xref: /openbmc/linux/drivers/scsi/mpt3sas/mpt3sas_base.c (revision 9977a8c3497a8f7f7f951994f298a8e4d961234f)
1 /*
2  * This is the Fusion MPT base driver providing common API layer interface
3  * for access to MPT (Message Passing Technology) firmware.
4  *
5  * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6  * Copyright (C) 2012-2014  LSI Corporation
7  * Copyright (C) 2013-2014 Avago Technologies
8  *  (mailto: MPT-FusionLinux.pdl@avagotech.com)
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version 2
13  * of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * NO WARRANTY
21  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25  * solely responsible for determining the appropriateness of using and
26  * distributing the Program and assumes all risks associated with its
27  * exercise of rights under this Agreement, including but not limited to
28  * the risks and costs of program errors, damage to or loss of data,
29  * programs or equipment, and unavailability or interruption of operations.
30 
31  * DISCLAIMER OF LIABILITY
32  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39 
40  * You should have received a copy of the GNU General Public License
41  * along with this program; if not, write to the Free Software
42  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
43  * USA.
44  */
45 
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <asm/page.h>        /* To get host page size per arch */
63 #include <linux/aer.h>
64 
65 
66 #include "mpt3sas_base.h"
67 
68 static MPT_CALLBACK	mpt_callbacks[MPT_MAX_CALLBACKS];
69 
70 
71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
72 
73  /* maximum controller queue depth */
74 #define MAX_HBA_QUEUE_DEPTH	30000
75 #define MAX_CHAIN_DEPTH		100000
76 static int max_queue_depth = -1;
77 module_param(max_queue_depth, int, 0);
78 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
79 
80 static int max_sgl_entries = -1;
81 module_param(max_sgl_entries, int, 0);
82 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
83 
84 static int msix_disable = -1;
85 module_param(msix_disable, int, 0);
86 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
87 
88 static int smp_affinity_enable = 1;
89 module_param(smp_affinity_enable, int, S_IRUGO);
90 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disbale Default: enable(1)");
91 
92 static int max_msix_vectors = -1;
93 module_param(max_msix_vectors, int, 0);
94 MODULE_PARM_DESC(max_msix_vectors,
95 	" max msix vectors");
96 
97 static int mpt3sas_fwfault_debug;
98 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
99 	" enable detection of firmware fault and halt firmware - (default=0)");
100 
101 static int
102 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
103 
104 /**
105  * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
106  *
107  */
108 static int
109 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp)
110 {
111 	int ret = param_set_int(val, kp);
112 	struct MPT3SAS_ADAPTER *ioc;
113 
114 	if (ret)
115 		return ret;
116 
117 	/* global ioc spinlock to protect controller list on list operations */
118 	pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
119 	spin_lock(&gioc_lock);
120 	list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
121 		ioc->fwfault_debug = mpt3sas_fwfault_debug;
122 	spin_unlock(&gioc_lock);
123 	return 0;
124 }
125 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
126 	param_get_int, &mpt3sas_fwfault_debug, 0644);
127 
128 /**
129  *  mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
130  * @arg: input argument, used to derive ioc
131  *
132  * Return 0 if controller is removed from pci subsystem.
133  * Return -1 for other case.
134  */
135 static int mpt3sas_remove_dead_ioc_func(void *arg)
136 {
137 	struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
138 	struct pci_dev *pdev;
139 
140 	if ((ioc == NULL))
141 		return -1;
142 
143 	pdev = ioc->pdev;
144 	if ((pdev == NULL))
145 		return -1;
146 	pci_stop_and_remove_bus_device_locked(pdev);
147 	return 0;
148 }
149 
150 /**
151  * _base_fault_reset_work - workq handling ioc fault conditions
152  * @work: input argument, used to derive ioc
153  * Context: sleep.
154  *
155  * Return nothing.
156  */
157 static void
158 _base_fault_reset_work(struct work_struct *work)
159 {
160 	struct MPT3SAS_ADAPTER *ioc =
161 	    container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
162 	unsigned long	 flags;
163 	u32 doorbell;
164 	int rc;
165 	struct task_struct *p;
166 
167 
168 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
169 	if (ioc->shost_recovery || ioc->pci_error_recovery)
170 		goto rearm_timer;
171 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
172 
173 	doorbell = mpt3sas_base_get_iocstate(ioc, 0);
174 	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
175 		pr_err(MPT3SAS_FMT "SAS host is non-operational !!!!\n",
176 		    ioc->name);
177 
178 		/* It may be possible that EEH recovery can resolve some of
179 		 * pci bus failure issues rather removing the dead ioc function
180 		 * by considering controller is in a non-operational state. So
181 		 * here priority is given to the EEH recovery. If it doesn't
182 		 * not resolve this issue, mpt3sas driver will consider this
183 		 * controller to non-operational state and remove the dead ioc
184 		 * function.
185 		 */
186 		if (ioc->non_operational_loop++ < 5) {
187 			spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
188 							 flags);
189 			goto rearm_timer;
190 		}
191 
192 		/*
193 		 * Call _scsih_flush_pending_cmds callback so that we flush all
194 		 * pending commands back to OS. This call is required to aovid
195 		 * deadlock at block layer. Dead IOC will fail to do diag reset,
196 		 * and this call is safe since dead ioc will never return any
197 		 * command back from HW.
198 		 */
199 		ioc->schedule_dead_ioc_flush_running_cmds(ioc);
200 		/*
201 		 * Set remove_host flag early since kernel thread will
202 		 * take some time to execute.
203 		 */
204 		ioc->remove_host = 1;
205 		/*Remove the Dead Host */
206 		p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
207 		    "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
208 		if (IS_ERR(p))
209 			pr_err(MPT3SAS_FMT
210 			"%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
211 			ioc->name, __func__);
212 		else
213 			pr_err(MPT3SAS_FMT
214 			"%s: Running mpt3sas_dead_ioc thread success !!!!\n",
215 			ioc->name, __func__);
216 		return; /* don't rearm timer */
217 	}
218 
219 	ioc->non_operational_loop = 0;
220 
221 	if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
222 		rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
223 		pr_warn(MPT3SAS_FMT "%s: hard reset: %s\n", ioc->name,
224 		    __func__, (rc == 0) ? "success" : "failed");
225 		doorbell = mpt3sas_base_get_iocstate(ioc, 0);
226 		if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
227 			mpt3sas_base_fault_info(ioc, doorbell &
228 			    MPI2_DOORBELL_DATA_MASK);
229 		if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
230 		    MPI2_IOC_STATE_OPERATIONAL)
231 			return; /* don't rearm timer */
232 	}
233 
234 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
235  rearm_timer:
236 	if (ioc->fault_reset_work_q)
237 		queue_delayed_work(ioc->fault_reset_work_q,
238 		    &ioc->fault_reset_work,
239 		    msecs_to_jiffies(FAULT_POLLING_INTERVAL));
240 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
241 }
242 
243 /**
244  * mpt3sas_base_start_watchdog - start the fault_reset_work_q
245  * @ioc: per adapter object
246  * Context: sleep.
247  *
248  * Return nothing.
249  */
250 void
251 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
252 {
253 	unsigned long	 flags;
254 
255 	if (ioc->fault_reset_work_q)
256 		return;
257 
258 	/* initialize fault polling */
259 
260 	INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
261 	snprintf(ioc->fault_reset_work_q_name,
262 	    sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
263 	    ioc->driver_name, ioc->id);
264 	ioc->fault_reset_work_q =
265 		create_singlethread_workqueue(ioc->fault_reset_work_q_name);
266 	if (!ioc->fault_reset_work_q) {
267 		pr_err(MPT3SAS_FMT "%s: failed (line=%d)\n",
268 		    ioc->name, __func__, __LINE__);
269 			return;
270 	}
271 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
272 	if (ioc->fault_reset_work_q)
273 		queue_delayed_work(ioc->fault_reset_work_q,
274 		    &ioc->fault_reset_work,
275 		    msecs_to_jiffies(FAULT_POLLING_INTERVAL));
276 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
277 }
278 
279 /**
280  * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
281  * @ioc: per adapter object
282  * Context: sleep.
283  *
284  * Return nothing.
285  */
286 void
287 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
288 {
289 	unsigned long flags;
290 	struct workqueue_struct *wq;
291 
292 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
293 	wq = ioc->fault_reset_work_q;
294 	ioc->fault_reset_work_q = NULL;
295 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
296 	if (wq) {
297 		if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
298 			flush_workqueue(wq);
299 		destroy_workqueue(wq);
300 	}
301 }
302 
303 /**
304  * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
305  * @ioc: per adapter object
306  * @fault_code: fault code
307  *
308  * Return nothing.
309  */
310 void
311 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
312 {
313 	pr_err(MPT3SAS_FMT "fault_state(0x%04x)!\n",
314 	    ioc->name, fault_code);
315 }
316 
317 /**
318  * mpt3sas_halt_firmware - halt's mpt controller firmware
319  * @ioc: per adapter object
320  *
321  * For debugging timeout related issues.  Writing 0xCOFFEE00
322  * to the doorbell register will halt controller firmware. With
323  * the purpose to stop both driver and firmware, the enduser can
324  * obtain a ring buffer from controller UART.
325  */
326 void
327 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
328 {
329 	u32 doorbell;
330 
331 	if (!ioc->fwfault_debug)
332 		return;
333 
334 	dump_stack();
335 
336 	doorbell = readl(&ioc->chip->Doorbell);
337 	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
338 		mpt3sas_base_fault_info(ioc , doorbell);
339 	else {
340 		writel(0xC0FFEE00, &ioc->chip->Doorbell);
341 		pr_err(MPT3SAS_FMT "Firmware is halted due to command timeout\n",
342 			ioc->name);
343 	}
344 
345 	if (ioc->fwfault_debug == 2)
346 		for (;;)
347 			;
348 	else
349 		panic("panic in %s\n", __func__);
350 }
351 
352 /**
353  * _base_sas_ioc_info - verbose translation of the ioc status
354  * @ioc: per adapter object
355  * @mpi_reply: reply mf payload returned from firmware
356  * @request_hdr: request mf
357  *
358  * Return nothing.
359  */
360 static void
361 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
362 	MPI2RequestHeader_t *request_hdr)
363 {
364 	u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
365 	    MPI2_IOCSTATUS_MASK;
366 	char *desc = NULL;
367 	u16 frame_sz;
368 	char *func_str = NULL;
369 
370 	/* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
371 	if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
372 	    request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
373 	    request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
374 		return;
375 
376 	if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
377 		return;
378 
379 	switch (ioc_status) {
380 
381 /****************************************************************************
382 *  Common IOCStatus values for all replies
383 ****************************************************************************/
384 
385 	case MPI2_IOCSTATUS_INVALID_FUNCTION:
386 		desc = "invalid function";
387 		break;
388 	case MPI2_IOCSTATUS_BUSY:
389 		desc = "busy";
390 		break;
391 	case MPI2_IOCSTATUS_INVALID_SGL:
392 		desc = "invalid sgl";
393 		break;
394 	case MPI2_IOCSTATUS_INTERNAL_ERROR:
395 		desc = "internal error";
396 		break;
397 	case MPI2_IOCSTATUS_INVALID_VPID:
398 		desc = "invalid vpid";
399 		break;
400 	case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
401 		desc = "insufficient resources";
402 		break;
403 	case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
404 		desc = "insufficient power";
405 		break;
406 	case MPI2_IOCSTATUS_INVALID_FIELD:
407 		desc = "invalid field";
408 		break;
409 	case MPI2_IOCSTATUS_INVALID_STATE:
410 		desc = "invalid state";
411 		break;
412 	case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
413 		desc = "op state not supported";
414 		break;
415 
416 /****************************************************************************
417 *  Config IOCStatus values
418 ****************************************************************************/
419 
420 	case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
421 		desc = "config invalid action";
422 		break;
423 	case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
424 		desc = "config invalid type";
425 		break;
426 	case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
427 		desc = "config invalid page";
428 		break;
429 	case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
430 		desc = "config invalid data";
431 		break;
432 	case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
433 		desc = "config no defaults";
434 		break;
435 	case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
436 		desc = "config cant commit";
437 		break;
438 
439 /****************************************************************************
440 *  SCSI IO Reply
441 ****************************************************************************/
442 
443 	case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
444 	case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
445 	case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
446 	case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
447 	case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
448 	case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
449 	case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
450 	case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
451 	case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
452 	case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
453 	case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
454 	case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
455 		break;
456 
457 /****************************************************************************
458 *  For use by SCSI Initiator and SCSI Target end-to-end data protection
459 ****************************************************************************/
460 
461 	case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
462 		desc = "eedp guard error";
463 		break;
464 	case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
465 		desc = "eedp ref tag error";
466 		break;
467 	case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
468 		desc = "eedp app tag error";
469 		break;
470 
471 /****************************************************************************
472 *  SCSI Target values
473 ****************************************************************************/
474 
475 	case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
476 		desc = "target invalid io index";
477 		break;
478 	case MPI2_IOCSTATUS_TARGET_ABORTED:
479 		desc = "target aborted";
480 		break;
481 	case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
482 		desc = "target no conn retryable";
483 		break;
484 	case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
485 		desc = "target no connection";
486 		break;
487 	case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
488 		desc = "target xfer count mismatch";
489 		break;
490 	case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
491 		desc = "target data offset error";
492 		break;
493 	case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
494 		desc = "target too much write data";
495 		break;
496 	case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
497 		desc = "target iu too short";
498 		break;
499 	case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
500 		desc = "target ack nak timeout";
501 		break;
502 	case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
503 		desc = "target nak received";
504 		break;
505 
506 /****************************************************************************
507 *  Serial Attached SCSI values
508 ****************************************************************************/
509 
510 	case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
511 		desc = "smp request failed";
512 		break;
513 	case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
514 		desc = "smp data overrun";
515 		break;
516 
517 /****************************************************************************
518 *  Diagnostic Buffer Post / Diagnostic Release values
519 ****************************************************************************/
520 
521 	case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
522 		desc = "diagnostic released";
523 		break;
524 	default:
525 		break;
526 	}
527 
528 	if (!desc)
529 		return;
530 
531 	switch (request_hdr->Function) {
532 	case MPI2_FUNCTION_CONFIG:
533 		frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
534 		func_str = "config_page";
535 		break;
536 	case MPI2_FUNCTION_SCSI_TASK_MGMT:
537 		frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
538 		func_str = "task_mgmt";
539 		break;
540 	case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
541 		frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
542 		func_str = "sas_iounit_ctl";
543 		break;
544 	case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
545 		frame_sz = sizeof(Mpi2SepRequest_t);
546 		func_str = "enclosure";
547 		break;
548 	case MPI2_FUNCTION_IOC_INIT:
549 		frame_sz = sizeof(Mpi2IOCInitRequest_t);
550 		func_str = "ioc_init";
551 		break;
552 	case MPI2_FUNCTION_PORT_ENABLE:
553 		frame_sz = sizeof(Mpi2PortEnableRequest_t);
554 		func_str = "port_enable";
555 		break;
556 	case MPI2_FUNCTION_SMP_PASSTHROUGH:
557 		frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
558 		func_str = "smp_passthru";
559 		break;
560 	case MPI2_FUNCTION_NVME_ENCAPSULATED:
561 		frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) +
562 		    ioc->sge_size;
563 		func_str = "nvme_encapsulated";
564 		break;
565 	default:
566 		frame_sz = 32;
567 		func_str = "unknown";
568 		break;
569 	}
570 
571 	pr_warn(MPT3SAS_FMT "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
572 		ioc->name, desc, ioc_status, request_hdr, func_str);
573 
574 	_debug_dump_mf(request_hdr, frame_sz/4);
575 }
576 
577 /**
578  * _base_display_event_data - verbose translation of firmware asyn events
579  * @ioc: per adapter object
580  * @mpi_reply: reply mf payload returned from firmware
581  *
582  * Return nothing.
583  */
584 static void
585 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
586 	Mpi2EventNotificationReply_t *mpi_reply)
587 {
588 	char *desc = NULL;
589 	u16 event;
590 
591 	if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
592 		return;
593 
594 	event = le16_to_cpu(mpi_reply->Event);
595 
596 	switch (event) {
597 	case MPI2_EVENT_LOG_DATA:
598 		desc = "Log Data";
599 		break;
600 	case MPI2_EVENT_STATE_CHANGE:
601 		desc = "Status Change";
602 		break;
603 	case MPI2_EVENT_HARD_RESET_RECEIVED:
604 		desc = "Hard Reset Received";
605 		break;
606 	case MPI2_EVENT_EVENT_CHANGE:
607 		desc = "Event Change";
608 		break;
609 	case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
610 		desc = "Device Status Change";
611 		break;
612 	case MPI2_EVENT_IR_OPERATION_STATUS:
613 		if (!ioc->hide_ir_msg)
614 			desc = "IR Operation Status";
615 		break;
616 	case MPI2_EVENT_SAS_DISCOVERY:
617 	{
618 		Mpi2EventDataSasDiscovery_t *event_data =
619 		    (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
620 		pr_info(MPT3SAS_FMT "Discovery: (%s)", ioc->name,
621 		    (event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED) ?
622 		    "start" : "stop");
623 		if (event_data->DiscoveryStatus)
624 			pr_cont(" discovery_status(0x%08x)",
625 			    le32_to_cpu(event_data->DiscoveryStatus));
626 		pr_cont("\n");
627 		return;
628 	}
629 	case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
630 		desc = "SAS Broadcast Primitive";
631 		break;
632 	case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
633 		desc = "SAS Init Device Status Change";
634 		break;
635 	case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
636 		desc = "SAS Init Table Overflow";
637 		break;
638 	case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
639 		desc = "SAS Topology Change List";
640 		break;
641 	case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
642 		desc = "SAS Enclosure Device Status Change";
643 		break;
644 	case MPI2_EVENT_IR_VOLUME:
645 		if (!ioc->hide_ir_msg)
646 			desc = "IR Volume";
647 		break;
648 	case MPI2_EVENT_IR_PHYSICAL_DISK:
649 		if (!ioc->hide_ir_msg)
650 			desc = "IR Physical Disk";
651 		break;
652 	case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
653 		if (!ioc->hide_ir_msg)
654 			desc = "IR Configuration Change List";
655 		break;
656 	case MPI2_EVENT_LOG_ENTRY_ADDED:
657 		if (!ioc->hide_ir_msg)
658 			desc = "Log Entry Added";
659 		break;
660 	case MPI2_EVENT_TEMP_THRESHOLD:
661 		desc = "Temperature Threshold";
662 		break;
663 	case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
664 		desc = "Cable Event";
665 		break;
666 	case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE:
667 		desc = "PCIE Device Status Change";
668 		break;
669 	case MPI2_EVENT_PCIE_ENUMERATION:
670 	{
671 		Mpi26EventDataPCIeEnumeration_t *event_data =
672 			(Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData;
673 		pr_info(MPT3SAS_FMT "PCIE Enumeration: (%s)", ioc->name,
674 			   (event_data->ReasonCode ==
675 				MPI26_EVENT_PCIE_ENUM_RC_STARTED) ?
676 				"start" : "stop");
677 		if (event_data->EnumerationStatus)
678 			pr_info("enumeration_status(0x%08x)",
679 				   le32_to_cpu(event_data->EnumerationStatus));
680 		pr_info("\n");
681 		return;
682 	}
683 	case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST:
684 		desc = "PCIE Topology Change List";
685 		break;
686 	}
687 
688 	if (!desc)
689 		return;
690 
691 	pr_info(MPT3SAS_FMT "%s\n", ioc->name, desc);
692 }
693 
694 /**
695  * _base_sas_log_info - verbose translation of firmware log info
696  * @ioc: per adapter object
697  * @log_info: log info
698  *
699  * Return nothing.
700  */
701 static void
702 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
703 {
704 	union loginfo_type {
705 		u32	loginfo;
706 		struct {
707 			u32	subcode:16;
708 			u32	code:8;
709 			u32	originator:4;
710 			u32	bus_type:4;
711 		} dw;
712 	};
713 	union loginfo_type sas_loginfo;
714 	char *originator_str = NULL;
715 
716 	sas_loginfo.loginfo = log_info;
717 	if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
718 		return;
719 
720 	/* each nexus loss loginfo */
721 	if (log_info == 0x31170000)
722 		return;
723 
724 	/* eat the loginfos associated with task aborts */
725 	if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
726 	    0x31140000 || log_info == 0x31130000))
727 		return;
728 
729 	switch (sas_loginfo.dw.originator) {
730 	case 0:
731 		originator_str = "IOP";
732 		break;
733 	case 1:
734 		originator_str = "PL";
735 		break;
736 	case 2:
737 		if (!ioc->hide_ir_msg)
738 			originator_str = "IR";
739 		else
740 			originator_str = "WarpDrive";
741 		break;
742 	}
743 
744 	pr_warn(MPT3SAS_FMT
745 		"log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
746 		ioc->name, log_info,
747 	     originator_str, sas_loginfo.dw.code,
748 	     sas_loginfo.dw.subcode);
749 }
750 
751 /**
752  * _base_display_reply_info -
753  * @ioc: per adapter object
754  * @smid: system request message index
755  * @msix_index: MSIX table index supplied by the OS
756  * @reply: reply message frame(lower 32bit addr)
757  *
758  * Return nothing.
759  */
760 static void
761 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
762 	u32 reply)
763 {
764 	MPI2DefaultReply_t *mpi_reply;
765 	u16 ioc_status;
766 	u32 loginfo = 0;
767 
768 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
769 	if (unlikely(!mpi_reply)) {
770 		pr_err(MPT3SAS_FMT "mpi_reply not valid at %s:%d/%s()!\n",
771 		    ioc->name, __FILE__, __LINE__, __func__);
772 		return;
773 	}
774 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
775 
776 	if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
777 	    (ioc->logging_level & MPT_DEBUG_REPLY)) {
778 		_base_sas_ioc_info(ioc , mpi_reply,
779 		   mpt3sas_base_get_msg_frame(ioc, smid));
780 	}
781 
782 	if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
783 		loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
784 		_base_sas_log_info(ioc, loginfo);
785 	}
786 
787 	if (ioc_status || loginfo) {
788 		ioc_status &= MPI2_IOCSTATUS_MASK;
789 		mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
790 	}
791 }
792 
793 /**
794  * mpt3sas_base_done - base internal command completion routine
795  * @ioc: per adapter object
796  * @smid: system request message index
797  * @msix_index: MSIX table index supplied by the OS
798  * @reply: reply message frame(lower 32bit addr)
799  *
800  * Return 1 meaning mf should be freed from _base_interrupt
801  *        0 means the mf is freed from this function.
802  */
803 u8
804 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
805 	u32 reply)
806 {
807 	MPI2DefaultReply_t *mpi_reply;
808 
809 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
810 	if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
811 		return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
812 
813 	if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
814 		return 1;
815 
816 	ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
817 	if (mpi_reply) {
818 		ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
819 		memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
820 	}
821 	ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
822 
823 	complete(&ioc->base_cmds.done);
824 	return 1;
825 }
826 
827 /**
828  * _base_async_event - main callback handler for firmware asyn events
829  * @ioc: per adapter object
830  * @msix_index: MSIX table index supplied by the OS
831  * @reply: reply message frame(lower 32bit addr)
832  *
833  * Return 1 meaning mf should be freed from _base_interrupt
834  *        0 means the mf is freed from this function.
835  */
836 static u8
837 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
838 {
839 	Mpi2EventNotificationReply_t *mpi_reply;
840 	Mpi2EventAckRequest_t *ack_request;
841 	u16 smid;
842 	struct _event_ack_list *delayed_event_ack;
843 
844 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
845 	if (!mpi_reply)
846 		return 1;
847 	if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
848 		return 1;
849 
850 	_base_display_event_data(ioc, mpi_reply);
851 
852 	if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
853 		goto out;
854 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
855 	if (!smid) {
856 		delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
857 					GFP_ATOMIC);
858 		if (!delayed_event_ack)
859 			goto out;
860 		INIT_LIST_HEAD(&delayed_event_ack->list);
861 		delayed_event_ack->Event = mpi_reply->Event;
862 		delayed_event_ack->EventContext = mpi_reply->EventContext;
863 		list_add_tail(&delayed_event_ack->list,
864 				&ioc->delayed_event_ack_list);
865 		dewtprintk(ioc, pr_info(MPT3SAS_FMT
866 				"DELAYED: EVENT ACK: event (0x%04x)\n",
867 				ioc->name, le16_to_cpu(mpi_reply->Event)));
868 		goto out;
869 	}
870 
871 	ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
872 	memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
873 	ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
874 	ack_request->Event = mpi_reply->Event;
875 	ack_request->EventContext = mpi_reply->EventContext;
876 	ack_request->VF_ID = 0;  /* TODO */
877 	ack_request->VP_ID = 0;
878 	ioc->put_smid_default(ioc, smid);
879 
880  out:
881 
882 	/* scsih callback handler */
883 	mpt3sas_scsih_event_callback(ioc, msix_index, reply);
884 
885 	/* ctl callback handler */
886 	mpt3sas_ctl_event_callback(ioc, msix_index, reply);
887 
888 	return 1;
889 }
890 
891 static struct scsiio_tracker *
892 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
893 {
894 	struct scsi_cmnd *cmd;
895 
896 	if (WARN_ON(!smid) ||
897 	    WARN_ON(smid >= ioc->hi_priority_smid))
898 		return NULL;
899 
900 	cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
901 	if (cmd)
902 		return scsi_cmd_priv(cmd);
903 
904 	return NULL;
905 }
906 
907 /**
908  * _base_get_cb_idx - obtain the callback index
909  * @ioc: per adapter object
910  * @smid: system request message index
911  *
912  * Return callback index.
913  */
914 static u8
915 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
916 {
917 	int i;
918 	u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1;
919 	u8 cb_idx = 0xFF;
920 
921 	if (smid < ioc->hi_priority_smid) {
922 		struct scsiio_tracker *st;
923 
924 		if (smid < ctl_smid) {
925 			st = _get_st_from_smid(ioc, smid);
926 			if (st)
927 				cb_idx = st->cb_idx;
928 		} else if (smid == ctl_smid)
929 			cb_idx = ioc->ctl_cb_idx;
930 	} else if (smid < ioc->internal_smid) {
931 		i = smid - ioc->hi_priority_smid;
932 		cb_idx = ioc->hpr_lookup[i].cb_idx;
933 	} else if (smid <= ioc->hba_queue_depth) {
934 		i = smid - ioc->internal_smid;
935 		cb_idx = ioc->internal_lookup[i].cb_idx;
936 	}
937 	return cb_idx;
938 }
939 
940 /**
941  * _base_mask_interrupts - disable interrupts
942  * @ioc: per adapter object
943  *
944  * Disabling ResetIRQ, Reply and Doorbell Interrupts
945  *
946  * Return nothing.
947  */
948 static void
949 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
950 {
951 	u32 him_register;
952 
953 	ioc->mask_interrupts = 1;
954 	him_register = readl(&ioc->chip->HostInterruptMask);
955 	him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
956 	writel(him_register, &ioc->chip->HostInterruptMask);
957 	readl(&ioc->chip->HostInterruptMask);
958 }
959 
960 /**
961  * _base_unmask_interrupts - enable interrupts
962  * @ioc: per adapter object
963  *
964  * Enabling only Reply Interrupts
965  *
966  * Return nothing.
967  */
968 static void
969 _base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
970 {
971 	u32 him_register;
972 
973 	him_register = readl(&ioc->chip->HostInterruptMask);
974 	him_register &= ~MPI2_HIM_RIM;
975 	writel(him_register, &ioc->chip->HostInterruptMask);
976 	ioc->mask_interrupts = 0;
977 }
978 
979 union reply_descriptor {
980 	u64 word;
981 	struct {
982 		u32 low;
983 		u32 high;
984 	} u;
985 };
986 
987 /**
988  * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
989  * @irq: irq number (not used)
990  * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
991  * @r: pt_regs pointer (not used)
992  *
993  * Return IRQ_HANDLE if processed, else IRQ_NONE.
994  */
995 static irqreturn_t
996 _base_interrupt(int irq, void *bus_id)
997 {
998 	struct adapter_reply_queue *reply_q = bus_id;
999 	union reply_descriptor rd;
1000 	u32 completed_cmds;
1001 	u8 request_desript_type;
1002 	u16 smid;
1003 	u8 cb_idx;
1004 	u32 reply;
1005 	u8 msix_index = reply_q->msix_index;
1006 	struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1007 	Mpi2ReplyDescriptorsUnion_t *rpf;
1008 	u8 rc;
1009 
1010 	if (ioc->mask_interrupts)
1011 		return IRQ_NONE;
1012 
1013 	if (!atomic_add_unless(&reply_q->busy, 1, 1))
1014 		return IRQ_NONE;
1015 
1016 	rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
1017 	request_desript_type = rpf->Default.ReplyFlags
1018 	     & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1019 	if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
1020 		atomic_dec(&reply_q->busy);
1021 		return IRQ_NONE;
1022 	}
1023 
1024 	completed_cmds = 0;
1025 	cb_idx = 0xFF;
1026 	do {
1027 		rd.word = le64_to_cpu(rpf->Words);
1028 		if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
1029 			goto out;
1030 		reply = 0;
1031 		smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
1032 		if (request_desript_type ==
1033 		    MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
1034 		    request_desript_type ==
1035 		    MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS ||
1036 		    request_desript_type ==
1037 		    MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) {
1038 			cb_idx = _base_get_cb_idx(ioc, smid);
1039 			if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1040 			    (likely(mpt_callbacks[cb_idx] != NULL))) {
1041 				rc = mpt_callbacks[cb_idx](ioc, smid,
1042 				    msix_index, 0);
1043 				if (rc)
1044 					mpt3sas_base_free_smid(ioc, smid);
1045 			}
1046 		} else if (request_desript_type ==
1047 		    MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
1048 			reply = le32_to_cpu(
1049 			    rpf->AddressReply.ReplyFrameAddress);
1050 			if (reply > ioc->reply_dma_max_address ||
1051 			    reply < ioc->reply_dma_min_address)
1052 				reply = 0;
1053 			if (smid) {
1054 				cb_idx = _base_get_cb_idx(ioc, smid);
1055 				if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1056 				    (likely(mpt_callbacks[cb_idx] != NULL))) {
1057 					rc = mpt_callbacks[cb_idx](ioc, smid,
1058 					    msix_index, reply);
1059 					if (reply)
1060 						_base_display_reply_info(ioc,
1061 						    smid, msix_index, reply);
1062 					if (rc)
1063 						mpt3sas_base_free_smid(ioc,
1064 						    smid);
1065 				}
1066 			} else {
1067 				_base_async_event(ioc, msix_index, reply);
1068 			}
1069 
1070 			/* reply free queue handling */
1071 			if (reply) {
1072 				ioc->reply_free_host_index =
1073 				    (ioc->reply_free_host_index ==
1074 				    (ioc->reply_free_queue_depth - 1)) ?
1075 				    0 : ioc->reply_free_host_index + 1;
1076 				ioc->reply_free[ioc->reply_free_host_index] =
1077 				    cpu_to_le32(reply);
1078 				writel(ioc->reply_free_host_index,
1079 				    &ioc->chip->ReplyFreeHostIndex);
1080 			}
1081 		}
1082 
1083 		rpf->Words = cpu_to_le64(ULLONG_MAX);
1084 		reply_q->reply_post_host_index =
1085 		    (reply_q->reply_post_host_index ==
1086 		    (ioc->reply_post_queue_depth - 1)) ? 0 :
1087 		    reply_q->reply_post_host_index + 1;
1088 		request_desript_type =
1089 		    reply_q->reply_post_free[reply_q->reply_post_host_index].
1090 		    Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1091 		completed_cmds++;
1092 		/* Update the reply post host index after continuously
1093 		 * processing the threshold number of Reply Descriptors.
1094 		 * So that FW can find enough entries to post the Reply
1095 		 * Descriptors in the reply descriptor post queue.
1096 		 */
1097 		if (completed_cmds > ioc->hba_queue_depth/3) {
1098 			if (ioc->combined_reply_queue) {
1099 				writel(reply_q->reply_post_host_index |
1100 						((msix_index  & 7) <<
1101 						 MPI2_RPHI_MSIX_INDEX_SHIFT),
1102 				    ioc->replyPostRegisterIndex[msix_index/8]);
1103 			} else {
1104 				writel(reply_q->reply_post_host_index |
1105 						(msix_index <<
1106 						 MPI2_RPHI_MSIX_INDEX_SHIFT),
1107 						&ioc->chip->ReplyPostHostIndex);
1108 			}
1109 			completed_cmds = 1;
1110 		}
1111 		if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1112 			goto out;
1113 		if (!reply_q->reply_post_host_index)
1114 			rpf = reply_q->reply_post_free;
1115 		else
1116 			rpf++;
1117 	} while (1);
1118 
1119  out:
1120 
1121 	if (!completed_cmds) {
1122 		atomic_dec(&reply_q->busy);
1123 		return IRQ_NONE;
1124 	}
1125 
1126 	if (ioc->is_warpdrive) {
1127 		writel(reply_q->reply_post_host_index,
1128 		ioc->reply_post_host_index[msix_index]);
1129 		atomic_dec(&reply_q->busy);
1130 		return IRQ_HANDLED;
1131 	}
1132 
1133 	/* Update Reply Post Host Index.
1134 	 * For those HBA's which support combined reply queue feature
1135 	 * 1. Get the correct Supplemental Reply Post Host Index Register.
1136 	 *    i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1137 	 *    Index Register address bank i.e replyPostRegisterIndex[],
1138 	 * 2. Then update this register with new reply host index value
1139 	 *    in ReplyPostIndex field and the MSIxIndex field with
1140 	 *    msix_index value reduced to a value between 0 and 7,
1141 	 *    using a modulo 8 operation. Since each Supplemental Reply Post
1142 	 *    Host Index Register supports 8 MSI-X vectors.
1143 	 *
1144 	 * For other HBA's just update the Reply Post Host Index register with
1145 	 * new reply host index value in ReplyPostIndex Field and msix_index
1146 	 * value in MSIxIndex field.
1147 	 */
1148 	if (ioc->combined_reply_queue)
1149 		writel(reply_q->reply_post_host_index | ((msix_index  & 7) <<
1150 			MPI2_RPHI_MSIX_INDEX_SHIFT),
1151 			ioc->replyPostRegisterIndex[msix_index/8]);
1152 	else
1153 		writel(reply_q->reply_post_host_index | (msix_index <<
1154 			MPI2_RPHI_MSIX_INDEX_SHIFT),
1155 			&ioc->chip->ReplyPostHostIndex);
1156 	atomic_dec(&reply_q->busy);
1157 	return IRQ_HANDLED;
1158 }
1159 
1160 /**
1161  * _base_is_controller_msix_enabled - is controller support muli-reply queues
1162  * @ioc: per adapter object
1163  *
1164  */
1165 static inline int
1166 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1167 {
1168 	return (ioc->facts.IOCCapabilities &
1169 	    MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1170 }
1171 
1172 /**
1173  * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1174  * @ioc: per adapter object
1175  * Context: non ISR conext
1176  *
1177  * Called when a Task Management request has completed.
1178  *
1179  * Return nothing.
1180  */
1181 void
1182 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc)
1183 {
1184 	struct adapter_reply_queue *reply_q;
1185 
1186 	/* If MSIX capability is turned off
1187 	 * then multi-queues are not enabled
1188 	 */
1189 	if (!_base_is_controller_msix_enabled(ioc))
1190 		return;
1191 
1192 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1193 		if (ioc->shost_recovery || ioc->remove_host ||
1194 				ioc->pci_error_recovery)
1195 			return;
1196 		/* TMs are on msix_index == 0 */
1197 		if (reply_q->msix_index == 0)
1198 			continue;
1199 		synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
1200 	}
1201 }
1202 
1203 /**
1204  * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1205  * @cb_idx: callback index
1206  *
1207  * Return nothing.
1208  */
1209 void
1210 mpt3sas_base_release_callback_handler(u8 cb_idx)
1211 {
1212 	mpt_callbacks[cb_idx] = NULL;
1213 }
1214 
1215 /**
1216  * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1217  * @cb_func: callback function
1218  *
1219  * Returns cb_func.
1220  */
1221 u8
1222 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1223 {
1224 	u8 cb_idx;
1225 
1226 	for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1227 		if (mpt_callbacks[cb_idx] == NULL)
1228 			break;
1229 
1230 	mpt_callbacks[cb_idx] = cb_func;
1231 	return cb_idx;
1232 }
1233 
1234 /**
1235  * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1236  *
1237  * Return nothing.
1238  */
1239 void
1240 mpt3sas_base_initialize_callback_handler(void)
1241 {
1242 	u8 cb_idx;
1243 
1244 	for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1245 		mpt3sas_base_release_callback_handler(cb_idx);
1246 }
1247 
1248 
1249 /**
1250  * _base_build_zero_len_sge - build zero length sg entry
1251  * @ioc: per adapter object
1252  * @paddr: virtual address for SGE
1253  *
1254  * Create a zero length scatter gather entry to insure the IOCs hardware has
1255  * something to use if the target device goes brain dead and tries
1256  * to send data even when none is asked for.
1257  *
1258  * Return nothing.
1259  */
1260 static void
1261 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1262 {
1263 	u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1264 	    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1265 	    MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1266 	    MPI2_SGE_FLAGS_SHIFT);
1267 	ioc->base_add_sg_single(paddr, flags_length, -1);
1268 }
1269 
1270 /**
1271  * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1272  * @paddr: virtual address for SGE
1273  * @flags_length: SGE flags and data transfer length
1274  * @dma_addr: Physical address
1275  *
1276  * Return nothing.
1277  */
1278 static void
1279 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1280 {
1281 	Mpi2SGESimple32_t *sgel = paddr;
1282 
1283 	flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1284 	    MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1285 	sgel->FlagsLength = cpu_to_le32(flags_length);
1286 	sgel->Address = cpu_to_le32(dma_addr);
1287 }
1288 
1289 
1290 /**
1291  * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1292  * @paddr: virtual address for SGE
1293  * @flags_length: SGE flags and data transfer length
1294  * @dma_addr: Physical address
1295  *
1296  * Return nothing.
1297  */
1298 static void
1299 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1300 {
1301 	Mpi2SGESimple64_t *sgel = paddr;
1302 
1303 	flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
1304 	    MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1305 	sgel->FlagsLength = cpu_to_le32(flags_length);
1306 	sgel->Address = cpu_to_le64(dma_addr);
1307 }
1308 
1309 /**
1310  * _base_get_chain_buffer_tracker - obtain chain tracker
1311  * @ioc: per adapter object
1312  * @scmd: SCSI commands of the IO request
1313  *
1314  * Returns chain tracker(from ioc->free_chain_list)
1315  */
1316 static struct chain_tracker *
1317 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc,
1318 			       struct scsi_cmnd *scmd)
1319 {
1320 	struct chain_tracker *chain_req;
1321 	struct scsiio_tracker *st = scsi_cmd_priv(scmd);
1322 	unsigned long flags;
1323 
1324 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
1325 	if (list_empty(&ioc->free_chain_list)) {
1326 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1327 		dfailprintk(ioc, pr_warn(MPT3SAS_FMT
1328 			"chain buffers not available\n", ioc->name));
1329 		return NULL;
1330 	}
1331 	chain_req = list_entry(ioc->free_chain_list.next,
1332 	    struct chain_tracker, tracker_list);
1333 	list_del_init(&chain_req->tracker_list);
1334 	list_add_tail(&chain_req->tracker_list, &st->chain_list);
1335 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1336 	return chain_req;
1337 }
1338 
1339 
1340 /**
1341  * _base_build_sg - build generic sg
1342  * @ioc: per adapter object
1343  * @psge: virtual address for SGE
1344  * @data_out_dma: physical address for WRITES
1345  * @data_out_sz: data xfer size for WRITES
1346  * @data_in_dma: physical address for READS
1347  * @data_in_sz: data xfer size for READS
1348  *
1349  * Return nothing.
1350  */
1351 static void
1352 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
1353 	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1354 	size_t data_in_sz)
1355 {
1356 	u32 sgl_flags;
1357 
1358 	if (!data_out_sz && !data_in_sz) {
1359 		_base_build_zero_len_sge(ioc, psge);
1360 		return;
1361 	}
1362 
1363 	if (data_out_sz && data_in_sz) {
1364 		/* WRITE sgel first */
1365 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1366 		    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
1367 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1368 		ioc->base_add_sg_single(psge, sgl_flags |
1369 		    data_out_sz, data_out_dma);
1370 
1371 		/* incr sgel */
1372 		psge += ioc->sge_size;
1373 
1374 		/* READ sgel last */
1375 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1376 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1377 		    MPI2_SGE_FLAGS_END_OF_LIST);
1378 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1379 		ioc->base_add_sg_single(psge, sgl_flags |
1380 		    data_in_sz, data_in_dma);
1381 	} else if (data_out_sz) /* WRITE */ {
1382 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1383 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1384 		    MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
1385 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1386 		ioc->base_add_sg_single(psge, sgl_flags |
1387 		    data_out_sz, data_out_dma);
1388 	} else if (data_in_sz) /* READ */ {
1389 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1390 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1391 		    MPI2_SGE_FLAGS_END_OF_LIST);
1392 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1393 		ioc->base_add_sg_single(psge, sgl_flags |
1394 		    data_in_sz, data_in_dma);
1395 	}
1396 }
1397 
1398 /* IEEE format sgls */
1399 
1400 /**
1401  * _base_build_nvme_prp - This function is called for NVMe end devices to build
1402  * a native SGL (NVMe PRP). The native SGL is built starting in the first PRP
1403  * entry of the NVMe message (PRP1).  If the data buffer is small enough to be
1404  * described entirely using PRP1, then PRP2 is not used.  If needed, PRP2 is
1405  * used to describe a larger data buffer.  If the data buffer is too large to
1406  * describe using the two PRP entriess inside the NVMe message, then PRP1
1407  * describes the first data memory segment, and PRP2 contains a pointer to a PRP
1408  * list located elsewhere in memory to describe the remaining data memory
1409  * segments.  The PRP list will be contiguous.
1410 
1411  * The native SGL for NVMe devices is a Physical Region Page (PRP).  A PRP
1412  * consists of a list of PRP entries to describe a number of noncontigous
1413  * physical memory segments as a single memory buffer, just as a SGL does.  Note
1414  * however, that this function is only used by the IOCTL call, so the memory
1415  * given will be guaranteed to be contiguous.  There is no need to translate
1416  * non-contiguous SGL into a PRP in this case.  All PRPs will describe
1417  * contiguous space that is one page size each.
1418  *
1419  * Each NVMe message contains two PRP entries.  The first (PRP1) either contains
1420  * a PRP list pointer or a PRP element, depending upon the command.  PRP2
1421  * contains the second PRP element if the memory being described fits within 2
1422  * PRP entries, or a PRP list pointer if the PRP spans more than two entries.
1423  *
1424  * A PRP list pointer contains the address of a PRP list, structured as a linear
1425  * array of PRP entries.  Each PRP entry in this list describes a segment of
1426  * physical memory.
1427  *
1428  * Each 64-bit PRP entry comprises an address and an offset field.  The address
1429  * always points at the beginning of a 4KB physical memory page, and the offset
1430  * describes where within that 4KB page the memory segment begins.  Only the
1431  * first element in a PRP list may contain a non-zero offest, implying that all
1432  * memory segments following the first begin at the start of a 4KB page.
1433  *
1434  * Each PRP element normally describes 4KB of physical memory, with exceptions
1435  * for the first and last elements in the list.  If the memory being described
1436  * by the list begins at a non-zero offset within the first 4KB page, then the
1437  * first PRP element will contain a non-zero offset indicating where the region
1438  * begins within the 4KB page.  The last memory segment may end before the end
1439  * of the 4KB segment, depending upon the overall size of the memory being
1440  * described by the PRP list.
1441  *
1442  * Since PRP entries lack any indication of size, the overall data buffer length
1443  * is used to determine where the end of the data memory buffer is located, and
1444  * how many PRP entries are required to describe it.
1445  *
1446  * @ioc: per adapter object
1447  * @smid: system request message index for getting asscociated SGL
1448  * @nvme_encap_request: the NVMe request msg frame pointer
1449  * @data_out_dma: physical address for WRITES
1450  * @data_out_sz: data xfer size for WRITES
1451  * @data_in_dma: physical address for READS
1452  * @data_in_sz: data xfer size for READS
1453  *
1454  * Returns nothing.
1455  */
1456 static void
1457 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
1458 	Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request,
1459 	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1460 	size_t data_in_sz)
1461 {
1462 	int		prp_size = NVME_PRP_SIZE;
1463 	__le64		*prp_entry, *prp1_entry, *prp2_entry;
1464 	__le64		*prp_page;
1465 	dma_addr_t	prp_entry_dma, prp_page_dma, dma_addr;
1466 	u32		offset, entry_len;
1467 	u32		page_mask_result, page_mask;
1468 	size_t		length;
1469 
1470 	/*
1471 	 * Not all commands require a data transfer. If no data, just return
1472 	 * without constructing any PRP.
1473 	 */
1474 	if (!data_in_sz && !data_out_sz)
1475 		return;
1476 	/*
1477 	 * Set pointers to PRP1 and PRP2, which are in the NVMe command.
1478 	 * PRP1 is located at a 24 byte offset from the start of the NVMe
1479 	 * command.  Then set the current PRP entry pointer to PRP1.
1480 	 */
1481 	prp1_entry = (__le64 *)(nvme_encap_request->NVMe_Command +
1482 	    NVME_CMD_PRP1_OFFSET);
1483 	prp2_entry = (__le64 *)(nvme_encap_request->NVMe_Command +
1484 	    NVME_CMD_PRP2_OFFSET);
1485 	prp_entry = prp1_entry;
1486 	/*
1487 	 * For the PRP entries, use the specially allocated buffer of
1488 	 * contiguous memory.
1489 	 */
1490 	prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid);
1491 	prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
1492 
1493 	/*
1494 	 * Check if we are within 1 entry of a page boundary we don't
1495 	 * want our first entry to be a PRP List entry.
1496 	 */
1497 	page_mask = ioc->page_size - 1;
1498 	page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
1499 	if (!page_mask_result) {
1500 		/* Bump up to next page boundary. */
1501 		prp_page = (__le64 *)((u8 *)prp_page + prp_size);
1502 		prp_page_dma = prp_page_dma + prp_size;
1503 	}
1504 
1505 	/*
1506 	 * Set PRP physical pointer, which initially points to the current PRP
1507 	 * DMA memory page.
1508 	 */
1509 	prp_entry_dma = prp_page_dma;
1510 
1511 	/* Get physical address and length of the data buffer. */
1512 	if (data_in_sz) {
1513 		dma_addr = data_in_dma;
1514 		length = data_in_sz;
1515 	} else {
1516 		dma_addr = data_out_dma;
1517 		length = data_out_sz;
1518 	}
1519 
1520 	/* Loop while the length is not zero. */
1521 	while (length) {
1522 		/*
1523 		 * Check if we need to put a list pointer here if we are at
1524 		 * page boundary - prp_size (8 bytes).
1525 		 */
1526 		page_mask_result = (prp_entry_dma + prp_size) & page_mask;
1527 		if (!page_mask_result) {
1528 			/*
1529 			 * This is the last entry in a PRP List, so we need to
1530 			 * put a PRP list pointer here.  What this does is:
1531 			 *   - bump the current memory pointer to the next
1532 			 *     address, which will be the next full page.
1533 			 *   - set the PRP Entry to point to that page.  This
1534 			 *     is now the PRP List pointer.
1535 			 *   - bump the PRP Entry pointer the start of the
1536 			 *     next page.  Since all of this PRP memory is
1537 			 *     contiguous, no need to get a new page - it's
1538 			 *     just the next address.
1539 			 */
1540 			prp_entry_dma++;
1541 			*prp_entry = cpu_to_le64(prp_entry_dma);
1542 			prp_entry++;
1543 		}
1544 
1545 		/* Need to handle if entry will be part of a page. */
1546 		offset = dma_addr & page_mask;
1547 		entry_len = ioc->page_size - offset;
1548 
1549 		if (prp_entry == prp1_entry) {
1550 			/*
1551 			 * Must fill in the first PRP pointer (PRP1) before
1552 			 * moving on.
1553 			 */
1554 			*prp1_entry = cpu_to_le64(dma_addr);
1555 
1556 			/*
1557 			 * Now point to the second PRP entry within the
1558 			 * command (PRP2).
1559 			 */
1560 			prp_entry = prp2_entry;
1561 		} else if (prp_entry == prp2_entry) {
1562 			/*
1563 			 * Should the PRP2 entry be a PRP List pointer or just
1564 			 * a regular PRP pointer?  If there is more than one
1565 			 * more page of data, must use a PRP List pointer.
1566 			 */
1567 			if (length > ioc->page_size) {
1568 				/*
1569 				 * PRP2 will contain a PRP List pointer because
1570 				 * more PRP's are needed with this command. The
1571 				 * list will start at the beginning of the
1572 				 * contiguous buffer.
1573 				 */
1574 				*prp2_entry = cpu_to_le64(prp_entry_dma);
1575 
1576 				/*
1577 				 * The next PRP Entry will be the start of the
1578 				 * first PRP List.
1579 				 */
1580 				prp_entry = prp_page;
1581 			} else {
1582 				/*
1583 				 * After this, the PRP Entries are complete.
1584 				 * This command uses 2 PRP's and no PRP list.
1585 				 */
1586 				*prp2_entry = cpu_to_le64(dma_addr);
1587 			}
1588 		} else {
1589 			/*
1590 			 * Put entry in list and bump the addresses.
1591 			 *
1592 			 * After PRP1 and PRP2 are filled in, this will fill in
1593 			 * all remaining PRP entries in a PRP List, one per
1594 			 * each time through the loop.
1595 			 */
1596 			*prp_entry = cpu_to_le64(dma_addr);
1597 			prp_entry++;
1598 			prp_entry_dma++;
1599 		}
1600 
1601 		/*
1602 		 * Bump the phys address of the command's data buffer by the
1603 		 * entry_len.
1604 		 */
1605 		dma_addr += entry_len;
1606 
1607 		/* Decrement length accounting for last partial page. */
1608 		if (entry_len > length)
1609 			length = 0;
1610 		else
1611 			length -= entry_len;
1612 	}
1613 }
1614 
1615 /**
1616  * base_make_prp_nvme -
1617  * Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only
1618  *
1619  * @ioc:		per adapter object
1620  * @scmd:		SCSI command from the mid-layer
1621  * @mpi_request:	mpi request
1622  * @smid:		msg Index
1623  * @sge_count:		scatter gather element count.
1624  *
1625  * Returns:		true: PRPs are built
1626  *			false: IEEE SGLs needs to be built
1627  */
1628 static void
1629 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
1630 		struct scsi_cmnd *scmd,
1631 		Mpi25SCSIIORequest_t *mpi_request,
1632 		u16 smid, int sge_count)
1633 {
1634 	int sge_len, num_prp_in_chain = 0;
1635 	Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl;
1636 	__le64 *curr_buff;
1637 	dma_addr_t msg_dma, sge_addr, offset;
1638 	u32 page_mask, page_mask_result;
1639 	struct scatterlist *sg_scmd;
1640 	u32 first_prp_len;
1641 	int data_len = scsi_bufflen(scmd);
1642 	u32 nvme_pg_size;
1643 
1644 	nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE);
1645 	/*
1646 	 * Nvme has a very convoluted prp format.  One prp is required
1647 	 * for each page or partial page. Driver need to split up OS sg_list
1648 	 * entries if it is longer than one page or cross a page
1649 	 * boundary.  Driver also have to insert a PRP list pointer entry as
1650 	 * the last entry in each physical page of the PRP list.
1651 	 *
1652 	 * NOTE: The first PRP "entry" is actually placed in the first
1653 	 * SGL entry in the main message as IEEE 64 format.  The 2nd
1654 	 * entry in the main message is the chain element, and the rest
1655 	 * of the PRP entries are built in the contiguous pcie buffer.
1656 	 */
1657 	page_mask = nvme_pg_size - 1;
1658 
1659 	/*
1660 	 * Native SGL is needed.
1661 	 * Put a chain element in main message frame that points to the first
1662 	 * chain buffer.
1663 	 *
1664 	 * NOTE:  The ChainOffset field must be 0 when using a chain pointer to
1665 	 *        a native SGL.
1666 	 */
1667 
1668 	/* Set main message chain element pointer */
1669 	main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
1670 	/*
1671 	 * For NVMe the chain element needs to be the 2nd SG entry in the main
1672 	 * message.
1673 	 */
1674 	main_chain_element = (Mpi25IeeeSgeChain64_t *)
1675 		((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
1676 
1677 	/*
1678 	 * For the PRP entries, use the specially allocated buffer of
1679 	 * contiguous memory.  Normal chain buffers can't be used
1680 	 * because each chain buffer would need to be the size of an OS
1681 	 * page (4k).
1682 	 */
1683 	curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid);
1684 	msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
1685 
1686 	main_chain_element->Address = cpu_to_le64(msg_dma);
1687 	main_chain_element->NextChainOffset = 0;
1688 	main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
1689 			MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
1690 			MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
1691 
1692 	/* Build first prp, sge need not to be page aligned*/
1693 	ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
1694 	sg_scmd = scsi_sglist(scmd);
1695 	sge_addr = sg_dma_address(sg_scmd);
1696 	sge_len = sg_dma_len(sg_scmd);
1697 
1698 	offset = sge_addr & page_mask;
1699 	first_prp_len = nvme_pg_size - offset;
1700 
1701 	ptr_first_sgl->Address = cpu_to_le64(sge_addr);
1702 	ptr_first_sgl->Length = cpu_to_le32(first_prp_len);
1703 
1704 	data_len -= first_prp_len;
1705 
1706 	if (sge_len > first_prp_len) {
1707 		sge_addr += first_prp_len;
1708 		sge_len -= first_prp_len;
1709 	} else if (data_len && (sge_len == first_prp_len)) {
1710 		sg_scmd = sg_next(sg_scmd);
1711 		sge_addr = sg_dma_address(sg_scmd);
1712 		sge_len = sg_dma_len(sg_scmd);
1713 	}
1714 
1715 	for (;;) {
1716 		offset = sge_addr & page_mask;
1717 
1718 		/* Put PRP pointer due to page boundary*/
1719 		page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask;
1720 		if (unlikely(!page_mask_result)) {
1721 			scmd_printk(KERN_NOTICE,
1722 				scmd, "page boundary curr_buff: 0x%p\n",
1723 				curr_buff);
1724 			msg_dma += 8;
1725 			*curr_buff = cpu_to_le64(msg_dma);
1726 			curr_buff++;
1727 			num_prp_in_chain++;
1728 		}
1729 
1730 		*curr_buff = cpu_to_le64(sge_addr);
1731 		curr_buff++;
1732 		msg_dma += 8;
1733 		num_prp_in_chain++;
1734 
1735 		sge_addr += nvme_pg_size;
1736 		sge_len -= nvme_pg_size;
1737 		data_len -= nvme_pg_size;
1738 
1739 		if (data_len <= 0)
1740 			break;
1741 
1742 		if (sge_len > 0)
1743 			continue;
1744 
1745 		sg_scmd = sg_next(sg_scmd);
1746 		sge_addr = sg_dma_address(sg_scmd);
1747 		sge_len = sg_dma_len(sg_scmd);
1748 	}
1749 
1750 	main_chain_element->Length =
1751 		cpu_to_le32(num_prp_in_chain * sizeof(u64));
1752 	return;
1753 }
1754 
1755 static bool
1756 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc,
1757 	struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count)
1758 {
1759 	u32 data_length = 0;
1760 	struct scatterlist *sg_scmd;
1761 	bool build_prp = true;
1762 
1763 	data_length = scsi_bufflen(scmd);
1764 	sg_scmd = scsi_sglist(scmd);
1765 
1766 	/* If Datalenth is <= 16K and number of SGE’s entries are <= 2
1767 	 * we built IEEE SGL
1768 	 */
1769 	if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2))
1770 		build_prp = false;
1771 
1772 	return build_prp;
1773 }
1774 
1775 /**
1776  * _base_check_pcie_native_sgl - This function is called for PCIe end devices to
1777  * determine if the driver needs to build a native SGL.  If so, that native
1778  * SGL is built in the special contiguous buffers allocated especially for
1779  * PCIe SGL creation.  If the driver will not build a native SGL, return
1780  * TRUE and a normal IEEE SGL will be built.  Currently this routine
1781  * supports NVMe.
1782  * @ioc: per adapter object
1783  * @mpi_request: mf request pointer
1784  * @smid: system request message index
1785  * @scmd: scsi command
1786  * @pcie_device: points to the PCIe device's info
1787  *
1788  * Returns 0 if native SGL was built, 1 if no SGL was built
1789  */
1790 static int
1791 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc,
1792 	Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd,
1793 	struct _pcie_device *pcie_device)
1794 {
1795 	struct scatterlist *sg_scmd;
1796 	int sges_left;
1797 
1798 	/* Get the SG list pointer and info. */
1799 	sg_scmd = scsi_sglist(scmd);
1800 	sges_left = scsi_dma_map(scmd);
1801 	if (sges_left < 0) {
1802 		sdev_printk(KERN_ERR, scmd->device,
1803 			"scsi_dma_map failed: request for %d bytes!\n",
1804 			scsi_bufflen(scmd));
1805 		return 1;
1806 	}
1807 
1808 	/* Check if we need to build a native SG list. */
1809 	if (base_is_prp_possible(ioc, pcie_device,
1810 				scmd, sges_left) == 0) {
1811 		/* We built a native SG list, just return. */
1812 		goto out;
1813 	}
1814 
1815 	/*
1816 	 * Build native NVMe PRP.
1817 	 */
1818 	base_make_prp_nvme(ioc, scmd, mpi_request,
1819 			smid, sges_left);
1820 
1821 	return 0;
1822 out:
1823 	scsi_dma_unmap(scmd);
1824 	return 1;
1825 }
1826 
1827 /**
1828  * _base_add_sg_single_ieee - add sg element for IEEE format
1829  * @paddr: virtual address for SGE
1830  * @flags: SGE flags
1831  * @chain_offset: number of 128 byte elements from start of segment
1832  * @length: data transfer length
1833  * @dma_addr: Physical address
1834  *
1835  * Return nothing.
1836  */
1837 static void
1838 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
1839 	dma_addr_t dma_addr)
1840 {
1841 	Mpi25IeeeSgeChain64_t *sgel = paddr;
1842 
1843 	sgel->Flags = flags;
1844 	sgel->NextChainOffset = chain_offset;
1845 	sgel->Length = cpu_to_le32(length);
1846 	sgel->Address = cpu_to_le64(dma_addr);
1847 }
1848 
1849 /**
1850  * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
1851  * @ioc: per adapter object
1852  * @paddr: virtual address for SGE
1853  *
1854  * Create a zero length scatter gather entry to insure the IOCs hardware has
1855  * something to use if the target device goes brain dead and tries
1856  * to send data even when none is asked for.
1857  *
1858  * Return nothing.
1859  */
1860 static void
1861 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1862 {
1863 	u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1864 		MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
1865 		MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
1866 
1867 	_base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
1868 }
1869 
1870 /**
1871  * _base_build_sg_scmd - main sg creation routine
1872  *		pcie_device is unused here!
1873  * @ioc: per adapter object
1874  * @scmd: scsi command
1875  * @smid: system request message index
1876  * @unused: unused pcie_device pointer
1877  * Context: none.
1878  *
1879  * The main routine that builds scatter gather table from a given
1880  * scsi request sent via the .queuecommand main handler.
1881  *
1882  * Returns 0 success, anything else error
1883  */
1884 static int
1885 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
1886 	struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused)
1887 {
1888 	Mpi2SCSIIORequest_t *mpi_request;
1889 	dma_addr_t chain_dma;
1890 	struct scatterlist *sg_scmd;
1891 	void *sg_local, *chain;
1892 	u32 chain_offset;
1893 	u32 chain_length;
1894 	u32 chain_flags;
1895 	int sges_left;
1896 	u32 sges_in_segment;
1897 	u32 sgl_flags;
1898 	u32 sgl_flags_last_element;
1899 	u32 sgl_flags_end_buffer;
1900 	struct chain_tracker *chain_req;
1901 
1902 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
1903 
1904 	/* init scatter gather flags */
1905 	sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
1906 	if (scmd->sc_data_direction == DMA_TO_DEVICE)
1907 		sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
1908 	sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
1909 	    << MPI2_SGE_FLAGS_SHIFT;
1910 	sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
1911 	    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
1912 	    << MPI2_SGE_FLAGS_SHIFT;
1913 	sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1914 
1915 	sg_scmd = scsi_sglist(scmd);
1916 	sges_left = scsi_dma_map(scmd);
1917 	if (sges_left < 0) {
1918 		sdev_printk(KERN_ERR, scmd->device,
1919 		 "pci_map_sg failed: request for %d bytes!\n",
1920 		 scsi_bufflen(scmd));
1921 		return -ENOMEM;
1922 	}
1923 
1924 	sg_local = &mpi_request->SGL;
1925 	sges_in_segment = ioc->max_sges_in_main_message;
1926 	if (sges_left <= sges_in_segment)
1927 		goto fill_in_last_segment;
1928 
1929 	mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
1930 	    (sges_in_segment * ioc->sge_size))/4;
1931 
1932 	/* fill in main message segment when there is a chain following */
1933 	while (sges_in_segment) {
1934 		if (sges_in_segment == 1)
1935 			ioc->base_add_sg_single(sg_local,
1936 			    sgl_flags_last_element | sg_dma_len(sg_scmd),
1937 			    sg_dma_address(sg_scmd));
1938 		else
1939 			ioc->base_add_sg_single(sg_local, sgl_flags |
1940 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1941 		sg_scmd = sg_next(sg_scmd);
1942 		sg_local += ioc->sge_size;
1943 		sges_left--;
1944 		sges_in_segment--;
1945 	}
1946 
1947 	/* initializing the chain flags and pointers */
1948 	chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
1949 	chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
1950 	if (!chain_req)
1951 		return -1;
1952 	chain = chain_req->chain_buffer;
1953 	chain_dma = chain_req->chain_buffer_dma;
1954 	do {
1955 		sges_in_segment = (sges_left <=
1956 		    ioc->max_sges_in_chain_message) ? sges_left :
1957 		    ioc->max_sges_in_chain_message;
1958 		chain_offset = (sges_left == sges_in_segment) ?
1959 		    0 : (sges_in_segment * ioc->sge_size)/4;
1960 		chain_length = sges_in_segment * ioc->sge_size;
1961 		if (chain_offset) {
1962 			chain_offset = chain_offset <<
1963 			    MPI2_SGE_CHAIN_OFFSET_SHIFT;
1964 			chain_length += ioc->sge_size;
1965 		}
1966 		ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
1967 		    chain_length, chain_dma);
1968 		sg_local = chain;
1969 		if (!chain_offset)
1970 			goto fill_in_last_segment;
1971 
1972 		/* fill in chain segments */
1973 		while (sges_in_segment) {
1974 			if (sges_in_segment == 1)
1975 				ioc->base_add_sg_single(sg_local,
1976 				    sgl_flags_last_element |
1977 				    sg_dma_len(sg_scmd),
1978 				    sg_dma_address(sg_scmd));
1979 			else
1980 				ioc->base_add_sg_single(sg_local, sgl_flags |
1981 				    sg_dma_len(sg_scmd),
1982 				    sg_dma_address(sg_scmd));
1983 			sg_scmd = sg_next(sg_scmd);
1984 			sg_local += ioc->sge_size;
1985 			sges_left--;
1986 			sges_in_segment--;
1987 		}
1988 
1989 		chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
1990 		if (!chain_req)
1991 			return -1;
1992 		chain = chain_req->chain_buffer;
1993 		chain_dma = chain_req->chain_buffer_dma;
1994 	} while (1);
1995 
1996 
1997  fill_in_last_segment:
1998 
1999 	/* fill the last segment */
2000 	while (sges_left) {
2001 		if (sges_left == 1)
2002 			ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
2003 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2004 		else
2005 			ioc->base_add_sg_single(sg_local, sgl_flags |
2006 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2007 		sg_scmd = sg_next(sg_scmd);
2008 		sg_local += ioc->sge_size;
2009 		sges_left--;
2010 	}
2011 
2012 	return 0;
2013 }
2014 
2015 /**
2016  * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
2017  * @ioc: per adapter object
2018  * @scmd: scsi command
2019  * @smid: system request message index
2020  * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
2021  * constructed on need.
2022  * Context: none.
2023  *
2024  * The main routine that builds scatter gather table from a given
2025  * scsi request sent via the .queuecommand main handler.
2026  *
2027  * Returns 0 success, anything else error
2028  */
2029 static int
2030 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
2031 	struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device)
2032 {
2033 	Mpi25SCSIIORequest_t *mpi_request;
2034 	dma_addr_t chain_dma;
2035 	struct scatterlist *sg_scmd;
2036 	void *sg_local, *chain;
2037 	u32 chain_offset;
2038 	u32 chain_length;
2039 	int sges_left;
2040 	u32 sges_in_segment;
2041 	u8 simple_sgl_flags;
2042 	u8 simple_sgl_flags_last;
2043 	u8 chain_sgl_flags;
2044 	struct chain_tracker *chain_req;
2045 
2046 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2047 
2048 	/* init scatter gather flags */
2049 	simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2050 	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2051 	simple_sgl_flags_last = simple_sgl_flags |
2052 	    MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2053 	chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2054 	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2055 
2056 	/* Check if we need to build a native SG list. */
2057 	if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request,
2058 			smid, scmd, pcie_device) == 0)) {
2059 		/* We built a native SG list, just return. */
2060 		return 0;
2061 	}
2062 
2063 	sg_scmd = scsi_sglist(scmd);
2064 	sges_left = scsi_dma_map(scmd);
2065 	if (sges_left < 0) {
2066 		sdev_printk(KERN_ERR, scmd->device,
2067 			"pci_map_sg failed: request for %d bytes!\n",
2068 			scsi_bufflen(scmd));
2069 		return -ENOMEM;
2070 	}
2071 
2072 	sg_local = &mpi_request->SGL;
2073 	sges_in_segment = (ioc->request_sz -
2074 		   offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
2075 	if (sges_left <= sges_in_segment)
2076 		goto fill_in_last_segment;
2077 
2078 	mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
2079 	    (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
2080 
2081 	/* fill in main message segment when there is a chain following */
2082 	while (sges_in_segment > 1) {
2083 		_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2084 		    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2085 		sg_scmd = sg_next(sg_scmd);
2086 		sg_local += ioc->sge_size_ieee;
2087 		sges_left--;
2088 		sges_in_segment--;
2089 	}
2090 
2091 	/* initializing the pointers */
2092 	chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2093 	if (!chain_req)
2094 		return -1;
2095 	chain = chain_req->chain_buffer;
2096 	chain_dma = chain_req->chain_buffer_dma;
2097 	do {
2098 		sges_in_segment = (sges_left <=
2099 		    ioc->max_sges_in_chain_message) ? sges_left :
2100 		    ioc->max_sges_in_chain_message;
2101 		chain_offset = (sges_left == sges_in_segment) ?
2102 		    0 : sges_in_segment;
2103 		chain_length = sges_in_segment * ioc->sge_size_ieee;
2104 		if (chain_offset)
2105 			chain_length += ioc->sge_size_ieee;
2106 		_base_add_sg_single_ieee(sg_local, chain_sgl_flags,
2107 		    chain_offset, chain_length, chain_dma);
2108 
2109 		sg_local = chain;
2110 		if (!chain_offset)
2111 			goto fill_in_last_segment;
2112 
2113 		/* fill in chain segments */
2114 		while (sges_in_segment) {
2115 			_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2116 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2117 			sg_scmd = sg_next(sg_scmd);
2118 			sg_local += ioc->sge_size_ieee;
2119 			sges_left--;
2120 			sges_in_segment--;
2121 		}
2122 
2123 		chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2124 		if (!chain_req)
2125 			return -1;
2126 		chain = chain_req->chain_buffer;
2127 		chain_dma = chain_req->chain_buffer_dma;
2128 	} while (1);
2129 
2130 
2131  fill_in_last_segment:
2132 
2133 	/* fill the last segment */
2134 	while (sges_left > 0) {
2135 		if (sges_left == 1)
2136 			_base_add_sg_single_ieee(sg_local,
2137 			    simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
2138 			    sg_dma_address(sg_scmd));
2139 		else
2140 			_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2141 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2142 		sg_scmd = sg_next(sg_scmd);
2143 		sg_local += ioc->sge_size_ieee;
2144 		sges_left--;
2145 	}
2146 
2147 	return 0;
2148 }
2149 
2150 /**
2151  * _base_build_sg_ieee - build generic sg for IEEE format
2152  * @ioc: per adapter object
2153  * @psge: virtual address for SGE
2154  * @data_out_dma: physical address for WRITES
2155  * @data_out_sz: data xfer size for WRITES
2156  * @data_in_dma: physical address for READS
2157  * @data_in_sz: data xfer size for READS
2158  *
2159  * Return nothing.
2160  */
2161 static void
2162 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
2163 	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2164 	size_t data_in_sz)
2165 {
2166 	u8 sgl_flags;
2167 
2168 	if (!data_out_sz && !data_in_sz) {
2169 		_base_build_zero_len_sge_ieee(ioc, psge);
2170 		return;
2171 	}
2172 
2173 	if (data_out_sz && data_in_sz) {
2174 		/* WRITE sgel first */
2175 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2176 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2177 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2178 		    data_out_dma);
2179 
2180 		/* incr sgel */
2181 		psge += ioc->sge_size_ieee;
2182 
2183 		/* READ sgel last */
2184 		sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2185 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2186 		    data_in_dma);
2187 	} else if (data_out_sz) /* WRITE */ {
2188 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2189 		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2190 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2191 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2192 		    data_out_dma);
2193 	} else if (data_in_sz) /* READ */ {
2194 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2195 		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2196 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2197 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2198 		    data_in_dma);
2199 	}
2200 }
2201 
2202 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
2203 
2204 /**
2205  * _base_config_dma_addressing - set dma addressing
2206  * @ioc: per adapter object
2207  * @pdev: PCI device struct
2208  *
2209  * Returns 0 for success, non-zero for failure.
2210  */
2211 static int
2212 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
2213 {
2214 	struct sysinfo s;
2215 	u64 consistent_dma_mask;
2216 
2217 	if (ioc->dma_mask)
2218 		consistent_dma_mask = DMA_BIT_MASK(64);
2219 	else
2220 		consistent_dma_mask = DMA_BIT_MASK(32);
2221 
2222 	if (sizeof(dma_addr_t) > 4) {
2223 		const uint64_t required_mask =
2224 		    dma_get_required_mask(&pdev->dev);
2225 		if ((required_mask > DMA_BIT_MASK(32)) &&
2226 		    !pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
2227 		    !pci_set_consistent_dma_mask(pdev, consistent_dma_mask)) {
2228 			ioc->base_add_sg_single = &_base_add_sg_single_64;
2229 			ioc->sge_size = sizeof(Mpi2SGESimple64_t);
2230 			ioc->dma_mask = 64;
2231 			goto out;
2232 		}
2233 	}
2234 
2235 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))
2236 	    && !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
2237 		ioc->base_add_sg_single = &_base_add_sg_single_32;
2238 		ioc->sge_size = sizeof(Mpi2SGESimple32_t);
2239 		ioc->dma_mask = 32;
2240 	} else
2241 		return -ENODEV;
2242 
2243  out:
2244 	si_meminfo(&s);
2245 	pr_info(MPT3SAS_FMT
2246 		"%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
2247 		ioc->name, ioc->dma_mask, convert_to_kb(s.totalram));
2248 
2249 	return 0;
2250 }
2251 
2252 static int
2253 _base_change_consistent_dma_mask(struct MPT3SAS_ADAPTER *ioc,
2254 				      struct pci_dev *pdev)
2255 {
2256 	if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
2257 		if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
2258 			return -ENODEV;
2259 	}
2260 	return 0;
2261 }
2262 
2263 /**
2264  * _base_check_enable_msix - checks MSIX capabable.
2265  * @ioc: per adapter object
2266  *
2267  * Check to see if card is capable of MSIX, and set number
2268  * of available msix vectors
2269  */
2270 static int
2271 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
2272 {
2273 	int base;
2274 	u16 message_control;
2275 
2276 	/* Check whether controller SAS2008 B0 controller,
2277 	 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
2278 	 */
2279 	if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
2280 	    ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
2281 		return -EINVAL;
2282 	}
2283 
2284 	base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
2285 	if (!base) {
2286 		dfailprintk(ioc, pr_info(MPT3SAS_FMT "msix not supported\n",
2287 			ioc->name));
2288 		return -EINVAL;
2289 	}
2290 
2291 	/* get msix vector count */
2292 	/* NUMA_IO not supported for older controllers */
2293 	if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
2294 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
2295 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
2296 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
2297 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
2298 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
2299 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
2300 		ioc->msix_vector_count = 1;
2301 	else {
2302 		pci_read_config_word(ioc->pdev, base + 2, &message_control);
2303 		ioc->msix_vector_count = (message_control & 0x3FF) + 1;
2304 	}
2305 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
2306 		"msix is supported, vector_count(%d)\n",
2307 		ioc->name, ioc->msix_vector_count));
2308 	return 0;
2309 }
2310 
2311 /**
2312  * _base_free_irq - free irq
2313  * @ioc: per adapter object
2314  *
2315  * Freeing respective reply_queue from the list.
2316  */
2317 static void
2318 _base_free_irq(struct MPT3SAS_ADAPTER *ioc)
2319 {
2320 	struct adapter_reply_queue *reply_q, *next;
2321 
2322 	if (list_empty(&ioc->reply_queue_list))
2323 		return;
2324 
2325 	list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
2326 		list_del(&reply_q->list);
2327 		free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
2328 			 reply_q);
2329 		kfree(reply_q);
2330 	}
2331 }
2332 
2333 /**
2334  * _base_request_irq - request irq
2335  * @ioc: per adapter object
2336  * @index: msix index into vector table
2337  *
2338  * Inserting respective reply_queue into the list.
2339  */
2340 static int
2341 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
2342 {
2343 	struct pci_dev *pdev = ioc->pdev;
2344 	struct adapter_reply_queue *reply_q;
2345 	int r;
2346 
2347 	reply_q =  kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
2348 	if (!reply_q) {
2349 		pr_err(MPT3SAS_FMT "unable to allocate memory %d!\n",
2350 		    ioc->name, (int)sizeof(struct adapter_reply_queue));
2351 		return -ENOMEM;
2352 	}
2353 	reply_q->ioc = ioc;
2354 	reply_q->msix_index = index;
2355 
2356 	atomic_set(&reply_q->busy, 0);
2357 	if (ioc->msix_enable)
2358 		snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
2359 		    ioc->driver_name, ioc->id, index);
2360 	else
2361 		snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
2362 		    ioc->driver_name, ioc->id);
2363 	r = request_irq(pci_irq_vector(pdev, index), _base_interrupt,
2364 			IRQF_SHARED, reply_q->name, reply_q);
2365 	if (r) {
2366 		pr_err(MPT3SAS_FMT "unable to allocate interrupt %d!\n",
2367 		       reply_q->name, pci_irq_vector(pdev, index));
2368 		kfree(reply_q);
2369 		return -EBUSY;
2370 	}
2371 
2372 	INIT_LIST_HEAD(&reply_q->list);
2373 	list_add_tail(&reply_q->list, &ioc->reply_queue_list);
2374 	return 0;
2375 }
2376 
2377 /**
2378  * _base_assign_reply_queues - assigning msix index for each cpu
2379  * @ioc: per adapter object
2380  *
2381  * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
2382  *
2383  * It would nice if we could call irq_set_affinity, however it is not
2384  * an exported symbol
2385  */
2386 static void
2387 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
2388 {
2389 	unsigned int cpu, nr_cpus, nr_msix, index = 0;
2390 	struct adapter_reply_queue *reply_q;
2391 
2392 	if (!_base_is_controller_msix_enabled(ioc))
2393 		return;
2394 
2395 	memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
2396 
2397 	nr_cpus = num_online_cpus();
2398 	nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
2399 					       ioc->facts.MaxMSIxVectors);
2400 	if (!nr_msix)
2401 		return;
2402 
2403 	if (smp_affinity_enable) {
2404 		list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
2405 			const cpumask_t *mask = pci_irq_get_affinity(ioc->pdev,
2406 							reply_q->msix_index);
2407 			if (!mask) {
2408 				pr_warn(MPT3SAS_FMT "no affinity for msi %x\n",
2409 					ioc->name, reply_q->msix_index);
2410 				continue;
2411 			}
2412 
2413 			for_each_cpu(cpu, mask)
2414 				ioc->cpu_msix_table[cpu] = reply_q->msix_index;
2415 		}
2416 		return;
2417 	}
2418 	cpu = cpumask_first(cpu_online_mask);
2419 
2420 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
2421 
2422 		unsigned int i, group = nr_cpus / nr_msix;
2423 
2424 		if (cpu >= nr_cpus)
2425 			break;
2426 
2427 		if (index < nr_cpus % nr_msix)
2428 			group++;
2429 
2430 		for (i = 0 ; i < group ; i++) {
2431 			ioc->cpu_msix_table[cpu] = reply_q->msix_index;
2432 			cpu = cpumask_next(cpu, cpu_online_mask);
2433 		}
2434 		index++;
2435 	}
2436 }
2437 
2438 /**
2439  * _base_disable_msix - disables msix
2440  * @ioc: per adapter object
2441  *
2442  */
2443 static void
2444 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
2445 {
2446 	if (!ioc->msix_enable)
2447 		return;
2448 	pci_disable_msix(ioc->pdev);
2449 	ioc->msix_enable = 0;
2450 }
2451 
2452 /**
2453  * _base_enable_msix - enables msix, failback to io_apic
2454  * @ioc: per adapter object
2455  *
2456  */
2457 static int
2458 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
2459 {
2460 	int r;
2461 	int i, local_max_msix_vectors;
2462 	u8 try_msix = 0;
2463 	unsigned int irq_flags = PCI_IRQ_MSIX;
2464 
2465 	if (msix_disable == -1 || msix_disable == 0)
2466 		try_msix = 1;
2467 
2468 	if (!try_msix)
2469 		goto try_ioapic;
2470 
2471 	if (_base_check_enable_msix(ioc) != 0)
2472 		goto try_ioapic;
2473 
2474 	ioc->reply_queue_count = min_t(int, ioc->cpu_count,
2475 		ioc->msix_vector_count);
2476 
2477 	printk(MPT3SAS_FMT "MSI-X vectors supported: %d, no of cores"
2478 	  ": %d, max_msix_vectors: %d\n", ioc->name, ioc->msix_vector_count,
2479 	  ioc->cpu_count, max_msix_vectors);
2480 
2481 	if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
2482 		local_max_msix_vectors = (reset_devices) ? 1 : 8;
2483 	else
2484 		local_max_msix_vectors = max_msix_vectors;
2485 
2486 	if (local_max_msix_vectors > 0)
2487 		ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
2488 			ioc->reply_queue_count);
2489 	else if (local_max_msix_vectors == 0)
2490 		goto try_ioapic;
2491 
2492 	if (ioc->msix_vector_count < ioc->cpu_count)
2493 		smp_affinity_enable = 0;
2494 
2495 	if (smp_affinity_enable)
2496 		irq_flags |= PCI_IRQ_AFFINITY;
2497 
2498 	r = pci_alloc_irq_vectors(ioc->pdev, 1, ioc->reply_queue_count,
2499 				  irq_flags);
2500 	if (r < 0) {
2501 		dfailprintk(ioc, pr_info(MPT3SAS_FMT
2502 			"pci_alloc_irq_vectors failed (r=%d) !!!\n",
2503 			ioc->name, r));
2504 		goto try_ioapic;
2505 	}
2506 
2507 	ioc->msix_enable = 1;
2508 	ioc->reply_queue_count = r;
2509 	for (i = 0; i < ioc->reply_queue_count; i++) {
2510 		r = _base_request_irq(ioc, i);
2511 		if (r) {
2512 			_base_free_irq(ioc);
2513 			_base_disable_msix(ioc);
2514 			goto try_ioapic;
2515 		}
2516 	}
2517 
2518 	return 0;
2519 
2520 /* failback to io_apic interrupt routing */
2521  try_ioapic:
2522 
2523 	ioc->reply_queue_count = 1;
2524 	r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY);
2525 	if (r < 0) {
2526 		dfailprintk(ioc, pr_info(MPT3SAS_FMT
2527 			"pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
2528 			ioc->name, r));
2529 	} else
2530 		r = _base_request_irq(ioc, 0);
2531 
2532 	return r;
2533 }
2534 
2535 /**
2536  * mpt3sas_base_unmap_resources - free controller resources
2537  * @ioc: per adapter object
2538  */
2539 static void
2540 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
2541 {
2542 	struct pci_dev *pdev = ioc->pdev;
2543 
2544 	dexitprintk(ioc, printk(MPT3SAS_FMT "%s\n",
2545 		ioc->name, __func__));
2546 
2547 	_base_free_irq(ioc);
2548 	_base_disable_msix(ioc);
2549 
2550 	if (ioc->combined_reply_queue) {
2551 		kfree(ioc->replyPostRegisterIndex);
2552 		ioc->replyPostRegisterIndex = NULL;
2553 	}
2554 
2555 	if (ioc->chip_phys) {
2556 		iounmap(ioc->chip);
2557 		ioc->chip_phys = 0;
2558 	}
2559 
2560 	if (pci_is_enabled(pdev)) {
2561 		pci_release_selected_regions(ioc->pdev, ioc->bars);
2562 		pci_disable_pcie_error_reporting(pdev);
2563 		pci_disable_device(pdev);
2564 	}
2565 }
2566 
2567 /**
2568  * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
2569  * @ioc: per adapter object
2570  *
2571  * Returns 0 for success, non-zero for failure.
2572  */
2573 int
2574 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
2575 {
2576 	struct pci_dev *pdev = ioc->pdev;
2577 	u32 memap_sz;
2578 	u32 pio_sz;
2579 	int i, r = 0;
2580 	u64 pio_chip = 0;
2581 	u64 chip_phys = 0;
2582 	struct adapter_reply_queue *reply_q;
2583 
2584 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n",
2585 	    ioc->name, __func__));
2586 
2587 	ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
2588 	if (pci_enable_device_mem(pdev)) {
2589 		pr_warn(MPT3SAS_FMT "pci_enable_device_mem: failed\n",
2590 			ioc->name);
2591 		ioc->bars = 0;
2592 		return -ENODEV;
2593 	}
2594 
2595 
2596 	if (pci_request_selected_regions(pdev, ioc->bars,
2597 	    ioc->driver_name)) {
2598 		pr_warn(MPT3SAS_FMT "pci_request_selected_regions: failed\n",
2599 			ioc->name);
2600 		ioc->bars = 0;
2601 		r = -ENODEV;
2602 		goto out_fail;
2603 	}
2604 
2605 /* AER (Advanced Error Reporting) hooks */
2606 	pci_enable_pcie_error_reporting(pdev);
2607 
2608 	pci_set_master(pdev);
2609 
2610 
2611 	if (_base_config_dma_addressing(ioc, pdev) != 0) {
2612 		pr_warn(MPT3SAS_FMT "no suitable DMA mask for %s\n",
2613 		    ioc->name, pci_name(pdev));
2614 		r = -ENODEV;
2615 		goto out_fail;
2616 	}
2617 
2618 	for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
2619 	     (!memap_sz || !pio_sz); i++) {
2620 		if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
2621 			if (pio_sz)
2622 				continue;
2623 			pio_chip = (u64)pci_resource_start(pdev, i);
2624 			pio_sz = pci_resource_len(pdev, i);
2625 		} else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
2626 			if (memap_sz)
2627 				continue;
2628 			ioc->chip_phys = pci_resource_start(pdev, i);
2629 			chip_phys = (u64)ioc->chip_phys;
2630 			memap_sz = pci_resource_len(pdev, i);
2631 			ioc->chip = ioremap(ioc->chip_phys, memap_sz);
2632 		}
2633 	}
2634 
2635 	if (ioc->chip == NULL) {
2636 		pr_err(MPT3SAS_FMT "unable to map adapter memory! "
2637 			" or resource not found\n", ioc->name);
2638 		r = -EINVAL;
2639 		goto out_fail;
2640 	}
2641 
2642 	_base_mask_interrupts(ioc);
2643 
2644 	r = _base_get_ioc_facts(ioc);
2645 	if (r)
2646 		goto out_fail;
2647 
2648 	if (!ioc->rdpq_array_enable_assigned) {
2649 		ioc->rdpq_array_enable = ioc->rdpq_array_capable;
2650 		ioc->rdpq_array_enable_assigned = 1;
2651 	}
2652 
2653 	r = _base_enable_msix(ioc);
2654 	if (r)
2655 		goto out_fail;
2656 
2657 	/* Use the Combined reply queue feature only for SAS3 C0 & higher
2658 	 * revision HBAs and also only when reply queue count is greater than 8
2659 	 */
2660 	if (ioc->combined_reply_queue && ioc->reply_queue_count > 8) {
2661 		/* Determine the Supplemental Reply Post Host Index Registers
2662 		 * Addresse. Supplemental Reply Post Host Index Registers
2663 		 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
2664 		 * each register is at offset bytes of
2665 		 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
2666 		 */
2667 		ioc->replyPostRegisterIndex = kcalloc(
2668 		     ioc->combined_reply_index_count,
2669 		     sizeof(resource_size_t *), GFP_KERNEL);
2670 		if (!ioc->replyPostRegisterIndex) {
2671 			dfailprintk(ioc, printk(MPT3SAS_FMT
2672 			"allocation for reply Post Register Index failed!!!\n",
2673 								   ioc->name));
2674 			r = -ENOMEM;
2675 			goto out_fail;
2676 		}
2677 
2678 		for (i = 0; i < ioc->combined_reply_index_count; i++) {
2679 			ioc->replyPostRegisterIndex[i] = (resource_size_t *)
2680 			     ((u8 *)&ioc->chip->Doorbell +
2681 			     MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
2682 			     (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
2683 		}
2684 	} else
2685 		ioc->combined_reply_queue = 0;
2686 
2687 	if (ioc->is_warpdrive) {
2688 		ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
2689 		    &ioc->chip->ReplyPostHostIndex;
2690 
2691 		for (i = 1; i < ioc->cpu_msix_table_sz; i++)
2692 			ioc->reply_post_host_index[i] =
2693 			(resource_size_t __iomem *)
2694 			((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
2695 			* 4)));
2696 	}
2697 
2698 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
2699 		pr_info(MPT3SAS_FMT "%s: IRQ %d\n",
2700 		    reply_q->name,  ((ioc->msix_enable) ? "PCI-MSI-X enabled" :
2701 		    "IO-APIC enabled"),
2702 		    pci_irq_vector(ioc->pdev, reply_q->msix_index));
2703 
2704 	pr_info(MPT3SAS_FMT "iomem(0x%016llx), mapped(0x%p), size(%d)\n",
2705 	    ioc->name, (unsigned long long)chip_phys, ioc->chip, memap_sz);
2706 	pr_info(MPT3SAS_FMT "ioport(0x%016llx), size(%d)\n",
2707 	    ioc->name, (unsigned long long)pio_chip, pio_sz);
2708 
2709 	/* Save PCI configuration state for recovery from PCI AER/EEH errors */
2710 	pci_save_state(pdev);
2711 	return 0;
2712 
2713  out_fail:
2714 	mpt3sas_base_unmap_resources(ioc);
2715 	return r;
2716 }
2717 
2718 /**
2719  * mpt3sas_base_get_msg_frame - obtain request mf pointer
2720  * @ioc: per adapter object
2721  * @smid: system request message index(smid zero is invalid)
2722  *
2723  * Returns virt pointer to message frame.
2724  */
2725 void *
2726 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2727 {
2728 	return (void *)(ioc->request + (smid * ioc->request_sz));
2729 }
2730 
2731 /**
2732  * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
2733  * @ioc: per adapter object
2734  * @smid: system request message index
2735  *
2736  * Returns virt pointer to sense buffer.
2737  */
2738 void *
2739 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2740 {
2741 	return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
2742 }
2743 
2744 /**
2745  * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
2746  * @ioc: per adapter object
2747  * @smid: system request message index
2748  *
2749  * Returns phys pointer to the low 32bit address of the sense buffer.
2750  */
2751 __le32
2752 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2753 {
2754 	return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
2755 	    SCSI_SENSE_BUFFERSIZE));
2756 }
2757 
2758 /**
2759  * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
2760  * @ioc: per adapter object
2761  * @smid: system request message index
2762  *
2763  * Returns virt pointer to a PCIe SGL.
2764  */
2765 void *
2766 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2767 {
2768 	return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl);
2769 }
2770 
2771 /**
2772  * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
2773  * @ioc: per adapter object
2774  * @smid: system request message index
2775  *
2776  * Returns phys pointer to the address of the PCIe buffer.
2777  */
2778 dma_addr_t
2779 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2780 {
2781 	return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma;
2782 }
2783 
2784 /**
2785  * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
2786  * @ioc: per adapter object
2787  * @phys_addr: lower 32 physical addr of the reply
2788  *
2789  * Converts 32bit lower physical addr into a virt address.
2790  */
2791 void *
2792 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
2793 {
2794 	if (!phys_addr)
2795 		return NULL;
2796 	return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
2797 }
2798 
2799 static inline u8
2800 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc)
2801 {
2802 	return ioc->cpu_msix_table[raw_smp_processor_id()];
2803 }
2804 
2805 /**
2806  * mpt3sas_base_get_smid - obtain a free smid from internal queue
2807  * @ioc: per adapter object
2808  * @cb_idx: callback index
2809  *
2810  * Returns smid (zero is invalid)
2811  */
2812 u16
2813 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
2814 {
2815 	unsigned long flags;
2816 	struct request_tracker *request;
2817 	u16 smid;
2818 
2819 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2820 	if (list_empty(&ioc->internal_free_list)) {
2821 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2822 		pr_err(MPT3SAS_FMT "%s: smid not available\n",
2823 		    ioc->name, __func__);
2824 		return 0;
2825 	}
2826 
2827 	request = list_entry(ioc->internal_free_list.next,
2828 	    struct request_tracker, tracker_list);
2829 	request->cb_idx = cb_idx;
2830 	smid = request->smid;
2831 	list_del(&request->tracker_list);
2832 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2833 	return smid;
2834 }
2835 
2836 /**
2837  * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
2838  * @ioc: per adapter object
2839  * @cb_idx: callback index
2840  * @scmd: pointer to scsi command object
2841  *
2842  * Returns smid (zero is invalid)
2843  */
2844 u16
2845 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
2846 	struct scsi_cmnd *scmd)
2847 {
2848 	struct scsiio_tracker *request = scsi_cmd_priv(scmd);
2849 	unsigned int tag = scmd->request->tag;
2850 	u16 smid;
2851 
2852 	smid = tag + 1;
2853 	request->cb_idx = cb_idx;
2854 	request->msix_io = _base_get_msix_index(ioc);
2855 	request->smid = smid;
2856 	INIT_LIST_HEAD(&request->chain_list);
2857 	return smid;
2858 }
2859 
2860 /**
2861  * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
2862  * @ioc: per adapter object
2863  * @cb_idx: callback index
2864  *
2865  * Returns smid (zero is invalid)
2866  */
2867 u16
2868 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
2869 {
2870 	unsigned long flags;
2871 	struct request_tracker *request;
2872 	u16 smid;
2873 
2874 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2875 	if (list_empty(&ioc->hpr_free_list)) {
2876 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2877 		return 0;
2878 	}
2879 
2880 	request = list_entry(ioc->hpr_free_list.next,
2881 	    struct request_tracker, tracker_list);
2882 	request->cb_idx = cb_idx;
2883 	smid = request->smid;
2884 	list_del(&request->tracker_list);
2885 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2886 	return smid;
2887 }
2888 
2889 static void
2890 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc)
2891 {
2892 	/*
2893 	 * See _wait_for_commands_to_complete() call with regards to this code.
2894 	 */
2895 	if (ioc->shost_recovery && ioc->pending_io_count) {
2896 		ioc->pending_io_count = atomic_read(&ioc->shost->host_busy);
2897 		if (ioc->pending_io_count == 0)
2898 			wake_up(&ioc->reset_wq);
2899 	}
2900 }
2901 
2902 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc,
2903 			   struct scsiio_tracker *st)
2904 {
2905 	if (WARN_ON(st->smid == 0))
2906 		return;
2907 	st->cb_idx = 0xFF;
2908 	st->direct_io = 0;
2909 	if (!list_empty(&st->chain_list)) {
2910 		unsigned long flags;
2911 
2912 		spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2913 		list_splice_init(&st->chain_list, &ioc->free_chain_list);
2914 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2915 	}
2916 }
2917 
2918 /**
2919  * mpt3sas_base_free_smid - put smid back on free_list
2920  * @ioc: per adapter object
2921  * @smid: system request message index
2922  *
2923  * Return nothing.
2924  */
2925 void
2926 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2927 {
2928 	unsigned long flags;
2929 	int i;
2930 
2931 	if (smid < ioc->hi_priority_smid) {
2932 		struct scsiio_tracker *st;
2933 
2934 		st = _get_st_from_smid(ioc, smid);
2935 		if (!st) {
2936 			_base_recovery_check(ioc);
2937 			return;
2938 		}
2939 		mpt3sas_base_clear_st(ioc, st);
2940 		_base_recovery_check(ioc);
2941 		return;
2942 	}
2943 
2944 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2945 	if (smid < ioc->internal_smid) {
2946 		/* hi-priority */
2947 		i = smid - ioc->hi_priority_smid;
2948 		ioc->hpr_lookup[i].cb_idx = 0xFF;
2949 		list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
2950 	} else if (smid <= ioc->hba_queue_depth) {
2951 		/* internal queue */
2952 		i = smid - ioc->internal_smid;
2953 		ioc->internal_lookup[i].cb_idx = 0xFF;
2954 		list_add(&ioc->internal_lookup[i].tracker_list,
2955 		    &ioc->internal_free_list);
2956 	}
2957 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2958 }
2959 
2960 /**
2961  * _base_writeq - 64 bit write to MMIO
2962  * @ioc: per adapter object
2963  * @b: data payload
2964  * @addr: address in MMIO space
2965  * @writeq_lock: spin lock
2966  *
2967  * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
2968  * care of 32 bit environment where its not quarenteed to send the entire word
2969  * in one transfer.
2970  */
2971 #if defined(writeq) && defined(CONFIG_64BIT)
2972 static inline void
2973 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2974 {
2975 	writeq(cpu_to_le64(b), addr);
2976 }
2977 #else
2978 static inline void
2979 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2980 {
2981 	unsigned long flags;
2982 	__u64 data_out = cpu_to_le64(b);
2983 
2984 	spin_lock_irqsave(writeq_lock, flags);
2985 	writel((u32)(data_out), addr);
2986 	writel((u32)(data_out >> 32), (addr + 4));
2987 	spin_unlock_irqrestore(writeq_lock, flags);
2988 }
2989 #endif
2990 
2991 /**
2992  * _base_put_smid_scsi_io - send SCSI_IO request to firmware
2993  * @ioc: per adapter object
2994  * @smid: system request message index
2995  * @handle: device handle
2996  *
2997  * Return nothing.
2998  */
2999 static void
3000 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
3001 {
3002 	Mpi2RequestDescriptorUnion_t descriptor;
3003 	u64 *request = (u64 *)&descriptor;
3004 
3005 
3006 	descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3007 	descriptor.SCSIIO.MSIxIndex =  _base_get_msix_index(ioc);
3008 	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3009 	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3010 	descriptor.SCSIIO.LMID = 0;
3011 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3012 	    &ioc->scsi_lookup_lock);
3013 }
3014 
3015 /**
3016  * _base_put_smid_fast_path - send fast path request to firmware
3017  * @ioc: per adapter object
3018  * @smid: system request message index
3019  * @handle: device handle
3020  *
3021  * Return nothing.
3022  */
3023 static void
3024 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3025 	u16 handle)
3026 {
3027 	Mpi2RequestDescriptorUnion_t descriptor;
3028 	u64 *request = (u64 *)&descriptor;
3029 
3030 	descriptor.SCSIIO.RequestFlags =
3031 	    MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
3032 	descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
3033 	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3034 	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3035 	descriptor.SCSIIO.LMID = 0;
3036 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3037 	    &ioc->scsi_lookup_lock);
3038 }
3039 
3040 /**
3041  * _base_put_smid_hi_priority - send Task Management request to firmware
3042  * @ioc: per adapter object
3043  * @smid: system request message index
3044  * @msix_task: msix_task will be same as msix of IO incase of task abort else 0.
3045  * Return nothing.
3046  */
3047 static void
3048 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3049 	u16 msix_task)
3050 {
3051 	Mpi2RequestDescriptorUnion_t descriptor;
3052 	u64 *request = (u64 *)&descriptor;
3053 
3054 	descriptor.HighPriority.RequestFlags =
3055 	    MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
3056 	descriptor.HighPriority.MSIxIndex =  msix_task;
3057 	descriptor.HighPriority.SMID = cpu_to_le16(smid);
3058 	descriptor.HighPriority.LMID = 0;
3059 	descriptor.HighPriority.Reserved1 = 0;
3060 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3061 	    &ioc->scsi_lookup_lock);
3062 }
3063 
3064 /**
3065  * _base_put_smid_nvme_encap - send NVMe encapsulated request to
3066  *  firmware
3067  * @ioc: per adapter object
3068  * @smid: system request message index
3069  *
3070  * Return nothing.
3071  */
3072 static void
3073 _base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3074 {
3075 	Mpi2RequestDescriptorUnion_t descriptor;
3076 	u64 *request = (u64 *)&descriptor;
3077 
3078 	descriptor.Default.RequestFlags =
3079 		MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
3080 	descriptor.Default.MSIxIndex =  _base_get_msix_index(ioc);
3081 	descriptor.Default.SMID = cpu_to_le16(smid);
3082 	descriptor.Default.LMID = 0;
3083 	descriptor.Default.DescriptorTypeDependent = 0;
3084 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3085 	    &ioc->scsi_lookup_lock);
3086 }
3087 
3088 /**
3089  * _base_put_smid_default - Default, primarily used for config pages
3090  * @ioc: per adapter object
3091  * @smid: system request message index
3092  *
3093  * Return nothing.
3094  */
3095 static void
3096 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3097 {
3098 	Mpi2RequestDescriptorUnion_t descriptor;
3099 	u64 *request = (u64 *)&descriptor;
3100 
3101 	descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
3102 	descriptor.Default.MSIxIndex =  _base_get_msix_index(ioc);
3103 	descriptor.Default.SMID = cpu_to_le16(smid);
3104 	descriptor.Default.LMID = 0;
3105 	descriptor.Default.DescriptorTypeDependent = 0;
3106 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3107 	    &ioc->scsi_lookup_lock);
3108 }
3109 
3110 /**
3111 * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using
3112 *   Atomic Request Descriptor
3113 * @ioc: per adapter object
3114 * @smid: system request message index
3115 * @handle: device handle, unused in this function, for function type match
3116 *
3117 * Return nothing.
3118 */
3119 static void
3120 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3121 	u16 handle)
3122 {
3123 	Mpi26AtomicRequestDescriptor_t descriptor;
3124 	u32 *request = (u32 *)&descriptor;
3125 
3126 	descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3127 	descriptor.MSIxIndex = _base_get_msix_index(ioc);
3128 	descriptor.SMID = cpu_to_le16(smid);
3129 
3130 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
3131 }
3132 
3133 /**
3134  * _base_put_smid_fast_path_atomic - send fast path request to firmware
3135  * using Atomic Request Descriptor
3136  * @ioc: per adapter object
3137  * @smid: system request message index
3138  * @handle: device handle, unused in this function, for function type match
3139  * Return nothing
3140  */
3141 static void
3142 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3143 	u16 handle)
3144 {
3145 	Mpi26AtomicRequestDescriptor_t descriptor;
3146 	u32 *request = (u32 *)&descriptor;
3147 
3148 	descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
3149 	descriptor.MSIxIndex = _base_get_msix_index(ioc);
3150 	descriptor.SMID = cpu_to_le16(smid);
3151 
3152 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
3153 }
3154 
3155 /**
3156  * _base_put_smid_hi_priority_atomic - send Task Management request to
3157  * firmware using Atomic Request Descriptor
3158  * @ioc: per adapter object
3159  * @smid: system request message index
3160  * @msix_task: msix_task will be same as msix of IO incase of task abort else 0
3161  *
3162  * Return nothing.
3163  */
3164 static void
3165 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3166 	u16 msix_task)
3167 {
3168 	Mpi26AtomicRequestDescriptor_t descriptor;
3169 	u32 *request = (u32 *)&descriptor;
3170 
3171 	descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
3172 	descriptor.MSIxIndex = msix_task;
3173 	descriptor.SMID = cpu_to_le16(smid);
3174 
3175 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
3176 }
3177 
3178 /**
3179  * _base_put_smid_nvme_encap_atomic - send NVMe encapsulated request to
3180  *   firmware using Atomic Request Descriptor
3181  * @ioc: per adapter object
3182  * @smid: system request message index
3183  *
3184  * Return nothing.
3185  */
3186 static void
3187 _base_put_smid_nvme_encap_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3188 {
3189 	Mpi26AtomicRequestDescriptor_t descriptor;
3190 	u32 *request = (u32 *)&descriptor;
3191 
3192 	descriptor.RequestFlags = MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
3193 	descriptor.MSIxIndex = _base_get_msix_index(ioc);
3194 	descriptor.SMID = cpu_to_le16(smid);
3195 
3196 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
3197 }
3198 
3199 /**
3200  * _base_put_smid_default - Default, primarily used for config pages
3201  * use Atomic Request Descriptor
3202  * @ioc: per adapter object
3203  * @smid: system request message index
3204  *
3205  * Return nothing.
3206  */
3207 static void
3208 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3209 {
3210 	Mpi26AtomicRequestDescriptor_t descriptor;
3211 	u32 *request = (u32 *)&descriptor;
3212 
3213 	descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
3214 	descriptor.MSIxIndex = _base_get_msix_index(ioc);
3215 	descriptor.SMID = cpu_to_le16(smid);
3216 
3217 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
3218 }
3219 
3220 /**
3221  * _base_display_OEMs_branding - Display branding string
3222  * @ioc: per adapter object
3223  *
3224  * Return nothing.
3225  */
3226 static void
3227 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
3228 {
3229 	if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
3230 		return;
3231 
3232 	switch (ioc->pdev->subsystem_vendor) {
3233 	case PCI_VENDOR_ID_INTEL:
3234 		switch (ioc->pdev->device) {
3235 		case MPI2_MFGPAGE_DEVID_SAS2008:
3236 			switch (ioc->pdev->subsystem_device) {
3237 			case MPT2SAS_INTEL_RMS2LL080_SSDID:
3238 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3239 				    MPT2SAS_INTEL_RMS2LL080_BRANDING);
3240 				break;
3241 			case MPT2SAS_INTEL_RMS2LL040_SSDID:
3242 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3243 				    MPT2SAS_INTEL_RMS2LL040_BRANDING);
3244 				break;
3245 			case MPT2SAS_INTEL_SSD910_SSDID:
3246 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3247 				    MPT2SAS_INTEL_SSD910_BRANDING);
3248 				break;
3249 			default:
3250 				pr_info(MPT3SAS_FMT
3251 				 "Intel(R) Controller: Subsystem ID: 0x%X\n",
3252 				 ioc->name, ioc->pdev->subsystem_device);
3253 				break;
3254 			}
3255 		case MPI2_MFGPAGE_DEVID_SAS2308_2:
3256 			switch (ioc->pdev->subsystem_device) {
3257 			case MPT2SAS_INTEL_RS25GB008_SSDID:
3258 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3259 				    MPT2SAS_INTEL_RS25GB008_BRANDING);
3260 				break;
3261 			case MPT2SAS_INTEL_RMS25JB080_SSDID:
3262 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3263 				    MPT2SAS_INTEL_RMS25JB080_BRANDING);
3264 				break;
3265 			case MPT2SAS_INTEL_RMS25JB040_SSDID:
3266 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3267 				    MPT2SAS_INTEL_RMS25JB040_BRANDING);
3268 				break;
3269 			case MPT2SAS_INTEL_RMS25KB080_SSDID:
3270 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3271 				    MPT2SAS_INTEL_RMS25KB080_BRANDING);
3272 				break;
3273 			case MPT2SAS_INTEL_RMS25KB040_SSDID:
3274 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3275 				    MPT2SAS_INTEL_RMS25KB040_BRANDING);
3276 				break;
3277 			case MPT2SAS_INTEL_RMS25LB040_SSDID:
3278 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3279 				    MPT2SAS_INTEL_RMS25LB040_BRANDING);
3280 				break;
3281 			case MPT2SAS_INTEL_RMS25LB080_SSDID:
3282 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3283 				    MPT2SAS_INTEL_RMS25LB080_BRANDING);
3284 				break;
3285 			default:
3286 				pr_info(MPT3SAS_FMT
3287 				 "Intel(R) Controller: Subsystem ID: 0x%X\n",
3288 				 ioc->name, ioc->pdev->subsystem_device);
3289 				break;
3290 			}
3291 		case MPI25_MFGPAGE_DEVID_SAS3008:
3292 			switch (ioc->pdev->subsystem_device) {
3293 			case MPT3SAS_INTEL_RMS3JC080_SSDID:
3294 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3295 					MPT3SAS_INTEL_RMS3JC080_BRANDING);
3296 				break;
3297 
3298 			case MPT3SAS_INTEL_RS3GC008_SSDID:
3299 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3300 					MPT3SAS_INTEL_RS3GC008_BRANDING);
3301 				break;
3302 			case MPT3SAS_INTEL_RS3FC044_SSDID:
3303 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3304 					MPT3SAS_INTEL_RS3FC044_BRANDING);
3305 				break;
3306 			case MPT3SAS_INTEL_RS3UC080_SSDID:
3307 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3308 					MPT3SAS_INTEL_RS3UC080_BRANDING);
3309 				break;
3310 			default:
3311 				pr_info(MPT3SAS_FMT
3312 				 "Intel(R) Controller: Subsystem ID: 0x%X\n",
3313 				 ioc->name, ioc->pdev->subsystem_device);
3314 				break;
3315 			}
3316 			break;
3317 		default:
3318 			pr_info(MPT3SAS_FMT
3319 			 "Intel(R) Controller: Subsystem ID: 0x%X\n",
3320 			 ioc->name, ioc->pdev->subsystem_device);
3321 			break;
3322 		}
3323 		break;
3324 	case PCI_VENDOR_ID_DELL:
3325 		switch (ioc->pdev->device) {
3326 		case MPI2_MFGPAGE_DEVID_SAS2008:
3327 			switch (ioc->pdev->subsystem_device) {
3328 			case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
3329 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3330 				 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
3331 				break;
3332 			case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
3333 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3334 				 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
3335 				break;
3336 			case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
3337 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3338 				 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
3339 				break;
3340 			case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
3341 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3342 				 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
3343 				break;
3344 			case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
3345 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3346 				 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
3347 				break;
3348 			case MPT2SAS_DELL_PERC_H200_SSDID:
3349 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3350 				 MPT2SAS_DELL_PERC_H200_BRANDING);
3351 				break;
3352 			case MPT2SAS_DELL_6GBPS_SAS_SSDID:
3353 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3354 				 MPT2SAS_DELL_6GBPS_SAS_BRANDING);
3355 				break;
3356 			default:
3357 				pr_info(MPT3SAS_FMT
3358 				   "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
3359 				   ioc->name, ioc->pdev->subsystem_device);
3360 				break;
3361 			}
3362 			break;
3363 		case MPI25_MFGPAGE_DEVID_SAS3008:
3364 			switch (ioc->pdev->subsystem_device) {
3365 			case MPT3SAS_DELL_12G_HBA_SSDID:
3366 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3367 					MPT3SAS_DELL_12G_HBA_BRANDING);
3368 				break;
3369 			default:
3370 				pr_info(MPT3SAS_FMT
3371 				   "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
3372 				   ioc->name, ioc->pdev->subsystem_device);
3373 				break;
3374 			}
3375 			break;
3376 		default:
3377 			pr_info(MPT3SAS_FMT
3378 			   "Dell HBA: Subsystem ID: 0x%X\n", ioc->name,
3379 			   ioc->pdev->subsystem_device);
3380 			break;
3381 		}
3382 		break;
3383 	case PCI_VENDOR_ID_CISCO:
3384 		switch (ioc->pdev->device) {
3385 		case MPI25_MFGPAGE_DEVID_SAS3008:
3386 			switch (ioc->pdev->subsystem_device) {
3387 			case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
3388 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3389 					MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
3390 				break;
3391 			case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
3392 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3393 					MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
3394 				break;
3395 			case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
3396 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3397 					MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
3398 				break;
3399 			default:
3400 				pr_info(MPT3SAS_FMT
3401 				  "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
3402 				  ioc->name, ioc->pdev->subsystem_device);
3403 				break;
3404 			}
3405 			break;
3406 		case MPI25_MFGPAGE_DEVID_SAS3108_1:
3407 			switch (ioc->pdev->subsystem_device) {
3408 			case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
3409 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3410 				MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
3411 				break;
3412 			case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
3413 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3414 				MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING
3415 				);
3416 				break;
3417 			default:
3418 				pr_info(MPT3SAS_FMT
3419 				 "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
3420 				 ioc->name, ioc->pdev->subsystem_device);
3421 				break;
3422 			}
3423 			break;
3424 		default:
3425 			pr_info(MPT3SAS_FMT
3426 			   "Cisco SAS HBA: Subsystem ID: 0x%X\n",
3427 			   ioc->name, ioc->pdev->subsystem_device);
3428 			break;
3429 		}
3430 		break;
3431 	case MPT2SAS_HP_3PAR_SSVID:
3432 		switch (ioc->pdev->device) {
3433 		case MPI2_MFGPAGE_DEVID_SAS2004:
3434 			switch (ioc->pdev->subsystem_device) {
3435 			case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
3436 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3437 				    MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
3438 				break;
3439 			default:
3440 				pr_info(MPT3SAS_FMT
3441 				   "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
3442 				   ioc->name, ioc->pdev->subsystem_device);
3443 				break;
3444 			}
3445 		case MPI2_MFGPAGE_DEVID_SAS2308_2:
3446 			switch (ioc->pdev->subsystem_device) {
3447 			case MPT2SAS_HP_2_4_INTERNAL_SSDID:
3448 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3449 				    MPT2SAS_HP_2_4_INTERNAL_BRANDING);
3450 				break;
3451 			case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
3452 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3453 				    MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
3454 				break;
3455 			case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
3456 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3457 				 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
3458 				break;
3459 			case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
3460 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3461 				    MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
3462 				break;
3463 			default:
3464 				pr_info(MPT3SAS_FMT
3465 				   "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
3466 				   ioc->name, ioc->pdev->subsystem_device);
3467 				break;
3468 			}
3469 		default:
3470 			pr_info(MPT3SAS_FMT
3471 			   "HP SAS HBA: Subsystem ID: 0x%X\n",
3472 			   ioc->name, ioc->pdev->subsystem_device);
3473 			break;
3474 		}
3475 	default:
3476 		break;
3477 	}
3478 }
3479 
3480 /**
3481  * _base_display_ioc_capabilities - Disply IOC's capabilities.
3482  * @ioc: per adapter object
3483  *
3484  * Return nothing.
3485  */
3486 static void
3487 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
3488 {
3489 	int i = 0;
3490 	char desc[16];
3491 	u32 iounit_pg1_flags;
3492 	u32 bios_version;
3493 
3494 	bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
3495 	strncpy(desc, ioc->manu_pg0.ChipName, 16);
3496 	pr_info(MPT3SAS_FMT "%s: FWVersion(%02d.%02d.%02d.%02d), "\
3497 	   "ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
3498 	    ioc->name, desc,
3499 	   (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
3500 	   (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
3501 	   (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
3502 	   ioc->facts.FWVersion.Word & 0x000000FF,
3503 	   ioc->pdev->revision,
3504 	   (bios_version & 0xFF000000) >> 24,
3505 	   (bios_version & 0x00FF0000) >> 16,
3506 	   (bios_version & 0x0000FF00) >> 8,
3507 	    bios_version & 0x000000FF);
3508 
3509 	_base_display_OEMs_branding(ioc);
3510 
3511 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
3512 		pr_info("%sNVMe", i ? "," : "");
3513 		i++;
3514 	}
3515 
3516 	pr_info(MPT3SAS_FMT "Protocol=(", ioc->name);
3517 
3518 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
3519 		pr_info("Initiator");
3520 		i++;
3521 	}
3522 
3523 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
3524 		pr_info("%sTarget", i ? "," : "");
3525 		i++;
3526 	}
3527 
3528 	i = 0;
3529 	pr_info("), ");
3530 	pr_info("Capabilities=(");
3531 
3532 	if (!ioc->hide_ir_msg) {
3533 		if (ioc->facts.IOCCapabilities &
3534 		    MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
3535 			pr_info("Raid");
3536 			i++;
3537 		}
3538 	}
3539 
3540 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
3541 		pr_info("%sTLR", i ? "," : "");
3542 		i++;
3543 	}
3544 
3545 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
3546 		pr_info("%sMulticast", i ? "," : "");
3547 		i++;
3548 	}
3549 
3550 	if (ioc->facts.IOCCapabilities &
3551 	    MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
3552 		pr_info("%sBIDI Target", i ? "," : "");
3553 		i++;
3554 	}
3555 
3556 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
3557 		pr_info("%sEEDP", i ? "," : "");
3558 		i++;
3559 	}
3560 
3561 	if (ioc->facts.IOCCapabilities &
3562 	    MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
3563 		pr_info("%sSnapshot Buffer", i ? "," : "");
3564 		i++;
3565 	}
3566 
3567 	if (ioc->facts.IOCCapabilities &
3568 	    MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
3569 		pr_info("%sDiag Trace Buffer", i ? "," : "");
3570 		i++;
3571 	}
3572 
3573 	if (ioc->facts.IOCCapabilities &
3574 	    MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
3575 		pr_info("%sDiag Extended Buffer", i ? "," : "");
3576 		i++;
3577 	}
3578 
3579 	if (ioc->facts.IOCCapabilities &
3580 	    MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
3581 		pr_info("%sTask Set Full", i ? "," : "");
3582 		i++;
3583 	}
3584 
3585 	iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
3586 	if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
3587 		pr_info("%sNCQ", i ? "," : "");
3588 		i++;
3589 	}
3590 
3591 	pr_info(")\n");
3592 }
3593 
3594 /**
3595  * mpt3sas_base_update_missing_delay - change the missing delay timers
3596  * @ioc: per adapter object
3597  * @device_missing_delay: amount of time till device is reported missing
3598  * @io_missing_delay: interval IO is returned when there is a missing device
3599  *
3600  * Return nothing.
3601  *
3602  * Passed on the command line, this function will modify the device missing
3603  * delay, as well as the io missing delay. This should be called at driver
3604  * load time.
3605  */
3606 void
3607 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
3608 	u16 device_missing_delay, u8 io_missing_delay)
3609 {
3610 	u16 dmd, dmd_new, dmd_orignal;
3611 	u8 io_missing_delay_original;
3612 	u16 sz;
3613 	Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
3614 	Mpi2ConfigReply_t mpi_reply;
3615 	u8 num_phys = 0;
3616 	u16 ioc_status;
3617 
3618 	mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
3619 	if (!num_phys)
3620 		return;
3621 
3622 	sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
3623 	    sizeof(Mpi2SasIOUnit1PhyData_t));
3624 	sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
3625 	if (!sas_iounit_pg1) {
3626 		pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
3627 		    ioc->name, __FILE__, __LINE__, __func__);
3628 		goto out;
3629 	}
3630 	if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
3631 	    sas_iounit_pg1, sz))) {
3632 		pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
3633 		    ioc->name, __FILE__, __LINE__, __func__);
3634 		goto out;
3635 	}
3636 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
3637 	    MPI2_IOCSTATUS_MASK;
3638 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
3639 		pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
3640 		    ioc->name, __FILE__, __LINE__, __func__);
3641 		goto out;
3642 	}
3643 
3644 	/* device missing delay */
3645 	dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
3646 	if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
3647 		dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
3648 	else
3649 		dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
3650 	dmd_orignal = dmd;
3651 	if (device_missing_delay > 0x7F) {
3652 		dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
3653 		    device_missing_delay;
3654 		dmd = dmd / 16;
3655 		dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
3656 	} else
3657 		dmd = device_missing_delay;
3658 	sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
3659 
3660 	/* io missing delay */
3661 	io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
3662 	sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
3663 
3664 	if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
3665 	    sz)) {
3666 		if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
3667 			dmd_new = (dmd &
3668 			    MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
3669 		else
3670 			dmd_new =
3671 		    dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
3672 		pr_info(MPT3SAS_FMT "device_missing_delay: old(%d), new(%d)\n",
3673 			ioc->name, dmd_orignal, dmd_new);
3674 		pr_info(MPT3SAS_FMT "ioc_missing_delay: old(%d), new(%d)\n",
3675 			ioc->name, io_missing_delay_original,
3676 		    io_missing_delay);
3677 		ioc->device_missing_delay = dmd_new;
3678 		ioc->io_missing_delay = io_missing_delay;
3679 	}
3680 
3681 out:
3682 	kfree(sas_iounit_pg1);
3683 }
3684 /**
3685  * _base_static_config_pages - static start of day config pages
3686  * @ioc: per adapter object
3687  *
3688  * Return nothing.
3689  */
3690 static void
3691 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
3692 {
3693 	Mpi2ConfigReply_t mpi_reply;
3694 	u32 iounit_pg1_flags;
3695 
3696 	mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
3697 	if (ioc->ir_firmware)
3698 		mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
3699 		    &ioc->manu_pg10);
3700 
3701 	/*
3702 	 * Ensure correct T10 PI operation if vendor left EEDPTagMode
3703 	 * flag unset in NVDATA.
3704 	 */
3705 	mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
3706 	if (ioc->manu_pg11.EEDPTagMode == 0) {
3707 		pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
3708 		    ioc->name);
3709 		ioc->manu_pg11.EEDPTagMode &= ~0x3;
3710 		ioc->manu_pg11.EEDPTagMode |= 0x1;
3711 		mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
3712 		    &ioc->manu_pg11);
3713 	}
3714 
3715 	mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
3716 	mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
3717 	mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
3718 	mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
3719 	mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
3720 	mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
3721 	_base_display_ioc_capabilities(ioc);
3722 
3723 	/*
3724 	 * Enable task_set_full handling in iounit_pg1 when the
3725 	 * facts capabilities indicate that its supported.
3726 	 */
3727 	iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
3728 	if ((ioc->facts.IOCCapabilities &
3729 	    MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
3730 		iounit_pg1_flags &=
3731 		    ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
3732 	else
3733 		iounit_pg1_flags |=
3734 		    MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
3735 	ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
3736 	mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
3737 
3738 	if (ioc->iounit_pg8.NumSensors)
3739 		ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
3740 }
3741 
3742 /**
3743  * _base_release_memory_pools - release memory
3744  * @ioc: per adapter object
3745  *
3746  * Free memory allocated from _base_allocate_memory_pools.
3747  *
3748  * Return nothing.
3749  */
3750 static void
3751 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
3752 {
3753 	int i = 0;
3754 	struct reply_post_struct *rps;
3755 
3756 	dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3757 	    __func__));
3758 
3759 	if (ioc->request) {
3760 		pci_free_consistent(ioc->pdev, ioc->request_dma_sz,
3761 		    ioc->request,  ioc->request_dma);
3762 		dexitprintk(ioc, pr_info(MPT3SAS_FMT
3763 			"request_pool(0x%p): free\n",
3764 			ioc->name, ioc->request));
3765 		ioc->request = NULL;
3766 	}
3767 
3768 	if (ioc->sense) {
3769 		dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
3770 		dma_pool_destroy(ioc->sense_dma_pool);
3771 		dexitprintk(ioc, pr_info(MPT3SAS_FMT
3772 			"sense_pool(0x%p): free\n",
3773 			ioc->name, ioc->sense));
3774 		ioc->sense = NULL;
3775 	}
3776 
3777 	if (ioc->reply) {
3778 		dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
3779 		dma_pool_destroy(ioc->reply_dma_pool);
3780 		dexitprintk(ioc, pr_info(MPT3SAS_FMT
3781 			"reply_pool(0x%p): free\n",
3782 			ioc->name, ioc->reply));
3783 		ioc->reply = NULL;
3784 	}
3785 
3786 	if (ioc->reply_free) {
3787 		dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
3788 		    ioc->reply_free_dma);
3789 		dma_pool_destroy(ioc->reply_free_dma_pool);
3790 		dexitprintk(ioc, pr_info(MPT3SAS_FMT
3791 			"reply_free_pool(0x%p): free\n",
3792 			ioc->name, ioc->reply_free));
3793 		ioc->reply_free = NULL;
3794 	}
3795 
3796 	if (ioc->reply_post) {
3797 		do {
3798 			rps = &ioc->reply_post[i];
3799 			if (rps->reply_post_free) {
3800 				dma_pool_free(
3801 				    ioc->reply_post_free_dma_pool,
3802 				    rps->reply_post_free,
3803 				    rps->reply_post_free_dma);
3804 				dexitprintk(ioc, pr_info(MPT3SAS_FMT
3805 				    "reply_post_free_pool(0x%p): free\n",
3806 				    ioc->name, rps->reply_post_free));
3807 				rps->reply_post_free = NULL;
3808 			}
3809 		} while (ioc->rdpq_array_enable &&
3810 			   (++i < ioc->reply_queue_count));
3811 
3812 		dma_pool_destroy(ioc->reply_post_free_dma_pool);
3813 		kfree(ioc->reply_post);
3814 	}
3815 
3816 	if (ioc->pcie_sgl_dma_pool) {
3817 		for (i = 0; i < ioc->scsiio_depth; i++) {
3818 			dma_pool_free(ioc->pcie_sgl_dma_pool,
3819 					ioc->pcie_sg_lookup[i].pcie_sgl,
3820 					ioc->pcie_sg_lookup[i].pcie_sgl_dma);
3821 		}
3822 		if (ioc->pcie_sgl_dma_pool)
3823 			dma_pool_destroy(ioc->pcie_sgl_dma_pool);
3824 	}
3825 
3826 	if (ioc->config_page) {
3827 		dexitprintk(ioc, pr_info(MPT3SAS_FMT
3828 		    "config_page(0x%p): free\n", ioc->name,
3829 		    ioc->config_page));
3830 		pci_free_consistent(ioc->pdev, ioc->config_page_sz,
3831 		    ioc->config_page, ioc->config_page_dma);
3832 	}
3833 
3834 	kfree(ioc->hpr_lookup);
3835 	kfree(ioc->internal_lookup);
3836 	if (ioc->chain_lookup) {
3837 		for (i = 0; i < ioc->chain_depth; i++) {
3838 			if (ioc->chain_lookup[i].chain_buffer)
3839 				dma_pool_free(ioc->chain_dma_pool,
3840 				    ioc->chain_lookup[i].chain_buffer,
3841 				    ioc->chain_lookup[i].chain_buffer_dma);
3842 		}
3843 		dma_pool_destroy(ioc->chain_dma_pool);
3844 		free_pages((ulong)ioc->chain_lookup, ioc->chain_pages);
3845 		ioc->chain_lookup = NULL;
3846 	}
3847 }
3848 
3849 /**
3850  * _base_allocate_memory_pools - allocate start of day memory pools
3851  * @ioc: per adapter object
3852  *
3853  * Returns 0 success, anything else error
3854  */
3855 static int
3856 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
3857 {
3858 	struct mpt3sas_facts *facts;
3859 	u16 max_sge_elements;
3860 	u16 chains_needed_per_io;
3861 	u32 sz, total_sz, reply_post_free_sz;
3862 	u32 retry_sz;
3863 	u16 max_request_credit, nvme_blocks_needed;
3864 	unsigned short sg_tablesize;
3865 	u16 sge_size;
3866 	int i;
3867 
3868 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3869 	    __func__));
3870 
3871 
3872 	retry_sz = 0;
3873 	facts = &ioc->facts;
3874 
3875 	/* command line tunables for max sgl entries */
3876 	if (max_sgl_entries != -1)
3877 		sg_tablesize = max_sgl_entries;
3878 	else {
3879 		if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
3880 			sg_tablesize = MPT2SAS_SG_DEPTH;
3881 		else
3882 			sg_tablesize = MPT3SAS_SG_DEPTH;
3883 	}
3884 
3885 	/* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
3886 	if (reset_devices)
3887 		sg_tablesize = min_t(unsigned short, sg_tablesize,
3888 		   MPT_KDUMP_MIN_PHYS_SEGMENTS);
3889 
3890 	if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
3891 		sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
3892 	else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
3893 		sg_tablesize = min_t(unsigned short, sg_tablesize,
3894 				      SG_MAX_SEGMENTS);
3895 		pr_warn(MPT3SAS_FMT
3896 		 "sg_tablesize(%u) is bigger than kernel"
3897 		 " defined SG_CHUNK_SIZE(%u)\n", ioc->name,
3898 		 sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
3899 	}
3900 	ioc->shost->sg_tablesize = sg_tablesize;
3901 
3902 	ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
3903 		(facts->RequestCredit / 4));
3904 	if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
3905 		if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
3906 				INTERNAL_SCSIIO_CMDS_COUNT)) {
3907 			pr_err(MPT3SAS_FMT "IOC doesn't have enough Request \
3908 			    Credits, it has just %d number of credits\n",
3909 			    ioc->name, facts->RequestCredit);
3910 			return -ENOMEM;
3911 		}
3912 		ioc->internal_depth = 10;
3913 	}
3914 
3915 	ioc->hi_priority_depth = ioc->internal_depth - (5);
3916 	/* command line tunables  for max controller queue depth */
3917 	if (max_queue_depth != -1 && max_queue_depth != 0) {
3918 		max_request_credit = min_t(u16, max_queue_depth +
3919 			ioc->internal_depth, facts->RequestCredit);
3920 		if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
3921 			max_request_credit =  MAX_HBA_QUEUE_DEPTH;
3922 	} else if (reset_devices)
3923 		max_request_credit = min_t(u16, facts->RequestCredit,
3924 		    (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth));
3925 	else
3926 		max_request_credit = min_t(u16, facts->RequestCredit,
3927 		    MAX_HBA_QUEUE_DEPTH);
3928 
3929 	/* Firmware maintains additional facts->HighPriorityCredit number of
3930 	 * credits for HiPriprity Request messages, so hba queue depth will be
3931 	 * sum of max_request_credit and high priority queue depth.
3932 	 */
3933 	ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
3934 
3935 	/* request frame size */
3936 	ioc->request_sz = facts->IOCRequestFrameSize * 4;
3937 
3938 	/* reply frame size */
3939 	ioc->reply_sz = facts->ReplyFrameSize * 4;
3940 
3941 	/* chain segment size */
3942 	if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
3943 		if (facts->IOCMaxChainSegmentSize)
3944 			ioc->chain_segment_sz =
3945 					facts->IOCMaxChainSegmentSize *
3946 					MAX_CHAIN_ELEMT_SZ;
3947 		else
3948 		/* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
3949 			ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
3950 						    MAX_CHAIN_ELEMT_SZ;
3951 	} else
3952 		ioc->chain_segment_sz = ioc->request_sz;
3953 
3954 	/* calculate the max scatter element size */
3955 	sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
3956 
3957  retry_allocation:
3958 	total_sz = 0;
3959 	/* calculate number of sg elements left over in the 1st frame */
3960 	max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
3961 	    sizeof(Mpi2SGEIOUnion_t)) + sge_size);
3962 	ioc->max_sges_in_main_message = max_sge_elements/sge_size;
3963 
3964 	/* now do the same for a chain buffer */
3965 	max_sge_elements = ioc->chain_segment_sz - sge_size;
3966 	ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
3967 
3968 	/*
3969 	 *  MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
3970 	 */
3971 	chains_needed_per_io = ((ioc->shost->sg_tablesize -
3972 	   ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
3973 	    + 1;
3974 	if (chains_needed_per_io > facts->MaxChainDepth) {
3975 		chains_needed_per_io = facts->MaxChainDepth;
3976 		ioc->shost->sg_tablesize = min_t(u16,
3977 		ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
3978 		* chains_needed_per_io), ioc->shost->sg_tablesize);
3979 	}
3980 	ioc->chains_needed_per_io = chains_needed_per_io;
3981 
3982 	/* reply free queue sizing - taking into account for 64 FW events */
3983 	ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
3984 
3985 	/* calculate reply descriptor post queue depth */
3986 	ioc->reply_post_queue_depth = ioc->hba_queue_depth +
3987 				ioc->reply_free_queue_depth +  1 ;
3988 	/* align the reply post queue on the next 16 count boundary */
3989 	if (ioc->reply_post_queue_depth % 16)
3990 		ioc->reply_post_queue_depth += 16 -
3991 		(ioc->reply_post_queue_depth % 16);
3992 
3993 	if (ioc->reply_post_queue_depth >
3994 	    facts->MaxReplyDescriptorPostQueueDepth) {
3995 		ioc->reply_post_queue_depth =
3996 				facts->MaxReplyDescriptorPostQueueDepth -
3997 		    (facts->MaxReplyDescriptorPostQueueDepth % 16);
3998 		ioc->hba_queue_depth =
3999 				((ioc->reply_post_queue_depth - 64) / 2) - 1;
4000 		ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
4001 	}
4002 
4003 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "scatter gather: " \
4004 	    "sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), "
4005 	    "chains_per_io(%d)\n", ioc->name, ioc->max_sges_in_main_message,
4006 	    ioc->max_sges_in_chain_message, ioc->shost->sg_tablesize,
4007 	    ioc->chains_needed_per_io));
4008 
4009 	/* reply post queue, 16 byte align */
4010 	reply_post_free_sz = ioc->reply_post_queue_depth *
4011 	    sizeof(Mpi2DefaultReplyDescriptor_t);
4012 
4013 	sz = reply_post_free_sz;
4014 	if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
4015 		sz *= ioc->reply_queue_count;
4016 
4017 	ioc->reply_post = kcalloc((ioc->rdpq_array_enable) ?
4018 	    (ioc->reply_queue_count):1,
4019 	    sizeof(struct reply_post_struct), GFP_KERNEL);
4020 
4021 	if (!ioc->reply_post) {
4022 		pr_err(MPT3SAS_FMT "reply_post_free pool: kcalloc failed\n",
4023 			ioc->name);
4024 		goto out;
4025 	}
4026 	ioc->reply_post_free_dma_pool = dma_pool_create("reply_post_free pool",
4027 	    &ioc->pdev->dev, sz, 16, 0);
4028 	if (!ioc->reply_post_free_dma_pool) {
4029 		pr_err(MPT3SAS_FMT
4030 		 "reply_post_free pool: dma_pool_create failed\n",
4031 		 ioc->name);
4032 		goto out;
4033 	}
4034 	i = 0;
4035 	do {
4036 		ioc->reply_post[i].reply_post_free =
4037 		    dma_pool_alloc(ioc->reply_post_free_dma_pool,
4038 		    GFP_KERNEL,
4039 		    &ioc->reply_post[i].reply_post_free_dma);
4040 		if (!ioc->reply_post[i].reply_post_free) {
4041 			pr_err(MPT3SAS_FMT
4042 			"reply_post_free pool: dma_pool_alloc failed\n",
4043 			ioc->name);
4044 			goto out;
4045 		}
4046 		memset(ioc->reply_post[i].reply_post_free, 0, sz);
4047 		dinitprintk(ioc, pr_info(MPT3SAS_FMT
4048 		    "reply post free pool (0x%p): depth(%d),"
4049 		    "element_size(%d), pool_size(%d kB)\n", ioc->name,
4050 		    ioc->reply_post[i].reply_post_free,
4051 		    ioc->reply_post_queue_depth, 8, sz/1024));
4052 		dinitprintk(ioc, pr_info(MPT3SAS_FMT
4053 		    "reply_post_free_dma = (0x%llx)\n", ioc->name,
4054 		    (unsigned long long)
4055 		    ioc->reply_post[i].reply_post_free_dma));
4056 		total_sz += sz;
4057 	} while (ioc->rdpq_array_enable && (++i < ioc->reply_queue_count));
4058 
4059 	if (ioc->dma_mask == 64) {
4060 		if (_base_change_consistent_dma_mask(ioc, ioc->pdev) != 0) {
4061 			pr_warn(MPT3SAS_FMT
4062 			    "no suitable consistent DMA mask for %s\n",
4063 			    ioc->name, pci_name(ioc->pdev));
4064 			goto out;
4065 		}
4066 	}
4067 
4068 	ioc->scsiio_depth = ioc->hba_queue_depth -
4069 	    ioc->hi_priority_depth - ioc->internal_depth;
4070 
4071 	/* set the scsi host can_queue depth
4072 	 * with some internal commands that could be outstanding
4073 	 */
4074 	ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
4075 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
4076 		"scsi host: can_queue depth (%d)\n",
4077 		ioc->name, ioc->shost->can_queue));
4078 
4079 
4080 	/* contiguous pool for request and chains, 16 byte align, one extra "
4081 	 * "frame for smid=0
4082 	 */
4083 	ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
4084 	sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
4085 
4086 	/* hi-priority queue */
4087 	sz += (ioc->hi_priority_depth * ioc->request_sz);
4088 
4089 	/* internal queue */
4090 	sz += (ioc->internal_depth * ioc->request_sz);
4091 
4092 	ioc->request_dma_sz = sz;
4093 	ioc->request = pci_alloc_consistent(ioc->pdev, sz, &ioc->request_dma);
4094 	if (!ioc->request) {
4095 		pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
4096 		    "failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
4097 		    "total(%d kB)\n", ioc->name, ioc->hba_queue_depth,
4098 		    ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
4099 		if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
4100 			goto out;
4101 		retry_sz = 64;
4102 		ioc->hba_queue_depth -= retry_sz;
4103 		_base_release_memory_pools(ioc);
4104 		goto retry_allocation;
4105 	}
4106 
4107 	if (retry_sz)
4108 		pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
4109 		    "succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
4110 		    "total(%d kb)\n", ioc->name, ioc->hba_queue_depth,
4111 		    ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
4112 
4113 	/* hi-priority queue */
4114 	ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
4115 	    ioc->request_sz);
4116 	ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
4117 	    ioc->request_sz);
4118 
4119 	/* internal queue */
4120 	ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
4121 	    ioc->request_sz);
4122 	ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
4123 	    ioc->request_sz);
4124 
4125 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
4126 		"request pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
4127 		ioc->name, ioc->request, ioc->hba_queue_depth, ioc->request_sz,
4128 	    (ioc->hba_queue_depth * ioc->request_sz)/1024));
4129 
4130 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "request pool: dma(0x%llx)\n",
4131 	    ioc->name, (unsigned long long) ioc->request_dma));
4132 	total_sz += sz;
4133 
4134 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "scsiio(0x%p): depth(%d)\n",
4135 		ioc->name, ioc->request, ioc->scsiio_depth));
4136 
4137 	ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
4138 	sz = ioc->chain_depth * sizeof(struct chain_tracker);
4139 	ioc->chain_pages = get_order(sz);
4140 	ioc->chain_lookup = (struct chain_tracker *)__get_free_pages(
4141 	    GFP_KERNEL, ioc->chain_pages);
4142 	if (!ioc->chain_lookup) {
4143 		pr_err(MPT3SAS_FMT "chain_lookup: __get_free_pages failed\n",
4144 			ioc->name);
4145 		goto out;
4146 	}
4147 	ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev,
4148 	    ioc->chain_segment_sz, 16, 0);
4149 	if (!ioc->chain_dma_pool) {
4150 		pr_err(MPT3SAS_FMT "chain_dma_pool: dma_pool_create failed\n",
4151 			ioc->name);
4152 		goto out;
4153 	}
4154 	for (i = 0; i < ioc->chain_depth; i++) {
4155 		ioc->chain_lookup[i].chain_buffer = dma_pool_alloc(
4156 		    ioc->chain_dma_pool , GFP_KERNEL,
4157 		    &ioc->chain_lookup[i].chain_buffer_dma);
4158 		if (!ioc->chain_lookup[i].chain_buffer) {
4159 			ioc->chain_depth = i;
4160 			goto chain_done;
4161 		}
4162 		total_sz += ioc->chain_segment_sz;
4163 	}
4164  chain_done:
4165 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
4166 		"chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
4167 		ioc->name, ioc->chain_depth, ioc->chain_segment_sz,
4168 		((ioc->chain_depth *  ioc->chain_segment_sz))/1024));
4169 
4170 	/* initialize hi-priority queue smid's */
4171 	ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
4172 	    sizeof(struct request_tracker), GFP_KERNEL);
4173 	if (!ioc->hpr_lookup) {
4174 		pr_err(MPT3SAS_FMT "hpr_lookup: kcalloc failed\n",
4175 		    ioc->name);
4176 		goto out;
4177 	}
4178 	ioc->hi_priority_smid = ioc->scsiio_depth + 1;
4179 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
4180 		"hi_priority(0x%p): depth(%d), start smid(%d)\n",
4181 		ioc->name, ioc->hi_priority,
4182 	    ioc->hi_priority_depth, ioc->hi_priority_smid));
4183 
4184 	/* initialize internal queue smid's */
4185 	ioc->internal_lookup = kcalloc(ioc->internal_depth,
4186 	    sizeof(struct request_tracker), GFP_KERNEL);
4187 	if (!ioc->internal_lookup) {
4188 		pr_err(MPT3SAS_FMT "internal_lookup: kcalloc failed\n",
4189 		    ioc->name);
4190 		goto out;
4191 	}
4192 	ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
4193 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
4194 		"internal(0x%p): depth(%d), start smid(%d)\n",
4195 		ioc->name, ioc->internal,
4196 	    ioc->internal_depth, ioc->internal_smid));
4197 	/*
4198 	 * The number of NVMe page sized blocks needed is:
4199 	 *     (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
4200 	 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
4201 	 * that is placed in the main message frame.  8 is the size of each PRP
4202 	 * entry or PRP list pointer entry.  8 is subtracted from page_size
4203 	 * because of the PRP list pointer entry at the end of a page, so this
4204 	 * is not counted as a PRP entry.  The 1 added page is a round up.
4205 	 *
4206 	 * To avoid allocation failures due to the amount of memory that could
4207 	 * be required for NVMe PRP's, only each set of NVMe blocks will be
4208 	 * contiguous, so a new set is allocated for each possible I/O.
4209 	 */
4210 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
4211 		nvme_blocks_needed =
4212 			(ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1;
4213 		nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE);
4214 		nvme_blocks_needed++;
4215 
4216 		sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth;
4217 		ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL);
4218 		if (!ioc->pcie_sg_lookup) {
4219 			pr_info(MPT3SAS_FMT
4220 			    "PCIe SGL lookup: kzalloc failed\n", ioc->name);
4221 			goto out;
4222 		}
4223 		sz = nvme_blocks_needed * ioc->page_size;
4224 		ioc->pcie_sgl_dma_pool =
4225 			dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz, 16, 0);
4226 		if (!ioc->pcie_sgl_dma_pool) {
4227 			pr_info(MPT3SAS_FMT
4228 			    "PCIe SGL pool: dma_pool_create failed\n",
4229 			    ioc->name);
4230 			goto out;
4231 		}
4232 		for (i = 0; i < ioc->scsiio_depth; i++) {
4233 			ioc->pcie_sg_lookup[i].pcie_sgl = dma_pool_alloc(
4234 				ioc->pcie_sgl_dma_pool, GFP_KERNEL,
4235 				&ioc->pcie_sg_lookup[i].pcie_sgl_dma);
4236 			if (!ioc->pcie_sg_lookup[i].pcie_sgl) {
4237 				pr_info(MPT3SAS_FMT
4238 				    "PCIe SGL pool: dma_pool_alloc failed\n",
4239 				    ioc->name);
4240 				goto out;
4241 			}
4242 		}
4243 
4244 		dinitprintk(ioc, pr_info(MPT3SAS_FMT "PCIe sgl pool depth(%d), "
4245 			"element_size(%d), pool_size(%d kB)\n", ioc->name,
4246 			ioc->scsiio_depth, sz, (sz * ioc->scsiio_depth)/1024));
4247 		total_sz += sz * ioc->scsiio_depth;
4248 	}
4249 	/* sense buffers, 4 byte align */
4250 	sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
4251 	ioc->sense_dma_pool = dma_pool_create("sense pool", &ioc->pdev->dev, sz,
4252 					      4, 0);
4253 	if (!ioc->sense_dma_pool) {
4254 		pr_err(MPT3SAS_FMT "sense pool: dma_pool_create failed\n",
4255 		    ioc->name);
4256 		goto out;
4257 	}
4258 	ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
4259 	    &ioc->sense_dma);
4260 	if (!ioc->sense) {
4261 		pr_err(MPT3SAS_FMT "sense pool: dma_pool_alloc failed\n",
4262 		    ioc->name);
4263 		goto out;
4264 	}
4265 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
4266 	    "sense pool(0x%p): depth(%d), element_size(%d), pool_size"
4267 	    "(%d kB)\n", ioc->name, ioc->sense, ioc->scsiio_depth,
4268 	    SCSI_SENSE_BUFFERSIZE, sz/1024));
4269 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "sense_dma(0x%llx)\n",
4270 	    ioc->name, (unsigned long long)ioc->sense_dma));
4271 	total_sz += sz;
4272 
4273 	/* reply pool, 4 byte align */
4274 	sz = ioc->reply_free_queue_depth * ioc->reply_sz;
4275 	ioc->reply_dma_pool = dma_pool_create("reply pool", &ioc->pdev->dev, sz,
4276 					      4, 0);
4277 	if (!ioc->reply_dma_pool) {
4278 		pr_err(MPT3SAS_FMT "reply pool: dma_pool_create failed\n",
4279 		    ioc->name);
4280 		goto out;
4281 	}
4282 	ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL,
4283 	    &ioc->reply_dma);
4284 	if (!ioc->reply) {
4285 		pr_err(MPT3SAS_FMT "reply pool: dma_pool_alloc failed\n",
4286 		    ioc->name);
4287 		goto out;
4288 	}
4289 	ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
4290 	ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
4291 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
4292 		"reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
4293 		ioc->name, ioc->reply,
4294 	    ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024));
4295 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_dma(0x%llx)\n",
4296 	    ioc->name, (unsigned long long)ioc->reply_dma));
4297 	total_sz += sz;
4298 
4299 	/* reply free queue, 16 byte align */
4300 	sz = ioc->reply_free_queue_depth * 4;
4301 	ioc->reply_free_dma_pool = dma_pool_create("reply_free pool",
4302 	    &ioc->pdev->dev, sz, 16, 0);
4303 	if (!ioc->reply_free_dma_pool) {
4304 		pr_err(MPT3SAS_FMT "reply_free pool: dma_pool_create failed\n",
4305 			ioc->name);
4306 		goto out;
4307 	}
4308 	ioc->reply_free = dma_pool_alloc(ioc->reply_free_dma_pool, GFP_KERNEL,
4309 	    &ioc->reply_free_dma);
4310 	if (!ioc->reply_free) {
4311 		pr_err(MPT3SAS_FMT "reply_free pool: dma_pool_alloc failed\n",
4312 			ioc->name);
4313 		goto out;
4314 	}
4315 	memset(ioc->reply_free, 0, sz);
4316 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_free pool(0x%p): " \
4317 	    "depth(%d), element_size(%d), pool_size(%d kB)\n", ioc->name,
4318 	    ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
4319 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
4320 		"reply_free_dma (0x%llx)\n",
4321 		ioc->name, (unsigned long long)ioc->reply_free_dma));
4322 	total_sz += sz;
4323 
4324 	ioc->config_page_sz = 512;
4325 	ioc->config_page = pci_alloc_consistent(ioc->pdev,
4326 	    ioc->config_page_sz, &ioc->config_page_dma);
4327 	if (!ioc->config_page) {
4328 		pr_err(MPT3SAS_FMT
4329 			"config page: dma_pool_alloc failed\n",
4330 			ioc->name);
4331 		goto out;
4332 	}
4333 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
4334 		"config page(0x%p): size(%d)\n",
4335 		ioc->name, ioc->config_page, ioc->config_page_sz));
4336 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "config_page_dma(0x%llx)\n",
4337 		ioc->name, (unsigned long long)ioc->config_page_dma));
4338 	total_sz += ioc->config_page_sz;
4339 
4340 	pr_info(MPT3SAS_FMT "Allocated physical memory: size(%d kB)\n",
4341 	    ioc->name, total_sz/1024);
4342 	pr_info(MPT3SAS_FMT
4343 		"Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
4344 	    ioc->name, ioc->shost->can_queue, facts->RequestCredit);
4345 	pr_info(MPT3SAS_FMT "Scatter Gather Elements per IO(%d)\n",
4346 	    ioc->name, ioc->shost->sg_tablesize);
4347 	return 0;
4348 
4349  out:
4350 	return -ENOMEM;
4351 }
4352 
4353 /**
4354  * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
4355  * @ioc: Pointer to MPT_ADAPTER structure
4356  * @cooked: Request raw or cooked IOC state
4357  *
4358  * Returns all IOC Doorbell register bits if cooked==0, else just the
4359  * Doorbell bits in MPI_IOC_STATE_MASK.
4360  */
4361 u32
4362 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
4363 {
4364 	u32 s, sc;
4365 
4366 	s = readl(&ioc->chip->Doorbell);
4367 	sc = s & MPI2_IOC_STATE_MASK;
4368 	return cooked ? sc : s;
4369 }
4370 
4371 /**
4372  * _base_wait_on_iocstate - waiting on a particular ioc state
4373  * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
4374  * @timeout: timeout in second
4375  *
4376  * Returns 0 for success, non-zero for failure.
4377  */
4378 static int
4379 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
4380 {
4381 	u32 count, cntdn;
4382 	u32 current_state;
4383 
4384 	count = 0;
4385 	cntdn = 1000 * timeout;
4386 	do {
4387 		current_state = mpt3sas_base_get_iocstate(ioc, 1);
4388 		if (current_state == ioc_state)
4389 			return 0;
4390 		if (count && current_state == MPI2_IOC_STATE_FAULT)
4391 			break;
4392 
4393 		usleep_range(1000, 1500);
4394 		count++;
4395 	} while (--cntdn);
4396 
4397 	return current_state;
4398 }
4399 
4400 /**
4401  * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
4402  * a write to the doorbell)
4403  * @ioc: per adapter object
4404  * @timeout: timeout in second
4405  *
4406  * Returns 0 for success, non-zero for failure.
4407  *
4408  * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
4409  */
4410 static int
4411 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
4412 
4413 static int
4414 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
4415 {
4416 	u32 cntdn, count;
4417 	u32 int_status;
4418 
4419 	count = 0;
4420 	cntdn = 1000 * timeout;
4421 	do {
4422 		int_status = readl(&ioc->chip->HostInterruptStatus);
4423 		if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
4424 			dhsprintk(ioc, pr_info(MPT3SAS_FMT
4425 				"%s: successful count(%d), timeout(%d)\n",
4426 				ioc->name, __func__, count, timeout));
4427 			return 0;
4428 		}
4429 
4430 		usleep_range(1000, 1500);
4431 		count++;
4432 	} while (--cntdn);
4433 
4434 	pr_err(MPT3SAS_FMT
4435 		"%s: failed due to timeout count(%d), int_status(%x)!\n",
4436 		ioc->name, __func__, count, int_status);
4437 	return -EFAULT;
4438 }
4439 
4440 static int
4441 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
4442 {
4443 	u32 cntdn, count;
4444 	u32 int_status;
4445 
4446 	count = 0;
4447 	cntdn = 2000 * timeout;
4448 	do {
4449 		int_status = readl(&ioc->chip->HostInterruptStatus);
4450 		if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
4451 			dhsprintk(ioc, pr_info(MPT3SAS_FMT
4452 				"%s: successful count(%d), timeout(%d)\n",
4453 				ioc->name, __func__, count, timeout));
4454 			return 0;
4455 		}
4456 
4457 		udelay(500);
4458 		count++;
4459 	} while (--cntdn);
4460 
4461 	pr_err(MPT3SAS_FMT
4462 		"%s: failed due to timeout count(%d), int_status(%x)!\n",
4463 		ioc->name, __func__, count, int_status);
4464 	return -EFAULT;
4465 
4466 }
4467 
4468 /**
4469  * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
4470  * @ioc: per adapter object
4471  * @timeout: timeout in second
4472  *
4473  * Returns 0 for success, non-zero for failure.
4474  *
4475  * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
4476  * doorbell.
4477  */
4478 static int
4479 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
4480 {
4481 	u32 cntdn, count;
4482 	u32 int_status;
4483 	u32 doorbell;
4484 
4485 	count = 0;
4486 	cntdn = 1000 * timeout;
4487 	do {
4488 		int_status = readl(&ioc->chip->HostInterruptStatus);
4489 		if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
4490 			dhsprintk(ioc, pr_info(MPT3SAS_FMT
4491 				"%s: successful count(%d), timeout(%d)\n",
4492 				ioc->name, __func__, count, timeout));
4493 			return 0;
4494 		} else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
4495 			doorbell = readl(&ioc->chip->Doorbell);
4496 			if ((doorbell & MPI2_IOC_STATE_MASK) ==
4497 			    MPI2_IOC_STATE_FAULT) {
4498 				mpt3sas_base_fault_info(ioc , doorbell);
4499 				return -EFAULT;
4500 			}
4501 		} else if (int_status == 0xFFFFFFFF)
4502 			goto out;
4503 
4504 		usleep_range(1000, 1500);
4505 		count++;
4506 	} while (--cntdn);
4507 
4508  out:
4509 	pr_err(MPT3SAS_FMT
4510 	 "%s: failed due to timeout count(%d), int_status(%x)!\n",
4511 	 ioc->name, __func__, count, int_status);
4512 	return -EFAULT;
4513 }
4514 
4515 /**
4516  * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
4517  * @ioc: per adapter object
4518  * @timeout: timeout in second
4519  *
4520  * Returns 0 for success, non-zero for failure.
4521  *
4522  */
4523 static int
4524 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
4525 {
4526 	u32 cntdn, count;
4527 	u32 doorbell_reg;
4528 
4529 	count = 0;
4530 	cntdn = 1000 * timeout;
4531 	do {
4532 		doorbell_reg = readl(&ioc->chip->Doorbell);
4533 		if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
4534 			dhsprintk(ioc, pr_info(MPT3SAS_FMT
4535 				"%s: successful count(%d), timeout(%d)\n",
4536 				ioc->name, __func__, count, timeout));
4537 			return 0;
4538 		}
4539 
4540 		usleep_range(1000, 1500);
4541 		count++;
4542 	} while (--cntdn);
4543 
4544 	pr_err(MPT3SAS_FMT
4545 		"%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
4546 		ioc->name, __func__, count, doorbell_reg);
4547 	return -EFAULT;
4548 }
4549 
4550 /**
4551  * _base_send_ioc_reset - send doorbell reset
4552  * @ioc: per adapter object
4553  * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
4554  * @timeout: timeout in second
4555  *
4556  * Returns 0 for success, non-zero for failure.
4557  */
4558 static int
4559 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
4560 {
4561 	u32 ioc_state;
4562 	int r = 0;
4563 
4564 	if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
4565 		pr_err(MPT3SAS_FMT "%s: unknown reset_type\n",
4566 		    ioc->name, __func__);
4567 		return -EFAULT;
4568 	}
4569 
4570 	if (!(ioc->facts.IOCCapabilities &
4571 	   MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
4572 		return -EFAULT;
4573 
4574 	pr_info(MPT3SAS_FMT "sending message unit reset !!\n", ioc->name);
4575 
4576 	writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
4577 	    &ioc->chip->Doorbell);
4578 	if ((_base_wait_for_doorbell_ack(ioc, 15))) {
4579 		r = -EFAULT;
4580 		goto out;
4581 	}
4582 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
4583 	if (ioc_state) {
4584 		pr_err(MPT3SAS_FMT
4585 			"%s: failed going to ready state (ioc_state=0x%x)\n",
4586 			ioc->name, __func__, ioc_state);
4587 		r = -EFAULT;
4588 		goto out;
4589 	}
4590  out:
4591 	pr_info(MPT3SAS_FMT "message unit reset: %s\n",
4592 	    ioc->name, ((r == 0) ? "SUCCESS" : "FAILED"));
4593 	return r;
4594 }
4595 
4596 /**
4597  * _base_handshake_req_reply_wait - send request thru doorbell interface
4598  * @ioc: per adapter object
4599  * @request_bytes: request length
4600  * @request: pointer having request payload
4601  * @reply_bytes: reply length
4602  * @reply: pointer to reply payload
4603  * @timeout: timeout in second
4604  *
4605  * Returns 0 for success, non-zero for failure.
4606  */
4607 static int
4608 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
4609 	u32 *request, int reply_bytes, u16 *reply, int timeout)
4610 {
4611 	MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
4612 	int i;
4613 	u8 failed;
4614 	__le32 *mfp;
4615 
4616 	/* make sure doorbell is not in use */
4617 	if ((readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
4618 		pr_err(MPT3SAS_FMT
4619 			"doorbell is in use (line=%d)\n",
4620 			ioc->name, __LINE__);
4621 		return -EFAULT;
4622 	}
4623 
4624 	/* clear pending doorbell interrupts from previous state changes */
4625 	if (readl(&ioc->chip->HostInterruptStatus) &
4626 	    MPI2_HIS_IOC2SYS_DB_STATUS)
4627 		writel(0, &ioc->chip->HostInterruptStatus);
4628 
4629 	/* send message to ioc */
4630 	writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
4631 	    ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
4632 	    &ioc->chip->Doorbell);
4633 
4634 	if ((_base_spin_on_doorbell_int(ioc, 5))) {
4635 		pr_err(MPT3SAS_FMT
4636 			"doorbell handshake int failed (line=%d)\n",
4637 			ioc->name, __LINE__);
4638 		return -EFAULT;
4639 	}
4640 	writel(0, &ioc->chip->HostInterruptStatus);
4641 
4642 	if ((_base_wait_for_doorbell_ack(ioc, 5))) {
4643 		pr_err(MPT3SAS_FMT
4644 			"doorbell handshake ack failed (line=%d)\n",
4645 			ioc->name, __LINE__);
4646 		return -EFAULT;
4647 	}
4648 
4649 	/* send message 32-bits at a time */
4650 	for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
4651 		writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
4652 		if ((_base_wait_for_doorbell_ack(ioc, 5)))
4653 			failed = 1;
4654 	}
4655 
4656 	if (failed) {
4657 		pr_err(MPT3SAS_FMT
4658 			"doorbell handshake sending request failed (line=%d)\n",
4659 			ioc->name, __LINE__);
4660 		return -EFAULT;
4661 	}
4662 
4663 	/* now wait for the reply */
4664 	if ((_base_wait_for_doorbell_int(ioc, timeout))) {
4665 		pr_err(MPT3SAS_FMT
4666 			"doorbell handshake int failed (line=%d)\n",
4667 			ioc->name, __LINE__);
4668 		return -EFAULT;
4669 	}
4670 
4671 	/* read the first two 16-bits, it gives the total length of the reply */
4672 	reply[0] = le16_to_cpu(readl(&ioc->chip->Doorbell)
4673 	    & MPI2_DOORBELL_DATA_MASK);
4674 	writel(0, &ioc->chip->HostInterruptStatus);
4675 	if ((_base_wait_for_doorbell_int(ioc, 5))) {
4676 		pr_err(MPT3SAS_FMT
4677 			"doorbell handshake int failed (line=%d)\n",
4678 			ioc->name, __LINE__);
4679 		return -EFAULT;
4680 	}
4681 	reply[1] = le16_to_cpu(readl(&ioc->chip->Doorbell)
4682 	    & MPI2_DOORBELL_DATA_MASK);
4683 	writel(0, &ioc->chip->HostInterruptStatus);
4684 
4685 	for (i = 2; i < default_reply->MsgLength * 2; i++)  {
4686 		if ((_base_wait_for_doorbell_int(ioc, 5))) {
4687 			pr_err(MPT3SAS_FMT
4688 				"doorbell handshake int failed (line=%d)\n",
4689 				ioc->name, __LINE__);
4690 			return -EFAULT;
4691 		}
4692 		if (i >=  reply_bytes/2) /* overflow case */
4693 			readl(&ioc->chip->Doorbell);
4694 		else
4695 			reply[i] = le16_to_cpu(readl(&ioc->chip->Doorbell)
4696 			    & MPI2_DOORBELL_DATA_MASK);
4697 		writel(0, &ioc->chip->HostInterruptStatus);
4698 	}
4699 
4700 	_base_wait_for_doorbell_int(ioc, 5);
4701 	if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
4702 		dhsprintk(ioc, pr_info(MPT3SAS_FMT
4703 			"doorbell is in use (line=%d)\n", ioc->name, __LINE__));
4704 	}
4705 	writel(0, &ioc->chip->HostInterruptStatus);
4706 
4707 	if (ioc->logging_level & MPT_DEBUG_INIT) {
4708 		mfp = (__le32 *)reply;
4709 		pr_info("\toffset:data\n");
4710 		for (i = 0; i < reply_bytes/4; i++)
4711 			pr_info("\t[0x%02x]:%08x\n", i*4,
4712 			    le32_to_cpu(mfp[i]));
4713 	}
4714 	return 0;
4715 }
4716 
4717 /**
4718  * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
4719  * @ioc: per adapter object
4720  * @mpi_reply: the reply payload from FW
4721  * @mpi_request: the request payload sent to FW
4722  *
4723  * The SAS IO Unit Control Request message allows the host to perform low-level
4724  * operations, such as resets on the PHYs of the IO Unit, also allows the host
4725  * to obtain the IOC assigned device handles for a device if it has other
4726  * identifying information about the device, in addition allows the host to
4727  * remove IOC resources associated with the device.
4728  *
4729  * Returns 0 for success, non-zero for failure.
4730  */
4731 int
4732 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
4733 	Mpi2SasIoUnitControlReply_t *mpi_reply,
4734 	Mpi2SasIoUnitControlRequest_t *mpi_request)
4735 {
4736 	u16 smid;
4737 	u32 ioc_state;
4738 	bool issue_reset = false;
4739 	int rc;
4740 	void *request;
4741 	u16 wait_state_count;
4742 
4743 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4744 	    __func__));
4745 
4746 	mutex_lock(&ioc->base_cmds.mutex);
4747 
4748 	if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
4749 		pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
4750 		    ioc->name, __func__);
4751 		rc = -EAGAIN;
4752 		goto out;
4753 	}
4754 
4755 	wait_state_count = 0;
4756 	ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4757 	while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
4758 		if (wait_state_count++ == 10) {
4759 			pr_err(MPT3SAS_FMT
4760 			    "%s: failed due to ioc not operational\n",
4761 			    ioc->name, __func__);
4762 			rc = -EFAULT;
4763 			goto out;
4764 		}
4765 		ssleep(1);
4766 		ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4767 		pr_info(MPT3SAS_FMT
4768 			"%s: waiting for operational state(count=%d)\n",
4769 			ioc->name, __func__, wait_state_count);
4770 	}
4771 
4772 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4773 	if (!smid) {
4774 		pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4775 		    ioc->name, __func__);
4776 		rc = -EAGAIN;
4777 		goto out;
4778 	}
4779 
4780 	rc = 0;
4781 	ioc->base_cmds.status = MPT3_CMD_PENDING;
4782 	request = mpt3sas_base_get_msg_frame(ioc, smid);
4783 	ioc->base_cmds.smid = smid;
4784 	memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
4785 	if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
4786 	    mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
4787 		ioc->ioc_link_reset_in_progress = 1;
4788 	init_completion(&ioc->base_cmds.done);
4789 	ioc->put_smid_default(ioc, smid);
4790 	wait_for_completion_timeout(&ioc->base_cmds.done,
4791 	    msecs_to_jiffies(10000));
4792 	if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
4793 	    mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
4794 	    ioc->ioc_link_reset_in_progress)
4795 		ioc->ioc_link_reset_in_progress = 0;
4796 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4797 		pr_err(MPT3SAS_FMT "%s: timeout\n",
4798 		    ioc->name, __func__);
4799 		_debug_dump_mf(mpi_request,
4800 		    sizeof(Mpi2SasIoUnitControlRequest_t)/4);
4801 		if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
4802 			issue_reset = true;
4803 		goto issue_host_reset;
4804 	}
4805 	if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
4806 		memcpy(mpi_reply, ioc->base_cmds.reply,
4807 		    sizeof(Mpi2SasIoUnitControlReply_t));
4808 	else
4809 		memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
4810 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4811 	goto out;
4812 
4813  issue_host_reset:
4814 	if (issue_reset)
4815 		mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
4816 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4817 	rc = -EFAULT;
4818  out:
4819 	mutex_unlock(&ioc->base_cmds.mutex);
4820 	return rc;
4821 }
4822 
4823 /**
4824  * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
4825  * @ioc: per adapter object
4826  * @mpi_reply: the reply payload from FW
4827  * @mpi_request: the request payload sent to FW
4828  *
4829  * The SCSI Enclosure Processor request message causes the IOC to
4830  * communicate with SES devices to control LED status signals.
4831  *
4832  * Returns 0 for success, non-zero for failure.
4833  */
4834 int
4835 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
4836 	Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
4837 {
4838 	u16 smid;
4839 	u32 ioc_state;
4840 	bool issue_reset = false;
4841 	int rc;
4842 	void *request;
4843 	u16 wait_state_count;
4844 
4845 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4846 	    __func__));
4847 
4848 	mutex_lock(&ioc->base_cmds.mutex);
4849 
4850 	if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
4851 		pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
4852 		    ioc->name, __func__);
4853 		rc = -EAGAIN;
4854 		goto out;
4855 	}
4856 
4857 	wait_state_count = 0;
4858 	ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4859 	while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
4860 		if (wait_state_count++ == 10) {
4861 			pr_err(MPT3SAS_FMT
4862 			    "%s: failed due to ioc not operational\n",
4863 			    ioc->name, __func__);
4864 			rc = -EFAULT;
4865 			goto out;
4866 		}
4867 		ssleep(1);
4868 		ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4869 		pr_info(MPT3SAS_FMT
4870 			"%s: waiting for operational state(count=%d)\n",
4871 			ioc->name,
4872 		    __func__, wait_state_count);
4873 	}
4874 
4875 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4876 	if (!smid) {
4877 		pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4878 		    ioc->name, __func__);
4879 		rc = -EAGAIN;
4880 		goto out;
4881 	}
4882 
4883 	rc = 0;
4884 	ioc->base_cmds.status = MPT3_CMD_PENDING;
4885 	request = mpt3sas_base_get_msg_frame(ioc, smid);
4886 	ioc->base_cmds.smid = smid;
4887 	memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
4888 	init_completion(&ioc->base_cmds.done);
4889 	ioc->put_smid_default(ioc, smid);
4890 	wait_for_completion_timeout(&ioc->base_cmds.done,
4891 	    msecs_to_jiffies(10000));
4892 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4893 		pr_err(MPT3SAS_FMT "%s: timeout\n",
4894 		    ioc->name, __func__);
4895 		_debug_dump_mf(mpi_request,
4896 		    sizeof(Mpi2SepRequest_t)/4);
4897 		if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
4898 			issue_reset = false;
4899 		goto issue_host_reset;
4900 	}
4901 	if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
4902 		memcpy(mpi_reply, ioc->base_cmds.reply,
4903 		    sizeof(Mpi2SepReply_t));
4904 	else
4905 		memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
4906 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4907 	goto out;
4908 
4909  issue_host_reset:
4910 	if (issue_reset)
4911 		mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
4912 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4913 	rc = -EFAULT;
4914  out:
4915 	mutex_unlock(&ioc->base_cmds.mutex);
4916 	return rc;
4917 }
4918 
4919 /**
4920  * _base_get_port_facts - obtain port facts reply and save in ioc
4921  * @ioc: per adapter object
4922  *
4923  * Returns 0 for success, non-zero for failure.
4924  */
4925 static int
4926 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
4927 {
4928 	Mpi2PortFactsRequest_t mpi_request;
4929 	Mpi2PortFactsReply_t mpi_reply;
4930 	struct mpt3sas_port_facts *pfacts;
4931 	int mpi_reply_sz, mpi_request_sz, r;
4932 
4933 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4934 	    __func__));
4935 
4936 	mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
4937 	mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
4938 	memset(&mpi_request, 0, mpi_request_sz);
4939 	mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
4940 	mpi_request.PortNumber = port;
4941 	r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
4942 	    (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
4943 
4944 	if (r != 0) {
4945 		pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4946 		    ioc->name, __func__, r);
4947 		return r;
4948 	}
4949 
4950 	pfacts = &ioc->pfacts[port];
4951 	memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
4952 	pfacts->PortNumber = mpi_reply.PortNumber;
4953 	pfacts->VP_ID = mpi_reply.VP_ID;
4954 	pfacts->VF_ID = mpi_reply.VF_ID;
4955 	pfacts->MaxPostedCmdBuffers =
4956 	    le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
4957 
4958 	return 0;
4959 }
4960 
4961 /**
4962  * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
4963  * @ioc: per adapter object
4964  * @timeout:
4965  *
4966  * Returns 0 for success, non-zero for failure.
4967  */
4968 static int
4969 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
4970 {
4971 	u32 ioc_state;
4972 	int rc;
4973 
4974 	dinitprintk(ioc, printk(MPT3SAS_FMT "%s\n", ioc->name,
4975 	    __func__));
4976 
4977 	if (ioc->pci_error_recovery) {
4978 		dfailprintk(ioc, printk(MPT3SAS_FMT
4979 		    "%s: host in pci error recovery\n", ioc->name, __func__));
4980 		return -EFAULT;
4981 	}
4982 
4983 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4984 	dhsprintk(ioc, printk(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
4985 	    ioc->name, __func__, ioc_state));
4986 
4987 	if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
4988 	    (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
4989 		return 0;
4990 
4991 	if (ioc_state & MPI2_DOORBELL_USED) {
4992 		dhsprintk(ioc, printk(MPT3SAS_FMT
4993 		    "unexpected doorbell active!\n", ioc->name));
4994 		goto issue_diag_reset;
4995 	}
4996 
4997 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
4998 		mpt3sas_base_fault_info(ioc, ioc_state &
4999 		    MPI2_DOORBELL_DATA_MASK);
5000 		goto issue_diag_reset;
5001 	}
5002 
5003 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
5004 	if (ioc_state) {
5005 		dfailprintk(ioc, printk(MPT3SAS_FMT
5006 		    "%s: failed going to ready state (ioc_state=0x%x)\n",
5007 		    ioc->name, __func__, ioc_state));
5008 		return -EFAULT;
5009 	}
5010 
5011  issue_diag_reset:
5012 	rc = _base_diag_reset(ioc);
5013 	return rc;
5014 }
5015 
5016 /**
5017  * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
5018  * @ioc: per adapter object
5019  *
5020  * Returns 0 for success, non-zero for failure.
5021  */
5022 static int
5023 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
5024 {
5025 	Mpi2IOCFactsRequest_t mpi_request;
5026 	Mpi2IOCFactsReply_t mpi_reply;
5027 	struct mpt3sas_facts *facts;
5028 	int mpi_reply_sz, mpi_request_sz, r;
5029 
5030 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5031 	    __func__));
5032 
5033 	r = _base_wait_for_iocstate(ioc, 10);
5034 	if (r) {
5035 		dfailprintk(ioc, printk(MPT3SAS_FMT
5036 		    "%s: failed getting to correct state\n",
5037 		    ioc->name, __func__));
5038 		return r;
5039 	}
5040 	mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
5041 	mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
5042 	memset(&mpi_request, 0, mpi_request_sz);
5043 	mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
5044 	r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
5045 	    (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
5046 
5047 	if (r != 0) {
5048 		pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
5049 		    ioc->name, __func__, r);
5050 		return r;
5051 	}
5052 
5053 	facts = &ioc->facts;
5054 	memset(facts, 0, sizeof(struct mpt3sas_facts));
5055 	facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
5056 	facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
5057 	facts->VP_ID = mpi_reply.VP_ID;
5058 	facts->VF_ID = mpi_reply.VF_ID;
5059 	facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
5060 	facts->MaxChainDepth = mpi_reply.MaxChainDepth;
5061 	facts->WhoInit = mpi_reply.WhoInit;
5062 	facts->NumberOfPorts = mpi_reply.NumberOfPorts;
5063 	facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
5064 	facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
5065 	facts->MaxReplyDescriptorPostQueueDepth =
5066 	    le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
5067 	facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
5068 	facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
5069 	if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
5070 		ioc->ir_firmware = 1;
5071 	if ((facts->IOCCapabilities &
5072 	      MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices))
5073 		ioc->rdpq_array_capable = 1;
5074 	if (facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
5075 		ioc->atomic_desc_capable = 1;
5076 	facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
5077 	facts->IOCRequestFrameSize =
5078 	    le16_to_cpu(mpi_reply.IOCRequestFrameSize);
5079 	if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
5080 		facts->IOCMaxChainSegmentSize =
5081 			le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
5082 	}
5083 	facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
5084 	facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
5085 	ioc->shost->max_id = -1;
5086 	facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
5087 	facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
5088 	facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
5089 	facts->HighPriorityCredit =
5090 	    le16_to_cpu(mpi_reply.HighPriorityCredit);
5091 	facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
5092 	facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
5093 	facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize;
5094 
5095 	/*
5096 	 * Get the Page Size from IOC Facts. If it's 0, default to 4k.
5097 	 */
5098 	ioc->page_size = 1 << facts->CurrentHostPageSize;
5099 	if (ioc->page_size == 1) {
5100 		pr_info(MPT3SAS_FMT "CurrentHostPageSize is 0: Setting "
5101 			"default host page size to 4k\n", ioc->name);
5102 		ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K;
5103 	}
5104 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "CurrentHostPageSize(%d)\n",
5105 		ioc->name, facts->CurrentHostPageSize));
5106 
5107 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
5108 		"hba queue depth(%d), max chains per io(%d)\n",
5109 		ioc->name, facts->RequestCredit,
5110 	    facts->MaxChainDepth));
5111 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
5112 		"request frame size(%d), reply frame size(%d)\n", ioc->name,
5113 	    facts->IOCRequestFrameSize * 4, facts->ReplyFrameSize * 4));
5114 	return 0;
5115 }
5116 
5117 /**
5118  * _base_send_ioc_init - send ioc_init to firmware
5119  * @ioc: per adapter object
5120  *
5121  * Returns 0 for success, non-zero for failure.
5122  */
5123 static int
5124 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
5125 {
5126 	Mpi2IOCInitRequest_t mpi_request;
5127 	Mpi2IOCInitReply_t mpi_reply;
5128 	int i, r = 0;
5129 	ktime_t current_time;
5130 	u16 ioc_status;
5131 	u32 reply_post_free_array_sz = 0;
5132 	Mpi2IOCInitRDPQArrayEntry *reply_post_free_array = NULL;
5133 	dma_addr_t reply_post_free_array_dma;
5134 
5135 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5136 	    __func__));
5137 
5138 	memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
5139 	mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
5140 	mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
5141 	mpi_request.VF_ID = 0; /* TODO */
5142 	mpi_request.VP_ID = 0;
5143 	mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
5144 	mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
5145 	mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K;
5146 
5147 	if (_base_is_controller_msix_enabled(ioc))
5148 		mpi_request.HostMSIxVectors = ioc->reply_queue_count;
5149 	mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
5150 	mpi_request.ReplyDescriptorPostQueueDepth =
5151 	    cpu_to_le16(ioc->reply_post_queue_depth);
5152 	mpi_request.ReplyFreeQueueDepth =
5153 	    cpu_to_le16(ioc->reply_free_queue_depth);
5154 
5155 	mpi_request.SenseBufferAddressHigh =
5156 	    cpu_to_le32((u64)ioc->sense_dma >> 32);
5157 	mpi_request.SystemReplyAddressHigh =
5158 	    cpu_to_le32((u64)ioc->reply_dma >> 32);
5159 	mpi_request.SystemRequestFrameBaseAddress =
5160 	    cpu_to_le64((u64)ioc->request_dma);
5161 	mpi_request.ReplyFreeQueueAddress =
5162 	    cpu_to_le64((u64)ioc->reply_free_dma);
5163 
5164 	if (ioc->rdpq_array_enable) {
5165 		reply_post_free_array_sz = ioc->reply_queue_count *
5166 		    sizeof(Mpi2IOCInitRDPQArrayEntry);
5167 		reply_post_free_array = pci_alloc_consistent(ioc->pdev,
5168 			reply_post_free_array_sz, &reply_post_free_array_dma);
5169 		if (!reply_post_free_array) {
5170 			pr_err(MPT3SAS_FMT
5171 			"reply_post_free_array: pci_alloc_consistent failed\n",
5172 			ioc->name);
5173 			r = -ENOMEM;
5174 			goto out;
5175 		}
5176 		memset(reply_post_free_array, 0, reply_post_free_array_sz);
5177 		for (i = 0; i < ioc->reply_queue_count; i++)
5178 			reply_post_free_array[i].RDPQBaseAddress =
5179 			    cpu_to_le64(
5180 				(u64)ioc->reply_post[i].reply_post_free_dma);
5181 		mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
5182 		mpi_request.ReplyDescriptorPostQueueAddress =
5183 		    cpu_to_le64((u64)reply_post_free_array_dma);
5184 	} else {
5185 		mpi_request.ReplyDescriptorPostQueueAddress =
5186 		    cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
5187 	}
5188 
5189 	/* This time stamp specifies number of milliseconds
5190 	 * since epoch ~ midnight January 1, 1970.
5191 	 */
5192 	current_time = ktime_get_real();
5193 	mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
5194 
5195 	if (ioc->logging_level & MPT_DEBUG_INIT) {
5196 		__le32 *mfp;
5197 		int i;
5198 
5199 		mfp = (__le32 *)&mpi_request;
5200 		pr_info("\toffset:data\n");
5201 		for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
5202 			pr_info("\t[0x%02x]:%08x\n", i*4,
5203 			    le32_to_cpu(mfp[i]));
5204 	}
5205 
5206 	r = _base_handshake_req_reply_wait(ioc,
5207 	    sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
5208 	    sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10);
5209 
5210 	if (r != 0) {
5211 		pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
5212 		    ioc->name, __func__, r);
5213 		goto out;
5214 	}
5215 
5216 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
5217 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
5218 	    mpi_reply.IOCLogInfo) {
5219 		pr_err(MPT3SAS_FMT "%s: failed\n", ioc->name, __func__);
5220 		r = -EIO;
5221 	}
5222 
5223 out:
5224 	if (reply_post_free_array)
5225 		pci_free_consistent(ioc->pdev, reply_post_free_array_sz,
5226 				    reply_post_free_array,
5227 				    reply_post_free_array_dma);
5228 	return r;
5229 }
5230 
5231 /**
5232  * mpt3sas_port_enable_done - command completion routine for port enable
5233  * @ioc: per adapter object
5234  * @smid: system request message index
5235  * @msix_index: MSIX table index supplied by the OS
5236  * @reply: reply message frame(lower 32bit addr)
5237  *
5238  * Return 1 meaning mf should be freed from _base_interrupt
5239  *        0 means the mf is freed from this function.
5240  */
5241 u8
5242 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
5243 	u32 reply)
5244 {
5245 	MPI2DefaultReply_t *mpi_reply;
5246 	u16 ioc_status;
5247 
5248 	if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
5249 		return 1;
5250 
5251 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
5252 	if (!mpi_reply)
5253 		return 1;
5254 
5255 	if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
5256 		return 1;
5257 
5258 	ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
5259 	ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
5260 	ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
5261 	memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
5262 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
5263 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
5264 		ioc->port_enable_failed = 1;
5265 
5266 	if (ioc->is_driver_loading) {
5267 		if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
5268 			mpt3sas_port_enable_complete(ioc);
5269 			return 1;
5270 		} else {
5271 			ioc->start_scan_failed = ioc_status;
5272 			ioc->start_scan = 0;
5273 			return 1;
5274 		}
5275 	}
5276 	complete(&ioc->port_enable_cmds.done);
5277 	return 1;
5278 }
5279 
5280 /**
5281  * _base_send_port_enable - send port_enable(discovery stuff) to firmware
5282  * @ioc: per adapter object
5283  *
5284  * Returns 0 for success, non-zero for failure.
5285  */
5286 static int
5287 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
5288 {
5289 	Mpi2PortEnableRequest_t *mpi_request;
5290 	Mpi2PortEnableReply_t *mpi_reply;
5291 	int r = 0;
5292 	u16 smid;
5293 	u16 ioc_status;
5294 
5295 	pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
5296 
5297 	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
5298 		pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
5299 		    ioc->name, __func__);
5300 		return -EAGAIN;
5301 	}
5302 
5303 	smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
5304 	if (!smid) {
5305 		pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
5306 		    ioc->name, __func__);
5307 		return -EAGAIN;
5308 	}
5309 
5310 	ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
5311 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
5312 	ioc->port_enable_cmds.smid = smid;
5313 	memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
5314 	mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
5315 
5316 	init_completion(&ioc->port_enable_cmds.done);
5317 	ioc->put_smid_default(ioc, smid);
5318 	wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
5319 	if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
5320 		pr_err(MPT3SAS_FMT "%s: timeout\n",
5321 		    ioc->name, __func__);
5322 		_debug_dump_mf(mpi_request,
5323 		    sizeof(Mpi2PortEnableRequest_t)/4);
5324 		if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
5325 			r = -EFAULT;
5326 		else
5327 			r = -ETIME;
5328 		goto out;
5329 	}
5330 
5331 	mpi_reply = ioc->port_enable_cmds.reply;
5332 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
5333 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5334 		pr_err(MPT3SAS_FMT "%s: failed with (ioc_status=0x%08x)\n",
5335 		    ioc->name, __func__, ioc_status);
5336 		r = -EFAULT;
5337 		goto out;
5338 	}
5339 
5340  out:
5341 	ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
5342 	pr_info(MPT3SAS_FMT "port enable: %s\n", ioc->name, ((r == 0) ?
5343 	    "SUCCESS" : "FAILED"));
5344 	return r;
5345 }
5346 
5347 /**
5348  * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
5349  * @ioc: per adapter object
5350  *
5351  * Returns 0 for success, non-zero for failure.
5352  */
5353 int
5354 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
5355 {
5356 	Mpi2PortEnableRequest_t *mpi_request;
5357 	u16 smid;
5358 
5359 	pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
5360 
5361 	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
5362 		pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
5363 		    ioc->name, __func__);
5364 		return -EAGAIN;
5365 	}
5366 
5367 	smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
5368 	if (!smid) {
5369 		pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
5370 		    ioc->name, __func__);
5371 		return -EAGAIN;
5372 	}
5373 
5374 	ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
5375 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
5376 	ioc->port_enable_cmds.smid = smid;
5377 	memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
5378 	mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
5379 
5380 	ioc->put_smid_default(ioc, smid);
5381 	return 0;
5382 }
5383 
5384 /**
5385  * _base_determine_wait_on_discovery - desposition
5386  * @ioc: per adapter object
5387  *
5388  * Decide whether to wait on discovery to complete. Used to either
5389  * locate boot device, or report volumes ahead of physical devices.
5390  *
5391  * Returns 1 for wait, 0 for don't wait
5392  */
5393 static int
5394 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
5395 {
5396 	/* We wait for discovery to complete if IR firmware is loaded.
5397 	 * The sas topology events arrive before PD events, so we need time to
5398 	 * turn on the bit in ioc->pd_handles to indicate PD
5399 	 * Also, it maybe required to report Volumes ahead of physical
5400 	 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
5401 	 */
5402 	if (ioc->ir_firmware)
5403 		return 1;
5404 
5405 	/* if no Bios, then we don't need to wait */
5406 	if (!ioc->bios_pg3.BiosVersion)
5407 		return 0;
5408 
5409 	/* Bios is present, then we drop down here.
5410 	 *
5411 	 * If there any entries in the Bios Page 2, then we wait
5412 	 * for discovery to complete.
5413 	 */
5414 
5415 	/* Current Boot Device */
5416 	if ((ioc->bios_pg2.CurrentBootDeviceForm &
5417 	    MPI2_BIOSPAGE2_FORM_MASK) ==
5418 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
5419 	/* Request Boot Device */
5420 	   (ioc->bios_pg2.ReqBootDeviceForm &
5421 	    MPI2_BIOSPAGE2_FORM_MASK) ==
5422 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
5423 	/* Alternate Request Boot Device */
5424 	   (ioc->bios_pg2.ReqAltBootDeviceForm &
5425 	    MPI2_BIOSPAGE2_FORM_MASK) ==
5426 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
5427 		return 0;
5428 
5429 	return 1;
5430 }
5431 
5432 /**
5433  * _base_unmask_events - turn on notification for this event
5434  * @ioc: per adapter object
5435  * @event: firmware event
5436  *
5437  * The mask is stored in ioc->event_masks.
5438  */
5439 static void
5440 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
5441 {
5442 	u32 desired_event;
5443 
5444 	if (event >= 128)
5445 		return;
5446 
5447 	desired_event = (1 << (event % 32));
5448 
5449 	if (event < 32)
5450 		ioc->event_masks[0] &= ~desired_event;
5451 	else if (event < 64)
5452 		ioc->event_masks[1] &= ~desired_event;
5453 	else if (event < 96)
5454 		ioc->event_masks[2] &= ~desired_event;
5455 	else if (event < 128)
5456 		ioc->event_masks[3] &= ~desired_event;
5457 }
5458 
5459 /**
5460  * _base_event_notification - send event notification
5461  * @ioc: per adapter object
5462  *
5463  * Returns 0 for success, non-zero for failure.
5464  */
5465 static int
5466 _base_event_notification(struct MPT3SAS_ADAPTER *ioc)
5467 {
5468 	Mpi2EventNotificationRequest_t *mpi_request;
5469 	u16 smid;
5470 	int r = 0;
5471 	int i;
5472 
5473 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5474 	    __func__));
5475 
5476 	if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
5477 		pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
5478 		    ioc->name, __func__);
5479 		return -EAGAIN;
5480 	}
5481 
5482 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
5483 	if (!smid) {
5484 		pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
5485 		    ioc->name, __func__);
5486 		return -EAGAIN;
5487 	}
5488 	ioc->base_cmds.status = MPT3_CMD_PENDING;
5489 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
5490 	ioc->base_cmds.smid = smid;
5491 	memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
5492 	mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
5493 	mpi_request->VF_ID = 0; /* TODO */
5494 	mpi_request->VP_ID = 0;
5495 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
5496 		mpi_request->EventMasks[i] =
5497 		    cpu_to_le32(ioc->event_masks[i]);
5498 	init_completion(&ioc->base_cmds.done);
5499 	ioc->put_smid_default(ioc, smid);
5500 	wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
5501 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
5502 		pr_err(MPT3SAS_FMT "%s: timeout\n",
5503 		    ioc->name, __func__);
5504 		_debug_dump_mf(mpi_request,
5505 		    sizeof(Mpi2EventNotificationRequest_t)/4);
5506 		if (ioc->base_cmds.status & MPT3_CMD_RESET)
5507 			r = -EFAULT;
5508 		else
5509 			r = -ETIME;
5510 	} else
5511 		dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s: complete\n",
5512 		    ioc->name, __func__));
5513 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5514 	return r;
5515 }
5516 
5517 /**
5518  * mpt3sas_base_validate_event_type - validating event types
5519  * @ioc: per adapter object
5520  * @event: firmware event
5521  *
5522  * This will turn on firmware event notification when application
5523  * ask for that event. We don't mask events that are already enabled.
5524  */
5525 void
5526 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
5527 {
5528 	int i, j;
5529 	u32 event_mask, desired_event;
5530 	u8 send_update_to_fw;
5531 
5532 	for (i = 0, send_update_to_fw = 0; i <
5533 	    MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
5534 		event_mask = ~event_type[i];
5535 		desired_event = 1;
5536 		for (j = 0; j < 32; j++) {
5537 			if (!(event_mask & desired_event) &&
5538 			    (ioc->event_masks[i] & desired_event)) {
5539 				ioc->event_masks[i] &= ~desired_event;
5540 				send_update_to_fw = 1;
5541 			}
5542 			desired_event = (desired_event << 1);
5543 		}
5544 	}
5545 
5546 	if (!send_update_to_fw)
5547 		return;
5548 
5549 	mutex_lock(&ioc->base_cmds.mutex);
5550 	_base_event_notification(ioc);
5551 	mutex_unlock(&ioc->base_cmds.mutex);
5552 }
5553 
5554 /**
5555  * _base_diag_reset - the "big hammer" start of day reset
5556  * @ioc: per adapter object
5557  *
5558  * Returns 0 for success, non-zero for failure.
5559  */
5560 static int
5561 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
5562 {
5563 	u32 host_diagnostic;
5564 	u32 ioc_state;
5565 	u32 count;
5566 	u32 hcb_size;
5567 
5568 	pr_info(MPT3SAS_FMT "sending diag reset !!\n", ioc->name);
5569 
5570 	drsprintk(ioc, pr_info(MPT3SAS_FMT "clear interrupts\n",
5571 	    ioc->name));
5572 
5573 	count = 0;
5574 	do {
5575 		/* Write magic sequence to WriteSequence register
5576 		 * Loop until in diagnostic mode
5577 		 */
5578 		drsprintk(ioc, pr_info(MPT3SAS_FMT
5579 			"write magic sequence\n", ioc->name));
5580 		writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
5581 		writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
5582 		writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
5583 		writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
5584 		writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
5585 		writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
5586 		writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
5587 
5588 		/* wait 100 msec */
5589 		msleep(100);
5590 
5591 		if (count++ > 20)
5592 			goto out;
5593 
5594 		host_diagnostic = readl(&ioc->chip->HostDiagnostic);
5595 		drsprintk(ioc, pr_info(MPT3SAS_FMT
5596 			"wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
5597 		    ioc->name, count, host_diagnostic));
5598 
5599 	} while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
5600 
5601 	hcb_size = readl(&ioc->chip->HCBSize);
5602 
5603 	drsprintk(ioc, pr_info(MPT3SAS_FMT "diag reset: issued\n",
5604 	    ioc->name));
5605 	writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
5606 	     &ioc->chip->HostDiagnostic);
5607 
5608 	/*This delay allows the chip PCIe hardware time to finish reset tasks*/
5609 	msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
5610 
5611 	/* Approximately 300 second max wait */
5612 	for (count = 0; count < (300000000 /
5613 		MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
5614 
5615 		host_diagnostic = readl(&ioc->chip->HostDiagnostic);
5616 
5617 		if (host_diagnostic == 0xFFFFFFFF)
5618 			goto out;
5619 		if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
5620 			break;
5621 
5622 		msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000);
5623 	}
5624 
5625 	if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
5626 
5627 		drsprintk(ioc, pr_info(MPT3SAS_FMT
5628 		"restart the adapter assuming the HCB Address points to good F/W\n",
5629 		    ioc->name));
5630 		host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
5631 		host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
5632 		writel(host_diagnostic, &ioc->chip->HostDiagnostic);
5633 
5634 		drsprintk(ioc, pr_info(MPT3SAS_FMT
5635 		    "re-enable the HCDW\n", ioc->name));
5636 		writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
5637 		    &ioc->chip->HCBSize);
5638 	}
5639 
5640 	drsprintk(ioc, pr_info(MPT3SAS_FMT "restart the adapter\n",
5641 	    ioc->name));
5642 	writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
5643 	    &ioc->chip->HostDiagnostic);
5644 
5645 	drsprintk(ioc, pr_info(MPT3SAS_FMT
5646 		"disable writes to the diagnostic register\n", ioc->name));
5647 	writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
5648 
5649 	drsprintk(ioc, pr_info(MPT3SAS_FMT
5650 		"Wait for FW to go to the READY state\n", ioc->name));
5651 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
5652 	if (ioc_state) {
5653 		pr_err(MPT3SAS_FMT
5654 			"%s: failed going to ready state (ioc_state=0x%x)\n",
5655 			ioc->name, __func__, ioc_state);
5656 		goto out;
5657 	}
5658 
5659 	pr_info(MPT3SAS_FMT "diag reset: SUCCESS\n", ioc->name);
5660 	return 0;
5661 
5662  out:
5663 	pr_err(MPT3SAS_FMT "diag reset: FAILED\n", ioc->name);
5664 	return -EFAULT;
5665 }
5666 
5667 /**
5668  * _base_make_ioc_ready - put controller in READY state
5669  * @ioc: per adapter object
5670  * @type: FORCE_BIG_HAMMER or SOFT_RESET
5671  *
5672  * Returns 0 for success, non-zero for failure.
5673  */
5674 static int
5675 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
5676 {
5677 	u32 ioc_state;
5678 	int rc;
5679 	int count;
5680 
5681 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5682 	    __func__));
5683 
5684 	if (ioc->pci_error_recovery)
5685 		return 0;
5686 
5687 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5688 	dhsprintk(ioc, pr_info(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
5689 	    ioc->name, __func__, ioc_state));
5690 
5691 	/* if in RESET state, it should move to READY state shortly */
5692 	count = 0;
5693 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
5694 		while ((ioc_state & MPI2_IOC_STATE_MASK) !=
5695 		    MPI2_IOC_STATE_READY) {
5696 			if (count++ == 10) {
5697 				pr_err(MPT3SAS_FMT
5698 					"%s: failed going to ready state (ioc_state=0x%x)\n",
5699 				    ioc->name, __func__, ioc_state);
5700 				return -EFAULT;
5701 			}
5702 			ssleep(1);
5703 			ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5704 		}
5705 	}
5706 
5707 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
5708 		return 0;
5709 
5710 	if (ioc_state & MPI2_DOORBELL_USED) {
5711 		dhsprintk(ioc, pr_info(MPT3SAS_FMT
5712 			"unexpected doorbell active!\n",
5713 			ioc->name));
5714 		goto issue_diag_reset;
5715 	}
5716 
5717 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
5718 		mpt3sas_base_fault_info(ioc, ioc_state &
5719 		    MPI2_DOORBELL_DATA_MASK);
5720 		goto issue_diag_reset;
5721 	}
5722 
5723 	if (type == FORCE_BIG_HAMMER)
5724 		goto issue_diag_reset;
5725 
5726 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
5727 		if (!(_base_send_ioc_reset(ioc,
5728 		    MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
5729 			return 0;
5730 	}
5731 
5732  issue_diag_reset:
5733 	rc = _base_diag_reset(ioc);
5734 	return rc;
5735 }
5736 
5737 /**
5738  * _base_make_ioc_operational - put controller in OPERATIONAL state
5739  * @ioc: per adapter object
5740  *
5741  * Returns 0 for success, non-zero for failure.
5742  */
5743 static int
5744 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
5745 {
5746 	int r, i, index;
5747 	unsigned long	flags;
5748 	u32 reply_address;
5749 	u16 smid;
5750 	struct _tr_list *delayed_tr, *delayed_tr_next;
5751 	struct _sc_list *delayed_sc, *delayed_sc_next;
5752 	struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
5753 	u8 hide_flag;
5754 	struct adapter_reply_queue *reply_q;
5755 	Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
5756 
5757 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5758 	    __func__));
5759 
5760 	/* clean the delayed target reset list */
5761 	list_for_each_entry_safe(delayed_tr, delayed_tr_next,
5762 	    &ioc->delayed_tr_list, list) {
5763 		list_del(&delayed_tr->list);
5764 		kfree(delayed_tr);
5765 	}
5766 
5767 
5768 	list_for_each_entry_safe(delayed_tr, delayed_tr_next,
5769 	    &ioc->delayed_tr_volume_list, list) {
5770 		list_del(&delayed_tr->list);
5771 		kfree(delayed_tr);
5772 	}
5773 
5774 	list_for_each_entry_safe(delayed_sc, delayed_sc_next,
5775 	    &ioc->delayed_sc_list, list) {
5776 		list_del(&delayed_sc->list);
5777 		kfree(delayed_sc);
5778 	}
5779 
5780 	list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
5781 	    &ioc->delayed_event_ack_list, list) {
5782 		list_del(&delayed_event_ack->list);
5783 		kfree(delayed_event_ack);
5784 	}
5785 
5786 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
5787 
5788 	/* hi-priority queue */
5789 	INIT_LIST_HEAD(&ioc->hpr_free_list);
5790 	smid = ioc->hi_priority_smid;
5791 	for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
5792 		ioc->hpr_lookup[i].cb_idx = 0xFF;
5793 		ioc->hpr_lookup[i].smid = smid;
5794 		list_add_tail(&ioc->hpr_lookup[i].tracker_list,
5795 		    &ioc->hpr_free_list);
5796 	}
5797 
5798 	/* internal queue */
5799 	INIT_LIST_HEAD(&ioc->internal_free_list);
5800 	smid = ioc->internal_smid;
5801 	for (i = 0; i < ioc->internal_depth; i++, smid++) {
5802 		ioc->internal_lookup[i].cb_idx = 0xFF;
5803 		ioc->internal_lookup[i].smid = smid;
5804 		list_add_tail(&ioc->internal_lookup[i].tracker_list,
5805 		    &ioc->internal_free_list);
5806 	}
5807 
5808 	/* chain pool */
5809 	INIT_LIST_HEAD(&ioc->free_chain_list);
5810 	for (i = 0; i < ioc->chain_depth; i++)
5811 		list_add_tail(&ioc->chain_lookup[i].tracker_list,
5812 		    &ioc->free_chain_list);
5813 
5814 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
5815 
5816 	/* initialize Reply Free Queue */
5817 	for (i = 0, reply_address = (u32)ioc->reply_dma ;
5818 	    i < ioc->reply_free_queue_depth ; i++, reply_address +=
5819 	    ioc->reply_sz)
5820 		ioc->reply_free[i] = cpu_to_le32(reply_address);
5821 
5822 	/* initialize reply queues */
5823 	if (ioc->is_driver_loading)
5824 		_base_assign_reply_queues(ioc);
5825 
5826 	/* initialize Reply Post Free Queue */
5827 	index = 0;
5828 	reply_post_free_contig = ioc->reply_post[0].reply_post_free;
5829 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
5830 		/*
5831 		 * If RDPQ is enabled, switch to the next allocation.
5832 		 * Otherwise advance within the contiguous region.
5833 		 */
5834 		if (ioc->rdpq_array_enable) {
5835 			reply_q->reply_post_free =
5836 				ioc->reply_post[index++].reply_post_free;
5837 		} else {
5838 			reply_q->reply_post_free = reply_post_free_contig;
5839 			reply_post_free_contig += ioc->reply_post_queue_depth;
5840 		}
5841 
5842 		reply_q->reply_post_host_index = 0;
5843 		for (i = 0; i < ioc->reply_post_queue_depth; i++)
5844 			reply_q->reply_post_free[i].Words =
5845 			    cpu_to_le64(ULLONG_MAX);
5846 		if (!_base_is_controller_msix_enabled(ioc))
5847 			goto skip_init_reply_post_free_queue;
5848 	}
5849  skip_init_reply_post_free_queue:
5850 
5851 	r = _base_send_ioc_init(ioc);
5852 	if (r)
5853 		return r;
5854 
5855 	/* initialize reply free host index */
5856 	ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
5857 	writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
5858 
5859 	/* initialize reply post host index */
5860 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
5861 		if (ioc->combined_reply_queue)
5862 			writel((reply_q->msix_index & 7)<<
5863 			   MPI2_RPHI_MSIX_INDEX_SHIFT,
5864 			   ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
5865 		else
5866 			writel(reply_q->msix_index <<
5867 				MPI2_RPHI_MSIX_INDEX_SHIFT,
5868 				&ioc->chip->ReplyPostHostIndex);
5869 
5870 		if (!_base_is_controller_msix_enabled(ioc))
5871 			goto skip_init_reply_post_host_index;
5872 	}
5873 
5874  skip_init_reply_post_host_index:
5875 
5876 	_base_unmask_interrupts(ioc);
5877 	r = _base_event_notification(ioc);
5878 	if (r)
5879 		return r;
5880 
5881 	_base_static_config_pages(ioc);
5882 
5883 	if (ioc->is_driver_loading) {
5884 
5885 		if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
5886 		    == 0x80) {
5887 			hide_flag = (u8) (
5888 			    le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
5889 			    MFG_PAGE10_HIDE_SSDS_MASK);
5890 			if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
5891 				ioc->mfg_pg10_hide_flag = hide_flag;
5892 		}
5893 
5894 		ioc->wait_for_discovery_to_complete =
5895 		    _base_determine_wait_on_discovery(ioc);
5896 
5897 		return r; /* scan_start and scan_finished support */
5898 	}
5899 
5900 	r = _base_send_port_enable(ioc);
5901 	if (r)
5902 		return r;
5903 
5904 	return r;
5905 }
5906 
5907 /**
5908  * mpt3sas_base_free_resources - free resources controller resources
5909  * @ioc: per adapter object
5910  *
5911  * Return nothing.
5912  */
5913 void
5914 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
5915 {
5916 	dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5917 	    __func__));
5918 
5919 	/* synchronizing freeing resource with pci_access_mutex lock */
5920 	mutex_lock(&ioc->pci_access_mutex);
5921 	if (ioc->chip_phys && ioc->chip) {
5922 		_base_mask_interrupts(ioc);
5923 		ioc->shost_recovery = 1;
5924 		_base_make_ioc_ready(ioc, SOFT_RESET);
5925 		ioc->shost_recovery = 0;
5926 	}
5927 
5928 	mpt3sas_base_unmap_resources(ioc);
5929 	mutex_unlock(&ioc->pci_access_mutex);
5930 	return;
5931 }
5932 
5933 /**
5934  * mpt3sas_base_attach - attach controller instance
5935  * @ioc: per adapter object
5936  *
5937  * Returns 0 for success, non-zero for failure.
5938  */
5939 int
5940 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
5941 {
5942 	int r, i;
5943 	int cpu_id, last_cpu_id = 0;
5944 
5945 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5946 	    __func__));
5947 
5948 	/* setup cpu_msix_table */
5949 	ioc->cpu_count = num_online_cpus();
5950 	for_each_online_cpu(cpu_id)
5951 		last_cpu_id = cpu_id;
5952 	ioc->cpu_msix_table_sz = last_cpu_id + 1;
5953 	ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
5954 	ioc->reply_queue_count = 1;
5955 	if (!ioc->cpu_msix_table) {
5956 		dfailprintk(ioc, pr_info(MPT3SAS_FMT
5957 			"allocation for cpu_msix_table failed!!!\n",
5958 			ioc->name));
5959 		r = -ENOMEM;
5960 		goto out_free_resources;
5961 	}
5962 
5963 	if (ioc->is_warpdrive) {
5964 		ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
5965 		    sizeof(resource_size_t *), GFP_KERNEL);
5966 		if (!ioc->reply_post_host_index) {
5967 			dfailprintk(ioc, pr_info(MPT3SAS_FMT "allocation "
5968 				"for reply_post_host_index failed!!!\n",
5969 				ioc->name));
5970 			r = -ENOMEM;
5971 			goto out_free_resources;
5972 		}
5973 	}
5974 
5975 	ioc->rdpq_array_enable_assigned = 0;
5976 	ioc->dma_mask = 0;
5977 	r = mpt3sas_base_map_resources(ioc);
5978 	if (r)
5979 		goto out_free_resources;
5980 
5981 	pci_set_drvdata(ioc->pdev, ioc->shost);
5982 	r = _base_get_ioc_facts(ioc);
5983 	if (r)
5984 		goto out_free_resources;
5985 
5986 	switch (ioc->hba_mpi_version_belonged) {
5987 	case MPI2_VERSION:
5988 		ioc->build_sg_scmd = &_base_build_sg_scmd;
5989 		ioc->build_sg = &_base_build_sg;
5990 		ioc->build_zero_len_sge = &_base_build_zero_len_sge;
5991 		break;
5992 	case MPI25_VERSION:
5993 	case MPI26_VERSION:
5994 		/*
5995 		 * In SAS3.0,
5996 		 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
5997 		 * Target Status - all require the IEEE formated scatter gather
5998 		 * elements.
5999 		 */
6000 		ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
6001 		ioc->build_sg = &_base_build_sg_ieee;
6002 		ioc->build_nvme_prp = &_base_build_nvme_prp;
6003 		ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
6004 		ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
6005 
6006 		break;
6007 	}
6008 
6009 	if (ioc->atomic_desc_capable) {
6010 		ioc->put_smid_default = &_base_put_smid_default_atomic;
6011 		ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic;
6012 		ioc->put_smid_fast_path = &_base_put_smid_fast_path_atomic;
6013 		ioc->put_smid_hi_priority = &_base_put_smid_hi_priority_atomic;
6014 		ioc->put_smid_nvme_encap = &_base_put_smid_nvme_encap_atomic;
6015 	} else {
6016 		ioc->put_smid_default = &_base_put_smid_default;
6017 		ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
6018 		ioc->put_smid_fast_path = &_base_put_smid_fast_path;
6019 		ioc->put_smid_hi_priority = &_base_put_smid_hi_priority;
6020 		ioc->put_smid_nvme_encap = &_base_put_smid_nvme_encap;
6021 	}
6022 
6023 
6024 	/*
6025 	 * These function pointers for other requests that don't
6026 	 * the require IEEE scatter gather elements.
6027 	 *
6028 	 * For example Configuration Pages and SAS IOUNIT Control don't.
6029 	 */
6030 	ioc->build_sg_mpi = &_base_build_sg;
6031 	ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
6032 
6033 	r = _base_make_ioc_ready(ioc, SOFT_RESET);
6034 	if (r)
6035 		goto out_free_resources;
6036 
6037 	ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
6038 	    sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
6039 	if (!ioc->pfacts) {
6040 		r = -ENOMEM;
6041 		goto out_free_resources;
6042 	}
6043 
6044 	for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
6045 		r = _base_get_port_facts(ioc, i);
6046 		if (r)
6047 			goto out_free_resources;
6048 	}
6049 
6050 	r = _base_allocate_memory_pools(ioc);
6051 	if (r)
6052 		goto out_free_resources;
6053 
6054 	init_waitqueue_head(&ioc->reset_wq);
6055 
6056 	/* allocate memory pd handle bitmask list */
6057 	ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
6058 	if (ioc->facts.MaxDevHandle % 8)
6059 		ioc->pd_handles_sz++;
6060 	ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
6061 	    GFP_KERNEL);
6062 	if (!ioc->pd_handles) {
6063 		r = -ENOMEM;
6064 		goto out_free_resources;
6065 	}
6066 	ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
6067 	    GFP_KERNEL);
6068 	if (!ioc->blocking_handles) {
6069 		r = -ENOMEM;
6070 		goto out_free_resources;
6071 	}
6072 
6073 	/* allocate memory for pending OS device add list */
6074 	ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
6075 	if (ioc->facts.MaxDevHandle % 8)
6076 		ioc->pend_os_device_add_sz++;
6077 	ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
6078 	    GFP_KERNEL);
6079 	if (!ioc->pend_os_device_add)
6080 		goto out_free_resources;
6081 
6082 	ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
6083 	ioc->device_remove_in_progress =
6084 		kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
6085 	if (!ioc->device_remove_in_progress)
6086 		goto out_free_resources;
6087 
6088 	ioc->fwfault_debug = mpt3sas_fwfault_debug;
6089 
6090 	/* base internal command bits */
6091 	mutex_init(&ioc->base_cmds.mutex);
6092 	ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6093 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6094 
6095 	/* port_enable command bits */
6096 	ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6097 	ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
6098 
6099 	/* transport internal command bits */
6100 	ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6101 	ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
6102 	mutex_init(&ioc->transport_cmds.mutex);
6103 
6104 	/* scsih internal command bits */
6105 	ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6106 	ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
6107 	mutex_init(&ioc->scsih_cmds.mutex);
6108 
6109 	/* task management internal command bits */
6110 	ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6111 	ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
6112 	mutex_init(&ioc->tm_cmds.mutex);
6113 
6114 	/* config page internal command bits */
6115 	ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6116 	ioc->config_cmds.status = MPT3_CMD_NOT_USED;
6117 	mutex_init(&ioc->config_cmds.mutex);
6118 
6119 	/* ctl module internal command bits */
6120 	ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
6121 	ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
6122 	ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
6123 	mutex_init(&ioc->ctl_cmds.mutex);
6124 
6125 	if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
6126 	    !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
6127 	    !ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
6128 	    !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) {
6129 		r = -ENOMEM;
6130 		goto out_free_resources;
6131 	}
6132 
6133 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
6134 		ioc->event_masks[i] = -1;
6135 
6136 	/* here we enable the events we care about */
6137 	_base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
6138 	_base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
6139 	_base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
6140 	_base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
6141 	_base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
6142 	_base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
6143 	_base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
6144 	_base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
6145 	_base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
6146 	_base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
6147 	_base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
6148 	_base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
6149 	if (ioc->hba_mpi_version_belonged == MPI26_VERSION) {
6150 		if (ioc->is_gen35_ioc) {
6151 			_base_unmask_events(ioc,
6152 				MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE);
6153 			_base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION);
6154 			_base_unmask_events(ioc,
6155 				MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
6156 		}
6157 	}
6158 	r = _base_make_ioc_operational(ioc);
6159 	if (r)
6160 		goto out_free_resources;
6161 
6162 	ioc->non_operational_loop = 0;
6163 	ioc->got_task_abort_from_ioctl = 0;
6164 	return 0;
6165 
6166  out_free_resources:
6167 
6168 	ioc->remove_host = 1;
6169 
6170 	mpt3sas_base_free_resources(ioc);
6171 	_base_release_memory_pools(ioc);
6172 	pci_set_drvdata(ioc->pdev, NULL);
6173 	kfree(ioc->cpu_msix_table);
6174 	if (ioc->is_warpdrive)
6175 		kfree(ioc->reply_post_host_index);
6176 	kfree(ioc->pd_handles);
6177 	kfree(ioc->blocking_handles);
6178 	kfree(ioc->device_remove_in_progress);
6179 	kfree(ioc->pend_os_device_add);
6180 	kfree(ioc->tm_cmds.reply);
6181 	kfree(ioc->transport_cmds.reply);
6182 	kfree(ioc->scsih_cmds.reply);
6183 	kfree(ioc->config_cmds.reply);
6184 	kfree(ioc->base_cmds.reply);
6185 	kfree(ioc->port_enable_cmds.reply);
6186 	kfree(ioc->ctl_cmds.reply);
6187 	kfree(ioc->ctl_cmds.sense);
6188 	kfree(ioc->pfacts);
6189 	ioc->ctl_cmds.reply = NULL;
6190 	ioc->base_cmds.reply = NULL;
6191 	ioc->tm_cmds.reply = NULL;
6192 	ioc->scsih_cmds.reply = NULL;
6193 	ioc->transport_cmds.reply = NULL;
6194 	ioc->config_cmds.reply = NULL;
6195 	ioc->pfacts = NULL;
6196 	return r;
6197 }
6198 
6199 
6200 /**
6201  * mpt3sas_base_detach - remove controller instance
6202  * @ioc: per adapter object
6203  *
6204  * Return nothing.
6205  */
6206 void
6207 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
6208 {
6209 	dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
6210 	    __func__));
6211 
6212 	mpt3sas_base_stop_watchdog(ioc);
6213 	mpt3sas_base_free_resources(ioc);
6214 	_base_release_memory_pools(ioc);
6215 	pci_set_drvdata(ioc->pdev, NULL);
6216 	kfree(ioc->cpu_msix_table);
6217 	if (ioc->is_warpdrive)
6218 		kfree(ioc->reply_post_host_index);
6219 	kfree(ioc->pd_handles);
6220 	kfree(ioc->blocking_handles);
6221 	kfree(ioc->device_remove_in_progress);
6222 	kfree(ioc->pend_os_device_add);
6223 	kfree(ioc->pfacts);
6224 	kfree(ioc->ctl_cmds.reply);
6225 	kfree(ioc->ctl_cmds.sense);
6226 	kfree(ioc->base_cmds.reply);
6227 	kfree(ioc->port_enable_cmds.reply);
6228 	kfree(ioc->tm_cmds.reply);
6229 	kfree(ioc->transport_cmds.reply);
6230 	kfree(ioc->scsih_cmds.reply);
6231 	kfree(ioc->config_cmds.reply);
6232 }
6233 
6234 /**
6235  * _base_reset_handler - reset callback handler (for base)
6236  * @ioc: per adapter object
6237  * @reset_phase: phase
6238  *
6239  * The handler for doing any required cleanup or initialization.
6240  *
6241  * The reset phase can be MPT3_IOC_PRE_RESET, MPT3_IOC_AFTER_RESET,
6242  * MPT3_IOC_DONE_RESET
6243  *
6244  * Return nothing.
6245  */
6246 static void
6247 _base_reset_handler(struct MPT3SAS_ADAPTER *ioc, int reset_phase)
6248 {
6249 	mpt3sas_scsih_reset_handler(ioc, reset_phase);
6250 	mpt3sas_ctl_reset_handler(ioc, reset_phase);
6251 	switch (reset_phase) {
6252 	case MPT3_IOC_PRE_RESET:
6253 		dtmprintk(ioc, pr_info(MPT3SAS_FMT
6254 		"%s: MPT3_IOC_PRE_RESET\n", ioc->name, __func__));
6255 		break;
6256 	case MPT3_IOC_AFTER_RESET:
6257 		dtmprintk(ioc, pr_info(MPT3SAS_FMT
6258 		"%s: MPT3_IOC_AFTER_RESET\n", ioc->name, __func__));
6259 		if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
6260 			ioc->transport_cmds.status |= MPT3_CMD_RESET;
6261 			mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
6262 			complete(&ioc->transport_cmds.done);
6263 		}
6264 		if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
6265 			ioc->base_cmds.status |= MPT3_CMD_RESET;
6266 			mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
6267 			complete(&ioc->base_cmds.done);
6268 		}
6269 		if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
6270 			ioc->port_enable_failed = 1;
6271 			ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
6272 			mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
6273 			if (ioc->is_driver_loading) {
6274 				ioc->start_scan_failed =
6275 				    MPI2_IOCSTATUS_INTERNAL_ERROR;
6276 				ioc->start_scan = 0;
6277 				ioc->port_enable_cmds.status =
6278 				    MPT3_CMD_NOT_USED;
6279 			} else
6280 				complete(&ioc->port_enable_cmds.done);
6281 		}
6282 		if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
6283 			ioc->config_cmds.status |= MPT3_CMD_RESET;
6284 			mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
6285 			ioc->config_cmds.smid = USHRT_MAX;
6286 			complete(&ioc->config_cmds.done);
6287 		}
6288 		break;
6289 	case MPT3_IOC_DONE_RESET:
6290 		dtmprintk(ioc, pr_info(MPT3SAS_FMT
6291 			"%s: MPT3_IOC_DONE_RESET\n", ioc->name, __func__));
6292 		break;
6293 	}
6294 }
6295 
6296 /**
6297  * _wait_for_commands_to_complete - reset controller
6298  * @ioc: Pointer to MPT_ADAPTER structure
6299  *
6300  * This function is waiting 10s for all pending commands to complete
6301  * prior to putting controller in reset.
6302  */
6303 static void
6304 _wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
6305 {
6306 	u32 ioc_state;
6307 
6308 	ioc->pending_io_count = 0;
6309 
6310 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6311 	if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
6312 		return;
6313 
6314 	/* pending command count */
6315 	ioc->pending_io_count = atomic_read(&ioc->shost->host_busy);
6316 
6317 	if (!ioc->pending_io_count)
6318 		return;
6319 
6320 	/* wait for pending commands to complete */
6321 	wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
6322 }
6323 
6324 /**
6325  * mpt3sas_base_hard_reset_handler - reset controller
6326  * @ioc: Pointer to MPT_ADAPTER structure
6327  * @type: FORCE_BIG_HAMMER or SOFT_RESET
6328  *
6329  * Returns 0 for success, non-zero for failure.
6330  */
6331 int
6332 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
6333 	enum reset_type type)
6334 {
6335 	int r;
6336 	unsigned long flags;
6337 	u32 ioc_state;
6338 	u8 is_fault = 0, is_trigger = 0;
6339 
6340 	dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: enter\n", ioc->name,
6341 	    __func__));
6342 
6343 	if (ioc->pci_error_recovery) {
6344 		pr_err(MPT3SAS_FMT "%s: pci error recovery reset\n",
6345 		    ioc->name, __func__);
6346 		r = 0;
6347 		goto out_unlocked;
6348 	}
6349 
6350 	if (mpt3sas_fwfault_debug)
6351 		mpt3sas_halt_firmware(ioc);
6352 
6353 	/* wait for an active reset in progress to complete */
6354 	if (!mutex_trylock(&ioc->reset_in_progress_mutex)) {
6355 		do {
6356 			ssleep(1);
6357 		} while (ioc->shost_recovery == 1);
6358 		dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
6359 		    __func__));
6360 		return ioc->ioc_reset_in_progress_status;
6361 	}
6362 
6363 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
6364 	ioc->shost_recovery = 1;
6365 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
6366 
6367 	if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
6368 	    MPT3_DIAG_BUFFER_IS_REGISTERED) &&
6369 	    (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
6370 	    MPT3_DIAG_BUFFER_IS_RELEASED))) {
6371 		is_trigger = 1;
6372 		ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6373 		if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
6374 			is_fault = 1;
6375 	}
6376 	_base_reset_handler(ioc, MPT3_IOC_PRE_RESET);
6377 	_wait_for_commands_to_complete(ioc);
6378 	_base_mask_interrupts(ioc);
6379 	r = _base_make_ioc_ready(ioc, type);
6380 	if (r)
6381 		goto out;
6382 	_base_reset_handler(ioc, MPT3_IOC_AFTER_RESET);
6383 
6384 	/* If this hard reset is called while port enable is active, then
6385 	 * there is no reason to call make_ioc_operational
6386 	 */
6387 	if (ioc->is_driver_loading && ioc->port_enable_failed) {
6388 		ioc->remove_host = 1;
6389 		r = -EFAULT;
6390 		goto out;
6391 	}
6392 	r = _base_get_ioc_facts(ioc);
6393 	if (r)
6394 		goto out;
6395 
6396 	if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
6397 		panic("%s: Issue occurred with flashing controller firmware."
6398 		      "Please reboot the system and ensure that the correct"
6399 		      " firmware version is running\n", ioc->name);
6400 
6401 	r = _base_make_ioc_operational(ioc);
6402 	if (!r)
6403 		_base_reset_handler(ioc, MPT3_IOC_DONE_RESET);
6404 
6405  out:
6406 	dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: %s\n",
6407 	    ioc->name, __func__, ((r == 0) ? "SUCCESS" : "FAILED")));
6408 
6409 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
6410 	ioc->ioc_reset_in_progress_status = r;
6411 	ioc->shost_recovery = 0;
6412 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
6413 	ioc->ioc_reset_count++;
6414 	mutex_unlock(&ioc->reset_in_progress_mutex);
6415 
6416  out_unlocked:
6417 	if ((r == 0) && is_trigger) {
6418 		if (is_fault)
6419 			mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
6420 		else
6421 			mpt3sas_trigger_master(ioc,
6422 			    MASTER_TRIGGER_ADAPTER_RESET);
6423 	}
6424 	dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
6425 	    __func__));
6426 	return r;
6427 }
6428