xref: /openbmc/linux/drivers/scsi/mpt3sas/mpt3sas_base.c (revision 8ef9ea1503d0a129cc6f5cf48fb63633efa5d766)
1 /*
2  * This is the Fusion MPT base driver providing common API layer interface
3  * for access to MPT (Message Passing Technology) firmware.
4  *
5  * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6  * Copyright (C) 2012-2014  LSI Corporation
7  * Copyright (C) 2013-2014 Avago Technologies
8  *  (mailto: MPT-FusionLinux.pdl@avagotech.com)
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version 2
13  * of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * NO WARRANTY
21  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25  * solely responsible for determining the appropriateness of using and
26  * distributing the Program and assumes all risks associated with its
27  * exercise of rights under this Agreement, including but not limited to
28  * the risks and costs of program errors, damage to or loss of data,
29  * programs or equipment, and unavailability or interruption of operations.
30 
31  * DISCLAIMER OF LIABILITY
32  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39 
40  * You should have received a copy of the GNU General Public License
41  * along with this program; if not, write to the Free Software
42  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
43  * USA.
44  */
45 
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <asm/page.h>        /* To get host page size per arch */
63 
64 
65 #include "mpt3sas_base.h"
66 
67 static MPT_CALLBACK	mpt_callbacks[MPT_MAX_CALLBACKS];
68 
69 
70 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
71 
72  /* maximum controller queue depth */
73 #define MAX_HBA_QUEUE_DEPTH	30000
74 #define MAX_CHAIN_DEPTH		100000
75 static int max_queue_depth = -1;
76 module_param(max_queue_depth, int, 0444);
77 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
78 
79 static int max_sgl_entries = -1;
80 module_param(max_sgl_entries, int, 0444);
81 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
82 
83 static int msix_disable = -1;
84 module_param(msix_disable, int, 0444);
85 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
86 
87 static int smp_affinity_enable = 1;
88 module_param(smp_affinity_enable, int, 0444);
89 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)");
90 
91 static int max_msix_vectors = -1;
92 module_param(max_msix_vectors, int, 0444);
93 MODULE_PARM_DESC(max_msix_vectors,
94 	" max msix vectors");
95 
96 static int irqpoll_weight = -1;
97 module_param(irqpoll_weight, int, 0444);
98 MODULE_PARM_DESC(irqpoll_weight,
99 	"irq poll weight (default= one fourth of HBA queue depth)");
100 
101 static int mpt3sas_fwfault_debug;
102 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
103 	" enable detection of firmware fault and halt firmware - (default=0)");
104 
105 static int perf_mode = -1;
106 module_param(perf_mode, int, 0444);
107 MODULE_PARM_DESC(perf_mode,
108 	"Performance mode (only for Aero/Sea Generation), options:\n\t\t"
109 	"0 - balanced: high iops mode is enabled &\n\t\t"
110 	"interrupt coalescing is enabled only on high iops queues,\n\t\t"
111 	"1 - iops: high iops mode is disabled &\n\t\t"
112 	"interrupt coalescing is enabled on all queues,\n\t\t"
113 	"2 - latency: high iops mode is disabled &\n\t\t"
114 	"interrupt coalescing is enabled on all queues with timeout value 0xA,\n"
115 	"\t\tdefault - default perf_mode is 'balanced'"
116 	);
117 
118 static int poll_queues;
119 module_param(poll_queues, int, 0444);
120 MODULE_PARM_DESC(poll_queues, "Number of queues to be use for io_uring poll mode.\n\t\t"
121 	"This parameter is effective only if host_tagset_enable=1. &\n\t\t"
122 	"when poll_queues are enabled then &\n\t\t"
123 	"perf_mode is set to latency mode. &\n\t\t"
124 	);
125 
126 enum mpt3sas_perf_mode {
127 	MPT_PERF_MODE_DEFAULT	= -1,
128 	MPT_PERF_MODE_BALANCED	= 0,
129 	MPT_PERF_MODE_IOPS	= 1,
130 	MPT_PERF_MODE_LATENCY	= 2,
131 };
132 
133 static int
134 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc,
135 		u32 ioc_state, int timeout);
136 static int
137 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
138 static void
139 _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc);
140 
141 static u32
142 _base_readl_ext_retry(const void __iomem *addr);
143 
144 /**
145  * mpt3sas_base_check_cmd_timeout - Function
146  *		to check timeout and command termination due
147  *		to Host reset.
148  *
149  * @ioc:	per adapter object.
150  * @status:	Status of issued command.
151  * @mpi_request:mf request pointer.
152  * @sz:		size of buffer.
153  *
154  * Return: 1/0 Reset to be done or Not
155  */
156 u8
157 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc,
158 		u8 status, void *mpi_request, int sz)
159 {
160 	u8 issue_reset = 0;
161 
162 	if (!(status & MPT3_CMD_RESET))
163 		issue_reset = 1;
164 
165 	ioc_err(ioc, "Command %s\n",
166 		issue_reset == 0 ? "terminated due to Host Reset" : "Timeout");
167 	_debug_dump_mf(mpi_request, sz);
168 
169 	return issue_reset;
170 }
171 
172 /**
173  * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
174  * @val: ?
175  * @kp: ?
176  *
177  * Return: ?
178  */
179 static int
180 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp)
181 {
182 	int ret = param_set_int(val, kp);
183 	struct MPT3SAS_ADAPTER *ioc;
184 
185 	if (ret)
186 		return ret;
187 
188 	/* global ioc spinlock to protect controller list on list operations */
189 	pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
190 	spin_lock(&gioc_lock);
191 	list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
192 		ioc->fwfault_debug = mpt3sas_fwfault_debug;
193 	spin_unlock(&gioc_lock);
194 	return 0;
195 }
196 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
197 	param_get_int, &mpt3sas_fwfault_debug, 0644);
198 
199 /**
200  * _base_readl_aero - retry readl for max three times.
201  * @addr: MPT Fusion system interface register address
202  *
203  * Retry the readl() for max three times if it gets zero value
204  * while reading the system interface register.
205  */
206 static inline u32
207 _base_readl_aero(const void __iomem *addr)
208 {
209 	u32 i = 0, ret_val;
210 
211 	do {
212 		ret_val = readl(addr);
213 		i++;
214 	} while (ret_val == 0 && i < 3);
215 
216 	return ret_val;
217 }
218 
219 static u32
220 _base_readl_ext_retry(const void __iomem *addr)
221 {
222 	u32 i, ret_val;
223 
224 	for (i = 0 ; i < 30 ; i++) {
225 		ret_val = readl(addr);
226 		if (ret_val != 0)
227 			break;
228 	}
229 
230 	return ret_val;
231 }
232 
233 static inline u32
234 _base_readl(const void __iomem *addr)
235 {
236 	return readl(addr);
237 }
238 
239 /**
240  * _base_clone_reply_to_sys_mem - copies reply to reply free iomem
241  *				  in BAR0 space.
242  *
243  * @ioc: per adapter object
244  * @reply: reply message frame(lower 32bit addr)
245  * @index: System request message index.
246  */
247 static void
248 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply,
249 		u32 index)
250 {
251 	/*
252 	 * 256 is offset within sys register.
253 	 * 256 offset MPI frame starts. Max MPI frame supported is 32.
254 	 * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts
255 	 */
256 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
257 	void __iomem *reply_free_iomem = (void __iomem *)ioc->chip +
258 			MPI_FRAME_START_OFFSET +
259 			(cmd_credit * ioc->request_sz) + (index * sizeof(u32));
260 
261 	writel(reply, reply_free_iomem);
262 }
263 
264 /**
265  * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames
266  *				to system/BAR0 region.
267  *
268  * @dst_iomem: Pointer to the destination location in BAR0 space.
269  * @src: Pointer to the Source data.
270  * @size: Size of data to be copied.
271  */
272 static void
273 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size)
274 {
275 	int i;
276 	u32 *src_virt_mem = (u32 *)src;
277 
278 	for (i = 0; i < size/4; i++)
279 		writel((u32)src_virt_mem[i],
280 				(void __iomem *)dst_iomem + (i * 4));
281 }
282 
283 /**
284  * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region
285  *
286  * @dst_iomem: Pointer to the destination location in BAR0 space.
287  * @src: Pointer to the Source data.
288  * @size: Size of data to be copied.
289  */
290 static void
291 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size)
292 {
293 	int i;
294 	u32 *src_virt_mem = (u32 *)(src);
295 
296 	for (i = 0; i < size/4; i++)
297 		writel((u32)src_virt_mem[i],
298 			(void __iomem *)dst_iomem + (i * 4));
299 }
300 
301 /**
302  * _base_get_chain - Calculates and Returns virtual chain address
303  *			 for the provided smid in BAR0 space.
304  *
305  * @ioc: per adapter object
306  * @smid: system request message index
307  * @sge_chain_count: Scatter gather chain count.
308  *
309  * Return: the chain address.
310  */
311 static inline void __iomem*
312 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid,
313 		u8 sge_chain_count)
314 {
315 	void __iomem *base_chain, *chain_virt;
316 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
317 
318 	base_chain  = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET +
319 		(cmd_credit * ioc->request_sz) +
320 		REPLY_FREE_POOL_SIZE;
321 	chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth *
322 			ioc->request_sz) + (sge_chain_count * ioc->request_sz);
323 	return chain_virt;
324 }
325 
326 /**
327  * _base_get_chain_phys - Calculates and Returns physical address
328  *			in BAR0 for scatter gather chains, for
329  *			the provided smid.
330  *
331  * @ioc: per adapter object
332  * @smid: system request message index
333  * @sge_chain_count: Scatter gather chain count.
334  *
335  * Return: Physical chain address.
336  */
337 static inline phys_addr_t
338 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid,
339 		u8 sge_chain_count)
340 {
341 	phys_addr_t base_chain_phys, chain_phys;
342 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
343 
344 	base_chain_phys  = ioc->chip_phys + MPI_FRAME_START_OFFSET +
345 		(cmd_credit * ioc->request_sz) +
346 		REPLY_FREE_POOL_SIZE;
347 	chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth *
348 			ioc->request_sz) + (sge_chain_count * ioc->request_sz);
349 	return chain_phys;
350 }
351 
352 /**
353  * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host
354  *			buffer address for the provided smid.
355  *			(Each smid can have 64K starts from 17024)
356  *
357  * @ioc: per adapter object
358  * @smid: system request message index
359  *
360  * Return: Pointer to buffer location in BAR0.
361  */
362 
363 static void __iomem *
364 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
365 {
366 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
367 	// Added extra 1 to reach end of chain.
368 	void __iomem *chain_end = _base_get_chain(ioc,
369 			cmd_credit + 1,
370 			ioc->facts.MaxChainDepth);
371 	return chain_end + (smid * 64 * 1024);
372 }
373 
374 /**
375  * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped
376  *		Host buffer Physical address for the provided smid.
377  *		(Each smid can have 64K starts from 17024)
378  *
379  * @ioc: per adapter object
380  * @smid: system request message index
381  *
382  * Return: Pointer to buffer location in BAR0.
383  */
384 static phys_addr_t
385 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
386 {
387 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
388 	phys_addr_t chain_end_phys = _base_get_chain_phys(ioc,
389 			cmd_credit + 1,
390 			ioc->facts.MaxChainDepth);
391 	return chain_end_phys + (smid * 64 * 1024);
392 }
393 
394 /**
395  * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain
396  *			lookup list and Provides chain_buffer
397  *			address for the matching dma address.
398  *			(Each smid can have 64K starts from 17024)
399  *
400  * @ioc: per adapter object
401  * @chain_buffer_dma: Chain buffer dma address.
402  *
403  * Return: Pointer to chain buffer. Or Null on Failure.
404  */
405 static void *
406 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc,
407 		dma_addr_t chain_buffer_dma)
408 {
409 	u16 index, j;
410 	struct chain_tracker *ct;
411 
412 	for (index = 0; index < ioc->scsiio_depth; index++) {
413 		for (j = 0; j < ioc->chains_needed_per_io; j++) {
414 			ct = &ioc->chain_lookup[index].chains_per_smid[j];
415 			if (ct && ct->chain_buffer_dma == chain_buffer_dma)
416 				return ct->chain_buffer;
417 		}
418 	}
419 	ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n");
420 	return NULL;
421 }
422 
423 /**
424  * _clone_sg_entries -	MPI EP's scsiio and config requests
425  *			are handled here. Base function for
426  *			double buffering, before submitting
427  *			the requests.
428  *
429  * @ioc: per adapter object.
430  * @mpi_request: mf request pointer.
431  * @smid: system request message index.
432  */
433 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc,
434 		void *mpi_request, u16 smid)
435 {
436 	Mpi2SGESimple32_t *sgel, *sgel_next;
437 	u32  sgl_flags, sge_chain_count = 0;
438 	bool is_write = false;
439 	u16 i = 0;
440 	void __iomem *buffer_iomem;
441 	phys_addr_t buffer_iomem_phys;
442 	void __iomem *buff_ptr;
443 	phys_addr_t buff_ptr_phys;
444 	void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO];
445 	void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO];
446 	phys_addr_t dst_addr_phys;
447 	MPI2RequestHeader_t *request_hdr;
448 	struct scsi_cmnd *scmd;
449 	struct scatterlist *sg_scmd = NULL;
450 	int is_scsiio_req = 0;
451 
452 	request_hdr = (MPI2RequestHeader_t *) mpi_request;
453 
454 	if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
455 		Mpi25SCSIIORequest_t *scsiio_request =
456 			(Mpi25SCSIIORequest_t *)mpi_request;
457 		sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL;
458 		is_scsiio_req = 1;
459 	} else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
460 		Mpi2ConfigRequest_t  *config_req =
461 			(Mpi2ConfigRequest_t *)mpi_request;
462 		sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE;
463 	} else
464 		return;
465 
466 	/* From smid we can get scsi_cmd, once we have sg_scmd,
467 	 * we just need to get sg_virt and sg_next to get virtual
468 	 * address associated with sgel->Address.
469 	 */
470 
471 	if (is_scsiio_req) {
472 		/* Get scsi_cmd using smid */
473 		scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
474 		if (scmd == NULL) {
475 			ioc_err(ioc, "scmd is NULL\n");
476 			return;
477 		}
478 
479 		/* Get sg_scmd from scmd provided */
480 		sg_scmd = scsi_sglist(scmd);
481 	}
482 
483 	/*
484 	 * 0 - 255	System register
485 	 * 256 - 4352	MPI Frame. (This is based on maxCredit 32)
486 	 * 4352 - 4864	Reply_free pool (512 byte is reserved
487 	 *		considering maxCredit 32. Reply need extra
488 	 *		room, for mCPU case kept four times of
489 	 *		maxCredit).
490 	 * 4864 - 17152	SGE chain element. (32cmd * 3 chain of
491 	 *		128 byte size = 12288)
492 	 * 17152 - x	Host buffer mapped with smid.
493 	 *		(Each smid can have 64K Max IO.)
494 	 * BAR0+Last 1K MSIX Addr and Data
495 	 * Total size in use 2113664 bytes of 4MB BAR0
496 	 */
497 
498 	buffer_iomem = _base_get_buffer_bar0(ioc, smid);
499 	buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid);
500 
501 	buff_ptr = buffer_iomem;
502 	buff_ptr_phys = buffer_iomem_phys;
503 	WARN_ON(buff_ptr_phys > U32_MAX);
504 
505 	if (le32_to_cpu(sgel->FlagsLength) &
506 			(MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT))
507 		is_write = true;
508 
509 	for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) {
510 
511 		sgl_flags =
512 		    (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT);
513 
514 		switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) {
515 		case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
516 			/*
517 			 * Helper function which on passing
518 			 * chain_buffer_dma returns chain_buffer. Get
519 			 * the virtual address for sgel->Address
520 			 */
521 			sgel_next =
522 				_base_get_chain_buffer_dma_to_chain_buffer(ioc,
523 						le32_to_cpu(sgel->Address));
524 			if (sgel_next == NULL)
525 				return;
526 			/*
527 			 * This is coping 128 byte chain
528 			 * frame (not a host buffer)
529 			 */
530 			dst_chain_addr[sge_chain_count] =
531 				_base_get_chain(ioc,
532 					smid, sge_chain_count);
533 			src_chain_addr[sge_chain_count] =
534 						(void *) sgel_next;
535 			dst_addr_phys = _base_get_chain_phys(ioc,
536 						smid, sge_chain_count);
537 			WARN_ON(dst_addr_phys > U32_MAX);
538 			sgel->Address =
539 				cpu_to_le32(lower_32_bits(dst_addr_phys));
540 			sgel = sgel_next;
541 			sge_chain_count++;
542 			break;
543 		case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
544 			if (is_write) {
545 				if (is_scsiio_req) {
546 					_base_clone_to_sys_mem(buff_ptr,
547 					    sg_virt(sg_scmd),
548 					    (le32_to_cpu(sgel->FlagsLength) &
549 					    0x00ffffff));
550 					/*
551 					 * FIXME: this relies on a a zero
552 					 * PCI mem_offset.
553 					 */
554 					sgel->Address =
555 					    cpu_to_le32((u32)buff_ptr_phys);
556 				} else {
557 					_base_clone_to_sys_mem(buff_ptr,
558 					    ioc->config_vaddr,
559 					    (le32_to_cpu(sgel->FlagsLength) &
560 					    0x00ffffff));
561 					sgel->Address =
562 					    cpu_to_le32((u32)buff_ptr_phys);
563 				}
564 			}
565 			buff_ptr += (le32_to_cpu(sgel->FlagsLength) &
566 			    0x00ffffff);
567 			buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) &
568 			    0x00ffffff);
569 			if ((le32_to_cpu(sgel->FlagsLength) &
570 			    (MPI2_SGE_FLAGS_END_OF_BUFFER
571 					<< MPI2_SGE_FLAGS_SHIFT)))
572 				goto eob_clone_chain;
573 			else {
574 				/*
575 				 * Every single element in MPT will have
576 				 * associated sg_next. Better to sanity that
577 				 * sg_next is not NULL, but it will be a bug
578 				 * if it is null.
579 				 */
580 				if (is_scsiio_req) {
581 					sg_scmd = sg_next(sg_scmd);
582 					if (sg_scmd)
583 						sgel++;
584 					else
585 						goto eob_clone_chain;
586 				}
587 			}
588 			break;
589 		}
590 	}
591 
592 eob_clone_chain:
593 	for (i = 0; i < sge_chain_count; i++) {
594 		if (is_scsiio_req)
595 			_base_clone_to_sys_mem(dst_chain_addr[i],
596 				src_chain_addr[i], ioc->request_sz);
597 	}
598 }
599 
600 /**
601  *  mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
602  * @arg: input argument, used to derive ioc
603  *
604  * Return:
605  * 0 if controller is removed from pci subsystem.
606  * -1 for other case.
607  */
608 static int mpt3sas_remove_dead_ioc_func(void *arg)
609 {
610 	struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
611 	struct pci_dev *pdev;
612 
613 	if (!ioc)
614 		return -1;
615 
616 	pdev = ioc->pdev;
617 	if (!pdev)
618 		return -1;
619 	pci_stop_and_remove_bus_device_locked(pdev);
620 	return 0;
621 }
622 
623 /**
624  * _base_sync_drv_fw_timestamp - Sync Drive-Fw TimeStamp.
625  * @ioc: Per Adapter Object
626  *
627  * Return: nothing.
628  */
629 static void _base_sync_drv_fw_timestamp(struct MPT3SAS_ADAPTER *ioc)
630 {
631 	Mpi26IoUnitControlRequest_t *mpi_request;
632 	Mpi26IoUnitControlReply_t *mpi_reply;
633 	u16 smid;
634 	ktime_t current_time;
635 	u64 TimeStamp = 0;
636 	u8 issue_reset = 0;
637 
638 	mutex_lock(&ioc->scsih_cmds.mutex);
639 	if (ioc->scsih_cmds.status != MPT3_CMD_NOT_USED) {
640 		ioc_err(ioc, "scsih_cmd in use %s\n", __func__);
641 		goto out;
642 	}
643 	ioc->scsih_cmds.status = MPT3_CMD_PENDING;
644 	smid = mpt3sas_base_get_smid(ioc, ioc->scsih_cb_idx);
645 	if (!smid) {
646 		ioc_err(ioc, "Failed obtaining a smid %s\n", __func__);
647 		ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
648 		goto out;
649 	}
650 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
651 	ioc->scsih_cmds.smid = smid;
652 	memset(mpi_request, 0, sizeof(Mpi26IoUnitControlRequest_t));
653 	mpi_request->Function = MPI2_FUNCTION_IO_UNIT_CONTROL;
654 	mpi_request->Operation = MPI26_CTRL_OP_SET_IOC_PARAMETER;
655 	mpi_request->IOCParameter = MPI26_SET_IOC_PARAMETER_SYNC_TIMESTAMP;
656 	current_time = ktime_get_real();
657 	TimeStamp = ktime_to_ms(current_time);
658 	mpi_request->Reserved7 = cpu_to_le32(TimeStamp >> 32);
659 	mpi_request->IOCParameterValue = cpu_to_le32(TimeStamp & 0xFFFFFFFF);
660 	init_completion(&ioc->scsih_cmds.done);
661 	ioc->put_smid_default(ioc, smid);
662 	dinitprintk(ioc, ioc_info(ioc,
663 	    "Io Unit Control Sync TimeStamp (sending), @time %lld ms\n",
664 	    TimeStamp));
665 	wait_for_completion_timeout(&ioc->scsih_cmds.done,
666 		MPT3SAS_TIMESYNC_TIMEOUT_SECONDS*HZ);
667 	if (!(ioc->scsih_cmds.status & MPT3_CMD_COMPLETE)) {
668 		mpt3sas_check_cmd_timeout(ioc,
669 		    ioc->scsih_cmds.status, mpi_request,
670 		    sizeof(Mpi2SasIoUnitControlRequest_t)/4, issue_reset);
671 		goto issue_host_reset;
672 	}
673 	if (ioc->scsih_cmds.status & MPT3_CMD_REPLY_VALID) {
674 		mpi_reply = ioc->scsih_cmds.reply;
675 		dinitprintk(ioc, ioc_info(ioc,
676 		    "Io Unit Control sync timestamp (complete): ioc_status(0x%04x), loginfo(0x%08x)\n",
677 		    le16_to_cpu(mpi_reply->IOCStatus),
678 		    le32_to_cpu(mpi_reply->IOCLogInfo)));
679 	}
680 issue_host_reset:
681 	if (issue_reset)
682 		mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
683 	ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
684 out:
685 	mutex_unlock(&ioc->scsih_cmds.mutex);
686 }
687 
688 /**
689  * _base_fault_reset_work - workq handling ioc fault conditions
690  * @work: input argument, used to derive ioc
691  *
692  * Context: sleep.
693  */
694 static void
695 _base_fault_reset_work(struct work_struct *work)
696 {
697 	struct MPT3SAS_ADAPTER *ioc =
698 	    container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
699 	unsigned long	 flags;
700 	u32 doorbell;
701 	int rc;
702 	struct task_struct *p;
703 
704 
705 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
706 	if ((ioc->shost_recovery && (ioc->ioc_coredump_loop == 0)) ||
707 			ioc->pci_error_recovery)
708 		goto rearm_timer;
709 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
710 
711 	doorbell = mpt3sas_base_get_iocstate(ioc, 0);
712 	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
713 		ioc_err(ioc, "SAS host is non-operational !!!!\n");
714 
715 		/* It may be possible that EEH recovery can resolve some of
716 		 * pci bus failure issues rather removing the dead ioc function
717 		 * by considering controller is in a non-operational state. So
718 		 * here priority is given to the EEH recovery. If it doesn't
719 		 * not resolve this issue, mpt3sas driver will consider this
720 		 * controller to non-operational state and remove the dead ioc
721 		 * function.
722 		 */
723 		if (ioc->non_operational_loop++ < 5) {
724 			spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
725 							 flags);
726 			goto rearm_timer;
727 		}
728 
729 		/*
730 		 * Call _scsih_flush_pending_cmds callback so that we flush all
731 		 * pending commands back to OS. This call is required to avoid
732 		 * deadlock at block layer. Dead IOC will fail to do diag reset,
733 		 * and this call is safe since dead ioc will never return any
734 		 * command back from HW.
735 		 */
736 		mpt3sas_base_pause_mq_polling(ioc);
737 		ioc->schedule_dead_ioc_flush_running_cmds(ioc);
738 		/*
739 		 * Set remove_host flag early since kernel thread will
740 		 * take some time to execute.
741 		 */
742 		ioc->remove_host = 1;
743 		/*Remove the Dead Host */
744 		p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
745 		    "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
746 		if (IS_ERR(p))
747 			ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
748 				__func__);
749 		else
750 			ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
751 				__func__);
752 		return; /* don't rearm timer */
753 	}
754 
755 	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
756 		u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
757 		    ioc->manu_pg11.CoreDumpTOSec :
758 		    MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
759 
760 		timeout /= (FAULT_POLLING_INTERVAL/1000);
761 
762 		if (ioc->ioc_coredump_loop == 0) {
763 			mpt3sas_print_coredump_info(ioc,
764 			    doorbell & MPI2_DOORBELL_DATA_MASK);
765 			/* do not accept any IOs and disable the interrupts */
766 			spin_lock_irqsave(
767 			    &ioc->ioc_reset_in_progress_lock, flags);
768 			ioc->shost_recovery = 1;
769 			spin_unlock_irqrestore(
770 			    &ioc->ioc_reset_in_progress_lock, flags);
771 			mpt3sas_base_mask_interrupts(ioc);
772 			mpt3sas_base_pause_mq_polling(ioc);
773 			_base_clear_outstanding_commands(ioc);
774 		}
775 
776 		ioc_info(ioc, "%s: CoreDump loop %d.",
777 		    __func__, ioc->ioc_coredump_loop);
778 
779 		/* Wait until CoreDump completes or times out */
780 		if (ioc->ioc_coredump_loop++ < timeout) {
781 			spin_lock_irqsave(
782 			    &ioc->ioc_reset_in_progress_lock, flags);
783 			goto rearm_timer;
784 		}
785 	}
786 
787 	if (ioc->ioc_coredump_loop) {
788 		if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_COREDUMP)
789 			ioc_err(ioc, "%s: CoreDump completed. LoopCount: %d",
790 			    __func__, ioc->ioc_coredump_loop);
791 		else
792 			ioc_err(ioc, "%s: CoreDump Timed out. LoopCount: %d",
793 			    __func__, ioc->ioc_coredump_loop);
794 		ioc->ioc_coredump_loop = MPT3SAS_COREDUMP_LOOP_DONE;
795 	}
796 	ioc->non_operational_loop = 0;
797 	if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
798 		rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
799 		ioc_warn(ioc, "%s: hard reset: %s\n",
800 			 __func__, rc == 0 ? "success" : "failed");
801 		doorbell = mpt3sas_base_get_iocstate(ioc, 0);
802 		if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
803 			mpt3sas_print_fault_code(ioc, doorbell &
804 			    MPI2_DOORBELL_DATA_MASK);
805 		} else if ((doorbell & MPI2_IOC_STATE_MASK) ==
806 		    MPI2_IOC_STATE_COREDUMP)
807 			mpt3sas_print_coredump_info(ioc, doorbell &
808 			    MPI2_DOORBELL_DATA_MASK);
809 		if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
810 		    MPI2_IOC_STATE_OPERATIONAL)
811 			return; /* don't rearm timer */
812 	}
813 	ioc->ioc_coredump_loop = 0;
814 	if (ioc->time_sync_interval &&
815 	    ++ioc->timestamp_update_count >= ioc->time_sync_interval) {
816 		ioc->timestamp_update_count = 0;
817 		_base_sync_drv_fw_timestamp(ioc);
818 	}
819 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
820  rearm_timer:
821 	if (ioc->fault_reset_work_q)
822 		queue_delayed_work(ioc->fault_reset_work_q,
823 		    &ioc->fault_reset_work,
824 		    msecs_to_jiffies(FAULT_POLLING_INTERVAL));
825 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
826 }
827 
828 /**
829  * mpt3sas_base_start_watchdog - start the fault_reset_work_q
830  * @ioc: per adapter object
831  *
832  * Context: sleep.
833  */
834 void
835 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
836 {
837 	unsigned long	 flags;
838 
839 	if (ioc->fault_reset_work_q)
840 		return;
841 
842 	ioc->timestamp_update_count = 0;
843 	/* initialize fault polling */
844 
845 	INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
846 	snprintf(ioc->fault_reset_work_q_name,
847 	    sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
848 	    ioc->driver_name, ioc->id);
849 	ioc->fault_reset_work_q =
850 		create_singlethread_workqueue(ioc->fault_reset_work_q_name);
851 	if (!ioc->fault_reset_work_q) {
852 		ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__);
853 		return;
854 	}
855 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
856 	if (ioc->fault_reset_work_q)
857 		queue_delayed_work(ioc->fault_reset_work_q,
858 		    &ioc->fault_reset_work,
859 		    msecs_to_jiffies(FAULT_POLLING_INTERVAL));
860 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
861 }
862 
863 /**
864  * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
865  * @ioc: per adapter object
866  *
867  * Context: sleep.
868  */
869 void
870 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
871 {
872 	unsigned long flags;
873 	struct workqueue_struct *wq;
874 
875 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
876 	wq = ioc->fault_reset_work_q;
877 	ioc->fault_reset_work_q = NULL;
878 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
879 	if (wq) {
880 		if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
881 			flush_workqueue(wq);
882 		destroy_workqueue(wq);
883 	}
884 }
885 
886 /**
887  * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
888  * @ioc: per adapter object
889  * @fault_code: fault code
890  */
891 void
892 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code)
893 {
894 	ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code);
895 }
896 
897 /**
898  * mpt3sas_base_coredump_info - verbose translation of firmware CoreDump state
899  * @ioc: per adapter object
900  * @fault_code: fault code
901  *
902  * Return: nothing.
903  */
904 void
905 mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code)
906 {
907 	ioc_err(ioc, "coredump_state(0x%04x)!\n", fault_code);
908 }
909 
910 /**
911  * mpt3sas_base_wait_for_coredump_completion - Wait until coredump
912  * completes or times out
913  * @ioc: per adapter object
914  * @caller: caller function name
915  *
916  * Return: 0 for success, non-zero for failure.
917  */
918 int
919 mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER *ioc,
920 		const char *caller)
921 {
922 	u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
923 			ioc->manu_pg11.CoreDumpTOSec :
924 			MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
925 
926 	int ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_FAULT,
927 					timeout);
928 
929 	if (ioc_state)
930 		ioc_err(ioc,
931 		    "%s: CoreDump timed out. (ioc_state=0x%x)\n",
932 		    caller, ioc_state);
933 	else
934 		ioc_info(ioc,
935 		    "%s: CoreDump completed. (ioc_state=0x%x)\n",
936 		    caller, ioc_state);
937 
938 	return ioc_state;
939 }
940 
941 /**
942  * mpt3sas_halt_firmware - halt's mpt controller firmware
943  * @ioc: per adapter object
944  *
945  * For debugging timeout related issues.  Writing 0xCOFFEE00
946  * to the doorbell register will halt controller firmware. With
947  * the purpose to stop both driver and firmware, the enduser can
948  * obtain a ring buffer from controller UART.
949  */
950 void
951 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
952 {
953 	u32 doorbell;
954 
955 	if (!ioc->fwfault_debug)
956 		return;
957 
958 	dump_stack();
959 
960 	doorbell = ioc->base_readl_ext_retry(&ioc->chip->Doorbell);
961 	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
962 		mpt3sas_print_fault_code(ioc, doorbell &
963 		    MPI2_DOORBELL_DATA_MASK);
964 	} else if ((doorbell & MPI2_IOC_STATE_MASK) ==
965 	    MPI2_IOC_STATE_COREDUMP) {
966 		mpt3sas_print_coredump_info(ioc, doorbell &
967 		    MPI2_DOORBELL_DATA_MASK);
968 	} else {
969 		writel(0xC0FFEE00, &ioc->chip->Doorbell);
970 		ioc_err(ioc, "Firmware is halted due to command timeout\n");
971 	}
972 
973 	if (ioc->fwfault_debug == 2)
974 		for (;;)
975 			;
976 	else
977 		panic("panic in %s\n", __func__);
978 }
979 
980 /**
981  * _base_sas_ioc_info - verbose translation of the ioc status
982  * @ioc: per adapter object
983  * @mpi_reply: reply mf payload returned from firmware
984  * @request_hdr: request mf
985  */
986 static void
987 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
988 	MPI2RequestHeader_t *request_hdr)
989 {
990 	u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
991 	    MPI2_IOCSTATUS_MASK;
992 	char *desc = NULL;
993 	u16 frame_sz;
994 	char *func_str = NULL;
995 
996 	/* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
997 	if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
998 	    request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
999 	    request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
1000 		return;
1001 
1002 	if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
1003 		return;
1004 	/*
1005 	 * Older Firmware version doesn't support driver trigger pages.
1006 	 * So, skip displaying 'config invalid type' type
1007 	 * of error message.
1008 	 */
1009 	if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
1010 		Mpi2ConfigRequest_t *rqst = (Mpi2ConfigRequest_t *)request_hdr;
1011 
1012 		if ((rqst->ExtPageType ==
1013 		    MPI2_CONFIG_EXTPAGETYPE_DRIVER_PERSISTENT_TRIGGER) &&
1014 		    !(ioc->logging_level & MPT_DEBUG_CONFIG)) {
1015 			return;
1016 		}
1017 	}
1018 
1019 	switch (ioc_status) {
1020 
1021 /****************************************************************************
1022 *  Common IOCStatus values for all replies
1023 ****************************************************************************/
1024 
1025 	case MPI2_IOCSTATUS_INVALID_FUNCTION:
1026 		desc = "invalid function";
1027 		break;
1028 	case MPI2_IOCSTATUS_BUSY:
1029 		desc = "busy";
1030 		break;
1031 	case MPI2_IOCSTATUS_INVALID_SGL:
1032 		desc = "invalid sgl";
1033 		break;
1034 	case MPI2_IOCSTATUS_INTERNAL_ERROR:
1035 		desc = "internal error";
1036 		break;
1037 	case MPI2_IOCSTATUS_INVALID_VPID:
1038 		desc = "invalid vpid";
1039 		break;
1040 	case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
1041 		desc = "insufficient resources";
1042 		break;
1043 	case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
1044 		desc = "insufficient power";
1045 		break;
1046 	case MPI2_IOCSTATUS_INVALID_FIELD:
1047 		desc = "invalid field";
1048 		break;
1049 	case MPI2_IOCSTATUS_INVALID_STATE:
1050 		desc = "invalid state";
1051 		break;
1052 	case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
1053 		desc = "op state not supported";
1054 		break;
1055 
1056 /****************************************************************************
1057 *  Config IOCStatus values
1058 ****************************************************************************/
1059 
1060 	case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
1061 		desc = "config invalid action";
1062 		break;
1063 	case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
1064 		desc = "config invalid type";
1065 		break;
1066 	case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
1067 		desc = "config invalid page";
1068 		break;
1069 	case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
1070 		desc = "config invalid data";
1071 		break;
1072 	case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
1073 		desc = "config no defaults";
1074 		break;
1075 	case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
1076 		desc = "config can't commit";
1077 		break;
1078 
1079 /****************************************************************************
1080 *  SCSI IO Reply
1081 ****************************************************************************/
1082 
1083 	case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
1084 	case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
1085 	case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
1086 	case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
1087 	case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
1088 	case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
1089 	case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
1090 	case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
1091 	case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
1092 	case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
1093 	case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
1094 	case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
1095 		break;
1096 
1097 /****************************************************************************
1098 *  For use by SCSI Initiator and SCSI Target end-to-end data protection
1099 ****************************************************************************/
1100 
1101 	case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
1102 		desc = "eedp guard error";
1103 		break;
1104 	case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
1105 		desc = "eedp ref tag error";
1106 		break;
1107 	case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
1108 		desc = "eedp app tag error";
1109 		break;
1110 
1111 /****************************************************************************
1112 *  SCSI Target values
1113 ****************************************************************************/
1114 
1115 	case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
1116 		desc = "target invalid io index";
1117 		break;
1118 	case MPI2_IOCSTATUS_TARGET_ABORTED:
1119 		desc = "target aborted";
1120 		break;
1121 	case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
1122 		desc = "target no conn retryable";
1123 		break;
1124 	case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
1125 		desc = "target no connection";
1126 		break;
1127 	case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
1128 		desc = "target xfer count mismatch";
1129 		break;
1130 	case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
1131 		desc = "target data offset error";
1132 		break;
1133 	case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
1134 		desc = "target too much write data";
1135 		break;
1136 	case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
1137 		desc = "target iu too short";
1138 		break;
1139 	case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
1140 		desc = "target ack nak timeout";
1141 		break;
1142 	case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
1143 		desc = "target nak received";
1144 		break;
1145 
1146 /****************************************************************************
1147 *  Serial Attached SCSI values
1148 ****************************************************************************/
1149 
1150 	case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
1151 		desc = "smp request failed";
1152 		break;
1153 	case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
1154 		desc = "smp data overrun";
1155 		break;
1156 
1157 /****************************************************************************
1158 *  Diagnostic Buffer Post / Diagnostic Release values
1159 ****************************************************************************/
1160 
1161 	case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
1162 		desc = "diagnostic released";
1163 		break;
1164 	default:
1165 		break;
1166 	}
1167 
1168 	if (!desc)
1169 		return;
1170 
1171 	switch (request_hdr->Function) {
1172 	case MPI2_FUNCTION_CONFIG:
1173 		frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
1174 		func_str = "config_page";
1175 		break;
1176 	case MPI2_FUNCTION_SCSI_TASK_MGMT:
1177 		frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
1178 		func_str = "task_mgmt";
1179 		break;
1180 	case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
1181 		frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
1182 		func_str = "sas_iounit_ctl";
1183 		break;
1184 	case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
1185 		frame_sz = sizeof(Mpi2SepRequest_t);
1186 		func_str = "enclosure";
1187 		break;
1188 	case MPI2_FUNCTION_IOC_INIT:
1189 		frame_sz = sizeof(Mpi2IOCInitRequest_t);
1190 		func_str = "ioc_init";
1191 		break;
1192 	case MPI2_FUNCTION_PORT_ENABLE:
1193 		frame_sz = sizeof(Mpi2PortEnableRequest_t);
1194 		func_str = "port_enable";
1195 		break;
1196 	case MPI2_FUNCTION_SMP_PASSTHROUGH:
1197 		frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
1198 		func_str = "smp_passthru";
1199 		break;
1200 	case MPI2_FUNCTION_NVME_ENCAPSULATED:
1201 		frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) +
1202 		    ioc->sge_size;
1203 		func_str = "nvme_encapsulated";
1204 		break;
1205 	default:
1206 		frame_sz = 32;
1207 		func_str = "unknown";
1208 		break;
1209 	}
1210 
1211 	ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
1212 		 desc, ioc_status, request_hdr, func_str);
1213 
1214 	_debug_dump_mf(request_hdr, frame_sz/4);
1215 }
1216 
1217 /**
1218  * _base_display_event_data - verbose translation of firmware asyn events
1219  * @ioc: per adapter object
1220  * @mpi_reply: reply mf payload returned from firmware
1221  */
1222 static void
1223 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
1224 	Mpi2EventNotificationReply_t *mpi_reply)
1225 {
1226 	char *desc = NULL;
1227 	u16 event;
1228 
1229 	if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
1230 		return;
1231 
1232 	event = le16_to_cpu(mpi_reply->Event);
1233 
1234 	switch (event) {
1235 	case MPI2_EVENT_LOG_DATA:
1236 		desc = "Log Data";
1237 		break;
1238 	case MPI2_EVENT_STATE_CHANGE:
1239 		desc = "Status Change";
1240 		break;
1241 	case MPI2_EVENT_HARD_RESET_RECEIVED:
1242 		desc = "Hard Reset Received";
1243 		break;
1244 	case MPI2_EVENT_EVENT_CHANGE:
1245 		desc = "Event Change";
1246 		break;
1247 	case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
1248 		desc = "Device Status Change";
1249 		break;
1250 	case MPI2_EVENT_IR_OPERATION_STATUS:
1251 		if (!ioc->hide_ir_msg)
1252 			desc = "IR Operation Status";
1253 		break;
1254 	case MPI2_EVENT_SAS_DISCOVERY:
1255 	{
1256 		Mpi2EventDataSasDiscovery_t *event_data =
1257 		    (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
1258 		ioc_info(ioc, "Discovery: (%s)",
1259 			 event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ?
1260 			 "start" : "stop");
1261 		if (event_data->DiscoveryStatus)
1262 			pr_cont(" discovery_status(0x%08x)",
1263 			    le32_to_cpu(event_data->DiscoveryStatus));
1264 		pr_cont("\n");
1265 		return;
1266 	}
1267 	case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
1268 		desc = "SAS Broadcast Primitive";
1269 		break;
1270 	case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
1271 		desc = "SAS Init Device Status Change";
1272 		break;
1273 	case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
1274 		desc = "SAS Init Table Overflow";
1275 		break;
1276 	case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
1277 		desc = "SAS Topology Change List";
1278 		break;
1279 	case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
1280 		desc = "SAS Enclosure Device Status Change";
1281 		break;
1282 	case MPI2_EVENT_IR_VOLUME:
1283 		if (!ioc->hide_ir_msg)
1284 			desc = "IR Volume";
1285 		break;
1286 	case MPI2_EVENT_IR_PHYSICAL_DISK:
1287 		if (!ioc->hide_ir_msg)
1288 			desc = "IR Physical Disk";
1289 		break;
1290 	case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
1291 		if (!ioc->hide_ir_msg)
1292 			desc = "IR Configuration Change List";
1293 		break;
1294 	case MPI2_EVENT_LOG_ENTRY_ADDED:
1295 		if (!ioc->hide_ir_msg)
1296 			desc = "Log Entry Added";
1297 		break;
1298 	case MPI2_EVENT_TEMP_THRESHOLD:
1299 		desc = "Temperature Threshold";
1300 		break;
1301 	case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
1302 		desc = "Cable Event";
1303 		break;
1304 	case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR:
1305 		desc = "SAS Device Discovery Error";
1306 		break;
1307 	case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE:
1308 		desc = "PCIE Device Status Change";
1309 		break;
1310 	case MPI2_EVENT_PCIE_ENUMERATION:
1311 	{
1312 		Mpi26EventDataPCIeEnumeration_t *event_data =
1313 			(Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData;
1314 		ioc_info(ioc, "PCIE Enumeration: (%s)",
1315 			 event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ?
1316 			 "start" : "stop");
1317 		if (event_data->EnumerationStatus)
1318 			pr_cont("enumeration_status(0x%08x)",
1319 				le32_to_cpu(event_data->EnumerationStatus));
1320 		pr_cont("\n");
1321 		return;
1322 	}
1323 	case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST:
1324 		desc = "PCIE Topology Change List";
1325 		break;
1326 	}
1327 
1328 	if (!desc)
1329 		return;
1330 
1331 	ioc_info(ioc, "%s\n", desc);
1332 }
1333 
1334 /**
1335  * _base_sas_log_info - verbose translation of firmware log info
1336  * @ioc: per adapter object
1337  * @log_info: log info
1338  */
1339 static void
1340 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc, u32 log_info)
1341 {
1342 	union loginfo_type {
1343 		u32	loginfo;
1344 		struct {
1345 			u32	subcode:16;
1346 			u32	code:8;
1347 			u32	originator:4;
1348 			u32	bus_type:4;
1349 		} dw;
1350 	};
1351 	union loginfo_type sas_loginfo;
1352 	char *originator_str = NULL;
1353 
1354 	sas_loginfo.loginfo = log_info;
1355 	if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
1356 		return;
1357 
1358 	/* each nexus loss loginfo */
1359 	if (log_info == 0x31170000)
1360 		return;
1361 
1362 	/* eat the loginfos associated with task aborts */
1363 	if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
1364 	    0x31140000 || log_info == 0x31130000))
1365 		return;
1366 
1367 	switch (sas_loginfo.dw.originator) {
1368 	case 0:
1369 		originator_str = "IOP";
1370 		break;
1371 	case 1:
1372 		originator_str = "PL";
1373 		break;
1374 	case 2:
1375 		if (!ioc->hide_ir_msg)
1376 			originator_str = "IR";
1377 		else
1378 			originator_str = "WarpDrive";
1379 		break;
1380 	}
1381 
1382 	ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
1383 		 log_info,
1384 		 originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode);
1385 }
1386 
1387 /**
1388  * _base_display_reply_info - handle reply descriptors depending on IOC Status
1389  * @ioc: per adapter object
1390  * @smid: system request message index
1391  * @msix_index: MSIX table index supplied by the OS
1392  * @reply: reply message frame (lower 32bit addr)
1393  */
1394 static void
1395 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1396 	u32 reply)
1397 {
1398 	MPI2DefaultReply_t *mpi_reply;
1399 	u16 ioc_status;
1400 	u32 loginfo = 0;
1401 
1402 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1403 	if (unlikely(!mpi_reply)) {
1404 		ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n",
1405 			__FILE__, __LINE__, __func__);
1406 		return;
1407 	}
1408 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
1409 
1410 	if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
1411 	    (ioc->logging_level & MPT_DEBUG_REPLY)) {
1412 		_base_sas_ioc_info(ioc, mpi_reply,
1413 		   mpt3sas_base_get_msg_frame(ioc, smid));
1414 	}
1415 
1416 	if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
1417 		loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
1418 		_base_sas_log_info(ioc, loginfo);
1419 	}
1420 
1421 	if (ioc_status || loginfo) {
1422 		ioc_status &= MPI2_IOCSTATUS_MASK;
1423 		mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
1424 	}
1425 }
1426 
1427 /**
1428  * mpt3sas_base_done - base internal command completion routine
1429  * @ioc: per adapter object
1430  * @smid: system request message index
1431  * @msix_index: MSIX table index supplied by the OS
1432  * @reply: reply message frame(lower 32bit addr)
1433  *
1434  * Return:
1435  * 1 meaning mf should be freed from _base_interrupt
1436  * 0 means the mf is freed from this function.
1437  */
1438 u8
1439 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1440 	u32 reply)
1441 {
1442 	MPI2DefaultReply_t *mpi_reply;
1443 
1444 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1445 	if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
1446 		return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
1447 
1448 	if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
1449 		return 1;
1450 
1451 	ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
1452 	if (mpi_reply) {
1453 		ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
1454 		memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
1455 	}
1456 	ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
1457 
1458 	complete(&ioc->base_cmds.done);
1459 	return 1;
1460 }
1461 
1462 /**
1463  * _base_async_event - main callback handler for firmware asyn events
1464  * @ioc: per adapter object
1465  * @msix_index: MSIX table index supplied by the OS
1466  * @reply: reply message frame(lower 32bit addr)
1467  *
1468  * Return:
1469  * 1 meaning mf should be freed from _base_interrupt
1470  * 0 means the mf is freed from this function.
1471  */
1472 static u8
1473 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
1474 {
1475 	Mpi2EventNotificationReply_t *mpi_reply;
1476 	Mpi2EventAckRequest_t *ack_request;
1477 	u16 smid;
1478 	struct _event_ack_list *delayed_event_ack;
1479 
1480 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1481 	if (!mpi_reply)
1482 		return 1;
1483 	if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
1484 		return 1;
1485 
1486 	_base_display_event_data(ioc, mpi_reply);
1487 
1488 	if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
1489 		goto out;
1490 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
1491 	if (!smid) {
1492 		delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
1493 					GFP_ATOMIC);
1494 		if (!delayed_event_ack)
1495 			goto out;
1496 		INIT_LIST_HEAD(&delayed_event_ack->list);
1497 		delayed_event_ack->Event = mpi_reply->Event;
1498 		delayed_event_ack->EventContext = mpi_reply->EventContext;
1499 		list_add_tail(&delayed_event_ack->list,
1500 				&ioc->delayed_event_ack_list);
1501 		dewtprintk(ioc,
1502 			   ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n",
1503 				    le16_to_cpu(mpi_reply->Event)));
1504 		goto out;
1505 	}
1506 
1507 	ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
1508 	memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
1509 	ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
1510 	ack_request->Event = mpi_reply->Event;
1511 	ack_request->EventContext = mpi_reply->EventContext;
1512 	ack_request->VF_ID = 0;  /* TODO */
1513 	ack_request->VP_ID = 0;
1514 	ioc->put_smid_default(ioc, smid);
1515 
1516  out:
1517 
1518 	/* scsih callback handler */
1519 	mpt3sas_scsih_event_callback(ioc, msix_index, reply);
1520 
1521 	/* ctl callback handler */
1522 	mpt3sas_ctl_event_callback(ioc, msix_index, reply);
1523 
1524 	return 1;
1525 }
1526 
1527 static struct scsiio_tracker *
1528 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1529 {
1530 	struct scsi_cmnd *cmd;
1531 
1532 	if (WARN_ON(!smid) ||
1533 	    WARN_ON(smid >= ioc->hi_priority_smid))
1534 		return NULL;
1535 
1536 	cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
1537 	if (cmd)
1538 		return scsi_cmd_priv(cmd);
1539 
1540 	return NULL;
1541 }
1542 
1543 /**
1544  * _base_get_cb_idx - obtain the callback index
1545  * @ioc: per adapter object
1546  * @smid: system request message index
1547  *
1548  * Return: callback index.
1549  */
1550 static u8
1551 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1552 {
1553 	int i;
1554 	u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1;
1555 	u8 cb_idx = 0xFF;
1556 
1557 	if (smid < ioc->hi_priority_smid) {
1558 		struct scsiio_tracker *st;
1559 
1560 		if (smid < ctl_smid) {
1561 			st = _get_st_from_smid(ioc, smid);
1562 			if (st)
1563 				cb_idx = st->cb_idx;
1564 		} else if (smid == ctl_smid)
1565 			cb_idx = ioc->ctl_cb_idx;
1566 	} else if (smid < ioc->internal_smid) {
1567 		i = smid - ioc->hi_priority_smid;
1568 		cb_idx = ioc->hpr_lookup[i].cb_idx;
1569 	} else if (smid <= ioc->hba_queue_depth) {
1570 		i = smid - ioc->internal_smid;
1571 		cb_idx = ioc->internal_lookup[i].cb_idx;
1572 	}
1573 	return cb_idx;
1574 }
1575 
1576 /**
1577  * mpt3sas_base_pause_mq_polling - pause polling on the mq poll queues
1578  *				when driver is flushing out the IOs.
1579  * @ioc: per adapter object
1580  *
1581  * Pause polling on the mq poll (io uring) queues when driver is flushing
1582  * out the IOs. Otherwise we may see the race condition of completing the same
1583  * IO from two paths.
1584  *
1585  * Returns nothing.
1586  */
1587 void
1588 mpt3sas_base_pause_mq_polling(struct MPT3SAS_ADAPTER *ioc)
1589 {
1590 	int iopoll_q_count =
1591 	    ioc->reply_queue_count - ioc->iopoll_q_start_index;
1592 	int qid;
1593 
1594 	for (qid = 0; qid < iopoll_q_count; qid++)
1595 		atomic_set(&ioc->io_uring_poll_queues[qid].pause, 1);
1596 
1597 	/*
1598 	 * wait for current poll to complete.
1599 	 */
1600 	for (qid = 0; qid < iopoll_q_count; qid++) {
1601 		while (atomic_read(&ioc->io_uring_poll_queues[qid].busy)) {
1602 			cpu_relax();
1603 			udelay(500);
1604 		}
1605 	}
1606 }
1607 
1608 /**
1609  * mpt3sas_base_resume_mq_polling - Resume polling on mq poll queues.
1610  * @ioc: per adapter object
1611  *
1612  * Returns nothing.
1613  */
1614 void
1615 mpt3sas_base_resume_mq_polling(struct MPT3SAS_ADAPTER *ioc)
1616 {
1617 	int iopoll_q_count =
1618 	    ioc->reply_queue_count - ioc->iopoll_q_start_index;
1619 	int qid;
1620 
1621 	for (qid = 0; qid < iopoll_q_count; qid++)
1622 		atomic_set(&ioc->io_uring_poll_queues[qid].pause, 0);
1623 }
1624 
1625 /**
1626  * mpt3sas_base_mask_interrupts - disable interrupts
1627  * @ioc: per adapter object
1628  *
1629  * Disabling ResetIRQ, Reply and Doorbell Interrupts
1630  */
1631 void
1632 mpt3sas_base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1633 {
1634 	u32 him_register;
1635 
1636 	ioc->mask_interrupts = 1;
1637 	him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1638 	him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
1639 	writel(him_register, &ioc->chip->HostInterruptMask);
1640 	ioc->base_readl(&ioc->chip->HostInterruptMask);
1641 }
1642 
1643 /**
1644  * mpt3sas_base_unmask_interrupts - enable interrupts
1645  * @ioc: per adapter object
1646  *
1647  * Enabling only Reply Interrupts
1648  */
1649 void
1650 mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1651 {
1652 	u32 him_register;
1653 
1654 	him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1655 	him_register &= ~MPI2_HIM_RIM;
1656 	writel(him_register, &ioc->chip->HostInterruptMask);
1657 	ioc->mask_interrupts = 0;
1658 }
1659 
1660 union reply_descriptor {
1661 	u64 word;
1662 	struct {
1663 		u32 low;
1664 		u32 high;
1665 	} u;
1666 };
1667 
1668 static u32 base_mod64(u64 dividend, u32 divisor)
1669 {
1670 	u32 remainder;
1671 
1672 	if (!divisor)
1673 		pr_err("mpt3sas: DIVISOR is zero, in div fn\n");
1674 	remainder = do_div(dividend, divisor);
1675 	return remainder;
1676 }
1677 
1678 /**
1679  * _base_process_reply_queue - Process reply descriptors from reply
1680  *		descriptor post queue.
1681  * @reply_q: per IRQ's reply queue object.
1682  *
1683  * Return: number of reply descriptors processed from reply
1684  *		descriptor queue.
1685  */
1686 static int
1687 _base_process_reply_queue(struct adapter_reply_queue *reply_q)
1688 {
1689 	union reply_descriptor rd;
1690 	u64 completed_cmds;
1691 	u8 request_descript_type;
1692 	u16 smid;
1693 	u8 cb_idx;
1694 	u32 reply;
1695 	u8 msix_index = reply_q->msix_index;
1696 	struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1697 	Mpi2ReplyDescriptorsUnion_t *rpf;
1698 	u8 rc;
1699 
1700 	completed_cmds = 0;
1701 	if (!atomic_add_unless(&reply_q->busy, 1, 1))
1702 		return completed_cmds;
1703 
1704 	rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
1705 	request_descript_type = rpf->Default.ReplyFlags
1706 	     & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1707 	if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
1708 		atomic_dec(&reply_q->busy);
1709 		return completed_cmds;
1710 	}
1711 
1712 	cb_idx = 0xFF;
1713 	do {
1714 		rd.word = le64_to_cpu(rpf->Words);
1715 		if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
1716 			goto out;
1717 		reply = 0;
1718 		smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
1719 		if (request_descript_type ==
1720 		    MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
1721 		    request_descript_type ==
1722 		    MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS ||
1723 		    request_descript_type ==
1724 		    MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) {
1725 			cb_idx = _base_get_cb_idx(ioc, smid);
1726 			if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1727 			    (likely(mpt_callbacks[cb_idx] != NULL))) {
1728 				rc = mpt_callbacks[cb_idx](ioc, smid,
1729 				    msix_index, 0);
1730 				if (rc)
1731 					mpt3sas_base_free_smid(ioc, smid);
1732 			}
1733 		} else if (request_descript_type ==
1734 		    MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
1735 			reply = le32_to_cpu(
1736 			    rpf->AddressReply.ReplyFrameAddress);
1737 			if (reply > ioc->reply_dma_max_address ||
1738 			    reply < ioc->reply_dma_min_address)
1739 				reply = 0;
1740 			if (smid) {
1741 				cb_idx = _base_get_cb_idx(ioc, smid);
1742 				if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1743 				    (likely(mpt_callbacks[cb_idx] != NULL))) {
1744 					rc = mpt_callbacks[cb_idx](ioc, smid,
1745 					    msix_index, reply);
1746 					if (reply)
1747 						_base_display_reply_info(ioc,
1748 						    smid, msix_index, reply);
1749 					if (rc)
1750 						mpt3sas_base_free_smid(ioc,
1751 						    smid);
1752 				}
1753 			} else {
1754 				_base_async_event(ioc, msix_index, reply);
1755 			}
1756 
1757 			/* reply free queue handling */
1758 			if (reply) {
1759 				ioc->reply_free_host_index =
1760 				    (ioc->reply_free_host_index ==
1761 				    (ioc->reply_free_queue_depth - 1)) ?
1762 				    0 : ioc->reply_free_host_index + 1;
1763 				ioc->reply_free[ioc->reply_free_host_index] =
1764 				    cpu_to_le32(reply);
1765 				if (ioc->is_mcpu_endpoint)
1766 					_base_clone_reply_to_sys_mem(ioc,
1767 						reply,
1768 						ioc->reply_free_host_index);
1769 				writel(ioc->reply_free_host_index,
1770 				    &ioc->chip->ReplyFreeHostIndex);
1771 			}
1772 		}
1773 
1774 		rpf->Words = cpu_to_le64(ULLONG_MAX);
1775 		reply_q->reply_post_host_index =
1776 		    (reply_q->reply_post_host_index ==
1777 		    (ioc->reply_post_queue_depth - 1)) ? 0 :
1778 		    reply_q->reply_post_host_index + 1;
1779 		request_descript_type =
1780 		    reply_q->reply_post_free[reply_q->reply_post_host_index].
1781 		    Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1782 		completed_cmds++;
1783 		/* Update the reply post host index after continuously
1784 		 * processing the threshold number of Reply Descriptors.
1785 		 * So that FW can find enough entries to post the Reply
1786 		 * Descriptors in the reply descriptor post queue.
1787 		 */
1788 		if (completed_cmds >= ioc->thresh_hold) {
1789 			if (ioc->combined_reply_queue) {
1790 				writel(reply_q->reply_post_host_index |
1791 						((msix_index  & 7) <<
1792 						 MPI2_RPHI_MSIX_INDEX_SHIFT),
1793 				    ioc->replyPostRegisterIndex[msix_index/8]);
1794 			} else {
1795 				writel(reply_q->reply_post_host_index |
1796 						(msix_index <<
1797 						 MPI2_RPHI_MSIX_INDEX_SHIFT),
1798 						&ioc->chip->ReplyPostHostIndex);
1799 			}
1800 			if (!reply_q->is_iouring_poll_q &&
1801 			    !reply_q->irq_poll_scheduled) {
1802 				reply_q->irq_poll_scheduled = true;
1803 				irq_poll_sched(&reply_q->irqpoll);
1804 			}
1805 			atomic_dec(&reply_q->busy);
1806 			return completed_cmds;
1807 		}
1808 		if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1809 			goto out;
1810 		if (!reply_q->reply_post_host_index)
1811 			rpf = reply_q->reply_post_free;
1812 		else
1813 			rpf++;
1814 	} while (1);
1815 
1816  out:
1817 
1818 	if (!completed_cmds) {
1819 		atomic_dec(&reply_q->busy);
1820 		return completed_cmds;
1821 	}
1822 
1823 	if (ioc->is_warpdrive) {
1824 		writel(reply_q->reply_post_host_index,
1825 		ioc->reply_post_host_index[msix_index]);
1826 		atomic_dec(&reply_q->busy);
1827 		return completed_cmds;
1828 	}
1829 
1830 	/* Update Reply Post Host Index.
1831 	 * For those HBA's which support combined reply queue feature
1832 	 * 1. Get the correct Supplemental Reply Post Host Index Register.
1833 	 *    i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1834 	 *    Index Register address bank i.e replyPostRegisterIndex[],
1835 	 * 2. Then update this register with new reply host index value
1836 	 *    in ReplyPostIndex field and the MSIxIndex field with
1837 	 *    msix_index value reduced to a value between 0 and 7,
1838 	 *    using a modulo 8 operation. Since each Supplemental Reply Post
1839 	 *    Host Index Register supports 8 MSI-X vectors.
1840 	 *
1841 	 * For other HBA's just update the Reply Post Host Index register with
1842 	 * new reply host index value in ReplyPostIndex Field and msix_index
1843 	 * value in MSIxIndex field.
1844 	 */
1845 	if (ioc->combined_reply_queue)
1846 		writel(reply_q->reply_post_host_index | ((msix_index  & 7) <<
1847 			MPI2_RPHI_MSIX_INDEX_SHIFT),
1848 			ioc->replyPostRegisterIndex[msix_index/8]);
1849 	else
1850 		writel(reply_q->reply_post_host_index | (msix_index <<
1851 			MPI2_RPHI_MSIX_INDEX_SHIFT),
1852 			&ioc->chip->ReplyPostHostIndex);
1853 	atomic_dec(&reply_q->busy);
1854 	return completed_cmds;
1855 }
1856 
1857 /**
1858  * mpt3sas_blk_mq_poll - poll the blk mq poll queue
1859  * @shost: Scsi_Host object
1860  * @queue_num: hw ctx queue number
1861  *
1862  * Return number of entries that has been processed from poll queue.
1863  */
1864 int mpt3sas_blk_mq_poll(struct Scsi_Host *shost, unsigned int queue_num)
1865 {
1866 	struct MPT3SAS_ADAPTER *ioc =
1867 	    (struct MPT3SAS_ADAPTER *)shost->hostdata;
1868 	struct adapter_reply_queue *reply_q;
1869 	int num_entries = 0;
1870 	int qid = queue_num - ioc->iopoll_q_start_index;
1871 
1872 	if (atomic_read(&ioc->io_uring_poll_queues[qid].pause) ||
1873 	    !atomic_add_unless(&ioc->io_uring_poll_queues[qid].busy, 1, 1))
1874 		return 0;
1875 
1876 	reply_q = ioc->io_uring_poll_queues[qid].reply_q;
1877 
1878 	num_entries = _base_process_reply_queue(reply_q);
1879 	atomic_dec(&ioc->io_uring_poll_queues[qid].busy);
1880 
1881 	return num_entries;
1882 }
1883 
1884 /**
1885  * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
1886  * @irq: irq number (not used)
1887  * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
1888  *
1889  * Return: IRQ_HANDLED if processed, else IRQ_NONE.
1890  */
1891 static irqreturn_t
1892 _base_interrupt(int irq, void *bus_id)
1893 {
1894 	struct adapter_reply_queue *reply_q = bus_id;
1895 	struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1896 
1897 	if (ioc->mask_interrupts)
1898 		return IRQ_NONE;
1899 	if (reply_q->irq_poll_scheduled)
1900 		return IRQ_HANDLED;
1901 	return ((_base_process_reply_queue(reply_q) > 0) ?
1902 			IRQ_HANDLED : IRQ_NONE);
1903 }
1904 
1905 /**
1906  * _base_irqpoll - IRQ poll callback handler
1907  * @irqpoll: irq_poll object
1908  * @budget: irq poll weight
1909  *
1910  * Return: number of reply descriptors processed
1911  */
1912 static int
1913 _base_irqpoll(struct irq_poll *irqpoll, int budget)
1914 {
1915 	struct adapter_reply_queue *reply_q;
1916 	int num_entries = 0;
1917 
1918 	reply_q = container_of(irqpoll, struct adapter_reply_queue,
1919 			irqpoll);
1920 	if (reply_q->irq_line_enable) {
1921 		disable_irq_nosync(reply_q->os_irq);
1922 		reply_q->irq_line_enable = false;
1923 	}
1924 	num_entries = _base_process_reply_queue(reply_q);
1925 	if (num_entries < budget) {
1926 		irq_poll_complete(irqpoll);
1927 		reply_q->irq_poll_scheduled = false;
1928 		reply_q->irq_line_enable = true;
1929 		enable_irq(reply_q->os_irq);
1930 		/*
1931 		 * Go for one more round of processing the
1932 		 * reply descriptor post queue in case the HBA
1933 		 * Firmware has posted some reply descriptors
1934 		 * while reenabling the IRQ.
1935 		 */
1936 		_base_process_reply_queue(reply_q);
1937 	}
1938 
1939 	return num_entries;
1940 }
1941 
1942 /**
1943  * _base_init_irqpolls - initliaze IRQ polls
1944  * @ioc: per adapter object
1945  *
1946  * Return: nothing
1947  */
1948 static void
1949 _base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc)
1950 {
1951 	struct adapter_reply_queue *reply_q, *next;
1952 
1953 	if (list_empty(&ioc->reply_queue_list))
1954 		return;
1955 
1956 	list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1957 		if (reply_q->is_iouring_poll_q)
1958 			continue;
1959 		irq_poll_init(&reply_q->irqpoll,
1960 			ioc->hba_queue_depth/4, _base_irqpoll);
1961 		reply_q->irq_poll_scheduled = false;
1962 		reply_q->irq_line_enable = true;
1963 		reply_q->os_irq = pci_irq_vector(ioc->pdev,
1964 		    reply_q->msix_index);
1965 	}
1966 }
1967 
1968 /**
1969  * _base_is_controller_msix_enabled - is controller support muli-reply queues
1970  * @ioc: per adapter object
1971  *
1972  * Return: Whether or not MSI/X is enabled.
1973  */
1974 static inline int
1975 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1976 {
1977 	return (ioc->facts.IOCCapabilities &
1978 	    MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1979 }
1980 
1981 /**
1982  * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1983  * @ioc: per adapter object
1984  * @poll: poll over reply descriptor pools incase interrupt for
1985  *		timed-out SCSI command got delayed
1986  * Context: non-ISR context
1987  *
1988  * Called when a Task Management request has completed.
1989  */
1990 void
1991 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc, u8 poll)
1992 {
1993 	struct adapter_reply_queue *reply_q;
1994 
1995 	/* If MSIX capability is turned off
1996 	 * then multi-queues are not enabled
1997 	 */
1998 	if (!_base_is_controller_msix_enabled(ioc))
1999 		return;
2000 
2001 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
2002 		if (ioc->shost_recovery || ioc->remove_host ||
2003 				ioc->pci_error_recovery)
2004 			return;
2005 		/* TMs are on msix_index == 0 */
2006 		if (reply_q->msix_index == 0)
2007 			continue;
2008 
2009 		if (reply_q->is_iouring_poll_q) {
2010 			_base_process_reply_queue(reply_q);
2011 			continue;
2012 		}
2013 
2014 		synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
2015 		if (reply_q->irq_poll_scheduled) {
2016 			/* Calling irq_poll_disable will wait for any pending
2017 			 * callbacks to have completed.
2018 			 */
2019 			irq_poll_disable(&reply_q->irqpoll);
2020 			irq_poll_enable(&reply_q->irqpoll);
2021 			/* check how the scheduled poll has ended,
2022 			 * clean up only if necessary
2023 			 */
2024 			if (reply_q->irq_poll_scheduled) {
2025 				reply_q->irq_poll_scheduled = false;
2026 				reply_q->irq_line_enable = true;
2027 				enable_irq(reply_q->os_irq);
2028 			}
2029 		}
2030 
2031 		if (poll)
2032 			_base_process_reply_queue(reply_q);
2033 	}
2034 }
2035 
2036 /**
2037  * mpt3sas_base_release_callback_handler - clear interrupt callback handler
2038  * @cb_idx: callback index
2039  */
2040 void
2041 mpt3sas_base_release_callback_handler(u8 cb_idx)
2042 {
2043 	mpt_callbacks[cb_idx] = NULL;
2044 }
2045 
2046 /**
2047  * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
2048  * @cb_func: callback function
2049  *
2050  * Return: Index of @cb_func.
2051  */
2052 u8
2053 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
2054 {
2055 	u8 cb_idx;
2056 
2057 	for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
2058 		if (mpt_callbacks[cb_idx] == NULL)
2059 			break;
2060 
2061 	mpt_callbacks[cb_idx] = cb_func;
2062 	return cb_idx;
2063 }
2064 
2065 /**
2066  * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
2067  */
2068 void
2069 mpt3sas_base_initialize_callback_handler(void)
2070 {
2071 	u8 cb_idx;
2072 
2073 	for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
2074 		mpt3sas_base_release_callback_handler(cb_idx);
2075 }
2076 
2077 
2078 /**
2079  * _base_build_zero_len_sge - build zero length sg entry
2080  * @ioc: per adapter object
2081  * @paddr: virtual address for SGE
2082  *
2083  * Create a zero length scatter gather entry to insure the IOCs hardware has
2084  * something to use if the target device goes brain dead and tries
2085  * to send data even when none is asked for.
2086  */
2087 static void
2088 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2089 {
2090 	u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
2091 	    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
2092 	    MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
2093 	    MPI2_SGE_FLAGS_SHIFT);
2094 	ioc->base_add_sg_single(paddr, flags_length, -1);
2095 }
2096 
2097 /**
2098  * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
2099  * @paddr: virtual address for SGE
2100  * @flags_length: SGE flags and data transfer length
2101  * @dma_addr: Physical address
2102  */
2103 static void
2104 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
2105 {
2106 	Mpi2SGESimple32_t *sgel = paddr;
2107 
2108 	flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
2109 	    MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
2110 	sgel->FlagsLength = cpu_to_le32(flags_length);
2111 	sgel->Address = cpu_to_le32(dma_addr);
2112 }
2113 
2114 
2115 /**
2116  * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
2117  * @paddr: virtual address for SGE
2118  * @flags_length: SGE flags and data transfer length
2119  * @dma_addr: Physical address
2120  */
2121 static void
2122 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
2123 {
2124 	Mpi2SGESimple64_t *sgel = paddr;
2125 
2126 	flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
2127 	    MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
2128 	sgel->FlagsLength = cpu_to_le32(flags_length);
2129 	sgel->Address = cpu_to_le64(dma_addr);
2130 }
2131 
2132 /**
2133  * _base_get_chain_buffer_tracker - obtain chain tracker
2134  * @ioc: per adapter object
2135  * @scmd: SCSI commands of the IO request
2136  *
2137  * Return: chain tracker from chain_lookup table using key as
2138  * smid and smid's chain_offset.
2139  */
2140 static struct chain_tracker *
2141 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc,
2142 			       struct scsi_cmnd *scmd)
2143 {
2144 	struct chain_tracker *chain_req;
2145 	struct scsiio_tracker *st = scsi_cmd_priv(scmd);
2146 	u16 smid = st->smid;
2147 	u8 chain_offset =
2148 	   atomic_read(&ioc->chain_lookup[smid - 1].chain_offset);
2149 
2150 	if (chain_offset == ioc->chains_needed_per_io)
2151 		return NULL;
2152 
2153 	chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset];
2154 	atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset);
2155 	return chain_req;
2156 }
2157 
2158 
2159 /**
2160  * _base_build_sg - build generic sg
2161  * @ioc: per adapter object
2162  * @psge: virtual address for SGE
2163  * @data_out_dma: physical address for WRITES
2164  * @data_out_sz: data xfer size for WRITES
2165  * @data_in_dma: physical address for READS
2166  * @data_in_sz: data xfer size for READS
2167  */
2168 static void
2169 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
2170 	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2171 	size_t data_in_sz)
2172 {
2173 	u32 sgl_flags;
2174 
2175 	if (!data_out_sz && !data_in_sz) {
2176 		_base_build_zero_len_sge(ioc, psge);
2177 		return;
2178 	}
2179 
2180 	if (data_out_sz && data_in_sz) {
2181 		/* WRITE sgel first */
2182 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2183 		    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
2184 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2185 		ioc->base_add_sg_single(psge, sgl_flags |
2186 		    data_out_sz, data_out_dma);
2187 
2188 		/* incr sgel */
2189 		psge += ioc->sge_size;
2190 
2191 		/* READ sgel last */
2192 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2193 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2194 		    MPI2_SGE_FLAGS_END_OF_LIST);
2195 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2196 		ioc->base_add_sg_single(psge, sgl_flags |
2197 		    data_in_sz, data_in_dma);
2198 	} else if (data_out_sz) /* WRITE */ {
2199 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2200 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2201 		    MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
2202 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2203 		ioc->base_add_sg_single(psge, sgl_flags |
2204 		    data_out_sz, data_out_dma);
2205 	} else if (data_in_sz) /* READ */ {
2206 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2207 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2208 		    MPI2_SGE_FLAGS_END_OF_LIST);
2209 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2210 		ioc->base_add_sg_single(psge, sgl_flags |
2211 		    data_in_sz, data_in_dma);
2212 	}
2213 }
2214 
2215 /* IEEE format sgls */
2216 
2217 /**
2218  * _base_build_nvme_prp - This function is called for NVMe end devices to build
2219  *                        a native SGL (NVMe PRP).
2220  * @ioc: per adapter object
2221  * @smid: system request message index for getting asscociated SGL
2222  * @nvme_encap_request: the NVMe request msg frame pointer
2223  * @data_out_dma: physical address for WRITES
2224  * @data_out_sz: data xfer size for WRITES
2225  * @data_in_dma: physical address for READS
2226  * @data_in_sz: data xfer size for READS
2227  *
2228  * The native SGL is built starting in the first PRP
2229  * entry of the NVMe message (PRP1).  If the data buffer is small enough to be
2230  * described entirely using PRP1, then PRP2 is not used.  If needed, PRP2 is
2231  * used to describe a larger data buffer.  If the data buffer is too large to
2232  * describe using the two PRP entriess inside the NVMe message, then PRP1
2233  * describes the first data memory segment, and PRP2 contains a pointer to a PRP
2234  * list located elsewhere in memory to describe the remaining data memory
2235  * segments.  The PRP list will be contiguous.
2236  *
2237  * The native SGL for NVMe devices is a Physical Region Page (PRP).  A PRP
2238  * consists of a list of PRP entries to describe a number of noncontigous
2239  * physical memory segments as a single memory buffer, just as a SGL does.  Note
2240  * however, that this function is only used by the IOCTL call, so the memory
2241  * given will be guaranteed to be contiguous.  There is no need to translate
2242  * non-contiguous SGL into a PRP in this case.  All PRPs will describe
2243  * contiguous space that is one page size each.
2244  *
2245  * Each NVMe message contains two PRP entries.  The first (PRP1) either contains
2246  * a PRP list pointer or a PRP element, depending upon the command.  PRP2
2247  * contains the second PRP element if the memory being described fits within 2
2248  * PRP entries, or a PRP list pointer if the PRP spans more than two entries.
2249  *
2250  * A PRP list pointer contains the address of a PRP list, structured as a linear
2251  * array of PRP entries.  Each PRP entry in this list describes a segment of
2252  * physical memory.
2253  *
2254  * Each 64-bit PRP entry comprises an address and an offset field.  The address
2255  * always points at the beginning of a 4KB physical memory page, and the offset
2256  * describes where within that 4KB page the memory segment begins.  Only the
2257  * first element in a PRP list may contain a non-zero offset, implying that all
2258  * memory segments following the first begin at the start of a 4KB page.
2259  *
2260  * Each PRP element normally describes 4KB of physical memory, with exceptions
2261  * for the first and last elements in the list.  If the memory being described
2262  * by the list begins at a non-zero offset within the first 4KB page, then the
2263  * first PRP element will contain a non-zero offset indicating where the region
2264  * begins within the 4KB page.  The last memory segment may end before the end
2265  * of the 4KB segment, depending upon the overall size of the memory being
2266  * described by the PRP list.
2267  *
2268  * Since PRP entries lack any indication of size, the overall data buffer length
2269  * is used to determine where the end of the data memory buffer is located, and
2270  * how many PRP entries are required to describe it.
2271  */
2272 static void
2273 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2274 	Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request,
2275 	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2276 	size_t data_in_sz)
2277 {
2278 	int		prp_size = NVME_PRP_SIZE;
2279 	__le64		*prp_entry, *prp1_entry, *prp2_entry;
2280 	__le64		*prp_page;
2281 	dma_addr_t	prp_entry_dma, prp_page_dma, dma_addr;
2282 	u32		offset, entry_len;
2283 	u32		page_mask_result, page_mask;
2284 	size_t		length;
2285 	struct mpt3sas_nvme_cmd *nvme_cmd =
2286 		(void *)nvme_encap_request->NVMe_Command;
2287 
2288 	/*
2289 	 * Not all commands require a data transfer. If no data, just return
2290 	 * without constructing any PRP.
2291 	 */
2292 	if (!data_in_sz && !data_out_sz)
2293 		return;
2294 	prp1_entry = &nvme_cmd->prp1;
2295 	prp2_entry = &nvme_cmd->prp2;
2296 	prp_entry = prp1_entry;
2297 	/*
2298 	 * For the PRP entries, use the specially allocated buffer of
2299 	 * contiguous memory.
2300 	 */
2301 	prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid);
2302 	prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2303 
2304 	/*
2305 	 * Check if we are within 1 entry of a page boundary we don't
2306 	 * want our first entry to be a PRP List entry.
2307 	 */
2308 	page_mask = ioc->page_size - 1;
2309 	page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
2310 	if (!page_mask_result) {
2311 		/* Bump up to next page boundary. */
2312 		prp_page = (__le64 *)((u8 *)prp_page + prp_size);
2313 		prp_page_dma = prp_page_dma + prp_size;
2314 	}
2315 
2316 	/*
2317 	 * Set PRP physical pointer, which initially points to the current PRP
2318 	 * DMA memory page.
2319 	 */
2320 	prp_entry_dma = prp_page_dma;
2321 
2322 	/* Get physical address and length of the data buffer. */
2323 	if (data_in_sz) {
2324 		dma_addr = data_in_dma;
2325 		length = data_in_sz;
2326 	} else {
2327 		dma_addr = data_out_dma;
2328 		length = data_out_sz;
2329 	}
2330 
2331 	/* Loop while the length is not zero. */
2332 	while (length) {
2333 		/*
2334 		 * Check if we need to put a list pointer here if we are at
2335 		 * page boundary - prp_size (8 bytes).
2336 		 */
2337 		page_mask_result = (prp_entry_dma + prp_size) & page_mask;
2338 		if (!page_mask_result) {
2339 			/*
2340 			 * This is the last entry in a PRP List, so we need to
2341 			 * put a PRP list pointer here.  What this does is:
2342 			 *   - bump the current memory pointer to the next
2343 			 *     address, which will be the next full page.
2344 			 *   - set the PRP Entry to point to that page.  This
2345 			 *     is now the PRP List pointer.
2346 			 *   - bump the PRP Entry pointer the start of the
2347 			 *     next page.  Since all of this PRP memory is
2348 			 *     contiguous, no need to get a new page - it's
2349 			 *     just the next address.
2350 			 */
2351 			prp_entry_dma++;
2352 			*prp_entry = cpu_to_le64(prp_entry_dma);
2353 			prp_entry++;
2354 		}
2355 
2356 		/* Need to handle if entry will be part of a page. */
2357 		offset = dma_addr & page_mask;
2358 		entry_len = ioc->page_size - offset;
2359 
2360 		if (prp_entry == prp1_entry) {
2361 			/*
2362 			 * Must fill in the first PRP pointer (PRP1) before
2363 			 * moving on.
2364 			 */
2365 			*prp1_entry = cpu_to_le64(dma_addr);
2366 
2367 			/*
2368 			 * Now point to the second PRP entry within the
2369 			 * command (PRP2).
2370 			 */
2371 			prp_entry = prp2_entry;
2372 		} else if (prp_entry == prp2_entry) {
2373 			/*
2374 			 * Should the PRP2 entry be a PRP List pointer or just
2375 			 * a regular PRP pointer?  If there is more than one
2376 			 * more page of data, must use a PRP List pointer.
2377 			 */
2378 			if (length > ioc->page_size) {
2379 				/*
2380 				 * PRP2 will contain a PRP List pointer because
2381 				 * more PRP's are needed with this command. The
2382 				 * list will start at the beginning of the
2383 				 * contiguous buffer.
2384 				 */
2385 				*prp2_entry = cpu_to_le64(prp_entry_dma);
2386 
2387 				/*
2388 				 * The next PRP Entry will be the start of the
2389 				 * first PRP List.
2390 				 */
2391 				prp_entry = prp_page;
2392 			} else {
2393 				/*
2394 				 * After this, the PRP Entries are complete.
2395 				 * This command uses 2 PRP's and no PRP list.
2396 				 */
2397 				*prp2_entry = cpu_to_le64(dma_addr);
2398 			}
2399 		} else {
2400 			/*
2401 			 * Put entry in list and bump the addresses.
2402 			 *
2403 			 * After PRP1 and PRP2 are filled in, this will fill in
2404 			 * all remaining PRP entries in a PRP List, one per
2405 			 * each time through the loop.
2406 			 */
2407 			*prp_entry = cpu_to_le64(dma_addr);
2408 			prp_entry++;
2409 			prp_entry_dma++;
2410 		}
2411 
2412 		/*
2413 		 * Bump the phys address of the command's data buffer by the
2414 		 * entry_len.
2415 		 */
2416 		dma_addr += entry_len;
2417 
2418 		/* Decrement length accounting for last partial page. */
2419 		if (entry_len > length)
2420 			length = 0;
2421 		else
2422 			length -= entry_len;
2423 	}
2424 }
2425 
2426 /**
2427  * base_make_prp_nvme - Prepare PRPs (Physical Region Page) -
2428  *			SGLs specific to NVMe drives only
2429  *
2430  * @ioc:		per adapter object
2431  * @scmd:		SCSI command from the mid-layer
2432  * @mpi_request:	mpi request
2433  * @smid:		msg Index
2434  * @sge_count:		scatter gather element count.
2435  *
2436  * Return:		true: PRPs are built
2437  *			false: IEEE SGLs needs to be built
2438  */
2439 static void
2440 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
2441 		struct scsi_cmnd *scmd,
2442 		Mpi25SCSIIORequest_t *mpi_request,
2443 		u16 smid, int sge_count)
2444 {
2445 	int sge_len, num_prp_in_chain = 0;
2446 	Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl;
2447 	__le64 *curr_buff;
2448 	dma_addr_t msg_dma, sge_addr, offset;
2449 	u32 page_mask, page_mask_result;
2450 	struct scatterlist *sg_scmd;
2451 	u32 first_prp_len;
2452 	int data_len = scsi_bufflen(scmd);
2453 	u32 nvme_pg_size;
2454 
2455 	nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE);
2456 	/*
2457 	 * Nvme has a very convoluted prp format.  One prp is required
2458 	 * for each page or partial page. Driver need to split up OS sg_list
2459 	 * entries if it is longer than one page or cross a page
2460 	 * boundary.  Driver also have to insert a PRP list pointer entry as
2461 	 * the last entry in each physical page of the PRP list.
2462 	 *
2463 	 * NOTE: The first PRP "entry" is actually placed in the first
2464 	 * SGL entry in the main message as IEEE 64 format.  The 2nd
2465 	 * entry in the main message is the chain element, and the rest
2466 	 * of the PRP entries are built in the contiguous pcie buffer.
2467 	 */
2468 	page_mask = nvme_pg_size - 1;
2469 
2470 	/*
2471 	 * Native SGL is needed.
2472 	 * Put a chain element in main message frame that points to the first
2473 	 * chain buffer.
2474 	 *
2475 	 * NOTE:  The ChainOffset field must be 0 when using a chain pointer to
2476 	 *        a native SGL.
2477 	 */
2478 
2479 	/* Set main message chain element pointer */
2480 	main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2481 	/*
2482 	 * For NVMe the chain element needs to be the 2nd SG entry in the main
2483 	 * message.
2484 	 */
2485 	main_chain_element = (Mpi25IeeeSgeChain64_t *)
2486 		((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
2487 
2488 	/*
2489 	 * For the PRP entries, use the specially allocated buffer of
2490 	 * contiguous memory.  Normal chain buffers can't be used
2491 	 * because each chain buffer would need to be the size of an OS
2492 	 * page (4k).
2493 	 */
2494 	curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid);
2495 	msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2496 
2497 	main_chain_element->Address = cpu_to_le64(msg_dma);
2498 	main_chain_element->NextChainOffset = 0;
2499 	main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2500 			MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2501 			MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
2502 
2503 	/* Build first prp, sge need not to be page aligned*/
2504 	ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2505 	sg_scmd = scsi_sglist(scmd);
2506 	sge_addr = sg_dma_address(sg_scmd);
2507 	sge_len = sg_dma_len(sg_scmd);
2508 
2509 	offset = sge_addr & page_mask;
2510 	first_prp_len = nvme_pg_size - offset;
2511 
2512 	ptr_first_sgl->Address = cpu_to_le64(sge_addr);
2513 	ptr_first_sgl->Length = cpu_to_le32(first_prp_len);
2514 
2515 	data_len -= first_prp_len;
2516 
2517 	if (sge_len > first_prp_len) {
2518 		sge_addr += first_prp_len;
2519 		sge_len -= first_prp_len;
2520 	} else if (data_len && (sge_len == first_prp_len)) {
2521 		sg_scmd = sg_next(sg_scmd);
2522 		sge_addr = sg_dma_address(sg_scmd);
2523 		sge_len = sg_dma_len(sg_scmd);
2524 	}
2525 
2526 	for (;;) {
2527 		offset = sge_addr & page_mask;
2528 
2529 		/* Put PRP pointer due to page boundary*/
2530 		page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask;
2531 		if (unlikely(!page_mask_result)) {
2532 			scmd_printk(KERN_NOTICE,
2533 				scmd, "page boundary curr_buff: 0x%p\n",
2534 				curr_buff);
2535 			msg_dma += 8;
2536 			*curr_buff = cpu_to_le64(msg_dma);
2537 			curr_buff++;
2538 			num_prp_in_chain++;
2539 		}
2540 
2541 		*curr_buff = cpu_to_le64(sge_addr);
2542 		curr_buff++;
2543 		msg_dma += 8;
2544 		num_prp_in_chain++;
2545 
2546 		sge_addr += nvme_pg_size;
2547 		sge_len -= nvme_pg_size;
2548 		data_len -= nvme_pg_size;
2549 
2550 		if (data_len <= 0)
2551 			break;
2552 
2553 		if (sge_len > 0)
2554 			continue;
2555 
2556 		sg_scmd = sg_next(sg_scmd);
2557 		sge_addr = sg_dma_address(sg_scmd);
2558 		sge_len = sg_dma_len(sg_scmd);
2559 	}
2560 
2561 	main_chain_element->Length =
2562 		cpu_to_le32(num_prp_in_chain * sizeof(u64));
2563 	return;
2564 }
2565 
2566 static bool
2567 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc,
2568 	struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count)
2569 {
2570 	u32 data_length = 0;
2571 	bool build_prp = true;
2572 
2573 	data_length = scsi_bufflen(scmd);
2574 	if (pcie_device &&
2575 	    (mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))) {
2576 		build_prp = false;
2577 		return build_prp;
2578 	}
2579 
2580 	/* If Datalenth is <= 16K and number of SGE’s entries are <= 2
2581 	 * we built IEEE SGL
2582 	 */
2583 	if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2))
2584 		build_prp = false;
2585 
2586 	return build_prp;
2587 }
2588 
2589 /**
2590  * _base_check_pcie_native_sgl - This function is called for PCIe end devices to
2591  * determine if the driver needs to build a native SGL.  If so, that native
2592  * SGL is built in the special contiguous buffers allocated especially for
2593  * PCIe SGL creation.  If the driver will not build a native SGL, return
2594  * TRUE and a normal IEEE SGL will be built.  Currently this routine
2595  * supports NVMe.
2596  * @ioc: per adapter object
2597  * @mpi_request: mf request pointer
2598  * @smid: system request message index
2599  * @scmd: scsi command
2600  * @pcie_device: points to the PCIe device's info
2601  *
2602  * Return: 0 if native SGL was built, 1 if no SGL was built
2603  */
2604 static int
2605 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc,
2606 	Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd,
2607 	struct _pcie_device *pcie_device)
2608 {
2609 	int sges_left;
2610 
2611 	/* Get the SG list pointer and info. */
2612 	sges_left = scsi_dma_map(scmd);
2613 	if (sges_left < 0)
2614 		return 1;
2615 
2616 	/* Check if we need to build a native SG list. */
2617 	if (!base_is_prp_possible(ioc, pcie_device,
2618 				scmd, sges_left)) {
2619 		/* We built a native SG list, just return. */
2620 		goto out;
2621 	}
2622 
2623 	/*
2624 	 * Build native NVMe PRP.
2625 	 */
2626 	base_make_prp_nvme(ioc, scmd, mpi_request,
2627 			smid, sges_left);
2628 
2629 	return 0;
2630 out:
2631 	scsi_dma_unmap(scmd);
2632 	return 1;
2633 }
2634 
2635 /**
2636  * _base_add_sg_single_ieee - add sg element for IEEE format
2637  * @paddr: virtual address for SGE
2638  * @flags: SGE flags
2639  * @chain_offset: number of 128 byte elements from start of segment
2640  * @length: data transfer length
2641  * @dma_addr: Physical address
2642  */
2643 static void
2644 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
2645 	dma_addr_t dma_addr)
2646 {
2647 	Mpi25IeeeSgeChain64_t *sgel = paddr;
2648 
2649 	sgel->Flags = flags;
2650 	sgel->NextChainOffset = chain_offset;
2651 	sgel->Length = cpu_to_le32(length);
2652 	sgel->Address = cpu_to_le64(dma_addr);
2653 }
2654 
2655 /**
2656  * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
2657  * @ioc: per adapter object
2658  * @paddr: virtual address for SGE
2659  *
2660  * Create a zero length scatter gather entry to insure the IOCs hardware has
2661  * something to use if the target device goes brain dead and tries
2662  * to send data even when none is asked for.
2663  */
2664 static void
2665 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2666 {
2667 	u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2668 		MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2669 		MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
2670 
2671 	_base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
2672 }
2673 
2674 static inline int _base_scsi_dma_map(struct scsi_cmnd *cmd)
2675 {
2676 	/*
2677 	 * Some firmware versions byte-swap the REPORT ZONES command reply from
2678 	 * ATA-ZAC devices by directly accessing in the host buffer. This does
2679 	 * not respect the default command DMA direction and causes IOMMU page
2680 	 * faults on some architectures with an IOMMU enforcing write mappings
2681 	 * (e.g. AMD hosts). Avoid such issue by making the report zones buffer
2682 	 * mapping bi-directional.
2683 	 */
2684 	if (cmd->cmnd[0] == ZBC_IN && cmd->cmnd[1] == ZI_REPORT_ZONES)
2685 		cmd->sc_data_direction = DMA_BIDIRECTIONAL;
2686 
2687 	return scsi_dma_map(cmd);
2688 }
2689 
2690 /**
2691  * _base_build_sg_scmd - main sg creation routine
2692  *		pcie_device is unused here!
2693  * @ioc: per adapter object
2694  * @scmd: scsi command
2695  * @smid: system request message index
2696  * @unused: unused pcie_device pointer
2697  * Context: none.
2698  *
2699  * The main routine that builds scatter gather table from a given
2700  * scsi request sent via the .queuecommand main handler.
2701  *
2702  * Return: 0 success, anything else error
2703  */
2704 static int
2705 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
2706 	struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused)
2707 {
2708 	Mpi2SCSIIORequest_t *mpi_request;
2709 	dma_addr_t chain_dma;
2710 	struct scatterlist *sg_scmd;
2711 	void *sg_local, *chain;
2712 	u32 chain_offset;
2713 	u32 chain_length;
2714 	u32 chain_flags;
2715 	int sges_left;
2716 	u32 sges_in_segment;
2717 	u32 sgl_flags;
2718 	u32 sgl_flags_last_element;
2719 	u32 sgl_flags_end_buffer;
2720 	struct chain_tracker *chain_req;
2721 
2722 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2723 
2724 	/* init scatter gather flags */
2725 	sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
2726 	if (scmd->sc_data_direction == DMA_TO_DEVICE)
2727 		sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2728 	sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
2729 	    << MPI2_SGE_FLAGS_SHIFT;
2730 	sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
2731 	    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
2732 	    << MPI2_SGE_FLAGS_SHIFT;
2733 	sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2734 
2735 	sg_scmd = scsi_sglist(scmd);
2736 	sges_left = _base_scsi_dma_map(scmd);
2737 	if (sges_left < 0)
2738 		return -ENOMEM;
2739 
2740 	sg_local = &mpi_request->SGL;
2741 	sges_in_segment = ioc->max_sges_in_main_message;
2742 	if (sges_left <= sges_in_segment)
2743 		goto fill_in_last_segment;
2744 
2745 	mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
2746 	    (sges_in_segment * ioc->sge_size))/4;
2747 
2748 	/* fill in main message segment when there is a chain following */
2749 	while (sges_in_segment) {
2750 		if (sges_in_segment == 1)
2751 			ioc->base_add_sg_single(sg_local,
2752 			    sgl_flags_last_element | sg_dma_len(sg_scmd),
2753 			    sg_dma_address(sg_scmd));
2754 		else
2755 			ioc->base_add_sg_single(sg_local, sgl_flags |
2756 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2757 		sg_scmd = sg_next(sg_scmd);
2758 		sg_local += ioc->sge_size;
2759 		sges_left--;
2760 		sges_in_segment--;
2761 	}
2762 
2763 	/* initializing the chain flags and pointers */
2764 	chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
2765 	chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2766 	if (!chain_req)
2767 		return -1;
2768 	chain = chain_req->chain_buffer;
2769 	chain_dma = chain_req->chain_buffer_dma;
2770 	do {
2771 		sges_in_segment = (sges_left <=
2772 		    ioc->max_sges_in_chain_message) ? sges_left :
2773 		    ioc->max_sges_in_chain_message;
2774 		chain_offset = (sges_left == sges_in_segment) ?
2775 		    0 : (sges_in_segment * ioc->sge_size)/4;
2776 		chain_length = sges_in_segment * ioc->sge_size;
2777 		if (chain_offset) {
2778 			chain_offset = chain_offset <<
2779 			    MPI2_SGE_CHAIN_OFFSET_SHIFT;
2780 			chain_length += ioc->sge_size;
2781 		}
2782 		ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
2783 		    chain_length, chain_dma);
2784 		sg_local = chain;
2785 		if (!chain_offset)
2786 			goto fill_in_last_segment;
2787 
2788 		/* fill in chain segments */
2789 		while (sges_in_segment) {
2790 			if (sges_in_segment == 1)
2791 				ioc->base_add_sg_single(sg_local,
2792 				    sgl_flags_last_element |
2793 				    sg_dma_len(sg_scmd),
2794 				    sg_dma_address(sg_scmd));
2795 			else
2796 				ioc->base_add_sg_single(sg_local, sgl_flags |
2797 				    sg_dma_len(sg_scmd),
2798 				    sg_dma_address(sg_scmd));
2799 			sg_scmd = sg_next(sg_scmd);
2800 			sg_local += ioc->sge_size;
2801 			sges_left--;
2802 			sges_in_segment--;
2803 		}
2804 
2805 		chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2806 		if (!chain_req)
2807 			return -1;
2808 		chain = chain_req->chain_buffer;
2809 		chain_dma = chain_req->chain_buffer_dma;
2810 	} while (1);
2811 
2812 
2813  fill_in_last_segment:
2814 
2815 	/* fill the last segment */
2816 	while (sges_left) {
2817 		if (sges_left == 1)
2818 			ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
2819 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2820 		else
2821 			ioc->base_add_sg_single(sg_local, sgl_flags |
2822 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2823 		sg_scmd = sg_next(sg_scmd);
2824 		sg_local += ioc->sge_size;
2825 		sges_left--;
2826 	}
2827 
2828 	return 0;
2829 }
2830 
2831 /**
2832  * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
2833  * @ioc: per adapter object
2834  * @scmd: scsi command
2835  * @smid: system request message index
2836  * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
2837  * constructed on need.
2838  * Context: none.
2839  *
2840  * The main routine that builds scatter gather table from a given
2841  * scsi request sent via the .queuecommand main handler.
2842  *
2843  * Return: 0 success, anything else error
2844  */
2845 static int
2846 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
2847 	struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device)
2848 {
2849 	Mpi25SCSIIORequest_t *mpi_request;
2850 	dma_addr_t chain_dma;
2851 	struct scatterlist *sg_scmd;
2852 	void *sg_local, *chain;
2853 	u32 chain_offset;
2854 	u32 chain_length;
2855 	int sges_left;
2856 	u32 sges_in_segment;
2857 	u8 simple_sgl_flags;
2858 	u8 simple_sgl_flags_last;
2859 	u8 chain_sgl_flags;
2860 	struct chain_tracker *chain_req;
2861 
2862 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2863 
2864 	/* init scatter gather flags */
2865 	simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2866 	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2867 	simple_sgl_flags_last = simple_sgl_flags |
2868 	    MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2869 	chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2870 	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2871 
2872 	/* Check if we need to build a native SG list. */
2873 	if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request,
2874 			smid, scmd, pcie_device) == 0)) {
2875 		/* We built a native SG list, just return. */
2876 		return 0;
2877 	}
2878 
2879 	sg_scmd = scsi_sglist(scmd);
2880 	sges_left = _base_scsi_dma_map(scmd);
2881 	if (sges_left < 0)
2882 		return -ENOMEM;
2883 
2884 	sg_local = &mpi_request->SGL;
2885 	sges_in_segment = (ioc->request_sz -
2886 		   offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
2887 	if (sges_left <= sges_in_segment)
2888 		goto fill_in_last_segment;
2889 
2890 	mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
2891 	    (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
2892 
2893 	/* fill in main message segment when there is a chain following */
2894 	while (sges_in_segment > 1) {
2895 		_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2896 		    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2897 		sg_scmd = sg_next(sg_scmd);
2898 		sg_local += ioc->sge_size_ieee;
2899 		sges_left--;
2900 		sges_in_segment--;
2901 	}
2902 
2903 	/* initializing the pointers */
2904 	chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2905 	if (!chain_req)
2906 		return -1;
2907 	chain = chain_req->chain_buffer;
2908 	chain_dma = chain_req->chain_buffer_dma;
2909 	do {
2910 		sges_in_segment = (sges_left <=
2911 		    ioc->max_sges_in_chain_message) ? sges_left :
2912 		    ioc->max_sges_in_chain_message;
2913 		chain_offset = (sges_left == sges_in_segment) ?
2914 		    0 : sges_in_segment;
2915 		chain_length = sges_in_segment * ioc->sge_size_ieee;
2916 		if (chain_offset)
2917 			chain_length += ioc->sge_size_ieee;
2918 		_base_add_sg_single_ieee(sg_local, chain_sgl_flags,
2919 		    chain_offset, chain_length, chain_dma);
2920 
2921 		sg_local = chain;
2922 		if (!chain_offset)
2923 			goto fill_in_last_segment;
2924 
2925 		/* fill in chain segments */
2926 		while (sges_in_segment) {
2927 			_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2928 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2929 			sg_scmd = sg_next(sg_scmd);
2930 			sg_local += ioc->sge_size_ieee;
2931 			sges_left--;
2932 			sges_in_segment--;
2933 		}
2934 
2935 		chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2936 		if (!chain_req)
2937 			return -1;
2938 		chain = chain_req->chain_buffer;
2939 		chain_dma = chain_req->chain_buffer_dma;
2940 	} while (1);
2941 
2942 
2943  fill_in_last_segment:
2944 
2945 	/* fill the last segment */
2946 	while (sges_left > 0) {
2947 		if (sges_left == 1)
2948 			_base_add_sg_single_ieee(sg_local,
2949 			    simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
2950 			    sg_dma_address(sg_scmd));
2951 		else
2952 			_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2953 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2954 		sg_scmd = sg_next(sg_scmd);
2955 		sg_local += ioc->sge_size_ieee;
2956 		sges_left--;
2957 	}
2958 
2959 	return 0;
2960 }
2961 
2962 /**
2963  * _base_build_sg_ieee - build generic sg for IEEE format
2964  * @ioc: per adapter object
2965  * @psge: virtual address for SGE
2966  * @data_out_dma: physical address for WRITES
2967  * @data_out_sz: data xfer size for WRITES
2968  * @data_in_dma: physical address for READS
2969  * @data_in_sz: data xfer size for READS
2970  */
2971 static void
2972 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
2973 	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2974 	size_t data_in_sz)
2975 {
2976 	u8 sgl_flags;
2977 
2978 	if (!data_out_sz && !data_in_sz) {
2979 		_base_build_zero_len_sge_ieee(ioc, psge);
2980 		return;
2981 	}
2982 
2983 	if (data_out_sz && data_in_sz) {
2984 		/* WRITE sgel first */
2985 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2986 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2987 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2988 		    data_out_dma);
2989 
2990 		/* incr sgel */
2991 		psge += ioc->sge_size_ieee;
2992 
2993 		/* READ sgel last */
2994 		sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2995 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2996 		    data_in_dma);
2997 	} else if (data_out_sz) /* WRITE */ {
2998 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2999 		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
3000 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
3001 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
3002 		    data_out_dma);
3003 	} else if (data_in_sz) /* READ */ {
3004 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
3005 		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
3006 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
3007 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
3008 		    data_in_dma);
3009 	}
3010 }
3011 
3012 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
3013 
3014 /**
3015  * _base_config_dma_addressing - set dma addressing
3016  * @ioc: per adapter object
3017  * @pdev: PCI device struct
3018  *
3019  * Return: 0 for success, non-zero for failure.
3020  */
3021 static int
3022 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
3023 {
3024 	struct sysinfo s;
3025 	u64 coherent_dma_mask, dma_mask;
3026 
3027 	if (ioc->is_mcpu_endpoint || sizeof(dma_addr_t) == 4) {
3028 		ioc->dma_mask = 32;
3029 		coherent_dma_mask = dma_mask = DMA_BIT_MASK(32);
3030 	/* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */
3031 	} else if (ioc->hba_mpi_version_belonged > MPI2_VERSION) {
3032 		ioc->dma_mask = 63;
3033 		coherent_dma_mask = dma_mask = DMA_BIT_MASK(63);
3034 	} else {
3035 		ioc->dma_mask = 64;
3036 		coherent_dma_mask = dma_mask = DMA_BIT_MASK(64);
3037 	}
3038 
3039 	if (ioc->use_32bit_dma)
3040 		coherent_dma_mask = DMA_BIT_MASK(32);
3041 
3042 	if (dma_set_mask(&pdev->dev, dma_mask) ||
3043 	    dma_set_coherent_mask(&pdev->dev, coherent_dma_mask))
3044 		return -ENODEV;
3045 
3046 	if (ioc->dma_mask > 32) {
3047 		ioc->base_add_sg_single = &_base_add_sg_single_64;
3048 		ioc->sge_size = sizeof(Mpi2SGESimple64_t);
3049 	} else {
3050 		ioc->base_add_sg_single = &_base_add_sg_single_32;
3051 		ioc->sge_size = sizeof(Mpi2SGESimple32_t);
3052 	}
3053 
3054 	si_meminfo(&s);
3055 	ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
3056 		ioc->dma_mask, convert_to_kb(s.totalram));
3057 
3058 	return 0;
3059 }
3060 
3061 /**
3062  * _base_check_enable_msix - checks MSIX capabable.
3063  * @ioc: per adapter object
3064  *
3065  * Check to see if card is capable of MSIX, and set number
3066  * of available msix vectors
3067  */
3068 static int
3069 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3070 {
3071 	int base;
3072 	u16 message_control;
3073 
3074 	/* Check whether controller SAS2008 B0 controller,
3075 	 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
3076 	 */
3077 	if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
3078 	    ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
3079 		return -EINVAL;
3080 	}
3081 
3082 	base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
3083 	if (!base) {
3084 		dfailprintk(ioc, ioc_info(ioc, "msix not supported\n"));
3085 		return -EINVAL;
3086 	}
3087 
3088 	/* get msix vector count */
3089 	/* NUMA_IO not supported for older controllers */
3090 	if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
3091 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
3092 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
3093 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
3094 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
3095 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
3096 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
3097 		ioc->msix_vector_count = 1;
3098 	else {
3099 		pci_read_config_word(ioc->pdev, base + 2, &message_control);
3100 		ioc->msix_vector_count = (message_control & 0x3FF) + 1;
3101 	}
3102 	dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n",
3103 				  ioc->msix_vector_count));
3104 	return 0;
3105 }
3106 
3107 /**
3108  * mpt3sas_base_free_irq - free irq
3109  * @ioc: per adapter object
3110  *
3111  * Freeing respective reply_queue from the list.
3112  */
3113 void
3114 mpt3sas_base_free_irq(struct MPT3SAS_ADAPTER *ioc)
3115 {
3116 	unsigned int irq;
3117 	struct adapter_reply_queue *reply_q, *next;
3118 
3119 	if (list_empty(&ioc->reply_queue_list))
3120 		return;
3121 
3122 	list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
3123 		list_del(&reply_q->list);
3124 		if (reply_q->is_iouring_poll_q) {
3125 			kfree(reply_q);
3126 			continue;
3127 		}
3128 
3129 		if (ioc->smp_affinity_enable) {
3130 			irq = pci_irq_vector(ioc->pdev, reply_q->msix_index);
3131 			irq_update_affinity_hint(irq, NULL);
3132 		}
3133 		free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
3134 			 reply_q);
3135 		kfree(reply_q);
3136 	}
3137 }
3138 
3139 /**
3140  * _base_request_irq - request irq
3141  * @ioc: per adapter object
3142  * @index: msix index into vector table
3143  *
3144  * Inserting respective reply_queue into the list.
3145  */
3146 static int
3147 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
3148 {
3149 	struct pci_dev *pdev = ioc->pdev;
3150 	struct adapter_reply_queue *reply_q;
3151 	int r, qid;
3152 
3153 	reply_q =  kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
3154 	if (!reply_q) {
3155 		ioc_err(ioc, "unable to allocate memory %zu!\n",
3156 			sizeof(struct adapter_reply_queue));
3157 		return -ENOMEM;
3158 	}
3159 	reply_q->ioc = ioc;
3160 	reply_q->msix_index = index;
3161 
3162 	atomic_set(&reply_q->busy, 0);
3163 
3164 	if (index >= ioc->iopoll_q_start_index) {
3165 		qid = index - ioc->iopoll_q_start_index;
3166 		snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-mq-poll%d",
3167 		    ioc->driver_name, ioc->id, qid);
3168 		reply_q->is_iouring_poll_q = 1;
3169 		ioc->io_uring_poll_queues[qid].reply_q = reply_q;
3170 		goto out;
3171 	}
3172 
3173 
3174 	if (ioc->msix_enable)
3175 		snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
3176 		    ioc->driver_name, ioc->id, index);
3177 	else
3178 		snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
3179 		    ioc->driver_name, ioc->id);
3180 	r = request_irq(pci_irq_vector(pdev, index), _base_interrupt,
3181 			IRQF_SHARED, reply_q->name, reply_q);
3182 	if (r) {
3183 		pr_err("%s: unable to allocate interrupt %d!\n",
3184 		       reply_q->name, pci_irq_vector(pdev, index));
3185 		kfree(reply_q);
3186 		return -EBUSY;
3187 	}
3188 out:
3189 	INIT_LIST_HEAD(&reply_q->list);
3190 	list_add_tail(&reply_q->list, &ioc->reply_queue_list);
3191 	return 0;
3192 }
3193 
3194 /**
3195  * _base_assign_reply_queues - assigning msix index for each cpu
3196  * @ioc: per adapter object
3197  *
3198  * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
3199  */
3200 static void
3201 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
3202 {
3203 	unsigned int cpu, nr_cpus, nr_msix, index = 0, irq;
3204 	struct adapter_reply_queue *reply_q;
3205 	int iopoll_q_count = ioc->reply_queue_count -
3206 	    ioc->iopoll_q_start_index;
3207 	const struct cpumask *mask;
3208 
3209 	if (!_base_is_controller_msix_enabled(ioc))
3210 		return;
3211 
3212 	if (ioc->msix_load_balance)
3213 		return;
3214 
3215 	memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
3216 
3217 	nr_cpus = num_online_cpus();
3218 	nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
3219 					       ioc->facts.MaxMSIxVectors);
3220 	if (!nr_msix)
3221 		return;
3222 
3223 	if (ioc->smp_affinity_enable) {
3224 
3225 		/*
3226 		 * set irq affinity to local numa node for those irqs
3227 		 * corresponding to high iops queues.
3228 		 */
3229 		if (ioc->high_iops_queues) {
3230 			mask = cpumask_of_node(dev_to_node(&ioc->pdev->dev));
3231 			for (index = 0; index < ioc->high_iops_queues;
3232 			    index++) {
3233 				irq = pci_irq_vector(ioc->pdev, index);
3234 				irq_set_affinity_and_hint(irq, mask);
3235 			}
3236 		}
3237 
3238 		list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3239 			const cpumask_t *mask;
3240 
3241 			if (reply_q->msix_index < ioc->high_iops_queues ||
3242 			    reply_q->msix_index >= ioc->iopoll_q_start_index)
3243 				continue;
3244 
3245 			mask = pci_irq_get_affinity(ioc->pdev,
3246 			    reply_q->msix_index);
3247 			if (!mask) {
3248 				ioc_warn(ioc, "no affinity for msi %x\n",
3249 					 reply_q->msix_index);
3250 				goto fall_back;
3251 			}
3252 
3253 			for_each_cpu_and(cpu, mask, cpu_online_mask) {
3254 				if (cpu >= ioc->cpu_msix_table_sz)
3255 					break;
3256 				ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3257 			}
3258 		}
3259 		return;
3260 	}
3261 
3262 fall_back:
3263 	cpu = cpumask_first(cpu_online_mask);
3264 	nr_msix -= (ioc->high_iops_queues - iopoll_q_count);
3265 	index = 0;
3266 
3267 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3268 		unsigned int i, group = nr_cpus / nr_msix;
3269 
3270 		if (reply_q->msix_index < ioc->high_iops_queues ||
3271 		    reply_q->msix_index >= ioc->iopoll_q_start_index)
3272 			continue;
3273 
3274 		if (cpu >= nr_cpus)
3275 			break;
3276 
3277 		if (index < nr_cpus % nr_msix)
3278 			group++;
3279 
3280 		for (i = 0 ; i < group ; i++) {
3281 			ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3282 			cpu = cpumask_next(cpu, cpu_online_mask);
3283 		}
3284 		index++;
3285 	}
3286 }
3287 
3288 /**
3289  * _base_check_and_enable_high_iops_queues - enable high iops mode
3290  * @ioc: per adapter object
3291  * @hba_msix_vector_count: msix vectors supported by HBA
3292  *
3293  * Enable high iops queues only if
3294  *  - HBA is a SEA/AERO controller and
3295  *  - MSI-Xs vector supported by the HBA is 128 and
3296  *  - total CPU count in the system >=16 and
3297  *  - loaded driver with default max_msix_vectors module parameter and
3298  *  - system booted in non kdump mode
3299  *
3300  * Return: nothing.
3301  */
3302 static void
3303 _base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc,
3304 		int hba_msix_vector_count)
3305 {
3306 	u16 lnksta, speed;
3307 
3308 	/*
3309 	 * Disable high iops queues if io uring poll queues are enabled.
3310 	 */
3311 	if (perf_mode == MPT_PERF_MODE_IOPS ||
3312 	    perf_mode == MPT_PERF_MODE_LATENCY ||
3313 	    ioc->io_uring_poll_queues) {
3314 		ioc->high_iops_queues = 0;
3315 		return;
3316 	}
3317 
3318 	if (perf_mode == MPT_PERF_MODE_DEFAULT) {
3319 
3320 		pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta);
3321 		speed = lnksta & PCI_EXP_LNKSTA_CLS;
3322 
3323 		if (speed < 0x4) {
3324 			ioc->high_iops_queues = 0;
3325 			return;
3326 		}
3327 	}
3328 
3329 	if (!reset_devices && ioc->is_aero_ioc &&
3330 	    hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES &&
3331 	    num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES &&
3332 	    max_msix_vectors == -1)
3333 		ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES;
3334 	else
3335 		ioc->high_iops_queues = 0;
3336 }
3337 
3338 /**
3339  * mpt3sas_base_disable_msix - disables msix
3340  * @ioc: per adapter object
3341  *
3342  */
3343 void
3344 mpt3sas_base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
3345 {
3346 	if (!ioc->msix_enable)
3347 		return;
3348 	pci_free_irq_vectors(ioc->pdev);
3349 	ioc->msix_enable = 0;
3350 	kfree(ioc->io_uring_poll_queues);
3351 }
3352 
3353 /**
3354  * _base_alloc_irq_vectors - allocate msix vectors
3355  * @ioc: per adapter object
3356  *
3357  */
3358 static int
3359 _base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc)
3360 {
3361 	int i, irq_flags = PCI_IRQ_MSIX;
3362 	struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues };
3363 	struct irq_affinity *descp = &desc;
3364 	/*
3365 	 * Don't allocate msix vectors for poll_queues.
3366 	 * msix_vectors is always within a range of FW supported reply queue.
3367 	 */
3368 	int nr_msix_vectors = ioc->iopoll_q_start_index;
3369 
3370 
3371 	if (ioc->smp_affinity_enable)
3372 		irq_flags |= PCI_IRQ_AFFINITY | PCI_IRQ_ALL_TYPES;
3373 	else
3374 		descp = NULL;
3375 
3376 	ioc_info(ioc, " %d %d %d\n", ioc->high_iops_queues,
3377 	    ioc->reply_queue_count, nr_msix_vectors);
3378 
3379 	i = pci_alloc_irq_vectors_affinity(ioc->pdev,
3380 	    ioc->high_iops_queues,
3381 	    nr_msix_vectors, irq_flags, descp);
3382 
3383 	return i;
3384 }
3385 
3386 /**
3387  * _base_enable_msix - enables msix, failback to io_apic
3388  * @ioc: per adapter object
3389  *
3390  */
3391 static int
3392 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3393 {
3394 	int r;
3395 	int i, local_max_msix_vectors;
3396 	u8 try_msix = 0;
3397 	int iopoll_q_count = 0;
3398 
3399 	ioc->msix_load_balance = false;
3400 
3401 	if (msix_disable == -1 || msix_disable == 0)
3402 		try_msix = 1;
3403 
3404 	if (!try_msix)
3405 		goto try_ioapic;
3406 
3407 	if (_base_check_enable_msix(ioc) != 0)
3408 		goto try_ioapic;
3409 
3410 	ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count);
3411 	pr_info("\t no of cores: %d, max_msix_vectors: %d\n",
3412 		ioc->cpu_count, max_msix_vectors);
3413 
3414 	ioc->reply_queue_count =
3415 		min_t(int, ioc->cpu_count, ioc->msix_vector_count);
3416 
3417 	if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
3418 		local_max_msix_vectors = (reset_devices) ? 1 : 8;
3419 	else
3420 		local_max_msix_vectors = max_msix_vectors;
3421 
3422 	if (local_max_msix_vectors == 0)
3423 		goto try_ioapic;
3424 
3425 	/*
3426 	 * Enable msix_load_balance only if combined reply queue mode is
3427 	 * disabled on SAS3 & above generation HBA devices.
3428 	 */
3429 	if (!ioc->combined_reply_queue &&
3430 	    ioc->hba_mpi_version_belonged != MPI2_VERSION) {
3431 		ioc_info(ioc,
3432 		    "combined ReplyQueue is off, Enabling msix load balance\n");
3433 		ioc->msix_load_balance = true;
3434 	}
3435 
3436 	/*
3437 	 * smp affinity setting is not need when msix load balance
3438 	 * is enabled.
3439 	 */
3440 	if (ioc->msix_load_balance)
3441 		ioc->smp_affinity_enable = 0;
3442 
3443 	if (!ioc->smp_affinity_enable || ioc->reply_queue_count <= 1)
3444 		ioc->shost->host_tagset = 0;
3445 
3446 	/*
3447 	 * Enable io uring poll queues only if host_tagset is enabled.
3448 	 */
3449 	if (ioc->shost->host_tagset)
3450 		iopoll_q_count = poll_queues;
3451 
3452 	if (iopoll_q_count) {
3453 		ioc->io_uring_poll_queues = kcalloc(iopoll_q_count,
3454 		    sizeof(struct io_uring_poll_queue), GFP_KERNEL);
3455 		if (!ioc->io_uring_poll_queues)
3456 			iopoll_q_count = 0;
3457 	}
3458 
3459 	if (ioc->is_aero_ioc)
3460 		_base_check_and_enable_high_iops_queues(ioc,
3461 		    ioc->msix_vector_count);
3462 
3463 	/*
3464 	 * Add high iops queues count to reply queue count if high iops queues
3465 	 * are enabled.
3466 	 */
3467 	ioc->reply_queue_count = min_t(int,
3468 	    ioc->reply_queue_count + ioc->high_iops_queues,
3469 	    ioc->msix_vector_count);
3470 
3471 	/*
3472 	 * Adjust the reply queue count incase reply queue count
3473 	 * exceeds the user provided MSIx vectors count.
3474 	 */
3475 	if (local_max_msix_vectors > 0)
3476 		ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
3477 		    ioc->reply_queue_count);
3478 	/*
3479 	 * Add io uring poll queues count to reply queues count
3480 	 * if io uring is enabled in driver.
3481 	 */
3482 	if (iopoll_q_count) {
3483 		if (ioc->reply_queue_count < (iopoll_q_count + MPT3_MIN_IRQS))
3484 			iopoll_q_count = 0;
3485 		ioc->reply_queue_count = min_t(int,
3486 		    ioc->reply_queue_count + iopoll_q_count,
3487 		    ioc->msix_vector_count);
3488 	}
3489 
3490 	/*
3491 	 * Starting index of io uring poll queues in reply queue list.
3492 	 */
3493 	ioc->iopoll_q_start_index =
3494 	    ioc->reply_queue_count - iopoll_q_count;
3495 
3496 	r = _base_alloc_irq_vectors(ioc);
3497 	if (r < 0) {
3498 		ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", r);
3499 		goto try_ioapic;
3500 	}
3501 
3502 	/*
3503 	 * Adjust the reply queue count if the allocated
3504 	 * MSIx vectors is less then the requested number
3505 	 * of MSIx vectors.
3506 	 */
3507 	if (r < ioc->iopoll_q_start_index) {
3508 		ioc->reply_queue_count = r + iopoll_q_count;
3509 		ioc->iopoll_q_start_index =
3510 		    ioc->reply_queue_count - iopoll_q_count;
3511 	}
3512 
3513 	ioc->msix_enable = 1;
3514 	for (i = 0; i < ioc->reply_queue_count; i++) {
3515 		r = _base_request_irq(ioc, i);
3516 		if (r) {
3517 			mpt3sas_base_free_irq(ioc);
3518 			mpt3sas_base_disable_msix(ioc);
3519 			goto try_ioapic;
3520 		}
3521 	}
3522 
3523 	ioc_info(ioc, "High IOPs queues : %s\n",
3524 			ioc->high_iops_queues ? "enabled" : "disabled");
3525 
3526 	return 0;
3527 
3528 /* failback to io_apic interrupt routing */
3529  try_ioapic:
3530 	ioc->high_iops_queues = 0;
3531 	ioc_info(ioc, "High IOPs queues : disabled\n");
3532 	ioc->reply_queue_count = 1;
3533 	ioc->iopoll_q_start_index = ioc->reply_queue_count - 0;
3534 	r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY);
3535 	if (r < 0) {
3536 		dfailprintk(ioc,
3537 			    ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
3538 				     r));
3539 	} else
3540 		r = _base_request_irq(ioc, 0);
3541 
3542 	return r;
3543 }
3544 
3545 /**
3546  * mpt3sas_base_unmap_resources - free controller resources
3547  * @ioc: per adapter object
3548  */
3549 static void
3550 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
3551 {
3552 	struct pci_dev *pdev = ioc->pdev;
3553 
3554 	dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3555 
3556 	mpt3sas_base_free_irq(ioc);
3557 	mpt3sas_base_disable_msix(ioc);
3558 
3559 	kfree(ioc->replyPostRegisterIndex);
3560 	ioc->replyPostRegisterIndex = NULL;
3561 
3562 
3563 	if (ioc->chip_phys) {
3564 		iounmap(ioc->chip);
3565 		ioc->chip_phys = 0;
3566 	}
3567 
3568 	if (pci_is_enabled(pdev)) {
3569 		pci_release_selected_regions(ioc->pdev, ioc->bars);
3570 		pci_disable_device(pdev);
3571 	}
3572 }
3573 
3574 static int
3575 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
3576 
3577 /**
3578  * mpt3sas_base_check_for_fault_and_issue_reset - check if IOC is in fault state
3579  *     and if it is in fault state then issue diag reset.
3580  * @ioc: per adapter object
3581  *
3582  * Return: 0 for success, non-zero for failure.
3583  */
3584 int
3585 mpt3sas_base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc)
3586 {
3587 	u32 ioc_state;
3588 	int rc = -EFAULT;
3589 
3590 	dinitprintk(ioc, pr_info("%s\n", __func__));
3591 	if (ioc->pci_error_recovery)
3592 		return 0;
3593 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
3594 	dhsprintk(ioc, pr_info("%s: ioc_state(0x%08x)\n", __func__, ioc_state));
3595 
3596 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
3597 		mpt3sas_print_fault_code(ioc, ioc_state &
3598 		    MPI2_DOORBELL_DATA_MASK);
3599 		mpt3sas_base_mask_interrupts(ioc);
3600 		rc = _base_diag_reset(ioc);
3601 	} else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
3602 	    MPI2_IOC_STATE_COREDUMP) {
3603 		mpt3sas_print_coredump_info(ioc, ioc_state &
3604 		     MPI2_DOORBELL_DATA_MASK);
3605 		mpt3sas_base_wait_for_coredump_completion(ioc, __func__);
3606 		mpt3sas_base_mask_interrupts(ioc);
3607 		rc = _base_diag_reset(ioc);
3608 	}
3609 
3610 	return rc;
3611 }
3612 
3613 /**
3614  * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
3615  * @ioc: per adapter object
3616  *
3617  * Return: 0 for success, non-zero for failure.
3618  */
3619 int
3620 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
3621 {
3622 	struct pci_dev *pdev = ioc->pdev;
3623 	u32 memap_sz;
3624 	u32 pio_sz;
3625 	int i, r = 0, rc;
3626 	u64 pio_chip = 0;
3627 	phys_addr_t chip_phys = 0;
3628 	struct adapter_reply_queue *reply_q;
3629 	int iopoll_q_count = 0;
3630 
3631 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3632 
3633 	ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
3634 	if (pci_enable_device_mem(pdev)) {
3635 		ioc_warn(ioc, "pci_enable_device_mem: failed\n");
3636 		ioc->bars = 0;
3637 		return -ENODEV;
3638 	}
3639 
3640 
3641 	if (pci_request_selected_regions(pdev, ioc->bars,
3642 	    ioc->driver_name)) {
3643 		ioc_warn(ioc, "pci_request_selected_regions: failed\n");
3644 		ioc->bars = 0;
3645 		r = -ENODEV;
3646 		goto out_fail;
3647 	}
3648 
3649 	pci_set_master(pdev);
3650 
3651 
3652 	if (_base_config_dma_addressing(ioc, pdev) != 0) {
3653 		ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev));
3654 		r = -ENODEV;
3655 		goto out_fail;
3656 	}
3657 
3658 	for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
3659 	     (!memap_sz || !pio_sz); i++) {
3660 		if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
3661 			if (pio_sz)
3662 				continue;
3663 			pio_chip = (u64)pci_resource_start(pdev, i);
3664 			pio_sz = pci_resource_len(pdev, i);
3665 		} else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3666 			if (memap_sz)
3667 				continue;
3668 			ioc->chip_phys = pci_resource_start(pdev, i);
3669 			chip_phys = ioc->chip_phys;
3670 			memap_sz = pci_resource_len(pdev, i);
3671 			ioc->chip = ioremap(ioc->chip_phys, memap_sz);
3672 		}
3673 	}
3674 
3675 	if (ioc->chip == NULL) {
3676 		ioc_err(ioc,
3677 		    "unable to map adapter memory! or resource not found\n");
3678 		r = -EINVAL;
3679 		goto out_fail;
3680 	}
3681 
3682 	mpt3sas_base_mask_interrupts(ioc);
3683 
3684 	r = _base_get_ioc_facts(ioc);
3685 	if (r) {
3686 		rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
3687 		if (rc || (_base_get_ioc_facts(ioc)))
3688 			goto out_fail;
3689 	}
3690 
3691 	if (!ioc->rdpq_array_enable_assigned) {
3692 		ioc->rdpq_array_enable = ioc->rdpq_array_capable;
3693 		ioc->rdpq_array_enable_assigned = 1;
3694 	}
3695 
3696 	r = _base_enable_msix(ioc);
3697 	if (r)
3698 		goto out_fail;
3699 
3700 	iopoll_q_count = ioc->reply_queue_count - ioc->iopoll_q_start_index;
3701 	for (i = 0; i < iopoll_q_count; i++) {
3702 		atomic_set(&ioc->io_uring_poll_queues[i].busy, 0);
3703 		atomic_set(&ioc->io_uring_poll_queues[i].pause, 0);
3704 	}
3705 
3706 	if (!ioc->is_driver_loading)
3707 		_base_init_irqpolls(ioc);
3708 	/* Use the Combined reply queue feature only for SAS3 C0 & higher
3709 	 * revision HBAs and also only when reply queue count is greater than 8
3710 	 */
3711 	if (ioc->combined_reply_queue) {
3712 		/* Determine the Supplemental Reply Post Host Index Registers
3713 		 * Addresse. Supplemental Reply Post Host Index Registers
3714 		 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
3715 		 * each register is at offset bytes of
3716 		 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
3717 		 */
3718 		ioc->replyPostRegisterIndex = kcalloc(
3719 		     ioc->combined_reply_index_count,
3720 		     sizeof(resource_size_t *), GFP_KERNEL);
3721 		if (!ioc->replyPostRegisterIndex) {
3722 			ioc_err(ioc,
3723 			    "allocation for replyPostRegisterIndex failed!\n");
3724 			r = -ENOMEM;
3725 			goto out_fail;
3726 		}
3727 
3728 		for (i = 0; i < ioc->combined_reply_index_count; i++) {
3729 			ioc->replyPostRegisterIndex[i] =
3730 				(resource_size_t __iomem *)
3731 				((u8 __force *)&ioc->chip->Doorbell +
3732 				 MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
3733 				 (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
3734 		}
3735 	}
3736 
3737 	if (ioc->is_warpdrive) {
3738 		ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
3739 		    &ioc->chip->ReplyPostHostIndex;
3740 
3741 		for (i = 1; i < ioc->cpu_msix_table_sz; i++)
3742 			ioc->reply_post_host_index[i] =
3743 			(resource_size_t __iomem *)
3744 			((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
3745 			* 4)));
3746 	}
3747 
3748 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3749 		if (reply_q->msix_index >= ioc->iopoll_q_start_index) {
3750 			pr_info("%s: enabled: index: %d\n",
3751 			    reply_q->name, reply_q->msix_index);
3752 			continue;
3753 		}
3754 
3755 		pr_info("%s: %s enabled: IRQ %d\n",
3756 			reply_q->name,
3757 			ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC",
3758 			pci_irq_vector(ioc->pdev, reply_q->msix_index));
3759 	}
3760 
3761 	ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n",
3762 		 &chip_phys, ioc->chip, memap_sz);
3763 	ioc_info(ioc, "ioport(0x%016llx), size(%d)\n",
3764 		 (unsigned long long)pio_chip, pio_sz);
3765 
3766 	/* Save PCI configuration state for recovery from PCI AER/EEH errors */
3767 	pci_save_state(pdev);
3768 	return 0;
3769 
3770  out_fail:
3771 	mpt3sas_base_unmap_resources(ioc);
3772 	return r;
3773 }
3774 
3775 /**
3776  * mpt3sas_base_get_msg_frame - obtain request mf pointer
3777  * @ioc: per adapter object
3778  * @smid: system request message index(smid zero is invalid)
3779  *
3780  * Return: virt pointer to message frame.
3781  */
3782 void *
3783 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3784 {
3785 	return (void *)(ioc->request + (smid * ioc->request_sz));
3786 }
3787 
3788 /**
3789  * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
3790  * @ioc: per adapter object
3791  * @smid: system request message index
3792  *
3793  * Return: virt pointer to sense buffer.
3794  */
3795 void *
3796 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3797 {
3798 	return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
3799 }
3800 
3801 /**
3802  * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
3803  * @ioc: per adapter object
3804  * @smid: system request message index
3805  *
3806  * Return: phys pointer to the low 32bit address of the sense buffer.
3807  */
3808 __le32
3809 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3810 {
3811 	return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
3812 	    SCSI_SENSE_BUFFERSIZE));
3813 }
3814 
3815 /**
3816  * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
3817  * @ioc: per adapter object
3818  * @smid: system request message index
3819  *
3820  * Return: virt pointer to a PCIe SGL.
3821  */
3822 void *
3823 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3824 {
3825 	return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl);
3826 }
3827 
3828 /**
3829  * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
3830  * @ioc: per adapter object
3831  * @smid: system request message index
3832  *
3833  * Return: phys pointer to the address of the PCIe buffer.
3834  */
3835 dma_addr_t
3836 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3837 {
3838 	return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma;
3839 }
3840 
3841 /**
3842  * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
3843  * @ioc: per adapter object
3844  * @phys_addr: lower 32 physical addr of the reply
3845  *
3846  * Converts 32bit lower physical addr into a virt address.
3847  */
3848 void *
3849 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
3850 {
3851 	if (!phys_addr)
3852 		return NULL;
3853 	return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
3854 }
3855 
3856 /**
3857  * _base_get_msix_index - get the msix index
3858  * @ioc: per adapter object
3859  * @scmd: scsi_cmnd object
3860  *
3861  * Return: msix index of general reply queues,
3862  * i.e. reply queue on which IO request's reply
3863  * should be posted by the HBA firmware.
3864  */
3865 static inline u8
3866 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc,
3867 	struct scsi_cmnd *scmd)
3868 {
3869 	/* Enables reply_queue load balancing */
3870 	if (ioc->msix_load_balance)
3871 		return ioc->reply_queue_count ?
3872 		    base_mod64(atomic64_add_return(1,
3873 		    &ioc->total_io_cnt), ioc->reply_queue_count) : 0;
3874 
3875 	if (scmd && ioc->shost->nr_hw_queues > 1) {
3876 		u32 tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd));
3877 
3878 		return blk_mq_unique_tag_to_hwq(tag) +
3879 			ioc->high_iops_queues;
3880 	}
3881 
3882 	return ioc->cpu_msix_table[raw_smp_processor_id()];
3883 }
3884 
3885 /**
3886  * _base_get_high_iops_msix_index - get the msix index of
3887  *				high iops queues
3888  * @ioc: per adapter object
3889  * @scmd: scsi_cmnd object
3890  *
3891  * Return: msix index of high iops reply queues.
3892  * i.e. high iops reply queue on which IO request's
3893  * reply should be posted by the HBA firmware.
3894  */
3895 static inline u8
3896 _base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc,
3897 	struct scsi_cmnd *scmd)
3898 {
3899 	/**
3900 	 * Round robin the IO interrupts among the high iops
3901 	 * reply queues in terms of batch count 16 when outstanding
3902 	 * IOs on the target device is >=8.
3903 	 */
3904 
3905 	if (scsi_device_busy(scmd->device) > MPT3SAS_DEVICE_HIGH_IOPS_DEPTH)
3906 		return base_mod64((
3907 		    atomic64_add_return(1, &ioc->high_iops_outstanding) /
3908 		    MPT3SAS_HIGH_IOPS_BATCH_COUNT),
3909 		    MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
3910 
3911 	return _base_get_msix_index(ioc, scmd);
3912 }
3913 
3914 /**
3915  * mpt3sas_base_get_smid - obtain a free smid from internal queue
3916  * @ioc: per adapter object
3917  * @cb_idx: callback index
3918  *
3919  * Return: smid (zero is invalid)
3920  */
3921 u16
3922 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3923 {
3924 	unsigned long flags;
3925 	struct request_tracker *request;
3926 	u16 smid;
3927 
3928 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3929 	if (list_empty(&ioc->internal_free_list)) {
3930 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3931 		ioc_err(ioc, "%s: smid not available\n", __func__);
3932 		return 0;
3933 	}
3934 
3935 	request = list_entry(ioc->internal_free_list.next,
3936 	    struct request_tracker, tracker_list);
3937 	request->cb_idx = cb_idx;
3938 	smid = request->smid;
3939 	list_del(&request->tracker_list);
3940 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3941 	return smid;
3942 }
3943 
3944 /**
3945  * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
3946  * @ioc: per adapter object
3947  * @cb_idx: callback index
3948  * @scmd: pointer to scsi command object
3949  *
3950  * Return: smid (zero is invalid)
3951  */
3952 u16
3953 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
3954 	struct scsi_cmnd *scmd)
3955 {
3956 	struct scsiio_tracker *request = scsi_cmd_priv(scmd);
3957 	u16 smid;
3958 	u32 tag, unique_tag;
3959 
3960 	unique_tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd));
3961 	tag = blk_mq_unique_tag_to_tag(unique_tag);
3962 
3963 	/*
3964 	 * Store hw queue number corresponding to the tag.
3965 	 * This hw queue number is used later to determine
3966 	 * the unique_tag using the logic below. This unique_tag
3967 	 * is used to retrieve the scmd pointer corresponding
3968 	 * to tag using scsi_host_find_tag() API.
3969 	 *
3970 	 * tag = smid - 1;
3971 	 * unique_tag = ioc->io_queue_num[tag] << BLK_MQ_UNIQUE_TAG_BITS | tag;
3972 	 */
3973 	ioc->io_queue_num[tag] = blk_mq_unique_tag_to_hwq(unique_tag);
3974 
3975 	smid = tag + 1;
3976 	request->cb_idx = cb_idx;
3977 	request->smid = smid;
3978 	request->scmd = scmd;
3979 	INIT_LIST_HEAD(&request->chain_list);
3980 	return smid;
3981 }
3982 
3983 /**
3984  * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
3985  * @ioc: per adapter object
3986  * @cb_idx: callback index
3987  *
3988  * Return: smid (zero is invalid)
3989  */
3990 u16
3991 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3992 {
3993 	unsigned long flags;
3994 	struct request_tracker *request;
3995 	u16 smid;
3996 
3997 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3998 	if (list_empty(&ioc->hpr_free_list)) {
3999 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
4000 		return 0;
4001 	}
4002 
4003 	request = list_entry(ioc->hpr_free_list.next,
4004 	    struct request_tracker, tracker_list);
4005 	request->cb_idx = cb_idx;
4006 	smid = request->smid;
4007 	list_del(&request->tracker_list);
4008 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
4009 	return smid;
4010 }
4011 
4012 static void
4013 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc)
4014 {
4015 	/*
4016 	 * See _wait_for_commands_to_complete() call with regards to this code.
4017 	 */
4018 	if (ioc->shost_recovery && ioc->pending_io_count) {
4019 		ioc->pending_io_count = scsi_host_busy(ioc->shost);
4020 		if (ioc->pending_io_count == 0)
4021 			wake_up(&ioc->reset_wq);
4022 	}
4023 }
4024 
4025 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc,
4026 			   struct scsiio_tracker *st)
4027 {
4028 	if (WARN_ON(st->smid == 0))
4029 		return;
4030 	st->cb_idx = 0xFF;
4031 	st->direct_io = 0;
4032 	st->scmd = NULL;
4033 	atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0);
4034 	st->smid = 0;
4035 }
4036 
4037 /**
4038  * mpt3sas_base_free_smid - put smid back on free_list
4039  * @ioc: per adapter object
4040  * @smid: system request message index
4041  */
4042 void
4043 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4044 {
4045 	unsigned long flags;
4046 	int i;
4047 
4048 	if (smid < ioc->hi_priority_smid) {
4049 		struct scsiio_tracker *st;
4050 		void *request;
4051 
4052 		st = _get_st_from_smid(ioc, smid);
4053 		if (!st) {
4054 			_base_recovery_check(ioc);
4055 			return;
4056 		}
4057 
4058 		/* Clear MPI request frame */
4059 		request = mpt3sas_base_get_msg_frame(ioc, smid);
4060 		memset(request, 0, ioc->request_sz);
4061 
4062 		mpt3sas_base_clear_st(ioc, st);
4063 		_base_recovery_check(ioc);
4064 		ioc->io_queue_num[smid - 1] = 0;
4065 		return;
4066 	}
4067 
4068 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
4069 	if (smid < ioc->internal_smid) {
4070 		/* hi-priority */
4071 		i = smid - ioc->hi_priority_smid;
4072 		ioc->hpr_lookup[i].cb_idx = 0xFF;
4073 		list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
4074 	} else if (smid <= ioc->hba_queue_depth) {
4075 		/* internal queue */
4076 		i = smid - ioc->internal_smid;
4077 		ioc->internal_lookup[i].cb_idx = 0xFF;
4078 		list_add(&ioc->internal_lookup[i].tracker_list,
4079 		    &ioc->internal_free_list);
4080 	}
4081 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
4082 }
4083 
4084 /**
4085  * _base_mpi_ep_writeq - 32 bit write to MMIO
4086  * @b: data payload
4087  * @addr: address in MMIO space
4088  * @writeq_lock: spin lock
4089  *
4090  * This special handling for MPI EP to take care of 32 bit
4091  * environment where its not quarenteed to send the entire word
4092  * in one transfer.
4093  */
4094 static inline void
4095 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr,
4096 					spinlock_t *writeq_lock)
4097 {
4098 	unsigned long flags;
4099 
4100 	spin_lock_irqsave(writeq_lock, flags);
4101 	__raw_writel((u32)(b), addr);
4102 	__raw_writel((u32)(b >> 32), (addr + 4));
4103 	spin_unlock_irqrestore(writeq_lock, flags);
4104 }
4105 
4106 /**
4107  * _base_writeq - 64 bit write to MMIO
4108  * @b: data payload
4109  * @addr: address in MMIO space
4110  * @writeq_lock: spin lock
4111  *
4112  * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
4113  * care of 32 bit environment where its not quarenteed to send the entire word
4114  * in one transfer.
4115  */
4116 #if defined(writeq) && defined(CONFIG_64BIT)
4117 static inline void
4118 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
4119 {
4120 	wmb();
4121 	__raw_writeq(b, addr);
4122 	barrier();
4123 }
4124 #else
4125 static inline void
4126 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
4127 {
4128 	_base_mpi_ep_writeq(b, addr, writeq_lock);
4129 }
4130 #endif
4131 
4132 /**
4133  * _base_set_and_get_msix_index - get the msix index and assign to msix_io
4134  *                                variable of scsi tracker
4135  * @ioc: per adapter object
4136  * @smid: system request message index
4137  *
4138  * Return: msix index.
4139  */
4140 static u8
4141 _base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4142 {
4143 	struct scsiio_tracker *st = NULL;
4144 
4145 	if (smid < ioc->hi_priority_smid)
4146 		st = _get_st_from_smid(ioc, smid);
4147 
4148 	if (st == NULL)
4149 		return  _base_get_msix_index(ioc, NULL);
4150 
4151 	st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd);
4152 	return st->msix_io;
4153 }
4154 
4155 /**
4156  * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware
4157  * @ioc: per adapter object
4158  * @smid: system request message index
4159  * @handle: device handle
4160  */
4161 static void
4162 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc,
4163 	u16 smid, u16 handle)
4164 {
4165 	Mpi2RequestDescriptorUnion_t descriptor;
4166 	u64 *request = (u64 *)&descriptor;
4167 	void *mpi_req_iomem;
4168 	__le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4169 
4170 	_clone_sg_entries(ioc, (void *) mfp, smid);
4171 	mpi_req_iomem = (void __force *)ioc->chip +
4172 			MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
4173 	_base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4174 					ioc->request_sz);
4175 	descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4176 	descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4177 	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4178 	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4179 	descriptor.SCSIIO.LMID = 0;
4180 	_base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4181 	    &ioc->scsi_lookup_lock);
4182 }
4183 
4184 /**
4185  * _base_put_smid_scsi_io - send SCSI_IO request to firmware
4186  * @ioc: per adapter object
4187  * @smid: system request message index
4188  * @handle: device handle
4189  */
4190 static void
4191 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
4192 {
4193 	Mpi2RequestDescriptorUnion_t descriptor;
4194 	u64 *request = (u64 *)&descriptor;
4195 
4196 
4197 	descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4198 	descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4199 	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4200 	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4201 	descriptor.SCSIIO.LMID = 0;
4202 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4203 	    &ioc->scsi_lookup_lock);
4204 }
4205 
4206 /**
4207  * _base_put_smid_fast_path - send fast path request to firmware
4208  * @ioc: per adapter object
4209  * @smid: system request message index
4210  * @handle: device handle
4211  */
4212 static void
4213 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4214 	u16 handle)
4215 {
4216 	Mpi2RequestDescriptorUnion_t descriptor;
4217 	u64 *request = (u64 *)&descriptor;
4218 
4219 	descriptor.SCSIIO.RequestFlags =
4220 	    MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4221 	descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4222 	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4223 	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4224 	descriptor.SCSIIO.LMID = 0;
4225 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4226 	    &ioc->scsi_lookup_lock);
4227 }
4228 
4229 /**
4230  * _base_put_smid_hi_priority - send Task Management request to firmware
4231  * @ioc: per adapter object
4232  * @smid: system request message index
4233  * @msix_task: msix_task will be same as msix of IO in case of task abort else 0
4234  */
4235 static void
4236 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4237 	u16 msix_task)
4238 {
4239 	Mpi2RequestDescriptorUnion_t descriptor;
4240 	void *mpi_req_iomem;
4241 	u64 *request;
4242 
4243 	if (ioc->is_mcpu_endpoint) {
4244 		__le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4245 
4246 		/* TBD 256 is offset within sys register. */
4247 		mpi_req_iomem = (void __force *)ioc->chip
4248 					+ MPI_FRAME_START_OFFSET
4249 					+ (smid * ioc->request_sz);
4250 		_base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4251 							ioc->request_sz);
4252 	}
4253 
4254 	request = (u64 *)&descriptor;
4255 
4256 	descriptor.HighPriority.RequestFlags =
4257 	    MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4258 	descriptor.HighPriority.MSIxIndex =  msix_task;
4259 	descriptor.HighPriority.SMID = cpu_to_le16(smid);
4260 	descriptor.HighPriority.LMID = 0;
4261 	descriptor.HighPriority.Reserved1 = 0;
4262 	if (ioc->is_mcpu_endpoint)
4263 		_base_mpi_ep_writeq(*request,
4264 				&ioc->chip->RequestDescriptorPostLow,
4265 				&ioc->scsi_lookup_lock);
4266 	else
4267 		_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4268 		    &ioc->scsi_lookup_lock);
4269 }
4270 
4271 /**
4272  * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to
4273  *  firmware
4274  * @ioc: per adapter object
4275  * @smid: system request message index
4276  */
4277 void
4278 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4279 {
4280 	Mpi2RequestDescriptorUnion_t descriptor;
4281 	u64 *request = (u64 *)&descriptor;
4282 
4283 	descriptor.Default.RequestFlags =
4284 		MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
4285 	descriptor.Default.MSIxIndex =  _base_set_and_get_msix_index(ioc, smid);
4286 	descriptor.Default.SMID = cpu_to_le16(smid);
4287 	descriptor.Default.LMID = 0;
4288 	descriptor.Default.DescriptorTypeDependent = 0;
4289 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4290 	    &ioc->scsi_lookup_lock);
4291 }
4292 
4293 /**
4294  * _base_put_smid_default - Default, primarily used for config pages
4295  * @ioc: per adapter object
4296  * @smid: system request message index
4297  */
4298 static void
4299 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4300 {
4301 	Mpi2RequestDescriptorUnion_t descriptor;
4302 	void *mpi_req_iomem;
4303 	u64 *request;
4304 
4305 	if (ioc->is_mcpu_endpoint) {
4306 		__le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4307 
4308 		_clone_sg_entries(ioc, (void *) mfp, smid);
4309 		/* TBD 256 is offset within sys register */
4310 		mpi_req_iomem = (void __force *)ioc->chip +
4311 			MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
4312 		_base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4313 							ioc->request_sz);
4314 	}
4315 	request = (u64 *)&descriptor;
4316 	descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4317 	descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4318 	descriptor.Default.SMID = cpu_to_le16(smid);
4319 	descriptor.Default.LMID = 0;
4320 	descriptor.Default.DescriptorTypeDependent = 0;
4321 	if (ioc->is_mcpu_endpoint)
4322 		_base_mpi_ep_writeq(*request,
4323 				&ioc->chip->RequestDescriptorPostLow,
4324 				&ioc->scsi_lookup_lock);
4325 	else
4326 		_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4327 				&ioc->scsi_lookup_lock);
4328 }
4329 
4330 /**
4331  * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using
4332  *   Atomic Request Descriptor
4333  * @ioc: per adapter object
4334  * @smid: system request message index
4335  * @handle: device handle, unused in this function, for function type match
4336  *
4337  * Return: nothing.
4338  */
4339 static void
4340 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4341 	u16 handle)
4342 {
4343 	Mpi26AtomicRequestDescriptor_t descriptor;
4344 	u32 *request = (u32 *)&descriptor;
4345 
4346 	descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4347 	descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4348 	descriptor.SMID = cpu_to_le16(smid);
4349 
4350 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4351 }
4352 
4353 /**
4354  * _base_put_smid_fast_path_atomic - send fast path request to firmware
4355  * using Atomic Request Descriptor
4356  * @ioc: per adapter object
4357  * @smid: system request message index
4358  * @handle: device handle, unused in this function, for function type match
4359  * Return: nothing
4360  */
4361 static void
4362 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4363 	u16 handle)
4364 {
4365 	Mpi26AtomicRequestDescriptor_t descriptor;
4366 	u32 *request = (u32 *)&descriptor;
4367 
4368 	descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4369 	descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4370 	descriptor.SMID = cpu_to_le16(smid);
4371 
4372 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4373 }
4374 
4375 /**
4376  * _base_put_smid_hi_priority_atomic - send Task Management request to
4377  * firmware using Atomic Request Descriptor
4378  * @ioc: per adapter object
4379  * @smid: system request message index
4380  * @msix_task: msix_task will be same as msix of IO in case of task abort else 0
4381  *
4382  * Return: nothing.
4383  */
4384 static void
4385 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4386 	u16 msix_task)
4387 {
4388 	Mpi26AtomicRequestDescriptor_t descriptor;
4389 	u32 *request = (u32 *)&descriptor;
4390 
4391 	descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4392 	descriptor.MSIxIndex = msix_task;
4393 	descriptor.SMID = cpu_to_le16(smid);
4394 
4395 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4396 }
4397 
4398 /**
4399  * _base_put_smid_default_atomic - Default, primarily used for config pages
4400  * use Atomic Request Descriptor
4401  * @ioc: per adapter object
4402  * @smid: system request message index
4403  *
4404  * Return: nothing.
4405  */
4406 static void
4407 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4408 {
4409 	Mpi26AtomicRequestDescriptor_t descriptor;
4410 	u32 *request = (u32 *)&descriptor;
4411 
4412 	descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4413 	descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4414 	descriptor.SMID = cpu_to_le16(smid);
4415 
4416 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4417 }
4418 
4419 /**
4420  * _base_display_OEMs_branding - Display branding string
4421  * @ioc: per adapter object
4422  */
4423 static void
4424 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
4425 {
4426 	if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
4427 		return;
4428 
4429 	switch (ioc->pdev->subsystem_vendor) {
4430 	case PCI_VENDOR_ID_INTEL:
4431 		switch (ioc->pdev->device) {
4432 		case MPI2_MFGPAGE_DEVID_SAS2008:
4433 			switch (ioc->pdev->subsystem_device) {
4434 			case MPT2SAS_INTEL_RMS2LL080_SSDID:
4435 				ioc_info(ioc, "%s\n",
4436 					 MPT2SAS_INTEL_RMS2LL080_BRANDING);
4437 				break;
4438 			case MPT2SAS_INTEL_RMS2LL040_SSDID:
4439 				ioc_info(ioc, "%s\n",
4440 					 MPT2SAS_INTEL_RMS2LL040_BRANDING);
4441 				break;
4442 			case MPT2SAS_INTEL_SSD910_SSDID:
4443 				ioc_info(ioc, "%s\n",
4444 					 MPT2SAS_INTEL_SSD910_BRANDING);
4445 				break;
4446 			default:
4447 				ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4448 					 ioc->pdev->subsystem_device);
4449 				break;
4450 			}
4451 			break;
4452 		case MPI2_MFGPAGE_DEVID_SAS2308_2:
4453 			switch (ioc->pdev->subsystem_device) {
4454 			case MPT2SAS_INTEL_RS25GB008_SSDID:
4455 				ioc_info(ioc, "%s\n",
4456 					 MPT2SAS_INTEL_RS25GB008_BRANDING);
4457 				break;
4458 			case MPT2SAS_INTEL_RMS25JB080_SSDID:
4459 				ioc_info(ioc, "%s\n",
4460 					 MPT2SAS_INTEL_RMS25JB080_BRANDING);
4461 				break;
4462 			case MPT2SAS_INTEL_RMS25JB040_SSDID:
4463 				ioc_info(ioc, "%s\n",
4464 					 MPT2SAS_INTEL_RMS25JB040_BRANDING);
4465 				break;
4466 			case MPT2SAS_INTEL_RMS25KB080_SSDID:
4467 				ioc_info(ioc, "%s\n",
4468 					 MPT2SAS_INTEL_RMS25KB080_BRANDING);
4469 				break;
4470 			case MPT2SAS_INTEL_RMS25KB040_SSDID:
4471 				ioc_info(ioc, "%s\n",
4472 					 MPT2SAS_INTEL_RMS25KB040_BRANDING);
4473 				break;
4474 			case MPT2SAS_INTEL_RMS25LB040_SSDID:
4475 				ioc_info(ioc, "%s\n",
4476 					 MPT2SAS_INTEL_RMS25LB040_BRANDING);
4477 				break;
4478 			case MPT2SAS_INTEL_RMS25LB080_SSDID:
4479 				ioc_info(ioc, "%s\n",
4480 					 MPT2SAS_INTEL_RMS25LB080_BRANDING);
4481 				break;
4482 			default:
4483 				ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4484 					 ioc->pdev->subsystem_device);
4485 				break;
4486 			}
4487 			break;
4488 		case MPI25_MFGPAGE_DEVID_SAS3008:
4489 			switch (ioc->pdev->subsystem_device) {
4490 			case MPT3SAS_INTEL_RMS3JC080_SSDID:
4491 				ioc_info(ioc, "%s\n",
4492 					 MPT3SAS_INTEL_RMS3JC080_BRANDING);
4493 				break;
4494 
4495 			case MPT3SAS_INTEL_RS3GC008_SSDID:
4496 				ioc_info(ioc, "%s\n",
4497 					 MPT3SAS_INTEL_RS3GC008_BRANDING);
4498 				break;
4499 			case MPT3SAS_INTEL_RS3FC044_SSDID:
4500 				ioc_info(ioc, "%s\n",
4501 					 MPT3SAS_INTEL_RS3FC044_BRANDING);
4502 				break;
4503 			case MPT3SAS_INTEL_RS3UC080_SSDID:
4504 				ioc_info(ioc, "%s\n",
4505 					 MPT3SAS_INTEL_RS3UC080_BRANDING);
4506 				break;
4507 			default:
4508 				ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4509 					 ioc->pdev->subsystem_device);
4510 				break;
4511 			}
4512 			break;
4513 		default:
4514 			ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4515 				 ioc->pdev->subsystem_device);
4516 			break;
4517 		}
4518 		break;
4519 	case PCI_VENDOR_ID_DELL:
4520 		switch (ioc->pdev->device) {
4521 		case MPI2_MFGPAGE_DEVID_SAS2008:
4522 			switch (ioc->pdev->subsystem_device) {
4523 			case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
4524 				ioc_info(ioc, "%s\n",
4525 					 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
4526 				break;
4527 			case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
4528 				ioc_info(ioc, "%s\n",
4529 					 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
4530 				break;
4531 			case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
4532 				ioc_info(ioc, "%s\n",
4533 					 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
4534 				break;
4535 			case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
4536 				ioc_info(ioc, "%s\n",
4537 					 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
4538 				break;
4539 			case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
4540 				ioc_info(ioc, "%s\n",
4541 					 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
4542 				break;
4543 			case MPT2SAS_DELL_PERC_H200_SSDID:
4544 				ioc_info(ioc, "%s\n",
4545 					 MPT2SAS_DELL_PERC_H200_BRANDING);
4546 				break;
4547 			case MPT2SAS_DELL_6GBPS_SAS_SSDID:
4548 				ioc_info(ioc, "%s\n",
4549 					 MPT2SAS_DELL_6GBPS_SAS_BRANDING);
4550 				break;
4551 			default:
4552 				ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
4553 					 ioc->pdev->subsystem_device);
4554 				break;
4555 			}
4556 			break;
4557 		case MPI25_MFGPAGE_DEVID_SAS3008:
4558 			switch (ioc->pdev->subsystem_device) {
4559 			case MPT3SAS_DELL_12G_HBA_SSDID:
4560 				ioc_info(ioc, "%s\n",
4561 					 MPT3SAS_DELL_12G_HBA_BRANDING);
4562 				break;
4563 			default:
4564 				ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
4565 					 ioc->pdev->subsystem_device);
4566 				break;
4567 			}
4568 			break;
4569 		default:
4570 			ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n",
4571 				 ioc->pdev->subsystem_device);
4572 			break;
4573 		}
4574 		break;
4575 	case PCI_VENDOR_ID_CISCO:
4576 		switch (ioc->pdev->device) {
4577 		case MPI25_MFGPAGE_DEVID_SAS3008:
4578 			switch (ioc->pdev->subsystem_device) {
4579 			case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
4580 				ioc_info(ioc, "%s\n",
4581 					 MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
4582 				break;
4583 			case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
4584 				ioc_info(ioc, "%s\n",
4585 					 MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
4586 				break;
4587 			case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4588 				ioc_info(ioc, "%s\n",
4589 					 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4590 				break;
4591 			default:
4592 				ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4593 					 ioc->pdev->subsystem_device);
4594 				break;
4595 			}
4596 			break;
4597 		case MPI25_MFGPAGE_DEVID_SAS3108_1:
4598 			switch (ioc->pdev->subsystem_device) {
4599 			case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4600 				ioc_info(ioc, "%s\n",
4601 					 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4602 				break;
4603 			case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
4604 				ioc_info(ioc, "%s\n",
4605 					 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING);
4606 				break;
4607 			default:
4608 				ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4609 					 ioc->pdev->subsystem_device);
4610 				break;
4611 			}
4612 			break;
4613 		default:
4614 			ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n",
4615 				 ioc->pdev->subsystem_device);
4616 			break;
4617 		}
4618 		break;
4619 	case MPT2SAS_HP_3PAR_SSVID:
4620 		switch (ioc->pdev->device) {
4621 		case MPI2_MFGPAGE_DEVID_SAS2004:
4622 			switch (ioc->pdev->subsystem_device) {
4623 			case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
4624 				ioc_info(ioc, "%s\n",
4625 					 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
4626 				break;
4627 			default:
4628 				ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4629 					 ioc->pdev->subsystem_device);
4630 				break;
4631 			}
4632 			break;
4633 		case MPI2_MFGPAGE_DEVID_SAS2308_2:
4634 			switch (ioc->pdev->subsystem_device) {
4635 			case MPT2SAS_HP_2_4_INTERNAL_SSDID:
4636 				ioc_info(ioc, "%s\n",
4637 					 MPT2SAS_HP_2_4_INTERNAL_BRANDING);
4638 				break;
4639 			case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
4640 				ioc_info(ioc, "%s\n",
4641 					 MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
4642 				break;
4643 			case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
4644 				ioc_info(ioc, "%s\n",
4645 					 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
4646 				break;
4647 			case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
4648 				ioc_info(ioc, "%s\n",
4649 					 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
4650 				break;
4651 			default:
4652 				ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4653 					 ioc->pdev->subsystem_device);
4654 				break;
4655 			}
4656 			break;
4657 		default:
4658 			ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n",
4659 				 ioc->pdev->subsystem_device);
4660 			break;
4661 		}
4662 		break;
4663 	default:
4664 		break;
4665 	}
4666 }
4667 
4668 /**
4669  * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg
4670  *				version from FW Image Header.
4671  * @ioc: per adapter object
4672  *
4673  * Return: 0 for success, non-zero for failure.
4674  */
4675 	static int
4676 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc)
4677 {
4678 	Mpi2FWImageHeader_t *fw_img_hdr;
4679 	Mpi26ComponentImageHeader_t *cmp_img_hdr;
4680 	Mpi25FWUploadRequest_t *mpi_request;
4681 	Mpi2FWUploadReply_t mpi_reply;
4682 	int r = 0, issue_diag_reset = 0;
4683 	u32  package_version = 0;
4684 	void *fwpkg_data = NULL;
4685 	dma_addr_t fwpkg_data_dma;
4686 	u16 smid, ioc_status;
4687 	size_t data_length;
4688 
4689 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4690 
4691 	if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4692 		ioc_err(ioc, "%s: internal command already in use\n", __func__);
4693 		return -EAGAIN;
4694 	}
4695 
4696 	data_length = sizeof(Mpi2FWImageHeader_t);
4697 	fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length,
4698 			&fwpkg_data_dma, GFP_KERNEL);
4699 	if (!fwpkg_data) {
4700 		ioc_err(ioc,
4701 		    "Memory allocation for fwpkg data failed at %s:%d/%s()!\n",
4702 			__FILE__, __LINE__, __func__);
4703 		return -ENOMEM;
4704 	}
4705 
4706 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4707 	if (!smid) {
4708 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
4709 		r = -EAGAIN;
4710 		goto out;
4711 	}
4712 
4713 	ioc->base_cmds.status = MPT3_CMD_PENDING;
4714 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4715 	ioc->base_cmds.smid = smid;
4716 	memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t));
4717 	mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD;
4718 	mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH;
4719 	mpi_request->ImageSize = cpu_to_le32(data_length);
4720 	ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma,
4721 			data_length);
4722 	init_completion(&ioc->base_cmds.done);
4723 	ioc->put_smid_default(ioc, smid);
4724 	/* Wait for 15 seconds */
4725 	wait_for_completion_timeout(&ioc->base_cmds.done,
4726 			FW_IMG_HDR_READ_TIMEOUT*HZ);
4727 	ioc_info(ioc, "%s: complete\n", __func__);
4728 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4729 		ioc_err(ioc, "%s: timeout\n", __func__);
4730 		_debug_dump_mf(mpi_request,
4731 				sizeof(Mpi25FWUploadRequest_t)/4);
4732 		issue_diag_reset = 1;
4733 	} else {
4734 		memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t));
4735 		if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) {
4736 			memcpy(&mpi_reply, ioc->base_cmds.reply,
4737 					sizeof(Mpi2FWUploadReply_t));
4738 			ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4739 						MPI2_IOCSTATUS_MASK;
4740 			if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4741 				fw_img_hdr = (Mpi2FWImageHeader_t *)fwpkg_data;
4742 				if (le32_to_cpu(fw_img_hdr->Signature) ==
4743 				    MPI26_IMAGE_HEADER_SIGNATURE0_MPI26) {
4744 					cmp_img_hdr =
4745 					    (Mpi26ComponentImageHeader_t *)
4746 					    (fwpkg_data);
4747 					package_version =
4748 					    le32_to_cpu(
4749 					    cmp_img_hdr->ApplicationSpecific);
4750 				} else
4751 					package_version =
4752 					    le32_to_cpu(
4753 					    fw_img_hdr->PackageVersion.Word);
4754 				if (package_version)
4755 					ioc_info(ioc,
4756 					"FW Package Ver(%02d.%02d.%02d.%02d)\n",
4757 					((package_version) & 0xFF000000) >> 24,
4758 					((package_version) & 0x00FF0000) >> 16,
4759 					((package_version) & 0x0000FF00) >> 8,
4760 					(package_version) & 0x000000FF);
4761 			} else {
4762 				_debug_dump_mf(&mpi_reply,
4763 						sizeof(Mpi2FWUploadReply_t)/4);
4764 			}
4765 		}
4766 	}
4767 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4768 out:
4769 	if (fwpkg_data)
4770 		dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data,
4771 				fwpkg_data_dma);
4772 	if (issue_diag_reset) {
4773 		if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED)
4774 			return -EFAULT;
4775 		if (mpt3sas_base_check_for_fault_and_issue_reset(ioc))
4776 			return -EFAULT;
4777 		r = -EAGAIN;
4778 	}
4779 	return r;
4780 }
4781 
4782 /**
4783  * _base_display_ioc_capabilities - Display IOC's capabilities.
4784  * @ioc: per adapter object
4785  */
4786 static void
4787 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
4788 {
4789 	int i = 0;
4790 	char desc[17] = {0};
4791 	u32 iounit_pg1_flags;
4792 
4793 	strncpy(desc, ioc->manu_pg0.ChipName, 16);
4794 	ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x)\n",
4795 		 desc,
4796 		 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
4797 		 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
4798 		 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
4799 		 ioc->facts.FWVersion.Word & 0x000000FF,
4800 		 ioc->pdev->revision);
4801 
4802 	_base_display_OEMs_branding(ioc);
4803 
4804 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
4805 		pr_info("%sNVMe", i ? "," : "");
4806 		i++;
4807 	}
4808 
4809 	ioc_info(ioc, "Protocol=(");
4810 
4811 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
4812 		pr_cont("Initiator");
4813 		i++;
4814 	}
4815 
4816 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
4817 		pr_cont("%sTarget", i ? "," : "");
4818 		i++;
4819 	}
4820 
4821 	i = 0;
4822 	pr_cont("), Capabilities=(");
4823 
4824 	if (!ioc->hide_ir_msg) {
4825 		if (ioc->facts.IOCCapabilities &
4826 		    MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
4827 			pr_cont("Raid");
4828 			i++;
4829 		}
4830 	}
4831 
4832 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
4833 		pr_cont("%sTLR", i ? "," : "");
4834 		i++;
4835 	}
4836 
4837 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
4838 		pr_cont("%sMulticast", i ? "," : "");
4839 		i++;
4840 	}
4841 
4842 	if (ioc->facts.IOCCapabilities &
4843 	    MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
4844 		pr_cont("%sBIDI Target", i ? "," : "");
4845 		i++;
4846 	}
4847 
4848 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
4849 		pr_cont("%sEEDP", i ? "," : "");
4850 		i++;
4851 	}
4852 
4853 	if (ioc->facts.IOCCapabilities &
4854 	    MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
4855 		pr_cont("%sSnapshot Buffer", i ? "," : "");
4856 		i++;
4857 	}
4858 
4859 	if (ioc->facts.IOCCapabilities &
4860 	    MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
4861 		pr_cont("%sDiag Trace Buffer", i ? "," : "");
4862 		i++;
4863 	}
4864 
4865 	if (ioc->facts.IOCCapabilities &
4866 	    MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
4867 		pr_cont("%sDiag Extended Buffer", i ? "," : "");
4868 		i++;
4869 	}
4870 
4871 	if (ioc->facts.IOCCapabilities &
4872 	    MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
4873 		pr_cont("%sTask Set Full", i ? "," : "");
4874 		i++;
4875 	}
4876 
4877 	iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4878 	if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
4879 		pr_cont("%sNCQ", i ? "," : "");
4880 		i++;
4881 	}
4882 
4883 	pr_cont(")\n");
4884 }
4885 
4886 /**
4887  * mpt3sas_base_update_missing_delay - change the missing delay timers
4888  * @ioc: per adapter object
4889  * @device_missing_delay: amount of time till device is reported missing
4890  * @io_missing_delay: interval IO is returned when there is a missing device
4891  *
4892  * Passed on the command line, this function will modify the device missing
4893  * delay, as well as the io missing delay. This should be called at driver
4894  * load time.
4895  */
4896 void
4897 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
4898 	u16 device_missing_delay, u8 io_missing_delay)
4899 {
4900 	u16 dmd, dmd_new, dmd_orignal;
4901 	u8 io_missing_delay_original;
4902 	u16 sz;
4903 	Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
4904 	Mpi2ConfigReply_t mpi_reply;
4905 	u8 num_phys = 0;
4906 	u16 ioc_status;
4907 
4908 	mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
4909 	if (!num_phys)
4910 		return;
4911 
4912 	sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
4913 	    sizeof(Mpi2SasIOUnit1PhyData_t));
4914 	sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
4915 	if (!sas_iounit_pg1) {
4916 		ioc_err(ioc, "failure at %s:%d/%s()!\n",
4917 			__FILE__, __LINE__, __func__);
4918 		goto out;
4919 	}
4920 	if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
4921 	    sas_iounit_pg1, sz))) {
4922 		ioc_err(ioc, "failure at %s:%d/%s()!\n",
4923 			__FILE__, __LINE__, __func__);
4924 		goto out;
4925 	}
4926 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4927 	    MPI2_IOCSTATUS_MASK;
4928 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4929 		ioc_err(ioc, "failure at %s:%d/%s()!\n",
4930 			__FILE__, __LINE__, __func__);
4931 		goto out;
4932 	}
4933 
4934 	/* device missing delay */
4935 	dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
4936 	if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4937 		dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4938 	else
4939 		dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4940 	dmd_orignal = dmd;
4941 	if (device_missing_delay > 0x7F) {
4942 		dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
4943 		    device_missing_delay;
4944 		dmd = dmd / 16;
4945 		dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
4946 	} else
4947 		dmd = device_missing_delay;
4948 	sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
4949 
4950 	/* io missing delay */
4951 	io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
4952 	sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
4953 
4954 	if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
4955 	    sz)) {
4956 		if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4957 			dmd_new = (dmd &
4958 			    MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4959 		else
4960 			dmd_new =
4961 		    dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4962 		ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n",
4963 			 dmd_orignal, dmd_new);
4964 		ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n",
4965 			 io_missing_delay_original,
4966 			 io_missing_delay);
4967 		ioc->device_missing_delay = dmd_new;
4968 		ioc->io_missing_delay = io_missing_delay;
4969 	}
4970 
4971 out:
4972 	kfree(sas_iounit_pg1);
4973 }
4974 
4975 /**
4976  * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields
4977  *    according to performance mode.
4978  * @ioc : per adapter object
4979  *
4980  * Return: zero on success; otherwise return EAGAIN error code asking the
4981  * caller to retry.
4982  */
4983 static int
4984 _base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc)
4985 {
4986 	Mpi2IOCPage1_t ioc_pg1;
4987 	Mpi2ConfigReply_t mpi_reply;
4988 	int rc;
4989 
4990 	rc = mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy);
4991 	if (rc)
4992 		return rc;
4993 	memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t));
4994 
4995 	switch (perf_mode) {
4996 	case MPT_PERF_MODE_DEFAULT:
4997 	case MPT_PERF_MODE_BALANCED:
4998 		if (ioc->high_iops_queues) {
4999 			ioc_info(ioc,
5000 				"Enable interrupt coalescing only for first\t"
5001 				"%d reply queues\n",
5002 				MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
5003 			/*
5004 			 * If 31st bit is zero then interrupt coalescing is
5005 			 * enabled for all reply descriptor post queues.
5006 			 * If 31st bit is set to one then user can
5007 			 * enable/disable interrupt coalescing on per reply
5008 			 * descriptor post queue group(8) basis. So to enable
5009 			 * interrupt coalescing only on first reply descriptor
5010 			 * post queue group 31st bit and zero th bit is enabled.
5011 			 */
5012 			ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 |
5013 			    ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1));
5014 			rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
5015 			if (rc)
5016 				return rc;
5017 			ioc_info(ioc, "performance mode: balanced\n");
5018 			return 0;
5019 		}
5020 		fallthrough;
5021 	case MPT_PERF_MODE_LATENCY:
5022 		/*
5023 		 * Enable interrupt coalescing on all reply queues
5024 		 * with timeout value 0xA
5025 		 */
5026 		ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa);
5027 		ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
5028 		ioc_pg1.ProductSpecific = 0;
5029 		rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
5030 		if (rc)
5031 			return rc;
5032 		ioc_info(ioc, "performance mode: latency\n");
5033 		break;
5034 	case MPT_PERF_MODE_IOPS:
5035 		/*
5036 		 * Enable interrupt coalescing on all reply queues.
5037 		 */
5038 		ioc_info(ioc,
5039 		    "performance mode: iops with coalescing timeout: 0x%x\n",
5040 		    le32_to_cpu(ioc_pg1.CoalescingTimeout));
5041 		ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
5042 		ioc_pg1.ProductSpecific = 0;
5043 		rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
5044 		if (rc)
5045 			return rc;
5046 		break;
5047 	}
5048 	return 0;
5049 }
5050 
5051 /**
5052  * _base_get_event_diag_triggers - get event diag trigger values from
5053  *				persistent pages
5054  * @ioc : per adapter object
5055  *
5056  * Return: nothing.
5057  */
5058 static int
5059 _base_get_event_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5060 {
5061 	Mpi26DriverTriggerPage2_t trigger_pg2;
5062 	struct SL_WH_EVENT_TRIGGER_T *event_tg;
5063 	MPI26_DRIVER_MPI_EVENT_TIGGER_ENTRY *mpi_event_tg;
5064 	Mpi2ConfigReply_t mpi_reply;
5065 	int r = 0, i = 0;
5066 	u16 count = 0;
5067 	u16 ioc_status;
5068 
5069 	r = mpt3sas_config_get_driver_trigger_pg2(ioc, &mpi_reply,
5070 	    &trigger_pg2);
5071 	if (r)
5072 		return r;
5073 
5074 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5075 	    MPI2_IOCSTATUS_MASK;
5076 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5077 		dinitprintk(ioc,
5078 		    ioc_err(ioc,
5079 		    "%s: Failed to get trigger pg2, ioc_status(0x%04x)\n",
5080 		   __func__, ioc_status));
5081 		return 0;
5082 	}
5083 
5084 	if (le16_to_cpu(trigger_pg2.NumMPIEventTrigger)) {
5085 		count = le16_to_cpu(trigger_pg2.NumMPIEventTrigger);
5086 		count = min_t(u16, NUM_VALID_ENTRIES, count);
5087 		ioc->diag_trigger_event.ValidEntries = count;
5088 
5089 		event_tg = &ioc->diag_trigger_event.EventTriggerEntry[0];
5090 		mpi_event_tg = &trigger_pg2.MPIEventTriggers[0];
5091 		for (i = 0; i < count; i++) {
5092 			event_tg->EventValue = le16_to_cpu(
5093 			    mpi_event_tg->MPIEventCode);
5094 			event_tg->LogEntryQualifier = le16_to_cpu(
5095 			    mpi_event_tg->MPIEventCodeSpecific);
5096 			event_tg++;
5097 			mpi_event_tg++;
5098 		}
5099 	}
5100 	return 0;
5101 }
5102 
5103 /**
5104  * _base_get_scsi_diag_triggers - get scsi diag trigger values from
5105  *				persistent pages
5106  * @ioc : per adapter object
5107  *
5108  * Return: 0 on success; otherwise return failure status.
5109  */
5110 static int
5111 _base_get_scsi_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5112 {
5113 	Mpi26DriverTriggerPage3_t trigger_pg3;
5114 	struct SL_WH_SCSI_TRIGGER_T *scsi_tg;
5115 	MPI26_DRIVER_SCSI_SENSE_TIGGER_ENTRY *mpi_scsi_tg;
5116 	Mpi2ConfigReply_t mpi_reply;
5117 	int r = 0, i = 0;
5118 	u16 count = 0;
5119 	u16 ioc_status;
5120 
5121 	r = mpt3sas_config_get_driver_trigger_pg3(ioc, &mpi_reply,
5122 	    &trigger_pg3);
5123 	if (r)
5124 		return r;
5125 
5126 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5127 	    MPI2_IOCSTATUS_MASK;
5128 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5129 		dinitprintk(ioc,
5130 		    ioc_err(ioc,
5131 		    "%s: Failed to get trigger pg3, ioc_status(0x%04x)\n",
5132 		    __func__, ioc_status));
5133 		return 0;
5134 	}
5135 
5136 	if (le16_to_cpu(trigger_pg3.NumSCSISenseTrigger)) {
5137 		count = le16_to_cpu(trigger_pg3.NumSCSISenseTrigger);
5138 		count = min_t(u16, NUM_VALID_ENTRIES, count);
5139 		ioc->diag_trigger_scsi.ValidEntries = count;
5140 
5141 		scsi_tg = &ioc->diag_trigger_scsi.SCSITriggerEntry[0];
5142 		mpi_scsi_tg = &trigger_pg3.SCSISenseTriggers[0];
5143 		for (i = 0; i < count; i++) {
5144 			scsi_tg->ASCQ = mpi_scsi_tg->ASCQ;
5145 			scsi_tg->ASC = mpi_scsi_tg->ASC;
5146 			scsi_tg->SenseKey = mpi_scsi_tg->SenseKey;
5147 
5148 			scsi_tg++;
5149 			mpi_scsi_tg++;
5150 		}
5151 	}
5152 	return 0;
5153 }
5154 
5155 /**
5156  * _base_get_mpi_diag_triggers - get mpi diag trigger values from
5157  *				persistent pages
5158  * @ioc : per adapter object
5159  *
5160  * Return: 0 on success; otherwise return failure status.
5161  */
5162 static int
5163 _base_get_mpi_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5164 {
5165 	Mpi26DriverTriggerPage4_t trigger_pg4;
5166 	struct SL_WH_MPI_TRIGGER_T *status_tg;
5167 	MPI26_DRIVER_IOCSTATUS_LOGINFO_TIGGER_ENTRY *mpi_status_tg;
5168 	Mpi2ConfigReply_t mpi_reply;
5169 	int r = 0, i = 0;
5170 	u16 count = 0;
5171 	u16 ioc_status;
5172 
5173 	r = mpt3sas_config_get_driver_trigger_pg4(ioc, &mpi_reply,
5174 	    &trigger_pg4);
5175 	if (r)
5176 		return r;
5177 
5178 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5179 	    MPI2_IOCSTATUS_MASK;
5180 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5181 		dinitprintk(ioc,
5182 		    ioc_err(ioc,
5183 		    "%s: Failed to get trigger pg4, ioc_status(0x%04x)\n",
5184 		    __func__, ioc_status));
5185 		return 0;
5186 	}
5187 
5188 	if (le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger)) {
5189 		count = le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger);
5190 		count = min_t(u16, NUM_VALID_ENTRIES, count);
5191 		ioc->diag_trigger_mpi.ValidEntries = count;
5192 
5193 		status_tg = &ioc->diag_trigger_mpi.MPITriggerEntry[0];
5194 		mpi_status_tg = &trigger_pg4.IOCStatusLoginfoTriggers[0];
5195 
5196 		for (i = 0; i < count; i++) {
5197 			status_tg->IOCStatus = le16_to_cpu(
5198 			    mpi_status_tg->IOCStatus);
5199 			status_tg->IocLogInfo = le32_to_cpu(
5200 			    mpi_status_tg->LogInfo);
5201 
5202 			status_tg++;
5203 			mpi_status_tg++;
5204 		}
5205 	}
5206 	return 0;
5207 }
5208 
5209 /**
5210  * _base_get_master_diag_triggers - get master diag trigger values from
5211  *				persistent pages
5212  * @ioc : per adapter object
5213  *
5214  * Return: nothing.
5215  */
5216 static int
5217 _base_get_master_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5218 {
5219 	Mpi26DriverTriggerPage1_t trigger_pg1;
5220 	Mpi2ConfigReply_t mpi_reply;
5221 	int r;
5222 	u16 ioc_status;
5223 
5224 	r = mpt3sas_config_get_driver_trigger_pg1(ioc, &mpi_reply,
5225 	    &trigger_pg1);
5226 	if (r)
5227 		return r;
5228 
5229 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5230 	    MPI2_IOCSTATUS_MASK;
5231 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5232 		dinitprintk(ioc,
5233 		    ioc_err(ioc,
5234 		    "%s: Failed to get trigger pg1, ioc_status(0x%04x)\n",
5235 		   __func__, ioc_status));
5236 		return 0;
5237 	}
5238 
5239 	if (le16_to_cpu(trigger_pg1.NumMasterTrigger))
5240 		ioc->diag_trigger_master.MasterData |=
5241 		    le32_to_cpu(
5242 		    trigger_pg1.MasterTriggers[0].MasterTriggerFlags);
5243 	return 0;
5244 }
5245 
5246 /**
5247  * _base_check_for_trigger_pages_support - checks whether HBA FW supports
5248  *					driver trigger pages or not
5249  * @ioc : per adapter object
5250  * @trigger_flags : address where trigger page0's TriggerFlags value is copied
5251  *
5252  * Return: trigger flags mask if HBA FW supports driver trigger pages;
5253  * otherwise returns %-EFAULT if driver trigger pages are not supported by FW or
5254  * return EAGAIN if diag reset occurred due to FW fault and asking the
5255  * caller to retry the command.
5256  *
5257  */
5258 static int
5259 _base_check_for_trigger_pages_support(struct MPT3SAS_ADAPTER *ioc, u32 *trigger_flags)
5260 {
5261 	Mpi26DriverTriggerPage0_t trigger_pg0;
5262 	int r = 0;
5263 	Mpi2ConfigReply_t mpi_reply;
5264 	u16 ioc_status;
5265 
5266 	r = mpt3sas_config_get_driver_trigger_pg0(ioc, &mpi_reply,
5267 	    &trigger_pg0);
5268 	if (r)
5269 		return r;
5270 
5271 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5272 	    MPI2_IOCSTATUS_MASK;
5273 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
5274 		return -EFAULT;
5275 
5276 	*trigger_flags = le16_to_cpu(trigger_pg0.TriggerFlags);
5277 	return 0;
5278 }
5279 
5280 /**
5281  * _base_get_diag_triggers - Retrieve diag trigger values from
5282  *				persistent pages.
5283  * @ioc : per adapter object
5284  *
5285  * Return: zero on success; otherwise return EAGAIN error codes
5286  * asking the caller to retry.
5287  */
5288 static int
5289 _base_get_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5290 {
5291 	int trigger_flags;
5292 	int r;
5293 
5294 	/*
5295 	 * Default setting of master trigger.
5296 	 */
5297 	ioc->diag_trigger_master.MasterData =
5298 	    (MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET);
5299 
5300 	r = _base_check_for_trigger_pages_support(ioc, &trigger_flags);
5301 	if (r) {
5302 		if (r == -EAGAIN)
5303 			return r;
5304 		/*
5305 		 * Don't go for error handling when FW doesn't support
5306 		 * driver trigger pages.
5307 		 */
5308 		return 0;
5309 	}
5310 
5311 	ioc->supports_trigger_pages = 1;
5312 
5313 	/*
5314 	 * Retrieve master diag trigger values from driver trigger pg1
5315 	 * if master trigger bit enabled in TriggerFlags.
5316 	 */
5317 	if ((u16)trigger_flags &
5318 	    MPI26_DRIVER_TRIGGER0_FLAG_MASTER_TRIGGER_VALID) {
5319 		r = _base_get_master_diag_triggers(ioc);
5320 		if (r)
5321 			return r;
5322 	}
5323 
5324 	/*
5325 	 * Retrieve event diag trigger values from driver trigger pg2
5326 	 * if event trigger bit enabled in TriggerFlags.
5327 	 */
5328 	if ((u16)trigger_flags &
5329 	    MPI26_DRIVER_TRIGGER0_FLAG_MPI_EVENT_TRIGGER_VALID) {
5330 		r = _base_get_event_diag_triggers(ioc);
5331 		if (r)
5332 			return r;
5333 	}
5334 
5335 	/*
5336 	 * Retrieve scsi diag trigger values from driver trigger pg3
5337 	 * if scsi trigger bit enabled in TriggerFlags.
5338 	 */
5339 	if ((u16)trigger_flags &
5340 	    MPI26_DRIVER_TRIGGER0_FLAG_SCSI_SENSE_TRIGGER_VALID) {
5341 		r = _base_get_scsi_diag_triggers(ioc);
5342 		if (r)
5343 			return r;
5344 	}
5345 	/*
5346 	 * Retrieve mpi error diag trigger values from driver trigger pg4
5347 	 * if loginfo trigger bit enabled in TriggerFlags.
5348 	 */
5349 	if ((u16)trigger_flags &
5350 	    MPI26_DRIVER_TRIGGER0_FLAG_LOGINFO_TRIGGER_VALID) {
5351 		r = _base_get_mpi_diag_triggers(ioc);
5352 		if (r)
5353 			return r;
5354 	}
5355 	return 0;
5356 }
5357 
5358 /**
5359  * _base_update_diag_trigger_pages - Update the driver trigger pages after
5360  *			online FW update, in case updated FW supports driver
5361  *			trigger pages.
5362  * @ioc : per adapter object
5363  *
5364  * Return: nothing.
5365  */
5366 static void
5367 _base_update_diag_trigger_pages(struct MPT3SAS_ADAPTER *ioc)
5368 {
5369 
5370 	if (ioc->diag_trigger_master.MasterData)
5371 		mpt3sas_config_update_driver_trigger_pg1(ioc,
5372 		    &ioc->diag_trigger_master, 1);
5373 
5374 	if (ioc->diag_trigger_event.ValidEntries)
5375 		mpt3sas_config_update_driver_trigger_pg2(ioc,
5376 		    &ioc->diag_trigger_event, 1);
5377 
5378 	if (ioc->diag_trigger_scsi.ValidEntries)
5379 		mpt3sas_config_update_driver_trigger_pg3(ioc,
5380 		    &ioc->diag_trigger_scsi, 1);
5381 
5382 	if (ioc->diag_trigger_mpi.ValidEntries)
5383 		mpt3sas_config_update_driver_trigger_pg4(ioc,
5384 		    &ioc->diag_trigger_mpi, 1);
5385 }
5386 
5387 /**
5388  * _base_assign_fw_reported_qd	- Get FW reported QD for SAS/SATA devices.
5389  *				- On failure set default QD values.
5390  * @ioc : per adapter object
5391  *
5392  * Returns 0 for success, non-zero for failure.
5393  *
5394  */
5395 static int _base_assign_fw_reported_qd(struct MPT3SAS_ADAPTER *ioc)
5396 {
5397 	Mpi2ConfigReply_t mpi_reply;
5398 	Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
5399 	Mpi26PCIeIOUnitPage1_t pcie_iounit_pg1;
5400 	u16 depth;
5401 	int sz;
5402 	int rc = 0;
5403 
5404 	ioc->max_wideport_qd = MPT3SAS_SAS_QUEUE_DEPTH;
5405 	ioc->max_narrowport_qd = MPT3SAS_SAS_QUEUE_DEPTH;
5406 	ioc->max_sata_qd = MPT3SAS_SATA_QUEUE_DEPTH;
5407 	ioc->max_nvme_qd = MPT3SAS_NVME_QUEUE_DEPTH;
5408 	if (!ioc->is_gen35_ioc)
5409 		goto out;
5410 	/* sas iounit page 1 */
5411 	sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData);
5412 	sas_iounit_pg1 = kzalloc(sizeof(Mpi2SasIOUnitPage1_t), GFP_KERNEL);
5413 	if (!sas_iounit_pg1) {
5414 		pr_err("%s: failure at %s:%d/%s()!\n",
5415 		    ioc->name, __FILE__, __LINE__, __func__);
5416 		return rc;
5417 	}
5418 	rc = mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
5419 	    sas_iounit_pg1, sz);
5420 	if (rc) {
5421 		pr_err("%s: failure at %s:%d/%s()!\n",
5422 		    ioc->name, __FILE__, __LINE__, __func__);
5423 		goto out;
5424 	}
5425 
5426 	depth = le16_to_cpu(sas_iounit_pg1->SASWideMaxQueueDepth);
5427 	ioc->max_wideport_qd = (depth ? depth : MPT3SAS_SAS_QUEUE_DEPTH);
5428 
5429 	depth = le16_to_cpu(sas_iounit_pg1->SASNarrowMaxQueueDepth);
5430 	ioc->max_narrowport_qd = (depth ? depth : MPT3SAS_SAS_QUEUE_DEPTH);
5431 
5432 	depth = sas_iounit_pg1->SATAMaxQDepth;
5433 	ioc->max_sata_qd = (depth ? depth : MPT3SAS_SATA_QUEUE_DEPTH);
5434 
5435 	/* pcie iounit page 1 */
5436 	rc = mpt3sas_config_get_pcie_iounit_pg1(ioc, &mpi_reply,
5437 	    &pcie_iounit_pg1, sizeof(Mpi26PCIeIOUnitPage1_t));
5438 	if (rc) {
5439 		pr_err("%s: failure at %s:%d/%s()!\n",
5440 		    ioc->name, __FILE__, __LINE__, __func__);
5441 		goto out;
5442 	}
5443 	ioc->max_nvme_qd = (le16_to_cpu(pcie_iounit_pg1.NVMeMaxQueueDepth)) ?
5444 	    (le16_to_cpu(pcie_iounit_pg1.NVMeMaxQueueDepth)) :
5445 	    MPT3SAS_NVME_QUEUE_DEPTH;
5446 out:
5447 	dinitprintk(ioc, pr_err(
5448 	    "MaxWidePortQD: 0x%x MaxNarrowPortQD: 0x%x MaxSataQD: 0x%x MaxNvmeQD: 0x%x\n",
5449 	    ioc->max_wideport_qd, ioc->max_narrowport_qd,
5450 	    ioc->max_sata_qd, ioc->max_nvme_qd));
5451 	kfree(sas_iounit_pg1);
5452 	return rc;
5453 }
5454 
5455 /**
5456  * mpt3sas_atto_validate_nvram - validate the ATTO nvram read from mfg pg1
5457  *
5458  * @ioc : per adapter object
5459  * @n   : ptr to the ATTO nvram structure
5460  * Return: 0 for success, non-zero for failure.
5461  */
5462 static int
5463 mpt3sas_atto_validate_nvram(struct MPT3SAS_ADAPTER *ioc,
5464 			    struct ATTO_SAS_NVRAM *n)
5465 {
5466 	int r = -EINVAL;
5467 	union ATTO_SAS_ADDRESS *s1;
5468 	u32 len;
5469 	u8 *pb;
5470 	u8 ckSum;
5471 
5472 	/* validate nvram checksum */
5473 	pb = (u8 *) n;
5474 	ckSum = ATTO_SASNVR_CKSUM_SEED;
5475 	len = sizeof(struct ATTO_SAS_NVRAM);
5476 
5477 	while (len--)
5478 		ckSum = ckSum + pb[len];
5479 
5480 	if (ckSum) {
5481 		ioc_err(ioc, "Invalid ATTO NVRAM checksum\n");
5482 		return r;
5483 	}
5484 
5485 	s1 = (union ATTO_SAS_ADDRESS *) n->SasAddr;
5486 
5487 	if (n->Signature[0] != 'E'
5488 	|| n->Signature[1] != 'S'
5489 	|| n->Signature[2] != 'A'
5490 	|| n->Signature[3] != 'S')
5491 		ioc_err(ioc, "Invalid ATTO NVRAM signature\n");
5492 	else if (n->Version > ATTO_SASNVR_VERSION)
5493 		ioc_info(ioc, "Invalid ATTO NVRAM version");
5494 	else if ((n->SasAddr[7] & (ATTO_SAS_ADDR_ALIGN - 1))
5495 			|| s1->b[0] != 0x50
5496 			|| s1->b[1] != 0x01
5497 			|| s1->b[2] != 0x08
5498 			|| (s1->b[3] & 0xF0) != 0x60
5499 			|| ((s1->b[3] & 0x0F) | le32_to_cpu(s1->d[1])) == 0) {
5500 		ioc_err(ioc, "Invalid ATTO SAS address\n");
5501 	} else
5502 		r = 0;
5503 	return r;
5504 }
5505 
5506 /**
5507  * mpt3sas_atto_get_sas_addr - get the ATTO SAS address from mfg page 1
5508  *
5509  * @ioc : per adapter object
5510  * @*sas_addr : return sas address
5511  * Return: 0 for success, non-zero for failure.
5512  */
5513 static int
5514 mpt3sas_atto_get_sas_addr(struct MPT3SAS_ADAPTER *ioc, union ATTO_SAS_ADDRESS *sas_addr)
5515 {
5516 	Mpi2ManufacturingPage1_t mfg_pg1;
5517 	Mpi2ConfigReply_t mpi_reply;
5518 	struct ATTO_SAS_NVRAM *nvram;
5519 	int r;
5520 	__be64 addr;
5521 
5522 	r = mpt3sas_config_get_manufacturing_pg1(ioc, &mpi_reply, &mfg_pg1);
5523 	if (r) {
5524 		ioc_err(ioc, "Failed to read manufacturing page 1\n");
5525 		return r;
5526 	}
5527 
5528 	/* validate nvram */
5529 	nvram = (struct ATTO_SAS_NVRAM *) mfg_pg1.VPD;
5530 	r = mpt3sas_atto_validate_nvram(ioc, nvram);
5531 	if (r)
5532 		return r;
5533 
5534 	addr = *((__be64 *) nvram->SasAddr);
5535 	sas_addr->q = cpu_to_le64(be64_to_cpu(addr));
5536 	return r;
5537 }
5538 
5539 /**
5540  * mpt3sas_atto_init - perform initializaion for ATTO branded
5541  *					adapter.
5542  * @ioc : per adapter object
5543  *5
5544  * Return: 0 for success, non-zero for failure.
5545  */
5546 static int
5547 mpt3sas_atto_init(struct MPT3SAS_ADAPTER *ioc)
5548 {
5549 	int sz = 0;
5550 	Mpi2BiosPage4_t *bios_pg4 = NULL;
5551 	Mpi2ConfigReply_t mpi_reply;
5552 	int r;
5553 	int ix;
5554 	union ATTO_SAS_ADDRESS sas_addr;
5555 	union ATTO_SAS_ADDRESS temp;
5556 	union ATTO_SAS_ADDRESS bias;
5557 
5558 	r = mpt3sas_atto_get_sas_addr(ioc, &sas_addr);
5559 	if (r)
5560 		return r;
5561 
5562 	/* get header first to get size */
5563 	r = mpt3sas_config_get_bios_pg4(ioc, &mpi_reply, NULL, 0);
5564 	if (r) {
5565 		ioc_err(ioc, "Failed to read ATTO bios page 4 header.\n");
5566 		return r;
5567 	}
5568 
5569 	sz = mpi_reply.Header.PageLength * sizeof(u32);
5570 	bios_pg4 = kzalloc(sz, GFP_KERNEL);
5571 	if (!bios_pg4) {
5572 		ioc_err(ioc, "Failed to allocate memory for ATTO bios page.\n");
5573 		return -ENOMEM;
5574 	}
5575 
5576 	/* read bios page 4 */
5577 	r = mpt3sas_config_get_bios_pg4(ioc, &mpi_reply, bios_pg4, sz);
5578 	if (r) {
5579 		ioc_err(ioc, "Failed to read ATTO bios page 4\n");
5580 		goto out;
5581 	}
5582 
5583 	/* Update bios page 4 with the ATTO WWID */
5584 	bias.q = sas_addr.q;
5585 	bias.b[7] += ATTO_SAS_ADDR_DEVNAME_BIAS;
5586 
5587 	for (ix = 0; ix < bios_pg4->NumPhys; ix++) {
5588 		temp.q = sas_addr.q;
5589 		temp.b[7] += ix;
5590 		bios_pg4->Phy[ix].ReassignmentWWID = temp.q;
5591 		bios_pg4->Phy[ix].ReassignmentDeviceName = bias.q;
5592 	}
5593 	r = mpt3sas_config_set_bios_pg4(ioc, &mpi_reply, bios_pg4, sz);
5594 
5595 out:
5596 	kfree(bios_pg4);
5597 	return r;
5598 }
5599 
5600 /**
5601  * _base_static_config_pages - static start of day config pages
5602  * @ioc: per adapter object
5603  */
5604 static int
5605 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
5606 {
5607 	Mpi2ConfigReply_t mpi_reply;
5608 	u32 iounit_pg1_flags;
5609 	int tg_flags = 0;
5610 	int rc;
5611 	ioc->nvme_abort_timeout = 30;
5612 
5613 	rc = mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply,
5614 	    &ioc->manu_pg0);
5615 	if (rc)
5616 		return rc;
5617 	if (ioc->ir_firmware) {
5618 		rc = mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
5619 		    &ioc->manu_pg10);
5620 		if (rc)
5621 			return rc;
5622 	}
5623 
5624 	if (ioc->pdev->vendor == MPI2_MFGPAGE_VENDORID_ATTO) {
5625 		rc = mpt3sas_atto_init(ioc);
5626 		if (rc)
5627 			return rc;
5628 	}
5629 
5630 	/*
5631 	 * Ensure correct T10 PI operation if vendor left EEDPTagMode
5632 	 * flag unset in NVDATA.
5633 	 */
5634 	rc = mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply,
5635 	    &ioc->manu_pg11);
5636 	if (rc)
5637 		return rc;
5638 	if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) {
5639 		pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
5640 		    ioc->name);
5641 		ioc->manu_pg11.EEDPTagMode &= ~0x3;
5642 		ioc->manu_pg11.EEDPTagMode |= 0x1;
5643 		mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
5644 		    &ioc->manu_pg11);
5645 	}
5646 	if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK)
5647 		ioc->tm_custom_handling = 1;
5648 	else {
5649 		ioc->tm_custom_handling = 0;
5650 		if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT)
5651 			ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT;
5652 		else if (ioc->manu_pg11.NVMeAbortTO >
5653 					NVME_TASK_ABORT_MAX_TIMEOUT)
5654 			ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT;
5655 		else
5656 			ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO;
5657 	}
5658 	ioc->time_sync_interval =
5659 	    ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_MASK;
5660 	if (ioc->time_sync_interval) {
5661 		if (ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_UNIT_MASK)
5662 			ioc->time_sync_interval =
5663 			    ioc->time_sync_interval * SECONDS_PER_HOUR;
5664 		else
5665 			ioc->time_sync_interval =
5666 			    ioc->time_sync_interval * SECONDS_PER_MIN;
5667 		dinitprintk(ioc, ioc_info(ioc,
5668 		    "Driver-FW TimeSync interval is %d seconds. ManuPg11 TimeSync Unit is in %s\n",
5669 		    ioc->time_sync_interval, (ioc->manu_pg11.TimeSyncInterval &
5670 		    MPT3SAS_TIMESYNC_UNIT_MASK) ? "Hour" : "Minute"));
5671 	} else {
5672 		if (ioc->is_gen35_ioc)
5673 			ioc_warn(ioc,
5674 			    "TimeSync Interval in Manuf page-11 is not enabled. Periodic Time-Sync will be disabled\n");
5675 	}
5676 	rc = _base_assign_fw_reported_qd(ioc);
5677 	if (rc)
5678 		return rc;
5679 
5680 	/*
5681 	 * ATTO doesn't use bios page 2 and 3 for bios settings.
5682 	 */
5683 	if (ioc->pdev->vendor ==  MPI2_MFGPAGE_VENDORID_ATTO)
5684 		ioc->bios_pg3.BiosVersion = 0;
5685 	else {
5686 		rc = mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
5687 		if (rc)
5688 			return rc;
5689 		rc = mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
5690 		if (rc)
5691 			return rc;
5692 	}
5693 
5694 	rc = mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
5695 	if (rc)
5696 		return rc;
5697 	rc = mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
5698 	if (rc)
5699 		return rc;
5700 	rc = mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
5701 	if (rc)
5702 		return rc;
5703 	rc = mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
5704 	if (rc)
5705 		return rc;
5706 	_base_display_ioc_capabilities(ioc);
5707 
5708 	/*
5709 	 * Enable task_set_full handling in iounit_pg1 when the
5710 	 * facts capabilities indicate that its supported.
5711 	 */
5712 	iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
5713 	if ((ioc->facts.IOCCapabilities &
5714 	    MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
5715 		iounit_pg1_flags &=
5716 		    ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
5717 	else
5718 		iounit_pg1_flags |=
5719 		    MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
5720 	ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
5721 	rc = mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
5722 	if (rc)
5723 		return rc;
5724 
5725 	if (ioc->iounit_pg8.NumSensors)
5726 		ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
5727 	if (ioc->is_aero_ioc) {
5728 		rc = _base_update_ioc_page1_inlinewith_perf_mode(ioc);
5729 		if (rc)
5730 			return rc;
5731 	}
5732 	if (ioc->is_gen35_ioc) {
5733 		if (ioc->is_driver_loading) {
5734 			rc = _base_get_diag_triggers(ioc);
5735 			if (rc)
5736 				return rc;
5737 		} else {
5738 			/*
5739 			 * In case of online HBA FW update operation,
5740 			 * check whether updated FW supports the driver trigger
5741 			 * pages or not.
5742 			 * - If previous FW has not supported driver trigger
5743 			 *   pages and newer FW supports them then update these
5744 			 *   pages with current diag trigger values.
5745 			 * - If previous FW has supported driver trigger pages
5746 			 *   and new FW doesn't support them then disable
5747 			 *   support_trigger_pages flag.
5748 			 */
5749 			_base_check_for_trigger_pages_support(ioc, &tg_flags);
5750 			if (!ioc->supports_trigger_pages && tg_flags != -EFAULT)
5751 				_base_update_diag_trigger_pages(ioc);
5752 			else if (ioc->supports_trigger_pages &&
5753 			    tg_flags == -EFAULT)
5754 				ioc->supports_trigger_pages = 0;
5755 		}
5756 	}
5757 	return 0;
5758 }
5759 
5760 /**
5761  * mpt3sas_free_enclosure_list - release memory
5762  * @ioc: per adapter object
5763  *
5764  * Free memory allocated during enclosure add.
5765  */
5766 void
5767 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc)
5768 {
5769 	struct _enclosure_node *enclosure_dev, *enclosure_dev_next;
5770 
5771 	/* Free enclosure list */
5772 	list_for_each_entry_safe(enclosure_dev,
5773 			enclosure_dev_next, &ioc->enclosure_list, list) {
5774 		list_del(&enclosure_dev->list);
5775 		kfree(enclosure_dev);
5776 	}
5777 }
5778 
5779 /**
5780  * _base_release_memory_pools - release memory
5781  * @ioc: per adapter object
5782  *
5783  * Free memory allocated from _base_allocate_memory_pools.
5784  */
5785 static void
5786 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
5787 {
5788 	int i = 0;
5789 	int j = 0;
5790 	int dma_alloc_count = 0;
5791 	struct chain_tracker *ct;
5792 	int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
5793 
5794 	dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5795 
5796 	if (ioc->request) {
5797 		dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz,
5798 		    ioc->request,  ioc->request_dma);
5799 		dexitprintk(ioc,
5800 			    ioc_info(ioc, "request_pool(0x%p): free\n",
5801 				     ioc->request));
5802 		ioc->request = NULL;
5803 	}
5804 
5805 	if (ioc->sense) {
5806 		dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
5807 		dma_pool_destroy(ioc->sense_dma_pool);
5808 		dexitprintk(ioc,
5809 			    ioc_info(ioc, "sense_pool(0x%p): free\n",
5810 				     ioc->sense));
5811 		ioc->sense = NULL;
5812 	}
5813 
5814 	if (ioc->reply) {
5815 		dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
5816 		dma_pool_destroy(ioc->reply_dma_pool);
5817 		dexitprintk(ioc,
5818 			    ioc_info(ioc, "reply_pool(0x%p): free\n",
5819 				     ioc->reply));
5820 		ioc->reply = NULL;
5821 	}
5822 
5823 	if (ioc->reply_free) {
5824 		dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
5825 		    ioc->reply_free_dma);
5826 		dma_pool_destroy(ioc->reply_free_dma_pool);
5827 		dexitprintk(ioc,
5828 			    ioc_info(ioc, "reply_free_pool(0x%p): free\n",
5829 				     ioc->reply_free));
5830 		ioc->reply_free = NULL;
5831 	}
5832 
5833 	if (ioc->reply_post) {
5834 		dma_alloc_count = DIV_ROUND_UP(count,
5835 				RDPQ_MAX_INDEX_IN_ONE_CHUNK);
5836 		for (i = 0; i < count; i++) {
5837 			if (i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0
5838 			    && dma_alloc_count) {
5839 				if (ioc->reply_post[i].reply_post_free) {
5840 					dma_pool_free(
5841 					    ioc->reply_post_free_dma_pool,
5842 					    ioc->reply_post[i].reply_post_free,
5843 					ioc->reply_post[i].reply_post_free_dma);
5844 					dexitprintk(ioc, ioc_info(ioc,
5845 					   "reply_post_free_pool(0x%p): free\n",
5846 					   ioc->reply_post[i].reply_post_free));
5847 					ioc->reply_post[i].reply_post_free =
5848 									NULL;
5849 				}
5850 				--dma_alloc_count;
5851 			}
5852 		}
5853 		dma_pool_destroy(ioc->reply_post_free_dma_pool);
5854 		if (ioc->reply_post_free_array &&
5855 			ioc->rdpq_array_enable) {
5856 			dma_pool_free(ioc->reply_post_free_array_dma_pool,
5857 			    ioc->reply_post_free_array,
5858 			    ioc->reply_post_free_array_dma);
5859 			ioc->reply_post_free_array = NULL;
5860 		}
5861 		dma_pool_destroy(ioc->reply_post_free_array_dma_pool);
5862 		kfree(ioc->reply_post);
5863 	}
5864 
5865 	if (ioc->pcie_sgl_dma_pool) {
5866 		for (i = 0; i < ioc->scsiio_depth; i++) {
5867 			dma_pool_free(ioc->pcie_sgl_dma_pool,
5868 					ioc->pcie_sg_lookup[i].pcie_sgl,
5869 					ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5870 			ioc->pcie_sg_lookup[i].pcie_sgl = NULL;
5871 		}
5872 		dma_pool_destroy(ioc->pcie_sgl_dma_pool);
5873 	}
5874 	kfree(ioc->pcie_sg_lookup);
5875 	ioc->pcie_sg_lookup = NULL;
5876 
5877 	if (ioc->config_page) {
5878 		dexitprintk(ioc,
5879 			    ioc_info(ioc, "config_page(0x%p): free\n",
5880 				     ioc->config_page));
5881 		dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz,
5882 		    ioc->config_page, ioc->config_page_dma);
5883 	}
5884 
5885 	kfree(ioc->hpr_lookup);
5886 	ioc->hpr_lookup = NULL;
5887 	kfree(ioc->internal_lookup);
5888 	ioc->internal_lookup = NULL;
5889 	if (ioc->chain_lookup) {
5890 		for (i = 0; i < ioc->scsiio_depth; i++) {
5891 			for (j = ioc->chains_per_prp_buffer;
5892 			    j < ioc->chains_needed_per_io; j++) {
5893 				ct = &ioc->chain_lookup[i].chains_per_smid[j];
5894 				if (ct && ct->chain_buffer)
5895 					dma_pool_free(ioc->chain_dma_pool,
5896 						ct->chain_buffer,
5897 						ct->chain_buffer_dma);
5898 			}
5899 			kfree(ioc->chain_lookup[i].chains_per_smid);
5900 		}
5901 		dma_pool_destroy(ioc->chain_dma_pool);
5902 		kfree(ioc->chain_lookup);
5903 		ioc->chain_lookup = NULL;
5904 	}
5905 
5906 	kfree(ioc->io_queue_num);
5907 	ioc->io_queue_num = NULL;
5908 }
5909 
5910 /**
5911  * mpt3sas_check_same_4gb_region - checks whether all reply queues in a set are
5912  *	having same upper 32bits in their base memory address.
5913  * @start_address: Base address of a reply queue set
5914  * @pool_sz: Size of single Reply Descriptor Post Queues pool size
5915  *
5916  * Return: 1 if reply queues in a set have a same upper 32bits in their base
5917  * memory address, else 0.
5918  */
5919 static int
5920 mpt3sas_check_same_4gb_region(dma_addr_t start_address, u32 pool_sz)
5921 {
5922 	dma_addr_t end_address;
5923 
5924 	end_address = start_address + pool_sz - 1;
5925 
5926 	if (upper_32_bits(start_address) == upper_32_bits(end_address))
5927 		return 1;
5928 	else
5929 		return 0;
5930 }
5931 
5932 /**
5933  * _base_reduce_hba_queue_depth- Retry with reduced queue depth
5934  * @ioc: Adapter object
5935  *
5936  * Return: 0 for success, non-zero for failure.
5937  **/
5938 static inline int
5939 _base_reduce_hba_queue_depth(struct MPT3SAS_ADAPTER *ioc)
5940 {
5941 	int reduce_sz = 64;
5942 
5943 	if ((ioc->hba_queue_depth - reduce_sz) >
5944 	    (ioc->internal_depth + INTERNAL_SCSIIO_CMDS_COUNT)) {
5945 		ioc->hba_queue_depth -= reduce_sz;
5946 		return 0;
5947 	} else
5948 		return -ENOMEM;
5949 }
5950 
5951 /**
5952  * _base_allocate_pcie_sgl_pool - Allocating DMA'able memory
5953  *			for pcie sgl pools.
5954  * @ioc: Adapter object
5955  * @sz: DMA Pool size
5956  *
5957  * Return: 0 for success, non-zero for failure.
5958  */
5959 
5960 static int
5961 _base_allocate_pcie_sgl_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5962 {
5963 	int i = 0, j = 0;
5964 	struct chain_tracker *ct;
5965 
5966 	ioc->pcie_sgl_dma_pool =
5967 	    dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz,
5968 	    ioc->page_size, 0);
5969 	if (!ioc->pcie_sgl_dma_pool) {
5970 		ioc_err(ioc, "PCIe SGL pool: dma_pool_create failed\n");
5971 		return -ENOMEM;
5972 	}
5973 
5974 	ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz;
5975 	ioc->chains_per_prp_buffer =
5976 	    min(ioc->chains_per_prp_buffer, ioc->chains_needed_per_io);
5977 	for (i = 0; i < ioc->scsiio_depth; i++) {
5978 		ioc->pcie_sg_lookup[i].pcie_sgl =
5979 		    dma_pool_alloc(ioc->pcie_sgl_dma_pool, GFP_KERNEL,
5980 		    &ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5981 		if (!ioc->pcie_sg_lookup[i].pcie_sgl) {
5982 			ioc_err(ioc, "PCIe SGL pool: dma_pool_alloc failed\n");
5983 			return -EAGAIN;
5984 		}
5985 
5986 		if (!mpt3sas_check_same_4gb_region(
5987 		    ioc->pcie_sg_lookup[i].pcie_sgl_dma, sz)) {
5988 			ioc_err(ioc, "PCIE SGLs are not in same 4G !! pcie sgl (0x%p) dma = (0x%llx)\n",
5989 			    ioc->pcie_sg_lookup[i].pcie_sgl,
5990 			    (unsigned long long)
5991 			    ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5992 			ioc->use_32bit_dma = true;
5993 			return -EAGAIN;
5994 		}
5995 
5996 		for (j = 0; j < ioc->chains_per_prp_buffer; j++) {
5997 			ct = &ioc->chain_lookup[i].chains_per_smid[j];
5998 			ct->chain_buffer =
5999 			    ioc->pcie_sg_lookup[i].pcie_sgl +
6000 			    (j * ioc->chain_segment_sz);
6001 			ct->chain_buffer_dma =
6002 			    ioc->pcie_sg_lookup[i].pcie_sgl_dma +
6003 			    (j * ioc->chain_segment_sz);
6004 		}
6005 	}
6006 	dinitprintk(ioc, ioc_info(ioc,
6007 	    "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n",
6008 	    ioc->scsiio_depth, sz, (sz * ioc->scsiio_depth)/1024));
6009 	dinitprintk(ioc, ioc_info(ioc,
6010 	    "Number of chains can fit in a PRP page(%d)\n",
6011 	    ioc->chains_per_prp_buffer));
6012 	return 0;
6013 }
6014 
6015 /**
6016  * _base_allocate_chain_dma_pool - Allocating DMA'able memory
6017  *			for chain dma pool.
6018  * @ioc: Adapter object
6019  * @sz: DMA Pool size
6020  *
6021  * Return: 0 for success, non-zero for failure.
6022  */
6023 static int
6024 _base_allocate_chain_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
6025 {
6026 	int i = 0, j = 0;
6027 	struct chain_tracker *ctr;
6028 
6029 	ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev,
6030 	    ioc->chain_segment_sz, 16, 0);
6031 	if (!ioc->chain_dma_pool)
6032 		return -ENOMEM;
6033 
6034 	for (i = 0; i < ioc->scsiio_depth; i++) {
6035 		for (j = ioc->chains_per_prp_buffer;
6036 		    j < ioc->chains_needed_per_io; j++) {
6037 			ctr = &ioc->chain_lookup[i].chains_per_smid[j];
6038 			ctr->chain_buffer = dma_pool_alloc(ioc->chain_dma_pool,
6039 			    GFP_KERNEL, &ctr->chain_buffer_dma);
6040 			if (!ctr->chain_buffer)
6041 				return -EAGAIN;
6042 			if (!mpt3sas_check_same_4gb_region(
6043 			    ctr->chain_buffer_dma, ioc->chain_segment_sz)) {
6044 				ioc_err(ioc,
6045 				    "Chain buffers are not in same 4G !!! Chain buff (0x%p) dma = (0x%llx)\n",
6046 				    ctr->chain_buffer,
6047 				    (unsigned long long)ctr->chain_buffer_dma);
6048 				ioc->use_32bit_dma = true;
6049 				return -EAGAIN;
6050 			}
6051 		}
6052 	}
6053 	dinitprintk(ioc, ioc_info(ioc,
6054 	    "chain_lookup depth (%d), frame_size(%d), pool_size(%d kB)\n",
6055 	    ioc->scsiio_depth, ioc->chain_segment_sz, ((ioc->scsiio_depth *
6056 	    (ioc->chains_needed_per_io - ioc->chains_per_prp_buffer) *
6057 	    ioc->chain_segment_sz))/1024));
6058 	return 0;
6059 }
6060 
6061 /**
6062  * _base_allocate_sense_dma_pool - Allocating DMA'able memory
6063  *			for sense dma pool.
6064  * @ioc: Adapter object
6065  * @sz: DMA Pool size
6066  * Return: 0 for success, non-zero for failure.
6067  */
6068 static int
6069 _base_allocate_sense_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
6070 {
6071 	ioc->sense_dma_pool =
6072 	    dma_pool_create("sense pool", &ioc->pdev->dev, sz, 4, 0);
6073 	if (!ioc->sense_dma_pool)
6074 		return -ENOMEM;
6075 	ioc->sense = dma_pool_alloc(ioc->sense_dma_pool,
6076 	    GFP_KERNEL, &ioc->sense_dma);
6077 	if (!ioc->sense)
6078 		return -EAGAIN;
6079 	if (!mpt3sas_check_same_4gb_region(ioc->sense_dma, sz)) {
6080 		dinitprintk(ioc, pr_err(
6081 		    "Bad Sense Pool! sense (0x%p) sense_dma = (0x%llx)\n",
6082 		    ioc->sense, (unsigned long long) ioc->sense_dma));
6083 		ioc->use_32bit_dma = true;
6084 		return -EAGAIN;
6085 	}
6086 	ioc_info(ioc,
6087 	    "sense pool(0x%p) - dma(0x%llx): depth(%d), element_size(%d), pool_size (%d kB)\n",
6088 	    ioc->sense, (unsigned long long)ioc->sense_dma,
6089 	    ioc->scsiio_depth, SCSI_SENSE_BUFFERSIZE, sz/1024);
6090 	return 0;
6091 }
6092 
6093 /**
6094  * _base_allocate_reply_pool - Allocating DMA'able memory
6095  *			for reply pool.
6096  * @ioc: Adapter object
6097  * @sz: DMA Pool size
6098  * Return: 0 for success, non-zero for failure.
6099  */
6100 static int
6101 _base_allocate_reply_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
6102 {
6103 	/* reply pool, 4 byte align */
6104 	ioc->reply_dma_pool = dma_pool_create("reply pool",
6105 	    &ioc->pdev->dev, sz, 4, 0);
6106 	if (!ioc->reply_dma_pool)
6107 		return -ENOMEM;
6108 	ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL,
6109 	    &ioc->reply_dma);
6110 	if (!ioc->reply)
6111 		return -EAGAIN;
6112 	if (!mpt3sas_check_same_4gb_region(ioc->reply_dma, sz)) {
6113 		dinitprintk(ioc, pr_err(
6114 		    "Bad Reply Pool! Reply (0x%p) Reply dma = (0x%llx)\n",
6115 		    ioc->reply, (unsigned long long) ioc->reply_dma));
6116 		ioc->use_32bit_dma = true;
6117 		return -EAGAIN;
6118 	}
6119 	ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
6120 	ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
6121 	ioc_info(ioc,
6122 	    "reply pool(0x%p) - dma(0x%llx): depth(%d), frame_size(%d), pool_size(%d kB)\n",
6123 	    ioc->reply, (unsigned long long)ioc->reply_dma,
6124 	    ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024);
6125 	return 0;
6126 }
6127 
6128 /**
6129  * _base_allocate_reply_free_dma_pool - Allocating DMA'able memory
6130  *			for reply free dma pool.
6131  * @ioc: Adapter object
6132  * @sz: DMA Pool size
6133  * Return: 0 for success, non-zero for failure.
6134  */
6135 static int
6136 _base_allocate_reply_free_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
6137 {
6138 	/* reply free queue, 16 byte align */
6139 	ioc->reply_free_dma_pool = dma_pool_create(
6140 	    "reply_free pool", &ioc->pdev->dev, sz, 16, 0);
6141 	if (!ioc->reply_free_dma_pool)
6142 		return -ENOMEM;
6143 	ioc->reply_free = dma_pool_alloc(ioc->reply_free_dma_pool,
6144 	    GFP_KERNEL, &ioc->reply_free_dma);
6145 	if (!ioc->reply_free)
6146 		return -EAGAIN;
6147 	if (!mpt3sas_check_same_4gb_region(ioc->reply_free_dma, sz)) {
6148 		dinitprintk(ioc,
6149 		    pr_err("Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n",
6150 		    ioc->reply_free, (unsigned long long) ioc->reply_free_dma));
6151 		ioc->use_32bit_dma = true;
6152 		return -EAGAIN;
6153 	}
6154 	memset(ioc->reply_free, 0, sz);
6155 	dinitprintk(ioc, ioc_info(ioc,
6156 	    "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
6157 	    ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
6158 	dinitprintk(ioc, ioc_info(ioc,
6159 	    "reply_free_dma (0x%llx)\n",
6160 	    (unsigned long long)ioc->reply_free_dma));
6161 	return 0;
6162 }
6163 
6164 /**
6165  * _base_allocate_reply_post_free_array - Allocating DMA'able memory
6166  *			for reply post free array.
6167  * @ioc: Adapter object
6168  * @reply_post_free_array_sz: DMA Pool size
6169  * Return: 0 for success, non-zero for failure.
6170  */
6171 
6172 static int
6173 _base_allocate_reply_post_free_array(struct MPT3SAS_ADAPTER *ioc,
6174 	u32 reply_post_free_array_sz)
6175 {
6176 	ioc->reply_post_free_array_dma_pool =
6177 	    dma_pool_create("reply_post_free_array pool",
6178 	    &ioc->pdev->dev, reply_post_free_array_sz, 16, 0);
6179 	if (!ioc->reply_post_free_array_dma_pool)
6180 		return -ENOMEM;
6181 	ioc->reply_post_free_array =
6182 	    dma_pool_alloc(ioc->reply_post_free_array_dma_pool,
6183 	    GFP_KERNEL, &ioc->reply_post_free_array_dma);
6184 	if (!ioc->reply_post_free_array)
6185 		return -EAGAIN;
6186 	if (!mpt3sas_check_same_4gb_region(ioc->reply_post_free_array_dma,
6187 	    reply_post_free_array_sz)) {
6188 		dinitprintk(ioc, pr_err(
6189 		    "Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n",
6190 		    ioc->reply_free,
6191 		    (unsigned long long) ioc->reply_free_dma));
6192 		ioc->use_32bit_dma = true;
6193 		return -EAGAIN;
6194 	}
6195 	return 0;
6196 }
6197 /**
6198  * base_alloc_rdpq_dma_pool - Allocating DMA'able memory
6199  *                     for reply queues.
6200  * @ioc: per adapter object
6201  * @sz: DMA Pool size
6202  * Return: 0 for success, non-zero for failure.
6203  */
6204 static int
6205 base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER *ioc, int sz)
6206 {
6207 	int i = 0;
6208 	u32 dma_alloc_count = 0;
6209 	int reply_post_free_sz = ioc->reply_post_queue_depth *
6210 		sizeof(Mpi2DefaultReplyDescriptor_t);
6211 	int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
6212 
6213 	ioc->reply_post = kcalloc(count, sizeof(struct reply_post_struct),
6214 			GFP_KERNEL);
6215 	if (!ioc->reply_post)
6216 		return -ENOMEM;
6217 	/*
6218 	 *  For INVADER_SERIES each set of 8 reply queues(0-7, 8-15, ..) and
6219 	 *  VENTURA_SERIES each set of 16 reply queues(0-15, 16-31, ..) should
6220 	 *  be within 4GB boundary i.e reply queues in a set must have same
6221 	 *  upper 32-bits in their memory address. so here driver is allocating
6222 	 *  the DMA'able memory for reply queues according.
6223 	 *  Driver uses limitation of
6224 	 *  VENTURA_SERIES to manage INVADER_SERIES as well.
6225 	 */
6226 	dma_alloc_count = DIV_ROUND_UP(count,
6227 				RDPQ_MAX_INDEX_IN_ONE_CHUNK);
6228 	ioc->reply_post_free_dma_pool =
6229 		dma_pool_create("reply_post_free pool",
6230 		    &ioc->pdev->dev, sz, 16, 0);
6231 	if (!ioc->reply_post_free_dma_pool)
6232 		return -ENOMEM;
6233 	for (i = 0; i < count; i++) {
6234 		if ((i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0) && dma_alloc_count) {
6235 			ioc->reply_post[i].reply_post_free =
6236 			    dma_pool_zalloc(ioc->reply_post_free_dma_pool,
6237 				GFP_KERNEL,
6238 				&ioc->reply_post[i].reply_post_free_dma);
6239 			if (!ioc->reply_post[i].reply_post_free)
6240 				return -ENOMEM;
6241 			/*
6242 			 * Each set of RDPQ pool must satisfy 4gb boundary
6243 			 * restriction.
6244 			 * 1) Check if allocated resources for RDPQ pool are in
6245 			 *	the same 4GB range.
6246 			 * 2) If #1 is true, continue with 64 bit DMA.
6247 			 * 3) If #1 is false, return 1. which means free all the
6248 			 * resources and set DMA mask to 32 and allocate.
6249 			 */
6250 			if (!mpt3sas_check_same_4gb_region(
6251 				ioc->reply_post[i].reply_post_free_dma, sz)) {
6252 				dinitprintk(ioc,
6253 				    ioc_err(ioc, "bad Replypost free pool(0x%p)"
6254 				    "reply_post_free_dma = (0x%llx)\n",
6255 				    ioc->reply_post[i].reply_post_free,
6256 				    (unsigned long long)
6257 				    ioc->reply_post[i].reply_post_free_dma));
6258 				return -EAGAIN;
6259 			}
6260 			dma_alloc_count--;
6261 
6262 		} else {
6263 			ioc->reply_post[i].reply_post_free =
6264 			    (Mpi2ReplyDescriptorsUnion_t *)
6265 			    ((long)ioc->reply_post[i-1].reply_post_free
6266 			    + reply_post_free_sz);
6267 			ioc->reply_post[i].reply_post_free_dma =
6268 			    (dma_addr_t)
6269 			    (ioc->reply_post[i-1].reply_post_free_dma +
6270 			    reply_post_free_sz);
6271 		}
6272 	}
6273 	return 0;
6274 }
6275 
6276 /**
6277  * _base_allocate_memory_pools - allocate start of day memory pools
6278  * @ioc: per adapter object
6279  *
6280  * Return: 0 success, anything else error.
6281  */
6282 static int
6283 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
6284 {
6285 	struct mpt3sas_facts *facts;
6286 	u16 max_sge_elements;
6287 	u16 chains_needed_per_io;
6288 	u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz;
6289 	u32 retry_sz;
6290 	u32 rdpq_sz = 0, sense_sz = 0;
6291 	u16 max_request_credit, nvme_blocks_needed;
6292 	unsigned short sg_tablesize;
6293 	u16 sge_size;
6294 	int i;
6295 	int ret = 0, rc = 0;
6296 
6297 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6298 
6299 
6300 	retry_sz = 0;
6301 	facts = &ioc->facts;
6302 
6303 	/* command line tunables for max sgl entries */
6304 	if (max_sgl_entries != -1)
6305 		sg_tablesize = max_sgl_entries;
6306 	else {
6307 		if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
6308 			sg_tablesize = MPT2SAS_SG_DEPTH;
6309 		else
6310 			sg_tablesize = MPT3SAS_SG_DEPTH;
6311 	}
6312 
6313 	/* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
6314 	if (reset_devices)
6315 		sg_tablesize = min_t(unsigned short, sg_tablesize,
6316 		   MPT_KDUMP_MIN_PHYS_SEGMENTS);
6317 
6318 	if (ioc->is_mcpu_endpoint)
6319 		ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
6320 	else {
6321 		if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
6322 			sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
6323 		else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
6324 			sg_tablesize = min_t(unsigned short, sg_tablesize,
6325 					SG_MAX_SEGMENTS);
6326 			ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n",
6327 				 sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
6328 		}
6329 		ioc->shost->sg_tablesize = sg_tablesize;
6330 	}
6331 
6332 	ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
6333 		(facts->RequestCredit / 4));
6334 	if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
6335 		if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
6336 				INTERNAL_SCSIIO_CMDS_COUNT)) {
6337 			ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n",
6338 				facts->RequestCredit);
6339 			return -ENOMEM;
6340 		}
6341 		ioc->internal_depth = 10;
6342 	}
6343 
6344 	ioc->hi_priority_depth = ioc->internal_depth - (5);
6345 	/* command line tunables  for max controller queue depth */
6346 	if (max_queue_depth != -1 && max_queue_depth != 0) {
6347 		max_request_credit = min_t(u16, max_queue_depth +
6348 			ioc->internal_depth, facts->RequestCredit);
6349 		if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
6350 			max_request_credit =  MAX_HBA_QUEUE_DEPTH;
6351 	} else if (reset_devices)
6352 		max_request_credit = min_t(u16, facts->RequestCredit,
6353 		    (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth));
6354 	else
6355 		max_request_credit = min_t(u16, facts->RequestCredit,
6356 		    MAX_HBA_QUEUE_DEPTH);
6357 
6358 	/* Firmware maintains additional facts->HighPriorityCredit number of
6359 	 * credits for HiPriprity Request messages, so hba queue depth will be
6360 	 * sum of max_request_credit and high priority queue depth.
6361 	 */
6362 	ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
6363 
6364 	/* request frame size */
6365 	ioc->request_sz = facts->IOCRequestFrameSize * 4;
6366 
6367 	/* reply frame size */
6368 	ioc->reply_sz = facts->ReplyFrameSize * 4;
6369 
6370 	/* chain segment size */
6371 	if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
6372 		if (facts->IOCMaxChainSegmentSize)
6373 			ioc->chain_segment_sz =
6374 					facts->IOCMaxChainSegmentSize *
6375 					MAX_CHAIN_ELEMT_SZ;
6376 		else
6377 		/* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
6378 			ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
6379 						    MAX_CHAIN_ELEMT_SZ;
6380 	} else
6381 		ioc->chain_segment_sz = ioc->request_sz;
6382 
6383 	/* calculate the max scatter element size */
6384 	sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
6385 
6386  retry_allocation:
6387 	total_sz = 0;
6388 	/* calculate number of sg elements left over in the 1st frame */
6389 	max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
6390 	    sizeof(Mpi2SGEIOUnion_t)) + sge_size);
6391 	ioc->max_sges_in_main_message = max_sge_elements/sge_size;
6392 
6393 	/* now do the same for a chain buffer */
6394 	max_sge_elements = ioc->chain_segment_sz - sge_size;
6395 	ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
6396 
6397 	/*
6398 	 *  MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
6399 	 */
6400 	chains_needed_per_io = ((ioc->shost->sg_tablesize -
6401 	   ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
6402 	    + 1;
6403 	if (chains_needed_per_io > facts->MaxChainDepth) {
6404 		chains_needed_per_io = facts->MaxChainDepth;
6405 		ioc->shost->sg_tablesize = min_t(u16,
6406 		ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
6407 		* chains_needed_per_io), ioc->shost->sg_tablesize);
6408 	}
6409 	ioc->chains_needed_per_io = chains_needed_per_io;
6410 
6411 	/* reply free queue sizing - taking into account for 64 FW events */
6412 	ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
6413 
6414 	/* mCPU manage single counters for simplicity */
6415 	if (ioc->is_mcpu_endpoint)
6416 		ioc->reply_post_queue_depth = ioc->reply_free_queue_depth;
6417 	else {
6418 		/* calculate reply descriptor post queue depth */
6419 		ioc->reply_post_queue_depth = ioc->hba_queue_depth +
6420 			ioc->reply_free_queue_depth +  1;
6421 		/* align the reply post queue on the next 16 count boundary */
6422 		if (ioc->reply_post_queue_depth % 16)
6423 			ioc->reply_post_queue_depth += 16 -
6424 				(ioc->reply_post_queue_depth % 16);
6425 	}
6426 
6427 	if (ioc->reply_post_queue_depth >
6428 	    facts->MaxReplyDescriptorPostQueueDepth) {
6429 		ioc->reply_post_queue_depth =
6430 				facts->MaxReplyDescriptorPostQueueDepth -
6431 		    (facts->MaxReplyDescriptorPostQueueDepth % 16);
6432 		ioc->hba_queue_depth =
6433 				((ioc->reply_post_queue_depth - 64) / 2) - 1;
6434 		ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
6435 	}
6436 
6437 	ioc_info(ioc,
6438 	    "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), "
6439 	    "sge_per_io(%d), chains_per_io(%d)\n",
6440 	    ioc->max_sges_in_main_message,
6441 	    ioc->max_sges_in_chain_message,
6442 	    ioc->shost->sg_tablesize,
6443 	    ioc->chains_needed_per_io);
6444 
6445 	/* reply post queue, 16 byte align */
6446 	reply_post_free_sz = ioc->reply_post_queue_depth *
6447 	    sizeof(Mpi2DefaultReplyDescriptor_t);
6448 	rdpq_sz = reply_post_free_sz * RDPQ_MAX_INDEX_IN_ONE_CHUNK;
6449 	if ((_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
6450 	    || (ioc->reply_queue_count < RDPQ_MAX_INDEX_IN_ONE_CHUNK))
6451 		rdpq_sz = reply_post_free_sz * ioc->reply_queue_count;
6452 	ret = base_alloc_rdpq_dma_pool(ioc, rdpq_sz);
6453 	if (ret == -EAGAIN) {
6454 		/*
6455 		 * Free allocated bad RDPQ memory pools.
6456 		 * Change dma coherent mask to 32 bit and reallocate RDPQ
6457 		 */
6458 		_base_release_memory_pools(ioc);
6459 		ioc->use_32bit_dma = true;
6460 		if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
6461 			ioc_err(ioc,
6462 			    "32 DMA mask failed %s\n", pci_name(ioc->pdev));
6463 			return -ENODEV;
6464 		}
6465 		if (base_alloc_rdpq_dma_pool(ioc, rdpq_sz))
6466 			return -ENOMEM;
6467 	} else if (ret == -ENOMEM)
6468 		return -ENOMEM;
6469 	total_sz = rdpq_sz * (!ioc->rdpq_array_enable ? 1 :
6470 	    DIV_ROUND_UP(ioc->reply_queue_count, RDPQ_MAX_INDEX_IN_ONE_CHUNK));
6471 	ioc->scsiio_depth = ioc->hba_queue_depth -
6472 	    ioc->hi_priority_depth - ioc->internal_depth;
6473 
6474 	/* set the scsi host can_queue depth
6475 	 * with some internal commands that could be outstanding
6476 	 */
6477 	ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
6478 	dinitprintk(ioc,
6479 		    ioc_info(ioc, "scsi host: can_queue depth (%d)\n",
6480 			     ioc->shost->can_queue));
6481 
6482 	/* contiguous pool for request and chains, 16 byte align, one extra "
6483 	 * "frame for smid=0
6484 	 */
6485 	ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
6486 	sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
6487 
6488 	/* hi-priority queue */
6489 	sz += (ioc->hi_priority_depth * ioc->request_sz);
6490 
6491 	/* internal queue */
6492 	sz += (ioc->internal_depth * ioc->request_sz);
6493 
6494 	ioc->request_dma_sz = sz;
6495 	ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz,
6496 			&ioc->request_dma, GFP_KERNEL);
6497 	if (!ioc->request) {
6498 		ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n",
6499 			ioc->hba_queue_depth, ioc->chains_needed_per_io,
6500 			ioc->request_sz, sz / 1024);
6501 		if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
6502 			goto out;
6503 		retry_sz = 64;
6504 		ioc->hba_queue_depth -= retry_sz;
6505 		_base_release_memory_pools(ioc);
6506 		goto retry_allocation;
6507 	}
6508 
6509 	if (retry_sz)
6510 		ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n",
6511 			ioc->hba_queue_depth, ioc->chains_needed_per_io,
6512 			ioc->request_sz, sz / 1024);
6513 
6514 	/* hi-priority queue */
6515 	ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
6516 	    ioc->request_sz);
6517 	ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
6518 	    ioc->request_sz);
6519 
6520 	/* internal queue */
6521 	ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
6522 	    ioc->request_sz);
6523 	ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
6524 	    ioc->request_sz);
6525 
6526 	ioc_info(ioc,
6527 	    "request pool(0x%p) - dma(0x%llx): "
6528 	    "depth(%d), frame_size(%d), pool_size(%d kB)\n",
6529 	    ioc->request, (unsigned long long) ioc->request_dma,
6530 	    ioc->hba_queue_depth, ioc->request_sz,
6531 	    (ioc->hba_queue_depth * ioc->request_sz) / 1024);
6532 
6533 	total_sz += sz;
6534 
6535 	dinitprintk(ioc,
6536 		    ioc_info(ioc, "scsiio(0x%p): depth(%d)\n",
6537 			     ioc->request, ioc->scsiio_depth));
6538 
6539 	ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
6540 	sz = ioc->scsiio_depth * sizeof(struct chain_lookup);
6541 	ioc->chain_lookup = kzalloc(sz, GFP_KERNEL);
6542 	if (!ioc->chain_lookup) {
6543 		ioc_err(ioc, "chain_lookup: __get_free_pages failed\n");
6544 		goto out;
6545 	}
6546 
6547 	sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker);
6548 	for (i = 0; i < ioc->scsiio_depth; i++) {
6549 		ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL);
6550 		if (!ioc->chain_lookup[i].chains_per_smid) {
6551 			ioc_err(ioc, "chain_lookup: kzalloc failed\n");
6552 			goto out;
6553 		}
6554 	}
6555 
6556 	/* initialize hi-priority queue smid's */
6557 	ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
6558 	    sizeof(struct request_tracker), GFP_KERNEL);
6559 	if (!ioc->hpr_lookup) {
6560 		ioc_err(ioc, "hpr_lookup: kcalloc failed\n");
6561 		goto out;
6562 	}
6563 	ioc->hi_priority_smid = ioc->scsiio_depth + 1;
6564 	dinitprintk(ioc,
6565 		    ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n",
6566 			     ioc->hi_priority,
6567 			     ioc->hi_priority_depth, ioc->hi_priority_smid));
6568 
6569 	/* initialize internal queue smid's */
6570 	ioc->internal_lookup = kcalloc(ioc->internal_depth,
6571 	    sizeof(struct request_tracker), GFP_KERNEL);
6572 	if (!ioc->internal_lookup) {
6573 		ioc_err(ioc, "internal_lookup: kcalloc failed\n");
6574 		goto out;
6575 	}
6576 	ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
6577 	dinitprintk(ioc,
6578 		    ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n",
6579 			     ioc->internal,
6580 			     ioc->internal_depth, ioc->internal_smid));
6581 
6582 	ioc->io_queue_num = kcalloc(ioc->scsiio_depth,
6583 	    sizeof(u16), GFP_KERNEL);
6584 	if (!ioc->io_queue_num)
6585 		goto out;
6586 	/*
6587 	 * The number of NVMe page sized blocks needed is:
6588 	 *     (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
6589 	 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
6590 	 * that is placed in the main message frame.  8 is the size of each PRP
6591 	 * entry or PRP list pointer entry.  8 is subtracted from page_size
6592 	 * because of the PRP list pointer entry at the end of a page, so this
6593 	 * is not counted as a PRP entry.  The 1 added page is a round up.
6594 	 *
6595 	 * To avoid allocation failures due to the amount of memory that could
6596 	 * be required for NVMe PRP's, only each set of NVMe blocks will be
6597 	 * contiguous, so a new set is allocated for each possible I/O.
6598 	 */
6599 
6600 	ioc->chains_per_prp_buffer = 0;
6601 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
6602 		nvme_blocks_needed =
6603 			(ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1;
6604 		nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE);
6605 		nvme_blocks_needed++;
6606 
6607 		sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth;
6608 		ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL);
6609 		if (!ioc->pcie_sg_lookup) {
6610 			ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n");
6611 			goto out;
6612 		}
6613 		sz = nvme_blocks_needed * ioc->page_size;
6614 		rc = _base_allocate_pcie_sgl_pool(ioc, sz);
6615 		if (rc == -ENOMEM)
6616 			return -ENOMEM;
6617 		else if (rc == -EAGAIN)
6618 			goto try_32bit_dma;
6619 		total_sz += sz * ioc->scsiio_depth;
6620 	}
6621 
6622 	rc = _base_allocate_chain_dma_pool(ioc, ioc->chain_segment_sz);
6623 	if (rc == -ENOMEM)
6624 		return -ENOMEM;
6625 	else if (rc == -EAGAIN)
6626 		goto try_32bit_dma;
6627 	total_sz += ioc->chain_segment_sz * ((ioc->chains_needed_per_io -
6628 		ioc->chains_per_prp_buffer) * ioc->scsiio_depth);
6629 	dinitprintk(ioc,
6630 	    ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
6631 	    ioc->chain_depth, ioc->chain_segment_sz,
6632 	    (ioc->chain_depth * ioc->chain_segment_sz) / 1024));
6633 	/* sense buffers, 4 byte align */
6634 	sense_sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
6635 	rc = _base_allocate_sense_dma_pool(ioc, sense_sz);
6636 	if (rc  == -ENOMEM)
6637 		return -ENOMEM;
6638 	else if (rc == -EAGAIN)
6639 		goto try_32bit_dma;
6640 	total_sz += sense_sz;
6641 	/* reply pool, 4 byte align */
6642 	sz = ioc->reply_free_queue_depth * ioc->reply_sz;
6643 	rc = _base_allocate_reply_pool(ioc, sz);
6644 	if (rc == -ENOMEM)
6645 		return -ENOMEM;
6646 	else if (rc == -EAGAIN)
6647 		goto try_32bit_dma;
6648 	total_sz += sz;
6649 
6650 	/* reply free queue, 16 byte align */
6651 	sz = ioc->reply_free_queue_depth * 4;
6652 	rc = _base_allocate_reply_free_dma_pool(ioc, sz);
6653 	if (rc  == -ENOMEM)
6654 		return -ENOMEM;
6655 	else if (rc == -EAGAIN)
6656 		goto try_32bit_dma;
6657 	dinitprintk(ioc,
6658 		    ioc_info(ioc, "reply_free_dma (0x%llx)\n",
6659 			     (unsigned long long)ioc->reply_free_dma));
6660 	total_sz += sz;
6661 	if (ioc->rdpq_array_enable) {
6662 		reply_post_free_array_sz = ioc->reply_queue_count *
6663 		    sizeof(Mpi2IOCInitRDPQArrayEntry);
6664 		rc = _base_allocate_reply_post_free_array(ioc,
6665 		    reply_post_free_array_sz);
6666 		if (rc == -ENOMEM)
6667 			return -ENOMEM;
6668 		else if (rc == -EAGAIN)
6669 			goto try_32bit_dma;
6670 	}
6671 	ioc->config_page_sz = 512;
6672 	ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev,
6673 			ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL);
6674 	if (!ioc->config_page) {
6675 		ioc_err(ioc, "config page: dma_pool_alloc failed\n");
6676 		goto out;
6677 	}
6678 
6679 	ioc_info(ioc, "config page(0x%p) - dma(0x%llx): size(%d)\n",
6680 	    ioc->config_page, (unsigned long long)ioc->config_page_dma,
6681 	    ioc->config_page_sz);
6682 	total_sz += ioc->config_page_sz;
6683 
6684 	ioc_info(ioc, "Allocated physical memory: size(%d kB)\n",
6685 		 total_sz / 1024);
6686 	ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
6687 		 ioc->shost->can_queue, facts->RequestCredit);
6688 	ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n",
6689 		 ioc->shost->sg_tablesize);
6690 	return 0;
6691 
6692 try_32bit_dma:
6693 	_base_release_memory_pools(ioc);
6694 	if (ioc->use_32bit_dma && (ioc->dma_mask > 32)) {
6695 		/* Change dma coherent mask to 32 bit and reallocate */
6696 		if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
6697 			pr_err("Setting 32 bit coherent DMA mask Failed %s\n",
6698 			    pci_name(ioc->pdev));
6699 			return -ENODEV;
6700 		}
6701 	} else if (_base_reduce_hba_queue_depth(ioc) != 0)
6702 		return -ENOMEM;
6703 	goto retry_allocation;
6704 
6705  out:
6706 	return -ENOMEM;
6707 }
6708 
6709 /**
6710  * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
6711  * @ioc: Pointer to MPT_ADAPTER structure
6712  * @cooked: Request raw or cooked IOC state
6713  *
6714  * Return: all IOC Doorbell register bits if cooked==0, else just the
6715  * Doorbell bits in MPI_IOC_STATE_MASK.
6716  */
6717 u32
6718 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
6719 {
6720 	u32 s, sc;
6721 
6722 	s = ioc->base_readl_ext_retry(&ioc->chip->Doorbell);
6723 	sc = s & MPI2_IOC_STATE_MASK;
6724 	return cooked ? sc : s;
6725 }
6726 
6727 /**
6728  * _base_wait_on_iocstate - waiting on a particular ioc state
6729  * @ioc: ?
6730  * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
6731  * @timeout: timeout in second
6732  *
6733  * Return: 0 for success, non-zero for failure.
6734  */
6735 static int
6736 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
6737 {
6738 	u32 count, cntdn;
6739 	u32 current_state;
6740 
6741 	count = 0;
6742 	cntdn = 1000 * timeout;
6743 	do {
6744 		current_state = mpt3sas_base_get_iocstate(ioc, 1);
6745 		if (current_state == ioc_state)
6746 			return 0;
6747 		if (count && current_state == MPI2_IOC_STATE_FAULT)
6748 			break;
6749 		if (count && current_state == MPI2_IOC_STATE_COREDUMP)
6750 			break;
6751 
6752 		usleep_range(1000, 1500);
6753 		count++;
6754 	} while (--cntdn);
6755 
6756 	return current_state;
6757 }
6758 
6759 /**
6760  * _base_dump_reg_set -	This function will print hexdump of register set.
6761  * @ioc: per adapter object
6762  *
6763  * Return: nothing.
6764  */
6765 static inline void
6766 _base_dump_reg_set(struct MPT3SAS_ADAPTER *ioc)
6767 {
6768 	unsigned int i, sz = 256;
6769 	u32 __iomem *reg = (u32 __iomem *)ioc->chip;
6770 
6771 	ioc_info(ioc, "System Register set:\n");
6772 	for (i = 0; i < (sz / sizeof(u32)); i++)
6773 		pr_info("%08x: %08x\n", (i * 4), readl(&reg[i]));
6774 }
6775 
6776 /**
6777  * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
6778  * a write to the doorbell)
6779  * @ioc: per adapter object
6780  * @timeout: timeout in seconds
6781  *
6782  * Return: 0 for success, non-zero for failure.
6783  *
6784  * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
6785  */
6786 
6787 static int
6788 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
6789 {
6790 	u32 cntdn, count;
6791 	u32 int_status;
6792 
6793 	count = 0;
6794 	cntdn = 1000 * timeout;
6795 	do {
6796 		int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6797 		if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6798 			dhsprintk(ioc,
6799 				  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6800 					   __func__, count, timeout));
6801 			return 0;
6802 		}
6803 
6804 		usleep_range(1000, 1500);
6805 		count++;
6806 	} while (--cntdn);
6807 
6808 	ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6809 		__func__, count, int_status);
6810 	return -EFAULT;
6811 }
6812 
6813 static int
6814 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
6815 {
6816 	u32 cntdn, count;
6817 	u32 int_status;
6818 
6819 	count = 0;
6820 	cntdn = 2000 * timeout;
6821 	do {
6822 		int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6823 		if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6824 			dhsprintk(ioc,
6825 				  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6826 					   __func__, count, timeout));
6827 			return 0;
6828 		}
6829 
6830 		udelay(500);
6831 		count++;
6832 	} while (--cntdn);
6833 
6834 	ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6835 		__func__, count, int_status);
6836 	return -EFAULT;
6837 
6838 }
6839 
6840 /**
6841  * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
6842  * @ioc: per adapter object
6843  * @timeout: timeout in second
6844  *
6845  * Return: 0 for success, non-zero for failure.
6846  *
6847  * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
6848  * doorbell.
6849  */
6850 static int
6851 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
6852 {
6853 	u32 cntdn, count;
6854 	u32 int_status;
6855 	u32 doorbell;
6856 
6857 	count = 0;
6858 	cntdn = 1000 * timeout;
6859 	do {
6860 		int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6861 		if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
6862 			dhsprintk(ioc,
6863 				  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6864 					   __func__, count, timeout));
6865 			return 0;
6866 		} else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6867 			doorbell = ioc->base_readl_ext_retry(&ioc->chip->Doorbell);
6868 			if ((doorbell & MPI2_IOC_STATE_MASK) ==
6869 			    MPI2_IOC_STATE_FAULT) {
6870 				mpt3sas_print_fault_code(ioc, doorbell);
6871 				return -EFAULT;
6872 			}
6873 			if ((doorbell & MPI2_IOC_STATE_MASK) ==
6874 			    MPI2_IOC_STATE_COREDUMP) {
6875 				mpt3sas_print_coredump_info(ioc, doorbell);
6876 				return -EFAULT;
6877 			}
6878 		} else if (int_status == 0xFFFFFFFF)
6879 			goto out;
6880 
6881 		usleep_range(1000, 1500);
6882 		count++;
6883 	} while (--cntdn);
6884 
6885  out:
6886 	ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6887 		__func__, count, int_status);
6888 	return -EFAULT;
6889 }
6890 
6891 /**
6892  * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
6893  * @ioc: per adapter object
6894  * @timeout: timeout in second
6895  *
6896  * Return: 0 for success, non-zero for failure.
6897  */
6898 static int
6899 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
6900 {
6901 	u32 cntdn, count;
6902 	u32 doorbell_reg;
6903 
6904 	count = 0;
6905 	cntdn = 1000 * timeout;
6906 	do {
6907 		doorbell_reg = ioc->base_readl_ext_retry(&ioc->chip->Doorbell);
6908 		if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
6909 			dhsprintk(ioc,
6910 				  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6911 					   __func__, count, timeout));
6912 			return 0;
6913 		}
6914 
6915 		usleep_range(1000, 1500);
6916 		count++;
6917 	} while (--cntdn);
6918 
6919 	ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
6920 		__func__, count, doorbell_reg);
6921 	return -EFAULT;
6922 }
6923 
6924 /**
6925  * _base_send_ioc_reset - send doorbell reset
6926  * @ioc: per adapter object
6927  * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
6928  * @timeout: timeout in second
6929  *
6930  * Return: 0 for success, non-zero for failure.
6931  */
6932 static int
6933 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
6934 {
6935 	u32 ioc_state;
6936 	int r = 0;
6937 	unsigned long flags;
6938 
6939 	if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
6940 		ioc_err(ioc, "%s: unknown reset_type\n", __func__);
6941 		return -EFAULT;
6942 	}
6943 
6944 	if (!(ioc->facts.IOCCapabilities &
6945 	   MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
6946 		return -EFAULT;
6947 
6948 	ioc_info(ioc, "sending message unit reset !!\n");
6949 
6950 	writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
6951 	    &ioc->chip->Doorbell);
6952 	if ((_base_wait_for_doorbell_ack(ioc, 15))) {
6953 		r = -EFAULT;
6954 		goto out;
6955 	}
6956 
6957 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
6958 	if (ioc_state) {
6959 		ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6960 			__func__, ioc_state);
6961 		r = -EFAULT;
6962 		goto out;
6963 	}
6964  out:
6965 	if (r != 0) {
6966 		ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6967 		spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
6968 		/*
6969 		 * Wait for IOC state CoreDump to clear only during
6970 		 * HBA initialization & release time.
6971 		 */
6972 		if ((ioc_state & MPI2_IOC_STATE_MASK) ==
6973 		    MPI2_IOC_STATE_COREDUMP && (ioc->is_driver_loading == 1 ||
6974 		    ioc->fault_reset_work_q == NULL)) {
6975 			spin_unlock_irqrestore(
6976 			    &ioc->ioc_reset_in_progress_lock, flags);
6977 			mpt3sas_print_coredump_info(ioc, ioc_state);
6978 			mpt3sas_base_wait_for_coredump_completion(ioc,
6979 			    __func__);
6980 			spin_lock_irqsave(
6981 			    &ioc->ioc_reset_in_progress_lock, flags);
6982 		}
6983 		spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
6984 	}
6985 	ioc_info(ioc, "message unit reset: %s\n",
6986 		 r == 0 ? "SUCCESS" : "FAILED");
6987 	return r;
6988 }
6989 
6990 /**
6991  * mpt3sas_wait_for_ioc - IOC's operational state is checked here.
6992  * @ioc: per adapter object
6993  * @timeout: timeout in seconds
6994  *
6995  * Return: Waits up to timeout seconds for the IOC to
6996  * become operational. Returns 0 if IOC is present
6997  * and operational; otherwise returns %-EFAULT.
6998  */
6999 
7000 int
7001 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout)
7002 {
7003 	int wait_state_count = 0;
7004 	u32 ioc_state;
7005 
7006 	do {
7007 		ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
7008 		if (ioc_state == MPI2_IOC_STATE_OPERATIONAL)
7009 			break;
7010 
7011 		/*
7012 		 * Watchdog thread will be started after IOC Initialization, so
7013 		 * no need to wait here for IOC state to become operational
7014 		 * when IOC Initialization is on. Instead the driver will
7015 		 * return ETIME status, so that calling function can issue
7016 		 * diag reset operation and retry the command.
7017 		 */
7018 		if (ioc->is_driver_loading)
7019 			return -ETIME;
7020 
7021 		ssleep(1);
7022 		ioc_info(ioc, "%s: waiting for operational state(count=%d)\n",
7023 				__func__, ++wait_state_count);
7024 	} while (--timeout);
7025 	if (!timeout) {
7026 		ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__);
7027 		return -EFAULT;
7028 	}
7029 	if (wait_state_count)
7030 		ioc_info(ioc, "ioc is operational\n");
7031 	return 0;
7032 }
7033 
7034 /**
7035  * _base_handshake_req_reply_wait - send request thru doorbell interface
7036  * @ioc: per adapter object
7037  * @request_bytes: request length
7038  * @request: pointer having request payload
7039  * @reply_bytes: reply length
7040  * @reply: pointer to reply payload
7041  * @timeout: timeout in second
7042  *
7043  * Return: 0 for success, non-zero for failure.
7044  */
7045 static int
7046 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
7047 	u32 *request, int reply_bytes, u16 *reply, int timeout)
7048 {
7049 	MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
7050 	int i;
7051 	u8 failed;
7052 	__le32 *mfp;
7053 
7054 	/* make sure doorbell is not in use */
7055 	if ((ioc->base_readl_ext_retry(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
7056 		ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__);
7057 		return -EFAULT;
7058 	}
7059 
7060 	/* clear pending doorbell interrupts from previous state changes */
7061 	if (ioc->base_readl(&ioc->chip->HostInterruptStatus) &
7062 	    MPI2_HIS_IOC2SYS_DB_STATUS)
7063 		writel(0, &ioc->chip->HostInterruptStatus);
7064 
7065 	/* send message to ioc */
7066 	writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
7067 	    ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
7068 	    &ioc->chip->Doorbell);
7069 
7070 	if ((_base_spin_on_doorbell_int(ioc, 5))) {
7071 		ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
7072 			__LINE__);
7073 		return -EFAULT;
7074 	}
7075 	writel(0, &ioc->chip->HostInterruptStatus);
7076 
7077 	if ((_base_wait_for_doorbell_ack(ioc, 5))) {
7078 		ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n",
7079 			__LINE__);
7080 		return -EFAULT;
7081 	}
7082 
7083 	/* send message 32-bits at a time */
7084 	for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
7085 		writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
7086 		if ((_base_wait_for_doorbell_ack(ioc, 5)))
7087 			failed = 1;
7088 	}
7089 
7090 	if (failed) {
7091 		ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n",
7092 			__LINE__);
7093 		return -EFAULT;
7094 	}
7095 
7096 	/* now wait for the reply */
7097 	if ((_base_wait_for_doorbell_int(ioc, timeout))) {
7098 		ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
7099 			__LINE__);
7100 		return -EFAULT;
7101 	}
7102 
7103 	/* read the first two 16-bits, it gives the total length of the reply */
7104 	reply[0] = le16_to_cpu(ioc->base_readl_ext_retry(&ioc->chip->Doorbell)
7105 	    & MPI2_DOORBELL_DATA_MASK);
7106 	writel(0, &ioc->chip->HostInterruptStatus);
7107 	if ((_base_wait_for_doorbell_int(ioc, 5))) {
7108 		ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
7109 			__LINE__);
7110 		return -EFAULT;
7111 	}
7112 	reply[1] = le16_to_cpu(ioc->base_readl_ext_retry(&ioc->chip->Doorbell)
7113 	    & MPI2_DOORBELL_DATA_MASK);
7114 	writel(0, &ioc->chip->HostInterruptStatus);
7115 
7116 	for (i = 2; i < default_reply->MsgLength * 2; i++)  {
7117 		if ((_base_wait_for_doorbell_int(ioc, 5))) {
7118 			ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
7119 				__LINE__);
7120 			return -EFAULT;
7121 		}
7122 		if (i >=  reply_bytes/2) /* overflow case */
7123 			ioc->base_readl_ext_retry(&ioc->chip->Doorbell);
7124 		else
7125 			reply[i] = le16_to_cpu(
7126 			    ioc->base_readl_ext_retry(&ioc->chip->Doorbell)
7127 			    & MPI2_DOORBELL_DATA_MASK);
7128 		writel(0, &ioc->chip->HostInterruptStatus);
7129 	}
7130 
7131 	_base_wait_for_doorbell_int(ioc, 5);
7132 	if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
7133 		dhsprintk(ioc,
7134 			  ioc_info(ioc, "doorbell is in use (line=%d)\n",
7135 				   __LINE__));
7136 	}
7137 	writel(0, &ioc->chip->HostInterruptStatus);
7138 
7139 	if (ioc->logging_level & MPT_DEBUG_INIT) {
7140 		mfp = (__le32 *)reply;
7141 		pr_info("\toffset:data\n");
7142 		for (i = 0; i < reply_bytes/4; i++)
7143 			ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
7144 			    le32_to_cpu(mfp[i]));
7145 	}
7146 	return 0;
7147 }
7148 
7149 /**
7150  * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
7151  * @ioc: per adapter object
7152  * @mpi_reply: the reply payload from FW
7153  * @mpi_request: the request payload sent to FW
7154  *
7155  * The SAS IO Unit Control Request message allows the host to perform low-level
7156  * operations, such as resets on the PHYs of the IO Unit, also allows the host
7157  * to obtain the IOC assigned device handles for a device if it has other
7158  * identifying information about the device, in addition allows the host to
7159  * remove IOC resources associated with the device.
7160  *
7161  * Return: 0 for success, non-zero for failure.
7162  */
7163 int
7164 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
7165 	Mpi2SasIoUnitControlReply_t *mpi_reply,
7166 	Mpi2SasIoUnitControlRequest_t *mpi_request)
7167 {
7168 	u16 smid;
7169 	u8 issue_reset = 0;
7170 	int rc;
7171 	void *request;
7172 
7173 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7174 
7175 	mutex_lock(&ioc->base_cmds.mutex);
7176 
7177 	if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
7178 		ioc_err(ioc, "%s: base_cmd in use\n", __func__);
7179 		rc = -EAGAIN;
7180 		goto out;
7181 	}
7182 
7183 	rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
7184 	if (rc)
7185 		goto out;
7186 
7187 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7188 	if (!smid) {
7189 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7190 		rc = -EAGAIN;
7191 		goto out;
7192 	}
7193 
7194 	rc = 0;
7195 	ioc->base_cmds.status = MPT3_CMD_PENDING;
7196 	request = mpt3sas_base_get_msg_frame(ioc, smid);
7197 	ioc->base_cmds.smid = smid;
7198 	memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
7199 	if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
7200 	    mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
7201 		ioc->ioc_link_reset_in_progress = 1;
7202 	init_completion(&ioc->base_cmds.done);
7203 	ioc->put_smid_default(ioc, smid);
7204 	wait_for_completion_timeout(&ioc->base_cmds.done,
7205 	    msecs_to_jiffies(10000));
7206 	if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
7207 	    mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
7208 	    ioc->ioc_link_reset_in_progress)
7209 		ioc->ioc_link_reset_in_progress = 0;
7210 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7211 		mpt3sas_check_cmd_timeout(ioc, ioc->base_cmds.status,
7212 		    mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)/4,
7213 		    issue_reset);
7214 		goto issue_host_reset;
7215 	}
7216 	if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
7217 		memcpy(mpi_reply, ioc->base_cmds.reply,
7218 		    sizeof(Mpi2SasIoUnitControlReply_t));
7219 	else
7220 		memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
7221 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7222 	goto out;
7223 
7224  issue_host_reset:
7225 	if (issue_reset)
7226 		mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
7227 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7228 	rc = -EFAULT;
7229  out:
7230 	mutex_unlock(&ioc->base_cmds.mutex);
7231 	return rc;
7232 }
7233 
7234 /**
7235  * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
7236  * @ioc: per adapter object
7237  * @mpi_reply: the reply payload from FW
7238  * @mpi_request: the request payload sent to FW
7239  *
7240  * The SCSI Enclosure Processor request message causes the IOC to
7241  * communicate with SES devices to control LED status signals.
7242  *
7243  * Return: 0 for success, non-zero for failure.
7244  */
7245 int
7246 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
7247 	Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
7248 {
7249 	u16 smid;
7250 	u8 issue_reset = 0;
7251 	int rc;
7252 	void *request;
7253 
7254 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7255 
7256 	mutex_lock(&ioc->base_cmds.mutex);
7257 
7258 	if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
7259 		ioc_err(ioc, "%s: base_cmd in use\n", __func__);
7260 		rc = -EAGAIN;
7261 		goto out;
7262 	}
7263 
7264 	rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
7265 	if (rc)
7266 		goto out;
7267 
7268 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7269 	if (!smid) {
7270 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7271 		rc = -EAGAIN;
7272 		goto out;
7273 	}
7274 
7275 	rc = 0;
7276 	ioc->base_cmds.status = MPT3_CMD_PENDING;
7277 	request = mpt3sas_base_get_msg_frame(ioc, smid);
7278 	ioc->base_cmds.smid = smid;
7279 	memset(request, 0, ioc->request_sz);
7280 	memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
7281 	init_completion(&ioc->base_cmds.done);
7282 	ioc->put_smid_default(ioc, smid);
7283 	wait_for_completion_timeout(&ioc->base_cmds.done,
7284 	    msecs_to_jiffies(10000));
7285 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7286 		mpt3sas_check_cmd_timeout(ioc,
7287 		    ioc->base_cmds.status, mpi_request,
7288 		    sizeof(Mpi2SepRequest_t)/4, issue_reset);
7289 		goto issue_host_reset;
7290 	}
7291 	if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
7292 		memcpy(mpi_reply, ioc->base_cmds.reply,
7293 		    sizeof(Mpi2SepReply_t));
7294 	else
7295 		memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
7296 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7297 	goto out;
7298 
7299  issue_host_reset:
7300 	if (issue_reset)
7301 		mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
7302 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7303 	rc = -EFAULT;
7304  out:
7305 	mutex_unlock(&ioc->base_cmds.mutex);
7306 	return rc;
7307 }
7308 
7309 /**
7310  * _base_get_port_facts - obtain port facts reply and save in ioc
7311  * @ioc: per adapter object
7312  * @port: ?
7313  *
7314  * Return: 0 for success, non-zero for failure.
7315  */
7316 static int
7317 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
7318 {
7319 	Mpi2PortFactsRequest_t mpi_request;
7320 	Mpi2PortFactsReply_t mpi_reply;
7321 	struct mpt3sas_port_facts *pfacts;
7322 	int mpi_reply_sz, mpi_request_sz, r;
7323 
7324 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7325 
7326 	mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
7327 	mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
7328 	memset(&mpi_request, 0, mpi_request_sz);
7329 	mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
7330 	mpi_request.PortNumber = port;
7331 	r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
7332 	    (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
7333 
7334 	if (r != 0) {
7335 		ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7336 		return r;
7337 	}
7338 
7339 	pfacts = &ioc->pfacts[port];
7340 	memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
7341 	pfacts->PortNumber = mpi_reply.PortNumber;
7342 	pfacts->VP_ID = mpi_reply.VP_ID;
7343 	pfacts->VF_ID = mpi_reply.VF_ID;
7344 	pfacts->MaxPostedCmdBuffers =
7345 	    le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
7346 
7347 	return 0;
7348 }
7349 
7350 /**
7351  * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
7352  * @ioc: per adapter object
7353  * @timeout:
7354  *
7355  * Return: 0 for success, non-zero for failure.
7356  */
7357 static int
7358 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
7359 {
7360 	u32 ioc_state;
7361 	int rc;
7362 
7363 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7364 
7365 	if (ioc->pci_error_recovery) {
7366 		dfailprintk(ioc,
7367 			    ioc_info(ioc, "%s: host in pci error recovery\n",
7368 				     __func__));
7369 		return -EFAULT;
7370 	}
7371 
7372 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7373 	dhsprintk(ioc,
7374 		  ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
7375 			   __func__, ioc_state));
7376 
7377 	if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
7378 	    (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
7379 		return 0;
7380 
7381 	if (ioc_state & MPI2_DOORBELL_USED) {
7382 		dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n"));
7383 		goto issue_diag_reset;
7384 	}
7385 
7386 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
7387 		mpt3sas_print_fault_code(ioc, ioc_state &
7388 		    MPI2_DOORBELL_DATA_MASK);
7389 		goto issue_diag_reset;
7390 	} else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
7391 	    MPI2_IOC_STATE_COREDUMP) {
7392 		ioc_info(ioc,
7393 		    "%s: Skipping the diag reset here. (ioc_state=0x%x)\n",
7394 		    __func__, ioc_state);
7395 		return -EFAULT;
7396 	}
7397 
7398 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
7399 	if (ioc_state) {
7400 		dfailprintk(ioc,
7401 			    ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
7402 				     __func__, ioc_state));
7403 		return -EFAULT;
7404 	}
7405 
7406 	return 0;
7407 
7408 issue_diag_reset:
7409 	rc = _base_diag_reset(ioc);
7410 	return rc;
7411 }
7412 
7413 /**
7414  * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
7415  * @ioc: per adapter object
7416  *
7417  * Return: 0 for success, non-zero for failure.
7418  */
7419 static int
7420 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
7421 {
7422 	Mpi2IOCFactsRequest_t mpi_request;
7423 	Mpi2IOCFactsReply_t mpi_reply;
7424 	struct mpt3sas_facts *facts;
7425 	int mpi_reply_sz, mpi_request_sz, r;
7426 
7427 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7428 
7429 	r = _base_wait_for_iocstate(ioc, 10);
7430 	if (r) {
7431 		dfailprintk(ioc,
7432 			    ioc_info(ioc, "%s: failed getting to correct state\n",
7433 				     __func__));
7434 		return r;
7435 	}
7436 	mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
7437 	mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
7438 	memset(&mpi_request, 0, mpi_request_sz);
7439 	mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
7440 	r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
7441 	    (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
7442 
7443 	if (r != 0) {
7444 		ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7445 		return r;
7446 	}
7447 
7448 	facts = &ioc->facts;
7449 	memset(facts, 0, sizeof(struct mpt3sas_facts));
7450 	facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
7451 	facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
7452 	facts->VP_ID = mpi_reply.VP_ID;
7453 	facts->VF_ID = mpi_reply.VF_ID;
7454 	facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
7455 	facts->MaxChainDepth = mpi_reply.MaxChainDepth;
7456 	facts->WhoInit = mpi_reply.WhoInit;
7457 	facts->NumberOfPorts = mpi_reply.NumberOfPorts;
7458 	facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
7459 	if (ioc->msix_enable && (facts->MaxMSIxVectors <=
7460 	    MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc)))
7461 		ioc->combined_reply_queue = 0;
7462 	facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
7463 	facts->MaxReplyDescriptorPostQueueDepth =
7464 	    le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
7465 	facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
7466 	facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
7467 	if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
7468 		ioc->ir_firmware = 1;
7469 	if ((facts->IOCCapabilities &
7470 	      MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices))
7471 		ioc->rdpq_array_capable = 1;
7472 	if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
7473 	    && ioc->is_aero_ioc)
7474 		ioc->atomic_desc_capable = 1;
7475 	facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
7476 	facts->IOCRequestFrameSize =
7477 	    le16_to_cpu(mpi_reply.IOCRequestFrameSize);
7478 	if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
7479 		facts->IOCMaxChainSegmentSize =
7480 			le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
7481 	}
7482 	facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
7483 	facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
7484 	ioc->shost->max_id = -1;
7485 	facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
7486 	facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
7487 	facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
7488 	facts->HighPriorityCredit =
7489 	    le16_to_cpu(mpi_reply.HighPriorityCredit);
7490 	facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
7491 	facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
7492 	facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize;
7493 
7494 	/*
7495 	 * Get the Page Size from IOC Facts. If it's 0, default to 4k.
7496 	 */
7497 	ioc->page_size = 1 << facts->CurrentHostPageSize;
7498 	if (ioc->page_size == 1) {
7499 		ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n");
7500 		ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K;
7501 	}
7502 	dinitprintk(ioc,
7503 		    ioc_info(ioc, "CurrentHostPageSize(%d)\n",
7504 			     facts->CurrentHostPageSize));
7505 
7506 	dinitprintk(ioc,
7507 		    ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n",
7508 			     facts->RequestCredit, facts->MaxChainDepth));
7509 	dinitprintk(ioc,
7510 		    ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n",
7511 			     facts->IOCRequestFrameSize * 4,
7512 			     facts->ReplyFrameSize * 4));
7513 	return 0;
7514 }
7515 
7516 /**
7517  * _base_send_ioc_init - send ioc_init to firmware
7518  * @ioc: per adapter object
7519  *
7520  * Return: 0 for success, non-zero for failure.
7521  */
7522 static int
7523 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
7524 {
7525 	Mpi2IOCInitRequest_t mpi_request;
7526 	Mpi2IOCInitReply_t mpi_reply;
7527 	int i, r = 0;
7528 	ktime_t current_time;
7529 	u16 ioc_status;
7530 	u32 reply_post_free_array_sz = 0;
7531 
7532 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7533 
7534 	memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
7535 	mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
7536 	mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
7537 	mpi_request.VF_ID = 0; /* TODO */
7538 	mpi_request.VP_ID = 0;
7539 	mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
7540 	mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
7541 	mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K;
7542 
7543 	if (_base_is_controller_msix_enabled(ioc))
7544 		mpi_request.HostMSIxVectors = ioc->reply_queue_count;
7545 	mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
7546 	mpi_request.ReplyDescriptorPostQueueDepth =
7547 	    cpu_to_le16(ioc->reply_post_queue_depth);
7548 	mpi_request.ReplyFreeQueueDepth =
7549 	    cpu_to_le16(ioc->reply_free_queue_depth);
7550 
7551 	mpi_request.SenseBufferAddressHigh =
7552 	    cpu_to_le32((u64)ioc->sense_dma >> 32);
7553 	mpi_request.SystemReplyAddressHigh =
7554 	    cpu_to_le32((u64)ioc->reply_dma >> 32);
7555 	mpi_request.SystemRequestFrameBaseAddress =
7556 	    cpu_to_le64((u64)ioc->request_dma);
7557 	mpi_request.ReplyFreeQueueAddress =
7558 	    cpu_to_le64((u64)ioc->reply_free_dma);
7559 
7560 	if (ioc->rdpq_array_enable) {
7561 		reply_post_free_array_sz = ioc->reply_queue_count *
7562 		    sizeof(Mpi2IOCInitRDPQArrayEntry);
7563 		memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz);
7564 		for (i = 0; i < ioc->reply_queue_count; i++)
7565 			ioc->reply_post_free_array[i].RDPQBaseAddress =
7566 			    cpu_to_le64(
7567 				(u64)ioc->reply_post[i].reply_post_free_dma);
7568 		mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
7569 		mpi_request.ReplyDescriptorPostQueueAddress =
7570 		    cpu_to_le64((u64)ioc->reply_post_free_array_dma);
7571 	} else {
7572 		mpi_request.ReplyDescriptorPostQueueAddress =
7573 		    cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
7574 	}
7575 
7576 	/*
7577 	 * Set the flag to enable CoreDump state feature in IOC firmware.
7578 	 */
7579 	mpi_request.ConfigurationFlags |=
7580 	    cpu_to_le16(MPI26_IOCINIT_CFGFLAGS_COREDUMP_ENABLE);
7581 
7582 	/* This time stamp specifies number of milliseconds
7583 	 * since epoch ~ midnight January 1, 1970.
7584 	 */
7585 	current_time = ktime_get_real();
7586 	mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
7587 
7588 	if (ioc->logging_level & MPT_DEBUG_INIT) {
7589 		__le32 *mfp;
7590 		int i;
7591 
7592 		mfp = (__le32 *)&mpi_request;
7593 		ioc_info(ioc, "\toffset:data\n");
7594 		for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
7595 			ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
7596 			    le32_to_cpu(mfp[i]));
7597 	}
7598 
7599 	r = _base_handshake_req_reply_wait(ioc,
7600 	    sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
7601 	    sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 30);
7602 
7603 	if (r != 0) {
7604 		ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7605 		return r;
7606 	}
7607 
7608 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
7609 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
7610 	    mpi_reply.IOCLogInfo) {
7611 		ioc_err(ioc, "%s: failed\n", __func__);
7612 		r = -EIO;
7613 	}
7614 
7615 	/* Reset TimeSync Counter*/
7616 	ioc->timestamp_update_count = 0;
7617 	return r;
7618 }
7619 
7620 /**
7621  * mpt3sas_port_enable_done - command completion routine for port enable
7622  * @ioc: per adapter object
7623  * @smid: system request message index
7624  * @msix_index: MSIX table index supplied by the OS
7625  * @reply: reply message frame(lower 32bit addr)
7626  *
7627  * Return: 1 meaning mf should be freed from _base_interrupt
7628  *          0 means the mf is freed from this function.
7629  */
7630 u8
7631 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
7632 	u32 reply)
7633 {
7634 	MPI2DefaultReply_t *mpi_reply;
7635 	u16 ioc_status;
7636 
7637 	if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
7638 		return 1;
7639 
7640 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
7641 	if (!mpi_reply)
7642 		return 1;
7643 
7644 	if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
7645 		return 1;
7646 
7647 	ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
7648 	ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
7649 	ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
7650 	memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
7651 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
7652 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
7653 		ioc->port_enable_failed = 1;
7654 
7655 	if (ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE_ASYNC) {
7656 		ioc->port_enable_cmds.status &= ~MPT3_CMD_COMPLETE_ASYNC;
7657 		if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
7658 			mpt3sas_port_enable_complete(ioc);
7659 			return 1;
7660 		} else {
7661 			ioc->start_scan_failed = ioc_status;
7662 			ioc->start_scan = 0;
7663 			return 1;
7664 		}
7665 	}
7666 	complete(&ioc->port_enable_cmds.done);
7667 	return 1;
7668 }
7669 
7670 /**
7671  * _base_send_port_enable - send port_enable(discovery stuff) to firmware
7672  * @ioc: per adapter object
7673  *
7674  * Return: 0 for success, non-zero for failure.
7675  */
7676 static int
7677 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
7678 {
7679 	Mpi2PortEnableRequest_t *mpi_request;
7680 	Mpi2PortEnableReply_t *mpi_reply;
7681 	int r = 0;
7682 	u16 smid;
7683 	u16 ioc_status;
7684 
7685 	ioc_info(ioc, "sending port enable !!\n");
7686 
7687 	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7688 		ioc_err(ioc, "%s: internal command already in use\n", __func__);
7689 		return -EAGAIN;
7690 	}
7691 
7692 	smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
7693 	if (!smid) {
7694 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7695 		return -EAGAIN;
7696 	}
7697 
7698 	ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
7699 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7700 	ioc->port_enable_cmds.smid = smid;
7701 	memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
7702 	mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
7703 
7704 	init_completion(&ioc->port_enable_cmds.done);
7705 	ioc->put_smid_default(ioc, smid);
7706 	wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
7707 	if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
7708 		ioc_err(ioc, "%s: timeout\n", __func__);
7709 		_debug_dump_mf(mpi_request,
7710 		    sizeof(Mpi2PortEnableRequest_t)/4);
7711 		if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
7712 			r = -EFAULT;
7713 		else
7714 			r = -ETIME;
7715 		goto out;
7716 	}
7717 
7718 	mpi_reply = ioc->port_enable_cmds.reply;
7719 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
7720 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
7721 		ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n",
7722 			__func__, ioc_status);
7723 		r = -EFAULT;
7724 		goto out;
7725 	}
7726 
7727  out:
7728 	ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
7729 	ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED");
7730 	return r;
7731 }
7732 
7733 /**
7734  * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
7735  * @ioc: per adapter object
7736  *
7737  * Return: 0 for success, non-zero for failure.
7738  */
7739 int
7740 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
7741 {
7742 	Mpi2PortEnableRequest_t *mpi_request;
7743 	u16 smid;
7744 
7745 	ioc_info(ioc, "sending port enable !!\n");
7746 
7747 	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7748 		ioc_err(ioc, "%s: internal command already in use\n", __func__);
7749 		return -EAGAIN;
7750 	}
7751 
7752 	smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
7753 	if (!smid) {
7754 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7755 		return -EAGAIN;
7756 	}
7757 	ioc->drv_internal_flags |= MPT_DRV_INTERNAL_FIRST_PE_ISSUED;
7758 	ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
7759 	ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE_ASYNC;
7760 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7761 	ioc->port_enable_cmds.smid = smid;
7762 	memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
7763 	mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
7764 
7765 	ioc->put_smid_default(ioc, smid);
7766 	return 0;
7767 }
7768 
7769 /**
7770  * _base_determine_wait_on_discovery - desposition
7771  * @ioc: per adapter object
7772  *
7773  * Decide whether to wait on discovery to complete. Used to either
7774  * locate boot device, or report volumes ahead of physical devices.
7775  *
7776  * Return: 1 for wait, 0 for don't wait.
7777  */
7778 static int
7779 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
7780 {
7781 	/* We wait for discovery to complete if IR firmware is loaded.
7782 	 * The sas topology events arrive before PD events, so we need time to
7783 	 * turn on the bit in ioc->pd_handles to indicate PD
7784 	 * Also, it maybe required to report Volumes ahead of physical
7785 	 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
7786 	 */
7787 	if (ioc->ir_firmware)
7788 		return 1;
7789 
7790 	/* if no Bios, then we don't need to wait */
7791 	if (!ioc->bios_pg3.BiosVersion)
7792 		return 0;
7793 
7794 	/* Bios is present, then we drop down here.
7795 	 *
7796 	 * If there any entries in the Bios Page 2, then we wait
7797 	 * for discovery to complete.
7798 	 */
7799 
7800 	/* Current Boot Device */
7801 	if ((ioc->bios_pg2.CurrentBootDeviceForm &
7802 	    MPI2_BIOSPAGE2_FORM_MASK) ==
7803 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
7804 	/* Request Boot Device */
7805 	   (ioc->bios_pg2.ReqBootDeviceForm &
7806 	    MPI2_BIOSPAGE2_FORM_MASK) ==
7807 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
7808 	/* Alternate Request Boot Device */
7809 	   (ioc->bios_pg2.ReqAltBootDeviceForm &
7810 	    MPI2_BIOSPAGE2_FORM_MASK) ==
7811 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
7812 		return 0;
7813 
7814 	return 1;
7815 }
7816 
7817 /**
7818  * _base_unmask_events - turn on notification for this event
7819  * @ioc: per adapter object
7820  * @event: firmware event
7821  *
7822  * The mask is stored in ioc->event_masks.
7823  */
7824 static void
7825 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
7826 {
7827 	u32 desired_event;
7828 
7829 	if (event >= 128)
7830 		return;
7831 
7832 	desired_event = (1 << (event % 32));
7833 
7834 	if (event < 32)
7835 		ioc->event_masks[0] &= ~desired_event;
7836 	else if (event < 64)
7837 		ioc->event_masks[1] &= ~desired_event;
7838 	else if (event < 96)
7839 		ioc->event_masks[2] &= ~desired_event;
7840 	else if (event < 128)
7841 		ioc->event_masks[3] &= ~desired_event;
7842 }
7843 
7844 /**
7845  * _base_event_notification - send event notification
7846  * @ioc: per adapter object
7847  *
7848  * Return: 0 for success, non-zero for failure.
7849  */
7850 static int
7851 _base_event_notification(struct MPT3SAS_ADAPTER *ioc)
7852 {
7853 	Mpi2EventNotificationRequest_t *mpi_request;
7854 	u16 smid;
7855 	int r = 0;
7856 	int i, issue_diag_reset = 0;
7857 
7858 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7859 
7860 	if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
7861 		ioc_err(ioc, "%s: internal command already in use\n", __func__);
7862 		return -EAGAIN;
7863 	}
7864 
7865 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7866 	if (!smid) {
7867 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7868 		return -EAGAIN;
7869 	}
7870 	ioc->base_cmds.status = MPT3_CMD_PENDING;
7871 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7872 	ioc->base_cmds.smid = smid;
7873 	memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
7874 	mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
7875 	mpi_request->VF_ID = 0; /* TODO */
7876 	mpi_request->VP_ID = 0;
7877 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
7878 		mpi_request->EventMasks[i] =
7879 		    cpu_to_le32(ioc->event_masks[i]);
7880 	init_completion(&ioc->base_cmds.done);
7881 	ioc->put_smid_default(ioc, smid);
7882 	wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
7883 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7884 		ioc_err(ioc, "%s: timeout\n", __func__);
7885 		_debug_dump_mf(mpi_request,
7886 		    sizeof(Mpi2EventNotificationRequest_t)/4);
7887 		if (ioc->base_cmds.status & MPT3_CMD_RESET)
7888 			r = -EFAULT;
7889 		else
7890 			issue_diag_reset = 1;
7891 
7892 	} else
7893 		dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__));
7894 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7895 
7896 	if (issue_diag_reset) {
7897 		if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED)
7898 			return -EFAULT;
7899 		if (mpt3sas_base_check_for_fault_and_issue_reset(ioc))
7900 			return -EFAULT;
7901 		r = -EAGAIN;
7902 	}
7903 	return r;
7904 }
7905 
7906 /**
7907  * mpt3sas_base_validate_event_type - validating event types
7908  * @ioc: per adapter object
7909  * @event_type: firmware event
7910  *
7911  * This will turn on firmware event notification when application
7912  * ask for that event. We don't mask events that are already enabled.
7913  */
7914 void
7915 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
7916 {
7917 	int i, j;
7918 	u32 event_mask, desired_event;
7919 	u8 send_update_to_fw;
7920 
7921 	for (i = 0, send_update_to_fw = 0; i <
7922 	    MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
7923 		event_mask = ~event_type[i];
7924 		desired_event = 1;
7925 		for (j = 0; j < 32; j++) {
7926 			if (!(event_mask & desired_event) &&
7927 			    (ioc->event_masks[i] & desired_event)) {
7928 				ioc->event_masks[i] &= ~desired_event;
7929 				send_update_to_fw = 1;
7930 			}
7931 			desired_event = (desired_event << 1);
7932 		}
7933 	}
7934 
7935 	if (!send_update_to_fw)
7936 		return;
7937 
7938 	mutex_lock(&ioc->base_cmds.mutex);
7939 	_base_event_notification(ioc);
7940 	mutex_unlock(&ioc->base_cmds.mutex);
7941 }
7942 
7943 /**
7944  * _base_diag_reset - the "big hammer" start of day reset
7945  * @ioc: per adapter object
7946  *
7947  * Return: 0 for success, non-zero for failure.
7948  */
7949 static int
7950 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
7951 {
7952 	u32 host_diagnostic;
7953 	u32 ioc_state;
7954 	u32 count;
7955 	u32 hcb_size;
7956 
7957 	ioc_info(ioc, "sending diag reset !!\n");
7958 
7959 	pci_cfg_access_lock(ioc->pdev);
7960 
7961 	drsprintk(ioc, ioc_info(ioc, "clear interrupts\n"));
7962 
7963 	count = 0;
7964 	do {
7965 		/* Write magic sequence to WriteSequence register
7966 		 * Loop until in diagnostic mode
7967 		 */
7968 		drsprintk(ioc, ioc_info(ioc, "write magic sequence\n"));
7969 		writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
7970 		writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
7971 		writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
7972 		writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
7973 		writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
7974 		writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
7975 		writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
7976 
7977 		/* wait 100 msec */
7978 		msleep(100);
7979 
7980 		if (count++ > 20) {
7981 			ioc_info(ioc,
7982 			    "Stop writing magic sequence after 20 retries\n");
7983 			_base_dump_reg_set(ioc);
7984 			goto out;
7985 		}
7986 
7987 		host_diagnostic = ioc->base_readl_ext_retry(&ioc->chip->HostDiagnostic);
7988 		drsprintk(ioc,
7989 			  ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
7990 				   count, host_diagnostic));
7991 
7992 	} while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
7993 
7994 	hcb_size = ioc->base_readl(&ioc->chip->HCBSize);
7995 
7996 	drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n"));
7997 	writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
7998 	     &ioc->chip->HostDiagnostic);
7999 
8000 	/*This delay allows the chip PCIe hardware time to finish reset tasks*/
8001 	msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
8002 
8003 	/* Approximately 300 second max wait */
8004 	for (count = 0; count < (300000000 /
8005 		MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
8006 
8007 		host_diagnostic = ioc->base_readl_ext_retry(&ioc->chip->HostDiagnostic);
8008 
8009 		if (host_diagnostic == 0xFFFFFFFF) {
8010 			ioc_info(ioc,
8011 			    "Invalid host diagnostic register value\n");
8012 			_base_dump_reg_set(ioc);
8013 			goto out;
8014 		}
8015 		if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
8016 			break;
8017 
8018 		msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000);
8019 	}
8020 
8021 	if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
8022 
8023 		drsprintk(ioc,
8024 			  ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n"));
8025 		host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
8026 		host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
8027 		writel(host_diagnostic, &ioc->chip->HostDiagnostic);
8028 
8029 		drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n"));
8030 		writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
8031 		    &ioc->chip->HCBSize);
8032 	}
8033 
8034 	drsprintk(ioc, ioc_info(ioc, "restart the adapter\n"));
8035 	writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
8036 	    &ioc->chip->HostDiagnostic);
8037 
8038 	drsprintk(ioc,
8039 		  ioc_info(ioc, "disable writes to the diagnostic register\n"));
8040 	writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
8041 
8042 	drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n"));
8043 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
8044 	if (ioc_state) {
8045 		ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
8046 			__func__, ioc_state);
8047 		_base_dump_reg_set(ioc);
8048 		goto out;
8049 	}
8050 
8051 	pci_cfg_access_unlock(ioc->pdev);
8052 	ioc_info(ioc, "diag reset: SUCCESS\n");
8053 	return 0;
8054 
8055  out:
8056 	pci_cfg_access_unlock(ioc->pdev);
8057 	ioc_err(ioc, "diag reset: FAILED\n");
8058 	return -EFAULT;
8059 }
8060 
8061 /**
8062  * mpt3sas_base_make_ioc_ready - put controller in READY state
8063  * @ioc: per adapter object
8064  * @type: FORCE_BIG_HAMMER or SOFT_RESET
8065  *
8066  * Return: 0 for success, non-zero for failure.
8067  */
8068 int
8069 mpt3sas_base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
8070 {
8071 	u32 ioc_state;
8072 	int rc;
8073 	int count;
8074 
8075 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8076 
8077 	if (ioc->pci_error_recovery)
8078 		return 0;
8079 
8080 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8081 	dhsprintk(ioc,
8082 		  ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
8083 			   __func__, ioc_state));
8084 
8085 	/* if in RESET state, it should move to READY state shortly */
8086 	count = 0;
8087 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
8088 		while ((ioc_state & MPI2_IOC_STATE_MASK) !=
8089 		    MPI2_IOC_STATE_READY) {
8090 			if (count++ == 10) {
8091 				ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
8092 					__func__, ioc_state);
8093 				return -EFAULT;
8094 			}
8095 			ssleep(1);
8096 			ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8097 		}
8098 	}
8099 
8100 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
8101 		return 0;
8102 
8103 	if (ioc_state & MPI2_DOORBELL_USED) {
8104 		ioc_info(ioc, "unexpected doorbell active!\n");
8105 		goto issue_diag_reset;
8106 	}
8107 
8108 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
8109 		mpt3sas_print_fault_code(ioc, ioc_state &
8110 		    MPI2_DOORBELL_DATA_MASK);
8111 		goto issue_diag_reset;
8112 	}
8113 
8114 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
8115 		/*
8116 		 * if host reset is invoked while watch dog thread is waiting
8117 		 * for IOC state to be changed to Fault state then driver has
8118 		 * to wait here for CoreDump state to clear otherwise reset
8119 		 * will be issued to the FW and FW move the IOC state to
8120 		 * reset state without copying the FW logs to coredump region.
8121 		 */
8122 		if (ioc->ioc_coredump_loop != MPT3SAS_COREDUMP_LOOP_DONE) {
8123 			mpt3sas_print_coredump_info(ioc, ioc_state &
8124 			    MPI2_DOORBELL_DATA_MASK);
8125 			mpt3sas_base_wait_for_coredump_completion(ioc,
8126 			    __func__);
8127 		}
8128 		goto issue_diag_reset;
8129 	}
8130 
8131 	if (type == FORCE_BIG_HAMMER)
8132 		goto issue_diag_reset;
8133 
8134 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
8135 		if (!(_base_send_ioc_reset(ioc,
8136 		    MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
8137 			return 0;
8138 	}
8139 
8140  issue_diag_reset:
8141 	rc = _base_diag_reset(ioc);
8142 	return rc;
8143 }
8144 
8145 /**
8146  * _base_make_ioc_operational - put controller in OPERATIONAL state
8147  * @ioc: per adapter object
8148  *
8149  * Return: 0 for success, non-zero for failure.
8150  */
8151 static int
8152 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
8153 {
8154 	int r, i, index, rc;
8155 	unsigned long	flags;
8156 	u32 reply_address;
8157 	u16 smid;
8158 	struct _tr_list *delayed_tr, *delayed_tr_next;
8159 	struct _sc_list *delayed_sc, *delayed_sc_next;
8160 	struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
8161 	u8 hide_flag;
8162 	struct adapter_reply_queue *reply_q;
8163 	Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
8164 
8165 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8166 
8167 	/* clean the delayed target reset list */
8168 	list_for_each_entry_safe(delayed_tr, delayed_tr_next,
8169 	    &ioc->delayed_tr_list, list) {
8170 		list_del(&delayed_tr->list);
8171 		kfree(delayed_tr);
8172 	}
8173 
8174 
8175 	list_for_each_entry_safe(delayed_tr, delayed_tr_next,
8176 	    &ioc->delayed_tr_volume_list, list) {
8177 		list_del(&delayed_tr->list);
8178 		kfree(delayed_tr);
8179 	}
8180 
8181 	list_for_each_entry_safe(delayed_sc, delayed_sc_next,
8182 	    &ioc->delayed_sc_list, list) {
8183 		list_del(&delayed_sc->list);
8184 		kfree(delayed_sc);
8185 	}
8186 
8187 	list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
8188 	    &ioc->delayed_event_ack_list, list) {
8189 		list_del(&delayed_event_ack->list);
8190 		kfree(delayed_event_ack);
8191 	}
8192 
8193 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
8194 
8195 	/* hi-priority queue */
8196 	INIT_LIST_HEAD(&ioc->hpr_free_list);
8197 	smid = ioc->hi_priority_smid;
8198 	for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
8199 		ioc->hpr_lookup[i].cb_idx = 0xFF;
8200 		ioc->hpr_lookup[i].smid = smid;
8201 		list_add_tail(&ioc->hpr_lookup[i].tracker_list,
8202 		    &ioc->hpr_free_list);
8203 	}
8204 
8205 	/* internal queue */
8206 	INIT_LIST_HEAD(&ioc->internal_free_list);
8207 	smid = ioc->internal_smid;
8208 	for (i = 0; i < ioc->internal_depth; i++, smid++) {
8209 		ioc->internal_lookup[i].cb_idx = 0xFF;
8210 		ioc->internal_lookup[i].smid = smid;
8211 		list_add_tail(&ioc->internal_lookup[i].tracker_list,
8212 		    &ioc->internal_free_list);
8213 	}
8214 
8215 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
8216 
8217 	/* initialize Reply Free Queue */
8218 	for (i = 0, reply_address = (u32)ioc->reply_dma ;
8219 	    i < ioc->reply_free_queue_depth ; i++, reply_address +=
8220 	    ioc->reply_sz) {
8221 		ioc->reply_free[i] = cpu_to_le32(reply_address);
8222 		if (ioc->is_mcpu_endpoint)
8223 			_base_clone_reply_to_sys_mem(ioc,
8224 					reply_address, i);
8225 	}
8226 
8227 	/* initialize reply queues */
8228 	if (ioc->is_driver_loading)
8229 		_base_assign_reply_queues(ioc);
8230 
8231 	/* initialize Reply Post Free Queue */
8232 	index = 0;
8233 	reply_post_free_contig = ioc->reply_post[0].reply_post_free;
8234 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
8235 		/*
8236 		 * If RDPQ is enabled, switch to the next allocation.
8237 		 * Otherwise advance within the contiguous region.
8238 		 */
8239 		if (ioc->rdpq_array_enable) {
8240 			reply_q->reply_post_free =
8241 				ioc->reply_post[index++].reply_post_free;
8242 		} else {
8243 			reply_q->reply_post_free = reply_post_free_contig;
8244 			reply_post_free_contig += ioc->reply_post_queue_depth;
8245 		}
8246 
8247 		reply_q->reply_post_host_index = 0;
8248 		for (i = 0; i < ioc->reply_post_queue_depth; i++)
8249 			reply_q->reply_post_free[i].Words =
8250 			    cpu_to_le64(ULLONG_MAX);
8251 		if (!_base_is_controller_msix_enabled(ioc))
8252 			goto skip_init_reply_post_free_queue;
8253 	}
8254  skip_init_reply_post_free_queue:
8255 
8256 	r = _base_send_ioc_init(ioc);
8257 	if (r) {
8258 		/*
8259 		 * No need to check IOC state for fault state & issue
8260 		 * diag reset during host reset. This check is need
8261 		 * only during driver load time.
8262 		 */
8263 		if (!ioc->is_driver_loading)
8264 			return r;
8265 
8266 		rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8267 		if (rc || (_base_send_ioc_init(ioc)))
8268 			return r;
8269 	}
8270 
8271 	/* initialize reply free host index */
8272 	ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
8273 	writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
8274 
8275 	/* initialize reply post host index */
8276 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
8277 		if (ioc->combined_reply_queue)
8278 			writel((reply_q->msix_index & 7)<<
8279 			   MPI2_RPHI_MSIX_INDEX_SHIFT,
8280 			   ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
8281 		else
8282 			writel(reply_q->msix_index <<
8283 				MPI2_RPHI_MSIX_INDEX_SHIFT,
8284 				&ioc->chip->ReplyPostHostIndex);
8285 
8286 		if (!_base_is_controller_msix_enabled(ioc))
8287 			goto skip_init_reply_post_host_index;
8288 	}
8289 
8290  skip_init_reply_post_host_index:
8291 
8292 	mpt3sas_base_unmask_interrupts(ioc);
8293 
8294 	if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
8295 		r = _base_display_fwpkg_version(ioc);
8296 		if (r)
8297 			return r;
8298 	}
8299 
8300 	r = _base_static_config_pages(ioc);
8301 	if (r)
8302 		return r;
8303 
8304 	r = _base_event_notification(ioc);
8305 	if (r)
8306 		return r;
8307 
8308 	if (!ioc->shost_recovery) {
8309 
8310 		if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
8311 		    == 0x80) {
8312 			hide_flag = (u8) (
8313 			    le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
8314 			    MFG_PAGE10_HIDE_SSDS_MASK);
8315 			if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
8316 				ioc->mfg_pg10_hide_flag = hide_flag;
8317 		}
8318 
8319 		ioc->wait_for_discovery_to_complete =
8320 		    _base_determine_wait_on_discovery(ioc);
8321 
8322 		return r; /* scan_start and scan_finished support */
8323 	}
8324 
8325 	r = _base_send_port_enable(ioc);
8326 	if (r)
8327 		return r;
8328 
8329 	return r;
8330 }
8331 
8332 /**
8333  * mpt3sas_base_free_resources - free resources controller resources
8334  * @ioc: per adapter object
8335  */
8336 void
8337 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
8338 {
8339 	dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8340 
8341 	/* synchronizing freeing resource with pci_access_mutex lock */
8342 	mutex_lock(&ioc->pci_access_mutex);
8343 	if (ioc->chip_phys && ioc->chip) {
8344 		mpt3sas_base_mask_interrupts(ioc);
8345 		ioc->shost_recovery = 1;
8346 		mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET);
8347 		ioc->shost_recovery = 0;
8348 	}
8349 
8350 	mpt3sas_base_unmap_resources(ioc);
8351 	mutex_unlock(&ioc->pci_access_mutex);
8352 	return;
8353 }
8354 
8355 /**
8356  * mpt3sas_base_attach - attach controller instance
8357  * @ioc: per adapter object
8358  *
8359  * Return: 0 for success, non-zero for failure.
8360  */
8361 int
8362 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
8363 {
8364 	int r, i, rc;
8365 	int cpu_id, last_cpu_id = 0;
8366 
8367 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8368 
8369 	/* setup cpu_msix_table */
8370 	ioc->cpu_count = num_online_cpus();
8371 	for_each_online_cpu(cpu_id)
8372 		last_cpu_id = cpu_id;
8373 	ioc->cpu_msix_table_sz = last_cpu_id + 1;
8374 	ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
8375 	ioc->reply_queue_count = 1;
8376 	if (!ioc->cpu_msix_table) {
8377 		ioc_info(ioc, "Allocation for cpu_msix_table failed!!!\n");
8378 		r = -ENOMEM;
8379 		goto out_free_resources;
8380 	}
8381 
8382 	if (ioc->is_warpdrive) {
8383 		ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
8384 		    sizeof(resource_size_t *), GFP_KERNEL);
8385 		if (!ioc->reply_post_host_index) {
8386 			ioc_info(ioc, "Allocation for reply_post_host_index failed!!!\n");
8387 			r = -ENOMEM;
8388 			goto out_free_resources;
8389 		}
8390 	}
8391 
8392 	ioc->smp_affinity_enable = smp_affinity_enable;
8393 
8394 	ioc->rdpq_array_enable_assigned = 0;
8395 	ioc->use_32bit_dma = false;
8396 	ioc->dma_mask = 64;
8397 	if (ioc->is_aero_ioc) {
8398 		ioc->base_readl = &_base_readl_aero;
8399 		ioc->base_readl_ext_retry = &_base_readl_ext_retry;
8400 	} else {
8401 		ioc->base_readl = &_base_readl;
8402 		ioc->base_readl_ext_retry = &_base_readl;
8403 	}
8404 	r = mpt3sas_base_map_resources(ioc);
8405 	if (r)
8406 		goto out_free_resources;
8407 
8408 	pci_set_drvdata(ioc->pdev, ioc->shost);
8409 	r = _base_get_ioc_facts(ioc);
8410 	if (r) {
8411 		rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8412 		if (rc || (_base_get_ioc_facts(ioc)))
8413 			goto out_free_resources;
8414 	}
8415 
8416 	switch (ioc->hba_mpi_version_belonged) {
8417 	case MPI2_VERSION:
8418 		ioc->build_sg_scmd = &_base_build_sg_scmd;
8419 		ioc->build_sg = &_base_build_sg;
8420 		ioc->build_zero_len_sge = &_base_build_zero_len_sge;
8421 		ioc->get_msix_index_for_smlio = &_base_get_msix_index;
8422 		break;
8423 	case MPI25_VERSION:
8424 	case MPI26_VERSION:
8425 		/*
8426 		 * In SAS3.0,
8427 		 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
8428 		 * Target Status - all require the IEEE formatted scatter gather
8429 		 * elements.
8430 		 */
8431 		ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
8432 		ioc->build_sg = &_base_build_sg_ieee;
8433 		ioc->build_nvme_prp = &_base_build_nvme_prp;
8434 		ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
8435 		ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
8436 		if (ioc->high_iops_queues)
8437 			ioc->get_msix_index_for_smlio =
8438 					&_base_get_high_iops_msix_index;
8439 		else
8440 			ioc->get_msix_index_for_smlio = &_base_get_msix_index;
8441 		break;
8442 	}
8443 	if (ioc->atomic_desc_capable) {
8444 		ioc->put_smid_default = &_base_put_smid_default_atomic;
8445 		ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic;
8446 		ioc->put_smid_fast_path =
8447 				&_base_put_smid_fast_path_atomic;
8448 		ioc->put_smid_hi_priority =
8449 				&_base_put_smid_hi_priority_atomic;
8450 	} else {
8451 		ioc->put_smid_default = &_base_put_smid_default;
8452 		ioc->put_smid_fast_path = &_base_put_smid_fast_path;
8453 		ioc->put_smid_hi_priority = &_base_put_smid_hi_priority;
8454 		if (ioc->is_mcpu_endpoint)
8455 			ioc->put_smid_scsi_io =
8456 				&_base_put_smid_mpi_ep_scsi_io;
8457 		else
8458 			ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
8459 	}
8460 	/*
8461 	 * These function pointers for other requests that don't
8462 	 * the require IEEE scatter gather elements.
8463 	 *
8464 	 * For example Configuration Pages and SAS IOUNIT Control don't.
8465 	 */
8466 	ioc->build_sg_mpi = &_base_build_sg;
8467 	ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
8468 
8469 	r = mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET);
8470 	if (r)
8471 		goto out_free_resources;
8472 
8473 	ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
8474 	    sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
8475 	if (!ioc->pfacts) {
8476 		r = -ENOMEM;
8477 		goto out_free_resources;
8478 	}
8479 
8480 	for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
8481 		r = _base_get_port_facts(ioc, i);
8482 		if (r) {
8483 			rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8484 			if (rc || (_base_get_port_facts(ioc, i)))
8485 				goto out_free_resources;
8486 		}
8487 	}
8488 
8489 	r = _base_allocate_memory_pools(ioc);
8490 	if (r)
8491 		goto out_free_resources;
8492 
8493 	if (irqpoll_weight > 0)
8494 		ioc->thresh_hold = irqpoll_weight;
8495 	else
8496 		ioc->thresh_hold = ioc->hba_queue_depth/4;
8497 
8498 	_base_init_irqpolls(ioc);
8499 	init_waitqueue_head(&ioc->reset_wq);
8500 
8501 	/* allocate memory pd handle bitmask list */
8502 	ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
8503 	if (ioc->facts.MaxDevHandle % 8)
8504 		ioc->pd_handles_sz++;
8505 	/*
8506 	 * pd_handles_sz should have, at least, the minimal room for
8507 	 * set_bit()/test_bit(), otherwise out-of-memory touch may occur.
8508 	 */
8509 	ioc->pd_handles_sz = ALIGN(ioc->pd_handles_sz, sizeof(unsigned long));
8510 
8511 	ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
8512 	    GFP_KERNEL);
8513 	if (!ioc->pd_handles) {
8514 		r = -ENOMEM;
8515 		goto out_free_resources;
8516 	}
8517 	ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
8518 	    GFP_KERNEL);
8519 	if (!ioc->blocking_handles) {
8520 		r = -ENOMEM;
8521 		goto out_free_resources;
8522 	}
8523 
8524 	/* allocate memory for pending OS device add list */
8525 	ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
8526 	if (ioc->facts.MaxDevHandle % 8)
8527 		ioc->pend_os_device_add_sz++;
8528 
8529 	/*
8530 	 * pend_os_device_add_sz should have, at least, the minimal room for
8531 	 * set_bit()/test_bit(), otherwise out-of-memory may occur.
8532 	 */
8533 	ioc->pend_os_device_add_sz = ALIGN(ioc->pend_os_device_add_sz,
8534 					   sizeof(unsigned long));
8535 	ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
8536 	    GFP_KERNEL);
8537 	if (!ioc->pend_os_device_add) {
8538 		r = -ENOMEM;
8539 		goto out_free_resources;
8540 	}
8541 
8542 	ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
8543 	ioc->device_remove_in_progress =
8544 		kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
8545 	if (!ioc->device_remove_in_progress) {
8546 		r = -ENOMEM;
8547 		goto out_free_resources;
8548 	}
8549 
8550 	ioc->fwfault_debug = mpt3sas_fwfault_debug;
8551 
8552 	/* base internal command bits */
8553 	mutex_init(&ioc->base_cmds.mutex);
8554 	ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8555 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
8556 
8557 	/* port_enable command bits */
8558 	ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8559 	ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
8560 
8561 	/* transport internal command bits */
8562 	ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8563 	ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
8564 	mutex_init(&ioc->transport_cmds.mutex);
8565 
8566 	/* scsih internal command bits */
8567 	ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8568 	ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
8569 	mutex_init(&ioc->scsih_cmds.mutex);
8570 
8571 	/* task management internal command bits */
8572 	ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8573 	ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
8574 	mutex_init(&ioc->tm_cmds.mutex);
8575 
8576 	/* config page internal command bits */
8577 	ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8578 	ioc->config_cmds.status = MPT3_CMD_NOT_USED;
8579 	mutex_init(&ioc->config_cmds.mutex);
8580 
8581 	/* ctl module internal command bits */
8582 	ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8583 	ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
8584 	ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
8585 	mutex_init(&ioc->ctl_cmds.mutex);
8586 
8587 	if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
8588 	    !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
8589 	    !ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
8590 	    !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) {
8591 		r = -ENOMEM;
8592 		goto out_free_resources;
8593 	}
8594 
8595 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
8596 		ioc->event_masks[i] = -1;
8597 
8598 	/* here we enable the events we care about */
8599 	_base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
8600 	_base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
8601 	_base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
8602 	_base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
8603 	_base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
8604 	_base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
8605 	_base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
8606 	_base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
8607 	_base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
8608 	_base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
8609 	_base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
8610 	_base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
8611 	_base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR);
8612 	if (ioc->hba_mpi_version_belonged == MPI26_VERSION) {
8613 		if (ioc->is_gen35_ioc) {
8614 			_base_unmask_events(ioc,
8615 				MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE);
8616 			_base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION);
8617 			_base_unmask_events(ioc,
8618 				MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
8619 		}
8620 	}
8621 	r = _base_make_ioc_operational(ioc);
8622 	if (r == -EAGAIN) {
8623 		r = _base_make_ioc_operational(ioc);
8624 		if (r)
8625 			goto out_free_resources;
8626 	}
8627 
8628 	/*
8629 	 * Copy current copy of IOCFacts in prev_fw_facts
8630 	 * and it will be used during online firmware upgrade.
8631 	 */
8632 	memcpy(&ioc->prev_fw_facts, &ioc->facts,
8633 	    sizeof(struct mpt3sas_facts));
8634 
8635 	ioc->non_operational_loop = 0;
8636 	ioc->ioc_coredump_loop = 0;
8637 	ioc->got_task_abort_from_ioctl = 0;
8638 	return 0;
8639 
8640  out_free_resources:
8641 
8642 	ioc->remove_host = 1;
8643 
8644 	mpt3sas_base_free_resources(ioc);
8645 	_base_release_memory_pools(ioc);
8646 	pci_set_drvdata(ioc->pdev, NULL);
8647 	kfree(ioc->cpu_msix_table);
8648 	if (ioc->is_warpdrive)
8649 		kfree(ioc->reply_post_host_index);
8650 	kfree(ioc->pd_handles);
8651 	kfree(ioc->blocking_handles);
8652 	kfree(ioc->device_remove_in_progress);
8653 	kfree(ioc->pend_os_device_add);
8654 	kfree(ioc->tm_cmds.reply);
8655 	kfree(ioc->transport_cmds.reply);
8656 	kfree(ioc->scsih_cmds.reply);
8657 	kfree(ioc->config_cmds.reply);
8658 	kfree(ioc->base_cmds.reply);
8659 	kfree(ioc->port_enable_cmds.reply);
8660 	kfree(ioc->ctl_cmds.reply);
8661 	kfree(ioc->ctl_cmds.sense);
8662 	kfree(ioc->pfacts);
8663 	ioc->ctl_cmds.reply = NULL;
8664 	ioc->base_cmds.reply = NULL;
8665 	ioc->tm_cmds.reply = NULL;
8666 	ioc->scsih_cmds.reply = NULL;
8667 	ioc->transport_cmds.reply = NULL;
8668 	ioc->config_cmds.reply = NULL;
8669 	ioc->pfacts = NULL;
8670 	return r;
8671 }
8672 
8673 
8674 /**
8675  * mpt3sas_base_detach - remove controller instance
8676  * @ioc: per adapter object
8677  */
8678 void
8679 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
8680 {
8681 	dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8682 
8683 	mpt3sas_base_stop_watchdog(ioc);
8684 	mpt3sas_base_free_resources(ioc);
8685 	_base_release_memory_pools(ioc);
8686 	mpt3sas_free_enclosure_list(ioc);
8687 	pci_set_drvdata(ioc->pdev, NULL);
8688 	kfree(ioc->cpu_msix_table);
8689 	if (ioc->is_warpdrive)
8690 		kfree(ioc->reply_post_host_index);
8691 	kfree(ioc->pd_handles);
8692 	kfree(ioc->blocking_handles);
8693 	kfree(ioc->device_remove_in_progress);
8694 	kfree(ioc->pend_os_device_add);
8695 	kfree(ioc->pfacts);
8696 	kfree(ioc->ctl_cmds.reply);
8697 	kfree(ioc->ctl_cmds.sense);
8698 	kfree(ioc->base_cmds.reply);
8699 	kfree(ioc->port_enable_cmds.reply);
8700 	kfree(ioc->tm_cmds.reply);
8701 	kfree(ioc->transport_cmds.reply);
8702 	kfree(ioc->scsih_cmds.reply);
8703 	kfree(ioc->config_cmds.reply);
8704 }
8705 
8706 /**
8707  * _base_pre_reset_handler - pre reset handler
8708  * @ioc: per adapter object
8709  */
8710 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc)
8711 {
8712 	mpt3sas_scsih_pre_reset_handler(ioc);
8713 	mpt3sas_ctl_pre_reset_handler(ioc);
8714 	dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__));
8715 }
8716 
8717 /**
8718  * _base_clear_outstanding_mpt_commands - clears outstanding mpt commands
8719  * @ioc: per adapter object
8720  */
8721 static void
8722 _base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER *ioc)
8723 {
8724 	dtmprintk(ioc,
8725 	    ioc_info(ioc, "%s: clear outstanding mpt cmds\n", __func__));
8726 	if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
8727 		ioc->transport_cmds.status |= MPT3_CMD_RESET;
8728 		mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
8729 		complete(&ioc->transport_cmds.done);
8730 	}
8731 	if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
8732 		ioc->base_cmds.status |= MPT3_CMD_RESET;
8733 		mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
8734 		complete(&ioc->base_cmds.done);
8735 	}
8736 	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
8737 		ioc->port_enable_failed = 1;
8738 		ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
8739 		mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
8740 		if (ioc->is_driver_loading) {
8741 			ioc->start_scan_failed =
8742 				MPI2_IOCSTATUS_INTERNAL_ERROR;
8743 			ioc->start_scan = 0;
8744 		} else {
8745 			complete(&ioc->port_enable_cmds.done);
8746 		}
8747 	}
8748 	if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
8749 		ioc->config_cmds.status |= MPT3_CMD_RESET;
8750 		mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
8751 		ioc->config_cmds.smid = USHRT_MAX;
8752 		complete(&ioc->config_cmds.done);
8753 	}
8754 }
8755 
8756 /**
8757  * _base_clear_outstanding_commands - clear all outstanding commands
8758  * @ioc: per adapter object
8759  */
8760 static void _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc)
8761 {
8762 	mpt3sas_scsih_clear_outstanding_scsi_tm_commands(ioc);
8763 	mpt3sas_ctl_clear_outstanding_ioctls(ioc);
8764 	_base_clear_outstanding_mpt_commands(ioc);
8765 }
8766 
8767 /**
8768  * _base_reset_done_handler - reset done handler
8769  * @ioc: per adapter object
8770  */
8771 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc)
8772 {
8773 	mpt3sas_scsih_reset_done_handler(ioc);
8774 	mpt3sas_ctl_reset_done_handler(ioc);
8775 	dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__));
8776 }
8777 
8778 /**
8779  * mpt3sas_wait_for_commands_to_complete - reset controller
8780  * @ioc: Pointer to MPT_ADAPTER structure
8781  *
8782  * This function is waiting 10s for all pending commands to complete
8783  * prior to putting controller in reset.
8784  */
8785 void
8786 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
8787 {
8788 	u32 ioc_state;
8789 
8790 	ioc->pending_io_count = 0;
8791 
8792 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8793 	if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
8794 		return;
8795 
8796 	/* pending command count */
8797 	ioc->pending_io_count = scsi_host_busy(ioc->shost);
8798 
8799 	if (!ioc->pending_io_count)
8800 		return;
8801 
8802 	/* wait for pending commands to complete */
8803 	wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
8804 }
8805 
8806 /**
8807  * _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts
8808  *     attributes during online firmware upgrade and update the corresponding
8809  *     IOC variables accordingly.
8810  *
8811  * @ioc: Pointer to MPT_ADAPTER structure
8812  */
8813 static int
8814 _base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc)
8815 {
8816 	u16 pd_handles_sz;
8817 	void *pd_handles = NULL, *blocking_handles = NULL;
8818 	void *pend_os_device_add = NULL, *device_remove_in_progress = NULL;
8819 	struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts;
8820 
8821 	if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle) {
8822 		pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
8823 		if (ioc->facts.MaxDevHandle % 8)
8824 			pd_handles_sz++;
8825 
8826 		/*
8827 		 * pd_handles should have, at least, the minimal room for
8828 		 * set_bit()/test_bit(), otherwise out-of-memory touch may
8829 		 * occur.
8830 		 */
8831 		pd_handles_sz = ALIGN(pd_handles_sz, sizeof(unsigned long));
8832 		pd_handles = krealloc(ioc->pd_handles, pd_handles_sz,
8833 		    GFP_KERNEL);
8834 		if (!pd_handles) {
8835 			ioc_info(ioc,
8836 			    "Unable to allocate the memory for pd_handles of sz: %d\n",
8837 			    pd_handles_sz);
8838 			return -ENOMEM;
8839 		}
8840 		memset(pd_handles + ioc->pd_handles_sz, 0,
8841 		    (pd_handles_sz - ioc->pd_handles_sz));
8842 		ioc->pd_handles = pd_handles;
8843 
8844 		blocking_handles = krealloc(ioc->blocking_handles,
8845 		    pd_handles_sz, GFP_KERNEL);
8846 		if (!blocking_handles) {
8847 			ioc_info(ioc,
8848 			    "Unable to allocate the memory for "
8849 			    "blocking_handles of sz: %d\n",
8850 			    pd_handles_sz);
8851 			return -ENOMEM;
8852 		}
8853 		memset(blocking_handles + ioc->pd_handles_sz, 0,
8854 		    (pd_handles_sz - ioc->pd_handles_sz));
8855 		ioc->blocking_handles = blocking_handles;
8856 		ioc->pd_handles_sz = pd_handles_sz;
8857 
8858 		pend_os_device_add = krealloc(ioc->pend_os_device_add,
8859 		    pd_handles_sz, GFP_KERNEL);
8860 		if (!pend_os_device_add) {
8861 			ioc_info(ioc,
8862 			    "Unable to allocate the memory for pend_os_device_add of sz: %d\n",
8863 			    pd_handles_sz);
8864 			return -ENOMEM;
8865 		}
8866 		memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0,
8867 		    (pd_handles_sz - ioc->pend_os_device_add_sz));
8868 		ioc->pend_os_device_add = pend_os_device_add;
8869 		ioc->pend_os_device_add_sz = pd_handles_sz;
8870 
8871 		device_remove_in_progress = krealloc(
8872 		    ioc->device_remove_in_progress, pd_handles_sz, GFP_KERNEL);
8873 		if (!device_remove_in_progress) {
8874 			ioc_info(ioc,
8875 			    "Unable to allocate the memory for "
8876 			    "device_remove_in_progress of sz: %d\n "
8877 			    , pd_handles_sz);
8878 			return -ENOMEM;
8879 		}
8880 		memset(device_remove_in_progress +
8881 		    ioc->device_remove_in_progress_sz, 0,
8882 		    (pd_handles_sz - ioc->device_remove_in_progress_sz));
8883 		ioc->device_remove_in_progress = device_remove_in_progress;
8884 		ioc->device_remove_in_progress_sz = pd_handles_sz;
8885 	}
8886 
8887 	memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts));
8888 	return 0;
8889 }
8890 
8891 /**
8892  * mpt3sas_base_hard_reset_handler - reset controller
8893  * @ioc: Pointer to MPT_ADAPTER structure
8894  * @type: FORCE_BIG_HAMMER or SOFT_RESET
8895  *
8896  * Return: 0 for success, non-zero for failure.
8897  */
8898 int
8899 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
8900 	enum reset_type type)
8901 {
8902 	int r;
8903 	unsigned long flags;
8904 	u32 ioc_state;
8905 	u8 is_fault = 0, is_trigger = 0;
8906 
8907 	dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__));
8908 
8909 	if (ioc->pci_error_recovery) {
8910 		ioc_err(ioc, "%s: pci error recovery reset\n", __func__);
8911 		r = 0;
8912 		goto out_unlocked;
8913 	}
8914 
8915 	if (mpt3sas_fwfault_debug)
8916 		mpt3sas_halt_firmware(ioc);
8917 
8918 	/* wait for an active reset in progress to complete */
8919 	mutex_lock(&ioc->reset_in_progress_mutex);
8920 
8921 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
8922 	ioc->shost_recovery = 1;
8923 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
8924 
8925 	if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
8926 	    MPT3_DIAG_BUFFER_IS_REGISTERED) &&
8927 	    (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
8928 	    MPT3_DIAG_BUFFER_IS_RELEASED))) {
8929 		is_trigger = 1;
8930 		ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8931 		if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT ||
8932 		    (ioc_state & MPI2_IOC_STATE_MASK) ==
8933 		    MPI2_IOC_STATE_COREDUMP) {
8934 			is_fault = 1;
8935 			ioc->htb_rel.trigger_info_dwords[1] =
8936 			    (ioc_state & MPI2_DOORBELL_DATA_MASK);
8937 		}
8938 	}
8939 	_base_pre_reset_handler(ioc);
8940 	mpt3sas_wait_for_commands_to_complete(ioc);
8941 	mpt3sas_base_mask_interrupts(ioc);
8942 	mpt3sas_base_pause_mq_polling(ioc);
8943 	r = mpt3sas_base_make_ioc_ready(ioc, type);
8944 	if (r)
8945 		goto out;
8946 	_base_clear_outstanding_commands(ioc);
8947 
8948 	/* If this hard reset is called while port enable is active, then
8949 	 * there is no reason to call make_ioc_operational
8950 	 */
8951 	if (ioc->is_driver_loading && ioc->port_enable_failed) {
8952 		ioc->remove_host = 1;
8953 		r = -EFAULT;
8954 		goto out;
8955 	}
8956 	r = _base_get_ioc_facts(ioc);
8957 	if (r)
8958 		goto out;
8959 
8960 	r = _base_check_ioc_facts_changes(ioc);
8961 	if (r) {
8962 		ioc_info(ioc,
8963 		    "Some of the parameters got changed in this new firmware"
8964 		    " image and it requires system reboot\n");
8965 		goto out;
8966 	}
8967 	if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
8968 		panic("%s: Issue occurred with flashing controller firmware."
8969 		      "Please reboot the system and ensure that the correct"
8970 		      " firmware version is running\n", ioc->name);
8971 
8972 	r = _base_make_ioc_operational(ioc);
8973 	if (!r)
8974 		_base_reset_done_handler(ioc);
8975 
8976  out:
8977 	ioc_info(ioc, "%s: %s\n", __func__, r == 0 ? "SUCCESS" : "FAILED");
8978 
8979 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
8980 	ioc->shost_recovery = 0;
8981 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
8982 	ioc->ioc_reset_count++;
8983 	mutex_unlock(&ioc->reset_in_progress_mutex);
8984 	mpt3sas_base_resume_mq_polling(ioc);
8985 
8986  out_unlocked:
8987 	if ((r == 0) && is_trigger) {
8988 		if (is_fault)
8989 			mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
8990 		else
8991 			mpt3sas_trigger_master(ioc,
8992 			    MASTER_TRIGGER_ADAPTER_RESET);
8993 	}
8994 	dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__));
8995 	return r;
8996 }
8997