    (facts->MaxReplyDescriptorPostQueueDepth % 16);
3416 		ioc->hba_queue_depth =
3417 				((ioc->reply_post_queue_depth - 64) / 2) - 1;
3418 		ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
3419 	}
3420 
3421 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "scatter gather: " \
3422 	    "sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), "
3423 	    "chains_per_io(%d)\n", ioc->name, ioc->max_sges_in_main_message,
3424 	    ioc->max_sges_in_chain_message, ioc->shost->sg_tablesize,
3425 	    ioc->chains_needed_per_io));
3426 
3427 	/* reply post queue, 16 byte align */
3428 	reply_post_free_sz = ioc->reply_post_queue_depth *
3429 	    sizeof(Mpi2DefaultReplyDescriptor_t);
3430 
3431 	sz = reply_post_free_sz;
3432 	if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
3433 		sz *= ioc->reply_queue_count;
3434 
3435 	ioc->reply_post = kcalloc((ioc->rdpq_array_enable) ?
3436 	    (ioc->reply_queue_count):1,
3437 	    sizeof(struct reply_post_struct), GFP_KERNEL);
3438 
3439 	if (!ioc->reply_post) {
3440 		pr_err(MPT3SAS_FMT "reply_post_free pool: kcalloc failed\n",
3441 			ioc->name);
3442 		goto out;
3443 	}
3444 	ioc->reply_post_free_dma_pool = dma_pool_create("reply_post_free pool",
3445 	    &ioc->pdev->dev, sz, 16, 0);
3446 	if (!ioc->reply_post_free_dma_pool) {
3447 		pr_err(MPT3SAS_FMT
3448 		 "reply_post_free pool: dma_pool_create failed\n",
3449 		 ioc->name);
3450 		goto out;
3451 	}
3452 	i = 0;
3453 	do {
3454 		ioc->reply_post[i].reply_post_free =
3455 		    dma_pool_alloc(ioc->reply_post_free_dma_pool,
3456 		    GFP_KERNEL,
3457 		    &ioc->reply_post[i].reply_post_free_dma);
3458 		if (!ioc->reply_post[i].reply_post_free) {
3459 			pr_err(MPT3SAS_FMT
3460 			"reply_post_free pool: dma_pool_alloc failed\n",
3461 			ioc->name);
3462 			goto out;
3463 		}
3464 		memset(ioc->reply_post[i].reply_post_free, 0, sz);
3465 		dinitprintk(ioc, pr_info(MPT3SAS_FMT
3466 		    "reply post free pool (0x%p): depth(%d),"
3467 		    "element_size(%d), pool_size(%d kB)\n", ioc->name,
3468 		    ioc->reply_post[i].reply_post_free,
3469 		    ioc->reply_post_queue_depth, 8, sz/1024));
3470 		dinitprintk(ioc, pr_info(MPT3SAS_FMT
3471 		    "reply_post_free_dma = (0x%llx)\n", ioc->name,
3472 		    (unsigned long long)
3473 		    ioc->reply_post[i].reply_post_free_dma));
3474 		total_sz += sz;
3475 	} while (ioc->rdpq_array_enable && (++i < ioc->reply_queue_count));
3476 
3477 	if (ioc->dma_mask == 64) {
3478 		if (_base_change_consistent_dma_mask(ioc, ioc->pdev) != 0) {
3479 			pr_warn(MPT3SAS_FMT
3480 			    "no suitable consistent DMA mask for %s\n",
3481 			    ioc->name, pci_name(ioc->pdev));
3482 			goto out;
3483 		}
3484 	}
3485 
3486 	ioc->scsiio_depth = ioc->hba_queue_depth -
3487 	    ioc->hi_priority_depth - ioc->internal_depth;
3488 
3489 	/* set the scsi host can_queue depth
3490 	 * with some internal commands that could be outstanding
3491 	 */
3492 	ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
3493 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3494 		"scsi host: can_queue depth (%d)\n",
3495 		ioc->name, ioc->shost->can_queue));
3496 
3497 
3498 	/* contiguous pool for request and chains, 16 byte align, one extra "
3499 	 * "frame for smid=0
3500 	 */
3501 	ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
3502 	sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
3503 
3504 	/* hi-priority queue */
3505 	sz += (ioc->hi_priority_depth * ioc->request_sz);
3506 
3507 	/* internal queue */
3508 	sz += (ioc->internal_depth * ioc->request_sz);
3509 
3510 	ioc->request_dma_sz = sz;
3511 	ioc->request = pci_alloc_consistent(ioc->pdev, sz, &ioc->request_dma);
3512 	if (!ioc->request) {
3513 		pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
3514 		    "failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
3515 		    "total(%d kB)\n", ioc->name, ioc->hba_queue_depth,
3516 		    ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
3517 		if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
3518 			goto out;
3519 		retry_sz = 64;
3520 		ioc->hba_queue_depth -= retry_sz;
3521 		_base_release_memory_pools(ioc);
3522 		goto retry_allocation;
3523 	}
3524 
3525 	if (retry_sz)
3526 		pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
3527 		    "succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
3528 		    "total(%d kb)\n", ioc->name, ioc->hba_queue_depth,
3529 		    ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
3530 
3531 	/* hi-priority queue */
3532 	ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
3533 	    ioc->request_sz);
3534 	ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
3535 	    ioc->request_sz);
3536 
3537 	/* internal queue */
3538 	ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
3539 	    ioc->request_sz);
3540 	ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
3541 	    ioc->request_sz);
3542 
3543 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3544 		"request pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
3545 		ioc->name, ioc->request, ioc->hba_queue_depth, ioc->request_sz,
3546 	    (ioc->hba_queue_depth * ioc->request_sz)/1024));
3547 
3548 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "request pool: dma(0x%llx)\n",
3549 	    ioc->name, (unsigned long long) ioc->request_dma));
3550 	total_sz += sz;
3551 
3552 	sz = ioc->scsiio_depth * sizeof(struct scsiio_tracker);
3553 	ioc->scsi_lookup_pages = get_order(sz);
3554 	ioc->scsi_lookup = (struct scsiio_tracker *)__get_free_pages(
3555 	    GFP_KERNEL, ioc->scsi_lookup_pages);
3556 	if (!ioc->scsi_lookup) {
3557 		pr_err(MPT3SAS_FMT "scsi_lookup: get_free_pages failed, sz(%d)\n",
3558 			ioc->name, (int)sz);
3559 		goto out;
3560 	}
3561 
3562 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "scsiio(0x%p): depth(%d)\n",
3563 		ioc->name, ioc->request, ioc->scsiio_depth));
3564 
3565 	ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
3566 	sz = ioc->chain_depth * sizeof(struct chain_tracker);
3567 	ioc->chain_pages = get_order(sz);
3568 	ioc->chain_lookup = (struct chain_tracker *)__get_free_pages(
3569 	    GFP_KERNEL, ioc->chain_pages);
3570 	if (!ioc->chain_lookup) {
3571 		pr_err(MPT3SAS_FMT "chain_lookup: __get_free_pages failed\n",
3572 			ioc->name);
3573 		goto out;
3574 	}
3575 	ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev,
3576 	    ioc->chain_segment_sz, 16, 0);
3577 	if (!ioc->chain_dma_pool) {
3578 		pr_err(MPT3SAS_FMT "chain_dma_pool: dma_pool_create failed\n",
3579 			ioc->name);
3580 		goto out;
3581 	}
3582 	for (i = 0; i < ioc->chain_depth; i++) {
3583 		ioc->chain_lookup[i].chain_buffer = dma_pool_alloc(
3584 		    ioc->chain_dma_pool , GFP_KERNEL,
3585 		    &ioc->chain_lookup[i].chain_buffer_dma);
3586 		if (!ioc->chain_lookup[i].chain_buffer) {
3587 			ioc->chain_depth = i;
3588 			goto chain_done;
3589 		}
3590 		total_sz += ioc->chain_segment_sz;
3591 	}
3592  chain_done:
3593 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3594 		"chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
3595 		ioc->name, ioc->chain_depth, ioc->chain_segment_sz,
3596 		((ioc->chain_depth *  ioc->chain_segment_sz))/1024));
3597 
3598 	/* initialize hi-priority queue smid's */
3599 	ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
3600 	    sizeof(struct request_tracker), GFP_KERNEL);
3601 	if (!ioc->hpr_lookup) {
3602 		pr_err(MPT3SAS_FMT "hpr_lookup: kcalloc failed\n",
3603 		    ioc->name);
3604 		goto out;
3605 	}
3606 	ioc->hi_priority_smid = ioc->scsiio_depth + 1;
3607 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3608 		"hi_priority(0x%p): depth(%d), start smid(%d)\n",
3609 		ioc->name, ioc->hi_priority,
3610 	    ioc->hi_priority_depth, ioc->hi_priority_smid));
3611 
3612 	/* initialize internal queue smid's */
3613 	ioc->internal_lookup = kcalloc(ioc->internal_depth,
3614 	    sizeof(struct request_tracker), GFP_KERNEL);
3615 	if (!ioc->internal_lookup) {
3616 		pr_err(MPT3SAS_FMT "internal_lookup: kcalloc failed\n",
3617 		    ioc->name);
3618 		goto out;
3619 	}
3620 	ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
3621 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3622 		"internal(0x%p): depth(%d), start smid(%d)\n",
3623 		ioc->name, ioc->internal,
3624 	    ioc->internal_depth, ioc->internal_smid));
3625 
3626 	/* sense buffers, 4 byte align */
3627 	sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
3628 	ioc->sense_dma_pool = dma_pool_create("sense pool", &ioc->pdev->dev, sz,
3629 					      4, 0);
3630 	if (!ioc->sense_dma_pool) {
3631 		pr_err(MPT3SAS_FMT "sense pool: dma_pool_create failed\n",
3632 		    ioc->name);
3633 		goto out;
3634 	}
3635 	ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
3636 	    &ioc->sense_dma);
3637 	if (!ioc->sense) {
3638 		pr_err(MPT3SAS_FMT "sense pool: dma_pool_alloc failed\n",
3639 		    ioc->name);
3640 		goto out;
3641 	}
3642 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3643 	    "sense pool(0x%p): depth(%d), element_size(%d), pool_size"
3644 	    "(%d kB)\n", ioc->name, ioc->sense, ioc->scsiio_depth,
3645 	    SCSI_SENSE_BUFFERSIZE, sz/1024));
3646 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "sense_dma(0x%llx)\n",
3647 	    ioc->name, (unsigned long long)ioc->sense_dma));
3648 	total_sz += sz;
3649 
3650 	/* reply pool, 4 byte align */
3651 	sz = ioc->reply_free_queue_depth * ioc->reply_sz;
3652 	ioc->reply_dma_pool = dma_pool_create("reply pool", &ioc->pdev->dev, sz,
3653 					      4, 0);
3654 	if (!ioc->reply_dma_pool) {
3655 		pr_err(MPT3SAS_FMT "reply pool: dma_pool_create failed\n",
3656 		    ioc->name);
3657 		goto out;
3658 	}
3659 	ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL,
3660 	    &ioc->reply_dma);
3661 	if (!ioc->reply) {
3662 		pr_err(MPT3SAS_FMT "reply pool: dma_pool_alloc failed\n",
3663 		    ioc->name);
3664 		goto out;
3665 	}
3666 	ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
3667 	ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
3668 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3669 		"reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
3670 		ioc->name, ioc->reply,
3671 	    ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024));
3672 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_dma(0x%llx)\n",
3673 	    ioc->name, (unsigned long long)ioc->reply_dma));
3674 	total_sz += sz;
3675 
3676 	/* reply free queue, 16 byte align */
3677 	sz = ioc->reply_free_queue_depth * 4;
3678 	ioc->reply_free_dma_pool = dma_pool_create("reply_free pool",
3679 	    &ioc->pdev->dev, sz, 16, 0);
3680 	if (!ioc->reply_free_dma_pool) {
3681 		pr_err(MPT3SAS_FMT "reply_free pool: dma_pool_create failed\n",
3682 			ioc->name);
3683 		goto out;
3684 	}
3685 	ioc->reply_free = dma_pool_alloc(ioc->reply_free_dma_pool, GFP_KERNEL,
3686 	    &ioc->reply_free_dma);
3687 	if (!ioc->reply_free) {
3688 		pr_err(MPT3SAS_FMT "reply_free pool: dma_pool_alloc failed\n",
3689 			ioc->name);
3690 		goto out;
3691 	}
3692 	memset(ioc->reply_free, 0, sz);
3693 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_free pool(0x%p): " \
3694 	    "depth(%d), element_size(%d), pool_size(%d kB)\n", ioc->name,
3695 	    ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
3696 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3697 		"reply_free_dma (0x%llx)\n",
3698 		ioc->name, (unsigned long long)ioc->reply_free_dma));
3699 	total_sz += sz;
3700 
3701 	ioc->config_page_sz = 512;
3702 	ioc->config_page = pci_alloc_consistent(ioc->pdev,
3703 	    ioc->config_page_sz, &ioc->config_page_dma);
3704 	if (!ioc->config_page) {
3705 		pr_err(MPT3SAS_FMT
3706 			"config page: dma_pool_alloc failed\n",
3707 			ioc->name);
3708 		goto out;
3709 	}
3710 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3711 		"config page(0x%p): size(%d)\n",
3712 		ioc->name, ioc->config_page, ioc->config_page_sz));
3713 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "config_page_dma(0x%llx)\n",
3714 		ioc->name, (unsigned long long)ioc->config_page_dma));
3715 	total_sz += ioc->config_page_sz;
3716 
3717 	pr_info(MPT3SAS_FMT "Allocated physical memory: size(%d kB)\n",
3718 	    ioc->name, total_sz/1024);
3719 	pr_info(MPT3SAS_FMT
3720 		"Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
3721 	    ioc->name, ioc->shost->can_queue, facts->RequestCredit);
3722 	pr_info(MPT3SAS_FMT "Scatter Gather Elements per IO(%d)\n",
3723 	    ioc->name, ioc->shost->sg_tablesize);
3724 	return 0;
3725 
3726  out:
3727 	return -ENOMEM;
3728 }
3729 
3730 /**
3731  * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
3732  * @ioc: Pointer to MPT_ADAPTER structure
3733  * @cooked: Request raw or cooked IOC state
3734  *
3735  * Returns all IOC Doorbell register bits if cooked==0, else just the
3736  * Doorbell bits in MPI_IOC_STATE_MASK.
3737  */
3738 u32
3739 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
3740 {
3741 	u32 s, sc;
3742 
3743 	s = readl(&ioc->chip->Doorbell);
3744 	sc = s & MPI2_IOC_STATE_MASK;
3745 	return cooked ? sc : s;
3746 }
3747 
3748 /**
3749  * _base_wait_on_iocstate - waiting on a particular ioc state
3750  * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
3751  * @timeout: timeout in second
3752  *
3753  * Returns 0 for success, non-zero for failure.
3754  */
3755 static int
3756 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
3757 {
3758 	u32 count, cntdn;
3759 	u32 current_state;
3760 
3761 	count = 0;
3762 	cntdn = 1000 * timeout;
3763 	do {
3764 		current_state = mpt3sas_base_get_iocstate(ioc, 1);
3765 		if (current_state == ioc_state)
3766 			return 0;
3767 		if (count && current_state == MPI2_IOC_STATE_FAULT)
3768 			break;
3769 
3770 		usleep_range(1000, 1500);
3771 		count++;
3772 	} while (--cntdn);
3773 
3774 	return current_state;
3775 }
3776 
3777 /**
3778  * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
3779  * a write to the doorbell)
3780  * @ioc: per adapter object
3781  * @timeout: timeout in second
3782  *
3783  * Returns 0 for success, non-zero for failure.
3784  *
3785  * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
3786  */
3787 static int
3788 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
3789 
3790 static int
3791 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
3792 {
3793 	u32 cntdn, count;
3794 	u32 int_status;
3795 
3796 	count = 0;
3797 	cntdn = 1000 * timeout;
3798 	do {
3799 		int_status = readl(&ioc->chip->HostInterruptStatus);
3800 		if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3801 			dhsprintk(ioc, pr_info(MPT3SAS_FMT
3802 				"%s: successful count(%d), timeout(%d)\n",
3803 				ioc->name, __func__, count, timeout));
3804 			return 0;
3805 		}
3806 
3807 		usleep_range(1000, 1500);
3808 		count++;
3809 	} while (--cntdn);
3810 
3811 	pr_err(MPT3SAS_FMT
3812 		"%s: failed due to timeout count(%d), int_status(%x)!\n",
3813 		ioc->name, __func__, count, int_status);
3814 	return -EFAULT;
3815 }
3816 
3817 static int
3818 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
3819 {
3820 	u32 cntdn, count;
3821 	u32 int_status;
3822 
3823 	count = 0;
3824 	cntdn = 2000 * timeout;
3825 	do {
3826 		int_status = readl(&ioc->chip->HostInterruptStatus);
3827 		if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3828 			dhsprintk(ioc, pr_info(MPT3SAS_FMT
3829 				"%s: successful count(%d), timeout(%d)\n",
3830 				ioc->name, __func__, count, timeout));
3831 			return 0;
3832 		}
3833 
3834 		udelay(500);
3835 		count++;
3836 	} while (--cntdn);
3837 
3838 	pr_err(MPT3SAS_FMT
3839 		"%s: failed due to timeout count(%d), int_status(%x)!\n",
3840 		ioc->name, __func__, count, int_status);
3841 	return -EFAULT;
3842 
3843 }
3844 
3845 /**
3846  * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
3847  * @ioc: per adapter object
3848  * @timeout: timeout in second
3849  *
3850  * Returns 0 for success, non-zero for failure.
3851  *
3852  * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
3853  * doorbell.
3854  */
3855 static int
3856 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
3857 {
3858 	u32 cntdn, count;
3859 	u32 int_status;
3860 	u32 doorbell;
3861 
3862 	count = 0;
3863 	cntdn = 1000 * timeout;
3864 	do {
3865 		int_status = readl(&ioc->chip->HostInterruptStatus);
3866 		if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
3867 			dhsprintk(ioc, pr_info(MPT3SAS_FMT
3868 				"%s: successful count(%d), timeout(%d)\n",
3869 				ioc->name, __func__, count, timeout));
3870 			return 0;
3871 		} else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3872 			doorbell = readl(&ioc->chip->Doorbell);
3873 			if ((doorbell & MPI2_IOC_STATE_MASK) ==
3874 			    MPI2_IOC_STATE_FAULT) {
3875 				mpt3sas_base_fault_info(ioc , doorbell);
3876 				return -EFAULT;
3877 			}
3878 		} else if (int_status == 0xFFFFFFFF)
3879 			goto out;
3880 
3881 		usleep_range(1000, 1500);
3882 		count++;
3883 	} while (--cntdn);
3884 
3885  out:
3886 	pr_err(MPT3SAS_FMT
3887 	 "%s: failed due to timeout count(%d), int_status(%x)!\n",
3888 	 ioc->name, __func__, count, int_status);
3889 	return -EFAULT;
3890 }
3891 
3892 /**
3893  * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
3894  * @ioc: per adapter object
3895  * @timeout: timeout in second
3896  *
3897  * Returns 0 for success, non-zero for failure.
3898  *
3899  */
3900 static int
3901 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
3902 {
3903 	u32 cntdn, count;
3904 	u32 doorbell_reg;
3905 
3906 	count = 0;
3907 	cntdn = 1000 * timeout;
3908 	do {
3909 		doorbell_reg = readl(&ioc->chip->Doorbell);
3910 		if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
3911 			dhsprintk(ioc, pr_info(MPT3SAS_FMT
3912 				"%s: successful count(%d), timeout(%d)\n",
3913 				ioc->name, __func__, count, timeout));
3914 			return 0;
3915 		}
3916 
3917 		usleep_range(1000, 1500);
3918 		count++;
3919 	} while (--cntdn);
3920 
3921 	pr_err(MPT3SAS_FMT
3922 		"%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
3923 		ioc->name, __func__, count, doorbell_reg);
3924 	return -EFAULT;
3925 }
3926 
3927 /**
3928  * _base_send_ioc_reset - send doorbell reset
3929  * @ioc: per adapter object
3930  * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
3931  * @timeout: timeout in second
3932  *
3933  * Returns 0 for success, non-zero for failure.
3934  */
3935 static int
3936 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
3937 {
3938 	u32 ioc_state;
3939 	int r = 0;
3940 
3941 	if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
3942 		pr_err(MPT3SAS_FMT "%s: unknown reset_type\n",
3943 		    ioc->name, __func__);
3944 		return -EFAULT;
3945 	}
3946 
3947 	if (!(ioc->facts.IOCCapabilities &
3948 	   MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
3949 		return -EFAULT;
3950 
3951 	pr_info(MPT3SAS_FMT "sending message unit reset !!\n", ioc->name);
3952 
3953 	writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
3954 	    &ioc->chip->Doorbell);
3955 	if ((_base_wait_for_doorbell_ack(ioc, 15))) {
3956 		r = -EFAULT;
3957 		goto out;
3958 	}
3959 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
3960 	if (ioc_state) {
3961 		pr_err(MPT3SAS_FMT
3962 			"%s: failed going to ready state (ioc_state=0x%x)\n",
3963 			ioc->name, __func__, ioc_state);
3964 		r = -EFAULT;
3965 		goto out;
3966 	}
3967  out:
3968 	pr_info(MPT3SAS_FMT "message unit reset: %s\n",
3969 	    ioc->name, ((r == 0) ? "SUCCESS" : "FAILED"));
3970 	return r;
3971 }
3972 
3973 /**
3974  * _base_handshake_req_reply_wait - send request thru doorbell interface
3975  * @ioc: per adapter object
3976  * @request_bytes: request length
3977  * @request: pointer having request payload
3978  * @reply_bytes: reply length
3979  * @reply: pointer to reply payload
3980  * @timeout: timeout in second
3981  *
3982  * Returns 0 for success, non-zero for failure.
3983  */
3984 static int
3985 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
3986 	u32 *request, int reply_bytes, u16 *reply, int timeout)
3987 {
3988 	MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
3989 	int i;
3990 	u8 failed;
3991 	__le32 *mfp;
3992 
3993 	/* make sure doorbell is not in use */
3994 	if ((readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
3995 		pr_err(MPT3SAS_FMT
3996 			"doorbell is in use (line=%d)\n",
3997 			ioc->name, __LINE__);
3998 		return -EFAULT;
3999 	}
4000 
4001 	/* clear pending doorbell interrupts from previous state changes */
4002 	if (readl(&ioc->chip->HostInterruptStatus) &
4003 	    MPI2_HIS_IOC2SYS_DB_STATUS)
4004 		writel(0, &ioc->chip->HostInterruptStatus);
4005 
4006 	/* send message to ioc */
4007 	writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
4008 	    ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
4009 	    &ioc->chip->Doorbell);
4010 
4011 	if ((_base_spin_on_doorbell_int(ioc, 5))) {
4012 		pr_err(MPT3SAS_FMT
4013 			"doorbell handshake int failed (line=%d)\n",
4014 			ioc->name, __LINE__);
4015 		return -EFAULT;
4016 	}
4017 	writel(0, &ioc->chip->HostInterruptStatus);
4018 
4019 	if ((_base_wait_for_doorbell_ack(ioc, 5))) {
4020 		pr_err(MPT3SAS_FMT
4021 			"doorbell handshake ack failed (line=%d)\n",
4022 			ioc->name, __LINE__);
4023 		return -EFAULT;
4024 	}
4025 
4026 	/* send message 32-bits at a time */
4027 	for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
4028 		writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
4029 		if ((_base_wait_for_doorbell_ack(ioc, 5)))
4030 			failed = 1;
4031 	}
4032 
4033 	if (failed) {
4034 		pr_err(MPT3SAS_FMT
4035 			"doorbell handshake sending request failed (line=%d)\n",
4036 			ioc->name, __LINE__);
4037 		return -EFAULT;
4038 	}
4039 
4040 	/* now wait for the reply */
4041 	if ((_base_wait_for_doorbell_int(ioc, timeout))) {
4042 		pr_err(MPT3SAS_FMT
4043 			"doorbell handshake int failed (line=%d)\n",
4044 			ioc->name, __LINE__);
4045 		return -EFAULT;
4046 	}
4047 
4048 	/* read the first two 16-bits, it gives the total length of the reply */
4049 	reply[0] = le16_to_cpu(readl(&ioc->chip->Doorbell)
4050 	    & MPI2_DOORBELL_DATA_MASK);
4051 	writel(0, &ioc->chip->HostInterruptStatus);
4052 	if ((_base_wait_for_doorbell_int(ioc, 5))) {
4053 		pr_err(MPT3SAS_FMT
4054 			"doorbell handshake int failed (line=%d)\n",
4055 			ioc->name, __LINE__);
4056 		return -EFAULT;
4057 	}
4058 	reply[1] = le16_to_cpu(readl(&ioc->chip->Doorbell)
4059 	    & MPI2_DOORBELL_DATA_MASK);
4060 	writel(0, &ioc->chip->HostInterruptStatus);
4061 
4062 	for (i = 2; i < default_reply->MsgLength * 2; i++)  {
4063 		if ((_base_wait_for_doorbell_int(ioc, 5))) {
4064 			pr_err(MPT3SAS_FMT
4065 				"doorbell handshake int failed (line=%d)\n",
4066 				ioc->name, __LINE__);
4067 			return -EFAULT;
4068 		}
4069 		if (i >=  reply_bytes/2) /* overflow case */
4070 			readl(&ioc->chip->Doorbell);
4071 		else
4072 			reply[i] = le16_to_cpu(readl(&ioc->chip->Doorbell)
4073 			    & MPI2_DOORBELL_DATA_MASK);
4074 		writel(0, &ioc->chip->HostInterruptStatus);
4075 	}
4076 
4077 	_base_wait_for_doorbell_int(ioc, 5);
4078 	if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
4079 		dhsprintk(ioc, pr_info(MPT3SAS_FMT
4080 			"doorbell is in use (line=%d)\n", ioc->name, __LINE__));
4081 	}
4082 	writel(0, &ioc->chip->HostInterruptStatus);
4083 
4084 	if (ioc->logging_level & MPT_DEBUG_INIT) {
4085 		mfp = (__le32 *)reply;
4086 		pr_info("\toffset:data\n");
4087 		for (i = 0; i < reply_bytes/4; i++)
4088 			pr_info("\t[0x%02x]:%08x\n", i*4,
4089 			    le32_to_cpu(mfp[i]));
4090 	}
4091 	return 0;
4092 }
4093 
4094 /**
4095  * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
4096  * @ioc: per adapter object
4097  * @mpi_reply: the reply payload from FW
4098  * @mpi_request: the request payload sent to FW
4099  *
4100  * The SAS IO Unit Control Request message allows the host to perform low-level
4101  * operations, such as resets on the PHYs of the IO Unit, also allows the host
4102  * to obtain the IOC assigned device handles for a device if it has other
4103  * identifying information about the device, in addition allows the host to
4104  * remove IOC resources associated with the device.
4105  *
4106  * Returns 0 for success, non-zero for failure.
4107  */
4108 int
4109 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
4110 	Mpi2SasIoUnitControlReply_t *mpi_reply,
4111 	Mpi2SasIoUnitControlRequest_t *mpi_request)
4112 {
4113 	u16 smid;
4114 	u32 ioc_state;
4115 	bool issue_reset = false;
4116 	int rc;
4117 	void *request;
4118 	u16 wait_state_count;
4119 
4120 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4121 	    __func__));
4122 
4123 	mutex_lock(&ioc->base_cmds.mutex);
4124 
4125 	if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
4126 		pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
4127 		    ioc->name, __func__);
4128 		rc = -EAGAIN;
4129 		goto out;
4130 	}
4131 
4132 	wait_state_count = 0;
4133 	ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4134 	while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
4135 		if (wait_state_count++ == 10) {
4136 			pr_err(MPT3SAS_FMT
4137 			    "%s: failed due to ioc not operational\n",
4138 			    ioc->name, __func__);
4139 			rc = -EFAULT;
4140 			goto out;
4141 		}
4142 		ssleep(1);
4143 		ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4144 		pr_info(MPT3SAS_FMT
4145 			"%s: waiting for operational state(count=%d)\n",
4146 			ioc->name, __func__, wait_state_count);
4147 	}
4148 
4149 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4150 	if (!smid) {
4151 		pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4152 		    ioc->name, __func__);
4153 		rc = -EAGAIN;
4154 		goto out;
4155 	}
4156 
4157 	rc = 0;
4158 	ioc->base_cmds.status = MPT3_CMD_PENDING;
4159 	request = mpt3sas_base_get_msg_frame(ioc, smid);
4160 	ioc->base_cmds.smid = smid;
4161 	memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
4162 	if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
4163 	    mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
4164 		ioc->ioc_link_reset_in_progress = 1;
4165 	init_completion(&ioc->base_cmds.done);
4166 	ioc->put_smid_default(ioc, smid);
4167 	wait_for_completion_timeout(&ioc->base_cmds.done,
4168 	    msecs_to_jiffies(10000));
4169 	if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
4170 	    mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
4171 	    ioc->ioc_link_reset_in_progress)
4172 		ioc->ioc_link_reset_in_progress = 0;
4173 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4174 		pr_err(MPT3SAS_FMT "%s: timeout\n",
4175 		    ioc->name, __func__);
4176 		_debug_dump_mf(mpi_request,
4177 		    sizeof(Mpi2SasIoUnitControlRequest_t)/4);
4178 		if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
4179 			issue_reset = true;
4180 		goto issue_host_reset;
4181 	}
4182 	if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
4183 		memcpy(mpi_reply, ioc->base_cmds.reply,
4184 		    sizeof(Mpi2SasIoUnitControlReply_t));
4185 	else
4186 		memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
4187 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4188 	goto out;
4189 
4190  issue_host_reset:
4191 	if (issue_reset)
4192 		mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
4193 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4194 	rc = -EFAULT;
4195  out:
4196 	mutex_unlock(&ioc->base_cmds.mutex);
4197 	return rc;
4198 }
4199 
4200 /**
4201  * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
4202  * @ioc: per adapter object
4203  * @mpi_reply: the reply payload from FW
4204  * @mpi_request: the request payload sent to FW
4205  *
4206  * The SCSI Enclosure Processor request message causes the IOC to
4207  * communicate with SES devices to control LED status signals.
4208  *
4209  * Returns 0 for success, non-zero for failure.
4210  */
4211 int
4212 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
4213 	Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
4214 {
4215 	u16 smid;
4216 	u32 ioc_state;
4217 	bool issue_reset = false;
4218 	int rc;
4219 	void *request;
4220 	u16 wait_state_count;
4221 
4222 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4223 	    __func__));
4224 
4225 	mutex_lock(&ioc->base_cmds.mutex);
4226 
4227 	if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
4228 		pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
4229 		    ioc->name, __func__);
4230 		rc = -EAGAIN;
4231 		goto out;
4232 	}
4233 
4234 	wait_state_count = 0;
4235 	ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4236 	while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
4237 		if (wait_state_count++ == 10) {
4238 			pr_err(MPT3SAS_FMT
4239 			    "%s: failed due to ioc not operational\n",
4240 			    ioc->name, __func__);
4241 			rc = -EFAULT;
4242 			goto out;
4243 		}
4244 		ssleep(1);
4245 		ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4246 		pr_info(MPT3SAS_FMT
4247 			"%s: waiting for operational state(count=%d)\n",
4248 			ioc->name,
4249 		    __func__, wait_state_count);
4250 	}
4251 
4252 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4253 	if (!smid) {
4254 		pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4255 		    ioc->name, __func__);
4256 		rc = -EAGAIN;
4257 		goto out;
4258 	}
4259 
4260 	rc = 0;
4261 	ioc->base_cmds.status = MPT3_CMD_PENDING;
4262 	request = mpt3sas_base_get_msg_frame(ioc, smid);
4263 	ioc->base_cmds.smid = smid;
4264 	memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
4265 	init_completion(&ioc->base_cmds.done);
4266 	ioc->put_smid_default(ioc, smid);
4267 	wait_for_completion_timeout(&ioc->base_cmds.done,
4268 	    msecs_to_jiffies(10000));
4269 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4270 		pr_err(MPT3SAS_FMT "%s: timeout\n",
4271 		    ioc->name, __func__);
4272 		_debug_dump_mf(mpi_request,
4273 		    sizeof(Mpi2SepRequest_t)/4);
4274 		if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
4275 			issue_reset = false;
4276 		goto issue_host_reset;
4277 	}
4278 	if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
4279 		memcpy(mpi_reply, ioc->base_cmds.reply,
4280 		    sizeof(Mpi2SepReply_t));
4281 	else
4282 		memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
4283 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4284 	goto out;
4285 
4286  issue_host_reset:
4287 	if (issue_reset)
4288 		mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
4289 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4290 	rc = -EFAULT;
4291  out:
4292 	mutex_unlock(&ioc->base_cmds.mutex);
4293 	return rc;
4294 }
4295 
4296 /**
4297  * _base_get_port_facts - obtain port facts reply and save in ioc
4298  * @ioc: per adapter object
4299  *
4300  * Returns 0 for success, non-zero for failure.
4301  */
4302 static int
4303 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
4304 {
4305 	Mpi2PortFactsRequest_t mpi_request;
4306 	Mpi2PortFactsReply_t mpi_reply;
4307 	struct mpt3sas_port_facts *pfacts;
4308 	int mpi_reply_sz, mpi_request_sz, r;
4309 
4310 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4311 	    __func__));
4312 
4313 	mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
4314 	mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
4315 	memset(&mpi_request, 0, mpi_request_sz);
4316 	mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
4317 	mpi_request.PortNumber = port;
4318 	r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
4319 	    (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
4320 
4321 	if (r != 0) {
4322 		pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4323 		    ioc->name, __func__, r);
4324 		return r;
4325 	}
4326 
4327 	pfacts = &ioc->pfacts[port];
4328 	memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
4329 	pfacts->PortNumber = mpi_reply.PortNumber;
4330 	pfacts->VP_ID = mpi_reply.VP_ID;
4331 	pfacts->VF_ID = mpi_reply.VF_ID;
4332 	pfacts->MaxPostedCmdBuffers =
4333 	    le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
4334 
4335 	return 0;
4336 }
4337 
4338 /**
4339  * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
4340  * @ioc: per adapter object
4341  * @timeout:
4342  *
4343  * Returns 0 for success, non-zero for failure.
4344  */
4345 static int
4346 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
4347 {
4348 	u32 ioc_state;
4349 	int rc;
4350 
4351 	dinitprintk(ioc, printk(MPT3SAS_FMT "%s\n", ioc->name,
4352 	    __func__));
4353 
4354 	if (ioc->pci_error_recovery) {
4355 		dfailprintk(ioc, printk(MPT3SAS_FMT
4356 		    "%s: host in pci error recovery\n", ioc->name, __func__));
4357 		return -EFAULT;
4358 	}
4359 
4360 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4361 	dhsprintk(ioc, printk(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
4362 	    ioc->name, __func__, ioc_state));
4363 
4364 	if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
4365 	    (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
4366 		return 0;
4367 
4368 	if (ioc_state & MPI2_DOORBELL_USED) {
4369 		dhsprintk(ioc, printk(MPT3SAS_FMT
4370 		    "unexpected doorbell active!\n", ioc->name));
4371 		goto issue_diag_reset;
4372 	}
4373 
4374 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
4375 		mpt3sas_base_fault_info(ioc, ioc_state &
4376 		    MPI2_DOORBELL_DATA_MASK);
4377 		goto issue_diag_reset;
4378 	}
4379 
4380 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
4381 	if (ioc_state) {
4382 		dfailprintk(ioc, printk(MPT3SAS_FMT
4383 		    "%s: failed going to ready state (ioc_state=0x%x)\n",
4384 		    ioc->name, __func__, ioc_state));
4385 		return -EFAULT;
4386 	}
4387 
4388  issue_diag_reset:
4389 	rc = _base_diag_reset(ioc);
4390 	return rc;
4391 }
4392 
4393 /**
4394  * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
4395  * @ioc: per adapter object
4396  *
4397  * Returns 0 for success, non-zero for failure.
4398  */
4399 static int
4400 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
4401 {
4402 	Mpi2IOCFactsRequest_t mpi_request;
4403 	Mpi2IOCFactsReply_t mpi_reply;
4404 	struct mpt3sas_facts *facts;
4405 	int mpi_reply_sz, mpi_request_sz, r;
4406 
4407 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4408 	    __func__));
4409 
4410 	r = _base_wait_for_iocstate(ioc, 10);
4411 	if (r) {
4412 		dfailprintk(ioc, printk(MPT3SAS_FMT
4413 		    "%s: failed getting to correct state\n",
4414 		    ioc->name, __func__));
4415 		return r;
4416 	}
4417 	mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
4418 	mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
4419 	memset(&mpi_request, 0, mpi_request_sz);
4420 	mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
4421 	r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
4422 	    (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
4423 
4424 	if (r != 0) {
4425 		pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4426 		    ioc->name, __func__, r);
4427 		return r;
4428 	}
4429 
4430 	facts = &ioc->facts;
4431 	memset(facts, 0, sizeof(struct mpt3sas_facts));
4432 	facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
4433 	facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
4434 	facts->VP_ID = mpi_reply.VP_ID;
4435 	facts->VF_ID = mpi_reply.VF_ID;
4436 	facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
4437 	facts->MaxChainDepth = mpi_reply.MaxChainDepth;
4438 	facts->WhoInit = mpi_reply.WhoInit;
4439 	facts->NumberOfPorts = mpi_reply.NumberOfPorts;
4440 	facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
4441 	facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
4442 	facts->MaxReplyDescriptorPostQueueDepth =
4443 	    le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
4444 	facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
4445 	facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
4446 	if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
4447 		ioc->ir_firmware = 1;
4448 	if ((facts->IOCCapabilities &
4449 	      MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE))
4450 		ioc->rdpq_array_capable = 1;
4451 	if (facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
4452 		ioc->atomic_desc_capable = 1;
4453 	facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
4454 	facts->IOCRequestFrameSize =
4455 	    le16_to_cpu(mpi_reply.IOCRequestFrameSize);
4456 	if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
4457 		facts->IOCMaxChainSegmentSize =
4458 			le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
4459 	}
4460 	facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
4461 	facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
4462 	ioc->shost->max_id = -1;
4463 	facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
4464 	facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
4465 	facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
4466 	facts->HighPriorityCredit =
4467 	    le16_to_cpu(mpi_reply.HighPriorityCredit);
4468 	facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
4469 	facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
4470 
4471 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
4472 		"hba queue depth(%d), max chains per io(%d)\n",
4473 		ioc->name, facts->RequestCredit,
4474 	    facts->MaxChainDepth));
4475 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
4476 		"request frame size(%d), reply frame size(%d)\n", ioc->name,
4477 	    facts->IOCRequestFrameSize * 4, facts->ReplyFrameSize * 4));
4478 	return 0;
4479 }
4480 
4481 /**
4482  * _base_send_ioc_init - send ioc_init to firmware
4483  * @ioc: per adapter object
4484  *
4485  * Returns 0 for success, non-zero for failure.
4486  */
4487 static int
4488 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
4489 {
4490 	Mpi2IOCInitRequest_t mpi_request;
4491 	Mpi2IOCInitReply_t mpi_reply;
4492 	int i, r = 0;
4493 	ktime_t current_time;
4494 	u16 ioc_status;
4495 	u32 reply_post_free_array_sz = 0;
4496 	Mpi2IOCInitRDPQArrayEntry *reply_post_free_array = NULL;
4497 	dma_addr_t reply_post_free_array_dma;
4498 
4499 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4500 	    __func__));
4501 
4502 	memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
4503 	mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
4504 	mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
4505 	mpi_request.VF_ID = 0; /* TODO */
4506 	mpi_request.VP_ID = 0;
4507 	mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
4508 	mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
4509 
4510 	if (_base_is_controller_msix_enabled(ioc))
4511 		mpi_request.HostMSIxVectors = ioc->reply_queue_count;
4512 	mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
4513 	mpi_request.ReplyDescriptorPostQueueDepth =
4514 	    cpu_to_le16(ioc->reply_post_queue_depth);
4515 	mpi_request.ReplyFreeQueueDepth =
4516 	    cpu_to_le16(ioc->reply_free_queue_depth);
4517 
4518 	mpi_request.SenseBufferAddressHigh =
4519 	    cpu_to_le32((u64)ioc->sense_dma >> 32);
4520 	mpi_request.SystemReplyAddressHigh =
4521 	    cpu_to_le32((u64)ioc->reply_dma >> 32);
4522 	mpi_request.SystemRequestFrameBaseAddress =
4523 	    cpu_to_le64((u64)ioc->request_dma);
4524 	mpi_request.ReplyFreeQueueAddress =
4525 	    cpu_to_le64((u64)ioc->reply_free_dma);
4526 
4527 	if (ioc->rdpq_array_enable) {
4528 		reply_post_free_array_sz = ioc->reply_queue_count *
4529 		    sizeof(Mpi2IOCInitRDPQArrayEntry);
4530 		reply_post_free_array = pci_alloc_consistent(ioc->pdev,
4531 			reply_post_free_array_sz, &reply_post_free_array_dma);
4532 		if (!reply_post_free_array) {
4533 			pr_err(MPT3SAS_FMT
4534 			"reply_post_free_array: pci_alloc_consistent failed\n",
4535 			ioc->name);
4536 			r = -ENOMEM;
4537 			goto out;
4538 		}
4539 		memset(reply_post_free_array, 0, reply_post_free_array_sz);
4540 		for (i = 0; i < ioc->reply_queue_count; i++)
4541 			reply_post_free_array[i].RDPQBaseAddress =
4542 			    cpu_to_le64(
4543 				(u64)ioc->reply_post[i].reply_post_free_dma);
4544 		mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
4545 		mpi_request.ReplyDescriptorPostQueueAddress =
4546 		    cpu_to_le64((u64)reply_post_free_array_dma);
4547 	} else {
4548 		mpi_request.ReplyDescriptorPostQueueAddress =
4549 		    cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
4550 	}
4551 
4552 	/* This time stamp specifies number of milliseconds
4553 	 * since epoch ~ midnight January 1, 1970.
4554 	 */
4555 	current_time = ktime_get_real();
4556 	mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
4557 
4558 	if (ioc->logging_level & MPT_DEBUG_INIT) {
4559 		__le32 *mfp;
4560 		int i;
4561 
4562 		mfp = (__le32 *)&mpi_request;
4563 		pr_info("\toffset:data\n");
4564 		for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
4565 			pr_info("\t[0x%02x]:%08x\n", i*4,
4566 			    le32_to_cpu(mfp[i]));
4567 	}
4568 
4569 	r = _base_handshake_req_reply_wait(ioc,
4570 	    sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
4571 	    sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10);
4572 
4573 	if (r != 0) {
4574 		pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4575 		    ioc->name, __func__, r);
4576 		goto out;
4577 	}
4578 
4579 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
4580 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
4581 	    mpi_reply.IOCLogInfo) {
4582 		pr_err(MPT3SAS_FMT "%s: failed\n", ioc->name, __func__);
4583 		r = -EIO;
4584 	}
4585 
4586 out:
4587 	if (reply_post_free_array)
4588 		pci_free_consistent(ioc->pdev, reply_post_free_array_sz,
4589 				    reply_post_free_array,
4590 				    reply_post_free_array_dma);
4591 	return r;
4592 }
4593 
4594 /**
4595  * mpt3sas_port_enable_done - command completion routine for port enable
4596  * @ioc: per adapter object
4597  * @smid: system request message index
4598  * @msix_index: MSIX table index supplied by the OS
4599  * @reply: reply message frame(lower 32bit addr)
4600  *
4601  * Return 1 meaning mf should be freed from _base_interrupt
4602  *        0 means the mf is freed from this function.
4603  */
4604 u8
4605 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
4606 	u32 reply)
4607 {
4608 	MPI2DefaultReply_t *mpi_reply;
4609 	u16 ioc_status;
4610 
4611 	if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
4612 		return 1;
4613 
4614 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
4615 	if (!mpi_reply)
4616 		return 1;
4617 
4618 	if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
4619 		return 1;
4620 
4621 	ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
4622 	ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
4623 	ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
4624 	memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
4625 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
4626 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
4627 		ioc->port_enable_failed = 1;
4628 
4629 	if (ioc->is_driver_loading) {
4630 		if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4631 			mpt3sas_port_enable_complete(ioc);
4632 			return 1;
4633 		} else {
4634 			ioc->start_scan_failed = ioc_status;
4635 			ioc->start_scan = 0;
4636 			return 1;
4637 		}
4638 	}
4639 	complete(&ioc->port_enable_cmds.done);
4640 	return 1;
4641 }
4642 
4643 /**
4644  * _base_send_port_enable - send port_enable(discovery stuff) to firmware
4645  * @ioc: per adapter object
4646  *
4647  * Returns 0 for success, non-zero for failure.
4648  */
4649 static int
4650 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
4651 {
4652 	Mpi2PortEnableRequest_t *mpi_request;
4653 	Mpi2PortEnableReply_t *mpi_reply;
4654 	int r = 0;
4655 	u16 smid;
4656 	u16 ioc_status;
4657 
4658 	pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
4659 
4660 	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
4661 		pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4662 		    ioc->name, __func__);
4663 		return -EAGAIN;
4664 	}
4665 
4666 	smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
4667 	if (!smid) {
4668 		pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4669 		    ioc->name, __func__);
4670 		return -EAGAIN;
4671 	}
4672 
4673 	ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
4674 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4675 	ioc->port_enable_cmds.smid = smid;
4676 	memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
4677 	mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
4678 
4679 	init_completion(&ioc->port_enable_cmds.done);
4680 	ioc->put_smid_default(ioc, smid);
4681 	wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
4682 	if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
4683 		pr_err(MPT3SAS_FMT "%s: timeout\n",
4684 		    ioc->name, __func__);
4685 		_debug_dump_mf(mpi_request,
4686 		    sizeof(Mpi2PortEnableRequest_t)/4);
4687 		if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
4688 			r = -EFAULT;
4689 		else
4690 			r = -ETIME;
4691 		goto out;
4692 	}
4693 
4694 	mpi_reply = ioc->port_enable_cmds.reply;
4695 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
4696 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4697 		pr_err(MPT3SAS_FMT "%s: failed with (ioc_status=0x%08x)\n",
4698 		    ioc->name, __func__, ioc_status);
4699 		r = -EFAULT;
4700 		goto out;
4701 	}
4702 
4703  out:
4704 	ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
4705 	pr_info(MPT3SAS_FMT "port enable: %s\n", ioc->name, ((r == 0) ?
4706 	    "SUCCESS" : "FAILED"));
4707 	return r;
4708 }
4709 
4710 /**
4711  * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
4712  * @ioc: per adapter object
4713  *
4714  * Returns 0 for success, non-zero for failure.
4715  */
4716 int
4717 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
4718 {
4719 	Mpi2PortEnableRequest_t *mpi_request;
4720 	u16 smid;
4721 
4722 	pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
4723 
4724 	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
4725 		pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4726 		    ioc->name, __func__);
4727 		return -EAGAIN;
4728 	}
4729 
4730 	smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
4731 	if (!smid) {
4732 		pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4733 		    ioc->name, __func__);
4734 		return -EAGAIN;
4735 	}
4736 
4737 	ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
4738 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4739 	ioc->port_enable_cmds.smid = smid;
4740 	memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
4741 	mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
4742 
4743 	ioc->put_smid_default(ioc, smid);
4744 	return 0;
4745 }
4746 
4747 /**
4748  * _base_determine_wait_on_discovery - desposition
4749  * @ioc: per adapter object
4750  *
4751  * Decide whether to wait on discovery to complete. Used to either
4752  * locate boot device, or report volumes ahead of physical devices.
4753  *
4754  * Returns 1 for wait, 0 for don't wait
4755  */
4756 static int
4757 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
4758 {
4759 	/* We wait for discovery to complete if IR firmware is loaded.
4760 	 * The sas topology events arrive before PD events, so we need time to
4761 	 * turn on the bit in ioc->pd_handles to indicate PD
4762 	 * Also, it maybe required to report Volumes ahead of physical
4763 	 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
4764 	 */
4765 	if (ioc->ir_firmware)
4766 		return 1;
4767 
4768 	/* if no Bios, then we don't need to wait */
4769 	if (!ioc->bios_pg3.BiosVersion)
4770 		return 0;
4771 
4772 	/* Bios is present, then we drop down here.
4773 	 *
4774 	 * If there any entries in the Bios Page 2, then we wait
4775 	 * for discovery to complete.
4776 	 */
4777 
4778 	/* Current Boot Device */
4779 	if ((ioc->bios_pg2.CurrentBootDeviceForm &
4780 	    MPI2_BIOSPAGE2_FORM_MASK) ==
4781 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
4782 	/* Request Boot Device */
4783 	   (ioc->bios_pg2.ReqBootDeviceForm &
4784 	    MPI2_BIOSPAGE2_FORM_MASK) ==
4785 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
4786 	/* Alternate Request Boot Device */
4787 	   (ioc->bios_pg2.ReqAltBootDeviceForm &
4788 	    MPI2_BIOSPAGE2_FORM_MASK) ==
4789 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
4790 		return 0;
4791 
4792 	return 1;
4793 }
4794 
4795 /**
4796  * _base_unmask_events - turn on notification for this event
4797  * @ioc: per adapter object
4798  * @event: firmware event
4799  *
4800  * The mask is stored in ioc->event_masks.
4801  */
4802 static void
4803 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
4804 {
4805 	u32 desired_event;
4806 
4807 	if (event >= 128)
4808 		return;
4809 
4810 	desired_event = (1 << (event % 32));
4811 
4812 	if (event < 32)
4813 		ioc->event_masks[0] &= ~desired_event;
4814 	else if (event < 64)
4815 		ioc->event_masks[1] &= ~desired_event;
4816 	else if (event < 96)
4817 		ioc->event_masks[2] &= ~desired_event;
4818 	else if (event < 128)
4819 		ioc->event_masks[3] &= ~desired_event;
4820 }
4821 
4822 /**
4823  * _base_event_notification - send event notification
4824  * @ioc: per adapter object
4825  *
4826  * Returns 0 for success, non-zero for failure.
4827  */
4828 static int
4829 _base_event_notification(struct MPT3SAS_ADAPTER *ioc)
4830 {
4831 	Mpi2EventNotificationRequest_t *mpi_request;
4832 	u16 smid;
4833 	int r = 0;
4834 	int i;
4835 
4836 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4837 	    __func__));
4838 
4839 	if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4840 		pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4841 		    ioc->name, __func__);
4842 		return -EAGAIN;
4843 	}
4844 
4845 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4846 	if (!smid) {
4847 		pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4848 		    ioc->name, __func__);
4849 		return -EAGAIN;
4850 	}
4851 	ioc->base_cmds.status = MPT3_CMD_PENDING;
4852 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4853 	ioc->base_cmds.smid = smid;
4854 	memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
4855 	mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
4856 	mpi_request->VF_ID = 0; /* TODO */
4857 	mpi_request->VP_ID = 0;
4858 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
4859 		mpi_request->EventMasks[i] =
4860 		    cpu_to_le32(ioc->event_masks[i]);
4861 	init_completion(&ioc->base_cmds.done);
4862 	ioc->put_smid_default(ioc, smid);
4863 	wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
4864 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4865 		pr_err(MPT3SAS_FMT "%s: timeout\n",
4866 		    ioc->name, __func__);
4867 		_debug_dump_mf(mpi_request,
4868 		    sizeof(Mpi2EventNotificationRequest_t)/4);
4869 		if (ioc->base_cmds.status & MPT3_CMD_RESET)
4870 			r = -EFAULT;
4871 		else
4872 			r = -ETIME;
4873 	} else
4874 		dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s: complete\n",
4875 		    ioc->name, __func__));
4876 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4877 	return r;
4878 }
4879 
4880 /**
4881  * mpt3sas_base_validate_event_type - validating event types
4882  * @ioc: per adapter object
4883  * @event: firmware event
4884  *
4885  * This will turn on firmware event notification when application
4886  * ask for that event. We don't mask events that are already enabled.
4887  */
4888 void
4889 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
4890 {
4891 	int i, j;
4892 	u32 event_mask, desired_event;
4893 	u8 send_update_to_fw;
4894 
4895 	for (i = 0, send_update_to_fw = 0; i <
4896 	    MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
4897 		event_mask = ~event_type[i];
4898 		desired_event = 1;
4899 		for (j = 0; j < 32; j++) {
4900 			if (!(event_mask & desired_event) &&
4901 			    (ioc->event_masks[i] & desired_event)) {
4902 				ioc->event_masks[i] &= ~desired_event;
4903 				send_update_to_fw = 1;
4904 			}
4905 			desired_event = (desired_event << 1);
4906 		}
4907 	}
4908 
4909 	if (!send_update_to_fw)
4910 		return;
4911 
4912 	mutex_lock(&ioc->base_cmds.mutex);
4913 	_base_event_notification(ioc);
4914 	mutex_unlock(&ioc->base_cmds.mutex);
4915 }
4916 
4917 /**
4918  * _base_diag_reset - the "big hammer" start of day reset
4919  * @ioc: per adapter object
4920  *
4921  * Returns 0 for success, non-zero for failure.
4922  */
4923 static int
4924 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
4925 {
4926 	u32 host_diagnostic;
4927 	u32 ioc_state;
4928 	u32 count;
4929 	u32 hcb_size;
4930 
4931 	pr_info(MPT3SAS_FMT "sending diag reset !!\n", ioc->name);
4932 
4933 	drsprintk(ioc, pr_info(MPT3SAS_FMT "clear interrupts\n",
4934 	    ioc->name));
4935 
4936 	count = 0;
4937 	do {
4938 		/* Write magic sequence to WriteSequence register
4939 		 * Loop until in diagnostic mode
4940 		 */
4941 		drsprintk(ioc, pr_info(MPT3SAS_FMT
4942 			"write magic sequence\n", ioc->name));
4943 		writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
4944 		writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
4945 		writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
4946 		writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
4947 		writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
4948 		writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
4949 		writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
4950 
4951 		/* wait 100 msec */
4952 		msleep(100);
4953 
4954 		if (count++ > 20)
4955 			goto out;
4956 
4957 		host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4958 		drsprintk(ioc, pr_info(MPT3SAS_FMT
4959 			"wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
4960 		    ioc->name, count, host_diagnostic));
4961 
4962 	} while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
4963 
4964 	hcb_size = readl(&ioc->chip->HCBSize);
4965 
4966 	drsprintk(ioc, pr_info(MPT3SAS_FMT "diag reset: issued\n",
4967 	    ioc->name));
4968 	writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
4969 	     &ioc->chip->HostDiagnostic);
4970 
4971 	/*This delay allows the chip PCIe hardware time to finish reset tasks*/
4972 	msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
4973 
4974 	/* Approximately 300 second max wait */
4975 	for (count = 0; count < (300000000 /
4976 		MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
4977 
4978 		host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4979 
4980 		if (host_diagnostic == 0xFFFFFFFF)
4981 			goto out;
4982 		if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
4983 			break;
4984 
4985 		msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000);
4986 	}
4987 
4988 	if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
4989 
4990 		drsprintk(ioc, pr_info(MPT3SAS_FMT
4991 		"restart the adapter assuming the HCB Address points to good F/W\n",
4992 		    ioc->name));
4993 		host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
4994 		host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
4995 		writel(host_diagnostic, &ioc->chip->HostDiagnostic);
4996 
4997 		drsprintk(ioc, pr_info(MPT3SAS_FMT
4998 		    "re-enable the HCDW\n", ioc->name));
4999 		writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
5000 		    &ioc->chip->HCBSize);
5001 	}
5002 
5003 	drsprintk(ioc, pr_info(MPT3SAS_FMT "restart the adapter\n",
5004 	    ioc->name));
5005 	writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
5006 	    &ioc->chip->HostDiagnostic);
5007 
5008 	drsprintk(ioc, pr_info(MPT3SAS_FMT
5009 		"disable writes to the diagnostic register\n", ioc->name));
5010 	writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
5011 
5012 	drsprintk(ioc, pr_info(MPT3SAS_FMT
5013 		"Wait for FW to go to the READY state\n", ioc->name));
5014 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
5015 	if (ioc_state) {
5016 		pr_err(MPT3SAS_FMT
5017 			"%s: failed going to ready state (ioc_state=0x%x)\n",
5018 			ioc->name, __func__, ioc_state);
5019 		goto out;
5020 	}
5021 
5022 	pr_info(MPT3SAS_FMT "diag reset: SUCCESS\n", ioc->name);
5023 	return 0;
5024 
5025  out:
5026 	pr_err(MPT3SAS_FMT "diag reset: FAILED\n", ioc->name);
5027 	return -EFAULT;
5028 }
5029 
5030 /**
5031  * _base_make_ioc_ready - put controller in READY state
5032  * @ioc: per adapter object
5033  * @type: FORCE_BIG_HAMMER or SOFT_RESET
5034  *
5035  * Returns 0 for success, non-zero for failure.
5036  */
5037 static int
5038 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
5039 {
5040 	u32 ioc_state;
5041 	int rc;
5042 	int count;
5043 
5044 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5045 	    __func__));
5046 
5047 	if (ioc->pci_error_recovery)
5048 		return 0;
5049 
5050 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5051 	dhsprintk(ioc, pr_info(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
5052 	    ioc->name, __func__, ioc_state));
5053 
5054 	/* if in RESET state, it should move to READY state shortly */
5055 	count = 0;
5056 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
5057 		while ((ioc_state & MPI2_IOC_STATE_MASK) !=
5058 		    MPI2_IOC_STATE_READY) {
5059 			if (count++ == 10) {
5060 				pr_err(MPT3SAS_FMT
5061 					"%s: failed going to ready state (ioc_state=0x%x)\n",
5062 				    ioc->name, __func__, ioc_state);
5063 				return -EFAULT;
5064 			}
5065 			ssleep(1);
5066 			ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5067 		}
5068 	}
5069 
5070 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
5071 		return 0;
5072 
5073 	if (ioc_state & MPI2_DOORBELL_USED) {
5074 		dhsprintk(ioc, pr_info(MPT3SAS_FMT
5075 			"unexpected doorbell active!\n",
5076 			ioc->name));
5077 		goto issue_diag_reset;
5078 	}
5079 
5080 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
5081 		mpt3sas_base_fault_info(ioc, ioc_state &
5082 		    MPI2_DOORBELL_DATA_MASK);
5083 		goto issue_diag_reset;
5084 	}
5085 
5086 	if (type == FORCE_BIG_HAMMER)
5087 		goto issue_diag_reset;
5088 
5089 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
5090 		if (!(_base_send_ioc_reset(ioc,
5091 		    MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
5092 			return 0;
5093 	}
5094 
5095  issue_diag_reset:
5096 	rc = _base_diag_reset(ioc);
5097 	return rc;
5098 }
5099 
5100 /**
5101  * _base_make_ioc_operational - put controller in OPERATIONAL state
5102  * @ioc: per adapter object
5103  *
5104  * Returns 0 for success, non-zero for failure.
5105  */
5106 static int
5107 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
5108 {
5109 	int r, i, index;
5110 	unsigned long	flags;
5111 	u32 reply_address;
5112 	u16 smid;
5113 	struct _tr_list *delayed_tr, *delayed_tr_next;
5114 	struct _sc_list *delayed_sc, *delayed_sc_next;
5115 	struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
5116 	u8 hide_flag;
5117 	struct adapter_reply_queue *reply_q;
5118 	Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
5119 
5120 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5121 	    __func__));
5122 
5123 	/* clean the delayed target reset list */
5124 	list_for_each_entry_safe(delayed_tr, delayed_tr_next,
5125 	    &ioc->delayed_tr_list, list) {
5126 		list_del(&delayed_tr->list);
5127 		kfree(delayed_tr);
5128 	}
5129 
5130 
5131 	list_for_each_entry_safe(delayed_tr, delayed_tr_next,
5132 	    &ioc->delayed_tr_volume_list, list) {
5133 		list_del(&delayed_tr->list);
5134 		kfree(delayed_tr);
5135 	}
5136 
5137 	list_for_each_entry_safe(delayed_sc, delayed_sc_next,
5138 	    &ioc->delayed_sc_list, list) {
5139 		list_del(&delayed_sc->list);
5140 		kfree(delayed_sc);
5141 	}
5142 
5143 	list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
5144 	    &ioc->delayed_event_ack_list, list) {
5145 		list_del(&delayed_event_ack->list);
5146 		kfree(delayed_event_ack);
5147 	}
5148 
5149 	/* initialize the scsi lookup free list */
5150 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
5151 	INIT_LIST_HEAD(&ioc->free_list);
5152 	smid = 1;
5153 	for (i = 0; i < ioc->scsiio_depth; i++, smid++) {
5154 		INIT_LIST_HEAD(&ioc->scsi_lookup[i].chain_list);
5155 		ioc->scsi_lookup[i].cb_idx = 0xFF;
5156 		ioc->scsi_lookup[i].smid = smid;
5157 		ioc->scsi_lookup[i].scmd = NULL;
5158 		ioc->scsi_lookup[i].direct_io = 0;
5159 		list_add_tail(&ioc->scsi_lookup[i].tracker_list,
5160 		    &ioc->free_list);
5161 	}
5162 
5163 	/* hi-priority queue */
5164 	INIT_LIST_HEAD(&ioc->hpr_free_list);
5165 	smid = ioc->hi_priority_smid;
5166 	for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
5167 		ioc->hpr_lookup[i].cb_idx = 0xFF;
5168 		ioc->hpr_lookup[i].smid = smid;
5169 		list_add_tail(&ioc->hpr_lookup[i].tracker_list,
5170 		    &ioc->hpr_free_list);
5171 	}
5172 
5173 	/* internal queue */
5174 	INIT_LIST_HEAD(&ioc->internal_free_list);
5175 	smid = ioc->internal_smid;
5176 	for (i = 0; i < ioc->internal_depth; i++, smid++) {
5177 		ioc->internal_lookup[i].cb_idx = 0xFF;
5178 		ioc->internal_lookup[i].smid = smid;
5179 		list_add_tail(&ioc->internal_lookup[i].tracker_list,
5180 		    &ioc->internal_free_list);
5181 	}
5182 
5183 	/* chain pool */
5184 	INIT_LIST_HEAD(&ioc->free_chain_list);
5185 	for (i = 0; i < ioc->chain_depth; i++)
5186 		list_add_tail(&ioc->chain_lookup[i].tracker_list,
5187 		    &ioc->free_chain_list);
5188 
5189 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
5190 
5191 	/* initialize Reply Free Queue */
5192 	for (i = 0, reply_address = (u32)ioc->reply_dma ;
5193 	    i < ioc->reply_free_queue_depth ; i++, reply_address +=
5194 	    ioc->reply_sz)
5195 		ioc->reply_free[i] = cpu_to_le32(reply_address);
5196 
5197 	/* initialize reply queues */
5198 	if (ioc->is_driver_loading)
5199 		_base_assign_reply_queues(ioc);
5200 
5201 	/* initialize Reply Post Free Queue */
5202 	index = 0;
5203 	reply_post_free_contig = ioc->reply_post[0].reply_post_free;
5204 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
5205 		/*
5206 		 * If RDPQ is enabled, switch to the next allocation.
5207 		 * Otherwise advance within the contiguous region.
5208 		 */
5209 		if (ioc->rdpq_array_enable) {
5210 			reply_q->reply_post_free =
5211 				ioc->reply_post[index++].reply_post_free;
5212 		} else {
5213 			reply_q->reply_post_free = reply_post_free_contig;
5214 			reply_post_free_contig += ioc->reply_post_queue_depth;
5215 		}
5216 
5217 		reply_q->reply_post_host_index = 0;
5218 		for (i = 0; i < ioc->reply_post_queue_depth; i++)
5219 			reply_q->reply_post_free[i].Words =
5220 			    cpu_to_le64(ULLONG_MAX);
5221 		if (!_base_is_controller_msix_enabled(ioc))
5222 			goto skip_init_reply_post_free_queue;
5223 	}
5224  skip_init_reply_post_free_queue:
5225 
5226 	r = _base_send_ioc_init(ioc);
5227 	if (r)
5228 		return r;
5229 
5230 	/* initialize reply free host index */
5231 	ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
5232 	writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
5233 
5234 	/* initialize reply post host index */
5235 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
5236 		if (ioc->combined_reply_queue)
5237 			writel((reply_q->msix_index & 7)<<
5238 			   MPI2_RPHI_MSIX_INDEX_SHIFT,
5239 			   ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
5240 		else
5241 			writel(reply_q->msix_index <<
5242 				MPI2_RPHI_MSIX_INDEX_SHIFT,
5243 				&ioc->chip->ReplyPostHostIndex);
5244 
5245 		if (!_base_is_controller_msix_enabled(ioc))
5246 			goto skip_init_reply_post_host_index;
5247 	}
5248 
5249  skip_init_reply_post_host_index:
5250 
5251 	_base_unmask_interrupts(ioc);
5252 	r = _base_event_notification(ioc);
5253 	if (r)
5254 		return r;
5255 
5256 	_base_static_config_pages(ioc);
5257 
5258 	if (ioc->is_driver_loading) {
5259 
5260 		if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
5261 		    == 0x80) {
5262 			hide_flag = (u8) (
5263 			    le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
5264 			    MFG_PAGE10_HIDE_SSDS_MASK);
5265 			if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
5266 				ioc->mfg_pg10_hide_flag = hide_flag;
5267 		}
5268 
5269 		ioc->wait_for_discovery_to_complete =
5270 		    _base_determine_wait_on_discovery(ioc);
5271 
5272 		return r; /* scan_start and scan_finished support */
5273 	}
5274 
5275 	r = _base_send_port_enable(ioc);
5276 	if (r)
5277 		return r;
5278 
5279 	return r;
5280 }
5281 
5282 /**
5283  * mpt3sas_base_free_resources - free resources controller resources
5284  * @ioc: per adapter object
5285  *
5286  * Return nothing.
5287  */
5288 void
5289 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
5290 {
5291 	dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5292 	    __func__));
5293 
5294 	/* synchronizing freeing resource with pci_access_mutex lock */
5295 	mutex_lock(&ioc->pci_access_mutex);
5296 	if (ioc->chip_phys && ioc->chip) {
5297 		_base_mask_interrupts(ioc);
5298 		ioc->shost_recovery = 1;
5299 		_base_make_ioc_ready(ioc, SOFT_RESET);
5300 		ioc->shost_recovery = 0;
5301 	}
5302 
5303 	mpt3sas_base_unmap_resources(ioc);
5304 	mutex_unlock(&ioc->pci_access_mutex);
5305 	return;
5306 }
5307 
5308 /**
5309  * mpt3sas_base_attach - attach controller instance
5310  * @ioc: per adapter object
5311  *
5312  * Returns 0 for success, non-zero for failure.
5313  */
5314 int
5315 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
5316 {
5317 	int r, i;
5318 	int cpu_id, last_cpu_id = 0;
5319 
5320 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5321 	    __func__));
5322 
5323 	/* setup cpu_msix_table */
5324 	ioc->cpu_count = num_online_cpus();
5325 	for_each_online_cpu(cpu_id)
5326 		last_cpu_id = cpu_id;
5327 	ioc->cpu_msix_table_sz = last_cpu_id + 1;
5328 	ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
5329 	ioc->reply_queue_count = 1;
5330 	if (!ioc->cpu_msix_table) {
5331 		dfailprintk(ioc, pr_info(MPT3SAS_FMT
5332 			"allocation for cpu_msix_table failed!!!\n",
5333 			ioc->name));
5334 		r = -ENOMEM;
5335 		goto out_free_resources;
5336 	}
5337 
5338 	if (ioc->is_warpdrive) {
5339 		ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
5340 		    sizeof(resource_size_t *), GFP_KERNEL);
5341 		if (!ioc->reply_post_host_index) {
5342 			dfailprintk(ioc, pr_info(MPT3SAS_FMT "allocation "
5343 				"for reply_post_host_index failed!!!\n",
5344 				ioc->name));
5345 			r = -ENOMEM;
5346 			goto out_free_resources;
5347 		}
5348 	}
5349 
5350 	ioc->rdpq_array_enable_assigned = 0;
5351 	ioc->dma_mask = 0;
5352 	r = mpt3sas_base_map_resources(ioc);
5353 	if (r)
5354 		goto out_free_resources;
5355 
5356 	pci_set_drvdata(ioc->pdev, ioc->shost);
5357 	r = _base_get_ioc_facts(ioc);
5358 	if (r)
5359 		goto out_free_resources;
5360 
5361 	switch (ioc->hba_mpi_version_belonged) {
5362 	case MPI2_VERSION:
5363 		ioc->build_sg_scmd = &_base_build_sg_scmd;
5364 		ioc->build_sg = &_base_build_sg;
5365 		ioc->build_zero_len_sge = &_base_build_zero_len_sge;
5366 		break;
5367 	case MPI25_VERSION:
5368 	case MPI26_VERSION:
5369 		/*
5370 		 * In SAS3.0,
5371 		 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
5372 		 * Target Status - all require the IEEE formated scatter gather
5373 		 * elements.
5374 		 */
5375 		ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
5376 		ioc->build_sg = &_base_build_sg_ieee;
5377 		ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
5378 		ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
5379 
5380 		break;
5381 	}
5382 
5383 	if (ioc->atomic_desc_capable) {
5384 		ioc->put_smid_default = &_base_put_smid_default_atomic;
5385 		ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic;
5386 		ioc->put_smid_fast_path = &_base_put_smid_fast_path_atomic;
5387 		ioc->put_smid_hi_priority = &_base_put_smid_hi_priority_atomic;
5388 	} else {
5389 		ioc->put_smid_default = &_base_put_smid_default;
5390 		ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
5391 		ioc->put_smid_fast_path = &_base_put_smid_fast_path;
5392 		ioc->put_smid_hi_priority = &_base_put_smid_hi_priority;
5393 	}
5394 
5395 
5396 	/*
5397 	 * These function pointers for other requests that don't
5398 	 * the require IEEE scatter gather elements.
5399 	 *
5400 	 * For example Configuration Pages and SAS IOUNIT Control don't.
5401 	 */
5402 	ioc->build_sg_mpi = &_base_build_sg;
5403 	ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
5404 
5405 	r = _base_make_ioc_ready(ioc, SOFT_RESET);
5406 	if (r)
5407 		goto out_free_resources;
5408 
5409 	ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
5410 	    sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
5411 	if (!ioc->pfacts) {
5412 		r = -ENOMEM;
5413 		goto out_free_resources;
5414 	}
5415 
5416 	for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
5417 		r = _base_get_port_facts(ioc, i);
5418 		if (r)
5419 			goto out_free_resources;
5420 	}
5421 
5422 	r = _base_allocate_memory_pools(ioc);
5423 	if (r)
5424 		goto out_free_resources;
5425 
5426 	init_waitqueue_head(&ioc->reset_wq);
5427 
5428 	/* allocate memory pd handle bitmask list */
5429 	ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
5430 	if (ioc->facts.MaxDevHandle % 8)
5431 		ioc->pd_handles_sz++;
5432 	ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
5433 	    GFP_KERNEL);
5434 	if (!ioc->pd_handles) {
5435 		r = -ENOMEM;
5436 		goto out_free_resources;
5437 	}
5438 	ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
5439 	    GFP_KERNEL);
5440 	if (!ioc->blocking_handles) {
5441 		r = -ENOMEM;
5442 		goto out_free_resources;
5443 	}
5444 
5445 	/* allocate memory for pending OS device add list */
5446 	ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
5447 	if (ioc->facts.MaxDevHandle % 8)
5448 		ioc->pend_os_device_add_sz++;
5449 	ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
5450 	    GFP_KERNEL);
5451 	if (!ioc->pend_os_device_add)
5452 		goto out_free_resources;
5453 
5454 	ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
5455 	ioc->device_remove_in_progress =
5456 		kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
5457 	if (!ioc->device_remove_in_progress)
5458 		goto out_free_resources;
5459 
5460 	ioc->fwfault_debug = mpt3sas_fwfault_debug;
5461 
5462 	/* base internal command bits */
5463 	mutex_init(&ioc->base_cmds.mutex);
5464 	ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5465 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5466 
5467 	/* port_enable command bits */
5468 	ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5469 	ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
5470 
5471 	/* transport internal command bits */
5472 	ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5473 	ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
5474 	mutex_init(&ioc->transport_cmds.mutex);
5475 
5476 	/* scsih internal command bits */
5477 	ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5478 	ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
5479 	mutex_init(&ioc->scsih_cmds.mutex);
5480 
5481 	/* task management internal command bits */
5482 	ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5483 	ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
5484 	mutex_init(&ioc->tm_cmds.mutex);
5485 
5486 	/* config page internal command bits */
5487 	ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5488 	ioc->config_cmds.status = MPT3_CMD_NOT_USED;
5489 	mutex_init(&ioc->config_cmds.mutex);
5490 
5491 	/* ctl module internal command bits */
5492 	ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5493 	ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
5494 	ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
5495 	mutex_init(&ioc->ctl_cmds.mutex);
5496 
5497 	if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
5498 	    !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
5499 	    !ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
5500 	    !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) {
5501 		r = -ENOMEM;
5502 		goto out_free_resources;
5503 	}
5504 
5505 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
5506 		ioc->event_masks[i] = -1;
5507 
5508 	/* here we enable the events we care about */
5509 	_base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
5510 	_base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
5511 	_base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
5512 	_base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
5513 	_base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
5514 	_base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
5515 	_base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
5516 	_base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
5517 	_base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
5518 	_base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
5519 	_base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
5520 	if (ioc->hba_mpi_version_belonged == MPI26_VERSION)
5521 		_base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
5522 
5523 	r = _base_make_ioc_operational(ioc);
5524 	if (r)
5525 		goto out_free_resources;
5526 
5527 	ioc->non_operational_loop = 0;
5528 	ioc->got_task_abort_from_ioctl = 0;
5529 	return 0;
5530 
5531  out_free_resources:
5532 
5533 	ioc->remove_host = 1;
5534 
5535 	mpt3sas_base_free_resources(ioc);
5536 	_base_release_memory_pools(ioc);
5537 	pci_set_drvdata(ioc->pdev, NULL);
5538 	kfree(ioc->cpu_msix_table);
5539 	if (ioc->is_warpdrive)
5540 		kfree(ioc->reply_post_host_index);
5541 	kfree(ioc->pd_handles);
5542 	kfree(ioc->blocking_handles);
5543 	kfree(ioc->device_remove_in_progress);
5544 	kfree(ioc->pend_os_device_add);
5545 	kfree(ioc->tm_cmds.reply);
5546 	kfree(ioc->transport_cmds.reply);
5547 	kfree(ioc->scsih_cmds.reply);
5548 	kfree(ioc->config_cmds.reply);
5549 	kfree(ioc->base_cmds.reply);
5550 	kfree(ioc->port_enable_cmds.reply);
5551 	kfree(ioc->ctl_cmds.reply);
5552 	kfree(ioc->ctl_cmds.sense);
5553 	kfree(ioc->pfacts);
5554 	ioc->ctl_cmds.reply = NULL;
5555 	ioc->base_cmds.reply = NULL;
5556 	ioc->tm_cmds.reply = NULL;
5557 	ioc->scsih_cmds.reply = NULL;
5558 	ioc->transport_cmds.reply = NULL;
5559 	ioc->config_cmds.reply = NULL;
5560 	ioc->pfacts = NULL;
5561 	return r;
5562 }
5563 
5564 
5565 /**
5566  * mpt3sas_base_detach - remove controller instance
5567  * @ioc: per adapter object
5568  *
5569  * Return nothing.
5570  */
5571 void
5572 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
5573 {
5574 	dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5575 	    __func__));
5576 
5577 	mpt3sas_base_stop_watchdog(ioc);
5578 	mpt3sas_base_free_resources(ioc);
5579 	_base_release_memory_pools(ioc);
5580 	pci_set_drvdata(ioc->pdev, NULL);
5581 	kfree(ioc->cpu_msix_table);
5582 	if (ioc->is_warpdrive)
5583 		kfree(ioc->reply_post_host_index);
5584 	kfree(ioc->pd_handles);
5585 	kfree(ioc->blocking_handles);
5586 	kfree(ioc->device_remove_in_progress);
5587 	kfree(ioc->pend_os_device_add);
5588 	kfree(ioc->pfacts);
5589 	kfree(ioc->ctl_cmds.reply);
5590 	kfree(ioc->ctl_cmds.sense);
5591 	kfree(ioc->base_cmds.reply);
5592 	kfree(ioc->port_enable_cmds.reply);
5593 	kfree(ioc->tm_cmds.reply);
5594 	kfree(ioc->transport_cmds.reply);
5595 	kfree(ioc->scsih_cmds.reply);
5596 	kfree(ioc->config_cmds.reply);
5597 }
5598 
5599 /**
5600  * _base_reset_handler - reset callback handler (for base)
5601  * @ioc: per adapter object
5602  * @reset_phase: phase
5603  *
5604  * The handler for doing any required cleanup or initialization.
5605  *
5606  * The reset phase can be MPT3_IOC_PRE_RESET, MPT3_IOC_AFTER_RESET,
5607  * MPT3_IOC_DONE_RESET
5608  *
5609  * Return nothing.
5610  */
5611 static void
5612 _base_reset_handler(struct MPT3SAS_ADAPTER *ioc, int reset_phase)
5613 {
5614 	mpt3sas_scsih_reset_handler(ioc, reset_phase);
5615 	mpt3sas_ctl_reset_handler(ioc, reset_phase);
5616 	switch (reset_phase) {
5617 	case MPT3_IOC_PRE_RESET:
5618 		dtmprintk(ioc, pr_info(MPT3SAS_FMT
5619 		"%s: MPT3_IOC_PRE_RESET\n", ioc->name, __func__));
5620 		break;
5621 	case MPT3_IOC_AFTER_RESET:
5622 		dtmprintk(ioc, pr_info(MPT3SAS_FMT
5623 		"%s: MPT3_IOC_AFTER_RESET\n", ioc->name, __func__));
5624 		if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
5625 			ioc->transport_cmds.status |= MPT3_CMD_RESET;
5626 			mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
5627 			complete(&ioc->transport_cmds.done);
5628 		}
5629 		if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
5630 			ioc->base_cmds.status |= MPT3_CMD_RESET;
5631 			mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
5632 			complete(&ioc->base_cmds.done);
5633 		}
5634 		if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
5635 			ioc->port_enable_failed = 1;
5636 			ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
5637 			mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
5638 			if (ioc->is_driver_loading) {
5639 				ioc->start_scan_failed =
5640 				    MPI2_IOCSTATUS_INTERNAL_ERROR;
5641 				ioc->start_scan = 0;
5642 				ioc->port_enable_cmds.status =
5643 				    MPT3_CMD_NOT_USED;
5644 			} else
5645 				complete(&ioc->port_enable_cmds.done);
5646 		}
5647 		if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
5648 			ioc->config_cmds.status |= MPT3_CMD_RESET;
5649 			mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
5650 			ioc->config_cmds.smid = USHRT_MAX;
5651 			complete(&ioc->config_cmds.done);
5652 		}
5653 		break;
5654 	case MPT3_IOC_DONE_RESET:
5655 		dtmprintk(ioc, pr_info(MPT3SAS_FMT
5656 			"%s: MPT3_IOC_DONE_RESET\n", ioc->name, __func__));
5657 		break;
5658 	}
5659 }
5660 
5661 /**
5662  * _wait_for_commands_to_complete - reset controller
5663  * @ioc: Pointer to MPT_ADAPTER structure
5664  *
5665  * This function waiting(3s) for all pending commands to complete
5666  * prior to putting controller in reset.
5667  */
5668 static void
5669 _wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
5670 {
5671 	u32 ioc_state;
5672 	unsigned long flags;
5673 	u16 i;
5674 
5675 	ioc->pending_io_count = 0;
5676 
5677 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5678 	if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
5679 		return;
5680 
5681 	/* pending command count */
5682 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
5683 	for (i = 0; i < ioc->scsiio_depth; i++)
5684 		if (ioc->scsi_lookup[i].cb_idx != 0xFF)
5685 			ioc->pending_io_count++;
5686 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
5687 
5688 	if (!ioc->pending_io_count)
5689 		return;
5690 
5691 	/* wait for pending commands to complete */
5692 	wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
5693 }
5694 
5695 /**
5696  * mpt3sas_base_hard_reset_handler - reset controller
5697  * @ioc: Pointer to MPT_ADAPTER structure
5698  * @type: FORCE_BIG_HAMMER or SOFT_RESET
5699  *
5700  * Returns 0 for success, non-zero for failure.
5701  */
5702 int
5703 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
5704 	enum reset_type type)
5705 {
5706 	int r;
5707 	unsigned long flags;
5708 	u32 ioc_state;
5709 	u8 is_fault = 0, is_trigger = 0;
5710 
5711 	dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: enter\n", ioc->name,
5712 	    __func__));
5713 
5714 	if (ioc->pci_error_recovery) {
5715 		pr_err(MPT3SAS_FMT "%s: pci error recovery reset\n",
5716 		    ioc->name, __func__);
5717 		r = 0;
5718 		goto out_unlocked;
5719 	}
5720 
5721 	if (mpt3sas_fwfault_debug)
5722 		mpt3sas_halt_firmware(ioc);
5723 
5724 	/* wait for an active reset in progress to complete */
5725 	if (!mutex_trylock(&ioc->reset_in_progress_mutex)) {
5726 		do {
5727 			ssleep(1);
5728 		} while (ioc->shost_recovery == 1);
5729 		dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
5730 		    __func__));
5731 		return ioc->ioc_reset_in_progress_status;
5732 	}
5733 
5734 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5735 	ioc->shost_recovery = 1;
5736 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5737 
5738 	if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
5739 	    MPT3_DIAG_BUFFER_IS_REGISTERED) &&
5740 	    (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
5741 	    MPT3_DIAG_BUFFER_IS_RELEASED))) {
5742 		is_trigger = 1;
5743 		ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5744 		if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
5745 			is_fault = 1;
5746 	}
5747 	_base_reset_handler(ioc, MPT3_IOC_PRE_RESET);
5748 	_wait_for_commands_to_complete(ioc);
5749 	_base_mask_interrupts(ioc);
5750 	r = _base_make_ioc_ready(ioc, type);
5751 	if (r)
5752 		goto out;
5753 	_base_reset_handler(ioc, MPT3_IOC_AFTER_RESET);
5754 
5755 	/* If this hard reset is called while port enable is active, then
5756 	 * there is no reason to call make_ioc_operational
5757 	 */
5758 	if (ioc->is_driver_loading && ioc->port_enable_failed) {
5759 		ioc->remove_host = 1;
5760 		r = -EFAULT;
5761 		goto out;
5762 	}
5763 	r = _base_get_ioc_facts(ioc);
5764 	if (r)
5765 		goto out;
5766 
5767 	if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
5768 		panic("%s: Issue occurred with flashing controller firmware."
5769 		      "Please reboot the system and ensure that the correct"
5770 		      " firmware version is running\n", ioc->name);
5771 
5772 	r = _base_make_ioc_operational(ioc);
5773 	if (!r)
5774 		_base_reset_handler(ioc, MPT3_IOC_DONE_RESET);
5775 
5776  out:
5777 	dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: %s\n",
5778 	    ioc->name, __func__, ((r == 0) ? "SUCCESS" : "FAILED")));
5779 
5780 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5781 	ioc->ioc_reset_in_progress_status = r;
5782 	ioc->shost_recovery = 0;
5783 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5784 	ioc->ioc_reset_count++;
5785 	mutex_unlock(&ioc->reset_in_progress_mutex);
5786 
5787  out_unlocked:
5788 	if ((r == 0) && is_trigger) {
5789 		if (is_fault)
5790 			mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
5791 		else
5792 			mpt3sas_trigger_master(ioc,
5793 			    MASTER_TRIGGER_ADAPTER_RESET);
5794 	}
5795 	dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
5796 	    __func__));
5797 	return r;
5798 }
5799