1 /* 2 * This is the Fusion MPT base driver providing common API layer interface 3 * for access to MPT (Message Passing Technology) firmware. 4 * 5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c 6 * Copyright (C) 2012-2014 LSI Corporation 7 * Copyright (C) 2013-2014 Avago Technologies 8 * (mailto: MPT-FusionLinux.pdl@avagotech.com) 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License 12 * as published by the Free Software Foundation; either version 2 13 * of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * NO WARRANTY 21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR 22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT 23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, 24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is 25 * solely responsible for determining the appropriateness of using and 26 * distributing the Program and assumes all risks associated with its 27 * exercise of rights under this Agreement, including but not limited to 28 * the risks and costs of program errors, damage to or loss of data, 29 * programs or equipment, and unavailability or interruption of operations. 30 31 * DISCLAIMER OF LIABILITY 32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY 33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND 35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED 38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES 39 40 * You should have received a copy of the GNU General Public License 41 * along with this program; if not, write to the Free Software 42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, 43 * USA. 44 */ 45 46 #include <linux/kernel.h> 47 #include <linux/module.h> 48 #include <linux/errno.h> 49 #include <linux/init.h> 50 #include <linux/slab.h> 51 #include <linux/types.h> 52 #include <linux/pci.h> 53 #include <linux/kdev_t.h> 54 #include <linux/blkdev.h> 55 #include <linux/delay.h> 56 #include <linux/interrupt.h> 57 #include <linux/dma-mapping.h> 58 #include <linux/io.h> 59 #include <linux/time.h> 60 #include <linux/ktime.h> 61 #include <linux/kthread.h> 62 #include <asm/page.h> /* To get host page size per arch */ 63 #include <linux/aer.h> 64 65 66 #include "mpt3sas_base.h" 67 68 static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS]; 69 70 71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */ 72 73 /* maximum controller queue depth */ 74 #define MAX_HBA_QUEUE_DEPTH 30000 75 #define MAX_CHAIN_DEPTH 100000 76 static int max_queue_depth = -1; 77 module_param(max_queue_depth, int, 0444); 78 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth "); 79 80 static int max_sgl_entries = -1; 81 module_param(max_sgl_entries, int, 0444); 82 MODULE_PARM_DESC(max_sgl_entries, " max sg entries "); 83 84 static int msix_disable = -1; 85 module_param(msix_disable, int, 0444); 86 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)"); 87 88 static int smp_affinity_enable = 1; 89 module_param(smp_affinity_enable, int, 0444); 90 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)"); 91 92 static int max_msix_vectors = -1; 93 module_param(max_msix_vectors, int, 0444); 94 MODULE_PARM_DESC(max_msix_vectors, 95 " max msix vectors"); 96 97 static int irqpoll_weight = -1; 98 module_param(irqpoll_weight, int, 0444); 99 MODULE_PARM_DESC(irqpoll_weight, 100 "irq poll weight (default= one fourth of HBA queue depth)"); 101 102 static int mpt3sas_fwfault_debug; 103 MODULE_PARM_DESC(mpt3sas_fwfault_debug, 104 " enable detection of firmware fault and halt firmware - (default=0)"); 105 106 static int perf_mode = -1; 107 module_param(perf_mode, int, 0444); 108 MODULE_PARM_DESC(perf_mode, 109 "Performance mode (only for Aero/Sea Generation), options:\n\t\t" 110 "0 - balanced: high iops mode is enabled &\n\t\t" 111 "interrupt coalescing is enabled only on high iops queues,\n\t\t" 112 "1 - iops: high iops mode is disabled &\n\t\t" 113 "interrupt coalescing is enabled on all queues,\n\t\t" 114 "2 - latency: high iops mode is disabled &\n\t\t" 115 "interrupt coalescing is enabled on all queues with timeout value 0xA,\n" 116 "\t\tdefault - default perf_mode is 'balanced'" 117 ); 118 119 enum mpt3sas_perf_mode { 120 MPT_PERF_MODE_DEFAULT = -1, 121 MPT_PERF_MODE_BALANCED = 0, 122 MPT_PERF_MODE_IOPS = 1, 123 MPT_PERF_MODE_LATENCY = 2, 124 }; 125 126 static int 127 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, 128 u32 ioc_state, int timeout); 129 static int 130 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc); 131 static void 132 _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc); 133 134 /** 135 * mpt3sas_base_check_cmd_timeout - Function 136 * to check timeout and command termination due 137 * to Host reset. 138 * 139 * @ioc: per adapter object. 140 * @status: Status of issued command. 141 * @mpi_request:mf request pointer. 142 * @sz: size of buffer. 143 * 144 * Return: 1/0 Reset to be done or Not 145 */ 146 u8 147 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc, 148 u8 status, void *mpi_request, int sz) 149 { 150 u8 issue_reset = 0; 151 152 if (!(status & MPT3_CMD_RESET)) 153 issue_reset = 1; 154 155 ioc_err(ioc, "Command %s\n", 156 issue_reset == 0 ? "terminated due to Host Reset" : "Timeout"); 157 _debug_dump_mf(mpi_request, sz); 158 159 return issue_reset; 160 } 161 162 /** 163 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug. 164 * @val: ? 165 * @kp: ? 166 * 167 * Return: ? 168 */ 169 static int 170 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp) 171 { 172 int ret = param_set_int(val, kp); 173 struct MPT3SAS_ADAPTER *ioc; 174 175 if (ret) 176 return ret; 177 178 /* global ioc spinlock to protect controller list on list operations */ 179 pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug); 180 spin_lock(&gioc_lock); 181 list_for_each_entry(ioc, &mpt3sas_ioc_list, list) 182 ioc->fwfault_debug = mpt3sas_fwfault_debug; 183 spin_unlock(&gioc_lock); 184 return 0; 185 } 186 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug, 187 param_get_int, &mpt3sas_fwfault_debug, 0644); 188 189 /** 190 * _base_readl_aero - retry readl for max three times. 191 * @addr: MPT Fusion system interface register address 192 * 193 * Retry the readl() for max three times if it gets zero value 194 * while reading the system interface register. 195 */ 196 static inline u32 197 _base_readl_aero(const volatile void __iomem *addr) 198 { 199 u32 i = 0, ret_val; 200 201 do { 202 ret_val = readl(addr); 203 i++; 204 } while (ret_val == 0 && i < 3); 205 206 return ret_val; 207 } 208 209 static inline u32 210 _base_readl(const volatile void __iomem *addr) 211 { 212 return readl(addr); 213 } 214 215 /** 216 * _base_clone_reply_to_sys_mem - copies reply to reply free iomem 217 * in BAR0 space. 218 * 219 * @ioc: per adapter object 220 * @reply: reply message frame(lower 32bit addr) 221 * @index: System request message index. 222 */ 223 static void 224 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply, 225 u32 index) 226 { 227 /* 228 * 256 is offset within sys register. 229 * 256 offset MPI frame starts. Max MPI frame supported is 32. 230 * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts 231 */ 232 u16 cmd_credit = ioc->facts.RequestCredit + 1; 233 void __iomem *reply_free_iomem = (void __iomem *)ioc->chip + 234 MPI_FRAME_START_OFFSET + 235 (cmd_credit * ioc->request_sz) + (index * sizeof(u32)); 236 237 writel(reply, reply_free_iomem); 238 } 239 240 /** 241 * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames 242 * to system/BAR0 region. 243 * 244 * @dst_iomem: Pointer to the destination location in BAR0 space. 245 * @src: Pointer to the Source data. 246 * @size: Size of data to be copied. 247 */ 248 static void 249 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size) 250 { 251 int i; 252 u32 *src_virt_mem = (u32 *)src; 253 254 for (i = 0; i < size/4; i++) 255 writel((u32)src_virt_mem[i], 256 (void __iomem *)dst_iomem + (i * 4)); 257 } 258 259 /** 260 * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region 261 * 262 * @dst_iomem: Pointer to the destination location in BAR0 space. 263 * @src: Pointer to the Source data. 264 * @size: Size of data to be copied. 265 */ 266 static void 267 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size) 268 { 269 int i; 270 u32 *src_virt_mem = (u32 *)(src); 271 272 for (i = 0; i < size/4; i++) 273 writel((u32)src_virt_mem[i], 274 (void __iomem *)dst_iomem + (i * 4)); 275 } 276 277 /** 278 * _base_get_chain - Calculates and Returns virtual chain address 279 * for the provided smid in BAR0 space. 280 * 281 * @ioc: per adapter object 282 * @smid: system request message index 283 * @sge_chain_count: Scatter gather chain count. 284 * 285 * Return: the chain address. 286 */ 287 static inline void __iomem* 288 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid, 289 u8 sge_chain_count) 290 { 291 void __iomem *base_chain, *chain_virt; 292 u16 cmd_credit = ioc->facts.RequestCredit + 1; 293 294 base_chain = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET + 295 (cmd_credit * ioc->request_sz) + 296 REPLY_FREE_POOL_SIZE; 297 chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth * 298 ioc->request_sz) + (sge_chain_count * ioc->request_sz); 299 return chain_virt; 300 } 301 302 /** 303 * _base_get_chain_phys - Calculates and Returns physical address 304 * in BAR0 for scatter gather chains, for 305 * the provided smid. 306 * 307 * @ioc: per adapter object 308 * @smid: system request message index 309 * @sge_chain_count: Scatter gather chain count. 310 * 311 * Return: Physical chain address. 312 */ 313 static inline phys_addr_t 314 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid, 315 u8 sge_chain_count) 316 { 317 phys_addr_t base_chain_phys, chain_phys; 318 u16 cmd_credit = ioc->facts.RequestCredit + 1; 319 320 base_chain_phys = ioc->chip_phys + MPI_FRAME_START_OFFSET + 321 (cmd_credit * ioc->request_sz) + 322 REPLY_FREE_POOL_SIZE; 323 chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth * 324 ioc->request_sz) + (sge_chain_count * ioc->request_sz); 325 return chain_phys; 326 } 327 328 /** 329 * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host 330 * buffer address for the provided smid. 331 * (Each smid can have 64K starts from 17024) 332 * 333 * @ioc: per adapter object 334 * @smid: system request message index 335 * 336 * Return: Pointer to buffer location in BAR0. 337 */ 338 339 static void __iomem * 340 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid) 341 { 342 u16 cmd_credit = ioc->facts.RequestCredit + 1; 343 // Added extra 1 to reach end of chain. 344 void __iomem *chain_end = _base_get_chain(ioc, 345 cmd_credit + 1, 346 ioc->facts.MaxChainDepth); 347 return chain_end + (smid * 64 * 1024); 348 } 349 350 /** 351 * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped 352 * Host buffer Physical address for the provided smid. 353 * (Each smid can have 64K starts from 17024) 354 * 355 * @ioc: per adapter object 356 * @smid: system request message index 357 * 358 * Return: Pointer to buffer location in BAR0. 359 */ 360 static phys_addr_t 361 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid) 362 { 363 u16 cmd_credit = ioc->facts.RequestCredit + 1; 364 phys_addr_t chain_end_phys = _base_get_chain_phys(ioc, 365 cmd_credit + 1, 366 ioc->facts.MaxChainDepth); 367 return chain_end_phys + (smid * 64 * 1024); 368 } 369 370 /** 371 * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain 372 * lookup list and Provides chain_buffer 373 * address for the matching dma address. 374 * (Each smid can have 64K starts from 17024) 375 * 376 * @ioc: per adapter object 377 * @chain_buffer_dma: Chain buffer dma address. 378 * 379 * Return: Pointer to chain buffer. Or Null on Failure. 380 */ 381 static void * 382 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc, 383 dma_addr_t chain_buffer_dma) 384 { 385 u16 index, j; 386 struct chain_tracker *ct; 387 388 for (index = 0; index < ioc->scsiio_depth; index++) { 389 for (j = 0; j < ioc->chains_needed_per_io; j++) { 390 ct = &ioc->chain_lookup[index].chains_per_smid[j]; 391 if (ct && ct->chain_buffer_dma == chain_buffer_dma) 392 return ct->chain_buffer; 393 } 394 } 395 ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n"); 396 return NULL; 397 } 398 399 /** 400 * _clone_sg_entries - MPI EP's scsiio and config requests 401 * are handled here. Base function for 402 * double buffering, before submitting 403 * the requests. 404 * 405 * @ioc: per adapter object. 406 * @mpi_request: mf request pointer. 407 * @smid: system request message index. 408 */ 409 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc, 410 void *mpi_request, u16 smid) 411 { 412 Mpi2SGESimple32_t *sgel, *sgel_next; 413 u32 sgl_flags, sge_chain_count = 0; 414 bool is_write = false; 415 u16 i = 0; 416 void __iomem *buffer_iomem; 417 phys_addr_t buffer_iomem_phys; 418 void __iomem *buff_ptr; 419 phys_addr_t buff_ptr_phys; 420 void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO]; 421 void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO]; 422 phys_addr_t dst_addr_phys; 423 MPI2RequestHeader_t *request_hdr; 424 struct scsi_cmnd *scmd; 425 struct scatterlist *sg_scmd = NULL; 426 int is_scsiio_req = 0; 427 428 request_hdr = (MPI2RequestHeader_t *) mpi_request; 429 430 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) { 431 Mpi25SCSIIORequest_t *scsiio_request = 432 (Mpi25SCSIIORequest_t *)mpi_request; 433 sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL; 434 is_scsiio_req = 1; 435 } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) { 436 Mpi2ConfigRequest_t *config_req = 437 (Mpi2ConfigRequest_t *)mpi_request; 438 sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE; 439 } else 440 return; 441 442 /* From smid we can get scsi_cmd, once we have sg_scmd, 443 * we just need to get sg_virt and sg_next to get virtual 444 * address associated with sgel->Address. 445 */ 446 447 if (is_scsiio_req) { 448 /* Get scsi_cmd using smid */ 449 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid); 450 if (scmd == NULL) { 451 ioc_err(ioc, "scmd is NULL\n"); 452 return; 453 } 454 455 /* Get sg_scmd from scmd provided */ 456 sg_scmd = scsi_sglist(scmd); 457 } 458 459 /* 460 * 0 - 255 System register 461 * 256 - 4352 MPI Frame. (This is based on maxCredit 32) 462 * 4352 - 4864 Reply_free pool (512 byte is reserved 463 * considering maxCredit 32. Reply need extra 464 * room, for mCPU case kept four times of 465 * maxCredit). 466 * 4864 - 17152 SGE chain element. (32cmd * 3 chain of 467 * 128 byte size = 12288) 468 * 17152 - x Host buffer mapped with smid. 469 * (Each smid can have 64K Max IO.) 470 * BAR0+Last 1K MSIX Addr and Data 471 * Total size in use 2113664 bytes of 4MB BAR0 472 */ 473 474 buffer_iomem = _base_get_buffer_bar0(ioc, smid); 475 buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid); 476 477 buff_ptr = buffer_iomem; 478 buff_ptr_phys = buffer_iomem_phys; 479 WARN_ON(buff_ptr_phys > U32_MAX); 480 481 if (le32_to_cpu(sgel->FlagsLength) & 482 (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT)) 483 is_write = true; 484 485 for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) { 486 487 sgl_flags = 488 (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT); 489 490 switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) { 491 case MPI2_SGE_FLAGS_CHAIN_ELEMENT: 492 /* 493 * Helper function which on passing 494 * chain_buffer_dma returns chain_buffer. Get 495 * the virtual address for sgel->Address 496 */ 497 sgel_next = 498 _base_get_chain_buffer_dma_to_chain_buffer(ioc, 499 le32_to_cpu(sgel->Address)); 500 if (sgel_next == NULL) 501 return; 502 /* 503 * This is coping 128 byte chain 504 * frame (not a host buffer) 505 */ 506 dst_chain_addr[sge_chain_count] = 507 _base_get_chain(ioc, 508 smid, sge_chain_count); 509 src_chain_addr[sge_chain_count] = 510 (void *) sgel_next; 511 dst_addr_phys = _base_get_chain_phys(ioc, 512 smid, sge_chain_count); 513 WARN_ON(dst_addr_phys > U32_MAX); 514 sgel->Address = 515 cpu_to_le32(lower_32_bits(dst_addr_phys)); 516 sgel = sgel_next; 517 sge_chain_count++; 518 break; 519 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT: 520 if (is_write) { 521 if (is_scsiio_req) { 522 _base_clone_to_sys_mem(buff_ptr, 523 sg_virt(sg_scmd), 524 (le32_to_cpu(sgel->FlagsLength) & 525 0x00ffffff)); 526 /* 527 * FIXME: this relies on a a zero 528 * PCI mem_offset. 529 */ 530 sgel->Address = 531 cpu_to_le32((u32)buff_ptr_phys); 532 } else { 533 _base_clone_to_sys_mem(buff_ptr, 534 ioc->config_vaddr, 535 (le32_to_cpu(sgel->FlagsLength) & 536 0x00ffffff)); 537 sgel->Address = 538 cpu_to_le32((u32)buff_ptr_phys); 539 } 540 } 541 buff_ptr += (le32_to_cpu(sgel->FlagsLength) & 542 0x00ffffff); 543 buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) & 544 0x00ffffff); 545 if ((le32_to_cpu(sgel->FlagsLength) & 546 (MPI2_SGE_FLAGS_END_OF_BUFFER 547 << MPI2_SGE_FLAGS_SHIFT))) 548 goto eob_clone_chain; 549 else { 550 /* 551 * Every single element in MPT will have 552 * associated sg_next. Better to sanity that 553 * sg_next is not NULL, but it will be a bug 554 * if it is null. 555 */ 556 if (is_scsiio_req) { 557 sg_scmd = sg_next(sg_scmd); 558 if (sg_scmd) 559 sgel++; 560 else 561 goto eob_clone_chain; 562 } 563 } 564 break; 565 } 566 } 567 568 eob_clone_chain: 569 for (i = 0; i < sge_chain_count; i++) { 570 if (is_scsiio_req) 571 _base_clone_to_sys_mem(dst_chain_addr[i], 572 src_chain_addr[i], ioc->request_sz); 573 } 574 } 575 576 /** 577 * mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc 578 * @arg: input argument, used to derive ioc 579 * 580 * Return: 581 * 0 if controller is removed from pci subsystem. 582 * -1 for other case. 583 */ 584 static int mpt3sas_remove_dead_ioc_func(void *arg) 585 { 586 struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg; 587 struct pci_dev *pdev; 588 589 if (!ioc) 590 return -1; 591 592 pdev = ioc->pdev; 593 if (!pdev) 594 return -1; 595 pci_stop_and_remove_bus_device_locked(pdev); 596 return 0; 597 } 598 599 /** 600 * _base_sync_drv_fw_timestamp - Sync Drive-Fw TimeStamp. 601 * @ioc: Per Adapter Object 602 * 603 * Return: nothing. 604 */ 605 static void _base_sync_drv_fw_timestamp(struct MPT3SAS_ADAPTER *ioc) 606 { 607 Mpi26IoUnitControlRequest_t *mpi_request; 608 Mpi26IoUnitControlReply_t *mpi_reply; 609 u16 smid; 610 ktime_t current_time; 611 u64 TimeStamp = 0; 612 u8 issue_reset = 0; 613 614 mutex_lock(&ioc->scsih_cmds.mutex); 615 if (ioc->scsih_cmds.status != MPT3_CMD_NOT_USED) { 616 ioc_err(ioc, "scsih_cmd in use %s\n", __func__); 617 goto out; 618 } 619 ioc->scsih_cmds.status = MPT3_CMD_PENDING; 620 smid = mpt3sas_base_get_smid(ioc, ioc->scsih_cb_idx); 621 if (!smid) { 622 ioc_err(ioc, "Failed obtaining a smid %s\n", __func__); 623 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED; 624 goto out; 625 } 626 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 627 ioc->scsih_cmds.smid = smid; 628 memset(mpi_request, 0, sizeof(Mpi26IoUnitControlRequest_t)); 629 mpi_request->Function = MPI2_FUNCTION_IO_UNIT_CONTROL; 630 mpi_request->Operation = MPI26_CTRL_OP_SET_IOC_PARAMETER; 631 mpi_request->IOCParameter = MPI26_SET_IOC_PARAMETER_SYNC_TIMESTAMP; 632 current_time = ktime_get_real(); 633 TimeStamp = ktime_to_ms(current_time); 634 mpi_request->Reserved7 = cpu_to_le32(TimeStamp & 0xFFFFFFFF); 635 mpi_request->IOCParameterValue = cpu_to_le32(TimeStamp >> 32); 636 init_completion(&ioc->scsih_cmds.done); 637 ioc->put_smid_default(ioc, smid); 638 dinitprintk(ioc, ioc_info(ioc, 639 "Io Unit Control Sync TimeStamp (sending), @time %lld ms\n", 640 TimeStamp)); 641 wait_for_completion_timeout(&ioc->scsih_cmds.done, 642 MPT3SAS_TIMESYNC_TIMEOUT_SECONDS*HZ); 643 if (!(ioc->scsih_cmds.status & MPT3_CMD_COMPLETE)) { 644 mpt3sas_check_cmd_timeout(ioc, 645 ioc->scsih_cmds.status, mpi_request, 646 sizeof(Mpi2SasIoUnitControlRequest_t)/4, issue_reset); 647 goto issue_host_reset; 648 } 649 if (ioc->scsih_cmds.status & MPT3_CMD_REPLY_VALID) { 650 mpi_reply = ioc->scsih_cmds.reply; 651 dinitprintk(ioc, ioc_info(ioc, 652 "Io Unit Control sync timestamp (complete): ioc_status(0x%04x), loginfo(0x%08x)\n", 653 le16_to_cpu(mpi_reply->IOCStatus), 654 le32_to_cpu(mpi_reply->IOCLogInfo))); 655 } 656 issue_host_reset: 657 if (issue_reset) 658 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 659 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED; 660 out: 661 mutex_unlock(&ioc->scsih_cmds.mutex); 662 } 663 664 /** 665 * _base_fault_reset_work - workq handling ioc fault conditions 666 * @work: input argument, used to derive ioc 667 * 668 * Context: sleep. 669 */ 670 static void 671 _base_fault_reset_work(struct work_struct *work) 672 { 673 struct MPT3SAS_ADAPTER *ioc = 674 container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work); 675 unsigned long flags; 676 u32 doorbell; 677 int rc; 678 struct task_struct *p; 679 680 681 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 682 if ((ioc->shost_recovery && (ioc->ioc_coredump_loop == 0)) || 683 ioc->pci_error_recovery) 684 goto rearm_timer; 685 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 686 687 doorbell = mpt3sas_base_get_iocstate(ioc, 0); 688 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) { 689 ioc_err(ioc, "SAS host is non-operational !!!!\n"); 690 691 /* It may be possible that EEH recovery can resolve some of 692 * pci bus failure issues rather removing the dead ioc function 693 * by considering controller is in a non-operational state. So 694 * here priority is given to the EEH recovery. If it doesn't 695 * not resolve this issue, mpt3sas driver will consider this 696 * controller to non-operational state and remove the dead ioc 697 * function. 698 */ 699 if (ioc->non_operational_loop++ < 5) { 700 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, 701 flags); 702 goto rearm_timer; 703 } 704 705 /* 706 * Call _scsih_flush_pending_cmds callback so that we flush all 707 * pending commands back to OS. This call is required to avoid 708 * deadlock at block layer. Dead IOC will fail to do diag reset, 709 * and this call is safe since dead ioc will never return any 710 * command back from HW. 711 */ 712 ioc->schedule_dead_ioc_flush_running_cmds(ioc); 713 /* 714 * Set remove_host flag early since kernel thread will 715 * take some time to execute. 716 */ 717 ioc->remove_host = 1; 718 /*Remove the Dead Host */ 719 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc, 720 "%s_dead_ioc_%d", ioc->driver_name, ioc->id); 721 if (IS_ERR(p)) 722 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n", 723 __func__); 724 else 725 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n", 726 __func__); 727 return; /* don't rearm timer */ 728 } 729 730 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) { 731 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ? 732 ioc->manu_pg11.CoreDumpTOSec : 733 MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS; 734 735 timeout /= (FAULT_POLLING_INTERVAL/1000); 736 737 if (ioc->ioc_coredump_loop == 0) { 738 mpt3sas_print_coredump_info(ioc, 739 doorbell & MPI2_DOORBELL_DATA_MASK); 740 /* do not accept any IOs and disable the interrupts */ 741 spin_lock_irqsave( 742 &ioc->ioc_reset_in_progress_lock, flags); 743 ioc->shost_recovery = 1; 744 spin_unlock_irqrestore( 745 &ioc->ioc_reset_in_progress_lock, flags); 746 mpt3sas_base_mask_interrupts(ioc); 747 _base_clear_outstanding_commands(ioc); 748 } 749 750 ioc_info(ioc, "%s: CoreDump loop %d.", 751 __func__, ioc->ioc_coredump_loop); 752 753 /* Wait until CoreDump completes or times out */ 754 if (ioc->ioc_coredump_loop++ < timeout) { 755 spin_lock_irqsave( 756 &ioc->ioc_reset_in_progress_lock, flags); 757 goto rearm_timer; 758 } 759 } 760 761 if (ioc->ioc_coredump_loop) { 762 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_COREDUMP) 763 ioc_err(ioc, "%s: CoreDump completed. LoopCount: %d", 764 __func__, ioc->ioc_coredump_loop); 765 else 766 ioc_err(ioc, "%s: CoreDump Timed out. LoopCount: %d", 767 __func__, ioc->ioc_coredump_loop); 768 ioc->ioc_coredump_loop = MPT3SAS_COREDUMP_LOOP_DONE; 769 } 770 ioc->non_operational_loop = 0; 771 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) { 772 rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 773 ioc_warn(ioc, "%s: hard reset: %s\n", 774 __func__, rc == 0 ? "success" : "failed"); 775 doorbell = mpt3sas_base_get_iocstate(ioc, 0); 776 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 777 mpt3sas_print_fault_code(ioc, doorbell & 778 MPI2_DOORBELL_DATA_MASK); 779 } else if ((doorbell & MPI2_IOC_STATE_MASK) == 780 MPI2_IOC_STATE_COREDUMP) 781 mpt3sas_print_coredump_info(ioc, doorbell & 782 MPI2_DOORBELL_DATA_MASK); 783 if (rc && (doorbell & MPI2_IOC_STATE_MASK) != 784 MPI2_IOC_STATE_OPERATIONAL) 785 return; /* don't rearm timer */ 786 } 787 ioc->ioc_coredump_loop = 0; 788 if (ioc->time_sync_interval && 789 ++ioc->timestamp_update_count >= ioc->time_sync_interval) { 790 ioc->timestamp_update_count = 0; 791 _base_sync_drv_fw_timestamp(ioc); 792 } 793 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 794 rearm_timer: 795 if (ioc->fault_reset_work_q) 796 queue_delayed_work(ioc->fault_reset_work_q, 797 &ioc->fault_reset_work, 798 msecs_to_jiffies(FAULT_POLLING_INTERVAL)); 799 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 800 } 801 802 /** 803 * mpt3sas_base_start_watchdog - start the fault_reset_work_q 804 * @ioc: per adapter object 805 * 806 * Context: sleep. 807 */ 808 void 809 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc) 810 { 811 unsigned long flags; 812 813 if (ioc->fault_reset_work_q) 814 return; 815 816 ioc->timestamp_update_count = 0; 817 /* initialize fault polling */ 818 819 INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work); 820 snprintf(ioc->fault_reset_work_q_name, 821 sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status", 822 ioc->driver_name, ioc->id); 823 ioc->fault_reset_work_q = 824 create_singlethread_workqueue(ioc->fault_reset_work_q_name); 825 if (!ioc->fault_reset_work_q) { 826 ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__); 827 return; 828 } 829 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 830 if (ioc->fault_reset_work_q) 831 queue_delayed_work(ioc->fault_reset_work_q, 832 &ioc->fault_reset_work, 833 msecs_to_jiffies(FAULT_POLLING_INTERVAL)); 834 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 835 } 836 837 /** 838 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q 839 * @ioc: per adapter object 840 * 841 * Context: sleep. 842 */ 843 void 844 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc) 845 { 846 unsigned long flags; 847 struct workqueue_struct *wq; 848 849 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 850 wq = ioc->fault_reset_work_q; 851 ioc->fault_reset_work_q = NULL; 852 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 853 if (wq) { 854 if (!cancel_delayed_work_sync(&ioc->fault_reset_work)) 855 flush_workqueue(wq); 856 destroy_workqueue(wq); 857 } 858 } 859 860 /** 861 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code 862 * @ioc: per adapter object 863 * @fault_code: fault code 864 */ 865 void 866 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code) 867 { 868 ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code); 869 } 870 871 /** 872 * mpt3sas_base_coredump_info - verbose translation of firmware CoreDump state 873 * @ioc: per adapter object 874 * @fault_code: fault code 875 * 876 * Return: nothing. 877 */ 878 void 879 mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code) 880 { 881 ioc_err(ioc, "coredump_state(0x%04x)!\n", fault_code); 882 } 883 884 /** 885 * mpt3sas_base_wait_for_coredump_completion - Wait until coredump 886 * completes or times out 887 * @ioc: per adapter object 888 * @caller: caller function name 889 * 890 * Return: 0 for success, non-zero for failure. 891 */ 892 int 893 mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER *ioc, 894 const char *caller) 895 { 896 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ? 897 ioc->manu_pg11.CoreDumpTOSec : 898 MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS; 899 900 int ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_FAULT, 901 timeout); 902 903 if (ioc_state) 904 ioc_err(ioc, 905 "%s: CoreDump timed out. (ioc_state=0x%x)\n", 906 caller, ioc_state); 907 else 908 ioc_info(ioc, 909 "%s: CoreDump completed. (ioc_state=0x%x)\n", 910 caller, ioc_state); 911 912 return ioc_state; 913 } 914 915 /** 916 * mpt3sas_halt_firmware - halt's mpt controller firmware 917 * @ioc: per adapter object 918 * 919 * For debugging timeout related issues. Writing 0xCOFFEE00 920 * to the doorbell register will halt controller firmware. With 921 * the purpose to stop both driver and firmware, the enduser can 922 * obtain a ring buffer from controller UART. 923 */ 924 void 925 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc) 926 { 927 u32 doorbell; 928 929 if (!ioc->fwfault_debug) 930 return; 931 932 dump_stack(); 933 934 doorbell = ioc->base_readl(&ioc->chip->Doorbell); 935 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 936 mpt3sas_print_fault_code(ioc, doorbell & 937 MPI2_DOORBELL_DATA_MASK); 938 } else if ((doorbell & MPI2_IOC_STATE_MASK) == 939 MPI2_IOC_STATE_COREDUMP) { 940 mpt3sas_print_coredump_info(ioc, doorbell & 941 MPI2_DOORBELL_DATA_MASK); 942 } else { 943 writel(0xC0FFEE00, &ioc->chip->Doorbell); 944 ioc_err(ioc, "Firmware is halted due to command timeout\n"); 945 } 946 947 if (ioc->fwfault_debug == 2) 948 for (;;) 949 ; 950 else 951 panic("panic in %s\n", __func__); 952 } 953 954 /** 955 * _base_sas_ioc_info - verbose translation of the ioc status 956 * @ioc: per adapter object 957 * @mpi_reply: reply mf payload returned from firmware 958 * @request_hdr: request mf 959 */ 960 static void 961 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply, 962 MPI2RequestHeader_t *request_hdr) 963 { 964 u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & 965 MPI2_IOCSTATUS_MASK; 966 char *desc = NULL; 967 u16 frame_sz; 968 char *func_str = NULL; 969 970 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */ 971 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST || 972 request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH || 973 request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION) 974 return; 975 976 if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE) 977 return; 978 /* 979 * Older Firmware version doesn't support driver trigger pages. 980 * So, skip displaying 'config invalid type' type 981 * of error message. 982 */ 983 if (request_hdr->Function == MPI2_FUNCTION_CONFIG) { 984 Mpi2ConfigRequest_t *rqst = (Mpi2ConfigRequest_t *)request_hdr; 985 986 if ((rqst->ExtPageType == 987 MPI2_CONFIG_EXTPAGETYPE_DRIVER_PERSISTENT_TRIGGER) && 988 !(ioc->logging_level & MPT_DEBUG_CONFIG)) { 989 return; 990 } 991 } 992 993 switch (ioc_status) { 994 995 /**************************************************************************** 996 * Common IOCStatus values for all replies 997 ****************************************************************************/ 998 999 case MPI2_IOCSTATUS_INVALID_FUNCTION: 1000 desc = "invalid function"; 1001 break; 1002 case MPI2_IOCSTATUS_BUSY: 1003 desc = "busy"; 1004 break; 1005 case MPI2_IOCSTATUS_INVALID_SGL: 1006 desc = "invalid sgl"; 1007 break; 1008 case MPI2_IOCSTATUS_INTERNAL_ERROR: 1009 desc = "internal error"; 1010 break; 1011 case MPI2_IOCSTATUS_INVALID_VPID: 1012 desc = "invalid vpid"; 1013 break; 1014 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES: 1015 desc = "insufficient resources"; 1016 break; 1017 case MPI2_IOCSTATUS_INSUFFICIENT_POWER: 1018 desc = "insufficient power"; 1019 break; 1020 case MPI2_IOCSTATUS_INVALID_FIELD: 1021 desc = "invalid field"; 1022 break; 1023 case MPI2_IOCSTATUS_INVALID_STATE: 1024 desc = "invalid state"; 1025 break; 1026 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED: 1027 desc = "op state not supported"; 1028 break; 1029 1030 /**************************************************************************** 1031 * Config IOCStatus values 1032 ****************************************************************************/ 1033 1034 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION: 1035 desc = "config invalid action"; 1036 break; 1037 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE: 1038 desc = "config invalid type"; 1039 break; 1040 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE: 1041 desc = "config invalid page"; 1042 break; 1043 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA: 1044 desc = "config invalid data"; 1045 break; 1046 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS: 1047 desc = "config no defaults"; 1048 break; 1049 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT: 1050 desc = "config cant commit"; 1051 break; 1052 1053 /**************************************************************************** 1054 * SCSI IO Reply 1055 ****************************************************************************/ 1056 1057 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR: 1058 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE: 1059 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE: 1060 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN: 1061 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN: 1062 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR: 1063 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR: 1064 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED: 1065 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH: 1066 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED: 1067 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED: 1068 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED: 1069 break; 1070 1071 /**************************************************************************** 1072 * For use by SCSI Initiator and SCSI Target end-to-end data protection 1073 ****************************************************************************/ 1074 1075 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR: 1076 desc = "eedp guard error"; 1077 break; 1078 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR: 1079 desc = "eedp ref tag error"; 1080 break; 1081 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR: 1082 desc = "eedp app tag error"; 1083 break; 1084 1085 /**************************************************************************** 1086 * SCSI Target values 1087 ****************************************************************************/ 1088 1089 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX: 1090 desc = "target invalid io index"; 1091 break; 1092 case MPI2_IOCSTATUS_TARGET_ABORTED: 1093 desc = "target aborted"; 1094 break; 1095 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE: 1096 desc = "target no conn retryable"; 1097 break; 1098 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION: 1099 desc = "target no connection"; 1100 break; 1101 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH: 1102 desc = "target xfer count mismatch"; 1103 break; 1104 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR: 1105 desc = "target data offset error"; 1106 break; 1107 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA: 1108 desc = "target too much write data"; 1109 break; 1110 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT: 1111 desc = "target iu too short"; 1112 break; 1113 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT: 1114 desc = "target ack nak timeout"; 1115 break; 1116 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED: 1117 desc = "target nak received"; 1118 break; 1119 1120 /**************************************************************************** 1121 * Serial Attached SCSI values 1122 ****************************************************************************/ 1123 1124 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED: 1125 desc = "smp request failed"; 1126 break; 1127 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN: 1128 desc = "smp data overrun"; 1129 break; 1130 1131 /**************************************************************************** 1132 * Diagnostic Buffer Post / Diagnostic Release values 1133 ****************************************************************************/ 1134 1135 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED: 1136 desc = "diagnostic released"; 1137 break; 1138 default: 1139 break; 1140 } 1141 1142 if (!desc) 1143 return; 1144 1145 switch (request_hdr->Function) { 1146 case MPI2_FUNCTION_CONFIG: 1147 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size; 1148 func_str = "config_page"; 1149 break; 1150 case MPI2_FUNCTION_SCSI_TASK_MGMT: 1151 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t); 1152 func_str = "task_mgmt"; 1153 break; 1154 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL: 1155 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t); 1156 func_str = "sas_iounit_ctl"; 1157 break; 1158 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR: 1159 frame_sz = sizeof(Mpi2SepRequest_t); 1160 func_str = "enclosure"; 1161 break; 1162 case MPI2_FUNCTION_IOC_INIT: 1163 frame_sz = sizeof(Mpi2IOCInitRequest_t); 1164 func_str = "ioc_init"; 1165 break; 1166 case MPI2_FUNCTION_PORT_ENABLE: 1167 frame_sz = sizeof(Mpi2PortEnableRequest_t); 1168 func_str = "port_enable"; 1169 break; 1170 case MPI2_FUNCTION_SMP_PASSTHROUGH: 1171 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size; 1172 func_str = "smp_passthru"; 1173 break; 1174 case MPI2_FUNCTION_NVME_ENCAPSULATED: 1175 frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) + 1176 ioc->sge_size; 1177 func_str = "nvme_encapsulated"; 1178 break; 1179 default: 1180 frame_sz = 32; 1181 func_str = "unknown"; 1182 break; 1183 } 1184 1185 ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n", 1186 desc, ioc_status, request_hdr, func_str); 1187 1188 _debug_dump_mf(request_hdr, frame_sz/4); 1189 } 1190 1191 /** 1192 * _base_display_event_data - verbose translation of firmware asyn events 1193 * @ioc: per adapter object 1194 * @mpi_reply: reply mf payload returned from firmware 1195 */ 1196 static void 1197 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc, 1198 Mpi2EventNotificationReply_t *mpi_reply) 1199 { 1200 char *desc = NULL; 1201 u16 event; 1202 1203 if (!(ioc->logging_level & MPT_DEBUG_EVENTS)) 1204 return; 1205 1206 event = le16_to_cpu(mpi_reply->Event); 1207 1208 switch (event) { 1209 case MPI2_EVENT_LOG_DATA: 1210 desc = "Log Data"; 1211 break; 1212 case MPI2_EVENT_STATE_CHANGE: 1213 desc = "Status Change"; 1214 break; 1215 case MPI2_EVENT_HARD_RESET_RECEIVED: 1216 desc = "Hard Reset Received"; 1217 break; 1218 case MPI2_EVENT_EVENT_CHANGE: 1219 desc = "Event Change"; 1220 break; 1221 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE: 1222 desc = "Device Status Change"; 1223 break; 1224 case MPI2_EVENT_IR_OPERATION_STATUS: 1225 if (!ioc->hide_ir_msg) 1226 desc = "IR Operation Status"; 1227 break; 1228 case MPI2_EVENT_SAS_DISCOVERY: 1229 { 1230 Mpi2EventDataSasDiscovery_t *event_data = 1231 (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData; 1232 ioc_info(ioc, "Discovery: (%s)", 1233 event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ? 1234 "start" : "stop"); 1235 if (event_data->DiscoveryStatus) 1236 pr_cont(" discovery_status(0x%08x)", 1237 le32_to_cpu(event_data->DiscoveryStatus)); 1238 pr_cont("\n"); 1239 return; 1240 } 1241 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE: 1242 desc = "SAS Broadcast Primitive"; 1243 break; 1244 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE: 1245 desc = "SAS Init Device Status Change"; 1246 break; 1247 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW: 1248 desc = "SAS Init Table Overflow"; 1249 break; 1250 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST: 1251 desc = "SAS Topology Change List"; 1252 break; 1253 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE: 1254 desc = "SAS Enclosure Device Status Change"; 1255 break; 1256 case MPI2_EVENT_IR_VOLUME: 1257 if (!ioc->hide_ir_msg) 1258 desc = "IR Volume"; 1259 break; 1260 case MPI2_EVENT_IR_PHYSICAL_DISK: 1261 if (!ioc->hide_ir_msg) 1262 desc = "IR Physical Disk"; 1263 break; 1264 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST: 1265 if (!ioc->hide_ir_msg) 1266 desc = "IR Configuration Change List"; 1267 break; 1268 case MPI2_EVENT_LOG_ENTRY_ADDED: 1269 if (!ioc->hide_ir_msg) 1270 desc = "Log Entry Added"; 1271 break; 1272 case MPI2_EVENT_TEMP_THRESHOLD: 1273 desc = "Temperature Threshold"; 1274 break; 1275 case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION: 1276 desc = "Cable Event"; 1277 break; 1278 case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR: 1279 desc = "SAS Device Discovery Error"; 1280 break; 1281 case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE: 1282 desc = "PCIE Device Status Change"; 1283 break; 1284 case MPI2_EVENT_PCIE_ENUMERATION: 1285 { 1286 Mpi26EventDataPCIeEnumeration_t *event_data = 1287 (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData; 1288 ioc_info(ioc, "PCIE Enumeration: (%s)", 1289 event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ? 1290 "start" : "stop"); 1291 if (event_data->EnumerationStatus) 1292 pr_cont("enumeration_status(0x%08x)", 1293 le32_to_cpu(event_data->EnumerationStatus)); 1294 pr_cont("\n"); 1295 return; 1296 } 1297 case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST: 1298 desc = "PCIE Topology Change List"; 1299 break; 1300 } 1301 1302 if (!desc) 1303 return; 1304 1305 ioc_info(ioc, "%s\n", desc); 1306 } 1307 1308 /** 1309 * _base_sas_log_info - verbose translation of firmware log info 1310 * @ioc: per adapter object 1311 * @log_info: log info 1312 */ 1313 static void 1314 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info) 1315 { 1316 union loginfo_type { 1317 u32 loginfo; 1318 struct { 1319 u32 subcode:16; 1320 u32 code:8; 1321 u32 originator:4; 1322 u32 bus_type:4; 1323 } dw; 1324 }; 1325 union loginfo_type sas_loginfo; 1326 char *originator_str = NULL; 1327 1328 sas_loginfo.loginfo = log_info; 1329 if (sas_loginfo.dw.bus_type != 3 /*SAS*/) 1330 return; 1331 1332 /* each nexus loss loginfo */ 1333 if (log_info == 0x31170000) 1334 return; 1335 1336 /* eat the loginfos associated with task aborts */ 1337 if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info == 1338 0x31140000 || log_info == 0x31130000)) 1339 return; 1340 1341 switch (sas_loginfo.dw.originator) { 1342 case 0: 1343 originator_str = "IOP"; 1344 break; 1345 case 1: 1346 originator_str = "PL"; 1347 break; 1348 case 2: 1349 if (!ioc->hide_ir_msg) 1350 originator_str = "IR"; 1351 else 1352 originator_str = "WarpDrive"; 1353 break; 1354 } 1355 1356 ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n", 1357 log_info, 1358 originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode); 1359 } 1360 1361 /** 1362 * _base_display_reply_info - handle reply descriptors depending on IOC Status 1363 * @ioc: per adapter object 1364 * @smid: system request message index 1365 * @msix_index: MSIX table index supplied by the OS 1366 * @reply: reply message frame (lower 32bit addr) 1367 */ 1368 static void 1369 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 1370 u32 reply) 1371 { 1372 MPI2DefaultReply_t *mpi_reply; 1373 u16 ioc_status; 1374 u32 loginfo = 0; 1375 1376 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1377 if (unlikely(!mpi_reply)) { 1378 ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n", 1379 __FILE__, __LINE__, __func__); 1380 return; 1381 } 1382 ioc_status = le16_to_cpu(mpi_reply->IOCStatus); 1383 1384 if ((ioc_status & MPI2_IOCSTATUS_MASK) && 1385 (ioc->logging_level & MPT_DEBUG_REPLY)) { 1386 _base_sas_ioc_info(ioc , mpi_reply, 1387 mpt3sas_base_get_msg_frame(ioc, smid)); 1388 } 1389 1390 if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) { 1391 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo); 1392 _base_sas_log_info(ioc, loginfo); 1393 } 1394 1395 if (ioc_status || loginfo) { 1396 ioc_status &= MPI2_IOCSTATUS_MASK; 1397 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo); 1398 } 1399 } 1400 1401 /** 1402 * mpt3sas_base_done - base internal command completion routine 1403 * @ioc: per adapter object 1404 * @smid: system request message index 1405 * @msix_index: MSIX table index supplied by the OS 1406 * @reply: reply message frame(lower 32bit addr) 1407 * 1408 * Return: 1409 * 1 meaning mf should be freed from _base_interrupt 1410 * 0 means the mf is freed from this function. 1411 */ 1412 u8 1413 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 1414 u32 reply) 1415 { 1416 MPI2DefaultReply_t *mpi_reply; 1417 1418 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1419 if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK) 1420 return mpt3sas_check_for_pending_internal_cmds(ioc, smid); 1421 1422 if (ioc->base_cmds.status == MPT3_CMD_NOT_USED) 1423 return 1; 1424 1425 ioc->base_cmds.status |= MPT3_CMD_COMPLETE; 1426 if (mpi_reply) { 1427 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID; 1428 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4); 1429 } 1430 ioc->base_cmds.status &= ~MPT3_CMD_PENDING; 1431 1432 complete(&ioc->base_cmds.done); 1433 return 1; 1434 } 1435 1436 /** 1437 * _base_async_event - main callback handler for firmware asyn events 1438 * @ioc: per adapter object 1439 * @msix_index: MSIX table index supplied by the OS 1440 * @reply: reply message frame(lower 32bit addr) 1441 * 1442 * Return: 1443 * 1 meaning mf should be freed from _base_interrupt 1444 * 0 means the mf is freed from this function. 1445 */ 1446 static u8 1447 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply) 1448 { 1449 Mpi2EventNotificationReply_t *mpi_reply; 1450 Mpi2EventAckRequest_t *ack_request; 1451 u16 smid; 1452 struct _event_ack_list *delayed_event_ack; 1453 1454 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1455 if (!mpi_reply) 1456 return 1; 1457 if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION) 1458 return 1; 1459 1460 _base_display_event_data(ioc, mpi_reply); 1461 1462 if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED)) 1463 goto out; 1464 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 1465 if (!smid) { 1466 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack), 1467 GFP_ATOMIC); 1468 if (!delayed_event_ack) 1469 goto out; 1470 INIT_LIST_HEAD(&delayed_event_ack->list); 1471 delayed_event_ack->Event = mpi_reply->Event; 1472 delayed_event_ack->EventContext = mpi_reply->EventContext; 1473 list_add_tail(&delayed_event_ack->list, 1474 &ioc->delayed_event_ack_list); 1475 dewtprintk(ioc, 1476 ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n", 1477 le16_to_cpu(mpi_reply->Event))); 1478 goto out; 1479 } 1480 1481 ack_request = mpt3sas_base_get_msg_frame(ioc, smid); 1482 memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t)); 1483 ack_request->Function = MPI2_FUNCTION_EVENT_ACK; 1484 ack_request->Event = mpi_reply->Event; 1485 ack_request->EventContext = mpi_reply->EventContext; 1486 ack_request->VF_ID = 0; /* TODO */ 1487 ack_request->VP_ID = 0; 1488 ioc->put_smid_default(ioc, smid); 1489 1490 out: 1491 1492 /* scsih callback handler */ 1493 mpt3sas_scsih_event_callback(ioc, msix_index, reply); 1494 1495 /* ctl callback handler */ 1496 mpt3sas_ctl_event_callback(ioc, msix_index, reply); 1497 1498 return 1; 1499 } 1500 1501 static struct scsiio_tracker * 1502 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid) 1503 { 1504 struct scsi_cmnd *cmd; 1505 1506 if (WARN_ON(!smid) || 1507 WARN_ON(smid >= ioc->hi_priority_smid)) 1508 return NULL; 1509 1510 cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid); 1511 if (cmd) 1512 return scsi_cmd_priv(cmd); 1513 1514 return NULL; 1515 } 1516 1517 /** 1518 * _base_get_cb_idx - obtain the callback index 1519 * @ioc: per adapter object 1520 * @smid: system request message index 1521 * 1522 * Return: callback index. 1523 */ 1524 static u8 1525 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid) 1526 { 1527 int i; 1528 u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1; 1529 u8 cb_idx = 0xFF; 1530 1531 if (smid < ioc->hi_priority_smid) { 1532 struct scsiio_tracker *st; 1533 1534 if (smid < ctl_smid) { 1535 st = _get_st_from_smid(ioc, smid); 1536 if (st) 1537 cb_idx = st->cb_idx; 1538 } else if (smid == ctl_smid) 1539 cb_idx = ioc->ctl_cb_idx; 1540 } else if (smid < ioc->internal_smid) { 1541 i = smid - ioc->hi_priority_smid; 1542 cb_idx = ioc->hpr_lookup[i].cb_idx; 1543 } else if (smid <= ioc->hba_queue_depth) { 1544 i = smid - ioc->internal_smid; 1545 cb_idx = ioc->internal_lookup[i].cb_idx; 1546 } 1547 return cb_idx; 1548 } 1549 1550 /** 1551 * mpt3sas_base_mask_interrupts - disable interrupts 1552 * @ioc: per adapter object 1553 * 1554 * Disabling ResetIRQ, Reply and Doorbell Interrupts 1555 */ 1556 void 1557 mpt3sas_base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc) 1558 { 1559 u32 him_register; 1560 1561 ioc->mask_interrupts = 1; 1562 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask); 1563 him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK; 1564 writel(him_register, &ioc->chip->HostInterruptMask); 1565 ioc->base_readl(&ioc->chip->HostInterruptMask); 1566 } 1567 1568 /** 1569 * mpt3sas_base_unmask_interrupts - enable interrupts 1570 * @ioc: per adapter object 1571 * 1572 * Enabling only Reply Interrupts 1573 */ 1574 void 1575 mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc) 1576 { 1577 u32 him_register; 1578 1579 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask); 1580 him_register &= ~MPI2_HIM_RIM; 1581 writel(him_register, &ioc->chip->HostInterruptMask); 1582 ioc->mask_interrupts = 0; 1583 } 1584 1585 union reply_descriptor { 1586 u64 word; 1587 struct { 1588 u32 low; 1589 u32 high; 1590 } u; 1591 }; 1592 1593 static u32 base_mod64(u64 dividend, u32 divisor) 1594 { 1595 u32 remainder; 1596 1597 if (!divisor) 1598 pr_err("mpt3sas: DIVISOR is zero, in div fn\n"); 1599 remainder = do_div(dividend, divisor); 1600 return remainder; 1601 } 1602 1603 /** 1604 * _base_process_reply_queue - Process reply descriptors from reply 1605 * descriptor post queue. 1606 * @reply_q: per IRQ's reply queue object. 1607 * 1608 * Return: number of reply descriptors processed from reply 1609 * descriptor queue. 1610 */ 1611 static int 1612 _base_process_reply_queue(struct adapter_reply_queue *reply_q) 1613 { 1614 union reply_descriptor rd; 1615 u64 completed_cmds; 1616 u8 request_descript_type; 1617 u16 smid; 1618 u8 cb_idx; 1619 u32 reply; 1620 u8 msix_index = reply_q->msix_index; 1621 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc; 1622 Mpi2ReplyDescriptorsUnion_t *rpf; 1623 u8 rc; 1624 1625 completed_cmds = 0; 1626 if (!atomic_add_unless(&reply_q->busy, 1, 1)) 1627 return completed_cmds; 1628 1629 rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index]; 1630 request_descript_type = rpf->Default.ReplyFlags 1631 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 1632 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) { 1633 atomic_dec(&reply_q->busy); 1634 return completed_cmds; 1635 } 1636 1637 cb_idx = 0xFF; 1638 do { 1639 rd.word = le64_to_cpu(rpf->Words); 1640 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX) 1641 goto out; 1642 reply = 0; 1643 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1); 1644 if (request_descript_type == 1645 MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS || 1646 request_descript_type == 1647 MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS || 1648 request_descript_type == 1649 MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) { 1650 cb_idx = _base_get_cb_idx(ioc, smid); 1651 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) && 1652 (likely(mpt_callbacks[cb_idx] != NULL))) { 1653 rc = mpt_callbacks[cb_idx](ioc, smid, 1654 msix_index, 0); 1655 if (rc) 1656 mpt3sas_base_free_smid(ioc, smid); 1657 } 1658 } else if (request_descript_type == 1659 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) { 1660 reply = le32_to_cpu( 1661 rpf->AddressReply.ReplyFrameAddress); 1662 if (reply > ioc->reply_dma_max_address || 1663 reply < ioc->reply_dma_min_address) 1664 reply = 0; 1665 if (smid) { 1666 cb_idx = _base_get_cb_idx(ioc, smid); 1667 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) && 1668 (likely(mpt_callbacks[cb_idx] != NULL))) { 1669 rc = mpt_callbacks[cb_idx](ioc, smid, 1670 msix_index, reply); 1671 if (reply) 1672 _base_display_reply_info(ioc, 1673 smid, msix_index, reply); 1674 if (rc) 1675 mpt3sas_base_free_smid(ioc, 1676 smid); 1677 } 1678 } else { 1679 _base_async_event(ioc, msix_index, reply); 1680 } 1681 1682 /* reply free queue handling */ 1683 if (reply) { 1684 ioc->reply_free_host_index = 1685 (ioc->reply_free_host_index == 1686 (ioc->reply_free_queue_depth - 1)) ? 1687 0 : ioc->reply_free_host_index + 1; 1688 ioc->reply_free[ioc->reply_free_host_index] = 1689 cpu_to_le32(reply); 1690 if (ioc->is_mcpu_endpoint) 1691 _base_clone_reply_to_sys_mem(ioc, 1692 reply, 1693 ioc->reply_free_host_index); 1694 writel(ioc->reply_free_host_index, 1695 &ioc->chip->ReplyFreeHostIndex); 1696 } 1697 } 1698 1699 rpf->Words = cpu_to_le64(ULLONG_MAX); 1700 reply_q->reply_post_host_index = 1701 (reply_q->reply_post_host_index == 1702 (ioc->reply_post_queue_depth - 1)) ? 0 : 1703 reply_q->reply_post_host_index + 1; 1704 request_descript_type = 1705 reply_q->reply_post_free[reply_q->reply_post_host_index]. 1706 Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 1707 completed_cmds++; 1708 /* Update the reply post host index after continuously 1709 * processing the threshold number of Reply Descriptors. 1710 * So that FW can find enough entries to post the Reply 1711 * Descriptors in the reply descriptor post queue. 1712 */ 1713 if (completed_cmds >= ioc->thresh_hold) { 1714 if (ioc->combined_reply_queue) { 1715 writel(reply_q->reply_post_host_index | 1716 ((msix_index & 7) << 1717 MPI2_RPHI_MSIX_INDEX_SHIFT), 1718 ioc->replyPostRegisterIndex[msix_index/8]); 1719 } else { 1720 writel(reply_q->reply_post_host_index | 1721 (msix_index << 1722 MPI2_RPHI_MSIX_INDEX_SHIFT), 1723 &ioc->chip->ReplyPostHostIndex); 1724 } 1725 if (!reply_q->irq_poll_scheduled) { 1726 reply_q->irq_poll_scheduled = true; 1727 irq_poll_sched(&reply_q->irqpoll); 1728 } 1729 atomic_dec(&reply_q->busy); 1730 return completed_cmds; 1731 } 1732 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) 1733 goto out; 1734 if (!reply_q->reply_post_host_index) 1735 rpf = reply_q->reply_post_free; 1736 else 1737 rpf++; 1738 } while (1); 1739 1740 out: 1741 1742 if (!completed_cmds) { 1743 atomic_dec(&reply_q->busy); 1744 return completed_cmds; 1745 } 1746 1747 if (ioc->is_warpdrive) { 1748 writel(reply_q->reply_post_host_index, 1749 ioc->reply_post_host_index[msix_index]); 1750 atomic_dec(&reply_q->busy); 1751 return completed_cmds; 1752 } 1753 1754 /* Update Reply Post Host Index. 1755 * For those HBA's which support combined reply queue feature 1756 * 1. Get the correct Supplemental Reply Post Host Index Register. 1757 * i.e. (msix_index / 8)th entry from Supplemental Reply Post Host 1758 * Index Register address bank i.e replyPostRegisterIndex[], 1759 * 2. Then update this register with new reply host index value 1760 * in ReplyPostIndex field and the MSIxIndex field with 1761 * msix_index value reduced to a value between 0 and 7, 1762 * using a modulo 8 operation. Since each Supplemental Reply Post 1763 * Host Index Register supports 8 MSI-X vectors. 1764 * 1765 * For other HBA's just update the Reply Post Host Index register with 1766 * new reply host index value in ReplyPostIndex Field and msix_index 1767 * value in MSIxIndex field. 1768 */ 1769 if (ioc->combined_reply_queue) 1770 writel(reply_q->reply_post_host_index | ((msix_index & 7) << 1771 MPI2_RPHI_MSIX_INDEX_SHIFT), 1772 ioc->replyPostRegisterIndex[msix_index/8]); 1773 else 1774 writel(reply_q->reply_post_host_index | (msix_index << 1775 MPI2_RPHI_MSIX_INDEX_SHIFT), 1776 &ioc->chip->ReplyPostHostIndex); 1777 atomic_dec(&reply_q->busy); 1778 return completed_cmds; 1779 } 1780 1781 /** 1782 * _base_interrupt - MPT adapter (IOC) specific interrupt handler. 1783 * @irq: irq number (not used) 1784 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure 1785 * 1786 * Return: IRQ_HANDLED if processed, else IRQ_NONE. 1787 */ 1788 static irqreturn_t 1789 _base_interrupt(int irq, void *bus_id) 1790 { 1791 struct adapter_reply_queue *reply_q = bus_id; 1792 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc; 1793 1794 if (ioc->mask_interrupts) 1795 return IRQ_NONE; 1796 if (reply_q->irq_poll_scheduled) 1797 return IRQ_HANDLED; 1798 return ((_base_process_reply_queue(reply_q) > 0) ? 1799 IRQ_HANDLED : IRQ_NONE); 1800 } 1801 1802 /** 1803 * _base_irqpoll - IRQ poll callback handler 1804 * @irqpoll: irq_poll object 1805 * @budget: irq poll weight 1806 * 1807 * Return: number of reply descriptors processed 1808 */ 1809 static int 1810 _base_irqpoll(struct irq_poll *irqpoll, int budget) 1811 { 1812 struct adapter_reply_queue *reply_q; 1813 int num_entries = 0; 1814 1815 reply_q = container_of(irqpoll, struct adapter_reply_queue, 1816 irqpoll); 1817 if (reply_q->irq_line_enable) { 1818 disable_irq_nosync(reply_q->os_irq); 1819 reply_q->irq_line_enable = false; 1820 } 1821 num_entries = _base_process_reply_queue(reply_q); 1822 if (num_entries < budget) { 1823 irq_poll_complete(irqpoll); 1824 reply_q->irq_poll_scheduled = false; 1825 reply_q->irq_line_enable = true; 1826 enable_irq(reply_q->os_irq); 1827 /* 1828 * Go for one more round of processing the 1829 * reply descriptor post queue in case the HBA 1830 * Firmware has posted some reply descriptors 1831 * while reenabling the IRQ. 1832 */ 1833 _base_process_reply_queue(reply_q); 1834 } 1835 1836 return num_entries; 1837 } 1838 1839 /** 1840 * _base_init_irqpolls - initliaze IRQ polls 1841 * @ioc: per adapter object 1842 * 1843 * Return: nothing 1844 */ 1845 static void 1846 _base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc) 1847 { 1848 struct adapter_reply_queue *reply_q, *next; 1849 1850 if (list_empty(&ioc->reply_queue_list)) 1851 return; 1852 1853 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) { 1854 irq_poll_init(&reply_q->irqpoll, 1855 ioc->hba_queue_depth/4, _base_irqpoll); 1856 reply_q->irq_poll_scheduled = false; 1857 reply_q->irq_line_enable = true; 1858 reply_q->os_irq = pci_irq_vector(ioc->pdev, 1859 reply_q->msix_index); 1860 } 1861 } 1862 1863 /** 1864 * _base_is_controller_msix_enabled - is controller support muli-reply queues 1865 * @ioc: per adapter object 1866 * 1867 * Return: Whether or not MSI/X is enabled. 1868 */ 1869 static inline int 1870 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc) 1871 { 1872 return (ioc->facts.IOCCapabilities & 1873 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable; 1874 } 1875 1876 /** 1877 * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts 1878 * @ioc: per adapter object 1879 * @poll: poll over reply descriptor pools incase interrupt for 1880 * timed-out SCSI command got delayed 1881 * Context: non-ISR context 1882 * 1883 * Called when a Task Management request has completed. 1884 */ 1885 void 1886 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc, u8 poll) 1887 { 1888 struct adapter_reply_queue *reply_q; 1889 1890 /* If MSIX capability is turned off 1891 * then multi-queues are not enabled 1892 */ 1893 if (!_base_is_controller_msix_enabled(ioc)) 1894 return; 1895 1896 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 1897 if (ioc->shost_recovery || ioc->remove_host || 1898 ioc->pci_error_recovery) 1899 return; 1900 /* TMs are on msix_index == 0 */ 1901 if (reply_q->msix_index == 0) 1902 continue; 1903 synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index)); 1904 if (reply_q->irq_poll_scheduled) { 1905 /* Calling irq_poll_disable will wait for any pending 1906 * callbacks to have completed. 1907 */ 1908 irq_poll_disable(&reply_q->irqpoll); 1909 irq_poll_enable(&reply_q->irqpoll); 1910 /* check how the scheduled poll has ended, 1911 * clean up only if necessary 1912 */ 1913 if (reply_q->irq_poll_scheduled) { 1914 reply_q->irq_poll_scheduled = false; 1915 reply_q->irq_line_enable = true; 1916 enable_irq(reply_q->os_irq); 1917 } 1918 } 1919 } 1920 if (poll) 1921 _base_process_reply_queue(reply_q); 1922 } 1923 1924 /** 1925 * mpt3sas_base_release_callback_handler - clear interrupt callback handler 1926 * @cb_idx: callback index 1927 */ 1928 void 1929 mpt3sas_base_release_callback_handler(u8 cb_idx) 1930 { 1931 mpt_callbacks[cb_idx] = NULL; 1932 } 1933 1934 /** 1935 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler 1936 * @cb_func: callback function 1937 * 1938 * Return: Index of @cb_func. 1939 */ 1940 u8 1941 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func) 1942 { 1943 u8 cb_idx; 1944 1945 for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--) 1946 if (mpt_callbacks[cb_idx] == NULL) 1947 break; 1948 1949 mpt_callbacks[cb_idx] = cb_func; 1950 return cb_idx; 1951 } 1952 1953 /** 1954 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler 1955 */ 1956 void 1957 mpt3sas_base_initialize_callback_handler(void) 1958 { 1959 u8 cb_idx; 1960 1961 for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++) 1962 mpt3sas_base_release_callback_handler(cb_idx); 1963 } 1964 1965 1966 /** 1967 * _base_build_zero_len_sge - build zero length sg entry 1968 * @ioc: per adapter object 1969 * @paddr: virtual address for SGE 1970 * 1971 * Create a zero length scatter gather entry to insure the IOCs hardware has 1972 * something to use if the target device goes brain dead and tries 1973 * to send data even when none is asked for. 1974 */ 1975 static void 1976 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr) 1977 { 1978 u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT | 1979 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST | 1980 MPI2_SGE_FLAGS_SIMPLE_ELEMENT) << 1981 MPI2_SGE_FLAGS_SHIFT); 1982 ioc->base_add_sg_single(paddr, flags_length, -1); 1983 } 1984 1985 /** 1986 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr. 1987 * @paddr: virtual address for SGE 1988 * @flags_length: SGE flags and data transfer length 1989 * @dma_addr: Physical address 1990 */ 1991 static void 1992 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr) 1993 { 1994 Mpi2SGESimple32_t *sgel = paddr; 1995 1996 flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING | 1997 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT; 1998 sgel->FlagsLength = cpu_to_le32(flags_length); 1999 sgel->Address = cpu_to_le32(dma_addr); 2000 } 2001 2002 2003 /** 2004 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr. 2005 * @paddr: virtual address for SGE 2006 * @flags_length: SGE flags and data transfer length 2007 * @dma_addr: Physical address 2008 */ 2009 static void 2010 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr) 2011 { 2012 Mpi2SGESimple64_t *sgel = paddr; 2013 2014 flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING | 2015 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT; 2016 sgel->FlagsLength = cpu_to_le32(flags_length); 2017 sgel->Address = cpu_to_le64(dma_addr); 2018 } 2019 2020 /** 2021 * _base_get_chain_buffer_tracker - obtain chain tracker 2022 * @ioc: per adapter object 2023 * @scmd: SCSI commands of the IO request 2024 * 2025 * Return: chain tracker from chain_lookup table using key as 2026 * smid and smid's chain_offset. 2027 */ 2028 static struct chain_tracker * 2029 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc, 2030 struct scsi_cmnd *scmd) 2031 { 2032 struct chain_tracker *chain_req; 2033 struct scsiio_tracker *st = scsi_cmd_priv(scmd); 2034 u16 smid = st->smid; 2035 u8 chain_offset = 2036 atomic_read(&ioc->chain_lookup[smid - 1].chain_offset); 2037 2038 if (chain_offset == ioc->chains_needed_per_io) 2039 return NULL; 2040 2041 chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset]; 2042 atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset); 2043 return chain_req; 2044 } 2045 2046 2047 /** 2048 * _base_build_sg - build generic sg 2049 * @ioc: per adapter object 2050 * @psge: virtual address for SGE 2051 * @data_out_dma: physical address for WRITES 2052 * @data_out_sz: data xfer size for WRITES 2053 * @data_in_dma: physical address for READS 2054 * @data_in_sz: data xfer size for READS 2055 */ 2056 static void 2057 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge, 2058 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 2059 size_t data_in_sz) 2060 { 2061 u32 sgl_flags; 2062 2063 if (!data_out_sz && !data_in_sz) { 2064 _base_build_zero_len_sge(ioc, psge); 2065 return; 2066 } 2067 2068 if (data_out_sz && data_in_sz) { 2069 /* WRITE sgel first */ 2070 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2071 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC); 2072 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2073 ioc->base_add_sg_single(psge, sgl_flags | 2074 data_out_sz, data_out_dma); 2075 2076 /* incr sgel */ 2077 psge += ioc->sge_size; 2078 2079 /* READ sgel last */ 2080 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2081 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 2082 MPI2_SGE_FLAGS_END_OF_LIST); 2083 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2084 ioc->base_add_sg_single(psge, sgl_flags | 2085 data_in_sz, data_in_dma); 2086 } else if (data_out_sz) /* WRITE */ { 2087 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2088 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 2089 MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC); 2090 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2091 ioc->base_add_sg_single(psge, sgl_flags | 2092 data_out_sz, data_out_dma); 2093 } else if (data_in_sz) /* READ */ { 2094 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2095 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 2096 MPI2_SGE_FLAGS_END_OF_LIST); 2097 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2098 ioc->base_add_sg_single(psge, sgl_flags | 2099 data_in_sz, data_in_dma); 2100 } 2101 } 2102 2103 /* IEEE format sgls */ 2104 2105 /** 2106 * _base_build_nvme_prp - This function is called for NVMe end devices to build 2107 * a native SGL (NVMe PRP). 2108 * @ioc: per adapter object 2109 * @smid: system request message index for getting asscociated SGL 2110 * @nvme_encap_request: the NVMe request msg frame pointer 2111 * @data_out_dma: physical address for WRITES 2112 * @data_out_sz: data xfer size for WRITES 2113 * @data_in_dma: physical address for READS 2114 * @data_in_sz: data xfer size for READS 2115 * 2116 * The native SGL is built starting in the first PRP 2117 * entry of the NVMe message (PRP1). If the data buffer is small enough to be 2118 * described entirely using PRP1, then PRP2 is not used. If needed, PRP2 is 2119 * used to describe a larger data buffer. If the data buffer is too large to 2120 * describe using the two PRP entriess inside the NVMe message, then PRP1 2121 * describes the first data memory segment, and PRP2 contains a pointer to a PRP 2122 * list located elsewhere in memory to describe the remaining data memory 2123 * segments. The PRP list will be contiguous. 2124 * 2125 * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP 2126 * consists of a list of PRP entries to describe a number of noncontigous 2127 * physical memory segments as a single memory buffer, just as a SGL does. Note 2128 * however, that this function is only used by the IOCTL call, so the memory 2129 * given will be guaranteed to be contiguous. There is no need to translate 2130 * non-contiguous SGL into a PRP in this case. All PRPs will describe 2131 * contiguous space that is one page size each. 2132 * 2133 * Each NVMe message contains two PRP entries. The first (PRP1) either contains 2134 * a PRP list pointer or a PRP element, depending upon the command. PRP2 2135 * contains the second PRP element if the memory being described fits within 2 2136 * PRP entries, or a PRP list pointer if the PRP spans more than two entries. 2137 * 2138 * A PRP list pointer contains the address of a PRP list, structured as a linear 2139 * array of PRP entries. Each PRP entry in this list describes a segment of 2140 * physical memory. 2141 * 2142 * Each 64-bit PRP entry comprises an address and an offset field. The address 2143 * always points at the beginning of a 4KB physical memory page, and the offset 2144 * describes where within that 4KB page the memory segment begins. Only the 2145 * first element in a PRP list may contain a non-zero offset, implying that all 2146 * memory segments following the first begin at the start of a 4KB page. 2147 * 2148 * Each PRP element normally describes 4KB of physical memory, with exceptions 2149 * for the first and last elements in the list. If the memory being described 2150 * by the list begins at a non-zero offset within the first 4KB page, then the 2151 * first PRP element will contain a non-zero offset indicating where the region 2152 * begins within the 4KB page. The last memory segment may end before the end 2153 * of the 4KB segment, depending upon the overall size of the memory being 2154 * described by the PRP list. 2155 * 2156 * Since PRP entries lack any indication of size, the overall data buffer length 2157 * is used to determine where the end of the data memory buffer is located, and 2158 * how many PRP entries are required to describe it. 2159 */ 2160 static void 2161 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid, 2162 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request, 2163 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 2164 size_t data_in_sz) 2165 { 2166 int prp_size = NVME_PRP_SIZE; 2167 __le64 *prp_entry, *prp1_entry, *prp2_entry; 2168 __le64 *prp_page; 2169 dma_addr_t prp_entry_dma, prp_page_dma, dma_addr; 2170 u32 offset, entry_len; 2171 u32 page_mask_result, page_mask; 2172 size_t length; 2173 struct mpt3sas_nvme_cmd *nvme_cmd = 2174 (void *)nvme_encap_request->NVMe_Command; 2175 2176 /* 2177 * Not all commands require a data transfer. If no data, just return 2178 * without constructing any PRP. 2179 */ 2180 if (!data_in_sz && !data_out_sz) 2181 return; 2182 prp1_entry = &nvme_cmd->prp1; 2183 prp2_entry = &nvme_cmd->prp2; 2184 prp_entry = prp1_entry; 2185 /* 2186 * For the PRP entries, use the specially allocated buffer of 2187 * contiguous memory. 2188 */ 2189 prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid); 2190 prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid); 2191 2192 /* 2193 * Check if we are within 1 entry of a page boundary we don't 2194 * want our first entry to be a PRP List entry. 2195 */ 2196 page_mask = ioc->page_size - 1; 2197 page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask; 2198 if (!page_mask_result) { 2199 /* Bump up to next page boundary. */ 2200 prp_page = (__le64 *)((u8 *)prp_page + prp_size); 2201 prp_page_dma = prp_page_dma + prp_size; 2202 } 2203 2204 /* 2205 * Set PRP physical pointer, which initially points to the current PRP 2206 * DMA memory page. 2207 */ 2208 prp_entry_dma = prp_page_dma; 2209 2210 /* Get physical address and length of the data buffer. */ 2211 if (data_in_sz) { 2212 dma_addr = data_in_dma; 2213 length = data_in_sz; 2214 } else { 2215 dma_addr = data_out_dma; 2216 length = data_out_sz; 2217 } 2218 2219 /* Loop while the length is not zero. */ 2220 while (length) { 2221 /* 2222 * Check if we need to put a list pointer here if we are at 2223 * page boundary - prp_size (8 bytes). 2224 */ 2225 page_mask_result = (prp_entry_dma + prp_size) & page_mask; 2226 if (!page_mask_result) { 2227 /* 2228 * This is the last entry in a PRP List, so we need to 2229 * put a PRP list pointer here. What this does is: 2230 * - bump the current memory pointer to the next 2231 * address, which will be the next full page. 2232 * - set the PRP Entry to point to that page. This 2233 * is now the PRP List pointer. 2234 * - bump the PRP Entry pointer the start of the 2235 * next page. Since all of this PRP memory is 2236 * contiguous, no need to get a new page - it's 2237 * just the next address. 2238 */ 2239 prp_entry_dma++; 2240 *prp_entry = cpu_to_le64(prp_entry_dma); 2241 prp_entry++; 2242 } 2243 2244 /* Need to handle if entry will be part of a page. */ 2245 offset = dma_addr & page_mask; 2246 entry_len = ioc->page_size - offset; 2247 2248 if (prp_entry == prp1_entry) { 2249 /* 2250 * Must fill in the first PRP pointer (PRP1) before 2251 * moving on. 2252 */ 2253 *prp1_entry = cpu_to_le64(dma_addr); 2254 2255 /* 2256 * Now point to the second PRP entry within the 2257 * command (PRP2). 2258 */ 2259 prp_entry = prp2_entry; 2260 } else if (prp_entry == prp2_entry) { 2261 /* 2262 * Should the PRP2 entry be a PRP List pointer or just 2263 * a regular PRP pointer? If there is more than one 2264 * more page of data, must use a PRP List pointer. 2265 */ 2266 if (length > ioc->page_size) { 2267 /* 2268 * PRP2 will contain a PRP List pointer because 2269 * more PRP's are needed with this command. The 2270 * list will start at the beginning of the 2271 * contiguous buffer. 2272 */ 2273 *prp2_entry = cpu_to_le64(prp_entry_dma); 2274 2275 /* 2276 * The next PRP Entry will be the start of the 2277 * first PRP List. 2278 */ 2279 prp_entry = prp_page; 2280 } else { 2281 /* 2282 * After this, the PRP Entries are complete. 2283 * This command uses 2 PRP's and no PRP list. 2284 */ 2285 *prp2_entry = cpu_to_le64(dma_addr); 2286 } 2287 } else { 2288 /* 2289 * Put entry in list and bump the addresses. 2290 * 2291 * After PRP1 and PRP2 are filled in, this will fill in 2292 * all remaining PRP entries in a PRP List, one per 2293 * each time through the loop. 2294 */ 2295 *prp_entry = cpu_to_le64(dma_addr); 2296 prp_entry++; 2297 prp_entry_dma++; 2298 } 2299 2300 /* 2301 * Bump the phys address of the command's data buffer by the 2302 * entry_len. 2303 */ 2304 dma_addr += entry_len; 2305 2306 /* Decrement length accounting for last partial page. */ 2307 if (entry_len > length) 2308 length = 0; 2309 else 2310 length -= entry_len; 2311 } 2312 } 2313 2314 /** 2315 * base_make_prp_nvme - Prepare PRPs (Physical Region Page) - 2316 * SGLs specific to NVMe drives only 2317 * 2318 * @ioc: per adapter object 2319 * @scmd: SCSI command from the mid-layer 2320 * @mpi_request: mpi request 2321 * @smid: msg Index 2322 * @sge_count: scatter gather element count. 2323 * 2324 * Return: true: PRPs are built 2325 * false: IEEE SGLs needs to be built 2326 */ 2327 static void 2328 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc, 2329 struct scsi_cmnd *scmd, 2330 Mpi25SCSIIORequest_t *mpi_request, 2331 u16 smid, int sge_count) 2332 { 2333 int sge_len, num_prp_in_chain = 0; 2334 Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl; 2335 __le64 *curr_buff; 2336 dma_addr_t msg_dma, sge_addr, offset; 2337 u32 page_mask, page_mask_result; 2338 struct scatterlist *sg_scmd; 2339 u32 first_prp_len; 2340 int data_len = scsi_bufflen(scmd); 2341 u32 nvme_pg_size; 2342 2343 nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE); 2344 /* 2345 * Nvme has a very convoluted prp format. One prp is required 2346 * for each page or partial page. Driver need to split up OS sg_list 2347 * entries if it is longer than one page or cross a page 2348 * boundary. Driver also have to insert a PRP list pointer entry as 2349 * the last entry in each physical page of the PRP list. 2350 * 2351 * NOTE: The first PRP "entry" is actually placed in the first 2352 * SGL entry in the main message as IEEE 64 format. The 2nd 2353 * entry in the main message is the chain element, and the rest 2354 * of the PRP entries are built in the contiguous pcie buffer. 2355 */ 2356 page_mask = nvme_pg_size - 1; 2357 2358 /* 2359 * Native SGL is needed. 2360 * Put a chain element in main message frame that points to the first 2361 * chain buffer. 2362 * 2363 * NOTE: The ChainOffset field must be 0 when using a chain pointer to 2364 * a native SGL. 2365 */ 2366 2367 /* Set main message chain element pointer */ 2368 main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL; 2369 /* 2370 * For NVMe the chain element needs to be the 2nd SG entry in the main 2371 * message. 2372 */ 2373 main_chain_element = (Mpi25IeeeSgeChain64_t *) 2374 ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64)); 2375 2376 /* 2377 * For the PRP entries, use the specially allocated buffer of 2378 * contiguous memory. Normal chain buffers can't be used 2379 * because each chain buffer would need to be the size of an OS 2380 * page (4k). 2381 */ 2382 curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid); 2383 msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid); 2384 2385 main_chain_element->Address = cpu_to_le64(msg_dma); 2386 main_chain_element->NextChainOffset = 0; 2387 main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 2388 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | 2389 MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP; 2390 2391 /* Build first prp, sge need not to be page aligned*/ 2392 ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL; 2393 sg_scmd = scsi_sglist(scmd); 2394 sge_addr = sg_dma_address(sg_scmd); 2395 sge_len = sg_dma_len(sg_scmd); 2396 2397 offset = sge_addr & page_mask; 2398 first_prp_len = nvme_pg_size - offset; 2399 2400 ptr_first_sgl->Address = cpu_to_le64(sge_addr); 2401 ptr_first_sgl->Length = cpu_to_le32(first_prp_len); 2402 2403 data_len -= first_prp_len; 2404 2405 if (sge_len > first_prp_len) { 2406 sge_addr += first_prp_len; 2407 sge_len -= first_prp_len; 2408 } else if (data_len && (sge_len == first_prp_len)) { 2409 sg_scmd = sg_next(sg_scmd); 2410 sge_addr = sg_dma_address(sg_scmd); 2411 sge_len = sg_dma_len(sg_scmd); 2412 } 2413 2414 for (;;) { 2415 offset = sge_addr & page_mask; 2416 2417 /* Put PRP pointer due to page boundary*/ 2418 page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask; 2419 if (unlikely(!page_mask_result)) { 2420 scmd_printk(KERN_NOTICE, 2421 scmd, "page boundary curr_buff: 0x%p\n", 2422 curr_buff); 2423 msg_dma += 8; 2424 *curr_buff = cpu_to_le64(msg_dma); 2425 curr_buff++; 2426 num_prp_in_chain++; 2427 } 2428 2429 *curr_buff = cpu_to_le64(sge_addr); 2430 curr_buff++; 2431 msg_dma += 8; 2432 num_prp_in_chain++; 2433 2434 sge_addr += nvme_pg_size; 2435 sge_len -= nvme_pg_size; 2436 data_len -= nvme_pg_size; 2437 2438 if (data_len <= 0) 2439 break; 2440 2441 if (sge_len > 0) 2442 continue; 2443 2444 sg_scmd = sg_next(sg_scmd); 2445 sge_addr = sg_dma_address(sg_scmd); 2446 sge_len = sg_dma_len(sg_scmd); 2447 } 2448 2449 main_chain_element->Length = 2450 cpu_to_le32(num_prp_in_chain * sizeof(u64)); 2451 return; 2452 } 2453 2454 static bool 2455 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc, 2456 struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count) 2457 { 2458 u32 data_length = 0; 2459 bool build_prp = true; 2460 2461 data_length = scsi_bufflen(scmd); 2462 if (pcie_device && 2463 (mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))) { 2464 build_prp = false; 2465 return build_prp; 2466 } 2467 2468 /* If Datalenth is <= 16K and number of SGE’s entries are <= 2 2469 * we built IEEE SGL 2470 */ 2471 if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2)) 2472 build_prp = false; 2473 2474 return build_prp; 2475 } 2476 2477 /** 2478 * _base_check_pcie_native_sgl - This function is called for PCIe end devices to 2479 * determine if the driver needs to build a native SGL. If so, that native 2480 * SGL is built in the special contiguous buffers allocated especially for 2481 * PCIe SGL creation. If the driver will not build a native SGL, return 2482 * TRUE and a normal IEEE SGL will be built. Currently this routine 2483 * supports NVMe. 2484 * @ioc: per adapter object 2485 * @mpi_request: mf request pointer 2486 * @smid: system request message index 2487 * @scmd: scsi command 2488 * @pcie_device: points to the PCIe device's info 2489 * 2490 * Return: 0 if native SGL was built, 1 if no SGL was built 2491 */ 2492 static int 2493 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc, 2494 Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd, 2495 struct _pcie_device *pcie_device) 2496 { 2497 int sges_left; 2498 2499 /* Get the SG list pointer and info. */ 2500 sges_left = scsi_dma_map(scmd); 2501 if (sges_left < 0) { 2502 sdev_printk(KERN_ERR, scmd->device, 2503 "scsi_dma_map failed: request for %d bytes!\n", 2504 scsi_bufflen(scmd)); 2505 return 1; 2506 } 2507 2508 /* Check if we need to build a native SG list. */ 2509 if (!base_is_prp_possible(ioc, pcie_device, 2510 scmd, sges_left)) { 2511 /* We built a native SG list, just return. */ 2512 goto out; 2513 } 2514 2515 /* 2516 * Build native NVMe PRP. 2517 */ 2518 base_make_prp_nvme(ioc, scmd, mpi_request, 2519 smid, sges_left); 2520 2521 return 0; 2522 out: 2523 scsi_dma_unmap(scmd); 2524 return 1; 2525 } 2526 2527 /** 2528 * _base_add_sg_single_ieee - add sg element for IEEE format 2529 * @paddr: virtual address for SGE 2530 * @flags: SGE flags 2531 * @chain_offset: number of 128 byte elements from start of segment 2532 * @length: data transfer length 2533 * @dma_addr: Physical address 2534 */ 2535 static void 2536 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length, 2537 dma_addr_t dma_addr) 2538 { 2539 Mpi25IeeeSgeChain64_t *sgel = paddr; 2540 2541 sgel->Flags = flags; 2542 sgel->NextChainOffset = chain_offset; 2543 sgel->Length = cpu_to_le32(length); 2544 sgel->Address = cpu_to_le64(dma_addr); 2545 } 2546 2547 /** 2548 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format 2549 * @ioc: per adapter object 2550 * @paddr: virtual address for SGE 2551 * 2552 * Create a zero length scatter gather entry to insure the IOCs hardware has 2553 * something to use if the target device goes brain dead and tries 2554 * to send data even when none is asked for. 2555 */ 2556 static void 2557 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr) 2558 { 2559 u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2560 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | 2561 MPI25_IEEE_SGE_FLAGS_END_OF_LIST); 2562 2563 _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1); 2564 } 2565 2566 /** 2567 * _base_build_sg_scmd - main sg creation routine 2568 * pcie_device is unused here! 2569 * @ioc: per adapter object 2570 * @scmd: scsi command 2571 * @smid: system request message index 2572 * @unused: unused pcie_device pointer 2573 * Context: none. 2574 * 2575 * The main routine that builds scatter gather table from a given 2576 * scsi request sent via the .queuecommand main handler. 2577 * 2578 * Return: 0 success, anything else error 2579 */ 2580 static int 2581 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc, 2582 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused) 2583 { 2584 Mpi2SCSIIORequest_t *mpi_request; 2585 dma_addr_t chain_dma; 2586 struct scatterlist *sg_scmd; 2587 void *sg_local, *chain; 2588 u32 chain_offset; 2589 u32 chain_length; 2590 u32 chain_flags; 2591 int sges_left; 2592 u32 sges_in_segment; 2593 u32 sgl_flags; 2594 u32 sgl_flags_last_element; 2595 u32 sgl_flags_end_buffer; 2596 struct chain_tracker *chain_req; 2597 2598 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 2599 2600 /* init scatter gather flags */ 2601 sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT; 2602 if (scmd->sc_data_direction == DMA_TO_DEVICE) 2603 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC; 2604 sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT) 2605 << MPI2_SGE_FLAGS_SHIFT; 2606 sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT | 2607 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST) 2608 << MPI2_SGE_FLAGS_SHIFT; 2609 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2610 2611 sg_scmd = scsi_sglist(scmd); 2612 sges_left = scsi_dma_map(scmd); 2613 if (sges_left < 0) { 2614 sdev_printk(KERN_ERR, scmd->device, 2615 "scsi_dma_map failed: request for %d bytes!\n", 2616 scsi_bufflen(scmd)); 2617 return -ENOMEM; 2618 } 2619 2620 sg_local = &mpi_request->SGL; 2621 sges_in_segment = ioc->max_sges_in_main_message; 2622 if (sges_left <= sges_in_segment) 2623 goto fill_in_last_segment; 2624 2625 mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) + 2626 (sges_in_segment * ioc->sge_size))/4; 2627 2628 /* fill in main message segment when there is a chain following */ 2629 while (sges_in_segment) { 2630 if (sges_in_segment == 1) 2631 ioc->base_add_sg_single(sg_local, 2632 sgl_flags_last_element | sg_dma_len(sg_scmd), 2633 sg_dma_address(sg_scmd)); 2634 else 2635 ioc->base_add_sg_single(sg_local, sgl_flags | 2636 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2637 sg_scmd = sg_next(sg_scmd); 2638 sg_local += ioc->sge_size; 2639 sges_left--; 2640 sges_in_segment--; 2641 } 2642 2643 /* initializing the chain flags and pointers */ 2644 chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT; 2645 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2646 if (!chain_req) 2647 return -1; 2648 chain = chain_req->chain_buffer; 2649 chain_dma = chain_req->chain_buffer_dma; 2650 do { 2651 sges_in_segment = (sges_left <= 2652 ioc->max_sges_in_chain_message) ? sges_left : 2653 ioc->max_sges_in_chain_message; 2654 chain_offset = (sges_left == sges_in_segment) ? 2655 0 : (sges_in_segment * ioc->sge_size)/4; 2656 chain_length = sges_in_segment * ioc->sge_size; 2657 if (chain_offset) { 2658 chain_offset = chain_offset << 2659 MPI2_SGE_CHAIN_OFFSET_SHIFT; 2660 chain_length += ioc->sge_size; 2661 } 2662 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset | 2663 chain_length, chain_dma); 2664 sg_local = chain; 2665 if (!chain_offset) 2666 goto fill_in_last_segment; 2667 2668 /* fill in chain segments */ 2669 while (sges_in_segment) { 2670 if (sges_in_segment == 1) 2671 ioc->base_add_sg_single(sg_local, 2672 sgl_flags_last_element | 2673 sg_dma_len(sg_scmd), 2674 sg_dma_address(sg_scmd)); 2675 else 2676 ioc->base_add_sg_single(sg_local, sgl_flags | 2677 sg_dma_len(sg_scmd), 2678 sg_dma_address(sg_scmd)); 2679 sg_scmd = sg_next(sg_scmd); 2680 sg_local += ioc->sge_size; 2681 sges_left--; 2682 sges_in_segment--; 2683 } 2684 2685 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2686 if (!chain_req) 2687 return -1; 2688 chain = chain_req->chain_buffer; 2689 chain_dma = chain_req->chain_buffer_dma; 2690 } while (1); 2691 2692 2693 fill_in_last_segment: 2694 2695 /* fill the last segment */ 2696 while (sges_left) { 2697 if (sges_left == 1) 2698 ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer | 2699 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2700 else 2701 ioc->base_add_sg_single(sg_local, sgl_flags | 2702 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2703 sg_scmd = sg_next(sg_scmd); 2704 sg_local += ioc->sge_size; 2705 sges_left--; 2706 } 2707 2708 return 0; 2709 } 2710 2711 /** 2712 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format 2713 * @ioc: per adapter object 2714 * @scmd: scsi command 2715 * @smid: system request message index 2716 * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be 2717 * constructed on need. 2718 * Context: none. 2719 * 2720 * The main routine that builds scatter gather table from a given 2721 * scsi request sent via the .queuecommand main handler. 2722 * 2723 * Return: 0 success, anything else error 2724 */ 2725 static int 2726 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc, 2727 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device) 2728 { 2729 Mpi25SCSIIORequest_t *mpi_request; 2730 dma_addr_t chain_dma; 2731 struct scatterlist *sg_scmd; 2732 void *sg_local, *chain; 2733 u32 chain_offset; 2734 u32 chain_length; 2735 int sges_left; 2736 u32 sges_in_segment; 2737 u8 simple_sgl_flags; 2738 u8 simple_sgl_flags_last; 2739 u8 chain_sgl_flags; 2740 struct chain_tracker *chain_req; 2741 2742 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 2743 2744 /* init scatter gather flags */ 2745 simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2746 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2747 simple_sgl_flags_last = simple_sgl_flags | 2748 MPI25_IEEE_SGE_FLAGS_END_OF_LIST; 2749 chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 2750 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2751 2752 /* Check if we need to build a native SG list. */ 2753 if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request, 2754 smid, scmd, pcie_device) == 0)) { 2755 /* We built a native SG list, just return. */ 2756 return 0; 2757 } 2758 2759 sg_scmd = scsi_sglist(scmd); 2760 sges_left = scsi_dma_map(scmd); 2761 if (sges_left < 0) { 2762 sdev_printk(KERN_ERR, scmd->device, 2763 "scsi_dma_map failed: request for %d bytes!\n", 2764 scsi_bufflen(scmd)); 2765 return -ENOMEM; 2766 } 2767 2768 sg_local = &mpi_request->SGL; 2769 sges_in_segment = (ioc->request_sz - 2770 offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee; 2771 if (sges_left <= sges_in_segment) 2772 goto fill_in_last_segment; 2773 2774 mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) + 2775 (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee); 2776 2777 /* fill in main message segment when there is a chain following */ 2778 while (sges_in_segment > 1) { 2779 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2780 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2781 sg_scmd = sg_next(sg_scmd); 2782 sg_local += ioc->sge_size_ieee; 2783 sges_left--; 2784 sges_in_segment--; 2785 } 2786 2787 /* initializing the pointers */ 2788 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2789 if (!chain_req) 2790 return -1; 2791 chain = chain_req->chain_buffer; 2792 chain_dma = chain_req->chain_buffer_dma; 2793 do { 2794 sges_in_segment = (sges_left <= 2795 ioc->max_sges_in_chain_message) ? sges_left : 2796 ioc->max_sges_in_chain_message; 2797 chain_offset = (sges_left == sges_in_segment) ? 2798 0 : sges_in_segment; 2799 chain_length = sges_in_segment * ioc->sge_size_ieee; 2800 if (chain_offset) 2801 chain_length += ioc->sge_size_ieee; 2802 _base_add_sg_single_ieee(sg_local, chain_sgl_flags, 2803 chain_offset, chain_length, chain_dma); 2804 2805 sg_local = chain; 2806 if (!chain_offset) 2807 goto fill_in_last_segment; 2808 2809 /* fill in chain segments */ 2810 while (sges_in_segment) { 2811 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2812 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2813 sg_scmd = sg_next(sg_scmd); 2814 sg_local += ioc->sge_size_ieee; 2815 sges_left--; 2816 sges_in_segment--; 2817 } 2818 2819 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2820 if (!chain_req) 2821 return -1; 2822 chain = chain_req->chain_buffer; 2823 chain_dma = chain_req->chain_buffer_dma; 2824 } while (1); 2825 2826 2827 fill_in_last_segment: 2828 2829 /* fill the last segment */ 2830 while (sges_left > 0) { 2831 if (sges_left == 1) 2832 _base_add_sg_single_ieee(sg_local, 2833 simple_sgl_flags_last, 0, sg_dma_len(sg_scmd), 2834 sg_dma_address(sg_scmd)); 2835 else 2836 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2837 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2838 sg_scmd = sg_next(sg_scmd); 2839 sg_local += ioc->sge_size_ieee; 2840 sges_left--; 2841 } 2842 2843 return 0; 2844 } 2845 2846 /** 2847 * _base_build_sg_ieee - build generic sg for IEEE format 2848 * @ioc: per adapter object 2849 * @psge: virtual address for SGE 2850 * @data_out_dma: physical address for WRITES 2851 * @data_out_sz: data xfer size for WRITES 2852 * @data_in_dma: physical address for READS 2853 * @data_in_sz: data xfer size for READS 2854 */ 2855 static void 2856 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge, 2857 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 2858 size_t data_in_sz) 2859 { 2860 u8 sgl_flags; 2861 2862 if (!data_out_sz && !data_in_sz) { 2863 _base_build_zero_len_sge_ieee(ioc, psge); 2864 return; 2865 } 2866 2867 if (data_out_sz && data_in_sz) { 2868 /* WRITE sgel first */ 2869 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2870 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2871 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz, 2872 data_out_dma); 2873 2874 /* incr sgel */ 2875 psge += ioc->sge_size_ieee; 2876 2877 /* READ sgel last */ 2878 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST; 2879 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz, 2880 data_in_dma); 2881 } else if (data_out_sz) /* WRITE */ { 2882 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2883 MPI25_IEEE_SGE_FLAGS_END_OF_LIST | 2884 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2885 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz, 2886 data_out_dma); 2887 } else if (data_in_sz) /* READ */ { 2888 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2889 MPI25_IEEE_SGE_FLAGS_END_OF_LIST | 2890 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2891 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz, 2892 data_in_dma); 2893 } 2894 } 2895 2896 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10)) 2897 2898 /** 2899 * _base_config_dma_addressing - set dma addressing 2900 * @ioc: per adapter object 2901 * @pdev: PCI device struct 2902 * 2903 * Return: 0 for success, non-zero for failure. 2904 */ 2905 static int 2906 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev) 2907 { 2908 struct sysinfo s; 2909 2910 if (ioc->is_mcpu_endpoint || 2911 sizeof(dma_addr_t) == 4 || ioc->use_32bit_dma || 2912 dma_get_required_mask(&pdev->dev) <= 32) 2913 ioc->dma_mask = 32; 2914 /* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */ 2915 else if (ioc->hba_mpi_version_belonged > MPI2_VERSION) 2916 ioc->dma_mask = 63; 2917 else 2918 ioc->dma_mask = 64; 2919 2920 if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(ioc->dma_mask)) || 2921 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(ioc->dma_mask))) 2922 return -ENODEV; 2923 2924 if (ioc->dma_mask > 32) { 2925 ioc->base_add_sg_single = &_base_add_sg_single_64; 2926 ioc->sge_size = sizeof(Mpi2SGESimple64_t); 2927 } else { 2928 ioc->base_add_sg_single = &_base_add_sg_single_32; 2929 ioc->sge_size = sizeof(Mpi2SGESimple32_t); 2930 } 2931 2932 si_meminfo(&s); 2933 ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n", 2934 ioc->dma_mask, convert_to_kb(s.totalram)); 2935 2936 return 0; 2937 } 2938 2939 /** 2940 * _base_check_enable_msix - checks MSIX capabable. 2941 * @ioc: per adapter object 2942 * 2943 * Check to see if card is capable of MSIX, and set number 2944 * of available msix vectors 2945 */ 2946 static int 2947 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc) 2948 { 2949 int base; 2950 u16 message_control; 2951 2952 /* Check whether controller SAS2008 B0 controller, 2953 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX 2954 */ 2955 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 && 2956 ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) { 2957 return -EINVAL; 2958 } 2959 2960 base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX); 2961 if (!base) { 2962 dfailprintk(ioc, ioc_info(ioc, "msix not supported\n")); 2963 return -EINVAL; 2964 } 2965 2966 /* get msix vector count */ 2967 /* NUMA_IO not supported for older controllers */ 2968 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 || 2969 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 || 2970 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 || 2971 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 || 2972 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 || 2973 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 || 2974 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2) 2975 ioc->msix_vector_count = 1; 2976 else { 2977 pci_read_config_word(ioc->pdev, base + 2, &message_control); 2978 ioc->msix_vector_count = (message_control & 0x3FF) + 1; 2979 } 2980 dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n", 2981 ioc->msix_vector_count)); 2982 return 0; 2983 } 2984 2985 /** 2986 * mpt3sas_base_free_irq - free irq 2987 * @ioc: per adapter object 2988 * 2989 * Freeing respective reply_queue from the list. 2990 */ 2991 void 2992 mpt3sas_base_free_irq(struct MPT3SAS_ADAPTER *ioc) 2993 { 2994 struct adapter_reply_queue *reply_q, *next; 2995 2996 if (list_empty(&ioc->reply_queue_list)) 2997 return; 2998 2999 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) { 3000 list_del(&reply_q->list); 3001 if (ioc->smp_affinity_enable) 3002 irq_set_affinity_hint(pci_irq_vector(ioc->pdev, 3003 reply_q->msix_index), NULL); 3004 free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index), 3005 reply_q); 3006 kfree(reply_q); 3007 } 3008 } 3009 3010 /** 3011 * _base_request_irq - request irq 3012 * @ioc: per adapter object 3013 * @index: msix index into vector table 3014 * 3015 * Inserting respective reply_queue into the list. 3016 */ 3017 static int 3018 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index) 3019 { 3020 struct pci_dev *pdev = ioc->pdev; 3021 struct adapter_reply_queue *reply_q; 3022 int r; 3023 3024 reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL); 3025 if (!reply_q) { 3026 ioc_err(ioc, "unable to allocate memory %zu!\n", 3027 sizeof(struct adapter_reply_queue)); 3028 return -ENOMEM; 3029 } 3030 reply_q->ioc = ioc; 3031 reply_q->msix_index = index; 3032 3033 atomic_set(&reply_q->busy, 0); 3034 if (ioc->msix_enable) 3035 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d", 3036 ioc->driver_name, ioc->id, index); 3037 else 3038 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d", 3039 ioc->driver_name, ioc->id); 3040 r = request_irq(pci_irq_vector(pdev, index), _base_interrupt, 3041 IRQF_SHARED, reply_q->name, reply_q); 3042 if (r) { 3043 pr_err("%s: unable to allocate interrupt %d!\n", 3044 reply_q->name, pci_irq_vector(pdev, index)); 3045 kfree(reply_q); 3046 return -EBUSY; 3047 } 3048 3049 INIT_LIST_HEAD(&reply_q->list); 3050 list_add_tail(&reply_q->list, &ioc->reply_queue_list); 3051 return 0; 3052 } 3053 3054 /** 3055 * _base_assign_reply_queues - assigning msix index for each cpu 3056 * @ioc: per adapter object 3057 * 3058 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity 3059 * 3060 * It would nice if we could call irq_set_affinity, however it is not 3061 * an exported symbol 3062 */ 3063 static void 3064 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc) 3065 { 3066 unsigned int cpu, nr_cpus, nr_msix, index = 0; 3067 struct adapter_reply_queue *reply_q; 3068 int local_numa_node; 3069 3070 if (!_base_is_controller_msix_enabled(ioc)) 3071 return; 3072 3073 if (ioc->msix_load_balance) 3074 return; 3075 3076 memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz); 3077 3078 nr_cpus = num_online_cpus(); 3079 nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count, 3080 ioc->facts.MaxMSIxVectors); 3081 if (!nr_msix) 3082 return; 3083 3084 if (ioc->smp_affinity_enable) { 3085 3086 /* 3087 * set irq affinity to local numa node for those irqs 3088 * corresponding to high iops queues. 3089 */ 3090 if (ioc->high_iops_queues) { 3091 local_numa_node = dev_to_node(&ioc->pdev->dev); 3092 for (index = 0; index < ioc->high_iops_queues; 3093 index++) { 3094 irq_set_affinity_hint(pci_irq_vector(ioc->pdev, 3095 index), cpumask_of_node(local_numa_node)); 3096 } 3097 } 3098 3099 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 3100 const cpumask_t *mask; 3101 3102 if (reply_q->msix_index < ioc->high_iops_queues) 3103 continue; 3104 3105 mask = pci_irq_get_affinity(ioc->pdev, 3106 reply_q->msix_index); 3107 if (!mask) { 3108 ioc_warn(ioc, "no affinity for msi %x\n", 3109 reply_q->msix_index); 3110 goto fall_back; 3111 } 3112 3113 for_each_cpu_and(cpu, mask, cpu_online_mask) { 3114 if (cpu >= ioc->cpu_msix_table_sz) 3115 break; 3116 ioc->cpu_msix_table[cpu] = reply_q->msix_index; 3117 } 3118 } 3119 return; 3120 } 3121 3122 fall_back: 3123 cpu = cpumask_first(cpu_online_mask); 3124 nr_msix -= ioc->high_iops_queues; 3125 index = 0; 3126 3127 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 3128 unsigned int i, group = nr_cpus / nr_msix; 3129 3130 if (reply_q->msix_index < ioc->high_iops_queues) 3131 continue; 3132 3133 if (cpu >= nr_cpus) 3134 break; 3135 3136 if (index < nr_cpus % nr_msix) 3137 group++; 3138 3139 for (i = 0 ; i < group ; i++) { 3140 ioc->cpu_msix_table[cpu] = reply_q->msix_index; 3141 cpu = cpumask_next(cpu, cpu_online_mask); 3142 } 3143 index++; 3144 } 3145 } 3146 3147 /** 3148 * _base_check_and_enable_high_iops_queues - enable high iops mode 3149 * @ioc: per adapter object 3150 * @hba_msix_vector_count: msix vectors supported by HBA 3151 * 3152 * Enable high iops queues only if 3153 * - HBA is a SEA/AERO controller and 3154 * - MSI-Xs vector supported by the HBA is 128 and 3155 * - total CPU count in the system >=16 and 3156 * - loaded driver with default max_msix_vectors module parameter and 3157 * - system booted in non kdump mode 3158 * 3159 * Return: nothing. 3160 */ 3161 static void 3162 _base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc, 3163 int hba_msix_vector_count) 3164 { 3165 u16 lnksta, speed; 3166 3167 if (perf_mode == MPT_PERF_MODE_IOPS || 3168 perf_mode == MPT_PERF_MODE_LATENCY) { 3169 ioc->high_iops_queues = 0; 3170 return; 3171 } 3172 3173 if (perf_mode == MPT_PERF_MODE_DEFAULT) { 3174 3175 pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta); 3176 speed = lnksta & PCI_EXP_LNKSTA_CLS; 3177 3178 if (speed < 0x4) { 3179 ioc->high_iops_queues = 0; 3180 return; 3181 } 3182 } 3183 3184 if (!reset_devices && ioc->is_aero_ioc && 3185 hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES && 3186 num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES && 3187 max_msix_vectors == -1) 3188 ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES; 3189 else 3190 ioc->high_iops_queues = 0; 3191 } 3192 3193 /** 3194 * mpt3sas_base_disable_msix - disables msix 3195 * @ioc: per adapter object 3196 * 3197 */ 3198 void 3199 mpt3sas_base_disable_msix(struct MPT3SAS_ADAPTER *ioc) 3200 { 3201 if (!ioc->msix_enable) 3202 return; 3203 pci_free_irq_vectors(ioc->pdev); 3204 ioc->msix_enable = 0; 3205 } 3206 3207 /** 3208 * _base_alloc_irq_vectors - allocate msix vectors 3209 * @ioc: per adapter object 3210 * 3211 */ 3212 static int 3213 _base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc) 3214 { 3215 int i, irq_flags = PCI_IRQ_MSIX; 3216 struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues }; 3217 struct irq_affinity *descp = &desc; 3218 3219 if (ioc->smp_affinity_enable) 3220 irq_flags |= PCI_IRQ_AFFINITY; 3221 else 3222 descp = NULL; 3223 3224 ioc_info(ioc, " %d %d\n", ioc->high_iops_queues, 3225 ioc->reply_queue_count); 3226 3227 i = pci_alloc_irq_vectors_affinity(ioc->pdev, 3228 ioc->high_iops_queues, 3229 ioc->reply_queue_count, irq_flags, descp); 3230 3231 return i; 3232 } 3233 3234 /** 3235 * _base_enable_msix - enables msix, failback to io_apic 3236 * @ioc: per adapter object 3237 * 3238 */ 3239 static int 3240 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc) 3241 { 3242 int r; 3243 int i, local_max_msix_vectors; 3244 u8 try_msix = 0; 3245 3246 ioc->msix_load_balance = false; 3247 3248 if (msix_disable == -1 || msix_disable == 0) 3249 try_msix = 1; 3250 3251 if (!try_msix) 3252 goto try_ioapic; 3253 3254 if (_base_check_enable_msix(ioc) != 0) 3255 goto try_ioapic; 3256 3257 ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count); 3258 pr_info("\t no of cores: %d, max_msix_vectors: %d\n", 3259 ioc->cpu_count, max_msix_vectors); 3260 if (ioc->is_aero_ioc) 3261 _base_check_and_enable_high_iops_queues(ioc, 3262 ioc->msix_vector_count); 3263 ioc->reply_queue_count = 3264 min_t(int, ioc->cpu_count + ioc->high_iops_queues, 3265 ioc->msix_vector_count); 3266 3267 if (!ioc->rdpq_array_enable && max_msix_vectors == -1) 3268 local_max_msix_vectors = (reset_devices) ? 1 : 8; 3269 else 3270 local_max_msix_vectors = max_msix_vectors; 3271 3272 if (local_max_msix_vectors > 0) 3273 ioc->reply_queue_count = min_t(int, local_max_msix_vectors, 3274 ioc->reply_queue_count); 3275 else if (local_max_msix_vectors == 0) 3276 goto try_ioapic; 3277 3278 /* 3279 * Enable msix_load_balance only if combined reply queue mode is 3280 * disabled on SAS3 & above generation HBA devices. 3281 */ 3282 if (!ioc->combined_reply_queue && 3283 ioc->hba_mpi_version_belonged != MPI2_VERSION) { 3284 ioc_info(ioc, 3285 "combined ReplyQueue is off, Enabling msix load balance\n"); 3286 ioc->msix_load_balance = true; 3287 } 3288 3289 /* 3290 * smp affinity setting is not need when msix load balance 3291 * is enabled. 3292 */ 3293 if (ioc->msix_load_balance) 3294 ioc->smp_affinity_enable = 0; 3295 3296 r = _base_alloc_irq_vectors(ioc); 3297 if (r < 0) { 3298 ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", r); 3299 goto try_ioapic; 3300 } 3301 3302 ioc->msix_enable = 1; 3303 ioc->reply_queue_count = r; 3304 for (i = 0; i < ioc->reply_queue_count; i++) { 3305 r = _base_request_irq(ioc, i); 3306 if (r) { 3307 mpt3sas_base_free_irq(ioc); 3308 mpt3sas_base_disable_msix(ioc); 3309 goto try_ioapic; 3310 } 3311 } 3312 3313 ioc_info(ioc, "High IOPs queues : %s\n", 3314 ioc->high_iops_queues ? "enabled" : "disabled"); 3315 3316 return 0; 3317 3318 /* failback to io_apic interrupt routing */ 3319 try_ioapic: 3320 ioc->high_iops_queues = 0; 3321 ioc_info(ioc, "High IOPs queues : disabled\n"); 3322 ioc->reply_queue_count = 1; 3323 r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY); 3324 if (r < 0) { 3325 dfailprintk(ioc, 3326 ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n", 3327 r)); 3328 } else 3329 r = _base_request_irq(ioc, 0); 3330 3331 return r; 3332 } 3333 3334 /** 3335 * mpt3sas_base_unmap_resources - free controller resources 3336 * @ioc: per adapter object 3337 */ 3338 static void 3339 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc) 3340 { 3341 struct pci_dev *pdev = ioc->pdev; 3342 3343 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 3344 3345 mpt3sas_base_free_irq(ioc); 3346 mpt3sas_base_disable_msix(ioc); 3347 3348 kfree(ioc->replyPostRegisterIndex); 3349 ioc->replyPostRegisterIndex = NULL; 3350 3351 3352 if (ioc->chip_phys) { 3353 iounmap(ioc->chip); 3354 ioc->chip_phys = 0; 3355 } 3356 3357 if (pci_is_enabled(pdev)) { 3358 pci_release_selected_regions(ioc->pdev, ioc->bars); 3359 pci_disable_pcie_error_reporting(pdev); 3360 pci_disable_device(pdev); 3361 } 3362 } 3363 3364 static int 3365 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc); 3366 3367 /** 3368 * mpt3sas_base_check_for_fault_and_issue_reset - check if IOC is in fault state 3369 * and if it is in fault state then issue diag reset. 3370 * @ioc: per adapter object 3371 * 3372 * Return: 0 for success, non-zero for failure. 3373 */ 3374 int 3375 mpt3sas_base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc) 3376 { 3377 u32 ioc_state; 3378 int rc = -EFAULT; 3379 3380 dinitprintk(ioc, pr_info("%s\n", __func__)); 3381 if (ioc->pci_error_recovery) 3382 return 0; 3383 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 3384 dhsprintk(ioc, pr_info("%s: ioc_state(0x%08x)\n", __func__, ioc_state)); 3385 3386 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 3387 mpt3sas_print_fault_code(ioc, ioc_state & 3388 MPI2_DOORBELL_DATA_MASK); 3389 mpt3sas_base_mask_interrupts(ioc); 3390 rc = _base_diag_reset(ioc); 3391 } else if ((ioc_state & MPI2_IOC_STATE_MASK) == 3392 MPI2_IOC_STATE_COREDUMP) { 3393 mpt3sas_print_coredump_info(ioc, ioc_state & 3394 MPI2_DOORBELL_DATA_MASK); 3395 mpt3sas_base_wait_for_coredump_completion(ioc, __func__); 3396 mpt3sas_base_mask_interrupts(ioc); 3397 rc = _base_diag_reset(ioc); 3398 } 3399 3400 return rc; 3401 } 3402 3403 /** 3404 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap) 3405 * @ioc: per adapter object 3406 * 3407 * Return: 0 for success, non-zero for failure. 3408 */ 3409 int 3410 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc) 3411 { 3412 struct pci_dev *pdev = ioc->pdev; 3413 u32 memap_sz; 3414 u32 pio_sz; 3415 int i, r = 0, rc; 3416 u64 pio_chip = 0; 3417 phys_addr_t chip_phys = 0; 3418 struct adapter_reply_queue *reply_q; 3419 3420 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 3421 3422 ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM); 3423 if (pci_enable_device_mem(pdev)) { 3424 ioc_warn(ioc, "pci_enable_device_mem: failed\n"); 3425 ioc->bars = 0; 3426 return -ENODEV; 3427 } 3428 3429 3430 if (pci_request_selected_regions(pdev, ioc->bars, 3431 ioc->driver_name)) { 3432 ioc_warn(ioc, "pci_request_selected_regions: failed\n"); 3433 ioc->bars = 0; 3434 r = -ENODEV; 3435 goto out_fail; 3436 } 3437 3438 /* AER (Advanced Error Reporting) hooks */ 3439 pci_enable_pcie_error_reporting(pdev); 3440 3441 pci_set_master(pdev); 3442 3443 3444 if (_base_config_dma_addressing(ioc, pdev) != 0) { 3445 ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev)); 3446 r = -ENODEV; 3447 goto out_fail; 3448 } 3449 3450 for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) && 3451 (!memap_sz || !pio_sz); i++) { 3452 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { 3453 if (pio_sz) 3454 continue; 3455 pio_chip = (u64)pci_resource_start(pdev, i); 3456 pio_sz = pci_resource_len(pdev, i); 3457 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) { 3458 if (memap_sz) 3459 continue; 3460 ioc->chip_phys = pci_resource_start(pdev, i); 3461 chip_phys = ioc->chip_phys; 3462 memap_sz = pci_resource_len(pdev, i); 3463 ioc->chip = ioremap(ioc->chip_phys, memap_sz); 3464 } 3465 } 3466 3467 if (ioc->chip == NULL) { 3468 ioc_err(ioc, 3469 "unable to map adapter memory! or resource not found\n"); 3470 r = -EINVAL; 3471 goto out_fail; 3472 } 3473 3474 mpt3sas_base_mask_interrupts(ioc); 3475 3476 r = _base_get_ioc_facts(ioc); 3477 if (r) { 3478 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc); 3479 if (rc || (_base_get_ioc_facts(ioc))) 3480 goto out_fail; 3481 } 3482 3483 if (!ioc->rdpq_array_enable_assigned) { 3484 ioc->rdpq_array_enable = ioc->rdpq_array_capable; 3485 ioc->rdpq_array_enable_assigned = 1; 3486 } 3487 3488 r = _base_enable_msix(ioc); 3489 if (r) 3490 goto out_fail; 3491 3492 if (!ioc->is_driver_loading) 3493 _base_init_irqpolls(ioc); 3494 /* Use the Combined reply queue feature only for SAS3 C0 & higher 3495 * revision HBAs and also only when reply queue count is greater than 8 3496 */ 3497 if (ioc->combined_reply_queue) { 3498 /* Determine the Supplemental Reply Post Host Index Registers 3499 * Addresse. Supplemental Reply Post Host Index Registers 3500 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and 3501 * each register is at offset bytes of 3502 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one. 3503 */ 3504 ioc->replyPostRegisterIndex = kcalloc( 3505 ioc->combined_reply_index_count, 3506 sizeof(resource_size_t *), GFP_KERNEL); 3507 if (!ioc->replyPostRegisterIndex) { 3508 ioc_err(ioc, 3509 "allocation for replyPostRegisterIndex failed!\n"); 3510 r = -ENOMEM; 3511 goto out_fail; 3512 } 3513 3514 for (i = 0; i < ioc->combined_reply_index_count; i++) { 3515 ioc->replyPostRegisterIndex[i] = (resource_size_t *) 3516 ((u8 __force *)&ioc->chip->Doorbell + 3517 MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET + 3518 (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET)); 3519 } 3520 } 3521 3522 if (ioc->is_warpdrive) { 3523 ioc->reply_post_host_index[0] = (resource_size_t __iomem *) 3524 &ioc->chip->ReplyPostHostIndex; 3525 3526 for (i = 1; i < ioc->cpu_msix_table_sz; i++) 3527 ioc->reply_post_host_index[i] = 3528 (resource_size_t __iomem *) 3529 ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1) 3530 * 4))); 3531 } 3532 3533 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) 3534 pr_info("%s: %s enabled: IRQ %d\n", 3535 reply_q->name, 3536 ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC", 3537 pci_irq_vector(ioc->pdev, reply_q->msix_index)); 3538 3539 ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n", 3540 &chip_phys, ioc->chip, memap_sz); 3541 ioc_info(ioc, "ioport(0x%016llx), size(%d)\n", 3542 (unsigned long long)pio_chip, pio_sz); 3543 3544 /* Save PCI configuration state for recovery from PCI AER/EEH errors */ 3545 pci_save_state(pdev); 3546 return 0; 3547 3548 out_fail: 3549 mpt3sas_base_unmap_resources(ioc); 3550 return r; 3551 } 3552 3553 /** 3554 * mpt3sas_base_get_msg_frame - obtain request mf pointer 3555 * @ioc: per adapter object 3556 * @smid: system request message index(smid zero is invalid) 3557 * 3558 * Return: virt pointer to message frame. 3559 */ 3560 void * 3561 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3562 { 3563 return (void *)(ioc->request + (smid * ioc->request_sz)); 3564 } 3565 3566 /** 3567 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr 3568 * @ioc: per adapter object 3569 * @smid: system request message index 3570 * 3571 * Return: virt pointer to sense buffer. 3572 */ 3573 void * 3574 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3575 { 3576 return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE)); 3577 } 3578 3579 /** 3580 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr 3581 * @ioc: per adapter object 3582 * @smid: system request message index 3583 * 3584 * Return: phys pointer to the low 32bit address of the sense buffer. 3585 */ 3586 __le32 3587 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3588 { 3589 return cpu_to_le32(ioc->sense_dma + ((smid - 1) * 3590 SCSI_SENSE_BUFFERSIZE)); 3591 } 3592 3593 /** 3594 * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr 3595 * @ioc: per adapter object 3596 * @smid: system request message index 3597 * 3598 * Return: virt pointer to a PCIe SGL. 3599 */ 3600 void * 3601 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3602 { 3603 return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl); 3604 } 3605 3606 /** 3607 * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr 3608 * @ioc: per adapter object 3609 * @smid: system request message index 3610 * 3611 * Return: phys pointer to the address of the PCIe buffer. 3612 */ 3613 dma_addr_t 3614 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3615 { 3616 return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma; 3617 } 3618 3619 /** 3620 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address 3621 * @ioc: per adapter object 3622 * @phys_addr: lower 32 physical addr of the reply 3623 * 3624 * Converts 32bit lower physical addr into a virt address. 3625 */ 3626 void * 3627 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr) 3628 { 3629 if (!phys_addr) 3630 return NULL; 3631 return ioc->reply + (phys_addr - (u32)ioc->reply_dma); 3632 } 3633 3634 /** 3635 * _base_get_msix_index - get the msix index 3636 * @ioc: per adapter object 3637 * @scmd: scsi_cmnd object 3638 * 3639 * Return: msix index of general reply queues, 3640 * i.e. reply queue on which IO request's reply 3641 * should be posted by the HBA firmware. 3642 */ 3643 static inline u8 3644 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc, 3645 struct scsi_cmnd *scmd) 3646 { 3647 /* Enables reply_queue load balancing */ 3648 if (ioc->msix_load_balance) 3649 return ioc->reply_queue_count ? 3650 base_mod64(atomic64_add_return(1, 3651 &ioc->total_io_cnt), ioc->reply_queue_count) : 0; 3652 3653 if (scmd && ioc->shost->nr_hw_queues > 1) { 3654 u32 tag = blk_mq_unique_tag(scmd->request); 3655 3656 return blk_mq_unique_tag_to_hwq(tag) + 3657 ioc->high_iops_queues; 3658 } 3659 3660 return ioc->cpu_msix_table[raw_smp_processor_id()]; 3661 } 3662 3663 /** 3664 * _base_get_high_iops_msix_index - get the msix index of 3665 * high iops queues 3666 * @ioc: per adapter object 3667 * @scmd: scsi_cmnd object 3668 * 3669 * Return: msix index of high iops reply queues. 3670 * i.e. high iops reply queue on which IO request's 3671 * reply should be posted by the HBA firmware. 3672 */ 3673 static inline u8 3674 _base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc, 3675 struct scsi_cmnd *scmd) 3676 { 3677 /** 3678 * Round robin the IO interrupts among the high iops 3679 * reply queues in terms of batch count 16 when outstanding 3680 * IOs on the target device is >=8. 3681 */ 3682 3683 if (scsi_device_busy(scmd->device) > MPT3SAS_DEVICE_HIGH_IOPS_DEPTH) 3684 return base_mod64(( 3685 atomic64_add_return(1, &ioc->high_iops_outstanding) / 3686 MPT3SAS_HIGH_IOPS_BATCH_COUNT), 3687 MPT3SAS_HIGH_IOPS_REPLY_QUEUES); 3688 3689 return _base_get_msix_index(ioc, scmd); 3690 } 3691 3692 /** 3693 * mpt3sas_base_get_smid - obtain a free smid from internal queue 3694 * @ioc: per adapter object 3695 * @cb_idx: callback index 3696 * 3697 * Return: smid (zero is invalid) 3698 */ 3699 u16 3700 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx) 3701 { 3702 unsigned long flags; 3703 struct request_tracker *request; 3704 u16 smid; 3705 3706 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3707 if (list_empty(&ioc->internal_free_list)) { 3708 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3709 ioc_err(ioc, "%s: smid not available\n", __func__); 3710 return 0; 3711 } 3712 3713 request = list_entry(ioc->internal_free_list.next, 3714 struct request_tracker, tracker_list); 3715 request->cb_idx = cb_idx; 3716 smid = request->smid; 3717 list_del(&request->tracker_list); 3718 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3719 return smid; 3720 } 3721 3722 /** 3723 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue 3724 * @ioc: per adapter object 3725 * @cb_idx: callback index 3726 * @scmd: pointer to scsi command object 3727 * 3728 * Return: smid (zero is invalid) 3729 */ 3730 u16 3731 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx, 3732 struct scsi_cmnd *scmd) 3733 { 3734 struct scsiio_tracker *request = scsi_cmd_priv(scmd); 3735 u16 smid; 3736 u32 tag, unique_tag; 3737 3738 unique_tag = blk_mq_unique_tag(scmd->request); 3739 tag = blk_mq_unique_tag_to_tag(unique_tag); 3740 3741 /* 3742 * Store hw queue number corresponding to the tag. 3743 * This hw queue number is used later to determine 3744 * the unique_tag using the logic below. This unique_tag 3745 * is used to retrieve the scmd pointer corresponding 3746 * to tag using scsi_host_find_tag() API. 3747 * 3748 * tag = smid - 1; 3749 * unique_tag = ioc->io_queue_num[tag] << BLK_MQ_UNIQUE_TAG_BITS | tag; 3750 */ 3751 ioc->io_queue_num[tag] = blk_mq_unique_tag_to_hwq(unique_tag); 3752 3753 smid = tag + 1; 3754 request->cb_idx = cb_idx; 3755 request->smid = smid; 3756 request->scmd = scmd; 3757 INIT_LIST_HEAD(&request->chain_list); 3758 return smid; 3759 } 3760 3761 /** 3762 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue 3763 * @ioc: per adapter object 3764 * @cb_idx: callback index 3765 * 3766 * Return: smid (zero is invalid) 3767 */ 3768 u16 3769 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx) 3770 { 3771 unsigned long flags; 3772 struct request_tracker *request; 3773 u16 smid; 3774 3775 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3776 if (list_empty(&ioc->hpr_free_list)) { 3777 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3778 return 0; 3779 } 3780 3781 request = list_entry(ioc->hpr_free_list.next, 3782 struct request_tracker, tracker_list); 3783 request->cb_idx = cb_idx; 3784 smid = request->smid; 3785 list_del(&request->tracker_list); 3786 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3787 return smid; 3788 } 3789 3790 static void 3791 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc) 3792 { 3793 /* 3794 * See _wait_for_commands_to_complete() call with regards to this code. 3795 */ 3796 if (ioc->shost_recovery && ioc->pending_io_count) { 3797 ioc->pending_io_count = scsi_host_busy(ioc->shost); 3798 if (ioc->pending_io_count == 0) 3799 wake_up(&ioc->reset_wq); 3800 } 3801 } 3802 3803 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc, 3804 struct scsiio_tracker *st) 3805 { 3806 if (WARN_ON(st->smid == 0)) 3807 return; 3808 st->cb_idx = 0xFF; 3809 st->direct_io = 0; 3810 st->scmd = NULL; 3811 atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0); 3812 st->smid = 0; 3813 } 3814 3815 /** 3816 * mpt3sas_base_free_smid - put smid back on free_list 3817 * @ioc: per adapter object 3818 * @smid: system request message index 3819 */ 3820 void 3821 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3822 { 3823 unsigned long flags; 3824 int i; 3825 3826 if (smid < ioc->hi_priority_smid) { 3827 struct scsiio_tracker *st; 3828 void *request; 3829 3830 st = _get_st_from_smid(ioc, smid); 3831 if (!st) { 3832 _base_recovery_check(ioc); 3833 return; 3834 } 3835 3836 /* Clear MPI request frame */ 3837 request = mpt3sas_base_get_msg_frame(ioc, smid); 3838 memset(request, 0, ioc->request_sz); 3839 3840 mpt3sas_base_clear_st(ioc, st); 3841 _base_recovery_check(ioc); 3842 ioc->io_queue_num[smid - 1] = 0; 3843 return; 3844 } 3845 3846 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3847 if (smid < ioc->internal_smid) { 3848 /* hi-priority */ 3849 i = smid - ioc->hi_priority_smid; 3850 ioc->hpr_lookup[i].cb_idx = 0xFF; 3851 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list); 3852 } else if (smid <= ioc->hba_queue_depth) { 3853 /* internal queue */ 3854 i = smid - ioc->internal_smid; 3855 ioc->internal_lookup[i].cb_idx = 0xFF; 3856 list_add(&ioc->internal_lookup[i].tracker_list, 3857 &ioc->internal_free_list); 3858 } 3859 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3860 } 3861 3862 /** 3863 * _base_mpi_ep_writeq - 32 bit write to MMIO 3864 * @b: data payload 3865 * @addr: address in MMIO space 3866 * @writeq_lock: spin lock 3867 * 3868 * This special handling for MPI EP to take care of 32 bit 3869 * environment where its not quarenteed to send the entire word 3870 * in one transfer. 3871 */ 3872 static inline void 3873 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr, 3874 spinlock_t *writeq_lock) 3875 { 3876 unsigned long flags; 3877 3878 spin_lock_irqsave(writeq_lock, flags); 3879 __raw_writel((u32)(b), addr); 3880 __raw_writel((u32)(b >> 32), (addr + 4)); 3881 spin_unlock_irqrestore(writeq_lock, flags); 3882 } 3883 3884 /** 3885 * _base_writeq - 64 bit write to MMIO 3886 * @b: data payload 3887 * @addr: address in MMIO space 3888 * @writeq_lock: spin lock 3889 * 3890 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes 3891 * care of 32 bit environment where its not quarenteed to send the entire word 3892 * in one transfer. 3893 */ 3894 #if defined(writeq) && defined(CONFIG_64BIT) 3895 static inline void 3896 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock) 3897 { 3898 wmb(); 3899 __raw_writeq(b, addr); 3900 barrier(); 3901 } 3902 #else 3903 static inline void 3904 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock) 3905 { 3906 _base_mpi_ep_writeq(b, addr, writeq_lock); 3907 } 3908 #endif 3909 3910 /** 3911 * _base_set_and_get_msix_index - get the msix index and assign to msix_io 3912 * variable of scsi tracker 3913 * @ioc: per adapter object 3914 * @smid: system request message index 3915 * 3916 * Return: msix index. 3917 */ 3918 static u8 3919 _base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3920 { 3921 struct scsiio_tracker *st = NULL; 3922 3923 if (smid < ioc->hi_priority_smid) 3924 st = _get_st_from_smid(ioc, smid); 3925 3926 if (st == NULL) 3927 return _base_get_msix_index(ioc, NULL); 3928 3929 st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd); 3930 return st->msix_io; 3931 } 3932 3933 /** 3934 * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware 3935 * @ioc: per adapter object 3936 * @smid: system request message index 3937 * @handle: device handle 3938 */ 3939 static void 3940 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc, 3941 u16 smid, u16 handle) 3942 { 3943 Mpi2RequestDescriptorUnion_t descriptor; 3944 u64 *request = (u64 *)&descriptor; 3945 void *mpi_req_iomem; 3946 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 3947 3948 _clone_sg_entries(ioc, (void *) mfp, smid); 3949 mpi_req_iomem = (void __force *)ioc->chip + 3950 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz); 3951 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 3952 ioc->request_sz); 3953 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 3954 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3955 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 3956 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 3957 descriptor.SCSIIO.LMID = 0; 3958 _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3959 &ioc->scsi_lookup_lock); 3960 } 3961 3962 /** 3963 * _base_put_smid_scsi_io - send SCSI_IO request to firmware 3964 * @ioc: per adapter object 3965 * @smid: system request message index 3966 * @handle: device handle 3967 */ 3968 static void 3969 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle) 3970 { 3971 Mpi2RequestDescriptorUnion_t descriptor; 3972 u64 *request = (u64 *)&descriptor; 3973 3974 3975 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 3976 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3977 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 3978 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 3979 descriptor.SCSIIO.LMID = 0; 3980 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3981 &ioc->scsi_lookup_lock); 3982 } 3983 3984 /** 3985 * _base_put_smid_fast_path - send fast path request to firmware 3986 * @ioc: per adapter object 3987 * @smid: system request message index 3988 * @handle: device handle 3989 */ 3990 static void 3991 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid, 3992 u16 handle) 3993 { 3994 Mpi2RequestDescriptorUnion_t descriptor; 3995 u64 *request = (u64 *)&descriptor; 3996 3997 descriptor.SCSIIO.RequestFlags = 3998 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 3999 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4000 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 4001 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 4002 descriptor.SCSIIO.LMID = 0; 4003 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 4004 &ioc->scsi_lookup_lock); 4005 } 4006 4007 /** 4008 * _base_put_smid_hi_priority - send Task Management request to firmware 4009 * @ioc: per adapter object 4010 * @smid: system request message index 4011 * @msix_task: msix_task will be same as msix of IO in case of task abort else 0 4012 */ 4013 static void 4014 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4015 u16 msix_task) 4016 { 4017 Mpi2RequestDescriptorUnion_t descriptor; 4018 void *mpi_req_iomem; 4019 u64 *request; 4020 4021 if (ioc->is_mcpu_endpoint) { 4022 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 4023 4024 /* TBD 256 is offset within sys register. */ 4025 mpi_req_iomem = (void __force *)ioc->chip 4026 + MPI_FRAME_START_OFFSET 4027 + (smid * ioc->request_sz); 4028 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 4029 ioc->request_sz); 4030 } 4031 4032 request = (u64 *)&descriptor; 4033 4034 descriptor.HighPriority.RequestFlags = 4035 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 4036 descriptor.HighPriority.MSIxIndex = msix_task; 4037 descriptor.HighPriority.SMID = cpu_to_le16(smid); 4038 descriptor.HighPriority.LMID = 0; 4039 descriptor.HighPriority.Reserved1 = 0; 4040 if (ioc->is_mcpu_endpoint) 4041 _base_mpi_ep_writeq(*request, 4042 &ioc->chip->RequestDescriptorPostLow, 4043 &ioc->scsi_lookup_lock); 4044 else 4045 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 4046 &ioc->scsi_lookup_lock); 4047 } 4048 4049 /** 4050 * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to 4051 * firmware 4052 * @ioc: per adapter object 4053 * @smid: system request message index 4054 */ 4055 void 4056 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid) 4057 { 4058 Mpi2RequestDescriptorUnion_t descriptor; 4059 u64 *request = (u64 *)&descriptor; 4060 4061 descriptor.Default.RequestFlags = 4062 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED; 4063 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4064 descriptor.Default.SMID = cpu_to_le16(smid); 4065 descriptor.Default.LMID = 0; 4066 descriptor.Default.DescriptorTypeDependent = 0; 4067 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 4068 &ioc->scsi_lookup_lock); 4069 } 4070 4071 /** 4072 * _base_put_smid_default - Default, primarily used for config pages 4073 * @ioc: per adapter object 4074 * @smid: system request message index 4075 */ 4076 static void 4077 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid) 4078 { 4079 Mpi2RequestDescriptorUnion_t descriptor; 4080 void *mpi_req_iomem; 4081 u64 *request; 4082 4083 if (ioc->is_mcpu_endpoint) { 4084 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 4085 4086 _clone_sg_entries(ioc, (void *) mfp, smid); 4087 /* TBD 256 is offset within sys register */ 4088 mpi_req_iomem = (void __force *)ioc->chip + 4089 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz); 4090 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 4091 ioc->request_sz); 4092 } 4093 request = (u64 *)&descriptor; 4094 descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 4095 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4096 descriptor.Default.SMID = cpu_to_le16(smid); 4097 descriptor.Default.LMID = 0; 4098 descriptor.Default.DescriptorTypeDependent = 0; 4099 if (ioc->is_mcpu_endpoint) 4100 _base_mpi_ep_writeq(*request, 4101 &ioc->chip->RequestDescriptorPostLow, 4102 &ioc->scsi_lookup_lock); 4103 else 4104 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 4105 &ioc->scsi_lookup_lock); 4106 } 4107 4108 /** 4109 * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using 4110 * Atomic Request Descriptor 4111 * @ioc: per adapter object 4112 * @smid: system request message index 4113 * @handle: device handle, unused in this function, for function type match 4114 * 4115 * Return: nothing. 4116 */ 4117 static void 4118 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4119 u16 handle) 4120 { 4121 Mpi26AtomicRequestDescriptor_t descriptor; 4122 u32 *request = (u32 *)&descriptor; 4123 4124 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 4125 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4126 descriptor.SMID = cpu_to_le16(smid); 4127 4128 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4129 } 4130 4131 /** 4132 * _base_put_smid_fast_path_atomic - send fast path request to firmware 4133 * using Atomic Request Descriptor 4134 * @ioc: per adapter object 4135 * @smid: system request message index 4136 * @handle: device handle, unused in this function, for function type match 4137 * Return: nothing 4138 */ 4139 static void 4140 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4141 u16 handle) 4142 { 4143 Mpi26AtomicRequestDescriptor_t descriptor; 4144 u32 *request = (u32 *)&descriptor; 4145 4146 descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 4147 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4148 descriptor.SMID = cpu_to_le16(smid); 4149 4150 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4151 } 4152 4153 /** 4154 * _base_put_smid_hi_priority_atomic - send Task Management request to 4155 * firmware using Atomic Request Descriptor 4156 * @ioc: per adapter object 4157 * @smid: system request message index 4158 * @msix_task: msix_task will be same as msix of IO in case of task abort else 0 4159 * 4160 * Return: nothing. 4161 */ 4162 static void 4163 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4164 u16 msix_task) 4165 { 4166 Mpi26AtomicRequestDescriptor_t descriptor; 4167 u32 *request = (u32 *)&descriptor; 4168 4169 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 4170 descriptor.MSIxIndex = msix_task; 4171 descriptor.SMID = cpu_to_le16(smid); 4172 4173 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4174 } 4175 4176 /** 4177 * _base_put_smid_default_atomic - Default, primarily used for config pages 4178 * use Atomic Request Descriptor 4179 * @ioc: per adapter object 4180 * @smid: system request message index 4181 * 4182 * Return: nothing. 4183 */ 4184 static void 4185 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid) 4186 { 4187 Mpi26AtomicRequestDescriptor_t descriptor; 4188 u32 *request = (u32 *)&descriptor; 4189 4190 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 4191 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4192 descriptor.SMID = cpu_to_le16(smid); 4193 4194 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4195 } 4196 4197 /** 4198 * _base_display_OEMs_branding - Display branding string 4199 * @ioc: per adapter object 4200 */ 4201 static void 4202 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc) 4203 { 4204 if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL) 4205 return; 4206 4207 switch (ioc->pdev->subsystem_vendor) { 4208 case PCI_VENDOR_ID_INTEL: 4209 switch (ioc->pdev->device) { 4210 case MPI2_MFGPAGE_DEVID_SAS2008: 4211 switch (ioc->pdev->subsystem_device) { 4212 case MPT2SAS_INTEL_RMS2LL080_SSDID: 4213 ioc_info(ioc, "%s\n", 4214 MPT2SAS_INTEL_RMS2LL080_BRANDING); 4215 break; 4216 case MPT2SAS_INTEL_RMS2LL040_SSDID: 4217 ioc_info(ioc, "%s\n", 4218 MPT2SAS_INTEL_RMS2LL040_BRANDING); 4219 break; 4220 case MPT2SAS_INTEL_SSD910_SSDID: 4221 ioc_info(ioc, "%s\n", 4222 MPT2SAS_INTEL_SSD910_BRANDING); 4223 break; 4224 default: 4225 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4226 ioc->pdev->subsystem_device); 4227 break; 4228 } 4229 break; 4230 case MPI2_MFGPAGE_DEVID_SAS2308_2: 4231 switch (ioc->pdev->subsystem_device) { 4232 case MPT2SAS_INTEL_RS25GB008_SSDID: 4233 ioc_info(ioc, "%s\n", 4234 MPT2SAS_INTEL_RS25GB008_BRANDING); 4235 break; 4236 case MPT2SAS_INTEL_RMS25JB080_SSDID: 4237 ioc_info(ioc, "%s\n", 4238 MPT2SAS_INTEL_RMS25JB080_BRANDING); 4239 break; 4240 case MPT2SAS_INTEL_RMS25JB040_SSDID: 4241 ioc_info(ioc, "%s\n", 4242 MPT2SAS_INTEL_RMS25JB040_BRANDING); 4243 break; 4244 case MPT2SAS_INTEL_RMS25KB080_SSDID: 4245 ioc_info(ioc, "%s\n", 4246 MPT2SAS_INTEL_RMS25KB080_BRANDING); 4247 break; 4248 case MPT2SAS_INTEL_RMS25KB040_SSDID: 4249 ioc_info(ioc, "%s\n", 4250 MPT2SAS_INTEL_RMS25KB040_BRANDING); 4251 break; 4252 case MPT2SAS_INTEL_RMS25LB040_SSDID: 4253 ioc_info(ioc, "%s\n", 4254 MPT2SAS_INTEL_RMS25LB040_BRANDING); 4255 break; 4256 case MPT2SAS_INTEL_RMS25LB080_SSDID: 4257 ioc_info(ioc, "%s\n", 4258 MPT2SAS_INTEL_RMS25LB080_BRANDING); 4259 break; 4260 default: 4261 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4262 ioc->pdev->subsystem_device); 4263 break; 4264 } 4265 break; 4266 case MPI25_MFGPAGE_DEVID_SAS3008: 4267 switch (ioc->pdev->subsystem_device) { 4268 case MPT3SAS_INTEL_RMS3JC080_SSDID: 4269 ioc_info(ioc, "%s\n", 4270 MPT3SAS_INTEL_RMS3JC080_BRANDING); 4271 break; 4272 4273 case MPT3SAS_INTEL_RS3GC008_SSDID: 4274 ioc_info(ioc, "%s\n", 4275 MPT3SAS_INTEL_RS3GC008_BRANDING); 4276 break; 4277 case MPT3SAS_INTEL_RS3FC044_SSDID: 4278 ioc_info(ioc, "%s\n", 4279 MPT3SAS_INTEL_RS3FC044_BRANDING); 4280 break; 4281 case MPT3SAS_INTEL_RS3UC080_SSDID: 4282 ioc_info(ioc, "%s\n", 4283 MPT3SAS_INTEL_RS3UC080_BRANDING); 4284 break; 4285 default: 4286 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4287 ioc->pdev->subsystem_device); 4288 break; 4289 } 4290 break; 4291 default: 4292 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4293 ioc->pdev->subsystem_device); 4294 break; 4295 } 4296 break; 4297 case PCI_VENDOR_ID_DELL: 4298 switch (ioc->pdev->device) { 4299 case MPI2_MFGPAGE_DEVID_SAS2008: 4300 switch (ioc->pdev->subsystem_device) { 4301 case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID: 4302 ioc_info(ioc, "%s\n", 4303 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING); 4304 break; 4305 case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID: 4306 ioc_info(ioc, "%s\n", 4307 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING); 4308 break; 4309 case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID: 4310 ioc_info(ioc, "%s\n", 4311 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING); 4312 break; 4313 case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID: 4314 ioc_info(ioc, "%s\n", 4315 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING); 4316 break; 4317 case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID: 4318 ioc_info(ioc, "%s\n", 4319 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING); 4320 break; 4321 case MPT2SAS_DELL_PERC_H200_SSDID: 4322 ioc_info(ioc, "%s\n", 4323 MPT2SAS_DELL_PERC_H200_BRANDING); 4324 break; 4325 case MPT2SAS_DELL_6GBPS_SAS_SSDID: 4326 ioc_info(ioc, "%s\n", 4327 MPT2SAS_DELL_6GBPS_SAS_BRANDING); 4328 break; 4329 default: 4330 ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n", 4331 ioc->pdev->subsystem_device); 4332 break; 4333 } 4334 break; 4335 case MPI25_MFGPAGE_DEVID_SAS3008: 4336 switch (ioc->pdev->subsystem_device) { 4337 case MPT3SAS_DELL_12G_HBA_SSDID: 4338 ioc_info(ioc, "%s\n", 4339 MPT3SAS_DELL_12G_HBA_BRANDING); 4340 break; 4341 default: 4342 ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n", 4343 ioc->pdev->subsystem_device); 4344 break; 4345 } 4346 break; 4347 default: 4348 ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n", 4349 ioc->pdev->subsystem_device); 4350 break; 4351 } 4352 break; 4353 case PCI_VENDOR_ID_CISCO: 4354 switch (ioc->pdev->device) { 4355 case MPI25_MFGPAGE_DEVID_SAS3008: 4356 switch (ioc->pdev->subsystem_device) { 4357 case MPT3SAS_CISCO_12G_8E_HBA_SSDID: 4358 ioc_info(ioc, "%s\n", 4359 MPT3SAS_CISCO_12G_8E_HBA_BRANDING); 4360 break; 4361 case MPT3SAS_CISCO_12G_8I_HBA_SSDID: 4362 ioc_info(ioc, "%s\n", 4363 MPT3SAS_CISCO_12G_8I_HBA_BRANDING); 4364 break; 4365 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID: 4366 ioc_info(ioc, "%s\n", 4367 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING); 4368 break; 4369 default: 4370 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n", 4371 ioc->pdev->subsystem_device); 4372 break; 4373 } 4374 break; 4375 case MPI25_MFGPAGE_DEVID_SAS3108_1: 4376 switch (ioc->pdev->subsystem_device) { 4377 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID: 4378 ioc_info(ioc, "%s\n", 4379 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING); 4380 break; 4381 case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID: 4382 ioc_info(ioc, "%s\n", 4383 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING); 4384 break; 4385 default: 4386 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n", 4387 ioc->pdev->subsystem_device); 4388 break; 4389 } 4390 break; 4391 default: 4392 ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n", 4393 ioc->pdev->subsystem_device); 4394 break; 4395 } 4396 break; 4397 case MPT2SAS_HP_3PAR_SSVID: 4398 switch (ioc->pdev->device) { 4399 case MPI2_MFGPAGE_DEVID_SAS2004: 4400 switch (ioc->pdev->subsystem_device) { 4401 case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID: 4402 ioc_info(ioc, "%s\n", 4403 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING); 4404 break; 4405 default: 4406 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n", 4407 ioc->pdev->subsystem_device); 4408 break; 4409 } 4410 break; 4411 case MPI2_MFGPAGE_DEVID_SAS2308_2: 4412 switch (ioc->pdev->subsystem_device) { 4413 case MPT2SAS_HP_2_4_INTERNAL_SSDID: 4414 ioc_info(ioc, "%s\n", 4415 MPT2SAS_HP_2_4_INTERNAL_BRANDING); 4416 break; 4417 case MPT2SAS_HP_2_4_EXTERNAL_SSDID: 4418 ioc_info(ioc, "%s\n", 4419 MPT2SAS_HP_2_4_EXTERNAL_BRANDING); 4420 break; 4421 case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID: 4422 ioc_info(ioc, "%s\n", 4423 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING); 4424 break; 4425 case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID: 4426 ioc_info(ioc, "%s\n", 4427 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING); 4428 break; 4429 default: 4430 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n", 4431 ioc->pdev->subsystem_device); 4432 break; 4433 } 4434 break; 4435 default: 4436 ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n", 4437 ioc->pdev->subsystem_device); 4438 break; 4439 } 4440 break; 4441 default: 4442 break; 4443 } 4444 } 4445 4446 /** 4447 * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg 4448 * version from FW Image Header. 4449 * @ioc: per adapter object 4450 * 4451 * Return: 0 for success, non-zero for failure. 4452 */ 4453 static int 4454 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc) 4455 { 4456 Mpi2FWImageHeader_t *fw_img_hdr; 4457 Mpi26ComponentImageHeader_t *cmp_img_hdr; 4458 Mpi25FWUploadRequest_t *mpi_request; 4459 Mpi2FWUploadReply_t mpi_reply; 4460 int r = 0, issue_diag_reset = 0; 4461 u32 package_version = 0; 4462 void *fwpkg_data = NULL; 4463 dma_addr_t fwpkg_data_dma; 4464 u16 smid, ioc_status; 4465 size_t data_length; 4466 4467 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 4468 4469 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 4470 ioc_err(ioc, "%s: internal command already in use\n", __func__); 4471 return -EAGAIN; 4472 } 4473 4474 data_length = sizeof(Mpi2FWImageHeader_t); 4475 fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length, 4476 &fwpkg_data_dma, GFP_KERNEL); 4477 if (!fwpkg_data) { 4478 ioc_err(ioc, 4479 "Memory allocation for fwpkg data failed at %s:%d/%s()!\n", 4480 __FILE__, __LINE__, __func__); 4481 return -ENOMEM; 4482 } 4483 4484 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 4485 if (!smid) { 4486 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 4487 r = -EAGAIN; 4488 goto out; 4489 } 4490 4491 ioc->base_cmds.status = MPT3_CMD_PENDING; 4492 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 4493 ioc->base_cmds.smid = smid; 4494 memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t)); 4495 mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD; 4496 mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH; 4497 mpi_request->ImageSize = cpu_to_le32(data_length); 4498 ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma, 4499 data_length); 4500 init_completion(&ioc->base_cmds.done); 4501 ioc->put_smid_default(ioc, smid); 4502 /* Wait for 15 seconds */ 4503 wait_for_completion_timeout(&ioc->base_cmds.done, 4504 FW_IMG_HDR_READ_TIMEOUT*HZ); 4505 ioc_info(ioc, "%s: complete\n", __func__); 4506 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 4507 ioc_err(ioc, "%s: timeout\n", __func__); 4508 _debug_dump_mf(mpi_request, 4509 sizeof(Mpi25FWUploadRequest_t)/4); 4510 issue_diag_reset = 1; 4511 } else { 4512 memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t)); 4513 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) { 4514 memcpy(&mpi_reply, ioc->base_cmds.reply, 4515 sizeof(Mpi2FWUploadReply_t)); 4516 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 4517 MPI2_IOCSTATUS_MASK; 4518 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 4519 fw_img_hdr = (Mpi2FWImageHeader_t *)fwpkg_data; 4520 if (le32_to_cpu(fw_img_hdr->Signature) == 4521 MPI26_IMAGE_HEADER_SIGNATURE0_MPI26) { 4522 cmp_img_hdr = 4523 (Mpi26ComponentImageHeader_t *) 4524 (fwpkg_data); 4525 package_version = 4526 le32_to_cpu( 4527 cmp_img_hdr->ApplicationSpecific); 4528 } else 4529 package_version = 4530 le32_to_cpu( 4531 fw_img_hdr->PackageVersion.Word); 4532 if (package_version) 4533 ioc_info(ioc, 4534 "FW Package Ver(%02d.%02d.%02d.%02d)\n", 4535 ((package_version) & 0xFF000000) >> 24, 4536 ((package_version) & 0x00FF0000) >> 16, 4537 ((package_version) & 0x0000FF00) >> 8, 4538 (package_version) & 0x000000FF); 4539 } else { 4540 _debug_dump_mf(&mpi_reply, 4541 sizeof(Mpi2FWUploadReply_t)/4); 4542 } 4543 } 4544 } 4545 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 4546 out: 4547 if (fwpkg_data) 4548 dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data, 4549 fwpkg_data_dma); 4550 if (issue_diag_reset) { 4551 if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED) 4552 return -EFAULT; 4553 if (mpt3sas_base_check_for_fault_and_issue_reset(ioc)) 4554 return -EFAULT; 4555 r = -EAGAIN; 4556 } 4557 return r; 4558 } 4559 4560 /** 4561 * _base_display_ioc_capabilities - Display IOC's capabilities. 4562 * @ioc: per adapter object 4563 */ 4564 static void 4565 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc) 4566 { 4567 int i = 0; 4568 char desc[16]; 4569 u32 iounit_pg1_flags; 4570 u32 bios_version; 4571 4572 bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion); 4573 strncpy(desc, ioc->manu_pg0.ChipName, 16); 4574 ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n", 4575 desc, 4576 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24, 4577 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16, 4578 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8, 4579 ioc->facts.FWVersion.Word & 0x000000FF, 4580 ioc->pdev->revision, 4581 (bios_version & 0xFF000000) >> 24, 4582 (bios_version & 0x00FF0000) >> 16, 4583 (bios_version & 0x0000FF00) >> 8, 4584 bios_version & 0x000000FF); 4585 4586 _base_display_OEMs_branding(ioc); 4587 4588 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) { 4589 pr_info("%sNVMe", i ? "," : ""); 4590 i++; 4591 } 4592 4593 ioc_info(ioc, "Protocol=("); 4594 4595 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) { 4596 pr_cont("Initiator"); 4597 i++; 4598 } 4599 4600 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) { 4601 pr_cont("%sTarget", i ? "," : ""); 4602 i++; 4603 } 4604 4605 i = 0; 4606 pr_cont("), Capabilities=("); 4607 4608 if (!ioc->hide_ir_msg) { 4609 if (ioc->facts.IOCCapabilities & 4610 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) { 4611 pr_cont("Raid"); 4612 i++; 4613 } 4614 } 4615 4616 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) { 4617 pr_cont("%sTLR", i ? "," : ""); 4618 i++; 4619 } 4620 4621 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) { 4622 pr_cont("%sMulticast", i ? "," : ""); 4623 i++; 4624 } 4625 4626 if (ioc->facts.IOCCapabilities & 4627 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) { 4628 pr_cont("%sBIDI Target", i ? "," : ""); 4629 i++; 4630 } 4631 4632 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) { 4633 pr_cont("%sEEDP", i ? "," : ""); 4634 i++; 4635 } 4636 4637 if (ioc->facts.IOCCapabilities & 4638 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) { 4639 pr_cont("%sSnapshot Buffer", i ? "," : ""); 4640 i++; 4641 } 4642 4643 if (ioc->facts.IOCCapabilities & 4644 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) { 4645 pr_cont("%sDiag Trace Buffer", i ? "," : ""); 4646 i++; 4647 } 4648 4649 if (ioc->facts.IOCCapabilities & 4650 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) { 4651 pr_cont("%sDiag Extended Buffer", i ? "," : ""); 4652 i++; 4653 } 4654 4655 if (ioc->facts.IOCCapabilities & 4656 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) { 4657 pr_cont("%sTask Set Full", i ? "," : ""); 4658 i++; 4659 } 4660 4661 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags); 4662 if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) { 4663 pr_cont("%sNCQ", i ? "," : ""); 4664 i++; 4665 } 4666 4667 pr_cont(")\n"); 4668 } 4669 4670 /** 4671 * mpt3sas_base_update_missing_delay - change the missing delay timers 4672 * @ioc: per adapter object 4673 * @device_missing_delay: amount of time till device is reported missing 4674 * @io_missing_delay: interval IO is returned when there is a missing device 4675 * 4676 * Passed on the command line, this function will modify the device missing 4677 * delay, as well as the io missing delay. This should be called at driver 4678 * load time. 4679 */ 4680 void 4681 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc, 4682 u16 device_missing_delay, u8 io_missing_delay) 4683 { 4684 u16 dmd, dmd_new, dmd_orignal; 4685 u8 io_missing_delay_original; 4686 u16 sz; 4687 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL; 4688 Mpi2ConfigReply_t mpi_reply; 4689 u8 num_phys = 0; 4690 u16 ioc_status; 4691 4692 mpt3sas_config_get_number_hba_phys(ioc, &num_phys); 4693 if (!num_phys) 4694 return; 4695 4696 sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys * 4697 sizeof(Mpi2SasIOUnit1PhyData_t)); 4698 sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL); 4699 if (!sas_iounit_pg1) { 4700 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4701 __FILE__, __LINE__, __func__); 4702 goto out; 4703 } 4704 if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply, 4705 sas_iounit_pg1, sz))) { 4706 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4707 __FILE__, __LINE__, __func__); 4708 goto out; 4709 } 4710 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 4711 MPI2_IOCSTATUS_MASK; 4712 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 4713 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4714 __FILE__, __LINE__, __func__); 4715 goto out; 4716 } 4717 4718 /* device missing delay */ 4719 dmd = sas_iounit_pg1->ReportDeviceMissingDelay; 4720 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16) 4721 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16; 4722 else 4723 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK; 4724 dmd_orignal = dmd; 4725 if (device_missing_delay > 0x7F) { 4726 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 : 4727 device_missing_delay; 4728 dmd = dmd / 16; 4729 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16; 4730 } else 4731 dmd = device_missing_delay; 4732 sas_iounit_pg1->ReportDeviceMissingDelay = dmd; 4733 4734 /* io missing delay */ 4735 io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay; 4736 sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay; 4737 4738 if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1, 4739 sz)) { 4740 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16) 4741 dmd_new = (dmd & 4742 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16; 4743 else 4744 dmd_new = 4745 dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK; 4746 ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n", 4747 dmd_orignal, dmd_new); 4748 ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n", 4749 io_missing_delay_original, 4750 io_missing_delay); 4751 ioc->device_missing_delay = dmd_new; 4752 ioc->io_missing_delay = io_missing_delay; 4753 } 4754 4755 out: 4756 kfree(sas_iounit_pg1); 4757 } 4758 4759 /** 4760 * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields 4761 * according to performance mode. 4762 * @ioc : per adapter object 4763 * 4764 * Return: zero on success; otherwise return EAGAIN error code asking the 4765 * caller to retry. 4766 */ 4767 static int 4768 _base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc) 4769 { 4770 Mpi2IOCPage1_t ioc_pg1; 4771 Mpi2ConfigReply_t mpi_reply; 4772 int rc; 4773 4774 rc = mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy); 4775 if (rc) 4776 return rc; 4777 memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t)); 4778 4779 switch (perf_mode) { 4780 case MPT_PERF_MODE_DEFAULT: 4781 case MPT_PERF_MODE_BALANCED: 4782 if (ioc->high_iops_queues) { 4783 ioc_info(ioc, 4784 "Enable interrupt coalescing only for first\t" 4785 "%d reply queues\n", 4786 MPT3SAS_HIGH_IOPS_REPLY_QUEUES); 4787 /* 4788 * If 31st bit is zero then interrupt coalescing is 4789 * enabled for all reply descriptor post queues. 4790 * If 31st bit is set to one then user can 4791 * enable/disable interrupt coalescing on per reply 4792 * descriptor post queue group(8) basis. So to enable 4793 * interrupt coalescing only on first reply descriptor 4794 * post queue group 31st bit and zero th bit is enabled. 4795 */ 4796 ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 | 4797 ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1)); 4798 rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1); 4799 if (rc) 4800 return rc; 4801 ioc_info(ioc, "performance mode: balanced\n"); 4802 return 0; 4803 } 4804 fallthrough; 4805 case MPT_PERF_MODE_LATENCY: 4806 /* 4807 * Enable interrupt coalescing on all reply queues 4808 * with timeout value 0xA 4809 */ 4810 ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa); 4811 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING); 4812 ioc_pg1.ProductSpecific = 0; 4813 rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1); 4814 if (rc) 4815 return rc; 4816 ioc_info(ioc, "performance mode: latency\n"); 4817 break; 4818 case MPT_PERF_MODE_IOPS: 4819 /* 4820 * Enable interrupt coalescing on all reply queues. 4821 */ 4822 ioc_info(ioc, 4823 "performance mode: iops with coalescing timeout: 0x%x\n", 4824 le32_to_cpu(ioc_pg1.CoalescingTimeout)); 4825 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING); 4826 ioc_pg1.ProductSpecific = 0; 4827 rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1); 4828 if (rc) 4829 return rc; 4830 break; 4831 } 4832 return 0; 4833 } 4834 4835 /** 4836 * _base_get_event_diag_triggers - get event diag trigger values from 4837 * persistent pages 4838 * @ioc : per adapter object 4839 * 4840 * Return: nothing. 4841 */ 4842 static int 4843 _base_get_event_diag_triggers(struct MPT3SAS_ADAPTER *ioc) 4844 { 4845 Mpi26DriverTriggerPage2_t trigger_pg2; 4846 struct SL_WH_EVENT_TRIGGER_T *event_tg; 4847 MPI26_DRIVER_MPI_EVENT_TIGGER_ENTRY *mpi_event_tg; 4848 Mpi2ConfigReply_t mpi_reply; 4849 int r = 0, i = 0; 4850 u16 count = 0; 4851 u16 ioc_status; 4852 4853 r = mpt3sas_config_get_driver_trigger_pg2(ioc, &mpi_reply, 4854 &trigger_pg2); 4855 if (r) 4856 return r; 4857 4858 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 4859 MPI2_IOCSTATUS_MASK; 4860 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 4861 dinitprintk(ioc, 4862 ioc_err(ioc, 4863 "%s: Failed to get trigger pg2, ioc_status(0x%04x)\n", 4864 __func__, ioc_status)); 4865 return 0; 4866 } 4867 4868 if (le16_to_cpu(trigger_pg2.NumMPIEventTrigger)) { 4869 count = le16_to_cpu(trigger_pg2.NumMPIEventTrigger); 4870 count = min_t(u16, NUM_VALID_ENTRIES, count); 4871 ioc->diag_trigger_event.ValidEntries = count; 4872 4873 event_tg = &ioc->diag_trigger_event.EventTriggerEntry[0]; 4874 mpi_event_tg = &trigger_pg2.MPIEventTriggers[0]; 4875 for (i = 0; i < count; i++) { 4876 event_tg->EventValue = le16_to_cpu( 4877 mpi_event_tg->MPIEventCode); 4878 event_tg->LogEntryQualifier = le16_to_cpu( 4879 mpi_event_tg->MPIEventCodeSpecific); 4880 event_tg++; 4881 mpi_event_tg++; 4882 } 4883 } 4884 return 0; 4885 } 4886 4887 /** 4888 * _base_get_scsi_diag_triggers - get scsi diag trigger values from 4889 * persistent pages 4890 * @ioc : per adapter object 4891 * 4892 * Return: 0 on success; otherwise return failure status. 4893 */ 4894 static int 4895 _base_get_scsi_diag_triggers(struct MPT3SAS_ADAPTER *ioc) 4896 { 4897 Mpi26DriverTriggerPage3_t trigger_pg3; 4898 struct SL_WH_SCSI_TRIGGER_T *scsi_tg; 4899 MPI26_DRIVER_SCSI_SENSE_TIGGER_ENTRY *mpi_scsi_tg; 4900 Mpi2ConfigReply_t mpi_reply; 4901 int r = 0, i = 0; 4902 u16 count = 0; 4903 u16 ioc_status; 4904 4905 r = mpt3sas_config_get_driver_trigger_pg3(ioc, &mpi_reply, 4906 &trigger_pg3); 4907 if (r) 4908 return r; 4909 4910 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 4911 MPI2_IOCSTATUS_MASK; 4912 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 4913 dinitprintk(ioc, 4914 ioc_err(ioc, 4915 "%s: Failed to get trigger pg3, ioc_status(0x%04x)\n", 4916 __func__, ioc_status)); 4917 return 0; 4918 } 4919 4920 if (le16_to_cpu(trigger_pg3.NumSCSISenseTrigger)) { 4921 count = le16_to_cpu(trigger_pg3.NumSCSISenseTrigger); 4922 count = min_t(u16, NUM_VALID_ENTRIES, count); 4923 ioc->diag_trigger_scsi.ValidEntries = count; 4924 4925 scsi_tg = &ioc->diag_trigger_scsi.SCSITriggerEntry[0]; 4926 mpi_scsi_tg = &trigger_pg3.SCSISenseTriggers[0]; 4927 for (i = 0; i < count; i++) { 4928 scsi_tg->ASCQ = mpi_scsi_tg->ASCQ; 4929 scsi_tg->ASC = mpi_scsi_tg->ASC; 4930 scsi_tg->SenseKey = mpi_scsi_tg->SenseKey; 4931 4932 scsi_tg++; 4933 mpi_scsi_tg++; 4934 } 4935 } 4936 return 0; 4937 } 4938 4939 /** 4940 * _base_get_mpi_diag_triggers - get mpi diag trigger values from 4941 * persistent pages 4942 * @ioc : per adapter object 4943 * 4944 * Return: 0 on success; otherwise return failure status. 4945 */ 4946 static int 4947 _base_get_mpi_diag_triggers(struct MPT3SAS_ADAPTER *ioc) 4948 { 4949 Mpi26DriverTriggerPage4_t trigger_pg4; 4950 struct SL_WH_MPI_TRIGGER_T *status_tg; 4951 MPI26_DRIVER_IOCSTATUS_LOGINFO_TIGGER_ENTRY *mpi_status_tg; 4952 Mpi2ConfigReply_t mpi_reply; 4953 int r = 0, i = 0; 4954 u16 count = 0; 4955 u16 ioc_status; 4956 4957 r = mpt3sas_config_get_driver_trigger_pg4(ioc, &mpi_reply, 4958 &trigger_pg4); 4959 if (r) 4960 return r; 4961 4962 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 4963 MPI2_IOCSTATUS_MASK; 4964 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 4965 dinitprintk(ioc, 4966 ioc_err(ioc, 4967 "%s: Failed to get trigger pg4, ioc_status(0x%04x)\n", 4968 __func__, ioc_status)); 4969 return 0; 4970 } 4971 4972 if (le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger)) { 4973 count = le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger); 4974 count = min_t(u16, NUM_VALID_ENTRIES, count); 4975 ioc->diag_trigger_mpi.ValidEntries = count; 4976 4977 status_tg = &ioc->diag_trigger_mpi.MPITriggerEntry[0]; 4978 mpi_status_tg = &trigger_pg4.IOCStatusLoginfoTriggers[0]; 4979 4980 for (i = 0; i < count; i++) { 4981 status_tg->IOCStatus = le16_to_cpu( 4982 mpi_status_tg->IOCStatus); 4983 status_tg->IocLogInfo = le32_to_cpu( 4984 mpi_status_tg->LogInfo); 4985 4986 status_tg++; 4987 mpi_status_tg++; 4988 } 4989 } 4990 return 0; 4991 } 4992 4993 /** 4994 * _base_get_master_diag_triggers - get master diag trigger values from 4995 * persistent pages 4996 * @ioc : per adapter object 4997 * 4998 * Return: nothing. 4999 */ 5000 static int 5001 _base_get_master_diag_triggers(struct MPT3SAS_ADAPTER *ioc) 5002 { 5003 Mpi26DriverTriggerPage1_t trigger_pg1; 5004 Mpi2ConfigReply_t mpi_reply; 5005 int r; 5006 u16 ioc_status; 5007 5008 r = mpt3sas_config_get_driver_trigger_pg1(ioc, &mpi_reply, 5009 &trigger_pg1); 5010 if (r) 5011 return r; 5012 5013 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 5014 MPI2_IOCSTATUS_MASK; 5015 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 5016 dinitprintk(ioc, 5017 ioc_err(ioc, 5018 "%s: Failed to get trigger pg1, ioc_status(0x%04x)\n", 5019 __func__, ioc_status)); 5020 return 0; 5021 } 5022 5023 if (le16_to_cpu(trigger_pg1.NumMasterTrigger)) 5024 ioc->diag_trigger_master.MasterData |= 5025 le32_to_cpu( 5026 trigger_pg1.MasterTriggers[0].MasterTriggerFlags); 5027 return 0; 5028 } 5029 5030 /** 5031 * _base_check_for_trigger_pages_support - checks whether HBA FW supports 5032 * driver trigger pages or not 5033 * @ioc : per adapter object 5034 * @trigger_flags : address where trigger page0's TriggerFlags value is copied 5035 * 5036 * Return: trigger flags mask if HBA FW supports driver trigger pages; 5037 * otherwise returns %-EFAULT if driver trigger pages are not supported by FW or 5038 * return EAGAIN if diag reset occurred due to FW fault and asking the 5039 * caller to retry the command. 5040 * 5041 */ 5042 static int 5043 _base_check_for_trigger_pages_support(struct MPT3SAS_ADAPTER *ioc, u32 *trigger_flags) 5044 { 5045 Mpi26DriverTriggerPage0_t trigger_pg0; 5046 int r = 0; 5047 Mpi2ConfigReply_t mpi_reply; 5048 u16 ioc_status; 5049 5050 r = mpt3sas_config_get_driver_trigger_pg0(ioc, &mpi_reply, 5051 &trigger_pg0); 5052 if (r) 5053 return r; 5054 5055 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 5056 MPI2_IOCSTATUS_MASK; 5057 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) 5058 return -EFAULT; 5059 5060 *trigger_flags = le16_to_cpu(trigger_pg0.TriggerFlags); 5061 return 0; 5062 } 5063 5064 /** 5065 * _base_get_diag_triggers - Retrieve diag trigger values from 5066 * persistent pages. 5067 * @ioc : per adapter object 5068 * 5069 * Return: zero on success; otherwise return EAGAIN error codes 5070 * asking the caller to retry. 5071 */ 5072 static int 5073 _base_get_diag_triggers(struct MPT3SAS_ADAPTER *ioc) 5074 { 5075 int trigger_flags; 5076 int r; 5077 5078 /* 5079 * Default setting of master trigger. 5080 */ 5081 ioc->diag_trigger_master.MasterData = 5082 (MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET); 5083 5084 r = _base_check_for_trigger_pages_support(ioc, &trigger_flags); 5085 if (r) { 5086 if (r == -EAGAIN) 5087 return r; 5088 /* 5089 * Don't go for error handling when FW doesn't support 5090 * driver trigger pages. 5091 */ 5092 return 0; 5093 } 5094 5095 ioc->supports_trigger_pages = 1; 5096 5097 /* 5098 * Retrieve master diag trigger values from driver trigger pg1 5099 * if master trigger bit enabled in TriggerFlags. 5100 */ 5101 if ((u16)trigger_flags & 5102 MPI26_DRIVER_TRIGGER0_FLAG_MASTER_TRIGGER_VALID) { 5103 r = _base_get_master_diag_triggers(ioc); 5104 if (r) 5105 return r; 5106 } 5107 5108 /* 5109 * Retrieve event diag trigger values from driver trigger pg2 5110 * if event trigger bit enabled in TriggerFlags. 5111 */ 5112 if ((u16)trigger_flags & 5113 MPI26_DRIVER_TRIGGER0_FLAG_MPI_EVENT_TRIGGER_VALID) { 5114 r = _base_get_event_diag_triggers(ioc); 5115 if (r) 5116 return r; 5117 } 5118 5119 /* 5120 * Retrieve scsi diag trigger values from driver trigger pg3 5121 * if scsi trigger bit enabled in TriggerFlags. 5122 */ 5123 if ((u16)trigger_flags & 5124 MPI26_DRIVER_TRIGGER0_FLAG_SCSI_SENSE_TRIGGER_VALID) { 5125 r = _base_get_scsi_diag_triggers(ioc); 5126 if (r) 5127 return r; 5128 } 5129 /* 5130 * Retrieve mpi error diag trigger values from driver trigger pg4 5131 * if loginfo trigger bit enabled in TriggerFlags. 5132 */ 5133 if ((u16)trigger_flags & 5134 MPI26_DRIVER_TRIGGER0_FLAG_LOGINFO_TRIGGER_VALID) { 5135 r = _base_get_mpi_diag_triggers(ioc); 5136 if (r) 5137 return r; 5138 } 5139 return 0; 5140 } 5141 5142 /** 5143 * _base_update_diag_trigger_pages - Update the driver trigger pages after 5144 * online FW update, in case updated FW supports driver 5145 * trigger pages. 5146 * @ioc : per adapter object 5147 * 5148 * Return: nothing. 5149 */ 5150 static void 5151 _base_update_diag_trigger_pages(struct MPT3SAS_ADAPTER *ioc) 5152 { 5153 5154 if (ioc->diag_trigger_master.MasterData) 5155 mpt3sas_config_update_driver_trigger_pg1(ioc, 5156 &ioc->diag_trigger_master, 1); 5157 5158 if (ioc->diag_trigger_event.ValidEntries) 5159 mpt3sas_config_update_driver_trigger_pg2(ioc, 5160 &ioc->diag_trigger_event, 1); 5161 5162 if (ioc->diag_trigger_scsi.ValidEntries) 5163 mpt3sas_config_update_driver_trigger_pg3(ioc, 5164 &ioc->diag_trigger_scsi, 1); 5165 5166 if (ioc->diag_trigger_mpi.ValidEntries) 5167 mpt3sas_config_update_driver_trigger_pg4(ioc, 5168 &ioc->diag_trigger_mpi, 1); 5169 } 5170 5171 /** 5172 * _base_static_config_pages - static start of day config pages 5173 * @ioc: per adapter object 5174 */ 5175 static int 5176 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc) 5177 { 5178 Mpi2ConfigReply_t mpi_reply; 5179 u32 iounit_pg1_flags; 5180 int tg_flags = 0; 5181 int rc; 5182 ioc->nvme_abort_timeout = 30; 5183 5184 rc = mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, 5185 &ioc->manu_pg0); 5186 if (rc) 5187 return rc; 5188 if (ioc->ir_firmware) { 5189 rc = mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply, 5190 &ioc->manu_pg10); 5191 if (rc) 5192 return rc; 5193 } 5194 /* 5195 * Ensure correct T10 PI operation if vendor left EEDPTagMode 5196 * flag unset in NVDATA. 5197 */ 5198 rc = mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, 5199 &ioc->manu_pg11); 5200 if (rc) 5201 return rc; 5202 if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) { 5203 pr_err("%s: overriding NVDATA EEDPTagMode setting\n", 5204 ioc->name); 5205 ioc->manu_pg11.EEDPTagMode &= ~0x3; 5206 ioc->manu_pg11.EEDPTagMode |= 0x1; 5207 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply, 5208 &ioc->manu_pg11); 5209 } 5210 if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK) 5211 ioc->tm_custom_handling = 1; 5212 else { 5213 ioc->tm_custom_handling = 0; 5214 if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT) 5215 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT; 5216 else if (ioc->manu_pg11.NVMeAbortTO > 5217 NVME_TASK_ABORT_MAX_TIMEOUT) 5218 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT; 5219 else 5220 ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO; 5221 } 5222 ioc->time_sync_interval = 5223 ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_MASK; 5224 if (ioc->time_sync_interval) { 5225 if (ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_UNIT_MASK) 5226 ioc->time_sync_interval = 5227 ioc->time_sync_interval * SECONDS_PER_HOUR; 5228 else 5229 ioc->time_sync_interval = 5230 ioc->time_sync_interval * SECONDS_PER_MIN; 5231 dinitprintk(ioc, ioc_info(ioc, 5232 "Driver-FW TimeSync interval is %d seconds. ManuPg11 TimeSync Unit is in %s\n", 5233 ioc->time_sync_interval, (ioc->manu_pg11.TimeSyncInterval & 5234 MPT3SAS_TIMESYNC_UNIT_MASK) ? "Hour" : "Minute")); 5235 } else { 5236 if (ioc->is_gen35_ioc) 5237 ioc_warn(ioc, 5238 "TimeSync Interval in Manuf page-11 is not enabled. Periodic Time-Sync will be disabled\n"); 5239 } 5240 rc = mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2); 5241 if (rc) 5242 return rc; 5243 rc = mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3); 5244 if (rc) 5245 return rc; 5246 rc = mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8); 5247 if (rc) 5248 return rc; 5249 rc = mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0); 5250 if (rc) 5251 return rc; 5252 rc = mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1); 5253 if (rc) 5254 return rc; 5255 rc = mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8); 5256 if (rc) 5257 return rc; 5258 _base_display_ioc_capabilities(ioc); 5259 5260 /* 5261 * Enable task_set_full handling in iounit_pg1 when the 5262 * facts capabilities indicate that its supported. 5263 */ 5264 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags); 5265 if ((ioc->facts.IOCCapabilities & 5266 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING)) 5267 iounit_pg1_flags &= 5268 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING; 5269 else 5270 iounit_pg1_flags |= 5271 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING; 5272 ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags); 5273 rc = mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1); 5274 if (rc) 5275 return rc; 5276 5277 if (ioc->iounit_pg8.NumSensors) 5278 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors; 5279 if (ioc->is_aero_ioc) { 5280 rc = _base_update_ioc_page1_inlinewith_perf_mode(ioc); 5281 if (rc) 5282 return rc; 5283 } 5284 if (ioc->is_gen35_ioc) { 5285 if (ioc->is_driver_loading) { 5286 rc = _base_get_diag_triggers(ioc); 5287 if (rc) 5288 return rc; 5289 } else { 5290 /* 5291 * In case of online HBA FW update operation, 5292 * check whether updated FW supports the driver trigger 5293 * pages or not. 5294 * - If previous FW has not supported driver trigger 5295 * pages and newer FW supports them then update these 5296 * pages with current diag trigger values. 5297 * - If previous FW has supported driver trigger pages 5298 * and new FW doesn't support them then disable 5299 * support_trigger_pages flag. 5300 */ 5301 _base_check_for_trigger_pages_support(ioc, &tg_flags); 5302 if (!ioc->supports_trigger_pages && tg_flags != -EFAULT) 5303 _base_update_diag_trigger_pages(ioc); 5304 else if (ioc->supports_trigger_pages && 5305 tg_flags == -EFAULT) 5306 ioc->supports_trigger_pages = 0; 5307 } 5308 } 5309 return 0; 5310 } 5311 5312 /** 5313 * mpt3sas_free_enclosure_list - release memory 5314 * @ioc: per adapter object 5315 * 5316 * Free memory allocated during enclosure add. 5317 */ 5318 void 5319 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc) 5320 { 5321 struct _enclosure_node *enclosure_dev, *enclosure_dev_next; 5322 5323 /* Free enclosure list */ 5324 list_for_each_entry_safe(enclosure_dev, 5325 enclosure_dev_next, &ioc->enclosure_list, list) { 5326 list_del(&enclosure_dev->list); 5327 kfree(enclosure_dev); 5328 } 5329 } 5330 5331 /** 5332 * _base_release_memory_pools - release memory 5333 * @ioc: per adapter object 5334 * 5335 * Free memory allocated from _base_allocate_memory_pools. 5336 */ 5337 static void 5338 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc) 5339 { 5340 int i = 0; 5341 int j = 0; 5342 int dma_alloc_count = 0; 5343 struct chain_tracker *ct; 5344 int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1; 5345 5346 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 5347 5348 if (ioc->request) { 5349 dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz, 5350 ioc->request, ioc->request_dma); 5351 dexitprintk(ioc, 5352 ioc_info(ioc, "request_pool(0x%p): free\n", 5353 ioc->request)); 5354 ioc->request = NULL; 5355 } 5356 5357 if (ioc->sense) { 5358 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma); 5359 dma_pool_destroy(ioc->sense_dma_pool); 5360 dexitprintk(ioc, 5361 ioc_info(ioc, "sense_pool(0x%p): free\n", 5362 ioc->sense)); 5363 ioc->sense = NULL; 5364 } 5365 5366 if (ioc->reply) { 5367 dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma); 5368 dma_pool_destroy(ioc->reply_dma_pool); 5369 dexitprintk(ioc, 5370 ioc_info(ioc, "reply_pool(0x%p): free\n", 5371 ioc->reply)); 5372 ioc->reply = NULL; 5373 } 5374 5375 if (ioc->reply_free) { 5376 dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free, 5377 ioc->reply_free_dma); 5378 dma_pool_destroy(ioc->reply_free_dma_pool); 5379 dexitprintk(ioc, 5380 ioc_info(ioc, "reply_free_pool(0x%p): free\n", 5381 ioc->reply_free)); 5382 ioc->reply_free = NULL; 5383 } 5384 5385 if (ioc->reply_post) { 5386 dma_alloc_count = DIV_ROUND_UP(count, 5387 RDPQ_MAX_INDEX_IN_ONE_CHUNK); 5388 for (i = 0; i < count; i++) { 5389 if (i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0 5390 && dma_alloc_count) { 5391 if (ioc->reply_post[i].reply_post_free) { 5392 dma_pool_free( 5393 ioc->reply_post_free_dma_pool, 5394 ioc->reply_post[i].reply_post_free, 5395 ioc->reply_post[i].reply_post_free_dma); 5396 dexitprintk(ioc, ioc_info(ioc, 5397 "reply_post_free_pool(0x%p): free\n", 5398 ioc->reply_post[i].reply_post_free)); 5399 ioc->reply_post[i].reply_post_free = 5400 NULL; 5401 } 5402 --dma_alloc_count; 5403 } 5404 } 5405 dma_pool_destroy(ioc->reply_post_free_dma_pool); 5406 if (ioc->reply_post_free_array && 5407 ioc->rdpq_array_enable) { 5408 dma_pool_free(ioc->reply_post_free_array_dma_pool, 5409 ioc->reply_post_free_array, 5410 ioc->reply_post_free_array_dma); 5411 ioc->reply_post_free_array = NULL; 5412 } 5413 dma_pool_destroy(ioc->reply_post_free_array_dma_pool); 5414 kfree(ioc->reply_post); 5415 } 5416 5417 if (ioc->pcie_sgl_dma_pool) { 5418 for (i = 0; i < ioc->scsiio_depth; i++) { 5419 dma_pool_free(ioc->pcie_sgl_dma_pool, 5420 ioc->pcie_sg_lookup[i].pcie_sgl, 5421 ioc->pcie_sg_lookup[i].pcie_sgl_dma); 5422 ioc->pcie_sg_lookup[i].pcie_sgl = NULL; 5423 } 5424 dma_pool_destroy(ioc->pcie_sgl_dma_pool); 5425 } 5426 if (ioc->config_page) { 5427 dexitprintk(ioc, 5428 ioc_info(ioc, "config_page(0x%p): free\n", 5429 ioc->config_page)); 5430 dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz, 5431 ioc->config_page, ioc->config_page_dma); 5432 } 5433 5434 kfree(ioc->hpr_lookup); 5435 ioc->hpr_lookup = NULL; 5436 kfree(ioc->internal_lookup); 5437 ioc->internal_lookup = NULL; 5438 if (ioc->chain_lookup) { 5439 for (i = 0; i < ioc->scsiio_depth; i++) { 5440 for (j = ioc->chains_per_prp_buffer; 5441 j < ioc->chains_needed_per_io; j++) { 5442 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 5443 if (ct && ct->chain_buffer) 5444 dma_pool_free(ioc->chain_dma_pool, 5445 ct->chain_buffer, 5446 ct->chain_buffer_dma); 5447 } 5448 kfree(ioc->chain_lookup[i].chains_per_smid); 5449 } 5450 dma_pool_destroy(ioc->chain_dma_pool); 5451 kfree(ioc->chain_lookup); 5452 ioc->chain_lookup = NULL; 5453 } 5454 5455 kfree(ioc->io_queue_num); 5456 ioc->io_queue_num = NULL; 5457 } 5458 5459 /** 5460 * mpt3sas_check_same_4gb_region - checks whether all reply queues in a set are 5461 * having same upper 32bits in their base memory address. 5462 * @reply_pool_start_address: Base address of a reply queue set 5463 * @pool_sz: Size of single Reply Descriptor Post Queues pool size 5464 * 5465 * Return: 1 if reply queues in a set have a same upper 32bits in their base 5466 * memory address, else 0. 5467 */ 5468 5469 static int 5470 mpt3sas_check_same_4gb_region(long reply_pool_start_address, u32 pool_sz) 5471 { 5472 long reply_pool_end_address; 5473 5474 reply_pool_end_address = reply_pool_start_address + pool_sz; 5475 5476 if (upper_32_bits(reply_pool_start_address) == 5477 upper_32_bits(reply_pool_end_address)) 5478 return 1; 5479 else 5480 return 0; 5481 } 5482 5483 /** 5484 * _base_reduce_hba_queue_depth- Retry with reduced queue depth 5485 * @ioc: Adapter object 5486 * 5487 * Return: 0 for success, non-zero for failure. 5488 **/ 5489 static inline int 5490 _base_reduce_hba_queue_depth(struct MPT3SAS_ADAPTER *ioc) 5491 { 5492 int reduce_sz = 64; 5493 5494 if ((ioc->hba_queue_depth - reduce_sz) > 5495 (ioc->internal_depth + INTERNAL_SCSIIO_CMDS_COUNT)) { 5496 ioc->hba_queue_depth -= reduce_sz; 5497 return 0; 5498 } else 5499 return -ENOMEM; 5500 } 5501 5502 /** 5503 * _base_allocate_pcie_sgl_pool - Allocating DMA'able memory 5504 * for pcie sgl pools. 5505 * @ioc: Adapter object 5506 * @sz: DMA Pool size 5507 * 5508 * Return: 0 for success, non-zero for failure. 5509 */ 5510 5511 static int 5512 _base_allocate_pcie_sgl_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz) 5513 { 5514 int i = 0, j = 0; 5515 struct chain_tracker *ct; 5516 5517 ioc->pcie_sgl_dma_pool = 5518 dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz, 5519 ioc->page_size, 0); 5520 if (!ioc->pcie_sgl_dma_pool) { 5521 ioc_err(ioc, "PCIe SGL pool: dma_pool_create failed\n"); 5522 return -ENOMEM; 5523 } 5524 5525 ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz; 5526 ioc->chains_per_prp_buffer = 5527 min(ioc->chains_per_prp_buffer, ioc->chains_needed_per_io); 5528 for (i = 0; i < ioc->scsiio_depth; i++) { 5529 ioc->pcie_sg_lookup[i].pcie_sgl = 5530 dma_pool_alloc(ioc->pcie_sgl_dma_pool, GFP_KERNEL, 5531 &ioc->pcie_sg_lookup[i].pcie_sgl_dma); 5532 if (!ioc->pcie_sg_lookup[i].pcie_sgl) { 5533 ioc_err(ioc, "PCIe SGL pool: dma_pool_alloc failed\n"); 5534 return -EAGAIN; 5535 } 5536 5537 if (!mpt3sas_check_same_4gb_region( 5538 (long)ioc->pcie_sg_lookup[i].pcie_sgl, sz)) { 5539 ioc_err(ioc, "PCIE SGLs are not in same 4G !! pcie sgl (0x%p) dma = (0x%llx)\n", 5540 ioc->pcie_sg_lookup[i].pcie_sgl, 5541 (unsigned long long) 5542 ioc->pcie_sg_lookup[i].pcie_sgl_dma); 5543 ioc->use_32bit_dma = true; 5544 return -EAGAIN; 5545 } 5546 5547 for (j = 0; j < ioc->chains_per_prp_buffer; j++) { 5548 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 5549 ct->chain_buffer = 5550 ioc->pcie_sg_lookup[i].pcie_sgl + 5551 (j * ioc->chain_segment_sz); 5552 ct->chain_buffer_dma = 5553 ioc->pcie_sg_lookup[i].pcie_sgl_dma + 5554 (j * ioc->chain_segment_sz); 5555 } 5556 } 5557 dinitprintk(ioc, ioc_info(ioc, 5558 "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n", 5559 ioc->scsiio_depth, sz, (sz * ioc->scsiio_depth)/1024)); 5560 dinitprintk(ioc, ioc_info(ioc, 5561 "Number of chains can fit in a PRP page(%d)\n", 5562 ioc->chains_per_prp_buffer)); 5563 return 0; 5564 } 5565 5566 /** 5567 * _base_allocate_chain_dma_pool - Allocating DMA'able memory 5568 * for chain dma pool. 5569 * @ioc: Adapter object 5570 * @sz: DMA Pool size 5571 * 5572 * Return: 0 for success, non-zero for failure. 5573 */ 5574 static int 5575 _base_allocate_chain_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz) 5576 { 5577 int i = 0, j = 0; 5578 struct chain_tracker *ctr; 5579 5580 ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev, 5581 ioc->chain_segment_sz, 16, 0); 5582 if (!ioc->chain_dma_pool) 5583 return -ENOMEM; 5584 5585 for (i = 0; i < ioc->scsiio_depth; i++) { 5586 for (j = ioc->chains_per_prp_buffer; 5587 j < ioc->chains_needed_per_io; j++) { 5588 ctr = &ioc->chain_lookup[i].chains_per_smid[j]; 5589 ctr->chain_buffer = dma_pool_alloc(ioc->chain_dma_pool, 5590 GFP_KERNEL, &ctr->chain_buffer_dma); 5591 if (!ctr->chain_buffer) 5592 return -EAGAIN; 5593 if (!mpt3sas_check_same_4gb_region((long) 5594 ctr->chain_buffer, ioc->chain_segment_sz)) { 5595 ioc_err(ioc, 5596 "Chain buffers are not in same 4G !!! Chain buff (0x%p) dma = (0x%llx)\n", 5597 ctr->chain_buffer, 5598 (unsigned long long)ctr->chain_buffer_dma); 5599 ioc->use_32bit_dma = true; 5600 return -EAGAIN; 5601 } 5602 } 5603 } 5604 dinitprintk(ioc, ioc_info(ioc, 5605 "chain_lookup depth (%d), frame_size(%d), pool_size(%d kB)\n", 5606 ioc->scsiio_depth, ioc->chain_segment_sz, ((ioc->scsiio_depth * 5607 (ioc->chains_needed_per_io - ioc->chains_per_prp_buffer) * 5608 ioc->chain_segment_sz))/1024)); 5609 return 0; 5610 } 5611 5612 /** 5613 * _base_allocate_sense_dma_pool - Allocating DMA'able memory 5614 * for sense dma pool. 5615 * @ioc: Adapter object 5616 * @sz: DMA Pool size 5617 * Return: 0 for success, non-zero for failure. 5618 */ 5619 static int 5620 _base_allocate_sense_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz) 5621 { 5622 ioc->sense_dma_pool = 5623 dma_pool_create("sense pool", &ioc->pdev->dev, sz, 4, 0); 5624 if (!ioc->sense_dma_pool) 5625 return -ENOMEM; 5626 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, 5627 GFP_KERNEL, &ioc->sense_dma); 5628 if (!ioc->sense) 5629 return -EAGAIN; 5630 if (!mpt3sas_check_same_4gb_region((long)ioc->sense, sz)) { 5631 dinitprintk(ioc, pr_err( 5632 "Bad Sense Pool! sense (0x%p) sense_dma = (0x%llx)\n", 5633 ioc->sense, (unsigned long long) ioc->sense_dma)); 5634 ioc->use_32bit_dma = true; 5635 return -EAGAIN; 5636 } 5637 ioc_info(ioc, 5638 "sense pool(0x%p) - dma(0x%llx): depth(%d), element_size(%d), pool_size (%d kB)\n", 5639 ioc->sense, (unsigned long long)ioc->sense_dma, 5640 ioc->scsiio_depth, SCSI_SENSE_BUFFERSIZE, sz/1024); 5641 return 0; 5642 } 5643 5644 /** 5645 * _base_allocate_reply_pool - Allocating DMA'able memory 5646 * for reply pool. 5647 * @ioc: Adapter object 5648 * @sz: DMA Pool size 5649 * Return: 0 for success, non-zero for failure. 5650 */ 5651 static int 5652 _base_allocate_reply_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz) 5653 { 5654 /* reply pool, 4 byte align */ 5655 ioc->reply_dma_pool = dma_pool_create("reply pool", 5656 &ioc->pdev->dev, sz, 4, 0); 5657 if (!ioc->reply_dma_pool) 5658 return -ENOMEM; 5659 ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL, 5660 &ioc->reply_dma); 5661 if (!ioc->reply) 5662 return -EAGAIN; 5663 if (!mpt3sas_check_same_4gb_region((long)ioc->reply_free, sz)) { 5664 dinitprintk(ioc, pr_err( 5665 "Bad Reply Pool! Reply (0x%p) Reply dma = (0x%llx)\n", 5666 ioc->reply, (unsigned long long) ioc->reply_dma)); 5667 ioc->use_32bit_dma = true; 5668 return -EAGAIN; 5669 } 5670 ioc->reply_dma_min_address = (u32)(ioc->reply_dma); 5671 ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz; 5672 ioc_info(ioc, 5673 "reply pool(0x%p) - dma(0x%llx): depth(%d), frame_size(%d), pool_size(%d kB)\n", 5674 ioc->reply, (unsigned long long)ioc->reply_dma, 5675 ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024); 5676 return 0; 5677 } 5678 5679 /** 5680 * _base_allocate_reply_free_dma_pool - Allocating DMA'able memory 5681 * for reply free dma pool. 5682 * @ioc: Adapter object 5683 * @sz: DMA Pool size 5684 * Return: 0 for success, non-zero for failure. 5685 */ 5686 static int 5687 _base_allocate_reply_free_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz) 5688 { 5689 /* reply free queue, 16 byte align */ 5690 ioc->reply_free_dma_pool = dma_pool_create( 5691 "reply_free pool", &ioc->pdev->dev, sz, 16, 0); 5692 if (!ioc->reply_free_dma_pool) 5693 return -ENOMEM; 5694 ioc->reply_free = dma_pool_alloc(ioc->reply_free_dma_pool, 5695 GFP_KERNEL, &ioc->reply_free_dma); 5696 if (!ioc->reply_free) 5697 return -EAGAIN; 5698 if (!mpt3sas_check_same_4gb_region((long)ioc->reply_free, sz)) { 5699 dinitprintk(ioc, 5700 pr_err("Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n", 5701 ioc->reply_free, (unsigned long long) ioc->reply_free_dma)); 5702 ioc->use_32bit_dma = true; 5703 return -EAGAIN; 5704 } 5705 memset(ioc->reply_free, 0, sz); 5706 dinitprintk(ioc, ioc_info(ioc, 5707 "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n", 5708 ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024)); 5709 dinitprintk(ioc, ioc_info(ioc, 5710 "reply_free_dma (0x%llx)\n", 5711 (unsigned long long)ioc->reply_free_dma)); 5712 return 0; 5713 } 5714 5715 /** 5716 * _base_allocate_reply_post_free_array - Allocating DMA'able memory 5717 * for reply post free array. 5718 * @ioc: Adapter object 5719 * @reply_post_free_array_sz: DMA Pool size 5720 * Return: 0 for success, non-zero for failure. 5721 */ 5722 5723 static int 5724 _base_allocate_reply_post_free_array(struct MPT3SAS_ADAPTER *ioc, 5725 u32 reply_post_free_array_sz) 5726 { 5727 ioc->reply_post_free_array_dma_pool = 5728 dma_pool_create("reply_post_free_array pool", 5729 &ioc->pdev->dev, reply_post_free_array_sz, 16, 0); 5730 if (!ioc->reply_post_free_array_dma_pool) 5731 return -ENOMEM; 5732 ioc->reply_post_free_array = 5733 dma_pool_alloc(ioc->reply_post_free_array_dma_pool, 5734 GFP_KERNEL, &ioc->reply_post_free_array_dma); 5735 if (!ioc->reply_post_free_array) 5736 return -EAGAIN; 5737 if (!mpt3sas_check_same_4gb_region((long)ioc->reply_post_free_array, 5738 reply_post_free_array_sz)) { 5739 dinitprintk(ioc, pr_err( 5740 "Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n", 5741 ioc->reply_free, 5742 (unsigned long long) ioc->reply_free_dma)); 5743 ioc->use_32bit_dma = true; 5744 return -EAGAIN; 5745 } 5746 return 0; 5747 } 5748 /** 5749 * base_alloc_rdpq_dma_pool - Allocating DMA'able memory 5750 * for reply queues. 5751 * @ioc: per adapter object 5752 * @sz: DMA Pool size 5753 * Return: 0 for success, non-zero for failure. 5754 */ 5755 static int 5756 base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER *ioc, int sz) 5757 { 5758 int i = 0; 5759 u32 dma_alloc_count = 0; 5760 int reply_post_free_sz = ioc->reply_post_queue_depth * 5761 sizeof(Mpi2DefaultReplyDescriptor_t); 5762 int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1; 5763 5764 ioc->reply_post = kcalloc(count, sizeof(struct reply_post_struct), 5765 GFP_KERNEL); 5766 if (!ioc->reply_post) 5767 return -ENOMEM; 5768 /* 5769 * For INVADER_SERIES each set of 8 reply queues(0-7, 8-15, ..) and 5770 * VENTURA_SERIES each set of 16 reply queues(0-15, 16-31, ..) should 5771 * be within 4GB boundary i.e reply queues in a set must have same 5772 * upper 32-bits in their memory address. so here driver is allocating 5773 * the DMA'able memory for reply queues according. 5774 * Driver uses limitation of 5775 * VENTURA_SERIES to manage INVADER_SERIES as well. 5776 */ 5777 dma_alloc_count = DIV_ROUND_UP(count, 5778 RDPQ_MAX_INDEX_IN_ONE_CHUNK); 5779 ioc->reply_post_free_dma_pool = 5780 dma_pool_create("reply_post_free pool", 5781 &ioc->pdev->dev, sz, 16, 0); 5782 if (!ioc->reply_post_free_dma_pool) 5783 return -ENOMEM; 5784 for (i = 0; i < count; i++) { 5785 if ((i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0) && dma_alloc_count) { 5786 ioc->reply_post[i].reply_post_free = 5787 dma_pool_zalloc(ioc->reply_post_free_dma_pool, 5788 GFP_KERNEL, 5789 &ioc->reply_post[i].reply_post_free_dma); 5790 if (!ioc->reply_post[i].reply_post_free) 5791 return -ENOMEM; 5792 /* 5793 * Each set of RDPQ pool must satisfy 4gb boundary 5794 * restriction. 5795 * 1) Check if allocated resources for RDPQ pool are in 5796 * the same 4GB range. 5797 * 2) If #1 is true, continue with 64 bit DMA. 5798 * 3) If #1 is false, return 1. which means free all the 5799 * resources and set DMA mask to 32 and allocate. 5800 */ 5801 if (!mpt3sas_check_same_4gb_region( 5802 (long)ioc->reply_post[i].reply_post_free, sz)) { 5803 dinitprintk(ioc, 5804 ioc_err(ioc, "bad Replypost free pool(0x%p)" 5805 "reply_post_free_dma = (0x%llx)\n", 5806 ioc->reply_post[i].reply_post_free, 5807 (unsigned long long) 5808 ioc->reply_post[i].reply_post_free_dma)); 5809 return -EAGAIN; 5810 } 5811 dma_alloc_count--; 5812 5813 } else { 5814 ioc->reply_post[i].reply_post_free = 5815 (Mpi2ReplyDescriptorsUnion_t *) 5816 ((long)ioc->reply_post[i-1].reply_post_free 5817 + reply_post_free_sz); 5818 ioc->reply_post[i].reply_post_free_dma = 5819 (dma_addr_t) 5820 (ioc->reply_post[i-1].reply_post_free_dma + 5821 reply_post_free_sz); 5822 } 5823 } 5824 return 0; 5825 } 5826 5827 /** 5828 * _base_allocate_memory_pools - allocate start of day memory pools 5829 * @ioc: per adapter object 5830 * 5831 * Return: 0 success, anything else error. 5832 */ 5833 static int 5834 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc) 5835 { 5836 struct mpt3sas_facts *facts; 5837 u16 max_sge_elements; 5838 u16 chains_needed_per_io; 5839 u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz; 5840 u32 retry_sz; 5841 u32 rdpq_sz = 0, sense_sz = 0; 5842 u16 max_request_credit, nvme_blocks_needed; 5843 unsigned short sg_tablesize; 5844 u16 sge_size; 5845 int i; 5846 int ret = 0, rc = 0; 5847 5848 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 5849 5850 5851 retry_sz = 0; 5852 facts = &ioc->facts; 5853 5854 /* command line tunables for max sgl entries */ 5855 if (max_sgl_entries != -1) 5856 sg_tablesize = max_sgl_entries; 5857 else { 5858 if (ioc->hba_mpi_version_belonged == MPI2_VERSION) 5859 sg_tablesize = MPT2SAS_SG_DEPTH; 5860 else 5861 sg_tablesize = MPT3SAS_SG_DEPTH; 5862 } 5863 5864 /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */ 5865 if (reset_devices) 5866 sg_tablesize = min_t(unsigned short, sg_tablesize, 5867 MPT_KDUMP_MIN_PHYS_SEGMENTS); 5868 5869 if (ioc->is_mcpu_endpoint) 5870 ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS; 5871 else { 5872 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS) 5873 sg_tablesize = MPT_MIN_PHYS_SEGMENTS; 5874 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) { 5875 sg_tablesize = min_t(unsigned short, sg_tablesize, 5876 SG_MAX_SEGMENTS); 5877 ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n", 5878 sg_tablesize, MPT_MAX_PHYS_SEGMENTS); 5879 } 5880 ioc->shost->sg_tablesize = sg_tablesize; 5881 } 5882 5883 ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)), 5884 (facts->RequestCredit / 4)); 5885 if (ioc->internal_depth < INTERNAL_CMDS_COUNT) { 5886 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT + 5887 INTERNAL_SCSIIO_CMDS_COUNT)) { 5888 ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n", 5889 facts->RequestCredit); 5890 return -ENOMEM; 5891 } 5892 ioc->internal_depth = 10; 5893 } 5894 5895 ioc->hi_priority_depth = ioc->internal_depth - (5); 5896 /* command line tunables for max controller queue depth */ 5897 if (max_queue_depth != -1 && max_queue_depth != 0) { 5898 max_request_credit = min_t(u16, max_queue_depth + 5899 ioc->internal_depth, facts->RequestCredit); 5900 if (max_request_credit > MAX_HBA_QUEUE_DEPTH) 5901 max_request_credit = MAX_HBA_QUEUE_DEPTH; 5902 } else if (reset_devices) 5903 max_request_credit = min_t(u16, facts->RequestCredit, 5904 (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth)); 5905 else 5906 max_request_credit = min_t(u16, facts->RequestCredit, 5907 MAX_HBA_QUEUE_DEPTH); 5908 5909 /* Firmware maintains additional facts->HighPriorityCredit number of 5910 * credits for HiPriprity Request messages, so hba queue depth will be 5911 * sum of max_request_credit and high priority queue depth. 5912 */ 5913 ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth; 5914 5915 /* request frame size */ 5916 ioc->request_sz = facts->IOCRequestFrameSize * 4; 5917 5918 /* reply frame size */ 5919 ioc->reply_sz = facts->ReplyFrameSize * 4; 5920 5921 /* chain segment size */ 5922 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 5923 if (facts->IOCMaxChainSegmentSize) 5924 ioc->chain_segment_sz = 5925 facts->IOCMaxChainSegmentSize * 5926 MAX_CHAIN_ELEMT_SZ; 5927 else 5928 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */ 5929 ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS * 5930 MAX_CHAIN_ELEMT_SZ; 5931 } else 5932 ioc->chain_segment_sz = ioc->request_sz; 5933 5934 /* calculate the max scatter element size */ 5935 sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee); 5936 5937 retry_allocation: 5938 total_sz = 0; 5939 /* calculate number of sg elements left over in the 1st frame */ 5940 max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) - 5941 sizeof(Mpi2SGEIOUnion_t)) + sge_size); 5942 ioc->max_sges_in_main_message = max_sge_elements/sge_size; 5943 5944 /* now do the same for a chain buffer */ 5945 max_sge_elements = ioc->chain_segment_sz - sge_size; 5946 ioc->max_sges_in_chain_message = max_sge_elements/sge_size; 5947 5948 /* 5949 * MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE 5950 */ 5951 chains_needed_per_io = ((ioc->shost->sg_tablesize - 5952 ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message) 5953 + 1; 5954 if (chains_needed_per_io > facts->MaxChainDepth) { 5955 chains_needed_per_io = facts->MaxChainDepth; 5956 ioc->shost->sg_tablesize = min_t(u16, 5957 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message 5958 * chains_needed_per_io), ioc->shost->sg_tablesize); 5959 } 5960 ioc->chains_needed_per_io = chains_needed_per_io; 5961 5962 /* reply free queue sizing - taking into account for 64 FW events */ 5963 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64; 5964 5965 /* mCPU manage single counters for simplicity */ 5966 if (ioc->is_mcpu_endpoint) 5967 ioc->reply_post_queue_depth = ioc->reply_free_queue_depth; 5968 else { 5969 /* calculate reply descriptor post queue depth */ 5970 ioc->reply_post_queue_depth = ioc->hba_queue_depth + 5971 ioc->reply_free_queue_depth + 1; 5972 /* align the reply post queue on the next 16 count boundary */ 5973 if (ioc->reply_post_queue_depth % 16) 5974 ioc->reply_post_queue_depth += 16 - 5975 (ioc->reply_post_queue_depth % 16); 5976 } 5977 5978 if (ioc->reply_post_queue_depth > 5979 facts->MaxReplyDescriptorPostQueueDepth) { 5980 ioc->reply_post_queue_depth = 5981 facts->MaxReplyDescriptorPostQueueDepth - 5982 (facts->MaxReplyDescriptorPostQueueDepth % 16); 5983 ioc->hba_queue_depth = 5984 ((ioc->reply_post_queue_depth - 64) / 2) - 1; 5985 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64; 5986 } 5987 5988 ioc_info(ioc, 5989 "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), " 5990 "sge_per_io(%d), chains_per_io(%d)\n", 5991 ioc->max_sges_in_main_message, 5992 ioc->max_sges_in_chain_message, 5993 ioc->shost->sg_tablesize, 5994 ioc->chains_needed_per_io); 5995 5996 /* reply post queue, 16 byte align */ 5997 reply_post_free_sz = ioc->reply_post_queue_depth * 5998 sizeof(Mpi2DefaultReplyDescriptor_t); 5999 rdpq_sz = reply_post_free_sz * RDPQ_MAX_INDEX_IN_ONE_CHUNK; 6000 if ((_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable) 6001 || (ioc->reply_queue_count < RDPQ_MAX_INDEX_IN_ONE_CHUNK)) 6002 rdpq_sz = reply_post_free_sz * ioc->reply_queue_count; 6003 ret = base_alloc_rdpq_dma_pool(ioc, rdpq_sz); 6004 if (ret == -EAGAIN) { 6005 /* 6006 * Free allocated bad RDPQ memory pools. 6007 * Change dma coherent mask to 32 bit and reallocate RDPQ 6008 */ 6009 _base_release_memory_pools(ioc); 6010 ioc->use_32bit_dma = true; 6011 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) { 6012 ioc_err(ioc, 6013 "32 DMA mask failed %s\n", pci_name(ioc->pdev)); 6014 return -ENODEV; 6015 } 6016 if (base_alloc_rdpq_dma_pool(ioc, rdpq_sz)) 6017 return -ENOMEM; 6018 } else if (ret == -ENOMEM) 6019 return -ENOMEM; 6020 total_sz = rdpq_sz * (!ioc->rdpq_array_enable ? 1 : 6021 DIV_ROUND_UP(ioc->reply_queue_count, RDPQ_MAX_INDEX_IN_ONE_CHUNK)); 6022 ioc->scsiio_depth = ioc->hba_queue_depth - 6023 ioc->hi_priority_depth - ioc->internal_depth; 6024 6025 /* set the scsi host can_queue depth 6026 * with some internal commands that could be outstanding 6027 */ 6028 ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT; 6029 dinitprintk(ioc, 6030 ioc_info(ioc, "scsi host: can_queue depth (%d)\n", 6031 ioc->shost->can_queue)); 6032 6033 /* contiguous pool for request and chains, 16 byte align, one extra " 6034 * "frame for smid=0 6035 */ 6036 ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth; 6037 sz = ((ioc->scsiio_depth + 1) * ioc->request_sz); 6038 6039 /* hi-priority queue */ 6040 sz += (ioc->hi_priority_depth * ioc->request_sz); 6041 6042 /* internal queue */ 6043 sz += (ioc->internal_depth * ioc->request_sz); 6044 6045 ioc->request_dma_sz = sz; 6046 ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz, 6047 &ioc->request_dma, GFP_KERNEL); 6048 if (!ioc->request) { 6049 ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n", 6050 ioc->hba_queue_depth, ioc->chains_needed_per_io, 6051 ioc->request_sz, sz / 1024); 6052 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH) 6053 goto out; 6054 retry_sz = 64; 6055 ioc->hba_queue_depth -= retry_sz; 6056 _base_release_memory_pools(ioc); 6057 goto retry_allocation; 6058 } 6059 6060 if (retry_sz) 6061 ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n", 6062 ioc->hba_queue_depth, ioc->chains_needed_per_io, 6063 ioc->request_sz, sz / 1024); 6064 6065 /* hi-priority queue */ 6066 ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) * 6067 ioc->request_sz); 6068 ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) * 6069 ioc->request_sz); 6070 6071 /* internal queue */ 6072 ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth * 6073 ioc->request_sz); 6074 ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth * 6075 ioc->request_sz); 6076 6077 ioc_info(ioc, 6078 "request pool(0x%p) - dma(0x%llx): " 6079 "depth(%d), frame_size(%d), pool_size(%d kB)\n", 6080 ioc->request, (unsigned long long) ioc->request_dma, 6081 ioc->hba_queue_depth, ioc->request_sz, 6082 (ioc->hba_queue_depth * ioc->request_sz) / 1024); 6083 6084 total_sz += sz; 6085 6086 dinitprintk(ioc, 6087 ioc_info(ioc, "scsiio(0x%p): depth(%d)\n", 6088 ioc->request, ioc->scsiio_depth)); 6089 6090 ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH); 6091 sz = ioc->scsiio_depth * sizeof(struct chain_lookup); 6092 ioc->chain_lookup = kzalloc(sz, GFP_KERNEL); 6093 if (!ioc->chain_lookup) { 6094 ioc_err(ioc, "chain_lookup: __get_free_pages failed\n"); 6095 goto out; 6096 } 6097 6098 sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker); 6099 for (i = 0; i < ioc->scsiio_depth; i++) { 6100 ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL); 6101 if (!ioc->chain_lookup[i].chains_per_smid) { 6102 ioc_err(ioc, "chain_lookup: kzalloc failed\n"); 6103 goto out; 6104 } 6105 } 6106 6107 /* initialize hi-priority queue smid's */ 6108 ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth, 6109 sizeof(struct request_tracker), GFP_KERNEL); 6110 if (!ioc->hpr_lookup) { 6111 ioc_err(ioc, "hpr_lookup: kcalloc failed\n"); 6112 goto out; 6113 } 6114 ioc->hi_priority_smid = ioc->scsiio_depth + 1; 6115 dinitprintk(ioc, 6116 ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n", 6117 ioc->hi_priority, 6118 ioc->hi_priority_depth, ioc->hi_priority_smid)); 6119 6120 /* initialize internal queue smid's */ 6121 ioc->internal_lookup = kcalloc(ioc->internal_depth, 6122 sizeof(struct request_tracker), GFP_KERNEL); 6123 if (!ioc->internal_lookup) { 6124 ioc_err(ioc, "internal_lookup: kcalloc failed\n"); 6125 goto out; 6126 } 6127 ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth; 6128 dinitprintk(ioc, 6129 ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n", 6130 ioc->internal, 6131 ioc->internal_depth, ioc->internal_smid)); 6132 6133 ioc->io_queue_num = kcalloc(ioc->scsiio_depth, 6134 sizeof(u16), GFP_KERNEL); 6135 if (!ioc->io_queue_num) 6136 goto out; 6137 /* 6138 * The number of NVMe page sized blocks needed is: 6139 * (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1 6140 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry 6141 * that is placed in the main message frame. 8 is the size of each PRP 6142 * entry or PRP list pointer entry. 8 is subtracted from page_size 6143 * because of the PRP list pointer entry at the end of a page, so this 6144 * is not counted as a PRP entry. The 1 added page is a round up. 6145 * 6146 * To avoid allocation failures due to the amount of memory that could 6147 * be required for NVMe PRP's, only each set of NVMe blocks will be 6148 * contiguous, so a new set is allocated for each possible I/O. 6149 */ 6150 6151 ioc->chains_per_prp_buffer = 0; 6152 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) { 6153 nvme_blocks_needed = 6154 (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1; 6155 nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE); 6156 nvme_blocks_needed++; 6157 6158 sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth; 6159 ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL); 6160 if (!ioc->pcie_sg_lookup) { 6161 ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n"); 6162 goto out; 6163 } 6164 sz = nvme_blocks_needed * ioc->page_size; 6165 rc = _base_allocate_pcie_sgl_pool(ioc, sz); 6166 if (rc == -ENOMEM) 6167 return -ENOMEM; 6168 else if (rc == -EAGAIN) 6169 goto try_32bit_dma; 6170 total_sz += sz * ioc->scsiio_depth; 6171 } 6172 6173 rc = _base_allocate_chain_dma_pool(ioc, ioc->chain_segment_sz); 6174 if (rc == -ENOMEM) 6175 return -ENOMEM; 6176 else if (rc == -EAGAIN) 6177 goto try_32bit_dma; 6178 total_sz += ioc->chain_segment_sz * ((ioc->chains_needed_per_io - 6179 ioc->chains_per_prp_buffer) * ioc->scsiio_depth); 6180 dinitprintk(ioc, 6181 ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n", 6182 ioc->chain_depth, ioc->chain_segment_sz, 6183 (ioc->chain_depth * ioc->chain_segment_sz) / 1024)); 6184 /* sense buffers, 4 byte align */ 6185 sense_sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE; 6186 rc = _base_allocate_sense_dma_pool(ioc, sense_sz); 6187 if (rc == -ENOMEM) 6188 return -ENOMEM; 6189 else if (rc == -EAGAIN) 6190 goto try_32bit_dma; 6191 total_sz += sense_sz; 6192 ioc_info(ioc, 6193 "sense pool(0x%p)- dma(0x%llx): depth(%d)," 6194 "element_size(%d), pool_size(%d kB)\n", 6195 ioc->sense, (unsigned long long)ioc->sense_dma, ioc->scsiio_depth, 6196 SCSI_SENSE_BUFFERSIZE, sz / 1024); 6197 /* reply pool, 4 byte align */ 6198 sz = ioc->reply_free_queue_depth * ioc->reply_sz; 6199 rc = _base_allocate_reply_pool(ioc, sz); 6200 if (rc == -ENOMEM) 6201 return -ENOMEM; 6202 else if (rc == -EAGAIN) 6203 goto try_32bit_dma; 6204 total_sz += sz; 6205 6206 /* reply free queue, 16 byte align */ 6207 sz = ioc->reply_free_queue_depth * 4; 6208 rc = _base_allocate_reply_free_dma_pool(ioc, sz); 6209 if (rc == -ENOMEM) 6210 return -ENOMEM; 6211 else if (rc == -EAGAIN) 6212 goto try_32bit_dma; 6213 dinitprintk(ioc, 6214 ioc_info(ioc, "reply_free_dma (0x%llx)\n", 6215 (unsigned long long)ioc->reply_free_dma)); 6216 total_sz += sz; 6217 if (ioc->rdpq_array_enable) { 6218 reply_post_free_array_sz = ioc->reply_queue_count * 6219 sizeof(Mpi2IOCInitRDPQArrayEntry); 6220 rc = _base_allocate_reply_post_free_array(ioc, 6221 reply_post_free_array_sz); 6222 if (rc == -ENOMEM) 6223 return -ENOMEM; 6224 else if (rc == -EAGAIN) 6225 goto try_32bit_dma; 6226 } 6227 ioc->config_page_sz = 512; 6228 ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev, 6229 ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL); 6230 if (!ioc->config_page) { 6231 ioc_err(ioc, "config page: dma_pool_alloc failed\n"); 6232 goto out; 6233 } 6234 6235 ioc_info(ioc, "config page(0x%p) - dma(0x%llx): size(%d)\n", 6236 ioc->config_page, (unsigned long long)ioc->config_page_dma, 6237 ioc->config_page_sz); 6238 total_sz += ioc->config_page_sz; 6239 6240 ioc_info(ioc, "Allocated physical memory: size(%d kB)\n", 6241 total_sz / 1024); 6242 ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n", 6243 ioc->shost->can_queue, facts->RequestCredit); 6244 ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n", 6245 ioc->shost->sg_tablesize); 6246 return 0; 6247 6248 try_32bit_dma: 6249 _base_release_memory_pools(ioc); 6250 if (ioc->use_32bit_dma && (ioc->dma_mask > 32)) { 6251 /* Change dma coherent mask to 32 bit and reallocate */ 6252 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) { 6253 pr_err("Setting 32 bit coherent DMA mask Failed %s\n", 6254 pci_name(ioc->pdev)); 6255 return -ENODEV; 6256 } 6257 } else if (_base_reduce_hba_queue_depth(ioc) != 0) 6258 return -ENOMEM; 6259 goto retry_allocation; 6260 6261 out: 6262 return -ENOMEM; 6263 } 6264 6265 /** 6266 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter. 6267 * @ioc: Pointer to MPT_ADAPTER structure 6268 * @cooked: Request raw or cooked IOC state 6269 * 6270 * Return: all IOC Doorbell register bits if cooked==0, else just the 6271 * Doorbell bits in MPI_IOC_STATE_MASK. 6272 */ 6273 u32 6274 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked) 6275 { 6276 u32 s, sc; 6277 6278 s = ioc->base_readl(&ioc->chip->Doorbell); 6279 sc = s & MPI2_IOC_STATE_MASK; 6280 return cooked ? sc : s; 6281 } 6282 6283 /** 6284 * _base_wait_on_iocstate - waiting on a particular ioc state 6285 * @ioc: ? 6286 * @ioc_state: controller state { READY, OPERATIONAL, or RESET } 6287 * @timeout: timeout in second 6288 * 6289 * Return: 0 for success, non-zero for failure. 6290 */ 6291 static int 6292 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout) 6293 { 6294 u32 count, cntdn; 6295 u32 current_state; 6296 6297 count = 0; 6298 cntdn = 1000 * timeout; 6299 do { 6300 current_state = mpt3sas_base_get_iocstate(ioc, 1); 6301 if (current_state == ioc_state) 6302 return 0; 6303 if (count && current_state == MPI2_IOC_STATE_FAULT) 6304 break; 6305 if (count && current_state == MPI2_IOC_STATE_COREDUMP) 6306 break; 6307 6308 usleep_range(1000, 1500); 6309 count++; 6310 } while (--cntdn); 6311 6312 return current_state; 6313 } 6314 6315 /** 6316 * _base_dump_reg_set - This function will print hexdump of register set. 6317 * @ioc: per adapter object 6318 * 6319 * Return: nothing. 6320 */ 6321 static inline void 6322 _base_dump_reg_set(struct MPT3SAS_ADAPTER *ioc) 6323 { 6324 unsigned int i, sz = 256; 6325 u32 __iomem *reg = (u32 __iomem *)ioc->chip; 6326 6327 ioc_info(ioc, "System Register set:\n"); 6328 for (i = 0; i < (sz / sizeof(u32)); i++) 6329 pr_info("%08x: %08x\n", (i * 4), readl(®[i])); 6330 } 6331 6332 /** 6333 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by 6334 * a write to the doorbell) 6335 * @ioc: per adapter object 6336 * @timeout: timeout in seconds 6337 * 6338 * Return: 0 for success, non-zero for failure. 6339 * 6340 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell. 6341 */ 6342 6343 static int 6344 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout) 6345 { 6346 u32 cntdn, count; 6347 u32 int_status; 6348 6349 count = 0; 6350 cntdn = 1000 * timeout; 6351 do { 6352 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 6353 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 6354 dhsprintk(ioc, 6355 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 6356 __func__, count, timeout)); 6357 return 0; 6358 } 6359 6360 usleep_range(1000, 1500); 6361 count++; 6362 } while (--cntdn); 6363 6364 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 6365 __func__, count, int_status); 6366 return -EFAULT; 6367 } 6368 6369 static int 6370 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout) 6371 { 6372 u32 cntdn, count; 6373 u32 int_status; 6374 6375 count = 0; 6376 cntdn = 2000 * timeout; 6377 do { 6378 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 6379 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 6380 dhsprintk(ioc, 6381 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 6382 __func__, count, timeout)); 6383 return 0; 6384 } 6385 6386 udelay(500); 6387 count++; 6388 } while (--cntdn); 6389 6390 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 6391 __func__, count, int_status); 6392 return -EFAULT; 6393 6394 } 6395 6396 /** 6397 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell. 6398 * @ioc: per adapter object 6399 * @timeout: timeout in second 6400 * 6401 * Return: 0 for success, non-zero for failure. 6402 * 6403 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to 6404 * doorbell. 6405 */ 6406 static int 6407 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout) 6408 { 6409 u32 cntdn, count; 6410 u32 int_status; 6411 u32 doorbell; 6412 6413 count = 0; 6414 cntdn = 1000 * timeout; 6415 do { 6416 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 6417 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) { 6418 dhsprintk(ioc, 6419 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 6420 __func__, count, timeout)); 6421 return 0; 6422 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 6423 doorbell = ioc->base_readl(&ioc->chip->Doorbell); 6424 if ((doorbell & MPI2_IOC_STATE_MASK) == 6425 MPI2_IOC_STATE_FAULT) { 6426 mpt3sas_print_fault_code(ioc, doorbell); 6427 return -EFAULT; 6428 } 6429 if ((doorbell & MPI2_IOC_STATE_MASK) == 6430 MPI2_IOC_STATE_COREDUMP) { 6431 mpt3sas_print_coredump_info(ioc, doorbell); 6432 return -EFAULT; 6433 } 6434 } else if (int_status == 0xFFFFFFFF) 6435 goto out; 6436 6437 usleep_range(1000, 1500); 6438 count++; 6439 } while (--cntdn); 6440 6441 out: 6442 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 6443 __func__, count, int_status); 6444 return -EFAULT; 6445 } 6446 6447 /** 6448 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use 6449 * @ioc: per adapter object 6450 * @timeout: timeout in second 6451 * 6452 * Return: 0 for success, non-zero for failure. 6453 */ 6454 static int 6455 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout) 6456 { 6457 u32 cntdn, count; 6458 u32 doorbell_reg; 6459 6460 count = 0; 6461 cntdn = 1000 * timeout; 6462 do { 6463 doorbell_reg = ioc->base_readl(&ioc->chip->Doorbell); 6464 if (!(doorbell_reg & MPI2_DOORBELL_USED)) { 6465 dhsprintk(ioc, 6466 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 6467 __func__, count, timeout)); 6468 return 0; 6469 } 6470 6471 usleep_range(1000, 1500); 6472 count++; 6473 } while (--cntdn); 6474 6475 ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n", 6476 __func__, count, doorbell_reg); 6477 return -EFAULT; 6478 } 6479 6480 /** 6481 * _base_send_ioc_reset - send doorbell reset 6482 * @ioc: per adapter object 6483 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET 6484 * @timeout: timeout in second 6485 * 6486 * Return: 0 for success, non-zero for failure. 6487 */ 6488 static int 6489 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout) 6490 { 6491 u32 ioc_state; 6492 int r = 0; 6493 unsigned long flags; 6494 6495 if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) { 6496 ioc_err(ioc, "%s: unknown reset_type\n", __func__); 6497 return -EFAULT; 6498 } 6499 6500 if (!(ioc->facts.IOCCapabilities & 6501 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY)) 6502 return -EFAULT; 6503 6504 ioc_info(ioc, "sending message unit reset !!\n"); 6505 6506 writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT, 6507 &ioc->chip->Doorbell); 6508 if ((_base_wait_for_doorbell_ack(ioc, 15))) { 6509 r = -EFAULT; 6510 goto out; 6511 } 6512 6513 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout); 6514 if (ioc_state) { 6515 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 6516 __func__, ioc_state); 6517 r = -EFAULT; 6518 goto out; 6519 } 6520 out: 6521 if (r != 0) { 6522 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 6523 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 6524 /* 6525 * Wait for IOC state CoreDump to clear only during 6526 * HBA initialization & release time. 6527 */ 6528 if ((ioc_state & MPI2_IOC_STATE_MASK) == 6529 MPI2_IOC_STATE_COREDUMP && (ioc->is_driver_loading == 1 || 6530 ioc->fault_reset_work_q == NULL)) { 6531 spin_unlock_irqrestore( 6532 &ioc->ioc_reset_in_progress_lock, flags); 6533 mpt3sas_print_coredump_info(ioc, ioc_state); 6534 mpt3sas_base_wait_for_coredump_completion(ioc, 6535 __func__); 6536 spin_lock_irqsave( 6537 &ioc->ioc_reset_in_progress_lock, flags); 6538 } 6539 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 6540 } 6541 ioc_info(ioc, "message unit reset: %s\n", 6542 r == 0 ? "SUCCESS" : "FAILED"); 6543 return r; 6544 } 6545 6546 /** 6547 * mpt3sas_wait_for_ioc - IOC's operational state is checked here. 6548 * @ioc: per adapter object 6549 * @timeout: timeout in seconds 6550 * 6551 * Return: Waits up to timeout seconds for the IOC to 6552 * become operational. Returns 0 if IOC is present 6553 * and operational; otherwise returns %-EFAULT. 6554 */ 6555 6556 int 6557 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout) 6558 { 6559 int wait_state_count = 0; 6560 u32 ioc_state; 6561 6562 do { 6563 ioc_state = mpt3sas_base_get_iocstate(ioc, 1); 6564 if (ioc_state == MPI2_IOC_STATE_OPERATIONAL) 6565 break; 6566 6567 /* 6568 * Watchdog thread will be started after IOC Initialization, so 6569 * no need to wait here for IOC state to become operational 6570 * when IOC Initialization is on. Instead the driver will 6571 * return ETIME status, so that calling function can issue 6572 * diag reset operation and retry the command. 6573 */ 6574 if (ioc->is_driver_loading) 6575 return -ETIME; 6576 6577 ssleep(1); 6578 ioc_info(ioc, "%s: waiting for operational state(count=%d)\n", 6579 __func__, ++wait_state_count); 6580 } while (--timeout); 6581 if (!timeout) { 6582 ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__); 6583 return -EFAULT; 6584 } 6585 if (wait_state_count) 6586 ioc_info(ioc, "ioc is operational\n"); 6587 return 0; 6588 } 6589 6590 /** 6591 * _base_handshake_req_reply_wait - send request thru doorbell interface 6592 * @ioc: per adapter object 6593 * @request_bytes: request length 6594 * @request: pointer having request payload 6595 * @reply_bytes: reply length 6596 * @reply: pointer to reply payload 6597 * @timeout: timeout in second 6598 * 6599 * Return: 0 for success, non-zero for failure. 6600 */ 6601 static int 6602 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes, 6603 u32 *request, int reply_bytes, u16 *reply, int timeout) 6604 { 6605 MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply; 6606 int i; 6607 u8 failed; 6608 __le32 *mfp; 6609 6610 /* make sure doorbell is not in use */ 6611 if ((ioc->base_readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) { 6612 ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__); 6613 return -EFAULT; 6614 } 6615 6616 /* clear pending doorbell interrupts from previous state changes */ 6617 if (ioc->base_readl(&ioc->chip->HostInterruptStatus) & 6618 MPI2_HIS_IOC2SYS_DB_STATUS) 6619 writel(0, &ioc->chip->HostInterruptStatus); 6620 6621 /* send message to ioc */ 6622 writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) | 6623 ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)), 6624 &ioc->chip->Doorbell); 6625 6626 if ((_base_spin_on_doorbell_int(ioc, 5))) { 6627 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 6628 __LINE__); 6629 return -EFAULT; 6630 } 6631 writel(0, &ioc->chip->HostInterruptStatus); 6632 6633 if ((_base_wait_for_doorbell_ack(ioc, 5))) { 6634 ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n", 6635 __LINE__); 6636 return -EFAULT; 6637 } 6638 6639 /* send message 32-bits at a time */ 6640 for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) { 6641 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell); 6642 if ((_base_wait_for_doorbell_ack(ioc, 5))) 6643 failed = 1; 6644 } 6645 6646 if (failed) { 6647 ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n", 6648 __LINE__); 6649 return -EFAULT; 6650 } 6651 6652 /* now wait for the reply */ 6653 if ((_base_wait_for_doorbell_int(ioc, timeout))) { 6654 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 6655 __LINE__); 6656 return -EFAULT; 6657 } 6658 6659 /* read the first two 16-bits, it gives the total length of the reply */ 6660 reply[0] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell) 6661 & MPI2_DOORBELL_DATA_MASK); 6662 writel(0, &ioc->chip->HostInterruptStatus); 6663 if ((_base_wait_for_doorbell_int(ioc, 5))) { 6664 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 6665 __LINE__); 6666 return -EFAULT; 6667 } 6668 reply[1] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell) 6669 & MPI2_DOORBELL_DATA_MASK); 6670 writel(0, &ioc->chip->HostInterruptStatus); 6671 6672 for (i = 2; i < default_reply->MsgLength * 2; i++) { 6673 if ((_base_wait_for_doorbell_int(ioc, 5))) { 6674 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 6675 __LINE__); 6676 return -EFAULT; 6677 } 6678 if (i >= reply_bytes/2) /* overflow case */ 6679 ioc->base_readl(&ioc->chip->Doorbell); 6680 else 6681 reply[i] = le16_to_cpu( 6682 ioc->base_readl(&ioc->chip->Doorbell) 6683 & MPI2_DOORBELL_DATA_MASK); 6684 writel(0, &ioc->chip->HostInterruptStatus); 6685 } 6686 6687 _base_wait_for_doorbell_int(ioc, 5); 6688 if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) { 6689 dhsprintk(ioc, 6690 ioc_info(ioc, "doorbell is in use (line=%d)\n", 6691 __LINE__)); 6692 } 6693 writel(0, &ioc->chip->HostInterruptStatus); 6694 6695 if (ioc->logging_level & MPT_DEBUG_INIT) { 6696 mfp = (__le32 *)reply; 6697 pr_info("\toffset:data\n"); 6698 for (i = 0; i < reply_bytes/4; i++) 6699 ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4, 6700 le32_to_cpu(mfp[i])); 6701 } 6702 return 0; 6703 } 6704 6705 /** 6706 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW 6707 * @ioc: per adapter object 6708 * @mpi_reply: the reply payload from FW 6709 * @mpi_request: the request payload sent to FW 6710 * 6711 * The SAS IO Unit Control Request message allows the host to perform low-level 6712 * operations, such as resets on the PHYs of the IO Unit, also allows the host 6713 * to obtain the IOC assigned device handles for a device if it has other 6714 * identifying information about the device, in addition allows the host to 6715 * remove IOC resources associated with the device. 6716 * 6717 * Return: 0 for success, non-zero for failure. 6718 */ 6719 int 6720 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc, 6721 Mpi2SasIoUnitControlReply_t *mpi_reply, 6722 Mpi2SasIoUnitControlRequest_t *mpi_request) 6723 { 6724 u16 smid; 6725 u8 issue_reset = 0; 6726 int rc; 6727 void *request; 6728 6729 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6730 6731 mutex_lock(&ioc->base_cmds.mutex); 6732 6733 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) { 6734 ioc_err(ioc, "%s: base_cmd in use\n", __func__); 6735 rc = -EAGAIN; 6736 goto out; 6737 } 6738 6739 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT); 6740 if (rc) 6741 goto out; 6742 6743 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 6744 if (!smid) { 6745 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 6746 rc = -EAGAIN; 6747 goto out; 6748 } 6749 6750 rc = 0; 6751 ioc->base_cmds.status = MPT3_CMD_PENDING; 6752 request = mpt3sas_base_get_msg_frame(ioc, smid); 6753 ioc->base_cmds.smid = smid; 6754 memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)); 6755 if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET || 6756 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) 6757 ioc->ioc_link_reset_in_progress = 1; 6758 init_completion(&ioc->base_cmds.done); 6759 ioc->put_smid_default(ioc, smid); 6760 wait_for_completion_timeout(&ioc->base_cmds.done, 6761 msecs_to_jiffies(10000)); 6762 if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET || 6763 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) && 6764 ioc->ioc_link_reset_in_progress) 6765 ioc->ioc_link_reset_in_progress = 0; 6766 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 6767 mpt3sas_check_cmd_timeout(ioc, ioc->base_cmds.status, 6768 mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)/4, 6769 issue_reset); 6770 goto issue_host_reset; 6771 } 6772 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) 6773 memcpy(mpi_reply, ioc->base_cmds.reply, 6774 sizeof(Mpi2SasIoUnitControlReply_t)); 6775 else 6776 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t)); 6777 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 6778 goto out; 6779 6780 issue_host_reset: 6781 if (issue_reset) 6782 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 6783 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 6784 rc = -EFAULT; 6785 out: 6786 mutex_unlock(&ioc->base_cmds.mutex); 6787 return rc; 6788 } 6789 6790 /** 6791 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device 6792 * @ioc: per adapter object 6793 * @mpi_reply: the reply payload from FW 6794 * @mpi_request: the request payload sent to FW 6795 * 6796 * The SCSI Enclosure Processor request message causes the IOC to 6797 * communicate with SES devices to control LED status signals. 6798 * 6799 * Return: 0 for success, non-zero for failure. 6800 */ 6801 int 6802 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc, 6803 Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request) 6804 { 6805 u16 smid; 6806 u8 issue_reset = 0; 6807 int rc; 6808 void *request; 6809 6810 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6811 6812 mutex_lock(&ioc->base_cmds.mutex); 6813 6814 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) { 6815 ioc_err(ioc, "%s: base_cmd in use\n", __func__); 6816 rc = -EAGAIN; 6817 goto out; 6818 } 6819 6820 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT); 6821 if (rc) 6822 goto out; 6823 6824 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 6825 if (!smid) { 6826 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 6827 rc = -EAGAIN; 6828 goto out; 6829 } 6830 6831 rc = 0; 6832 ioc->base_cmds.status = MPT3_CMD_PENDING; 6833 request = mpt3sas_base_get_msg_frame(ioc, smid); 6834 ioc->base_cmds.smid = smid; 6835 memset(request, 0, ioc->request_sz); 6836 memcpy(request, mpi_request, sizeof(Mpi2SepReply_t)); 6837 init_completion(&ioc->base_cmds.done); 6838 ioc->put_smid_default(ioc, smid); 6839 wait_for_completion_timeout(&ioc->base_cmds.done, 6840 msecs_to_jiffies(10000)); 6841 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 6842 mpt3sas_check_cmd_timeout(ioc, 6843 ioc->base_cmds.status, mpi_request, 6844 sizeof(Mpi2SepRequest_t)/4, issue_reset); 6845 goto issue_host_reset; 6846 } 6847 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) 6848 memcpy(mpi_reply, ioc->base_cmds.reply, 6849 sizeof(Mpi2SepReply_t)); 6850 else 6851 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t)); 6852 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 6853 goto out; 6854 6855 issue_host_reset: 6856 if (issue_reset) 6857 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 6858 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 6859 rc = -EFAULT; 6860 out: 6861 mutex_unlock(&ioc->base_cmds.mutex); 6862 return rc; 6863 } 6864 6865 /** 6866 * _base_get_port_facts - obtain port facts reply and save in ioc 6867 * @ioc: per adapter object 6868 * @port: ? 6869 * 6870 * Return: 0 for success, non-zero for failure. 6871 */ 6872 static int 6873 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port) 6874 { 6875 Mpi2PortFactsRequest_t mpi_request; 6876 Mpi2PortFactsReply_t mpi_reply; 6877 struct mpt3sas_port_facts *pfacts; 6878 int mpi_reply_sz, mpi_request_sz, r; 6879 6880 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6881 6882 mpi_reply_sz = sizeof(Mpi2PortFactsReply_t); 6883 mpi_request_sz = sizeof(Mpi2PortFactsRequest_t); 6884 memset(&mpi_request, 0, mpi_request_sz); 6885 mpi_request.Function = MPI2_FUNCTION_PORT_FACTS; 6886 mpi_request.PortNumber = port; 6887 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz, 6888 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5); 6889 6890 if (r != 0) { 6891 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 6892 return r; 6893 } 6894 6895 pfacts = &ioc->pfacts[port]; 6896 memset(pfacts, 0, sizeof(struct mpt3sas_port_facts)); 6897 pfacts->PortNumber = mpi_reply.PortNumber; 6898 pfacts->VP_ID = mpi_reply.VP_ID; 6899 pfacts->VF_ID = mpi_reply.VF_ID; 6900 pfacts->MaxPostedCmdBuffers = 6901 le16_to_cpu(mpi_reply.MaxPostedCmdBuffers); 6902 6903 return 0; 6904 } 6905 6906 /** 6907 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL 6908 * @ioc: per adapter object 6909 * @timeout: 6910 * 6911 * Return: 0 for success, non-zero for failure. 6912 */ 6913 static int 6914 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout) 6915 { 6916 u32 ioc_state; 6917 int rc; 6918 6919 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6920 6921 if (ioc->pci_error_recovery) { 6922 dfailprintk(ioc, 6923 ioc_info(ioc, "%s: host in pci error recovery\n", 6924 __func__)); 6925 return -EFAULT; 6926 } 6927 6928 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 6929 dhsprintk(ioc, 6930 ioc_info(ioc, "%s: ioc_state(0x%08x)\n", 6931 __func__, ioc_state)); 6932 6933 if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) || 6934 (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL) 6935 return 0; 6936 6937 if (ioc_state & MPI2_DOORBELL_USED) { 6938 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n")); 6939 goto issue_diag_reset; 6940 } 6941 6942 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 6943 mpt3sas_print_fault_code(ioc, ioc_state & 6944 MPI2_DOORBELL_DATA_MASK); 6945 goto issue_diag_reset; 6946 } else if ((ioc_state & MPI2_IOC_STATE_MASK) == 6947 MPI2_IOC_STATE_COREDUMP) { 6948 ioc_info(ioc, 6949 "%s: Skipping the diag reset here. (ioc_state=0x%x)\n", 6950 __func__, ioc_state); 6951 return -EFAULT; 6952 } 6953 6954 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout); 6955 if (ioc_state) { 6956 dfailprintk(ioc, 6957 ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 6958 __func__, ioc_state)); 6959 return -EFAULT; 6960 } 6961 6962 issue_diag_reset: 6963 rc = _base_diag_reset(ioc); 6964 return rc; 6965 } 6966 6967 /** 6968 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc 6969 * @ioc: per adapter object 6970 * 6971 * Return: 0 for success, non-zero for failure. 6972 */ 6973 static int 6974 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc) 6975 { 6976 Mpi2IOCFactsRequest_t mpi_request; 6977 Mpi2IOCFactsReply_t mpi_reply; 6978 struct mpt3sas_facts *facts; 6979 int mpi_reply_sz, mpi_request_sz, r; 6980 6981 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6982 6983 r = _base_wait_for_iocstate(ioc, 10); 6984 if (r) { 6985 dfailprintk(ioc, 6986 ioc_info(ioc, "%s: failed getting to correct state\n", 6987 __func__)); 6988 return r; 6989 } 6990 mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t); 6991 mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t); 6992 memset(&mpi_request, 0, mpi_request_sz); 6993 mpi_request.Function = MPI2_FUNCTION_IOC_FACTS; 6994 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz, 6995 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5); 6996 6997 if (r != 0) { 6998 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 6999 return r; 7000 } 7001 7002 facts = &ioc->facts; 7003 memset(facts, 0, sizeof(struct mpt3sas_facts)); 7004 facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion); 7005 facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion); 7006 facts->VP_ID = mpi_reply.VP_ID; 7007 facts->VF_ID = mpi_reply.VF_ID; 7008 facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions); 7009 facts->MaxChainDepth = mpi_reply.MaxChainDepth; 7010 facts->WhoInit = mpi_reply.WhoInit; 7011 facts->NumberOfPorts = mpi_reply.NumberOfPorts; 7012 facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors; 7013 if (ioc->msix_enable && (facts->MaxMSIxVectors <= 7014 MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc))) 7015 ioc->combined_reply_queue = 0; 7016 facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit); 7017 facts->MaxReplyDescriptorPostQueueDepth = 7018 le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth); 7019 facts->ProductID = le16_to_cpu(mpi_reply.ProductID); 7020 facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities); 7021 if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)) 7022 ioc->ir_firmware = 1; 7023 if ((facts->IOCCapabilities & 7024 MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices)) 7025 ioc->rdpq_array_capable = 1; 7026 if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ) 7027 && ioc->is_aero_ioc) 7028 ioc->atomic_desc_capable = 1; 7029 facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word); 7030 facts->IOCRequestFrameSize = 7031 le16_to_cpu(mpi_reply.IOCRequestFrameSize); 7032 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 7033 facts->IOCMaxChainSegmentSize = 7034 le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize); 7035 } 7036 facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators); 7037 facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets); 7038 ioc->shost->max_id = -1; 7039 facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders); 7040 facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures); 7041 facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags); 7042 facts->HighPriorityCredit = 7043 le16_to_cpu(mpi_reply.HighPriorityCredit); 7044 facts->ReplyFrameSize = mpi_reply.ReplyFrameSize; 7045 facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle); 7046 facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize; 7047 7048 /* 7049 * Get the Page Size from IOC Facts. If it's 0, default to 4k. 7050 */ 7051 ioc->page_size = 1 << facts->CurrentHostPageSize; 7052 if (ioc->page_size == 1) { 7053 ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n"); 7054 ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K; 7055 } 7056 dinitprintk(ioc, 7057 ioc_info(ioc, "CurrentHostPageSize(%d)\n", 7058 facts->CurrentHostPageSize)); 7059 7060 dinitprintk(ioc, 7061 ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n", 7062 facts->RequestCredit, facts->MaxChainDepth)); 7063 dinitprintk(ioc, 7064 ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n", 7065 facts->IOCRequestFrameSize * 4, 7066 facts->ReplyFrameSize * 4)); 7067 return 0; 7068 } 7069 7070 /** 7071 * _base_send_ioc_init - send ioc_init to firmware 7072 * @ioc: per adapter object 7073 * 7074 * Return: 0 for success, non-zero for failure. 7075 */ 7076 static int 7077 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc) 7078 { 7079 Mpi2IOCInitRequest_t mpi_request; 7080 Mpi2IOCInitReply_t mpi_reply; 7081 int i, r = 0; 7082 ktime_t current_time; 7083 u16 ioc_status; 7084 u32 reply_post_free_array_sz = 0; 7085 7086 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7087 7088 memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t)); 7089 mpi_request.Function = MPI2_FUNCTION_IOC_INIT; 7090 mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER; 7091 mpi_request.VF_ID = 0; /* TODO */ 7092 mpi_request.VP_ID = 0; 7093 mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged); 7094 mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION); 7095 mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K; 7096 7097 if (_base_is_controller_msix_enabled(ioc)) 7098 mpi_request.HostMSIxVectors = ioc->reply_queue_count; 7099 mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4); 7100 mpi_request.ReplyDescriptorPostQueueDepth = 7101 cpu_to_le16(ioc->reply_post_queue_depth); 7102 mpi_request.ReplyFreeQueueDepth = 7103 cpu_to_le16(ioc->reply_free_queue_depth); 7104 7105 mpi_request.SenseBufferAddressHigh = 7106 cpu_to_le32((u64)ioc->sense_dma >> 32); 7107 mpi_request.SystemReplyAddressHigh = 7108 cpu_to_le32((u64)ioc->reply_dma >> 32); 7109 mpi_request.SystemRequestFrameBaseAddress = 7110 cpu_to_le64((u64)ioc->request_dma); 7111 mpi_request.ReplyFreeQueueAddress = 7112 cpu_to_le64((u64)ioc->reply_free_dma); 7113 7114 if (ioc->rdpq_array_enable) { 7115 reply_post_free_array_sz = ioc->reply_queue_count * 7116 sizeof(Mpi2IOCInitRDPQArrayEntry); 7117 memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz); 7118 for (i = 0; i < ioc->reply_queue_count; i++) 7119 ioc->reply_post_free_array[i].RDPQBaseAddress = 7120 cpu_to_le64( 7121 (u64)ioc->reply_post[i].reply_post_free_dma); 7122 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE; 7123 mpi_request.ReplyDescriptorPostQueueAddress = 7124 cpu_to_le64((u64)ioc->reply_post_free_array_dma); 7125 } else { 7126 mpi_request.ReplyDescriptorPostQueueAddress = 7127 cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma); 7128 } 7129 7130 /* 7131 * Set the flag to enable CoreDump state feature in IOC firmware. 7132 */ 7133 mpi_request.ConfigurationFlags |= 7134 cpu_to_le16(MPI26_IOCINIT_CFGFLAGS_COREDUMP_ENABLE); 7135 7136 /* This time stamp specifies number of milliseconds 7137 * since epoch ~ midnight January 1, 1970. 7138 */ 7139 current_time = ktime_get_real(); 7140 mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time)); 7141 7142 if (ioc->logging_level & MPT_DEBUG_INIT) { 7143 __le32 *mfp; 7144 int i; 7145 7146 mfp = (__le32 *)&mpi_request; 7147 ioc_info(ioc, "\toffset:data\n"); 7148 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++) 7149 ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4, 7150 le32_to_cpu(mfp[i])); 7151 } 7152 7153 r = _base_handshake_req_reply_wait(ioc, 7154 sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request, 7155 sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 30); 7156 7157 if (r != 0) { 7158 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 7159 return r; 7160 } 7161 7162 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK; 7163 if (ioc_status != MPI2_IOCSTATUS_SUCCESS || 7164 mpi_reply.IOCLogInfo) { 7165 ioc_err(ioc, "%s: failed\n", __func__); 7166 r = -EIO; 7167 } 7168 7169 /* Reset TimeSync Counter*/ 7170 ioc->timestamp_update_count = 0; 7171 return r; 7172 } 7173 7174 /** 7175 * mpt3sas_port_enable_done - command completion routine for port enable 7176 * @ioc: per adapter object 7177 * @smid: system request message index 7178 * @msix_index: MSIX table index supplied by the OS 7179 * @reply: reply message frame(lower 32bit addr) 7180 * 7181 * Return: 1 meaning mf should be freed from _base_interrupt 7182 * 0 means the mf is freed from this function. 7183 */ 7184 u8 7185 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 7186 u32 reply) 7187 { 7188 MPI2DefaultReply_t *mpi_reply; 7189 u16 ioc_status; 7190 7191 if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED) 7192 return 1; 7193 7194 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 7195 if (!mpi_reply) 7196 return 1; 7197 7198 if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE) 7199 return 1; 7200 7201 ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING; 7202 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE; 7203 ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID; 7204 memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4); 7205 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 7206 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) 7207 ioc->port_enable_failed = 1; 7208 7209 if (ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE_ASYNC) { 7210 ioc->port_enable_cmds.status &= ~MPT3_CMD_COMPLETE_ASYNC; 7211 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 7212 mpt3sas_port_enable_complete(ioc); 7213 return 1; 7214 } else { 7215 ioc->start_scan_failed = ioc_status; 7216 ioc->start_scan = 0; 7217 return 1; 7218 } 7219 } 7220 complete(&ioc->port_enable_cmds.done); 7221 return 1; 7222 } 7223 7224 /** 7225 * _base_send_port_enable - send port_enable(discovery stuff) to firmware 7226 * @ioc: per adapter object 7227 * 7228 * Return: 0 for success, non-zero for failure. 7229 */ 7230 static int 7231 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc) 7232 { 7233 Mpi2PortEnableRequest_t *mpi_request; 7234 Mpi2PortEnableReply_t *mpi_reply; 7235 int r = 0; 7236 u16 smid; 7237 u16 ioc_status; 7238 7239 ioc_info(ioc, "sending port enable !!\n"); 7240 7241 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 7242 ioc_err(ioc, "%s: internal command already in use\n", __func__); 7243 return -EAGAIN; 7244 } 7245 7246 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx); 7247 if (!smid) { 7248 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 7249 return -EAGAIN; 7250 } 7251 7252 ioc->port_enable_cmds.status = MPT3_CMD_PENDING; 7253 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 7254 ioc->port_enable_cmds.smid = smid; 7255 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t)); 7256 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE; 7257 7258 init_completion(&ioc->port_enable_cmds.done); 7259 ioc->put_smid_default(ioc, smid); 7260 wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ); 7261 if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) { 7262 ioc_err(ioc, "%s: timeout\n", __func__); 7263 _debug_dump_mf(mpi_request, 7264 sizeof(Mpi2PortEnableRequest_t)/4); 7265 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET) 7266 r = -EFAULT; 7267 else 7268 r = -ETIME; 7269 goto out; 7270 } 7271 7272 mpi_reply = ioc->port_enable_cmds.reply; 7273 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 7274 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 7275 ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n", 7276 __func__, ioc_status); 7277 r = -EFAULT; 7278 goto out; 7279 } 7280 7281 out: 7282 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED; 7283 ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED"); 7284 return r; 7285 } 7286 7287 /** 7288 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply) 7289 * @ioc: per adapter object 7290 * 7291 * Return: 0 for success, non-zero for failure. 7292 */ 7293 int 7294 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc) 7295 { 7296 Mpi2PortEnableRequest_t *mpi_request; 7297 u16 smid; 7298 7299 ioc_info(ioc, "sending port enable !!\n"); 7300 7301 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 7302 ioc_err(ioc, "%s: internal command already in use\n", __func__); 7303 return -EAGAIN; 7304 } 7305 7306 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx); 7307 if (!smid) { 7308 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 7309 return -EAGAIN; 7310 } 7311 ioc->drv_internal_flags |= MPT_DRV_INTERNAL_FIRST_PE_ISSUED; 7312 ioc->port_enable_cmds.status = MPT3_CMD_PENDING; 7313 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE_ASYNC; 7314 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 7315 ioc->port_enable_cmds.smid = smid; 7316 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t)); 7317 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE; 7318 7319 ioc->put_smid_default(ioc, smid); 7320 return 0; 7321 } 7322 7323 /** 7324 * _base_determine_wait_on_discovery - desposition 7325 * @ioc: per adapter object 7326 * 7327 * Decide whether to wait on discovery to complete. Used to either 7328 * locate boot device, or report volumes ahead of physical devices. 7329 * 7330 * Return: 1 for wait, 0 for don't wait. 7331 */ 7332 static int 7333 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc) 7334 { 7335 /* We wait for discovery to complete if IR firmware is loaded. 7336 * The sas topology events arrive before PD events, so we need time to 7337 * turn on the bit in ioc->pd_handles to indicate PD 7338 * Also, it maybe required to report Volumes ahead of physical 7339 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set. 7340 */ 7341 if (ioc->ir_firmware) 7342 return 1; 7343 7344 /* if no Bios, then we don't need to wait */ 7345 if (!ioc->bios_pg3.BiosVersion) 7346 return 0; 7347 7348 /* Bios is present, then we drop down here. 7349 * 7350 * If there any entries in the Bios Page 2, then we wait 7351 * for discovery to complete. 7352 */ 7353 7354 /* Current Boot Device */ 7355 if ((ioc->bios_pg2.CurrentBootDeviceForm & 7356 MPI2_BIOSPAGE2_FORM_MASK) == 7357 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED && 7358 /* Request Boot Device */ 7359 (ioc->bios_pg2.ReqBootDeviceForm & 7360 MPI2_BIOSPAGE2_FORM_MASK) == 7361 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED && 7362 /* Alternate Request Boot Device */ 7363 (ioc->bios_pg2.ReqAltBootDeviceForm & 7364 MPI2_BIOSPAGE2_FORM_MASK) == 7365 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED) 7366 return 0; 7367 7368 return 1; 7369 } 7370 7371 /** 7372 * _base_unmask_events - turn on notification for this event 7373 * @ioc: per adapter object 7374 * @event: firmware event 7375 * 7376 * The mask is stored in ioc->event_masks. 7377 */ 7378 static void 7379 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event) 7380 { 7381 u32 desired_event; 7382 7383 if (event >= 128) 7384 return; 7385 7386 desired_event = (1 << (event % 32)); 7387 7388 if (event < 32) 7389 ioc->event_masks[0] &= ~desired_event; 7390 else if (event < 64) 7391 ioc->event_masks[1] &= ~desired_event; 7392 else if (event < 96) 7393 ioc->event_masks[2] &= ~desired_event; 7394 else if (event < 128) 7395 ioc->event_masks[3] &= ~desired_event; 7396 } 7397 7398 /** 7399 * _base_event_notification - send event notification 7400 * @ioc: per adapter object 7401 * 7402 * Return: 0 for success, non-zero for failure. 7403 */ 7404 static int 7405 _base_event_notification(struct MPT3SAS_ADAPTER *ioc) 7406 { 7407 Mpi2EventNotificationRequest_t *mpi_request; 7408 u16 smid; 7409 int r = 0; 7410 int i, issue_diag_reset = 0; 7411 7412 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7413 7414 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 7415 ioc_err(ioc, "%s: internal command already in use\n", __func__); 7416 return -EAGAIN; 7417 } 7418 7419 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 7420 if (!smid) { 7421 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 7422 return -EAGAIN; 7423 } 7424 ioc->base_cmds.status = MPT3_CMD_PENDING; 7425 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 7426 ioc->base_cmds.smid = smid; 7427 memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t)); 7428 mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION; 7429 mpi_request->VF_ID = 0; /* TODO */ 7430 mpi_request->VP_ID = 0; 7431 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 7432 mpi_request->EventMasks[i] = 7433 cpu_to_le32(ioc->event_masks[i]); 7434 init_completion(&ioc->base_cmds.done); 7435 ioc->put_smid_default(ioc, smid); 7436 wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ); 7437 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 7438 ioc_err(ioc, "%s: timeout\n", __func__); 7439 _debug_dump_mf(mpi_request, 7440 sizeof(Mpi2EventNotificationRequest_t)/4); 7441 if (ioc->base_cmds.status & MPT3_CMD_RESET) 7442 r = -EFAULT; 7443 else 7444 issue_diag_reset = 1; 7445 7446 } else 7447 dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__)); 7448 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 7449 7450 if (issue_diag_reset) { 7451 if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED) 7452 return -EFAULT; 7453 if (mpt3sas_base_check_for_fault_and_issue_reset(ioc)) 7454 return -EFAULT; 7455 r = -EAGAIN; 7456 } 7457 return r; 7458 } 7459 7460 /** 7461 * mpt3sas_base_validate_event_type - validating event types 7462 * @ioc: per adapter object 7463 * @event_type: firmware event 7464 * 7465 * This will turn on firmware event notification when application 7466 * ask for that event. We don't mask events that are already enabled. 7467 */ 7468 void 7469 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type) 7470 { 7471 int i, j; 7472 u32 event_mask, desired_event; 7473 u8 send_update_to_fw; 7474 7475 for (i = 0, send_update_to_fw = 0; i < 7476 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) { 7477 event_mask = ~event_type[i]; 7478 desired_event = 1; 7479 for (j = 0; j < 32; j++) { 7480 if (!(event_mask & desired_event) && 7481 (ioc->event_masks[i] & desired_event)) { 7482 ioc->event_masks[i] &= ~desired_event; 7483 send_update_to_fw = 1; 7484 } 7485 desired_event = (desired_event << 1); 7486 } 7487 } 7488 7489 if (!send_update_to_fw) 7490 return; 7491 7492 mutex_lock(&ioc->base_cmds.mutex); 7493 _base_event_notification(ioc); 7494 mutex_unlock(&ioc->base_cmds.mutex); 7495 } 7496 7497 /** 7498 * _base_diag_reset - the "big hammer" start of day reset 7499 * @ioc: per adapter object 7500 * 7501 * Return: 0 for success, non-zero for failure. 7502 */ 7503 static int 7504 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc) 7505 { 7506 u32 host_diagnostic; 7507 u32 ioc_state; 7508 u32 count; 7509 u32 hcb_size; 7510 7511 ioc_info(ioc, "sending diag reset !!\n"); 7512 7513 pci_cfg_access_lock(ioc->pdev); 7514 7515 drsprintk(ioc, ioc_info(ioc, "clear interrupts\n")); 7516 7517 count = 0; 7518 do { 7519 /* Write magic sequence to WriteSequence register 7520 * Loop until in diagnostic mode 7521 */ 7522 drsprintk(ioc, ioc_info(ioc, "write magic sequence\n")); 7523 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence); 7524 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence); 7525 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence); 7526 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence); 7527 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence); 7528 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence); 7529 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence); 7530 7531 /* wait 100 msec */ 7532 msleep(100); 7533 7534 if (count++ > 20) { 7535 ioc_info(ioc, 7536 "Stop writing magic sequence after 20 retries\n"); 7537 _base_dump_reg_set(ioc); 7538 goto out; 7539 } 7540 7541 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic); 7542 drsprintk(ioc, 7543 ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n", 7544 count, host_diagnostic)); 7545 7546 } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0); 7547 7548 hcb_size = ioc->base_readl(&ioc->chip->HCBSize); 7549 7550 drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n")); 7551 writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER, 7552 &ioc->chip->HostDiagnostic); 7553 7554 /*This delay allows the chip PCIe hardware time to finish reset tasks*/ 7555 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000); 7556 7557 /* Approximately 300 second max wait */ 7558 for (count = 0; count < (300000000 / 7559 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) { 7560 7561 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic); 7562 7563 if (host_diagnostic == 0xFFFFFFFF) { 7564 ioc_info(ioc, 7565 "Invalid host diagnostic register value\n"); 7566 _base_dump_reg_set(ioc); 7567 goto out; 7568 } 7569 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER)) 7570 break; 7571 7572 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000); 7573 } 7574 7575 if (host_diagnostic & MPI2_DIAG_HCB_MODE) { 7576 7577 drsprintk(ioc, 7578 ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n")); 7579 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK; 7580 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW; 7581 writel(host_diagnostic, &ioc->chip->HostDiagnostic); 7582 7583 drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n")); 7584 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE, 7585 &ioc->chip->HCBSize); 7586 } 7587 7588 drsprintk(ioc, ioc_info(ioc, "restart the adapter\n")); 7589 writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET, 7590 &ioc->chip->HostDiagnostic); 7591 7592 drsprintk(ioc, 7593 ioc_info(ioc, "disable writes to the diagnostic register\n")); 7594 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence); 7595 7596 drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n")); 7597 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20); 7598 if (ioc_state) { 7599 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 7600 __func__, ioc_state); 7601 _base_dump_reg_set(ioc); 7602 goto out; 7603 } 7604 7605 pci_cfg_access_unlock(ioc->pdev); 7606 ioc_info(ioc, "diag reset: SUCCESS\n"); 7607 return 0; 7608 7609 out: 7610 pci_cfg_access_unlock(ioc->pdev); 7611 ioc_err(ioc, "diag reset: FAILED\n"); 7612 return -EFAULT; 7613 } 7614 7615 /** 7616 * mpt3sas_base_make_ioc_ready - put controller in READY state 7617 * @ioc: per adapter object 7618 * @type: FORCE_BIG_HAMMER or SOFT_RESET 7619 * 7620 * Return: 0 for success, non-zero for failure. 7621 */ 7622 int 7623 mpt3sas_base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type) 7624 { 7625 u32 ioc_state; 7626 int rc; 7627 int count; 7628 7629 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7630 7631 if (ioc->pci_error_recovery) 7632 return 0; 7633 7634 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 7635 dhsprintk(ioc, 7636 ioc_info(ioc, "%s: ioc_state(0x%08x)\n", 7637 __func__, ioc_state)); 7638 7639 /* if in RESET state, it should move to READY state shortly */ 7640 count = 0; 7641 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) { 7642 while ((ioc_state & MPI2_IOC_STATE_MASK) != 7643 MPI2_IOC_STATE_READY) { 7644 if (count++ == 10) { 7645 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 7646 __func__, ioc_state); 7647 return -EFAULT; 7648 } 7649 ssleep(1); 7650 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 7651 } 7652 } 7653 7654 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) 7655 return 0; 7656 7657 if (ioc_state & MPI2_DOORBELL_USED) { 7658 ioc_info(ioc, "unexpected doorbell active!\n"); 7659 goto issue_diag_reset; 7660 } 7661 7662 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 7663 mpt3sas_print_fault_code(ioc, ioc_state & 7664 MPI2_DOORBELL_DATA_MASK); 7665 goto issue_diag_reset; 7666 } 7667 7668 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) { 7669 /* 7670 * if host reset is invoked while watch dog thread is waiting 7671 * for IOC state to be changed to Fault state then driver has 7672 * to wait here for CoreDump state to clear otherwise reset 7673 * will be issued to the FW and FW move the IOC state to 7674 * reset state without copying the FW logs to coredump region. 7675 */ 7676 if (ioc->ioc_coredump_loop != MPT3SAS_COREDUMP_LOOP_DONE) { 7677 mpt3sas_print_coredump_info(ioc, ioc_state & 7678 MPI2_DOORBELL_DATA_MASK); 7679 mpt3sas_base_wait_for_coredump_completion(ioc, 7680 __func__); 7681 } 7682 goto issue_diag_reset; 7683 } 7684 7685 if (type == FORCE_BIG_HAMMER) 7686 goto issue_diag_reset; 7687 7688 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL) 7689 if (!(_base_send_ioc_reset(ioc, 7690 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) { 7691 return 0; 7692 } 7693 7694 issue_diag_reset: 7695 rc = _base_diag_reset(ioc); 7696 return rc; 7697 } 7698 7699 /** 7700 * _base_make_ioc_operational - put controller in OPERATIONAL state 7701 * @ioc: per adapter object 7702 * 7703 * Return: 0 for success, non-zero for failure. 7704 */ 7705 static int 7706 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc) 7707 { 7708 int r, i, index, rc; 7709 unsigned long flags; 7710 u32 reply_address; 7711 u16 smid; 7712 struct _tr_list *delayed_tr, *delayed_tr_next; 7713 struct _sc_list *delayed_sc, *delayed_sc_next; 7714 struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next; 7715 u8 hide_flag; 7716 struct adapter_reply_queue *reply_q; 7717 Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig; 7718 7719 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7720 7721 /* clean the delayed target reset list */ 7722 list_for_each_entry_safe(delayed_tr, delayed_tr_next, 7723 &ioc->delayed_tr_list, list) { 7724 list_del(&delayed_tr->list); 7725 kfree(delayed_tr); 7726 } 7727 7728 7729 list_for_each_entry_safe(delayed_tr, delayed_tr_next, 7730 &ioc->delayed_tr_volume_list, list) { 7731 list_del(&delayed_tr->list); 7732 kfree(delayed_tr); 7733 } 7734 7735 list_for_each_entry_safe(delayed_sc, delayed_sc_next, 7736 &ioc->delayed_sc_list, list) { 7737 list_del(&delayed_sc->list); 7738 kfree(delayed_sc); 7739 } 7740 7741 list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next, 7742 &ioc->delayed_event_ack_list, list) { 7743 list_del(&delayed_event_ack->list); 7744 kfree(delayed_event_ack); 7745 } 7746 7747 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 7748 7749 /* hi-priority queue */ 7750 INIT_LIST_HEAD(&ioc->hpr_free_list); 7751 smid = ioc->hi_priority_smid; 7752 for (i = 0; i < ioc->hi_priority_depth; i++, smid++) { 7753 ioc->hpr_lookup[i].cb_idx = 0xFF; 7754 ioc->hpr_lookup[i].smid = smid; 7755 list_add_tail(&ioc->hpr_lookup[i].tracker_list, 7756 &ioc->hpr_free_list); 7757 } 7758 7759 /* internal queue */ 7760 INIT_LIST_HEAD(&ioc->internal_free_list); 7761 smid = ioc->internal_smid; 7762 for (i = 0; i < ioc->internal_depth; i++, smid++) { 7763 ioc->internal_lookup[i].cb_idx = 0xFF; 7764 ioc->internal_lookup[i].smid = smid; 7765 list_add_tail(&ioc->internal_lookup[i].tracker_list, 7766 &ioc->internal_free_list); 7767 } 7768 7769 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 7770 7771 /* initialize Reply Free Queue */ 7772 for (i = 0, reply_address = (u32)ioc->reply_dma ; 7773 i < ioc->reply_free_queue_depth ; i++, reply_address += 7774 ioc->reply_sz) { 7775 ioc->reply_free[i] = cpu_to_le32(reply_address); 7776 if (ioc->is_mcpu_endpoint) 7777 _base_clone_reply_to_sys_mem(ioc, 7778 reply_address, i); 7779 } 7780 7781 /* initialize reply queues */ 7782 if (ioc->is_driver_loading) 7783 _base_assign_reply_queues(ioc); 7784 7785 /* initialize Reply Post Free Queue */ 7786 index = 0; 7787 reply_post_free_contig = ioc->reply_post[0].reply_post_free; 7788 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 7789 /* 7790 * If RDPQ is enabled, switch to the next allocation. 7791 * Otherwise advance within the contiguous region. 7792 */ 7793 if (ioc->rdpq_array_enable) { 7794 reply_q->reply_post_free = 7795 ioc->reply_post[index++].reply_post_free; 7796 } else { 7797 reply_q->reply_post_free = reply_post_free_contig; 7798 reply_post_free_contig += ioc->reply_post_queue_depth; 7799 } 7800 7801 reply_q->reply_post_host_index = 0; 7802 for (i = 0; i < ioc->reply_post_queue_depth; i++) 7803 reply_q->reply_post_free[i].Words = 7804 cpu_to_le64(ULLONG_MAX); 7805 if (!_base_is_controller_msix_enabled(ioc)) 7806 goto skip_init_reply_post_free_queue; 7807 } 7808 skip_init_reply_post_free_queue: 7809 7810 r = _base_send_ioc_init(ioc); 7811 if (r) { 7812 /* 7813 * No need to check IOC state for fault state & issue 7814 * diag reset during host reset. This check is need 7815 * only during driver load time. 7816 */ 7817 if (!ioc->is_driver_loading) 7818 return r; 7819 7820 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc); 7821 if (rc || (_base_send_ioc_init(ioc))) 7822 return r; 7823 } 7824 7825 /* initialize reply free host index */ 7826 ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1; 7827 writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex); 7828 7829 /* initialize reply post host index */ 7830 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 7831 if (ioc->combined_reply_queue) 7832 writel((reply_q->msix_index & 7)<< 7833 MPI2_RPHI_MSIX_INDEX_SHIFT, 7834 ioc->replyPostRegisterIndex[reply_q->msix_index/8]); 7835 else 7836 writel(reply_q->msix_index << 7837 MPI2_RPHI_MSIX_INDEX_SHIFT, 7838 &ioc->chip->ReplyPostHostIndex); 7839 7840 if (!_base_is_controller_msix_enabled(ioc)) 7841 goto skip_init_reply_post_host_index; 7842 } 7843 7844 skip_init_reply_post_host_index: 7845 7846 mpt3sas_base_unmask_interrupts(ioc); 7847 7848 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 7849 r = _base_display_fwpkg_version(ioc); 7850 if (r) 7851 return r; 7852 } 7853 7854 rc = _base_static_config_pages(ioc); 7855 if (r) 7856 return r; 7857 7858 r = _base_event_notification(ioc); 7859 if (r) 7860 return r; 7861 7862 if (!ioc->shost_recovery) { 7863 7864 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier 7865 == 0x80) { 7866 hide_flag = (u8) ( 7867 le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) & 7868 MFG_PAGE10_HIDE_SSDS_MASK); 7869 if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK) 7870 ioc->mfg_pg10_hide_flag = hide_flag; 7871 } 7872 7873 ioc->wait_for_discovery_to_complete = 7874 _base_determine_wait_on_discovery(ioc); 7875 7876 return r; /* scan_start and scan_finished support */ 7877 } 7878 7879 r = _base_send_port_enable(ioc); 7880 if (r) 7881 return r; 7882 7883 return r; 7884 } 7885 7886 /** 7887 * mpt3sas_base_free_resources - free resources controller resources 7888 * @ioc: per adapter object 7889 */ 7890 void 7891 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc) 7892 { 7893 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7894 7895 /* synchronizing freeing resource with pci_access_mutex lock */ 7896 mutex_lock(&ioc->pci_access_mutex); 7897 if (ioc->chip_phys && ioc->chip) { 7898 mpt3sas_base_mask_interrupts(ioc); 7899 ioc->shost_recovery = 1; 7900 mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET); 7901 ioc->shost_recovery = 0; 7902 } 7903 7904 mpt3sas_base_unmap_resources(ioc); 7905 mutex_unlock(&ioc->pci_access_mutex); 7906 return; 7907 } 7908 7909 /** 7910 * mpt3sas_base_attach - attach controller instance 7911 * @ioc: per adapter object 7912 * 7913 * Return: 0 for success, non-zero for failure. 7914 */ 7915 int 7916 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc) 7917 { 7918 int r, i, rc; 7919 int cpu_id, last_cpu_id = 0; 7920 7921 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7922 7923 /* setup cpu_msix_table */ 7924 ioc->cpu_count = num_online_cpus(); 7925 for_each_online_cpu(cpu_id) 7926 last_cpu_id = cpu_id; 7927 ioc->cpu_msix_table_sz = last_cpu_id + 1; 7928 ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL); 7929 ioc->reply_queue_count = 1; 7930 if (!ioc->cpu_msix_table) { 7931 ioc_info(ioc, "Allocation for cpu_msix_table failed!!!\n"); 7932 r = -ENOMEM; 7933 goto out_free_resources; 7934 } 7935 7936 if (ioc->is_warpdrive) { 7937 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz, 7938 sizeof(resource_size_t *), GFP_KERNEL); 7939 if (!ioc->reply_post_host_index) { 7940 ioc_info(ioc, "Allocation for reply_post_host_index failed!!!\n"); 7941 r = -ENOMEM; 7942 goto out_free_resources; 7943 } 7944 } 7945 7946 ioc->smp_affinity_enable = smp_affinity_enable; 7947 7948 ioc->rdpq_array_enable_assigned = 0; 7949 ioc->use_32bit_dma = false; 7950 ioc->dma_mask = 64; 7951 if (ioc->is_aero_ioc) 7952 ioc->base_readl = &_base_readl_aero; 7953 else 7954 ioc->base_readl = &_base_readl; 7955 r = mpt3sas_base_map_resources(ioc); 7956 if (r) 7957 goto out_free_resources; 7958 7959 pci_set_drvdata(ioc->pdev, ioc->shost); 7960 r = _base_get_ioc_facts(ioc); 7961 if (r) { 7962 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc); 7963 if (rc || (_base_get_ioc_facts(ioc))) 7964 goto out_free_resources; 7965 } 7966 7967 switch (ioc->hba_mpi_version_belonged) { 7968 case MPI2_VERSION: 7969 ioc->build_sg_scmd = &_base_build_sg_scmd; 7970 ioc->build_sg = &_base_build_sg; 7971 ioc->build_zero_len_sge = &_base_build_zero_len_sge; 7972 ioc->get_msix_index_for_smlio = &_base_get_msix_index; 7973 break; 7974 case MPI25_VERSION: 7975 case MPI26_VERSION: 7976 /* 7977 * In SAS3.0, 7978 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and 7979 * Target Status - all require the IEEE formatted scatter gather 7980 * elements. 7981 */ 7982 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee; 7983 ioc->build_sg = &_base_build_sg_ieee; 7984 ioc->build_nvme_prp = &_base_build_nvme_prp; 7985 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee; 7986 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t); 7987 if (ioc->high_iops_queues) 7988 ioc->get_msix_index_for_smlio = 7989 &_base_get_high_iops_msix_index; 7990 else 7991 ioc->get_msix_index_for_smlio = &_base_get_msix_index; 7992 break; 7993 } 7994 if (ioc->atomic_desc_capable) { 7995 ioc->put_smid_default = &_base_put_smid_default_atomic; 7996 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic; 7997 ioc->put_smid_fast_path = 7998 &_base_put_smid_fast_path_atomic; 7999 ioc->put_smid_hi_priority = 8000 &_base_put_smid_hi_priority_atomic; 8001 } else { 8002 ioc->put_smid_default = &_base_put_smid_default; 8003 ioc->put_smid_fast_path = &_base_put_smid_fast_path; 8004 ioc->put_smid_hi_priority = &_base_put_smid_hi_priority; 8005 if (ioc->is_mcpu_endpoint) 8006 ioc->put_smid_scsi_io = 8007 &_base_put_smid_mpi_ep_scsi_io; 8008 else 8009 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io; 8010 } 8011 /* 8012 * These function pointers for other requests that don't 8013 * the require IEEE scatter gather elements. 8014 * 8015 * For example Configuration Pages and SAS IOUNIT Control don't. 8016 */ 8017 ioc->build_sg_mpi = &_base_build_sg; 8018 ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge; 8019 8020 r = mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET); 8021 if (r) 8022 goto out_free_resources; 8023 8024 ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts, 8025 sizeof(struct mpt3sas_port_facts), GFP_KERNEL); 8026 if (!ioc->pfacts) { 8027 r = -ENOMEM; 8028 goto out_free_resources; 8029 } 8030 8031 for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) { 8032 r = _base_get_port_facts(ioc, i); 8033 if (r) { 8034 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc); 8035 if (rc || (_base_get_port_facts(ioc, i))) 8036 goto out_free_resources; 8037 } 8038 } 8039 8040 r = _base_allocate_memory_pools(ioc); 8041 if (r) 8042 goto out_free_resources; 8043 8044 if (irqpoll_weight > 0) 8045 ioc->thresh_hold = irqpoll_weight; 8046 else 8047 ioc->thresh_hold = ioc->hba_queue_depth/4; 8048 8049 _base_init_irqpolls(ioc); 8050 init_waitqueue_head(&ioc->reset_wq); 8051 8052 /* allocate memory pd handle bitmask list */ 8053 ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8); 8054 if (ioc->facts.MaxDevHandle % 8) 8055 ioc->pd_handles_sz++; 8056 ioc->pd_handles = kzalloc(ioc->pd_handles_sz, 8057 GFP_KERNEL); 8058 if (!ioc->pd_handles) { 8059 r = -ENOMEM; 8060 goto out_free_resources; 8061 } 8062 ioc->blocking_handles = kzalloc(ioc->pd_handles_sz, 8063 GFP_KERNEL); 8064 if (!ioc->blocking_handles) { 8065 r = -ENOMEM; 8066 goto out_free_resources; 8067 } 8068 8069 /* allocate memory for pending OS device add list */ 8070 ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8); 8071 if (ioc->facts.MaxDevHandle % 8) 8072 ioc->pend_os_device_add_sz++; 8073 ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz, 8074 GFP_KERNEL); 8075 if (!ioc->pend_os_device_add) { 8076 r = -ENOMEM; 8077 goto out_free_resources; 8078 } 8079 8080 ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz; 8081 ioc->device_remove_in_progress = 8082 kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL); 8083 if (!ioc->device_remove_in_progress) { 8084 r = -ENOMEM; 8085 goto out_free_resources; 8086 } 8087 8088 ioc->fwfault_debug = mpt3sas_fwfault_debug; 8089 8090 /* base internal command bits */ 8091 mutex_init(&ioc->base_cmds.mutex); 8092 ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 8093 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 8094 8095 /* port_enable command bits */ 8096 ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 8097 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED; 8098 8099 /* transport internal command bits */ 8100 ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 8101 ioc->transport_cmds.status = MPT3_CMD_NOT_USED; 8102 mutex_init(&ioc->transport_cmds.mutex); 8103 8104 /* scsih internal command bits */ 8105 ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 8106 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED; 8107 mutex_init(&ioc->scsih_cmds.mutex); 8108 8109 /* task management internal command bits */ 8110 ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 8111 ioc->tm_cmds.status = MPT3_CMD_NOT_USED; 8112 mutex_init(&ioc->tm_cmds.mutex); 8113 8114 /* config page internal command bits */ 8115 ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 8116 ioc->config_cmds.status = MPT3_CMD_NOT_USED; 8117 mutex_init(&ioc->config_cmds.mutex); 8118 8119 /* ctl module internal command bits */ 8120 ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 8121 ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL); 8122 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED; 8123 mutex_init(&ioc->ctl_cmds.mutex); 8124 8125 if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply || 8126 !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply || 8127 !ioc->tm_cmds.reply || !ioc->config_cmds.reply || 8128 !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) { 8129 r = -ENOMEM; 8130 goto out_free_resources; 8131 } 8132 8133 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 8134 ioc->event_masks[i] = -1; 8135 8136 /* here we enable the events we care about */ 8137 _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY); 8138 _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE); 8139 _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST); 8140 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE); 8141 _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE); 8142 _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST); 8143 _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME); 8144 _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK); 8145 _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS); 8146 _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED); 8147 _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD); 8148 _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION); 8149 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR); 8150 if (ioc->hba_mpi_version_belonged == MPI26_VERSION) { 8151 if (ioc->is_gen35_ioc) { 8152 _base_unmask_events(ioc, 8153 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE); 8154 _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION); 8155 _base_unmask_events(ioc, 8156 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST); 8157 } 8158 } 8159 r = _base_make_ioc_operational(ioc); 8160 if (r == -EAGAIN) { 8161 r = _base_make_ioc_operational(ioc); 8162 if (r) 8163 goto out_free_resources; 8164 } 8165 8166 /* 8167 * Copy current copy of IOCFacts in prev_fw_facts 8168 * and it will be used during online firmware upgrade. 8169 */ 8170 memcpy(&ioc->prev_fw_facts, &ioc->facts, 8171 sizeof(struct mpt3sas_facts)); 8172 8173 ioc->non_operational_loop = 0; 8174 ioc->ioc_coredump_loop = 0; 8175 ioc->got_task_abort_from_ioctl = 0; 8176 return 0; 8177 8178 out_free_resources: 8179 8180 ioc->remove_host = 1; 8181 8182 mpt3sas_base_free_resources(ioc); 8183 _base_release_memory_pools(ioc); 8184 pci_set_drvdata(ioc->pdev, NULL); 8185 kfree(ioc->cpu_msix_table); 8186 if (ioc->is_warpdrive) 8187 kfree(ioc->reply_post_host_index); 8188 kfree(ioc->pd_handles); 8189 kfree(ioc->blocking_handles); 8190 kfree(ioc->device_remove_in_progress); 8191 kfree(ioc->pend_os_device_add); 8192 kfree(ioc->tm_cmds.reply); 8193 kfree(ioc->transport_cmds.reply); 8194 kfree(ioc->scsih_cmds.reply); 8195 kfree(ioc->config_cmds.reply); 8196 kfree(ioc->base_cmds.reply); 8197 kfree(ioc->port_enable_cmds.reply); 8198 kfree(ioc->ctl_cmds.reply); 8199 kfree(ioc->ctl_cmds.sense); 8200 kfree(ioc->pfacts); 8201 ioc->ctl_cmds.reply = NULL; 8202 ioc->base_cmds.reply = NULL; 8203 ioc->tm_cmds.reply = NULL; 8204 ioc->scsih_cmds.reply = NULL; 8205 ioc->transport_cmds.reply = NULL; 8206 ioc->config_cmds.reply = NULL; 8207 ioc->pfacts = NULL; 8208 return r; 8209 } 8210 8211 8212 /** 8213 * mpt3sas_base_detach - remove controller instance 8214 * @ioc: per adapter object 8215 */ 8216 void 8217 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc) 8218 { 8219 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 8220 8221 mpt3sas_base_stop_watchdog(ioc); 8222 mpt3sas_base_free_resources(ioc); 8223 _base_release_memory_pools(ioc); 8224 mpt3sas_free_enclosure_list(ioc); 8225 pci_set_drvdata(ioc->pdev, NULL); 8226 kfree(ioc->cpu_msix_table); 8227 if (ioc->is_warpdrive) 8228 kfree(ioc->reply_post_host_index); 8229 kfree(ioc->pd_handles); 8230 kfree(ioc->blocking_handles); 8231 kfree(ioc->device_remove_in_progress); 8232 kfree(ioc->pend_os_device_add); 8233 kfree(ioc->pfacts); 8234 kfree(ioc->ctl_cmds.reply); 8235 kfree(ioc->ctl_cmds.sense); 8236 kfree(ioc->base_cmds.reply); 8237 kfree(ioc->port_enable_cmds.reply); 8238 kfree(ioc->tm_cmds.reply); 8239 kfree(ioc->transport_cmds.reply); 8240 kfree(ioc->scsih_cmds.reply); 8241 kfree(ioc->config_cmds.reply); 8242 } 8243 8244 /** 8245 * _base_pre_reset_handler - pre reset handler 8246 * @ioc: per adapter object 8247 */ 8248 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc) 8249 { 8250 mpt3sas_scsih_pre_reset_handler(ioc); 8251 mpt3sas_ctl_pre_reset_handler(ioc); 8252 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__)); 8253 } 8254 8255 /** 8256 * _base_clear_outstanding_mpt_commands - clears outstanding mpt commands 8257 * @ioc: per adapter object 8258 */ 8259 static void 8260 _base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER *ioc) 8261 { 8262 dtmprintk(ioc, 8263 ioc_info(ioc, "%s: clear outstanding mpt cmds\n", __func__)); 8264 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) { 8265 ioc->transport_cmds.status |= MPT3_CMD_RESET; 8266 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid); 8267 complete(&ioc->transport_cmds.done); 8268 } 8269 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 8270 ioc->base_cmds.status |= MPT3_CMD_RESET; 8271 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid); 8272 complete(&ioc->base_cmds.done); 8273 } 8274 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 8275 ioc->port_enable_failed = 1; 8276 ioc->port_enable_cmds.status |= MPT3_CMD_RESET; 8277 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid); 8278 if (ioc->is_driver_loading) { 8279 ioc->start_scan_failed = 8280 MPI2_IOCSTATUS_INTERNAL_ERROR; 8281 ioc->start_scan = 0; 8282 } else { 8283 complete(&ioc->port_enable_cmds.done); 8284 } 8285 } 8286 if (ioc->config_cmds.status & MPT3_CMD_PENDING) { 8287 ioc->config_cmds.status |= MPT3_CMD_RESET; 8288 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid); 8289 ioc->config_cmds.smid = USHRT_MAX; 8290 complete(&ioc->config_cmds.done); 8291 } 8292 } 8293 8294 /** 8295 * _base_clear_outstanding_commands - clear all outstanding commands 8296 * @ioc: per adapter object 8297 */ 8298 static void _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc) 8299 { 8300 mpt3sas_scsih_clear_outstanding_scsi_tm_commands(ioc); 8301 mpt3sas_ctl_clear_outstanding_ioctls(ioc); 8302 _base_clear_outstanding_mpt_commands(ioc); 8303 } 8304 8305 /** 8306 * _base_reset_done_handler - reset done handler 8307 * @ioc: per adapter object 8308 */ 8309 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc) 8310 { 8311 mpt3sas_scsih_reset_done_handler(ioc); 8312 mpt3sas_ctl_reset_done_handler(ioc); 8313 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__)); 8314 } 8315 8316 /** 8317 * mpt3sas_wait_for_commands_to_complete - reset controller 8318 * @ioc: Pointer to MPT_ADAPTER structure 8319 * 8320 * This function is waiting 10s for all pending commands to complete 8321 * prior to putting controller in reset. 8322 */ 8323 void 8324 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc) 8325 { 8326 u32 ioc_state; 8327 8328 ioc->pending_io_count = 0; 8329 8330 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 8331 if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) 8332 return; 8333 8334 /* pending command count */ 8335 ioc->pending_io_count = scsi_host_busy(ioc->shost); 8336 8337 if (!ioc->pending_io_count) 8338 return; 8339 8340 /* wait for pending commands to complete */ 8341 wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ); 8342 } 8343 8344 /** 8345 * _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts 8346 * attributes during online firmware upgrade and update the corresponding 8347 * IOC variables accordingly. 8348 * 8349 * @ioc: Pointer to MPT_ADAPTER structure 8350 */ 8351 static int 8352 _base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc) 8353 { 8354 u16 pd_handles_sz; 8355 void *pd_handles = NULL, *blocking_handles = NULL; 8356 void *pend_os_device_add = NULL, *device_remove_in_progress = NULL; 8357 struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts; 8358 8359 if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle) { 8360 pd_handles_sz = (ioc->facts.MaxDevHandle / 8); 8361 if (ioc->facts.MaxDevHandle % 8) 8362 pd_handles_sz++; 8363 8364 pd_handles = krealloc(ioc->pd_handles, pd_handles_sz, 8365 GFP_KERNEL); 8366 if (!pd_handles) { 8367 ioc_info(ioc, 8368 "Unable to allocate the memory for pd_handles of sz: %d\n", 8369 pd_handles_sz); 8370 return -ENOMEM; 8371 } 8372 memset(pd_handles + ioc->pd_handles_sz, 0, 8373 (pd_handles_sz - ioc->pd_handles_sz)); 8374 ioc->pd_handles = pd_handles; 8375 8376 blocking_handles = krealloc(ioc->blocking_handles, 8377 pd_handles_sz, GFP_KERNEL); 8378 if (!blocking_handles) { 8379 ioc_info(ioc, 8380 "Unable to allocate the memory for " 8381 "blocking_handles of sz: %d\n", 8382 pd_handles_sz); 8383 return -ENOMEM; 8384 } 8385 memset(blocking_handles + ioc->pd_handles_sz, 0, 8386 (pd_handles_sz - ioc->pd_handles_sz)); 8387 ioc->blocking_handles = blocking_handles; 8388 ioc->pd_handles_sz = pd_handles_sz; 8389 8390 pend_os_device_add = krealloc(ioc->pend_os_device_add, 8391 pd_handles_sz, GFP_KERNEL); 8392 if (!pend_os_device_add) { 8393 ioc_info(ioc, 8394 "Unable to allocate the memory for pend_os_device_add of sz: %d\n", 8395 pd_handles_sz); 8396 return -ENOMEM; 8397 } 8398 memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0, 8399 (pd_handles_sz - ioc->pend_os_device_add_sz)); 8400 ioc->pend_os_device_add = pend_os_device_add; 8401 ioc->pend_os_device_add_sz = pd_handles_sz; 8402 8403 device_remove_in_progress = krealloc( 8404 ioc->device_remove_in_progress, pd_handles_sz, GFP_KERNEL); 8405 if (!device_remove_in_progress) { 8406 ioc_info(ioc, 8407 "Unable to allocate the memory for " 8408 "device_remove_in_progress of sz: %d\n " 8409 , pd_handles_sz); 8410 return -ENOMEM; 8411 } 8412 memset(device_remove_in_progress + 8413 ioc->device_remove_in_progress_sz, 0, 8414 (pd_handles_sz - ioc->device_remove_in_progress_sz)); 8415 ioc->device_remove_in_progress = device_remove_in_progress; 8416 ioc->device_remove_in_progress_sz = pd_handles_sz; 8417 } 8418 8419 memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts)); 8420 return 0; 8421 } 8422 8423 /** 8424 * mpt3sas_base_hard_reset_handler - reset controller 8425 * @ioc: Pointer to MPT_ADAPTER structure 8426 * @type: FORCE_BIG_HAMMER or SOFT_RESET 8427 * 8428 * Return: 0 for success, non-zero for failure. 8429 */ 8430 int 8431 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc, 8432 enum reset_type type) 8433 { 8434 int r; 8435 unsigned long flags; 8436 u32 ioc_state; 8437 u8 is_fault = 0, is_trigger = 0; 8438 8439 dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__)); 8440 8441 if (ioc->pci_error_recovery) { 8442 ioc_err(ioc, "%s: pci error recovery reset\n", __func__); 8443 r = 0; 8444 goto out_unlocked; 8445 } 8446 8447 if (mpt3sas_fwfault_debug) 8448 mpt3sas_halt_firmware(ioc); 8449 8450 /* wait for an active reset in progress to complete */ 8451 mutex_lock(&ioc->reset_in_progress_mutex); 8452 8453 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 8454 ioc->shost_recovery = 1; 8455 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 8456 8457 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 8458 MPT3_DIAG_BUFFER_IS_REGISTERED) && 8459 (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 8460 MPT3_DIAG_BUFFER_IS_RELEASED))) { 8461 is_trigger = 1; 8462 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 8463 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT || 8464 (ioc_state & MPI2_IOC_STATE_MASK) == 8465 MPI2_IOC_STATE_COREDUMP) { 8466 is_fault = 1; 8467 ioc->htb_rel.trigger_info_dwords[1] = 8468 (ioc_state & MPI2_DOORBELL_DATA_MASK); 8469 } 8470 } 8471 _base_pre_reset_handler(ioc); 8472 mpt3sas_wait_for_commands_to_complete(ioc); 8473 mpt3sas_base_mask_interrupts(ioc); 8474 r = mpt3sas_base_make_ioc_ready(ioc, type); 8475 if (r) 8476 goto out; 8477 _base_clear_outstanding_commands(ioc); 8478 8479 /* If this hard reset is called while port enable is active, then 8480 * there is no reason to call make_ioc_operational 8481 */ 8482 if (ioc->is_driver_loading && ioc->port_enable_failed) { 8483 ioc->remove_host = 1; 8484 r = -EFAULT; 8485 goto out; 8486 } 8487 r = _base_get_ioc_facts(ioc); 8488 if (r) 8489 goto out; 8490 8491 r = _base_check_ioc_facts_changes(ioc); 8492 if (r) { 8493 ioc_info(ioc, 8494 "Some of the parameters got changed in this new firmware" 8495 " image and it requires system reboot\n"); 8496 goto out; 8497 } 8498 if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable) 8499 panic("%s: Issue occurred with flashing controller firmware." 8500 "Please reboot the system and ensure that the correct" 8501 " firmware version is running\n", ioc->name); 8502 8503 r = _base_make_ioc_operational(ioc); 8504 if (!r) 8505 _base_reset_done_handler(ioc); 8506 8507 out: 8508 ioc_info(ioc, "%s: %s\n", __func__, r == 0 ? "SUCCESS" : "FAILED"); 8509 8510 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 8511 ioc->shost_recovery = 0; 8512 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 8513 ioc->ioc_reset_count++; 8514 mutex_unlock(&ioc->reset_in_progress_mutex); 8515 8516 out_unlocked: 8517 if ((r == 0) && is_trigger) { 8518 if (is_fault) 8519 mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT); 8520 else 8521 mpt3sas_trigger_master(ioc, 8522 MASTER_TRIGGER_ADAPTER_RESET); 8523 } 8524 dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__)); 8525 return r; 8526 } 8527