1 /* 2 * This is the Fusion MPT base driver providing common API layer interface 3 * for access to MPT (Message Passing Technology) firmware. 4 * 5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c 6 * Copyright (C) 2012-2014 LSI Corporation 7 * Copyright (C) 2013-2014 Avago Technologies 8 * (mailto: MPT-FusionLinux.pdl@avagotech.com) 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License 12 * as published by the Free Software Foundation; either version 2 13 * of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * NO WARRANTY 21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR 22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT 23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, 24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is 25 * solely responsible for determining the appropriateness of using and 26 * distributing the Program and assumes all risks associated with its 27 * exercise of rights under this Agreement, including but not limited to 28 * the risks and costs of program errors, damage to or loss of data, 29 * programs or equipment, and unavailability or interruption of operations. 30 31 * DISCLAIMER OF LIABILITY 32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY 33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND 35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED 38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES 39 40 * You should have received a copy of the GNU General Public License 41 * along with this program; if not, write to the Free Software 42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, 43 * USA. 44 */ 45 46 #include <linux/kernel.h> 47 #include <linux/module.h> 48 #include <linux/errno.h> 49 #include <linux/init.h> 50 #include <linux/slab.h> 51 #include <linux/types.h> 52 #include <linux/pci.h> 53 #include <linux/kdev_t.h> 54 #include <linux/blkdev.h> 55 #include <linux/delay.h> 56 #include <linux/interrupt.h> 57 #include <linux/dma-mapping.h> 58 #include <linux/io.h> 59 #include <linux/time.h> 60 #include <linux/ktime.h> 61 #include <linux/kthread.h> 62 #include <asm/page.h> /* To get host page size per arch */ 63 #include <linux/aer.h> 64 65 66 #include "mpt3sas_base.h" 67 68 static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS]; 69 70 71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */ 72 73 /* maximum controller queue depth */ 74 #define MAX_HBA_QUEUE_DEPTH 30000 75 #define MAX_CHAIN_DEPTH 100000 76 static int max_queue_depth = -1; 77 module_param(max_queue_depth, int, 0444); 78 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth "); 79 80 static int max_sgl_entries = -1; 81 module_param(max_sgl_entries, int, 0444); 82 MODULE_PARM_DESC(max_sgl_entries, " max sg entries "); 83 84 static int msix_disable = -1; 85 module_param(msix_disable, int, 0444); 86 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)"); 87 88 static int smp_affinity_enable = 1; 89 module_param(smp_affinity_enable, int, 0444); 90 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)"); 91 92 static int max_msix_vectors = -1; 93 module_param(max_msix_vectors, int, 0444); 94 MODULE_PARM_DESC(max_msix_vectors, 95 " max msix vectors"); 96 97 static int irqpoll_weight = -1; 98 module_param(irqpoll_weight, int, 0444); 99 MODULE_PARM_DESC(irqpoll_weight, 100 "irq poll weight (default= one fourth of HBA queue depth)"); 101 102 static int mpt3sas_fwfault_debug; 103 MODULE_PARM_DESC(mpt3sas_fwfault_debug, 104 " enable detection of firmware fault and halt firmware - (default=0)"); 105 106 static int perf_mode = -1; 107 module_param(perf_mode, int, 0444); 108 MODULE_PARM_DESC(perf_mode, 109 "Performance mode (only for Aero/Sea Generation), options:\n\t\t" 110 "0 - balanced: high iops mode is enabled &\n\t\t" 111 "interrupt coalescing is enabled only on high iops queues,\n\t\t" 112 "1 - iops: high iops mode is disabled &\n\t\t" 113 "interrupt coalescing is enabled on all queues,\n\t\t" 114 "2 - latency: high iops mode is disabled &\n\t\t" 115 "interrupt coalescing is enabled on all queues with timeout value 0xA,\n" 116 "\t\tdefault - default perf_mode is 'balanced'" 117 ); 118 119 static int poll_queues; 120 module_param(poll_queues, int, 0444); 121 MODULE_PARM_DESC(poll_queues, "Number of queues to be use for io_uring poll mode.\n\t\t" 122 "This parameter is effective only if host_tagset_enable=1. &\n\t\t" 123 "when poll_queues are enabled then &\n\t\t" 124 "perf_mode is set to latency mode. &\n\t\t" 125 ); 126 127 enum mpt3sas_perf_mode { 128 MPT_PERF_MODE_DEFAULT = -1, 129 MPT_PERF_MODE_BALANCED = 0, 130 MPT_PERF_MODE_IOPS = 1, 131 MPT_PERF_MODE_LATENCY = 2, 132 }; 133 134 static int 135 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, 136 u32 ioc_state, int timeout); 137 static int 138 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc); 139 static void 140 _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc); 141 142 /** 143 * mpt3sas_base_check_cmd_timeout - Function 144 * to check timeout and command termination due 145 * to Host reset. 146 * 147 * @ioc: per adapter object. 148 * @status: Status of issued command. 149 * @mpi_request:mf request pointer. 150 * @sz: size of buffer. 151 * 152 * Return: 1/0 Reset to be done or Not 153 */ 154 u8 155 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc, 156 u8 status, void *mpi_request, int sz) 157 { 158 u8 issue_reset = 0; 159 160 if (!(status & MPT3_CMD_RESET)) 161 issue_reset = 1; 162 163 ioc_err(ioc, "Command %s\n", 164 issue_reset == 0 ? "terminated due to Host Reset" : "Timeout"); 165 _debug_dump_mf(mpi_request, sz); 166 167 return issue_reset; 168 } 169 170 /** 171 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug. 172 * @val: ? 173 * @kp: ? 174 * 175 * Return: ? 176 */ 177 static int 178 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp) 179 { 180 int ret = param_set_int(val, kp); 181 struct MPT3SAS_ADAPTER *ioc; 182 183 if (ret) 184 return ret; 185 186 /* global ioc spinlock to protect controller list on list operations */ 187 pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug); 188 spin_lock(&gioc_lock); 189 list_for_each_entry(ioc, &mpt3sas_ioc_list, list) 190 ioc->fwfault_debug = mpt3sas_fwfault_debug; 191 spin_unlock(&gioc_lock); 192 return 0; 193 } 194 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug, 195 param_get_int, &mpt3sas_fwfault_debug, 0644); 196 197 /** 198 * _base_readl_aero - retry readl for max three times. 199 * @addr: MPT Fusion system interface register address 200 * 201 * Retry the readl() for max three times if it gets zero value 202 * while reading the system interface register. 203 */ 204 static inline u32 205 _base_readl_aero(const volatile void __iomem *addr) 206 { 207 u32 i = 0, ret_val; 208 209 do { 210 ret_val = readl(addr); 211 i++; 212 } while (ret_val == 0 && i < 3); 213 214 return ret_val; 215 } 216 217 static inline u32 218 _base_readl(const volatile void __iomem *addr) 219 { 220 return readl(addr); 221 } 222 223 /** 224 * _base_clone_reply_to_sys_mem - copies reply to reply free iomem 225 * in BAR0 space. 226 * 227 * @ioc: per adapter object 228 * @reply: reply message frame(lower 32bit addr) 229 * @index: System request message index. 230 */ 231 static void 232 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply, 233 u32 index) 234 { 235 /* 236 * 256 is offset within sys register. 237 * 256 offset MPI frame starts. Max MPI frame supported is 32. 238 * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts 239 */ 240 u16 cmd_credit = ioc->facts.RequestCredit + 1; 241 void __iomem *reply_free_iomem = (void __iomem *)ioc->chip + 242 MPI_FRAME_START_OFFSET + 243 (cmd_credit * ioc->request_sz) + (index * sizeof(u32)); 244 245 writel(reply, reply_free_iomem); 246 } 247 248 /** 249 * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames 250 * to system/BAR0 region. 251 * 252 * @dst_iomem: Pointer to the destination location in BAR0 space. 253 * @src: Pointer to the Source data. 254 * @size: Size of data to be copied. 255 */ 256 static void 257 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size) 258 { 259 int i; 260 u32 *src_virt_mem = (u32 *)src; 261 262 for (i = 0; i < size/4; i++) 263 writel((u32)src_virt_mem[i], 264 (void __iomem *)dst_iomem + (i * 4)); 265 } 266 267 /** 268 * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region 269 * 270 * @dst_iomem: Pointer to the destination location in BAR0 space. 271 * @src: Pointer to the Source data. 272 * @size: Size of data to be copied. 273 */ 274 static void 275 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size) 276 { 277 int i; 278 u32 *src_virt_mem = (u32 *)(src); 279 280 for (i = 0; i < size/4; i++) 281 writel((u32)src_virt_mem[i], 282 (void __iomem *)dst_iomem + (i * 4)); 283 } 284 285 /** 286 * _base_get_chain - Calculates and Returns virtual chain address 287 * for the provided smid in BAR0 space. 288 * 289 * @ioc: per adapter object 290 * @smid: system request message index 291 * @sge_chain_count: Scatter gather chain count. 292 * 293 * Return: the chain address. 294 */ 295 static inline void __iomem* 296 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid, 297 u8 sge_chain_count) 298 { 299 void __iomem *base_chain, *chain_virt; 300 u16 cmd_credit = ioc->facts.RequestCredit + 1; 301 302 base_chain = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET + 303 (cmd_credit * ioc->request_sz) + 304 REPLY_FREE_POOL_SIZE; 305 chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth * 306 ioc->request_sz) + (sge_chain_count * ioc->request_sz); 307 return chain_virt; 308 } 309 310 /** 311 * _base_get_chain_phys - Calculates and Returns physical address 312 * in BAR0 for scatter gather chains, for 313 * the provided smid. 314 * 315 * @ioc: per adapter object 316 * @smid: system request message index 317 * @sge_chain_count: Scatter gather chain count. 318 * 319 * Return: Physical chain address. 320 */ 321 static inline phys_addr_t 322 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid, 323 u8 sge_chain_count) 324 { 325 phys_addr_t base_chain_phys, chain_phys; 326 u16 cmd_credit = ioc->facts.RequestCredit + 1; 327 328 base_chain_phys = ioc->chip_phys + MPI_FRAME_START_OFFSET + 329 (cmd_credit * ioc->request_sz) + 330 REPLY_FREE_POOL_SIZE; 331 chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth * 332 ioc->request_sz) + (sge_chain_count * ioc->request_sz); 333 return chain_phys; 334 } 335 336 /** 337 * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host 338 * buffer address for the provided smid. 339 * (Each smid can have 64K starts from 17024) 340 * 341 * @ioc: per adapter object 342 * @smid: system request message index 343 * 344 * Return: Pointer to buffer location in BAR0. 345 */ 346 347 static void __iomem * 348 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid) 349 { 350 u16 cmd_credit = ioc->facts.RequestCredit + 1; 351 // Added extra 1 to reach end of chain. 352 void __iomem *chain_end = _base_get_chain(ioc, 353 cmd_credit + 1, 354 ioc->facts.MaxChainDepth); 355 return chain_end + (smid * 64 * 1024); 356 } 357 358 /** 359 * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped 360 * Host buffer Physical address for the provided smid. 361 * (Each smid can have 64K starts from 17024) 362 * 363 * @ioc: per adapter object 364 * @smid: system request message index 365 * 366 * Return: Pointer to buffer location in BAR0. 367 */ 368 static phys_addr_t 369 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid) 370 { 371 u16 cmd_credit = ioc->facts.RequestCredit + 1; 372 phys_addr_t chain_end_phys = _base_get_chain_phys(ioc, 373 cmd_credit + 1, 374 ioc->facts.MaxChainDepth); 375 return chain_end_phys + (smid * 64 * 1024); 376 } 377 378 /** 379 * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain 380 * lookup list and Provides chain_buffer 381 * address for the matching dma address. 382 * (Each smid can have 64K starts from 17024) 383 * 384 * @ioc: per adapter object 385 * @chain_buffer_dma: Chain buffer dma address. 386 * 387 * Return: Pointer to chain buffer. Or Null on Failure. 388 */ 389 static void * 390 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc, 391 dma_addr_t chain_buffer_dma) 392 { 393 u16 index, j; 394 struct chain_tracker *ct; 395 396 for (index = 0; index < ioc->scsiio_depth; index++) { 397 for (j = 0; j < ioc->chains_needed_per_io; j++) { 398 ct = &ioc->chain_lookup[index].chains_per_smid[j]; 399 if (ct && ct->chain_buffer_dma == chain_buffer_dma) 400 return ct->chain_buffer; 401 } 402 } 403 ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n"); 404 return NULL; 405 } 406 407 /** 408 * _clone_sg_entries - MPI EP's scsiio and config requests 409 * are handled here. Base function for 410 * double buffering, before submitting 411 * the requests. 412 * 413 * @ioc: per adapter object. 414 * @mpi_request: mf request pointer. 415 * @smid: system request message index. 416 */ 417 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc, 418 void *mpi_request, u16 smid) 419 { 420 Mpi2SGESimple32_t *sgel, *sgel_next; 421 u32 sgl_flags, sge_chain_count = 0; 422 bool is_write = false; 423 u16 i = 0; 424 void __iomem *buffer_iomem; 425 phys_addr_t buffer_iomem_phys; 426 void __iomem *buff_ptr; 427 phys_addr_t buff_ptr_phys; 428 void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO]; 429 void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO]; 430 phys_addr_t dst_addr_phys; 431 MPI2RequestHeader_t *request_hdr; 432 struct scsi_cmnd *scmd; 433 struct scatterlist *sg_scmd = NULL; 434 int is_scsiio_req = 0; 435 436 request_hdr = (MPI2RequestHeader_t *) mpi_request; 437 438 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) { 439 Mpi25SCSIIORequest_t *scsiio_request = 440 (Mpi25SCSIIORequest_t *)mpi_request; 441 sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL; 442 is_scsiio_req = 1; 443 } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) { 444 Mpi2ConfigRequest_t *config_req = 445 (Mpi2ConfigRequest_t *)mpi_request; 446 sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE; 447 } else 448 return; 449 450 /* From smid we can get scsi_cmd, once we have sg_scmd, 451 * we just need to get sg_virt and sg_next to get virtual 452 * address associated with sgel->Address. 453 */ 454 455 if (is_scsiio_req) { 456 /* Get scsi_cmd using smid */ 457 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid); 458 if (scmd == NULL) { 459 ioc_err(ioc, "scmd is NULL\n"); 460 return; 461 } 462 463 /* Get sg_scmd from scmd provided */ 464 sg_scmd = scsi_sglist(scmd); 465 } 466 467 /* 468 * 0 - 255 System register 469 * 256 - 4352 MPI Frame. (This is based on maxCredit 32) 470 * 4352 - 4864 Reply_free pool (512 byte is reserved 471 * considering maxCredit 32. Reply need extra 472 * room, for mCPU case kept four times of 473 * maxCredit). 474 * 4864 - 17152 SGE chain element. (32cmd * 3 chain of 475 * 128 byte size = 12288) 476 * 17152 - x Host buffer mapped with smid. 477 * (Each smid can have 64K Max IO.) 478 * BAR0+Last 1K MSIX Addr and Data 479 * Total size in use 2113664 bytes of 4MB BAR0 480 */ 481 482 buffer_iomem = _base_get_buffer_bar0(ioc, smid); 483 buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid); 484 485 buff_ptr = buffer_iomem; 486 buff_ptr_phys = buffer_iomem_phys; 487 WARN_ON(buff_ptr_phys > U32_MAX); 488 489 if (le32_to_cpu(sgel->FlagsLength) & 490 (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT)) 491 is_write = true; 492 493 for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) { 494 495 sgl_flags = 496 (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT); 497 498 switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) { 499 case MPI2_SGE_FLAGS_CHAIN_ELEMENT: 500 /* 501 * Helper function which on passing 502 * chain_buffer_dma returns chain_buffer. Get 503 * the virtual address for sgel->Address 504 */ 505 sgel_next = 506 _base_get_chain_buffer_dma_to_chain_buffer(ioc, 507 le32_to_cpu(sgel->Address)); 508 if (sgel_next == NULL) 509 return; 510 /* 511 * This is coping 128 byte chain 512 * frame (not a host buffer) 513 */ 514 dst_chain_addr[sge_chain_count] = 515 _base_get_chain(ioc, 516 smid, sge_chain_count); 517 src_chain_addr[sge_chain_count] = 518 (void *) sgel_next; 519 dst_addr_phys = _base_get_chain_phys(ioc, 520 smid, sge_chain_count); 521 WARN_ON(dst_addr_phys > U32_MAX); 522 sgel->Address = 523 cpu_to_le32(lower_32_bits(dst_addr_phys)); 524 sgel = sgel_next; 525 sge_chain_count++; 526 break; 527 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT: 528 if (is_write) { 529 if (is_scsiio_req) { 530 _base_clone_to_sys_mem(buff_ptr, 531 sg_virt(sg_scmd), 532 (le32_to_cpu(sgel->FlagsLength) & 533 0x00ffffff)); 534 /* 535 * FIXME: this relies on a a zero 536 * PCI mem_offset. 537 */ 538 sgel->Address = 539 cpu_to_le32((u32)buff_ptr_phys); 540 } else { 541 _base_clone_to_sys_mem(buff_ptr, 542 ioc->config_vaddr, 543 (le32_to_cpu(sgel->FlagsLength) & 544 0x00ffffff)); 545 sgel->Address = 546 cpu_to_le32((u32)buff_ptr_phys); 547 } 548 } 549 buff_ptr += (le32_to_cpu(sgel->FlagsLength) & 550 0x00ffffff); 551 buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) & 552 0x00ffffff); 553 if ((le32_to_cpu(sgel->FlagsLength) & 554 (MPI2_SGE_FLAGS_END_OF_BUFFER 555 << MPI2_SGE_FLAGS_SHIFT))) 556 goto eob_clone_chain; 557 else { 558 /* 559 * Every single element in MPT will have 560 * associated sg_next. Better to sanity that 561 * sg_next is not NULL, but it will be a bug 562 * if it is null. 563 */ 564 if (is_scsiio_req) { 565 sg_scmd = sg_next(sg_scmd); 566 if (sg_scmd) 567 sgel++; 568 else 569 goto eob_clone_chain; 570 } 571 } 572 break; 573 } 574 } 575 576 eob_clone_chain: 577 for (i = 0; i < sge_chain_count; i++) { 578 if (is_scsiio_req) 579 _base_clone_to_sys_mem(dst_chain_addr[i], 580 src_chain_addr[i], ioc->request_sz); 581 } 582 } 583 584 /** 585 * mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc 586 * @arg: input argument, used to derive ioc 587 * 588 * Return: 589 * 0 if controller is removed from pci subsystem. 590 * -1 for other case. 591 */ 592 static int mpt3sas_remove_dead_ioc_func(void *arg) 593 { 594 struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg; 595 struct pci_dev *pdev; 596 597 if (!ioc) 598 return -1; 599 600 pdev = ioc->pdev; 601 if (!pdev) 602 return -1; 603 pci_stop_and_remove_bus_device_locked(pdev); 604 return 0; 605 } 606 607 /** 608 * _base_sync_drv_fw_timestamp - Sync Drive-Fw TimeStamp. 609 * @ioc: Per Adapter Object 610 * 611 * Return: nothing. 612 */ 613 static void _base_sync_drv_fw_timestamp(struct MPT3SAS_ADAPTER *ioc) 614 { 615 Mpi26IoUnitControlRequest_t *mpi_request; 616 Mpi26IoUnitControlReply_t *mpi_reply; 617 u16 smid; 618 ktime_t current_time; 619 u64 TimeStamp = 0; 620 u8 issue_reset = 0; 621 622 mutex_lock(&ioc->scsih_cmds.mutex); 623 if (ioc->scsih_cmds.status != MPT3_CMD_NOT_USED) { 624 ioc_err(ioc, "scsih_cmd in use %s\n", __func__); 625 goto out; 626 } 627 ioc->scsih_cmds.status = MPT3_CMD_PENDING; 628 smid = mpt3sas_base_get_smid(ioc, ioc->scsih_cb_idx); 629 if (!smid) { 630 ioc_err(ioc, "Failed obtaining a smid %s\n", __func__); 631 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED; 632 goto out; 633 } 634 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 635 ioc->scsih_cmds.smid = smid; 636 memset(mpi_request, 0, sizeof(Mpi26IoUnitControlRequest_t)); 637 mpi_request->Function = MPI2_FUNCTION_IO_UNIT_CONTROL; 638 mpi_request->Operation = MPI26_CTRL_OP_SET_IOC_PARAMETER; 639 mpi_request->IOCParameter = MPI26_SET_IOC_PARAMETER_SYNC_TIMESTAMP; 640 current_time = ktime_get_real(); 641 TimeStamp = ktime_to_ms(current_time); 642 mpi_request->Reserved7 = cpu_to_le32(TimeStamp >> 32); 643 mpi_request->IOCParameterValue = cpu_to_le32(TimeStamp & 0xFFFFFFFF); 644 init_completion(&ioc->scsih_cmds.done); 645 ioc->put_smid_default(ioc, smid); 646 dinitprintk(ioc, ioc_info(ioc, 647 "Io Unit Control Sync TimeStamp (sending), @time %lld ms\n", 648 TimeStamp)); 649 wait_for_completion_timeout(&ioc->scsih_cmds.done, 650 MPT3SAS_TIMESYNC_TIMEOUT_SECONDS*HZ); 651 if (!(ioc->scsih_cmds.status & MPT3_CMD_COMPLETE)) { 652 mpt3sas_check_cmd_timeout(ioc, 653 ioc->scsih_cmds.status, mpi_request, 654 sizeof(Mpi2SasIoUnitControlRequest_t)/4, issue_reset); 655 goto issue_host_reset; 656 } 657 if (ioc->scsih_cmds.status & MPT3_CMD_REPLY_VALID) { 658 mpi_reply = ioc->scsih_cmds.reply; 659 dinitprintk(ioc, ioc_info(ioc, 660 "Io Unit Control sync timestamp (complete): ioc_status(0x%04x), loginfo(0x%08x)\n", 661 le16_to_cpu(mpi_reply->IOCStatus), 662 le32_to_cpu(mpi_reply->IOCLogInfo))); 663 } 664 issue_host_reset: 665 if (issue_reset) 666 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 667 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED; 668 out: 669 mutex_unlock(&ioc->scsih_cmds.mutex); 670 } 671 672 /** 673 * _base_fault_reset_work - workq handling ioc fault conditions 674 * @work: input argument, used to derive ioc 675 * 676 * Context: sleep. 677 */ 678 static void 679 _base_fault_reset_work(struct work_struct *work) 680 { 681 struct MPT3SAS_ADAPTER *ioc = 682 container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work); 683 unsigned long flags; 684 u32 doorbell; 685 int rc; 686 struct task_struct *p; 687 688 689 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 690 if ((ioc->shost_recovery && (ioc->ioc_coredump_loop == 0)) || 691 ioc->pci_error_recovery) 692 goto rearm_timer; 693 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 694 695 doorbell = mpt3sas_base_get_iocstate(ioc, 0); 696 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) { 697 ioc_err(ioc, "SAS host is non-operational !!!!\n"); 698 699 /* It may be possible that EEH recovery can resolve some of 700 * pci bus failure issues rather removing the dead ioc function 701 * by considering controller is in a non-operational state. So 702 * here priority is given to the EEH recovery. If it doesn't 703 * not resolve this issue, mpt3sas driver will consider this 704 * controller to non-operational state and remove the dead ioc 705 * function. 706 */ 707 if (ioc->non_operational_loop++ < 5) { 708 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, 709 flags); 710 goto rearm_timer; 711 } 712 713 /* 714 * Call _scsih_flush_pending_cmds callback so that we flush all 715 * pending commands back to OS. This call is required to avoid 716 * deadlock at block layer. Dead IOC will fail to do diag reset, 717 * and this call is safe since dead ioc will never return any 718 * command back from HW. 719 */ 720 mpt3sas_base_pause_mq_polling(ioc); 721 ioc->schedule_dead_ioc_flush_running_cmds(ioc); 722 /* 723 * Set remove_host flag early since kernel thread will 724 * take some time to execute. 725 */ 726 ioc->remove_host = 1; 727 /*Remove the Dead Host */ 728 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc, 729 "%s_dead_ioc_%d", ioc->driver_name, ioc->id); 730 if (IS_ERR(p)) 731 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n", 732 __func__); 733 else 734 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n", 735 __func__); 736 return; /* don't rearm timer */ 737 } 738 739 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) { 740 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ? 741 ioc->manu_pg11.CoreDumpTOSec : 742 MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS; 743 744 timeout /= (FAULT_POLLING_INTERVAL/1000); 745 746 if (ioc->ioc_coredump_loop == 0) { 747 mpt3sas_print_coredump_info(ioc, 748 doorbell & MPI2_DOORBELL_DATA_MASK); 749 /* do not accept any IOs and disable the interrupts */ 750 spin_lock_irqsave( 751 &ioc->ioc_reset_in_progress_lock, flags); 752 ioc->shost_recovery = 1; 753 spin_unlock_irqrestore( 754 &ioc->ioc_reset_in_progress_lock, flags); 755 mpt3sas_base_mask_interrupts(ioc); 756 mpt3sas_base_pause_mq_polling(ioc); 757 _base_clear_outstanding_commands(ioc); 758 } 759 760 ioc_info(ioc, "%s: CoreDump loop %d.", 761 __func__, ioc->ioc_coredump_loop); 762 763 /* Wait until CoreDump completes or times out */ 764 if (ioc->ioc_coredump_loop++ < timeout) { 765 spin_lock_irqsave( 766 &ioc->ioc_reset_in_progress_lock, flags); 767 goto rearm_timer; 768 } 769 } 770 771 if (ioc->ioc_coredump_loop) { 772 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_COREDUMP) 773 ioc_err(ioc, "%s: CoreDump completed. LoopCount: %d", 774 __func__, ioc->ioc_coredump_loop); 775 else 776 ioc_err(ioc, "%s: CoreDump Timed out. LoopCount: %d", 777 __func__, ioc->ioc_coredump_loop); 778 ioc->ioc_coredump_loop = MPT3SAS_COREDUMP_LOOP_DONE; 779 } 780 ioc->non_operational_loop = 0; 781 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) { 782 rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 783 ioc_warn(ioc, "%s: hard reset: %s\n", 784 __func__, rc == 0 ? "success" : "failed"); 785 doorbell = mpt3sas_base_get_iocstate(ioc, 0); 786 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 787 mpt3sas_print_fault_code(ioc, doorbell & 788 MPI2_DOORBELL_DATA_MASK); 789 } else if ((doorbell & MPI2_IOC_STATE_MASK) == 790 MPI2_IOC_STATE_COREDUMP) 791 mpt3sas_print_coredump_info(ioc, doorbell & 792 MPI2_DOORBELL_DATA_MASK); 793 if (rc && (doorbell & MPI2_IOC_STATE_MASK) != 794 MPI2_IOC_STATE_OPERATIONAL) 795 return; /* don't rearm timer */ 796 } 797 ioc->ioc_coredump_loop = 0; 798 if (ioc->time_sync_interval && 799 ++ioc->timestamp_update_count >= ioc->time_sync_interval) { 800 ioc->timestamp_update_count = 0; 801 _base_sync_drv_fw_timestamp(ioc); 802 } 803 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 804 rearm_timer: 805 if (ioc->fault_reset_work_q) 806 queue_delayed_work(ioc->fault_reset_work_q, 807 &ioc->fault_reset_work, 808 msecs_to_jiffies(FAULT_POLLING_INTERVAL)); 809 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 810 } 811 812 /** 813 * mpt3sas_base_start_watchdog - start the fault_reset_work_q 814 * @ioc: per adapter object 815 * 816 * Context: sleep. 817 */ 818 void 819 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc) 820 { 821 unsigned long flags; 822 823 if (ioc->fault_reset_work_q) 824 return; 825 826 ioc->timestamp_update_count = 0; 827 /* initialize fault polling */ 828 829 INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work); 830 snprintf(ioc->fault_reset_work_q_name, 831 sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status", 832 ioc->driver_name, ioc->id); 833 ioc->fault_reset_work_q = 834 create_singlethread_workqueue(ioc->fault_reset_work_q_name); 835 if (!ioc->fault_reset_work_q) { 836 ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__); 837 return; 838 } 839 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 840 if (ioc->fault_reset_work_q) 841 queue_delayed_work(ioc->fault_reset_work_q, 842 &ioc->fault_reset_work, 843 msecs_to_jiffies(FAULT_POLLING_INTERVAL)); 844 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 845 } 846 847 /** 848 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q 849 * @ioc: per adapter object 850 * 851 * Context: sleep. 852 */ 853 void 854 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc) 855 { 856 unsigned long flags; 857 struct workqueue_struct *wq; 858 859 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 860 wq = ioc->fault_reset_work_q; 861 ioc->fault_reset_work_q = NULL; 862 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 863 if (wq) { 864 if (!cancel_delayed_work_sync(&ioc->fault_reset_work)) 865 flush_workqueue(wq); 866 destroy_workqueue(wq); 867 } 868 } 869 870 /** 871 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code 872 * @ioc: per adapter object 873 * @fault_code: fault code 874 */ 875 void 876 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code) 877 { 878 ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code); 879 } 880 881 /** 882 * mpt3sas_base_coredump_info - verbose translation of firmware CoreDump state 883 * @ioc: per adapter object 884 * @fault_code: fault code 885 * 886 * Return: nothing. 887 */ 888 void 889 mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code) 890 { 891 ioc_err(ioc, "coredump_state(0x%04x)!\n", fault_code); 892 } 893 894 /** 895 * mpt3sas_base_wait_for_coredump_completion - Wait until coredump 896 * completes or times out 897 * @ioc: per adapter object 898 * @caller: caller function name 899 * 900 * Return: 0 for success, non-zero for failure. 901 */ 902 int 903 mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER *ioc, 904 const char *caller) 905 { 906 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ? 907 ioc->manu_pg11.CoreDumpTOSec : 908 MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS; 909 910 int ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_FAULT, 911 timeout); 912 913 if (ioc_state) 914 ioc_err(ioc, 915 "%s: CoreDump timed out. (ioc_state=0x%x)\n", 916 caller, ioc_state); 917 else 918 ioc_info(ioc, 919 "%s: CoreDump completed. (ioc_state=0x%x)\n", 920 caller, ioc_state); 921 922 return ioc_state; 923 } 924 925 /** 926 * mpt3sas_halt_firmware - halt's mpt controller firmware 927 * @ioc: per adapter object 928 * 929 * For debugging timeout related issues. Writing 0xCOFFEE00 930 * to the doorbell register will halt controller firmware. With 931 * the purpose to stop both driver and firmware, the enduser can 932 * obtain a ring buffer from controller UART. 933 */ 934 void 935 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc) 936 { 937 u32 doorbell; 938 939 if (!ioc->fwfault_debug) 940 return; 941 942 dump_stack(); 943 944 doorbell = ioc->base_readl(&ioc->chip->Doorbell); 945 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 946 mpt3sas_print_fault_code(ioc, doorbell & 947 MPI2_DOORBELL_DATA_MASK); 948 } else if ((doorbell & MPI2_IOC_STATE_MASK) == 949 MPI2_IOC_STATE_COREDUMP) { 950 mpt3sas_print_coredump_info(ioc, doorbell & 951 MPI2_DOORBELL_DATA_MASK); 952 } else { 953 writel(0xC0FFEE00, &ioc->chip->Doorbell); 954 ioc_err(ioc, "Firmware is halted due to command timeout\n"); 955 } 956 957 if (ioc->fwfault_debug == 2) 958 for (;;) 959 ; 960 else 961 panic("panic in %s\n", __func__); 962 } 963 964 /** 965 * _base_sas_ioc_info - verbose translation of the ioc status 966 * @ioc: per adapter object 967 * @mpi_reply: reply mf payload returned from firmware 968 * @request_hdr: request mf 969 */ 970 static void 971 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply, 972 MPI2RequestHeader_t *request_hdr) 973 { 974 u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & 975 MPI2_IOCSTATUS_MASK; 976 char *desc = NULL; 977 u16 frame_sz; 978 char *func_str = NULL; 979 980 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */ 981 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST || 982 request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH || 983 request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION) 984 return; 985 986 if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE) 987 return; 988 /* 989 * Older Firmware version doesn't support driver trigger pages. 990 * So, skip displaying 'config invalid type' type 991 * of error message. 992 */ 993 if (request_hdr->Function == MPI2_FUNCTION_CONFIG) { 994 Mpi2ConfigRequest_t *rqst = (Mpi2ConfigRequest_t *)request_hdr; 995 996 if ((rqst->ExtPageType == 997 MPI2_CONFIG_EXTPAGETYPE_DRIVER_PERSISTENT_TRIGGER) && 998 !(ioc->logging_level & MPT_DEBUG_CONFIG)) { 999 return; 1000 } 1001 } 1002 1003 switch (ioc_status) { 1004 1005 /**************************************************************************** 1006 * Common IOCStatus values for all replies 1007 ****************************************************************************/ 1008 1009 case MPI2_IOCSTATUS_INVALID_FUNCTION: 1010 desc = "invalid function"; 1011 break; 1012 case MPI2_IOCSTATUS_BUSY: 1013 desc = "busy"; 1014 break; 1015 case MPI2_IOCSTATUS_INVALID_SGL: 1016 desc = "invalid sgl"; 1017 break; 1018 case MPI2_IOCSTATUS_INTERNAL_ERROR: 1019 desc = "internal error"; 1020 break; 1021 case MPI2_IOCSTATUS_INVALID_VPID: 1022 desc = "invalid vpid"; 1023 break; 1024 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES: 1025 desc = "insufficient resources"; 1026 break; 1027 case MPI2_IOCSTATUS_INSUFFICIENT_POWER: 1028 desc = "insufficient power"; 1029 break; 1030 case MPI2_IOCSTATUS_INVALID_FIELD: 1031 desc = "invalid field"; 1032 break; 1033 case MPI2_IOCSTATUS_INVALID_STATE: 1034 desc = "invalid state"; 1035 break; 1036 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED: 1037 desc = "op state not supported"; 1038 break; 1039 1040 /**************************************************************************** 1041 * Config IOCStatus values 1042 ****************************************************************************/ 1043 1044 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION: 1045 desc = "config invalid action"; 1046 break; 1047 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE: 1048 desc = "config invalid type"; 1049 break; 1050 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE: 1051 desc = "config invalid page"; 1052 break; 1053 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA: 1054 desc = "config invalid data"; 1055 break; 1056 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS: 1057 desc = "config no defaults"; 1058 break; 1059 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT: 1060 desc = "config can't commit"; 1061 break; 1062 1063 /**************************************************************************** 1064 * SCSI IO Reply 1065 ****************************************************************************/ 1066 1067 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR: 1068 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE: 1069 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE: 1070 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN: 1071 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN: 1072 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR: 1073 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR: 1074 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED: 1075 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH: 1076 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED: 1077 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED: 1078 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED: 1079 break; 1080 1081 /**************************************************************************** 1082 * For use by SCSI Initiator and SCSI Target end-to-end data protection 1083 ****************************************************************************/ 1084 1085 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR: 1086 desc = "eedp guard error"; 1087 break; 1088 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR: 1089 desc = "eedp ref tag error"; 1090 break; 1091 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR: 1092 desc = "eedp app tag error"; 1093 break; 1094 1095 /**************************************************************************** 1096 * SCSI Target values 1097 ****************************************************************************/ 1098 1099 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX: 1100 desc = "target invalid io index"; 1101 break; 1102 case MPI2_IOCSTATUS_TARGET_ABORTED: 1103 desc = "target aborted"; 1104 break; 1105 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE: 1106 desc = "target no conn retryable"; 1107 break; 1108 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION: 1109 desc = "target no connection"; 1110 break; 1111 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH: 1112 desc = "target xfer count mismatch"; 1113 break; 1114 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR: 1115 desc = "target data offset error"; 1116 break; 1117 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA: 1118 desc = "target too much write data"; 1119 break; 1120 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT: 1121 desc = "target iu too short"; 1122 break; 1123 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT: 1124 desc = "target ack nak timeout"; 1125 break; 1126 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED: 1127 desc = "target nak received"; 1128 break; 1129 1130 /**************************************************************************** 1131 * Serial Attached SCSI values 1132 ****************************************************************************/ 1133 1134 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED: 1135 desc = "smp request failed"; 1136 break; 1137 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN: 1138 desc = "smp data overrun"; 1139 break; 1140 1141 /**************************************************************************** 1142 * Diagnostic Buffer Post / Diagnostic Release values 1143 ****************************************************************************/ 1144 1145 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED: 1146 desc = "diagnostic released"; 1147 break; 1148 default: 1149 break; 1150 } 1151 1152 if (!desc) 1153 return; 1154 1155 switch (request_hdr->Function) { 1156 case MPI2_FUNCTION_CONFIG: 1157 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size; 1158 func_str = "config_page"; 1159 break; 1160 case MPI2_FUNCTION_SCSI_TASK_MGMT: 1161 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t); 1162 func_str = "task_mgmt"; 1163 break; 1164 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL: 1165 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t); 1166 func_str = "sas_iounit_ctl"; 1167 break; 1168 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR: 1169 frame_sz = sizeof(Mpi2SepRequest_t); 1170 func_str = "enclosure"; 1171 break; 1172 case MPI2_FUNCTION_IOC_INIT: 1173 frame_sz = sizeof(Mpi2IOCInitRequest_t); 1174 func_str = "ioc_init"; 1175 break; 1176 case MPI2_FUNCTION_PORT_ENABLE: 1177 frame_sz = sizeof(Mpi2PortEnableRequest_t); 1178 func_str = "port_enable"; 1179 break; 1180 case MPI2_FUNCTION_SMP_PASSTHROUGH: 1181 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size; 1182 func_str = "smp_passthru"; 1183 break; 1184 case MPI2_FUNCTION_NVME_ENCAPSULATED: 1185 frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) + 1186 ioc->sge_size; 1187 func_str = "nvme_encapsulated"; 1188 break; 1189 default: 1190 frame_sz = 32; 1191 func_str = "unknown"; 1192 break; 1193 } 1194 1195 ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n", 1196 desc, ioc_status, request_hdr, func_str); 1197 1198 _debug_dump_mf(request_hdr, frame_sz/4); 1199 } 1200 1201 /** 1202 * _base_display_event_data - verbose translation of firmware asyn events 1203 * @ioc: per adapter object 1204 * @mpi_reply: reply mf payload returned from firmware 1205 */ 1206 static void 1207 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc, 1208 Mpi2EventNotificationReply_t *mpi_reply) 1209 { 1210 char *desc = NULL; 1211 u16 event; 1212 1213 if (!(ioc->logging_level & MPT_DEBUG_EVENTS)) 1214 return; 1215 1216 event = le16_to_cpu(mpi_reply->Event); 1217 1218 switch (event) { 1219 case MPI2_EVENT_LOG_DATA: 1220 desc = "Log Data"; 1221 break; 1222 case MPI2_EVENT_STATE_CHANGE: 1223 desc = "Status Change"; 1224 break; 1225 case MPI2_EVENT_HARD_RESET_RECEIVED: 1226 desc = "Hard Reset Received"; 1227 break; 1228 case MPI2_EVENT_EVENT_CHANGE: 1229 desc = "Event Change"; 1230 break; 1231 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE: 1232 desc = "Device Status Change"; 1233 break; 1234 case MPI2_EVENT_IR_OPERATION_STATUS: 1235 if (!ioc->hide_ir_msg) 1236 desc = "IR Operation Status"; 1237 break; 1238 case MPI2_EVENT_SAS_DISCOVERY: 1239 { 1240 Mpi2EventDataSasDiscovery_t *event_data = 1241 (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData; 1242 ioc_info(ioc, "Discovery: (%s)", 1243 event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ? 1244 "start" : "stop"); 1245 if (event_data->DiscoveryStatus) 1246 pr_cont(" discovery_status(0x%08x)", 1247 le32_to_cpu(event_data->DiscoveryStatus)); 1248 pr_cont("\n"); 1249 return; 1250 } 1251 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE: 1252 desc = "SAS Broadcast Primitive"; 1253 break; 1254 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE: 1255 desc = "SAS Init Device Status Change"; 1256 break; 1257 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW: 1258 desc = "SAS Init Table Overflow"; 1259 break; 1260 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST: 1261 desc = "SAS Topology Change List"; 1262 break; 1263 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE: 1264 desc = "SAS Enclosure Device Status Change"; 1265 break; 1266 case MPI2_EVENT_IR_VOLUME: 1267 if (!ioc->hide_ir_msg) 1268 desc = "IR Volume"; 1269 break; 1270 case MPI2_EVENT_IR_PHYSICAL_DISK: 1271 if (!ioc->hide_ir_msg) 1272 desc = "IR Physical Disk"; 1273 break; 1274 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST: 1275 if (!ioc->hide_ir_msg) 1276 desc = "IR Configuration Change List"; 1277 break; 1278 case MPI2_EVENT_LOG_ENTRY_ADDED: 1279 if (!ioc->hide_ir_msg) 1280 desc = "Log Entry Added"; 1281 break; 1282 case MPI2_EVENT_TEMP_THRESHOLD: 1283 desc = "Temperature Threshold"; 1284 break; 1285 case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION: 1286 desc = "Cable Event"; 1287 break; 1288 case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR: 1289 desc = "SAS Device Discovery Error"; 1290 break; 1291 case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE: 1292 desc = "PCIE Device Status Change"; 1293 break; 1294 case MPI2_EVENT_PCIE_ENUMERATION: 1295 { 1296 Mpi26EventDataPCIeEnumeration_t *event_data = 1297 (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData; 1298 ioc_info(ioc, "PCIE Enumeration: (%s)", 1299 event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ? 1300 "start" : "stop"); 1301 if (event_data->EnumerationStatus) 1302 pr_cont("enumeration_status(0x%08x)", 1303 le32_to_cpu(event_data->EnumerationStatus)); 1304 pr_cont("\n"); 1305 return; 1306 } 1307 case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST: 1308 desc = "PCIE Topology Change List"; 1309 break; 1310 } 1311 1312 if (!desc) 1313 return; 1314 1315 ioc_info(ioc, "%s\n", desc); 1316 } 1317 1318 /** 1319 * _base_sas_log_info - verbose translation of firmware log info 1320 * @ioc: per adapter object 1321 * @log_info: log info 1322 */ 1323 static void 1324 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc, u32 log_info) 1325 { 1326 union loginfo_type { 1327 u32 loginfo; 1328 struct { 1329 u32 subcode:16; 1330 u32 code:8; 1331 u32 originator:4; 1332 u32 bus_type:4; 1333 } dw; 1334 }; 1335 union loginfo_type sas_loginfo; 1336 char *originator_str = NULL; 1337 1338 sas_loginfo.loginfo = log_info; 1339 if (sas_loginfo.dw.bus_type != 3 /*SAS*/) 1340 return; 1341 1342 /* each nexus loss loginfo */ 1343 if (log_info == 0x31170000) 1344 return; 1345 1346 /* eat the loginfos associated with task aborts */ 1347 if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info == 1348 0x31140000 || log_info == 0x31130000)) 1349 return; 1350 1351 switch (sas_loginfo.dw.originator) { 1352 case 0: 1353 originator_str = "IOP"; 1354 break; 1355 case 1: 1356 originator_str = "PL"; 1357 break; 1358 case 2: 1359 if (!ioc->hide_ir_msg) 1360 originator_str = "IR"; 1361 else 1362 originator_str = "WarpDrive"; 1363 break; 1364 } 1365 1366 ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n", 1367 log_info, 1368 originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode); 1369 } 1370 1371 /** 1372 * _base_display_reply_info - handle reply descriptors depending on IOC Status 1373 * @ioc: per adapter object 1374 * @smid: system request message index 1375 * @msix_index: MSIX table index supplied by the OS 1376 * @reply: reply message frame (lower 32bit addr) 1377 */ 1378 static void 1379 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 1380 u32 reply) 1381 { 1382 MPI2DefaultReply_t *mpi_reply; 1383 u16 ioc_status; 1384 u32 loginfo = 0; 1385 1386 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1387 if (unlikely(!mpi_reply)) { 1388 ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n", 1389 __FILE__, __LINE__, __func__); 1390 return; 1391 } 1392 ioc_status = le16_to_cpu(mpi_reply->IOCStatus); 1393 1394 if ((ioc_status & MPI2_IOCSTATUS_MASK) && 1395 (ioc->logging_level & MPT_DEBUG_REPLY)) { 1396 _base_sas_ioc_info(ioc, mpi_reply, 1397 mpt3sas_base_get_msg_frame(ioc, smid)); 1398 } 1399 1400 if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) { 1401 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo); 1402 _base_sas_log_info(ioc, loginfo); 1403 } 1404 1405 if (ioc_status || loginfo) { 1406 ioc_status &= MPI2_IOCSTATUS_MASK; 1407 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo); 1408 } 1409 } 1410 1411 /** 1412 * mpt3sas_base_done - base internal command completion routine 1413 * @ioc: per adapter object 1414 * @smid: system request message index 1415 * @msix_index: MSIX table index supplied by the OS 1416 * @reply: reply message frame(lower 32bit addr) 1417 * 1418 * Return: 1419 * 1 meaning mf should be freed from _base_interrupt 1420 * 0 means the mf is freed from this function. 1421 */ 1422 u8 1423 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 1424 u32 reply) 1425 { 1426 MPI2DefaultReply_t *mpi_reply; 1427 1428 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1429 if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK) 1430 return mpt3sas_check_for_pending_internal_cmds(ioc, smid); 1431 1432 if (ioc->base_cmds.status == MPT3_CMD_NOT_USED) 1433 return 1; 1434 1435 ioc->base_cmds.status |= MPT3_CMD_COMPLETE; 1436 if (mpi_reply) { 1437 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID; 1438 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4); 1439 } 1440 ioc->base_cmds.status &= ~MPT3_CMD_PENDING; 1441 1442 complete(&ioc->base_cmds.done); 1443 return 1; 1444 } 1445 1446 /** 1447 * _base_async_event - main callback handler for firmware asyn events 1448 * @ioc: per adapter object 1449 * @msix_index: MSIX table index supplied by the OS 1450 * @reply: reply message frame(lower 32bit addr) 1451 * 1452 * Return: 1453 * 1 meaning mf should be freed from _base_interrupt 1454 * 0 means the mf is freed from this function. 1455 */ 1456 static u8 1457 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply) 1458 { 1459 Mpi2EventNotificationReply_t *mpi_reply; 1460 Mpi2EventAckRequest_t *ack_request; 1461 u16 smid; 1462 struct _event_ack_list *delayed_event_ack; 1463 1464 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1465 if (!mpi_reply) 1466 return 1; 1467 if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION) 1468 return 1; 1469 1470 _base_display_event_data(ioc, mpi_reply); 1471 1472 if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED)) 1473 goto out; 1474 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 1475 if (!smid) { 1476 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack), 1477 GFP_ATOMIC); 1478 if (!delayed_event_ack) 1479 goto out; 1480 INIT_LIST_HEAD(&delayed_event_ack->list); 1481 delayed_event_ack->Event = mpi_reply->Event; 1482 delayed_event_ack->EventContext = mpi_reply->EventContext; 1483 list_add_tail(&delayed_event_ack->list, 1484 &ioc->delayed_event_ack_list); 1485 dewtprintk(ioc, 1486 ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n", 1487 le16_to_cpu(mpi_reply->Event))); 1488 goto out; 1489 } 1490 1491 ack_request = mpt3sas_base_get_msg_frame(ioc, smid); 1492 memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t)); 1493 ack_request->Function = MPI2_FUNCTION_EVENT_ACK; 1494 ack_request->Event = mpi_reply->Event; 1495 ack_request->EventContext = mpi_reply->EventContext; 1496 ack_request->VF_ID = 0; /* TODO */ 1497 ack_request->VP_ID = 0; 1498 ioc->put_smid_default(ioc, smid); 1499 1500 out: 1501 1502 /* scsih callback handler */ 1503 mpt3sas_scsih_event_callback(ioc, msix_index, reply); 1504 1505 /* ctl callback handler */ 1506 mpt3sas_ctl_event_callback(ioc, msix_index, reply); 1507 1508 return 1; 1509 } 1510 1511 static struct scsiio_tracker * 1512 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid) 1513 { 1514 struct scsi_cmnd *cmd; 1515 1516 if (WARN_ON(!smid) || 1517 WARN_ON(smid >= ioc->hi_priority_smid)) 1518 return NULL; 1519 1520 cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid); 1521 if (cmd) 1522 return scsi_cmd_priv(cmd); 1523 1524 return NULL; 1525 } 1526 1527 /** 1528 * _base_get_cb_idx - obtain the callback index 1529 * @ioc: per adapter object 1530 * @smid: system request message index 1531 * 1532 * Return: callback index. 1533 */ 1534 static u8 1535 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid) 1536 { 1537 int i; 1538 u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1; 1539 u8 cb_idx = 0xFF; 1540 1541 if (smid < ioc->hi_priority_smid) { 1542 struct scsiio_tracker *st; 1543 1544 if (smid < ctl_smid) { 1545 st = _get_st_from_smid(ioc, smid); 1546 if (st) 1547 cb_idx = st->cb_idx; 1548 } else if (smid == ctl_smid) 1549 cb_idx = ioc->ctl_cb_idx; 1550 } else if (smid < ioc->internal_smid) { 1551 i = smid - ioc->hi_priority_smid; 1552 cb_idx = ioc->hpr_lookup[i].cb_idx; 1553 } else if (smid <= ioc->hba_queue_depth) { 1554 i = smid - ioc->internal_smid; 1555 cb_idx = ioc->internal_lookup[i].cb_idx; 1556 } 1557 return cb_idx; 1558 } 1559 1560 /** 1561 * mpt3sas_base_pause_mq_polling - pause polling on the mq poll queues 1562 * when driver is flushing out the IOs. 1563 * @ioc: per adapter object 1564 * 1565 * Pause polling on the mq poll (io uring) queues when driver is flushing 1566 * out the IOs. Otherwise we may see the race condition of completing the same 1567 * IO from two paths. 1568 * 1569 * Returns nothing. 1570 */ 1571 void 1572 mpt3sas_base_pause_mq_polling(struct MPT3SAS_ADAPTER *ioc) 1573 { 1574 int iopoll_q_count = 1575 ioc->reply_queue_count - ioc->iopoll_q_start_index; 1576 int qid; 1577 1578 for (qid = 0; qid < iopoll_q_count; qid++) 1579 atomic_set(&ioc->io_uring_poll_queues[qid].pause, 1); 1580 1581 /* 1582 * wait for current poll to complete. 1583 */ 1584 for (qid = 0; qid < iopoll_q_count; qid++) { 1585 while (atomic_read(&ioc->io_uring_poll_queues[qid].busy)) { 1586 cpu_relax(); 1587 udelay(500); 1588 } 1589 } 1590 } 1591 1592 /** 1593 * mpt3sas_base_resume_mq_polling - Resume polling on mq poll queues. 1594 * @ioc: per adapter object 1595 * 1596 * Returns nothing. 1597 */ 1598 void 1599 mpt3sas_base_resume_mq_polling(struct MPT3SAS_ADAPTER *ioc) 1600 { 1601 int iopoll_q_count = 1602 ioc->reply_queue_count - ioc->iopoll_q_start_index; 1603 int qid; 1604 1605 for (qid = 0; qid < iopoll_q_count; qid++) 1606 atomic_set(&ioc->io_uring_poll_queues[qid].pause, 0); 1607 } 1608 1609 /** 1610 * mpt3sas_base_mask_interrupts - disable interrupts 1611 * @ioc: per adapter object 1612 * 1613 * Disabling ResetIRQ, Reply and Doorbell Interrupts 1614 */ 1615 void 1616 mpt3sas_base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc) 1617 { 1618 u32 him_register; 1619 1620 ioc->mask_interrupts = 1; 1621 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask); 1622 him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK; 1623 writel(him_register, &ioc->chip->HostInterruptMask); 1624 ioc->base_readl(&ioc->chip->HostInterruptMask); 1625 } 1626 1627 /** 1628 * mpt3sas_base_unmask_interrupts - enable interrupts 1629 * @ioc: per adapter object 1630 * 1631 * Enabling only Reply Interrupts 1632 */ 1633 void 1634 mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc) 1635 { 1636 u32 him_register; 1637 1638 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask); 1639 him_register &= ~MPI2_HIM_RIM; 1640 writel(him_register, &ioc->chip->HostInterruptMask); 1641 ioc->mask_interrupts = 0; 1642 } 1643 1644 union reply_descriptor { 1645 u64 word; 1646 struct { 1647 u32 low; 1648 u32 high; 1649 } u; 1650 }; 1651 1652 static u32 base_mod64(u64 dividend, u32 divisor) 1653 { 1654 u32 remainder; 1655 1656 if (!divisor) 1657 pr_err("mpt3sas: DIVISOR is zero, in div fn\n"); 1658 remainder = do_div(dividend, divisor); 1659 return remainder; 1660 } 1661 1662 /** 1663 * _base_process_reply_queue - Process reply descriptors from reply 1664 * descriptor post queue. 1665 * @reply_q: per IRQ's reply queue object. 1666 * 1667 * Return: number of reply descriptors processed from reply 1668 * descriptor queue. 1669 */ 1670 static int 1671 _base_process_reply_queue(struct adapter_reply_queue *reply_q) 1672 { 1673 union reply_descriptor rd; 1674 u64 completed_cmds; 1675 u8 request_descript_type; 1676 u16 smid; 1677 u8 cb_idx; 1678 u32 reply; 1679 u8 msix_index = reply_q->msix_index; 1680 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc; 1681 Mpi2ReplyDescriptorsUnion_t *rpf; 1682 u8 rc; 1683 1684 completed_cmds = 0; 1685 if (!atomic_add_unless(&reply_q->busy, 1, 1)) 1686 return completed_cmds; 1687 1688 rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index]; 1689 request_descript_type = rpf->Default.ReplyFlags 1690 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 1691 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) { 1692 atomic_dec(&reply_q->busy); 1693 return completed_cmds; 1694 } 1695 1696 cb_idx = 0xFF; 1697 do { 1698 rd.word = le64_to_cpu(rpf->Words); 1699 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX) 1700 goto out; 1701 reply = 0; 1702 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1); 1703 if (request_descript_type == 1704 MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS || 1705 request_descript_type == 1706 MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS || 1707 request_descript_type == 1708 MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) { 1709 cb_idx = _base_get_cb_idx(ioc, smid); 1710 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) && 1711 (likely(mpt_callbacks[cb_idx] != NULL))) { 1712 rc = mpt_callbacks[cb_idx](ioc, smid, 1713 msix_index, 0); 1714 if (rc) 1715 mpt3sas_base_free_smid(ioc, smid); 1716 } 1717 } else if (request_descript_type == 1718 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) { 1719 reply = le32_to_cpu( 1720 rpf->AddressReply.ReplyFrameAddress); 1721 if (reply > ioc->reply_dma_max_address || 1722 reply < ioc->reply_dma_min_address) 1723 reply = 0; 1724 if (smid) { 1725 cb_idx = _base_get_cb_idx(ioc, smid); 1726 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) && 1727 (likely(mpt_callbacks[cb_idx] != NULL))) { 1728 rc = mpt_callbacks[cb_idx](ioc, smid, 1729 msix_index, reply); 1730 if (reply) 1731 _base_display_reply_info(ioc, 1732 smid, msix_index, reply); 1733 if (rc) 1734 mpt3sas_base_free_smid(ioc, 1735 smid); 1736 } 1737 } else { 1738 _base_async_event(ioc, msix_index, reply); 1739 } 1740 1741 /* reply free queue handling */ 1742 if (reply) { 1743 ioc->reply_free_host_index = 1744 (ioc->reply_free_host_index == 1745 (ioc->reply_free_queue_depth - 1)) ? 1746 0 : ioc->reply_free_host_index + 1; 1747 ioc->reply_free[ioc->reply_free_host_index] = 1748 cpu_to_le32(reply); 1749 if (ioc->is_mcpu_endpoint) 1750 _base_clone_reply_to_sys_mem(ioc, 1751 reply, 1752 ioc->reply_free_host_index); 1753 writel(ioc->reply_free_host_index, 1754 &ioc->chip->ReplyFreeHostIndex); 1755 } 1756 } 1757 1758 rpf->Words = cpu_to_le64(ULLONG_MAX); 1759 reply_q->reply_post_host_index = 1760 (reply_q->reply_post_host_index == 1761 (ioc->reply_post_queue_depth - 1)) ? 0 : 1762 reply_q->reply_post_host_index + 1; 1763 request_descript_type = 1764 reply_q->reply_post_free[reply_q->reply_post_host_index]. 1765 Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 1766 completed_cmds++; 1767 /* Update the reply post host index after continuously 1768 * processing the threshold number of Reply Descriptors. 1769 * So that FW can find enough entries to post the Reply 1770 * Descriptors in the reply descriptor post queue. 1771 */ 1772 if (completed_cmds >= ioc->thresh_hold) { 1773 if (ioc->combined_reply_queue) { 1774 writel(reply_q->reply_post_host_index | 1775 ((msix_index & 7) << 1776 MPI2_RPHI_MSIX_INDEX_SHIFT), 1777 ioc->replyPostRegisterIndex[msix_index/8]); 1778 } else { 1779 writel(reply_q->reply_post_host_index | 1780 (msix_index << 1781 MPI2_RPHI_MSIX_INDEX_SHIFT), 1782 &ioc->chip->ReplyPostHostIndex); 1783 } 1784 if (!reply_q->is_iouring_poll_q && 1785 !reply_q->irq_poll_scheduled) { 1786 reply_q->irq_poll_scheduled = true; 1787 irq_poll_sched(&reply_q->irqpoll); 1788 } 1789 atomic_dec(&reply_q->busy); 1790 return completed_cmds; 1791 } 1792 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) 1793 goto out; 1794 if (!reply_q->reply_post_host_index) 1795 rpf = reply_q->reply_post_free; 1796 else 1797 rpf++; 1798 } while (1); 1799 1800 out: 1801 1802 if (!completed_cmds) { 1803 atomic_dec(&reply_q->busy); 1804 return completed_cmds; 1805 } 1806 1807 if (ioc->is_warpdrive) { 1808 writel(reply_q->reply_post_host_index, 1809 ioc->reply_post_host_index[msix_index]); 1810 atomic_dec(&reply_q->busy); 1811 return completed_cmds; 1812 } 1813 1814 /* Update Reply Post Host Index. 1815 * For those HBA's which support combined reply queue feature 1816 * 1. Get the correct Supplemental Reply Post Host Index Register. 1817 * i.e. (msix_index / 8)th entry from Supplemental Reply Post Host 1818 * Index Register address bank i.e replyPostRegisterIndex[], 1819 * 2. Then update this register with new reply host index value 1820 * in ReplyPostIndex field and the MSIxIndex field with 1821 * msix_index value reduced to a value between 0 and 7, 1822 * using a modulo 8 operation. Since each Supplemental Reply Post 1823 * Host Index Register supports 8 MSI-X vectors. 1824 * 1825 * For other HBA's just update the Reply Post Host Index register with 1826 * new reply host index value in ReplyPostIndex Field and msix_index 1827 * value in MSIxIndex field. 1828 */ 1829 if (ioc->combined_reply_queue) 1830 writel(reply_q->reply_post_host_index | ((msix_index & 7) << 1831 MPI2_RPHI_MSIX_INDEX_SHIFT), 1832 ioc->replyPostRegisterIndex[msix_index/8]); 1833 else 1834 writel(reply_q->reply_post_host_index | (msix_index << 1835 MPI2_RPHI_MSIX_INDEX_SHIFT), 1836 &ioc->chip->ReplyPostHostIndex); 1837 atomic_dec(&reply_q->busy); 1838 return completed_cmds; 1839 } 1840 1841 /** 1842 * mpt3sas_blk_mq_poll - poll the blk mq poll queue 1843 * @shost: Scsi_Host object 1844 * @queue_num: hw ctx queue number 1845 * 1846 * Return number of entries that has been processed from poll queue. 1847 */ 1848 int mpt3sas_blk_mq_poll(struct Scsi_Host *shost, unsigned int queue_num) 1849 { 1850 struct MPT3SAS_ADAPTER *ioc = 1851 (struct MPT3SAS_ADAPTER *)shost->hostdata; 1852 struct adapter_reply_queue *reply_q; 1853 int num_entries = 0; 1854 int qid = queue_num - ioc->iopoll_q_start_index; 1855 1856 if (atomic_read(&ioc->io_uring_poll_queues[qid].pause) || 1857 !atomic_add_unless(&ioc->io_uring_poll_queues[qid].busy, 1, 1)) 1858 return 0; 1859 1860 reply_q = ioc->io_uring_poll_queues[qid].reply_q; 1861 1862 num_entries = _base_process_reply_queue(reply_q); 1863 atomic_dec(&ioc->io_uring_poll_queues[qid].busy); 1864 1865 return num_entries; 1866 } 1867 1868 /** 1869 * _base_interrupt - MPT adapter (IOC) specific interrupt handler. 1870 * @irq: irq number (not used) 1871 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure 1872 * 1873 * Return: IRQ_HANDLED if processed, else IRQ_NONE. 1874 */ 1875 static irqreturn_t 1876 _base_interrupt(int irq, void *bus_id) 1877 { 1878 struct adapter_reply_queue *reply_q = bus_id; 1879 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc; 1880 1881 if (ioc->mask_interrupts) 1882 return IRQ_NONE; 1883 if (reply_q->irq_poll_scheduled) 1884 return IRQ_HANDLED; 1885 return ((_base_process_reply_queue(reply_q) > 0) ? 1886 IRQ_HANDLED : IRQ_NONE); 1887 } 1888 1889 /** 1890 * _base_irqpoll - IRQ poll callback handler 1891 * @irqpoll: irq_poll object 1892 * @budget: irq poll weight 1893 * 1894 * Return: number of reply descriptors processed 1895 */ 1896 static int 1897 _base_irqpoll(struct irq_poll *irqpoll, int budget) 1898 { 1899 struct adapter_reply_queue *reply_q; 1900 int num_entries = 0; 1901 1902 reply_q = container_of(irqpoll, struct adapter_reply_queue, 1903 irqpoll); 1904 if (reply_q->irq_line_enable) { 1905 disable_irq_nosync(reply_q->os_irq); 1906 reply_q->irq_line_enable = false; 1907 } 1908 num_entries = _base_process_reply_queue(reply_q); 1909 if (num_entries < budget) { 1910 irq_poll_complete(irqpoll); 1911 reply_q->irq_poll_scheduled = false; 1912 reply_q->irq_line_enable = true; 1913 enable_irq(reply_q->os_irq); 1914 /* 1915 * Go for one more round of processing the 1916 * reply descriptor post queue in case the HBA 1917 * Firmware has posted some reply descriptors 1918 * while reenabling the IRQ. 1919 */ 1920 _base_process_reply_queue(reply_q); 1921 } 1922 1923 return num_entries; 1924 } 1925 1926 /** 1927 * _base_init_irqpolls - initliaze IRQ polls 1928 * @ioc: per adapter object 1929 * 1930 * Return: nothing 1931 */ 1932 static void 1933 _base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc) 1934 { 1935 struct adapter_reply_queue *reply_q, *next; 1936 1937 if (list_empty(&ioc->reply_queue_list)) 1938 return; 1939 1940 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) { 1941 if (reply_q->is_iouring_poll_q) 1942 continue; 1943 irq_poll_init(&reply_q->irqpoll, 1944 ioc->hba_queue_depth/4, _base_irqpoll); 1945 reply_q->irq_poll_scheduled = false; 1946 reply_q->irq_line_enable = true; 1947 reply_q->os_irq = pci_irq_vector(ioc->pdev, 1948 reply_q->msix_index); 1949 } 1950 } 1951 1952 /** 1953 * _base_is_controller_msix_enabled - is controller support muli-reply queues 1954 * @ioc: per adapter object 1955 * 1956 * Return: Whether or not MSI/X is enabled. 1957 */ 1958 static inline int 1959 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc) 1960 { 1961 return (ioc->facts.IOCCapabilities & 1962 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable; 1963 } 1964 1965 /** 1966 * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts 1967 * @ioc: per adapter object 1968 * @poll: poll over reply descriptor pools incase interrupt for 1969 * timed-out SCSI command got delayed 1970 * Context: non-ISR context 1971 * 1972 * Called when a Task Management request has completed. 1973 */ 1974 void 1975 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc, u8 poll) 1976 { 1977 struct adapter_reply_queue *reply_q; 1978 1979 /* If MSIX capability is turned off 1980 * then multi-queues are not enabled 1981 */ 1982 if (!_base_is_controller_msix_enabled(ioc)) 1983 return; 1984 1985 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 1986 if (ioc->shost_recovery || ioc->remove_host || 1987 ioc->pci_error_recovery) 1988 return; 1989 /* TMs are on msix_index == 0 */ 1990 if (reply_q->msix_index == 0) 1991 continue; 1992 1993 if (reply_q->is_iouring_poll_q) { 1994 _base_process_reply_queue(reply_q); 1995 continue; 1996 } 1997 1998 synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index)); 1999 if (reply_q->irq_poll_scheduled) { 2000 /* Calling irq_poll_disable will wait for any pending 2001 * callbacks to have completed. 2002 */ 2003 irq_poll_disable(&reply_q->irqpoll); 2004 irq_poll_enable(&reply_q->irqpoll); 2005 /* check how the scheduled poll has ended, 2006 * clean up only if necessary 2007 */ 2008 if (reply_q->irq_poll_scheduled) { 2009 reply_q->irq_poll_scheduled = false; 2010 reply_q->irq_line_enable = true; 2011 enable_irq(reply_q->os_irq); 2012 } 2013 } 2014 2015 if (poll) 2016 _base_process_reply_queue(reply_q); 2017 } 2018 } 2019 2020 /** 2021 * mpt3sas_base_release_callback_handler - clear interrupt callback handler 2022 * @cb_idx: callback index 2023 */ 2024 void 2025 mpt3sas_base_release_callback_handler(u8 cb_idx) 2026 { 2027 mpt_callbacks[cb_idx] = NULL; 2028 } 2029 2030 /** 2031 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler 2032 * @cb_func: callback function 2033 * 2034 * Return: Index of @cb_func. 2035 */ 2036 u8 2037 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func) 2038 { 2039 u8 cb_idx; 2040 2041 for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--) 2042 if (mpt_callbacks[cb_idx] == NULL) 2043 break; 2044 2045 mpt_callbacks[cb_idx] = cb_func; 2046 return cb_idx; 2047 } 2048 2049 /** 2050 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler 2051 */ 2052 void 2053 mpt3sas_base_initialize_callback_handler(void) 2054 { 2055 u8 cb_idx; 2056 2057 for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++) 2058 mpt3sas_base_release_callback_handler(cb_idx); 2059 } 2060 2061 2062 /** 2063 * _base_build_zero_len_sge - build zero length sg entry 2064 * @ioc: per adapter object 2065 * @paddr: virtual address for SGE 2066 * 2067 * Create a zero length scatter gather entry to insure the IOCs hardware has 2068 * something to use if the target device goes brain dead and tries 2069 * to send data even when none is asked for. 2070 */ 2071 static void 2072 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr) 2073 { 2074 u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT | 2075 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST | 2076 MPI2_SGE_FLAGS_SIMPLE_ELEMENT) << 2077 MPI2_SGE_FLAGS_SHIFT); 2078 ioc->base_add_sg_single(paddr, flags_length, -1); 2079 } 2080 2081 /** 2082 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr. 2083 * @paddr: virtual address for SGE 2084 * @flags_length: SGE flags and data transfer length 2085 * @dma_addr: Physical address 2086 */ 2087 static void 2088 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr) 2089 { 2090 Mpi2SGESimple32_t *sgel = paddr; 2091 2092 flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING | 2093 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT; 2094 sgel->FlagsLength = cpu_to_le32(flags_length); 2095 sgel->Address = cpu_to_le32(dma_addr); 2096 } 2097 2098 2099 /** 2100 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr. 2101 * @paddr: virtual address for SGE 2102 * @flags_length: SGE flags and data transfer length 2103 * @dma_addr: Physical address 2104 */ 2105 static void 2106 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr) 2107 { 2108 Mpi2SGESimple64_t *sgel = paddr; 2109 2110 flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING | 2111 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT; 2112 sgel->FlagsLength = cpu_to_le32(flags_length); 2113 sgel->Address = cpu_to_le64(dma_addr); 2114 } 2115 2116 /** 2117 * _base_get_chain_buffer_tracker - obtain chain tracker 2118 * @ioc: per adapter object 2119 * @scmd: SCSI commands of the IO request 2120 * 2121 * Return: chain tracker from chain_lookup table using key as 2122 * smid and smid's chain_offset. 2123 */ 2124 static struct chain_tracker * 2125 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc, 2126 struct scsi_cmnd *scmd) 2127 { 2128 struct chain_tracker *chain_req; 2129 struct scsiio_tracker *st = scsi_cmd_priv(scmd); 2130 u16 smid = st->smid; 2131 u8 chain_offset = 2132 atomic_read(&ioc->chain_lookup[smid - 1].chain_offset); 2133 2134 if (chain_offset == ioc->chains_needed_per_io) 2135 return NULL; 2136 2137 chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset]; 2138 atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset); 2139 return chain_req; 2140 } 2141 2142 2143 /** 2144 * _base_build_sg - build generic sg 2145 * @ioc: per adapter object 2146 * @psge: virtual address for SGE 2147 * @data_out_dma: physical address for WRITES 2148 * @data_out_sz: data xfer size for WRITES 2149 * @data_in_dma: physical address for READS 2150 * @data_in_sz: data xfer size for READS 2151 */ 2152 static void 2153 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge, 2154 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 2155 size_t data_in_sz) 2156 { 2157 u32 sgl_flags; 2158 2159 if (!data_out_sz && !data_in_sz) { 2160 _base_build_zero_len_sge(ioc, psge); 2161 return; 2162 } 2163 2164 if (data_out_sz && data_in_sz) { 2165 /* WRITE sgel first */ 2166 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2167 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC); 2168 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2169 ioc->base_add_sg_single(psge, sgl_flags | 2170 data_out_sz, data_out_dma); 2171 2172 /* incr sgel */ 2173 psge += ioc->sge_size; 2174 2175 /* READ sgel last */ 2176 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2177 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 2178 MPI2_SGE_FLAGS_END_OF_LIST); 2179 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2180 ioc->base_add_sg_single(psge, sgl_flags | 2181 data_in_sz, data_in_dma); 2182 } else if (data_out_sz) /* WRITE */ { 2183 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2184 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 2185 MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC); 2186 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2187 ioc->base_add_sg_single(psge, sgl_flags | 2188 data_out_sz, data_out_dma); 2189 } else if (data_in_sz) /* READ */ { 2190 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2191 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 2192 MPI2_SGE_FLAGS_END_OF_LIST); 2193 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2194 ioc->base_add_sg_single(psge, sgl_flags | 2195 data_in_sz, data_in_dma); 2196 } 2197 } 2198 2199 /* IEEE format sgls */ 2200 2201 /** 2202 * _base_build_nvme_prp - This function is called for NVMe end devices to build 2203 * a native SGL (NVMe PRP). 2204 * @ioc: per adapter object 2205 * @smid: system request message index for getting asscociated SGL 2206 * @nvme_encap_request: the NVMe request msg frame pointer 2207 * @data_out_dma: physical address for WRITES 2208 * @data_out_sz: data xfer size for WRITES 2209 * @data_in_dma: physical address for READS 2210 * @data_in_sz: data xfer size for READS 2211 * 2212 * The native SGL is built starting in the first PRP 2213 * entry of the NVMe message (PRP1). If the data buffer is small enough to be 2214 * described entirely using PRP1, then PRP2 is not used. If needed, PRP2 is 2215 * used to describe a larger data buffer. If the data buffer is too large to 2216 * describe using the two PRP entriess inside the NVMe message, then PRP1 2217 * describes the first data memory segment, and PRP2 contains a pointer to a PRP 2218 * list located elsewhere in memory to describe the remaining data memory 2219 * segments. The PRP list will be contiguous. 2220 * 2221 * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP 2222 * consists of a list of PRP entries to describe a number of noncontigous 2223 * physical memory segments as a single memory buffer, just as a SGL does. Note 2224 * however, that this function is only used by the IOCTL call, so the memory 2225 * given will be guaranteed to be contiguous. There is no need to translate 2226 * non-contiguous SGL into a PRP in this case. All PRPs will describe 2227 * contiguous space that is one page size each. 2228 * 2229 * Each NVMe message contains two PRP entries. The first (PRP1) either contains 2230 * a PRP list pointer or a PRP element, depending upon the command. PRP2 2231 * contains the second PRP element if the memory being described fits within 2 2232 * PRP entries, or a PRP list pointer if the PRP spans more than two entries. 2233 * 2234 * A PRP list pointer contains the address of a PRP list, structured as a linear 2235 * array of PRP entries. Each PRP entry in this list describes a segment of 2236 * physical memory. 2237 * 2238 * Each 64-bit PRP entry comprises an address and an offset field. The address 2239 * always points at the beginning of a 4KB physical memory page, and the offset 2240 * describes where within that 4KB page the memory segment begins. Only the 2241 * first element in a PRP list may contain a non-zero offset, implying that all 2242 * memory segments following the first begin at the start of a 4KB page. 2243 * 2244 * Each PRP element normally describes 4KB of physical memory, with exceptions 2245 * for the first and last elements in the list. If the memory being described 2246 * by the list begins at a non-zero offset within the first 4KB page, then the 2247 * first PRP element will contain a non-zero offset indicating where the region 2248 * begins within the 4KB page. The last memory segment may end before the end 2249 * of the 4KB segment, depending upon the overall size of the memory being 2250 * described by the PRP list. 2251 * 2252 * Since PRP entries lack any indication of size, the overall data buffer length 2253 * is used to determine where the end of the data memory buffer is located, and 2254 * how many PRP entries are required to describe it. 2255 */ 2256 static void 2257 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid, 2258 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request, 2259 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 2260 size_t data_in_sz) 2261 { 2262 int prp_size = NVME_PRP_SIZE; 2263 __le64 *prp_entry, *prp1_entry, *prp2_entry; 2264 __le64 *prp_page; 2265 dma_addr_t prp_entry_dma, prp_page_dma, dma_addr; 2266 u32 offset, entry_len; 2267 u32 page_mask_result, page_mask; 2268 size_t length; 2269 struct mpt3sas_nvme_cmd *nvme_cmd = 2270 (void *)nvme_encap_request->NVMe_Command; 2271 2272 /* 2273 * Not all commands require a data transfer. If no data, just return 2274 * without constructing any PRP. 2275 */ 2276 if (!data_in_sz && !data_out_sz) 2277 return; 2278 prp1_entry = &nvme_cmd->prp1; 2279 prp2_entry = &nvme_cmd->prp2; 2280 prp_entry = prp1_entry; 2281 /* 2282 * For the PRP entries, use the specially allocated buffer of 2283 * contiguous memory. 2284 */ 2285 prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid); 2286 prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid); 2287 2288 /* 2289 * Check if we are within 1 entry of a page boundary we don't 2290 * want our first entry to be a PRP List entry. 2291 */ 2292 page_mask = ioc->page_size - 1; 2293 page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask; 2294 if (!page_mask_result) { 2295 /* Bump up to next page boundary. */ 2296 prp_page = (__le64 *)((u8 *)prp_page + prp_size); 2297 prp_page_dma = prp_page_dma + prp_size; 2298 } 2299 2300 /* 2301 * Set PRP physical pointer, which initially points to the current PRP 2302 * DMA memory page. 2303 */ 2304 prp_entry_dma = prp_page_dma; 2305 2306 /* Get physical address and length of the data buffer. */ 2307 if (data_in_sz) { 2308 dma_addr = data_in_dma; 2309 length = data_in_sz; 2310 } else { 2311 dma_addr = data_out_dma; 2312 length = data_out_sz; 2313 } 2314 2315 /* Loop while the length is not zero. */ 2316 while (length) { 2317 /* 2318 * Check if we need to put a list pointer here if we are at 2319 * page boundary - prp_size (8 bytes). 2320 */ 2321 page_mask_result = (prp_entry_dma + prp_size) & page_mask; 2322 if (!page_mask_result) { 2323 /* 2324 * This is the last entry in a PRP List, so we need to 2325 * put a PRP list pointer here. What this does is: 2326 * - bump the current memory pointer to the next 2327 * address, which will be the next full page. 2328 * - set the PRP Entry to point to that page. This 2329 * is now the PRP List pointer. 2330 * - bump the PRP Entry pointer the start of the 2331 * next page. Since all of this PRP memory is 2332 * contiguous, no need to get a new page - it's 2333 * just the next address. 2334 */ 2335 prp_entry_dma++; 2336 *prp_entry = cpu_to_le64(prp_entry_dma); 2337 prp_entry++; 2338 } 2339 2340 /* Need to handle if entry will be part of a page. */ 2341 offset = dma_addr & page_mask; 2342 entry_len = ioc->page_size - offset; 2343 2344 if (prp_entry == prp1_entry) { 2345 /* 2346 * Must fill in the first PRP pointer (PRP1) before 2347 * moving on. 2348 */ 2349 *prp1_entry = cpu_to_le64(dma_addr); 2350 2351 /* 2352 * Now point to the second PRP entry within the 2353 * command (PRP2). 2354 */ 2355 prp_entry = prp2_entry; 2356 } else if (prp_entry == prp2_entry) { 2357 /* 2358 * Should the PRP2 entry be a PRP List pointer or just 2359 * a regular PRP pointer? If there is more than one 2360 * more page of data, must use a PRP List pointer. 2361 */ 2362 if (length > ioc->page_size) { 2363 /* 2364 * PRP2 will contain a PRP List pointer because 2365 * more PRP's are needed with this command. The 2366 * list will start at the beginning of the 2367 * contiguous buffer. 2368 */ 2369 *prp2_entry = cpu_to_le64(prp_entry_dma); 2370 2371 /* 2372 * The next PRP Entry will be the start of the 2373 * first PRP List. 2374 */ 2375 prp_entry = prp_page; 2376 } else { 2377 /* 2378 * After this, the PRP Entries are complete. 2379 * This command uses 2 PRP's and no PRP list. 2380 */ 2381 *prp2_entry = cpu_to_le64(dma_addr); 2382 } 2383 } else { 2384 /* 2385 * Put entry in list and bump the addresses. 2386 * 2387 * After PRP1 and PRP2 are filled in, this will fill in 2388 * all remaining PRP entries in a PRP List, one per 2389 * each time through the loop. 2390 */ 2391 *prp_entry = cpu_to_le64(dma_addr); 2392 prp_entry++; 2393 prp_entry_dma++; 2394 } 2395 2396 /* 2397 * Bump the phys address of the command's data buffer by the 2398 * entry_len. 2399 */ 2400 dma_addr += entry_len; 2401 2402 /* Decrement length accounting for last partial page. */ 2403 if (entry_len > length) 2404 length = 0; 2405 else 2406 length -= entry_len; 2407 } 2408 } 2409 2410 /** 2411 * base_make_prp_nvme - Prepare PRPs (Physical Region Page) - 2412 * SGLs specific to NVMe drives only 2413 * 2414 * @ioc: per adapter object 2415 * @scmd: SCSI command from the mid-layer 2416 * @mpi_request: mpi request 2417 * @smid: msg Index 2418 * @sge_count: scatter gather element count. 2419 * 2420 * Return: true: PRPs are built 2421 * false: IEEE SGLs needs to be built 2422 */ 2423 static void 2424 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc, 2425 struct scsi_cmnd *scmd, 2426 Mpi25SCSIIORequest_t *mpi_request, 2427 u16 smid, int sge_count) 2428 { 2429 int sge_len, num_prp_in_chain = 0; 2430 Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl; 2431 __le64 *curr_buff; 2432 dma_addr_t msg_dma, sge_addr, offset; 2433 u32 page_mask, page_mask_result; 2434 struct scatterlist *sg_scmd; 2435 u32 first_prp_len; 2436 int data_len = scsi_bufflen(scmd); 2437 u32 nvme_pg_size; 2438 2439 nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE); 2440 /* 2441 * Nvme has a very convoluted prp format. One prp is required 2442 * for each page or partial page. Driver need to split up OS sg_list 2443 * entries if it is longer than one page or cross a page 2444 * boundary. Driver also have to insert a PRP list pointer entry as 2445 * the last entry in each physical page of the PRP list. 2446 * 2447 * NOTE: The first PRP "entry" is actually placed in the first 2448 * SGL entry in the main message as IEEE 64 format. The 2nd 2449 * entry in the main message is the chain element, and the rest 2450 * of the PRP entries are built in the contiguous pcie buffer. 2451 */ 2452 page_mask = nvme_pg_size - 1; 2453 2454 /* 2455 * Native SGL is needed. 2456 * Put a chain element in main message frame that points to the first 2457 * chain buffer. 2458 * 2459 * NOTE: The ChainOffset field must be 0 when using a chain pointer to 2460 * a native SGL. 2461 */ 2462 2463 /* Set main message chain element pointer */ 2464 main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL; 2465 /* 2466 * For NVMe the chain element needs to be the 2nd SG entry in the main 2467 * message. 2468 */ 2469 main_chain_element = (Mpi25IeeeSgeChain64_t *) 2470 ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64)); 2471 2472 /* 2473 * For the PRP entries, use the specially allocated buffer of 2474 * contiguous memory. Normal chain buffers can't be used 2475 * because each chain buffer would need to be the size of an OS 2476 * page (4k). 2477 */ 2478 curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid); 2479 msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid); 2480 2481 main_chain_element->Address = cpu_to_le64(msg_dma); 2482 main_chain_element->NextChainOffset = 0; 2483 main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 2484 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | 2485 MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP; 2486 2487 /* Build first prp, sge need not to be page aligned*/ 2488 ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL; 2489 sg_scmd = scsi_sglist(scmd); 2490 sge_addr = sg_dma_address(sg_scmd); 2491 sge_len = sg_dma_len(sg_scmd); 2492 2493 offset = sge_addr & page_mask; 2494 first_prp_len = nvme_pg_size - offset; 2495 2496 ptr_first_sgl->Address = cpu_to_le64(sge_addr); 2497 ptr_first_sgl->Length = cpu_to_le32(first_prp_len); 2498 2499 data_len -= first_prp_len; 2500 2501 if (sge_len > first_prp_len) { 2502 sge_addr += first_prp_len; 2503 sge_len -= first_prp_len; 2504 } else if (data_len && (sge_len == first_prp_len)) { 2505 sg_scmd = sg_next(sg_scmd); 2506 sge_addr = sg_dma_address(sg_scmd); 2507 sge_len = sg_dma_len(sg_scmd); 2508 } 2509 2510 for (;;) { 2511 offset = sge_addr & page_mask; 2512 2513 /* Put PRP pointer due to page boundary*/ 2514 page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask; 2515 if (unlikely(!page_mask_result)) { 2516 scmd_printk(KERN_NOTICE, 2517 scmd, "page boundary curr_buff: 0x%p\n", 2518 curr_buff); 2519 msg_dma += 8; 2520 *curr_buff = cpu_to_le64(msg_dma); 2521 curr_buff++; 2522 num_prp_in_chain++; 2523 } 2524 2525 *curr_buff = cpu_to_le64(sge_addr); 2526 curr_buff++; 2527 msg_dma += 8; 2528 num_prp_in_chain++; 2529 2530 sge_addr += nvme_pg_size; 2531 sge_len -= nvme_pg_size; 2532 data_len -= nvme_pg_size; 2533 2534 if (data_len <= 0) 2535 break; 2536 2537 if (sge_len > 0) 2538 continue; 2539 2540 sg_scmd = sg_next(sg_scmd); 2541 sge_addr = sg_dma_address(sg_scmd); 2542 sge_len = sg_dma_len(sg_scmd); 2543 } 2544 2545 main_chain_element->Length = 2546 cpu_to_le32(num_prp_in_chain * sizeof(u64)); 2547 return; 2548 } 2549 2550 static bool 2551 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc, 2552 struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count) 2553 { 2554 u32 data_length = 0; 2555 bool build_prp = true; 2556 2557 data_length = scsi_bufflen(scmd); 2558 if (pcie_device && 2559 (mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))) { 2560 build_prp = false; 2561 return build_prp; 2562 } 2563 2564 /* If Datalenth is <= 16K and number of SGE’s entries are <= 2 2565 * we built IEEE SGL 2566 */ 2567 if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2)) 2568 build_prp = false; 2569 2570 return build_prp; 2571 } 2572 2573 /** 2574 * _base_check_pcie_native_sgl - This function is called for PCIe end devices to 2575 * determine if the driver needs to build a native SGL. If so, that native 2576 * SGL is built in the special contiguous buffers allocated especially for 2577 * PCIe SGL creation. If the driver will not build a native SGL, return 2578 * TRUE and a normal IEEE SGL will be built. Currently this routine 2579 * supports NVMe. 2580 * @ioc: per adapter object 2581 * @mpi_request: mf request pointer 2582 * @smid: system request message index 2583 * @scmd: scsi command 2584 * @pcie_device: points to the PCIe device's info 2585 * 2586 * Return: 0 if native SGL was built, 1 if no SGL was built 2587 */ 2588 static int 2589 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc, 2590 Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd, 2591 struct _pcie_device *pcie_device) 2592 { 2593 int sges_left; 2594 2595 /* Get the SG list pointer and info. */ 2596 sges_left = scsi_dma_map(scmd); 2597 if (sges_left < 0) 2598 return 1; 2599 2600 /* Check if we need to build a native SG list. */ 2601 if (!base_is_prp_possible(ioc, pcie_device, 2602 scmd, sges_left)) { 2603 /* We built a native SG list, just return. */ 2604 goto out; 2605 } 2606 2607 /* 2608 * Build native NVMe PRP. 2609 */ 2610 base_make_prp_nvme(ioc, scmd, mpi_request, 2611 smid, sges_left); 2612 2613 return 0; 2614 out: 2615 scsi_dma_unmap(scmd); 2616 return 1; 2617 } 2618 2619 /** 2620 * _base_add_sg_single_ieee - add sg element for IEEE format 2621 * @paddr: virtual address for SGE 2622 * @flags: SGE flags 2623 * @chain_offset: number of 128 byte elements from start of segment 2624 * @length: data transfer length 2625 * @dma_addr: Physical address 2626 */ 2627 static void 2628 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length, 2629 dma_addr_t dma_addr) 2630 { 2631 Mpi25IeeeSgeChain64_t *sgel = paddr; 2632 2633 sgel->Flags = flags; 2634 sgel->NextChainOffset = chain_offset; 2635 sgel->Length = cpu_to_le32(length); 2636 sgel->Address = cpu_to_le64(dma_addr); 2637 } 2638 2639 /** 2640 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format 2641 * @ioc: per adapter object 2642 * @paddr: virtual address for SGE 2643 * 2644 * Create a zero length scatter gather entry to insure the IOCs hardware has 2645 * something to use if the target device goes brain dead and tries 2646 * to send data even when none is asked for. 2647 */ 2648 static void 2649 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr) 2650 { 2651 u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2652 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | 2653 MPI25_IEEE_SGE_FLAGS_END_OF_LIST); 2654 2655 _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1); 2656 } 2657 2658 /** 2659 * _base_build_sg_scmd - main sg creation routine 2660 * pcie_device is unused here! 2661 * @ioc: per adapter object 2662 * @scmd: scsi command 2663 * @smid: system request message index 2664 * @unused: unused pcie_device pointer 2665 * Context: none. 2666 * 2667 * The main routine that builds scatter gather table from a given 2668 * scsi request sent via the .queuecommand main handler. 2669 * 2670 * Return: 0 success, anything else error 2671 */ 2672 static int 2673 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc, 2674 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused) 2675 { 2676 Mpi2SCSIIORequest_t *mpi_request; 2677 dma_addr_t chain_dma; 2678 struct scatterlist *sg_scmd; 2679 void *sg_local, *chain; 2680 u32 chain_offset; 2681 u32 chain_length; 2682 u32 chain_flags; 2683 int sges_left; 2684 u32 sges_in_segment; 2685 u32 sgl_flags; 2686 u32 sgl_flags_last_element; 2687 u32 sgl_flags_end_buffer; 2688 struct chain_tracker *chain_req; 2689 2690 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 2691 2692 /* init scatter gather flags */ 2693 sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT; 2694 if (scmd->sc_data_direction == DMA_TO_DEVICE) 2695 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC; 2696 sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT) 2697 << MPI2_SGE_FLAGS_SHIFT; 2698 sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT | 2699 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST) 2700 << MPI2_SGE_FLAGS_SHIFT; 2701 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2702 2703 sg_scmd = scsi_sglist(scmd); 2704 sges_left = scsi_dma_map(scmd); 2705 if (sges_left < 0) 2706 return -ENOMEM; 2707 2708 sg_local = &mpi_request->SGL; 2709 sges_in_segment = ioc->max_sges_in_main_message; 2710 if (sges_left <= sges_in_segment) 2711 goto fill_in_last_segment; 2712 2713 mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) + 2714 (sges_in_segment * ioc->sge_size))/4; 2715 2716 /* fill in main message segment when there is a chain following */ 2717 while (sges_in_segment) { 2718 if (sges_in_segment == 1) 2719 ioc->base_add_sg_single(sg_local, 2720 sgl_flags_last_element | sg_dma_len(sg_scmd), 2721 sg_dma_address(sg_scmd)); 2722 else 2723 ioc->base_add_sg_single(sg_local, sgl_flags | 2724 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2725 sg_scmd = sg_next(sg_scmd); 2726 sg_local += ioc->sge_size; 2727 sges_left--; 2728 sges_in_segment--; 2729 } 2730 2731 /* initializing the chain flags and pointers */ 2732 chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT; 2733 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2734 if (!chain_req) 2735 return -1; 2736 chain = chain_req->chain_buffer; 2737 chain_dma = chain_req->chain_buffer_dma; 2738 do { 2739 sges_in_segment = (sges_left <= 2740 ioc->max_sges_in_chain_message) ? sges_left : 2741 ioc->max_sges_in_chain_message; 2742 chain_offset = (sges_left == sges_in_segment) ? 2743 0 : (sges_in_segment * ioc->sge_size)/4; 2744 chain_length = sges_in_segment * ioc->sge_size; 2745 if (chain_offset) { 2746 chain_offset = chain_offset << 2747 MPI2_SGE_CHAIN_OFFSET_SHIFT; 2748 chain_length += ioc->sge_size; 2749 } 2750 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset | 2751 chain_length, chain_dma); 2752 sg_local = chain; 2753 if (!chain_offset) 2754 goto fill_in_last_segment; 2755 2756 /* fill in chain segments */ 2757 while (sges_in_segment) { 2758 if (sges_in_segment == 1) 2759 ioc->base_add_sg_single(sg_local, 2760 sgl_flags_last_element | 2761 sg_dma_len(sg_scmd), 2762 sg_dma_address(sg_scmd)); 2763 else 2764 ioc->base_add_sg_single(sg_local, sgl_flags | 2765 sg_dma_len(sg_scmd), 2766 sg_dma_address(sg_scmd)); 2767 sg_scmd = sg_next(sg_scmd); 2768 sg_local += ioc->sge_size; 2769 sges_left--; 2770 sges_in_segment--; 2771 } 2772 2773 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2774 if (!chain_req) 2775 return -1; 2776 chain = chain_req->chain_buffer; 2777 chain_dma = chain_req->chain_buffer_dma; 2778 } while (1); 2779 2780 2781 fill_in_last_segment: 2782 2783 /* fill the last segment */ 2784 while (sges_left) { 2785 if (sges_left == 1) 2786 ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer | 2787 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2788 else 2789 ioc->base_add_sg_single(sg_local, sgl_flags | 2790 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2791 sg_scmd = sg_next(sg_scmd); 2792 sg_local += ioc->sge_size; 2793 sges_left--; 2794 } 2795 2796 return 0; 2797 } 2798 2799 /** 2800 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format 2801 * @ioc: per adapter object 2802 * @scmd: scsi command 2803 * @smid: system request message index 2804 * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be 2805 * constructed on need. 2806 * Context: none. 2807 * 2808 * The main routine that builds scatter gather table from a given 2809 * scsi request sent via the .queuecommand main handler. 2810 * 2811 * Return: 0 success, anything else error 2812 */ 2813 static int 2814 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc, 2815 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device) 2816 { 2817 Mpi25SCSIIORequest_t *mpi_request; 2818 dma_addr_t chain_dma; 2819 struct scatterlist *sg_scmd; 2820 void *sg_local, *chain; 2821 u32 chain_offset; 2822 u32 chain_length; 2823 int sges_left; 2824 u32 sges_in_segment; 2825 u8 simple_sgl_flags; 2826 u8 simple_sgl_flags_last; 2827 u8 chain_sgl_flags; 2828 struct chain_tracker *chain_req; 2829 2830 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 2831 2832 /* init scatter gather flags */ 2833 simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2834 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2835 simple_sgl_flags_last = simple_sgl_flags | 2836 MPI25_IEEE_SGE_FLAGS_END_OF_LIST; 2837 chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 2838 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2839 2840 /* Check if we need to build a native SG list. */ 2841 if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request, 2842 smid, scmd, pcie_device) == 0)) { 2843 /* We built a native SG list, just return. */ 2844 return 0; 2845 } 2846 2847 sg_scmd = scsi_sglist(scmd); 2848 sges_left = scsi_dma_map(scmd); 2849 if (sges_left < 0) 2850 return -ENOMEM; 2851 2852 sg_local = &mpi_request->SGL; 2853 sges_in_segment = (ioc->request_sz - 2854 offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee; 2855 if (sges_left <= sges_in_segment) 2856 goto fill_in_last_segment; 2857 2858 mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) + 2859 (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee); 2860 2861 /* fill in main message segment when there is a chain following */ 2862 while (sges_in_segment > 1) { 2863 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2864 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2865 sg_scmd = sg_next(sg_scmd); 2866 sg_local += ioc->sge_size_ieee; 2867 sges_left--; 2868 sges_in_segment--; 2869 } 2870 2871 /* initializing the pointers */ 2872 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2873 if (!chain_req) 2874 return -1; 2875 chain = chain_req->chain_buffer; 2876 chain_dma = chain_req->chain_buffer_dma; 2877 do { 2878 sges_in_segment = (sges_left <= 2879 ioc->max_sges_in_chain_message) ? sges_left : 2880 ioc->max_sges_in_chain_message; 2881 chain_offset = (sges_left == sges_in_segment) ? 2882 0 : sges_in_segment; 2883 chain_length = sges_in_segment * ioc->sge_size_ieee; 2884 if (chain_offset) 2885 chain_length += ioc->sge_size_ieee; 2886 _base_add_sg_single_ieee(sg_local, chain_sgl_flags, 2887 chain_offset, chain_length, chain_dma); 2888 2889 sg_local = chain; 2890 if (!chain_offset) 2891 goto fill_in_last_segment; 2892 2893 /* fill in chain segments */ 2894 while (sges_in_segment) { 2895 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2896 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2897 sg_scmd = sg_next(sg_scmd); 2898 sg_local += ioc->sge_size_ieee; 2899 sges_left--; 2900 sges_in_segment--; 2901 } 2902 2903 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2904 if (!chain_req) 2905 return -1; 2906 chain = chain_req->chain_buffer; 2907 chain_dma = chain_req->chain_buffer_dma; 2908 } while (1); 2909 2910 2911 fill_in_last_segment: 2912 2913 /* fill the last segment */ 2914 while (sges_left > 0) { 2915 if (sges_left == 1) 2916 _base_add_sg_single_ieee(sg_local, 2917 simple_sgl_flags_last, 0, sg_dma_len(sg_scmd), 2918 sg_dma_address(sg_scmd)); 2919 else 2920 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2921 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2922 sg_scmd = sg_next(sg_scmd); 2923 sg_local += ioc->sge_size_ieee; 2924 sges_left--; 2925 } 2926 2927 return 0; 2928 } 2929 2930 /** 2931 * _base_build_sg_ieee - build generic sg for IEEE format 2932 * @ioc: per adapter object 2933 * @psge: virtual address for SGE 2934 * @data_out_dma: physical address for WRITES 2935 * @data_out_sz: data xfer size for WRITES 2936 * @data_in_dma: physical address for READS 2937 * @data_in_sz: data xfer size for READS 2938 */ 2939 static void 2940 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge, 2941 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 2942 size_t data_in_sz) 2943 { 2944 u8 sgl_flags; 2945 2946 if (!data_out_sz && !data_in_sz) { 2947 _base_build_zero_len_sge_ieee(ioc, psge); 2948 return; 2949 } 2950 2951 if (data_out_sz && data_in_sz) { 2952 /* WRITE sgel first */ 2953 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2954 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2955 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz, 2956 data_out_dma); 2957 2958 /* incr sgel */ 2959 psge += ioc->sge_size_ieee; 2960 2961 /* READ sgel last */ 2962 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST; 2963 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz, 2964 data_in_dma); 2965 } else if (data_out_sz) /* WRITE */ { 2966 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2967 MPI25_IEEE_SGE_FLAGS_END_OF_LIST | 2968 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2969 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz, 2970 data_out_dma); 2971 } else if (data_in_sz) /* READ */ { 2972 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2973 MPI25_IEEE_SGE_FLAGS_END_OF_LIST | 2974 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2975 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz, 2976 data_in_dma); 2977 } 2978 } 2979 2980 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10)) 2981 2982 /** 2983 * _base_config_dma_addressing - set dma addressing 2984 * @ioc: per adapter object 2985 * @pdev: PCI device struct 2986 * 2987 * Return: 0 for success, non-zero for failure. 2988 */ 2989 static int 2990 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev) 2991 { 2992 struct sysinfo s; 2993 u64 coherent_dma_mask, dma_mask; 2994 2995 if (ioc->is_mcpu_endpoint || sizeof(dma_addr_t) == 4 || 2996 dma_get_required_mask(&pdev->dev) <= 32) { 2997 ioc->dma_mask = 32; 2998 coherent_dma_mask = dma_mask = DMA_BIT_MASK(32); 2999 /* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */ 3000 } else if (ioc->hba_mpi_version_belonged > MPI2_VERSION) { 3001 ioc->dma_mask = 63; 3002 coherent_dma_mask = dma_mask = DMA_BIT_MASK(63); 3003 } else { 3004 ioc->dma_mask = 64; 3005 coherent_dma_mask = dma_mask = DMA_BIT_MASK(64); 3006 } 3007 3008 if (ioc->use_32bit_dma) 3009 coherent_dma_mask = DMA_BIT_MASK(32); 3010 3011 if (dma_set_mask(&pdev->dev, dma_mask) || 3012 dma_set_coherent_mask(&pdev->dev, coherent_dma_mask)) 3013 return -ENODEV; 3014 3015 if (ioc->dma_mask > 32) { 3016 ioc->base_add_sg_single = &_base_add_sg_single_64; 3017 ioc->sge_size = sizeof(Mpi2SGESimple64_t); 3018 } else { 3019 ioc->base_add_sg_single = &_base_add_sg_single_32; 3020 ioc->sge_size = sizeof(Mpi2SGESimple32_t); 3021 } 3022 3023 si_meminfo(&s); 3024 ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n", 3025 ioc->dma_mask, convert_to_kb(s.totalram)); 3026 3027 return 0; 3028 } 3029 3030 /** 3031 * _base_check_enable_msix - checks MSIX capabable. 3032 * @ioc: per adapter object 3033 * 3034 * Check to see if card is capable of MSIX, and set number 3035 * of available msix vectors 3036 */ 3037 static int 3038 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc) 3039 { 3040 int base; 3041 u16 message_control; 3042 3043 /* Check whether controller SAS2008 B0 controller, 3044 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX 3045 */ 3046 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 && 3047 ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) { 3048 return -EINVAL; 3049 } 3050 3051 base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX); 3052 if (!base) { 3053 dfailprintk(ioc, ioc_info(ioc, "msix not supported\n")); 3054 return -EINVAL; 3055 } 3056 3057 /* get msix vector count */ 3058 /* NUMA_IO not supported for older controllers */ 3059 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 || 3060 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 || 3061 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 || 3062 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 || 3063 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 || 3064 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 || 3065 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2) 3066 ioc->msix_vector_count = 1; 3067 else { 3068 pci_read_config_word(ioc->pdev, base + 2, &message_control); 3069 ioc->msix_vector_count = (message_control & 0x3FF) + 1; 3070 } 3071 dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n", 3072 ioc->msix_vector_count)); 3073 return 0; 3074 } 3075 3076 /** 3077 * mpt3sas_base_free_irq - free irq 3078 * @ioc: per adapter object 3079 * 3080 * Freeing respective reply_queue from the list. 3081 */ 3082 void 3083 mpt3sas_base_free_irq(struct MPT3SAS_ADAPTER *ioc) 3084 { 3085 unsigned int irq; 3086 struct adapter_reply_queue *reply_q, *next; 3087 3088 if (list_empty(&ioc->reply_queue_list)) 3089 return; 3090 3091 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) { 3092 list_del(&reply_q->list); 3093 if (reply_q->is_iouring_poll_q) { 3094 kfree(reply_q); 3095 continue; 3096 } 3097 3098 if (ioc->smp_affinity_enable) { 3099 irq = pci_irq_vector(ioc->pdev, reply_q->msix_index); 3100 irq_update_affinity_hint(irq, NULL); 3101 } 3102 free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index), 3103 reply_q); 3104 kfree(reply_q); 3105 } 3106 } 3107 3108 /** 3109 * _base_request_irq - request irq 3110 * @ioc: per adapter object 3111 * @index: msix index into vector table 3112 * 3113 * Inserting respective reply_queue into the list. 3114 */ 3115 static int 3116 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index) 3117 { 3118 struct pci_dev *pdev = ioc->pdev; 3119 struct adapter_reply_queue *reply_q; 3120 int r, qid; 3121 3122 reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL); 3123 if (!reply_q) { 3124 ioc_err(ioc, "unable to allocate memory %zu!\n", 3125 sizeof(struct adapter_reply_queue)); 3126 return -ENOMEM; 3127 } 3128 reply_q->ioc = ioc; 3129 reply_q->msix_index = index; 3130 3131 atomic_set(&reply_q->busy, 0); 3132 3133 if (index >= ioc->iopoll_q_start_index) { 3134 qid = index - ioc->iopoll_q_start_index; 3135 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-mq-poll%d", 3136 ioc->driver_name, ioc->id, qid); 3137 reply_q->is_iouring_poll_q = 1; 3138 ioc->io_uring_poll_queues[qid].reply_q = reply_q; 3139 goto out; 3140 } 3141 3142 3143 if (ioc->msix_enable) 3144 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d", 3145 ioc->driver_name, ioc->id, index); 3146 else 3147 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d", 3148 ioc->driver_name, ioc->id); 3149 r = request_irq(pci_irq_vector(pdev, index), _base_interrupt, 3150 IRQF_SHARED, reply_q->name, reply_q); 3151 if (r) { 3152 pr_err("%s: unable to allocate interrupt %d!\n", 3153 reply_q->name, pci_irq_vector(pdev, index)); 3154 kfree(reply_q); 3155 return -EBUSY; 3156 } 3157 out: 3158 INIT_LIST_HEAD(&reply_q->list); 3159 list_add_tail(&reply_q->list, &ioc->reply_queue_list); 3160 return 0; 3161 } 3162 3163 /** 3164 * _base_assign_reply_queues - assigning msix index for each cpu 3165 * @ioc: per adapter object 3166 * 3167 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity 3168 */ 3169 static void 3170 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc) 3171 { 3172 unsigned int cpu, nr_cpus, nr_msix, index = 0, irq; 3173 struct adapter_reply_queue *reply_q; 3174 int iopoll_q_count = ioc->reply_queue_count - 3175 ioc->iopoll_q_start_index; 3176 const struct cpumask *mask; 3177 3178 if (!_base_is_controller_msix_enabled(ioc)) 3179 return; 3180 3181 if (ioc->msix_load_balance) 3182 return; 3183 3184 memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz); 3185 3186 nr_cpus = num_online_cpus(); 3187 nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count, 3188 ioc->facts.MaxMSIxVectors); 3189 if (!nr_msix) 3190 return; 3191 3192 if (ioc->smp_affinity_enable) { 3193 3194 /* 3195 * set irq affinity to local numa node for those irqs 3196 * corresponding to high iops queues. 3197 */ 3198 if (ioc->high_iops_queues) { 3199 mask = cpumask_of_node(dev_to_node(&ioc->pdev->dev)); 3200 for (index = 0; index < ioc->high_iops_queues; 3201 index++) { 3202 irq = pci_irq_vector(ioc->pdev, index); 3203 irq_set_affinity_and_hint(irq, mask); 3204 } 3205 } 3206 3207 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 3208 const cpumask_t *mask; 3209 3210 if (reply_q->msix_index < ioc->high_iops_queues || 3211 reply_q->msix_index >= ioc->iopoll_q_start_index) 3212 continue; 3213 3214 mask = pci_irq_get_affinity(ioc->pdev, 3215 reply_q->msix_index); 3216 if (!mask) { 3217 ioc_warn(ioc, "no affinity for msi %x\n", 3218 reply_q->msix_index); 3219 goto fall_back; 3220 } 3221 3222 for_each_cpu_and(cpu, mask, cpu_online_mask) { 3223 if (cpu >= ioc->cpu_msix_table_sz) 3224 break; 3225 ioc->cpu_msix_table[cpu] = reply_q->msix_index; 3226 } 3227 } 3228 return; 3229 } 3230 3231 fall_back: 3232 cpu = cpumask_first(cpu_online_mask); 3233 nr_msix -= (ioc->high_iops_queues - iopoll_q_count); 3234 index = 0; 3235 3236 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 3237 unsigned int i, group = nr_cpus / nr_msix; 3238 3239 if (reply_q->msix_index < ioc->high_iops_queues || 3240 reply_q->msix_index >= ioc->iopoll_q_start_index) 3241 continue; 3242 3243 if (cpu >= nr_cpus) 3244 break; 3245 3246 if (index < nr_cpus % nr_msix) 3247 group++; 3248 3249 for (i = 0 ; i < group ; i++) { 3250 ioc->cpu_msix_table[cpu] = reply_q->msix_index; 3251 cpu = cpumask_next(cpu, cpu_online_mask); 3252 } 3253 index++; 3254 } 3255 } 3256 3257 /** 3258 * _base_check_and_enable_high_iops_queues - enable high iops mode 3259 * @ioc: per adapter object 3260 * @hba_msix_vector_count: msix vectors supported by HBA 3261 * 3262 * Enable high iops queues only if 3263 * - HBA is a SEA/AERO controller and 3264 * - MSI-Xs vector supported by the HBA is 128 and 3265 * - total CPU count in the system >=16 and 3266 * - loaded driver with default max_msix_vectors module parameter and 3267 * - system booted in non kdump mode 3268 * 3269 * Return: nothing. 3270 */ 3271 static void 3272 _base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc, 3273 int hba_msix_vector_count) 3274 { 3275 u16 lnksta, speed; 3276 3277 /* 3278 * Disable high iops queues if io uring poll queues are enabled. 3279 */ 3280 if (perf_mode == MPT_PERF_MODE_IOPS || 3281 perf_mode == MPT_PERF_MODE_LATENCY || 3282 ioc->io_uring_poll_queues) { 3283 ioc->high_iops_queues = 0; 3284 return; 3285 } 3286 3287 if (perf_mode == MPT_PERF_MODE_DEFAULT) { 3288 3289 pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta); 3290 speed = lnksta & PCI_EXP_LNKSTA_CLS; 3291 3292 if (speed < 0x4) { 3293 ioc->high_iops_queues = 0; 3294 return; 3295 } 3296 } 3297 3298 if (!reset_devices && ioc->is_aero_ioc && 3299 hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES && 3300 num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES && 3301 max_msix_vectors == -1) 3302 ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES; 3303 else 3304 ioc->high_iops_queues = 0; 3305 } 3306 3307 /** 3308 * mpt3sas_base_disable_msix - disables msix 3309 * @ioc: per adapter object 3310 * 3311 */ 3312 void 3313 mpt3sas_base_disable_msix(struct MPT3SAS_ADAPTER *ioc) 3314 { 3315 if (!ioc->msix_enable) 3316 return; 3317 pci_free_irq_vectors(ioc->pdev); 3318 ioc->msix_enable = 0; 3319 kfree(ioc->io_uring_poll_queues); 3320 } 3321 3322 /** 3323 * _base_alloc_irq_vectors - allocate msix vectors 3324 * @ioc: per adapter object 3325 * 3326 */ 3327 static int 3328 _base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc) 3329 { 3330 int i, irq_flags = PCI_IRQ_MSIX; 3331 struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues }; 3332 struct irq_affinity *descp = &desc; 3333 /* 3334 * Don't allocate msix vectors for poll_queues. 3335 * msix_vectors is always within a range of FW supported reply queue. 3336 */ 3337 int nr_msix_vectors = ioc->iopoll_q_start_index; 3338 3339 3340 if (ioc->smp_affinity_enable) 3341 irq_flags |= PCI_IRQ_AFFINITY | PCI_IRQ_ALL_TYPES; 3342 else 3343 descp = NULL; 3344 3345 ioc_info(ioc, " %d %d %d\n", ioc->high_iops_queues, 3346 ioc->reply_queue_count, nr_msix_vectors); 3347 3348 i = pci_alloc_irq_vectors_affinity(ioc->pdev, 3349 ioc->high_iops_queues, 3350 nr_msix_vectors, irq_flags, descp); 3351 3352 return i; 3353 } 3354 3355 /** 3356 * _base_enable_msix - enables msix, failback to io_apic 3357 * @ioc: per adapter object 3358 * 3359 */ 3360 static int 3361 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc) 3362 { 3363 int r; 3364 int i, local_max_msix_vectors; 3365 u8 try_msix = 0; 3366 int iopoll_q_count = 0; 3367 3368 ioc->msix_load_balance = false; 3369 3370 if (msix_disable == -1 || msix_disable == 0) 3371 try_msix = 1; 3372 3373 if (!try_msix) 3374 goto try_ioapic; 3375 3376 if (_base_check_enable_msix(ioc) != 0) 3377 goto try_ioapic; 3378 3379 ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count); 3380 pr_info("\t no of cores: %d, max_msix_vectors: %d\n", 3381 ioc->cpu_count, max_msix_vectors); 3382 3383 ioc->reply_queue_count = 3384 min_t(int, ioc->cpu_count, ioc->msix_vector_count); 3385 3386 if (!ioc->rdpq_array_enable && max_msix_vectors == -1) 3387 local_max_msix_vectors = (reset_devices) ? 1 : 8; 3388 else 3389 local_max_msix_vectors = max_msix_vectors; 3390 3391 if (local_max_msix_vectors == 0) 3392 goto try_ioapic; 3393 3394 /* 3395 * Enable msix_load_balance only if combined reply queue mode is 3396 * disabled on SAS3 & above generation HBA devices. 3397 */ 3398 if (!ioc->combined_reply_queue && 3399 ioc->hba_mpi_version_belonged != MPI2_VERSION) { 3400 ioc_info(ioc, 3401 "combined ReplyQueue is off, Enabling msix load balance\n"); 3402 ioc->msix_load_balance = true; 3403 } 3404 3405 /* 3406 * smp affinity setting is not need when msix load balance 3407 * is enabled. 3408 */ 3409 if (ioc->msix_load_balance) 3410 ioc->smp_affinity_enable = 0; 3411 3412 if (!ioc->smp_affinity_enable || ioc->reply_queue_count <= 1) 3413 ioc->shost->host_tagset = 0; 3414 3415 /* 3416 * Enable io uring poll queues only if host_tagset is enabled. 3417 */ 3418 if (ioc->shost->host_tagset) 3419 iopoll_q_count = poll_queues; 3420 3421 if (iopoll_q_count) { 3422 ioc->io_uring_poll_queues = kcalloc(iopoll_q_count, 3423 sizeof(struct io_uring_poll_queue), GFP_KERNEL); 3424 if (!ioc->io_uring_poll_queues) 3425 iopoll_q_count = 0; 3426 } 3427 3428 if (ioc->is_aero_ioc) 3429 _base_check_and_enable_high_iops_queues(ioc, 3430 ioc->msix_vector_count); 3431 3432 /* 3433 * Add high iops queues count to reply queue count if high iops queues 3434 * are enabled. 3435 */ 3436 ioc->reply_queue_count = min_t(int, 3437 ioc->reply_queue_count + ioc->high_iops_queues, 3438 ioc->msix_vector_count); 3439 3440 /* 3441 * Adjust the reply queue count incase reply queue count 3442 * exceeds the user provided MSIx vectors count. 3443 */ 3444 if (local_max_msix_vectors > 0) 3445 ioc->reply_queue_count = min_t(int, local_max_msix_vectors, 3446 ioc->reply_queue_count); 3447 /* 3448 * Add io uring poll queues count to reply queues count 3449 * if io uring is enabled in driver. 3450 */ 3451 if (iopoll_q_count) { 3452 if (ioc->reply_queue_count < (iopoll_q_count + MPT3_MIN_IRQS)) 3453 iopoll_q_count = 0; 3454 ioc->reply_queue_count = min_t(int, 3455 ioc->reply_queue_count + iopoll_q_count, 3456 ioc->msix_vector_count); 3457 } 3458 3459 /* 3460 * Starting index of io uring poll queues in reply queue list. 3461 */ 3462 ioc->iopoll_q_start_index = 3463 ioc->reply_queue_count - iopoll_q_count; 3464 3465 r = _base_alloc_irq_vectors(ioc); 3466 if (r < 0) { 3467 ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", r); 3468 goto try_ioapic; 3469 } 3470 3471 /* 3472 * Adjust the reply queue count if the allocated 3473 * MSIx vectors is less then the requested number 3474 * of MSIx vectors. 3475 */ 3476 if (r < ioc->iopoll_q_start_index) { 3477 ioc->reply_queue_count = r + iopoll_q_count; 3478 ioc->iopoll_q_start_index = 3479 ioc->reply_queue_count - iopoll_q_count; 3480 } 3481 3482 ioc->msix_enable = 1; 3483 for (i = 0; i < ioc->reply_queue_count; i++) { 3484 r = _base_request_irq(ioc, i); 3485 if (r) { 3486 mpt3sas_base_free_irq(ioc); 3487 mpt3sas_base_disable_msix(ioc); 3488 goto try_ioapic; 3489 } 3490 } 3491 3492 ioc_info(ioc, "High IOPs queues : %s\n", 3493 ioc->high_iops_queues ? "enabled" : "disabled"); 3494 3495 return 0; 3496 3497 /* failback to io_apic interrupt routing */ 3498 try_ioapic: 3499 ioc->high_iops_queues = 0; 3500 ioc_info(ioc, "High IOPs queues : disabled\n"); 3501 ioc->reply_queue_count = 1; 3502 ioc->iopoll_q_start_index = ioc->reply_queue_count - 0; 3503 r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY); 3504 if (r < 0) { 3505 dfailprintk(ioc, 3506 ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n", 3507 r)); 3508 } else 3509 r = _base_request_irq(ioc, 0); 3510 3511 return r; 3512 } 3513 3514 /** 3515 * mpt3sas_base_unmap_resources - free controller resources 3516 * @ioc: per adapter object 3517 */ 3518 static void 3519 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc) 3520 { 3521 struct pci_dev *pdev = ioc->pdev; 3522 3523 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 3524 3525 mpt3sas_base_free_irq(ioc); 3526 mpt3sas_base_disable_msix(ioc); 3527 3528 kfree(ioc->replyPostRegisterIndex); 3529 ioc->replyPostRegisterIndex = NULL; 3530 3531 3532 if (ioc->chip_phys) { 3533 iounmap(ioc->chip); 3534 ioc->chip_phys = 0; 3535 } 3536 3537 if (pci_is_enabled(pdev)) { 3538 pci_release_selected_regions(ioc->pdev, ioc->bars); 3539 pci_disable_pcie_error_reporting(pdev); 3540 pci_disable_device(pdev); 3541 } 3542 } 3543 3544 static int 3545 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc); 3546 3547 /** 3548 * mpt3sas_base_check_for_fault_and_issue_reset - check if IOC is in fault state 3549 * and if it is in fault state then issue diag reset. 3550 * @ioc: per adapter object 3551 * 3552 * Return: 0 for success, non-zero for failure. 3553 */ 3554 int 3555 mpt3sas_base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc) 3556 { 3557 u32 ioc_state; 3558 int rc = -EFAULT; 3559 3560 dinitprintk(ioc, pr_info("%s\n", __func__)); 3561 if (ioc->pci_error_recovery) 3562 return 0; 3563 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 3564 dhsprintk(ioc, pr_info("%s: ioc_state(0x%08x)\n", __func__, ioc_state)); 3565 3566 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 3567 mpt3sas_print_fault_code(ioc, ioc_state & 3568 MPI2_DOORBELL_DATA_MASK); 3569 mpt3sas_base_mask_interrupts(ioc); 3570 rc = _base_diag_reset(ioc); 3571 } else if ((ioc_state & MPI2_IOC_STATE_MASK) == 3572 MPI2_IOC_STATE_COREDUMP) { 3573 mpt3sas_print_coredump_info(ioc, ioc_state & 3574 MPI2_DOORBELL_DATA_MASK); 3575 mpt3sas_base_wait_for_coredump_completion(ioc, __func__); 3576 mpt3sas_base_mask_interrupts(ioc); 3577 rc = _base_diag_reset(ioc); 3578 } 3579 3580 return rc; 3581 } 3582 3583 /** 3584 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap) 3585 * @ioc: per adapter object 3586 * 3587 * Return: 0 for success, non-zero for failure. 3588 */ 3589 int 3590 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc) 3591 { 3592 struct pci_dev *pdev = ioc->pdev; 3593 u32 memap_sz; 3594 u32 pio_sz; 3595 int i, r = 0, rc; 3596 u64 pio_chip = 0; 3597 phys_addr_t chip_phys = 0; 3598 struct adapter_reply_queue *reply_q; 3599 int iopoll_q_count = 0; 3600 3601 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 3602 3603 ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM); 3604 if (pci_enable_device_mem(pdev)) { 3605 ioc_warn(ioc, "pci_enable_device_mem: failed\n"); 3606 ioc->bars = 0; 3607 return -ENODEV; 3608 } 3609 3610 3611 if (pci_request_selected_regions(pdev, ioc->bars, 3612 ioc->driver_name)) { 3613 ioc_warn(ioc, "pci_request_selected_regions: failed\n"); 3614 ioc->bars = 0; 3615 r = -ENODEV; 3616 goto out_fail; 3617 } 3618 3619 /* AER (Advanced Error Reporting) hooks */ 3620 pci_enable_pcie_error_reporting(pdev); 3621 3622 pci_set_master(pdev); 3623 3624 3625 if (_base_config_dma_addressing(ioc, pdev) != 0) { 3626 ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev)); 3627 r = -ENODEV; 3628 goto out_fail; 3629 } 3630 3631 for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) && 3632 (!memap_sz || !pio_sz); i++) { 3633 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { 3634 if (pio_sz) 3635 continue; 3636 pio_chip = (u64)pci_resource_start(pdev, i); 3637 pio_sz = pci_resource_len(pdev, i); 3638 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) { 3639 if (memap_sz) 3640 continue; 3641 ioc->chip_phys = pci_resource_start(pdev, i); 3642 chip_phys = ioc->chip_phys; 3643 memap_sz = pci_resource_len(pdev, i); 3644 ioc->chip = ioremap(ioc->chip_phys, memap_sz); 3645 } 3646 } 3647 3648 if (ioc->chip == NULL) { 3649 ioc_err(ioc, 3650 "unable to map adapter memory! or resource not found\n"); 3651 r = -EINVAL; 3652 goto out_fail; 3653 } 3654 3655 mpt3sas_base_mask_interrupts(ioc); 3656 3657 r = _base_get_ioc_facts(ioc); 3658 if (r) { 3659 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc); 3660 if (rc || (_base_get_ioc_facts(ioc))) 3661 goto out_fail; 3662 } 3663 3664 if (!ioc->rdpq_array_enable_assigned) { 3665 ioc->rdpq_array_enable = ioc->rdpq_array_capable; 3666 ioc->rdpq_array_enable_assigned = 1; 3667 } 3668 3669 r = _base_enable_msix(ioc); 3670 if (r) 3671 goto out_fail; 3672 3673 iopoll_q_count = ioc->reply_queue_count - ioc->iopoll_q_start_index; 3674 for (i = 0; i < iopoll_q_count; i++) { 3675 atomic_set(&ioc->io_uring_poll_queues[i].busy, 0); 3676 atomic_set(&ioc->io_uring_poll_queues[i].pause, 0); 3677 } 3678 3679 if (!ioc->is_driver_loading) 3680 _base_init_irqpolls(ioc); 3681 /* Use the Combined reply queue feature only for SAS3 C0 & higher 3682 * revision HBAs and also only when reply queue count is greater than 8 3683 */ 3684 if (ioc->combined_reply_queue) { 3685 /* Determine the Supplemental Reply Post Host Index Registers 3686 * Addresse. Supplemental Reply Post Host Index Registers 3687 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and 3688 * each register is at offset bytes of 3689 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one. 3690 */ 3691 ioc->replyPostRegisterIndex = kcalloc( 3692 ioc->combined_reply_index_count, 3693 sizeof(resource_size_t *), GFP_KERNEL); 3694 if (!ioc->replyPostRegisterIndex) { 3695 ioc_err(ioc, 3696 "allocation for replyPostRegisterIndex failed!\n"); 3697 r = -ENOMEM; 3698 goto out_fail; 3699 } 3700 3701 for (i = 0; i < ioc->combined_reply_index_count; i++) { 3702 ioc->replyPostRegisterIndex[i] = 3703 (resource_size_t __iomem *) 3704 ((u8 __force *)&ioc->chip->Doorbell + 3705 MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET + 3706 (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET)); 3707 } 3708 } 3709 3710 if (ioc->is_warpdrive) { 3711 ioc->reply_post_host_index[0] = (resource_size_t __iomem *) 3712 &ioc->chip->ReplyPostHostIndex; 3713 3714 for (i = 1; i < ioc->cpu_msix_table_sz; i++) 3715 ioc->reply_post_host_index[i] = 3716 (resource_size_t __iomem *) 3717 ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1) 3718 * 4))); 3719 } 3720 3721 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 3722 if (reply_q->msix_index >= ioc->iopoll_q_start_index) { 3723 pr_info("%s: enabled: index: %d\n", 3724 reply_q->name, reply_q->msix_index); 3725 continue; 3726 } 3727 3728 pr_info("%s: %s enabled: IRQ %d\n", 3729 reply_q->name, 3730 ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC", 3731 pci_irq_vector(ioc->pdev, reply_q->msix_index)); 3732 } 3733 3734 ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n", 3735 &chip_phys, ioc->chip, memap_sz); 3736 ioc_info(ioc, "ioport(0x%016llx), size(%d)\n", 3737 (unsigned long long)pio_chip, pio_sz); 3738 3739 /* Save PCI configuration state for recovery from PCI AER/EEH errors */ 3740 pci_save_state(pdev); 3741 return 0; 3742 3743 out_fail: 3744 mpt3sas_base_unmap_resources(ioc); 3745 return r; 3746 } 3747 3748 /** 3749 * mpt3sas_base_get_msg_frame - obtain request mf pointer 3750 * @ioc: per adapter object 3751 * @smid: system request message index(smid zero is invalid) 3752 * 3753 * Return: virt pointer to message frame. 3754 */ 3755 void * 3756 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3757 { 3758 return (void *)(ioc->request + (smid * ioc->request_sz)); 3759 } 3760 3761 /** 3762 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr 3763 * @ioc: per adapter object 3764 * @smid: system request message index 3765 * 3766 * Return: virt pointer to sense buffer. 3767 */ 3768 void * 3769 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3770 { 3771 return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE)); 3772 } 3773 3774 /** 3775 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr 3776 * @ioc: per adapter object 3777 * @smid: system request message index 3778 * 3779 * Return: phys pointer to the low 32bit address of the sense buffer. 3780 */ 3781 __le32 3782 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3783 { 3784 return cpu_to_le32(ioc->sense_dma + ((smid - 1) * 3785 SCSI_SENSE_BUFFERSIZE)); 3786 } 3787 3788 /** 3789 * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr 3790 * @ioc: per adapter object 3791 * @smid: system request message index 3792 * 3793 * Return: virt pointer to a PCIe SGL. 3794 */ 3795 void * 3796 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3797 { 3798 return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl); 3799 } 3800 3801 /** 3802 * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr 3803 * @ioc: per adapter object 3804 * @smid: system request message index 3805 * 3806 * Return: phys pointer to the address of the PCIe buffer. 3807 */ 3808 dma_addr_t 3809 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3810 { 3811 return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma; 3812 } 3813 3814 /** 3815 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address 3816 * @ioc: per adapter object 3817 * @phys_addr: lower 32 physical addr of the reply 3818 * 3819 * Converts 32bit lower physical addr into a virt address. 3820 */ 3821 void * 3822 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr) 3823 { 3824 if (!phys_addr) 3825 return NULL; 3826 return ioc->reply + (phys_addr - (u32)ioc->reply_dma); 3827 } 3828 3829 /** 3830 * _base_get_msix_index - get the msix index 3831 * @ioc: per adapter object 3832 * @scmd: scsi_cmnd object 3833 * 3834 * Return: msix index of general reply queues, 3835 * i.e. reply queue on which IO request's reply 3836 * should be posted by the HBA firmware. 3837 */ 3838 static inline u8 3839 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc, 3840 struct scsi_cmnd *scmd) 3841 { 3842 /* Enables reply_queue load balancing */ 3843 if (ioc->msix_load_balance) 3844 return ioc->reply_queue_count ? 3845 base_mod64(atomic64_add_return(1, 3846 &ioc->total_io_cnt), ioc->reply_queue_count) : 0; 3847 3848 if (scmd && ioc->shost->nr_hw_queues > 1) { 3849 u32 tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd)); 3850 3851 return blk_mq_unique_tag_to_hwq(tag) + 3852 ioc->high_iops_queues; 3853 } 3854 3855 return ioc->cpu_msix_table[raw_smp_processor_id()]; 3856 } 3857 3858 /** 3859 * _base_get_high_iops_msix_index - get the msix index of 3860 * high iops queues 3861 * @ioc: per adapter object 3862 * @scmd: scsi_cmnd object 3863 * 3864 * Return: msix index of high iops reply queues. 3865 * i.e. high iops reply queue on which IO request's 3866 * reply should be posted by the HBA firmware. 3867 */ 3868 static inline u8 3869 _base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc, 3870 struct scsi_cmnd *scmd) 3871 { 3872 /** 3873 * Round robin the IO interrupts among the high iops 3874 * reply queues in terms of batch count 16 when outstanding 3875 * IOs on the target device is >=8. 3876 */ 3877 3878 if (scsi_device_busy(scmd->device) > MPT3SAS_DEVICE_HIGH_IOPS_DEPTH) 3879 return base_mod64(( 3880 atomic64_add_return(1, &ioc->high_iops_outstanding) / 3881 MPT3SAS_HIGH_IOPS_BATCH_COUNT), 3882 MPT3SAS_HIGH_IOPS_REPLY_QUEUES); 3883 3884 return _base_get_msix_index(ioc, scmd); 3885 } 3886 3887 /** 3888 * mpt3sas_base_get_smid - obtain a free smid from internal queue 3889 * @ioc: per adapter object 3890 * @cb_idx: callback index 3891 * 3892 * Return: smid (zero is invalid) 3893 */ 3894 u16 3895 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx) 3896 { 3897 unsigned long flags; 3898 struct request_tracker *request; 3899 u16 smid; 3900 3901 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3902 if (list_empty(&ioc->internal_free_list)) { 3903 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3904 ioc_err(ioc, "%s: smid not available\n", __func__); 3905 return 0; 3906 } 3907 3908 request = list_entry(ioc->internal_free_list.next, 3909 struct request_tracker, tracker_list); 3910 request->cb_idx = cb_idx; 3911 smid = request->smid; 3912 list_del(&request->tracker_list); 3913 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3914 return smid; 3915 } 3916 3917 /** 3918 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue 3919 * @ioc: per adapter object 3920 * @cb_idx: callback index 3921 * @scmd: pointer to scsi command object 3922 * 3923 * Return: smid (zero is invalid) 3924 */ 3925 u16 3926 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx, 3927 struct scsi_cmnd *scmd) 3928 { 3929 struct scsiio_tracker *request = scsi_cmd_priv(scmd); 3930 u16 smid; 3931 u32 tag, unique_tag; 3932 3933 unique_tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd)); 3934 tag = blk_mq_unique_tag_to_tag(unique_tag); 3935 3936 /* 3937 * Store hw queue number corresponding to the tag. 3938 * This hw queue number is used later to determine 3939 * the unique_tag using the logic below. This unique_tag 3940 * is used to retrieve the scmd pointer corresponding 3941 * to tag using scsi_host_find_tag() API. 3942 * 3943 * tag = smid - 1; 3944 * unique_tag = ioc->io_queue_num[tag] << BLK_MQ_UNIQUE_TAG_BITS | tag; 3945 */ 3946 ioc->io_queue_num[tag] = blk_mq_unique_tag_to_hwq(unique_tag); 3947 3948 smid = tag + 1; 3949 request->cb_idx = cb_idx; 3950 request->smid = smid; 3951 request->scmd = scmd; 3952 INIT_LIST_HEAD(&request->chain_list); 3953 return smid; 3954 } 3955 3956 /** 3957 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue 3958 * @ioc: per adapter object 3959 * @cb_idx: callback index 3960 * 3961 * Return: smid (zero is invalid) 3962 */ 3963 u16 3964 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx) 3965 { 3966 unsigned long flags; 3967 struct request_tracker *request; 3968 u16 smid; 3969 3970 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3971 if (list_empty(&ioc->hpr_free_list)) { 3972 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3973 return 0; 3974 } 3975 3976 request = list_entry(ioc->hpr_free_list.next, 3977 struct request_tracker, tracker_list); 3978 request->cb_idx = cb_idx; 3979 smid = request->smid; 3980 list_del(&request->tracker_list); 3981 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3982 return smid; 3983 } 3984 3985 static void 3986 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc) 3987 { 3988 /* 3989 * See _wait_for_commands_to_complete() call with regards to this code. 3990 */ 3991 if (ioc->shost_recovery && ioc->pending_io_count) { 3992 ioc->pending_io_count = scsi_host_busy(ioc->shost); 3993 if (ioc->pending_io_count == 0) 3994 wake_up(&ioc->reset_wq); 3995 } 3996 } 3997 3998 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc, 3999 struct scsiio_tracker *st) 4000 { 4001 if (WARN_ON(st->smid == 0)) 4002 return; 4003 st->cb_idx = 0xFF; 4004 st->direct_io = 0; 4005 st->scmd = NULL; 4006 atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0); 4007 st->smid = 0; 4008 } 4009 4010 /** 4011 * mpt3sas_base_free_smid - put smid back on free_list 4012 * @ioc: per adapter object 4013 * @smid: system request message index 4014 */ 4015 void 4016 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid) 4017 { 4018 unsigned long flags; 4019 int i; 4020 4021 if (smid < ioc->hi_priority_smid) { 4022 struct scsiio_tracker *st; 4023 void *request; 4024 4025 st = _get_st_from_smid(ioc, smid); 4026 if (!st) { 4027 _base_recovery_check(ioc); 4028 return; 4029 } 4030 4031 /* Clear MPI request frame */ 4032 request = mpt3sas_base_get_msg_frame(ioc, smid); 4033 memset(request, 0, ioc->request_sz); 4034 4035 mpt3sas_base_clear_st(ioc, st); 4036 _base_recovery_check(ioc); 4037 ioc->io_queue_num[smid - 1] = 0; 4038 return; 4039 } 4040 4041 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 4042 if (smid < ioc->internal_smid) { 4043 /* hi-priority */ 4044 i = smid - ioc->hi_priority_smid; 4045 ioc->hpr_lookup[i].cb_idx = 0xFF; 4046 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list); 4047 } else if (smid <= ioc->hba_queue_depth) { 4048 /* internal queue */ 4049 i = smid - ioc->internal_smid; 4050 ioc->internal_lookup[i].cb_idx = 0xFF; 4051 list_add(&ioc->internal_lookup[i].tracker_list, 4052 &ioc->internal_free_list); 4053 } 4054 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 4055 } 4056 4057 /** 4058 * _base_mpi_ep_writeq - 32 bit write to MMIO 4059 * @b: data payload 4060 * @addr: address in MMIO space 4061 * @writeq_lock: spin lock 4062 * 4063 * This special handling for MPI EP to take care of 32 bit 4064 * environment where its not quarenteed to send the entire word 4065 * in one transfer. 4066 */ 4067 static inline void 4068 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr, 4069 spinlock_t *writeq_lock) 4070 { 4071 unsigned long flags; 4072 4073 spin_lock_irqsave(writeq_lock, flags); 4074 __raw_writel((u32)(b), addr); 4075 __raw_writel((u32)(b >> 32), (addr + 4)); 4076 spin_unlock_irqrestore(writeq_lock, flags); 4077 } 4078 4079 /** 4080 * _base_writeq - 64 bit write to MMIO 4081 * @b: data payload 4082 * @addr: address in MMIO space 4083 * @writeq_lock: spin lock 4084 * 4085 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes 4086 * care of 32 bit environment where its not quarenteed to send the entire word 4087 * in one transfer. 4088 */ 4089 #if defined(writeq) && defined(CONFIG_64BIT) 4090 static inline void 4091 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock) 4092 { 4093 wmb(); 4094 __raw_writeq(b, addr); 4095 barrier(); 4096 } 4097 #else 4098 static inline void 4099 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock) 4100 { 4101 _base_mpi_ep_writeq(b, addr, writeq_lock); 4102 } 4103 #endif 4104 4105 /** 4106 * _base_set_and_get_msix_index - get the msix index and assign to msix_io 4107 * variable of scsi tracker 4108 * @ioc: per adapter object 4109 * @smid: system request message index 4110 * 4111 * Return: msix index. 4112 */ 4113 static u8 4114 _base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid) 4115 { 4116 struct scsiio_tracker *st = NULL; 4117 4118 if (smid < ioc->hi_priority_smid) 4119 st = _get_st_from_smid(ioc, smid); 4120 4121 if (st == NULL) 4122 return _base_get_msix_index(ioc, NULL); 4123 4124 st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd); 4125 return st->msix_io; 4126 } 4127 4128 /** 4129 * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware 4130 * @ioc: per adapter object 4131 * @smid: system request message index 4132 * @handle: device handle 4133 */ 4134 static void 4135 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc, 4136 u16 smid, u16 handle) 4137 { 4138 Mpi2RequestDescriptorUnion_t descriptor; 4139 u64 *request = (u64 *)&descriptor; 4140 void *mpi_req_iomem; 4141 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 4142 4143 _clone_sg_entries(ioc, (void *) mfp, smid); 4144 mpi_req_iomem = (void __force *)ioc->chip + 4145 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz); 4146 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 4147 ioc->request_sz); 4148 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 4149 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4150 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 4151 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 4152 descriptor.SCSIIO.LMID = 0; 4153 _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 4154 &ioc->scsi_lookup_lock); 4155 } 4156 4157 /** 4158 * _base_put_smid_scsi_io - send SCSI_IO request to firmware 4159 * @ioc: per adapter object 4160 * @smid: system request message index 4161 * @handle: device handle 4162 */ 4163 static void 4164 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle) 4165 { 4166 Mpi2RequestDescriptorUnion_t descriptor; 4167 u64 *request = (u64 *)&descriptor; 4168 4169 4170 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 4171 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4172 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 4173 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 4174 descriptor.SCSIIO.LMID = 0; 4175 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 4176 &ioc->scsi_lookup_lock); 4177 } 4178 4179 /** 4180 * _base_put_smid_fast_path - send fast path request to firmware 4181 * @ioc: per adapter object 4182 * @smid: system request message index 4183 * @handle: device handle 4184 */ 4185 static void 4186 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4187 u16 handle) 4188 { 4189 Mpi2RequestDescriptorUnion_t descriptor; 4190 u64 *request = (u64 *)&descriptor; 4191 4192 descriptor.SCSIIO.RequestFlags = 4193 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 4194 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4195 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 4196 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 4197 descriptor.SCSIIO.LMID = 0; 4198 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 4199 &ioc->scsi_lookup_lock); 4200 } 4201 4202 /** 4203 * _base_put_smid_hi_priority - send Task Management request to firmware 4204 * @ioc: per adapter object 4205 * @smid: system request message index 4206 * @msix_task: msix_task will be same as msix of IO in case of task abort else 0 4207 */ 4208 static void 4209 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4210 u16 msix_task) 4211 { 4212 Mpi2RequestDescriptorUnion_t descriptor; 4213 void *mpi_req_iomem; 4214 u64 *request; 4215 4216 if (ioc->is_mcpu_endpoint) { 4217 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 4218 4219 /* TBD 256 is offset within sys register. */ 4220 mpi_req_iomem = (void __force *)ioc->chip 4221 + MPI_FRAME_START_OFFSET 4222 + (smid * ioc->request_sz); 4223 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 4224 ioc->request_sz); 4225 } 4226 4227 request = (u64 *)&descriptor; 4228 4229 descriptor.HighPriority.RequestFlags = 4230 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 4231 descriptor.HighPriority.MSIxIndex = msix_task; 4232 descriptor.HighPriority.SMID = cpu_to_le16(smid); 4233 descriptor.HighPriority.LMID = 0; 4234 descriptor.HighPriority.Reserved1 = 0; 4235 if (ioc->is_mcpu_endpoint) 4236 _base_mpi_ep_writeq(*request, 4237 &ioc->chip->RequestDescriptorPostLow, 4238 &ioc->scsi_lookup_lock); 4239 else 4240 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 4241 &ioc->scsi_lookup_lock); 4242 } 4243 4244 /** 4245 * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to 4246 * firmware 4247 * @ioc: per adapter object 4248 * @smid: system request message index 4249 */ 4250 void 4251 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid) 4252 { 4253 Mpi2RequestDescriptorUnion_t descriptor; 4254 u64 *request = (u64 *)&descriptor; 4255 4256 descriptor.Default.RequestFlags = 4257 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED; 4258 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4259 descriptor.Default.SMID = cpu_to_le16(smid); 4260 descriptor.Default.LMID = 0; 4261 descriptor.Default.DescriptorTypeDependent = 0; 4262 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 4263 &ioc->scsi_lookup_lock); 4264 } 4265 4266 /** 4267 * _base_put_smid_default - Default, primarily used for config pages 4268 * @ioc: per adapter object 4269 * @smid: system request message index 4270 */ 4271 static void 4272 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid) 4273 { 4274 Mpi2RequestDescriptorUnion_t descriptor; 4275 void *mpi_req_iomem; 4276 u64 *request; 4277 4278 if (ioc->is_mcpu_endpoint) { 4279 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 4280 4281 _clone_sg_entries(ioc, (void *) mfp, smid); 4282 /* TBD 256 is offset within sys register */ 4283 mpi_req_iomem = (void __force *)ioc->chip + 4284 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz); 4285 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 4286 ioc->request_sz); 4287 } 4288 request = (u64 *)&descriptor; 4289 descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 4290 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4291 descriptor.Default.SMID = cpu_to_le16(smid); 4292 descriptor.Default.LMID = 0; 4293 descriptor.Default.DescriptorTypeDependent = 0; 4294 if (ioc->is_mcpu_endpoint) 4295 _base_mpi_ep_writeq(*request, 4296 &ioc->chip->RequestDescriptorPostLow, 4297 &ioc->scsi_lookup_lock); 4298 else 4299 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 4300 &ioc->scsi_lookup_lock); 4301 } 4302 4303 /** 4304 * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using 4305 * Atomic Request Descriptor 4306 * @ioc: per adapter object 4307 * @smid: system request message index 4308 * @handle: device handle, unused in this function, for function type match 4309 * 4310 * Return: nothing. 4311 */ 4312 static void 4313 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4314 u16 handle) 4315 { 4316 Mpi26AtomicRequestDescriptor_t descriptor; 4317 u32 *request = (u32 *)&descriptor; 4318 4319 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 4320 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4321 descriptor.SMID = cpu_to_le16(smid); 4322 4323 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4324 } 4325 4326 /** 4327 * _base_put_smid_fast_path_atomic - send fast path request to firmware 4328 * using Atomic Request Descriptor 4329 * @ioc: per adapter object 4330 * @smid: system request message index 4331 * @handle: device handle, unused in this function, for function type match 4332 * Return: nothing 4333 */ 4334 static void 4335 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4336 u16 handle) 4337 { 4338 Mpi26AtomicRequestDescriptor_t descriptor; 4339 u32 *request = (u32 *)&descriptor; 4340 4341 descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 4342 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4343 descriptor.SMID = cpu_to_le16(smid); 4344 4345 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4346 } 4347 4348 /** 4349 * _base_put_smid_hi_priority_atomic - send Task Management request to 4350 * firmware using Atomic Request Descriptor 4351 * @ioc: per adapter object 4352 * @smid: system request message index 4353 * @msix_task: msix_task will be same as msix of IO in case of task abort else 0 4354 * 4355 * Return: nothing. 4356 */ 4357 static void 4358 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4359 u16 msix_task) 4360 { 4361 Mpi26AtomicRequestDescriptor_t descriptor; 4362 u32 *request = (u32 *)&descriptor; 4363 4364 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 4365 descriptor.MSIxIndex = msix_task; 4366 descriptor.SMID = cpu_to_le16(smid); 4367 4368 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4369 } 4370 4371 /** 4372 * _base_put_smid_default_atomic - Default, primarily used for config pages 4373 * use Atomic Request Descriptor 4374 * @ioc: per adapter object 4375 * @smid: system request message index 4376 * 4377 * Return: nothing. 4378 */ 4379 static void 4380 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid) 4381 { 4382 Mpi26AtomicRequestDescriptor_t descriptor; 4383 u32 *request = (u32 *)&descriptor; 4384 4385 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 4386 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4387 descriptor.SMID = cpu_to_le16(smid); 4388 4389 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4390 } 4391 4392 /** 4393 * _base_display_OEMs_branding - Display branding string 4394 * @ioc: per adapter object 4395 */ 4396 static void 4397 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc) 4398 { 4399 if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL) 4400 return; 4401 4402 switch (ioc->pdev->subsystem_vendor) { 4403 case PCI_VENDOR_ID_INTEL: 4404 switch (ioc->pdev->device) { 4405 case MPI2_MFGPAGE_DEVID_SAS2008: 4406 switch (ioc->pdev->subsystem_device) { 4407 case MPT2SAS_INTEL_RMS2LL080_SSDID: 4408 ioc_info(ioc, "%s\n", 4409 MPT2SAS_INTEL_RMS2LL080_BRANDING); 4410 break; 4411 case MPT2SAS_INTEL_RMS2LL040_SSDID: 4412 ioc_info(ioc, "%s\n", 4413 MPT2SAS_INTEL_RMS2LL040_BRANDING); 4414 break; 4415 case MPT2SAS_INTEL_SSD910_SSDID: 4416 ioc_info(ioc, "%s\n", 4417 MPT2SAS_INTEL_SSD910_BRANDING); 4418 break; 4419 default: 4420 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4421 ioc->pdev->subsystem_device); 4422 break; 4423 } 4424 break; 4425 case MPI2_MFGPAGE_DEVID_SAS2308_2: 4426 switch (ioc->pdev->subsystem_device) { 4427 case MPT2SAS_INTEL_RS25GB008_SSDID: 4428 ioc_info(ioc, "%s\n", 4429 MPT2SAS_INTEL_RS25GB008_BRANDING); 4430 break; 4431 case MPT2SAS_INTEL_RMS25JB080_SSDID: 4432 ioc_info(ioc, "%s\n", 4433 MPT2SAS_INTEL_RMS25JB080_BRANDING); 4434 break; 4435 case MPT2SAS_INTEL_RMS25JB040_SSDID: 4436 ioc_info(ioc, "%s\n", 4437 MPT2SAS_INTEL_RMS25JB040_BRANDING); 4438 break; 4439 case MPT2SAS_INTEL_RMS25KB080_SSDID: 4440 ioc_info(ioc, "%s\n", 4441 MPT2SAS_INTEL_RMS25KB080_BRANDING); 4442 break; 4443 case MPT2SAS_INTEL_RMS25KB040_SSDID: 4444 ioc_info(ioc, "%s\n", 4445 MPT2SAS_INTEL_RMS25KB040_BRANDING); 4446 break; 4447 case MPT2SAS_INTEL_RMS25LB040_SSDID: 4448 ioc_info(ioc, "%s\n", 4449 MPT2SAS_INTEL_RMS25LB040_BRANDING); 4450 break; 4451 case MPT2SAS_INTEL_RMS25LB080_SSDID: 4452 ioc_info(ioc, "%s\n", 4453 MPT2SAS_INTEL_RMS25LB080_BRANDING); 4454 break; 4455 default: 4456 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4457 ioc->pdev->subsystem_device); 4458 break; 4459 } 4460 break; 4461 case MPI25_MFGPAGE_DEVID_SAS3008: 4462 switch (ioc->pdev->subsystem_device) { 4463 case MPT3SAS_INTEL_RMS3JC080_SSDID: 4464 ioc_info(ioc, "%s\n", 4465 MPT3SAS_INTEL_RMS3JC080_BRANDING); 4466 break; 4467 4468 case MPT3SAS_INTEL_RS3GC008_SSDID: 4469 ioc_info(ioc, "%s\n", 4470 MPT3SAS_INTEL_RS3GC008_BRANDING); 4471 break; 4472 case MPT3SAS_INTEL_RS3FC044_SSDID: 4473 ioc_info(ioc, "%s\n", 4474 MPT3SAS_INTEL_RS3FC044_BRANDING); 4475 break; 4476 case MPT3SAS_INTEL_RS3UC080_SSDID: 4477 ioc_info(ioc, "%s\n", 4478 MPT3SAS_INTEL_RS3UC080_BRANDING); 4479 break; 4480 default: 4481 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4482 ioc->pdev->subsystem_device); 4483 break; 4484 } 4485 break; 4486 default: 4487 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4488 ioc->pdev->subsystem_device); 4489 break; 4490 } 4491 break; 4492 case PCI_VENDOR_ID_DELL: 4493 switch (ioc->pdev->device) { 4494 case MPI2_MFGPAGE_DEVID_SAS2008: 4495 switch (ioc->pdev->subsystem_device) { 4496 case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID: 4497 ioc_info(ioc, "%s\n", 4498 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING); 4499 break; 4500 case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID: 4501 ioc_info(ioc, "%s\n", 4502 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING); 4503 break; 4504 case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID: 4505 ioc_info(ioc, "%s\n", 4506 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING); 4507 break; 4508 case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID: 4509 ioc_info(ioc, "%s\n", 4510 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING); 4511 break; 4512 case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID: 4513 ioc_info(ioc, "%s\n", 4514 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING); 4515 break; 4516 case MPT2SAS_DELL_PERC_H200_SSDID: 4517 ioc_info(ioc, "%s\n", 4518 MPT2SAS_DELL_PERC_H200_BRANDING); 4519 break; 4520 case MPT2SAS_DELL_6GBPS_SAS_SSDID: 4521 ioc_info(ioc, "%s\n", 4522 MPT2SAS_DELL_6GBPS_SAS_BRANDING); 4523 break; 4524 default: 4525 ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n", 4526 ioc->pdev->subsystem_device); 4527 break; 4528 } 4529 break; 4530 case MPI25_MFGPAGE_DEVID_SAS3008: 4531 switch (ioc->pdev->subsystem_device) { 4532 case MPT3SAS_DELL_12G_HBA_SSDID: 4533 ioc_info(ioc, "%s\n", 4534 MPT3SAS_DELL_12G_HBA_BRANDING); 4535 break; 4536 default: 4537 ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n", 4538 ioc->pdev->subsystem_device); 4539 break; 4540 } 4541 break; 4542 default: 4543 ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n", 4544 ioc->pdev->subsystem_device); 4545 break; 4546 } 4547 break; 4548 case PCI_VENDOR_ID_CISCO: 4549 switch (ioc->pdev->device) { 4550 case MPI25_MFGPAGE_DEVID_SAS3008: 4551 switch (ioc->pdev->subsystem_device) { 4552 case MPT3SAS_CISCO_12G_8E_HBA_SSDID: 4553 ioc_info(ioc, "%s\n", 4554 MPT3SAS_CISCO_12G_8E_HBA_BRANDING); 4555 break; 4556 case MPT3SAS_CISCO_12G_8I_HBA_SSDID: 4557 ioc_info(ioc, "%s\n", 4558 MPT3SAS_CISCO_12G_8I_HBA_BRANDING); 4559 break; 4560 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID: 4561 ioc_info(ioc, "%s\n", 4562 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING); 4563 break; 4564 default: 4565 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n", 4566 ioc->pdev->subsystem_device); 4567 break; 4568 } 4569 break; 4570 case MPI25_MFGPAGE_DEVID_SAS3108_1: 4571 switch (ioc->pdev->subsystem_device) { 4572 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID: 4573 ioc_info(ioc, "%s\n", 4574 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING); 4575 break; 4576 case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID: 4577 ioc_info(ioc, "%s\n", 4578 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING); 4579 break; 4580 default: 4581 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n", 4582 ioc->pdev->subsystem_device); 4583 break; 4584 } 4585 break; 4586 default: 4587 ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n", 4588 ioc->pdev->subsystem_device); 4589 break; 4590 } 4591 break; 4592 case MPT2SAS_HP_3PAR_SSVID: 4593 switch (ioc->pdev->device) { 4594 case MPI2_MFGPAGE_DEVID_SAS2004: 4595 switch (ioc->pdev->subsystem_device) { 4596 case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID: 4597 ioc_info(ioc, "%s\n", 4598 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING); 4599 break; 4600 default: 4601 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n", 4602 ioc->pdev->subsystem_device); 4603 break; 4604 } 4605 break; 4606 case MPI2_MFGPAGE_DEVID_SAS2308_2: 4607 switch (ioc->pdev->subsystem_device) { 4608 case MPT2SAS_HP_2_4_INTERNAL_SSDID: 4609 ioc_info(ioc, "%s\n", 4610 MPT2SAS_HP_2_4_INTERNAL_BRANDING); 4611 break; 4612 case MPT2SAS_HP_2_4_EXTERNAL_SSDID: 4613 ioc_info(ioc, "%s\n", 4614 MPT2SAS_HP_2_4_EXTERNAL_BRANDING); 4615 break; 4616 case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID: 4617 ioc_info(ioc, "%s\n", 4618 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING); 4619 break; 4620 case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID: 4621 ioc_info(ioc, "%s\n", 4622 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING); 4623 break; 4624 default: 4625 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n", 4626 ioc->pdev->subsystem_device); 4627 break; 4628 } 4629 break; 4630 default: 4631 ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n", 4632 ioc->pdev->subsystem_device); 4633 break; 4634 } 4635 break; 4636 default: 4637 break; 4638 } 4639 } 4640 4641 /** 4642 * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg 4643 * version from FW Image Header. 4644 * @ioc: per adapter object 4645 * 4646 * Return: 0 for success, non-zero for failure. 4647 */ 4648 static int 4649 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc) 4650 { 4651 Mpi2FWImageHeader_t *fw_img_hdr; 4652 Mpi26ComponentImageHeader_t *cmp_img_hdr; 4653 Mpi25FWUploadRequest_t *mpi_request; 4654 Mpi2FWUploadReply_t mpi_reply; 4655 int r = 0, issue_diag_reset = 0; 4656 u32 package_version = 0; 4657 void *fwpkg_data = NULL; 4658 dma_addr_t fwpkg_data_dma; 4659 u16 smid, ioc_status; 4660 size_t data_length; 4661 4662 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 4663 4664 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 4665 ioc_err(ioc, "%s: internal command already in use\n", __func__); 4666 return -EAGAIN; 4667 } 4668 4669 data_length = sizeof(Mpi2FWImageHeader_t); 4670 fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length, 4671 &fwpkg_data_dma, GFP_KERNEL); 4672 if (!fwpkg_data) { 4673 ioc_err(ioc, 4674 "Memory allocation for fwpkg data failed at %s:%d/%s()!\n", 4675 __FILE__, __LINE__, __func__); 4676 return -ENOMEM; 4677 } 4678 4679 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 4680 if (!smid) { 4681 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 4682 r = -EAGAIN; 4683 goto out; 4684 } 4685 4686 ioc->base_cmds.status = MPT3_CMD_PENDING; 4687 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 4688 ioc->base_cmds.smid = smid; 4689 memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t)); 4690 mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD; 4691 mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH; 4692 mpi_request->ImageSize = cpu_to_le32(data_length); 4693 ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma, 4694 data_length); 4695 init_completion(&ioc->base_cmds.done); 4696 ioc->put_smid_default(ioc, smid); 4697 /* Wait for 15 seconds */ 4698 wait_for_completion_timeout(&ioc->base_cmds.done, 4699 FW_IMG_HDR_READ_TIMEOUT*HZ); 4700 ioc_info(ioc, "%s: complete\n", __func__); 4701 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 4702 ioc_err(ioc, "%s: timeout\n", __func__); 4703 _debug_dump_mf(mpi_request, 4704 sizeof(Mpi25FWUploadRequest_t)/4); 4705 issue_diag_reset = 1; 4706 } else { 4707 memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t)); 4708 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) { 4709 memcpy(&mpi_reply, ioc->base_cmds.reply, 4710 sizeof(Mpi2FWUploadReply_t)); 4711 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 4712 MPI2_IOCSTATUS_MASK; 4713 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 4714 fw_img_hdr = (Mpi2FWImageHeader_t *)fwpkg_data; 4715 if (le32_to_cpu(fw_img_hdr->Signature) == 4716 MPI26_IMAGE_HEADER_SIGNATURE0_MPI26) { 4717 cmp_img_hdr = 4718 (Mpi26ComponentImageHeader_t *) 4719 (fwpkg_data); 4720 package_version = 4721 le32_to_cpu( 4722 cmp_img_hdr->ApplicationSpecific); 4723 } else 4724 package_version = 4725 le32_to_cpu( 4726 fw_img_hdr->PackageVersion.Word); 4727 if (package_version) 4728 ioc_info(ioc, 4729 "FW Package Ver(%02d.%02d.%02d.%02d)\n", 4730 ((package_version) & 0xFF000000) >> 24, 4731 ((package_version) & 0x00FF0000) >> 16, 4732 ((package_version) & 0x0000FF00) >> 8, 4733 (package_version) & 0x000000FF); 4734 } else { 4735 _debug_dump_mf(&mpi_reply, 4736 sizeof(Mpi2FWUploadReply_t)/4); 4737 } 4738 } 4739 } 4740 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 4741 out: 4742 if (fwpkg_data) 4743 dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data, 4744 fwpkg_data_dma); 4745 if (issue_diag_reset) { 4746 if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED) 4747 return -EFAULT; 4748 if (mpt3sas_base_check_for_fault_and_issue_reset(ioc)) 4749 return -EFAULT; 4750 r = -EAGAIN; 4751 } 4752 return r; 4753 } 4754 4755 /** 4756 * _base_display_ioc_capabilities - Display IOC's capabilities. 4757 * @ioc: per adapter object 4758 */ 4759 static void 4760 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc) 4761 { 4762 int i = 0; 4763 char desc[17] = {0}; 4764 u32 iounit_pg1_flags; 4765 u32 bios_version; 4766 4767 bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion); 4768 strncpy(desc, ioc->manu_pg0.ChipName, 16); 4769 ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n", 4770 desc, 4771 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24, 4772 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16, 4773 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8, 4774 ioc->facts.FWVersion.Word & 0x000000FF, 4775 ioc->pdev->revision, 4776 (bios_version & 0xFF000000) >> 24, 4777 (bios_version & 0x00FF0000) >> 16, 4778 (bios_version & 0x0000FF00) >> 8, 4779 bios_version & 0x000000FF); 4780 4781 _base_display_OEMs_branding(ioc); 4782 4783 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) { 4784 pr_info("%sNVMe", i ? "," : ""); 4785 i++; 4786 } 4787 4788 ioc_info(ioc, "Protocol=("); 4789 4790 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) { 4791 pr_cont("Initiator"); 4792 i++; 4793 } 4794 4795 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) { 4796 pr_cont("%sTarget", i ? "," : ""); 4797 i++; 4798 } 4799 4800 i = 0; 4801 pr_cont("), Capabilities=("); 4802 4803 if (!ioc->hide_ir_msg) { 4804 if (ioc->facts.IOCCapabilities & 4805 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) { 4806 pr_cont("Raid"); 4807 i++; 4808 } 4809 } 4810 4811 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) { 4812 pr_cont("%sTLR", i ? "," : ""); 4813 i++; 4814 } 4815 4816 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) { 4817 pr_cont("%sMulticast", i ? "," : ""); 4818 i++; 4819 } 4820 4821 if (ioc->facts.IOCCapabilities & 4822 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) { 4823 pr_cont("%sBIDI Target", i ? "," : ""); 4824 i++; 4825 } 4826 4827 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) { 4828 pr_cont("%sEEDP", i ? "," : ""); 4829 i++; 4830 } 4831 4832 if (ioc->facts.IOCCapabilities & 4833 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) { 4834 pr_cont("%sSnapshot Buffer", i ? "," : ""); 4835 i++; 4836 } 4837 4838 if (ioc->facts.IOCCapabilities & 4839 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) { 4840 pr_cont("%sDiag Trace Buffer", i ? "," : ""); 4841 i++; 4842 } 4843 4844 if (ioc->facts.IOCCapabilities & 4845 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) { 4846 pr_cont("%sDiag Extended Buffer", i ? "," : ""); 4847 i++; 4848 } 4849 4850 if (ioc->facts.IOCCapabilities & 4851 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) { 4852 pr_cont("%sTask Set Full", i ? "," : ""); 4853 i++; 4854 } 4855 4856 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags); 4857 if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) { 4858 pr_cont("%sNCQ", i ? "," : ""); 4859 i++; 4860 } 4861 4862 pr_cont(")\n"); 4863 } 4864 4865 /** 4866 * mpt3sas_base_update_missing_delay - change the missing delay timers 4867 * @ioc: per adapter object 4868 * @device_missing_delay: amount of time till device is reported missing 4869 * @io_missing_delay: interval IO is returned when there is a missing device 4870 * 4871 * Passed on the command line, this function will modify the device missing 4872 * delay, as well as the io missing delay. This should be called at driver 4873 * load time. 4874 */ 4875 void 4876 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc, 4877 u16 device_missing_delay, u8 io_missing_delay) 4878 { 4879 u16 dmd, dmd_new, dmd_orignal; 4880 u8 io_missing_delay_original; 4881 u16 sz; 4882 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL; 4883 Mpi2ConfigReply_t mpi_reply; 4884 u8 num_phys = 0; 4885 u16 ioc_status; 4886 4887 mpt3sas_config_get_number_hba_phys(ioc, &num_phys); 4888 if (!num_phys) 4889 return; 4890 4891 sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys * 4892 sizeof(Mpi2SasIOUnit1PhyData_t)); 4893 sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL); 4894 if (!sas_iounit_pg1) { 4895 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4896 __FILE__, __LINE__, __func__); 4897 goto out; 4898 } 4899 if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply, 4900 sas_iounit_pg1, sz))) { 4901 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4902 __FILE__, __LINE__, __func__); 4903 goto out; 4904 } 4905 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 4906 MPI2_IOCSTATUS_MASK; 4907 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 4908 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4909 __FILE__, __LINE__, __func__); 4910 goto out; 4911 } 4912 4913 /* device missing delay */ 4914 dmd = sas_iounit_pg1->ReportDeviceMissingDelay; 4915 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16) 4916 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16; 4917 else 4918 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK; 4919 dmd_orignal = dmd; 4920 if (device_missing_delay > 0x7F) { 4921 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 : 4922 device_missing_delay; 4923 dmd = dmd / 16; 4924 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16; 4925 } else 4926 dmd = device_missing_delay; 4927 sas_iounit_pg1->ReportDeviceMissingDelay = dmd; 4928 4929 /* io missing delay */ 4930 io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay; 4931 sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay; 4932 4933 if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1, 4934 sz)) { 4935 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16) 4936 dmd_new = (dmd & 4937 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16; 4938 else 4939 dmd_new = 4940 dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK; 4941 ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n", 4942 dmd_orignal, dmd_new); 4943 ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n", 4944 io_missing_delay_original, 4945 io_missing_delay); 4946 ioc->device_missing_delay = dmd_new; 4947 ioc->io_missing_delay = io_missing_delay; 4948 } 4949 4950 out: 4951 kfree(sas_iounit_pg1); 4952 } 4953 4954 /** 4955 * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields 4956 * according to performance mode. 4957 * @ioc : per adapter object 4958 * 4959 * Return: zero on success; otherwise return EAGAIN error code asking the 4960 * caller to retry. 4961 */ 4962 static int 4963 _base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc) 4964 { 4965 Mpi2IOCPage1_t ioc_pg1; 4966 Mpi2ConfigReply_t mpi_reply; 4967 int rc; 4968 4969 rc = mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy); 4970 if (rc) 4971 return rc; 4972 memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t)); 4973 4974 switch (perf_mode) { 4975 case MPT_PERF_MODE_DEFAULT: 4976 case MPT_PERF_MODE_BALANCED: 4977 if (ioc->high_iops_queues) { 4978 ioc_info(ioc, 4979 "Enable interrupt coalescing only for first\t" 4980 "%d reply queues\n", 4981 MPT3SAS_HIGH_IOPS_REPLY_QUEUES); 4982 /* 4983 * If 31st bit is zero then interrupt coalescing is 4984 * enabled for all reply descriptor post queues. 4985 * If 31st bit is set to one then user can 4986 * enable/disable interrupt coalescing on per reply 4987 * descriptor post queue group(8) basis. So to enable 4988 * interrupt coalescing only on first reply descriptor 4989 * post queue group 31st bit and zero th bit is enabled. 4990 */ 4991 ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 | 4992 ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1)); 4993 rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1); 4994 if (rc) 4995 return rc; 4996 ioc_info(ioc, "performance mode: balanced\n"); 4997 return 0; 4998 } 4999 fallthrough; 5000 case MPT_PERF_MODE_LATENCY: 5001 /* 5002 * Enable interrupt coalescing on all reply queues 5003 * with timeout value 0xA 5004 */ 5005 ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa); 5006 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING); 5007 ioc_pg1.ProductSpecific = 0; 5008 rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1); 5009 if (rc) 5010 return rc; 5011 ioc_info(ioc, "performance mode: latency\n"); 5012 break; 5013 case MPT_PERF_MODE_IOPS: 5014 /* 5015 * Enable interrupt coalescing on all reply queues. 5016 */ 5017 ioc_info(ioc, 5018 "performance mode: iops with coalescing timeout: 0x%x\n", 5019 le32_to_cpu(ioc_pg1.CoalescingTimeout)); 5020 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING); 5021 ioc_pg1.ProductSpecific = 0; 5022 rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1); 5023 if (rc) 5024 return rc; 5025 break; 5026 } 5027 return 0; 5028 } 5029 5030 /** 5031 * _base_get_event_diag_triggers - get event diag trigger values from 5032 * persistent pages 5033 * @ioc : per adapter object 5034 * 5035 * Return: nothing. 5036 */ 5037 static int 5038 _base_get_event_diag_triggers(struct MPT3SAS_ADAPTER *ioc) 5039 { 5040 Mpi26DriverTriggerPage2_t trigger_pg2; 5041 struct SL_WH_EVENT_TRIGGER_T *event_tg; 5042 MPI26_DRIVER_MPI_EVENT_TIGGER_ENTRY *mpi_event_tg; 5043 Mpi2ConfigReply_t mpi_reply; 5044 int r = 0, i = 0; 5045 u16 count = 0; 5046 u16 ioc_status; 5047 5048 r = mpt3sas_config_get_driver_trigger_pg2(ioc, &mpi_reply, 5049 &trigger_pg2); 5050 if (r) 5051 return r; 5052 5053 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 5054 MPI2_IOCSTATUS_MASK; 5055 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 5056 dinitprintk(ioc, 5057 ioc_err(ioc, 5058 "%s: Failed to get trigger pg2, ioc_status(0x%04x)\n", 5059 __func__, ioc_status)); 5060 return 0; 5061 } 5062 5063 if (le16_to_cpu(trigger_pg2.NumMPIEventTrigger)) { 5064 count = le16_to_cpu(trigger_pg2.NumMPIEventTrigger); 5065 count = min_t(u16, NUM_VALID_ENTRIES, count); 5066 ioc->diag_trigger_event.ValidEntries = count; 5067 5068 event_tg = &ioc->diag_trigger_event.EventTriggerEntry[0]; 5069 mpi_event_tg = &trigger_pg2.MPIEventTriggers[0]; 5070 for (i = 0; i < count; i++) { 5071 event_tg->EventValue = le16_to_cpu( 5072 mpi_event_tg->MPIEventCode); 5073 event_tg->LogEntryQualifier = le16_to_cpu( 5074 mpi_event_tg->MPIEventCodeSpecific); 5075 event_tg++; 5076 mpi_event_tg++; 5077 } 5078 } 5079 return 0; 5080 } 5081 5082 /** 5083 * _base_get_scsi_diag_triggers - get scsi diag trigger values from 5084 * persistent pages 5085 * @ioc : per adapter object 5086 * 5087 * Return: 0 on success; otherwise return failure status. 5088 */ 5089 static int 5090 _base_get_scsi_diag_triggers(struct MPT3SAS_ADAPTER *ioc) 5091 { 5092 Mpi26DriverTriggerPage3_t trigger_pg3; 5093 struct SL_WH_SCSI_TRIGGER_T *scsi_tg; 5094 MPI26_DRIVER_SCSI_SENSE_TIGGER_ENTRY *mpi_scsi_tg; 5095 Mpi2ConfigReply_t mpi_reply; 5096 int r = 0, i = 0; 5097 u16 count = 0; 5098 u16 ioc_status; 5099 5100 r = mpt3sas_config_get_driver_trigger_pg3(ioc, &mpi_reply, 5101 &trigger_pg3); 5102 if (r) 5103 return r; 5104 5105 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 5106 MPI2_IOCSTATUS_MASK; 5107 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 5108 dinitprintk(ioc, 5109 ioc_err(ioc, 5110 "%s: Failed to get trigger pg3, ioc_status(0x%04x)\n", 5111 __func__, ioc_status)); 5112 return 0; 5113 } 5114 5115 if (le16_to_cpu(trigger_pg3.NumSCSISenseTrigger)) { 5116 count = le16_to_cpu(trigger_pg3.NumSCSISenseTrigger); 5117 count = min_t(u16, NUM_VALID_ENTRIES, count); 5118 ioc->diag_trigger_scsi.ValidEntries = count; 5119 5120 scsi_tg = &ioc->diag_trigger_scsi.SCSITriggerEntry[0]; 5121 mpi_scsi_tg = &trigger_pg3.SCSISenseTriggers[0]; 5122 for (i = 0; i < count; i++) { 5123 scsi_tg->ASCQ = mpi_scsi_tg->ASCQ; 5124 scsi_tg->ASC = mpi_scsi_tg->ASC; 5125 scsi_tg->SenseKey = mpi_scsi_tg->SenseKey; 5126 5127 scsi_tg++; 5128 mpi_scsi_tg++; 5129 } 5130 } 5131 return 0; 5132 } 5133 5134 /** 5135 * _base_get_mpi_diag_triggers - get mpi diag trigger values from 5136 * persistent pages 5137 * @ioc : per adapter object 5138 * 5139 * Return: 0 on success; otherwise return failure status. 5140 */ 5141 static int 5142 _base_get_mpi_diag_triggers(struct MPT3SAS_ADAPTER *ioc) 5143 { 5144 Mpi26DriverTriggerPage4_t trigger_pg4; 5145 struct SL_WH_MPI_TRIGGER_T *status_tg; 5146 MPI26_DRIVER_IOCSTATUS_LOGINFO_TIGGER_ENTRY *mpi_status_tg; 5147 Mpi2ConfigReply_t mpi_reply; 5148 int r = 0, i = 0; 5149 u16 count = 0; 5150 u16 ioc_status; 5151 5152 r = mpt3sas_config_get_driver_trigger_pg4(ioc, &mpi_reply, 5153 &trigger_pg4); 5154 if (r) 5155 return r; 5156 5157 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 5158 MPI2_IOCSTATUS_MASK; 5159 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 5160 dinitprintk(ioc, 5161 ioc_err(ioc, 5162 "%s: Failed to get trigger pg4, ioc_status(0x%04x)\n", 5163 __func__, ioc_status)); 5164 return 0; 5165 } 5166 5167 if (le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger)) { 5168 count = le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger); 5169 count = min_t(u16, NUM_VALID_ENTRIES, count); 5170 ioc->diag_trigger_mpi.ValidEntries = count; 5171 5172 status_tg = &ioc->diag_trigger_mpi.MPITriggerEntry[0]; 5173 mpi_status_tg = &trigger_pg4.IOCStatusLoginfoTriggers[0]; 5174 5175 for (i = 0; i < count; i++) { 5176 status_tg->IOCStatus = le16_to_cpu( 5177 mpi_status_tg->IOCStatus); 5178 status_tg->IocLogInfo = le32_to_cpu( 5179 mpi_status_tg->LogInfo); 5180 5181 status_tg++; 5182 mpi_status_tg++; 5183 } 5184 } 5185 return 0; 5186 } 5187 5188 /** 5189 * _base_get_master_diag_triggers - get master diag trigger values from 5190 * persistent pages 5191 * @ioc : per adapter object 5192 * 5193 * Return: nothing. 5194 */ 5195 static int 5196 _base_get_master_diag_triggers(struct MPT3SAS_ADAPTER *ioc) 5197 { 5198 Mpi26DriverTriggerPage1_t trigger_pg1; 5199 Mpi2ConfigReply_t mpi_reply; 5200 int r; 5201 u16 ioc_status; 5202 5203 r = mpt3sas_config_get_driver_trigger_pg1(ioc, &mpi_reply, 5204 &trigger_pg1); 5205 if (r) 5206 return r; 5207 5208 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 5209 MPI2_IOCSTATUS_MASK; 5210 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 5211 dinitprintk(ioc, 5212 ioc_err(ioc, 5213 "%s: Failed to get trigger pg1, ioc_status(0x%04x)\n", 5214 __func__, ioc_status)); 5215 return 0; 5216 } 5217 5218 if (le16_to_cpu(trigger_pg1.NumMasterTrigger)) 5219 ioc->diag_trigger_master.MasterData |= 5220 le32_to_cpu( 5221 trigger_pg1.MasterTriggers[0].MasterTriggerFlags); 5222 return 0; 5223 } 5224 5225 /** 5226 * _base_check_for_trigger_pages_support - checks whether HBA FW supports 5227 * driver trigger pages or not 5228 * @ioc : per adapter object 5229 * @trigger_flags : address where trigger page0's TriggerFlags value is copied 5230 * 5231 * Return: trigger flags mask if HBA FW supports driver trigger pages; 5232 * otherwise returns %-EFAULT if driver trigger pages are not supported by FW or 5233 * return EAGAIN if diag reset occurred due to FW fault and asking the 5234 * caller to retry the command. 5235 * 5236 */ 5237 static int 5238 _base_check_for_trigger_pages_support(struct MPT3SAS_ADAPTER *ioc, u32 *trigger_flags) 5239 { 5240 Mpi26DriverTriggerPage0_t trigger_pg0; 5241 int r = 0; 5242 Mpi2ConfigReply_t mpi_reply; 5243 u16 ioc_status; 5244 5245 r = mpt3sas_config_get_driver_trigger_pg0(ioc, &mpi_reply, 5246 &trigger_pg0); 5247 if (r) 5248 return r; 5249 5250 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 5251 MPI2_IOCSTATUS_MASK; 5252 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) 5253 return -EFAULT; 5254 5255 *trigger_flags = le16_to_cpu(trigger_pg0.TriggerFlags); 5256 return 0; 5257 } 5258 5259 /** 5260 * _base_get_diag_triggers - Retrieve diag trigger values from 5261 * persistent pages. 5262 * @ioc : per adapter object 5263 * 5264 * Return: zero on success; otherwise return EAGAIN error codes 5265 * asking the caller to retry. 5266 */ 5267 static int 5268 _base_get_diag_triggers(struct MPT3SAS_ADAPTER *ioc) 5269 { 5270 int trigger_flags; 5271 int r; 5272 5273 /* 5274 * Default setting of master trigger. 5275 */ 5276 ioc->diag_trigger_master.MasterData = 5277 (MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET); 5278 5279 r = _base_check_for_trigger_pages_support(ioc, &trigger_flags); 5280 if (r) { 5281 if (r == -EAGAIN) 5282 return r; 5283 /* 5284 * Don't go for error handling when FW doesn't support 5285 * driver trigger pages. 5286 */ 5287 return 0; 5288 } 5289 5290 ioc->supports_trigger_pages = 1; 5291 5292 /* 5293 * Retrieve master diag trigger values from driver trigger pg1 5294 * if master trigger bit enabled in TriggerFlags. 5295 */ 5296 if ((u16)trigger_flags & 5297 MPI26_DRIVER_TRIGGER0_FLAG_MASTER_TRIGGER_VALID) { 5298 r = _base_get_master_diag_triggers(ioc); 5299 if (r) 5300 return r; 5301 } 5302 5303 /* 5304 * Retrieve event diag trigger values from driver trigger pg2 5305 * if event trigger bit enabled in TriggerFlags. 5306 */ 5307 if ((u16)trigger_flags & 5308 MPI26_DRIVER_TRIGGER0_FLAG_MPI_EVENT_TRIGGER_VALID) { 5309 r = _base_get_event_diag_triggers(ioc); 5310 if (r) 5311 return r; 5312 } 5313 5314 /* 5315 * Retrieve scsi diag trigger values from driver trigger pg3 5316 * if scsi trigger bit enabled in TriggerFlags. 5317 */ 5318 if ((u16)trigger_flags & 5319 MPI26_DRIVER_TRIGGER0_FLAG_SCSI_SENSE_TRIGGER_VALID) { 5320 r = _base_get_scsi_diag_triggers(ioc); 5321 if (r) 5322 return r; 5323 } 5324 /* 5325 * Retrieve mpi error diag trigger values from driver trigger pg4 5326 * if loginfo trigger bit enabled in TriggerFlags. 5327 */ 5328 if ((u16)trigger_flags & 5329 MPI26_DRIVER_TRIGGER0_FLAG_LOGINFO_TRIGGER_VALID) { 5330 r = _base_get_mpi_diag_triggers(ioc); 5331 if (r) 5332 return r; 5333 } 5334 return 0; 5335 } 5336 5337 /** 5338 * _base_update_diag_trigger_pages - Update the driver trigger pages after 5339 * online FW update, in case updated FW supports driver 5340 * trigger pages. 5341 * @ioc : per adapter object 5342 * 5343 * Return: nothing. 5344 */ 5345 static void 5346 _base_update_diag_trigger_pages(struct MPT3SAS_ADAPTER *ioc) 5347 { 5348 5349 if (ioc->diag_trigger_master.MasterData) 5350 mpt3sas_config_update_driver_trigger_pg1(ioc, 5351 &ioc->diag_trigger_master, 1); 5352 5353 if (ioc->diag_trigger_event.ValidEntries) 5354 mpt3sas_config_update_driver_trigger_pg2(ioc, 5355 &ioc->diag_trigger_event, 1); 5356 5357 if (ioc->diag_trigger_scsi.ValidEntries) 5358 mpt3sas_config_update_driver_trigger_pg3(ioc, 5359 &ioc->diag_trigger_scsi, 1); 5360 5361 if (ioc->diag_trigger_mpi.ValidEntries) 5362 mpt3sas_config_update_driver_trigger_pg4(ioc, 5363 &ioc->diag_trigger_mpi, 1); 5364 } 5365 5366 /** 5367 * _base_assign_fw_reported_qd - Get FW reported QD for SAS/SATA devices. 5368 * - On failure set default QD values. 5369 * @ioc : per adapter object 5370 * 5371 * Returns 0 for success, non-zero for failure. 5372 * 5373 */ 5374 static int _base_assign_fw_reported_qd(struct MPT3SAS_ADAPTER *ioc) 5375 { 5376 Mpi2ConfigReply_t mpi_reply; 5377 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL; 5378 Mpi26PCIeIOUnitPage1_t pcie_iounit_pg1; 5379 u16 depth; 5380 int sz; 5381 int rc = 0; 5382 5383 ioc->max_wideport_qd = MPT3SAS_SAS_QUEUE_DEPTH; 5384 ioc->max_narrowport_qd = MPT3SAS_SAS_QUEUE_DEPTH; 5385 ioc->max_sata_qd = MPT3SAS_SATA_QUEUE_DEPTH; 5386 ioc->max_nvme_qd = MPT3SAS_NVME_QUEUE_DEPTH; 5387 if (!ioc->is_gen35_ioc) 5388 goto out; 5389 /* sas iounit page 1 */ 5390 sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData); 5391 sas_iounit_pg1 = kzalloc(sizeof(Mpi2SasIOUnitPage1_t), GFP_KERNEL); 5392 if (!sas_iounit_pg1) { 5393 pr_err("%s: failure at %s:%d/%s()!\n", 5394 ioc->name, __FILE__, __LINE__, __func__); 5395 return rc; 5396 } 5397 rc = mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply, 5398 sas_iounit_pg1, sz); 5399 if (rc) { 5400 pr_err("%s: failure at %s:%d/%s()!\n", 5401 ioc->name, __FILE__, __LINE__, __func__); 5402 goto out; 5403 } 5404 5405 depth = le16_to_cpu(sas_iounit_pg1->SASWideMaxQueueDepth); 5406 ioc->max_wideport_qd = (depth ? depth : MPT3SAS_SAS_QUEUE_DEPTH); 5407 5408 depth = le16_to_cpu(sas_iounit_pg1->SASNarrowMaxQueueDepth); 5409 ioc->max_narrowport_qd = (depth ? depth : MPT3SAS_SAS_QUEUE_DEPTH); 5410 5411 depth = sas_iounit_pg1->SATAMaxQDepth; 5412 ioc->max_sata_qd = (depth ? depth : MPT3SAS_SATA_QUEUE_DEPTH); 5413 5414 /* pcie iounit page 1 */ 5415 rc = mpt3sas_config_get_pcie_iounit_pg1(ioc, &mpi_reply, 5416 &pcie_iounit_pg1, sizeof(Mpi26PCIeIOUnitPage1_t)); 5417 if (rc) { 5418 pr_err("%s: failure at %s:%d/%s()!\n", 5419 ioc->name, __FILE__, __LINE__, __func__); 5420 goto out; 5421 } 5422 ioc->max_nvme_qd = (le16_to_cpu(pcie_iounit_pg1.NVMeMaxQueueDepth)) ? 5423 (le16_to_cpu(pcie_iounit_pg1.NVMeMaxQueueDepth)) : 5424 MPT3SAS_NVME_QUEUE_DEPTH; 5425 out: 5426 dinitprintk(ioc, pr_err( 5427 "MaxWidePortQD: 0x%x MaxNarrowPortQD: 0x%x MaxSataQD: 0x%x MaxNvmeQD: 0x%x\n", 5428 ioc->max_wideport_qd, ioc->max_narrowport_qd, 5429 ioc->max_sata_qd, ioc->max_nvme_qd)); 5430 kfree(sas_iounit_pg1); 5431 return rc; 5432 } 5433 5434 /** 5435 * mpt3sas_atto_validate_nvram - validate the ATTO nvram read from mfg pg1 5436 * 5437 * @ioc : per adapter object 5438 * @n : ptr to the ATTO nvram structure 5439 * Return: 0 for success, non-zero for failure. 5440 */ 5441 static int 5442 mpt3sas_atto_validate_nvram(struct MPT3SAS_ADAPTER *ioc, 5443 struct ATTO_SAS_NVRAM *n) 5444 { 5445 int r = -EINVAL; 5446 union ATTO_SAS_ADDRESS *s1; 5447 u32 len; 5448 u8 *pb; 5449 u8 ckSum; 5450 5451 /* validate nvram checksum */ 5452 pb = (u8 *) n; 5453 ckSum = ATTO_SASNVR_CKSUM_SEED; 5454 len = sizeof(struct ATTO_SAS_NVRAM); 5455 5456 while (len--) 5457 ckSum = ckSum + pb[len]; 5458 5459 if (ckSum) { 5460 ioc_err(ioc, "Invalid ATTO NVRAM checksum\n"); 5461 return r; 5462 } 5463 5464 s1 = (union ATTO_SAS_ADDRESS *) n->SasAddr; 5465 5466 if (n->Signature[0] != 'E' 5467 || n->Signature[1] != 'S' 5468 || n->Signature[2] != 'A' 5469 || n->Signature[3] != 'S') 5470 ioc_err(ioc, "Invalid ATTO NVRAM signature\n"); 5471 else if (n->Version > ATTO_SASNVR_VERSION) 5472 ioc_info(ioc, "Invalid ATTO NVRAM version"); 5473 else if ((n->SasAddr[7] & (ATTO_SAS_ADDR_ALIGN - 1)) 5474 || s1->b[0] != 0x50 5475 || s1->b[1] != 0x01 5476 || s1->b[2] != 0x08 5477 || (s1->b[3] & 0xF0) != 0x60 5478 || ((s1->b[3] & 0x0F) | le32_to_cpu(s1->d[1])) == 0) { 5479 ioc_err(ioc, "Invalid ATTO SAS address\n"); 5480 } else 5481 r = 0; 5482 return r; 5483 } 5484 5485 /** 5486 * mpt3sas_atto_get_sas_addr - get the ATTO SAS address from mfg page 1 5487 * 5488 * @ioc : per adapter object 5489 * @*sas_addr : return sas address 5490 * Return: 0 for success, non-zero for failure. 5491 */ 5492 static int 5493 mpt3sas_atto_get_sas_addr(struct MPT3SAS_ADAPTER *ioc, union ATTO_SAS_ADDRESS *sas_addr) 5494 { 5495 Mpi2ManufacturingPage1_t mfg_pg1; 5496 Mpi2ConfigReply_t mpi_reply; 5497 struct ATTO_SAS_NVRAM *nvram; 5498 int r; 5499 __be64 addr; 5500 5501 r = mpt3sas_config_get_manufacturing_pg1(ioc, &mpi_reply, &mfg_pg1); 5502 if (r) { 5503 ioc_err(ioc, "Failed to read manufacturing page 1\n"); 5504 return r; 5505 } 5506 5507 /* validate nvram */ 5508 nvram = (struct ATTO_SAS_NVRAM *) mfg_pg1.VPD; 5509 r = mpt3sas_atto_validate_nvram(ioc, nvram); 5510 if (r) 5511 return r; 5512 5513 addr = *((__be64 *) nvram->SasAddr); 5514 sas_addr->q = cpu_to_le64(be64_to_cpu(addr)); 5515 return r; 5516 } 5517 5518 /** 5519 * mpt3sas_atto_init - perform initializaion for ATTO branded 5520 * adapter. 5521 * @ioc : per adapter object 5522 *5 5523 * Return: 0 for success, non-zero for failure. 5524 */ 5525 static int 5526 mpt3sas_atto_init(struct MPT3SAS_ADAPTER *ioc) 5527 { 5528 int sz = 0; 5529 Mpi2BiosPage4_t *bios_pg4 = NULL; 5530 Mpi2ConfigReply_t mpi_reply; 5531 int r; 5532 int ix; 5533 union ATTO_SAS_ADDRESS sas_addr; 5534 union ATTO_SAS_ADDRESS temp; 5535 union ATTO_SAS_ADDRESS bias; 5536 5537 r = mpt3sas_atto_get_sas_addr(ioc, &sas_addr); 5538 if (r) 5539 return r; 5540 5541 /* get header first to get size */ 5542 r = mpt3sas_config_get_bios_pg4(ioc, &mpi_reply, NULL, 0); 5543 if (r) { 5544 ioc_err(ioc, "Failed to read ATTO bios page 4 header.\n"); 5545 return r; 5546 } 5547 5548 sz = mpi_reply.Header.PageLength * sizeof(u32); 5549 bios_pg4 = kzalloc(sz, GFP_KERNEL); 5550 if (!bios_pg4) { 5551 ioc_err(ioc, "Failed to allocate memory for ATTO bios page.\n"); 5552 return -ENOMEM; 5553 } 5554 5555 /* read bios page 4 */ 5556 r = mpt3sas_config_get_bios_pg4(ioc, &mpi_reply, bios_pg4, sz); 5557 if (r) { 5558 ioc_err(ioc, "Failed to read ATTO bios page 4\n"); 5559 goto out; 5560 } 5561 5562 /* Update bios page 4 with the ATTO WWID */ 5563 bias.q = sas_addr.q; 5564 bias.b[7] += ATTO_SAS_ADDR_DEVNAME_BIAS; 5565 5566 for (ix = 0; ix < bios_pg4->NumPhys; ix++) { 5567 temp.q = sas_addr.q; 5568 temp.b[7] += ix; 5569 bios_pg4->Phy[ix].ReassignmentWWID = temp.q; 5570 bios_pg4->Phy[ix].ReassignmentDeviceName = bias.q; 5571 } 5572 r = mpt3sas_config_set_bios_pg4(ioc, &mpi_reply, bios_pg4, sz); 5573 5574 out: 5575 kfree(bios_pg4); 5576 return r; 5577 } 5578 5579 /** 5580 * _base_static_config_pages - static start of day config pages 5581 * @ioc: per adapter object 5582 */ 5583 static int 5584 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc) 5585 { 5586 Mpi2ConfigReply_t mpi_reply; 5587 u32 iounit_pg1_flags; 5588 int tg_flags = 0; 5589 int rc; 5590 ioc->nvme_abort_timeout = 30; 5591 5592 rc = mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, 5593 &ioc->manu_pg0); 5594 if (rc) 5595 return rc; 5596 if (ioc->ir_firmware) { 5597 rc = mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply, 5598 &ioc->manu_pg10); 5599 if (rc) 5600 return rc; 5601 } 5602 5603 if (ioc->pdev->vendor == MPI2_MFGPAGE_VENDORID_ATTO) { 5604 rc = mpt3sas_atto_init(ioc); 5605 if (rc) 5606 return rc; 5607 } 5608 5609 /* 5610 * Ensure correct T10 PI operation if vendor left EEDPTagMode 5611 * flag unset in NVDATA. 5612 */ 5613 rc = mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, 5614 &ioc->manu_pg11); 5615 if (rc) 5616 return rc; 5617 if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) { 5618 pr_err("%s: overriding NVDATA EEDPTagMode setting\n", 5619 ioc->name); 5620 ioc->manu_pg11.EEDPTagMode &= ~0x3; 5621 ioc->manu_pg11.EEDPTagMode |= 0x1; 5622 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply, 5623 &ioc->manu_pg11); 5624 } 5625 if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK) 5626 ioc->tm_custom_handling = 1; 5627 else { 5628 ioc->tm_custom_handling = 0; 5629 if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT) 5630 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT; 5631 else if (ioc->manu_pg11.NVMeAbortTO > 5632 NVME_TASK_ABORT_MAX_TIMEOUT) 5633 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT; 5634 else 5635 ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO; 5636 } 5637 ioc->time_sync_interval = 5638 ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_MASK; 5639 if (ioc->time_sync_interval) { 5640 if (ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_UNIT_MASK) 5641 ioc->time_sync_interval = 5642 ioc->time_sync_interval * SECONDS_PER_HOUR; 5643 else 5644 ioc->time_sync_interval = 5645 ioc->time_sync_interval * SECONDS_PER_MIN; 5646 dinitprintk(ioc, ioc_info(ioc, 5647 "Driver-FW TimeSync interval is %d seconds. ManuPg11 TimeSync Unit is in %s\n", 5648 ioc->time_sync_interval, (ioc->manu_pg11.TimeSyncInterval & 5649 MPT3SAS_TIMESYNC_UNIT_MASK) ? "Hour" : "Minute")); 5650 } else { 5651 if (ioc->is_gen35_ioc) 5652 ioc_warn(ioc, 5653 "TimeSync Interval in Manuf page-11 is not enabled. Periodic Time-Sync will be disabled\n"); 5654 } 5655 rc = _base_assign_fw_reported_qd(ioc); 5656 if (rc) 5657 return rc; 5658 5659 /* 5660 * ATTO doesn't use bios page 2 and 3 for bios settings. 5661 */ 5662 if (ioc->pdev->vendor == MPI2_MFGPAGE_VENDORID_ATTO) 5663 ioc->bios_pg3.BiosVersion = 0; 5664 else { 5665 rc = mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2); 5666 if (rc) 5667 return rc; 5668 rc = mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3); 5669 if (rc) 5670 return rc; 5671 } 5672 5673 rc = mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8); 5674 if (rc) 5675 return rc; 5676 rc = mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0); 5677 if (rc) 5678 return rc; 5679 rc = mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1); 5680 if (rc) 5681 return rc; 5682 rc = mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8); 5683 if (rc) 5684 return rc; 5685 _base_display_ioc_capabilities(ioc); 5686 5687 /* 5688 * Enable task_set_full handling in iounit_pg1 when the 5689 * facts capabilities indicate that its supported. 5690 */ 5691 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags); 5692 if ((ioc->facts.IOCCapabilities & 5693 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING)) 5694 iounit_pg1_flags &= 5695 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING; 5696 else 5697 iounit_pg1_flags |= 5698 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING; 5699 ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags); 5700 rc = mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1); 5701 if (rc) 5702 return rc; 5703 5704 if (ioc->iounit_pg8.NumSensors) 5705 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors; 5706 if (ioc->is_aero_ioc) { 5707 rc = _base_update_ioc_page1_inlinewith_perf_mode(ioc); 5708 if (rc) 5709 return rc; 5710 } 5711 if (ioc->is_gen35_ioc) { 5712 if (ioc->is_driver_loading) { 5713 rc = _base_get_diag_triggers(ioc); 5714 if (rc) 5715 return rc; 5716 } else { 5717 /* 5718 * In case of online HBA FW update operation, 5719 * check whether updated FW supports the driver trigger 5720 * pages or not. 5721 * - If previous FW has not supported driver trigger 5722 * pages and newer FW supports them then update these 5723 * pages with current diag trigger values. 5724 * - If previous FW has supported driver trigger pages 5725 * and new FW doesn't support them then disable 5726 * support_trigger_pages flag. 5727 */ 5728 _base_check_for_trigger_pages_support(ioc, &tg_flags); 5729 if (!ioc->supports_trigger_pages && tg_flags != -EFAULT) 5730 _base_update_diag_trigger_pages(ioc); 5731 else if (ioc->supports_trigger_pages && 5732 tg_flags == -EFAULT) 5733 ioc->supports_trigger_pages = 0; 5734 } 5735 } 5736 return 0; 5737 } 5738 5739 /** 5740 * mpt3sas_free_enclosure_list - release memory 5741 * @ioc: per adapter object 5742 * 5743 * Free memory allocated during enclosure add. 5744 */ 5745 void 5746 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc) 5747 { 5748 struct _enclosure_node *enclosure_dev, *enclosure_dev_next; 5749 5750 /* Free enclosure list */ 5751 list_for_each_entry_safe(enclosure_dev, 5752 enclosure_dev_next, &ioc->enclosure_list, list) { 5753 list_del(&enclosure_dev->list); 5754 kfree(enclosure_dev); 5755 } 5756 } 5757 5758 /** 5759 * _base_release_memory_pools - release memory 5760 * @ioc: per adapter object 5761 * 5762 * Free memory allocated from _base_allocate_memory_pools. 5763 */ 5764 static void 5765 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc) 5766 { 5767 int i = 0; 5768 int j = 0; 5769 int dma_alloc_count = 0; 5770 struct chain_tracker *ct; 5771 int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1; 5772 5773 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 5774 5775 if (ioc->request) { 5776 dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz, 5777 ioc->request, ioc->request_dma); 5778 dexitprintk(ioc, 5779 ioc_info(ioc, "request_pool(0x%p): free\n", 5780 ioc->request)); 5781 ioc->request = NULL; 5782 } 5783 5784 if (ioc->sense) { 5785 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma); 5786 dma_pool_destroy(ioc->sense_dma_pool); 5787 dexitprintk(ioc, 5788 ioc_info(ioc, "sense_pool(0x%p): free\n", 5789 ioc->sense)); 5790 ioc->sense = NULL; 5791 } 5792 5793 if (ioc->reply) { 5794 dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma); 5795 dma_pool_destroy(ioc->reply_dma_pool); 5796 dexitprintk(ioc, 5797 ioc_info(ioc, "reply_pool(0x%p): free\n", 5798 ioc->reply)); 5799 ioc->reply = NULL; 5800 } 5801 5802 if (ioc->reply_free) { 5803 dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free, 5804 ioc->reply_free_dma); 5805 dma_pool_destroy(ioc->reply_free_dma_pool); 5806 dexitprintk(ioc, 5807 ioc_info(ioc, "reply_free_pool(0x%p): free\n", 5808 ioc->reply_free)); 5809 ioc->reply_free = NULL; 5810 } 5811 5812 if (ioc->reply_post) { 5813 dma_alloc_count = DIV_ROUND_UP(count, 5814 RDPQ_MAX_INDEX_IN_ONE_CHUNK); 5815 for (i = 0; i < count; i++) { 5816 if (i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0 5817 && dma_alloc_count) { 5818 if (ioc->reply_post[i].reply_post_free) { 5819 dma_pool_free( 5820 ioc->reply_post_free_dma_pool, 5821 ioc->reply_post[i].reply_post_free, 5822 ioc->reply_post[i].reply_post_free_dma); 5823 dexitprintk(ioc, ioc_info(ioc, 5824 "reply_post_free_pool(0x%p): free\n", 5825 ioc->reply_post[i].reply_post_free)); 5826 ioc->reply_post[i].reply_post_free = 5827 NULL; 5828 } 5829 --dma_alloc_count; 5830 } 5831 } 5832 dma_pool_destroy(ioc->reply_post_free_dma_pool); 5833 if (ioc->reply_post_free_array && 5834 ioc->rdpq_array_enable) { 5835 dma_pool_free(ioc->reply_post_free_array_dma_pool, 5836 ioc->reply_post_free_array, 5837 ioc->reply_post_free_array_dma); 5838 ioc->reply_post_free_array = NULL; 5839 } 5840 dma_pool_destroy(ioc->reply_post_free_array_dma_pool); 5841 kfree(ioc->reply_post); 5842 } 5843 5844 if (ioc->pcie_sgl_dma_pool) { 5845 for (i = 0; i < ioc->scsiio_depth; i++) { 5846 dma_pool_free(ioc->pcie_sgl_dma_pool, 5847 ioc->pcie_sg_lookup[i].pcie_sgl, 5848 ioc->pcie_sg_lookup[i].pcie_sgl_dma); 5849 ioc->pcie_sg_lookup[i].pcie_sgl = NULL; 5850 } 5851 dma_pool_destroy(ioc->pcie_sgl_dma_pool); 5852 } 5853 if (ioc->config_page) { 5854 dexitprintk(ioc, 5855 ioc_info(ioc, "config_page(0x%p): free\n", 5856 ioc->config_page)); 5857 dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz, 5858 ioc->config_page, ioc->config_page_dma); 5859 } 5860 5861 kfree(ioc->hpr_lookup); 5862 ioc->hpr_lookup = NULL; 5863 kfree(ioc->internal_lookup); 5864 ioc->internal_lookup = NULL; 5865 if (ioc->chain_lookup) { 5866 for (i = 0; i < ioc->scsiio_depth; i++) { 5867 for (j = ioc->chains_per_prp_buffer; 5868 j < ioc->chains_needed_per_io; j++) { 5869 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 5870 if (ct && ct->chain_buffer) 5871 dma_pool_free(ioc->chain_dma_pool, 5872 ct->chain_buffer, 5873 ct->chain_buffer_dma); 5874 } 5875 kfree(ioc->chain_lookup[i].chains_per_smid); 5876 } 5877 dma_pool_destroy(ioc->chain_dma_pool); 5878 kfree(ioc->chain_lookup); 5879 ioc->chain_lookup = NULL; 5880 } 5881 5882 kfree(ioc->io_queue_num); 5883 ioc->io_queue_num = NULL; 5884 } 5885 5886 /** 5887 * mpt3sas_check_same_4gb_region - checks whether all reply queues in a set are 5888 * having same upper 32bits in their base memory address. 5889 * @start_address: Base address of a reply queue set 5890 * @pool_sz: Size of single Reply Descriptor Post Queues pool size 5891 * 5892 * Return: 1 if reply queues in a set have a same upper 32bits in their base 5893 * memory address, else 0. 5894 */ 5895 static int 5896 mpt3sas_check_same_4gb_region(dma_addr_t start_address, u32 pool_sz) 5897 { 5898 dma_addr_t end_address; 5899 5900 end_address = start_address + pool_sz - 1; 5901 5902 if (upper_32_bits(start_address) == upper_32_bits(end_address)) 5903 return 1; 5904 else 5905 return 0; 5906 } 5907 5908 /** 5909 * _base_reduce_hba_queue_depth- Retry with reduced queue depth 5910 * @ioc: Adapter object 5911 * 5912 * Return: 0 for success, non-zero for failure. 5913 **/ 5914 static inline int 5915 _base_reduce_hba_queue_depth(struct MPT3SAS_ADAPTER *ioc) 5916 { 5917 int reduce_sz = 64; 5918 5919 if ((ioc->hba_queue_depth - reduce_sz) > 5920 (ioc->internal_depth + INTERNAL_SCSIIO_CMDS_COUNT)) { 5921 ioc->hba_queue_depth -= reduce_sz; 5922 return 0; 5923 } else 5924 return -ENOMEM; 5925 } 5926 5927 /** 5928 * _base_allocate_pcie_sgl_pool - Allocating DMA'able memory 5929 * for pcie sgl pools. 5930 * @ioc: Adapter object 5931 * @sz: DMA Pool size 5932 * 5933 * Return: 0 for success, non-zero for failure. 5934 */ 5935 5936 static int 5937 _base_allocate_pcie_sgl_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz) 5938 { 5939 int i = 0, j = 0; 5940 struct chain_tracker *ct; 5941 5942 ioc->pcie_sgl_dma_pool = 5943 dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz, 5944 ioc->page_size, 0); 5945 if (!ioc->pcie_sgl_dma_pool) { 5946 ioc_err(ioc, "PCIe SGL pool: dma_pool_create failed\n"); 5947 return -ENOMEM; 5948 } 5949 5950 ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz; 5951 ioc->chains_per_prp_buffer = 5952 min(ioc->chains_per_prp_buffer, ioc->chains_needed_per_io); 5953 for (i = 0; i < ioc->scsiio_depth; i++) { 5954 ioc->pcie_sg_lookup[i].pcie_sgl = 5955 dma_pool_alloc(ioc->pcie_sgl_dma_pool, GFP_KERNEL, 5956 &ioc->pcie_sg_lookup[i].pcie_sgl_dma); 5957 if (!ioc->pcie_sg_lookup[i].pcie_sgl) { 5958 ioc_err(ioc, "PCIe SGL pool: dma_pool_alloc failed\n"); 5959 return -EAGAIN; 5960 } 5961 5962 if (!mpt3sas_check_same_4gb_region( 5963 ioc->pcie_sg_lookup[i].pcie_sgl_dma, sz)) { 5964 ioc_err(ioc, "PCIE SGLs are not in same 4G !! pcie sgl (0x%p) dma = (0x%llx)\n", 5965 ioc->pcie_sg_lookup[i].pcie_sgl, 5966 (unsigned long long) 5967 ioc->pcie_sg_lookup[i].pcie_sgl_dma); 5968 ioc->use_32bit_dma = true; 5969 return -EAGAIN; 5970 } 5971 5972 for (j = 0; j < ioc->chains_per_prp_buffer; j++) { 5973 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 5974 ct->chain_buffer = 5975 ioc->pcie_sg_lookup[i].pcie_sgl + 5976 (j * ioc->chain_segment_sz); 5977 ct->chain_buffer_dma = 5978 ioc->pcie_sg_lookup[i].pcie_sgl_dma + 5979 (j * ioc->chain_segment_sz); 5980 } 5981 } 5982 dinitprintk(ioc, ioc_info(ioc, 5983 "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n", 5984 ioc->scsiio_depth, sz, (sz * ioc->scsiio_depth)/1024)); 5985 dinitprintk(ioc, ioc_info(ioc, 5986 "Number of chains can fit in a PRP page(%d)\n", 5987 ioc->chains_per_prp_buffer)); 5988 return 0; 5989 } 5990 5991 /** 5992 * _base_allocate_chain_dma_pool - Allocating DMA'able memory 5993 * for chain dma pool. 5994 * @ioc: Adapter object 5995 * @sz: DMA Pool size 5996 * 5997 * Return: 0 for success, non-zero for failure. 5998 */ 5999 static int 6000 _base_allocate_chain_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz) 6001 { 6002 int i = 0, j = 0; 6003 struct chain_tracker *ctr; 6004 6005 ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev, 6006 ioc->chain_segment_sz, 16, 0); 6007 if (!ioc->chain_dma_pool) 6008 return -ENOMEM; 6009 6010 for (i = 0; i < ioc->scsiio_depth; i++) { 6011 for (j = ioc->chains_per_prp_buffer; 6012 j < ioc->chains_needed_per_io; j++) { 6013 ctr = &ioc->chain_lookup[i].chains_per_smid[j]; 6014 ctr->chain_buffer = dma_pool_alloc(ioc->chain_dma_pool, 6015 GFP_KERNEL, &ctr->chain_buffer_dma); 6016 if (!ctr->chain_buffer) 6017 return -EAGAIN; 6018 if (!mpt3sas_check_same_4gb_region( 6019 ctr->chain_buffer_dma, ioc->chain_segment_sz)) { 6020 ioc_err(ioc, 6021 "Chain buffers are not in same 4G !!! Chain buff (0x%p) dma = (0x%llx)\n", 6022 ctr->chain_buffer, 6023 (unsigned long long)ctr->chain_buffer_dma); 6024 ioc->use_32bit_dma = true; 6025 return -EAGAIN; 6026 } 6027 } 6028 } 6029 dinitprintk(ioc, ioc_info(ioc, 6030 "chain_lookup depth (%d), frame_size(%d), pool_size(%d kB)\n", 6031 ioc->scsiio_depth, ioc->chain_segment_sz, ((ioc->scsiio_depth * 6032 (ioc->chains_needed_per_io - ioc->chains_per_prp_buffer) * 6033 ioc->chain_segment_sz))/1024)); 6034 return 0; 6035 } 6036 6037 /** 6038 * _base_allocate_sense_dma_pool - Allocating DMA'able memory 6039 * for sense dma pool. 6040 * @ioc: Adapter object 6041 * @sz: DMA Pool size 6042 * Return: 0 for success, non-zero for failure. 6043 */ 6044 static int 6045 _base_allocate_sense_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz) 6046 { 6047 ioc->sense_dma_pool = 6048 dma_pool_create("sense pool", &ioc->pdev->dev, sz, 4, 0); 6049 if (!ioc->sense_dma_pool) 6050 return -ENOMEM; 6051 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, 6052 GFP_KERNEL, &ioc->sense_dma); 6053 if (!ioc->sense) 6054 return -EAGAIN; 6055 if (!mpt3sas_check_same_4gb_region(ioc->sense_dma, sz)) { 6056 dinitprintk(ioc, pr_err( 6057 "Bad Sense Pool! sense (0x%p) sense_dma = (0x%llx)\n", 6058 ioc->sense, (unsigned long long) ioc->sense_dma)); 6059 ioc->use_32bit_dma = true; 6060 return -EAGAIN; 6061 } 6062 ioc_info(ioc, 6063 "sense pool(0x%p) - dma(0x%llx): depth(%d), element_size(%d), pool_size (%d kB)\n", 6064 ioc->sense, (unsigned long long)ioc->sense_dma, 6065 ioc->scsiio_depth, SCSI_SENSE_BUFFERSIZE, sz/1024); 6066 return 0; 6067 } 6068 6069 /** 6070 * _base_allocate_reply_pool - Allocating DMA'able memory 6071 * for reply pool. 6072 * @ioc: Adapter object 6073 * @sz: DMA Pool size 6074 * Return: 0 for success, non-zero for failure. 6075 */ 6076 static int 6077 _base_allocate_reply_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz) 6078 { 6079 /* reply pool, 4 byte align */ 6080 ioc->reply_dma_pool = dma_pool_create("reply pool", 6081 &ioc->pdev->dev, sz, 4, 0); 6082 if (!ioc->reply_dma_pool) 6083 return -ENOMEM; 6084 ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL, 6085 &ioc->reply_dma); 6086 if (!ioc->reply) 6087 return -EAGAIN; 6088 if (!mpt3sas_check_same_4gb_region(ioc->reply_dma, sz)) { 6089 dinitprintk(ioc, pr_err( 6090 "Bad Reply Pool! Reply (0x%p) Reply dma = (0x%llx)\n", 6091 ioc->reply, (unsigned long long) ioc->reply_dma)); 6092 ioc->use_32bit_dma = true; 6093 return -EAGAIN; 6094 } 6095 ioc->reply_dma_min_address = (u32)(ioc->reply_dma); 6096 ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz; 6097 ioc_info(ioc, 6098 "reply pool(0x%p) - dma(0x%llx): depth(%d), frame_size(%d), pool_size(%d kB)\n", 6099 ioc->reply, (unsigned long long)ioc->reply_dma, 6100 ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024); 6101 return 0; 6102 } 6103 6104 /** 6105 * _base_allocate_reply_free_dma_pool - Allocating DMA'able memory 6106 * for reply free dma pool. 6107 * @ioc: Adapter object 6108 * @sz: DMA Pool size 6109 * Return: 0 for success, non-zero for failure. 6110 */ 6111 static int 6112 _base_allocate_reply_free_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz) 6113 { 6114 /* reply free queue, 16 byte align */ 6115 ioc->reply_free_dma_pool = dma_pool_create( 6116 "reply_free pool", &ioc->pdev->dev, sz, 16, 0); 6117 if (!ioc->reply_free_dma_pool) 6118 return -ENOMEM; 6119 ioc->reply_free = dma_pool_alloc(ioc->reply_free_dma_pool, 6120 GFP_KERNEL, &ioc->reply_free_dma); 6121 if (!ioc->reply_free) 6122 return -EAGAIN; 6123 if (!mpt3sas_check_same_4gb_region(ioc->reply_free_dma, sz)) { 6124 dinitprintk(ioc, 6125 pr_err("Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n", 6126 ioc->reply_free, (unsigned long long) ioc->reply_free_dma)); 6127 ioc->use_32bit_dma = true; 6128 return -EAGAIN; 6129 } 6130 memset(ioc->reply_free, 0, sz); 6131 dinitprintk(ioc, ioc_info(ioc, 6132 "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n", 6133 ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024)); 6134 dinitprintk(ioc, ioc_info(ioc, 6135 "reply_free_dma (0x%llx)\n", 6136 (unsigned long long)ioc->reply_free_dma)); 6137 return 0; 6138 } 6139 6140 /** 6141 * _base_allocate_reply_post_free_array - Allocating DMA'able memory 6142 * for reply post free array. 6143 * @ioc: Adapter object 6144 * @reply_post_free_array_sz: DMA Pool size 6145 * Return: 0 for success, non-zero for failure. 6146 */ 6147 6148 static int 6149 _base_allocate_reply_post_free_array(struct MPT3SAS_ADAPTER *ioc, 6150 u32 reply_post_free_array_sz) 6151 { 6152 ioc->reply_post_free_array_dma_pool = 6153 dma_pool_create("reply_post_free_array pool", 6154 &ioc->pdev->dev, reply_post_free_array_sz, 16, 0); 6155 if (!ioc->reply_post_free_array_dma_pool) 6156 return -ENOMEM; 6157 ioc->reply_post_free_array = 6158 dma_pool_alloc(ioc->reply_post_free_array_dma_pool, 6159 GFP_KERNEL, &ioc->reply_post_free_array_dma); 6160 if (!ioc->reply_post_free_array) 6161 return -EAGAIN; 6162 if (!mpt3sas_check_same_4gb_region(ioc->reply_post_free_array_dma, 6163 reply_post_free_array_sz)) { 6164 dinitprintk(ioc, pr_err( 6165 "Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n", 6166 ioc->reply_free, 6167 (unsigned long long) ioc->reply_free_dma)); 6168 ioc->use_32bit_dma = true; 6169 return -EAGAIN; 6170 } 6171 return 0; 6172 } 6173 /** 6174 * base_alloc_rdpq_dma_pool - Allocating DMA'able memory 6175 * for reply queues. 6176 * @ioc: per adapter object 6177 * @sz: DMA Pool size 6178 * Return: 0 for success, non-zero for failure. 6179 */ 6180 static int 6181 base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER *ioc, int sz) 6182 { 6183 int i = 0; 6184 u32 dma_alloc_count = 0; 6185 int reply_post_free_sz = ioc->reply_post_queue_depth * 6186 sizeof(Mpi2DefaultReplyDescriptor_t); 6187 int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1; 6188 6189 ioc->reply_post = kcalloc(count, sizeof(struct reply_post_struct), 6190 GFP_KERNEL); 6191 if (!ioc->reply_post) 6192 return -ENOMEM; 6193 /* 6194 * For INVADER_SERIES each set of 8 reply queues(0-7, 8-15, ..) and 6195 * VENTURA_SERIES each set of 16 reply queues(0-15, 16-31, ..) should 6196 * be within 4GB boundary i.e reply queues in a set must have same 6197 * upper 32-bits in their memory address. so here driver is allocating 6198 * the DMA'able memory for reply queues according. 6199 * Driver uses limitation of 6200 * VENTURA_SERIES to manage INVADER_SERIES as well. 6201 */ 6202 dma_alloc_count = DIV_ROUND_UP(count, 6203 RDPQ_MAX_INDEX_IN_ONE_CHUNK); 6204 ioc->reply_post_free_dma_pool = 6205 dma_pool_create("reply_post_free pool", 6206 &ioc->pdev->dev, sz, 16, 0); 6207 if (!ioc->reply_post_free_dma_pool) 6208 return -ENOMEM; 6209 for (i = 0; i < count; i++) { 6210 if ((i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0) && dma_alloc_count) { 6211 ioc->reply_post[i].reply_post_free = 6212 dma_pool_zalloc(ioc->reply_post_free_dma_pool, 6213 GFP_KERNEL, 6214 &ioc->reply_post[i].reply_post_free_dma); 6215 if (!ioc->reply_post[i].reply_post_free) 6216 return -ENOMEM; 6217 /* 6218 * Each set of RDPQ pool must satisfy 4gb boundary 6219 * restriction. 6220 * 1) Check if allocated resources for RDPQ pool are in 6221 * the same 4GB range. 6222 * 2) If #1 is true, continue with 64 bit DMA. 6223 * 3) If #1 is false, return 1. which means free all the 6224 * resources and set DMA mask to 32 and allocate. 6225 */ 6226 if (!mpt3sas_check_same_4gb_region( 6227 ioc->reply_post[i].reply_post_free_dma, sz)) { 6228 dinitprintk(ioc, 6229 ioc_err(ioc, "bad Replypost free pool(0x%p)" 6230 "reply_post_free_dma = (0x%llx)\n", 6231 ioc->reply_post[i].reply_post_free, 6232 (unsigned long long) 6233 ioc->reply_post[i].reply_post_free_dma)); 6234 return -EAGAIN; 6235 } 6236 dma_alloc_count--; 6237 6238 } else { 6239 ioc->reply_post[i].reply_post_free = 6240 (Mpi2ReplyDescriptorsUnion_t *) 6241 ((long)ioc->reply_post[i-1].reply_post_free 6242 + reply_post_free_sz); 6243 ioc->reply_post[i].reply_post_free_dma = 6244 (dma_addr_t) 6245 (ioc->reply_post[i-1].reply_post_free_dma + 6246 reply_post_free_sz); 6247 } 6248 } 6249 return 0; 6250 } 6251 6252 /** 6253 * _base_allocate_memory_pools - allocate start of day memory pools 6254 * @ioc: per adapter object 6255 * 6256 * Return: 0 success, anything else error. 6257 */ 6258 static int 6259 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc) 6260 { 6261 struct mpt3sas_facts *facts; 6262 u16 max_sge_elements; 6263 u16 chains_needed_per_io; 6264 u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz; 6265 u32 retry_sz; 6266 u32 rdpq_sz = 0, sense_sz = 0; 6267 u16 max_request_credit, nvme_blocks_needed; 6268 unsigned short sg_tablesize; 6269 u16 sge_size; 6270 int i; 6271 int ret = 0, rc = 0; 6272 6273 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6274 6275 6276 retry_sz = 0; 6277 facts = &ioc->facts; 6278 6279 /* command line tunables for max sgl entries */ 6280 if (max_sgl_entries != -1) 6281 sg_tablesize = max_sgl_entries; 6282 else { 6283 if (ioc->hba_mpi_version_belonged == MPI2_VERSION) 6284 sg_tablesize = MPT2SAS_SG_DEPTH; 6285 else 6286 sg_tablesize = MPT3SAS_SG_DEPTH; 6287 } 6288 6289 /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */ 6290 if (reset_devices) 6291 sg_tablesize = min_t(unsigned short, sg_tablesize, 6292 MPT_KDUMP_MIN_PHYS_SEGMENTS); 6293 6294 if (ioc->is_mcpu_endpoint) 6295 ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS; 6296 else { 6297 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS) 6298 sg_tablesize = MPT_MIN_PHYS_SEGMENTS; 6299 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) { 6300 sg_tablesize = min_t(unsigned short, sg_tablesize, 6301 SG_MAX_SEGMENTS); 6302 ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n", 6303 sg_tablesize, MPT_MAX_PHYS_SEGMENTS); 6304 } 6305 ioc->shost->sg_tablesize = sg_tablesize; 6306 } 6307 6308 ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)), 6309 (facts->RequestCredit / 4)); 6310 if (ioc->internal_depth < INTERNAL_CMDS_COUNT) { 6311 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT + 6312 INTERNAL_SCSIIO_CMDS_COUNT)) { 6313 ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n", 6314 facts->RequestCredit); 6315 return -ENOMEM; 6316 } 6317 ioc->internal_depth = 10; 6318 } 6319 6320 ioc->hi_priority_depth = ioc->internal_depth - (5); 6321 /* command line tunables for max controller queue depth */ 6322 if (max_queue_depth != -1 && max_queue_depth != 0) { 6323 max_request_credit = min_t(u16, max_queue_depth + 6324 ioc->internal_depth, facts->RequestCredit); 6325 if (max_request_credit > MAX_HBA_QUEUE_DEPTH) 6326 max_request_credit = MAX_HBA_QUEUE_DEPTH; 6327 } else if (reset_devices) 6328 max_request_credit = min_t(u16, facts->RequestCredit, 6329 (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth)); 6330 else 6331 max_request_credit = min_t(u16, facts->RequestCredit, 6332 MAX_HBA_QUEUE_DEPTH); 6333 6334 /* Firmware maintains additional facts->HighPriorityCredit number of 6335 * credits for HiPriprity Request messages, so hba queue depth will be 6336 * sum of max_request_credit and high priority queue depth. 6337 */ 6338 ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth; 6339 6340 /* request frame size */ 6341 ioc->request_sz = facts->IOCRequestFrameSize * 4; 6342 6343 /* reply frame size */ 6344 ioc->reply_sz = facts->ReplyFrameSize * 4; 6345 6346 /* chain segment size */ 6347 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 6348 if (facts->IOCMaxChainSegmentSize) 6349 ioc->chain_segment_sz = 6350 facts->IOCMaxChainSegmentSize * 6351 MAX_CHAIN_ELEMT_SZ; 6352 else 6353 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */ 6354 ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS * 6355 MAX_CHAIN_ELEMT_SZ; 6356 } else 6357 ioc->chain_segment_sz = ioc->request_sz; 6358 6359 /* calculate the max scatter element size */ 6360 sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee); 6361 6362 retry_allocation: 6363 total_sz = 0; 6364 /* calculate number of sg elements left over in the 1st frame */ 6365 max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) - 6366 sizeof(Mpi2SGEIOUnion_t)) + sge_size); 6367 ioc->max_sges_in_main_message = max_sge_elements/sge_size; 6368 6369 /* now do the same for a chain buffer */ 6370 max_sge_elements = ioc->chain_segment_sz - sge_size; 6371 ioc->max_sges_in_chain_message = max_sge_elements/sge_size; 6372 6373 /* 6374 * MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE 6375 */ 6376 chains_needed_per_io = ((ioc->shost->sg_tablesize - 6377 ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message) 6378 + 1; 6379 if (chains_needed_per_io > facts->MaxChainDepth) { 6380 chains_needed_per_io = facts->MaxChainDepth; 6381 ioc->shost->sg_tablesize = min_t(u16, 6382 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message 6383 * chains_needed_per_io), ioc->shost->sg_tablesize); 6384 } 6385 ioc->chains_needed_per_io = chains_needed_per_io; 6386 6387 /* reply free queue sizing - taking into account for 64 FW events */ 6388 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64; 6389 6390 /* mCPU manage single counters for simplicity */ 6391 if (ioc->is_mcpu_endpoint) 6392 ioc->reply_post_queue_depth = ioc->reply_free_queue_depth; 6393 else { 6394 /* calculate reply descriptor post queue depth */ 6395 ioc->reply_post_queue_depth = ioc->hba_queue_depth + 6396 ioc->reply_free_queue_depth + 1; 6397 /* align the reply post queue on the next 16 count boundary */ 6398 if (ioc->reply_post_queue_depth % 16) 6399 ioc->reply_post_queue_depth += 16 - 6400 (ioc->reply_post_queue_depth % 16); 6401 } 6402 6403 if (ioc->reply_post_queue_depth > 6404 facts->MaxReplyDescriptorPostQueueDepth) { 6405 ioc->reply_post_queue_depth = 6406 facts->MaxReplyDescriptorPostQueueDepth - 6407 (facts->MaxReplyDescriptorPostQueueDepth % 16); 6408 ioc->hba_queue_depth = 6409 ((ioc->reply_post_queue_depth - 64) / 2) - 1; 6410 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64; 6411 } 6412 6413 ioc_info(ioc, 6414 "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), " 6415 "sge_per_io(%d), chains_per_io(%d)\n", 6416 ioc->max_sges_in_main_message, 6417 ioc->max_sges_in_chain_message, 6418 ioc->shost->sg_tablesize, 6419 ioc->chains_needed_per_io); 6420 6421 /* reply post queue, 16 byte align */ 6422 reply_post_free_sz = ioc->reply_post_queue_depth * 6423 sizeof(Mpi2DefaultReplyDescriptor_t); 6424 rdpq_sz = reply_post_free_sz * RDPQ_MAX_INDEX_IN_ONE_CHUNK; 6425 if ((_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable) 6426 || (ioc->reply_queue_count < RDPQ_MAX_INDEX_IN_ONE_CHUNK)) 6427 rdpq_sz = reply_post_free_sz * ioc->reply_queue_count; 6428 ret = base_alloc_rdpq_dma_pool(ioc, rdpq_sz); 6429 if (ret == -EAGAIN) { 6430 /* 6431 * Free allocated bad RDPQ memory pools. 6432 * Change dma coherent mask to 32 bit and reallocate RDPQ 6433 */ 6434 _base_release_memory_pools(ioc); 6435 ioc->use_32bit_dma = true; 6436 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) { 6437 ioc_err(ioc, 6438 "32 DMA mask failed %s\n", pci_name(ioc->pdev)); 6439 return -ENODEV; 6440 } 6441 if (base_alloc_rdpq_dma_pool(ioc, rdpq_sz)) 6442 return -ENOMEM; 6443 } else if (ret == -ENOMEM) 6444 return -ENOMEM; 6445 total_sz = rdpq_sz * (!ioc->rdpq_array_enable ? 1 : 6446 DIV_ROUND_UP(ioc->reply_queue_count, RDPQ_MAX_INDEX_IN_ONE_CHUNK)); 6447 ioc->scsiio_depth = ioc->hba_queue_depth - 6448 ioc->hi_priority_depth - ioc->internal_depth; 6449 6450 /* set the scsi host can_queue depth 6451 * with some internal commands that could be outstanding 6452 */ 6453 ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT; 6454 dinitprintk(ioc, 6455 ioc_info(ioc, "scsi host: can_queue depth (%d)\n", 6456 ioc->shost->can_queue)); 6457 6458 /* contiguous pool for request and chains, 16 byte align, one extra " 6459 * "frame for smid=0 6460 */ 6461 ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth; 6462 sz = ((ioc->scsiio_depth + 1) * ioc->request_sz); 6463 6464 /* hi-priority queue */ 6465 sz += (ioc->hi_priority_depth * ioc->request_sz); 6466 6467 /* internal queue */ 6468 sz += (ioc->internal_depth * ioc->request_sz); 6469 6470 ioc->request_dma_sz = sz; 6471 ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz, 6472 &ioc->request_dma, GFP_KERNEL); 6473 if (!ioc->request) { 6474 ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n", 6475 ioc->hba_queue_depth, ioc->chains_needed_per_io, 6476 ioc->request_sz, sz / 1024); 6477 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH) 6478 goto out; 6479 retry_sz = 64; 6480 ioc->hba_queue_depth -= retry_sz; 6481 _base_release_memory_pools(ioc); 6482 goto retry_allocation; 6483 } 6484 6485 if (retry_sz) 6486 ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n", 6487 ioc->hba_queue_depth, ioc->chains_needed_per_io, 6488 ioc->request_sz, sz / 1024); 6489 6490 /* hi-priority queue */ 6491 ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) * 6492 ioc->request_sz); 6493 ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) * 6494 ioc->request_sz); 6495 6496 /* internal queue */ 6497 ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth * 6498 ioc->request_sz); 6499 ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth * 6500 ioc->request_sz); 6501 6502 ioc_info(ioc, 6503 "request pool(0x%p) - dma(0x%llx): " 6504 "depth(%d), frame_size(%d), pool_size(%d kB)\n", 6505 ioc->request, (unsigned long long) ioc->request_dma, 6506 ioc->hba_queue_depth, ioc->request_sz, 6507 (ioc->hba_queue_depth * ioc->request_sz) / 1024); 6508 6509 total_sz += sz; 6510 6511 dinitprintk(ioc, 6512 ioc_info(ioc, "scsiio(0x%p): depth(%d)\n", 6513 ioc->request, ioc->scsiio_depth)); 6514 6515 ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH); 6516 sz = ioc->scsiio_depth * sizeof(struct chain_lookup); 6517 ioc->chain_lookup = kzalloc(sz, GFP_KERNEL); 6518 if (!ioc->chain_lookup) { 6519 ioc_err(ioc, "chain_lookup: __get_free_pages failed\n"); 6520 goto out; 6521 } 6522 6523 sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker); 6524 for (i = 0; i < ioc->scsiio_depth; i++) { 6525 ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL); 6526 if (!ioc->chain_lookup[i].chains_per_smid) { 6527 ioc_err(ioc, "chain_lookup: kzalloc failed\n"); 6528 goto out; 6529 } 6530 } 6531 6532 /* initialize hi-priority queue smid's */ 6533 ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth, 6534 sizeof(struct request_tracker), GFP_KERNEL); 6535 if (!ioc->hpr_lookup) { 6536 ioc_err(ioc, "hpr_lookup: kcalloc failed\n"); 6537 goto out; 6538 } 6539 ioc->hi_priority_smid = ioc->scsiio_depth + 1; 6540 dinitprintk(ioc, 6541 ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n", 6542 ioc->hi_priority, 6543 ioc->hi_priority_depth, ioc->hi_priority_smid)); 6544 6545 /* initialize internal queue smid's */ 6546 ioc->internal_lookup = kcalloc(ioc->internal_depth, 6547 sizeof(struct request_tracker), GFP_KERNEL); 6548 if (!ioc->internal_lookup) { 6549 ioc_err(ioc, "internal_lookup: kcalloc failed\n"); 6550 goto out; 6551 } 6552 ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth; 6553 dinitprintk(ioc, 6554 ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n", 6555 ioc->internal, 6556 ioc->internal_depth, ioc->internal_smid)); 6557 6558 ioc->io_queue_num = kcalloc(ioc->scsiio_depth, 6559 sizeof(u16), GFP_KERNEL); 6560 if (!ioc->io_queue_num) 6561 goto out; 6562 /* 6563 * The number of NVMe page sized blocks needed is: 6564 * (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1 6565 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry 6566 * that is placed in the main message frame. 8 is the size of each PRP 6567 * entry or PRP list pointer entry. 8 is subtracted from page_size 6568 * because of the PRP list pointer entry at the end of a page, so this 6569 * is not counted as a PRP entry. The 1 added page is a round up. 6570 * 6571 * To avoid allocation failures due to the amount of memory that could 6572 * be required for NVMe PRP's, only each set of NVMe blocks will be 6573 * contiguous, so a new set is allocated for each possible I/O. 6574 */ 6575 6576 ioc->chains_per_prp_buffer = 0; 6577 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) { 6578 nvme_blocks_needed = 6579 (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1; 6580 nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE); 6581 nvme_blocks_needed++; 6582 6583 sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth; 6584 ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL); 6585 if (!ioc->pcie_sg_lookup) { 6586 ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n"); 6587 goto out; 6588 } 6589 sz = nvme_blocks_needed * ioc->page_size; 6590 rc = _base_allocate_pcie_sgl_pool(ioc, sz); 6591 if (rc == -ENOMEM) 6592 return -ENOMEM; 6593 else if (rc == -EAGAIN) 6594 goto try_32bit_dma; 6595 total_sz += sz * ioc->scsiio_depth; 6596 } 6597 6598 rc = _base_allocate_chain_dma_pool(ioc, ioc->chain_segment_sz); 6599 if (rc == -ENOMEM) 6600 return -ENOMEM; 6601 else if (rc == -EAGAIN) 6602 goto try_32bit_dma; 6603 total_sz += ioc->chain_segment_sz * ((ioc->chains_needed_per_io - 6604 ioc->chains_per_prp_buffer) * ioc->scsiio_depth); 6605 dinitprintk(ioc, 6606 ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n", 6607 ioc->chain_depth, ioc->chain_segment_sz, 6608 (ioc->chain_depth * ioc->chain_segment_sz) / 1024)); 6609 /* sense buffers, 4 byte align */ 6610 sense_sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE; 6611 rc = _base_allocate_sense_dma_pool(ioc, sense_sz); 6612 if (rc == -ENOMEM) 6613 return -ENOMEM; 6614 else if (rc == -EAGAIN) 6615 goto try_32bit_dma; 6616 total_sz += sense_sz; 6617 ioc_info(ioc, 6618 "sense pool(0x%p)- dma(0x%llx): depth(%d)," 6619 "element_size(%d), pool_size(%d kB)\n", 6620 ioc->sense, (unsigned long long)ioc->sense_dma, ioc->scsiio_depth, 6621 SCSI_SENSE_BUFFERSIZE, sz / 1024); 6622 /* reply pool, 4 byte align */ 6623 sz = ioc->reply_free_queue_depth * ioc->reply_sz; 6624 rc = _base_allocate_reply_pool(ioc, sz); 6625 if (rc == -ENOMEM) 6626 return -ENOMEM; 6627 else if (rc == -EAGAIN) 6628 goto try_32bit_dma; 6629 total_sz += sz; 6630 6631 /* reply free queue, 16 byte align */ 6632 sz = ioc->reply_free_queue_depth * 4; 6633 rc = _base_allocate_reply_free_dma_pool(ioc, sz); 6634 if (rc == -ENOMEM) 6635 return -ENOMEM; 6636 else if (rc == -EAGAIN) 6637 goto try_32bit_dma; 6638 dinitprintk(ioc, 6639 ioc_info(ioc, "reply_free_dma (0x%llx)\n", 6640 (unsigned long long)ioc->reply_free_dma)); 6641 total_sz += sz; 6642 if (ioc->rdpq_array_enable) { 6643 reply_post_free_array_sz = ioc->reply_queue_count * 6644 sizeof(Mpi2IOCInitRDPQArrayEntry); 6645 rc = _base_allocate_reply_post_free_array(ioc, 6646 reply_post_free_array_sz); 6647 if (rc == -ENOMEM) 6648 return -ENOMEM; 6649 else if (rc == -EAGAIN) 6650 goto try_32bit_dma; 6651 } 6652 ioc->config_page_sz = 512; 6653 ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev, 6654 ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL); 6655 if (!ioc->config_page) { 6656 ioc_err(ioc, "config page: dma_pool_alloc failed\n"); 6657 goto out; 6658 } 6659 6660 ioc_info(ioc, "config page(0x%p) - dma(0x%llx): size(%d)\n", 6661 ioc->config_page, (unsigned long long)ioc->config_page_dma, 6662 ioc->config_page_sz); 6663 total_sz += ioc->config_page_sz; 6664 6665 ioc_info(ioc, "Allocated physical memory: size(%d kB)\n", 6666 total_sz / 1024); 6667 ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n", 6668 ioc->shost->can_queue, facts->RequestCredit); 6669 ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n", 6670 ioc->shost->sg_tablesize); 6671 return 0; 6672 6673 try_32bit_dma: 6674 _base_release_memory_pools(ioc); 6675 if (ioc->use_32bit_dma && (ioc->dma_mask > 32)) { 6676 /* Change dma coherent mask to 32 bit and reallocate */ 6677 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) { 6678 pr_err("Setting 32 bit coherent DMA mask Failed %s\n", 6679 pci_name(ioc->pdev)); 6680 return -ENODEV; 6681 } 6682 } else if (_base_reduce_hba_queue_depth(ioc) != 0) 6683 return -ENOMEM; 6684 goto retry_allocation; 6685 6686 out: 6687 return -ENOMEM; 6688 } 6689 6690 /** 6691 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter. 6692 * @ioc: Pointer to MPT_ADAPTER structure 6693 * @cooked: Request raw or cooked IOC state 6694 * 6695 * Return: all IOC Doorbell register bits if cooked==0, else just the 6696 * Doorbell bits in MPI_IOC_STATE_MASK. 6697 */ 6698 u32 6699 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked) 6700 { 6701 u32 s, sc; 6702 6703 s = ioc->base_readl(&ioc->chip->Doorbell); 6704 sc = s & MPI2_IOC_STATE_MASK; 6705 return cooked ? sc : s; 6706 } 6707 6708 /** 6709 * _base_wait_on_iocstate - waiting on a particular ioc state 6710 * @ioc: ? 6711 * @ioc_state: controller state { READY, OPERATIONAL, or RESET } 6712 * @timeout: timeout in second 6713 * 6714 * Return: 0 for success, non-zero for failure. 6715 */ 6716 static int 6717 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout) 6718 { 6719 u32 count, cntdn; 6720 u32 current_state; 6721 6722 count = 0; 6723 cntdn = 1000 * timeout; 6724 do { 6725 current_state = mpt3sas_base_get_iocstate(ioc, 1); 6726 if (current_state == ioc_state) 6727 return 0; 6728 if (count && current_state == MPI2_IOC_STATE_FAULT) 6729 break; 6730 if (count && current_state == MPI2_IOC_STATE_COREDUMP) 6731 break; 6732 6733 usleep_range(1000, 1500); 6734 count++; 6735 } while (--cntdn); 6736 6737 return current_state; 6738 } 6739 6740 /** 6741 * _base_dump_reg_set - This function will print hexdump of register set. 6742 * @ioc: per adapter object 6743 * 6744 * Return: nothing. 6745 */ 6746 static inline void 6747 _base_dump_reg_set(struct MPT3SAS_ADAPTER *ioc) 6748 { 6749 unsigned int i, sz = 256; 6750 u32 __iomem *reg = (u32 __iomem *)ioc->chip; 6751 6752 ioc_info(ioc, "System Register set:\n"); 6753 for (i = 0; i < (sz / sizeof(u32)); i++) 6754 pr_info("%08x: %08x\n", (i * 4), readl(®[i])); 6755 } 6756 6757 /** 6758 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by 6759 * a write to the doorbell) 6760 * @ioc: per adapter object 6761 * @timeout: timeout in seconds 6762 * 6763 * Return: 0 for success, non-zero for failure. 6764 * 6765 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell. 6766 */ 6767 6768 static int 6769 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout) 6770 { 6771 u32 cntdn, count; 6772 u32 int_status; 6773 6774 count = 0; 6775 cntdn = 1000 * timeout; 6776 do { 6777 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 6778 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 6779 dhsprintk(ioc, 6780 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 6781 __func__, count, timeout)); 6782 return 0; 6783 } 6784 6785 usleep_range(1000, 1500); 6786 count++; 6787 } while (--cntdn); 6788 6789 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 6790 __func__, count, int_status); 6791 return -EFAULT; 6792 } 6793 6794 static int 6795 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout) 6796 { 6797 u32 cntdn, count; 6798 u32 int_status; 6799 6800 count = 0; 6801 cntdn = 2000 * timeout; 6802 do { 6803 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 6804 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 6805 dhsprintk(ioc, 6806 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 6807 __func__, count, timeout)); 6808 return 0; 6809 } 6810 6811 udelay(500); 6812 count++; 6813 } while (--cntdn); 6814 6815 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 6816 __func__, count, int_status); 6817 return -EFAULT; 6818 6819 } 6820 6821 /** 6822 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell. 6823 * @ioc: per adapter object 6824 * @timeout: timeout in second 6825 * 6826 * Return: 0 for success, non-zero for failure. 6827 * 6828 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to 6829 * doorbell. 6830 */ 6831 static int 6832 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout) 6833 { 6834 u32 cntdn, count; 6835 u32 int_status; 6836 u32 doorbell; 6837 6838 count = 0; 6839 cntdn = 1000 * timeout; 6840 do { 6841 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 6842 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) { 6843 dhsprintk(ioc, 6844 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 6845 __func__, count, timeout)); 6846 return 0; 6847 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 6848 doorbell = ioc->base_readl(&ioc->chip->Doorbell); 6849 if ((doorbell & MPI2_IOC_STATE_MASK) == 6850 MPI2_IOC_STATE_FAULT) { 6851 mpt3sas_print_fault_code(ioc, doorbell); 6852 return -EFAULT; 6853 } 6854 if ((doorbell & MPI2_IOC_STATE_MASK) == 6855 MPI2_IOC_STATE_COREDUMP) { 6856 mpt3sas_print_coredump_info(ioc, doorbell); 6857 return -EFAULT; 6858 } 6859 } else if (int_status == 0xFFFFFFFF) 6860 goto out; 6861 6862 usleep_range(1000, 1500); 6863 count++; 6864 } while (--cntdn); 6865 6866 out: 6867 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 6868 __func__, count, int_status); 6869 return -EFAULT; 6870 } 6871 6872 /** 6873 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use 6874 * @ioc: per adapter object 6875 * @timeout: timeout in second 6876 * 6877 * Return: 0 for success, non-zero for failure. 6878 */ 6879 static int 6880 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout) 6881 { 6882 u32 cntdn, count; 6883 u32 doorbell_reg; 6884 6885 count = 0; 6886 cntdn = 1000 * timeout; 6887 do { 6888 doorbell_reg = ioc->base_readl(&ioc->chip->Doorbell); 6889 if (!(doorbell_reg & MPI2_DOORBELL_USED)) { 6890 dhsprintk(ioc, 6891 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 6892 __func__, count, timeout)); 6893 return 0; 6894 } 6895 6896 usleep_range(1000, 1500); 6897 count++; 6898 } while (--cntdn); 6899 6900 ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n", 6901 __func__, count, doorbell_reg); 6902 return -EFAULT; 6903 } 6904 6905 /** 6906 * _base_send_ioc_reset - send doorbell reset 6907 * @ioc: per adapter object 6908 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET 6909 * @timeout: timeout in second 6910 * 6911 * Return: 0 for success, non-zero for failure. 6912 */ 6913 static int 6914 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout) 6915 { 6916 u32 ioc_state; 6917 int r = 0; 6918 unsigned long flags; 6919 6920 if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) { 6921 ioc_err(ioc, "%s: unknown reset_type\n", __func__); 6922 return -EFAULT; 6923 } 6924 6925 if (!(ioc->facts.IOCCapabilities & 6926 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY)) 6927 return -EFAULT; 6928 6929 ioc_info(ioc, "sending message unit reset !!\n"); 6930 6931 writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT, 6932 &ioc->chip->Doorbell); 6933 if ((_base_wait_for_doorbell_ack(ioc, 15))) { 6934 r = -EFAULT; 6935 goto out; 6936 } 6937 6938 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout); 6939 if (ioc_state) { 6940 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 6941 __func__, ioc_state); 6942 r = -EFAULT; 6943 goto out; 6944 } 6945 out: 6946 if (r != 0) { 6947 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 6948 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 6949 /* 6950 * Wait for IOC state CoreDump to clear only during 6951 * HBA initialization & release time. 6952 */ 6953 if ((ioc_state & MPI2_IOC_STATE_MASK) == 6954 MPI2_IOC_STATE_COREDUMP && (ioc->is_driver_loading == 1 || 6955 ioc->fault_reset_work_q == NULL)) { 6956 spin_unlock_irqrestore( 6957 &ioc->ioc_reset_in_progress_lock, flags); 6958 mpt3sas_print_coredump_info(ioc, ioc_state); 6959 mpt3sas_base_wait_for_coredump_completion(ioc, 6960 __func__); 6961 spin_lock_irqsave( 6962 &ioc->ioc_reset_in_progress_lock, flags); 6963 } 6964 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 6965 } 6966 ioc_info(ioc, "message unit reset: %s\n", 6967 r == 0 ? "SUCCESS" : "FAILED"); 6968 return r; 6969 } 6970 6971 /** 6972 * mpt3sas_wait_for_ioc - IOC's operational state is checked here. 6973 * @ioc: per adapter object 6974 * @timeout: timeout in seconds 6975 * 6976 * Return: Waits up to timeout seconds for the IOC to 6977 * become operational. Returns 0 if IOC is present 6978 * and operational; otherwise returns %-EFAULT. 6979 */ 6980 6981 int 6982 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout) 6983 { 6984 int wait_state_count = 0; 6985 u32 ioc_state; 6986 6987 do { 6988 ioc_state = mpt3sas_base_get_iocstate(ioc, 1); 6989 if (ioc_state == MPI2_IOC_STATE_OPERATIONAL) 6990 break; 6991 6992 /* 6993 * Watchdog thread will be started after IOC Initialization, so 6994 * no need to wait here for IOC state to become operational 6995 * when IOC Initialization is on. Instead the driver will 6996 * return ETIME status, so that calling function can issue 6997 * diag reset operation and retry the command. 6998 */ 6999 if (ioc->is_driver_loading) 7000 return -ETIME; 7001 7002 ssleep(1); 7003 ioc_info(ioc, "%s: waiting for operational state(count=%d)\n", 7004 __func__, ++wait_state_count); 7005 } while (--timeout); 7006 if (!timeout) { 7007 ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__); 7008 return -EFAULT; 7009 } 7010 if (wait_state_count) 7011 ioc_info(ioc, "ioc is operational\n"); 7012 return 0; 7013 } 7014 7015 /** 7016 * _base_handshake_req_reply_wait - send request thru doorbell interface 7017 * @ioc: per adapter object 7018 * @request_bytes: request length 7019 * @request: pointer having request payload 7020 * @reply_bytes: reply length 7021 * @reply: pointer to reply payload 7022 * @timeout: timeout in second 7023 * 7024 * Return: 0 for success, non-zero for failure. 7025 */ 7026 static int 7027 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes, 7028 u32 *request, int reply_bytes, u16 *reply, int timeout) 7029 { 7030 MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply; 7031 int i; 7032 u8 failed; 7033 __le32 *mfp; 7034 7035 /* make sure doorbell is not in use */ 7036 if ((ioc->base_readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) { 7037 ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__); 7038 return -EFAULT; 7039 } 7040 7041 /* clear pending doorbell interrupts from previous state changes */ 7042 if (ioc->base_readl(&ioc->chip->HostInterruptStatus) & 7043 MPI2_HIS_IOC2SYS_DB_STATUS) 7044 writel(0, &ioc->chip->HostInterruptStatus); 7045 7046 /* send message to ioc */ 7047 writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) | 7048 ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)), 7049 &ioc->chip->Doorbell); 7050 7051 if ((_base_spin_on_doorbell_int(ioc, 5))) { 7052 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 7053 __LINE__); 7054 return -EFAULT; 7055 } 7056 writel(0, &ioc->chip->HostInterruptStatus); 7057 7058 if ((_base_wait_for_doorbell_ack(ioc, 5))) { 7059 ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n", 7060 __LINE__); 7061 return -EFAULT; 7062 } 7063 7064 /* send message 32-bits at a time */ 7065 for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) { 7066 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell); 7067 if ((_base_wait_for_doorbell_ack(ioc, 5))) 7068 failed = 1; 7069 } 7070 7071 if (failed) { 7072 ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n", 7073 __LINE__); 7074 return -EFAULT; 7075 } 7076 7077 /* now wait for the reply */ 7078 if ((_base_wait_for_doorbell_int(ioc, timeout))) { 7079 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 7080 __LINE__); 7081 return -EFAULT; 7082 } 7083 7084 /* read the first two 16-bits, it gives the total length of the reply */ 7085 reply[0] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell) 7086 & MPI2_DOORBELL_DATA_MASK); 7087 writel(0, &ioc->chip->HostInterruptStatus); 7088 if ((_base_wait_for_doorbell_int(ioc, 5))) { 7089 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 7090 __LINE__); 7091 return -EFAULT; 7092 } 7093 reply[1] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell) 7094 & MPI2_DOORBELL_DATA_MASK); 7095 writel(0, &ioc->chip->HostInterruptStatus); 7096 7097 for (i = 2; i < default_reply->MsgLength * 2; i++) { 7098 if ((_base_wait_for_doorbell_int(ioc, 5))) { 7099 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 7100 __LINE__); 7101 return -EFAULT; 7102 } 7103 if (i >= reply_bytes/2) /* overflow case */ 7104 ioc->base_readl(&ioc->chip->Doorbell); 7105 else 7106 reply[i] = le16_to_cpu( 7107 ioc->base_readl(&ioc->chip->Doorbell) 7108 & MPI2_DOORBELL_DATA_MASK); 7109 writel(0, &ioc->chip->HostInterruptStatus); 7110 } 7111 7112 _base_wait_for_doorbell_int(ioc, 5); 7113 if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) { 7114 dhsprintk(ioc, 7115 ioc_info(ioc, "doorbell is in use (line=%d)\n", 7116 __LINE__)); 7117 } 7118 writel(0, &ioc->chip->HostInterruptStatus); 7119 7120 if (ioc->logging_level & MPT_DEBUG_INIT) { 7121 mfp = (__le32 *)reply; 7122 pr_info("\toffset:data\n"); 7123 for (i = 0; i < reply_bytes/4; i++) 7124 ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4, 7125 le32_to_cpu(mfp[i])); 7126 } 7127 return 0; 7128 } 7129 7130 /** 7131 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW 7132 * @ioc: per adapter object 7133 * @mpi_reply: the reply payload from FW 7134 * @mpi_request: the request payload sent to FW 7135 * 7136 * The SAS IO Unit Control Request message allows the host to perform low-level 7137 * operations, such as resets on the PHYs of the IO Unit, also allows the host 7138 * to obtain the IOC assigned device handles for a device if it has other 7139 * identifying information about the device, in addition allows the host to 7140 * remove IOC resources associated with the device. 7141 * 7142 * Return: 0 for success, non-zero for failure. 7143 */ 7144 int 7145 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc, 7146 Mpi2SasIoUnitControlReply_t *mpi_reply, 7147 Mpi2SasIoUnitControlRequest_t *mpi_request) 7148 { 7149 u16 smid; 7150 u8 issue_reset = 0; 7151 int rc; 7152 void *request; 7153 7154 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7155 7156 mutex_lock(&ioc->base_cmds.mutex); 7157 7158 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) { 7159 ioc_err(ioc, "%s: base_cmd in use\n", __func__); 7160 rc = -EAGAIN; 7161 goto out; 7162 } 7163 7164 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT); 7165 if (rc) 7166 goto out; 7167 7168 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 7169 if (!smid) { 7170 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 7171 rc = -EAGAIN; 7172 goto out; 7173 } 7174 7175 rc = 0; 7176 ioc->base_cmds.status = MPT3_CMD_PENDING; 7177 request = mpt3sas_base_get_msg_frame(ioc, smid); 7178 ioc->base_cmds.smid = smid; 7179 memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)); 7180 if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET || 7181 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) 7182 ioc->ioc_link_reset_in_progress = 1; 7183 init_completion(&ioc->base_cmds.done); 7184 ioc->put_smid_default(ioc, smid); 7185 wait_for_completion_timeout(&ioc->base_cmds.done, 7186 msecs_to_jiffies(10000)); 7187 if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET || 7188 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) && 7189 ioc->ioc_link_reset_in_progress) 7190 ioc->ioc_link_reset_in_progress = 0; 7191 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 7192 mpt3sas_check_cmd_timeout(ioc, ioc->base_cmds.status, 7193 mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)/4, 7194 issue_reset); 7195 goto issue_host_reset; 7196 } 7197 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) 7198 memcpy(mpi_reply, ioc->base_cmds.reply, 7199 sizeof(Mpi2SasIoUnitControlReply_t)); 7200 else 7201 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t)); 7202 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 7203 goto out; 7204 7205 issue_host_reset: 7206 if (issue_reset) 7207 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 7208 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 7209 rc = -EFAULT; 7210 out: 7211 mutex_unlock(&ioc->base_cmds.mutex); 7212 return rc; 7213 } 7214 7215 /** 7216 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device 7217 * @ioc: per adapter object 7218 * @mpi_reply: the reply payload from FW 7219 * @mpi_request: the request payload sent to FW 7220 * 7221 * The SCSI Enclosure Processor request message causes the IOC to 7222 * communicate with SES devices to control LED status signals. 7223 * 7224 * Return: 0 for success, non-zero for failure. 7225 */ 7226 int 7227 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc, 7228 Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request) 7229 { 7230 u16 smid; 7231 u8 issue_reset = 0; 7232 int rc; 7233 void *request; 7234 7235 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7236 7237 mutex_lock(&ioc->base_cmds.mutex); 7238 7239 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) { 7240 ioc_err(ioc, "%s: base_cmd in use\n", __func__); 7241 rc = -EAGAIN; 7242 goto out; 7243 } 7244 7245 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT); 7246 if (rc) 7247 goto out; 7248 7249 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 7250 if (!smid) { 7251 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 7252 rc = -EAGAIN; 7253 goto out; 7254 } 7255 7256 rc = 0; 7257 ioc->base_cmds.status = MPT3_CMD_PENDING; 7258 request = mpt3sas_base_get_msg_frame(ioc, smid); 7259 ioc->base_cmds.smid = smid; 7260 memset(request, 0, ioc->request_sz); 7261 memcpy(request, mpi_request, sizeof(Mpi2SepReply_t)); 7262 init_completion(&ioc->base_cmds.done); 7263 ioc->put_smid_default(ioc, smid); 7264 wait_for_completion_timeout(&ioc->base_cmds.done, 7265 msecs_to_jiffies(10000)); 7266 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 7267 mpt3sas_check_cmd_timeout(ioc, 7268 ioc->base_cmds.status, mpi_request, 7269 sizeof(Mpi2SepRequest_t)/4, issue_reset); 7270 goto issue_host_reset; 7271 } 7272 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) 7273 memcpy(mpi_reply, ioc->base_cmds.reply, 7274 sizeof(Mpi2SepReply_t)); 7275 else 7276 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t)); 7277 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 7278 goto out; 7279 7280 issue_host_reset: 7281 if (issue_reset) 7282 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 7283 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 7284 rc = -EFAULT; 7285 out: 7286 mutex_unlock(&ioc->base_cmds.mutex); 7287 return rc; 7288 } 7289 7290 /** 7291 * _base_get_port_facts - obtain port facts reply and save in ioc 7292 * @ioc: per adapter object 7293 * @port: ? 7294 * 7295 * Return: 0 for success, non-zero for failure. 7296 */ 7297 static int 7298 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port) 7299 { 7300 Mpi2PortFactsRequest_t mpi_request; 7301 Mpi2PortFactsReply_t mpi_reply; 7302 struct mpt3sas_port_facts *pfacts; 7303 int mpi_reply_sz, mpi_request_sz, r; 7304 7305 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7306 7307 mpi_reply_sz = sizeof(Mpi2PortFactsReply_t); 7308 mpi_request_sz = sizeof(Mpi2PortFactsRequest_t); 7309 memset(&mpi_request, 0, mpi_request_sz); 7310 mpi_request.Function = MPI2_FUNCTION_PORT_FACTS; 7311 mpi_request.PortNumber = port; 7312 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz, 7313 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5); 7314 7315 if (r != 0) { 7316 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 7317 return r; 7318 } 7319 7320 pfacts = &ioc->pfacts[port]; 7321 memset(pfacts, 0, sizeof(struct mpt3sas_port_facts)); 7322 pfacts->PortNumber = mpi_reply.PortNumber; 7323 pfacts->VP_ID = mpi_reply.VP_ID; 7324 pfacts->VF_ID = mpi_reply.VF_ID; 7325 pfacts->MaxPostedCmdBuffers = 7326 le16_to_cpu(mpi_reply.MaxPostedCmdBuffers); 7327 7328 return 0; 7329 } 7330 7331 /** 7332 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL 7333 * @ioc: per adapter object 7334 * @timeout: 7335 * 7336 * Return: 0 for success, non-zero for failure. 7337 */ 7338 static int 7339 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout) 7340 { 7341 u32 ioc_state; 7342 int rc; 7343 7344 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7345 7346 if (ioc->pci_error_recovery) { 7347 dfailprintk(ioc, 7348 ioc_info(ioc, "%s: host in pci error recovery\n", 7349 __func__)); 7350 return -EFAULT; 7351 } 7352 7353 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 7354 dhsprintk(ioc, 7355 ioc_info(ioc, "%s: ioc_state(0x%08x)\n", 7356 __func__, ioc_state)); 7357 7358 if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) || 7359 (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL) 7360 return 0; 7361 7362 if (ioc_state & MPI2_DOORBELL_USED) { 7363 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n")); 7364 goto issue_diag_reset; 7365 } 7366 7367 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 7368 mpt3sas_print_fault_code(ioc, ioc_state & 7369 MPI2_DOORBELL_DATA_MASK); 7370 goto issue_diag_reset; 7371 } else if ((ioc_state & MPI2_IOC_STATE_MASK) == 7372 MPI2_IOC_STATE_COREDUMP) { 7373 ioc_info(ioc, 7374 "%s: Skipping the diag reset here. (ioc_state=0x%x)\n", 7375 __func__, ioc_state); 7376 return -EFAULT; 7377 } 7378 7379 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout); 7380 if (ioc_state) { 7381 dfailprintk(ioc, 7382 ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 7383 __func__, ioc_state)); 7384 return -EFAULT; 7385 } 7386 7387 issue_diag_reset: 7388 rc = _base_diag_reset(ioc); 7389 return rc; 7390 } 7391 7392 /** 7393 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc 7394 * @ioc: per adapter object 7395 * 7396 * Return: 0 for success, non-zero for failure. 7397 */ 7398 static int 7399 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc) 7400 { 7401 Mpi2IOCFactsRequest_t mpi_request; 7402 Mpi2IOCFactsReply_t mpi_reply; 7403 struct mpt3sas_facts *facts; 7404 int mpi_reply_sz, mpi_request_sz, r; 7405 7406 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7407 7408 r = _base_wait_for_iocstate(ioc, 10); 7409 if (r) { 7410 dfailprintk(ioc, 7411 ioc_info(ioc, "%s: failed getting to correct state\n", 7412 __func__)); 7413 return r; 7414 } 7415 mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t); 7416 mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t); 7417 memset(&mpi_request, 0, mpi_request_sz); 7418 mpi_request.Function = MPI2_FUNCTION_IOC_FACTS; 7419 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz, 7420 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5); 7421 7422 if (r != 0) { 7423 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 7424 return r; 7425 } 7426 7427 facts = &ioc->facts; 7428 memset(facts, 0, sizeof(struct mpt3sas_facts)); 7429 facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion); 7430 facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion); 7431 facts->VP_ID = mpi_reply.VP_ID; 7432 facts->VF_ID = mpi_reply.VF_ID; 7433 facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions); 7434 facts->MaxChainDepth = mpi_reply.MaxChainDepth; 7435 facts->WhoInit = mpi_reply.WhoInit; 7436 facts->NumberOfPorts = mpi_reply.NumberOfPorts; 7437 facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors; 7438 if (ioc->msix_enable && (facts->MaxMSIxVectors <= 7439 MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc))) 7440 ioc->combined_reply_queue = 0; 7441 facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit); 7442 facts->MaxReplyDescriptorPostQueueDepth = 7443 le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth); 7444 facts->ProductID = le16_to_cpu(mpi_reply.ProductID); 7445 facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities); 7446 if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)) 7447 ioc->ir_firmware = 1; 7448 if ((facts->IOCCapabilities & 7449 MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices)) 7450 ioc->rdpq_array_capable = 1; 7451 if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ) 7452 && ioc->is_aero_ioc) 7453 ioc->atomic_desc_capable = 1; 7454 facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word); 7455 facts->IOCRequestFrameSize = 7456 le16_to_cpu(mpi_reply.IOCRequestFrameSize); 7457 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 7458 facts->IOCMaxChainSegmentSize = 7459 le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize); 7460 } 7461 facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators); 7462 facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets); 7463 ioc->shost->max_id = -1; 7464 facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders); 7465 facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures); 7466 facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags); 7467 facts->HighPriorityCredit = 7468 le16_to_cpu(mpi_reply.HighPriorityCredit); 7469 facts->ReplyFrameSize = mpi_reply.ReplyFrameSize; 7470 facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle); 7471 facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize; 7472 7473 /* 7474 * Get the Page Size from IOC Facts. If it's 0, default to 4k. 7475 */ 7476 ioc->page_size = 1 << facts->CurrentHostPageSize; 7477 if (ioc->page_size == 1) { 7478 ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n"); 7479 ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K; 7480 } 7481 dinitprintk(ioc, 7482 ioc_info(ioc, "CurrentHostPageSize(%d)\n", 7483 facts->CurrentHostPageSize)); 7484 7485 dinitprintk(ioc, 7486 ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n", 7487 facts->RequestCredit, facts->MaxChainDepth)); 7488 dinitprintk(ioc, 7489 ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n", 7490 facts->IOCRequestFrameSize * 4, 7491 facts->ReplyFrameSize * 4)); 7492 return 0; 7493 } 7494 7495 /** 7496 * _base_send_ioc_init - send ioc_init to firmware 7497 * @ioc: per adapter object 7498 * 7499 * Return: 0 for success, non-zero for failure. 7500 */ 7501 static int 7502 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc) 7503 { 7504 Mpi2IOCInitRequest_t mpi_request; 7505 Mpi2IOCInitReply_t mpi_reply; 7506 int i, r = 0; 7507 ktime_t current_time; 7508 u16 ioc_status; 7509 u32 reply_post_free_array_sz = 0; 7510 7511 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7512 7513 memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t)); 7514 mpi_request.Function = MPI2_FUNCTION_IOC_INIT; 7515 mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER; 7516 mpi_request.VF_ID = 0; /* TODO */ 7517 mpi_request.VP_ID = 0; 7518 mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged); 7519 mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION); 7520 mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K; 7521 7522 if (_base_is_controller_msix_enabled(ioc)) 7523 mpi_request.HostMSIxVectors = ioc->reply_queue_count; 7524 mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4); 7525 mpi_request.ReplyDescriptorPostQueueDepth = 7526 cpu_to_le16(ioc->reply_post_queue_depth); 7527 mpi_request.ReplyFreeQueueDepth = 7528 cpu_to_le16(ioc->reply_free_queue_depth); 7529 7530 mpi_request.SenseBufferAddressHigh = 7531 cpu_to_le32((u64)ioc->sense_dma >> 32); 7532 mpi_request.SystemReplyAddressHigh = 7533 cpu_to_le32((u64)ioc->reply_dma >> 32); 7534 mpi_request.SystemRequestFrameBaseAddress = 7535 cpu_to_le64((u64)ioc->request_dma); 7536 mpi_request.ReplyFreeQueueAddress = 7537 cpu_to_le64((u64)ioc->reply_free_dma); 7538 7539 if (ioc->rdpq_array_enable) { 7540 reply_post_free_array_sz = ioc->reply_queue_count * 7541 sizeof(Mpi2IOCInitRDPQArrayEntry); 7542 memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz); 7543 for (i = 0; i < ioc->reply_queue_count; i++) 7544 ioc->reply_post_free_array[i].RDPQBaseAddress = 7545 cpu_to_le64( 7546 (u64)ioc->reply_post[i].reply_post_free_dma); 7547 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE; 7548 mpi_request.ReplyDescriptorPostQueueAddress = 7549 cpu_to_le64((u64)ioc->reply_post_free_array_dma); 7550 } else { 7551 mpi_request.ReplyDescriptorPostQueueAddress = 7552 cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma); 7553 } 7554 7555 /* 7556 * Set the flag to enable CoreDump state feature in IOC firmware. 7557 */ 7558 mpi_request.ConfigurationFlags |= 7559 cpu_to_le16(MPI26_IOCINIT_CFGFLAGS_COREDUMP_ENABLE); 7560 7561 /* This time stamp specifies number of milliseconds 7562 * since epoch ~ midnight January 1, 1970. 7563 */ 7564 current_time = ktime_get_real(); 7565 mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time)); 7566 7567 if (ioc->logging_level & MPT_DEBUG_INIT) { 7568 __le32 *mfp; 7569 int i; 7570 7571 mfp = (__le32 *)&mpi_request; 7572 ioc_info(ioc, "\toffset:data\n"); 7573 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++) 7574 ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4, 7575 le32_to_cpu(mfp[i])); 7576 } 7577 7578 r = _base_handshake_req_reply_wait(ioc, 7579 sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request, 7580 sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 30); 7581 7582 if (r != 0) { 7583 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 7584 return r; 7585 } 7586 7587 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK; 7588 if (ioc_status != MPI2_IOCSTATUS_SUCCESS || 7589 mpi_reply.IOCLogInfo) { 7590 ioc_err(ioc, "%s: failed\n", __func__); 7591 r = -EIO; 7592 } 7593 7594 /* Reset TimeSync Counter*/ 7595 ioc->timestamp_update_count = 0; 7596 return r; 7597 } 7598 7599 /** 7600 * mpt3sas_port_enable_done - command completion routine for port enable 7601 * @ioc: per adapter object 7602 * @smid: system request message index 7603 * @msix_index: MSIX table index supplied by the OS 7604 * @reply: reply message frame(lower 32bit addr) 7605 * 7606 * Return: 1 meaning mf should be freed from _base_interrupt 7607 * 0 means the mf is freed from this function. 7608 */ 7609 u8 7610 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 7611 u32 reply) 7612 { 7613 MPI2DefaultReply_t *mpi_reply; 7614 u16 ioc_status; 7615 7616 if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED) 7617 return 1; 7618 7619 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 7620 if (!mpi_reply) 7621 return 1; 7622 7623 if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE) 7624 return 1; 7625 7626 ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING; 7627 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE; 7628 ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID; 7629 memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4); 7630 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 7631 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) 7632 ioc->port_enable_failed = 1; 7633 7634 if (ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE_ASYNC) { 7635 ioc->port_enable_cmds.status &= ~MPT3_CMD_COMPLETE_ASYNC; 7636 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 7637 mpt3sas_port_enable_complete(ioc); 7638 return 1; 7639 } else { 7640 ioc->start_scan_failed = ioc_status; 7641 ioc->start_scan = 0; 7642 return 1; 7643 } 7644 } 7645 complete(&ioc->port_enable_cmds.done); 7646 return 1; 7647 } 7648 7649 /** 7650 * _base_send_port_enable - send port_enable(discovery stuff) to firmware 7651 * @ioc: per adapter object 7652 * 7653 * Return: 0 for success, non-zero for failure. 7654 */ 7655 static int 7656 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc) 7657 { 7658 Mpi2PortEnableRequest_t *mpi_request; 7659 Mpi2PortEnableReply_t *mpi_reply; 7660 int r = 0; 7661 u16 smid; 7662 u16 ioc_status; 7663 7664 ioc_info(ioc, "sending port enable !!\n"); 7665 7666 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 7667 ioc_err(ioc, "%s: internal command already in use\n", __func__); 7668 return -EAGAIN; 7669 } 7670 7671 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx); 7672 if (!smid) { 7673 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 7674 return -EAGAIN; 7675 } 7676 7677 ioc->port_enable_cmds.status = MPT3_CMD_PENDING; 7678 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 7679 ioc->port_enable_cmds.smid = smid; 7680 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t)); 7681 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE; 7682 7683 init_completion(&ioc->port_enable_cmds.done); 7684 ioc->put_smid_default(ioc, smid); 7685 wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ); 7686 if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) { 7687 ioc_err(ioc, "%s: timeout\n", __func__); 7688 _debug_dump_mf(mpi_request, 7689 sizeof(Mpi2PortEnableRequest_t)/4); 7690 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET) 7691 r = -EFAULT; 7692 else 7693 r = -ETIME; 7694 goto out; 7695 } 7696 7697 mpi_reply = ioc->port_enable_cmds.reply; 7698 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 7699 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 7700 ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n", 7701 __func__, ioc_status); 7702 r = -EFAULT; 7703 goto out; 7704 } 7705 7706 out: 7707 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED; 7708 ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED"); 7709 return r; 7710 } 7711 7712 /** 7713 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply) 7714 * @ioc: per adapter object 7715 * 7716 * Return: 0 for success, non-zero for failure. 7717 */ 7718 int 7719 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc) 7720 { 7721 Mpi2PortEnableRequest_t *mpi_request; 7722 u16 smid; 7723 7724 ioc_info(ioc, "sending port enable !!\n"); 7725 7726 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 7727 ioc_err(ioc, "%s: internal command already in use\n", __func__); 7728 return -EAGAIN; 7729 } 7730 7731 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx); 7732 if (!smid) { 7733 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 7734 return -EAGAIN; 7735 } 7736 ioc->drv_internal_flags |= MPT_DRV_INTERNAL_FIRST_PE_ISSUED; 7737 ioc->port_enable_cmds.status = MPT3_CMD_PENDING; 7738 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE_ASYNC; 7739 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 7740 ioc->port_enable_cmds.smid = smid; 7741 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t)); 7742 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE; 7743 7744 ioc->put_smid_default(ioc, smid); 7745 return 0; 7746 } 7747 7748 /** 7749 * _base_determine_wait_on_discovery - desposition 7750 * @ioc: per adapter object 7751 * 7752 * Decide whether to wait on discovery to complete. Used to either 7753 * locate boot device, or report volumes ahead of physical devices. 7754 * 7755 * Return: 1 for wait, 0 for don't wait. 7756 */ 7757 static int 7758 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc) 7759 { 7760 /* We wait for discovery to complete if IR firmware is loaded. 7761 * The sas topology events arrive before PD events, so we need time to 7762 * turn on the bit in ioc->pd_handles to indicate PD 7763 * Also, it maybe required to report Volumes ahead of physical 7764 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set. 7765 */ 7766 if (ioc->ir_firmware) 7767 return 1; 7768 7769 /* if no Bios, then we don't need to wait */ 7770 if (!ioc->bios_pg3.BiosVersion) 7771 return 0; 7772 7773 /* Bios is present, then we drop down here. 7774 * 7775 * If there any entries in the Bios Page 2, then we wait 7776 * for discovery to complete. 7777 */ 7778 7779 /* Current Boot Device */ 7780 if ((ioc->bios_pg2.CurrentBootDeviceForm & 7781 MPI2_BIOSPAGE2_FORM_MASK) == 7782 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED && 7783 /* Request Boot Device */ 7784 (ioc->bios_pg2.ReqBootDeviceForm & 7785 MPI2_BIOSPAGE2_FORM_MASK) == 7786 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED && 7787 /* Alternate Request Boot Device */ 7788 (ioc->bios_pg2.ReqAltBootDeviceForm & 7789 MPI2_BIOSPAGE2_FORM_MASK) == 7790 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED) 7791 return 0; 7792 7793 return 1; 7794 } 7795 7796 /** 7797 * _base_unmask_events - turn on notification for this event 7798 * @ioc: per adapter object 7799 * @event: firmware event 7800 * 7801 * The mask is stored in ioc->event_masks. 7802 */ 7803 static void 7804 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event) 7805 { 7806 u32 desired_event; 7807 7808 if (event >= 128) 7809 return; 7810 7811 desired_event = (1 << (event % 32)); 7812 7813 if (event < 32) 7814 ioc->event_masks[0] &= ~desired_event; 7815 else if (event < 64) 7816 ioc->event_masks[1] &= ~desired_event; 7817 else if (event < 96) 7818 ioc->event_masks[2] &= ~desired_event; 7819 else if (event < 128) 7820 ioc->event_masks[3] &= ~desired_event; 7821 } 7822 7823 /** 7824 * _base_event_notification - send event notification 7825 * @ioc: per adapter object 7826 * 7827 * Return: 0 for success, non-zero for failure. 7828 */ 7829 static int 7830 _base_event_notification(struct MPT3SAS_ADAPTER *ioc) 7831 { 7832 Mpi2EventNotificationRequest_t *mpi_request; 7833 u16 smid; 7834 int r = 0; 7835 int i, issue_diag_reset = 0; 7836 7837 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7838 7839 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 7840 ioc_err(ioc, "%s: internal command already in use\n", __func__); 7841 return -EAGAIN; 7842 } 7843 7844 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 7845 if (!smid) { 7846 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 7847 return -EAGAIN; 7848 } 7849 ioc->base_cmds.status = MPT3_CMD_PENDING; 7850 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 7851 ioc->base_cmds.smid = smid; 7852 memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t)); 7853 mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION; 7854 mpi_request->VF_ID = 0; /* TODO */ 7855 mpi_request->VP_ID = 0; 7856 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 7857 mpi_request->EventMasks[i] = 7858 cpu_to_le32(ioc->event_masks[i]); 7859 init_completion(&ioc->base_cmds.done); 7860 ioc->put_smid_default(ioc, smid); 7861 wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ); 7862 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 7863 ioc_err(ioc, "%s: timeout\n", __func__); 7864 _debug_dump_mf(mpi_request, 7865 sizeof(Mpi2EventNotificationRequest_t)/4); 7866 if (ioc->base_cmds.status & MPT3_CMD_RESET) 7867 r = -EFAULT; 7868 else 7869 issue_diag_reset = 1; 7870 7871 } else 7872 dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__)); 7873 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 7874 7875 if (issue_diag_reset) { 7876 if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED) 7877 return -EFAULT; 7878 if (mpt3sas_base_check_for_fault_and_issue_reset(ioc)) 7879 return -EFAULT; 7880 r = -EAGAIN; 7881 } 7882 return r; 7883 } 7884 7885 /** 7886 * mpt3sas_base_validate_event_type - validating event types 7887 * @ioc: per adapter object 7888 * @event_type: firmware event 7889 * 7890 * This will turn on firmware event notification when application 7891 * ask for that event. We don't mask events that are already enabled. 7892 */ 7893 void 7894 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type) 7895 { 7896 int i, j; 7897 u32 event_mask, desired_event; 7898 u8 send_update_to_fw; 7899 7900 for (i = 0, send_update_to_fw = 0; i < 7901 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) { 7902 event_mask = ~event_type[i]; 7903 desired_event = 1; 7904 for (j = 0; j < 32; j++) { 7905 if (!(event_mask & desired_event) && 7906 (ioc->event_masks[i] & desired_event)) { 7907 ioc->event_masks[i] &= ~desired_event; 7908 send_update_to_fw = 1; 7909 } 7910 desired_event = (desired_event << 1); 7911 } 7912 } 7913 7914 if (!send_update_to_fw) 7915 return; 7916 7917 mutex_lock(&ioc->base_cmds.mutex); 7918 _base_event_notification(ioc); 7919 mutex_unlock(&ioc->base_cmds.mutex); 7920 } 7921 7922 /** 7923 * _base_diag_reset - the "big hammer" start of day reset 7924 * @ioc: per adapter object 7925 * 7926 * Return: 0 for success, non-zero for failure. 7927 */ 7928 static int 7929 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc) 7930 { 7931 u32 host_diagnostic; 7932 u32 ioc_state; 7933 u32 count; 7934 u32 hcb_size; 7935 7936 ioc_info(ioc, "sending diag reset !!\n"); 7937 7938 pci_cfg_access_lock(ioc->pdev); 7939 7940 drsprintk(ioc, ioc_info(ioc, "clear interrupts\n")); 7941 7942 count = 0; 7943 do { 7944 /* Write magic sequence to WriteSequence register 7945 * Loop until in diagnostic mode 7946 */ 7947 drsprintk(ioc, ioc_info(ioc, "write magic sequence\n")); 7948 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence); 7949 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence); 7950 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence); 7951 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence); 7952 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence); 7953 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence); 7954 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence); 7955 7956 /* wait 100 msec */ 7957 msleep(100); 7958 7959 if (count++ > 20) { 7960 ioc_info(ioc, 7961 "Stop writing magic sequence after 20 retries\n"); 7962 _base_dump_reg_set(ioc); 7963 goto out; 7964 } 7965 7966 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic); 7967 drsprintk(ioc, 7968 ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n", 7969 count, host_diagnostic)); 7970 7971 } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0); 7972 7973 hcb_size = ioc->base_readl(&ioc->chip->HCBSize); 7974 7975 drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n")); 7976 writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER, 7977 &ioc->chip->HostDiagnostic); 7978 7979 /*This delay allows the chip PCIe hardware time to finish reset tasks*/ 7980 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000); 7981 7982 /* Approximately 300 second max wait */ 7983 for (count = 0; count < (300000000 / 7984 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) { 7985 7986 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic); 7987 7988 if (host_diagnostic == 0xFFFFFFFF) { 7989 ioc_info(ioc, 7990 "Invalid host diagnostic register value\n"); 7991 _base_dump_reg_set(ioc); 7992 goto out; 7993 } 7994 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER)) 7995 break; 7996 7997 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000); 7998 } 7999 8000 if (host_diagnostic & MPI2_DIAG_HCB_MODE) { 8001 8002 drsprintk(ioc, 8003 ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n")); 8004 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK; 8005 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW; 8006 writel(host_diagnostic, &ioc->chip->HostDiagnostic); 8007 8008 drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n")); 8009 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE, 8010 &ioc->chip->HCBSize); 8011 } 8012 8013 drsprintk(ioc, ioc_info(ioc, "restart the adapter\n")); 8014 writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET, 8015 &ioc->chip->HostDiagnostic); 8016 8017 drsprintk(ioc, 8018 ioc_info(ioc, "disable writes to the diagnostic register\n")); 8019 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence); 8020 8021 drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n")); 8022 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20); 8023 if (ioc_state) { 8024 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 8025 __func__, ioc_state); 8026 _base_dump_reg_set(ioc); 8027 goto out; 8028 } 8029 8030 pci_cfg_access_unlock(ioc->pdev); 8031 ioc_info(ioc, "diag reset: SUCCESS\n"); 8032 return 0; 8033 8034 out: 8035 pci_cfg_access_unlock(ioc->pdev); 8036 ioc_err(ioc, "diag reset: FAILED\n"); 8037 return -EFAULT; 8038 } 8039 8040 /** 8041 * mpt3sas_base_make_ioc_ready - put controller in READY state 8042 * @ioc: per adapter object 8043 * @type: FORCE_BIG_HAMMER or SOFT_RESET 8044 * 8045 * Return: 0 for success, non-zero for failure. 8046 */ 8047 int 8048 mpt3sas_base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type) 8049 { 8050 u32 ioc_state; 8051 int rc; 8052 int count; 8053 8054 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 8055 8056 if (ioc->pci_error_recovery) 8057 return 0; 8058 8059 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 8060 dhsprintk(ioc, 8061 ioc_info(ioc, "%s: ioc_state(0x%08x)\n", 8062 __func__, ioc_state)); 8063 8064 /* if in RESET state, it should move to READY state shortly */ 8065 count = 0; 8066 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) { 8067 while ((ioc_state & MPI2_IOC_STATE_MASK) != 8068 MPI2_IOC_STATE_READY) { 8069 if (count++ == 10) { 8070 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 8071 __func__, ioc_state); 8072 return -EFAULT; 8073 } 8074 ssleep(1); 8075 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 8076 } 8077 } 8078 8079 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) 8080 return 0; 8081 8082 if (ioc_state & MPI2_DOORBELL_USED) { 8083 ioc_info(ioc, "unexpected doorbell active!\n"); 8084 goto issue_diag_reset; 8085 } 8086 8087 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 8088 mpt3sas_print_fault_code(ioc, ioc_state & 8089 MPI2_DOORBELL_DATA_MASK); 8090 goto issue_diag_reset; 8091 } 8092 8093 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) { 8094 /* 8095 * if host reset is invoked while watch dog thread is waiting 8096 * for IOC state to be changed to Fault state then driver has 8097 * to wait here for CoreDump state to clear otherwise reset 8098 * will be issued to the FW and FW move the IOC state to 8099 * reset state without copying the FW logs to coredump region. 8100 */ 8101 if (ioc->ioc_coredump_loop != MPT3SAS_COREDUMP_LOOP_DONE) { 8102 mpt3sas_print_coredump_info(ioc, ioc_state & 8103 MPI2_DOORBELL_DATA_MASK); 8104 mpt3sas_base_wait_for_coredump_completion(ioc, 8105 __func__); 8106 } 8107 goto issue_diag_reset; 8108 } 8109 8110 if (type == FORCE_BIG_HAMMER) 8111 goto issue_diag_reset; 8112 8113 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL) 8114 if (!(_base_send_ioc_reset(ioc, 8115 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) { 8116 return 0; 8117 } 8118 8119 issue_diag_reset: 8120 rc = _base_diag_reset(ioc); 8121 return rc; 8122 } 8123 8124 /** 8125 * _base_make_ioc_operational - put controller in OPERATIONAL state 8126 * @ioc: per adapter object 8127 * 8128 * Return: 0 for success, non-zero for failure. 8129 */ 8130 static int 8131 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc) 8132 { 8133 int r, i, index, rc; 8134 unsigned long flags; 8135 u32 reply_address; 8136 u16 smid; 8137 struct _tr_list *delayed_tr, *delayed_tr_next; 8138 struct _sc_list *delayed_sc, *delayed_sc_next; 8139 struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next; 8140 u8 hide_flag; 8141 struct adapter_reply_queue *reply_q; 8142 Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig; 8143 8144 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 8145 8146 /* clean the delayed target reset list */ 8147 list_for_each_entry_safe(delayed_tr, delayed_tr_next, 8148 &ioc->delayed_tr_list, list) { 8149 list_del(&delayed_tr->list); 8150 kfree(delayed_tr); 8151 } 8152 8153 8154 list_for_each_entry_safe(delayed_tr, delayed_tr_next, 8155 &ioc->delayed_tr_volume_list, list) { 8156 list_del(&delayed_tr->list); 8157 kfree(delayed_tr); 8158 } 8159 8160 list_for_each_entry_safe(delayed_sc, delayed_sc_next, 8161 &ioc->delayed_sc_list, list) { 8162 list_del(&delayed_sc->list); 8163 kfree(delayed_sc); 8164 } 8165 8166 list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next, 8167 &ioc->delayed_event_ack_list, list) { 8168 list_del(&delayed_event_ack->list); 8169 kfree(delayed_event_ack); 8170 } 8171 8172 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 8173 8174 /* hi-priority queue */ 8175 INIT_LIST_HEAD(&ioc->hpr_free_list); 8176 smid = ioc->hi_priority_smid; 8177 for (i = 0; i < ioc->hi_priority_depth; i++, smid++) { 8178 ioc->hpr_lookup[i].cb_idx = 0xFF; 8179 ioc->hpr_lookup[i].smid = smid; 8180 list_add_tail(&ioc->hpr_lookup[i].tracker_list, 8181 &ioc->hpr_free_list); 8182 } 8183 8184 /* internal queue */ 8185 INIT_LIST_HEAD(&ioc->internal_free_list); 8186 smid = ioc->internal_smid; 8187 for (i = 0; i < ioc->internal_depth; i++, smid++) { 8188 ioc->internal_lookup[i].cb_idx = 0xFF; 8189 ioc->internal_lookup[i].smid = smid; 8190 list_add_tail(&ioc->internal_lookup[i].tracker_list, 8191 &ioc->internal_free_list); 8192 } 8193 8194 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 8195 8196 /* initialize Reply Free Queue */ 8197 for (i = 0, reply_address = (u32)ioc->reply_dma ; 8198 i < ioc->reply_free_queue_depth ; i++, reply_address += 8199 ioc->reply_sz) { 8200 ioc->reply_free[i] = cpu_to_le32(reply_address); 8201 if (ioc->is_mcpu_endpoint) 8202 _base_clone_reply_to_sys_mem(ioc, 8203 reply_address, i); 8204 } 8205 8206 /* initialize reply queues */ 8207 if (ioc->is_driver_loading) 8208 _base_assign_reply_queues(ioc); 8209 8210 /* initialize Reply Post Free Queue */ 8211 index = 0; 8212 reply_post_free_contig = ioc->reply_post[0].reply_post_free; 8213 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 8214 /* 8215 * If RDPQ is enabled, switch to the next allocation. 8216 * Otherwise advance within the contiguous region. 8217 */ 8218 if (ioc->rdpq_array_enable) { 8219 reply_q->reply_post_free = 8220 ioc->reply_post[index++].reply_post_free; 8221 } else { 8222 reply_q->reply_post_free = reply_post_free_contig; 8223 reply_post_free_contig += ioc->reply_post_queue_depth; 8224 } 8225 8226 reply_q->reply_post_host_index = 0; 8227 for (i = 0; i < ioc->reply_post_queue_depth; i++) 8228 reply_q->reply_post_free[i].Words = 8229 cpu_to_le64(ULLONG_MAX); 8230 if (!_base_is_controller_msix_enabled(ioc)) 8231 goto skip_init_reply_post_free_queue; 8232 } 8233 skip_init_reply_post_free_queue: 8234 8235 r = _base_send_ioc_init(ioc); 8236 if (r) { 8237 /* 8238 * No need to check IOC state for fault state & issue 8239 * diag reset during host reset. This check is need 8240 * only during driver load time. 8241 */ 8242 if (!ioc->is_driver_loading) 8243 return r; 8244 8245 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc); 8246 if (rc || (_base_send_ioc_init(ioc))) 8247 return r; 8248 } 8249 8250 /* initialize reply free host index */ 8251 ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1; 8252 writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex); 8253 8254 /* initialize reply post host index */ 8255 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 8256 if (ioc->combined_reply_queue) 8257 writel((reply_q->msix_index & 7)<< 8258 MPI2_RPHI_MSIX_INDEX_SHIFT, 8259 ioc->replyPostRegisterIndex[reply_q->msix_index/8]); 8260 else 8261 writel(reply_q->msix_index << 8262 MPI2_RPHI_MSIX_INDEX_SHIFT, 8263 &ioc->chip->ReplyPostHostIndex); 8264 8265 if (!_base_is_controller_msix_enabled(ioc)) 8266 goto skip_init_reply_post_host_index; 8267 } 8268 8269 skip_init_reply_post_host_index: 8270 8271 mpt3sas_base_unmask_interrupts(ioc); 8272 8273 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 8274 r = _base_display_fwpkg_version(ioc); 8275 if (r) 8276 return r; 8277 } 8278 8279 r = _base_static_config_pages(ioc); 8280 if (r) 8281 return r; 8282 8283 r = _base_event_notification(ioc); 8284 if (r) 8285 return r; 8286 8287 if (!ioc->shost_recovery) { 8288 8289 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier 8290 == 0x80) { 8291 hide_flag = (u8) ( 8292 le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) & 8293 MFG_PAGE10_HIDE_SSDS_MASK); 8294 if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK) 8295 ioc->mfg_pg10_hide_flag = hide_flag; 8296 } 8297 8298 ioc->wait_for_discovery_to_complete = 8299 _base_determine_wait_on_discovery(ioc); 8300 8301 return r; /* scan_start and scan_finished support */ 8302 } 8303 8304 r = _base_send_port_enable(ioc); 8305 if (r) 8306 return r; 8307 8308 return r; 8309 } 8310 8311 /** 8312 * mpt3sas_base_free_resources - free resources controller resources 8313 * @ioc: per adapter object 8314 */ 8315 void 8316 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc) 8317 { 8318 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 8319 8320 /* synchronizing freeing resource with pci_access_mutex lock */ 8321 mutex_lock(&ioc->pci_access_mutex); 8322 if (ioc->chip_phys && ioc->chip) { 8323 mpt3sas_base_mask_interrupts(ioc); 8324 ioc->shost_recovery = 1; 8325 mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET); 8326 ioc->shost_recovery = 0; 8327 } 8328 8329 mpt3sas_base_unmap_resources(ioc); 8330 mutex_unlock(&ioc->pci_access_mutex); 8331 return; 8332 } 8333 8334 /** 8335 * mpt3sas_base_attach - attach controller instance 8336 * @ioc: per adapter object 8337 * 8338 * Return: 0 for success, non-zero for failure. 8339 */ 8340 int 8341 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc) 8342 { 8343 int r, i, rc; 8344 int cpu_id, last_cpu_id = 0; 8345 8346 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 8347 8348 /* setup cpu_msix_table */ 8349 ioc->cpu_count = num_online_cpus(); 8350 for_each_online_cpu(cpu_id) 8351 last_cpu_id = cpu_id; 8352 ioc->cpu_msix_table_sz = last_cpu_id + 1; 8353 ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL); 8354 ioc->reply_queue_count = 1; 8355 if (!ioc->cpu_msix_table) { 8356 ioc_info(ioc, "Allocation for cpu_msix_table failed!!!\n"); 8357 r = -ENOMEM; 8358 goto out_free_resources; 8359 } 8360 8361 if (ioc->is_warpdrive) { 8362 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz, 8363 sizeof(resource_size_t *), GFP_KERNEL); 8364 if (!ioc->reply_post_host_index) { 8365 ioc_info(ioc, "Allocation for reply_post_host_index failed!!!\n"); 8366 r = -ENOMEM; 8367 goto out_free_resources; 8368 } 8369 } 8370 8371 ioc->smp_affinity_enable = smp_affinity_enable; 8372 8373 ioc->rdpq_array_enable_assigned = 0; 8374 ioc->use_32bit_dma = false; 8375 ioc->dma_mask = 64; 8376 if (ioc->is_aero_ioc) 8377 ioc->base_readl = &_base_readl_aero; 8378 else 8379 ioc->base_readl = &_base_readl; 8380 r = mpt3sas_base_map_resources(ioc); 8381 if (r) 8382 goto out_free_resources; 8383 8384 pci_set_drvdata(ioc->pdev, ioc->shost); 8385 r = _base_get_ioc_facts(ioc); 8386 if (r) { 8387 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc); 8388 if (rc || (_base_get_ioc_facts(ioc))) 8389 goto out_free_resources; 8390 } 8391 8392 switch (ioc->hba_mpi_version_belonged) { 8393 case MPI2_VERSION: 8394 ioc->build_sg_scmd = &_base_build_sg_scmd; 8395 ioc->build_sg = &_base_build_sg; 8396 ioc->build_zero_len_sge = &_base_build_zero_len_sge; 8397 ioc->get_msix_index_for_smlio = &_base_get_msix_index; 8398 break; 8399 case MPI25_VERSION: 8400 case MPI26_VERSION: 8401 /* 8402 * In SAS3.0, 8403 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and 8404 * Target Status - all require the IEEE formatted scatter gather 8405 * elements. 8406 */ 8407 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee; 8408 ioc->build_sg = &_base_build_sg_ieee; 8409 ioc->build_nvme_prp = &_base_build_nvme_prp; 8410 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee; 8411 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t); 8412 if (ioc->high_iops_queues) 8413 ioc->get_msix_index_for_smlio = 8414 &_base_get_high_iops_msix_index; 8415 else 8416 ioc->get_msix_index_for_smlio = &_base_get_msix_index; 8417 break; 8418 } 8419 if (ioc->atomic_desc_capable) { 8420 ioc->put_smid_default = &_base_put_smid_default_atomic; 8421 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic; 8422 ioc->put_smid_fast_path = 8423 &_base_put_smid_fast_path_atomic; 8424 ioc->put_smid_hi_priority = 8425 &_base_put_smid_hi_priority_atomic; 8426 } else { 8427 ioc->put_smid_default = &_base_put_smid_default; 8428 ioc->put_smid_fast_path = &_base_put_smid_fast_path; 8429 ioc->put_smid_hi_priority = &_base_put_smid_hi_priority; 8430 if (ioc->is_mcpu_endpoint) 8431 ioc->put_smid_scsi_io = 8432 &_base_put_smid_mpi_ep_scsi_io; 8433 else 8434 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io; 8435 } 8436 /* 8437 * These function pointers for other requests that don't 8438 * the require IEEE scatter gather elements. 8439 * 8440 * For example Configuration Pages and SAS IOUNIT Control don't. 8441 */ 8442 ioc->build_sg_mpi = &_base_build_sg; 8443 ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge; 8444 8445 r = mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET); 8446 if (r) 8447 goto out_free_resources; 8448 8449 ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts, 8450 sizeof(struct mpt3sas_port_facts), GFP_KERNEL); 8451 if (!ioc->pfacts) { 8452 r = -ENOMEM; 8453 goto out_free_resources; 8454 } 8455 8456 for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) { 8457 r = _base_get_port_facts(ioc, i); 8458 if (r) { 8459 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc); 8460 if (rc || (_base_get_port_facts(ioc, i))) 8461 goto out_free_resources; 8462 } 8463 } 8464 8465 r = _base_allocate_memory_pools(ioc); 8466 if (r) 8467 goto out_free_resources; 8468 8469 if (irqpoll_weight > 0) 8470 ioc->thresh_hold = irqpoll_weight; 8471 else 8472 ioc->thresh_hold = ioc->hba_queue_depth/4; 8473 8474 _base_init_irqpolls(ioc); 8475 init_waitqueue_head(&ioc->reset_wq); 8476 8477 /* allocate memory pd handle bitmask list */ 8478 ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8); 8479 if (ioc->facts.MaxDevHandle % 8) 8480 ioc->pd_handles_sz++; 8481 ioc->pd_handles = kzalloc(ioc->pd_handles_sz, 8482 GFP_KERNEL); 8483 if (!ioc->pd_handles) { 8484 r = -ENOMEM; 8485 goto out_free_resources; 8486 } 8487 ioc->blocking_handles = kzalloc(ioc->pd_handles_sz, 8488 GFP_KERNEL); 8489 if (!ioc->blocking_handles) { 8490 r = -ENOMEM; 8491 goto out_free_resources; 8492 } 8493 8494 /* allocate memory for pending OS device add list */ 8495 ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8); 8496 if (ioc->facts.MaxDevHandle % 8) 8497 ioc->pend_os_device_add_sz++; 8498 ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz, 8499 GFP_KERNEL); 8500 if (!ioc->pend_os_device_add) { 8501 r = -ENOMEM; 8502 goto out_free_resources; 8503 } 8504 8505 ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz; 8506 ioc->device_remove_in_progress = 8507 kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL); 8508 if (!ioc->device_remove_in_progress) { 8509 r = -ENOMEM; 8510 goto out_free_resources; 8511 } 8512 8513 ioc->fwfault_debug = mpt3sas_fwfault_debug; 8514 8515 /* base internal command bits */ 8516 mutex_init(&ioc->base_cmds.mutex); 8517 ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 8518 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 8519 8520 /* port_enable command bits */ 8521 ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 8522 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED; 8523 8524 /* transport internal command bits */ 8525 ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 8526 ioc->transport_cmds.status = MPT3_CMD_NOT_USED; 8527 mutex_init(&ioc->transport_cmds.mutex); 8528 8529 /* scsih internal command bits */ 8530 ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 8531 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED; 8532 mutex_init(&ioc->scsih_cmds.mutex); 8533 8534 /* task management internal command bits */ 8535 ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 8536 ioc->tm_cmds.status = MPT3_CMD_NOT_USED; 8537 mutex_init(&ioc->tm_cmds.mutex); 8538 8539 /* config page internal command bits */ 8540 ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 8541 ioc->config_cmds.status = MPT3_CMD_NOT_USED; 8542 mutex_init(&ioc->config_cmds.mutex); 8543 8544 /* ctl module internal command bits */ 8545 ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 8546 ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL); 8547 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED; 8548 mutex_init(&ioc->ctl_cmds.mutex); 8549 8550 if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply || 8551 !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply || 8552 !ioc->tm_cmds.reply || !ioc->config_cmds.reply || 8553 !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) { 8554 r = -ENOMEM; 8555 goto out_free_resources; 8556 } 8557 8558 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 8559 ioc->event_masks[i] = -1; 8560 8561 /* here we enable the events we care about */ 8562 _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY); 8563 _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE); 8564 _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST); 8565 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE); 8566 _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE); 8567 _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST); 8568 _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME); 8569 _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK); 8570 _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS); 8571 _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED); 8572 _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD); 8573 _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION); 8574 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR); 8575 if (ioc->hba_mpi_version_belonged == MPI26_VERSION) { 8576 if (ioc->is_gen35_ioc) { 8577 _base_unmask_events(ioc, 8578 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE); 8579 _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION); 8580 _base_unmask_events(ioc, 8581 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST); 8582 } 8583 } 8584 r = _base_make_ioc_operational(ioc); 8585 if (r == -EAGAIN) { 8586 r = _base_make_ioc_operational(ioc); 8587 if (r) 8588 goto out_free_resources; 8589 } 8590 8591 /* 8592 * Copy current copy of IOCFacts in prev_fw_facts 8593 * and it will be used during online firmware upgrade. 8594 */ 8595 memcpy(&ioc->prev_fw_facts, &ioc->facts, 8596 sizeof(struct mpt3sas_facts)); 8597 8598 ioc->non_operational_loop = 0; 8599 ioc->ioc_coredump_loop = 0; 8600 ioc->got_task_abort_from_ioctl = 0; 8601 return 0; 8602 8603 out_free_resources: 8604 8605 ioc->remove_host = 1; 8606 8607 mpt3sas_base_free_resources(ioc); 8608 _base_release_memory_pools(ioc); 8609 pci_set_drvdata(ioc->pdev, NULL); 8610 kfree(ioc->cpu_msix_table); 8611 if (ioc->is_warpdrive) 8612 kfree(ioc->reply_post_host_index); 8613 kfree(ioc->pd_handles); 8614 kfree(ioc->blocking_handles); 8615 kfree(ioc->device_remove_in_progress); 8616 kfree(ioc->pend_os_device_add); 8617 kfree(ioc->tm_cmds.reply); 8618 kfree(ioc->transport_cmds.reply); 8619 kfree(ioc->scsih_cmds.reply); 8620 kfree(ioc->config_cmds.reply); 8621 kfree(ioc->base_cmds.reply); 8622 kfree(ioc->port_enable_cmds.reply); 8623 kfree(ioc->ctl_cmds.reply); 8624 kfree(ioc->ctl_cmds.sense); 8625 kfree(ioc->pfacts); 8626 ioc->ctl_cmds.reply = NULL; 8627 ioc->base_cmds.reply = NULL; 8628 ioc->tm_cmds.reply = NULL; 8629 ioc->scsih_cmds.reply = NULL; 8630 ioc->transport_cmds.reply = NULL; 8631 ioc->config_cmds.reply = NULL; 8632 ioc->pfacts = NULL; 8633 return r; 8634 } 8635 8636 8637 /** 8638 * mpt3sas_base_detach - remove controller instance 8639 * @ioc: per adapter object 8640 */ 8641 void 8642 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc) 8643 { 8644 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 8645 8646 mpt3sas_base_stop_watchdog(ioc); 8647 mpt3sas_base_free_resources(ioc); 8648 _base_release_memory_pools(ioc); 8649 mpt3sas_free_enclosure_list(ioc); 8650 pci_set_drvdata(ioc->pdev, NULL); 8651 kfree(ioc->cpu_msix_table); 8652 if (ioc->is_warpdrive) 8653 kfree(ioc->reply_post_host_index); 8654 kfree(ioc->pd_handles); 8655 kfree(ioc->blocking_handles); 8656 kfree(ioc->device_remove_in_progress); 8657 kfree(ioc->pend_os_device_add); 8658 kfree(ioc->pfacts); 8659 kfree(ioc->ctl_cmds.reply); 8660 kfree(ioc->ctl_cmds.sense); 8661 kfree(ioc->base_cmds.reply); 8662 kfree(ioc->port_enable_cmds.reply); 8663 kfree(ioc->tm_cmds.reply); 8664 kfree(ioc->transport_cmds.reply); 8665 kfree(ioc->scsih_cmds.reply); 8666 kfree(ioc->config_cmds.reply); 8667 } 8668 8669 /** 8670 * _base_pre_reset_handler - pre reset handler 8671 * @ioc: per adapter object 8672 */ 8673 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc) 8674 { 8675 mpt3sas_scsih_pre_reset_handler(ioc); 8676 mpt3sas_ctl_pre_reset_handler(ioc); 8677 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__)); 8678 } 8679 8680 /** 8681 * _base_clear_outstanding_mpt_commands - clears outstanding mpt commands 8682 * @ioc: per adapter object 8683 */ 8684 static void 8685 _base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER *ioc) 8686 { 8687 dtmprintk(ioc, 8688 ioc_info(ioc, "%s: clear outstanding mpt cmds\n", __func__)); 8689 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) { 8690 ioc->transport_cmds.status |= MPT3_CMD_RESET; 8691 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid); 8692 complete(&ioc->transport_cmds.done); 8693 } 8694 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 8695 ioc->base_cmds.status |= MPT3_CMD_RESET; 8696 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid); 8697 complete(&ioc->base_cmds.done); 8698 } 8699 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 8700 ioc->port_enable_failed = 1; 8701 ioc->port_enable_cmds.status |= MPT3_CMD_RESET; 8702 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid); 8703 if (ioc->is_driver_loading) { 8704 ioc->start_scan_failed = 8705 MPI2_IOCSTATUS_INTERNAL_ERROR; 8706 ioc->start_scan = 0; 8707 } else { 8708 complete(&ioc->port_enable_cmds.done); 8709 } 8710 } 8711 if (ioc->config_cmds.status & MPT3_CMD_PENDING) { 8712 ioc->config_cmds.status |= MPT3_CMD_RESET; 8713 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid); 8714 ioc->config_cmds.smid = USHRT_MAX; 8715 complete(&ioc->config_cmds.done); 8716 } 8717 } 8718 8719 /** 8720 * _base_clear_outstanding_commands - clear all outstanding commands 8721 * @ioc: per adapter object 8722 */ 8723 static void _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc) 8724 { 8725 mpt3sas_scsih_clear_outstanding_scsi_tm_commands(ioc); 8726 mpt3sas_ctl_clear_outstanding_ioctls(ioc); 8727 _base_clear_outstanding_mpt_commands(ioc); 8728 } 8729 8730 /** 8731 * _base_reset_done_handler - reset done handler 8732 * @ioc: per adapter object 8733 */ 8734 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc) 8735 { 8736 mpt3sas_scsih_reset_done_handler(ioc); 8737 mpt3sas_ctl_reset_done_handler(ioc); 8738 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__)); 8739 } 8740 8741 /** 8742 * mpt3sas_wait_for_commands_to_complete - reset controller 8743 * @ioc: Pointer to MPT_ADAPTER structure 8744 * 8745 * This function is waiting 10s for all pending commands to complete 8746 * prior to putting controller in reset. 8747 */ 8748 void 8749 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc) 8750 { 8751 u32 ioc_state; 8752 8753 ioc->pending_io_count = 0; 8754 8755 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 8756 if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) 8757 return; 8758 8759 /* pending command count */ 8760 ioc->pending_io_count = scsi_host_busy(ioc->shost); 8761 8762 if (!ioc->pending_io_count) 8763 return; 8764 8765 /* wait for pending commands to complete */ 8766 wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ); 8767 } 8768 8769 /** 8770 * _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts 8771 * attributes during online firmware upgrade and update the corresponding 8772 * IOC variables accordingly. 8773 * 8774 * @ioc: Pointer to MPT_ADAPTER structure 8775 */ 8776 static int 8777 _base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc) 8778 { 8779 u16 pd_handles_sz; 8780 void *pd_handles = NULL, *blocking_handles = NULL; 8781 void *pend_os_device_add = NULL, *device_remove_in_progress = NULL; 8782 struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts; 8783 8784 if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle) { 8785 pd_handles_sz = (ioc->facts.MaxDevHandle / 8); 8786 if (ioc->facts.MaxDevHandle % 8) 8787 pd_handles_sz++; 8788 8789 pd_handles = krealloc(ioc->pd_handles, pd_handles_sz, 8790 GFP_KERNEL); 8791 if (!pd_handles) { 8792 ioc_info(ioc, 8793 "Unable to allocate the memory for pd_handles of sz: %d\n", 8794 pd_handles_sz); 8795 return -ENOMEM; 8796 } 8797 memset(pd_handles + ioc->pd_handles_sz, 0, 8798 (pd_handles_sz - ioc->pd_handles_sz)); 8799 ioc->pd_handles = pd_handles; 8800 8801 blocking_handles = krealloc(ioc->blocking_handles, 8802 pd_handles_sz, GFP_KERNEL); 8803 if (!blocking_handles) { 8804 ioc_info(ioc, 8805 "Unable to allocate the memory for " 8806 "blocking_handles of sz: %d\n", 8807 pd_handles_sz); 8808 return -ENOMEM; 8809 } 8810 memset(blocking_handles + ioc->pd_handles_sz, 0, 8811 (pd_handles_sz - ioc->pd_handles_sz)); 8812 ioc->blocking_handles = blocking_handles; 8813 ioc->pd_handles_sz = pd_handles_sz; 8814 8815 pend_os_device_add = krealloc(ioc->pend_os_device_add, 8816 pd_handles_sz, GFP_KERNEL); 8817 if (!pend_os_device_add) { 8818 ioc_info(ioc, 8819 "Unable to allocate the memory for pend_os_device_add of sz: %d\n", 8820 pd_handles_sz); 8821 return -ENOMEM; 8822 } 8823 memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0, 8824 (pd_handles_sz - ioc->pend_os_device_add_sz)); 8825 ioc->pend_os_device_add = pend_os_device_add; 8826 ioc->pend_os_device_add_sz = pd_handles_sz; 8827 8828 device_remove_in_progress = krealloc( 8829 ioc->device_remove_in_progress, pd_handles_sz, GFP_KERNEL); 8830 if (!device_remove_in_progress) { 8831 ioc_info(ioc, 8832 "Unable to allocate the memory for " 8833 "device_remove_in_progress of sz: %d\n " 8834 , pd_handles_sz); 8835 return -ENOMEM; 8836 } 8837 memset(device_remove_in_progress + 8838 ioc->device_remove_in_progress_sz, 0, 8839 (pd_handles_sz - ioc->device_remove_in_progress_sz)); 8840 ioc->device_remove_in_progress = device_remove_in_progress; 8841 ioc->device_remove_in_progress_sz = pd_handles_sz; 8842 } 8843 8844 memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts)); 8845 return 0; 8846 } 8847 8848 /** 8849 * mpt3sas_base_hard_reset_handler - reset controller 8850 * @ioc: Pointer to MPT_ADAPTER structure 8851 * @type: FORCE_BIG_HAMMER or SOFT_RESET 8852 * 8853 * Return: 0 for success, non-zero for failure. 8854 */ 8855 int 8856 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc, 8857 enum reset_type type) 8858 { 8859 int r; 8860 unsigned long flags; 8861 u32 ioc_state; 8862 u8 is_fault = 0, is_trigger = 0; 8863 8864 dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__)); 8865 8866 if (ioc->pci_error_recovery) { 8867 ioc_err(ioc, "%s: pci error recovery reset\n", __func__); 8868 r = 0; 8869 goto out_unlocked; 8870 } 8871 8872 if (mpt3sas_fwfault_debug) 8873 mpt3sas_halt_firmware(ioc); 8874 8875 /* wait for an active reset in progress to complete */ 8876 mutex_lock(&ioc->reset_in_progress_mutex); 8877 8878 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 8879 ioc->shost_recovery = 1; 8880 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 8881 8882 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 8883 MPT3_DIAG_BUFFER_IS_REGISTERED) && 8884 (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 8885 MPT3_DIAG_BUFFER_IS_RELEASED))) { 8886 is_trigger = 1; 8887 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 8888 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT || 8889 (ioc_state & MPI2_IOC_STATE_MASK) == 8890 MPI2_IOC_STATE_COREDUMP) { 8891 is_fault = 1; 8892 ioc->htb_rel.trigger_info_dwords[1] = 8893 (ioc_state & MPI2_DOORBELL_DATA_MASK); 8894 } 8895 } 8896 _base_pre_reset_handler(ioc); 8897 mpt3sas_wait_for_commands_to_complete(ioc); 8898 mpt3sas_base_mask_interrupts(ioc); 8899 mpt3sas_base_pause_mq_polling(ioc); 8900 r = mpt3sas_base_make_ioc_ready(ioc, type); 8901 if (r) 8902 goto out; 8903 _base_clear_outstanding_commands(ioc); 8904 8905 /* If this hard reset is called while port enable is active, then 8906 * there is no reason to call make_ioc_operational 8907 */ 8908 if (ioc->is_driver_loading && ioc->port_enable_failed) { 8909 ioc->remove_host = 1; 8910 r = -EFAULT; 8911 goto out; 8912 } 8913 r = _base_get_ioc_facts(ioc); 8914 if (r) 8915 goto out; 8916 8917 r = _base_check_ioc_facts_changes(ioc); 8918 if (r) { 8919 ioc_info(ioc, 8920 "Some of the parameters got changed in this new firmware" 8921 " image and it requires system reboot\n"); 8922 goto out; 8923 } 8924 if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable) 8925 panic("%s: Issue occurred with flashing controller firmware." 8926 "Please reboot the system and ensure that the correct" 8927 " firmware version is running\n", ioc->name); 8928 8929 r = _base_make_ioc_operational(ioc); 8930 if (!r) 8931 _base_reset_done_handler(ioc); 8932 8933 out: 8934 ioc_info(ioc, "%s: %s\n", __func__, r == 0 ? "SUCCESS" : "FAILED"); 8935 8936 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 8937 ioc->shost_recovery = 0; 8938 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 8939 ioc->ioc_reset_count++; 8940 mutex_unlock(&ioc->reset_in_progress_mutex); 8941 mpt3sas_base_resume_mq_polling(ioc); 8942 8943 out_unlocked: 8944 if ((r == 0) && is_trigger) { 8945 if (is_fault) 8946 mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT); 8947 else 8948 mpt3sas_trigger_master(ioc, 8949 MASTER_TRIGGER_ADAPTER_RESET); 8950 } 8951 dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__)); 8952 return r; 8953 } 8954