1 /* 2 * This is the Fusion MPT base driver providing common API layer interface 3 * for access to MPT (Message Passing Technology) firmware. 4 * 5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c 6 * Copyright (C) 2012-2014 LSI Corporation 7 * Copyright (C) 2013-2014 Avago Technologies 8 * (mailto: MPT-FusionLinux.pdl@avagotech.com) 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License 12 * as published by the Free Software Foundation; either version 2 13 * of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * NO WARRANTY 21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR 22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT 23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, 24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is 25 * solely responsible for determining the appropriateness of using and 26 * distributing the Program and assumes all risks associated with its 27 * exercise of rights under this Agreement, including but not limited to 28 * the risks and costs of program errors, damage to or loss of data, 29 * programs or equipment, and unavailability or interruption of operations. 30 31 * DISCLAIMER OF LIABILITY 32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY 33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND 35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED 38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES 39 40 * You should have received a copy of the GNU General Public License 41 * along with this program; if not, write to the Free Software 42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, 43 * USA. 44 */ 45 46 #include <linux/kernel.h> 47 #include <linux/module.h> 48 #include <linux/errno.h> 49 #include <linux/init.h> 50 #include <linux/slab.h> 51 #include <linux/types.h> 52 #include <linux/pci.h> 53 #include <linux/kdev_t.h> 54 #include <linux/blkdev.h> 55 #include <linux/delay.h> 56 #include <linux/interrupt.h> 57 #include <linux/dma-mapping.h> 58 #include <linux/io.h> 59 #include <linux/time.h> 60 #include <linux/ktime.h> 61 #include <linux/kthread.h> 62 #include <asm/page.h> /* To get host page size per arch */ 63 #include <linux/aer.h> 64 65 66 #include "mpt3sas_base.h" 67 68 static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS]; 69 70 71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */ 72 73 /* maximum controller queue depth */ 74 #define MAX_HBA_QUEUE_DEPTH 30000 75 #define MAX_CHAIN_DEPTH 100000 76 static int max_queue_depth = -1; 77 module_param(max_queue_depth, int, 0444); 78 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth "); 79 80 static int max_sgl_entries = -1; 81 module_param(max_sgl_entries, int, 0444); 82 MODULE_PARM_DESC(max_sgl_entries, " max sg entries "); 83 84 static int msix_disable = -1; 85 module_param(msix_disable, int, 0444); 86 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)"); 87 88 static int smp_affinity_enable = 1; 89 module_param(smp_affinity_enable, int, 0444); 90 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)"); 91 92 static int max_msix_vectors = -1; 93 module_param(max_msix_vectors, int, 0444); 94 MODULE_PARM_DESC(max_msix_vectors, 95 " max msix vectors"); 96 97 static int irqpoll_weight = -1; 98 module_param(irqpoll_weight, int, 0444); 99 MODULE_PARM_DESC(irqpoll_weight, 100 "irq poll weight (default= one fourth of HBA queue depth)"); 101 102 static int mpt3sas_fwfault_debug; 103 MODULE_PARM_DESC(mpt3sas_fwfault_debug, 104 " enable detection of firmware fault and halt firmware - (default=0)"); 105 106 static int perf_mode = -1; 107 module_param(perf_mode, int, 0444); 108 MODULE_PARM_DESC(perf_mode, 109 "Performance mode (only for Aero/Sea Generation), options:\n\t\t" 110 "0 - balanced: high iops mode is enabled &\n\t\t" 111 "interrupt coalescing is enabled only on high iops queues,\n\t\t" 112 "1 - iops: high iops mode is disabled &\n\t\t" 113 "interrupt coalescing is enabled on all queues,\n\t\t" 114 "2 - latency: high iops mode is disabled &\n\t\t" 115 "interrupt coalescing is enabled on all queues with timeout value 0xA,\n" 116 "\t\tdefault - default perf_mode is 'balanced'" 117 ); 118 119 enum mpt3sas_perf_mode { 120 MPT_PERF_MODE_DEFAULT = -1, 121 MPT_PERF_MODE_BALANCED = 0, 122 MPT_PERF_MODE_IOPS = 1, 123 MPT_PERF_MODE_LATENCY = 2, 124 }; 125 126 static int 127 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc); 128 129 /** 130 * mpt3sas_base_check_cmd_timeout - Function 131 * to check timeout and command termination due 132 * to Host reset. 133 * 134 * @ioc: per adapter object. 135 * @status: Status of issued command. 136 * @mpi_request:mf request pointer. 137 * @sz: size of buffer. 138 * 139 * @Returns - 1/0 Reset to be done or Not 140 */ 141 u8 142 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc, 143 u8 status, void *mpi_request, int sz) 144 { 145 u8 issue_reset = 0; 146 147 if (!(status & MPT3_CMD_RESET)) 148 issue_reset = 1; 149 150 ioc_err(ioc, "Command %s\n", 151 issue_reset == 0 ? "terminated due to Host Reset" : "Timeout"); 152 _debug_dump_mf(mpi_request, sz); 153 154 return issue_reset; 155 } 156 157 /** 158 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug. 159 * @val: ? 160 * @kp: ? 161 * 162 * Return: ? 163 */ 164 static int 165 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp) 166 { 167 int ret = param_set_int(val, kp); 168 struct MPT3SAS_ADAPTER *ioc; 169 170 if (ret) 171 return ret; 172 173 /* global ioc spinlock to protect controller list on list operations */ 174 pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug); 175 spin_lock(&gioc_lock); 176 list_for_each_entry(ioc, &mpt3sas_ioc_list, list) 177 ioc->fwfault_debug = mpt3sas_fwfault_debug; 178 spin_unlock(&gioc_lock); 179 return 0; 180 } 181 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug, 182 param_get_int, &mpt3sas_fwfault_debug, 0644); 183 184 /** 185 * _base_readl_aero - retry readl for max three times. 186 * @addr - MPT Fusion system interface register address 187 * 188 * Retry the readl() for max three times if it gets zero value 189 * while reading the system interface register. 190 */ 191 static inline u32 192 _base_readl_aero(const volatile void __iomem *addr) 193 { 194 u32 i = 0, ret_val; 195 196 do { 197 ret_val = readl(addr); 198 i++; 199 } while (ret_val == 0 && i < 3); 200 201 return ret_val; 202 } 203 204 static inline u32 205 _base_readl(const volatile void __iomem *addr) 206 { 207 return readl(addr); 208 } 209 210 /** 211 * _base_clone_reply_to_sys_mem - copies reply to reply free iomem 212 * in BAR0 space. 213 * 214 * @ioc: per adapter object 215 * @reply: reply message frame(lower 32bit addr) 216 * @index: System request message index. 217 */ 218 static void 219 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply, 220 u32 index) 221 { 222 /* 223 * 256 is offset within sys register. 224 * 256 offset MPI frame starts. Max MPI frame supported is 32. 225 * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts 226 */ 227 u16 cmd_credit = ioc->facts.RequestCredit + 1; 228 void __iomem *reply_free_iomem = (void __iomem *)ioc->chip + 229 MPI_FRAME_START_OFFSET + 230 (cmd_credit * ioc->request_sz) + (index * sizeof(u32)); 231 232 writel(reply, reply_free_iomem); 233 } 234 235 /** 236 * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames 237 * to system/BAR0 region. 238 * 239 * @dst_iomem: Pointer to the destination location in BAR0 space. 240 * @src: Pointer to the Source data. 241 * @size: Size of data to be copied. 242 */ 243 static void 244 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size) 245 { 246 int i; 247 u32 *src_virt_mem = (u32 *)src; 248 249 for (i = 0; i < size/4; i++) 250 writel((u32)src_virt_mem[i], 251 (void __iomem *)dst_iomem + (i * 4)); 252 } 253 254 /** 255 * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region 256 * 257 * @dst_iomem: Pointer to the destination location in BAR0 space. 258 * @src: Pointer to the Source data. 259 * @size: Size of data to be copied. 260 */ 261 static void 262 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size) 263 { 264 int i; 265 u32 *src_virt_mem = (u32 *)(src); 266 267 for (i = 0; i < size/4; i++) 268 writel((u32)src_virt_mem[i], 269 (void __iomem *)dst_iomem + (i * 4)); 270 } 271 272 /** 273 * _base_get_chain - Calculates and Returns virtual chain address 274 * for the provided smid in BAR0 space. 275 * 276 * @ioc: per adapter object 277 * @smid: system request message index 278 * @sge_chain_count: Scatter gather chain count. 279 * 280 * Return: the chain address. 281 */ 282 static inline void __iomem* 283 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid, 284 u8 sge_chain_count) 285 { 286 void __iomem *base_chain, *chain_virt; 287 u16 cmd_credit = ioc->facts.RequestCredit + 1; 288 289 base_chain = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET + 290 (cmd_credit * ioc->request_sz) + 291 REPLY_FREE_POOL_SIZE; 292 chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth * 293 ioc->request_sz) + (sge_chain_count * ioc->request_sz); 294 return chain_virt; 295 } 296 297 /** 298 * _base_get_chain_phys - Calculates and Returns physical address 299 * in BAR0 for scatter gather chains, for 300 * the provided smid. 301 * 302 * @ioc: per adapter object 303 * @smid: system request message index 304 * @sge_chain_count: Scatter gather chain count. 305 * 306 * Return: Physical chain address. 307 */ 308 static inline phys_addr_t 309 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid, 310 u8 sge_chain_count) 311 { 312 phys_addr_t base_chain_phys, chain_phys; 313 u16 cmd_credit = ioc->facts.RequestCredit + 1; 314 315 base_chain_phys = ioc->chip_phys + MPI_FRAME_START_OFFSET + 316 (cmd_credit * ioc->request_sz) + 317 REPLY_FREE_POOL_SIZE; 318 chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth * 319 ioc->request_sz) + (sge_chain_count * ioc->request_sz); 320 return chain_phys; 321 } 322 323 /** 324 * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host 325 * buffer address for the provided smid. 326 * (Each smid can have 64K starts from 17024) 327 * 328 * @ioc: per adapter object 329 * @smid: system request message index 330 * 331 * Return: Pointer to buffer location in BAR0. 332 */ 333 334 static void __iomem * 335 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid) 336 { 337 u16 cmd_credit = ioc->facts.RequestCredit + 1; 338 // Added extra 1 to reach end of chain. 339 void __iomem *chain_end = _base_get_chain(ioc, 340 cmd_credit + 1, 341 ioc->facts.MaxChainDepth); 342 return chain_end + (smid * 64 * 1024); 343 } 344 345 /** 346 * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped 347 * Host buffer Physical address for the provided smid. 348 * (Each smid can have 64K starts from 17024) 349 * 350 * @ioc: per adapter object 351 * @smid: system request message index 352 * 353 * Return: Pointer to buffer location in BAR0. 354 */ 355 static phys_addr_t 356 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid) 357 { 358 u16 cmd_credit = ioc->facts.RequestCredit + 1; 359 phys_addr_t chain_end_phys = _base_get_chain_phys(ioc, 360 cmd_credit + 1, 361 ioc->facts.MaxChainDepth); 362 return chain_end_phys + (smid * 64 * 1024); 363 } 364 365 /** 366 * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain 367 * lookup list and Provides chain_buffer 368 * address for the matching dma address. 369 * (Each smid can have 64K starts from 17024) 370 * 371 * @ioc: per adapter object 372 * @chain_buffer_dma: Chain buffer dma address. 373 * 374 * Return: Pointer to chain buffer. Or Null on Failure. 375 */ 376 static void * 377 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc, 378 dma_addr_t chain_buffer_dma) 379 { 380 u16 index, j; 381 struct chain_tracker *ct; 382 383 for (index = 0; index < ioc->scsiio_depth; index++) { 384 for (j = 0; j < ioc->chains_needed_per_io; j++) { 385 ct = &ioc->chain_lookup[index].chains_per_smid[j]; 386 if (ct && ct->chain_buffer_dma == chain_buffer_dma) 387 return ct->chain_buffer; 388 } 389 } 390 ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n"); 391 return NULL; 392 } 393 394 /** 395 * _clone_sg_entries - MPI EP's scsiio and config requests 396 * are handled here. Base function for 397 * double buffering, before submitting 398 * the requests. 399 * 400 * @ioc: per adapter object. 401 * @mpi_request: mf request pointer. 402 * @smid: system request message index. 403 */ 404 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc, 405 void *mpi_request, u16 smid) 406 { 407 Mpi2SGESimple32_t *sgel, *sgel_next; 408 u32 sgl_flags, sge_chain_count = 0; 409 bool is_write = 0; 410 u16 i = 0; 411 void __iomem *buffer_iomem; 412 phys_addr_t buffer_iomem_phys; 413 void __iomem *buff_ptr; 414 phys_addr_t buff_ptr_phys; 415 void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO]; 416 void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO]; 417 phys_addr_t dst_addr_phys; 418 MPI2RequestHeader_t *request_hdr; 419 struct scsi_cmnd *scmd; 420 struct scatterlist *sg_scmd = NULL; 421 int is_scsiio_req = 0; 422 423 request_hdr = (MPI2RequestHeader_t *) mpi_request; 424 425 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) { 426 Mpi25SCSIIORequest_t *scsiio_request = 427 (Mpi25SCSIIORequest_t *)mpi_request; 428 sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL; 429 is_scsiio_req = 1; 430 } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) { 431 Mpi2ConfigRequest_t *config_req = 432 (Mpi2ConfigRequest_t *)mpi_request; 433 sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE; 434 } else 435 return; 436 437 /* From smid we can get scsi_cmd, once we have sg_scmd, 438 * we just need to get sg_virt and sg_next to get virual 439 * address associated with sgel->Address. 440 */ 441 442 if (is_scsiio_req) { 443 /* Get scsi_cmd using smid */ 444 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid); 445 if (scmd == NULL) { 446 ioc_err(ioc, "scmd is NULL\n"); 447 return; 448 } 449 450 /* Get sg_scmd from scmd provided */ 451 sg_scmd = scsi_sglist(scmd); 452 } 453 454 /* 455 * 0 - 255 System register 456 * 256 - 4352 MPI Frame. (This is based on maxCredit 32) 457 * 4352 - 4864 Reply_free pool (512 byte is reserved 458 * considering maxCredit 32. Reply need extra 459 * room, for mCPU case kept four times of 460 * maxCredit). 461 * 4864 - 17152 SGE chain element. (32cmd * 3 chain of 462 * 128 byte size = 12288) 463 * 17152 - x Host buffer mapped with smid. 464 * (Each smid can have 64K Max IO.) 465 * BAR0+Last 1K MSIX Addr and Data 466 * Total size in use 2113664 bytes of 4MB BAR0 467 */ 468 469 buffer_iomem = _base_get_buffer_bar0(ioc, smid); 470 buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid); 471 472 buff_ptr = buffer_iomem; 473 buff_ptr_phys = buffer_iomem_phys; 474 WARN_ON(buff_ptr_phys > U32_MAX); 475 476 if (le32_to_cpu(sgel->FlagsLength) & 477 (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT)) 478 is_write = 1; 479 480 for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) { 481 482 sgl_flags = 483 (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT); 484 485 switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) { 486 case MPI2_SGE_FLAGS_CHAIN_ELEMENT: 487 /* 488 * Helper function which on passing 489 * chain_buffer_dma returns chain_buffer. Get 490 * the virtual address for sgel->Address 491 */ 492 sgel_next = 493 _base_get_chain_buffer_dma_to_chain_buffer(ioc, 494 le32_to_cpu(sgel->Address)); 495 if (sgel_next == NULL) 496 return; 497 /* 498 * This is coping 128 byte chain 499 * frame (not a host buffer) 500 */ 501 dst_chain_addr[sge_chain_count] = 502 _base_get_chain(ioc, 503 smid, sge_chain_count); 504 src_chain_addr[sge_chain_count] = 505 (void *) sgel_next; 506 dst_addr_phys = _base_get_chain_phys(ioc, 507 smid, sge_chain_count); 508 WARN_ON(dst_addr_phys > U32_MAX); 509 sgel->Address = 510 cpu_to_le32(lower_32_bits(dst_addr_phys)); 511 sgel = sgel_next; 512 sge_chain_count++; 513 break; 514 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT: 515 if (is_write) { 516 if (is_scsiio_req) { 517 _base_clone_to_sys_mem(buff_ptr, 518 sg_virt(sg_scmd), 519 (le32_to_cpu(sgel->FlagsLength) & 520 0x00ffffff)); 521 /* 522 * FIXME: this relies on a a zero 523 * PCI mem_offset. 524 */ 525 sgel->Address = 526 cpu_to_le32((u32)buff_ptr_phys); 527 } else { 528 _base_clone_to_sys_mem(buff_ptr, 529 ioc->config_vaddr, 530 (le32_to_cpu(sgel->FlagsLength) & 531 0x00ffffff)); 532 sgel->Address = 533 cpu_to_le32((u32)buff_ptr_phys); 534 } 535 } 536 buff_ptr += (le32_to_cpu(sgel->FlagsLength) & 537 0x00ffffff); 538 buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) & 539 0x00ffffff); 540 if ((le32_to_cpu(sgel->FlagsLength) & 541 (MPI2_SGE_FLAGS_END_OF_BUFFER 542 << MPI2_SGE_FLAGS_SHIFT))) 543 goto eob_clone_chain; 544 else { 545 /* 546 * Every single element in MPT will have 547 * associated sg_next. Better to sanity that 548 * sg_next is not NULL, but it will be a bug 549 * if it is null. 550 */ 551 if (is_scsiio_req) { 552 sg_scmd = sg_next(sg_scmd); 553 if (sg_scmd) 554 sgel++; 555 else 556 goto eob_clone_chain; 557 } 558 } 559 break; 560 } 561 } 562 563 eob_clone_chain: 564 for (i = 0; i < sge_chain_count; i++) { 565 if (is_scsiio_req) 566 _base_clone_to_sys_mem(dst_chain_addr[i], 567 src_chain_addr[i], ioc->request_sz); 568 } 569 } 570 571 /** 572 * mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc 573 * @arg: input argument, used to derive ioc 574 * 575 * Return: 576 * 0 if controller is removed from pci subsystem. 577 * -1 for other case. 578 */ 579 static int mpt3sas_remove_dead_ioc_func(void *arg) 580 { 581 struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg; 582 struct pci_dev *pdev; 583 584 if (!ioc) 585 return -1; 586 587 pdev = ioc->pdev; 588 if (!pdev) 589 return -1; 590 pci_stop_and_remove_bus_device_locked(pdev); 591 return 0; 592 } 593 594 /** 595 * _base_fault_reset_work - workq handling ioc fault conditions 596 * @work: input argument, used to derive ioc 597 * 598 * Context: sleep. 599 */ 600 static void 601 _base_fault_reset_work(struct work_struct *work) 602 { 603 struct MPT3SAS_ADAPTER *ioc = 604 container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work); 605 unsigned long flags; 606 u32 doorbell; 607 int rc; 608 struct task_struct *p; 609 610 611 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 612 if (ioc->shost_recovery || ioc->pci_error_recovery) 613 goto rearm_timer; 614 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 615 616 doorbell = mpt3sas_base_get_iocstate(ioc, 0); 617 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) { 618 ioc_err(ioc, "SAS host is non-operational !!!!\n"); 619 620 /* It may be possible that EEH recovery can resolve some of 621 * pci bus failure issues rather removing the dead ioc function 622 * by considering controller is in a non-operational state. So 623 * here priority is given to the EEH recovery. If it doesn't 624 * not resolve this issue, mpt3sas driver will consider this 625 * controller to non-operational state and remove the dead ioc 626 * function. 627 */ 628 if (ioc->non_operational_loop++ < 5) { 629 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, 630 flags); 631 goto rearm_timer; 632 } 633 634 /* 635 * Call _scsih_flush_pending_cmds callback so that we flush all 636 * pending commands back to OS. This call is required to aovid 637 * deadlock at block layer. Dead IOC will fail to do diag reset, 638 * and this call is safe since dead ioc will never return any 639 * command back from HW. 640 */ 641 ioc->schedule_dead_ioc_flush_running_cmds(ioc); 642 /* 643 * Set remove_host flag early since kernel thread will 644 * take some time to execute. 645 */ 646 ioc->remove_host = 1; 647 /*Remove the Dead Host */ 648 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc, 649 "%s_dead_ioc_%d", ioc->driver_name, ioc->id); 650 if (IS_ERR(p)) 651 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n", 652 __func__); 653 else 654 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n", 655 __func__); 656 return; /* don't rearm timer */ 657 } 658 659 ioc->non_operational_loop = 0; 660 661 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) { 662 rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 663 ioc_warn(ioc, "%s: hard reset: %s\n", 664 __func__, rc == 0 ? "success" : "failed"); 665 doorbell = mpt3sas_base_get_iocstate(ioc, 0); 666 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) 667 mpt3sas_base_fault_info(ioc, doorbell & 668 MPI2_DOORBELL_DATA_MASK); 669 if (rc && (doorbell & MPI2_IOC_STATE_MASK) != 670 MPI2_IOC_STATE_OPERATIONAL) 671 return; /* don't rearm timer */ 672 } 673 674 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 675 rearm_timer: 676 if (ioc->fault_reset_work_q) 677 queue_delayed_work(ioc->fault_reset_work_q, 678 &ioc->fault_reset_work, 679 msecs_to_jiffies(FAULT_POLLING_INTERVAL)); 680 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 681 } 682 683 /** 684 * mpt3sas_base_start_watchdog - start the fault_reset_work_q 685 * @ioc: per adapter object 686 * 687 * Context: sleep. 688 */ 689 void 690 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc) 691 { 692 unsigned long flags; 693 694 if (ioc->fault_reset_work_q) 695 return; 696 697 /* initialize fault polling */ 698 699 INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work); 700 snprintf(ioc->fault_reset_work_q_name, 701 sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status", 702 ioc->driver_name, ioc->id); 703 ioc->fault_reset_work_q = 704 create_singlethread_workqueue(ioc->fault_reset_work_q_name); 705 if (!ioc->fault_reset_work_q) { 706 ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__); 707 return; 708 } 709 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 710 if (ioc->fault_reset_work_q) 711 queue_delayed_work(ioc->fault_reset_work_q, 712 &ioc->fault_reset_work, 713 msecs_to_jiffies(FAULT_POLLING_INTERVAL)); 714 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 715 } 716 717 /** 718 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q 719 * @ioc: per adapter object 720 * 721 * Context: sleep. 722 */ 723 void 724 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc) 725 { 726 unsigned long flags; 727 struct workqueue_struct *wq; 728 729 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 730 wq = ioc->fault_reset_work_q; 731 ioc->fault_reset_work_q = NULL; 732 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 733 if (wq) { 734 if (!cancel_delayed_work_sync(&ioc->fault_reset_work)) 735 flush_workqueue(wq); 736 destroy_workqueue(wq); 737 } 738 } 739 740 /** 741 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code 742 * @ioc: per adapter object 743 * @fault_code: fault code 744 */ 745 void 746 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code) 747 { 748 ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code); 749 } 750 751 /** 752 * mpt3sas_halt_firmware - halt's mpt controller firmware 753 * @ioc: per adapter object 754 * 755 * For debugging timeout related issues. Writing 0xCOFFEE00 756 * to the doorbell register will halt controller firmware. With 757 * the purpose to stop both driver and firmware, the enduser can 758 * obtain a ring buffer from controller UART. 759 */ 760 void 761 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc) 762 { 763 u32 doorbell; 764 765 if (!ioc->fwfault_debug) 766 return; 767 768 dump_stack(); 769 770 doorbell = ioc->base_readl(&ioc->chip->Doorbell); 771 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) 772 mpt3sas_base_fault_info(ioc , doorbell); 773 else { 774 writel(0xC0FFEE00, &ioc->chip->Doorbell); 775 ioc_err(ioc, "Firmware is halted due to command timeout\n"); 776 } 777 778 if (ioc->fwfault_debug == 2) 779 for (;;) 780 ; 781 else 782 panic("panic in %s\n", __func__); 783 } 784 785 /** 786 * _base_sas_ioc_info - verbose translation of the ioc status 787 * @ioc: per adapter object 788 * @mpi_reply: reply mf payload returned from firmware 789 * @request_hdr: request mf 790 */ 791 static void 792 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply, 793 MPI2RequestHeader_t *request_hdr) 794 { 795 u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & 796 MPI2_IOCSTATUS_MASK; 797 char *desc = NULL; 798 u16 frame_sz; 799 char *func_str = NULL; 800 801 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */ 802 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST || 803 request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH || 804 request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION) 805 return; 806 807 if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE) 808 return; 809 810 switch (ioc_status) { 811 812 /**************************************************************************** 813 * Common IOCStatus values for all replies 814 ****************************************************************************/ 815 816 case MPI2_IOCSTATUS_INVALID_FUNCTION: 817 desc = "invalid function"; 818 break; 819 case MPI2_IOCSTATUS_BUSY: 820 desc = "busy"; 821 break; 822 case MPI2_IOCSTATUS_INVALID_SGL: 823 desc = "invalid sgl"; 824 break; 825 case MPI2_IOCSTATUS_INTERNAL_ERROR: 826 desc = "internal error"; 827 break; 828 case MPI2_IOCSTATUS_INVALID_VPID: 829 desc = "invalid vpid"; 830 break; 831 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES: 832 desc = "insufficient resources"; 833 break; 834 case MPI2_IOCSTATUS_INSUFFICIENT_POWER: 835 desc = "insufficient power"; 836 break; 837 case MPI2_IOCSTATUS_INVALID_FIELD: 838 desc = "invalid field"; 839 break; 840 case MPI2_IOCSTATUS_INVALID_STATE: 841 desc = "invalid state"; 842 break; 843 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED: 844 desc = "op state not supported"; 845 break; 846 847 /**************************************************************************** 848 * Config IOCStatus values 849 ****************************************************************************/ 850 851 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION: 852 desc = "config invalid action"; 853 break; 854 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE: 855 desc = "config invalid type"; 856 break; 857 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE: 858 desc = "config invalid page"; 859 break; 860 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA: 861 desc = "config invalid data"; 862 break; 863 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS: 864 desc = "config no defaults"; 865 break; 866 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT: 867 desc = "config cant commit"; 868 break; 869 870 /**************************************************************************** 871 * SCSI IO Reply 872 ****************************************************************************/ 873 874 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR: 875 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE: 876 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE: 877 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN: 878 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN: 879 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR: 880 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR: 881 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED: 882 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH: 883 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED: 884 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED: 885 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED: 886 break; 887 888 /**************************************************************************** 889 * For use by SCSI Initiator and SCSI Target end-to-end data protection 890 ****************************************************************************/ 891 892 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR: 893 desc = "eedp guard error"; 894 break; 895 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR: 896 desc = "eedp ref tag error"; 897 break; 898 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR: 899 desc = "eedp app tag error"; 900 break; 901 902 /**************************************************************************** 903 * SCSI Target values 904 ****************************************************************************/ 905 906 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX: 907 desc = "target invalid io index"; 908 break; 909 case MPI2_IOCSTATUS_TARGET_ABORTED: 910 desc = "target aborted"; 911 break; 912 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE: 913 desc = "target no conn retryable"; 914 break; 915 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION: 916 desc = "target no connection"; 917 break; 918 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH: 919 desc = "target xfer count mismatch"; 920 break; 921 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR: 922 desc = "target data offset error"; 923 break; 924 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA: 925 desc = "target too much write data"; 926 break; 927 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT: 928 desc = "target iu too short"; 929 break; 930 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT: 931 desc = "target ack nak timeout"; 932 break; 933 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED: 934 desc = "target nak received"; 935 break; 936 937 /**************************************************************************** 938 * Serial Attached SCSI values 939 ****************************************************************************/ 940 941 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED: 942 desc = "smp request failed"; 943 break; 944 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN: 945 desc = "smp data overrun"; 946 break; 947 948 /**************************************************************************** 949 * Diagnostic Buffer Post / Diagnostic Release values 950 ****************************************************************************/ 951 952 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED: 953 desc = "diagnostic released"; 954 break; 955 default: 956 break; 957 } 958 959 if (!desc) 960 return; 961 962 switch (request_hdr->Function) { 963 case MPI2_FUNCTION_CONFIG: 964 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size; 965 func_str = "config_page"; 966 break; 967 case MPI2_FUNCTION_SCSI_TASK_MGMT: 968 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t); 969 func_str = "task_mgmt"; 970 break; 971 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL: 972 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t); 973 func_str = "sas_iounit_ctl"; 974 break; 975 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR: 976 frame_sz = sizeof(Mpi2SepRequest_t); 977 func_str = "enclosure"; 978 break; 979 case MPI2_FUNCTION_IOC_INIT: 980 frame_sz = sizeof(Mpi2IOCInitRequest_t); 981 func_str = "ioc_init"; 982 break; 983 case MPI2_FUNCTION_PORT_ENABLE: 984 frame_sz = sizeof(Mpi2PortEnableRequest_t); 985 func_str = "port_enable"; 986 break; 987 case MPI2_FUNCTION_SMP_PASSTHROUGH: 988 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size; 989 func_str = "smp_passthru"; 990 break; 991 case MPI2_FUNCTION_NVME_ENCAPSULATED: 992 frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) + 993 ioc->sge_size; 994 func_str = "nvme_encapsulated"; 995 break; 996 default: 997 frame_sz = 32; 998 func_str = "unknown"; 999 break; 1000 } 1001 1002 ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n", 1003 desc, ioc_status, request_hdr, func_str); 1004 1005 _debug_dump_mf(request_hdr, frame_sz/4); 1006 } 1007 1008 /** 1009 * _base_display_event_data - verbose translation of firmware asyn events 1010 * @ioc: per adapter object 1011 * @mpi_reply: reply mf payload returned from firmware 1012 */ 1013 static void 1014 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc, 1015 Mpi2EventNotificationReply_t *mpi_reply) 1016 { 1017 char *desc = NULL; 1018 u16 event; 1019 1020 if (!(ioc->logging_level & MPT_DEBUG_EVENTS)) 1021 return; 1022 1023 event = le16_to_cpu(mpi_reply->Event); 1024 1025 switch (event) { 1026 case MPI2_EVENT_LOG_DATA: 1027 desc = "Log Data"; 1028 break; 1029 case MPI2_EVENT_STATE_CHANGE: 1030 desc = "Status Change"; 1031 break; 1032 case MPI2_EVENT_HARD_RESET_RECEIVED: 1033 desc = "Hard Reset Received"; 1034 break; 1035 case MPI2_EVENT_EVENT_CHANGE: 1036 desc = "Event Change"; 1037 break; 1038 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE: 1039 desc = "Device Status Change"; 1040 break; 1041 case MPI2_EVENT_IR_OPERATION_STATUS: 1042 if (!ioc->hide_ir_msg) 1043 desc = "IR Operation Status"; 1044 break; 1045 case MPI2_EVENT_SAS_DISCOVERY: 1046 { 1047 Mpi2EventDataSasDiscovery_t *event_data = 1048 (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData; 1049 ioc_info(ioc, "Discovery: (%s)", 1050 event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ? 1051 "start" : "stop"); 1052 if (event_data->DiscoveryStatus) 1053 pr_cont(" discovery_status(0x%08x)", 1054 le32_to_cpu(event_data->DiscoveryStatus)); 1055 pr_cont("\n"); 1056 return; 1057 } 1058 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE: 1059 desc = "SAS Broadcast Primitive"; 1060 break; 1061 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE: 1062 desc = "SAS Init Device Status Change"; 1063 break; 1064 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW: 1065 desc = "SAS Init Table Overflow"; 1066 break; 1067 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST: 1068 desc = "SAS Topology Change List"; 1069 break; 1070 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE: 1071 desc = "SAS Enclosure Device Status Change"; 1072 break; 1073 case MPI2_EVENT_IR_VOLUME: 1074 if (!ioc->hide_ir_msg) 1075 desc = "IR Volume"; 1076 break; 1077 case MPI2_EVENT_IR_PHYSICAL_DISK: 1078 if (!ioc->hide_ir_msg) 1079 desc = "IR Physical Disk"; 1080 break; 1081 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST: 1082 if (!ioc->hide_ir_msg) 1083 desc = "IR Configuration Change List"; 1084 break; 1085 case MPI2_EVENT_LOG_ENTRY_ADDED: 1086 if (!ioc->hide_ir_msg) 1087 desc = "Log Entry Added"; 1088 break; 1089 case MPI2_EVENT_TEMP_THRESHOLD: 1090 desc = "Temperature Threshold"; 1091 break; 1092 case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION: 1093 desc = "Cable Event"; 1094 break; 1095 case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR: 1096 desc = "SAS Device Discovery Error"; 1097 break; 1098 case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE: 1099 desc = "PCIE Device Status Change"; 1100 break; 1101 case MPI2_EVENT_PCIE_ENUMERATION: 1102 { 1103 Mpi26EventDataPCIeEnumeration_t *event_data = 1104 (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData; 1105 ioc_info(ioc, "PCIE Enumeration: (%s)", 1106 event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ? 1107 "start" : "stop"); 1108 if (event_data->EnumerationStatus) 1109 pr_cont("enumeration_status(0x%08x)", 1110 le32_to_cpu(event_data->EnumerationStatus)); 1111 pr_cont("\n"); 1112 return; 1113 } 1114 case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST: 1115 desc = "PCIE Topology Change List"; 1116 break; 1117 } 1118 1119 if (!desc) 1120 return; 1121 1122 ioc_info(ioc, "%s\n", desc); 1123 } 1124 1125 /** 1126 * _base_sas_log_info - verbose translation of firmware log info 1127 * @ioc: per adapter object 1128 * @log_info: log info 1129 */ 1130 static void 1131 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info) 1132 { 1133 union loginfo_type { 1134 u32 loginfo; 1135 struct { 1136 u32 subcode:16; 1137 u32 code:8; 1138 u32 originator:4; 1139 u32 bus_type:4; 1140 } dw; 1141 }; 1142 union loginfo_type sas_loginfo; 1143 char *originator_str = NULL; 1144 1145 sas_loginfo.loginfo = log_info; 1146 if (sas_loginfo.dw.bus_type != 3 /*SAS*/) 1147 return; 1148 1149 /* each nexus loss loginfo */ 1150 if (log_info == 0x31170000) 1151 return; 1152 1153 /* eat the loginfos associated with task aborts */ 1154 if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info == 1155 0x31140000 || log_info == 0x31130000)) 1156 return; 1157 1158 switch (sas_loginfo.dw.originator) { 1159 case 0: 1160 originator_str = "IOP"; 1161 break; 1162 case 1: 1163 originator_str = "PL"; 1164 break; 1165 case 2: 1166 if (!ioc->hide_ir_msg) 1167 originator_str = "IR"; 1168 else 1169 originator_str = "WarpDrive"; 1170 break; 1171 } 1172 1173 ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n", 1174 log_info, 1175 originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode); 1176 } 1177 1178 /** 1179 * _base_display_reply_info - 1180 * @ioc: per adapter object 1181 * @smid: system request message index 1182 * @msix_index: MSIX table index supplied by the OS 1183 * @reply: reply message frame(lower 32bit addr) 1184 */ 1185 static void 1186 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 1187 u32 reply) 1188 { 1189 MPI2DefaultReply_t *mpi_reply; 1190 u16 ioc_status; 1191 u32 loginfo = 0; 1192 1193 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1194 if (unlikely(!mpi_reply)) { 1195 ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n", 1196 __FILE__, __LINE__, __func__); 1197 return; 1198 } 1199 ioc_status = le16_to_cpu(mpi_reply->IOCStatus); 1200 1201 if ((ioc_status & MPI2_IOCSTATUS_MASK) && 1202 (ioc->logging_level & MPT_DEBUG_REPLY)) { 1203 _base_sas_ioc_info(ioc , mpi_reply, 1204 mpt3sas_base_get_msg_frame(ioc, smid)); 1205 } 1206 1207 if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) { 1208 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo); 1209 _base_sas_log_info(ioc, loginfo); 1210 } 1211 1212 if (ioc_status || loginfo) { 1213 ioc_status &= MPI2_IOCSTATUS_MASK; 1214 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo); 1215 } 1216 } 1217 1218 /** 1219 * mpt3sas_base_done - base internal command completion routine 1220 * @ioc: per adapter object 1221 * @smid: system request message index 1222 * @msix_index: MSIX table index supplied by the OS 1223 * @reply: reply message frame(lower 32bit addr) 1224 * 1225 * Return: 1226 * 1 meaning mf should be freed from _base_interrupt 1227 * 0 means the mf is freed from this function. 1228 */ 1229 u8 1230 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 1231 u32 reply) 1232 { 1233 MPI2DefaultReply_t *mpi_reply; 1234 1235 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1236 if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK) 1237 return mpt3sas_check_for_pending_internal_cmds(ioc, smid); 1238 1239 if (ioc->base_cmds.status == MPT3_CMD_NOT_USED) 1240 return 1; 1241 1242 ioc->base_cmds.status |= MPT3_CMD_COMPLETE; 1243 if (mpi_reply) { 1244 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID; 1245 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4); 1246 } 1247 ioc->base_cmds.status &= ~MPT3_CMD_PENDING; 1248 1249 complete(&ioc->base_cmds.done); 1250 return 1; 1251 } 1252 1253 /** 1254 * _base_async_event - main callback handler for firmware asyn events 1255 * @ioc: per adapter object 1256 * @msix_index: MSIX table index supplied by the OS 1257 * @reply: reply message frame(lower 32bit addr) 1258 * 1259 * Return: 1260 * 1 meaning mf should be freed from _base_interrupt 1261 * 0 means the mf is freed from this function. 1262 */ 1263 static u8 1264 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply) 1265 { 1266 Mpi2EventNotificationReply_t *mpi_reply; 1267 Mpi2EventAckRequest_t *ack_request; 1268 u16 smid; 1269 struct _event_ack_list *delayed_event_ack; 1270 1271 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1272 if (!mpi_reply) 1273 return 1; 1274 if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION) 1275 return 1; 1276 1277 _base_display_event_data(ioc, mpi_reply); 1278 1279 if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED)) 1280 goto out; 1281 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 1282 if (!smid) { 1283 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack), 1284 GFP_ATOMIC); 1285 if (!delayed_event_ack) 1286 goto out; 1287 INIT_LIST_HEAD(&delayed_event_ack->list); 1288 delayed_event_ack->Event = mpi_reply->Event; 1289 delayed_event_ack->EventContext = mpi_reply->EventContext; 1290 list_add_tail(&delayed_event_ack->list, 1291 &ioc->delayed_event_ack_list); 1292 dewtprintk(ioc, 1293 ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n", 1294 le16_to_cpu(mpi_reply->Event))); 1295 goto out; 1296 } 1297 1298 ack_request = mpt3sas_base_get_msg_frame(ioc, smid); 1299 memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t)); 1300 ack_request->Function = MPI2_FUNCTION_EVENT_ACK; 1301 ack_request->Event = mpi_reply->Event; 1302 ack_request->EventContext = mpi_reply->EventContext; 1303 ack_request->VF_ID = 0; /* TODO */ 1304 ack_request->VP_ID = 0; 1305 ioc->put_smid_default(ioc, smid); 1306 1307 out: 1308 1309 /* scsih callback handler */ 1310 mpt3sas_scsih_event_callback(ioc, msix_index, reply); 1311 1312 /* ctl callback handler */ 1313 mpt3sas_ctl_event_callback(ioc, msix_index, reply); 1314 1315 return 1; 1316 } 1317 1318 static struct scsiio_tracker * 1319 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid) 1320 { 1321 struct scsi_cmnd *cmd; 1322 1323 if (WARN_ON(!smid) || 1324 WARN_ON(smid >= ioc->hi_priority_smid)) 1325 return NULL; 1326 1327 cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid); 1328 if (cmd) 1329 return scsi_cmd_priv(cmd); 1330 1331 return NULL; 1332 } 1333 1334 /** 1335 * _base_get_cb_idx - obtain the callback index 1336 * @ioc: per adapter object 1337 * @smid: system request message index 1338 * 1339 * Return: callback index. 1340 */ 1341 static u8 1342 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid) 1343 { 1344 int i; 1345 u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1; 1346 u8 cb_idx = 0xFF; 1347 1348 if (smid < ioc->hi_priority_smid) { 1349 struct scsiio_tracker *st; 1350 1351 if (smid < ctl_smid) { 1352 st = _get_st_from_smid(ioc, smid); 1353 if (st) 1354 cb_idx = st->cb_idx; 1355 } else if (smid == ctl_smid) 1356 cb_idx = ioc->ctl_cb_idx; 1357 } else if (smid < ioc->internal_smid) { 1358 i = smid - ioc->hi_priority_smid; 1359 cb_idx = ioc->hpr_lookup[i].cb_idx; 1360 } else if (smid <= ioc->hba_queue_depth) { 1361 i = smid - ioc->internal_smid; 1362 cb_idx = ioc->internal_lookup[i].cb_idx; 1363 } 1364 return cb_idx; 1365 } 1366 1367 /** 1368 * _base_mask_interrupts - disable interrupts 1369 * @ioc: per adapter object 1370 * 1371 * Disabling ResetIRQ, Reply and Doorbell Interrupts 1372 */ 1373 static void 1374 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc) 1375 { 1376 u32 him_register; 1377 1378 ioc->mask_interrupts = 1; 1379 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask); 1380 him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK; 1381 writel(him_register, &ioc->chip->HostInterruptMask); 1382 ioc->base_readl(&ioc->chip->HostInterruptMask); 1383 } 1384 1385 /** 1386 * _base_unmask_interrupts - enable interrupts 1387 * @ioc: per adapter object 1388 * 1389 * Enabling only Reply Interrupts 1390 */ 1391 static void 1392 _base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc) 1393 { 1394 u32 him_register; 1395 1396 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask); 1397 him_register &= ~MPI2_HIM_RIM; 1398 writel(him_register, &ioc->chip->HostInterruptMask); 1399 ioc->mask_interrupts = 0; 1400 } 1401 1402 union reply_descriptor { 1403 u64 word; 1404 struct { 1405 u32 low; 1406 u32 high; 1407 } u; 1408 }; 1409 1410 static u32 base_mod64(u64 dividend, u32 divisor) 1411 { 1412 u32 remainder; 1413 1414 if (!divisor) 1415 pr_err("mpt3sas: DIVISOR is zero, in div fn\n"); 1416 remainder = do_div(dividend, divisor); 1417 return remainder; 1418 } 1419 1420 /** 1421 * _base_process_reply_queue - Process reply descriptors from reply 1422 * descriptor post queue. 1423 * @reply_q: per IRQ's reply queue object. 1424 * 1425 * Return: number of reply descriptors processed from reply 1426 * descriptor queue. 1427 */ 1428 static int 1429 _base_process_reply_queue(struct adapter_reply_queue *reply_q) 1430 { 1431 union reply_descriptor rd; 1432 u64 completed_cmds; 1433 u8 request_descript_type; 1434 u16 smid; 1435 u8 cb_idx; 1436 u32 reply; 1437 u8 msix_index = reply_q->msix_index; 1438 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc; 1439 Mpi2ReplyDescriptorsUnion_t *rpf; 1440 u8 rc; 1441 1442 completed_cmds = 0; 1443 if (!atomic_add_unless(&reply_q->busy, 1, 1)) 1444 return completed_cmds; 1445 1446 rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index]; 1447 request_descript_type = rpf->Default.ReplyFlags 1448 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 1449 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) { 1450 atomic_dec(&reply_q->busy); 1451 return completed_cmds; 1452 } 1453 1454 cb_idx = 0xFF; 1455 do { 1456 rd.word = le64_to_cpu(rpf->Words); 1457 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX) 1458 goto out; 1459 reply = 0; 1460 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1); 1461 if (request_descript_type == 1462 MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS || 1463 request_descript_type == 1464 MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS || 1465 request_descript_type == 1466 MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) { 1467 cb_idx = _base_get_cb_idx(ioc, smid); 1468 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) && 1469 (likely(mpt_callbacks[cb_idx] != NULL))) { 1470 rc = mpt_callbacks[cb_idx](ioc, smid, 1471 msix_index, 0); 1472 if (rc) 1473 mpt3sas_base_free_smid(ioc, smid); 1474 } 1475 } else if (request_descript_type == 1476 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) { 1477 reply = le32_to_cpu( 1478 rpf->AddressReply.ReplyFrameAddress); 1479 if (reply > ioc->reply_dma_max_address || 1480 reply < ioc->reply_dma_min_address) 1481 reply = 0; 1482 if (smid) { 1483 cb_idx = _base_get_cb_idx(ioc, smid); 1484 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) && 1485 (likely(mpt_callbacks[cb_idx] != NULL))) { 1486 rc = mpt_callbacks[cb_idx](ioc, smid, 1487 msix_index, reply); 1488 if (reply) 1489 _base_display_reply_info(ioc, 1490 smid, msix_index, reply); 1491 if (rc) 1492 mpt3sas_base_free_smid(ioc, 1493 smid); 1494 } 1495 } else { 1496 _base_async_event(ioc, msix_index, reply); 1497 } 1498 1499 /* reply free queue handling */ 1500 if (reply) { 1501 ioc->reply_free_host_index = 1502 (ioc->reply_free_host_index == 1503 (ioc->reply_free_queue_depth - 1)) ? 1504 0 : ioc->reply_free_host_index + 1; 1505 ioc->reply_free[ioc->reply_free_host_index] = 1506 cpu_to_le32(reply); 1507 if (ioc->is_mcpu_endpoint) 1508 _base_clone_reply_to_sys_mem(ioc, 1509 reply, 1510 ioc->reply_free_host_index); 1511 writel(ioc->reply_free_host_index, 1512 &ioc->chip->ReplyFreeHostIndex); 1513 } 1514 } 1515 1516 rpf->Words = cpu_to_le64(ULLONG_MAX); 1517 reply_q->reply_post_host_index = 1518 (reply_q->reply_post_host_index == 1519 (ioc->reply_post_queue_depth - 1)) ? 0 : 1520 reply_q->reply_post_host_index + 1; 1521 request_descript_type = 1522 reply_q->reply_post_free[reply_q->reply_post_host_index]. 1523 Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 1524 completed_cmds++; 1525 /* Update the reply post host index after continuously 1526 * processing the threshold number of Reply Descriptors. 1527 * So that FW can find enough entries to post the Reply 1528 * Descriptors in the reply descriptor post queue. 1529 */ 1530 if (!base_mod64(completed_cmds, ioc->thresh_hold)) { 1531 if (ioc->combined_reply_queue) { 1532 writel(reply_q->reply_post_host_index | 1533 ((msix_index & 7) << 1534 MPI2_RPHI_MSIX_INDEX_SHIFT), 1535 ioc->replyPostRegisterIndex[msix_index/8]); 1536 } else { 1537 writel(reply_q->reply_post_host_index | 1538 (msix_index << 1539 MPI2_RPHI_MSIX_INDEX_SHIFT), 1540 &ioc->chip->ReplyPostHostIndex); 1541 } 1542 if (!reply_q->irq_poll_scheduled) { 1543 reply_q->irq_poll_scheduled = true; 1544 irq_poll_sched(&reply_q->irqpoll); 1545 } 1546 atomic_dec(&reply_q->busy); 1547 return completed_cmds; 1548 } 1549 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) 1550 goto out; 1551 if (!reply_q->reply_post_host_index) 1552 rpf = reply_q->reply_post_free; 1553 else 1554 rpf++; 1555 } while (1); 1556 1557 out: 1558 1559 if (!completed_cmds) { 1560 atomic_dec(&reply_q->busy); 1561 return completed_cmds; 1562 } 1563 1564 if (ioc->is_warpdrive) { 1565 writel(reply_q->reply_post_host_index, 1566 ioc->reply_post_host_index[msix_index]); 1567 atomic_dec(&reply_q->busy); 1568 return completed_cmds; 1569 } 1570 1571 /* Update Reply Post Host Index. 1572 * For those HBA's which support combined reply queue feature 1573 * 1. Get the correct Supplemental Reply Post Host Index Register. 1574 * i.e. (msix_index / 8)th entry from Supplemental Reply Post Host 1575 * Index Register address bank i.e replyPostRegisterIndex[], 1576 * 2. Then update this register with new reply host index value 1577 * in ReplyPostIndex field and the MSIxIndex field with 1578 * msix_index value reduced to a value between 0 and 7, 1579 * using a modulo 8 operation. Since each Supplemental Reply Post 1580 * Host Index Register supports 8 MSI-X vectors. 1581 * 1582 * For other HBA's just update the Reply Post Host Index register with 1583 * new reply host index value in ReplyPostIndex Field and msix_index 1584 * value in MSIxIndex field. 1585 */ 1586 if (ioc->combined_reply_queue) 1587 writel(reply_q->reply_post_host_index | ((msix_index & 7) << 1588 MPI2_RPHI_MSIX_INDEX_SHIFT), 1589 ioc->replyPostRegisterIndex[msix_index/8]); 1590 else 1591 writel(reply_q->reply_post_host_index | (msix_index << 1592 MPI2_RPHI_MSIX_INDEX_SHIFT), 1593 &ioc->chip->ReplyPostHostIndex); 1594 atomic_dec(&reply_q->busy); 1595 return completed_cmds; 1596 } 1597 1598 /** 1599 * _base_interrupt - MPT adapter (IOC) specific interrupt handler. 1600 * @irq: irq number (not used) 1601 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure 1602 * 1603 * Return: IRQ_HANDLED if processed, else IRQ_NONE. 1604 */ 1605 static irqreturn_t 1606 _base_interrupt(int irq, void *bus_id) 1607 { 1608 struct adapter_reply_queue *reply_q = bus_id; 1609 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc; 1610 1611 if (ioc->mask_interrupts) 1612 return IRQ_NONE; 1613 if (reply_q->irq_poll_scheduled) 1614 return IRQ_HANDLED; 1615 return ((_base_process_reply_queue(reply_q) > 0) ? 1616 IRQ_HANDLED : IRQ_NONE); 1617 } 1618 1619 /** 1620 * _base_irqpoll - IRQ poll callback handler 1621 * @irqpoll - irq_poll object 1622 * @budget - irq poll weight 1623 * 1624 * returns number of reply descriptors processed 1625 */ 1626 static int 1627 _base_irqpoll(struct irq_poll *irqpoll, int budget) 1628 { 1629 struct adapter_reply_queue *reply_q; 1630 int num_entries = 0; 1631 1632 reply_q = container_of(irqpoll, struct adapter_reply_queue, 1633 irqpoll); 1634 if (reply_q->irq_line_enable) { 1635 disable_irq(reply_q->os_irq); 1636 reply_q->irq_line_enable = false; 1637 } 1638 num_entries = _base_process_reply_queue(reply_q); 1639 if (num_entries < budget) { 1640 irq_poll_complete(irqpoll); 1641 reply_q->irq_poll_scheduled = false; 1642 reply_q->irq_line_enable = true; 1643 enable_irq(reply_q->os_irq); 1644 } 1645 1646 return num_entries; 1647 } 1648 1649 /** 1650 * _base_init_irqpolls - initliaze IRQ polls 1651 * @ioc: per adapter object 1652 * 1653 * returns nothing 1654 */ 1655 static void 1656 _base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc) 1657 { 1658 struct adapter_reply_queue *reply_q, *next; 1659 1660 if (list_empty(&ioc->reply_queue_list)) 1661 return; 1662 1663 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) { 1664 irq_poll_init(&reply_q->irqpoll, 1665 ioc->hba_queue_depth/4, _base_irqpoll); 1666 reply_q->irq_poll_scheduled = false; 1667 reply_q->irq_line_enable = true; 1668 reply_q->os_irq = pci_irq_vector(ioc->pdev, 1669 reply_q->msix_index); 1670 } 1671 } 1672 1673 /** 1674 * _base_is_controller_msix_enabled - is controller support muli-reply queues 1675 * @ioc: per adapter object 1676 * 1677 * Return: Whether or not MSI/X is enabled. 1678 */ 1679 static inline int 1680 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc) 1681 { 1682 return (ioc->facts.IOCCapabilities & 1683 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable; 1684 } 1685 1686 /** 1687 * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts 1688 * @ioc: per adapter object 1689 * Context: non ISR conext 1690 * 1691 * Called when a Task Management request has completed. 1692 */ 1693 void 1694 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc) 1695 { 1696 struct adapter_reply_queue *reply_q; 1697 1698 /* If MSIX capability is turned off 1699 * then multi-queues are not enabled 1700 */ 1701 if (!_base_is_controller_msix_enabled(ioc)) 1702 return; 1703 1704 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 1705 if (ioc->shost_recovery || ioc->remove_host || 1706 ioc->pci_error_recovery) 1707 return; 1708 /* TMs are on msix_index == 0 */ 1709 if (reply_q->msix_index == 0) 1710 continue; 1711 if (reply_q->irq_poll_scheduled) { 1712 /* Calling irq_poll_disable will wait for any pending 1713 * callbacks to have completed. 1714 */ 1715 irq_poll_disable(&reply_q->irqpoll); 1716 irq_poll_enable(&reply_q->irqpoll); 1717 reply_q->irq_poll_scheduled = false; 1718 reply_q->irq_line_enable = true; 1719 enable_irq(reply_q->os_irq); 1720 continue; 1721 } 1722 synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index)); 1723 } 1724 } 1725 1726 /** 1727 * mpt3sas_base_release_callback_handler - clear interrupt callback handler 1728 * @cb_idx: callback index 1729 */ 1730 void 1731 mpt3sas_base_release_callback_handler(u8 cb_idx) 1732 { 1733 mpt_callbacks[cb_idx] = NULL; 1734 } 1735 1736 /** 1737 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler 1738 * @cb_func: callback function 1739 * 1740 * Return: Index of @cb_func. 1741 */ 1742 u8 1743 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func) 1744 { 1745 u8 cb_idx; 1746 1747 for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--) 1748 if (mpt_callbacks[cb_idx] == NULL) 1749 break; 1750 1751 mpt_callbacks[cb_idx] = cb_func; 1752 return cb_idx; 1753 } 1754 1755 /** 1756 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler 1757 */ 1758 void 1759 mpt3sas_base_initialize_callback_handler(void) 1760 { 1761 u8 cb_idx; 1762 1763 for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++) 1764 mpt3sas_base_release_callback_handler(cb_idx); 1765 } 1766 1767 1768 /** 1769 * _base_build_zero_len_sge - build zero length sg entry 1770 * @ioc: per adapter object 1771 * @paddr: virtual address for SGE 1772 * 1773 * Create a zero length scatter gather entry to insure the IOCs hardware has 1774 * something to use if the target device goes brain dead and tries 1775 * to send data even when none is asked for. 1776 */ 1777 static void 1778 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr) 1779 { 1780 u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT | 1781 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST | 1782 MPI2_SGE_FLAGS_SIMPLE_ELEMENT) << 1783 MPI2_SGE_FLAGS_SHIFT); 1784 ioc->base_add_sg_single(paddr, flags_length, -1); 1785 } 1786 1787 /** 1788 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr. 1789 * @paddr: virtual address for SGE 1790 * @flags_length: SGE flags and data transfer length 1791 * @dma_addr: Physical address 1792 */ 1793 static void 1794 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr) 1795 { 1796 Mpi2SGESimple32_t *sgel = paddr; 1797 1798 flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING | 1799 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT; 1800 sgel->FlagsLength = cpu_to_le32(flags_length); 1801 sgel->Address = cpu_to_le32(dma_addr); 1802 } 1803 1804 1805 /** 1806 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr. 1807 * @paddr: virtual address for SGE 1808 * @flags_length: SGE flags and data transfer length 1809 * @dma_addr: Physical address 1810 */ 1811 static void 1812 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr) 1813 { 1814 Mpi2SGESimple64_t *sgel = paddr; 1815 1816 flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING | 1817 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT; 1818 sgel->FlagsLength = cpu_to_le32(flags_length); 1819 sgel->Address = cpu_to_le64(dma_addr); 1820 } 1821 1822 /** 1823 * _base_get_chain_buffer_tracker - obtain chain tracker 1824 * @ioc: per adapter object 1825 * @scmd: SCSI commands of the IO request 1826 * 1827 * Return: chain tracker from chain_lookup table using key as 1828 * smid and smid's chain_offset. 1829 */ 1830 static struct chain_tracker * 1831 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc, 1832 struct scsi_cmnd *scmd) 1833 { 1834 struct chain_tracker *chain_req; 1835 struct scsiio_tracker *st = scsi_cmd_priv(scmd); 1836 u16 smid = st->smid; 1837 u8 chain_offset = 1838 atomic_read(&ioc->chain_lookup[smid - 1].chain_offset); 1839 1840 if (chain_offset == ioc->chains_needed_per_io) 1841 return NULL; 1842 1843 chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset]; 1844 atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset); 1845 return chain_req; 1846 } 1847 1848 1849 /** 1850 * _base_build_sg - build generic sg 1851 * @ioc: per adapter object 1852 * @psge: virtual address for SGE 1853 * @data_out_dma: physical address for WRITES 1854 * @data_out_sz: data xfer size for WRITES 1855 * @data_in_dma: physical address for READS 1856 * @data_in_sz: data xfer size for READS 1857 */ 1858 static void 1859 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge, 1860 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 1861 size_t data_in_sz) 1862 { 1863 u32 sgl_flags; 1864 1865 if (!data_out_sz && !data_in_sz) { 1866 _base_build_zero_len_sge(ioc, psge); 1867 return; 1868 } 1869 1870 if (data_out_sz && data_in_sz) { 1871 /* WRITE sgel first */ 1872 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 1873 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC); 1874 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 1875 ioc->base_add_sg_single(psge, sgl_flags | 1876 data_out_sz, data_out_dma); 1877 1878 /* incr sgel */ 1879 psge += ioc->sge_size; 1880 1881 /* READ sgel last */ 1882 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 1883 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 1884 MPI2_SGE_FLAGS_END_OF_LIST); 1885 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 1886 ioc->base_add_sg_single(psge, sgl_flags | 1887 data_in_sz, data_in_dma); 1888 } else if (data_out_sz) /* WRITE */ { 1889 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 1890 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 1891 MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC); 1892 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 1893 ioc->base_add_sg_single(psge, sgl_flags | 1894 data_out_sz, data_out_dma); 1895 } else if (data_in_sz) /* READ */ { 1896 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 1897 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 1898 MPI2_SGE_FLAGS_END_OF_LIST); 1899 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 1900 ioc->base_add_sg_single(psge, sgl_flags | 1901 data_in_sz, data_in_dma); 1902 } 1903 } 1904 1905 /* IEEE format sgls */ 1906 1907 /** 1908 * _base_build_nvme_prp - This function is called for NVMe end devices to build 1909 * a native SGL (NVMe PRP). The native SGL is built starting in the first PRP 1910 * entry of the NVMe message (PRP1). If the data buffer is small enough to be 1911 * described entirely using PRP1, then PRP2 is not used. If needed, PRP2 is 1912 * used to describe a larger data buffer. If the data buffer is too large to 1913 * describe using the two PRP entriess inside the NVMe message, then PRP1 1914 * describes the first data memory segment, and PRP2 contains a pointer to a PRP 1915 * list located elsewhere in memory to describe the remaining data memory 1916 * segments. The PRP list will be contiguous. 1917 * 1918 * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP 1919 * consists of a list of PRP entries to describe a number of noncontigous 1920 * physical memory segments as a single memory buffer, just as a SGL does. Note 1921 * however, that this function is only used by the IOCTL call, so the memory 1922 * given will be guaranteed to be contiguous. There is no need to translate 1923 * non-contiguous SGL into a PRP in this case. All PRPs will describe 1924 * contiguous space that is one page size each. 1925 * 1926 * Each NVMe message contains two PRP entries. The first (PRP1) either contains 1927 * a PRP list pointer or a PRP element, depending upon the command. PRP2 1928 * contains the second PRP element if the memory being described fits within 2 1929 * PRP entries, or a PRP list pointer if the PRP spans more than two entries. 1930 * 1931 * A PRP list pointer contains the address of a PRP list, structured as a linear 1932 * array of PRP entries. Each PRP entry in this list describes a segment of 1933 * physical memory. 1934 * 1935 * Each 64-bit PRP entry comprises an address and an offset field. The address 1936 * always points at the beginning of a 4KB physical memory page, and the offset 1937 * describes where within that 4KB page the memory segment begins. Only the 1938 * first element in a PRP list may contain a non-zero offest, implying that all 1939 * memory segments following the first begin at the start of a 4KB page. 1940 * 1941 * Each PRP element normally describes 4KB of physical memory, with exceptions 1942 * for the first and last elements in the list. If the memory being described 1943 * by the list begins at a non-zero offset within the first 4KB page, then the 1944 * first PRP element will contain a non-zero offset indicating where the region 1945 * begins within the 4KB page. The last memory segment may end before the end 1946 * of the 4KB segment, depending upon the overall size of the memory being 1947 * described by the PRP list. 1948 * 1949 * Since PRP entries lack any indication of size, the overall data buffer length 1950 * is used to determine where the end of the data memory buffer is located, and 1951 * how many PRP entries are required to describe it. 1952 * 1953 * @ioc: per adapter object 1954 * @smid: system request message index for getting asscociated SGL 1955 * @nvme_encap_request: the NVMe request msg frame pointer 1956 * @data_out_dma: physical address for WRITES 1957 * @data_out_sz: data xfer size for WRITES 1958 * @data_in_dma: physical address for READS 1959 * @data_in_sz: data xfer size for READS 1960 */ 1961 static void 1962 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid, 1963 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request, 1964 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 1965 size_t data_in_sz) 1966 { 1967 int prp_size = NVME_PRP_SIZE; 1968 __le64 *prp_entry, *prp1_entry, *prp2_entry; 1969 __le64 *prp_page; 1970 dma_addr_t prp_entry_dma, prp_page_dma, dma_addr; 1971 u32 offset, entry_len; 1972 u32 page_mask_result, page_mask; 1973 size_t length; 1974 struct mpt3sas_nvme_cmd *nvme_cmd = 1975 (void *)nvme_encap_request->NVMe_Command; 1976 1977 /* 1978 * Not all commands require a data transfer. If no data, just return 1979 * without constructing any PRP. 1980 */ 1981 if (!data_in_sz && !data_out_sz) 1982 return; 1983 prp1_entry = &nvme_cmd->prp1; 1984 prp2_entry = &nvme_cmd->prp2; 1985 prp_entry = prp1_entry; 1986 /* 1987 * For the PRP entries, use the specially allocated buffer of 1988 * contiguous memory. 1989 */ 1990 prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid); 1991 prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid); 1992 1993 /* 1994 * Check if we are within 1 entry of a page boundary we don't 1995 * want our first entry to be a PRP List entry. 1996 */ 1997 page_mask = ioc->page_size - 1; 1998 page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask; 1999 if (!page_mask_result) { 2000 /* Bump up to next page boundary. */ 2001 prp_page = (__le64 *)((u8 *)prp_page + prp_size); 2002 prp_page_dma = prp_page_dma + prp_size; 2003 } 2004 2005 /* 2006 * Set PRP physical pointer, which initially points to the current PRP 2007 * DMA memory page. 2008 */ 2009 prp_entry_dma = prp_page_dma; 2010 2011 /* Get physical address and length of the data buffer. */ 2012 if (data_in_sz) { 2013 dma_addr = data_in_dma; 2014 length = data_in_sz; 2015 } else { 2016 dma_addr = data_out_dma; 2017 length = data_out_sz; 2018 } 2019 2020 /* Loop while the length is not zero. */ 2021 while (length) { 2022 /* 2023 * Check if we need to put a list pointer here if we are at 2024 * page boundary - prp_size (8 bytes). 2025 */ 2026 page_mask_result = (prp_entry_dma + prp_size) & page_mask; 2027 if (!page_mask_result) { 2028 /* 2029 * This is the last entry in a PRP List, so we need to 2030 * put a PRP list pointer here. What this does is: 2031 * - bump the current memory pointer to the next 2032 * address, which will be the next full page. 2033 * - set the PRP Entry to point to that page. This 2034 * is now the PRP List pointer. 2035 * - bump the PRP Entry pointer the start of the 2036 * next page. Since all of this PRP memory is 2037 * contiguous, no need to get a new page - it's 2038 * just the next address. 2039 */ 2040 prp_entry_dma++; 2041 *prp_entry = cpu_to_le64(prp_entry_dma); 2042 prp_entry++; 2043 } 2044 2045 /* Need to handle if entry will be part of a page. */ 2046 offset = dma_addr & page_mask; 2047 entry_len = ioc->page_size - offset; 2048 2049 if (prp_entry == prp1_entry) { 2050 /* 2051 * Must fill in the first PRP pointer (PRP1) before 2052 * moving on. 2053 */ 2054 *prp1_entry = cpu_to_le64(dma_addr); 2055 2056 /* 2057 * Now point to the second PRP entry within the 2058 * command (PRP2). 2059 */ 2060 prp_entry = prp2_entry; 2061 } else if (prp_entry == prp2_entry) { 2062 /* 2063 * Should the PRP2 entry be a PRP List pointer or just 2064 * a regular PRP pointer? If there is more than one 2065 * more page of data, must use a PRP List pointer. 2066 */ 2067 if (length > ioc->page_size) { 2068 /* 2069 * PRP2 will contain a PRP List pointer because 2070 * more PRP's are needed with this command. The 2071 * list will start at the beginning of the 2072 * contiguous buffer. 2073 */ 2074 *prp2_entry = cpu_to_le64(prp_entry_dma); 2075 2076 /* 2077 * The next PRP Entry will be the start of the 2078 * first PRP List. 2079 */ 2080 prp_entry = prp_page; 2081 } else { 2082 /* 2083 * After this, the PRP Entries are complete. 2084 * This command uses 2 PRP's and no PRP list. 2085 */ 2086 *prp2_entry = cpu_to_le64(dma_addr); 2087 } 2088 } else { 2089 /* 2090 * Put entry in list and bump the addresses. 2091 * 2092 * After PRP1 and PRP2 are filled in, this will fill in 2093 * all remaining PRP entries in a PRP List, one per 2094 * each time through the loop. 2095 */ 2096 *prp_entry = cpu_to_le64(dma_addr); 2097 prp_entry++; 2098 prp_entry_dma++; 2099 } 2100 2101 /* 2102 * Bump the phys address of the command's data buffer by the 2103 * entry_len. 2104 */ 2105 dma_addr += entry_len; 2106 2107 /* Decrement length accounting for last partial page. */ 2108 if (entry_len > length) 2109 length = 0; 2110 else 2111 length -= entry_len; 2112 } 2113 } 2114 2115 /** 2116 * base_make_prp_nvme - 2117 * Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only 2118 * 2119 * @ioc: per adapter object 2120 * @scmd: SCSI command from the mid-layer 2121 * @mpi_request: mpi request 2122 * @smid: msg Index 2123 * @sge_count: scatter gather element count. 2124 * 2125 * Return: true: PRPs are built 2126 * false: IEEE SGLs needs to be built 2127 */ 2128 static void 2129 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc, 2130 struct scsi_cmnd *scmd, 2131 Mpi25SCSIIORequest_t *mpi_request, 2132 u16 smid, int sge_count) 2133 { 2134 int sge_len, num_prp_in_chain = 0; 2135 Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl; 2136 __le64 *curr_buff; 2137 dma_addr_t msg_dma, sge_addr, offset; 2138 u32 page_mask, page_mask_result; 2139 struct scatterlist *sg_scmd; 2140 u32 first_prp_len; 2141 int data_len = scsi_bufflen(scmd); 2142 u32 nvme_pg_size; 2143 2144 nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE); 2145 /* 2146 * Nvme has a very convoluted prp format. One prp is required 2147 * for each page or partial page. Driver need to split up OS sg_list 2148 * entries if it is longer than one page or cross a page 2149 * boundary. Driver also have to insert a PRP list pointer entry as 2150 * the last entry in each physical page of the PRP list. 2151 * 2152 * NOTE: The first PRP "entry" is actually placed in the first 2153 * SGL entry in the main message as IEEE 64 format. The 2nd 2154 * entry in the main message is the chain element, and the rest 2155 * of the PRP entries are built in the contiguous pcie buffer. 2156 */ 2157 page_mask = nvme_pg_size - 1; 2158 2159 /* 2160 * Native SGL is needed. 2161 * Put a chain element in main message frame that points to the first 2162 * chain buffer. 2163 * 2164 * NOTE: The ChainOffset field must be 0 when using a chain pointer to 2165 * a native SGL. 2166 */ 2167 2168 /* Set main message chain element pointer */ 2169 main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL; 2170 /* 2171 * For NVMe the chain element needs to be the 2nd SG entry in the main 2172 * message. 2173 */ 2174 main_chain_element = (Mpi25IeeeSgeChain64_t *) 2175 ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64)); 2176 2177 /* 2178 * For the PRP entries, use the specially allocated buffer of 2179 * contiguous memory. Normal chain buffers can't be used 2180 * because each chain buffer would need to be the size of an OS 2181 * page (4k). 2182 */ 2183 curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid); 2184 msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid); 2185 2186 main_chain_element->Address = cpu_to_le64(msg_dma); 2187 main_chain_element->NextChainOffset = 0; 2188 main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 2189 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | 2190 MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP; 2191 2192 /* Build first prp, sge need not to be page aligned*/ 2193 ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL; 2194 sg_scmd = scsi_sglist(scmd); 2195 sge_addr = sg_dma_address(sg_scmd); 2196 sge_len = sg_dma_len(sg_scmd); 2197 2198 offset = sge_addr & page_mask; 2199 first_prp_len = nvme_pg_size - offset; 2200 2201 ptr_first_sgl->Address = cpu_to_le64(sge_addr); 2202 ptr_first_sgl->Length = cpu_to_le32(first_prp_len); 2203 2204 data_len -= first_prp_len; 2205 2206 if (sge_len > first_prp_len) { 2207 sge_addr += first_prp_len; 2208 sge_len -= first_prp_len; 2209 } else if (data_len && (sge_len == first_prp_len)) { 2210 sg_scmd = sg_next(sg_scmd); 2211 sge_addr = sg_dma_address(sg_scmd); 2212 sge_len = sg_dma_len(sg_scmd); 2213 } 2214 2215 for (;;) { 2216 offset = sge_addr & page_mask; 2217 2218 /* Put PRP pointer due to page boundary*/ 2219 page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask; 2220 if (unlikely(!page_mask_result)) { 2221 scmd_printk(KERN_NOTICE, 2222 scmd, "page boundary curr_buff: 0x%p\n", 2223 curr_buff); 2224 msg_dma += 8; 2225 *curr_buff = cpu_to_le64(msg_dma); 2226 curr_buff++; 2227 num_prp_in_chain++; 2228 } 2229 2230 *curr_buff = cpu_to_le64(sge_addr); 2231 curr_buff++; 2232 msg_dma += 8; 2233 num_prp_in_chain++; 2234 2235 sge_addr += nvme_pg_size; 2236 sge_len -= nvme_pg_size; 2237 data_len -= nvme_pg_size; 2238 2239 if (data_len <= 0) 2240 break; 2241 2242 if (sge_len > 0) 2243 continue; 2244 2245 sg_scmd = sg_next(sg_scmd); 2246 sge_addr = sg_dma_address(sg_scmd); 2247 sge_len = sg_dma_len(sg_scmd); 2248 } 2249 2250 main_chain_element->Length = 2251 cpu_to_le32(num_prp_in_chain * sizeof(u64)); 2252 return; 2253 } 2254 2255 static bool 2256 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc, 2257 struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count) 2258 { 2259 u32 data_length = 0; 2260 bool build_prp = true; 2261 2262 data_length = scsi_bufflen(scmd); 2263 2264 /* If Datalenth is <= 16K and number of SGE’s entries are <= 2 2265 * we built IEEE SGL 2266 */ 2267 if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2)) 2268 build_prp = false; 2269 2270 return build_prp; 2271 } 2272 2273 /** 2274 * _base_check_pcie_native_sgl - This function is called for PCIe end devices to 2275 * determine if the driver needs to build a native SGL. If so, that native 2276 * SGL is built in the special contiguous buffers allocated especially for 2277 * PCIe SGL creation. If the driver will not build a native SGL, return 2278 * TRUE and a normal IEEE SGL will be built. Currently this routine 2279 * supports NVMe. 2280 * @ioc: per adapter object 2281 * @mpi_request: mf request pointer 2282 * @smid: system request message index 2283 * @scmd: scsi command 2284 * @pcie_device: points to the PCIe device's info 2285 * 2286 * Return: 0 if native SGL was built, 1 if no SGL was built 2287 */ 2288 static int 2289 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc, 2290 Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd, 2291 struct _pcie_device *pcie_device) 2292 { 2293 int sges_left; 2294 2295 /* Get the SG list pointer and info. */ 2296 sges_left = scsi_dma_map(scmd); 2297 if (sges_left < 0) { 2298 sdev_printk(KERN_ERR, scmd->device, 2299 "scsi_dma_map failed: request for %d bytes!\n", 2300 scsi_bufflen(scmd)); 2301 return 1; 2302 } 2303 2304 /* Check if we need to build a native SG list. */ 2305 if (base_is_prp_possible(ioc, pcie_device, 2306 scmd, sges_left) == 0) { 2307 /* We built a native SG list, just return. */ 2308 goto out; 2309 } 2310 2311 /* 2312 * Build native NVMe PRP. 2313 */ 2314 base_make_prp_nvme(ioc, scmd, mpi_request, 2315 smid, sges_left); 2316 2317 return 0; 2318 out: 2319 scsi_dma_unmap(scmd); 2320 return 1; 2321 } 2322 2323 /** 2324 * _base_add_sg_single_ieee - add sg element for IEEE format 2325 * @paddr: virtual address for SGE 2326 * @flags: SGE flags 2327 * @chain_offset: number of 128 byte elements from start of segment 2328 * @length: data transfer length 2329 * @dma_addr: Physical address 2330 */ 2331 static void 2332 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length, 2333 dma_addr_t dma_addr) 2334 { 2335 Mpi25IeeeSgeChain64_t *sgel = paddr; 2336 2337 sgel->Flags = flags; 2338 sgel->NextChainOffset = chain_offset; 2339 sgel->Length = cpu_to_le32(length); 2340 sgel->Address = cpu_to_le64(dma_addr); 2341 } 2342 2343 /** 2344 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format 2345 * @ioc: per adapter object 2346 * @paddr: virtual address for SGE 2347 * 2348 * Create a zero length scatter gather entry to insure the IOCs hardware has 2349 * something to use if the target device goes brain dead and tries 2350 * to send data even when none is asked for. 2351 */ 2352 static void 2353 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr) 2354 { 2355 u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2356 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | 2357 MPI25_IEEE_SGE_FLAGS_END_OF_LIST); 2358 2359 _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1); 2360 } 2361 2362 /** 2363 * _base_build_sg_scmd - main sg creation routine 2364 * pcie_device is unused here! 2365 * @ioc: per adapter object 2366 * @scmd: scsi command 2367 * @smid: system request message index 2368 * @unused: unused pcie_device pointer 2369 * Context: none. 2370 * 2371 * The main routine that builds scatter gather table from a given 2372 * scsi request sent via the .queuecommand main handler. 2373 * 2374 * Return: 0 success, anything else error 2375 */ 2376 static int 2377 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc, 2378 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused) 2379 { 2380 Mpi2SCSIIORequest_t *mpi_request; 2381 dma_addr_t chain_dma; 2382 struct scatterlist *sg_scmd; 2383 void *sg_local, *chain; 2384 u32 chain_offset; 2385 u32 chain_length; 2386 u32 chain_flags; 2387 int sges_left; 2388 u32 sges_in_segment; 2389 u32 sgl_flags; 2390 u32 sgl_flags_last_element; 2391 u32 sgl_flags_end_buffer; 2392 struct chain_tracker *chain_req; 2393 2394 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 2395 2396 /* init scatter gather flags */ 2397 sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT; 2398 if (scmd->sc_data_direction == DMA_TO_DEVICE) 2399 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC; 2400 sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT) 2401 << MPI2_SGE_FLAGS_SHIFT; 2402 sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT | 2403 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST) 2404 << MPI2_SGE_FLAGS_SHIFT; 2405 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2406 2407 sg_scmd = scsi_sglist(scmd); 2408 sges_left = scsi_dma_map(scmd); 2409 if (sges_left < 0) { 2410 sdev_printk(KERN_ERR, scmd->device, 2411 "scsi_dma_map failed: request for %d bytes!\n", 2412 scsi_bufflen(scmd)); 2413 return -ENOMEM; 2414 } 2415 2416 sg_local = &mpi_request->SGL; 2417 sges_in_segment = ioc->max_sges_in_main_message; 2418 if (sges_left <= sges_in_segment) 2419 goto fill_in_last_segment; 2420 2421 mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) + 2422 (sges_in_segment * ioc->sge_size))/4; 2423 2424 /* fill in main message segment when there is a chain following */ 2425 while (sges_in_segment) { 2426 if (sges_in_segment == 1) 2427 ioc->base_add_sg_single(sg_local, 2428 sgl_flags_last_element | sg_dma_len(sg_scmd), 2429 sg_dma_address(sg_scmd)); 2430 else 2431 ioc->base_add_sg_single(sg_local, sgl_flags | 2432 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2433 sg_scmd = sg_next(sg_scmd); 2434 sg_local += ioc->sge_size; 2435 sges_left--; 2436 sges_in_segment--; 2437 } 2438 2439 /* initializing the chain flags and pointers */ 2440 chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT; 2441 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2442 if (!chain_req) 2443 return -1; 2444 chain = chain_req->chain_buffer; 2445 chain_dma = chain_req->chain_buffer_dma; 2446 do { 2447 sges_in_segment = (sges_left <= 2448 ioc->max_sges_in_chain_message) ? sges_left : 2449 ioc->max_sges_in_chain_message; 2450 chain_offset = (sges_left == sges_in_segment) ? 2451 0 : (sges_in_segment * ioc->sge_size)/4; 2452 chain_length = sges_in_segment * ioc->sge_size; 2453 if (chain_offset) { 2454 chain_offset = chain_offset << 2455 MPI2_SGE_CHAIN_OFFSET_SHIFT; 2456 chain_length += ioc->sge_size; 2457 } 2458 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset | 2459 chain_length, chain_dma); 2460 sg_local = chain; 2461 if (!chain_offset) 2462 goto fill_in_last_segment; 2463 2464 /* fill in chain segments */ 2465 while (sges_in_segment) { 2466 if (sges_in_segment == 1) 2467 ioc->base_add_sg_single(sg_local, 2468 sgl_flags_last_element | 2469 sg_dma_len(sg_scmd), 2470 sg_dma_address(sg_scmd)); 2471 else 2472 ioc->base_add_sg_single(sg_local, sgl_flags | 2473 sg_dma_len(sg_scmd), 2474 sg_dma_address(sg_scmd)); 2475 sg_scmd = sg_next(sg_scmd); 2476 sg_local += ioc->sge_size; 2477 sges_left--; 2478 sges_in_segment--; 2479 } 2480 2481 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2482 if (!chain_req) 2483 return -1; 2484 chain = chain_req->chain_buffer; 2485 chain_dma = chain_req->chain_buffer_dma; 2486 } while (1); 2487 2488 2489 fill_in_last_segment: 2490 2491 /* fill the last segment */ 2492 while (sges_left) { 2493 if (sges_left == 1) 2494 ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer | 2495 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2496 else 2497 ioc->base_add_sg_single(sg_local, sgl_flags | 2498 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2499 sg_scmd = sg_next(sg_scmd); 2500 sg_local += ioc->sge_size; 2501 sges_left--; 2502 } 2503 2504 return 0; 2505 } 2506 2507 /** 2508 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format 2509 * @ioc: per adapter object 2510 * @scmd: scsi command 2511 * @smid: system request message index 2512 * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be 2513 * constructed on need. 2514 * Context: none. 2515 * 2516 * The main routine that builds scatter gather table from a given 2517 * scsi request sent via the .queuecommand main handler. 2518 * 2519 * Return: 0 success, anything else error 2520 */ 2521 static int 2522 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc, 2523 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device) 2524 { 2525 Mpi25SCSIIORequest_t *mpi_request; 2526 dma_addr_t chain_dma; 2527 struct scatterlist *sg_scmd; 2528 void *sg_local, *chain; 2529 u32 chain_offset; 2530 u32 chain_length; 2531 int sges_left; 2532 u32 sges_in_segment; 2533 u8 simple_sgl_flags; 2534 u8 simple_sgl_flags_last; 2535 u8 chain_sgl_flags; 2536 struct chain_tracker *chain_req; 2537 2538 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 2539 2540 /* init scatter gather flags */ 2541 simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2542 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2543 simple_sgl_flags_last = simple_sgl_flags | 2544 MPI25_IEEE_SGE_FLAGS_END_OF_LIST; 2545 chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 2546 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2547 2548 /* Check if we need to build a native SG list. */ 2549 if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request, 2550 smid, scmd, pcie_device) == 0)) { 2551 /* We built a native SG list, just return. */ 2552 return 0; 2553 } 2554 2555 sg_scmd = scsi_sglist(scmd); 2556 sges_left = scsi_dma_map(scmd); 2557 if (sges_left < 0) { 2558 sdev_printk(KERN_ERR, scmd->device, 2559 "scsi_dma_map failed: request for %d bytes!\n", 2560 scsi_bufflen(scmd)); 2561 return -ENOMEM; 2562 } 2563 2564 sg_local = &mpi_request->SGL; 2565 sges_in_segment = (ioc->request_sz - 2566 offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee; 2567 if (sges_left <= sges_in_segment) 2568 goto fill_in_last_segment; 2569 2570 mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) + 2571 (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee); 2572 2573 /* fill in main message segment when there is a chain following */ 2574 while (sges_in_segment > 1) { 2575 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2576 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2577 sg_scmd = sg_next(sg_scmd); 2578 sg_local += ioc->sge_size_ieee; 2579 sges_left--; 2580 sges_in_segment--; 2581 } 2582 2583 /* initializing the pointers */ 2584 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2585 if (!chain_req) 2586 return -1; 2587 chain = chain_req->chain_buffer; 2588 chain_dma = chain_req->chain_buffer_dma; 2589 do { 2590 sges_in_segment = (sges_left <= 2591 ioc->max_sges_in_chain_message) ? sges_left : 2592 ioc->max_sges_in_chain_message; 2593 chain_offset = (sges_left == sges_in_segment) ? 2594 0 : sges_in_segment; 2595 chain_length = sges_in_segment * ioc->sge_size_ieee; 2596 if (chain_offset) 2597 chain_length += ioc->sge_size_ieee; 2598 _base_add_sg_single_ieee(sg_local, chain_sgl_flags, 2599 chain_offset, chain_length, chain_dma); 2600 2601 sg_local = chain; 2602 if (!chain_offset) 2603 goto fill_in_last_segment; 2604 2605 /* fill in chain segments */ 2606 while (sges_in_segment) { 2607 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2608 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2609 sg_scmd = sg_next(sg_scmd); 2610 sg_local += ioc->sge_size_ieee; 2611 sges_left--; 2612 sges_in_segment--; 2613 } 2614 2615 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2616 if (!chain_req) 2617 return -1; 2618 chain = chain_req->chain_buffer; 2619 chain_dma = chain_req->chain_buffer_dma; 2620 } while (1); 2621 2622 2623 fill_in_last_segment: 2624 2625 /* fill the last segment */ 2626 while (sges_left > 0) { 2627 if (sges_left == 1) 2628 _base_add_sg_single_ieee(sg_local, 2629 simple_sgl_flags_last, 0, sg_dma_len(sg_scmd), 2630 sg_dma_address(sg_scmd)); 2631 else 2632 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2633 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2634 sg_scmd = sg_next(sg_scmd); 2635 sg_local += ioc->sge_size_ieee; 2636 sges_left--; 2637 } 2638 2639 return 0; 2640 } 2641 2642 /** 2643 * _base_build_sg_ieee - build generic sg for IEEE format 2644 * @ioc: per adapter object 2645 * @psge: virtual address for SGE 2646 * @data_out_dma: physical address for WRITES 2647 * @data_out_sz: data xfer size for WRITES 2648 * @data_in_dma: physical address for READS 2649 * @data_in_sz: data xfer size for READS 2650 */ 2651 static void 2652 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge, 2653 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 2654 size_t data_in_sz) 2655 { 2656 u8 sgl_flags; 2657 2658 if (!data_out_sz && !data_in_sz) { 2659 _base_build_zero_len_sge_ieee(ioc, psge); 2660 return; 2661 } 2662 2663 if (data_out_sz && data_in_sz) { 2664 /* WRITE sgel first */ 2665 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2666 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2667 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz, 2668 data_out_dma); 2669 2670 /* incr sgel */ 2671 psge += ioc->sge_size_ieee; 2672 2673 /* READ sgel last */ 2674 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST; 2675 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz, 2676 data_in_dma); 2677 } else if (data_out_sz) /* WRITE */ { 2678 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2679 MPI25_IEEE_SGE_FLAGS_END_OF_LIST | 2680 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2681 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz, 2682 data_out_dma); 2683 } else if (data_in_sz) /* READ */ { 2684 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2685 MPI25_IEEE_SGE_FLAGS_END_OF_LIST | 2686 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2687 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz, 2688 data_in_dma); 2689 } 2690 } 2691 2692 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10)) 2693 2694 /** 2695 * _base_config_dma_addressing - set dma addressing 2696 * @ioc: per adapter object 2697 * @pdev: PCI device struct 2698 * 2699 * Return: 0 for success, non-zero for failure. 2700 */ 2701 static int 2702 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev) 2703 { 2704 u64 required_mask, coherent_mask; 2705 struct sysinfo s; 2706 /* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */ 2707 int dma_mask = (ioc->hba_mpi_version_belonged > MPI2_VERSION) ? 63 : 64; 2708 2709 if (ioc->is_mcpu_endpoint) 2710 goto try_32bit; 2711 2712 required_mask = dma_get_required_mask(&pdev->dev); 2713 if (sizeof(dma_addr_t) == 4 || required_mask == 32) 2714 goto try_32bit; 2715 2716 if (ioc->dma_mask) 2717 coherent_mask = DMA_BIT_MASK(dma_mask); 2718 else 2719 coherent_mask = DMA_BIT_MASK(32); 2720 2721 if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(dma_mask)) || 2722 dma_set_coherent_mask(&pdev->dev, coherent_mask)) 2723 goto try_32bit; 2724 2725 ioc->base_add_sg_single = &_base_add_sg_single_64; 2726 ioc->sge_size = sizeof(Mpi2SGESimple64_t); 2727 ioc->dma_mask = dma_mask; 2728 goto out; 2729 2730 try_32bit: 2731 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32))) 2732 return -ENODEV; 2733 2734 ioc->base_add_sg_single = &_base_add_sg_single_32; 2735 ioc->sge_size = sizeof(Mpi2SGESimple32_t); 2736 ioc->dma_mask = 32; 2737 out: 2738 si_meminfo(&s); 2739 ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n", 2740 ioc->dma_mask, convert_to_kb(s.totalram)); 2741 2742 return 0; 2743 } 2744 2745 static int 2746 _base_change_consistent_dma_mask(struct MPT3SAS_ADAPTER *ioc, 2747 struct pci_dev *pdev) 2748 { 2749 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(ioc->dma_mask))) { 2750 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) 2751 return -ENODEV; 2752 } 2753 return 0; 2754 } 2755 2756 /** 2757 * _base_check_enable_msix - checks MSIX capabable. 2758 * @ioc: per adapter object 2759 * 2760 * Check to see if card is capable of MSIX, and set number 2761 * of available msix vectors 2762 */ 2763 static int 2764 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc) 2765 { 2766 int base; 2767 u16 message_control; 2768 2769 /* Check whether controller SAS2008 B0 controller, 2770 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX 2771 */ 2772 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 && 2773 ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) { 2774 return -EINVAL; 2775 } 2776 2777 base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX); 2778 if (!base) { 2779 dfailprintk(ioc, ioc_info(ioc, "msix not supported\n")); 2780 return -EINVAL; 2781 } 2782 2783 /* get msix vector count */ 2784 /* NUMA_IO not supported for older controllers */ 2785 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 || 2786 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 || 2787 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 || 2788 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 || 2789 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 || 2790 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 || 2791 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2) 2792 ioc->msix_vector_count = 1; 2793 else { 2794 pci_read_config_word(ioc->pdev, base + 2, &message_control); 2795 ioc->msix_vector_count = (message_control & 0x3FF) + 1; 2796 } 2797 dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n", 2798 ioc->msix_vector_count)); 2799 return 0; 2800 } 2801 2802 /** 2803 * _base_free_irq - free irq 2804 * @ioc: per adapter object 2805 * 2806 * Freeing respective reply_queue from the list. 2807 */ 2808 static void 2809 _base_free_irq(struct MPT3SAS_ADAPTER *ioc) 2810 { 2811 struct adapter_reply_queue *reply_q, *next; 2812 2813 if (list_empty(&ioc->reply_queue_list)) 2814 return; 2815 2816 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) { 2817 list_del(&reply_q->list); 2818 if (ioc->smp_affinity_enable) 2819 irq_set_affinity_hint(pci_irq_vector(ioc->pdev, 2820 reply_q->msix_index), NULL); 2821 free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index), 2822 reply_q); 2823 kfree(reply_q); 2824 } 2825 } 2826 2827 /** 2828 * _base_request_irq - request irq 2829 * @ioc: per adapter object 2830 * @index: msix index into vector table 2831 * 2832 * Inserting respective reply_queue into the list. 2833 */ 2834 static int 2835 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index) 2836 { 2837 struct pci_dev *pdev = ioc->pdev; 2838 struct adapter_reply_queue *reply_q; 2839 int r; 2840 2841 reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL); 2842 if (!reply_q) { 2843 ioc_err(ioc, "unable to allocate memory %zu!\n", 2844 sizeof(struct adapter_reply_queue)); 2845 return -ENOMEM; 2846 } 2847 reply_q->ioc = ioc; 2848 reply_q->msix_index = index; 2849 2850 atomic_set(&reply_q->busy, 0); 2851 if (ioc->msix_enable) 2852 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d", 2853 ioc->driver_name, ioc->id, index); 2854 else 2855 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d", 2856 ioc->driver_name, ioc->id); 2857 r = request_irq(pci_irq_vector(pdev, index), _base_interrupt, 2858 IRQF_SHARED, reply_q->name, reply_q); 2859 if (r) { 2860 pr_err("%s: unable to allocate interrupt %d!\n", 2861 reply_q->name, pci_irq_vector(pdev, index)); 2862 kfree(reply_q); 2863 return -EBUSY; 2864 } 2865 2866 INIT_LIST_HEAD(&reply_q->list); 2867 list_add_tail(&reply_q->list, &ioc->reply_queue_list); 2868 return 0; 2869 } 2870 2871 /** 2872 * _base_assign_reply_queues - assigning msix index for each cpu 2873 * @ioc: per adapter object 2874 * 2875 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity 2876 * 2877 * It would nice if we could call irq_set_affinity, however it is not 2878 * an exported symbol 2879 */ 2880 static void 2881 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc) 2882 { 2883 unsigned int cpu, nr_cpus, nr_msix, index = 0; 2884 struct adapter_reply_queue *reply_q; 2885 int local_numa_node; 2886 2887 if (!_base_is_controller_msix_enabled(ioc)) 2888 return; 2889 2890 if (ioc->msix_load_balance) 2891 return; 2892 2893 memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz); 2894 2895 nr_cpus = num_online_cpus(); 2896 nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count, 2897 ioc->facts.MaxMSIxVectors); 2898 if (!nr_msix) 2899 return; 2900 2901 if (ioc->smp_affinity_enable) { 2902 2903 /* 2904 * set irq affinity to local numa node for those irqs 2905 * corresponding to high iops queues. 2906 */ 2907 if (ioc->high_iops_queues) { 2908 local_numa_node = dev_to_node(&ioc->pdev->dev); 2909 for (index = 0; index < ioc->high_iops_queues; 2910 index++) { 2911 irq_set_affinity_hint(pci_irq_vector(ioc->pdev, 2912 index), cpumask_of_node(local_numa_node)); 2913 } 2914 } 2915 2916 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 2917 const cpumask_t *mask; 2918 2919 if (reply_q->msix_index < ioc->high_iops_queues) 2920 continue; 2921 2922 mask = pci_irq_get_affinity(ioc->pdev, 2923 reply_q->msix_index); 2924 if (!mask) { 2925 ioc_warn(ioc, "no affinity for msi %x\n", 2926 reply_q->msix_index); 2927 goto fall_back; 2928 } 2929 2930 for_each_cpu_and(cpu, mask, cpu_online_mask) { 2931 if (cpu >= ioc->cpu_msix_table_sz) 2932 break; 2933 ioc->cpu_msix_table[cpu] = reply_q->msix_index; 2934 } 2935 } 2936 return; 2937 } 2938 2939 fall_back: 2940 cpu = cpumask_first(cpu_online_mask); 2941 nr_msix -= ioc->high_iops_queues; 2942 index = 0; 2943 2944 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 2945 unsigned int i, group = nr_cpus / nr_msix; 2946 2947 if (reply_q->msix_index < ioc->high_iops_queues) 2948 continue; 2949 2950 if (cpu >= nr_cpus) 2951 break; 2952 2953 if (index < nr_cpus % nr_msix) 2954 group++; 2955 2956 for (i = 0 ; i < group ; i++) { 2957 ioc->cpu_msix_table[cpu] = reply_q->msix_index; 2958 cpu = cpumask_next(cpu, cpu_online_mask); 2959 } 2960 index++; 2961 } 2962 } 2963 2964 /** 2965 * _base_check_and_enable_high_iops_queues - enable high iops mode 2966 * @ ioc - per adapter object 2967 * @ hba_msix_vector_count - msix vectors supported by HBA 2968 * 2969 * Enable high iops queues only if 2970 * - HBA is a SEA/AERO controller and 2971 * - MSI-Xs vector supported by the HBA is 128 and 2972 * - total CPU count in the system >=16 and 2973 * - loaded driver with default max_msix_vectors module parameter and 2974 * - system booted in non kdump mode 2975 * 2976 * returns nothing. 2977 */ 2978 static void 2979 _base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc, 2980 int hba_msix_vector_count) 2981 { 2982 u16 lnksta, speed; 2983 2984 if (perf_mode == MPT_PERF_MODE_IOPS || 2985 perf_mode == MPT_PERF_MODE_LATENCY) { 2986 ioc->high_iops_queues = 0; 2987 return; 2988 } 2989 2990 if (perf_mode == MPT_PERF_MODE_DEFAULT) { 2991 2992 pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta); 2993 speed = lnksta & PCI_EXP_LNKSTA_CLS; 2994 2995 if (speed < 0x4) { 2996 ioc->high_iops_queues = 0; 2997 return; 2998 } 2999 } 3000 3001 if (!reset_devices && ioc->is_aero_ioc && 3002 hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES && 3003 num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES && 3004 max_msix_vectors == -1) 3005 ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES; 3006 else 3007 ioc->high_iops_queues = 0; 3008 } 3009 3010 /** 3011 * _base_disable_msix - disables msix 3012 * @ioc: per adapter object 3013 * 3014 */ 3015 static void 3016 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc) 3017 { 3018 if (!ioc->msix_enable) 3019 return; 3020 pci_free_irq_vectors(ioc->pdev); 3021 ioc->msix_enable = 0; 3022 } 3023 3024 /** 3025 * _base_alloc_irq_vectors - allocate msix vectors 3026 * @ioc: per adapter object 3027 * 3028 */ 3029 static int 3030 _base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc) 3031 { 3032 int i, irq_flags = PCI_IRQ_MSIX; 3033 struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues }; 3034 struct irq_affinity *descp = &desc; 3035 3036 if (ioc->smp_affinity_enable) 3037 irq_flags |= PCI_IRQ_AFFINITY; 3038 else 3039 descp = NULL; 3040 3041 ioc_info(ioc, " %d %d\n", ioc->high_iops_queues, 3042 ioc->msix_vector_count); 3043 3044 i = pci_alloc_irq_vectors_affinity(ioc->pdev, 3045 ioc->high_iops_queues, 3046 ioc->msix_vector_count, irq_flags, descp); 3047 3048 return i; 3049 } 3050 3051 /** 3052 * _base_enable_msix - enables msix, failback to io_apic 3053 * @ioc: per adapter object 3054 * 3055 */ 3056 static int 3057 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc) 3058 { 3059 int r; 3060 int i, local_max_msix_vectors; 3061 u8 try_msix = 0; 3062 3063 ioc->msix_load_balance = false; 3064 3065 if (msix_disable == -1 || msix_disable == 0) 3066 try_msix = 1; 3067 3068 if (!try_msix) 3069 goto try_ioapic; 3070 3071 if (_base_check_enable_msix(ioc) != 0) 3072 goto try_ioapic; 3073 3074 ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count); 3075 pr_info("\t no of cores: %d, max_msix_vectors: %d\n", 3076 ioc->cpu_count, max_msix_vectors); 3077 if (ioc->is_aero_ioc) 3078 _base_check_and_enable_high_iops_queues(ioc, 3079 ioc->msix_vector_count); 3080 ioc->reply_queue_count = 3081 min_t(int, ioc->cpu_count + ioc->high_iops_queues, 3082 ioc->msix_vector_count); 3083 3084 if (!ioc->rdpq_array_enable && max_msix_vectors == -1) 3085 local_max_msix_vectors = (reset_devices) ? 1 : 8; 3086 else 3087 local_max_msix_vectors = max_msix_vectors; 3088 3089 if (local_max_msix_vectors > 0) 3090 ioc->reply_queue_count = min_t(int, local_max_msix_vectors, 3091 ioc->reply_queue_count); 3092 else if (local_max_msix_vectors == 0) 3093 goto try_ioapic; 3094 3095 /* 3096 * Enable msix_load_balance only if combined reply queue mode is 3097 * disabled on SAS3 & above generation HBA devices. 3098 */ 3099 if (!ioc->combined_reply_queue && 3100 ioc->hba_mpi_version_belonged != MPI2_VERSION) { 3101 ioc->msix_load_balance = true; 3102 } 3103 3104 /* 3105 * smp affinity setting is not need when msix load balance 3106 * is enabled. 3107 */ 3108 if (ioc->msix_load_balance) 3109 ioc->smp_affinity_enable = 0; 3110 3111 r = _base_alloc_irq_vectors(ioc); 3112 if (r < 0) { 3113 dfailprintk(ioc, 3114 ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", 3115 r)); 3116 goto try_ioapic; 3117 } 3118 3119 ioc->msix_enable = 1; 3120 ioc->reply_queue_count = r; 3121 for (i = 0; i < ioc->reply_queue_count; i++) { 3122 r = _base_request_irq(ioc, i); 3123 if (r) { 3124 _base_free_irq(ioc); 3125 _base_disable_msix(ioc); 3126 goto try_ioapic; 3127 } 3128 } 3129 3130 ioc_info(ioc, "High IOPs queues : %s\n", 3131 ioc->high_iops_queues ? "enabled" : "disabled"); 3132 3133 return 0; 3134 3135 /* failback to io_apic interrupt routing */ 3136 try_ioapic: 3137 ioc->high_iops_queues = 0; 3138 ioc_info(ioc, "High IOPs queues : disabled\n"); 3139 ioc->reply_queue_count = 1; 3140 r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY); 3141 if (r < 0) { 3142 dfailprintk(ioc, 3143 ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n", 3144 r)); 3145 } else 3146 r = _base_request_irq(ioc, 0); 3147 3148 return r; 3149 } 3150 3151 /** 3152 * mpt3sas_base_unmap_resources - free controller resources 3153 * @ioc: per adapter object 3154 */ 3155 static void 3156 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc) 3157 { 3158 struct pci_dev *pdev = ioc->pdev; 3159 3160 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 3161 3162 _base_free_irq(ioc); 3163 _base_disable_msix(ioc); 3164 3165 kfree(ioc->replyPostRegisterIndex); 3166 ioc->replyPostRegisterIndex = NULL; 3167 3168 3169 if (ioc->chip_phys) { 3170 iounmap(ioc->chip); 3171 ioc->chip_phys = 0; 3172 } 3173 3174 if (pci_is_enabled(pdev)) { 3175 pci_release_selected_regions(ioc->pdev, ioc->bars); 3176 pci_disable_pcie_error_reporting(pdev); 3177 pci_disable_device(pdev); 3178 } 3179 } 3180 3181 /** 3182 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap) 3183 * @ioc: per adapter object 3184 * 3185 * Return: 0 for success, non-zero for failure. 3186 */ 3187 int 3188 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc) 3189 { 3190 struct pci_dev *pdev = ioc->pdev; 3191 u32 memap_sz; 3192 u32 pio_sz; 3193 int i, r = 0; 3194 u64 pio_chip = 0; 3195 phys_addr_t chip_phys = 0; 3196 struct adapter_reply_queue *reply_q; 3197 3198 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 3199 3200 ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM); 3201 if (pci_enable_device_mem(pdev)) { 3202 ioc_warn(ioc, "pci_enable_device_mem: failed\n"); 3203 ioc->bars = 0; 3204 return -ENODEV; 3205 } 3206 3207 3208 if (pci_request_selected_regions(pdev, ioc->bars, 3209 ioc->driver_name)) { 3210 ioc_warn(ioc, "pci_request_selected_regions: failed\n"); 3211 ioc->bars = 0; 3212 r = -ENODEV; 3213 goto out_fail; 3214 } 3215 3216 /* AER (Advanced Error Reporting) hooks */ 3217 pci_enable_pcie_error_reporting(pdev); 3218 3219 pci_set_master(pdev); 3220 3221 3222 if (_base_config_dma_addressing(ioc, pdev) != 0) { 3223 ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev)); 3224 r = -ENODEV; 3225 goto out_fail; 3226 } 3227 3228 for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) && 3229 (!memap_sz || !pio_sz); i++) { 3230 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { 3231 if (pio_sz) 3232 continue; 3233 pio_chip = (u64)pci_resource_start(pdev, i); 3234 pio_sz = pci_resource_len(pdev, i); 3235 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) { 3236 if (memap_sz) 3237 continue; 3238 ioc->chip_phys = pci_resource_start(pdev, i); 3239 chip_phys = ioc->chip_phys; 3240 memap_sz = pci_resource_len(pdev, i); 3241 ioc->chip = ioremap(ioc->chip_phys, memap_sz); 3242 } 3243 } 3244 3245 if (ioc->chip == NULL) { 3246 ioc_err(ioc, "unable to map adapter memory! or resource not found\n"); 3247 r = -EINVAL; 3248 goto out_fail; 3249 } 3250 3251 _base_mask_interrupts(ioc); 3252 3253 r = _base_get_ioc_facts(ioc); 3254 if (r) 3255 goto out_fail; 3256 3257 if (!ioc->rdpq_array_enable_assigned) { 3258 ioc->rdpq_array_enable = ioc->rdpq_array_capable; 3259 ioc->rdpq_array_enable_assigned = 1; 3260 } 3261 3262 r = _base_enable_msix(ioc); 3263 if (r) 3264 goto out_fail; 3265 3266 if (!ioc->is_driver_loading) 3267 _base_init_irqpolls(ioc); 3268 /* Use the Combined reply queue feature only for SAS3 C0 & higher 3269 * revision HBAs and also only when reply queue count is greater than 8 3270 */ 3271 if (ioc->combined_reply_queue) { 3272 /* Determine the Supplemental Reply Post Host Index Registers 3273 * Addresse. Supplemental Reply Post Host Index Registers 3274 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and 3275 * each register is at offset bytes of 3276 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one. 3277 */ 3278 ioc->replyPostRegisterIndex = kcalloc( 3279 ioc->combined_reply_index_count, 3280 sizeof(resource_size_t *), GFP_KERNEL); 3281 if (!ioc->replyPostRegisterIndex) { 3282 dfailprintk(ioc, 3283 ioc_warn(ioc, "allocation for reply Post Register Index failed!!!\n")); 3284 r = -ENOMEM; 3285 goto out_fail; 3286 } 3287 3288 for (i = 0; i < ioc->combined_reply_index_count; i++) { 3289 ioc->replyPostRegisterIndex[i] = (resource_size_t *) 3290 ((u8 __force *)&ioc->chip->Doorbell + 3291 MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET + 3292 (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET)); 3293 } 3294 } 3295 3296 if (ioc->is_warpdrive) { 3297 ioc->reply_post_host_index[0] = (resource_size_t __iomem *) 3298 &ioc->chip->ReplyPostHostIndex; 3299 3300 for (i = 1; i < ioc->cpu_msix_table_sz; i++) 3301 ioc->reply_post_host_index[i] = 3302 (resource_size_t __iomem *) 3303 ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1) 3304 * 4))); 3305 } 3306 3307 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) 3308 pr_info("%s: %s enabled: IRQ %d\n", 3309 reply_q->name, 3310 ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC", 3311 pci_irq_vector(ioc->pdev, reply_q->msix_index)); 3312 3313 ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n", 3314 &chip_phys, ioc->chip, memap_sz); 3315 ioc_info(ioc, "ioport(0x%016llx), size(%d)\n", 3316 (unsigned long long)pio_chip, pio_sz); 3317 3318 /* Save PCI configuration state for recovery from PCI AER/EEH errors */ 3319 pci_save_state(pdev); 3320 return 0; 3321 3322 out_fail: 3323 mpt3sas_base_unmap_resources(ioc); 3324 return r; 3325 } 3326 3327 /** 3328 * mpt3sas_base_get_msg_frame - obtain request mf pointer 3329 * @ioc: per adapter object 3330 * @smid: system request message index(smid zero is invalid) 3331 * 3332 * Return: virt pointer to message frame. 3333 */ 3334 void * 3335 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3336 { 3337 return (void *)(ioc->request + (smid * ioc->request_sz)); 3338 } 3339 3340 /** 3341 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr 3342 * @ioc: per adapter object 3343 * @smid: system request message index 3344 * 3345 * Return: virt pointer to sense buffer. 3346 */ 3347 void * 3348 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3349 { 3350 return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE)); 3351 } 3352 3353 /** 3354 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr 3355 * @ioc: per adapter object 3356 * @smid: system request message index 3357 * 3358 * Return: phys pointer to the low 32bit address of the sense buffer. 3359 */ 3360 __le32 3361 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3362 { 3363 return cpu_to_le32(ioc->sense_dma + ((smid - 1) * 3364 SCSI_SENSE_BUFFERSIZE)); 3365 } 3366 3367 /** 3368 * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr 3369 * @ioc: per adapter object 3370 * @smid: system request message index 3371 * 3372 * Return: virt pointer to a PCIe SGL. 3373 */ 3374 void * 3375 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3376 { 3377 return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl); 3378 } 3379 3380 /** 3381 * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr 3382 * @ioc: per adapter object 3383 * @smid: system request message index 3384 * 3385 * Return: phys pointer to the address of the PCIe buffer. 3386 */ 3387 dma_addr_t 3388 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3389 { 3390 return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma; 3391 } 3392 3393 /** 3394 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address 3395 * @ioc: per adapter object 3396 * @phys_addr: lower 32 physical addr of the reply 3397 * 3398 * Converts 32bit lower physical addr into a virt address. 3399 */ 3400 void * 3401 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr) 3402 { 3403 if (!phys_addr) 3404 return NULL; 3405 return ioc->reply + (phys_addr - (u32)ioc->reply_dma); 3406 } 3407 3408 /** 3409 * _base_get_msix_index - get the msix index 3410 * @ioc: per adapter object 3411 * @scmd: scsi_cmnd object 3412 * 3413 * returns msix index of general reply queues, 3414 * i.e. reply queue on which IO request's reply 3415 * should be posted by the HBA firmware. 3416 */ 3417 static inline u8 3418 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc, 3419 struct scsi_cmnd *scmd) 3420 { 3421 /* Enables reply_queue load balancing */ 3422 if (ioc->msix_load_balance) 3423 return ioc->reply_queue_count ? 3424 base_mod64(atomic64_add_return(1, 3425 &ioc->total_io_cnt), ioc->reply_queue_count) : 0; 3426 3427 return ioc->cpu_msix_table[raw_smp_processor_id()]; 3428 } 3429 3430 /** 3431 * _base_get_high_iops_msix_index - get the msix index of 3432 * high iops queues 3433 * @ioc: per adapter object 3434 * @scmd: scsi_cmnd object 3435 * 3436 * Returns: msix index of high iops reply queues. 3437 * i.e. high iops reply queue on which IO request's 3438 * reply should be posted by the HBA firmware. 3439 */ 3440 static inline u8 3441 _base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc, 3442 struct scsi_cmnd *scmd) 3443 { 3444 /** 3445 * Round robin the IO interrupts among the high iops 3446 * reply queues in terms of batch count 16 when outstanding 3447 * IOs on the target device is >=8. 3448 */ 3449 if (atomic_read(&scmd->device->device_busy) > 3450 MPT3SAS_DEVICE_HIGH_IOPS_DEPTH) 3451 return base_mod64(( 3452 atomic64_add_return(1, &ioc->high_iops_outstanding) / 3453 MPT3SAS_HIGH_IOPS_BATCH_COUNT), 3454 MPT3SAS_HIGH_IOPS_REPLY_QUEUES); 3455 3456 return _base_get_msix_index(ioc, scmd); 3457 } 3458 3459 /** 3460 * mpt3sas_base_get_smid - obtain a free smid from internal queue 3461 * @ioc: per adapter object 3462 * @cb_idx: callback index 3463 * 3464 * Return: smid (zero is invalid) 3465 */ 3466 u16 3467 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx) 3468 { 3469 unsigned long flags; 3470 struct request_tracker *request; 3471 u16 smid; 3472 3473 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3474 if (list_empty(&ioc->internal_free_list)) { 3475 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3476 ioc_err(ioc, "%s: smid not available\n", __func__); 3477 return 0; 3478 } 3479 3480 request = list_entry(ioc->internal_free_list.next, 3481 struct request_tracker, tracker_list); 3482 request->cb_idx = cb_idx; 3483 smid = request->smid; 3484 list_del(&request->tracker_list); 3485 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3486 return smid; 3487 } 3488 3489 /** 3490 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue 3491 * @ioc: per adapter object 3492 * @cb_idx: callback index 3493 * @scmd: pointer to scsi command object 3494 * 3495 * Return: smid (zero is invalid) 3496 */ 3497 u16 3498 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx, 3499 struct scsi_cmnd *scmd) 3500 { 3501 struct scsiio_tracker *request = scsi_cmd_priv(scmd); 3502 unsigned int tag = scmd->request->tag; 3503 u16 smid; 3504 3505 smid = tag + 1; 3506 request->cb_idx = cb_idx; 3507 request->smid = smid; 3508 request->scmd = scmd; 3509 INIT_LIST_HEAD(&request->chain_list); 3510 return smid; 3511 } 3512 3513 /** 3514 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue 3515 * @ioc: per adapter object 3516 * @cb_idx: callback index 3517 * 3518 * Return: smid (zero is invalid) 3519 */ 3520 u16 3521 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx) 3522 { 3523 unsigned long flags; 3524 struct request_tracker *request; 3525 u16 smid; 3526 3527 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3528 if (list_empty(&ioc->hpr_free_list)) { 3529 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3530 return 0; 3531 } 3532 3533 request = list_entry(ioc->hpr_free_list.next, 3534 struct request_tracker, tracker_list); 3535 request->cb_idx = cb_idx; 3536 smid = request->smid; 3537 list_del(&request->tracker_list); 3538 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3539 return smid; 3540 } 3541 3542 static void 3543 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc) 3544 { 3545 /* 3546 * See _wait_for_commands_to_complete() call with regards to this code. 3547 */ 3548 if (ioc->shost_recovery && ioc->pending_io_count) { 3549 ioc->pending_io_count = scsi_host_busy(ioc->shost); 3550 if (ioc->pending_io_count == 0) 3551 wake_up(&ioc->reset_wq); 3552 } 3553 } 3554 3555 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc, 3556 struct scsiio_tracker *st) 3557 { 3558 if (WARN_ON(st->smid == 0)) 3559 return; 3560 st->cb_idx = 0xFF; 3561 st->direct_io = 0; 3562 st->scmd = NULL; 3563 atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0); 3564 st->smid = 0; 3565 } 3566 3567 /** 3568 * mpt3sas_base_free_smid - put smid back on free_list 3569 * @ioc: per adapter object 3570 * @smid: system request message index 3571 */ 3572 void 3573 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3574 { 3575 unsigned long flags; 3576 int i; 3577 3578 if (smid < ioc->hi_priority_smid) { 3579 struct scsiio_tracker *st; 3580 void *request; 3581 3582 st = _get_st_from_smid(ioc, smid); 3583 if (!st) { 3584 _base_recovery_check(ioc); 3585 return; 3586 } 3587 3588 /* Clear MPI request frame */ 3589 request = mpt3sas_base_get_msg_frame(ioc, smid); 3590 memset(request, 0, ioc->request_sz); 3591 3592 mpt3sas_base_clear_st(ioc, st); 3593 _base_recovery_check(ioc); 3594 return; 3595 } 3596 3597 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3598 if (smid < ioc->internal_smid) { 3599 /* hi-priority */ 3600 i = smid - ioc->hi_priority_smid; 3601 ioc->hpr_lookup[i].cb_idx = 0xFF; 3602 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list); 3603 } else if (smid <= ioc->hba_queue_depth) { 3604 /* internal queue */ 3605 i = smid - ioc->internal_smid; 3606 ioc->internal_lookup[i].cb_idx = 0xFF; 3607 list_add(&ioc->internal_lookup[i].tracker_list, 3608 &ioc->internal_free_list); 3609 } 3610 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3611 } 3612 3613 /** 3614 * _base_mpi_ep_writeq - 32 bit write to MMIO 3615 * @b: data payload 3616 * @addr: address in MMIO space 3617 * @writeq_lock: spin lock 3618 * 3619 * This special handling for MPI EP to take care of 32 bit 3620 * environment where its not quarenteed to send the entire word 3621 * in one transfer. 3622 */ 3623 static inline void 3624 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr, 3625 spinlock_t *writeq_lock) 3626 { 3627 unsigned long flags; 3628 3629 spin_lock_irqsave(writeq_lock, flags); 3630 __raw_writel((u32)(b), addr); 3631 __raw_writel((u32)(b >> 32), (addr + 4)); 3632 spin_unlock_irqrestore(writeq_lock, flags); 3633 } 3634 3635 /** 3636 * _base_writeq - 64 bit write to MMIO 3637 * @b: data payload 3638 * @addr: address in MMIO space 3639 * @writeq_lock: spin lock 3640 * 3641 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes 3642 * care of 32 bit environment where its not quarenteed to send the entire word 3643 * in one transfer. 3644 */ 3645 #if defined(writeq) && defined(CONFIG_64BIT) 3646 static inline void 3647 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock) 3648 { 3649 wmb(); 3650 __raw_writeq(b, addr); 3651 barrier(); 3652 } 3653 #else 3654 static inline void 3655 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock) 3656 { 3657 _base_mpi_ep_writeq(b, addr, writeq_lock); 3658 } 3659 #endif 3660 3661 /** 3662 * _base_set_and_get_msix_index - get the msix index and assign to msix_io 3663 * variable of scsi tracker 3664 * @ioc: per adapter object 3665 * @smid: system request message index 3666 * 3667 * returns msix index. 3668 */ 3669 static u8 3670 _base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3671 { 3672 struct scsiio_tracker *st = NULL; 3673 3674 if (smid < ioc->hi_priority_smid) 3675 st = _get_st_from_smid(ioc, smid); 3676 3677 if (st == NULL) 3678 return _base_get_msix_index(ioc, NULL); 3679 3680 st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd); 3681 return st->msix_io; 3682 } 3683 3684 /** 3685 * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware 3686 * @ioc: per adapter object 3687 * @smid: system request message index 3688 * @handle: device handle 3689 */ 3690 static void 3691 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc, 3692 u16 smid, u16 handle) 3693 { 3694 Mpi2RequestDescriptorUnion_t descriptor; 3695 u64 *request = (u64 *)&descriptor; 3696 void *mpi_req_iomem; 3697 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 3698 3699 _clone_sg_entries(ioc, (void *) mfp, smid); 3700 mpi_req_iomem = (void __force *)ioc->chip + 3701 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz); 3702 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 3703 ioc->request_sz); 3704 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 3705 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3706 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 3707 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 3708 descriptor.SCSIIO.LMID = 0; 3709 _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3710 &ioc->scsi_lookup_lock); 3711 } 3712 3713 /** 3714 * _base_put_smid_scsi_io - send SCSI_IO request to firmware 3715 * @ioc: per adapter object 3716 * @smid: system request message index 3717 * @handle: device handle 3718 */ 3719 static void 3720 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle) 3721 { 3722 Mpi2RequestDescriptorUnion_t descriptor; 3723 u64 *request = (u64 *)&descriptor; 3724 3725 3726 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 3727 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3728 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 3729 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 3730 descriptor.SCSIIO.LMID = 0; 3731 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3732 &ioc->scsi_lookup_lock); 3733 } 3734 3735 /** 3736 * _base_put_smid_fast_path - send fast path request to firmware 3737 * @ioc: per adapter object 3738 * @smid: system request message index 3739 * @handle: device handle 3740 */ 3741 static void 3742 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid, 3743 u16 handle) 3744 { 3745 Mpi2RequestDescriptorUnion_t descriptor; 3746 u64 *request = (u64 *)&descriptor; 3747 3748 descriptor.SCSIIO.RequestFlags = 3749 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 3750 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3751 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 3752 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 3753 descriptor.SCSIIO.LMID = 0; 3754 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3755 &ioc->scsi_lookup_lock); 3756 } 3757 3758 /** 3759 * _base_put_smid_hi_priority - send Task Management request to firmware 3760 * @ioc: per adapter object 3761 * @smid: system request message index 3762 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0. 3763 */ 3764 static void 3765 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid, 3766 u16 msix_task) 3767 { 3768 Mpi2RequestDescriptorUnion_t descriptor; 3769 void *mpi_req_iomem; 3770 u64 *request; 3771 3772 if (ioc->is_mcpu_endpoint) { 3773 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 3774 3775 /* TBD 256 is offset within sys register. */ 3776 mpi_req_iomem = (void __force *)ioc->chip 3777 + MPI_FRAME_START_OFFSET 3778 + (smid * ioc->request_sz); 3779 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 3780 ioc->request_sz); 3781 } 3782 3783 request = (u64 *)&descriptor; 3784 3785 descriptor.HighPriority.RequestFlags = 3786 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 3787 descriptor.HighPriority.MSIxIndex = msix_task; 3788 descriptor.HighPriority.SMID = cpu_to_le16(smid); 3789 descriptor.HighPriority.LMID = 0; 3790 descriptor.HighPriority.Reserved1 = 0; 3791 if (ioc->is_mcpu_endpoint) 3792 _base_mpi_ep_writeq(*request, 3793 &ioc->chip->RequestDescriptorPostLow, 3794 &ioc->scsi_lookup_lock); 3795 else 3796 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3797 &ioc->scsi_lookup_lock); 3798 } 3799 3800 /** 3801 * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to 3802 * firmware 3803 * @ioc: per adapter object 3804 * @smid: system request message index 3805 */ 3806 void 3807 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3808 { 3809 Mpi2RequestDescriptorUnion_t descriptor; 3810 u64 *request = (u64 *)&descriptor; 3811 3812 descriptor.Default.RequestFlags = 3813 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED; 3814 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3815 descriptor.Default.SMID = cpu_to_le16(smid); 3816 descriptor.Default.LMID = 0; 3817 descriptor.Default.DescriptorTypeDependent = 0; 3818 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3819 &ioc->scsi_lookup_lock); 3820 } 3821 3822 /** 3823 * _base_put_smid_default - Default, primarily used for config pages 3824 * @ioc: per adapter object 3825 * @smid: system request message index 3826 */ 3827 static void 3828 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3829 { 3830 Mpi2RequestDescriptorUnion_t descriptor; 3831 void *mpi_req_iomem; 3832 u64 *request; 3833 3834 if (ioc->is_mcpu_endpoint) { 3835 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 3836 3837 _clone_sg_entries(ioc, (void *) mfp, smid); 3838 /* TBD 256 is offset within sys register */ 3839 mpi_req_iomem = (void __force *)ioc->chip + 3840 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz); 3841 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 3842 ioc->request_sz); 3843 } 3844 request = (u64 *)&descriptor; 3845 descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 3846 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3847 descriptor.Default.SMID = cpu_to_le16(smid); 3848 descriptor.Default.LMID = 0; 3849 descriptor.Default.DescriptorTypeDependent = 0; 3850 if (ioc->is_mcpu_endpoint) 3851 _base_mpi_ep_writeq(*request, 3852 &ioc->chip->RequestDescriptorPostLow, 3853 &ioc->scsi_lookup_lock); 3854 else 3855 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3856 &ioc->scsi_lookup_lock); 3857 } 3858 3859 /** 3860 * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using 3861 * Atomic Request Descriptor 3862 * @ioc: per adapter object 3863 * @smid: system request message index 3864 * @handle: device handle, unused in this function, for function type match 3865 * 3866 * Return nothing. 3867 */ 3868 static void 3869 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, 3870 u16 handle) 3871 { 3872 Mpi26AtomicRequestDescriptor_t descriptor; 3873 u32 *request = (u32 *)&descriptor; 3874 3875 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 3876 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3877 descriptor.SMID = cpu_to_le16(smid); 3878 3879 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 3880 } 3881 3882 /** 3883 * _base_put_smid_fast_path_atomic - send fast path request to firmware 3884 * using Atomic Request Descriptor 3885 * @ioc: per adapter object 3886 * @smid: system request message index 3887 * @handle: device handle, unused in this function, for function type match 3888 * Return nothing 3889 */ 3890 static void 3891 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, 3892 u16 handle) 3893 { 3894 Mpi26AtomicRequestDescriptor_t descriptor; 3895 u32 *request = (u32 *)&descriptor; 3896 3897 descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 3898 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3899 descriptor.SMID = cpu_to_le16(smid); 3900 3901 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 3902 } 3903 3904 /** 3905 * _base_put_smid_hi_priority_atomic - send Task Management request to 3906 * firmware using Atomic Request Descriptor 3907 * @ioc: per adapter object 3908 * @smid: system request message index 3909 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0 3910 * 3911 * Return nothing. 3912 */ 3913 static void 3914 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, 3915 u16 msix_task) 3916 { 3917 Mpi26AtomicRequestDescriptor_t descriptor; 3918 u32 *request = (u32 *)&descriptor; 3919 3920 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 3921 descriptor.MSIxIndex = msix_task; 3922 descriptor.SMID = cpu_to_le16(smid); 3923 3924 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 3925 } 3926 3927 /** 3928 * _base_put_smid_default - Default, primarily used for config pages 3929 * use Atomic Request Descriptor 3930 * @ioc: per adapter object 3931 * @smid: system request message index 3932 * 3933 * Return nothing. 3934 */ 3935 static void 3936 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3937 { 3938 Mpi26AtomicRequestDescriptor_t descriptor; 3939 u32 *request = (u32 *)&descriptor; 3940 3941 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 3942 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3943 descriptor.SMID = cpu_to_le16(smid); 3944 3945 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 3946 } 3947 3948 /** 3949 * _base_display_OEMs_branding - Display branding string 3950 * @ioc: per adapter object 3951 */ 3952 static void 3953 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc) 3954 { 3955 if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL) 3956 return; 3957 3958 switch (ioc->pdev->subsystem_vendor) { 3959 case PCI_VENDOR_ID_INTEL: 3960 switch (ioc->pdev->device) { 3961 case MPI2_MFGPAGE_DEVID_SAS2008: 3962 switch (ioc->pdev->subsystem_device) { 3963 case MPT2SAS_INTEL_RMS2LL080_SSDID: 3964 ioc_info(ioc, "%s\n", 3965 MPT2SAS_INTEL_RMS2LL080_BRANDING); 3966 break; 3967 case MPT2SAS_INTEL_RMS2LL040_SSDID: 3968 ioc_info(ioc, "%s\n", 3969 MPT2SAS_INTEL_RMS2LL040_BRANDING); 3970 break; 3971 case MPT2SAS_INTEL_SSD910_SSDID: 3972 ioc_info(ioc, "%s\n", 3973 MPT2SAS_INTEL_SSD910_BRANDING); 3974 break; 3975 default: 3976 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 3977 ioc->pdev->subsystem_device); 3978 break; 3979 } 3980 break; 3981 case MPI2_MFGPAGE_DEVID_SAS2308_2: 3982 switch (ioc->pdev->subsystem_device) { 3983 case MPT2SAS_INTEL_RS25GB008_SSDID: 3984 ioc_info(ioc, "%s\n", 3985 MPT2SAS_INTEL_RS25GB008_BRANDING); 3986 break; 3987 case MPT2SAS_INTEL_RMS25JB080_SSDID: 3988 ioc_info(ioc, "%s\n", 3989 MPT2SAS_INTEL_RMS25JB080_BRANDING); 3990 break; 3991 case MPT2SAS_INTEL_RMS25JB040_SSDID: 3992 ioc_info(ioc, "%s\n", 3993 MPT2SAS_INTEL_RMS25JB040_BRANDING); 3994 break; 3995 case MPT2SAS_INTEL_RMS25KB080_SSDID: 3996 ioc_info(ioc, "%s\n", 3997 MPT2SAS_INTEL_RMS25KB080_BRANDING); 3998 break; 3999 case MPT2SAS_INTEL_RMS25KB040_SSDID: 4000 ioc_info(ioc, "%s\n", 4001 MPT2SAS_INTEL_RMS25KB040_BRANDING); 4002 break; 4003 case MPT2SAS_INTEL_RMS25LB040_SSDID: 4004 ioc_info(ioc, "%s\n", 4005 MPT2SAS_INTEL_RMS25LB040_BRANDING); 4006 break; 4007 case MPT2SAS_INTEL_RMS25LB080_SSDID: 4008 ioc_info(ioc, "%s\n", 4009 MPT2SAS_INTEL_RMS25LB080_BRANDING); 4010 break; 4011 default: 4012 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4013 ioc->pdev->subsystem_device); 4014 break; 4015 } 4016 break; 4017 case MPI25_MFGPAGE_DEVID_SAS3008: 4018 switch (ioc->pdev->subsystem_device) { 4019 case MPT3SAS_INTEL_RMS3JC080_SSDID: 4020 ioc_info(ioc, "%s\n", 4021 MPT3SAS_INTEL_RMS3JC080_BRANDING); 4022 break; 4023 4024 case MPT3SAS_INTEL_RS3GC008_SSDID: 4025 ioc_info(ioc, "%s\n", 4026 MPT3SAS_INTEL_RS3GC008_BRANDING); 4027 break; 4028 case MPT3SAS_INTEL_RS3FC044_SSDID: 4029 ioc_info(ioc, "%s\n", 4030 MPT3SAS_INTEL_RS3FC044_BRANDING); 4031 break; 4032 case MPT3SAS_INTEL_RS3UC080_SSDID: 4033 ioc_info(ioc, "%s\n", 4034 MPT3SAS_INTEL_RS3UC080_BRANDING); 4035 break; 4036 default: 4037 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4038 ioc->pdev->subsystem_device); 4039 break; 4040 } 4041 break; 4042 default: 4043 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4044 ioc->pdev->subsystem_device); 4045 break; 4046 } 4047 break; 4048 case PCI_VENDOR_ID_DELL: 4049 switch (ioc->pdev->device) { 4050 case MPI2_MFGPAGE_DEVID_SAS2008: 4051 switch (ioc->pdev->subsystem_device) { 4052 case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID: 4053 ioc_info(ioc, "%s\n", 4054 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING); 4055 break; 4056 case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID: 4057 ioc_info(ioc, "%s\n", 4058 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING); 4059 break; 4060 case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID: 4061 ioc_info(ioc, "%s\n", 4062 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING); 4063 break; 4064 case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID: 4065 ioc_info(ioc, "%s\n", 4066 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING); 4067 break; 4068 case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID: 4069 ioc_info(ioc, "%s\n", 4070 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING); 4071 break; 4072 case MPT2SAS_DELL_PERC_H200_SSDID: 4073 ioc_info(ioc, "%s\n", 4074 MPT2SAS_DELL_PERC_H200_BRANDING); 4075 break; 4076 case MPT2SAS_DELL_6GBPS_SAS_SSDID: 4077 ioc_info(ioc, "%s\n", 4078 MPT2SAS_DELL_6GBPS_SAS_BRANDING); 4079 break; 4080 default: 4081 ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n", 4082 ioc->pdev->subsystem_device); 4083 break; 4084 } 4085 break; 4086 case MPI25_MFGPAGE_DEVID_SAS3008: 4087 switch (ioc->pdev->subsystem_device) { 4088 case MPT3SAS_DELL_12G_HBA_SSDID: 4089 ioc_info(ioc, "%s\n", 4090 MPT3SAS_DELL_12G_HBA_BRANDING); 4091 break; 4092 default: 4093 ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n", 4094 ioc->pdev->subsystem_device); 4095 break; 4096 } 4097 break; 4098 default: 4099 ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n", 4100 ioc->pdev->subsystem_device); 4101 break; 4102 } 4103 break; 4104 case PCI_VENDOR_ID_CISCO: 4105 switch (ioc->pdev->device) { 4106 case MPI25_MFGPAGE_DEVID_SAS3008: 4107 switch (ioc->pdev->subsystem_device) { 4108 case MPT3SAS_CISCO_12G_8E_HBA_SSDID: 4109 ioc_info(ioc, "%s\n", 4110 MPT3SAS_CISCO_12G_8E_HBA_BRANDING); 4111 break; 4112 case MPT3SAS_CISCO_12G_8I_HBA_SSDID: 4113 ioc_info(ioc, "%s\n", 4114 MPT3SAS_CISCO_12G_8I_HBA_BRANDING); 4115 break; 4116 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID: 4117 ioc_info(ioc, "%s\n", 4118 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING); 4119 break; 4120 default: 4121 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n", 4122 ioc->pdev->subsystem_device); 4123 break; 4124 } 4125 break; 4126 case MPI25_MFGPAGE_DEVID_SAS3108_1: 4127 switch (ioc->pdev->subsystem_device) { 4128 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID: 4129 ioc_info(ioc, "%s\n", 4130 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING); 4131 break; 4132 case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID: 4133 ioc_info(ioc, "%s\n", 4134 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING); 4135 break; 4136 default: 4137 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n", 4138 ioc->pdev->subsystem_device); 4139 break; 4140 } 4141 break; 4142 default: 4143 ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n", 4144 ioc->pdev->subsystem_device); 4145 break; 4146 } 4147 break; 4148 case MPT2SAS_HP_3PAR_SSVID: 4149 switch (ioc->pdev->device) { 4150 case MPI2_MFGPAGE_DEVID_SAS2004: 4151 switch (ioc->pdev->subsystem_device) { 4152 case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID: 4153 ioc_info(ioc, "%s\n", 4154 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING); 4155 break; 4156 default: 4157 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n", 4158 ioc->pdev->subsystem_device); 4159 break; 4160 } 4161 break; 4162 case MPI2_MFGPAGE_DEVID_SAS2308_2: 4163 switch (ioc->pdev->subsystem_device) { 4164 case MPT2SAS_HP_2_4_INTERNAL_SSDID: 4165 ioc_info(ioc, "%s\n", 4166 MPT2SAS_HP_2_4_INTERNAL_BRANDING); 4167 break; 4168 case MPT2SAS_HP_2_4_EXTERNAL_SSDID: 4169 ioc_info(ioc, "%s\n", 4170 MPT2SAS_HP_2_4_EXTERNAL_BRANDING); 4171 break; 4172 case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID: 4173 ioc_info(ioc, "%s\n", 4174 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING); 4175 break; 4176 case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID: 4177 ioc_info(ioc, "%s\n", 4178 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING); 4179 break; 4180 default: 4181 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n", 4182 ioc->pdev->subsystem_device); 4183 break; 4184 } 4185 break; 4186 default: 4187 ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n", 4188 ioc->pdev->subsystem_device); 4189 break; 4190 } 4191 default: 4192 break; 4193 } 4194 } 4195 4196 /** 4197 * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg 4198 * version from FW Image Header. 4199 * @ioc: per adapter object 4200 * 4201 * Return: 0 for success, non-zero for failure. 4202 */ 4203 static int 4204 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc) 4205 { 4206 Mpi2FWImageHeader_t *FWImgHdr; 4207 Mpi25FWUploadRequest_t *mpi_request; 4208 Mpi2FWUploadReply_t mpi_reply; 4209 int r = 0; 4210 void *fwpkg_data = NULL; 4211 dma_addr_t fwpkg_data_dma; 4212 u16 smid, ioc_status; 4213 size_t data_length; 4214 4215 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 4216 4217 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 4218 ioc_err(ioc, "%s: internal command already in use\n", __func__); 4219 return -EAGAIN; 4220 } 4221 4222 data_length = sizeof(Mpi2FWImageHeader_t); 4223 fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length, 4224 &fwpkg_data_dma, GFP_KERNEL); 4225 if (!fwpkg_data) { 4226 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4227 __FILE__, __LINE__, __func__); 4228 return -ENOMEM; 4229 } 4230 4231 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 4232 if (!smid) { 4233 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 4234 r = -EAGAIN; 4235 goto out; 4236 } 4237 4238 ioc->base_cmds.status = MPT3_CMD_PENDING; 4239 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 4240 ioc->base_cmds.smid = smid; 4241 memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t)); 4242 mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD; 4243 mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH; 4244 mpi_request->ImageSize = cpu_to_le32(data_length); 4245 ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma, 4246 data_length); 4247 init_completion(&ioc->base_cmds.done); 4248 ioc->put_smid_default(ioc, smid); 4249 /* Wait for 15 seconds */ 4250 wait_for_completion_timeout(&ioc->base_cmds.done, 4251 FW_IMG_HDR_READ_TIMEOUT*HZ); 4252 ioc_info(ioc, "%s: complete\n", __func__); 4253 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 4254 ioc_err(ioc, "%s: timeout\n", __func__); 4255 _debug_dump_mf(mpi_request, 4256 sizeof(Mpi25FWUploadRequest_t)/4); 4257 r = -ETIME; 4258 } else { 4259 memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t)); 4260 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) { 4261 memcpy(&mpi_reply, ioc->base_cmds.reply, 4262 sizeof(Mpi2FWUploadReply_t)); 4263 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 4264 MPI2_IOCSTATUS_MASK; 4265 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 4266 FWImgHdr = (Mpi2FWImageHeader_t *)fwpkg_data; 4267 if (FWImgHdr->PackageVersion.Word) { 4268 ioc_info(ioc, "FW Package Version (%02d.%02d.%02d.%02d)\n", 4269 FWImgHdr->PackageVersion.Struct.Major, 4270 FWImgHdr->PackageVersion.Struct.Minor, 4271 FWImgHdr->PackageVersion.Struct.Unit, 4272 FWImgHdr->PackageVersion.Struct.Dev); 4273 } 4274 } else { 4275 _debug_dump_mf(&mpi_reply, 4276 sizeof(Mpi2FWUploadReply_t)/4); 4277 } 4278 } 4279 } 4280 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 4281 out: 4282 if (fwpkg_data) 4283 dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data, 4284 fwpkg_data_dma); 4285 return r; 4286 } 4287 4288 /** 4289 * _base_display_ioc_capabilities - Disply IOC's capabilities. 4290 * @ioc: per adapter object 4291 */ 4292 static void 4293 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc) 4294 { 4295 int i = 0; 4296 char desc[16]; 4297 u32 iounit_pg1_flags; 4298 u32 bios_version; 4299 4300 bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion); 4301 strncpy(desc, ioc->manu_pg0.ChipName, 16); 4302 ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n", 4303 desc, 4304 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24, 4305 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16, 4306 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8, 4307 ioc->facts.FWVersion.Word & 0x000000FF, 4308 ioc->pdev->revision, 4309 (bios_version & 0xFF000000) >> 24, 4310 (bios_version & 0x00FF0000) >> 16, 4311 (bios_version & 0x0000FF00) >> 8, 4312 bios_version & 0x000000FF); 4313 4314 _base_display_OEMs_branding(ioc); 4315 4316 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) { 4317 pr_info("%sNVMe", i ? "," : ""); 4318 i++; 4319 } 4320 4321 ioc_info(ioc, "Protocol=("); 4322 4323 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) { 4324 pr_cont("Initiator"); 4325 i++; 4326 } 4327 4328 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) { 4329 pr_cont("%sTarget", i ? "," : ""); 4330 i++; 4331 } 4332 4333 i = 0; 4334 pr_cont("), Capabilities=("); 4335 4336 if (!ioc->hide_ir_msg) { 4337 if (ioc->facts.IOCCapabilities & 4338 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) { 4339 pr_cont("Raid"); 4340 i++; 4341 } 4342 } 4343 4344 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) { 4345 pr_cont("%sTLR", i ? "," : ""); 4346 i++; 4347 } 4348 4349 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) { 4350 pr_cont("%sMulticast", i ? "," : ""); 4351 i++; 4352 } 4353 4354 if (ioc->facts.IOCCapabilities & 4355 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) { 4356 pr_cont("%sBIDI Target", i ? "," : ""); 4357 i++; 4358 } 4359 4360 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) { 4361 pr_cont("%sEEDP", i ? "," : ""); 4362 i++; 4363 } 4364 4365 if (ioc->facts.IOCCapabilities & 4366 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) { 4367 pr_cont("%sSnapshot Buffer", i ? "," : ""); 4368 i++; 4369 } 4370 4371 if (ioc->facts.IOCCapabilities & 4372 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) { 4373 pr_cont("%sDiag Trace Buffer", i ? "," : ""); 4374 i++; 4375 } 4376 4377 if (ioc->facts.IOCCapabilities & 4378 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) { 4379 pr_cont("%sDiag Extended Buffer", i ? "," : ""); 4380 i++; 4381 } 4382 4383 if (ioc->facts.IOCCapabilities & 4384 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) { 4385 pr_cont("%sTask Set Full", i ? "," : ""); 4386 i++; 4387 } 4388 4389 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags); 4390 if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) { 4391 pr_cont("%sNCQ", i ? "," : ""); 4392 i++; 4393 } 4394 4395 pr_cont(")\n"); 4396 } 4397 4398 /** 4399 * mpt3sas_base_update_missing_delay - change the missing delay timers 4400 * @ioc: per adapter object 4401 * @device_missing_delay: amount of time till device is reported missing 4402 * @io_missing_delay: interval IO is returned when there is a missing device 4403 * 4404 * Passed on the command line, this function will modify the device missing 4405 * delay, as well as the io missing delay. This should be called at driver 4406 * load time. 4407 */ 4408 void 4409 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc, 4410 u16 device_missing_delay, u8 io_missing_delay) 4411 { 4412 u16 dmd, dmd_new, dmd_orignal; 4413 u8 io_missing_delay_original; 4414 u16 sz; 4415 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL; 4416 Mpi2ConfigReply_t mpi_reply; 4417 u8 num_phys = 0; 4418 u16 ioc_status; 4419 4420 mpt3sas_config_get_number_hba_phys(ioc, &num_phys); 4421 if (!num_phys) 4422 return; 4423 4424 sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys * 4425 sizeof(Mpi2SasIOUnit1PhyData_t)); 4426 sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL); 4427 if (!sas_iounit_pg1) { 4428 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4429 __FILE__, __LINE__, __func__); 4430 goto out; 4431 } 4432 if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply, 4433 sas_iounit_pg1, sz))) { 4434 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4435 __FILE__, __LINE__, __func__); 4436 goto out; 4437 } 4438 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 4439 MPI2_IOCSTATUS_MASK; 4440 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 4441 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4442 __FILE__, __LINE__, __func__); 4443 goto out; 4444 } 4445 4446 /* device missing delay */ 4447 dmd = sas_iounit_pg1->ReportDeviceMissingDelay; 4448 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16) 4449 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16; 4450 else 4451 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK; 4452 dmd_orignal = dmd; 4453 if (device_missing_delay > 0x7F) { 4454 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 : 4455 device_missing_delay; 4456 dmd = dmd / 16; 4457 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16; 4458 } else 4459 dmd = device_missing_delay; 4460 sas_iounit_pg1->ReportDeviceMissingDelay = dmd; 4461 4462 /* io missing delay */ 4463 io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay; 4464 sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay; 4465 4466 if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1, 4467 sz)) { 4468 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16) 4469 dmd_new = (dmd & 4470 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16; 4471 else 4472 dmd_new = 4473 dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK; 4474 ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n", 4475 dmd_orignal, dmd_new); 4476 ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n", 4477 io_missing_delay_original, 4478 io_missing_delay); 4479 ioc->device_missing_delay = dmd_new; 4480 ioc->io_missing_delay = io_missing_delay; 4481 } 4482 4483 out: 4484 kfree(sas_iounit_pg1); 4485 } 4486 4487 /** 4488 * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields 4489 * according to performance mode. 4490 * @ioc : per adapter object 4491 * 4492 * Return nothing. 4493 */ 4494 static void 4495 _base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc) 4496 { 4497 Mpi2IOCPage1_t ioc_pg1; 4498 Mpi2ConfigReply_t mpi_reply; 4499 4500 mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy); 4501 memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t)); 4502 4503 switch (perf_mode) { 4504 case MPT_PERF_MODE_DEFAULT: 4505 case MPT_PERF_MODE_BALANCED: 4506 if (ioc->high_iops_queues) { 4507 ioc_info(ioc, 4508 "Enable interrupt coalescing only for first\t" 4509 "%d reply queues\n", 4510 MPT3SAS_HIGH_IOPS_REPLY_QUEUES); 4511 /* 4512 * If 31st bit is zero then interrupt coalescing is 4513 * enabled for all reply descriptor post queues. 4514 * If 31st bit is set to one then user can 4515 * enable/disable interrupt coalescing on per reply 4516 * descriptor post queue group(8) basis. So to enable 4517 * interrupt coalescing only on first reply descriptor 4518 * post queue group 31st bit and zero th bit is enabled. 4519 */ 4520 ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 | 4521 ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1)); 4522 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1); 4523 ioc_info(ioc, "performance mode: balanced\n"); 4524 return; 4525 } 4526 /* Fall through */ 4527 case MPT_PERF_MODE_LATENCY: 4528 /* 4529 * Enable interrupt coalescing on all reply queues 4530 * with timeout value 0xA 4531 */ 4532 ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa); 4533 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING); 4534 ioc_pg1.ProductSpecific = 0; 4535 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1); 4536 ioc_info(ioc, "performance mode: latency\n"); 4537 break; 4538 case MPT_PERF_MODE_IOPS: 4539 /* 4540 * Enable interrupt coalescing on all reply queues. 4541 */ 4542 ioc_info(ioc, 4543 "performance mode: iops with coalescing timeout: 0x%x\n", 4544 le32_to_cpu(ioc_pg1.CoalescingTimeout)); 4545 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING); 4546 ioc_pg1.ProductSpecific = 0; 4547 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1); 4548 break; 4549 } 4550 } 4551 4552 /** 4553 * _base_static_config_pages - static start of day config pages 4554 * @ioc: per adapter object 4555 */ 4556 static void 4557 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc) 4558 { 4559 Mpi2ConfigReply_t mpi_reply; 4560 u32 iounit_pg1_flags; 4561 4562 ioc->nvme_abort_timeout = 30; 4563 mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0); 4564 if (ioc->ir_firmware) 4565 mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply, 4566 &ioc->manu_pg10); 4567 4568 /* 4569 * Ensure correct T10 PI operation if vendor left EEDPTagMode 4570 * flag unset in NVDATA. 4571 */ 4572 mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11); 4573 if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) { 4574 pr_err("%s: overriding NVDATA EEDPTagMode setting\n", 4575 ioc->name); 4576 ioc->manu_pg11.EEDPTagMode &= ~0x3; 4577 ioc->manu_pg11.EEDPTagMode |= 0x1; 4578 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply, 4579 &ioc->manu_pg11); 4580 } 4581 if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK) 4582 ioc->tm_custom_handling = 1; 4583 else { 4584 ioc->tm_custom_handling = 0; 4585 if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT) 4586 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT; 4587 else if (ioc->manu_pg11.NVMeAbortTO > 4588 NVME_TASK_ABORT_MAX_TIMEOUT) 4589 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT; 4590 else 4591 ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO; 4592 } 4593 4594 mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2); 4595 mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3); 4596 mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8); 4597 mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0); 4598 mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1); 4599 mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8); 4600 _base_display_ioc_capabilities(ioc); 4601 4602 /* 4603 * Enable task_set_full handling in iounit_pg1 when the 4604 * facts capabilities indicate that its supported. 4605 */ 4606 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags); 4607 if ((ioc->facts.IOCCapabilities & 4608 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING)) 4609 iounit_pg1_flags &= 4610 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING; 4611 else 4612 iounit_pg1_flags |= 4613 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING; 4614 ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags); 4615 mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1); 4616 4617 if (ioc->iounit_pg8.NumSensors) 4618 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors; 4619 if (ioc->is_aero_ioc) 4620 _base_update_ioc_page1_inlinewith_perf_mode(ioc); 4621 } 4622 4623 /** 4624 * mpt3sas_free_enclosure_list - release memory 4625 * @ioc: per adapter object 4626 * 4627 * Free memory allocated during encloure add. 4628 */ 4629 void 4630 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc) 4631 { 4632 struct _enclosure_node *enclosure_dev, *enclosure_dev_next; 4633 4634 /* Free enclosure list */ 4635 list_for_each_entry_safe(enclosure_dev, 4636 enclosure_dev_next, &ioc->enclosure_list, list) { 4637 list_del(&enclosure_dev->list); 4638 kfree(enclosure_dev); 4639 } 4640 } 4641 4642 /** 4643 * _base_release_memory_pools - release memory 4644 * @ioc: per adapter object 4645 * 4646 * Free memory allocated from _base_allocate_memory_pools. 4647 */ 4648 static void 4649 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc) 4650 { 4651 int i = 0; 4652 int j = 0; 4653 struct chain_tracker *ct; 4654 struct reply_post_struct *rps; 4655 4656 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 4657 4658 if (ioc->request) { 4659 dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz, 4660 ioc->request, ioc->request_dma); 4661 dexitprintk(ioc, 4662 ioc_info(ioc, "request_pool(0x%p): free\n", 4663 ioc->request)); 4664 ioc->request = NULL; 4665 } 4666 4667 if (ioc->sense) { 4668 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma); 4669 dma_pool_destroy(ioc->sense_dma_pool); 4670 dexitprintk(ioc, 4671 ioc_info(ioc, "sense_pool(0x%p): free\n", 4672 ioc->sense)); 4673 ioc->sense = NULL; 4674 } 4675 4676 if (ioc->reply) { 4677 dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma); 4678 dma_pool_destroy(ioc->reply_dma_pool); 4679 dexitprintk(ioc, 4680 ioc_info(ioc, "reply_pool(0x%p): free\n", 4681 ioc->reply)); 4682 ioc->reply = NULL; 4683 } 4684 4685 if (ioc->reply_free) { 4686 dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free, 4687 ioc->reply_free_dma); 4688 dma_pool_destroy(ioc->reply_free_dma_pool); 4689 dexitprintk(ioc, 4690 ioc_info(ioc, "reply_free_pool(0x%p): free\n", 4691 ioc->reply_free)); 4692 ioc->reply_free = NULL; 4693 } 4694 4695 if (ioc->reply_post) { 4696 do { 4697 rps = &ioc->reply_post[i]; 4698 if (rps->reply_post_free) { 4699 dma_pool_free( 4700 ioc->reply_post_free_dma_pool, 4701 rps->reply_post_free, 4702 rps->reply_post_free_dma); 4703 dexitprintk(ioc, 4704 ioc_info(ioc, "reply_post_free_pool(0x%p): free\n", 4705 rps->reply_post_free)); 4706 rps->reply_post_free = NULL; 4707 } 4708 } while (ioc->rdpq_array_enable && 4709 (++i < ioc->reply_queue_count)); 4710 if (ioc->reply_post_free_array && 4711 ioc->rdpq_array_enable) { 4712 dma_pool_free(ioc->reply_post_free_array_dma_pool, 4713 ioc->reply_post_free_array, 4714 ioc->reply_post_free_array_dma); 4715 ioc->reply_post_free_array = NULL; 4716 } 4717 dma_pool_destroy(ioc->reply_post_free_array_dma_pool); 4718 dma_pool_destroy(ioc->reply_post_free_dma_pool); 4719 kfree(ioc->reply_post); 4720 } 4721 4722 if (ioc->pcie_sgl_dma_pool) { 4723 for (i = 0; i < ioc->scsiio_depth; i++) { 4724 dma_pool_free(ioc->pcie_sgl_dma_pool, 4725 ioc->pcie_sg_lookup[i].pcie_sgl, 4726 ioc->pcie_sg_lookup[i].pcie_sgl_dma); 4727 } 4728 if (ioc->pcie_sgl_dma_pool) 4729 dma_pool_destroy(ioc->pcie_sgl_dma_pool); 4730 } 4731 4732 if (ioc->config_page) { 4733 dexitprintk(ioc, 4734 ioc_info(ioc, "config_page(0x%p): free\n", 4735 ioc->config_page)); 4736 dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz, 4737 ioc->config_page, ioc->config_page_dma); 4738 } 4739 4740 kfree(ioc->hpr_lookup); 4741 kfree(ioc->internal_lookup); 4742 if (ioc->chain_lookup) { 4743 for (i = 0; i < ioc->scsiio_depth; i++) { 4744 for (j = ioc->chains_per_prp_buffer; 4745 j < ioc->chains_needed_per_io; j++) { 4746 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 4747 if (ct && ct->chain_buffer) 4748 dma_pool_free(ioc->chain_dma_pool, 4749 ct->chain_buffer, 4750 ct->chain_buffer_dma); 4751 } 4752 kfree(ioc->chain_lookup[i].chains_per_smid); 4753 } 4754 dma_pool_destroy(ioc->chain_dma_pool); 4755 kfree(ioc->chain_lookup); 4756 ioc->chain_lookup = NULL; 4757 } 4758 } 4759 4760 /** 4761 * is_MSB_are_same - checks whether all reply queues in a set are 4762 * having same upper 32bits in their base memory address. 4763 * @reply_pool_start_address: Base address of a reply queue set 4764 * @pool_sz: Size of single Reply Descriptor Post Queues pool size 4765 * 4766 * Return: 1 if reply queues in a set have a same upper 32bits in their base 4767 * memory address, else 0. 4768 */ 4769 4770 static int 4771 is_MSB_are_same(long reply_pool_start_address, u32 pool_sz) 4772 { 4773 long reply_pool_end_address; 4774 4775 reply_pool_end_address = reply_pool_start_address + pool_sz; 4776 4777 if (upper_32_bits(reply_pool_start_address) == 4778 upper_32_bits(reply_pool_end_address)) 4779 return 1; 4780 else 4781 return 0; 4782 } 4783 4784 /** 4785 * _base_allocate_memory_pools - allocate start of day memory pools 4786 * @ioc: per adapter object 4787 * 4788 * Return: 0 success, anything else error. 4789 */ 4790 static int 4791 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc) 4792 { 4793 struct mpt3sas_facts *facts; 4794 u16 max_sge_elements; 4795 u16 chains_needed_per_io; 4796 u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz; 4797 u32 retry_sz; 4798 u16 max_request_credit, nvme_blocks_needed; 4799 unsigned short sg_tablesize; 4800 u16 sge_size; 4801 int i, j; 4802 struct chain_tracker *ct; 4803 4804 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 4805 4806 4807 retry_sz = 0; 4808 facts = &ioc->facts; 4809 4810 /* command line tunables for max sgl entries */ 4811 if (max_sgl_entries != -1) 4812 sg_tablesize = max_sgl_entries; 4813 else { 4814 if (ioc->hba_mpi_version_belonged == MPI2_VERSION) 4815 sg_tablesize = MPT2SAS_SG_DEPTH; 4816 else 4817 sg_tablesize = MPT3SAS_SG_DEPTH; 4818 } 4819 4820 /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */ 4821 if (reset_devices) 4822 sg_tablesize = min_t(unsigned short, sg_tablesize, 4823 MPT_KDUMP_MIN_PHYS_SEGMENTS); 4824 4825 if (ioc->is_mcpu_endpoint) 4826 ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS; 4827 else { 4828 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS) 4829 sg_tablesize = MPT_MIN_PHYS_SEGMENTS; 4830 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) { 4831 sg_tablesize = min_t(unsigned short, sg_tablesize, 4832 SG_MAX_SEGMENTS); 4833 ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n", 4834 sg_tablesize, MPT_MAX_PHYS_SEGMENTS); 4835 } 4836 ioc->shost->sg_tablesize = sg_tablesize; 4837 } 4838 4839 ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)), 4840 (facts->RequestCredit / 4)); 4841 if (ioc->internal_depth < INTERNAL_CMDS_COUNT) { 4842 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT + 4843 INTERNAL_SCSIIO_CMDS_COUNT)) { 4844 ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n", 4845 facts->RequestCredit); 4846 return -ENOMEM; 4847 } 4848 ioc->internal_depth = 10; 4849 } 4850 4851 ioc->hi_priority_depth = ioc->internal_depth - (5); 4852 /* command line tunables for max controller queue depth */ 4853 if (max_queue_depth != -1 && max_queue_depth != 0) { 4854 max_request_credit = min_t(u16, max_queue_depth + 4855 ioc->internal_depth, facts->RequestCredit); 4856 if (max_request_credit > MAX_HBA_QUEUE_DEPTH) 4857 max_request_credit = MAX_HBA_QUEUE_DEPTH; 4858 } else if (reset_devices) 4859 max_request_credit = min_t(u16, facts->RequestCredit, 4860 (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth)); 4861 else 4862 max_request_credit = min_t(u16, facts->RequestCredit, 4863 MAX_HBA_QUEUE_DEPTH); 4864 4865 /* Firmware maintains additional facts->HighPriorityCredit number of 4866 * credits for HiPriprity Request messages, so hba queue depth will be 4867 * sum of max_request_credit and high priority queue depth. 4868 */ 4869 ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth; 4870 4871 /* request frame size */ 4872 ioc->request_sz = facts->IOCRequestFrameSize * 4; 4873 4874 /* reply frame size */ 4875 ioc->reply_sz = facts->ReplyFrameSize * 4; 4876 4877 /* chain segment size */ 4878 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 4879 if (facts->IOCMaxChainSegmentSize) 4880 ioc->chain_segment_sz = 4881 facts->IOCMaxChainSegmentSize * 4882 MAX_CHAIN_ELEMT_SZ; 4883 else 4884 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */ 4885 ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS * 4886 MAX_CHAIN_ELEMT_SZ; 4887 } else 4888 ioc->chain_segment_sz = ioc->request_sz; 4889 4890 /* calculate the max scatter element size */ 4891 sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee); 4892 4893 retry_allocation: 4894 total_sz = 0; 4895 /* calculate number of sg elements left over in the 1st frame */ 4896 max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) - 4897 sizeof(Mpi2SGEIOUnion_t)) + sge_size); 4898 ioc->max_sges_in_main_message = max_sge_elements/sge_size; 4899 4900 /* now do the same for a chain buffer */ 4901 max_sge_elements = ioc->chain_segment_sz - sge_size; 4902 ioc->max_sges_in_chain_message = max_sge_elements/sge_size; 4903 4904 /* 4905 * MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE 4906 */ 4907 chains_needed_per_io = ((ioc->shost->sg_tablesize - 4908 ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message) 4909 + 1; 4910 if (chains_needed_per_io > facts->MaxChainDepth) { 4911 chains_needed_per_io = facts->MaxChainDepth; 4912 ioc->shost->sg_tablesize = min_t(u16, 4913 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message 4914 * chains_needed_per_io), ioc->shost->sg_tablesize); 4915 } 4916 ioc->chains_needed_per_io = chains_needed_per_io; 4917 4918 /* reply free queue sizing - taking into account for 64 FW events */ 4919 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64; 4920 4921 /* mCPU manage single counters for simplicity */ 4922 if (ioc->is_mcpu_endpoint) 4923 ioc->reply_post_queue_depth = ioc->reply_free_queue_depth; 4924 else { 4925 /* calculate reply descriptor post queue depth */ 4926 ioc->reply_post_queue_depth = ioc->hba_queue_depth + 4927 ioc->reply_free_queue_depth + 1; 4928 /* align the reply post queue on the next 16 count boundary */ 4929 if (ioc->reply_post_queue_depth % 16) 4930 ioc->reply_post_queue_depth += 16 - 4931 (ioc->reply_post_queue_depth % 16); 4932 } 4933 4934 if (ioc->reply_post_queue_depth > 4935 facts->MaxReplyDescriptorPostQueueDepth) { 4936 ioc->reply_post_queue_depth = 4937 facts->MaxReplyDescriptorPostQueueDepth - 4938 (facts->MaxReplyDescriptorPostQueueDepth % 16); 4939 ioc->hba_queue_depth = 4940 ((ioc->reply_post_queue_depth - 64) / 2) - 1; 4941 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64; 4942 } 4943 4944 dinitprintk(ioc, 4945 ioc_info(ioc, "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), chains_per_io(%d)\n", 4946 ioc->max_sges_in_main_message, 4947 ioc->max_sges_in_chain_message, 4948 ioc->shost->sg_tablesize, 4949 ioc->chains_needed_per_io)); 4950 4951 /* reply post queue, 16 byte align */ 4952 reply_post_free_sz = ioc->reply_post_queue_depth * 4953 sizeof(Mpi2DefaultReplyDescriptor_t); 4954 4955 sz = reply_post_free_sz; 4956 if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable) 4957 sz *= ioc->reply_queue_count; 4958 4959 ioc->reply_post = kcalloc((ioc->rdpq_array_enable) ? 4960 (ioc->reply_queue_count):1, 4961 sizeof(struct reply_post_struct), GFP_KERNEL); 4962 4963 if (!ioc->reply_post) { 4964 ioc_err(ioc, "reply_post_free pool: kcalloc failed\n"); 4965 goto out; 4966 } 4967 ioc->reply_post_free_dma_pool = dma_pool_create("reply_post_free pool", 4968 &ioc->pdev->dev, sz, 16, 0); 4969 if (!ioc->reply_post_free_dma_pool) { 4970 ioc_err(ioc, "reply_post_free pool: dma_pool_create failed\n"); 4971 goto out; 4972 } 4973 i = 0; 4974 do { 4975 ioc->reply_post[i].reply_post_free = 4976 dma_pool_zalloc(ioc->reply_post_free_dma_pool, 4977 GFP_KERNEL, 4978 &ioc->reply_post[i].reply_post_free_dma); 4979 if (!ioc->reply_post[i].reply_post_free) { 4980 ioc_err(ioc, "reply_post_free pool: dma_pool_alloc failed\n"); 4981 goto out; 4982 } 4983 dinitprintk(ioc, 4984 ioc_info(ioc, "reply post free pool (0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n", 4985 ioc->reply_post[i].reply_post_free, 4986 ioc->reply_post_queue_depth, 4987 8, sz / 1024)); 4988 dinitprintk(ioc, 4989 ioc_info(ioc, "reply_post_free_dma = (0x%llx)\n", 4990 (u64)ioc->reply_post[i].reply_post_free_dma)); 4991 total_sz += sz; 4992 } while (ioc->rdpq_array_enable && (++i < ioc->reply_queue_count)); 4993 4994 if (ioc->dma_mask > 32) { 4995 if (_base_change_consistent_dma_mask(ioc, ioc->pdev) != 0) { 4996 ioc_warn(ioc, "no suitable consistent DMA mask for %s\n", 4997 pci_name(ioc->pdev)); 4998 goto out; 4999 } 5000 } 5001 5002 ioc->scsiio_depth = ioc->hba_queue_depth - 5003 ioc->hi_priority_depth - ioc->internal_depth; 5004 5005 /* set the scsi host can_queue depth 5006 * with some internal commands that could be outstanding 5007 */ 5008 ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT; 5009 dinitprintk(ioc, 5010 ioc_info(ioc, "scsi host: can_queue depth (%d)\n", 5011 ioc->shost->can_queue)); 5012 5013 5014 /* contiguous pool for request and chains, 16 byte align, one extra " 5015 * "frame for smid=0 5016 */ 5017 ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth; 5018 sz = ((ioc->scsiio_depth + 1) * ioc->request_sz); 5019 5020 /* hi-priority queue */ 5021 sz += (ioc->hi_priority_depth * ioc->request_sz); 5022 5023 /* internal queue */ 5024 sz += (ioc->internal_depth * ioc->request_sz); 5025 5026 ioc->request_dma_sz = sz; 5027 ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz, 5028 &ioc->request_dma, GFP_KERNEL); 5029 if (!ioc->request) { 5030 ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n", 5031 ioc->hba_queue_depth, ioc->chains_needed_per_io, 5032 ioc->request_sz, sz / 1024); 5033 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH) 5034 goto out; 5035 retry_sz = 64; 5036 ioc->hba_queue_depth -= retry_sz; 5037 _base_release_memory_pools(ioc); 5038 goto retry_allocation; 5039 } 5040 5041 if (retry_sz) 5042 ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n", 5043 ioc->hba_queue_depth, ioc->chains_needed_per_io, 5044 ioc->request_sz, sz / 1024); 5045 5046 /* hi-priority queue */ 5047 ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) * 5048 ioc->request_sz); 5049 ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) * 5050 ioc->request_sz); 5051 5052 /* internal queue */ 5053 ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth * 5054 ioc->request_sz); 5055 ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth * 5056 ioc->request_sz); 5057 5058 dinitprintk(ioc, 5059 ioc_info(ioc, "request pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n", 5060 ioc->request, ioc->hba_queue_depth, 5061 ioc->request_sz, 5062 (ioc->hba_queue_depth * ioc->request_sz) / 1024)); 5063 5064 dinitprintk(ioc, 5065 ioc_info(ioc, "request pool: dma(0x%llx)\n", 5066 (unsigned long long)ioc->request_dma)); 5067 total_sz += sz; 5068 5069 dinitprintk(ioc, 5070 ioc_info(ioc, "scsiio(0x%p): depth(%d)\n", 5071 ioc->request, ioc->scsiio_depth)); 5072 5073 ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH); 5074 sz = ioc->scsiio_depth * sizeof(struct chain_lookup); 5075 ioc->chain_lookup = kzalloc(sz, GFP_KERNEL); 5076 if (!ioc->chain_lookup) { 5077 ioc_err(ioc, "chain_lookup: __get_free_pages failed\n"); 5078 goto out; 5079 } 5080 5081 sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker); 5082 for (i = 0; i < ioc->scsiio_depth; i++) { 5083 ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL); 5084 if (!ioc->chain_lookup[i].chains_per_smid) { 5085 ioc_err(ioc, "chain_lookup: kzalloc failed\n"); 5086 goto out; 5087 } 5088 } 5089 5090 /* initialize hi-priority queue smid's */ 5091 ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth, 5092 sizeof(struct request_tracker), GFP_KERNEL); 5093 if (!ioc->hpr_lookup) { 5094 ioc_err(ioc, "hpr_lookup: kcalloc failed\n"); 5095 goto out; 5096 } 5097 ioc->hi_priority_smid = ioc->scsiio_depth + 1; 5098 dinitprintk(ioc, 5099 ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n", 5100 ioc->hi_priority, 5101 ioc->hi_priority_depth, ioc->hi_priority_smid)); 5102 5103 /* initialize internal queue smid's */ 5104 ioc->internal_lookup = kcalloc(ioc->internal_depth, 5105 sizeof(struct request_tracker), GFP_KERNEL); 5106 if (!ioc->internal_lookup) { 5107 ioc_err(ioc, "internal_lookup: kcalloc failed\n"); 5108 goto out; 5109 } 5110 ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth; 5111 dinitprintk(ioc, 5112 ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n", 5113 ioc->internal, 5114 ioc->internal_depth, ioc->internal_smid)); 5115 /* 5116 * The number of NVMe page sized blocks needed is: 5117 * (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1 5118 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry 5119 * that is placed in the main message frame. 8 is the size of each PRP 5120 * entry or PRP list pointer entry. 8 is subtracted from page_size 5121 * because of the PRP list pointer entry at the end of a page, so this 5122 * is not counted as a PRP entry. The 1 added page is a round up. 5123 * 5124 * To avoid allocation failures due to the amount of memory that could 5125 * be required for NVMe PRP's, only each set of NVMe blocks will be 5126 * contiguous, so a new set is allocated for each possible I/O. 5127 */ 5128 ioc->chains_per_prp_buffer = 0; 5129 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) { 5130 nvme_blocks_needed = 5131 (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1; 5132 nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE); 5133 nvme_blocks_needed++; 5134 5135 sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth; 5136 ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL); 5137 if (!ioc->pcie_sg_lookup) { 5138 ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n"); 5139 goto out; 5140 } 5141 sz = nvme_blocks_needed * ioc->page_size; 5142 ioc->pcie_sgl_dma_pool = 5143 dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz, 16, 0); 5144 if (!ioc->pcie_sgl_dma_pool) { 5145 ioc_info(ioc, "PCIe SGL pool: dma_pool_create failed\n"); 5146 goto out; 5147 } 5148 5149 ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz; 5150 ioc->chains_per_prp_buffer = min(ioc->chains_per_prp_buffer, 5151 ioc->chains_needed_per_io); 5152 5153 for (i = 0; i < ioc->scsiio_depth; i++) { 5154 ioc->pcie_sg_lookup[i].pcie_sgl = dma_pool_alloc( 5155 ioc->pcie_sgl_dma_pool, GFP_KERNEL, 5156 &ioc->pcie_sg_lookup[i].pcie_sgl_dma); 5157 if (!ioc->pcie_sg_lookup[i].pcie_sgl) { 5158 ioc_info(ioc, "PCIe SGL pool: dma_pool_alloc failed\n"); 5159 goto out; 5160 } 5161 for (j = 0; j < ioc->chains_per_prp_buffer; j++) { 5162 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 5163 ct->chain_buffer = 5164 ioc->pcie_sg_lookup[i].pcie_sgl + 5165 (j * ioc->chain_segment_sz); 5166 ct->chain_buffer_dma = 5167 ioc->pcie_sg_lookup[i].pcie_sgl_dma + 5168 (j * ioc->chain_segment_sz); 5169 } 5170 } 5171 5172 dinitprintk(ioc, 5173 ioc_info(ioc, "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n", 5174 ioc->scsiio_depth, sz, 5175 (sz * ioc->scsiio_depth) / 1024)); 5176 dinitprintk(ioc, 5177 ioc_info(ioc, "Number of chains can fit in a PRP page(%d)\n", 5178 ioc->chains_per_prp_buffer)); 5179 total_sz += sz * ioc->scsiio_depth; 5180 } 5181 5182 ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev, 5183 ioc->chain_segment_sz, 16, 0); 5184 if (!ioc->chain_dma_pool) { 5185 ioc_err(ioc, "chain_dma_pool: dma_pool_create failed\n"); 5186 goto out; 5187 } 5188 for (i = 0; i < ioc->scsiio_depth; i++) { 5189 for (j = ioc->chains_per_prp_buffer; 5190 j < ioc->chains_needed_per_io; j++) { 5191 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 5192 ct->chain_buffer = dma_pool_alloc( 5193 ioc->chain_dma_pool, GFP_KERNEL, 5194 &ct->chain_buffer_dma); 5195 if (!ct->chain_buffer) { 5196 ioc_err(ioc, "chain_lookup: pci_pool_alloc failed\n"); 5197 _base_release_memory_pools(ioc); 5198 goto out; 5199 } 5200 } 5201 total_sz += ioc->chain_segment_sz; 5202 } 5203 5204 dinitprintk(ioc, 5205 ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n", 5206 ioc->chain_depth, ioc->chain_segment_sz, 5207 (ioc->chain_depth * ioc->chain_segment_sz) / 1024)); 5208 5209 /* sense buffers, 4 byte align */ 5210 sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE; 5211 ioc->sense_dma_pool = dma_pool_create("sense pool", &ioc->pdev->dev, sz, 5212 4, 0); 5213 if (!ioc->sense_dma_pool) { 5214 ioc_err(ioc, "sense pool: dma_pool_create failed\n"); 5215 goto out; 5216 } 5217 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL, 5218 &ioc->sense_dma); 5219 if (!ioc->sense) { 5220 ioc_err(ioc, "sense pool: dma_pool_alloc failed\n"); 5221 goto out; 5222 } 5223 /* sense buffer requires to be in same 4 gb region. 5224 * Below function will check the same. 5225 * In case of failure, new pci pool will be created with updated 5226 * alignment. Older allocation and pool will be destroyed. 5227 * Alignment will be used such a way that next allocation if 5228 * success, will always meet same 4gb region requirement. 5229 * Actual requirement is not alignment, but we need start and end of 5230 * DMA address must have same upper 32 bit address. 5231 */ 5232 if (!is_MSB_are_same((long)ioc->sense, sz)) { 5233 //Release Sense pool & Reallocate 5234 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma); 5235 dma_pool_destroy(ioc->sense_dma_pool); 5236 ioc->sense = NULL; 5237 5238 ioc->sense_dma_pool = 5239 dma_pool_create("sense pool", &ioc->pdev->dev, sz, 5240 roundup_pow_of_two(sz), 0); 5241 if (!ioc->sense_dma_pool) { 5242 ioc_err(ioc, "sense pool: pci_pool_create failed\n"); 5243 goto out; 5244 } 5245 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL, 5246 &ioc->sense_dma); 5247 if (!ioc->sense) { 5248 ioc_err(ioc, "sense pool: pci_pool_alloc failed\n"); 5249 goto out; 5250 } 5251 } 5252 dinitprintk(ioc, 5253 ioc_info(ioc, "sense pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n", 5254 ioc->sense, ioc->scsiio_depth, 5255 SCSI_SENSE_BUFFERSIZE, sz / 1024)); 5256 dinitprintk(ioc, 5257 ioc_info(ioc, "sense_dma(0x%llx)\n", 5258 (unsigned long long)ioc->sense_dma)); 5259 total_sz += sz; 5260 5261 /* reply pool, 4 byte align */ 5262 sz = ioc->reply_free_queue_depth * ioc->reply_sz; 5263 ioc->reply_dma_pool = dma_pool_create("reply pool", &ioc->pdev->dev, sz, 5264 4, 0); 5265 if (!ioc->reply_dma_pool) { 5266 ioc_err(ioc, "reply pool: dma_pool_create failed\n"); 5267 goto out; 5268 } 5269 ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL, 5270 &ioc->reply_dma); 5271 if (!ioc->reply) { 5272 ioc_err(ioc, "reply pool: dma_pool_alloc failed\n"); 5273 goto out; 5274 } 5275 ioc->reply_dma_min_address = (u32)(ioc->reply_dma); 5276 ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz; 5277 dinitprintk(ioc, 5278 ioc_info(ioc, "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n", 5279 ioc->reply, ioc->reply_free_queue_depth, 5280 ioc->reply_sz, sz / 1024)); 5281 dinitprintk(ioc, 5282 ioc_info(ioc, "reply_dma(0x%llx)\n", 5283 (unsigned long long)ioc->reply_dma)); 5284 total_sz += sz; 5285 5286 /* reply free queue, 16 byte align */ 5287 sz = ioc->reply_free_queue_depth * 4; 5288 ioc->reply_free_dma_pool = dma_pool_create("reply_free pool", 5289 &ioc->pdev->dev, sz, 16, 0); 5290 if (!ioc->reply_free_dma_pool) { 5291 ioc_err(ioc, "reply_free pool: dma_pool_create failed\n"); 5292 goto out; 5293 } 5294 ioc->reply_free = dma_pool_zalloc(ioc->reply_free_dma_pool, GFP_KERNEL, 5295 &ioc->reply_free_dma); 5296 if (!ioc->reply_free) { 5297 ioc_err(ioc, "reply_free pool: dma_pool_alloc failed\n"); 5298 goto out; 5299 } 5300 dinitprintk(ioc, 5301 ioc_info(ioc, "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n", 5302 ioc->reply_free, ioc->reply_free_queue_depth, 5303 4, sz / 1024)); 5304 dinitprintk(ioc, 5305 ioc_info(ioc, "reply_free_dma (0x%llx)\n", 5306 (unsigned long long)ioc->reply_free_dma)); 5307 total_sz += sz; 5308 5309 if (ioc->rdpq_array_enable) { 5310 reply_post_free_array_sz = ioc->reply_queue_count * 5311 sizeof(Mpi2IOCInitRDPQArrayEntry); 5312 ioc->reply_post_free_array_dma_pool = 5313 dma_pool_create("reply_post_free_array pool", 5314 &ioc->pdev->dev, reply_post_free_array_sz, 16, 0); 5315 if (!ioc->reply_post_free_array_dma_pool) { 5316 dinitprintk(ioc, 5317 ioc_info(ioc, "reply_post_free_array pool: dma_pool_create failed\n")); 5318 goto out; 5319 } 5320 ioc->reply_post_free_array = 5321 dma_pool_alloc(ioc->reply_post_free_array_dma_pool, 5322 GFP_KERNEL, &ioc->reply_post_free_array_dma); 5323 if (!ioc->reply_post_free_array) { 5324 dinitprintk(ioc, 5325 ioc_info(ioc, "reply_post_free_array pool: dma_pool_alloc failed\n")); 5326 goto out; 5327 } 5328 } 5329 ioc->config_page_sz = 512; 5330 ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev, 5331 ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL); 5332 if (!ioc->config_page) { 5333 ioc_err(ioc, "config page: dma_pool_alloc failed\n"); 5334 goto out; 5335 } 5336 dinitprintk(ioc, 5337 ioc_info(ioc, "config page(0x%p): size(%d)\n", 5338 ioc->config_page, ioc->config_page_sz)); 5339 dinitprintk(ioc, 5340 ioc_info(ioc, "config_page_dma(0x%llx)\n", 5341 (unsigned long long)ioc->config_page_dma)); 5342 total_sz += ioc->config_page_sz; 5343 5344 ioc_info(ioc, "Allocated physical memory: size(%d kB)\n", 5345 total_sz / 1024); 5346 ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n", 5347 ioc->shost->can_queue, facts->RequestCredit); 5348 ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n", 5349 ioc->shost->sg_tablesize); 5350 return 0; 5351 5352 out: 5353 return -ENOMEM; 5354 } 5355 5356 /** 5357 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter. 5358 * @ioc: Pointer to MPT_ADAPTER structure 5359 * @cooked: Request raw or cooked IOC state 5360 * 5361 * Return: all IOC Doorbell register bits if cooked==0, else just the 5362 * Doorbell bits in MPI_IOC_STATE_MASK. 5363 */ 5364 u32 5365 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked) 5366 { 5367 u32 s, sc; 5368 5369 s = ioc->base_readl(&ioc->chip->Doorbell); 5370 sc = s & MPI2_IOC_STATE_MASK; 5371 return cooked ? sc : s; 5372 } 5373 5374 /** 5375 * _base_wait_on_iocstate - waiting on a particular ioc state 5376 * @ioc: ? 5377 * @ioc_state: controller state { READY, OPERATIONAL, or RESET } 5378 * @timeout: timeout in second 5379 * 5380 * Return: 0 for success, non-zero for failure. 5381 */ 5382 static int 5383 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout) 5384 { 5385 u32 count, cntdn; 5386 u32 current_state; 5387 5388 count = 0; 5389 cntdn = 1000 * timeout; 5390 do { 5391 current_state = mpt3sas_base_get_iocstate(ioc, 1); 5392 if (current_state == ioc_state) 5393 return 0; 5394 if (count && current_state == MPI2_IOC_STATE_FAULT) 5395 break; 5396 5397 usleep_range(1000, 1500); 5398 count++; 5399 } while (--cntdn); 5400 5401 return current_state; 5402 } 5403 5404 /** 5405 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by 5406 * a write to the doorbell) 5407 * @ioc: per adapter object 5408 * 5409 * Return: 0 for success, non-zero for failure. 5410 * 5411 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell. 5412 */ 5413 static int 5414 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc); 5415 5416 static int 5417 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout) 5418 { 5419 u32 cntdn, count; 5420 u32 int_status; 5421 5422 count = 0; 5423 cntdn = 1000 * timeout; 5424 do { 5425 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 5426 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 5427 dhsprintk(ioc, 5428 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 5429 __func__, count, timeout)); 5430 return 0; 5431 } 5432 5433 usleep_range(1000, 1500); 5434 count++; 5435 } while (--cntdn); 5436 5437 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 5438 __func__, count, int_status); 5439 return -EFAULT; 5440 } 5441 5442 static int 5443 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout) 5444 { 5445 u32 cntdn, count; 5446 u32 int_status; 5447 5448 count = 0; 5449 cntdn = 2000 * timeout; 5450 do { 5451 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 5452 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 5453 dhsprintk(ioc, 5454 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 5455 __func__, count, timeout)); 5456 return 0; 5457 } 5458 5459 udelay(500); 5460 count++; 5461 } while (--cntdn); 5462 5463 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 5464 __func__, count, int_status); 5465 return -EFAULT; 5466 5467 } 5468 5469 /** 5470 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell. 5471 * @ioc: per adapter object 5472 * @timeout: timeout in second 5473 * 5474 * Return: 0 for success, non-zero for failure. 5475 * 5476 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to 5477 * doorbell. 5478 */ 5479 static int 5480 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout) 5481 { 5482 u32 cntdn, count; 5483 u32 int_status; 5484 u32 doorbell; 5485 5486 count = 0; 5487 cntdn = 1000 * timeout; 5488 do { 5489 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 5490 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) { 5491 dhsprintk(ioc, 5492 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 5493 __func__, count, timeout)); 5494 return 0; 5495 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 5496 doorbell = ioc->base_readl(&ioc->chip->Doorbell); 5497 if ((doorbell & MPI2_IOC_STATE_MASK) == 5498 MPI2_IOC_STATE_FAULT) { 5499 mpt3sas_base_fault_info(ioc , doorbell); 5500 return -EFAULT; 5501 } 5502 } else if (int_status == 0xFFFFFFFF) 5503 goto out; 5504 5505 usleep_range(1000, 1500); 5506 count++; 5507 } while (--cntdn); 5508 5509 out: 5510 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 5511 __func__, count, int_status); 5512 return -EFAULT; 5513 } 5514 5515 /** 5516 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use 5517 * @ioc: per adapter object 5518 * @timeout: timeout in second 5519 * 5520 * Return: 0 for success, non-zero for failure. 5521 */ 5522 static int 5523 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout) 5524 { 5525 u32 cntdn, count; 5526 u32 doorbell_reg; 5527 5528 count = 0; 5529 cntdn = 1000 * timeout; 5530 do { 5531 doorbell_reg = ioc->base_readl(&ioc->chip->Doorbell); 5532 if (!(doorbell_reg & MPI2_DOORBELL_USED)) { 5533 dhsprintk(ioc, 5534 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 5535 __func__, count, timeout)); 5536 return 0; 5537 } 5538 5539 usleep_range(1000, 1500); 5540 count++; 5541 } while (--cntdn); 5542 5543 ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n", 5544 __func__, count, doorbell_reg); 5545 return -EFAULT; 5546 } 5547 5548 /** 5549 * _base_send_ioc_reset - send doorbell reset 5550 * @ioc: per adapter object 5551 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET 5552 * @timeout: timeout in second 5553 * 5554 * Return: 0 for success, non-zero for failure. 5555 */ 5556 static int 5557 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout) 5558 { 5559 u32 ioc_state; 5560 int r = 0; 5561 5562 if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) { 5563 ioc_err(ioc, "%s: unknown reset_type\n", __func__); 5564 return -EFAULT; 5565 } 5566 5567 if (!(ioc->facts.IOCCapabilities & 5568 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY)) 5569 return -EFAULT; 5570 5571 ioc_info(ioc, "sending message unit reset !!\n"); 5572 5573 writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT, 5574 &ioc->chip->Doorbell); 5575 if ((_base_wait_for_doorbell_ack(ioc, 15))) { 5576 r = -EFAULT; 5577 goto out; 5578 } 5579 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout); 5580 if (ioc_state) { 5581 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 5582 __func__, ioc_state); 5583 r = -EFAULT; 5584 goto out; 5585 } 5586 out: 5587 ioc_info(ioc, "message unit reset: %s\n", 5588 r == 0 ? "SUCCESS" : "FAILED"); 5589 return r; 5590 } 5591 5592 /** 5593 * mpt3sas_wait_for_ioc - IOC's operational state is checked here. 5594 * @ioc: per adapter object 5595 * @wait_count: timeout in seconds 5596 * 5597 * Return: Waits up to timeout seconds for the IOC to 5598 * become operational. Returns 0 if IOC is present 5599 * and operational; otherwise returns -EFAULT. 5600 */ 5601 5602 int 5603 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout) 5604 { 5605 int wait_state_count = 0; 5606 u32 ioc_state; 5607 5608 do { 5609 ioc_state = mpt3sas_base_get_iocstate(ioc, 1); 5610 if (ioc_state == MPI2_IOC_STATE_OPERATIONAL) 5611 break; 5612 ssleep(1); 5613 ioc_info(ioc, "%s: waiting for operational state(count=%d)\n", 5614 __func__, ++wait_state_count); 5615 } while (--timeout); 5616 if (!timeout) { 5617 ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__); 5618 return -EFAULT; 5619 } 5620 if (wait_state_count) 5621 ioc_info(ioc, "ioc is operational\n"); 5622 return 0; 5623 } 5624 5625 /** 5626 * _base_handshake_req_reply_wait - send request thru doorbell interface 5627 * @ioc: per adapter object 5628 * @request_bytes: request length 5629 * @request: pointer having request payload 5630 * @reply_bytes: reply length 5631 * @reply: pointer to reply payload 5632 * @timeout: timeout in second 5633 * 5634 * Return: 0 for success, non-zero for failure. 5635 */ 5636 static int 5637 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes, 5638 u32 *request, int reply_bytes, u16 *reply, int timeout) 5639 { 5640 MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply; 5641 int i; 5642 u8 failed; 5643 __le32 *mfp; 5644 5645 /* make sure doorbell is not in use */ 5646 if ((ioc->base_readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) { 5647 ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__); 5648 return -EFAULT; 5649 } 5650 5651 /* clear pending doorbell interrupts from previous state changes */ 5652 if (ioc->base_readl(&ioc->chip->HostInterruptStatus) & 5653 MPI2_HIS_IOC2SYS_DB_STATUS) 5654 writel(0, &ioc->chip->HostInterruptStatus); 5655 5656 /* send message to ioc */ 5657 writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) | 5658 ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)), 5659 &ioc->chip->Doorbell); 5660 5661 if ((_base_spin_on_doorbell_int(ioc, 5))) { 5662 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 5663 __LINE__); 5664 return -EFAULT; 5665 } 5666 writel(0, &ioc->chip->HostInterruptStatus); 5667 5668 if ((_base_wait_for_doorbell_ack(ioc, 5))) { 5669 ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n", 5670 __LINE__); 5671 return -EFAULT; 5672 } 5673 5674 /* send message 32-bits at a time */ 5675 for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) { 5676 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell); 5677 if ((_base_wait_for_doorbell_ack(ioc, 5))) 5678 failed = 1; 5679 } 5680 5681 if (failed) { 5682 ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n", 5683 __LINE__); 5684 return -EFAULT; 5685 } 5686 5687 /* now wait for the reply */ 5688 if ((_base_wait_for_doorbell_int(ioc, timeout))) { 5689 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 5690 __LINE__); 5691 return -EFAULT; 5692 } 5693 5694 /* read the first two 16-bits, it gives the total length of the reply */ 5695 reply[0] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell) 5696 & MPI2_DOORBELL_DATA_MASK); 5697 writel(0, &ioc->chip->HostInterruptStatus); 5698 if ((_base_wait_for_doorbell_int(ioc, 5))) { 5699 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 5700 __LINE__); 5701 return -EFAULT; 5702 } 5703 reply[1] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell) 5704 & MPI2_DOORBELL_DATA_MASK); 5705 writel(0, &ioc->chip->HostInterruptStatus); 5706 5707 for (i = 2; i < default_reply->MsgLength * 2; i++) { 5708 if ((_base_wait_for_doorbell_int(ioc, 5))) { 5709 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 5710 __LINE__); 5711 return -EFAULT; 5712 } 5713 if (i >= reply_bytes/2) /* overflow case */ 5714 ioc->base_readl(&ioc->chip->Doorbell); 5715 else 5716 reply[i] = le16_to_cpu( 5717 ioc->base_readl(&ioc->chip->Doorbell) 5718 & MPI2_DOORBELL_DATA_MASK); 5719 writel(0, &ioc->chip->HostInterruptStatus); 5720 } 5721 5722 _base_wait_for_doorbell_int(ioc, 5); 5723 if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) { 5724 dhsprintk(ioc, 5725 ioc_info(ioc, "doorbell is in use (line=%d)\n", 5726 __LINE__)); 5727 } 5728 writel(0, &ioc->chip->HostInterruptStatus); 5729 5730 if (ioc->logging_level & MPT_DEBUG_INIT) { 5731 mfp = (__le32 *)reply; 5732 pr_info("\toffset:data\n"); 5733 for (i = 0; i < reply_bytes/4; i++) 5734 pr_info("\t[0x%02x]:%08x\n", i*4, 5735 le32_to_cpu(mfp[i])); 5736 } 5737 return 0; 5738 } 5739 5740 /** 5741 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW 5742 * @ioc: per adapter object 5743 * @mpi_reply: the reply payload from FW 5744 * @mpi_request: the request payload sent to FW 5745 * 5746 * The SAS IO Unit Control Request message allows the host to perform low-level 5747 * operations, such as resets on the PHYs of the IO Unit, also allows the host 5748 * to obtain the IOC assigned device handles for a device if it has other 5749 * identifying information about the device, in addition allows the host to 5750 * remove IOC resources associated with the device. 5751 * 5752 * Return: 0 for success, non-zero for failure. 5753 */ 5754 int 5755 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc, 5756 Mpi2SasIoUnitControlReply_t *mpi_reply, 5757 Mpi2SasIoUnitControlRequest_t *mpi_request) 5758 { 5759 u16 smid; 5760 u8 issue_reset = 0; 5761 int rc; 5762 void *request; 5763 5764 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 5765 5766 mutex_lock(&ioc->base_cmds.mutex); 5767 5768 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) { 5769 ioc_err(ioc, "%s: base_cmd in use\n", __func__); 5770 rc = -EAGAIN; 5771 goto out; 5772 } 5773 5774 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT); 5775 if (rc) 5776 goto out; 5777 5778 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 5779 if (!smid) { 5780 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 5781 rc = -EAGAIN; 5782 goto out; 5783 } 5784 5785 rc = 0; 5786 ioc->base_cmds.status = MPT3_CMD_PENDING; 5787 request = mpt3sas_base_get_msg_frame(ioc, smid); 5788 ioc->base_cmds.smid = smid; 5789 memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)); 5790 if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET || 5791 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) 5792 ioc->ioc_link_reset_in_progress = 1; 5793 init_completion(&ioc->base_cmds.done); 5794 ioc->put_smid_default(ioc, smid); 5795 wait_for_completion_timeout(&ioc->base_cmds.done, 5796 msecs_to_jiffies(10000)); 5797 if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET || 5798 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) && 5799 ioc->ioc_link_reset_in_progress) 5800 ioc->ioc_link_reset_in_progress = 0; 5801 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 5802 issue_reset = 5803 mpt3sas_base_check_cmd_timeout(ioc, 5804 ioc->base_cmds.status, mpi_request, 5805 sizeof(Mpi2SasIoUnitControlRequest_t)/4); 5806 goto issue_host_reset; 5807 } 5808 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) 5809 memcpy(mpi_reply, ioc->base_cmds.reply, 5810 sizeof(Mpi2SasIoUnitControlReply_t)); 5811 else 5812 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t)); 5813 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 5814 goto out; 5815 5816 issue_host_reset: 5817 if (issue_reset) 5818 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 5819 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 5820 rc = -EFAULT; 5821 out: 5822 mutex_unlock(&ioc->base_cmds.mutex); 5823 return rc; 5824 } 5825 5826 /** 5827 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device 5828 * @ioc: per adapter object 5829 * @mpi_reply: the reply payload from FW 5830 * @mpi_request: the request payload sent to FW 5831 * 5832 * The SCSI Enclosure Processor request message causes the IOC to 5833 * communicate with SES devices to control LED status signals. 5834 * 5835 * Return: 0 for success, non-zero for failure. 5836 */ 5837 int 5838 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc, 5839 Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request) 5840 { 5841 u16 smid; 5842 u8 issue_reset = 0; 5843 int rc; 5844 void *request; 5845 5846 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 5847 5848 mutex_lock(&ioc->base_cmds.mutex); 5849 5850 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) { 5851 ioc_err(ioc, "%s: base_cmd in use\n", __func__); 5852 rc = -EAGAIN; 5853 goto out; 5854 } 5855 5856 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT); 5857 if (rc) 5858 goto out; 5859 5860 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 5861 if (!smid) { 5862 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 5863 rc = -EAGAIN; 5864 goto out; 5865 } 5866 5867 rc = 0; 5868 ioc->base_cmds.status = MPT3_CMD_PENDING; 5869 request = mpt3sas_base_get_msg_frame(ioc, smid); 5870 ioc->base_cmds.smid = smid; 5871 memcpy(request, mpi_request, sizeof(Mpi2SepReply_t)); 5872 init_completion(&ioc->base_cmds.done); 5873 ioc->put_smid_default(ioc, smid); 5874 wait_for_completion_timeout(&ioc->base_cmds.done, 5875 msecs_to_jiffies(10000)); 5876 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 5877 issue_reset = 5878 mpt3sas_base_check_cmd_timeout(ioc, 5879 ioc->base_cmds.status, mpi_request, 5880 sizeof(Mpi2SepRequest_t)/4); 5881 goto issue_host_reset; 5882 } 5883 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) 5884 memcpy(mpi_reply, ioc->base_cmds.reply, 5885 sizeof(Mpi2SepReply_t)); 5886 else 5887 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t)); 5888 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 5889 goto out; 5890 5891 issue_host_reset: 5892 if (issue_reset) 5893 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 5894 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 5895 rc = -EFAULT; 5896 out: 5897 mutex_unlock(&ioc->base_cmds.mutex); 5898 return rc; 5899 } 5900 5901 /** 5902 * _base_get_port_facts - obtain port facts reply and save in ioc 5903 * @ioc: per adapter object 5904 * @port: ? 5905 * 5906 * Return: 0 for success, non-zero for failure. 5907 */ 5908 static int 5909 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port) 5910 { 5911 Mpi2PortFactsRequest_t mpi_request; 5912 Mpi2PortFactsReply_t mpi_reply; 5913 struct mpt3sas_port_facts *pfacts; 5914 int mpi_reply_sz, mpi_request_sz, r; 5915 5916 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 5917 5918 mpi_reply_sz = sizeof(Mpi2PortFactsReply_t); 5919 mpi_request_sz = sizeof(Mpi2PortFactsRequest_t); 5920 memset(&mpi_request, 0, mpi_request_sz); 5921 mpi_request.Function = MPI2_FUNCTION_PORT_FACTS; 5922 mpi_request.PortNumber = port; 5923 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz, 5924 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5); 5925 5926 if (r != 0) { 5927 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 5928 return r; 5929 } 5930 5931 pfacts = &ioc->pfacts[port]; 5932 memset(pfacts, 0, sizeof(struct mpt3sas_port_facts)); 5933 pfacts->PortNumber = mpi_reply.PortNumber; 5934 pfacts->VP_ID = mpi_reply.VP_ID; 5935 pfacts->VF_ID = mpi_reply.VF_ID; 5936 pfacts->MaxPostedCmdBuffers = 5937 le16_to_cpu(mpi_reply.MaxPostedCmdBuffers); 5938 5939 return 0; 5940 } 5941 5942 /** 5943 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL 5944 * @ioc: per adapter object 5945 * @timeout: 5946 * 5947 * Return: 0 for success, non-zero for failure. 5948 */ 5949 static int 5950 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout) 5951 { 5952 u32 ioc_state; 5953 int rc; 5954 5955 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 5956 5957 if (ioc->pci_error_recovery) { 5958 dfailprintk(ioc, 5959 ioc_info(ioc, "%s: host in pci error recovery\n", 5960 __func__)); 5961 return -EFAULT; 5962 } 5963 5964 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 5965 dhsprintk(ioc, 5966 ioc_info(ioc, "%s: ioc_state(0x%08x)\n", 5967 __func__, ioc_state)); 5968 5969 if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) || 5970 (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL) 5971 return 0; 5972 5973 if (ioc_state & MPI2_DOORBELL_USED) { 5974 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n")); 5975 goto issue_diag_reset; 5976 } 5977 5978 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 5979 mpt3sas_base_fault_info(ioc, ioc_state & 5980 MPI2_DOORBELL_DATA_MASK); 5981 goto issue_diag_reset; 5982 } 5983 5984 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout); 5985 if (ioc_state) { 5986 dfailprintk(ioc, 5987 ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 5988 __func__, ioc_state)); 5989 return -EFAULT; 5990 } 5991 5992 issue_diag_reset: 5993 rc = _base_diag_reset(ioc); 5994 return rc; 5995 } 5996 5997 /** 5998 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc 5999 * @ioc: per adapter object 6000 * 6001 * Return: 0 for success, non-zero for failure. 6002 */ 6003 static int 6004 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc) 6005 { 6006 Mpi2IOCFactsRequest_t mpi_request; 6007 Mpi2IOCFactsReply_t mpi_reply; 6008 struct mpt3sas_facts *facts; 6009 int mpi_reply_sz, mpi_request_sz, r; 6010 6011 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6012 6013 r = _base_wait_for_iocstate(ioc, 10); 6014 if (r) { 6015 dfailprintk(ioc, 6016 ioc_info(ioc, "%s: failed getting to correct state\n", 6017 __func__)); 6018 return r; 6019 } 6020 mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t); 6021 mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t); 6022 memset(&mpi_request, 0, mpi_request_sz); 6023 mpi_request.Function = MPI2_FUNCTION_IOC_FACTS; 6024 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz, 6025 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5); 6026 6027 if (r != 0) { 6028 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 6029 return r; 6030 } 6031 6032 facts = &ioc->facts; 6033 memset(facts, 0, sizeof(struct mpt3sas_facts)); 6034 facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion); 6035 facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion); 6036 facts->VP_ID = mpi_reply.VP_ID; 6037 facts->VF_ID = mpi_reply.VF_ID; 6038 facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions); 6039 facts->MaxChainDepth = mpi_reply.MaxChainDepth; 6040 facts->WhoInit = mpi_reply.WhoInit; 6041 facts->NumberOfPorts = mpi_reply.NumberOfPorts; 6042 facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors; 6043 if (ioc->msix_enable && (facts->MaxMSIxVectors <= 6044 MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc))) 6045 ioc->combined_reply_queue = 0; 6046 facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit); 6047 facts->MaxReplyDescriptorPostQueueDepth = 6048 le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth); 6049 facts->ProductID = le16_to_cpu(mpi_reply.ProductID); 6050 facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities); 6051 if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)) 6052 ioc->ir_firmware = 1; 6053 if ((facts->IOCCapabilities & 6054 MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices)) 6055 ioc->rdpq_array_capable = 1; 6056 if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ) 6057 && ioc->is_aero_ioc) 6058 ioc->atomic_desc_capable = 1; 6059 facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word); 6060 facts->IOCRequestFrameSize = 6061 le16_to_cpu(mpi_reply.IOCRequestFrameSize); 6062 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 6063 facts->IOCMaxChainSegmentSize = 6064 le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize); 6065 } 6066 facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators); 6067 facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets); 6068 ioc->shost->max_id = -1; 6069 facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders); 6070 facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures); 6071 facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags); 6072 facts->HighPriorityCredit = 6073 le16_to_cpu(mpi_reply.HighPriorityCredit); 6074 facts->ReplyFrameSize = mpi_reply.ReplyFrameSize; 6075 facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle); 6076 facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize; 6077 6078 /* 6079 * Get the Page Size from IOC Facts. If it's 0, default to 4k. 6080 */ 6081 ioc->page_size = 1 << facts->CurrentHostPageSize; 6082 if (ioc->page_size == 1) { 6083 ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n"); 6084 ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K; 6085 } 6086 dinitprintk(ioc, 6087 ioc_info(ioc, "CurrentHostPageSize(%d)\n", 6088 facts->CurrentHostPageSize)); 6089 6090 dinitprintk(ioc, 6091 ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n", 6092 facts->RequestCredit, facts->MaxChainDepth)); 6093 dinitprintk(ioc, 6094 ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n", 6095 facts->IOCRequestFrameSize * 4, 6096 facts->ReplyFrameSize * 4)); 6097 return 0; 6098 } 6099 6100 /** 6101 * _base_send_ioc_init - send ioc_init to firmware 6102 * @ioc: per adapter object 6103 * 6104 * Return: 0 for success, non-zero for failure. 6105 */ 6106 static int 6107 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc) 6108 { 6109 Mpi2IOCInitRequest_t mpi_request; 6110 Mpi2IOCInitReply_t mpi_reply; 6111 int i, r = 0; 6112 ktime_t current_time; 6113 u16 ioc_status; 6114 u32 reply_post_free_array_sz = 0; 6115 6116 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6117 6118 memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t)); 6119 mpi_request.Function = MPI2_FUNCTION_IOC_INIT; 6120 mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER; 6121 mpi_request.VF_ID = 0; /* TODO */ 6122 mpi_request.VP_ID = 0; 6123 mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged); 6124 mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION); 6125 mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K; 6126 6127 if (_base_is_controller_msix_enabled(ioc)) 6128 mpi_request.HostMSIxVectors = ioc->reply_queue_count; 6129 mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4); 6130 mpi_request.ReplyDescriptorPostQueueDepth = 6131 cpu_to_le16(ioc->reply_post_queue_depth); 6132 mpi_request.ReplyFreeQueueDepth = 6133 cpu_to_le16(ioc->reply_free_queue_depth); 6134 6135 mpi_request.SenseBufferAddressHigh = 6136 cpu_to_le32((u64)ioc->sense_dma >> 32); 6137 mpi_request.SystemReplyAddressHigh = 6138 cpu_to_le32((u64)ioc->reply_dma >> 32); 6139 mpi_request.SystemRequestFrameBaseAddress = 6140 cpu_to_le64((u64)ioc->request_dma); 6141 mpi_request.ReplyFreeQueueAddress = 6142 cpu_to_le64((u64)ioc->reply_free_dma); 6143 6144 if (ioc->rdpq_array_enable) { 6145 reply_post_free_array_sz = ioc->reply_queue_count * 6146 sizeof(Mpi2IOCInitRDPQArrayEntry); 6147 memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz); 6148 for (i = 0; i < ioc->reply_queue_count; i++) 6149 ioc->reply_post_free_array[i].RDPQBaseAddress = 6150 cpu_to_le64( 6151 (u64)ioc->reply_post[i].reply_post_free_dma); 6152 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE; 6153 mpi_request.ReplyDescriptorPostQueueAddress = 6154 cpu_to_le64((u64)ioc->reply_post_free_array_dma); 6155 } else { 6156 mpi_request.ReplyDescriptorPostQueueAddress = 6157 cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma); 6158 } 6159 6160 /* This time stamp specifies number of milliseconds 6161 * since epoch ~ midnight January 1, 1970. 6162 */ 6163 current_time = ktime_get_real(); 6164 mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time)); 6165 6166 if (ioc->logging_level & MPT_DEBUG_INIT) { 6167 __le32 *mfp; 6168 int i; 6169 6170 mfp = (__le32 *)&mpi_request; 6171 pr_info("\toffset:data\n"); 6172 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++) 6173 pr_info("\t[0x%02x]:%08x\n", i*4, 6174 le32_to_cpu(mfp[i])); 6175 } 6176 6177 r = _base_handshake_req_reply_wait(ioc, 6178 sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request, 6179 sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10); 6180 6181 if (r != 0) { 6182 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 6183 return r; 6184 } 6185 6186 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK; 6187 if (ioc_status != MPI2_IOCSTATUS_SUCCESS || 6188 mpi_reply.IOCLogInfo) { 6189 ioc_err(ioc, "%s: failed\n", __func__); 6190 r = -EIO; 6191 } 6192 6193 return r; 6194 } 6195 6196 /** 6197 * mpt3sas_port_enable_done - command completion routine for port enable 6198 * @ioc: per adapter object 6199 * @smid: system request message index 6200 * @msix_index: MSIX table index supplied by the OS 6201 * @reply: reply message frame(lower 32bit addr) 6202 * 6203 * Return: 1 meaning mf should be freed from _base_interrupt 6204 * 0 means the mf is freed from this function. 6205 */ 6206 u8 6207 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 6208 u32 reply) 6209 { 6210 MPI2DefaultReply_t *mpi_reply; 6211 u16 ioc_status; 6212 6213 if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED) 6214 return 1; 6215 6216 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 6217 if (!mpi_reply) 6218 return 1; 6219 6220 if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE) 6221 return 1; 6222 6223 ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING; 6224 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE; 6225 ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID; 6226 memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4); 6227 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 6228 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) 6229 ioc->port_enable_failed = 1; 6230 6231 if (ioc->is_driver_loading) { 6232 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 6233 mpt3sas_port_enable_complete(ioc); 6234 return 1; 6235 } else { 6236 ioc->start_scan_failed = ioc_status; 6237 ioc->start_scan = 0; 6238 return 1; 6239 } 6240 } 6241 complete(&ioc->port_enable_cmds.done); 6242 return 1; 6243 } 6244 6245 /** 6246 * _base_send_port_enable - send port_enable(discovery stuff) to firmware 6247 * @ioc: per adapter object 6248 * 6249 * Return: 0 for success, non-zero for failure. 6250 */ 6251 static int 6252 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc) 6253 { 6254 Mpi2PortEnableRequest_t *mpi_request; 6255 Mpi2PortEnableReply_t *mpi_reply; 6256 int r = 0; 6257 u16 smid; 6258 u16 ioc_status; 6259 6260 ioc_info(ioc, "sending port enable !!\n"); 6261 6262 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 6263 ioc_err(ioc, "%s: internal command already in use\n", __func__); 6264 return -EAGAIN; 6265 } 6266 6267 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx); 6268 if (!smid) { 6269 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 6270 return -EAGAIN; 6271 } 6272 6273 ioc->port_enable_cmds.status = MPT3_CMD_PENDING; 6274 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 6275 ioc->port_enable_cmds.smid = smid; 6276 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t)); 6277 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE; 6278 6279 init_completion(&ioc->port_enable_cmds.done); 6280 ioc->put_smid_default(ioc, smid); 6281 wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ); 6282 if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) { 6283 ioc_err(ioc, "%s: timeout\n", __func__); 6284 _debug_dump_mf(mpi_request, 6285 sizeof(Mpi2PortEnableRequest_t)/4); 6286 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET) 6287 r = -EFAULT; 6288 else 6289 r = -ETIME; 6290 goto out; 6291 } 6292 6293 mpi_reply = ioc->port_enable_cmds.reply; 6294 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 6295 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 6296 ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n", 6297 __func__, ioc_status); 6298 r = -EFAULT; 6299 goto out; 6300 } 6301 6302 out: 6303 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED; 6304 ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED"); 6305 return r; 6306 } 6307 6308 /** 6309 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply) 6310 * @ioc: per adapter object 6311 * 6312 * Return: 0 for success, non-zero for failure. 6313 */ 6314 int 6315 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc) 6316 { 6317 Mpi2PortEnableRequest_t *mpi_request; 6318 u16 smid; 6319 6320 ioc_info(ioc, "sending port enable !!\n"); 6321 6322 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 6323 ioc_err(ioc, "%s: internal command already in use\n", __func__); 6324 return -EAGAIN; 6325 } 6326 6327 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx); 6328 if (!smid) { 6329 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 6330 return -EAGAIN; 6331 } 6332 6333 ioc->port_enable_cmds.status = MPT3_CMD_PENDING; 6334 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 6335 ioc->port_enable_cmds.smid = smid; 6336 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t)); 6337 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE; 6338 6339 ioc->put_smid_default(ioc, smid); 6340 return 0; 6341 } 6342 6343 /** 6344 * _base_determine_wait_on_discovery - desposition 6345 * @ioc: per adapter object 6346 * 6347 * Decide whether to wait on discovery to complete. Used to either 6348 * locate boot device, or report volumes ahead of physical devices. 6349 * 6350 * Return: 1 for wait, 0 for don't wait. 6351 */ 6352 static int 6353 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc) 6354 { 6355 /* We wait for discovery to complete if IR firmware is loaded. 6356 * The sas topology events arrive before PD events, so we need time to 6357 * turn on the bit in ioc->pd_handles to indicate PD 6358 * Also, it maybe required to report Volumes ahead of physical 6359 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set. 6360 */ 6361 if (ioc->ir_firmware) 6362 return 1; 6363 6364 /* if no Bios, then we don't need to wait */ 6365 if (!ioc->bios_pg3.BiosVersion) 6366 return 0; 6367 6368 /* Bios is present, then we drop down here. 6369 * 6370 * If there any entries in the Bios Page 2, then we wait 6371 * for discovery to complete. 6372 */ 6373 6374 /* Current Boot Device */ 6375 if ((ioc->bios_pg2.CurrentBootDeviceForm & 6376 MPI2_BIOSPAGE2_FORM_MASK) == 6377 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED && 6378 /* Request Boot Device */ 6379 (ioc->bios_pg2.ReqBootDeviceForm & 6380 MPI2_BIOSPAGE2_FORM_MASK) == 6381 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED && 6382 /* Alternate Request Boot Device */ 6383 (ioc->bios_pg2.ReqAltBootDeviceForm & 6384 MPI2_BIOSPAGE2_FORM_MASK) == 6385 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED) 6386 return 0; 6387 6388 return 1; 6389 } 6390 6391 /** 6392 * _base_unmask_events - turn on notification for this event 6393 * @ioc: per adapter object 6394 * @event: firmware event 6395 * 6396 * The mask is stored in ioc->event_masks. 6397 */ 6398 static void 6399 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event) 6400 { 6401 u32 desired_event; 6402 6403 if (event >= 128) 6404 return; 6405 6406 desired_event = (1 << (event % 32)); 6407 6408 if (event < 32) 6409 ioc->event_masks[0] &= ~desired_event; 6410 else if (event < 64) 6411 ioc->event_masks[1] &= ~desired_event; 6412 else if (event < 96) 6413 ioc->event_masks[2] &= ~desired_event; 6414 else if (event < 128) 6415 ioc->event_masks[3] &= ~desired_event; 6416 } 6417 6418 /** 6419 * _base_event_notification - send event notification 6420 * @ioc: per adapter object 6421 * 6422 * Return: 0 for success, non-zero for failure. 6423 */ 6424 static int 6425 _base_event_notification(struct MPT3SAS_ADAPTER *ioc) 6426 { 6427 Mpi2EventNotificationRequest_t *mpi_request; 6428 u16 smid; 6429 int r = 0; 6430 int i; 6431 6432 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6433 6434 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 6435 ioc_err(ioc, "%s: internal command already in use\n", __func__); 6436 return -EAGAIN; 6437 } 6438 6439 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 6440 if (!smid) { 6441 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 6442 return -EAGAIN; 6443 } 6444 ioc->base_cmds.status = MPT3_CMD_PENDING; 6445 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 6446 ioc->base_cmds.smid = smid; 6447 memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t)); 6448 mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION; 6449 mpi_request->VF_ID = 0; /* TODO */ 6450 mpi_request->VP_ID = 0; 6451 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 6452 mpi_request->EventMasks[i] = 6453 cpu_to_le32(ioc->event_masks[i]); 6454 init_completion(&ioc->base_cmds.done); 6455 ioc->put_smid_default(ioc, smid); 6456 wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ); 6457 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 6458 ioc_err(ioc, "%s: timeout\n", __func__); 6459 _debug_dump_mf(mpi_request, 6460 sizeof(Mpi2EventNotificationRequest_t)/4); 6461 if (ioc->base_cmds.status & MPT3_CMD_RESET) 6462 r = -EFAULT; 6463 else 6464 r = -ETIME; 6465 } else 6466 dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__)); 6467 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 6468 return r; 6469 } 6470 6471 /** 6472 * mpt3sas_base_validate_event_type - validating event types 6473 * @ioc: per adapter object 6474 * @event_type: firmware event 6475 * 6476 * This will turn on firmware event notification when application 6477 * ask for that event. We don't mask events that are already enabled. 6478 */ 6479 void 6480 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type) 6481 { 6482 int i, j; 6483 u32 event_mask, desired_event; 6484 u8 send_update_to_fw; 6485 6486 for (i = 0, send_update_to_fw = 0; i < 6487 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) { 6488 event_mask = ~event_type[i]; 6489 desired_event = 1; 6490 for (j = 0; j < 32; j++) { 6491 if (!(event_mask & desired_event) && 6492 (ioc->event_masks[i] & desired_event)) { 6493 ioc->event_masks[i] &= ~desired_event; 6494 send_update_to_fw = 1; 6495 } 6496 desired_event = (desired_event << 1); 6497 } 6498 } 6499 6500 if (!send_update_to_fw) 6501 return; 6502 6503 mutex_lock(&ioc->base_cmds.mutex); 6504 _base_event_notification(ioc); 6505 mutex_unlock(&ioc->base_cmds.mutex); 6506 } 6507 6508 /** 6509 * _base_diag_reset - the "big hammer" start of day reset 6510 * @ioc: per adapter object 6511 * 6512 * Return: 0 for success, non-zero for failure. 6513 */ 6514 static int 6515 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc) 6516 { 6517 u32 host_diagnostic; 6518 u32 ioc_state; 6519 u32 count; 6520 u32 hcb_size; 6521 6522 ioc_info(ioc, "sending diag reset !!\n"); 6523 6524 drsprintk(ioc, ioc_info(ioc, "clear interrupts\n")); 6525 6526 count = 0; 6527 do { 6528 /* Write magic sequence to WriteSequence register 6529 * Loop until in diagnostic mode 6530 */ 6531 drsprintk(ioc, ioc_info(ioc, "write magic sequence\n")); 6532 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence); 6533 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence); 6534 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence); 6535 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence); 6536 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence); 6537 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence); 6538 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence); 6539 6540 /* wait 100 msec */ 6541 msleep(100); 6542 6543 if (count++ > 20) 6544 goto out; 6545 6546 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic); 6547 drsprintk(ioc, 6548 ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n", 6549 count, host_diagnostic)); 6550 6551 } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0); 6552 6553 hcb_size = ioc->base_readl(&ioc->chip->HCBSize); 6554 6555 drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n")); 6556 writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER, 6557 &ioc->chip->HostDiagnostic); 6558 6559 /*This delay allows the chip PCIe hardware time to finish reset tasks*/ 6560 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000); 6561 6562 /* Approximately 300 second max wait */ 6563 for (count = 0; count < (300000000 / 6564 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) { 6565 6566 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic); 6567 6568 if (host_diagnostic == 0xFFFFFFFF) 6569 goto out; 6570 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER)) 6571 break; 6572 6573 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000); 6574 } 6575 6576 if (host_diagnostic & MPI2_DIAG_HCB_MODE) { 6577 6578 drsprintk(ioc, 6579 ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n")); 6580 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK; 6581 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW; 6582 writel(host_diagnostic, &ioc->chip->HostDiagnostic); 6583 6584 drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n")); 6585 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE, 6586 &ioc->chip->HCBSize); 6587 } 6588 6589 drsprintk(ioc, ioc_info(ioc, "restart the adapter\n")); 6590 writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET, 6591 &ioc->chip->HostDiagnostic); 6592 6593 drsprintk(ioc, 6594 ioc_info(ioc, "disable writes to the diagnostic register\n")); 6595 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence); 6596 6597 drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n")); 6598 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20); 6599 if (ioc_state) { 6600 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 6601 __func__, ioc_state); 6602 goto out; 6603 } 6604 6605 ioc_info(ioc, "diag reset: SUCCESS\n"); 6606 return 0; 6607 6608 out: 6609 ioc_err(ioc, "diag reset: FAILED\n"); 6610 return -EFAULT; 6611 } 6612 6613 /** 6614 * _base_make_ioc_ready - put controller in READY state 6615 * @ioc: per adapter object 6616 * @type: FORCE_BIG_HAMMER or SOFT_RESET 6617 * 6618 * Return: 0 for success, non-zero for failure. 6619 */ 6620 static int 6621 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type) 6622 { 6623 u32 ioc_state; 6624 int rc; 6625 int count; 6626 6627 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6628 6629 if (ioc->pci_error_recovery) 6630 return 0; 6631 6632 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 6633 dhsprintk(ioc, 6634 ioc_info(ioc, "%s: ioc_state(0x%08x)\n", 6635 __func__, ioc_state)); 6636 6637 /* if in RESET state, it should move to READY state shortly */ 6638 count = 0; 6639 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) { 6640 while ((ioc_state & MPI2_IOC_STATE_MASK) != 6641 MPI2_IOC_STATE_READY) { 6642 if (count++ == 10) { 6643 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 6644 __func__, ioc_state); 6645 return -EFAULT; 6646 } 6647 ssleep(1); 6648 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 6649 } 6650 } 6651 6652 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) 6653 return 0; 6654 6655 if (ioc_state & MPI2_DOORBELL_USED) { 6656 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n")); 6657 goto issue_diag_reset; 6658 } 6659 6660 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 6661 mpt3sas_base_fault_info(ioc, ioc_state & 6662 MPI2_DOORBELL_DATA_MASK); 6663 goto issue_diag_reset; 6664 } 6665 6666 if (type == FORCE_BIG_HAMMER) 6667 goto issue_diag_reset; 6668 6669 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL) 6670 if (!(_base_send_ioc_reset(ioc, 6671 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) { 6672 return 0; 6673 } 6674 6675 issue_diag_reset: 6676 rc = _base_diag_reset(ioc); 6677 return rc; 6678 } 6679 6680 /** 6681 * _base_make_ioc_operational - put controller in OPERATIONAL state 6682 * @ioc: per adapter object 6683 * 6684 * Return: 0 for success, non-zero for failure. 6685 */ 6686 static int 6687 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc) 6688 { 6689 int r, i, index; 6690 unsigned long flags; 6691 u32 reply_address; 6692 u16 smid; 6693 struct _tr_list *delayed_tr, *delayed_tr_next; 6694 struct _sc_list *delayed_sc, *delayed_sc_next; 6695 struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next; 6696 u8 hide_flag; 6697 struct adapter_reply_queue *reply_q; 6698 Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig; 6699 6700 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6701 6702 /* clean the delayed target reset list */ 6703 list_for_each_entry_safe(delayed_tr, delayed_tr_next, 6704 &ioc->delayed_tr_list, list) { 6705 list_del(&delayed_tr->list); 6706 kfree(delayed_tr); 6707 } 6708 6709 6710 list_for_each_entry_safe(delayed_tr, delayed_tr_next, 6711 &ioc->delayed_tr_volume_list, list) { 6712 list_del(&delayed_tr->list); 6713 kfree(delayed_tr); 6714 } 6715 6716 list_for_each_entry_safe(delayed_sc, delayed_sc_next, 6717 &ioc->delayed_sc_list, list) { 6718 list_del(&delayed_sc->list); 6719 kfree(delayed_sc); 6720 } 6721 6722 list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next, 6723 &ioc->delayed_event_ack_list, list) { 6724 list_del(&delayed_event_ack->list); 6725 kfree(delayed_event_ack); 6726 } 6727 6728 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 6729 6730 /* hi-priority queue */ 6731 INIT_LIST_HEAD(&ioc->hpr_free_list); 6732 smid = ioc->hi_priority_smid; 6733 for (i = 0; i < ioc->hi_priority_depth; i++, smid++) { 6734 ioc->hpr_lookup[i].cb_idx = 0xFF; 6735 ioc->hpr_lookup[i].smid = smid; 6736 list_add_tail(&ioc->hpr_lookup[i].tracker_list, 6737 &ioc->hpr_free_list); 6738 } 6739 6740 /* internal queue */ 6741 INIT_LIST_HEAD(&ioc->internal_free_list); 6742 smid = ioc->internal_smid; 6743 for (i = 0; i < ioc->internal_depth; i++, smid++) { 6744 ioc->internal_lookup[i].cb_idx = 0xFF; 6745 ioc->internal_lookup[i].smid = smid; 6746 list_add_tail(&ioc->internal_lookup[i].tracker_list, 6747 &ioc->internal_free_list); 6748 } 6749 6750 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 6751 6752 /* initialize Reply Free Queue */ 6753 for (i = 0, reply_address = (u32)ioc->reply_dma ; 6754 i < ioc->reply_free_queue_depth ; i++, reply_address += 6755 ioc->reply_sz) { 6756 ioc->reply_free[i] = cpu_to_le32(reply_address); 6757 if (ioc->is_mcpu_endpoint) 6758 _base_clone_reply_to_sys_mem(ioc, 6759 reply_address, i); 6760 } 6761 6762 /* initialize reply queues */ 6763 if (ioc->is_driver_loading) 6764 _base_assign_reply_queues(ioc); 6765 6766 /* initialize Reply Post Free Queue */ 6767 index = 0; 6768 reply_post_free_contig = ioc->reply_post[0].reply_post_free; 6769 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 6770 /* 6771 * If RDPQ is enabled, switch to the next allocation. 6772 * Otherwise advance within the contiguous region. 6773 */ 6774 if (ioc->rdpq_array_enable) { 6775 reply_q->reply_post_free = 6776 ioc->reply_post[index++].reply_post_free; 6777 } else { 6778 reply_q->reply_post_free = reply_post_free_contig; 6779 reply_post_free_contig += ioc->reply_post_queue_depth; 6780 } 6781 6782 reply_q->reply_post_host_index = 0; 6783 for (i = 0; i < ioc->reply_post_queue_depth; i++) 6784 reply_q->reply_post_free[i].Words = 6785 cpu_to_le64(ULLONG_MAX); 6786 if (!_base_is_controller_msix_enabled(ioc)) 6787 goto skip_init_reply_post_free_queue; 6788 } 6789 skip_init_reply_post_free_queue: 6790 6791 r = _base_send_ioc_init(ioc); 6792 if (r) 6793 return r; 6794 6795 /* initialize reply free host index */ 6796 ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1; 6797 writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex); 6798 6799 /* initialize reply post host index */ 6800 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 6801 if (ioc->combined_reply_queue) 6802 writel((reply_q->msix_index & 7)<< 6803 MPI2_RPHI_MSIX_INDEX_SHIFT, 6804 ioc->replyPostRegisterIndex[reply_q->msix_index/8]); 6805 else 6806 writel(reply_q->msix_index << 6807 MPI2_RPHI_MSIX_INDEX_SHIFT, 6808 &ioc->chip->ReplyPostHostIndex); 6809 6810 if (!_base_is_controller_msix_enabled(ioc)) 6811 goto skip_init_reply_post_host_index; 6812 } 6813 6814 skip_init_reply_post_host_index: 6815 6816 _base_unmask_interrupts(ioc); 6817 6818 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 6819 r = _base_display_fwpkg_version(ioc); 6820 if (r) 6821 return r; 6822 } 6823 6824 _base_static_config_pages(ioc); 6825 r = _base_event_notification(ioc); 6826 if (r) 6827 return r; 6828 6829 if (ioc->is_driver_loading) { 6830 6831 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier 6832 == 0x80) { 6833 hide_flag = (u8) ( 6834 le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) & 6835 MFG_PAGE10_HIDE_SSDS_MASK); 6836 if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK) 6837 ioc->mfg_pg10_hide_flag = hide_flag; 6838 } 6839 6840 ioc->wait_for_discovery_to_complete = 6841 _base_determine_wait_on_discovery(ioc); 6842 6843 return r; /* scan_start and scan_finished support */ 6844 } 6845 6846 r = _base_send_port_enable(ioc); 6847 if (r) 6848 return r; 6849 6850 return r; 6851 } 6852 6853 /** 6854 * mpt3sas_base_free_resources - free resources controller resources 6855 * @ioc: per adapter object 6856 */ 6857 void 6858 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc) 6859 { 6860 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6861 6862 /* synchronizing freeing resource with pci_access_mutex lock */ 6863 mutex_lock(&ioc->pci_access_mutex); 6864 if (ioc->chip_phys && ioc->chip) { 6865 _base_mask_interrupts(ioc); 6866 ioc->shost_recovery = 1; 6867 _base_make_ioc_ready(ioc, SOFT_RESET); 6868 ioc->shost_recovery = 0; 6869 } 6870 6871 mpt3sas_base_unmap_resources(ioc); 6872 mutex_unlock(&ioc->pci_access_mutex); 6873 return; 6874 } 6875 6876 /** 6877 * mpt3sas_base_attach - attach controller instance 6878 * @ioc: per adapter object 6879 * 6880 * Return: 0 for success, non-zero for failure. 6881 */ 6882 int 6883 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc) 6884 { 6885 int r, i; 6886 int cpu_id, last_cpu_id = 0; 6887 6888 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6889 6890 /* setup cpu_msix_table */ 6891 ioc->cpu_count = num_online_cpus(); 6892 for_each_online_cpu(cpu_id) 6893 last_cpu_id = cpu_id; 6894 ioc->cpu_msix_table_sz = last_cpu_id + 1; 6895 ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL); 6896 ioc->reply_queue_count = 1; 6897 if (!ioc->cpu_msix_table) { 6898 dfailprintk(ioc, 6899 ioc_info(ioc, "allocation for cpu_msix_table failed!!!\n")); 6900 r = -ENOMEM; 6901 goto out_free_resources; 6902 } 6903 6904 if (ioc->is_warpdrive) { 6905 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz, 6906 sizeof(resource_size_t *), GFP_KERNEL); 6907 if (!ioc->reply_post_host_index) { 6908 dfailprintk(ioc, 6909 ioc_info(ioc, "allocation for reply_post_host_index failed!!!\n")); 6910 r = -ENOMEM; 6911 goto out_free_resources; 6912 } 6913 } 6914 6915 ioc->smp_affinity_enable = smp_affinity_enable; 6916 6917 ioc->rdpq_array_enable_assigned = 0; 6918 ioc->dma_mask = 0; 6919 if (ioc->is_aero_ioc) 6920 ioc->base_readl = &_base_readl_aero; 6921 else 6922 ioc->base_readl = &_base_readl; 6923 r = mpt3sas_base_map_resources(ioc); 6924 if (r) 6925 goto out_free_resources; 6926 6927 pci_set_drvdata(ioc->pdev, ioc->shost); 6928 r = _base_get_ioc_facts(ioc); 6929 if (r) 6930 goto out_free_resources; 6931 6932 switch (ioc->hba_mpi_version_belonged) { 6933 case MPI2_VERSION: 6934 ioc->build_sg_scmd = &_base_build_sg_scmd; 6935 ioc->build_sg = &_base_build_sg; 6936 ioc->build_zero_len_sge = &_base_build_zero_len_sge; 6937 ioc->get_msix_index_for_smlio = &_base_get_msix_index; 6938 break; 6939 case MPI25_VERSION: 6940 case MPI26_VERSION: 6941 /* 6942 * In SAS3.0, 6943 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and 6944 * Target Status - all require the IEEE formated scatter gather 6945 * elements. 6946 */ 6947 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee; 6948 ioc->build_sg = &_base_build_sg_ieee; 6949 ioc->build_nvme_prp = &_base_build_nvme_prp; 6950 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee; 6951 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t); 6952 if (ioc->high_iops_queues) 6953 ioc->get_msix_index_for_smlio = 6954 &_base_get_high_iops_msix_index; 6955 else 6956 ioc->get_msix_index_for_smlio = &_base_get_msix_index; 6957 break; 6958 } 6959 if (ioc->atomic_desc_capable) { 6960 ioc->put_smid_default = &_base_put_smid_default_atomic; 6961 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic; 6962 ioc->put_smid_fast_path = 6963 &_base_put_smid_fast_path_atomic; 6964 ioc->put_smid_hi_priority = 6965 &_base_put_smid_hi_priority_atomic; 6966 } else { 6967 ioc->put_smid_default = &_base_put_smid_default; 6968 ioc->put_smid_fast_path = &_base_put_smid_fast_path; 6969 ioc->put_smid_hi_priority = &_base_put_smid_hi_priority; 6970 if (ioc->is_mcpu_endpoint) 6971 ioc->put_smid_scsi_io = 6972 &_base_put_smid_mpi_ep_scsi_io; 6973 else 6974 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io; 6975 } 6976 /* 6977 * These function pointers for other requests that don't 6978 * the require IEEE scatter gather elements. 6979 * 6980 * For example Configuration Pages and SAS IOUNIT Control don't. 6981 */ 6982 ioc->build_sg_mpi = &_base_build_sg; 6983 ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge; 6984 6985 r = _base_make_ioc_ready(ioc, SOFT_RESET); 6986 if (r) 6987 goto out_free_resources; 6988 6989 ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts, 6990 sizeof(struct mpt3sas_port_facts), GFP_KERNEL); 6991 if (!ioc->pfacts) { 6992 r = -ENOMEM; 6993 goto out_free_resources; 6994 } 6995 6996 for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) { 6997 r = _base_get_port_facts(ioc, i); 6998 if (r) 6999 goto out_free_resources; 7000 } 7001 7002 r = _base_allocate_memory_pools(ioc); 7003 if (r) 7004 goto out_free_resources; 7005 7006 if (irqpoll_weight > 0) 7007 ioc->thresh_hold = irqpoll_weight; 7008 else 7009 ioc->thresh_hold = ioc->hba_queue_depth/4; 7010 7011 _base_init_irqpolls(ioc); 7012 init_waitqueue_head(&ioc->reset_wq); 7013 7014 /* allocate memory pd handle bitmask list */ 7015 ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8); 7016 if (ioc->facts.MaxDevHandle % 8) 7017 ioc->pd_handles_sz++; 7018 ioc->pd_handles = kzalloc(ioc->pd_handles_sz, 7019 GFP_KERNEL); 7020 if (!ioc->pd_handles) { 7021 r = -ENOMEM; 7022 goto out_free_resources; 7023 } 7024 ioc->blocking_handles = kzalloc(ioc->pd_handles_sz, 7025 GFP_KERNEL); 7026 if (!ioc->blocking_handles) { 7027 r = -ENOMEM; 7028 goto out_free_resources; 7029 } 7030 7031 /* allocate memory for pending OS device add list */ 7032 ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8); 7033 if (ioc->facts.MaxDevHandle % 8) 7034 ioc->pend_os_device_add_sz++; 7035 ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz, 7036 GFP_KERNEL); 7037 if (!ioc->pend_os_device_add) 7038 goto out_free_resources; 7039 7040 ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz; 7041 ioc->device_remove_in_progress = 7042 kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL); 7043 if (!ioc->device_remove_in_progress) 7044 goto out_free_resources; 7045 7046 ioc->fwfault_debug = mpt3sas_fwfault_debug; 7047 7048 /* base internal command bits */ 7049 mutex_init(&ioc->base_cmds.mutex); 7050 ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7051 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 7052 7053 /* port_enable command bits */ 7054 ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7055 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED; 7056 7057 /* transport internal command bits */ 7058 ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7059 ioc->transport_cmds.status = MPT3_CMD_NOT_USED; 7060 mutex_init(&ioc->transport_cmds.mutex); 7061 7062 /* scsih internal command bits */ 7063 ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7064 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED; 7065 mutex_init(&ioc->scsih_cmds.mutex); 7066 7067 /* task management internal command bits */ 7068 ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7069 ioc->tm_cmds.status = MPT3_CMD_NOT_USED; 7070 mutex_init(&ioc->tm_cmds.mutex); 7071 7072 /* config page internal command bits */ 7073 ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7074 ioc->config_cmds.status = MPT3_CMD_NOT_USED; 7075 mutex_init(&ioc->config_cmds.mutex); 7076 7077 /* ctl module internal command bits */ 7078 ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7079 ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL); 7080 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED; 7081 mutex_init(&ioc->ctl_cmds.mutex); 7082 7083 if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply || 7084 !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply || 7085 !ioc->tm_cmds.reply || !ioc->config_cmds.reply || 7086 !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) { 7087 r = -ENOMEM; 7088 goto out_free_resources; 7089 } 7090 7091 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 7092 ioc->event_masks[i] = -1; 7093 7094 /* here we enable the events we care about */ 7095 _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY); 7096 _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE); 7097 _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST); 7098 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE); 7099 _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE); 7100 _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST); 7101 _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME); 7102 _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK); 7103 _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS); 7104 _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED); 7105 _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD); 7106 _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION); 7107 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR); 7108 if (ioc->hba_mpi_version_belonged == MPI26_VERSION) { 7109 if (ioc->is_gen35_ioc) { 7110 _base_unmask_events(ioc, 7111 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE); 7112 _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION); 7113 _base_unmask_events(ioc, 7114 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST); 7115 } 7116 } 7117 r = _base_make_ioc_operational(ioc); 7118 if (r) 7119 goto out_free_resources; 7120 7121 ioc->non_operational_loop = 0; 7122 ioc->got_task_abort_from_ioctl = 0; 7123 return 0; 7124 7125 out_free_resources: 7126 7127 ioc->remove_host = 1; 7128 7129 mpt3sas_base_free_resources(ioc); 7130 _base_release_memory_pools(ioc); 7131 pci_set_drvdata(ioc->pdev, NULL); 7132 kfree(ioc->cpu_msix_table); 7133 if (ioc->is_warpdrive) 7134 kfree(ioc->reply_post_host_index); 7135 kfree(ioc->pd_handles); 7136 kfree(ioc->blocking_handles); 7137 kfree(ioc->device_remove_in_progress); 7138 kfree(ioc->pend_os_device_add); 7139 kfree(ioc->tm_cmds.reply); 7140 kfree(ioc->transport_cmds.reply); 7141 kfree(ioc->scsih_cmds.reply); 7142 kfree(ioc->config_cmds.reply); 7143 kfree(ioc->base_cmds.reply); 7144 kfree(ioc->port_enable_cmds.reply); 7145 kfree(ioc->ctl_cmds.reply); 7146 kfree(ioc->ctl_cmds.sense); 7147 kfree(ioc->pfacts); 7148 ioc->ctl_cmds.reply = NULL; 7149 ioc->base_cmds.reply = NULL; 7150 ioc->tm_cmds.reply = NULL; 7151 ioc->scsih_cmds.reply = NULL; 7152 ioc->transport_cmds.reply = NULL; 7153 ioc->config_cmds.reply = NULL; 7154 ioc->pfacts = NULL; 7155 return r; 7156 } 7157 7158 7159 /** 7160 * mpt3sas_base_detach - remove controller instance 7161 * @ioc: per adapter object 7162 */ 7163 void 7164 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc) 7165 { 7166 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7167 7168 mpt3sas_base_stop_watchdog(ioc); 7169 mpt3sas_base_free_resources(ioc); 7170 _base_release_memory_pools(ioc); 7171 mpt3sas_free_enclosure_list(ioc); 7172 pci_set_drvdata(ioc->pdev, NULL); 7173 kfree(ioc->cpu_msix_table); 7174 if (ioc->is_warpdrive) 7175 kfree(ioc->reply_post_host_index); 7176 kfree(ioc->pd_handles); 7177 kfree(ioc->blocking_handles); 7178 kfree(ioc->device_remove_in_progress); 7179 kfree(ioc->pend_os_device_add); 7180 kfree(ioc->pfacts); 7181 kfree(ioc->ctl_cmds.reply); 7182 kfree(ioc->ctl_cmds.sense); 7183 kfree(ioc->base_cmds.reply); 7184 kfree(ioc->port_enable_cmds.reply); 7185 kfree(ioc->tm_cmds.reply); 7186 kfree(ioc->transport_cmds.reply); 7187 kfree(ioc->scsih_cmds.reply); 7188 kfree(ioc->config_cmds.reply); 7189 } 7190 7191 /** 7192 * _base_pre_reset_handler - pre reset handler 7193 * @ioc: per adapter object 7194 */ 7195 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc) 7196 { 7197 mpt3sas_scsih_pre_reset_handler(ioc); 7198 mpt3sas_ctl_pre_reset_handler(ioc); 7199 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__)); 7200 } 7201 7202 /** 7203 * _base_after_reset_handler - after reset handler 7204 * @ioc: per adapter object 7205 */ 7206 static void _base_after_reset_handler(struct MPT3SAS_ADAPTER *ioc) 7207 { 7208 mpt3sas_scsih_after_reset_handler(ioc); 7209 mpt3sas_ctl_after_reset_handler(ioc); 7210 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_AFTER_RESET\n", __func__)); 7211 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) { 7212 ioc->transport_cmds.status |= MPT3_CMD_RESET; 7213 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid); 7214 complete(&ioc->transport_cmds.done); 7215 } 7216 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 7217 ioc->base_cmds.status |= MPT3_CMD_RESET; 7218 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid); 7219 complete(&ioc->base_cmds.done); 7220 } 7221 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 7222 ioc->port_enable_failed = 1; 7223 ioc->port_enable_cmds.status |= MPT3_CMD_RESET; 7224 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid); 7225 if (ioc->is_driver_loading) { 7226 ioc->start_scan_failed = 7227 MPI2_IOCSTATUS_INTERNAL_ERROR; 7228 ioc->start_scan = 0; 7229 ioc->port_enable_cmds.status = 7230 MPT3_CMD_NOT_USED; 7231 } else { 7232 complete(&ioc->port_enable_cmds.done); 7233 } 7234 } 7235 if (ioc->config_cmds.status & MPT3_CMD_PENDING) { 7236 ioc->config_cmds.status |= MPT3_CMD_RESET; 7237 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid); 7238 ioc->config_cmds.smid = USHRT_MAX; 7239 complete(&ioc->config_cmds.done); 7240 } 7241 } 7242 7243 /** 7244 * _base_reset_done_handler - reset done handler 7245 * @ioc: per adapter object 7246 */ 7247 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc) 7248 { 7249 mpt3sas_scsih_reset_done_handler(ioc); 7250 mpt3sas_ctl_reset_done_handler(ioc); 7251 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__)); 7252 } 7253 7254 /** 7255 * mpt3sas_wait_for_commands_to_complete - reset controller 7256 * @ioc: Pointer to MPT_ADAPTER structure 7257 * 7258 * This function is waiting 10s for all pending commands to complete 7259 * prior to putting controller in reset. 7260 */ 7261 void 7262 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc) 7263 { 7264 u32 ioc_state; 7265 7266 ioc->pending_io_count = 0; 7267 7268 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 7269 if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) 7270 return; 7271 7272 /* pending command count */ 7273 ioc->pending_io_count = scsi_host_busy(ioc->shost); 7274 7275 if (!ioc->pending_io_count) 7276 return; 7277 7278 /* wait for pending commands to complete */ 7279 wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ); 7280 } 7281 7282 /** 7283 * mpt3sas_base_hard_reset_handler - reset controller 7284 * @ioc: Pointer to MPT_ADAPTER structure 7285 * @type: FORCE_BIG_HAMMER or SOFT_RESET 7286 * 7287 * Return: 0 for success, non-zero for failure. 7288 */ 7289 int 7290 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc, 7291 enum reset_type type) 7292 { 7293 int r; 7294 unsigned long flags; 7295 u32 ioc_state; 7296 u8 is_fault = 0, is_trigger = 0; 7297 7298 dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__)); 7299 7300 if (ioc->pci_error_recovery) { 7301 ioc_err(ioc, "%s: pci error recovery reset\n", __func__); 7302 r = 0; 7303 goto out_unlocked; 7304 } 7305 7306 if (mpt3sas_fwfault_debug) 7307 mpt3sas_halt_firmware(ioc); 7308 7309 /* wait for an active reset in progress to complete */ 7310 mutex_lock(&ioc->reset_in_progress_mutex); 7311 7312 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 7313 ioc->shost_recovery = 1; 7314 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 7315 7316 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 7317 MPT3_DIAG_BUFFER_IS_REGISTERED) && 7318 (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 7319 MPT3_DIAG_BUFFER_IS_RELEASED))) { 7320 is_trigger = 1; 7321 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 7322 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) 7323 is_fault = 1; 7324 } 7325 _base_pre_reset_handler(ioc); 7326 mpt3sas_wait_for_commands_to_complete(ioc); 7327 _base_mask_interrupts(ioc); 7328 r = _base_make_ioc_ready(ioc, type); 7329 if (r) 7330 goto out; 7331 _base_after_reset_handler(ioc); 7332 7333 /* If this hard reset is called while port enable is active, then 7334 * there is no reason to call make_ioc_operational 7335 */ 7336 if (ioc->is_driver_loading && ioc->port_enable_failed) { 7337 ioc->remove_host = 1; 7338 r = -EFAULT; 7339 goto out; 7340 } 7341 r = _base_get_ioc_facts(ioc); 7342 if (r) 7343 goto out; 7344 7345 if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable) 7346 panic("%s: Issue occurred with flashing controller firmware." 7347 "Please reboot the system and ensure that the correct" 7348 " firmware version is running\n", ioc->name); 7349 7350 r = _base_make_ioc_operational(ioc); 7351 if (!r) 7352 _base_reset_done_handler(ioc); 7353 7354 out: 7355 dtmprintk(ioc, 7356 ioc_info(ioc, "%s: %s\n", 7357 __func__, r == 0 ? "SUCCESS" : "FAILED")); 7358 7359 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 7360 ioc->shost_recovery = 0; 7361 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 7362 ioc->ioc_reset_count++; 7363 mutex_unlock(&ioc->reset_in_progress_mutex); 7364 7365 out_unlocked: 7366 if ((r == 0) && is_trigger) { 7367 if (is_fault) 7368 mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT); 7369 else 7370 mpt3sas_trigger_master(ioc, 7371 MASTER_TRIGGER_ADAPTER_RESET); 7372 } 7373 dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__)); 7374 return r; 7375 } 7376