1 /* 2 * This is the Fusion MPT base driver providing common API layer interface 3 * for access to MPT (Message Passing Technology) firmware. 4 * 5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c 6 * Copyright (C) 2012-2014 LSI Corporation 7 * Copyright (C) 2013-2014 Avago Technologies 8 * (mailto: MPT-FusionLinux.pdl@avagotech.com) 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License 12 * as published by the Free Software Foundation; either version 2 13 * of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * NO WARRANTY 21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR 22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT 23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, 24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is 25 * solely responsible for determining the appropriateness of using and 26 * distributing the Program and assumes all risks associated with its 27 * exercise of rights under this Agreement, including but not limited to 28 * the risks and costs of program errors, damage to or loss of data, 29 * programs or equipment, and unavailability or interruption of operations. 30 31 * DISCLAIMER OF LIABILITY 32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY 33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND 35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED 38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES 39 40 * You should have received a copy of the GNU General Public License 41 * along with this program; if not, write to the Free Software 42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, 43 * USA. 44 */ 45 46 #include <linux/kernel.h> 47 #include <linux/module.h> 48 #include <linux/errno.h> 49 #include <linux/init.h> 50 #include <linux/slab.h> 51 #include <linux/types.h> 52 #include <linux/pci.h> 53 #include <linux/kdev_t.h> 54 #include <linux/blkdev.h> 55 #include <linux/delay.h> 56 #include <linux/interrupt.h> 57 #include <linux/dma-mapping.h> 58 #include <linux/io.h> 59 #include <linux/time.h> 60 #include <linux/ktime.h> 61 #include <linux/kthread.h> 62 #include <asm/page.h> /* To get host page size per arch */ 63 #include <linux/aer.h> 64 65 66 #include "mpt3sas_base.h" 67 68 static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS]; 69 70 71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */ 72 73 /* maximum controller queue depth */ 74 #define MAX_HBA_QUEUE_DEPTH 30000 75 #define MAX_CHAIN_DEPTH 100000 76 static int max_queue_depth = -1; 77 module_param(max_queue_depth, int, 0); 78 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth "); 79 80 static int max_sgl_entries = -1; 81 module_param(max_sgl_entries, int, 0); 82 MODULE_PARM_DESC(max_sgl_entries, " max sg entries "); 83 84 static int msix_disable = -1; 85 module_param(msix_disable, int, 0); 86 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)"); 87 88 static int smp_affinity_enable = 1; 89 module_param(smp_affinity_enable, int, S_IRUGO); 90 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)"); 91 92 static int max_msix_vectors = -1; 93 module_param(max_msix_vectors, int, 0); 94 MODULE_PARM_DESC(max_msix_vectors, 95 " max msix vectors"); 96 97 static int mpt3sas_fwfault_debug; 98 MODULE_PARM_DESC(mpt3sas_fwfault_debug, 99 " enable detection of firmware fault and halt firmware - (default=0)"); 100 101 static int 102 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc); 103 104 /** 105 * mpt3sas_base_check_cmd_timeout - Function 106 * to check timeout and command termination due 107 * to Host reset. 108 * 109 * @ioc: per adapter object. 110 * @status: Status of issued command. 111 * @mpi_request:mf request pointer. 112 * @sz: size of buffer. 113 * 114 * @Returns - 1/0 Reset to be done or Not 115 */ 116 u8 117 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc, 118 u8 status, void *mpi_request, int sz) 119 { 120 u8 issue_reset = 0; 121 122 if (!(status & MPT3_CMD_RESET)) 123 issue_reset = 1; 124 125 ioc_err(ioc, "Command %s\n", 126 issue_reset == 0 ? "terminated due to Host Reset" : "Timeout"); 127 _debug_dump_mf(mpi_request, sz); 128 129 return issue_reset; 130 } 131 132 /** 133 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug. 134 * @val: ? 135 * @kp: ? 136 * 137 * Return: ? 138 */ 139 static int 140 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp) 141 { 142 int ret = param_set_int(val, kp); 143 struct MPT3SAS_ADAPTER *ioc; 144 145 if (ret) 146 return ret; 147 148 /* global ioc spinlock to protect controller list on list operations */ 149 pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug); 150 spin_lock(&gioc_lock); 151 list_for_each_entry(ioc, &mpt3sas_ioc_list, list) 152 ioc->fwfault_debug = mpt3sas_fwfault_debug; 153 spin_unlock(&gioc_lock); 154 return 0; 155 } 156 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug, 157 param_get_int, &mpt3sas_fwfault_debug, 0644); 158 159 /** 160 * _base_readl_aero - retry readl for max three times. 161 * @addr - MPT Fusion system interface register address 162 * 163 * Retry the readl() for max three times if it gets zero value 164 * while reading the system interface register. 165 */ 166 static inline u32 167 _base_readl_aero(const volatile void __iomem *addr) 168 { 169 u32 i = 0, ret_val; 170 171 do { 172 ret_val = readl(addr); 173 i++; 174 } while (ret_val == 0 && i < 3); 175 176 return ret_val; 177 } 178 179 static inline u32 180 _base_readl(const volatile void __iomem *addr) 181 { 182 return readl(addr); 183 } 184 185 /** 186 * _base_clone_reply_to_sys_mem - copies reply to reply free iomem 187 * in BAR0 space. 188 * 189 * @ioc: per adapter object 190 * @reply: reply message frame(lower 32bit addr) 191 * @index: System request message index. 192 */ 193 static void 194 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply, 195 u32 index) 196 { 197 /* 198 * 256 is offset within sys register. 199 * 256 offset MPI frame starts. Max MPI frame supported is 32. 200 * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts 201 */ 202 u16 cmd_credit = ioc->facts.RequestCredit + 1; 203 void __iomem *reply_free_iomem = (void __iomem *)ioc->chip + 204 MPI_FRAME_START_OFFSET + 205 (cmd_credit * ioc->request_sz) + (index * sizeof(u32)); 206 207 writel(reply, reply_free_iomem); 208 } 209 210 /** 211 * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames 212 * to system/BAR0 region. 213 * 214 * @dst_iomem: Pointer to the destination location in BAR0 space. 215 * @src: Pointer to the Source data. 216 * @size: Size of data to be copied. 217 */ 218 static void 219 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size) 220 { 221 int i; 222 u32 *src_virt_mem = (u32 *)src; 223 224 for (i = 0; i < size/4; i++) 225 writel((u32)src_virt_mem[i], 226 (void __iomem *)dst_iomem + (i * 4)); 227 } 228 229 /** 230 * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region 231 * 232 * @dst_iomem: Pointer to the destination location in BAR0 space. 233 * @src: Pointer to the Source data. 234 * @size: Size of data to be copied. 235 */ 236 static void 237 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size) 238 { 239 int i; 240 u32 *src_virt_mem = (u32 *)(src); 241 242 for (i = 0; i < size/4; i++) 243 writel((u32)src_virt_mem[i], 244 (void __iomem *)dst_iomem + (i * 4)); 245 } 246 247 /** 248 * _base_get_chain - Calculates and Returns virtual chain address 249 * for the provided smid in BAR0 space. 250 * 251 * @ioc: per adapter object 252 * @smid: system request message index 253 * @sge_chain_count: Scatter gather chain count. 254 * 255 * Return: the chain address. 256 */ 257 static inline void __iomem* 258 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid, 259 u8 sge_chain_count) 260 { 261 void __iomem *base_chain, *chain_virt; 262 u16 cmd_credit = ioc->facts.RequestCredit + 1; 263 264 base_chain = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET + 265 (cmd_credit * ioc->request_sz) + 266 REPLY_FREE_POOL_SIZE; 267 chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth * 268 ioc->request_sz) + (sge_chain_count * ioc->request_sz); 269 return chain_virt; 270 } 271 272 /** 273 * _base_get_chain_phys - Calculates and Returns physical address 274 * in BAR0 for scatter gather chains, for 275 * the provided smid. 276 * 277 * @ioc: per adapter object 278 * @smid: system request message index 279 * @sge_chain_count: Scatter gather chain count. 280 * 281 * Return: Physical chain address. 282 */ 283 static inline phys_addr_t 284 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid, 285 u8 sge_chain_count) 286 { 287 phys_addr_t base_chain_phys, chain_phys; 288 u16 cmd_credit = ioc->facts.RequestCredit + 1; 289 290 base_chain_phys = ioc->chip_phys + MPI_FRAME_START_OFFSET + 291 (cmd_credit * ioc->request_sz) + 292 REPLY_FREE_POOL_SIZE; 293 chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth * 294 ioc->request_sz) + (sge_chain_count * ioc->request_sz); 295 return chain_phys; 296 } 297 298 /** 299 * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host 300 * buffer address for the provided smid. 301 * (Each smid can have 64K starts from 17024) 302 * 303 * @ioc: per adapter object 304 * @smid: system request message index 305 * 306 * Return: Pointer to buffer location in BAR0. 307 */ 308 309 static void __iomem * 310 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid) 311 { 312 u16 cmd_credit = ioc->facts.RequestCredit + 1; 313 // Added extra 1 to reach end of chain. 314 void __iomem *chain_end = _base_get_chain(ioc, 315 cmd_credit + 1, 316 ioc->facts.MaxChainDepth); 317 return chain_end + (smid * 64 * 1024); 318 } 319 320 /** 321 * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped 322 * Host buffer Physical address for the provided smid. 323 * (Each smid can have 64K starts from 17024) 324 * 325 * @ioc: per adapter object 326 * @smid: system request message index 327 * 328 * Return: Pointer to buffer location in BAR0. 329 */ 330 static phys_addr_t 331 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid) 332 { 333 u16 cmd_credit = ioc->facts.RequestCredit + 1; 334 phys_addr_t chain_end_phys = _base_get_chain_phys(ioc, 335 cmd_credit + 1, 336 ioc->facts.MaxChainDepth); 337 return chain_end_phys + (smid * 64 * 1024); 338 } 339 340 /** 341 * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain 342 * lookup list and Provides chain_buffer 343 * address for the matching dma address. 344 * (Each smid can have 64K starts from 17024) 345 * 346 * @ioc: per adapter object 347 * @chain_buffer_dma: Chain buffer dma address. 348 * 349 * Return: Pointer to chain buffer. Or Null on Failure. 350 */ 351 static void * 352 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc, 353 dma_addr_t chain_buffer_dma) 354 { 355 u16 index, j; 356 struct chain_tracker *ct; 357 358 for (index = 0; index < ioc->scsiio_depth; index++) { 359 for (j = 0; j < ioc->chains_needed_per_io; j++) { 360 ct = &ioc->chain_lookup[index].chains_per_smid[j]; 361 if (ct && ct->chain_buffer_dma == chain_buffer_dma) 362 return ct->chain_buffer; 363 } 364 } 365 ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n"); 366 return NULL; 367 } 368 369 /** 370 * _clone_sg_entries - MPI EP's scsiio and config requests 371 * are handled here. Base function for 372 * double buffering, before submitting 373 * the requests. 374 * 375 * @ioc: per adapter object. 376 * @mpi_request: mf request pointer. 377 * @smid: system request message index. 378 */ 379 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc, 380 void *mpi_request, u16 smid) 381 { 382 Mpi2SGESimple32_t *sgel, *sgel_next; 383 u32 sgl_flags, sge_chain_count = 0; 384 bool is_write = 0; 385 u16 i = 0; 386 void __iomem *buffer_iomem; 387 phys_addr_t buffer_iomem_phys; 388 void __iomem *buff_ptr; 389 phys_addr_t buff_ptr_phys; 390 void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO]; 391 void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO]; 392 phys_addr_t dst_addr_phys; 393 MPI2RequestHeader_t *request_hdr; 394 struct scsi_cmnd *scmd; 395 struct scatterlist *sg_scmd = NULL; 396 int is_scsiio_req = 0; 397 398 request_hdr = (MPI2RequestHeader_t *) mpi_request; 399 400 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) { 401 Mpi25SCSIIORequest_t *scsiio_request = 402 (Mpi25SCSIIORequest_t *)mpi_request; 403 sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL; 404 is_scsiio_req = 1; 405 } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) { 406 Mpi2ConfigRequest_t *config_req = 407 (Mpi2ConfigRequest_t *)mpi_request; 408 sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE; 409 } else 410 return; 411 412 /* From smid we can get scsi_cmd, once we have sg_scmd, 413 * we just need to get sg_virt and sg_next to get virual 414 * address associated with sgel->Address. 415 */ 416 417 if (is_scsiio_req) { 418 /* Get scsi_cmd using smid */ 419 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid); 420 if (scmd == NULL) { 421 ioc_err(ioc, "scmd is NULL\n"); 422 return; 423 } 424 425 /* Get sg_scmd from scmd provided */ 426 sg_scmd = scsi_sglist(scmd); 427 } 428 429 /* 430 * 0 - 255 System register 431 * 256 - 4352 MPI Frame. (This is based on maxCredit 32) 432 * 4352 - 4864 Reply_free pool (512 byte is reserved 433 * considering maxCredit 32. Reply need extra 434 * room, for mCPU case kept four times of 435 * maxCredit). 436 * 4864 - 17152 SGE chain element. (32cmd * 3 chain of 437 * 128 byte size = 12288) 438 * 17152 - x Host buffer mapped with smid. 439 * (Each smid can have 64K Max IO.) 440 * BAR0+Last 1K MSIX Addr and Data 441 * Total size in use 2113664 bytes of 4MB BAR0 442 */ 443 444 buffer_iomem = _base_get_buffer_bar0(ioc, smid); 445 buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid); 446 447 buff_ptr = buffer_iomem; 448 buff_ptr_phys = buffer_iomem_phys; 449 WARN_ON(buff_ptr_phys > U32_MAX); 450 451 if (le32_to_cpu(sgel->FlagsLength) & 452 (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT)) 453 is_write = 1; 454 455 for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) { 456 457 sgl_flags = 458 (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT); 459 460 switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) { 461 case MPI2_SGE_FLAGS_CHAIN_ELEMENT: 462 /* 463 * Helper function which on passing 464 * chain_buffer_dma returns chain_buffer. Get 465 * the virtual address for sgel->Address 466 */ 467 sgel_next = 468 _base_get_chain_buffer_dma_to_chain_buffer(ioc, 469 le32_to_cpu(sgel->Address)); 470 if (sgel_next == NULL) 471 return; 472 /* 473 * This is coping 128 byte chain 474 * frame (not a host buffer) 475 */ 476 dst_chain_addr[sge_chain_count] = 477 _base_get_chain(ioc, 478 smid, sge_chain_count); 479 src_chain_addr[sge_chain_count] = 480 (void *) sgel_next; 481 dst_addr_phys = _base_get_chain_phys(ioc, 482 smid, sge_chain_count); 483 WARN_ON(dst_addr_phys > U32_MAX); 484 sgel->Address = 485 cpu_to_le32(lower_32_bits(dst_addr_phys)); 486 sgel = sgel_next; 487 sge_chain_count++; 488 break; 489 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT: 490 if (is_write) { 491 if (is_scsiio_req) { 492 _base_clone_to_sys_mem(buff_ptr, 493 sg_virt(sg_scmd), 494 (le32_to_cpu(sgel->FlagsLength) & 495 0x00ffffff)); 496 /* 497 * FIXME: this relies on a a zero 498 * PCI mem_offset. 499 */ 500 sgel->Address = 501 cpu_to_le32((u32)buff_ptr_phys); 502 } else { 503 _base_clone_to_sys_mem(buff_ptr, 504 ioc->config_vaddr, 505 (le32_to_cpu(sgel->FlagsLength) & 506 0x00ffffff)); 507 sgel->Address = 508 cpu_to_le32((u32)buff_ptr_phys); 509 } 510 } 511 buff_ptr += (le32_to_cpu(sgel->FlagsLength) & 512 0x00ffffff); 513 buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) & 514 0x00ffffff); 515 if ((le32_to_cpu(sgel->FlagsLength) & 516 (MPI2_SGE_FLAGS_END_OF_BUFFER 517 << MPI2_SGE_FLAGS_SHIFT))) 518 goto eob_clone_chain; 519 else { 520 /* 521 * Every single element in MPT will have 522 * associated sg_next. Better to sanity that 523 * sg_next is not NULL, but it will be a bug 524 * if it is null. 525 */ 526 if (is_scsiio_req) { 527 sg_scmd = sg_next(sg_scmd); 528 if (sg_scmd) 529 sgel++; 530 else 531 goto eob_clone_chain; 532 } 533 } 534 break; 535 } 536 } 537 538 eob_clone_chain: 539 for (i = 0; i < sge_chain_count; i++) { 540 if (is_scsiio_req) 541 _base_clone_to_sys_mem(dst_chain_addr[i], 542 src_chain_addr[i], ioc->request_sz); 543 } 544 } 545 546 /** 547 * mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc 548 * @arg: input argument, used to derive ioc 549 * 550 * Return: 551 * 0 if controller is removed from pci subsystem. 552 * -1 for other case. 553 */ 554 static int mpt3sas_remove_dead_ioc_func(void *arg) 555 { 556 struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg; 557 struct pci_dev *pdev; 558 559 if (!ioc) 560 return -1; 561 562 pdev = ioc->pdev; 563 if (!pdev) 564 return -1; 565 pci_stop_and_remove_bus_device_locked(pdev); 566 return 0; 567 } 568 569 /** 570 * _base_fault_reset_work - workq handling ioc fault conditions 571 * @work: input argument, used to derive ioc 572 * 573 * Context: sleep. 574 */ 575 static void 576 _base_fault_reset_work(struct work_struct *work) 577 { 578 struct MPT3SAS_ADAPTER *ioc = 579 container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work); 580 unsigned long flags; 581 u32 doorbell; 582 int rc; 583 struct task_struct *p; 584 585 586 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 587 if (ioc->shost_recovery || ioc->pci_error_recovery) 588 goto rearm_timer; 589 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 590 591 doorbell = mpt3sas_base_get_iocstate(ioc, 0); 592 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) { 593 ioc_err(ioc, "SAS host is non-operational !!!!\n"); 594 595 /* It may be possible that EEH recovery can resolve some of 596 * pci bus failure issues rather removing the dead ioc function 597 * by considering controller is in a non-operational state. So 598 * here priority is given to the EEH recovery. If it doesn't 599 * not resolve this issue, mpt3sas driver will consider this 600 * controller to non-operational state and remove the dead ioc 601 * function. 602 */ 603 if (ioc->non_operational_loop++ < 5) { 604 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, 605 flags); 606 goto rearm_timer; 607 } 608 609 /* 610 * Call _scsih_flush_pending_cmds callback so that we flush all 611 * pending commands back to OS. This call is required to aovid 612 * deadlock at block layer. Dead IOC will fail to do diag reset, 613 * and this call is safe since dead ioc will never return any 614 * command back from HW. 615 */ 616 ioc->schedule_dead_ioc_flush_running_cmds(ioc); 617 /* 618 * Set remove_host flag early since kernel thread will 619 * take some time to execute. 620 */ 621 ioc->remove_host = 1; 622 /*Remove the Dead Host */ 623 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc, 624 "%s_dead_ioc_%d", ioc->driver_name, ioc->id); 625 if (IS_ERR(p)) 626 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n", 627 __func__); 628 else 629 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n", 630 __func__); 631 return; /* don't rearm timer */ 632 } 633 634 ioc->non_operational_loop = 0; 635 636 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) { 637 rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 638 ioc_warn(ioc, "%s: hard reset: %s\n", 639 __func__, rc == 0 ? "success" : "failed"); 640 doorbell = mpt3sas_base_get_iocstate(ioc, 0); 641 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) 642 mpt3sas_base_fault_info(ioc, doorbell & 643 MPI2_DOORBELL_DATA_MASK); 644 if (rc && (doorbell & MPI2_IOC_STATE_MASK) != 645 MPI2_IOC_STATE_OPERATIONAL) 646 return; /* don't rearm timer */ 647 } 648 649 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 650 rearm_timer: 651 if (ioc->fault_reset_work_q) 652 queue_delayed_work(ioc->fault_reset_work_q, 653 &ioc->fault_reset_work, 654 msecs_to_jiffies(FAULT_POLLING_INTERVAL)); 655 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 656 } 657 658 /** 659 * mpt3sas_base_start_watchdog - start the fault_reset_work_q 660 * @ioc: per adapter object 661 * 662 * Context: sleep. 663 */ 664 void 665 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc) 666 { 667 unsigned long flags; 668 669 if (ioc->fault_reset_work_q) 670 return; 671 672 /* initialize fault polling */ 673 674 INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work); 675 snprintf(ioc->fault_reset_work_q_name, 676 sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status", 677 ioc->driver_name, ioc->id); 678 ioc->fault_reset_work_q = 679 create_singlethread_workqueue(ioc->fault_reset_work_q_name); 680 if (!ioc->fault_reset_work_q) { 681 ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__); 682 return; 683 } 684 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 685 if (ioc->fault_reset_work_q) 686 queue_delayed_work(ioc->fault_reset_work_q, 687 &ioc->fault_reset_work, 688 msecs_to_jiffies(FAULT_POLLING_INTERVAL)); 689 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 690 } 691 692 /** 693 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q 694 * @ioc: per adapter object 695 * 696 * Context: sleep. 697 */ 698 void 699 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc) 700 { 701 unsigned long flags; 702 struct workqueue_struct *wq; 703 704 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 705 wq = ioc->fault_reset_work_q; 706 ioc->fault_reset_work_q = NULL; 707 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 708 if (wq) { 709 if (!cancel_delayed_work_sync(&ioc->fault_reset_work)) 710 flush_workqueue(wq); 711 destroy_workqueue(wq); 712 } 713 } 714 715 /** 716 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code 717 * @ioc: per adapter object 718 * @fault_code: fault code 719 */ 720 void 721 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code) 722 { 723 ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code); 724 } 725 726 /** 727 * mpt3sas_halt_firmware - halt's mpt controller firmware 728 * @ioc: per adapter object 729 * 730 * For debugging timeout related issues. Writing 0xCOFFEE00 731 * to the doorbell register will halt controller firmware. With 732 * the purpose to stop both driver and firmware, the enduser can 733 * obtain a ring buffer from controller UART. 734 */ 735 void 736 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc) 737 { 738 u32 doorbell; 739 740 if (!ioc->fwfault_debug) 741 return; 742 743 dump_stack(); 744 745 doorbell = ioc->base_readl(&ioc->chip->Doorbell); 746 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) 747 mpt3sas_base_fault_info(ioc , doorbell); 748 else { 749 writel(0xC0FFEE00, &ioc->chip->Doorbell); 750 ioc_err(ioc, "Firmware is halted due to command timeout\n"); 751 } 752 753 if (ioc->fwfault_debug == 2) 754 for (;;) 755 ; 756 else 757 panic("panic in %s\n", __func__); 758 } 759 760 /** 761 * _base_sas_ioc_info - verbose translation of the ioc status 762 * @ioc: per adapter object 763 * @mpi_reply: reply mf payload returned from firmware 764 * @request_hdr: request mf 765 */ 766 static void 767 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply, 768 MPI2RequestHeader_t *request_hdr) 769 { 770 u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & 771 MPI2_IOCSTATUS_MASK; 772 char *desc = NULL; 773 u16 frame_sz; 774 char *func_str = NULL; 775 776 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */ 777 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST || 778 request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH || 779 request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION) 780 return; 781 782 if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE) 783 return; 784 785 switch (ioc_status) { 786 787 /**************************************************************************** 788 * Common IOCStatus values for all replies 789 ****************************************************************************/ 790 791 case MPI2_IOCSTATUS_INVALID_FUNCTION: 792 desc = "invalid function"; 793 break; 794 case MPI2_IOCSTATUS_BUSY: 795 desc = "busy"; 796 break; 797 case MPI2_IOCSTATUS_INVALID_SGL: 798 desc = "invalid sgl"; 799 break; 800 case MPI2_IOCSTATUS_INTERNAL_ERROR: 801 desc = "internal error"; 802 break; 803 case MPI2_IOCSTATUS_INVALID_VPID: 804 desc = "invalid vpid"; 805 break; 806 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES: 807 desc = "insufficient resources"; 808 break; 809 case MPI2_IOCSTATUS_INSUFFICIENT_POWER: 810 desc = "insufficient power"; 811 break; 812 case MPI2_IOCSTATUS_INVALID_FIELD: 813 desc = "invalid field"; 814 break; 815 case MPI2_IOCSTATUS_INVALID_STATE: 816 desc = "invalid state"; 817 break; 818 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED: 819 desc = "op state not supported"; 820 break; 821 822 /**************************************************************************** 823 * Config IOCStatus values 824 ****************************************************************************/ 825 826 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION: 827 desc = "config invalid action"; 828 break; 829 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE: 830 desc = "config invalid type"; 831 break; 832 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE: 833 desc = "config invalid page"; 834 break; 835 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA: 836 desc = "config invalid data"; 837 break; 838 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS: 839 desc = "config no defaults"; 840 break; 841 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT: 842 desc = "config cant commit"; 843 break; 844 845 /**************************************************************************** 846 * SCSI IO Reply 847 ****************************************************************************/ 848 849 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR: 850 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE: 851 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE: 852 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN: 853 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN: 854 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR: 855 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR: 856 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED: 857 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH: 858 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED: 859 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED: 860 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED: 861 break; 862 863 /**************************************************************************** 864 * For use by SCSI Initiator and SCSI Target end-to-end data protection 865 ****************************************************************************/ 866 867 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR: 868 desc = "eedp guard error"; 869 break; 870 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR: 871 desc = "eedp ref tag error"; 872 break; 873 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR: 874 desc = "eedp app tag error"; 875 break; 876 877 /**************************************************************************** 878 * SCSI Target values 879 ****************************************************************************/ 880 881 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX: 882 desc = "target invalid io index"; 883 break; 884 case MPI2_IOCSTATUS_TARGET_ABORTED: 885 desc = "target aborted"; 886 break; 887 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE: 888 desc = "target no conn retryable"; 889 break; 890 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION: 891 desc = "target no connection"; 892 break; 893 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH: 894 desc = "target xfer count mismatch"; 895 break; 896 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR: 897 desc = "target data offset error"; 898 break; 899 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA: 900 desc = "target too much write data"; 901 break; 902 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT: 903 desc = "target iu too short"; 904 break; 905 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT: 906 desc = "target ack nak timeout"; 907 break; 908 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED: 909 desc = "target nak received"; 910 break; 911 912 /**************************************************************************** 913 * Serial Attached SCSI values 914 ****************************************************************************/ 915 916 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED: 917 desc = "smp request failed"; 918 break; 919 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN: 920 desc = "smp data overrun"; 921 break; 922 923 /**************************************************************************** 924 * Diagnostic Buffer Post / Diagnostic Release values 925 ****************************************************************************/ 926 927 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED: 928 desc = "diagnostic released"; 929 break; 930 default: 931 break; 932 } 933 934 if (!desc) 935 return; 936 937 switch (request_hdr->Function) { 938 case MPI2_FUNCTION_CONFIG: 939 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size; 940 func_str = "config_page"; 941 break; 942 case MPI2_FUNCTION_SCSI_TASK_MGMT: 943 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t); 944 func_str = "task_mgmt"; 945 break; 946 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL: 947 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t); 948 func_str = "sas_iounit_ctl"; 949 break; 950 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR: 951 frame_sz = sizeof(Mpi2SepRequest_t); 952 func_str = "enclosure"; 953 break; 954 case MPI2_FUNCTION_IOC_INIT: 955 frame_sz = sizeof(Mpi2IOCInitRequest_t); 956 func_str = "ioc_init"; 957 break; 958 case MPI2_FUNCTION_PORT_ENABLE: 959 frame_sz = sizeof(Mpi2PortEnableRequest_t); 960 func_str = "port_enable"; 961 break; 962 case MPI2_FUNCTION_SMP_PASSTHROUGH: 963 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size; 964 func_str = "smp_passthru"; 965 break; 966 case MPI2_FUNCTION_NVME_ENCAPSULATED: 967 frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) + 968 ioc->sge_size; 969 func_str = "nvme_encapsulated"; 970 break; 971 default: 972 frame_sz = 32; 973 func_str = "unknown"; 974 break; 975 } 976 977 ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n", 978 desc, ioc_status, request_hdr, func_str); 979 980 _debug_dump_mf(request_hdr, frame_sz/4); 981 } 982 983 /** 984 * _base_display_event_data - verbose translation of firmware asyn events 985 * @ioc: per adapter object 986 * @mpi_reply: reply mf payload returned from firmware 987 */ 988 static void 989 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc, 990 Mpi2EventNotificationReply_t *mpi_reply) 991 { 992 char *desc = NULL; 993 u16 event; 994 995 if (!(ioc->logging_level & MPT_DEBUG_EVENTS)) 996 return; 997 998 event = le16_to_cpu(mpi_reply->Event); 999 1000 switch (event) { 1001 case MPI2_EVENT_LOG_DATA: 1002 desc = "Log Data"; 1003 break; 1004 case MPI2_EVENT_STATE_CHANGE: 1005 desc = "Status Change"; 1006 break; 1007 case MPI2_EVENT_HARD_RESET_RECEIVED: 1008 desc = "Hard Reset Received"; 1009 break; 1010 case MPI2_EVENT_EVENT_CHANGE: 1011 desc = "Event Change"; 1012 break; 1013 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE: 1014 desc = "Device Status Change"; 1015 break; 1016 case MPI2_EVENT_IR_OPERATION_STATUS: 1017 if (!ioc->hide_ir_msg) 1018 desc = "IR Operation Status"; 1019 break; 1020 case MPI2_EVENT_SAS_DISCOVERY: 1021 { 1022 Mpi2EventDataSasDiscovery_t *event_data = 1023 (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData; 1024 ioc_info(ioc, "Discovery: (%s)", 1025 event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ? 1026 "start" : "stop"); 1027 if (event_data->DiscoveryStatus) 1028 pr_cont(" discovery_status(0x%08x)", 1029 le32_to_cpu(event_data->DiscoveryStatus)); 1030 pr_cont("\n"); 1031 return; 1032 } 1033 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE: 1034 desc = "SAS Broadcast Primitive"; 1035 break; 1036 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE: 1037 desc = "SAS Init Device Status Change"; 1038 break; 1039 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW: 1040 desc = "SAS Init Table Overflow"; 1041 break; 1042 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST: 1043 desc = "SAS Topology Change List"; 1044 break; 1045 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE: 1046 desc = "SAS Enclosure Device Status Change"; 1047 break; 1048 case MPI2_EVENT_IR_VOLUME: 1049 if (!ioc->hide_ir_msg) 1050 desc = "IR Volume"; 1051 break; 1052 case MPI2_EVENT_IR_PHYSICAL_DISK: 1053 if (!ioc->hide_ir_msg) 1054 desc = "IR Physical Disk"; 1055 break; 1056 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST: 1057 if (!ioc->hide_ir_msg) 1058 desc = "IR Configuration Change List"; 1059 break; 1060 case MPI2_EVENT_LOG_ENTRY_ADDED: 1061 if (!ioc->hide_ir_msg) 1062 desc = "Log Entry Added"; 1063 break; 1064 case MPI2_EVENT_TEMP_THRESHOLD: 1065 desc = "Temperature Threshold"; 1066 break; 1067 case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION: 1068 desc = "Cable Event"; 1069 break; 1070 case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR: 1071 desc = "SAS Device Discovery Error"; 1072 break; 1073 case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE: 1074 desc = "PCIE Device Status Change"; 1075 break; 1076 case MPI2_EVENT_PCIE_ENUMERATION: 1077 { 1078 Mpi26EventDataPCIeEnumeration_t *event_data = 1079 (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData; 1080 ioc_info(ioc, "PCIE Enumeration: (%s)", 1081 event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ? 1082 "start" : "stop"); 1083 if (event_data->EnumerationStatus) 1084 pr_cont("enumeration_status(0x%08x)", 1085 le32_to_cpu(event_data->EnumerationStatus)); 1086 pr_cont("\n"); 1087 return; 1088 } 1089 case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST: 1090 desc = "PCIE Topology Change List"; 1091 break; 1092 } 1093 1094 if (!desc) 1095 return; 1096 1097 ioc_info(ioc, "%s\n", desc); 1098 } 1099 1100 /** 1101 * _base_sas_log_info - verbose translation of firmware log info 1102 * @ioc: per adapter object 1103 * @log_info: log info 1104 */ 1105 static void 1106 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info) 1107 { 1108 union loginfo_type { 1109 u32 loginfo; 1110 struct { 1111 u32 subcode:16; 1112 u32 code:8; 1113 u32 originator:4; 1114 u32 bus_type:4; 1115 } dw; 1116 }; 1117 union loginfo_type sas_loginfo; 1118 char *originator_str = NULL; 1119 1120 sas_loginfo.loginfo = log_info; 1121 if (sas_loginfo.dw.bus_type != 3 /*SAS*/) 1122 return; 1123 1124 /* each nexus loss loginfo */ 1125 if (log_info == 0x31170000) 1126 return; 1127 1128 /* eat the loginfos associated with task aborts */ 1129 if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info == 1130 0x31140000 || log_info == 0x31130000)) 1131 return; 1132 1133 switch (sas_loginfo.dw.originator) { 1134 case 0: 1135 originator_str = "IOP"; 1136 break; 1137 case 1: 1138 originator_str = "PL"; 1139 break; 1140 case 2: 1141 if (!ioc->hide_ir_msg) 1142 originator_str = "IR"; 1143 else 1144 originator_str = "WarpDrive"; 1145 break; 1146 } 1147 1148 ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n", 1149 log_info, 1150 originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode); 1151 } 1152 1153 /** 1154 * _base_display_reply_info - 1155 * @ioc: per adapter object 1156 * @smid: system request message index 1157 * @msix_index: MSIX table index supplied by the OS 1158 * @reply: reply message frame(lower 32bit addr) 1159 */ 1160 static void 1161 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 1162 u32 reply) 1163 { 1164 MPI2DefaultReply_t *mpi_reply; 1165 u16 ioc_status; 1166 u32 loginfo = 0; 1167 1168 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1169 if (unlikely(!mpi_reply)) { 1170 ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n", 1171 __FILE__, __LINE__, __func__); 1172 return; 1173 } 1174 ioc_status = le16_to_cpu(mpi_reply->IOCStatus); 1175 1176 if ((ioc_status & MPI2_IOCSTATUS_MASK) && 1177 (ioc->logging_level & MPT_DEBUG_REPLY)) { 1178 _base_sas_ioc_info(ioc , mpi_reply, 1179 mpt3sas_base_get_msg_frame(ioc, smid)); 1180 } 1181 1182 if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) { 1183 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo); 1184 _base_sas_log_info(ioc, loginfo); 1185 } 1186 1187 if (ioc_status || loginfo) { 1188 ioc_status &= MPI2_IOCSTATUS_MASK; 1189 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo); 1190 } 1191 } 1192 1193 /** 1194 * mpt3sas_base_done - base internal command completion routine 1195 * @ioc: per adapter object 1196 * @smid: system request message index 1197 * @msix_index: MSIX table index supplied by the OS 1198 * @reply: reply message frame(lower 32bit addr) 1199 * 1200 * Return: 1201 * 1 meaning mf should be freed from _base_interrupt 1202 * 0 means the mf is freed from this function. 1203 */ 1204 u8 1205 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 1206 u32 reply) 1207 { 1208 MPI2DefaultReply_t *mpi_reply; 1209 1210 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1211 if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK) 1212 return mpt3sas_check_for_pending_internal_cmds(ioc, smid); 1213 1214 if (ioc->base_cmds.status == MPT3_CMD_NOT_USED) 1215 return 1; 1216 1217 ioc->base_cmds.status |= MPT3_CMD_COMPLETE; 1218 if (mpi_reply) { 1219 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID; 1220 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4); 1221 } 1222 ioc->base_cmds.status &= ~MPT3_CMD_PENDING; 1223 1224 complete(&ioc->base_cmds.done); 1225 return 1; 1226 } 1227 1228 /** 1229 * _base_async_event - main callback handler for firmware asyn events 1230 * @ioc: per adapter object 1231 * @msix_index: MSIX table index supplied by the OS 1232 * @reply: reply message frame(lower 32bit addr) 1233 * 1234 * Return: 1235 * 1 meaning mf should be freed from _base_interrupt 1236 * 0 means the mf is freed from this function. 1237 */ 1238 static u8 1239 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply) 1240 { 1241 Mpi2EventNotificationReply_t *mpi_reply; 1242 Mpi2EventAckRequest_t *ack_request; 1243 u16 smid; 1244 struct _event_ack_list *delayed_event_ack; 1245 1246 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1247 if (!mpi_reply) 1248 return 1; 1249 if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION) 1250 return 1; 1251 1252 _base_display_event_data(ioc, mpi_reply); 1253 1254 if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED)) 1255 goto out; 1256 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 1257 if (!smid) { 1258 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack), 1259 GFP_ATOMIC); 1260 if (!delayed_event_ack) 1261 goto out; 1262 INIT_LIST_HEAD(&delayed_event_ack->list); 1263 delayed_event_ack->Event = mpi_reply->Event; 1264 delayed_event_ack->EventContext = mpi_reply->EventContext; 1265 list_add_tail(&delayed_event_ack->list, 1266 &ioc->delayed_event_ack_list); 1267 dewtprintk(ioc, 1268 ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n", 1269 le16_to_cpu(mpi_reply->Event))); 1270 goto out; 1271 } 1272 1273 ack_request = mpt3sas_base_get_msg_frame(ioc, smid); 1274 memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t)); 1275 ack_request->Function = MPI2_FUNCTION_EVENT_ACK; 1276 ack_request->Event = mpi_reply->Event; 1277 ack_request->EventContext = mpi_reply->EventContext; 1278 ack_request->VF_ID = 0; /* TODO */ 1279 ack_request->VP_ID = 0; 1280 mpt3sas_base_put_smid_default(ioc, smid); 1281 1282 out: 1283 1284 /* scsih callback handler */ 1285 mpt3sas_scsih_event_callback(ioc, msix_index, reply); 1286 1287 /* ctl callback handler */ 1288 mpt3sas_ctl_event_callback(ioc, msix_index, reply); 1289 1290 return 1; 1291 } 1292 1293 static struct scsiio_tracker * 1294 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid) 1295 { 1296 struct scsi_cmnd *cmd; 1297 1298 if (WARN_ON(!smid) || 1299 WARN_ON(smid >= ioc->hi_priority_smid)) 1300 return NULL; 1301 1302 cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid); 1303 if (cmd) 1304 return scsi_cmd_priv(cmd); 1305 1306 return NULL; 1307 } 1308 1309 /** 1310 * _base_get_cb_idx - obtain the callback index 1311 * @ioc: per adapter object 1312 * @smid: system request message index 1313 * 1314 * Return: callback index. 1315 */ 1316 static u8 1317 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid) 1318 { 1319 int i; 1320 u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1; 1321 u8 cb_idx = 0xFF; 1322 1323 if (smid < ioc->hi_priority_smid) { 1324 struct scsiio_tracker *st; 1325 1326 if (smid < ctl_smid) { 1327 st = _get_st_from_smid(ioc, smid); 1328 if (st) 1329 cb_idx = st->cb_idx; 1330 } else if (smid == ctl_smid) 1331 cb_idx = ioc->ctl_cb_idx; 1332 } else if (smid < ioc->internal_smid) { 1333 i = smid - ioc->hi_priority_smid; 1334 cb_idx = ioc->hpr_lookup[i].cb_idx; 1335 } else if (smid <= ioc->hba_queue_depth) { 1336 i = smid - ioc->internal_smid; 1337 cb_idx = ioc->internal_lookup[i].cb_idx; 1338 } 1339 return cb_idx; 1340 } 1341 1342 /** 1343 * _base_mask_interrupts - disable interrupts 1344 * @ioc: per adapter object 1345 * 1346 * Disabling ResetIRQ, Reply and Doorbell Interrupts 1347 */ 1348 static void 1349 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc) 1350 { 1351 u32 him_register; 1352 1353 ioc->mask_interrupts = 1; 1354 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask); 1355 him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK; 1356 writel(him_register, &ioc->chip->HostInterruptMask); 1357 ioc->base_readl(&ioc->chip->HostInterruptMask); 1358 } 1359 1360 /** 1361 * _base_unmask_interrupts - enable interrupts 1362 * @ioc: per adapter object 1363 * 1364 * Enabling only Reply Interrupts 1365 */ 1366 static void 1367 _base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc) 1368 { 1369 u32 him_register; 1370 1371 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask); 1372 him_register &= ~MPI2_HIM_RIM; 1373 writel(him_register, &ioc->chip->HostInterruptMask); 1374 ioc->mask_interrupts = 0; 1375 } 1376 1377 union reply_descriptor { 1378 u64 word; 1379 struct { 1380 u32 low; 1381 u32 high; 1382 } u; 1383 }; 1384 1385 /** 1386 * _base_interrupt - MPT adapter (IOC) specific interrupt handler. 1387 * @irq: irq number (not used) 1388 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure 1389 * 1390 * Return: IRQ_HANDLED if processed, else IRQ_NONE. 1391 */ 1392 static irqreturn_t 1393 _base_interrupt(int irq, void *bus_id) 1394 { 1395 struct adapter_reply_queue *reply_q = bus_id; 1396 union reply_descriptor rd; 1397 u32 completed_cmds; 1398 u8 request_desript_type; 1399 u16 smid; 1400 u8 cb_idx; 1401 u32 reply; 1402 u8 msix_index = reply_q->msix_index; 1403 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc; 1404 Mpi2ReplyDescriptorsUnion_t *rpf; 1405 u8 rc; 1406 1407 if (ioc->mask_interrupts) 1408 return IRQ_NONE; 1409 1410 if (!atomic_add_unless(&reply_q->busy, 1, 1)) 1411 return IRQ_NONE; 1412 1413 rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index]; 1414 request_desript_type = rpf->Default.ReplyFlags 1415 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 1416 if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) { 1417 atomic_dec(&reply_q->busy); 1418 return IRQ_NONE; 1419 } 1420 1421 completed_cmds = 0; 1422 cb_idx = 0xFF; 1423 do { 1424 rd.word = le64_to_cpu(rpf->Words); 1425 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX) 1426 goto out; 1427 reply = 0; 1428 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1); 1429 if (request_desript_type == 1430 MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS || 1431 request_desript_type == 1432 MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS || 1433 request_desript_type == 1434 MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) { 1435 cb_idx = _base_get_cb_idx(ioc, smid); 1436 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) && 1437 (likely(mpt_callbacks[cb_idx] != NULL))) { 1438 rc = mpt_callbacks[cb_idx](ioc, smid, 1439 msix_index, 0); 1440 if (rc) 1441 mpt3sas_base_free_smid(ioc, smid); 1442 } 1443 } else if (request_desript_type == 1444 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) { 1445 reply = le32_to_cpu( 1446 rpf->AddressReply.ReplyFrameAddress); 1447 if (reply > ioc->reply_dma_max_address || 1448 reply < ioc->reply_dma_min_address) 1449 reply = 0; 1450 if (smid) { 1451 cb_idx = _base_get_cb_idx(ioc, smid); 1452 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) && 1453 (likely(mpt_callbacks[cb_idx] != NULL))) { 1454 rc = mpt_callbacks[cb_idx](ioc, smid, 1455 msix_index, reply); 1456 if (reply) 1457 _base_display_reply_info(ioc, 1458 smid, msix_index, reply); 1459 if (rc) 1460 mpt3sas_base_free_smid(ioc, 1461 smid); 1462 } 1463 } else { 1464 _base_async_event(ioc, msix_index, reply); 1465 } 1466 1467 /* reply free queue handling */ 1468 if (reply) { 1469 ioc->reply_free_host_index = 1470 (ioc->reply_free_host_index == 1471 (ioc->reply_free_queue_depth - 1)) ? 1472 0 : ioc->reply_free_host_index + 1; 1473 ioc->reply_free[ioc->reply_free_host_index] = 1474 cpu_to_le32(reply); 1475 if (ioc->is_mcpu_endpoint) 1476 _base_clone_reply_to_sys_mem(ioc, 1477 reply, 1478 ioc->reply_free_host_index); 1479 writel(ioc->reply_free_host_index, 1480 &ioc->chip->ReplyFreeHostIndex); 1481 } 1482 } 1483 1484 rpf->Words = cpu_to_le64(ULLONG_MAX); 1485 reply_q->reply_post_host_index = 1486 (reply_q->reply_post_host_index == 1487 (ioc->reply_post_queue_depth - 1)) ? 0 : 1488 reply_q->reply_post_host_index + 1; 1489 request_desript_type = 1490 reply_q->reply_post_free[reply_q->reply_post_host_index]. 1491 Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 1492 completed_cmds++; 1493 /* Update the reply post host index after continuously 1494 * processing the threshold number of Reply Descriptors. 1495 * So that FW can find enough entries to post the Reply 1496 * Descriptors in the reply descriptor post queue. 1497 */ 1498 if (completed_cmds > ioc->hba_queue_depth/3) { 1499 if (ioc->combined_reply_queue) { 1500 writel(reply_q->reply_post_host_index | 1501 ((msix_index & 7) << 1502 MPI2_RPHI_MSIX_INDEX_SHIFT), 1503 ioc->replyPostRegisterIndex[msix_index/8]); 1504 } else { 1505 writel(reply_q->reply_post_host_index | 1506 (msix_index << 1507 MPI2_RPHI_MSIX_INDEX_SHIFT), 1508 &ioc->chip->ReplyPostHostIndex); 1509 } 1510 completed_cmds = 1; 1511 } 1512 if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) 1513 goto out; 1514 if (!reply_q->reply_post_host_index) 1515 rpf = reply_q->reply_post_free; 1516 else 1517 rpf++; 1518 } while (1); 1519 1520 out: 1521 1522 if (!completed_cmds) { 1523 atomic_dec(&reply_q->busy); 1524 return IRQ_NONE; 1525 } 1526 1527 if (ioc->is_warpdrive) { 1528 writel(reply_q->reply_post_host_index, 1529 ioc->reply_post_host_index[msix_index]); 1530 atomic_dec(&reply_q->busy); 1531 return IRQ_HANDLED; 1532 } 1533 1534 /* Update Reply Post Host Index. 1535 * For those HBA's which support combined reply queue feature 1536 * 1. Get the correct Supplemental Reply Post Host Index Register. 1537 * i.e. (msix_index / 8)th entry from Supplemental Reply Post Host 1538 * Index Register address bank i.e replyPostRegisterIndex[], 1539 * 2. Then update this register with new reply host index value 1540 * in ReplyPostIndex field and the MSIxIndex field with 1541 * msix_index value reduced to a value between 0 and 7, 1542 * using a modulo 8 operation. Since each Supplemental Reply Post 1543 * Host Index Register supports 8 MSI-X vectors. 1544 * 1545 * For other HBA's just update the Reply Post Host Index register with 1546 * new reply host index value in ReplyPostIndex Field and msix_index 1547 * value in MSIxIndex field. 1548 */ 1549 if (ioc->combined_reply_queue) 1550 writel(reply_q->reply_post_host_index | ((msix_index & 7) << 1551 MPI2_RPHI_MSIX_INDEX_SHIFT), 1552 ioc->replyPostRegisterIndex[msix_index/8]); 1553 else 1554 writel(reply_q->reply_post_host_index | (msix_index << 1555 MPI2_RPHI_MSIX_INDEX_SHIFT), 1556 &ioc->chip->ReplyPostHostIndex); 1557 atomic_dec(&reply_q->busy); 1558 return IRQ_HANDLED; 1559 } 1560 1561 /** 1562 * _base_is_controller_msix_enabled - is controller support muli-reply queues 1563 * @ioc: per adapter object 1564 * 1565 * Return: Whether or not MSI/X is enabled. 1566 */ 1567 static inline int 1568 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc) 1569 { 1570 return (ioc->facts.IOCCapabilities & 1571 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable; 1572 } 1573 1574 /** 1575 * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts 1576 * @ioc: per adapter object 1577 * Context: non ISR conext 1578 * 1579 * Called when a Task Management request has completed. 1580 */ 1581 void 1582 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc) 1583 { 1584 struct adapter_reply_queue *reply_q; 1585 1586 /* If MSIX capability is turned off 1587 * then multi-queues are not enabled 1588 */ 1589 if (!_base_is_controller_msix_enabled(ioc)) 1590 return; 1591 1592 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 1593 if (ioc->shost_recovery || ioc->remove_host || 1594 ioc->pci_error_recovery) 1595 return; 1596 /* TMs are on msix_index == 0 */ 1597 if (reply_q->msix_index == 0) 1598 continue; 1599 synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index)); 1600 } 1601 } 1602 1603 /** 1604 * mpt3sas_base_release_callback_handler - clear interrupt callback handler 1605 * @cb_idx: callback index 1606 */ 1607 void 1608 mpt3sas_base_release_callback_handler(u8 cb_idx) 1609 { 1610 mpt_callbacks[cb_idx] = NULL; 1611 } 1612 1613 /** 1614 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler 1615 * @cb_func: callback function 1616 * 1617 * Return: Index of @cb_func. 1618 */ 1619 u8 1620 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func) 1621 { 1622 u8 cb_idx; 1623 1624 for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--) 1625 if (mpt_callbacks[cb_idx] == NULL) 1626 break; 1627 1628 mpt_callbacks[cb_idx] = cb_func; 1629 return cb_idx; 1630 } 1631 1632 /** 1633 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler 1634 */ 1635 void 1636 mpt3sas_base_initialize_callback_handler(void) 1637 { 1638 u8 cb_idx; 1639 1640 for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++) 1641 mpt3sas_base_release_callback_handler(cb_idx); 1642 } 1643 1644 1645 /** 1646 * _base_build_zero_len_sge - build zero length sg entry 1647 * @ioc: per adapter object 1648 * @paddr: virtual address for SGE 1649 * 1650 * Create a zero length scatter gather entry to insure the IOCs hardware has 1651 * something to use if the target device goes brain dead and tries 1652 * to send data even when none is asked for. 1653 */ 1654 static void 1655 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr) 1656 { 1657 u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT | 1658 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST | 1659 MPI2_SGE_FLAGS_SIMPLE_ELEMENT) << 1660 MPI2_SGE_FLAGS_SHIFT); 1661 ioc->base_add_sg_single(paddr, flags_length, -1); 1662 } 1663 1664 /** 1665 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr. 1666 * @paddr: virtual address for SGE 1667 * @flags_length: SGE flags and data transfer length 1668 * @dma_addr: Physical address 1669 */ 1670 static void 1671 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr) 1672 { 1673 Mpi2SGESimple32_t *sgel = paddr; 1674 1675 flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING | 1676 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT; 1677 sgel->FlagsLength = cpu_to_le32(flags_length); 1678 sgel->Address = cpu_to_le32(dma_addr); 1679 } 1680 1681 1682 /** 1683 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr. 1684 * @paddr: virtual address for SGE 1685 * @flags_length: SGE flags and data transfer length 1686 * @dma_addr: Physical address 1687 */ 1688 static void 1689 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr) 1690 { 1691 Mpi2SGESimple64_t *sgel = paddr; 1692 1693 flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING | 1694 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT; 1695 sgel->FlagsLength = cpu_to_le32(flags_length); 1696 sgel->Address = cpu_to_le64(dma_addr); 1697 } 1698 1699 /** 1700 * _base_get_chain_buffer_tracker - obtain chain tracker 1701 * @ioc: per adapter object 1702 * @scmd: SCSI commands of the IO request 1703 * 1704 * Return: chain tracker from chain_lookup table using key as 1705 * smid and smid's chain_offset. 1706 */ 1707 static struct chain_tracker * 1708 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc, 1709 struct scsi_cmnd *scmd) 1710 { 1711 struct chain_tracker *chain_req; 1712 struct scsiio_tracker *st = scsi_cmd_priv(scmd); 1713 u16 smid = st->smid; 1714 u8 chain_offset = 1715 atomic_read(&ioc->chain_lookup[smid - 1].chain_offset); 1716 1717 if (chain_offset == ioc->chains_needed_per_io) 1718 return NULL; 1719 1720 chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset]; 1721 atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset); 1722 return chain_req; 1723 } 1724 1725 1726 /** 1727 * _base_build_sg - build generic sg 1728 * @ioc: per adapter object 1729 * @psge: virtual address for SGE 1730 * @data_out_dma: physical address for WRITES 1731 * @data_out_sz: data xfer size for WRITES 1732 * @data_in_dma: physical address for READS 1733 * @data_in_sz: data xfer size for READS 1734 */ 1735 static void 1736 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge, 1737 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 1738 size_t data_in_sz) 1739 { 1740 u32 sgl_flags; 1741 1742 if (!data_out_sz && !data_in_sz) { 1743 _base_build_zero_len_sge(ioc, psge); 1744 return; 1745 } 1746 1747 if (data_out_sz && data_in_sz) { 1748 /* WRITE sgel first */ 1749 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 1750 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC); 1751 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 1752 ioc->base_add_sg_single(psge, sgl_flags | 1753 data_out_sz, data_out_dma); 1754 1755 /* incr sgel */ 1756 psge += ioc->sge_size; 1757 1758 /* READ sgel last */ 1759 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 1760 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 1761 MPI2_SGE_FLAGS_END_OF_LIST); 1762 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 1763 ioc->base_add_sg_single(psge, sgl_flags | 1764 data_in_sz, data_in_dma); 1765 } else if (data_out_sz) /* WRITE */ { 1766 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 1767 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 1768 MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC); 1769 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 1770 ioc->base_add_sg_single(psge, sgl_flags | 1771 data_out_sz, data_out_dma); 1772 } else if (data_in_sz) /* READ */ { 1773 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 1774 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 1775 MPI2_SGE_FLAGS_END_OF_LIST); 1776 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 1777 ioc->base_add_sg_single(psge, sgl_flags | 1778 data_in_sz, data_in_dma); 1779 } 1780 } 1781 1782 /* IEEE format sgls */ 1783 1784 /** 1785 * _base_build_nvme_prp - This function is called for NVMe end devices to build 1786 * a native SGL (NVMe PRP). The native SGL is built starting in the first PRP 1787 * entry of the NVMe message (PRP1). If the data buffer is small enough to be 1788 * described entirely using PRP1, then PRP2 is not used. If needed, PRP2 is 1789 * used to describe a larger data buffer. If the data buffer is too large to 1790 * describe using the two PRP entriess inside the NVMe message, then PRP1 1791 * describes the first data memory segment, and PRP2 contains a pointer to a PRP 1792 * list located elsewhere in memory to describe the remaining data memory 1793 * segments. The PRP list will be contiguous. 1794 * 1795 * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP 1796 * consists of a list of PRP entries to describe a number of noncontigous 1797 * physical memory segments as a single memory buffer, just as a SGL does. Note 1798 * however, that this function is only used by the IOCTL call, so the memory 1799 * given will be guaranteed to be contiguous. There is no need to translate 1800 * non-contiguous SGL into a PRP in this case. All PRPs will describe 1801 * contiguous space that is one page size each. 1802 * 1803 * Each NVMe message contains two PRP entries. The first (PRP1) either contains 1804 * a PRP list pointer or a PRP element, depending upon the command. PRP2 1805 * contains the second PRP element if the memory being described fits within 2 1806 * PRP entries, or a PRP list pointer if the PRP spans more than two entries. 1807 * 1808 * A PRP list pointer contains the address of a PRP list, structured as a linear 1809 * array of PRP entries. Each PRP entry in this list describes a segment of 1810 * physical memory. 1811 * 1812 * Each 64-bit PRP entry comprises an address and an offset field. The address 1813 * always points at the beginning of a 4KB physical memory page, and the offset 1814 * describes where within that 4KB page the memory segment begins. Only the 1815 * first element in a PRP list may contain a non-zero offest, implying that all 1816 * memory segments following the first begin at the start of a 4KB page. 1817 * 1818 * Each PRP element normally describes 4KB of physical memory, with exceptions 1819 * for the first and last elements in the list. If the memory being described 1820 * by the list begins at a non-zero offset within the first 4KB page, then the 1821 * first PRP element will contain a non-zero offset indicating where the region 1822 * begins within the 4KB page. The last memory segment may end before the end 1823 * of the 4KB segment, depending upon the overall size of the memory being 1824 * described by the PRP list. 1825 * 1826 * Since PRP entries lack any indication of size, the overall data buffer length 1827 * is used to determine where the end of the data memory buffer is located, and 1828 * how many PRP entries are required to describe it. 1829 * 1830 * @ioc: per adapter object 1831 * @smid: system request message index for getting asscociated SGL 1832 * @nvme_encap_request: the NVMe request msg frame pointer 1833 * @data_out_dma: physical address for WRITES 1834 * @data_out_sz: data xfer size for WRITES 1835 * @data_in_dma: physical address for READS 1836 * @data_in_sz: data xfer size for READS 1837 */ 1838 static void 1839 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid, 1840 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request, 1841 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 1842 size_t data_in_sz) 1843 { 1844 int prp_size = NVME_PRP_SIZE; 1845 __le64 *prp_entry, *prp1_entry, *prp2_entry; 1846 __le64 *prp_page; 1847 dma_addr_t prp_entry_dma, prp_page_dma, dma_addr; 1848 u32 offset, entry_len; 1849 u32 page_mask_result, page_mask; 1850 size_t length; 1851 struct mpt3sas_nvme_cmd *nvme_cmd = 1852 (void *)nvme_encap_request->NVMe_Command; 1853 1854 /* 1855 * Not all commands require a data transfer. If no data, just return 1856 * without constructing any PRP. 1857 */ 1858 if (!data_in_sz && !data_out_sz) 1859 return; 1860 prp1_entry = &nvme_cmd->prp1; 1861 prp2_entry = &nvme_cmd->prp2; 1862 prp_entry = prp1_entry; 1863 /* 1864 * For the PRP entries, use the specially allocated buffer of 1865 * contiguous memory. 1866 */ 1867 prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid); 1868 prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid); 1869 1870 /* 1871 * Check if we are within 1 entry of a page boundary we don't 1872 * want our first entry to be a PRP List entry. 1873 */ 1874 page_mask = ioc->page_size - 1; 1875 page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask; 1876 if (!page_mask_result) { 1877 /* Bump up to next page boundary. */ 1878 prp_page = (__le64 *)((u8 *)prp_page + prp_size); 1879 prp_page_dma = prp_page_dma + prp_size; 1880 } 1881 1882 /* 1883 * Set PRP physical pointer, which initially points to the current PRP 1884 * DMA memory page. 1885 */ 1886 prp_entry_dma = prp_page_dma; 1887 1888 /* Get physical address and length of the data buffer. */ 1889 if (data_in_sz) { 1890 dma_addr = data_in_dma; 1891 length = data_in_sz; 1892 } else { 1893 dma_addr = data_out_dma; 1894 length = data_out_sz; 1895 } 1896 1897 /* Loop while the length is not zero. */ 1898 while (length) { 1899 /* 1900 * Check if we need to put a list pointer here if we are at 1901 * page boundary - prp_size (8 bytes). 1902 */ 1903 page_mask_result = (prp_entry_dma + prp_size) & page_mask; 1904 if (!page_mask_result) { 1905 /* 1906 * This is the last entry in a PRP List, so we need to 1907 * put a PRP list pointer here. What this does is: 1908 * - bump the current memory pointer to the next 1909 * address, which will be the next full page. 1910 * - set the PRP Entry to point to that page. This 1911 * is now the PRP List pointer. 1912 * - bump the PRP Entry pointer the start of the 1913 * next page. Since all of this PRP memory is 1914 * contiguous, no need to get a new page - it's 1915 * just the next address. 1916 */ 1917 prp_entry_dma++; 1918 *prp_entry = cpu_to_le64(prp_entry_dma); 1919 prp_entry++; 1920 } 1921 1922 /* Need to handle if entry will be part of a page. */ 1923 offset = dma_addr & page_mask; 1924 entry_len = ioc->page_size - offset; 1925 1926 if (prp_entry == prp1_entry) { 1927 /* 1928 * Must fill in the first PRP pointer (PRP1) before 1929 * moving on. 1930 */ 1931 *prp1_entry = cpu_to_le64(dma_addr); 1932 1933 /* 1934 * Now point to the second PRP entry within the 1935 * command (PRP2). 1936 */ 1937 prp_entry = prp2_entry; 1938 } else if (prp_entry == prp2_entry) { 1939 /* 1940 * Should the PRP2 entry be a PRP List pointer or just 1941 * a regular PRP pointer? If there is more than one 1942 * more page of data, must use a PRP List pointer. 1943 */ 1944 if (length > ioc->page_size) { 1945 /* 1946 * PRP2 will contain a PRP List pointer because 1947 * more PRP's are needed with this command. The 1948 * list will start at the beginning of the 1949 * contiguous buffer. 1950 */ 1951 *prp2_entry = cpu_to_le64(prp_entry_dma); 1952 1953 /* 1954 * The next PRP Entry will be the start of the 1955 * first PRP List. 1956 */ 1957 prp_entry = prp_page; 1958 } else { 1959 /* 1960 * After this, the PRP Entries are complete. 1961 * This command uses 2 PRP's and no PRP list. 1962 */ 1963 *prp2_entry = cpu_to_le64(dma_addr); 1964 } 1965 } else { 1966 /* 1967 * Put entry in list and bump the addresses. 1968 * 1969 * After PRP1 and PRP2 are filled in, this will fill in 1970 * all remaining PRP entries in a PRP List, one per 1971 * each time through the loop. 1972 */ 1973 *prp_entry = cpu_to_le64(dma_addr); 1974 prp_entry++; 1975 prp_entry_dma++; 1976 } 1977 1978 /* 1979 * Bump the phys address of the command's data buffer by the 1980 * entry_len. 1981 */ 1982 dma_addr += entry_len; 1983 1984 /* Decrement length accounting for last partial page. */ 1985 if (entry_len > length) 1986 length = 0; 1987 else 1988 length -= entry_len; 1989 } 1990 } 1991 1992 /** 1993 * base_make_prp_nvme - 1994 * Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only 1995 * 1996 * @ioc: per adapter object 1997 * @scmd: SCSI command from the mid-layer 1998 * @mpi_request: mpi request 1999 * @smid: msg Index 2000 * @sge_count: scatter gather element count. 2001 * 2002 * Return: true: PRPs are built 2003 * false: IEEE SGLs needs to be built 2004 */ 2005 static void 2006 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc, 2007 struct scsi_cmnd *scmd, 2008 Mpi25SCSIIORequest_t *mpi_request, 2009 u16 smid, int sge_count) 2010 { 2011 int sge_len, num_prp_in_chain = 0; 2012 Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl; 2013 __le64 *curr_buff; 2014 dma_addr_t msg_dma, sge_addr, offset; 2015 u32 page_mask, page_mask_result; 2016 struct scatterlist *sg_scmd; 2017 u32 first_prp_len; 2018 int data_len = scsi_bufflen(scmd); 2019 u32 nvme_pg_size; 2020 2021 nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE); 2022 /* 2023 * Nvme has a very convoluted prp format. One prp is required 2024 * for each page or partial page. Driver need to split up OS sg_list 2025 * entries if it is longer than one page or cross a page 2026 * boundary. Driver also have to insert a PRP list pointer entry as 2027 * the last entry in each physical page of the PRP list. 2028 * 2029 * NOTE: The first PRP "entry" is actually placed in the first 2030 * SGL entry in the main message as IEEE 64 format. The 2nd 2031 * entry in the main message is the chain element, and the rest 2032 * of the PRP entries are built in the contiguous pcie buffer. 2033 */ 2034 page_mask = nvme_pg_size - 1; 2035 2036 /* 2037 * Native SGL is needed. 2038 * Put a chain element in main message frame that points to the first 2039 * chain buffer. 2040 * 2041 * NOTE: The ChainOffset field must be 0 when using a chain pointer to 2042 * a native SGL. 2043 */ 2044 2045 /* Set main message chain element pointer */ 2046 main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL; 2047 /* 2048 * For NVMe the chain element needs to be the 2nd SG entry in the main 2049 * message. 2050 */ 2051 main_chain_element = (Mpi25IeeeSgeChain64_t *) 2052 ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64)); 2053 2054 /* 2055 * For the PRP entries, use the specially allocated buffer of 2056 * contiguous memory. Normal chain buffers can't be used 2057 * because each chain buffer would need to be the size of an OS 2058 * page (4k). 2059 */ 2060 curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid); 2061 msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid); 2062 2063 main_chain_element->Address = cpu_to_le64(msg_dma); 2064 main_chain_element->NextChainOffset = 0; 2065 main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 2066 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | 2067 MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP; 2068 2069 /* Build first prp, sge need not to be page aligned*/ 2070 ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL; 2071 sg_scmd = scsi_sglist(scmd); 2072 sge_addr = sg_dma_address(sg_scmd); 2073 sge_len = sg_dma_len(sg_scmd); 2074 2075 offset = sge_addr & page_mask; 2076 first_prp_len = nvme_pg_size - offset; 2077 2078 ptr_first_sgl->Address = cpu_to_le64(sge_addr); 2079 ptr_first_sgl->Length = cpu_to_le32(first_prp_len); 2080 2081 data_len -= first_prp_len; 2082 2083 if (sge_len > first_prp_len) { 2084 sge_addr += first_prp_len; 2085 sge_len -= first_prp_len; 2086 } else if (data_len && (sge_len == first_prp_len)) { 2087 sg_scmd = sg_next(sg_scmd); 2088 sge_addr = sg_dma_address(sg_scmd); 2089 sge_len = sg_dma_len(sg_scmd); 2090 } 2091 2092 for (;;) { 2093 offset = sge_addr & page_mask; 2094 2095 /* Put PRP pointer due to page boundary*/ 2096 page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask; 2097 if (unlikely(!page_mask_result)) { 2098 scmd_printk(KERN_NOTICE, 2099 scmd, "page boundary curr_buff: 0x%p\n", 2100 curr_buff); 2101 msg_dma += 8; 2102 *curr_buff = cpu_to_le64(msg_dma); 2103 curr_buff++; 2104 num_prp_in_chain++; 2105 } 2106 2107 *curr_buff = cpu_to_le64(sge_addr); 2108 curr_buff++; 2109 msg_dma += 8; 2110 num_prp_in_chain++; 2111 2112 sge_addr += nvme_pg_size; 2113 sge_len -= nvme_pg_size; 2114 data_len -= nvme_pg_size; 2115 2116 if (data_len <= 0) 2117 break; 2118 2119 if (sge_len > 0) 2120 continue; 2121 2122 sg_scmd = sg_next(sg_scmd); 2123 sge_addr = sg_dma_address(sg_scmd); 2124 sge_len = sg_dma_len(sg_scmd); 2125 } 2126 2127 main_chain_element->Length = 2128 cpu_to_le32(num_prp_in_chain * sizeof(u64)); 2129 return; 2130 } 2131 2132 static bool 2133 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc, 2134 struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count) 2135 { 2136 u32 data_length = 0; 2137 bool build_prp = true; 2138 2139 data_length = scsi_bufflen(scmd); 2140 2141 /* If Datalenth is <= 16K and number of SGE’s entries are <= 2 2142 * we built IEEE SGL 2143 */ 2144 if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2)) 2145 build_prp = false; 2146 2147 return build_prp; 2148 } 2149 2150 /** 2151 * _base_check_pcie_native_sgl - This function is called for PCIe end devices to 2152 * determine if the driver needs to build a native SGL. If so, that native 2153 * SGL is built in the special contiguous buffers allocated especially for 2154 * PCIe SGL creation. If the driver will not build a native SGL, return 2155 * TRUE and a normal IEEE SGL will be built. Currently this routine 2156 * supports NVMe. 2157 * @ioc: per adapter object 2158 * @mpi_request: mf request pointer 2159 * @smid: system request message index 2160 * @scmd: scsi command 2161 * @pcie_device: points to the PCIe device's info 2162 * 2163 * Return: 0 if native SGL was built, 1 if no SGL was built 2164 */ 2165 static int 2166 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc, 2167 Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd, 2168 struct _pcie_device *pcie_device) 2169 { 2170 int sges_left; 2171 2172 /* Get the SG list pointer and info. */ 2173 sges_left = scsi_dma_map(scmd); 2174 if (sges_left < 0) { 2175 sdev_printk(KERN_ERR, scmd->device, 2176 "scsi_dma_map failed: request for %d bytes!\n", 2177 scsi_bufflen(scmd)); 2178 return 1; 2179 } 2180 2181 /* Check if we need to build a native SG list. */ 2182 if (base_is_prp_possible(ioc, pcie_device, 2183 scmd, sges_left) == 0) { 2184 /* We built a native SG list, just return. */ 2185 goto out; 2186 } 2187 2188 /* 2189 * Build native NVMe PRP. 2190 */ 2191 base_make_prp_nvme(ioc, scmd, mpi_request, 2192 smid, sges_left); 2193 2194 return 0; 2195 out: 2196 scsi_dma_unmap(scmd); 2197 return 1; 2198 } 2199 2200 /** 2201 * _base_add_sg_single_ieee - add sg element for IEEE format 2202 * @paddr: virtual address for SGE 2203 * @flags: SGE flags 2204 * @chain_offset: number of 128 byte elements from start of segment 2205 * @length: data transfer length 2206 * @dma_addr: Physical address 2207 */ 2208 static void 2209 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length, 2210 dma_addr_t dma_addr) 2211 { 2212 Mpi25IeeeSgeChain64_t *sgel = paddr; 2213 2214 sgel->Flags = flags; 2215 sgel->NextChainOffset = chain_offset; 2216 sgel->Length = cpu_to_le32(length); 2217 sgel->Address = cpu_to_le64(dma_addr); 2218 } 2219 2220 /** 2221 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format 2222 * @ioc: per adapter object 2223 * @paddr: virtual address for SGE 2224 * 2225 * Create a zero length scatter gather entry to insure the IOCs hardware has 2226 * something to use if the target device goes brain dead and tries 2227 * to send data even when none is asked for. 2228 */ 2229 static void 2230 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr) 2231 { 2232 u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2233 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | 2234 MPI25_IEEE_SGE_FLAGS_END_OF_LIST); 2235 2236 _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1); 2237 } 2238 2239 /** 2240 * _base_build_sg_scmd - main sg creation routine 2241 * pcie_device is unused here! 2242 * @ioc: per adapter object 2243 * @scmd: scsi command 2244 * @smid: system request message index 2245 * @unused: unused pcie_device pointer 2246 * Context: none. 2247 * 2248 * The main routine that builds scatter gather table from a given 2249 * scsi request sent via the .queuecommand main handler. 2250 * 2251 * Return: 0 success, anything else error 2252 */ 2253 static int 2254 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc, 2255 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused) 2256 { 2257 Mpi2SCSIIORequest_t *mpi_request; 2258 dma_addr_t chain_dma; 2259 struct scatterlist *sg_scmd; 2260 void *sg_local, *chain; 2261 u32 chain_offset; 2262 u32 chain_length; 2263 u32 chain_flags; 2264 int sges_left; 2265 u32 sges_in_segment; 2266 u32 sgl_flags; 2267 u32 sgl_flags_last_element; 2268 u32 sgl_flags_end_buffer; 2269 struct chain_tracker *chain_req; 2270 2271 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 2272 2273 /* init scatter gather flags */ 2274 sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT; 2275 if (scmd->sc_data_direction == DMA_TO_DEVICE) 2276 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC; 2277 sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT) 2278 << MPI2_SGE_FLAGS_SHIFT; 2279 sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT | 2280 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST) 2281 << MPI2_SGE_FLAGS_SHIFT; 2282 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2283 2284 sg_scmd = scsi_sglist(scmd); 2285 sges_left = scsi_dma_map(scmd); 2286 if (sges_left < 0) { 2287 sdev_printk(KERN_ERR, scmd->device, 2288 "scsi_dma_map failed: request for %d bytes!\n", 2289 scsi_bufflen(scmd)); 2290 return -ENOMEM; 2291 } 2292 2293 sg_local = &mpi_request->SGL; 2294 sges_in_segment = ioc->max_sges_in_main_message; 2295 if (sges_left <= sges_in_segment) 2296 goto fill_in_last_segment; 2297 2298 mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) + 2299 (sges_in_segment * ioc->sge_size))/4; 2300 2301 /* fill in main message segment when there is a chain following */ 2302 while (sges_in_segment) { 2303 if (sges_in_segment == 1) 2304 ioc->base_add_sg_single(sg_local, 2305 sgl_flags_last_element | sg_dma_len(sg_scmd), 2306 sg_dma_address(sg_scmd)); 2307 else 2308 ioc->base_add_sg_single(sg_local, sgl_flags | 2309 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2310 sg_scmd = sg_next(sg_scmd); 2311 sg_local += ioc->sge_size; 2312 sges_left--; 2313 sges_in_segment--; 2314 } 2315 2316 /* initializing the chain flags and pointers */ 2317 chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT; 2318 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2319 if (!chain_req) 2320 return -1; 2321 chain = chain_req->chain_buffer; 2322 chain_dma = chain_req->chain_buffer_dma; 2323 do { 2324 sges_in_segment = (sges_left <= 2325 ioc->max_sges_in_chain_message) ? sges_left : 2326 ioc->max_sges_in_chain_message; 2327 chain_offset = (sges_left == sges_in_segment) ? 2328 0 : (sges_in_segment * ioc->sge_size)/4; 2329 chain_length = sges_in_segment * ioc->sge_size; 2330 if (chain_offset) { 2331 chain_offset = chain_offset << 2332 MPI2_SGE_CHAIN_OFFSET_SHIFT; 2333 chain_length += ioc->sge_size; 2334 } 2335 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset | 2336 chain_length, chain_dma); 2337 sg_local = chain; 2338 if (!chain_offset) 2339 goto fill_in_last_segment; 2340 2341 /* fill in chain segments */ 2342 while (sges_in_segment) { 2343 if (sges_in_segment == 1) 2344 ioc->base_add_sg_single(sg_local, 2345 sgl_flags_last_element | 2346 sg_dma_len(sg_scmd), 2347 sg_dma_address(sg_scmd)); 2348 else 2349 ioc->base_add_sg_single(sg_local, sgl_flags | 2350 sg_dma_len(sg_scmd), 2351 sg_dma_address(sg_scmd)); 2352 sg_scmd = sg_next(sg_scmd); 2353 sg_local += ioc->sge_size; 2354 sges_left--; 2355 sges_in_segment--; 2356 } 2357 2358 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2359 if (!chain_req) 2360 return -1; 2361 chain = chain_req->chain_buffer; 2362 chain_dma = chain_req->chain_buffer_dma; 2363 } while (1); 2364 2365 2366 fill_in_last_segment: 2367 2368 /* fill the last segment */ 2369 while (sges_left) { 2370 if (sges_left == 1) 2371 ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer | 2372 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2373 else 2374 ioc->base_add_sg_single(sg_local, sgl_flags | 2375 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2376 sg_scmd = sg_next(sg_scmd); 2377 sg_local += ioc->sge_size; 2378 sges_left--; 2379 } 2380 2381 return 0; 2382 } 2383 2384 /** 2385 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format 2386 * @ioc: per adapter object 2387 * @scmd: scsi command 2388 * @smid: system request message index 2389 * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be 2390 * constructed on need. 2391 * Context: none. 2392 * 2393 * The main routine that builds scatter gather table from a given 2394 * scsi request sent via the .queuecommand main handler. 2395 * 2396 * Return: 0 success, anything else error 2397 */ 2398 static int 2399 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc, 2400 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device) 2401 { 2402 Mpi25SCSIIORequest_t *mpi_request; 2403 dma_addr_t chain_dma; 2404 struct scatterlist *sg_scmd; 2405 void *sg_local, *chain; 2406 u32 chain_offset; 2407 u32 chain_length; 2408 int sges_left; 2409 u32 sges_in_segment; 2410 u8 simple_sgl_flags; 2411 u8 simple_sgl_flags_last; 2412 u8 chain_sgl_flags; 2413 struct chain_tracker *chain_req; 2414 2415 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 2416 2417 /* init scatter gather flags */ 2418 simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2419 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2420 simple_sgl_flags_last = simple_sgl_flags | 2421 MPI25_IEEE_SGE_FLAGS_END_OF_LIST; 2422 chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 2423 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2424 2425 /* Check if we need to build a native SG list. */ 2426 if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request, 2427 smid, scmd, pcie_device) == 0)) { 2428 /* We built a native SG list, just return. */ 2429 return 0; 2430 } 2431 2432 sg_scmd = scsi_sglist(scmd); 2433 sges_left = scsi_dma_map(scmd); 2434 if (sges_left < 0) { 2435 sdev_printk(KERN_ERR, scmd->device, 2436 "scsi_dma_map failed: request for %d bytes!\n", 2437 scsi_bufflen(scmd)); 2438 return -ENOMEM; 2439 } 2440 2441 sg_local = &mpi_request->SGL; 2442 sges_in_segment = (ioc->request_sz - 2443 offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee; 2444 if (sges_left <= sges_in_segment) 2445 goto fill_in_last_segment; 2446 2447 mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) + 2448 (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee); 2449 2450 /* fill in main message segment when there is a chain following */ 2451 while (sges_in_segment > 1) { 2452 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2453 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2454 sg_scmd = sg_next(sg_scmd); 2455 sg_local += ioc->sge_size_ieee; 2456 sges_left--; 2457 sges_in_segment--; 2458 } 2459 2460 /* initializing the pointers */ 2461 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2462 if (!chain_req) 2463 return -1; 2464 chain = chain_req->chain_buffer; 2465 chain_dma = chain_req->chain_buffer_dma; 2466 do { 2467 sges_in_segment = (sges_left <= 2468 ioc->max_sges_in_chain_message) ? sges_left : 2469 ioc->max_sges_in_chain_message; 2470 chain_offset = (sges_left == sges_in_segment) ? 2471 0 : sges_in_segment; 2472 chain_length = sges_in_segment * ioc->sge_size_ieee; 2473 if (chain_offset) 2474 chain_length += ioc->sge_size_ieee; 2475 _base_add_sg_single_ieee(sg_local, chain_sgl_flags, 2476 chain_offset, chain_length, chain_dma); 2477 2478 sg_local = chain; 2479 if (!chain_offset) 2480 goto fill_in_last_segment; 2481 2482 /* fill in chain segments */ 2483 while (sges_in_segment) { 2484 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2485 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2486 sg_scmd = sg_next(sg_scmd); 2487 sg_local += ioc->sge_size_ieee; 2488 sges_left--; 2489 sges_in_segment--; 2490 } 2491 2492 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2493 if (!chain_req) 2494 return -1; 2495 chain = chain_req->chain_buffer; 2496 chain_dma = chain_req->chain_buffer_dma; 2497 } while (1); 2498 2499 2500 fill_in_last_segment: 2501 2502 /* fill the last segment */ 2503 while (sges_left > 0) { 2504 if (sges_left == 1) 2505 _base_add_sg_single_ieee(sg_local, 2506 simple_sgl_flags_last, 0, sg_dma_len(sg_scmd), 2507 sg_dma_address(sg_scmd)); 2508 else 2509 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2510 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2511 sg_scmd = sg_next(sg_scmd); 2512 sg_local += ioc->sge_size_ieee; 2513 sges_left--; 2514 } 2515 2516 return 0; 2517 } 2518 2519 /** 2520 * _base_build_sg_ieee - build generic sg for IEEE format 2521 * @ioc: per adapter object 2522 * @psge: virtual address for SGE 2523 * @data_out_dma: physical address for WRITES 2524 * @data_out_sz: data xfer size for WRITES 2525 * @data_in_dma: physical address for READS 2526 * @data_in_sz: data xfer size for READS 2527 */ 2528 static void 2529 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge, 2530 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 2531 size_t data_in_sz) 2532 { 2533 u8 sgl_flags; 2534 2535 if (!data_out_sz && !data_in_sz) { 2536 _base_build_zero_len_sge_ieee(ioc, psge); 2537 return; 2538 } 2539 2540 if (data_out_sz && data_in_sz) { 2541 /* WRITE sgel first */ 2542 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2543 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2544 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz, 2545 data_out_dma); 2546 2547 /* incr sgel */ 2548 psge += ioc->sge_size_ieee; 2549 2550 /* READ sgel last */ 2551 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST; 2552 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz, 2553 data_in_dma); 2554 } else if (data_out_sz) /* WRITE */ { 2555 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2556 MPI25_IEEE_SGE_FLAGS_END_OF_LIST | 2557 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2558 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz, 2559 data_out_dma); 2560 } else if (data_in_sz) /* READ */ { 2561 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2562 MPI25_IEEE_SGE_FLAGS_END_OF_LIST | 2563 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2564 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz, 2565 data_in_dma); 2566 } 2567 } 2568 2569 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10)) 2570 2571 /** 2572 * _base_config_dma_addressing - set dma addressing 2573 * @ioc: per adapter object 2574 * @pdev: PCI device struct 2575 * 2576 * Return: 0 for success, non-zero for failure. 2577 */ 2578 static int 2579 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev) 2580 { 2581 u64 required_mask, coherent_mask; 2582 struct sysinfo s; 2583 2584 if (ioc->is_mcpu_endpoint) 2585 goto try_32bit; 2586 2587 required_mask = dma_get_required_mask(&pdev->dev); 2588 if (sizeof(dma_addr_t) == 4 || required_mask == 32) 2589 goto try_32bit; 2590 2591 if (ioc->dma_mask) 2592 coherent_mask = DMA_BIT_MASK(64); 2593 else 2594 coherent_mask = DMA_BIT_MASK(32); 2595 2596 if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) || 2597 dma_set_coherent_mask(&pdev->dev, coherent_mask)) 2598 goto try_32bit; 2599 2600 ioc->base_add_sg_single = &_base_add_sg_single_64; 2601 ioc->sge_size = sizeof(Mpi2SGESimple64_t); 2602 ioc->dma_mask = 64; 2603 goto out; 2604 2605 try_32bit: 2606 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32))) 2607 return -ENODEV; 2608 2609 ioc->base_add_sg_single = &_base_add_sg_single_32; 2610 ioc->sge_size = sizeof(Mpi2SGESimple32_t); 2611 ioc->dma_mask = 32; 2612 out: 2613 si_meminfo(&s); 2614 ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n", 2615 ioc->dma_mask, convert_to_kb(s.totalram)); 2616 2617 return 0; 2618 } 2619 2620 static int 2621 _base_change_consistent_dma_mask(struct MPT3SAS_ADAPTER *ioc, 2622 struct pci_dev *pdev) 2623 { 2624 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) { 2625 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) 2626 return -ENODEV; 2627 } 2628 return 0; 2629 } 2630 2631 /** 2632 * _base_check_enable_msix - checks MSIX capabable. 2633 * @ioc: per adapter object 2634 * 2635 * Check to see if card is capable of MSIX, and set number 2636 * of available msix vectors 2637 */ 2638 static int 2639 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc) 2640 { 2641 int base; 2642 u16 message_control; 2643 2644 /* Check whether controller SAS2008 B0 controller, 2645 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX 2646 */ 2647 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 && 2648 ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) { 2649 return -EINVAL; 2650 } 2651 2652 base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX); 2653 if (!base) { 2654 dfailprintk(ioc, ioc_info(ioc, "msix not supported\n")); 2655 return -EINVAL; 2656 } 2657 2658 /* get msix vector count */ 2659 /* NUMA_IO not supported for older controllers */ 2660 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 || 2661 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 || 2662 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 || 2663 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 || 2664 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 || 2665 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 || 2666 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2) 2667 ioc->msix_vector_count = 1; 2668 else { 2669 pci_read_config_word(ioc->pdev, base + 2, &message_control); 2670 ioc->msix_vector_count = (message_control & 0x3FF) + 1; 2671 } 2672 dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n", 2673 ioc->msix_vector_count)); 2674 return 0; 2675 } 2676 2677 /** 2678 * _base_free_irq - free irq 2679 * @ioc: per adapter object 2680 * 2681 * Freeing respective reply_queue from the list. 2682 */ 2683 static void 2684 _base_free_irq(struct MPT3SAS_ADAPTER *ioc) 2685 { 2686 struct adapter_reply_queue *reply_q, *next; 2687 2688 if (list_empty(&ioc->reply_queue_list)) 2689 return; 2690 2691 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) { 2692 list_del(&reply_q->list); 2693 free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index), 2694 reply_q); 2695 kfree(reply_q); 2696 } 2697 } 2698 2699 /** 2700 * _base_request_irq - request irq 2701 * @ioc: per adapter object 2702 * @index: msix index into vector table 2703 * 2704 * Inserting respective reply_queue into the list. 2705 */ 2706 static int 2707 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index) 2708 { 2709 struct pci_dev *pdev = ioc->pdev; 2710 struct adapter_reply_queue *reply_q; 2711 int r; 2712 2713 reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL); 2714 if (!reply_q) { 2715 ioc_err(ioc, "unable to allocate memory %zu!\n", 2716 sizeof(struct adapter_reply_queue)); 2717 return -ENOMEM; 2718 } 2719 reply_q->ioc = ioc; 2720 reply_q->msix_index = index; 2721 2722 atomic_set(&reply_q->busy, 0); 2723 if (ioc->msix_enable) 2724 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d", 2725 ioc->driver_name, ioc->id, index); 2726 else 2727 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d", 2728 ioc->driver_name, ioc->id); 2729 r = request_irq(pci_irq_vector(pdev, index), _base_interrupt, 2730 IRQF_SHARED, reply_q->name, reply_q); 2731 if (r) { 2732 pr_err("%s: unable to allocate interrupt %d!\n", 2733 reply_q->name, pci_irq_vector(pdev, index)); 2734 kfree(reply_q); 2735 return -EBUSY; 2736 } 2737 2738 INIT_LIST_HEAD(&reply_q->list); 2739 list_add_tail(&reply_q->list, &ioc->reply_queue_list); 2740 return 0; 2741 } 2742 2743 /** 2744 * _base_assign_reply_queues - assigning msix index for each cpu 2745 * @ioc: per adapter object 2746 * 2747 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity 2748 * 2749 * It would nice if we could call irq_set_affinity, however it is not 2750 * an exported symbol 2751 */ 2752 static void 2753 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc) 2754 { 2755 unsigned int cpu, nr_cpus, nr_msix, index = 0; 2756 struct adapter_reply_queue *reply_q; 2757 2758 if (!_base_is_controller_msix_enabled(ioc)) 2759 return; 2760 2761 memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz); 2762 2763 nr_cpus = num_online_cpus(); 2764 nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count, 2765 ioc->facts.MaxMSIxVectors); 2766 if (!nr_msix) 2767 return; 2768 2769 if (smp_affinity_enable) { 2770 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 2771 const cpumask_t *mask = pci_irq_get_affinity(ioc->pdev, 2772 reply_q->msix_index); 2773 if (!mask) { 2774 ioc_warn(ioc, "no affinity for msi %x\n", 2775 reply_q->msix_index); 2776 continue; 2777 } 2778 2779 for_each_cpu_and(cpu, mask, cpu_online_mask) { 2780 if (cpu >= ioc->cpu_msix_table_sz) 2781 break; 2782 ioc->cpu_msix_table[cpu] = reply_q->msix_index; 2783 } 2784 } 2785 return; 2786 } 2787 cpu = cpumask_first(cpu_online_mask); 2788 2789 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 2790 2791 unsigned int i, group = nr_cpus / nr_msix; 2792 2793 if (cpu >= nr_cpus) 2794 break; 2795 2796 if (index < nr_cpus % nr_msix) 2797 group++; 2798 2799 for (i = 0 ; i < group ; i++) { 2800 ioc->cpu_msix_table[cpu] = reply_q->msix_index; 2801 cpu = cpumask_next(cpu, cpu_online_mask); 2802 } 2803 index++; 2804 } 2805 } 2806 2807 /** 2808 * _base_disable_msix - disables msix 2809 * @ioc: per adapter object 2810 * 2811 */ 2812 static void 2813 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc) 2814 { 2815 if (!ioc->msix_enable) 2816 return; 2817 pci_disable_msix(ioc->pdev); 2818 ioc->msix_enable = 0; 2819 } 2820 2821 /** 2822 * _base_enable_msix - enables msix, failback to io_apic 2823 * @ioc: per adapter object 2824 * 2825 */ 2826 static int 2827 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc) 2828 { 2829 int r; 2830 int i, local_max_msix_vectors; 2831 u8 try_msix = 0; 2832 unsigned int irq_flags = PCI_IRQ_MSIX; 2833 2834 if (msix_disable == -1 || msix_disable == 0) 2835 try_msix = 1; 2836 2837 if (!try_msix) 2838 goto try_ioapic; 2839 2840 if (_base_check_enable_msix(ioc) != 0) 2841 goto try_ioapic; 2842 2843 ioc->reply_queue_count = min_t(int, ioc->cpu_count, 2844 ioc->msix_vector_count); 2845 2846 ioc_info(ioc, "MSI-X vectors supported: %d, no of cores: %d, max_msix_vectors: %d\n", 2847 ioc->msix_vector_count, ioc->cpu_count, max_msix_vectors); 2848 2849 if (!ioc->rdpq_array_enable && max_msix_vectors == -1) 2850 local_max_msix_vectors = (reset_devices) ? 1 : 8; 2851 else 2852 local_max_msix_vectors = max_msix_vectors; 2853 2854 if (local_max_msix_vectors > 0) 2855 ioc->reply_queue_count = min_t(int, local_max_msix_vectors, 2856 ioc->reply_queue_count); 2857 else if (local_max_msix_vectors == 0) 2858 goto try_ioapic; 2859 2860 if (ioc->msix_vector_count < ioc->cpu_count) 2861 smp_affinity_enable = 0; 2862 2863 if (smp_affinity_enable) 2864 irq_flags |= PCI_IRQ_AFFINITY; 2865 2866 r = pci_alloc_irq_vectors(ioc->pdev, 1, ioc->reply_queue_count, 2867 irq_flags); 2868 if (r < 0) { 2869 dfailprintk(ioc, 2870 ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", 2871 r)); 2872 goto try_ioapic; 2873 } 2874 2875 ioc->msix_enable = 1; 2876 ioc->reply_queue_count = r; 2877 for (i = 0; i < ioc->reply_queue_count; i++) { 2878 r = _base_request_irq(ioc, i); 2879 if (r) { 2880 _base_free_irq(ioc); 2881 _base_disable_msix(ioc); 2882 goto try_ioapic; 2883 } 2884 } 2885 2886 return 0; 2887 2888 /* failback to io_apic interrupt routing */ 2889 try_ioapic: 2890 2891 ioc->reply_queue_count = 1; 2892 r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY); 2893 if (r < 0) { 2894 dfailprintk(ioc, 2895 ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n", 2896 r)); 2897 } else 2898 r = _base_request_irq(ioc, 0); 2899 2900 return r; 2901 } 2902 2903 /** 2904 * mpt3sas_base_unmap_resources - free controller resources 2905 * @ioc: per adapter object 2906 */ 2907 static void 2908 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc) 2909 { 2910 struct pci_dev *pdev = ioc->pdev; 2911 2912 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 2913 2914 _base_free_irq(ioc); 2915 _base_disable_msix(ioc); 2916 2917 kfree(ioc->replyPostRegisterIndex); 2918 ioc->replyPostRegisterIndex = NULL; 2919 2920 2921 if (ioc->chip_phys) { 2922 iounmap(ioc->chip); 2923 ioc->chip_phys = 0; 2924 } 2925 2926 if (pci_is_enabled(pdev)) { 2927 pci_release_selected_regions(ioc->pdev, ioc->bars); 2928 pci_disable_pcie_error_reporting(pdev); 2929 pci_disable_device(pdev); 2930 } 2931 } 2932 2933 /** 2934 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap) 2935 * @ioc: per adapter object 2936 * 2937 * Return: 0 for success, non-zero for failure. 2938 */ 2939 int 2940 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc) 2941 { 2942 struct pci_dev *pdev = ioc->pdev; 2943 u32 memap_sz; 2944 u32 pio_sz; 2945 int i, r = 0; 2946 u64 pio_chip = 0; 2947 phys_addr_t chip_phys = 0; 2948 struct adapter_reply_queue *reply_q; 2949 2950 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 2951 2952 ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM); 2953 if (pci_enable_device_mem(pdev)) { 2954 ioc_warn(ioc, "pci_enable_device_mem: failed\n"); 2955 ioc->bars = 0; 2956 return -ENODEV; 2957 } 2958 2959 2960 if (pci_request_selected_regions(pdev, ioc->bars, 2961 ioc->driver_name)) { 2962 ioc_warn(ioc, "pci_request_selected_regions: failed\n"); 2963 ioc->bars = 0; 2964 r = -ENODEV; 2965 goto out_fail; 2966 } 2967 2968 /* AER (Advanced Error Reporting) hooks */ 2969 pci_enable_pcie_error_reporting(pdev); 2970 2971 pci_set_master(pdev); 2972 2973 2974 if (_base_config_dma_addressing(ioc, pdev) != 0) { 2975 ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev)); 2976 r = -ENODEV; 2977 goto out_fail; 2978 } 2979 2980 for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) && 2981 (!memap_sz || !pio_sz); i++) { 2982 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { 2983 if (pio_sz) 2984 continue; 2985 pio_chip = (u64)pci_resource_start(pdev, i); 2986 pio_sz = pci_resource_len(pdev, i); 2987 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) { 2988 if (memap_sz) 2989 continue; 2990 ioc->chip_phys = pci_resource_start(pdev, i); 2991 chip_phys = ioc->chip_phys; 2992 memap_sz = pci_resource_len(pdev, i); 2993 ioc->chip = ioremap(ioc->chip_phys, memap_sz); 2994 } 2995 } 2996 2997 if (ioc->chip == NULL) { 2998 ioc_err(ioc, "unable to map adapter memory! or resource not found\n"); 2999 r = -EINVAL; 3000 goto out_fail; 3001 } 3002 3003 _base_mask_interrupts(ioc); 3004 3005 r = _base_get_ioc_facts(ioc); 3006 if (r) 3007 goto out_fail; 3008 3009 if (!ioc->rdpq_array_enable_assigned) { 3010 ioc->rdpq_array_enable = ioc->rdpq_array_capable; 3011 ioc->rdpq_array_enable_assigned = 1; 3012 } 3013 3014 r = _base_enable_msix(ioc); 3015 if (r) 3016 goto out_fail; 3017 3018 /* Use the Combined reply queue feature only for SAS3 C0 & higher 3019 * revision HBAs and also only when reply queue count is greater than 8 3020 */ 3021 if (ioc->combined_reply_queue) { 3022 /* Determine the Supplemental Reply Post Host Index Registers 3023 * Addresse. Supplemental Reply Post Host Index Registers 3024 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and 3025 * each register is at offset bytes of 3026 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one. 3027 */ 3028 ioc->replyPostRegisterIndex = kcalloc( 3029 ioc->combined_reply_index_count, 3030 sizeof(resource_size_t *), GFP_KERNEL); 3031 if (!ioc->replyPostRegisterIndex) { 3032 dfailprintk(ioc, 3033 ioc_warn(ioc, "allocation for reply Post Register Index failed!!!\n")); 3034 r = -ENOMEM; 3035 goto out_fail; 3036 } 3037 3038 for (i = 0; i < ioc->combined_reply_index_count; i++) { 3039 ioc->replyPostRegisterIndex[i] = (resource_size_t *) 3040 ((u8 __force *)&ioc->chip->Doorbell + 3041 MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET + 3042 (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET)); 3043 } 3044 } 3045 3046 if (ioc->is_warpdrive) { 3047 ioc->reply_post_host_index[0] = (resource_size_t __iomem *) 3048 &ioc->chip->ReplyPostHostIndex; 3049 3050 for (i = 1; i < ioc->cpu_msix_table_sz; i++) 3051 ioc->reply_post_host_index[i] = 3052 (resource_size_t __iomem *) 3053 ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1) 3054 * 4))); 3055 } 3056 3057 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) 3058 pr_info("%s: %s enabled: IRQ %d\n", 3059 reply_q->name, 3060 ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC", 3061 pci_irq_vector(ioc->pdev, reply_q->msix_index)); 3062 3063 ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n", 3064 &chip_phys, ioc->chip, memap_sz); 3065 ioc_info(ioc, "ioport(0x%016llx), size(%d)\n", 3066 (unsigned long long)pio_chip, pio_sz); 3067 3068 /* Save PCI configuration state for recovery from PCI AER/EEH errors */ 3069 pci_save_state(pdev); 3070 return 0; 3071 3072 out_fail: 3073 mpt3sas_base_unmap_resources(ioc); 3074 return r; 3075 } 3076 3077 /** 3078 * mpt3sas_base_get_msg_frame - obtain request mf pointer 3079 * @ioc: per adapter object 3080 * @smid: system request message index(smid zero is invalid) 3081 * 3082 * Return: virt pointer to message frame. 3083 */ 3084 void * 3085 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3086 { 3087 return (void *)(ioc->request + (smid * ioc->request_sz)); 3088 } 3089 3090 /** 3091 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr 3092 * @ioc: per adapter object 3093 * @smid: system request message index 3094 * 3095 * Return: virt pointer to sense buffer. 3096 */ 3097 void * 3098 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3099 { 3100 return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE)); 3101 } 3102 3103 /** 3104 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr 3105 * @ioc: per adapter object 3106 * @smid: system request message index 3107 * 3108 * Return: phys pointer to the low 32bit address of the sense buffer. 3109 */ 3110 __le32 3111 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3112 { 3113 return cpu_to_le32(ioc->sense_dma + ((smid - 1) * 3114 SCSI_SENSE_BUFFERSIZE)); 3115 } 3116 3117 /** 3118 * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr 3119 * @ioc: per adapter object 3120 * @smid: system request message index 3121 * 3122 * Return: virt pointer to a PCIe SGL. 3123 */ 3124 void * 3125 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3126 { 3127 return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl); 3128 } 3129 3130 /** 3131 * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr 3132 * @ioc: per adapter object 3133 * @smid: system request message index 3134 * 3135 * Return: phys pointer to the address of the PCIe buffer. 3136 */ 3137 dma_addr_t 3138 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3139 { 3140 return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma; 3141 } 3142 3143 /** 3144 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address 3145 * @ioc: per adapter object 3146 * @phys_addr: lower 32 physical addr of the reply 3147 * 3148 * Converts 32bit lower physical addr into a virt address. 3149 */ 3150 void * 3151 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr) 3152 { 3153 if (!phys_addr) 3154 return NULL; 3155 return ioc->reply + (phys_addr - (u32)ioc->reply_dma); 3156 } 3157 3158 static inline u8 3159 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc) 3160 { 3161 return ioc->cpu_msix_table[raw_smp_processor_id()]; 3162 } 3163 3164 /** 3165 * mpt3sas_base_get_smid - obtain a free smid from internal queue 3166 * @ioc: per adapter object 3167 * @cb_idx: callback index 3168 * 3169 * Return: smid (zero is invalid) 3170 */ 3171 u16 3172 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx) 3173 { 3174 unsigned long flags; 3175 struct request_tracker *request; 3176 u16 smid; 3177 3178 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3179 if (list_empty(&ioc->internal_free_list)) { 3180 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3181 ioc_err(ioc, "%s: smid not available\n", __func__); 3182 return 0; 3183 } 3184 3185 request = list_entry(ioc->internal_free_list.next, 3186 struct request_tracker, tracker_list); 3187 request->cb_idx = cb_idx; 3188 smid = request->smid; 3189 list_del(&request->tracker_list); 3190 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3191 return smid; 3192 } 3193 3194 /** 3195 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue 3196 * @ioc: per adapter object 3197 * @cb_idx: callback index 3198 * @scmd: pointer to scsi command object 3199 * 3200 * Return: smid (zero is invalid) 3201 */ 3202 u16 3203 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx, 3204 struct scsi_cmnd *scmd) 3205 { 3206 struct scsiio_tracker *request = scsi_cmd_priv(scmd); 3207 unsigned int tag = scmd->request->tag; 3208 u16 smid; 3209 3210 smid = tag + 1; 3211 request->cb_idx = cb_idx; 3212 request->msix_io = _base_get_msix_index(ioc); 3213 request->smid = smid; 3214 INIT_LIST_HEAD(&request->chain_list); 3215 return smid; 3216 } 3217 3218 /** 3219 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue 3220 * @ioc: per adapter object 3221 * @cb_idx: callback index 3222 * 3223 * Return: smid (zero is invalid) 3224 */ 3225 u16 3226 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx) 3227 { 3228 unsigned long flags; 3229 struct request_tracker *request; 3230 u16 smid; 3231 3232 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3233 if (list_empty(&ioc->hpr_free_list)) { 3234 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3235 return 0; 3236 } 3237 3238 request = list_entry(ioc->hpr_free_list.next, 3239 struct request_tracker, tracker_list); 3240 request->cb_idx = cb_idx; 3241 smid = request->smid; 3242 list_del(&request->tracker_list); 3243 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3244 return smid; 3245 } 3246 3247 static void 3248 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc) 3249 { 3250 /* 3251 * See _wait_for_commands_to_complete() call with regards to this code. 3252 */ 3253 if (ioc->shost_recovery && ioc->pending_io_count) { 3254 ioc->pending_io_count = scsi_host_busy(ioc->shost); 3255 if (ioc->pending_io_count == 0) 3256 wake_up(&ioc->reset_wq); 3257 } 3258 } 3259 3260 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc, 3261 struct scsiio_tracker *st) 3262 { 3263 if (WARN_ON(st->smid == 0)) 3264 return; 3265 st->cb_idx = 0xFF; 3266 st->direct_io = 0; 3267 atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0); 3268 st->smid = 0; 3269 } 3270 3271 /** 3272 * mpt3sas_base_free_smid - put smid back on free_list 3273 * @ioc: per adapter object 3274 * @smid: system request message index 3275 */ 3276 void 3277 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3278 { 3279 unsigned long flags; 3280 int i; 3281 3282 if (smid < ioc->hi_priority_smid) { 3283 struct scsiio_tracker *st; 3284 3285 st = _get_st_from_smid(ioc, smid); 3286 if (!st) { 3287 _base_recovery_check(ioc); 3288 return; 3289 } 3290 mpt3sas_base_clear_st(ioc, st); 3291 _base_recovery_check(ioc); 3292 return; 3293 } 3294 3295 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3296 if (smid < ioc->internal_smid) { 3297 /* hi-priority */ 3298 i = smid - ioc->hi_priority_smid; 3299 ioc->hpr_lookup[i].cb_idx = 0xFF; 3300 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list); 3301 } else if (smid <= ioc->hba_queue_depth) { 3302 /* internal queue */ 3303 i = smid - ioc->internal_smid; 3304 ioc->internal_lookup[i].cb_idx = 0xFF; 3305 list_add(&ioc->internal_lookup[i].tracker_list, 3306 &ioc->internal_free_list); 3307 } 3308 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3309 } 3310 3311 /** 3312 * _base_mpi_ep_writeq - 32 bit write to MMIO 3313 * @b: data payload 3314 * @addr: address in MMIO space 3315 * @writeq_lock: spin lock 3316 * 3317 * This special handling for MPI EP to take care of 32 bit 3318 * environment where its not quarenteed to send the entire word 3319 * in one transfer. 3320 */ 3321 static inline void 3322 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr, 3323 spinlock_t *writeq_lock) 3324 { 3325 unsigned long flags; 3326 3327 spin_lock_irqsave(writeq_lock, flags); 3328 __raw_writel((u32)(b), addr); 3329 __raw_writel((u32)(b >> 32), (addr + 4)); 3330 mmiowb(); 3331 spin_unlock_irqrestore(writeq_lock, flags); 3332 } 3333 3334 /** 3335 * _base_writeq - 64 bit write to MMIO 3336 * @b: data payload 3337 * @addr: address in MMIO space 3338 * @writeq_lock: spin lock 3339 * 3340 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes 3341 * care of 32 bit environment where its not quarenteed to send the entire word 3342 * in one transfer. 3343 */ 3344 #if defined(writeq) && defined(CONFIG_64BIT) 3345 static inline void 3346 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock) 3347 { 3348 wmb(); 3349 __raw_writeq(b, addr); 3350 barrier(); 3351 } 3352 #else 3353 static inline void 3354 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock) 3355 { 3356 _base_mpi_ep_writeq(b, addr, writeq_lock); 3357 } 3358 #endif 3359 3360 /** 3361 * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware 3362 * @ioc: per adapter object 3363 * @smid: system request message index 3364 * @handle: device handle 3365 */ 3366 static void 3367 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle) 3368 { 3369 Mpi2RequestDescriptorUnion_t descriptor; 3370 u64 *request = (u64 *)&descriptor; 3371 void *mpi_req_iomem; 3372 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 3373 3374 _clone_sg_entries(ioc, (void *) mfp, smid); 3375 mpi_req_iomem = (void __force *)ioc->chip + 3376 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz); 3377 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 3378 ioc->request_sz); 3379 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 3380 descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc); 3381 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 3382 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 3383 descriptor.SCSIIO.LMID = 0; 3384 _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3385 &ioc->scsi_lookup_lock); 3386 } 3387 3388 /** 3389 * _base_put_smid_scsi_io - send SCSI_IO request to firmware 3390 * @ioc: per adapter object 3391 * @smid: system request message index 3392 * @handle: device handle 3393 */ 3394 static void 3395 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle) 3396 { 3397 Mpi2RequestDescriptorUnion_t descriptor; 3398 u64 *request = (u64 *)&descriptor; 3399 3400 3401 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 3402 descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc); 3403 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 3404 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 3405 descriptor.SCSIIO.LMID = 0; 3406 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3407 &ioc->scsi_lookup_lock); 3408 } 3409 3410 /** 3411 * mpt3sas_base_put_smid_fast_path - send fast path request to firmware 3412 * @ioc: per adapter object 3413 * @smid: system request message index 3414 * @handle: device handle 3415 */ 3416 void 3417 mpt3sas_base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid, 3418 u16 handle) 3419 { 3420 Mpi2RequestDescriptorUnion_t descriptor; 3421 u64 *request = (u64 *)&descriptor; 3422 3423 descriptor.SCSIIO.RequestFlags = 3424 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 3425 descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc); 3426 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 3427 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 3428 descriptor.SCSIIO.LMID = 0; 3429 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3430 &ioc->scsi_lookup_lock); 3431 } 3432 3433 /** 3434 * mpt3sas_base_put_smid_hi_priority - send Task Management request to firmware 3435 * @ioc: per adapter object 3436 * @smid: system request message index 3437 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0. 3438 */ 3439 void 3440 mpt3sas_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid, 3441 u16 msix_task) 3442 { 3443 Mpi2RequestDescriptorUnion_t descriptor; 3444 void *mpi_req_iomem; 3445 u64 *request; 3446 3447 if (ioc->is_mcpu_endpoint) { 3448 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 3449 3450 /* TBD 256 is offset within sys register. */ 3451 mpi_req_iomem = (void __force *)ioc->chip 3452 + MPI_FRAME_START_OFFSET 3453 + (smid * ioc->request_sz); 3454 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 3455 ioc->request_sz); 3456 } 3457 3458 request = (u64 *)&descriptor; 3459 3460 descriptor.HighPriority.RequestFlags = 3461 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 3462 descriptor.HighPriority.MSIxIndex = msix_task; 3463 descriptor.HighPriority.SMID = cpu_to_le16(smid); 3464 descriptor.HighPriority.LMID = 0; 3465 descriptor.HighPriority.Reserved1 = 0; 3466 if (ioc->is_mcpu_endpoint) 3467 _base_mpi_ep_writeq(*request, 3468 &ioc->chip->RequestDescriptorPostLow, 3469 &ioc->scsi_lookup_lock); 3470 else 3471 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3472 &ioc->scsi_lookup_lock); 3473 } 3474 3475 /** 3476 * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to 3477 * firmware 3478 * @ioc: per adapter object 3479 * @smid: system request message index 3480 */ 3481 void 3482 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3483 { 3484 Mpi2RequestDescriptorUnion_t descriptor; 3485 u64 *request = (u64 *)&descriptor; 3486 3487 descriptor.Default.RequestFlags = 3488 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED; 3489 descriptor.Default.MSIxIndex = _base_get_msix_index(ioc); 3490 descriptor.Default.SMID = cpu_to_le16(smid); 3491 descriptor.Default.LMID = 0; 3492 descriptor.Default.DescriptorTypeDependent = 0; 3493 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3494 &ioc->scsi_lookup_lock); 3495 } 3496 3497 /** 3498 * mpt3sas_base_put_smid_default - Default, primarily used for config pages 3499 * @ioc: per adapter object 3500 * @smid: system request message index 3501 */ 3502 void 3503 mpt3sas_base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3504 { 3505 Mpi2RequestDescriptorUnion_t descriptor; 3506 void *mpi_req_iomem; 3507 u64 *request; 3508 3509 if (ioc->is_mcpu_endpoint) { 3510 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 3511 3512 _clone_sg_entries(ioc, (void *) mfp, smid); 3513 /* TBD 256 is offset within sys register */ 3514 mpi_req_iomem = (void __force *)ioc->chip + 3515 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz); 3516 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 3517 ioc->request_sz); 3518 } 3519 request = (u64 *)&descriptor; 3520 descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 3521 descriptor.Default.MSIxIndex = _base_get_msix_index(ioc); 3522 descriptor.Default.SMID = cpu_to_le16(smid); 3523 descriptor.Default.LMID = 0; 3524 descriptor.Default.DescriptorTypeDependent = 0; 3525 if (ioc->is_mcpu_endpoint) 3526 _base_mpi_ep_writeq(*request, 3527 &ioc->chip->RequestDescriptorPostLow, 3528 &ioc->scsi_lookup_lock); 3529 else 3530 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3531 &ioc->scsi_lookup_lock); 3532 } 3533 3534 /** 3535 * _base_display_OEMs_branding - Display branding string 3536 * @ioc: per adapter object 3537 */ 3538 static void 3539 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc) 3540 { 3541 if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL) 3542 return; 3543 3544 switch (ioc->pdev->subsystem_vendor) { 3545 case PCI_VENDOR_ID_INTEL: 3546 switch (ioc->pdev->device) { 3547 case MPI2_MFGPAGE_DEVID_SAS2008: 3548 switch (ioc->pdev->subsystem_device) { 3549 case MPT2SAS_INTEL_RMS2LL080_SSDID: 3550 ioc_info(ioc, "%s\n", 3551 MPT2SAS_INTEL_RMS2LL080_BRANDING); 3552 break; 3553 case MPT2SAS_INTEL_RMS2LL040_SSDID: 3554 ioc_info(ioc, "%s\n", 3555 MPT2SAS_INTEL_RMS2LL040_BRANDING); 3556 break; 3557 case MPT2SAS_INTEL_SSD910_SSDID: 3558 ioc_info(ioc, "%s\n", 3559 MPT2SAS_INTEL_SSD910_BRANDING); 3560 break; 3561 default: 3562 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 3563 ioc->pdev->subsystem_device); 3564 break; 3565 } 3566 case MPI2_MFGPAGE_DEVID_SAS2308_2: 3567 switch (ioc->pdev->subsystem_device) { 3568 case MPT2SAS_INTEL_RS25GB008_SSDID: 3569 ioc_info(ioc, "%s\n", 3570 MPT2SAS_INTEL_RS25GB008_BRANDING); 3571 break; 3572 case MPT2SAS_INTEL_RMS25JB080_SSDID: 3573 ioc_info(ioc, "%s\n", 3574 MPT2SAS_INTEL_RMS25JB080_BRANDING); 3575 break; 3576 case MPT2SAS_INTEL_RMS25JB040_SSDID: 3577 ioc_info(ioc, "%s\n", 3578 MPT2SAS_INTEL_RMS25JB040_BRANDING); 3579 break; 3580 case MPT2SAS_INTEL_RMS25KB080_SSDID: 3581 ioc_info(ioc, "%s\n", 3582 MPT2SAS_INTEL_RMS25KB080_BRANDING); 3583 break; 3584 case MPT2SAS_INTEL_RMS25KB040_SSDID: 3585 ioc_info(ioc, "%s\n", 3586 MPT2SAS_INTEL_RMS25KB040_BRANDING); 3587 break; 3588 case MPT2SAS_INTEL_RMS25LB040_SSDID: 3589 ioc_info(ioc, "%s\n", 3590 MPT2SAS_INTEL_RMS25LB040_BRANDING); 3591 break; 3592 case MPT2SAS_INTEL_RMS25LB080_SSDID: 3593 ioc_info(ioc, "%s\n", 3594 MPT2SAS_INTEL_RMS25LB080_BRANDING); 3595 break; 3596 default: 3597 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 3598 ioc->pdev->subsystem_device); 3599 break; 3600 } 3601 case MPI25_MFGPAGE_DEVID_SAS3008: 3602 switch (ioc->pdev->subsystem_device) { 3603 case MPT3SAS_INTEL_RMS3JC080_SSDID: 3604 ioc_info(ioc, "%s\n", 3605 MPT3SAS_INTEL_RMS3JC080_BRANDING); 3606 break; 3607 3608 case MPT3SAS_INTEL_RS3GC008_SSDID: 3609 ioc_info(ioc, "%s\n", 3610 MPT3SAS_INTEL_RS3GC008_BRANDING); 3611 break; 3612 case MPT3SAS_INTEL_RS3FC044_SSDID: 3613 ioc_info(ioc, "%s\n", 3614 MPT3SAS_INTEL_RS3FC044_BRANDING); 3615 break; 3616 case MPT3SAS_INTEL_RS3UC080_SSDID: 3617 ioc_info(ioc, "%s\n", 3618 MPT3SAS_INTEL_RS3UC080_BRANDING); 3619 break; 3620 default: 3621 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 3622 ioc->pdev->subsystem_device); 3623 break; 3624 } 3625 break; 3626 default: 3627 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 3628 ioc->pdev->subsystem_device); 3629 break; 3630 } 3631 break; 3632 case PCI_VENDOR_ID_DELL: 3633 switch (ioc->pdev->device) { 3634 case MPI2_MFGPAGE_DEVID_SAS2008: 3635 switch (ioc->pdev->subsystem_device) { 3636 case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID: 3637 ioc_info(ioc, "%s\n", 3638 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING); 3639 break; 3640 case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID: 3641 ioc_info(ioc, "%s\n", 3642 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING); 3643 break; 3644 case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID: 3645 ioc_info(ioc, "%s\n", 3646 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING); 3647 break; 3648 case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID: 3649 ioc_info(ioc, "%s\n", 3650 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING); 3651 break; 3652 case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID: 3653 ioc_info(ioc, "%s\n", 3654 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING); 3655 break; 3656 case MPT2SAS_DELL_PERC_H200_SSDID: 3657 ioc_info(ioc, "%s\n", 3658 MPT2SAS_DELL_PERC_H200_BRANDING); 3659 break; 3660 case MPT2SAS_DELL_6GBPS_SAS_SSDID: 3661 ioc_info(ioc, "%s\n", 3662 MPT2SAS_DELL_6GBPS_SAS_BRANDING); 3663 break; 3664 default: 3665 ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n", 3666 ioc->pdev->subsystem_device); 3667 break; 3668 } 3669 break; 3670 case MPI25_MFGPAGE_DEVID_SAS3008: 3671 switch (ioc->pdev->subsystem_device) { 3672 case MPT3SAS_DELL_12G_HBA_SSDID: 3673 ioc_info(ioc, "%s\n", 3674 MPT3SAS_DELL_12G_HBA_BRANDING); 3675 break; 3676 default: 3677 ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n", 3678 ioc->pdev->subsystem_device); 3679 break; 3680 } 3681 break; 3682 default: 3683 ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n", 3684 ioc->pdev->subsystem_device); 3685 break; 3686 } 3687 break; 3688 case PCI_VENDOR_ID_CISCO: 3689 switch (ioc->pdev->device) { 3690 case MPI25_MFGPAGE_DEVID_SAS3008: 3691 switch (ioc->pdev->subsystem_device) { 3692 case MPT3SAS_CISCO_12G_8E_HBA_SSDID: 3693 ioc_info(ioc, "%s\n", 3694 MPT3SAS_CISCO_12G_8E_HBA_BRANDING); 3695 break; 3696 case MPT3SAS_CISCO_12G_8I_HBA_SSDID: 3697 ioc_info(ioc, "%s\n", 3698 MPT3SAS_CISCO_12G_8I_HBA_BRANDING); 3699 break; 3700 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID: 3701 ioc_info(ioc, "%s\n", 3702 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING); 3703 break; 3704 default: 3705 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n", 3706 ioc->pdev->subsystem_device); 3707 break; 3708 } 3709 break; 3710 case MPI25_MFGPAGE_DEVID_SAS3108_1: 3711 switch (ioc->pdev->subsystem_device) { 3712 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID: 3713 ioc_info(ioc, "%s\n", 3714 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING); 3715 break; 3716 case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID: 3717 ioc_info(ioc, "%s\n", 3718 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING); 3719 break; 3720 default: 3721 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n", 3722 ioc->pdev->subsystem_device); 3723 break; 3724 } 3725 break; 3726 default: 3727 ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n", 3728 ioc->pdev->subsystem_device); 3729 break; 3730 } 3731 break; 3732 case MPT2SAS_HP_3PAR_SSVID: 3733 switch (ioc->pdev->device) { 3734 case MPI2_MFGPAGE_DEVID_SAS2004: 3735 switch (ioc->pdev->subsystem_device) { 3736 case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID: 3737 ioc_info(ioc, "%s\n", 3738 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING); 3739 break; 3740 default: 3741 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n", 3742 ioc->pdev->subsystem_device); 3743 break; 3744 } 3745 case MPI2_MFGPAGE_DEVID_SAS2308_2: 3746 switch (ioc->pdev->subsystem_device) { 3747 case MPT2SAS_HP_2_4_INTERNAL_SSDID: 3748 ioc_info(ioc, "%s\n", 3749 MPT2SAS_HP_2_4_INTERNAL_BRANDING); 3750 break; 3751 case MPT2SAS_HP_2_4_EXTERNAL_SSDID: 3752 ioc_info(ioc, "%s\n", 3753 MPT2SAS_HP_2_4_EXTERNAL_BRANDING); 3754 break; 3755 case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID: 3756 ioc_info(ioc, "%s\n", 3757 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING); 3758 break; 3759 case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID: 3760 ioc_info(ioc, "%s\n", 3761 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING); 3762 break; 3763 default: 3764 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n", 3765 ioc->pdev->subsystem_device); 3766 break; 3767 } 3768 default: 3769 ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n", 3770 ioc->pdev->subsystem_device); 3771 break; 3772 } 3773 default: 3774 break; 3775 } 3776 } 3777 3778 /** 3779 * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg 3780 * version from FW Image Header. 3781 * @ioc: per adapter object 3782 * 3783 * Return: 0 for success, non-zero for failure. 3784 */ 3785 static int 3786 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc) 3787 { 3788 Mpi2FWImageHeader_t *FWImgHdr; 3789 Mpi25FWUploadRequest_t *mpi_request; 3790 Mpi2FWUploadReply_t mpi_reply; 3791 int r = 0; 3792 void *fwpkg_data = NULL; 3793 dma_addr_t fwpkg_data_dma; 3794 u16 smid, ioc_status; 3795 size_t data_length; 3796 3797 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 3798 3799 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 3800 ioc_err(ioc, "%s: internal command already in use\n", __func__); 3801 return -EAGAIN; 3802 } 3803 3804 data_length = sizeof(Mpi2FWImageHeader_t); 3805 fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length, 3806 &fwpkg_data_dma, GFP_KERNEL); 3807 if (!fwpkg_data) { 3808 ioc_err(ioc, "failure at %s:%d/%s()!\n", 3809 __FILE__, __LINE__, __func__); 3810 return -ENOMEM; 3811 } 3812 3813 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 3814 if (!smid) { 3815 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 3816 r = -EAGAIN; 3817 goto out; 3818 } 3819 3820 ioc->base_cmds.status = MPT3_CMD_PENDING; 3821 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 3822 ioc->base_cmds.smid = smid; 3823 memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t)); 3824 mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD; 3825 mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH; 3826 mpi_request->ImageSize = cpu_to_le32(data_length); 3827 ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma, 3828 data_length); 3829 init_completion(&ioc->base_cmds.done); 3830 mpt3sas_base_put_smid_default(ioc, smid); 3831 /* Wait for 15 seconds */ 3832 wait_for_completion_timeout(&ioc->base_cmds.done, 3833 FW_IMG_HDR_READ_TIMEOUT*HZ); 3834 ioc_info(ioc, "%s: complete\n", __func__); 3835 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 3836 ioc_err(ioc, "%s: timeout\n", __func__); 3837 _debug_dump_mf(mpi_request, 3838 sizeof(Mpi25FWUploadRequest_t)/4); 3839 r = -ETIME; 3840 } else { 3841 memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t)); 3842 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) { 3843 memcpy(&mpi_reply, ioc->base_cmds.reply, 3844 sizeof(Mpi2FWUploadReply_t)); 3845 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 3846 MPI2_IOCSTATUS_MASK; 3847 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 3848 FWImgHdr = (Mpi2FWImageHeader_t *)fwpkg_data; 3849 if (FWImgHdr->PackageVersion.Word) { 3850 ioc_info(ioc, "FW Package Version (%02d.%02d.%02d.%02d)\n", 3851 FWImgHdr->PackageVersion.Struct.Major, 3852 FWImgHdr->PackageVersion.Struct.Minor, 3853 FWImgHdr->PackageVersion.Struct.Unit, 3854 FWImgHdr->PackageVersion.Struct.Dev); 3855 } 3856 } else { 3857 _debug_dump_mf(&mpi_reply, 3858 sizeof(Mpi2FWUploadReply_t)/4); 3859 } 3860 } 3861 } 3862 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 3863 out: 3864 if (fwpkg_data) 3865 dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data, 3866 fwpkg_data_dma); 3867 return r; 3868 } 3869 3870 /** 3871 * _base_display_ioc_capabilities - Disply IOC's capabilities. 3872 * @ioc: per adapter object 3873 */ 3874 static void 3875 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc) 3876 { 3877 int i = 0; 3878 char desc[16]; 3879 u32 iounit_pg1_flags; 3880 u32 bios_version; 3881 3882 bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion); 3883 strncpy(desc, ioc->manu_pg0.ChipName, 16); 3884 ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n", 3885 desc, 3886 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24, 3887 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16, 3888 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8, 3889 ioc->facts.FWVersion.Word & 0x000000FF, 3890 ioc->pdev->revision, 3891 (bios_version & 0xFF000000) >> 24, 3892 (bios_version & 0x00FF0000) >> 16, 3893 (bios_version & 0x0000FF00) >> 8, 3894 bios_version & 0x000000FF); 3895 3896 _base_display_OEMs_branding(ioc); 3897 3898 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) { 3899 pr_info("%sNVMe", i ? "," : ""); 3900 i++; 3901 } 3902 3903 ioc_info(ioc, "Protocol=("); 3904 3905 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) { 3906 pr_cont("Initiator"); 3907 i++; 3908 } 3909 3910 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) { 3911 pr_cont("%sTarget", i ? "," : ""); 3912 i++; 3913 } 3914 3915 i = 0; 3916 pr_cont("), Capabilities=("); 3917 3918 if (!ioc->hide_ir_msg) { 3919 if (ioc->facts.IOCCapabilities & 3920 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) { 3921 pr_cont("Raid"); 3922 i++; 3923 } 3924 } 3925 3926 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) { 3927 pr_cont("%sTLR", i ? "," : ""); 3928 i++; 3929 } 3930 3931 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) { 3932 pr_cont("%sMulticast", i ? "," : ""); 3933 i++; 3934 } 3935 3936 if (ioc->facts.IOCCapabilities & 3937 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) { 3938 pr_cont("%sBIDI Target", i ? "," : ""); 3939 i++; 3940 } 3941 3942 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) { 3943 pr_cont("%sEEDP", i ? "," : ""); 3944 i++; 3945 } 3946 3947 if (ioc->facts.IOCCapabilities & 3948 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) { 3949 pr_cont("%sSnapshot Buffer", i ? "," : ""); 3950 i++; 3951 } 3952 3953 if (ioc->facts.IOCCapabilities & 3954 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) { 3955 pr_cont("%sDiag Trace Buffer", i ? "," : ""); 3956 i++; 3957 } 3958 3959 if (ioc->facts.IOCCapabilities & 3960 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) { 3961 pr_cont("%sDiag Extended Buffer", i ? "," : ""); 3962 i++; 3963 } 3964 3965 if (ioc->facts.IOCCapabilities & 3966 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) { 3967 pr_cont("%sTask Set Full", i ? "," : ""); 3968 i++; 3969 } 3970 3971 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags); 3972 if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) { 3973 pr_cont("%sNCQ", i ? "," : ""); 3974 i++; 3975 } 3976 3977 pr_cont(")\n"); 3978 } 3979 3980 /** 3981 * mpt3sas_base_update_missing_delay - change the missing delay timers 3982 * @ioc: per adapter object 3983 * @device_missing_delay: amount of time till device is reported missing 3984 * @io_missing_delay: interval IO is returned when there is a missing device 3985 * 3986 * Passed on the command line, this function will modify the device missing 3987 * delay, as well as the io missing delay. This should be called at driver 3988 * load time. 3989 */ 3990 void 3991 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc, 3992 u16 device_missing_delay, u8 io_missing_delay) 3993 { 3994 u16 dmd, dmd_new, dmd_orignal; 3995 u8 io_missing_delay_original; 3996 u16 sz; 3997 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL; 3998 Mpi2ConfigReply_t mpi_reply; 3999 u8 num_phys = 0; 4000 u16 ioc_status; 4001 4002 mpt3sas_config_get_number_hba_phys(ioc, &num_phys); 4003 if (!num_phys) 4004 return; 4005 4006 sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys * 4007 sizeof(Mpi2SasIOUnit1PhyData_t)); 4008 sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL); 4009 if (!sas_iounit_pg1) { 4010 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4011 __FILE__, __LINE__, __func__); 4012 goto out; 4013 } 4014 if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply, 4015 sas_iounit_pg1, sz))) { 4016 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4017 __FILE__, __LINE__, __func__); 4018 goto out; 4019 } 4020 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 4021 MPI2_IOCSTATUS_MASK; 4022 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 4023 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4024 __FILE__, __LINE__, __func__); 4025 goto out; 4026 } 4027 4028 /* device missing delay */ 4029 dmd = sas_iounit_pg1->ReportDeviceMissingDelay; 4030 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16) 4031 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16; 4032 else 4033 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK; 4034 dmd_orignal = dmd; 4035 if (device_missing_delay > 0x7F) { 4036 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 : 4037 device_missing_delay; 4038 dmd = dmd / 16; 4039 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16; 4040 } else 4041 dmd = device_missing_delay; 4042 sas_iounit_pg1->ReportDeviceMissingDelay = dmd; 4043 4044 /* io missing delay */ 4045 io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay; 4046 sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay; 4047 4048 if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1, 4049 sz)) { 4050 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16) 4051 dmd_new = (dmd & 4052 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16; 4053 else 4054 dmd_new = 4055 dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK; 4056 ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n", 4057 dmd_orignal, dmd_new); 4058 ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n", 4059 io_missing_delay_original, 4060 io_missing_delay); 4061 ioc->device_missing_delay = dmd_new; 4062 ioc->io_missing_delay = io_missing_delay; 4063 } 4064 4065 out: 4066 kfree(sas_iounit_pg1); 4067 } 4068 4069 /** 4070 * _base_static_config_pages - static start of day config pages 4071 * @ioc: per adapter object 4072 */ 4073 static void 4074 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc) 4075 { 4076 Mpi2ConfigReply_t mpi_reply; 4077 u32 iounit_pg1_flags; 4078 4079 ioc->nvme_abort_timeout = 30; 4080 mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0); 4081 if (ioc->ir_firmware) 4082 mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply, 4083 &ioc->manu_pg10); 4084 4085 /* 4086 * Ensure correct T10 PI operation if vendor left EEDPTagMode 4087 * flag unset in NVDATA. 4088 */ 4089 mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11); 4090 if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) { 4091 pr_err("%s: overriding NVDATA EEDPTagMode setting\n", 4092 ioc->name); 4093 ioc->manu_pg11.EEDPTagMode &= ~0x3; 4094 ioc->manu_pg11.EEDPTagMode |= 0x1; 4095 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply, 4096 &ioc->manu_pg11); 4097 } 4098 if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK) 4099 ioc->tm_custom_handling = 1; 4100 else { 4101 ioc->tm_custom_handling = 0; 4102 if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT) 4103 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT; 4104 else if (ioc->manu_pg11.NVMeAbortTO > 4105 NVME_TASK_ABORT_MAX_TIMEOUT) 4106 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT; 4107 else 4108 ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO; 4109 } 4110 4111 mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2); 4112 mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3); 4113 mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8); 4114 mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0); 4115 mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1); 4116 mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8); 4117 _base_display_ioc_capabilities(ioc); 4118 4119 /* 4120 * Enable task_set_full handling in iounit_pg1 when the 4121 * facts capabilities indicate that its supported. 4122 */ 4123 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags); 4124 if ((ioc->facts.IOCCapabilities & 4125 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING)) 4126 iounit_pg1_flags &= 4127 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING; 4128 else 4129 iounit_pg1_flags |= 4130 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING; 4131 ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags); 4132 mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1); 4133 4134 if (ioc->iounit_pg8.NumSensors) 4135 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors; 4136 } 4137 4138 /** 4139 * mpt3sas_free_enclosure_list - release memory 4140 * @ioc: per adapter object 4141 * 4142 * Free memory allocated during encloure add. 4143 */ 4144 void 4145 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc) 4146 { 4147 struct _enclosure_node *enclosure_dev, *enclosure_dev_next; 4148 4149 /* Free enclosure list */ 4150 list_for_each_entry_safe(enclosure_dev, 4151 enclosure_dev_next, &ioc->enclosure_list, list) { 4152 list_del(&enclosure_dev->list); 4153 kfree(enclosure_dev); 4154 } 4155 } 4156 4157 /** 4158 * _base_release_memory_pools - release memory 4159 * @ioc: per adapter object 4160 * 4161 * Free memory allocated from _base_allocate_memory_pools. 4162 */ 4163 static void 4164 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc) 4165 { 4166 int i = 0; 4167 int j = 0; 4168 struct chain_tracker *ct; 4169 struct reply_post_struct *rps; 4170 4171 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 4172 4173 if (ioc->request) { 4174 dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz, 4175 ioc->request, ioc->request_dma); 4176 dexitprintk(ioc, 4177 ioc_info(ioc, "request_pool(0x%p): free\n", 4178 ioc->request)); 4179 ioc->request = NULL; 4180 } 4181 4182 if (ioc->sense) { 4183 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma); 4184 dma_pool_destroy(ioc->sense_dma_pool); 4185 dexitprintk(ioc, 4186 ioc_info(ioc, "sense_pool(0x%p): free\n", 4187 ioc->sense)); 4188 ioc->sense = NULL; 4189 } 4190 4191 if (ioc->reply) { 4192 dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma); 4193 dma_pool_destroy(ioc->reply_dma_pool); 4194 dexitprintk(ioc, 4195 ioc_info(ioc, "reply_pool(0x%p): free\n", 4196 ioc->reply)); 4197 ioc->reply = NULL; 4198 } 4199 4200 if (ioc->reply_free) { 4201 dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free, 4202 ioc->reply_free_dma); 4203 dma_pool_destroy(ioc->reply_free_dma_pool); 4204 dexitprintk(ioc, 4205 ioc_info(ioc, "reply_free_pool(0x%p): free\n", 4206 ioc->reply_free)); 4207 ioc->reply_free = NULL; 4208 } 4209 4210 if (ioc->reply_post) { 4211 do { 4212 rps = &ioc->reply_post[i]; 4213 if (rps->reply_post_free) { 4214 dma_pool_free( 4215 ioc->reply_post_free_dma_pool, 4216 rps->reply_post_free, 4217 rps->reply_post_free_dma); 4218 dexitprintk(ioc, 4219 ioc_info(ioc, "reply_post_free_pool(0x%p): free\n", 4220 rps->reply_post_free)); 4221 rps->reply_post_free = NULL; 4222 } 4223 } while (ioc->rdpq_array_enable && 4224 (++i < ioc->reply_queue_count)); 4225 if (ioc->reply_post_free_array && 4226 ioc->rdpq_array_enable) { 4227 dma_pool_free(ioc->reply_post_free_array_dma_pool, 4228 ioc->reply_post_free_array, 4229 ioc->reply_post_free_array_dma); 4230 ioc->reply_post_free_array = NULL; 4231 } 4232 dma_pool_destroy(ioc->reply_post_free_array_dma_pool); 4233 dma_pool_destroy(ioc->reply_post_free_dma_pool); 4234 kfree(ioc->reply_post); 4235 } 4236 4237 if (ioc->pcie_sgl_dma_pool) { 4238 for (i = 0; i < ioc->scsiio_depth; i++) { 4239 dma_pool_free(ioc->pcie_sgl_dma_pool, 4240 ioc->pcie_sg_lookup[i].pcie_sgl, 4241 ioc->pcie_sg_lookup[i].pcie_sgl_dma); 4242 } 4243 if (ioc->pcie_sgl_dma_pool) 4244 dma_pool_destroy(ioc->pcie_sgl_dma_pool); 4245 } 4246 4247 if (ioc->config_page) { 4248 dexitprintk(ioc, 4249 ioc_info(ioc, "config_page(0x%p): free\n", 4250 ioc->config_page)); 4251 dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz, 4252 ioc->config_page, ioc->config_page_dma); 4253 } 4254 4255 kfree(ioc->hpr_lookup); 4256 kfree(ioc->internal_lookup); 4257 if (ioc->chain_lookup) { 4258 for (i = 0; i < ioc->scsiio_depth; i++) { 4259 for (j = ioc->chains_per_prp_buffer; 4260 j < ioc->chains_needed_per_io; j++) { 4261 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 4262 if (ct && ct->chain_buffer) 4263 dma_pool_free(ioc->chain_dma_pool, 4264 ct->chain_buffer, 4265 ct->chain_buffer_dma); 4266 } 4267 kfree(ioc->chain_lookup[i].chains_per_smid); 4268 } 4269 dma_pool_destroy(ioc->chain_dma_pool); 4270 kfree(ioc->chain_lookup); 4271 ioc->chain_lookup = NULL; 4272 } 4273 } 4274 4275 /** 4276 * is_MSB_are_same - checks whether all reply queues in a set are 4277 * having same upper 32bits in their base memory address. 4278 * @reply_pool_start_address: Base address of a reply queue set 4279 * @pool_sz: Size of single Reply Descriptor Post Queues pool size 4280 * 4281 * Return: 1 if reply queues in a set have a same upper 32bits in their base 4282 * memory address, else 0. 4283 */ 4284 4285 static int 4286 is_MSB_are_same(long reply_pool_start_address, u32 pool_sz) 4287 { 4288 long reply_pool_end_address; 4289 4290 reply_pool_end_address = reply_pool_start_address + pool_sz; 4291 4292 if (upper_32_bits(reply_pool_start_address) == 4293 upper_32_bits(reply_pool_end_address)) 4294 return 1; 4295 else 4296 return 0; 4297 } 4298 4299 /** 4300 * _base_allocate_memory_pools - allocate start of day memory pools 4301 * @ioc: per adapter object 4302 * 4303 * Return: 0 success, anything else error. 4304 */ 4305 static int 4306 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc) 4307 { 4308 struct mpt3sas_facts *facts; 4309 u16 max_sge_elements; 4310 u16 chains_needed_per_io; 4311 u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz; 4312 u32 retry_sz; 4313 u16 max_request_credit, nvme_blocks_needed; 4314 unsigned short sg_tablesize; 4315 u16 sge_size; 4316 int i, j; 4317 struct chain_tracker *ct; 4318 4319 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 4320 4321 4322 retry_sz = 0; 4323 facts = &ioc->facts; 4324 4325 /* command line tunables for max sgl entries */ 4326 if (max_sgl_entries != -1) 4327 sg_tablesize = max_sgl_entries; 4328 else { 4329 if (ioc->hba_mpi_version_belonged == MPI2_VERSION) 4330 sg_tablesize = MPT2SAS_SG_DEPTH; 4331 else 4332 sg_tablesize = MPT3SAS_SG_DEPTH; 4333 } 4334 4335 /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */ 4336 if (reset_devices) 4337 sg_tablesize = min_t(unsigned short, sg_tablesize, 4338 MPT_KDUMP_MIN_PHYS_SEGMENTS); 4339 4340 if (ioc->is_mcpu_endpoint) 4341 ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS; 4342 else { 4343 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS) 4344 sg_tablesize = MPT_MIN_PHYS_SEGMENTS; 4345 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) { 4346 sg_tablesize = min_t(unsigned short, sg_tablesize, 4347 SG_MAX_SEGMENTS); 4348 ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n", 4349 sg_tablesize, MPT_MAX_PHYS_SEGMENTS); 4350 } 4351 ioc->shost->sg_tablesize = sg_tablesize; 4352 } 4353 4354 ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)), 4355 (facts->RequestCredit / 4)); 4356 if (ioc->internal_depth < INTERNAL_CMDS_COUNT) { 4357 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT + 4358 INTERNAL_SCSIIO_CMDS_COUNT)) { 4359 ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n", 4360 facts->RequestCredit); 4361 return -ENOMEM; 4362 } 4363 ioc->internal_depth = 10; 4364 } 4365 4366 ioc->hi_priority_depth = ioc->internal_depth - (5); 4367 /* command line tunables for max controller queue depth */ 4368 if (max_queue_depth != -1 && max_queue_depth != 0) { 4369 max_request_credit = min_t(u16, max_queue_depth + 4370 ioc->internal_depth, facts->RequestCredit); 4371 if (max_request_credit > MAX_HBA_QUEUE_DEPTH) 4372 max_request_credit = MAX_HBA_QUEUE_DEPTH; 4373 } else if (reset_devices) 4374 max_request_credit = min_t(u16, facts->RequestCredit, 4375 (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth)); 4376 else 4377 max_request_credit = min_t(u16, facts->RequestCredit, 4378 MAX_HBA_QUEUE_DEPTH); 4379 4380 /* Firmware maintains additional facts->HighPriorityCredit number of 4381 * credits for HiPriprity Request messages, so hba queue depth will be 4382 * sum of max_request_credit and high priority queue depth. 4383 */ 4384 ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth; 4385 4386 /* request frame size */ 4387 ioc->request_sz = facts->IOCRequestFrameSize * 4; 4388 4389 /* reply frame size */ 4390 ioc->reply_sz = facts->ReplyFrameSize * 4; 4391 4392 /* chain segment size */ 4393 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 4394 if (facts->IOCMaxChainSegmentSize) 4395 ioc->chain_segment_sz = 4396 facts->IOCMaxChainSegmentSize * 4397 MAX_CHAIN_ELEMT_SZ; 4398 else 4399 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */ 4400 ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS * 4401 MAX_CHAIN_ELEMT_SZ; 4402 } else 4403 ioc->chain_segment_sz = ioc->request_sz; 4404 4405 /* calculate the max scatter element size */ 4406 sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee); 4407 4408 retry_allocation: 4409 total_sz = 0; 4410 /* calculate number of sg elements left over in the 1st frame */ 4411 max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) - 4412 sizeof(Mpi2SGEIOUnion_t)) + sge_size); 4413 ioc->max_sges_in_main_message = max_sge_elements/sge_size; 4414 4415 /* now do the same for a chain buffer */ 4416 max_sge_elements = ioc->chain_segment_sz - sge_size; 4417 ioc->max_sges_in_chain_message = max_sge_elements/sge_size; 4418 4419 /* 4420 * MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE 4421 */ 4422 chains_needed_per_io = ((ioc->shost->sg_tablesize - 4423 ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message) 4424 + 1; 4425 if (chains_needed_per_io > facts->MaxChainDepth) { 4426 chains_needed_per_io = facts->MaxChainDepth; 4427 ioc->shost->sg_tablesize = min_t(u16, 4428 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message 4429 * chains_needed_per_io), ioc->shost->sg_tablesize); 4430 } 4431 ioc->chains_needed_per_io = chains_needed_per_io; 4432 4433 /* reply free queue sizing - taking into account for 64 FW events */ 4434 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64; 4435 4436 /* mCPU manage single counters for simplicity */ 4437 if (ioc->is_mcpu_endpoint) 4438 ioc->reply_post_queue_depth = ioc->reply_free_queue_depth; 4439 else { 4440 /* calculate reply descriptor post queue depth */ 4441 ioc->reply_post_queue_depth = ioc->hba_queue_depth + 4442 ioc->reply_free_queue_depth + 1; 4443 /* align the reply post queue on the next 16 count boundary */ 4444 if (ioc->reply_post_queue_depth % 16) 4445 ioc->reply_post_queue_depth += 16 - 4446 (ioc->reply_post_queue_depth % 16); 4447 } 4448 4449 if (ioc->reply_post_queue_depth > 4450 facts->MaxReplyDescriptorPostQueueDepth) { 4451 ioc->reply_post_queue_depth = 4452 facts->MaxReplyDescriptorPostQueueDepth - 4453 (facts->MaxReplyDescriptorPostQueueDepth % 16); 4454 ioc->hba_queue_depth = 4455 ((ioc->reply_post_queue_depth - 64) / 2) - 1; 4456 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64; 4457 } 4458 4459 dinitprintk(ioc, 4460 ioc_info(ioc, "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), chains_per_io(%d)\n", 4461 ioc->max_sges_in_main_message, 4462 ioc->max_sges_in_chain_message, 4463 ioc->shost->sg_tablesize, 4464 ioc->chains_needed_per_io)); 4465 4466 /* reply post queue, 16 byte align */ 4467 reply_post_free_sz = ioc->reply_post_queue_depth * 4468 sizeof(Mpi2DefaultReplyDescriptor_t); 4469 4470 sz = reply_post_free_sz; 4471 if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable) 4472 sz *= ioc->reply_queue_count; 4473 4474 ioc->reply_post = kcalloc((ioc->rdpq_array_enable) ? 4475 (ioc->reply_queue_count):1, 4476 sizeof(struct reply_post_struct), GFP_KERNEL); 4477 4478 if (!ioc->reply_post) { 4479 ioc_err(ioc, "reply_post_free pool: kcalloc failed\n"); 4480 goto out; 4481 } 4482 ioc->reply_post_free_dma_pool = dma_pool_create("reply_post_free pool", 4483 &ioc->pdev->dev, sz, 16, 0); 4484 if (!ioc->reply_post_free_dma_pool) { 4485 ioc_err(ioc, "reply_post_free pool: dma_pool_create failed\n"); 4486 goto out; 4487 } 4488 i = 0; 4489 do { 4490 ioc->reply_post[i].reply_post_free = 4491 dma_pool_zalloc(ioc->reply_post_free_dma_pool, 4492 GFP_KERNEL, 4493 &ioc->reply_post[i].reply_post_free_dma); 4494 if (!ioc->reply_post[i].reply_post_free) { 4495 ioc_err(ioc, "reply_post_free pool: dma_pool_alloc failed\n"); 4496 goto out; 4497 } 4498 dinitprintk(ioc, 4499 ioc_info(ioc, "reply post free pool (0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n", 4500 ioc->reply_post[i].reply_post_free, 4501 ioc->reply_post_queue_depth, 4502 8, sz / 1024)); 4503 dinitprintk(ioc, 4504 ioc_info(ioc, "reply_post_free_dma = (0x%llx)\n", 4505 (u64)ioc->reply_post[i].reply_post_free_dma)); 4506 total_sz += sz; 4507 } while (ioc->rdpq_array_enable && (++i < ioc->reply_queue_count)); 4508 4509 if (ioc->dma_mask == 64) { 4510 if (_base_change_consistent_dma_mask(ioc, ioc->pdev) != 0) { 4511 ioc_warn(ioc, "no suitable consistent DMA mask for %s\n", 4512 pci_name(ioc->pdev)); 4513 goto out; 4514 } 4515 } 4516 4517 ioc->scsiio_depth = ioc->hba_queue_depth - 4518 ioc->hi_priority_depth - ioc->internal_depth; 4519 4520 /* set the scsi host can_queue depth 4521 * with some internal commands that could be outstanding 4522 */ 4523 ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT; 4524 dinitprintk(ioc, 4525 ioc_info(ioc, "scsi host: can_queue depth (%d)\n", 4526 ioc->shost->can_queue)); 4527 4528 4529 /* contiguous pool for request and chains, 16 byte align, one extra " 4530 * "frame for smid=0 4531 */ 4532 ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth; 4533 sz = ((ioc->scsiio_depth + 1) * ioc->request_sz); 4534 4535 /* hi-priority queue */ 4536 sz += (ioc->hi_priority_depth * ioc->request_sz); 4537 4538 /* internal queue */ 4539 sz += (ioc->internal_depth * ioc->request_sz); 4540 4541 ioc->request_dma_sz = sz; 4542 ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz, 4543 &ioc->request_dma, GFP_KERNEL); 4544 if (!ioc->request) { 4545 ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n", 4546 ioc->hba_queue_depth, ioc->chains_needed_per_io, 4547 ioc->request_sz, sz / 1024); 4548 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH) 4549 goto out; 4550 retry_sz = 64; 4551 ioc->hba_queue_depth -= retry_sz; 4552 _base_release_memory_pools(ioc); 4553 goto retry_allocation; 4554 } 4555 4556 if (retry_sz) 4557 ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n", 4558 ioc->hba_queue_depth, ioc->chains_needed_per_io, 4559 ioc->request_sz, sz / 1024); 4560 4561 /* hi-priority queue */ 4562 ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) * 4563 ioc->request_sz); 4564 ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) * 4565 ioc->request_sz); 4566 4567 /* internal queue */ 4568 ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth * 4569 ioc->request_sz); 4570 ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth * 4571 ioc->request_sz); 4572 4573 dinitprintk(ioc, 4574 ioc_info(ioc, "request pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n", 4575 ioc->request, ioc->hba_queue_depth, 4576 ioc->request_sz, 4577 (ioc->hba_queue_depth * ioc->request_sz) / 1024)); 4578 4579 dinitprintk(ioc, 4580 ioc_info(ioc, "request pool: dma(0x%llx)\n", 4581 (unsigned long long)ioc->request_dma)); 4582 total_sz += sz; 4583 4584 dinitprintk(ioc, 4585 ioc_info(ioc, "scsiio(0x%p): depth(%d)\n", 4586 ioc->request, ioc->scsiio_depth)); 4587 4588 ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH); 4589 sz = ioc->scsiio_depth * sizeof(struct chain_lookup); 4590 ioc->chain_lookup = kzalloc(sz, GFP_KERNEL); 4591 if (!ioc->chain_lookup) { 4592 ioc_err(ioc, "chain_lookup: __get_free_pages failed\n"); 4593 goto out; 4594 } 4595 4596 sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker); 4597 for (i = 0; i < ioc->scsiio_depth; i++) { 4598 ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL); 4599 if (!ioc->chain_lookup[i].chains_per_smid) { 4600 ioc_err(ioc, "chain_lookup: kzalloc failed\n"); 4601 goto out; 4602 } 4603 } 4604 4605 /* initialize hi-priority queue smid's */ 4606 ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth, 4607 sizeof(struct request_tracker), GFP_KERNEL); 4608 if (!ioc->hpr_lookup) { 4609 ioc_err(ioc, "hpr_lookup: kcalloc failed\n"); 4610 goto out; 4611 } 4612 ioc->hi_priority_smid = ioc->scsiio_depth + 1; 4613 dinitprintk(ioc, 4614 ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n", 4615 ioc->hi_priority, 4616 ioc->hi_priority_depth, ioc->hi_priority_smid)); 4617 4618 /* initialize internal queue smid's */ 4619 ioc->internal_lookup = kcalloc(ioc->internal_depth, 4620 sizeof(struct request_tracker), GFP_KERNEL); 4621 if (!ioc->internal_lookup) { 4622 ioc_err(ioc, "internal_lookup: kcalloc failed\n"); 4623 goto out; 4624 } 4625 ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth; 4626 dinitprintk(ioc, 4627 ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n", 4628 ioc->internal, 4629 ioc->internal_depth, ioc->internal_smid)); 4630 /* 4631 * The number of NVMe page sized blocks needed is: 4632 * (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1 4633 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry 4634 * that is placed in the main message frame. 8 is the size of each PRP 4635 * entry or PRP list pointer entry. 8 is subtracted from page_size 4636 * because of the PRP list pointer entry at the end of a page, so this 4637 * is not counted as a PRP entry. The 1 added page is a round up. 4638 * 4639 * To avoid allocation failures due to the amount of memory that could 4640 * be required for NVMe PRP's, only each set of NVMe blocks will be 4641 * contiguous, so a new set is allocated for each possible I/O. 4642 */ 4643 ioc->chains_per_prp_buffer = 0; 4644 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) { 4645 nvme_blocks_needed = 4646 (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1; 4647 nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE); 4648 nvme_blocks_needed++; 4649 4650 sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth; 4651 ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL); 4652 if (!ioc->pcie_sg_lookup) { 4653 ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n"); 4654 goto out; 4655 } 4656 sz = nvme_blocks_needed * ioc->page_size; 4657 ioc->pcie_sgl_dma_pool = 4658 dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz, 16, 0); 4659 if (!ioc->pcie_sgl_dma_pool) { 4660 ioc_info(ioc, "PCIe SGL pool: dma_pool_create failed\n"); 4661 goto out; 4662 } 4663 4664 ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz; 4665 ioc->chains_per_prp_buffer = min(ioc->chains_per_prp_buffer, 4666 ioc->chains_needed_per_io); 4667 4668 for (i = 0; i < ioc->scsiio_depth; i++) { 4669 ioc->pcie_sg_lookup[i].pcie_sgl = dma_pool_alloc( 4670 ioc->pcie_sgl_dma_pool, GFP_KERNEL, 4671 &ioc->pcie_sg_lookup[i].pcie_sgl_dma); 4672 if (!ioc->pcie_sg_lookup[i].pcie_sgl) { 4673 ioc_info(ioc, "PCIe SGL pool: dma_pool_alloc failed\n"); 4674 goto out; 4675 } 4676 for (j = 0; j < ioc->chains_per_prp_buffer; j++) { 4677 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 4678 ct->chain_buffer = 4679 ioc->pcie_sg_lookup[i].pcie_sgl + 4680 (j * ioc->chain_segment_sz); 4681 ct->chain_buffer_dma = 4682 ioc->pcie_sg_lookup[i].pcie_sgl_dma + 4683 (j * ioc->chain_segment_sz); 4684 } 4685 } 4686 4687 dinitprintk(ioc, 4688 ioc_info(ioc, "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n", 4689 ioc->scsiio_depth, sz, 4690 (sz * ioc->scsiio_depth) / 1024)); 4691 dinitprintk(ioc, 4692 ioc_info(ioc, "Number of chains can fit in a PRP page(%d)\n", 4693 ioc->chains_per_prp_buffer)); 4694 total_sz += sz * ioc->scsiio_depth; 4695 } 4696 4697 ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev, 4698 ioc->chain_segment_sz, 16, 0); 4699 if (!ioc->chain_dma_pool) { 4700 ioc_err(ioc, "chain_dma_pool: dma_pool_create failed\n"); 4701 goto out; 4702 } 4703 for (i = 0; i < ioc->scsiio_depth; i++) { 4704 for (j = ioc->chains_per_prp_buffer; 4705 j < ioc->chains_needed_per_io; j++) { 4706 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 4707 ct->chain_buffer = dma_pool_alloc( 4708 ioc->chain_dma_pool, GFP_KERNEL, 4709 &ct->chain_buffer_dma); 4710 if (!ct->chain_buffer) { 4711 ioc_err(ioc, "chain_lookup: pci_pool_alloc failed\n"); 4712 _base_release_memory_pools(ioc); 4713 goto out; 4714 } 4715 } 4716 total_sz += ioc->chain_segment_sz; 4717 } 4718 4719 dinitprintk(ioc, 4720 ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n", 4721 ioc->chain_depth, ioc->chain_segment_sz, 4722 (ioc->chain_depth * ioc->chain_segment_sz) / 1024)); 4723 4724 /* sense buffers, 4 byte align */ 4725 sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE; 4726 ioc->sense_dma_pool = dma_pool_create("sense pool", &ioc->pdev->dev, sz, 4727 4, 0); 4728 if (!ioc->sense_dma_pool) { 4729 ioc_err(ioc, "sense pool: dma_pool_create failed\n"); 4730 goto out; 4731 } 4732 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL, 4733 &ioc->sense_dma); 4734 if (!ioc->sense) { 4735 ioc_err(ioc, "sense pool: dma_pool_alloc failed\n"); 4736 goto out; 4737 } 4738 /* sense buffer requires to be in same 4 gb region. 4739 * Below function will check the same. 4740 * In case of failure, new pci pool will be created with updated 4741 * alignment. Older allocation and pool will be destroyed. 4742 * Alignment will be used such a way that next allocation if 4743 * success, will always meet same 4gb region requirement. 4744 * Actual requirement is not alignment, but we need start and end of 4745 * DMA address must have same upper 32 bit address. 4746 */ 4747 if (!is_MSB_are_same((long)ioc->sense, sz)) { 4748 //Release Sense pool & Reallocate 4749 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma); 4750 dma_pool_destroy(ioc->sense_dma_pool); 4751 ioc->sense = NULL; 4752 4753 ioc->sense_dma_pool = 4754 dma_pool_create("sense pool", &ioc->pdev->dev, sz, 4755 roundup_pow_of_two(sz), 0); 4756 if (!ioc->sense_dma_pool) { 4757 ioc_err(ioc, "sense pool: pci_pool_create failed\n"); 4758 goto out; 4759 } 4760 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL, 4761 &ioc->sense_dma); 4762 if (!ioc->sense) { 4763 ioc_err(ioc, "sense pool: pci_pool_alloc failed\n"); 4764 goto out; 4765 } 4766 } 4767 dinitprintk(ioc, 4768 ioc_info(ioc, "sense pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n", 4769 ioc->sense, ioc->scsiio_depth, 4770 SCSI_SENSE_BUFFERSIZE, sz / 1024)); 4771 dinitprintk(ioc, 4772 ioc_info(ioc, "sense_dma(0x%llx)\n", 4773 (unsigned long long)ioc->sense_dma)); 4774 total_sz += sz; 4775 4776 /* reply pool, 4 byte align */ 4777 sz = ioc->reply_free_queue_depth * ioc->reply_sz; 4778 ioc->reply_dma_pool = dma_pool_create("reply pool", &ioc->pdev->dev, sz, 4779 4, 0); 4780 if (!ioc->reply_dma_pool) { 4781 ioc_err(ioc, "reply pool: dma_pool_create failed\n"); 4782 goto out; 4783 } 4784 ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL, 4785 &ioc->reply_dma); 4786 if (!ioc->reply) { 4787 ioc_err(ioc, "reply pool: dma_pool_alloc failed\n"); 4788 goto out; 4789 } 4790 ioc->reply_dma_min_address = (u32)(ioc->reply_dma); 4791 ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz; 4792 dinitprintk(ioc, 4793 ioc_info(ioc, "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n", 4794 ioc->reply, ioc->reply_free_queue_depth, 4795 ioc->reply_sz, sz / 1024)); 4796 dinitprintk(ioc, 4797 ioc_info(ioc, "reply_dma(0x%llx)\n", 4798 (unsigned long long)ioc->reply_dma)); 4799 total_sz += sz; 4800 4801 /* reply free queue, 16 byte align */ 4802 sz = ioc->reply_free_queue_depth * 4; 4803 ioc->reply_free_dma_pool = dma_pool_create("reply_free pool", 4804 &ioc->pdev->dev, sz, 16, 0); 4805 if (!ioc->reply_free_dma_pool) { 4806 ioc_err(ioc, "reply_free pool: dma_pool_create failed\n"); 4807 goto out; 4808 } 4809 ioc->reply_free = dma_pool_zalloc(ioc->reply_free_dma_pool, GFP_KERNEL, 4810 &ioc->reply_free_dma); 4811 if (!ioc->reply_free) { 4812 ioc_err(ioc, "reply_free pool: dma_pool_alloc failed\n"); 4813 goto out; 4814 } 4815 dinitprintk(ioc, 4816 ioc_info(ioc, "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n", 4817 ioc->reply_free, ioc->reply_free_queue_depth, 4818 4, sz / 1024)); 4819 dinitprintk(ioc, 4820 ioc_info(ioc, "reply_free_dma (0x%llx)\n", 4821 (unsigned long long)ioc->reply_free_dma)); 4822 total_sz += sz; 4823 4824 if (ioc->rdpq_array_enable) { 4825 reply_post_free_array_sz = ioc->reply_queue_count * 4826 sizeof(Mpi2IOCInitRDPQArrayEntry); 4827 ioc->reply_post_free_array_dma_pool = 4828 dma_pool_create("reply_post_free_array pool", 4829 &ioc->pdev->dev, reply_post_free_array_sz, 16, 0); 4830 if (!ioc->reply_post_free_array_dma_pool) { 4831 dinitprintk(ioc, 4832 ioc_info(ioc, "reply_post_free_array pool: dma_pool_create failed\n")); 4833 goto out; 4834 } 4835 ioc->reply_post_free_array = 4836 dma_pool_alloc(ioc->reply_post_free_array_dma_pool, 4837 GFP_KERNEL, &ioc->reply_post_free_array_dma); 4838 if (!ioc->reply_post_free_array) { 4839 dinitprintk(ioc, 4840 ioc_info(ioc, "reply_post_free_array pool: dma_pool_alloc failed\n")); 4841 goto out; 4842 } 4843 } 4844 ioc->config_page_sz = 512; 4845 ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev, 4846 ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL); 4847 if (!ioc->config_page) { 4848 ioc_err(ioc, "config page: dma_pool_alloc failed\n"); 4849 goto out; 4850 } 4851 dinitprintk(ioc, 4852 ioc_info(ioc, "config page(0x%p): size(%d)\n", 4853 ioc->config_page, ioc->config_page_sz)); 4854 dinitprintk(ioc, 4855 ioc_info(ioc, "config_page_dma(0x%llx)\n", 4856 (unsigned long long)ioc->config_page_dma)); 4857 total_sz += ioc->config_page_sz; 4858 4859 ioc_info(ioc, "Allocated physical memory: size(%d kB)\n", 4860 total_sz / 1024); 4861 ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n", 4862 ioc->shost->can_queue, facts->RequestCredit); 4863 ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n", 4864 ioc->shost->sg_tablesize); 4865 return 0; 4866 4867 out: 4868 return -ENOMEM; 4869 } 4870 4871 /** 4872 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter. 4873 * @ioc: Pointer to MPT_ADAPTER structure 4874 * @cooked: Request raw or cooked IOC state 4875 * 4876 * Return: all IOC Doorbell register bits if cooked==0, else just the 4877 * Doorbell bits in MPI_IOC_STATE_MASK. 4878 */ 4879 u32 4880 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked) 4881 { 4882 u32 s, sc; 4883 4884 s = ioc->base_readl(&ioc->chip->Doorbell); 4885 sc = s & MPI2_IOC_STATE_MASK; 4886 return cooked ? sc : s; 4887 } 4888 4889 /** 4890 * _base_wait_on_iocstate - waiting on a particular ioc state 4891 * @ioc: ? 4892 * @ioc_state: controller state { READY, OPERATIONAL, or RESET } 4893 * @timeout: timeout in second 4894 * 4895 * Return: 0 for success, non-zero for failure. 4896 */ 4897 static int 4898 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout) 4899 { 4900 u32 count, cntdn; 4901 u32 current_state; 4902 4903 count = 0; 4904 cntdn = 1000 * timeout; 4905 do { 4906 current_state = mpt3sas_base_get_iocstate(ioc, 1); 4907 if (current_state == ioc_state) 4908 return 0; 4909 if (count && current_state == MPI2_IOC_STATE_FAULT) 4910 break; 4911 4912 usleep_range(1000, 1500); 4913 count++; 4914 } while (--cntdn); 4915 4916 return current_state; 4917 } 4918 4919 /** 4920 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by 4921 * a write to the doorbell) 4922 * @ioc: per adapter object 4923 * 4924 * Return: 0 for success, non-zero for failure. 4925 * 4926 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell. 4927 */ 4928 static int 4929 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc); 4930 4931 static int 4932 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout) 4933 { 4934 u32 cntdn, count; 4935 u32 int_status; 4936 4937 count = 0; 4938 cntdn = 1000 * timeout; 4939 do { 4940 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 4941 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 4942 dhsprintk(ioc, 4943 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 4944 __func__, count, timeout)); 4945 return 0; 4946 } 4947 4948 usleep_range(1000, 1500); 4949 count++; 4950 } while (--cntdn); 4951 4952 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 4953 __func__, count, int_status); 4954 return -EFAULT; 4955 } 4956 4957 static int 4958 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout) 4959 { 4960 u32 cntdn, count; 4961 u32 int_status; 4962 4963 count = 0; 4964 cntdn = 2000 * timeout; 4965 do { 4966 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 4967 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 4968 dhsprintk(ioc, 4969 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 4970 __func__, count, timeout)); 4971 return 0; 4972 } 4973 4974 udelay(500); 4975 count++; 4976 } while (--cntdn); 4977 4978 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 4979 __func__, count, int_status); 4980 return -EFAULT; 4981 4982 } 4983 4984 /** 4985 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell. 4986 * @ioc: per adapter object 4987 * @timeout: timeout in second 4988 * 4989 * Return: 0 for success, non-zero for failure. 4990 * 4991 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to 4992 * doorbell. 4993 */ 4994 static int 4995 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout) 4996 { 4997 u32 cntdn, count; 4998 u32 int_status; 4999 u32 doorbell; 5000 5001 count = 0; 5002 cntdn = 1000 * timeout; 5003 do { 5004 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 5005 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) { 5006 dhsprintk(ioc, 5007 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 5008 __func__, count, timeout)); 5009 return 0; 5010 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 5011 doorbell = ioc->base_readl(&ioc->chip->Doorbell); 5012 if ((doorbell & MPI2_IOC_STATE_MASK) == 5013 MPI2_IOC_STATE_FAULT) { 5014 mpt3sas_base_fault_info(ioc , doorbell); 5015 return -EFAULT; 5016 } 5017 } else if (int_status == 0xFFFFFFFF) 5018 goto out; 5019 5020 usleep_range(1000, 1500); 5021 count++; 5022 } while (--cntdn); 5023 5024 out: 5025 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 5026 __func__, count, int_status); 5027 return -EFAULT; 5028 } 5029 5030 /** 5031 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use 5032 * @ioc: per adapter object 5033 * @timeout: timeout in second 5034 * 5035 * Return: 0 for success, non-zero for failure. 5036 */ 5037 static int 5038 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout) 5039 { 5040 u32 cntdn, count; 5041 u32 doorbell_reg; 5042 5043 count = 0; 5044 cntdn = 1000 * timeout; 5045 do { 5046 doorbell_reg = ioc->base_readl(&ioc->chip->Doorbell); 5047 if (!(doorbell_reg & MPI2_DOORBELL_USED)) { 5048 dhsprintk(ioc, 5049 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 5050 __func__, count, timeout)); 5051 return 0; 5052 } 5053 5054 usleep_range(1000, 1500); 5055 count++; 5056 } while (--cntdn); 5057 5058 ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n", 5059 __func__, count, doorbell_reg); 5060 return -EFAULT; 5061 } 5062 5063 /** 5064 * _base_send_ioc_reset - send doorbell reset 5065 * @ioc: per adapter object 5066 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET 5067 * @timeout: timeout in second 5068 * 5069 * Return: 0 for success, non-zero for failure. 5070 */ 5071 static int 5072 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout) 5073 { 5074 u32 ioc_state; 5075 int r = 0; 5076 5077 if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) { 5078 ioc_err(ioc, "%s: unknown reset_type\n", __func__); 5079 return -EFAULT; 5080 } 5081 5082 if (!(ioc->facts.IOCCapabilities & 5083 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY)) 5084 return -EFAULT; 5085 5086 ioc_info(ioc, "sending message unit reset !!\n"); 5087 5088 writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT, 5089 &ioc->chip->Doorbell); 5090 if ((_base_wait_for_doorbell_ack(ioc, 15))) { 5091 r = -EFAULT; 5092 goto out; 5093 } 5094 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout); 5095 if (ioc_state) { 5096 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 5097 __func__, ioc_state); 5098 r = -EFAULT; 5099 goto out; 5100 } 5101 out: 5102 ioc_info(ioc, "message unit reset: %s\n", 5103 r == 0 ? "SUCCESS" : "FAILED"); 5104 return r; 5105 } 5106 5107 /** 5108 * mpt3sas_wait_for_ioc - IOC's operational state is checked here. 5109 * @ioc: per adapter object 5110 * @wait_count: timeout in seconds 5111 * 5112 * Return: Waits up to timeout seconds for the IOC to 5113 * become operational. Returns 0 if IOC is present 5114 * and operational; otherwise returns -EFAULT. 5115 */ 5116 5117 int 5118 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout) 5119 { 5120 int wait_state_count = 0; 5121 u32 ioc_state; 5122 5123 do { 5124 ioc_state = mpt3sas_base_get_iocstate(ioc, 1); 5125 if (ioc_state == MPI2_IOC_STATE_OPERATIONAL) 5126 break; 5127 ssleep(1); 5128 ioc_info(ioc, "%s: waiting for operational state(count=%d)\n", 5129 __func__, ++wait_state_count); 5130 } while (--timeout); 5131 if (!timeout) { 5132 ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__); 5133 return -EFAULT; 5134 } 5135 if (wait_state_count) 5136 ioc_info(ioc, "ioc is operational\n"); 5137 return 0; 5138 } 5139 5140 /** 5141 * _base_handshake_req_reply_wait - send request thru doorbell interface 5142 * @ioc: per adapter object 5143 * @request_bytes: request length 5144 * @request: pointer having request payload 5145 * @reply_bytes: reply length 5146 * @reply: pointer to reply payload 5147 * @timeout: timeout in second 5148 * 5149 * Return: 0 for success, non-zero for failure. 5150 */ 5151 static int 5152 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes, 5153 u32 *request, int reply_bytes, u16 *reply, int timeout) 5154 { 5155 MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply; 5156 int i; 5157 u8 failed; 5158 __le32 *mfp; 5159 5160 /* make sure doorbell is not in use */ 5161 if ((ioc->base_readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) { 5162 ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__); 5163 return -EFAULT; 5164 } 5165 5166 /* clear pending doorbell interrupts from previous state changes */ 5167 if (ioc->base_readl(&ioc->chip->HostInterruptStatus) & 5168 MPI2_HIS_IOC2SYS_DB_STATUS) 5169 writel(0, &ioc->chip->HostInterruptStatus); 5170 5171 /* send message to ioc */ 5172 writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) | 5173 ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)), 5174 &ioc->chip->Doorbell); 5175 5176 if ((_base_spin_on_doorbell_int(ioc, 5))) { 5177 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 5178 __LINE__); 5179 return -EFAULT; 5180 } 5181 writel(0, &ioc->chip->HostInterruptStatus); 5182 5183 if ((_base_wait_for_doorbell_ack(ioc, 5))) { 5184 ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n", 5185 __LINE__); 5186 return -EFAULT; 5187 } 5188 5189 /* send message 32-bits at a time */ 5190 for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) { 5191 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell); 5192 if ((_base_wait_for_doorbell_ack(ioc, 5))) 5193 failed = 1; 5194 } 5195 5196 if (failed) { 5197 ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n", 5198 __LINE__); 5199 return -EFAULT; 5200 } 5201 5202 /* now wait for the reply */ 5203 if ((_base_wait_for_doorbell_int(ioc, timeout))) { 5204 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 5205 __LINE__); 5206 return -EFAULT; 5207 } 5208 5209 /* read the first two 16-bits, it gives the total length of the reply */ 5210 reply[0] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell) 5211 & MPI2_DOORBELL_DATA_MASK); 5212 writel(0, &ioc->chip->HostInterruptStatus); 5213 if ((_base_wait_for_doorbell_int(ioc, 5))) { 5214 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 5215 __LINE__); 5216 return -EFAULT; 5217 } 5218 reply[1] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell) 5219 & MPI2_DOORBELL_DATA_MASK); 5220 writel(0, &ioc->chip->HostInterruptStatus); 5221 5222 for (i = 2; i < default_reply->MsgLength * 2; i++) { 5223 if ((_base_wait_for_doorbell_int(ioc, 5))) { 5224 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 5225 __LINE__); 5226 return -EFAULT; 5227 } 5228 if (i >= reply_bytes/2) /* overflow case */ 5229 ioc->base_readl(&ioc->chip->Doorbell); 5230 else 5231 reply[i] = le16_to_cpu( 5232 ioc->base_readl(&ioc->chip->Doorbell) 5233 & MPI2_DOORBELL_DATA_MASK); 5234 writel(0, &ioc->chip->HostInterruptStatus); 5235 } 5236 5237 _base_wait_for_doorbell_int(ioc, 5); 5238 if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) { 5239 dhsprintk(ioc, 5240 ioc_info(ioc, "doorbell is in use (line=%d)\n", 5241 __LINE__)); 5242 } 5243 writel(0, &ioc->chip->HostInterruptStatus); 5244 5245 if (ioc->logging_level & MPT_DEBUG_INIT) { 5246 mfp = (__le32 *)reply; 5247 pr_info("\toffset:data\n"); 5248 for (i = 0; i < reply_bytes/4; i++) 5249 pr_info("\t[0x%02x]:%08x\n", i*4, 5250 le32_to_cpu(mfp[i])); 5251 } 5252 return 0; 5253 } 5254 5255 /** 5256 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW 5257 * @ioc: per adapter object 5258 * @mpi_reply: the reply payload from FW 5259 * @mpi_request: the request payload sent to FW 5260 * 5261 * The SAS IO Unit Control Request message allows the host to perform low-level 5262 * operations, such as resets on the PHYs of the IO Unit, also allows the host 5263 * to obtain the IOC assigned device handles for a device if it has other 5264 * identifying information about the device, in addition allows the host to 5265 * remove IOC resources associated with the device. 5266 * 5267 * Return: 0 for success, non-zero for failure. 5268 */ 5269 int 5270 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc, 5271 Mpi2SasIoUnitControlReply_t *mpi_reply, 5272 Mpi2SasIoUnitControlRequest_t *mpi_request) 5273 { 5274 u16 smid; 5275 u8 issue_reset = 0; 5276 int rc; 5277 void *request; 5278 5279 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 5280 5281 mutex_lock(&ioc->base_cmds.mutex); 5282 5283 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) { 5284 ioc_err(ioc, "%s: base_cmd in use\n", __func__); 5285 rc = -EAGAIN; 5286 goto out; 5287 } 5288 5289 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT); 5290 if (rc) 5291 goto out; 5292 5293 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 5294 if (!smid) { 5295 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 5296 rc = -EAGAIN; 5297 goto out; 5298 } 5299 5300 rc = 0; 5301 ioc->base_cmds.status = MPT3_CMD_PENDING; 5302 request = mpt3sas_base_get_msg_frame(ioc, smid); 5303 ioc->base_cmds.smid = smid; 5304 memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)); 5305 if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET || 5306 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) 5307 ioc->ioc_link_reset_in_progress = 1; 5308 init_completion(&ioc->base_cmds.done); 5309 mpt3sas_base_put_smid_default(ioc, smid); 5310 wait_for_completion_timeout(&ioc->base_cmds.done, 5311 msecs_to_jiffies(10000)); 5312 if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET || 5313 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) && 5314 ioc->ioc_link_reset_in_progress) 5315 ioc->ioc_link_reset_in_progress = 0; 5316 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 5317 issue_reset = 5318 mpt3sas_base_check_cmd_timeout(ioc, 5319 ioc->base_cmds.status, mpi_request, 5320 sizeof(Mpi2SasIoUnitControlRequest_t)/4); 5321 goto issue_host_reset; 5322 } 5323 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) 5324 memcpy(mpi_reply, ioc->base_cmds.reply, 5325 sizeof(Mpi2SasIoUnitControlReply_t)); 5326 else 5327 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t)); 5328 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 5329 goto out; 5330 5331 issue_host_reset: 5332 if (issue_reset) 5333 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 5334 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 5335 rc = -EFAULT; 5336 out: 5337 mutex_unlock(&ioc->base_cmds.mutex); 5338 return rc; 5339 } 5340 5341 /** 5342 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device 5343 * @ioc: per adapter object 5344 * @mpi_reply: the reply payload from FW 5345 * @mpi_request: the request payload sent to FW 5346 * 5347 * The SCSI Enclosure Processor request message causes the IOC to 5348 * communicate with SES devices to control LED status signals. 5349 * 5350 * Return: 0 for success, non-zero for failure. 5351 */ 5352 int 5353 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc, 5354 Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request) 5355 { 5356 u16 smid; 5357 u8 issue_reset = 0; 5358 int rc; 5359 void *request; 5360 5361 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 5362 5363 mutex_lock(&ioc->base_cmds.mutex); 5364 5365 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) { 5366 ioc_err(ioc, "%s: base_cmd in use\n", __func__); 5367 rc = -EAGAIN; 5368 goto out; 5369 } 5370 5371 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT); 5372 if (rc) 5373 goto out; 5374 5375 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 5376 if (!smid) { 5377 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 5378 rc = -EAGAIN; 5379 goto out; 5380 } 5381 5382 rc = 0; 5383 ioc->base_cmds.status = MPT3_CMD_PENDING; 5384 request = mpt3sas_base_get_msg_frame(ioc, smid); 5385 ioc->base_cmds.smid = smid; 5386 memcpy(request, mpi_request, sizeof(Mpi2SepReply_t)); 5387 init_completion(&ioc->base_cmds.done); 5388 mpt3sas_base_put_smid_default(ioc, smid); 5389 wait_for_completion_timeout(&ioc->base_cmds.done, 5390 msecs_to_jiffies(10000)); 5391 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 5392 issue_reset = 5393 mpt3sas_base_check_cmd_timeout(ioc, 5394 ioc->base_cmds.status, mpi_request, 5395 sizeof(Mpi2SepRequest_t)/4); 5396 goto issue_host_reset; 5397 } 5398 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) 5399 memcpy(mpi_reply, ioc->base_cmds.reply, 5400 sizeof(Mpi2SepReply_t)); 5401 else 5402 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t)); 5403 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 5404 goto out; 5405 5406 issue_host_reset: 5407 if (issue_reset) 5408 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 5409 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 5410 rc = -EFAULT; 5411 out: 5412 mutex_unlock(&ioc->base_cmds.mutex); 5413 return rc; 5414 } 5415 5416 /** 5417 * _base_get_port_facts - obtain port facts reply and save in ioc 5418 * @ioc: per adapter object 5419 * @port: ? 5420 * 5421 * Return: 0 for success, non-zero for failure. 5422 */ 5423 static int 5424 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port) 5425 { 5426 Mpi2PortFactsRequest_t mpi_request; 5427 Mpi2PortFactsReply_t mpi_reply; 5428 struct mpt3sas_port_facts *pfacts; 5429 int mpi_reply_sz, mpi_request_sz, r; 5430 5431 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 5432 5433 mpi_reply_sz = sizeof(Mpi2PortFactsReply_t); 5434 mpi_request_sz = sizeof(Mpi2PortFactsRequest_t); 5435 memset(&mpi_request, 0, mpi_request_sz); 5436 mpi_request.Function = MPI2_FUNCTION_PORT_FACTS; 5437 mpi_request.PortNumber = port; 5438 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz, 5439 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5); 5440 5441 if (r != 0) { 5442 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 5443 return r; 5444 } 5445 5446 pfacts = &ioc->pfacts[port]; 5447 memset(pfacts, 0, sizeof(struct mpt3sas_port_facts)); 5448 pfacts->PortNumber = mpi_reply.PortNumber; 5449 pfacts->VP_ID = mpi_reply.VP_ID; 5450 pfacts->VF_ID = mpi_reply.VF_ID; 5451 pfacts->MaxPostedCmdBuffers = 5452 le16_to_cpu(mpi_reply.MaxPostedCmdBuffers); 5453 5454 return 0; 5455 } 5456 5457 /** 5458 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL 5459 * @ioc: per adapter object 5460 * @timeout: 5461 * 5462 * Return: 0 for success, non-zero for failure. 5463 */ 5464 static int 5465 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout) 5466 { 5467 u32 ioc_state; 5468 int rc; 5469 5470 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 5471 5472 if (ioc->pci_error_recovery) { 5473 dfailprintk(ioc, 5474 ioc_info(ioc, "%s: host in pci error recovery\n", 5475 __func__)); 5476 return -EFAULT; 5477 } 5478 5479 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 5480 dhsprintk(ioc, 5481 ioc_info(ioc, "%s: ioc_state(0x%08x)\n", 5482 __func__, ioc_state)); 5483 5484 if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) || 5485 (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL) 5486 return 0; 5487 5488 if (ioc_state & MPI2_DOORBELL_USED) { 5489 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n")); 5490 goto issue_diag_reset; 5491 } 5492 5493 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 5494 mpt3sas_base_fault_info(ioc, ioc_state & 5495 MPI2_DOORBELL_DATA_MASK); 5496 goto issue_diag_reset; 5497 } 5498 5499 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout); 5500 if (ioc_state) { 5501 dfailprintk(ioc, 5502 ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 5503 __func__, ioc_state)); 5504 return -EFAULT; 5505 } 5506 5507 issue_diag_reset: 5508 rc = _base_diag_reset(ioc); 5509 return rc; 5510 } 5511 5512 /** 5513 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc 5514 * @ioc: per adapter object 5515 * 5516 * Return: 0 for success, non-zero for failure. 5517 */ 5518 static int 5519 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc) 5520 { 5521 Mpi2IOCFactsRequest_t mpi_request; 5522 Mpi2IOCFactsReply_t mpi_reply; 5523 struct mpt3sas_facts *facts; 5524 int mpi_reply_sz, mpi_request_sz, r; 5525 5526 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 5527 5528 r = _base_wait_for_iocstate(ioc, 10); 5529 if (r) { 5530 dfailprintk(ioc, 5531 ioc_info(ioc, "%s: failed getting to correct state\n", 5532 __func__)); 5533 return r; 5534 } 5535 mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t); 5536 mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t); 5537 memset(&mpi_request, 0, mpi_request_sz); 5538 mpi_request.Function = MPI2_FUNCTION_IOC_FACTS; 5539 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz, 5540 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5); 5541 5542 if (r != 0) { 5543 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 5544 return r; 5545 } 5546 5547 facts = &ioc->facts; 5548 memset(facts, 0, sizeof(struct mpt3sas_facts)); 5549 facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion); 5550 facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion); 5551 facts->VP_ID = mpi_reply.VP_ID; 5552 facts->VF_ID = mpi_reply.VF_ID; 5553 facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions); 5554 facts->MaxChainDepth = mpi_reply.MaxChainDepth; 5555 facts->WhoInit = mpi_reply.WhoInit; 5556 facts->NumberOfPorts = mpi_reply.NumberOfPorts; 5557 facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors; 5558 if (ioc->msix_enable && (facts->MaxMSIxVectors <= 5559 MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc))) 5560 ioc->combined_reply_queue = 0; 5561 facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit); 5562 facts->MaxReplyDescriptorPostQueueDepth = 5563 le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth); 5564 facts->ProductID = le16_to_cpu(mpi_reply.ProductID); 5565 facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities); 5566 if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)) 5567 ioc->ir_firmware = 1; 5568 if ((facts->IOCCapabilities & 5569 MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices)) 5570 ioc->rdpq_array_capable = 1; 5571 facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word); 5572 facts->IOCRequestFrameSize = 5573 le16_to_cpu(mpi_reply.IOCRequestFrameSize); 5574 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 5575 facts->IOCMaxChainSegmentSize = 5576 le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize); 5577 } 5578 facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators); 5579 facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets); 5580 ioc->shost->max_id = -1; 5581 facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders); 5582 facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures); 5583 facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags); 5584 facts->HighPriorityCredit = 5585 le16_to_cpu(mpi_reply.HighPriorityCredit); 5586 facts->ReplyFrameSize = mpi_reply.ReplyFrameSize; 5587 facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle); 5588 facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize; 5589 5590 /* 5591 * Get the Page Size from IOC Facts. If it's 0, default to 4k. 5592 */ 5593 ioc->page_size = 1 << facts->CurrentHostPageSize; 5594 if (ioc->page_size == 1) { 5595 ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n"); 5596 ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K; 5597 } 5598 dinitprintk(ioc, 5599 ioc_info(ioc, "CurrentHostPageSize(%d)\n", 5600 facts->CurrentHostPageSize)); 5601 5602 dinitprintk(ioc, 5603 ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n", 5604 facts->RequestCredit, facts->MaxChainDepth)); 5605 dinitprintk(ioc, 5606 ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n", 5607 facts->IOCRequestFrameSize * 4, 5608 facts->ReplyFrameSize * 4)); 5609 return 0; 5610 } 5611 5612 /** 5613 * _base_send_ioc_init - send ioc_init to firmware 5614 * @ioc: per adapter object 5615 * 5616 * Return: 0 for success, non-zero for failure. 5617 */ 5618 static int 5619 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc) 5620 { 5621 Mpi2IOCInitRequest_t mpi_request; 5622 Mpi2IOCInitReply_t mpi_reply; 5623 int i, r = 0; 5624 ktime_t current_time; 5625 u16 ioc_status; 5626 u32 reply_post_free_array_sz = 0; 5627 5628 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 5629 5630 memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t)); 5631 mpi_request.Function = MPI2_FUNCTION_IOC_INIT; 5632 mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER; 5633 mpi_request.VF_ID = 0; /* TODO */ 5634 mpi_request.VP_ID = 0; 5635 mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged); 5636 mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION); 5637 mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K; 5638 5639 if (_base_is_controller_msix_enabled(ioc)) 5640 mpi_request.HostMSIxVectors = ioc->reply_queue_count; 5641 mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4); 5642 mpi_request.ReplyDescriptorPostQueueDepth = 5643 cpu_to_le16(ioc->reply_post_queue_depth); 5644 mpi_request.ReplyFreeQueueDepth = 5645 cpu_to_le16(ioc->reply_free_queue_depth); 5646 5647 mpi_request.SenseBufferAddressHigh = 5648 cpu_to_le32((u64)ioc->sense_dma >> 32); 5649 mpi_request.SystemReplyAddressHigh = 5650 cpu_to_le32((u64)ioc->reply_dma >> 32); 5651 mpi_request.SystemRequestFrameBaseAddress = 5652 cpu_to_le64((u64)ioc->request_dma); 5653 mpi_request.ReplyFreeQueueAddress = 5654 cpu_to_le64((u64)ioc->reply_free_dma); 5655 5656 if (ioc->rdpq_array_enable) { 5657 reply_post_free_array_sz = ioc->reply_queue_count * 5658 sizeof(Mpi2IOCInitRDPQArrayEntry); 5659 memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz); 5660 for (i = 0; i < ioc->reply_queue_count; i++) 5661 ioc->reply_post_free_array[i].RDPQBaseAddress = 5662 cpu_to_le64( 5663 (u64)ioc->reply_post[i].reply_post_free_dma); 5664 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE; 5665 mpi_request.ReplyDescriptorPostQueueAddress = 5666 cpu_to_le64((u64)ioc->reply_post_free_array_dma); 5667 } else { 5668 mpi_request.ReplyDescriptorPostQueueAddress = 5669 cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma); 5670 } 5671 5672 /* This time stamp specifies number of milliseconds 5673 * since epoch ~ midnight January 1, 1970. 5674 */ 5675 current_time = ktime_get_real(); 5676 mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time)); 5677 5678 if (ioc->logging_level & MPT_DEBUG_INIT) { 5679 __le32 *mfp; 5680 int i; 5681 5682 mfp = (__le32 *)&mpi_request; 5683 pr_info("\toffset:data\n"); 5684 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++) 5685 pr_info("\t[0x%02x]:%08x\n", i*4, 5686 le32_to_cpu(mfp[i])); 5687 } 5688 5689 r = _base_handshake_req_reply_wait(ioc, 5690 sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request, 5691 sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10); 5692 5693 if (r != 0) { 5694 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 5695 return r; 5696 } 5697 5698 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK; 5699 if (ioc_status != MPI2_IOCSTATUS_SUCCESS || 5700 mpi_reply.IOCLogInfo) { 5701 ioc_err(ioc, "%s: failed\n", __func__); 5702 r = -EIO; 5703 } 5704 5705 return r; 5706 } 5707 5708 /** 5709 * mpt3sas_port_enable_done - command completion routine for port enable 5710 * @ioc: per adapter object 5711 * @smid: system request message index 5712 * @msix_index: MSIX table index supplied by the OS 5713 * @reply: reply message frame(lower 32bit addr) 5714 * 5715 * Return: 1 meaning mf should be freed from _base_interrupt 5716 * 0 means the mf is freed from this function. 5717 */ 5718 u8 5719 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 5720 u32 reply) 5721 { 5722 MPI2DefaultReply_t *mpi_reply; 5723 u16 ioc_status; 5724 5725 if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED) 5726 return 1; 5727 5728 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 5729 if (!mpi_reply) 5730 return 1; 5731 5732 if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE) 5733 return 1; 5734 5735 ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING; 5736 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE; 5737 ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID; 5738 memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4); 5739 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 5740 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) 5741 ioc->port_enable_failed = 1; 5742 5743 if (ioc->is_driver_loading) { 5744 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 5745 mpt3sas_port_enable_complete(ioc); 5746 return 1; 5747 } else { 5748 ioc->start_scan_failed = ioc_status; 5749 ioc->start_scan = 0; 5750 return 1; 5751 } 5752 } 5753 complete(&ioc->port_enable_cmds.done); 5754 return 1; 5755 } 5756 5757 /** 5758 * _base_send_port_enable - send port_enable(discovery stuff) to firmware 5759 * @ioc: per adapter object 5760 * 5761 * Return: 0 for success, non-zero for failure. 5762 */ 5763 static int 5764 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc) 5765 { 5766 Mpi2PortEnableRequest_t *mpi_request; 5767 Mpi2PortEnableReply_t *mpi_reply; 5768 int r = 0; 5769 u16 smid; 5770 u16 ioc_status; 5771 5772 ioc_info(ioc, "sending port enable !!\n"); 5773 5774 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 5775 ioc_err(ioc, "%s: internal command already in use\n", __func__); 5776 return -EAGAIN; 5777 } 5778 5779 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx); 5780 if (!smid) { 5781 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 5782 return -EAGAIN; 5783 } 5784 5785 ioc->port_enable_cmds.status = MPT3_CMD_PENDING; 5786 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 5787 ioc->port_enable_cmds.smid = smid; 5788 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t)); 5789 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE; 5790 5791 init_completion(&ioc->port_enable_cmds.done); 5792 mpt3sas_base_put_smid_default(ioc, smid); 5793 wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ); 5794 if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) { 5795 ioc_err(ioc, "%s: timeout\n", __func__); 5796 _debug_dump_mf(mpi_request, 5797 sizeof(Mpi2PortEnableRequest_t)/4); 5798 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET) 5799 r = -EFAULT; 5800 else 5801 r = -ETIME; 5802 goto out; 5803 } 5804 5805 mpi_reply = ioc->port_enable_cmds.reply; 5806 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 5807 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 5808 ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n", 5809 __func__, ioc_status); 5810 r = -EFAULT; 5811 goto out; 5812 } 5813 5814 out: 5815 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED; 5816 ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED"); 5817 return r; 5818 } 5819 5820 /** 5821 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply) 5822 * @ioc: per adapter object 5823 * 5824 * Return: 0 for success, non-zero for failure. 5825 */ 5826 int 5827 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc) 5828 { 5829 Mpi2PortEnableRequest_t *mpi_request; 5830 u16 smid; 5831 5832 ioc_info(ioc, "sending port enable !!\n"); 5833 5834 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 5835 ioc_err(ioc, "%s: internal command already in use\n", __func__); 5836 return -EAGAIN; 5837 } 5838 5839 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx); 5840 if (!smid) { 5841 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 5842 return -EAGAIN; 5843 } 5844 5845 ioc->port_enable_cmds.status = MPT3_CMD_PENDING; 5846 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 5847 ioc->port_enable_cmds.smid = smid; 5848 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t)); 5849 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE; 5850 5851 mpt3sas_base_put_smid_default(ioc, smid); 5852 return 0; 5853 } 5854 5855 /** 5856 * _base_determine_wait_on_discovery - desposition 5857 * @ioc: per adapter object 5858 * 5859 * Decide whether to wait on discovery to complete. Used to either 5860 * locate boot device, or report volumes ahead of physical devices. 5861 * 5862 * Return: 1 for wait, 0 for don't wait. 5863 */ 5864 static int 5865 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc) 5866 { 5867 /* We wait for discovery to complete if IR firmware is loaded. 5868 * The sas topology events arrive before PD events, so we need time to 5869 * turn on the bit in ioc->pd_handles to indicate PD 5870 * Also, it maybe required to report Volumes ahead of physical 5871 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set. 5872 */ 5873 if (ioc->ir_firmware) 5874 return 1; 5875 5876 /* if no Bios, then we don't need to wait */ 5877 if (!ioc->bios_pg3.BiosVersion) 5878 return 0; 5879 5880 /* Bios is present, then we drop down here. 5881 * 5882 * If there any entries in the Bios Page 2, then we wait 5883 * for discovery to complete. 5884 */ 5885 5886 /* Current Boot Device */ 5887 if ((ioc->bios_pg2.CurrentBootDeviceForm & 5888 MPI2_BIOSPAGE2_FORM_MASK) == 5889 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED && 5890 /* Request Boot Device */ 5891 (ioc->bios_pg2.ReqBootDeviceForm & 5892 MPI2_BIOSPAGE2_FORM_MASK) == 5893 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED && 5894 /* Alternate Request Boot Device */ 5895 (ioc->bios_pg2.ReqAltBootDeviceForm & 5896 MPI2_BIOSPAGE2_FORM_MASK) == 5897 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED) 5898 return 0; 5899 5900 return 1; 5901 } 5902 5903 /** 5904 * _base_unmask_events - turn on notification for this event 5905 * @ioc: per adapter object 5906 * @event: firmware event 5907 * 5908 * The mask is stored in ioc->event_masks. 5909 */ 5910 static void 5911 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event) 5912 { 5913 u32 desired_event; 5914 5915 if (event >= 128) 5916 return; 5917 5918 desired_event = (1 << (event % 32)); 5919 5920 if (event < 32) 5921 ioc->event_masks[0] &= ~desired_event; 5922 else if (event < 64) 5923 ioc->event_masks[1] &= ~desired_event; 5924 else if (event < 96) 5925 ioc->event_masks[2] &= ~desired_event; 5926 else if (event < 128) 5927 ioc->event_masks[3] &= ~desired_event; 5928 } 5929 5930 /** 5931 * _base_event_notification - send event notification 5932 * @ioc: per adapter object 5933 * 5934 * Return: 0 for success, non-zero for failure. 5935 */ 5936 static int 5937 _base_event_notification(struct MPT3SAS_ADAPTER *ioc) 5938 { 5939 Mpi2EventNotificationRequest_t *mpi_request; 5940 u16 smid; 5941 int r = 0; 5942 int i; 5943 5944 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 5945 5946 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 5947 ioc_err(ioc, "%s: internal command already in use\n", __func__); 5948 return -EAGAIN; 5949 } 5950 5951 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 5952 if (!smid) { 5953 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 5954 return -EAGAIN; 5955 } 5956 ioc->base_cmds.status = MPT3_CMD_PENDING; 5957 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 5958 ioc->base_cmds.smid = smid; 5959 memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t)); 5960 mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION; 5961 mpi_request->VF_ID = 0; /* TODO */ 5962 mpi_request->VP_ID = 0; 5963 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 5964 mpi_request->EventMasks[i] = 5965 cpu_to_le32(ioc->event_masks[i]); 5966 init_completion(&ioc->base_cmds.done); 5967 mpt3sas_base_put_smid_default(ioc, smid); 5968 wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ); 5969 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 5970 ioc_err(ioc, "%s: timeout\n", __func__); 5971 _debug_dump_mf(mpi_request, 5972 sizeof(Mpi2EventNotificationRequest_t)/4); 5973 if (ioc->base_cmds.status & MPT3_CMD_RESET) 5974 r = -EFAULT; 5975 else 5976 r = -ETIME; 5977 } else 5978 dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__)); 5979 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 5980 return r; 5981 } 5982 5983 /** 5984 * mpt3sas_base_validate_event_type - validating event types 5985 * @ioc: per adapter object 5986 * @event_type: firmware event 5987 * 5988 * This will turn on firmware event notification when application 5989 * ask for that event. We don't mask events that are already enabled. 5990 */ 5991 void 5992 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type) 5993 { 5994 int i, j; 5995 u32 event_mask, desired_event; 5996 u8 send_update_to_fw; 5997 5998 for (i = 0, send_update_to_fw = 0; i < 5999 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) { 6000 event_mask = ~event_type[i]; 6001 desired_event = 1; 6002 for (j = 0; j < 32; j++) { 6003 if (!(event_mask & desired_event) && 6004 (ioc->event_masks[i] & desired_event)) { 6005 ioc->event_masks[i] &= ~desired_event; 6006 send_update_to_fw = 1; 6007 } 6008 desired_event = (desired_event << 1); 6009 } 6010 } 6011 6012 if (!send_update_to_fw) 6013 return; 6014 6015 mutex_lock(&ioc->base_cmds.mutex); 6016 _base_event_notification(ioc); 6017 mutex_unlock(&ioc->base_cmds.mutex); 6018 } 6019 6020 /** 6021 * _base_diag_reset - the "big hammer" start of day reset 6022 * @ioc: per adapter object 6023 * 6024 * Return: 0 for success, non-zero for failure. 6025 */ 6026 static int 6027 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc) 6028 { 6029 u32 host_diagnostic; 6030 u32 ioc_state; 6031 u32 count; 6032 u32 hcb_size; 6033 6034 ioc_info(ioc, "sending diag reset !!\n"); 6035 6036 drsprintk(ioc, ioc_info(ioc, "clear interrupts\n")); 6037 6038 count = 0; 6039 do { 6040 /* Write magic sequence to WriteSequence register 6041 * Loop until in diagnostic mode 6042 */ 6043 drsprintk(ioc, ioc_info(ioc, "write magic sequence\n")); 6044 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence); 6045 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence); 6046 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence); 6047 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence); 6048 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence); 6049 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence); 6050 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence); 6051 6052 /* wait 100 msec */ 6053 msleep(100); 6054 6055 if (count++ > 20) 6056 goto out; 6057 6058 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic); 6059 drsprintk(ioc, 6060 ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n", 6061 count, host_diagnostic)); 6062 6063 } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0); 6064 6065 hcb_size = ioc->base_readl(&ioc->chip->HCBSize); 6066 6067 drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n")); 6068 writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER, 6069 &ioc->chip->HostDiagnostic); 6070 6071 /*This delay allows the chip PCIe hardware time to finish reset tasks*/ 6072 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000); 6073 6074 /* Approximately 300 second max wait */ 6075 for (count = 0; count < (300000000 / 6076 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) { 6077 6078 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic); 6079 6080 if (host_diagnostic == 0xFFFFFFFF) 6081 goto out; 6082 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER)) 6083 break; 6084 6085 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000); 6086 } 6087 6088 if (host_diagnostic & MPI2_DIAG_HCB_MODE) { 6089 6090 drsprintk(ioc, 6091 ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n")); 6092 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK; 6093 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW; 6094 writel(host_diagnostic, &ioc->chip->HostDiagnostic); 6095 6096 drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n")); 6097 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE, 6098 &ioc->chip->HCBSize); 6099 } 6100 6101 drsprintk(ioc, ioc_info(ioc, "restart the adapter\n")); 6102 writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET, 6103 &ioc->chip->HostDiagnostic); 6104 6105 drsprintk(ioc, 6106 ioc_info(ioc, "disable writes to the diagnostic register\n")); 6107 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence); 6108 6109 drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n")); 6110 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20); 6111 if (ioc_state) { 6112 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 6113 __func__, ioc_state); 6114 goto out; 6115 } 6116 6117 ioc_info(ioc, "diag reset: SUCCESS\n"); 6118 return 0; 6119 6120 out: 6121 ioc_err(ioc, "diag reset: FAILED\n"); 6122 return -EFAULT; 6123 } 6124 6125 /** 6126 * _base_make_ioc_ready - put controller in READY state 6127 * @ioc: per adapter object 6128 * @type: FORCE_BIG_HAMMER or SOFT_RESET 6129 * 6130 * Return: 0 for success, non-zero for failure. 6131 */ 6132 static int 6133 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type) 6134 { 6135 u32 ioc_state; 6136 int rc; 6137 int count; 6138 6139 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6140 6141 if (ioc->pci_error_recovery) 6142 return 0; 6143 6144 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 6145 dhsprintk(ioc, 6146 ioc_info(ioc, "%s: ioc_state(0x%08x)\n", 6147 __func__, ioc_state)); 6148 6149 /* if in RESET state, it should move to READY state shortly */ 6150 count = 0; 6151 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) { 6152 while ((ioc_state & MPI2_IOC_STATE_MASK) != 6153 MPI2_IOC_STATE_READY) { 6154 if (count++ == 10) { 6155 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 6156 __func__, ioc_state); 6157 return -EFAULT; 6158 } 6159 ssleep(1); 6160 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 6161 } 6162 } 6163 6164 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) 6165 return 0; 6166 6167 if (ioc_state & MPI2_DOORBELL_USED) { 6168 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n")); 6169 goto issue_diag_reset; 6170 } 6171 6172 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 6173 mpt3sas_base_fault_info(ioc, ioc_state & 6174 MPI2_DOORBELL_DATA_MASK); 6175 goto issue_diag_reset; 6176 } 6177 6178 if (type == FORCE_BIG_HAMMER) 6179 goto issue_diag_reset; 6180 6181 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL) 6182 if (!(_base_send_ioc_reset(ioc, 6183 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) { 6184 return 0; 6185 } 6186 6187 issue_diag_reset: 6188 rc = _base_diag_reset(ioc); 6189 return rc; 6190 } 6191 6192 /** 6193 * _base_make_ioc_operational - put controller in OPERATIONAL state 6194 * @ioc: per adapter object 6195 * 6196 * Return: 0 for success, non-zero for failure. 6197 */ 6198 static int 6199 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc) 6200 { 6201 int r, i, index; 6202 unsigned long flags; 6203 u32 reply_address; 6204 u16 smid; 6205 struct _tr_list *delayed_tr, *delayed_tr_next; 6206 struct _sc_list *delayed_sc, *delayed_sc_next; 6207 struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next; 6208 u8 hide_flag; 6209 struct adapter_reply_queue *reply_q; 6210 Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig; 6211 6212 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6213 6214 /* clean the delayed target reset list */ 6215 list_for_each_entry_safe(delayed_tr, delayed_tr_next, 6216 &ioc->delayed_tr_list, list) { 6217 list_del(&delayed_tr->list); 6218 kfree(delayed_tr); 6219 } 6220 6221 6222 list_for_each_entry_safe(delayed_tr, delayed_tr_next, 6223 &ioc->delayed_tr_volume_list, list) { 6224 list_del(&delayed_tr->list); 6225 kfree(delayed_tr); 6226 } 6227 6228 list_for_each_entry_safe(delayed_sc, delayed_sc_next, 6229 &ioc->delayed_sc_list, list) { 6230 list_del(&delayed_sc->list); 6231 kfree(delayed_sc); 6232 } 6233 6234 list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next, 6235 &ioc->delayed_event_ack_list, list) { 6236 list_del(&delayed_event_ack->list); 6237 kfree(delayed_event_ack); 6238 } 6239 6240 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 6241 6242 /* hi-priority queue */ 6243 INIT_LIST_HEAD(&ioc->hpr_free_list); 6244 smid = ioc->hi_priority_smid; 6245 for (i = 0; i < ioc->hi_priority_depth; i++, smid++) { 6246 ioc->hpr_lookup[i].cb_idx = 0xFF; 6247 ioc->hpr_lookup[i].smid = smid; 6248 list_add_tail(&ioc->hpr_lookup[i].tracker_list, 6249 &ioc->hpr_free_list); 6250 } 6251 6252 /* internal queue */ 6253 INIT_LIST_HEAD(&ioc->internal_free_list); 6254 smid = ioc->internal_smid; 6255 for (i = 0; i < ioc->internal_depth; i++, smid++) { 6256 ioc->internal_lookup[i].cb_idx = 0xFF; 6257 ioc->internal_lookup[i].smid = smid; 6258 list_add_tail(&ioc->internal_lookup[i].tracker_list, 6259 &ioc->internal_free_list); 6260 } 6261 6262 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 6263 6264 /* initialize Reply Free Queue */ 6265 for (i = 0, reply_address = (u32)ioc->reply_dma ; 6266 i < ioc->reply_free_queue_depth ; i++, reply_address += 6267 ioc->reply_sz) { 6268 ioc->reply_free[i] = cpu_to_le32(reply_address); 6269 if (ioc->is_mcpu_endpoint) 6270 _base_clone_reply_to_sys_mem(ioc, 6271 reply_address, i); 6272 } 6273 6274 /* initialize reply queues */ 6275 if (ioc->is_driver_loading) 6276 _base_assign_reply_queues(ioc); 6277 6278 /* initialize Reply Post Free Queue */ 6279 index = 0; 6280 reply_post_free_contig = ioc->reply_post[0].reply_post_free; 6281 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 6282 /* 6283 * If RDPQ is enabled, switch to the next allocation. 6284 * Otherwise advance within the contiguous region. 6285 */ 6286 if (ioc->rdpq_array_enable) { 6287 reply_q->reply_post_free = 6288 ioc->reply_post[index++].reply_post_free; 6289 } else { 6290 reply_q->reply_post_free = reply_post_free_contig; 6291 reply_post_free_contig += ioc->reply_post_queue_depth; 6292 } 6293 6294 reply_q->reply_post_host_index = 0; 6295 for (i = 0; i < ioc->reply_post_queue_depth; i++) 6296 reply_q->reply_post_free[i].Words = 6297 cpu_to_le64(ULLONG_MAX); 6298 if (!_base_is_controller_msix_enabled(ioc)) 6299 goto skip_init_reply_post_free_queue; 6300 } 6301 skip_init_reply_post_free_queue: 6302 6303 r = _base_send_ioc_init(ioc); 6304 if (r) 6305 return r; 6306 6307 /* initialize reply free host index */ 6308 ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1; 6309 writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex); 6310 6311 /* initialize reply post host index */ 6312 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 6313 if (ioc->combined_reply_queue) 6314 writel((reply_q->msix_index & 7)<< 6315 MPI2_RPHI_MSIX_INDEX_SHIFT, 6316 ioc->replyPostRegisterIndex[reply_q->msix_index/8]); 6317 else 6318 writel(reply_q->msix_index << 6319 MPI2_RPHI_MSIX_INDEX_SHIFT, 6320 &ioc->chip->ReplyPostHostIndex); 6321 6322 if (!_base_is_controller_msix_enabled(ioc)) 6323 goto skip_init_reply_post_host_index; 6324 } 6325 6326 skip_init_reply_post_host_index: 6327 6328 _base_unmask_interrupts(ioc); 6329 6330 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 6331 r = _base_display_fwpkg_version(ioc); 6332 if (r) 6333 return r; 6334 } 6335 6336 _base_static_config_pages(ioc); 6337 r = _base_event_notification(ioc); 6338 if (r) 6339 return r; 6340 6341 if (ioc->is_driver_loading) { 6342 6343 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier 6344 == 0x80) { 6345 hide_flag = (u8) ( 6346 le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) & 6347 MFG_PAGE10_HIDE_SSDS_MASK); 6348 if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK) 6349 ioc->mfg_pg10_hide_flag = hide_flag; 6350 } 6351 6352 ioc->wait_for_discovery_to_complete = 6353 _base_determine_wait_on_discovery(ioc); 6354 6355 return r; /* scan_start and scan_finished support */ 6356 } 6357 6358 r = _base_send_port_enable(ioc); 6359 if (r) 6360 return r; 6361 6362 return r; 6363 } 6364 6365 /** 6366 * mpt3sas_base_free_resources - free resources controller resources 6367 * @ioc: per adapter object 6368 */ 6369 void 6370 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc) 6371 { 6372 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6373 6374 /* synchronizing freeing resource with pci_access_mutex lock */ 6375 mutex_lock(&ioc->pci_access_mutex); 6376 if (ioc->chip_phys && ioc->chip) { 6377 _base_mask_interrupts(ioc); 6378 ioc->shost_recovery = 1; 6379 _base_make_ioc_ready(ioc, SOFT_RESET); 6380 ioc->shost_recovery = 0; 6381 } 6382 6383 mpt3sas_base_unmap_resources(ioc); 6384 mutex_unlock(&ioc->pci_access_mutex); 6385 return; 6386 } 6387 6388 /** 6389 * mpt3sas_base_attach - attach controller instance 6390 * @ioc: per adapter object 6391 * 6392 * Return: 0 for success, non-zero for failure. 6393 */ 6394 int 6395 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc) 6396 { 6397 int r, i; 6398 int cpu_id, last_cpu_id = 0; 6399 6400 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6401 6402 /* setup cpu_msix_table */ 6403 ioc->cpu_count = num_online_cpus(); 6404 for_each_online_cpu(cpu_id) 6405 last_cpu_id = cpu_id; 6406 ioc->cpu_msix_table_sz = last_cpu_id + 1; 6407 ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL); 6408 ioc->reply_queue_count = 1; 6409 if (!ioc->cpu_msix_table) { 6410 dfailprintk(ioc, 6411 ioc_info(ioc, "allocation for cpu_msix_table failed!!!\n")); 6412 r = -ENOMEM; 6413 goto out_free_resources; 6414 } 6415 6416 if (ioc->is_warpdrive) { 6417 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz, 6418 sizeof(resource_size_t *), GFP_KERNEL); 6419 if (!ioc->reply_post_host_index) { 6420 dfailprintk(ioc, 6421 ioc_info(ioc, "allocation for reply_post_host_index failed!!!\n")); 6422 r = -ENOMEM; 6423 goto out_free_resources; 6424 } 6425 } 6426 6427 ioc->rdpq_array_enable_assigned = 0; 6428 ioc->dma_mask = 0; 6429 if (ioc->is_aero_ioc) 6430 ioc->base_readl = &_base_readl_aero; 6431 else 6432 ioc->base_readl = &_base_readl; 6433 r = mpt3sas_base_map_resources(ioc); 6434 if (r) 6435 goto out_free_resources; 6436 6437 pci_set_drvdata(ioc->pdev, ioc->shost); 6438 r = _base_get_ioc_facts(ioc); 6439 if (r) 6440 goto out_free_resources; 6441 6442 switch (ioc->hba_mpi_version_belonged) { 6443 case MPI2_VERSION: 6444 ioc->build_sg_scmd = &_base_build_sg_scmd; 6445 ioc->build_sg = &_base_build_sg; 6446 ioc->build_zero_len_sge = &_base_build_zero_len_sge; 6447 break; 6448 case MPI25_VERSION: 6449 case MPI26_VERSION: 6450 /* 6451 * In SAS3.0, 6452 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and 6453 * Target Status - all require the IEEE formated scatter gather 6454 * elements. 6455 */ 6456 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee; 6457 ioc->build_sg = &_base_build_sg_ieee; 6458 ioc->build_nvme_prp = &_base_build_nvme_prp; 6459 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee; 6460 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t); 6461 6462 break; 6463 } 6464 6465 if (ioc->is_mcpu_endpoint) 6466 ioc->put_smid_scsi_io = &_base_put_smid_mpi_ep_scsi_io; 6467 else 6468 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io; 6469 6470 /* 6471 * These function pointers for other requests that don't 6472 * the require IEEE scatter gather elements. 6473 * 6474 * For example Configuration Pages and SAS IOUNIT Control don't. 6475 */ 6476 ioc->build_sg_mpi = &_base_build_sg; 6477 ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge; 6478 6479 r = _base_make_ioc_ready(ioc, SOFT_RESET); 6480 if (r) 6481 goto out_free_resources; 6482 6483 ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts, 6484 sizeof(struct mpt3sas_port_facts), GFP_KERNEL); 6485 if (!ioc->pfacts) { 6486 r = -ENOMEM; 6487 goto out_free_resources; 6488 } 6489 6490 for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) { 6491 r = _base_get_port_facts(ioc, i); 6492 if (r) 6493 goto out_free_resources; 6494 } 6495 6496 r = _base_allocate_memory_pools(ioc); 6497 if (r) 6498 goto out_free_resources; 6499 6500 init_waitqueue_head(&ioc->reset_wq); 6501 6502 /* allocate memory pd handle bitmask list */ 6503 ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8); 6504 if (ioc->facts.MaxDevHandle % 8) 6505 ioc->pd_handles_sz++; 6506 ioc->pd_handles = kzalloc(ioc->pd_handles_sz, 6507 GFP_KERNEL); 6508 if (!ioc->pd_handles) { 6509 r = -ENOMEM; 6510 goto out_free_resources; 6511 } 6512 ioc->blocking_handles = kzalloc(ioc->pd_handles_sz, 6513 GFP_KERNEL); 6514 if (!ioc->blocking_handles) { 6515 r = -ENOMEM; 6516 goto out_free_resources; 6517 } 6518 6519 /* allocate memory for pending OS device add list */ 6520 ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8); 6521 if (ioc->facts.MaxDevHandle % 8) 6522 ioc->pend_os_device_add_sz++; 6523 ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz, 6524 GFP_KERNEL); 6525 if (!ioc->pend_os_device_add) 6526 goto out_free_resources; 6527 6528 ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz; 6529 ioc->device_remove_in_progress = 6530 kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL); 6531 if (!ioc->device_remove_in_progress) 6532 goto out_free_resources; 6533 6534 ioc->fwfault_debug = mpt3sas_fwfault_debug; 6535 6536 /* base internal command bits */ 6537 mutex_init(&ioc->base_cmds.mutex); 6538 ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 6539 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 6540 6541 /* port_enable command bits */ 6542 ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 6543 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED; 6544 6545 /* transport internal command bits */ 6546 ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 6547 ioc->transport_cmds.status = MPT3_CMD_NOT_USED; 6548 mutex_init(&ioc->transport_cmds.mutex); 6549 6550 /* scsih internal command bits */ 6551 ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 6552 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED; 6553 mutex_init(&ioc->scsih_cmds.mutex); 6554 6555 /* task management internal command bits */ 6556 ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 6557 ioc->tm_cmds.status = MPT3_CMD_NOT_USED; 6558 mutex_init(&ioc->tm_cmds.mutex); 6559 6560 /* config page internal command bits */ 6561 ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 6562 ioc->config_cmds.status = MPT3_CMD_NOT_USED; 6563 mutex_init(&ioc->config_cmds.mutex); 6564 6565 /* ctl module internal command bits */ 6566 ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 6567 ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL); 6568 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED; 6569 mutex_init(&ioc->ctl_cmds.mutex); 6570 6571 if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply || 6572 !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply || 6573 !ioc->tm_cmds.reply || !ioc->config_cmds.reply || 6574 !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) { 6575 r = -ENOMEM; 6576 goto out_free_resources; 6577 } 6578 6579 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 6580 ioc->event_masks[i] = -1; 6581 6582 /* here we enable the events we care about */ 6583 _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY); 6584 _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE); 6585 _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST); 6586 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE); 6587 _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE); 6588 _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST); 6589 _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME); 6590 _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK); 6591 _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS); 6592 _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED); 6593 _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD); 6594 _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION); 6595 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR); 6596 if (ioc->hba_mpi_version_belonged == MPI26_VERSION) { 6597 if (ioc->is_gen35_ioc) { 6598 _base_unmask_events(ioc, 6599 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE); 6600 _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION); 6601 _base_unmask_events(ioc, 6602 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST); 6603 } 6604 } 6605 r = _base_make_ioc_operational(ioc); 6606 if (r) 6607 goto out_free_resources; 6608 6609 ioc->non_operational_loop = 0; 6610 ioc->got_task_abort_from_ioctl = 0; 6611 return 0; 6612 6613 out_free_resources: 6614 6615 ioc->remove_host = 1; 6616 6617 mpt3sas_base_free_resources(ioc); 6618 _base_release_memory_pools(ioc); 6619 pci_set_drvdata(ioc->pdev, NULL); 6620 kfree(ioc->cpu_msix_table); 6621 if (ioc->is_warpdrive) 6622 kfree(ioc->reply_post_host_index); 6623 kfree(ioc->pd_handles); 6624 kfree(ioc->blocking_handles); 6625 kfree(ioc->device_remove_in_progress); 6626 kfree(ioc->pend_os_device_add); 6627 kfree(ioc->tm_cmds.reply); 6628 kfree(ioc->transport_cmds.reply); 6629 kfree(ioc->scsih_cmds.reply); 6630 kfree(ioc->config_cmds.reply); 6631 kfree(ioc->base_cmds.reply); 6632 kfree(ioc->port_enable_cmds.reply); 6633 kfree(ioc->ctl_cmds.reply); 6634 kfree(ioc->ctl_cmds.sense); 6635 kfree(ioc->pfacts); 6636 ioc->ctl_cmds.reply = NULL; 6637 ioc->base_cmds.reply = NULL; 6638 ioc->tm_cmds.reply = NULL; 6639 ioc->scsih_cmds.reply = NULL; 6640 ioc->transport_cmds.reply = NULL; 6641 ioc->config_cmds.reply = NULL; 6642 ioc->pfacts = NULL; 6643 return r; 6644 } 6645 6646 6647 /** 6648 * mpt3sas_base_detach - remove controller instance 6649 * @ioc: per adapter object 6650 */ 6651 void 6652 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc) 6653 { 6654 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6655 6656 mpt3sas_base_stop_watchdog(ioc); 6657 mpt3sas_base_free_resources(ioc); 6658 _base_release_memory_pools(ioc); 6659 mpt3sas_free_enclosure_list(ioc); 6660 pci_set_drvdata(ioc->pdev, NULL); 6661 kfree(ioc->cpu_msix_table); 6662 if (ioc->is_warpdrive) 6663 kfree(ioc->reply_post_host_index); 6664 kfree(ioc->pd_handles); 6665 kfree(ioc->blocking_handles); 6666 kfree(ioc->device_remove_in_progress); 6667 kfree(ioc->pend_os_device_add); 6668 kfree(ioc->pfacts); 6669 kfree(ioc->ctl_cmds.reply); 6670 kfree(ioc->ctl_cmds.sense); 6671 kfree(ioc->base_cmds.reply); 6672 kfree(ioc->port_enable_cmds.reply); 6673 kfree(ioc->tm_cmds.reply); 6674 kfree(ioc->transport_cmds.reply); 6675 kfree(ioc->scsih_cmds.reply); 6676 kfree(ioc->config_cmds.reply); 6677 } 6678 6679 /** 6680 * _base_pre_reset_handler - pre reset handler 6681 * @ioc: per adapter object 6682 */ 6683 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc) 6684 { 6685 mpt3sas_scsih_pre_reset_handler(ioc); 6686 mpt3sas_ctl_pre_reset_handler(ioc); 6687 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__)); 6688 } 6689 6690 /** 6691 * _base_after_reset_handler - after reset handler 6692 * @ioc: per adapter object 6693 */ 6694 static void _base_after_reset_handler(struct MPT3SAS_ADAPTER *ioc) 6695 { 6696 mpt3sas_scsih_after_reset_handler(ioc); 6697 mpt3sas_ctl_after_reset_handler(ioc); 6698 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_AFTER_RESET\n", __func__)); 6699 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) { 6700 ioc->transport_cmds.status |= MPT3_CMD_RESET; 6701 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid); 6702 complete(&ioc->transport_cmds.done); 6703 } 6704 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 6705 ioc->base_cmds.status |= MPT3_CMD_RESET; 6706 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid); 6707 complete(&ioc->base_cmds.done); 6708 } 6709 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 6710 ioc->port_enable_failed = 1; 6711 ioc->port_enable_cmds.status |= MPT3_CMD_RESET; 6712 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid); 6713 if (ioc->is_driver_loading) { 6714 ioc->start_scan_failed = 6715 MPI2_IOCSTATUS_INTERNAL_ERROR; 6716 ioc->start_scan = 0; 6717 ioc->port_enable_cmds.status = 6718 MPT3_CMD_NOT_USED; 6719 } else { 6720 complete(&ioc->port_enable_cmds.done); 6721 } 6722 } 6723 if (ioc->config_cmds.status & MPT3_CMD_PENDING) { 6724 ioc->config_cmds.status |= MPT3_CMD_RESET; 6725 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid); 6726 ioc->config_cmds.smid = USHRT_MAX; 6727 complete(&ioc->config_cmds.done); 6728 } 6729 } 6730 6731 /** 6732 * _base_reset_done_handler - reset done handler 6733 * @ioc: per adapter object 6734 */ 6735 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc) 6736 { 6737 mpt3sas_scsih_reset_done_handler(ioc); 6738 mpt3sas_ctl_reset_done_handler(ioc); 6739 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__)); 6740 } 6741 6742 /** 6743 * mpt3sas_wait_for_commands_to_complete - reset controller 6744 * @ioc: Pointer to MPT_ADAPTER structure 6745 * 6746 * This function is waiting 10s for all pending commands to complete 6747 * prior to putting controller in reset. 6748 */ 6749 void 6750 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc) 6751 { 6752 u32 ioc_state; 6753 6754 ioc->pending_io_count = 0; 6755 6756 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 6757 if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) 6758 return; 6759 6760 /* pending command count */ 6761 ioc->pending_io_count = scsi_host_busy(ioc->shost); 6762 6763 if (!ioc->pending_io_count) 6764 return; 6765 6766 /* wait for pending commands to complete */ 6767 wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ); 6768 } 6769 6770 /** 6771 * mpt3sas_base_hard_reset_handler - reset controller 6772 * @ioc: Pointer to MPT_ADAPTER structure 6773 * @type: FORCE_BIG_HAMMER or SOFT_RESET 6774 * 6775 * Return: 0 for success, non-zero for failure. 6776 */ 6777 int 6778 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc, 6779 enum reset_type type) 6780 { 6781 int r; 6782 unsigned long flags; 6783 u32 ioc_state; 6784 u8 is_fault = 0, is_trigger = 0; 6785 6786 dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__)); 6787 6788 if (ioc->pci_error_recovery) { 6789 ioc_err(ioc, "%s: pci error recovery reset\n", __func__); 6790 r = 0; 6791 goto out_unlocked; 6792 } 6793 6794 if (mpt3sas_fwfault_debug) 6795 mpt3sas_halt_firmware(ioc); 6796 6797 /* wait for an active reset in progress to complete */ 6798 mutex_lock(&ioc->reset_in_progress_mutex); 6799 6800 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 6801 ioc->shost_recovery = 1; 6802 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 6803 6804 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 6805 MPT3_DIAG_BUFFER_IS_REGISTERED) && 6806 (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 6807 MPT3_DIAG_BUFFER_IS_RELEASED))) { 6808 is_trigger = 1; 6809 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 6810 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) 6811 is_fault = 1; 6812 } 6813 _base_pre_reset_handler(ioc); 6814 mpt3sas_wait_for_commands_to_complete(ioc); 6815 _base_mask_interrupts(ioc); 6816 r = _base_make_ioc_ready(ioc, type); 6817 if (r) 6818 goto out; 6819 _base_after_reset_handler(ioc); 6820 6821 /* If this hard reset is called while port enable is active, then 6822 * there is no reason to call make_ioc_operational 6823 */ 6824 if (ioc->is_driver_loading && ioc->port_enable_failed) { 6825 ioc->remove_host = 1; 6826 r = -EFAULT; 6827 goto out; 6828 } 6829 r = _base_get_ioc_facts(ioc); 6830 if (r) 6831 goto out; 6832 6833 if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable) 6834 panic("%s: Issue occurred with flashing controller firmware." 6835 "Please reboot the system and ensure that the correct" 6836 " firmware version is running\n", ioc->name); 6837 6838 r = _base_make_ioc_operational(ioc); 6839 if (!r) 6840 _base_reset_done_handler(ioc); 6841 6842 out: 6843 dtmprintk(ioc, 6844 ioc_info(ioc, "%s: %s\n", 6845 __func__, r == 0 ? "SUCCESS" : "FAILED")); 6846 6847 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 6848 ioc->shost_recovery = 0; 6849 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 6850 ioc->ioc_reset_count++; 6851 mutex_unlock(&ioc->reset_in_progress_mutex); 6852 6853 out_unlocked: 6854 if ((r == 0) && is_trigger) { 6855 if (is_fault) 6856 mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT); 6857 else 6858 mpt3sas_trigger_master(ioc, 6859 MASTER_TRIGGER_ADAPTER_RESET); 6860 } 6861 dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__)); 6862 return r; 6863 } 6864