1 /* 2 * This is the Fusion MPT base driver providing common API layer interface 3 * for access to MPT (Message Passing Technology) firmware. 4 * 5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c 6 * Copyright (C) 2012-2014 LSI Corporation 7 * Copyright (C) 2013-2014 Avago Technologies 8 * (mailto: MPT-FusionLinux.pdl@avagotech.com) 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License 12 * as published by the Free Software Foundation; either version 2 13 * of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * NO WARRANTY 21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR 22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT 23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, 24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is 25 * solely responsible for determining the appropriateness of using and 26 * distributing the Program and assumes all risks associated with its 27 * exercise of rights under this Agreement, including but not limited to 28 * the risks and costs of program errors, damage to or loss of data, 29 * programs or equipment, and unavailability or interruption of operations. 30 31 * DISCLAIMER OF LIABILITY 32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY 33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND 35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED 38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES 39 40 * You should have received a copy of the GNU General Public License 41 * along with this program; if not, write to the Free Software 42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, 43 * USA. 44 */ 45 46 #include <linux/kernel.h> 47 #include <linux/module.h> 48 #include <linux/errno.h> 49 #include <linux/init.h> 50 #include <linux/slab.h> 51 #include <linux/types.h> 52 #include <linux/pci.h> 53 #include <linux/kdev_t.h> 54 #include <linux/blkdev.h> 55 #include <linux/delay.h> 56 #include <linux/interrupt.h> 57 #include <linux/dma-mapping.h> 58 #include <linux/io.h> 59 #include <linux/time.h> 60 #include <linux/ktime.h> 61 #include <linux/kthread.h> 62 #include <asm/page.h> /* To get host page size per arch */ 63 #include <linux/aer.h> 64 65 66 #include "mpt3sas_base.h" 67 68 static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS]; 69 70 71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */ 72 73 /* maximum controller queue depth */ 74 #define MAX_HBA_QUEUE_DEPTH 30000 75 #define MAX_CHAIN_DEPTH 100000 76 static int max_queue_depth = -1; 77 module_param(max_queue_depth, int, 0444); 78 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth "); 79 80 static int max_sgl_entries = -1; 81 module_param(max_sgl_entries, int, 0444); 82 MODULE_PARM_DESC(max_sgl_entries, " max sg entries "); 83 84 static int msix_disable = -1; 85 module_param(msix_disable, int, 0444); 86 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)"); 87 88 static int smp_affinity_enable = 1; 89 module_param(smp_affinity_enable, int, 0444); 90 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)"); 91 92 static int max_msix_vectors = -1; 93 module_param(max_msix_vectors, int, 0444); 94 MODULE_PARM_DESC(max_msix_vectors, 95 " max msix vectors"); 96 97 static int irqpoll_weight = -1; 98 module_param(irqpoll_weight, int, 0444); 99 MODULE_PARM_DESC(irqpoll_weight, 100 "irq poll weight (default= one fourth of HBA queue depth)"); 101 102 static int mpt3sas_fwfault_debug; 103 MODULE_PARM_DESC(mpt3sas_fwfault_debug, 104 " enable detection of firmware fault and halt firmware - (default=0)"); 105 106 static int perf_mode = -1; 107 module_param(perf_mode, int, 0444); 108 MODULE_PARM_DESC(perf_mode, 109 "Performance mode (only for Aero/Sea Generation), options:\n\t\t" 110 "0 - balanced: high iops mode is enabled &\n\t\t" 111 "interrupt coalescing is enabled only on high iops queues,\n\t\t" 112 "1 - iops: high iops mode is disabled &\n\t\t" 113 "interrupt coalescing is enabled on all queues,\n\t\t" 114 "2 - latency: high iops mode is disabled &\n\t\t" 115 "interrupt coalescing is enabled on all queues with timeout value 0xA,\n" 116 "\t\tdefault - default perf_mode is 'balanced'" 117 ); 118 119 enum mpt3sas_perf_mode { 120 MPT_PERF_MODE_DEFAULT = -1, 121 MPT_PERF_MODE_BALANCED = 0, 122 MPT_PERF_MODE_IOPS = 1, 123 MPT_PERF_MODE_LATENCY = 2, 124 }; 125 126 static int 127 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc); 128 129 /** 130 * mpt3sas_base_check_cmd_timeout - Function 131 * to check timeout and command termination due 132 * to Host reset. 133 * 134 * @ioc: per adapter object. 135 * @status: Status of issued command. 136 * @mpi_request:mf request pointer. 137 * @sz: size of buffer. 138 * 139 * @Returns - 1/0 Reset to be done or Not 140 */ 141 u8 142 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc, 143 u8 status, void *mpi_request, int sz) 144 { 145 u8 issue_reset = 0; 146 147 if (!(status & MPT3_CMD_RESET)) 148 issue_reset = 1; 149 150 ioc_err(ioc, "Command %s\n", 151 issue_reset == 0 ? "terminated due to Host Reset" : "Timeout"); 152 _debug_dump_mf(mpi_request, sz); 153 154 return issue_reset; 155 } 156 157 /** 158 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug. 159 * @val: ? 160 * @kp: ? 161 * 162 * Return: ? 163 */ 164 static int 165 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp) 166 { 167 int ret = param_set_int(val, kp); 168 struct MPT3SAS_ADAPTER *ioc; 169 170 if (ret) 171 return ret; 172 173 /* global ioc spinlock to protect controller list on list operations */ 174 pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug); 175 spin_lock(&gioc_lock); 176 list_for_each_entry(ioc, &mpt3sas_ioc_list, list) 177 ioc->fwfault_debug = mpt3sas_fwfault_debug; 178 spin_unlock(&gioc_lock); 179 return 0; 180 } 181 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug, 182 param_get_int, &mpt3sas_fwfault_debug, 0644); 183 184 /** 185 * _base_readl_aero - retry readl for max three times. 186 * @addr - MPT Fusion system interface register address 187 * 188 * Retry the readl() for max three times if it gets zero value 189 * while reading the system interface register. 190 */ 191 static inline u32 192 _base_readl_aero(const volatile void __iomem *addr) 193 { 194 u32 i = 0, ret_val; 195 196 do { 197 ret_val = readl(addr); 198 i++; 199 } while (ret_val == 0 && i < 3); 200 201 return ret_val; 202 } 203 204 static inline u32 205 _base_readl(const volatile void __iomem *addr) 206 { 207 return readl(addr); 208 } 209 210 /** 211 * _base_clone_reply_to_sys_mem - copies reply to reply free iomem 212 * in BAR0 space. 213 * 214 * @ioc: per adapter object 215 * @reply: reply message frame(lower 32bit addr) 216 * @index: System request message index. 217 */ 218 static void 219 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply, 220 u32 index) 221 { 222 /* 223 * 256 is offset within sys register. 224 * 256 offset MPI frame starts. Max MPI frame supported is 32. 225 * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts 226 */ 227 u16 cmd_credit = ioc->facts.RequestCredit + 1; 228 void __iomem *reply_free_iomem = (void __iomem *)ioc->chip + 229 MPI_FRAME_START_OFFSET + 230 (cmd_credit * ioc->request_sz) + (index * sizeof(u32)); 231 232 writel(reply, reply_free_iomem); 233 } 234 235 /** 236 * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames 237 * to system/BAR0 region. 238 * 239 * @dst_iomem: Pointer to the destination location in BAR0 space. 240 * @src: Pointer to the Source data. 241 * @size: Size of data to be copied. 242 */ 243 static void 244 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size) 245 { 246 int i; 247 u32 *src_virt_mem = (u32 *)src; 248 249 for (i = 0; i < size/4; i++) 250 writel((u32)src_virt_mem[i], 251 (void __iomem *)dst_iomem + (i * 4)); 252 } 253 254 /** 255 * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region 256 * 257 * @dst_iomem: Pointer to the destination location in BAR0 space. 258 * @src: Pointer to the Source data. 259 * @size: Size of data to be copied. 260 */ 261 static void 262 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size) 263 { 264 int i; 265 u32 *src_virt_mem = (u32 *)(src); 266 267 for (i = 0; i < size/4; i++) 268 writel((u32)src_virt_mem[i], 269 (void __iomem *)dst_iomem + (i * 4)); 270 } 271 272 /** 273 * _base_get_chain - Calculates and Returns virtual chain address 274 * for the provided smid in BAR0 space. 275 * 276 * @ioc: per adapter object 277 * @smid: system request message index 278 * @sge_chain_count: Scatter gather chain count. 279 * 280 * Return: the chain address. 281 */ 282 static inline void __iomem* 283 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid, 284 u8 sge_chain_count) 285 { 286 void __iomem *base_chain, *chain_virt; 287 u16 cmd_credit = ioc->facts.RequestCredit + 1; 288 289 base_chain = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET + 290 (cmd_credit * ioc->request_sz) + 291 REPLY_FREE_POOL_SIZE; 292 chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth * 293 ioc->request_sz) + (sge_chain_count * ioc->request_sz); 294 return chain_virt; 295 } 296 297 /** 298 * _base_get_chain_phys - Calculates and Returns physical address 299 * in BAR0 for scatter gather chains, for 300 * the provided smid. 301 * 302 * @ioc: per adapter object 303 * @smid: system request message index 304 * @sge_chain_count: Scatter gather chain count. 305 * 306 * Return: Physical chain address. 307 */ 308 static inline phys_addr_t 309 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid, 310 u8 sge_chain_count) 311 { 312 phys_addr_t base_chain_phys, chain_phys; 313 u16 cmd_credit = ioc->facts.RequestCredit + 1; 314 315 base_chain_phys = ioc->chip_phys + MPI_FRAME_START_OFFSET + 316 (cmd_credit * ioc->request_sz) + 317 REPLY_FREE_POOL_SIZE; 318 chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth * 319 ioc->request_sz) + (sge_chain_count * ioc->request_sz); 320 return chain_phys; 321 } 322 323 /** 324 * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host 325 * buffer address for the provided smid. 326 * (Each smid can have 64K starts from 17024) 327 * 328 * @ioc: per adapter object 329 * @smid: system request message index 330 * 331 * Return: Pointer to buffer location in BAR0. 332 */ 333 334 static void __iomem * 335 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid) 336 { 337 u16 cmd_credit = ioc->facts.RequestCredit + 1; 338 // Added extra 1 to reach end of chain. 339 void __iomem *chain_end = _base_get_chain(ioc, 340 cmd_credit + 1, 341 ioc->facts.MaxChainDepth); 342 return chain_end + (smid * 64 * 1024); 343 } 344 345 /** 346 * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped 347 * Host buffer Physical address for the provided smid. 348 * (Each smid can have 64K starts from 17024) 349 * 350 * @ioc: per adapter object 351 * @smid: system request message index 352 * 353 * Return: Pointer to buffer location in BAR0. 354 */ 355 static phys_addr_t 356 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid) 357 { 358 u16 cmd_credit = ioc->facts.RequestCredit + 1; 359 phys_addr_t chain_end_phys = _base_get_chain_phys(ioc, 360 cmd_credit + 1, 361 ioc->facts.MaxChainDepth); 362 return chain_end_phys + (smid * 64 * 1024); 363 } 364 365 /** 366 * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain 367 * lookup list and Provides chain_buffer 368 * address for the matching dma address. 369 * (Each smid can have 64K starts from 17024) 370 * 371 * @ioc: per adapter object 372 * @chain_buffer_dma: Chain buffer dma address. 373 * 374 * Return: Pointer to chain buffer. Or Null on Failure. 375 */ 376 static void * 377 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc, 378 dma_addr_t chain_buffer_dma) 379 { 380 u16 index, j; 381 struct chain_tracker *ct; 382 383 for (index = 0; index < ioc->scsiio_depth; index++) { 384 for (j = 0; j < ioc->chains_needed_per_io; j++) { 385 ct = &ioc->chain_lookup[index].chains_per_smid[j]; 386 if (ct && ct->chain_buffer_dma == chain_buffer_dma) 387 return ct->chain_buffer; 388 } 389 } 390 ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n"); 391 return NULL; 392 } 393 394 /** 395 * _clone_sg_entries - MPI EP's scsiio and config requests 396 * are handled here. Base function for 397 * double buffering, before submitting 398 * the requests. 399 * 400 * @ioc: per adapter object. 401 * @mpi_request: mf request pointer. 402 * @smid: system request message index. 403 */ 404 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc, 405 void *mpi_request, u16 smid) 406 { 407 Mpi2SGESimple32_t *sgel, *sgel_next; 408 u32 sgl_flags, sge_chain_count = 0; 409 bool is_write = 0; 410 u16 i = 0; 411 void __iomem *buffer_iomem; 412 phys_addr_t buffer_iomem_phys; 413 void __iomem *buff_ptr; 414 phys_addr_t buff_ptr_phys; 415 void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO]; 416 void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO]; 417 phys_addr_t dst_addr_phys; 418 MPI2RequestHeader_t *request_hdr; 419 struct scsi_cmnd *scmd; 420 struct scatterlist *sg_scmd = NULL; 421 int is_scsiio_req = 0; 422 423 request_hdr = (MPI2RequestHeader_t *) mpi_request; 424 425 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) { 426 Mpi25SCSIIORequest_t *scsiio_request = 427 (Mpi25SCSIIORequest_t *)mpi_request; 428 sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL; 429 is_scsiio_req = 1; 430 } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) { 431 Mpi2ConfigRequest_t *config_req = 432 (Mpi2ConfigRequest_t *)mpi_request; 433 sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE; 434 } else 435 return; 436 437 /* From smid we can get scsi_cmd, once we have sg_scmd, 438 * we just need to get sg_virt and sg_next to get virual 439 * address associated with sgel->Address. 440 */ 441 442 if (is_scsiio_req) { 443 /* Get scsi_cmd using smid */ 444 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid); 445 if (scmd == NULL) { 446 ioc_err(ioc, "scmd is NULL\n"); 447 return; 448 } 449 450 /* Get sg_scmd from scmd provided */ 451 sg_scmd = scsi_sglist(scmd); 452 } 453 454 /* 455 * 0 - 255 System register 456 * 256 - 4352 MPI Frame. (This is based on maxCredit 32) 457 * 4352 - 4864 Reply_free pool (512 byte is reserved 458 * considering maxCredit 32. Reply need extra 459 * room, for mCPU case kept four times of 460 * maxCredit). 461 * 4864 - 17152 SGE chain element. (32cmd * 3 chain of 462 * 128 byte size = 12288) 463 * 17152 - x Host buffer mapped with smid. 464 * (Each smid can have 64K Max IO.) 465 * BAR0+Last 1K MSIX Addr and Data 466 * Total size in use 2113664 bytes of 4MB BAR0 467 */ 468 469 buffer_iomem = _base_get_buffer_bar0(ioc, smid); 470 buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid); 471 472 buff_ptr = buffer_iomem; 473 buff_ptr_phys = buffer_iomem_phys; 474 WARN_ON(buff_ptr_phys > U32_MAX); 475 476 if (le32_to_cpu(sgel->FlagsLength) & 477 (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT)) 478 is_write = 1; 479 480 for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) { 481 482 sgl_flags = 483 (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT); 484 485 switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) { 486 case MPI2_SGE_FLAGS_CHAIN_ELEMENT: 487 /* 488 * Helper function which on passing 489 * chain_buffer_dma returns chain_buffer. Get 490 * the virtual address for sgel->Address 491 */ 492 sgel_next = 493 _base_get_chain_buffer_dma_to_chain_buffer(ioc, 494 le32_to_cpu(sgel->Address)); 495 if (sgel_next == NULL) 496 return; 497 /* 498 * This is coping 128 byte chain 499 * frame (not a host buffer) 500 */ 501 dst_chain_addr[sge_chain_count] = 502 _base_get_chain(ioc, 503 smid, sge_chain_count); 504 src_chain_addr[sge_chain_count] = 505 (void *) sgel_next; 506 dst_addr_phys = _base_get_chain_phys(ioc, 507 smid, sge_chain_count); 508 WARN_ON(dst_addr_phys > U32_MAX); 509 sgel->Address = 510 cpu_to_le32(lower_32_bits(dst_addr_phys)); 511 sgel = sgel_next; 512 sge_chain_count++; 513 break; 514 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT: 515 if (is_write) { 516 if (is_scsiio_req) { 517 _base_clone_to_sys_mem(buff_ptr, 518 sg_virt(sg_scmd), 519 (le32_to_cpu(sgel->FlagsLength) & 520 0x00ffffff)); 521 /* 522 * FIXME: this relies on a a zero 523 * PCI mem_offset. 524 */ 525 sgel->Address = 526 cpu_to_le32((u32)buff_ptr_phys); 527 } else { 528 _base_clone_to_sys_mem(buff_ptr, 529 ioc->config_vaddr, 530 (le32_to_cpu(sgel->FlagsLength) & 531 0x00ffffff)); 532 sgel->Address = 533 cpu_to_le32((u32)buff_ptr_phys); 534 } 535 } 536 buff_ptr += (le32_to_cpu(sgel->FlagsLength) & 537 0x00ffffff); 538 buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) & 539 0x00ffffff); 540 if ((le32_to_cpu(sgel->FlagsLength) & 541 (MPI2_SGE_FLAGS_END_OF_BUFFER 542 << MPI2_SGE_FLAGS_SHIFT))) 543 goto eob_clone_chain; 544 else { 545 /* 546 * Every single element in MPT will have 547 * associated sg_next. Better to sanity that 548 * sg_next is not NULL, but it will be a bug 549 * if it is null. 550 */ 551 if (is_scsiio_req) { 552 sg_scmd = sg_next(sg_scmd); 553 if (sg_scmd) 554 sgel++; 555 else 556 goto eob_clone_chain; 557 } 558 } 559 break; 560 } 561 } 562 563 eob_clone_chain: 564 for (i = 0; i < sge_chain_count; i++) { 565 if (is_scsiio_req) 566 _base_clone_to_sys_mem(dst_chain_addr[i], 567 src_chain_addr[i], ioc->request_sz); 568 } 569 } 570 571 /** 572 * mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc 573 * @arg: input argument, used to derive ioc 574 * 575 * Return: 576 * 0 if controller is removed from pci subsystem. 577 * -1 for other case. 578 */ 579 static int mpt3sas_remove_dead_ioc_func(void *arg) 580 { 581 struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg; 582 struct pci_dev *pdev; 583 584 if (!ioc) 585 return -1; 586 587 pdev = ioc->pdev; 588 if (!pdev) 589 return -1; 590 pci_stop_and_remove_bus_device_locked(pdev); 591 return 0; 592 } 593 594 /** 595 * _base_fault_reset_work - workq handling ioc fault conditions 596 * @work: input argument, used to derive ioc 597 * 598 * Context: sleep. 599 */ 600 static void 601 _base_fault_reset_work(struct work_struct *work) 602 { 603 struct MPT3SAS_ADAPTER *ioc = 604 container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work); 605 unsigned long flags; 606 u32 doorbell; 607 int rc; 608 struct task_struct *p; 609 610 611 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 612 if (ioc->shost_recovery || ioc->pci_error_recovery) 613 goto rearm_timer; 614 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 615 616 doorbell = mpt3sas_base_get_iocstate(ioc, 0); 617 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) { 618 ioc_err(ioc, "SAS host is non-operational !!!!\n"); 619 620 /* It may be possible that EEH recovery can resolve some of 621 * pci bus failure issues rather removing the dead ioc function 622 * by considering controller is in a non-operational state. So 623 * here priority is given to the EEH recovery. If it doesn't 624 * not resolve this issue, mpt3sas driver will consider this 625 * controller to non-operational state and remove the dead ioc 626 * function. 627 */ 628 if (ioc->non_operational_loop++ < 5) { 629 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, 630 flags); 631 goto rearm_timer; 632 } 633 634 /* 635 * Call _scsih_flush_pending_cmds callback so that we flush all 636 * pending commands back to OS. This call is required to aovid 637 * deadlock at block layer. Dead IOC will fail to do diag reset, 638 * and this call is safe since dead ioc will never return any 639 * command back from HW. 640 */ 641 ioc->schedule_dead_ioc_flush_running_cmds(ioc); 642 /* 643 * Set remove_host flag early since kernel thread will 644 * take some time to execute. 645 */ 646 ioc->remove_host = 1; 647 /*Remove the Dead Host */ 648 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc, 649 "%s_dead_ioc_%d", ioc->driver_name, ioc->id); 650 if (IS_ERR(p)) 651 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n", 652 __func__); 653 else 654 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n", 655 __func__); 656 return; /* don't rearm timer */ 657 } 658 659 ioc->non_operational_loop = 0; 660 661 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) { 662 rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 663 ioc_warn(ioc, "%s: hard reset: %s\n", 664 __func__, rc == 0 ? "success" : "failed"); 665 doorbell = mpt3sas_base_get_iocstate(ioc, 0); 666 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) 667 mpt3sas_base_fault_info(ioc, doorbell & 668 MPI2_DOORBELL_DATA_MASK); 669 if (rc && (doorbell & MPI2_IOC_STATE_MASK) != 670 MPI2_IOC_STATE_OPERATIONAL) 671 return; /* don't rearm timer */ 672 } 673 674 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 675 rearm_timer: 676 if (ioc->fault_reset_work_q) 677 queue_delayed_work(ioc->fault_reset_work_q, 678 &ioc->fault_reset_work, 679 msecs_to_jiffies(FAULT_POLLING_INTERVAL)); 680 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 681 } 682 683 /** 684 * mpt3sas_base_start_watchdog - start the fault_reset_work_q 685 * @ioc: per adapter object 686 * 687 * Context: sleep. 688 */ 689 void 690 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc) 691 { 692 unsigned long flags; 693 694 if (ioc->fault_reset_work_q) 695 return; 696 697 /* initialize fault polling */ 698 699 INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work); 700 snprintf(ioc->fault_reset_work_q_name, 701 sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status", 702 ioc->driver_name, ioc->id); 703 ioc->fault_reset_work_q = 704 create_singlethread_workqueue(ioc->fault_reset_work_q_name); 705 if (!ioc->fault_reset_work_q) { 706 ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__); 707 return; 708 } 709 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 710 if (ioc->fault_reset_work_q) 711 queue_delayed_work(ioc->fault_reset_work_q, 712 &ioc->fault_reset_work, 713 msecs_to_jiffies(FAULT_POLLING_INTERVAL)); 714 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 715 } 716 717 /** 718 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q 719 * @ioc: per adapter object 720 * 721 * Context: sleep. 722 */ 723 void 724 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc) 725 { 726 unsigned long flags; 727 struct workqueue_struct *wq; 728 729 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 730 wq = ioc->fault_reset_work_q; 731 ioc->fault_reset_work_q = NULL; 732 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 733 if (wq) { 734 if (!cancel_delayed_work_sync(&ioc->fault_reset_work)) 735 flush_workqueue(wq); 736 destroy_workqueue(wq); 737 } 738 } 739 740 /** 741 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code 742 * @ioc: per adapter object 743 * @fault_code: fault code 744 */ 745 void 746 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code) 747 { 748 ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code); 749 } 750 751 /** 752 * mpt3sas_halt_firmware - halt's mpt controller firmware 753 * @ioc: per adapter object 754 * 755 * For debugging timeout related issues. Writing 0xCOFFEE00 756 * to the doorbell register will halt controller firmware. With 757 * the purpose to stop both driver and firmware, the enduser can 758 * obtain a ring buffer from controller UART. 759 */ 760 void 761 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc) 762 { 763 u32 doorbell; 764 765 if (!ioc->fwfault_debug) 766 return; 767 768 dump_stack(); 769 770 doorbell = ioc->base_readl(&ioc->chip->Doorbell); 771 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) 772 mpt3sas_base_fault_info(ioc , doorbell); 773 else { 774 writel(0xC0FFEE00, &ioc->chip->Doorbell); 775 ioc_err(ioc, "Firmware is halted due to command timeout\n"); 776 } 777 778 if (ioc->fwfault_debug == 2) 779 for (;;) 780 ; 781 else 782 panic("panic in %s\n", __func__); 783 } 784 785 /** 786 * _base_sas_ioc_info - verbose translation of the ioc status 787 * @ioc: per adapter object 788 * @mpi_reply: reply mf payload returned from firmware 789 * @request_hdr: request mf 790 */ 791 static void 792 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply, 793 MPI2RequestHeader_t *request_hdr) 794 { 795 u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & 796 MPI2_IOCSTATUS_MASK; 797 char *desc = NULL; 798 u16 frame_sz; 799 char *func_str = NULL; 800 801 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */ 802 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST || 803 request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH || 804 request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION) 805 return; 806 807 if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE) 808 return; 809 810 switch (ioc_status) { 811 812 /**************************************************************************** 813 * Common IOCStatus values for all replies 814 ****************************************************************************/ 815 816 case MPI2_IOCSTATUS_INVALID_FUNCTION: 817 desc = "invalid function"; 818 break; 819 case MPI2_IOCSTATUS_BUSY: 820 desc = "busy"; 821 break; 822 case MPI2_IOCSTATUS_INVALID_SGL: 823 desc = "invalid sgl"; 824 break; 825 case MPI2_IOCSTATUS_INTERNAL_ERROR: 826 desc = "internal error"; 827 break; 828 case MPI2_IOCSTATUS_INVALID_VPID: 829 desc = "invalid vpid"; 830 break; 831 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES: 832 desc = "insufficient resources"; 833 break; 834 case MPI2_IOCSTATUS_INSUFFICIENT_POWER: 835 desc = "insufficient power"; 836 break; 837 case MPI2_IOCSTATUS_INVALID_FIELD: 838 desc = "invalid field"; 839 break; 840 case MPI2_IOCSTATUS_INVALID_STATE: 841 desc = "invalid state"; 842 break; 843 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED: 844 desc = "op state not supported"; 845 break; 846 847 /**************************************************************************** 848 * Config IOCStatus values 849 ****************************************************************************/ 850 851 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION: 852 desc = "config invalid action"; 853 break; 854 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE: 855 desc = "config invalid type"; 856 break; 857 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE: 858 desc = "config invalid page"; 859 break; 860 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA: 861 desc = "config invalid data"; 862 break; 863 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS: 864 desc = "config no defaults"; 865 break; 866 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT: 867 desc = "config cant commit"; 868 break; 869 870 /**************************************************************************** 871 * SCSI IO Reply 872 ****************************************************************************/ 873 874 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR: 875 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE: 876 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE: 877 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN: 878 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN: 879 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR: 880 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR: 881 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED: 882 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH: 883 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED: 884 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED: 885 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED: 886 break; 887 888 /**************************************************************************** 889 * For use by SCSI Initiator and SCSI Target end-to-end data protection 890 ****************************************************************************/ 891 892 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR: 893 desc = "eedp guard error"; 894 break; 895 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR: 896 desc = "eedp ref tag error"; 897 break; 898 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR: 899 desc = "eedp app tag error"; 900 break; 901 902 /**************************************************************************** 903 * SCSI Target values 904 ****************************************************************************/ 905 906 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX: 907 desc = "target invalid io index"; 908 break; 909 case MPI2_IOCSTATUS_TARGET_ABORTED: 910 desc = "target aborted"; 911 break; 912 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE: 913 desc = "target no conn retryable"; 914 break; 915 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION: 916 desc = "target no connection"; 917 break; 918 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH: 919 desc = "target xfer count mismatch"; 920 break; 921 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR: 922 desc = "target data offset error"; 923 break; 924 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA: 925 desc = "target too much write data"; 926 break; 927 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT: 928 desc = "target iu too short"; 929 break; 930 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT: 931 desc = "target ack nak timeout"; 932 break; 933 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED: 934 desc = "target nak received"; 935 break; 936 937 /**************************************************************************** 938 * Serial Attached SCSI values 939 ****************************************************************************/ 940 941 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED: 942 desc = "smp request failed"; 943 break; 944 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN: 945 desc = "smp data overrun"; 946 break; 947 948 /**************************************************************************** 949 * Diagnostic Buffer Post / Diagnostic Release values 950 ****************************************************************************/ 951 952 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED: 953 desc = "diagnostic released"; 954 break; 955 default: 956 break; 957 } 958 959 if (!desc) 960 return; 961 962 switch (request_hdr->Function) { 963 case MPI2_FUNCTION_CONFIG: 964 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size; 965 func_str = "config_page"; 966 break; 967 case MPI2_FUNCTION_SCSI_TASK_MGMT: 968 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t); 969 func_str = "task_mgmt"; 970 break; 971 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL: 972 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t); 973 func_str = "sas_iounit_ctl"; 974 break; 975 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR: 976 frame_sz = sizeof(Mpi2SepRequest_t); 977 func_str = "enclosure"; 978 break; 979 case MPI2_FUNCTION_IOC_INIT: 980 frame_sz = sizeof(Mpi2IOCInitRequest_t); 981 func_str = "ioc_init"; 982 break; 983 case MPI2_FUNCTION_PORT_ENABLE: 984 frame_sz = sizeof(Mpi2PortEnableRequest_t); 985 func_str = "port_enable"; 986 break; 987 case MPI2_FUNCTION_SMP_PASSTHROUGH: 988 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size; 989 func_str = "smp_passthru"; 990 break; 991 case MPI2_FUNCTION_NVME_ENCAPSULATED: 992 frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) + 993 ioc->sge_size; 994 func_str = "nvme_encapsulated"; 995 break; 996 default: 997 frame_sz = 32; 998 func_str = "unknown"; 999 break; 1000 } 1001 1002 ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n", 1003 desc, ioc_status, request_hdr, func_str); 1004 1005 _debug_dump_mf(request_hdr, frame_sz/4); 1006 } 1007 1008 /** 1009 * _base_display_event_data - verbose translation of firmware asyn events 1010 * @ioc: per adapter object 1011 * @mpi_reply: reply mf payload returned from firmware 1012 */ 1013 static void 1014 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc, 1015 Mpi2EventNotificationReply_t *mpi_reply) 1016 { 1017 char *desc = NULL; 1018 u16 event; 1019 1020 if (!(ioc->logging_level & MPT_DEBUG_EVENTS)) 1021 return; 1022 1023 event = le16_to_cpu(mpi_reply->Event); 1024 1025 switch (event) { 1026 case MPI2_EVENT_LOG_DATA: 1027 desc = "Log Data"; 1028 break; 1029 case MPI2_EVENT_STATE_CHANGE: 1030 desc = "Status Change"; 1031 break; 1032 case MPI2_EVENT_HARD_RESET_RECEIVED: 1033 desc = "Hard Reset Received"; 1034 break; 1035 case MPI2_EVENT_EVENT_CHANGE: 1036 desc = "Event Change"; 1037 break; 1038 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE: 1039 desc = "Device Status Change"; 1040 break; 1041 case MPI2_EVENT_IR_OPERATION_STATUS: 1042 if (!ioc->hide_ir_msg) 1043 desc = "IR Operation Status"; 1044 break; 1045 case MPI2_EVENT_SAS_DISCOVERY: 1046 { 1047 Mpi2EventDataSasDiscovery_t *event_data = 1048 (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData; 1049 ioc_info(ioc, "Discovery: (%s)", 1050 event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ? 1051 "start" : "stop"); 1052 if (event_data->DiscoveryStatus) 1053 pr_cont(" discovery_status(0x%08x)", 1054 le32_to_cpu(event_data->DiscoveryStatus)); 1055 pr_cont("\n"); 1056 return; 1057 } 1058 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE: 1059 desc = "SAS Broadcast Primitive"; 1060 break; 1061 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE: 1062 desc = "SAS Init Device Status Change"; 1063 break; 1064 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW: 1065 desc = "SAS Init Table Overflow"; 1066 break; 1067 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST: 1068 desc = "SAS Topology Change List"; 1069 break; 1070 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE: 1071 desc = "SAS Enclosure Device Status Change"; 1072 break; 1073 case MPI2_EVENT_IR_VOLUME: 1074 if (!ioc->hide_ir_msg) 1075 desc = "IR Volume"; 1076 break; 1077 case MPI2_EVENT_IR_PHYSICAL_DISK: 1078 if (!ioc->hide_ir_msg) 1079 desc = "IR Physical Disk"; 1080 break; 1081 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST: 1082 if (!ioc->hide_ir_msg) 1083 desc = "IR Configuration Change List"; 1084 break; 1085 case MPI2_EVENT_LOG_ENTRY_ADDED: 1086 if (!ioc->hide_ir_msg) 1087 desc = "Log Entry Added"; 1088 break; 1089 case MPI2_EVENT_TEMP_THRESHOLD: 1090 desc = "Temperature Threshold"; 1091 break; 1092 case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION: 1093 desc = "Cable Event"; 1094 break; 1095 case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR: 1096 desc = "SAS Device Discovery Error"; 1097 break; 1098 case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE: 1099 desc = "PCIE Device Status Change"; 1100 break; 1101 case MPI2_EVENT_PCIE_ENUMERATION: 1102 { 1103 Mpi26EventDataPCIeEnumeration_t *event_data = 1104 (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData; 1105 ioc_info(ioc, "PCIE Enumeration: (%s)", 1106 event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ? 1107 "start" : "stop"); 1108 if (event_data->EnumerationStatus) 1109 pr_cont("enumeration_status(0x%08x)", 1110 le32_to_cpu(event_data->EnumerationStatus)); 1111 pr_cont("\n"); 1112 return; 1113 } 1114 case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST: 1115 desc = "PCIE Topology Change List"; 1116 break; 1117 } 1118 1119 if (!desc) 1120 return; 1121 1122 ioc_info(ioc, "%s\n", desc); 1123 } 1124 1125 /** 1126 * _base_sas_log_info - verbose translation of firmware log info 1127 * @ioc: per adapter object 1128 * @log_info: log info 1129 */ 1130 static void 1131 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info) 1132 { 1133 union loginfo_type { 1134 u32 loginfo; 1135 struct { 1136 u32 subcode:16; 1137 u32 code:8; 1138 u32 originator:4; 1139 u32 bus_type:4; 1140 } dw; 1141 }; 1142 union loginfo_type sas_loginfo; 1143 char *originator_str = NULL; 1144 1145 sas_loginfo.loginfo = log_info; 1146 if (sas_loginfo.dw.bus_type != 3 /*SAS*/) 1147 return; 1148 1149 /* each nexus loss loginfo */ 1150 if (log_info == 0x31170000) 1151 return; 1152 1153 /* eat the loginfos associated with task aborts */ 1154 if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info == 1155 0x31140000 || log_info == 0x31130000)) 1156 return; 1157 1158 switch (sas_loginfo.dw.originator) { 1159 case 0: 1160 originator_str = "IOP"; 1161 break; 1162 case 1: 1163 originator_str = "PL"; 1164 break; 1165 case 2: 1166 if (!ioc->hide_ir_msg) 1167 originator_str = "IR"; 1168 else 1169 originator_str = "WarpDrive"; 1170 break; 1171 } 1172 1173 ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n", 1174 log_info, 1175 originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode); 1176 } 1177 1178 /** 1179 * _base_display_reply_info - 1180 * @ioc: per adapter object 1181 * @smid: system request message index 1182 * @msix_index: MSIX table index supplied by the OS 1183 * @reply: reply message frame(lower 32bit addr) 1184 */ 1185 static void 1186 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 1187 u32 reply) 1188 { 1189 MPI2DefaultReply_t *mpi_reply; 1190 u16 ioc_status; 1191 u32 loginfo = 0; 1192 1193 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1194 if (unlikely(!mpi_reply)) { 1195 ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n", 1196 __FILE__, __LINE__, __func__); 1197 return; 1198 } 1199 ioc_status = le16_to_cpu(mpi_reply->IOCStatus); 1200 1201 if ((ioc_status & MPI2_IOCSTATUS_MASK) && 1202 (ioc->logging_level & MPT_DEBUG_REPLY)) { 1203 _base_sas_ioc_info(ioc , mpi_reply, 1204 mpt3sas_base_get_msg_frame(ioc, smid)); 1205 } 1206 1207 if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) { 1208 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo); 1209 _base_sas_log_info(ioc, loginfo); 1210 } 1211 1212 if (ioc_status || loginfo) { 1213 ioc_status &= MPI2_IOCSTATUS_MASK; 1214 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo); 1215 } 1216 } 1217 1218 /** 1219 * mpt3sas_base_done - base internal command completion routine 1220 * @ioc: per adapter object 1221 * @smid: system request message index 1222 * @msix_index: MSIX table index supplied by the OS 1223 * @reply: reply message frame(lower 32bit addr) 1224 * 1225 * Return: 1226 * 1 meaning mf should be freed from _base_interrupt 1227 * 0 means the mf is freed from this function. 1228 */ 1229 u8 1230 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 1231 u32 reply) 1232 { 1233 MPI2DefaultReply_t *mpi_reply; 1234 1235 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1236 if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK) 1237 return mpt3sas_check_for_pending_internal_cmds(ioc, smid); 1238 1239 if (ioc->base_cmds.status == MPT3_CMD_NOT_USED) 1240 return 1; 1241 1242 ioc->base_cmds.status |= MPT3_CMD_COMPLETE; 1243 if (mpi_reply) { 1244 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID; 1245 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4); 1246 } 1247 ioc->base_cmds.status &= ~MPT3_CMD_PENDING; 1248 1249 complete(&ioc->base_cmds.done); 1250 return 1; 1251 } 1252 1253 /** 1254 * _base_async_event - main callback handler for firmware asyn events 1255 * @ioc: per adapter object 1256 * @msix_index: MSIX table index supplied by the OS 1257 * @reply: reply message frame(lower 32bit addr) 1258 * 1259 * Return: 1260 * 1 meaning mf should be freed from _base_interrupt 1261 * 0 means the mf is freed from this function. 1262 */ 1263 static u8 1264 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply) 1265 { 1266 Mpi2EventNotificationReply_t *mpi_reply; 1267 Mpi2EventAckRequest_t *ack_request; 1268 u16 smid; 1269 struct _event_ack_list *delayed_event_ack; 1270 1271 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1272 if (!mpi_reply) 1273 return 1; 1274 if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION) 1275 return 1; 1276 1277 _base_display_event_data(ioc, mpi_reply); 1278 1279 if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED)) 1280 goto out; 1281 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 1282 if (!smid) { 1283 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack), 1284 GFP_ATOMIC); 1285 if (!delayed_event_ack) 1286 goto out; 1287 INIT_LIST_HEAD(&delayed_event_ack->list); 1288 delayed_event_ack->Event = mpi_reply->Event; 1289 delayed_event_ack->EventContext = mpi_reply->EventContext; 1290 list_add_tail(&delayed_event_ack->list, 1291 &ioc->delayed_event_ack_list); 1292 dewtprintk(ioc, 1293 ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n", 1294 le16_to_cpu(mpi_reply->Event))); 1295 goto out; 1296 } 1297 1298 ack_request = mpt3sas_base_get_msg_frame(ioc, smid); 1299 memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t)); 1300 ack_request->Function = MPI2_FUNCTION_EVENT_ACK; 1301 ack_request->Event = mpi_reply->Event; 1302 ack_request->EventContext = mpi_reply->EventContext; 1303 ack_request->VF_ID = 0; /* TODO */ 1304 ack_request->VP_ID = 0; 1305 ioc->put_smid_default(ioc, smid); 1306 1307 out: 1308 1309 /* scsih callback handler */ 1310 mpt3sas_scsih_event_callback(ioc, msix_index, reply); 1311 1312 /* ctl callback handler */ 1313 mpt3sas_ctl_event_callback(ioc, msix_index, reply); 1314 1315 return 1; 1316 } 1317 1318 static struct scsiio_tracker * 1319 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid) 1320 { 1321 struct scsi_cmnd *cmd; 1322 1323 if (WARN_ON(!smid) || 1324 WARN_ON(smid >= ioc->hi_priority_smid)) 1325 return NULL; 1326 1327 cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid); 1328 if (cmd) 1329 return scsi_cmd_priv(cmd); 1330 1331 return NULL; 1332 } 1333 1334 /** 1335 * _base_get_cb_idx - obtain the callback index 1336 * @ioc: per adapter object 1337 * @smid: system request message index 1338 * 1339 * Return: callback index. 1340 */ 1341 static u8 1342 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid) 1343 { 1344 int i; 1345 u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1; 1346 u8 cb_idx = 0xFF; 1347 1348 if (smid < ioc->hi_priority_smid) { 1349 struct scsiio_tracker *st; 1350 1351 if (smid < ctl_smid) { 1352 st = _get_st_from_smid(ioc, smid); 1353 if (st) 1354 cb_idx = st->cb_idx; 1355 } else if (smid == ctl_smid) 1356 cb_idx = ioc->ctl_cb_idx; 1357 } else if (smid < ioc->internal_smid) { 1358 i = smid - ioc->hi_priority_smid; 1359 cb_idx = ioc->hpr_lookup[i].cb_idx; 1360 } else if (smid <= ioc->hba_queue_depth) { 1361 i = smid - ioc->internal_smid; 1362 cb_idx = ioc->internal_lookup[i].cb_idx; 1363 } 1364 return cb_idx; 1365 } 1366 1367 /** 1368 * _base_mask_interrupts - disable interrupts 1369 * @ioc: per adapter object 1370 * 1371 * Disabling ResetIRQ, Reply and Doorbell Interrupts 1372 */ 1373 static void 1374 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc) 1375 { 1376 u32 him_register; 1377 1378 ioc->mask_interrupts = 1; 1379 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask); 1380 him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK; 1381 writel(him_register, &ioc->chip->HostInterruptMask); 1382 ioc->base_readl(&ioc->chip->HostInterruptMask); 1383 } 1384 1385 /** 1386 * _base_unmask_interrupts - enable interrupts 1387 * @ioc: per adapter object 1388 * 1389 * Enabling only Reply Interrupts 1390 */ 1391 static void 1392 _base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc) 1393 { 1394 u32 him_register; 1395 1396 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask); 1397 him_register &= ~MPI2_HIM_RIM; 1398 writel(him_register, &ioc->chip->HostInterruptMask); 1399 ioc->mask_interrupts = 0; 1400 } 1401 1402 union reply_descriptor { 1403 u64 word; 1404 struct { 1405 u32 low; 1406 u32 high; 1407 } u; 1408 }; 1409 1410 static u32 base_mod64(u64 dividend, u32 divisor) 1411 { 1412 u32 remainder; 1413 1414 if (!divisor) 1415 pr_err("mpt3sas: DIVISOR is zero, in div fn\n"); 1416 remainder = do_div(dividend, divisor); 1417 return remainder; 1418 } 1419 1420 /** 1421 * _base_process_reply_queue - Process reply descriptors from reply 1422 * descriptor post queue. 1423 * @reply_q: per IRQ's reply queue object. 1424 * 1425 * Return: number of reply descriptors processed from reply 1426 * descriptor queue. 1427 */ 1428 static int 1429 _base_process_reply_queue(struct adapter_reply_queue *reply_q) 1430 { 1431 union reply_descriptor rd; 1432 u64 completed_cmds; 1433 u8 request_descript_type; 1434 u16 smid; 1435 u8 cb_idx; 1436 u32 reply; 1437 u8 msix_index = reply_q->msix_index; 1438 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc; 1439 Mpi2ReplyDescriptorsUnion_t *rpf; 1440 u8 rc; 1441 1442 completed_cmds = 0; 1443 if (!atomic_add_unless(&reply_q->busy, 1, 1)) 1444 return completed_cmds; 1445 1446 rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index]; 1447 request_descript_type = rpf->Default.ReplyFlags 1448 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 1449 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) { 1450 atomic_dec(&reply_q->busy); 1451 return completed_cmds; 1452 } 1453 1454 cb_idx = 0xFF; 1455 do { 1456 rd.word = le64_to_cpu(rpf->Words); 1457 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX) 1458 goto out; 1459 reply = 0; 1460 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1); 1461 if (request_descript_type == 1462 MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS || 1463 request_descript_type == 1464 MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS || 1465 request_descript_type == 1466 MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) { 1467 cb_idx = _base_get_cb_idx(ioc, smid); 1468 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) && 1469 (likely(mpt_callbacks[cb_idx] != NULL))) { 1470 rc = mpt_callbacks[cb_idx](ioc, smid, 1471 msix_index, 0); 1472 if (rc) 1473 mpt3sas_base_free_smid(ioc, smid); 1474 } 1475 } else if (request_descript_type == 1476 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) { 1477 reply = le32_to_cpu( 1478 rpf->AddressReply.ReplyFrameAddress); 1479 if (reply > ioc->reply_dma_max_address || 1480 reply < ioc->reply_dma_min_address) 1481 reply = 0; 1482 if (smid) { 1483 cb_idx = _base_get_cb_idx(ioc, smid); 1484 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) && 1485 (likely(mpt_callbacks[cb_idx] != NULL))) { 1486 rc = mpt_callbacks[cb_idx](ioc, smid, 1487 msix_index, reply); 1488 if (reply) 1489 _base_display_reply_info(ioc, 1490 smid, msix_index, reply); 1491 if (rc) 1492 mpt3sas_base_free_smid(ioc, 1493 smid); 1494 } 1495 } else { 1496 _base_async_event(ioc, msix_index, reply); 1497 } 1498 1499 /* reply free queue handling */ 1500 if (reply) { 1501 ioc->reply_free_host_index = 1502 (ioc->reply_free_host_index == 1503 (ioc->reply_free_queue_depth - 1)) ? 1504 0 : ioc->reply_free_host_index + 1; 1505 ioc->reply_free[ioc->reply_free_host_index] = 1506 cpu_to_le32(reply); 1507 if (ioc->is_mcpu_endpoint) 1508 _base_clone_reply_to_sys_mem(ioc, 1509 reply, 1510 ioc->reply_free_host_index); 1511 writel(ioc->reply_free_host_index, 1512 &ioc->chip->ReplyFreeHostIndex); 1513 } 1514 } 1515 1516 rpf->Words = cpu_to_le64(ULLONG_MAX); 1517 reply_q->reply_post_host_index = 1518 (reply_q->reply_post_host_index == 1519 (ioc->reply_post_queue_depth - 1)) ? 0 : 1520 reply_q->reply_post_host_index + 1; 1521 request_descript_type = 1522 reply_q->reply_post_free[reply_q->reply_post_host_index]. 1523 Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 1524 completed_cmds++; 1525 /* Update the reply post host index after continuously 1526 * processing the threshold number of Reply Descriptors. 1527 * So that FW can find enough entries to post the Reply 1528 * Descriptors in the reply descriptor post queue. 1529 */ 1530 if (!base_mod64(completed_cmds, ioc->thresh_hold)) { 1531 if (ioc->combined_reply_queue) { 1532 writel(reply_q->reply_post_host_index | 1533 ((msix_index & 7) << 1534 MPI2_RPHI_MSIX_INDEX_SHIFT), 1535 ioc->replyPostRegisterIndex[msix_index/8]); 1536 } else { 1537 writel(reply_q->reply_post_host_index | 1538 (msix_index << 1539 MPI2_RPHI_MSIX_INDEX_SHIFT), 1540 &ioc->chip->ReplyPostHostIndex); 1541 } 1542 if (!reply_q->irq_poll_scheduled) { 1543 reply_q->irq_poll_scheduled = true; 1544 irq_poll_sched(&reply_q->irqpoll); 1545 } 1546 atomic_dec(&reply_q->busy); 1547 return completed_cmds; 1548 } 1549 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) 1550 goto out; 1551 if (!reply_q->reply_post_host_index) 1552 rpf = reply_q->reply_post_free; 1553 else 1554 rpf++; 1555 } while (1); 1556 1557 out: 1558 1559 if (!completed_cmds) { 1560 atomic_dec(&reply_q->busy); 1561 return completed_cmds; 1562 } 1563 1564 if (ioc->is_warpdrive) { 1565 writel(reply_q->reply_post_host_index, 1566 ioc->reply_post_host_index[msix_index]); 1567 atomic_dec(&reply_q->busy); 1568 return completed_cmds; 1569 } 1570 1571 /* Update Reply Post Host Index. 1572 * For those HBA's which support combined reply queue feature 1573 * 1. Get the correct Supplemental Reply Post Host Index Register. 1574 * i.e. (msix_index / 8)th entry from Supplemental Reply Post Host 1575 * Index Register address bank i.e replyPostRegisterIndex[], 1576 * 2. Then update this register with new reply host index value 1577 * in ReplyPostIndex field and the MSIxIndex field with 1578 * msix_index value reduced to a value between 0 and 7, 1579 * using a modulo 8 operation. Since each Supplemental Reply Post 1580 * Host Index Register supports 8 MSI-X vectors. 1581 * 1582 * For other HBA's just update the Reply Post Host Index register with 1583 * new reply host index value in ReplyPostIndex Field and msix_index 1584 * value in MSIxIndex field. 1585 */ 1586 if (ioc->combined_reply_queue) 1587 writel(reply_q->reply_post_host_index | ((msix_index & 7) << 1588 MPI2_RPHI_MSIX_INDEX_SHIFT), 1589 ioc->replyPostRegisterIndex[msix_index/8]); 1590 else 1591 writel(reply_q->reply_post_host_index | (msix_index << 1592 MPI2_RPHI_MSIX_INDEX_SHIFT), 1593 &ioc->chip->ReplyPostHostIndex); 1594 atomic_dec(&reply_q->busy); 1595 return completed_cmds; 1596 } 1597 1598 /** 1599 * _base_interrupt - MPT adapter (IOC) specific interrupt handler. 1600 * @irq: irq number (not used) 1601 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure 1602 * 1603 * Return: IRQ_HANDLED if processed, else IRQ_NONE. 1604 */ 1605 static irqreturn_t 1606 _base_interrupt(int irq, void *bus_id) 1607 { 1608 struct adapter_reply_queue *reply_q = bus_id; 1609 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc; 1610 1611 if (ioc->mask_interrupts) 1612 return IRQ_NONE; 1613 if (reply_q->irq_poll_scheduled) 1614 return IRQ_HANDLED; 1615 return ((_base_process_reply_queue(reply_q) > 0) ? 1616 IRQ_HANDLED : IRQ_NONE); 1617 } 1618 1619 /** 1620 * _base_irqpoll - IRQ poll callback handler 1621 * @irqpoll - irq_poll object 1622 * @budget - irq poll weight 1623 * 1624 * returns number of reply descriptors processed 1625 */ 1626 static int 1627 _base_irqpoll(struct irq_poll *irqpoll, int budget) 1628 { 1629 struct adapter_reply_queue *reply_q; 1630 int num_entries = 0; 1631 1632 reply_q = container_of(irqpoll, struct adapter_reply_queue, 1633 irqpoll); 1634 if (reply_q->irq_line_enable) { 1635 disable_irq(reply_q->os_irq); 1636 reply_q->irq_line_enable = false; 1637 } 1638 num_entries = _base_process_reply_queue(reply_q); 1639 if (num_entries < budget) { 1640 irq_poll_complete(irqpoll); 1641 reply_q->irq_poll_scheduled = false; 1642 reply_q->irq_line_enable = true; 1643 enable_irq(reply_q->os_irq); 1644 } 1645 1646 return num_entries; 1647 } 1648 1649 /** 1650 * _base_init_irqpolls - initliaze IRQ polls 1651 * @ioc: per adapter object 1652 * 1653 * returns nothing 1654 */ 1655 static void 1656 _base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc) 1657 { 1658 struct adapter_reply_queue *reply_q, *next; 1659 1660 if (list_empty(&ioc->reply_queue_list)) 1661 return; 1662 1663 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) { 1664 irq_poll_init(&reply_q->irqpoll, 1665 ioc->hba_queue_depth/4, _base_irqpoll); 1666 reply_q->irq_poll_scheduled = false; 1667 reply_q->irq_line_enable = true; 1668 reply_q->os_irq = pci_irq_vector(ioc->pdev, 1669 reply_q->msix_index); 1670 } 1671 } 1672 1673 /** 1674 * _base_is_controller_msix_enabled - is controller support muli-reply queues 1675 * @ioc: per adapter object 1676 * 1677 * Return: Whether or not MSI/X is enabled. 1678 */ 1679 static inline int 1680 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc) 1681 { 1682 return (ioc->facts.IOCCapabilities & 1683 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable; 1684 } 1685 1686 /** 1687 * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts 1688 * @ioc: per adapter object 1689 * Context: non ISR conext 1690 * 1691 * Called when a Task Management request has completed. 1692 */ 1693 void 1694 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc) 1695 { 1696 struct adapter_reply_queue *reply_q; 1697 1698 /* If MSIX capability is turned off 1699 * then multi-queues are not enabled 1700 */ 1701 if (!_base_is_controller_msix_enabled(ioc)) 1702 return; 1703 1704 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 1705 if (ioc->shost_recovery || ioc->remove_host || 1706 ioc->pci_error_recovery) 1707 return; 1708 /* TMs are on msix_index == 0 */ 1709 if (reply_q->msix_index == 0) 1710 continue; 1711 if (reply_q->irq_poll_scheduled) { 1712 /* Calling irq_poll_disable will wait for any pending 1713 * callbacks to have completed. 1714 */ 1715 irq_poll_disable(&reply_q->irqpoll); 1716 irq_poll_enable(&reply_q->irqpoll); 1717 reply_q->irq_poll_scheduled = false; 1718 reply_q->irq_line_enable = true; 1719 enable_irq(reply_q->os_irq); 1720 continue; 1721 } 1722 synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index)); 1723 } 1724 } 1725 1726 /** 1727 * mpt3sas_base_release_callback_handler - clear interrupt callback handler 1728 * @cb_idx: callback index 1729 */ 1730 void 1731 mpt3sas_base_release_callback_handler(u8 cb_idx) 1732 { 1733 mpt_callbacks[cb_idx] = NULL; 1734 } 1735 1736 /** 1737 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler 1738 * @cb_func: callback function 1739 * 1740 * Return: Index of @cb_func. 1741 */ 1742 u8 1743 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func) 1744 { 1745 u8 cb_idx; 1746 1747 for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--) 1748 if (mpt_callbacks[cb_idx] == NULL) 1749 break; 1750 1751 mpt_callbacks[cb_idx] = cb_func; 1752 return cb_idx; 1753 } 1754 1755 /** 1756 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler 1757 */ 1758 void 1759 mpt3sas_base_initialize_callback_handler(void) 1760 { 1761 u8 cb_idx; 1762 1763 for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++) 1764 mpt3sas_base_release_callback_handler(cb_idx); 1765 } 1766 1767 1768 /** 1769 * _base_build_zero_len_sge - build zero length sg entry 1770 * @ioc: per adapter object 1771 * @paddr: virtual address for SGE 1772 * 1773 * Create a zero length scatter gather entry to insure the IOCs hardware has 1774 * something to use if the target device goes brain dead and tries 1775 * to send data even when none is asked for. 1776 */ 1777 static void 1778 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr) 1779 { 1780 u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT | 1781 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST | 1782 MPI2_SGE_FLAGS_SIMPLE_ELEMENT) << 1783 MPI2_SGE_FLAGS_SHIFT); 1784 ioc->base_add_sg_single(paddr, flags_length, -1); 1785 } 1786 1787 /** 1788 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr. 1789 * @paddr: virtual address for SGE 1790 * @flags_length: SGE flags and data transfer length 1791 * @dma_addr: Physical address 1792 */ 1793 static void 1794 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr) 1795 { 1796 Mpi2SGESimple32_t *sgel = paddr; 1797 1798 flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING | 1799 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT; 1800 sgel->FlagsLength = cpu_to_le32(flags_length); 1801 sgel->Address = cpu_to_le32(dma_addr); 1802 } 1803 1804 1805 /** 1806 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr. 1807 * @paddr: virtual address for SGE 1808 * @flags_length: SGE flags and data transfer length 1809 * @dma_addr: Physical address 1810 */ 1811 static void 1812 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr) 1813 { 1814 Mpi2SGESimple64_t *sgel = paddr; 1815 1816 flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING | 1817 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT; 1818 sgel->FlagsLength = cpu_to_le32(flags_length); 1819 sgel->Address = cpu_to_le64(dma_addr); 1820 } 1821 1822 /** 1823 * _base_get_chain_buffer_tracker - obtain chain tracker 1824 * @ioc: per adapter object 1825 * @scmd: SCSI commands of the IO request 1826 * 1827 * Return: chain tracker from chain_lookup table using key as 1828 * smid and smid's chain_offset. 1829 */ 1830 static struct chain_tracker * 1831 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc, 1832 struct scsi_cmnd *scmd) 1833 { 1834 struct chain_tracker *chain_req; 1835 struct scsiio_tracker *st = scsi_cmd_priv(scmd); 1836 u16 smid = st->smid; 1837 u8 chain_offset = 1838 atomic_read(&ioc->chain_lookup[smid - 1].chain_offset); 1839 1840 if (chain_offset == ioc->chains_needed_per_io) 1841 return NULL; 1842 1843 chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset]; 1844 atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset); 1845 return chain_req; 1846 } 1847 1848 1849 /** 1850 * _base_build_sg - build generic sg 1851 * @ioc: per adapter object 1852 * @psge: virtual address for SGE 1853 * @data_out_dma: physical address for WRITES 1854 * @data_out_sz: data xfer size for WRITES 1855 * @data_in_dma: physical address for READS 1856 * @data_in_sz: data xfer size for READS 1857 */ 1858 static void 1859 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge, 1860 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 1861 size_t data_in_sz) 1862 { 1863 u32 sgl_flags; 1864 1865 if (!data_out_sz && !data_in_sz) { 1866 _base_build_zero_len_sge(ioc, psge); 1867 return; 1868 } 1869 1870 if (data_out_sz && data_in_sz) { 1871 /* WRITE sgel first */ 1872 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 1873 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC); 1874 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 1875 ioc->base_add_sg_single(psge, sgl_flags | 1876 data_out_sz, data_out_dma); 1877 1878 /* incr sgel */ 1879 psge += ioc->sge_size; 1880 1881 /* READ sgel last */ 1882 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 1883 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 1884 MPI2_SGE_FLAGS_END_OF_LIST); 1885 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 1886 ioc->base_add_sg_single(psge, sgl_flags | 1887 data_in_sz, data_in_dma); 1888 } else if (data_out_sz) /* WRITE */ { 1889 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 1890 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 1891 MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC); 1892 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 1893 ioc->base_add_sg_single(psge, sgl_flags | 1894 data_out_sz, data_out_dma); 1895 } else if (data_in_sz) /* READ */ { 1896 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 1897 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 1898 MPI2_SGE_FLAGS_END_OF_LIST); 1899 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 1900 ioc->base_add_sg_single(psge, sgl_flags | 1901 data_in_sz, data_in_dma); 1902 } 1903 } 1904 1905 /* IEEE format sgls */ 1906 1907 /** 1908 * _base_build_nvme_prp - This function is called for NVMe end devices to build 1909 * a native SGL (NVMe PRP). The native SGL is built starting in the first PRP 1910 * entry of the NVMe message (PRP1). If the data buffer is small enough to be 1911 * described entirely using PRP1, then PRP2 is not used. If needed, PRP2 is 1912 * used to describe a larger data buffer. If the data buffer is too large to 1913 * describe using the two PRP entriess inside the NVMe message, then PRP1 1914 * describes the first data memory segment, and PRP2 contains a pointer to a PRP 1915 * list located elsewhere in memory to describe the remaining data memory 1916 * segments. The PRP list will be contiguous. 1917 * 1918 * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP 1919 * consists of a list of PRP entries to describe a number of noncontigous 1920 * physical memory segments as a single memory buffer, just as a SGL does. Note 1921 * however, that this function is only used by the IOCTL call, so the memory 1922 * given will be guaranteed to be contiguous. There is no need to translate 1923 * non-contiguous SGL into a PRP in this case. All PRPs will describe 1924 * contiguous space that is one page size each. 1925 * 1926 * Each NVMe message contains two PRP entries. The first (PRP1) either contains 1927 * a PRP list pointer or a PRP element, depending upon the command. PRP2 1928 * contains the second PRP element if the memory being described fits within 2 1929 * PRP entries, or a PRP list pointer if the PRP spans more than two entries. 1930 * 1931 * A PRP list pointer contains the address of a PRP list, structured as a linear 1932 * array of PRP entries. Each PRP entry in this list describes a segment of 1933 * physical memory. 1934 * 1935 * Each 64-bit PRP entry comprises an address and an offset field. The address 1936 * always points at the beginning of a 4KB physical memory page, and the offset 1937 * describes where within that 4KB page the memory segment begins. Only the 1938 * first element in a PRP list may contain a non-zero offest, implying that all 1939 * memory segments following the first begin at the start of a 4KB page. 1940 * 1941 * Each PRP element normally describes 4KB of physical memory, with exceptions 1942 * for the first and last elements in the list. If the memory being described 1943 * by the list begins at a non-zero offset within the first 4KB page, then the 1944 * first PRP element will contain a non-zero offset indicating where the region 1945 * begins within the 4KB page. The last memory segment may end before the end 1946 * of the 4KB segment, depending upon the overall size of the memory being 1947 * described by the PRP list. 1948 * 1949 * Since PRP entries lack any indication of size, the overall data buffer length 1950 * is used to determine where the end of the data memory buffer is located, and 1951 * how many PRP entries are required to describe it. 1952 * 1953 * @ioc: per adapter object 1954 * @smid: system request message index for getting asscociated SGL 1955 * @nvme_encap_request: the NVMe request msg frame pointer 1956 * @data_out_dma: physical address for WRITES 1957 * @data_out_sz: data xfer size for WRITES 1958 * @data_in_dma: physical address for READS 1959 * @data_in_sz: data xfer size for READS 1960 */ 1961 static void 1962 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid, 1963 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request, 1964 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 1965 size_t data_in_sz) 1966 { 1967 int prp_size = NVME_PRP_SIZE; 1968 __le64 *prp_entry, *prp1_entry, *prp2_entry; 1969 __le64 *prp_page; 1970 dma_addr_t prp_entry_dma, prp_page_dma, dma_addr; 1971 u32 offset, entry_len; 1972 u32 page_mask_result, page_mask; 1973 size_t length; 1974 struct mpt3sas_nvme_cmd *nvme_cmd = 1975 (void *)nvme_encap_request->NVMe_Command; 1976 1977 /* 1978 * Not all commands require a data transfer. If no data, just return 1979 * without constructing any PRP. 1980 */ 1981 if (!data_in_sz && !data_out_sz) 1982 return; 1983 prp1_entry = &nvme_cmd->prp1; 1984 prp2_entry = &nvme_cmd->prp2; 1985 prp_entry = prp1_entry; 1986 /* 1987 * For the PRP entries, use the specially allocated buffer of 1988 * contiguous memory. 1989 */ 1990 prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid); 1991 prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid); 1992 1993 /* 1994 * Check if we are within 1 entry of a page boundary we don't 1995 * want our first entry to be a PRP List entry. 1996 */ 1997 page_mask = ioc->page_size - 1; 1998 page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask; 1999 if (!page_mask_result) { 2000 /* Bump up to next page boundary. */ 2001 prp_page = (__le64 *)((u8 *)prp_page + prp_size); 2002 prp_page_dma = prp_page_dma + prp_size; 2003 } 2004 2005 /* 2006 * Set PRP physical pointer, which initially points to the current PRP 2007 * DMA memory page. 2008 */ 2009 prp_entry_dma = prp_page_dma; 2010 2011 /* Get physical address and length of the data buffer. */ 2012 if (data_in_sz) { 2013 dma_addr = data_in_dma; 2014 length = data_in_sz; 2015 } else { 2016 dma_addr = data_out_dma; 2017 length = data_out_sz; 2018 } 2019 2020 /* Loop while the length is not zero. */ 2021 while (length) { 2022 /* 2023 * Check if we need to put a list pointer here if we are at 2024 * page boundary - prp_size (8 bytes). 2025 */ 2026 page_mask_result = (prp_entry_dma + prp_size) & page_mask; 2027 if (!page_mask_result) { 2028 /* 2029 * This is the last entry in a PRP List, so we need to 2030 * put a PRP list pointer here. What this does is: 2031 * - bump the current memory pointer to the next 2032 * address, which will be the next full page. 2033 * - set the PRP Entry to point to that page. This 2034 * is now the PRP List pointer. 2035 * - bump the PRP Entry pointer the start of the 2036 * next page. Since all of this PRP memory is 2037 * contiguous, no need to get a new page - it's 2038 * just the next address. 2039 */ 2040 prp_entry_dma++; 2041 *prp_entry = cpu_to_le64(prp_entry_dma); 2042 prp_entry++; 2043 } 2044 2045 /* Need to handle if entry will be part of a page. */ 2046 offset = dma_addr & page_mask; 2047 entry_len = ioc->page_size - offset; 2048 2049 if (prp_entry == prp1_entry) { 2050 /* 2051 * Must fill in the first PRP pointer (PRP1) before 2052 * moving on. 2053 */ 2054 *prp1_entry = cpu_to_le64(dma_addr); 2055 2056 /* 2057 * Now point to the second PRP entry within the 2058 * command (PRP2). 2059 */ 2060 prp_entry = prp2_entry; 2061 } else if (prp_entry == prp2_entry) { 2062 /* 2063 * Should the PRP2 entry be a PRP List pointer or just 2064 * a regular PRP pointer? If there is more than one 2065 * more page of data, must use a PRP List pointer. 2066 */ 2067 if (length > ioc->page_size) { 2068 /* 2069 * PRP2 will contain a PRP List pointer because 2070 * more PRP's are needed with this command. The 2071 * list will start at the beginning of the 2072 * contiguous buffer. 2073 */ 2074 *prp2_entry = cpu_to_le64(prp_entry_dma); 2075 2076 /* 2077 * The next PRP Entry will be the start of the 2078 * first PRP List. 2079 */ 2080 prp_entry = prp_page; 2081 } else { 2082 /* 2083 * After this, the PRP Entries are complete. 2084 * This command uses 2 PRP's and no PRP list. 2085 */ 2086 *prp2_entry = cpu_to_le64(dma_addr); 2087 } 2088 } else { 2089 /* 2090 * Put entry in list and bump the addresses. 2091 * 2092 * After PRP1 and PRP2 are filled in, this will fill in 2093 * all remaining PRP entries in a PRP List, one per 2094 * each time through the loop. 2095 */ 2096 *prp_entry = cpu_to_le64(dma_addr); 2097 prp_entry++; 2098 prp_entry_dma++; 2099 } 2100 2101 /* 2102 * Bump the phys address of the command's data buffer by the 2103 * entry_len. 2104 */ 2105 dma_addr += entry_len; 2106 2107 /* Decrement length accounting for last partial page. */ 2108 if (entry_len > length) 2109 length = 0; 2110 else 2111 length -= entry_len; 2112 } 2113 } 2114 2115 /** 2116 * base_make_prp_nvme - 2117 * Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only 2118 * 2119 * @ioc: per adapter object 2120 * @scmd: SCSI command from the mid-layer 2121 * @mpi_request: mpi request 2122 * @smid: msg Index 2123 * @sge_count: scatter gather element count. 2124 * 2125 * Return: true: PRPs are built 2126 * false: IEEE SGLs needs to be built 2127 */ 2128 static void 2129 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc, 2130 struct scsi_cmnd *scmd, 2131 Mpi25SCSIIORequest_t *mpi_request, 2132 u16 smid, int sge_count) 2133 { 2134 int sge_len, num_prp_in_chain = 0; 2135 Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl; 2136 __le64 *curr_buff; 2137 dma_addr_t msg_dma, sge_addr, offset; 2138 u32 page_mask, page_mask_result; 2139 struct scatterlist *sg_scmd; 2140 u32 first_prp_len; 2141 int data_len = scsi_bufflen(scmd); 2142 u32 nvme_pg_size; 2143 2144 nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE); 2145 /* 2146 * Nvme has a very convoluted prp format. One prp is required 2147 * for each page or partial page. Driver need to split up OS sg_list 2148 * entries if it is longer than one page or cross a page 2149 * boundary. Driver also have to insert a PRP list pointer entry as 2150 * the last entry in each physical page of the PRP list. 2151 * 2152 * NOTE: The first PRP "entry" is actually placed in the first 2153 * SGL entry in the main message as IEEE 64 format. The 2nd 2154 * entry in the main message is the chain element, and the rest 2155 * of the PRP entries are built in the contiguous pcie buffer. 2156 */ 2157 page_mask = nvme_pg_size - 1; 2158 2159 /* 2160 * Native SGL is needed. 2161 * Put a chain element in main message frame that points to the first 2162 * chain buffer. 2163 * 2164 * NOTE: The ChainOffset field must be 0 when using a chain pointer to 2165 * a native SGL. 2166 */ 2167 2168 /* Set main message chain element pointer */ 2169 main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL; 2170 /* 2171 * For NVMe the chain element needs to be the 2nd SG entry in the main 2172 * message. 2173 */ 2174 main_chain_element = (Mpi25IeeeSgeChain64_t *) 2175 ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64)); 2176 2177 /* 2178 * For the PRP entries, use the specially allocated buffer of 2179 * contiguous memory. Normal chain buffers can't be used 2180 * because each chain buffer would need to be the size of an OS 2181 * page (4k). 2182 */ 2183 curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid); 2184 msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid); 2185 2186 main_chain_element->Address = cpu_to_le64(msg_dma); 2187 main_chain_element->NextChainOffset = 0; 2188 main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 2189 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | 2190 MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP; 2191 2192 /* Build first prp, sge need not to be page aligned*/ 2193 ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL; 2194 sg_scmd = scsi_sglist(scmd); 2195 sge_addr = sg_dma_address(sg_scmd); 2196 sge_len = sg_dma_len(sg_scmd); 2197 2198 offset = sge_addr & page_mask; 2199 first_prp_len = nvme_pg_size - offset; 2200 2201 ptr_first_sgl->Address = cpu_to_le64(sge_addr); 2202 ptr_first_sgl->Length = cpu_to_le32(first_prp_len); 2203 2204 data_len -= first_prp_len; 2205 2206 if (sge_len > first_prp_len) { 2207 sge_addr += first_prp_len; 2208 sge_len -= first_prp_len; 2209 } else if (data_len && (sge_len == first_prp_len)) { 2210 sg_scmd = sg_next(sg_scmd); 2211 sge_addr = sg_dma_address(sg_scmd); 2212 sge_len = sg_dma_len(sg_scmd); 2213 } 2214 2215 for (;;) { 2216 offset = sge_addr & page_mask; 2217 2218 /* Put PRP pointer due to page boundary*/ 2219 page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask; 2220 if (unlikely(!page_mask_result)) { 2221 scmd_printk(KERN_NOTICE, 2222 scmd, "page boundary curr_buff: 0x%p\n", 2223 curr_buff); 2224 msg_dma += 8; 2225 *curr_buff = cpu_to_le64(msg_dma); 2226 curr_buff++; 2227 num_prp_in_chain++; 2228 } 2229 2230 *curr_buff = cpu_to_le64(sge_addr); 2231 curr_buff++; 2232 msg_dma += 8; 2233 num_prp_in_chain++; 2234 2235 sge_addr += nvme_pg_size; 2236 sge_len -= nvme_pg_size; 2237 data_len -= nvme_pg_size; 2238 2239 if (data_len <= 0) 2240 break; 2241 2242 if (sge_len > 0) 2243 continue; 2244 2245 sg_scmd = sg_next(sg_scmd); 2246 sge_addr = sg_dma_address(sg_scmd); 2247 sge_len = sg_dma_len(sg_scmd); 2248 } 2249 2250 main_chain_element->Length = 2251 cpu_to_le32(num_prp_in_chain * sizeof(u64)); 2252 return; 2253 } 2254 2255 static bool 2256 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc, 2257 struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count) 2258 { 2259 u32 data_length = 0; 2260 bool build_prp = true; 2261 2262 data_length = scsi_bufflen(scmd); 2263 2264 /* If Datalenth is <= 16K and number of SGE’s entries are <= 2 2265 * we built IEEE SGL 2266 */ 2267 if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2)) 2268 build_prp = false; 2269 2270 return build_prp; 2271 } 2272 2273 /** 2274 * _base_check_pcie_native_sgl - This function is called for PCIe end devices to 2275 * determine if the driver needs to build a native SGL. If so, that native 2276 * SGL is built in the special contiguous buffers allocated especially for 2277 * PCIe SGL creation. If the driver will not build a native SGL, return 2278 * TRUE and a normal IEEE SGL will be built. Currently this routine 2279 * supports NVMe. 2280 * @ioc: per adapter object 2281 * @mpi_request: mf request pointer 2282 * @smid: system request message index 2283 * @scmd: scsi command 2284 * @pcie_device: points to the PCIe device's info 2285 * 2286 * Return: 0 if native SGL was built, 1 if no SGL was built 2287 */ 2288 static int 2289 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc, 2290 Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd, 2291 struct _pcie_device *pcie_device) 2292 { 2293 int sges_left; 2294 2295 /* Get the SG list pointer and info. */ 2296 sges_left = scsi_dma_map(scmd); 2297 if (sges_left < 0) { 2298 sdev_printk(KERN_ERR, scmd->device, 2299 "scsi_dma_map failed: request for %d bytes!\n", 2300 scsi_bufflen(scmd)); 2301 return 1; 2302 } 2303 2304 /* Check if we need to build a native SG list. */ 2305 if (base_is_prp_possible(ioc, pcie_device, 2306 scmd, sges_left) == 0) { 2307 /* We built a native SG list, just return. */ 2308 goto out; 2309 } 2310 2311 /* 2312 * Build native NVMe PRP. 2313 */ 2314 base_make_prp_nvme(ioc, scmd, mpi_request, 2315 smid, sges_left); 2316 2317 return 0; 2318 out: 2319 scsi_dma_unmap(scmd); 2320 return 1; 2321 } 2322 2323 /** 2324 * _base_add_sg_single_ieee - add sg element for IEEE format 2325 * @paddr: virtual address for SGE 2326 * @flags: SGE flags 2327 * @chain_offset: number of 128 byte elements from start of segment 2328 * @length: data transfer length 2329 * @dma_addr: Physical address 2330 */ 2331 static void 2332 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length, 2333 dma_addr_t dma_addr) 2334 { 2335 Mpi25IeeeSgeChain64_t *sgel = paddr; 2336 2337 sgel->Flags = flags; 2338 sgel->NextChainOffset = chain_offset; 2339 sgel->Length = cpu_to_le32(length); 2340 sgel->Address = cpu_to_le64(dma_addr); 2341 } 2342 2343 /** 2344 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format 2345 * @ioc: per adapter object 2346 * @paddr: virtual address for SGE 2347 * 2348 * Create a zero length scatter gather entry to insure the IOCs hardware has 2349 * something to use if the target device goes brain dead and tries 2350 * to send data even when none is asked for. 2351 */ 2352 static void 2353 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr) 2354 { 2355 u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2356 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | 2357 MPI25_IEEE_SGE_FLAGS_END_OF_LIST); 2358 2359 _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1); 2360 } 2361 2362 /** 2363 * _base_build_sg_scmd - main sg creation routine 2364 * pcie_device is unused here! 2365 * @ioc: per adapter object 2366 * @scmd: scsi command 2367 * @smid: system request message index 2368 * @unused: unused pcie_device pointer 2369 * Context: none. 2370 * 2371 * The main routine that builds scatter gather table from a given 2372 * scsi request sent via the .queuecommand main handler. 2373 * 2374 * Return: 0 success, anything else error 2375 */ 2376 static int 2377 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc, 2378 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused) 2379 { 2380 Mpi2SCSIIORequest_t *mpi_request; 2381 dma_addr_t chain_dma; 2382 struct scatterlist *sg_scmd; 2383 void *sg_local, *chain; 2384 u32 chain_offset; 2385 u32 chain_length; 2386 u32 chain_flags; 2387 int sges_left; 2388 u32 sges_in_segment; 2389 u32 sgl_flags; 2390 u32 sgl_flags_last_element; 2391 u32 sgl_flags_end_buffer; 2392 struct chain_tracker *chain_req; 2393 2394 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 2395 2396 /* init scatter gather flags */ 2397 sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT; 2398 if (scmd->sc_data_direction == DMA_TO_DEVICE) 2399 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC; 2400 sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT) 2401 << MPI2_SGE_FLAGS_SHIFT; 2402 sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT | 2403 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST) 2404 << MPI2_SGE_FLAGS_SHIFT; 2405 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2406 2407 sg_scmd = scsi_sglist(scmd); 2408 sges_left = scsi_dma_map(scmd); 2409 if (sges_left < 0) { 2410 sdev_printk(KERN_ERR, scmd->device, 2411 "scsi_dma_map failed: request for %d bytes!\n", 2412 scsi_bufflen(scmd)); 2413 return -ENOMEM; 2414 } 2415 2416 sg_local = &mpi_request->SGL; 2417 sges_in_segment = ioc->max_sges_in_main_message; 2418 if (sges_left <= sges_in_segment) 2419 goto fill_in_last_segment; 2420 2421 mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) + 2422 (sges_in_segment * ioc->sge_size))/4; 2423 2424 /* fill in main message segment when there is a chain following */ 2425 while (sges_in_segment) { 2426 if (sges_in_segment == 1) 2427 ioc->base_add_sg_single(sg_local, 2428 sgl_flags_last_element | sg_dma_len(sg_scmd), 2429 sg_dma_address(sg_scmd)); 2430 else 2431 ioc->base_add_sg_single(sg_local, sgl_flags | 2432 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2433 sg_scmd = sg_next(sg_scmd); 2434 sg_local += ioc->sge_size; 2435 sges_left--; 2436 sges_in_segment--; 2437 } 2438 2439 /* initializing the chain flags and pointers */ 2440 chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT; 2441 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2442 if (!chain_req) 2443 return -1; 2444 chain = chain_req->chain_buffer; 2445 chain_dma = chain_req->chain_buffer_dma; 2446 do { 2447 sges_in_segment = (sges_left <= 2448 ioc->max_sges_in_chain_message) ? sges_left : 2449 ioc->max_sges_in_chain_message; 2450 chain_offset = (sges_left == sges_in_segment) ? 2451 0 : (sges_in_segment * ioc->sge_size)/4; 2452 chain_length = sges_in_segment * ioc->sge_size; 2453 if (chain_offset) { 2454 chain_offset = chain_offset << 2455 MPI2_SGE_CHAIN_OFFSET_SHIFT; 2456 chain_length += ioc->sge_size; 2457 } 2458 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset | 2459 chain_length, chain_dma); 2460 sg_local = chain; 2461 if (!chain_offset) 2462 goto fill_in_last_segment; 2463 2464 /* fill in chain segments */ 2465 while (sges_in_segment) { 2466 if (sges_in_segment == 1) 2467 ioc->base_add_sg_single(sg_local, 2468 sgl_flags_last_element | 2469 sg_dma_len(sg_scmd), 2470 sg_dma_address(sg_scmd)); 2471 else 2472 ioc->base_add_sg_single(sg_local, sgl_flags | 2473 sg_dma_len(sg_scmd), 2474 sg_dma_address(sg_scmd)); 2475 sg_scmd = sg_next(sg_scmd); 2476 sg_local += ioc->sge_size; 2477 sges_left--; 2478 sges_in_segment--; 2479 } 2480 2481 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2482 if (!chain_req) 2483 return -1; 2484 chain = chain_req->chain_buffer; 2485 chain_dma = chain_req->chain_buffer_dma; 2486 } while (1); 2487 2488 2489 fill_in_last_segment: 2490 2491 /* fill the last segment */ 2492 while (sges_left) { 2493 if (sges_left == 1) 2494 ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer | 2495 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2496 else 2497 ioc->base_add_sg_single(sg_local, sgl_flags | 2498 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2499 sg_scmd = sg_next(sg_scmd); 2500 sg_local += ioc->sge_size; 2501 sges_left--; 2502 } 2503 2504 return 0; 2505 } 2506 2507 /** 2508 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format 2509 * @ioc: per adapter object 2510 * @scmd: scsi command 2511 * @smid: system request message index 2512 * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be 2513 * constructed on need. 2514 * Context: none. 2515 * 2516 * The main routine that builds scatter gather table from a given 2517 * scsi request sent via the .queuecommand main handler. 2518 * 2519 * Return: 0 success, anything else error 2520 */ 2521 static int 2522 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc, 2523 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device) 2524 { 2525 Mpi25SCSIIORequest_t *mpi_request; 2526 dma_addr_t chain_dma; 2527 struct scatterlist *sg_scmd; 2528 void *sg_local, *chain; 2529 u32 chain_offset; 2530 u32 chain_length; 2531 int sges_left; 2532 u32 sges_in_segment; 2533 u8 simple_sgl_flags; 2534 u8 simple_sgl_flags_last; 2535 u8 chain_sgl_flags; 2536 struct chain_tracker *chain_req; 2537 2538 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 2539 2540 /* init scatter gather flags */ 2541 simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2542 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2543 simple_sgl_flags_last = simple_sgl_flags | 2544 MPI25_IEEE_SGE_FLAGS_END_OF_LIST; 2545 chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 2546 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2547 2548 /* Check if we need to build a native SG list. */ 2549 if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request, 2550 smid, scmd, pcie_device) == 0)) { 2551 /* We built a native SG list, just return. */ 2552 return 0; 2553 } 2554 2555 sg_scmd = scsi_sglist(scmd); 2556 sges_left = scsi_dma_map(scmd); 2557 if (sges_left < 0) { 2558 sdev_printk(KERN_ERR, scmd->device, 2559 "scsi_dma_map failed: request for %d bytes!\n", 2560 scsi_bufflen(scmd)); 2561 return -ENOMEM; 2562 } 2563 2564 sg_local = &mpi_request->SGL; 2565 sges_in_segment = (ioc->request_sz - 2566 offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee; 2567 if (sges_left <= sges_in_segment) 2568 goto fill_in_last_segment; 2569 2570 mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) + 2571 (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee); 2572 2573 /* fill in main message segment when there is a chain following */ 2574 while (sges_in_segment > 1) { 2575 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2576 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2577 sg_scmd = sg_next(sg_scmd); 2578 sg_local += ioc->sge_size_ieee; 2579 sges_left--; 2580 sges_in_segment--; 2581 } 2582 2583 /* initializing the pointers */ 2584 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2585 if (!chain_req) 2586 return -1; 2587 chain = chain_req->chain_buffer; 2588 chain_dma = chain_req->chain_buffer_dma; 2589 do { 2590 sges_in_segment = (sges_left <= 2591 ioc->max_sges_in_chain_message) ? sges_left : 2592 ioc->max_sges_in_chain_message; 2593 chain_offset = (sges_left == sges_in_segment) ? 2594 0 : sges_in_segment; 2595 chain_length = sges_in_segment * ioc->sge_size_ieee; 2596 if (chain_offset) 2597 chain_length += ioc->sge_size_ieee; 2598 _base_add_sg_single_ieee(sg_local, chain_sgl_flags, 2599 chain_offset, chain_length, chain_dma); 2600 2601 sg_local = chain; 2602 if (!chain_offset) 2603 goto fill_in_last_segment; 2604 2605 /* fill in chain segments */ 2606 while (sges_in_segment) { 2607 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2608 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2609 sg_scmd = sg_next(sg_scmd); 2610 sg_local += ioc->sge_size_ieee; 2611 sges_left--; 2612 sges_in_segment--; 2613 } 2614 2615 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2616 if (!chain_req) 2617 return -1; 2618 chain = chain_req->chain_buffer; 2619 chain_dma = chain_req->chain_buffer_dma; 2620 } while (1); 2621 2622 2623 fill_in_last_segment: 2624 2625 /* fill the last segment */ 2626 while (sges_left > 0) { 2627 if (sges_left == 1) 2628 _base_add_sg_single_ieee(sg_local, 2629 simple_sgl_flags_last, 0, sg_dma_len(sg_scmd), 2630 sg_dma_address(sg_scmd)); 2631 else 2632 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2633 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2634 sg_scmd = sg_next(sg_scmd); 2635 sg_local += ioc->sge_size_ieee; 2636 sges_left--; 2637 } 2638 2639 return 0; 2640 } 2641 2642 /** 2643 * _base_build_sg_ieee - build generic sg for IEEE format 2644 * @ioc: per adapter object 2645 * @psge: virtual address for SGE 2646 * @data_out_dma: physical address for WRITES 2647 * @data_out_sz: data xfer size for WRITES 2648 * @data_in_dma: physical address for READS 2649 * @data_in_sz: data xfer size for READS 2650 */ 2651 static void 2652 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge, 2653 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 2654 size_t data_in_sz) 2655 { 2656 u8 sgl_flags; 2657 2658 if (!data_out_sz && !data_in_sz) { 2659 _base_build_zero_len_sge_ieee(ioc, psge); 2660 return; 2661 } 2662 2663 if (data_out_sz && data_in_sz) { 2664 /* WRITE sgel first */ 2665 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2666 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2667 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz, 2668 data_out_dma); 2669 2670 /* incr sgel */ 2671 psge += ioc->sge_size_ieee; 2672 2673 /* READ sgel last */ 2674 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST; 2675 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz, 2676 data_in_dma); 2677 } else if (data_out_sz) /* WRITE */ { 2678 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2679 MPI25_IEEE_SGE_FLAGS_END_OF_LIST | 2680 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2681 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz, 2682 data_out_dma); 2683 } else if (data_in_sz) /* READ */ { 2684 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2685 MPI25_IEEE_SGE_FLAGS_END_OF_LIST | 2686 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2687 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz, 2688 data_in_dma); 2689 } 2690 } 2691 2692 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10)) 2693 2694 /** 2695 * _base_config_dma_addressing - set dma addressing 2696 * @ioc: per adapter object 2697 * @pdev: PCI device struct 2698 * 2699 * Return: 0 for success, non-zero for failure. 2700 */ 2701 static int 2702 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev) 2703 { 2704 u64 required_mask, coherent_mask; 2705 struct sysinfo s; 2706 2707 if (ioc->is_mcpu_endpoint) 2708 goto try_32bit; 2709 2710 required_mask = dma_get_required_mask(&pdev->dev); 2711 if (sizeof(dma_addr_t) == 4 || required_mask == 32) 2712 goto try_32bit; 2713 2714 if (ioc->dma_mask) 2715 coherent_mask = DMA_BIT_MASK(64); 2716 else 2717 coherent_mask = DMA_BIT_MASK(32); 2718 2719 if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) || 2720 dma_set_coherent_mask(&pdev->dev, coherent_mask)) 2721 goto try_32bit; 2722 2723 ioc->base_add_sg_single = &_base_add_sg_single_64; 2724 ioc->sge_size = sizeof(Mpi2SGESimple64_t); 2725 ioc->dma_mask = 64; 2726 goto out; 2727 2728 try_32bit: 2729 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32))) 2730 return -ENODEV; 2731 2732 ioc->base_add_sg_single = &_base_add_sg_single_32; 2733 ioc->sge_size = sizeof(Mpi2SGESimple32_t); 2734 ioc->dma_mask = 32; 2735 out: 2736 si_meminfo(&s); 2737 ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n", 2738 ioc->dma_mask, convert_to_kb(s.totalram)); 2739 2740 return 0; 2741 } 2742 2743 static int 2744 _base_change_consistent_dma_mask(struct MPT3SAS_ADAPTER *ioc, 2745 struct pci_dev *pdev) 2746 { 2747 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) { 2748 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) 2749 return -ENODEV; 2750 } 2751 return 0; 2752 } 2753 2754 /** 2755 * _base_check_enable_msix - checks MSIX capabable. 2756 * @ioc: per adapter object 2757 * 2758 * Check to see if card is capable of MSIX, and set number 2759 * of available msix vectors 2760 */ 2761 static int 2762 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc) 2763 { 2764 int base; 2765 u16 message_control; 2766 2767 /* Check whether controller SAS2008 B0 controller, 2768 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX 2769 */ 2770 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 && 2771 ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) { 2772 return -EINVAL; 2773 } 2774 2775 base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX); 2776 if (!base) { 2777 dfailprintk(ioc, ioc_info(ioc, "msix not supported\n")); 2778 return -EINVAL; 2779 } 2780 2781 /* get msix vector count */ 2782 /* NUMA_IO not supported for older controllers */ 2783 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 || 2784 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 || 2785 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 || 2786 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 || 2787 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 || 2788 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 || 2789 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2) 2790 ioc->msix_vector_count = 1; 2791 else { 2792 pci_read_config_word(ioc->pdev, base + 2, &message_control); 2793 ioc->msix_vector_count = (message_control & 0x3FF) + 1; 2794 } 2795 dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n", 2796 ioc->msix_vector_count)); 2797 return 0; 2798 } 2799 2800 /** 2801 * _base_free_irq - free irq 2802 * @ioc: per adapter object 2803 * 2804 * Freeing respective reply_queue from the list. 2805 */ 2806 static void 2807 _base_free_irq(struct MPT3SAS_ADAPTER *ioc) 2808 { 2809 struct adapter_reply_queue *reply_q, *next; 2810 2811 if (list_empty(&ioc->reply_queue_list)) 2812 return; 2813 2814 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) { 2815 list_del(&reply_q->list); 2816 if (ioc->smp_affinity_enable) 2817 irq_set_affinity_hint(pci_irq_vector(ioc->pdev, 2818 reply_q->msix_index), NULL); 2819 free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index), 2820 reply_q); 2821 kfree(reply_q); 2822 } 2823 } 2824 2825 /** 2826 * _base_request_irq - request irq 2827 * @ioc: per adapter object 2828 * @index: msix index into vector table 2829 * 2830 * Inserting respective reply_queue into the list. 2831 */ 2832 static int 2833 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index) 2834 { 2835 struct pci_dev *pdev = ioc->pdev; 2836 struct adapter_reply_queue *reply_q; 2837 int r; 2838 2839 reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL); 2840 if (!reply_q) { 2841 ioc_err(ioc, "unable to allocate memory %zu!\n", 2842 sizeof(struct adapter_reply_queue)); 2843 return -ENOMEM; 2844 } 2845 reply_q->ioc = ioc; 2846 reply_q->msix_index = index; 2847 2848 atomic_set(&reply_q->busy, 0); 2849 if (ioc->msix_enable) 2850 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d", 2851 ioc->driver_name, ioc->id, index); 2852 else 2853 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d", 2854 ioc->driver_name, ioc->id); 2855 r = request_irq(pci_irq_vector(pdev, index), _base_interrupt, 2856 IRQF_SHARED, reply_q->name, reply_q); 2857 if (r) { 2858 pr_err("%s: unable to allocate interrupt %d!\n", 2859 reply_q->name, pci_irq_vector(pdev, index)); 2860 kfree(reply_q); 2861 return -EBUSY; 2862 } 2863 2864 INIT_LIST_HEAD(&reply_q->list); 2865 list_add_tail(&reply_q->list, &ioc->reply_queue_list); 2866 return 0; 2867 } 2868 2869 /** 2870 * _base_assign_reply_queues - assigning msix index for each cpu 2871 * @ioc: per adapter object 2872 * 2873 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity 2874 * 2875 * It would nice if we could call irq_set_affinity, however it is not 2876 * an exported symbol 2877 */ 2878 static void 2879 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc) 2880 { 2881 unsigned int cpu, nr_cpus, nr_msix, index = 0; 2882 struct adapter_reply_queue *reply_q; 2883 int local_numa_node; 2884 2885 if (!_base_is_controller_msix_enabled(ioc)) 2886 return; 2887 2888 if (ioc->msix_load_balance) 2889 return; 2890 2891 memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz); 2892 2893 nr_cpus = num_online_cpus(); 2894 nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count, 2895 ioc->facts.MaxMSIxVectors); 2896 if (!nr_msix) 2897 return; 2898 2899 if (ioc->smp_affinity_enable) { 2900 2901 /* 2902 * set irq affinity to local numa node for those irqs 2903 * corresponding to high iops queues. 2904 */ 2905 if (ioc->high_iops_queues) { 2906 local_numa_node = dev_to_node(&ioc->pdev->dev); 2907 for (index = 0; index < ioc->high_iops_queues; 2908 index++) { 2909 irq_set_affinity_hint(pci_irq_vector(ioc->pdev, 2910 index), cpumask_of_node(local_numa_node)); 2911 } 2912 } 2913 2914 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 2915 const cpumask_t *mask; 2916 2917 if (reply_q->msix_index < ioc->high_iops_queues) 2918 continue; 2919 2920 mask = pci_irq_get_affinity(ioc->pdev, 2921 reply_q->msix_index); 2922 if (!mask) { 2923 ioc_warn(ioc, "no affinity for msi %x\n", 2924 reply_q->msix_index); 2925 goto fall_back; 2926 } 2927 2928 for_each_cpu_and(cpu, mask, cpu_online_mask) { 2929 if (cpu >= ioc->cpu_msix_table_sz) 2930 break; 2931 ioc->cpu_msix_table[cpu] = reply_q->msix_index; 2932 } 2933 } 2934 return; 2935 } 2936 2937 fall_back: 2938 cpu = cpumask_first(cpu_online_mask); 2939 nr_msix -= ioc->high_iops_queues; 2940 index = 0; 2941 2942 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 2943 unsigned int i, group = nr_cpus / nr_msix; 2944 2945 if (reply_q->msix_index < ioc->high_iops_queues) 2946 continue; 2947 2948 if (cpu >= nr_cpus) 2949 break; 2950 2951 if (index < nr_cpus % nr_msix) 2952 group++; 2953 2954 for (i = 0 ; i < group ; i++) { 2955 ioc->cpu_msix_table[cpu] = reply_q->msix_index; 2956 cpu = cpumask_next(cpu, cpu_online_mask); 2957 } 2958 index++; 2959 } 2960 } 2961 2962 /** 2963 * _base_check_and_enable_high_iops_queues - enable high iops mode 2964 * @ ioc - per adapter object 2965 * @ hba_msix_vector_count - msix vectors supported by HBA 2966 * 2967 * Enable high iops queues only if 2968 * - HBA is a SEA/AERO controller and 2969 * - MSI-Xs vector supported by the HBA is 128 and 2970 * - total CPU count in the system >=16 and 2971 * - loaded driver with default max_msix_vectors module parameter and 2972 * - system booted in non kdump mode 2973 * 2974 * returns nothing. 2975 */ 2976 static void 2977 _base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc, 2978 int hba_msix_vector_count) 2979 { 2980 u16 lnksta, speed; 2981 2982 if (perf_mode == MPT_PERF_MODE_IOPS || 2983 perf_mode == MPT_PERF_MODE_LATENCY) { 2984 ioc->high_iops_queues = 0; 2985 return; 2986 } 2987 2988 if (perf_mode == MPT_PERF_MODE_DEFAULT) { 2989 2990 pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta); 2991 speed = lnksta & PCI_EXP_LNKSTA_CLS; 2992 2993 if (speed < 0x4) { 2994 ioc->high_iops_queues = 0; 2995 return; 2996 } 2997 } 2998 2999 if (!reset_devices && ioc->is_aero_ioc && 3000 hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES && 3001 num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES && 3002 max_msix_vectors == -1) 3003 ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES; 3004 else 3005 ioc->high_iops_queues = 0; 3006 } 3007 3008 /** 3009 * _base_disable_msix - disables msix 3010 * @ioc: per adapter object 3011 * 3012 */ 3013 static void 3014 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc) 3015 { 3016 if (!ioc->msix_enable) 3017 return; 3018 pci_free_irq_vectors(ioc->pdev); 3019 ioc->msix_enable = 0; 3020 } 3021 3022 /** 3023 * _base_alloc_irq_vectors - allocate msix vectors 3024 * @ioc: per adapter object 3025 * 3026 */ 3027 static int 3028 _base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc) 3029 { 3030 int i, irq_flags = PCI_IRQ_MSIX; 3031 struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues }; 3032 struct irq_affinity *descp = &desc; 3033 3034 if (ioc->smp_affinity_enable) 3035 irq_flags |= PCI_IRQ_AFFINITY; 3036 else 3037 descp = NULL; 3038 3039 ioc_info(ioc, " %d %d\n", ioc->high_iops_queues, 3040 ioc->msix_vector_count); 3041 3042 i = pci_alloc_irq_vectors_affinity(ioc->pdev, 3043 ioc->high_iops_queues, 3044 ioc->msix_vector_count, irq_flags, descp); 3045 3046 return i; 3047 } 3048 3049 /** 3050 * _base_enable_msix - enables msix, failback to io_apic 3051 * @ioc: per adapter object 3052 * 3053 */ 3054 static int 3055 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc) 3056 { 3057 int r; 3058 int i, local_max_msix_vectors; 3059 u8 try_msix = 0; 3060 3061 ioc->msix_load_balance = false; 3062 3063 if (msix_disable == -1 || msix_disable == 0) 3064 try_msix = 1; 3065 3066 if (!try_msix) 3067 goto try_ioapic; 3068 3069 if (_base_check_enable_msix(ioc) != 0) 3070 goto try_ioapic; 3071 3072 ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count); 3073 pr_info("\t no of cores: %d, max_msix_vectors: %d\n", 3074 ioc->cpu_count, max_msix_vectors); 3075 if (ioc->is_aero_ioc) 3076 _base_check_and_enable_high_iops_queues(ioc, 3077 ioc->msix_vector_count); 3078 ioc->reply_queue_count = 3079 min_t(int, ioc->cpu_count + ioc->high_iops_queues, 3080 ioc->msix_vector_count); 3081 3082 if (!ioc->rdpq_array_enable && max_msix_vectors == -1) 3083 local_max_msix_vectors = (reset_devices) ? 1 : 8; 3084 else 3085 local_max_msix_vectors = max_msix_vectors; 3086 3087 if (local_max_msix_vectors > 0) 3088 ioc->reply_queue_count = min_t(int, local_max_msix_vectors, 3089 ioc->reply_queue_count); 3090 else if (local_max_msix_vectors == 0) 3091 goto try_ioapic; 3092 3093 /* 3094 * Enable msix_load_balance only if combined reply queue mode is 3095 * disabled on SAS3 & above generation HBA devices. 3096 */ 3097 if (!ioc->combined_reply_queue && 3098 ioc->hba_mpi_version_belonged != MPI2_VERSION) { 3099 ioc->msix_load_balance = true; 3100 } 3101 3102 /* 3103 * smp affinity setting is not need when msix load balance 3104 * is enabled. 3105 */ 3106 if (ioc->msix_load_balance) 3107 ioc->smp_affinity_enable = 0; 3108 3109 r = _base_alloc_irq_vectors(ioc); 3110 if (r < 0) { 3111 dfailprintk(ioc, 3112 ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", 3113 r)); 3114 goto try_ioapic; 3115 } 3116 3117 ioc->msix_enable = 1; 3118 ioc->reply_queue_count = r; 3119 for (i = 0; i < ioc->reply_queue_count; i++) { 3120 r = _base_request_irq(ioc, i); 3121 if (r) { 3122 _base_free_irq(ioc); 3123 _base_disable_msix(ioc); 3124 goto try_ioapic; 3125 } 3126 } 3127 3128 ioc_info(ioc, "High IOPs queues : %s\n", 3129 ioc->high_iops_queues ? "enabled" : "disabled"); 3130 3131 return 0; 3132 3133 /* failback to io_apic interrupt routing */ 3134 try_ioapic: 3135 ioc->high_iops_queues = 0; 3136 ioc_info(ioc, "High IOPs queues : disabled\n"); 3137 ioc->reply_queue_count = 1; 3138 r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY); 3139 if (r < 0) { 3140 dfailprintk(ioc, 3141 ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n", 3142 r)); 3143 } else 3144 r = _base_request_irq(ioc, 0); 3145 3146 return r; 3147 } 3148 3149 /** 3150 * mpt3sas_base_unmap_resources - free controller resources 3151 * @ioc: per adapter object 3152 */ 3153 static void 3154 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc) 3155 { 3156 struct pci_dev *pdev = ioc->pdev; 3157 3158 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 3159 3160 _base_free_irq(ioc); 3161 _base_disable_msix(ioc); 3162 3163 kfree(ioc->replyPostRegisterIndex); 3164 ioc->replyPostRegisterIndex = NULL; 3165 3166 3167 if (ioc->chip_phys) { 3168 iounmap(ioc->chip); 3169 ioc->chip_phys = 0; 3170 } 3171 3172 if (pci_is_enabled(pdev)) { 3173 pci_release_selected_regions(ioc->pdev, ioc->bars); 3174 pci_disable_pcie_error_reporting(pdev); 3175 pci_disable_device(pdev); 3176 } 3177 } 3178 3179 /** 3180 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap) 3181 * @ioc: per adapter object 3182 * 3183 * Return: 0 for success, non-zero for failure. 3184 */ 3185 int 3186 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc) 3187 { 3188 struct pci_dev *pdev = ioc->pdev; 3189 u32 memap_sz; 3190 u32 pio_sz; 3191 int i, r = 0; 3192 u64 pio_chip = 0; 3193 phys_addr_t chip_phys = 0; 3194 struct adapter_reply_queue *reply_q; 3195 3196 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 3197 3198 ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM); 3199 if (pci_enable_device_mem(pdev)) { 3200 ioc_warn(ioc, "pci_enable_device_mem: failed\n"); 3201 ioc->bars = 0; 3202 return -ENODEV; 3203 } 3204 3205 3206 if (pci_request_selected_regions(pdev, ioc->bars, 3207 ioc->driver_name)) { 3208 ioc_warn(ioc, "pci_request_selected_regions: failed\n"); 3209 ioc->bars = 0; 3210 r = -ENODEV; 3211 goto out_fail; 3212 } 3213 3214 /* AER (Advanced Error Reporting) hooks */ 3215 pci_enable_pcie_error_reporting(pdev); 3216 3217 pci_set_master(pdev); 3218 3219 3220 if (_base_config_dma_addressing(ioc, pdev) != 0) { 3221 ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev)); 3222 r = -ENODEV; 3223 goto out_fail; 3224 } 3225 3226 for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) && 3227 (!memap_sz || !pio_sz); i++) { 3228 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { 3229 if (pio_sz) 3230 continue; 3231 pio_chip = (u64)pci_resource_start(pdev, i); 3232 pio_sz = pci_resource_len(pdev, i); 3233 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) { 3234 if (memap_sz) 3235 continue; 3236 ioc->chip_phys = pci_resource_start(pdev, i); 3237 chip_phys = ioc->chip_phys; 3238 memap_sz = pci_resource_len(pdev, i); 3239 ioc->chip = ioremap(ioc->chip_phys, memap_sz); 3240 } 3241 } 3242 3243 if (ioc->chip == NULL) { 3244 ioc_err(ioc, "unable to map adapter memory! or resource not found\n"); 3245 r = -EINVAL; 3246 goto out_fail; 3247 } 3248 3249 _base_mask_interrupts(ioc); 3250 3251 r = _base_get_ioc_facts(ioc); 3252 if (r) 3253 goto out_fail; 3254 3255 if (!ioc->rdpq_array_enable_assigned) { 3256 ioc->rdpq_array_enable = ioc->rdpq_array_capable; 3257 ioc->rdpq_array_enable_assigned = 1; 3258 } 3259 3260 r = _base_enable_msix(ioc); 3261 if (r) 3262 goto out_fail; 3263 3264 if (!ioc->is_driver_loading) 3265 _base_init_irqpolls(ioc); 3266 /* Use the Combined reply queue feature only for SAS3 C0 & higher 3267 * revision HBAs and also only when reply queue count is greater than 8 3268 */ 3269 if (ioc->combined_reply_queue) { 3270 /* Determine the Supplemental Reply Post Host Index Registers 3271 * Addresse. Supplemental Reply Post Host Index Registers 3272 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and 3273 * each register is at offset bytes of 3274 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one. 3275 */ 3276 ioc->replyPostRegisterIndex = kcalloc( 3277 ioc->combined_reply_index_count, 3278 sizeof(resource_size_t *), GFP_KERNEL); 3279 if (!ioc->replyPostRegisterIndex) { 3280 dfailprintk(ioc, 3281 ioc_warn(ioc, "allocation for reply Post Register Index failed!!!\n")); 3282 r = -ENOMEM; 3283 goto out_fail; 3284 } 3285 3286 for (i = 0; i < ioc->combined_reply_index_count; i++) { 3287 ioc->replyPostRegisterIndex[i] = (resource_size_t *) 3288 ((u8 __force *)&ioc->chip->Doorbell + 3289 MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET + 3290 (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET)); 3291 } 3292 } 3293 3294 if (ioc->is_warpdrive) { 3295 ioc->reply_post_host_index[0] = (resource_size_t __iomem *) 3296 &ioc->chip->ReplyPostHostIndex; 3297 3298 for (i = 1; i < ioc->cpu_msix_table_sz; i++) 3299 ioc->reply_post_host_index[i] = 3300 (resource_size_t __iomem *) 3301 ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1) 3302 * 4))); 3303 } 3304 3305 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) 3306 pr_info("%s: %s enabled: IRQ %d\n", 3307 reply_q->name, 3308 ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC", 3309 pci_irq_vector(ioc->pdev, reply_q->msix_index)); 3310 3311 ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n", 3312 &chip_phys, ioc->chip, memap_sz); 3313 ioc_info(ioc, "ioport(0x%016llx), size(%d)\n", 3314 (unsigned long long)pio_chip, pio_sz); 3315 3316 /* Save PCI configuration state for recovery from PCI AER/EEH errors */ 3317 pci_save_state(pdev); 3318 return 0; 3319 3320 out_fail: 3321 mpt3sas_base_unmap_resources(ioc); 3322 return r; 3323 } 3324 3325 /** 3326 * mpt3sas_base_get_msg_frame - obtain request mf pointer 3327 * @ioc: per adapter object 3328 * @smid: system request message index(smid zero is invalid) 3329 * 3330 * Return: virt pointer to message frame. 3331 */ 3332 void * 3333 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3334 { 3335 return (void *)(ioc->request + (smid * ioc->request_sz)); 3336 } 3337 3338 /** 3339 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr 3340 * @ioc: per adapter object 3341 * @smid: system request message index 3342 * 3343 * Return: virt pointer to sense buffer. 3344 */ 3345 void * 3346 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3347 { 3348 return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE)); 3349 } 3350 3351 /** 3352 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr 3353 * @ioc: per adapter object 3354 * @smid: system request message index 3355 * 3356 * Return: phys pointer to the low 32bit address of the sense buffer. 3357 */ 3358 __le32 3359 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3360 { 3361 return cpu_to_le32(ioc->sense_dma + ((smid - 1) * 3362 SCSI_SENSE_BUFFERSIZE)); 3363 } 3364 3365 /** 3366 * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr 3367 * @ioc: per adapter object 3368 * @smid: system request message index 3369 * 3370 * Return: virt pointer to a PCIe SGL. 3371 */ 3372 void * 3373 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3374 { 3375 return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl); 3376 } 3377 3378 /** 3379 * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr 3380 * @ioc: per adapter object 3381 * @smid: system request message index 3382 * 3383 * Return: phys pointer to the address of the PCIe buffer. 3384 */ 3385 dma_addr_t 3386 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3387 { 3388 return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma; 3389 } 3390 3391 /** 3392 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address 3393 * @ioc: per adapter object 3394 * @phys_addr: lower 32 physical addr of the reply 3395 * 3396 * Converts 32bit lower physical addr into a virt address. 3397 */ 3398 void * 3399 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr) 3400 { 3401 if (!phys_addr) 3402 return NULL; 3403 return ioc->reply + (phys_addr - (u32)ioc->reply_dma); 3404 } 3405 3406 /** 3407 * _base_get_msix_index - get the msix index 3408 * @ioc: per adapter object 3409 * @scmd: scsi_cmnd object 3410 * 3411 * returns msix index of general reply queues, 3412 * i.e. reply queue on which IO request's reply 3413 * should be posted by the HBA firmware. 3414 */ 3415 static inline u8 3416 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc, 3417 struct scsi_cmnd *scmd) 3418 { 3419 /* Enables reply_queue load balancing */ 3420 if (ioc->msix_load_balance) 3421 return ioc->reply_queue_count ? 3422 base_mod64(atomic64_add_return(1, 3423 &ioc->total_io_cnt), ioc->reply_queue_count) : 0; 3424 3425 return ioc->cpu_msix_table[raw_smp_processor_id()]; 3426 } 3427 3428 /** 3429 * _base_get_high_iops_msix_index - get the msix index of 3430 * high iops queues 3431 * @ioc: per adapter object 3432 * @scmd: scsi_cmnd object 3433 * 3434 * Returns: msix index of high iops reply queues. 3435 * i.e. high iops reply queue on which IO request's 3436 * reply should be posted by the HBA firmware. 3437 */ 3438 static inline u8 3439 _base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc, 3440 struct scsi_cmnd *scmd) 3441 { 3442 /** 3443 * Round robin the IO interrupts among the high iops 3444 * reply queues in terms of batch count 16 when outstanding 3445 * IOs on the target device is >=8. 3446 */ 3447 if (atomic_read(&scmd->device->device_busy) > 3448 MPT3SAS_DEVICE_HIGH_IOPS_DEPTH) 3449 return base_mod64(( 3450 atomic64_add_return(1, &ioc->high_iops_outstanding) / 3451 MPT3SAS_HIGH_IOPS_BATCH_COUNT), 3452 MPT3SAS_HIGH_IOPS_REPLY_QUEUES); 3453 3454 return _base_get_msix_index(ioc, scmd); 3455 } 3456 3457 /** 3458 * mpt3sas_base_get_smid - obtain a free smid from internal queue 3459 * @ioc: per adapter object 3460 * @cb_idx: callback index 3461 * 3462 * Return: smid (zero is invalid) 3463 */ 3464 u16 3465 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx) 3466 { 3467 unsigned long flags; 3468 struct request_tracker *request; 3469 u16 smid; 3470 3471 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3472 if (list_empty(&ioc->internal_free_list)) { 3473 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3474 ioc_err(ioc, "%s: smid not available\n", __func__); 3475 return 0; 3476 } 3477 3478 request = list_entry(ioc->internal_free_list.next, 3479 struct request_tracker, tracker_list); 3480 request->cb_idx = cb_idx; 3481 smid = request->smid; 3482 list_del(&request->tracker_list); 3483 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3484 return smid; 3485 } 3486 3487 /** 3488 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue 3489 * @ioc: per adapter object 3490 * @cb_idx: callback index 3491 * @scmd: pointer to scsi command object 3492 * 3493 * Return: smid (zero is invalid) 3494 */ 3495 u16 3496 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx, 3497 struct scsi_cmnd *scmd) 3498 { 3499 struct scsiio_tracker *request = scsi_cmd_priv(scmd); 3500 unsigned int tag = scmd->request->tag; 3501 u16 smid; 3502 3503 smid = tag + 1; 3504 request->cb_idx = cb_idx; 3505 request->smid = smid; 3506 request->scmd = scmd; 3507 INIT_LIST_HEAD(&request->chain_list); 3508 return smid; 3509 } 3510 3511 /** 3512 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue 3513 * @ioc: per adapter object 3514 * @cb_idx: callback index 3515 * 3516 * Return: smid (zero is invalid) 3517 */ 3518 u16 3519 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx) 3520 { 3521 unsigned long flags; 3522 struct request_tracker *request; 3523 u16 smid; 3524 3525 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3526 if (list_empty(&ioc->hpr_free_list)) { 3527 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3528 return 0; 3529 } 3530 3531 request = list_entry(ioc->hpr_free_list.next, 3532 struct request_tracker, tracker_list); 3533 request->cb_idx = cb_idx; 3534 smid = request->smid; 3535 list_del(&request->tracker_list); 3536 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3537 return smid; 3538 } 3539 3540 static void 3541 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc) 3542 { 3543 /* 3544 * See _wait_for_commands_to_complete() call with regards to this code. 3545 */ 3546 if (ioc->shost_recovery && ioc->pending_io_count) { 3547 ioc->pending_io_count = scsi_host_busy(ioc->shost); 3548 if (ioc->pending_io_count == 0) 3549 wake_up(&ioc->reset_wq); 3550 } 3551 } 3552 3553 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc, 3554 struct scsiio_tracker *st) 3555 { 3556 if (WARN_ON(st->smid == 0)) 3557 return; 3558 st->cb_idx = 0xFF; 3559 st->direct_io = 0; 3560 st->scmd = NULL; 3561 atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0); 3562 st->smid = 0; 3563 } 3564 3565 /** 3566 * mpt3sas_base_free_smid - put smid back on free_list 3567 * @ioc: per adapter object 3568 * @smid: system request message index 3569 */ 3570 void 3571 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3572 { 3573 unsigned long flags; 3574 int i; 3575 3576 if (smid < ioc->hi_priority_smid) { 3577 struct scsiio_tracker *st; 3578 void *request; 3579 3580 st = _get_st_from_smid(ioc, smid); 3581 if (!st) { 3582 _base_recovery_check(ioc); 3583 return; 3584 } 3585 3586 /* Clear MPI request frame */ 3587 request = mpt3sas_base_get_msg_frame(ioc, smid); 3588 memset(request, 0, ioc->request_sz); 3589 3590 mpt3sas_base_clear_st(ioc, st); 3591 _base_recovery_check(ioc); 3592 return; 3593 } 3594 3595 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3596 if (smid < ioc->internal_smid) { 3597 /* hi-priority */ 3598 i = smid - ioc->hi_priority_smid; 3599 ioc->hpr_lookup[i].cb_idx = 0xFF; 3600 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list); 3601 } else if (smid <= ioc->hba_queue_depth) { 3602 /* internal queue */ 3603 i = smid - ioc->internal_smid; 3604 ioc->internal_lookup[i].cb_idx = 0xFF; 3605 list_add(&ioc->internal_lookup[i].tracker_list, 3606 &ioc->internal_free_list); 3607 } 3608 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3609 } 3610 3611 /** 3612 * _base_mpi_ep_writeq - 32 bit write to MMIO 3613 * @b: data payload 3614 * @addr: address in MMIO space 3615 * @writeq_lock: spin lock 3616 * 3617 * This special handling for MPI EP to take care of 32 bit 3618 * environment where its not quarenteed to send the entire word 3619 * in one transfer. 3620 */ 3621 static inline void 3622 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr, 3623 spinlock_t *writeq_lock) 3624 { 3625 unsigned long flags; 3626 3627 spin_lock_irqsave(writeq_lock, flags); 3628 __raw_writel((u32)(b), addr); 3629 __raw_writel((u32)(b >> 32), (addr + 4)); 3630 spin_unlock_irqrestore(writeq_lock, flags); 3631 } 3632 3633 /** 3634 * _base_writeq - 64 bit write to MMIO 3635 * @b: data payload 3636 * @addr: address in MMIO space 3637 * @writeq_lock: spin lock 3638 * 3639 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes 3640 * care of 32 bit environment where its not quarenteed to send the entire word 3641 * in one transfer. 3642 */ 3643 #if defined(writeq) && defined(CONFIG_64BIT) 3644 static inline void 3645 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock) 3646 { 3647 wmb(); 3648 __raw_writeq(b, addr); 3649 barrier(); 3650 } 3651 #else 3652 static inline void 3653 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock) 3654 { 3655 _base_mpi_ep_writeq(b, addr, writeq_lock); 3656 } 3657 #endif 3658 3659 /** 3660 * _base_set_and_get_msix_index - get the msix index and assign to msix_io 3661 * variable of scsi tracker 3662 * @ioc: per adapter object 3663 * @smid: system request message index 3664 * 3665 * returns msix index. 3666 */ 3667 static u8 3668 _base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3669 { 3670 struct scsiio_tracker *st = NULL; 3671 3672 if (smid < ioc->hi_priority_smid) 3673 st = _get_st_from_smid(ioc, smid); 3674 3675 if (st == NULL) 3676 return _base_get_msix_index(ioc, NULL); 3677 3678 st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd); 3679 return st->msix_io; 3680 } 3681 3682 /** 3683 * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware 3684 * @ioc: per adapter object 3685 * @smid: system request message index 3686 * @handle: device handle 3687 */ 3688 static void 3689 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc, 3690 u16 smid, u16 handle) 3691 { 3692 Mpi2RequestDescriptorUnion_t descriptor; 3693 u64 *request = (u64 *)&descriptor; 3694 void *mpi_req_iomem; 3695 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 3696 3697 _clone_sg_entries(ioc, (void *) mfp, smid); 3698 mpi_req_iomem = (void __force *)ioc->chip + 3699 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz); 3700 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 3701 ioc->request_sz); 3702 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 3703 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3704 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 3705 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 3706 descriptor.SCSIIO.LMID = 0; 3707 _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3708 &ioc->scsi_lookup_lock); 3709 } 3710 3711 /** 3712 * _base_put_smid_scsi_io - send SCSI_IO request to firmware 3713 * @ioc: per adapter object 3714 * @smid: system request message index 3715 * @handle: device handle 3716 */ 3717 static void 3718 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle) 3719 { 3720 Mpi2RequestDescriptorUnion_t descriptor; 3721 u64 *request = (u64 *)&descriptor; 3722 3723 3724 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 3725 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3726 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 3727 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 3728 descriptor.SCSIIO.LMID = 0; 3729 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3730 &ioc->scsi_lookup_lock); 3731 } 3732 3733 /** 3734 * _base_put_smid_fast_path - send fast path request to firmware 3735 * @ioc: per adapter object 3736 * @smid: system request message index 3737 * @handle: device handle 3738 */ 3739 static void 3740 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid, 3741 u16 handle) 3742 { 3743 Mpi2RequestDescriptorUnion_t descriptor; 3744 u64 *request = (u64 *)&descriptor; 3745 3746 descriptor.SCSIIO.RequestFlags = 3747 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 3748 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3749 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 3750 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 3751 descriptor.SCSIIO.LMID = 0; 3752 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3753 &ioc->scsi_lookup_lock); 3754 } 3755 3756 /** 3757 * _base_put_smid_hi_priority - send Task Management request to firmware 3758 * @ioc: per adapter object 3759 * @smid: system request message index 3760 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0. 3761 */ 3762 static void 3763 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid, 3764 u16 msix_task) 3765 { 3766 Mpi2RequestDescriptorUnion_t descriptor; 3767 void *mpi_req_iomem; 3768 u64 *request; 3769 3770 if (ioc->is_mcpu_endpoint) { 3771 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 3772 3773 /* TBD 256 is offset within sys register. */ 3774 mpi_req_iomem = (void __force *)ioc->chip 3775 + MPI_FRAME_START_OFFSET 3776 + (smid * ioc->request_sz); 3777 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 3778 ioc->request_sz); 3779 } 3780 3781 request = (u64 *)&descriptor; 3782 3783 descriptor.HighPriority.RequestFlags = 3784 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 3785 descriptor.HighPriority.MSIxIndex = msix_task; 3786 descriptor.HighPriority.SMID = cpu_to_le16(smid); 3787 descriptor.HighPriority.LMID = 0; 3788 descriptor.HighPriority.Reserved1 = 0; 3789 if (ioc->is_mcpu_endpoint) 3790 _base_mpi_ep_writeq(*request, 3791 &ioc->chip->RequestDescriptorPostLow, 3792 &ioc->scsi_lookup_lock); 3793 else 3794 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3795 &ioc->scsi_lookup_lock); 3796 } 3797 3798 /** 3799 * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to 3800 * firmware 3801 * @ioc: per adapter object 3802 * @smid: system request message index 3803 */ 3804 void 3805 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3806 { 3807 Mpi2RequestDescriptorUnion_t descriptor; 3808 u64 *request = (u64 *)&descriptor; 3809 3810 descriptor.Default.RequestFlags = 3811 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED; 3812 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3813 descriptor.Default.SMID = cpu_to_le16(smid); 3814 descriptor.Default.LMID = 0; 3815 descriptor.Default.DescriptorTypeDependent = 0; 3816 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3817 &ioc->scsi_lookup_lock); 3818 } 3819 3820 /** 3821 * _base_put_smid_default - Default, primarily used for config pages 3822 * @ioc: per adapter object 3823 * @smid: system request message index 3824 */ 3825 static void 3826 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3827 { 3828 Mpi2RequestDescriptorUnion_t descriptor; 3829 void *mpi_req_iomem; 3830 u64 *request; 3831 3832 if (ioc->is_mcpu_endpoint) { 3833 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 3834 3835 _clone_sg_entries(ioc, (void *) mfp, smid); 3836 /* TBD 256 is offset within sys register */ 3837 mpi_req_iomem = (void __force *)ioc->chip + 3838 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz); 3839 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 3840 ioc->request_sz); 3841 } 3842 request = (u64 *)&descriptor; 3843 descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 3844 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3845 descriptor.Default.SMID = cpu_to_le16(smid); 3846 descriptor.Default.LMID = 0; 3847 descriptor.Default.DescriptorTypeDependent = 0; 3848 if (ioc->is_mcpu_endpoint) 3849 _base_mpi_ep_writeq(*request, 3850 &ioc->chip->RequestDescriptorPostLow, 3851 &ioc->scsi_lookup_lock); 3852 else 3853 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3854 &ioc->scsi_lookup_lock); 3855 } 3856 3857 /** 3858 * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using 3859 * Atomic Request Descriptor 3860 * @ioc: per adapter object 3861 * @smid: system request message index 3862 * @handle: device handle, unused in this function, for function type match 3863 * 3864 * Return nothing. 3865 */ 3866 static void 3867 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, 3868 u16 handle) 3869 { 3870 Mpi26AtomicRequestDescriptor_t descriptor; 3871 u32 *request = (u32 *)&descriptor; 3872 3873 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 3874 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3875 descriptor.SMID = cpu_to_le16(smid); 3876 3877 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 3878 } 3879 3880 /** 3881 * _base_put_smid_fast_path_atomic - send fast path request to firmware 3882 * using Atomic Request Descriptor 3883 * @ioc: per adapter object 3884 * @smid: system request message index 3885 * @handle: device handle, unused in this function, for function type match 3886 * Return nothing 3887 */ 3888 static void 3889 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, 3890 u16 handle) 3891 { 3892 Mpi26AtomicRequestDescriptor_t descriptor; 3893 u32 *request = (u32 *)&descriptor; 3894 3895 descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 3896 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3897 descriptor.SMID = cpu_to_le16(smid); 3898 3899 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 3900 } 3901 3902 /** 3903 * _base_put_smid_hi_priority_atomic - send Task Management request to 3904 * firmware using Atomic Request Descriptor 3905 * @ioc: per adapter object 3906 * @smid: system request message index 3907 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0 3908 * 3909 * Return nothing. 3910 */ 3911 static void 3912 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, 3913 u16 msix_task) 3914 { 3915 Mpi26AtomicRequestDescriptor_t descriptor; 3916 u32 *request = (u32 *)&descriptor; 3917 3918 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 3919 descriptor.MSIxIndex = msix_task; 3920 descriptor.SMID = cpu_to_le16(smid); 3921 3922 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 3923 } 3924 3925 /** 3926 * _base_put_smid_default - Default, primarily used for config pages 3927 * use Atomic Request Descriptor 3928 * @ioc: per adapter object 3929 * @smid: system request message index 3930 * 3931 * Return nothing. 3932 */ 3933 static void 3934 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3935 { 3936 Mpi26AtomicRequestDescriptor_t descriptor; 3937 u32 *request = (u32 *)&descriptor; 3938 3939 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 3940 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3941 descriptor.SMID = cpu_to_le16(smid); 3942 3943 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 3944 } 3945 3946 /** 3947 * _base_display_OEMs_branding - Display branding string 3948 * @ioc: per adapter object 3949 */ 3950 static void 3951 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc) 3952 { 3953 if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL) 3954 return; 3955 3956 switch (ioc->pdev->subsystem_vendor) { 3957 case PCI_VENDOR_ID_INTEL: 3958 switch (ioc->pdev->device) { 3959 case MPI2_MFGPAGE_DEVID_SAS2008: 3960 switch (ioc->pdev->subsystem_device) { 3961 case MPT2SAS_INTEL_RMS2LL080_SSDID: 3962 ioc_info(ioc, "%s\n", 3963 MPT2SAS_INTEL_RMS2LL080_BRANDING); 3964 break; 3965 case MPT2SAS_INTEL_RMS2LL040_SSDID: 3966 ioc_info(ioc, "%s\n", 3967 MPT2SAS_INTEL_RMS2LL040_BRANDING); 3968 break; 3969 case MPT2SAS_INTEL_SSD910_SSDID: 3970 ioc_info(ioc, "%s\n", 3971 MPT2SAS_INTEL_SSD910_BRANDING); 3972 break; 3973 default: 3974 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 3975 ioc->pdev->subsystem_device); 3976 break; 3977 } 3978 break; 3979 case MPI2_MFGPAGE_DEVID_SAS2308_2: 3980 switch (ioc->pdev->subsystem_device) { 3981 case MPT2SAS_INTEL_RS25GB008_SSDID: 3982 ioc_info(ioc, "%s\n", 3983 MPT2SAS_INTEL_RS25GB008_BRANDING); 3984 break; 3985 case MPT2SAS_INTEL_RMS25JB080_SSDID: 3986 ioc_info(ioc, "%s\n", 3987 MPT2SAS_INTEL_RMS25JB080_BRANDING); 3988 break; 3989 case MPT2SAS_INTEL_RMS25JB040_SSDID: 3990 ioc_info(ioc, "%s\n", 3991 MPT2SAS_INTEL_RMS25JB040_BRANDING); 3992 break; 3993 case MPT2SAS_INTEL_RMS25KB080_SSDID: 3994 ioc_info(ioc, "%s\n", 3995 MPT2SAS_INTEL_RMS25KB080_BRANDING); 3996 break; 3997 case MPT2SAS_INTEL_RMS25KB040_SSDID: 3998 ioc_info(ioc, "%s\n", 3999 MPT2SAS_INTEL_RMS25KB040_BRANDING); 4000 break; 4001 case MPT2SAS_INTEL_RMS25LB040_SSDID: 4002 ioc_info(ioc, "%s\n", 4003 MPT2SAS_INTEL_RMS25LB040_BRANDING); 4004 break; 4005 case MPT2SAS_INTEL_RMS25LB080_SSDID: 4006 ioc_info(ioc, "%s\n", 4007 MPT2SAS_INTEL_RMS25LB080_BRANDING); 4008 break; 4009 default: 4010 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4011 ioc->pdev->subsystem_device); 4012 break; 4013 } 4014 break; 4015 case MPI25_MFGPAGE_DEVID_SAS3008: 4016 switch (ioc->pdev->subsystem_device) { 4017 case MPT3SAS_INTEL_RMS3JC080_SSDID: 4018 ioc_info(ioc, "%s\n", 4019 MPT3SAS_INTEL_RMS3JC080_BRANDING); 4020 break; 4021 4022 case MPT3SAS_INTEL_RS3GC008_SSDID: 4023 ioc_info(ioc, "%s\n", 4024 MPT3SAS_INTEL_RS3GC008_BRANDING); 4025 break; 4026 case MPT3SAS_INTEL_RS3FC044_SSDID: 4027 ioc_info(ioc, "%s\n", 4028 MPT3SAS_INTEL_RS3FC044_BRANDING); 4029 break; 4030 case MPT3SAS_INTEL_RS3UC080_SSDID: 4031 ioc_info(ioc, "%s\n", 4032 MPT3SAS_INTEL_RS3UC080_BRANDING); 4033 break; 4034 default: 4035 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4036 ioc->pdev->subsystem_device); 4037 break; 4038 } 4039 break; 4040 default: 4041 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4042 ioc->pdev->subsystem_device); 4043 break; 4044 } 4045 break; 4046 case PCI_VENDOR_ID_DELL: 4047 switch (ioc->pdev->device) { 4048 case MPI2_MFGPAGE_DEVID_SAS2008: 4049 switch (ioc->pdev->subsystem_device) { 4050 case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID: 4051 ioc_info(ioc, "%s\n", 4052 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING); 4053 break; 4054 case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID: 4055 ioc_info(ioc, "%s\n", 4056 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING); 4057 break; 4058 case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID: 4059 ioc_info(ioc, "%s\n", 4060 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING); 4061 break; 4062 case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID: 4063 ioc_info(ioc, "%s\n", 4064 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING); 4065 break; 4066 case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID: 4067 ioc_info(ioc, "%s\n", 4068 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING); 4069 break; 4070 case MPT2SAS_DELL_PERC_H200_SSDID: 4071 ioc_info(ioc, "%s\n", 4072 MPT2SAS_DELL_PERC_H200_BRANDING); 4073 break; 4074 case MPT2SAS_DELL_6GBPS_SAS_SSDID: 4075 ioc_info(ioc, "%s\n", 4076 MPT2SAS_DELL_6GBPS_SAS_BRANDING); 4077 break; 4078 default: 4079 ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n", 4080 ioc->pdev->subsystem_device); 4081 break; 4082 } 4083 break; 4084 case MPI25_MFGPAGE_DEVID_SAS3008: 4085 switch (ioc->pdev->subsystem_device) { 4086 case MPT3SAS_DELL_12G_HBA_SSDID: 4087 ioc_info(ioc, "%s\n", 4088 MPT3SAS_DELL_12G_HBA_BRANDING); 4089 break; 4090 default: 4091 ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n", 4092 ioc->pdev->subsystem_device); 4093 break; 4094 } 4095 break; 4096 default: 4097 ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n", 4098 ioc->pdev->subsystem_device); 4099 break; 4100 } 4101 break; 4102 case PCI_VENDOR_ID_CISCO: 4103 switch (ioc->pdev->device) { 4104 case MPI25_MFGPAGE_DEVID_SAS3008: 4105 switch (ioc->pdev->subsystem_device) { 4106 case MPT3SAS_CISCO_12G_8E_HBA_SSDID: 4107 ioc_info(ioc, "%s\n", 4108 MPT3SAS_CISCO_12G_8E_HBA_BRANDING); 4109 break; 4110 case MPT3SAS_CISCO_12G_8I_HBA_SSDID: 4111 ioc_info(ioc, "%s\n", 4112 MPT3SAS_CISCO_12G_8I_HBA_BRANDING); 4113 break; 4114 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID: 4115 ioc_info(ioc, "%s\n", 4116 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING); 4117 break; 4118 default: 4119 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n", 4120 ioc->pdev->subsystem_device); 4121 break; 4122 } 4123 break; 4124 case MPI25_MFGPAGE_DEVID_SAS3108_1: 4125 switch (ioc->pdev->subsystem_device) { 4126 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID: 4127 ioc_info(ioc, "%s\n", 4128 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING); 4129 break; 4130 case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID: 4131 ioc_info(ioc, "%s\n", 4132 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING); 4133 break; 4134 default: 4135 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n", 4136 ioc->pdev->subsystem_device); 4137 break; 4138 } 4139 break; 4140 default: 4141 ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n", 4142 ioc->pdev->subsystem_device); 4143 break; 4144 } 4145 break; 4146 case MPT2SAS_HP_3PAR_SSVID: 4147 switch (ioc->pdev->device) { 4148 case MPI2_MFGPAGE_DEVID_SAS2004: 4149 switch (ioc->pdev->subsystem_device) { 4150 case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID: 4151 ioc_info(ioc, "%s\n", 4152 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING); 4153 break; 4154 default: 4155 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n", 4156 ioc->pdev->subsystem_device); 4157 break; 4158 } 4159 break; 4160 case MPI2_MFGPAGE_DEVID_SAS2308_2: 4161 switch (ioc->pdev->subsystem_device) { 4162 case MPT2SAS_HP_2_4_INTERNAL_SSDID: 4163 ioc_info(ioc, "%s\n", 4164 MPT2SAS_HP_2_4_INTERNAL_BRANDING); 4165 break; 4166 case MPT2SAS_HP_2_4_EXTERNAL_SSDID: 4167 ioc_info(ioc, "%s\n", 4168 MPT2SAS_HP_2_4_EXTERNAL_BRANDING); 4169 break; 4170 case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID: 4171 ioc_info(ioc, "%s\n", 4172 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING); 4173 break; 4174 case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID: 4175 ioc_info(ioc, "%s\n", 4176 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING); 4177 break; 4178 default: 4179 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n", 4180 ioc->pdev->subsystem_device); 4181 break; 4182 } 4183 break; 4184 default: 4185 ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n", 4186 ioc->pdev->subsystem_device); 4187 break; 4188 } 4189 default: 4190 break; 4191 } 4192 } 4193 4194 /** 4195 * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg 4196 * version from FW Image Header. 4197 * @ioc: per adapter object 4198 * 4199 * Return: 0 for success, non-zero for failure. 4200 */ 4201 static int 4202 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc) 4203 { 4204 Mpi2FWImageHeader_t *FWImgHdr; 4205 Mpi25FWUploadRequest_t *mpi_request; 4206 Mpi2FWUploadReply_t mpi_reply; 4207 int r = 0; 4208 void *fwpkg_data = NULL; 4209 dma_addr_t fwpkg_data_dma; 4210 u16 smid, ioc_status; 4211 size_t data_length; 4212 4213 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 4214 4215 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 4216 ioc_err(ioc, "%s: internal command already in use\n", __func__); 4217 return -EAGAIN; 4218 } 4219 4220 data_length = sizeof(Mpi2FWImageHeader_t); 4221 fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length, 4222 &fwpkg_data_dma, GFP_KERNEL); 4223 if (!fwpkg_data) { 4224 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4225 __FILE__, __LINE__, __func__); 4226 return -ENOMEM; 4227 } 4228 4229 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 4230 if (!smid) { 4231 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 4232 r = -EAGAIN; 4233 goto out; 4234 } 4235 4236 ioc->base_cmds.status = MPT3_CMD_PENDING; 4237 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 4238 ioc->base_cmds.smid = smid; 4239 memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t)); 4240 mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD; 4241 mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH; 4242 mpi_request->ImageSize = cpu_to_le32(data_length); 4243 ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma, 4244 data_length); 4245 init_completion(&ioc->base_cmds.done); 4246 ioc->put_smid_default(ioc, smid); 4247 /* Wait for 15 seconds */ 4248 wait_for_completion_timeout(&ioc->base_cmds.done, 4249 FW_IMG_HDR_READ_TIMEOUT*HZ); 4250 ioc_info(ioc, "%s: complete\n", __func__); 4251 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 4252 ioc_err(ioc, "%s: timeout\n", __func__); 4253 _debug_dump_mf(mpi_request, 4254 sizeof(Mpi25FWUploadRequest_t)/4); 4255 r = -ETIME; 4256 } else { 4257 memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t)); 4258 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) { 4259 memcpy(&mpi_reply, ioc->base_cmds.reply, 4260 sizeof(Mpi2FWUploadReply_t)); 4261 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 4262 MPI2_IOCSTATUS_MASK; 4263 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 4264 FWImgHdr = (Mpi2FWImageHeader_t *)fwpkg_data; 4265 if (FWImgHdr->PackageVersion.Word) { 4266 ioc_info(ioc, "FW Package Version (%02d.%02d.%02d.%02d)\n", 4267 FWImgHdr->PackageVersion.Struct.Major, 4268 FWImgHdr->PackageVersion.Struct.Minor, 4269 FWImgHdr->PackageVersion.Struct.Unit, 4270 FWImgHdr->PackageVersion.Struct.Dev); 4271 } 4272 } else { 4273 _debug_dump_mf(&mpi_reply, 4274 sizeof(Mpi2FWUploadReply_t)/4); 4275 } 4276 } 4277 } 4278 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 4279 out: 4280 if (fwpkg_data) 4281 dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data, 4282 fwpkg_data_dma); 4283 return r; 4284 } 4285 4286 /** 4287 * _base_display_ioc_capabilities - Disply IOC's capabilities. 4288 * @ioc: per adapter object 4289 */ 4290 static void 4291 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc) 4292 { 4293 int i = 0; 4294 char desc[16]; 4295 u32 iounit_pg1_flags; 4296 u32 bios_version; 4297 4298 bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion); 4299 strncpy(desc, ioc->manu_pg0.ChipName, 16); 4300 ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n", 4301 desc, 4302 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24, 4303 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16, 4304 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8, 4305 ioc->facts.FWVersion.Word & 0x000000FF, 4306 ioc->pdev->revision, 4307 (bios_version & 0xFF000000) >> 24, 4308 (bios_version & 0x00FF0000) >> 16, 4309 (bios_version & 0x0000FF00) >> 8, 4310 bios_version & 0x000000FF); 4311 4312 _base_display_OEMs_branding(ioc); 4313 4314 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) { 4315 pr_info("%sNVMe", i ? "," : ""); 4316 i++; 4317 } 4318 4319 ioc_info(ioc, "Protocol=("); 4320 4321 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) { 4322 pr_cont("Initiator"); 4323 i++; 4324 } 4325 4326 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) { 4327 pr_cont("%sTarget", i ? "," : ""); 4328 i++; 4329 } 4330 4331 i = 0; 4332 pr_cont("), Capabilities=("); 4333 4334 if (!ioc->hide_ir_msg) { 4335 if (ioc->facts.IOCCapabilities & 4336 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) { 4337 pr_cont("Raid"); 4338 i++; 4339 } 4340 } 4341 4342 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) { 4343 pr_cont("%sTLR", i ? "," : ""); 4344 i++; 4345 } 4346 4347 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) { 4348 pr_cont("%sMulticast", i ? "," : ""); 4349 i++; 4350 } 4351 4352 if (ioc->facts.IOCCapabilities & 4353 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) { 4354 pr_cont("%sBIDI Target", i ? "," : ""); 4355 i++; 4356 } 4357 4358 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) { 4359 pr_cont("%sEEDP", i ? "," : ""); 4360 i++; 4361 } 4362 4363 if (ioc->facts.IOCCapabilities & 4364 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) { 4365 pr_cont("%sSnapshot Buffer", i ? "," : ""); 4366 i++; 4367 } 4368 4369 if (ioc->facts.IOCCapabilities & 4370 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) { 4371 pr_cont("%sDiag Trace Buffer", i ? "," : ""); 4372 i++; 4373 } 4374 4375 if (ioc->facts.IOCCapabilities & 4376 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) { 4377 pr_cont("%sDiag Extended Buffer", i ? "," : ""); 4378 i++; 4379 } 4380 4381 if (ioc->facts.IOCCapabilities & 4382 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) { 4383 pr_cont("%sTask Set Full", i ? "," : ""); 4384 i++; 4385 } 4386 4387 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags); 4388 if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) { 4389 pr_cont("%sNCQ", i ? "," : ""); 4390 i++; 4391 } 4392 4393 pr_cont(")\n"); 4394 } 4395 4396 /** 4397 * mpt3sas_base_update_missing_delay - change the missing delay timers 4398 * @ioc: per adapter object 4399 * @device_missing_delay: amount of time till device is reported missing 4400 * @io_missing_delay: interval IO is returned when there is a missing device 4401 * 4402 * Passed on the command line, this function will modify the device missing 4403 * delay, as well as the io missing delay. This should be called at driver 4404 * load time. 4405 */ 4406 void 4407 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc, 4408 u16 device_missing_delay, u8 io_missing_delay) 4409 { 4410 u16 dmd, dmd_new, dmd_orignal; 4411 u8 io_missing_delay_original; 4412 u16 sz; 4413 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL; 4414 Mpi2ConfigReply_t mpi_reply; 4415 u8 num_phys = 0; 4416 u16 ioc_status; 4417 4418 mpt3sas_config_get_number_hba_phys(ioc, &num_phys); 4419 if (!num_phys) 4420 return; 4421 4422 sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys * 4423 sizeof(Mpi2SasIOUnit1PhyData_t)); 4424 sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL); 4425 if (!sas_iounit_pg1) { 4426 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4427 __FILE__, __LINE__, __func__); 4428 goto out; 4429 } 4430 if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply, 4431 sas_iounit_pg1, sz))) { 4432 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4433 __FILE__, __LINE__, __func__); 4434 goto out; 4435 } 4436 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 4437 MPI2_IOCSTATUS_MASK; 4438 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 4439 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4440 __FILE__, __LINE__, __func__); 4441 goto out; 4442 } 4443 4444 /* device missing delay */ 4445 dmd = sas_iounit_pg1->ReportDeviceMissingDelay; 4446 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16) 4447 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16; 4448 else 4449 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK; 4450 dmd_orignal = dmd; 4451 if (device_missing_delay > 0x7F) { 4452 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 : 4453 device_missing_delay; 4454 dmd = dmd / 16; 4455 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16; 4456 } else 4457 dmd = device_missing_delay; 4458 sas_iounit_pg1->ReportDeviceMissingDelay = dmd; 4459 4460 /* io missing delay */ 4461 io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay; 4462 sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay; 4463 4464 if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1, 4465 sz)) { 4466 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16) 4467 dmd_new = (dmd & 4468 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16; 4469 else 4470 dmd_new = 4471 dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK; 4472 ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n", 4473 dmd_orignal, dmd_new); 4474 ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n", 4475 io_missing_delay_original, 4476 io_missing_delay); 4477 ioc->device_missing_delay = dmd_new; 4478 ioc->io_missing_delay = io_missing_delay; 4479 } 4480 4481 out: 4482 kfree(sas_iounit_pg1); 4483 } 4484 4485 /** 4486 * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields 4487 * according to performance mode. 4488 * @ioc : per adapter object 4489 * 4490 * Return nothing. 4491 */ 4492 static void 4493 _base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc) 4494 { 4495 Mpi2IOCPage1_t ioc_pg1; 4496 Mpi2ConfigReply_t mpi_reply; 4497 4498 mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy); 4499 memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t)); 4500 4501 switch (perf_mode) { 4502 case MPT_PERF_MODE_DEFAULT: 4503 case MPT_PERF_MODE_BALANCED: 4504 if (ioc->high_iops_queues) { 4505 ioc_info(ioc, 4506 "Enable interrupt coalescing only for first\t" 4507 "%d reply queues\n", 4508 MPT3SAS_HIGH_IOPS_REPLY_QUEUES); 4509 /* 4510 * If 31st bit is zero then interrupt coalescing is 4511 * enabled for all reply descriptor post queues. 4512 * If 31st bit is set to one then user can 4513 * enable/disable interrupt coalescing on per reply 4514 * descriptor post queue group(8) basis. So to enable 4515 * interrupt coalescing only on first reply descriptor 4516 * post queue group 31st bit and zero th bit is enabled. 4517 */ 4518 ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 | 4519 ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1)); 4520 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1); 4521 ioc_info(ioc, "performance mode: balanced\n"); 4522 return; 4523 } 4524 /* Fall through */ 4525 case MPT_PERF_MODE_LATENCY: 4526 /* 4527 * Enable interrupt coalescing on all reply queues 4528 * with timeout value 0xA 4529 */ 4530 ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa); 4531 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING); 4532 ioc_pg1.ProductSpecific = 0; 4533 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1); 4534 ioc_info(ioc, "performance mode: latency\n"); 4535 break; 4536 case MPT_PERF_MODE_IOPS: 4537 /* 4538 * Enable interrupt coalescing on all reply queues. 4539 */ 4540 ioc_info(ioc, 4541 "performance mode: iops with coalescing timeout: 0x%x\n", 4542 le32_to_cpu(ioc_pg1.CoalescingTimeout)); 4543 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING); 4544 ioc_pg1.ProductSpecific = 0; 4545 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1); 4546 break; 4547 } 4548 } 4549 4550 /** 4551 * _base_static_config_pages - static start of day config pages 4552 * @ioc: per adapter object 4553 */ 4554 static void 4555 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc) 4556 { 4557 Mpi2ConfigReply_t mpi_reply; 4558 u32 iounit_pg1_flags; 4559 4560 ioc->nvme_abort_timeout = 30; 4561 mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0); 4562 if (ioc->ir_firmware) 4563 mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply, 4564 &ioc->manu_pg10); 4565 4566 /* 4567 * Ensure correct T10 PI operation if vendor left EEDPTagMode 4568 * flag unset in NVDATA. 4569 */ 4570 mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11); 4571 if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) { 4572 pr_err("%s: overriding NVDATA EEDPTagMode setting\n", 4573 ioc->name); 4574 ioc->manu_pg11.EEDPTagMode &= ~0x3; 4575 ioc->manu_pg11.EEDPTagMode |= 0x1; 4576 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply, 4577 &ioc->manu_pg11); 4578 } 4579 if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK) 4580 ioc->tm_custom_handling = 1; 4581 else { 4582 ioc->tm_custom_handling = 0; 4583 if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT) 4584 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT; 4585 else if (ioc->manu_pg11.NVMeAbortTO > 4586 NVME_TASK_ABORT_MAX_TIMEOUT) 4587 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT; 4588 else 4589 ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO; 4590 } 4591 4592 mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2); 4593 mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3); 4594 mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8); 4595 mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0); 4596 mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1); 4597 mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8); 4598 _base_display_ioc_capabilities(ioc); 4599 4600 /* 4601 * Enable task_set_full handling in iounit_pg1 when the 4602 * facts capabilities indicate that its supported. 4603 */ 4604 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags); 4605 if ((ioc->facts.IOCCapabilities & 4606 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING)) 4607 iounit_pg1_flags &= 4608 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING; 4609 else 4610 iounit_pg1_flags |= 4611 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING; 4612 ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags); 4613 mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1); 4614 4615 if (ioc->iounit_pg8.NumSensors) 4616 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors; 4617 if (ioc->is_aero_ioc) 4618 _base_update_ioc_page1_inlinewith_perf_mode(ioc); 4619 } 4620 4621 /** 4622 * mpt3sas_free_enclosure_list - release memory 4623 * @ioc: per adapter object 4624 * 4625 * Free memory allocated during encloure add. 4626 */ 4627 void 4628 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc) 4629 { 4630 struct _enclosure_node *enclosure_dev, *enclosure_dev_next; 4631 4632 /* Free enclosure list */ 4633 list_for_each_entry_safe(enclosure_dev, 4634 enclosure_dev_next, &ioc->enclosure_list, list) { 4635 list_del(&enclosure_dev->list); 4636 kfree(enclosure_dev); 4637 } 4638 } 4639 4640 /** 4641 * _base_release_memory_pools - release memory 4642 * @ioc: per adapter object 4643 * 4644 * Free memory allocated from _base_allocate_memory_pools. 4645 */ 4646 static void 4647 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc) 4648 { 4649 int i = 0; 4650 int j = 0; 4651 struct chain_tracker *ct; 4652 struct reply_post_struct *rps; 4653 4654 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 4655 4656 if (ioc->request) { 4657 dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz, 4658 ioc->request, ioc->request_dma); 4659 dexitprintk(ioc, 4660 ioc_info(ioc, "request_pool(0x%p): free\n", 4661 ioc->request)); 4662 ioc->request = NULL; 4663 } 4664 4665 if (ioc->sense) { 4666 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma); 4667 dma_pool_destroy(ioc->sense_dma_pool); 4668 dexitprintk(ioc, 4669 ioc_info(ioc, "sense_pool(0x%p): free\n", 4670 ioc->sense)); 4671 ioc->sense = NULL; 4672 } 4673 4674 if (ioc->reply) { 4675 dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma); 4676 dma_pool_destroy(ioc->reply_dma_pool); 4677 dexitprintk(ioc, 4678 ioc_info(ioc, "reply_pool(0x%p): free\n", 4679 ioc->reply)); 4680 ioc->reply = NULL; 4681 } 4682 4683 if (ioc->reply_free) { 4684 dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free, 4685 ioc->reply_free_dma); 4686 dma_pool_destroy(ioc->reply_free_dma_pool); 4687 dexitprintk(ioc, 4688 ioc_info(ioc, "reply_free_pool(0x%p): free\n", 4689 ioc->reply_free)); 4690 ioc->reply_free = NULL; 4691 } 4692 4693 if (ioc->reply_post) { 4694 do { 4695 rps = &ioc->reply_post[i]; 4696 if (rps->reply_post_free) { 4697 dma_pool_free( 4698 ioc->reply_post_free_dma_pool, 4699 rps->reply_post_free, 4700 rps->reply_post_free_dma); 4701 dexitprintk(ioc, 4702 ioc_info(ioc, "reply_post_free_pool(0x%p): free\n", 4703 rps->reply_post_free)); 4704 rps->reply_post_free = NULL; 4705 } 4706 } while (ioc->rdpq_array_enable && 4707 (++i < ioc->reply_queue_count)); 4708 if (ioc->reply_post_free_array && 4709 ioc->rdpq_array_enable) { 4710 dma_pool_free(ioc->reply_post_free_array_dma_pool, 4711 ioc->reply_post_free_array, 4712 ioc->reply_post_free_array_dma); 4713 ioc->reply_post_free_array = NULL; 4714 } 4715 dma_pool_destroy(ioc->reply_post_free_array_dma_pool); 4716 dma_pool_destroy(ioc->reply_post_free_dma_pool); 4717 kfree(ioc->reply_post); 4718 } 4719 4720 if (ioc->pcie_sgl_dma_pool) { 4721 for (i = 0; i < ioc->scsiio_depth; i++) { 4722 dma_pool_free(ioc->pcie_sgl_dma_pool, 4723 ioc->pcie_sg_lookup[i].pcie_sgl, 4724 ioc->pcie_sg_lookup[i].pcie_sgl_dma); 4725 } 4726 if (ioc->pcie_sgl_dma_pool) 4727 dma_pool_destroy(ioc->pcie_sgl_dma_pool); 4728 } 4729 4730 if (ioc->config_page) { 4731 dexitprintk(ioc, 4732 ioc_info(ioc, "config_page(0x%p): free\n", 4733 ioc->config_page)); 4734 dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz, 4735 ioc->config_page, ioc->config_page_dma); 4736 } 4737 4738 kfree(ioc->hpr_lookup); 4739 kfree(ioc->internal_lookup); 4740 if (ioc->chain_lookup) { 4741 for (i = 0; i < ioc->scsiio_depth; i++) { 4742 for (j = ioc->chains_per_prp_buffer; 4743 j < ioc->chains_needed_per_io; j++) { 4744 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 4745 if (ct && ct->chain_buffer) 4746 dma_pool_free(ioc->chain_dma_pool, 4747 ct->chain_buffer, 4748 ct->chain_buffer_dma); 4749 } 4750 kfree(ioc->chain_lookup[i].chains_per_smid); 4751 } 4752 dma_pool_destroy(ioc->chain_dma_pool); 4753 kfree(ioc->chain_lookup); 4754 ioc->chain_lookup = NULL; 4755 } 4756 } 4757 4758 /** 4759 * is_MSB_are_same - checks whether all reply queues in a set are 4760 * having same upper 32bits in their base memory address. 4761 * @reply_pool_start_address: Base address of a reply queue set 4762 * @pool_sz: Size of single Reply Descriptor Post Queues pool size 4763 * 4764 * Return: 1 if reply queues in a set have a same upper 32bits in their base 4765 * memory address, else 0. 4766 */ 4767 4768 static int 4769 is_MSB_are_same(long reply_pool_start_address, u32 pool_sz) 4770 { 4771 long reply_pool_end_address; 4772 4773 reply_pool_end_address = reply_pool_start_address + pool_sz; 4774 4775 if (upper_32_bits(reply_pool_start_address) == 4776 upper_32_bits(reply_pool_end_address)) 4777 return 1; 4778 else 4779 return 0; 4780 } 4781 4782 /** 4783 * _base_allocate_memory_pools - allocate start of day memory pools 4784 * @ioc: per adapter object 4785 * 4786 * Return: 0 success, anything else error. 4787 */ 4788 static int 4789 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc) 4790 { 4791 struct mpt3sas_facts *facts; 4792 u16 max_sge_elements; 4793 u16 chains_needed_per_io; 4794 u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz; 4795 u32 retry_sz; 4796 u16 max_request_credit, nvme_blocks_needed; 4797 unsigned short sg_tablesize; 4798 u16 sge_size; 4799 int i, j; 4800 struct chain_tracker *ct; 4801 4802 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 4803 4804 4805 retry_sz = 0; 4806 facts = &ioc->facts; 4807 4808 /* command line tunables for max sgl entries */ 4809 if (max_sgl_entries != -1) 4810 sg_tablesize = max_sgl_entries; 4811 else { 4812 if (ioc->hba_mpi_version_belonged == MPI2_VERSION) 4813 sg_tablesize = MPT2SAS_SG_DEPTH; 4814 else 4815 sg_tablesize = MPT3SAS_SG_DEPTH; 4816 } 4817 4818 /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */ 4819 if (reset_devices) 4820 sg_tablesize = min_t(unsigned short, sg_tablesize, 4821 MPT_KDUMP_MIN_PHYS_SEGMENTS); 4822 4823 if (ioc->is_mcpu_endpoint) 4824 ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS; 4825 else { 4826 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS) 4827 sg_tablesize = MPT_MIN_PHYS_SEGMENTS; 4828 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) { 4829 sg_tablesize = min_t(unsigned short, sg_tablesize, 4830 SG_MAX_SEGMENTS); 4831 ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n", 4832 sg_tablesize, MPT_MAX_PHYS_SEGMENTS); 4833 } 4834 ioc->shost->sg_tablesize = sg_tablesize; 4835 } 4836 4837 ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)), 4838 (facts->RequestCredit / 4)); 4839 if (ioc->internal_depth < INTERNAL_CMDS_COUNT) { 4840 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT + 4841 INTERNAL_SCSIIO_CMDS_COUNT)) { 4842 ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n", 4843 facts->RequestCredit); 4844 return -ENOMEM; 4845 } 4846 ioc->internal_depth = 10; 4847 } 4848 4849 ioc->hi_priority_depth = ioc->internal_depth - (5); 4850 /* command line tunables for max controller queue depth */ 4851 if (max_queue_depth != -1 && max_queue_depth != 0) { 4852 max_request_credit = min_t(u16, max_queue_depth + 4853 ioc->internal_depth, facts->RequestCredit); 4854 if (max_request_credit > MAX_HBA_QUEUE_DEPTH) 4855 max_request_credit = MAX_HBA_QUEUE_DEPTH; 4856 } else if (reset_devices) 4857 max_request_credit = min_t(u16, facts->RequestCredit, 4858 (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth)); 4859 else 4860 max_request_credit = min_t(u16, facts->RequestCredit, 4861 MAX_HBA_QUEUE_DEPTH); 4862 4863 /* Firmware maintains additional facts->HighPriorityCredit number of 4864 * credits for HiPriprity Request messages, so hba queue depth will be 4865 * sum of max_request_credit and high priority queue depth. 4866 */ 4867 ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth; 4868 4869 /* request frame size */ 4870 ioc->request_sz = facts->IOCRequestFrameSize * 4; 4871 4872 /* reply frame size */ 4873 ioc->reply_sz = facts->ReplyFrameSize * 4; 4874 4875 /* chain segment size */ 4876 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 4877 if (facts->IOCMaxChainSegmentSize) 4878 ioc->chain_segment_sz = 4879 facts->IOCMaxChainSegmentSize * 4880 MAX_CHAIN_ELEMT_SZ; 4881 else 4882 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */ 4883 ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS * 4884 MAX_CHAIN_ELEMT_SZ; 4885 } else 4886 ioc->chain_segment_sz = ioc->request_sz; 4887 4888 /* calculate the max scatter element size */ 4889 sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee); 4890 4891 retry_allocation: 4892 total_sz = 0; 4893 /* calculate number of sg elements left over in the 1st frame */ 4894 max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) - 4895 sizeof(Mpi2SGEIOUnion_t)) + sge_size); 4896 ioc->max_sges_in_main_message = max_sge_elements/sge_size; 4897 4898 /* now do the same for a chain buffer */ 4899 max_sge_elements = ioc->chain_segment_sz - sge_size; 4900 ioc->max_sges_in_chain_message = max_sge_elements/sge_size; 4901 4902 /* 4903 * MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE 4904 */ 4905 chains_needed_per_io = ((ioc->shost->sg_tablesize - 4906 ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message) 4907 + 1; 4908 if (chains_needed_per_io > facts->MaxChainDepth) { 4909 chains_needed_per_io = facts->MaxChainDepth; 4910 ioc->shost->sg_tablesize = min_t(u16, 4911 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message 4912 * chains_needed_per_io), ioc->shost->sg_tablesize); 4913 } 4914 ioc->chains_needed_per_io = chains_needed_per_io; 4915 4916 /* reply free queue sizing - taking into account for 64 FW events */ 4917 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64; 4918 4919 /* mCPU manage single counters for simplicity */ 4920 if (ioc->is_mcpu_endpoint) 4921 ioc->reply_post_queue_depth = ioc->reply_free_queue_depth; 4922 else { 4923 /* calculate reply descriptor post queue depth */ 4924 ioc->reply_post_queue_depth = ioc->hba_queue_depth + 4925 ioc->reply_free_queue_depth + 1; 4926 /* align the reply post queue on the next 16 count boundary */ 4927 if (ioc->reply_post_queue_depth % 16) 4928 ioc->reply_post_queue_depth += 16 - 4929 (ioc->reply_post_queue_depth % 16); 4930 } 4931 4932 if (ioc->reply_post_queue_depth > 4933 facts->MaxReplyDescriptorPostQueueDepth) { 4934 ioc->reply_post_queue_depth = 4935 facts->MaxReplyDescriptorPostQueueDepth - 4936 (facts->MaxReplyDescriptorPostQueueDepth % 16); 4937 ioc->hba_queue_depth = 4938 ((ioc->reply_post_queue_depth - 64) / 2) - 1; 4939 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64; 4940 } 4941 4942 dinitprintk(ioc, 4943 ioc_info(ioc, "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), chains_per_io(%d)\n", 4944 ioc->max_sges_in_main_message, 4945 ioc->max_sges_in_chain_message, 4946 ioc->shost->sg_tablesize, 4947 ioc->chains_needed_per_io)); 4948 4949 /* reply post queue, 16 byte align */ 4950 reply_post_free_sz = ioc->reply_post_queue_depth * 4951 sizeof(Mpi2DefaultReplyDescriptor_t); 4952 4953 sz = reply_post_free_sz; 4954 if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable) 4955 sz *= ioc->reply_queue_count; 4956 4957 ioc->reply_post = kcalloc((ioc->rdpq_array_enable) ? 4958 (ioc->reply_queue_count):1, 4959 sizeof(struct reply_post_struct), GFP_KERNEL); 4960 4961 if (!ioc->reply_post) { 4962 ioc_err(ioc, "reply_post_free pool: kcalloc failed\n"); 4963 goto out; 4964 } 4965 ioc->reply_post_free_dma_pool = dma_pool_create("reply_post_free pool", 4966 &ioc->pdev->dev, sz, 16, 0); 4967 if (!ioc->reply_post_free_dma_pool) { 4968 ioc_err(ioc, "reply_post_free pool: dma_pool_create failed\n"); 4969 goto out; 4970 } 4971 i = 0; 4972 do { 4973 ioc->reply_post[i].reply_post_free = 4974 dma_pool_zalloc(ioc->reply_post_free_dma_pool, 4975 GFP_KERNEL, 4976 &ioc->reply_post[i].reply_post_free_dma); 4977 if (!ioc->reply_post[i].reply_post_free) { 4978 ioc_err(ioc, "reply_post_free pool: dma_pool_alloc failed\n"); 4979 goto out; 4980 } 4981 dinitprintk(ioc, 4982 ioc_info(ioc, "reply post free pool (0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n", 4983 ioc->reply_post[i].reply_post_free, 4984 ioc->reply_post_queue_depth, 4985 8, sz / 1024)); 4986 dinitprintk(ioc, 4987 ioc_info(ioc, "reply_post_free_dma = (0x%llx)\n", 4988 (u64)ioc->reply_post[i].reply_post_free_dma)); 4989 total_sz += sz; 4990 } while (ioc->rdpq_array_enable && (++i < ioc->reply_queue_count)); 4991 4992 if (ioc->dma_mask == 64) { 4993 if (_base_change_consistent_dma_mask(ioc, ioc->pdev) != 0) { 4994 ioc_warn(ioc, "no suitable consistent DMA mask for %s\n", 4995 pci_name(ioc->pdev)); 4996 goto out; 4997 } 4998 } 4999 5000 ioc->scsiio_depth = ioc->hba_queue_depth - 5001 ioc->hi_priority_depth - ioc->internal_depth; 5002 5003 /* set the scsi host can_queue depth 5004 * with some internal commands that could be outstanding 5005 */ 5006 ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT; 5007 dinitprintk(ioc, 5008 ioc_info(ioc, "scsi host: can_queue depth (%d)\n", 5009 ioc->shost->can_queue)); 5010 5011 5012 /* contiguous pool for request and chains, 16 byte align, one extra " 5013 * "frame for smid=0 5014 */ 5015 ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth; 5016 sz = ((ioc->scsiio_depth + 1) * ioc->request_sz); 5017 5018 /* hi-priority queue */ 5019 sz += (ioc->hi_priority_depth * ioc->request_sz); 5020 5021 /* internal queue */ 5022 sz += (ioc->internal_depth * ioc->request_sz); 5023 5024 ioc->request_dma_sz = sz; 5025 ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz, 5026 &ioc->request_dma, GFP_KERNEL); 5027 if (!ioc->request) { 5028 ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n", 5029 ioc->hba_queue_depth, ioc->chains_needed_per_io, 5030 ioc->request_sz, sz / 1024); 5031 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH) 5032 goto out; 5033 retry_sz = 64; 5034 ioc->hba_queue_depth -= retry_sz; 5035 _base_release_memory_pools(ioc); 5036 goto retry_allocation; 5037 } 5038 5039 if (retry_sz) 5040 ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n", 5041 ioc->hba_queue_depth, ioc->chains_needed_per_io, 5042 ioc->request_sz, sz / 1024); 5043 5044 /* hi-priority queue */ 5045 ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) * 5046 ioc->request_sz); 5047 ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) * 5048 ioc->request_sz); 5049 5050 /* internal queue */ 5051 ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth * 5052 ioc->request_sz); 5053 ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth * 5054 ioc->request_sz); 5055 5056 dinitprintk(ioc, 5057 ioc_info(ioc, "request pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n", 5058 ioc->request, ioc->hba_queue_depth, 5059 ioc->request_sz, 5060 (ioc->hba_queue_depth * ioc->request_sz) / 1024)); 5061 5062 dinitprintk(ioc, 5063 ioc_info(ioc, "request pool: dma(0x%llx)\n", 5064 (unsigned long long)ioc->request_dma)); 5065 total_sz += sz; 5066 5067 dinitprintk(ioc, 5068 ioc_info(ioc, "scsiio(0x%p): depth(%d)\n", 5069 ioc->request, ioc->scsiio_depth)); 5070 5071 ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH); 5072 sz = ioc->scsiio_depth * sizeof(struct chain_lookup); 5073 ioc->chain_lookup = kzalloc(sz, GFP_KERNEL); 5074 if (!ioc->chain_lookup) { 5075 ioc_err(ioc, "chain_lookup: __get_free_pages failed\n"); 5076 goto out; 5077 } 5078 5079 sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker); 5080 for (i = 0; i < ioc->scsiio_depth; i++) { 5081 ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL); 5082 if (!ioc->chain_lookup[i].chains_per_smid) { 5083 ioc_err(ioc, "chain_lookup: kzalloc failed\n"); 5084 goto out; 5085 } 5086 } 5087 5088 /* initialize hi-priority queue smid's */ 5089 ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth, 5090 sizeof(struct request_tracker), GFP_KERNEL); 5091 if (!ioc->hpr_lookup) { 5092 ioc_err(ioc, "hpr_lookup: kcalloc failed\n"); 5093 goto out; 5094 } 5095 ioc->hi_priority_smid = ioc->scsiio_depth + 1; 5096 dinitprintk(ioc, 5097 ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n", 5098 ioc->hi_priority, 5099 ioc->hi_priority_depth, ioc->hi_priority_smid)); 5100 5101 /* initialize internal queue smid's */ 5102 ioc->internal_lookup = kcalloc(ioc->internal_depth, 5103 sizeof(struct request_tracker), GFP_KERNEL); 5104 if (!ioc->internal_lookup) { 5105 ioc_err(ioc, "internal_lookup: kcalloc failed\n"); 5106 goto out; 5107 } 5108 ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth; 5109 dinitprintk(ioc, 5110 ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n", 5111 ioc->internal, 5112 ioc->internal_depth, ioc->internal_smid)); 5113 /* 5114 * The number of NVMe page sized blocks needed is: 5115 * (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1 5116 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry 5117 * that is placed in the main message frame. 8 is the size of each PRP 5118 * entry or PRP list pointer entry. 8 is subtracted from page_size 5119 * because of the PRP list pointer entry at the end of a page, so this 5120 * is not counted as a PRP entry. The 1 added page is a round up. 5121 * 5122 * To avoid allocation failures due to the amount of memory that could 5123 * be required for NVMe PRP's, only each set of NVMe blocks will be 5124 * contiguous, so a new set is allocated for each possible I/O. 5125 */ 5126 ioc->chains_per_prp_buffer = 0; 5127 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) { 5128 nvme_blocks_needed = 5129 (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1; 5130 nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE); 5131 nvme_blocks_needed++; 5132 5133 sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth; 5134 ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL); 5135 if (!ioc->pcie_sg_lookup) { 5136 ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n"); 5137 goto out; 5138 } 5139 sz = nvme_blocks_needed * ioc->page_size; 5140 ioc->pcie_sgl_dma_pool = 5141 dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz, 16, 0); 5142 if (!ioc->pcie_sgl_dma_pool) { 5143 ioc_info(ioc, "PCIe SGL pool: dma_pool_create failed\n"); 5144 goto out; 5145 } 5146 5147 ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz; 5148 ioc->chains_per_prp_buffer = min(ioc->chains_per_prp_buffer, 5149 ioc->chains_needed_per_io); 5150 5151 for (i = 0; i < ioc->scsiio_depth; i++) { 5152 ioc->pcie_sg_lookup[i].pcie_sgl = dma_pool_alloc( 5153 ioc->pcie_sgl_dma_pool, GFP_KERNEL, 5154 &ioc->pcie_sg_lookup[i].pcie_sgl_dma); 5155 if (!ioc->pcie_sg_lookup[i].pcie_sgl) { 5156 ioc_info(ioc, "PCIe SGL pool: dma_pool_alloc failed\n"); 5157 goto out; 5158 } 5159 for (j = 0; j < ioc->chains_per_prp_buffer; j++) { 5160 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 5161 ct->chain_buffer = 5162 ioc->pcie_sg_lookup[i].pcie_sgl + 5163 (j * ioc->chain_segment_sz); 5164 ct->chain_buffer_dma = 5165 ioc->pcie_sg_lookup[i].pcie_sgl_dma + 5166 (j * ioc->chain_segment_sz); 5167 } 5168 } 5169 5170 dinitprintk(ioc, 5171 ioc_info(ioc, "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n", 5172 ioc->scsiio_depth, sz, 5173 (sz * ioc->scsiio_depth) / 1024)); 5174 dinitprintk(ioc, 5175 ioc_info(ioc, "Number of chains can fit in a PRP page(%d)\n", 5176 ioc->chains_per_prp_buffer)); 5177 total_sz += sz * ioc->scsiio_depth; 5178 } 5179 5180 ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev, 5181 ioc->chain_segment_sz, 16, 0); 5182 if (!ioc->chain_dma_pool) { 5183 ioc_err(ioc, "chain_dma_pool: dma_pool_create failed\n"); 5184 goto out; 5185 } 5186 for (i = 0; i < ioc->scsiio_depth; i++) { 5187 for (j = ioc->chains_per_prp_buffer; 5188 j < ioc->chains_needed_per_io; j++) { 5189 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 5190 ct->chain_buffer = dma_pool_alloc( 5191 ioc->chain_dma_pool, GFP_KERNEL, 5192 &ct->chain_buffer_dma); 5193 if (!ct->chain_buffer) { 5194 ioc_err(ioc, "chain_lookup: pci_pool_alloc failed\n"); 5195 _base_release_memory_pools(ioc); 5196 goto out; 5197 } 5198 } 5199 total_sz += ioc->chain_segment_sz; 5200 } 5201 5202 dinitprintk(ioc, 5203 ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n", 5204 ioc->chain_depth, ioc->chain_segment_sz, 5205 (ioc->chain_depth * ioc->chain_segment_sz) / 1024)); 5206 5207 /* sense buffers, 4 byte align */ 5208 sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE; 5209 ioc->sense_dma_pool = dma_pool_create("sense pool", &ioc->pdev->dev, sz, 5210 4, 0); 5211 if (!ioc->sense_dma_pool) { 5212 ioc_err(ioc, "sense pool: dma_pool_create failed\n"); 5213 goto out; 5214 } 5215 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL, 5216 &ioc->sense_dma); 5217 if (!ioc->sense) { 5218 ioc_err(ioc, "sense pool: dma_pool_alloc failed\n"); 5219 goto out; 5220 } 5221 /* sense buffer requires to be in same 4 gb region. 5222 * Below function will check the same. 5223 * In case of failure, new pci pool will be created with updated 5224 * alignment. Older allocation and pool will be destroyed. 5225 * Alignment will be used such a way that next allocation if 5226 * success, will always meet same 4gb region requirement. 5227 * Actual requirement is not alignment, but we need start and end of 5228 * DMA address must have same upper 32 bit address. 5229 */ 5230 if (!is_MSB_are_same((long)ioc->sense, sz)) { 5231 //Release Sense pool & Reallocate 5232 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma); 5233 dma_pool_destroy(ioc->sense_dma_pool); 5234 ioc->sense = NULL; 5235 5236 ioc->sense_dma_pool = 5237 dma_pool_create("sense pool", &ioc->pdev->dev, sz, 5238 roundup_pow_of_two(sz), 0); 5239 if (!ioc->sense_dma_pool) { 5240 ioc_err(ioc, "sense pool: pci_pool_create failed\n"); 5241 goto out; 5242 } 5243 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL, 5244 &ioc->sense_dma); 5245 if (!ioc->sense) { 5246 ioc_err(ioc, "sense pool: pci_pool_alloc failed\n"); 5247 goto out; 5248 } 5249 } 5250 dinitprintk(ioc, 5251 ioc_info(ioc, "sense pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n", 5252 ioc->sense, ioc->scsiio_depth, 5253 SCSI_SENSE_BUFFERSIZE, sz / 1024)); 5254 dinitprintk(ioc, 5255 ioc_info(ioc, "sense_dma(0x%llx)\n", 5256 (unsigned long long)ioc->sense_dma)); 5257 total_sz += sz; 5258 5259 /* reply pool, 4 byte align */ 5260 sz = ioc->reply_free_queue_depth * ioc->reply_sz; 5261 ioc->reply_dma_pool = dma_pool_create("reply pool", &ioc->pdev->dev, sz, 5262 4, 0); 5263 if (!ioc->reply_dma_pool) { 5264 ioc_err(ioc, "reply pool: dma_pool_create failed\n"); 5265 goto out; 5266 } 5267 ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL, 5268 &ioc->reply_dma); 5269 if (!ioc->reply) { 5270 ioc_err(ioc, "reply pool: dma_pool_alloc failed\n"); 5271 goto out; 5272 } 5273 ioc->reply_dma_min_address = (u32)(ioc->reply_dma); 5274 ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz; 5275 dinitprintk(ioc, 5276 ioc_info(ioc, "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n", 5277 ioc->reply, ioc->reply_free_queue_depth, 5278 ioc->reply_sz, sz / 1024)); 5279 dinitprintk(ioc, 5280 ioc_info(ioc, "reply_dma(0x%llx)\n", 5281 (unsigned long long)ioc->reply_dma)); 5282 total_sz += sz; 5283 5284 /* reply free queue, 16 byte align */ 5285 sz = ioc->reply_free_queue_depth * 4; 5286 ioc->reply_free_dma_pool = dma_pool_create("reply_free pool", 5287 &ioc->pdev->dev, sz, 16, 0); 5288 if (!ioc->reply_free_dma_pool) { 5289 ioc_err(ioc, "reply_free pool: dma_pool_create failed\n"); 5290 goto out; 5291 } 5292 ioc->reply_free = dma_pool_zalloc(ioc->reply_free_dma_pool, GFP_KERNEL, 5293 &ioc->reply_free_dma); 5294 if (!ioc->reply_free) { 5295 ioc_err(ioc, "reply_free pool: dma_pool_alloc failed\n"); 5296 goto out; 5297 } 5298 dinitprintk(ioc, 5299 ioc_info(ioc, "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n", 5300 ioc->reply_free, ioc->reply_free_queue_depth, 5301 4, sz / 1024)); 5302 dinitprintk(ioc, 5303 ioc_info(ioc, "reply_free_dma (0x%llx)\n", 5304 (unsigned long long)ioc->reply_free_dma)); 5305 total_sz += sz; 5306 5307 if (ioc->rdpq_array_enable) { 5308 reply_post_free_array_sz = ioc->reply_queue_count * 5309 sizeof(Mpi2IOCInitRDPQArrayEntry); 5310 ioc->reply_post_free_array_dma_pool = 5311 dma_pool_create("reply_post_free_array pool", 5312 &ioc->pdev->dev, reply_post_free_array_sz, 16, 0); 5313 if (!ioc->reply_post_free_array_dma_pool) { 5314 dinitprintk(ioc, 5315 ioc_info(ioc, "reply_post_free_array pool: dma_pool_create failed\n")); 5316 goto out; 5317 } 5318 ioc->reply_post_free_array = 5319 dma_pool_alloc(ioc->reply_post_free_array_dma_pool, 5320 GFP_KERNEL, &ioc->reply_post_free_array_dma); 5321 if (!ioc->reply_post_free_array) { 5322 dinitprintk(ioc, 5323 ioc_info(ioc, "reply_post_free_array pool: dma_pool_alloc failed\n")); 5324 goto out; 5325 } 5326 } 5327 ioc->config_page_sz = 512; 5328 ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev, 5329 ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL); 5330 if (!ioc->config_page) { 5331 ioc_err(ioc, "config page: dma_pool_alloc failed\n"); 5332 goto out; 5333 } 5334 dinitprintk(ioc, 5335 ioc_info(ioc, "config page(0x%p): size(%d)\n", 5336 ioc->config_page, ioc->config_page_sz)); 5337 dinitprintk(ioc, 5338 ioc_info(ioc, "config_page_dma(0x%llx)\n", 5339 (unsigned long long)ioc->config_page_dma)); 5340 total_sz += ioc->config_page_sz; 5341 5342 ioc_info(ioc, "Allocated physical memory: size(%d kB)\n", 5343 total_sz / 1024); 5344 ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n", 5345 ioc->shost->can_queue, facts->RequestCredit); 5346 ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n", 5347 ioc->shost->sg_tablesize); 5348 return 0; 5349 5350 out: 5351 return -ENOMEM; 5352 } 5353 5354 /** 5355 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter. 5356 * @ioc: Pointer to MPT_ADAPTER structure 5357 * @cooked: Request raw or cooked IOC state 5358 * 5359 * Return: all IOC Doorbell register bits if cooked==0, else just the 5360 * Doorbell bits in MPI_IOC_STATE_MASK. 5361 */ 5362 u32 5363 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked) 5364 { 5365 u32 s, sc; 5366 5367 s = ioc->base_readl(&ioc->chip->Doorbell); 5368 sc = s & MPI2_IOC_STATE_MASK; 5369 return cooked ? sc : s; 5370 } 5371 5372 /** 5373 * _base_wait_on_iocstate - waiting on a particular ioc state 5374 * @ioc: ? 5375 * @ioc_state: controller state { READY, OPERATIONAL, or RESET } 5376 * @timeout: timeout in second 5377 * 5378 * Return: 0 for success, non-zero for failure. 5379 */ 5380 static int 5381 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout) 5382 { 5383 u32 count, cntdn; 5384 u32 current_state; 5385 5386 count = 0; 5387 cntdn = 1000 * timeout; 5388 do { 5389 current_state = mpt3sas_base_get_iocstate(ioc, 1); 5390 if (current_state == ioc_state) 5391 return 0; 5392 if (count && current_state == MPI2_IOC_STATE_FAULT) 5393 break; 5394 5395 usleep_range(1000, 1500); 5396 count++; 5397 } while (--cntdn); 5398 5399 return current_state; 5400 } 5401 5402 /** 5403 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by 5404 * a write to the doorbell) 5405 * @ioc: per adapter object 5406 * 5407 * Return: 0 for success, non-zero for failure. 5408 * 5409 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell. 5410 */ 5411 static int 5412 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc); 5413 5414 static int 5415 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout) 5416 { 5417 u32 cntdn, count; 5418 u32 int_status; 5419 5420 count = 0; 5421 cntdn = 1000 * timeout; 5422 do { 5423 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 5424 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 5425 dhsprintk(ioc, 5426 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 5427 __func__, count, timeout)); 5428 return 0; 5429 } 5430 5431 usleep_range(1000, 1500); 5432 count++; 5433 } while (--cntdn); 5434 5435 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 5436 __func__, count, int_status); 5437 return -EFAULT; 5438 } 5439 5440 static int 5441 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout) 5442 { 5443 u32 cntdn, count; 5444 u32 int_status; 5445 5446 count = 0; 5447 cntdn = 2000 * timeout; 5448 do { 5449 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 5450 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 5451 dhsprintk(ioc, 5452 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 5453 __func__, count, timeout)); 5454 return 0; 5455 } 5456 5457 udelay(500); 5458 count++; 5459 } while (--cntdn); 5460 5461 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 5462 __func__, count, int_status); 5463 return -EFAULT; 5464 5465 } 5466 5467 /** 5468 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell. 5469 * @ioc: per adapter object 5470 * @timeout: timeout in second 5471 * 5472 * Return: 0 for success, non-zero for failure. 5473 * 5474 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to 5475 * doorbell. 5476 */ 5477 static int 5478 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout) 5479 { 5480 u32 cntdn, count; 5481 u32 int_status; 5482 u32 doorbell; 5483 5484 count = 0; 5485 cntdn = 1000 * timeout; 5486 do { 5487 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 5488 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) { 5489 dhsprintk(ioc, 5490 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 5491 __func__, count, timeout)); 5492 return 0; 5493 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 5494 doorbell = ioc->base_readl(&ioc->chip->Doorbell); 5495 if ((doorbell & MPI2_IOC_STATE_MASK) == 5496 MPI2_IOC_STATE_FAULT) { 5497 mpt3sas_base_fault_info(ioc , doorbell); 5498 return -EFAULT; 5499 } 5500 } else if (int_status == 0xFFFFFFFF) 5501 goto out; 5502 5503 usleep_range(1000, 1500); 5504 count++; 5505 } while (--cntdn); 5506 5507 out: 5508 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 5509 __func__, count, int_status); 5510 return -EFAULT; 5511 } 5512 5513 /** 5514 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use 5515 * @ioc: per adapter object 5516 * @timeout: timeout in second 5517 * 5518 * Return: 0 for success, non-zero for failure. 5519 */ 5520 static int 5521 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout) 5522 { 5523 u32 cntdn, count; 5524 u32 doorbell_reg; 5525 5526 count = 0; 5527 cntdn = 1000 * timeout; 5528 do { 5529 doorbell_reg = ioc->base_readl(&ioc->chip->Doorbell); 5530 if (!(doorbell_reg & MPI2_DOORBELL_USED)) { 5531 dhsprintk(ioc, 5532 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 5533 __func__, count, timeout)); 5534 return 0; 5535 } 5536 5537 usleep_range(1000, 1500); 5538 count++; 5539 } while (--cntdn); 5540 5541 ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n", 5542 __func__, count, doorbell_reg); 5543 return -EFAULT; 5544 } 5545 5546 /** 5547 * _base_send_ioc_reset - send doorbell reset 5548 * @ioc: per adapter object 5549 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET 5550 * @timeout: timeout in second 5551 * 5552 * Return: 0 for success, non-zero for failure. 5553 */ 5554 static int 5555 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout) 5556 { 5557 u32 ioc_state; 5558 int r = 0; 5559 5560 if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) { 5561 ioc_err(ioc, "%s: unknown reset_type\n", __func__); 5562 return -EFAULT; 5563 } 5564 5565 if (!(ioc->facts.IOCCapabilities & 5566 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY)) 5567 return -EFAULT; 5568 5569 ioc_info(ioc, "sending message unit reset !!\n"); 5570 5571 writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT, 5572 &ioc->chip->Doorbell); 5573 if ((_base_wait_for_doorbell_ack(ioc, 15))) { 5574 r = -EFAULT; 5575 goto out; 5576 } 5577 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout); 5578 if (ioc_state) { 5579 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 5580 __func__, ioc_state); 5581 r = -EFAULT; 5582 goto out; 5583 } 5584 out: 5585 ioc_info(ioc, "message unit reset: %s\n", 5586 r == 0 ? "SUCCESS" : "FAILED"); 5587 return r; 5588 } 5589 5590 /** 5591 * mpt3sas_wait_for_ioc - IOC's operational state is checked here. 5592 * @ioc: per adapter object 5593 * @wait_count: timeout in seconds 5594 * 5595 * Return: Waits up to timeout seconds for the IOC to 5596 * become operational. Returns 0 if IOC is present 5597 * and operational; otherwise returns -EFAULT. 5598 */ 5599 5600 int 5601 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout) 5602 { 5603 int wait_state_count = 0; 5604 u32 ioc_state; 5605 5606 do { 5607 ioc_state = mpt3sas_base_get_iocstate(ioc, 1); 5608 if (ioc_state == MPI2_IOC_STATE_OPERATIONAL) 5609 break; 5610 ssleep(1); 5611 ioc_info(ioc, "%s: waiting for operational state(count=%d)\n", 5612 __func__, ++wait_state_count); 5613 } while (--timeout); 5614 if (!timeout) { 5615 ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__); 5616 return -EFAULT; 5617 } 5618 if (wait_state_count) 5619 ioc_info(ioc, "ioc is operational\n"); 5620 return 0; 5621 } 5622 5623 /** 5624 * _base_handshake_req_reply_wait - send request thru doorbell interface 5625 * @ioc: per adapter object 5626 * @request_bytes: request length 5627 * @request: pointer having request payload 5628 * @reply_bytes: reply length 5629 * @reply: pointer to reply payload 5630 * @timeout: timeout in second 5631 * 5632 * Return: 0 for success, non-zero for failure. 5633 */ 5634 static int 5635 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes, 5636 u32 *request, int reply_bytes, u16 *reply, int timeout) 5637 { 5638 MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply; 5639 int i; 5640 u8 failed; 5641 __le32 *mfp; 5642 5643 /* make sure doorbell is not in use */ 5644 if ((ioc->base_readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) { 5645 ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__); 5646 return -EFAULT; 5647 } 5648 5649 /* clear pending doorbell interrupts from previous state changes */ 5650 if (ioc->base_readl(&ioc->chip->HostInterruptStatus) & 5651 MPI2_HIS_IOC2SYS_DB_STATUS) 5652 writel(0, &ioc->chip->HostInterruptStatus); 5653 5654 /* send message to ioc */ 5655 writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) | 5656 ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)), 5657 &ioc->chip->Doorbell); 5658 5659 if ((_base_spin_on_doorbell_int(ioc, 5))) { 5660 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 5661 __LINE__); 5662 return -EFAULT; 5663 } 5664 writel(0, &ioc->chip->HostInterruptStatus); 5665 5666 if ((_base_wait_for_doorbell_ack(ioc, 5))) { 5667 ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n", 5668 __LINE__); 5669 return -EFAULT; 5670 } 5671 5672 /* send message 32-bits at a time */ 5673 for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) { 5674 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell); 5675 if ((_base_wait_for_doorbell_ack(ioc, 5))) 5676 failed = 1; 5677 } 5678 5679 if (failed) { 5680 ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n", 5681 __LINE__); 5682 return -EFAULT; 5683 } 5684 5685 /* now wait for the reply */ 5686 if ((_base_wait_for_doorbell_int(ioc, timeout))) { 5687 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 5688 __LINE__); 5689 return -EFAULT; 5690 } 5691 5692 /* read the first two 16-bits, it gives the total length of the reply */ 5693 reply[0] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell) 5694 & MPI2_DOORBELL_DATA_MASK); 5695 writel(0, &ioc->chip->HostInterruptStatus); 5696 if ((_base_wait_for_doorbell_int(ioc, 5))) { 5697 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 5698 __LINE__); 5699 return -EFAULT; 5700 } 5701 reply[1] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell) 5702 & MPI2_DOORBELL_DATA_MASK); 5703 writel(0, &ioc->chip->HostInterruptStatus); 5704 5705 for (i = 2; i < default_reply->MsgLength * 2; i++) { 5706 if ((_base_wait_for_doorbell_int(ioc, 5))) { 5707 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 5708 __LINE__); 5709 return -EFAULT; 5710 } 5711 if (i >= reply_bytes/2) /* overflow case */ 5712 ioc->base_readl(&ioc->chip->Doorbell); 5713 else 5714 reply[i] = le16_to_cpu( 5715 ioc->base_readl(&ioc->chip->Doorbell) 5716 & MPI2_DOORBELL_DATA_MASK); 5717 writel(0, &ioc->chip->HostInterruptStatus); 5718 } 5719 5720 _base_wait_for_doorbell_int(ioc, 5); 5721 if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) { 5722 dhsprintk(ioc, 5723 ioc_info(ioc, "doorbell is in use (line=%d)\n", 5724 __LINE__)); 5725 } 5726 writel(0, &ioc->chip->HostInterruptStatus); 5727 5728 if (ioc->logging_level & MPT_DEBUG_INIT) { 5729 mfp = (__le32 *)reply; 5730 pr_info("\toffset:data\n"); 5731 for (i = 0; i < reply_bytes/4; i++) 5732 pr_info("\t[0x%02x]:%08x\n", i*4, 5733 le32_to_cpu(mfp[i])); 5734 } 5735 return 0; 5736 } 5737 5738 /** 5739 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW 5740 * @ioc: per adapter object 5741 * @mpi_reply: the reply payload from FW 5742 * @mpi_request: the request payload sent to FW 5743 * 5744 * The SAS IO Unit Control Request message allows the host to perform low-level 5745 * operations, such as resets on the PHYs of the IO Unit, also allows the host 5746 * to obtain the IOC assigned device handles for a device if it has other 5747 * identifying information about the device, in addition allows the host to 5748 * remove IOC resources associated with the device. 5749 * 5750 * Return: 0 for success, non-zero for failure. 5751 */ 5752 int 5753 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc, 5754 Mpi2SasIoUnitControlReply_t *mpi_reply, 5755 Mpi2SasIoUnitControlRequest_t *mpi_request) 5756 { 5757 u16 smid; 5758 u8 issue_reset = 0; 5759 int rc; 5760 void *request; 5761 5762 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 5763 5764 mutex_lock(&ioc->base_cmds.mutex); 5765 5766 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) { 5767 ioc_err(ioc, "%s: base_cmd in use\n", __func__); 5768 rc = -EAGAIN; 5769 goto out; 5770 } 5771 5772 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT); 5773 if (rc) 5774 goto out; 5775 5776 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 5777 if (!smid) { 5778 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 5779 rc = -EAGAIN; 5780 goto out; 5781 } 5782 5783 rc = 0; 5784 ioc->base_cmds.status = MPT3_CMD_PENDING; 5785 request = mpt3sas_base_get_msg_frame(ioc, smid); 5786 ioc->base_cmds.smid = smid; 5787 memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)); 5788 if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET || 5789 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) 5790 ioc->ioc_link_reset_in_progress = 1; 5791 init_completion(&ioc->base_cmds.done); 5792 ioc->put_smid_default(ioc, smid); 5793 wait_for_completion_timeout(&ioc->base_cmds.done, 5794 msecs_to_jiffies(10000)); 5795 if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET || 5796 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) && 5797 ioc->ioc_link_reset_in_progress) 5798 ioc->ioc_link_reset_in_progress = 0; 5799 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 5800 issue_reset = 5801 mpt3sas_base_check_cmd_timeout(ioc, 5802 ioc->base_cmds.status, mpi_request, 5803 sizeof(Mpi2SasIoUnitControlRequest_t)/4); 5804 goto issue_host_reset; 5805 } 5806 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) 5807 memcpy(mpi_reply, ioc->base_cmds.reply, 5808 sizeof(Mpi2SasIoUnitControlReply_t)); 5809 else 5810 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t)); 5811 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 5812 goto out; 5813 5814 issue_host_reset: 5815 if (issue_reset) 5816 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 5817 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 5818 rc = -EFAULT; 5819 out: 5820 mutex_unlock(&ioc->base_cmds.mutex); 5821 return rc; 5822 } 5823 5824 /** 5825 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device 5826 * @ioc: per adapter object 5827 * @mpi_reply: the reply payload from FW 5828 * @mpi_request: the request payload sent to FW 5829 * 5830 * The SCSI Enclosure Processor request message causes the IOC to 5831 * communicate with SES devices to control LED status signals. 5832 * 5833 * Return: 0 for success, non-zero for failure. 5834 */ 5835 int 5836 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc, 5837 Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request) 5838 { 5839 u16 smid; 5840 u8 issue_reset = 0; 5841 int rc; 5842 void *request; 5843 5844 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 5845 5846 mutex_lock(&ioc->base_cmds.mutex); 5847 5848 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) { 5849 ioc_err(ioc, "%s: base_cmd in use\n", __func__); 5850 rc = -EAGAIN; 5851 goto out; 5852 } 5853 5854 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT); 5855 if (rc) 5856 goto out; 5857 5858 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 5859 if (!smid) { 5860 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 5861 rc = -EAGAIN; 5862 goto out; 5863 } 5864 5865 rc = 0; 5866 ioc->base_cmds.status = MPT3_CMD_PENDING; 5867 request = mpt3sas_base_get_msg_frame(ioc, smid); 5868 ioc->base_cmds.smid = smid; 5869 memcpy(request, mpi_request, sizeof(Mpi2SepReply_t)); 5870 init_completion(&ioc->base_cmds.done); 5871 ioc->put_smid_default(ioc, smid); 5872 wait_for_completion_timeout(&ioc->base_cmds.done, 5873 msecs_to_jiffies(10000)); 5874 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 5875 issue_reset = 5876 mpt3sas_base_check_cmd_timeout(ioc, 5877 ioc->base_cmds.status, mpi_request, 5878 sizeof(Mpi2SepRequest_t)/4); 5879 goto issue_host_reset; 5880 } 5881 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) 5882 memcpy(mpi_reply, ioc->base_cmds.reply, 5883 sizeof(Mpi2SepReply_t)); 5884 else 5885 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t)); 5886 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 5887 goto out; 5888 5889 issue_host_reset: 5890 if (issue_reset) 5891 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 5892 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 5893 rc = -EFAULT; 5894 out: 5895 mutex_unlock(&ioc->base_cmds.mutex); 5896 return rc; 5897 } 5898 5899 /** 5900 * _base_get_port_facts - obtain port facts reply and save in ioc 5901 * @ioc: per adapter object 5902 * @port: ? 5903 * 5904 * Return: 0 for success, non-zero for failure. 5905 */ 5906 static int 5907 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port) 5908 { 5909 Mpi2PortFactsRequest_t mpi_request; 5910 Mpi2PortFactsReply_t mpi_reply; 5911 struct mpt3sas_port_facts *pfacts; 5912 int mpi_reply_sz, mpi_request_sz, r; 5913 5914 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 5915 5916 mpi_reply_sz = sizeof(Mpi2PortFactsReply_t); 5917 mpi_request_sz = sizeof(Mpi2PortFactsRequest_t); 5918 memset(&mpi_request, 0, mpi_request_sz); 5919 mpi_request.Function = MPI2_FUNCTION_PORT_FACTS; 5920 mpi_request.PortNumber = port; 5921 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz, 5922 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5); 5923 5924 if (r != 0) { 5925 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 5926 return r; 5927 } 5928 5929 pfacts = &ioc->pfacts[port]; 5930 memset(pfacts, 0, sizeof(struct mpt3sas_port_facts)); 5931 pfacts->PortNumber = mpi_reply.PortNumber; 5932 pfacts->VP_ID = mpi_reply.VP_ID; 5933 pfacts->VF_ID = mpi_reply.VF_ID; 5934 pfacts->MaxPostedCmdBuffers = 5935 le16_to_cpu(mpi_reply.MaxPostedCmdBuffers); 5936 5937 return 0; 5938 } 5939 5940 /** 5941 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL 5942 * @ioc: per adapter object 5943 * @timeout: 5944 * 5945 * Return: 0 for success, non-zero for failure. 5946 */ 5947 static int 5948 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout) 5949 { 5950 u32 ioc_state; 5951 int rc; 5952 5953 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 5954 5955 if (ioc->pci_error_recovery) { 5956 dfailprintk(ioc, 5957 ioc_info(ioc, "%s: host in pci error recovery\n", 5958 __func__)); 5959 return -EFAULT; 5960 } 5961 5962 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 5963 dhsprintk(ioc, 5964 ioc_info(ioc, "%s: ioc_state(0x%08x)\n", 5965 __func__, ioc_state)); 5966 5967 if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) || 5968 (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL) 5969 return 0; 5970 5971 if (ioc_state & MPI2_DOORBELL_USED) { 5972 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n")); 5973 goto issue_diag_reset; 5974 } 5975 5976 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 5977 mpt3sas_base_fault_info(ioc, ioc_state & 5978 MPI2_DOORBELL_DATA_MASK); 5979 goto issue_diag_reset; 5980 } 5981 5982 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout); 5983 if (ioc_state) { 5984 dfailprintk(ioc, 5985 ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 5986 __func__, ioc_state)); 5987 return -EFAULT; 5988 } 5989 5990 issue_diag_reset: 5991 rc = _base_diag_reset(ioc); 5992 return rc; 5993 } 5994 5995 /** 5996 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc 5997 * @ioc: per adapter object 5998 * 5999 * Return: 0 for success, non-zero for failure. 6000 */ 6001 static int 6002 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc) 6003 { 6004 Mpi2IOCFactsRequest_t mpi_request; 6005 Mpi2IOCFactsReply_t mpi_reply; 6006 struct mpt3sas_facts *facts; 6007 int mpi_reply_sz, mpi_request_sz, r; 6008 6009 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6010 6011 r = _base_wait_for_iocstate(ioc, 10); 6012 if (r) { 6013 dfailprintk(ioc, 6014 ioc_info(ioc, "%s: failed getting to correct state\n", 6015 __func__)); 6016 return r; 6017 } 6018 mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t); 6019 mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t); 6020 memset(&mpi_request, 0, mpi_request_sz); 6021 mpi_request.Function = MPI2_FUNCTION_IOC_FACTS; 6022 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz, 6023 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5); 6024 6025 if (r != 0) { 6026 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 6027 return r; 6028 } 6029 6030 facts = &ioc->facts; 6031 memset(facts, 0, sizeof(struct mpt3sas_facts)); 6032 facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion); 6033 facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion); 6034 facts->VP_ID = mpi_reply.VP_ID; 6035 facts->VF_ID = mpi_reply.VF_ID; 6036 facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions); 6037 facts->MaxChainDepth = mpi_reply.MaxChainDepth; 6038 facts->WhoInit = mpi_reply.WhoInit; 6039 facts->NumberOfPorts = mpi_reply.NumberOfPorts; 6040 facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors; 6041 if (ioc->msix_enable && (facts->MaxMSIxVectors <= 6042 MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc))) 6043 ioc->combined_reply_queue = 0; 6044 facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit); 6045 facts->MaxReplyDescriptorPostQueueDepth = 6046 le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth); 6047 facts->ProductID = le16_to_cpu(mpi_reply.ProductID); 6048 facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities); 6049 if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)) 6050 ioc->ir_firmware = 1; 6051 if ((facts->IOCCapabilities & 6052 MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices)) 6053 ioc->rdpq_array_capable = 1; 6054 if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ) 6055 && ioc->is_aero_ioc) 6056 ioc->atomic_desc_capable = 1; 6057 facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word); 6058 facts->IOCRequestFrameSize = 6059 le16_to_cpu(mpi_reply.IOCRequestFrameSize); 6060 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 6061 facts->IOCMaxChainSegmentSize = 6062 le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize); 6063 } 6064 facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators); 6065 facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets); 6066 ioc->shost->max_id = -1; 6067 facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders); 6068 facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures); 6069 facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags); 6070 facts->HighPriorityCredit = 6071 le16_to_cpu(mpi_reply.HighPriorityCredit); 6072 facts->ReplyFrameSize = mpi_reply.ReplyFrameSize; 6073 facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle); 6074 facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize; 6075 6076 /* 6077 * Get the Page Size from IOC Facts. If it's 0, default to 4k. 6078 */ 6079 ioc->page_size = 1 << facts->CurrentHostPageSize; 6080 if (ioc->page_size == 1) { 6081 ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n"); 6082 ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K; 6083 } 6084 dinitprintk(ioc, 6085 ioc_info(ioc, "CurrentHostPageSize(%d)\n", 6086 facts->CurrentHostPageSize)); 6087 6088 dinitprintk(ioc, 6089 ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n", 6090 facts->RequestCredit, facts->MaxChainDepth)); 6091 dinitprintk(ioc, 6092 ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n", 6093 facts->IOCRequestFrameSize * 4, 6094 facts->ReplyFrameSize * 4)); 6095 return 0; 6096 } 6097 6098 /** 6099 * _base_send_ioc_init - send ioc_init to firmware 6100 * @ioc: per adapter object 6101 * 6102 * Return: 0 for success, non-zero for failure. 6103 */ 6104 static int 6105 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc) 6106 { 6107 Mpi2IOCInitRequest_t mpi_request; 6108 Mpi2IOCInitReply_t mpi_reply; 6109 int i, r = 0; 6110 ktime_t current_time; 6111 u16 ioc_status; 6112 u32 reply_post_free_array_sz = 0; 6113 6114 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6115 6116 memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t)); 6117 mpi_request.Function = MPI2_FUNCTION_IOC_INIT; 6118 mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER; 6119 mpi_request.VF_ID = 0; /* TODO */ 6120 mpi_request.VP_ID = 0; 6121 mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged); 6122 mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION); 6123 mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K; 6124 6125 if (_base_is_controller_msix_enabled(ioc)) 6126 mpi_request.HostMSIxVectors = ioc->reply_queue_count; 6127 mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4); 6128 mpi_request.ReplyDescriptorPostQueueDepth = 6129 cpu_to_le16(ioc->reply_post_queue_depth); 6130 mpi_request.ReplyFreeQueueDepth = 6131 cpu_to_le16(ioc->reply_free_queue_depth); 6132 6133 mpi_request.SenseBufferAddressHigh = 6134 cpu_to_le32((u64)ioc->sense_dma >> 32); 6135 mpi_request.SystemReplyAddressHigh = 6136 cpu_to_le32((u64)ioc->reply_dma >> 32); 6137 mpi_request.SystemRequestFrameBaseAddress = 6138 cpu_to_le64((u64)ioc->request_dma); 6139 mpi_request.ReplyFreeQueueAddress = 6140 cpu_to_le64((u64)ioc->reply_free_dma); 6141 6142 if (ioc->rdpq_array_enable) { 6143 reply_post_free_array_sz = ioc->reply_queue_count * 6144 sizeof(Mpi2IOCInitRDPQArrayEntry); 6145 memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz); 6146 for (i = 0; i < ioc->reply_queue_count; i++) 6147 ioc->reply_post_free_array[i].RDPQBaseAddress = 6148 cpu_to_le64( 6149 (u64)ioc->reply_post[i].reply_post_free_dma); 6150 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE; 6151 mpi_request.ReplyDescriptorPostQueueAddress = 6152 cpu_to_le64((u64)ioc->reply_post_free_array_dma); 6153 } else { 6154 mpi_request.ReplyDescriptorPostQueueAddress = 6155 cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma); 6156 } 6157 6158 /* This time stamp specifies number of milliseconds 6159 * since epoch ~ midnight January 1, 1970. 6160 */ 6161 current_time = ktime_get_real(); 6162 mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time)); 6163 6164 if (ioc->logging_level & MPT_DEBUG_INIT) { 6165 __le32 *mfp; 6166 int i; 6167 6168 mfp = (__le32 *)&mpi_request; 6169 pr_info("\toffset:data\n"); 6170 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++) 6171 pr_info("\t[0x%02x]:%08x\n", i*4, 6172 le32_to_cpu(mfp[i])); 6173 } 6174 6175 r = _base_handshake_req_reply_wait(ioc, 6176 sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request, 6177 sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10); 6178 6179 if (r != 0) { 6180 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 6181 return r; 6182 } 6183 6184 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK; 6185 if (ioc_status != MPI2_IOCSTATUS_SUCCESS || 6186 mpi_reply.IOCLogInfo) { 6187 ioc_err(ioc, "%s: failed\n", __func__); 6188 r = -EIO; 6189 } 6190 6191 return r; 6192 } 6193 6194 /** 6195 * mpt3sas_port_enable_done - command completion routine for port enable 6196 * @ioc: per adapter object 6197 * @smid: system request message index 6198 * @msix_index: MSIX table index supplied by the OS 6199 * @reply: reply message frame(lower 32bit addr) 6200 * 6201 * Return: 1 meaning mf should be freed from _base_interrupt 6202 * 0 means the mf is freed from this function. 6203 */ 6204 u8 6205 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 6206 u32 reply) 6207 { 6208 MPI2DefaultReply_t *mpi_reply; 6209 u16 ioc_status; 6210 6211 if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED) 6212 return 1; 6213 6214 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 6215 if (!mpi_reply) 6216 return 1; 6217 6218 if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE) 6219 return 1; 6220 6221 ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING; 6222 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE; 6223 ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID; 6224 memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4); 6225 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 6226 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) 6227 ioc->port_enable_failed = 1; 6228 6229 if (ioc->is_driver_loading) { 6230 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 6231 mpt3sas_port_enable_complete(ioc); 6232 return 1; 6233 } else { 6234 ioc->start_scan_failed = ioc_status; 6235 ioc->start_scan = 0; 6236 return 1; 6237 } 6238 } 6239 complete(&ioc->port_enable_cmds.done); 6240 return 1; 6241 } 6242 6243 /** 6244 * _base_send_port_enable - send port_enable(discovery stuff) to firmware 6245 * @ioc: per adapter object 6246 * 6247 * Return: 0 for success, non-zero for failure. 6248 */ 6249 static int 6250 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc) 6251 { 6252 Mpi2PortEnableRequest_t *mpi_request; 6253 Mpi2PortEnableReply_t *mpi_reply; 6254 int r = 0; 6255 u16 smid; 6256 u16 ioc_status; 6257 6258 ioc_info(ioc, "sending port enable !!\n"); 6259 6260 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 6261 ioc_err(ioc, "%s: internal command already in use\n", __func__); 6262 return -EAGAIN; 6263 } 6264 6265 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx); 6266 if (!smid) { 6267 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 6268 return -EAGAIN; 6269 } 6270 6271 ioc->port_enable_cmds.status = MPT3_CMD_PENDING; 6272 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 6273 ioc->port_enable_cmds.smid = smid; 6274 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t)); 6275 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE; 6276 6277 init_completion(&ioc->port_enable_cmds.done); 6278 ioc->put_smid_default(ioc, smid); 6279 wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ); 6280 if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) { 6281 ioc_err(ioc, "%s: timeout\n", __func__); 6282 _debug_dump_mf(mpi_request, 6283 sizeof(Mpi2PortEnableRequest_t)/4); 6284 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET) 6285 r = -EFAULT; 6286 else 6287 r = -ETIME; 6288 goto out; 6289 } 6290 6291 mpi_reply = ioc->port_enable_cmds.reply; 6292 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 6293 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 6294 ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n", 6295 __func__, ioc_status); 6296 r = -EFAULT; 6297 goto out; 6298 } 6299 6300 out: 6301 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED; 6302 ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED"); 6303 return r; 6304 } 6305 6306 /** 6307 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply) 6308 * @ioc: per adapter object 6309 * 6310 * Return: 0 for success, non-zero for failure. 6311 */ 6312 int 6313 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc) 6314 { 6315 Mpi2PortEnableRequest_t *mpi_request; 6316 u16 smid; 6317 6318 ioc_info(ioc, "sending port enable !!\n"); 6319 6320 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 6321 ioc_err(ioc, "%s: internal command already in use\n", __func__); 6322 return -EAGAIN; 6323 } 6324 6325 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx); 6326 if (!smid) { 6327 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 6328 return -EAGAIN; 6329 } 6330 6331 ioc->port_enable_cmds.status = MPT3_CMD_PENDING; 6332 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 6333 ioc->port_enable_cmds.smid = smid; 6334 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t)); 6335 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE; 6336 6337 ioc->put_smid_default(ioc, smid); 6338 return 0; 6339 } 6340 6341 /** 6342 * _base_determine_wait_on_discovery - desposition 6343 * @ioc: per adapter object 6344 * 6345 * Decide whether to wait on discovery to complete. Used to either 6346 * locate boot device, or report volumes ahead of physical devices. 6347 * 6348 * Return: 1 for wait, 0 for don't wait. 6349 */ 6350 static int 6351 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc) 6352 { 6353 /* We wait for discovery to complete if IR firmware is loaded. 6354 * The sas topology events arrive before PD events, so we need time to 6355 * turn on the bit in ioc->pd_handles to indicate PD 6356 * Also, it maybe required to report Volumes ahead of physical 6357 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set. 6358 */ 6359 if (ioc->ir_firmware) 6360 return 1; 6361 6362 /* if no Bios, then we don't need to wait */ 6363 if (!ioc->bios_pg3.BiosVersion) 6364 return 0; 6365 6366 /* Bios is present, then we drop down here. 6367 * 6368 * If there any entries in the Bios Page 2, then we wait 6369 * for discovery to complete. 6370 */ 6371 6372 /* Current Boot Device */ 6373 if ((ioc->bios_pg2.CurrentBootDeviceForm & 6374 MPI2_BIOSPAGE2_FORM_MASK) == 6375 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED && 6376 /* Request Boot Device */ 6377 (ioc->bios_pg2.ReqBootDeviceForm & 6378 MPI2_BIOSPAGE2_FORM_MASK) == 6379 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED && 6380 /* Alternate Request Boot Device */ 6381 (ioc->bios_pg2.ReqAltBootDeviceForm & 6382 MPI2_BIOSPAGE2_FORM_MASK) == 6383 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED) 6384 return 0; 6385 6386 return 1; 6387 } 6388 6389 /** 6390 * _base_unmask_events - turn on notification for this event 6391 * @ioc: per adapter object 6392 * @event: firmware event 6393 * 6394 * The mask is stored in ioc->event_masks. 6395 */ 6396 static void 6397 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event) 6398 { 6399 u32 desired_event; 6400 6401 if (event >= 128) 6402 return; 6403 6404 desired_event = (1 << (event % 32)); 6405 6406 if (event < 32) 6407 ioc->event_masks[0] &= ~desired_event; 6408 else if (event < 64) 6409 ioc->event_masks[1] &= ~desired_event; 6410 else if (event < 96) 6411 ioc->event_masks[2] &= ~desired_event; 6412 else if (event < 128) 6413 ioc->event_masks[3] &= ~desired_event; 6414 } 6415 6416 /** 6417 * _base_event_notification - send event notification 6418 * @ioc: per adapter object 6419 * 6420 * Return: 0 for success, non-zero for failure. 6421 */ 6422 static int 6423 _base_event_notification(struct MPT3SAS_ADAPTER *ioc) 6424 { 6425 Mpi2EventNotificationRequest_t *mpi_request; 6426 u16 smid; 6427 int r = 0; 6428 int i; 6429 6430 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6431 6432 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 6433 ioc_err(ioc, "%s: internal command already in use\n", __func__); 6434 return -EAGAIN; 6435 } 6436 6437 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 6438 if (!smid) { 6439 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 6440 return -EAGAIN; 6441 } 6442 ioc->base_cmds.status = MPT3_CMD_PENDING; 6443 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 6444 ioc->base_cmds.smid = smid; 6445 memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t)); 6446 mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION; 6447 mpi_request->VF_ID = 0; /* TODO */ 6448 mpi_request->VP_ID = 0; 6449 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 6450 mpi_request->EventMasks[i] = 6451 cpu_to_le32(ioc->event_masks[i]); 6452 init_completion(&ioc->base_cmds.done); 6453 ioc->put_smid_default(ioc, smid); 6454 wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ); 6455 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 6456 ioc_err(ioc, "%s: timeout\n", __func__); 6457 _debug_dump_mf(mpi_request, 6458 sizeof(Mpi2EventNotificationRequest_t)/4); 6459 if (ioc->base_cmds.status & MPT3_CMD_RESET) 6460 r = -EFAULT; 6461 else 6462 r = -ETIME; 6463 } else 6464 dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__)); 6465 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 6466 return r; 6467 } 6468 6469 /** 6470 * mpt3sas_base_validate_event_type - validating event types 6471 * @ioc: per adapter object 6472 * @event_type: firmware event 6473 * 6474 * This will turn on firmware event notification when application 6475 * ask for that event. We don't mask events that are already enabled. 6476 */ 6477 void 6478 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type) 6479 { 6480 int i, j; 6481 u32 event_mask, desired_event; 6482 u8 send_update_to_fw; 6483 6484 for (i = 0, send_update_to_fw = 0; i < 6485 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) { 6486 event_mask = ~event_type[i]; 6487 desired_event = 1; 6488 for (j = 0; j < 32; j++) { 6489 if (!(event_mask & desired_event) && 6490 (ioc->event_masks[i] & desired_event)) { 6491 ioc->event_masks[i] &= ~desired_event; 6492 send_update_to_fw = 1; 6493 } 6494 desired_event = (desired_event << 1); 6495 } 6496 } 6497 6498 if (!send_update_to_fw) 6499 return; 6500 6501 mutex_lock(&ioc->base_cmds.mutex); 6502 _base_event_notification(ioc); 6503 mutex_unlock(&ioc->base_cmds.mutex); 6504 } 6505 6506 /** 6507 * _base_diag_reset - the "big hammer" start of day reset 6508 * @ioc: per adapter object 6509 * 6510 * Return: 0 for success, non-zero for failure. 6511 */ 6512 static int 6513 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc) 6514 { 6515 u32 host_diagnostic; 6516 u32 ioc_state; 6517 u32 count; 6518 u32 hcb_size; 6519 6520 ioc_info(ioc, "sending diag reset !!\n"); 6521 6522 drsprintk(ioc, ioc_info(ioc, "clear interrupts\n")); 6523 6524 count = 0; 6525 do { 6526 /* Write magic sequence to WriteSequence register 6527 * Loop until in diagnostic mode 6528 */ 6529 drsprintk(ioc, ioc_info(ioc, "write magic sequence\n")); 6530 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence); 6531 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence); 6532 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence); 6533 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence); 6534 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence); 6535 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence); 6536 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence); 6537 6538 /* wait 100 msec */ 6539 msleep(100); 6540 6541 if (count++ > 20) 6542 goto out; 6543 6544 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic); 6545 drsprintk(ioc, 6546 ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n", 6547 count, host_diagnostic)); 6548 6549 } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0); 6550 6551 hcb_size = ioc->base_readl(&ioc->chip->HCBSize); 6552 6553 drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n")); 6554 writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER, 6555 &ioc->chip->HostDiagnostic); 6556 6557 /*This delay allows the chip PCIe hardware time to finish reset tasks*/ 6558 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000); 6559 6560 /* Approximately 300 second max wait */ 6561 for (count = 0; count < (300000000 / 6562 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) { 6563 6564 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic); 6565 6566 if (host_diagnostic == 0xFFFFFFFF) 6567 goto out; 6568 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER)) 6569 break; 6570 6571 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000); 6572 } 6573 6574 if (host_diagnostic & MPI2_DIAG_HCB_MODE) { 6575 6576 drsprintk(ioc, 6577 ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n")); 6578 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK; 6579 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW; 6580 writel(host_diagnostic, &ioc->chip->HostDiagnostic); 6581 6582 drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n")); 6583 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE, 6584 &ioc->chip->HCBSize); 6585 } 6586 6587 drsprintk(ioc, ioc_info(ioc, "restart the adapter\n")); 6588 writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET, 6589 &ioc->chip->HostDiagnostic); 6590 6591 drsprintk(ioc, 6592 ioc_info(ioc, "disable writes to the diagnostic register\n")); 6593 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence); 6594 6595 drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n")); 6596 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20); 6597 if (ioc_state) { 6598 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 6599 __func__, ioc_state); 6600 goto out; 6601 } 6602 6603 ioc_info(ioc, "diag reset: SUCCESS\n"); 6604 return 0; 6605 6606 out: 6607 ioc_err(ioc, "diag reset: FAILED\n"); 6608 return -EFAULT; 6609 } 6610 6611 /** 6612 * _base_make_ioc_ready - put controller in READY state 6613 * @ioc: per adapter object 6614 * @type: FORCE_BIG_HAMMER or SOFT_RESET 6615 * 6616 * Return: 0 for success, non-zero for failure. 6617 */ 6618 static int 6619 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type) 6620 { 6621 u32 ioc_state; 6622 int rc; 6623 int count; 6624 6625 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6626 6627 if (ioc->pci_error_recovery) 6628 return 0; 6629 6630 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 6631 dhsprintk(ioc, 6632 ioc_info(ioc, "%s: ioc_state(0x%08x)\n", 6633 __func__, ioc_state)); 6634 6635 /* if in RESET state, it should move to READY state shortly */ 6636 count = 0; 6637 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) { 6638 while ((ioc_state & MPI2_IOC_STATE_MASK) != 6639 MPI2_IOC_STATE_READY) { 6640 if (count++ == 10) { 6641 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 6642 __func__, ioc_state); 6643 return -EFAULT; 6644 } 6645 ssleep(1); 6646 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 6647 } 6648 } 6649 6650 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) 6651 return 0; 6652 6653 if (ioc_state & MPI2_DOORBELL_USED) { 6654 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n")); 6655 goto issue_diag_reset; 6656 } 6657 6658 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 6659 mpt3sas_base_fault_info(ioc, ioc_state & 6660 MPI2_DOORBELL_DATA_MASK); 6661 goto issue_diag_reset; 6662 } 6663 6664 if (type == FORCE_BIG_HAMMER) 6665 goto issue_diag_reset; 6666 6667 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL) 6668 if (!(_base_send_ioc_reset(ioc, 6669 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) { 6670 return 0; 6671 } 6672 6673 issue_diag_reset: 6674 rc = _base_diag_reset(ioc); 6675 return rc; 6676 } 6677 6678 /** 6679 * _base_make_ioc_operational - put controller in OPERATIONAL state 6680 * @ioc: per adapter object 6681 * 6682 * Return: 0 for success, non-zero for failure. 6683 */ 6684 static int 6685 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc) 6686 { 6687 int r, i, index; 6688 unsigned long flags; 6689 u32 reply_address; 6690 u16 smid; 6691 struct _tr_list *delayed_tr, *delayed_tr_next; 6692 struct _sc_list *delayed_sc, *delayed_sc_next; 6693 struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next; 6694 u8 hide_flag; 6695 struct adapter_reply_queue *reply_q; 6696 Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig; 6697 6698 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6699 6700 /* clean the delayed target reset list */ 6701 list_for_each_entry_safe(delayed_tr, delayed_tr_next, 6702 &ioc->delayed_tr_list, list) { 6703 list_del(&delayed_tr->list); 6704 kfree(delayed_tr); 6705 } 6706 6707 6708 list_for_each_entry_safe(delayed_tr, delayed_tr_next, 6709 &ioc->delayed_tr_volume_list, list) { 6710 list_del(&delayed_tr->list); 6711 kfree(delayed_tr); 6712 } 6713 6714 list_for_each_entry_safe(delayed_sc, delayed_sc_next, 6715 &ioc->delayed_sc_list, list) { 6716 list_del(&delayed_sc->list); 6717 kfree(delayed_sc); 6718 } 6719 6720 list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next, 6721 &ioc->delayed_event_ack_list, list) { 6722 list_del(&delayed_event_ack->list); 6723 kfree(delayed_event_ack); 6724 } 6725 6726 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 6727 6728 /* hi-priority queue */ 6729 INIT_LIST_HEAD(&ioc->hpr_free_list); 6730 smid = ioc->hi_priority_smid; 6731 for (i = 0; i < ioc->hi_priority_depth; i++, smid++) { 6732 ioc->hpr_lookup[i].cb_idx = 0xFF; 6733 ioc->hpr_lookup[i].smid = smid; 6734 list_add_tail(&ioc->hpr_lookup[i].tracker_list, 6735 &ioc->hpr_free_list); 6736 } 6737 6738 /* internal queue */ 6739 INIT_LIST_HEAD(&ioc->internal_free_list); 6740 smid = ioc->internal_smid; 6741 for (i = 0; i < ioc->internal_depth; i++, smid++) { 6742 ioc->internal_lookup[i].cb_idx = 0xFF; 6743 ioc->internal_lookup[i].smid = smid; 6744 list_add_tail(&ioc->internal_lookup[i].tracker_list, 6745 &ioc->internal_free_list); 6746 } 6747 6748 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 6749 6750 /* initialize Reply Free Queue */ 6751 for (i = 0, reply_address = (u32)ioc->reply_dma ; 6752 i < ioc->reply_free_queue_depth ; i++, reply_address += 6753 ioc->reply_sz) { 6754 ioc->reply_free[i] = cpu_to_le32(reply_address); 6755 if (ioc->is_mcpu_endpoint) 6756 _base_clone_reply_to_sys_mem(ioc, 6757 reply_address, i); 6758 } 6759 6760 /* initialize reply queues */ 6761 if (ioc->is_driver_loading) 6762 _base_assign_reply_queues(ioc); 6763 6764 /* initialize Reply Post Free Queue */ 6765 index = 0; 6766 reply_post_free_contig = ioc->reply_post[0].reply_post_free; 6767 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 6768 /* 6769 * If RDPQ is enabled, switch to the next allocation. 6770 * Otherwise advance within the contiguous region. 6771 */ 6772 if (ioc->rdpq_array_enable) { 6773 reply_q->reply_post_free = 6774 ioc->reply_post[index++].reply_post_free; 6775 } else { 6776 reply_q->reply_post_free = reply_post_free_contig; 6777 reply_post_free_contig += ioc->reply_post_queue_depth; 6778 } 6779 6780 reply_q->reply_post_host_index = 0; 6781 for (i = 0; i < ioc->reply_post_queue_depth; i++) 6782 reply_q->reply_post_free[i].Words = 6783 cpu_to_le64(ULLONG_MAX); 6784 if (!_base_is_controller_msix_enabled(ioc)) 6785 goto skip_init_reply_post_free_queue; 6786 } 6787 skip_init_reply_post_free_queue: 6788 6789 r = _base_send_ioc_init(ioc); 6790 if (r) 6791 return r; 6792 6793 /* initialize reply free host index */ 6794 ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1; 6795 writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex); 6796 6797 /* initialize reply post host index */ 6798 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 6799 if (ioc->combined_reply_queue) 6800 writel((reply_q->msix_index & 7)<< 6801 MPI2_RPHI_MSIX_INDEX_SHIFT, 6802 ioc->replyPostRegisterIndex[reply_q->msix_index/8]); 6803 else 6804 writel(reply_q->msix_index << 6805 MPI2_RPHI_MSIX_INDEX_SHIFT, 6806 &ioc->chip->ReplyPostHostIndex); 6807 6808 if (!_base_is_controller_msix_enabled(ioc)) 6809 goto skip_init_reply_post_host_index; 6810 } 6811 6812 skip_init_reply_post_host_index: 6813 6814 _base_unmask_interrupts(ioc); 6815 6816 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 6817 r = _base_display_fwpkg_version(ioc); 6818 if (r) 6819 return r; 6820 } 6821 6822 _base_static_config_pages(ioc); 6823 r = _base_event_notification(ioc); 6824 if (r) 6825 return r; 6826 6827 if (ioc->is_driver_loading) { 6828 6829 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier 6830 == 0x80) { 6831 hide_flag = (u8) ( 6832 le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) & 6833 MFG_PAGE10_HIDE_SSDS_MASK); 6834 if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK) 6835 ioc->mfg_pg10_hide_flag = hide_flag; 6836 } 6837 6838 ioc->wait_for_discovery_to_complete = 6839 _base_determine_wait_on_discovery(ioc); 6840 6841 return r; /* scan_start and scan_finished support */ 6842 } 6843 6844 r = _base_send_port_enable(ioc); 6845 if (r) 6846 return r; 6847 6848 return r; 6849 } 6850 6851 /** 6852 * mpt3sas_base_free_resources - free resources controller resources 6853 * @ioc: per adapter object 6854 */ 6855 void 6856 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc) 6857 { 6858 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6859 6860 /* synchronizing freeing resource with pci_access_mutex lock */ 6861 mutex_lock(&ioc->pci_access_mutex); 6862 if (ioc->chip_phys && ioc->chip) { 6863 _base_mask_interrupts(ioc); 6864 ioc->shost_recovery = 1; 6865 _base_make_ioc_ready(ioc, SOFT_RESET); 6866 ioc->shost_recovery = 0; 6867 } 6868 6869 mpt3sas_base_unmap_resources(ioc); 6870 mutex_unlock(&ioc->pci_access_mutex); 6871 return; 6872 } 6873 6874 /** 6875 * mpt3sas_base_attach - attach controller instance 6876 * @ioc: per adapter object 6877 * 6878 * Return: 0 for success, non-zero for failure. 6879 */ 6880 int 6881 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc) 6882 { 6883 int r, i; 6884 int cpu_id, last_cpu_id = 0; 6885 6886 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6887 6888 /* setup cpu_msix_table */ 6889 ioc->cpu_count = num_online_cpus(); 6890 for_each_online_cpu(cpu_id) 6891 last_cpu_id = cpu_id; 6892 ioc->cpu_msix_table_sz = last_cpu_id + 1; 6893 ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL); 6894 ioc->reply_queue_count = 1; 6895 if (!ioc->cpu_msix_table) { 6896 dfailprintk(ioc, 6897 ioc_info(ioc, "allocation for cpu_msix_table failed!!!\n")); 6898 r = -ENOMEM; 6899 goto out_free_resources; 6900 } 6901 6902 if (ioc->is_warpdrive) { 6903 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz, 6904 sizeof(resource_size_t *), GFP_KERNEL); 6905 if (!ioc->reply_post_host_index) { 6906 dfailprintk(ioc, 6907 ioc_info(ioc, "allocation for reply_post_host_index failed!!!\n")); 6908 r = -ENOMEM; 6909 goto out_free_resources; 6910 } 6911 } 6912 6913 ioc->smp_affinity_enable = smp_affinity_enable; 6914 6915 ioc->rdpq_array_enable_assigned = 0; 6916 ioc->dma_mask = 0; 6917 if (ioc->is_aero_ioc) 6918 ioc->base_readl = &_base_readl_aero; 6919 else 6920 ioc->base_readl = &_base_readl; 6921 r = mpt3sas_base_map_resources(ioc); 6922 if (r) 6923 goto out_free_resources; 6924 6925 pci_set_drvdata(ioc->pdev, ioc->shost); 6926 r = _base_get_ioc_facts(ioc); 6927 if (r) 6928 goto out_free_resources; 6929 6930 switch (ioc->hba_mpi_version_belonged) { 6931 case MPI2_VERSION: 6932 ioc->build_sg_scmd = &_base_build_sg_scmd; 6933 ioc->build_sg = &_base_build_sg; 6934 ioc->build_zero_len_sge = &_base_build_zero_len_sge; 6935 ioc->get_msix_index_for_smlio = &_base_get_msix_index; 6936 break; 6937 case MPI25_VERSION: 6938 case MPI26_VERSION: 6939 /* 6940 * In SAS3.0, 6941 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and 6942 * Target Status - all require the IEEE formated scatter gather 6943 * elements. 6944 */ 6945 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee; 6946 ioc->build_sg = &_base_build_sg_ieee; 6947 ioc->build_nvme_prp = &_base_build_nvme_prp; 6948 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee; 6949 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t); 6950 if (ioc->high_iops_queues) 6951 ioc->get_msix_index_for_smlio = 6952 &_base_get_high_iops_msix_index; 6953 else 6954 ioc->get_msix_index_for_smlio = &_base_get_msix_index; 6955 break; 6956 } 6957 if (ioc->atomic_desc_capable) { 6958 ioc->put_smid_default = &_base_put_smid_default_atomic; 6959 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic; 6960 ioc->put_smid_fast_path = 6961 &_base_put_smid_fast_path_atomic; 6962 ioc->put_smid_hi_priority = 6963 &_base_put_smid_hi_priority_atomic; 6964 } else { 6965 ioc->put_smid_default = &_base_put_smid_default; 6966 ioc->put_smid_fast_path = &_base_put_smid_fast_path; 6967 ioc->put_smid_hi_priority = &_base_put_smid_hi_priority; 6968 if (ioc->is_mcpu_endpoint) 6969 ioc->put_smid_scsi_io = 6970 &_base_put_smid_mpi_ep_scsi_io; 6971 else 6972 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io; 6973 } 6974 /* 6975 * These function pointers for other requests that don't 6976 * the require IEEE scatter gather elements. 6977 * 6978 * For example Configuration Pages and SAS IOUNIT Control don't. 6979 */ 6980 ioc->build_sg_mpi = &_base_build_sg; 6981 ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge; 6982 6983 r = _base_make_ioc_ready(ioc, SOFT_RESET); 6984 if (r) 6985 goto out_free_resources; 6986 6987 ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts, 6988 sizeof(struct mpt3sas_port_facts), GFP_KERNEL); 6989 if (!ioc->pfacts) { 6990 r = -ENOMEM; 6991 goto out_free_resources; 6992 } 6993 6994 for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) { 6995 r = _base_get_port_facts(ioc, i); 6996 if (r) 6997 goto out_free_resources; 6998 } 6999 7000 r = _base_allocate_memory_pools(ioc); 7001 if (r) 7002 goto out_free_resources; 7003 7004 if (irqpoll_weight > 0) 7005 ioc->thresh_hold = irqpoll_weight; 7006 else 7007 ioc->thresh_hold = ioc->hba_queue_depth/4; 7008 7009 _base_init_irqpolls(ioc); 7010 init_waitqueue_head(&ioc->reset_wq); 7011 7012 /* allocate memory pd handle bitmask list */ 7013 ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8); 7014 if (ioc->facts.MaxDevHandle % 8) 7015 ioc->pd_handles_sz++; 7016 ioc->pd_handles = kzalloc(ioc->pd_handles_sz, 7017 GFP_KERNEL); 7018 if (!ioc->pd_handles) { 7019 r = -ENOMEM; 7020 goto out_free_resources; 7021 } 7022 ioc->blocking_handles = kzalloc(ioc->pd_handles_sz, 7023 GFP_KERNEL); 7024 if (!ioc->blocking_handles) { 7025 r = -ENOMEM; 7026 goto out_free_resources; 7027 } 7028 7029 /* allocate memory for pending OS device add list */ 7030 ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8); 7031 if (ioc->facts.MaxDevHandle % 8) 7032 ioc->pend_os_device_add_sz++; 7033 ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz, 7034 GFP_KERNEL); 7035 if (!ioc->pend_os_device_add) 7036 goto out_free_resources; 7037 7038 ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz; 7039 ioc->device_remove_in_progress = 7040 kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL); 7041 if (!ioc->device_remove_in_progress) 7042 goto out_free_resources; 7043 7044 ioc->fwfault_debug = mpt3sas_fwfault_debug; 7045 7046 /* base internal command bits */ 7047 mutex_init(&ioc->base_cmds.mutex); 7048 ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7049 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 7050 7051 /* port_enable command bits */ 7052 ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7053 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED; 7054 7055 /* transport internal command bits */ 7056 ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7057 ioc->transport_cmds.status = MPT3_CMD_NOT_USED; 7058 mutex_init(&ioc->transport_cmds.mutex); 7059 7060 /* scsih internal command bits */ 7061 ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7062 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED; 7063 mutex_init(&ioc->scsih_cmds.mutex); 7064 7065 /* task management internal command bits */ 7066 ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7067 ioc->tm_cmds.status = MPT3_CMD_NOT_USED; 7068 mutex_init(&ioc->tm_cmds.mutex); 7069 7070 /* config page internal command bits */ 7071 ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7072 ioc->config_cmds.status = MPT3_CMD_NOT_USED; 7073 mutex_init(&ioc->config_cmds.mutex); 7074 7075 /* ctl module internal command bits */ 7076 ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7077 ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL); 7078 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED; 7079 mutex_init(&ioc->ctl_cmds.mutex); 7080 7081 if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply || 7082 !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply || 7083 !ioc->tm_cmds.reply || !ioc->config_cmds.reply || 7084 !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) { 7085 r = -ENOMEM; 7086 goto out_free_resources; 7087 } 7088 7089 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 7090 ioc->event_masks[i] = -1; 7091 7092 /* here we enable the events we care about */ 7093 _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY); 7094 _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE); 7095 _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST); 7096 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE); 7097 _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE); 7098 _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST); 7099 _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME); 7100 _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK); 7101 _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS); 7102 _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED); 7103 _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD); 7104 _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION); 7105 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR); 7106 if (ioc->hba_mpi_version_belonged == MPI26_VERSION) { 7107 if (ioc->is_gen35_ioc) { 7108 _base_unmask_events(ioc, 7109 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE); 7110 _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION); 7111 _base_unmask_events(ioc, 7112 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST); 7113 } 7114 } 7115 r = _base_make_ioc_operational(ioc); 7116 if (r) 7117 goto out_free_resources; 7118 7119 ioc->non_operational_loop = 0; 7120 ioc->got_task_abort_from_ioctl = 0; 7121 return 0; 7122 7123 out_free_resources: 7124 7125 ioc->remove_host = 1; 7126 7127 mpt3sas_base_free_resources(ioc); 7128 _base_release_memory_pools(ioc); 7129 pci_set_drvdata(ioc->pdev, NULL); 7130 kfree(ioc->cpu_msix_table); 7131 if (ioc->is_warpdrive) 7132 kfree(ioc->reply_post_host_index); 7133 kfree(ioc->pd_handles); 7134 kfree(ioc->blocking_handles); 7135 kfree(ioc->device_remove_in_progress); 7136 kfree(ioc->pend_os_device_add); 7137 kfree(ioc->tm_cmds.reply); 7138 kfree(ioc->transport_cmds.reply); 7139 kfree(ioc->scsih_cmds.reply); 7140 kfree(ioc->config_cmds.reply); 7141 kfree(ioc->base_cmds.reply); 7142 kfree(ioc->port_enable_cmds.reply); 7143 kfree(ioc->ctl_cmds.reply); 7144 kfree(ioc->ctl_cmds.sense); 7145 kfree(ioc->pfacts); 7146 ioc->ctl_cmds.reply = NULL; 7147 ioc->base_cmds.reply = NULL; 7148 ioc->tm_cmds.reply = NULL; 7149 ioc->scsih_cmds.reply = NULL; 7150 ioc->transport_cmds.reply = NULL; 7151 ioc->config_cmds.reply = NULL; 7152 ioc->pfacts = NULL; 7153 return r; 7154 } 7155 7156 7157 /** 7158 * mpt3sas_base_detach - remove controller instance 7159 * @ioc: per adapter object 7160 */ 7161 void 7162 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc) 7163 { 7164 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7165 7166 mpt3sas_base_stop_watchdog(ioc); 7167 mpt3sas_base_free_resources(ioc); 7168 _base_release_memory_pools(ioc); 7169 mpt3sas_free_enclosure_list(ioc); 7170 pci_set_drvdata(ioc->pdev, NULL); 7171 kfree(ioc->cpu_msix_table); 7172 if (ioc->is_warpdrive) 7173 kfree(ioc->reply_post_host_index); 7174 kfree(ioc->pd_handles); 7175 kfree(ioc->blocking_handles); 7176 kfree(ioc->device_remove_in_progress); 7177 kfree(ioc->pend_os_device_add); 7178 kfree(ioc->pfacts); 7179 kfree(ioc->ctl_cmds.reply); 7180 kfree(ioc->ctl_cmds.sense); 7181 kfree(ioc->base_cmds.reply); 7182 kfree(ioc->port_enable_cmds.reply); 7183 kfree(ioc->tm_cmds.reply); 7184 kfree(ioc->transport_cmds.reply); 7185 kfree(ioc->scsih_cmds.reply); 7186 kfree(ioc->config_cmds.reply); 7187 } 7188 7189 /** 7190 * _base_pre_reset_handler - pre reset handler 7191 * @ioc: per adapter object 7192 */ 7193 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc) 7194 { 7195 mpt3sas_scsih_pre_reset_handler(ioc); 7196 mpt3sas_ctl_pre_reset_handler(ioc); 7197 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__)); 7198 } 7199 7200 /** 7201 * _base_after_reset_handler - after reset handler 7202 * @ioc: per adapter object 7203 */ 7204 static void _base_after_reset_handler(struct MPT3SAS_ADAPTER *ioc) 7205 { 7206 mpt3sas_scsih_after_reset_handler(ioc); 7207 mpt3sas_ctl_after_reset_handler(ioc); 7208 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_AFTER_RESET\n", __func__)); 7209 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) { 7210 ioc->transport_cmds.status |= MPT3_CMD_RESET; 7211 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid); 7212 complete(&ioc->transport_cmds.done); 7213 } 7214 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 7215 ioc->base_cmds.status |= MPT3_CMD_RESET; 7216 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid); 7217 complete(&ioc->base_cmds.done); 7218 } 7219 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 7220 ioc->port_enable_failed = 1; 7221 ioc->port_enable_cmds.status |= MPT3_CMD_RESET; 7222 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid); 7223 if (ioc->is_driver_loading) { 7224 ioc->start_scan_failed = 7225 MPI2_IOCSTATUS_INTERNAL_ERROR; 7226 ioc->start_scan = 0; 7227 ioc->port_enable_cmds.status = 7228 MPT3_CMD_NOT_USED; 7229 } else { 7230 complete(&ioc->port_enable_cmds.done); 7231 } 7232 } 7233 if (ioc->config_cmds.status & MPT3_CMD_PENDING) { 7234 ioc->config_cmds.status |= MPT3_CMD_RESET; 7235 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid); 7236 ioc->config_cmds.smid = USHRT_MAX; 7237 complete(&ioc->config_cmds.done); 7238 } 7239 } 7240 7241 /** 7242 * _base_reset_done_handler - reset done handler 7243 * @ioc: per adapter object 7244 */ 7245 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc) 7246 { 7247 mpt3sas_scsih_reset_done_handler(ioc); 7248 mpt3sas_ctl_reset_done_handler(ioc); 7249 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__)); 7250 } 7251 7252 /** 7253 * mpt3sas_wait_for_commands_to_complete - reset controller 7254 * @ioc: Pointer to MPT_ADAPTER structure 7255 * 7256 * This function is waiting 10s for all pending commands to complete 7257 * prior to putting controller in reset. 7258 */ 7259 void 7260 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc) 7261 { 7262 u32 ioc_state; 7263 7264 ioc->pending_io_count = 0; 7265 7266 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 7267 if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) 7268 return; 7269 7270 /* pending command count */ 7271 ioc->pending_io_count = scsi_host_busy(ioc->shost); 7272 7273 if (!ioc->pending_io_count) 7274 return; 7275 7276 /* wait for pending commands to complete */ 7277 wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ); 7278 } 7279 7280 /** 7281 * mpt3sas_base_hard_reset_handler - reset controller 7282 * @ioc: Pointer to MPT_ADAPTER structure 7283 * @type: FORCE_BIG_HAMMER or SOFT_RESET 7284 * 7285 * Return: 0 for success, non-zero for failure. 7286 */ 7287 int 7288 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc, 7289 enum reset_type type) 7290 { 7291 int r; 7292 unsigned long flags; 7293 u32 ioc_state; 7294 u8 is_fault = 0, is_trigger = 0; 7295 7296 dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__)); 7297 7298 if (ioc->pci_error_recovery) { 7299 ioc_err(ioc, "%s: pci error recovery reset\n", __func__); 7300 r = 0; 7301 goto out_unlocked; 7302 } 7303 7304 if (mpt3sas_fwfault_debug) 7305 mpt3sas_halt_firmware(ioc); 7306 7307 /* wait for an active reset in progress to complete */ 7308 mutex_lock(&ioc->reset_in_progress_mutex); 7309 7310 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 7311 ioc->shost_recovery = 1; 7312 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 7313 7314 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 7315 MPT3_DIAG_BUFFER_IS_REGISTERED) && 7316 (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 7317 MPT3_DIAG_BUFFER_IS_RELEASED))) { 7318 is_trigger = 1; 7319 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 7320 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) 7321 is_fault = 1; 7322 } 7323 _base_pre_reset_handler(ioc); 7324 mpt3sas_wait_for_commands_to_complete(ioc); 7325 _base_mask_interrupts(ioc); 7326 r = _base_make_ioc_ready(ioc, type); 7327 if (r) 7328 goto out; 7329 _base_after_reset_handler(ioc); 7330 7331 /* If this hard reset is called while port enable is active, then 7332 * there is no reason to call make_ioc_operational 7333 */ 7334 if (ioc->is_driver_loading && ioc->port_enable_failed) { 7335 ioc->remove_host = 1; 7336 r = -EFAULT; 7337 goto out; 7338 } 7339 r = _base_get_ioc_facts(ioc); 7340 if (r) 7341 goto out; 7342 7343 if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable) 7344 panic("%s: Issue occurred with flashing controller firmware." 7345 "Please reboot the system and ensure that the correct" 7346 " firmware version is running\n", ioc->name); 7347 7348 r = _base_make_ioc_operational(ioc); 7349 if (!r) 7350 _base_reset_done_handler(ioc); 7351 7352 out: 7353 dtmprintk(ioc, 7354 ioc_info(ioc, "%s: %s\n", 7355 __func__, r == 0 ? "SUCCESS" : "FAILED")); 7356 7357 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 7358 ioc->shost_recovery = 0; 7359 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 7360 ioc->ioc_reset_count++; 7361 mutex_unlock(&ioc->reset_in_progress_mutex); 7362 7363 out_unlocked: 7364 if ((r == 0) && is_trigger) { 7365 if (is_fault) 7366 mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT); 7367 else 7368 mpt3sas_trigger_master(ioc, 7369 MASTER_TRIGGER_ADAPTER_RESET); 7370 } 7371 dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__)); 7372 return r; 7373 } 7374