1 /*
2  * This is the Fusion MPT base driver providing common API layer interface
3  * for access to MPT (Message Passing Technology) firmware.
4  *
5  * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6  * Copyright (C) 2012-2014  LSI Corporation
7  * Copyright (C) 2013-2014 Avago Technologies
8  *  (mailto: MPT-FusionLinux.pdl@avagotech.com)
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version 2
13  * of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * NO WARRANTY
21  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25  * solely responsible for determining the appropriateness of using and
26  * distributing the Program and assumes all risks associated with its
27  * exercise of rights under this Agreement, including but not limited to
28  * the risks and costs of program errors, damage to or loss of data,
29  * programs or equipment, and unavailability or interruption of operations.
30 
31  * DISCLAIMER OF LIABILITY
32  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39 
40  * You should have received a copy of the GNU General Public License
41  * along with this program; if not, write to the Free Software
42  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
43  * USA.
44  */
45 
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <asm/page.h>        /* To get host page size per arch */
63 #include <linux/aer.h>
64 
65 
66 #include "mpt3sas_base.h"
67 
68 static MPT_CALLBACK	mpt_callbacks[MPT_MAX_CALLBACKS];
69 
70 
71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
72 
73  /* maximum controller queue depth */
74 #define MAX_HBA_QUEUE_DEPTH	30000
75 #define MAX_CHAIN_DEPTH		100000
76 static int max_queue_depth = -1;
77 module_param(max_queue_depth, int, 0444);
78 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
79 
80 static int max_sgl_entries = -1;
81 module_param(max_sgl_entries, int, 0444);
82 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
83 
84 static int msix_disable = -1;
85 module_param(msix_disable, int, 0444);
86 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
87 
88 static int smp_affinity_enable = 1;
89 module_param(smp_affinity_enable, int, 0444);
90 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)");
91 
92 static int max_msix_vectors = -1;
93 module_param(max_msix_vectors, int, 0444);
94 MODULE_PARM_DESC(max_msix_vectors,
95 	" max msix vectors");
96 
97 static int irqpoll_weight = -1;
98 module_param(irqpoll_weight, int, 0444);
99 MODULE_PARM_DESC(irqpoll_weight,
100 	"irq poll weight (default= one fourth of HBA queue depth)");
101 
102 static int mpt3sas_fwfault_debug;
103 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
104 	" enable detection of firmware fault and halt firmware - (default=0)");
105 
106 static int perf_mode = -1;
107 module_param(perf_mode, int, 0444);
108 MODULE_PARM_DESC(perf_mode,
109 	"Performance mode (only for Aero/Sea Generation), options:\n\t\t"
110 	"0 - balanced: high iops mode is enabled &\n\t\t"
111 	"interrupt coalescing is enabled only on high iops queues,\n\t\t"
112 	"1 - iops: high iops mode is disabled &\n\t\t"
113 	"interrupt coalescing is enabled on all queues,\n\t\t"
114 	"2 - latency: high iops mode is disabled &\n\t\t"
115 	"interrupt coalescing is enabled on all queues with timeout value 0xA,\n"
116 	"\t\tdefault - default perf_mode is 'balanced'"
117 	);
118 
119 static int poll_queues;
120 module_param(poll_queues, int, 0444);
121 MODULE_PARM_DESC(poll_queues, "Number of queues to be use for io_uring poll mode.\n\t\t"
122 	"This parameter is effective only if host_tagset_enable=1. &\n\t\t"
123 	"when poll_queues are enabled then &\n\t\t"
124 	"perf_mode is set to latency mode. &\n\t\t"
125 	);
126 
127 enum mpt3sas_perf_mode {
128 	MPT_PERF_MODE_DEFAULT	= -1,
129 	MPT_PERF_MODE_BALANCED	= 0,
130 	MPT_PERF_MODE_IOPS	= 1,
131 	MPT_PERF_MODE_LATENCY	= 2,
132 };
133 
134 static int
135 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc,
136 		u32 ioc_state, int timeout);
137 static int
138 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
139 static void
140 _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc);
141 
142 /**
143  * mpt3sas_base_check_cmd_timeout - Function
144  *		to check timeout and command termination due
145  *		to Host reset.
146  *
147  * @ioc:	per adapter object.
148  * @status:	Status of issued command.
149  * @mpi_request:mf request pointer.
150  * @sz:		size of buffer.
151  *
152  * Return: 1/0 Reset to be done or Not
153  */
154 u8
155 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc,
156 		u8 status, void *mpi_request, int sz)
157 {
158 	u8 issue_reset = 0;
159 
160 	if (!(status & MPT3_CMD_RESET))
161 		issue_reset = 1;
162 
163 	ioc_err(ioc, "Command %s\n",
164 		issue_reset == 0 ? "terminated due to Host Reset" : "Timeout");
165 	_debug_dump_mf(mpi_request, sz);
166 
167 	return issue_reset;
168 }
169 
170 /**
171  * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
172  * @val: ?
173  * @kp: ?
174  *
175  * Return: ?
176  */
177 static int
178 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp)
179 {
180 	int ret = param_set_int(val, kp);
181 	struct MPT3SAS_ADAPTER *ioc;
182 
183 	if (ret)
184 		return ret;
185 
186 	/* global ioc spinlock to protect controller list on list operations */
187 	pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
188 	spin_lock(&gioc_lock);
189 	list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
190 		ioc->fwfault_debug = mpt3sas_fwfault_debug;
191 	spin_unlock(&gioc_lock);
192 	return 0;
193 }
194 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
195 	param_get_int, &mpt3sas_fwfault_debug, 0644);
196 
197 /**
198  * _base_readl_aero - retry readl for max three times.
199  * @addr: MPT Fusion system interface register address
200  *
201  * Retry the readl() for max three times if it gets zero value
202  * while reading the system interface register.
203  */
204 static inline u32
205 _base_readl_aero(const volatile void __iomem *addr)
206 {
207 	u32 i = 0, ret_val;
208 
209 	do {
210 		ret_val = readl(addr);
211 		i++;
212 	} while (ret_val == 0 && i < 3);
213 
214 	return ret_val;
215 }
216 
217 static inline u32
218 _base_readl(const volatile void __iomem *addr)
219 {
220 	return readl(addr);
221 }
222 
223 /**
224  * _base_clone_reply_to_sys_mem - copies reply to reply free iomem
225  *				  in BAR0 space.
226  *
227  * @ioc: per adapter object
228  * @reply: reply message frame(lower 32bit addr)
229  * @index: System request message index.
230  */
231 static void
232 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply,
233 		u32 index)
234 {
235 	/*
236 	 * 256 is offset within sys register.
237 	 * 256 offset MPI frame starts. Max MPI frame supported is 32.
238 	 * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts
239 	 */
240 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
241 	void __iomem *reply_free_iomem = (void __iomem *)ioc->chip +
242 			MPI_FRAME_START_OFFSET +
243 			(cmd_credit * ioc->request_sz) + (index * sizeof(u32));
244 
245 	writel(reply, reply_free_iomem);
246 }
247 
248 /**
249  * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames
250  *				to system/BAR0 region.
251  *
252  * @dst_iomem: Pointer to the destination location in BAR0 space.
253  * @src: Pointer to the Source data.
254  * @size: Size of data to be copied.
255  */
256 static void
257 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size)
258 {
259 	int i;
260 	u32 *src_virt_mem = (u32 *)src;
261 
262 	for (i = 0; i < size/4; i++)
263 		writel((u32)src_virt_mem[i],
264 				(void __iomem *)dst_iomem + (i * 4));
265 }
266 
267 /**
268  * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region
269  *
270  * @dst_iomem: Pointer to the destination location in BAR0 space.
271  * @src: Pointer to the Source data.
272  * @size: Size of data to be copied.
273  */
274 static void
275 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size)
276 {
277 	int i;
278 	u32 *src_virt_mem = (u32 *)(src);
279 
280 	for (i = 0; i < size/4; i++)
281 		writel((u32)src_virt_mem[i],
282 			(void __iomem *)dst_iomem + (i * 4));
283 }
284 
285 /**
286  * _base_get_chain - Calculates and Returns virtual chain address
287  *			 for the provided smid in BAR0 space.
288  *
289  * @ioc: per adapter object
290  * @smid: system request message index
291  * @sge_chain_count: Scatter gather chain count.
292  *
293  * Return: the chain address.
294  */
295 static inline void __iomem*
296 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid,
297 		u8 sge_chain_count)
298 {
299 	void __iomem *base_chain, *chain_virt;
300 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
301 
302 	base_chain  = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET +
303 		(cmd_credit * ioc->request_sz) +
304 		REPLY_FREE_POOL_SIZE;
305 	chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth *
306 			ioc->request_sz) + (sge_chain_count * ioc->request_sz);
307 	return chain_virt;
308 }
309 
310 /**
311  * _base_get_chain_phys - Calculates and Returns physical address
312  *			in BAR0 for scatter gather chains, for
313  *			the provided smid.
314  *
315  * @ioc: per adapter object
316  * @smid: system request message index
317  * @sge_chain_count: Scatter gather chain count.
318  *
319  * Return: Physical chain address.
320  */
321 static inline phys_addr_t
322 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid,
323 		u8 sge_chain_count)
324 {
325 	phys_addr_t base_chain_phys, chain_phys;
326 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
327 
328 	base_chain_phys  = ioc->chip_phys + MPI_FRAME_START_OFFSET +
329 		(cmd_credit * ioc->request_sz) +
330 		REPLY_FREE_POOL_SIZE;
331 	chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth *
332 			ioc->request_sz) + (sge_chain_count * ioc->request_sz);
333 	return chain_phys;
334 }
335 
336 /**
337  * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host
338  *			buffer address for the provided smid.
339  *			(Each smid can have 64K starts from 17024)
340  *
341  * @ioc: per adapter object
342  * @smid: system request message index
343  *
344  * Return: Pointer to buffer location in BAR0.
345  */
346 
347 static void __iomem *
348 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
349 {
350 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
351 	// Added extra 1 to reach end of chain.
352 	void __iomem *chain_end = _base_get_chain(ioc,
353 			cmd_credit + 1,
354 			ioc->facts.MaxChainDepth);
355 	return chain_end + (smid * 64 * 1024);
356 }
357 
358 /**
359  * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped
360  *		Host buffer Physical address for the provided smid.
361  *		(Each smid can have 64K starts from 17024)
362  *
363  * @ioc: per adapter object
364  * @smid: system request message index
365  *
366  * Return: Pointer to buffer location in BAR0.
367  */
368 static phys_addr_t
369 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
370 {
371 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
372 	phys_addr_t chain_end_phys = _base_get_chain_phys(ioc,
373 			cmd_credit + 1,
374 			ioc->facts.MaxChainDepth);
375 	return chain_end_phys + (smid * 64 * 1024);
376 }
377 
378 /**
379  * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain
380  *			lookup list and Provides chain_buffer
381  *			address for the matching dma address.
382  *			(Each smid can have 64K starts from 17024)
383  *
384  * @ioc: per adapter object
385  * @chain_buffer_dma: Chain buffer dma address.
386  *
387  * Return: Pointer to chain buffer. Or Null on Failure.
388  */
389 static void *
390 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc,
391 		dma_addr_t chain_buffer_dma)
392 {
393 	u16 index, j;
394 	struct chain_tracker *ct;
395 
396 	for (index = 0; index < ioc->scsiio_depth; index++) {
397 		for (j = 0; j < ioc->chains_needed_per_io; j++) {
398 			ct = &ioc->chain_lookup[index].chains_per_smid[j];
399 			if (ct && ct->chain_buffer_dma == chain_buffer_dma)
400 				return ct->chain_buffer;
401 		}
402 	}
403 	ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n");
404 	return NULL;
405 }
406 
407 /**
408  * _clone_sg_entries -	MPI EP's scsiio and config requests
409  *			are handled here. Base function for
410  *			double buffering, before submitting
411  *			the requests.
412  *
413  * @ioc: per adapter object.
414  * @mpi_request: mf request pointer.
415  * @smid: system request message index.
416  */
417 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc,
418 		void *mpi_request, u16 smid)
419 {
420 	Mpi2SGESimple32_t *sgel, *sgel_next;
421 	u32  sgl_flags, sge_chain_count = 0;
422 	bool is_write = false;
423 	u16 i = 0;
424 	void __iomem *buffer_iomem;
425 	phys_addr_t buffer_iomem_phys;
426 	void __iomem *buff_ptr;
427 	phys_addr_t buff_ptr_phys;
428 	void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO];
429 	void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO];
430 	phys_addr_t dst_addr_phys;
431 	MPI2RequestHeader_t *request_hdr;
432 	struct scsi_cmnd *scmd;
433 	struct scatterlist *sg_scmd = NULL;
434 	int is_scsiio_req = 0;
435 
436 	request_hdr = (MPI2RequestHeader_t *) mpi_request;
437 
438 	if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
439 		Mpi25SCSIIORequest_t *scsiio_request =
440 			(Mpi25SCSIIORequest_t *)mpi_request;
441 		sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL;
442 		is_scsiio_req = 1;
443 	} else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
444 		Mpi2ConfigRequest_t  *config_req =
445 			(Mpi2ConfigRequest_t *)mpi_request;
446 		sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE;
447 	} else
448 		return;
449 
450 	/* From smid we can get scsi_cmd, once we have sg_scmd,
451 	 * we just need to get sg_virt and sg_next to get virtual
452 	 * address associated with sgel->Address.
453 	 */
454 
455 	if (is_scsiio_req) {
456 		/* Get scsi_cmd using smid */
457 		scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
458 		if (scmd == NULL) {
459 			ioc_err(ioc, "scmd is NULL\n");
460 			return;
461 		}
462 
463 		/* Get sg_scmd from scmd provided */
464 		sg_scmd = scsi_sglist(scmd);
465 	}
466 
467 	/*
468 	 * 0 - 255	System register
469 	 * 256 - 4352	MPI Frame. (This is based on maxCredit 32)
470 	 * 4352 - 4864	Reply_free pool (512 byte is reserved
471 	 *		considering maxCredit 32. Reply need extra
472 	 *		room, for mCPU case kept four times of
473 	 *		maxCredit).
474 	 * 4864 - 17152	SGE chain element. (32cmd * 3 chain of
475 	 *		128 byte size = 12288)
476 	 * 17152 - x	Host buffer mapped with smid.
477 	 *		(Each smid can have 64K Max IO.)
478 	 * BAR0+Last 1K MSIX Addr and Data
479 	 * Total size in use 2113664 bytes of 4MB BAR0
480 	 */
481 
482 	buffer_iomem = _base_get_buffer_bar0(ioc, smid);
483 	buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid);
484 
485 	buff_ptr = buffer_iomem;
486 	buff_ptr_phys = buffer_iomem_phys;
487 	WARN_ON(buff_ptr_phys > U32_MAX);
488 
489 	if (le32_to_cpu(sgel->FlagsLength) &
490 			(MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT))
491 		is_write = true;
492 
493 	for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) {
494 
495 		sgl_flags =
496 		    (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT);
497 
498 		switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) {
499 		case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
500 			/*
501 			 * Helper function which on passing
502 			 * chain_buffer_dma returns chain_buffer. Get
503 			 * the virtual address for sgel->Address
504 			 */
505 			sgel_next =
506 				_base_get_chain_buffer_dma_to_chain_buffer(ioc,
507 						le32_to_cpu(sgel->Address));
508 			if (sgel_next == NULL)
509 				return;
510 			/*
511 			 * This is coping 128 byte chain
512 			 * frame (not a host buffer)
513 			 */
514 			dst_chain_addr[sge_chain_count] =
515 				_base_get_chain(ioc,
516 					smid, sge_chain_count);
517 			src_chain_addr[sge_chain_count] =
518 						(void *) sgel_next;
519 			dst_addr_phys = _base_get_chain_phys(ioc,
520 						smid, sge_chain_count);
521 			WARN_ON(dst_addr_phys > U32_MAX);
522 			sgel->Address =
523 				cpu_to_le32(lower_32_bits(dst_addr_phys));
524 			sgel = sgel_next;
525 			sge_chain_count++;
526 			break;
527 		case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
528 			if (is_write) {
529 				if (is_scsiio_req) {
530 					_base_clone_to_sys_mem(buff_ptr,
531 					    sg_virt(sg_scmd),
532 					    (le32_to_cpu(sgel->FlagsLength) &
533 					    0x00ffffff));
534 					/*
535 					 * FIXME: this relies on a a zero
536 					 * PCI mem_offset.
537 					 */
538 					sgel->Address =
539 					    cpu_to_le32((u32)buff_ptr_phys);
540 				} else {
541 					_base_clone_to_sys_mem(buff_ptr,
542 					    ioc->config_vaddr,
543 					    (le32_to_cpu(sgel->FlagsLength) &
544 					    0x00ffffff));
545 					sgel->Address =
546 					    cpu_to_le32((u32)buff_ptr_phys);
547 				}
548 			}
549 			buff_ptr += (le32_to_cpu(sgel->FlagsLength) &
550 			    0x00ffffff);
551 			buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) &
552 			    0x00ffffff);
553 			if ((le32_to_cpu(sgel->FlagsLength) &
554 			    (MPI2_SGE_FLAGS_END_OF_BUFFER
555 					<< MPI2_SGE_FLAGS_SHIFT)))
556 				goto eob_clone_chain;
557 			else {
558 				/*
559 				 * Every single element in MPT will have
560 				 * associated sg_next. Better to sanity that
561 				 * sg_next is not NULL, but it will be a bug
562 				 * if it is null.
563 				 */
564 				if (is_scsiio_req) {
565 					sg_scmd = sg_next(sg_scmd);
566 					if (sg_scmd)
567 						sgel++;
568 					else
569 						goto eob_clone_chain;
570 				}
571 			}
572 			break;
573 		}
574 	}
575 
576 eob_clone_chain:
577 	for (i = 0; i < sge_chain_count; i++) {
578 		if (is_scsiio_req)
579 			_base_clone_to_sys_mem(dst_chain_addr[i],
580 				src_chain_addr[i], ioc->request_sz);
581 	}
582 }
583 
584 /**
585  *  mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
586  * @arg: input argument, used to derive ioc
587  *
588  * Return:
589  * 0 if controller is removed from pci subsystem.
590  * -1 for other case.
591  */
592 static int mpt3sas_remove_dead_ioc_func(void *arg)
593 {
594 	struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
595 	struct pci_dev *pdev;
596 
597 	if (!ioc)
598 		return -1;
599 
600 	pdev = ioc->pdev;
601 	if (!pdev)
602 		return -1;
603 	pci_stop_and_remove_bus_device_locked(pdev);
604 	return 0;
605 }
606 
607 /**
608  * _base_sync_drv_fw_timestamp - Sync Drive-Fw TimeStamp.
609  * @ioc: Per Adapter Object
610  *
611  * Return: nothing.
612  */
613 static void _base_sync_drv_fw_timestamp(struct MPT3SAS_ADAPTER *ioc)
614 {
615 	Mpi26IoUnitControlRequest_t *mpi_request;
616 	Mpi26IoUnitControlReply_t *mpi_reply;
617 	u16 smid;
618 	ktime_t current_time;
619 	u64 TimeStamp = 0;
620 	u8 issue_reset = 0;
621 
622 	mutex_lock(&ioc->scsih_cmds.mutex);
623 	if (ioc->scsih_cmds.status != MPT3_CMD_NOT_USED) {
624 		ioc_err(ioc, "scsih_cmd in use %s\n", __func__);
625 		goto out;
626 	}
627 	ioc->scsih_cmds.status = MPT3_CMD_PENDING;
628 	smid = mpt3sas_base_get_smid(ioc, ioc->scsih_cb_idx);
629 	if (!smid) {
630 		ioc_err(ioc, "Failed obtaining a smid %s\n", __func__);
631 		ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
632 		goto out;
633 	}
634 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
635 	ioc->scsih_cmds.smid = smid;
636 	memset(mpi_request, 0, sizeof(Mpi26IoUnitControlRequest_t));
637 	mpi_request->Function = MPI2_FUNCTION_IO_UNIT_CONTROL;
638 	mpi_request->Operation = MPI26_CTRL_OP_SET_IOC_PARAMETER;
639 	mpi_request->IOCParameter = MPI26_SET_IOC_PARAMETER_SYNC_TIMESTAMP;
640 	current_time = ktime_get_real();
641 	TimeStamp = ktime_to_ms(current_time);
642 	mpi_request->Reserved7 = cpu_to_le32(TimeStamp >> 32);
643 	mpi_request->IOCParameterValue = cpu_to_le32(TimeStamp & 0xFFFFFFFF);
644 	init_completion(&ioc->scsih_cmds.done);
645 	ioc->put_smid_default(ioc, smid);
646 	dinitprintk(ioc, ioc_info(ioc,
647 	    "Io Unit Control Sync TimeStamp (sending), @time %lld ms\n",
648 	    TimeStamp));
649 	wait_for_completion_timeout(&ioc->scsih_cmds.done,
650 		MPT3SAS_TIMESYNC_TIMEOUT_SECONDS*HZ);
651 	if (!(ioc->scsih_cmds.status & MPT3_CMD_COMPLETE)) {
652 		mpt3sas_check_cmd_timeout(ioc,
653 		    ioc->scsih_cmds.status, mpi_request,
654 		    sizeof(Mpi2SasIoUnitControlRequest_t)/4, issue_reset);
655 		goto issue_host_reset;
656 	}
657 	if (ioc->scsih_cmds.status & MPT3_CMD_REPLY_VALID) {
658 		mpi_reply = ioc->scsih_cmds.reply;
659 		dinitprintk(ioc, ioc_info(ioc,
660 		    "Io Unit Control sync timestamp (complete): ioc_status(0x%04x), loginfo(0x%08x)\n",
661 		    le16_to_cpu(mpi_reply->IOCStatus),
662 		    le32_to_cpu(mpi_reply->IOCLogInfo)));
663 	}
664 issue_host_reset:
665 	if (issue_reset)
666 		mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
667 	ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
668 out:
669 	mutex_unlock(&ioc->scsih_cmds.mutex);
670 }
671 
672 /**
673  * _base_fault_reset_work - workq handling ioc fault conditions
674  * @work: input argument, used to derive ioc
675  *
676  * Context: sleep.
677  */
678 static void
679 _base_fault_reset_work(struct work_struct *work)
680 {
681 	struct MPT3SAS_ADAPTER *ioc =
682 	    container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
683 	unsigned long	 flags;
684 	u32 doorbell;
685 	int rc;
686 	struct task_struct *p;
687 
688 
689 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
690 	if ((ioc->shost_recovery && (ioc->ioc_coredump_loop == 0)) ||
691 			ioc->pci_error_recovery)
692 		goto rearm_timer;
693 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
694 
695 	doorbell = mpt3sas_base_get_iocstate(ioc, 0);
696 	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
697 		ioc_err(ioc, "SAS host is non-operational !!!!\n");
698 
699 		/* It may be possible that EEH recovery can resolve some of
700 		 * pci bus failure issues rather removing the dead ioc function
701 		 * by considering controller is in a non-operational state. So
702 		 * here priority is given to the EEH recovery. If it doesn't
703 		 * not resolve this issue, mpt3sas driver will consider this
704 		 * controller to non-operational state and remove the dead ioc
705 		 * function.
706 		 */
707 		if (ioc->non_operational_loop++ < 5) {
708 			spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
709 							 flags);
710 			goto rearm_timer;
711 		}
712 
713 		/*
714 		 * Call _scsih_flush_pending_cmds callback so that we flush all
715 		 * pending commands back to OS. This call is required to avoid
716 		 * deadlock at block layer. Dead IOC will fail to do diag reset,
717 		 * and this call is safe since dead ioc will never return any
718 		 * command back from HW.
719 		 */
720 		mpt3sas_base_pause_mq_polling(ioc);
721 		ioc->schedule_dead_ioc_flush_running_cmds(ioc);
722 		/*
723 		 * Set remove_host flag early since kernel thread will
724 		 * take some time to execute.
725 		 */
726 		ioc->remove_host = 1;
727 		/*Remove the Dead Host */
728 		p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
729 		    "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
730 		if (IS_ERR(p))
731 			ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
732 				__func__);
733 		else
734 			ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
735 				__func__);
736 		return; /* don't rearm timer */
737 	}
738 
739 	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
740 		u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
741 		    ioc->manu_pg11.CoreDumpTOSec :
742 		    MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
743 
744 		timeout /= (FAULT_POLLING_INTERVAL/1000);
745 
746 		if (ioc->ioc_coredump_loop == 0) {
747 			mpt3sas_print_coredump_info(ioc,
748 			    doorbell & MPI2_DOORBELL_DATA_MASK);
749 			/* do not accept any IOs and disable the interrupts */
750 			spin_lock_irqsave(
751 			    &ioc->ioc_reset_in_progress_lock, flags);
752 			ioc->shost_recovery = 1;
753 			spin_unlock_irqrestore(
754 			    &ioc->ioc_reset_in_progress_lock, flags);
755 			mpt3sas_base_mask_interrupts(ioc);
756 			mpt3sas_base_pause_mq_polling(ioc);
757 			_base_clear_outstanding_commands(ioc);
758 		}
759 
760 		ioc_info(ioc, "%s: CoreDump loop %d.",
761 		    __func__, ioc->ioc_coredump_loop);
762 
763 		/* Wait until CoreDump completes or times out */
764 		if (ioc->ioc_coredump_loop++ < timeout) {
765 			spin_lock_irqsave(
766 			    &ioc->ioc_reset_in_progress_lock, flags);
767 			goto rearm_timer;
768 		}
769 	}
770 
771 	if (ioc->ioc_coredump_loop) {
772 		if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_COREDUMP)
773 			ioc_err(ioc, "%s: CoreDump completed. LoopCount: %d",
774 			    __func__, ioc->ioc_coredump_loop);
775 		else
776 			ioc_err(ioc, "%s: CoreDump Timed out. LoopCount: %d",
777 			    __func__, ioc->ioc_coredump_loop);
778 		ioc->ioc_coredump_loop = MPT3SAS_COREDUMP_LOOP_DONE;
779 	}
780 	ioc->non_operational_loop = 0;
781 	if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
782 		rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
783 		ioc_warn(ioc, "%s: hard reset: %s\n",
784 			 __func__, rc == 0 ? "success" : "failed");
785 		doorbell = mpt3sas_base_get_iocstate(ioc, 0);
786 		if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
787 			mpt3sas_print_fault_code(ioc, doorbell &
788 			    MPI2_DOORBELL_DATA_MASK);
789 		} else if ((doorbell & MPI2_IOC_STATE_MASK) ==
790 		    MPI2_IOC_STATE_COREDUMP)
791 			mpt3sas_print_coredump_info(ioc, doorbell &
792 			    MPI2_DOORBELL_DATA_MASK);
793 		if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
794 		    MPI2_IOC_STATE_OPERATIONAL)
795 			return; /* don't rearm timer */
796 	}
797 	ioc->ioc_coredump_loop = 0;
798 	if (ioc->time_sync_interval &&
799 	    ++ioc->timestamp_update_count >= ioc->time_sync_interval) {
800 		ioc->timestamp_update_count = 0;
801 		_base_sync_drv_fw_timestamp(ioc);
802 	}
803 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
804  rearm_timer:
805 	if (ioc->fault_reset_work_q)
806 		queue_delayed_work(ioc->fault_reset_work_q,
807 		    &ioc->fault_reset_work,
808 		    msecs_to_jiffies(FAULT_POLLING_INTERVAL));
809 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
810 }
811 
812 /**
813  * mpt3sas_base_start_watchdog - start the fault_reset_work_q
814  * @ioc: per adapter object
815  *
816  * Context: sleep.
817  */
818 void
819 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
820 {
821 	unsigned long	 flags;
822 
823 	if (ioc->fault_reset_work_q)
824 		return;
825 
826 	ioc->timestamp_update_count = 0;
827 	/* initialize fault polling */
828 
829 	INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
830 	snprintf(ioc->fault_reset_work_q_name,
831 	    sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
832 	    ioc->driver_name, ioc->id);
833 	ioc->fault_reset_work_q =
834 		create_singlethread_workqueue(ioc->fault_reset_work_q_name);
835 	if (!ioc->fault_reset_work_q) {
836 		ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__);
837 		return;
838 	}
839 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
840 	if (ioc->fault_reset_work_q)
841 		queue_delayed_work(ioc->fault_reset_work_q,
842 		    &ioc->fault_reset_work,
843 		    msecs_to_jiffies(FAULT_POLLING_INTERVAL));
844 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
845 }
846 
847 /**
848  * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
849  * @ioc: per adapter object
850  *
851  * Context: sleep.
852  */
853 void
854 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
855 {
856 	unsigned long flags;
857 	struct workqueue_struct *wq;
858 
859 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
860 	wq = ioc->fault_reset_work_q;
861 	ioc->fault_reset_work_q = NULL;
862 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
863 	if (wq) {
864 		if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
865 			flush_workqueue(wq);
866 		destroy_workqueue(wq);
867 	}
868 }
869 
870 /**
871  * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
872  * @ioc: per adapter object
873  * @fault_code: fault code
874  */
875 void
876 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code)
877 {
878 	ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code);
879 }
880 
881 /**
882  * mpt3sas_base_coredump_info - verbose translation of firmware CoreDump state
883  * @ioc: per adapter object
884  * @fault_code: fault code
885  *
886  * Return: nothing.
887  */
888 void
889 mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code)
890 {
891 	ioc_err(ioc, "coredump_state(0x%04x)!\n", fault_code);
892 }
893 
894 /**
895  * mpt3sas_base_wait_for_coredump_completion - Wait until coredump
896  * completes or times out
897  * @ioc: per adapter object
898  * @caller: caller function name
899  *
900  * Return: 0 for success, non-zero for failure.
901  */
902 int
903 mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER *ioc,
904 		const char *caller)
905 {
906 	u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
907 			ioc->manu_pg11.CoreDumpTOSec :
908 			MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
909 
910 	int ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_FAULT,
911 					timeout);
912 
913 	if (ioc_state)
914 		ioc_err(ioc,
915 		    "%s: CoreDump timed out. (ioc_state=0x%x)\n",
916 		    caller, ioc_state);
917 	else
918 		ioc_info(ioc,
919 		    "%s: CoreDump completed. (ioc_state=0x%x)\n",
920 		    caller, ioc_state);
921 
922 	return ioc_state;
923 }
924 
925 /**
926  * mpt3sas_halt_firmware - halt's mpt controller firmware
927  * @ioc: per adapter object
928  *
929  * For debugging timeout related issues.  Writing 0xCOFFEE00
930  * to the doorbell register will halt controller firmware. With
931  * the purpose to stop both driver and firmware, the enduser can
932  * obtain a ring buffer from controller UART.
933  */
934 void
935 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
936 {
937 	u32 doorbell;
938 
939 	if (!ioc->fwfault_debug)
940 		return;
941 
942 	dump_stack();
943 
944 	doorbell = ioc->base_readl(&ioc->chip->Doorbell);
945 	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
946 		mpt3sas_print_fault_code(ioc, doorbell &
947 		    MPI2_DOORBELL_DATA_MASK);
948 	} else if ((doorbell & MPI2_IOC_STATE_MASK) ==
949 	    MPI2_IOC_STATE_COREDUMP) {
950 		mpt3sas_print_coredump_info(ioc, doorbell &
951 		    MPI2_DOORBELL_DATA_MASK);
952 	} else {
953 		writel(0xC0FFEE00, &ioc->chip->Doorbell);
954 		ioc_err(ioc, "Firmware is halted due to command timeout\n");
955 	}
956 
957 	if (ioc->fwfault_debug == 2)
958 		for (;;)
959 			;
960 	else
961 		panic("panic in %s\n", __func__);
962 }
963 
964 /**
965  * _base_sas_ioc_info - verbose translation of the ioc status
966  * @ioc: per adapter object
967  * @mpi_reply: reply mf payload returned from firmware
968  * @request_hdr: request mf
969  */
970 static void
971 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
972 	MPI2RequestHeader_t *request_hdr)
973 {
974 	u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
975 	    MPI2_IOCSTATUS_MASK;
976 	char *desc = NULL;
977 	u16 frame_sz;
978 	char *func_str = NULL;
979 
980 	/* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
981 	if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
982 	    request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
983 	    request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
984 		return;
985 
986 	if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
987 		return;
988 	/*
989 	 * Older Firmware version doesn't support driver trigger pages.
990 	 * So, skip displaying 'config invalid type' type
991 	 * of error message.
992 	 */
993 	if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
994 		Mpi2ConfigRequest_t *rqst = (Mpi2ConfigRequest_t *)request_hdr;
995 
996 		if ((rqst->ExtPageType ==
997 		    MPI2_CONFIG_EXTPAGETYPE_DRIVER_PERSISTENT_TRIGGER) &&
998 		    !(ioc->logging_level & MPT_DEBUG_CONFIG)) {
999 			return;
1000 		}
1001 	}
1002 
1003 	switch (ioc_status) {
1004 
1005 /****************************************************************************
1006 *  Common IOCStatus values for all replies
1007 ****************************************************************************/
1008 
1009 	case MPI2_IOCSTATUS_INVALID_FUNCTION:
1010 		desc = "invalid function";
1011 		break;
1012 	case MPI2_IOCSTATUS_BUSY:
1013 		desc = "busy";
1014 		break;
1015 	case MPI2_IOCSTATUS_INVALID_SGL:
1016 		desc = "invalid sgl";
1017 		break;
1018 	case MPI2_IOCSTATUS_INTERNAL_ERROR:
1019 		desc = "internal error";
1020 		break;
1021 	case MPI2_IOCSTATUS_INVALID_VPID:
1022 		desc = "invalid vpid";
1023 		break;
1024 	case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
1025 		desc = "insufficient resources";
1026 		break;
1027 	case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
1028 		desc = "insufficient power";
1029 		break;
1030 	case MPI2_IOCSTATUS_INVALID_FIELD:
1031 		desc = "invalid field";
1032 		break;
1033 	case MPI2_IOCSTATUS_INVALID_STATE:
1034 		desc = "invalid state";
1035 		break;
1036 	case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
1037 		desc = "op state not supported";
1038 		break;
1039 
1040 /****************************************************************************
1041 *  Config IOCStatus values
1042 ****************************************************************************/
1043 
1044 	case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
1045 		desc = "config invalid action";
1046 		break;
1047 	case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
1048 		desc = "config invalid type";
1049 		break;
1050 	case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
1051 		desc = "config invalid page";
1052 		break;
1053 	case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
1054 		desc = "config invalid data";
1055 		break;
1056 	case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
1057 		desc = "config no defaults";
1058 		break;
1059 	case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
1060 		desc = "config can't commit";
1061 		break;
1062 
1063 /****************************************************************************
1064 *  SCSI IO Reply
1065 ****************************************************************************/
1066 
1067 	case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
1068 	case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
1069 	case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
1070 	case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
1071 	case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
1072 	case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
1073 	case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
1074 	case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
1075 	case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
1076 	case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
1077 	case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
1078 	case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
1079 		break;
1080 
1081 /****************************************************************************
1082 *  For use by SCSI Initiator and SCSI Target end-to-end data protection
1083 ****************************************************************************/
1084 
1085 	case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
1086 		desc = "eedp guard error";
1087 		break;
1088 	case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
1089 		desc = "eedp ref tag error";
1090 		break;
1091 	case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
1092 		desc = "eedp app tag error";
1093 		break;
1094 
1095 /****************************************************************************
1096 *  SCSI Target values
1097 ****************************************************************************/
1098 
1099 	case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
1100 		desc = "target invalid io index";
1101 		break;
1102 	case MPI2_IOCSTATUS_TARGET_ABORTED:
1103 		desc = "target aborted";
1104 		break;
1105 	case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
1106 		desc = "target no conn retryable";
1107 		break;
1108 	case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
1109 		desc = "target no connection";
1110 		break;
1111 	case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
1112 		desc = "target xfer count mismatch";
1113 		break;
1114 	case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
1115 		desc = "target data offset error";
1116 		break;
1117 	case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
1118 		desc = "target too much write data";
1119 		break;
1120 	case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
1121 		desc = "target iu too short";
1122 		break;
1123 	case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
1124 		desc = "target ack nak timeout";
1125 		break;
1126 	case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
1127 		desc = "target nak received";
1128 		break;
1129 
1130 /****************************************************************************
1131 *  Serial Attached SCSI values
1132 ****************************************************************************/
1133 
1134 	case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
1135 		desc = "smp request failed";
1136 		break;
1137 	case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
1138 		desc = "smp data overrun";
1139 		break;
1140 
1141 /****************************************************************************
1142 *  Diagnostic Buffer Post / Diagnostic Release values
1143 ****************************************************************************/
1144 
1145 	case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
1146 		desc = "diagnostic released";
1147 		break;
1148 	default:
1149 		break;
1150 	}
1151 
1152 	if (!desc)
1153 		return;
1154 
1155 	switch (request_hdr->Function) {
1156 	case MPI2_FUNCTION_CONFIG:
1157 		frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
1158 		func_str = "config_page";
1159 		break;
1160 	case MPI2_FUNCTION_SCSI_TASK_MGMT:
1161 		frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
1162 		func_str = "task_mgmt";
1163 		break;
1164 	case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
1165 		frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
1166 		func_str = "sas_iounit_ctl";
1167 		break;
1168 	case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
1169 		frame_sz = sizeof(Mpi2SepRequest_t);
1170 		func_str = "enclosure";
1171 		break;
1172 	case MPI2_FUNCTION_IOC_INIT:
1173 		frame_sz = sizeof(Mpi2IOCInitRequest_t);
1174 		func_str = "ioc_init";
1175 		break;
1176 	case MPI2_FUNCTION_PORT_ENABLE:
1177 		frame_sz = sizeof(Mpi2PortEnableRequest_t);
1178 		func_str = "port_enable";
1179 		break;
1180 	case MPI2_FUNCTION_SMP_PASSTHROUGH:
1181 		frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
1182 		func_str = "smp_passthru";
1183 		break;
1184 	case MPI2_FUNCTION_NVME_ENCAPSULATED:
1185 		frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) +
1186 		    ioc->sge_size;
1187 		func_str = "nvme_encapsulated";
1188 		break;
1189 	default:
1190 		frame_sz = 32;
1191 		func_str = "unknown";
1192 		break;
1193 	}
1194 
1195 	ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
1196 		 desc, ioc_status, request_hdr, func_str);
1197 
1198 	_debug_dump_mf(request_hdr, frame_sz/4);
1199 }
1200 
1201 /**
1202  * _base_display_event_data - verbose translation of firmware asyn events
1203  * @ioc: per adapter object
1204  * @mpi_reply: reply mf payload returned from firmware
1205  */
1206 static void
1207 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
1208 	Mpi2EventNotificationReply_t *mpi_reply)
1209 {
1210 	char *desc = NULL;
1211 	u16 event;
1212 
1213 	if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
1214 		return;
1215 
1216 	event = le16_to_cpu(mpi_reply->Event);
1217 
1218 	switch (event) {
1219 	case MPI2_EVENT_LOG_DATA:
1220 		desc = "Log Data";
1221 		break;
1222 	case MPI2_EVENT_STATE_CHANGE:
1223 		desc = "Status Change";
1224 		break;
1225 	case MPI2_EVENT_HARD_RESET_RECEIVED:
1226 		desc = "Hard Reset Received";
1227 		break;
1228 	case MPI2_EVENT_EVENT_CHANGE:
1229 		desc = "Event Change";
1230 		break;
1231 	case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
1232 		desc = "Device Status Change";
1233 		break;
1234 	case MPI2_EVENT_IR_OPERATION_STATUS:
1235 		if (!ioc->hide_ir_msg)
1236 			desc = "IR Operation Status";
1237 		break;
1238 	case MPI2_EVENT_SAS_DISCOVERY:
1239 	{
1240 		Mpi2EventDataSasDiscovery_t *event_data =
1241 		    (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
1242 		ioc_info(ioc, "Discovery: (%s)",
1243 			 event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ?
1244 			 "start" : "stop");
1245 		if (event_data->DiscoveryStatus)
1246 			pr_cont(" discovery_status(0x%08x)",
1247 			    le32_to_cpu(event_data->DiscoveryStatus));
1248 		pr_cont("\n");
1249 		return;
1250 	}
1251 	case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
1252 		desc = "SAS Broadcast Primitive";
1253 		break;
1254 	case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
1255 		desc = "SAS Init Device Status Change";
1256 		break;
1257 	case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
1258 		desc = "SAS Init Table Overflow";
1259 		break;
1260 	case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
1261 		desc = "SAS Topology Change List";
1262 		break;
1263 	case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
1264 		desc = "SAS Enclosure Device Status Change";
1265 		break;
1266 	case MPI2_EVENT_IR_VOLUME:
1267 		if (!ioc->hide_ir_msg)
1268 			desc = "IR Volume";
1269 		break;
1270 	case MPI2_EVENT_IR_PHYSICAL_DISK:
1271 		if (!ioc->hide_ir_msg)
1272 			desc = "IR Physical Disk";
1273 		break;
1274 	case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
1275 		if (!ioc->hide_ir_msg)
1276 			desc = "IR Configuration Change List";
1277 		break;
1278 	case MPI2_EVENT_LOG_ENTRY_ADDED:
1279 		if (!ioc->hide_ir_msg)
1280 			desc = "Log Entry Added";
1281 		break;
1282 	case MPI2_EVENT_TEMP_THRESHOLD:
1283 		desc = "Temperature Threshold";
1284 		break;
1285 	case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
1286 		desc = "Cable Event";
1287 		break;
1288 	case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR:
1289 		desc = "SAS Device Discovery Error";
1290 		break;
1291 	case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE:
1292 		desc = "PCIE Device Status Change";
1293 		break;
1294 	case MPI2_EVENT_PCIE_ENUMERATION:
1295 	{
1296 		Mpi26EventDataPCIeEnumeration_t *event_data =
1297 			(Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData;
1298 		ioc_info(ioc, "PCIE Enumeration: (%s)",
1299 			 event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ?
1300 			 "start" : "stop");
1301 		if (event_data->EnumerationStatus)
1302 			pr_cont("enumeration_status(0x%08x)",
1303 				le32_to_cpu(event_data->EnumerationStatus));
1304 		pr_cont("\n");
1305 		return;
1306 	}
1307 	case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST:
1308 		desc = "PCIE Topology Change List";
1309 		break;
1310 	}
1311 
1312 	if (!desc)
1313 		return;
1314 
1315 	ioc_info(ioc, "%s\n", desc);
1316 }
1317 
1318 /**
1319  * _base_sas_log_info - verbose translation of firmware log info
1320  * @ioc: per adapter object
1321  * @log_info: log info
1322  */
1323 static void
1324 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc, u32 log_info)
1325 {
1326 	union loginfo_type {
1327 		u32	loginfo;
1328 		struct {
1329 			u32	subcode:16;
1330 			u32	code:8;
1331 			u32	originator:4;
1332 			u32	bus_type:4;
1333 		} dw;
1334 	};
1335 	union loginfo_type sas_loginfo;
1336 	char *originator_str = NULL;
1337 
1338 	sas_loginfo.loginfo = log_info;
1339 	if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
1340 		return;
1341 
1342 	/* each nexus loss loginfo */
1343 	if (log_info == 0x31170000)
1344 		return;
1345 
1346 	/* eat the loginfos associated with task aborts */
1347 	if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
1348 	    0x31140000 || log_info == 0x31130000))
1349 		return;
1350 
1351 	switch (sas_loginfo.dw.originator) {
1352 	case 0:
1353 		originator_str = "IOP";
1354 		break;
1355 	case 1:
1356 		originator_str = "PL";
1357 		break;
1358 	case 2:
1359 		if (!ioc->hide_ir_msg)
1360 			originator_str = "IR";
1361 		else
1362 			originator_str = "WarpDrive";
1363 		break;
1364 	}
1365 
1366 	ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
1367 		 log_info,
1368 		 originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode);
1369 }
1370 
1371 /**
1372  * _base_display_reply_info - handle reply descriptors depending on IOC Status
1373  * @ioc: per adapter object
1374  * @smid: system request message index
1375  * @msix_index: MSIX table index supplied by the OS
1376  * @reply: reply message frame (lower 32bit addr)
1377  */
1378 static void
1379 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1380 	u32 reply)
1381 {
1382 	MPI2DefaultReply_t *mpi_reply;
1383 	u16 ioc_status;
1384 	u32 loginfo = 0;
1385 
1386 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1387 	if (unlikely(!mpi_reply)) {
1388 		ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n",
1389 			__FILE__, __LINE__, __func__);
1390 		return;
1391 	}
1392 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
1393 
1394 	if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
1395 	    (ioc->logging_level & MPT_DEBUG_REPLY)) {
1396 		_base_sas_ioc_info(ioc, mpi_reply,
1397 		   mpt3sas_base_get_msg_frame(ioc, smid));
1398 	}
1399 
1400 	if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
1401 		loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
1402 		_base_sas_log_info(ioc, loginfo);
1403 	}
1404 
1405 	if (ioc_status || loginfo) {
1406 		ioc_status &= MPI2_IOCSTATUS_MASK;
1407 		mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
1408 	}
1409 }
1410 
1411 /**
1412  * mpt3sas_base_done - base internal command completion routine
1413  * @ioc: per adapter object
1414  * @smid: system request message index
1415  * @msix_index: MSIX table index supplied by the OS
1416  * @reply: reply message frame(lower 32bit addr)
1417  *
1418  * Return:
1419  * 1 meaning mf should be freed from _base_interrupt
1420  * 0 means the mf is freed from this function.
1421  */
1422 u8
1423 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1424 	u32 reply)
1425 {
1426 	MPI2DefaultReply_t *mpi_reply;
1427 
1428 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1429 	if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
1430 		return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
1431 
1432 	if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
1433 		return 1;
1434 
1435 	ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
1436 	if (mpi_reply) {
1437 		ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
1438 		memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
1439 	}
1440 	ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
1441 
1442 	complete(&ioc->base_cmds.done);
1443 	return 1;
1444 }
1445 
1446 /**
1447  * _base_async_event - main callback handler for firmware asyn events
1448  * @ioc: per adapter object
1449  * @msix_index: MSIX table index supplied by the OS
1450  * @reply: reply message frame(lower 32bit addr)
1451  *
1452  * Return:
1453  * 1 meaning mf should be freed from _base_interrupt
1454  * 0 means the mf is freed from this function.
1455  */
1456 static u8
1457 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
1458 {
1459 	Mpi2EventNotificationReply_t *mpi_reply;
1460 	Mpi2EventAckRequest_t *ack_request;
1461 	u16 smid;
1462 	struct _event_ack_list *delayed_event_ack;
1463 
1464 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1465 	if (!mpi_reply)
1466 		return 1;
1467 	if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
1468 		return 1;
1469 
1470 	_base_display_event_data(ioc, mpi_reply);
1471 
1472 	if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
1473 		goto out;
1474 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
1475 	if (!smid) {
1476 		delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
1477 					GFP_ATOMIC);
1478 		if (!delayed_event_ack)
1479 			goto out;
1480 		INIT_LIST_HEAD(&delayed_event_ack->list);
1481 		delayed_event_ack->Event = mpi_reply->Event;
1482 		delayed_event_ack->EventContext = mpi_reply->EventContext;
1483 		list_add_tail(&delayed_event_ack->list,
1484 				&ioc->delayed_event_ack_list);
1485 		dewtprintk(ioc,
1486 			   ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n",
1487 				    le16_to_cpu(mpi_reply->Event)));
1488 		goto out;
1489 	}
1490 
1491 	ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
1492 	memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
1493 	ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
1494 	ack_request->Event = mpi_reply->Event;
1495 	ack_request->EventContext = mpi_reply->EventContext;
1496 	ack_request->VF_ID = 0;  /* TODO */
1497 	ack_request->VP_ID = 0;
1498 	ioc->put_smid_default(ioc, smid);
1499 
1500  out:
1501 
1502 	/* scsih callback handler */
1503 	mpt3sas_scsih_event_callback(ioc, msix_index, reply);
1504 
1505 	/* ctl callback handler */
1506 	mpt3sas_ctl_event_callback(ioc, msix_index, reply);
1507 
1508 	return 1;
1509 }
1510 
1511 static struct scsiio_tracker *
1512 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1513 {
1514 	struct scsi_cmnd *cmd;
1515 
1516 	if (WARN_ON(!smid) ||
1517 	    WARN_ON(smid >= ioc->hi_priority_smid))
1518 		return NULL;
1519 
1520 	cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
1521 	if (cmd)
1522 		return scsi_cmd_priv(cmd);
1523 
1524 	return NULL;
1525 }
1526 
1527 /**
1528  * _base_get_cb_idx - obtain the callback index
1529  * @ioc: per adapter object
1530  * @smid: system request message index
1531  *
1532  * Return: callback index.
1533  */
1534 static u8
1535 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1536 {
1537 	int i;
1538 	u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1;
1539 	u8 cb_idx = 0xFF;
1540 
1541 	if (smid < ioc->hi_priority_smid) {
1542 		struct scsiio_tracker *st;
1543 
1544 		if (smid < ctl_smid) {
1545 			st = _get_st_from_smid(ioc, smid);
1546 			if (st)
1547 				cb_idx = st->cb_idx;
1548 		} else if (smid == ctl_smid)
1549 			cb_idx = ioc->ctl_cb_idx;
1550 	} else if (smid < ioc->internal_smid) {
1551 		i = smid - ioc->hi_priority_smid;
1552 		cb_idx = ioc->hpr_lookup[i].cb_idx;
1553 	} else if (smid <= ioc->hba_queue_depth) {
1554 		i = smid - ioc->internal_smid;
1555 		cb_idx = ioc->internal_lookup[i].cb_idx;
1556 	}
1557 	return cb_idx;
1558 }
1559 
1560 /**
1561  * mpt3sas_base_pause_mq_polling - pause polling on the mq poll queues
1562  *				when driver is flushing out the IOs.
1563  * @ioc: per adapter object
1564  *
1565  * Pause polling on the mq poll (io uring) queues when driver is flushing
1566  * out the IOs. Otherwise we may see the race condition of completing the same
1567  * IO from two paths.
1568  *
1569  * Returns nothing.
1570  */
1571 void
1572 mpt3sas_base_pause_mq_polling(struct MPT3SAS_ADAPTER *ioc)
1573 {
1574 	int iopoll_q_count =
1575 	    ioc->reply_queue_count - ioc->iopoll_q_start_index;
1576 	int qid;
1577 
1578 	for (qid = 0; qid < iopoll_q_count; qid++)
1579 		atomic_set(&ioc->io_uring_poll_queues[qid].pause, 1);
1580 
1581 	/*
1582 	 * wait for current poll to complete.
1583 	 */
1584 	for (qid = 0; qid < iopoll_q_count; qid++) {
1585 		while (atomic_read(&ioc->io_uring_poll_queues[qid].busy)) {
1586 			cpu_relax();
1587 			udelay(500);
1588 		}
1589 	}
1590 }
1591 
1592 /**
1593  * mpt3sas_base_resume_mq_polling - Resume polling on mq poll queues.
1594  * @ioc: per adapter object
1595  *
1596  * Returns nothing.
1597  */
1598 void
1599 mpt3sas_base_resume_mq_polling(struct MPT3SAS_ADAPTER *ioc)
1600 {
1601 	int iopoll_q_count =
1602 	    ioc->reply_queue_count - ioc->iopoll_q_start_index;
1603 	int qid;
1604 
1605 	for (qid = 0; qid < iopoll_q_count; qid++)
1606 		atomic_set(&ioc->io_uring_poll_queues[qid].pause, 0);
1607 }
1608 
1609 /**
1610  * mpt3sas_base_mask_interrupts - disable interrupts
1611  * @ioc: per adapter object
1612  *
1613  * Disabling ResetIRQ, Reply and Doorbell Interrupts
1614  */
1615 void
1616 mpt3sas_base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1617 {
1618 	u32 him_register;
1619 
1620 	ioc->mask_interrupts = 1;
1621 	him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1622 	him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
1623 	writel(him_register, &ioc->chip->HostInterruptMask);
1624 	ioc->base_readl(&ioc->chip->HostInterruptMask);
1625 }
1626 
1627 /**
1628  * mpt3sas_base_unmask_interrupts - enable interrupts
1629  * @ioc: per adapter object
1630  *
1631  * Enabling only Reply Interrupts
1632  */
1633 void
1634 mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1635 {
1636 	u32 him_register;
1637 
1638 	him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1639 	him_register &= ~MPI2_HIM_RIM;
1640 	writel(him_register, &ioc->chip->HostInterruptMask);
1641 	ioc->mask_interrupts = 0;
1642 }
1643 
1644 union reply_descriptor {
1645 	u64 word;
1646 	struct {
1647 		u32 low;
1648 		u32 high;
1649 	} u;
1650 };
1651 
1652 static u32 base_mod64(u64 dividend, u32 divisor)
1653 {
1654 	u32 remainder;
1655 
1656 	if (!divisor)
1657 		pr_err("mpt3sas: DIVISOR is zero, in div fn\n");
1658 	remainder = do_div(dividend, divisor);
1659 	return remainder;
1660 }
1661 
1662 /**
1663  * _base_process_reply_queue - Process reply descriptors from reply
1664  *		descriptor post queue.
1665  * @reply_q: per IRQ's reply queue object.
1666  *
1667  * Return: number of reply descriptors processed from reply
1668  *		descriptor queue.
1669  */
1670 static int
1671 _base_process_reply_queue(struct adapter_reply_queue *reply_q)
1672 {
1673 	union reply_descriptor rd;
1674 	u64 completed_cmds;
1675 	u8 request_descript_type;
1676 	u16 smid;
1677 	u8 cb_idx;
1678 	u32 reply;
1679 	u8 msix_index = reply_q->msix_index;
1680 	struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1681 	Mpi2ReplyDescriptorsUnion_t *rpf;
1682 	u8 rc;
1683 
1684 	completed_cmds = 0;
1685 	if (!atomic_add_unless(&reply_q->busy, 1, 1))
1686 		return completed_cmds;
1687 
1688 	rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
1689 	request_descript_type = rpf->Default.ReplyFlags
1690 	     & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1691 	if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
1692 		atomic_dec(&reply_q->busy);
1693 		return completed_cmds;
1694 	}
1695 
1696 	cb_idx = 0xFF;
1697 	do {
1698 		rd.word = le64_to_cpu(rpf->Words);
1699 		if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
1700 			goto out;
1701 		reply = 0;
1702 		smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
1703 		if (request_descript_type ==
1704 		    MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
1705 		    request_descript_type ==
1706 		    MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS ||
1707 		    request_descript_type ==
1708 		    MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) {
1709 			cb_idx = _base_get_cb_idx(ioc, smid);
1710 			if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1711 			    (likely(mpt_callbacks[cb_idx] != NULL))) {
1712 				rc = mpt_callbacks[cb_idx](ioc, smid,
1713 				    msix_index, 0);
1714 				if (rc)
1715 					mpt3sas_base_free_smid(ioc, smid);
1716 			}
1717 		} else if (request_descript_type ==
1718 		    MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
1719 			reply = le32_to_cpu(
1720 			    rpf->AddressReply.ReplyFrameAddress);
1721 			if (reply > ioc->reply_dma_max_address ||
1722 			    reply < ioc->reply_dma_min_address)
1723 				reply = 0;
1724 			if (smid) {
1725 				cb_idx = _base_get_cb_idx(ioc, smid);
1726 				if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1727 				    (likely(mpt_callbacks[cb_idx] != NULL))) {
1728 					rc = mpt_callbacks[cb_idx](ioc, smid,
1729 					    msix_index, reply);
1730 					if (reply)
1731 						_base_display_reply_info(ioc,
1732 						    smid, msix_index, reply);
1733 					if (rc)
1734 						mpt3sas_base_free_smid(ioc,
1735 						    smid);
1736 				}
1737 			} else {
1738 				_base_async_event(ioc, msix_index, reply);
1739 			}
1740 
1741 			/* reply free queue handling */
1742 			if (reply) {
1743 				ioc->reply_free_host_index =
1744 				    (ioc->reply_free_host_index ==
1745 				    (ioc->reply_free_queue_depth - 1)) ?
1746 				    0 : ioc->reply_free_host_index + 1;
1747 				ioc->reply_free[ioc->reply_free_host_index] =
1748 				    cpu_to_le32(reply);
1749 				if (ioc->is_mcpu_endpoint)
1750 					_base_clone_reply_to_sys_mem(ioc,
1751 						reply,
1752 						ioc->reply_free_host_index);
1753 				writel(ioc->reply_free_host_index,
1754 				    &ioc->chip->ReplyFreeHostIndex);
1755 			}
1756 		}
1757 
1758 		rpf->Words = cpu_to_le64(ULLONG_MAX);
1759 		reply_q->reply_post_host_index =
1760 		    (reply_q->reply_post_host_index ==
1761 		    (ioc->reply_post_queue_depth - 1)) ? 0 :
1762 		    reply_q->reply_post_host_index + 1;
1763 		request_descript_type =
1764 		    reply_q->reply_post_free[reply_q->reply_post_host_index].
1765 		    Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1766 		completed_cmds++;
1767 		/* Update the reply post host index after continuously
1768 		 * processing the threshold number of Reply Descriptors.
1769 		 * So that FW can find enough entries to post the Reply
1770 		 * Descriptors in the reply descriptor post queue.
1771 		 */
1772 		if (completed_cmds >= ioc->thresh_hold) {
1773 			if (ioc->combined_reply_queue) {
1774 				writel(reply_q->reply_post_host_index |
1775 						((msix_index  & 7) <<
1776 						 MPI2_RPHI_MSIX_INDEX_SHIFT),
1777 				    ioc->replyPostRegisterIndex[msix_index/8]);
1778 			} else {
1779 				writel(reply_q->reply_post_host_index |
1780 						(msix_index <<
1781 						 MPI2_RPHI_MSIX_INDEX_SHIFT),
1782 						&ioc->chip->ReplyPostHostIndex);
1783 			}
1784 			if (!reply_q->is_iouring_poll_q &&
1785 			    !reply_q->irq_poll_scheduled) {
1786 				reply_q->irq_poll_scheduled = true;
1787 				irq_poll_sched(&reply_q->irqpoll);
1788 			}
1789 			atomic_dec(&reply_q->busy);
1790 			return completed_cmds;
1791 		}
1792 		if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1793 			goto out;
1794 		if (!reply_q->reply_post_host_index)
1795 			rpf = reply_q->reply_post_free;
1796 		else
1797 			rpf++;
1798 	} while (1);
1799 
1800  out:
1801 
1802 	if (!completed_cmds) {
1803 		atomic_dec(&reply_q->busy);
1804 		return completed_cmds;
1805 	}
1806 
1807 	if (ioc->is_warpdrive) {
1808 		writel(reply_q->reply_post_host_index,
1809 		ioc->reply_post_host_index[msix_index]);
1810 		atomic_dec(&reply_q->busy);
1811 		return completed_cmds;
1812 	}
1813 
1814 	/* Update Reply Post Host Index.
1815 	 * For those HBA's which support combined reply queue feature
1816 	 * 1. Get the correct Supplemental Reply Post Host Index Register.
1817 	 *    i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1818 	 *    Index Register address bank i.e replyPostRegisterIndex[],
1819 	 * 2. Then update this register with new reply host index value
1820 	 *    in ReplyPostIndex field and the MSIxIndex field with
1821 	 *    msix_index value reduced to a value between 0 and 7,
1822 	 *    using a modulo 8 operation. Since each Supplemental Reply Post
1823 	 *    Host Index Register supports 8 MSI-X vectors.
1824 	 *
1825 	 * For other HBA's just update the Reply Post Host Index register with
1826 	 * new reply host index value in ReplyPostIndex Field and msix_index
1827 	 * value in MSIxIndex field.
1828 	 */
1829 	if (ioc->combined_reply_queue)
1830 		writel(reply_q->reply_post_host_index | ((msix_index  & 7) <<
1831 			MPI2_RPHI_MSIX_INDEX_SHIFT),
1832 			ioc->replyPostRegisterIndex[msix_index/8]);
1833 	else
1834 		writel(reply_q->reply_post_host_index | (msix_index <<
1835 			MPI2_RPHI_MSIX_INDEX_SHIFT),
1836 			&ioc->chip->ReplyPostHostIndex);
1837 	atomic_dec(&reply_q->busy);
1838 	return completed_cmds;
1839 }
1840 
1841 /**
1842  * mpt3sas_blk_mq_poll - poll the blk mq poll queue
1843  * @shost: Scsi_Host object
1844  * @queue_num: hw ctx queue number
1845  *
1846  * Return number of entries that has been processed from poll queue.
1847  */
1848 int mpt3sas_blk_mq_poll(struct Scsi_Host *shost, unsigned int queue_num)
1849 {
1850 	struct MPT3SAS_ADAPTER *ioc =
1851 	    (struct MPT3SAS_ADAPTER *)shost->hostdata;
1852 	struct adapter_reply_queue *reply_q;
1853 	int num_entries = 0;
1854 	int qid = queue_num - ioc->iopoll_q_start_index;
1855 
1856 	if (atomic_read(&ioc->io_uring_poll_queues[qid].pause) ||
1857 	    !atomic_add_unless(&ioc->io_uring_poll_queues[qid].busy, 1, 1))
1858 		return 0;
1859 
1860 	reply_q = ioc->io_uring_poll_queues[qid].reply_q;
1861 
1862 	num_entries = _base_process_reply_queue(reply_q);
1863 	atomic_dec(&ioc->io_uring_poll_queues[qid].busy);
1864 
1865 	return num_entries;
1866 }
1867 
1868 /**
1869  * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
1870  * @irq: irq number (not used)
1871  * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
1872  *
1873  * Return: IRQ_HANDLED if processed, else IRQ_NONE.
1874  */
1875 static irqreturn_t
1876 _base_interrupt(int irq, void *bus_id)
1877 {
1878 	struct adapter_reply_queue *reply_q = bus_id;
1879 	struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1880 
1881 	if (ioc->mask_interrupts)
1882 		return IRQ_NONE;
1883 	if (reply_q->irq_poll_scheduled)
1884 		return IRQ_HANDLED;
1885 	return ((_base_process_reply_queue(reply_q) > 0) ?
1886 			IRQ_HANDLED : IRQ_NONE);
1887 }
1888 
1889 /**
1890  * _base_irqpoll - IRQ poll callback handler
1891  * @irqpoll: irq_poll object
1892  * @budget: irq poll weight
1893  *
1894  * Return: number of reply descriptors processed
1895  */
1896 static int
1897 _base_irqpoll(struct irq_poll *irqpoll, int budget)
1898 {
1899 	struct adapter_reply_queue *reply_q;
1900 	int num_entries = 0;
1901 
1902 	reply_q = container_of(irqpoll, struct adapter_reply_queue,
1903 			irqpoll);
1904 	if (reply_q->irq_line_enable) {
1905 		disable_irq_nosync(reply_q->os_irq);
1906 		reply_q->irq_line_enable = false;
1907 	}
1908 	num_entries = _base_process_reply_queue(reply_q);
1909 	if (num_entries < budget) {
1910 		irq_poll_complete(irqpoll);
1911 		reply_q->irq_poll_scheduled = false;
1912 		reply_q->irq_line_enable = true;
1913 		enable_irq(reply_q->os_irq);
1914 		/*
1915 		 * Go for one more round of processing the
1916 		 * reply descriptor post queue in case the HBA
1917 		 * Firmware has posted some reply descriptors
1918 		 * while reenabling the IRQ.
1919 		 */
1920 		_base_process_reply_queue(reply_q);
1921 	}
1922 
1923 	return num_entries;
1924 }
1925 
1926 /**
1927  * _base_init_irqpolls - initliaze IRQ polls
1928  * @ioc: per adapter object
1929  *
1930  * Return: nothing
1931  */
1932 static void
1933 _base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc)
1934 {
1935 	struct adapter_reply_queue *reply_q, *next;
1936 
1937 	if (list_empty(&ioc->reply_queue_list))
1938 		return;
1939 
1940 	list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1941 		if (reply_q->is_iouring_poll_q)
1942 			continue;
1943 		irq_poll_init(&reply_q->irqpoll,
1944 			ioc->hba_queue_depth/4, _base_irqpoll);
1945 		reply_q->irq_poll_scheduled = false;
1946 		reply_q->irq_line_enable = true;
1947 		reply_q->os_irq = pci_irq_vector(ioc->pdev,
1948 		    reply_q->msix_index);
1949 	}
1950 }
1951 
1952 /**
1953  * _base_is_controller_msix_enabled - is controller support muli-reply queues
1954  * @ioc: per adapter object
1955  *
1956  * Return: Whether or not MSI/X is enabled.
1957  */
1958 static inline int
1959 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1960 {
1961 	return (ioc->facts.IOCCapabilities &
1962 	    MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1963 }
1964 
1965 /**
1966  * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1967  * @ioc: per adapter object
1968  * @poll: poll over reply descriptor pools incase interrupt for
1969  *		timed-out SCSI command got delayed
1970  * Context: non-ISR context
1971  *
1972  * Called when a Task Management request has completed.
1973  */
1974 void
1975 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc, u8 poll)
1976 {
1977 	struct adapter_reply_queue *reply_q;
1978 
1979 	/* If MSIX capability is turned off
1980 	 * then multi-queues are not enabled
1981 	 */
1982 	if (!_base_is_controller_msix_enabled(ioc))
1983 		return;
1984 
1985 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1986 		if (ioc->shost_recovery || ioc->remove_host ||
1987 				ioc->pci_error_recovery)
1988 			return;
1989 		/* TMs are on msix_index == 0 */
1990 		if (reply_q->msix_index == 0)
1991 			continue;
1992 
1993 		if (reply_q->is_iouring_poll_q) {
1994 			_base_process_reply_queue(reply_q);
1995 			continue;
1996 		}
1997 
1998 		synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
1999 		if (reply_q->irq_poll_scheduled) {
2000 			/* Calling irq_poll_disable will wait for any pending
2001 			 * callbacks to have completed.
2002 			 */
2003 			irq_poll_disable(&reply_q->irqpoll);
2004 			irq_poll_enable(&reply_q->irqpoll);
2005 			/* check how the scheduled poll has ended,
2006 			 * clean up only if necessary
2007 			 */
2008 			if (reply_q->irq_poll_scheduled) {
2009 				reply_q->irq_poll_scheduled = false;
2010 				reply_q->irq_line_enable = true;
2011 				enable_irq(reply_q->os_irq);
2012 			}
2013 		}
2014 
2015 		if (poll)
2016 			_base_process_reply_queue(reply_q);
2017 	}
2018 }
2019 
2020 /**
2021  * mpt3sas_base_release_callback_handler - clear interrupt callback handler
2022  * @cb_idx: callback index
2023  */
2024 void
2025 mpt3sas_base_release_callback_handler(u8 cb_idx)
2026 {
2027 	mpt_callbacks[cb_idx] = NULL;
2028 }
2029 
2030 /**
2031  * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
2032  * @cb_func: callback function
2033  *
2034  * Return: Index of @cb_func.
2035  */
2036 u8
2037 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
2038 {
2039 	u8 cb_idx;
2040 
2041 	for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
2042 		if (mpt_callbacks[cb_idx] == NULL)
2043 			break;
2044 
2045 	mpt_callbacks[cb_idx] = cb_func;
2046 	return cb_idx;
2047 }
2048 
2049 /**
2050  * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
2051  */
2052 void
2053 mpt3sas_base_initialize_callback_handler(void)
2054 {
2055 	u8 cb_idx;
2056 
2057 	for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
2058 		mpt3sas_base_release_callback_handler(cb_idx);
2059 }
2060 
2061 
2062 /**
2063  * _base_build_zero_len_sge - build zero length sg entry
2064  * @ioc: per adapter object
2065  * @paddr: virtual address for SGE
2066  *
2067  * Create a zero length scatter gather entry to insure the IOCs hardware has
2068  * something to use if the target device goes brain dead and tries
2069  * to send data even when none is asked for.
2070  */
2071 static void
2072 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2073 {
2074 	u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
2075 	    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
2076 	    MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
2077 	    MPI2_SGE_FLAGS_SHIFT);
2078 	ioc->base_add_sg_single(paddr, flags_length, -1);
2079 }
2080 
2081 /**
2082  * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
2083  * @paddr: virtual address for SGE
2084  * @flags_length: SGE flags and data transfer length
2085  * @dma_addr: Physical address
2086  */
2087 static void
2088 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
2089 {
2090 	Mpi2SGESimple32_t *sgel = paddr;
2091 
2092 	flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
2093 	    MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
2094 	sgel->FlagsLength = cpu_to_le32(flags_length);
2095 	sgel->Address = cpu_to_le32(dma_addr);
2096 }
2097 
2098 
2099 /**
2100  * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
2101  * @paddr: virtual address for SGE
2102  * @flags_length: SGE flags and data transfer length
2103  * @dma_addr: Physical address
2104  */
2105 static void
2106 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
2107 {
2108 	Mpi2SGESimple64_t *sgel = paddr;
2109 
2110 	flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
2111 	    MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
2112 	sgel->FlagsLength = cpu_to_le32(flags_length);
2113 	sgel->Address = cpu_to_le64(dma_addr);
2114 }
2115 
2116 /**
2117  * _base_get_chain_buffer_tracker - obtain chain tracker
2118  * @ioc: per adapter object
2119  * @scmd: SCSI commands of the IO request
2120  *
2121  * Return: chain tracker from chain_lookup table using key as
2122  * smid and smid's chain_offset.
2123  */
2124 static struct chain_tracker *
2125 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc,
2126 			       struct scsi_cmnd *scmd)
2127 {
2128 	struct chain_tracker *chain_req;
2129 	struct scsiio_tracker *st = scsi_cmd_priv(scmd);
2130 	u16 smid = st->smid;
2131 	u8 chain_offset =
2132 	   atomic_read(&ioc->chain_lookup[smid - 1].chain_offset);
2133 
2134 	if (chain_offset == ioc->chains_needed_per_io)
2135 		return NULL;
2136 
2137 	chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset];
2138 	atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset);
2139 	return chain_req;
2140 }
2141 
2142 
2143 /**
2144  * _base_build_sg - build generic sg
2145  * @ioc: per adapter object
2146  * @psge: virtual address for SGE
2147  * @data_out_dma: physical address for WRITES
2148  * @data_out_sz: data xfer size for WRITES
2149  * @data_in_dma: physical address for READS
2150  * @data_in_sz: data xfer size for READS
2151  */
2152 static void
2153 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
2154 	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2155 	size_t data_in_sz)
2156 {
2157 	u32 sgl_flags;
2158 
2159 	if (!data_out_sz && !data_in_sz) {
2160 		_base_build_zero_len_sge(ioc, psge);
2161 		return;
2162 	}
2163 
2164 	if (data_out_sz && data_in_sz) {
2165 		/* WRITE sgel first */
2166 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2167 		    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
2168 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2169 		ioc->base_add_sg_single(psge, sgl_flags |
2170 		    data_out_sz, data_out_dma);
2171 
2172 		/* incr sgel */
2173 		psge += ioc->sge_size;
2174 
2175 		/* READ sgel last */
2176 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2177 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2178 		    MPI2_SGE_FLAGS_END_OF_LIST);
2179 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2180 		ioc->base_add_sg_single(psge, sgl_flags |
2181 		    data_in_sz, data_in_dma);
2182 	} else if (data_out_sz) /* WRITE */ {
2183 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2184 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2185 		    MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
2186 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2187 		ioc->base_add_sg_single(psge, sgl_flags |
2188 		    data_out_sz, data_out_dma);
2189 	} else if (data_in_sz) /* READ */ {
2190 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2191 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2192 		    MPI2_SGE_FLAGS_END_OF_LIST);
2193 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2194 		ioc->base_add_sg_single(psge, sgl_flags |
2195 		    data_in_sz, data_in_dma);
2196 	}
2197 }
2198 
2199 /* IEEE format sgls */
2200 
2201 /**
2202  * _base_build_nvme_prp - This function is called for NVMe end devices to build
2203  *                        a native SGL (NVMe PRP).
2204  * @ioc: per adapter object
2205  * @smid: system request message index for getting asscociated SGL
2206  * @nvme_encap_request: the NVMe request msg frame pointer
2207  * @data_out_dma: physical address for WRITES
2208  * @data_out_sz: data xfer size for WRITES
2209  * @data_in_dma: physical address for READS
2210  * @data_in_sz: data xfer size for READS
2211  *
2212  * The native SGL is built starting in the first PRP
2213  * entry of the NVMe message (PRP1).  If the data buffer is small enough to be
2214  * described entirely using PRP1, then PRP2 is not used.  If needed, PRP2 is
2215  * used to describe a larger data buffer.  If the data buffer is too large to
2216  * describe using the two PRP entriess inside the NVMe message, then PRP1
2217  * describes the first data memory segment, and PRP2 contains a pointer to a PRP
2218  * list located elsewhere in memory to describe the remaining data memory
2219  * segments.  The PRP list will be contiguous.
2220  *
2221  * The native SGL for NVMe devices is a Physical Region Page (PRP).  A PRP
2222  * consists of a list of PRP entries to describe a number of noncontigous
2223  * physical memory segments as a single memory buffer, just as a SGL does.  Note
2224  * however, that this function is only used by the IOCTL call, so the memory
2225  * given will be guaranteed to be contiguous.  There is no need to translate
2226  * non-contiguous SGL into a PRP in this case.  All PRPs will describe
2227  * contiguous space that is one page size each.
2228  *
2229  * Each NVMe message contains two PRP entries.  The first (PRP1) either contains
2230  * a PRP list pointer or a PRP element, depending upon the command.  PRP2
2231  * contains the second PRP element if the memory being described fits within 2
2232  * PRP entries, or a PRP list pointer if the PRP spans more than two entries.
2233  *
2234  * A PRP list pointer contains the address of a PRP list, structured as a linear
2235  * array of PRP entries.  Each PRP entry in this list describes a segment of
2236  * physical memory.
2237  *
2238  * Each 64-bit PRP entry comprises an address and an offset field.  The address
2239  * always points at the beginning of a 4KB physical memory page, and the offset
2240  * describes where within that 4KB page the memory segment begins.  Only the
2241  * first element in a PRP list may contain a non-zero offset, implying that all
2242  * memory segments following the first begin at the start of a 4KB page.
2243  *
2244  * Each PRP element normally describes 4KB of physical memory, with exceptions
2245  * for the first and last elements in the list.  If the memory being described
2246  * by the list begins at a non-zero offset within the first 4KB page, then the
2247  * first PRP element will contain a non-zero offset indicating where the region
2248  * begins within the 4KB page.  The last memory segment may end before the end
2249  * of the 4KB segment, depending upon the overall size of the memory being
2250  * described by the PRP list.
2251  *
2252  * Since PRP entries lack any indication of size, the overall data buffer length
2253  * is used to determine where the end of the data memory buffer is located, and
2254  * how many PRP entries are required to describe it.
2255  */
2256 static void
2257 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2258 	Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request,
2259 	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2260 	size_t data_in_sz)
2261 {
2262 	int		prp_size = NVME_PRP_SIZE;
2263 	__le64		*prp_entry, *prp1_entry, *prp2_entry;
2264 	__le64		*prp_page;
2265 	dma_addr_t	prp_entry_dma, prp_page_dma, dma_addr;
2266 	u32		offset, entry_len;
2267 	u32		page_mask_result, page_mask;
2268 	size_t		length;
2269 	struct mpt3sas_nvme_cmd *nvme_cmd =
2270 		(void *)nvme_encap_request->NVMe_Command;
2271 
2272 	/*
2273 	 * Not all commands require a data transfer. If no data, just return
2274 	 * without constructing any PRP.
2275 	 */
2276 	if (!data_in_sz && !data_out_sz)
2277 		return;
2278 	prp1_entry = &nvme_cmd->prp1;
2279 	prp2_entry = &nvme_cmd->prp2;
2280 	prp_entry = prp1_entry;
2281 	/*
2282 	 * For the PRP entries, use the specially allocated buffer of
2283 	 * contiguous memory.
2284 	 */
2285 	prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid);
2286 	prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2287 
2288 	/*
2289 	 * Check if we are within 1 entry of a page boundary we don't
2290 	 * want our first entry to be a PRP List entry.
2291 	 */
2292 	page_mask = ioc->page_size - 1;
2293 	page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
2294 	if (!page_mask_result) {
2295 		/* Bump up to next page boundary. */
2296 		prp_page = (__le64 *)((u8 *)prp_page + prp_size);
2297 		prp_page_dma = prp_page_dma + prp_size;
2298 	}
2299 
2300 	/*
2301 	 * Set PRP physical pointer, which initially points to the current PRP
2302 	 * DMA memory page.
2303 	 */
2304 	prp_entry_dma = prp_page_dma;
2305 
2306 	/* Get physical address and length of the data buffer. */
2307 	if (data_in_sz) {
2308 		dma_addr = data_in_dma;
2309 		length = data_in_sz;
2310 	} else {
2311 		dma_addr = data_out_dma;
2312 		length = data_out_sz;
2313 	}
2314 
2315 	/* Loop while the length is not zero. */
2316 	while (length) {
2317 		/*
2318 		 * Check if we need to put a list pointer here if we are at
2319 		 * page boundary - prp_size (8 bytes).
2320 		 */
2321 		page_mask_result = (prp_entry_dma + prp_size) & page_mask;
2322 		if (!page_mask_result) {
2323 			/*
2324 			 * This is the last entry in a PRP List, so we need to
2325 			 * put a PRP list pointer here.  What this does is:
2326 			 *   - bump the current memory pointer to the next
2327 			 *     address, which will be the next full page.
2328 			 *   - set the PRP Entry to point to that page.  This
2329 			 *     is now the PRP List pointer.
2330 			 *   - bump the PRP Entry pointer the start of the
2331 			 *     next page.  Since all of this PRP memory is
2332 			 *     contiguous, no need to get a new page - it's
2333 			 *     just the next address.
2334 			 */
2335 			prp_entry_dma++;
2336 			*prp_entry = cpu_to_le64(prp_entry_dma);
2337 			prp_entry++;
2338 		}
2339 
2340 		/* Need to handle if entry will be part of a page. */
2341 		offset = dma_addr & page_mask;
2342 		entry_len = ioc->page_size - offset;
2343 
2344 		if (prp_entry == prp1_entry) {
2345 			/*
2346 			 * Must fill in the first PRP pointer (PRP1) before
2347 			 * moving on.
2348 			 */
2349 			*prp1_entry = cpu_to_le64(dma_addr);
2350 
2351 			/*
2352 			 * Now point to the second PRP entry within the
2353 			 * command (PRP2).
2354 			 */
2355 			prp_entry = prp2_entry;
2356 		} else if (prp_entry == prp2_entry) {
2357 			/*
2358 			 * Should the PRP2 entry be a PRP List pointer or just
2359 			 * a regular PRP pointer?  If there is more than one
2360 			 * more page of data, must use a PRP List pointer.
2361 			 */
2362 			if (length > ioc->page_size) {
2363 				/*
2364 				 * PRP2 will contain a PRP List pointer because
2365 				 * more PRP's are needed with this command. The
2366 				 * list will start at the beginning of the
2367 				 * contiguous buffer.
2368 				 */
2369 				*prp2_entry = cpu_to_le64(prp_entry_dma);
2370 
2371 				/*
2372 				 * The next PRP Entry will be the start of the
2373 				 * first PRP List.
2374 				 */
2375 				prp_entry = prp_page;
2376 			} else {
2377 				/*
2378 				 * After this, the PRP Entries are complete.
2379 				 * This command uses 2 PRP's and no PRP list.
2380 				 */
2381 				*prp2_entry = cpu_to_le64(dma_addr);
2382 			}
2383 		} else {
2384 			/*
2385 			 * Put entry in list and bump the addresses.
2386 			 *
2387 			 * After PRP1 and PRP2 are filled in, this will fill in
2388 			 * all remaining PRP entries in a PRP List, one per
2389 			 * each time through the loop.
2390 			 */
2391 			*prp_entry = cpu_to_le64(dma_addr);
2392 			prp_entry++;
2393 			prp_entry_dma++;
2394 		}
2395 
2396 		/*
2397 		 * Bump the phys address of the command's data buffer by the
2398 		 * entry_len.
2399 		 */
2400 		dma_addr += entry_len;
2401 
2402 		/* Decrement length accounting for last partial page. */
2403 		if (entry_len > length)
2404 			length = 0;
2405 		else
2406 			length -= entry_len;
2407 	}
2408 }
2409 
2410 /**
2411  * base_make_prp_nvme - Prepare PRPs (Physical Region Page) -
2412  *			SGLs specific to NVMe drives only
2413  *
2414  * @ioc:		per adapter object
2415  * @scmd:		SCSI command from the mid-layer
2416  * @mpi_request:	mpi request
2417  * @smid:		msg Index
2418  * @sge_count:		scatter gather element count.
2419  *
2420  * Return:		true: PRPs are built
2421  *			false: IEEE SGLs needs to be built
2422  */
2423 static void
2424 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
2425 		struct scsi_cmnd *scmd,
2426 		Mpi25SCSIIORequest_t *mpi_request,
2427 		u16 smid, int sge_count)
2428 {
2429 	int sge_len, num_prp_in_chain = 0;
2430 	Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl;
2431 	__le64 *curr_buff;
2432 	dma_addr_t msg_dma, sge_addr, offset;
2433 	u32 page_mask, page_mask_result;
2434 	struct scatterlist *sg_scmd;
2435 	u32 first_prp_len;
2436 	int data_len = scsi_bufflen(scmd);
2437 	u32 nvme_pg_size;
2438 
2439 	nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE);
2440 	/*
2441 	 * Nvme has a very convoluted prp format.  One prp is required
2442 	 * for each page or partial page. Driver need to split up OS sg_list
2443 	 * entries if it is longer than one page or cross a page
2444 	 * boundary.  Driver also have to insert a PRP list pointer entry as
2445 	 * the last entry in each physical page of the PRP list.
2446 	 *
2447 	 * NOTE: The first PRP "entry" is actually placed in the first
2448 	 * SGL entry in the main message as IEEE 64 format.  The 2nd
2449 	 * entry in the main message is the chain element, and the rest
2450 	 * of the PRP entries are built in the contiguous pcie buffer.
2451 	 */
2452 	page_mask = nvme_pg_size - 1;
2453 
2454 	/*
2455 	 * Native SGL is needed.
2456 	 * Put a chain element in main message frame that points to the first
2457 	 * chain buffer.
2458 	 *
2459 	 * NOTE:  The ChainOffset field must be 0 when using a chain pointer to
2460 	 *        a native SGL.
2461 	 */
2462 
2463 	/* Set main message chain element pointer */
2464 	main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2465 	/*
2466 	 * For NVMe the chain element needs to be the 2nd SG entry in the main
2467 	 * message.
2468 	 */
2469 	main_chain_element = (Mpi25IeeeSgeChain64_t *)
2470 		((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
2471 
2472 	/*
2473 	 * For the PRP entries, use the specially allocated buffer of
2474 	 * contiguous memory.  Normal chain buffers can't be used
2475 	 * because each chain buffer would need to be the size of an OS
2476 	 * page (4k).
2477 	 */
2478 	curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid);
2479 	msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2480 
2481 	main_chain_element->Address = cpu_to_le64(msg_dma);
2482 	main_chain_element->NextChainOffset = 0;
2483 	main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2484 			MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2485 			MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
2486 
2487 	/* Build first prp, sge need not to be page aligned*/
2488 	ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2489 	sg_scmd = scsi_sglist(scmd);
2490 	sge_addr = sg_dma_address(sg_scmd);
2491 	sge_len = sg_dma_len(sg_scmd);
2492 
2493 	offset = sge_addr & page_mask;
2494 	first_prp_len = nvme_pg_size - offset;
2495 
2496 	ptr_first_sgl->Address = cpu_to_le64(sge_addr);
2497 	ptr_first_sgl->Length = cpu_to_le32(first_prp_len);
2498 
2499 	data_len -= first_prp_len;
2500 
2501 	if (sge_len > first_prp_len) {
2502 		sge_addr += first_prp_len;
2503 		sge_len -= first_prp_len;
2504 	} else if (data_len && (sge_len == first_prp_len)) {
2505 		sg_scmd = sg_next(sg_scmd);
2506 		sge_addr = sg_dma_address(sg_scmd);
2507 		sge_len = sg_dma_len(sg_scmd);
2508 	}
2509 
2510 	for (;;) {
2511 		offset = sge_addr & page_mask;
2512 
2513 		/* Put PRP pointer due to page boundary*/
2514 		page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask;
2515 		if (unlikely(!page_mask_result)) {
2516 			scmd_printk(KERN_NOTICE,
2517 				scmd, "page boundary curr_buff: 0x%p\n",
2518 				curr_buff);
2519 			msg_dma += 8;
2520 			*curr_buff = cpu_to_le64(msg_dma);
2521 			curr_buff++;
2522 			num_prp_in_chain++;
2523 		}
2524 
2525 		*curr_buff = cpu_to_le64(sge_addr);
2526 		curr_buff++;
2527 		msg_dma += 8;
2528 		num_prp_in_chain++;
2529 
2530 		sge_addr += nvme_pg_size;
2531 		sge_len -= nvme_pg_size;
2532 		data_len -= nvme_pg_size;
2533 
2534 		if (data_len <= 0)
2535 			break;
2536 
2537 		if (sge_len > 0)
2538 			continue;
2539 
2540 		sg_scmd = sg_next(sg_scmd);
2541 		sge_addr = sg_dma_address(sg_scmd);
2542 		sge_len = sg_dma_len(sg_scmd);
2543 	}
2544 
2545 	main_chain_element->Length =
2546 		cpu_to_le32(num_prp_in_chain * sizeof(u64));
2547 	return;
2548 }
2549 
2550 static bool
2551 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc,
2552 	struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count)
2553 {
2554 	u32 data_length = 0;
2555 	bool build_prp = true;
2556 
2557 	data_length = scsi_bufflen(scmd);
2558 	if (pcie_device &&
2559 	    (mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))) {
2560 		build_prp = false;
2561 		return build_prp;
2562 	}
2563 
2564 	/* If Datalenth is <= 16K and number of SGE’s entries are <= 2
2565 	 * we built IEEE SGL
2566 	 */
2567 	if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2))
2568 		build_prp = false;
2569 
2570 	return build_prp;
2571 }
2572 
2573 /**
2574  * _base_check_pcie_native_sgl - This function is called for PCIe end devices to
2575  * determine if the driver needs to build a native SGL.  If so, that native
2576  * SGL is built in the special contiguous buffers allocated especially for
2577  * PCIe SGL creation.  If the driver will not build a native SGL, return
2578  * TRUE and a normal IEEE SGL will be built.  Currently this routine
2579  * supports NVMe.
2580  * @ioc: per adapter object
2581  * @mpi_request: mf request pointer
2582  * @smid: system request message index
2583  * @scmd: scsi command
2584  * @pcie_device: points to the PCIe device's info
2585  *
2586  * Return: 0 if native SGL was built, 1 if no SGL was built
2587  */
2588 static int
2589 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc,
2590 	Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd,
2591 	struct _pcie_device *pcie_device)
2592 {
2593 	int sges_left;
2594 
2595 	/* Get the SG list pointer and info. */
2596 	sges_left = scsi_dma_map(scmd);
2597 	if (sges_left < 0)
2598 		return 1;
2599 
2600 	/* Check if we need to build a native SG list. */
2601 	if (!base_is_prp_possible(ioc, pcie_device,
2602 				scmd, sges_left)) {
2603 		/* We built a native SG list, just return. */
2604 		goto out;
2605 	}
2606 
2607 	/*
2608 	 * Build native NVMe PRP.
2609 	 */
2610 	base_make_prp_nvme(ioc, scmd, mpi_request,
2611 			smid, sges_left);
2612 
2613 	return 0;
2614 out:
2615 	scsi_dma_unmap(scmd);
2616 	return 1;
2617 }
2618 
2619 /**
2620  * _base_add_sg_single_ieee - add sg element for IEEE format
2621  * @paddr: virtual address for SGE
2622  * @flags: SGE flags
2623  * @chain_offset: number of 128 byte elements from start of segment
2624  * @length: data transfer length
2625  * @dma_addr: Physical address
2626  */
2627 static void
2628 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
2629 	dma_addr_t dma_addr)
2630 {
2631 	Mpi25IeeeSgeChain64_t *sgel = paddr;
2632 
2633 	sgel->Flags = flags;
2634 	sgel->NextChainOffset = chain_offset;
2635 	sgel->Length = cpu_to_le32(length);
2636 	sgel->Address = cpu_to_le64(dma_addr);
2637 }
2638 
2639 /**
2640  * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
2641  * @ioc: per adapter object
2642  * @paddr: virtual address for SGE
2643  *
2644  * Create a zero length scatter gather entry to insure the IOCs hardware has
2645  * something to use if the target device goes brain dead and tries
2646  * to send data even when none is asked for.
2647  */
2648 static void
2649 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2650 {
2651 	u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2652 		MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2653 		MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
2654 
2655 	_base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
2656 }
2657 
2658 /**
2659  * _base_build_sg_scmd - main sg creation routine
2660  *		pcie_device is unused here!
2661  * @ioc: per adapter object
2662  * @scmd: scsi command
2663  * @smid: system request message index
2664  * @unused: unused pcie_device pointer
2665  * Context: none.
2666  *
2667  * The main routine that builds scatter gather table from a given
2668  * scsi request sent via the .queuecommand main handler.
2669  *
2670  * Return: 0 success, anything else error
2671  */
2672 static int
2673 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
2674 	struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused)
2675 {
2676 	Mpi2SCSIIORequest_t *mpi_request;
2677 	dma_addr_t chain_dma;
2678 	struct scatterlist *sg_scmd;
2679 	void *sg_local, *chain;
2680 	u32 chain_offset;
2681 	u32 chain_length;
2682 	u32 chain_flags;
2683 	int sges_left;
2684 	u32 sges_in_segment;
2685 	u32 sgl_flags;
2686 	u32 sgl_flags_last_element;
2687 	u32 sgl_flags_end_buffer;
2688 	struct chain_tracker *chain_req;
2689 
2690 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2691 
2692 	/* init scatter gather flags */
2693 	sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
2694 	if (scmd->sc_data_direction == DMA_TO_DEVICE)
2695 		sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2696 	sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
2697 	    << MPI2_SGE_FLAGS_SHIFT;
2698 	sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
2699 	    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
2700 	    << MPI2_SGE_FLAGS_SHIFT;
2701 	sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2702 
2703 	sg_scmd = scsi_sglist(scmd);
2704 	sges_left = scsi_dma_map(scmd);
2705 	if (sges_left < 0)
2706 		return -ENOMEM;
2707 
2708 	sg_local = &mpi_request->SGL;
2709 	sges_in_segment = ioc->max_sges_in_main_message;
2710 	if (sges_left <= sges_in_segment)
2711 		goto fill_in_last_segment;
2712 
2713 	mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
2714 	    (sges_in_segment * ioc->sge_size))/4;
2715 
2716 	/* fill in main message segment when there is a chain following */
2717 	while (sges_in_segment) {
2718 		if (sges_in_segment == 1)
2719 			ioc->base_add_sg_single(sg_local,
2720 			    sgl_flags_last_element | sg_dma_len(sg_scmd),
2721 			    sg_dma_address(sg_scmd));
2722 		else
2723 			ioc->base_add_sg_single(sg_local, sgl_flags |
2724 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2725 		sg_scmd = sg_next(sg_scmd);
2726 		sg_local += ioc->sge_size;
2727 		sges_left--;
2728 		sges_in_segment--;
2729 	}
2730 
2731 	/* initializing the chain flags and pointers */
2732 	chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
2733 	chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2734 	if (!chain_req)
2735 		return -1;
2736 	chain = chain_req->chain_buffer;
2737 	chain_dma = chain_req->chain_buffer_dma;
2738 	do {
2739 		sges_in_segment = (sges_left <=
2740 		    ioc->max_sges_in_chain_message) ? sges_left :
2741 		    ioc->max_sges_in_chain_message;
2742 		chain_offset = (sges_left == sges_in_segment) ?
2743 		    0 : (sges_in_segment * ioc->sge_size)/4;
2744 		chain_length = sges_in_segment * ioc->sge_size;
2745 		if (chain_offset) {
2746 			chain_offset = chain_offset <<
2747 			    MPI2_SGE_CHAIN_OFFSET_SHIFT;
2748 			chain_length += ioc->sge_size;
2749 		}
2750 		ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
2751 		    chain_length, chain_dma);
2752 		sg_local = chain;
2753 		if (!chain_offset)
2754 			goto fill_in_last_segment;
2755 
2756 		/* fill in chain segments */
2757 		while (sges_in_segment) {
2758 			if (sges_in_segment == 1)
2759 				ioc->base_add_sg_single(sg_local,
2760 				    sgl_flags_last_element |
2761 				    sg_dma_len(sg_scmd),
2762 				    sg_dma_address(sg_scmd));
2763 			else
2764 				ioc->base_add_sg_single(sg_local, sgl_flags |
2765 				    sg_dma_len(sg_scmd),
2766 				    sg_dma_address(sg_scmd));
2767 			sg_scmd = sg_next(sg_scmd);
2768 			sg_local += ioc->sge_size;
2769 			sges_left--;
2770 			sges_in_segment--;
2771 		}
2772 
2773 		chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2774 		if (!chain_req)
2775 			return -1;
2776 		chain = chain_req->chain_buffer;
2777 		chain_dma = chain_req->chain_buffer_dma;
2778 	} while (1);
2779 
2780 
2781  fill_in_last_segment:
2782 
2783 	/* fill the last segment */
2784 	while (sges_left) {
2785 		if (sges_left == 1)
2786 			ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
2787 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2788 		else
2789 			ioc->base_add_sg_single(sg_local, sgl_flags |
2790 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2791 		sg_scmd = sg_next(sg_scmd);
2792 		sg_local += ioc->sge_size;
2793 		sges_left--;
2794 	}
2795 
2796 	return 0;
2797 }
2798 
2799 /**
2800  * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
2801  * @ioc: per adapter object
2802  * @scmd: scsi command
2803  * @smid: system request message index
2804  * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
2805  * constructed on need.
2806  * Context: none.
2807  *
2808  * The main routine that builds scatter gather table from a given
2809  * scsi request sent via the .queuecommand main handler.
2810  *
2811  * Return: 0 success, anything else error
2812  */
2813 static int
2814 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
2815 	struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device)
2816 {
2817 	Mpi25SCSIIORequest_t *mpi_request;
2818 	dma_addr_t chain_dma;
2819 	struct scatterlist *sg_scmd;
2820 	void *sg_local, *chain;
2821 	u32 chain_offset;
2822 	u32 chain_length;
2823 	int sges_left;
2824 	u32 sges_in_segment;
2825 	u8 simple_sgl_flags;
2826 	u8 simple_sgl_flags_last;
2827 	u8 chain_sgl_flags;
2828 	struct chain_tracker *chain_req;
2829 
2830 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2831 
2832 	/* init scatter gather flags */
2833 	simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2834 	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2835 	simple_sgl_flags_last = simple_sgl_flags |
2836 	    MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2837 	chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2838 	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2839 
2840 	/* Check if we need to build a native SG list. */
2841 	if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request,
2842 			smid, scmd, pcie_device) == 0)) {
2843 		/* We built a native SG list, just return. */
2844 		return 0;
2845 	}
2846 
2847 	sg_scmd = scsi_sglist(scmd);
2848 	sges_left = scsi_dma_map(scmd);
2849 	if (sges_left < 0)
2850 		return -ENOMEM;
2851 
2852 	sg_local = &mpi_request->SGL;
2853 	sges_in_segment = (ioc->request_sz -
2854 		   offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
2855 	if (sges_left <= sges_in_segment)
2856 		goto fill_in_last_segment;
2857 
2858 	mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
2859 	    (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
2860 
2861 	/* fill in main message segment when there is a chain following */
2862 	while (sges_in_segment > 1) {
2863 		_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2864 		    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2865 		sg_scmd = sg_next(sg_scmd);
2866 		sg_local += ioc->sge_size_ieee;
2867 		sges_left--;
2868 		sges_in_segment--;
2869 	}
2870 
2871 	/* initializing the pointers */
2872 	chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2873 	if (!chain_req)
2874 		return -1;
2875 	chain = chain_req->chain_buffer;
2876 	chain_dma = chain_req->chain_buffer_dma;
2877 	do {
2878 		sges_in_segment = (sges_left <=
2879 		    ioc->max_sges_in_chain_message) ? sges_left :
2880 		    ioc->max_sges_in_chain_message;
2881 		chain_offset = (sges_left == sges_in_segment) ?
2882 		    0 : sges_in_segment;
2883 		chain_length = sges_in_segment * ioc->sge_size_ieee;
2884 		if (chain_offset)
2885 			chain_length += ioc->sge_size_ieee;
2886 		_base_add_sg_single_ieee(sg_local, chain_sgl_flags,
2887 		    chain_offset, chain_length, chain_dma);
2888 
2889 		sg_local = chain;
2890 		if (!chain_offset)
2891 			goto fill_in_last_segment;
2892 
2893 		/* fill in chain segments */
2894 		while (sges_in_segment) {
2895 			_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2896 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2897 			sg_scmd = sg_next(sg_scmd);
2898 			sg_local += ioc->sge_size_ieee;
2899 			sges_left--;
2900 			sges_in_segment--;
2901 		}
2902 
2903 		chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2904 		if (!chain_req)
2905 			return -1;
2906 		chain = chain_req->chain_buffer;
2907 		chain_dma = chain_req->chain_buffer_dma;
2908 	} while (1);
2909 
2910 
2911  fill_in_last_segment:
2912 
2913 	/* fill the last segment */
2914 	while (sges_left > 0) {
2915 		if (sges_left == 1)
2916 			_base_add_sg_single_ieee(sg_local,
2917 			    simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
2918 			    sg_dma_address(sg_scmd));
2919 		else
2920 			_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2921 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2922 		sg_scmd = sg_next(sg_scmd);
2923 		sg_local += ioc->sge_size_ieee;
2924 		sges_left--;
2925 	}
2926 
2927 	return 0;
2928 }
2929 
2930 /**
2931  * _base_build_sg_ieee - build generic sg for IEEE format
2932  * @ioc: per adapter object
2933  * @psge: virtual address for SGE
2934  * @data_out_dma: physical address for WRITES
2935  * @data_out_sz: data xfer size for WRITES
2936  * @data_in_dma: physical address for READS
2937  * @data_in_sz: data xfer size for READS
2938  */
2939 static void
2940 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
2941 	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2942 	size_t data_in_sz)
2943 {
2944 	u8 sgl_flags;
2945 
2946 	if (!data_out_sz && !data_in_sz) {
2947 		_base_build_zero_len_sge_ieee(ioc, psge);
2948 		return;
2949 	}
2950 
2951 	if (data_out_sz && data_in_sz) {
2952 		/* WRITE sgel first */
2953 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2954 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2955 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2956 		    data_out_dma);
2957 
2958 		/* incr sgel */
2959 		psge += ioc->sge_size_ieee;
2960 
2961 		/* READ sgel last */
2962 		sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2963 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2964 		    data_in_dma);
2965 	} else if (data_out_sz) /* WRITE */ {
2966 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2967 		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2968 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2969 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2970 		    data_out_dma);
2971 	} else if (data_in_sz) /* READ */ {
2972 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2973 		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2974 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2975 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2976 		    data_in_dma);
2977 	}
2978 }
2979 
2980 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
2981 
2982 /**
2983  * _base_config_dma_addressing - set dma addressing
2984  * @ioc: per adapter object
2985  * @pdev: PCI device struct
2986  *
2987  * Return: 0 for success, non-zero for failure.
2988  */
2989 static int
2990 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
2991 {
2992 	struct sysinfo s;
2993 
2994 	if (ioc->is_mcpu_endpoint ||
2995 	    sizeof(dma_addr_t) == 4 || ioc->use_32bit_dma ||
2996 	    dma_get_required_mask(&pdev->dev) <= 32)
2997 		ioc->dma_mask = 32;
2998 	/* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */
2999 	else if (ioc->hba_mpi_version_belonged > MPI2_VERSION)
3000 		ioc->dma_mask = 63;
3001 	else
3002 		ioc->dma_mask = 64;
3003 
3004 	if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(ioc->dma_mask)) ||
3005 	    dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(ioc->dma_mask)))
3006 		return -ENODEV;
3007 
3008 	if (ioc->dma_mask > 32) {
3009 		ioc->base_add_sg_single = &_base_add_sg_single_64;
3010 		ioc->sge_size = sizeof(Mpi2SGESimple64_t);
3011 	} else {
3012 		ioc->base_add_sg_single = &_base_add_sg_single_32;
3013 		ioc->sge_size = sizeof(Mpi2SGESimple32_t);
3014 	}
3015 
3016 	si_meminfo(&s);
3017 	ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
3018 		ioc->dma_mask, convert_to_kb(s.totalram));
3019 
3020 	return 0;
3021 }
3022 
3023 /**
3024  * _base_check_enable_msix - checks MSIX capabable.
3025  * @ioc: per adapter object
3026  *
3027  * Check to see if card is capable of MSIX, and set number
3028  * of available msix vectors
3029  */
3030 static int
3031 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3032 {
3033 	int base;
3034 	u16 message_control;
3035 
3036 	/* Check whether controller SAS2008 B0 controller,
3037 	 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
3038 	 */
3039 	if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
3040 	    ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
3041 		return -EINVAL;
3042 	}
3043 
3044 	base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
3045 	if (!base) {
3046 		dfailprintk(ioc, ioc_info(ioc, "msix not supported\n"));
3047 		return -EINVAL;
3048 	}
3049 
3050 	/* get msix vector count */
3051 	/* NUMA_IO not supported for older controllers */
3052 	if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
3053 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
3054 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
3055 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
3056 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
3057 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
3058 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
3059 		ioc->msix_vector_count = 1;
3060 	else {
3061 		pci_read_config_word(ioc->pdev, base + 2, &message_control);
3062 		ioc->msix_vector_count = (message_control & 0x3FF) + 1;
3063 	}
3064 	dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n",
3065 				  ioc->msix_vector_count));
3066 	return 0;
3067 }
3068 
3069 /**
3070  * mpt3sas_base_free_irq - free irq
3071  * @ioc: per adapter object
3072  *
3073  * Freeing respective reply_queue from the list.
3074  */
3075 void
3076 mpt3sas_base_free_irq(struct MPT3SAS_ADAPTER *ioc)
3077 {
3078 	unsigned int irq;
3079 	struct adapter_reply_queue *reply_q, *next;
3080 
3081 	if (list_empty(&ioc->reply_queue_list))
3082 		return;
3083 
3084 	list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
3085 		list_del(&reply_q->list);
3086 		if (reply_q->is_iouring_poll_q) {
3087 			kfree(reply_q);
3088 			continue;
3089 		}
3090 
3091 		if (ioc->smp_affinity_enable) {
3092 			irq = pci_irq_vector(ioc->pdev, reply_q->msix_index);
3093 			irq_update_affinity_hint(irq, NULL);
3094 		}
3095 		free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
3096 			 reply_q);
3097 		kfree(reply_q);
3098 	}
3099 }
3100 
3101 /**
3102  * _base_request_irq - request irq
3103  * @ioc: per adapter object
3104  * @index: msix index into vector table
3105  *
3106  * Inserting respective reply_queue into the list.
3107  */
3108 static int
3109 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
3110 {
3111 	struct pci_dev *pdev = ioc->pdev;
3112 	struct adapter_reply_queue *reply_q;
3113 	int r, qid;
3114 
3115 	reply_q =  kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
3116 	if (!reply_q) {
3117 		ioc_err(ioc, "unable to allocate memory %zu!\n",
3118 			sizeof(struct adapter_reply_queue));
3119 		return -ENOMEM;
3120 	}
3121 	reply_q->ioc = ioc;
3122 	reply_q->msix_index = index;
3123 
3124 	atomic_set(&reply_q->busy, 0);
3125 
3126 	if (index >= ioc->iopoll_q_start_index) {
3127 		qid = index - ioc->iopoll_q_start_index;
3128 		snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-mq-poll%d",
3129 		    ioc->driver_name, ioc->id, qid);
3130 		reply_q->is_iouring_poll_q = 1;
3131 		ioc->io_uring_poll_queues[qid].reply_q = reply_q;
3132 		goto out;
3133 	}
3134 
3135 
3136 	if (ioc->msix_enable)
3137 		snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
3138 		    ioc->driver_name, ioc->id, index);
3139 	else
3140 		snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
3141 		    ioc->driver_name, ioc->id);
3142 	r = request_irq(pci_irq_vector(pdev, index), _base_interrupt,
3143 			IRQF_SHARED, reply_q->name, reply_q);
3144 	if (r) {
3145 		pr_err("%s: unable to allocate interrupt %d!\n",
3146 		       reply_q->name, pci_irq_vector(pdev, index));
3147 		kfree(reply_q);
3148 		return -EBUSY;
3149 	}
3150 out:
3151 	INIT_LIST_HEAD(&reply_q->list);
3152 	list_add_tail(&reply_q->list, &ioc->reply_queue_list);
3153 	return 0;
3154 }
3155 
3156 /**
3157  * _base_assign_reply_queues - assigning msix index for each cpu
3158  * @ioc: per adapter object
3159  *
3160  * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
3161  */
3162 static void
3163 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
3164 {
3165 	unsigned int cpu, nr_cpus, nr_msix, index = 0, irq;
3166 	struct adapter_reply_queue *reply_q;
3167 	int iopoll_q_count = ioc->reply_queue_count -
3168 	    ioc->iopoll_q_start_index;
3169 	const struct cpumask *mask;
3170 
3171 	if (!_base_is_controller_msix_enabled(ioc))
3172 		return;
3173 
3174 	if (ioc->msix_load_balance)
3175 		return;
3176 
3177 	memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
3178 
3179 	nr_cpus = num_online_cpus();
3180 	nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
3181 					       ioc->facts.MaxMSIxVectors);
3182 	if (!nr_msix)
3183 		return;
3184 
3185 	if (ioc->smp_affinity_enable) {
3186 
3187 		/*
3188 		 * set irq affinity to local numa node for those irqs
3189 		 * corresponding to high iops queues.
3190 		 */
3191 		if (ioc->high_iops_queues) {
3192 			mask = cpumask_of_node(dev_to_node(&ioc->pdev->dev));
3193 			for (index = 0; index < ioc->high_iops_queues;
3194 			    index++) {
3195 				irq = pci_irq_vector(ioc->pdev, index);
3196 				irq_set_affinity_and_hint(irq, mask);
3197 			}
3198 		}
3199 
3200 		list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3201 			const cpumask_t *mask;
3202 
3203 			if (reply_q->msix_index < ioc->high_iops_queues ||
3204 			    reply_q->msix_index >= ioc->iopoll_q_start_index)
3205 				continue;
3206 
3207 			mask = pci_irq_get_affinity(ioc->pdev,
3208 			    reply_q->msix_index);
3209 			if (!mask) {
3210 				ioc_warn(ioc, "no affinity for msi %x\n",
3211 					 reply_q->msix_index);
3212 				goto fall_back;
3213 			}
3214 
3215 			for_each_cpu_and(cpu, mask, cpu_online_mask) {
3216 				if (cpu >= ioc->cpu_msix_table_sz)
3217 					break;
3218 				ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3219 			}
3220 		}
3221 		return;
3222 	}
3223 
3224 fall_back:
3225 	cpu = cpumask_first(cpu_online_mask);
3226 	nr_msix -= (ioc->high_iops_queues - iopoll_q_count);
3227 	index = 0;
3228 
3229 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3230 		unsigned int i, group = nr_cpus / nr_msix;
3231 
3232 		if (reply_q->msix_index < ioc->high_iops_queues ||
3233 		    reply_q->msix_index >= ioc->iopoll_q_start_index)
3234 			continue;
3235 
3236 		if (cpu >= nr_cpus)
3237 			break;
3238 
3239 		if (index < nr_cpus % nr_msix)
3240 			group++;
3241 
3242 		for (i = 0 ; i < group ; i++) {
3243 			ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3244 			cpu = cpumask_next(cpu, cpu_online_mask);
3245 		}
3246 		index++;
3247 	}
3248 }
3249 
3250 /**
3251  * _base_check_and_enable_high_iops_queues - enable high iops mode
3252  * @ioc: per adapter object
3253  * @hba_msix_vector_count: msix vectors supported by HBA
3254  *
3255  * Enable high iops queues only if
3256  *  - HBA is a SEA/AERO controller and
3257  *  - MSI-Xs vector supported by the HBA is 128 and
3258  *  - total CPU count in the system >=16 and
3259  *  - loaded driver with default max_msix_vectors module parameter and
3260  *  - system booted in non kdump mode
3261  *
3262  * Return: nothing.
3263  */
3264 static void
3265 _base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc,
3266 		int hba_msix_vector_count)
3267 {
3268 	u16 lnksta, speed;
3269 
3270 	/*
3271 	 * Disable high iops queues if io uring poll queues are enabled.
3272 	 */
3273 	if (perf_mode == MPT_PERF_MODE_IOPS ||
3274 	    perf_mode == MPT_PERF_MODE_LATENCY ||
3275 	    ioc->io_uring_poll_queues) {
3276 		ioc->high_iops_queues = 0;
3277 		return;
3278 	}
3279 
3280 	if (perf_mode == MPT_PERF_MODE_DEFAULT) {
3281 
3282 		pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta);
3283 		speed = lnksta & PCI_EXP_LNKSTA_CLS;
3284 
3285 		if (speed < 0x4) {
3286 			ioc->high_iops_queues = 0;
3287 			return;
3288 		}
3289 	}
3290 
3291 	if (!reset_devices && ioc->is_aero_ioc &&
3292 	    hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES &&
3293 	    num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES &&
3294 	    max_msix_vectors == -1)
3295 		ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES;
3296 	else
3297 		ioc->high_iops_queues = 0;
3298 }
3299 
3300 /**
3301  * mpt3sas_base_disable_msix - disables msix
3302  * @ioc: per adapter object
3303  *
3304  */
3305 void
3306 mpt3sas_base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
3307 {
3308 	if (!ioc->msix_enable)
3309 		return;
3310 	pci_free_irq_vectors(ioc->pdev);
3311 	ioc->msix_enable = 0;
3312 	kfree(ioc->io_uring_poll_queues);
3313 }
3314 
3315 /**
3316  * _base_alloc_irq_vectors - allocate msix vectors
3317  * @ioc: per adapter object
3318  *
3319  */
3320 static int
3321 _base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc)
3322 {
3323 	int i, irq_flags = PCI_IRQ_MSIX;
3324 	struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues };
3325 	struct irq_affinity *descp = &desc;
3326 	/*
3327 	 * Don't allocate msix vectors for poll_queues.
3328 	 * msix_vectors is always within a range of FW supported reply queue.
3329 	 */
3330 	int nr_msix_vectors = ioc->iopoll_q_start_index;
3331 
3332 
3333 	if (ioc->smp_affinity_enable)
3334 		irq_flags |= PCI_IRQ_AFFINITY | PCI_IRQ_ALL_TYPES;
3335 	else
3336 		descp = NULL;
3337 
3338 	ioc_info(ioc, " %d %d %d\n", ioc->high_iops_queues,
3339 	    ioc->reply_queue_count, nr_msix_vectors);
3340 
3341 	i = pci_alloc_irq_vectors_affinity(ioc->pdev,
3342 	    ioc->high_iops_queues,
3343 	    nr_msix_vectors, irq_flags, descp);
3344 
3345 	return i;
3346 }
3347 
3348 /**
3349  * _base_enable_msix - enables msix, failback to io_apic
3350  * @ioc: per adapter object
3351  *
3352  */
3353 static int
3354 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3355 {
3356 	int r;
3357 	int i, local_max_msix_vectors;
3358 	u8 try_msix = 0;
3359 	int iopoll_q_count = 0;
3360 
3361 	ioc->msix_load_balance = false;
3362 
3363 	if (msix_disable == -1 || msix_disable == 0)
3364 		try_msix = 1;
3365 
3366 	if (!try_msix)
3367 		goto try_ioapic;
3368 
3369 	if (_base_check_enable_msix(ioc) != 0)
3370 		goto try_ioapic;
3371 
3372 	ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count);
3373 	pr_info("\t no of cores: %d, max_msix_vectors: %d\n",
3374 		ioc->cpu_count, max_msix_vectors);
3375 
3376 	ioc->reply_queue_count =
3377 		min_t(int, ioc->cpu_count, ioc->msix_vector_count);
3378 
3379 	if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
3380 		local_max_msix_vectors = (reset_devices) ? 1 : 8;
3381 	else
3382 		local_max_msix_vectors = max_msix_vectors;
3383 
3384 	if (local_max_msix_vectors == 0)
3385 		goto try_ioapic;
3386 
3387 	/*
3388 	 * Enable msix_load_balance only if combined reply queue mode is
3389 	 * disabled on SAS3 & above generation HBA devices.
3390 	 */
3391 	if (!ioc->combined_reply_queue &&
3392 	    ioc->hba_mpi_version_belonged != MPI2_VERSION) {
3393 		ioc_info(ioc,
3394 		    "combined ReplyQueue is off, Enabling msix load balance\n");
3395 		ioc->msix_load_balance = true;
3396 	}
3397 
3398 	/*
3399 	 * smp affinity setting is not need when msix load balance
3400 	 * is enabled.
3401 	 */
3402 	if (ioc->msix_load_balance)
3403 		ioc->smp_affinity_enable = 0;
3404 
3405 	if (!ioc->smp_affinity_enable || ioc->reply_queue_count <= 1)
3406 		ioc->shost->host_tagset = 0;
3407 
3408 	/*
3409 	 * Enable io uring poll queues only if host_tagset is enabled.
3410 	 */
3411 	if (ioc->shost->host_tagset)
3412 		iopoll_q_count = poll_queues;
3413 
3414 	if (iopoll_q_count) {
3415 		ioc->io_uring_poll_queues = kcalloc(iopoll_q_count,
3416 		    sizeof(struct io_uring_poll_queue), GFP_KERNEL);
3417 		if (!ioc->io_uring_poll_queues)
3418 			iopoll_q_count = 0;
3419 	}
3420 
3421 	if (ioc->is_aero_ioc)
3422 		_base_check_and_enable_high_iops_queues(ioc,
3423 		    ioc->msix_vector_count);
3424 
3425 	/*
3426 	 * Add high iops queues count to reply queue count if high iops queues
3427 	 * are enabled.
3428 	 */
3429 	ioc->reply_queue_count = min_t(int,
3430 	    ioc->reply_queue_count + ioc->high_iops_queues,
3431 	    ioc->msix_vector_count);
3432 
3433 	/*
3434 	 * Adjust the reply queue count incase reply queue count
3435 	 * exceeds the user provided MSIx vectors count.
3436 	 */
3437 	if (local_max_msix_vectors > 0)
3438 		ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
3439 		    ioc->reply_queue_count);
3440 	/*
3441 	 * Add io uring poll queues count to reply queues count
3442 	 * if io uring is enabled in driver.
3443 	 */
3444 	if (iopoll_q_count) {
3445 		if (ioc->reply_queue_count < (iopoll_q_count + MPT3_MIN_IRQS))
3446 			iopoll_q_count = 0;
3447 		ioc->reply_queue_count = min_t(int,
3448 		    ioc->reply_queue_count + iopoll_q_count,
3449 		    ioc->msix_vector_count);
3450 	}
3451 
3452 	/*
3453 	 * Starting index of io uring poll queues in reply queue list.
3454 	 */
3455 	ioc->iopoll_q_start_index =
3456 	    ioc->reply_queue_count - iopoll_q_count;
3457 
3458 	r = _base_alloc_irq_vectors(ioc);
3459 	if (r < 0) {
3460 		ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", r);
3461 		goto try_ioapic;
3462 	}
3463 
3464 	/*
3465 	 * Adjust the reply queue count if the allocated
3466 	 * MSIx vectors is less then the requested number
3467 	 * of MSIx vectors.
3468 	 */
3469 	if (r < ioc->iopoll_q_start_index) {
3470 		ioc->reply_queue_count = r + iopoll_q_count;
3471 		ioc->iopoll_q_start_index =
3472 		    ioc->reply_queue_count - iopoll_q_count;
3473 	}
3474 
3475 	ioc->msix_enable = 1;
3476 	for (i = 0; i < ioc->reply_queue_count; i++) {
3477 		r = _base_request_irq(ioc, i);
3478 		if (r) {
3479 			mpt3sas_base_free_irq(ioc);
3480 			mpt3sas_base_disable_msix(ioc);
3481 			goto try_ioapic;
3482 		}
3483 	}
3484 
3485 	ioc_info(ioc, "High IOPs queues : %s\n",
3486 			ioc->high_iops_queues ? "enabled" : "disabled");
3487 
3488 	return 0;
3489 
3490 /* failback to io_apic interrupt routing */
3491  try_ioapic:
3492 	ioc->high_iops_queues = 0;
3493 	ioc_info(ioc, "High IOPs queues : disabled\n");
3494 	ioc->reply_queue_count = 1;
3495 	ioc->iopoll_q_start_index = ioc->reply_queue_count - 0;
3496 	r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY);
3497 	if (r < 0) {
3498 		dfailprintk(ioc,
3499 			    ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
3500 				     r));
3501 	} else
3502 		r = _base_request_irq(ioc, 0);
3503 
3504 	return r;
3505 }
3506 
3507 /**
3508  * mpt3sas_base_unmap_resources - free controller resources
3509  * @ioc: per adapter object
3510  */
3511 static void
3512 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
3513 {
3514 	struct pci_dev *pdev = ioc->pdev;
3515 
3516 	dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3517 
3518 	mpt3sas_base_free_irq(ioc);
3519 	mpt3sas_base_disable_msix(ioc);
3520 
3521 	kfree(ioc->replyPostRegisterIndex);
3522 	ioc->replyPostRegisterIndex = NULL;
3523 
3524 
3525 	if (ioc->chip_phys) {
3526 		iounmap(ioc->chip);
3527 		ioc->chip_phys = 0;
3528 	}
3529 
3530 	if (pci_is_enabled(pdev)) {
3531 		pci_release_selected_regions(ioc->pdev, ioc->bars);
3532 		pci_disable_pcie_error_reporting(pdev);
3533 		pci_disable_device(pdev);
3534 	}
3535 }
3536 
3537 static int
3538 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
3539 
3540 /**
3541  * mpt3sas_base_check_for_fault_and_issue_reset - check if IOC is in fault state
3542  *     and if it is in fault state then issue diag reset.
3543  * @ioc: per adapter object
3544  *
3545  * Return: 0 for success, non-zero for failure.
3546  */
3547 int
3548 mpt3sas_base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc)
3549 {
3550 	u32 ioc_state;
3551 	int rc = -EFAULT;
3552 
3553 	dinitprintk(ioc, pr_info("%s\n", __func__));
3554 	if (ioc->pci_error_recovery)
3555 		return 0;
3556 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
3557 	dhsprintk(ioc, pr_info("%s: ioc_state(0x%08x)\n", __func__, ioc_state));
3558 
3559 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
3560 		mpt3sas_print_fault_code(ioc, ioc_state &
3561 		    MPI2_DOORBELL_DATA_MASK);
3562 		mpt3sas_base_mask_interrupts(ioc);
3563 		rc = _base_diag_reset(ioc);
3564 	} else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
3565 	    MPI2_IOC_STATE_COREDUMP) {
3566 		mpt3sas_print_coredump_info(ioc, ioc_state &
3567 		     MPI2_DOORBELL_DATA_MASK);
3568 		mpt3sas_base_wait_for_coredump_completion(ioc, __func__);
3569 		mpt3sas_base_mask_interrupts(ioc);
3570 		rc = _base_diag_reset(ioc);
3571 	}
3572 
3573 	return rc;
3574 }
3575 
3576 /**
3577  * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
3578  * @ioc: per adapter object
3579  *
3580  * Return: 0 for success, non-zero for failure.
3581  */
3582 int
3583 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
3584 {
3585 	struct pci_dev *pdev = ioc->pdev;
3586 	u32 memap_sz;
3587 	u32 pio_sz;
3588 	int i, r = 0, rc;
3589 	u64 pio_chip = 0;
3590 	phys_addr_t chip_phys = 0;
3591 	struct adapter_reply_queue *reply_q;
3592 	int iopoll_q_count = 0;
3593 
3594 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3595 
3596 	ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
3597 	if (pci_enable_device_mem(pdev)) {
3598 		ioc_warn(ioc, "pci_enable_device_mem: failed\n");
3599 		ioc->bars = 0;
3600 		return -ENODEV;
3601 	}
3602 
3603 
3604 	if (pci_request_selected_regions(pdev, ioc->bars,
3605 	    ioc->driver_name)) {
3606 		ioc_warn(ioc, "pci_request_selected_regions: failed\n");
3607 		ioc->bars = 0;
3608 		r = -ENODEV;
3609 		goto out_fail;
3610 	}
3611 
3612 /* AER (Advanced Error Reporting) hooks */
3613 	pci_enable_pcie_error_reporting(pdev);
3614 
3615 	pci_set_master(pdev);
3616 
3617 
3618 	if (_base_config_dma_addressing(ioc, pdev) != 0) {
3619 		ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev));
3620 		r = -ENODEV;
3621 		goto out_fail;
3622 	}
3623 
3624 	for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
3625 	     (!memap_sz || !pio_sz); i++) {
3626 		if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
3627 			if (pio_sz)
3628 				continue;
3629 			pio_chip = (u64)pci_resource_start(pdev, i);
3630 			pio_sz = pci_resource_len(pdev, i);
3631 		} else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3632 			if (memap_sz)
3633 				continue;
3634 			ioc->chip_phys = pci_resource_start(pdev, i);
3635 			chip_phys = ioc->chip_phys;
3636 			memap_sz = pci_resource_len(pdev, i);
3637 			ioc->chip = ioremap(ioc->chip_phys, memap_sz);
3638 		}
3639 	}
3640 
3641 	if (ioc->chip == NULL) {
3642 		ioc_err(ioc,
3643 		    "unable to map adapter memory! or resource not found\n");
3644 		r = -EINVAL;
3645 		goto out_fail;
3646 	}
3647 
3648 	mpt3sas_base_mask_interrupts(ioc);
3649 
3650 	r = _base_get_ioc_facts(ioc);
3651 	if (r) {
3652 		rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
3653 		if (rc || (_base_get_ioc_facts(ioc)))
3654 			goto out_fail;
3655 	}
3656 
3657 	if (!ioc->rdpq_array_enable_assigned) {
3658 		ioc->rdpq_array_enable = ioc->rdpq_array_capable;
3659 		ioc->rdpq_array_enable_assigned = 1;
3660 	}
3661 
3662 	r = _base_enable_msix(ioc);
3663 	if (r)
3664 		goto out_fail;
3665 
3666 	iopoll_q_count = ioc->reply_queue_count - ioc->iopoll_q_start_index;
3667 	for (i = 0; i < iopoll_q_count; i++) {
3668 		atomic_set(&ioc->io_uring_poll_queues[i].busy, 0);
3669 		atomic_set(&ioc->io_uring_poll_queues[i].pause, 0);
3670 	}
3671 
3672 	if (!ioc->is_driver_loading)
3673 		_base_init_irqpolls(ioc);
3674 	/* Use the Combined reply queue feature only for SAS3 C0 & higher
3675 	 * revision HBAs and also only when reply queue count is greater than 8
3676 	 */
3677 	if (ioc->combined_reply_queue) {
3678 		/* Determine the Supplemental Reply Post Host Index Registers
3679 		 * Addresse. Supplemental Reply Post Host Index Registers
3680 		 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
3681 		 * each register is at offset bytes of
3682 		 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
3683 		 */
3684 		ioc->replyPostRegisterIndex = kcalloc(
3685 		     ioc->combined_reply_index_count,
3686 		     sizeof(resource_size_t *), GFP_KERNEL);
3687 		if (!ioc->replyPostRegisterIndex) {
3688 			ioc_err(ioc,
3689 			    "allocation for replyPostRegisterIndex failed!\n");
3690 			r = -ENOMEM;
3691 			goto out_fail;
3692 		}
3693 
3694 		for (i = 0; i < ioc->combined_reply_index_count; i++) {
3695 			ioc->replyPostRegisterIndex[i] =
3696 				(resource_size_t __iomem *)
3697 				((u8 __force *)&ioc->chip->Doorbell +
3698 				 MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
3699 				 (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
3700 		}
3701 	}
3702 
3703 	if (ioc->is_warpdrive) {
3704 		ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
3705 		    &ioc->chip->ReplyPostHostIndex;
3706 
3707 		for (i = 1; i < ioc->cpu_msix_table_sz; i++)
3708 			ioc->reply_post_host_index[i] =
3709 			(resource_size_t __iomem *)
3710 			((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
3711 			* 4)));
3712 	}
3713 
3714 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3715 		if (reply_q->msix_index >= ioc->iopoll_q_start_index) {
3716 			pr_info("%s: enabled: index: %d\n",
3717 			    reply_q->name, reply_q->msix_index);
3718 			continue;
3719 		}
3720 
3721 		pr_info("%s: %s enabled: IRQ %d\n",
3722 			reply_q->name,
3723 			ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC",
3724 			pci_irq_vector(ioc->pdev, reply_q->msix_index));
3725 	}
3726 
3727 	ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n",
3728 		 &chip_phys, ioc->chip, memap_sz);
3729 	ioc_info(ioc, "ioport(0x%016llx), size(%d)\n",
3730 		 (unsigned long long)pio_chip, pio_sz);
3731 
3732 	/* Save PCI configuration state for recovery from PCI AER/EEH errors */
3733 	pci_save_state(pdev);
3734 	return 0;
3735 
3736  out_fail:
3737 	mpt3sas_base_unmap_resources(ioc);
3738 	return r;
3739 }
3740 
3741 /**
3742  * mpt3sas_base_get_msg_frame - obtain request mf pointer
3743  * @ioc: per adapter object
3744  * @smid: system request message index(smid zero is invalid)
3745  *
3746  * Return: virt pointer to message frame.
3747  */
3748 void *
3749 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3750 {
3751 	return (void *)(ioc->request + (smid * ioc->request_sz));
3752 }
3753 
3754 /**
3755  * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
3756  * @ioc: per adapter object
3757  * @smid: system request message index
3758  *
3759  * Return: virt pointer to sense buffer.
3760  */
3761 void *
3762 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3763 {
3764 	return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
3765 }
3766 
3767 /**
3768  * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
3769  * @ioc: per adapter object
3770  * @smid: system request message index
3771  *
3772  * Return: phys pointer to the low 32bit address of the sense buffer.
3773  */
3774 __le32
3775 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3776 {
3777 	return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
3778 	    SCSI_SENSE_BUFFERSIZE));
3779 }
3780 
3781 /**
3782  * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
3783  * @ioc: per adapter object
3784  * @smid: system request message index
3785  *
3786  * Return: virt pointer to a PCIe SGL.
3787  */
3788 void *
3789 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3790 {
3791 	return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl);
3792 }
3793 
3794 /**
3795  * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
3796  * @ioc: per adapter object
3797  * @smid: system request message index
3798  *
3799  * Return: phys pointer to the address of the PCIe buffer.
3800  */
3801 dma_addr_t
3802 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3803 {
3804 	return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma;
3805 }
3806 
3807 /**
3808  * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
3809  * @ioc: per adapter object
3810  * @phys_addr: lower 32 physical addr of the reply
3811  *
3812  * Converts 32bit lower physical addr into a virt address.
3813  */
3814 void *
3815 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
3816 {
3817 	if (!phys_addr)
3818 		return NULL;
3819 	return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
3820 }
3821 
3822 /**
3823  * _base_get_msix_index - get the msix index
3824  * @ioc: per adapter object
3825  * @scmd: scsi_cmnd object
3826  *
3827  * Return: msix index of general reply queues,
3828  * i.e. reply queue on which IO request's reply
3829  * should be posted by the HBA firmware.
3830  */
3831 static inline u8
3832 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc,
3833 	struct scsi_cmnd *scmd)
3834 {
3835 	/* Enables reply_queue load balancing */
3836 	if (ioc->msix_load_balance)
3837 		return ioc->reply_queue_count ?
3838 		    base_mod64(atomic64_add_return(1,
3839 		    &ioc->total_io_cnt), ioc->reply_queue_count) : 0;
3840 
3841 	if (scmd && ioc->shost->nr_hw_queues > 1) {
3842 		u32 tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd));
3843 
3844 		return blk_mq_unique_tag_to_hwq(tag) +
3845 			ioc->high_iops_queues;
3846 	}
3847 
3848 	return ioc->cpu_msix_table[raw_smp_processor_id()];
3849 }
3850 
3851 /**
3852  * _base_get_high_iops_msix_index - get the msix index of
3853  *				high iops queues
3854  * @ioc: per adapter object
3855  * @scmd: scsi_cmnd object
3856  *
3857  * Return: msix index of high iops reply queues.
3858  * i.e. high iops reply queue on which IO request's
3859  * reply should be posted by the HBA firmware.
3860  */
3861 static inline u8
3862 _base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc,
3863 	struct scsi_cmnd *scmd)
3864 {
3865 	/**
3866 	 * Round robin the IO interrupts among the high iops
3867 	 * reply queues in terms of batch count 16 when outstanding
3868 	 * IOs on the target device is >=8.
3869 	 */
3870 
3871 	if (scsi_device_busy(scmd->device) > MPT3SAS_DEVICE_HIGH_IOPS_DEPTH)
3872 		return base_mod64((
3873 		    atomic64_add_return(1, &ioc->high_iops_outstanding) /
3874 		    MPT3SAS_HIGH_IOPS_BATCH_COUNT),
3875 		    MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
3876 
3877 	return _base_get_msix_index(ioc, scmd);
3878 }
3879 
3880 /**
3881  * mpt3sas_base_get_smid - obtain a free smid from internal queue
3882  * @ioc: per adapter object
3883  * @cb_idx: callback index
3884  *
3885  * Return: smid (zero is invalid)
3886  */
3887 u16
3888 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3889 {
3890 	unsigned long flags;
3891 	struct request_tracker *request;
3892 	u16 smid;
3893 
3894 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3895 	if (list_empty(&ioc->internal_free_list)) {
3896 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3897 		ioc_err(ioc, "%s: smid not available\n", __func__);
3898 		return 0;
3899 	}
3900 
3901 	request = list_entry(ioc->internal_free_list.next,
3902 	    struct request_tracker, tracker_list);
3903 	request->cb_idx = cb_idx;
3904 	smid = request->smid;
3905 	list_del(&request->tracker_list);
3906 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3907 	return smid;
3908 }
3909 
3910 /**
3911  * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
3912  * @ioc: per adapter object
3913  * @cb_idx: callback index
3914  * @scmd: pointer to scsi command object
3915  *
3916  * Return: smid (zero is invalid)
3917  */
3918 u16
3919 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
3920 	struct scsi_cmnd *scmd)
3921 {
3922 	struct scsiio_tracker *request = scsi_cmd_priv(scmd);
3923 	u16 smid;
3924 	u32 tag, unique_tag;
3925 
3926 	unique_tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd));
3927 	tag = blk_mq_unique_tag_to_tag(unique_tag);
3928 
3929 	/*
3930 	 * Store hw queue number corresponding to the tag.
3931 	 * This hw queue number is used later to determine
3932 	 * the unique_tag using the logic below. This unique_tag
3933 	 * is used to retrieve the scmd pointer corresponding
3934 	 * to tag using scsi_host_find_tag() API.
3935 	 *
3936 	 * tag = smid - 1;
3937 	 * unique_tag = ioc->io_queue_num[tag] << BLK_MQ_UNIQUE_TAG_BITS | tag;
3938 	 */
3939 	ioc->io_queue_num[tag] = blk_mq_unique_tag_to_hwq(unique_tag);
3940 
3941 	smid = tag + 1;
3942 	request->cb_idx = cb_idx;
3943 	request->smid = smid;
3944 	request->scmd = scmd;
3945 	INIT_LIST_HEAD(&request->chain_list);
3946 	return smid;
3947 }
3948 
3949 /**
3950  * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
3951  * @ioc: per adapter object
3952  * @cb_idx: callback index
3953  *
3954  * Return: smid (zero is invalid)
3955  */
3956 u16
3957 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3958 {
3959 	unsigned long flags;
3960 	struct request_tracker *request;
3961 	u16 smid;
3962 
3963 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3964 	if (list_empty(&ioc->hpr_free_list)) {
3965 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3966 		return 0;
3967 	}
3968 
3969 	request = list_entry(ioc->hpr_free_list.next,
3970 	    struct request_tracker, tracker_list);
3971 	request->cb_idx = cb_idx;
3972 	smid = request->smid;
3973 	list_del(&request->tracker_list);
3974 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3975 	return smid;
3976 }
3977 
3978 static void
3979 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc)
3980 {
3981 	/*
3982 	 * See _wait_for_commands_to_complete() call with regards to this code.
3983 	 */
3984 	if (ioc->shost_recovery && ioc->pending_io_count) {
3985 		ioc->pending_io_count = scsi_host_busy(ioc->shost);
3986 		if (ioc->pending_io_count == 0)
3987 			wake_up(&ioc->reset_wq);
3988 	}
3989 }
3990 
3991 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc,
3992 			   struct scsiio_tracker *st)
3993 {
3994 	if (WARN_ON(st->smid == 0))
3995 		return;
3996 	st->cb_idx = 0xFF;
3997 	st->direct_io = 0;
3998 	st->scmd = NULL;
3999 	atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0);
4000 	st->smid = 0;
4001 }
4002 
4003 /**
4004  * mpt3sas_base_free_smid - put smid back on free_list
4005  * @ioc: per adapter object
4006  * @smid: system request message index
4007  */
4008 void
4009 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4010 {
4011 	unsigned long flags;
4012 	int i;
4013 
4014 	if (smid < ioc->hi_priority_smid) {
4015 		struct scsiio_tracker *st;
4016 		void *request;
4017 
4018 		st = _get_st_from_smid(ioc, smid);
4019 		if (!st) {
4020 			_base_recovery_check(ioc);
4021 			return;
4022 		}
4023 
4024 		/* Clear MPI request frame */
4025 		request = mpt3sas_base_get_msg_frame(ioc, smid);
4026 		memset(request, 0, ioc->request_sz);
4027 
4028 		mpt3sas_base_clear_st(ioc, st);
4029 		_base_recovery_check(ioc);
4030 		ioc->io_queue_num[smid - 1] = 0;
4031 		return;
4032 	}
4033 
4034 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
4035 	if (smid < ioc->internal_smid) {
4036 		/* hi-priority */
4037 		i = smid - ioc->hi_priority_smid;
4038 		ioc->hpr_lookup[i].cb_idx = 0xFF;
4039 		list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
4040 	} else if (smid <= ioc->hba_queue_depth) {
4041 		/* internal queue */
4042 		i = smid - ioc->internal_smid;
4043 		ioc->internal_lookup[i].cb_idx = 0xFF;
4044 		list_add(&ioc->internal_lookup[i].tracker_list,
4045 		    &ioc->internal_free_list);
4046 	}
4047 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
4048 }
4049 
4050 /**
4051  * _base_mpi_ep_writeq - 32 bit write to MMIO
4052  * @b: data payload
4053  * @addr: address in MMIO space
4054  * @writeq_lock: spin lock
4055  *
4056  * This special handling for MPI EP to take care of 32 bit
4057  * environment where its not quarenteed to send the entire word
4058  * in one transfer.
4059  */
4060 static inline void
4061 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr,
4062 					spinlock_t *writeq_lock)
4063 {
4064 	unsigned long flags;
4065 
4066 	spin_lock_irqsave(writeq_lock, flags);
4067 	__raw_writel((u32)(b), addr);
4068 	__raw_writel((u32)(b >> 32), (addr + 4));
4069 	spin_unlock_irqrestore(writeq_lock, flags);
4070 }
4071 
4072 /**
4073  * _base_writeq - 64 bit write to MMIO
4074  * @b: data payload
4075  * @addr: address in MMIO space
4076  * @writeq_lock: spin lock
4077  *
4078  * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
4079  * care of 32 bit environment where its not quarenteed to send the entire word
4080  * in one transfer.
4081  */
4082 #if defined(writeq) && defined(CONFIG_64BIT)
4083 static inline void
4084 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
4085 {
4086 	wmb();
4087 	__raw_writeq(b, addr);
4088 	barrier();
4089 }
4090 #else
4091 static inline void
4092 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
4093 {
4094 	_base_mpi_ep_writeq(b, addr, writeq_lock);
4095 }
4096 #endif
4097 
4098 /**
4099  * _base_set_and_get_msix_index - get the msix index and assign to msix_io
4100  *                                variable of scsi tracker
4101  * @ioc: per adapter object
4102  * @smid: system request message index
4103  *
4104  * Return: msix index.
4105  */
4106 static u8
4107 _base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4108 {
4109 	struct scsiio_tracker *st = NULL;
4110 
4111 	if (smid < ioc->hi_priority_smid)
4112 		st = _get_st_from_smid(ioc, smid);
4113 
4114 	if (st == NULL)
4115 		return  _base_get_msix_index(ioc, NULL);
4116 
4117 	st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd);
4118 	return st->msix_io;
4119 }
4120 
4121 /**
4122  * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware
4123  * @ioc: per adapter object
4124  * @smid: system request message index
4125  * @handle: device handle
4126  */
4127 static void
4128 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc,
4129 	u16 smid, u16 handle)
4130 {
4131 	Mpi2RequestDescriptorUnion_t descriptor;
4132 	u64 *request = (u64 *)&descriptor;
4133 	void *mpi_req_iomem;
4134 	__le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4135 
4136 	_clone_sg_entries(ioc, (void *) mfp, smid);
4137 	mpi_req_iomem = (void __force *)ioc->chip +
4138 			MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
4139 	_base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4140 					ioc->request_sz);
4141 	descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4142 	descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4143 	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4144 	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4145 	descriptor.SCSIIO.LMID = 0;
4146 	_base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4147 	    &ioc->scsi_lookup_lock);
4148 }
4149 
4150 /**
4151  * _base_put_smid_scsi_io - send SCSI_IO request to firmware
4152  * @ioc: per adapter object
4153  * @smid: system request message index
4154  * @handle: device handle
4155  */
4156 static void
4157 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
4158 {
4159 	Mpi2RequestDescriptorUnion_t descriptor;
4160 	u64 *request = (u64 *)&descriptor;
4161 
4162 
4163 	descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4164 	descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4165 	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4166 	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4167 	descriptor.SCSIIO.LMID = 0;
4168 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4169 	    &ioc->scsi_lookup_lock);
4170 }
4171 
4172 /**
4173  * _base_put_smid_fast_path - send fast path request to firmware
4174  * @ioc: per adapter object
4175  * @smid: system request message index
4176  * @handle: device handle
4177  */
4178 static void
4179 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4180 	u16 handle)
4181 {
4182 	Mpi2RequestDescriptorUnion_t descriptor;
4183 	u64 *request = (u64 *)&descriptor;
4184 
4185 	descriptor.SCSIIO.RequestFlags =
4186 	    MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4187 	descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4188 	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4189 	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4190 	descriptor.SCSIIO.LMID = 0;
4191 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4192 	    &ioc->scsi_lookup_lock);
4193 }
4194 
4195 /**
4196  * _base_put_smid_hi_priority - send Task Management request to firmware
4197  * @ioc: per adapter object
4198  * @smid: system request message index
4199  * @msix_task: msix_task will be same as msix of IO in case of task abort else 0
4200  */
4201 static void
4202 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4203 	u16 msix_task)
4204 {
4205 	Mpi2RequestDescriptorUnion_t descriptor;
4206 	void *mpi_req_iomem;
4207 	u64 *request;
4208 
4209 	if (ioc->is_mcpu_endpoint) {
4210 		__le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4211 
4212 		/* TBD 256 is offset within sys register. */
4213 		mpi_req_iomem = (void __force *)ioc->chip
4214 					+ MPI_FRAME_START_OFFSET
4215 					+ (smid * ioc->request_sz);
4216 		_base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4217 							ioc->request_sz);
4218 	}
4219 
4220 	request = (u64 *)&descriptor;
4221 
4222 	descriptor.HighPriority.RequestFlags =
4223 	    MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4224 	descriptor.HighPriority.MSIxIndex =  msix_task;
4225 	descriptor.HighPriority.SMID = cpu_to_le16(smid);
4226 	descriptor.HighPriority.LMID = 0;
4227 	descriptor.HighPriority.Reserved1 = 0;
4228 	if (ioc->is_mcpu_endpoint)
4229 		_base_mpi_ep_writeq(*request,
4230 				&ioc->chip->RequestDescriptorPostLow,
4231 				&ioc->scsi_lookup_lock);
4232 	else
4233 		_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4234 		    &ioc->scsi_lookup_lock);
4235 }
4236 
4237 /**
4238  * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to
4239  *  firmware
4240  * @ioc: per adapter object
4241  * @smid: system request message index
4242  */
4243 void
4244 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4245 {
4246 	Mpi2RequestDescriptorUnion_t descriptor;
4247 	u64 *request = (u64 *)&descriptor;
4248 
4249 	descriptor.Default.RequestFlags =
4250 		MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
4251 	descriptor.Default.MSIxIndex =  _base_set_and_get_msix_index(ioc, smid);
4252 	descriptor.Default.SMID = cpu_to_le16(smid);
4253 	descriptor.Default.LMID = 0;
4254 	descriptor.Default.DescriptorTypeDependent = 0;
4255 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4256 	    &ioc->scsi_lookup_lock);
4257 }
4258 
4259 /**
4260  * _base_put_smid_default - Default, primarily used for config pages
4261  * @ioc: per adapter object
4262  * @smid: system request message index
4263  */
4264 static void
4265 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4266 {
4267 	Mpi2RequestDescriptorUnion_t descriptor;
4268 	void *mpi_req_iomem;
4269 	u64 *request;
4270 
4271 	if (ioc->is_mcpu_endpoint) {
4272 		__le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4273 
4274 		_clone_sg_entries(ioc, (void *) mfp, smid);
4275 		/* TBD 256 is offset within sys register */
4276 		mpi_req_iomem = (void __force *)ioc->chip +
4277 			MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
4278 		_base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4279 							ioc->request_sz);
4280 	}
4281 	request = (u64 *)&descriptor;
4282 	descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4283 	descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4284 	descriptor.Default.SMID = cpu_to_le16(smid);
4285 	descriptor.Default.LMID = 0;
4286 	descriptor.Default.DescriptorTypeDependent = 0;
4287 	if (ioc->is_mcpu_endpoint)
4288 		_base_mpi_ep_writeq(*request,
4289 				&ioc->chip->RequestDescriptorPostLow,
4290 				&ioc->scsi_lookup_lock);
4291 	else
4292 		_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4293 				&ioc->scsi_lookup_lock);
4294 }
4295 
4296 /**
4297  * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using
4298  *   Atomic Request Descriptor
4299  * @ioc: per adapter object
4300  * @smid: system request message index
4301  * @handle: device handle, unused in this function, for function type match
4302  *
4303  * Return: nothing.
4304  */
4305 static void
4306 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4307 	u16 handle)
4308 {
4309 	Mpi26AtomicRequestDescriptor_t descriptor;
4310 	u32 *request = (u32 *)&descriptor;
4311 
4312 	descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4313 	descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4314 	descriptor.SMID = cpu_to_le16(smid);
4315 
4316 	writel(*request, &ioc->chip->AtomicRequestDescriptorPost);
4317 }
4318 
4319 /**
4320  * _base_put_smid_fast_path_atomic - send fast path request to firmware
4321  * using Atomic Request Descriptor
4322  * @ioc: per adapter object
4323  * @smid: system request message index
4324  * @handle: device handle, unused in this function, for function type match
4325  * Return: nothing
4326  */
4327 static void
4328 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4329 	u16 handle)
4330 {
4331 	Mpi26AtomicRequestDescriptor_t descriptor;
4332 	u32 *request = (u32 *)&descriptor;
4333 
4334 	descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4335 	descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4336 	descriptor.SMID = cpu_to_le16(smid);
4337 
4338 	writel(*request, &ioc->chip->AtomicRequestDescriptorPost);
4339 }
4340 
4341 /**
4342  * _base_put_smid_hi_priority_atomic - send Task Management request to
4343  * firmware using Atomic Request Descriptor
4344  * @ioc: per adapter object
4345  * @smid: system request message index
4346  * @msix_task: msix_task will be same as msix of IO in case of task abort else 0
4347  *
4348  * Return: nothing.
4349  */
4350 static void
4351 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4352 	u16 msix_task)
4353 {
4354 	Mpi26AtomicRequestDescriptor_t descriptor;
4355 	u32 *request = (u32 *)&descriptor;
4356 
4357 	descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4358 	descriptor.MSIxIndex = msix_task;
4359 	descriptor.SMID = cpu_to_le16(smid);
4360 
4361 	writel(*request, &ioc->chip->AtomicRequestDescriptorPost);
4362 }
4363 
4364 /**
4365  * _base_put_smid_default_atomic - Default, primarily used for config pages
4366  * use Atomic Request Descriptor
4367  * @ioc: per adapter object
4368  * @smid: system request message index
4369  *
4370  * Return: nothing.
4371  */
4372 static void
4373 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4374 {
4375 	Mpi26AtomicRequestDescriptor_t descriptor;
4376 	u32 *request = (u32 *)&descriptor;
4377 
4378 	descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4379 	descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4380 	descriptor.SMID = cpu_to_le16(smid);
4381 
4382 	writel(*request, &ioc->chip->AtomicRequestDescriptorPost);
4383 }
4384 
4385 /**
4386  * _base_display_OEMs_branding - Display branding string
4387  * @ioc: per adapter object
4388  */
4389 static void
4390 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
4391 {
4392 	if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
4393 		return;
4394 
4395 	switch (ioc->pdev->subsystem_vendor) {
4396 	case PCI_VENDOR_ID_INTEL:
4397 		switch (ioc->pdev->device) {
4398 		case MPI2_MFGPAGE_DEVID_SAS2008:
4399 			switch (ioc->pdev->subsystem_device) {
4400 			case MPT2SAS_INTEL_RMS2LL080_SSDID:
4401 				ioc_info(ioc, "%s\n",
4402 					 MPT2SAS_INTEL_RMS2LL080_BRANDING);
4403 				break;
4404 			case MPT2SAS_INTEL_RMS2LL040_SSDID:
4405 				ioc_info(ioc, "%s\n",
4406 					 MPT2SAS_INTEL_RMS2LL040_BRANDING);
4407 				break;
4408 			case MPT2SAS_INTEL_SSD910_SSDID:
4409 				ioc_info(ioc, "%s\n",
4410 					 MPT2SAS_INTEL_SSD910_BRANDING);
4411 				break;
4412 			default:
4413 				ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4414 					 ioc->pdev->subsystem_device);
4415 				break;
4416 			}
4417 			break;
4418 		case MPI2_MFGPAGE_DEVID_SAS2308_2:
4419 			switch (ioc->pdev->subsystem_device) {
4420 			case MPT2SAS_INTEL_RS25GB008_SSDID:
4421 				ioc_info(ioc, "%s\n",
4422 					 MPT2SAS_INTEL_RS25GB008_BRANDING);
4423 				break;
4424 			case MPT2SAS_INTEL_RMS25JB080_SSDID:
4425 				ioc_info(ioc, "%s\n",
4426 					 MPT2SAS_INTEL_RMS25JB080_BRANDING);
4427 				break;
4428 			case MPT2SAS_INTEL_RMS25JB040_SSDID:
4429 				ioc_info(ioc, "%s\n",
4430 					 MPT2SAS_INTEL_RMS25JB040_BRANDING);
4431 				break;
4432 			case MPT2SAS_INTEL_RMS25KB080_SSDID:
4433 				ioc_info(ioc, "%s\n",
4434 					 MPT2SAS_INTEL_RMS25KB080_BRANDING);
4435 				break;
4436 			case MPT2SAS_INTEL_RMS25KB040_SSDID:
4437 				ioc_info(ioc, "%s\n",
4438 					 MPT2SAS_INTEL_RMS25KB040_BRANDING);
4439 				break;
4440 			case MPT2SAS_INTEL_RMS25LB040_SSDID:
4441 				ioc_info(ioc, "%s\n",
4442 					 MPT2SAS_INTEL_RMS25LB040_BRANDING);
4443 				break;
4444 			case MPT2SAS_INTEL_RMS25LB080_SSDID:
4445 				ioc_info(ioc, "%s\n",
4446 					 MPT2SAS_INTEL_RMS25LB080_BRANDING);
4447 				break;
4448 			default:
4449 				ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4450 					 ioc->pdev->subsystem_device);
4451 				break;
4452 			}
4453 			break;
4454 		case MPI25_MFGPAGE_DEVID_SAS3008:
4455 			switch (ioc->pdev->subsystem_device) {
4456 			case MPT3SAS_INTEL_RMS3JC080_SSDID:
4457 				ioc_info(ioc, "%s\n",
4458 					 MPT3SAS_INTEL_RMS3JC080_BRANDING);
4459 				break;
4460 
4461 			case MPT3SAS_INTEL_RS3GC008_SSDID:
4462 				ioc_info(ioc, "%s\n",
4463 					 MPT3SAS_INTEL_RS3GC008_BRANDING);
4464 				break;
4465 			case MPT3SAS_INTEL_RS3FC044_SSDID:
4466 				ioc_info(ioc, "%s\n",
4467 					 MPT3SAS_INTEL_RS3FC044_BRANDING);
4468 				break;
4469 			case MPT3SAS_INTEL_RS3UC080_SSDID:
4470 				ioc_info(ioc, "%s\n",
4471 					 MPT3SAS_INTEL_RS3UC080_BRANDING);
4472 				break;
4473 			default:
4474 				ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4475 					 ioc->pdev->subsystem_device);
4476 				break;
4477 			}
4478 			break;
4479 		default:
4480 			ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4481 				 ioc->pdev->subsystem_device);
4482 			break;
4483 		}
4484 		break;
4485 	case PCI_VENDOR_ID_DELL:
4486 		switch (ioc->pdev->device) {
4487 		case MPI2_MFGPAGE_DEVID_SAS2008:
4488 			switch (ioc->pdev->subsystem_device) {
4489 			case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
4490 				ioc_info(ioc, "%s\n",
4491 					 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
4492 				break;
4493 			case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
4494 				ioc_info(ioc, "%s\n",
4495 					 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
4496 				break;
4497 			case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
4498 				ioc_info(ioc, "%s\n",
4499 					 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
4500 				break;
4501 			case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
4502 				ioc_info(ioc, "%s\n",
4503 					 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
4504 				break;
4505 			case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
4506 				ioc_info(ioc, "%s\n",
4507 					 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
4508 				break;
4509 			case MPT2SAS_DELL_PERC_H200_SSDID:
4510 				ioc_info(ioc, "%s\n",
4511 					 MPT2SAS_DELL_PERC_H200_BRANDING);
4512 				break;
4513 			case MPT2SAS_DELL_6GBPS_SAS_SSDID:
4514 				ioc_info(ioc, "%s\n",
4515 					 MPT2SAS_DELL_6GBPS_SAS_BRANDING);
4516 				break;
4517 			default:
4518 				ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
4519 					 ioc->pdev->subsystem_device);
4520 				break;
4521 			}
4522 			break;
4523 		case MPI25_MFGPAGE_DEVID_SAS3008:
4524 			switch (ioc->pdev->subsystem_device) {
4525 			case MPT3SAS_DELL_12G_HBA_SSDID:
4526 				ioc_info(ioc, "%s\n",
4527 					 MPT3SAS_DELL_12G_HBA_BRANDING);
4528 				break;
4529 			default:
4530 				ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
4531 					 ioc->pdev->subsystem_device);
4532 				break;
4533 			}
4534 			break;
4535 		default:
4536 			ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n",
4537 				 ioc->pdev->subsystem_device);
4538 			break;
4539 		}
4540 		break;
4541 	case PCI_VENDOR_ID_CISCO:
4542 		switch (ioc->pdev->device) {
4543 		case MPI25_MFGPAGE_DEVID_SAS3008:
4544 			switch (ioc->pdev->subsystem_device) {
4545 			case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
4546 				ioc_info(ioc, "%s\n",
4547 					 MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
4548 				break;
4549 			case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
4550 				ioc_info(ioc, "%s\n",
4551 					 MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
4552 				break;
4553 			case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4554 				ioc_info(ioc, "%s\n",
4555 					 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4556 				break;
4557 			default:
4558 				ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4559 					 ioc->pdev->subsystem_device);
4560 				break;
4561 			}
4562 			break;
4563 		case MPI25_MFGPAGE_DEVID_SAS3108_1:
4564 			switch (ioc->pdev->subsystem_device) {
4565 			case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4566 				ioc_info(ioc, "%s\n",
4567 					 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4568 				break;
4569 			case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
4570 				ioc_info(ioc, "%s\n",
4571 					 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING);
4572 				break;
4573 			default:
4574 				ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4575 					 ioc->pdev->subsystem_device);
4576 				break;
4577 			}
4578 			break;
4579 		default:
4580 			ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n",
4581 				 ioc->pdev->subsystem_device);
4582 			break;
4583 		}
4584 		break;
4585 	case MPT2SAS_HP_3PAR_SSVID:
4586 		switch (ioc->pdev->device) {
4587 		case MPI2_MFGPAGE_DEVID_SAS2004:
4588 			switch (ioc->pdev->subsystem_device) {
4589 			case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
4590 				ioc_info(ioc, "%s\n",
4591 					 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
4592 				break;
4593 			default:
4594 				ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4595 					 ioc->pdev->subsystem_device);
4596 				break;
4597 			}
4598 			break;
4599 		case MPI2_MFGPAGE_DEVID_SAS2308_2:
4600 			switch (ioc->pdev->subsystem_device) {
4601 			case MPT2SAS_HP_2_4_INTERNAL_SSDID:
4602 				ioc_info(ioc, "%s\n",
4603 					 MPT2SAS_HP_2_4_INTERNAL_BRANDING);
4604 				break;
4605 			case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
4606 				ioc_info(ioc, "%s\n",
4607 					 MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
4608 				break;
4609 			case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
4610 				ioc_info(ioc, "%s\n",
4611 					 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
4612 				break;
4613 			case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
4614 				ioc_info(ioc, "%s\n",
4615 					 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
4616 				break;
4617 			default:
4618 				ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4619 					 ioc->pdev->subsystem_device);
4620 				break;
4621 			}
4622 			break;
4623 		default:
4624 			ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n",
4625 				 ioc->pdev->subsystem_device);
4626 			break;
4627 		}
4628 		break;
4629 	default:
4630 		break;
4631 	}
4632 }
4633 
4634 /**
4635  * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg
4636  *				version from FW Image Header.
4637  * @ioc: per adapter object
4638  *
4639  * Return: 0 for success, non-zero for failure.
4640  */
4641 	static int
4642 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc)
4643 {
4644 	Mpi2FWImageHeader_t *fw_img_hdr;
4645 	Mpi26ComponentImageHeader_t *cmp_img_hdr;
4646 	Mpi25FWUploadRequest_t *mpi_request;
4647 	Mpi2FWUploadReply_t mpi_reply;
4648 	int r = 0, issue_diag_reset = 0;
4649 	u32  package_version = 0;
4650 	void *fwpkg_data = NULL;
4651 	dma_addr_t fwpkg_data_dma;
4652 	u16 smid, ioc_status;
4653 	size_t data_length;
4654 
4655 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4656 
4657 	if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4658 		ioc_err(ioc, "%s: internal command already in use\n", __func__);
4659 		return -EAGAIN;
4660 	}
4661 
4662 	data_length = sizeof(Mpi2FWImageHeader_t);
4663 	fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length,
4664 			&fwpkg_data_dma, GFP_KERNEL);
4665 	if (!fwpkg_data) {
4666 		ioc_err(ioc,
4667 		    "Memory allocation for fwpkg data failed at %s:%d/%s()!\n",
4668 			__FILE__, __LINE__, __func__);
4669 		return -ENOMEM;
4670 	}
4671 
4672 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4673 	if (!smid) {
4674 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
4675 		r = -EAGAIN;
4676 		goto out;
4677 	}
4678 
4679 	ioc->base_cmds.status = MPT3_CMD_PENDING;
4680 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4681 	ioc->base_cmds.smid = smid;
4682 	memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t));
4683 	mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD;
4684 	mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH;
4685 	mpi_request->ImageSize = cpu_to_le32(data_length);
4686 	ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma,
4687 			data_length);
4688 	init_completion(&ioc->base_cmds.done);
4689 	ioc->put_smid_default(ioc, smid);
4690 	/* Wait for 15 seconds */
4691 	wait_for_completion_timeout(&ioc->base_cmds.done,
4692 			FW_IMG_HDR_READ_TIMEOUT*HZ);
4693 	ioc_info(ioc, "%s: complete\n", __func__);
4694 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4695 		ioc_err(ioc, "%s: timeout\n", __func__);
4696 		_debug_dump_mf(mpi_request,
4697 				sizeof(Mpi25FWUploadRequest_t)/4);
4698 		issue_diag_reset = 1;
4699 	} else {
4700 		memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t));
4701 		if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) {
4702 			memcpy(&mpi_reply, ioc->base_cmds.reply,
4703 					sizeof(Mpi2FWUploadReply_t));
4704 			ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4705 						MPI2_IOCSTATUS_MASK;
4706 			if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4707 				fw_img_hdr = (Mpi2FWImageHeader_t *)fwpkg_data;
4708 				if (le32_to_cpu(fw_img_hdr->Signature) ==
4709 				    MPI26_IMAGE_HEADER_SIGNATURE0_MPI26) {
4710 					cmp_img_hdr =
4711 					    (Mpi26ComponentImageHeader_t *)
4712 					    (fwpkg_data);
4713 					package_version =
4714 					    le32_to_cpu(
4715 					    cmp_img_hdr->ApplicationSpecific);
4716 				} else
4717 					package_version =
4718 					    le32_to_cpu(
4719 					    fw_img_hdr->PackageVersion.Word);
4720 				if (package_version)
4721 					ioc_info(ioc,
4722 					"FW Package Ver(%02d.%02d.%02d.%02d)\n",
4723 					((package_version) & 0xFF000000) >> 24,
4724 					((package_version) & 0x00FF0000) >> 16,
4725 					((package_version) & 0x0000FF00) >> 8,
4726 					(package_version) & 0x000000FF);
4727 			} else {
4728 				_debug_dump_mf(&mpi_reply,
4729 						sizeof(Mpi2FWUploadReply_t)/4);
4730 			}
4731 		}
4732 	}
4733 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4734 out:
4735 	if (fwpkg_data)
4736 		dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data,
4737 				fwpkg_data_dma);
4738 	if (issue_diag_reset) {
4739 		if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED)
4740 			return -EFAULT;
4741 		if (mpt3sas_base_check_for_fault_and_issue_reset(ioc))
4742 			return -EFAULT;
4743 		r = -EAGAIN;
4744 	}
4745 	return r;
4746 }
4747 
4748 /**
4749  * _base_display_ioc_capabilities - Display IOC's capabilities.
4750  * @ioc: per adapter object
4751  */
4752 static void
4753 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
4754 {
4755 	int i = 0;
4756 	char desc[17] = {0};
4757 	u32 iounit_pg1_flags;
4758 	u32 bios_version;
4759 
4760 	bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
4761 	strncpy(desc, ioc->manu_pg0.ChipName, 16);
4762 	ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
4763 		 desc,
4764 		 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
4765 		 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
4766 		 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
4767 		 ioc->facts.FWVersion.Word & 0x000000FF,
4768 		 ioc->pdev->revision,
4769 		 (bios_version & 0xFF000000) >> 24,
4770 		 (bios_version & 0x00FF0000) >> 16,
4771 		 (bios_version & 0x0000FF00) >> 8,
4772 		 bios_version & 0x000000FF);
4773 
4774 	_base_display_OEMs_branding(ioc);
4775 
4776 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
4777 		pr_info("%sNVMe", i ? "," : "");
4778 		i++;
4779 	}
4780 
4781 	ioc_info(ioc, "Protocol=(");
4782 
4783 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
4784 		pr_cont("Initiator");
4785 		i++;
4786 	}
4787 
4788 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
4789 		pr_cont("%sTarget", i ? "," : "");
4790 		i++;
4791 	}
4792 
4793 	i = 0;
4794 	pr_cont("), Capabilities=(");
4795 
4796 	if (!ioc->hide_ir_msg) {
4797 		if (ioc->facts.IOCCapabilities &
4798 		    MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
4799 			pr_cont("Raid");
4800 			i++;
4801 		}
4802 	}
4803 
4804 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
4805 		pr_cont("%sTLR", i ? "," : "");
4806 		i++;
4807 	}
4808 
4809 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
4810 		pr_cont("%sMulticast", i ? "," : "");
4811 		i++;
4812 	}
4813 
4814 	if (ioc->facts.IOCCapabilities &
4815 	    MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
4816 		pr_cont("%sBIDI Target", i ? "," : "");
4817 		i++;
4818 	}
4819 
4820 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
4821 		pr_cont("%sEEDP", i ? "," : "");
4822 		i++;
4823 	}
4824 
4825 	if (ioc->facts.IOCCapabilities &
4826 	    MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
4827 		pr_cont("%sSnapshot Buffer", i ? "," : "");
4828 		i++;
4829 	}
4830 
4831 	if (ioc->facts.IOCCapabilities &
4832 	    MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
4833 		pr_cont("%sDiag Trace Buffer", i ? "," : "");
4834 		i++;
4835 	}
4836 
4837 	if (ioc->facts.IOCCapabilities &
4838 	    MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
4839 		pr_cont("%sDiag Extended Buffer", i ? "," : "");
4840 		i++;
4841 	}
4842 
4843 	if (ioc->facts.IOCCapabilities &
4844 	    MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
4845 		pr_cont("%sTask Set Full", i ? "," : "");
4846 		i++;
4847 	}
4848 
4849 	iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4850 	if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
4851 		pr_cont("%sNCQ", i ? "," : "");
4852 		i++;
4853 	}
4854 
4855 	pr_cont(")\n");
4856 }
4857 
4858 /**
4859  * mpt3sas_base_update_missing_delay - change the missing delay timers
4860  * @ioc: per adapter object
4861  * @device_missing_delay: amount of time till device is reported missing
4862  * @io_missing_delay: interval IO is returned when there is a missing device
4863  *
4864  * Passed on the command line, this function will modify the device missing
4865  * delay, as well as the io missing delay. This should be called at driver
4866  * load time.
4867  */
4868 void
4869 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
4870 	u16 device_missing_delay, u8 io_missing_delay)
4871 {
4872 	u16 dmd, dmd_new, dmd_orignal;
4873 	u8 io_missing_delay_original;
4874 	u16 sz;
4875 	Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
4876 	Mpi2ConfigReply_t mpi_reply;
4877 	u8 num_phys = 0;
4878 	u16 ioc_status;
4879 
4880 	mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
4881 	if (!num_phys)
4882 		return;
4883 
4884 	sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
4885 	    sizeof(Mpi2SasIOUnit1PhyData_t));
4886 	sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
4887 	if (!sas_iounit_pg1) {
4888 		ioc_err(ioc, "failure at %s:%d/%s()!\n",
4889 			__FILE__, __LINE__, __func__);
4890 		goto out;
4891 	}
4892 	if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
4893 	    sas_iounit_pg1, sz))) {
4894 		ioc_err(ioc, "failure at %s:%d/%s()!\n",
4895 			__FILE__, __LINE__, __func__);
4896 		goto out;
4897 	}
4898 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4899 	    MPI2_IOCSTATUS_MASK;
4900 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4901 		ioc_err(ioc, "failure at %s:%d/%s()!\n",
4902 			__FILE__, __LINE__, __func__);
4903 		goto out;
4904 	}
4905 
4906 	/* device missing delay */
4907 	dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
4908 	if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4909 		dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4910 	else
4911 		dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4912 	dmd_orignal = dmd;
4913 	if (device_missing_delay > 0x7F) {
4914 		dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
4915 		    device_missing_delay;
4916 		dmd = dmd / 16;
4917 		dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
4918 	} else
4919 		dmd = device_missing_delay;
4920 	sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
4921 
4922 	/* io missing delay */
4923 	io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
4924 	sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
4925 
4926 	if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
4927 	    sz)) {
4928 		if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4929 			dmd_new = (dmd &
4930 			    MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4931 		else
4932 			dmd_new =
4933 		    dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4934 		ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n",
4935 			 dmd_orignal, dmd_new);
4936 		ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n",
4937 			 io_missing_delay_original,
4938 			 io_missing_delay);
4939 		ioc->device_missing_delay = dmd_new;
4940 		ioc->io_missing_delay = io_missing_delay;
4941 	}
4942 
4943 out:
4944 	kfree(sas_iounit_pg1);
4945 }
4946 
4947 /**
4948  * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields
4949  *    according to performance mode.
4950  * @ioc : per adapter object
4951  *
4952  * Return: zero on success; otherwise return EAGAIN error code asking the
4953  * caller to retry.
4954  */
4955 static int
4956 _base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc)
4957 {
4958 	Mpi2IOCPage1_t ioc_pg1;
4959 	Mpi2ConfigReply_t mpi_reply;
4960 	int rc;
4961 
4962 	rc = mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy);
4963 	if (rc)
4964 		return rc;
4965 	memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t));
4966 
4967 	switch (perf_mode) {
4968 	case MPT_PERF_MODE_DEFAULT:
4969 	case MPT_PERF_MODE_BALANCED:
4970 		if (ioc->high_iops_queues) {
4971 			ioc_info(ioc,
4972 				"Enable interrupt coalescing only for first\t"
4973 				"%d reply queues\n",
4974 				MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
4975 			/*
4976 			 * If 31st bit is zero then interrupt coalescing is
4977 			 * enabled for all reply descriptor post queues.
4978 			 * If 31st bit is set to one then user can
4979 			 * enable/disable interrupt coalescing on per reply
4980 			 * descriptor post queue group(8) basis. So to enable
4981 			 * interrupt coalescing only on first reply descriptor
4982 			 * post queue group 31st bit and zero th bit is enabled.
4983 			 */
4984 			ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 |
4985 			    ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1));
4986 			rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4987 			if (rc)
4988 				return rc;
4989 			ioc_info(ioc, "performance mode: balanced\n");
4990 			return 0;
4991 		}
4992 		fallthrough;
4993 	case MPT_PERF_MODE_LATENCY:
4994 		/*
4995 		 * Enable interrupt coalescing on all reply queues
4996 		 * with timeout value 0xA
4997 		 */
4998 		ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa);
4999 		ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
5000 		ioc_pg1.ProductSpecific = 0;
5001 		rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
5002 		if (rc)
5003 			return rc;
5004 		ioc_info(ioc, "performance mode: latency\n");
5005 		break;
5006 	case MPT_PERF_MODE_IOPS:
5007 		/*
5008 		 * Enable interrupt coalescing on all reply queues.
5009 		 */
5010 		ioc_info(ioc,
5011 		    "performance mode: iops with coalescing timeout: 0x%x\n",
5012 		    le32_to_cpu(ioc_pg1.CoalescingTimeout));
5013 		ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
5014 		ioc_pg1.ProductSpecific = 0;
5015 		rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
5016 		if (rc)
5017 			return rc;
5018 		break;
5019 	}
5020 	return 0;
5021 }
5022 
5023 /**
5024  * _base_get_event_diag_triggers - get event diag trigger values from
5025  *				persistent pages
5026  * @ioc : per adapter object
5027  *
5028  * Return: nothing.
5029  */
5030 static int
5031 _base_get_event_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5032 {
5033 	Mpi26DriverTriggerPage2_t trigger_pg2;
5034 	struct SL_WH_EVENT_TRIGGER_T *event_tg;
5035 	MPI26_DRIVER_MPI_EVENT_TIGGER_ENTRY *mpi_event_tg;
5036 	Mpi2ConfigReply_t mpi_reply;
5037 	int r = 0, i = 0;
5038 	u16 count = 0;
5039 	u16 ioc_status;
5040 
5041 	r = mpt3sas_config_get_driver_trigger_pg2(ioc, &mpi_reply,
5042 	    &trigger_pg2);
5043 	if (r)
5044 		return r;
5045 
5046 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5047 	    MPI2_IOCSTATUS_MASK;
5048 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5049 		dinitprintk(ioc,
5050 		    ioc_err(ioc,
5051 		    "%s: Failed to get trigger pg2, ioc_status(0x%04x)\n",
5052 		   __func__, ioc_status));
5053 		return 0;
5054 	}
5055 
5056 	if (le16_to_cpu(trigger_pg2.NumMPIEventTrigger)) {
5057 		count = le16_to_cpu(trigger_pg2.NumMPIEventTrigger);
5058 		count = min_t(u16, NUM_VALID_ENTRIES, count);
5059 		ioc->diag_trigger_event.ValidEntries = count;
5060 
5061 		event_tg = &ioc->diag_trigger_event.EventTriggerEntry[0];
5062 		mpi_event_tg = &trigger_pg2.MPIEventTriggers[0];
5063 		for (i = 0; i < count; i++) {
5064 			event_tg->EventValue = le16_to_cpu(
5065 			    mpi_event_tg->MPIEventCode);
5066 			event_tg->LogEntryQualifier = le16_to_cpu(
5067 			    mpi_event_tg->MPIEventCodeSpecific);
5068 			event_tg++;
5069 			mpi_event_tg++;
5070 		}
5071 	}
5072 	return 0;
5073 }
5074 
5075 /**
5076  * _base_get_scsi_diag_triggers - get scsi diag trigger values from
5077  *				persistent pages
5078  * @ioc : per adapter object
5079  *
5080  * Return: 0 on success; otherwise return failure status.
5081  */
5082 static int
5083 _base_get_scsi_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5084 {
5085 	Mpi26DriverTriggerPage3_t trigger_pg3;
5086 	struct SL_WH_SCSI_TRIGGER_T *scsi_tg;
5087 	MPI26_DRIVER_SCSI_SENSE_TIGGER_ENTRY *mpi_scsi_tg;
5088 	Mpi2ConfigReply_t mpi_reply;
5089 	int r = 0, i = 0;
5090 	u16 count = 0;
5091 	u16 ioc_status;
5092 
5093 	r = mpt3sas_config_get_driver_trigger_pg3(ioc, &mpi_reply,
5094 	    &trigger_pg3);
5095 	if (r)
5096 		return r;
5097 
5098 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5099 	    MPI2_IOCSTATUS_MASK;
5100 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5101 		dinitprintk(ioc,
5102 		    ioc_err(ioc,
5103 		    "%s: Failed to get trigger pg3, ioc_status(0x%04x)\n",
5104 		    __func__, ioc_status));
5105 		return 0;
5106 	}
5107 
5108 	if (le16_to_cpu(trigger_pg3.NumSCSISenseTrigger)) {
5109 		count = le16_to_cpu(trigger_pg3.NumSCSISenseTrigger);
5110 		count = min_t(u16, NUM_VALID_ENTRIES, count);
5111 		ioc->diag_trigger_scsi.ValidEntries = count;
5112 
5113 		scsi_tg = &ioc->diag_trigger_scsi.SCSITriggerEntry[0];
5114 		mpi_scsi_tg = &trigger_pg3.SCSISenseTriggers[0];
5115 		for (i = 0; i < count; i++) {
5116 			scsi_tg->ASCQ = mpi_scsi_tg->ASCQ;
5117 			scsi_tg->ASC = mpi_scsi_tg->ASC;
5118 			scsi_tg->SenseKey = mpi_scsi_tg->SenseKey;
5119 
5120 			scsi_tg++;
5121 			mpi_scsi_tg++;
5122 		}
5123 	}
5124 	return 0;
5125 }
5126 
5127 /**
5128  * _base_get_mpi_diag_triggers - get mpi diag trigger values from
5129  *				persistent pages
5130  * @ioc : per adapter object
5131  *
5132  * Return: 0 on success; otherwise return failure status.
5133  */
5134 static int
5135 _base_get_mpi_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5136 {
5137 	Mpi26DriverTriggerPage4_t trigger_pg4;
5138 	struct SL_WH_MPI_TRIGGER_T *status_tg;
5139 	MPI26_DRIVER_IOCSTATUS_LOGINFO_TIGGER_ENTRY *mpi_status_tg;
5140 	Mpi2ConfigReply_t mpi_reply;
5141 	int r = 0, i = 0;
5142 	u16 count = 0;
5143 	u16 ioc_status;
5144 
5145 	r = mpt3sas_config_get_driver_trigger_pg4(ioc, &mpi_reply,
5146 	    &trigger_pg4);
5147 	if (r)
5148 		return r;
5149 
5150 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5151 	    MPI2_IOCSTATUS_MASK;
5152 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5153 		dinitprintk(ioc,
5154 		    ioc_err(ioc,
5155 		    "%s: Failed to get trigger pg4, ioc_status(0x%04x)\n",
5156 		    __func__, ioc_status));
5157 		return 0;
5158 	}
5159 
5160 	if (le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger)) {
5161 		count = le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger);
5162 		count = min_t(u16, NUM_VALID_ENTRIES, count);
5163 		ioc->diag_trigger_mpi.ValidEntries = count;
5164 
5165 		status_tg = &ioc->diag_trigger_mpi.MPITriggerEntry[0];
5166 		mpi_status_tg = &trigger_pg4.IOCStatusLoginfoTriggers[0];
5167 
5168 		for (i = 0; i < count; i++) {
5169 			status_tg->IOCStatus = le16_to_cpu(
5170 			    mpi_status_tg->IOCStatus);
5171 			status_tg->IocLogInfo = le32_to_cpu(
5172 			    mpi_status_tg->LogInfo);
5173 
5174 			status_tg++;
5175 			mpi_status_tg++;
5176 		}
5177 	}
5178 	return 0;
5179 }
5180 
5181 /**
5182  * _base_get_master_diag_triggers - get master diag trigger values from
5183  *				persistent pages
5184  * @ioc : per adapter object
5185  *
5186  * Return: nothing.
5187  */
5188 static int
5189 _base_get_master_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5190 {
5191 	Mpi26DriverTriggerPage1_t trigger_pg1;
5192 	Mpi2ConfigReply_t mpi_reply;
5193 	int r;
5194 	u16 ioc_status;
5195 
5196 	r = mpt3sas_config_get_driver_trigger_pg1(ioc, &mpi_reply,
5197 	    &trigger_pg1);
5198 	if (r)
5199 		return r;
5200 
5201 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5202 	    MPI2_IOCSTATUS_MASK;
5203 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5204 		dinitprintk(ioc,
5205 		    ioc_err(ioc,
5206 		    "%s: Failed to get trigger pg1, ioc_status(0x%04x)\n",
5207 		   __func__, ioc_status));
5208 		return 0;
5209 	}
5210 
5211 	if (le16_to_cpu(trigger_pg1.NumMasterTrigger))
5212 		ioc->diag_trigger_master.MasterData |=
5213 		    le32_to_cpu(
5214 		    trigger_pg1.MasterTriggers[0].MasterTriggerFlags);
5215 	return 0;
5216 }
5217 
5218 /**
5219  * _base_check_for_trigger_pages_support - checks whether HBA FW supports
5220  *					driver trigger pages or not
5221  * @ioc : per adapter object
5222  * @trigger_flags : address where trigger page0's TriggerFlags value is copied
5223  *
5224  * Return: trigger flags mask if HBA FW supports driver trigger pages;
5225  * otherwise returns %-EFAULT if driver trigger pages are not supported by FW or
5226  * return EAGAIN if diag reset occurred due to FW fault and asking the
5227  * caller to retry the command.
5228  *
5229  */
5230 static int
5231 _base_check_for_trigger_pages_support(struct MPT3SAS_ADAPTER *ioc, u32 *trigger_flags)
5232 {
5233 	Mpi26DriverTriggerPage0_t trigger_pg0;
5234 	int r = 0;
5235 	Mpi2ConfigReply_t mpi_reply;
5236 	u16 ioc_status;
5237 
5238 	r = mpt3sas_config_get_driver_trigger_pg0(ioc, &mpi_reply,
5239 	    &trigger_pg0);
5240 	if (r)
5241 		return r;
5242 
5243 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5244 	    MPI2_IOCSTATUS_MASK;
5245 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
5246 		return -EFAULT;
5247 
5248 	*trigger_flags = le16_to_cpu(trigger_pg0.TriggerFlags);
5249 	return 0;
5250 }
5251 
5252 /**
5253  * _base_get_diag_triggers - Retrieve diag trigger values from
5254  *				persistent pages.
5255  * @ioc : per adapter object
5256  *
5257  * Return: zero on success; otherwise return EAGAIN error codes
5258  * asking the caller to retry.
5259  */
5260 static int
5261 _base_get_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5262 {
5263 	int trigger_flags;
5264 	int r;
5265 
5266 	/*
5267 	 * Default setting of master trigger.
5268 	 */
5269 	ioc->diag_trigger_master.MasterData =
5270 	    (MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET);
5271 
5272 	r = _base_check_for_trigger_pages_support(ioc, &trigger_flags);
5273 	if (r) {
5274 		if (r == -EAGAIN)
5275 			return r;
5276 		/*
5277 		 * Don't go for error handling when FW doesn't support
5278 		 * driver trigger pages.
5279 		 */
5280 		return 0;
5281 	}
5282 
5283 	ioc->supports_trigger_pages = 1;
5284 
5285 	/*
5286 	 * Retrieve master diag trigger values from driver trigger pg1
5287 	 * if master trigger bit enabled in TriggerFlags.
5288 	 */
5289 	if ((u16)trigger_flags &
5290 	    MPI26_DRIVER_TRIGGER0_FLAG_MASTER_TRIGGER_VALID) {
5291 		r = _base_get_master_diag_triggers(ioc);
5292 		if (r)
5293 			return r;
5294 	}
5295 
5296 	/*
5297 	 * Retrieve event diag trigger values from driver trigger pg2
5298 	 * if event trigger bit enabled in TriggerFlags.
5299 	 */
5300 	if ((u16)trigger_flags &
5301 	    MPI26_DRIVER_TRIGGER0_FLAG_MPI_EVENT_TRIGGER_VALID) {
5302 		r = _base_get_event_diag_triggers(ioc);
5303 		if (r)
5304 			return r;
5305 	}
5306 
5307 	/*
5308 	 * Retrieve scsi diag trigger values from driver trigger pg3
5309 	 * if scsi trigger bit enabled in TriggerFlags.
5310 	 */
5311 	if ((u16)trigger_flags &
5312 	    MPI26_DRIVER_TRIGGER0_FLAG_SCSI_SENSE_TRIGGER_VALID) {
5313 		r = _base_get_scsi_diag_triggers(ioc);
5314 		if (r)
5315 			return r;
5316 	}
5317 	/*
5318 	 * Retrieve mpi error diag trigger values from driver trigger pg4
5319 	 * if loginfo trigger bit enabled in TriggerFlags.
5320 	 */
5321 	if ((u16)trigger_flags &
5322 	    MPI26_DRIVER_TRIGGER0_FLAG_LOGINFO_TRIGGER_VALID) {
5323 		r = _base_get_mpi_diag_triggers(ioc);
5324 		if (r)
5325 			return r;
5326 	}
5327 	return 0;
5328 }
5329 
5330 /**
5331  * _base_update_diag_trigger_pages - Update the driver trigger pages after
5332  *			online FW update, in case updated FW supports driver
5333  *			trigger pages.
5334  * @ioc : per adapter object
5335  *
5336  * Return: nothing.
5337  */
5338 static void
5339 _base_update_diag_trigger_pages(struct MPT3SAS_ADAPTER *ioc)
5340 {
5341 
5342 	if (ioc->diag_trigger_master.MasterData)
5343 		mpt3sas_config_update_driver_trigger_pg1(ioc,
5344 		    &ioc->diag_trigger_master, 1);
5345 
5346 	if (ioc->diag_trigger_event.ValidEntries)
5347 		mpt3sas_config_update_driver_trigger_pg2(ioc,
5348 		    &ioc->diag_trigger_event, 1);
5349 
5350 	if (ioc->diag_trigger_scsi.ValidEntries)
5351 		mpt3sas_config_update_driver_trigger_pg3(ioc,
5352 		    &ioc->diag_trigger_scsi, 1);
5353 
5354 	if (ioc->diag_trigger_mpi.ValidEntries)
5355 		mpt3sas_config_update_driver_trigger_pg4(ioc,
5356 		    &ioc->diag_trigger_mpi, 1);
5357 }
5358 
5359 /**
5360  * _base_assign_fw_reported_qd	- Get FW reported QD for SAS/SATA devices.
5361  *				- On failure set default QD values.
5362  * @ioc : per adapter object
5363  *
5364  * Returns 0 for success, non-zero for failure.
5365  *
5366  */
5367 static int _base_assign_fw_reported_qd(struct MPT3SAS_ADAPTER *ioc)
5368 {
5369 	Mpi2ConfigReply_t mpi_reply;
5370 	Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
5371 	Mpi26PCIeIOUnitPage1_t pcie_iounit_pg1;
5372 	u16 depth;
5373 	int sz;
5374 	int rc = 0;
5375 
5376 	ioc->max_wideport_qd = MPT3SAS_SAS_QUEUE_DEPTH;
5377 	ioc->max_narrowport_qd = MPT3SAS_SAS_QUEUE_DEPTH;
5378 	ioc->max_sata_qd = MPT3SAS_SATA_QUEUE_DEPTH;
5379 	ioc->max_nvme_qd = MPT3SAS_NVME_QUEUE_DEPTH;
5380 	if (!ioc->is_gen35_ioc)
5381 		goto out;
5382 	/* sas iounit page 1 */
5383 	sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData);
5384 	sas_iounit_pg1 = kzalloc(sizeof(Mpi2SasIOUnitPage1_t), GFP_KERNEL);
5385 	if (!sas_iounit_pg1) {
5386 		pr_err("%s: failure at %s:%d/%s()!\n",
5387 		    ioc->name, __FILE__, __LINE__, __func__);
5388 		return rc;
5389 	}
5390 	rc = mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
5391 	    sas_iounit_pg1, sz);
5392 	if (rc) {
5393 		pr_err("%s: failure at %s:%d/%s()!\n",
5394 		    ioc->name, __FILE__, __LINE__, __func__);
5395 		goto out;
5396 	}
5397 
5398 	depth = le16_to_cpu(sas_iounit_pg1->SASWideMaxQueueDepth);
5399 	ioc->max_wideport_qd = (depth ? depth : MPT3SAS_SAS_QUEUE_DEPTH);
5400 
5401 	depth = le16_to_cpu(sas_iounit_pg1->SASNarrowMaxQueueDepth);
5402 	ioc->max_narrowport_qd = (depth ? depth : MPT3SAS_SAS_QUEUE_DEPTH);
5403 
5404 	depth = sas_iounit_pg1->SATAMaxQDepth;
5405 	ioc->max_sata_qd = (depth ? depth : MPT3SAS_SATA_QUEUE_DEPTH);
5406 
5407 	/* pcie iounit page 1 */
5408 	rc = mpt3sas_config_get_pcie_iounit_pg1(ioc, &mpi_reply,
5409 	    &pcie_iounit_pg1, sizeof(Mpi26PCIeIOUnitPage1_t));
5410 	if (rc) {
5411 		pr_err("%s: failure at %s:%d/%s()!\n",
5412 		    ioc->name, __FILE__, __LINE__, __func__);
5413 		goto out;
5414 	}
5415 	ioc->max_nvme_qd = (le16_to_cpu(pcie_iounit_pg1.NVMeMaxQueueDepth)) ?
5416 	    (le16_to_cpu(pcie_iounit_pg1.NVMeMaxQueueDepth)) :
5417 	    MPT3SAS_NVME_QUEUE_DEPTH;
5418 out:
5419 	dinitprintk(ioc, pr_err(
5420 	    "MaxWidePortQD: 0x%x MaxNarrowPortQD: 0x%x MaxSataQD: 0x%x MaxNvmeQD: 0x%x\n",
5421 	    ioc->max_wideport_qd, ioc->max_narrowport_qd,
5422 	    ioc->max_sata_qd, ioc->max_nvme_qd));
5423 	kfree(sas_iounit_pg1);
5424 	return rc;
5425 }
5426 
5427 /**
5428  * _base_static_config_pages - static start of day config pages
5429  * @ioc: per adapter object
5430  */
5431 static int
5432 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
5433 {
5434 	Mpi2ConfigReply_t mpi_reply;
5435 	u32 iounit_pg1_flags;
5436 	int tg_flags = 0;
5437 	int rc;
5438 	ioc->nvme_abort_timeout = 30;
5439 
5440 	rc = mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply,
5441 	    &ioc->manu_pg0);
5442 	if (rc)
5443 		return rc;
5444 	if (ioc->ir_firmware) {
5445 		rc = mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
5446 		    &ioc->manu_pg10);
5447 		if (rc)
5448 			return rc;
5449 	}
5450 	/*
5451 	 * Ensure correct T10 PI operation if vendor left EEDPTagMode
5452 	 * flag unset in NVDATA.
5453 	 */
5454 	rc = mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply,
5455 	    &ioc->manu_pg11);
5456 	if (rc)
5457 		return rc;
5458 	if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) {
5459 		pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
5460 		    ioc->name);
5461 		ioc->manu_pg11.EEDPTagMode &= ~0x3;
5462 		ioc->manu_pg11.EEDPTagMode |= 0x1;
5463 		mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
5464 		    &ioc->manu_pg11);
5465 	}
5466 	if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK)
5467 		ioc->tm_custom_handling = 1;
5468 	else {
5469 		ioc->tm_custom_handling = 0;
5470 		if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT)
5471 			ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT;
5472 		else if (ioc->manu_pg11.NVMeAbortTO >
5473 					NVME_TASK_ABORT_MAX_TIMEOUT)
5474 			ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT;
5475 		else
5476 			ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO;
5477 	}
5478 	ioc->time_sync_interval =
5479 	    ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_MASK;
5480 	if (ioc->time_sync_interval) {
5481 		if (ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_UNIT_MASK)
5482 			ioc->time_sync_interval =
5483 			    ioc->time_sync_interval * SECONDS_PER_HOUR;
5484 		else
5485 			ioc->time_sync_interval =
5486 			    ioc->time_sync_interval * SECONDS_PER_MIN;
5487 		dinitprintk(ioc, ioc_info(ioc,
5488 		    "Driver-FW TimeSync interval is %d seconds. ManuPg11 TimeSync Unit is in %s\n",
5489 		    ioc->time_sync_interval, (ioc->manu_pg11.TimeSyncInterval &
5490 		    MPT3SAS_TIMESYNC_UNIT_MASK) ? "Hour" : "Minute"));
5491 	} else {
5492 		if (ioc->is_gen35_ioc)
5493 			ioc_warn(ioc,
5494 			    "TimeSync Interval in Manuf page-11 is not enabled. Periodic Time-Sync will be disabled\n");
5495 	}
5496 	rc = _base_assign_fw_reported_qd(ioc);
5497 	if (rc)
5498 		return rc;
5499 	rc = mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
5500 	if (rc)
5501 		return rc;
5502 	rc = mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
5503 	if (rc)
5504 		return rc;
5505 	rc = mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
5506 	if (rc)
5507 		return rc;
5508 	rc = mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
5509 	if (rc)
5510 		return rc;
5511 	rc = mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
5512 	if (rc)
5513 		return rc;
5514 	rc = mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
5515 	if (rc)
5516 		return rc;
5517 	_base_display_ioc_capabilities(ioc);
5518 
5519 	/*
5520 	 * Enable task_set_full handling in iounit_pg1 when the
5521 	 * facts capabilities indicate that its supported.
5522 	 */
5523 	iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
5524 	if ((ioc->facts.IOCCapabilities &
5525 	    MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
5526 		iounit_pg1_flags &=
5527 		    ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
5528 	else
5529 		iounit_pg1_flags |=
5530 		    MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
5531 	ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
5532 	rc = mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
5533 	if (rc)
5534 		return rc;
5535 
5536 	if (ioc->iounit_pg8.NumSensors)
5537 		ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
5538 	if (ioc->is_aero_ioc) {
5539 		rc = _base_update_ioc_page1_inlinewith_perf_mode(ioc);
5540 		if (rc)
5541 			return rc;
5542 	}
5543 	if (ioc->is_gen35_ioc) {
5544 		if (ioc->is_driver_loading) {
5545 			rc = _base_get_diag_triggers(ioc);
5546 			if (rc)
5547 				return rc;
5548 		} else {
5549 			/*
5550 			 * In case of online HBA FW update operation,
5551 			 * check whether updated FW supports the driver trigger
5552 			 * pages or not.
5553 			 * - If previous FW has not supported driver trigger
5554 			 *   pages and newer FW supports them then update these
5555 			 *   pages with current diag trigger values.
5556 			 * - If previous FW has supported driver trigger pages
5557 			 *   and new FW doesn't support them then disable
5558 			 *   support_trigger_pages flag.
5559 			 */
5560 			_base_check_for_trigger_pages_support(ioc, &tg_flags);
5561 			if (!ioc->supports_trigger_pages && tg_flags != -EFAULT)
5562 				_base_update_diag_trigger_pages(ioc);
5563 			else if (ioc->supports_trigger_pages &&
5564 			    tg_flags == -EFAULT)
5565 				ioc->supports_trigger_pages = 0;
5566 		}
5567 	}
5568 	return 0;
5569 }
5570 
5571 /**
5572  * mpt3sas_free_enclosure_list - release memory
5573  * @ioc: per adapter object
5574  *
5575  * Free memory allocated during enclosure add.
5576  */
5577 void
5578 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc)
5579 {
5580 	struct _enclosure_node *enclosure_dev, *enclosure_dev_next;
5581 
5582 	/* Free enclosure list */
5583 	list_for_each_entry_safe(enclosure_dev,
5584 			enclosure_dev_next, &ioc->enclosure_list, list) {
5585 		list_del(&enclosure_dev->list);
5586 		kfree(enclosure_dev);
5587 	}
5588 }
5589 
5590 /**
5591  * _base_release_memory_pools - release memory
5592  * @ioc: per adapter object
5593  *
5594  * Free memory allocated from _base_allocate_memory_pools.
5595  */
5596 static void
5597 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
5598 {
5599 	int i = 0;
5600 	int j = 0;
5601 	int dma_alloc_count = 0;
5602 	struct chain_tracker *ct;
5603 	int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
5604 
5605 	dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5606 
5607 	if (ioc->request) {
5608 		dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz,
5609 		    ioc->request,  ioc->request_dma);
5610 		dexitprintk(ioc,
5611 			    ioc_info(ioc, "request_pool(0x%p): free\n",
5612 				     ioc->request));
5613 		ioc->request = NULL;
5614 	}
5615 
5616 	if (ioc->sense) {
5617 		dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
5618 		dma_pool_destroy(ioc->sense_dma_pool);
5619 		dexitprintk(ioc,
5620 			    ioc_info(ioc, "sense_pool(0x%p): free\n",
5621 				     ioc->sense));
5622 		ioc->sense = NULL;
5623 	}
5624 
5625 	if (ioc->reply) {
5626 		dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
5627 		dma_pool_destroy(ioc->reply_dma_pool);
5628 		dexitprintk(ioc,
5629 			    ioc_info(ioc, "reply_pool(0x%p): free\n",
5630 				     ioc->reply));
5631 		ioc->reply = NULL;
5632 	}
5633 
5634 	if (ioc->reply_free) {
5635 		dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
5636 		    ioc->reply_free_dma);
5637 		dma_pool_destroy(ioc->reply_free_dma_pool);
5638 		dexitprintk(ioc,
5639 			    ioc_info(ioc, "reply_free_pool(0x%p): free\n",
5640 				     ioc->reply_free));
5641 		ioc->reply_free = NULL;
5642 	}
5643 
5644 	if (ioc->reply_post) {
5645 		dma_alloc_count = DIV_ROUND_UP(count,
5646 				RDPQ_MAX_INDEX_IN_ONE_CHUNK);
5647 		for (i = 0; i < count; i++) {
5648 			if (i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0
5649 			    && dma_alloc_count) {
5650 				if (ioc->reply_post[i].reply_post_free) {
5651 					dma_pool_free(
5652 					    ioc->reply_post_free_dma_pool,
5653 					    ioc->reply_post[i].reply_post_free,
5654 					ioc->reply_post[i].reply_post_free_dma);
5655 					dexitprintk(ioc, ioc_info(ioc,
5656 					   "reply_post_free_pool(0x%p): free\n",
5657 					   ioc->reply_post[i].reply_post_free));
5658 					ioc->reply_post[i].reply_post_free =
5659 									NULL;
5660 				}
5661 				--dma_alloc_count;
5662 			}
5663 		}
5664 		dma_pool_destroy(ioc->reply_post_free_dma_pool);
5665 		if (ioc->reply_post_free_array &&
5666 			ioc->rdpq_array_enable) {
5667 			dma_pool_free(ioc->reply_post_free_array_dma_pool,
5668 			    ioc->reply_post_free_array,
5669 			    ioc->reply_post_free_array_dma);
5670 			ioc->reply_post_free_array = NULL;
5671 		}
5672 		dma_pool_destroy(ioc->reply_post_free_array_dma_pool);
5673 		kfree(ioc->reply_post);
5674 	}
5675 
5676 	if (ioc->pcie_sgl_dma_pool) {
5677 		for (i = 0; i < ioc->scsiio_depth; i++) {
5678 			dma_pool_free(ioc->pcie_sgl_dma_pool,
5679 					ioc->pcie_sg_lookup[i].pcie_sgl,
5680 					ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5681 			ioc->pcie_sg_lookup[i].pcie_sgl = NULL;
5682 		}
5683 		dma_pool_destroy(ioc->pcie_sgl_dma_pool);
5684 	}
5685 	if (ioc->config_page) {
5686 		dexitprintk(ioc,
5687 			    ioc_info(ioc, "config_page(0x%p): free\n",
5688 				     ioc->config_page));
5689 		dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz,
5690 		    ioc->config_page, ioc->config_page_dma);
5691 	}
5692 
5693 	kfree(ioc->hpr_lookup);
5694 	ioc->hpr_lookup = NULL;
5695 	kfree(ioc->internal_lookup);
5696 	ioc->internal_lookup = NULL;
5697 	if (ioc->chain_lookup) {
5698 		for (i = 0; i < ioc->scsiio_depth; i++) {
5699 			for (j = ioc->chains_per_prp_buffer;
5700 			    j < ioc->chains_needed_per_io; j++) {
5701 				ct = &ioc->chain_lookup[i].chains_per_smid[j];
5702 				if (ct && ct->chain_buffer)
5703 					dma_pool_free(ioc->chain_dma_pool,
5704 						ct->chain_buffer,
5705 						ct->chain_buffer_dma);
5706 			}
5707 			kfree(ioc->chain_lookup[i].chains_per_smid);
5708 		}
5709 		dma_pool_destroy(ioc->chain_dma_pool);
5710 		kfree(ioc->chain_lookup);
5711 		ioc->chain_lookup = NULL;
5712 	}
5713 
5714 	kfree(ioc->io_queue_num);
5715 	ioc->io_queue_num = NULL;
5716 }
5717 
5718 /**
5719  * mpt3sas_check_same_4gb_region - checks whether all reply queues in a set are
5720  *	having same upper 32bits in their base memory address.
5721  * @start_address: Base address of a reply queue set
5722  * @pool_sz: Size of single Reply Descriptor Post Queues pool size
5723  *
5724  * Return: 1 if reply queues in a set have a same upper 32bits in their base
5725  * memory address, else 0.
5726  */
5727 static int
5728 mpt3sas_check_same_4gb_region(dma_addr_t start_address, u32 pool_sz)
5729 {
5730 	dma_addr_t end_address;
5731 
5732 	end_address = start_address + pool_sz - 1;
5733 
5734 	if (upper_32_bits(start_address) == upper_32_bits(end_address))
5735 		return 1;
5736 	else
5737 		return 0;
5738 }
5739 
5740 /**
5741  * _base_reduce_hba_queue_depth- Retry with reduced queue depth
5742  * @ioc: Adapter object
5743  *
5744  * Return: 0 for success, non-zero for failure.
5745  **/
5746 static inline int
5747 _base_reduce_hba_queue_depth(struct MPT3SAS_ADAPTER *ioc)
5748 {
5749 	int reduce_sz = 64;
5750 
5751 	if ((ioc->hba_queue_depth - reduce_sz) >
5752 	    (ioc->internal_depth + INTERNAL_SCSIIO_CMDS_COUNT)) {
5753 		ioc->hba_queue_depth -= reduce_sz;
5754 		return 0;
5755 	} else
5756 		return -ENOMEM;
5757 }
5758 
5759 /**
5760  * _base_allocate_pcie_sgl_pool - Allocating DMA'able memory
5761  *			for pcie sgl pools.
5762  * @ioc: Adapter object
5763  * @sz: DMA Pool size
5764  *
5765  * Return: 0 for success, non-zero for failure.
5766  */
5767 
5768 static int
5769 _base_allocate_pcie_sgl_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5770 {
5771 	int i = 0, j = 0;
5772 	struct chain_tracker *ct;
5773 
5774 	ioc->pcie_sgl_dma_pool =
5775 	    dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz,
5776 	    ioc->page_size, 0);
5777 	if (!ioc->pcie_sgl_dma_pool) {
5778 		ioc_err(ioc, "PCIe SGL pool: dma_pool_create failed\n");
5779 		return -ENOMEM;
5780 	}
5781 
5782 	ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz;
5783 	ioc->chains_per_prp_buffer =
5784 	    min(ioc->chains_per_prp_buffer, ioc->chains_needed_per_io);
5785 	for (i = 0; i < ioc->scsiio_depth; i++) {
5786 		ioc->pcie_sg_lookup[i].pcie_sgl =
5787 		    dma_pool_alloc(ioc->pcie_sgl_dma_pool, GFP_KERNEL,
5788 		    &ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5789 		if (!ioc->pcie_sg_lookup[i].pcie_sgl) {
5790 			ioc_err(ioc, "PCIe SGL pool: dma_pool_alloc failed\n");
5791 			return -EAGAIN;
5792 		}
5793 
5794 		if (!mpt3sas_check_same_4gb_region(
5795 		    ioc->pcie_sg_lookup[i].pcie_sgl_dma, sz)) {
5796 			ioc_err(ioc, "PCIE SGLs are not in same 4G !! pcie sgl (0x%p) dma = (0x%llx)\n",
5797 			    ioc->pcie_sg_lookup[i].pcie_sgl,
5798 			    (unsigned long long)
5799 			    ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5800 			ioc->use_32bit_dma = true;
5801 			return -EAGAIN;
5802 		}
5803 
5804 		for (j = 0; j < ioc->chains_per_prp_buffer; j++) {
5805 			ct = &ioc->chain_lookup[i].chains_per_smid[j];
5806 			ct->chain_buffer =
5807 			    ioc->pcie_sg_lookup[i].pcie_sgl +
5808 			    (j * ioc->chain_segment_sz);
5809 			ct->chain_buffer_dma =
5810 			    ioc->pcie_sg_lookup[i].pcie_sgl_dma +
5811 			    (j * ioc->chain_segment_sz);
5812 		}
5813 	}
5814 	dinitprintk(ioc, ioc_info(ioc,
5815 	    "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n",
5816 	    ioc->scsiio_depth, sz, (sz * ioc->scsiio_depth)/1024));
5817 	dinitprintk(ioc, ioc_info(ioc,
5818 	    "Number of chains can fit in a PRP page(%d)\n",
5819 	    ioc->chains_per_prp_buffer));
5820 	return 0;
5821 }
5822 
5823 /**
5824  * _base_allocate_chain_dma_pool - Allocating DMA'able memory
5825  *			for chain dma pool.
5826  * @ioc: Adapter object
5827  * @sz: DMA Pool size
5828  *
5829  * Return: 0 for success, non-zero for failure.
5830  */
5831 static int
5832 _base_allocate_chain_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5833 {
5834 	int i = 0, j = 0;
5835 	struct chain_tracker *ctr;
5836 
5837 	ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev,
5838 	    ioc->chain_segment_sz, 16, 0);
5839 	if (!ioc->chain_dma_pool)
5840 		return -ENOMEM;
5841 
5842 	for (i = 0; i < ioc->scsiio_depth; i++) {
5843 		for (j = ioc->chains_per_prp_buffer;
5844 		    j < ioc->chains_needed_per_io; j++) {
5845 			ctr = &ioc->chain_lookup[i].chains_per_smid[j];
5846 			ctr->chain_buffer = dma_pool_alloc(ioc->chain_dma_pool,
5847 			    GFP_KERNEL, &ctr->chain_buffer_dma);
5848 			if (!ctr->chain_buffer)
5849 				return -EAGAIN;
5850 			if (!mpt3sas_check_same_4gb_region(
5851 			    ctr->chain_buffer_dma, ioc->chain_segment_sz)) {
5852 				ioc_err(ioc,
5853 				    "Chain buffers are not in same 4G !!! Chain buff (0x%p) dma = (0x%llx)\n",
5854 				    ctr->chain_buffer,
5855 				    (unsigned long long)ctr->chain_buffer_dma);
5856 				ioc->use_32bit_dma = true;
5857 				return -EAGAIN;
5858 			}
5859 		}
5860 	}
5861 	dinitprintk(ioc, ioc_info(ioc,
5862 	    "chain_lookup depth (%d), frame_size(%d), pool_size(%d kB)\n",
5863 	    ioc->scsiio_depth, ioc->chain_segment_sz, ((ioc->scsiio_depth *
5864 	    (ioc->chains_needed_per_io - ioc->chains_per_prp_buffer) *
5865 	    ioc->chain_segment_sz))/1024));
5866 	return 0;
5867 }
5868 
5869 /**
5870  * _base_allocate_sense_dma_pool - Allocating DMA'able memory
5871  *			for sense dma pool.
5872  * @ioc: Adapter object
5873  * @sz: DMA Pool size
5874  * Return: 0 for success, non-zero for failure.
5875  */
5876 static int
5877 _base_allocate_sense_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5878 {
5879 	ioc->sense_dma_pool =
5880 	    dma_pool_create("sense pool", &ioc->pdev->dev, sz, 4, 0);
5881 	if (!ioc->sense_dma_pool)
5882 		return -ENOMEM;
5883 	ioc->sense = dma_pool_alloc(ioc->sense_dma_pool,
5884 	    GFP_KERNEL, &ioc->sense_dma);
5885 	if (!ioc->sense)
5886 		return -EAGAIN;
5887 	if (!mpt3sas_check_same_4gb_region(ioc->sense_dma, sz)) {
5888 		dinitprintk(ioc, pr_err(
5889 		    "Bad Sense Pool! sense (0x%p) sense_dma = (0x%llx)\n",
5890 		    ioc->sense, (unsigned long long) ioc->sense_dma));
5891 		ioc->use_32bit_dma = true;
5892 		return -EAGAIN;
5893 	}
5894 	ioc_info(ioc,
5895 	    "sense pool(0x%p) - dma(0x%llx): depth(%d), element_size(%d), pool_size (%d kB)\n",
5896 	    ioc->sense, (unsigned long long)ioc->sense_dma,
5897 	    ioc->scsiio_depth, SCSI_SENSE_BUFFERSIZE, sz/1024);
5898 	return 0;
5899 }
5900 
5901 /**
5902  * _base_allocate_reply_pool - Allocating DMA'able memory
5903  *			for reply pool.
5904  * @ioc: Adapter object
5905  * @sz: DMA Pool size
5906  * Return: 0 for success, non-zero for failure.
5907  */
5908 static int
5909 _base_allocate_reply_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5910 {
5911 	/* reply pool, 4 byte align */
5912 	ioc->reply_dma_pool = dma_pool_create("reply pool",
5913 	    &ioc->pdev->dev, sz, 4, 0);
5914 	if (!ioc->reply_dma_pool)
5915 		return -ENOMEM;
5916 	ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL,
5917 	    &ioc->reply_dma);
5918 	if (!ioc->reply)
5919 		return -EAGAIN;
5920 	if (!mpt3sas_check_same_4gb_region(ioc->reply_dma, sz)) {
5921 		dinitprintk(ioc, pr_err(
5922 		    "Bad Reply Pool! Reply (0x%p) Reply dma = (0x%llx)\n",
5923 		    ioc->reply, (unsigned long long) ioc->reply_dma));
5924 		ioc->use_32bit_dma = true;
5925 		return -EAGAIN;
5926 	}
5927 	ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
5928 	ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
5929 	ioc_info(ioc,
5930 	    "reply pool(0x%p) - dma(0x%llx): depth(%d), frame_size(%d), pool_size(%d kB)\n",
5931 	    ioc->reply, (unsigned long long)ioc->reply_dma,
5932 	    ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024);
5933 	return 0;
5934 }
5935 
5936 /**
5937  * _base_allocate_reply_free_dma_pool - Allocating DMA'able memory
5938  *			for reply free dma pool.
5939  * @ioc: Adapter object
5940  * @sz: DMA Pool size
5941  * Return: 0 for success, non-zero for failure.
5942  */
5943 static int
5944 _base_allocate_reply_free_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5945 {
5946 	/* reply free queue, 16 byte align */
5947 	ioc->reply_free_dma_pool = dma_pool_create(
5948 	    "reply_free pool", &ioc->pdev->dev, sz, 16, 0);
5949 	if (!ioc->reply_free_dma_pool)
5950 		return -ENOMEM;
5951 	ioc->reply_free = dma_pool_alloc(ioc->reply_free_dma_pool,
5952 	    GFP_KERNEL, &ioc->reply_free_dma);
5953 	if (!ioc->reply_free)
5954 		return -EAGAIN;
5955 	if (!mpt3sas_check_same_4gb_region(ioc->reply_free_dma, sz)) {
5956 		dinitprintk(ioc,
5957 		    pr_err("Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n",
5958 		    ioc->reply_free, (unsigned long long) ioc->reply_free_dma));
5959 		ioc->use_32bit_dma = true;
5960 		return -EAGAIN;
5961 	}
5962 	memset(ioc->reply_free, 0, sz);
5963 	dinitprintk(ioc, ioc_info(ioc,
5964 	    "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
5965 	    ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
5966 	dinitprintk(ioc, ioc_info(ioc,
5967 	    "reply_free_dma (0x%llx)\n",
5968 	    (unsigned long long)ioc->reply_free_dma));
5969 	return 0;
5970 }
5971 
5972 /**
5973  * _base_allocate_reply_post_free_array - Allocating DMA'able memory
5974  *			for reply post free array.
5975  * @ioc: Adapter object
5976  * @reply_post_free_array_sz: DMA Pool size
5977  * Return: 0 for success, non-zero for failure.
5978  */
5979 
5980 static int
5981 _base_allocate_reply_post_free_array(struct MPT3SAS_ADAPTER *ioc,
5982 	u32 reply_post_free_array_sz)
5983 {
5984 	ioc->reply_post_free_array_dma_pool =
5985 	    dma_pool_create("reply_post_free_array pool",
5986 	    &ioc->pdev->dev, reply_post_free_array_sz, 16, 0);
5987 	if (!ioc->reply_post_free_array_dma_pool)
5988 		return -ENOMEM;
5989 	ioc->reply_post_free_array =
5990 	    dma_pool_alloc(ioc->reply_post_free_array_dma_pool,
5991 	    GFP_KERNEL, &ioc->reply_post_free_array_dma);
5992 	if (!ioc->reply_post_free_array)
5993 		return -EAGAIN;
5994 	if (!mpt3sas_check_same_4gb_region(ioc->reply_post_free_array_dma,
5995 	    reply_post_free_array_sz)) {
5996 		dinitprintk(ioc, pr_err(
5997 		    "Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n",
5998 		    ioc->reply_free,
5999 		    (unsigned long long) ioc->reply_free_dma));
6000 		ioc->use_32bit_dma = true;
6001 		return -EAGAIN;
6002 	}
6003 	return 0;
6004 }
6005 /**
6006  * base_alloc_rdpq_dma_pool - Allocating DMA'able memory
6007  *                     for reply queues.
6008  * @ioc: per adapter object
6009  * @sz: DMA Pool size
6010  * Return: 0 for success, non-zero for failure.
6011  */
6012 static int
6013 base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER *ioc, int sz)
6014 {
6015 	int i = 0;
6016 	u32 dma_alloc_count = 0;
6017 	int reply_post_free_sz = ioc->reply_post_queue_depth *
6018 		sizeof(Mpi2DefaultReplyDescriptor_t);
6019 	int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
6020 
6021 	ioc->reply_post = kcalloc(count, sizeof(struct reply_post_struct),
6022 			GFP_KERNEL);
6023 	if (!ioc->reply_post)
6024 		return -ENOMEM;
6025 	/*
6026 	 *  For INVADER_SERIES each set of 8 reply queues(0-7, 8-15, ..) and
6027 	 *  VENTURA_SERIES each set of 16 reply queues(0-15, 16-31, ..) should
6028 	 *  be within 4GB boundary i.e reply queues in a set must have same
6029 	 *  upper 32-bits in their memory address. so here driver is allocating
6030 	 *  the DMA'able memory for reply queues according.
6031 	 *  Driver uses limitation of
6032 	 *  VENTURA_SERIES to manage INVADER_SERIES as well.
6033 	 */
6034 	dma_alloc_count = DIV_ROUND_UP(count,
6035 				RDPQ_MAX_INDEX_IN_ONE_CHUNK);
6036 	ioc->reply_post_free_dma_pool =
6037 		dma_pool_create("reply_post_free pool",
6038 		    &ioc->pdev->dev, sz, 16, 0);
6039 	if (!ioc->reply_post_free_dma_pool)
6040 		return -ENOMEM;
6041 	for (i = 0; i < count; i++) {
6042 		if ((i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0) && dma_alloc_count) {
6043 			ioc->reply_post[i].reply_post_free =
6044 			    dma_pool_zalloc(ioc->reply_post_free_dma_pool,
6045 				GFP_KERNEL,
6046 				&ioc->reply_post[i].reply_post_free_dma);
6047 			if (!ioc->reply_post[i].reply_post_free)
6048 				return -ENOMEM;
6049 			/*
6050 			 * Each set of RDPQ pool must satisfy 4gb boundary
6051 			 * restriction.
6052 			 * 1) Check if allocated resources for RDPQ pool are in
6053 			 *	the same 4GB range.
6054 			 * 2) If #1 is true, continue with 64 bit DMA.
6055 			 * 3) If #1 is false, return 1. which means free all the
6056 			 * resources and set DMA mask to 32 and allocate.
6057 			 */
6058 			if (!mpt3sas_check_same_4gb_region(
6059 				ioc->reply_post[i].reply_post_free_dma, sz)) {
6060 				dinitprintk(ioc,
6061 				    ioc_err(ioc, "bad Replypost free pool(0x%p)"
6062 				    "reply_post_free_dma = (0x%llx)\n",
6063 				    ioc->reply_post[i].reply_post_free,
6064 				    (unsigned long long)
6065 				    ioc->reply_post[i].reply_post_free_dma));
6066 				return -EAGAIN;
6067 			}
6068 			dma_alloc_count--;
6069 
6070 		} else {
6071 			ioc->reply_post[i].reply_post_free =
6072 			    (Mpi2ReplyDescriptorsUnion_t *)
6073 			    ((long)ioc->reply_post[i-1].reply_post_free
6074 			    + reply_post_free_sz);
6075 			ioc->reply_post[i].reply_post_free_dma =
6076 			    (dma_addr_t)
6077 			    (ioc->reply_post[i-1].reply_post_free_dma +
6078 			    reply_post_free_sz);
6079 		}
6080 	}
6081 	return 0;
6082 }
6083 
6084 /**
6085  * _base_allocate_memory_pools - allocate start of day memory pools
6086  * @ioc: per adapter object
6087  *
6088  * Return: 0 success, anything else error.
6089  */
6090 static int
6091 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
6092 {
6093 	struct mpt3sas_facts *facts;
6094 	u16 max_sge_elements;
6095 	u16 chains_needed_per_io;
6096 	u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz;
6097 	u32 retry_sz;
6098 	u32 rdpq_sz = 0, sense_sz = 0;
6099 	u16 max_request_credit, nvme_blocks_needed;
6100 	unsigned short sg_tablesize;
6101 	u16 sge_size;
6102 	int i;
6103 	int ret = 0, rc = 0;
6104 
6105 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6106 
6107 
6108 	retry_sz = 0;
6109 	facts = &ioc->facts;
6110 
6111 	/* command line tunables for max sgl entries */
6112 	if (max_sgl_entries != -1)
6113 		sg_tablesize = max_sgl_entries;
6114 	else {
6115 		if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
6116 			sg_tablesize = MPT2SAS_SG_DEPTH;
6117 		else
6118 			sg_tablesize = MPT3SAS_SG_DEPTH;
6119 	}
6120 
6121 	/* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
6122 	if (reset_devices)
6123 		sg_tablesize = min_t(unsigned short, sg_tablesize,
6124 		   MPT_KDUMP_MIN_PHYS_SEGMENTS);
6125 
6126 	if (ioc->is_mcpu_endpoint)
6127 		ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
6128 	else {
6129 		if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
6130 			sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
6131 		else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
6132 			sg_tablesize = min_t(unsigned short, sg_tablesize,
6133 					SG_MAX_SEGMENTS);
6134 			ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n",
6135 				 sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
6136 		}
6137 		ioc->shost->sg_tablesize = sg_tablesize;
6138 	}
6139 
6140 	ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
6141 		(facts->RequestCredit / 4));
6142 	if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
6143 		if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
6144 				INTERNAL_SCSIIO_CMDS_COUNT)) {
6145 			ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n",
6146 				facts->RequestCredit);
6147 			return -ENOMEM;
6148 		}
6149 		ioc->internal_depth = 10;
6150 	}
6151 
6152 	ioc->hi_priority_depth = ioc->internal_depth - (5);
6153 	/* command line tunables  for max controller queue depth */
6154 	if (max_queue_depth != -1 && max_queue_depth != 0) {
6155 		max_request_credit = min_t(u16, max_queue_depth +
6156 			ioc->internal_depth, facts->RequestCredit);
6157 		if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
6158 			max_request_credit =  MAX_HBA_QUEUE_DEPTH;
6159 	} else if (reset_devices)
6160 		max_request_credit = min_t(u16, facts->RequestCredit,
6161 		    (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth));
6162 	else
6163 		max_request_credit = min_t(u16, facts->RequestCredit,
6164 		    MAX_HBA_QUEUE_DEPTH);
6165 
6166 	/* Firmware maintains additional facts->HighPriorityCredit number of
6167 	 * credits for HiPriprity Request messages, so hba queue depth will be
6168 	 * sum of max_request_credit and high priority queue depth.
6169 	 */
6170 	ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
6171 
6172 	/* request frame size */
6173 	ioc->request_sz = facts->IOCRequestFrameSize * 4;
6174 
6175 	/* reply frame size */
6176 	ioc->reply_sz = facts->ReplyFrameSize * 4;
6177 
6178 	/* chain segment size */
6179 	if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
6180 		if (facts->IOCMaxChainSegmentSize)
6181 			ioc->chain_segment_sz =
6182 					facts->IOCMaxChainSegmentSize *
6183 					MAX_CHAIN_ELEMT_SZ;
6184 		else
6185 		/* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
6186 			ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
6187 						    MAX_CHAIN_ELEMT_SZ;
6188 	} else
6189 		ioc->chain_segment_sz = ioc->request_sz;
6190 
6191 	/* calculate the max scatter element size */
6192 	sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
6193 
6194  retry_allocation:
6195 	total_sz = 0;
6196 	/* calculate number of sg elements left over in the 1st frame */
6197 	max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
6198 	    sizeof(Mpi2SGEIOUnion_t)) + sge_size);
6199 	ioc->max_sges_in_main_message = max_sge_elements/sge_size;
6200 
6201 	/* now do the same for a chain buffer */
6202 	max_sge_elements = ioc->chain_segment_sz - sge_size;
6203 	ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
6204 
6205 	/*
6206 	 *  MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
6207 	 */
6208 	chains_needed_per_io = ((ioc->shost->sg_tablesize -
6209 	   ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
6210 	    + 1;
6211 	if (chains_needed_per_io > facts->MaxChainDepth) {
6212 		chains_needed_per_io = facts->MaxChainDepth;
6213 		ioc->shost->sg_tablesize = min_t(u16,
6214 		ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
6215 		* chains_needed_per_io), ioc->shost->sg_tablesize);
6216 	}
6217 	ioc->chains_needed_per_io = chains_needed_per_io;
6218 
6219 	/* reply free queue sizing - taking into account for 64 FW events */
6220 	ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
6221 
6222 	/* mCPU manage single counters for simplicity */
6223 	if (ioc->is_mcpu_endpoint)
6224 		ioc->reply_post_queue_depth = ioc->reply_free_queue_depth;
6225 	else {
6226 		/* calculate reply descriptor post queue depth */
6227 		ioc->reply_post_queue_depth = ioc->hba_queue_depth +
6228 			ioc->reply_free_queue_depth +  1;
6229 		/* align the reply post queue on the next 16 count boundary */
6230 		if (ioc->reply_post_queue_depth % 16)
6231 			ioc->reply_post_queue_depth += 16 -
6232 				(ioc->reply_post_queue_depth % 16);
6233 	}
6234 
6235 	if (ioc->reply_post_queue_depth >
6236 	    facts->MaxReplyDescriptorPostQueueDepth) {
6237 		ioc->reply_post_queue_depth =
6238 				facts->MaxReplyDescriptorPostQueueDepth -
6239 		    (facts->MaxReplyDescriptorPostQueueDepth % 16);
6240 		ioc->hba_queue_depth =
6241 				((ioc->reply_post_queue_depth - 64) / 2) - 1;
6242 		ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
6243 	}
6244 
6245 	ioc_info(ioc,
6246 	    "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), "
6247 	    "sge_per_io(%d), chains_per_io(%d)\n",
6248 	    ioc->max_sges_in_main_message,
6249 	    ioc->max_sges_in_chain_message,
6250 	    ioc->shost->sg_tablesize,
6251 	    ioc->chains_needed_per_io);
6252 
6253 	/* reply post queue, 16 byte align */
6254 	reply_post_free_sz = ioc->reply_post_queue_depth *
6255 	    sizeof(Mpi2DefaultReplyDescriptor_t);
6256 	rdpq_sz = reply_post_free_sz * RDPQ_MAX_INDEX_IN_ONE_CHUNK;
6257 	if ((_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
6258 	    || (ioc->reply_queue_count < RDPQ_MAX_INDEX_IN_ONE_CHUNK))
6259 		rdpq_sz = reply_post_free_sz * ioc->reply_queue_count;
6260 	ret = base_alloc_rdpq_dma_pool(ioc, rdpq_sz);
6261 	if (ret == -EAGAIN) {
6262 		/*
6263 		 * Free allocated bad RDPQ memory pools.
6264 		 * Change dma coherent mask to 32 bit and reallocate RDPQ
6265 		 */
6266 		_base_release_memory_pools(ioc);
6267 		ioc->use_32bit_dma = true;
6268 		if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
6269 			ioc_err(ioc,
6270 			    "32 DMA mask failed %s\n", pci_name(ioc->pdev));
6271 			return -ENODEV;
6272 		}
6273 		if (base_alloc_rdpq_dma_pool(ioc, rdpq_sz))
6274 			return -ENOMEM;
6275 	} else if (ret == -ENOMEM)
6276 		return -ENOMEM;
6277 	total_sz = rdpq_sz * (!ioc->rdpq_array_enable ? 1 :
6278 	    DIV_ROUND_UP(ioc->reply_queue_count, RDPQ_MAX_INDEX_IN_ONE_CHUNK));
6279 	ioc->scsiio_depth = ioc->hba_queue_depth -
6280 	    ioc->hi_priority_depth - ioc->internal_depth;
6281 
6282 	/* set the scsi host can_queue depth
6283 	 * with some internal commands that could be outstanding
6284 	 */
6285 	ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
6286 	dinitprintk(ioc,
6287 		    ioc_info(ioc, "scsi host: can_queue depth (%d)\n",
6288 			     ioc->shost->can_queue));
6289 
6290 	/* contiguous pool for request and chains, 16 byte align, one extra "
6291 	 * "frame for smid=0
6292 	 */
6293 	ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
6294 	sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
6295 
6296 	/* hi-priority queue */
6297 	sz += (ioc->hi_priority_depth * ioc->request_sz);
6298 
6299 	/* internal queue */
6300 	sz += (ioc->internal_depth * ioc->request_sz);
6301 
6302 	ioc->request_dma_sz = sz;
6303 	ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz,
6304 			&ioc->request_dma, GFP_KERNEL);
6305 	if (!ioc->request) {
6306 		ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n",
6307 			ioc->hba_queue_depth, ioc->chains_needed_per_io,
6308 			ioc->request_sz, sz / 1024);
6309 		if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
6310 			goto out;
6311 		retry_sz = 64;
6312 		ioc->hba_queue_depth -= retry_sz;
6313 		_base_release_memory_pools(ioc);
6314 		goto retry_allocation;
6315 	}
6316 
6317 	if (retry_sz)
6318 		ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n",
6319 			ioc->hba_queue_depth, ioc->chains_needed_per_io,
6320 			ioc->request_sz, sz / 1024);
6321 
6322 	/* hi-priority queue */
6323 	ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
6324 	    ioc->request_sz);
6325 	ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
6326 	    ioc->request_sz);
6327 
6328 	/* internal queue */
6329 	ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
6330 	    ioc->request_sz);
6331 	ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
6332 	    ioc->request_sz);
6333 
6334 	ioc_info(ioc,
6335 	    "request pool(0x%p) - dma(0x%llx): "
6336 	    "depth(%d), frame_size(%d), pool_size(%d kB)\n",
6337 	    ioc->request, (unsigned long long) ioc->request_dma,
6338 	    ioc->hba_queue_depth, ioc->request_sz,
6339 	    (ioc->hba_queue_depth * ioc->request_sz) / 1024);
6340 
6341 	total_sz += sz;
6342 
6343 	dinitprintk(ioc,
6344 		    ioc_info(ioc, "scsiio(0x%p): depth(%d)\n",
6345 			     ioc->request, ioc->scsiio_depth));
6346 
6347 	ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
6348 	sz = ioc->scsiio_depth * sizeof(struct chain_lookup);
6349 	ioc->chain_lookup = kzalloc(sz, GFP_KERNEL);
6350 	if (!ioc->chain_lookup) {
6351 		ioc_err(ioc, "chain_lookup: __get_free_pages failed\n");
6352 		goto out;
6353 	}
6354 
6355 	sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker);
6356 	for (i = 0; i < ioc->scsiio_depth; i++) {
6357 		ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL);
6358 		if (!ioc->chain_lookup[i].chains_per_smid) {
6359 			ioc_err(ioc, "chain_lookup: kzalloc failed\n");
6360 			goto out;
6361 		}
6362 	}
6363 
6364 	/* initialize hi-priority queue smid's */
6365 	ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
6366 	    sizeof(struct request_tracker), GFP_KERNEL);
6367 	if (!ioc->hpr_lookup) {
6368 		ioc_err(ioc, "hpr_lookup: kcalloc failed\n");
6369 		goto out;
6370 	}
6371 	ioc->hi_priority_smid = ioc->scsiio_depth + 1;
6372 	dinitprintk(ioc,
6373 		    ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n",
6374 			     ioc->hi_priority,
6375 			     ioc->hi_priority_depth, ioc->hi_priority_smid));
6376 
6377 	/* initialize internal queue smid's */
6378 	ioc->internal_lookup = kcalloc(ioc->internal_depth,
6379 	    sizeof(struct request_tracker), GFP_KERNEL);
6380 	if (!ioc->internal_lookup) {
6381 		ioc_err(ioc, "internal_lookup: kcalloc failed\n");
6382 		goto out;
6383 	}
6384 	ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
6385 	dinitprintk(ioc,
6386 		    ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n",
6387 			     ioc->internal,
6388 			     ioc->internal_depth, ioc->internal_smid));
6389 
6390 	ioc->io_queue_num = kcalloc(ioc->scsiio_depth,
6391 	    sizeof(u16), GFP_KERNEL);
6392 	if (!ioc->io_queue_num)
6393 		goto out;
6394 	/*
6395 	 * The number of NVMe page sized blocks needed is:
6396 	 *     (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
6397 	 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
6398 	 * that is placed in the main message frame.  8 is the size of each PRP
6399 	 * entry or PRP list pointer entry.  8 is subtracted from page_size
6400 	 * because of the PRP list pointer entry at the end of a page, so this
6401 	 * is not counted as a PRP entry.  The 1 added page is a round up.
6402 	 *
6403 	 * To avoid allocation failures due to the amount of memory that could
6404 	 * be required for NVMe PRP's, only each set of NVMe blocks will be
6405 	 * contiguous, so a new set is allocated for each possible I/O.
6406 	 */
6407 
6408 	ioc->chains_per_prp_buffer = 0;
6409 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
6410 		nvme_blocks_needed =
6411 			(ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1;
6412 		nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE);
6413 		nvme_blocks_needed++;
6414 
6415 		sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth;
6416 		ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL);
6417 		if (!ioc->pcie_sg_lookup) {
6418 			ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n");
6419 			goto out;
6420 		}
6421 		sz = nvme_blocks_needed * ioc->page_size;
6422 		rc = _base_allocate_pcie_sgl_pool(ioc, sz);
6423 		if (rc == -ENOMEM)
6424 			return -ENOMEM;
6425 		else if (rc == -EAGAIN)
6426 			goto try_32bit_dma;
6427 		total_sz += sz * ioc->scsiio_depth;
6428 	}
6429 
6430 	rc = _base_allocate_chain_dma_pool(ioc, ioc->chain_segment_sz);
6431 	if (rc == -ENOMEM)
6432 		return -ENOMEM;
6433 	else if (rc == -EAGAIN)
6434 		goto try_32bit_dma;
6435 	total_sz += ioc->chain_segment_sz * ((ioc->chains_needed_per_io -
6436 		ioc->chains_per_prp_buffer) * ioc->scsiio_depth);
6437 	dinitprintk(ioc,
6438 	    ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
6439 	    ioc->chain_depth, ioc->chain_segment_sz,
6440 	    (ioc->chain_depth * ioc->chain_segment_sz) / 1024));
6441 	/* sense buffers, 4 byte align */
6442 	sense_sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
6443 	rc = _base_allocate_sense_dma_pool(ioc, sense_sz);
6444 	if (rc  == -ENOMEM)
6445 		return -ENOMEM;
6446 	else if (rc == -EAGAIN)
6447 		goto try_32bit_dma;
6448 	total_sz += sense_sz;
6449 	ioc_info(ioc,
6450 	    "sense pool(0x%p)- dma(0x%llx): depth(%d),"
6451 	    "element_size(%d), pool_size(%d kB)\n",
6452 	    ioc->sense, (unsigned long long)ioc->sense_dma, ioc->scsiio_depth,
6453 	    SCSI_SENSE_BUFFERSIZE, sz / 1024);
6454 	/* reply pool, 4 byte align */
6455 	sz = ioc->reply_free_queue_depth * ioc->reply_sz;
6456 	rc = _base_allocate_reply_pool(ioc, sz);
6457 	if (rc == -ENOMEM)
6458 		return -ENOMEM;
6459 	else if (rc == -EAGAIN)
6460 		goto try_32bit_dma;
6461 	total_sz += sz;
6462 
6463 	/* reply free queue, 16 byte align */
6464 	sz = ioc->reply_free_queue_depth * 4;
6465 	rc = _base_allocate_reply_free_dma_pool(ioc, sz);
6466 	if (rc  == -ENOMEM)
6467 		return -ENOMEM;
6468 	else if (rc == -EAGAIN)
6469 		goto try_32bit_dma;
6470 	dinitprintk(ioc,
6471 		    ioc_info(ioc, "reply_free_dma (0x%llx)\n",
6472 			     (unsigned long long)ioc->reply_free_dma));
6473 	total_sz += sz;
6474 	if (ioc->rdpq_array_enable) {
6475 		reply_post_free_array_sz = ioc->reply_queue_count *
6476 		    sizeof(Mpi2IOCInitRDPQArrayEntry);
6477 		rc = _base_allocate_reply_post_free_array(ioc,
6478 		    reply_post_free_array_sz);
6479 		if (rc == -ENOMEM)
6480 			return -ENOMEM;
6481 		else if (rc == -EAGAIN)
6482 			goto try_32bit_dma;
6483 	}
6484 	ioc->config_page_sz = 512;
6485 	ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev,
6486 			ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL);
6487 	if (!ioc->config_page) {
6488 		ioc_err(ioc, "config page: dma_pool_alloc failed\n");
6489 		goto out;
6490 	}
6491 
6492 	ioc_info(ioc, "config page(0x%p) - dma(0x%llx): size(%d)\n",
6493 	    ioc->config_page, (unsigned long long)ioc->config_page_dma,
6494 	    ioc->config_page_sz);
6495 	total_sz += ioc->config_page_sz;
6496 
6497 	ioc_info(ioc, "Allocated physical memory: size(%d kB)\n",
6498 		 total_sz / 1024);
6499 	ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
6500 		 ioc->shost->can_queue, facts->RequestCredit);
6501 	ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n",
6502 		 ioc->shost->sg_tablesize);
6503 	return 0;
6504 
6505 try_32bit_dma:
6506 	_base_release_memory_pools(ioc);
6507 	if (ioc->use_32bit_dma && (ioc->dma_mask > 32)) {
6508 		/* Change dma coherent mask to 32 bit and reallocate */
6509 		if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
6510 			pr_err("Setting 32 bit coherent DMA mask Failed %s\n",
6511 			    pci_name(ioc->pdev));
6512 			return -ENODEV;
6513 		}
6514 	} else if (_base_reduce_hba_queue_depth(ioc) != 0)
6515 		return -ENOMEM;
6516 	goto retry_allocation;
6517 
6518  out:
6519 	return -ENOMEM;
6520 }
6521 
6522 /**
6523  * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
6524  * @ioc: Pointer to MPT_ADAPTER structure
6525  * @cooked: Request raw or cooked IOC state
6526  *
6527  * Return: all IOC Doorbell register bits if cooked==0, else just the
6528  * Doorbell bits in MPI_IOC_STATE_MASK.
6529  */
6530 u32
6531 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
6532 {
6533 	u32 s, sc;
6534 
6535 	s = ioc->base_readl(&ioc->chip->Doorbell);
6536 	sc = s & MPI2_IOC_STATE_MASK;
6537 	return cooked ? sc : s;
6538 }
6539 
6540 /**
6541  * _base_wait_on_iocstate - waiting on a particular ioc state
6542  * @ioc: ?
6543  * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
6544  * @timeout: timeout in second
6545  *
6546  * Return: 0 for success, non-zero for failure.
6547  */
6548 static int
6549 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
6550 {
6551 	u32 count, cntdn;
6552 	u32 current_state;
6553 
6554 	count = 0;
6555 	cntdn = 1000 * timeout;
6556 	do {
6557 		current_state = mpt3sas_base_get_iocstate(ioc, 1);
6558 		if (current_state == ioc_state)
6559 			return 0;
6560 		if (count && current_state == MPI2_IOC_STATE_FAULT)
6561 			break;
6562 		if (count && current_state == MPI2_IOC_STATE_COREDUMP)
6563 			break;
6564 
6565 		usleep_range(1000, 1500);
6566 		count++;
6567 	} while (--cntdn);
6568 
6569 	return current_state;
6570 }
6571 
6572 /**
6573  * _base_dump_reg_set -	This function will print hexdump of register set.
6574  * @ioc: per adapter object
6575  *
6576  * Return: nothing.
6577  */
6578 static inline void
6579 _base_dump_reg_set(struct MPT3SAS_ADAPTER *ioc)
6580 {
6581 	unsigned int i, sz = 256;
6582 	u32 __iomem *reg = (u32 __iomem *)ioc->chip;
6583 
6584 	ioc_info(ioc, "System Register set:\n");
6585 	for (i = 0; i < (sz / sizeof(u32)); i++)
6586 		pr_info("%08x: %08x\n", (i * 4), readl(&reg[i]));
6587 }
6588 
6589 /**
6590  * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
6591  * a write to the doorbell)
6592  * @ioc: per adapter object
6593  * @timeout: timeout in seconds
6594  *
6595  * Return: 0 for success, non-zero for failure.
6596  *
6597  * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
6598  */
6599 
6600 static int
6601 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
6602 {
6603 	u32 cntdn, count;
6604 	u32 int_status;
6605 
6606 	count = 0;
6607 	cntdn = 1000 * timeout;
6608 	do {
6609 		int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6610 		if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6611 			dhsprintk(ioc,
6612 				  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6613 					   __func__, count, timeout));
6614 			return 0;
6615 		}
6616 
6617 		usleep_range(1000, 1500);
6618 		count++;
6619 	} while (--cntdn);
6620 
6621 	ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6622 		__func__, count, int_status);
6623 	return -EFAULT;
6624 }
6625 
6626 static int
6627 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
6628 {
6629 	u32 cntdn, count;
6630 	u32 int_status;
6631 
6632 	count = 0;
6633 	cntdn = 2000 * timeout;
6634 	do {
6635 		int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6636 		if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6637 			dhsprintk(ioc,
6638 				  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6639 					   __func__, count, timeout));
6640 			return 0;
6641 		}
6642 
6643 		udelay(500);
6644 		count++;
6645 	} while (--cntdn);
6646 
6647 	ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6648 		__func__, count, int_status);
6649 	return -EFAULT;
6650 
6651 }
6652 
6653 /**
6654  * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
6655  * @ioc: per adapter object
6656  * @timeout: timeout in second
6657  *
6658  * Return: 0 for success, non-zero for failure.
6659  *
6660  * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
6661  * doorbell.
6662  */
6663 static int
6664 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
6665 {
6666 	u32 cntdn, count;
6667 	u32 int_status;
6668 	u32 doorbell;
6669 
6670 	count = 0;
6671 	cntdn = 1000 * timeout;
6672 	do {
6673 		int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6674 		if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
6675 			dhsprintk(ioc,
6676 				  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6677 					   __func__, count, timeout));
6678 			return 0;
6679 		} else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6680 			doorbell = ioc->base_readl(&ioc->chip->Doorbell);
6681 			if ((doorbell & MPI2_IOC_STATE_MASK) ==
6682 			    MPI2_IOC_STATE_FAULT) {
6683 				mpt3sas_print_fault_code(ioc, doorbell);
6684 				return -EFAULT;
6685 			}
6686 			if ((doorbell & MPI2_IOC_STATE_MASK) ==
6687 			    MPI2_IOC_STATE_COREDUMP) {
6688 				mpt3sas_print_coredump_info(ioc, doorbell);
6689 				return -EFAULT;
6690 			}
6691 		} else if (int_status == 0xFFFFFFFF)
6692 			goto out;
6693 
6694 		usleep_range(1000, 1500);
6695 		count++;
6696 	} while (--cntdn);
6697 
6698  out:
6699 	ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6700 		__func__, count, int_status);
6701 	return -EFAULT;
6702 }
6703 
6704 /**
6705  * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
6706  * @ioc: per adapter object
6707  * @timeout: timeout in second
6708  *
6709  * Return: 0 for success, non-zero for failure.
6710  */
6711 static int
6712 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
6713 {
6714 	u32 cntdn, count;
6715 	u32 doorbell_reg;
6716 
6717 	count = 0;
6718 	cntdn = 1000 * timeout;
6719 	do {
6720 		doorbell_reg = ioc->base_readl(&ioc->chip->Doorbell);
6721 		if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
6722 			dhsprintk(ioc,
6723 				  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6724 					   __func__, count, timeout));
6725 			return 0;
6726 		}
6727 
6728 		usleep_range(1000, 1500);
6729 		count++;
6730 	} while (--cntdn);
6731 
6732 	ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
6733 		__func__, count, doorbell_reg);
6734 	return -EFAULT;
6735 }
6736 
6737 /**
6738  * _base_send_ioc_reset - send doorbell reset
6739  * @ioc: per adapter object
6740  * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
6741  * @timeout: timeout in second
6742  *
6743  * Return: 0 for success, non-zero for failure.
6744  */
6745 static int
6746 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
6747 {
6748 	u32 ioc_state;
6749 	int r = 0;
6750 	unsigned long flags;
6751 
6752 	if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
6753 		ioc_err(ioc, "%s: unknown reset_type\n", __func__);
6754 		return -EFAULT;
6755 	}
6756 
6757 	if (!(ioc->facts.IOCCapabilities &
6758 	   MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
6759 		return -EFAULT;
6760 
6761 	ioc_info(ioc, "sending message unit reset !!\n");
6762 
6763 	writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
6764 	    &ioc->chip->Doorbell);
6765 	if ((_base_wait_for_doorbell_ack(ioc, 15))) {
6766 		r = -EFAULT;
6767 		goto out;
6768 	}
6769 
6770 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
6771 	if (ioc_state) {
6772 		ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6773 			__func__, ioc_state);
6774 		r = -EFAULT;
6775 		goto out;
6776 	}
6777  out:
6778 	if (r != 0) {
6779 		ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6780 		spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
6781 		/*
6782 		 * Wait for IOC state CoreDump to clear only during
6783 		 * HBA initialization & release time.
6784 		 */
6785 		if ((ioc_state & MPI2_IOC_STATE_MASK) ==
6786 		    MPI2_IOC_STATE_COREDUMP && (ioc->is_driver_loading == 1 ||
6787 		    ioc->fault_reset_work_q == NULL)) {
6788 			spin_unlock_irqrestore(
6789 			    &ioc->ioc_reset_in_progress_lock, flags);
6790 			mpt3sas_print_coredump_info(ioc, ioc_state);
6791 			mpt3sas_base_wait_for_coredump_completion(ioc,
6792 			    __func__);
6793 			spin_lock_irqsave(
6794 			    &ioc->ioc_reset_in_progress_lock, flags);
6795 		}
6796 		spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
6797 	}
6798 	ioc_info(ioc, "message unit reset: %s\n",
6799 		 r == 0 ? "SUCCESS" : "FAILED");
6800 	return r;
6801 }
6802 
6803 /**
6804  * mpt3sas_wait_for_ioc - IOC's operational state is checked here.
6805  * @ioc: per adapter object
6806  * @timeout: timeout in seconds
6807  *
6808  * Return: Waits up to timeout seconds for the IOC to
6809  * become operational. Returns 0 if IOC is present
6810  * and operational; otherwise returns %-EFAULT.
6811  */
6812 
6813 int
6814 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout)
6815 {
6816 	int wait_state_count = 0;
6817 	u32 ioc_state;
6818 
6819 	do {
6820 		ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
6821 		if (ioc_state == MPI2_IOC_STATE_OPERATIONAL)
6822 			break;
6823 
6824 		/*
6825 		 * Watchdog thread will be started after IOC Initialization, so
6826 		 * no need to wait here for IOC state to become operational
6827 		 * when IOC Initialization is on. Instead the driver will
6828 		 * return ETIME status, so that calling function can issue
6829 		 * diag reset operation and retry the command.
6830 		 */
6831 		if (ioc->is_driver_loading)
6832 			return -ETIME;
6833 
6834 		ssleep(1);
6835 		ioc_info(ioc, "%s: waiting for operational state(count=%d)\n",
6836 				__func__, ++wait_state_count);
6837 	} while (--timeout);
6838 	if (!timeout) {
6839 		ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__);
6840 		return -EFAULT;
6841 	}
6842 	if (wait_state_count)
6843 		ioc_info(ioc, "ioc is operational\n");
6844 	return 0;
6845 }
6846 
6847 /**
6848  * _base_handshake_req_reply_wait - send request thru doorbell interface
6849  * @ioc: per adapter object
6850  * @request_bytes: request length
6851  * @request: pointer having request payload
6852  * @reply_bytes: reply length
6853  * @reply: pointer to reply payload
6854  * @timeout: timeout in second
6855  *
6856  * Return: 0 for success, non-zero for failure.
6857  */
6858 static int
6859 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
6860 	u32 *request, int reply_bytes, u16 *reply, int timeout)
6861 {
6862 	MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
6863 	int i;
6864 	u8 failed;
6865 	__le32 *mfp;
6866 
6867 	/* make sure doorbell is not in use */
6868 	if ((ioc->base_readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
6869 		ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__);
6870 		return -EFAULT;
6871 	}
6872 
6873 	/* clear pending doorbell interrupts from previous state changes */
6874 	if (ioc->base_readl(&ioc->chip->HostInterruptStatus) &
6875 	    MPI2_HIS_IOC2SYS_DB_STATUS)
6876 		writel(0, &ioc->chip->HostInterruptStatus);
6877 
6878 	/* send message to ioc */
6879 	writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
6880 	    ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
6881 	    &ioc->chip->Doorbell);
6882 
6883 	if ((_base_spin_on_doorbell_int(ioc, 5))) {
6884 		ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6885 			__LINE__);
6886 		return -EFAULT;
6887 	}
6888 	writel(0, &ioc->chip->HostInterruptStatus);
6889 
6890 	if ((_base_wait_for_doorbell_ack(ioc, 5))) {
6891 		ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n",
6892 			__LINE__);
6893 		return -EFAULT;
6894 	}
6895 
6896 	/* send message 32-bits at a time */
6897 	for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
6898 		writel(request[i], &ioc->chip->Doorbell);
6899 		if ((_base_wait_for_doorbell_ack(ioc, 5)))
6900 			failed = 1;
6901 	}
6902 
6903 	if (failed) {
6904 		ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n",
6905 			__LINE__);
6906 		return -EFAULT;
6907 	}
6908 
6909 	/* now wait for the reply */
6910 	if ((_base_wait_for_doorbell_int(ioc, timeout))) {
6911 		ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6912 			__LINE__);
6913 		return -EFAULT;
6914 	}
6915 
6916 	/* read the first two 16-bits, it gives the total length of the reply */
6917 	reply[0] = ioc->base_readl(&ioc->chip->Doorbell)
6918 		& MPI2_DOORBELL_DATA_MASK;
6919 	writel(0, &ioc->chip->HostInterruptStatus);
6920 	if ((_base_wait_for_doorbell_int(ioc, 5))) {
6921 		ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6922 			__LINE__);
6923 		return -EFAULT;
6924 	}
6925 	reply[1] = ioc->base_readl(&ioc->chip->Doorbell)
6926 		& MPI2_DOORBELL_DATA_MASK;
6927 	writel(0, &ioc->chip->HostInterruptStatus);
6928 
6929 	for (i = 2; i < default_reply->MsgLength * 2; i++)  {
6930 		if ((_base_wait_for_doorbell_int(ioc, 5))) {
6931 			ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6932 				__LINE__);
6933 			return -EFAULT;
6934 		}
6935 		if (i >=  reply_bytes/2) /* overflow case */
6936 			ioc->base_readl(&ioc->chip->Doorbell);
6937 		else
6938 			reply[i] = ioc->base_readl(&ioc->chip->Doorbell)
6939 				& MPI2_DOORBELL_DATA_MASK;
6940 		writel(0, &ioc->chip->HostInterruptStatus);
6941 	}
6942 
6943 	_base_wait_for_doorbell_int(ioc, 5);
6944 	if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
6945 		dhsprintk(ioc,
6946 			  ioc_info(ioc, "doorbell is in use (line=%d)\n",
6947 				   __LINE__));
6948 	}
6949 	writel(0, &ioc->chip->HostInterruptStatus);
6950 
6951 	if (ioc->logging_level & MPT_DEBUG_INIT) {
6952 		mfp = (__le32 *)reply;
6953 		pr_info("\toffset:data\n");
6954 		for (i = 0; i < reply_bytes/4; i++)
6955 			ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
6956 			    le32_to_cpu(mfp[i]));
6957 	}
6958 	return 0;
6959 }
6960 
6961 /**
6962  * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
6963  * @ioc: per adapter object
6964  * @mpi_reply: the reply payload from FW
6965  * @mpi_request: the request payload sent to FW
6966  *
6967  * The SAS IO Unit Control Request message allows the host to perform low-level
6968  * operations, such as resets on the PHYs of the IO Unit, also allows the host
6969  * to obtain the IOC assigned device handles for a device if it has other
6970  * identifying information about the device, in addition allows the host to
6971  * remove IOC resources associated with the device.
6972  *
6973  * Return: 0 for success, non-zero for failure.
6974  */
6975 int
6976 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
6977 	Mpi2SasIoUnitControlReply_t *mpi_reply,
6978 	Mpi2SasIoUnitControlRequest_t *mpi_request)
6979 {
6980 	u16 smid;
6981 	u8 issue_reset = 0;
6982 	int rc;
6983 	void *request;
6984 
6985 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6986 
6987 	mutex_lock(&ioc->base_cmds.mutex);
6988 
6989 	if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
6990 		ioc_err(ioc, "%s: base_cmd in use\n", __func__);
6991 		rc = -EAGAIN;
6992 		goto out;
6993 	}
6994 
6995 	rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
6996 	if (rc)
6997 		goto out;
6998 
6999 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7000 	if (!smid) {
7001 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7002 		rc = -EAGAIN;
7003 		goto out;
7004 	}
7005 
7006 	rc = 0;
7007 	ioc->base_cmds.status = MPT3_CMD_PENDING;
7008 	request = mpt3sas_base_get_msg_frame(ioc, smid);
7009 	ioc->base_cmds.smid = smid;
7010 	memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
7011 	if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
7012 	    mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
7013 		ioc->ioc_link_reset_in_progress = 1;
7014 	init_completion(&ioc->base_cmds.done);
7015 	ioc->put_smid_default(ioc, smid);
7016 	wait_for_completion_timeout(&ioc->base_cmds.done,
7017 	    msecs_to_jiffies(10000));
7018 	if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
7019 	    mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
7020 	    ioc->ioc_link_reset_in_progress)
7021 		ioc->ioc_link_reset_in_progress = 0;
7022 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7023 		mpt3sas_check_cmd_timeout(ioc, ioc->base_cmds.status,
7024 		    mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)/4,
7025 		    issue_reset);
7026 		goto issue_host_reset;
7027 	}
7028 	if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
7029 		memcpy(mpi_reply, ioc->base_cmds.reply,
7030 		    sizeof(Mpi2SasIoUnitControlReply_t));
7031 	else
7032 		memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
7033 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7034 	goto out;
7035 
7036  issue_host_reset:
7037 	if (issue_reset)
7038 		mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
7039 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7040 	rc = -EFAULT;
7041  out:
7042 	mutex_unlock(&ioc->base_cmds.mutex);
7043 	return rc;
7044 }
7045 
7046 /**
7047  * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
7048  * @ioc: per adapter object
7049  * @mpi_reply: the reply payload from FW
7050  * @mpi_request: the request payload sent to FW
7051  *
7052  * The SCSI Enclosure Processor request message causes the IOC to
7053  * communicate with SES devices to control LED status signals.
7054  *
7055  * Return: 0 for success, non-zero for failure.
7056  */
7057 int
7058 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
7059 	Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
7060 {
7061 	u16 smid;
7062 	u8 issue_reset = 0;
7063 	int rc;
7064 	void *request;
7065 
7066 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7067 
7068 	mutex_lock(&ioc->base_cmds.mutex);
7069 
7070 	if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
7071 		ioc_err(ioc, "%s: base_cmd in use\n", __func__);
7072 		rc = -EAGAIN;
7073 		goto out;
7074 	}
7075 
7076 	rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
7077 	if (rc)
7078 		goto out;
7079 
7080 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7081 	if (!smid) {
7082 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7083 		rc = -EAGAIN;
7084 		goto out;
7085 	}
7086 
7087 	rc = 0;
7088 	ioc->base_cmds.status = MPT3_CMD_PENDING;
7089 	request = mpt3sas_base_get_msg_frame(ioc, smid);
7090 	ioc->base_cmds.smid = smid;
7091 	memset(request, 0, ioc->request_sz);
7092 	memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
7093 	init_completion(&ioc->base_cmds.done);
7094 	ioc->put_smid_default(ioc, smid);
7095 	wait_for_completion_timeout(&ioc->base_cmds.done,
7096 	    msecs_to_jiffies(10000));
7097 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7098 		mpt3sas_check_cmd_timeout(ioc,
7099 		    ioc->base_cmds.status, mpi_request,
7100 		    sizeof(Mpi2SepRequest_t)/4, issue_reset);
7101 		goto issue_host_reset;
7102 	}
7103 	if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
7104 		memcpy(mpi_reply, ioc->base_cmds.reply,
7105 		    sizeof(Mpi2SepReply_t));
7106 	else
7107 		memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
7108 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7109 	goto out;
7110 
7111  issue_host_reset:
7112 	if (issue_reset)
7113 		mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
7114 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7115 	rc = -EFAULT;
7116  out:
7117 	mutex_unlock(&ioc->base_cmds.mutex);
7118 	return rc;
7119 }
7120 
7121 /**
7122  * _base_get_port_facts - obtain port facts reply and save in ioc
7123  * @ioc: per adapter object
7124  * @port: ?
7125  *
7126  * Return: 0 for success, non-zero for failure.
7127  */
7128 static int
7129 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
7130 {
7131 	Mpi2PortFactsRequest_t mpi_request;
7132 	Mpi2PortFactsReply_t mpi_reply;
7133 	struct mpt3sas_port_facts *pfacts;
7134 	int mpi_reply_sz, mpi_request_sz, r;
7135 
7136 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7137 
7138 	mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
7139 	mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
7140 	memset(&mpi_request, 0, mpi_request_sz);
7141 	mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
7142 	mpi_request.PortNumber = port;
7143 	r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
7144 	    (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
7145 
7146 	if (r != 0) {
7147 		ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7148 		return r;
7149 	}
7150 
7151 	pfacts = &ioc->pfacts[port];
7152 	memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
7153 	pfacts->PortNumber = mpi_reply.PortNumber;
7154 	pfacts->VP_ID = mpi_reply.VP_ID;
7155 	pfacts->VF_ID = mpi_reply.VF_ID;
7156 	pfacts->MaxPostedCmdBuffers =
7157 	    le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
7158 
7159 	return 0;
7160 }
7161 
7162 /**
7163  * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
7164  * @ioc: per adapter object
7165  * @timeout:
7166  *
7167  * Return: 0 for success, non-zero for failure.
7168  */
7169 static int
7170 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
7171 {
7172 	u32 ioc_state;
7173 	int rc;
7174 
7175 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7176 
7177 	if (ioc->pci_error_recovery) {
7178 		dfailprintk(ioc,
7179 			    ioc_info(ioc, "%s: host in pci error recovery\n",
7180 				     __func__));
7181 		return -EFAULT;
7182 	}
7183 
7184 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7185 	dhsprintk(ioc,
7186 		  ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
7187 			   __func__, ioc_state));
7188 
7189 	if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
7190 	    (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
7191 		return 0;
7192 
7193 	if (ioc_state & MPI2_DOORBELL_USED) {
7194 		dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n"));
7195 		goto issue_diag_reset;
7196 	}
7197 
7198 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
7199 		mpt3sas_print_fault_code(ioc, ioc_state &
7200 		    MPI2_DOORBELL_DATA_MASK);
7201 		goto issue_diag_reset;
7202 	} else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
7203 	    MPI2_IOC_STATE_COREDUMP) {
7204 		ioc_info(ioc,
7205 		    "%s: Skipping the diag reset here. (ioc_state=0x%x)\n",
7206 		    __func__, ioc_state);
7207 		return -EFAULT;
7208 	}
7209 
7210 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
7211 	if (ioc_state) {
7212 		dfailprintk(ioc,
7213 			    ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
7214 				     __func__, ioc_state));
7215 		return -EFAULT;
7216 	}
7217 
7218  issue_diag_reset:
7219 	rc = _base_diag_reset(ioc);
7220 	return rc;
7221 }
7222 
7223 /**
7224  * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
7225  * @ioc: per adapter object
7226  *
7227  * Return: 0 for success, non-zero for failure.
7228  */
7229 static int
7230 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
7231 {
7232 	Mpi2IOCFactsRequest_t mpi_request;
7233 	Mpi2IOCFactsReply_t mpi_reply;
7234 	struct mpt3sas_facts *facts;
7235 	int mpi_reply_sz, mpi_request_sz, r;
7236 
7237 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7238 
7239 	r = _base_wait_for_iocstate(ioc, 10);
7240 	if (r) {
7241 		dfailprintk(ioc,
7242 			    ioc_info(ioc, "%s: failed getting to correct state\n",
7243 				     __func__));
7244 		return r;
7245 	}
7246 	mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
7247 	mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
7248 	memset(&mpi_request, 0, mpi_request_sz);
7249 	mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
7250 	r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
7251 	    (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
7252 
7253 	if (r != 0) {
7254 		ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7255 		return r;
7256 	}
7257 
7258 	facts = &ioc->facts;
7259 	memset(facts, 0, sizeof(struct mpt3sas_facts));
7260 	facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
7261 	facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
7262 	facts->VP_ID = mpi_reply.VP_ID;
7263 	facts->VF_ID = mpi_reply.VF_ID;
7264 	facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
7265 	facts->MaxChainDepth = mpi_reply.MaxChainDepth;
7266 	facts->WhoInit = mpi_reply.WhoInit;
7267 	facts->NumberOfPorts = mpi_reply.NumberOfPorts;
7268 	facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
7269 	if (ioc->msix_enable && (facts->MaxMSIxVectors <=
7270 	    MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc)))
7271 		ioc->combined_reply_queue = 0;
7272 	facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
7273 	facts->MaxReplyDescriptorPostQueueDepth =
7274 	    le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
7275 	facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
7276 	facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
7277 	if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
7278 		ioc->ir_firmware = 1;
7279 	if ((facts->IOCCapabilities &
7280 	      MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices))
7281 		ioc->rdpq_array_capable = 1;
7282 	if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
7283 	    && ioc->is_aero_ioc)
7284 		ioc->atomic_desc_capable = 1;
7285 	facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
7286 	facts->IOCRequestFrameSize =
7287 	    le16_to_cpu(mpi_reply.IOCRequestFrameSize);
7288 	if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
7289 		facts->IOCMaxChainSegmentSize =
7290 			le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
7291 	}
7292 	facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
7293 	facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
7294 	ioc->shost->max_id = -1;
7295 	facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
7296 	facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
7297 	facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
7298 	facts->HighPriorityCredit =
7299 	    le16_to_cpu(mpi_reply.HighPriorityCredit);
7300 	facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
7301 	facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
7302 	facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize;
7303 
7304 	/*
7305 	 * Get the Page Size from IOC Facts. If it's 0, default to 4k.
7306 	 */
7307 	ioc->page_size = 1 << facts->CurrentHostPageSize;
7308 	if (ioc->page_size == 1) {
7309 		ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n");
7310 		ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K;
7311 	}
7312 	dinitprintk(ioc,
7313 		    ioc_info(ioc, "CurrentHostPageSize(%d)\n",
7314 			     facts->CurrentHostPageSize));
7315 
7316 	dinitprintk(ioc,
7317 		    ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n",
7318 			     facts->RequestCredit, facts->MaxChainDepth));
7319 	dinitprintk(ioc,
7320 		    ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n",
7321 			     facts->IOCRequestFrameSize * 4,
7322 			     facts->ReplyFrameSize * 4));
7323 	return 0;
7324 }
7325 
7326 /**
7327  * _base_send_ioc_init - send ioc_init to firmware
7328  * @ioc: per adapter object
7329  *
7330  * Return: 0 for success, non-zero for failure.
7331  */
7332 static int
7333 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
7334 {
7335 	Mpi2IOCInitRequest_t mpi_request;
7336 	Mpi2IOCInitReply_t mpi_reply;
7337 	int i, r = 0;
7338 	ktime_t current_time;
7339 	u16 ioc_status;
7340 	u32 reply_post_free_array_sz = 0;
7341 
7342 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7343 
7344 	memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
7345 	mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
7346 	mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
7347 	mpi_request.VF_ID = 0; /* TODO */
7348 	mpi_request.VP_ID = 0;
7349 	mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
7350 	mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
7351 	mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K;
7352 
7353 	if (_base_is_controller_msix_enabled(ioc))
7354 		mpi_request.HostMSIxVectors = ioc->reply_queue_count;
7355 	mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
7356 	mpi_request.ReplyDescriptorPostQueueDepth =
7357 	    cpu_to_le16(ioc->reply_post_queue_depth);
7358 	mpi_request.ReplyFreeQueueDepth =
7359 	    cpu_to_le16(ioc->reply_free_queue_depth);
7360 
7361 	mpi_request.SenseBufferAddressHigh =
7362 	    cpu_to_le32((u64)ioc->sense_dma >> 32);
7363 	mpi_request.SystemReplyAddressHigh =
7364 	    cpu_to_le32((u64)ioc->reply_dma >> 32);
7365 	mpi_request.SystemRequestFrameBaseAddress =
7366 	    cpu_to_le64((u64)ioc->request_dma);
7367 	mpi_request.ReplyFreeQueueAddress =
7368 	    cpu_to_le64((u64)ioc->reply_free_dma);
7369 
7370 	if (ioc->rdpq_array_enable) {
7371 		reply_post_free_array_sz = ioc->reply_queue_count *
7372 		    sizeof(Mpi2IOCInitRDPQArrayEntry);
7373 		memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz);
7374 		for (i = 0; i < ioc->reply_queue_count; i++)
7375 			ioc->reply_post_free_array[i].RDPQBaseAddress =
7376 			    cpu_to_le64(
7377 				(u64)ioc->reply_post[i].reply_post_free_dma);
7378 		mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
7379 		mpi_request.ReplyDescriptorPostQueueAddress =
7380 		    cpu_to_le64((u64)ioc->reply_post_free_array_dma);
7381 	} else {
7382 		mpi_request.ReplyDescriptorPostQueueAddress =
7383 		    cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
7384 	}
7385 
7386 	/*
7387 	 * Set the flag to enable CoreDump state feature in IOC firmware.
7388 	 */
7389 	mpi_request.ConfigurationFlags |=
7390 	    cpu_to_le16(MPI26_IOCINIT_CFGFLAGS_COREDUMP_ENABLE);
7391 
7392 	/* This time stamp specifies number of milliseconds
7393 	 * since epoch ~ midnight January 1, 1970.
7394 	 */
7395 	current_time = ktime_get_real();
7396 	mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
7397 
7398 	if (ioc->logging_level & MPT_DEBUG_INIT) {
7399 		__le32 *mfp;
7400 		int i;
7401 
7402 		mfp = (__le32 *)&mpi_request;
7403 		ioc_info(ioc, "\toffset:data\n");
7404 		for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
7405 			ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
7406 			    le32_to_cpu(mfp[i]));
7407 	}
7408 
7409 	r = _base_handshake_req_reply_wait(ioc,
7410 	    sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
7411 	    sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 30);
7412 
7413 	if (r != 0) {
7414 		ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7415 		return r;
7416 	}
7417 
7418 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
7419 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
7420 	    mpi_reply.IOCLogInfo) {
7421 		ioc_err(ioc, "%s: failed\n", __func__);
7422 		r = -EIO;
7423 	}
7424 
7425 	/* Reset TimeSync Counter*/
7426 	ioc->timestamp_update_count = 0;
7427 	return r;
7428 }
7429 
7430 /**
7431  * mpt3sas_port_enable_done - command completion routine for port enable
7432  * @ioc: per adapter object
7433  * @smid: system request message index
7434  * @msix_index: MSIX table index supplied by the OS
7435  * @reply: reply message frame(lower 32bit addr)
7436  *
7437  * Return: 1 meaning mf should be freed from _base_interrupt
7438  *          0 means the mf is freed from this function.
7439  */
7440 u8
7441 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
7442 	u32 reply)
7443 {
7444 	MPI2DefaultReply_t *mpi_reply;
7445 	u16 ioc_status;
7446 
7447 	if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
7448 		return 1;
7449 
7450 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
7451 	if (!mpi_reply)
7452 		return 1;
7453 
7454 	if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
7455 		return 1;
7456 
7457 	ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
7458 	ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
7459 	ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
7460 	memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
7461 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
7462 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
7463 		ioc->port_enable_failed = 1;
7464 
7465 	if (ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE_ASYNC) {
7466 		ioc->port_enable_cmds.status &= ~MPT3_CMD_COMPLETE_ASYNC;
7467 		if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
7468 			mpt3sas_port_enable_complete(ioc);
7469 			return 1;
7470 		} else {
7471 			ioc->start_scan_failed = ioc_status;
7472 			ioc->start_scan = 0;
7473 			return 1;
7474 		}
7475 	}
7476 	complete(&ioc->port_enable_cmds.done);
7477 	return 1;
7478 }
7479 
7480 /**
7481  * _base_send_port_enable - send port_enable(discovery stuff) to firmware
7482  * @ioc: per adapter object
7483  *
7484  * Return: 0 for success, non-zero for failure.
7485  */
7486 static int
7487 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
7488 {
7489 	Mpi2PortEnableRequest_t *mpi_request;
7490 	Mpi2PortEnableReply_t *mpi_reply;
7491 	int r = 0;
7492 	u16 smid;
7493 	u16 ioc_status;
7494 
7495 	ioc_info(ioc, "sending port enable !!\n");
7496 
7497 	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7498 		ioc_err(ioc, "%s: internal command already in use\n", __func__);
7499 		return -EAGAIN;
7500 	}
7501 
7502 	smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
7503 	if (!smid) {
7504 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7505 		return -EAGAIN;
7506 	}
7507 
7508 	ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
7509 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7510 	ioc->port_enable_cmds.smid = smid;
7511 	memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
7512 	mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
7513 
7514 	init_completion(&ioc->port_enable_cmds.done);
7515 	ioc->put_smid_default(ioc, smid);
7516 	wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
7517 	if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
7518 		ioc_err(ioc, "%s: timeout\n", __func__);
7519 		_debug_dump_mf(mpi_request,
7520 		    sizeof(Mpi2PortEnableRequest_t)/4);
7521 		if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
7522 			r = -EFAULT;
7523 		else
7524 			r = -ETIME;
7525 		goto out;
7526 	}
7527 
7528 	mpi_reply = ioc->port_enable_cmds.reply;
7529 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
7530 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
7531 		ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n",
7532 			__func__, ioc_status);
7533 		r = -EFAULT;
7534 		goto out;
7535 	}
7536 
7537  out:
7538 	ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
7539 	ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED");
7540 	return r;
7541 }
7542 
7543 /**
7544  * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
7545  * @ioc: per adapter object
7546  *
7547  * Return: 0 for success, non-zero for failure.
7548  */
7549 int
7550 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
7551 {
7552 	Mpi2PortEnableRequest_t *mpi_request;
7553 	u16 smid;
7554 
7555 	ioc_info(ioc, "sending port enable !!\n");
7556 
7557 	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7558 		ioc_err(ioc, "%s: internal command already in use\n", __func__);
7559 		return -EAGAIN;
7560 	}
7561 
7562 	smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
7563 	if (!smid) {
7564 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7565 		return -EAGAIN;
7566 	}
7567 	ioc->drv_internal_flags |= MPT_DRV_INTERNAL_FIRST_PE_ISSUED;
7568 	ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
7569 	ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE_ASYNC;
7570 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7571 	ioc->port_enable_cmds.smid = smid;
7572 	memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
7573 	mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
7574 
7575 	ioc->put_smid_default(ioc, smid);
7576 	return 0;
7577 }
7578 
7579 /**
7580  * _base_determine_wait_on_discovery - desposition
7581  * @ioc: per adapter object
7582  *
7583  * Decide whether to wait on discovery to complete. Used to either
7584  * locate boot device, or report volumes ahead of physical devices.
7585  *
7586  * Return: 1 for wait, 0 for don't wait.
7587  */
7588 static int
7589 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
7590 {
7591 	/* We wait for discovery to complete if IR firmware is loaded.
7592 	 * The sas topology events arrive before PD events, so we need time to
7593 	 * turn on the bit in ioc->pd_handles to indicate PD
7594 	 * Also, it maybe required to report Volumes ahead of physical
7595 	 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
7596 	 */
7597 	if (ioc->ir_firmware)
7598 		return 1;
7599 
7600 	/* if no Bios, then we don't need to wait */
7601 	if (!ioc->bios_pg3.BiosVersion)
7602 		return 0;
7603 
7604 	/* Bios is present, then we drop down here.
7605 	 *
7606 	 * If there any entries in the Bios Page 2, then we wait
7607 	 * for discovery to complete.
7608 	 */
7609 
7610 	/* Current Boot Device */
7611 	if ((ioc->bios_pg2.CurrentBootDeviceForm &
7612 	    MPI2_BIOSPAGE2_FORM_MASK) ==
7613 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
7614 	/* Request Boot Device */
7615 	   (ioc->bios_pg2.ReqBootDeviceForm &
7616 	    MPI2_BIOSPAGE2_FORM_MASK) ==
7617 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
7618 	/* Alternate Request Boot Device */
7619 	   (ioc->bios_pg2.ReqAltBootDeviceForm &
7620 	    MPI2_BIOSPAGE2_FORM_MASK) ==
7621 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
7622 		return 0;
7623 
7624 	return 1;
7625 }
7626 
7627 /**
7628  * _base_unmask_events - turn on notification for this event
7629  * @ioc: per adapter object
7630  * @event: firmware event
7631  *
7632  * The mask is stored in ioc->event_masks.
7633  */
7634 static void
7635 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
7636 {
7637 	u32 desired_event;
7638 
7639 	if (event >= 128)
7640 		return;
7641 
7642 	desired_event = (1 << (event % 32));
7643 
7644 	if (event < 32)
7645 		ioc->event_masks[0] &= ~desired_event;
7646 	else if (event < 64)
7647 		ioc->event_masks[1] &= ~desired_event;
7648 	else if (event < 96)
7649 		ioc->event_masks[2] &= ~desired_event;
7650 	else if (event < 128)
7651 		ioc->event_masks[3] &= ~desired_event;
7652 }
7653 
7654 /**
7655  * _base_event_notification - send event notification
7656  * @ioc: per adapter object
7657  *
7658  * Return: 0 for success, non-zero for failure.
7659  */
7660 static int
7661 _base_event_notification(struct MPT3SAS_ADAPTER *ioc)
7662 {
7663 	Mpi2EventNotificationRequest_t *mpi_request;
7664 	u16 smid;
7665 	int r = 0;
7666 	int i, issue_diag_reset = 0;
7667 
7668 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7669 
7670 	if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
7671 		ioc_err(ioc, "%s: internal command already in use\n", __func__);
7672 		return -EAGAIN;
7673 	}
7674 
7675 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7676 	if (!smid) {
7677 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7678 		return -EAGAIN;
7679 	}
7680 	ioc->base_cmds.status = MPT3_CMD_PENDING;
7681 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7682 	ioc->base_cmds.smid = smid;
7683 	memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
7684 	mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
7685 	mpi_request->VF_ID = 0; /* TODO */
7686 	mpi_request->VP_ID = 0;
7687 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
7688 		mpi_request->EventMasks[i] =
7689 		    cpu_to_le32(ioc->event_masks[i]);
7690 	init_completion(&ioc->base_cmds.done);
7691 	ioc->put_smid_default(ioc, smid);
7692 	wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
7693 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7694 		ioc_err(ioc, "%s: timeout\n", __func__);
7695 		_debug_dump_mf(mpi_request,
7696 		    sizeof(Mpi2EventNotificationRequest_t)/4);
7697 		if (ioc->base_cmds.status & MPT3_CMD_RESET)
7698 			r = -EFAULT;
7699 		else
7700 			issue_diag_reset = 1;
7701 
7702 	} else
7703 		dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__));
7704 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7705 
7706 	if (issue_diag_reset) {
7707 		if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED)
7708 			return -EFAULT;
7709 		if (mpt3sas_base_check_for_fault_and_issue_reset(ioc))
7710 			return -EFAULT;
7711 		r = -EAGAIN;
7712 	}
7713 	return r;
7714 }
7715 
7716 /**
7717  * mpt3sas_base_validate_event_type - validating event types
7718  * @ioc: per adapter object
7719  * @event_type: firmware event
7720  *
7721  * This will turn on firmware event notification when application
7722  * ask for that event. We don't mask events that are already enabled.
7723  */
7724 void
7725 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
7726 {
7727 	int i, j;
7728 	u32 event_mask, desired_event;
7729 	u8 send_update_to_fw;
7730 
7731 	for (i = 0, send_update_to_fw = 0; i <
7732 	    MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
7733 		event_mask = ~event_type[i];
7734 		desired_event = 1;
7735 		for (j = 0; j < 32; j++) {
7736 			if (!(event_mask & desired_event) &&
7737 			    (ioc->event_masks[i] & desired_event)) {
7738 				ioc->event_masks[i] &= ~desired_event;
7739 				send_update_to_fw = 1;
7740 			}
7741 			desired_event = (desired_event << 1);
7742 		}
7743 	}
7744 
7745 	if (!send_update_to_fw)
7746 		return;
7747 
7748 	mutex_lock(&ioc->base_cmds.mutex);
7749 	_base_event_notification(ioc);
7750 	mutex_unlock(&ioc->base_cmds.mutex);
7751 }
7752 
7753 /**
7754  * _base_diag_reset - the "big hammer" start of day reset
7755  * @ioc: per adapter object
7756  *
7757  * Return: 0 for success, non-zero for failure.
7758  */
7759 static int
7760 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
7761 {
7762 	u32 host_diagnostic;
7763 	u32 ioc_state;
7764 	u32 count;
7765 	u32 hcb_size;
7766 
7767 	ioc_info(ioc, "sending diag reset !!\n");
7768 
7769 	pci_cfg_access_lock(ioc->pdev);
7770 
7771 	drsprintk(ioc, ioc_info(ioc, "clear interrupts\n"));
7772 
7773 	count = 0;
7774 	do {
7775 		/* Write magic sequence to WriteSequence register
7776 		 * Loop until in diagnostic mode
7777 		 */
7778 		drsprintk(ioc, ioc_info(ioc, "write magic sequence\n"));
7779 		writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
7780 		writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
7781 		writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
7782 		writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
7783 		writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
7784 		writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
7785 		writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
7786 
7787 		/* wait 100 msec */
7788 		msleep(100);
7789 
7790 		if (count++ > 20) {
7791 			ioc_info(ioc,
7792 			    "Stop writing magic sequence after 20 retries\n");
7793 			_base_dump_reg_set(ioc);
7794 			goto out;
7795 		}
7796 
7797 		host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
7798 		drsprintk(ioc,
7799 			  ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
7800 				   count, host_diagnostic));
7801 
7802 	} while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
7803 
7804 	hcb_size = ioc->base_readl(&ioc->chip->HCBSize);
7805 
7806 	drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n"));
7807 	writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
7808 	     &ioc->chip->HostDiagnostic);
7809 
7810 	/*This delay allows the chip PCIe hardware time to finish reset tasks*/
7811 	msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
7812 
7813 	/* Approximately 300 second max wait */
7814 	for (count = 0; count < (300000000 /
7815 		MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
7816 
7817 		host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
7818 
7819 		if (host_diagnostic == 0xFFFFFFFF) {
7820 			ioc_info(ioc,
7821 			    "Invalid host diagnostic register value\n");
7822 			_base_dump_reg_set(ioc);
7823 			goto out;
7824 		}
7825 		if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
7826 			break;
7827 
7828 		msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000);
7829 	}
7830 
7831 	if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
7832 
7833 		drsprintk(ioc,
7834 			  ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n"));
7835 		host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
7836 		host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
7837 		writel(host_diagnostic, &ioc->chip->HostDiagnostic);
7838 
7839 		drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n"));
7840 		writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
7841 		    &ioc->chip->HCBSize);
7842 	}
7843 
7844 	drsprintk(ioc, ioc_info(ioc, "restart the adapter\n"));
7845 	writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
7846 	    &ioc->chip->HostDiagnostic);
7847 
7848 	drsprintk(ioc,
7849 		  ioc_info(ioc, "disable writes to the diagnostic register\n"));
7850 	writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
7851 
7852 	drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n"));
7853 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
7854 	if (ioc_state) {
7855 		ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
7856 			__func__, ioc_state);
7857 		_base_dump_reg_set(ioc);
7858 		goto out;
7859 	}
7860 
7861 	pci_cfg_access_unlock(ioc->pdev);
7862 	ioc_info(ioc, "diag reset: SUCCESS\n");
7863 	return 0;
7864 
7865  out:
7866 	pci_cfg_access_unlock(ioc->pdev);
7867 	ioc_err(ioc, "diag reset: FAILED\n");
7868 	return -EFAULT;
7869 }
7870 
7871 /**
7872  * mpt3sas_base_make_ioc_ready - put controller in READY state
7873  * @ioc: per adapter object
7874  * @type: FORCE_BIG_HAMMER or SOFT_RESET
7875  *
7876  * Return: 0 for success, non-zero for failure.
7877  */
7878 int
7879 mpt3sas_base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
7880 {
7881 	u32 ioc_state;
7882 	int rc;
7883 	int count;
7884 
7885 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7886 
7887 	if (ioc->pci_error_recovery)
7888 		return 0;
7889 
7890 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7891 	dhsprintk(ioc,
7892 		  ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
7893 			   __func__, ioc_state));
7894 
7895 	/* if in RESET state, it should move to READY state shortly */
7896 	count = 0;
7897 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
7898 		while ((ioc_state & MPI2_IOC_STATE_MASK) !=
7899 		    MPI2_IOC_STATE_READY) {
7900 			if (count++ == 10) {
7901 				ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
7902 					__func__, ioc_state);
7903 				return -EFAULT;
7904 			}
7905 			ssleep(1);
7906 			ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7907 		}
7908 	}
7909 
7910 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
7911 		return 0;
7912 
7913 	if (ioc_state & MPI2_DOORBELL_USED) {
7914 		ioc_info(ioc, "unexpected doorbell active!\n");
7915 		goto issue_diag_reset;
7916 	}
7917 
7918 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
7919 		mpt3sas_print_fault_code(ioc, ioc_state &
7920 		    MPI2_DOORBELL_DATA_MASK);
7921 		goto issue_diag_reset;
7922 	}
7923 
7924 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
7925 		/*
7926 		 * if host reset is invoked while watch dog thread is waiting
7927 		 * for IOC state to be changed to Fault state then driver has
7928 		 * to wait here for CoreDump state to clear otherwise reset
7929 		 * will be issued to the FW and FW move the IOC state to
7930 		 * reset state without copying the FW logs to coredump region.
7931 		 */
7932 		if (ioc->ioc_coredump_loop != MPT3SAS_COREDUMP_LOOP_DONE) {
7933 			mpt3sas_print_coredump_info(ioc, ioc_state &
7934 			    MPI2_DOORBELL_DATA_MASK);
7935 			mpt3sas_base_wait_for_coredump_completion(ioc,
7936 			    __func__);
7937 		}
7938 		goto issue_diag_reset;
7939 	}
7940 
7941 	if (type == FORCE_BIG_HAMMER)
7942 		goto issue_diag_reset;
7943 
7944 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
7945 		if (!(_base_send_ioc_reset(ioc,
7946 		    MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
7947 			return 0;
7948 	}
7949 
7950  issue_diag_reset:
7951 	rc = _base_diag_reset(ioc);
7952 	return rc;
7953 }
7954 
7955 /**
7956  * _base_make_ioc_operational - put controller in OPERATIONAL state
7957  * @ioc: per adapter object
7958  *
7959  * Return: 0 for success, non-zero for failure.
7960  */
7961 static int
7962 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
7963 {
7964 	int r, i, index, rc;
7965 	unsigned long	flags;
7966 	u32 reply_address;
7967 	u16 smid;
7968 	struct _tr_list *delayed_tr, *delayed_tr_next;
7969 	struct _sc_list *delayed_sc, *delayed_sc_next;
7970 	struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
7971 	u8 hide_flag;
7972 	struct adapter_reply_queue *reply_q;
7973 	Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
7974 
7975 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7976 
7977 	/* clean the delayed target reset list */
7978 	list_for_each_entry_safe(delayed_tr, delayed_tr_next,
7979 	    &ioc->delayed_tr_list, list) {
7980 		list_del(&delayed_tr->list);
7981 		kfree(delayed_tr);
7982 	}
7983 
7984 
7985 	list_for_each_entry_safe(delayed_tr, delayed_tr_next,
7986 	    &ioc->delayed_tr_volume_list, list) {
7987 		list_del(&delayed_tr->list);
7988 		kfree(delayed_tr);
7989 	}
7990 
7991 	list_for_each_entry_safe(delayed_sc, delayed_sc_next,
7992 	    &ioc->delayed_sc_list, list) {
7993 		list_del(&delayed_sc->list);
7994 		kfree(delayed_sc);
7995 	}
7996 
7997 	list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
7998 	    &ioc->delayed_event_ack_list, list) {
7999 		list_del(&delayed_event_ack->list);
8000 		kfree(delayed_event_ack);
8001 	}
8002 
8003 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
8004 
8005 	/* hi-priority queue */
8006 	INIT_LIST_HEAD(&ioc->hpr_free_list);
8007 	smid = ioc->hi_priority_smid;
8008 	for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
8009 		ioc->hpr_lookup[i].cb_idx = 0xFF;
8010 		ioc->hpr_lookup[i].smid = smid;
8011 		list_add_tail(&ioc->hpr_lookup[i].tracker_list,
8012 		    &ioc->hpr_free_list);
8013 	}
8014 
8015 	/* internal queue */
8016 	INIT_LIST_HEAD(&ioc->internal_free_list);
8017 	smid = ioc->internal_smid;
8018 	for (i = 0; i < ioc->internal_depth; i++, smid++) {
8019 		ioc->internal_lookup[i].cb_idx = 0xFF;
8020 		ioc->internal_lookup[i].smid = smid;
8021 		list_add_tail(&ioc->internal_lookup[i].tracker_list,
8022 		    &ioc->internal_free_list);
8023 	}
8024 
8025 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
8026 
8027 	/* initialize Reply Free Queue */
8028 	for (i = 0, reply_address = (u32)ioc->reply_dma ;
8029 	    i < ioc->reply_free_queue_depth ; i++, reply_address +=
8030 	    ioc->reply_sz) {
8031 		ioc->reply_free[i] = cpu_to_le32(reply_address);
8032 		if (ioc->is_mcpu_endpoint)
8033 			_base_clone_reply_to_sys_mem(ioc,
8034 					reply_address, i);
8035 	}
8036 
8037 	/* initialize reply queues */
8038 	if (ioc->is_driver_loading)
8039 		_base_assign_reply_queues(ioc);
8040 
8041 	/* initialize Reply Post Free Queue */
8042 	index = 0;
8043 	reply_post_free_contig = ioc->reply_post[0].reply_post_free;
8044 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
8045 		/*
8046 		 * If RDPQ is enabled, switch to the next allocation.
8047 		 * Otherwise advance within the contiguous region.
8048 		 */
8049 		if (ioc->rdpq_array_enable) {
8050 			reply_q->reply_post_free =
8051 				ioc->reply_post[index++].reply_post_free;
8052 		} else {
8053 			reply_q->reply_post_free = reply_post_free_contig;
8054 			reply_post_free_contig += ioc->reply_post_queue_depth;
8055 		}
8056 
8057 		reply_q->reply_post_host_index = 0;
8058 		for (i = 0; i < ioc->reply_post_queue_depth; i++)
8059 			reply_q->reply_post_free[i].Words =
8060 			    cpu_to_le64(ULLONG_MAX);
8061 		if (!_base_is_controller_msix_enabled(ioc))
8062 			goto skip_init_reply_post_free_queue;
8063 	}
8064  skip_init_reply_post_free_queue:
8065 
8066 	r = _base_send_ioc_init(ioc);
8067 	if (r) {
8068 		/*
8069 		 * No need to check IOC state for fault state & issue
8070 		 * diag reset during host reset. This check is need
8071 		 * only during driver load time.
8072 		 */
8073 		if (!ioc->is_driver_loading)
8074 			return r;
8075 
8076 		rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8077 		if (rc || (_base_send_ioc_init(ioc)))
8078 			return r;
8079 	}
8080 
8081 	/* initialize reply free host index */
8082 	ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
8083 	writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
8084 
8085 	/* initialize reply post host index */
8086 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
8087 		if (ioc->combined_reply_queue)
8088 			writel((reply_q->msix_index & 7)<<
8089 			   MPI2_RPHI_MSIX_INDEX_SHIFT,
8090 			   ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
8091 		else
8092 			writel(reply_q->msix_index <<
8093 				MPI2_RPHI_MSIX_INDEX_SHIFT,
8094 				&ioc->chip->ReplyPostHostIndex);
8095 
8096 		if (!_base_is_controller_msix_enabled(ioc))
8097 			goto skip_init_reply_post_host_index;
8098 	}
8099 
8100  skip_init_reply_post_host_index:
8101 
8102 	mpt3sas_base_unmask_interrupts(ioc);
8103 
8104 	if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
8105 		r = _base_display_fwpkg_version(ioc);
8106 		if (r)
8107 			return r;
8108 	}
8109 
8110 	r = _base_static_config_pages(ioc);
8111 	if (r)
8112 		return r;
8113 
8114 	r = _base_event_notification(ioc);
8115 	if (r)
8116 		return r;
8117 
8118 	if (!ioc->shost_recovery) {
8119 
8120 		if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
8121 		    == 0x80) {
8122 			hide_flag = (u8) (
8123 			    le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
8124 			    MFG_PAGE10_HIDE_SSDS_MASK);
8125 			if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
8126 				ioc->mfg_pg10_hide_flag = hide_flag;
8127 		}
8128 
8129 		ioc->wait_for_discovery_to_complete =
8130 		    _base_determine_wait_on_discovery(ioc);
8131 
8132 		return r; /* scan_start and scan_finished support */
8133 	}
8134 
8135 	r = _base_send_port_enable(ioc);
8136 	if (r)
8137 		return r;
8138 
8139 	return r;
8140 }
8141 
8142 /**
8143  * mpt3sas_base_free_resources - free resources controller resources
8144  * @ioc: per adapter object
8145  */
8146 void
8147 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
8148 {
8149 	dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8150 
8151 	/* synchronizing freeing resource with pci_access_mutex lock */
8152 	mutex_lock(&ioc->pci_access_mutex);
8153 	if (ioc->chip_phys && ioc->chip) {
8154 		mpt3sas_base_mask_interrupts(ioc);
8155 		ioc->shost_recovery = 1;
8156 		mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET);
8157 		ioc->shost_recovery = 0;
8158 	}
8159 
8160 	mpt3sas_base_unmap_resources(ioc);
8161 	mutex_unlock(&ioc->pci_access_mutex);
8162 	return;
8163 }
8164 
8165 /**
8166  * mpt3sas_base_attach - attach controller instance
8167  * @ioc: per adapter object
8168  *
8169  * Return: 0 for success, non-zero for failure.
8170  */
8171 int
8172 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
8173 {
8174 	int r, i, rc;
8175 	int cpu_id, last_cpu_id = 0;
8176 
8177 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8178 
8179 	/* setup cpu_msix_table */
8180 	ioc->cpu_count = num_online_cpus();
8181 	for_each_online_cpu(cpu_id)
8182 		last_cpu_id = cpu_id;
8183 	ioc->cpu_msix_table_sz = last_cpu_id + 1;
8184 	ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
8185 	ioc->reply_queue_count = 1;
8186 	if (!ioc->cpu_msix_table) {
8187 		ioc_info(ioc, "Allocation for cpu_msix_table failed!!!\n");
8188 		r = -ENOMEM;
8189 		goto out_free_resources;
8190 	}
8191 
8192 	if (ioc->is_warpdrive) {
8193 		ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
8194 		    sizeof(resource_size_t *), GFP_KERNEL);
8195 		if (!ioc->reply_post_host_index) {
8196 			ioc_info(ioc, "Allocation for reply_post_host_index failed!!!\n");
8197 			r = -ENOMEM;
8198 			goto out_free_resources;
8199 		}
8200 	}
8201 
8202 	ioc->smp_affinity_enable = smp_affinity_enable;
8203 
8204 	ioc->rdpq_array_enable_assigned = 0;
8205 	ioc->use_32bit_dma = false;
8206 	ioc->dma_mask = 64;
8207 	if (ioc->is_aero_ioc)
8208 		ioc->base_readl = &_base_readl_aero;
8209 	else
8210 		ioc->base_readl = &_base_readl;
8211 	r = mpt3sas_base_map_resources(ioc);
8212 	if (r)
8213 		goto out_free_resources;
8214 
8215 	pci_set_drvdata(ioc->pdev, ioc->shost);
8216 	r = _base_get_ioc_facts(ioc);
8217 	if (r) {
8218 		rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8219 		if (rc || (_base_get_ioc_facts(ioc)))
8220 			goto out_free_resources;
8221 	}
8222 
8223 	switch (ioc->hba_mpi_version_belonged) {
8224 	case MPI2_VERSION:
8225 		ioc->build_sg_scmd = &_base_build_sg_scmd;
8226 		ioc->build_sg = &_base_build_sg;
8227 		ioc->build_zero_len_sge = &_base_build_zero_len_sge;
8228 		ioc->get_msix_index_for_smlio = &_base_get_msix_index;
8229 		break;
8230 	case MPI25_VERSION:
8231 	case MPI26_VERSION:
8232 		/*
8233 		 * In SAS3.0,
8234 		 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
8235 		 * Target Status - all require the IEEE formatted scatter gather
8236 		 * elements.
8237 		 */
8238 		ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
8239 		ioc->build_sg = &_base_build_sg_ieee;
8240 		ioc->build_nvme_prp = &_base_build_nvme_prp;
8241 		ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
8242 		ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
8243 		if (ioc->high_iops_queues)
8244 			ioc->get_msix_index_for_smlio =
8245 					&_base_get_high_iops_msix_index;
8246 		else
8247 			ioc->get_msix_index_for_smlio = &_base_get_msix_index;
8248 		break;
8249 	}
8250 	if (ioc->atomic_desc_capable) {
8251 		ioc->put_smid_default = &_base_put_smid_default_atomic;
8252 		ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic;
8253 		ioc->put_smid_fast_path =
8254 				&_base_put_smid_fast_path_atomic;
8255 		ioc->put_smid_hi_priority =
8256 				&_base_put_smid_hi_priority_atomic;
8257 	} else {
8258 		ioc->put_smid_default = &_base_put_smid_default;
8259 		ioc->put_smid_fast_path = &_base_put_smid_fast_path;
8260 		ioc->put_smid_hi_priority = &_base_put_smid_hi_priority;
8261 		if (ioc->is_mcpu_endpoint)
8262 			ioc->put_smid_scsi_io =
8263 				&_base_put_smid_mpi_ep_scsi_io;
8264 		else
8265 			ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
8266 	}
8267 	/*
8268 	 * These function pointers for other requests that don't
8269 	 * the require IEEE scatter gather elements.
8270 	 *
8271 	 * For example Configuration Pages and SAS IOUNIT Control don't.
8272 	 */
8273 	ioc->build_sg_mpi = &_base_build_sg;
8274 	ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
8275 
8276 	r = mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET);
8277 	if (r)
8278 		goto out_free_resources;
8279 
8280 	ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
8281 	    sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
8282 	if (!ioc->pfacts) {
8283 		r = -ENOMEM;
8284 		goto out_free_resources;
8285 	}
8286 
8287 	for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
8288 		r = _base_get_port_facts(ioc, i);
8289 		if (r) {
8290 			rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8291 			if (rc || (_base_get_port_facts(ioc, i)))
8292 				goto out_free_resources;
8293 		}
8294 	}
8295 
8296 	r = _base_allocate_memory_pools(ioc);
8297 	if (r)
8298 		goto out_free_resources;
8299 
8300 	if (irqpoll_weight > 0)
8301 		ioc->thresh_hold = irqpoll_weight;
8302 	else
8303 		ioc->thresh_hold = ioc->hba_queue_depth/4;
8304 
8305 	_base_init_irqpolls(ioc);
8306 	init_waitqueue_head(&ioc->reset_wq);
8307 
8308 	/* allocate memory pd handle bitmask list */
8309 	ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
8310 	if (ioc->facts.MaxDevHandle % 8)
8311 		ioc->pd_handles_sz++;
8312 	ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
8313 	    GFP_KERNEL);
8314 	if (!ioc->pd_handles) {
8315 		r = -ENOMEM;
8316 		goto out_free_resources;
8317 	}
8318 	ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
8319 	    GFP_KERNEL);
8320 	if (!ioc->blocking_handles) {
8321 		r = -ENOMEM;
8322 		goto out_free_resources;
8323 	}
8324 
8325 	/* allocate memory for pending OS device add list */
8326 	ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
8327 	if (ioc->facts.MaxDevHandle % 8)
8328 		ioc->pend_os_device_add_sz++;
8329 	ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
8330 	    GFP_KERNEL);
8331 	if (!ioc->pend_os_device_add) {
8332 		r = -ENOMEM;
8333 		goto out_free_resources;
8334 	}
8335 
8336 	ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
8337 	ioc->device_remove_in_progress =
8338 		kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
8339 	if (!ioc->device_remove_in_progress) {
8340 		r = -ENOMEM;
8341 		goto out_free_resources;
8342 	}
8343 
8344 	ioc->fwfault_debug = mpt3sas_fwfault_debug;
8345 
8346 	/* base internal command bits */
8347 	mutex_init(&ioc->base_cmds.mutex);
8348 	ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8349 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
8350 
8351 	/* port_enable command bits */
8352 	ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8353 	ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
8354 
8355 	/* transport internal command bits */
8356 	ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8357 	ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
8358 	mutex_init(&ioc->transport_cmds.mutex);
8359 
8360 	/* scsih internal command bits */
8361 	ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8362 	ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
8363 	mutex_init(&ioc->scsih_cmds.mutex);
8364 
8365 	/* task management internal command bits */
8366 	ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8367 	ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
8368 	mutex_init(&ioc->tm_cmds.mutex);
8369 
8370 	/* config page internal command bits */
8371 	ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8372 	ioc->config_cmds.status = MPT3_CMD_NOT_USED;
8373 	mutex_init(&ioc->config_cmds.mutex);
8374 
8375 	/* ctl module internal command bits */
8376 	ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8377 	ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
8378 	ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
8379 	mutex_init(&ioc->ctl_cmds.mutex);
8380 
8381 	if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
8382 	    !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
8383 	    !ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
8384 	    !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) {
8385 		r = -ENOMEM;
8386 		goto out_free_resources;
8387 	}
8388 
8389 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
8390 		ioc->event_masks[i] = -1;
8391 
8392 	/* here we enable the events we care about */
8393 	_base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
8394 	_base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
8395 	_base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
8396 	_base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
8397 	_base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
8398 	_base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
8399 	_base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
8400 	_base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
8401 	_base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
8402 	_base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
8403 	_base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
8404 	_base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
8405 	_base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR);
8406 	if (ioc->hba_mpi_version_belonged == MPI26_VERSION) {
8407 		if (ioc->is_gen35_ioc) {
8408 			_base_unmask_events(ioc,
8409 				MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE);
8410 			_base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION);
8411 			_base_unmask_events(ioc,
8412 				MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
8413 		}
8414 	}
8415 	r = _base_make_ioc_operational(ioc);
8416 	if (r == -EAGAIN) {
8417 		r = _base_make_ioc_operational(ioc);
8418 		if (r)
8419 			goto out_free_resources;
8420 	}
8421 
8422 	/*
8423 	 * Copy current copy of IOCFacts in prev_fw_facts
8424 	 * and it will be used during online firmware upgrade.
8425 	 */
8426 	memcpy(&ioc->prev_fw_facts, &ioc->facts,
8427 	    sizeof(struct mpt3sas_facts));
8428 
8429 	ioc->non_operational_loop = 0;
8430 	ioc->ioc_coredump_loop = 0;
8431 	ioc->got_task_abort_from_ioctl = 0;
8432 	return 0;
8433 
8434  out_free_resources:
8435 
8436 	ioc->remove_host = 1;
8437 
8438 	mpt3sas_base_free_resources(ioc);
8439 	_base_release_memory_pools(ioc);
8440 	pci_set_drvdata(ioc->pdev, NULL);
8441 	kfree(ioc->cpu_msix_table);
8442 	if (ioc->is_warpdrive)
8443 		kfree(ioc->reply_post_host_index);
8444 	kfree(ioc->pd_handles);
8445 	kfree(ioc->blocking_handles);
8446 	kfree(ioc->device_remove_in_progress);
8447 	kfree(ioc->pend_os_device_add);
8448 	kfree(ioc->tm_cmds.reply);
8449 	kfree(ioc->transport_cmds.reply);
8450 	kfree(ioc->scsih_cmds.reply);
8451 	kfree(ioc->config_cmds.reply);
8452 	kfree(ioc->base_cmds.reply);
8453 	kfree(ioc->port_enable_cmds.reply);
8454 	kfree(ioc->ctl_cmds.reply);
8455 	kfree(ioc->ctl_cmds.sense);
8456 	kfree(ioc->pfacts);
8457 	ioc->ctl_cmds.reply = NULL;
8458 	ioc->base_cmds.reply = NULL;
8459 	ioc->tm_cmds.reply = NULL;
8460 	ioc->scsih_cmds.reply = NULL;
8461 	ioc->transport_cmds.reply = NULL;
8462 	ioc->config_cmds.reply = NULL;
8463 	ioc->pfacts = NULL;
8464 	return r;
8465 }
8466 
8467 
8468 /**
8469  * mpt3sas_base_detach - remove controller instance
8470  * @ioc: per adapter object
8471  */
8472 void
8473 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
8474 {
8475 	dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8476 
8477 	mpt3sas_base_stop_watchdog(ioc);
8478 	mpt3sas_base_free_resources(ioc);
8479 	_base_release_memory_pools(ioc);
8480 	mpt3sas_free_enclosure_list(ioc);
8481 	pci_set_drvdata(ioc->pdev, NULL);
8482 	kfree(ioc->cpu_msix_table);
8483 	if (ioc->is_warpdrive)
8484 		kfree(ioc->reply_post_host_index);
8485 	kfree(ioc->pd_handles);
8486 	kfree(ioc->blocking_handles);
8487 	kfree(ioc->device_remove_in_progress);
8488 	kfree(ioc->pend_os_device_add);
8489 	kfree(ioc->pfacts);
8490 	kfree(ioc->ctl_cmds.reply);
8491 	kfree(ioc->ctl_cmds.sense);
8492 	kfree(ioc->base_cmds.reply);
8493 	kfree(ioc->port_enable_cmds.reply);
8494 	kfree(ioc->tm_cmds.reply);
8495 	kfree(ioc->transport_cmds.reply);
8496 	kfree(ioc->scsih_cmds.reply);
8497 	kfree(ioc->config_cmds.reply);
8498 }
8499 
8500 /**
8501  * _base_pre_reset_handler - pre reset handler
8502  * @ioc: per adapter object
8503  */
8504 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc)
8505 {
8506 	mpt3sas_scsih_pre_reset_handler(ioc);
8507 	mpt3sas_ctl_pre_reset_handler(ioc);
8508 	dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__));
8509 }
8510 
8511 /**
8512  * _base_clear_outstanding_mpt_commands - clears outstanding mpt commands
8513  * @ioc: per adapter object
8514  */
8515 static void
8516 _base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER *ioc)
8517 {
8518 	dtmprintk(ioc,
8519 	    ioc_info(ioc, "%s: clear outstanding mpt cmds\n", __func__));
8520 	if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
8521 		ioc->transport_cmds.status |= MPT3_CMD_RESET;
8522 		mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
8523 		complete(&ioc->transport_cmds.done);
8524 	}
8525 	if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
8526 		ioc->base_cmds.status |= MPT3_CMD_RESET;
8527 		mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
8528 		complete(&ioc->base_cmds.done);
8529 	}
8530 	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
8531 		ioc->port_enable_failed = 1;
8532 		ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
8533 		mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
8534 		if (ioc->is_driver_loading) {
8535 			ioc->start_scan_failed =
8536 				MPI2_IOCSTATUS_INTERNAL_ERROR;
8537 			ioc->start_scan = 0;
8538 		} else {
8539 			complete(&ioc->port_enable_cmds.done);
8540 		}
8541 	}
8542 	if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
8543 		ioc->config_cmds.status |= MPT3_CMD_RESET;
8544 		mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
8545 		ioc->config_cmds.smid = USHRT_MAX;
8546 		complete(&ioc->config_cmds.done);
8547 	}
8548 }
8549 
8550 /**
8551  * _base_clear_outstanding_commands - clear all outstanding commands
8552  * @ioc: per adapter object
8553  */
8554 static void _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc)
8555 {
8556 	mpt3sas_scsih_clear_outstanding_scsi_tm_commands(ioc);
8557 	mpt3sas_ctl_clear_outstanding_ioctls(ioc);
8558 	_base_clear_outstanding_mpt_commands(ioc);
8559 }
8560 
8561 /**
8562  * _base_reset_done_handler - reset done handler
8563  * @ioc: per adapter object
8564  */
8565 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc)
8566 {
8567 	mpt3sas_scsih_reset_done_handler(ioc);
8568 	mpt3sas_ctl_reset_done_handler(ioc);
8569 	dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__));
8570 }
8571 
8572 /**
8573  * mpt3sas_wait_for_commands_to_complete - reset controller
8574  * @ioc: Pointer to MPT_ADAPTER structure
8575  *
8576  * This function is waiting 10s for all pending commands to complete
8577  * prior to putting controller in reset.
8578  */
8579 void
8580 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
8581 {
8582 	u32 ioc_state;
8583 
8584 	ioc->pending_io_count = 0;
8585 
8586 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8587 	if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
8588 		return;
8589 
8590 	/* pending command count */
8591 	ioc->pending_io_count = scsi_host_busy(ioc->shost);
8592 
8593 	if (!ioc->pending_io_count)
8594 		return;
8595 
8596 	/* wait for pending commands to complete */
8597 	wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
8598 }
8599 
8600 /**
8601  * _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts
8602  *     attributes during online firmware upgrade and update the corresponding
8603  *     IOC variables accordingly.
8604  *
8605  * @ioc: Pointer to MPT_ADAPTER structure
8606  */
8607 static int
8608 _base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc)
8609 {
8610 	u16 pd_handles_sz;
8611 	void *pd_handles = NULL, *blocking_handles = NULL;
8612 	void *pend_os_device_add = NULL, *device_remove_in_progress = NULL;
8613 	struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts;
8614 
8615 	if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle) {
8616 		pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
8617 		if (ioc->facts.MaxDevHandle % 8)
8618 			pd_handles_sz++;
8619 
8620 		pd_handles = krealloc(ioc->pd_handles, pd_handles_sz,
8621 		    GFP_KERNEL);
8622 		if (!pd_handles) {
8623 			ioc_info(ioc,
8624 			    "Unable to allocate the memory for pd_handles of sz: %d\n",
8625 			    pd_handles_sz);
8626 			return -ENOMEM;
8627 		}
8628 		memset(pd_handles + ioc->pd_handles_sz, 0,
8629 		    (pd_handles_sz - ioc->pd_handles_sz));
8630 		ioc->pd_handles = pd_handles;
8631 
8632 		blocking_handles = krealloc(ioc->blocking_handles,
8633 		    pd_handles_sz, GFP_KERNEL);
8634 		if (!blocking_handles) {
8635 			ioc_info(ioc,
8636 			    "Unable to allocate the memory for "
8637 			    "blocking_handles of sz: %d\n",
8638 			    pd_handles_sz);
8639 			return -ENOMEM;
8640 		}
8641 		memset(blocking_handles + ioc->pd_handles_sz, 0,
8642 		    (pd_handles_sz - ioc->pd_handles_sz));
8643 		ioc->blocking_handles = blocking_handles;
8644 		ioc->pd_handles_sz = pd_handles_sz;
8645 
8646 		pend_os_device_add = krealloc(ioc->pend_os_device_add,
8647 		    pd_handles_sz, GFP_KERNEL);
8648 		if (!pend_os_device_add) {
8649 			ioc_info(ioc,
8650 			    "Unable to allocate the memory for pend_os_device_add of sz: %d\n",
8651 			    pd_handles_sz);
8652 			return -ENOMEM;
8653 		}
8654 		memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0,
8655 		    (pd_handles_sz - ioc->pend_os_device_add_sz));
8656 		ioc->pend_os_device_add = pend_os_device_add;
8657 		ioc->pend_os_device_add_sz = pd_handles_sz;
8658 
8659 		device_remove_in_progress = krealloc(
8660 		    ioc->device_remove_in_progress, pd_handles_sz, GFP_KERNEL);
8661 		if (!device_remove_in_progress) {
8662 			ioc_info(ioc,
8663 			    "Unable to allocate the memory for "
8664 			    "device_remove_in_progress of sz: %d\n "
8665 			    , pd_handles_sz);
8666 			return -ENOMEM;
8667 		}
8668 		memset(device_remove_in_progress +
8669 		    ioc->device_remove_in_progress_sz, 0,
8670 		    (pd_handles_sz - ioc->device_remove_in_progress_sz));
8671 		ioc->device_remove_in_progress = device_remove_in_progress;
8672 		ioc->device_remove_in_progress_sz = pd_handles_sz;
8673 	}
8674 
8675 	memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts));
8676 	return 0;
8677 }
8678 
8679 /**
8680  * mpt3sas_base_hard_reset_handler - reset controller
8681  * @ioc: Pointer to MPT_ADAPTER structure
8682  * @type: FORCE_BIG_HAMMER or SOFT_RESET
8683  *
8684  * Return: 0 for success, non-zero for failure.
8685  */
8686 int
8687 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
8688 	enum reset_type type)
8689 {
8690 	int r;
8691 	unsigned long flags;
8692 	u32 ioc_state;
8693 	u8 is_fault = 0, is_trigger = 0;
8694 
8695 	dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__));
8696 
8697 	if (ioc->pci_error_recovery) {
8698 		ioc_err(ioc, "%s: pci error recovery reset\n", __func__);
8699 		r = 0;
8700 		goto out_unlocked;
8701 	}
8702 
8703 	if (mpt3sas_fwfault_debug)
8704 		mpt3sas_halt_firmware(ioc);
8705 
8706 	/* wait for an active reset in progress to complete */
8707 	mutex_lock(&ioc->reset_in_progress_mutex);
8708 
8709 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
8710 	ioc->shost_recovery = 1;
8711 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
8712 
8713 	if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
8714 	    MPT3_DIAG_BUFFER_IS_REGISTERED) &&
8715 	    (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
8716 	    MPT3_DIAG_BUFFER_IS_RELEASED))) {
8717 		is_trigger = 1;
8718 		ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8719 		if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT ||
8720 		    (ioc_state & MPI2_IOC_STATE_MASK) ==
8721 		    MPI2_IOC_STATE_COREDUMP) {
8722 			is_fault = 1;
8723 			ioc->htb_rel.trigger_info_dwords[1] =
8724 			    (ioc_state & MPI2_DOORBELL_DATA_MASK);
8725 		}
8726 	}
8727 	_base_pre_reset_handler(ioc);
8728 	mpt3sas_wait_for_commands_to_complete(ioc);
8729 	mpt3sas_base_mask_interrupts(ioc);
8730 	mpt3sas_base_pause_mq_polling(ioc);
8731 	r = mpt3sas_base_make_ioc_ready(ioc, type);
8732 	if (r)
8733 		goto out;
8734 	_base_clear_outstanding_commands(ioc);
8735 
8736 	/* If this hard reset is called while port enable is active, then
8737 	 * there is no reason to call make_ioc_operational
8738 	 */
8739 	if (ioc->is_driver_loading && ioc->port_enable_failed) {
8740 		ioc->remove_host = 1;
8741 		r = -EFAULT;
8742 		goto out;
8743 	}
8744 	r = _base_get_ioc_facts(ioc);
8745 	if (r)
8746 		goto out;
8747 
8748 	r = _base_check_ioc_facts_changes(ioc);
8749 	if (r) {
8750 		ioc_info(ioc,
8751 		    "Some of the parameters got changed in this new firmware"
8752 		    " image and it requires system reboot\n");
8753 		goto out;
8754 	}
8755 	if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
8756 		panic("%s: Issue occurred with flashing controller firmware."
8757 		      "Please reboot the system and ensure that the correct"
8758 		      " firmware version is running\n", ioc->name);
8759 
8760 	r = _base_make_ioc_operational(ioc);
8761 	if (!r)
8762 		_base_reset_done_handler(ioc);
8763 
8764  out:
8765 	ioc_info(ioc, "%s: %s\n", __func__, r == 0 ? "SUCCESS" : "FAILED");
8766 
8767 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
8768 	ioc->shost_recovery = 0;
8769 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
8770 	ioc->ioc_reset_count++;
8771 	mutex_unlock(&ioc->reset_in_progress_mutex);
8772 	mpt3sas_base_resume_mq_polling(ioc);
8773 
8774  out_unlocked:
8775 	if ((r == 0) && is_trigger) {
8776 		if (is_fault)
8777 			mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
8778 		else
8779 			mpt3sas_trigger_master(ioc,
8780 			    MASTER_TRIGGER_ADAPTER_RESET);
8781 	}
8782 	dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__));
8783 	return r;
8784 }
8785