1 /*
2  * This is the Fusion MPT base driver providing common API layer interface
3  * for access to MPT (Message Passing Technology) firmware.
4  *
5  * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6  * Copyright (C) 2012-2014  LSI Corporation
7  * Copyright (C) 2013-2014 Avago Technologies
8  *  (mailto: MPT-FusionLinux.pdl@avagotech.com)
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version 2
13  * of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * NO WARRANTY
21  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25  * solely responsible for determining the appropriateness of using and
26  * distributing the Program and assumes all risks associated with its
27  * exercise of rights under this Agreement, including but not limited to
28  * the risks and costs of program errors, damage to or loss of data,
29  * programs or equipment, and unavailability or interruption of operations.
30 
31  * DISCLAIMER OF LIABILITY
32  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39 
40  * You should have received a copy of the GNU General Public License
41  * along with this program; if not, write to the Free Software
42  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
43  * USA.
44  */
45 
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/kthread.h>
61 #include <linux/aer.h>
62 
63 
64 #include "mpt3sas_base.h"
65 
66 static MPT_CALLBACK	mpt_callbacks[MPT_MAX_CALLBACKS];
67 
68 
69 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
70 
71  /* maximum controller queue depth */
72 #define MAX_HBA_QUEUE_DEPTH	30000
73 #define MAX_CHAIN_DEPTH		100000
74 static int max_queue_depth = -1;
75 module_param(max_queue_depth, int, 0);
76 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
77 
78 static int max_sgl_entries = -1;
79 module_param(max_sgl_entries, int, 0);
80 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
81 
82 static int msix_disable = -1;
83 module_param(msix_disable, int, 0);
84 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
85 
86 static int smp_affinity_enable = 1;
87 module_param(smp_affinity_enable, int, S_IRUGO);
88 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disbale Default: enable(1)");
89 
90 static int max_msix_vectors = -1;
91 module_param(max_msix_vectors, int, 0);
92 MODULE_PARM_DESC(max_msix_vectors,
93 	" max msix vectors");
94 
95 static int mpt3sas_fwfault_debug;
96 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
97 	" enable detection of firmware fault and halt firmware - (default=0)");
98 
99 static int
100 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc, int sleep_flag);
101 
102 /**
103  * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
104  *
105  */
106 static int
107 _scsih_set_fwfault_debug(const char *val, struct kernel_param *kp)
108 {
109 	int ret = param_set_int(val, kp);
110 	struct MPT3SAS_ADAPTER *ioc;
111 
112 	if (ret)
113 		return ret;
114 
115 	/* global ioc spinlock to protect controller list on list operations */
116 	pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
117 	spin_lock(&gioc_lock);
118 	list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
119 		ioc->fwfault_debug = mpt3sas_fwfault_debug;
120 	spin_unlock(&gioc_lock);
121 	return 0;
122 }
123 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
124 	param_get_int, &mpt3sas_fwfault_debug, 0644);
125 
126 /**
127  *  mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
128  * @arg: input argument, used to derive ioc
129  *
130  * Return 0 if controller is removed from pci subsystem.
131  * Return -1 for other case.
132  */
133 static int mpt3sas_remove_dead_ioc_func(void *arg)
134 {
135 	struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
136 	struct pci_dev *pdev;
137 
138 	if ((ioc == NULL))
139 		return -1;
140 
141 	pdev = ioc->pdev;
142 	if ((pdev == NULL))
143 		return -1;
144 	pci_stop_and_remove_bus_device_locked(pdev);
145 	return 0;
146 }
147 
148 /**
149  * _base_fault_reset_work - workq handling ioc fault conditions
150  * @work: input argument, used to derive ioc
151  * Context: sleep.
152  *
153  * Return nothing.
154  */
155 static void
156 _base_fault_reset_work(struct work_struct *work)
157 {
158 	struct MPT3SAS_ADAPTER *ioc =
159 	    container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
160 	unsigned long	 flags;
161 	u32 doorbell;
162 	int rc;
163 	struct task_struct *p;
164 
165 
166 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
167 	if (ioc->shost_recovery || ioc->pci_error_recovery)
168 		goto rearm_timer;
169 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
170 
171 	doorbell = mpt3sas_base_get_iocstate(ioc, 0);
172 	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
173 		pr_err(MPT3SAS_FMT "SAS host is non-operational !!!!\n",
174 		    ioc->name);
175 
176 		/* It may be possible that EEH recovery can resolve some of
177 		 * pci bus failure issues rather removing the dead ioc function
178 		 * by considering controller is in a non-operational state. So
179 		 * here priority is given to the EEH recovery. If it doesn't
180 		 * not resolve this issue, mpt3sas driver will consider this
181 		 * controller to non-operational state and remove the dead ioc
182 		 * function.
183 		 */
184 		if (ioc->non_operational_loop++ < 5) {
185 			spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
186 							 flags);
187 			goto rearm_timer;
188 		}
189 
190 		/*
191 		 * Call _scsih_flush_pending_cmds callback so that we flush all
192 		 * pending commands back to OS. This call is required to aovid
193 		 * deadlock at block layer. Dead IOC will fail to do diag reset,
194 		 * and this call is safe since dead ioc will never return any
195 		 * command back from HW.
196 		 */
197 		ioc->schedule_dead_ioc_flush_running_cmds(ioc);
198 		/*
199 		 * Set remove_host flag early since kernel thread will
200 		 * take some time to execute.
201 		 */
202 		ioc->remove_host = 1;
203 		/*Remove the Dead Host */
204 		p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
205 		    "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
206 		if (IS_ERR(p))
207 			pr_err(MPT3SAS_FMT
208 			"%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
209 			ioc->name, __func__);
210 		else
211 			pr_err(MPT3SAS_FMT
212 			"%s: Running mpt3sas_dead_ioc thread success !!!!\n",
213 			ioc->name, __func__);
214 		return; /* don't rearm timer */
215 	}
216 
217 	ioc->non_operational_loop = 0;
218 
219 	if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
220 		rc = mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
221 		    FORCE_BIG_HAMMER);
222 		pr_warn(MPT3SAS_FMT "%s: hard reset: %s\n", ioc->name,
223 		    __func__, (rc == 0) ? "success" : "failed");
224 		doorbell = mpt3sas_base_get_iocstate(ioc, 0);
225 		if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
226 			mpt3sas_base_fault_info(ioc, doorbell &
227 			    MPI2_DOORBELL_DATA_MASK);
228 		if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
229 		    MPI2_IOC_STATE_OPERATIONAL)
230 			return; /* don't rearm timer */
231 	}
232 
233 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
234  rearm_timer:
235 	if (ioc->fault_reset_work_q)
236 		queue_delayed_work(ioc->fault_reset_work_q,
237 		    &ioc->fault_reset_work,
238 		    msecs_to_jiffies(FAULT_POLLING_INTERVAL));
239 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
240 }
241 
242 /**
243  * mpt3sas_base_start_watchdog - start the fault_reset_work_q
244  * @ioc: per adapter object
245  * Context: sleep.
246  *
247  * Return nothing.
248  */
249 void
250 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
251 {
252 	unsigned long	 flags;
253 
254 	if (ioc->fault_reset_work_q)
255 		return;
256 
257 	/* initialize fault polling */
258 
259 	INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
260 	snprintf(ioc->fault_reset_work_q_name,
261 	    sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
262 	    ioc->driver_name, ioc->id);
263 	ioc->fault_reset_work_q =
264 		create_singlethread_workqueue(ioc->fault_reset_work_q_name);
265 	if (!ioc->fault_reset_work_q) {
266 		pr_err(MPT3SAS_FMT "%s: failed (line=%d)\n",
267 		    ioc->name, __func__, __LINE__);
268 			return;
269 	}
270 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
271 	if (ioc->fault_reset_work_q)
272 		queue_delayed_work(ioc->fault_reset_work_q,
273 		    &ioc->fault_reset_work,
274 		    msecs_to_jiffies(FAULT_POLLING_INTERVAL));
275 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
276 }
277 
278 /**
279  * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
280  * @ioc: per adapter object
281  * Context: sleep.
282  *
283  * Return nothing.
284  */
285 void
286 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
287 {
288 	unsigned long flags;
289 	struct workqueue_struct *wq;
290 
291 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
292 	wq = ioc->fault_reset_work_q;
293 	ioc->fault_reset_work_q = NULL;
294 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
295 	if (wq) {
296 		if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
297 			flush_workqueue(wq);
298 		destroy_workqueue(wq);
299 	}
300 }
301 
302 /**
303  * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
304  * @ioc: per adapter object
305  * @fault_code: fault code
306  *
307  * Return nothing.
308  */
309 void
310 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
311 {
312 	pr_err(MPT3SAS_FMT "fault_state(0x%04x)!\n",
313 	    ioc->name, fault_code);
314 }
315 
316 /**
317  * mpt3sas_halt_firmware - halt's mpt controller firmware
318  * @ioc: per adapter object
319  *
320  * For debugging timeout related issues.  Writing 0xCOFFEE00
321  * to the doorbell register will halt controller firmware. With
322  * the purpose to stop both driver and firmware, the enduser can
323  * obtain a ring buffer from controller UART.
324  */
325 void
326 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
327 {
328 	u32 doorbell;
329 
330 	if (!ioc->fwfault_debug)
331 		return;
332 
333 	dump_stack();
334 
335 	doorbell = readl(&ioc->chip->Doorbell);
336 	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
337 		mpt3sas_base_fault_info(ioc , doorbell);
338 	else {
339 		writel(0xC0FFEE00, &ioc->chip->Doorbell);
340 		pr_err(MPT3SAS_FMT "Firmware is halted due to command timeout\n",
341 			ioc->name);
342 	}
343 
344 	if (ioc->fwfault_debug == 2)
345 		for (;;)
346 			;
347 	else
348 		panic("panic in %s\n", __func__);
349 }
350 
351 /**
352  * _base_sas_ioc_info - verbose translation of the ioc status
353  * @ioc: per adapter object
354  * @mpi_reply: reply mf payload returned from firmware
355  * @request_hdr: request mf
356  *
357  * Return nothing.
358  */
359 static void
360 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
361 	MPI2RequestHeader_t *request_hdr)
362 {
363 	u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
364 	    MPI2_IOCSTATUS_MASK;
365 	char *desc = NULL;
366 	u16 frame_sz;
367 	char *func_str = NULL;
368 
369 	/* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
370 	if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
371 	    request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
372 	    request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
373 		return;
374 
375 	if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
376 		return;
377 
378 	switch (ioc_status) {
379 
380 /****************************************************************************
381 *  Common IOCStatus values for all replies
382 ****************************************************************************/
383 
384 	case MPI2_IOCSTATUS_INVALID_FUNCTION:
385 		desc = "invalid function";
386 		break;
387 	case MPI2_IOCSTATUS_BUSY:
388 		desc = "busy";
389 		break;
390 	case MPI2_IOCSTATUS_INVALID_SGL:
391 		desc = "invalid sgl";
392 		break;
393 	case MPI2_IOCSTATUS_INTERNAL_ERROR:
394 		desc = "internal error";
395 		break;
396 	case MPI2_IOCSTATUS_INVALID_VPID:
397 		desc = "invalid vpid";
398 		break;
399 	case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
400 		desc = "insufficient resources";
401 		break;
402 	case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
403 		desc = "insufficient power";
404 		break;
405 	case MPI2_IOCSTATUS_INVALID_FIELD:
406 		desc = "invalid field";
407 		break;
408 	case MPI2_IOCSTATUS_INVALID_STATE:
409 		desc = "invalid state";
410 		break;
411 	case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
412 		desc = "op state not supported";
413 		break;
414 
415 /****************************************************************************
416 *  Config IOCStatus values
417 ****************************************************************************/
418 
419 	case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
420 		desc = "config invalid action";
421 		break;
422 	case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
423 		desc = "config invalid type";
424 		break;
425 	case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
426 		desc = "config invalid page";
427 		break;
428 	case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
429 		desc = "config invalid data";
430 		break;
431 	case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
432 		desc = "config no defaults";
433 		break;
434 	case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
435 		desc = "config cant commit";
436 		break;
437 
438 /****************************************************************************
439 *  SCSI IO Reply
440 ****************************************************************************/
441 
442 	case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
443 	case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
444 	case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
445 	case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
446 	case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
447 	case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
448 	case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
449 	case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
450 	case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
451 	case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
452 	case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
453 	case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
454 		break;
455 
456 /****************************************************************************
457 *  For use by SCSI Initiator and SCSI Target end-to-end data protection
458 ****************************************************************************/
459 
460 	case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
461 		desc = "eedp guard error";
462 		break;
463 	case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
464 		desc = "eedp ref tag error";
465 		break;
466 	case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
467 		desc = "eedp app tag error";
468 		break;
469 
470 /****************************************************************************
471 *  SCSI Target values
472 ****************************************************************************/
473 
474 	case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
475 		desc = "target invalid io index";
476 		break;
477 	case MPI2_IOCSTATUS_TARGET_ABORTED:
478 		desc = "target aborted";
479 		break;
480 	case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
481 		desc = "target no conn retryable";
482 		break;
483 	case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
484 		desc = "target no connection";
485 		break;
486 	case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
487 		desc = "target xfer count mismatch";
488 		break;
489 	case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
490 		desc = "target data offset error";
491 		break;
492 	case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
493 		desc = "target too much write data";
494 		break;
495 	case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
496 		desc = "target iu too short";
497 		break;
498 	case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
499 		desc = "target ack nak timeout";
500 		break;
501 	case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
502 		desc = "target nak received";
503 		break;
504 
505 /****************************************************************************
506 *  Serial Attached SCSI values
507 ****************************************************************************/
508 
509 	case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
510 		desc = "smp request failed";
511 		break;
512 	case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
513 		desc = "smp data overrun";
514 		break;
515 
516 /****************************************************************************
517 *  Diagnostic Buffer Post / Diagnostic Release values
518 ****************************************************************************/
519 
520 	case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
521 		desc = "diagnostic released";
522 		break;
523 	default:
524 		break;
525 	}
526 
527 	if (!desc)
528 		return;
529 
530 	switch (request_hdr->Function) {
531 	case MPI2_FUNCTION_CONFIG:
532 		frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
533 		func_str = "config_page";
534 		break;
535 	case MPI2_FUNCTION_SCSI_TASK_MGMT:
536 		frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
537 		func_str = "task_mgmt";
538 		break;
539 	case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
540 		frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
541 		func_str = "sas_iounit_ctl";
542 		break;
543 	case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
544 		frame_sz = sizeof(Mpi2SepRequest_t);
545 		func_str = "enclosure";
546 		break;
547 	case MPI2_FUNCTION_IOC_INIT:
548 		frame_sz = sizeof(Mpi2IOCInitRequest_t);
549 		func_str = "ioc_init";
550 		break;
551 	case MPI2_FUNCTION_PORT_ENABLE:
552 		frame_sz = sizeof(Mpi2PortEnableRequest_t);
553 		func_str = "port_enable";
554 		break;
555 	case MPI2_FUNCTION_SMP_PASSTHROUGH:
556 		frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
557 		func_str = "smp_passthru";
558 		break;
559 	default:
560 		frame_sz = 32;
561 		func_str = "unknown";
562 		break;
563 	}
564 
565 	pr_warn(MPT3SAS_FMT "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
566 		ioc->name, desc, ioc_status, request_hdr, func_str);
567 
568 	_debug_dump_mf(request_hdr, frame_sz/4);
569 }
570 
571 /**
572  * _base_display_event_data - verbose translation of firmware asyn events
573  * @ioc: per adapter object
574  * @mpi_reply: reply mf payload returned from firmware
575  *
576  * Return nothing.
577  */
578 static void
579 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
580 	Mpi2EventNotificationReply_t *mpi_reply)
581 {
582 	char *desc = NULL;
583 	u16 event;
584 
585 	if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
586 		return;
587 
588 	event = le16_to_cpu(mpi_reply->Event);
589 
590 	switch (event) {
591 	case MPI2_EVENT_LOG_DATA:
592 		desc = "Log Data";
593 		break;
594 	case MPI2_EVENT_STATE_CHANGE:
595 		desc = "Status Change";
596 		break;
597 	case MPI2_EVENT_HARD_RESET_RECEIVED:
598 		desc = "Hard Reset Received";
599 		break;
600 	case MPI2_EVENT_EVENT_CHANGE:
601 		desc = "Event Change";
602 		break;
603 	case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
604 		desc = "Device Status Change";
605 		break;
606 	case MPI2_EVENT_IR_OPERATION_STATUS:
607 		if (!ioc->hide_ir_msg)
608 			desc = "IR Operation Status";
609 		break;
610 	case MPI2_EVENT_SAS_DISCOVERY:
611 	{
612 		Mpi2EventDataSasDiscovery_t *event_data =
613 		    (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
614 		pr_info(MPT3SAS_FMT "Discovery: (%s)", ioc->name,
615 		    (event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED) ?
616 		    "start" : "stop");
617 		if (event_data->DiscoveryStatus)
618 			pr_info("discovery_status(0x%08x)",
619 			    le32_to_cpu(event_data->DiscoveryStatus));
620 			pr_info("\n");
621 		return;
622 	}
623 	case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
624 		desc = "SAS Broadcast Primitive";
625 		break;
626 	case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
627 		desc = "SAS Init Device Status Change";
628 		break;
629 	case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
630 		desc = "SAS Init Table Overflow";
631 		break;
632 	case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
633 		desc = "SAS Topology Change List";
634 		break;
635 	case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
636 		desc = "SAS Enclosure Device Status Change";
637 		break;
638 	case MPI2_EVENT_IR_VOLUME:
639 		if (!ioc->hide_ir_msg)
640 			desc = "IR Volume";
641 		break;
642 	case MPI2_EVENT_IR_PHYSICAL_DISK:
643 		if (!ioc->hide_ir_msg)
644 			desc = "IR Physical Disk";
645 		break;
646 	case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
647 		if (!ioc->hide_ir_msg)
648 			desc = "IR Configuration Change List";
649 		break;
650 	case MPI2_EVENT_LOG_ENTRY_ADDED:
651 		if (!ioc->hide_ir_msg)
652 			desc = "Log Entry Added";
653 		break;
654 	case MPI2_EVENT_TEMP_THRESHOLD:
655 		desc = "Temperature Threshold";
656 		break;
657 	}
658 
659 	if (!desc)
660 		return;
661 
662 	pr_info(MPT3SAS_FMT "%s\n", ioc->name, desc);
663 }
664 
665 /**
666  * _base_sas_log_info - verbose translation of firmware log info
667  * @ioc: per adapter object
668  * @log_info: log info
669  *
670  * Return nothing.
671  */
672 static void
673 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
674 {
675 	union loginfo_type {
676 		u32	loginfo;
677 		struct {
678 			u32	subcode:16;
679 			u32	code:8;
680 			u32	originator:4;
681 			u32	bus_type:4;
682 		} dw;
683 	};
684 	union loginfo_type sas_loginfo;
685 	char *originator_str = NULL;
686 
687 	sas_loginfo.loginfo = log_info;
688 	if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
689 		return;
690 
691 	/* each nexus loss loginfo */
692 	if (log_info == 0x31170000)
693 		return;
694 
695 	/* eat the loginfos associated with task aborts */
696 	if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
697 	    0x31140000 || log_info == 0x31130000))
698 		return;
699 
700 	switch (sas_loginfo.dw.originator) {
701 	case 0:
702 		originator_str = "IOP";
703 		break;
704 	case 1:
705 		originator_str = "PL";
706 		break;
707 	case 2:
708 		if (!ioc->hide_ir_msg)
709 			originator_str = "IR";
710 		else
711 			originator_str = "WarpDrive";
712 		break;
713 	}
714 
715 	pr_warn(MPT3SAS_FMT
716 		"log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
717 		ioc->name, log_info,
718 	     originator_str, sas_loginfo.dw.code,
719 	     sas_loginfo.dw.subcode);
720 }
721 
722 /**
723  * _base_display_reply_info -
724  * @ioc: per adapter object
725  * @smid: system request message index
726  * @msix_index: MSIX table index supplied by the OS
727  * @reply: reply message frame(lower 32bit addr)
728  *
729  * Return nothing.
730  */
731 static void
732 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
733 	u32 reply)
734 {
735 	MPI2DefaultReply_t *mpi_reply;
736 	u16 ioc_status;
737 	u32 loginfo = 0;
738 
739 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
740 	if (unlikely(!mpi_reply)) {
741 		pr_err(MPT3SAS_FMT "mpi_reply not valid at %s:%d/%s()!\n",
742 		    ioc->name, __FILE__, __LINE__, __func__);
743 		return;
744 	}
745 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
746 
747 	if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
748 	    (ioc->logging_level & MPT_DEBUG_REPLY)) {
749 		_base_sas_ioc_info(ioc , mpi_reply,
750 		   mpt3sas_base_get_msg_frame(ioc, smid));
751 	}
752 
753 	if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
754 		loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
755 		_base_sas_log_info(ioc, loginfo);
756 	}
757 
758 	if (ioc_status || loginfo) {
759 		ioc_status &= MPI2_IOCSTATUS_MASK;
760 		mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
761 	}
762 }
763 
764 /**
765  * mpt3sas_base_done - base internal command completion routine
766  * @ioc: per adapter object
767  * @smid: system request message index
768  * @msix_index: MSIX table index supplied by the OS
769  * @reply: reply message frame(lower 32bit addr)
770  *
771  * Return 1 meaning mf should be freed from _base_interrupt
772  *        0 means the mf is freed from this function.
773  */
774 u8
775 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
776 	u32 reply)
777 {
778 	MPI2DefaultReply_t *mpi_reply;
779 
780 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
781 	if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
782 		return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
783 
784 	if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
785 		return 1;
786 
787 	ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
788 	if (mpi_reply) {
789 		ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
790 		memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
791 	}
792 	ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
793 
794 	complete(&ioc->base_cmds.done);
795 	return 1;
796 }
797 
798 /**
799  * _base_async_event - main callback handler for firmware asyn events
800  * @ioc: per adapter object
801  * @msix_index: MSIX table index supplied by the OS
802  * @reply: reply message frame(lower 32bit addr)
803  *
804  * Return 1 meaning mf should be freed from _base_interrupt
805  *        0 means the mf is freed from this function.
806  */
807 static u8
808 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
809 {
810 	Mpi2EventNotificationReply_t *mpi_reply;
811 	Mpi2EventAckRequest_t *ack_request;
812 	u16 smid;
813 	struct _event_ack_list *delayed_event_ack;
814 
815 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
816 	if (!mpi_reply)
817 		return 1;
818 	if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
819 		return 1;
820 
821 	_base_display_event_data(ioc, mpi_reply);
822 
823 	if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
824 		goto out;
825 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
826 	if (!smid) {
827 		delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
828 					GFP_ATOMIC);
829 		if (!delayed_event_ack)
830 			goto out;
831 		INIT_LIST_HEAD(&delayed_event_ack->list);
832 		delayed_event_ack->Event = mpi_reply->Event;
833 		delayed_event_ack->EventContext = mpi_reply->EventContext;
834 		list_add_tail(&delayed_event_ack->list,
835 				&ioc->delayed_event_ack_list);
836 		dewtprintk(ioc, pr_info(MPT3SAS_FMT
837 				"DELAYED: EVENT ACK: event (0x%04x)\n",
838 				ioc->name, le16_to_cpu(mpi_reply->Event)));
839 		goto out;
840 	}
841 
842 	ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
843 	memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
844 	ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
845 	ack_request->Event = mpi_reply->Event;
846 	ack_request->EventContext = mpi_reply->EventContext;
847 	ack_request->VF_ID = 0;  /* TODO */
848 	ack_request->VP_ID = 0;
849 	mpt3sas_base_put_smid_default(ioc, smid);
850 
851  out:
852 
853 	/* scsih callback handler */
854 	mpt3sas_scsih_event_callback(ioc, msix_index, reply);
855 
856 	/* ctl callback handler */
857 	mpt3sas_ctl_event_callback(ioc, msix_index, reply);
858 
859 	return 1;
860 }
861 
862 /**
863  * _base_get_cb_idx - obtain the callback index
864  * @ioc: per adapter object
865  * @smid: system request message index
866  *
867  * Return callback index.
868  */
869 static u8
870 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
871 {
872 	int i;
873 	u8 cb_idx;
874 
875 	if (smid < ioc->hi_priority_smid) {
876 		i = smid - 1;
877 		cb_idx = ioc->scsi_lookup[i].cb_idx;
878 	} else if (smid < ioc->internal_smid) {
879 		i = smid - ioc->hi_priority_smid;
880 		cb_idx = ioc->hpr_lookup[i].cb_idx;
881 	} else if (smid <= ioc->hba_queue_depth) {
882 		i = smid - ioc->internal_smid;
883 		cb_idx = ioc->internal_lookup[i].cb_idx;
884 	} else
885 		cb_idx = 0xFF;
886 	return cb_idx;
887 }
888 
889 /**
890  * _base_mask_interrupts - disable interrupts
891  * @ioc: per adapter object
892  *
893  * Disabling ResetIRQ, Reply and Doorbell Interrupts
894  *
895  * Return nothing.
896  */
897 static void
898 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
899 {
900 	u32 him_register;
901 
902 	ioc->mask_interrupts = 1;
903 	him_register = readl(&ioc->chip->HostInterruptMask);
904 	him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
905 	writel(him_register, &ioc->chip->HostInterruptMask);
906 	readl(&ioc->chip->HostInterruptMask);
907 }
908 
909 /**
910  * _base_unmask_interrupts - enable interrupts
911  * @ioc: per adapter object
912  *
913  * Enabling only Reply Interrupts
914  *
915  * Return nothing.
916  */
917 static void
918 _base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
919 {
920 	u32 him_register;
921 
922 	him_register = readl(&ioc->chip->HostInterruptMask);
923 	him_register &= ~MPI2_HIM_RIM;
924 	writel(him_register, &ioc->chip->HostInterruptMask);
925 	ioc->mask_interrupts = 0;
926 }
927 
928 union reply_descriptor {
929 	u64 word;
930 	struct {
931 		u32 low;
932 		u32 high;
933 	} u;
934 };
935 
936 /**
937  * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
938  * @irq: irq number (not used)
939  * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
940  * @r: pt_regs pointer (not used)
941  *
942  * Return IRQ_HANDLE if processed, else IRQ_NONE.
943  */
944 static irqreturn_t
945 _base_interrupt(int irq, void *bus_id)
946 {
947 	struct adapter_reply_queue *reply_q = bus_id;
948 	union reply_descriptor rd;
949 	u32 completed_cmds;
950 	u8 request_desript_type;
951 	u16 smid;
952 	u8 cb_idx;
953 	u32 reply;
954 	u8 msix_index = reply_q->msix_index;
955 	struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
956 	Mpi2ReplyDescriptorsUnion_t *rpf;
957 	u8 rc;
958 
959 	if (ioc->mask_interrupts)
960 		return IRQ_NONE;
961 
962 	if (!atomic_add_unless(&reply_q->busy, 1, 1))
963 		return IRQ_NONE;
964 
965 	rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
966 	request_desript_type = rpf->Default.ReplyFlags
967 	     & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
968 	if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
969 		atomic_dec(&reply_q->busy);
970 		return IRQ_NONE;
971 	}
972 
973 	completed_cmds = 0;
974 	cb_idx = 0xFF;
975 	do {
976 		rd.word = le64_to_cpu(rpf->Words);
977 		if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
978 			goto out;
979 		reply = 0;
980 		smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
981 		if (request_desript_type ==
982 		    MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
983 		    request_desript_type ==
984 		    MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS) {
985 			cb_idx = _base_get_cb_idx(ioc, smid);
986 			if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
987 			    (likely(mpt_callbacks[cb_idx] != NULL))) {
988 				rc = mpt_callbacks[cb_idx](ioc, smid,
989 				    msix_index, 0);
990 				if (rc)
991 					mpt3sas_base_free_smid(ioc, smid);
992 			}
993 		} else if (request_desript_type ==
994 		    MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
995 			reply = le32_to_cpu(
996 			    rpf->AddressReply.ReplyFrameAddress);
997 			if (reply > ioc->reply_dma_max_address ||
998 			    reply < ioc->reply_dma_min_address)
999 				reply = 0;
1000 			if (smid) {
1001 				cb_idx = _base_get_cb_idx(ioc, smid);
1002 				if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1003 				    (likely(mpt_callbacks[cb_idx] != NULL))) {
1004 					rc = mpt_callbacks[cb_idx](ioc, smid,
1005 					    msix_index, reply);
1006 					if (reply)
1007 						_base_display_reply_info(ioc,
1008 						    smid, msix_index, reply);
1009 					if (rc)
1010 						mpt3sas_base_free_smid(ioc,
1011 						    smid);
1012 				}
1013 			} else {
1014 				_base_async_event(ioc, msix_index, reply);
1015 			}
1016 
1017 			/* reply free queue handling */
1018 			if (reply) {
1019 				ioc->reply_free_host_index =
1020 				    (ioc->reply_free_host_index ==
1021 				    (ioc->reply_free_queue_depth - 1)) ?
1022 				    0 : ioc->reply_free_host_index + 1;
1023 				ioc->reply_free[ioc->reply_free_host_index] =
1024 				    cpu_to_le32(reply);
1025 				wmb();
1026 				writel(ioc->reply_free_host_index,
1027 				    &ioc->chip->ReplyFreeHostIndex);
1028 			}
1029 		}
1030 
1031 		rpf->Words = cpu_to_le64(ULLONG_MAX);
1032 		reply_q->reply_post_host_index =
1033 		    (reply_q->reply_post_host_index ==
1034 		    (ioc->reply_post_queue_depth - 1)) ? 0 :
1035 		    reply_q->reply_post_host_index + 1;
1036 		request_desript_type =
1037 		    reply_q->reply_post_free[reply_q->reply_post_host_index].
1038 		    Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1039 		completed_cmds++;
1040 		if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1041 			goto out;
1042 		if (!reply_q->reply_post_host_index)
1043 			rpf = reply_q->reply_post_free;
1044 		else
1045 			rpf++;
1046 	} while (1);
1047 
1048  out:
1049 
1050 	if (!completed_cmds) {
1051 		atomic_dec(&reply_q->busy);
1052 		return IRQ_NONE;
1053 	}
1054 
1055 	wmb();
1056 	if (ioc->is_warpdrive) {
1057 		writel(reply_q->reply_post_host_index,
1058 		ioc->reply_post_host_index[msix_index]);
1059 		atomic_dec(&reply_q->busy);
1060 		return IRQ_HANDLED;
1061 	}
1062 
1063 	/* Update Reply Post Host Index.
1064 	 * For those HBA's which support combined reply queue feature
1065 	 * 1. Get the correct Supplemental Reply Post Host Index Register.
1066 	 *    i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1067 	 *    Index Register address bank i.e replyPostRegisterIndex[],
1068 	 * 2. Then update this register with new reply host index value
1069 	 *    in ReplyPostIndex field and the MSIxIndex field with
1070 	 *    msix_index value reduced to a value between 0 and 7,
1071 	 *    using a modulo 8 operation. Since each Supplemental Reply Post
1072 	 *    Host Index Register supports 8 MSI-X vectors.
1073 	 *
1074 	 * For other HBA's just update the Reply Post Host Index register with
1075 	 * new reply host index value in ReplyPostIndex Field and msix_index
1076 	 * value in MSIxIndex field.
1077 	 */
1078 	if (ioc->msix96_vector)
1079 		writel(reply_q->reply_post_host_index | ((msix_index  & 7) <<
1080 			MPI2_RPHI_MSIX_INDEX_SHIFT),
1081 			ioc->replyPostRegisterIndex[msix_index/8]);
1082 	else
1083 		writel(reply_q->reply_post_host_index | (msix_index <<
1084 			MPI2_RPHI_MSIX_INDEX_SHIFT),
1085 			&ioc->chip->ReplyPostHostIndex);
1086 	atomic_dec(&reply_q->busy);
1087 	return IRQ_HANDLED;
1088 }
1089 
1090 /**
1091  * _base_is_controller_msix_enabled - is controller support muli-reply queues
1092  * @ioc: per adapter object
1093  *
1094  */
1095 static inline int
1096 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1097 {
1098 	return (ioc->facts.IOCCapabilities &
1099 	    MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1100 }
1101 
1102 /**
1103  * mpt3sas_base_flush_reply_queues - flushing the MSIX reply queues
1104  * @ioc: per adapter object
1105  * Context: ISR conext
1106  *
1107  * Called when a Task Management request has completed. We want
1108  * to flush the other reply queues so all the outstanding IO has been
1109  * completed back to OS before we process the TM completetion.
1110  *
1111  * Return nothing.
1112  */
1113 void
1114 mpt3sas_base_flush_reply_queues(struct MPT3SAS_ADAPTER *ioc)
1115 {
1116 	struct adapter_reply_queue *reply_q;
1117 
1118 	/* If MSIX capability is turned off
1119 	 * then multi-queues are not enabled
1120 	 */
1121 	if (!_base_is_controller_msix_enabled(ioc))
1122 		return;
1123 
1124 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1125 		if (ioc->shost_recovery)
1126 			return;
1127 		/* TMs are on msix_index == 0 */
1128 		if (reply_q->msix_index == 0)
1129 			continue;
1130 		_base_interrupt(reply_q->vector, (void *)reply_q);
1131 	}
1132 }
1133 
1134 /**
1135  * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1136  * @cb_idx: callback index
1137  *
1138  * Return nothing.
1139  */
1140 void
1141 mpt3sas_base_release_callback_handler(u8 cb_idx)
1142 {
1143 	mpt_callbacks[cb_idx] = NULL;
1144 }
1145 
1146 /**
1147  * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1148  * @cb_func: callback function
1149  *
1150  * Returns cb_func.
1151  */
1152 u8
1153 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1154 {
1155 	u8 cb_idx;
1156 
1157 	for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1158 		if (mpt_callbacks[cb_idx] == NULL)
1159 			break;
1160 
1161 	mpt_callbacks[cb_idx] = cb_func;
1162 	return cb_idx;
1163 }
1164 
1165 /**
1166  * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1167  *
1168  * Return nothing.
1169  */
1170 void
1171 mpt3sas_base_initialize_callback_handler(void)
1172 {
1173 	u8 cb_idx;
1174 
1175 	for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1176 		mpt3sas_base_release_callback_handler(cb_idx);
1177 }
1178 
1179 
1180 /**
1181  * _base_build_zero_len_sge - build zero length sg entry
1182  * @ioc: per adapter object
1183  * @paddr: virtual address for SGE
1184  *
1185  * Create a zero length scatter gather entry to insure the IOCs hardware has
1186  * something to use if the target device goes brain dead and tries
1187  * to send data even when none is asked for.
1188  *
1189  * Return nothing.
1190  */
1191 static void
1192 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1193 {
1194 	u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1195 	    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1196 	    MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1197 	    MPI2_SGE_FLAGS_SHIFT);
1198 	ioc->base_add_sg_single(paddr, flags_length, -1);
1199 }
1200 
1201 /**
1202  * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1203  * @paddr: virtual address for SGE
1204  * @flags_length: SGE flags and data transfer length
1205  * @dma_addr: Physical address
1206  *
1207  * Return nothing.
1208  */
1209 static void
1210 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1211 {
1212 	Mpi2SGESimple32_t *sgel = paddr;
1213 
1214 	flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1215 	    MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1216 	sgel->FlagsLength = cpu_to_le32(flags_length);
1217 	sgel->Address = cpu_to_le32(dma_addr);
1218 }
1219 
1220 
1221 /**
1222  * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1223  * @paddr: virtual address for SGE
1224  * @flags_length: SGE flags and data transfer length
1225  * @dma_addr: Physical address
1226  *
1227  * Return nothing.
1228  */
1229 static void
1230 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1231 {
1232 	Mpi2SGESimple64_t *sgel = paddr;
1233 
1234 	flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
1235 	    MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1236 	sgel->FlagsLength = cpu_to_le32(flags_length);
1237 	sgel->Address = cpu_to_le64(dma_addr);
1238 }
1239 
1240 /**
1241  * _base_get_chain_buffer_tracker - obtain chain tracker
1242  * @ioc: per adapter object
1243  * @smid: smid associated to an IO request
1244  *
1245  * Returns chain tracker(from ioc->free_chain_list)
1246  */
1247 static struct chain_tracker *
1248 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1249 {
1250 	struct chain_tracker *chain_req;
1251 	unsigned long flags;
1252 
1253 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
1254 	if (list_empty(&ioc->free_chain_list)) {
1255 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1256 		dfailprintk(ioc, pr_warn(MPT3SAS_FMT
1257 			"chain buffers not available\n", ioc->name));
1258 		return NULL;
1259 	}
1260 	chain_req = list_entry(ioc->free_chain_list.next,
1261 	    struct chain_tracker, tracker_list);
1262 	list_del_init(&chain_req->tracker_list);
1263 	list_add_tail(&chain_req->tracker_list,
1264 	    &ioc->scsi_lookup[smid - 1].chain_list);
1265 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1266 	return chain_req;
1267 }
1268 
1269 
1270 /**
1271  * _base_build_sg - build generic sg
1272  * @ioc: per adapter object
1273  * @psge: virtual address for SGE
1274  * @data_out_dma: physical address for WRITES
1275  * @data_out_sz: data xfer size for WRITES
1276  * @data_in_dma: physical address for READS
1277  * @data_in_sz: data xfer size for READS
1278  *
1279  * Return nothing.
1280  */
1281 static void
1282 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
1283 	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1284 	size_t data_in_sz)
1285 {
1286 	u32 sgl_flags;
1287 
1288 	if (!data_out_sz && !data_in_sz) {
1289 		_base_build_zero_len_sge(ioc, psge);
1290 		return;
1291 	}
1292 
1293 	if (data_out_sz && data_in_sz) {
1294 		/* WRITE sgel first */
1295 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1296 		    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
1297 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1298 		ioc->base_add_sg_single(psge, sgl_flags |
1299 		    data_out_sz, data_out_dma);
1300 
1301 		/* incr sgel */
1302 		psge += ioc->sge_size;
1303 
1304 		/* READ sgel last */
1305 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1306 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1307 		    MPI2_SGE_FLAGS_END_OF_LIST);
1308 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1309 		ioc->base_add_sg_single(psge, sgl_flags |
1310 		    data_in_sz, data_in_dma);
1311 	} else if (data_out_sz) /* WRITE */ {
1312 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1313 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1314 		    MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
1315 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1316 		ioc->base_add_sg_single(psge, sgl_flags |
1317 		    data_out_sz, data_out_dma);
1318 	} else if (data_in_sz) /* READ */ {
1319 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1320 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1321 		    MPI2_SGE_FLAGS_END_OF_LIST);
1322 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1323 		ioc->base_add_sg_single(psge, sgl_flags |
1324 		    data_in_sz, data_in_dma);
1325 	}
1326 }
1327 
1328 /* IEEE format sgls */
1329 
1330 /**
1331  * _base_add_sg_single_ieee - add sg element for IEEE format
1332  * @paddr: virtual address for SGE
1333  * @flags: SGE flags
1334  * @chain_offset: number of 128 byte elements from start of segment
1335  * @length: data transfer length
1336  * @dma_addr: Physical address
1337  *
1338  * Return nothing.
1339  */
1340 static void
1341 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
1342 	dma_addr_t dma_addr)
1343 {
1344 	Mpi25IeeeSgeChain64_t *sgel = paddr;
1345 
1346 	sgel->Flags = flags;
1347 	sgel->NextChainOffset = chain_offset;
1348 	sgel->Length = cpu_to_le32(length);
1349 	sgel->Address = cpu_to_le64(dma_addr);
1350 }
1351 
1352 /**
1353  * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
1354  * @ioc: per adapter object
1355  * @paddr: virtual address for SGE
1356  *
1357  * Create a zero length scatter gather entry to insure the IOCs hardware has
1358  * something to use if the target device goes brain dead and tries
1359  * to send data even when none is asked for.
1360  *
1361  * Return nothing.
1362  */
1363 static void
1364 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1365 {
1366 	u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1367 		MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
1368 		MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
1369 
1370 	_base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
1371 }
1372 
1373 /**
1374  * _base_build_sg_scmd - main sg creation routine
1375  * @ioc: per adapter object
1376  * @scmd: scsi command
1377  * @smid: system request message index
1378  * Context: none.
1379  *
1380  * The main routine that builds scatter gather table from a given
1381  * scsi request sent via the .queuecommand main handler.
1382  *
1383  * Returns 0 success, anything else error
1384  */
1385 static int
1386 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
1387 		struct scsi_cmnd *scmd, u16 smid)
1388 {
1389 	Mpi2SCSIIORequest_t *mpi_request;
1390 	dma_addr_t chain_dma;
1391 	struct scatterlist *sg_scmd;
1392 	void *sg_local, *chain;
1393 	u32 chain_offset;
1394 	u32 chain_length;
1395 	u32 chain_flags;
1396 	int sges_left;
1397 	u32 sges_in_segment;
1398 	u32 sgl_flags;
1399 	u32 sgl_flags_last_element;
1400 	u32 sgl_flags_end_buffer;
1401 	struct chain_tracker *chain_req;
1402 
1403 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
1404 
1405 	/* init scatter gather flags */
1406 	sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
1407 	if (scmd->sc_data_direction == DMA_TO_DEVICE)
1408 		sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
1409 	sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
1410 	    << MPI2_SGE_FLAGS_SHIFT;
1411 	sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
1412 	    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
1413 	    << MPI2_SGE_FLAGS_SHIFT;
1414 	sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1415 
1416 	sg_scmd = scsi_sglist(scmd);
1417 	sges_left = scsi_dma_map(scmd);
1418 	if (sges_left < 0) {
1419 		sdev_printk(KERN_ERR, scmd->device,
1420 		 "pci_map_sg failed: request for %d bytes!\n",
1421 		 scsi_bufflen(scmd));
1422 		return -ENOMEM;
1423 	}
1424 
1425 	sg_local = &mpi_request->SGL;
1426 	sges_in_segment = ioc->max_sges_in_main_message;
1427 	if (sges_left <= sges_in_segment)
1428 		goto fill_in_last_segment;
1429 
1430 	mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
1431 	    (sges_in_segment * ioc->sge_size))/4;
1432 
1433 	/* fill in main message segment when there is a chain following */
1434 	while (sges_in_segment) {
1435 		if (sges_in_segment == 1)
1436 			ioc->base_add_sg_single(sg_local,
1437 			    sgl_flags_last_element | sg_dma_len(sg_scmd),
1438 			    sg_dma_address(sg_scmd));
1439 		else
1440 			ioc->base_add_sg_single(sg_local, sgl_flags |
1441 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1442 		sg_scmd = sg_next(sg_scmd);
1443 		sg_local += ioc->sge_size;
1444 		sges_left--;
1445 		sges_in_segment--;
1446 	}
1447 
1448 	/* initializing the chain flags and pointers */
1449 	chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
1450 	chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1451 	if (!chain_req)
1452 		return -1;
1453 	chain = chain_req->chain_buffer;
1454 	chain_dma = chain_req->chain_buffer_dma;
1455 	do {
1456 		sges_in_segment = (sges_left <=
1457 		    ioc->max_sges_in_chain_message) ? sges_left :
1458 		    ioc->max_sges_in_chain_message;
1459 		chain_offset = (sges_left == sges_in_segment) ?
1460 		    0 : (sges_in_segment * ioc->sge_size)/4;
1461 		chain_length = sges_in_segment * ioc->sge_size;
1462 		if (chain_offset) {
1463 			chain_offset = chain_offset <<
1464 			    MPI2_SGE_CHAIN_OFFSET_SHIFT;
1465 			chain_length += ioc->sge_size;
1466 		}
1467 		ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
1468 		    chain_length, chain_dma);
1469 		sg_local = chain;
1470 		if (!chain_offset)
1471 			goto fill_in_last_segment;
1472 
1473 		/* fill in chain segments */
1474 		while (sges_in_segment) {
1475 			if (sges_in_segment == 1)
1476 				ioc->base_add_sg_single(sg_local,
1477 				    sgl_flags_last_element |
1478 				    sg_dma_len(sg_scmd),
1479 				    sg_dma_address(sg_scmd));
1480 			else
1481 				ioc->base_add_sg_single(sg_local, sgl_flags |
1482 				    sg_dma_len(sg_scmd),
1483 				    sg_dma_address(sg_scmd));
1484 			sg_scmd = sg_next(sg_scmd);
1485 			sg_local += ioc->sge_size;
1486 			sges_left--;
1487 			sges_in_segment--;
1488 		}
1489 
1490 		chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1491 		if (!chain_req)
1492 			return -1;
1493 		chain = chain_req->chain_buffer;
1494 		chain_dma = chain_req->chain_buffer_dma;
1495 	} while (1);
1496 
1497 
1498  fill_in_last_segment:
1499 
1500 	/* fill the last segment */
1501 	while (sges_left) {
1502 		if (sges_left == 1)
1503 			ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
1504 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1505 		else
1506 			ioc->base_add_sg_single(sg_local, sgl_flags |
1507 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1508 		sg_scmd = sg_next(sg_scmd);
1509 		sg_local += ioc->sge_size;
1510 		sges_left--;
1511 	}
1512 
1513 	return 0;
1514 }
1515 
1516 /**
1517  * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
1518  * @ioc: per adapter object
1519  * @scmd: scsi command
1520  * @smid: system request message index
1521  * Context: none.
1522  *
1523  * The main routine that builds scatter gather table from a given
1524  * scsi request sent via the .queuecommand main handler.
1525  *
1526  * Returns 0 success, anything else error
1527  */
1528 static int
1529 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
1530 	struct scsi_cmnd *scmd, u16 smid)
1531 {
1532 	Mpi2SCSIIORequest_t *mpi_request;
1533 	dma_addr_t chain_dma;
1534 	struct scatterlist *sg_scmd;
1535 	void *sg_local, *chain;
1536 	u32 chain_offset;
1537 	u32 chain_length;
1538 	int sges_left;
1539 	u32 sges_in_segment;
1540 	u8 simple_sgl_flags;
1541 	u8 simple_sgl_flags_last;
1542 	u8 chain_sgl_flags;
1543 	struct chain_tracker *chain_req;
1544 
1545 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
1546 
1547 	/* init scatter gather flags */
1548 	simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1549 	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1550 	simple_sgl_flags_last = simple_sgl_flags |
1551 	    MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1552 	chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
1553 	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1554 
1555 	sg_scmd = scsi_sglist(scmd);
1556 	sges_left = scsi_dma_map(scmd);
1557 	if (sges_left < 0) {
1558 		sdev_printk(KERN_ERR, scmd->device,
1559 			"pci_map_sg failed: request for %d bytes!\n",
1560 			scsi_bufflen(scmd));
1561 		return -ENOMEM;
1562 	}
1563 
1564 	sg_local = &mpi_request->SGL;
1565 	sges_in_segment = (ioc->request_sz -
1566 	    offsetof(Mpi2SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
1567 	if (sges_left <= sges_in_segment)
1568 		goto fill_in_last_segment;
1569 
1570 	mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
1571 	    (offsetof(Mpi2SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
1572 
1573 	/* fill in main message segment when there is a chain following */
1574 	while (sges_in_segment > 1) {
1575 		_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1576 		    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1577 		sg_scmd = sg_next(sg_scmd);
1578 		sg_local += ioc->sge_size_ieee;
1579 		sges_left--;
1580 		sges_in_segment--;
1581 	}
1582 
1583 	/* initializing the pointers */
1584 	chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1585 	if (!chain_req)
1586 		return -1;
1587 	chain = chain_req->chain_buffer;
1588 	chain_dma = chain_req->chain_buffer_dma;
1589 	do {
1590 		sges_in_segment = (sges_left <=
1591 		    ioc->max_sges_in_chain_message) ? sges_left :
1592 		    ioc->max_sges_in_chain_message;
1593 		chain_offset = (sges_left == sges_in_segment) ?
1594 		    0 : sges_in_segment;
1595 		chain_length = sges_in_segment * ioc->sge_size_ieee;
1596 		if (chain_offset)
1597 			chain_length += ioc->sge_size_ieee;
1598 		_base_add_sg_single_ieee(sg_local, chain_sgl_flags,
1599 		    chain_offset, chain_length, chain_dma);
1600 
1601 		sg_local = chain;
1602 		if (!chain_offset)
1603 			goto fill_in_last_segment;
1604 
1605 		/* fill in chain segments */
1606 		while (sges_in_segment) {
1607 			_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1608 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1609 			sg_scmd = sg_next(sg_scmd);
1610 			sg_local += ioc->sge_size_ieee;
1611 			sges_left--;
1612 			sges_in_segment--;
1613 		}
1614 
1615 		chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1616 		if (!chain_req)
1617 			return -1;
1618 		chain = chain_req->chain_buffer;
1619 		chain_dma = chain_req->chain_buffer_dma;
1620 	} while (1);
1621 
1622 
1623  fill_in_last_segment:
1624 
1625 	/* fill the last segment */
1626 	while (sges_left > 0) {
1627 		if (sges_left == 1)
1628 			_base_add_sg_single_ieee(sg_local,
1629 			    simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
1630 			    sg_dma_address(sg_scmd));
1631 		else
1632 			_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1633 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1634 		sg_scmd = sg_next(sg_scmd);
1635 		sg_local += ioc->sge_size_ieee;
1636 		sges_left--;
1637 	}
1638 
1639 	return 0;
1640 }
1641 
1642 /**
1643  * _base_build_sg_ieee - build generic sg for IEEE format
1644  * @ioc: per adapter object
1645  * @psge: virtual address for SGE
1646  * @data_out_dma: physical address for WRITES
1647  * @data_out_sz: data xfer size for WRITES
1648  * @data_in_dma: physical address for READS
1649  * @data_in_sz: data xfer size for READS
1650  *
1651  * Return nothing.
1652  */
1653 static void
1654 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
1655 	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1656 	size_t data_in_sz)
1657 {
1658 	u8 sgl_flags;
1659 
1660 	if (!data_out_sz && !data_in_sz) {
1661 		_base_build_zero_len_sge_ieee(ioc, psge);
1662 		return;
1663 	}
1664 
1665 	if (data_out_sz && data_in_sz) {
1666 		/* WRITE sgel first */
1667 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1668 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1669 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1670 		    data_out_dma);
1671 
1672 		/* incr sgel */
1673 		psge += ioc->sge_size_ieee;
1674 
1675 		/* READ sgel last */
1676 		sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1677 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1678 		    data_in_dma);
1679 	} else if (data_out_sz) /* WRITE */ {
1680 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1681 		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1682 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1683 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1684 		    data_out_dma);
1685 	} else if (data_in_sz) /* READ */ {
1686 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1687 		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1688 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1689 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1690 		    data_in_dma);
1691 	}
1692 }
1693 
1694 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
1695 
1696 /**
1697  * _base_config_dma_addressing - set dma addressing
1698  * @ioc: per adapter object
1699  * @pdev: PCI device struct
1700  *
1701  * Returns 0 for success, non-zero for failure.
1702  */
1703 static int
1704 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
1705 {
1706 	struct sysinfo s;
1707 	u64 consistent_dma_mask;
1708 
1709 	if (ioc->dma_mask)
1710 		consistent_dma_mask = DMA_BIT_MASK(64);
1711 	else
1712 		consistent_dma_mask = DMA_BIT_MASK(32);
1713 
1714 	if (sizeof(dma_addr_t) > 4) {
1715 		const uint64_t required_mask =
1716 		    dma_get_required_mask(&pdev->dev);
1717 		if ((required_mask > DMA_BIT_MASK(32)) &&
1718 		    !pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
1719 		    !pci_set_consistent_dma_mask(pdev, consistent_dma_mask)) {
1720 			ioc->base_add_sg_single = &_base_add_sg_single_64;
1721 			ioc->sge_size = sizeof(Mpi2SGESimple64_t);
1722 			ioc->dma_mask = 64;
1723 			goto out;
1724 		}
1725 	}
1726 
1727 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))
1728 	    && !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
1729 		ioc->base_add_sg_single = &_base_add_sg_single_32;
1730 		ioc->sge_size = sizeof(Mpi2SGESimple32_t);
1731 		ioc->dma_mask = 32;
1732 	} else
1733 		return -ENODEV;
1734 
1735  out:
1736 	si_meminfo(&s);
1737 	pr_info(MPT3SAS_FMT
1738 		"%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
1739 		ioc->name, ioc->dma_mask, convert_to_kb(s.totalram));
1740 
1741 	return 0;
1742 }
1743 
1744 static int
1745 _base_change_consistent_dma_mask(struct MPT3SAS_ADAPTER *ioc,
1746 				      struct pci_dev *pdev)
1747 {
1748 	if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
1749 		if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
1750 			return -ENODEV;
1751 	}
1752 	return 0;
1753 }
1754 
1755 /**
1756  * _base_check_enable_msix - checks MSIX capabable.
1757  * @ioc: per adapter object
1758  *
1759  * Check to see if card is capable of MSIX, and set number
1760  * of available msix vectors
1761  */
1762 static int
1763 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1764 {
1765 	int base;
1766 	u16 message_control;
1767 
1768 	/* Check whether controller SAS2008 B0 controller,
1769 	 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
1770 	 */
1771 	if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
1772 	    ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
1773 		return -EINVAL;
1774 	}
1775 
1776 	base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
1777 	if (!base) {
1778 		dfailprintk(ioc, pr_info(MPT3SAS_FMT "msix not supported\n",
1779 			ioc->name));
1780 		return -EINVAL;
1781 	}
1782 
1783 	/* get msix vector count */
1784 	/* NUMA_IO not supported for older controllers */
1785 	if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
1786 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
1787 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
1788 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
1789 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
1790 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
1791 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
1792 		ioc->msix_vector_count = 1;
1793 	else {
1794 		pci_read_config_word(ioc->pdev, base + 2, &message_control);
1795 		ioc->msix_vector_count = (message_control & 0x3FF) + 1;
1796 	}
1797 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
1798 		"msix is supported, vector_count(%d)\n",
1799 		ioc->name, ioc->msix_vector_count));
1800 	return 0;
1801 }
1802 
1803 /**
1804  * _base_free_irq - free irq
1805  * @ioc: per adapter object
1806  *
1807  * Freeing respective reply_queue from the list.
1808  */
1809 static void
1810 _base_free_irq(struct MPT3SAS_ADAPTER *ioc)
1811 {
1812 	struct adapter_reply_queue *reply_q, *next;
1813 
1814 	if (list_empty(&ioc->reply_queue_list))
1815 		return;
1816 
1817 	list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1818 		list_del(&reply_q->list);
1819 		if (smp_affinity_enable) {
1820 			irq_set_affinity_hint(reply_q->vector, NULL);
1821 			free_cpumask_var(reply_q->affinity_hint);
1822 		}
1823 		free_irq(reply_q->vector, reply_q);
1824 		kfree(reply_q);
1825 	}
1826 }
1827 
1828 /**
1829  * _base_request_irq - request irq
1830  * @ioc: per adapter object
1831  * @index: msix index into vector table
1832  * @vector: irq vector
1833  *
1834  * Inserting respective reply_queue into the list.
1835  */
1836 static int
1837 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index, u32 vector)
1838 {
1839 	struct adapter_reply_queue *reply_q;
1840 	int r;
1841 
1842 	reply_q =  kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
1843 	if (!reply_q) {
1844 		pr_err(MPT3SAS_FMT "unable to allocate memory %d!\n",
1845 		    ioc->name, (int)sizeof(struct adapter_reply_queue));
1846 		return -ENOMEM;
1847 	}
1848 	reply_q->ioc = ioc;
1849 	reply_q->msix_index = index;
1850 	reply_q->vector = vector;
1851 
1852 	if (smp_affinity_enable) {
1853 		if (!zalloc_cpumask_var(&reply_q->affinity_hint, GFP_KERNEL)) {
1854 			kfree(reply_q);
1855 			return -ENOMEM;
1856 		}
1857 	}
1858 
1859 	atomic_set(&reply_q->busy, 0);
1860 	if (ioc->msix_enable)
1861 		snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
1862 		    ioc->driver_name, ioc->id, index);
1863 	else
1864 		snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
1865 		    ioc->driver_name, ioc->id);
1866 	r = request_irq(vector, _base_interrupt, IRQF_SHARED, reply_q->name,
1867 	    reply_q);
1868 	if (r) {
1869 		pr_err(MPT3SAS_FMT "unable to allocate interrupt %d!\n",
1870 		    reply_q->name, vector);
1871 		free_cpumask_var(reply_q->affinity_hint);
1872 		kfree(reply_q);
1873 		return -EBUSY;
1874 	}
1875 
1876 	INIT_LIST_HEAD(&reply_q->list);
1877 	list_add_tail(&reply_q->list, &ioc->reply_queue_list);
1878 	return 0;
1879 }
1880 
1881 /**
1882  * _base_assign_reply_queues - assigning msix index for each cpu
1883  * @ioc: per adapter object
1884  *
1885  * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
1886  *
1887  * It would nice if we could call irq_set_affinity, however it is not
1888  * an exported symbol
1889  */
1890 static void
1891 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
1892 {
1893 	unsigned int cpu, nr_cpus, nr_msix, index = 0;
1894 	struct adapter_reply_queue *reply_q;
1895 
1896 	if (!_base_is_controller_msix_enabled(ioc))
1897 		return;
1898 
1899 	memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
1900 
1901 	nr_cpus = num_online_cpus();
1902 	nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
1903 					       ioc->facts.MaxMSIxVectors);
1904 	if (!nr_msix)
1905 		return;
1906 
1907 	cpu = cpumask_first(cpu_online_mask);
1908 
1909 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1910 
1911 		unsigned int i, group = nr_cpus / nr_msix;
1912 
1913 		if (cpu >= nr_cpus)
1914 			break;
1915 
1916 		if (index < nr_cpus % nr_msix)
1917 			group++;
1918 
1919 		for (i = 0 ; i < group ; i++) {
1920 			ioc->cpu_msix_table[cpu] = index;
1921 			if (smp_affinity_enable)
1922 				cpumask_or(reply_q->affinity_hint,
1923 				   reply_q->affinity_hint, get_cpu_mask(cpu));
1924 			cpu = cpumask_next(cpu, cpu_online_mask);
1925 		}
1926 		if (smp_affinity_enable)
1927 			if (irq_set_affinity_hint(reply_q->vector,
1928 					   reply_q->affinity_hint))
1929 				dinitprintk(ioc, pr_info(MPT3SAS_FMT
1930 				 "Err setting affinity hint to irq vector %d\n",
1931 				 ioc->name, reply_q->vector));
1932 		index++;
1933 	}
1934 }
1935 
1936 /**
1937  * _base_disable_msix - disables msix
1938  * @ioc: per adapter object
1939  *
1940  */
1941 static void
1942 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
1943 {
1944 	if (!ioc->msix_enable)
1945 		return;
1946 	pci_disable_msix(ioc->pdev);
1947 	ioc->msix_enable = 0;
1948 }
1949 
1950 /**
1951  * _base_enable_msix - enables msix, failback to io_apic
1952  * @ioc: per adapter object
1953  *
1954  */
1955 static int
1956 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1957 {
1958 	struct msix_entry *entries, *a;
1959 	int r;
1960 	int i;
1961 	u8 try_msix = 0;
1962 
1963 	if (msix_disable == -1 || msix_disable == 0)
1964 		try_msix = 1;
1965 
1966 	if (!try_msix)
1967 		goto try_ioapic;
1968 
1969 	if (_base_check_enable_msix(ioc) != 0)
1970 		goto try_ioapic;
1971 
1972 	ioc->reply_queue_count = min_t(int, ioc->cpu_count,
1973 	    ioc->msix_vector_count);
1974 
1975 	printk(MPT3SAS_FMT "MSI-X vectors supported: %d, no of cores"
1976 	  ": %d, max_msix_vectors: %d\n", ioc->name, ioc->msix_vector_count,
1977 	  ioc->cpu_count, max_msix_vectors);
1978 
1979 	if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
1980 		max_msix_vectors = 8;
1981 
1982 	if (max_msix_vectors > 0) {
1983 		ioc->reply_queue_count = min_t(int, max_msix_vectors,
1984 			ioc->reply_queue_count);
1985 		ioc->msix_vector_count = ioc->reply_queue_count;
1986 	} else if (max_msix_vectors == 0)
1987 		goto try_ioapic;
1988 
1989 	if (ioc->msix_vector_count < ioc->cpu_count)
1990 		smp_affinity_enable = 0;
1991 
1992 	entries = kcalloc(ioc->reply_queue_count, sizeof(struct msix_entry),
1993 	    GFP_KERNEL);
1994 	if (!entries) {
1995 		dfailprintk(ioc, pr_info(MPT3SAS_FMT
1996 			"kcalloc failed @ at %s:%d/%s() !!!\n",
1997 			ioc->name, __FILE__, __LINE__, __func__));
1998 		goto try_ioapic;
1999 	}
2000 
2001 	for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++)
2002 		a->entry = i;
2003 
2004 	r = pci_enable_msix_exact(ioc->pdev, entries, ioc->reply_queue_count);
2005 	if (r) {
2006 		dfailprintk(ioc, pr_info(MPT3SAS_FMT
2007 			"pci_enable_msix_exact failed (r=%d) !!!\n",
2008 			ioc->name, r));
2009 		kfree(entries);
2010 		goto try_ioapic;
2011 	}
2012 
2013 	ioc->msix_enable = 1;
2014 	for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++) {
2015 		r = _base_request_irq(ioc, i, a->vector);
2016 		if (r) {
2017 			_base_free_irq(ioc);
2018 			_base_disable_msix(ioc);
2019 			kfree(entries);
2020 			goto try_ioapic;
2021 		}
2022 	}
2023 
2024 	kfree(entries);
2025 	return 0;
2026 
2027 /* failback to io_apic interrupt routing */
2028  try_ioapic:
2029 
2030 	ioc->reply_queue_count = 1;
2031 	r = _base_request_irq(ioc, 0, ioc->pdev->irq);
2032 
2033 	return r;
2034 }
2035 
2036 /**
2037  * mpt3sas_base_unmap_resources - free controller resources
2038  * @ioc: per adapter object
2039  */
2040 void
2041 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
2042 {
2043 	struct pci_dev *pdev = ioc->pdev;
2044 
2045 	dexitprintk(ioc, printk(MPT3SAS_FMT "%s\n",
2046 		ioc->name, __func__));
2047 
2048 	_base_free_irq(ioc);
2049 	_base_disable_msix(ioc);
2050 
2051 	if (ioc->msix96_vector) {
2052 		kfree(ioc->replyPostRegisterIndex);
2053 		ioc->replyPostRegisterIndex = NULL;
2054 	}
2055 
2056 	if (ioc->chip_phys) {
2057 		iounmap(ioc->chip);
2058 		ioc->chip_phys = 0;
2059 	}
2060 
2061 	if (pci_is_enabled(pdev)) {
2062 		pci_release_selected_regions(ioc->pdev, ioc->bars);
2063 		pci_disable_pcie_error_reporting(pdev);
2064 		pci_disable_device(pdev);
2065 	}
2066 }
2067 
2068 /**
2069  * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
2070  * @ioc: per adapter object
2071  *
2072  * Returns 0 for success, non-zero for failure.
2073  */
2074 int
2075 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
2076 {
2077 	struct pci_dev *pdev = ioc->pdev;
2078 	u32 memap_sz;
2079 	u32 pio_sz;
2080 	int i, r = 0;
2081 	u64 pio_chip = 0;
2082 	u64 chip_phys = 0;
2083 	struct adapter_reply_queue *reply_q;
2084 
2085 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n",
2086 	    ioc->name, __func__));
2087 
2088 	ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
2089 	if (pci_enable_device_mem(pdev)) {
2090 		pr_warn(MPT3SAS_FMT "pci_enable_device_mem: failed\n",
2091 			ioc->name);
2092 		ioc->bars = 0;
2093 		return -ENODEV;
2094 	}
2095 
2096 
2097 	if (pci_request_selected_regions(pdev, ioc->bars,
2098 	    ioc->driver_name)) {
2099 		pr_warn(MPT3SAS_FMT "pci_request_selected_regions: failed\n",
2100 			ioc->name);
2101 		ioc->bars = 0;
2102 		r = -ENODEV;
2103 		goto out_fail;
2104 	}
2105 
2106 /* AER (Advanced Error Reporting) hooks */
2107 	pci_enable_pcie_error_reporting(pdev);
2108 
2109 	pci_set_master(pdev);
2110 
2111 
2112 	if (_base_config_dma_addressing(ioc, pdev) != 0) {
2113 		pr_warn(MPT3SAS_FMT "no suitable DMA mask for %s\n",
2114 		    ioc->name, pci_name(pdev));
2115 		r = -ENODEV;
2116 		goto out_fail;
2117 	}
2118 
2119 	for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
2120 	     (!memap_sz || !pio_sz); i++) {
2121 		if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
2122 			if (pio_sz)
2123 				continue;
2124 			pio_chip = (u64)pci_resource_start(pdev, i);
2125 			pio_sz = pci_resource_len(pdev, i);
2126 		} else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
2127 			if (memap_sz)
2128 				continue;
2129 			ioc->chip_phys = pci_resource_start(pdev, i);
2130 			chip_phys = (u64)ioc->chip_phys;
2131 			memap_sz = pci_resource_len(pdev, i);
2132 			ioc->chip = ioremap(ioc->chip_phys, memap_sz);
2133 		}
2134 	}
2135 
2136 	if (ioc->chip == NULL) {
2137 		pr_err(MPT3SAS_FMT "unable to map adapter memory! "
2138 			" or resource not found\n", ioc->name);
2139 		r = -EINVAL;
2140 		goto out_fail;
2141 	}
2142 
2143 	_base_mask_interrupts(ioc);
2144 
2145 	r = _base_get_ioc_facts(ioc, CAN_SLEEP);
2146 	if (r)
2147 		goto out_fail;
2148 
2149 	if (!ioc->rdpq_array_enable_assigned) {
2150 		ioc->rdpq_array_enable = ioc->rdpq_array_capable;
2151 		ioc->rdpq_array_enable_assigned = 1;
2152 	}
2153 
2154 	r = _base_enable_msix(ioc);
2155 	if (r)
2156 		goto out_fail;
2157 
2158 	/* Use the Combined reply queue feature only for SAS3 C0 & higher
2159 	 * revision HBAs and also only when reply queue count is greater than 8
2160 	 */
2161 	if (ioc->msix96_vector && ioc->reply_queue_count > 8) {
2162 		/* Determine the Supplemental Reply Post Host Index Registers
2163 		 * Addresse. Supplemental Reply Post Host Index Registers
2164 		 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
2165 		 * each register is at offset bytes of
2166 		 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
2167 		 */
2168 		ioc->replyPostRegisterIndex = kcalloc(
2169 		     MPT3_SUP_REPLY_POST_HOST_INDEX_REG_COUNT,
2170 		     sizeof(resource_size_t *), GFP_KERNEL);
2171 		if (!ioc->replyPostRegisterIndex) {
2172 			dfailprintk(ioc, printk(MPT3SAS_FMT
2173 			"allocation for reply Post Register Index failed!!!\n",
2174 								   ioc->name));
2175 			r = -ENOMEM;
2176 			goto out_fail;
2177 		}
2178 
2179 		for (i = 0; i < MPT3_SUP_REPLY_POST_HOST_INDEX_REG_COUNT; i++) {
2180 			ioc->replyPostRegisterIndex[i] = (resource_size_t *)
2181 			     ((u8 *)&ioc->chip->Doorbell +
2182 			     MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
2183 			     (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
2184 		}
2185 	} else
2186 		ioc->msix96_vector = 0;
2187 
2188 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
2189 		pr_info(MPT3SAS_FMT "%s: IRQ %d\n",
2190 		    reply_q->name,  ((ioc->msix_enable) ? "PCI-MSI-X enabled" :
2191 		    "IO-APIC enabled"), reply_q->vector);
2192 
2193 	pr_info(MPT3SAS_FMT "iomem(0x%016llx), mapped(0x%p), size(%d)\n",
2194 	    ioc->name, (unsigned long long)chip_phys, ioc->chip, memap_sz);
2195 	pr_info(MPT3SAS_FMT "ioport(0x%016llx), size(%d)\n",
2196 	    ioc->name, (unsigned long long)pio_chip, pio_sz);
2197 
2198 	/* Save PCI configuration state for recovery from PCI AER/EEH errors */
2199 	pci_save_state(pdev);
2200 	return 0;
2201 
2202  out_fail:
2203 	mpt3sas_base_unmap_resources(ioc);
2204 	return r;
2205 }
2206 
2207 /**
2208  * mpt3sas_base_get_msg_frame - obtain request mf pointer
2209  * @ioc: per adapter object
2210  * @smid: system request message index(smid zero is invalid)
2211  *
2212  * Returns virt pointer to message frame.
2213  */
2214 void *
2215 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2216 {
2217 	return (void *)(ioc->request + (smid * ioc->request_sz));
2218 }
2219 
2220 /**
2221  * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
2222  * @ioc: per adapter object
2223  * @smid: system request message index
2224  *
2225  * Returns virt pointer to sense buffer.
2226  */
2227 void *
2228 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2229 {
2230 	return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
2231 }
2232 
2233 /**
2234  * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
2235  * @ioc: per adapter object
2236  * @smid: system request message index
2237  *
2238  * Returns phys pointer to the low 32bit address of the sense buffer.
2239  */
2240 __le32
2241 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2242 {
2243 	return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
2244 	    SCSI_SENSE_BUFFERSIZE));
2245 }
2246 
2247 /**
2248  * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
2249  * @ioc: per adapter object
2250  * @phys_addr: lower 32 physical addr of the reply
2251  *
2252  * Converts 32bit lower physical addr into a virt address.
2253  */
2254 void *
2255 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
2256 {
2257 	if (!phys_addr)
2258 		return NULL;
2259 	return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
2260 }
2261 
2262 static inline u8
2263 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc)
2264 {
2265 	return ioc->cpu_msix_table[raw_smp_processor_id()];
2266 }
2267 
2268 /**
2269  * mpt3sas_base_get_smid - obtain a free smid from internal queue
2270  * @ioc: per adapter object
2271  * @cb_idx: callback index
2272  *
2273  * Returns smid (zero is invalid)
2274  */
2275 u16
2276 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
2277 {
2278 	unsigned long flags;
2279 	struct request_tracker *request;
2280 	u16 smid;
2281 
2282 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2283 	if (list_empty(&ioc->internal_free_list)) {
2284 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2285 		pr_err(MPT3SAS_FMT "%s: smid not available\n",
2286 		    ioc->name, __func__);
2287 		return 0;
2288 	}
2289 
2290 	request = list_entry(ioc->internal_free_list.next,
2291 	    struct request_tracker, tracker_list);
2292 	request->cb_idx = cb_idx;
2293 	smid = request->smid;
2294 	list_del(&request->tracker_list);
2295 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2296 	return smid;
2297 }
2298 
2299 /**
2300  * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
2301  * @ioc: per adapter object
2302  * @cb_idx: callback index
2303  * @scmd: pointer to scsi command object
2304  *
2305  * Returns smid (zero is invalid)
2306  */
2307 u16
2308 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
2309 	struct scsi_cmnd *scmd)
2310 {
2311 	unsigned long flags;
2312 	struct scsiio_tracker *request;
2313 	u16 smid;
2314 
2315 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2316 	if (list_empty(&ioc->free_list)) {
2317 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2318 		pr_err(MPT3SAS_FMT "%s: smid not available\n",
2319 		    ioc->name, __func__);
2320 		return 0;
2321 	}
2322 
2323 	request = list_entry(ioc->free_list.next,
2324 	    struct scsiio_tracker, tracker_list);
2325 	request->scmd = scmd;
2326 	request->cb_idx = cb_idx;
2327 	smid = request->smid;
2328 	request->msix_io = _base_get_msix_index(ioc);
2329 	list_del(&request->tracker_list);
2330 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2331 	return smid;
2332 }
2333 
2334 /**
2335  * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
2336  * @ioc: per adapter object
2337  * @cb_idx: callback index
2338  *
2339  * Returns smid (zero is invalid)
2340  */
2341 u16
2342 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
2343 {
2344 	unsigned long flags;
2345 	struct request_tracker *request;
2346 	u16 smid;
2347 
2348 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2349 	if (list_empty(&ioc->hpr_free_list)) {
2350 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2351 		return 0;
2352 	}
2353 
2354 	request = list_entry(ioc->hpr_free_list.next,
2355 	    struct request_tracker, tracker_list);
2356 	request->cb_idx = cb_idx;
2357 	smid = request->smid;
2358 	list_del(&request->tracker_list);
2359 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2360 	return smid;
2361 }
2362 
2363 /**
2364  * mpt3sas_base_free_smid - put smid back on free_list
2365  * @ioc: per adapter object
2366  * @smid: system request message index
2367  *
2368  * Return nothing.
2369  */
2370 void
2371 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2372 {
2373 	unsigned long flags;
2374 	int i;
2375 	struct chain_tracker *chain_req, *next;
2376 
2377 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2378 	if (smid < ioc->hi_priority_smid) {
2379 		/* scsiio queue */
2380 		i = smid - 1;
2381 		if (!list_empty(&ioc->scsi_lookup[i].chain_list)) {
2382 			list_for_each_entry_safe(chain_req, next,
2383 			    &ioc->scsi_lookup[i].chain_list, tracker_list) {
2384 				list_del_init(&chain_req->tracker_list);
2385 				list_add(&chain_req->tracker_list,
2386 				    &ioc->free_chain_list);
2387 			}
2388 		}
2389 		ioc->scsi_lookup[i].cb_idx = 0xFF;
2390 		ioc->scsi_lookup[i].scmd = NULL;
2391 		ioc->scsi_lookup[i].direct_io = 0;
2392 		list_add(&ioc->scsi_lookup[i].tracker_list, &ioc->free_list);
2393 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2394 
2395 		/*
2396 		 * See _wait_for_commands_to_complete() call with regards
2397 		 * to this code.
2398 		 */
2399 		if (ioc->shost_recovery && ioc->pending_io_count) {
2400 			if (ioc->pending_io_count == 1)
2401 				wake_up(&ioc->reset_wq);
2402 			ioc->pending_io_count--;
2403 		}
2404 		return;
2405 	} else if (smid < ioc->internal_smid) {
2406 		/* hi-priority */
2407 		i = smid - ioc->hi_priority_smid;
2408 		ioc->hpr_lookup[i].cb_idx = 0xFF;
2409 		list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
2410 	} else if (smid <= ioc->hba_queue_depth) {
2411 		/* internal queue */
2412 		i = smid - ioc->internal_smid;
2413 		ioc->internal_lookup[i].cb_idx = 0xFF;
2414 		list_add(&ioc->internal_lookup[i].tracker_list,
2415 		    &ioc->internal_free_list);
2416 	}
2417 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2418 }
2419 
2420 /**
2421  * _base_writeq - 64 bit write to MMIO
2422  * @ioc: per adapter object
2423  * @b: data payload
2424  * @addr: address in MMIO space
2425  * @writeq_lock: spin lock
2426  *
2427  * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
2428  * care of 32 bit environment where its not quarenteed to send the entire word
2429  * in one transfer.
2430  */
2431 #if defined(writeq) && defined(CONFIG_64BIT)
2432 static inline void
2433 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2434 {
2435 	writeq(cpu_to_le64(b), addr);
2436 }
2437 #else
2438 static inline void
2439 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2440 {
2441 	unsigned long flags;
2442 	__u64 data_out = cpu_to_le64(b);
2443 
2444 	spin_lock_irqsave(writeq_lock, flags);
2445 	writel((u32)(data_out), addr);
2446 	writel((u32)(data_out >> 32), (addr + 4));
2447 	spin_unlock_irqrestore(writeq_lock, flags);
2448 }
2449 #endif
2450 
2451 /**
2452  * mpt3sas_base_put_smid_scsi_io - send SCSI_IO request to firmware
2453  * @ioc: per adapter object
2454  * @smid: system request message index
2455  * @handle: device handle
2456  *
2457  * Return nothing.
2458  */
2459 void
2460 mpt3sas_base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
2461 {
2462 	Mpi2RequestDescriptorUnion_t descriptor;
2463 	u64 *request = (u64 *)&descriptor;
2464 
2465 
2466 	descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
2467 	descriptor.SCSIIO.MSIxIndex =  _base_get_msix_index(ioc);
2468 	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2469 	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2470 	descriptor.SCSIIO.LMID = 0;
2471 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2472 	    &ioc->scsi_lookup_lock);
2473 }
2474 
2475 /**
2476  * mpt3sas_base_put_smid_fast_path - send fast path request to firmware
2477  * @ioc: per adapter object
2478  * @smid: system request message index
2479  * @handle: device handle
2480  *
2481  * Return nothing.
2482  */
2483 void
2484 mpt3sas_base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2485 	u16 handle)
2486 {
2487 	Mpi2RequestDescriptorUnion_t descriptor;
2488 	u64 *request = (u64 *)&descriptor;
2489 
2490 	descriptor.SCSIIO.RequestFlags =
2491 	    MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
2492 	descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
2493 	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2494 	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2495 	descriptor.SCSIIO.LMID = 0;
2496 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2497 	    &ioc->scsi_lookup_lock);
2498 }
2499 
2500 /**
2501  * mpt3sas_base_put_smid_hi_priority - send Task Managment request to firmware
2502  * @ioc: per adapter object
2503  * @smid: system request message index
2504  * @msix_task: msix_task will be same as msix of IO incase of task abort else 0.
2505  * Return nothing.
2506  */
2507 void
2508 mpt3sas_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2509 	u16 msix_task)
2510 {
2511 	Mpi2RequestDescriptorUnion_t descriptor;
2512 	u64 *request = (u64 *)&descriptor;
2513 
2514 	descriptor.HighPriority.RequestFlags =
2515 	    MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
2516 	descriptor.HighPriority.MSIxIndex =  msix_task;
2517 	descriptor.HighPriority.SMID = cpu_to_le16(smid);
2518 	descriptor.HighPriority.LMID = 0;
2519 	descriptor.HighPriority.Reserved1 = 0;
2520 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2521 	    &ioc->scsi_lookup_lock);
2522 }
2523 
2524 /**
2525  * mpt3sas_base_put_smid_default - Default, primarily used for config pages
2526  * @ioc: per adapter object
2527  * @smid: system request message index
2528  *
2529  * Return nothing.
2530  */
2531 void
2532 mpt3sas_base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2533 {
2534 	Mpi2RequestDescriptorUnion_t descriptor;
2535 	u64 *request = (u64 *)&descriptor;
2536 
2537 	descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2538 	descriptor.Default.MSIxIndex =  _base_get_msix_index(ioc);
2539 	descriptor.Default.SMID = cpu_to_le16(smid);
2540 	descriptor.Default.LMID = 0;
2541 	descriptor.Default.DescriptorTypeDependent = 0;
2542 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2543 	    &ioc->scsi_lookup_lock);
2544 }
2545 
2546 /**
2547  * _base_display_OEMs_branding - Display branding string
2548  * @ioc: per adapter object
2549  *
2550  * Return nothing.
2551  */
2552 static void
2553 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
2554 {
2555 	if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
2556 		return;
2557 
2558 	switch (ioc->pdev->subsystem_vendor) {
2559 	case PCI_VENDOR_ID_INTEL:
2560 		switch (ioc->pdev->device) {
2561 		case MPI2_MFGPAGE_DEVID_SAS2008:
2562 			switch (ioc->pdev->subsystem_device) {
2563 			case MPT2SAS_INTEL_RMS2LL080_SSDID:
2564 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2565 				    MPT2SAS_INTEL_RMS2LL080_BRANDING);
2566 				break;
2567 			case MPT2SAS_INTEL_RMS2LL040_SSDID:
2568 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2569 				    MPT2SAS_INTEL_RMS2LL040_BRANDING);
2570 				break;
2571 			case MPT2SAS_INTEL_SSD910_SSDID:
2572 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2573 				    MPT2SAS_INTEL_SSD910_BRANDING);
2574 				break;
2575 			default:
2576 				pr_info(MPT3SAS_FMT
2577 				 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2578 				 ioc->name, ioc->pdev->subsystem_device);
2579 				break;
2580 			}
2581 		case MPI2_MFGPAGE_DEVID_SAS2308_2:
2582 			switch (ioc->pdev->subsystem_device) {
2583 			case MPT2SAS_INTEL_RS25GB008_SSDID:
2584 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2585 				    MPT2SAS_INTEL_RS25GB008_BRANDING);
2586 				break;
2587 			case MPT2SAS_INTEL_RMS25JB080_SSDID:
2588 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2589 				    MPT2SAS_INTEL_RMS25JB080_BRANDING);
2590 				break;
2591 			case MPT2SAS_INTEL_RMS25JB040_SSDID:
2592 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2593 				    MPT2SAS_INTEL_RMS25JB040_BRANDING);
2594 				break;
2595 			case MPT2SAS_INTEL_RMS25KB080_SSDID:
2596 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2597 				    MPT2SAS_INTEL_RMS25KB080_BRANDING);
2598 				break;
2599 			case MPT2SAS_INTEL_RMS25KB040_SSDID:
2600 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2601 				    MPT2SAS_INTEL_RMS25KB040_BRANDING);
2602 				break;
2603 			case MPT2SAS_INTEL_RMS25LB040_SSDID:
2604 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2605 				    MPT2SAS_INTEL_RMS25LB040_BRANDING);
2606 				break;
2607 			case MPT2SAS_INTEL_RMS25LB080_SSDID:
2608 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2609 				    MPT2SAS_INTEL_RMS25LB080_BRANDING);
2610 				break;
2611 			default:
2612 				pr_info(MPT3SAS_FMT
2613 				 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2614 				 ioc->name, ioc->pdev->subsystem_device);
2615 				break;
2616 			}
2617 		case MPI25_MFGPAGE_DEVID_SAS3008:
2618 			switch (ioc->pdev->subsystem_device) {
2619 			case MPT3SAS_INTEL_RMS3JC080_SSDID:
2620 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2621 					MPT3SAS_INTEL_RMS3JC080_BRANDING);
2622 				break;
2623 
2624 			case MPT3SAS_INTEL_RS3GC008_SSDID:
2625 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2626 					MPT3SAS_INTEL_RS3GC008_BRANDING);
2627 				break;
2628 			case MPT3SAS_INTEL_RS3FC044_SSDID:
2629 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2630 					MPT3SAS_INTEL_RS3FC044_BRANDING);
2631 				break;
2632 			case MPT3SAS_INTEL_RS3UC080_SSDID:
2633 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2634 					MPT3SAS_INTEL_RS3UC080_BRANDING);
2635 				break;
2636 			default:
2637 				pr_info(MPT3SAS_FMT
2638 				 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2639 				 ioc->name, ioc->pdev->subsystem_device);
2640 				break;
2641 			}
2642 			break;
2643 		default:
2644 			pr_info(MPT3SAS_FMT
2645 			 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2646 			 ioc->name, ioc->pdev->subsystem_device);
2647 			break;
2648 		}
2649 		break;
2650 	case PCI_VENDOR_ID_DELL:
2651 		switch (ioc->pdev->device) {
2652 		case MPI2_MFGPAGE_DEVID_SAS2008:
2653 			switch (ioc->pdev->subsystem_device) {
2654 			case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
2655 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2656 				 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
2657 				break;
2658 			case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
2659 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2660 				 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
2661 				break;
2662 			case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
2663 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2664 				 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
2665 				break;
2666 			case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
2667 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2668 				 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
2669 				break;
2670 			case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
2671 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2672 				 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
2673 				break;
2674 			case MPT2SAS_DELL_PERC_H200_SSDID:
2675 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2676 				 MPT2SAS_DELL_PERC_H200_BRANDING);
2677 				break;
2678 			case MPT2SAS_DELL_6GBPS_SAS_SSDID:
2679 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2680 				 MPT2SAS_DELL_6GBPS_SAS_BRANDING);
2681 				break;
2682 			default:
2683 				pr_info(MPT3SAS_FMT
2684 				   "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
2685 				   ioc->name, ioc->pdev->subsystem_device);
2686 				break;
2687 			}
2688 			break;
2689 		case MPI25_MFGPAGE_DEVID_SAS3008:
2690 			switch (ioc->pdev->subsystem_device) {
2691 			case MPT3SAS_DELL_12G_HBA_SSDID:
2692 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2693 					MPT3SAS_DELL_12G_HBA_BRANDING);
2694 				break;
2695 			default:
2696 				pr_info(MPT3SAS_FMT
2697 				   "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
2698 				   ioc->name, ioc->pdev->subsystem_device);
2699 				break;
2700 			}
2701 			break;
2702 		default:
2703 			pr_info(MPT3SAS_FMT
2704 			   "Dell HBA: Subsystem ID: 0x%X\n", ioc->name,
2705 			   ioc->pdev->subsystem_device);
2706 			break;
2707 		}
2708 		break;
2709 	case PCI_VENDOR_ID_CISCO:
2710 		switch (ioc->pdev->device) {
2711 		case MPI25_MFGPAGE_DEVID_SAS3008:
2712 			switch (ioc->pdev->subsystem_device) {
2713 			case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
2714 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2715 					MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
2716 				break;
2717 			case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
2718 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2719 					MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
2720 				break;
2721 			case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
2722 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2723 					MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
2724 				break;
2725 			default:
2726 				pr_info(MPT3SAS_FMT
2727 				  "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
2728 				  ioc->name, ioc->pdev->subsystem_device);
2729 				break;
2730 			}
2731 			break;
2732 		case MPI25_MFGPAGE_DEVID_SAS3108_1:
2733 			switch (ioc->pdev->subsystem_device) {
2734 			case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
2735 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2736 				MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
2737 				break;
2738 			case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
2739 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2740 				MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING
2741 				);
2742 				break;
2743 			default:
2744 				pr_info(MPT3SAS_FMT
2745 				 "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
2746 				 ioc->name, ioc->pdev->subsystem_device);
2747 				break;
2748 			}
2749 			break;
2750 		default:
2751 			pr_info(MPT3SAS_FMT
2752 			   "Cisco SAS HBA: Subsystem ID: 0x%X\n",
2753 			   ioc->name, ioc->pdev->subsystem_device);
2754 			break;
2755 		}
2756 		break;
2757 	case MPT2SAS_HP_3PAR_SSVID:
2758 		switch (ioc->pdev->device) {
2759 		case MPI2_MFGPAGE_DEVID_SAS2004:
2760 			switch (ioc->pdev->subsystem_device) {
2761 			case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
2762 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2763 				    MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
2764 				break;
2765 			default:
2766 				pr_info(MPT3SAS_FMT
2767 				   "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
2768 				   ioc->name, ioc->pdev->subsystem_device);
2769 				break;
2770 			}
2771 		case MPI2_MFGPAGE_DEVID_SAS2308_2:
2772 			switch (ioc->pdev->subsystem_device) {
2773 			case MPT2SAS_HP_2_4_INTERNAL_SSDID:
2774 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2775 				    MPT2SAS_HP_2_4_INTERNAL_BRANDING);
2776 				break;
2777 			case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
2778 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2779 				    MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
2780 				break;
2781 			case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
2782 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2783 				 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
2784 				break;
2785 			case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
2786 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2787 				    MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
2788 				break;
2789 			default:
2790 				pr_info(MPT3SAS_FMT
2791 				   "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
2792 				   ioc->name, ioc->pdev->subsystem_device);
2793 				break;
2794 			}
2795 		default:
2796 			pr_info(MPT3SAS_FMT
2797 			   "HP SAS HBA: Subsystem ID: 0x%X\n",
2798 			   ioc->name, ioc->pdev->subsystem_device);
2799 			break;
2800 		}
2801 	default:
2802 		break;
2803 	}
2804 }
2805 
2806 /**
2807  * _base_display_ioc_capabilities - Disply IOC's capabilities.
2808  * @ioc: per adapter object
2809  *
2810  * Return nothing.
2811  */
2812 static void
2813 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
2814 {
2815 	int i = 0;
2816 	char desc[16];
2817 	u32 iounit_pg1_flags;
2818 	u32 bios_version;
2819 
2820 	bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
2821 	strncpy(desc, ioc->manu_pg0.ChipName, 16);
2822 	pr_info(MPT3SAS_FMT "%s: FWVersion(%02d.%02d.%02d.%02d), "\
2823 	   "ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
2824 	    ioc->name, desc,
2825 	   (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
2826 	   (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
2827 	   (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
2828 	   ioc->facts.FWVersion.Word & 0x000000FF,
2829 	   ioc->pdev->revision,
2830 	   (bios_version & 0xFF000000) >> 24,
2831 	   (bios_version & 0x00FF0000) >> 16,
2832 	   (bios_version & 0x0000FF00) >> 8,
2833 	    bios_version & 0x000000FF);
2834 
2835 	_base_display_OEMs_branding(ioc);
2836 
2837 	pr_info(MPT3SAS_FMT "Protocol=(", ioc->name);
2838 
2839 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
2840 		pr_info("Initiator");
2841 		i++;
2842 	}
2843 
2844 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
2845 		pr_info("%sTarget", i ? "," : "");
2846 		i++;
2847 	}
2848 
2849 	i = 0;
2850 	pr_info("), ");
2851 	pr_info("Capabilities=(");
2852 
2853 	if (!ioc->hide_ir_msg) {
2854 		if (ioc->facts.IOCCapabilities &
2855 		    MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
2856 			pr_info("Raid");
2857 			i++;
2858 		}
2859 	}
2860 
2861 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
2862 		pr_info("%sTLR", i ? "," : "");
2863 		i++;
2864 	}
2865 
2866 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
2867 		pr_info("%sMulticast", i ? "," : "");
2868 		i++;
2869 	}
2870 
2871 	if (ioc->facts.IOCCapabilities &
2872 	    MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
2873 		pr_info("%sBIDI Target", i ? "," : "");
2874 		i++;
2875 	}
2876 
2877 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
2878 		pr_info("%sEEDP", i ? "," : "");
2879 		i++;
2880 	}
2881 
2882 	if (ioc->facts.IOCCapabilities &
2883 	    MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
2884 		pr_info("%sSnapshot Buffer", i ? "," : "");
2885 		i++;
2886 	}
2887 
2888 	if (ioc->facts.IOCCapabilities &
2889 	    MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
2890 		pr_info("%sDiag Trace Buffer", i ? "," : "");
2891 		i++;
2892 	}
2893 
2894 	if (ioc->facts.IOCCapabilities &
2895 	    MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
2896 		pr_info("%sDiag Extended Buffer", i ? "," : "");
2897 		i++;
2898 	}
2899 
2900 	if (ioc->facts.IOCCapabilities &
2901 	    MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
2902 		pr_info("%sTask Set Full", i ? "," : "");
2903 		i++;
2904 	}
2905 
2906 	iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
2907 	if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
2908 		pr_info("%sNCQ", i ? "," : "");
2909 		i++;
2910 	}
2911 
2912 	pr_info(")\n");
2913 }
2914 
2915 /**
2916  * mpt3sas_base_update_missing_delay - change the missing delay timers
2917  * @ioc: per adapter object
2918  * @device_missing_delay: amount of time till device is reported missing
2919  * @io_missing_delay: interval IO is returned when there is a missing device
2920  *
2921  * Return nothing.
2922  *
2923  * Passed on the command line, this function will modify the device missing
2924  * delay, as well as the io missing delay. This should be called at driver
2925  * load time.
2926  */
2927 void
2928 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
2929 	u16 device_missing_delay, u8 io_missing_delay)
2930 {
2931 	u16 dmd, dmd_new, dmd_orignal;
2932 	u8 io_missing_delay_original;
2933 	u16 sz;
2934 	Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
2935 	Mpi2ConfigReply_t mpi_reply;
2936 	u8 num_phys = 0;
2937 	u16 ioc_status;
2938 
2939 	mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
2940 	if (!num_phys)
2941 		return;
2942 
2943 	sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
2944 	    sizeof(Mpi2SasIOUnit1PhyData_t));
2945 	sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
2946 	if (!sas_iounit_pg1) {
2947 		pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2948 		    ioc->name, __FILE__, __LINE__, __func__);
2949 		goto out;
2950 	}
2951 	if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
2952 	    sas_iounit_pg1, sz))) {
2953 		pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2954 		    ioc->name, __FILE__, __LINE__, __func__);
2955 		goto out;
2956 	}
2957 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
2958 	    MPI2_IOCSTATUS_MASK;
2959 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
2960 		pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2961 		    ioc->name, __FILE__, __LINE__, __func__);
2962 		goto out;
2963 	}
2964 
2965 	/* device missing delay */
2966 	dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
2967 	if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
2968 		dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
2969 	else
2970 		dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
2971 	dmd_orignal = dmd;
2972 	if (device_missing_delay > 0x7F) {
2973 		dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
2974 		    device_missing_delay;
2975 		dmd = dmd / 16;
2976 		dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
2977 	} else
2978 		dmd = device_missing_delay;
2979 	sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
2980 
2981 	/* io missing delay */
2982 	io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
2983 	sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
2984 
2985 	if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
2986 	    sz)) {
2987 		if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
2988 			dmd_new = (dmd &
2989 			    MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
2990 		else
2991 			dmd_new =
2992 		    dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
2993 		pr_info(MPT3SAS_FMT "device_missing_delay: old(%d), new(%d)\n",
2994 			ioc->name, dmd_orignal, dmd_new);
2995 		pr_info(MPT3SAS_FMT "ioc_missing_delay: old(%d), new(%d)\n",
2996 			ioc->name, io_missing_delay_original,
2997 		    io_missing_delay);
2998 		ioc->device_missing_delay = dmd_new;
2999 		ioc->io_missing_delay = io_missing_delay;
3000 	}
3001 
3002 out:
3003 	kfree(sas_iounit_pg1);
3004 }
3005 /**
3006  * _base_static_config_pages - static start of day config pages
3007  * @ioc: per adapter object
3008  *
3009  * Return nothing.
3010  */
3011 static void
3012 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
3013 {
3014 	Mpi2ConfigReply_t mpi_reply;
3015 	u32 iounit_pg1_flags;
3016 
3017 	mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
3018 	if (ioc->ir_firmware)
3019 		mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
3020 		    &ioc->manu_pg10);
3021 
3022 	/*
3023 	 * Ensure correct T10 PI operation if vendor left EEDPTagMode
3024 	 * flag unset in NVDATA.
3025 	 */
3026 	mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
3027 	if (ioc->manu_pg11.EEDPTagMode == 0) {
3028 		pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
3029 		    ioc->name);
3030 		ioc->manu_pg11.EEDPTagMode &= ~0x3;
3031 		ioc->manu_pg11.EEDPTagMode |= 0x1;
3032 		mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
3033 		    &ioc->manu_pg11);
3034 	}
3035 
3036 	mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
3037 	mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
3038 	mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
3039 	mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
3040 	mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
3041 	mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
3042 	_base_display_ioc_capabilities(ioc);
3043 
3044 	/*
3045 	 * Enable task_set_full handling in iounit_pg1 when the
3046 	 * facts capabilities indicate that its supported.
3047 	 */
3048 	iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
3049 	if ((ioc->facts.IOCCapabilities &
3050 	    MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
3051 		iounit_pg1_flags &=
3052 		    ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
3053 	else
3054 		iounit_pg1_flags |=
3055 		    MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
3056 	ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
3057 	mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
3058 
3059 	if (ioc->iounit_pg8.NumSensors)
3060 		ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
3061 }
3062 
3063 /**
3064  * _base_release_memory_pools - release memory
3065  * @ioc: per adapter object
3066  *
3067  * Free memory allocated from _base_allocate_memory_pools.
3068  *
3069  * Return nothing.
3070  */
3071 static void
3072 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
3073 {
3074 	int i = 0;
3075 	struct reply_post_struct *rps;
3076 
3077 	dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3078 	    __func__));
3079 
3080 	if (ioc->request) {
3081 		pci_free_consistent(ioc->pdev, ioc->request_dma_sz,
3082 		    ioc->request,  ioc->request_dma);
3083 		dexitprintk(ioc, pr_info(MPT3SAS_FMT
3084 			"request_pool(0x%p): free\n",
3085 			ioc->name, ioc->request));
3086 		ioc->request = NULL;
3087 	}
3088 
3089 	if (ioc->sense) {
3090 		pci_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
3091 		if (ioc->sense_dma_pool)
3092 			pci_pool_destroy(ioc->sense_dma_pool);
3093 		dexitprintk(ioc, pr_info(MPT3SAS_FMT
3094 			"sense_pool(0x%p): free\n",
3095 			ioc->name, ioc->sense));
3096 		ioc->sense = NULL;
3097 	}
3098 
3099 	if (ioc->reply) {
3100 		pci_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
3101 		if (ioc->reply_dma_pool)
3102 			pci_pool_destroy(ioc->reply_dma_pool);
3103 		dexitprintk(ioc, pr_info(MPT3SAS_FMT
3104 			"reply_pool(0x%p): free\n",
3105 			ioc->name, ioc->reply));
3106 		ioc->reply = NULL;
3107 	}
3108 
3109 	if (ioc->reply_free) {
3110 		pci_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
3111 		    ioc->reply_free_dma);
3112 		if (ioc->reply_free_dma_pool)
3113 			pci_pool_destroy(ioc->reply_free_dma_pool);
3114 		dexitprintk(ioc, pr_info(MPT3SAS_FMT
3115 			"reply_free_pool(0x%p): free\n",
3116 			ioc->name, ioc->reply_free));
3117 		ioc->reply_free = NULL;
3118 	}
3119 
3120 	if (ioc->reply_post) {
3121 		do {
3122 			rps = &ioc->reply_post[i];
3123 			if (rps->reply_post_free) {
3124 				pci_pool_free(
3125 				    ioc->reply_post_free_dma_pool,
3126 				    rps->reply_post_free,
3127 				    rps->reply_post_free_dma);
3128 				dexitprintk(ioc, pr_info(MPT3SAS_FMT
3129 				    "reply_post_free_pool(0x%p): free\n",
3130 				    ioc->name, rps->reply_post_free));
3131 				rps->reply_post_free = NULL;
3132 			}
3133 		} while (ioc->rdpq_array_enable &&
3134 			   (++i < ioc->reply_queue_count));
3135 
3136 		if (ioc->reply_post_free_dma_pool)
3137 			pci_pool_destroy(ioc->reply_post_free_dma_pool);
3138 		kfree(ioc->reply_post);
3139 	}
3140 
3141 	if (ioc->config_page) {
3142 		dexitprintk(ioc, pr_info(MPT3SAS_FMT
3143 		    "config_page(0x%p): free\n", ioc->name,
3144 		    ioc->config_page));
3145 		pci_free_consistent(ioc->pdev, ioc->config_page_sz,
3146 		    ioc->config_page, ioc->config_page_dma);
3147 	}
3148 
3149 	if (ioc->scsi_lookup) {
3150 		free_pages((ulong)ioc->scsi_lookup, ioc->scsi_lookup_pages);
3151 		ioc->scsi_lookup = NULL;
3152 	}
3153 	kfree(ioc->hpr_lookup);
3154 	kfree(ioc->internal_lookup);
3155 	if (ioc->chain_lookup) {
3156 		for (i = 0; i < ioc->chain_depth; i++) {
3157 			if (ioc->chain_lookup[i].chain_buffer)
3158 				pci_pool_free(ioc->chain_dma_pool,
3159 				    ioc->chain_lookup[i].chain_buffer,
3160 				    ioc->chain_lookup[i].chain_buffer_dma);
3161 		}
3162 		if (ioc->chain_dma_pool)
3163 			pci_pool_destroy(ioc->chain_dma_pool);
3164 		free_pages((ulong)ioc->chain_lookup, ioc->chain_pages);
3165 		ioc->chain_lookup = NULL;
3166 	}
3167 }
3168 
3169 /**
3170  * _base_allocate_memory_pools - allocate start of day memory pools
3171  * @ioc: per adapter object
3172  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3173  *
3174  * Returns 0 success, anything else error
3175  */
3176 static int
3177 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc,  int sleep_flag)
3178 {
3179 	struct mpt3sas_facts *facts;
3180 	u16 max_sge_elements;
3181 	u16 chains_needed_per_io;
3182 	u32 sz, total_sz, reply_post_free_sz;
3183 	u32 retry_sz;
3184 	u16 max_request_credit;
3185 	unsigned short sg_tablesize;
3186 	u16 sge_size;
3187 	int i;
3188 
3189 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3190 	    __func__));
3191 
3192 
3193 	retry_sz = 0;
3194 	facts = &ioc->facts;
3195 
3196 	/* command line tunables for max sgl entries */
3197 	if (max_sgl_entries != -1)
3198 		sg_tablesize = max_sgl_entries;
3199 	else {
3200 		if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
3201 			sg_tablesize = MPT2SAS_SG_DEPTH;
3202 		else
3203 			sg_tablesize = MPT3SAS_SG_DEPTH;
3204 	}
3205 
3206 	if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
3207 		sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
3208 	else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
3209 		sg_tablesize = min_t(unsigned short, sg_tablesize,
3210 				      SCSI_MAX_SG_CHAIN_SEGMENTS);
3211 		pr_warn(MPT3SAS_FMT
3212 		 "sg_tablesize(%u) is bigger than kernel"
3213 		 " defined SCSI_MAX_SG_SEGMENTS(%u)\n", ioc->name,
3214 		 sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
3215 	}
3216 	ioc->shost->sg_tablesize = sg_tablesize;
3217 
3218 	ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
3219 		(facts->RequestCredit / 4));
3220 	if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
3221 		if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
3222 				INTERNAL_SCSIIO_CMDS_COUNT)) {
3223 			pr_err(MPT3SAS_FMT "IOC doesn't have enough Request \
3224 			    Credits, it has just %d number of credits\n",
3225 			    ioc->name, facts->RequestCredit);
3226 			return -ENOMEM;
3227 		}
3228 		ioc->internal_depth = 10;
3229 	}
3230 
3231 	ioc->hi_priority_depth = ioc->internal_depth - (5);
3232 	/* command line tunables  for max controller queue depth */
3233 	if (max_queue_depth != -1 && max_queue_depth != 0) {
3234 		max_request_credit = min_t(u16, max_queue_depth +
3235 			ioc->internal_depth, facts->RequestCredit);
3236 		if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
3237 			max_request_credit =  MAX_HBA_QUEUE_DEPTH;
3238 	} else
3239 		max_request_credit = min_t(u16, facts->RequestCredit,
3240 		    MAX_HBA_QUEUE_DEPTH);
3241 
3242 	/* Firmware maintains additional facts->HighPriorityCredit number of
3243 	 * credits for HiPriprity Request messages, so hba queue depth will be
3244 	 * sum of max_request_credit and high priority queue depth.
3245 	 */
3246 	ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
3247 
3248 	/* request frame size */
3249 	ioc->request_sz = facts->IOCRequestFrameSize * 4;
3250 
3251 	/* reply frame size */
3252 	ioc->reply_sz = facts->ReplyFrameSize * 4;
3253 
3254 	/* chain segment size */
3255 	if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
3256 		if (facts->IOCMaxChainSegmentSize)
3257 			ioc->chain_segment_sz =
3258 					facts->IOCMaxChainSegmentSize *
3259 					MAX_CHAIN_ELEMT_SZ;
3260 		else
3261 		/* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
3262 			ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
3263 						    MAX_CHAIN_ELEMT_SZ;
3264 	} else
3265 		ioc->chain_segment_sz = ioc->request_sz;
3266 
3267 	/* calculate the max scatter element size */
3268 	sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
3269 
3270  retry_allocation:
3271 	total_sz = 0;
3272 	/* calculate number of sg elements left over in the 1st frame */
3273 	max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
3274 	    sizeof(Mpi2SGEIOUnion_t)) + sge_size);
3275 	ioc->max_sges_in_main_message = max_sge_elements/sge_size;
3276 
3277 	/* now do the same for a chain buffer */
3278 	max_sge_elements = ioc->chain_segment_sz - sge_size;
3279 	ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
3280 
3281 	/*
3282 	 *  MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
3283 	 */
3284 	chains_needed_per_io = ((ioc->shost->sg_tablesize -
3285 	   ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
3286 	    + 1;
3287 	if (chains_needed_per_io > facts->MaxChainDepth) {
3288 		chains_needed_per_io = facts->MaxChainDepth;
3289 		ioc->shost->sg_tablesize = min_t(u16,
3290 		ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
3291 		* chains_needed_per_io), ioc->shost->sg_tablesize);
3292 	}
3293 	ioc->chains_needed_per_io = chains_needed_per_io;
3294 
3295 	/* reply free queue sizing - taking into account for 64 FW events */
3296 	ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
3297 
3298 	/* calculate reply descriptor post queue depth */
3299 	ioc->reply_post_queue_depth = ioc->hba_queue_depth +
3300 				ioc->reply_free_queue_depth +  1 ;
3301 	/* align the reply post queue on the next 16 count boundary */
3302 	if (ioc->reply_post_queue_depth % 16)
3303 		ioc->reply_post_queue_depth += 16 -
3304 		(ioc->reply_post_queue_depth % 16);
3305 
3306 	if (ioc->reply_post_queue_depth >
3307 	    facts->MaxReplyDescriptorPostQueueDepth) {
3308 		ioc->reply_post_queue_depth =
3309 				facts->MaxReplyDescriptorPostQueueDepth -
3310 		    (facts->MaxReplyDescriptorPostQueueDepth % 16);
3311 		ioc->hba_queue_depth =
3312 				((ioc->reply_post_queue_depth - 64) / 2) - 1;
3313 		ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
3314 	}
3315 
3316 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "scatter gather: " \
3317 	    "sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), "
3318 	    "chains_per_io(%d)\n", ioc->name, ioc->max_sges_in_main_message,
3319 	    ioc->max_sges_in_chain_message, ioc->shost->sg_tablesize,
3320 	    ioc->chains_needed_per_io));
3321 
3322 	/* reply post queue, 16 byte align */
3323 	reply_post_free_sz = ioc->reply_post_queue_depth *
3324 	    sizeof(Mpi2DefaultReplyDescriptor_t);
3325 
3326 	sz = reply_post_free_sz;
3327 	if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
3328 		sz *= ioc->reply_queue_count;
3329 
3330 	ioc->reply_post = kcalloc((ioc->rdpq_array_enable) ?
3331 	    (ioc->reply_queue_count):1,
3332 	    sizeof(struct reply_post_struct), GFP_KERNEL);
3333 
3334 	if (!ioc->reply_post) {
3335 		pr_err(MPT3SAS_FMT "reply_post_free pool: kcalloc failed\n",
3336 			ioc->name);
3337 		goto out;
3338 	}
3339 	ioc->reply_post_free_dma_pool = pci_pool_create("reply_post_free pool",
3340 	    ioc->pdev, sz, 16, 0);
3341 	if (!ioc->reply_post_free_dma_pool) {
3342 		pr_err(MPT3SAS_FMT
3343 		 "reply_post_free pool: pci_pool_create failed\n",
3344 		 ioc->name);
3345 		goto out;
3346 	}
3347 	i = 0;
3348 	do {
3349 		ioc->reply_post[i].reply_post_free =
3350 		    pci_pool_alloc(ioc->reply_post_free_dma_pool,
3351 		    GFP_KERNEL,
3352 		    &ioc->reply_post[i].reply_post_free_dma);
3353 		if (!ioc->reply_post[i].reply_post_free) {
3354 			pr_err(MPT3SAS_FMT
3355 			"reply_post_free pool: pci_pool_alloc failed\n",
3356 			ioc->name);
3357 			goto out;
3358 		}
3359 		memset(ioc->reply_post[i].reply_post_free, 0, sz);
3360 		dinitprintk(ioc, pr_info(MPT3SAS_FMT
3361 		    "reply post free pool (0x%p): depth(%d),"
3362 		    "element_size(%d), pool_size(%d kB)\n", ioc->name,
3363 		    ioc->reply_post[i].reply_post_free,
3364 		    ioc->reply_post_queue_depth, 8, sz/1024));
3365 		dinitprintk(ioc, pr_info(MPT3SAS_FMT
3366 		    "reply_post_free_dma = (0x%llx)\n", ioc->name,
3367 		    (unsigned long long)
3368 		    ioc->reply_post[i].reply_post_free_dma));
3369 		total_sz += sz;
3370 	} while (ioc->rdpq_array_enable && (++i < ioc->reply_queue_count));
3371 
3372 	if (ioc->dma_mask == 64) {
3373 		if (_base_change_consistent_dma_mask(ioc, ioc->pdev) != 0) {
3374 			pr_warn(MPT3SAS_FMT
3375 			    "no suitable consistent DMA mask for %s\n",
3376 			    ioc->name, pci_name(ioc->pdev));
3377 			goto out;
3378 		}
3379 	}
3380 
3381 	ioc->scsiio_depth = ioc->hba_queue_depth -
3382 	    ioc->hi_priority_depth - ioc->internal_depth;
3383 
3384 	/* set the scsi host can_queue depth
3385 	 * with some internal commands that could be outstanding
3386 	 */
3387 	ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
3388 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3389 		"scsi host: can_queue depth (%d)\n",
3390 		ioc->name, ioc->shost->can_queue));
3391 
3392 
3393 	/* contiguous pool for request and chains, 16 byte align, one extra "
3394 	 * "frame for smid=0
3395 	 */
3396 	ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
3397 	sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
3398 
3399 	/* hi-priority queue */
3400 	sz += (ioc->hi_priority_depth * ioc->request_sz);
3401 
3402 	/* internal queue */
3403 	sz += (ioc->internal_depth * ioc->request_sz);
3404 
3405 	ioc->request_dma_sz = sz;
3406 	ioc->request = pci_alloc_consistent(ioc->pdev, sz, &ioc->request_dma);
3407 	if (!ioc->request) {
3408 		pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
3409 		    "failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
3410 		    "total(%d kB)\n", ioc->name, ioc->hba_queue_depth,
3411 		    ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
3412 		if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
3413 			goto out;
3414 		retry_sz = 64;
3415 		ioc->hba_queue_depth -= retry_sz;
3416 		_base_release_memory_pools(ioc);
3417 		goto retry_allocation;
3418 	}
3419 
3420 	if (retry_sz)
3421 		pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
3422 		    "succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
3423 		    "total(%d kb)\n", ioc->name, ioc->hba_queue_depth,
3424 		    ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
3425 
3426 	/* hi-priority queue */
3427 	ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
3428 	    ioc->request_sz);
3429 	ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
3430 	    ioc->request_sz);
3431 
3432 	/* internal queue */
3433 	ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
3434 	    ioc->request_sz);
3435 	ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
3436 	    ioc->request_sz);
3437 
3438 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3439 		"request pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
3440 		ioc->name, ioc->request, ioc->hba_queue_depth, ioc->request_sz,
3441 	    (ioc->hba_queue_depth * ioc->request_sz)/1024));
3442 
3443 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "request pool: dma(0x%llx)\n",
3444 	    ioc->name, (unsigned long long) ioc->request_dma));
3445 	total_sz += sz;
3446 
3447 	sz = ioc->scsiio_depth * sizeof(struct scsiio_tracker);
3448 	ioc->scsi_lookup_pages = get_order(sz);
3449 	ioc->scsi_lookup = (struct scsiio_tracker *)__get_free_pages(
3450 	    GFP_KERNEL, ioc->scsi_lookup_pages);
3451 	if (!ioc->scsi_lookup) {
3452 		pr_err(MPT3SAS_FMT "scsi_lookup: get_free_pages failed, sz(%d)\n",
3453 			ioc->name, (int)sz);
3454 		goto out;
3455 	}
3456 
3457 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "scsiio(0x%p): depth(%d)\n",
3458 		ioc->name, ioc->request, ioc->scsiio_depth));
3459 
3460 	ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
3461 	sz = ioc->chain_depth * sizeof(struct chain_tracker);
3462 	ioc->chain_pages = get_order(sz);
3463 	ioc->chain_lookup = (struct chain_tracker *)__get_free_pages(
3464 	    GFP_KERNEL, ioc->chain_pages);
3465 	if (!ioc->chain_lookup) {
3466 		pr_err(MPT3SAS_FMT "chain_lookup: __get_free_pages failed\n",
3467 			ioc->name);
3468 		goto out;
3469 	}
3470 	ioc->chain_dma_pool = pci_pool_create("chain pool", ioc->pdev,
3471 	    ioc->chain_segment_sz, 16, 0);
3472 	if (!ioc->chain_dma_pool) {
3473 		pr_err(MPT3SAS_FMT "chain_dma_pool: pci_pool_create failed\n",
3474 			ioc->name);
3475 		goto out;
3476 	}
3477 	for (i = 0; i < ioc->chain_depth; i++) {
3478 		ioc->chain_lookup[i].chain_buffer = pci_pool_alloc(
3479 		    ioc->chain_dma_pool , GFP_KERNEL,
3480 		    &ioc->chain_lookup[i].chain_buffer_dma);
3481 		if (!ioc->chain_lookup[i].chain_buffer) {
3482 			ioc->chain_depth = i;
3483 			goto chain_done;
3484 		}
3485 		total_sz += ioc->chain_segment_sz;
3486 	}
3487  chain_done:
3488 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3489 		"chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
3490 		ioc->name, ioc->chain_depth, ioc->chain_segment_sz,
3491 		((ioc->chain_depth *  ioc->chain_segment_sz))/1024));
3492 
3493 	/* initialize hi-priority queue smid's */
3494 	ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
3495 	    sizeof(struct request_tracker), GFP_KERNEL);
3496 	if (!ioc->hpr_lookup) {
3497 		pr_err(MPT3SAS_FMT "hpr_lookup: kcalloc failed\n",
3498 		    ioc->name);
3499 		goto out;
3500 	}
3501 	ioc->hi_priority_smid = ioc->scsiio_depth + 1;
3502 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3503 		"hi_priority(0x%p): depth(%d), start smid(%d)\n",
3504 		ioc->name, ioc->hi_priority,
3505 	    ioc->hi_priority_depth, ioc->hi_priority_smid));
3506 
3507 	/* initialize internal queue smid's */
3508 	ioc->internal_lookup = kcalloc(ioc->internal_depth,
3509 	    sizeof(struct request_tracker), GFP_KERNEL);
3510 	if (!ioc->internal_lookup) {
3511 		pr_err(MPT3SAS_FMT "internal_lookup: kcalloc failed\n",
3512 		    ioc->name);
3513 		goto out;
3514 	}
3515 	ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
3516 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3517 		"internal(0x%p): depth(%d), start smid(%d)\n",
3518 		ioc->name, ioc->internal,
3519 	    ioc->internal_depth, ioc->internal_smid));
3520 
3521 	/* sense buffers, 4 byte align */
3522 	sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
3523 	ioc->sense_dma_pool = pci_pool_create("sense pool", ioc->pdev, sz, 4,
3524 	    0);
3525 	if (!ioc->sense_dma_pool) {
3526 		pr_err(MPT3SAS_FMT "sense pool: pci_pool_create failed\n",
3527 		    ioc->name);
3528 		goto out;
3529 	}
3530 	ioc->sense = pci_pool_alloc(ioc->sense_dma_pool , GFP_KERNEL,
3531 	    &ioc->sense_dma);
3532 	if (!ioc->sense) {
3533 		pr_err(MPT3SAS_FMT "sense pool: pci_pool_alloc failed\n",
3534 		    ioc->name);
3535 		goto out;
3536 	}
3537 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3538 	    "sense pool(0x%p): depth(%d), element_size(%d), pool_size"
3539 	    "(%d kB)\n", ioc->name, ioc->sense, ioc->scsiio_depth,
3540 	    SCSI_SENSE_BUFFERSIZE, sz/1024));
3541 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "sense_dma(0x%llx)\n",
3542 	    ioc->name, (unsigned long long)ioc->sense_dma));
3543 	total_sz += sz;
3544 
3545 	/* reply pool, 4 byte align */
3546 	sz = ioc->reply_free_queue_depth * ioc->reply_sz;
3547 	ioc->reply_dma_pool = pci_pool_create("reply pool", ioc->pdev, sz, 4,
3548 	    0);
3549 	if (!ioc->reply_dma_pool) {
3550 		pr_err(MPT3SAS_FMT "reply pool: pci_pool_create failed\n",
3551 		    ioc->name);
3552 		goto out;
3553 	}
3554 	ioc->reply = pci_pool_alloc(ioc->reply_dma_pool , GFP_KERNEL,
3555 	    &ioc->reply_dma);
3556 	if (!ioc->reply) {
3557 		pr_err(MPT3SAS_FMT "reply pool: pci_pool_alloc failed\n",
3558 		    ioc->name);
3559 		goto out;
3560 	}
3561 	ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
3562 	ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
3563 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3564 		"reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
3565 		ioc->name, ioc->reply,
3566 	    ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024));
3567 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_dma(0x%llx)\n",
3568 	    ioc->name, (unsigned long long)ioc->reply_dma));
3569 	total_sz += sz;
3570 
3571 	/* reply free queue, 16 byte align */
3572 	sz = ioc->reply_free_queue_depth * 4;
3573 	ioc->reply_free_dma_pool = pci_pool_create("reply_free pool",
3574 	    ioc->pdev, sz, 16, 0);
3575 	if (!ioc->reply_free_dma_pool) {
3576 		pr_err(MPT3SAS_FMT "reply_free pool: pci_pool_create failed\n",
3577 			ioc->name);
3578 		goto out;
3579 	}
3580 	ioc->reply_free = pci_pool_alloc(ioc->reply_free_dma_pool , GFP_KERNEL,
3581 	    &ioc->reply_free_dma);
3582 	if (!ioc->reply_free) {
3583 		pr_err(MPT3SAS_FMT "reply_free pool: pci_pool_alloc failed\n",
3584 			ioc->name);
3585 		goto out;
3586 	}
3587 	memset(ioc->reply_free, 0, sz);
3588 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_free pool(0x%p): " \
3589 	    "depth(%d), element_size(%d), pool_size(%d kB)\n", ioc->name,
3590 	    ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
3591 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3592 		"reply_free_dma (0x%llx)\n",
3593 		ioc->name, (unsigned long long)ioc->reply_free_dma));
3594 	total_sz += sz;
3595 
3596 	ioc->config_page_sz = 512;
3597 	ioc->config_page = pci_alloc_consistent(ioc->pdev,
3598 	    ioc->config_page_sz, &ioc->config_page_dma);
3599 	if (!ioc->config_page) {
3600 		pr_err(MPT3SAS_FMT
3601 			"config page: pci_pool_alloc failed\n",
3602 			ioc->name);
3603 		goto out;
3604 	}
3605 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3606 		"config page(0x%p): size(%d)\n",
3607 		ioc->name, ioc->config_page, ioc->config_page_sz));
3608 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "config_page_dma(0x%llx)\n",
3609 		ioc->name, (unsigned long long)ioc->config_page_dma));
3610 	total_sz += ioc->config_page_sz;
3611 
3612 	pr_info(MPT3SAS_FMT "Allocated physical memory: size(%d kB)\n",
3613 	    ioc->name, total_sz/1024);
3614 	pr_info(MPT3SAS_FMT
3615 		"Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
3616 	    ioc->name, ioc->shost->can_queue, facts->RequestCredit);
3617 	pr_info(MPT3SAS_FMT "Scatter Gather Elements per IO(%d)\n",
3618 	    ioc->name, ioc->shost->sg_tablesize);
3619 	return 0;
3620 
3621  out:
3622 	return -ENOMEM;
3623 }
3624 
3625 /**
3626  * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
3627  * @ioc: Pointer to MPT_ADAPTER structure
3628  * @cooked: Request raw or cooked IOC state
3629  *
3630  * Returns all IOC Doorbell register bits if cooked==0, else just the
3631  * Doorbell bits in MPI_IOC_STATE_MASK.
3632  */
3633 u32
3634 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
3635 {
3636 	u32 s, sc;
3637 
3638 	s = readl(&ioc->chip->Doorbell);
3639 	sc = s & MPI2_IOC_STATE_MASK;
3640 	return cooked ? sc : s;
3641 }
3642 
3643 /**
3644  * _base_wait_on_iocstate - waiting on a particular ioc state
3645  * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
3646  * @timeout: timeout in second
3647  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3648  *
3649  * Returns 0 for success, non-zero for failure.
3650  */
3651 static int
3652 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout,
3653 	int sleep_flag)
3654 {
3655 	u32 count, cntdn;
3656 	u32 current_state;
3657 
3658 	count = 0;
3659 	cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3660 	do {
3661 		current_state = mpt3sas_base_get_iocstate(ioc, 1);
3662 		if (current_state == ioc_state)
3663 			return 0;
3664 		if (count && current_state == MPI2_IOC_STATE_FAULT)
3665 			break;
3666 		if (sleep_flag == CAN_SLEEP)
3667 			usleep_range(1000, 1500);
3668 		else
3669 			udelay(500);
3670 		count++;
3671 	} while (--cntdn);
3672 
3673 	return current_state;
3674 }
3675 
3676 /**
3677  * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
3678  * a write to the doorbell)
3679  * @ioc: per adapter object
3680  * @timeout: timeout in second
3681  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3682  *
3683  * Returns 0 for success, non-zero for failure.
3684  *
3685  * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
3686  */
3687 static int
3688 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc, int sleep_flag);
3689 
3690 static int
3691 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout,
3692 	int sleep_flag)
3693 {
3694 	u32 cntdn, count;
3695 	u32 int_status;
3696 
3697 	count = 0;
3698 	cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3699 	do {
3700 		int_status = readl(&ioc->chip->HostInterruptStatus);
3701 		if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3702 			dhsprintk(ioc, pr_info(MPT3SAS_FMT
3703 				"%s: successful count(%d), timeout(%d)\n",
3704 				ioc->name, __func__, count, timeout));
3705 			return 0;
3706 		}
3707 		if (sleep_flag == CAN_SLEEP)
3708 			usleep_range(1000, 1500);
3709 		else
3710 			udelay(500);
3711 		count++;
3712 	} while (--cntdn);
3713 
3714 	pr_err(MPT3SAS_FMT
3715 		"%s: failed due to timeout count(%d), int_status(%x)!\n",
3716 		ioc->name, __func__, count, int_status);
3717 	return -EFAULT;
3718 }
3719 
3720 /**
3721  * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
3722  * @ioc: per adapter object
3723  * @timeout: timeout in second
3724  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3725  *
3726  * Returns 0 for success, non-zero for failure.
3727  *
3728  * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
3729  * doorbell.
3730  */
3731 static int
3732 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout,
3733 	int sleep_flag)
3734 {
3735 	u32 cntdn, count;
3736 	u32 int_status;
3737 	u32 doorbell;
3738 
3739 	count = 0;
3740 	cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3741 	do {
3742 		int_status = readl(&ioc->chip->HostInterruptStatus);
3743 		if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
3744 			dhsprintk(ioc, pr_info(MPT3SAS_FMT
3745 				"%s: successful count(%d), timeout(%d)\n",
3746 				ioc->name, __func__, count, timeout));
3747 			return 0;
3748 		} else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3749 			doorbell = readl(&ioc->chip->Doorbell);
3750 			if ((doorbell & MPI2_IOC_STATE_MASK) ==
3751 			    MPI2_IOC_STATE_FAULT) {
3752 				mpt3sas_base_fault_info(ioc , doorbell);
3753 				return -EFAULT;
3754 			}
3755 		} else if (int_status == 0xFFFFFFFF)
3756 			goto out;
3757 
3758 		if (sleep_flag == CAN_SLEEP)
3759 			usleep_range(1000, 1500);
3760 		else
3761 			udelay(500);
3762 		count++;
3763 	} while (--cntdn);
3764 
3765  out:
3766 	pr_err(MPT3SAS_FMT
3767 	 "%s: failed due to timeout count(%d), int_status(%x)!\n",
3768 	 ioc->name, __func__, count, int_status);
3769 	return -EFAULT;
3770 }
3771 
3772 /**
3773  * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
3774  * @ioc: per adapter object
3775  * @timeout: timeout in second
3776  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3777  *
3778  * Returns 0 for success, non-zero for failure.
3779  *
3780  */
3781 static int
3782 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout,
3783 	int sleep_flag)
3784 {
3785 	u32 cntdn, count;
3786 	u32 doorbell_reg;
3787 
3788 	count = 0;
3789 	cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3790 	do {
3791 		doorbell_reg = readl(&ioc->chip->Doorbell);
3792 		if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
3793 			dhsprintk(ioc, pr_info(MPT3SAS_FMT
3794 				"%s: successful count(%d), timeout(%d)\n",
3795 				ioc->name, __func__, count, timeout));
3796 			return 0;
3797 		}
3798 		if (sleep_flag == CAN_SLEEP)
3799 			usleep_range(1000, 1500);
3800 		else
3801 			udelay(500);
3802 		count++;
3803 	} while (--cntdn);
3804 
3805 	pr_err(MPT3SAS_FMT
3806 		"%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
3807 		ioc->name, __func__, count, doorbell_reg);
3808 	return -EFAULT;
3809 }
3810 
3811 /**
3812  * _base_send_ioc_reset - send doorbell reset
3813  * @ioc: per adapter object
3814  * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
3815  * @timeout: timeout in second
3816  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3817  *
3818  * Returns 0 for success, non-zero for failure.
3819  */
3820 static int
3821 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout,
3822 	int sleep_flag)
3823 {
3824 	u32 ioc_state;
3825 	int r = 0;
3826 
3827 	if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
3828 		pr_err(MPT3SAS_FMT "%s: unknown reset_type\n",
3829 		    ioc->name, __func__);
3830 		return -EFAULT;
3831 	}
3832 
3833 	if (!(ioc->facts.IOCCapabilities &
3834 	   MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
3835 		return -EFAULT;
3836 
3837 	pr_info(MPT3SAS_FMT "sending message unit reset !!\n", ioc->name);
3838 
3839 	writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
3840 	    &ioc->chip->Doorbell);
3841 	if ((_base_wait_for_doorbell_ack(ioc, 15, sleep_flag))) {
3842 		r = -EFAULT;
3843 		goto out;
3844 	}
3845 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY,
3846 	    timeout, sleep_flag);
3847 	if (ioc_state) {
3848 		pr_err(MPT3SAS_FMT
3849 			"%s: failed going to ready state (ioc_state=0x%x)\n",
3850 			ioc->name, __func__, ioc_state);
3851 		r = -EFAULT;
3852 		goto out;
3853 	}
3854  out:
3855 	pr_info(MPT3SAS_FMT "message unit reset: %s\n",
3856 	    ioc->name, ((r == 0) ? "SUCCESS" : "FAILED"));
3857 	return r;
3858 }
3859 
3860 /**
3861  * _base_handshake_req_reply_wait - send request thru doorbell interface
3862  * @ioc: per adapter object
3863  * @request_bytes: request length
3864  * @request: pointer having request payload
3865  * @reply_bytes: reply length
3866  * @reply: pointer to reply payload
3867  * @timeout: timeout in second
3868  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3869  *
3870  * Returns 0 for success, non-zero for failure.
3871  */
3872 static int
3873 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
3874 	u32 *request, int reply_bytes, u16 *reply, int timeout, int sleep_flag)
3875 {
3876 	MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
3877 	int i;
3878 	u8 failed;
3879 	u16 dummy;
3880 	__le32 *mfp;
3881 
3882 	/* make sure doorbell is not in use */
3883 	if ((readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
3884 		pr_err(MPT3SAS_FMT
3885 			"doorbell is in use (line=%d)\n",
3886 			ioc->name, __LINE__);
3887 		return -EFAULT;
3888 	}
3889 
3890 	/* clear pending doorbell interrupts from previous state changes */
3891 	if (readl(&ioc->chip->HostInterruptStatus) &
3892 	    MPI2_HIS_IOC2SYS_DB_STATUS)
3893 		writel(0, &ioc->chip->HostInterruptStatus);
3894 
3895 	/* send message to ioc */
3896 	writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
3897 	    ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
3898 	    &ioc->chip->Doorbell);
3899 
3900 	if ((_base_wait_for_doorbell_int(ioc, 5, NO_SLEEP))) {
3901 		pr_err(MPT3SAS_FMT
3902 			"doorbell handshake int failed (line=%d)\n",
3903 			ioc->name, __LINE__);
3904 		return -EFAULT;
3905 	}
3906 	writel(0, &ioc->chip->HostInterruptStatus);
3907 
3908 	if ((_base_wait_for_doorbell_ack(ioc, 5, sleep_flag))) {
3909 		pr_err(MPT3SAS_FMT
3910 			"doorbell handshake ack failed (line=%d)\n",
3911 			ioc->name, __LINE__);
3912 		return -EFAULT;
3913 	}
3914 
3915 	/* send message 32-bits at a time */
3916 	for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
3917 		writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
3918 		if ((_base_wait_for_doorbell_ack(ioc, 5, sleep_flag)))
3919 			failed = 1;
3920 	}
3921 
3922 	if (failed) {
3923 		pr_err(MPT3SAS_FMT
3924 			"doorbell handshake sending request failed (line=%d)\n",
3925 			ioc->name, __LINE__);
3926 		return -EFAULT;
3927 	}
3928 
3929 	/* now wait for the reply */
3930 	if ((_base_wait_for_doorbell_int(ioc, timeout, sleep_flag))) {
3931 		pr_err(MPT3SAS_FMT
3932 			"doorbell handshake int failed (line=%d)\n",
3933 			ioc->name, __LINE__);
3934 		return -EFAULT;
3935 	}
3936 
3937 	/* read the first two 16-bits, it gives the total length of the reply */
3938 	reply[0] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3939 	    & MPI2_DOORBELL_DATA_MASK);
3940 	writel(0, &ioc->chip->HostInterruptStatus);
3941 	if ((_base_wait_for_doorbell_int(ioc, 5, sleep_flag))) {
3942 		pr_err(MPT3SAS_FMT
3943 			"doorbell handshake int failed (line=%d)\n",
3944 			ioc->name, __LINE__);
3945 		return -EFAULT;
3946 	}
3947 	reply[1] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3948 	    & MPI2_DOORBELL_DATA_MASK);
3949 	writel(0, &ioc->chip->HostInterruptStatus);
3950 
3951 	for (i = 2; i < default_reply->MsgLength * 2; i++)  {
3952 		if ((_base_wait_for_doorbell_int(ioc, 5, sleep_flag))) {
3953 			pr_err(MPT3SAS_FMT
3954 				"doorbell handshake int failed (line=%d)\n",
3955 				ioc->name, __LINE__);
3956 			return -EFAULT;
3957 		}
3958 		if (i >=  reply_bytes/2) /* overflow case */
3959 			dummy = readl(&ioc->chip->Doorbell);
3960 		else
3961 			reply[i] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3962 			    & MPI2_DOORBELL_DATA_MASK);
3963 		writel(0, &ioc->chip->HostInterruptStatus);
3964 	}
3965 
3966 	_base_wait_for_doorbell_int(ioc, 5, sleep_flag);
3967 	if (_base_wait_for_doorbell_not_used(ioc, 5, sleep_flag) != 0) {
3968 		dhsprintk(ioc, pr_info(MPT3SAS_FMT
3969 			"doorbell is in use (line=%d)\n", ioc->name, __LINE__));
3970 	}
3971 	writel(0, &ioc->chip->HostInterruptStatus);
3972 
3973 	if (ioc->logging_level & MPT_DEBUG_INIT) {
3974 		mfp = (__le32 *)reply;
3975 		pr_info("\toffset:data\n");
3976 		for (i = 0; i < reply_bytes/4; i++)
3977 			pr_info("\t[0x%02x]:%08x\n", i*4,
3978 			    le32_to_cpu(mfp[i]));
3979 	}
3980 	return 0;
3981 }
3982 
3983 /**
3984  * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
3985  * @ioc: per adapter object
3986  * @mpi_reply: the reply payload from FW
3987  * @mpi_request: the request payload sent to FW
3988  *
3989  * The SAS IO Unit Control Request message allows the host to perform low-level
3990  * operations, such as resets on the PHYs of the IO Unit, also allows the host
3991  * to obtain the IOC assigned device handles for a device if it has other
3992  * identifying information about the device, in addition allows the host to
3993  * remove IOC resources associated with the device.
3994  *
3995  * Returns 0 for success, non-zero for failure.
3996  */
3997 int
3998 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
3999 	Mpi2SasIoUnitControlReply_t *mpi_reply,
4000 	Mpi2SasIoUnitControlRequest_t *mpi_request)
4001 {
4002 	u16 smid;
4003 	u32 ioc_state;
4004 	unsigned long timeleft;
4005 	bool issue_reset = false;
4006 	int rc;
4007 	void *request;
4008 	u16 wait_state_count;
4009 
4010 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4011 	    __func__));
4012 
4013 	mutex_lock(&ioc->base_cmds.mutex);
4014 
4015 	if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
4016 		pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
4017 		    ioc->name, __func__);
4018 		rc = -EAGAIN;
4019 		goto out;
4020 	}
4021 
4022 	wait_state_count = 0;
4023 	ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4024 	while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
4025 		if (wait_state_count++ == 10) {
4026 			pr_err(MPT3SAS_FMT
4027 			    "%s: failed due to ioc not operational\n",
4028 			    ioc->name, __func__);
4029 			rc = -EFAULT;
4030 			goto out;
4031 		}
4032 		ssleep(1);
4033 		ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4034 		pr_info(MPT3SAS_FMT
4035 			"%s: waiting for operational state(count=%d)\n",
4036 			ioc->name, __func__, wait_state_count);
4037 	}
4038 
4039 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4040 	if (!smid) {
4041 		pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4042 		    ioc->name, __func__);
4043 		rc = -EAGAIN;
4044 		goto out;
4045 	}
4046 
4047 	rc = 0;
4048 	ioc->base_cmds.status = MPT3_CMD_PENDING;
4049 	request = mpt3sas_base_get_msg_frame(ioc, smid);
4050 	ioc->base_cmds.smid = smid;
4051 	memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
4052 	if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
4053 	    mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
4054 		ioc->ioc_link_reset_in_progress = 1;
4055 	init_completion(&ioc->base_cmds.done);
4056 	mpt3sas_base_put_smid_default(ioc, smid);
4057 	timeleft = wait_for_completion_timeout(&ioc->base_cmds.done,
4058 	    msecs_to_jiffies(10000));
4059 	if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
4060 	    mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
4061 	    ioc->ioc_link_reset_in_progress)
4062 		ioc->ioc_link_reset_in_progress = 0;
4063 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4064 		pr_err(MPT3SAS_FMT "%s: timeout\n",
4065 		    ioc->name, __func__);
4066 		_debug_dump_mf(mpi_request,
4067 		    sizeof(Mpi2SasIoUnitControlRequest_t)/4);
4068 		if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
4069 			issue_reset = true;
4070 		goto issue_host_reset;
4071 	}
4072 	if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
4073 		memcpy(mpi_reply, ioc->base_cmds.reply,
4074 		    sizeof(Mpi2SasIoUnitControlReply_t));
4075 	else
4076 		memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
4077 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4078 	goto out;
4079 
4080  issue_host_reset:
4081 	if (issue_reset)
4082 		mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
4083 		    FORCE_BIG_HAMMER);
4084 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4085 	rc = -EFAULT;
4086  out:
4087 	mutex_unlock(&ioc->base_cmds.mutex);
4088 	return rc;
4089 }
4090 
4091 /**
4092  * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
4093  * @ioc: per adapter object
4094  * @mpi_reply: the reply payload from FW
4095  * @mpi_request: the request payload sent to FW
4096  *
4097  * The SCSI Enclosure Processor request message causes the IOC to
4098  * communicate with SES devices to control LED status signals.
4099  *
4100  * Returns 0 for success, non-zero for failure.
4101  */
4102 int
4103 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
4104 	Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
4105 {
4106 	u16 smid;
4107 	u32 ioc_state;
4108 	unsigned long timeleft;
4109 	bool issue_reset = false;
4110 	int rc;
4111 	void *request;
4112 	u16 wait_state_count;
4113 
4114 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4115 	    __func__));
4116 
4117 	mutex_lock(&ioc->base_cmds.mutex);
4118 
4119 	if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
4120 		pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
4121 		    ioc->name, __func__);
4122 		rc = -EAGAIN;
4123 		goto out;
4124 	}
4125 
4126 	wait_state_count = 0;
4127 	ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4128 	while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
4129 		if (wait_state_count++ == 10) {
4130 			pr_err(MPT3SAS_FMT
4131 			    "%s: failed due to ioc not operational\n",
4132 			    ioc->name, __func__);
4133 			rc = -EFAULT;
4134 			goto out;
4135 		}
4136 		ssleep(1);
4137 		ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4138 		pr_info(MPT3SAS_FMT
4139 			"%s: waiting for operational state(count=%d)\n",
4140 			ioc->name,
4141 		    __func__, wait_state_count);
4142 	}
4143 
4144 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4145 	if (!smid) {
4146 		pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4147 		    ioc->name, __func__);
4148 		rc = -EAGAIN;
4149 		goto out;
4150 	}
4151 
4152 	rc = 0;
4153 	ioc->base_cmds.status = MPT3_CMD_PENDING;
4154 	request = mpt3sas_base_get_msg_frame(ioc, smid);
4155 	ioc->base_cmds.smid = smid;
4156 	memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
4157 	init_completion(&ioc->base_cmds.done);
4158 	mpt3sas_base_put_smid_default(ioc, smid);
4159 	timeleft = wait_for_completion_timeout(&ioc->base_cmds.done,
4160 	    msecs_to_jiffies(10000));
4161 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4162 		pr_err(MPT3SAS_FMT "%s: timeout\n",
4163 		    ioc->name, __func__);
4164 		_debug_dump_mf(mpi_request,
4165 		    sizeof(Mpi2SepRequest_t)/4);
4166 		if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
4167 			issue_reset = false;
4168 		goto issue_host_reset;
4169 	}
4170 	if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
4171 		memcpy(mpi_reply, ioc->base_cmds.reply,
4172 		    sizeof(Mpi2SepReply_t));
4173 	else
4174 		memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
4175 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4176 	goto out;
4177 
4178  issue_host_reset:
4179 	if (issue_reset)
4180 		mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
4181 		    FORCE_BIG_HAMMER);
4182 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4183 	rc = -EFAULT;
4184  out:
4185 	mutex_unlock(&ioc->base_cmds.mutex);
4186 	return rc;
4187 }
4188 
4189 /**
4190  * _base_get_port_facts - obtain port facts reply and save in ioc
4191  * @ioc: per adapter object
4192  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4193  *
4194  * Returns 0 for success, non-zero for failure.
4195  */
4196 static int
4197 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port, int sleep_flag)
4198 {
4199 	Mpi2PortFactsRequest_t mpi_request;
4200 	Mpi2PortFactsReply_t mpi_reply;
4201 	struct mpt3sas_port_facts *pfacts;
4202 	int mpi_reply_sz, mpi_request_sz, r;
4203 
4204 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4205 	    __func__));
4206 
4207 	mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
4208 	mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
4209 	memset(&mpi_request, 0, mpi_request_sz);
4210 	mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
4211 	mpi_request.PortNumber = port;
4212 	r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
4213 	    (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5, CAN_SLEEP);
4214 
4215 	if (r != 0) {
4216 		pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4217 		    ioc->name, __func__, r);
4218 		return r;
4219 	}
4220 
4221 	pfacts = &ioc->pfacts[port];
4222 	memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
4223 	pfacts->PortNumber = mpi_reply.PortNumber;
4224 	pfacts->VP_ID = mpi_reply.VP_ID;
4225 	pfacts->VF_ID = mpi_reply.VF_ID;
4226 	pfacts->MaxPostedCmdBuffers =
4227 	    le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
4228 
4229 	return 0;
4230 }
4231 
4232 /**
4233  * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
4234  * @ioc: per adapter object
4235  * @timeout:
4236  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4237  *
4238  * Returns 0 for success, non-zero for failure.
4239  */
4240 static int
4241 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout,
4242 	int sleep_flag)
4243 {
4244 	u32 ioc_state;
4245 	int rc;
4246 
4247 	dinitprintk(ioc, printk(MPT3SAS_FMT "%s\n", ioc->name,
4248 	    __func__));
4249 
4250 	if (ioc->pci_error_recovery) {
4251 		dfailprintk(ioc, printk(MPT3SAS_FMT
4252 		    "%s: host in pci error recovery\n", ioc->name, __func__));
4253 		return -EFAULT;
4254 	}
4255 
4256 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4257 	dhsprintk(ioc, printk(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
4258 	    ioc->name, __func__, ioc_state));
4259 
4260 	if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
4261 	    (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
4262 		return 0;
4263 
4264 	if (ioc_state & MPI2_DOORBELL_USED) {
4265 		dhsprintk(ioc, printk(MPT3SAS_FMT
4266 		    "unexpected doorbell active!\n", ioc->name));
4267 		goto issue_diag_reset;
4268 	}
4269 
4270 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
4271 		mpt3sas_base_fault_info(ioc, ioc_state &
4272 		    MPI2_DOORBELL_DATA_MASK);
4273 		goto issue_diag_reset;
4274 	}
4275 
4276 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY,
4277 	    timeout, sleep_flag);
4278 	if (ioc_state) {
4279 		dfailprintk(ioc, printk(MPT3SAS_FMT
4280 		    "%s: failed going to ready state (ioc_state=0x%x)\n",
4281 		    ioc->name, __func__, ioc_state));
4282 		return -EFAULT;
4283 	}
4284 
4285  issue_diag_reset:
4286 	rc = _base_diag_reset(ioc, sleep_flag);
4287 	return rc;
4288 }
4289 
4290 /**
4291  * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
4292  * @ioc: per adapter object
4293  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4294  *
4295  * Returns 0 for success, non-zero for failure.
4296  */
4297 static int
4298 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4299 {
4300 	Mpi2IOCFactsRequest_t mpi_request;
4301 	Mpi2IOCFactsReply_t mpi_reply;
4302 	struct mpt3sas_facts *facts;
4303 	int mpi_reply_sz, mpi_request_sz, r;
4304 
4305 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4306 	    __func__));
4307 
4308 	r = _base_wait_for_iocstate(ioc, 10, sleep_flag);
4309 	if (r) {
4310 		dfailprintk(ioc, printk(MPT3SAS_FMT
4311 		    "%s: failed getting to correct state\n",
4312 		    ioc->name, __func__));
4313 		return r;
4314 	}
4315 	mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
4316 	mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
4317 	memset(&mpi_request, 0, mpi_request_sz);
4318 	mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
4319 	r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
4320 	    (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5, CAN_SLEEP);
4321 
4322 	if (r != 0) {
4323 		pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4324 		    ioc->name, __func__, r);
4325 		return r;
4326 	}
4327 
4328 	facts = &ioc->facts;
4329 	memset(facts, 0, sizeof(struct mpt3sas_facts));
4330 	facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
4331 	facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
4332 	facts->VP_ID = mpi_reply.VP_ID;
4333 	facts->VF_ID = mpi_reply.VF_ID;
4334 	facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
4335 	facts->MaxChainDepth = mpi_reply.MaxChainDepth;
4336 	facts->WhoInit = mpi_reply.WhoInit;
4337 	facts->NumberOfPorts = mpi_reply.NumberOfPorts;
4338 	facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
4339 	facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
4340 	facts->MaxReplyDescriptorPostQueueDepth =
4341 	    le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
4342 	facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
4343 	facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
4344 	if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
4345 		ioc->ir_firmware = 1;
4346 	if ((facts->IOCCapabilities &
4347 	      MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE))
4348 		ioc->rdpq_array_capable = 1;
4349 	facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
4350 	facts->IOCRequestFrameSize =
4351 	    le16_to_cpu(mpi_reply.IOCRequestFrameSize);
4352 	if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
4353 		facts->IOCMaxChainSegmentSize =
4354 			le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
4355 	}
4356 	facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
4357 	facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
4358 	ioc->shost->max_id = -1;
4359 	facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
4360 	facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
4361 	facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
4362 	facts->HighPriorityCredit =
4363 	    le16_to_cpu(mpi_reply.HighPriorityCredit);
4364 	facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
4365 	facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
4366 
4367 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
4368 		"hba queue depth(%d), max chains per io(%d)\n",
4369 		ioc->name, facts->RequestCredit,
4370 	    facts->MaxChainDepth));
4371 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
4372 		"request frame size(%d), reply frame size(%d)\n", ioc->name,
4373 	    facts->IOCRequestFrameSize * 4, facts->ReplyFrameSize * 4));
4374 	return 0;
4375 }
4376 
4377 /**
4378  * _base_send_ioc_init - send ioc_init to firmware
4379  * @ioc: per adapter object
4380  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4381  *
4382  * Returns 0 for success, non-zero for failure.
4383  */
4384 static int
4385 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4386 {
4387 	Mpi2IOCInitRequest_t mpi_request;
4388 	Mpi2IOCInitReply_t mpi_reply;
4389 	int i, r = 0;
4390 	struct timeval current_time;
4391 	u16 ioc_status;
4392 	u32 reply_post_free_array_sz = 0;
4393 	Mpi2IOCInitRDPQArrayEntry *reply_post_free_array = NULL;
4394 	dma_addr_t reply_post_free_array_dma;
4395 
4396 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4397 	    __func__));
4398 
4399 	memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
4400 	mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
4401 	mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
4402 	mpi_request.VF_ID = 0; /* TODO */
4403 	mpi_request.VP_ID = 0;
4404 	mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
4405 	mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
4406 
4407 	if (_base_is_controller_msix_enabled(ioc))
4408 		mpi_request.HostMSIxVectors = ioc->reply_queue_count;
4409 	mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
4410 	mpi_request.ReplyDescriptorPostQueueDepth =
4411 	    cpu_to_le16(ioc->reply_post_queue_depth);
4412 	mpi_request.ReplyFreeQueueDepth =
4413 	    cpu_to_le16(ioc->reply_free_queue_depth);
4414 
4415 	mpi_request.SenseBufferAddressHigh =
4416 	    cpu_to_le32((u64)ioc->sense_dma >> 32);
4417 	mpi_request.SystemReplyAddressHigh =
4418 	    cpu_to_le32((u64)ioc->reply_dma >> 32);
4419 	mpi_request.SystemRequestFrameBaseAddress =
4420 	    cpu_to_le64((u64)ioc->request_dma);
4421 	mpi_request.ReplyFreeQueueAddress =
4422 	    cpu_to_le64((u64)ioc->reply_free_dma);
4423 
4424 	if (ioc->rdpq_array_enable) {
4425 		reply_post_free_array_sz = ioc->reply_queue_count *
4426 		    sizeof(Mpi2IOCInitRDPQArrayEntry);
4427 		reply_post_free_array = pci_alloc_consistent(ioc->pdev,
4428 			reply_post_free_array_sz, &reply_post_free_array_dma);
4429 		if (!reply_post_free_array) {
4430 			pr_err(MPT3SAS_FMT
4431 			"reply_post_free_array: pci_alloc_consistent failed\n",
4432 			ioc->name);
4433 			r = -ENOMEM;
4434 			goto out;
4435 		}
4436 		memset(reply_post_free_array, 0, reply_post_free_array_sz);
4437 		for (i = 0; i < ioc->reply_queue_count; i++)
4438 			reply_post_free_array[i].RDPQBaseAddress =
4439 			    cpu_to_le64(
4440 				(u64)ioc->reply_post[i].reply_post_free_dma);
4441 		mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
4442 		mpi_request.ReplyDescriptorPostQueueAddress =
4443 		    cpu_to_le64((u64)reply_post_free_array_dma);
4444 	} else {
4445 		mpi_request.ReplyDescriptorPostQueueAddress =
4446 		    cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
4447 	}
4448 
4449 	/* This time stamp specifies number of milliseconds
4450 	 * since epoch ~ midnight January 1, 1970.
4451 	 */
4452 	do_gettimeofday(&current_time);
4453 	mpi_request.TimeStamp = cpu_to_le64((u64)current_time.tv_sec * 1000 +
4454 	    (current_time.tv_usec / 1000));
4455 
4456 	if (ioc->logging_level & MPT_DEBUG_INIT) {
4457 		__le32 *mfp;
4458 		int i;
4459 
4460 		mfp = (__le32 *)&mpi_request;
4461 		pr_info("\toffset:data\n");
4462 		for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
4463 			pr_info("\t[0x%02x]:%08x\n", i*4,
4464 			    le32_to_cpu(mfp[i]));
4465 	}
4466 
4467 	r = _base_handshake_req_reply_wait(ioc,
4468 	    sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
4469 	    sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10,
4470 	    sleep_flag);
4471 
4472 	if (r != 0) {
4473 		pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4474 		    ioc->name, __func__, r);
4475 		goto out;
4476 	}
4477 
4478 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
4479 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
4480 	    mpi_reply.IOCLogInfo) {
4481 		pr_err(MPT3SAS_FMT "%s: failed\n", ioc->name, __func__);
4482 		r = -EIO;
4483 	}
4484 
4485 out:
4486 	if (reply_post_free_array)
4487 		pci_free_consistent(ioc->pdev, reply_post_free_array_sz,
4488 				    reply_post_free_array,
4489 				    reply_post_free_array_dma);
4490 	return r;
4491 }
4492 
4493 /**
4494  * mpt3sas_port_enable_done - command completion routine for port enable
4495  * @ioc: per adapter object
4496  * @smid: system request message index
4497  * @msix_index: MSIX table index supplied by the OS
4498  * @reply: reply message frame(lower 32bit addr)
4499  *
4500  * Return 1 meaning mf should be freed from _base_interrupt
4501  *        0 means the mf is freed from this function.
4502  */
4503 u8
4504 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
4505 	u32 reply)
4506 {
4507 	MPI2DefaultReply_t *mpi_reply;
4508 	u16 ioc_status;
4509 
4510 	if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
4511 		return 1;
4512 
4513 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
4514 	if (!mpi_reply)
4515 		return 1;
4516 
4517 	if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
4518 		return 1;
4519 
4520 	ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
4521 	ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
4522 	ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
4523 	memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
4524 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
4525 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
4526 		ioc->port_enable_failed = 1;
4527 
4528 	if (ioc->is_driver_loading) {
4529 		if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4530 			mpt3sas_port_enable_complete(ioc);
4531 			return 1;
4532 		} else {
4533 			ioc->start_scan_failed = ioc_status;
4534 			ioc->start_scan = 0;
4535 			return 1;
4536 		}
4537 	}
4538 	complete(&ioc->port_enable_cmds.done);
4539 	return 1;
4540 }
4541 
4542 /**
4543  * _base_send_port_enable - send port_enable(discovery stuff) to firmware
4544  * @ioc: per adapter object
4545  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4546  *
4547  * Returns 0 for success, non-zero for failure.
4548  */
4549 static int
4550 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4551 {
4552 	Mpi2PortEnableRequest_t *mpi_request;
4553 	Mpi2PortEnableReply_t *mpi_reply;
4554 	unsigned long timeleft;
4555 	int r = 0;
4556 	u16 smid;
4557 	u16 ioc_status;
4558 
4559 	pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
4560 
4561 	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
4562 		pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4563 		    ioc->name, __func__);
4564 		return -EAGAIN;
4565 	}
4566 
4567 	smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
4568 	if (!smid) {
4569 		pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4570 		    ioc->name, __func__);
4571 		return -EAGAIN;
4572 	}
4573 
4574 	ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
4575 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4576 	ioc->port_enable_cmds.smid = smid;
4577 	memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
4578 	mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
4579 
4580 	init_completion(&ioc->port_enable_cmds.done);
4581 	mpt3sas_base_put_smid_default(ioc, smid);
4582 	timeleft = wait_for_completion_timeout(&ioc->port_enable_cmds.done,
4583 	    300*HZ);
4584 	if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
4585 		pr_err(MPT3SAS_FMT "%s: timeout\n",
4586 		    ioc->name, __func__);
4587 		_debug_dump_mf(mpi_request,
4588 		    sizeof(Mpi2PortEnableRequest_t)/4);
4589 		if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
4590 			r = -EFAULT;
4591 		else
4592 			r = -ETIME;
4593 		goto out;
4594 	}
4595 
4596 	mpi_reply = ioc->port_enable_cmds.reply;
4597 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
4598 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4599 		pr_err(MPT3SAS_FMT "%s: failed with (ioc_status=0x%08x)\n",
4600 		    ioc->name, __func__, ioc_status);
4601 		r = -EFAULT;
4602 		goto out;
4603 	}
4604 
4605  out:
4606 	ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
4607 	pr_info(MPT3SAS_FMT "port enable: %s\n", ioc->name, ((r == 0) ?
4608 	    "SUCCESS" : "FAILED"));
4609 	return r;
4610 }
4611 
4612 /**
4613  * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
4614  * @ioc: per adapter object
4615  *
4616  * Returns 0 for success, non-zero for failure.
4617  */
4618 int
4619 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
4620 {
4621 	Mpi2PortEnableRequest_t *mpi_request;
4622 	u16 smid;
4623 
4624 	pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
4625 
4626 	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
4627 		pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4628 		    ioc->name, __func__);
4629 		return -EAGAIN;
4630 	}
4631 
4632 	smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
4633 	if (!smid) {
4634 		pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4635 		    ioc->name, __func__);
4636 		return -EAGAIN;
4637 	}
4638 
4639 	ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
4640 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4641 	ioc->port_enable_cmds.smid = smid;
4642 	memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
4643 	mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
4644 
4645 	mpt3sas_base_put_smid_default(ioc, smid);
4646 	return 0;
4647 }
4648 
4649 /**
4650  * _base_determine_wait_on_discovery - desposition
4651  * @ioc: per adapter object
4652  *
4653  * Decide whether to wait on discovery to complete. Used to either
4654  * locate boot device, or report volumes ahead of physical devices.
4655  *
4656  * Returns 1 for wait, 0 for don't wait
4657  */
4658 static int
4659 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
4660 {
4661 	/* We wait for discovery to complete if IR firmware is loaded.
4662 	 * The sas topology events arrive before PD events, so we need time to
4663 	 * turn on the bit in ioc->pd_handles to indicate PD
4664 	 * Also, it maybe required to report Volumes ahead of physical
4665 	 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
4666 	 */
4667 	if (ioc->ir_firmware)
4668 		return 1;
4669 
4670 	/* if no Bios, then we don't need to wait */
4671 	if (!ioc->bios_pg3.BiosVersion)
4672 		return 0;
4673 
4674 	/* Bios is present, then we drop down here.
4675 	 *
4676 	 * If there any entries in the Bios Page 2, then we wait
4677 	 * for discovery to complete.
4678 	 */
4679 
4680 	/* Current Boot Device */
4681 	if ((ioc->bios_pg2.CurrentBootDeviceForm &
4682 	    MPI2_BIOSPAGE2_FORM_MASK) ==
4683 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
4684 	/* Request Boot Device */
4685 	   (ioc->bios_pg2.ReqBootDeviceForm &
4686 	    MPI2_BIOSPAGE2_FORM_MASK) ==
4687 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
4688 	/* Alternate Request Boot Device */
4689 	   (ioc->bios_pg2.ReqAltBootDeviceForm &
4690 	    MPI2_BIOSPAGE2_FORM_MASK) ==
4691 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
4692 		return 0;
4693 
4694 	return 1;
4695 }
4696 
4697 /**
4698  * _base_unmask_events - turn on notification for this event
4699  * @ioc: per adapter object
4700  * @event: firmware event
4701  *
4702  * The mask is stored in ioc->event_masks.
4703  */
4704 static void
4705 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
4706 {
4707 	u32 desired_event;
4708 
4709 	if (event >= 128)
4710 		return;
4711 
4712 	desired_event = (1 << (event % 32));
4713 
4714 	if (event < 32)
4715 		ioc->event_masks[0] &= ~desired_event;
4716 	else if (event < 64)
4717 		ioc->event_masks[1] &= ~desired_event;
4718 	else if (event < 96)
4719 		ioc->event_masks[2] &= ~desired_event;
4720 	else if (event < 128)
4721 		ioc->event_masks[3] &= ~desired_event;
4722 }
4723 
4724 /**
4725  * _base_event_notification - send event notification
4726  * @ioc: per adapter object
4727  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4728  *
4729  * Returns 0 for success, non-zero for failure.
4730  */
4731 static int
4732 _base_event_notification(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4733 {
4734 	Mpi2EventNotificationRequest_t *mpi_request;
4735 	unsigned long timeleft;
4736 	u16 smid;
4737 	int r = 0;
4738 	int i;
4739 
4740 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4741 	    __func__));
4742 
4743 	if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4744 		pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4745 		    ioc->name, __func__);
4746 		return -EAGAIN;
4747 	}
4748 
4749 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4750 	if (!smid) {
4751 		pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4752 		    ioc->name, __func__);
4753 		return -EAGAIN;
4754 	}
4755 	ioc->base_cmds.status = MPT3_CMD_PENDING;
4756 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4757 	ioc->base_cmds.smid = smid;
4758 	memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
4759 	mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
4760 	mpi_request->VF_ID = 0; /* TODO */
4761 	mpi_request->VP_ID = 0;
4762 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
4763 		mpi_request->EventMasks[i] =
4764 		    cpu_to_le32(ioc->event_masks[i]);
4765 	init_completion(&ioc->base_cmds.done);
4766 	mpt3sas_base_put_smid_default(ioc, smid);
4767 	timeleft = wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
4768 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4769 		pr_err(MPT3SAS_FMT "%s: timeout\n",
4770 		    ioc->name, __func__);
4771 		_debug_dump_mf(mpi_request,
4772 		    sizeof(Mpi2EventNotificationRequest_t)/4);
4773 		if (ioc->base_cmds.status & MPT3_CMD_RESET)
4774 			r = -EFAULT;
4775 		else
4776 			r = -ETIME;
4777 	} else
4778 		dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s: complete\n",
4779 		    ioc->name, __func__));
4780 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4781 	return r;
4782 }
4783 
4784 /**
4785  * mpt3sas_base_validate_event_type - validating event types
4786  * @ioc: per adapter object
4787  * @event: firmware event
4788  *
4789  * This will turn on firmware event notification when application
4790  * ask for that event. We don't mask events that are already enabled.
4791  */
4792 void
4793 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
4794 {
4795 	int i, j;
4796 	u32 event_mask, desired_event;
4797 	u8 send_update_to_fw;
4798 
4799 	for (i = 0, send_update_to_fw = 0; i <
4800 	    MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
4801 		event_mask = ~event_type[i];
4802 		desired_event = 1;
4803 		for (j = 0; j < 32; j++) {
4804 			if (!(event_mask & desired_event) &&
4805 			    (ioc->event_masks[i] & desired_event)) {
4806 				ioc->event_masks[i] &= ~desired_event;
4807 				send_update_to_fw = 1;
4808 			}
4809 			desired_event = (desired_event << 1);
4810 		}
4811 	}
4812 
4813 	if (!send_update_to_fw)
4814 		return;
4815 
4816 	mutex_lock(&ioc->base_cmds.mutex);
4817 	_base_event_notification(ioc, CAN_SLEEP);
4818 	mutex_unlock(&ioc->base_cmds.mutex);
4819 }
4820 
4821 /**
4822  * _base_diag_reset - the "big hammer" start of day reset
4823  * @ioc: per adapter object
4824  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4825  *
4826  * Returns 0 for success, non-zero for failure.
4827  */
4828 static int
4829 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4830 {
4831 	u32 host_diagnostic;
4832 	u32 ioc_state;
4833 	u32 count;
4834 	u32 hcb_size;
4835 
4836 	pr_info(MPT3SAS_FMT "sending diag reset !!\n", ioc->name);
4837 
4838 	drsprintk(ioc, pr_info(MPT3SAS_FMT "clear interrupts\n",
4839 	    ioc->name));
4840 
4841 	count = 0;
4842 	do {
4843 		/* Write magic sequence to WriteSequence register
4844 		 * Loop until in diagnostic mode
4845 		 */
4846 		drsprintk(ioc, pr_info(MPT3SAS_FMT
4847 			"write magic sequence\n", ioc->name));
4848 		writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
4849 		writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
4850 		writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
4851 		writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
4852 		writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
4853 		writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
4854 		writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
4855 
4856 		/* wait 100 msec */
4857 		if (sleep_flag == CAN_SLEEP)
4858 			msleep(100);
4859 		else
4860 			mdelay(100);
4861 
4862 		if (count++ > 20)
4863 			goto out;
4864 
4865 		host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4866 		drsprintk(ioc, pr_info(MPT3SAS_FMT
4867 			"wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
4868 		    ioc->name, count, host_diagnostic));
4869 
4870 	} while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
4871 
4872 	hcb_size = readl(&ioc->chip->HCBSize);
4873 
4874 	drsprintk(ioc, pr_info(MPT3SAS_FMT "diag reset: issued\n",
4875 	    ioc->name));
4876 	writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
4877 	     &ioc->chip->HostDiagnostic);
4878 
4879 	/*This delay allows the chip PCIe hardware time to finish reset tasks*/
4880 	if (sleep_flag == CAN_SLEEP)
4881 		msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
4882 	else
4883 		mdelay(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
4884 
4885 	/* Approximately 300 second max wait */
4886 	for (count = 0; count < (300000000 /
4887 		MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
4888 
4889 		host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4890 
4891 		if (host_diagnostic == 0xFFFFFFFF)
4892 			goto out;
4893 		if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
4894 			break;
4895 
4896 		/* Wait to pass the second read delay window */
4897 		if (sleep_flag == CAN_SLEEP)
4898 			msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC
4899 								/ 1000);
4900 		else
4901 			mdelay(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC
4902 								/ 1000);
4903 	}
4904 
4905 	if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
4906 
4907 		drsprintk(ioc, pr_info(MPT3SAS_FMT
4908 		"restart the adapter assuming the HCB Address points to good F/W\n",
4909 		    ioc->name));
4910 		host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
4911 		host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
4912 		writel(host_diagnostic, &ioc->chip->HostDiagnostic);
4913 
4914 		drsprintk(ioc, pr_info(MPT3SAS_FMT
4915 		    "re-enable the HCDW\n", ioc->name));
4916 		writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
4917 		    &ioc->chip->HCBSize);
4918 	}
4919 
4920 	drsprintk(ioc, pr_info(MPT3SAS_FMT "restart the adapter\n",
4921 	    ioc->name));
4922 	writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
4923 	    &ioc->chip->HostDiagnostic);
4924 
4925 	drsprintk(ioc, pr_info(MPT3SAS_FMT
4926 		"disable writes to the diagnostic register\n", ioc->name));
4927 	writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
4928 
4929 	drsprintk(ioc, pr_info(MPT3SAS_FMT
4930 		"Wait for FW to go to the READY state\n", ioc->name));
4931 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20,
4932 	    sleep_flag);
4933 	if (ioc_state) {
4934 		pr_err(MPT3SAS_FMT
4935 			"%s: failed going to ready state (ioc_state=0x%x)\n",
4936 			ioc->name, __func__, ioc_state);
4937 		goto out;
4938 	}
4939 
4940 	pr_info(MPT3SAS_FMT "diag reset: SUCCESS\n", ioc->name);
4941 	return 0;
4942 
4943  out:
4944 	pr_err(MPT3SAS_FMT "diag reset: FAILED\n", ioc->name);
4945 	return -EFAULT;
4946 }
4947 
4948 /**
4949  * _base_make_ioc_ready - put controller in READY state
4950  * @ioc: per adapter object
4951  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4952  * @type: FORCE_BIG_HAMMER or SOFT_RESET
4953  *
4954  * Returns 0 for success, non-zero for failure.
4955  */
4956 static int
4957 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, int sleep_flag,
4958 	enum reset_type type)
4959 {
4960 	u32 ioc_state;
4961 	int rc;
4962 	int count;
4963 
4964 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4965 	    __func__));
4966 
4967 	if (ioc->pci_error_recovery)
4968 		return 0;
4969 
4970 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4971 	dhsprintk(ioc, pr_info(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
4972 	    ioc->name, __func__, ioc_state));
4973 
4974 	/* if in RESET state, it should move to READY state shortly */
4975 	count = 0;
4976 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
4977 		while ((ioc_state & MPI2_IOC_STATE_MASK) !=
4978 		    MPI2_IOC_STATE_READY) {
4979 			if (count++ == 10) {
4980 				pr_err(MPT3SAS_FMT
4981 					"%s: failed going to ready state (ioc_state=0x%x)\n",
4982 				    ioc->name, __func__, ioc_state);
4983 				return -EFAULT;
4984 			}
4985 			if (sleep_flag == CAN_SLEEP)
4986 				ssleep(1);
4987 			else
4988 				mdelay(1000);
4989 			ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4990 		}
4991 	}
4992 
4993 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
4994 		return 0;
4995 
4996 	if (ioc_state & MPI2_DOORBELL_USED) {
4997 		dhsprintk(ioc, pr_info(MPT3SAS_FMT
4998 			"unexpected doorbell active!\n",
4999 			ioc->name));
5000 		goto issue_diag_reset;
5001 	}
5002 
5003 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
5004 		mpt3sas_base_fault_info(ioc, ioc_state &
5005 		    MPI2_DOORBELL_DATA_MASK);
5006 		goto issue_diag_reset;
5007 	}
5008 
5009 	if (type == FORCE_BIG_HAMMER)
5010 		goto issue_diag_reset;
5011 
5012 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
5013 		if (!(_base_send_ioc_reset(ioc,
5014 		    MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15, CAN_SLEEP))) {
5015 			return 0;
5016 	}
5017 
5018  issue_diag_reset:
5019 	rc = _base_diag_reset(ioc, CAN_SLEEP);
5020 	return rc;
5021 }
5022 
5023 /**
5024  * _base_make_ioc_operational - put controller in OPERATIONAL state
5025  * @ioc: per adapter object
5026  * @sleep_flag: CAN_SLEEP or NO_SLEEP
5027  *
5028  * Returns 0 for success, non-zero for failure.
5029  */
5030 static int
5031 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
5032 {
5033 	int r, i, index;
5034 	unsigned long	flags;
5035 	u32 reply_address;
5036 	u16 smid;
5037 	struct _tr_list *delayed_tr, *delayed_tr_next;
5038 	struct _sc_list *delayed_sc, *delayed_sc_next;
5039 	struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
5040 	u8 hide_flag;
5041 	struct adapter_reply_queue *reply_q;
5042 	Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
5043 
5044 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5045 	    __func__));
5046 
5047 	/* clean the delayed target reset list */
5048 	list_for_each_entry_safe(delayed_tr, delayed_tr_next,
5049 	    &ioc->delayed_tr_list, list) {
5050 		list_del(&delayed_tr->list);
5051 		kfree(delayed_tr);
5052 	}
5053 
5054 
5055 	list_for_each_entry_safe(delayed_tr, delayed_tr_next,
5056 	    &ioc->delayed_tr_volume_list, list) {
5057 		list_del(&delayed_tr->list);
5058 		kfree(delayed_tr);
5059 	}
5060 
5061 	list_for_each_entry_safe(delayed_sc, delayed_sc_next,
5062 	    &ioc->delayed_sc_list, list) {
5063 		list_del(&delayed_sc->list);
5064 		kfree(delayed_sc);
5065 	}
5066 
5067 	list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
5068 	    &ioc->delayed_event_ack_list, list) {
5069 		list_del(&delayed_event_ack->list);
5070 		kfree(delayed_event_ack);
5071 	}
5072 
5073 	/* initialize the scsi lookup free list */
5074 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
5075 	INIT_LIST_HEAD(&ioc->free_list);
5076 	smid = 1;
5077 	for (i = 0; i < ioc->scsiio_depth; i++, smid++) {
5078 		INIT_LIST_HEAD(&ioc->scsi_lookup[i].chain_list);
5079 		ioc->scsi_lookup[i].cb_idx = 0xFF;
5080 		ioc->scsi_lookup[i].smid = smid;
5081 		ioc->scsi_lookup[i].scmd = NULL;
5082 		ioc->scsi_lookup[i].direct_io = 0;
5083 		list_add_tail(&ioc->scsi_lookup[i].tracker_list,
5084 		    &ioc->free_list);
5085 	}
5086 
5087 	/* hi-priority queue */
5088 	INIT_LIST_HEAD(&ioc->hpr_free_list);
5089 	smid = ioc->hi_priority_smid;
5090 	for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
5091 		ioc->hpr_lookup[i].cb_idx = 0xFF;
5092 		ioc->hpr_lookup[i].smid = smid;
5093 		list_add_tail(&ioc->hpr_lookup[i].tracker_list,
5094 		    &ioc->hpr_free_list);
5095 	}
5096 
5097 	/* internal queue */
5098 	INIT_LIST_HEAD(&ioc->internal_free_list);
5099 	smid = ioc->internal_smid;
5100 	for (i = 0; i < ioc->internal_depth; i++, smid++) {
5101 		ioc->internal_lookup[i].cb_idx = 0xFF;
5102 		ioc->internal_lookup[i].smid = smid;
5103 		list_add_tail(&ioc->internal_lookup[i].tracker_list,
5104 		    &ioc->internal_free_list);
5105 	}
5106 
5107 	/* chain pool */
5108 	INIT_LIST_HEAD(&ioc->free_chain_list);
5109 	for (i = 0; i < ioc->chain_depth; i++)
5110 		list_add_tail(&ioc->chain_lookup[i].tracker_list,
5111 		    &ioc->free_chain_list);
5112 
5113 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
5114 
5115 	/* initialize Reply Free Queue */
5116 	for (i = 0, reply_address = (u32)ioc->reply_dma ;
5117 	    i < ioc->reply_free_queue_depth ; i++, reply_address +=
5118 	    ioc->reply_sz)
5119 		ioc->reply_free[i] = cpu_to_le32(reply_address);
5120 
5121 	/* initialize reply queues */
5122 	if (ioc->is_driver_loading)
5123 		_base_assign_reply_queues(ioc);
5124 
5125 	/* initialize Reply Post Free Queue */
5126 	index = 0;
5127 	reply_post_free_contig = ioc->reply_post[0].reply_post_free;
5128 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
5129 		/*
5130 		 * If RDPQ is enabled, switch to the next allocation.
5131 		 * Otherwise advance within the contiguous region.
5132 		 */
5133 		if (ioc->rdpq_array_enable) {
5134 			reply_q->reply_post_free =
5135 				ioc->reply_post[index++].reply_post_free;
5136 		} else {
5137 			reply_q->reply_post_free = reply_post_free_contig;
5138 			reply_post_free_contig += ioc->reply_post_queue_depth;
5139 		}
5140 
5141 		reply_q->reply_post_host_index = 0;
5142 		for (i = 0; i < ioc->reply_post_queue_depth; i++)
5143 			reply_q->reply_post_free[i].Words =
5144 			    cpu_to_le64(ULLONG_MAX);
5145 		if (!_base_is_controller_msix_enabled(ioc))
5146 			goto skip_init_reply_post_free_queue;
5147 	}
5148  skip_init_reply_post_free_queue:
5149 
5150 	r = _base_send_ioc_init(ioc, sleep_flag);
5151 	if (r)
5152 		return r;
5153 
5154 	/* initialize reply free host index */
5155 	ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
5156 	writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
5157 
5158 	/* initialize reply post host index */
5159 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
5160 		if (ioc->msix96_vector)
5161 			writel((reply_q->msix_index & 7)<<
5162 			   MPI2_RPHI_MSIX_INDEX_SHIFT,
5163 			   ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
5164 		else
5165 			writel(reply_q->msix_index <<
5166 				MPI2_RPHI_MSIX_INDEX_SHIFT,
5167 				&ioc->chip->ReplyPostHostIndex);
5168 
5169 		if (!_base_is_controller_msix_enabled(ioc))
5170 			goto skip_init_reply_post_host_index;
5171 	}
5172 
5173  skip_init_reply_post_host_index:
5174 
5175 	_base_unmask_interrupts(ioc);
5176 	r = _base_event_notification(ioc, sleep_flag);
5177 	if (r)
5178 		return r;
5179 
5180 	if (sleep_flag == CAN_SLEEP)
5181 		_base_static_config_pages(ioc);
5182 
5183 
5184 	if (ioc->is_driver_loading) {
5185 
5186 		if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
5187 		    == 0x80) {
5188 			hide_flag = (u8) (
5189 			    le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
5190 			    MFG_PAGE10_HIDE_SSDS_MASK);
5191 			if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
5192 				ioc->mfg_pg10_hide_flag = hide_flag;
5193 		}
5194 
5195 		ioc->wait_for_discovery_to_complete =
5196 		    _base_determine_wait_on_discovery(ioc);
5197 
5198 		return r; /* scan_start and scan_finished support */
5199 	}
5200 
5201 	r = _base_send_port_enable(ioc, sleep_flag);
5202 	if (r)
5203 		return r;
5204 
5205 	return r;
5206 }
5207 
5208 /**
5209  * mpt3sas_base_free_resources - free resources controller resources
5210  * @ioc: per adapter object
5211  *
5212  * Return nothing.
5213  */
5214 void
5215 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
5216 {
5217 	dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5218 	    __func__));
5219 
5220 	/* synchronizing freeing resource with pci_access_mutex lock */
5221 	mutex_lock(&ioc->pci_access_mutex);
5222 	if (ioc->chip_phys && ioc->chip) {
5223 		_base_mask_interrupts(ioc);
5224 		ioc->shost_recovery = 1;
5225 		_base_make_ioc_ready(ioc, CAN_SLEEP, SOFT_RESET);
5226 		ioc->shost_recovery = 0;
5227 	}
5228 
5229 	mpt3sas_base_unmap_resources(ioc);
5230 	mutex_unlock(&ioc->pci_access_mutex);
5231 	return;
5232 }
5233 
5234 /**
5235  * mpt3sas_base_attach - attach controller instance
5236  * @ioc: per adapter object
5237  *
5238  * Returns 0 for success, non-zero for failure.
5239  */
5240 int
5241 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
5242 {
5243 	int r, i;
5244 	int cpu_id, last_cpu_id = 0;
5245 
5246 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5247 	    __func__));
5248 
5249 	/* setup cpu_msix_table */
5250 	ioc->cpu_count = num_online_cpus();
5251 	for_each_online_cpu(cpu_id)
5252 		last_cpu_id = cpu_id;
5253 	ioc->cpu_msix_table_sz = last_cpu_id + 1;
5254 	ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
5255 	ioc->reply_queue_count = 1;
5256 	if (!ioc->cpu_msix_table) {
5257 		dfailprintk(ioc, pr_info(MPT3SAS_FMT
5258 			"allocation for cpu_msix_table failed!!!\n",
5259 			ioc->name));
5260 		r = -ENOMEM;
5261 		goto out_free_resources;
5262 	}
5263 
5264 	if (ioc->is_warpdrive) {
5265 		ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
5266 		    sizeof(resource_size_t *), GFP_KERNEL);
5267 		if (!ioc->reply_post_host_index) {
5268 			dfailprintk(ioc, pr_info(MPT3SAS_FMT "allocation "
5269 				"for cpu_msix_table failed!!!\n", ioc->name));
5270 			r = -ENOMEM;
5271 			goto out_free_resources;
5272 		}
5273 	}
5274 
5275 	ioc->rdpq_array_enable_assigned = 0;
5276 	ioc->dma_mask = 0;
5277 	r = mpt3sas_base_map_resources(ioc);
5278 	if (r)
5279 		goto out_free_resources;
5280 
5281 	if (ioc->is_warpdrive) {
5282 		ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
5283 		    &ioc->chip->ReplyPostHostIndex;
5284 
5285 		for (i = 1; i < ioc->cpu_msix_table_sz; i++)
5286 			ioc->reply_post_host_index[i] =
5287 			(resource_size_t __iomem *)
5288 			((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
5289 			* 4)));
5290 	}
5291 
5292 	pci_set_drvdata(ioc->pdev, ioc->shost);
5293 	r = _base_get_ioc_facts(ioc, CAN_SLEEP);
5294 	if (r)
5295 		goto out_free_resources;
5296 
5297 	switch (ioc->hba_mpi_version_belonged) {
5298 	case MPI2_VERSION:
5299 		ioc->build_sg_scmd = &_base_build_sg_scmd;
5300 		ioc->build_sg = &_base_build_sg;
5301 		ioc->build_zero_len_sge = &_base_build_zero_len_sge;
5302 		break;
5303 	case MPI25_VERSION:
5304 	case MPI26_VERSION:
5305 		/*
5306 		 * In SAS3.0,
5307 		 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
5308 		 * Target Status - all require the IEEE formated scatter gather
5309 		 * elements.
5310 		 */
5311 		ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
5312 		ioc->build_sg = &_base_build_sg_ieee;
5313 		ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
5314 		ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
5315 		break;
5316 	}
5317 
5318 	/*
5319 	 * These function pointers for other requests that don't
5320 	 * the require IEEE scatter gather elements.
5321 	 *
5322 	 * For example Configuration Pages and SAS IOUNIT Control don't.
5323 	 */
5324 	ioc->build_sg_mpi = &_base_build_sg;
5325 	ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
5326 
5327 	r = _base_make_ioc_ready(ioc, CAN_SLEEP, SOFT_RESET);
5328 	if (r)
5329 		goto out_free_resources;
5330 
5331 	ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
5332 	    sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
5333 	if (!ioc->pfacts) {
5334 		r = -ENOMEM;
5335 		goto out_free_resources;
5336 	}
5337 
5338 	for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
5339 		r = _base_get_port_facts(ioc, i, CAN_SLEEP);
5340 		if (r)
5341 			goto out_free_resources;
5342 	}
5343 
5344 	r = _base_allocate_memory_pools(ioc, CAN_SLEEP);
5345 	if (r)
5346 		goto out_free_resources;
5347 
5348 	init_waitqueue_head(&ioc->reset_wq);
5349 
5350 	/* allocate memory pd handle bitmask list */
5351 	ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
5352 	if (ioc->facts.MaxDevHandle % 8)
5353 		ioc->pd_handles_sz++;
5354 	ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
5355 	    GFP_KERNEL);
5356 	if (!ioc->pd_handles) {
5357 		r = -ENOMEM;
5358 		goto out_free_resources;
5359 	}
5360 	ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
5361 	    GFP_KERNEL);
5362 	if (!ioc->blocking_handles) {
5363 		r = -ENOMEM;
5364 		goto out_free_resources;
5365 	}
5366 
5367 	ioc->fwfault_debug = mpt3sas_fwfault_debug;
5368 
5369 	/* base internal command bits */
5370 	mutex_init(&ioc->base_cmds.mutex);
5371 	ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5372 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5373 
5374 	/* port_enable command bits */
5375 	ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5376 	ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
5377 
5378 	/* transport internal command bits */
5379 	ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5380 	ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
5381 	mutex_init(&ioc->transport_cmds.mutex);
5382 
5383 	/* scsih internal command bits */
5384 	ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5385 	ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
5386 	mutex_init(&ioc->scsih_cmds.mutex);
5387 
5388 	/* task management internal command bits */
5389 	ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5390 	ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
5391 	mutex_init(&ioc->tm_cmds.mutex);
5392 
5393 	/* config page internal command bits */
5394 	ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5395 	ioc->config_cmds.status = MPT3_CMD_NOT_USED;
5396 	mutex_init(&ioc->config_cmds.mutex);
5397 
5398 	/* ctl module internal command bits */
5399 	ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5400 	ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
5401 	ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
5402 	mutex_init(&ioc->ctl_cmds.mutex);
5403 
5404 	if (!ioc->base_cmds.reply || !ioc->transport_cmds.reply ||
5405 	    !ioc->scsih_cmds.reply || !ioc->tm_cmds.reply ||
5406 	    !ioc->config_cmds.reply || !ioc->ctl_cmds.reply ||
5407 	    !ioc->ctl_cmds.sense) {
5408 		r = -ENOMEM;
5409 		goto out_free_resources;
5410 	}
5411 
5412 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
5413 		ioc->event_masks[i] = -1;
5414 
5415 	/* here we enable the events we care about */
5416 	_base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
5417 	_base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
5418 	_base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
5419 	_base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
5420 	_base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
5421 	_base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
5422 	_base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
5423 	_base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
5424 	_base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
5425 	_base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
5426 	_base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
5427 
5428 	r = _base_make_ioc_operational(ioc, CAN_SLEEP);
5429 	if (r)
5430 		goto out_free_resources;
5431 
5432 	ioc->non_operational_loop = 0;
5433 	return 0;
5434 
5435  out_free_resources:
5436 
5437 	ioc->remove_host = 1;
5438 
5439 	mpt3sas_base_free_resources(ioc);
5440 	_base_release_memory_pools(ioc);
5441 	pci_set_drvdata(ioc->pdev, NULL);
5442 	kfree(ioc->cpu_msix_table);
5443 	if (ioc->is_warpdrive)
5444 		kfree(ioc->reply_post_host_index);
5445 	kfree(ioc->pd_handles);
5446 	kfree(ioc->blocking_handles);
5447 	kfree(ioc->tm_cmds.reply);
5448 	kfree(ioc->transport_cmds.reply);
5449 	kfree(ioc->scsih_cmds.reply);
5450 	kfree(ioc->config_cmds.reply);
5451 	kfree(ioc->base_cmds.reply);
5452 	kfree(ioc->port_enable_cmds.reply);
5453 	kfree(ioc->ctl_cmds.reply);
5454 	kfree(ioc->ctl_cmds.sense);
5455 	kfree(ioc->pfacts);
5456 	ioc->ctl_cmds.reply = NULL;
5457 	ioc->base_cmds.reply = NULL;
5458 	ioc->tm_cmds.reply = NULL;
5459 	ioc->scsih_cmds.reply = NULL;
5460 	ioc->transport_cmds.reply = NULL;
5461 	ioc->config_cmds.reply = NULL;
5462 	ioc->pfacts = NULL;
5463 	return r;
5464 }
5465 
5466 
5467 /**
5468  * mpt3sas_base_detach - remove controller instance
5469  * @ioc: per adapter object
5470  *
5471  * Return nothing.
5472  */
5473 void
5474 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
5475 {
5476 	dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5477 	    __func__));
5478 
5479 	mpt3sas_base_stop_watchdog(ioc);
5480 	mpt3sas_base_free_resources(ioc);
5481 	_base_release_memory_pools(ioc);
5482 	pci_set_drvdata(ioc->pdev, NULL);
5483 	kfree(ioc->cpu_msix_table);
5484 	if (ioc->is_warpdrive)
5485 		kfree(ioc->reply_post_host_index);
5486 	kfree(ioc->pd_handles);
5487 	kfree(ioc->blocking_handles);
5488 	kfree(ioc->pfacts);
5489 	kfree(ioc->ctl_cmds.reply);
5490 	kfree(ioc->ctl_cmds.sense);
5491 	kfree(ioc->base_cmds.reply);
5492 	kfree(ioc->port_enable_cmds.reply);
5493 	kfree(ioc->tm_cmds.reply);
5494 	kfree(ioc->transport_cmds.reply);
5495 	kfree(ioc->scsih_cmds.reply);
5496 	kfree(ioc->config_cmds.reply);
5497 }
5498 
5499 /**
5500  * _base_reset_handler - reset callback handler (for base)
5501  * @ioc: per adapter object
5502  * @reset_phase: phase
5503  *
5504  * The handler for doing any required cleanup or initialization.
5505  *
5506  * The reset phase can be MPT3_IOC_PRE_RESET, MPT3_IOC_AFTER_RESET,
5507  * MPT3_IOC_DONE_RESET
5508  *
5509  * Return nothing.
5510  */
5511 static void
5512 _base_reset_handler(struct MPT3SAS_ADAPTER *ioc, int reset_phase)
5513 {
5514 	mpt3sas_scsih_reset_handler(ioc, reset_phase);
5515 	mpt3sas_ctl_reset_handler(ioc, reset_phase);
5516 	switch (reset_phase) {
5517 	case MPT3_IOC_PRE_RESET:
5518 		dtmprintk(ioc, pr_info(MPT3SAS_FMT
5519 		"%s: MPT3_IOC_PRE_RESET\n", ioc->name, __func__));
5520 		break;
5521 	case MPT3_IOC_AFTER_RESET:
5522 		dtmprintk(ioc, pr_info(MPT3SAS_FMT
5523 		"%s: MPT3_IOC_AFTER_RESET\n", ioc->name, __func__));
5524 		if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
5525 			ioc->transport_cmds.status |= MPT3_CMD_RESET;
5526 			mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
5527 			complete(&ioc->transport_cmds.done);
5528 		}
5529 		if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
5530 			ioc->base_cmds.status |= MPT3_CMD_RESET;
5531 			mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
5532 			complete(&ioc->base_cmds.done);
5533 		}
5534 		if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
5535 			ioc->port_enable_failed = 1;
5536 			ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
5537 			mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
5538 			if (ioc->is_driver_loading) {
5539 				ioc->start_scan_failed =
5540 				    MPI2_IOCSTATUS_INTERNAL_ERROR;
5541 				ioc->start_scan = 0;
5542 				ioc->port_enable_cmds.status =
5543 				    MPT3_CMD_NOT_USED;
5544 			} else
5545 				complete(&ioc->port_enable_cmds.done);
5546 		}
5547 		if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
5548 			ioc->config_cmds.status |= MPT3_CMD_RESET;
5549 			mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
5550 			ioc->config_cmds.smid = USHRT_MAX;
5551 			complete(&ioc->config_cmds.done);
5552 		}
5553 		break;
5554 	case MPT3_IOC_DONE_RESET:
5555 		dtmprintk(ioc, pr_info(MPT3SAS_FMT
5556 			"%s: MPT3_IOC_DONE_RESET\n", ioc->name, __func__));
5557 		break;
5558 	}
5559 }
5560 
5561 /**
5562  * _wait_for_commands_to_complete - reset controller
5563  * @ioc: Pointer to MPT_ADAPTER structure
5564  * @sleep_flag: CAN_SLEEP or NO_SLEEP
5565  *
5566  * This function waiting(3s) for all pending commands to complete
5567  * prior to putting controller in reset.
5568  */
5569 static void
5570 _wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
5571 {
5572 	u32 ioc_state;
5573 	unsigned long flags;
5574 	u16 i;
5575 
5576 	ioc->pending_io_count = 0;
5577 	if (sleep_flag != CAN_SLEEP)
5578 		return;
5579 
5580 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5581 	if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
5582 		return;
5583 
5584 	/* pending command count */
5585 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
5586 	for (i = 0; i < ioc->scsiio_depth; i++)
5587 		if (ioc->scsi_lookup[i].cb_idx != 0xFF)
5588 			ioc->pending_io_count++;
5589 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
5590 
5591 	if (!ioc->pending_io_count)
5592 		return;
5593 
5594 	/* wait for pending commands to complete */
5595 	wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
5596 }
5597 
5598 /**
5599  * mpt3sas_base_hard_reset_handler - reset controller
5600  * @ioc: Pointer to MPT_ADAPTER structure
5601  * @sleep_flag: CAN_SLEEP or NO_SLEEP
5602  * @type: FORCE_BIG_HAMMER or SOFT_RESET
5603  *
5604  * Returns 0 for success, non-zero for failure.
5605  */
5606 int
5607 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc, int sleep_flag,
5608 	enum reset_type type)
5609 {
5610 	int r;
5611 	unsigned long flags;
5612 	u32 ioc_state;
5613 	u8 is_fault = 0, is_trigger = 0;
5614 
5615 	dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: enter\n", ioc->name,
5616 	    __func__));
5617 
5618 	if (ioc->pci_error_recovery) {
5619 		pr_err(MPT3SAS_FMT "%s: pci error recovery reset\n",
5620 		    ioc->name, __func__);
5621 		r = 0;
5622 		goto out_unlocked;
5623 	}
5624 
5625 	if (mpt3sas_fwfault_debug)
5626 		mpt3sas_halt_firmware(ioc);
5627 
5628 	/* TODO - What we really should be doing is pulling
5629 	 * out all the code associated with NO_SLEEP; its never used.
5630 	 * That is legacy code from mpt fusion driver, ported over.
5631 	 * I will leave this BUG_ON here for now till its been resolved.
5632 	 */
5633 	BUG_ON(sleep_flag == NO_SLEEP);
5634 
5635 	/* wait for an active reset in progress to complete */
5636 	if (!mutex_trylock(&ioc->reset_in_progress_mutex)) {
5637 		do {
5638 			ssleep(1);
5639 		} while (ioc->shost_recovery == 1);
5640 		dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
5641 		    __func__));
5642 		return ioc->ioc_reset_in_progress_status;
5643 	}
5644 
5645 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5646 	ioc->shost_recovery = 1;
5647 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5648 
5649 	if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
5650 	    MPT3_DIAG_BUFFER_IS_REGISTERED) &&
5651 	    (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
5652 	    MPT3_DIAG_BUFFER_IS_RELEASED))) {
5653 		is_trigger = 1;
5654 		ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5655 		if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
5656 			is_fault = 1;
5657 	}
5658 	_base_reset_handler(ioc, MPT3_IOC_PRE_RESET);
5659 	_wait_for_commands_to_complete(ioc, sleep_flag);
5660 	_base_mask_interrupts(ioc);
5661 	r = _base_make_ioc_ready(ioc, sleep_flag, type);
5662 	if (r)
5663 		goto out;
5664 	_base_reset_handler(ioc, MPT3_IOC_AFTER_RESET);
5665 
5666 	/* If this hard reset is called while port enable is active, then
5667 	 * there is no reason to call make_ioc_operational
5668 	 */
5669 	if (ioc->is_driver_loading && ioc->port_enable_failed) {
5670 		ioc->remove_host = 1;
5671 		r = -EFAULT;
5672 		goto out;
5673 	}
5674 	r = _base_get_ioc_facts(ioc, CAN_SLEEP);
5675 	if (r)
5676 		goto out;
5677 
5678 	if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
5679 		panic("%s: Issue occurred with flashing controller firmware."
5680 		      "Please reboot the system and ensure that the correct"
5681 		      " firmware version is running\n", ioc->name);
5682 
5683 	r = _base_make_ioc_operational(ioc, sleep_flag);
5684 	if (!r)
5685 		_base_reset_handler(ioc, MPT3_IOC_DONE_RESET);
5686 
5687  out:
5688 	dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: %s\n",
5689 	    ioc->name, __func__, ((r == 0) ? "SUCCESS" : "FAILED")));
5690 
5691 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5692 	ioc->ioc_reset_in_progress_status = r;
5693 	ioc->shost_recovery = 0;
5694 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5695 	ioc->ioc_reset_count++;
5696 	mutex_unlock(&ioc->reset_in_progress_mutex);
5697 
5698  out_unlocked:
5699 	if ((r == 0) && is_trigger) {
5700 		if (is_fault)
5701 			mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
5702 		else
5703 			mpt3sas_trigger_master(ioc,
5704 			    MASTER_TRIGGER_ADAPTER_RESET);
5705 	}
5706 	dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
5707 	    __func__));
5708 	return r;
5709 }
5710