1 /* 2 * This is the Fusion MPT base driver providing common API layer interface 3 * for access to MPT (Message Passing Technology) firmware. 4 * 5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c 6 * Copyright (C) 2012-2014 LSI Corporation 7 * Copyright (C) 2013-2014 Avago Technologies 8 * (mailto: MPT-FusionLinux.pdl@avagotech.com) 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License 12 * as published by the Free Software Foundation; either version 2 13 * of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * NO WARRANTY 21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR 22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT 23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, 24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is 25 * solely responsible for determining the appropriateness of using and 26 * distributing the Program and assumes all risks associated with its 27 * exercise of rights under this Agreement, including but not limited to 28 * the risks and costs of program errors, damage to or loss of data, 29 * programs or equipment, and unavailability or interruption of operations. 30 31 * DISCLAIMER OF LIABILITY 32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY 33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND 35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED 38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES 39 40 * You should have received a copy of the GNU General Public License 41 * along with this program; if not, write to the Free Software 42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, 43 * USA. 44 */ 45 46 #include <linux/kernel.h> 47 #include <linux/module.h> 48 #include <linux/errno.h> 49 #include <linux/init.h> 50 #include <linux/slab.h> 51 #include <linux/types.h> 52 #include <linux/pci.h> 53 #include <linux/kdev_t.h> 54 #include <linux/blkdev.h> 55 #include <linux/delay.h> 56 #include <linux/interrupt.h> 57 #include <linux/dma-mapping.h> 58 #include <linux/io.h> 59 #include <linux/time.h> 60 #include <linux/ktime.h> 61 #include <linux/kthread.h> 62 #include <asm/page.h> /* To get host page size per arch */ 63 #include <linux/aer.h> 64 65 66 #include "mpt3sas_base.h" 67 68 static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS]; 69 70 71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */ 72 73 /* maximum controller queue depth */ 74 #define MAX_HBA_QUEUE_DEPTH 30000 75 #define MAX_CHAIN_DEPTH 100000 76 static int max_queue_depth = -1; 77 module_param(max_queue_depth, int, 0); 78 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth "); 79 80 static int max_sgl_entries = -1; 81 module_param(max_sgl_entries, int, 0); 82 MODULE_PARM_DESC(max_sgl_entries, " max sg entries "); 83 84 static int msix_disable = -1; 85 module_param(msix_disable, int, 0); 86 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)"); 87 88 static int smp_affinity_enable = 1; 89 module_param(smp_affinity_enable, int, S_IRUGO); 90 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)"); 91 92 static int max_msix_vectors = -1; 93 module_param(max_msix_vectors, int, 0); 94 MODULE_PARM_DESC(max_msix_vectors, 95 " max msix vectors"); 96 97 static int mpt3sas_fwfault_debug; 98 MODULE_PARM_DESC(mpt3sas_fwfault_debug, 99 " enable detection of firmware fault and halt firmware - (default=0)"); 100 101 static int 102 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc); 103 104 /** 105 * mpt3sas_base_check_cmd_timeout - Function 106 * to check timeout and command termination due 107 * to Host reset. 108 * 109 * @ioc: per adapter object. 110 * @status: Status of issued command. 111 * @mpi_request:mf request pointer. 112 * @sz: size of buffer. 113 * 114 * @Returns - 1/0 Reset to be done or Not 115 */ 116 u8 117 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc, 118 u8 status, void *mpi_request, int sz) 119 { 120 u8 issue_reset = 0; 121 122 if (!(status & MPT3_CMD_RESET)) 123 issue_reset = 1; 124 125 ioc_err(ioc, "Command %s\n", 126 issue_reset == 0 ? "terminated due to Host Reset" : "Timeout"); 127 _debug_dump_mf(mpi_request, sz); 128 129 return issue_reset; 130 } 131 132 /** 133 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug. 134 * @val: ? 135 * @kp: ? 136 * 137 * Return: ? 138 */ 139 static int 140 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp) 141 { 142 int ret = param_set_int(val, kp); 143 struct MPT3SAS_ADAPTER *ioc; 144 145 if (ret) 146 return ret; 147 148 /* global ioc spinlock to protect controller list on list operations */ 149 pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug); 150 spin_lock(&gioc_lock); 151 list_for_each_entry(ioc, &mpt3sas_ioc_list, list) 152 ioc->fwfault_debug = mpt3sas_fwfault_debug; 153 spin_unlock(&gioc_lock); 154 return 0; 155 } 156 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug, 157 param_get_int, &mpt3sas_fwfault_debug, 0644); 158 159 /** 160 * _base_readl_aero - retry readl for max three times. 161 * @addr - MPT Fusion system interface register address 162 * 163 * Retry the readl() for max three times if it gets zero value 164 * while reading the system interface register. 165 */ 166 static inline u32 167 _base_readl_aero(const volatile void __iomem *addr) 168 { 169 u32 i = 0, ret_val; 170 171 do { 172 ret_val = readl(addr); 173 i++; 174 } while (ret_val == 0 && i < 3); 175 176 return ret_val; 177 } 178 179 static inline u32 180 _base_readl(const volatile void __iomem *addr) 181 { 182 return readl(addr); 183 } 184 185 /** 186 * _base_clone_reply_to_sys_mem - copies reply to reply free iomem 187 * in BAR0 space. 188 * 189 * @ioc: per adapter object 190 * @reply: reply message frame(lower 32bit addr) 191 * @index: System request message index. 192 */ 193 static void 194 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply, 195 u32 index) 196 { 197 /* 198 * 256 is offset within sys register. 199 * 256 offset MPI frame starts. Max MPI frame supported is 32. 200 * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts 201 */ 202 u16 cmd_credit = ioc->facts.RequestCredit + 1; 203 void __iomem *reply_free_iomem = (void __iomem *)ioc->chip + 204 MPI_FRAME_START_OFFSET + 205 (cmd_credit * ioc->request_sz) + (index * sizeof(u32)); 206 207 writel(reply, reply_free_iomem); 208 } 209 210 /** 211 * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames 212 * to system/BAR0 region. 213 * 214 * @dst_iomem: Pointer to the destination location in BAR0 space. 215 * @src: Pointer to the Source data. 216 * @size: Size of data to be copied. 217 */ 218 static void 219 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size) 220 { 221 int i; 222 u32 *src_virt_mem = (u32 *)src; 223 224 for (i = 0; i < size/4; i++) 225 writel((u32)src_virt_mem[i], 226 (void __iomem *)dst_iomem + (i * 4)); 227 } 228 229 /** 230 * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region 231 * 232 * @dst_iomem: Pointer to the destination location in BAR0 space. 233 * @src: Pointer to the Source data. 234 * @size: Size of data to be copied. 235 */ 236 static void 237 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size) 238 { 239 int i; 240 u32 *src_virt_mem = (u32 *)(src); 241 242 for (i = 0; i < size/4; i++) 243 writel((u32)src_virt_mem[i], 244 (void __iomem *)dst_iomem + (i * 4)); 245 } 246 247 /** 248 * _base_get_chain - Calculates and Returns virtual chain address 249 * for the provided smid in BAR0 space. 250 * 251 * @ioc: per adapter object 252 * @smid: system request message index 253 * @sge_chain_count: Scatter gather chain count. 254 * 255 * Return: the chain address. 256 */ 257 static inline void __iomem* 258 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid, 259 u8 sge_chain_count) 260 { 261 void __iomem *base_chain, *chain_virt; 262 u16 cmd_credit = ioc->facts.RequestCredit + 1; 263 264 base_chain = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET + 265 (cmd_credit * ioc->request_sz) + 266 REPLY_FREE_POOL_SIZE; 267 chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth * 268 ioc->request_sz) + (sge_chain_count * ioc->request_sz); 269 return chain_virt; 270 } 271 272 /** 273 * _base_get_chain_phys - Calculates and Returns physical address 274 * in BAR0 for scatter gather chains, for 275 * the provided smid. 276 * 277 * @ioc: per adapter object 278 * @smid: system request message index 279 * @sge_chain_count: Scatter gather chain count. 280 * 281 * Return: Physical chain address. 282 */ 283 static inline phys_addr_t 284 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid, 285 u8 sge_chain_count) 286 { 287 phys_addr_t base_chain_phys, chain_phys; 288 u16 cmd_credit = ioc->facts.RequestCredit + 1; 289 290 base_chain_phys = ioc->chip_phys + MPI_FRAME_START_OFFSET + 291 (cmd_credit * ioc->request_sz) + 292 REPLY_FREE_POOL_SIZE; 293 chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth * 294 ioc->request_sz) + (sge_chain_count * ioc->request_sz); 295 return chain_phys; 296 } 297 298 /** 299 * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host 300 * buffer address for the provided smid. 301 * (Each smid can have 64K starts from 17024) 302 * 303 * @ioc: per adapter object 304 * @smid: system request message index 305 * 306 * Return: Pointer to buffer location in BAR0. 307 */ 308 309 static void __iomem * 310 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid) 311 { 312 u16 cmd_credit = ioc->facts.RequestCredit + 1; 313 // Added extra 1 to reach end of chain. 314 void __iomem *chain_end = _base_get_chain(ioc, 315 cmd_credit + 1, 316 ioc->facts.MaxChainDepth); 317 return chain_end + (smid * 64 * 1024); 318 } 319 320 /** 321 * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped 322 * Host buffer Physical address for the provided smid. 323 * (Each smid can have 64K starts from 17024) 324 * 325 * @ioc: per adapter object 326 * @smid: system request message index 327 * 328 * Return: Pointer to buffer location in BAR0. 329 */ 330 static phys_addr_t 331 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid) 332 { 333 u16 cmd_credit = ioc->facts.RequestCredit + 1; 334 phys_addr_t chain_end_phys = _base_get_chain_phys(ioc, 335 cmd_credit + 1, 336 ioc->facts.MaxChainDepth); 337 return chain_end_phys + (smid * 64 * 1024); 338 } 339 340 /** 341 * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain 342 * lookup list and Provides chain_buffer 343 * address for the matching dma address. 344 * (Each smid can have 64K starts from 17024) 345 * 346 * @ioc: per adapter object 347 * @chain_buffer_dma: Chain buffer dma address. 348 * 349 * Return: Pointer to chain buffer. Or Null on Failure. 350 */ 351 static void * 352 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc, 353 dma_addr_t chain_buffer_dma) 354 { 355 u16 index, j; 356 struct chain_tracker *ct; 357 358 for (index = 0; index < ioc->scsiio_depth; index++) { 359 for (j = 0; j < ioc->chains_needed_per_io; j++) { 360 ct = &ioc->chain_lookup[index].chains_per_smid[j]; 361 if (ct && ct->chain_buffer_dma == chain_buffer_dma) 362 return ct->chain_buffer; 363 } 364 } 365 ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n"); 366 return NULL; 367 } 368 369 /** 370 * _clone_sg_entries - MPI EP's scsiio and config requests 371 * are handled here. Base function for 372 * double buffering, before submitting 373 * the requests. 374 * 375 * @ioc: per adapter object. 376 * @mpi_request: mf request pointer. 377 * @smid: system request message index. 378 */ 379 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc, 380 void *mpi_request, u16 smid) 381 { 382 Mpi2SGESimple32_t *sgel, *sgel_next; 383 u32 sgl_flags, sge_chain_count = 0; 384 bool is_write = 0; 385 u16 i = 0; 386 void __iomem *buffer_iomem; 387 phys_addr_t buffer_iomem_phys; 388 void __iomem *buff_ptr; 389 phys_addr_t buff_ptr_phys; 390 void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO]; 391 void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO]; 392 phys_addr_t dst_addr_phys; 393 MPI2RequestHeader_t *request_hdr; 394 struct scsi_cmnd *scmd; 395 struct scatterlist *sg_scmd = NULL; 396 int is_scsiio_req = 0; 397 398 request_hdr = (MPI2RequestHeader_t *) mpi_request; 399 400 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) { 401 Mpi25SCSIIORequest_t *scsiio_request = 402 (Mpi25SCSIIORequest_t *)mpi_request; 403 sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL; 404 is_scsiio_req = 1; 405 } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) { 406 Mpi2ConfigRequest_t *config_req = 407 (Mpi2ConfigRequest_t *)mpi_request; 408 sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE; 409 } else 410 return; 411 412 /* From smid we can get scsi_cmd, once we have sg_scmd, 413 * we just need to get sg_virt and sg_next to get virual 414 * address associated with sgel->Address. 415 */ 416 417 if (is_scsiio_req) { 418 /* Get scsi_cmd using smid */ 419 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid); 420 if (scmd == NULL) { 421 ioc_err(ioc, "scmd is NULL\n"); 422 return; 423 } 424 425 /* Get sg_scmd from scmd provided */ 426 sg_scmd = scsi_sglist(scmd); 427 } 428 429 /* 430 * 0 - 255 System register 431 * 256 - 4352 MPI Frame. (This is based on maxCredit 32) 432 * 4352 - 4864 Reply_free pool (512 byte is reserved 433 * considering maxCredit 32. Reply need extra 434 * room, for mCPU case kept four times of 435 * maxCredit). 436 * 4864 - 17152 SGE chain element. (32cmd * 3 chain of 437 * 128 byte size = 12288) 438 * 17152 - x Host buffer mapped with smid. 439 * (Each smid can have 64K Max IO.) 440 * BAR0+Last 1K MSIX Addr and Data 441 * Total size in use 2113664 bytes of 4MB BAR0 442 */ 443 444 buffer_iomem = _base_get_buffer_bar0(ioc, smid); 445 buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid); 446 447 buff_ptr = buffer_iomem; 448 buff_ptr_phys = buffer_iomem_phys; 449 WARN_ON(buff_ptr_phys > U32_MAX); 450 451 if (le32_to_cpu(sgel->FlagsLength) & 452 (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT)) 453 is_write = 1; 454 455 for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) { 456 457 sgl_flags = 458 (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT); 459 460 switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) { 461 case MPI2_SGE_FLAGS_CHAIN_ELEMENT: 462 /* 463 * Helper function which on passing 464 * chain_buffer_dma returns chain_buffer. Get 465 * the virtual address for sgel->Address 466 */ 467 sgel_next = 468 _base_get_chain_buffer_dma_to_chain_buffer(ioc, 469 le32_to_cpu(sgel->Address)); 470 if (sgel_next == NULL) 471 return; 472 /* 473 * This is coping 128 byte chain 474 * frame (not a host buffer) 475 */ 476 dst_chain_addr[sge_chain_count] = 477 _base_get_chain(ioc, 478 smid, sge_chain_count); 479 src_chain_addr[sge_chain_count] = 480 (void *) sgel_next; 481 dst_addr_phys = _base_get_chain_phys(ioc, 482 smid, sge_chain_count); 483 WARN_ON(dst_addr_phys > U32_MAX); 484 sgel->Address = 485 cpu_to_le32(lower_32_bits(dst_addr_phys)); 486 sgel = sgel_next; 487 sge_chain_count++; 488 break; 489 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT: 490 if (is_write) { 491 if (is_scsiio_req) { 492 _base_clone_to_sys_mem(buff_ptr, 493 sg_virt(sg_scmd), 494 (le32_to_cpu(sgel->FlagsLength) & 495 0x00ffffff)); 496 /* 497 * FIXME: this relies on a a zero 498 * PCI mem_offset. 499 */ 500 sgel->Address = 501 cpu_to_le32((u32)buff_ptr_phys); 502 } else { 503 _base_clone_to_sys_mem(buff_ptr, 504 ioc->config_vaddr, 505 (le32_to_cpu(sgel->FlagsLength) & 506 0x00ffffff)); 507 sgel->Address = 508 cpu_to_le32((u32)buff_ptr_phys); 509 } 510 } 511 buff_ptr += (le32_to_cpu(sgel->FlagsLength) & 512 0x00ffffff); 513 buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) & 514 0x00ffffff); 515 if ((le32_to_cpu(sgel->FlagsLength) & 516 (MPI2_SGE_FLAGS_END_OF_BUFFER 517 << MPI2_SGE_FLAGS_SHIFT))) 518 goto eob_clone_chain; 519 else { 520 /* 521 * Every single element in MPT will have 522 * associated sg_next. Better to sanity that 523 * sg_next is not NULL, but it will be a bug 524 * if it is null. 525 */ 526 if (is_scsiio_req) { 527 sg_scmd = sg_next(sg_scmd); 528 if (sg_scmd) 529 sgel++; 530 else 531 goto eob_clone_chain; 532 } 533 } 534 break; 535 } 536 } 537 538 eob_clone_chain: 539 for (i = 0; i < sge_chain_count; i++) { 540 if (is_scsiio_req) 541 _base_clone_to_sys_mem(dst_chain_addr[i], 542 src_chain_addr[i], ioc->request_sz); 543 } 544 } 545 546 /** 547 * mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc 548 * @arg: input argument, used to derive ioc 549 * 550 * Return: 551 * 0 if controller is removed from pci subsystem. 552 * -1 for other case. 553 */ 554 static int mpt3sas_remove_dead_ioc_func(void *arg) 555 { 556 struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg; 557 struct pci_dev *pdev; 558 559 if (!ioc) 560 return -1; 561 562 pdev = ioc->pdev; 563 if (!pdev) 564 return -1; 565 pci_stop_and_remove_bus_device_locked(pdev); 566 return 0; 567 } 568 569 /** 570 * _base_fault_reset_work - workq handling ioc fault conditions 571 * @work: input argument, used to derive ioc 572 * 573 * Context: sleep. 574 */ 575 static void 576 _base_fault_reset_work(struct work_struct *work) 577 { 578 struct MPT3SAS_ADAPTER *ioc = 579 container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work); 580 unsigned long flags; 581 u32 doorbell; 582 int rc; 583 struct task_struct *p; 584 585 586 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 587 if (ioc->shost_recovery || ioc->pci_error_recovery) 588 goto rearm_timer; 589 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 590 591 doorbell = mpt3sas_base_get_iocstate(ioc, 0); 592 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) { 593 ioc_err(ioc, "SAS host is non-operational !!!!\n"); 594 595 /* It may be possible that EEH recovery can resolve some of 596 * pci bus failure issues rather removing the dead ioc function 597 * by considering controller is in a non-operational state. So 598 * here priority is given to the EEH recovery. If it doesn't 599 * not resolve this issue, mpt3sas driver will consider this 600 * controller to non-operational state and remove the dead ioc 601 * function. 602 */ 603 if (ioc->non_operational_loop++ < 5) { 604 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, 605 flags); 606 goto rearm_timer; 607 } 608 609 /* 610 * Call _scsih_flush_pending_cmds callback so that we flush all 611 * pending commands back to OS. This call is required to aovid 612 * deadlock at block layer. Dead IOC will fail to do diag reset, 613 * and this call is safe since dead ioc will never return any 614 * command back from HW. 615 */ 616 ioc->schedule_dead_ioc_flush_running_cmds(ioc); 617 /* 618 * Set remove_host flag early since kernel thread will 619 * take some time to execute. 620 */ 621 ioc->remove_host = 1; 622 /*Remove the Dead Host */ 623 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc, 624 "%s_dead_ioc_%d", ioc->driver_name, ioc->id); 625 if (IS_ERR(p)) 626 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n", 627 __func__); 628 else 629 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n", 630 __func__); 631 return; /* don't rearm timer */ 632 } 633 634 ioc->non_operational_loop = 0; 635 636 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) { 637 rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 638 ioc_warn(ioc, "%s: hard reset: %s\n", 639 __func__, rc == 0 ? "success" : "failed"); 640 doorbell = mpt3sas_base_get_iocstate(ioc, 0); 641 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) 642 mpt3sas_base_fault_info(ioc, doorbell & 643 MPI2_DOORBELL_DATA_MASK); 644 if (rc && (doorbell & MPI2_IOC_STATE_MASK) != 645 MPI2_IOC_STATE_OPERATIONAL) 646 return; /* don't rearm timer */ 647 } 648 649 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 650 rearm_timer: 651 if (ioc->fault_reset_work_q) 652 queue_delayed_work(ioc->fault_reset_work_q, 653 &ioc->fault_reset_work, 654 msecs_to_jiffies(FAULT_POLLING_INTERVAL)); 655 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 656 } 657 658 /** 659 * mpt3sas_base_start_watchdog - start the fault_reset_work_q 660 * @ioc: per adapter object 661 * 662 * Context: sleep. 663 */ 664 void 665 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc) 666 { 667 unsigned long flags; 668 669 if (ioc->fault_reset_work_q) 670 return; 671 672 /* initialize fault polling */ 673 674 INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work); 675 snprintf(ioc->fault_reset_work_q_name, 676 sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status", 677 ioc->driver_name, ioc->id); 678 ioc->fault_reset_work_q = 679 create_singlethread_workqueue(ioc->fault_reset_work_q_name); 680 if (!ioc->fault_reset_work_q) { 681 ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__); 682 return; 683 } 684 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 685 if (ioc->fault_reset_work_q) 686 queue_delayed_work(ioc->fault_reset_work_q, 687 &ioc->fault_reset_work, 688 msecs_to_jiffies(FAULT_POLLING_INTERVAL)); 689 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 690 } 691 692 /** 693 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q 694 * @ioc: per adapter object 695 * 696 * Context: sleep. 697 */ 698 void 699 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc) 700 { 701 unsigned long flags; 702 struct workqueue_struct *wq; 703 704 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 705 wq = ioc->fault_reset_work_q; 706 ioc->fault_reset_work_q = NULL; 707 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 708 if (wq) { 709 if (!cancel_delayed_work_sync(&ioc->fault_reset_work)) 710 flush_workqueue(wq); 711 destroy_workqueue(wq); 712 } 713 } 714 715 /** 716 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code 717 * @ioc: per adapter object 718 * @fault_code: fault code 719 */ 720 void 721 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code) 722 { 723 ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code); 724 } 725 726 /** 727 * mpt3sas_halt_firmware - halt's mpt controller firmware 728 * @ioc: per adapter object 729 * 730 * For debugging timeout related issues. Writing 0xCOFFEE00 731 * to the doorbell register will halt controller firmware. With 732 * the purpose to stop both driver and firmware, the enduser can 733 * obtain a ring buffer from controller UART. 734 */ 735 void 736 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc) 737 { 738 u32 doorbell; 739 740 if (!ioc->fwfault_debug) 741 return; 742 743 dump_stack(); 744 745 doorbell = ioc->base_readl(&ioc->chip->Doorbell); 746 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) 747 mpt3sas_base_fault_info(ioc , doorbell); 748 else { 749 writel(0xC0FFEE00, &ioc->chip->Doorbell); 750 ioc_err(ioc, "Firmware is halted due to command timeout\n"); 751 } 752 753 if (ioc->fwfault_debug == 2) 754 for (;;) 755 ; 756 else 757 panic("panic in %s\n", __func__); 758 } 759 760 /** 761 * _base_sas_ioc_info - verbose translation of the ioc status 762 * @ioc: per adapter object 763 * @mpi_reply: reply mf payload returned from firmware 764 * @request_hdr: request mf 765 */ 766 static void 767 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply, 768 MPI2RequestHeader_t *request_hdr) 769 { 770 u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & 771 MPI2_IOCSTATUS_MASK; 772 char *desc = NULL; 773 u16 frame_sz; 774 char *func_str = NULL; 775 776 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */ 777 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST || 778 request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH || 779 request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION) 780 return; 781 782 if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE) 783 return; 784 785 switch (ioc_status) { 786 787 /**************************************************************************** 788 * Common IOCStatus values for all replies 789 ****************************************************************************/ 790 791 case MPI2_IOCSTATUS_INVALID_FUNCTION: 792 desc = "invalid function"; 793 break; 794 case MPI2_IOCSTATUS_BUSY: 795 desc = "busy"; 796 break; 797 case MPI2_IOCSTATUS_INVALID_SGL: 798 desc = "invalid sgl"; 799 break; 800 case MPI2_IOCSTATUS_INTERNAL_ERROR: 801 desc = "internal error"; 802 break; 803 case MPI2_IOCSTATUS_INVALID_VPID: 804 desc = "invalid vpid"; 805 break; 806 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES: 807 desc = "insufficient resources"; 808 break; 809 case MPI2_IOCSTATUS_INSUFFICIENT_POWER: 810 desc = "insufficient power"; 811 break; 812 case MPI2_IOCSTATUS_INVALID_FIELD: 813 desc = "invalid field"; 814 break; 815 case MPI2_IOCSTATUS_INVALID_STATE: 816 desc = "invalid state"; 817 break; 818 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED: 819 desc = "op state not supported"; 820 break; 821 822 /**************************************************************************** 823 * Config IOCStatus values 824 ****************************************************************************/ 825 826 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION: 827 desc = "config invalid action"; 828 break; 829 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE: 830 desc = "config invalid type"; 831 break; 832 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE: 833 desc = "config invalid page"; 834 break; 835 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA: 836 desc = "config invalid data"; 837 break; 838 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS: 839 desc = "config no defaults"; 840 break; 841 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT: 842 desc = "config cant commit"; 843 break; 844 845 /**************************************************************************** 846 * SCSI IO Reply 847 ****************************************************************************/ 848 849 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR: 850 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE: 851 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE: 852 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN: 853 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN: 854 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR: 855 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR: 856 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED: 857 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH: 858 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED: 859 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED: 860 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED: 861 break; 862 863 /**************************************************************************** 864 * For use by SCSI Initiator and SCSI Target end-to-end data protection 865 ****************************************************************************/ 866 867 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR: 868 desc = "eedp guard error"; 869 break; 870 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR: 871 desc = "eedp ref tag error"; 872 break; 873 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR: 874 desc = "eedp app tag error"; 875 break; 876 877 /**************************************************************************** 878 * SCSI Target values 879 ****************************************************************************/ 880 881 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX: 882 desc = "target invalid io index"; 883 break; 884 case MPI2_IOCSTATUS_TARGET_ABORTED: 885 desc = "target aborted"; 886 break; 887 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE: 888 desc = "target no conn retryable"; 889 break; 890 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION: 891 desc = "target no connection"; 892 break; 893 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH: 894 desc = "target xfer count mismatch"; 895 break; 896 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR: 897 desc = "target data offset error"; 898 break; 899 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA: 900 desc = "target too much write data"; 901 break; 902 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT: 903 desc = "target iu too short"; 904 break; 905 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT: 906 desc = "target ack nak timeout"; 907 break; 908 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED: 909 desc = "target nak received"; 910 break; 911 912 /**************************************************************************** 913 * Serial Attached SCSI values 914 ****************************************************************************/ 915 916 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED: 917 desc = "smp request failed"; 918 break; 919 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN: 920 desc = "smp data overrun"; 921 break; 922 923 /**************************************************************************** 924 * Diagnostic Buffer Post / Diagnostic Release values 925 ****************************************************************************/ 926 927 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED: 928 desc = "diagnostic released"; 929 break; 930 default: 931 break; 932 } 933 934 if (!desc) 935 return; 936 937 switch (request_hdr->Function) { 938 case MPI2_FUNCTION_CONFIG: 939 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size; 940 func_str = "config_page"; 941 break; 942 case MPI2_FUNCTION_SCSI_TASK_MGMT: 943 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t); 944 func_str = "task_mgmt"; 945 break; 946 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL: 947 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t); 948 func_str = "sas_iounit_ctl"; 949 break; 950 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR: 951 frame_sz = sizeof(Mpi2SepRequest_t); 952 func_str = "enclosure"; 953 break; 954 case MPI2_FUNCTION_IOC_INIT: 955 frame_sz = sizeof(Mpi2IOCInitRequest_t); 956 func_str = "ioc_init"; 957 break; 958 case MPI2_FUNCTION_PORT_ENABLE: 959 frame_sz = sizeof(Mpi2PortEnableRequest_t); 960 func_str = "port_enable"; 961 break; 962 case MPI2_FUNCTION_SMP_PASSTHROUGH: 963 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size; 964 func_str = "smp_passthru"; 965 break; 966 case MPI2_FUNCTION_NVME_ENCAPSULATED: 967 frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) + 968 ioc->sge_size; 969 func_str = "nvme_encapsulated"; 970 break; 971 default: 972 frame_sz = 32; 973 func_str = "unknown"; 974 break; 975 } 976 977 ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n", 978 desc, ioc_status, request_hdr, func_str); 979 980 _debug_dump_mf(request_hdr, frame_sz/4); 981 } 982 983 /** 984 * _base_display_event_data - verbose translation of firmware asyn events 985 * @ioc: per adapter object 986 * @mpi_reply: reply mf payload returned from firmware 987 */ 988 static void 989 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc, 990 Mpi2EventNotificationReply_t *mpi_reply) 991 { 992 char *desc = NULL; 993 u16 event; 994 995 if (!(ioc->logging_level & MPT_DEBUG_EVENTS)) 996 return; 997 998 event = le16_to_cpu(mpi_reply->Event); 999 1000 switch (event) { 1001 case MPI2_EVENT_LOG_DATA: 1002 desc = "Log Data"; 1003 break; 1004 case MPI2_EVENT_STATE_CHANGE: 1005 desc = "Status Change"; 1006 break; 1007 case MPI2_EVENT_HARD_RESET_RECEIVED: 1008 desc = "Hard Reset Received"; 1009 break; 1010 case MPI2_EVENT_EVENT_CHANGE: 1011 desc = "Event Change"; 1012 break; 1013 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE: 1014 desc = "Device Status Change"; 1015 break; 1016 case MPI2_EVENT_IR_OPERATION_STATUS: 1017 if (!ioc->hide_ir_msg) 1018 desc = "IR Operation Status"; 1019 break; 1020 case MPI2_EVENT_SAS_DISCOVERY: 1021 { 1022 Mpi2EventDataSasDiscovery_t *event_data = 1023 (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData; 1024 ioc_info(ioc, "Discovery: (%s)", 1025 event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ? 1026 "start" : "stop"); 1027 if (event_data->DiscoveryStatus) 1028 pr_cont(" discovery_status(0x%08x)", 1029 le32_to_cpu(event_data->DiscoveryStatus)); 1030 pr_cont("\n"); 1031 return; 1032 } 1033 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE: 1034 desc = "SAS Broadcast Primitive"; 1035 break; 1036 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE: 1037 desc = "SAS Init Device Status Change"; 1038 break; 1039 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW: 1040 desc = "SAS Init Table Overflow"; 1041 break; 1042 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST: 1043 desc = "SAS Topology Change List"; 1044 break; 1045 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE: 1046 desc = "SAS Enclosure Device Status Change"; 1047 break; 1048 case MPI2_EVENT_IR_VOLUME: 1049 if (!ioc->hide_ir_msg) 1050 desc = "IR Volume"; 1051 break; 1052 case MPI2_EVENT_IR_PHYSICAL_DISK: 1053 if (!ioc->hide_ir_msg) 1054 desc = "IR Physical Disk"; 1055 break; 1056 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST: 1057 if (!ioc->hide_ir_msg) 1058 desc = "IR Configuration Change List"; 1059 break; 1060 case MPI2_EVENT_LOG_ENTRY_ADDED: 1061 if (!ioc->hide_ir_msg) 1062 desc = "Log Entry Added"; 1063 break; 1064 case MPI2_EVENT_TEMP_THRESHOLD: 1065 desc = "Temperature Threshold"; 1066 break; 1067 case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION: 1068 desc = "Cable Event"; 1069 break; 1070 case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR: 1071 desc = "SAS Device Discovery Error"; 1072 break; 1073 case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE: 1074 desc = "PCIE Device Status Change"; 1075 break; 1076 case MPI2_EVENT_PCIE_ENUMERATION: 1077 { 1078 Mpi26EventDataPCIeEnumeration_t *event_data = 1079 (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData; 1080 ioc_info(ioc, "PCIE Enumeration: (%s)", 1081 event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ? 1082 "start" : "stop"); 1083 if (event_data->EnumerationStatus) 1084 pr_cont("enumeration_status(0x%08x)", 1085 le32_to_cpu(event_data->EnumerationStatus)); 1086 pr_cont("\n"); 1087 return; 1088 } 1089 case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST: 1090 desc = "PCIE Topology Change List"; 1091 break; 1092 } 1093 1094 if (!desc) 1095 return; 1096 1097 ioc_info(ioc, "%s\n", desc); 1098 } 1099 1100 /** 1101 * _base_sas_log_info - verbose translation of firmware log info 1102 * @ioc: per adapter object 1103 * @log_info: log info 1104 */ 1105 static void 1106 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info) 1107 { 1108 union loginfo_type { 1109 u32 loginfo; 1110 struct { 1111 u32 subcode:16; 1112 u32 code:8; 1113 u32 originator:4; 1114 u32 bus_type:4; 1115 } dw; 1116 }; 1117 union loginfo_type sas_loginfo; 1118 char *originator_str = NULL; 1119 1120 sas_loginfo.loginfo = log_info; 1121 if (sas_loginfo.dw.bus_type != 3 /*SAS*/) 1122 return; 1123 1124 /* each nexus loss loginfo */ 1125 if (log_info == 0x31170000) 1126 return; 1127 1128 /* eat the loginfos associated with task aborts */ 1129 if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info == 1130 0x31140000 || log_info == 0x31130000)) 1131 return; 1132 1133 switch (sas_loginfo.dw.originator) { 1134 case 0: 1135 originator_str = "IOP"; 1136 break; 1137 case 1: 1138 originator_str = "PL"; 1139 break; 1140 case 2: 1141 if (!ioc->hide_ir_msg) 1142 originator_str = "IR"; 1143 else 1144 originator_str = "WarpDrive"; 1145 break; 1146 } 1147 1148 ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n", 1149 log_info, 1150 originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode); 1151 } 1152 1153 /** 1154 * _base_display_reply_info - 1155 * @ioc: per adapter object 1156 * @smid: system request message index 1157 * @msix_index: MSIX table index supplied by the OS 1158 * @reply: reply message frame(lower 32bit addr) 1159 */ 1160 static void 1161 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 1162 u32 reply) 1163 { 1164 MPI2DefaultReply_t *mpi_reply; 1165 u16 ioc_status; 1166 u32 loginfo = 0; 1167 1168 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1169 if (unlikely(!mpi_reply)) { 1170 ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n", 1171 __FILE__, __LINE__, __func__); 1172 return; 1173 } 1174 ioc_status = le16_to_cpu(mpi_reply->IOCStatus); 1175 1176 if ((ioc_status & MPI2_IOCSTATUS_MASK) && 1177 (ioc->logging_level & MPT_DEBUG_REPLY)) { 1178 _base_sas_ioc_info(ioc , mpi_reply, 1179 mpt3sas_base_get_msg_frame(ioc, smid)); 1180 } 1181 1182 if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) { 1183 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo); 1184 _base_sas_log_info(ioc, loginfo); 1185 } 1186 1187 if (ioc_status || loginfo) { 1188 ioc_status &= MPI2_IOCSTATUS_MASK; 1189 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo); 1190 } 1191 } 1192 1193 /** 1194 * mpt3sas_base_done - base internal command completion routine 1195 * @ioc: per adapter object 1196 * @smid: system request message index 1197 * @msix_index: MSIX table index supplied by the OS 1198 * @reply: reply message frame(lower 32bit addr) 1199 * 1200 * Return: 1201 * 1 meaning mf should be freed from _base_interrupt 1202 * 0 means the mf is freed from this function. 1203 */ 1204 u8 1205 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 1206 u32 reply) 1207 { 1208 MPI2DefaultReply_t *mpi_reply; 1209 1210 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1211 if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK) 1212 return mpt3sas_check_for_pending_internal_cmds(ioc, smid); 1213 1214 if (ioc->base_cmds.status == MPT3_CMD_NOT_USED) 1215 return 1; 1216 1217 ioc->base_cmds.status |= MPT3_CMD_COMPLETE; 1218 if (mpi_reply) { 1219 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID; 1220 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4); 1221 } 1222 ioc->base_cmds.status &= ~MPT3_CMD_PENDING; 1223 1224 complete(&ioc->base_cmds.done); 1225 return 1; 1226 } 1227 1228 /** 1229 * _base_async_event - main callback handler for firmware asyn events 1230 * @ioc: per adapter object 1231 * @msix_index: MSIX table index supplied by the OS 1232 * @reply: reply message frame(lower 32bit addr) 1233 * 1234 * Return: 1235 * 1 meaning mf should be freed from _base_interrupt 1236 * 0 means the mf is freed from this function. 1237 */ 1238 static u8 1239 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply) 1240 { 1241 Mpi2EventNotificationReply_t *mpi_reply; 1242 Mpi2EventAckRequest_t *ack_request; 1243 u16 smid; 1244 struct _event_ack_list *delayed_event_ack; 1245 1246 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1247 if (!mpi_reply) 1248 return 1; 1249 if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION) 1250 return 1; 1251 1252 _base_display_event_data(ioc, mpi_reply); 1253 1254 if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED)) 1255 goto out; 1256 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 1257 if (!smid) { 1258 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack), 1259 GFP_ATOMIC); 1260 if (!delayed_event_ack) 1261 goto out; 1262 INIT_LIST_HEAD(&delayed_event_ack->list); 1263 delayed_event_ack->Event = mpi_reply->Event; 1264 delayed_event_ack->EventContext = mpi_reply->EventContext; 1265 list_add_tail(&delayed_event_ack->list, 1266 &ioc->delayed_event_ack_list); 1267 dewtprintk(ioc, 1268 ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n", 1269 le16_to_cpu(mpi_reply->Event))); 1270 goto out; 1271 } 1272 1273 ack_request = mpt3sas_base_get_msg_frame(ioc, smid); 1274 memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t)); 1275 ack_request->Function = MPI2_FUNCTION_EVENT_ACK; 1276 ack_request->Event = mpi_reply->Event; 1277 ack_request->EventContext = mpi_reply->EventContext; 1278 ack_request->VF_ID = 0; /* TODO */ 1279 ack_request->VP_ID = 0; 1280 mpt3sas_base_put_smid_default(ioc, smid); 1281 1282 out: 1283 1284 /* scsih callback handler */ 1285 mpt3sas_scsih_event_callback(ioc, msix_index, reply); 1286 1287 /* ctl callback handler */ 1288 mpt3sas_ctl_event_callback(ioc, msix_index, reply); 1289 1290 return 1; 1291 } 1292 1293 static struct scsiio_tracker * 1294 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid) 1295 { 1296 struct scsi_cmnd *cmd; 1297 1298 if (WARN_ON(!smid) || 1299 WARN_ON(smid >= ioc->hi_priority_smid)) 1300 return NULL; 1301 1302 cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid); 1303 if (cmd) 1304 return scsi_cmd_priv(cmd); 1305 1306 return NULL; 1307 } 1308 1309 /** 1310 * _base_get_cb_idx - obtain the callback index 1311 * @ioc: per adapter object 1312 * @smid: system request message index 1313 * 1314 * Return: callback index. 1315 */ 1316 static u8 1317 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid) 1318 { 1319 int i; 1320 u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1; 1321 u8 cb_idx = 0xFF; 1322 1323 if (smid < ioc->hi_priority_smid) { 1324 struct scsiio_tracker *st; 1325 1326 if (smid < ctl_smid) { 1327 st = _get_st_from_smid(ioc, smid); 1328 if (st) 1329 cb_idx = st->cb_idx; 1330 } else if (smid == ctl_smid) 1331 cb_idx = ioc->ctl_cb_idx; 1332 } else if (smid < ioc->internal_smid) { 1333 i = smid - ioc->hi_priority_smid; 1334 cb_idx = ioc->hpr_lookup[i].cb_idx; 1335 } else if (smid <= ioc->hba_queue_depth) { 1336 i = smid - ioc->internal_smid; 1337 cb_idx = ioc->internal_lookup[i].cb_idx; 1338 } 1339 return cb_idx; 1340 } 1341 1342 /** 1343 * _base_mask_interrupts - disable interrupts 1344 * @ioc: per adapter object 1345 * 1346 * Disabling ResetIRQ, Reply and Doorbell Interrupts 1347 */ 1348 static void 1349 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc) 1350 { 1351 u32 him_register; 1352 1353 ioc->mask_interrupts = 1; 1354 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask); 1355 him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK; 1356 writel(him_register, &ioc->chip->HostInterruptMask); 1357 ioc->base_readl(&ioc->chip->HostInterruptMask); 1358 } 1359 1360 /** 1361 * _base_unmask_interrupts - enable interrupts 1362 * @ioc: per adapter object 1363 * 1364 * Enabling only Reply Interrupts 1365 */ 1366 static void 1367 _base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc) 1368 { 1369 u32 him_register; 1370 1371 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask); 1372 him_register &= ~MPI2_HIM_RIM; 1373 writel(him_register, &ioc->chip->HostInterruptMask); 1374 ioc->mask_interrupts = 0; 1375 } 1376 1377 union reply_descriptor { 1378 u64 word; 1379 struct { 1380 u32 low; 1381 u32 high; 1382 } u; 1383 }; 1384 1385 /** 1386 * _base_interrupt - MPT adapter (IOC) specific interrupt handler. 1387 * @irq: irq number (not used) 1388 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure 1389 * 1390 * Return: IRQ_HANDLED if processed, else IRQ_NONE. 1391 */ 1392 static irqreturn_t 1393 _base_interrupt(int irq, void *bus_id) 1394 { 1395 struct adapter_reply_queue *reply_q = bus_id; 1396 union reply_descriptor rd; 1397 u32 completed_cmds; 1398 u8 request_desript_type; 1399 u16 smid; 1400 u8 cb_idx; 1401 u32 reply; 1402 u8 msix_index = reply_q->msix_index; 1403 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc; 1404 Mpi2ReplyDescriptorsUnion_t *rpf; 1405 u8 rc; 1406 1407 if (ioc->mask_interrupts) 1408 return IRQ_NONE; 1409 1410 if (!atomic_add_unless(&reply_q->busy, 1, 1)) 1411 return IRQ_NONE; 1412 1413 rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index]; 1414 request_desript_type = rpf->Default.ReplyFlags 1415 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 1416 if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) { 1417 atomic_dec(&reply_q->busy); 1418 return IRQ_NONE; 1419 } 1420 1421 completed_cmds = 0; 1422 cb_idx = 0xFF; 1423 do { 1424 rd.word = le64_to_cpu(rpf->Words); 1425 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX) 1426 goto out; 1427 reply = 0; 1428 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1); 1429 if (request_desript_type == 1430 MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS || 1431 request_desript_type == 1432 MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS || 1433 request_desript_type == 1434 MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) { 1435 cb_idx = _base_get_cb_idx(ioc, smid); 1436 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) && 1437 (likely(mpt_callbacks[cb_idx] != NULL))) { 1438 rc = mpt_callbacks[cb_idx](ioc, smid, 1439 msix_index, 0); 1440 if (rc) 1441 mpt3sas_base_free_smid(ioc, smid); 1442 } 1443 } else if (request_desript_type == 1444 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) { 1445 reply = le32_to_cpu( 1446 rpf->AddressReply.ReplyFrameAddress); 1447 if (reply > ioc->reply_dma_max_address || 1448 reply < ioc->reply_dma_min_address) 1449 reply = 0; 1450 if (smid) { 1451 cb_idx = _base_get_cb_idx(ioc, smid); 1452 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) && 1453 (likely(mpt_callbacks[cb_idx] != NULL))) { 1454 rc = mpt_callbacks[cb_idx](ioc, smid, 1455 msix_index, reply); 1456 if (reply) 1457 _base_display_reply_info(ioc, 1458 smid, msix_index, reply); 1459 if (rc) 1460 mpt3sas_base_free_smid(ioc, 1461 smid); 1462 } 1463 } else { 1464 _base_async_event(ioc, msix_index, reply); 1465 } 1466 1467 /* reply free queue handling */ 1468 if (reply) { 1469 ioc->reply_free_host_index = 1470 (ioc->reply_free_host_index == 1471 (ioc->reply_free_queue_depth - 1)) ? 1472 0 : ioc->reply_free_host_index + 1; 1473 ioc->reply_free[ioc->reply_free_host_index] = 1474 cpu_to_le32(reply); 1475 if (ioc->is_mcpu_endpoint) 1476 _base_clone_reply_to_sys_mem(ioc, 1477 reply, 1478 ioc->reply_free_host_index); 1479 writel(ioc->reply_free_host_index, 1480 &ioc->chip->ReplyFreeHostIndex); 1481 } 1482 } 1483 1484 rpf->Words = cpu_to_le64(ULLONG_MAX); 1485 reply_q->reply_post_host_index = 1486 (reply_q->reply_post_host_index == 1487 (ioc->reply_post_queue_depth - 1)) ? 0 : 1488 reply_q->reply_post_host_index + 1; 1489 request_desript_type = 1490 reply_q->reply_post_free[reply_q->reply_post_host_index]. 1491 Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 1492 completed_cmds++; 1493 /* Update the reply post host index after continuously 1494 * processing the threshold number of Reply Descriptors. 1495 * So that FW can find enough entries to post the Reply 1496 * Descriptors in the reply descriptor post queue. 1497 */ 1498 if (completed_cmds > ioc->hba_queue_depth/3) { 1499 if (ioc->combined_reply_queue) { 1500 writel(reply_q->reply_post_host_index | 1501 ((msix_index & 7) << 1502 MPI2_RPHI_MSIX_INDEX_SHIFT), 1503 ioc->replyPostRegisterIndex[msix_index/8]); 1504 } else { 1505 writel(reply_q->reply_post_host_index | 1506 (msix_index << 1507 MPI2_RPHI_MSIX_INDEX_SHIFT), 1508 &ioc->chip->ReplyPostHostIndex); 1509 } 1510 completed_cmds = 1; 1511 } 1512 if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) 1513 goto out; 1514 if (!reply_q->reply_post_host_index) 1515 rpf = reply_q->reply_post_free; 1516 else 1517 rpf++; 1518 } while (1); 1519 1520 out: 1521 1522 if (!completed_cmds) { 1523 atomic_dec(&reply_q->busy); 1524 return IRQ_NONE; 1525 } 1526 1527 if (ioc->is_warpdrive) { 1528 writel(reply_q->reply_post_host_index, 1529 ioc->reply_post_host_index[msix_index]); 1530 atomic_dec(&reply_q->busy); 1531 return IRQ_HANDLED; 1532 } 1533 1534 /* Update Reply Post Host Index. 1535 * For those HBA's which support combined reply queue feature 1536 * 1. Get the correct Supplemental Reply Post Host Index Register. 1537 * i.e. (msix_index / 8)th entry from Supplemental Reply Post Host 1538 * Index Register address bank i.e replyPostRegisterIndex[], 1539 * 2. Then update this register with new reply host index value 1540 * in ReplyPostIndex field and the MSIxIndex field with 1541 * msix_index value reduced to a value between 0 and 7, 1542 * using a modulo 8 operation. Since each Supplemental Reply Post 1543 * Host Index Register supports 8 MSI-X vectors. 1544 * 1545 * For other HBA's just update the Reply Post Host Index register with 1546 * new reply host index value in ReplyPostIndex Field and msix_index 1547 * value in MSIxIndex field. 1548 */ 1549 if (ioc->combined_reply_queue) 1550 writel(reply_q->reply_post_host_index | ((msix_index & 7) << 1551 MPI2_RPHI_MSIX_INDEX_SHIFT), 1552 ioc->replyPostRegisterIndex[msix_index/8]); 1553 else 1554 writel(reply_q->reply_post_host_index | (msix_index << 1555 MPI2_RPHI_MSIX_INDEX_SHIFT), 1556 &ioc->chip->ReplyPostHostIndex); 1557 atomic_dec(&reply_q->busy); 1558 return IRQ_HANDLED; 1559 } 1560 1561 /** 1562 * _base_is_controller_msix_enabled - is controller support muli-reply queues 1563 * @ioc: per adapter object 1564 * 1565 * Return: Whether or not MSI/X is enabled. 1566 */ 1567 static inline int 1568 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc) 1569 { 1570 return (ioc->facts.IOCCapabilities & 1571 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable; 1572 } 1573 1574 /** 1575 * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts 1576 * @ioc: per adapter object 1577 * Context: non ISR conext 1578 * 1579 * Called when a Task Management request has completed. 1580 */ 1581 void 1582 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc) 1583 { 1584 struct adapter_reply_queue *reply_q; 1585 1586 /* If MSIX capability is turned off 1587 * then multi-queues are not enabled 1588 */ 1589 if (!_base_is_controller_msix_enabled(ioc)) 1590 return; 1591 1592 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 1593 if (ioc->shost_recovery || ioc->remove_host || 1594 ioc->pci_error_recovery) 1595 return; 1596 /* TMs are on msix_index == 0 */ 1597 if (reply_q->msix_index == 0) 1598 continue; 1599 synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index)); 1600 } 1601 } 1602 1603 /** 1604 * mpt3sas_base_release_callback_handler - clear interrupt callback handler 1605 * @cb_idx: callback index 1606 */ 1607 void 1608 mpt3sas_base_release_callback_handler(u8 cb_idx) 1609 { 1610 mpt_callbacks[cb_idx] = NULL; 1611 } 1612 1613 /** 1614 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler 1615 * @cb_func: callback function 1616 * 1617 * Return: Index of @cb_func. 1618 */ 1619 u8 1620 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func) 1621 { 1622 u8 cb_idx; 1623 1624 for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--) 1625 if (mpt_callbacks[cb_idx] == NULL) 1626 break; 1627 1628 mpt_callbacks[cb_idx] = cb_func; 1629 return cb_idx; 1630 } 1631 1632 /** 1633 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler 1634 */ 1635 void 1636 mpt3sas_base_initialize_callback_handler(void) 1637 { 1638 u8 cb_idx; 1639 1640 for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++) 1641 mpt3sas_base_release_callback_handler(cb_idx); 1642 } 1643 1644 1645 /** 1646 * _base_build_zero_len_sge - build zero length sg entry 1647 * @ioc: per adapter object 1648 * @paddr: virtual address for SGE 1649 * 1650 * Create a zero length scatter gather entry to insure the IOCs hardware has 1651 * something to use if the target device goes brain dead and tries 1652 * to send data even when none is asked for. 1653 */ 1654 static void 1655 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr) 1656 { 1657 u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT | 1658 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST | 1659 MPI2_SGE_FLAGS_SIMPLE_ELEMENT) << 1660 MPI2_SGE_FLAGS_SHIFT); 1661 ioc->base_add_sg_single(paddr, flags_length, -1); 1662 } 1663 1664 /** 1665 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr. 1666 * @paddr: virtual address for SGE 1667 * @flags_length: SGE flags and data transfer length 1668 * @dma_addr: Physical address 1669 */ 1670 static void 1671 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr) 1672 { 1673 Mpi2SGESimple32_t *sgel = paddr; 1674 1675 flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING | 1676 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT; 1677 sgel->FlagsLength = cpu_to_le32(flags_length); 1678 sgel->Address = cpu_to_le32(dma_addr); 1679 } 1680 1681 1682 /** 1683 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr. 1684 * @paddr: virtual address for SGE 1685 * @flags_length: SGE flags and data transfer length 1686 * @dma_addr: Physical address 1687 */ 1688 static void 1689 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr) 1690 { 1691 Mpi2SGESimple64_t *sgel = paddr; 1692 1693 flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING | 1694 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT; 1695 sgel->FlagsLength = cpu_to_le32(flags_length); 1696 sgel->Address = cpu_to_le64(dma_addr); 1697 } 1698 1699 /** 1700 * _base_get_chain_buffer_tracker - obtain chain tracker 1701 * @ioc: per adapter object 1702 * @scmd: SCSI commands of the IO request 1703 * 1704 * Return: chain tracker from chain_lookup table using key as 1705 * smid and smid's chain_offset. 1706 */ 1707 static struct chain_tracker * 1708 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc, 1709 struct scsi_cmnd *scmd) 1710 { 1711 struct chain_tracker *chain_req; 1712 struct scsiio_tracker *st = scsi_cmd_priv(scmd); 1713 u16 smid = st->smid; 1714 u8 chain_offset = 1715 atomic_read(&ioc->chain_lookup[smid - 1].chain_offset); 1716 1717 if (chain_offset == ioc->chains_needed_per_io) 1718 return NULL; 1719 1720 chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset]; 1721 atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset); 1722 return chain_req; 1723 } 1724 1725 1726 /** 1727 * _base_build_sg - build generic sg 1728 * @ioc: per adapter object 1729 * @psge: virtual address for SGE 1730 * @data_out_dma: physical address for WRITES 1731 * @data_out_sz: data xfer size for WRITES 1732 * @data_in_dma: physical address for READS 1733 * @data_in_sz: data xfer size for READS 1734 */ 1735 static void 1736 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge, 1737 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 1738 size_t data_in_sz) 1739 { 1740 u32 sgl_flags; 1741 1742 if (!data_out_sz && !data_in_sz) { 1743 _base_build_zero_len_sge(ioc, psge); 1744 return; 1745 } 1746 1747 if (data_out_sz && data_in_sz) { 1748 /* WRITE sgel first */ 1749 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 1750 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC); 1751 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 1752 ioc->base_add_sg_single(psge, sgl_flags | 1753 data_out_sz, data_out_dma); 1754 1755 /* incr sgel */ 1756 psge += ioc->sge_size; 1757 1758 /* READ sgel last */ 1759 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 1760 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 1761 MPI2_SGE_FLAGS_END_OF_LIST); 1762 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 1763 ioc->base_add_sg_single(psge, sgl_flags | 1764 data_in_sz, data_in_dma); 1765 } else if (data_out_sz) /* WRITE */ { 1766 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 1767 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 1768 MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC); 1769 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 1770 ioc->base_add_sg_single(psge, sgl_flags | 1771 data_out_sz, data_out_dma); 1772 } else if (data_in_sz) /* READ */ { 1773 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 1774 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 1775 MPI2_SGE_FLAGS_END_OF_LIST); 1776 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 1777 ioc->base_add_sg_single(psge, sgl_flags | 1778 data_in_sz, data_in_dma); 1779 } 1780 } 1781 1782 /* IEEE format sgls */ 1783 1784 /** 1785 * _base_build_nvme_prp - This function is called for NVMe end devices to build 1786 * a native SGL (NVMe PRP). The native SGL is built starting in the first PRP 1787 * entry of the NVMe message (PRP1). If the data buffer is small enough to be 1788 * described entirely using PRP1, then PRP2 is not used. If needed, PRP2 is 1789 * used to describe a larger data buffer. If the data buffer is too large to 1790 * describe using the two PRP entriess inside the NVMe message, then PRP1 1791 * describes the first data memory segment, and PRP2 contains a pointer to a PRP 1792 * list located elsewhere in memory to describe the remaining data memory 1793 * segments. The PRP list will be contiguous. 1794 * 1795 * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP 1796 * consists of a list of PRP entries to describe a number of noncontigous 1797 * physical memory segments as a single memory buffer, just as a SGL does. Note 1798 * however, that this function is only used by the IOCTL call, so the memory 1799 * given will be guaranteed to be contiguous. There is no need to translate 1800 * non-contiguous SGL into a PRP in this case. All PRPs will describe 1801 * contiguous space that is one page size each. 1802 * 1803 * Each NVMe message contains two PRP entries. The first (PRP1) either contains 1804 * a PRP list pointer or a PRP element, depending upon the command. PRP2 1805 * contains the second PRP element if the memory being described fits within 2 1806 * PRP entries, or a PRP list pointer if the PRP spans more than two entries. 1807 * 1808 * A PRP list pointer contains the address of a PRP list, structured as a linear 1809 * array of PRP entries. Each PRP entry in this list describes a segment of 1810 * physical memory. 1811 * 1812 * Each 64-bit PRP entry comprises an address and an offset field. The address 1813 * always points at the beginning of a 4KB physical memory page, and the offset 1814 * describes where within that 4KB page the memory segment begins. Only the 1815 * first element in a PRP list may contain a non-zero offest, implying that all 1816 * memory segments following the first begin at the start of a 4KB page. 1817 * 1818 * Each PRP element normally describes 4KB of physical memory, with exceptions 1819 * for the first and last elements in the list. If the memory being described 1820 * by the list begins at a non-zero offset within the first 4KB page, then the 1821 * first PRP element will contain a non-zero offset indicating where the region 1822 * begins within the 4KB page. The last memory segment may end before the end 1823 * of the 4KB segment, depending upon the overall size of the memory being 1824 * described by the PRP list. 1825 * 1826 * Since PRP entries lack any indication of size, the overall data buffer length 1827 * is used to determine where the end of the data memory buffer is located, and 1828 * how many PRP entries are required to describe it. 1829 * 1830 * @ioc: per adapter object 1831 * @smid: system request message index for getting asscociated SGL 1832 * @nvme_encap_request: the NVMe request msg frame pointer 1833 * @data_out_dma: physical address for WRITES 1834 * @data_out_sz: data xfer size for WRITES 1835 * @data_in_dma: physical address for READS 1836 * @data_in_sz: data xfer size for READS 1837 */ 1838 static void 1839 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid, 1840 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request, 1841 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 1842 size_t data_in_sz) 1843 { 1844 int prp_size = NVME_PRP_SIZE; 1845 __le64 *prp_entry, *prp1_entry, *prp2_entry; 1846 __le64 *prp_page; 1847 dma_addr_t prp_entry_dma, prp_page_dma, dma_addr; 1848 u32 offset, entry_len; 1849 u32 page_mask_result, page_mask; 1850 size_t length; 1851 struct mpt3sas_nvme_cmd *nvme_cmd = 1852 (void *)nvme_encap_request->NVMe_Command; 1853 1854 /* 1855 * Not all commands require a data transfer. If no data, just return 1856 * without constructing any PRP. 1857 */ 1858 if (!data_in_sz && !data_out_sz) 1859 return; 1860 prp1_entry = &nvme_cmd->prp1; 1861 prp2_entry = &nvme_cmd->prp2; 1862 prp_entry = prp1_entry; 1863 /* 1864 * For the PRP entries, use the specially allocated buffer of 1865 * contiguous memory. 1866 */ 1867 prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid); 1868 prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid); 1869 1870 /* 1871 * Check if we are within 1 entry of a page boundary we don't 1872 * want our first entry to be a PRP List entry. 1873 */ 1874 page_mask = ioc->page_size - 1; 1875 page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask; 1876 if (!page_mask_result) { 1877 /* Bump up to next page boundary. */ 1878 prp_page = (__le64 *)((u8 *)prp_page + prp_size); 1879 prp_page_dma = prp_page_dma + prp_size; 1880 } 1881 1882 /* 1883 * Set PRP physical pointer, which initially points to the current PRP 1884 * DMA memory page. 1885 */ 1886 prp_entry_dma = prp_page_dma; 1887 1888 /* Get physical address and length of the data buffer. */ 1889 if (data_in_sz) { 1890 dma_addr = data_in_dma; 1891 length = data_in_sz; 1892 } else { 1893 dma_addr = data_out_dma; 1894 length = data_out_sz; 1895 } 1896 1897 /* Loop while the length is not zero. */ 1898 while (length) { 1899 /* 1900 * Check if we need to put a list pointer here if we are at 1901 * page boundary - prp_size (8 bytes). 1902 */ 1903 page_mask_result = (prp_entry_dma + prp_size) & page_mask; 1904 if (!page_mask_result) { 1905 /* 1906 * This is the last entry in a PRP List, so we need to 1907 * put a PRP list pointer here. What this does is: 1908 * - bump the current memory pointer to the next 1909 * address, which will be the next full page. 1910 * - set the PRP Entry to point to that page. This 1911 * is now the PRP List pointer. 1912 * - bump the PRP Entry pointer the start of the 1913 * next page. Since all of this PRP memory is 1914 * contiguous, no need to get a new page - it's 1915 * just the next address. 1916 */ 1917 prp_entry_dma++; 1918 *prp_entry = cpu_to_le64(prp_entry_dma); 1919 prp_entry++; 1920 } 1921 1922 /* Need to handle if entry will be part of a page. */ 1923 offset = dma_addr & page_mask; 1924 entry_len = ioc->page_size - offset; 1925 1926 if (prp_entry == prp1_entry) { 1927 /* 1928 * Must fill in the first PRP pointer (PRP1) before 1929 * moving on. 1930 */ 1931 *prp1_entry = cpu_to_le64(dma_addr); 1932 1933 /* 1934 * Now point to the second PRP entry within the 1935 * command (PRP2). 1936 */ 1937 prp_entry = prp2_entry; 1938 } else if (prp_entry == prp2_entry) { 1939 /* 1940 * Should the PRP2 entry be a PRP List pointer or just 1941 * a regular PRP pointer? If there is more than one 1942 * more page of data, must use a PRP List pointer. 1943 */ 1944 if (length > ioc->page_size) { 1945 /* 1946 * PRP2 will contain a PRP List pointer because 1947 * more PRP's are needed with this command. The 1948 * list will start at the beginning of the 1949 * contiguous buffer. 1950 */ 1951 *prp2_entry = cpu_to_le64(prp_entry_dma); 1952 1953 /* 1954 * The next PRP Entry will be the start of the 1955 * first PRP List. 1956 */ 1957 prp_entry = prp_page; 1958 } else { 1959 /* 1960 * After this, the PRP Entries are complete. 1961 * This command uses 2 PRP's and no PRP list. 1962 */ 1963 *prp2_entry = cpu_to_le64(dma_addr); 1964 } 1965 } else { 1966 /* 1967 * Put entry in list and bump the addresses. 1968 * 1969 * After PRP1 and PRP2 are filled in, this will fill in 1970 * all remaining PRP entries in a PRP List, one per 1971 * each time through the loop. 1972 */ 1973 *prp_entry = cpu_to_le64(dma_addr); 1974 prp_entry++; 1975 prp_entry_dma++; 1976 } 1977 1978 /* 1979 * Bump the phys address of the command's data buffer by the 1980 * entry_len. 1981 */ 1982 dma_addr += entry_len; 1983 1984 /* Decrement length accounting for last partial page. */ 1985 if (entry_len > length) 1986 length = 0; 1987 else 1988 length -= entry_len; 1989 } 1990 } 1991 1992 /** 1993 * base_make_prp_nvme - 1994 * Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only 1995 * 1996 * @ioc: per adapter object 1997 * @scmd: SCSI command from the mid-layer 1998 * @mpi_request: mpi request 1999 * @smid: msg Index 2000 * @sge_count: scatter gather element count. 2001 * 2002 * Return: true: PRPs are built 2003 * false: IEEE SGLs needs to be built 2004 */ 2005 static void 2006 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc, 2007 struct scsi_cmnd *scmd, 2008 Mpi25SCSIIORequest_t *mpi_request, 2009 u16 smid, int sge_count) 2010 { 2011 int sge_len, num_prp_in_chain = 0; 2012 Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl; 2013 __le64 *curr_buff; 2014 dma_addr_t msg_dma, sge_addr, offset; 2015 u32 page_mask, page_mask_result; 2016 struct scatterlist *sg_scmd; 2017 u32 first_prp_len; 2018 int data_len = scsi_bufflen(scmd); 2019 u32 nvme_pg_size; 2020 2021 nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE); 2022 /* 2023 * Nvme has a very convoluted prp format. One prp is required 2024 * for each page or partial page. Driver need to split up OS sg_list 2025 * entries if it is longer than one page or cross a page 2026 * boundary. Driver also have to insert a PRP list pointer entry as 2027 * the last entry in each physical page of the PRP list. 2028 * 2029 * NOTE: The first PRP "entry" is actually placed in the first 2030 * SGL entry in the main message as IEEE 64 format. The 2nd 2031 * entry in the main message is the chain element, and the rest 2032 * of the PRP entries are built in the contiguous pcie buffer. 2033 */ 2034 page_mask = nvme_pg_size - 1; 2035 2036 /* 2037 * Native SGL is needed. 2038 * Put a chain element in main message frame that points to the first 2039 * chain buffer. 2040 * 2041 * NOTE: The ChainOffset field must be 0 when using a chain pointer to 2042 * a native SGL. 2043 */ 2044 2045 /* Set main message chain element pointer */ 2046 main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL; 2047 /* 2048 * For NVMe the chain element needs to be the 2nd SG entry in the main 2049 * message. 2050 */ 2051 main_chain_element = (Mpi25IeeeSgeChain64_t *) 2052 ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64)); 2053 2054 /* 2055 * For the PRP entries, use the specially allocated buffer of 2056 * contiguous memory. Normal chain buffers can't be used 2057 * because each chain buffer would need to be the size of an OS 2058 * page (4k). 2059 */ 2060 curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid); 2061 msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid); 2062 2063 main_chain_element->Address = cpu_to_le64(msg_dma); 2064 main_chain_element->NextChainOffset = 0; 2065 main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 2066 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | 2067 MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP; 2068 2069 /* Build first prp, sge need not to be page aligned*/ 2070 ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL; 2071 sg_scmd = scsi_sglist(scmd); 2072 sge_addr = sg_dma_address(sg_scmd); 2073 sge_len = sg_dma_len(sg_scmd); 2074 2075 offset = sge_addr & page_mask; 2076 first_prp_len = nvme_pg_size - offset; 2077 2078 ptr_first_sgl->Address = cpu_to_le64(sge_addr); 2079 ptr_first_sgl->Length = cpu_to_le32(first_prp_len); 2080 2081 data_len -= first_prp_len; 2082 2083 if (sge_len > first_prp_len) { 2084 sge_addr += first_prp_len; 2085 sge_len -= first_prp_len; 2086 } else if (data_len && (sge_len == first_prp_len)) { 2087 sg_scmd = sg_next(sg_scmd); 2088 sge_addr = sg_dma_address(sg_scmd); 2089 sge_len = sg_dma_len(sg_scmd); 2090 } 2091 2092 for (;;) { 2093 offset = sge_addr & page_mask; 2094 2095 /* Put PRP pointer due to page boundary*/ 2096 page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask; 2097 if (unlikely(!page_mask_result)) { 2098 scmd_printk(KERN_NOTICE, 2099 scmd, "page boundary curr_buff: 0x%p\n", 2100 curr_buff); 2101 msg_dma += 8; 2102 *curr_buff = cpu_to_le64(msg_dma); 2103 curr_buff++; 2104 num_prp_in_chain++; 2105 } 2106 2107 *curr_buff = cpu_to_le64(sge_addr); 2108 curr_buff++; 2109 msg_dma += 8; 2110 num_prp_in_chain++; 2111 2112 sge_addr += nvme_pg_size; 2113 sge_len -= nvme_pg_size; 2114 data_len -= nvme_pg_size; 2115 2116 if (data_len <= 0) 2117 break; 2118 2119 if (sge_len > 0) 2120 continue; 2121 2122 sg_scmd = sg_next(sg_scmd); 2123 sge_addr = sg_dma_address(sg_scmd); 2124 sge_len = sg_dma_len(sg_scmd); 2125 } 2126 2127 main_chain_element->Length = 2128 cpu_to_le32(num_prp_in_chain * sizeof(u64)); 2129 return; 2130 } 2131 2132 static bool 2133 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc, 2134 struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count) 2135 { 2136 u32 data_length = 0; 2137 bool build_prp = true; 2138 2139 data_length = scsi_bufflen(scmd); 2140 2141 /* If Datalenth is <= 16K and number of SGE’s entries are <= 2 2142 * we built IEEE SGL 2143 */ 2144 if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2)) 2145 build_prp = false; 2146 2147 return build_prp; 2148 } 2149 2150 /** 2151 * _base_check_pcie_native_sgl - This function is called for PCIe end devices to 2152 * determine if the driver needs to build a native SGL. If so, that native 2153 * SGL is built in the special contiguous buffers allocated especially for 2154 * PCIe SGL creation. If the driver will not build a native SGL, return 2155 * TRUE and a normal IEEE SGL will be built. Currently this routine 2156 * supports NVMe. 2157 * @ioc: per adapter object 2158 * @mpi_request: mf request pointer 2159 * @smid: system request message index 2160 * @scmd: scsi command 2161 * @pcie_device: points to the PCIe device's info 2162 * 2163 * Return: 0 if native SGL was built, 1 if no SGL was built 2164 */ 2165 static int 2166 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc, 2167 Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd, 2168 struct _pcie_device *pcie_device) 2169 { 2170 int sges_left; 2171 2172 /* Get the SG list pointer and info. */ 2173 sges_left = scsi_dma_map(scmd); 2174 if (sges_left < 0) { 2175 sdev_printk(KERN_ERR, scmd->device, 2176 "scsi_dma_map failed: request for %d bytes!\n", 2177 scsi_bufflen(scmd)); 2178 return 1; 2179 } 2180 2181 /* Check if we need to build a native SG list. */ 2182 if (base_is_prp_possible(ioc, pcie_device, 2183 scmd, sges_left) == 0) { 2184 /* We built a native SG list, just return. */ 2185 goto out; 2186 } 2187 2188 /* 2189 * Build native NVMe PRP. 2190 */ 2191 base_make_prp_nvme(ioc, scmd, mpi_request, 2192 smid, sges_left); 2193 2194 return 0; 2195 out: 2196 scsi_dma_unmap(scmd); 2197 return 1; 2198 } 2199 2200 /** 2201 * _base_add_sg_single_ieee - add sg element for IEEE format 2202 * @paddr: virtual address for SGE 2203 * @flags: SGE flags 2204 * @chain_offset: number of 128 byte elements from start of segment 2205 * @length: data transfer length 2206 * @dma_addr: Physical address 2207 */ 2208 static void 2209 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length, 2210 dma_addr_t dma_addr) 2211 { 2212 Mpi25IeeeSgeChain64_t *sgel = paddr; 2213 2214 sgel->Flags = flags; 2215 sgel->NextChainOffset = chain_offset; 2216 sgel->Length = cpu_to_le32(length); 2217 sgel->Address = cpu_to_le64(dma_addr); 2218 } 2219 2220 /** 2221 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format 2222 * @ioc: per adapter object 2223 * @paddr: virtual address for SGE 2224 * 2225 * Create a zero length scatter gather entry to insure the IOCs hardware has 2226 * something to use if the target device goes brain dead and tries 2227 * to send data even when none is asked for. 2228 */ 2229 static void 2230 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr) 2231 { 2232 u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2233 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | 2234 MPI25_IEEE_SGE_FLAGS_END_OF_LIST); 2235 2236 _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1); 2237 } 2238 2239 /** 2240 * _base_build_sg_scmd - main sg creation routine 2241 * pcie_device is unused here! 2242 * @ioc: per adapter object 2243 * @scmd: scsi command 2244 * @smid: system request message index 2245 * @unused: unused pcie_device pointer 2246 * Context: none. 2247 * 2248 * The main routine that builds scatter gather table from a given 2249 * scsi request sent via the .queuecommand main handler. 2250 * 2251 * Return: 0 success, anything else error 2252 */ 2253 static int 2254 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc, 2255 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused) 2256 { 2257 Mpi2SCSIIORequest_t *mpi_request; 2258 dma_addr_t chain_dma; 2259 struct scatterlist *sg_scmd; 2260 void *sg_local, *chain; 2261 u32 chain_offset; 2262 u32 chain_length; 2263 u32 chain_flags; 2264 int sges_left; 2265 u32 sges_in_segment; 2266 u32 sgl_flags; 2267 u32 sgl_flags_last_element; 2268 u32 sgl_flags_end_buffer; 2269 struct chain_tracker *chain_req; 2270 2271 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 2272 2273 /* init scatter gather flags */ 2274 sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT; 2275 if (scmd->sc_data_direction == DMA_TO_DEVICE) 2276 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC; 2277 sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT) 2278 << MPI2_SGE_FLAGS_SHIFT; 2279 sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT | 2280 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST) 2281 << MPI2_SGE_FLAGS_SHIFT; 2282 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2283 2284 sg_scmd = scsi_sglist(scmd); 2285 sges_left = scsi_dma_map(scmd); 2286 if (sges_left < 0) { 2287 sdev_printk(KERN_ERR, scmd->device, 2288 "scsi_dma_map failed: request for %d bytes!\n", 2289 scsi_bufflen(scmd)); 2290 return -ENOMEM; 2291 } 2292 2293 sg_local = &mpi_request->SGL; 2294 sges_in_segment = ioc->max_sges_in_main_message; 2295 if (sges_left <= sges_in_segment) 2296 goto fill_in_last_segment; 2297 2298 mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) + 2299 (sges_in_segment * ioc->sge_size))/4; 2300 2301 /* fill in main message segment when there is a chain following */ 2302 while (sges_in_segment) { 2303 if (sges_in_segment == 1) 2304 ioc->base_add_sg_single(sg_local, 2305 sgl_flags_last_element | sg_dma_len(sg_scmd), 2306 sg_dma_address(sg_scmd)); 2307 else 2308 ioc->base_add_sg_single(sg_local, sgl_flags | 2309 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2310 sg_scmd = sg_next(sg_scmd); 2311 sg_local += ioc->sge_size; 2312 sges_left--; 2313 sges_in_segment--; 2314 } 2315 2316 /* initializing the chain flags and pointers */ 2317 chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT; 2318 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2319 if (!chain_req) 2320 return -1; 2321 chain = chain_req->chain_buffer; 2322 chain_dma = chain_req->chain_buffer_dma; 2323 do { 2324 sges_in_segment = (sges_left <= 2325 ioc->max_sges_in_chain_message) ? sges_left : 2326 ioc->max_sges_in_chain_message; 2327 chain_offset = (sges_left == sges_in_segment) ? 2328 0 : (sges_in_segment * ioc->sge_size)/4; 2329 chain_length = sges_in_segment * ioc->sge_size; 2330 if (chain_offset) { 2331 chain_offset = chain_offset << 2332 MPI2_SGE_CHAIN_OFFSET_SHIFT; 2333 chain_length += ioc->sge_size; 2334 } 2335 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset | 2336 chain_length, chain_dma); 2337 sg_local = chain; 2338 if (!chain_offset) 2339 goto fill_in_last_segment; 2340 2341 /* fill in chain segments */ 2342 while (sges_in_segment) { 2343 if (sges_in_segment == 1) 2344 ioc->base_add_sg_single(sg_local, 2345 sgl_flags_last_element | 2346 sg_dma_len(sg_scmd), 2347 sg_dma_address(sg_scmd)); 2348 else 2349 ioc->base_add_sg_single(sg_local, sgl_flags | 2350 sg_dma_len(sg_scmd), 2351 sg_dma_address(sg_scmd)); 2352 sg_scmd = sg_next(sg_scmd); 2353 sg_local += ioc->sge_size; 2354 sges_left--; 2355 sges_in_segment--; 2356 } 2357 2358 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2359 if (!chain_req) 2360 return -1; 2361 chain = chain_req->chain_buffer; 2362 chain_dma = chain_req->chain_buffer_dma; 2363 } while (1); 2364 2365 2366 fill_in_last_segment: 2367 2368 /* fill the last segment */ 2369 while (sges_left) { 2370 if (sges_left == 1) 2371 ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer | 2372 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2373 else 2374 ioc->base_add_sg_single(sg_local, sgl_flags | 2375 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2376 sg_scmd = sg_next(sg_scmd); 2377 sg_local += ioc->sge_size; 2378 sges_left--; 2379 } 2380 2381 return 0; 2382 } 2383 2384 /** 2385 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format 2386 * @ioc: per adapter object 2387 * @scmd: scsi command 2388 * @smid: system request message index 2389 * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be 2390 * constructed on need. 2391 * Context: none. 2392 * 2393 * The main routine that builds scatter gather table from a given 2394 * scsi request sent via the .queuecommand main handler. 2395 * 2396 * Return: 0 success, anything else error 2397 */ 2398 static int 2399 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc, 2400 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device) 2401 { 2402 Mpi25SCSIIORequest_t *mpi_request; 2403 dma_addr_t chain_dma; 2404 struct scatterlist *sg_scmd; 2405 void *sg_local, *chain; 2406 u32 chain_offset; 2407 u32 chain_length; 2408 int sges_left; 2409 u32 sges_in_segment; 2410 u8 simple_sgl_flags; 2411 u8 simple_sgl_flags_last; 2412 u8 chain_sgl_flags; 2413 struct chain_tracker *chain_req; 2414 2415 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 2416 2417 /* init scatter gather flags */ 2418 simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2419 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2420 simple_sgl_flags_last = simple_sgl_flags | 2421 MPI25_IEEE_SGE_FLAGS_END_OF_LIST; 2422 chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 2423 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2424 2425 /* Check if we need to build a native SG list. */ 2426 if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request, 2427 smid, scmd, pcie_device) == 0)) { 2428 /* We built a native SG list, just return. */ 2429 return 0; 2430 } 2431 2432 sg_scmd = scsi_sglist(scmd); 2433 sges_left = scsi_dma_map(scmd); 2434 if (sges_left < 0) { 2435 sdev_printk(KERN_ERR, scmd->device, 2436 "scsi_dma_map failed: request for %d bytes!\n", 2437 scsi_bufflen(scmd)); 2438 return -ENOMEM; 2439 } 2440 2441 sg_local = &mpi_request->SGL; 2442 sges_in_segment = (ioc->request_sz - 2443 offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee; 2444 if (sges_left <= sges_in_segment) 2445 goto fill_in_last_segment; 2446 2447 mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) + 2448 (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee); 2449 2450 /* fill in main message segment when there is a chain following */ 2451 while (sges_in_segment > 1) { 2452 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2453 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2454 sg_scmd = sg_next(sg_scmd); 2455 sg_local += ioc->sge_size_ieee; 2456 sges_left--; 2457 sges_in_segment--; 2458 } 2459 2460 /* initializing the pointers */ 2461 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2462 if (!chain_req) 2463 return -1; 2464 chain = chain_req->chain_buffer; 2465 chain_dma = chain_req->chain_buffer_dma; 2466 do { 2467 sges_in_segment = (sges_left <= 2468 ioc->max_sges_in_chain_message) ? sges_left : 2469 ioc->max_sges_in_chain_message; 2470 chain_offset = (sges_left == sges_in_segment) ? 2471 0 : sges_in_segment; 2472 chain_length = sges_in_segment * ioc->sge_size_ieee; 2473 if (chain_offset) 2474 chain_length += ioc->sge_size_ieee; 2475 _base_add_sg_single_ieee(sg_local, chain_sgl_flags, 2476 chain_offset, chain_length, chain_dma); 2477 2478 sg_local = chain; 2479 if (!chain_offset) 2480 goto fill_in_last_segment; 2481 2482 /* fill in chain segments */ 2483 while (sges_in_segment) { 2484 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2485 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2486 sg_scmd = sg_next(sg_scmd); 2487 sg_local += ioc->sge_size_ieee; 2488 sges_left--; 2489 sges_in_segment--; 2490 } 2491 2492 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2493 if (!chain_req) 2494 return -1; 2495 chain = chain_req->chain_buffer; 2496 chain_dma = chain_req->chain_buffer_dma; 2497 } while (1); 2498 2499 2500 fill_in_last_segment: 2501 2502 /* fill the last segment */ 2503 while (sges_left > 0) { 2504 if (sges_left == 1) 2505 _base_add_sg_single_ieee(sg_local, 2506 simple_sgl_flags_last, 0, sg_dma_len(sg_scmd), 2507 sg_dma_address(sg_scmd)); 2508 else 2509 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2510 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2511 sg_scmd = sg_next(sg_scmd); 2512 sg_local += ioc->sge_size_ieee; 2513 sges_left--; 2514 } 2515 2516 return 0; 2517 } 2518 2519 /** 2520 * _base_build_sg_ieee - build generic sg for IEEE format 2521 * @ioc: per adapter object 2522 * @psge: virtual address for SGE 2523 * @data_out_dma: physical address for WRITES 2524 * @data_out_sz: data xfer size for WRITES 2525 * @data_in_dma: physical address for READS 2526 * @data_in_sz: data xfer size for READS 2527 */ 2528 static void 2529 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge, 2530 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 2531 size_t data_in_sz) 2532 { 2533 u8 sgl_flags; 2534 2535 if (!data_out_sz && !data_in_sz) { 2536 _base_build_zero_len_sge_ieee(ioc, psge); 2537 return; 2538 } 2539 2540 if (data_out_sz && data_in_sz) { 2541 /* WRITE sgel first */ 2542 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2543 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2544 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz, 2545 data_out_dma); 2546 2547 /* incr sgel */ 2548 psge += ioc->sge_size_ieee; 2549 2550 /* READ sgel last */ 2551 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST; 2552 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz, 2553 data_in_dma); 2554 } else if (data_out_sz) /* WRITE */ { 2555 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2556 MPI25_IEEE_SGE_FLAGS_END_OF_LIST | 2557 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2558 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz, 2559 data_out_dma); 2560 } else if (data_in_sz) /* READ */ { 2561 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2562 MPI25_IEEE_SGE_FLAGS_END_OF_LIST | 2563 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2564 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz, 2565 data_in_dma); 2566 } 2567 } 2568 2569 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10)) 2570 2571 /** 2572 * _base_config_dma_addressing - set dma addressing 2573 * @ioc: per adapter object 2574 * @pdev: PCI device struct 2575 * 2576 * Return: 0 for success, non-zero for failure. 2577 */ 2578 static int 2579 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev) 2580 { 2581 u64 required_mask, coherent_mask; 2582 struct sysinfo s; 2583 2584 if (ioc->is_mcpu_endpoint) 2585 goto try_32bit; 2586 2587 required_mask = dma_get_required_mask(&pdev->dev); 2588 if (sizeof(dma_addr_t) == 4 || required_mask == 32) 2589 goto try_32bit; 2590 2591 if (ioc->dma_mask) 2592 coherent_mask = DMA_BIT_MASK(64); 2593 else 2594 coherent_mask = DMA_BIT_MASK(32); 2595 2596 if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) || 2597 dma_set_coherent_mask(&pdev->dev, coherent_mask)) 2598 goto try_32bit; 2599 2600 ioc->base_add_sg_single = &_base_add_sg_single_64; 2601 ioc->sge_size = sizeof(Mpi2SGESimple64_t); 2602 ioc->dma_mask = 64; 2603 goto out; 2604 2605 try_32bit: 2606 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32))) 2607 return -ENODEV; 2608 2609 ioc->base_add_sg_single = &_base_add_sg_single_32; 2610 ioc->sge_size = sizeof(Mpi2SGESimple32_t); 2611 ioc->dma_mask = 32; 2612 out: 2613 si_meminfo(&s); 2614 ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n", 2615 ioc->dma_mask, convert_to_kb(s.totalram)); 2616 2617 return 0; 2618 } 2619 2620 static int 2621 _base_change_consistent_dma_mask(struct MPT3SAS_ADAPTER *ioc, 2622 struct pci_dev *pdev) 2623 { 2624 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) { 2625 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) 2626 return -ENODEV; 2627 } 2628 return 0; 2629 } 2630 2631 /** 2632 * _base_check_enable_msix - checks MSIX capabable. 2633 * @ioc: per adapter object 2634 * 2635 * Check to see if card is capable of MSIX, and set number 2636 * of available msix vectors 2637 */ 2638 static int 2639 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc) 2640 { 2641 int base; 2642 u16 message_control; 2643 2644 /* Check whether controller SAS2008 B0 controller, 2645 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX 2646 */ 2647 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 && 2648 ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) { 2649 return -EINVAL; 2650 } 2651 2652 base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX); 2653 if (!base) { 2654 dfailprintk(ioc, ioc_info(ioc, "msix not supported\n")); 2655 return -EINVAL; 2656 } 2657 2658 /* get msix vector count */ 2659 /* NUMA_IO not supported for older controllers */ 2660 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 || 2661 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 || 2662 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 || 2663 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 || 2664 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 || 2665 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 || 2666 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2) 2667 ioc->msix_vector_count = 1; 2668 else { 2669 pci_read_config_word(ioc->pdev, base + 2, &message_control); 2670 ioc->msix_vector_count = (message_control & 0x3FF) + 1; 2671 } 2672 dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n", 2673 ioc->msix_vector_count)); 2674 return 0; 2675 } 2676 2677 /** 2678 * _base_free_irq - free irq 2679 * @ioc: per adapter object 2680 * 2681 * Freeing respective reply_queue from the list. 2682 */ 2683 static void 2684 _base_free_irq(struct MPT3SAS_ADAPTER *ioc) 2685 { 2686 struct adapter_reply_queue *reply_q, *next; 2687 2688 if (list_empty(&ioc->reply_queue_list)) 2689 return; 2690 2691 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) { 2692 list_del(&reply_q->list); 2693 free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index), 2694 reply_q); 2695 kfree(reply_q); 2696 } 2697 } 2698 2699 /** 2700 * _base_request_irq - request irq 2701 * @ioc: per adapter object 2702 * @index: msix index into vector table 2703 * 2704 * Inserting respective reply_queue into the list. 2705 */ 2706 static int 2707 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index) 2708 { 2709 struct pci_dev *pdev = ioc->pdev; 2710 struct adapter_reply_queue *reply_q; 2711 int r; 2712 2713 reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL); 2714 if (!reply_q) { 2715 ioc_err(ioc, "unable to allocate memory %zu!\n", 2716 sizeof(struct adapter_reply_queue)); 2717 return -ENOMEM; 2718 } 2719 reply_q->ioc = ioc; 2720 reply_q->msix_index = index; 2721 2722 atomic_set(&reply_q->busy, 0); 2723 if (ioc->msix_enable) 2724 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d", 2725 ioc->driver_name, ioc->id, index); 2726 else 2727 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d", 2728 ioc->driver_name, ioc->id); 2729 r = request_irq(pci_irq_vector(pdev, index), _base_interrupt, 2730 IRQF_SHARED, reply_q->name, reply_q); 2731 if (r) { 2732 pr_err("%s: unable to allocate interrupt %d!\n", 2733 reply_q->name, pci_irq_vector(pdev, index)); 2734 kfree(reply_q); 2735 return -EBUSY; 2736 } 2737 2738 INIT_LIST_HEAD(&reply_q->list); 2739 list_add_tail(&reply_q->list, &ioc->reply_queue_list); 2740 return 0; 2741 } 2742 2743 /** 2744 * _base_assign_reply_queues - assigning msix index for each cpu 2745 * @ioc: per adapter object 2746 * 2747 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity 2748 * 2749 * It would nice if we could call irq_set_affinity, however it is not 2750 * an exported symbol 2751 */ 2752 static void 2753 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc) 2754 { 2755 unsigned int cpu, nr_cpus, nr_msix, index = 0; 2756 struct adapter_reply_queue *reply_q; 2757 2758 if (!_base_is_controller_msix_enabled(ioc)) 2759 return; 2760 2761 memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz); 2762 2763 nr_cpus = num_online_cpus(); 2764 nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count, 2765 ioc->facts.MaxMSIxVectors); 2766 if (!nr_msix) 2767 return; 2768 2769 if (smp_affinity_enable) { 2770 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 2771 const cpumask_t *mask = pci_irq_get_affinity(ioc->pdev, 2772 reply_q->msix_index); 2773 if (!mask) { 2774 ioc_warn(ioc, "no affinity for msi %x\n", 2775 reply_q->msix_index); 2776 continue; 2777 } 2778 2779 for_each_cpu_and(cpu, mask, cpu_online_mask) { 2780 if (cpu >= ioc->cpu_msix_table_sz) 2781 break; 2782 ioc->cpu_msix_table[cpu] = reply_q->msix_index; 2783 } 2784 } 2785 return; 2786 } 2787 cpu = cpumask_first(cpu_online_mask); 2788 2789 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 2790 2791 unsigned int i, group = nr_cpus / nr_msix; 2792 2793 if (cpu >= nr_cpus) 2794 break; 2795 2796 if (index < nr_cpus % nr_msix) 2797 group++; 2798 2799 for (i = 0 ; i < group ; i++) { 2800 ioc->cpu_msix_table[cpu] = reply_q->msix_index; 2801 cpu = cpumask_next(cpu, cpu_online_mask); 2802 } 2803 index++; 2804 } 2805 } 2806 2807 /** 2808 * _base_disable_msix - disables msix 2809 * @ioc: per adapter object 2810 * 2811 */ 2812 static void 2813 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc) 2814 { 2815 if (!ioc->msix_enable) 2816 return; 2817 pci_disable_msix(ioc->pdev); 2818 ioc->msix_enable = 0; 2819 } 2820 2821 /** 2822 * _base_enable_msix - enables msix, failback to io_apic 2823 * @ioc: per adapter object 2824 * 2825 */ 2826 static int 2827 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc) 2828 { 2829 int r; 2830 int i, local_max_msix_vectors; 2831 u8 try_msix = 0; 2832 unsigned int irq_flags = PCI_IRQ_MSIX; 2833 2834 if (msix_disable == -1 || msix_disable == 0) 2835 try_msix = 1; 2836 2837 if (!try_msix) 2838 goto try_ioapic; 2839 2840 if (_base_check_enable_msix(ioc) != 0) 2841 goto try_ioapic; 2842 2843 ioc->reply_queue_count = min_t(int, ioc->cpu_count, 2844 ioc->msix_vector_count); 2845 2846 ioc_info(ioc, "MSI-X vectors supported: %d, no of cores: %d, max_msix_vectors: %d\n", 2847 ioc->msix_vector_count, ioc->cpu_count, max_msix_vectors); 2848 2849 if (!ioc->rdpq_array_enable && max_msix_vectors == -1) 2850 local_max_msix_vectors = (reset_devices) ? 1 : 8; 2851 else 2852 local_max_msix_vectors = max_msix_vectors; 2853 2854 if (local_max_msix_vectors > 0) 2855 ioc->reply_queue_count = min_t(int, local_max_msix_vectors, 2856 ioc->reply_queue_count); 2857 else if (local_max_msix_vectors == 0) 2858 goto try_ioapic; 2859 2860 if (ioc->msix_vector_count < ioc->cpu_count) 2861 smp_affinity_enable = 0; 2862 2863 if (smp_affinity_enable) 2864 irq_flags |= PCI_IRQ_AFFINITY; 2865 2866 r = pci_alloc_irq_vectors(ioc->pdev, 1, ioc->reply_queue_count, 2867 irq_flags); 2868 if (r < 0) { 2869 dfailprintk(ioc, 2870 ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", 2871 r)); 2872 goto try_ioapic; 2873 } 2874 2875 ioc->msix_enable = 1; 2876 ioc->reply_queue_count = r; 2877 for (i = 0; i < ioc->reply_queue_count; i++) { 2878 r = _base_request_irq(ioc, i); 2879 if (r) { 2880 _base_free_irq(ioc); 2881 _base_disable_msix(ioc); 2882 goto try_ioapic; 2883 } 2884 } 2885 2886 return 0; 2887 2888 /* failback to io_apic interrupt routing */ 2889 try_ioapic: 2890 2891 ioc->reply_queue_count = 1; 2892 r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY); 2893 if (r < 0) { 2894 dfailprintk(ioc, 2895 ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n", 2896 r)); 2897 } else 2898 r = _base_request_irq(ioc, 0); 2899 2900 return r; 2901 } 2902 2903 /** 2904 * mpt3sas_base_unmap_resources - free controller resources 2905 * @ioc: per adapter object 2906 */ 2907 static void 2908 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc) 2909 { 2910 struct pci_dev *pdev = ioc->pdev; 2911 2912 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 2913 2914 _base_free_irq(ioc); 2915 _base_disable_msix(ioc); 2916 2917 kfree(ioc->replyPostRegisterIndex); 2918 ioc->replyPostRegisterIndex = NULL; 2919 2920 2921 if (ioc->chip_phys) { 2922 iounmap(ioc->chip); 2923 ioc->chip_phys = 0; 2924 } 2925 2926 if (pci_is_enabled(pdev)) { 2927 pci_release_selected_regions(ioc->pdev, ioc->bars); 2928 pci_disable_pcie_error_reporting(pdev); 2929 pci_disable_device(pdev); 2930 } 2931 } 2932 2933 /** 2934 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap) 2935 * @ioc: per adapter object 2936 * 2937 * Return: 0 for success, non-zero for failure. 2938 */ 2939 int 2940 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc) 2941 { 2942 struct pci_dev *pdev = ioc->pdev; 2943 u32 memap_sz; 2944 u32 pio_sz; 2945 int i, r = 0; 2946 u64 pio_chip = 0; 2947 phys_addr_t chip_phys = 0; 2948 struct adapter_reply_queue *reply_q; 2949 2950 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 2951 2952 ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM); 2953 if (pci_enable_device_mem(pdev)) { 2954 ioc_warn(ioc, "pci_enable_device_mem: failed\n"); 2955 ioc->bars = 0; 2956 return -ENODEV; 2957 } 2958 2959 2960 if (pci_request_selected_regions(pdev, ioc->bars, 2961 ioc->driver_name)) { 2962 ioc_warn(ioc, "pci_request_selected_regions: failed\n"); 2963 ioc->bars = 0; 2964 r = -ENODEV; 2965 goto out_fail; 2966 } 2967 2968 /* AER (Advanced Error Reporting) hooks */ 2969 pci_enable_pcie_error_reporting(pdev); 2970 2971 pci_set_master(pdev); 2972 2973 2974 if (_base_config_dma_addressing(ioc, pdev) != 0) { 2975 ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev)); 2976 r = -ENODEV; 2977 goto out_fail; 2978 } 2979 2980 for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) && 2981 (!memap_sz || !pio_sz); i++) { 2982 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { 2983 if (pio_sz) 2984 continue; 2985 pio_chip = (u64)pci_resource_start(pdev, i); 2986 pio_sz = pci_resource_len(pdev, i); 2987 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) { 2988 if (memap_sz) 2989 continue; 2990 ioc->chip_phys = pci_resource_start(pdev, i); 2991 chip_phys = ioc->chip_phys; 2992 memap_sz = pci_resource_len(pdev, i); 2993 ioc->chip = ioremap(ioc->chip_phys, memap_sz); 2994 } 2995 } 2996 2997 if (ioc->chip == NULL) { 2998 ioc_err(ioc, "unable to map adapter memory! or resource not found\n"); 2999 r = -EINVAL; 3000 goto out_fail; 3001 } 3002 3003 _base_mask_interrupts(ioc); 3004 3005 r = _base_get_ioc_facts(ioc); 3006 if (r) 3007 goto out_fail; 3008 3009 if (!ioc->rdpq_array_enable_assigned) { 3010 ioc->rdpq_array_enable = ioc->rdpq_array_capable; 3011 ioc->rdpq_array_enable_assigned = 1; 3012 } 3013 3014 r = _base_enable_msix(ioc); 3015 if (r) 3016 goto out_fail; 3017 3018 /* Use the Combined reply queue feature only for SAS3 C0 & higher 3019 * revision HBAs and also only when reply queue count is greater than 8 3020 */ 3021 if (ioc->combined_reply_queue) { 3022 /* Determine the Supplemental Reply Post Host Index Registers 3023 * Addresse. Supplemental Reply Post Host Index Registers 3024 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and 3025 * each register is at offset bytes of 3026 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one. 3027 */ 3028 ioc->replyPostRegisterIndex = kcalloc( 3029 ioc->combined_reply_index_count, 3030 sizeof(resource_size_t *), GFP_KERNEL); 3031 if (!ioc->replyPostRegisterIndex) { 3032 dfailprintk(ioc, 3033 ioc_warn(ioc, "allocation for reply Post Register Index failed!!!\n")); 3034 r = -ENOMEM; 3035 goto out_fail; 3036 } 3037 3038 for (i = 0; i < ioc->combined_reply_index_count; i++) { 3039 ioc->replyPostRegisterIndex[i] = (resource_size_t *) 3040 ((u8 __force *)&ioc->chip->Doorbell + 3041 MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET + 3042 (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET)); 3043 } 3044 } 3045 3046 if (ioc->is_warpdrive) { 3047 ioc->reply_post_host_index[0] = (resource_size_t __iomem *) 3048 &ioc->chip->ReplyPostHostIndex; 3049 3050 for (i = 1; i < ioc->cpu_msix_table_sz; i++) 3051 ioc->reply_post_host_index[i] = 3052 (resource_size_t __iomem *) 3053 ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1) 3054 * 4))); 3055 } 3056 3057 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) 3058 pr_info("%s: %s enabled: IRQ %d\n", 3059 reply_q->name, 3060 ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC", 3061 pci_irq_vector(ioc->pdev, reply_q->msix_index)); 3062 3063 ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n", 3064 &chip_phys, ioc->chip, memap_sz); 3065 ioc_info(ioc, "ioport(0x%016llx), size(%d)\n", 3066 (unsigned long long)pio_chip, pio_sz); 3067 3068 /* Save PCI configuration state for recovery from PCI AER/EEH errors */ 3069 pci_save_state(pdev); 3070 return 0; 3071 3072 out_fail: 3073 mpt3sas_base_unmap_resources(ioc); 3074 return r; 3075 } 3076 3077 /** 3078 * mpt3sas_base_get_msg_frame - obtain request mf pointer 3079 * @ioc: per adapter object 3080 * @smid: system request message index(smid zero is invalid) 3081 * 3082 * Return: virt pointer to message frame. 3083 */ 3084 void * 3085 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3086 { 3087 return (void *)(ioc->request + (smid * ioc->request_sz)); 3088 } 3089 3090 /** 3091 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr 3092 * @ioc: per adapter object 3093 * @smid: system request message index 3094 * 3095 * Return: virt pointer to sense buffer. 3096 */ 3097 void * 3098 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3099 { 3100 return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE)); 3101 } 3102 3103 /** 3104 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr 3105 * @ioc: per adapter object 3106 * @smid: system request message index 3107 * 3108 * Return: phys pointer to the low 32bit address of the sense buffer. 3109 */ 3110 __le32 3111 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3112 { 3113 return cpu_to_le32(ioc->sense_dma + ((smid - 1) * 3114 SCSI_SENSE_BUFFERSIZE)); 3115 } 3116 3117 /** 3118 * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr 3119 * @ioc: per adapter object 3120 * @smid: system request message index 3121 * 3122 * Return: virt pointer to a PCIe SGL. 3123 */ 3124 void * 3125 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3126 { 3127 return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl); 3128 } 3129 3130 /** 3131 * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr 3132 * @ioc: per adapter object 3133 * @smid: system request message index 3134 * 3135 * Return: phys pointer to the address of the PCIe buffer. 3136 */ 3137 dma_addr_t 3138 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3139 { 3140 return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma; 3141 } 3142 3143 /** 3144 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address 3145 * @ioc: per adapter object 3146 * @phys_addr: lower 32 physical addr of the reply 3147 * 3148 * Converts 32bit lower physical addr into a virt address. 3149 */ 3150 void * 3151 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr) 3152 { 3153 if (!phys_addr) 3154 return NULL; 3155 return ioc->reply + (phys_addr - (u32)ioc->reply_dma); 3156 } 3157 3158 static inline u8 3159 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc) 3160 { 3161 return ioc->cpu_msix_table[raw_smp_processor_id()]; 3162 } 3163 3164 /** 3165 * mpt3sas_base_get_smid - obtain a free smid from internal queue 3166 * @ioc: per adapter object 3167 * @cb_idx: callback index 3168 * 3169 * Return: smid (zero is invalid) 3170 */ 3171 u16 3172 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx) 3173 { 3174 unsigned long flags; 3175 struct request_tracker *request; 3176 u16 smid; 3177 3178 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3179 if (list_empty(&ioc->internal_free_list)) { 3180 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3181 ioc_err(ioc, "%s: smid not available\n", __func__); 3182 return 0; 3183 } 3184 3185 request = list_entry(ioc->internal_free_list.next, 3186 struct request_tracker, tracker_list); 3187 request->cb_idx = cb_idx; 3188 smid = request->smid; 3189 list_del(&request->tracker_list); 3190 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3191 return smid; 3192 } 3193 3194 /** 3195 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue 3196 * @ioc: per adapter object 3197 * @cb_idx: callback index 3198 * @scmd: pointer to scsi command object 3199 * 3200 * Return: smid (zero is invalid) 3201 */ 3202 u16 3203 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx, 3204 struct scsi_cmnd *scmd) 3205 { 3206 struct scsiio_tracker *request = scsi_cmd_priv(scmd); 3207 unsigned int tag = scmd->request->tag; 3208 u16 smid; 3209 3210 smid = tag + 1; 3211 request->cb_idx = cb_idx; 3212 request->msix_io = _base_get_msix_index(ioc); 3213 request->smid = smid; 3214 INIT_LIST_HEAD(&request->chain_list); 3215 return smid; 3216 } 3217 3218 /** 3219 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue 3220 * @ioc: per adapter object 3221 * @cb_idx: callback index 3222 * 3223 * Return: smid (zero is invalid) 3224 */ 3225 u16 3226 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx) 3227 { 3228 unsigned long flags; 3229 struct request_tracker *request; 3230 u16 smid; 3231 3232 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3233 if (list_empty(&ioc->hpr_free_list)) { 3234 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3235 return 0; 3236 } 3237 3238 request = list_entry(ioc->hpr_free_list.next, 3239 struct request_tracker, tracker_list); 3240 request->cb_idx = cb_idx; 3241 smid = request->smid; 3242 list_del(&request->tracker_list); 3243 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3244 return smid; 3245 } 3246 3247 static void 3248 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc) 3249 { 3250 /* 3251 * See _wait_for_commands_to_complete() call with regards to this code. 3252 */ 3253 if (ioc->shost_recovery && ioc->pending_io_count) { 3254 ioc->pending_io_count = scsi_host_busy(ioc->shost); 3255 if (ioc->pending_io_count == 0) 3256 wake_up(&ioc->reset_wq); 3257 } 3258 } 3259 3260 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc, 3261 struct scsiio_tracker *st) 3262 { 3263 if (WARN_ON(st->smid == 0)) 3264 return; 3265 st->cb_idx = 0xFF; 3266 st->direct_io = 0; 3267 atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0); 3268 st->smid = 0; 3269 } 3270 3271 /** 3272 * mpt3sas_base_free_smid - put smid back on free_list 3273 * @ioc: per adapter object 3274 * @smid: system request message index 3275 */ 3276 void 3277 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3278 { 3279 unsigned long flags; 3280 int i; 3281 3282 if (smid < ioc->hi_priority_smid) { 3283 struct scsiio_tracker *st; 3284 void *request; 3285 3286 st = _get_st_from_smid(ioc, smid); 3287 if (!st) { 3288 _base_recovery_check(ioc); 3289 return; 3290 } 3291 3292 /* Clear MPI request frame */ 3293 request = mpt3sas_base_get_msg_frame(ioc, smid); 3294 memset(request, 0, ioc->request_sz); 3295 3296 mpt3sas_base_clear_st(ioc, st); 3297 _base_recovery_check(ioc); 3298 return; 3299 } 3300 3301 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3302 if (smid < ioc->internal_smid) { 3303 /* hi-priority */ 3304 i = smid - ioc->hi_priority_smid; 3305 ioc->hpr_lookup[i].cb_idx = 0xFF; 3306 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list); 3307 } else if (smid <= ioc->hba_queue_depth) { 3308 /* internal queue */ 3309 i = smid - ioc->internal_smid; 3310 ioc->internal_lookup[i].cb_idx = 0xFF; 3311 list_add(&ioc->internal_lookup[i].tracker_list, 3312 &ioc->internal_free_list); 3313 } 3314 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3315 } 3316 3317 /** 3318 * _base_mpi_ep_writeq - 32 bit write to MMIO 3319 * @b: data payload 3320 * @addr: address in MMIO space 3321 * @writeq_lock: spin lock 3322 * 3323 * This special handling for MPI EP to take care of 32 bit 3324 * environment where its not quarenteed to send the entire word 3325 * in one transfer. 3326 */ 3327 static inline void 3328 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr, 3329 spinlock_t *writeq_lock) 3330 { 3331 unsigned long flags; 3332 3333 spin_lock_irqsave(writeq_lock, flags); 3334 __raw_writel((u32)(b), addr); 3335 __raw_writel((u32)(b >> 32), (addr + 4)); 3336 mmiowb(); 3337 spin_unlock_irqrestore(writeq_lock, flags); 3338 } 3339 3340 /** 3341 * _base_writeq - 64 bit write to MMIO 3342 * @b: data payload 3343 * @addr: address in MMIO space 3344 * @writeq_lock: spin lock 3345 * 3346 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes 3347 * care of 32 bit environment where its not quarenteed to send the entire word 3348 * in one transfer. 3349 */ 3350 #if defined(writeq) && defined(CONFIG_64BIT) 3351 static inline void 3352 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock) 3353 { 3354 wmb(); 3355 __raw_writeq(b, addr); 3356 barrier(); 3357 } 3358 #else 3359 static inline void 3360 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock) 3361 { 3362 _base_mpi_ep_writeq(b, addr, writeq_lock); 3363 } 3364 #endif 3365 3366 /** 3367 * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware 3368 * @ioc: per adapter object 3369 * @smid: system request message index 3370 * @handle: device handle 3371 */ 3372 static void 3373 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle) 3374 { 3375 Mpi2RequestDescriptorUnion_t descriptor; 3376 u64 *request = (u64 *)&descriptor; 3377 void *mpi_req_iomem; 3378 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 3379 3380 _clone_sg_entries(ioc, (void *) mfp, smid); 3381 mpi_req_iomem = (void __force *)ioc->chip + 3382 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz); 3383 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 3384 ioc->request_sz); 3385 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 3386 descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc); 3387 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 3388 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 3389 descriptor.SCSIIO.LMID = 0; 3390 _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3391 &ioc->scsi_lookup_lock); 3392 } 3393 3394 /** 3395 * _base_put_smid_scsi_io - send SCSI_IO request to firmware 3396 * @ioc: per adapter object 3397 * @smid: system request message index 3398 * @handle: device handle 3399 */ 3400 static void 3401 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle) 3402 { 3403 Mpi2RequestDescriptorUnion_t descriptor; 3404 u64 *request = (u64 *)&descriptor; 3405 3406 3407 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 3408 descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc); 3409 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 3410 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 3411 descriptor.SCSIIO.LMID = 0; 3412 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3413 &ioc->scsi_lookup_lock); 3414 } 3415 3416 /** 3417 * mpt3sas_base_put_smid_fast_path - send fast path request to firmware 3418 * @ioc: per adapter object 3419 * @smid: system request message index 3420 * @handle: device handle 3421 */ 3422 void 3423 mpt3sas_base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid, 3424 u16 handle) 3425 { 3426 Mpi2RequestDescriptorUnion_t descriptor; 3427 u64 *request = (u64 *)&descriptor; 3428 3429 descriptor.SCSIIO.RequestFlags = 3430 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 3431 descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc); 3432 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 3433 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 3434 descriptor.SCSIIO.LMID = 0; 3435 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3436 &ioc->scsi_lookup_lock); 3437 } 3438 3439 /** 3440 * mpt3sas_base_put_smid_hi_priority - send Task Management request to firmware 3441 * @ioc: per adapter object 3442 * @smid: system request message index 3443 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0. 3444 */ 3445 void 3446 mpt3sas_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid, 3447 u16 msix_task) 3448 { 3449 Mpi2RequestDescriptorUnion_t descriptor; 3450 void *mpi_req_iomem; 3451 u64 *request; 3452 3453 if (ioc->is_mcpu_endpoint) { 3454 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 3455 3456 /* TBD 256 is offset within sys register. */ 3457 mpi_req_iomem = (void __force *)ioc->chip 3458 + MPI_FRAME_START_OFFSET 3459 + (smid * ioc->request_sz); 3460 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 3461 ioc->request_sz); 3462 } 3463 3464 request = (u64 *)&descriptor; 3465 3466 descriptor.HighPriority.RequestFlags = 3467 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 3468 descriptor.HighPriority.MSIxIndex = msix_task; 3469 descriptor.HighPriority.SMID = cpu_to_le16(smid); 3470 descriptor.HighPriority.LMID = 0; 3471 descriptor.HighPriority.Reserved1 = 0; 3472 if (ioc->is_mcpu_endpoint) 3473 _base_mpi_ep_writeq(*request, 3474 &ioc->chip->RequestDescriptorPostLow, 3475 &ioc->scsi_lookup_lock); 3476 else 3477 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3478 &ioc->scsi_lookup_lock); 3479 } 3480 3481 /** 3482 * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to 3483 * firmware 3484 * @ioc: per adapter object 3485 * @smid: system request message index 3486 */ 3487 void 3488 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3489 { 3490 Mpi2RequestDescriptorUnion_t descriptor; 3491 u64 *request = (u64 *)&descriptor; 3492 3493 descriptor.Default.RequestFlags = 3494 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED; 3495 descriptor.Default.MSIxIndex = _base_get_msix_index(ioc); 3496 descriptor.Default.SMID = cpu_to_le16(smid); 3497 descriptor.Default.LMID = 0; 3498 descriptor.Default.DescriptorTypeDependent = 0; 3499 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3500 &ioc->scsi_lookup_lock); 3501 } 3502 3503 /** 3504 * mpt3sas_base_put_smid_default - Default, primarily used for config pages 3505 * @ioc: per adapter object 3506 * @smid: system request message index 3507 */ 3508 void 3509 mpt3sas_base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3510 { 3511 Mpi2RequestDescriptorUnion_t descriptor; 3512 void *mpi_req_iomem; 3513 u64 *request; 3514 3515 if (ioc->is_mcpu_endpoint) { 3516 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 3517 3518 _clone_sg_entries(ioc, (void *) mfp, smid); 3519 /* TBD 256 is offset within sys register */ 3520 mpi_req_iomem = (void __force *)ioc->chip + 3521 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz); 3522 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 3523 ioc->request_sz); 3524 } 3525 request = (u64 *)&descriptor; 3526 descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 3527 descriptor.Default.MSIxIndex = _base_get_msix_index(ioc); 3528 descriptor.Default.SMID = cpu_to_le16(smid); 3529 descriptor.Default.LMID = 0; 3530 descriptor.Default.DescriptorTypeDependent = 0; 3531 if (ioc->is_mcpu_endpoint) 3532 _base_mpi_ep_writeq(*request, 3533 &ioc->chip->RequestDescriptorPostLow, 3534 &ioc->scsi_lookup_lock); 3535 else 3536 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3537 &ioc->scsi_lookup_lock); 3538 } 3539 3540 /** 3541 * _base_display_OEMs_branding - Display branding string 3542 * @ioc: per adapter object 3543 */ 3544 static void 3545 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc) 3546 { 3547 if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL) 3548 return; 3549 3550 switch (ioc->pdev->subsystem_vendor) { 3551 case PCI_VENDOR_ID_INTEL: 3552 switch (ioc->pdev->device) { 3553 case MPI2_MFGPAGE_DEVID_SAS2008: 3554 switch (ioc->pdev->subsystem_device) { 3555 case MPT2SAS_INTEL_RMS2LL080_SSDID: 3556 ioc_info(ioc, "%s\n", 3557 MPT2SAS_INTEL_RMS2LL080_BRANDING); 3558 break; 3559 case MPT2SAS_INTEL_RMS2LL040_SSDID: 3560 ioc_info(ioc, "%s\n", 3561 MPT2SAS_INTEL_RMS2LL040_BRANDING); 3562 break; 3563 case MPT2SAS_INTEL_SSD910_SSDID: 3564 ioc_info(ioc, "%s\n", 3565 MPT2SAS_INTEL_SSD910_BRANDING); 3566 break; 3567 default: 3568 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 3569 ioc->pdev->subsystem_device); 3570 break; 3571 } 3572 break; 3573 case MPI2_MFGPAGE_DEVID_SAS2308_2: 3574 switch (ioc->pdev->subsystem_device) { 3575 case MPT2SAS_INTEL_RS25GB008_SSDID: 3576 ioc_info(ioc, "%s\n", 3577 MPT2SAS_INTEL_RS25GB008_BRANDING); 3578 break; 3579 case MPT2SAS_INTEL_RMS25JB080_SSDID: 3580 ioc_info(ioc, "%s\n", 3581 MPT2SAS_INTEL_RMS25JB080_BRANDING); 3582 break; 3583 case MPT2SAS_INTEL_RMS25JB040_SSDID: 3584 ioc_info(ioc, "%s\n", 3585 MPT2SAS_INTEL_RMS25JB040_BRANDING); 3586 break; 3587 case MPT2SAS_INTEL_RMS25KB080_SSDID: 3588 ioc_info(ioc, "%s\n", 3589 MPT2SAS_INTEL_RMS25KB080_BRANDING); 3590 break; 3591 case MPT2SAS_INTEL_RMS25KB040_SSDID: 3592 ioc_info(ioc, "%s\n", 3593 MPT2SAS_INTEL_RMS25KB040_BRANDING); 3594 break; 3595 case MPT2SAS_INTEL_RMS25LB040_SSDID: 3596 ioc_info(ioc, "%s\n", 3597 MPT2SAS_INTEL_RMS25LB040_BRANDING); 3598 break; 3599 case MPT2SAS_INTEL_RMS25LB080_SSDID: 3600 ioc_info(ioc, "%s\n", 3601 MPT2SAS_INTEL_RMS25LB080_BRANDING); 3602 break; 3603 default: 3604 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 3605 ioc->pdev->subsystem_device); 3606 break; 3607 } 3608 break; 3609 case MPI25_MFGPAGE_DEVID_SAS3008: 3610 switch (ioc->pdev->subsystem_device) { 3611 case MPT3SAS_INTEL_RMS3JC080_SSDID: 3612 ioc_info(ioc, "%s\n", 3613 MPT3SAS_INTEL_RMS3JC080_BRANDING); 3614 break; 3615 3616 case MPT3SAS_INTEL_RS3GC008_SSDID: 3617 ioc_info(ioc, "%s\n", 3618 MPT3SAS_INTEL_RS3GC008_BRANDING); 3619 break; 3620 case MPT3SAS_INTEL_RS3FC044_SSDID: 3621 ioc_info(ioc, "%s\n", 3622 MPT3SAS_INTEL_RS3FC044_BRANDING); 3623 break; 3624 case MPT3SAS_INTEL_RS3UC080_SSDID: 3625 ioc_info(ioc, "%s\n", 3626 MPT3SAS_INTEL_RS3UC080_BRANDING); 3627 break; 3628 default: 3629 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 3630 ioc->pdev->subsystem_device); 3631 break; 3632 } 3633 break; 3634 default: 3635 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 3636 ioc->pdev->subsystem_device); 3637 break; 3638 } 3639 break; 3640 case PCI_VENDOR_ID_DELL: 3641 switch (ioc->pdev->device) { 3642 case MPI2_MFGPAGE_DEVID_SAS2008: 3643 switch (ioc->pdev->subsystem_device) { 3644 case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID: 3645 ioc_info(ioc, "%s\n", 3646 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING); 3647 break; 3648 case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID: 3649 ioc_info(ioc, "%s\n", 3650 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING); 3651 break; 3652 case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID: 3653 ioc_info(ioc, "%s\n", 3654 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING); 3655 break; 3656 case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID: 3657 ioc_info(ioc, "%s\n", 3658 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING); 3659 break; 3660 case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID: 3661 ioc_info(ioc, "%s\n", 3662 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING); 3663 break; 3664 case MPT2SAS_DELL_PERC_H200_SSDID: 3665 ioc_info(ioc, "%s\n", 3666 MPT2SAS_DELL_PERC_H200_BRANDING); 3667 break; 3668 case MPT2SAS_DELL_6GBPS_SAS_SSDID: 3669 ioc_info(ioc, "%s\n", 3670 MPT2SAS_DELL_6GBPS_SAS_BRANDING); 3671 break; 3672 default: 3673 ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n", 3674 ioc->pdev->subsystem_device); 3675 break; 3676 } 3677 break; 3678 case MPI25_MFGPAGE_DEVID_SAS3008: 3679 switch (ioc->pdev->subsystem_device) { 3680 case MPT3SAS_DELL_12G_HBA_SSDID: 3681 ioc_info(ioc, "%s\n", 3682 MPT3SAS_DELL_12G_HBA_BRANDING); 3683 break; 3684 default: 3685 ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n", 3686 ioc->pdev->subsystem_device); 3687 break; 3688 } 3689 break; 3690 default: 3691 ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n", 3692 ioc->pdev->subsystem_device); 3693 break; 3694 } 3695 break; 3696 case PCI_VENDOR_ID_CISCO: 3697 switch (ioc->pdev->device) { 3698 case MPI25_MFGPAGE_DEVID_SAS3008: 3699 switch (ioc->pdev->subsystem_device) { 3700 case MPT3SAS_CISCO_12G_8E_HBA_SSDID: 3701 ioc_info(ioc, "%s\n", 3702 MPT3SAS_CISCO_12G_8E_HBA_BRANDING); 3703 break; 3704 case MPT3SAS_CISCO_12G_8I_HBA_SSDID: 3705 ioc_info(ioc, "%s\n", 3706 MPT3SAS_CISCO_12G_8I_HBA_BRANDING); 3707 break; 3708 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID: 3709 ioc_info(ioc, "%s\n", 3710 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING); 3711 break; 3712 default: 3713 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n", 3714 ioc->pdev->subsystem_device); 3715 break; 3716 } 3717 break; 3718 case MPI25_MFGPAGE_DEVID_SAS3108_1: 3719 switch (ioc->pdev->subsystem_device) { 3720 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID: 3721 ioc_info(ioc, "%s\n", 3722 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING); 3723 break; 3724 case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID: 3725 ioc_info(ioc, "%s\n", 3726 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING); 3727 break; 3728 default: 3729 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n", 3730 ioc->pdev->subsystem_device); 3731 break; 3732 } 3733 break; 3734 default: 3735 ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n", 3736 ioc->pdev->subsystem_device); 3737 break; 3738 } 3739 break; 3740 case MPT2SAS_HP_3PAR_SSVID: 3741 switch (ioc->pdev->device) { 3742 case MPI2_MFGPAGE_DEVID_SAS2004: 3743 switch (ioc->pdev->subsystem_device) { 3744 case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID: 3745 ioc_info(ioc, "%s\n", 3746 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING); 3747 break; 3748 default: 3749 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n", 3750 ioc->pdev->subsystem_device); 3751 break; 3752 } 3753 break; 3754 case MPI2_MFGPAGE_DEVID_SAS2308_2: 3755 switch (ioc->pdev->subsystem_device) { 3756 case MPT2SAS_HP_2_4_INTERNAL_SSDID: 3757 ioc_info(ioc, "%s\n", 3758 MPT2SAS_HP_2_4_INTERNAL_BRANDING); 3759 break; 3760 case MPT2SAS_HP_2_4_EXTERNAL_SSDID: 3761 ioc_info(ioc, "%s\n", 3762 MPT2SAS_HP_2_4_EXTERNAL_BRANDING); 3763 break; 3764 case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID: 3765 ioc_info(ioc, "%s\n", 3766 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING); 3767 break; 3768 case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID: 3769 ioc_info(ioc, "%s\n", 3770 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING); 3771 break; 3772 default: 3773 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n", 3774 ioc->pdev->subsystem_device); 3775 break; 3776 } 3777 break; 3778 default: 3779 ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n", 3780 ioc->pdev->subsystem_device); 3781 break; 3782 } 3783 default: 3784 break; 3785 } 3786 } 3787 3788 /** 3789 * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg 3790 * version from FW Image Header. 3791 * @ioc: per adapter object 3792 * 3793 * Return: 0 for success, non-zero for failure. 3794 */ 3795 static int 3796 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc) 3797 { 3798 Mpi2FWImageHeader_t *FWImgHdr; 3799 Mpi25FWUploadRequest_t *mpi_request; 3800 Mpi2FWUploadReply_t mpi_reply; 3801 int r = 0; 3802 void *fwpkg_data = NULL; 3803 dma_addr_t fwpkg_data_dma; 3804 u16 smid, ioc_status; 3805 size_t data_length; 3806 3807 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 3808 3809 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 3810 ioc_err(ioc, "%s: internal command already in use\n", __func__); 3811 return -EAGAIN; 3812 } 3813 3814 data_length = sizeof(Mpi2FWImageHeader_t); 3815 fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length, 3816 &fwpkg_data_dma, GFP_KERNEL); 3817 if (!fwpkg_data) { 3818 ioc_err(ioc, "failure at %s:%d/%s()!\n", 3819 __FILE__, __LINE__, __func__); 3820 return -ENOMEM; 3821 } 3822 3823 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 3824 if (!smid) { 3825 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 3826 r = -EAGAIN; 3827 goto out; 3828 } 3829 3830 ioc->base_cmds.status = MPT3_CMD_PENDING; 3831 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 3832 ioc->base_cmds.smid = smid; 3833 memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t)); 3834 mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD; 3835 mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH; 3836 mpi_request->ImageSize = cpu_to_le32(data_length); 3837 ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma, 3838 data_length); 3839 init_completion(&ioc->base_cmds.done); 3840 mpt3sas_base_put_smid_default(ioc, smid); 3841 /* Wait for 15 seconds */ 3842 wait_for_completion_timeout(&ioc->base_cmds.done, 3843 FW_IMG_HDR_READ_TIMEOUT*HZ); 3844 ioc_info(ioc, "%s: complete\n", __func__); 3845 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 3846 ioc_err(ioc, "%s: timeout\n", __func__); 3847 _debug_dump_mf(mpi_request, 3848 sizeof(Mpi25FWUploadRequest_t)/4); 3849 r = -ETIME; 3850 } else { 3851 memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t)); 3852 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) { 3853 memcpy(&mpi_reply, ioc->base_cmds.reply, 3854 sizeof(Mpi2FWUploadReply_t)); 3855 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 3856 MPI2_IOCSTATUS_MASK; 3857 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 3858 FWImgHdr = (Mpi2FWImageHeader_t *)fwpkg_data; 3859 if (FWImgHdr->PackageVersion.Word) { 3860 ioc_info(ioc, "FW Package Version (%02d.%02d.%02d.%02d)\n", 3861 FWImgHdr->PackageVersion.Struct.Major, 3862 FWImgHdr->PackageVersion.Struct.Minor, 3863 FWImgHdr->PackageVersion.Struct.Unit, 3864 FWImgHdr->PackageVersion.Struct.Dev); 3865 } 3866 } else { 3867 _debug_dump_mf(&mpi_reply, 3868 sizeof(Mpi2FWUploadReply_t)/4); 3869 } 3870 } 3871 } 3872 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 3873 out: 3874 if (fwpkg_data) 3875 dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data, 3876 fwpkg_data_dma); 3877 return r; 3878 } 3879 3880 /** 3881 * _base_display_ioc_capabilities - Disply IOC's capabilities. 3882 * @ioc: per adapter object 3883 */ 3884 static void 3885 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc) 3886 { 3887 int i = 0; 3888 char desc[16]; 3889 u32 iounit_pg1_flags; 3890 u32 bios_version; 3891 3892 bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion); 3893 strncpy(desc, ioc->manu_pg0.ChipName, 16); 3894 ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n", 3895 desc, 3896 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24, 3897 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16, 3898 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8, 3899 ioc->facts.FWVersion.Word & 0x000000FF, 3900 ioc->pdev->revision, 3901 (bios_version & 0xFF000000) >> 24, 3902 (bios_version & 0x00FF0000) >> 16, 3903 (bios_version & 0x0000FF00) >> 8, 3904 bios_version & 0x000000FF); 3905 3906 _base_display_OEMs_branding(ioc); 3907 3908 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) { 3909 pr_info("%sNVMe", i ? "," : ""); 3910 i++; 3911 } 3912 3913 ioc_info(ioc, "Protocol=("); 3914 3915 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) { 3916 pr_cont("Initiator"); 3917 i++; 3918 } 3919 3920 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) { 3921 pr_cont("%sTarget", i ? "," : ""); 3922 i++; 3923 } 3924 3925 i = 0; 3926 pr_cont("), Capabilities=("); 3927 3928 if (!ioc->hide_ir_msg) { 3929 if (ioc->facts.IOCCapabilities & 3930 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) { 3931 pr_cont("Raid"); 3932 i++; 3933 } 3934 } 3935 3936 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) { 3937 pr_cont("%sTLR", i ? "," : ""); 3938 i++; 3939 } 3940 3941 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) { 3942 pr_cont("%sMulticast", i ? "," : ""); 3943 i++; 3944 } 3945 3946 if (ioc->facts.IOCCapabilities & 3947 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) { 3948 pr_cont("%sBIDI Target", i ? "," : ""); 3949 i++; 3950 } 3951 3952 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) { 3953 pr_cont("%sEEDP", i ? "," : ""); 3954 i++; 3955 } 3956 3957 if (ioc->facts.IOCCapabilities & 3958 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) { 3959 pr_cont("%sSnapshot Buffer", i ? "," : ""); 3960 i++; 3961 } 3962 3963 if (ioc->facts.IOCCapabilities & 3964 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) { 3965 pr_cont("%sDiag Trace Buffer", i ? "," : ""); 3966 i++; 3967 } 3968 3969 if (ioc->facts.IOCCapabilities & 3970 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) { 3971 pr_cont("%sDiag Extended Buffer", i ? "," : ""); 3972 i++; 3973 } 3974 3975 if (ioc->facts.IOCCapabilities & 3976 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) { 3977 pr_cont("%sTask Set Full", i ? "," : ""); 3978 i++; 3979 } 3980 3981 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags); 3982 if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) { 3983 pr_cont("%sNCQ", i ? "," : ""); 3984 i++; 3985 } 3986 3987 pr_cont(")\n"); 3988 } 3989 3990 /** 3991 * mpt3sas_base_update_missing_delay - change the missing delay timers 3992 * @ioc: per adapter object 3993 * @device_missing_delay: amount of time till device is reported missing 3994 * @io_missing_delay: interval IO is returned when there is a missing device 3995 * 3996 * Passed on the command line, this function will modify the device missing 3997 * delay, as well as the io missing delay. This should be called at driver 3998 * load time. 3999 */ 4000 void 4001 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc, 4002 u16 device_missing_delay, u8 io_missing_delay) 4003 { 4004 u16 dmd, dmd_new, dmd_orignal; 4005 u8 io_missing_delay_original; 4006 u16 sz; 4007 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL; 4008 Mpi2ConfigReply_t mpi_reply; 4009 u8 num_phys = 0; 4010 u16 ioc_status; 4011 4012 mpt3sas_config_get_number_hba_phys(ioc, &num_phys); 4013 if (!num_phys) 4014 return; 4015 4016 sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys * 4017 sizeof(Mpi2SasIOUnit1PhyData_t)); 4018 sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL); 4019 if (!sas_iounit_pg1) { 4020 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4021 __FILE__, __LINE__, __func__); 4022 goto out; 4023 } 4024 if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply, 4025 sas_iounit_pg1, sz))) { 4026 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4027 __FILE__, __LINE__, __func__); 4028 goto out; 4029 } 4030 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 4031 MPI2_IOCSTATUS_MASK; 4032 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 4033 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4034 __FILE__, __LINE__, __func__); 4035 goto out; 4036 } 4037 4038 /* device missing delay */ 4039 dmd = sas_iounit_pg1->ReportDeviceMissingDelay; 4040 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16) 4041 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16; 4042 else 4043 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK; 4044 dmd_orignal = dmd; 4045 if (device_missing_delay > 0x7F) { 4046 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 : 4047 device_missing_delay; 4048 dmd = dmd / 16; 4049 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16; 4050 } else 4051 dmd = device_missing_delay; 4052 sas_iounit_pg1->ReportDeviceMissingDelay = dmd; 4053 4054 /* io missing delay */ 4055 io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay; 4056 sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay; 4057 4058 if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1, 4059 sz)) { 4060 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16) 4061 dmd_new = (dmd & 4062 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16; 4063 else 4064 dmd_new = 4065 dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK; 4066 ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n", 4067 dmd_orignal, dmd_new); 4068 ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n", 4069 io_missing_delay_original, 4070 io_missing_delay); 4071 ioc->device_missing_delay = dmd_new; 4072 ioc->io_missing_delay = io_missing_delay; 4073 } 4074 4075 out: 4076 kfree(sas_iounit_pg1); 4077 } 4078 4079 /** 4080 * _base_static_config_pages - static start of day config pages 4081 * @ioc: per adapter object 4082 */ 4083 static void 4084 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc) 4085 { 4086 Mpi2ConfigReply_t mpi_reply; 4087 u32 iounit_pg1_flags; 4088 4089 ioc->nvme_abort_timeout = 30; 4090 mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0); 4091 if (ioc->ir_firmware) 4092 mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply, 4093 &ioc->manu_pg10); 4094 4095 /* 4096 * Ensure correct T10 PI operation if vendor left EEDPTagMode 4097 * flag unset in NVDATA. 4098 */ 4099 mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11); 4100 if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) { 4101 pr_err("%s: overriding NVDATA EEDPTagMode setting\n", 4102 ioc->name); 4103 ioc->manu_pg11.EEDPTagMode &= ~0x3; 4104 ioc->manu_pg11.EEDPTagMode |= 0x1; 4105 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply, 4106 &ioc->manu_pg11); 4107 } 4108 if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK) 4109 ioc->tm_custom_handling = 1; 4110 else { 4111 ioc->tm_custom_handling = 0; 4112 if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT) 4113 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT; 4114 else if (ioc->manu_pg11.NVMeAbortTO > 4115 NVME_TASK_ABORT_MAX_TIMEOUT) 4116 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT; 4117 else 4118 ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO; 4119 } 4120 4121 mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2); 4122 mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3); 4123 mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8); 4124 mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0); 4125 mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1); 4126 mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8); 4127 _base_display_ioc_capabilities(ioc); 4128 4129 /* 4130 * Enable task_set_full handling in iounit_pg1 when the 4131 * facts capabilities indicate that its supported. 4132 */ 4133 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags); 4134 if ((ioc->facts.IOCCapabilities & 4135 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING)) 4136 iounit_pg1_flags &= 4137 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING; 4138 else 4139 iounit_pg1_flags |= 4140 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING; 4141 ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags); 4142 mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1); 4143 4144 if (ioc->iounit_pg8.NumSensors) 4145 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors; 4146 } 4147 4148 /** 4149 * mpt3sas_free_enclosure_list - release memory 4150 * @ioc: per adapter object 4151 * 4152 * Free memory allocated during encloure add. 4153 */ 4154 void 4155 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc) 4156 { 4157 struct _enclosure_node *enclosure_dev, *enclosure_dev_next; 4158 4159 /* Free enclosure list */ 4160 list_for_each_entry_safe(enclosure_dev, 4161 enclosure_dev_next, &ioc->enclosure_list, list) { 4162 list_del(&enclosure_dev->list); 4163 kfree(enclosure_dev); 4164 } 4165 } 4166 4167 /** 4168 * _base_release_memory_pools - release memory 4169 * @ioc: per adapter object 4170 * 4171 * Free memory allocated from _base_allocate_memory_pools. 4172 */ 4173 static void 4174 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc) 4175 { 4176 int i = 0; 4177 int j = 0; 4178 struct chain_tracker *ct; 4179 struct reply_post_struct *rps; 4180 4181 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 4182 4183 if (ioc->request) { 4184 dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz, 4185 ioc->request, ioc->request_dma); 4186 dexitprintk(ioc, 4187 ioc_info(ioc, "request_pool(0x%p): free\n", 4188 ioc->request)); 4189 ioc->request = NULL; 4190 } 4191 4192 if (ioc->sense) { 4193 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma); 4194 dma_pool_destroy(ioc->sense_dma_pool); 4195 dexitprintk(ioc, 4196 ioc_info(ioc, "sense_pool(0x%p): free\n", 4197 ioc->sense)); 4198 ioc->sense = NULL; 4199 } 4200 4201 if (ioc->reply) { 4202 dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma); 4203 dma_pool_destroy(ioc->reply_dma_pool); 4204 dexitprintk(ioc, 4205 ioc_info(ioc, "reply_pool(0x%p): free\n", 4206 ioc->reply)); 4207 ioc->reply = NULL; 4208 } 4209 4210 if (ioc->reply_free) { 4211 dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free, 4212 ioc->reply_free_dma); 4213 dma_pool_destroy(ioc->reply_free_dma_pool); 4214 dexitprintk(ioc, 4215 ioc_info(ioc, "reply_free_pool(0x%p): free\n", 4216 ioc->reply_free)); 4217 ioc->reply_free = NULL; 4218 } 4219 4220 if (ioc->reply_post) { 4221 do { 4222 rps = &ioc->reply_post[i]; 4223 if (rps->reply_post_free) { 4224 dma_pool_free( 4225 ioc->reply_post_free_dma_pool, 4226 rps->reply_post_free, 4227 rps->reply_post_free_dma); 4228 dexitprintk(ioc, 4229 ioc_info(ioc, "reply_post_free_pool(0x%p): free\n", 4230 rps->reply_post_free)); 4231 rps->reply_post_free = NULL; 4232 } 4233 } while (ioc->rdpq_array_enable && 4234 (++i < ioc->reply_queue_count)); 4235 if (ioc->reply_post_free_array && 4236 ioc->rdpq_array_enable) { 4237 dma_pool_free(ioc->reply_post_free_array_dma_pool, 4238 ioc->reply_post_free_array, 4239 ioc->reply_post_free_array_dma); 4240 ioc->reply_post_free_array = NULL; 4241 } 4242 dma_pool_destroy(ioc->reply_post_free_array_dma_pool); 4243 dma_pool_destroy(ioc->reply_post_free_dma_pool); 4244 kfree(ioc->reply_post); 4245 } 4246 4247 if (ioc->pcie_sgl_dma_pool) { 4248 for (i = 0; i < ioc->scsiio_depth; i++) { 4249 dma_pool_free(ioc->pcie_sgl_dma_pool, 4250 ioc->pcie_sg_lookup[i].pcie_sgl, 4251 ioc->pcie_sg_lookup[i].pcie_sgl_dma); 4252 } 4253 if (ioc->pcie_sgl_dma_pool) 4254 dma_pool_destroy(ioc->pcie_sgl_dma_pool); 4255 } 4256 4257 if (ioc->config_page) { 4258 dexitprintk(ioc, 4259 ioc_info(ioc, "config_page(0x%p): free\n", 4260 ioc->config_page)); 4261 dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz, 4262 ioc->config_page, ioc->config_page_dma); 4263 } 4264 4265 kfree(ioc->hpr_lookup); 4266 kfree(ioc->internal_lookup); 4267 if (ioc->chain_lookup) { 4268 for (i = 0; i < ioc->scsiio_depth; i++) { 4269 for (j = ioc->chains_per_prp_buffer; 4270 j < ioc->chains_needed_per_io; j++) { 4271 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 4272 if (ct && ct->chain_buffer) 4273 dma_pool_free(ioc->chain_dma_pool, 4274 ct->chain_buffer, 4275 ct->chain_buffer_dma); 4276 } 4277 kfree(ioc->chain_lookup[i].chains_per_smid); 4278 } 4279 dma_pool_destroy(ioc->chain_dma_pool); 4280 kfree(ioc->chain_lookup); 4281 ioc->chain_lookup = NULL; 4282 } 4283 } 4284 4285 /** 4286 * is_MSB_are_same - checks whether all reply queues in a set are 4287 * having same upper 32bits in their base memory address. 4288 * @reply_pool_start_address: Base address of a reply queue set 4289 * @pool_sz: Size of single Reply Descriptor Post Queues pool size 4290 * 4291 * Return: 1 if reply queues in a set have a same upper 32bits in their base 4292 * memory address, else 0. 4293 */ 4294 4295 static int 4296 is_MSB_are_same(long reply_pool_start_address, u32 pool_sz) 4297 { 4298 long reply_pool_end_address; 4299 4300 reply_pool_end_address = reply_pool_start_address + pool_sz; 4301 4302 if (upper_32_bits(reply_pool_start_address) == 4303 upper_32_bits(reply_pool_end_address)) 4304 return 1; 4305 else 4306 return 0; 4307 } 4308 4309 /** 4310 * _base_allocate_memory_pools - allocate start of day memory pools 4311 * @ioc: per adapter object 4312 * 4313 * Return: 0 success, anything else error. 4314 */ 4315 static int 4316 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc) 4317 { 4318 struct mpt3sas_facts *facts; 4319 u16 max_sge_elements; 4320 u16 chains_needed_per_io; 4321 u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz; 4322 u32 retry_sz; 4323 u16 max_request_credit, nvme_blocks_needed; 4324 unsigned short sg_tablesize; 4325 u16 sge_size; 4326 int i, j; 4327 struct chain_tracker *ct; 4328 4329 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 4330 4331 4332 retry_sz = 0; 4333 facts = &ioc->facts; 4334 4335 /* command line tunables for max sgl entries */ 4336 if (max_sgl_entries != -1) 4337 sg_tablesize = max_sgl_entries; 4338 else { 4339 if (ioc->hba_mpi_version_belonged == MPI2_VERSION) 4340 sg_tablesize = MPT2SAS_SG_DEPTH; 4341 else 4342 sg_tablesize = MPT3SAS_SG_DEPTH; 4343 } 4344 4345 /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */ 4346 if (reset_devices) 4347 sg_tablesize = min_t(unsigned short, sg_tablesize, 4348 MPT_KDUMP_MIN_PHYS_SEGMENTS); 4349 4350 if (ioc->is_mcpu_endpoint) 4351 ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS; 4352 else { 4353 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS) 4354 sg_tablesize = MPT_MIN_PHYS_SEGMENTS; 4355 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) { 4356 sg_tablesize = min_t(unsigned short, sg_tablesize, 4357 SG_MAX_SEGMENTS); 4358 ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n", 4359 sg_tablesize, MPT_MAX_PHYS_SEGMENTS); 4360 } 4361 ioc->shost->sg_tablesize = sg_tablesize; 4362 } 4363 4364 ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)), 4365 (facts->RequestCredit / 4)); 4366 if (ioc->internal_depth < INTERNAL_CMDS_COUNT) { 4367 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT + 4368 INTERNAL_SCSIIO_CMDS_COUNT)) { 4369 ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n", 4370 facts->RequestCredit); 4371 return -ENOMEM; 4372 } 4373 ioc->internal_depth = 10; 4374 } 4375 4376 ioc->hi_priority_depth = ioc->internal_depth - (5); 4377 /* command line tunables for max controller queue depth */ 4378 if (max_queue_depth != -1 && max_queue_depth != 0) { 4379 max_request_credit = min_t(u16, max_queue_depth + 4380 ioc->internal_depth, facts->RequestCredit); 4381 if (max_request_credit > MAX_HBA_QUEUE_DEPTH) 4382 max_request_credit = MAX_HBA_QUEUE_DEPTH; 4383 } else if (reset_devices) 4384 max_request_credit = min_t(u16, facts->RequestCredit, 4385 (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth)); 4386 else 4387 max_request_credit = min_t(u16, facts->RequestCredit, 4388 MAX_HBA_QUEUE_DEPTH); 4389 4390 /* Firmware maintains additional facts->HighPriorityCredit number of 4391 * credits for HiPriprity Request messages, so hba queue depth will be 4392 * sum of max_request_credit and high priority queue depth. 4393 */ 4394 ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth; 4395 4396 /* request frame size */ 4397 ioc->request_sz = facts->IOCRequestFrameSize * 4; 4398 4399 /* reply frame size */ 4400 ioc->reply_sz = facts->ReplyFrameSize * 4; 4401 4402 /* chain segment size */ 4403 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 4404 if (facts->IOCMaxChainSegmentSize) 4405 ioc->chain_segment_sz = 4406 facts->IOCMaxChainSegmentSize * 4407 MAX_CHAIN_ELEMT_SZ; 4408 else 4409 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */ 4410 ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS * 4411 MAX_CHAIN_ELEMT_SZ; 4412 } else 4413 ioc->chain_segment_sz = ioc->request_sz; 4414 4415 /* calculate the max scatter element size */ 4416 sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee); 4417 4418 retry_allocation: 4419 total_sz = 0; 4420 /* calculate number of sg elements left over in the 1st frame */ 4421 max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) - 4422 sizeof(Mpi2SGEIOUnion_t)) + sge_size); 4423 ioc->max_sges_in_main_message = max_sge_elements/sge_size; 4424 4425 /* now do the same for a chain buffer */ 4426 max_sge_elements = ioc->chain_segment_sz - sge_size; 4427 ioc->max_sges_in_chain_message = max_sge_elements/sge_size; 4428 4429 /* 4430 * MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE 4431 */ 4432 chains_needed_per_io = ((ioc->shost->sg_tablesize - 4433 ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message) 4434 + 1; 4435 if (chains_needed_per_io > facts->MaxChainDepth) { 4436 chains_needed_per_io = facts->MaxChainDepth; 4437 ioc->shost->sg_tablesize = min_t(u16, 4438 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message 4439 * chains_needed_per_io), ioc->shost->sg_tablesize); 4440 } 4441 ioc->chains_needed_per_io = chains_needed_per_io; 4442 4443 /* reply free queue sizing - taking into account for 64 FW events */ 4444 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64; 4445 4446 /* mCPU manage single counters for simplicity */ 4447 if (ioc->is_mcpu_endpoint) 4448 ioc->reply_post_queue_depth = ioc->reply_free_queue_depth; 4449 else { 4450 /* calculate reply descriptor post queue depth */ 4451 ioc->reply_post_queue_depth = ioc->hba_queue_depth + 4452 ioc->reply_free_queue_depth + 1; 4453 /* align the reply post queue on the next 16 count boundary */ 4454 if (ioc->reply_post_queue_depth % 16) 4455 ioc->reply_post_queue_depth += 16 - 4456 (ioc->reply_post_queue_depth % 16); 4457 } 4458 4459 if (ioc->reply_post_queue_depth > 4460 facts->MaxReplyDescriptorPostQueueDepth) { 4461 ioc->reply_post_queue_depth = 4462 facts->MaxReplyDescriptorPostQueueDepth - 4463 (facts->MaxReplyDescriptorPostQueueDepth % 16); 4464 ioc->hba_queue_depth = 4465 ((ioc->reply_post_queue_depth - 64) / 2) - 1; 4466 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64; 4467 } 4468 4469 dinitprintk(ioc, 4470 ioc_info(ioc, "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), chains_per_io(%d)\n", 4471 ioc->max_sges_in_main_message, 4472 ioc->max_sges_in_chain_message, 4473 ioc->shost->sg_tablesize, 4474 ioc->chains_needed_per_io)); 4475 4476 /* reply post queue, 16 byte align */ 4477 reply_post_free_sz = ioc->reply_post_queue_depth * 4478 sizeof(Mpi2DefaultReplyDescriptor_t); 4479 4480 sz = reply_post_free_sz; 4481 if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable) 4482 sz *= ioc->reply_queue_count; 4483 4484 ioc->reply_post = kcalloc((ioc->rdpq_array_enable) ? 4485 (ioc->reply_queue_count):1, 4486 sizeof(struct reply_post_struct), GFP_KERNEL); 4487 4488 if (!ioc->reply_post) { 4489 ioc_err(ioc, "reply_post_free pool: kcalloc failed\n"); 4490 goto out; 4491 } 4492 ioc->reply_post_free_dma_pool = dma_pool_create("reply_post_free pool", 4493 &ioc->pdev->dev, sz, 16, 0); 4494 if (!ioc->reply_post_free_dma_pool) { 4495 ioc_err(ioc, "reply_post_free pool: dma_pool_create failed\n"); 4496 goto out; 4497 } 4498 i = 0; 4499 do { 4500 ioc->reply_post[i].reply_post_free = 4501 dma_pool_zalloc(ioc->reply_post_free_dma_pool, 4502 GFP_KERNEL, 4503 &ioc->reply_post[i].reply_post_free_dma); 4504 if (!ioc->reply_post[i].reply_post_free) { 4505 ioc_err(ioc, "reply_post_free pool: dma_pool_alloc failed\n"); 4506 goto out; 4507 } 4508 dinitprintk(ioc, 4509 ioc_info(ioc, "reply post free pool (0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n", 4510 ioc->reply_post[i].reply_post_free, 4511 ioc->reply_post_queue_depth, 4512 8, sz / 1024)); 4513 dinitprintk(ioc, 4514 ioc_info(ioc, "reply_post_free_dma = (0x%llx)\n", 4515 (u64)ioc->reply_post[i].reply_post_free_dma)); 4516 total_sz += sz; 4517 } while (ioc->rdpq_array_enable && (++i < ioc->reply_queue_count)); 4518 4519 if (ioc->dma_mask == 64) { 4520 if (_base_change_consistent_dma_mask(ioc, ioc->pdev) != 0) { 4521 ioc_warn(ioc, "no suitable consistent DMA mask for %s\n", 4522 pci_name(ioc->pdev)); 4523 goto out; 4524 } 4525 } 4526 4527 ioc->scsiio_depth = ioc->hba_queue_depth - 4528 ioc->hi_priority_depth - ioc->internal_depth; 4529 4530 /* set the scsi host can_queue depth 4531 * with some internal commands that could be outstanding 4532 */ 4533 ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT; 4534 dinitprintk(ioc, 4535 ioc_info(ioc, "scsi host: can_queue depth (%d)\n", 4536 ioc->shost->can_queue)); 4537 4538 4539 /* contiguous pool for request and chains, 16 byte align, one extra " 4540 * "frame for smid=0 4541 */ 4542 ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth; 4543 sz = ((ioc->scsiio_depth + 1) * ioc->request_sz); 4544 4545 /* hi-priority queue */ 4546 sz += (ioc->hi_priority_depth * ioc->request_sz); 4547 4548 /* internal queue */ 4549 sz += (ioc->internal_depth * ioc->request_sz); 4550 4551 ioc->request_dma_sz = sz; 4552 ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz, 4553 &ioc->request_dma, GFP_KERNEL); 4554 if (!ioc->request) { 4555 ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n", 4556 ioc->hba_queue_depth, ioc->chains_needed_per_io, 4557 ioc->request_sz, sz / 1024); 4558 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH) 4559 goto out; 4560 retry_sz = 64; 4561 ioc->hba_queue_depth -= retry_sz; 4562 _base_release_memory_pools(ioc); 4563 goto retry_allocation; 4564 } 4565 4566 if (retry_sz) 4567 ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n", 4568 ioc->hba_queue_depth, ioc->chains_needed_per_io, 4569 ioc->request_sz, sz / 1024); 4570 4571 /* hi-priority queue */ 4572 ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) * 4573 ioc->request_sz); 4574 ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) * 4575 ioc->request_sz); 4576 4577 /* internal queue */ 4578 ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth * 4579 ioc->request_sz); 4580 ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth * 4581 ioc->request_sz); 4582 4583 dinitprintk(ioc, 4584 ioc_info(ioc, "request pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n", 4585 ioc->request, ioc->hba_queue_depth, 4586 ioc->request_sz, 4587 (ioc->hba_queue_depth * ioc->request_sz) / 1024)); 4588 4589 dinitprintk(ioc, 4590 ioc_info(ioc, "request pool: dma(0x%llx)\n", 4591 (unsigned long long)ioc->request_dma)); 4592 total_sz += sz; 4593 4594 dinitprintk(ioc, 4595 ioc_info(ioc, "scsiio(0x%p): depth(%d)\n", 4596 ioc->request, ioc->scsiio_depth)); 4597 4598 ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH); 4599 sz = ioc->scsiio_depth * sizeof(struct chain_lookup); 4600 ioc->chain_lookup = kzalloc(sz, GFP_KERNEL); 4601 if (!ioc->chain_lookup) { 4602 ioc_err(ioc, "chain_lookup: __get_free_pages failed\n"); 4603 goto out; 4604 } 4605 4606 sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker); 4607 for (i = 0; i < ioc->scsiio_depth; i++) { 4608 ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL); 4609 if (!ioc->chain_lookup[i].chains_per_smid) { 4610 ioc_err(ioc, "chain_lookup: kzalloc failed\n"); 4611 goto out; 4612 } 4613 } 4614 4615 /* initialize hi-priority queue smid's */ 4616 ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth, 4617 sizeof(struct request_tracker), GFP_KERNEL); 4618 if (!ioc->hpr_lookup) { 4619 ioc_err(ioc, "hpr_lookup: kcalloc failed\n"); 4620 goto out; 4621 } 4622 ioc->hi_priority_smid = ioc->scsiio_depth + 1; 4623 dinitprintk(ioc, 4624 ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n", 4625 ioc->hi_priority, 4626 ioc->hi_priority_depth, ioc->hi_priority_smid)); 4627 4628 /* initialize internal queue smid's */ 4629 ioc->internal_lookup = kcalloc(ioc->internal_depth, 4630 sizeof(struct request_tracker), GFP_KERNEL); 4631 if (!ioc->internal_lookup) { 4632 ioc_err(ioc, "internal_lookup: kcalloc failed\n"); 4633 goto out; 4634 } 4635 ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth; 4636 dinitprintk(ioc, 4637 ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n", 4638 ioc->internal, 4639 ioc->internal_depth, ioc->internal_smid)); 4640 /* 4641 * The number of NVMe page sized blocks needed is: 4642 * (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1 4643 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry 4644 * that is placed in the main message frame. 8 is the size of each PRP 4645 * entry or PRP list pointer entry. 8 is subtracted from page_size 4646 * because of the PRP list pointer entry at the end of a page, so this 4647 * is not counted as a PRP entry. The 1 added page is a round up. 4648 * 4649 * To avoid allocation failures due to the amount of memory that could 4650 * be required for NVMe PRP's, only each set of NVMe blocks will be 4651 * contiguous, so a new set is allocated for each possible I/O. 4652 */ 4653 ioc->chains_per_prp_buffer = 0; 4654 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) { 4655 nvme_blocks_needed = 4656 (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1; 4657 nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE); 4658 nvme_blocks_needed++; 4659 4660 sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth; 4661 ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL); 4662 if (!ioc->pcie_sg_lookup) { 4663 ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n"); 4664 goto out; 4665 } 4666 sz = nvme_blocks_needed * ioc->page_size; 4667 ioc->pcie_sgl_dma_pool = 4668 dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz, 16, 0); 4669 if (!ioc->pcie_sgl_dma_pool) { 4670 ioc_info(ioc, "PCIe SGL pool: dma_pool_create failed\n"); 4671 goto out; 4672 } 4673 4674 ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz; 4675 ioc->chains_per_prp_buffer = min(ioc->chains_per_prp_buffer, 4676 ioc->chains_needed_per_io); 4677 4678 for (i = 0; i < ioc->scsiio_depth; i++) { 4679 ioc->pcie_sg_lookup[i].pcie_sgl = dma_pool_alloc( 4680 ioc->pcie_sgl_dma_pool, GFP_KERNEL, 4681 &ioc->pcie_sg_lookup[i].pcie_sgl_dma); 4682 if (!ioc->pcie_sg_lookup[i].pcie_sgl) { 4683 ioc_info(ioc, "PCIe SGL pool: dma_pool_alloc failed\n"); 4684 goto out; 4685 } 4686 for (j = 0; j < ioc->chains_per_prp_buffer; j++) { 4687 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 4688 ct->chain_buffer = 4689 ioc->pcie_sg_lookup[i].pcie_sgl + 4690 (j * ioc->chain_segment_sz); 4691 ct->chain_buffer_dma = 4692 ioc->pcie_sg_lookup[i].pcie_sgl_dma + 4693 (j * ioc->chain_segment_sz); 4694 } 4695 } 4696 4697 dinitprintk(ioc, 4698 ioc_info(ioc, "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n", 4699 ioc->scsiio_depth, sz, 4700 (sz * ioc->scsiio_depth) / 1024)); 4701 dinitprintk(ioc, 4702 ioc_info(ioc, "Number of chains can fit in a PRP page(%d)\n", 4703 ioc->chains_per_prp_buffer)); 4704 total_sz += sz * ioc->scsiio_depth; 4705 } 4706 4707 ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev, 4708 ioc->chain_segment_sz, 16, 0); 4709 if (!ioc->chain_dma_pool) { 4710 ioc_err(ioc, "chain_dma_pool: dma_pool_create failed\n"); 4711 goto out; 4712 } 4713 for (i = 0; i < ioc->scsiio_depth; i++) { 4714 for (j = ioc->chains_per_prp_buffer; 4715 j < ioc->chains_needed_per_io; j++) { 4716 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 4717 ct->chain_buffer = dma_pool_alloc( 4718 ioc->chain_dma_pool, GFP_KERNEL, 4719 &ct->chain_buffer_dma); 4720 if (!ct->chain_buffer) { 4721 ioc_err(ioc, "chain_lookup: pci_pool_alloc failed\n"); 4722 _base_release_memory_pools(ioc); 4723 goto out; 4724 } 4725 } 4726 total_sz += ioc->chain_segment_sz; 4727 } 4728 4729 dinitprintk(ioc, 4730 ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n", 4731 ioc->chain_depth, ioc->chain_segment_sz, 4732 (ioc->chain_depth * ioc->chain_segment_sz) / 1024)); 4733 4734 /* sense buffers, 4 byte align */ 4735 sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE; 4736 ioc->sense_dma_pool = dma_pool_create("sense pool", &ioc->pdev->dev, sz, 4737 4, 0); 4738 if (!ioc->sense_dma_pool) { 4739 ioc_err(ioc, "sense pool: dma_pool_create failed\n"); 4740 goto out; 4741 } 4742 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL, 4743 &ioc->sense_dma); 4744 if (!ioc->sense) { 4745 ioc_err(ioc, "sense pool: dma_pool_alloc failed\n"); 4746 goto out; 4747 } 4748 /* sense buffer requires to be in same 4 gb region. 4749 * Below function will check the same. 4750 * In case of failure, new pci pool will be created with updated 4751 * alignment. Older allocation and pool will be destroyed. 4752 * Alignment will be used such a way that next allocation if 4753 * success, will always meet same 4gb region requirement. 4754 * Actual requirement is not alignment, but we need start and end of 4755 * DMA address must have same upper 32 bit address. 4756 */ 4757 if (!is_MSB_are_same((long)ioc->sense, sz)) { 4758 //Release Sense pool & Reallocate 4759 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma); 4760 dma_pool_destroy(ioc->sense_dma_pool); 4761 ioc->sense = NULL; 4762 4763 ioc->sense_dma_pool = 4764 dma_pool_create("sense pool", &ioc->pdev->dev, sz, 4765 roundup_pow_of_two(sz), 0); 4766 if (!ioc->sense_dma_pool) { 4767 ioc_err(ioc, "sense pool: pci_pool_create failed\n"); 4768 goto out; 4769 } 4770 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL, 4771 &ioc->sense_dma); 4772 if (!ioc->sense) { 4773 ioc_err(ioc, "sense pool: pci_pool_alloc failed\n"); 4774 goto out; 4775 } 4776 } 4777 dinitprintk(ioc, 4778 ioc_info(ioc, "sense pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n", 4779 ioc->sense, ioc->scsiio_depth, 4780 SCSI_SENSE_BUFFERSIZE, sz / 1024)); 4781 dinitprintk(ioc, 4782 ioc_info(ioc, "sense_dma(0x%llx)\n", 4783 (unsigned long long)ioc->sense_dma)); 4784 total_sz += sz; 4785 4786 /* reply pool, 4 byte align */ 4787 sz = ioc->reply_free_queue_depth * ioc->reply_sz; 4788 ioc->reply_dma_pool = dma_pool_create("reply pool", &ioc->pdev->dev, sz, 4789 4, 0); 4790 if (!ioc->reply_dma_pool) { 4791 ioc_err(ioc, "reply pool: dma_pool_create failed\n"); 4792 goto out; 4793 } 4794 ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL, 4795 &ioc->reply_dma); 4796 if (!ioc->reply) { 4797 ioc_err(ioc, "reply pool: dma_pool_alloc failed\n"); 4798 goto out; 4799 } 4800 ioc->reply_dma_min_address = (u32)(ioc->reply_dma); 4801 ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz; 4802 dinitprintk(ioc, 4803 ioc_info(ioc, "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n", 4804 ioc->reply, ioc->reply_free_queue_depth, 4805 ioc->reply_sz, sz / 1024)); 4806 dinitprintk(ioc, 4807 ioc_info(ioc, "reply_dma(0x%llx)\n", 4808 (unsigned long long)ioc->reply_dma)); 4809 total_sz += sz; 4810 4811 /* reply free queue, 16 byte align */ 4812 sz = ioc->reply_free_queue_depth * 4; 4813 ioc->reply_free_dma_pool = dma_pool_create("reply_free pool", 4814 &ioc->pdev->dev, sz, 16, 0); 4815 if (!ioc->reply_free_dma_pool) { 4816 ioc_err(ioc, "reply_free pool: dma_pool_create failed\n"); 4817 goto out; 4818 } 4819 ioc->reply_free = dma_pool_zalloc(ioc->reply_free_dma_pool, GFP_KERNEL, 4820 &ioc->reply_free_dma); 4821 if (!ioc->reply_free) { 4822 ioc_err(ioc, "reply_free pool: dma_pool_alloc failed\n"); 4823 goto out; 4824 } 4825 dinitprintk(ioc, 4826 ioc_info(ioc, "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n", 4827 ioc->reply_free, ioc->reply_free_queue_depth, 4828 4, sz / 1024)); 4829 dinitprintk(ioc, 4830 ioc_info(ioc, "reply_free_dma (0x%llx)\n", 4831 (unsigned long long)ioc->reply_free_dma)); 4832 total_sz += sz; 4833 4834 if (ioc->rdpq_array_enable) { 4835 reply_post_free_array_sz = ioc->reply_queue_count * 4836 sizeof(Mpi2IOCInitRDPQArrayEntry); 4837 ioc->reply_post_free_array_dma_pool = 4838 dma_pool_create("reply_post_free_array pool", 4839 &ioc->pdev->dev, reply_post_free_array_sz, 16, 0); 4840 if (!ioc->reply_post_free_array_dma_pool) { 4841 dinitprintk(ioc, 4842 ioc_info(ioc, "reply_post_free_array pool: dma_pool_create failed\n")); 4843 goto out; 4844 } 4845 ioc->reply_post_free_array = 4846 dma_pool_alloc(ioc->reply_post_free_array_dma_pool, 4847 GFP_KERNEL, &ioc->reply_post_free_array_dma); 4848 if (!ioc->reply_post_free_array) { 4849 dinitprintk(ioc, 4850 ioc_info(ioc, "reply_post_free_array pool: dma_pool_alloc failed\n")); 4851 goto out; 4852 } 4853 } 4854 ioc->config_page_sz = 512; 4855 ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev, 4856 ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL); 4857 if (!ioc->config_page) { 4858 ioc_err(ioc, "config page: dma_pool_alloc failed\n"); 4859 goto out; 4860 } 4861 dinitprintk(ioc, 4862 ioc_info(ioc, "config page(0x%p): size(%d)\n", 4863 ioc->config_page, ioc->config_page_sz)); 4864 dinitprintk(ioc, 4865 ioc_info(ioc, "config_page_dma(0x%llx)\n", 4866 (unsigned long long)ioc->config_page_dma)); 4867 total_sz += ioc->config_page_sz; 4868 4869 ioc_info(ioc, "Allocated physical memory: size(%d kB)\n", 4870 total_sz / 1024); 4871 ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n", 4872 ioc->shost->can_queue, facts->RequestCredit); 4873 ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n", 4874 ioc->shost->sg_tablesize); 4875 return 0; 4876 4877 out: 4878 return -ENOMEM; 4879 } 4880 4881 /** 4882 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter. 4883 * @ioc: Pointer to MPT_ADAPTER structure 4884 * @cooked: Request raw or cooked IOC state 4885 * 4886 * Return: all IOC Doorbell register bits if cooked==0, else just the 4887 * Doorbell bits in MPI_IOC_STATE_MASK. 4888 */ 4889 u32 4890 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked) 4891 { 4892 u32 s, sc; 4893 4894 s = ioc->base_readl(&ioc->chip->Doorbell); 4895 sc = s & MPI2_IOC_STATE_MASK; 4896 return cooked ? sc : s; 4897 } 4898 4899 /** 4900 * _base_wait_on_iocstate - waiting on a particular ioc state 4901 * @ioc: ? 4902 * @ioc_state: controller state { READY, OPERATIONAL, or RESET } 4903 * @timeout: timeout in second 4904 * 4905 * Return: 0 for success, non-zero for failure. 4906 */ 4907 static int 4908 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout) 4909 { 4910 u32 count, cntdn; 4911 u32 current_state; 4912 4913 count = 0; 4914 cntdn = 1000 * timeout; 4915 do { 4916 current_state = mpt3sas_base_get_iocstate(ioc, 1); 4917 if (current_state == ioc_state) 4918 return 0; 4919 if (count && current_state == MPI2_IOC_STATE_FAULT) 4920 break; 4921 4922 usleep_range(1000, 1500); 4923 count++; 4924 } while (--cntdn); 4925 4926 return current_state; 4927 } 4928 4929 /** 4930 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by 4931 * a write to the doorbell) 4932 * @ioc: per adapter object 4933 * 4934 * Return: 0 for success, non-zero for failure. 4935 * 4936 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell. 4937 */ 4938 static int 4939 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc); 4940 4941 static int 4942 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout) 4943 { 4944 u32 cntdn, count; 4945 u32 int_status; 4946 4947 count = 0; 4948 cntdn = 1000 * timeout; 4949 do { 4950 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 4951 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 4952 dhsprintk(ioc, 4953 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 4954 __func__, count, timeout)); 4955 return 0; 4956 } 4957 4958 usleep_range(1000, 1500); 4959 count++; 4960 } while (--cntdn); 4961 4962 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 4963 __func__, count, int_status); 4964 return -EFAULT; 4965 } 4966 4967 static int 4968 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout) 4969 { 4970 u32 cntdn, count; 4971 u32 int_status; 4972 4973 count = 0; 4974 cntdn = 2000 * timeout; 4975 do { 4976 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 4977 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 4978 dhsprintk(ioc, 4979 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 4980 __func__, count, timeout)); 4981 return 0; 4982 } 4983 4984 udelay(500); 4985 count++; 4986 } while (--cntdn); 4987 4988 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 4989 __func__, count, int_status); 4990 return -EFAULT; 4991 4992 } 4993 4994 /** 4995 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell. 4996 * @ioc: per adapter object 4997 * @timeout: timeout in second 4998 * 4999 * Return: 0 for success, non-zero for failure. 5000 * 5001 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to 5002 * doorbell. 5003 */ 5004 static int 5005 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout) 5006 { 5007 u32 cntdn, count; 5008 u32 int_status; 5009 u32 doorbell; 5010 5011 count = 0; 5012 cntdn = 1000 * timeout; 5013 do { 5014 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 5015 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) { 5016 dhsprintk(ioc, 5017 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 5018 __func__, count, timeout)); 5019 return 0; 5020 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 5021 doorbell = ioc->base_readl(&ioc->chip->Doorbell); 5022 if ((doorbell & MPI2_IOC_STATE_MASK) == 5023 MPI2_IOC_STATE_FAULT) { 5024 mpt3sas_base_fault_info(ioc , doorbell); 5025 return -EFAULT; 5026 } 5027 } else if (int_status == 0xFFFFFFFF) 5028 goto out; 5029 5030 usleep_range(1000, 1500); 5031 count++; 5032 } while (--cntdn); 5033 5034 out: 5035 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 5036 __func__, count, int_status); 5037 return -EFAULT; 5038 } 5039 5040 /** 5041 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use 5042 * @ioc: per adapter object 5043 * @timeout: timeout in second 5044 * 5045 * Return: 0 for success, non-zero for failure. 5046 */ 5047 static int 5048 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout) 5049 { 5050 u32 cntdn, count; 5051 u32 doorbell_reg; 5052 5053 count = 0; 5054 cntdn = 1000 * timeout; 5055 do { 5056 doorbell_reg = ioc->base_readl(&ioc->chip->Doorbell); 5057 if (!(doorbell_reg & MPI2_DOORBELL_USED)) { 5058 dhsprintk(ioc, 5059 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 5060 __func__, count, timeout)); 5061 return 0; 5062 } 5063 5064 usleep_range(1000, 1500); 5065 count++; 5066 } while (--cntdn); 5067 5068 ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n", 5069 __func__, count, doorbell_reg); 5070 return -EFAULT; 5071 } 5072 5073 /** 5074 * _base_send_ioc_reset - send doorbell reset 5075 * @ioc: per adapter object 5076 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET 5077 * @timeout: timeout in second 5078 * 5079 * Return: 0 for success, non-zero for failure. 5080 */ 5081 static int 5082 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout) 5083 { 5084 u32 ioc_state; 5085 int r = 0; 5086 5087 if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) { 5088 ioc_err(ioc, "%s: unknown reset_type\n", __func__); 5089 return -EFAULT; 5090 } 5091 5092 if (!(ioc->facts.IOCCapabilities & 5093 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY)) 5094 return -EFAULT; 5095 5096 ioc_info(ioc, "sending message unit reset !!\n"); 5097 5098 writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT, 5099 &ioc->chip->Doorbell); 5100 if ((_base_wait_for_doorbell_ack(ioc, 15))) { 5101 r = -EFAULT; 5102 goto out; 5103 } 5104 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout); 5105 if (ioc_state) { 5106 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 5107 __func__, ioc_state); 5108 r = -EFAULT; 5109 goto out; 5110 } 5111 out: 5112 ioc_info(ioc, "message unit reset: %s\n", 5113 r == 0 ? "SUCCESS" : "FAILED"); 5114 return r; 5115 } 5116 5117 /** 5118 * mpt3sas_wait_for_ioc - IOC's operational state is checked here. 5119 * @ioc: per adapter object 5120 * @wait_count: timeout in seconds 5121 * 5122 * Return: Waits up to timeout seconds for the IOC to 5123 * become operational. Returns 0 if IOC is present 5124 * and operational; otherwise returns -EFAULT. 5125 */ 5126 5127 int 5128 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout) 5129 { 5130 int wait_state_count = 0; 5131 u32 ioc_state; 5132 5133 do { 5134 ioc_state = mpt3sas_base_get_iocstate(ioc, 1); 5135 if (ioc_state == MPI2_IOC_STATE_OPERATIONAL) 5136 break; 5137 ssleep(1); 5138 ioc_info(ioc, "%s: waiting for operational state(count=%d)\n", 5139 __func__, ++wait_state_count); 5140 } while (--timeout); 5141 if (!timeout) { 5142 ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__); 5143 return -EFAULT; 5144 } 5145 if (wait_state_count) 5146 ioc_info(ioc, "ioc is operational\n"); 5147 return 0; 5148 } 5149 5150 /** 5151 * _base_handshake_req_reply_wait - send request thru doorbell interface 5152 * @ioc: per adapter object 5153 * @request_bytes: request length 5154 * @request: pointer having request payload 5155 * @reply_bytes: reply length 5156 * @reply: pointer to reply payload 5157 * @timeout: timeout in second 5158 * 5159 * Return: 0 for success, non-zero for failure. 5160 */ 5161 static int 5162 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes, 5163 u32 *request, int reply_bytes, u16 *reply, int timeout) 5164 { 5165 MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply; 5166 int i; 5167 u8 failed; 5168 __le32 *mfp; 5169 5170 /* make sure doorbell is not in use */ 5171 if ((ioc->base_readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) { 5172 ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__); 5173 return -EFAULT; 5174 } 5175 5176 /* clear pending doorbell interrupts from previous state changes */ 5177 if (ioc->base_readl(&ioc->chip->HostInterruptStatus) & 5178 MPI2_HIS_IOC2SYS_DB_STATUS) 5179 writel(0, &ioc->chip->HostInterruptStatus); 5180 5181 /* send message to ioc */ 5182 writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) | 5183 ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)), 5184 &ioc->chip->Doorbell); 5185 5186 if ((_base_spin_on_doorbell_int(ioc, 5))) { 5187 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 5188 __LINE__); 5189 return -EFAULT; 5190 } 5191 writel(0, &ioc->chip->HostInterruptStatus); 5192 5193 if ((_base_wait_for_doorbell_ack(ioc, 5))) { 5194 ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n", 5195 __LINE__); 5196 return -EFAULT; 5197 } 5198 5199 /* send message 32-bits at a time */ 5200 for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) { 5201 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell); 5202 if ((_base_wait_for_doorbell_ack(ioc, 5))) 5203 failed = 1; 5204 } 5205 5206 if (failed) { 5207 ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n", 5208 __LINE__); 5209 return -EFAULT; 5210 } 5211 5212 /* now wait for the reply */ 5213 if ((_base_wait_for_doorbell_int(ioc, timeout))) { 5214 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 5215 __LINE__); 5216 return -EFAULT; 5217 } 5218 5219 /* read the first two 16-bits, it gives the total length of the reply */ 5220 reply[0] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell) 5221 & MPI2_DOORBELL_DATA_MASK); 5222 writel(0, &ioc->chip->HostInterruptStatus); 5223 if ((_base_wait_for_doorbell_int(ioc, 5))) { 5224 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 5225 __LINE__); 5226 return -EFAULT; 5227 } 5228 reply[1] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell) 5229 & MPI2_DOORBELL_DATA_MASK); 5230 writel(0, &ioc->chip->HostInterruptStatus); 5231 5232 for (i = 2; i < default_reply->MsgLength * 2; i++) { 5233 if ((_base_wait_for_doorbell_int(ioc, 5))) { 5234 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 5235 __LINE__); 5236 return -EFAULT; 5237 } 5238 if (i >= reply_bytes/2) /* overflow case */ 5239 ioc->base_readl(&ioc->chip->Doorbell); 5240 else 5241 reply[i] = le16_to_cpu( 5242 ioc->base_readl(&ioc->chip->Doorbell) 5243 & MPI2_DOORBELL_DATA_MASK); 5244 writel(0, &ioc->chip->HostInterruptStatus); 5245 } 5246 5247 _base_wait_for_doorbell_int(ioc, 5); 5248 if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) { 5249 dhsprintk(ioc, 5250 ioc_info(ioc, "doorbell is in use (line=%d)\n", 5251 __LINE__)); 5252 } 5253 writel(0, &ioc->chip->HostInterruptStatus); 5254 5255 if (ioc->logging_level & MPT_DEBUG_INIT) { 5256 mfp = (__le32 *)reply; 5257 pr_info("\toffset:data\n"); 5258 for (i = 0; i < reply_bytes/4; i++) 5259 pr_info("\t[0x%02x]:%08x\n", i*4, 5260 le32_to_cpu(mfp[i])); 5261 } 5262 return 0; 5263 } 5264 5265 /** 5266 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW 5267 * @ioc: per adapter object 5268 * @mpi_reply: the reply payload from FW 5269 * @mpi_request: the request payload sent to FW 5270 * 5271 * The SAS IO Unit Control Request message allows the host to perform low-level 5272 * operations, such as resets on the PHYs of the IO Unit, also allows the host 5273 * to obtain the IOC assigned device handles for a device if it has other 5274 * identifying information about the device, in addition allows the host to 5275 * remove IOC resources associated with the device. 5276 * 5277 * Return: 0 for success, non-zero for failure. 5278 */ 5279 int 5280 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc, 5281 Mpi2SasIoUnitControlReply_t *mpi_reply, 5282 Mpi2SasIoUnitControlRequest_t *mpi_request) 5283 { 5284 u16 smid; 5285 u8 issue_reset = 0; 5286 int rc; 5287 void *request; 5288 5289 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 5290 5291 mutex_lock(&ioc->base_cmds.mutex); 5292 5293 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) { 5294 ioc_err(ioc, "%s: base_cmd in use\n", __func__); 5295 rc = -EAGAIN; 5296 goto out; 5297 } 5298 5299 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT); 5300 if (rc) 5301 goto out; 5302 5303 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 5304 if (!smid) { 5305 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 5306 rc = -EAGAIN; 5307 goto out; 5308 } 5309 5310 rc = 0; 5311 ioc->base_cmds.status = MPT3_CMD_PENDING; 5312 request = mpt3sas_base_get_msg_frame(ioc, smid); 5313 ioc->base_cmds.smid = smid; 5314 memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)); 5315 if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET || 5316 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) 5317 ioc->ioc_link_reset_in_progress = 1; 5318 init_completion(&ioc->base_cmds.done); 5319 mpt3sas_base_put_smid_default(ioc, smid); 5320 wait_for_completion_timeout(&ioc->base_cmds.done, 5321 msecs_to_jiffies(10000)); 5322 if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET || 5323 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) && 5324 ioc->ioc_link_reset_in_progress) 5325 ioc->ioc_link_reset_in_progress = 0; 5326 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 5327 issue_reset = 5328 mpt3sas_base_check_cmd_timeout(ioc, 5329 ioc->base_cmds.status, mpi_request, 5330 sizeof(Mpi2SasIoUnitControlRequest_t)/4); 5331 goto issue_host_reset; 5332 } 5333 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) 5334 memcpy(mpi_reply, ioc->base_cmds.reply, 5335 sizeof(Mpi2SasIoUnitControlReply_t)); 5336 else 5337 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t)); 5338 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 5339 goto out; 5340 5341 issue_host_reset: 5342 if (issue_reset) 5343 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 5344 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 5345 rc = -EFAULT; 5346 out: 5347 mutex_unlock(&ioc->base_cmds.mutex); 5348 return rc; 5349 } 5350 5351 /** 5352 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device 5353 * @ioc: per adapter object 5354 * @mpi_reply: the reply payload from FW 5355 * @mpi_request: the request payload sent to FW 5356 * 5357 * The SCSI Enclosure Processor request message causes the IOC to 5358 * communicate with SES devices to control LED status signals. 5359 * 5360 * Return: 0 for success, non-zero for failure. 5361 */ 5362 int 5363 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc, 5364 Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request) 5365 { 5366 u16 smid; 5367 u8 issue_reset = 0; 5368 int rc; 5369 void *request; 5370 5371 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 5372 5373 mutex_lock(&ioc->base_cmds.mutex); 5374 5375 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) { 5376 ioc_err(ioc, "%s: base_cmd in use\n", __func__); 5377 rc = -EAGAIN; 5378 goto out; 5379 } 5380 5381 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT); 5382 if (rc) 5383 goto out; 5384 5385 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 5386 if (!smid) { 5387 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 5388 rc = -EAGAIN; 5389 goto out; 5390 } 5391 5392 rc = 0; 5393 ioc->base_cmds.status = MPT3_CMD_PENDING; 5394 request = mpt3sas_base_get_msg_frame(ioc, smid); 5395 ioc->base_cmds.smid = smid; 5396 memcpy(request, mpi_request, sizeof(Mpi2SepReply_t)); 5397 init_completion(&ioc->base_cmds.done); 5398 mpt3sas_base_put_smid_default(ioc, smid); 5399 wait_for_completion_timeout(&ioc->base_cmds.done, 5400 msecs_to_jiffies(10000)); 5401 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 5402 issue_reset = 5403 mpt3sas_base_check_cmd_timeout(ioc, 5404 ioc->base_cmds.status, mpi_request, 5405 sizeof(Mpi2SepRequest_t)/4); 5406 goto issue_host_reset; 5407 } 5408 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) 5409 memcpy(mpi_reply, ioc->base_cmds.reply, 5410 sizeof(Mpi2SepReply_t)); 5411 else 5412 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t)); 5413 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 5414 goto out; 5415 5416 issue_host_reset: 5417 if (issue_reset) 5418 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 5419 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 5420 rc = -EFAULT; 5421 out: 5422 mutex_unlock(&ioc->base_cmds.mutex); 5423 return rc; 5424 } 5425 5426 /** 5427 * _base_get_port_facts - obtain port facts reply and save in ioc 5428 * @ioc: per adapter object 5429 * @port: ? 5430 * 5431 * Return: 0 for success, non-zero for failure. 5432 */ 5433 static int 5434 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port) 5435 { 5436 Mpi2PortFactsRequest_t mpi_request; 5437 Mpi2PortFactsReply_t mpi_reply; 5438 struct mpt3sas_port_facts *pfacts; 5439 int mpi_reply_sz, mpi_request_sz, r; 5440 5441 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 5442 5443 mpi_reply_sz = sizeof(Mpi2PortFactsReply_t); 5444 mpi_request_sz = sizeof(Mpi2PortFactsRequest_t); 5445 memset(&mpi_request, 0, mpi_request_sz); 5446 mpi_request.Function = MPI2_FUNCTION_PORT_FACTS; 5447 mpi_request.PortNumber = port; 5448 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz, 5449 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5); 5450 5451 if (r != 0) { 5452 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 5453 return r; 5454 } 5455 5456 pfacts = &ioc->pfacts[port]; 5457 memset(pfacts, 0, sizeof(struct mpt3sas_port_facts)); 5458 pfacts->PortNumber = mpi_reply.PortNumber; 5459 pfacts->VP_ID = mpi_reply.VP_ID; 5460 pfacts->VF_ID = mpi_reply.VF_ID; 5461 pfacts->MaxPostedCmdBuffers = 5462 le16_to_cpu(mpi_reply.MaxPostedCmdBuffers); 5463 5464 return 0; 5465 } 5466 5467 /** 5468 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL 5469 * @ioc: per adapter object 5470 * @timeout: 5471 * 5472 * Return: 0 for success, non-zero for failure. 5473 */ 5474 static int 5475 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout) 5476 { 5477 u32 ioc_state; 5478 int rc; 5479 5480 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 5481 5482 if (ioc->pci_error_recovery) { 5483 dfailprintk(ioc, 5484 ioc_info(ioc, "%s: host in pci error recovery\n", 5485 __func__)); 5486 return -EFAULT; 5487 } 5488 5489 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 5490 dhsprintk(ioc, 5491 ioc_info(ioc, "%s: ioc_state(0x%08x)\n", 5492 __func__, ioc_state)); 5493 5494 if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) || 5495 (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL) 5496 return 0; 5497 5498 if (ioc_state & MPI2_DOORBELL_USED) { 5499 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n")); 5500 goto issue_diag_reset; 5501 } 5502 5503 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 5504 mpt3sas_base_fault_info(ioc, ioc_state & 5505 MPI2_DOORBELL_DATA_MASK); 5506 goto issue_diag_reset; 5507 } 5508 5509 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout); 5510 if (ioc_state) { 5511 dfailprintk(ioc, 5512 ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 5513 __func__, ioc_state)); 5514 return -EFAULT; 5515 } 5516 5517 issue_diag_reset: 5518 rc = _base_diag_reset(ioc); 5519 return rc; 5520 } 5521 5522 /** 5523 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc 5524 * @ioc: per adapter object 5525 * 5526 * Return: 0 for success, non-zero for failure. 5527 */ 5528 static int 5529 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc) 5530 { 5531 Mpi2IOCFactsRequest_t mpi_request; 5532 Mpi2IOCFactsReply_t mpi_reply; 5533 struct mpt3sas_facts *facts; 5534 int mpi_reply_sz, mpi_request_sz, r; 5535 5536 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 5537 5538 r = _base_wait_for_iocstate(ioc, 10); 5539 if (r) { 5540 dfailprintk(ioc, 5541 ioc_info(ioc, "%s: failed getting to correct state\n", 5542 __func__)); 5543 return r; 5544 } 5545 mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t); 5546 mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t); 5547 memset(&mpi_request, 0, mpi_request_sz); 5548 mpi_request.Function = MPI2_FUNCTION_IOC_FACTS; 5549 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz, 5550 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5); 5551 5552 if (r != 0) { 5553 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 5554 return r; 5555 } 5556 5557 facts = &ioc->facts; 5558 memset(facts, 0, sizeof(struct mpt3sas_facts)); 5559 facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion); 5560 facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion); 5561 facts->VP_ID = mpi_reply.VP_ID; 5562 facts->VF_ID = mpi_reply.VF_ID; 5563 facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions); 5564 facts->MaxChainDepth = mpi_reply.MaxChainDepth; 5565 facts->WhoInit = mpi_reply.WhoInit; 5566 facts->NumberOfPorts = mpi_reply.NumberOfPorts; 5567 facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors; 5568 if (ioc->msix_enable && (facts->MaxMSIxVectors <= 5569 MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc))) 5570 ioc->combined_reply_queue = 0; 5571 facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit); 5572 facts->MaxReplyDescriptorPostQueueDepth = 5573 le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth); 5574 facts->ProductID = le16_to_cpu(mpi_reply.ProductID); 5575 facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities); 5576 if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)) 5577 ioc->ir_firmware = 1; 5578 if ((facts->IOCCapabilities & 5579 MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices)) 5580 ioc->rdpq_array_capable = 1; 5581 facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word); 5582 facts->IOCRequestFrameSize = 5583 le16_to_cpu(mpi_reply.IOCRequestFrameSize); 5584 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 5585 facts->IOCMaxChainSegmentSize = 5586 le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize); 5587 } 5588 facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators); 5589 facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets); 5590 ioc->shost->max_id = -1; 5591 facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders); 5592 facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures); 5593 facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags); 5594 facts->HighPriorityCredit = 5595 le16_to_cpu(mpi_reply.HighPriorityCredit); 5596 facts->ReplyFrameSize = mpi_reply.ReplyFrameSize; 5597 facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle); 5598 facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize; 5599 5600 /* 5601 * Get the Page Size from IOC Facts. If it's 0, default to 4k. 5602 */ 5603 ioc->page_size = 1 << facts->CurrentHostPageSize; 5604 if (ioc->page_size == 1) { 5605 ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n"); 5606 ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K; 5607 } 5608 dinitprintk(ioc, 5609 ioc_info(ioc, "CurrentHostPageSize(%d)\n", 5610 facts->CurrentHostPageSize)); 5611 5612 dinitprintk(ioc, 5613 ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n", 5614 facts->RequestCredit, facts->MaxChainDepth)); 5615 dinitprintk(ioc, 5616 ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n", 5617 facts->IOCRequestFrameSize * 4, 5618 facts->ReplyFrameSize * 4)); 5619 return 0; 5620 } 5621 5622 /** 5623 * _base_send_ioc_init - send ioc_init to firmware 5624 * @ioc: per adapter object 5625 * 5626 * Return: 0 for success, non-zero for failure. 5627 */ 5628 static int 5629 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc) 5630 { 5631 Mpi2IOCInitRequest_t mpi_request; 5632 Mpi2IOCInitReply_t mpi_reply; 5633 int i, r = 0; 5634 ktime_t current_time; 5635 u16 ioc_status; 5636 u32 reply_post_free_array_sz = 0; 5637 5638 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 5639 5640 memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t)); 5641 mpi_request.Function = MPI2_FUNCTION_IOC_INIT; 5642 mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER; 5643 mpi_request.VF_ID = 0; /* TODO */ 5644 mpi_request.VP_ID = 0; 5645 mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged); 5646 mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION); 5647 mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K; 5648 5649 if (_base_is_controller_msix_enabled(ioc)) 5650 mpi_request.HostMSIxVectors = ioc->reply_queue_count; 5651 mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4); 5652 mpi_request.ReplyDescriptorPostQueueDepth = 5653 cpu_to_le16(ioc->reply_post_queue_depth); 5654 mpi_request.ReplyFreeQueueDepth = 5655 cpu_to_le16(ioc->reply_free_queue_depth); 5656 5657 mpi_request.SenseBufferAddressHigh = 5658 cpu_to_le32((u64)ioc->sense_dma >> 32); 5659 mpi_request.SystemReplyAddressHigh = 5660 cpu_to_le32((u64)ioc->reply_dma >> 32); 5661 mpi_request.SystemRequestFrameBaseAddress = 5662 cpu_to_le64((u64)ioc->request_dma); 5663 mpi_request.ReplyFreeQueueAddress = 5664 cpu_to_le64((u64)ioc->reply_free_dma); 5665 5666 if (ioc->rdpq_array_enable) { 5667 reply_post_free_array_sz = ioc->reply_queue_count * 5668 sizeof(Mpi2IOCInitRDPQArrayEntry); 5669 memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz); 5670 for (i = 0; i < ioc->reply_queue_count; i++) 5671 ioc->reply_post_free_array[i].RDPQBaseAddress = 5672 cpu_to_le64( 5673 (u64)ioc->reply_post[i].reply_post_free_dma); 5674 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE; 5675 mpi_request.ReplyDescriptorPostQueueAddress = 5676 cpu_to_le64((u64)ioc->reply_post_free_array_dma); 5677 } else { 5678 mpi_request.ReplyDescriptorPostQueueAddress = 5679 cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma); 5680 } 5681 5682 /* This time stamp specifies number of milliseconds 5683 * since epoch ~ midnight January 1, 1970. 5684 */ 5685 current_time = ktime_get_real(); 5686 mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time)); 5687 5688 if (ioc->logging_level & MPT_DEBUG_INIT) { 5689 __le32 *mfp; 5690 int i; 5691 5692 mfp = (__le32 *)&mpi_request; 5693 pr_info("\toffset:data\n"); 5694 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++) 5695 pr_info("\t[0x%02x]:%08x\n", i*4, 5696 le32_to_cpu(mfp[i])); 5697 } 5698 5699 r = _base_handshake_req_reply_wait(ioc, 5700 sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request, 5701 sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10); 5702 5703 if (r != 0) { 5704 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 5705 return r; 5706 } 5707 5708 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK; 5709 if (ioc_status != MPI2_IOCSTATUS_SUCCESS || 5710 mpi_reply.IOCLogInfo) { 5711 ioc_err(ioc, "%s: failed\n", __func__); 5712 r = -EIO; 5713 } 5714 5715 return r; 5716 } 5717 5718 /** 5719 * mpt3sas_port_enable_done - command completion routine for port enable 5720 * @ioc: per adapter object 5721 * @smid: system request message index 5722 * @msix_index: MSIX table index supplied by the OS 5723 * @reply: reply message frame(lower 32bit addr) 5724 * 5725 * Return: 1 meaning mf should be freed from _base_interrupt 5726 * 0 means the mf is freed from this function. 5727 */ 5728 u8 5729 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 5730 u32 reply) 5731 { 5732 MPI2DefaultReply_t *mpi_reply; 5733 u16 ioc_status; 5734 5735 if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED) 5736 return 1; 5737 5738 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 5739 if (!mpi_reply) 5740 return 1; 5741 5742 if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE) 5743 return 1; 5744 5745 ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING; 5746 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE; 5747 ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID; 5748 memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4); 5749 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 5750 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) 5751 ioc->port_enable_failed = 1; 5752 5753 if (ioc->is_driver_loading) { 5754 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 5755 mpt3sas_port_enable_complete(ioc); 5756 return 1; 5757 } else { 5758 ioc->start_scan_failed = ioc_status; 5759 ioc->start_scan = 0; 5760 return 1; 5761 } 5762 } 5763 complete(&ioc->port_enable_cmds.done); 5764 return 1; 5765 } 5766 5767 /** 5768 * _base_send_port_enable - send port_enable(discovery stuff) to firmware 5769 * @ioc: per adapter object 5770 * 5771 * Return: 0 for success, non-zero for failure. 5772 */ 5773 static int 5774 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc) 5775 { 5776 Mpi2PortEnableRequest_t *mpi_request; 5777 Mpi2PortEnableReply_t *mpi_reply; 5778 int r = 0; 5779 u16 smid; 5780 u16 ioc_status; 5781 5782 ioc_info(ioc, "sending port enable !!\n"); 5783 5784 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 5785 ioc_err(ioc, "%s: internal command already in use\n", __func__); 5786 return -EAGAIN; 5787 } 5788 5789 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx); 5790 if (!smid) { 5791 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 5792 return -EAGAIN; 5793 } 5794 5795 ioc->port_enable_cmds.status = MPT3_CMD_PENDING; 5796 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 5797 ioc->port_enable_cmds.smid = smid; 5798 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t)); 5799 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE; 5800 5801 init_completion(&ioc->port_enable_cmds.done); 5802 mpt3sas_base_put_smid_default(ioc, smid); 5803 wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ); 5804 if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) { 5805 ioc_err(ioc, "%s: timeout\n", __func__); 5806 _debug_dump_mf(mpi_request, 5807 sizeof(Mpi2PortEnableRequest_t)/4); 5808 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET) 5809 r = -EFAULT; 5810 else 5811 r = -ETIME; 5812 goto out; 5813 } 5814 5815 mpi_reply = ioc->port_enable_cmds.reply; 5816 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 5817 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 5818 ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n", 5819 __func__, ioc_status); 5820 r = -EFAULT; 5821 goto out; 5822 } 5823 5824 out: 5825 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED; 5826 ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED"); 5827 return r; 5828 } 5829 5830 /** 5831 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply) 5832 * @ioc: per adapter object 5833 * 5834 * Return: 0 for success, non-zero for failure. 5835 */ 5836 int 5837 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc) 5838 { 5839 Mpi2PortEnableRequest_t *mpi_request; 5840 u16 smid; 5841 5842 ioc_info(ioc, "sending port enable !!\n"); 5843 5844 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 5845 ioc_err(ioc, "%s: internal command already in use\n", __func__); 5846 return -EAGAIN; 5847 } 5848 5849 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx); 5850 if (!smid) { 5851 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 5852 return -EAGAIN; 5853 } 5854 5855 ioc->port_enable_cmds.status = MPT3_CMD_PENDING; 5856 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 5857 ioc->port_enable_cmds.smid = smid; 5858 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t)); 5859 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE; 5860 5861 mpt3sas_base_put_smid_default(ioc, smid); 5862 return 0; 5863 } 5864 5865 /** 5866 * _base_determine_wait_on_discovery - desposition 5867 * @ioc: per adapter object 5868 * 5869 * Decide whether to wait on discovery to complete. Used to either 5870 * locate boot device, or report volumes ahead of physical devices. 5871 * 5872 * Return: 1 for wait, 0 for don't wait. 5873 */ 5874 static int 5875 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc) 5876 { 5877 /* We wait for discovery to complete if IR firmware is loaded. 5878 * The sas topology events arrive before PD events, so we need time to 5879 * turn on the bit in ioc->pd_handles to indicate PD 5880 * Also, it maybe required to report Volumes ahead of physical 5881 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set. 5882 */ 5883 if (ioc->ir_firmware) 5884 return 1; 5885 5886 /* if no Bios, then we don't need to wait */ 5887 if (!ioc->bios_pg3.BiosVersion) 5888 return 0; 5889 5890 /* Bios is present, then we drop down here. 5891 * 5892 * If there any entries in the Bios Page 2, then we wait 5893 * for discovery to complete. 5894 */ 5895 5896 /* Current Boot Device */ 5897 if ((ioc->bios_pg2.CurrentBootDeviceForm & 5898 MPI2_BIOSPAGE2_FORM_MASK) == 5899 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED && 5900 /* Request Boot Device */ 5901 (ioc->bios_pg2.ReqBootDeviceForm & 5902 MPI2_BIOSPAGE2_FORM_MASK) == 5903 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED && 5904 /* Alternate Request Boot Device */ 5905 (ioc->bios_pg2.ReqAltBootDeviceForm & 5906 MPI2_BIOSPAGE2_FORM_MASK) == 5907 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED) 5908 return 0; 5909 5910 return 1; 5911 } 5912 5913 /** 5914 * _base_unmask_events - turn on notification for this event 5915 * @ioc: per adapter object 5916 * @event: firmware event 5917 * 5918 * The mask is stored in ioc->event_masks. 5919 */ 5920 static void 5921 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event) 5922 { 5923 u32 desired_event; 5924 5925 if (event >= 128) 5926 return; 5927 5928 desired_event = (1 << (event % 32)); 5929 5930 if (event < 32) 5931 ioc->event_masks[0] &= ~desired_event; 5932 else if (event < 64) 5933 ioc->event_masks[1] &= ~desired_event; 5934 else if (event < 96) 5935 ioc->event_masks[2] &= ~desired_event; 5936 else if (event < 128) 5937 ioc->event_masks[3] &= ~desired_event; 5938 } 5939 5940 /** 5941 * _base_event_notification - send event notification 5942 * @ioc: per adapter object 5943 * 5944 * Return: 0 for success, non-zero for failure. 5945 */ 5946 static int 5947 _base_event_notification(struct MPT3SAS_ADAPTER *ioc) 5948 { 5949 Mpi2EventNotificationRequest_t *mpi_request; 5950 u16 smid; 5951 int r = 0; 5952 int i; 5953 5954 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 5955 5956 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 5957 ioc_err(ioc, "%s: internal command already in use\n", __func__); 5958 return -EAGAIN; 5959 } 5960 5961 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 5962 if (!smid) { 5963 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 5964 return -EAGAIN; 5965 } 5966 ioc->base_cmds.status = MPT3_CMD_PENDING; 5967 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 5968 ioc->base_cmds.smid = smid; 5969 memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t)); 5970 mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION; 5971 mpi_request->VF_ID = 0; /* TODO */ 5972 mpi_request->VP_ID = 0; 5973 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 5974 mpi_request->EventMasks[i] = 5975 cpu_to_le32(ioc->event_masks[i]); 5976 init_completion(&ioc->base_cmds.done); 5977 mpt3sas_base_put_smid_default(ioc, smid); 5978 wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ); 5979 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 5980 ioc_err(ioc, "%s: timeout\n", __func__); 5981 _debug_dump_mf(mpi_request, 5982 sizeof(Mpi2EventNotificationRequest_t)/4); 5983 if (ioc->base_cmds.status & MPT3_CMD_RESET) 5984 r = -EFAULT; 5985 else 5986 r = -ETIME; 5987 } else 5988 dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__)); 5989 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 5990 return r; 5991 } 5992 5993 /** 5994 * mpt3sas_base_validate_event_type - validating event types 5995 * @ioc: per adapter object 5996 * @event_type: firmware event 5997 * 5998 * This will turn on firmware event notification when application 5999 * ask for that event. We don't mask events that are already enabled. 6000 */ 6001 void 6002 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type) 6003 { 6004 int i, j; 6005 u32 event_mask, desired_event; 6006 u8 send_update_to_fw; 6007 6008 for (i = 0, send_update_to_fw = 0; i < 6009 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) { 6010 event_mask = ~event_type[i]; 6011 desired_event = 1; 6012 for (j = 0; j < 32; j++) { 6013 if (!(event_mask & desired_event) && 6014 (ioc->event_masks[i] & desired_event)) { 6015 ioc->event_masks[i] &= ~desired_event; 6016 send_update_to_fw = 1; 6017 } 6018 desired_event = (desired_event << 1); 6019 } 6020 } 6021 6022 if (!send_update_to_fw) 6023 return; 6024 6025 mutex_lock(&ioc->base_cmds.mutex); 6026 _base_event_notification(ioc); 6027 mutex_unlock(&ioc->base_cmds.mutex); 6028 } 6029 6030 /** 6031 * _base_diag_reset - the "big hammer" start of day reset 6032 * @ioc: per adapter object 6033 * 6034 * Return: 0 for success, non-zero for failure. 6035 */ 6036 static int 6037 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc) 6038 { 6039 u32 host_diagnostic; 6040 u32 ioc_state; 6041 u32 count; 6042 u32 hcb_size; 6043 6044 ioc_info(ioc, "sending diag reset !!\n"); 6045 6046 drsprintk(ioc, ioc_info(ioc, "clear interrupts\n")); 6047 6048 count = 0; 6049 do { 6050 /* Write magic sequence to WriteSequence register 6051 * Loop until in diagnostic mode 6052 */ 6053 drsprintk(ioc, ioc_info(ioc, "write magic sequence\n")); 6054 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence); 6055 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence); 6056 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence); 6057 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence); 6058 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence); 6059 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence); 6060 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence); 6061 6062 /* wait 100 msec */ 6063 msleep(100); 6064 6065 if (count++ > 20) 6066 goto out; 6067 6068 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic); 6069 drsprintk(ioc, 6070 ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n", 6071 count, host_diagnostic)); 6072 6073 } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0); 6074 6075 hcb_size = ioc->base_readl(&ioc->chip->HCBSize); 6076 6077 drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n")); 6078 writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER, 6079 &ioc->chip->HostDiagnostic); 6080 6081 /*This delay allows the chip PCIe hardware time to finish reset tasks*/ 6082 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000); 6083 6084 /* Approximately 300 second max wait */ 6085 for (count = 0; count < (300000000 / 6086 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) { 6087 6088 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic); 6089 6090 if (host_diagnostic == 0xFFFFFFFF) 6091 goto out; 6092 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER)) 6093 break; 6094 6095 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000); 6096 } 6097 6098 if (host_diagnostic & MPI2_DIAG_HCB_MODE) { 6099 6100 drsprintk(ioc, 6101 ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n")); 6102 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK; 6103 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW; 6104 writel(host_diagnostic, &ioc->chip->HostDiagnostic); 6105 6106 drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n")); 6107 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE, 6108 &ioc->chip->HCBSize); 6109 } 6110 6111 drsprintk(ioc, ioc_info(ioc, "restart the adapter\n")); 6112 writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET, 6113 &ioc->chip->HostDiagnostic); 6114 6115 drsprintk(ioc, 6116 ioc_info(ioc, "disable writes to the diagnostic register\n")); 6117 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence); 6118 6119 drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n")); 6120 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20); 6121 if (ioc_state) { 6122 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 6123 __func__, ioc_state); 6124 goto out; 6125 } 6126 6127 ioc_info(ioc, "diag reset: SUCCESS\n"); 6128 return 0; 6129 6130 out: 6131 ioc_err(ioc, "diag reset: FAILED\n"); 6132 return -EFAULT; 6133 } 6134 6135 /** 6136 * _base_make_ioc_ready - put controller in READY state 6137 * @ioc: per adapter object 6138 * @type: FORCE_BIG_HAMMER or SOFT_RESET 6139 * 6140 * Return: 0 for success, non-zero for failure. 6141 */ 6142 static int 6143 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type) 6144 { 6145 u32 ioc_state; 6146 int rc; 6147 int count; 6148 6149 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6150 6151 if (ioc->pci_error_recovery) 6152 return 0; 6153 6154 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 6155 dhsprintk(ioc, 6156 ioc_info(ioc, "%s: ioc_state(0x%08x)\n", 6157 __func__, ioc_state)); 6158 6159 /* if in RESET state, it should move to READY state shortly */ 6160 count = 0; 6161 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) { 6162 while ((ioc_state & MPI2_IOC_STATE_MASK) != 6163 MPI2_IOC_STATE_READY) { 6164 if (count++ == 10) { 6165 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 6166 __func__, ioc_state); 6167 return -EFAULT; 6168 } 6169 ssleep(1); 6170 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 6171 } 6172 } 6173 6174 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) 6175 return 0; 6176 6177 if (ioc_state & MPI2_DOORBELL_USED) { 6178 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n")); 6179 goto issue_diag_reset; 6180 } 6181 6182 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 6183 mpt3sas_base_fault_info(ioc, ioc_state & 6184 MPI2_DOORBELL_DATA_MASK); 6185 goto issue_diag_reset; 6186 } 6187 6188 if (type == FORCE_BIG_HAMMER) 6189 goto issue_diag_reset; 6190 6191 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL) 6192 if (!(_base_send_ioc_reset(ioc, 6193 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) { 6194 return 0; 6195 } 6196 6197 issue_diag_reset: 6198 rc = _base_diag_reset(ioc); 6199 return rc; 6200 } 6201 6202 /** 6203 * _base_make_ioc_operational - put controller in OPERATIONAL state 6204 * @ioc: per adapter object 6205 * 6206 * Return: 0 for success, non-zero for failure. 6207 */ 6208 static int 6209 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc) 6210 { 6211 int r, i, index; 6212 unsigned long flags; 6213 u32 reply_address; 6214 u16 smid; 6215 struct _tr_list *delayed_tr, *delayed_tr_next; 6216 struct _sc_list *delayed_sc, *delayed_sc_next; 6217 struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next; 6218 u8 hide_flag; 6219 struct adapter_reply_queue *reply_q; 6220 Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig; 6221 6222 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6223 6224 /* clean the delayed target reset list */ 6225 list_for_each_entry_safe(delayed_tr, delayed_tr_next, 6226 &ioc->delayed_tr_list, list) { 6227 list_del(&delayed_tr->list); 6228 kfree(delayed_tr); 6229 } 6230 6231 6232 list_for_each_entry_safe(delayed_tr, delayed_tr_next, 6233 &ioc->delayed_tr_volume_list, list) { 6234 list_del(&delayed_tr->list); 6235 kfree(delayed_tr); 6236 } 6237 6238 list_for_each_entry_safe(delayed_sc, delayed_sc_next, 6239 &ioc->delayed_sc_list, list) { 6240 list_del(&delayed_sc->list); 6241 kfree(delayed_sc); 6242 } 6243 6244 list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next, 6245 &ioc->delayed_event_ack_list, list) { 6246 list_del(&delayed_event_ack->list); 6247 kfree(delayed_event_ack); 6248 } 6249 6250 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 6251 6252 /* hi-priority queue */ 6253 INIT_LIST_HEAD(&ioc->hpr_free_list); 6254 smid = ioc->hi_priority_smid; 6255 for (i = 0; i < ioc->hi_priority_depth; i++, smid++) { 6256 ioc->hpr_lookup[i].cb_idx = 0xFF; 6257 ioc->hpr_lookup[i].smid = smid; 6258 list_add_tail(&ioc->hpr_lookup[i].tracker_list, 6259 &ioc->hpr_free_list); 6260 } 6261 6262 /* internal queue */ 6263 INIT_LIST_HEAD(&ioc->internal_free_list); 6264 smid = ioc->internal_smid; 6265 for (i = 0; i < ioc->internal_depth; i++, smid++) { 6266 ioc->internal_lookup[i].cb_idx = 0xFF; 6267 ioc->internal_lookup[i].smid = smid; 6268 list_add_tail(&ioc->internal_lookup[i].tracker_list, 6269 &ioc->internal_free_list); 6270 } 6271 6272 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 6273 6274 /* initialize Reply Free Queue */ 6275 for (i = 0, reply_address = (u32)ioc->reply_dma ; 6276 i < ioc->reply_free_queue_depth ; i++, reply_address += 6277 ioc->reply_sz) { 6278 ioc->reply_free[i] = cpu_to_le32(reply_address); 6279 if (ioc->is_mcpu_endpoint) 6280 _base_clone_reply_to_sys_mem(ioc, 6281 reply_address, i); 6282 } 6283 6284 /* initialize reply queues */ 6285 if (ioc->is_driver_loading) 6286 _base_assign_reply_queues(ioc); 6287 6288 /* initialize Reply Post Free Queue */ 6289 index = 0; 6290 reply_post_free_contig = ioc->reply_post[0].reply_post_free; 6291 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 6292 /* 6293 * If RDPQ is enabled, switch to the next allocation. 6294 * Otherwise advance within the contiguous region. 6295 */ 6296 if (ioc->rdpq_array_enable) { 6297 reply_q->reply_post_free = 6298 ioc->reply_post[index++].reply_post_free; 6299 } else { 6300 reply_q->reply_post_free = reply_post_free_contig; 6301 reply_post_free_contig += ioc->reply_post_queue_depth; 6302 } 6303 6304 reply_q->reply_post_host_index = 0; 6305 for (i = 0; i < ioc->reply_post_queue_depth; i++) 6306 reply_q->reply_post_free[i].Words = 6307 cpu_to_le64(ULLONG_MAX); 6308 if (!_base_is_controller_msix_enabled(ioc)) 6309 goto skip_init_reply_post_free_queue; 6310 } 6311 skip_init_reply_post_free_queue: 6312 6313 r = _base_send_ioc_init(ioc); 6314 if (r) 6315 return r; 6316 6317 /* initialize reply free host index */ 6318 ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1; 6319 writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex); 6320 6321 /* initialize reply post host index */ 6322 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 6323 if (ioc->combined_reply_queue) 6324 writel((reply_q->msix_index & 7)<< 6325 MPI2_RPHI_MSIX_INDEX_SHIFT, 6326 ioc->replyPostRegisterIndex[reply_q->msix_index/8]); 6327 else 6328 writel(reply_q->msix_index << 6329 MPI2_RPHI_MSIX_INDEX_SHIFT, 6330 &ioc->chip->ReplyPostHostIndex); 6331 6332 if (!_base_is_controller_msix_enabled(ioc)) 6333 goto skip_init_reply_post_host_index; 6334 } 6335 6336 skip_init_reply_post_host_index: 6337 6338 _base_unmask_interrupts(ioc); 6339 6340 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 6341 r = _base_display_fwpkg_version(ioc); 6342 if (r) 6343 return r; 6344 } 6345 6346 _base_static_config_pages(ioc); 6347 r = _base_event_notification(ioc); 6348 if (r) 6349 return r; 6350 6351 if (ioc->is_driver_loading) { 6352 6353 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier 6354 == 0x80) { 6355 hide_flag = (u8) ( 6356 le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) & 6357 MFG_PAGE10_HIDE_SSDS_MASK); 6358 if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK) 6359 ioc->mfg_pg10_hide_flag = hide_flag; 6360 } 6361 6362 ioc->wait_for_discovery_to_complete = 6363 _base_determine_wait_on_discovery(ioc); 6364 6365 return r; /* scan_start and scan_finished support */ 6366 } 6367 6368 r = _base_send_port_enable(ioc); 6369 if (r) 6370 return r; 6371 6372 return r; 6373 } 6374 6375 /** 6376 * mpt3sas_base_free_resources - free resources controller resources 6377 * @ioc: per adapter object 6378 */ 6379 void 6380 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc) 6381 { 6382 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6383 6384 /* synchronizing freeing resource with pci_access_mutex lock */ 6385 mutex_lock(&ioc->pci_access_mutex); 6386 if (ioc->chip_phys && ioc->chip) { 6387 _base_mask_interrupts(ioc); 6388 ioc->shost_recovery = 1; 6389 _base_make_ioc_ready(ioc, SOFT_RESET); 6390 ioc->shost_recovery = 0; 6391 } 6392 6393 mpt3sas_base_unmap_resources(ioc); 6394 mutex_unlock(&ioc->pci_access_mutex); 6395 return; 6396 } 6397 6398 /** 6399 * mpt3sas_base_attach - attach controller instance 6400 * @ioc: per adapter object 6401 * 6402 * Return: 0 for success, non-zero for failure. 6403 */ 6404 int 6405 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc) 6406 { 6407 int r, i; 6408 int cpu_id, last_cpu_id = 0; 6409 6410 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6411 6412 /* setup cpu_msix_table */ 6413 ioc->cpu_count = num_online_cpus(); 6414 for_each_online_cpu(cpu_id) 6415 last_cpu_id = cpu_id; 6416 ioc->cpu_msix_table_sz = last_cpu_id + 1; 6417 ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL); 6418 ioc->reply_queue_count = 1; 6419 if (!ioc->cpu_msix_table) { 6420 dfailprintk(ioc, 6421 ioc_info(ioc, "allocation for cpu_msix_table failed!!!\n")); 6422 r = -ENOMEM; 6423 goto out_free_resources; 6424 } 6425 6426 if (ioc->is_warpdrive) { 6427 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz, 6428 sizeof(resource_size_t *), GFP_KERNEL); 6429 if (!ioc->reply_post_host_index) { 6430 dfailprintk(ioc, 6431 ioc_info(ioc, "allocation for reply_post_host_index failed!!!\n")); 6432 r = -ENOMEM; 6433 goto out_free_resources; 6434 } 6435 } 6436 6437 ioc->rdpq_array_enable_assigned = 0; 6438 ioc->dma_mask = 0; 6439 if (ioc->is_aero_ioc) 6440 ioc->base_readl = &_base_readl_aero; 6441 else 6442 ioc->base_readl = &_base_readl; 6443 r = mpt3sas_base_map_resources(ioc); 6444 if (r) 6445 goto out_free_resources; 6446 6447 pci_set_drvdata(ioc->pdev, ioc->shost); 6448 r = _base_get_ioc_facts(ioc); 6449 if (r) 6450 goto out_free_resources; 6451 6452 switch (ioc->hba_mpi_version_belonged) { 6453 case MPI2_VERSION: 6454 ioc->build_sg_scmd = &_base_build_sg_scmd; 6455 ioc->build_sg = &_base_build_sg; 6456 ioc->build_zero_len_sge = &_base_build_zero_len_sge; 6457 break; 6458 case MPI25_VERSION: 6459 case MPI26_VERSION: 6460 /* 6461 * In SAS3.0, 6462 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and 6463 * Target Status - all require the IEEE formated scatter gather 6464 * elements. 6465 */ 6466 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee; 6467 ioc->build_sg = &_base_build_sg_ieee; 6468 ioc->build_nvme_prp = &_base_build_nvme_prp; 6469 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee; 6470 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t); 6471 6472 break; 6473 } 6474 6475 if (ioc->is_mcpu_endpoint) 6476 ioc->put_smid_scsi_io = &_base_put_smid_mpi_ep_scsi_io; 6477 else 6478 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io; 6479 6480 /* 6481 * These function pointers for other requests that don't 6482 * the require IEEE scatter gather elements. 6483 * 6484 * For example Configuration Pages and SAS IOUNIT Control don't. 6485 */ 6486 ioc->build_sg_mpi = &_base_build_sg; 6487 ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge; 6488 6489 r = _base_make_ioc_ready(ioc, SOFT_RESET); 6490 if (r) 6491 goto out_free_resources; 6492 6493 ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts, 6494 sizeof(struct mpt3sas_port_facts), GFP_KERNEL); 6495 if (!ioc->pfacts) { 6496 r = -ENOMEM; 6497 goto out_free_resources; 6498 } 6499 6500 for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) { 6501 r = _base_get_port_facts(ioc, i); 6502 if (r) 6503 goto out_free_resources; 6504 } 6505 6506 r = _base_allocate_memory_pools(ioc); 6507 if (r) 6508 goto out_free_resources; 6509 6510 init_waitqueue_head(&ioc->reset_wq); 6511 6512 /* allocate memory pd handle bitmask list */ 6513 ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8); 6514 if (ioc->facts.MaxDevHandle % 8) 6515 ioc->pd_handles_sz++; 6516 ioc->pd_handles = kzalloc(ioc->pd_handles_sz, 6517 GFP_KERNEL); 6518 if (!ioc->pd_handles) { 6519 r = -ENOMEM; 6520 goto out_free_resources; 6521 } 6522 ioc->blocking_handles = kzalloc(ioc->pd_handles_sz, 6523 GFP_KERNEL); 6524 if (!ioc->blocking_handles) { 6525 r = -ENOMEM; 6526 goto out_free_resources; 6527 } 6528 6529 /* allocate memory for pending OS device add list */ 6530 ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8); 6531 if (ioc->facts.MaxDevHandle % 8) 6532 ioc->pend_os_device_add_sz++; 6533 ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz, 6534 GFP_KERNEL); 6535 if (!ioc->pend_os_device_add) 6536 goto out_free_resources; 6537 6538 ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz; 6539 ioc->device_remove_in_progress = 6540 kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL); 6541 if (!ioc->device_remove_in_progress) 6542 goto out_free_resources; 6543 6544 ioc->fwfault_debug = mpt3sas_fwfault_debug; 6545 6546 /* base internal command bits */ 6547 mutex_init(&ioc->base_cmds.mutex); 6548 ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 6549 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 6550 6551 /* port_enable command bits */ 6552 ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 6553 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED; 6554 6555 /* transport internal command bits */ 6556 ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 6557 ioc->transport_cmds.status = MPT3_CMD_NOT_USED; 6558 mutex_init(&ioc->transport_cmds.mutex); 6559 6560 /* scsih internal command bits */ 6561 ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 6562 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED; 6563 mutex_init(&ioc->scsih_cmds.mutex); 6564 6565 /* task management internal command bits */ 6566 ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 6567 ioc->tm_cmds.status = MPT3_CMD_NOT_USED; 6568 mutex_init(&ioc->tm_cmds.mutex); 6569 6570 /* config page internal command bits */ 6571 ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 6572 ioc->config_cmds.status = MPT3_CMD_NOT_USED; 6573 mutex_init(&ioc->config_cmds.mutex); 6574 6575 /* ctl module internal command bits */ 6576 ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 6577 ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL); 6578 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED; 6579 mutex_init(&ioc->ctl_cmds.mutex); 6580 6581 if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply || 6582 !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply || 6583 !ioc->tm_cmds.reply || !ioc->config_cmds.reply || 6584 !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) { 6585 r = -ENOMEM; 6586 goto out_free_resources; 6587 } 6588 6589 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 6590 ioc->event_masks[i] = -1; 6591 6592 /* here we enable the events we care about */ 6593 _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY); 6594 _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE); 6595 _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST); 6596 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE); 6597 _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE); 6598 _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST); 6599 _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME); 6600 _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK); 6601 _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS); 6602 _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED); 6603 _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD); 6604 _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION); 6605 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR); 6606 if (ioc->hba_mpi_version_belonged == MPI26_VERSION) { 6607 if (ioc->is_gen35_ioc) { 6608 _base_unmask_events(ioc, 6609 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE); 6610 _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION); 6611 _base_unmask_events(ioc, 6612 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST); 6613 } 6614 } 6615 r = _base_make_ioc_operational(ioc); 6616 if (r) 6617 goto out_free_resources; 6618 6619 ioc->non_operational_loop = 0; 6620 ioc->got_task_abort_from_ioctl = 0; 6621 return 0; 6622 6623 out_free_resources: 6624 6625 ioc->remove_host = 1; 6626 6627 mpt3sas_base_free_resources(ioc); 6628 _base_release_memory_pools(ioc); 6629 pci_set_drvdata(ioc->pdev, NULL); 6630 kfree(ioc->cpu_msix_table); 6631 if (ioc->is_warpdrive) 6632 kfree(ioc->reply_post_host_index); 6633 kfree(ioc->pd_handles); 6634 kfree(ioc->blocking_handles); 6635 kfree(ioc->device_remove_in_progress); 6636 kfree(ioc->pend_os_device_add); 6637 kfree(ioc->tm_cmds.reply); 6638 kfree(ioc->transport_cmds.reply); 6639 kfree(ioc->scsih_cmds.reply); 6640 kfree(ioc->config_cmds.reply); 6641 kfree(ioc->base_cmds.reply); 6642 kfree(ioc->port_enable_cmds.reply); 6643 kfree(ioc->ctl_cmds.reply); 6644 kfree(ioc->ctl_cmds.sense); 6645 kfree(ioc->pfacts); 6646 ioc->ctl_cmds.reply = NULL; 6647 ioc->base_cmds.reply = NULL; 6648 ioc->tm_cmds.reply = NULL; 6649 ioc->scsih_cmds.reply = NULL; 6650 ioc->transport_cmds.reply = NULL; 6651 ioc->config_cmds.reply = NULL; 6652 ioc->pfacts = NULL; 6653 return r; 6654 } 6655 6656 6657 /** 6658 * mpt3sas_base_detach - remove controller instance 6659 * @ioc: per adapter object 6660 */ 6661 void 6662 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc) 6663 { 6664 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6665 6666 mpt3sas_base_stop_watchdog(ioc); 6667 mpt3sas_base_free_resources(ioc); 6668 _base_release_memory_pools(ioc); 6669 mpt3sas_free_enclosure_list(ioc); 6670 pci_set_drvdata(ioc->pdev, NULL); 6671 kfree(ioc->cpu_msix_table); 6672 if (ioc->is_warpdrive) 6673 kfree(ioc->reply_post_host_index); 6674 kfree(ioc->pd_handles); 6675 kfree(ioc->blocking_handles); 6676 kfree(ioc->device_remove_in_progress); 6677 kfree(ioc->pend_os_device_add); 6678 kfree(ioc->pfacts); 6679 kfree(ioc->ctl_cmds.reply); 6680 kfree(ioc->ctl_cmds.sense); 6681 kfree(ioc->base_cmds.reply); 6682 kfree(ioc->port_enable_cmds.reply); 6683 kfree(ioc->tm_cmds.reply); 6684 kfree(ioc->transport_cmds.reply); 6685 kfree(ioc->scsih_cmds.reply); 6686 kfree(ioc->config_cmds.reply); 6687 } 6688 6689 /** 6690 * _base_pre_reset_handler - pre reset handler 6691 * @ioc: per adapter object 6692 */ 6693 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc) 6694 { 6695 mpt3sas_scsih_pre_reset_handler(ioc); 6696 mpt3sas_ctl_pre_reset_handler(ioc); 6697 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__)); 6698 } 6699 6700 /** 6701 * _base_after_reset_handler - after reset handler 6702 * @ioc: per adapter object 6703 */ 6704 static void _base_after_reset_handler(struct MPT3SAS_ADAPTER *ioc) 6705 { 6706 mpt3sas_scsih_after_reset_handler(ioc); 6707 mpt3sas_ctl_after_reset_handler(ioc); 6708 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_AFTER_RESET\n", __func__)); 6709 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) { 6710 ioc->transport_cmds.status |= MPT3_CMD_RESET; 6711 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid); 6712 complete(&ioc->transport_cmds.done); 6713 } 6714 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 6715 ioc->base_cmds.status |= MPT3_CMD_RESET; 6716 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid); 6717 complete(&ioc->base_cmds.done); 6718 } 6719 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 6720 ioc->port_enable_failed = 1; 6721 ioc->port_enable_cmds.status |= MPT3_CMD_RESET; 6722 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid); 6723 if (ioc->is_driver_loading) { 6724 ioc->start_scan_failed = 6725 MPI2_IOCSTATUS_INTERNAL_ERROR; 6726 ioc->start_scan = 0; 6727 ioc->port_enable_cmds.status = 6728 MPT3_CMD_NOT_USED; 6729 } else { 6730 complete(&ioc->port_enable_cmds.done); 6731 } 6732 } 6733 if (ioc->config_cmds.status & MPT3_CMD_PENDING) { 6734 ioc->config_cmds.status |= MPT3_CMD_RESET; 6735 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid); 6736 ioc->config_cmds.smid = USHRT_MAX; 6737 complete(&ioc->config_cmds.done); 6738 } 6739 } 6740 6741 /** 6742 * _base_reset_done_handler - reset done handler 6743 * @ioc: per adapter object 6744 */ 6745 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc) 6746 { 6747 mpt3sas_scsih_reset_done_handler(ioc); 6748 mpt3sas_ctl_reset_done_handler(ioc); 6749 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__)); 6750 } 6751 6752 /** 6753 * mpt3sas_wait_for_commands_to_complete - reset controller 6754 * @ioc: Pointer to MPT_ADAPTER structure 6755 * 6756 * This function is waiting 10s for all pending commands to complete 6757 * prior to putting controller in reset. 6758 */ 6759 void 6760 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc) 6761 { 6762 u32 ioc_state; 6763 6764 ioc->pending_io_count = 0; 6765 6766 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 6767 if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) 6768 return; 6769 6770 /* pending command count */ 6771 ioc->pending_io_count = scsi_host_busy(ioc->shost); 6772 6773 if (!ioc->pending_io_count) 6774 return; 6775 6776 /* wait for pending commands to complete */ 6777 wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ); 6778 } 6779 6780 /** 6781 * mpt3sas_base_hard_reset_handler - reset controller 6782 * @ioc: Pointer to MPT_ADAPTER structure 6783 * @type: FORCE_BIG_HAMMER or SOFT_RESET 6784 * 6785 * Return: 0 for success, non-zero for failure. 6786 */ 6787 int 6788 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc, 6789 enum reset_type type) 6790 { 6791 int r; 6792 unsigned long flags; 6793 u32 ioc_state; 6794 u8 is_fault = 0, is_trigger = 0; 6795 6796 dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__)); 6797 6798 if (ioc->pci_error_recovery) { 6799 ioc_err(ioc, "%s: pci error recovery reset\n", __func__); 6800 r = 0; 6801 goto out_unlocked; 6802 } 6803 6804 if (mpt3sas_fwfault_debug) 6805 mpt3sas_halt_firmware(ioc); 6806 6807 /* wait for an active reset in progress to complete */ 6808 mutex_lock(&ioc->reset_in_progress_mutex); 6809 6810 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 6811 ioc->shost_recovery = 1; 6812 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 6813 6814 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 6815 MPT3_DIAG_BUFFER_IS_REGISTERED) && 6816 (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 6817 MPT3_DIAG_BUFFER_IS_RELEASED))) { 6818 is_trigger = 1; 6819 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 6820 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) 6821 is_fault = 1; 6822 } 6823 _base_pre_reset_handler(ioc); 6824 mpt3sas_wait_for_commands_to_complete(ioc); 6825 _base_mask_interrupts(ioc); 6826 r = _base_make_ioc_ready(ioc, type); 6827 if (r) 6828 goto out; 6829 _base_after_reset_handler(ioc); 6830 6831 /* If this hard reset is called while port enable is active, then 6832 * there is no reason to call make_ioc_operational 6833 */ 6834 if (ioc->is_driver_loading && ioc->port_enable_failed) { 6835 ioc->remove_host = 1; 6836 r = -EFAULT; 6837 goto out; 6838 } 6839 r = _base_get_ioc_facts(ioc); 6840 if (r) 6841 goto out; 6842 6843 if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable) 6844 panic("%s: Issue occurred with flashing controller firmware." 6845 "Please reboot the system and ensure that the correct" 6846 " firmware version is running\n", ioc->name); 6847 6848 r = _base_make_ioc_operational(ioc); 6849 if (!r) 6850 _base_reset_done_handler(ioc); 6851 6852 out: 6853 dtmprintk(ioc, 6854 ioc_info(ioc, "%s: %s\n", 6855 __func__, r == 0 ? "SUCCESS" : "FAILED")); 6856 6857 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 6858 ioc->shost_recovery = 0; 6859 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 6860 ioc->ioc_reset_count++; 6861 mutex_unlock(&ioc->reset_in_progress_mutex); 6862 6863 out_unlocked: 6864 if ((r == 0) && is_trigger) { 6865 if (is_fault) 6866 mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT); 6867 else 6868 mpt3sas_trigger_master(ioc, 6869 MASTER_TRIGGER_ADAPTER_RESET); 6870 } 6871 dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__)); 6872 return r; 6873 } 6874