1 /* 2 * This is the Fusion MPT base driver providing common API layer interface 3 * for access to MPT (Message Passing Technology) firmware. 4 * 5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c 6 * Copyright (C) 2012-2014 LSI Corporation 7 * Copyright (C) 2013-2014 Avago Technologies 8 * (mailto: MPT-FusionLinux.pdl@avagotech.com) 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License 12 * as published by the Free Software Foundation; either version 2 13 * of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * NO WARRANTY 21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR 22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT 23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, 24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is 25 * solely responsible for determining the appropriateness of using and 26 * distributing the Program and assumes all risks associated with its 27 * exercise of rights under this Agreement, including but not limited to 28 * the risks and costs of program errors, damage to or loss of data, 29 * programs or equipment, and unavailability or interruption of operations. 30 31 * DISCLAIMER OF LIABILITY 32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY 33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND 35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED 38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES 39 40 * You should have received a copy of the GNU General Public License 41 * along with this program; if not, write to the Free Software 42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, 43 * USA. 44 */ 45 46 #include <linux/kernel.h> 47 #include <linux/module.h> 48 #include <linux/errno.h> 49 #include <linux/init.h> 50 #include <linux/slab.h> 51 #include <linux/types.h> 52 #include <linux/pci.h> 53 #include <linux/kdev_t.h> 54 #include <linux/blkdev.h> 55 #include <linux/delay.h> 56 #include <linux/interrupt.h> 57 #include <linux/dma-mapping.h> 58 #include <linux/io.h> 59 #include <linux/time.h> 60 #include <linux/ktime.h> 61 #include <linux/kthread.h> 62 #include <asm/page.h> /* To get host page size per arch */ 63 #include <linux/aer.h> 64 65 66 #include "mpt3sas_base.h" 67 68 static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS]; 69 70 71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */ 72 73 /* maximum controller queue depth */ 74 #define MAX_HBA_QUEUE_DEPTH 30000 75 #define MAX_CHAIN_DEPTH 100000 76 static int max_queue_depth = -1; 77 module_param(max_queue_depth, int, 0); 78 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth "); 79 80 static int max_sgl_entries = -1; 81 module_param(max_sgl_entries, int, 0); 82 MODULE_PARM_DESC(max_sgl_entries, " max sg entries "); 83 84 static int msix_disable = -1; 85 module_param(msix_disable, int, 0); 86 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)"); 87 88 static int smp_affinity_enable = 1; 89 module_param(smp_affinity_enable, int, S_IRUGO); 90 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)"); 91 92 static int max_msix_vectors = -1; 93 module_param(max_msix_vectors, int, 0); 94 MODULE_PARM_DESC(max_msix_vectors, 95 " max msix vectors"); 96 97 static int mpt3sas_fwfault_debug; 98 MODULE_PARM_DESC(mpt3sas_fwfault_debug, 99 " enable detection of firmware fault and halt firmware - (default=0)"); 100 101 static int 102 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc); 103 104 /** 105 * mpt3sas_base_check_cmd_timeout - Function 106 * to check timeout and command termination due 107 * to Host reset. 108 * 109 * @ioc: per adapter object. 110 * @status: Status of issued command. 111 * @mpi_request:mf request pointer. 112 * @sz: size of buffer. 113 * 114 * @Returns - 1/0 Reset to be done or Not 115 */ 116 u8 117 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc, 118 u8 status, void *mpi_request, int sz) 119 { 120 u8 issue_reset = 0; 121 122 if (!(status & MPT3_CMD_RESET)) 123 issue_reset = 1; 124 125 ioc_err(ioc, "Command %s\n", 126 issue_reset == 0 ? "terminated due to Host Reset" : "Timeout"); 127 _debug_dump_mf(mpi_request, sz); 128 129 return issue_reset; 130 } 131 132 /** 133 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug. 134 * @val: ? 135 * @kp: ? 136 * 137 * Return: ? 138 */ 139 static int 140 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp) 141 { 142 int ret = param_set_int(val, kp); 143 struct MPT3SAS_ADAPTER *ioc; 144 145 if (ret) 146 return ret; 147 148 /* global ioc spinlock to protect controller list on list operations */ 149 pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug); 150 spin_lock(&gioc_lock); 151 list_for_each_entry(ioc, &mpt3sas_ioc_list, list) 152 ioc->fwfault_debug = mpt3sas_fwfault_debug; 153 spin_unlock(&gioc_lock); 154 return 0; 155 } 156 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug, 157 param_get_int, &mpt3sas_fwfault_debug, 0644); 158 159 /** 160 * _base_clone_reply_to_sys_mem - copies reply to reply free iomem 161 * in BAR0 space. 162 * 163 * @ioc: per adapter object 164 * @reply: reply message frame(lower 32bit addr) 165 * @index: System request message index. 166 */ 167 static void 168 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply, 169 u32 index) 170 { 171 /* 172 * 256 is offset within sys register. 173 * 256 offset MPI frame starts. Max MPI frame supported is 32. 174 * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts 175 */ 176 u16 cmd_credit = ioc->facts.RequestCredit + 1; 177 void __iomem *reply_free_iomem = (void __iomem *)ioc->chip + 178 MPI_FRAME_START_OFFSET + 179 (cmd_credit * ioc->request_sz) + (index * sizeof(u32)); 180 181 writel(reply, reply_free_iomem); 182 } 183 184 /** 185 * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames 186 * to system/BAR0 region. 187 * 188 * @dst_iomem: Pointer to the destination location in BAR0 space. 189 * @src: Pointer to the Source data. 190 * @size: Size of data to be copied. 191 */ 192 static void 193 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size) 194 { 195 int i; 196 u32 *src_virt_mem = (u32 *)src; 197 198 for (i = 0; i < size/4; i++) 199 writel((u32)src_virt_mem[i], 200 (void __iomem *)dst_iomem + (i * 4)); 201 } 202 203 /** 204 * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region 205 * 206 * @dst_iomem: Pointer to the destination location in BAR0 space. 207 * @src: Pointer to the Source data. 208 * @size: Size of data to be copied. 209 */ 210 static void 211 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size) 212 { 213 int i; 214 u32 *src_virt_mem = (u32 *)(src); 215 216 for (i = 0; i < size/4; i++) 217 writel((u32)src_virt_mem[i], 218 (void __iomem *)dst_iomem + (i * 4)); 219 } 220 221 /** 222 * _base_get_chain - Calculates and Returns virtual chain address 223 * for the provided smid in BAR0 space. 224 * 225 * @ioc: per adapter object 226 * @smid: system request message index 227 * @sge_chain_count: Scatter gather chain count. 228 * 229 * Return: the chain address. 230 */ 231 static inline void __iomem* 232 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid, 233 u8 sge_chain_count) 234 { 235 void __iomem *base_chain, *chain_virt; 236 u16 cmd_credit = ioc->facts.RequestCredit + 1; 237 238 base_chain = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET + 239 (cmd_credit * ioc->request_sz) + 240 REPLY_FREE_POOL_SIZE; 241 chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth * 242 ioc->request_sz) + (sge_chain_count * ioc->request_sz); 243 return chain_virt; 244 } 245 246 /** 247 * _base_get_chain_phys - Calculates and Returns physical address 248 * in BAR0 for scatter gather chains, for 249 * the provided smid. 250 * 251 * @ioc: per adapter object 252 * @smid: system request message index 253 * @sge_chain_count: Scatter gather chain count. 254 * 255 * Return: Physical chain address. 256 */ 257 static inline phys_addr_t 258 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid, 259 u8 sge_chain_count) 260 { 261 phys_addr_t base_chain_phys, chain_phys; 262 u16 cmd_credit = ioc->facts.RequestCredit + 1; 263 264 base_chain_phys = ioc->chip_phys + MPI_FRAME_START_OFFSET + 265 (cmd_credit * ioc->request_sz) + 266 REPLY_FREE_POOL_SIZE; 267 chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth * 268 ioc->request_sz) + (sge_chain_count * ioc->request_sz); 269 return chain_phys; 270 } 271 272 /** 273 * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host 274 * buffer address for the provided smid. 275 * (Each smid can have 64K starts from 17024) 276 * 277 * @ioc: per adapter object 278 * @smid: system request message index 279 * 280 * Return: Pointer to buffer location in BAR0. 281 */ 282 283 static void __iomem * 284 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid) 285 { 286 u16 cmd_credit = ioc->facts.RequestCredit + 1; 287 // Added extra 1 to reach end of chain. 288 void __iomem *chain_end = _base_get_chain(ioc, 289 cmd_credit + 1, 290 ioc->facts.MaxChainDepth); 291 return chain_end + (smid * 64 * 1024); 292 } 293 294 /** 295 * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped 296 * Host buffer Physical address for the provided smid. 297 * (Each smid can have 64K starts from 17024) 298 * 299 * @ioc: per adapter object 300 * @smid: system request message index 301 * 302 * Return: Pointer to buffer location in BAR0. 303 */ 304 static phys_addr_t 305 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid) 306 { 307 u16 cmd_credit = ioc->facts.RequestCredit + 1; 308 phys_addr_t chain_end_phys = _base_get_chain_phys(ioc, 309 cmd_credit + 1, 310 ioc->facts.MaxChainDepth); 311 return chain_end_phys + (smid * 64 * 1024); 312 } 313 314 /** 315 * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain 316 * lookup list and Provides chain_buffer 317 * address for the matching dma address. 318 * (Each smid can have 64K starts from 17024) 319 * 320 * @ioc: per adapter object 321 * @chain_buffer_dma: Chain buffer dma address. 322 * 323 * Return: Pointer to chain buffer. Or Null on Failure. 324 */ 325 static void * 326 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc, 327 dma_addr_t chain_buffer_dma) 328 { 329 u16 index, j; 330 struct chain_tracker *ct; 331 332 for (index = 0; index < ioc->scsiio_depth; index++) { 333 for (j = 0; j < ioc->chains_needed_per_io; j++) { 334 ct = &ioc->chain_lookup[index].chains_per_smid[j]; 335 if (ct && ct->chain_buffer_dma == chain_buffer_dma) 336 return ct->chain_buffer; 337 } 338 } 339 ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n"); 340 return NULL; 341 } 342 343 /** 344 * _clone_sg_entries - MPI EP's scsiio and config requests 345 * are handled here. Base function for 346 * double buffering, before submitting 347 * the requests. 348 * 349 * @ioc: per adapter object. 350 * @mpi_request: mf request pointer. 351 * @smid: system request message index. 352 */ 353 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc, 354 void *mpi_request, u16 smid) 355 { 356 Mpi2SGESimple32_t *sgel, *sgel_next; 357 u32 sgl_flags, sge_chain_count = 0; 358 bool is_write = 0; 359 u16 i = 0; 360 void __iomem *buffer_iomem; 361 phys_addr_t buffer_iomem_phys; 362 void __iomem *buff_ptr; 363 phys_addr_t buff_ptr_phys; 364 void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO]; 365 void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO]; 366 phys_addr_t dst_addr_phys; 367 MPI2RequestHeader_t *request_hdr; 368 struct scsi_cmnd *scmd; 369 struct scatterlist *sg_scmd = NULL; 370 int is_scsiio_req = 0; 371 372 request_hdr = (MPI2RequestHeader_t *) mpi_request; 373 374 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) { 375 Mpi25SCSIIORequest_t *scsiio_request = 376 (Mpi25SCSIIORequest_t *)mpi_request; 377 sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL; 378 is_scsiio_req = 1; 379 } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) { 380 Mpi2ConfigRequest_t *config_req = 381 (Mpi2ConfigRequest_t *)mpi_request; 382 sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE; 383 } else 384 return; 385 386 /* From smid we can get scsi_cmd, once we have sg_scmd, 387 * we just need to get sg_virt and sg_next to get virual 388 * address associated with sgel->Address. 389 */ 390 391 if (is_scsiio_req) { 392 /* Get scsi_cmd using smid */ 393 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid); 394 if (scmd == NULL) { 395 ioc_err(ioc, "scmd is NULL\n"); 396 return; 397 } 398 399 /* Get sg_scmd from scmd provided */ 400 sg_scmd = scsi_sglist(scmd); 401 } 402 403 /* 404 * 0 - 255 System register 405 * 256 - 4352 MPI Frame. (This is based on maxCredit 32) 406 * 4352 - 4864 Reply_free pool (512 byte is reserved 407 * considering maxCredit 32. Reply need extra 408 * room, for mCPU case kept four times of 409 * maxCredit). 410 * 4864 - 17152 SGE chain element. (32cmd * 3 chain of 411 * 128 byte size = 12288) 412 * 17152 - x Host buffer mapped with smid. 413 * (Each smid can have 64K Max IO.) 414 * BAR0+Last 1K MSIX Addr and Data 415 * Total size in use 2113664 bytes of 4MB BAR0 416 */ 417 418 buffer_iomem = _base_get_buffer_bar0(ioc, smid); 419 buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid); 420 421 buff_ptr = buffer_iomem; 422 buff_ptr_phys = buffer_iomem_phys; 423 WARN_ON(buff_ptr_phys > U32_MAX); 424 425 if (le32_to_cpu(sgel->FlagsLength) & 426 (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT)) 427 is_write = 1; 428 429 for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) { 430 431 sgl_flags = 432 (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT); 433 434 switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) { 435 case MPI2_SGE_FLAGS_CHAIN_ELEMENT: 436 /* 437 * Helper function which on passing 438 * chain_buffer_dma returns chain_buffer. Get 439 * the virtual address for sgel->Address 440 */ 441 sgel_next = 442 _base_get_chain_buffer_dma_to_chain_buffer(ioc, 443 le32_to_cpu(sgel->Address)); 444 if (sgel_next == NULL) 445 return; 446 /* 447 * This is coping 128 byte chain 448 * frame (not a host buffer) 449 */ 450 dst_chain_addr[sge_chain_count] = 451 _base_get_chain(ioc, 452 smid, sge_chain_count); 453 src_chain_addr[sge_chain_count] = 454 (void *) sgel_next; 455 dst_addr_phys = _base_get_chain_phys(ioc, 456 smid, sge_chain_count); 457 WARN_ON(dst_addr_phys > U32_MAX); 458 sgel->Address = 459 cpu_to_le32(lower_32_bits(dst_addr_phys)); 460 sgel = sgel_next; 461 sge_chain_count++; 462 break; 463 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT: 464 if (is_write) { 465 if (is_scsiio_req) { 466 _base_clone_to_sys_mem(buff_ptr, 467 sg_virt(sg_scmd), 468 (le32_to_cpu(sgel->FlagsLength) & 469 0x00ffffff)); 470 /* 471 * FIXME: this relies on a a zero 472 * PCI mem_offset. 473 */ 474 sgel->Address = 475 cpu_to_le32((u32)buff_ptr_phys); 476 } else { 477 _base_clone_to_sys_mem(buff_ptr, 478 ioc->config_vaddr, 479 (le32_to_cpu(sgel->FlagsLength) & 480 0x00ffffff)); 481 sgel->Address = 482 cpu_to_le32((u32)buff_ptr_phys); 483 } 484 } 485 buff_ptr += (le32_to_cpu(sgel->FlagsLength) & 486 0x00ffffff); 487 buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) & 488 0x00ffffff); 489 if ((le32_to_cpu(sgel->FlagsLength) & 490 (MPI2_SGE_FLAGS_END_OF_BUFFER 491 << MPI2_SGE_FLAGS_SHIFT))) 492 goto eob_clone_chain; 493 else { 494 /* 495 * Every single element in MPT will have 496 * associated sg_next. Better to sanity that 497 * sg_next is not NULL, but it will be a bug 498 * if it is null. 499 */ 500 if (is_scsiio_req) { 501 sg_scmd = sg_next(sg_scmd); 502 if (sg_scmd) 503 sgel++; 504 else 505 goto eob_clone_chain; 506 } 507 } 508 break; 509 } 510 } 511 512 eob_clone_chain: 513 for (i = 0; i < sge_chain_count; i++) { 514 if (is_scsiio_req) 515 _base_clone_to_sys_mem(dst_chain_addr[i], 516 src_chain_addr[i], ioc->request_sz); 517 } 518 } 519 520 /** 521 * mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc 522 * @arg: input argument, used to derive ioc 523 * 524 * Return: 525 * 0 if controller is removed from pci subsystem. 526 * -1 for other case. 527 */ 528 static int mpt3sas_remove_dead_ioc_func(void *arg) 529 { 530 struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg; 531 struct pci_dev *pdev; 532 533 if (!ioc) 534 return -1; 535 536 pdev = ioc->pdev; 537 if (!pdev) 538 return -1; 539 pci_stop_and_remove_bus_device_locked(pdev); 540 return 0; 541 } 542 543 /** 544 * _base_fault_reset_work - workq handling ioc fault conditions 545 * @work: input argument, used to derive ioc 546 * 547 * Context: sleep. 548 */ 549 static void 550 _base_fault_reset_work(struct work_struct *work) 551 { 552 struct MPT3SAS_ADAPTER *ioc = 553 container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work); 554 unsigned long flags; 555 u32 doorbell; 556 int rc; 557 struct task_struct *p; 558 559 560 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 561 if (ioc->shost_recovery || ioc->pci_error_recovery) 562 goto rearm_timer; 563 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 564 565 doorbell = mpt3sas_base_get_iocstate(ioc, 0); 566 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) { 567 ioc_err(ioc, "SAS host is non-operational !!!!\n"); 568 569 /* It may be possible that EEH recovery can resolve some of 570 * pci bus failure issues rather removing the dead ioc function 571 * by considering controller is in a non-operational state. So 572 * here priority is given to the EEH recovery. If it doesn't 573 * not resolve this issue, mpt3sas driver will consider this 574 * controller to non-operational state and remove the dead ioc 575 * function. 576 */ 577 if (ioc->non_operational_loop++ < 5) { 578 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, 579 flags); 580 goto rearm_timer; 581 } 582 583 /* 584 * Call _scsih_flush_pending_cmds callback so that we flush all 585 * pending commands back to OS. This call is required to aovid 586 * deadlock at block layer. Dead IOC will fail to do diag reset, 587 * and this call is safe since dead ioc will never return any 588 * command back from HW. 589 */ 590 ioc->schedule_dead_ioc_flush_running_cmds(ioc); 591 /* 592 * Set remove_host flag early since kernel thread will 593 * take some time to execute. 594 */ 595 ioc->remove_host = 1; 596 /*Remove the Dead Host */ 597 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc, 598 "%s_dead_ioc_%d", ioc->driver_name, ioc->id); 599 if (IS_ERR(p)) 600 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n", 601 __func__); 602 else 603 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n", 604 __func__); 605 return; /* don't rearm timer */ 606 } 607 608 ioc->non_operational_loop = 0; 609 610 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) { 611 rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 612 ioc_warn(ioc, "%s: hard reset: %s\n", 613 __func__, rc == 0 ? "success" : "failed"); 614 doorbell = mpt3sas_base_get_iocstate(ioc, 0); 615 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) 616 mpt3sas_base_fault_info(ioc, doorbell & 617 MPI2_DOORBELL_DATA_MASK); 618 if (rc && (doorbell & MPI2_IOC_STATE_MASK) != 619 MPI2_IOC_STATE_OPERATIONAL) 620 return; /* don't rearm timer */ 621 } 622 623 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 624 rearm_timer: 625 if (ioc->fault_reset_work_q) 626 queue_delayed_work(ioc->fault_reset_work_q, 627 &ioc->fault_reset_work, 628 msecs_to_jiffies(FAULT_POLLING_INTERVAL)); 629 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 630 } 631 632 /** 633 * mpt3sas_base_start_watchdog - start the fault_reset_work_q 634 * @ioc: per adapter object 635 * 636 * Context: sleep. 637 */ 638 void 639 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc) 640 { 641 unsigned long flags; 642 643 if (ioc->fault_reset_work_q) 644 return; 645 646 /* initialize fault polling */ 647 648 INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work); 649 snprintf(ioc->fault_reset_work_q_name, 650 sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status", 651 ioc->driver_name, ioc->id); 652 ioc->fault_reset_work_q = 653 create_singlethread_workqueue(ioc->fault_reset_work_q_name); 654 if (!ioc->fault_reset_work_q) { 655 ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__); 656 return; 657 } 658 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 659 if (ioc->fault_reset_work_q) 660 queue_delayed_work(ioc->fault_reset_work_q, 661 &ioc->fault_reset_work, 662 msecs_to_jiffies(FAULT_POLLING_INTERVAL)); 663 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 664 } 665 666 /** 667 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q 668 * @ioc: per adapter object 669 * 670 * Context: sleep. 671 */ 672 void 673 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc) 674 { 675 unsigned long flags; 676 struct workqueue_struct *wq; 677 678 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 679 wq = ioc->fault_reset_work_q; 680 ioc->fault_reset_work_q = NULL; 681 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 682 if (wq) { 683 if (!cancel_delayed_work_sync(&ioc->fault_reset_work)) 684 flush_workqueue(wq); 685 destroy_workqueue(wq); 686 } 687 } 688 689 /** 690 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code 691 * @ioc: per adapter object 692 * @fault_code: fault code 693 */ 694 void 695 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code) 696 { 697 ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code); 698 } 699 700 /** 701 * mpt3sas_halt_firmware - halt's mpt controller firmware 702 * @ioc: per adapter object 703 * 704 * For debugging timeout related issues. Writing 0xCOFFEE00 705 * to the doorbell register will halt controller firmware. With 706 * the purpose to stop both driver and firmware, the enduser can 707 * obtain a ring buffer from controller UART. 708 */ 709 void 710 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc) 711 { 712 u32 doorbell; 713 714 if (!ioc->fwfault_debug) 715 return; 716 717 dump_stack(); 718 719 doorbell = readl(&ioc->chip->Doorbell); 720 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) 721 mpt3sas_base_fault_info(ioc , doorbell); 722 else { 723 writel(0xC0FFEE00, &ioc->chip->Doorbell); 724 ioc_err(ioc, "Firmware is halted due to command timeout\n"); 725 } 726 727 if (ioc->fwfault_debug == 2) 728 for (;;) 729 ; 730 else 731 panic("panic in %s\n", __func__); 732 } 733 734 /** 735 * _base_sas_ioc_info - verbose translation of the ioc status 736 * @ioc: per adapter object 737 * @mpi_reply: reply mf payload returned from firmware 738 * @request_hdr: request mf 739 */ 740 static void 741 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply, 742 MPI2RequestHeader_t *request_hdr) 743 { 744 u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & 745 MPI2_IOCSTATUS_MASK; 746 char *desc = NULL; 747 u16 frame_sz; 748 char *func_str = NULL; 749 750 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */ 751 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST || 752 request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH || 753 request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION) 754 return; 755 756 if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE) 757 return; 758 759 switch (ioc_status) { 760 761 /**************************************************************************** 762 * Common IOCStatus values for all replies 763 ****************************************************************************/ 764 765 case MPI2_IOCSTATUS_INVALID_FUNCTION: 766 desc = "invalid function"; 767 break; 768 case MPI2_IOCSTATUS_BUSY: 769 desc = "busy"; 770 break; 771 case MPI2_IOCSTATUS_INVALID_SGL: 772 desc = "invalid sgl"; 773 break; 774 case MPI2_IOCSTATUS_INTERNAL_ERROR: 775 desc = "internal error"; 776 break; 777 case MPI2_IOCSTATUS_INVALID_VPID: 778 desc = "invalid vpid"; 779 break; 780 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES: 781 desc = "insufficient resources"; 782 break; 783 case MPI2_IOCSTATUS_INSUFFICIENT_POWER: 784 desc = "insufficient power"; 785 break; 786 case MPI2_IOCSTATUS_INVALID_FIELD: 787 desc = "invalid field"; 788 break; 789 case MPI2_IOCSTATUS_INVALID_STATE: 790 desc = "invalid state"; 791 break; 792 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED: 793 desc = "op state not supported"; 794 break; 795 796 /**************************************************************************** 797 * Config IOCStatus values 798 ****************************************************************************/ 799 800 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION: 801 desc = "config invalid action"; 802 break; 803 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE: 804 desc = "config invalid type"; 805 break; 806 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE: 807 desc = "config invalid page"; 808 break; 809 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA: 810 desc = "config invalid data"; 811 break; 812 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS: 813 desc = "config no defaults"; 814 break; 815 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT: 816 desc = "config cant commit"; 817 break; 818 819 /**************************************************************************** 820 * SCSI IO Reply 821 ****************************************************************************/ 822 823 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR: 824 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE: 825 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE: 826 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN: 827 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN: 828 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR: 829 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR: 830 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED: 831 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH: 832 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED: 833 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED: 834 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED: 835 break; 836 837 /**************************************************************************** 838 * For use by SCSI Initiator and SCSI Target end-to-end data protection 839 ****************************************************************************/ 840 841 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR: 842 desc = "eedp guard error"; 843 break; 844 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR: 845 desc = "eedp ref tag error"; 846 break; 847 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR: 848 desc = "eedp app tag error"; 849 break; 850 851 /**************************************************************************** 852 * SCSI Target values 853 ****************************************************************************/ 854 855 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX: 856 desc = "target invalid io index"; 857 break; 858 case MPI2_IOCSTATUS_TARGET_ABORTED: 859 desc = "target aborted"; 860 break; 861 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE: 862 desc = "target no conn retryable"; 863 break; 864 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION: 865 desc = "target no connection"; 866 break; 867 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH: 868 desc = "target xfer count mismatch"; 869 break; 870 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR: 871 desc = "target data offset error"; 872 break; 873 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA: 874 desc = "target too much write data"; 875 break; 876 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT: 877 desc = "target iu too short"; 878 break; 879 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT: 880 desc = "target ack nak timeout"; 881 break; 882 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED: 883 desc = "target nak received"; 884 break; 885 886 /**************************************************************************** 887 * Serial Attached SCSI values 888 ****************************************************************************/ 889 890 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED: 891 desc = "smp request failed"; 892 break; 893 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN: 894 desc = "smp data overrun"; 895 break; 896 897 /**************************************************************************** 898 * Diagnostic Buffer Post / Diagnostic Release values 899 ****************************************************************************/ 900 901 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED: 902 desc = "diagnostic released"; 903 break; 904 default: 905 break; 906 } 907 908 if (!desc) 909 return; 910 911 switch (request_hdr->Function) { 912 case MPI2_FUNCTION_CONFIG: 913 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size; 914 func_str = "config_page"; 915 break; 916 case MPI2_FUNCTION_SCSI_TASK_MGMT: 917 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t); 918 func_str = "task_mgmt"; 919 break; 920 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL: 921 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t); 922 func_str = "sas_iounit_ctl"; 923 break; 924 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR: 925 frame_sz = sizeof(Mpi2SepRequest_t); 926 func_str = "enclosure"; 927 break; 928 case MPI2_FUNCTION_IOC_INIT: 929 frame_sz = sizeof(Mpi2IOCInitRequest_t); 930 func_str = "ioc_init"; 931 break; 932 case MPI2_FUNCTION_PORT_ENABLE: 933 frame_sz = sizeof(Mpi2PortEnableRequest_t); 934 func_str = "port_enable"; 935 break; 936 case MPI2_FUNCTION_SMP_PASSTHROUGH: 937 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size; 938 func_str = "smp_passthru"; 939 break; 940 case MPI2_FUNCTION_NVME_ENCAPSULATED: 941 frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) + 942 ioc->sge_size; 943 func_str = "nvme_encapsulated"; 944 break; 945 default: 946 frame_sz = 32; 947 func_str = "unknown"; 948 break; 949 } 950 951 ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n", 952 desc, ioc_status, request_hdr, func_str); 953 954 _debug_dump_mf(request_hdr, frame_sz/4); 955 } 956 957 /** 958 * _base_display_event_data - verbose translation of firmware asyn events 959 * @ioc: per adapter object 960 * @mpi_reply: reply mf payload returned from firmware 961 */ 962 static void 963 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc, 964 Mpi2EventNotificationReply_t *mpi_reply) 965 { 966 char *desc = NULL; 967 u16 event; 968 969 if (!(ioc->logging_level & MPT_DEBUG_EVENTS)) 970 return; 971 972 event = le16_to_cpu(mpi_reply->Event); 973 974 switch (event) { 975 case MPI2_EVENT_LOG_DATA: 976 desc = "Log Data"; 977 break; 978 case MPI2_EVENT_STATE_CHANGE: 979 desc = "Status Change"; 980 break; 981 case MPI2_EVENT_HARD_RESET_RECEIVED: 982 desc = "Hard Reset Received"; 983 break; 984 case MPI2_EVENT_EVENT_CHANGE: 985 desc = "Event Change"; 986 break; 987 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE: 988 desc = "Device Status Change"; 989 break; 990 case MPI2_EVENT_IR_OPERATION_STATUS: 991 if (!ioc->hide_ir_msg) 992 desc = "IR Operation Status"; 993 break; 994 case MPI2_EVENT_SAS_DISCOVERY: 995 { 996 Mpi2EventDataSasDiscovery_t *event_data = 997 (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData; 998 ioc_info(ioc, "Discovery: (%s)", 999 event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ? 1000 "start" : "stop"); 1001 if (event_data->DiscoveryStatus) 1002 pr_cont(" discovery_status(0x%08x)", 1003 le32_to_cpu(event_data->DiscoveryStatus)); 1004 pr_cont("\n"); 1005 return; 1006 } 1007 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE: 1008 desc = "SAS Broadcast Primitive"; 1009 break; 1010 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE: 1011 desc = "SAS Init Device Status Change"; 1012 break; 1013 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW: 1014 desc = "SAS Init Table Overflow"; 1015 break; 1016 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST: 1017 desc = "SAS Topology Change List"; 1018 break; 1019 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE: 1020 desc = "SAS Enclosure Device Status Change"; 1021 break; 1022 case MPI2_EVENT_IR_VOLUME: 1023 if (!ioc->hide_ir_msg) 1024 desc = "IR Volume"; 1025 break; 1026 case MPI2_EVENT_IR_PHYSICAL_DISK: 1027 if (!ioc->hide_ir_msg) 1028 desc = "IR Physical Disk"; 1029 break; 1030 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST: 1031 if (!ioc->hide_ir_msg) 1032 desc = "IR Configuration Change List"; 1033 break; 1034 case MPI2_EVENT_LOG_ENTRY_ADDED: 1035 if (!ioc->hide_ir_msg) 1036 desc = "Log Entry Added"; 1037 break; 1038 case MPI2_EVENT_TEMP_THRESHOLD: 1039 desc = "Temperature Threshold"; 1040 break; 1041 case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION: 1042 desc = "Cable Event"; 1043 break; 1044 case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR: 1045 desc = "SAS Device Discovery Error"; 1046 break; 1047 case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE: 1048 desc = "PCIE Device Status Change"; 1049 break; 1050 case MPI2_EVENT_PCIE_ENUMERATION: 1051 { 1052 Mpi26EventDataPCIeEnumeration_t *event_data = 1053 (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData; 1054 ioc_info(ioc, "PCIE Enumeration: (%s)", 1055 event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ? 1056 "start" : "stop"); 1057 if (event_data->EnumerationStatus) 1058 pr_cont("enumeration_status(0x%08x)", 1059 le32_to_cpu(event_data->EnumerationStatus)); 1060 pr_cont("\n"); 1061 return; 1062 } 1063 case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST: 1064 desc = "PCIE Topology Change List"; 1065 break; 1066 } 1067 1068 if (!desc) 1069 return; 1070 1071 ioc_info(ioc, "%s\n", desc); 1072 } 1073 1074 /** 1075 * _base_sas_log_info - verbose translation of firmware log info 1076 * @ioc: per adapter object 1077 * @log_info: log info 1078 */ 1079 static void 1080 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info) 1081 { 1082 union loginfo_type { 1083 u32 loginfo; 1084 struct { 1085 u32 subcode:16; 1086 u32 code:8; 1087 u32 originator:4; 1088 u32 bus_type:4; 1089 } dw; 1090 }; 1091 union loginfo_type sas_loginfo; 1092 char *originator_str = NULL; 1093 1094 sas_loginfo.loginfo = log_info; 1095 if (sas_loginfo.dw.bus_type != 3 /*SAS*/) 1096 return; 1097 1098 /* each nexus loss loginfo */ 1099 if (log_info == 0x31170000) 1100 return; 1101 1102 /* eat the loginfos associated with task aborts */ 1103 if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info == 1104 0x31140000 || log_info == 0x31130000)) 1105 return; 1106 1107 switch (sas_loginfo.dw.originator) { 1108 case 0: 1109 originator_str = "IOP"; 1110 break; 1111 case 1: 1112 originator_str = "PL"; 1113 break; 1114 case 2: 1115 if (!ioc->hide_ir_msg) 1116 originator_str = "IR"; 1117 else 1118 originator_str = "WarpDrive"; 1119 break; 1120 } 1121 1122 ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n", 1123 log_info, 1124 originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode); 1125 } 1126 1127 /** 1128 * _base_display_reply_info - 1129 * @ioc: per adapter object 1130 * @smid: system request message index 1131 * @msix_index: MSIX table index supplied by the OS 1132 * @reply: reply message frame(lower 32bit addr) 1133 */ 1134 static void 1135 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 1136 u32 reply) 1137 { 1138 MPI2DefaultReply_t *mpi_reply; 1139 u16 ioc_status; 1140 u32 loginfo = 0; 1141 1142 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1143 if (unlikely(!mpi_reply)) { 1144 ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n", 1145 __FILE__, __LINE__, __func__); 1146 return; 1147 } 1148 ioc_status = le16_to_cpu(mpi_reply->IOCStatus); 1149 1150 if ((ioc_status & MPI2_IOCSTATUS_MASK) && 1151 (ioc->logging_level & MPT_DEBUG_REPLY)) { 1152 _base_sas_ioc_info(ioc , mpi_reply, 1153 mpt3sas_base_get_msg_frame(ioc, smid)); 1154 } 1155 1156 if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) { 1157 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo); 1158 _base_sas_log_info(ioc, loginfo); 1159 } 1160 1161 if (ioc_status || loginfo) { 1162 ioc_status &= MPI2_IOCSTATUS_MASK; 1163 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo); 1164 } 1165 } 1166 1167 /** 1168 * mpt3sas_base_done - base internal command completion routine 1169 * @ioc: per adapter object 1170 * @smid: system request message index 1171 * @msix_index: MSIX table index supplied by the OS 1172 * @reply: reply message frame(lower 32bit addr) 1173 * 1174 * Return: 1175 * 1 meaning mf should be freed from _base_interrupt 1176 * 0 means the mf is freed from this function. 1177 */ 1178 u8 1179 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 1180 u32 reply) 1181 { 1182 MPI2DefaultReply_t *mpi_reply; 1183 1184 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1185 if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK) 1186 return mpt3sas_check_for_pending_internal_cmds(ioc, smid); 1187 1188 if (ioc->base_cmds.status == MPT3_CMD_NOT_USED) 1189 return 1; 1190 1191 ioc->base_cmds.status |= MPT3_CMD_COMPLETE; 1192 if (mpi_reply) { 1193 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID; 1194 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4); 1195 } 1196 ioc->base_cmds.status &= ~MPT3_CMD_PENDING; 1197 1198 complete(&ioc->base_cmds.done); 1199 return 1; 1200 } 1201 1202 /** 1203 * _base_async_event - main callback handler for firmware asyn events 1204 * @ioc: per adapter object 1205 * @msix_index: MSIX table index supplied by the OS 1206 * @reply: reply message frame(lower 32bit addr) 1207 * 1208 * Return: 1209 * 1 meaning mf should be freed from _base_interrupt 1210 * 0 means the mf is freed from this function. 1211 */ 1212 static u8 1213 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply) 1214 { 1215 Mpi2EventNotificationReply_t *mpi_reply; 1216 Mpi2EventAckRequest_t *ack_request; 1217 u16 smid; 1218 struct _event_ack_list *delayed_event_ack; 1219 1220 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1221 if (!mpi_reply) 1222 return 1; 1223 if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION) 1224 return 1; 1225 1226 _base_display_event_data(ioc, mpi_reply); 1227 1228 if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED)) 1229 goto out; 1230 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 1231 if (!smid) { 1232 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack), 1233 GFP_ATOMIC); 1234 if (!delayed_event_ack) 1235 goto out; 1236 INIT_LIST_HEAD(&delayed_event_ack->list); 1237 delayed_event_ack->Event = mpi_reply->Event; 1238 delayed_event_ack->EventContext = mpi_reply->EventContext; 1239 list_add_tail(&delayed_event_ack->list, 1240 &ioc->delayed_event_ack_list); 1241 dewtprintk(ioc, 1242 ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n", 1243 le16_to_cpu(mpi_reply->Event))); 1244 goto out; 1245 } 1246 1247 ack_request = mpt3sas_base_get_msg_frame(ioc, smid); 1248 memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t)); 1249 ack_request->Function = MPI2_FUNCTION_EVENT_ACK; 1250 ack_request->Event = mpi_reply->Event; 1251 ack_request->EventContext = mpi_reply->EventContext; 1252 ack_request->VF_ID = 0; /* TODO */ 1253 ack_request->VP_ID = 0; 1254 mpt3sas_base_put_smid_default(ioc, smid); 1255 1256 out: 1257 1258 /* scsih callback handler */ 1259 mpt3sas_scsih_event_callback(ioc, msix_index, reply); 1260 1261 /* ctl callback handler */ 1262 mpt3sas_ctl_event_callback(ioc, msix_index, reply); 1263 1264 return 1; 1265 } 1266 1267 static struct scsiio_tracker * 1268 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid) 1269 { 1270 struct scsi_cmnd *cmd; 1271 1272 if (WARN_ON(!smid) || 1273 WARN_ON(smid >= ioc->hi_priority_smid)) 1274 return NULL; 1275 1276 cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid); 1277 if (cmd) 1278 return scsi_cmd_priv(cmd); 1279 1280 return NULL; 1281 } 1282 1283 /** 1284 * _base_get_cb_idx - obtain the callback index 1285 * @ioc: per adapter object 1286 * @smid: system request message index 1287 * 1288 * Return: callback index. 1289 */ 1290 static u8 1291 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid) 1292 { 1293 int i; 1294 u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1; 1295 u8 cb_idx = 0xFF; 1296 1297 if (smid < ioc->hi_priority_smid) { 1298 struct scsiio_tracker *st; 1299 1300 if (smid < ctl_smid) { 1301 st = _get_st_from_smid(ioc, smid); 1302 if (st) 1303 cb_idx = st->cb_idx; 1304 } else if (smid == ctl_smid) 1305 cb_idx = ioc->ctl_cb_idx; 1306 } else if (smid < ioc->internal_smid) { 1307 i = smid - ioc->hi_priority_smid; 1308 cb_idx = ioc->hpr_lookup[i].cb_idx; 1309 } else if (smid <= ioc->hba_queue_depth) { 1310 i = smid - ioc->internal_smid; 1311 cb_idx = ioc->internal_lookup[i].cb_idx; 1312 } 1313 return cb_idx; 1314 } 1315 1316 /** 1317 * _base_mask_interrupts - disable interrupts 1318 * @ioc: per adapter object 1319 * 1320 * Disabling ResetIRQ, Reply and Doorbell Interrupts 1321 */ 1322 static void 1323 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc) 1324 { 1325 u32 him_register; 1326 1327 ioc->mask_interrupts = 1; 1328 him_register = readl(&ioc->chip->HostInterruptMask); 1329 him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK; 1330 writel(him_register, &ioc->chip->HostInterruptMask); 1331 readl(&ioc->chip->HostInterruptMask); 1332 } 1333 1334 /** 1335 * _base_unmask_interrupts - enable interrupts 1336 * @ioc: per adapter object 1337 * 1338 * Enabling only Reply Interrupts 1339 */ 1340 static void 1341 _base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc) 1342 { 1343 u32 him_register; 1344 1345 him_register = readl(&ioc->chip->HostInterruptMask); 1346 him_register &= ~MPI2_HIM_RIM; 1347 writel(him_register, &ioc->chip->HostInterruptMask); 1348 ioc->mask_interrupts = 0; 1349 } 1350 1351 union reply_descriptor { 1352 u64 word; 1353 struct { 1354 u32 low; 1355 u32 high; 1356 } u; 1357 }; 1358 1359 /** 1360 * _base_interrupt - MPT adapter (IOC) specific interrupt handler. 1361 * @irq: irq number (not used) 1362 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure 1363 * 1364 * Return: IRQ_HANDLED if processed, else IRQ_NONE. 1365 */ 1366 static irqreturn_t 1367 _base_interrupt(int irq, void *bus_id) 1368 { 1369 struct adapter_reply_queue *reply_q = bus_id; 1370 union reply_descriptor rd; 1371 u32 completed_cmds; 1372 u8 request_desript_type; 1373 u16 smid; 1374 u8 cb_idx; 1375 u32 reply; 1376 u8 msix_index = reply_q->msix_index; 1377 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc; 1378 Mpi2ReplyDescriptorsUnion_t *rpf; 1379 u8 rc; 1380 1381 if (ioc->mask_interrupts) 1382 return IRQ_NONE; 1383 1384 if (!atomic_add_unless(&reply_q->busy, 1, 1)) 1385 return IRQ_NONE; 1386 1387 rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index]; 1388 request_desript_type = rpf->Default.ReplyFlags 1389 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 1390 if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) { 1391 atomic_dec(&reply_q->busy); 1392 return IRQ_NONE; 1393 } 1394 1395 completed_cmds = 0; 1396 cb_idx = 0xFF; 1397 do { 1398 rd.word = le64_to_cpu(rpf->Words); 1399 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX) 1400 goto out; 1401 reply = 0; 1402 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1); 1403 if (request_desript_type == 1404 MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS || 1405 request_desript_type == 1406 MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS || 1407 request_desript_type == 1408 MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) { 1409 cb_idx = _base_get_cb_idx(ioc, smid); 1410 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) && 1411 (likely(mpt_callbacks[cb_idx] != NULL))) { 1412 rc = mpt_callbacks[cb_idx](ioc, smid, 1413 msix_index, 0); 1414 if (rc) 1415 mpt3sas_base_free_smid(ioc, smid); 1416 } 1417 } else if (request_desript_type == 1418 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) { 1419 reply = le32_to_cpu( 1420 rpf->AddressReply.ReplyFrameAddress); 1421 if (reply > ioc->reply_dma_max_address || 1422 reply < ioc->reply_dma_min_address) 1423 reply = 0; 1424 if (smid) { 1425 cb_idx = _base_get_cb_idx(ioc, smid); 1426 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) && 1427 (likely(mpt_callbacks[cb_idx] != NULL))) { 1428 rc = mpt_callbacks[cb_idx](ioc, smid, 1429 msix_index, reply); 1430 if (reply) 1431 _base_display_reply_info(ioc, 1432 smid, msix_index, reply); 1433 if (rc) 1434 mpt3sas_base_free_smid(ioc, 1435 smid); 1436 } 1437 } else { 1438 _base_async_event(ioc, msix_index, reply); 1439 } 1440 1441 /* reply free queue handling */ 1442 if (reply) { 1443 ioc->reply_free_host_index = 1444 (ioc->reply_free_host_index == 1445 (ioc->reply_free_queue_depth - 1)) ? 1446 0 : ioc->reply_free_host_index + 1; 1447 ioc->reply_free[ioc->reply_free_host_index] = 1448 cpu_to_le32(reply); 1449 if (ioc->is_mcpu_endpoint) 1450 _base_clone_reply_to_sys_mem(ioc, 1451 reply, 1452 ioc->reply_free_host_index); 1453 writel(ioc->reply_free_host_index, 1454 &ioc->chip->ReplyFreeHostIndex); 1455 } 1456 } 1457 1458 rpf->Words = cpu_to_le64(ULLONG_MAX); 1459 reply_q->reply_post_host_index = 1460 (reply_q->reply_post_host_index == 1461 (ioc->reply_post_queue_depth - 1)) ? 0 : 1462 reply_q->reply_post_host_index + 1; 1463 request_desript_type = 1464 reply_q->reply_post_free[reply_q->reply_post_host_index]. 1465 Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 1466 completed_cmds++; 1467 /* Update the reply post host index after continuously 1468 * processing the threshold number of Reply Descriptors. 1469 * So that FW can find enough entries to post the Reply 1470 * Descriptors in the reply descriptor post queue. 1471 */ 1472 if (completed_cmds > ioc->hba_queue_depth/3) { 1473 if (ioc->combined_reply_queue) { 1474 writel(reply_q->reply_post_host_index | 1475 ((msix_index & 7) << 1476 MPI2_RPHI_MSIX_INDEX_SHIFT), 1477 ioc->replyPostRegisterIndex[msix_index/8]); 1478 } else { 1479 writel(reply_q->reply_post_host_index | 1480 (msix_index << 1481 MPI2_RPHI_MSIX_INDEX_SHIFT), 1482 &ioc->chip->ReplyPostHostIndex); 1483 } 1484 completed_cmds = 1; 1485 } 1486 if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) 1487 goto out; 1488 if (!reply_q->reply_post_host_index) 1489 rpf = reply_q->reply_post_free; 1490 else 1491 rpf++; 1492 } while (1); 1493 1494 out: 1495 1496 if (!completed_cmds) { 1497 atomic_dec(&reply_q->busy); 1498 return IRQ_NONE; 1499 } 1500 1501 if (ioc->is_warpdrive) { 1502 writel(reply_q->reply_post_host_index, 1503 ioc->reply_post_host_index[msix_index]); 1504 atomic_dec(&reply_q->busy); 1505 return IRQ_HANDLED; 1506 } 1507 1508 /* Update Reply Post Host Index. 1509 * For those HBA's which support combined reply queue feature 1510 * 1. Get the correct Supplemental Reply Post Host Index Register. 1511 * i.e. (msix_index / 8)th entry from Supplemental Reply Post Host 1512 * Index Register address bank i.e replyPostRegisterIndex[], 1513 * 2. Then update this register with new reply host index value 1514 * in ReplyPostIndex field and the MSIxIndex field with 1515 * msix_index value reduced to a value between 0 and 7, 1516 * using a modulo 8 operation. Since each Supplemental Reply Post 1517 * Host Index Register supports 8 MSI-X vectors. 1518 * 1519 * For other HBA's just update the Reply Post Host Index register with 1520 * new reply host index value in ReplyPostIndex Field and msix_index 1521 * value in MSIxIndex field. 1522 */ 1523 if (ioc->combined_reply_queue) 1524 writel(reply_q->reply_post_host_index | ((msix_index & 7) << 1525 MPI2_RPHI_MSIX_INDEX_SHIFT), 1526 ioc->replyPostRegisterIndex[msix_index/8]); 1527 else 1528 writel(reply_q->reply_post_host_index | (msix_index << 1529 MPI2_RPHI_MSIX_INDEX_SHIFT), 1530 &ioc->chip->ReplyPostHostIndex); 1531 atomic_dec(&reply_q->busy); 1532 return IRQ_HANDLED; 1533 } 1534 1535 /** 1536 * _base_is_controller_msix_enabled - is controller support muli-reply queues 1537 * @ioc: per adapter object 1538 * 1539 * Return: Whether or not MSI/X is enabled. 1540 */ 1541 static inline int 1542 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc) 1543 { 1544 return (ioc->facts.IOCCapabilities & 1545 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable; 1546 } 1547 1548 /** 1549 * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts 1550 * @ioc: per adapter object 1551 * Context: non ISR conext 1552 * 1553 * Called when a Task Management request has completed. 1554 */ 1555 void 1556 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc) 1557 { 1558 struct adapter_reply_queue *reply_q; 1559 1560 /* If MSIX capability is turned off 1561 * then multi-queues are not enabled 1562 */ 1563 if (!_base_is_controller_msix_enabled(ioc)) 1564 return; 1565 1566 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 1567 if (ioc->shost_recovery || ioc->remove_host || 1568 ioc->pci_error_recovery) 1569 return; 1570 /* TMs are on msix_index == 0 */ 1571 if (reply_q->msix_index == 0) 1572 continue; 1573 synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index)); 1574 } 1575 } 1576 1577 /** 1578 * mpt3sas_base_release_callback_handler - clear interrupt callback handler 1579 * @cb_idx: callback index 1580 */ 1581 void 1582 mpt3sas_base_release_callback_handler(u8 cb_idx) 1583 { 1584 mpt_callbacks[cb_idx] = NULL; 1585 } 1586 1587 /** 1588 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler 1589 * @cb_func: callback function 1590 * 1591 * Return: Index of @cb_func. 1592 */ 1593 u8 1594 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func) 1595 { 1596 u8 cb_idx; 1597 1598 for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--) 1599 if (mpt_callbacks[cb_idx] == NULL) 1600 break; 1601 1602 mpt_callbacks[cb_idx] = cb_func; 1603 return cb_idx; 1604 } 1605 1606 /** 1607 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler 1608 */ 1609 void 1610 mpt3sas_base_initialize_callback_handler(void) 1611 { 1612 u8 cb_idx; 1613 1614 for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++) 1615 mpt3sas_base_release_callback_handler(cb_idx); 1616 } 1617 1618 1619 /** 1620 * _base_build_zero_len_sge - build zero length sg entry 1621 * @ioc: per adapter object 1622 * @paddr: virtual address for SGE 1623 * 1624 * Create a zero length scatter gather entry to insure the IOCs hardware has 1625 * something to use if the target device goes brain dead and tries 1626 * to send data even when none is asked for. 1627 */ 1628 static void 1629 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr) 1630 { 1631 u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT | 1632 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST | 1633 MPI2_SGE_FLAGS_SIMPLE_ELEMENT) << 1634 MPI2_SGE_FLAGS_SHIFT); 1635 ioc->base_add_sg_single(paddr, flags_length, -1); 1636 } 1637 1638 /** 1639 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr. 1640 * @paddr: virtual address for SGE 1641 * @flags_length: SGE flags and data transfer length 1642 * @dma_addr: Physical address 1643 */ 1644 static void 1645 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr) 1646 { 1647 Mpi2SGESimple32_t *sgel = paddr; 1648 1649 flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING | 1650 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT; 1651 sgel->FlagsLength = cpu_to_le32(flags_length); 1652 sgel->Address = cpu_to_le32(dma_addr); 1653 } 1654 1655 1656 /** 1657 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr. 1658 * @paddr: virtual address for SGE 1659 * @flags_length: SGE flags and data transfer length 1660 * @dma_addr: Physical address 1661 */ 1662 static void 1663 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr) 1664 { 1665 Mpi2SGESimple64_t *sgel = paddr; 1666 1667 flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING | 1668 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT; 1669 sgel->FlagsLength = cpu_to_le32(flags_length); 1670 sgel->Address = cpu_to_le64(dma_addr); 1671 } 1672 1673 /** 1674 * _base_get_chain_buffer_tracker - obtain chain tracker 1675 * @ioc: per adapter object 1676 * @scmd: SCSI commands of the IO request 1677 * 1678 * Return: chain tracker from chain_lookup table using key as 1679 * smid and smid's chain_offset. 1680 */ 1681 static struct chain_tracker * 1682 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc, 1683 struct scsi_cmnd *scmd) 1684 { 1685 struct chain_tracker *chain_req; 1686 struct scsiio_tracker *st = scsi_cmd_priv(scmd); 1687 u16 smid = st->smid; 1688 u8 chain_offset = 1689 atomic_read(&ioc->chain_lookup[smid - 1].chain_offset); 1690 1691 if (chain_offset == ioc->chains_needed_per_io) 1692 return NULL; 1693 1694 chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset]; 1695 atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset); 1696 return chain_req; 1697 } 1698 1699 1700 /** 1701 * _base_build_sg - build generic sg 1702 * @ioc: per adapter object 1703 * @psge: virtual address for SGE 1704 * @data_out_dma: physical address for WRITES 1705 * @data_out_sz: data xfer size for WRITES 1706 * @data_in_dma: physical address for READS 1707 * @data_in_sz: data xfer size for READS 1708 */ 1709 static void 1710 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge, 1711 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 1712 size_t data_in_sz) 1713 { 1714 u32 sgl_flags; 1715 1716 if (!data_out_sz && !data_in_sz) { 1717 _base_build_zero_len_sge(ioc, psge); 1718 return; 1719 } 1720 1721 if (data_out_sz && data_in_sz) { 1722 /* WRITE sgel first */ 1723 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 1724 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC); 1725 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 1726 ioc->base_add_sg_single(psge, sgl_flags | 1727 data_out_sz, data_out_dma); 1728 1729 /* incr sgel */ 1730 psge += ioc->sge_size; 1731 1732 /* READ sgel last */ 1733 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 1734 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 1735 MPI2_SGE_FLAGS_END_OF_LIST); 1736 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 1737 ioc->base_add_sg_single(psge, sgl_flags | 1738 data_in_sz, data_in_dma); 1739 } else if (data_out_sz) /* WRITE */ { 1740 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 1741 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 1742 MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC); 1743 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 1744 ioc->base_add_sg_single(psge, sgl_flags | 1745 data_out_sz, data_out_dma); 1746 } else if (data_in_sz) /* READ */ { 1747 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 1748 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 1749 MPI2_SGE_FLAGS_END_OF_LIST); 1750 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 1751 ioc->base_add_sg_single(psge, sgl_flags | 1752 data_in_sz, data_in_dma); 1753 } 1754 } 1755 1756 /* IEEE format sgls */ 1757 1758 /** 1759 * _base_build_nvme_prp - This function is called for NVMe end devices to build 1760 * a native SGL (NVMe PRP). The native SGL is built starting in the first PRP 1761 * entry of the NVMe message (PRP1). If the data buffer is small enough to be 1762 * described entirely using PRP1, then PRP2 is not used. If needed, PRP2 is 1763 * used to describe a larger data buffer. If the data buffer is too large to 1764 * describe using the two PRP entriess inside the NVMe message, then PRP1 1765 * describes the first data memory segment, and PRP2 contains a pointer to a PRP 1766 * list located elsewhere in memory to describe the remaining data memory 1767 * segments. The PRP list will be contiguous. 1768 * 1769 * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP 1770 * consists of a list of PRP entries to describe a number of noncontigous 1771 * physical memory segments as a single memory buffer, just as a SGL does. Note 1772 * however, that this function is only used by the IOCTL call, so the memory 1773 * given will be guaranteed to be contiguous. There is no need to translate 1774 * non-contiguous SGL into a PRP in this case. All PRPs will describe 1775 * contiguous space that is one page size each. 1776 * 1777 * Each NVMe message contains two PRP entries. The first (PRP1) either contains 1778 * a PRP list pointer or a PRP element, depending upon the command. PRP2 1779 * contains the second PRP element if the memory being described fits within 2 1780 * PRP entries, or a PRP list pointer if the PRP spans more than two entries. 1781 * 1782 * A PRP list pointer contains the address of a PRP list, structured as a linear 1783 * array of PRP entries. Each PRP entry in this list describes a segment of 1784 * physical memory. 1785 * 1786 * Each 64-bit PRP entry comprises an address and an offset field. The address 1787 * always points at the beginning of a 4KB physical memory page, and the offset 1788 * describes where within that 4KB page the memory segment begins. Only the 1789 * first element in a PRP list may contain a non-zero offest, implying that all 1790 * memory segments following the first begin at the start of a 4KB page. 1791 * 1792 * Each PRP element normally describes 4KB of physical memory, with exceptions 1793 * for the first and last elements in the list. If the memory being described 1794 * by the list begins at a non-zero offset within the first 4KB page, then the 1795 * first PRP element will contain a non-zero offset indicating where the region 1796 * begins within the 4KB page. The last memory segment may end before the end 1797 * of the 4KB segment, depending upon the overall size of the memory being 1798 * described by the PRP list. 1799 * 1800 * Since PRP entries lack any indication of size, the overall data buffer length 1801 * is used to determine where the end of the data memory buffer is located, and 1802 * how many PRP entries are required to describe it. 1803 * 1804 * @ioc: per adapter object 1805 * @smid: system request message index for getting asscociated SGL 1806 * @nvme_encap_request: the NVMe request msg frame pointer 1807 * @data_out_dma: physical address for WRITES 1808 * @data_out_sz: data xfer size for WRITES 1809 * @data_in_dma: physical address for READS 1810 * @data_in_sz: data xfer size for READS 1811 */ 1812 static void 1813 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid, 1814 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request, 1815 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 1816 size_t data_in_sz) 1817 { 1818 int prp_size = NVME_PRP_SIZE; 1819 __le64 *prp_entry, *prp1_entry, *prp2_entry; 1820 __le64 *prp_page; 1821 dma_addr_t prp_entry_dma, prp_page_dma, dma_addr; 1822 u32 offset, entry_len; 1823 u32 page_mask_result, page_mask; 1824 size_t length; 1825 struct mpt3sas_nvme_cmd *nvme_cmd = 1826 (void *)nvme_encap_request->NVMe_Command; 1827 1828 /* 1829 * Not all commands require a data transfer. If no data, just return 1830 * without constructing any PRP. 1831 */ 1832 if (!data_in_sz && !data_out_sz) 1833 return; 1834 prp1_entry = &nvme_cmd->prp1; 1835 prp2_entry = &nvme_cmd->prp2; 1836 prp_entry = prp1_entry; 1837 /* 1838 * For the PRP entries, use the specially allocated buffer of 1839 * contiguous memory. 1840 */ 1841 prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid); 1842 prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid); 1843 1844 /* 1845 * Check if we are within 1 entry of a page boundary we don't 1846 * want our first entry to be a PRP List entry. 1847 */ 1848 page_mask = ioc->page_size - 1; 1849 page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask; 1850 if (!page_mask_result) { 1851 /* Bump up to next page boundary. */ 1852 prp_page = (__le64 *)((u8 *)prp_page + prp_size); 1853 prp_page_dma = prp_page_dma + prp_size; 1854 } 1855 1856 /* 1857 * Set PRP physical pointer, which initially points to the current PRP 1858 * DMA memory page. 1859 */ 1860 prp_entry_dma = prp_page_dma; 1861 1862 /* Get physical address and length of the data buffer. */ 1863 if (data_in_sz) { 1864 dma_addr = data_in_dma; 1865 length = data_in_sz; 1866 } else { 1867 dma_addr = data_out_dma; 1868 length = data_out_sz; 1869 } 1870 1871 /* Loop while the length is not zero. */ 1872 while (length) { 1873 /* 1874 * Check if we need to put a list pointer here if we are at 1875 * page boundary - prp_size (8 bytes). 1876 */ 1877 page_mask_result = (prp_entry_dma + prp_size) & page_mask; 1878 if (!page_mask_result) { 1879 /* 1880 * This is the last entry in a PRP List, so we need to 1881 * put a PRP list pointer here. What this does is: 1882 * - bump the current memory pointer to the next 1883 * address, which will be the next full page. 1884 * - set the PRP Entry to point to that page. This 1885 * is now the PRP List pointer. 1886 * - bump the PRP Entry pointer the start of the 1887 * next page. Since all of this PRP memory is 1888 * contiguous, no need to get a new page - it's 1889 * just the next address. 1890 */ 1891 prp_entry_dma++; 1892 *prp_entry = cpu_to_le64(prp_entry_dma); 1893 prp_entry++; 1894 } 1895 1896 /* Need to handle if entry will be part of a page. */ 1897 offset = dma_addr & page_mask; 1898 entry_len = ioc->page_size - offset; 1899 1900 if (prp_entry == prp1_entry) { 1901 /* 1902 * Must fill in the first PRP pointer (PRP1) before 1903 * moving on. 1904 */ 1905 *prp1_entry = cpu_to_le64(dma_addr); 1906 1907 /* 1908 * Now point to the second PRP entry within the 1909 * command (PRP2). 1910 */ 1911 prp_entry = prp2_entry; 1912 } else if (prp_entry == prp2_entry) { 1913 /* 1914 * Should the PRP2 entry be a PRP List pointer or just 1915 * a regular PRP pointer? If there is more than one 1916 * more page of data, must use a PRP List pointer. 1917 */ 1918 if (length > ioc->page_size) { 1919 /* 1920 * PRP2 will contain a PRP List pointer because 1921 * more PRP's are needed with this command. The 1922 * list will start at the beginning of the 1923 * contiguous buffer. 1924 */ 1925 *prp2_entry = cpu_to_le64(prp_entry_dma); 1926 1927 /* 1928 * The next PRP Entry will be the start of the 1929 * first PRP List. 1930 */ 1931 prp_entry = prp_page; 1932 } else { 1933 /* 1934 * After this, the PRP Entries are complete. 1935 * This command uses 2 PRP's and no PRP list. 1936 */ 1937 *prp2_entry = cpu_to_le64(dma_addr); 1938 } 1939 } else { 1940 /* 1941 * Put entry in list and bump the addresses. 1942 * 1943 * After PRP1 and PRP2 are filled in, this will fill in 1944 * all remaining PRP entries in a PRP List, one per 1945 * each time through the loop. 1946 */ 1947 *prp_entry = cpu_to_le64(dma_addr); 1948 prp_entry++; 1949 prp_entry_dma++; 1950 } 1951 1952 /* 1953 * Bump the phys address of the command's data buffer by the 1954 * entry_len. 1955 */ 1956 dma_addr += entry_len; 1957 1958 /* Decrement length accounting for last partial page. */ 1959 if (entry_len > length) 1960 length = 0; 1961 else 1962 length -= entry_len; 1963 } 1964 } 1965 1966 /** 1967 * base_make_prp_nvme - 1968 * Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only 1969 * 1970 * @ioc: per adapter object 1971 * @scmd: SCSI command from the mid-layer 1972 * @mpi_request: mpi request 1973 * @smid: msg Index 1974 * @sge_count: scatter gather element count. 1975 * 1976 * Return: true: PRPs are built 1977 * false: IEEE SGLs needs to be built 1978 */ 1979 static void 1980 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc, 1981 struct scsi_cmnd *scmd, 1982 Mpi25SCSIIORequest_t *mpi_request, 1983 u16 smid, int sge_count) 1984 { 1985 int sge_len, num_prp_in_chain = 0; 1986 Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl; 1987 __le64 *curr_buff; 1988 dma_addr_t msg_dma, sge_addr, offset; 1989 u32 page_mask, page_mask_result; 1990 struct scatterlist *sg_scmd; 1991 u32 first_prp_len; 1992 int data_len = scsi_bufflen(scmd); 1993 u32 nvme_pg_size; 1994 1995 nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE); 1996 /* 1997 * Nvme has a very convoluted prp format. One prp is required 1998 * for each page or partial page. Driver need to split up OS sg_list 1999 * entries if it is longer than one page or cross a page 2000 * boundary. Driver also have to insert a PRP list pointer entry as 2001 * the last entry in each physical page of the PRP list. 2002 * 2003 * NOTE: The first PRP "entry" is actually placed in the first 2004 * SGL entry in the main message as IEEE 64 format. The 2nd 2005 * entry in the main message is the chain element, and the rest 2006 * of the PRP entries are built in the contiguous pcie buffer. 2007 */ 2008 page_mask = nvme_pg_size - 1; 2009 2010 /* 2011 * Native SGL is needed. 2012 * Put a chain element in main message frame that points to the first 2013 * chain buffer. 2014 * 2015 * NOTE: The ChainOffset field must be 0 when using a chain pointer to 2016 * a native SGL. 2017 */ 2018 2019 /* Set main message chain element pointer */ 2020 main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL; 2021 /* 2022 * For NVMe the chain element needs to be the 2nd SG entry in the main 2023 * message. 2024 */ 2025 main_chain_element = (Mpi25IeeeSgeChain64_t *) 2026 ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64)); 2027 2028 /* 2029 * For the PRP entries, use the specially allocated buffer of 2030 * contiguous memory. Normal chain buffers can't be used 2031 * because each chain buffer would need to be the size of an OS 2032 * page (4k). 2033 */ 2034 curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid); 2035 msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid); 2036 2037 main_chain_element->Address = cpu_to_le64(msg_dma); 2038 main_chain_element->NextChainOffset = 0; 2039 main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 2040 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | 2041 MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP; 2042 2043 /* Build first prp, sge need not to be page aligned*/ 2044 ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL; 2045 sg_scmd = scsi_sglist(scmd); 2046 sge_addr = sg_dma_address(sg_scmd); 2047 sge_len = sg_dma_len(sg_scmd); 2048 2049 offset = sge_addr & page_mask; 2050 first_prp_len = nvme_pg_size - offset; 2051 2052 ptr_first_sgl->Address = cpu_to_le64(sge_addr); 2053 ptr_first_sgl->Length = cpu_to_le32(first_prp_len); 2054 2055 data_len -= first_prp_len; 2056 2057 if (sge_len > first_prp_len) { 2058 sge_addr += first_prp_len; 2059 sge_len -= first_prp_len; 2060 } else if (data_len && (sge_len == first_prp_len)) { 2061 sg_scmd = sg_next(sg_scmd); 2062 sge_addr = sg_dma_address(sg_scmd); 2063 sge_len = sg_dma_len(sg_scmd); 2064 } 2065 2066 for (;;) { 2067 offset = sge_addr & page_mask; 2068 2069 /* Put PRP pointer due to page boundary*/ 2070 page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask; 2071 if (unlikely(!page_mask_result)) { 2072 scmd_printk(KERN_NOTICE, 2073 scmd, "page boundary curr_buff: 0x%p\n", 2074 curr_buff); 2075 msg_dma += 8; 2076 *curr_buff = cpu_to_le64(msg_dma); 2077 curr_buff++; 2078 num_prp_in_chain++; 2079 } 2080 2081 *curr_buff = cpu_to_le64(sge_addr); 2082 curr_buff++; 2083 msg_dma += 8; 2084 num_prp_in_chain++; 2085 2086 sge_addr += nvme_pg_size; 2087 sge_len -= nvme_pg_size; 2088 data_len -= nvme_pg_size; 2089 2090 if (data_len <= 0) 2091 break; 2092 2093 if (sge_len > 0) 2094 continue; 2095 2096 sg_scmd = sg_next(sg_scmd); 2097 sge_addr = sg_dma_address(sg_scmd); 2098 sge_len = sg_dma_len(sg_scmd); 2099 } 2100 2101 main_chain_element->Length = 2102 cpu_to_le32(num_prp_in_chain * sizeof(u64)); 2103 return; 2104 } 2105 2106 static bool 2107 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc, 2108 struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count) 2109 { 2110 u32 data_length = 0; 2111 bool build_prp = true; 2112 2113 data_length = scsi_bufflen(scmd); 2114 2115 /* If Datalenth is <= 16K and number of SGE’s entries are <= 2 2116 * we built IEEE SGL 2117 */ 2118 if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2)) 2119 build_prp = false; 2120 2121 return build_prp; 2122 } 2123 2124 /** 2125 * _base_check_pcie_native_sgl - This function is called for PCIe end devices to 2126 * determine if the driver needs to build a native SGL. If so, that native 2127 * SGL is built in the special contiguous buffers allocated especially for 2128 * PCIe SGL creation. If the driver will not build a native SGL, return 2129 * TRUE and a normal IEEE SGL will be built. Currently this routine 2130 * supports NVMe. 2131 * @ioc: per adapter object 2132 * @mpi_request: mf request pointer 2133 * @smid: system request message index 2134 * @scmd: scsi command 2135 * @pcie_device: points to the PCIe device's info 2136 * 2137 * Return: 0 if native SGL was built, 1 if no SGL was built 2138 */ 2139 static int 2140 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc, 2141 Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd, 2142 struct _pcie_device *pcie_device) 2143 { 2144 int sges_left; 2145 2146 /* Get the SG list pointer and info. */ 2147 sges_left = scsi_dma_map(scmd); 2148 if (sges_left < 0) { 2149 sdev_printk(KERN_ERR, scmd->device, 2150 "scsi_dma_map failed: request for %d bytes!\n", 2151 scsi_bufflen(scmd)); 2152 return 1; 2153 } 2154 2155 /* Check if we need to build a native SG list. */ 2156 if (base_is_prp_possible(ioc, pcie_device, 2157 scmd, sges_left) == 0) { 2158 /* We built a native SG list, just return. */ 2159 goto out; 2160 } 2161 2162 /* 2163 * Build native NVMe PRP. 2164 */ 2165 base_make_prp_nvme(ioc, scmd, mpi_request, 2166 smid, sges_left); 2167 2168 return 0; 2169 out: 2170 scsi_dma_unmap(scmd); 2171 return 1; 2172 } 2173 2174 /** 2175 * _base_add_sg_single_ieee - add sg element for IEEE format 2176 * @paddr: virtual address for SGE 2177 * @flags: SGE flags 2178 * @chain_offset: number of 128 byte elements from start of segment 2179 * @length: data transfer length 2180 * @dma_addr: Physical address 2181 */ 2182 static void 2183 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length, 2184 dma_addr_t dma_addr) 2185 { 2186 Mpi25IeeeSgeChain64_t *sgel = paddr; 2187 2188 sgel->Flags = flags; 2189 sgel->NextChainOffset = chain_offset; 2190 sgel->Length = cpu_to_le32(length); 2191 sgel->Address = cpu_to_le64(dma_addr); 2192 } 2193 2194 /** 2195 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format 2196 * @ioc: per adapter object 2197 * @paddr: virtual address for SGE 2198 * 2199 * Create a zero length scatter gather entry to insure the IOCs hardware has 2200 * something to use if the target device goes brain dead and tries 2201 * to send data even when none is asked for. 2202 */ 2203 static void 2204 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr) 2205 { 2206 u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2207 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | 2208 MPI25_IEEE_SGE_FLAGS_END_OF_LIST); 2209 2210 _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1); 2211 } 2212 2213 /** 2214 * _base_build_sg_scmd - main sg creation routine 2215 * pcie_device is unused here! 2216 * @ioc: per adapter object 2217 * @scmd: scsi command 2218 * @smid: system request message index 2219 * @unused: unused pcie_device pointer 2220 * Context: none. 2221 * 2222 * The main routine that builds scatter gather table from a given 2223 * scsi request sent via the .queuecommand main handler. 2224 * 2225 * Return: 0 success, anything else error 2226 */ 2227 static int 2228 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc, 2229 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused) 2230 { 2231 Mpi2SCSIIORequest_t *mpi_request; 2232 dma_addr_t chain_dma; 2233 struct scatterlist *sg_scmd; 2234 void *sg_local, *chain; 2235 u32 chain_offset; 2236 u32 chain_length; 2237 u32 chain_flags; 2238 int sges_left; 2239 u32 sges_in_segment; 2240 u32 sgl_flags; 2241 u32 sgl_flags_last_element; 2242 u32 sgl_flags_end_buffer; 2243 struct chain_tracker *chain_req; 2244 2245 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 2246 2247 /* init scatter gather flags */ 2248 sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT; 2249 if (scmd->sc_data_direction == DMA_TO_DEVICE) 2250 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC; 2251 sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT) 2252 << MPI2_SGE_FLAGS_SHIFT; 2253 sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT | 2254 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST) 2255 << MPI2_SGE_FLAGS_SHIFT; 2256 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2257 2258 sg_scmd = scsi_sglist(scmd); 2259 sges_left = scsi_dma_map(scmd); 2260 if (sges_left < 0) { 2261 sdev_printk(KERN_ERR, scmd->device, 2262 "scsi_dma_map failed: request for %d bytes!\n", 2263 scsi_bufflen(scmd)); 2264 return -ENOMEM; 2265 } 2266 2267 sg_local = &mpi_request->SGL; 2268 sges_in_segment = ioc->max_sges_in_main_message; 2269 if (sges_left <= sges_in_segment) 2270 goto fill_in_last_segment; 2271 2272 mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) + 2273 (sges_in_segment * ioc->sge_size))/4; 2274 2275 /* fill in main message segment when there is a chain following */ 2276 while (sges_in_segment) { 2277 if (sges_in_segment == 1) 2278 ioc->base_add_sg_single(sg_local, 2279 sgl_flags_last_element | sg_dma_len(sg_scmd), 2280 sg_dma_address(sg_scmd)); 2281 else 2282 ioc->base_add_sg_single(sg_local, sgl_flags | 2283 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2284 sg_scmd = sg_next(sg_scmd); 2285 sg_local += ioc->sge_size; 2286 sges_left--; 2287 sges_in_segment--; 2288 } 2289 2290 /* initializing the chain flags and pointers */ 2291 chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT; 2292 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2293 if (!chain_req) 2294 return -1; 2295 chain = chain_req->chain_buffer; 2296 chain_dma = chain_req->chain_buffer_dma; 2297 do { 2298 sges_in_segment = (sges_left <= 2299 ioc->max_sges_in_chain_message) ? sges_left : 2300 ioc->max_sges_in_chain_message; 2301 chain_offset = (sges_left == sges_in_segment) ? 2302 0 : (sges_in_segment * ioc->sge_size)/4; 2303 chain_length = sges_in_segment * ioc->sge_size; 2304 if (chain_offset) { 2305 chain_offset = chain_offset << 2306 MPI2_SGE_CHAIN_OFFSET_SHIFT; 2307 chain_length += ioc->sge_size; 2308 } 2309 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset | 2310 chain_length, chain_dma); 2311 sg_local = chain; 2312 if (!chain_offset) 2313 goto fill_in_last_segment; 2314 2315 /* fill in chain segments */ 2316 while (sges_in_segment) { 2317 if (sges_in_segment == 1) 2318 ioc->base_add_sg_single(sg_local, 2319 sgl_flags_last_element | 2320 sg_dma_len(sg_scmd), 2321 sg_dma_address(sg_scmd)); 2322 else 2323 ioc->base_add_sg_single(sg_local, sgl_flags | 2324 sg_dma_len(sg_scmd), 2325 sg_dma_address(sg_scmd)); 2326 sg_scmd = sg_next(sg_scmd); 2327 sg_local += ioc->sge_size; 2328 sges_left--; 2329 sges_in_segment--; 2330 } 2331 2332 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2333 if (!chain_req) 2334 return -1; 2335 chain = chain_req->chain_buffer; 2336 chain_dma = chain_req->chain_buffer_dma; 2337 } while (1); 2338 2339 2340 fill_in_last_segment: 2341 2342 /* fill the last segment */ 2343 while (sges_left) { 2344 if (sges_left == 1) 2345 ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer | 2346 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2347 else 2348 ioc->base_add_sg_single(sg_local, sgl_flags | 2349 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2350 sg_scmd = sg_next(sg_scmd); 2351 sg_local += ioc->sge_size; 2352 sges_left--; 2353 } 2354 2355 return 0; 2356 } 2357 2358 /** 2359 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format 2360 * @ioc: per adapter object 2361 * @scmd: scsi command 2362 * @smid: system request message index 2363 * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be 2364 * constructed on need. 2365 * Context: none. 2366 * 2367 * The main routine that builds scatter gather table from a given 2368 * scsi request sent via the .queuecommand main handler. 2369 * 2370 * Return: 0 success, anything else error 2371 */ 2372 static int 2373 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc, 2374 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device) 2375 { 2376 Mpi25SCSIIORequest_t *mpi_request; 2377 dma_addr_t chain_dma; 2378 struct scatterlist *sg_scmd; 2379 void *sg_local, *chain; 2380 u32 chain_offset; 2381 u32 chain_length; 2382 int sges_left; 2383 u32 sges_in_segment; 2384 u8 simple_sgl_flags; 2385 u8 simple_sgl_flags_last; 2386 u8 chain_sgl_flags; 2387 struct chain_tracker *chain_req; 2388 2389 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 2390 2391 /* init scatter gather flags */ 2392 simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2393 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2394 simple_sgl_flags_last = simple_sgl_flags | 2395 MPI25_IEEE_SGE_FLAGS_END_OF_LIST; 2396 chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 2397 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2398 2399 /* Check if we need to build a native SG list. */ 2400 if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request, 2401 smid, scmd, pcie_device) == 0)) { 2402 /* We built a native SG list, just return. */ 2403 return 0; 2404 } 2405 2406 sg_scmd = scsi_sglist(scmd); 2407 sges_left = scsi_dma_map(scmd); 2408 if (sges_left < 0) { 2409 sdev_printk(KERN_ERR, scmd->device, 2410 "scsi_dma_map failed: request for %d bytes!\n", 2411 scsi_bufflen(scmd)); 2412 return -ENOMEM; 2413 } 2414 2415 sg_local = &mpi_request->SGL; 2416 sges_in_segment = (ioc->request_sz - 2417 offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee; 2418 if (sges_left <= sges_in_segment) 2419 goto fill_in_last_segment; 2420 2421 mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) + 2422 (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee); 2423 2424 /* fill in main message segment when there is a chain following */ 2425 while (sges_in_segment > 1) { 2426 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2427 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2428 sg_scmd = sg_next(sg_scmd); 2429 sg_local += ioc->sge_size_ieee; 2430 sges_left--; 2431 sges_in_segment--; 2432 } 2433 2434 /* initializing the pointers */ 2435 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2436 if (!chain_req) 2437 return -1; 2438 chain = chain_req->chain_buffer; 2439 chain_dma = chain_req->chain_buffer_dma; 2440 do { 2441 sges_in_segment = (sges_left <= 2442 ioc->max_sges_in_chain_message) ? sges_left : 2443 ioc->max_sges_in_chain_message; 2444 chain_offset = (sges_left == sges_in_segment) ? 2445 0 : sges_in_segment; 2446 chain_length = sges_in_segment * ioc->sge_size_ieee; 2447 if (chain_offset) 2448 chain_length += ioc->sge_size_ieee; 2449 _base_add_sg_single_ieee(sg_local, chain_sgl_flags, 2450 chain_offset, chain_length, chain_dma); 2451 2452 sg_local = chain; 2453 if (!chain_offset) 2454 goto fill_in_last_segment; 2455 2456 /* fill in chain segments */ 2457 while (sges_in_segment) { 2458 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2459 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2460 sg_scmd = sg_next(sg_scmd); 2461 sg_local += ioc->sge_size_ieee; 2462 sges_left--; 2463 sges_in_segment--; 2464 } 2465 2466 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2467 if (!chain_req) 2468 return -1; 2469 chain = chain_req->chain_buffer; 2470 chain_dma = chain_req->chain_buffer_dma; 2471 } while (1); 2472 2473 2474 fill_in_last_segment: 2475 2476 /* fill the last segment */ 2477 while (sges_left > 0) { 2478 if (sges_left == 1) 2479 _base_add_sg_single_ieee(sg_local, 2480 simple_sgl_flags_last, 0, sg_dma_len(sg_scmd), 2481 sg_dma_address(sg_scmd)); 2482 else 2483 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2484 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2485 sg_scmd = sg_next(sg_scmd); 2486 sg_local += ioc->sge_size_ieee; 2487 sges_left--; 2488 } 2489 2490 return 0; 2491 } 2492 2493 /** 2494 * _base_build_sg_ieee - build generic sg for IEEE format 2495 * @ioc: per adapter object 2496 * @psge: virtual address for SGE 2497 * @data_out_dma: physical address for WRITES 2498 * @data_out_sz: data xfer size for WRITES 2499 * @data_in_dma: physical address for READS 2500 * @data_in_sz: data xfer size for READS 2501 */ 2502 static void 2503 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge, 2504 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 2505 size_t data_in_sz) 2506 { 2507 u8 sgl_flags; 2508 2509 if (!data_out_sz && !data_in_sz) { 2510 _base_build_zero_len_sge_ieee(ioc, psge); 2511 return; 2512 } 2513 2514 if (data_out_sz && data_in_sz) { 2515 /* WRITE sgel first */ 2516 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2517 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2518 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz, 2519 data_out_dma); 2520 2521 /* incr sgel */ 2522 psge += ioc->sge_size_ieee; 2523 2524 /* READ sgel last */ 2525 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST; 2526 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz, 2527 data_in_dma); 2528 } else if (data_out_sz) /* WRITE */ { 2529 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2530 MPI25_IEEE_SGE_FLAGS_END_OF_LIST | 2531 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2532 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz, 2533 data_out_dma); 2534 } else if (data_in_sz) /* READ */ { 2535 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2536 MPI25_IEEE_SGE_FLAGS_END_OF_LIST | 2537 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2538 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz, 2539 data_in_dma); 2540 } 2541 } 2542 2543 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10)) 2544 2545 /** 2546 * _base_config_dma_addressing - set dma addressing 2547 * @ioc: per adapter object 2548 * @pdev: PCI device struct 2549 * 2550 * Return: 0 for success, non-zero for failure. 2551 */ 2552 static int 2553 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev) 2554 { 2555 u64 required_mask, coherent_mask; 2556 struct sysinfo s; 2557 2558 if (ioc->is_mcpu_endpoint) 2559 goto try_32bit; 2560 2561 required_mask = dma_get_required_mask(&pdev->dev); 2562 if (sizeof(dma_addr_t) == 4 || required_mask == 32) 2563 goto try_32bit; 2564 2565 if (ioc->dma_mask) 2566 coherent_mask = DMA_BIT_MASK(64); 2567 else 2568 coherent_mask = DMA_BIT_MASK(32); 2569 2570 if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) || 2571 dma_set_coherent_mask(&pdev->dev, coherent_mask)) 2572 goto try_32bit; 2573 2574 ioc->base_add_sg_single = &_base_add_sg_single_64; 2575 ioc->sge_size = sizeof(Mpi2SGESimple64_t); 2576 ioc->dma_mask = 64; 2577 goto out; 2578 2579 try_32bit: 2580 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32))) 2581 return -ENODEV; 2582 2583 ioc->base_add_sg_single = &_base_add_sg_single_32; 2584 ioc->sge_size = sizeof(Mpi2SGESimple32_t); 2585 ioc->dma_mask = 32; 2586 out: 2587 si_meminfo(&s); 2588 ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n", 2589 ioc->dma_mask, convert_to_kb(s.totalram)); 2590 2591 return 0; 2592 } 2593 2594 static int 2595 _base_change_consistent_dma_mask(struct MPT3SAS_ADAPTER *ioc, 2596 struct pci_dev *pdev) 2597 { 2598 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) { 2599 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) 2600 return -ENODEV; 2601 } 2602 return 0; 2603 } 2604 2605 /** 2606 * _base_check_enable_msix - checks MSIX capabable. 2607 * @ioc: per adapter object 2608 * 2609 * Check to see if card is capable of MSIX, and set number 2610 * of available msix vectors 2611 */ 2612 static int 2613 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc) 2614 { 2615 int base; 2616 u16 message_control; 2617 2618 /* Check whether controller SAS2008 B0 controller, 2619 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX 2620 */ 2621 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 && 2622 ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) { 2623 return -EINVAL; 2624 } 2625 2626 base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX); 2627 if (!base) { 2628 dfailprintk(ioc, ioc_info(ioc, "msix not supported\n")); 2629 return -EINVAL; 2630 } 2631 2632 /* get msix vector count */ 2633 /* NUMA_IO not supported for older controllers */ 2634 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 || 2635 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 || 2636 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 || 2637 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 || 2638 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 || 2639 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 || 2640 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2) 2641 ioc->msix_vector_count = 1; 2642 else { 2643 pci_read_config_word(ioc->pdev, base + 2, &message_control); 2644 ioc->msix_vector_count = (message_control & 0x3FF) + 1; 2645 } 2646 dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n", 2647 ioc->msix_vector_count)); 2648 return 0; 2649 } 2650 2651 /** 2652 * _base_free_irq - free irq 2653 * @ioc: per adapter object 2654 * 2655 * Freeing respective reply_queue from the list. 2656 */ 2657 static void 2658 _base_free_irq(struct MPT3SAS_ADAPTER *ioc) 2659 { 2660 struct adapter_reply_queue *reply_q, *next; 2661 2662 if (list_empty(&ioc->reply_queue_list)) 2663 return; 2664 2665 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) { 2666 list_del(&reply_q->list); 2667 free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index), 2668 reply_q); 2669 kfree(reply_q); 2670 } 2671 } 2672 2673 /** 2674 * _base_request_irq - request irq 2675 * @ioc: per adapter object 2676 * @index: msix index into vector table 2677 * 2678 * Inserting respective reply_queue into the list. 2679 */ 2680 static int 2681 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index) 2682 { 2683 struct pci_dev *pdev = ioc->pdev; 2684 struct adapter_reply_queue *reply_q; 2685 int r; 2686 2687 reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL); 2688 if (!reply_q) { 2689 ioc_err(ioc, "unable to allocate memory %zu!\n", 2690 sizeof(struct adapter_reply_queue)); 2691 return -ENOMEM; 2692 } 2693 reply_q->ioc = ioc; 2694 reply_q->msix_index = index; 2695 2696 atomic_set(&reply_q->busy, 0); 2697 if (ioc->msix_enable) 2698 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d", 2699 ioc->driver_name, ioc->id, index); 2700 else 2701 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d", 2702 ioc->driver_name, ioc->id); 2703 r = request_irq(pci_irq_vector(pdev, index), _base_interrupt, 2704 IRQF_SHARED, reply_q->name, reply_q); 2705 if (r) { 2706 pr_err("%s: unable to allocate interrupt %d!\n", 2707 reply_q->name, pci_irq_vector(pdev, index)); 2708 kfree(reply_q); 2709 return -EBUSY; 2710 } 2711 2712 INIT_LIST_HEAD(&reply_q->list); 2713 list_add_tail(&reply_q->list, &ioc->reply_queue_list); 2714 return 0; 2715 } 2716 2717 /** 2718 * _base_assign_reply_queues - assigning msix index for each cpu 2719 * @ioc: per adapter object 2720 * 2721 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity 2722 * 2723 * It would nice if we could call irq_set_affinity, however it is not 2724 * an exported symbol 2725 */ 2726 static void 2727 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc) 2728 { 2729 unsigned int cpu, nr_cpus, nr_msix, index = 0; 2730 struct adapter_reply_queue *reply_q; 2731 2732 if (!_base_is_controller_msix_enabled(ioc)) 2733 return; 2734 2735 memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz); 2736 2737 nr_cpus = num_online_cpus(); 2738 nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count, 2739 ioc->facts.MaxMSIxVectors); 2740 if (!nr_msix) 2741 return; 2742 2743 if (smp_affinity_enable) { 2744 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 2745 const cpumask_t *mask = pci_irq_get_affinity(ioc->pdev, 2746 reply_q->msix_index); 2747 if (!mask) { 2748 ioc_warn(ioc, "no affinity for msi %x\n", 2749 reply_q->msix_index); 2750 continue; 2751 } 2752 2753 for_each_cpu_and(cpu, mask, cpu_online_mask) { 2754 if (cpu >= ioc->cpu_msix_table_sz) 2755 break; 2756 ioc->cpu_msix_table[cpu] = reply_q->msix_index; 2757 } 2758 } 2759 return; 2760 } 2761 cpu = cpumask_first(cpu_online_mask); 2762 2763 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 2764 2765 unsigned int i, group = nr_cpus / nr_msix; 2766 2767 if (cpu >= nr_cpus) 2768 break; 2769 2770 if (index < nr_cpus % nr_msix) 2771 group++; 2772 2773 for (i = 0 ; i < group ; i++) { 2774 ioc->cpu_msix_table[cpu] = reply_q->msix_index; 2775 cpu = cpumask_next(cpu, cpu_online_mask); 2776 } 2777 index++; 2778 } 2779 } 2780 2781 /** 2782 * _base_disable_msix - disables msix 2783 * @ioc: per adapter object 2784 * 2785 */ 2786 static void 2787 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc) 2788 { 2789 if (!ioc->msix_enable) 2790 return; 2791 pci_disable_msix(ioc->pdev); 2792 ioc->msix_enable = 0; 2793 } 2794 2795 /** 2796 * _base_enable_msix - enables msix, failback to io_apic 2797 * @ioc: per adapter object 2798 * 2799 */ 2800 static int 2801 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc) 2802 { 2803 int r; 2804 int i, local_max_msix_vectors; 2805 u8 try_msix = 0; 2806 unsigned int irq_flags = PCI_IRQ_MSIX; 2807 2808 if (msix_disable == -1 || msix_disable == 0) 2809 try_msix = 1; 2810 2811 if (!try_msix) 2812 goto try_ioapic; 2813 2814 if (_base_check_enable_msix(ioc) != 0) 2815 goto try_ioapic; 2816 2817 ioc->reply_queue_count = min_t(int, ioc->cpu_count, 2818 ioc->msix_vector_count); 2819 2820 ioc_info(ioc, "MSI-X vectors supported: %d, no of cores: %d, max_msix_vectors: %d\n", 2821 ioc->msix_vector_count, ioc->cpu_count, max_msix_vectors); 2822 2823 if (!ioc->rdpq_array_enable && max_msix_vectors == -1) 2824 local_max_msix_vectors = (reset_devices) ? 1 : 8; 2825 else 2826 local_max_msix_vectors = max_msix_vectors; 2827 2828 if (local_max_msix_vectors > 0) 2829 ioc->reply_queue_count = min_t(int, local_max_msix_vectors, 2830 ioc->reply_queue_count); 2831 else if (local_max_msix_vectors == 0) 2832 goto try_ioapic; 2833 2834 if (ioc->msix_vector_count < ioc->cpu_count) 2835 smp_affinity_enable = 0; 2836 2837 if (smp_affinity_enable) 2838 irq_flags |= PCI_IRQ_AFFINITY; 2839 2840 r = pci_alloc_irq_vectors(ioc->pdev, 1, ioc->reply_queue_count, 2841 irq_flags); 2842 if (r < 0) { 2843 dfailprintk(ioc, 2844 ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", 2845 r)); 2846 goto try_ioapic; 2847 } 2848 2849 ioc->msix_enable = 1; 2850 ioc->reply_queue_count = r; 2851 for (i = 0; i < ioc->reply_queue_count; i++) { 2852 r = _base_request_irq(ioc, i); 2853 if (r) { 2854 _base_free_irq(ioc); 2855 _base_disable_msix(ioc); 2856 goto try_ioapic; 2857 } 2858 } 2859 2860 return 0; 2861 2862 /* failback to io_apic interrupt routing */ 2863 try_ioapic: 2864 2865 ioc->reply_queue_count = 1; 2866 r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY); 2867 if (r < 0) { 2868 dfailprintk(ioc, 2869 ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n", 2870 r)); 2871 } else 2872 r = _base_request_irq(ioc, 0); 2873 2874 return r; 2875 } 2876 2877 /** 2878 * mpt3sas_base_unmap_resources - free controller resources 2879 * @ioc: per adapter object 2880 */ 2881 static void 2882 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc) 2883 { 2884 struct pci_dev *pdev = ioc->pdev; 2885 2886 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 2887 2888 _base_free_irq(ioc); 2889 _base_disable_msix(ioc); 2890 2891 kfree(ioc->replyPostRegisterIndex); 2892 ioc->replyPostRegisterIndex = NULL; 2893 2894 2895 if (ioc->chip_phys) { 2896 iounmap(ioc->chip); 2897 ioc->chip_phys = 0; 2898 } 2899 2900 if (pci_is_enabled(pdev)) { 2901 pci_release_selected_regions(ioc->pdev, ioc->bars); 2902 pci_disable_pcie_error_reporting(pdev); 2903 pci_disable_device(pdev); 2904 } 2905 } 2906 2907 /** 2908 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap) 2909 * @ioc: per adapter object 2910 * 2911 * Return: 0 for success, non-zero for failure. 2912 */ 2913 int 2914 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc) 2915 { 2916 struct pci_dev *pdev = ioc->pdev; 2917 u32 memap_sz; 2918 u32 pio_sz; 2919 int i, r = 0; 2920 u64 pio_chip = 0; 2921 phys_addr_t chip_phys = 0; 2922 struct adapter_reply_queue *reply_q; 2923 2924 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 2925 2926 ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM); 2927 if (pci_enable_device_mem(pdev)) { 2928 ioc_warn(ioc, "pci_enable_device_mem: failed\n"); 2929 ioc->bars = 0; 2930 return -ENODEV; 2931 } 2932 2933 2934 if (pci_request_selected_regions(pdev, ioc->bars, 2935 ioc->driver_name)) { 2936 ioc_warn(ioc, "pci_request_selected_regions: failed\n"); 2937 ioc->bars = 0; 2938 r = -ENODEV; 2939 goto out_fail; 2940 } 2941 2942 /* AER (Advanced Error Reporting) hooks */ 2943 pci_enable_pcie_error_reporting(pdev); 2944 2945 pci_set_master(pdev); 2946 2947 2948 if (_base_config_dma_addressing(ioc, pdev) != 0) { 2949 ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev)); 2950 r = -ENODEV; 2951 goto out_fail; 2952 } 2953 2954 for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) && 2955 (!memap_sz || !pio_sz); i++) { 2956 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { 2957 if (pio_sz) 2958 continue; 2959 pio_chip = (u64)pci_resource_start(pdev, i); 2960 pio_sz = pci_resource_len(pdev, i); 2961 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) { 2962 if (memap_sz) 2963 continue; 2964 ioc->chip_phys = pci_resource_start(pdev, i); 2965 chip_phys = ioc->chip_phys; 2966 memap_sz = pci_resource_len(pdev, i); 2967 ioc->chip = ioremap(ioc->chip_phys, memap_sz); 2968 } 2969 } 2970 2971 if (ioc->chip == NULL) { 2972 ioc_err(ioc, "unable to map adapter memory! or resource not found\n"); 2973 r = -EINVAL; 2974 goto out_fail; 2975 } 2976 2977 _base_mask_interrupts(ioc); 2978 2979 r = _base_get_ioc_facts(ioc); 2980 if (r) 2981 goto out_fail; 2982 2983 if (!ioc->rdpq_array_enable_assigned) { 2984 ioc->rdpq_array_enable = ioc->rdpq_array_capable; 2985 ioc->rdpq_array_enable_assigned = 1; 2986 } 2987 2988 r = _base_enable_msix(ioc); 2989 if (r) 2990 goto out_fail; 2991 2992 /* Use the Combined reply queue feature only for SAS3 C0 & higher 2993 * revision HBAs and also only when reply queue count is greater than 8 2994 */ 2995 if (ioc->combined_reply_queue) { 2996 /* Determine the Supplemental Reply Post Host Index Registers 2997 * Addresse. Supplemental Reply Post Host Index Registers 2998 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and 2999 * each register is at offset bytes of 3000 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one. 3001 */ 3002 ioc->replyPostRegisterIndex = kcalloc( 3003 ioc->combined_reply_index_count, 3004 sizeof(resource_size_t *), GFP_KERNEL); 3005 if (!ioc->replyPostRegisterIndex) { 3006 dfailprintk(ioc, 3007 ioc_warn(ioc, "allocation for reply Post Register Index failed!!!\n")); 3008 r = -ENOMEM; 3009 goto out_fail; 3010 } 3011 3012 for (i = 0; i < ioc->combined_reply_index_count; i++) { 3013 ioc->replyPostRegisterIndex[i] = (resource_size_t *) 3014 ((u8 __force *)&ioc->chip->Doorbell + 3015 MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET + 3016 (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET)); 3017 } 3018 } 3019 3020 if (ioc->is_warpdrive) { 3021 ioc->reply_post_host_index[0] = (resource_size_t __iomem *) 3022 &ioc->chip->ReplyPostHostIndex; 3023 3024 for (i = 1; i < ioc->cpu_msix_table_sz; i++) 3025 ioc->reply_post_host_index[i] = 3026 (resource_size_t __iomem *) 3027 ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1) 3028 * 4))); 3029 } 3030 3031 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) 3032 pr_info("%s: %s enabled: IRQ %d\n", 3033 reply_q->name, 3034 ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC", 3035 pci_irq_vector(ioc->pdev, reply_q->msix_index)); 3036 3037 ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n", 3038 &chip_phys, ioc->chip, memap_sz); 3039 ioc_info(ioc, "ioport(0x%016llx), size(%d)\n", 3040 (unsigned long long)pio_chip, pio_sz); 3041 3042 /* Save PCI configuration state for recovery from PCI AER/EEH errors */ 3043 pci_save_state(pdev); 3044 return 0; 3045 3046 out_fail: 3047 mpt3sas_base_unmap_resources(ioc); 3048 return r; 3049 } 3050 3051 /** 3052 * mpt3sas_base_get_msg_frame - obtain request mf pointer 3053 * @ioc: per adapter object 3054 * @smid: system request message index(smid zero is invalid) 3055 * 3056 * Return: virt pointer to message frame. 3057 */ 3058 void * 3059 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3060 { 3061 return (void *)(ioc->request + (smid * ioc->request_sz)); 3062 } 3063 3064 /** 3065 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr 3066 * @ioc: per adapter object 3067 * @smid: system request message index 3068 * 3069 * Return: virt pointer to sense buffer. 3070 */ 3071 void * 3072 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3073 { 3074 return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE)); 3075 } 3076 3077 /** 3078 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr 3079 * @ioc: per adapter object 3080 * @smid: system request message index 3081 * 3082 * Return: phys pointer to the low 32bit address of the sense buffer. 3083 */ 3084 __le32 3085 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3086 { 3087 return cpu_to_le32(ioc->sense_dma + ((smid - 1) * 3088 SCSI_SENSE_BUFFERSIZE)); 3089 } 3090 3091 /** 3092 * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr 3093 * @ioc: per adapter object 3094 * @smid: system request message index 3095 * 3096 * Return: virt pointer to a PCIe SGL. 3097 */ 3098 void * 3099 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3100 { 3101 return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl); 3102 } 3103 3104 /** 3105 * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr 3106 * @ioc: per adapter object 3107 * @smid: system request message index 3108 * 3109 * Return: phys pointer to the address of the PCIe buffer. 3110 */ 3111 dma_addr_t 3112 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3113 { 3114 return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma; 3115 } 3116 3117 /** 3118 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address 3119 * @ioc: per adapter object 3120 * @phys_addr: lower 32 physical addr of the reply 3121 * 3122 * Converts 32bit lower physical addr into a virt address. 3123 */ 3124 void * 3125 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr) 3126 { 3127 if (!phys_addr) 3128 return NULL; 3129 return ioc->reply + (phys_addr - (u32)ioc->reply_dma); 3130 } 3131 3132 static inline u8 3133 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc) 3134 { 3135 return ioc->cpu_msix_table[raw_smp_processor_id()]; 3136 } 3137 3138 /** 3139 * mpt3sas_base_get_smid - obtain a free smid from internal queue 3140 * @ioc: per adapter object 3141 * @cb_idx: callback index 3142 * 3143 * Return: smid (zero is invalid) 3144 */ 3145 u16 3146 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx) 3147 { 3148 unsigned long flags; 3149 struct request_tracker *request; 3150 u16 smid; 3151 3152 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3153 if (list_empty(&ioc->internal_free_list)) { 3154 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3155 ioc_err(ioc, "%s: smid not available\n", __func__); 3156 return 0; 3157 } 3158 3159 request = list_entry(ioc->internal_free_list.next, 3160 struct request_tracker, tracker_list); 3161 request->cb_idx = cb_idx; 3162 smid = request->smid; 3163 list_del(&request->tracker_list); 3164 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3165 return smid; 3166 } 3167 3168 /** 3169 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue 3170 * @ioc: per adapter object 3171 * @cb_idx: callback index 3172 * @scmd: pointer to scsi command object 3173 * 3174 * Return: smid (zero is invalid) 3175 */ 3176 u16 3177 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx, 3178 struct scsi_cmnd *scmd) 3179 { 3180 struct scsiio_tracker *request = scsi_cmd_priv(scmd); 3181 unsigned int tag = scmd->request->tag; 3182 u16 smid; 3183 3184 smid = tag + 1; 3185 request->cb_idx = cb_idx; 3186 request->msix_io = _base_get_msix_index(ioc); 3187 request->smid = smid; 3188 INIT_LIST_HEAD(&request->chain_list); 3189 return smid; 3190 } 3191 3192 /** 3193 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue 3194 * @ioc: per adapter object 3195 * @cb_idx: callback index 3196 * 3197 * Return: smid (zero is invalid) 3198 */ 3199 u16 3200 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx) 3201 { 3202 unsigned long flags; 3203 struct request_tracker *request; 3204 u16 smid; 3205 3206 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3207 if (list_empty(&ioc->hpr_free_list)) { 3208 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3209 return 0; 3210 } 3211 3212 request = list_entry(ioc->hpr_free_list.next, 3213 struct request_tracker, tracker_list); 3214 request->cb_idx = cb_idx; 3215 smid = request->smid; 3216 list_del(&request->tracker_list); 3217 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3218 return smid; 3219 } 3220 3221 static void 3222 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc) 3223 { 3224 /* 3225 * See _wait_for_commands_to_complete() call with regards to this code. 3226 */ 3227 if (ioc->shost_recovery && ioc->pending_io_count) { 3228 ioc->pending_io_count = scsi_host_busy(ioc->shost); 3229 if (ioc->pending_io_count == 0) 3230 wake_up(&ioc->reset_wq); 3231 } 3232 } 3233 3234 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc, 3235 struct scsiio_tracker *st) 3236 { 3237 if (WARN_ON(st->smid == 0)) 3238 return; 3239 st->cb_idx = 0xFF; 3240 st->direct_io = 0; 3241 atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0); 3242 st->smid = 0; 3243 } 3244 3245 /** 3246 * mpt3sas_base_free_smid - put smid back on free_list 3247 * @ioc: per adapter object 3248 * @smid: system request message index 3249 */ 3250 void 3251 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3252 { 3253 unsigned long flags; 3254 int i; 3255 3256 if (smid < ioc->hi_priority_smid) { 3257 struct scsiio_tracker *st; 3258 3259 st = _get_st_from_smid(ioc, smid); 3260 if (!st) { 3261 _base_recovery_check(ioc); 3262 return; 3263 } 3264 mpt3sas_base_clear_st(ioc, st); 3265 _base_recovery_check(ioc); 3266 return; 3267 } 3268 3269 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3270 if (smid < ioc->internal_smid) { 3271 /* hi-priority */ 3272 i = smid - ioc->hi_priority_smid; 3273 ioc->hpr_lookup[i].cb_idx = 0xFF; 3274 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list); 3275 } else if (smid <= ioc->hba_queue_depth) { 3276 /* internal queue */ 3277 i = smid - ioc->internal_smid; 3278 ioc->internal_lookup[i].cb_idx = 0xFF; 3279 list_add(&ioc->internal_lookup[i].tracker_list, 3280 &ioc->internal_free_list); 3281 } 3282 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3283 } 3284 3285 /** 3286 * _base_mpi_ep_writeq - 32 bit write to MMIO 3287 * @b: data payload 3288 * @addr: address in MMIO space 3289 * @writeq_lock: spin lock 3290 * 3291 * This special handling for MPI EP to take care of 32 bit 3292 * environment where its not quarenteed to send the entire word 3293 * in one transfer. 3294 */ 3295 static inline void 3296 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr, 3297 spinlock_t *writeq_lock) 3298 { 3299 unsigned long flags; 3300 3301 spin_lock_irqsave(writeq_lock, flags); 3302 __raw_writel((u32)(b), addr); 3303 __raw_writel((u32)(b >> 32), (addr + 4)); 3304 mmiowb(); 3305 spin_unlock_irqrestore(writeq_lock, flags); 3306 } 3307 3308 /** 3309 * _base_writeq - 64 bit write to MMIO 3310 * @b: data payload 3311 * @addr: address in MMIO space 3312 * @writeq_lock: spin lock 3313 * 3314 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes 3315 * care of 32 bit environment where its not quarenteed to send the entire word 3316 * in one transfer. 3317 */ 3318 #if defined(writeq) && defined(CONFIG_64BIT) 3319 static inline void 3320 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock) 3321 { 3322 __raw_writeq(b, addr); 3323 mmiowb(); 3324 } 3325 #else 3326 static inline void 3327 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock) 3328 { 3329 _base_mpi_ep_writeq(b, addr, writeq_lock); 3330 } 3331 #endif 3332 3333 /** 3334 * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware 3335 * @ioc: per adapter object 3336 * @smid: system request message index 3337 * @handle: device handle 3338 */ 3339 static void 3340 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle) 3341 { 3342 Mpi2RequestDescriptorUnion_t descriptor; 3343 u64 *request = (u64 *)&descriptor; 3344 void *mpi_req_iomem; 3345 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 3346 3347 _clone_sg_entries(ioc, (void *) mfp, smid); 3348 mpi_req_iomem = (void __force *)ioc->chip + 3349 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz); 3350 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 3351 ioc->request_sz); 3352 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 3353 descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc); 3354 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 3355 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 3356 descriptor.SCSIIO.LMID = 0; 3357 _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3358 &ioc->scsi_lookup_lock); 3359 } 3360 3361 /** 3362 * _base_put_smid_scsi_io - send SCSI_IO request to firmware 3363 * @ioc: per adapter object 3364 * @smid: system request message index 3365 * @handle: device handle 3366 */ 3367 static void 3368 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle) 3369 { 3370 Mpi2RequestDescriptorUnion_t descriptor; 3371 u64 *request = (u64 *)&descriptor; 3372 3373 3374 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 3375 descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc); 3376 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 3377 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 3378 descriptor.SCSIIO.LMID = 0; 3379 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3380 &ioc->scsi_lookup_lock); 3381 } 3382 3383 /** 3384 * mpt3sas_base_put_smid_fast_path - send fast path request to firmware 3385 * @ioc: per adapter object 3386 * @smid: system request message index 3387 * @handle: device handle 3388 */ 3389 void 3390 mpt3sas_base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid, 3391 u16 handle) 3392 { 3393 Mpi2RequestDescriptorUnion_t descriptor; 3394 u64 *request = (u64 *)&descriptor; 3395 3396 descriptor.SCSIIO.RequestFlags = 3397 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 3398 descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc); 3399 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 3400 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 3401 descriptor.SCSIIO.LMID = 0; 3402 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3403 &ioc->scsi_lookup_lock); 3404 } 3405 3406 /** 3407 * mpt3sas_base_put_smid_hi_priority - send Task Management request to firmware 3408 * @ioc: per adapter object 3409 * @smid: system request message index 3410 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0. 3411 */ 3412 void 3413 mpt3sas_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid, 3414 u16 msix_task) 3415 { 3416 Mpi2RequestDescriptorUnion_t descriptor; 3417 void *mpi_req_iomem; 3418 u64 *request; 3419 3420 if (ioc->is_mcpu_endpoint) { 3421 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 3422 3423 /* TBD 256 is offset within sys register. */ 3424 mpi_req_iomem = (void __force *)ioc->chip 3425 + MPI_FRAME_START_OFFSET 3426 + (smid * ioc->request_sz); 3427 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 3428 ioc->request_sz); 3429 } 3430 3431 request = (u64 *)&descriptor; 3432 3433 descriptor.HighPriority.RequestFlags = 3434 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 3435 descriptor.HighPriority.MSIxIndex = msix_task; 3436 descriptor.HighPriority.SMID = cpu_to_le16(smid); 3437 descriptor.HighPriority.LMID = 0; 3438 descriptor.HighPriority.Reserved1 = 0; 3439 if (ioc->is_mcpu_endpoint) 3440 _base_mpi_ep_writeq(*request, 3441 &ioc->chip->RequestDescriptorPostLow, 3442 &ioc->scsi_lookup_lock); 3443 else 3444 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3445 &ioc->scsi_lookup_lock); 3446 } 3447 3448 /** 3449 * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to 3450 * firmware 3451 * @ioc: per adapter object 3452 * @smid: system request message index 3453 */ 3454 void 3455 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3456 { 3457 Mpi2RequestDescriptorUnion_t descriptor; 3458 u64 *request = (u64 *)&descriptor; 3459 3460 descriptor.Default.RequestFlags = 3461 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED; 3462 descriptor.Default.MSIxIndex = _base_get_msix_index(ioc); 3463 descriptor.Default.SMID = cpu_to_le16(smid); 3464 descriptor.Default.LMID = 0; 3465 descriptor.Default.DescriptorTypeDependent = 0; 3466 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3467 &ioc->scsi_lookup_lock); 3468 } 3469 3470 /** 3471 * mpt3sas_base_put_smid_default - Default, primarily used for config pages 3472 * @ioc: per adapter object 3473 * @smid: system request message index 3474 */ 3475 void 3476 mpt3sas_base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3477 { 3478 Mpi2RequestDescriptorUnion_t descriptor; 3479 void *mpi_req_iomem; 3480 u64 *request; 3481 3482 if (ioc->is_mcpu_endpoint) { 3483 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 3484 3485 _clone_sg_entries(ioc, (void *) mfp, smid); 3486 /* TBD 256 is offset within sys register */ 3487 mpi_req_iomem = (void __force *)ioc->chip + 3488 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz); 3489 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 3490 ioc->request_sz); 3491 } 3492 request = (u64 *)&descriptor; 3493 descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 3494 descriptor.Default.MSIxIndex = _base_get_msix_index(ioc); 3495 descriptor.Default.SMID = cpu_to_le16(smid); 3496 descriptor.Default.LMID = 0; 3497 descriptor.Default.DescriptorTypeDependent = 0; 3498 if (ioc->is_mcpu_endpoint) 3499 _base_mpi_ep_writeq(*request, 3500 &ioc->chip->RequestDescriptorPostLow, 3501 &ioc->scsi_lookup_lock); 3502 else 3503 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3504 &ioc->scsi_lookup_lock); 3505 } 3506 3507 /** 3508 * _base_display_OEMs_branding - Display branding string 3509 * @ioc: per adapter object 3510 */ 3511 static void 3512 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc) 3513 { 3514 if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL) 3515 return; 3516 3517 switch (ioc->pdev->subsystem_vendor) { 3518 case PCI_VENDOR_ID_INTEL: 3519 switch (ioc->pdev->device) { 3520 case MPI2_MFGPAGE_DEVID_SAS2008: 3521 switch (ioc->pdev->subsystem_device) { 3522 case MPT2SAS_INTEL_RMS2LL080_SSDID: 3523 ioc_info(ioc, "%s\n", 3524 MPT2SAS_INTEL_RMS2LL080_BRANDING); 3525 break; 3526 case MPT2SAS_INTEL_RMS2LL040_SSDID: 3527 ioc_info(ioc, "%s\n", 3528 MPT2SAS_INTEL_RMS2LL040_BRANDING); 3529 break; 3530 case MPT2SAS_INTEL_SSD910_SSDID: 3531 ioc_info(ioc, "%s\n", 3532 MPT2SAS_INTEL_SSD910_BRANDING); 3533 break; 3534 default: 3535 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 3536 ioc->pdev->subsystem_device); 3537 break; 3538 } 3539 case MPI2_MFGPAGE_DEVID_SAS2308_2: 3540 switch (ioc->pdev->subsystem_device) { 3541 case MPT2SAS_INTEL_RS25GB008_SSDID: 3542 ioc_info(ioc, "%s\n", 3543 MPT2SAS_INTEL_RS25GB008_BRANDING); 3544 break; 3545 case MPT2SAS_INTEL_RMS25JB080_SSDID: 3546 ioc_info(ioc, "%s\n", 3547 MPT2SAS_INTEL_RMS25JB080_BRANDING); 3548 break; 3549 case MPT2SAS_INTEL_RMS25JB040_SSDID: 3550 ioc_info(ioc, "%s\n", 3551 MPT2SAS_INTEL_RMS25JB040_BRANDING); 3552 break; 3553 case MPT2SAS_INTEL_RMS25KB080_SSDID: 3554 ioc_info(ioc, "%s\n", 3555 MPT2SAS_INTEL_RMS25KB080_BRANDING); 3556 break; 3557 case MPT2SAS_INTEL_RMS25KB040_SSDID: 3558 ioc_info(ioc, "%s\n", 3559 MPT2SAS_INTEL_RMS25KB040_BRANDING); 3560 break; 3561 case MPT2SAS_INTEL_RMS25LB040_SSDID: 3562 ioc_info(ioc, "%s\n", 3563 MPT2SAS_INTEL_RMS25LB040_BRANDING); 3564 break; 3565 case MPT2SAS_INTEL_RMS25LB080_SSDID: 3566 ioc_info(ioc, "%s\n", 3567 MPT2SAS_INTEL_RMS25LB080_BRANDING); 3568 break; 3569 default: 3570 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 3571 ioc->pdev->subsystem_device); 3572 break; 3573 } 3574 case MPI25_MFGPAGE_DEVID_SAS3008: 3575 switch (ioc->pdev->subsystem_device) { 3576 case MPT3SAS_INTEL_RMS3JC080_SSDID: 3577 ioc_info(ioc, "%s\n", 3578 MPT3SAS_INTEL_RMS3JC080_BRANDING); 3579 break; 3580 3581 case MPT3SAS_INTEL_RS3GC008_SSDID: 3582 ioc_info(ioc, "%s\n", 3583 MPT3SAS_INTEL_RS3GC008_BRANDING); 3584 break; 3585 case MPT3SAS_INTEL_RS3FC044_SSDID: 3586 ioc_info(ioc, "%s\n", 3587 MPT3SAS_INTEL_RS3FC044_BRANDING); 3588 break; 3589 case MPT3SAS_INTEL_RS3UC080_SSDID: 3590 ioc_info(ioc, "%s\n", 3591 MPT3SAS_INTEL_RS3UC080_BRANDING); 3592 break; 3593 default: 3594 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 3595 ioc->pdev->subsystem_device); 3596 break; 3597 } 3598 break; 3599 default: 3600 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 3601 ioc->pdev->subsystem_device); 3602 break; 3603 } 3604 break; 3605 case PCI_VENDOR_ID_DELL: 3606 switch (ioc->pdev->device) { 3607 case MPI2_MFGPAGE_DEVID_SAS2008: 3608 switch (ioc->pdev->subsystem_device) { 3609 case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID: 3610 ioc_info(ioc, "%s\n", 3611 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING); 3612 break; 3613 case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID: 3614 ioc_info(ioc, "%s\n", 3615 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING); 3616 break; 3617 case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID: 3618 ioc_info(ioc, "%s\n", 3619 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING); 3620 break; 3621 case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID: 3622 ioc_info(ioc, "%s\n", 3623 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING); 3624 break; 3625 case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID: 3626 ioc_info(ioc, "%s\n", 3627 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING); 3628 break; 3629 case MPT2SAS_DELL_PERC_H200_SSDID: 3630 ioc_info(ioc, "%s\n", 3631 MPT2SAS_DELL_PERC_H200_BRANDING); 3632 break; 3633 case MPT2SAS_DELL_6GBPS_SAS_SSDID: 3634 ioc_info(ioc, "%s\n", 3635 MPT2SAS_DELL_6GBPS_SAS_BRANDING); 3636 break; 3637 default: 3638 ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n", 3639 ioc->pdev->subsystem_device); 3640 break; 3641 } 3642 break; 3643 case MPI25_MFGPAGE_DEVID_SAS3008: 3644 switch (ioc->pdev->subsystem_device) { 3645 case MPT3SAS_DELL_12G_HBA_SSDID: 3646 ioc_info(ioc, "%s\n", 3647 MPT3SAS_DELL_12G_HBA_BRANDING); 3648 break; 3649 default: 3650 ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n", 3651 ioc->pdev->subsystem_device); 3652 break; 3653 } 3654 break; 3655 default: 3656 ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n", 3657 ioc->pdev->subsystem_device); 3658 break; 3659 } 3660 break; 3661 case PCI_VENDOR_ID_CISCO: 3662 switch (ioc->pdev->device) { 3663 case MPI25_MFGPAGE_DEVID_SAS3008: 3664 switch (ioc->pdev->subsystem_device) { 3665 case MPT3SAS_CISCO_12G_8E_HBA_SSDID: 3666 ioc_info(ioc, "%s\n", 3667 MPT3SAS_CISCO_12G_8E_HBA_BRANDING); 3668 break; 3669 case MPT3SAS_CISCO_12G_8I_HBA_SSDID: 3670 ioc_info(ioc, "%s\n", 3671 MPT3SAS_CISCO_12G_8I_HBA_BRANDING); 3672 break; 3673 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID: 3674 ioc_info(ioc, "%s\n", 3675 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING); 3676 break; 3677 default: 3678 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n", 3679 ioc->pdev->subsystem_device); 3680 break; 3681 } 3682 break; 3683 case MPI25_MFGPAGE_DEVID_SAS3108_1: 3684 switch (ioc->pdev->subsystem_device) { 3685 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID: 3686 ioc_info(ioc, "%s\n", 3687 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING); 3688 break; 3689 case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID: 3690 ioc_info(ioc, "%s\n", 3691 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING); 3692 break; 3693 default: 3694 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n", 3695 ioc->pdev->subsystem_device); 3696 break; 3697 } 3698 break; 3699 default: 3700 ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n", 3701 ioc->pdev->subsystem_device); 3702 break; 3703 } 3704 break; 3705 case MPT2SAS_HP_3PAR_SSVID: 3706 switch (ioc->pdev->device) { 3707 case MPI2_MFGPAGE_DEVID_SAS2004: 3708 switch (ioc->pdev->subsystem_device) { 3709 case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID: 3710 ioc_info(ioc, "%s\n", 3711 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING); 3712 break; 3713 default: 3714 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n", 3715 ioc->pdev->subsystem_device); 3716 break; 3717 } 3718 case MPI2_MFGPAGE_DEVID_SAS2308_2: 3719 switch (ioc->pdev->subsystem_device) { 3720 case MPT2SAS_HP_2_4_INTERNAL_SSDID: 3721 ioc_info(ioc, "%s\n", 3722 MPT2SAS_HP_2_4_INTERNAL_BRANDING); 3723 break; 3724 case MPT2SAS_HP_2_4_EXTERNAL_SSDID: 3725 ioc_info(ioc, "%s\n", 3726 MPT2SAS_HP_2_4_EXTERNAL_BRANDING); 3727 break; 3728 case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID: 3729 ioc_info(ioc, "%s\n", 3730 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING); 3731 break; 3732 case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID: 3733 ioc_info(ioc, "%s\n", 3734 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING); 3735 break; 3736 default: 3737 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n", 3738 ioc->pdev->subsystem_device); 3739 break; 3740 } 3741 default: 3742 ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n", 3743 ioc->pdev->subsystem_device); 3744 break; 3745 } 3746 default: 3747 break; 3748 } 3749 } 3750 3751 /** 3752 * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg 3753 * version from FW Image Header. 3754 * @ioc: per adapter object 3755 * 3756 * Return: 0 for success, non-zero for failure. 3757 */ 3758 static int 3759 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc) 3760 { 3761 Mpi2FWImageHeader_t *FWImgHdr; 3762 Mpi25FWUploadRequest_t *mpi_request; 3763 Mpi2FWUploadReply_t mpi_reply; 3764 int r = 0; 3765 void *fwpkg_data = NULL; 3766 dma_addr_t fwpkg_data_dma; 3767 u16 smid, ioc_status; 3768 size_t data_length; 3769 3770 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 3771 3772 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 3773 ioc_err(ioc, "%s: internal command already in use\n", __func__); 3774 return -EAGAIN; 3775 } 3776 3777 data_length = sizeof(Mpi2FWImageHeader_t); 3778 fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length, 3779 &fwpkg_data_dma, GFP_KERNEL); 3780 if (!fwpkg_data) { 3781 ioc_err(ioc, "failure at %s:%d/%s()!\n", 3782 __FILE__, __LINE__, __func__); 3783 return -ENOMEM; 3784 } 3785 3786 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 3787 if (!smid) { 3788 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 3789 r = -EAGAIN; 3790 goto out; 3791 } 3792 3793 ioc->base_cmds.status = MPT3_CMD_PENDING; 3794 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 3795 ioc->base_cmds.smid = smid; 3796 memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t)); 3797 mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD; 3798 mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH; 3799 mpi_request->ImageSize = cpu_to_le32(data_length); 3800 ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma, 3801 data_length); 3802 init_completion(&ioc->base_cmds.done); 3803 mpt3sas_base_put_smid_default(ioc, smid); 3804 /* Wait for 15 seconds */ 3805 wait_for_completion_timeout(&ioc->base_cmds.done, 3806 FW_IMG_HDR_READ_TIMEOUT*HZ); 3807 ioc_info(ioc, "%s: complete\n", __func__); 3808 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 3809 ioc_err(ioc, "%s: timeout\n", __func__); 3810 _debug_dump_mf(mpi_request, 3811 sizeof(Mpi25FWUploadRequest_t)/4); 3812 r = -ETIME; 3813 } else { 3814 memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t)); 3815 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) { 3816 memcpy(&mpi_reply, ioc->base_cmds.reply, 3817 sizeof(Mpi2FWUploadReply_t)); 3818 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 3819 MPI2_IOCSTATUS_MASK; 3820 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 3821 FWImgHdr = (Mpi2FWImageHeader_t *)fwpkg_data; 3822 if (FWImgHdr->PackageVersion.Word) { 3823 ioc_info(ioc, "FW Package Version (%02d.%02d.%02d.%02d)\n", 3824 FWImgHdr->PackageVersion.Struct.Major, 3825 FWImgHdr->PackageVersion.Struct.Minor, 3826 FWImgHdr->PackageVersion.Struct.Unit, 3827 FWImgHdr->PackageVersion.Struct.Dev); 3828 } 3829 } else { 3830 _debug_dump_mf(&mpi_reply, 3831 sizeof(Mpi2FWUploadReply_t)/4); 3832 } 3833 } 3834 } 3835 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 3836 out: 3837 if (fwpkg_data) 3838 dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data, 3839 fwpkg_data_dma); 3840 return r; 3841 } 3842 3843 /** 3844 * _base_display_ioc_capabilities - Disply IOC's capabilities. 3845 * @ioc: per adapter object 3846 */ 3847 static void 3848 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc) 3849 { 3850 int i = 0; 3851 char desc[16]; 3852 u32 iounit_pg1_flags; 3853 u32 bios_version; 3854 3855 bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion); 3856 strncpy(desc, ioc->manu_pg0.ChipName, 16); 3857 ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n", 3858 desc, 3859 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24, 3860 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16, 3861 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8, 3862 ioc->facts.FWVersion.Word & 0x000000FF, 3863 ioc->pdev->revision, 3864 (bios_version & 0xFF000000) >> 24, 3865 (bios_version & 0x00FF0000) >> 16, 3866 (bios_version & 0x0000FF00) >> 8, 3867 bios_version & 0x000000FF); 3868 3869 _base_display_OEMs_branding(ioc); 3870 3871 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) { 3872 pr_info("%sNVMe", i ? "," : ""); 3873 i++; 3874 } 3875 3876 ioc_info(ioc, "Protocol=("); 3877 3878 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) { 3879 pr_cont("Initiator"); 3880 i++; 3881 } 3882 3883 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) { 3884 pr_cont("%sTarget", i ? "," : ""); 3885 i++; 3886 } 3887 3888 i = 0; 3889 pr_cont("), Capabilities=("); 3890 3891 if (!ioc->hide_ir_msg) { 3892 if (ioc->facts.IOCCapabilities & 3893 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) { 3894 pr_cont("Raid"); 3895 i++; 3896 } 3897 } 3898 3899 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) { 3900 pr_cont("%sTLR", i ? "," : ""); 3901 i++; 3902 } 3903 3904 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) { 3905 pr_cont("%sMulticast", i ? "," : ""); 3906 i++; 3907 } 3908 3909 if (ioc->facts.IOCCapabilities & 3910 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) { 3911 pr_cont("%sBIDI Target", i ? "," : ""); 3912 i++; 3913 } 3914 3915 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) { 3916 pr_cont("%sEEDP", i ? "," : ""); 3917 i++; 3918 } 3919 3920 if (ioc->facts.IOCCapabilities & 3921 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) { 3922 pr_cont("%sSnapshot Buffer", i ? "," : ""); 3923 i++; 3924 } 3925 3926 if (ioc->facts.IOCCapabilities & 3927 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) { 3928 pr_cont("%sDiag Trace Buffer", i ? "," : ""); 3929 i++; 3930 } 3931 3932 if (ioc->facts.IOCCapabilities & 3933 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) { 3934 pr_cont("%sDiag Extended Buffer", i ? "," : ""); 3935 i++; 3936 } 3937 3938 if (ioc->facts.IOCCapabilities & 3939 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) { 3940 pr_cont("%sTask Set Full", i ? "," : ""); 3941 i++; 3942 } 3943 3944 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags); 3945 if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) { 3946 pr_cont("%sNCQ", i ? "," : ""); 3947 i++; 3948 } 3949 3950 pr_cont(")\n"); 3951 } 3952 3953 /** 3954 * mpt3sas_base_update_missing_delay - change the missing delay timers 3955 * @ioc: per adapter object 3956 * @device_missing_delay: amount of time till device is reported missing 3957 * @io_missing_delay: interval IO is returned when there is a missing device 3958 * 3959 * Passed on the command line, this function will modify the device missing 3960 * delay, as well as the io missing delay. This should be called at driver 3961 * load time. 3962 */ 3963 void 3964 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc, 3965 u16 device_missing_delay, u8 io_missing_delay) 3966 { 3967 u16 dmd, dmd_new, dmd_orignal; 3968 u8 io_missing_delay_original; 3969 u16 sz; 3970 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL; 3971 Mpi2ConfigReply_t mpi_reply; 3972 u8 num_phys = 0; 3973 u16 ioc_status; 3974 3975 mpt3sas_config_get_number_hba_phys(ioc, &num_phys); 3976 if (!num_phys) 3977 return; 3978 3979 sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys * 3980 sizeof(Mpi2SasIOUnit1PhyData_t)); 3981 sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL); 3982 if (!sas_iounit_pg1) { 3983 ioc_err(ioc, "failure at %s:%d/%s()!\n", 3984 __FILE__, __LINE__, __func__); 3985 goto out; 3986 } 3987 if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply, 3988 sas_iounit_pg1, sz))) { 3989 ioc_err(ioc, "failure at %s:%d/%s()!\n", 3990 __FILE__, __LINE__, __func__); 3991 goto out; 3992 } 3993 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 3994 MPI2_IOCSTATUS_MASK; 3995 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 3996 ioc_err(ioc, "failure at %s:%d/%s()!\n", 3997 __FILE__, __LINE__, __func__); 3998 goto out; 3999 } 4000 4001 /* device missing delay */ 4002 dmd = sas_iounit_pg1->ReportDeviceMissingDelay; 4003 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16) 4004 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16; 4005 else 4006 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK; 4007 dmd_orignal = dmd; 4008 if (device_missing_delay > 0x7F) { 4009 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 : 4010 device_missing_delay; 4011 dmd = dmd / 16; 4012 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16; 4013 } else 4014 dmd = device_missing_delay; 4015 sas_iounit_pg1->ReportDeviceMissingDelay = dmd; 4016 4017 /* io missing delay */ 4018 io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay; 4019 sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay; 4020 4021 if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1, 4022 sz)) { 4023 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16) 4024 dmd_new = (dmd & 4025 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16; 4026 else 4027 dmd_new = 4028 dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK; 4029 ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n", 4030 dmd_orignal, dmd_new); 4031 ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n", 4032 io_missing_delay_original, 4033 io_missing_delay); 4034 ioc->device_missing_delay = dmd_new; 4035 ioc->io_missing_delay = io_missing_delay; 4036 } 4037 4038 out: 4039 kfree(sas_iounit_pg1); 4040 } 4041 4042 /** 4043 * _base_static_config_pages - static start of day config pages 4044 * @ioc: per adapter object 4045 */ 4046 static void 4047 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc) 4048 { 4049 Mpi2ConfigReply_t mpi_reply; 4050 u32 iounit_pg1_flags; 4051 4052 ioc->nvme_abort_timeout = 30; 4053 mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0); 4054 if (ioc->ir_firmware) 4055 mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply, 4056 &ioc->manu_pg10); 4057 4058 /* 4059 * Ensure correct T10 PI operation if vendor left EEDPTagMode 4060 * flag unset in NVDATA. 4061 */ 4062 mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11); 4063 if (ioc->manu_pg11.EEDPTagMode == 0) { 4064 pr_err("%s: overriding NVDATA EEDPTagMode setting\n", 4065 ioc->name); 4066 ioc->manu_pg11.EEDPTagMode &= ~0x3; 4067 ioc->manu_pg11.EEDPTagMode |= 0x1; 4068 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply, 4069 &ioc->manu_pg11); 4070 } 4071 if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK) 4072 ioc->tm_custom_handling = 1; 4073 else { 4074 ioc->tm_custom_handling = 0; 4075 if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT) 4076 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT; 4077 else if (ioc->manu_pg11.NVMeAbortTO > 4078 NVME_TASK_ABORT_MAX_TIMEOUT) 4079 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT; 4080 else 4081 ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO; 4082 } 4083 4084 mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2); 4085 mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3); 4086 mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8); 4087 mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0); 4088 mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1); 4089 mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8); 4090 _base_display_ioc_capabilities(ioc); 4091 4092 /* 4093 * Enable task_set_full handling in iounit_pg1 when the 4094 * facts capabilities indicate that its supported. 4095 */ 4096 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags); 4097 if ((ioc->facts.IOCCapabilities & 4098 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING)) 4099 iounit_pg1_flags &= 4100 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING; 4101 else 4102 iounit_pg1_flags |= 4103 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING; 4104 ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags); 4105 mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1); 4106 4107 if (ioc->iounit_pg8.NumSensors) 4108 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors; 4109 } 4110 4111 /** 4112 * mpt3sas_free_enclosure_list - release memory 4113 * @ioc: per adapter object 4114 * 4115 * Free memory allocated during encloure add. 4116 */ 4117 void 4118 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc) 4119 { 4120 struct _enclosure_node *enclosure_dev, *enclosure_dev_next; 4121 4122 /* Free enclosure list */ 4123 list_for_each_entry_safe(enclosure_dev, 4124 enclosure_dev_next, &ioc->enclosure_list, list) { 4125 list_del(&enclosure_dev->list); 4126 kfree(enclosure_dev); 4127 } 4128 } 4129 4130 /** 4131 * _base_release_memory_pools - release memory 4132 * @ioc: per adapter object 4133 * 4134 * Free memory allocated from _base_allocate_memory_pools. 4135 */ 4136 static void 4137 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc) 4138 { 4139 int i = 0; 4140 int j = 0; 4141 struct chain_tracker *ct; 4142 struct reply_post_struct *rps; 4143 4144 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 4145 4146 if (ioc->request) { 4147 dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz, 4148 ioc->request, ioc->request_dma); 4149 dexitprintk(ioc, 4150 ioc_info(ioc, "request_pool(0x%p): free\n", 4151 ioc->request)); 4152 ioc->request = NULL; 4153 } 4154 4155 if (ioc->sense) { 4156 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma); 4157 dma_pool_destroy(ioc->sense_dma_pool); 4158 dexitprintk(ioc, 4159 ioc_info(ioc, "sense_pool(0x%p): free\n", 4160 ioc->sense)); 4161 ioc->sense = NULL; 4162 } 4163 4164 if (ioc->reply) { 4165 dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma); 4166 dma_pool_destroy(ioc->reply_dma_pool); 4167 dexitprintk(ioc, 4168 ioc_info(ioc, "reply_pool(0x%p): free\n", 4169 ioc->reply)); 4170 ioc->reply = NULL; 4171 } 4172 4173 if (ioc->reply_free) { 4174 dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free, 4175 ioc->reply_free_dma); 4176 dma_pool_destroy(ioc->reply_free_dma_pool); 4177 dexitprintk(ioc, 4178 ioc_info(ioc, "reply_free_pool(0x%p): free\n", 4179 ioc->reply_free)); 4180 ioc->reply_free = NULL; 4181 } 4182 4183 if (ioc->reply_post) { 4184 do { 4185 rps = &ioc->reply_post[i]; 4186 if (rps->reply_post_free) { 4187 dma_pool_free( 4188 ioc->reply_post_free_dma_pool, 4189 rps->reply_post_free, 4190 rps->reply_post_free_dma); 4191 dexitprintk(ioc, 4192 ioc_info(ioc, "reply_post_free_pool(0x%p): free\n", 4193 rps->reply_post_free)); 4194 rps->reply_post_free = NULL; 4195 } 4196 } while (ioc->rdpq_array_enable && 4197 (++i < ioc->reply_queue_count)); 4198 if (ioc->reply_post_free_array && 4199 ioc->rdpq_array_enable) { 4200 dma_pool_free(ioc->reply_post_free_array_dma_pool, 4201 ioc->reply_post_free_array, 4202 ioc->reply_post_free_array_dma); 4203 ioc->reply_post_free_array = NULL; 4204 } 4205 dma_pool_destroy(ioc->reply_post_free_array_dma_pool); 4206 dma_pool_destroy(ioc->reply_post_free_dma_pool); 4207 kfree(ioc->reply_post); 4208 } 4209 4210 if (ioc->pcie_sgl_dma_pool) { 4211 for (i = 0; i < ioc->scsiio_depth; i++) { 4212 dma_pool_free(ioc->pcie_sgl_dma_pool, 4213 ioc->pcie_sg_lookup[i].pcie_sgl, 4214 ioc->pcie_sg_lookup[i].pcie_sgl_dma); 4215 } 4216 if (ioc->pcie_sgl_dma_pool) 4217 dma_pool_destroy(ioc->pcie_sgl_dma_pool); 4218 } 4219 4220 if (ioc->config_page) { 4221 dexitprintk(ioc, 4222 ioc_info(ioc, "config_page(0x%p): free\n", 4223 ioc->config_page)); 4224 dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz, 4225 ioc->config_page, ioc->config_page_dma); 4226 } 4227 4228 kfree(ioc->hpr_lookup); 4229 kfree(ioc->internal_lookup); 4230 if (ioc->chain_lookup) { 4231 for (i = 0; i < ioc->scsiio_depth; i++) { 4232 for (j = ioc->chains_per_prp_buffer; 4233 j < ioc->chains_needed_per_io; j++) { 4234 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 4235 if (ct && ct->chain_buffer) 4236 dma_pool_free(ioc->chain_dma_pool, 4237 ct->chain_buffer, 4238 ct->chain_buffer_dma); 4239 } 4240 kfree(ioc->chain_lookup[i].chains_per_smid); 4241 } 4242 dma_pool_destroy(ioc->chain_dma_pool); 4243 kfree(ioc->chain_lookup); 4244 ioc->chain_lookup = NULL; 4245 } 4246 } 4247 4248 /** 4249 * is_MSB_are_same - checks whether all reply queues in a set are 4250 * having same upper 32bits in their base memory address. 4251 * @reply_pool_start_address: Base address of a reply queue set 4252 * @pool_sz: Size of single Reply Descriptor Post Queues pool size 4253 * 4254 * Return: 1 if reply queues in a set have a same upper 32bits in their base 4255 * memory address, else 0. 4256 */ 4257 4258 static int 4259 is_MSB_are_same(long reply_pool_start_address, u32 pool_sz) 4260 { 4261 long reply_pool_end_address; 4262 4263 reply_pool_end_address = reply_pool_start_address + pool_sz; 4264 4265 if (upper_32_bits(reply_pool_start_address) == 4266 upper_32_bits(reply_pool_end_address)) 4267 return 1; 4268 else 4269 return 0; 4270 } 4271 4272 /** 4273 * _base_allocate_memory_pools - allocate start of day memory pools 4274 * @ioc: per adapter object 4275 * 4276 * Return: 0 success, anything else error. 4277 */ 4278 static int 4279 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc) 4280 { 4281 struct mpt3sas_facts *facts; 4282 u16 max_sge_elements; 4283 u16 chains_needed_per_io; 4284 u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz; 4285 u32 retry_sz; 4286 u16 max_request_credit, nvme_blocks_needed; 4287 unsigned short sg_tablesize; 4288 u16 sge_size; 4289 int i, j; 4290 struct chain_tracker *ct; 4291 4292 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 4293 4294 4295 retry_sz = 0; 4296 facts = &ioc->facts; 4297 4298 /* command line tunables for max sgl entries */ 4299 if (max_sgl_entries != -1) 4300 sg_tablesize = max_sgl_entries; 4301 else { 4302 if (ioc->hba_mpi_version_belonged == MPI2_VERSION) 4303 sg_tablesize = MPT2SAS_SG_DEPTH; 4304 else 4305 sg_tablesize = MPT3SAS_SG_DEPTH; 4306 } 4307 4308 /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */ 4309 if (reset_devices) 4310 sg_tablesize = min_t(unsigned short, sg_tablesize, 4311 MPT_KDUMP_MIN_PHYS_SEGMENTS); 4312 4313 if (ioc->is_mcpu_endpoint) 4314 ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS; 4315 else { 4316 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS) 4317 sg_tablesize = MPT_MIN_PHYS_SEGMENTS; 4318 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) { 4319 sg_tablesize = min_t(unsigned short, sg_tablesize, 4320 SG_MAX_SEGMENTS); 4321 ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n", 4322 sg_tablesize, MPT_MAX_PHYS_SEGMENTS); 4323 } 4324 ioc->shost->sg_tablesize = sg_tablesize; 4325 } 4326 4327 ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)), 4328 (facts->RequestCredit / 4)); 4329 if (ioc->internal_depth < INTERNAL_CMDS_COUNT) { 4330 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT + 4331 INTERNAL_SCSIIO_CMDS_COUNT)) { 4332 ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n", 4333 facts->RequestCredit); 4334 return -ENOMEM; 4335 } 4336 ioc->internal_depth = 10; 4337 } 4338 4339 ioc->hi_priority_depth = ioc->internal_depth - (5); 4340 /* command line tunables for max controller queue depth */ 4341 if (max_queue_depth != -1 && max_queue_depth != 0) { 4342 max_request_credit = min_t(u16, max_queue_depth + 4343 ioc->internal_depth, facts->RequestCredit); 4344 if (max_request_credit > MAX_HBA_QUEUE_DEPTH) 4345 max_request_credit = MAX_HBA_QUEUE_DEPTH; 4346 } else if (reset_devices) 4347 max_request_credit = min_t(u16, facts->RequestCredit, 4348 (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth)); 4349 else 4350 max_request_credit = min_t(u16, facts->RequestCredit, 4351 MAX_HBA_QUEUE_DEPTH); 4352 4353 /* Firmware maintains additional facts->HighPriorityCredit number of 4354 * credits for HiPriprity Request messages, so hba queue depth will be 4355 * sum of max_request_credit and high priority queue depth. 4356 */ 4357 ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth; 4358 4359 /* request frame size */ 4360 ioc->request_sz = facts->IOCRequestFrameSize * 4; 4361 4362 /* reply frame size */ 4363 ioc->reply_sz = facts->ReplyFrameSize * 4; 4364 4365 /* chain segment size */ 4366 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 4367 if (facts->IOCMaxChainSegmentSize) 4368 ioc->chain_segment_sz = 4369 facts->IOCMaxChainSegmentSize * 4370 MAX_CHAIN_ELEMT_SZ; 4371 else 4372 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */ 4373 ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS * 4374 MAX_CHAIN_ELEMT_SZ; 4375 } else 4376 ioc->chain_segment_sz = ioc->request_sz; 4377 4378 /* calculate the max scatter element size */ 4379 sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee); 4380 4381 retry_allocation: 4382 total_sz = 0; 4383 /* calculate number of sg elements left over in the 1st frame */ 4384 max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) - 4385 sizeof(Mpi2SGEIOUnion_t)) + sge_size); 4386 ioc->max_sges_in_main_message = max_sge_elements/sge_size; 4387 4388 /* now do the same for a chain buffer */ 4389 max_sge_elements = ioc->chain_segment_sz - sge_size; 4390 ioc->max_sges_in_chain_message = max_sge_elements/sge_size; 4391 4392 /* 4393 * MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE 4394 */ 4395 chains_needed_per_io = ((ioc->shost->sg_tablesize - 4396 ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message) 4397 + 1; 4398 if (chains_needed_per_io > facts->MaxChainDepth) { 4399 chains_needed_per_io = facts->MaxChainDepth; 4400 ioc->shost->sg_tablesize = min_t(u16, 4401 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message 4402 * chains_needed_per_io), ioc->shost->sg_tablesize); 4403 } 4404 ioc->chains_needed_per_io = chains_needed_per_io; 4405 4406 /* reply free queue sizing - taking into account for 64 FW events */ 4407 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64; 4408 4409 /* mCPU manage single counters for simplicity */ 4410 if (ioc->is_mcpu_endpoint) 4411 ioc->reply_post_queue_depth = ioc->reply_free_queue_depth; 4412 else { 4413 /* calculate reply descriptor post queue depth */ 4414 ioc->reply_post_queue_depth = ioc->hba_queue_depth + 4415 ioc->reply_free_queue_depth + 1; 4416 /* align the reply post queue on the next 16 count boundary */ 4417 if (ioc->reply_post_queue_depth % 16) 4418 ioc->reply_post_queue_depth += 16 - 4419 (ioc->reply_post_queue_depth % 16); 4420 } 4421 4422 if (ioc->reply_post_queue_depth > 4423 facts->MaxReplyDescriptorPostQueueDepth) { 4424 ioc->reply_post_queue_depth = 4425 facts->MaxReplyDescriptorPostQueueDepth - 4426 (facts->MaxReplyDescriptorPostQueueDepth % 16); 4427 ioc->hba_queue_depth = 4428 ((ioc->reply_post_queue_depth - 64) / 2) - 1; 4429 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64; 4430 } 4431 4432 dinitprintk(ioc, 4433 ioc_info(ioc, "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), chains_per_io(%d)\n", 4434 ioc->max_sges_in_main_message, 4435 ioc->max_sges_in_chain_message, 4436 ioc->shost->sg_tablesize, 4437 ioc->chains_needed_per_io)); 4438 4439 /* reply post queue, 16 byte align */ 4440 reply_post_free_sz = ioc->reply_post_queue_depth * 4441 sizeof(Mpi2DefaultReplyDescriptor_t); 4442 4443 sz = reply_post_free_sz; 4444 if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable) 4445 sz *= ioc->reply_queue_count; 4446 4447 ioc->reply_post = kcalloc((ioc->rdpq_array_enable) ? 4448 (ioc->reply_queue_count):1, 4449 sizeof(struct reply_post_struct), GFP_KERNEL); 4450 4451 if (!ioc->reply_post) { 4452 ioc_err(ioc, "reply_post_free pool: kcalloc failed\n"); 4453 goto out; 4454 } 4455 ioc->reply_post_free_dma_pool = dma_pool_create("reply_post_free pool", 4456 &ioc->pdev->dev, sz, 16, 0); 4457 if (!ioc->reply_post_free_dma_pool) { 4458 ioc_err(ioc, "reply_post_free pool: dma_pool_create failed\n"); 4459 goto out; 4460 } 4461 i = 0; 4462 do { 4463 ioc->reply_post[i].reply_post_free = 4464 dma_pool_zalloc(ioc->reply_post_free_dma_pool, 4465 GFP_KERNEL, 4466 &ioc->reply_post[i].reply_post_free_dma); 4467 if (!ioc->reply_post[i].reply_post_free) { 4468 ioc_err(ioc, "reply_post_free pool: dma_pool_alloc failed\n"); 4469 goto out; 4470 } 4471 dinitprintk(ioc, 4472 ioc_info(ioc, "reply post free pool (0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n", 4473 ioc->reply_post[i].reply_post_free, 4474 ioc->reply_post_queue_depth, 4475 8, sz / 1024)); 4476 dinitprintk(ioc, 4477 ioc_info(ioc, "reply_post_free_dma = (0x%llx)\n", 4478 (u64)ioc->reply_post[i].reply_post_free_dma)); 4479 total_sz += sz; 4480 } while (ioc->rdpq_array_enable && (++i < ioc->reply_queue_count)); 4481 4482 if (ioc->dma_mask == 64) { 4483 if (_base_change_consistent_dma_mask(ioc, ioc->pdev) != 0) { 4484 ioc_warn(ioc, "no suitable consistent DMA mask for %s\n", 4485 pci_name(ioc->pdev)); 4486 goto out; 4487 } 4488 } 4489 4490 ioc->scsiio_depth = ioc->hba_queue_depth - 4491 ioc->hi_priority_depth - ioc->internal_depth; 4492 4493 /* set the scsi host can_queue depth 4494 * with some internal commands that could be outstanding 4495 */ 4496 ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT; 4497 dinitprintk(ioc, 4498 ioc_info(ioc, "scsi host: can_queue depth (%d)\n", 4499 ioc->shost->can_queue)); 4500 4501 4502 /* contiguous pool for request and chains, 16 byte align, one extra " 4503 * "frame for smid=0 4504 */ 4505 ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth; 4506 sz = ((ioc->scsiio_depth + 1) * ioc->request_sz); 4507 4508 /* hi-priority queue */ 4509 sz += (ioc->hi_priority_depth * ioc->request_sz); 4510 4511 /* internal queue */ 4512 sz += (ioc->internal_depth * ioc->request_sz); 4513 4514 ioc->request_dma_sz = sz; 4515 ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz, 4516 &ioc->request_dma, GFP_KERNEL); 4517 if (!ioc->request) { 4518 ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n", 4519 ioc->hba_queue_depth, ioc->chains_needed_per_io, 4520 ioc->request_sz, sz / 1024); 4521 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH) 4522 goto out; 4523 retry_sz = 64; 4524 ioc->hba_queue_depth -= retry_sz; 4525 _base_release_memory_pools(ioc); 4526 goto retry_allocation; 4527 } 4528 4529 if (retry_sz) 4530 ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n", 4531 ioc->hba_queue_depth, ioc->chains_needed_per_io, 4532 ioc->request_sz, sz / 1024); 4533 4534 /* hi-priority queue */ 4535 ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) * 4536 ioc->request_sz); 4537 ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) * 4538 ioc->request_sz); 4539 4540 /* internal queue */ 4541 ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth * 4542 ioc->request_sz); 4543 ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth * 4544 ioc->request_sz); 4545 4546 dinitprintk(ioc, 4547 ioc_info(ioc, "request pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n", 4548 ioc->request, ioc->hba_queue_depth, 4549 ioc->request_sz, 4550 (ioc->hba_queue_depth * ioc->request_sz) / 1024)); 4551 4552 dinitprintk(ioc, 4553 ioc_info(ioc, "request pool: dma(0x%llx)\n", 4554 (unsigned long long)ioc->request_dma)); 4555 total_sz += sz; 4556 4557 dinitprintk(ioc, 4558 ioc_info(ioc, "scsiio(0x%p): depth(%d)\n", 4559 ioc->request, ioc->scsiio_depth)); 4560 4561 ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH); 4562 sz = ioc->scsiio_depth * sizeof(struct chain_lookup); 4563 ioc->chain_lookup = kzalloc(sz, GFP_KERNEL); 4564 if (!ioc->chain_lookup) { 4565 ioc_err(ioc, "chain_lookup: __get_free_pages failed\n"); 4566 goto out; 4567 } 4568 4569 sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker); 4570 for (i = 0; i < ioc->scsiio_depth; i++) { 4571 ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL); 4572 if (!ioc->chain_lookup[i].chains_per_smid) { 4573 ioc_err(ioc, "chain_lookup: kzalloc failed\n"); 4574 goto out; 4575 } 4576 } 4577 4578 /* initialize hi-priority queue smid's */ 4579 ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth, 4580 sizeof(struct request_tracker), GFP_KERNEL); 4581 if (!ioc->hpr_lookup) { 4582 ioc_err(ioc, "hpr_lookup: kcalloc failed\n"); 4583 goto out; 4584 } 4585 ioc->hi_priority_smid = ioc->scsiio_depth + 1; 4586 dinitprintk(ioc, 4587 ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n", 4588 ioc->hi_priority, 4589 ioc->hi_priority_depth, ioc->hi_priority_smid)); 4590 4591 /* initialize internal queue smid's */ 4592 ioc->internal_lookup = kcalloc(ioc->internal_depth, 4593 sizeof(struct request_tracker), GFP_KERNEL); 4594 if (!ioc->internal_lookup) { 4595 ioc_err(ioc, "internal_lookup: kcalloc failed\n"); 4596 goto out; 4597 } 4598 ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth; 4599 dinitprintk(ioc, 4600 ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n", 4601 ioc->internal, 4602 ioc->internal_depth, ioc->internal_smid)); 4603 /* 4604 * The number of NVMe page sized blocks needed is: 4605 * (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1 4606 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry 4607 * that is placed in the main message frame. 8 is the size of each PRP 4608 * entry or PRP list pointer entry. 8 is subtracted from page_size 4609 * because of the PRP list pointer entry at the end of a page, so this 4610 * is not counted as a PRP entry. The 1 added page is a round up. 4611 * 4612 * To avoid allocation failures due to the amount of memory that could 4613 * be required for NVMe PRP's, only each set of NVMe blocks will be 4614 * contiguous, so a new set is allocated for each possible I/O. 4615 */ 4616 ioc->chains_per_prp_buffer = 0; 4617 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) { 4618 nvme_blocks_needed = 4619 (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1; 4620 nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE); 4621 nvme_blocks_needed++; 4622 4623 sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth; 4624 ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL); 4625 if (!ioc->pcie_sg_lookup) { 4626 ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n"); 4627 goto out; 4628 } 4629 sz = nvme_blocks_needed * ioc->page_size; 4630 ioc->pcie_sgl_dma_pool = 4631 dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz, 16, 0); 4632 if (!ioc->pcie_sgl_dma_pool) { 4633 ioc_info(ioc, "PCIe SGL pool: dma_pool_create failed\n"); 4634 goto out; 4635 } 4636 4637 ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz; 4638 ioc->chains_per_prp_buffer = min(ioc->chains_per_prp_buffer, 4639 ioc->chains_needed_per_io); 4640 4641 for (i = 0; i < ioc->scsiio_depth; i++) { 4642 ioc->pcie_sg_lookup[i].pcie_sgl = dma_pool_alloc( 4643 ioc->pcie_sgl_dma_pool, GFP_KERNEL, 4644 &ioc->pcie_sg_lookup[i].pcie_sgl_dma); 4645 if (!ioc->pcie_sg_lookup[i].pcie_sgl) { 4646 ioc_info(ioc, "PCIe SGL pool: dma_pool_alloc failed\n"); 4647 goto out; 4648 } 4649 for (j = 0; j < ioc->chains_per_prp_buffer; j++) { 4650 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 4651 ct->chain_buffer = 4652 ioc->pcie_sg_lookup[i].pcie_sgl + 4653 (j * ioc->chain_segment_sz); 4654 ct->chain_buffer_dma = 4655 ioc->pcie_sg_lookup[i].pcie_sgl_dma + 4656 (j * ioc->chain_segment_sz); 4657 } 4658 } 4659 4660 dinitprintk(ioc, 4661 ioc_info(ioc, "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n", 4662 ioc->scsiio_depth, sz, 4663 (sz * ioc->scsiio_depth) / 1024)); 4664 dinitprintk(ioc, 4665 ioc_info(ioc, "Number of chains can fit in a PRP page(%d)\n", 4666 ioc->chains_per_prp_buffer)); 4667 total_sz += sz * ioc->scsiio_depth; 4668 } 4669 4670 ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev, 4671 ioc->chain_segment_sz, 16, 0); 4672 if (!ioc->chain_dma_pool) { 4673 ioc_err(ioc, "chain_dma_pool: dma_pool_create failed\n"); 4674 goto out; 4675 } 4676 for (i = 0; i < ioc->scsiio_depth; i++) { 4677 for (j = ioc->chains_per_prp_buffer; 4678 j < ioc->chains_needed_per_io; j++) { 4679 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 4680 ct->chain_buffer = dma_pool_alloc( 4681 ioc->chain_dma_pool, GFP_KERNEL, 4682 &ct->chain_buffer_dma); 4683 if (!ct->chain_buffer) { 4684 ioc_err(ioc, "chain_lookup: pci_pool_alloc failed\n"); 4685 _base_release_memory_pools(ioc); 4686 goto out; 4687 } 4688 } 4689 total_sz += ioc->chain_segment_sz; 4690 } 4691 4692 dinitprintk(ioc, 4693 ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n", 4694 ioc->chain_depth, ioc->chain_segment_sz, 4695 (ioc->chain_depth * ioc->chain_segment_sz) / 1024)); 4696 4697 /* sense buffers, 4 byte align */ 4698 sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE; 4699 ioc->sense_dma_pool = dma_pool_create("sense pool", &ioc->pdev->dev, sz, 4700 4, 0); 4701 if (!ioc->sense_dma_pool) { 4702 ioc_err(ioc, "sense pool: dma_pool_create failed\n"); 4703 goto out; 4704 } 4705 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL, 4706 &ioc->sense_dma); 4707 if (!ioc->sense) { 4708 ioc_err(ioc, "sense pool: dma_pool_alloc failed\n"); 4709 goto out; 4710 } 4711 /* sense buffer requires to be in same 4 gb region. 4712 * Below function will check the same. 4713 * In case of failure, new pci pool will be created with updated 4714 * alignment. Older allocation and pool will be destroyed. 4715 * Alignment will be used such a way that next allocation if 4716 * success, will always meet same 4gb region requirement. 4717 * Actual requirement is not alignment, but we need start and end of 4718 * DMA address must have same upper 32 bit address. 4719 */ 4720 if (!is_MSB_are_same((long)ioc->sense, sz)) { 4721 //Release Sense pool & Reallocate 4722 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma); 4723 dma_pool_destroy(ioc->sense_dma_pool); 4724 ioc->sense = NULL; 4725 4726 ioc->sense_dma_pool = 4727 dma_pool_create("sense pool", &ioc->pdev->dev, sz, 4728 roundup_pow_of_two(sz), 0); 4729 if (!ioc->sense_dma_pool) { 4730 ioc_err(ioc, "sense pool: pci_pool_create failed\n"); 4731 goto out; 4732 } 4733 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL, 4734 &ioc->sense_dma); 4735 if (!ioc->sense) { 4736 ioc_err(ioc, "sense pool: pci_pool_alloc failed\n"); 4737 goto out; 4738 } 4739 } 4740 dinitprintk(ioc, 4741 ioc_info(ioc, "sense pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n", 4742 ioc->sense, ioc->scsiio_depth, 4743 SCSI_SENSE_BUFFERSIZE, sz / 1024)); 4744 dinitprintk(ioc, 4745 ioc_info(ioc, "sense_dma(0x%llx)\n", 4746 (unsigned long long)ioc->sense_dma)); 4747 total_sz += sz; 4748 4749 /* reply pool, 4 byte align */ 4750 sz = ioc->reply_free_queue_depth * ioc->reply_sz; 4751 ioc->reply_dma_pool = dma_pool_create("reply pool", &ioc->pdev->dev, sz, 4752 4, 0); 4753 if (!ioc->reply_dma_pool) { 4754 ioc_err(ioc, "reply pool: dma_pool_create failed\n"); 4755 goto out; 4756 } 4757 ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL, 4758 &ioc->reply_dma); 4759 if (!ioc->reply) { 4760 ioc_err(ioc, "reply pool: dma_pool_alloc failed\n"); 4761 goto out; 4762 } 4763 ioc->reply_dma_min_address = (u32)(ioc->reply_dma); 4764 ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz; 4765 dinitprintk(ioc, 4766 ioc_info(ioc, "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n", 4767 ioc->reply, ioc->reply_free_queue_depth, 4768 ioc->reply_sz, sz / 1024)); 4769 dinitprintk(ioc, 4770 ioc_info(ioc, "reply_dma(0x%llx)\n", 4771 (unsigned long long)ioc->reply_dma)); 4772 total_sz += sz; 4773 4774 /* reply free queue, 16 byte align */ 4775 sz = ioc->reply_free_queue_depth * 4; 4776 ioc->reply_free_dma_pool = dma_pool_create("reply_free pool", 4777 &ioc->pdev->dev, sz, 16, 0); 4778 if (!ioc->reply_free_dma_pool) { 4779 ioc_err(ioc, "reply_free pool: dma_pool_create failed\n"); 4780 goto out; 4781 } 4782 ioc->reply_free = dma_pool_zalloc(ioc->reply_free_dma_pool, GFP_KERNEL, 4783 &ioc->reply_free_dma); 4784 if (!ioc->reply_free) { 4785 ioc_err(ioc, "reply_free pool: dma_pool_alloc failed\n"); 4786 goto out; 4787 } 4788 dinitprintk(ioc, 4789 ioc_info(ioc, "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n", 4790 ioc->reply_free, ioc->reply_free_queue_depth, 4791 4, sz / 1024)); 4792 dinitprintk(ioc, 4793 ioc_info(ioc, "reply_free_dma (0x%llx)\n", 4794 (unsigned long long)ioc->reply_free_dma)); 4795 total_sz += sz; 4796 4797 if (ioc->rdpq_array_enable) { 4798 reply_post_free_array_sz = ioc->reply_queue_count * 4799 sizeof(Mpi2IOCInitRDPQArrayEntry); 4800 ioc->reply_post_free_array_dma_pool = 4801 dma_pool_create("reply_post_free_array pool", 4802 &ioc->pdev->dev, reply_post_free_array_sz, 16, 0); 4803 if (!ioc->reply_post_free_array_dma_pool) { 4804 dinitprintk(ioc, 4805 ioc_info(ioc, "reply_post_free_array pool: dma_pool_create failed\n")); 4806 goto out; 4807 } 4808 ioc->reply_post_free_array = 4809 dma_pool_alloc(ioc->reply_post_free_array_dma_pool, 4810 GFP_KERNEL, &ioc->reply_post_free_array_dma); 4811 if (!ioc->reply_post_free_array) { 4812 dinitprintk(ioc, 4813 ioc_info(ioc, "reply_post_free_array pool: dma_pool_alloc failed\n")); 4814 goto out; 4815 } 4816 } 4817 ioc->config_page_sz = 512; 4818 ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev, 4819 ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL); 4820 if (!ioc->config_page) { 4821 ioc_err(ioc, "config page: dma_pool_alloc failed\n"); 4822 goto out; 4823 } 4824 dinitprintk(ioc, 4825 ioc_info(ioc, "config page(0x%p): size(%d)\n", 4826 ioc->config_page, ioc->config_page_sz)); 4827 dinitprintk(ioc, 4828 ioc_info(ioc, "config_page_dma(0x%llx)\n", 4829 (unsigned long long)ioc->config_page_dma)); 4830 total_sz += ioc->config_page_sz; 4831 4832 ioc_info(ioc, "Allocated physical memory: size(%d kB)\n", 4833 total_sz / 1024); 4834 ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n", 4835 ioc->shost->can_queue, facts->RequestCredit); 4836 ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n", 4837 ioc->shost->sg_tablesize); 4838 return 0; 4839 4840 out: 4841 return -ENOMEM; 4842 } 4843 4844 /** 4845 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter. 4846 * @ioc: Pointer to MPT_ADAPTER structure 4847 * @cooked: Request raw or cooked IOC state 4848 * 4849 * Return: all IOC Doorbell register bits if cooked==0, else just the 4850 * Doorbell bits in MPI_IOC_STATE_MASK. 4851 */ 4852 u32 4853 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked) 4854 { 4855 u32 s, sc; 4856 4857 s = readl(&ioc->chip->Doorbell); 4858 sc = s & MPI2_IOC_STATE_MASK; 4859 return cooked ? sc : s; 4860 } 4861 4862 /** 4863 * _base_wait_on_iocstate - waiting on a particular ioc state 4864 * @ioc: ? 4865 * @ioc_state: controller state { READY, OPERATIONAL, or RESET } 4866 * @timeout: timeout in second 4867 * 4868 * Return: 0 for success, non-zero for failure. 4869 */ 4870 static int 4871 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout) 4872 { 4873 u32 count, cntdn; 4874 u32 current_state; 4875 4876 count = 0; 4877 cntdn = 1000 * timeout; 4878 do { 4879 current_state = mpt3sas_base_get_iocstate(ioc, 1); 4880 if (current_state == ioc_state) 4881 return 0; 4882 if (count && current_state == MPI2_IOC_STATE_FAULT) 4883 break; 4884 4885 usleep_range(1000, 1500); 4886 count++; 4887 } while (--cntdn); 4888 4889 return current_state; 4890 } 4891 4892 /** 4893 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by 4894 * a write to the doorbell) 4895 * @ioc: per adapter object 4896 * 4897 * Return: 0 for success, non-zero for failure. 4898 * 4899 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell. 4900 */ 4901 static int 4902 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc); 4903 4904 static int 4905 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout) 4906 { 4907 u32 cntdn, count; 4908 u32 int_status; 4909 4910 count = 0; 4911 cntdn = 1000 * timeout; 4912 do { 4913 int_status = readl(&ioc->chip->HostInterruptStatus); 4914 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 4915 dhsprintk(ioc, 4916 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 4917 __func__, count, timeout)); 4918 return 0; 4919 } 4920 4921 usleep_range(1000, 1500); 4922 count++; 4923 } while (--cntdn); 4924 4925 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 4926 __func__, count, int_status); 4927 return -EFAULT; 4928 } 4929 4930 static int 4931 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout) 4932 { 4933 u32 cntdn, count; 4934 u32 int_status; 4935 4936 count = 0; 4937 cntdn = 2000 * timeout; 4938 do { 4939 int_status = readl(&ioc->chip->HostInterruptStatus); 4940 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 4941 dhsprintk(ioc, 4942 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 4943 __func__, count, timeout)); 4944 return 0; 4945 } 4946 4947 udelay(500); 4948 count++; 4949 } while (--cntdn); 4950 4951 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 4952 __func__, count, int_status); 4953 return -EFAULT; 4954 4955 } 4956 4957 /** 4958 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell. 4959 * @ioc: per adapter object 4960 * @timeout: timeout in second 4961 * 4962 * Return: 0 for success, non-zero for failure. 4963 * 4964 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to 4965 * doorbell. 4966 */ 4967 static int 4968 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout) 4969 { 4970 u32 cntdn, count; 4971 u32 int_status; 4972 u32 doorbell; 4973 4974 count = 0; 4975 cntdn = 1000 * timeout; 4976 do { 4977 int_status = readl(&ioc->chip->HostInterruptStatus); 4978 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) { 4979 dhsprintk(ioc, 4980 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 4981 __func__, count, timeout)); 4982 return 0; 4983 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 4984 doorbell = readl(&ioc->chip->Doorbell); 4985 if ((doorbell & MPI2_IOC_STATE_MASK) == 4986 MPI2_IOC_STATE_FAULT) { 4987 mpt3sas_base_fault_info(ioc , doorbell); 4988 return -EFAULT; 4989 } 4990 } else if (int_status == 0xFFFFFFFF) 4991 goto out; 4992 4993 usleep_range(1000, 1500); 4994 count++; 4995 } while (--cntdn); 4996 4997 out: 4998 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 4999 __func__, count, int_status); 5000 return -EFAULT; 5001 } 5002 5003 /** 5004 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use 5005 * @ioc: per adapter object 5006 * @timeout: timeout in second 5007 * 5008 * Return: 0 for success, non-zero for failure. 5009 */ 5010 static int 5011 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout) 5012 { 5013 u32 cntdn, count; 5014 u32 doorbell_reg; 5015 5016 count = 0; 5017 cntdn = 1000 * timeout; 5018 do { 5019 doorbell_reg = readl(&ioc->chip->Doorbell); 5020 if (!(doorbell_reg & MPI2_DOORBELL_USED)) { 5021 dhsprintk(ioc, 5022 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 5023 __func__, count, timeout)); 5024 return 0; 5025 } 5026 5027 usleep_range(1000, 1500); 5028 count++; 5029 } while (--cntdn); 5030 5031 ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n", 5032 __func__, count, doorbell_reg); 5033 return -EFAULT; 5034 } 5035 5036 /** 5037 * _base_send_ioc_reset - send doorbell reset 5038 * @ioc: per adapter object 5039 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET 5040 * @timeout: timeout in second 5041 * 5042 * Return: 0 for success, non-zero for failure. 5043 */ 5044 static int 5045 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout) 5046 { 5047 u32 ioc_state; 5048 int r = 0; 5049 5050 if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) { 5051 ioc_err(ioc, "%s: unknown reset_type\n", __func__); 5052 return -EFAULT; 5053 } 5054 5055 if (!(ioc->facts.IOCCapabilities & 5056 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY)) 5057 return -EFAULT; 5058 5059 ioc_info(ioc, "sending message unit reset !!\n"); 5060 5061 writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT, 5062 &ioc->chip->Doorbell); 5063 if ((_base_wait_for_doorbell_ack(ioc, 15))) { 5064 r = -EFAULT; 5065 goto out; 5066 } 5067 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout); 5068 if (ioc_state) { 5069 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 5070 __func__, ioc_state); 5071 r = -EFAULT; 5072 goto out; 5073 } 5074 out: 5075 ioc_info(ioc, "message unit reset: %s\n", 5076 r == 0 ? "SUCCESS" : "FAILED"); 5077 return r; 5078 } 5079 5080 /** 5081 * _base_handshake_req_reply_wait - send request thru doorbell interface 5082 * @ioc: per adapter object 5083 * @request_bytes: request length 5084 * @request: pointer having request payload 5085 * @reply_bytes: reply length 5086 * @reply: pointer to reply payload 5087 * @timeout: timeout in second 5088 * 5089 * Return: 0 for success, non-zero for failure. 5090 */ 5091 static int 5092 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes, 5093 u32 *request, int reply_bytes, u16 *reply, int timeout) 5094 { 5095 MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply; 5096 int i; 5097 u8 failed; 5098 __le32 *mfp; 5099 5100 /* make sure doorbell is not in use */ 5101 if ((readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) { 5102 ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__); 5103 return -EFAULT; 5104 } 5105 5106 /* clear pending doorbell interrupts from previous state changes */ 5107 if (readl(&ioc->chip->HostInterruptStatus) & 5108 MPI2_HIS_IOC2SYS_DB_STATUS) 5109 writel(0, &ioc->chip->HostInterruptStatus); 5110 5111 /* send message to ioc */ 5112 writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) | 5113 ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)), 5114 &ioc->chip->Doorbell); 5115 5116 if ((_base_spin_on_doorbell_int(ioc, 5))) { 5117 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 5118 __LINE__); 5119 return -EFAULT; 5120 } 5121 writel(0, &ioc->chip->HostInterruptStatus); 5122 5123 if ((_base_wait_for_doorbell_ack(ioc, 5))) { 5124 ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n", 5125 __LINE__); 5126 return -EFAULT; 5127 } 5128 5129 /* send message 32-bits at a time */ 5130 for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) { 5131 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell); 5132 if ((_base_wait_for_doorbell_ack(ioc, 5))) 5133 failed = 1; 5134 } 5135 5136 if (failed) { 5137 ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n", 5138 __LINE__); 5139 return -EFAULT; 5140 } 5141 5142 /* now wait for the reply */ 5143 if ((_base_wait_for_doorbell_int(ioc, timeout))) { 5144 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 5145 __LINE__); 5146 return -EFAULT; 5147 } 5148 5149 /* read the first two 16-bits, it gives the total length of the reply */ 5150 reply[0] = le16_to_cpu(readl(&ioc->chip->Doorbell) 5151 & MPI2_DOORBELL_DATA_MASK); 5152 writel(0, &ioc->chip->HostInterruptStatus); 5153 if ((_base_wait_for_doorbell_int(ioc, 5))) { 5154 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 5155 __LINE__); 5156 return -EFAULT; 5157 } 5158 reply[1] = le16_to_cpu(readl(&ioc->chip->Doorbell) 5159 & MPI2_DOORBELL_DATA_MASK); 5160 writel(0, &ioc->chip->HostInterruptStatus); 5161 5162 for (i = 2; i < default_reply->MsgLength * 2; i++) { 5163 if ((_base_wait_for_doorbell_int(ioc, 5))) { 5164 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 5165 __LINE__); 5166 return -EFAULT; 5167 } 5168 if (i >= reply_bytes/2) /* overflow case */ 5169 readl(&ioc->chip->Doorbell); 5170 else 5171 reply[i] = le16_to_cpu(readl(&ioc->chip->Doorbell) 5172 & MPI2_DOORBELL_DATA_MASK); 5173 writel(0, &ioc->chip->HostInterruptStatus); 5174 } 5175 5176 _base_wait_for_doorbell_int(ioc, 5); 5177 if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) { 5178 dhsprintk(ioc, 5179 ioc_info(ioc, "doorbell is in use (line=%d)\n", 5180 __LINE__)); 5181 } 5182 writel(0, &ioc->chip->HostInterruptStatus); 5183 5184 if (ioc->logging_level & MPT_DEBUG_INIT) { 5185 mfp = (__le32 *)reply; 5186 pr_info("\toffset:data\n"); 5187 for (i = 0; i < reply_bytes/4; i++) 5188 pr_info("\t[0x%02x]:%08x\n", i*4, 5189 le32_to_cpu(mfp[i])); 5190 } 5191 return 0; 5192 } 5193 5194 /** 5195 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW 5196 * @ioc: per adapter object 5197 * @mpi_reply: the reply payload from FW 5198 * @mpi_request: the request payload sent to FW 5199 * 5200 * The SAS IO Unit Control Request message allows the host to perform low-level 5201 * operations, such as resets on the PHYs of the IO Unit, also allows the host 5202 * to obtain the IOC assigned device handles for a device if it has other 5203 * identifying information about the device, in addition allows the host to 5204 * remove IOC resources associated with the device. 5205 * 5206 * Return: 0 for success, non-zero for failure. 5207 */ 5208 int 5209 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc, 5210 Mpi2SasIoUnitControlReply_t *mpi_reply, 5211 Mpi2SasIoUnitControlRequest_t *mpi_request) 5212 { 5213 u16 smid; 5214 u32 ioc_state; 5215 u8 issue_reset = 0; 5216 int rc; 5217 void *request; 5218 u16 wait_state_count; 5219 5220 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 5221 5222 mutex_lock(&ioc->base_cmds.mutex); 5223 5224 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) { 5225 ioc_err(ioc, "%s: base_cmd in use\n", __func__); 5226 rc = -EAGAIN; 5227 goto out; 5228 } 5229 5230 wait_state_count = 0; 5231 ioc_state = mpt3sas_base_get_iocstate(ioc, 1); 5232 while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) { 5233 if (wait_state_count++ == 10) { 5234 ioc_err(ioc, "%s: failed due to ioc not operational\n", 5235 __func__); 5236 rc = -EFAULT; 5237 goto out; 5238 } 5239 ssleep(1); 5240 ioc_state = mpt3sas_base_get_iocstate(ioc, 1); 5241 ioc_info(ioc, "%s: waiting for operational state(count=%d)\n", 5242 __func__, wait_state_count); 5243 } 5244 5245 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 5246 if (!smid) { 5247 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 5248 rc = -EAGAIN; 5249 goto out; 5250 } 5251 5252 rc = 0; 5253 ioc->base_cmds.status = MPT3_CMD_PENDING; 5254 request = mpt3sas_base_get_msg_frame(ioc, smid); 5255 ioc->base_cmds.smid = smid; 5256 memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)); 5257 if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET || 5258 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) 5259 ioc->ioc_link_reset_in_progress = 1; 5260 init_completion(&ioc->base_cmds.done); 5261 mpt3sas_base_put_smid_default(ioc, smid); 5262 wait_for_completion_timeout(&ioc->base_cmds.done, 5263 msecs_to_jiffies(10000)); 5264 if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET || 5265 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) && 5266 ioc->ioc_link_reset_in_progress) 5267 ioc->ioc_link_reset_in_progress = 0; 5268 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 5269 issue_reset = 5270 mpt3sas_base_check_cmd_timeout(ioc, 5271 ioc->base_cmds.status, mpi_request, 5272 sizeof(Mpi2SasIoUnitControlRequest_t)/4); 5273 goto issue_host_reset; 5274 } 5275 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) 5276 memcpy(mpi_reply, ioc->base_cmds.reply, 5277 sizeof(Mpi2SasIoUnitControlReply_t)); 5278 else 5279 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t)); 5280 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 5281 goto out; 5282 5283 issue_host_reset: 5284 if (issue_reset) 5285 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 5286 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 5287 rc = -EFAULT; 5288 out: 5289 mutex_unlock(&ioc->base_cmds.mutex); 5290 return rc; 5291 } 5292 5293 /** 5294 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device 5295 * @ioc: per adapter object 5296 * @mpi_reply: the reply payload from FW 5297 * @mpi_request: the request payload sent to FW 5298 * 5299 * The SCSI Enclosure Processor request message causes the IOC to 5300 * communicate with SES devices to control LED status signals. 5301 * 5302 * Return: 0 for success, non-zero for failure. 5303 */ 5304 int 5305 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc, 5306 Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request) 5307 { 5308 u16 smid; 5309 u32 ioc_state; 5310 u8 issue_reset = 0; 5311 int rc; 5312 void *request; 5313 u16 wait_state_count; 5314 5315 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 5316 5317 mutex_lock(&ioc->base_cmds.mutex); 5318 5319 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) { 5320 ioc_err(ioc, "%s: base_cmd in use\n", __func__); 5321 rc = -EAGAIN; 5322 goto out; 5323 } 5324 5325 wait_state_count = 0; 5326 ioc_state = mpt3sas_base_get_iocstate(ioc, 1); 5327 while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) { 5328 if (wait_state_count++ == 10) { 5329 ioc_err(ioc, "%s: failed due to ioc not operational\n", 5330 __func__); 5331 rc = -EFAULT; 5332 goto out; 5333 } 5334 ssleep(1); 5335 ioc_state = mpt3sas_base_get_iocstate(ioc, 1); 5336 ioc_info(ioc, "%s: waiting for operational state(count=%d)\n", 5337 __func__, wait_state_count); 5338 } 5339 5340 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 5341 if (!smid) { 5342 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 5343 rc = -EAGAIN; 5344 goto out; 5345 } 5346 5347 rc = 0; 5348 ioc->base_cmds.status = MPT3_CMD_PENDING; 5349 request = mpt3sas_base_get_msg_frame(ioc, smid); 5350 ioc->base_cmds.smid = smid; 5351 memcpy(request, mpi_request, sizeof(Mpi2SepReply_t)); 5352 init_completion(&ioc->base_cmds.done); 5353 mpt3sas_base_put_smid_default(ioc, smid); 5354 wait_for_completion_timeout(&ioc->base_cmds.done, 5355 msecs_to_jiffies(10000)); 5356 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 5357 issue_reset = 5358 mpt3sas_base_check_cmd_timeout(ioc, 5359 ioc->base_cmds.status, mpi_request, 5360 sizeof(Mpi2SepRequest_t)/4); 5361 goto issue_host_reset; 5362 } 5363 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) 5364 memcpy(mpi_reply, ioc->base_cmds.reply, 5365 sizeof(Mpi2SepReply_t)); 5366 else 5367 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t)); 5368 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 5369 goto out; 5370 5371 issue_host_reset: 5372 if (issue_reset) 5373 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 5374 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 5375 rc = -EFAULT; 5376 out: 5377 mutex_unlock(&ioc->base_cmds.mutex); 5378 return rc; 5379 } 5380 5381 /** 5382 * _base_get_port_facts - obtain port facts reply and save in ioc 5383 * @ioc: per adapter object 5384 * @port: ? 5385 * 5386 * Return: 0 for success, non-zero for failure. 5387 */ 5388 static int 5389 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port) 5390 { 5391 Mpi2PortFactsRequest_t mpi_request; 5392 Mpi2PortFactsReply_t mpi_reply; 5393 struct mpt3sas_port_facts *pfacts; 5394 int mpi_reply_sz, mpi_request_sz, r; 5395 5396 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 5397 5398 mpi_reply_sz = sizeof(Mpi2PortFactsReply_t); 5399 mpi_request_sz = sizeof(Mpi2PortFactsRequest_t); 5400 memset(&mpi_request, 0, mpi_request_sz); 5401 mpi_request.Function = MPI2_FUNCTION_PORT_FACTS; 5402 mpi_request.PortNumber = port; 5403 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz, 5404 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5); 5405 5406 if (r != 0) { 5407 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 5408 return r; 5409 } 5410 5411 pfacts = &ioc->pfacts[port]; 5412 memset(pfacts, 0, sizeof(struct mpt3sas_port_facts)); 5413 pfacts->PortNumber = mpi_reply.PortNumber; 5414 pfacts->VP_ID = mpi_reply.VP_ID; 5415 pfacts->VF_ID = mpi_reply.VF_ID; 5416 pfacts->MaxPostedCmdBuffers = 5417 le16_to_cpu(mpi_reply.MaxPostedCmdBuffers); 5418 5419 return 0; 5420 } 5421 5422 /** 5423 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL 5424 * @ioc: per adapter object 5425 * @timeout: 5426 * 5427 * Return: 0 for success, non-zero for failure. 5428 */ 5429 static int 5430 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout) 5431 { 5432 u32 ioc_state; 5433 int rc; 5434 5435 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 5436 5437 if (ioc->pci_error_recovery) { 5438 dfailprintk(ioc, 5439 ioc_info(ioc, "%s: host in pci error recovery\n", 5440 __func__)); 5441 return -EFAULT; 5442 } 5443 5444 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 5445 dhsprintk(ioc, 5446 ioc_info(ioc, "%s: ioc_state(0x%08x)\n", 5447 __func__, ioc_state)); 5448 5449 if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) || 5450 (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL) 5451 return 0; 5452 5453 if (ioc_state & MPI2_DOORBELL_USED) { 5454 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n")); 5455 goto issue_diag_reset; 5456 } 5457 5458 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 5459 mpt3sas_base_fault_info(ioc, ioc_state & 5460 MPI2_DOORBELL_DATA_MASK); 5461 goto issue_diag_reset; 5462 } 5463 5464 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout); 5465 if (ioc_state) { 5466 dfailprintk(ioc, 5467 ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 5468 __func__, ioc_state)); 5469 return -EFAULT; 5470 } 5471 5472 issue_diag_reset: 5473 rc = _base_diag_reset(ioc); 5474 return rc; 5475 } 5476 5477 /** 5478 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc 5479 * @ioc: per adapter object 5480 * 5481 * Return: 0 for success, non-zero for failure. 5482 */ 5483 static int 5484 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc) 5485 { 5486 Mpi2IOCFactsRequest_t mpi_request; 5487 Mpi2IOCFactsReply_t mpi_reply; 5488 struct mpt3sas_facts *facts; 5489 int mpi_reply_sz, mpi_request_sz, r; 5490 5491 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 5492 5493 r = _base_wait_for_iocstate(ioc, 10); 5494 if (r) { 5495 dfailprintk(ioc, 5496 ioc_info(ioc, "%s: failed getting to correct state\n", 5497 __func__)); 5498 return r; 5499 } 5500 mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t); 5501 mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t); 5502 memset(&mpi_request, 0, mpi_request_sz); 5503 mpi_request.Function = MPI2_FUNCTION_IOC_FACTS; 5504 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz, 5505 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5); 5506 5507 if (r != 0) { 5508 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 5509 return r; 5510 } 5511 5512 facts = &ioc->facts; 5513 memset(facts, 0, sizeof(struct mpt3sas_facts)); 5514 facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion); 5515 facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion); 5516 facts->VP_ID = mpi_reply.VP_ID; 5517 facts->VF_ID = mpi_reply.VF_ID; 5518 facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions); 5519 facts->MaxChainDepth = mpi_reply.MaxChainDepth; 5520 facts->WhoInit = mpi_reply.WhoInit; 5521 facts->NumberOfPorts = mpi_reply.NumberOfPorts; 5522 facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors; 5523 if (ioc->msix_enable && (facts->MaxMSIxVectors <= 5524 MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc))) 5525 ioc->combined_reply_queue = 0; 5526 facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit); 5527 facts->MaxReplyDescriptorPostQueueDepth = 5528 le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth); 5529 facts->ProductID = le16_to_cpu(mpi_reply.ProductID); 5530 facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities); 5531 if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)) 5532 ioc->ir_firmware = 1; 5533 if ((facts->IOCCapabilities & 5534 MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices)) 5535 ioc->rdpq_array_capable = 1; 5536 facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word); 5537 facts->IOCRequestFrameSize = 5538 le16_to_cpu(mpi_reply.IOCRequestFrameSize); 5539 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 5540 facts->IOCMaxChainSegmentSize = 5541 le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize); 5542 } 5543 facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators); 5544 facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets); 5545 ioc->shost->max_id = -1; 5546 facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders); 5547 facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures); 5548 facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags); 5549 facts->HighPriorityCredit = 5550 le16_to_cpu(mpi_reply.HighPriorityCredit); 5551 facts->ReplyFrameSize = mpi_reply.ReplyFrameSize; 5552 facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle); 5553 facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize; 5554 5555 /* 5556 * Get the Page Size from IOC Facts. If it's 0, default to 4k. 5557 */ 5558 ioc->page_size = 1 << facts->CurrentHostPageSize; 5559 if (ioc->page_size == 1) { 5560 ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n"); 5561 ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K; 5562 } 5563 dinitprintk(ioc, 5564 ioc_info(ioc, "CurrentHostPageSize(%d)\n", 5565 facts->CurrentHostPageSize)); 5566 5567 dinitprintk(ioc, 5568 ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n", 5569 facts->RequestCredit, facts->MaxChainDepth)); 5570 dinitprintk(ioc, 5571 ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n", 5572 facts->IOCRequestFrameSize * 4, 5573 facts->ReplyFrameSize * 4)); 5574 return 0; 5575 } 5576 5577 /** 5578 * _base_send_ioc_init - send ioc_init to firmware 5579 * @ioc: per adapter object 5580 * 5581 * Return: 0 for success, non-zero for failure. 5582 */ 5583 static int 5584 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc) 5585 { 5586 Mpi2IOCInitRequest_t mpi_request; 5587 Mpi2IOCInitReply_t mpi_reply; 5588 int i, r = 0; 5589 ktime_t current_time; 5590 u16 ioc_status; 5591 u32 reply_post_free_array_sz = 0; 5592 5593 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 5594 5595 memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t)); 5596 mpi_request.Function = MPI2_FUNCTION_IOC_INIT; 5597 mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER; 5598 mpi_request.VF_ID = 0; /* TODO */ 5599 mpi_request.VP_ID = 0; 5600 mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged); 5601 mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION); 5602 mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K; 5603 5604 if (_base_is_controller_msix_enabled(ioc)) 5605 mpi_request.HostMSIxVectors = ioc->reply_queue_count; 5606 mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4); 5607 mpi_request.ReplyDescriptorPostQueueDepth = 5608 cpu_to_le16(ioc->reply_post_queue_depth); 5609 mpi_request.ReplyFreeQueueDepth = 5610 cpu_to_le16(ioc->reply_free_queue_depth); 5611 5612 mpi_request.SenseBufferAddressHigh = 5613 cpu_to_le32((u64)ioc->sense_dma >> 32); 5614 mpi_request.SystemReplyAddressHigh = 5615 cpu_to_le32((u64)ioc->reply_dma >> 32); 5616 mpi_request.SystemRequestFrameBaseAddress = 5617 cpu_to_le64((u64)ioc->request_dma); 5618 mpi_request.ReplyFreeQueueAddress = 5619 cpu_to_le64((u64)ioc->reply_free_dma); 5620 5621 if (ioc->rdpq_array_enable) { 5622 reply_post_free_array_sz = ioc->reply_queue_count * 5623 sizeof(Mpi2IOCInitRDPQArrayEntry); 5624 memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz); 5625 for (i = 0; i < ioc->reply_queue_count; i++) 5626 ioc->reply_post_free_array[i].RDPQBaseAddress = 5627 cpu_to_le64( 5628 (u64)ioc->reply_post[i].reply_post_free_dma); 5629 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE; 5630 mpi_request.ReplyDescriptorPostQueueAddress = 5631 cpu_to_le64((u64)ioc->reply_post_free_array_dma); 5632 } else { 5633 mpi_request.ReplyDescriptorPostQueueAddress = 5634 cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma); 5635 } 5636 5637 /* This time stamp specifies number of milliseconds 5638 * since epoch ~ midnight January 1, 1970. 5639 */ 5640 current_time = ktime_get_real(); 5641 mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time)); 5642 5643 if (ioc->logging_level & MPT_DEBUG_INIT) { 5644 __le32 *mfp; 5645 int i; 5646 5647 mfp = (__le32 *)&mpi_request; 5648 pr_info("\toffset:data\n"); 5649 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++) 5650 pr_info("\t[0x%02x]:%08x\n", i*4, 5651 le32_to_cpu(mfp[i])); 5652 } 5653 5654 r = _base_handshake_req_reply_wait(ioc, 5655 sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request, 5656 sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10); 5657 5658 if (r != 0) { 5659 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 5660 return r; 5661 } 5662 5663 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK; 5664 if (ioc_status != MPI2_IOCSTATUS_SUCCESS || 5665 mpi_reply.IOCLogInfo) { 5666 ioc_err(ioc, "%s: failed\n", __func__); 5667 r = -EIO; 5668 } 5669 5670 return r; 5671 } 5672 5673 /** 5674 * mpt3sas_port_enable_done - command completion routine for port enable 5675 * @ioc: per adapter object 5676 * @smid: system request message index 5677 * @msix_index: MSIX table index supplied by the OS 5678 * @reply: reply message frame(lower 32bit addr) 5679 * 5680 * Return: 1 meaning mf should be freed from _base_interrupt 5681 * 0 means the mf is freed from this function. 5682 */ 5683 u8 5684 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 5685 u32 reply) 5686 { 5687 MPI2DefaultReply_t *mpi_reply; 5688 u16 ioc_status; 5689 5690 if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED) 5691 return 1; 5692 5693 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 5694 if (!mpi_reply) 5695 return 1; 5696 5697 if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE) 5698 return 1; 5699 5700 ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING; 5701 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE; 5702 ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID; 5703 memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4); 5704 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 5705 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) 5706 ioc->port_enable_failed = 1; 5707 5708 if (ioc->is_driver_loading) { 5709 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 5710 mpt3sas_port_enable_complete(ioc); 5711 return 1; 5712 } else { 5713 ioc->start_scan_failed = ioc_status; 5714 ioc->start_scan = 0; 5715 return 1; 5716 } 5717 } 5718 complete(&ioc->port_enable_cmds.done); 5719 return 1; 5720 } 5721 5722 /** 5723 * _base_send_port_enable - send port_enable(discovery stuff) to firmware 5724 * @ioc: per adapter object 5725 * 5726 * Return: 0 for success, non-zero for failure. 5727 */ 5728 static int 5729 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc) 5730 { 5731 Mpi2PortEnableRequest_t *mpi_request; 5732 Mpi2PortEnableReply_t *mpi_reply; 5733 int r = 0; 5734 u16 smid; 5735 u16 ioc_status; 5736 5737 ioc_info(ioc, "sending port enable !!\n"); 5738 5739 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 5740 ioc_err(ioc, "%s: internal command already in use\n", __func__); 5741 return -EAGAIN; 5742 } 5743 5744 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx); 5745 if (!smid) { 5746 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 5747 return -EAGAIN; 5748 } 5749 5750 ioc->port_enable_cmds.status = MPT3_CMD_PENDING; 5751 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 5752 ioc->port_enable_cmds.smid = smid; 5753 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t)); 5754 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE; 5755 5756 init_completion(&ioc->port_enable_cmds.done); 5757 mpt3sas_base_put_smid_default(ioc, smid); 5758 wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ); 5759 if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) { 5760 ioc_err(ioc, "%s: timeout\n", __func__); 5761 _debug_dump_mf(mpi_request, 5762 sizeof(Mpi2PortEnableRequest_t)/4); 5763 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET) 5764 r = -EFAULT; 5765 else 5766 r = -ETIME; 5767 goto out; 5768 } 5769 5770 mpi_reply = ioc->port_enable_cmds.reply; 5771 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 5772 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 5773 ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n", 5774 __func__, ioc_status); 5775 r = -EFAULT; 5776 goto out; 5777 } 5778 5779 out: 5780 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED; 5781 ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED"); 5782 return r; 5783 } 5784 5785 /** 5786 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply) 5787 * @ioc: per adapter object 5788 * 5789 * Return: 0 for success, non-zero for failure. 5790 */ 5791 int 5792 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc) 5793 { 5794 Mpi2PortEnableRequest_t *mpi_request; 5795 u16 smid; 5796 5797 ioc_info(ioc, "sending port enable !!\n"); 5798 5799 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 5800 ioc_err(ioc, "%s: internal command already in use\n", __func__); 5801 return -EAGAIN; 5802 } 5803 5804 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx); 5805 if (!smid) { 5806 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 5807 return -EAGAIN; 5808 } 5809 5810 ioc->port_enable_cmds.status = MPT3_CMD_PENDING; 5811 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 5812 ioc->port_enable_cmds.smid = smid; 5813 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t)); 5814 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE; 5815 5816 mpt3sas_base_put_smid_default(ioc, smid); 5817 return 0; 5818 } 5819 5820 /** 5821 * _base_determine_wait_on_discovery - desposition 5822 * @ioc: per adapter object 5823 * 5824 * Decide whether to wait on discovery to complete. Used to either 5825 * locate boot device, or report volumes ahead of physical devices. 5826 * 5827 * Return: 1 for wait, 0 for don't wait. 5828 */ 5829 static int 5830 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc) 5831 { 5832 /* We wait for discovery to complete if IR firmware is loaded. 5833 * The sas topology events arrive before PD events, so we need time to 5834 * turn on the bit in ioc->pd_handles to indicate PD 5835 * Also, it maybe required to report Volumes ahead of physical 5836 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set. 5837 */ 5838 if (ioc->ir_firmware) 5839 return 1; 5840 5841 /* if no Bios, then we don't need to wait */ 5842 if (!ioc->bios_pg3.BiosVersion) 5843 return 0; 5844 5845 /* Bios is present, then we drop down here. 5846 * 5847 * If there any entries in the Bios Page 2, then we wait 5848 * for discovery to complete. 5849 */ 5850 5851 /* Current Boot Device */ 5852 if ((ioc->bios_pg2.CurrentBootDeviceForm & 5853 MPI2_BIOSPAGE2_FORM_MASK) == 5854 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED && 5855 /* Request Boot Device */ 5856 (ioc->bios_pg2.ReqBootDeviceForm & 5857 MPI2_BIOSPAGE2_FORM_MASK) == 5858 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED && 5859 /* Alternate Request Boot Device */ 5860 (ioc->bios_pg2.ReqAltBootDeviceForm & 5861 MPI2_BIOSPAGE2_FORM_MASK) == 5862 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED) 5863 return 0; 5864 5865 return 1; 5866 } 5867 5868 /** 5869 * _base_unmask_events - turn on notification for this event 5870 * @ioc: per adapter object 5871 * @event: firmware event 5872 * 5873 * The mask is stored in ioc->event_masks. 5874 */ 5875 static void 5876 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event) 5877 { 5878 u32 desired_event; 5879 5880 if (event >= 128) 5881 return; 5882 5883 desired_event = (1 << (event % 32)); 5884 5885 if (event < 32) 5886 ioc->event_masks[0] &= ~desired_event; 5887 else if (event < 64) 5888 ioc->event_masks[1] &= ~desired_event; 5889 else if (event < 96) 5890 ioc->event_masks[2] &= ~desired_event; 5891 else if (event < 128) 5892 ioc->event_masks[3] &= ~desired_event; 5893 } 5894 5895 /** 5896 * _base_event_notification - send event notification 5897 * @ioc: per adapter object 5898 * 5899 * Return: 0 for success, non-zero for failure. 5900 */ 5901 static int 5902 _base_event_notification(struct MPT3SAS_ADAPTER *ioc) 5903 { 5904 Mpi2EventNotificationRequest_t *mpi_request; 5905 u16 smid; 5906 int r = 0; 5907 int i; 5908 5909 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 5910 5911 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 5912 ioc_err(ioc, "%s: internal command already in use\n", __func__); 5913 return -EAGAIN; 5914 } 5915 5916 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 5917 if (!smid) { 5918 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 5919 return -EAGAIN; 5920 } 5921 ioc->base_cmds.status = MPT3_CMD_PENDING; 5922 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 5923 ioc->base_cmds.smid = smid; 5924 memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t)); 5925 mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION; 5926 mpi_request->VF_ID = 0; /* TODO */ 5927 mpi_request->VP_ID = 0; 5928 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 5929 mpi_request->EventMasks[i] = 5930 cpu_to_le32(ioc->event_masks[i]); 5931 init_completion(&ioc->base_cmds.done); 5932 mpt3sas_base_put_smid_default(ioc, smid); 5933 wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ); 5934 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 5935 ioc_err(ioc, "%s: timeout\n", __func__); 5936 _debug_dump_mf(mpi_request, 5937 sizeof(Mpi2EventNotificationRequest_t)/4); 5938 if (ioc->base_cmds.status & MPT3_CMD_RESET) 5939 r = -EFAULT; 5940 else 5941 r = -ETIME; 5942 } else 5943 dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__)); 5944 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 5945 return r; 5946 } 5947 5948 /** 5949 * mpt3sas_base_validate_event_type - validating event types 5950 * @ioc: per adapter object 5951 * @event_type: firmware event 5952 * 5953 * This will turn on firmware event notification when application 5954 * ask for that event. We don't mask events that are already enabled. 5955 */ 5956 void 5957 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type) 5958 { 5959 int i, j; 5960 u32 event_mask, desired_event; 5961 u8 send_update_to_fw; 5962 5963 for (i = 0, send_update_to_fw = 0; i < 5964 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) { 5965 event_mask = ~event_type[i]; 5966 desired_event = 1; 5967 for (j = 0; j < 32; j++) { 5968 if (!(event_mask & desired_event) && 5969 (ioc->event_masks[i] & desired_event)) { 5970 ioc->event_masks[i] &= ~desired_event; 5971 send_update_to_fw = 1; 5972 } 5973 desired_event = (desired_event << 1); 5974 } 5975 } 5976 5977 if (!send_update_to_fw) 5978 return; 5979 5980 mutex_lock(&ioc->base_cmds.mutex); 5981 _base_event_notification(ioc); 5982 mutex_unlock(&ioc->base_cmds.mutex); 5983 } 5984 5985 /** 5986 * _base_diag_reset - the "big hammer" start of day reset 5987 * @ioc: per adapter object 5988 * 5989 * Return: 0 for success, non-zero for failure. 5990 */ 5991 static int 5992 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc) 5993 { 5994 u32 host_diagnostic; 5995 u32 ioc_state; 5996 u32 count; 5997 u32 hcb_size; 5998 5999 ioc_info(ioc, "sending diag reset !!\n"); 6000 6001 drsprintk(ioc, ioc_info(ioc, "clear interrupts\n")); 6002 6003 count = 0; 6004 do { 6005 /* Write magic sequence to WriteSequence register 6006 * Loop until in diagnostic mode 6007 */ 6008 drsprintk(ioc, ioc_info(ioc, "write magic sequence\n")); 6009 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence); 6010 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence); 6011 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence); 6012 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence); 6013 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence); 6014 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence); 6015 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence); 6016 6017 /* wait 100 msec */ 6018 msleep(100); 6019 6020 if (count++ > 20) 6021 goto out; 6022 6023 host_diagnostic = readl(&ioc->chip->HostDiagnostic); 6024 drsprintk(ioc, 6025 ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n", 6026 count, host_diagnostic)); 6027 6028 } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0); 6029 6030 hcb_size = readl(&ioc->chip->HCBSize); 6031 6032 drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n")); 6033 writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER, 6034 &ioc->chip->HostDiagnostic); 6035 6036 /*This delay allows the chip PCIe hardware time to finish reset tasks*/ 6037 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000); 6038 6039 /* Approximately 300 second max wait */ 6040 for (count = 0; count < (300000000 / 6041 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) { 6042 6043 host_diagnostic = readl(&ioc->chip->HostDiagnostic); 6044 6045 if (host_diagnostic == 0xFFFFFFFF) 6046 goto out; 6047 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER)) 6048 break; 6049 6050 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000); 6051 } 6052 6053 if (host_diagnostic & MPI2_DIAG_HCB_MODE) { 6054 6055 drsprintk(ioc, 6056 ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n")); 6057 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK; 6058 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW; 6059 writel(host_diagnostic, &ioc->chip->HostDiagnostic); 6060 6061 drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n")); 6062 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE, 6063 &ioc->chip->HCBSize); 6064 } 6065 6066 drsprintk(ioc, ioc_info(ioc, "restart the adapter\n")); 6067 writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET, 6068 &ioc->chip->HostDiagnostic); 6069 6070 drsprintk(ioc, 6071 ioc_info(ioc, "disable writes to the diagnostic register\n")); 6072 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence); 6073 6074 drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n")); 6075 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20); 6076 if (ioc_state) { 6077 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 6078 __func__, ioc_state); 6079 goto out; 6080 } 6081 6082 ioc_info(ioc, "diag reset: SUCCESS\n"); 6083 return 0; 6084 6085 out: 6086 ioc_err(ioc, "diag reset: FAILED\n"); 6087 return -EFAULT; 6088 } 6089 6090 /** 6091 * _base_make_ioc_ready - put controller in READY state 6092 * @ioc: per adapter object 6093 * @type: FORCE_BIG_HAMMER or SOFT_RESET 6094 * 6095 * Return: 0 for success, non-zero for failure. 6096 */ 6097 static int 6098 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type) 6099 { 6100 u32 ioc_state; 6101 int rc; 6102 int count; 6103 6104 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6105 6106 if (ioc->pci_error_recovery) 6107 return 0; 6108 6109 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 6110 dhsprintk(ioc, 6111 ioc_info(ioc, "%s: ioc_state(0x%08x)\n", 6112 __func__, ioc_state)); 6113 6114 /* if in RESET state, it should move to READY state shortly */ 6115 count = 0; 6116 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) { 6117 while ((ioc_state & MPI2_IOC_STATE_MASK) != 6118 MPI2_IOC_STATE_READY) { 6119 if (count++ == 10) { 6120 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 6121 __func__, ioc_state); 6122 return -EFAULT; 6123 } 6124 ssleep(1); 6125 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 6126 } 6127 } 6128 6129 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) 6130 return 0; 6131 6132 if (ioc_state & MPI2_DOORBELL_USED) { 6133 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n")); 6134 goto issue_diag_reset; 6135 } 6136 6137 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 6138 mpt3sas_base_fault_info(ioc, ioc_state & 6139 MPI2_DOORBELL_DATA_MASK); 6140 goto issue_diag_reset; 6141 } 6142 6143 if (type == FORCE_BIG_HAMMER) 6144 goto issue_diag_reset; 6145 6146 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL) 6147 if (!(_base_send_ioc_reset(ioc, 6148 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) { 6149 return 0; 6150 } 6151 6152 issue_diag_reset: 6153 rc = _base_diag_reset(ioc); 6154 return rc; 6155 } 6156 6157 /** 6158 * _base_make_ioc_operational - put controller in OPERATIONAL state 6159 * @ioc: per adapter object 6160 * 6161 * Return: 0 for success, non-zero for failure. 6162 */ 6163 static int 6164 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc) 6165 { 6166 int r, i, index; 6167 unsigned long flags; 6168 u32 reply_address; 6169 u16 smid; 6170 struct _tr_list *delayed_tr, *delayed_tr_next; 6171 struct _sc_list *delayed_sc, *delayed_sc_next; 6172 struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next; 6173 u8 hide_flag; 6174 struct adapter_reply_queue *reply_q; 6175 Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig; 6176 6177 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6178 6179 /* clean the delayed target reset list */ 6180 list_for_each_entry_safe(delayed_tr, delayed_tr_next, 6181 &ioc->delayed_tr_list, list) { 6182 list_del(&delayed_tr->list); 6183 kfree(delayed_tr); 6184 } 6185 6186 6187 list_for_each_entry_safe(delayed_tr, delayed_tr_next, 6188 &ioc->delayed_tr_volume_list, list) { 6189 list_del(&delayed_tr->list); 6190 kfree(delayed_tr); 6191 } 6192 6193 list_for_each_entry_safe(delayed_sc, delayed_sc_next, 6194 &ioc->delayed_sc_list, list) { 6195 list_del(&delayed_sc->list); 6196 kfree(delayed_sc); 6197 } 6198 6199 list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next, 6200 &ioc->delayed_event_ack_list, list) { 6201 list_del(&delayed_event_ack->list); 6202 kfree(delayed_event_ack); 6203 } 6204 6205 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 6206 6207 /* hi-priority queue */ 6208 INIT_LIST_HEAD(&ioc->hpr_free_list); 6209 smid = ioc->hi_priority_smid; 6210 for (i = 0; i < ioc->hi_priority_depth; i++, smid++) { 6211 ioc->hpr_lookup[i].cb_idx = 0xFF; 6212 ioc->hpr_lookup[i].smid = smid; 6213 list_add_tail(&ioc->hpr_lookup[i].tracker_list, 6214 &ioc->hpr_free_list); 6215 } 6216 6217 /* internal queue */ 6218 INIT_LIST_HEAD(&ioc->internal_free_list); 6219 smid = ioc->internal_smid; 6220 for (i = 0; i < ioc->internal_depth; i++, smid++) { 6221 ioc->internal_lookup[i].cb_idx = 0xFF; 6222 ioc->internal_lookup[i].smid = smid; 6223 list_add_tail(&ioc->internal_lookup[i].tracker_list, 6224 &ioc->internal_free_list); 6225 } 6226 6227 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 6228 6229 /* initialize Reply Free Queue */ 6230 for (i = 0, reply_address = (u32)ioc->reply_dma ; 6231 i < ioc->reply_free_queue_depth ; i++, reply_address += 6232 ioc->reply_sz) { 6233 ioc->reply_free[i] = cpu_to_le32(reply_address); 6234 if (ioc->is_mcpu_endpoint) 6235 _base_clone_reply_to_sys_mem(ioc, 6236 reply_address, i); 6237 } 6238 6239 /* initialize reply queues */ 6240 if (ioc->is_driver_loading) 6241 _base_assign_reply_queues(ioc); 6242 6243 /* initialize Reply Post Free Queue */ 6244 index = 0; 6245 reply_post_free_contig = ioc->reply_post[0].reply_post_free; 6246 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 6247 /* 6248 * If RDPQ is enabled, switch to the next allocation. 6249 * Otherwise advance within the contiguous region. 6250 */ 6251 if (ioc->rdpq_array_enable) { 6252 reply_q->reply_post_free = 6253 ioc->reply_post[index++].reply_post_free; 6254 } else { 6255 reply_q->reply_post_free = reply_post_free_contig; 6256 reply_post_free_contig += ioc->reply_post_queue_depth; 6257 } 6258 6259 reply_q->reply_post_host_index = 0; 6260 for (i = 0; i < ioc->reply_post_queue_depth; i++) 6261 reply_q->reply_post_free[i].Words = 6262 cpu_to_le64(ULLONG_MAX); 6263 if (!_base_is_controller_msix_enabled(ioc)) 6264 goto skip_init_reply_post_free_queue; 6265 } 6266 skip_init_reply_post_free_queue: 6267 6268 r = _base_send_ioc_init(ioc); 6269 if (r) 6270 return r; 6271 6272 /* initialize reply free host index */ 6273 ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1; 6274 writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex); 6275 6276 /* initialize reply post host index */ 6277 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 6278 if (ioc->combined_reply_queue) 6279 writel((reply_q->msix_index & 7)<< 6280 MPI2_RPHI_MSIX_INDEX_SHIFT, 6281 ioc->replyPostRegisterIndex[reply_q->msix_index/8]); 6282 else 6283 writel(reply_q->msix_index << 6284 MPI2_RPHI_MSIX_INDEX_SHIFT, 6285 &ioc->chip->ReplyPostHostIndex); 6286 6287 if (!_base_is_controller_msix_enabled(ioc)) 6288 goto skip_init_reply_post_host_index; 6289 } 6290 6291 skip_init_reply_post_host_index: 6292 6293 _base_unmask_interrupts(ioc); 6294 6295 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 6296 r = _base_display_fwpkg_version(ioc); 6297 if (r) 6298 return r; 6299 } 6300 6301 _base_static_config_pages(ioc); 6302 r = _base_event_notification(ioc); 6303 if (r) 6304 return r; 6305 6306 if (ioc->is_driver_loading) { 6307 6308 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier 6309 == 0x80) { 6310 hide_flag = (u8) ( 6311 le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) & 6312 MFG_PAGE10_HIDE_SSDS_MASK); 6313 if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK) 6314 ioc->mfg_pg10_hide_flag = hide_flag; 6315 } 6316 6317 ioc->wait_for_discovery_to_complete = 6318 _base_determine_wait_on_discovery(ioc); 6319 6320 return r; /* scan_start and scan_finished support */ 6321 } 6322 6323 r = _base_send_port_enable(ioc); 6324 if (r) 6325 return r; 6326 6327 return r; 6328 } 6329 6330 /** 6331 * mpt3sas_base_free_resources - free resources controller resources 6332 * @ioc: per adapter object 6333 */ 6334 void 6335 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc) 6336 { 6337 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6338 6339 /* synchronizing freeing resource with pci_access_mutex lock */ 6340 mutex_lock(&ioc->pci_access_mutex); 6341 if (ioc->chip_phys && ioc->chip) { 6342 _base_mask_interrupts(ioc); 6343 ioc->shost_recovery = 1; 6344 _base_make_ioc_ready(ioc, SOFT_RESET); 6345 ioc->shost_recovery = 0; 6346 } 6347 6348 mpt3sas_base_unmap_resources(ioc); 6349 mutex_unlock(&ioc->pci_access_mutex); 6350 return; 6351 } 6352 6353 /** 6354 * mpt3sas_base_attach - attach controller instance 6355 * @ioc: per adapter object 6356 * 6357 * Return: 0 for success, non-zero for failure. 6358 */ 6359 int 6360 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc) 6361 { 6362 int r, i; 6363 int cpu_id, last_cpu_id = 0; 6364 6365 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6366 6367 /* setup cpu_msix_table */ 6368 ioc->cpu_count = num_online_cpus(); 6369 for_each_online_cpu(cpu_id) 6370 last_cpu_id = cpu_id; 6371 ioc->cpu_msix_table_sz = last_cpu_id + 1; 6372 ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL); 6373 ioc->reply_queue_count = 1; 6374 if (!ioc->cpu_msix_table) { 6375 dfailprintk(ioc, 6376 ioc_info(ioc, "allocation for cpu_msix_table failed!!!\n")); 6377 r = -ENOMEM; 6378 goto out_free_resources; 6379 } 6380 6381 if (ioc->is_warpdrive) { 6382 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz, 6383 sizeof(resource_size_t *), GFP_KERNEL); 6384 if (!ioc->reply_post_host_index) { 6385 dfailprintk(ioc, 6386 ioc_info(ioc, "allocation for reply_post_host_index failed!!!\n")); 6387 r = -ENOMEM; 6388 goto out_free_resources; 6389 } 6390 } 6391 6392 ioc->rdpq_array_enable_assigned = 0; 6393 ioc->dma_mask = 0; 6394 r = mpt3sas_base_map_resources(ioc); 6395 if (r) 6396 goto out_free_resources; 6397 6398 pci_set_drvdata(ioc->pdev, ioc->shost); 6399 r = _base_get_ioc_facts(ioc); 6400 if (r) 6401 goto out_free_resources; 6402 6403 switch (ioc->hba_mpi_version_belonged) { 6404 case MPI2_VERSION: 6405 ioc->build_sg_scmd = &_base_build_sg_scmd; 6406 ioc->build_sg = &_base_build_sg; 6407 ioc->build_zero_len_sge = &_base_build_zero_len_sge; 6408 break; 6409 case MPI25_VERSION: 6410 case MPI26_VERSION: 6411 /* 6412 * In SAS3.0, 6413 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and 6414 * Target Status - all require the IEEE formated scatter gather 6415 * elements. 6416 */ 6417 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee; 6418 ioc->build_sg = &_base_build_sg_ieee; 6419 ioc->build_nvme_prp = &_base_build_nvme_prp; 6420 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee; 6421 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t); 6422 6423 break; 6424 } 6425 6426 if (ioc->is_mcpu_endpoint) 6427 ioc->put_smid_scsi_io = &_base_put_smid_mpi_ep_scsi_io; 6428 else 6429 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io; 6430 6431 /* 6432 * These function pointers for other requests that don't 6433 * the require IEEE scatter gather elements. 6434 * 6435 * For example Configuration Pages and SAS IOUNIT Control don't. 6436 */ 6437 ioc->build_sg_mpi = &_base_build_sg; 6438 ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge; 6439 6440 r = _base_make_ioc_ready(ioc, SOFT_RESET); 6441 if (r) 6442 goto out_free_resources; 6443 6444 ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts, 6445 sizeof(struct mpt3sas_port_facts), GFP_KERNEL); 6446 if (!ioc->pfacts) { 6447 r = -ENOMEM; 6448 goto out_free_resources; 6449 } 6450 6451 for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) { 6452 r = _base_get_port_facts(ioc, i); 6453 if (r) 6454 goto out_free_resources; 6455 } 6456 6457 r = _base_allocate_memory_pools(ioc); 6458 if (r) 6459 goto out_free_resources; 6460 6461 init_waitqueue_head(&ioc->reset_wq); 6462 6463 /* allocate memory pd handle bitmask list */ 6464 ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8); 6465 if (ioc->facts.MaxDevHandle % 8) 6466 ioc->pd_handles_sz++; 6467 ioc->pd_handles = kzalloc(ioc->pd_handles_sz, 6468 GFP_KERNEL); 6469 if (!ioc->pd_handles) { 6470 r = -ENOMEM; 6471 goto out_free_resources; 6472 } 6473 ioc->blocking_handles = kzalloc(ioc->pd_handles_sz, 6474 GFP_KERNEL); 6475 if (!ioc->blocking_handles) { 6476 r = -ENOMEM; 6477 goto out_free_resources; 6478 } 6479 6480 /* allocate memory for pending OS device add list */ 6481 ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8); 6482 if (ioc->facts.MaxDevHandle % 8) 6483 ioc->pend_os_device_add_sz++; 6484 ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz, 6485 GFP_KERNEL); 6486 if (!ioc->pend_os_device_add) 6487 goto out_free_resources; 6488 6489 ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz; 6490 ioc->device_remove_in_progress = 6491 kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL); 6492 if (!ioc->device_remove_in_progress) 6493 goto out_free_resources; 6494 6495 ioc->fwfault_debug = mpt3sas_fwfault_debug; 6496 6497 /* base internal command bits */ 6498 mutex_init(&ioc->base_cmds.mutex); 6499 ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 6500 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 6501 6502 /* port_enable command bits */ 6503 ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 6504 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED; 6505 6506 /* transport internal command bits */ 6507 ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 6508 ioc->transport_cmds.status = MPT3_CMD_NOT_USED; 6509 mutex_init(&ioc->transport_cmds.mutex); 6510 6511 /* scsih internal command bits */ 6512 ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 6513 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED; 6514 mutex_init(&ioc->scsih_cmds.mutex); 6515 6516 /* task management internal command bits */ 6517 ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 6518 ioc->tm_cmds.status = MPT3_CMD_NOT_USED; 6519 mutex_init(&ioc->tm_cmds.mutex); 6520 6521 /* config page internal command bits */ 6522 ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 6523 ioc->config_cmds.status = MPT3_CMD_NOT_USED; 6524 mutex_init(&ioc->config_cmds.mutex); 6525 6526 /* ctl module internal command bits */ 6527 ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 6528 ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL); 6529 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED; 6530 mutex_init(&ioc->ctl_cmds.mutex); 6531 6532 if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply || 6533 !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply || 6534 !ioc->tm_cmds.reply || !ioc->config_cmds.reply || 6535 !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) { 6536 r = -ENOMEM; 6537 goto out_free_resources; 6538 } 6539 6540 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 6541 ioc->event_masks[i] = -1; 6542 6543 /* here we enable the events we care about */ 6544 _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY); 6545 _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE); 6546 _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST); 6547 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE); 6548 _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE); 6549 _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST); 6550 _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME); 6551 _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK); 6552 _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS); 6553 _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED); 6554 _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD); 6555 _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION); 6556 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR); 6557 if (ioc->hba_mpi_version_belonged == MPI26_VERSION) { 6558 if (ioc->is_gen35_ioc) { 6559 _base_unmask_events(ioc, 6560 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE); 6561 _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION); 6562 _base_unmask_events(ioc, 6563 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST); 6564 } 6565 } 6566 r = _base_make_ioc_operational(ioc); 6567 if (r) 6568 goto out_free_resources; 6569 6570 ioc->non_operational_loop = 0; 6571 ioc->got_task_abort_from_ioctl = 0; 6572 return 0; 6573 6574 out_free_resources: 6575 6576 ioc->remove_host = 1; 6577 6578 mpt3sas_base_free_resources(ioc); 6579 _base_release_memory_pools(ioc); 6580 pci_set_drvdata(ioc->pdev, NULL); 6581 kfree(ioc->cpu_msix_table); 6582 if (ioc->is_warpdrive) 6583 kfree(ioc->reply_post_host_index); 6584 kfree(ioc->pd_handles); 6585 kfree(ioc->blocking_handles); 6586 kfree(ioc->device_remove_in_progress); 6587 kfree(ioc->pend_os_device_add); 6588 kfree(ioc->tm_cmds.reply); 6589 kfree(ioc->transport_cmds.reply); 6590 kfree(ioc->scsih_cmds.reply); 6591 kfree(ioc->config_cmds.reply); 6592 kfree(ioc->base_cmds.reply); 6593 kfree(ioc->port_enable_cmds.reply); 6594 kfree(ioc->ctl_cmds.reply); 6595 kfree(ioc->ctl_cmds.sense); 6596 kfree(ioc->pfacts); 6597 ioc->ctl_cmds.reply = NULL; 6598 ioc->base_cmds.reply = NULL; 6599 ioc->tm_cmds.reply = NULL; 6600 ioc->scsih_cmds.reply = NULL; 6601 ioc->transport_cmds.reply = NULL; 6602 ioc->config_cmds.reply = NULL; 6603 ioc->pfacts = NULL; 6604 return r; 6605 } 6606 6607 6608 /** 6609 * mpt3sas_base_detach - remove controller instance 6610 * @ioc: per adapter object 6611 */ 6612 void 6613 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc) 6614 { 6615 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6616 6617 mpt3sas_base_stop_watchdog(ioc); 6618 mpt3sas_base_free_resources(ioc); 6619 _base_release_memory_pools(ioc); 6620 mpt3sas_free_enclosure_list(ioc); 6621 pci_set_drvdata(ioc->pdev, NULL); 6622 kfree(ioc->cpu_msix_table); 6623 if (ioc->is_warpdrive) 6624 kfree(ioc->reply_post_host_index); 6625 kfree(ioc->pd_handles); 6626 kfree(ioc->blocking_handles); 6627 kfree(ioc->device_remove_in_progress); 6628 kfree(ioc->pend_os_device_add); 6629 kfree(ioc->pfacts); 6630 kfree(ioc->ctl_cmds.reply); 6631 kfree(ioc->ctl_cmds.sense); 6632 kfree(ioc->base_cmds.reply); 6633 kfree(ioc->port_enable_cmds.reply); 6634 kfree(ioc->tm_cmds.reply); 6635 kfree(ioc->transport_cmds.reply); 6636 kfree(ioc->scsih_cmds.reply); 6637 kfree(ioc->config_cmds.reply); 6638 } 6639 6640 /** 6641 * _base_pre_reset_handler - pre reset handler 6642 * @ioc: per adapter object 6643 */ 6644 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc) 6645 { 6646 mpt3sas_scsih_pre_reset_handler(ioc); 6647 mpt3sas_ctl_pre_reset_handler(ioc); 6648 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__)); 6649 } 6650 6651 /** 6652 * _base_after_reset_handler - after reset handler 6653 * @ioc: per adapter object 6654 */ 6655 static void _base_after_reset_handler(struct MPT3SAS_ADAPTER *ioc) 6656 { 6657 mpt3sas_scsih_after_reset_handler(ioc); 6658 mpt3sas_ctl_after_reset_handler(ioc); 6659 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_AFTER_RESET\n", __func__)); 6660 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) { 6661 ioc->transport_cmds.status |= MPT3_CMD_RESET; 6662 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid); 6663 complete(&ioc->transport_cmds.done); 6664 } 6665 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 6666 ioc->base_cmds.status |= MPT3_CMD_RESET; 6667 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid); 6668 complete(&ioc->base_cmds.done); 6669 } 6670 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 6671 ioc->port_enable_failed = 1; 6672 ioc->port_enable_cmds.status |= MPT3_CMD_RESET; 6673 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid); 6674 if (ioc->is_driver_loading) { 6675 ioc->start_scan_failed = 6676 MPI2_IOCSTATUS_INTERNAL_ERROR; 6677 ioc->start_scan = 0; 6678 ioc->port_enable_cmds.status = 6679 MPT3_CMD_NOT_USED; 6680 } else { 6681 complete(&ioc->port_enable_cmds.done); 6682 } 6683 } 6684 if (ioc->config_cmds.status & MPT3_CMD_PENDING) { 6685 ioc->config_cmds.status |= MPT3_CMD_RESET; 6686 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid); 6687 ioc->config_cmds.smid = USHRT_MAX; 6688 complete(&ioc->config_cmds.done); 6689 } 6690 } 6691 6692 /** 6693 * _base_reset_done_handler - reset done handler 6694 * @ioc: per adapter object 6695 */ 6696 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc) 6697 { 6698 mpt3sas_scsih_reset_done_handler(ioc); 6699 mpt3sas_ctl_reset_done_handler(ioc); 6700 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__)); 6701 } 6702 6703 /** 6704 * mpt3sas_wait_for_commands_to_complete - reset controller 6705 * @ioc: Pointer to MPT_ADAPTER structure 6706 * 6707 * This function is waiting 10s for all pending commands to complete 6708 * prior to putting controller in reset. 6709 */ 6710 void 6711 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc) 6712 { 6713 u32 ioc_state; 6714 6715 ioc->pending_io_count = 0; 6716 6717 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 6718 if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) 6719 return; 6720 6721 /* pending command count */ 6722 ioc->pending_io_count = scsi_host_busy(ioc->shost); 6723 6724 if (!ioc->pending_io_count) 6725 return; 6726 6727 /* wait for pending commands to complete */ 6728 wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ); 6729 } 6730 6731 /** 6732 * mpt3sas_base_hard_reset_handler - reset controller 6733 * @ioc: Pointer to MPT_ADAPTER structure 6734 * @type: FORCE_BIG_HAMMER or SOFT_RESET 6735 * 6736 * Return: 0 for success, non-zero for failure. 6737 */ 6738 int 6739 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc, 6740 enum reset_type type) 6741 { 6742 int r; 6743 unsigned long flags; 6744 u32 ioc_state; 6745 u8 is_fault = 0, is_trigger = 0; 6746 6747 dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__)); 6748 6749 if (ioc->pci_error_recovery) { 6750 ioc_err(ioc, "%s: pci error recovery reset\n", __func__); 6751 r = 0; 6752 goto out_unlocked; 6753 } 6754 6755 if (mpt3sas_fwfault_debug) 6756 mpt3sas_halt_firmware(ioc); 6757 6758 /* wait for an active reset in progress to complete */ 6759 mutex_lock(&ioc->reset_in_progress_mutex); 6760 6761 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 6762 ioc->shost_recovery = 1; 6763 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 6764 6765 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 6766 MPT3_DIAG_BUFFER_IS_REGISTERED) && 6767 (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 6768 MPT3_DIAG_BUFFER_IS_RELEASED))) { 6769 is_trigger = 1; 6770 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 6771 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) 6772 is_fault = 1; 6773 } 6774 _base_pre_reset_handler(ioc); 6775 mpt3sas_wait_for_commands_to_complete(ioc); 6776 _base_mask_interrupts(ioc); 6777 r = _base_make_ioc_ready(ioc, type); 6778 if (r) 6779 goto out; 6780 _base_after_reset_handler(ioc); 6781 6782 /* If this hard reset is called while port enable is active, then 6783 * there is no reason to call make_ioc_operational 6784 */ 6785 if (ioc->is_driver_loading && ioc->port_enable_failed) { 6786 ioc->remove_host = 1; 6787 r = -EFAULT; 6788 goto out; 6789 } 6790 r = _base_get_ioc_facts(ioc); 6791 if (r) 6792 goto out; 6793 6794 if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable) 6795 panic("%s: Issue occurred with flashing controller firmware." 6796 "Please reboot the system and ensure that the correct" 6797 " firmware version is running\n", ioc->name); 6798 6799 r = _base_make_ioc_operational(ioc); 6800 if (!r) 6801 _base_reset_done_handler(ioc); 6802 6803 out: 6804 dtmprintk(ioc, 6805 ioc_info(ioc, "%s: %s\n", 6806 __func__, r == 0 ? "SUCCESS" : "FAILED")); 6807 6808 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 6809 ioc->shost_recovery = 0; 6810 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 6811 ioc->ioc_reset_count++; 6812 mutex_unlock(&ioc->reset_in_progress_mutex); 6813 6814 out_unlocked: 6815 if ((r == 0) && is_trigger) { 6816 if (is_fault) 6817 mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT); 6818 else 6819 mpt3sas_trigger_master(ioc, 6820 MASTER_TRIGGER_ADAPTER_RESET); 6821 } 6822 dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__)); 6823 return r; 6824 } 6825