1 /*
2  * This is the Fusion MPT base driver providing common API layer interface
3  * for access to MPT (Message Passing Technology) firmware.
4  *
5  * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6  * Copyright (C) 2012-2014  LSI Corporation
7  * Copyright (C) 2013-2014 Avago Technologies
8  *  (mailto: MPT-FusionLinux.pdl@avagotech.com)
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version 2
13  * of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * NO WARRANTY
21  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25  * solely responsible for determining the appropriateness of using and
26  * distributing the Program and assumes all risks associated with its
27  * exercise of rights under this Agreement, including but not limited to
28  * the risks and costs of program errors, damage to or loss of data,
29  * programs or equipment, and unavailability or interruption of operations.
30 
31  * DISCLAIMER OF LIABILITY
32  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39 
40  * You should have received a copy of the GNU General Public License
41  * along with this program; if not, write to the Free Software
42  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
43  * USA.
44  */
45 
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <asm/page.h>        /* To get host page size per arch */
63 #include <linux/aer.h>
64 
65 
66 #include "mpt3sas_base.h"
67 
68 static MPT_CALLBACK	mpt_callbacks[MPT_MAX_CALLBACKS];
69 
70 
71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
72 
73  /* maximum controller queue depth */
74 #define MAX_HBA_QUEUE_DEPTH	30000
75 #define MAX_CHAIN_DEPTH		100000
76 static int max_queue_depth = -1;
77 module_param(max_queue_depth, int, 0444);
78 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
79 
80 static int max_sgl_entries = -1;
81 module_param(max_sgl_entries, int, 0444);
82 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
83 
84 static int msix_disable = -1;
85 module_param(msix_disable, int, 0444);
86 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
87 
88 static int smp_affinity_enable = 1;
89 module_param(smp_affinity_enable, int, 0444);
90 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)");
91 
92 static int max_msix_vectors = -1;
93 module_param(max_msix_vectors, int, 0444);
94 MODULE_PARM_DESC(max_msix_vectors,
95 	" max msix vectors");
96 
97 static int irqpoll_weight = -1;
98 module_param(irqpoll_weight, int, 0444);
99 MODULE_PARM_DESC(irqpoll_weight,
100 	"irq poll weight (default= one fourth of HBA queue depth)");
101 
102 static int mpt3sas_fwfault_debug;
103 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
104 	" enable detection of firmware fault and halt firmware - (default=0)");
105 
106 static int perf_mode = -1;
107 module_param(perf_mode, int, 0444);
108 MODULE_PARM_DESC(perf_mode,
109 	"Performance mode (only for Aero/Sea Generation), options:\n\t\t"
110 	"0 - balanced: high iops mode is enabled &\n\t\t"
111 	"interrupt coalescing is enabled only on high iops queues,\n\t\t"
112 	"1 - iops: high iops mode is disabled &\n\t\t"
113 	"interrupt coalescing is enabled on all queues,\n\t\t"
114 	"2 - latency: high iops mode is disabled &\n\t\t"
115 	"interrupt coalescing is enabled on all queues with timeout value 0xA,\n"
116 	"\t\tdefault - default perf_mode is 'balanced'"
117 	);
118 
119 enum mpt3sas_perf_mode {
120 	MPT_PERF_MODE_DEFAULT	= -1,
121 	MPT_PERF_MODE_BALANCED	= 0,
122 	MPT_PERF_MODE_IOPS	= 1,
123 	MPT_PERF_MODE_LATENCY	= 2,
124 };
125 
126 static int
127 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc,
128 		u32 ioc_state, int timeout);
129 static int
130 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
131 static void
132 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc);
133 static void
134 _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc);
135 
136 /**
137  * mpt3sas_base_check_cmd_timeout - Function
138  *		to check timeout and command termination due
139  *		to Host reset.
140  *
141  * @ioc:	per adapter object.
142  * @status:	Status of issued command.
143  * @mpi_request:mf request pointer.
144  * @sz:		size of buffer.
145  *
146  * @Returns - 1/0 Reset to be done or Not
147  */
148 u8
149 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc,
150 		u8 status, void *mpi_request, int sz)
151 {
152 	u8 issue_reset = 0;
153 
154 	if (!(status & MPT3_CMD_RESET))
155 		issue_reset = 1;
156 
157 	ioc_err(ioc, "Command %s\n",
158 		issue_reset == 0 ? "terminated due to Host Reset" : "Timeout");
159 	_debug_dump_mf(mpi_request, sz);
160 
161 	return issue_reset;
162 }
163 
164 /**
165  * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
166  * @val: ?
167  * @kp: ?
168  *
169  * Return: ?
170  */
171 static int
172 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp)
173 {
174 	int ret = param_set_int(val, kp);
175 	struct MPT3SAS_ADAPTER *ioc;
176 
177 	if (ret)
178 		return ret;
179 
180 	/* global ioc spinlock to protect controller list on list operations */
181 	pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
182 	spin_lock(&gioc_lock);
183 	list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
184 		ioc->fwfault_debug = mpt3sas_fwfault_debug;
185 	spin_unlock(&gioc_lock);
186 	return 0;
187 }
188 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
189 	param_get_int, &mpt3sas_fwfault_debug, 0644);
190 
191 /**
192  * _base_readl_aero - retry readl for max three times.
193  * @addr - MPT Fusion system interface register address
194  *
195  * Retry the readl() for max three times if it gets zero value
196  * while reading the system interface register.
197  */
198 static inline u32
199 _base_readl_aero(const volatile void __iomem *addr)
200 {
201 	u32 i = 0, ret_val;
202 
203 	do {
204 		ret_val = readl(addr);
205 		i++;
206 	} while (ret_val == 0 && i < 3);
207 
208 	return ret_val;
209 }
210 
211 static inline u32
212 _base_readl(const volatile void __iomem *addr)
213 {
214 	return readl(addr);
215 }
216 
217 /**
218  * _base_clone_reply_to_sys_mem - copies reply to reply free iomem
219  *				  in BAR0 space.
220  *
221  * @ioc: per adapter object
222  * @reply: reply message frame(lower 32bit addr)
223  * @index: System request message index.
224  */
225 static void
226 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply,
227 		u32 index)
228 {
229 	/*
230 	 * 256 is offset within sys register.
231 	 * 256 offset MPI frame starts. Max MPI frame supported is 32.
232 	 * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts
233 	 */
234 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
235 	void __iomem *reply_free_iomem = (void __iomem *)ioc->chip +
236 			MPI_FRAME_START_OFFSET +
237 			(cmd_credit * ioc->request_sz) + (index * sizeof(u32));
238 
239 	writel(reply, reply_free_iomem);
240 }
241 
242 /**
243  * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames
244  *				to system/BAR0 region.
245  *
246  * @dst_iomem: Pointer to the destination location in BAR0 space.
247  * @src: Pointer to the Source data.
248  * @size: Size of data to be copied.
249  */
250 static void
251 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size)
252 {
253 	int i;
254 	u32 *src_virt_mem = (u32 *)src;
255 
256 	for (i = 0; i < size/4; i++)
257 		writel((u32)src_virt_mem[i],
258 				(void __iomem *)dst_iomem + (i * 4));
259 }
260 
261 /**
262  * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region
263  *
264  * @dst_iomem: Pointer to the destination location in BAR0 space.
265  * @src: Pointer to the Source data.
266  * @size: Size of data to be copied.
267  */
268 static void
269 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size)
270 {
271 	int i;
272 	u32 *src_virt_mem = (u32 *)(src);
273 
274 	for (i = 0; i < size/4; i++)
275 		writel((u32)src_virt_mem[i],
276 			(void __iomem *)dst_iomem + (i * 4));
277 }
278 
279 /**
280  * _base_get_chain - Calculates and Returns virtual chain address
281  *			 for the provided smid in BAR0 space.
282  *
283  * @ioc: per adapter object
284  * @smid: system request message index
285  * @sge_chain_count: Scatter gather chain count.
286  *
287  * Return: the chain address.
288  */
289 static inline void __iomem*
290 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid,
291 		u8 sge_chain_count)
292 {
293 	void __iomem *base_chain, *chain_virt;
294 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
295 
296 	base_chain  = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET +
297 		(cmd_credit * ioc->request_sz) +
298 		REPLY_FREE_POOL_SIZE;
299 	chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth *
300 			ioc->request_sz) + (sge_chain_count * ioc->request_sz);
301 	return chain_virt;
302 }
303 
304 /**
305  * _base_get_chain_phys - Calculates and Returns physical address
306  *			in BAR0 for scatter gather chains, for
307  *			the provided smid.
308  *
309  * @ioc: per adapter object
310  * @smid: system request message index
311  * @sge_chain_count: Scatter gather chain count.
312  *
313  * Return: Physical chain address.
314  */
315 static inline phys_addr_t
316 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid,
317 		u8 sge_chain_count)
318 {
319 	phys_addr_t base_chain_phys, chain_phys;
320 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
321 
322 	base_chain_phys  = ioc->chip_phys + MPI_FRAME_START_OFFSET +
323 		(cmd_credit * ioc->request_sz) +
324 		REPLY_FREE_POOL_SIZE;
325 	chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth *
326 			ioc->request_sz) + (sge_chain_count * ioc->request_sz);
327 	return chain_phys;
328 }
329 
330 /**
331  * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host
332  *			buffer address for the provided smid.
333  *			(Each smid can have 64K starts from 17024)
334  *
335  * @ioc: per adapter object
336  * @smid: system request message index
337  *
338  * Return: Pointer to buffer location in BAR0.
339  */
340 
341 static void __iomem *
342 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
343 {
344 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
345 	// Added extra 1 to reach end of chain.
346 	void __iomem *chain_end = _base_get_chain(ioc,
347 			cmd_credit + 1,
348 			ioc->facts.MaxChainDepth);
349 	return chain_end + (smid * 64 * 1024);
350 }
351 
352 /**
353  * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped
354  *		Host buffer Physical address for the provided smid.
355  *		(Each smid can have 64K starts from 17024)
356  *
357  * @ioc: per adapter object
358  * @smid: system request message index
359  *
360  * Return: Pointer to buffer location in BAR0.
361  */
362 static phys_addr_t
363 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
364 {
365 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
366 	phys_addr_t chain_end_phys = _base_get_chain_phys(ioc,
367 			cmd_credit + 1,
368 			ioc->facts.MaxChainDepth);
369 	return chain_end_phys + (smid * 64 * 1024);
370 }
371 
372 /**
373  * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain
374  *			lookup list and Provides chain_buffer
375  *			address for the matching dma address.
376  *			(Each smid can have 64K starts from 17024)
377  *
378  * @ioc: per adapter object
379  * @chain_buffer_dma: Chain buffer dma address.
380  *
381  * Return: Pointer to chain buffer. Or Null on Failure.
382  */
383 static void *
384 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc,
385 		dma_addr_t chain_buffer_dma)
386 {
387 	u16 index, j;
388 	struct chain_tracker *ct;
389 
390 	for (index = 0; index < ioc->scsiio_depth; index++) {
391 		for (j = 0; j < ioc->chains_needed_per_io; j++) {
392 			ct = &ioc->chain_lookup[index].chains_per_smid[j];
393 			if (ct && ct->chain_buffer_dma == chain_buffer_dma)
394 				return ct->chain_buffer;
395 		}
396 	}
397 	ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n");
398 	return NULL;
399 }
400 
401 /**
402  * _clone_sg_entries -	MPI EP's scsiio and config requests
403  *			are handled here. Base function for
404  *			double buffering, before submitting
405  *			the requests.
406  *
407  * @ioc: per adapter object.
408  * @mpi_request: mf request pointer.
409  * @smid: system request message index.
410  */
411 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc,
412 		void *mpi_request, u16 smid)
413 {
414 	Mpi2SGESimple32_t *sgel, *sgel_next;
415 	u32  sgl_flags, sge_chain_count = 0;
416 	bool is_write = false;
417 	u16 i = 0;
418 	void __iomem *buffer_iomem;
419 	phys_addr_t buffer_iomem_phys;
420 	void __iomem *buff_ptr;
421 	phys_addr_t buff_ptr_phys;
422 	void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO];
423 	void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO];
424 	phys_addr_t dst_addr_phys;
425 	MPI2RequestHeader_t *request_hdr;
426 	struct scsi_cmnd *scmd;
427 	struct scatterlist *sg_scmd = NULL;
428 	int is_scsiio_req = 0;
429 
430 	request_hdr = (MPI2RequestHeader_t *) mpi_request;
431 
432 	if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
433 		Mpi25SCSIIORequest_t *scsiio_request =
434 			(Mpi25SCSIIORequest_t *)mpi_request;
435 		sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL;
436 		is_scsiio_req = 1;
437 	} else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
438 		Mpi2ConfigRequest_t  *config_req =
439 			(Mpi2ConfigRequest_t *)mpi_request;
440 		sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE;
441 	} else
442 		return;
443 
444 	/* From smid we can get scsi_cmd, once we have sg_scmd,
445 	 * we just need to get sg_virt and sg_next to get virual
446 	 * address associated with sgel->Address.
447 	 */
448 
449 	if (is_scsiio_req) {
450 		/* Get scsi_cmd using smid */
451 		scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
452 		if (scmd == NULL) {
453 			ioc_err(ioc, "scmd is NULL\n");
454 			return;
455 		}
456 
457 		/* Get sg_scmd from scmd provided */
458 		sg_scmd = scsi_sglist(scmd);
459 	}
460 
461 	/*
462 	 * 0 - 255	System register
463 	 * 256 - 4352	MPI Frame. (This is based on maxCredit 32)
464 	 * 4352 - 4864	Reply_free pool (512 byte is reserved
465 	 *		considering maxCredit 32. Reply need extra
466 	 *		room, for mCPU case kept four times of
467 	 *		maxCredit).
468 	 * 4864 - 17152	SGE chain element. (32cmd * 3 chain of
469 	 *		128 byte size = 12288)
470 	 * 17152 - x	Host buffer mapped with smid.
471 	 *		(Each smid can have 64K Max IO.)
472 	 * BAR0+Last 1K MSIX Addr and Data
473 	 * Total size in use 2113664 bytes of 4MB BAR0
474 	 */
475 
476 	buffer_iomem = _base_get_buffer_bar0(ioc, smid);
477 	buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid);
478 
479 	buff_ptr = buffer_iomem;
480 	buff_ptr_phys = buffer_iomem_phys;
481 	WARN_ON(buff_ptr_phys > U32_MAX);
482 
483 	if (le32_to_cpu(sgel->FlagsLength) &
484 			(MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT))
485 		is_write = true;
486 
487 	for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) {
488 
489 		sgl_flags =
490 		    (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT);
491 
492 		switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) {
493 		case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
494 			/*
495 			 * Helper function which on passing
496 			 * chain_buffer_dma returns chain_buffer. Get
497 			 * the virtual address for sgel->Address
498 			 */
499 			sgel_next =
500 				_base_get_chain_buffer_dma_to_chain_buffer(ioc,
501 						le32_to_cpu(sgel->Address));
502 			if (sgel_next == NULL)
503 				return;
504 			/*
505 			 * This is coping 128 byte chain
506 			 * frame (not a host buffer)
507 			 */
508 			dst_chain_addr[sge_chain_count] =
509 				_base_get_chain(ioc,
510 					smid, sge_chain_count);
511 			src_chain_addr[sge_chain_count] =
512 						(void *) sgel_next;
513 			dst_addr_phys = _base_get_chain_phys(ioc,
514 						smid, sge_chain_count);
515 			WARN_ON(dst_addr_phys > U32_MAX);
516 			sgel->Address =
517 				cpu_to_le32(lower_32_bits(dst_addr_phys));
518 			sgel = sgel_next;
519 			sge_chain_count++;
520 			break;
521 		case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
522 			if (is_write) {
523 				if (is_scsiio_req) {
524 					_base_clone_to_sys_mem(buff_ptr,
525 					    sg_virt(sg_scmd),
526 					    (le32_to_cpu(sgel->FlagsLength) &
527 					    0x00ffffff));
528 					/*
529 					 * FIXME: this relies on a a zero
530 					 * PCI mem_offset.
531 					 */
532 					sgel->Address =
533 					    cpu_to_le32((u32)buff_ptr_phys);
534 				} else {
535 					_base_clone_to_sys_mem(buff_ptr,
536 					    ioc->config_vaddr,
537 					    (le32_to_cpu(sgel->FlagsLength) &
538 					    0x00ffffff));
539 					sgel->Address =
540 					    cpu_to_le32((u32)buff_ptr_phys);
541 				}
542 			}
543 			buff_ptr += (le32_to_cpu(sgel->FlagsLength) &
544 			    0x00ffffff);
545 			buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) &
546 			    0x00ffffff);
547 			if ((le32_to_cpu(sgel->FlagsLength) &
548 			    (MPI2_SGE_FLAGS_END_OF_BUFFER
549 					<< MPI2_SGE_FLAGS_SHIFT)))
550 				goto eob_clone_chain;
551 			else {
552 				/*
553 				 * Every single element in MPT will have
554 				 * associated sg_next. Better to sanity that
555 				 * sg_next is not NULL, but it will be a bug
556 				 * if it is null.
557 				 */
558 				if (is_scsiio_req) {
559 					sg_scmd = sg_next(sg_scmd);
560 					if (sg_scmd)
561 						sgel++;
562 					else
563 						goto eob_clone_chain;
564 				}
565 			}
566 			break;
567 		}
568 	}
569 
570 eob_clone_chain:
571 	for (i = 0; i < sge_chain_count; i++) {
572 		if (is_scsiio_req)
573 			_base_clone_to_sys_mem(dst_chain_addr[i],
574 				src_chain_addr[i], ioc->request_sz);
575 	}
576 }
577 
578 /**
579  *  mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
580  * @arg: input argument, used to derive ioc
581  *
582  * Return:
583  * 0 if controller is removed from pci subsystem.
584  * -1 for other case.
585  */
586 static int mpt3sas_remove_dead_ioc_func(void *arg)
587 {
588 	struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
589 	struct pci_dev *pdev;
590 
591 	if (!ioc)
592 		return -1;
593 
594 	pdev = ioc->pdev;
595 	if (!pdev)
596 		return -1;
597 	pci_stop_and_remove_bus_device_locked(pdev);
598 	return 0;
599 }
600 
601 /**
602  * _base_fault_reset_work - workq handling ioc fault conditions
603  * @work: input argument, used to derive ioc
604  *
605  * Context: sleep.
606  */
607 static void
608 _base_fault_reset_work(struct work_struct *work)
609 {
610 	struct MPT3SAS_ADAPTER *ioc =
611 	    container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
612 	unsigned long	 flags;
613 	u32 doorbell;
614 	int rc;
615 	struct task_struct *p;
616 
617 
618 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
619 	if ((ioc->shost_recovery && (ioc->ioc_coredump_loop == 0)) ||
620 			ioc->pci_error_recovery)
621 		goto rearm_timer;
622 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
623 
624 	doorbell = mpt3sas_base_get_iocstate(ioc, 0);
625 	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
626 		ioc_err(ioc, "SAS host is non-operational !!!!\n");
627 
628 		/* It may be possible that EEH recovery can resolve some of
629 		 * pci bus failure issues rather removing the dead ioc function
630 		 * by considering controller is in a non-operational state. So
631 		 * here priority is given to the EEH recovery. If it doesn't
632 		 * not resolve this issue, mpt3sas driver will consider this
633 		 * controller to non-operational state and remove the dead ioc
634 		 * function.
635 		 */
636 		if (ioc->non_operational_loop++ < 5) {
637 			spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
638 							 flags);
639 			goto rearm_timer;
640 		}
641 
642 		/*
643 		 * Call _scsih_flush_pending_cmds callback so that we flush all
644 		 * pending commands back to OS. This call is required to aovid
645 		 * deadlock at block layer. Dead IOC will fail to do diag reset,
646 		 * and this call is safe since dead ioc will never return any
647 		 * command back from HW.
648 		 */
649 		ioc->schedule_dead_ioc_flush_running_cmds(ioc);
650 		/*
651 		 * Set remove_host flag early since kernel thread will
652 		 * take some time to execute.
653 		 */
654 		ioc->remove_host = 1;
655 		/*Remove the Dead Host */
656 		p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
657 		    "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
658 		if (IS_ERR(p))
659 			ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
660 				__func__);
661 		else
662 			ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
663 				__func__);
664 		return; /* don't rearm timer */
665 	}
666 
667 	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
668 		u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
669 		    ioc->manu_pg11.CoreDumpTOSec :
670 		    MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
671 
672 		timeout /= (FAULT_POLLING_INTERVAL/1000);
673 
674 		if (ioc->ioc_coredump_loop == 0) {
675 			mpt3sas_print_coredump_info(ioc,
676 			    doorbell & MPI2_DOORBELL_DATA_MASK);
677 			/* do not accept any IOs and disable the interrupts */
678 			spin_lock_irqsave(
679 			    &ioc->ioc_reset_in_progress_lock, flags);
680 			ioc->shost_recovery = 1;
681 			spin_unlock_irqrestore(
682 			    &ioc->ioc_reset_in_progress_lock, flags);
683 			_base_mask_interrupts(ioc);
684 			_base_clear_outstanding_commands(ioc);
685 		}
686 
687 		ioc_info(ioc, "%s: CoreDump loop %d.",
688 		    __func__, ioc->ioc_coredump_loop);
689 
690 		/* Wait until CoreDump completes or times out */
691 		if (ioc->ioc_coredump_loop++ < timeout) {
692 			spin_lock_irqsave(
693 			    &ioc->ioc_reset_in_progress_lock, flags);
694 			goto rearm_timer;
695 		}
696 	}
697 
698 	if (ioc->ioc_coredump_loop) {
699 		if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_COREDUMP)
700 			ioc_err(ioc, "%s: CoreDump completed. LoopCount: %d",
701 			    __func__, ioc->ioc_coredump_loop);
702 		else
703 			ioc_err(ioc, "%s: CoreDump Timed out. LoopCount: %d",
704 			    __func__, ioc->ioc_coredump_loop);
705 		ioc->ioc_coredump_loop = MPT3SAS_COREDUMP_LOOP_DONE;
706 	}
707 	ioc->non_operational_loop = 0;
708 	if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
709 		rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
710 		ioc_warn(ioc, "%s: hard reset: %s\n",
711 			 __func__, rc == 0 ? "success" : "failed");
712 		doorbell = mpt3sas_base_get_iocstate(ioc, 0);
713 		if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
714 			mpt3sas_print_fault_code(ioc, doorbell &
715 			    MPI2_DOORBELL_DATA_MASK);
716 		} else if ((doorbell & MPI2_IOC_STATE_MASK) ==
717 		    MPI2_IOC_STATE_COREDUMP)
718 			mpt3sas_print_coredump_info(ioc, doorbell &
719 			    MPI2_DOORBELL_DATA_MASK);
720 		if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
721 		    MPI2_IOC_STATE_OPERATIONAL)
722 			return; /* don't rearm timer */
723 	}
724 	ioc->ioc_coredump_loop = 0;
725 
726 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
727  rearm_timer:
728 	if (ioc->fault_reset_work_q)
729 		queue_delayed_work(ioc->fault_reset_work_q,
730 		    &ioc->fault_reset_work,
731 		    msecs_to_jiffies(FAULT_POLLING_INTERVAL));
732 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
733 }
734 
735 /**
736  * mpt3sas_base_start_watchdog - start the fault_reset_work_q
737  * @ioc: per adapter object
738  *
739  * Context: sleep.
740  */
741 void
742 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
743 {
744 	unsigned long	 flags;
745 
746 	if (ioc->fault_reset_work_q)
747 		return;
748 
749 	/* initialize fault polling */
750 
751 	INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
752 	snprintf(ioc->fault_reset_work_q_name,
753 	    sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
754 	    ioc->driver_name, ioc->id);
755 	ioc->fault_reset_work_q =
756 		create_singlethread_workqueue(ioc->fault_reset_work_q_name);
757 	if (!ioc->fault_reset_work_q) {
758 		ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__);
759 		return;
760 	}
761 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
762 	if (ioc->fault_reset_work_q)
763 		queue_delayed_work(ioc->fault_reset_work_q,
764 		    &ioc->fault_reset_work,
765 		    msecs_to_jiffies(FAULT_POLLING_INTERVAL));
766 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
767 }
768 
769 /**
770  * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
771  * @ioc: per adapter object
772  *
773  * Context: sleep.
774  */
775 void
776 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
777 {
778 	unsigned long flags;
779 	struct workqueue_struct *wq;
780 
781 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
782 	wq = ioc->fault_reset_work_q;
783 	ioc->fault_reset_work_q = NULL;
784 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
785 	if (wq) {
786 		if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
787 			flush_workqueue(wq);
788 		destroy_workqueue(wq);
789 	}
790 }
791 
792 /**
793  * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
794  * @ioc: per adapter object
795  * @fault_code: fault code
796  */
797 void
798 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
799 {
800 	ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code);
801 }
802 
803 /**
804  * mpt3sas_base_coredump_info - verbose translation of firmware CoreDump state
805  * @ioc: per adapter object
806  * @fault_code: fault code
807  *
808  * Return nothing.
809  */
810 void
811 mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code)
812 {
813 	ioc_err(ioc, "coredump_state(0x%04x)!\n", fault_code);
814 }
815 
816 /**
817  * mpt3sas_base_wait_for_coredump_completion - Wait until coredump
818  * completes or times out
819  * @ioc: per adapter object
820  *
821  * Returns 0 for success, non-zero for failure.
822  */
823 int
824 mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER *ioc,
825 		const char *caller)
826 {
827 	u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
828 			ioc->manu_pg11.CoreDumpTOSec :
829 			MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
830 
831 	int ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_FAULT,
832 					timeout);
833 
834 	if (ioc_state)
835 		ioc_err(ioc,
836 		    "%s: CoreDump timed out. (ioc_state=0x%x)\n",
837 		    caller, ioc_state);
838 	else
839 		ioc_info(ioc,
840 		    "%s: CoreDump completed. (ioc_state=0x%x)\n",
841 		    caller, ioc_state);
842 
843 	return ioc_state;
844 }
845 
846 /**
847  * mpt3sas_halt_firmware - halt's mpt controller firmware
848  * @ioc: per adapter object
849  *
850  * For debugging timeout related issues.  Writing 0xCOFFEE00
851  * to the doorbell register will halt controller firmware. With
852  * the purpose to stop both driver and firmware, the enduser can
853  * obtain a ring buffer from controller UART.
854  */
855 void
856 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
857 {
858 	u32 doorbell;
859 
860 	if (!ioc->fwfault_debug)
861 		return;
862 
863 	dump_stack();
864 
865 	doorbell = ioc->base_readl(&ioc->chip->Doorbell);
866 	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
867 		mpt3sas_print_fault_code(ioc, doorbell &
868 		    MPI2_DOORBELL_DATA_MASK);
869 	} else if ((doorbell & MPI2_IOC_STATE_MASK) ==
870 	    MPI2_IOC_STATE_COREDUMP) {
871 		mpt3sas_print_coredump_info(ioc, doorbell &
872 		    MPI2_DOORBELL_DATA_MASK);
873 	} else {
874 		writel(0xC0FFEE00, &ioc->chip->Doorbell);
875 		ioc_err(ioc, "Firmware is halted due to command timeout\n");
876 	}
877 
878 	if (ioc->fwfault_debug == 2)
879 		for (;;)
880 			;
881 	else
882 		panic("panic in %s\n", __func__);
883 }
884 
885 /**
886  * _base_sas_ioc_info - verbose translation of the ioc status
887  * @ioc: per adapter object
888  * @mpi_reply: reply mf payload returned from firmware
889  * @request_hdr: request mf
890  */
891 static void
892 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
893 	MPI2RequestHeader_t *request_hdr)
894 {
895 	u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
896 	    MPI2_IOCSTATUS_MASK;
897 	char *desc = NULL;
898 	u16 frame_sz;
899 	char *func_str = NULL;
900 
901 	/* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
902 	if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
903 	    request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
904 	    request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
905 		return;
906 
907 	if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
908 		return;
909 
910 	switch (ioc_status) {
911 
912 /****************************************************************************
913 *  Common IOCStatus values for all replies
914 ****************************************************************************/
915 
916 	case MPI2_IOCSTATUS_INVALID_FUNCTION:
917 		desc = "invalid function";
918 		break;
919 	case MPI2_IOCSTATUS_BUSY:
920 		desc = "busy";
921 		break;
922 	case MPI2_IOCSTATUS_INVALID_SGL:
923 		desc = "invalid sgl";
924 		break;
925 	case MPI2_IOCSTATUS_INTERNAL_ERROR:
926 		desc = "internal error";
927 		break;
928 	case MPI2_IOCSTATUS_INVALID_VPID:
929 		desc = "invalid vpid";
930 		break;
931 	case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
932 		desc = "insufficient resources";
933 		break;
934 	case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
935 		desc = "insufficient power";
936 		break;
937 	case MPI2_IOCSTATUS_INVALID_FIELD:
938 		desc = "invalid field";
939 		break;
940 	case MPI2_IOCSTATUS_INVALID_STATE:
941 		desc = "invalid state";
942 		break;
943 	case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
944 		desc = "op state not supported";
945 		break;
946 
947 /****************************************************************************
948 *  Config IOCStatus values
949 ****************************************************************************/
950 
951 	case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
952 		desc = "config invalid action";
953 		break;
954 	case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
955 		desc = "config invalid type";
956 		break;
957 	case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
958 		desc = "config invalid page";
959 		break;
960 	case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
961 		desc = "config invalid data";
962 		break;
963 	case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
964 		desc = "config no defaults";
965 		break;
966 	case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
967 		desc = "config cant commit";
968 		break;
969 
970 /****************************************************************************
971 *  SCSI IO Reply
972 ****************************************************************************/
973 
974 	case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
975 	case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
976 	case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
977 	case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
978 	case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
979 	case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
980 	case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
981 	case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
982 	case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
983 	case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
984 	case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
985 	case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
986 		break;
987 
988 /****************************************************************************
989 *  For use by SCSI Initiator and SCSI Target end-to-end data protection
990 ****************************************************************************/
991 
992 	case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
993 		desc = "eedp guard error";
994 		break;
995 	case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
996 		desc = "eedp ref tag error";
997 		break;
998 	case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
999 		desc = "eedp app tag error";
1000 		break;
1001 
1002 /****************************************************************************
1003 *  SCSI Target values
1004 ****************************************************************************/
1005 
1006 	case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
1007 		desc = "target invalid io index";
1008 		break;
1009 	case MPI2_IOCSTATUS_TARGET_ABORTED:
1010 		desc = "target aborted";
1011 		break;
1012 	case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
1013 		desc = "target no conn retryable";
1014 		break;
1015 	case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
1016 		desc = "target no connection";
1017 		break;
1018 	case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
1019 		desc = "target xfer count mismatch";
1020 		break;
1021 	case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
1022 		desc = "target data offset error";
1023 		break;
1024 	case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
1025 		desc = "target too much write data";
1026 		break;
1027 	case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
1028 		desc = "target iu too short";
1029 		break;
1030 	case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
1031 		desc = "target ack nak timeout";
1032 		break;
1033 	case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
1034 		desc = "target nak received";
1035 		break;
1036 
1037 /****************************************************************************
1038 *  Serial Attached SCSI values
1039 ****************************************************************************/
1040 
1041 	case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
1042 		desc = "smp request failed";
1043 		break;
1044 	case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
1045 		desc = "smp data overrun";
1046 		break;
1047 
1048 /****************************************************************************
1049 *  Diagnostic Buffer Post / Diagnostic Release values
1050 ****************************************************************************/
1051 
1052 	case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
1053 		desc = "diagnostic released";
1054 		break;
1055 	default:
1056 		break;
1057 	}
1058 
1059 	if (!desc)
1060 		return;
1061 
1062 	switch (request_hdr->Function) {
1063 	case MPI2_FUNCTION_CONFIG:
1064 		frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
1065 		func_str = "config_page";
1066 		break;
1067 	case MPI2_FUNCTION_SCSI_TASK_MGMT:
1068 		frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
1069 		func_str = "task_mgmt";
1070 		break;
1071 	case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
1072 		frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
1073 		func_str = "sas_iounit_ctl";
1074 		break;
1075 	case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
1076 		frame_sz = sizeof(Mpi2SepRequest_t);
1077 		func_str = "enclosure";
1078 		break;
1079 	case MPI2_FUNCTION_IOC_INIT:
1080 		frame_sz = sizeof(Mpi2IOCInitRequest_t);
1081 		func_str = "ioc_init";
1082 		break;
1083 	case MPI2_FUNCTION_PORT_ENABLE:
1084 		frame_sz = sizeof(Mpi2PortEnableRequest_t);
1085 		func_str = "port_enable";
1086 		break;
1087 	case MPI2_FUNCTION_SMP_PASSTHROUGH:
1088 		frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
1089 		func_str = "smp_passthru";
1090 		break;
1091 	case MPI2_FUNCTION_NVME_ENCAPSULATED:
1092 		frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) +
1093 		    ioc->sge_size;
1094 		func_str = "nvme_encapsulated";
1095 		break;
1096 	default:
1097 		frame_sz = 32;
1098 		func_str = "unknown";
1099 		break;
1100 	}
1101 
1102 	ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
1103 		 desc, ioc_status, request_hdr, func_str);
1104 
1105 	_debug_dump_mf(request_hdr, frame_sz/4);
1106 }
1107 
1108 /**
1109  * _base_display_event_data - verbose translation of firmware asyn events
1110  * @ioc: per adapter object
1111  * @mpi_reply: reply mf payload returned from firmware
1112  */
1113 static void
1114 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
1115 	Mpi2EventNotificationReply_t *mpi_reply)
1116 {
1117 	char *desc = NULL;
1118 	u16 event;
1119 
1120 	if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
1121 		return;
1122 
1123 	event = le16_to_cpu(mpi_reply->Event);
1124 
1125 	switch (event) {
1126 	case MPI2_EVENT_LOG_DATA:
1127 		desc = "Log Data";
1128 		break;
1129 	case MPI2_EVENT_STATE_CHANGE:
1130 		desc = "Status Change";
1131 		break;
1132 	case MPI2_EVENT_HARD_RESET_RECEIVED:
1133 		desc = "Hard Reset Received";
1134 		break;
1135 	case MPI2_EVENT_EVENT_CHANGE:
1136 		desc = "Event Change";
1137 		break;
1138 	case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
1139 		desc = "Device Status Change";
1140 		break;
1141 	case MPI2_EVENT_IR_OPERATION_STATUS:
1142 		if (!ioc->hide_ir_msg)
1143 			desc = "IR Operation Status";
1144 		break;
1145 	case MPI2_EVENT_SAS_DISCOVERY:
1146 	{
1147 		Mpi2EventDataSasDiscovery_t *event_data =
1148 		    (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
1149 		ioc_info(ioc, "Discovery: (%s)",
1150 			 event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ?
1151 			 "start" : "stop");
1152 		if (event_data->DiscoveryStatus)
1153 			pr_cont(" discovery_status(0x%08x)",
1154 			    le32_to_cpu(event_data->DiscoveryStatus));
1155 		pr_cont("\n");
1156 		return;
1157 	}
1158 	case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
1159 		desc = "SAS Broadcast Primitive";
1160 		break;
1161 	case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
1162 		desc = "SAS Init Device Status Change";
1163 		break;
1164 	case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
1165 		desc = "SAS Init Table Overflow";
1166 		break;
1167 	case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
1168 		desc = "SAS Topology Change List";
1169 		break;
1170 	case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
1171 		desc = "SAS Enclosure Device Status Change";
1172 		break;
1173 	case MPI2_EVENT_IR_VOLUME:
1174 		if (!ioc->hide_ir_msg)
1175 			desc = "IR Volume";
1176 		break;
1177 	case MPI2_EVENT_IR_PHYSICAL_DISK:
1178 		if (!ioc->hide_ir_msg)
1179 			desc = "IR Physical Disk";
1180 		break;
1181 	case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
1182 		if (!ioc->hide_ir_msg)
1183 			desc = "IR Configuration Change List";
1184 		break;
1185 	case MPI2_EVENT_LOG_ENTRY_ADDED:
1186 		if (!ioc->hide_ir_msg)
1187 			desc = "Log Entry Added";
1188 		break;
1189 	case MPI2_EVENT_TEMP_THRESHOLD:
1190 		desc = "Temperature Threshold";
1191 		break;
1192 	case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
1193 		desc = "Cable Event";
1194 		break;
1195 	case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR:
1196 		desc = "SAS Device Discovery Error";
1197 		break;
1198 	case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE:
1199 		desc = "PCIE Device Status Change";
1200 		break;
1201 	case MPI2_EVENT_PCIE_ENUMERATION:
1202 	{
1203 		Mpi26EventDataPCIeEnumeration_t *event_data =
1204 			(Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData;
1205 		ioc_info(ioc, "PCIE Enumeration: (%s)",
1206 			 event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ?
1207 			 "start" : "stop");
1208 		if (event_data->EnumerationStatus)
1209 			pr_cont("enumeration_status(0x%08x)",
1210 				le32_to_cpu(event_data->EnumerationStatus));
1211 		pr_cont("\n");
1212 		return;
1213 	}
1214 	case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST:
1215 		desc = "PCIE Topology Change List";
1216 		break;
1217 	}
1218 
1219 	if (!desc)
1220 		return;
1221 
1222 	ioc_info(ioc, "%s\n", desc);
1223 }
1224 
1225 /**
1226  * _base_sas_log_info - verbose translation of firmware log info
1227  * @ioc: per adapter object
1228  * @log_info: log info
1229  */
1230 static void
1231 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
1232 {
1233 	union loginfo_type {
1234 		u32	loginfo;
1235 		struct {
1236 			u32	subcode:16;
1237 			u32	code:8;
1238 			u32	originator:4;
1239 			u32	bus_type:4;
1240 		} dw;
1241 	};
1242 	union loginfo_type sas_loginfo;
1243 	char *originator_str = NULL;
1244 
1245 	sas_loginfo.loginfo = log_info;
1246 	if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
1247 		return;
1248 
1249 	/* each nexus loss loginfo */
1250 	if (log_info == 0x31170000)
1251 		return;
1252 
1253 	/* eat the loginfos associated with task aborts */
1254 	if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
1255 	    0x31140000 || log_info == 0x31130000))
1256 		return;
1257 
1258 	switch (sas_loginfo.dw.originator) {
1259 	case 0:
1260 		originator_str = "IOP";
1261 		break;
1262 	case 1:
1263 		originator_str = "PL";
1264 		break;
1265 	case 2:
1266 		if (!ioc->hide_ir_msg)
1267 			originator_str = "IR";
1268 		else
1269 			originator_str = "WarpDrive";
1270 		break;
1271 	}
1272 
1273 	ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
1274 		 log_info,
1275 		 originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode);
1276 }
1277 
1278 /**
1279  * _base_display_reply_info -
1280  * @ioc: per adapter object
1281  * @smid: system request message index
1282  * @msix_index: MSIX table index supplied by the OS
1283  * @reply: reply message frame(lower 32bit addr)
1284  */
1285 static void
1286 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1287 	u32 reply)
1288 {
1289 	MPI2DefaultReply_t *mpi_reply;
1290 	u16 ioc_status;
1291 	u32 loginfo = 0;
1292 
1293 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1294 	if (unlikely(!mpi_reply)) {
1295 		ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n",
1296 			__FILE__, __LINE__, __func__);
1297 		return;
1298 	}
1299 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
1300 
1301 	if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
1302 	    (ioc->logging_level & MPT_DEBUG_REPLY)) {
1303 		_base_sas_ioc_info(ioc , mpi_reply,
1304 		   mpt3sas_base_get_msg_frame(ioc, smid));
1305 	}
1306 
1307 	if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
1308 		loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
1309 		_base_sas_log_info(ioc, loginfo);
1310 	}
1311 
1312 	if (ioc_status || loginfo) {
1313 		ioc_status &= MPI2_IOCSTATUS_MASK;
1314 		mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
1315 	}
1316 }
1317 
1318 /**
1319  * mpt3sas_base_done - base internal command completion routine
1320  * @ioc: per adapter object
1321  * @smid: system request message index
1322  * @msix_index: MSIX table index supplied by the OS
1323  * @reply: reply message frame(lower 32bit addr)
1324  *
1325  * Return:
1326  * 1 meaning mf should be freed from _base_interrupt
1327  * 0 means the mf is freed from this function.
1328  */
1329 u8
1330 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1331 	u32 reply)
1332 {
1333 	MPI2DefaultReply_t *mpi_reply;
1334 
1335 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1336 	if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
1337 		return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
1338 
1339 	if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
1340 		return 1;
1341 
1342 	ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
1343 	if (mpi_reply) {
1344 		ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
1345 		memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
1346 	}
1347 	ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
1348 
1349 	complete(&ioc->base_cmds.done);
1350 	return 1;
1351 }
1352 
1353 /**
1354  * _base_async_event - main callback handler for firmware asyn events
1355  * @ioc: per adapter object
1356  * @msix_index: MSIX table index supplied by the OS
1357  * @reply: reply message frame(lower 32bit addr)
1358  *
1359  * Return:
1360  * 1 meaning mf should be freed from _base_interrupt
1361  * 0 means the mf is freed from this function.
1362  */
1363 static u8
1364 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
1365 {
1366 	Mpi2EventNotificationReply_t *mpi_reply;
1367 	Mpi2EventAckRequest_t *ack_request;
1368 	u16 smid;
1369 	struct _event_ack_list *delayed_event_ack;
1370 
1371 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1372 	if (!mpi_reply)
1373 		return 1;
1374 	if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
1375 		return 1;
1376 
1377 	_base_display_event_data(ioc, mpi_reply);
1378 
1379 	if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
1380 		goto out;
1381 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
1382 	if (!smid) {
1383 		delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
1384 					GFP_ATOMIC);
1385 		if (!delayed_event_ack)
1386 			goto out;
1387 		INIT_LIST_HEAD(&delayed_event_ack->list);
1388 		delayed_event_ack->Event = mpi_reply->Event;
1389 		delayed_event_ack->EventContext = mpi_reply->EventContext;
1390 		list_add_tail(&delayed_event_ack->list,
1391 				&ioc->delayed_event_ack_list);
1392 		dewtprintk(ioc,
1393 			   ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n",
1394 				    le16_to_cpu(mpi_reply->Event)));
1395 		goto out;
1396 	}
1397 
1398 	ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
1399 	memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
1400 	ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
1401 	ack_request->Event = mpi_reply->Event;
1402 	ack_request->EventContext = mpi_reply->EventContext;
1403 	ack_request->VF_ID = 0;  /* TODO */
1404 	ack_request->VP_ID = 0;
1405 	ioc->put_smid_default(ioc, smid);
1406 
1407  out:
1408 
1409 	/* scsih callback handler */
1410 	mpt3sas_scsih_event_callback(ioc, msix_index, reply);
1411 
1412 	/* ctl callback handler */
1413 	mpt3sas_ctl_event_callback(ioc, msix_index, reply);
1414 
1415 	return 1;
1416 }
1417 
1418 static struct scsiio_tracker *
1419 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1420 {
1421 	struct scsi_cmnd *cmd;
1422 
1423 	if (WARN_ON(!smid) ||
1424 	    WARN_ON(smid >= ioc->hi_priority_smid))
1425 		return NULL;
1426 
1427 	cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
1428 	if (cmd)
1429 		return scsi_cmd_priv(cmd);
1430 
1431 	return NULL;
1432 }
1433 
1434 /**
1435  * _base_get_cb_idx - obtain the callback index
1436  * @ioc: per adapter object
1437  * @smid: system request message index
1438  *
1439  * Return: callback index.
1440  */
1441 static u8
1442 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1443 {
1444 	int i;
1445 	u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1;
1446 	u8 cb_idx = 0xFF;
1447 
1448 	if (smid < ioc->hi_priority_smid) {
1449 		struct scsiio_tracker *st;
1450 
1451 		if (smid < ctl_smid) {
1452 			st = _get_st_from_smid(ioc, smid);
1453 			if (st)
1454 				cb_idx = st->cb_idx;
1455 		} else if (smid == ctl_smid)
1456 			cb_idx = ioc->ctl_cb_idx;
1457 	} else if (smid < ioc->internal_smid) {
1458 		i = smid - ioc->hi_priority_smid;
1459 		cb_idx = ioc->hpr_lookup[i].cb_idx;
1460 	} else if (smid <= ioc->hba_queue_depth) {
1461 		i = smid - ioc->internal_smid;
1462 		cb_idx = ioc->internal_lookup[i].cb_idx;
1463 	}
1464 	return cb_idx;
1465 }
1466 
1467 /**
1468  * _base_mask_interrupts - disable interrupts
1469  * @ioc: per adapter object
1470  *
1471  * Disabling ResetIRQ, Reply and Doorbell Interrupts
1472  */
1473 static void
1474 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1475 {
1476 	u32 him_register;
1477 
1478 	ioc->mask_interrupts = 1;
1479 	him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1480 	him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
1481 	writel(him_register, &ioc->chip->HostInterruptMask);
1482 	ioc->base_readl(&ioc->chip->HostInterruptMask);
1483 }
1484 
1485 /**
1486  * _base_unmask_interrupts - enable interrupts
1487  * @ioc: per adapter object
1488  *
1489  * Enabling only Reply Interrupts
1490  */
1491 static void
1492 _base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1493 {
1494 	u32 him_register;
1495 
1496 	him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1497 	him_register &= ~MPI2_HIM_RIM;
1498 	writel(him_register, &ioc->chip->HostInterruptMask);
1499 	ioc->mask_interrupts = 0;
1500 }
1501 
1502 union reply_descriptor {
1503 	u64 word;
1504 	struct {
1505 		u32 low;
1506 		u32 high;
1507 	} u;
1508 };
1509 
1510 static u32 base_mod64(u64 dividend, u32 divisor)
1511 {
1512 	u32 remainder;
1513 
1514 	if (!divisor)
1515 		pr_err("mpt3sas: DIVISOR is zero, in div fn\n");
1516 	remainder = do_div(dividend, divisor);
1517 	return remainder;
1518 }
1519 
1520 /**
1521  * _base_process_reply_queue - Process reply descriptors from reply
1522  *		descriptor post queue.
1523  * @reply_q: per IRQ's reply queue object.
1524  *
1525  * Return: number of reply descriptors processed from reply
1526  *		descriptor queue.
1527  */
1528 static int
1529 _base_process_reply_queue(struct adapter_reply_queue *reply_q)
1530 {
1531 	union reply_descriptor rd;
1532 	u64 completed_cmds;
1533 	u8 request_descript_type;
1534 	u16 smid;
1535 	u8 cb_idx;
1536 	u32 reply;
1537 	u8 msix_index = reply_q->msix_index;
1538 	struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1539 	Mpi2ReplyDescriptorsUnion_t *rpf;
1540 	u8 rc;
1541 
1542 	completed_cmds = 0;
1543 	if (!atomic_add_unless(&reply_q->busy, 1, 1))
1544 		return completed_cmds;
1545 
1546 	rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
1547 	request_descript_type = rpf->Default.ReplyFlags
1548 	     & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1549 	if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
1550 		atomic_dec(&reply_q->busy);
1551 		return completed_cmds;
1552 	}
1553 
1554 	cb_idx = 0xFF;
1555 	do {
1556 		rd.word = le64_to_cpu(rpf->Words);
1557 		if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
1558 			goto out;
1559 		reply = 0;
1560 		smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
1561 		if (request_descript_type ==
1562 		    MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
1563 		    request_descript_type ==
1564 		    MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS ||
1565 		    request_descript_type ==
1566 		    MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) {
1567 			cb_idx = _base_get_cb_idx(ioc, smid);
1568 			if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1569 			    (likely(mpt_callbacks[cb_idx] != NULL))) {
1570 				rc = mpt_callbacks[cb_idx](ioc, smid,
1571 				    msix_index, 0);
1572 				if (rc)
1573 					mpt3sas_base_free_smid(ioc, smid);
1574 			}
1575 		} else if (request_descript_type ==
1576 		    MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
1577 			reply = le32_to_cpu(
1578 			    rpf->AddressReply.ReplyFrameAddress);
1579 			if (reply > ioc->reply_dma_max_address ||
1580 			    reply < ioc->reply_dma_min_address)
1581 				reply = 0;
1582 			if (smid) {
1583 				cb_idx = _base_get_cb_idx(ioc, smid);
1584 				if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1585 				    (likely(mpt_callbacks[cb_idx] != NULL))) {
1586 					rc = mpt_callbacks[cb_idx](ioc, smid,
1587 					    msix_index, reply);
1588 					if (reply)
1589 						_base_display_reply_info(ioc,
1590 						    smid, msix_index, reply);
1591 					if (rc)
1592 						mpt3sas_base_free_smid(ioc,
1593 						    smid);
1594 				}
1595 			} else {
1596 				_base_async_event(ioc, msix_index, reply);
1597 			}
1598 
1599 			/* reply free queue handling */
1600 			if (reply) {
1601 				ioc->reply_free_host_index =
1602 				    (ioc->reply_free_host_index ==
1603 				    (ioc->reply_free_queue_depth - 1)) ?
1604 				    0 : ioc->reply_free_host_index + 1;
1605 				ioc->reply_free[ioc->reply_free_host_index] =
1606 				    cpu_to_le32(reply);
1607 				if (ioc->is_mcpu_endpoint)
1608 					_base_clone_reply_to_sys_mem(ioc,
1609 						reply,
1610 						ioc->reply_free_host_index);
1611 				writel(ioc->reply_free_host_index,
1612 				    &ioc->chip->ReplyFreeHostIndex);
1613 			}
1614 		}
1615 
1616 		rpf->Words = cpu_to_le64(ULLONG_MAX);
1617 		reply_q->reply_post_host_index =
1618 		    (reply_q->reply_post_host_index ==
1619 		    (ioc->reply_post_queue_depth - 1)) ? 0 :
1620 		    reply_q->reply_post_host_index + 1;
1621 		request_descript_type =
1622 		    reply_q->reply_post_free[reply_q->reply_post_host_index].
1623 		    Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1624 		completed_cmds++;
1625 		/* Update the reply post host index after continuously
1626 		 * processing the threshold number of Reply Descriptors.
1627 		 * So that FW can find enough entries to post the Reply
1628 		 * Descriptors in the reply descriptor post queue.
1629 		 */
1630 		if (!base_mod64(completed_cmds, ioc->thresh_hold)) {
1631 			if (ioc->combined_reply_queue) {
1632 				writel(reply_q->reply_post_host_index |
1633 						((msix_index  & 7) <<
1634 						 MPI2_RPHI_MSIX_INDEX_SHIFT),
1635 				    ioc->replyPostRegisterIndex[msix_index/8]);
1636 			} else {
1637 				writel(reply_q->reply_post_host_index |
1638 						(msix_index <<
1639 						 MPI2_RPHI_MSIX_INDEX_SHIFT),
1640 						&ioc->chip->ReplyPostHostIndex);
1641 			}
1642 			if (!reply_q->irq_poll_scheduled) {
1643 				reply_q->irq_poll_scheduled = true;
1644 				irq_poll_sched(&reply_q->irqpoll);
1645 			}
1646 			atomic_dec(&reply_q->busy);
1647 			return completed_cmds;
1648 		}
1649 		if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1650 			goto out;
1651 		if (!reply_q->reply_post_host_index)
1652 			rpf = reply_q->reply_post_free;
1653 		else
1654 			rpf++;
1655 	} while (1);
1656 
1657  out:
1658 
1659 	if (!completed_cmds) {
1660 		atomic_dec(&reply_q->busy);
1661 		return completed_cmds;
1662 	}
1663 
1664 	if (ioc->is_warpdrive) {
1665 		writel(reply_q->reply_post_host_index,
1666 		ioc->reply_post_host_index[msix_index]);
1667 		atomic_dec(&reply_q->busy);
1668 		return completed_cmds;
1669 	}
1670 
1671 	/* Update Reply Post Host Index.
1672 	 * For those HBA's which support combined reply queue feature
1673 	 * 1. Get the correct Supplemental Reply Post Host Index Register.
1674 	 *    i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1675 	 *    Index Register address bank i.e replyPostRegisterIndex[],
1676 	 * 2. Then update this register with new reply host index value
1677 	 *    in ReplyPostIndex field and the MSIxIndex field with
1678 	 *    msix_index value reduced to a value between 0 and 7,
1679 	 *    using a modulo 8 operation. Since each Supplemental Reply Post
1680 	 *    Host Index Register supports 8 MSI-X vectors.
1681 	 *
1682 	 * For other HBA's just update the Reply Post Host Index register with
1683 	 * new reply host index value in ReplyPostIndex Field and msix_index
1684 	 * value in MSIxIndex field.
1685 	 */
1686 	if (ioc->combined_reply_queue)
1687 		writel(reply_q->reply_post_host_index | ((msix_index  & 7) <<
1688 			MPI2_RPHI_MSIX_INDEX_SHIFT),
1689 			ioc->replyPostRegisterIndex[msix_index/8]);
1690 	else
1691 		writel(reply_q->reply_post_host_index | (msix_index <<
1692 			MPI2_RPHI_MSIX_INDEX_SHIFT),
1693 			&ioc->chip->ReplyPostHostIndex);
1694 	atomic_dec(&reply_q->busy);
1695 	return completed_cmds;
1696 }
1697 
1698 /**
1699  * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
1700  * @irq: irq number (not used)
1701  * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
1702  *
1703  * Return: IRQ_HANDLED if processed, else IRQ_NONE.
1704  */
1705 static irqreturn_t
1706 _base_interrupt(int irq, void *bus_id)
1707 {
1708 	struct adapter_reply_queue *reply_q = bus_id;
1709 	struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1710 
1711 	if (ioc->mask_interrupts)
1712 		return IRQ_NONE;
1713 	if (reply_q->irq_poll_scheduled)
1714 		return IRQ_HANDLED;
1715 	return ((_base_process_reply_queue(reply_q) > 0) ?
1716 			IRQ_HANDLED : IRQ_NONE);
1717 }
1718 
1719 /**
1720  * _base_irqpoll - IRQ poll callback handler
1721  * @irqpoll - irq_poll object
1722  * @budget - irq poll weight
1723  *
1724  * returns number of reply descriptors processed
1725  */
1726 static int
1727 _base_irqpoll(struct irq_poll *irqpoll, int budget)
1728 {
1729 	struct adapter_reply_queue *reply_q;
1730 	int num_entries = 0;
1731 
1732 	reply_q = container_of(irqpoll, struct adapter_reply_queue,
1733 			irqpoll);
1734 	if (reply_q->irq_line_enable) {
1735 		disable_irq(reply_q->os_irq);
1736 		reply_q->irq_line_enable = false;
1737 	}
1738 	num_entries = _base_process_reply_queue(reply_q);
1739 	if (num_entries < budget) {
1740 		irq_poll_complete(irqpoll);
1741 		reply_q->irq_poll_scheduled = false;
1742 		reply_q->irq_line_enable = true;
1743 		enable_irq(reply_q->os_irq);
1744 	}
1745 
1746 	return num_entries;
1747 }
1748 
1749 /**
1750  * _base_init_irqpolls - initliaze IRQ polls
1751  * @ioc: per adapter object
1752  *
1753  * returns nothing
1754  */
1755 static void
1756 _base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc)
1757 {
1758 	struct adapter_reply_queue *reply_q, *next;
1759 
1760 	if (list_empty(&ioc->reply_queue_list))
1761 		return;
1762 
1763 	list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1764 		irq_poll_init(&reply_q->irqpoll,
1765 			ioc->hba_queue_depth/4, _base_irqpoll);
1766 		reply_q->irq_poll_scheduled = false;
1767 		reply_q->irq_line_enable = true;
1768 		reply_q->os_irq = pci_irq_vector(ioc->pdev,
1769 		    reply_q->msix_index);
1770 	}
1771 }
1772 
1773 /**
1774  * _base_is_controller_msix_enabled - is controller support muli-reply queues
1775  * @ioc: per adapter object
1776  *
1777  * Return: Whether or not MSI/X is enabled.
1778  */
1779 static inline int
1780 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1781 {
1782 	return (ioc->facts.IOCCapabilities &
1783 	    MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1784 }
1785 
1786 /**
1787  * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1788  * @ioc: per adapter object
1789  * Context: non ISR conext
1790  *
1791  * Called when a Task Management request has completed.
1792  */
1793 void
1794 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc)
1795 {
1796 	struct adapter_reply_queue *reply_q;
1797 
1798 	/* If MSIX capability is turned off
1799 	 * then multi-queues are not enabled
1800 	 */
1801 	if (!_base_is_controller_msix_enabled(ioc))
1802 		return;
1803 
1804 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1805 		if (ioc->shost_recovery || ioc->remove_host ||
1806 				ioc->pci_error_recovery)
1807 			return;
1808 		/* TMs are on msix_index == 0 */
1809 		if (reply_q->msix_index == 0)
1810 			continue;
1811 		if (reply_q->irq_poll_scheduled) {
1812 			/* Calling irq_poll_disable will wait for any pending
1813 			 * callbacks to have completed.
1814 			 */
1815 			irq_poll_disable(&reply_q->irqpoll);
1816 			irq_poll_enable(&reply_q->irqpoll);
1817 			reply_q->irq_poll_scheduled = false;
1818 			reply_q->irq_line_enable = true;
1819 			enable_irq(reply_q->os_irq);
1820 			continue;
1821 		}
1822 		synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
1823 	}
1824 }
1825 
1826 /**
1827  * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1828  * @cb_idx: callback index
1829  */
1830 void
1831 mpt3sas_base_release_callback_handler(u8 cb_idx)
1832 {
1833 	mpt_callbacks[cb_idx] = NULL;
1834 }
1835 
1836 /**
1837  * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1838  * @cb_func: callback function
1839  *
1840  * Return: Index of @cb_func.
1841  */
1842 u8
1843 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1844 {
1845 	u8 cb_idx;
1846 
1847 	for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1848 		if (mpt_callbacks[cb_idx] == NULL)
1849 			break;
1850 
1851 	mpt_callbacks[cb_idx] = cb_func;
1852 	return cb_idx;
1853 }
1854 
1855 /**
1856  * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1857  */
1858 void
1859 mpt3sas_base_initialize_callback_handler(void)
1860 {
1861 	u8 cb_idx;
1862 
1863 	for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1864 		mpt3sas_base_release_callback_handler(cb_idx);
1865 }
1866 
1867 
1868 /**
1869  * _base_build_zero_len_sge - build zero length sg entry
1870  * @ioc: per adapter object
1871  * @paddr: virtual address for SGE
1872  *
1873  * Create a zero length scatter gather entry to insure the IOCs hardware has
1874  * something to use if the target device goes brain dead and tries
1875  * to send data even when none is asked for.
1876  */
1877 static void
1878 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1879 {
1880 	u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1881 	    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1882 	    MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1883 	    MPI2_SGE_FLAGS_SHIFT);
1884 	ioc->base_add_sg_single(paddr, flags_length, -1);
1885 }
1886 
1887 /**
1888  * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1889  * @paddr: virtual address for SGE
1890  * @flags_length: SGE flags and data transfer length
1891  * @dma_addr: Physical address
1892  */
1893 static void
1894 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1895 {
1896 	Mpi2SGESimple32_t *sgel = paddr;
1897 
1898 	flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1899 	    MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1900 	sgel->FlagsLength = cpu_to_le32(flags_length);
1901 	sgel->Address = cpu_to_le32(dma_addr);
1902 }
1903 
1904 
1905 /**
1906  * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1907  * @paddr: virtual address for SGE
1908  * @flags_length: SGE flags and data transfer length
1909  * @dma_addr: Physical address
1910  */
1911 static void
1912 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1913 {
1914 	Mpi2SGESimple64_t *sgel = paddr;
1915 
1916 	flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
1917 	    MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1918 	sgel->FlagsLength = cpu_to_le32(flags_length);
1919 	sgel->Address = cpu_to_le64(dma_addr);
1920 }
1921 
1922 /**
1923  * _base_get_chain_buffer_tracker - obtain chain tracker
1924  * @ioc: per adapter object
1925  * @scmd: SCSI commands of the IO request
1926  *
1927  * Return: chain tracker from chain_lookup table using key as
1928  * smid and smid's chain_offset.
1929  */
1930 static struct chain_tracker *
1931 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc,
1932 			       struct scsi_cmnd *scmd)
1933 {
1934 	struct chain_tracker *chain_req;
1935 	struct scsiio_tracker *st = scsi_cmd_priv(scmd);
1936 	u16 smid = st->smid;
1937 	u8 chain_offset =
1938 	   atomic_read(&ioc->chain_lookup[smid - 1].chain_offset);
1939 
1940 	if (chain_offset == ioc->chains_needed_per_io)
1941 		return NULL;
1942 
1943 	chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset];
1944 	atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset);
1945 	return chain_req;
1946 }
1947 
1948 
1949 /**
1950  * _base_build_sg - build generic sg
1951  * @ioc: per adapter object
1952  * @psge: virtual address for SGE
1953  * @data_out_dma: physical address for WRITES
1954  * @data_out_sz: data xfer size for WRITES
1955  * @data_in_dma: physical address for READS
1956  * @data_in_sz: data xfer size for READS
1957  */
1958 static void
1959 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
1960 	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1961 	size_t data_in_sz)
1962 {
1963 	u32 sgl_flags;
1964 
1965 	if (!data_out_sz && !data_in_sz) {
1966 		_base_build_zero_len_sge(ioc, psge);
1967 		return;
1968 	}
1969 
1970 	if (data_out_sz && data_in_sz) {
1971 		/* WRITE sgel first */
1972 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1973 		    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
1974 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1975 		ioc->base_add_sg_single(psge, sgl_flags |
1976 		    data_out_sz, data_out_dma);
1977 
1978 		/* incr sgel */
1979 		psge += ioc->sge_size;
1980 
1981 		/* READ sgel last */
1982 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1983 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1984 		    MPI2_SGE_FLAGS_END_OF_LIST);
1985 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1986 		ioc->base_add_sg_single(psge, sgl_flags |
1987 		    data_in_sz, data_in_dma);
1988 	} else if (data_out_sz) /* WRITE */ {
1989 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1990 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1991 		    MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
1992 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1993 		ioc->base_add_sg_single(psge, sgl_flags |
1994 		    data_out_sz, data_out_dma);
1995 	} else if (data_in_sz) /* READ */ {
1996 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1997 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1998 		    MPI2_SGE_FLAGS_END_OF_LIST);
1999 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2000 		ioc->base_add_sg_single(psge, sgl_flags |
2001 		    data_in_sz, data_in_dma);
2002 	}
2003 }
2004 
2005 /* IEEE format sgls */
2006 
2007 /**
2008  * _base_build_nvme_prp - This function is called for NVMe end devices to build
2009  * a native SGL (NVMe PRP). The native SGL is built starting in the first PRP
2010  * entry of the NVMe message (PRP1).  If the data buffer is small enough to be
2011  * described entirely using PRP1, then PRP2 is not used.  If needed, PRP2 is
2012  * used to describe a larger data buffer.  If the data buffer is too large to
2013  * describe using the two PRP entriess inside the NVMe message, then PRP1
2014  * describes the first data memory segment, and PRP2 contains a pointer to a PRP
2015  * list located elsewhere in memory to describe the remaining data memory
2016  * segments.  The PRP list will be contiguous.
2017  *
2018  * The native SGL for NVMe devices is a Physical Region Page (PRP).  A PRP
2019  * consists of a list of PRP entries to describe a number of noncontigous
2020  * physical memory segments as a single memory buffer, just as a SGL does.  Note
2021  * however, that this function is only used by the IOCTL call, so the memory
2022  * given will be guaranteed to be contiguous.  There is no need to translate
2023  * non-contiguous SGL into a PRP in this case.  All PRPs will describe
2024  * contiguous space that is one page size each.
2025  *
2026  * Each NVMe message contains two PRP entries.  The first (PRP1) either contains
2027  * a PRP list pointer or a PRP element, depending upon the command.  PRP2
2028  * contains the second PRP element if the memory being described fits within 2
2029  * PRP entries, or a PRP list pointer if the PRP spans more than two entries.
2030  *
2031  * A PRP list pointer contains the address of a PRP list, structured as a linear
2032  * array of PRP entries.  Each PRP entry in this list describes a segment of
2033  * physical memory.
2034  *
2035  * Each 64-bit PRP entry comprises an address and an offset field.  The address
2036  * always points at the beginning of a 4KB physical memory page, and the offset
2037  * describes where within that 4KB page the memory segment begins.  Only the
2038  * first element in a PRP list may contain a non-zero offest, implying that all
2039  * memory segments following the first begin at the start of a 4KB page.
2040  *
2041  * Each PRP element normally describes 4KB of physical memory, with exceptions
2042  * for the first and last elements in the list.  If the memory being described
2043  * by the list begins at a non-zero offset within the first 4KB page, then the
2044  * first PRP element will contain a non-zero offset indicating where the region
2045  * begins within the 4KB page.  The last memory segment may end before the end
2046  * of the 4KB segment, depending upon the overall size of the memory being
2047  * described by the PRP list.
2048  *
2049  * Since PRP entries lack any indication of size, the overall data buffer length
2050  * is used to determine where the end of the data memory buffer is located, and
2051  * how many PRP entries are required to describe it.
2052  *
2053  * @ioc: per adapter object
2054  * @smid: system request message index for getting asscociated SGL
2055  * @nvme_encap_request: the NVMe request msg frame pointer
2056  * @data_out_dma: physical address for WRITES
2057  * @data_out_sz: data xfer size for WRITES
2058  * @data_in_dma: physical address for READS
2059  * @data_in_sz: data xfer size for READS
2060  */
2061 static void
2062 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2063 	Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request,
2064 	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2065 	size_t data_in_sz)
2066 {
2067 	int		prp_size = NVME_PRP_SIZE;
2068 	__le64		*prp_entry, *prp1_entry, *prp2_entry;
2069 	__le64		*prp_page;
2070 	dma_addr_t	prp_entry_dma, prp_page_dma, dma_addr;
2071 	u32		offset, entry_len;
2072 	u32		page_mask_result, page_mask;
2073 	size_t		length;
2074 	struct mpt3sas_nvme_cmd *nvme_cmd =
2075 		(void *)nvme_encap_request->NVMe_Command;
2076 
2077 	/*
2078 	 * Not all commands require a data transfer. If no data, just return
2079 	 * without constructing any PRP.
2080 	 */
2081 	if (!data_in_sz && !data_out_sz)
2082 		return;
2083 	prp1_entry = &nvme_cmd->prp1;
2084 	prp2_entry = &nvme_cmd->prp2;
2085 	prp_entry = prp1_entry;
2086 	/*
2087 	 * For the PRP entries, use the specially allocated buffer of
2088 	 * contiguous memory.
2089 	 */
2090 	prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid);
2091 	prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2092 
2093 	/*
2094 	 * Check if we are within 1 entry of a page boundary we don't
2095 	 * want our first entry to be a PRP List entry.
2096 	 */
2097 	page_mask = ioc->page_size - 1;
2098 	page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
2099 	if (!page_mask_result) {
2100 		/* Bump up to next page boundary. */
2101 		prp_page = (__le64 *)((u8 *)prp_page + prp_size);
2102 		prp_page_dma = prp_page_dma + prp_size;
2103 	}
2104 
2105 	/*
2106 	 * Set PRP physical pointer, which initially points to the current PRP
2107 	 * DMA memory page.
2108 	 */
2109 	prp_entry_dma = prp_page_dma;
2110 
2111 	/* Get physical address and length of the data buffer. */
2112 	if (data_in_sz) {
2113 		dma_addr = data_in_dma;
2114 		length = data_in_sz;
2115 	} else {
2116 		dma_addr = data_out_dma;
2117 		length = data_out_sz;
2118 	}
2119 
2120 	/* Loop while the length is not zero. */
2121 	while (length) {
2122 		/*
2123 		 * Check if we need to put a list pointer here if we are at
2124 		 * page boundary - prp_size (8 bytes).
2125 		 */
2126 		page_mask_result = (prp_entry_dma + prp_size) & page_mask;
2127 		if (!page_mask_result) {
2128 			/*
2129 			 * This is the last entry in a PRP List, so we need to
2130 			 * put a PRP list pointer here.  What this does is:
2131 			 *   - bump the current memory pointer to the next
2132 			 *     address, which will be the next full page.
2133 			 *   - set the PRP Entry to point to that page.  This
2134 			 *     is now the PRP List pointer.
2135 			 *   - bump the PRP Entry pointer the start of the
2136 			 *     next page.  Since all of this PRP memory is
2137 			 *     contiguous, no need to get a new page - it's
2138 			 *     just the next address.
2139 			 */
2140 			prp_entry_dma++;
2141 			*prp_entry = cpu_to_le64(prp_entry_dma);
2142 			prp_entry++;
2143 		}
2144 
2145 		/* Need to handle if entry will be part of a page. */
2146 		offset = dma_addr & page_mask;
2147 		entry_len = ioc->page_size - offset;
2148 
2149 		if (prp_entry == prp1_entry) {
2150 			/*
2151 			 * Must fill in the first PRP pointer (PRP1) before
2152 			 * moving on.
2153 			 */
2154 			*prp1_entry = cpu_to_le64(dma_addr);
2155 
2156 			/*
2157 			 * Now point to the second PRP entry within the
2158 			 * command (PRP2).
2159 			 */
2160 			prp_entry = prp2_entry;
2161 		} else if (prp_entry == prp2_entry) {
2162 			/*
2163 			 * Should the PRP2 entry be a PRP List pointer or just
2164 			 * a regular PRP pointer?  If there is more than one
2165 			 * more page of data, must use a PRP List pointer.
2166 			 */
2167 			if (length > ioc->page_size) {
2168 				/*
2169 				 * PRP2 will contain a PRP List pointer because
2170 				 * more PRP's are needed with this command. The
2171 				 * list will start at the beginning of the
2172 				 * contiguous buffer.
2173 				 */
2174 				*prp2_entry = cpu_to_le64(prp_entry_dma);
2175 
2176 				/*
2177 				 * The next PRP Entry will be the start of the
2178 				 * first PRP List.
2179 				 */
2180 				prp_entry = prp_page;
2181 			} else {
2182 				/*
2183 				 * After this, the PRP Entries are complete.
2184 				 * This command uses 2 PRP's and no PRP list.
2185 				 */
2186 				*prp2_entry = cpu_to_le64(dma_addr);
2187 			}
2188 		} else {
2189 			/*
2190 			 * Put entry in list and bump the addresses.
2191 			 *
2192 			 * After PRP1 and PRP2 are filled in, this will fill in
2193 			 * all remaining PRP entries in a PRP List, one per
2194 			 * each time through the loop.
2195 			 */
2196 			*prp_entry = cpu_to_le64(dma_addr);
2197 			prp_entry++;
2198 			prp_entry_dma++;
2199 		}
2200 
2201 		/*
2202 		 * Bump the phys address of the command's data buffer by the
2203 		 * entry_len.
2204 		 */
2205 		dma_addr += entry_len;
2206 
2207 		/* Decrement length accounting for last partial page. */
2208 		if (entry_len > length)
2209 			length = 0;
2210 		else
2211 			length -= entry_len;
2212 	}
2213 }
2214 
2215 /**
2216  * base_make_prp_nvme -
2217  * Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only
2218  *
2219  * @ioc:		per adapter object
2220  * @scmd:		SCSI command from the mid-layer
2221  * @mpi_request:	mpi request
2222  * @smid:		msg Index
2223  * @sge_count:		scatter gather element count.
2224  *
2225  * Return:		true: PRPs are built
2226  *			false: IEEE SGLs needs to be built
2227  */
2228 static void
2229 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
2230 		struct scsi_cmnd *scmd,
2231 		Mpi25SCSIIORequest_t *mpi_request,
2232 		u16 smid, int sge_count)
2233 {
2234 	int sge_len, num_prp_in_chain = 0;
2235 	Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl;
2236 	__le64 *curr_buff;
2237 	dma_addr_t msg_dma, sge_addr, offset;
2238 	u32 page_mask, page_mask_result;
2239 	struct scatterlist *sg_scmd;
2240 	u32 first_prp_len;
2241 	int data_len = scsi_bufflen(scmd);
2242 	u32 nvme_pg_size;
2243 
2244 	nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE);
2245 	/*
2246 	 * Nvme has a very convoluted prp format.  One prp is required
2247 	 * for each page or partial page. Driver need to split up OS sg_list
2248 	 * entries if it is longer than one page or cross a page
2249 	 * boundary.  Driver also have to insert a PRP list pointer entry as
2250 	 * the last entry in each physical page of the PRP list.
2251 	 *
2252 	 * NOTE: The first PRP "entry" is actually placed in the first
2253 	 * SGL entry in the main message as IEEE 64 format.  The 2nd
2254 	 * entry in the main message is the chain element, and the rest
2255 	 * of the PRP entries are built in the contiguous pcie buffer.
2256 	 */
2257 	page_mask = nvme_pg_size - 1;
2258 
2259 	/*
2260 	 * Native SGL is needed.
2261 	 * Put a chain element in main message frame that points to the first
2262 	 * chain buffer.
2263 	 *
2264 	 * NOTE:  The ChainOffset field must be 0 when using a chain pointer to
2265 	 *        a native SGL.
2266 	 */
2267 
2268 	/* Set main message chain element pointer */
2269 	main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2270 	/*
2271 	 * For NVMe the chain element needs to be the 2nd SG entry in the main
2272 	 * message.
2273 	 */
2274 	main_chain_element = (Mpi25IeeeSgeChain64_t *)
2275 		((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
2276 
2277 	/*
2278 	 * For the PRP entries, use the specially allocated buffer of
2279 	 * contiguous memory.  Normal chain buffers can't be used
2280 	 * because each chain buffer would need to be the size of an OS
2281 	 * page (4k).
2282 	 */
2283 	curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid);
2284 	msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2285 
2286 	main_chain_element->Address = cpu_to_le64(msg_dma);
2287 	main_chain_element->NextChainOffset = 0;
2288 	main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2289 			MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2290 			MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
2291 
2292 	/* Build first prp, sge need not to be page aligned*/
2293 	ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2294 	sg_scmd = scsi_sglist(scmd);
2295 	sge_addr = sg_dma_address(sg_scmd);
2296 	sge_len = sg_dma_len(sg_scmd);
2297 
2298 	offset = sge_addr & page_mask;
2299 	first_prp_len = nvme_pg_size - offset;
2300 
2301 	ptr_first_sgl->Address = cpu_to_le64(sge_addr);
2302 	ptr_first_sgl->Length = cpu_to_le32(first_prp_len);
2303 
2304 	data_len -= first_prp_len;
2305 
2306 	if (sge_len > first_prp_len) {
2307 		sge_addr += first_prp_len;
2308 		sge_len -= first_prp_len;
2309 	} else if (data_len && (sge_len == first_prp_len)) {
2310 		sg_scmd = sg_next(sg_scmd);
2311 		sge_addr = sg_dma_address(sg_scmd);
2312 		sge_len = sg_dma_len(sg_scmd);
2313 	}
2314 
2315 	for (;;) {
2316 		offset = sge_addr & page_mask;
2317 
2318 		/* Put PRP pointer due to page boundary*/
2319 		page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask;
2320 		if (unlikely(!page_mask_result)) {
2321 			scmd_printk(KERN_NOTICE,
2322 				scmd, "page boundary curr_buff: 0x%p\n",
2323 				curr_buff);
2324 			msg_dma += 8;
2325 			*curr_buff = cpu_to_le64(msg_dma);
2326 			curr_buff++;
2327 			num_prp_in_chain++;
2328 		}
2329 
2330 		*curr_buff = cpu_to_le64(sge_addr);
2331 		curr_buff++;
2332 		msg_dma += 8;
2333 		num_prp_in_chain++;
2334 
2335 		sge_addr += nvme_pg_size;
2336 		sge_len -= nvme_pg_size;
2337 		data_len -= nvme_pg_size;
2338 
2339 		if (data_len <= 0)
2340 			break;
2341 
2342 		if (sge_len > 0)
2343 			continue;
2344 
2345 		sg_scmd = sg_next(sg_scmd);
2346 		sge_addr = sg_dma_address(sg_scmd);
2347 		sge_len = sg_dma_len(sg_scmd);
2348 	}
2349 
2350 	main_chain_element->Length =
2351 		cpu_to_le32(num_prp_in_chain * sizeof(u64));
2352 	return;
2353 }
2354 
2355 static bool
2356 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc,
2357 	struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count)
2358 {
2359 	u32 data_length = 0;
2360 	bool build_prp = true;
2361 
2362 	data_length = scsi_bufflen(scmd);
2363 	if (pcie_device &&
2364 	    (mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))) {
2365 		build_prp = false;
2366 		return build_prp;
2367 	}
2368 
2369 	/* If Datalenth is <= 16K and number of SGE’s entries are <= 2
2370 	 * we built IEEE SGL
2371 	 */
2372 	if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2))
2373 		build_prp = false;
2374 
2375 	return build_prp;
2376 }
2377 
2378 /**
2379  * _base_check_pcie_native_sgl - This function is called for PCIe end devices to
2380  * determine if the driver needs to build a native SGL.  If so, that native
2381  * SGL is built in the special contiguous buffers allocated especially for
2382  * PCIe SGL creation.  If the driver will not build a native SGL, return
2383  * TRUE and a normal IEEE SGL will be built.  Currently this routine
2384  * supports NVMe.
2385  * @ioc: per adapter object
2386  * @mpi_request: mf request pointer
2387  * @smid: system request message index
2388  * @scmd: scsi command
2389  * @pcie_device: points to the PCIe device's info
2390  *
2391  * Return: 0 if native SGL was built, 1 if no SGL was built
2392  */
2393 static int
2394 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc,
2395 	Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd,
2396 	struct _pcie_device *pcie_device)
2397 {
2398 	int sges_left;
2399 
2400 	/* Get the SG list pointer and info. */
2401 	sges_left = scsi_dma_map(scmd);
2402 	if (sges_left < 0) {
2403 		sdev_printk(KERN_ERR, scmd->device,
2404 			"scsi_dma_map failed: request for %d bytes!\n",
2405 			scsi_bufflen(scmd));
2406 		return 1;
2407 	}
2408 
2409 	/* Check if we need to build a native SG list. */
2410 	if (base_is_prp_possible(ioc, pcie_device,
2411 				scmd, sges_left) == 0) {
2412 		/* We built a native SG list, just return. */
2413 		goto out;
2414 	}
2415 
2416 	/*
2417 	 * Build native NVMe PRP.
2418 	 */
2419 	base_make_prp_nvme(ioc, scmd, mpi_request,
2420 			smid, sges_left);
2421 
2422 	return 0;
2423 out:
2424 	scsi_dma_unmap(scmd);
2425 	return 1;
2426 }
2427 
2428 /**
2429  * _base_add_sg_single_ieee - add sg element for IEEE format
2430  * @paddr: virtual address for SGE
2431  * @flags: SGE flags
2432  * @chain_offset: number of 128 byte elements from start of segment
2433  * @length: data transfer length
2434  * @dma_addr: Physical address
2435  */
2436 static void
2437 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
2438 	dma_addr_t dma_addr)
2439 {
2440 	Mpi25IeeeSgeChain64_t *sgel = paddr;
2441 
2442 	sgel->Flags = flags;
2443 	sgel->NextChainOffset = chain_offset;
2444 	sgel->Length = cpu_to_le32(length);
2445 	sgel->Address = cpu_to_le64(dma_addr);
2446 }
2447 
2448 /**
2449  * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
2450  * @ioc: per adapter object
2451  * @paddr: virtual address for SGE
2452  *
2453  * Create a zero length scatter gather entry to insure the IOCs hardware has
2454  * something to use if the target device goes brain dead and tries
2455  * to send data even when none is asked for.
2456  */
2457 static void
2458 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2459 {
2460 	u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2461 		MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2462 		MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
2463 
2464 	_base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
2465 }
2466 
2467 /**
2468  * _base_build_sg_scmd - main sg creation routine
2469  *		pcie_device is unused here!
2470  * @ioc: per adapter object
2471  * @scmd: scsi command
2472  * @smid: system request message index
2473  * @unused: unused pcie_device pointer
2474  * Context: none.
2475  *
2476  * The main routine that builds scatter gather table from a given
2477  * scsi request sent via the .queuecommand main handler.
2478  *
2479  * Return: 0 success, anything else error
2480  */
2481 static int
2482 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
2483 	struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused)
2484 {
2485 	Mpi2SCSIIORequest_t *mpi_request;
2486 	dma_addr_t chain_dma;
2487 	struct scatterlist *sg_scmd;
2488 	void *sg_local, *chain;
2489 	u32 chain_offset;
2490 	u32 chain_length;
2491 	u32 chain_flags;
2492 	int sges_left;
2493 	u32 sges_in_segment;
2494 	u32 sgl_flags;
2495 	u32 sgl_flags_last_element;
2496 	u32 sgl_flags_end_buffer;
2497 	struct chain_tracker *chain_req;
2498 
2499 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2500 
2501 	/* init scatter gather flags */
2502 	sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
2503 	if (scmd->sc_data_direction == DMA_TO_DEVICE)
2504 		sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2505 	sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
2506 	    << MPI2_SGE_FLAGS_SHIFT;
2507 	sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
2508 	    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
2509 	    << MPI2_SGE_FLAGS_SHIFT;
2510 	sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2511 
2512 	sg_scmd = scsi_sglist(scmd);
2513 	sges_left = scsi_dma_map(scmd);
2514 	if (sges_left < 0) {
2515 		sdev_printk(KERN_ERR, scmd->device,
2516 		 "scsi_dma_map failed: request for %d bytes!\n",
2517 		 scsi_bufflen(scmd));
2518 		return -ENOMEM;
2519 	}
2520 
2521 	sg_local = &mpi_request->SGL;
2522 	sges_in_segment = ioc->max_sges_in_main_message;
2523 	if (sges_left <= sges_in_segment)
2524 		goto fill_in_last_segment;
2525 
2526 	mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
2527 	    (sges_in_segment * ioc->sge_size))/4;
2528 
2529 	/* fill in main message segment when there is a chain following */
2530 	while (sges_in_segment) {
2531 		if (sges_in_segment == 1)
2532 			ioc->base_add_sg_single(sg_local,
2533 			    sgl_flags_last_element | sg_dma_len(sg_scmd),
2534 			    sg_dma_address(sg_scmd));
2535 		else
2536 			ioc->base_add_sg_single(sg_local, sgl_flags |
2537 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2538 		sg_scmd = sg_next(sg_scmd);
2539 		sg_local += ioc->sge_size;
2540 		sges_left--;
2541 		sges_in_segment--;
2542 	}
2543 
2544 	/* initializing the chain flags and pointers */
2545 	chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
2546 	chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2547 	if (!chain_req)
2548 		return -1;
2549 	chain = chain_req->chain_buffer;
2550 	chain_dma = chain_req->chain_buffer_dma;
2551 	do {
2552 		sges_in_segment = (sges_left <=
2553 		    ioc->max_sges_in_chain_message) ? sges_left :
2554 		    ioc->max_sges_in_chain_message;
2555 		chain_offset = (sges_left == sges_in_segment) ?
2556 		    0 : (sges_in_segment * ioc->sge_size)/4;
2557 		chain_length = sges_in_segment * ioc->sge_size;
2558 		if (chain_offset) {
2559 			chain_offset = chain_offset <<
2560 			    MPI2_SGE_CHAIN_OFFSET_SHIFT;
2561 			chain_length += ioc->sge_size;
2562 		}
2563 		ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
2564 		    chain_length, chain_dma);
2565 		sg_local = chain;
2566 		if (!chain_offset)
2567 			goto fill_in_last_segment;
2568 
2569 		/* fill in chain segments */
2570 		while (sges_in_segment) {
2571 			if (sges_in_segment == 1)
2572 				ioc->base_add_sg_single(sg_local,
2573 				    sgl_flags_last_element |
2574 				    sg_dma_len(sg_scmd),
2575 				    sg_dma_address(sg_scmd));
2576 			else
2577 				ioc->base_add_sg_single(sg_local, sgl_flags |
2578 				    sg_dma_len(sg_scmd),
2579 				    sg_dma_address(sg_scmd));
2580 			sg_scmd = sg_next(sg_scmd);
2581 			sg_local += ioc->sge_size;
2582 			sges_left--;
2583 			sges_in_segment--;
2584 		}
2585 
2586 		chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2587 		if (!chain_req)
2588 			return -1;
2589 		chain = chain_req->chain_buffer;
2590 		chain_dma = chain_req->chain_buffer_dma;
2591 	} while (1);
2592 
2593 
2594  fill_in_last_segment:
2595 
2596 	/* fill the last segment */
2597 	while (sges_left) {
2598 		if (sges_left == 1)
2599 			ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
2600 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2601 		else
2602 			ioc->base_add_sg_single(sg_local, sgl_flags |
2603 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2604 		sg_scmd = sg_next(sg_scmd);
2605 		sg_local += ioc->sge_size;
2606 		sges_left--;
2607 	}
2608 
2609 	return 0;
2610 }
2611 
2612 /**
2613  * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
2614  * @ioc: per adapter object
2615  * @scmd: scsi command
2616  * @smid: system request message index
2617  * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
2618  * constructed on need.
2619  * Context: none.
2620  *
2621  * The main routine that builds scatter gather table from a given
2622  * scsi request sent via the .queuecommand main handler.
2623  *
2624  * Return: 0 success, anything else error
2625  */
2626 static int
2627 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
2628 	struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device)
2629 {
2630 	Mpi25SCSIIORequest_t *mpi_request;
2631 	dma_addr_t chain_dma;
2632 	struct scatterlist *sg_scmd;
2633 	void *sg_local, *chain;
2634 	u32 chain_offset;
2635 	u32 chain_length;
2636 	int sges_left;
2637 	u32 sges_in_segment;
2638 	u8 simple_sgl_flags;
2639 	u8 simple_sgl_flags_last;
2640 	u8 chain_sgl_flags;
2641 	struct chain_tracker *chain_req;
2642 
2643 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2644 
2645 	/* init scatter gather flags */
2646 	simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2647 	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2648 	simple_sgl_flags_last = simple_sgl_flags |
2649 	    MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2650 	chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2651 	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2652 
2653 	/* Check if we need to build a native SG list. */
2654 	if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request,
2655 			smid, scmd, pcie_device) == 0)) {
2656 		/* We built a native SG list, just return. */
2657 		return 0;
2658 	}
2659 
2660 	sg_scmd = scsi_sglist(scmd);
2661 	sges_left = scsi_dma_map(scmd);
2662 	if (sges_left < 0) {
2663 		sdev_printk(KERN_ERR, scmd->device,
2664 			"scsi_dma_map failed: request for %d bytes!\n",
2665 			scsi_bufflen(scmd));
2666 		return -ENOMEM;
2667 	}
2668 
2669 	sg_local = &mpi_request->SGL;
2670 	sges_in_segment = (ioc->request_sz -
2671 		   offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
2672 	if (sges_left <= sges_in_segment)
2673 		goto fill_in_last_segment;
2674 
2675 	mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
2676 	    (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
2677 
2678 	/* fill in main message segment when there is a chain following */
2679 	while (sges_in_segment > 1) {
2680 		_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2681 		    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2682 		sg_scmd = sg_next(sg_scmd);
2683 		sg_local += ioc->sge_size_ieee;
2684 		sges_left--;
2685 		sges_in_segment--;
2686 	}
2687 
2688 	/* initializing the pointers */
2689 	chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2690 	if (!chain_req)
2691 		return -1;
2692 	chain = chain_req->chain_buffer;
2693 	chain_dma = chain_req->chain_buffer_dma;
2694 	do {
2695 		sges_in_segment = (sges_left <=
2696 		    ioc->max_sges_in_chain_message) ? sges_left :
2697 		    ioc->max_sges_in_chain_message;
2698 		chain_offset = (sges_left == sges_in_segment) ?
2699 		    0 : sges_in_segment;
2700 		chain_length = sges_in_segment * ioc->sge_size_ieee;
2701 		if (chain_offset)
2702 			chain_length += ioc->sge_size_ieee;
2703 		_base_add_sg_single_ieee(sg_local, chain_sgl_flags,
2704 		    chain_offset, chain_length, chain_dma);
2705 
2706 		sg_local = chain;
2707 		if (!chain_offset)
2708 			goto fill_in_last_segment;
2709 
2710 		/* fill in chain segments */
2711 		while (sges_in_segment) {
2712 			_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2713 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2714 			sg_scmd = sg_next(sg_scmd);
2715 			sg_local += ioc->sge_size_ieee;
2716 			sges_left--;
2717 			sges_in_segment--;
2718 		}
2719 
2720 		chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2721 		if (!chain_req)
2722 			return -1;
2723 		chain = chain_req->chain_buffer;
2724 		chain_dma = chain_req->chain_buffer_dma;
2725 	} while (1);
2726 
2727 
2728  fill_in_last_segment:
2729 
2730 	/* fill the last segment */
2731 	while (sges_left > 0) {
2732 		if (sges_left == 1)
2733 			_base_add_sg_single_ieee(sg_local,
2734 			    simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
2735 			    sg_dma_address(sg_scmd));
2736 		else
2737 			_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2738 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2739 		sg_scmd = sg_next(sg_scmd);
2740 		sg_local += ioc->sge_size_ieee;
2741 		sges_left--;
2742 	}
2743 
2744 	return 0;
2745 }
2746 
2747 /**
2748  * _base_build_sg_ieee - build generic sg for IEEE format
2749  * @ioc: per adapter object
2750  * @psge: virtual address for SGE
2751  * @data_out_dma: physical address for WRITES
2752  * @data_out_sz: data xfer size for WRITES
2753  * @data_in_dma: physical address for READS
2754  * @data_in_sz: data xfer size for READS
2755  */
2756 static void
2757 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
2758 	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2759 	size_t data_in_sz)
2760 {
2761 	u8 sgl_flags;
2762 
2763 	if (!data_out_sz && !data_in_sz) {
2764 		_base_build_zero_len_sge_ieee(ioc, psge);
2765 		return;
2766 	}
2767 
2768 	if (data_out_sz && data_in_sz) {
2769 		/* WRITE sgel first */
2770 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2771 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2772 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2773 		    data_out_dma);
2774 
2775 		/* incr sgel */
2776 		psge += ioc->sge_size_ieee;
2777 
2778 		/* READ sgel last */
2779 		sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2780 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2781 		    data_in_dma);
2782 	} else if (data_out_sz) /* WRITE */ {
2783 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2784 		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2785 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2786 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2787 		    data_out_dma);
2788 	} else if (data_in_sz) /* READ */ {
2789 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2790 		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2791 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2792 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2793 		    data_in_dma);
2794 	}
2795 }
2796 
2797 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
2798 
2799 /**
2800  * _base_config_dma_addressing - set dma addressing
2801  * @ioc: per adapter object
2802  * @pdev: PCI device struct
2803  *
2804  * Return: 0 for success, non-zero for failure.
2805  */
2806 static int
2807 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
2808 {
2809 	struct sysinfo s;
2810 	int dma_mask;
2811 
2812 	if (ioc->is_mcpu_endpoint ||
2813 	    sizeof(dma_addr_t) == 4 || ioc->use_32bit_dma ||
2814 	    dma_get_required_mask(&pdev->dev) <= 32)
2815 		dma_mask = 32;
2816 	/* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */
2817 	else if (ioc->hba_mpi_version_belonged > MPI2_VERSION)
2818 		dma_mask = 63;
2819 	else
2820 		dma_mask = 64;
2821 
2822 	if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(dma_mask)) ||
2823 	    dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(dma_mask)))
2824 		return -ENODEV;
2825 
2826 	if (dma_mask > 32) {
2827 		ioc->base_add_sg_single = &_base_add_sg_single_64;
2828 		ioc->sge_size = sizeof(Mpi2SGESimple64_t);
2829 	} else {
2830 		ioc->base_add_sg_single = &_base_add_sg_single_32;
2831 		ioc->sge_size = sizeof(Mpi2SGESimple32_t);
2832 	}
2833 
2834 	si_meminfo(&s);
2835 	ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
2836 		dma_mask, convert_to_kb(s.totalram));
2837 
2838 	return 0;
2839 }
2840 
2841 /**
2842  * _base_check_enable_msix - checks MSIX capabable.
2843  * @ioc: per adapter object
2844  *
2845  * Check to see if card is capable of MSIX, and set number
2846  * of available msix vectors
2847  */
2848 static int
2849 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
2850 {
2851 	int base;
2852 	u16 message_control;
2853 
2854 	/* Check whether controller SAS2008 B0 controller,
2855 	 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
2856 	 */
2857 	if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
2858 	    ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
2859 		return -EINVAL;
2860 	}
2861 
2862 	base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
2863 	if (!base) {
2864 		dfailprintk(ioc, ioc_info(ioc, "msix not supported\n"));
2865 		return -EINVAL;
2866 	}
2867 
2868 	/* get msix vector count */
2869 	/* NUMA_IO not supported for older controllers */
2870 	if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
2871 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
2872 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
2873 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
2874 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
2875 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
2876 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
2877 		ioc->msix_vector_count = 1;
2878 	else {
2879 		pci_read_config_word(ioc->pdev, base + 2, &message_control);
2880 		ioc->msix_vector_count = (message_control & 0x3FF) + 1;
2881 	}
2882 	dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n",
2883 				  ioc->msix_vector_count));
2884 	return 0;
2885 }
2886 
2887 /**
2888  * _base_free_irq - free irq
2889  * @ioc: per adapter object
2890  *
2891  * Freeing respective reply_queue from the list.
2892  */
2893 static void
2894 _base_free_irq(struct MPT3SAS_ADAPTER *ioc)
2895 {
2896 	struct adapter_reply_queue *reply_q, *next;
2897 
2898 	if (list_empty(&ioc->reply_queue_list))
2899 		return;
2900 
2901 	list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
2902 		list_del(&reply_q->list);
2903 		if (ioc->smp_affinity_enable)
2904 			irq_set_affinity_hint(pci_irq_vector(ioc->pdev,
2905 			    reply_q->msix_index), NULL);
2906 		free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
2907 			 reply_q);
2908 		kfree(reply_q);
2909 	}
2910 }
2911 
2912 /**
2913  * _base_request_irq - request irq
2914  * @ioc: per adapter object
2915  * @index: msix index into vector table
2916  *
2917  * Inserting respective reply_queue into the list.
2918  */
2919 static int
2920 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
2921 {
2922 	struct pci_dev *pdev = ioc->pdev;
2923 	struct adapter_reply_queue *reply_q;
2924 	int r;
2925 
2926 	reply_q =  kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
2927 	if (!reply_q) {
2928 		ioc_err(ioc, "unable to allocate memory %zu!\n",
2929 			sizeof(struct adapter_reply_queue));
2930 		return -ENOMEM;
2931 	}
2932 	reply_q->ioc = ioc;
2933 	reply_q->msix_index = index;
2934 
2935 	atomic_set(&reply_q->busy, 0);
2936 	if (ioc->msix_enable)
2937 		snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
2938 		    ioc->driver_name, ioc->id, index);
2939 	else
2940 		snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
2941 		    ioc->driver_name, ioc->id);
2942 	r = request_irq(pci_irq_vector(pdev, index), _base_interrupt,
2943 			IRQF_SHARED, reply_q->name, reply_q);
2944 	if (r) {
2945 		pr_err("%s: unable to allocate interrupt %d!\n",
2946 		       reply_q->name, pci_irq_vector(pdev, index));
2947 		kfree(reply_q);
2948 		return -EBUSY;
2949 	}
2950 
2951 	INIT_LIST_HEAD(&reply_q->list);
2952 	list_add_tail(&reply_q->list, &ioc->reply_queue_list);
2953 	return 0;
2954 }
2955 
2956 /**
2957  * _base_assign_reply_queues - assigning msix index for each cpu
2958  * @ioc: per adapter object
2959  *
2960  * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
2961  *
2962  * It would nice if we could call irq_set_affinity, however it is not
2963  * an exported symbol
2964  */
2965 static void
2966 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
2967 {
2968 	unsigned int cpu, nr_cpus, nr_msix, index = 0;
2969 	struct adapter_reply_queue *reply_q;
2970 	int local_numa_node;
2971 
2972 	if (!_base_is_controller_msix_enabled(ioc))
2973 		return;
2974 
2975 	if (ioc->msix_load_balance)
2976 		return;
2977 
2978 	memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
2979 
2980 	nr_cpus = num_online_cpus();
2981 	nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
2982 					       ioc->facts.MaxMSIxVectors);
2983 	if (!nr_msix)
2984 		return;
2985 
2986 	if (ioc->smp_affinity_enable) {
2987 
2988 		/*
2989 		 * set irq affinity to local numa node for those irqs
2990 		 * corresponding to high iops queues.
2991 		 */
2992 		if (ioc->high_iops_queues) {
2993 			local_numa_node = dev_to_node(&ioc->pdev->dev);
2994 			for (index = 0; index < ioc->high_iops_queues;
2995 			    index++) {
2996 				irq_set_affinity_hint(pci_irq_vector(ioc->pdev,
2997 				    index), cpumask_of_node(local_numa_node));
2998 			}
2999 		}
3000 
3001 		list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3002 			const cpumask_t *mask;
3003 
3004 			if (reply_q->msix_index < ioc->high_iops_queues)
3005 				continue;
3006 
3007 			mask = pci_irq_get_affinity(ioc->pdev,
3008 			    reply_q->msix_index);
3009 			if (!mask) {
3010 				ioc_warn(ioc, "no affinity for msi %x\n",
3011 					 reply_q->msix_index);
3012 				goto fall_back;
3013 			}
3014 
3015 			for_each_cpu_and(cpu, mask, cpu_online_mask) {
3016 				if (cpu >= ioc->cpu_msix_table_sz)
3017 					break;
3018 				ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3019 			}
3020 		}
3021 		return;
3022 	}
3023 
3024 fall_back:
3025 	cpu = cpumask_first(cpu_online_mask);
3026 	nr_msix -= ioc->high_iops_queues;
3027 	index = 0;
3028 
3029 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3030 		unsigned int i, group = nr_cpus / nr_msix;
3031 
3032 		if (reply_q->msix_index < ioc->high_iops_queues)
3033 			continue;
3034 
3035 		if (cpu >= nr_cpus)
3036 			break;
3037 
3038 		if (index < nr_cpus % nr_msix)
3039 			group++;
3040 
3041 		for (i = 0 ; i < group ; i++) {
3042 			ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3043 			cpu = cpumask_next(cpu, cpu_online_mask);
3044 		}
3045 		index++;
3046 	}
3047 }
3048 
3049 /**
3050  * _base_check_and_enable_high_iops_queues - enable high iops mode
3051  * @ ioc - per adapter object
3052  * @ hba_msix_vector_count - msix vectors supported by HBA
3053  *
3054  * Enable high iops queues only if
3055  *  - HBA is a SEA/AERO controller and
3056  *  - MSI-Xs vector supported by the HBA is 128 and
3057  *  - total CPU count in the system >=16 and
3058  *  - loaded driver with default max_msix_vectors module parameter and
3059  *  - system booted in non kdump mode
3060  *
3061  * returns nothing.
3062  */
3063 static void
3064 _base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc,
3065 		int hba_msix_vector_count)
3066 {
3067 	u16 lnksta, speed;
3068 
3069 	if (perf_mode == MPT_PERF_MODE_IOPS ||
3070 	    perf_mode == MPT_PERF_MODE_LATENCY) {
3071 		ioc->high_iops_queues = 0;
3072 		return;
3073 	}
3074 
3075 	if (perf_mode == MPT_PERF_MODE_DEFAULT) {
3076 
3077 		pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta);
3078 		speed = lnksta & PCI_EXP_LNKSTA_CLS;
3079 
3080 		if (speed < 0x4) {
3081 			ioc->high_iops_queues = 0;
3082 			return;
3083 		}
3084 	}
3085 
3086 	if (!reset_devices && ioc->is_aero_ioc &&
3087 	    hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES &&
3088 	    num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES &&
3089 	    max_msix_vectors == -1)
3090 		ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES;
3091 	else
3092 		ioc->high_iops_queues = 0;
3093 }
3094 
3095 /**
3096  * _base_disable_msix - disables msix
3097  * @ioc: per adapter object
3098  *
3099  */
3100 static void
3101 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
3102 {
3103 	if (!ioc->msix_enable)
3104 		return;
3105 	pci_free_irq_vectors(ioc->pdev);
3106 	ioc->msix_enable = 0;
3107 }
3108 
3109 /**
3110  * _base_alloc_irq_vectors - allocate msix vectors
3111  * @ioc: per adapter object
3112  *
3113  */
3114 static int
3115 _base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc)
3116 {
3117 	int i, irq_flags = PCI_IRQ_MSIX;
3118 	struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues };
3119 	struct irq_affinity *descp = &desc;
3120 
3121 	if (ioc->smp_affinity_enable)
3122 		irq_flags |= PCI_IRQ_AFFINITY;
3123 	else
3124 		descp = NULL;
3125 
3126 	ioc_info(ioc, " %d %d\n", ioc->high_iops_queues,
3127 	    ioc->reply_queue_count);
3128 
3129 	i = pci_alloc_irq_vectors_affinity(ioc->pdev,
3130 	    ioc->high_iops_queues,
3131 	    ioc->reply_queue_count, irq_flags, descp);
3132 
3133 	return i;
3134 }
3135 
3136 /**
3137  * _base_enable_msix - enables msix, failback to io_apic
3138  * @ioc: per adapter object
3139  *
3140  */
3141 static int
3142 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3143 {
3144 	int r;
3145 	int i, local_max_msix_vectors;
3146 	u8 try_msix = 0;
3147 
3148 	ioc->msix_load_balance = false;
3149 
3150 	if (msix_disable == -1 || msix_disable == 0)
3151 		try_msix = 1;
3152 
3153 	if (!try_msix)
3154 		goto try_ioapic;
3155 
3156 	if (_base_check_enable_msix(ioc) != 0)
3157 		goto try_ioapic;
3158 
3159 	ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count);
3160 	pr_info("\t no of cores: %d, max_msix_vectors: %d\n",
3161 		ioc->cpu_count, max_msix_vectors);
3162 	if (ioc->is_aero_ioc)
3163 		_base_check_and_enable_high_iops_queues(ioc,
3164 			ioc->msix_vector_count);
3165 	ioc->reply_queue_count =
3166 		min_t(int, ioc->cpu_count + ioc->high_iops_queues,
3167 		ioc->msix_vector_count);
3168 
3169 	if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
3170 		local_max_msix_vectors = (reset_devices) ? 1 : 8;
3171 	else
3172 		local_max_msix_vectors = max_msix_vectors;
3173 
3174 	if (local_max_msix_vectors > 0)
3175 		ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
3176 			ioc->reply_queue_count);
3177 	else if (local_max_msix_vectors == 0)
3178 		goto try_ioapic;
3179 
3180 	/*
3181 	 * Enable msix_load_balance only if combined reply queue mode is
3182 	 * disabled on SAS3 & above generation HBA devices.
3183 	 */
3184 	if (!ioc->combined_reply_queue &&
3185 	    ioc->hba_mpi_version_belonged != MPI2_VERSION) {
3186 		ioc_info(ioc,
3187 		    "combined ReplyQueue is off, Enabling msix load balance\n");
3188 		ioc->msix_load_balance = true;
3189 	}
3190 
3191 	/*
3192 	 * smp affinity setting is not need when msix load balance
3193 	 * is enabled.
3194 	 */
3195 	if (ioc->msix_load_balance)
3196 		ioc->smp_affinity_enable = 0;
3197 
3198 	r = _base_alloc_irq_vectors(ioc);
3199 	if (r < 0) {
3200 		ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", r);
3201 		goto try_ioapic;
3202 	}
3203 
3204 	ioc->msix_enable = 1;
3205 	ioc->reply_queue_count = r;
3206 	for (i = 0; i < ioc->reply_queue_count; i++) {
3207 		r = _base_request_irq(ioc, i);
3208 		if (r) {
3209 			_base_free_irq(ioc);
3210 			_base_disable_msix(ioc);
3211 			goto try_ioapic;
3212 		}
3213 	}
3214 
3215 	ioc_info(ioc, "High IOPs queues : %s\n",
3216 			ioc->high_iops_queues ? "enabled" : "disabled");
3217 
3218 	return 0;
3219 
3220 /* failback to io_apic interrupt routing */
3221  try_ioapic:
3222 	ioc->high_iops_queues = 0;
3223 	ioc_info(ioc, "High IOPs queues : disabled\n");
3224 	ioc->reply_queue_count = 1;
3225 	r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY);
3226 	if (r < 0) {
3227 		dfailprintk(ioc,
3228 			    ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
3229 				     r));
3230 	} else
3231 		r = _base_request_irq(ioc, 0);
3232 
3233 	return r;
3234 }
3235 
3236 /**
3237  * mpt3sas_base_unmap_resources - free controller resources
3238  * @ioc: per adapter object
3239  */
3240 static void
3241 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
3242 {
3243 	struct pci_dev *pdev = ioc->pdev;
3244 
3245 	dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3246 
3247 	_base_free_irq(ioc);
3248 	_base_disable_msix(ioc);
3249 
3250 	kfree(ioc->replyPostRegisterIndex);
3251 	ioc->replyPostRegisterIndex = NULL;
3252 
3253 
3254 	if (ioc->chip_phys) {
3255 		iounmap(ioc->chip);
3256 		ioc->chip_phys = 0;
3257 	}
3258 
3259 	if (pci_is_enabled(pdev)) {
3260 		pci_release_selected_regions(ioc->pdev, ioc->bars);
3261 		pci_disable_pcie_error_reporting(pdev);
3262 		pci_disable_device(pdev);
3263 	}
3264 }
3265 
3266 static int
3267 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
3268 
3269 /**
3270  * _base_check_for_fault_and_issue_reset - check if IOC is in fault state
3271  *     and if it is in fault state then issue diag reset.
3272  * @ioc: per adapter object
3273  *
3274  * Returns: 0 for success, non-zero for failure.
3275  */
3276 static int
3277 _base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc)
3278 {
3279 	u32 ioc_state;
3280 	int rc = -EFAULT;
3281 
3282 	dinitprintk(ioc, pr_info("%s\n", __func__));
3283 	if (ioc->pci_error_recovery)
3284 		return 0;
3285 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
3286 	dhsprintk(ioc, pr_info("%s: ioc_state(0x%08x)\n", __func__, ioc_state));
3287 
3288 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
3289 		mpt3sas_print_fault_code(ioc, ioc_state &
3290 		    MPI2_DOORBELL_DATA_MASK);
3291 		rc = _base_diag_reset(ioc);
3292 	} else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
3293 	    MPI2_IOC_STATE_COREDUMP) {
3294 		mpt3sas_print_coredump_info(ioc, ioc_state &
3295 		     MPI2_DOORBELL_DATA_MASK);
3296 		mpt3sas_base_wait_for_coredump_completion(ioc, __func__);
3297 		rc = _base_diag_reset(ioc);
3298 	}
3299 
3300 	return rc;
3301 }
3302 
3303 /**
3304  * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
3305  * @ioc: per adapter object
3306  *
3307  * Return: 0 for success, non-zero for failure.
3308  */
3309 int
3310 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
3311 {
3312 	struct pci_dev *pdev = ioc->pdev;
3313 	u32 memap_sz;
3314 	u32 pio_sz;
3315 	int i, r = 0, rc;
3316 	u64 pio_chip = 0;
3317 	phys_addr_t chip_phys = 0;
3318 	struct adapter_reply_queue *reply_q;
3319 
3320 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3321 
3322 	ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
3323 	if (pci_enable_device_mem(pdev)) {
3324 		ioc_warn(ioc, "pci_enable_device_mem: failed\n");
3325 		ioc->bars = 0;
3326 		return -ENODEV;
3327 	}
3328 
3329 
3330 	if (pci_request_selected_regions(pdev, ioc->bars,
3331 	    ioc->driver_name)) {
3332 		ioc_warn(ioc, "pci_request_selected_regions: failed\n");
3333 		ioc->bars = 0;
3334 		r = -ENODEV;
3335 		goto out_fail;
3336 	}
3337 
3338 /* AER (Advanced Error Reporting) hooks */
3339 	pci_enable_pcie_error_reporting(pdev);
3340 
3341 	pci_set_master(pdev);
3342 
3343 
3344 	if (_base_config_dma_addressing(ioc, pdev) != 0) {
3345 		ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev));
3346 		r = -ENODEV;
3347 		goto out_fail;
3348 	}
3349 
3350 	for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
3351 	     (!memap_sz || !pio_sz); i++) {
3352 		if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
3353 			if (pio_sz)
3354 				continue;
3355 			pio_chip = (u64)pci_resource_start(pdev, i);
3356 			pio_sz = pci_resource_len(pdev, i);
3357 		} else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3358 			if (memap_sz)
3359 				continue;
3360 			ioc->chip_phys = pci_resource_start(pdev, i);
3361 			chip_phys = ioc->chip_phys;
3362 			memap_sz = pci_resource_len(pdev, i);
3363 			ioc->chip = ioremap(ioc->chip_phys, memap_sz);
3364 		}
3365 	}
3366 
3367 	if (ioc->chip == NULL) {
3368 		ioc_err(ioc,
3369 		    "unable to map adapter memory! or resource not found\n");
3370 		r = -EINVAL;
3371 		goto out_fail;
3372 	}
3373 
3374 	_base_mask_interrupts(ioc);
3375 
3376 	r = _base_get_ioc_facts(ioc);
3377 	if (r) {
3378 		rc = _base_check_for_fault_and_issue_reset(ioc);
3379 		if (rc || (_base_get_ioc_facts(ioc)))
3380 			goto out_fail;
3381 	}
3382 
3383 	if (!ioc->rdpq_array_enable_assigned) {
3384 		ioc->rdpq_array_enable = ioc->rdpq_array_capable;
3385 		ioc->rdpq_array_enable_assigned = 1;
3386 	}
3387 
3388 	r = _base_enable_msix(ioc);
3389 	if (r)
3390 		goto out_fail;
3391 
3392 	if (!ioc->is_driver_loading)
3393 		_base_init_irqpolls(ioc);
3394 	/* Use the Combined reply queue feature only for SAS3 C0 & higher
3395 	 * revision HBAs and also only when reply queue count is greater than 8
3396 	 */
3397 	if (ioc->combined_reply_queue) {
3398 		/* Determine the Supplemental Reply Post Host Index Registers
3399 		 * Addresse. Supplemental Reply Post Host Index Registers
3400 		 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
3401 		 * each register is at offset bytes of
3402 		 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
3403 		 */
3404 		ioc->replyPostRegisterIndex = kcalloc(
3405 		     ioc->combined_reply_index_count,
3406 		     sizeof(resource_size_t *), GFP_KERNEL);
3407 		if (!ioc->replyPostRegisterIndex) {
3408 			ioc_err(ioc,
3409 			    "allocation for replyPostRegisterIndex failed!\n");
3410 			r = -ENOMEM;
3411 			goto out_fail;
3412 		}
3413 
3414 		for (i = 0; i < ioc->combined_reply_index_count; i++) {
3415 			ioc->replyPostRegisterIndex[i] = (resource_size_t *)
3416 			     ((u8 __force *)&ioc->chip->Doorbell +
3417 			     MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
3418 			     (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
3419 		}
3420 	}
3421 
3422 	if (ioc->is_warpdrive) {
3423 		ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
3424 		    &ioc->chip->ReplyPostHostIndex;
3425 
3426 		for (i = 1; i < ioc->cpu_msix_table_sz; i++)
3427 			ioc->reply_post_host_index[i] =
3428 			(resource_size_t __iomem *)
3429 			((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
3430 			* 4)));
3431 	}
3432 
3433 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
3434 		pr_info("%s: %s enabled: IRQ %d\n",
3435 			reply_q->name,
3436 			ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC",
3437 			pci_irq_vector(ioc->pdev, reply_q->msix_index));
3438 
3439 	ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n",
3440 		 &chip_phys, ioc->chip, memap_sz);
3441 	ioc_info(ioc, "ioport(0x%016llx), size(%d)\n",
3442 		 (unsigned long long)pio_chip, pio_sz);
3443 
3444 	/* Save PCI configuration state for recovery from PCI AER/EEH errors */
3445 	pci_save_state(pdev);
3446 	return 0;
3447 
3448  out_fail:
3449 	mpt3sas_base_unmap_resources(ioc);
3450 	return r;
3451 }
3452 
3453 /**
3454  * mpt3sas_base_get_msg_frame - obtain request mf pointer
3455  * @ioc: per adapter object
3456  * @smid: system request message index(smid zero is invalid)
3457  *
3458  * Return: virt pointer to message frame.
3459  */
3460 void *
3461 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3462 {
3463 	return (void *)(ioc->request + (smid * ioc->request_sz));
3464 }
3465 
3466 /**
3467  * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
3468  * @ioc: per adapter object
3469  * @smid: system request message index
3470  *
3471  * Return: virt pointer to sense buffer.
3472  */
3473 void *
3474 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3475 {
3476 	return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
3477 }
3478 
3479 /**
3480  * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
3481  * @ioc: per adapter object
3482  * @smid: system request message index
3483  *
3484  * Return: phys pointer to the low 32bit address of the sense buffer.
3485  */
3486 __le32
3487 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3488 {
3489 	return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
3490 	    SCSI_SENSE_BUFFERSIZE));
3491 }
3492 
3493 /**
3494  * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
3495  * @ioc: per adapter object
3496  * @smid: system request message index
3497  *
3498  * Return: virt pointer to a PCIe SGL.
3499  */
3500 void *
3501 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3502 {
3503 	return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl);
3504 }
3505 
3506 /**
3507  * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
3508  * @ioc: per adapter object
3509  * @smid: system request message index
3510  *
3511  * Return: phys pointer to the address of the PCIe buffer.
3512  */
3513 dma_addr_t
3514 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3515 {
3516 	return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma;
3517 }
3518 
3519 /**
3520  * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
3521  * @ioc: per adapter object
3522  * @phys_addr: lower 32 physical addr of the reply
3523  *
3524  * Converts 32bit lower physical addr into a virt address.
3525  */
3526 void *
3527 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
3528 {
3529 	if (!phys_addr)
3530 		return NULL;
3531 	return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
3532 }
3533 
3534 /**
3535  * _base_get_msix_index - get the msix index
3536  * @ioc: per adapter object
3537  * @scmd: scsi_cmnd object
3538  *
3539  * returns msix index of general reply queues,
3540  * i.e. reply queue on which IO request's reply
3541  * should be posted by the HBA firmware.
3542  */
3543 static inline u8
3544 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc,
3545 	struct scsi_cmnd *scmd)
3546 {
3547 	/* Enables reply_queue load balancing */
3548 	if (ioc->msix_load_balance)
3549 		return ioc->reply_queue_count ?
3550 		    base_mod64(atomic64_add_return(1,
3551 		    &ioc->total_io_cnt), ioc->reply_queue_count) : 0;
3552 
3553 	return ioc->cpu_msix_table[raw_smp_processor_id()];
3554 }
3555 
3556 /**
3557  * _base_sdev_nr_inflight_request -get number of inflight requests
3558  *				   of a request queue.
3559  * @q: request_queue object
3560  *
3561  * returns number of inflight request of a request queue.
3562  */
3563 inline unsigned long
3564 _base_sdev_nr_inflight_request(struct request_queue *q)
3565 {
3566 	struct blk_mq_hw_ctx *hctx = q->queue_hw_ctx[0];
3567 
3568 	return atomic_read(&hctx->nr_active);
3569 }
3570 
3571 
3572 /**
3573  * _base_get_high_iops_msix_index - get the msix index of
3574  *				high iops queues
3575  * @ioc: per adapter object
3576  * @scmd: scsi_cmnd object
3577  *
3578  * Returns: msix index of high iops reply queues.
3579  * i.e. high iops reply queue on which IO request's
3580  * reply should be posted by the HBA firmware.
3581  */
3582 static inline u8
3583 _base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc,
3584 	struct scsi_cmnd *scmd)
3585 {
3586 	/**
3587 	 * Round robin the IO interrupts among the high iops
3588 	 * reply queues in terms of batch count 16 when outstanding
3589 	 * IOs on the target device is >=8.
3590 	 */
3591 	if (_base_sdev_nr_inflight_request(scmd->device->request_queue) >
3592 	    MPT3SAS_DEVICE_HIGH_IOPS_DEPTH)
3593 		return base_mod64((
3594 		    atomic64_add_return(1, &ioc->high_iops_outstanding) /
3595 		    MPT3SAS_HIGH_IOPS_BATCH_COUNT),
3596 		    MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
3597 
3598 	return _base_get_msix_index(ioc, scmd);
3599 }
3600 
3601 /**
3602  * mpt3sas_base_get_smid - obtain a free smid from internal queue
3603  * @ioc: per adapter object
3604  * @cb_idx: callback index
3605  *
3606  * Return: smid (zero is invalid)
3607  */
3608 u16
3609 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3610 {
3611 	unsigned long flags;
3612 	struct request_tracker *request;
3613 	u16 smid;
3614 
3615 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3616 	if (list_empty(&ioc->internal_free_list)) {
3617 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3618 		ioc_err(ioc, "%s: smid not available\n", __func__);
3619 		return 0;
3620 	}
3621 
3622 	request = list_entry(ioc->internal_free_list.next,
3623 	    struct request_tracker, tracker_list);
3624 	request->cb_idx = cb_idx;
3625 	smid = request->smid;
3626 	list_del(&request->tracker_list);
3627 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3628 	return smid;
3629 }
3630 
3631 /**
3632  * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
3633  * @ioc: per adapter object
3634  * @cb_idx: callback index
3635  * @scmd: pointer to scsi command object
3636  *
3637  * Return: smid (zero is invalid)
3638  */
3639 u16
3640 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
3641 	struct scsi_cmnd *scmd)
3642 {
3643 	struct scsiio_tracker *request = scsi_cmd_priv(scmd);
3644 	unsigned int tag = scmd->request->tag;
3645 	u16 smid;
3646 
3647 	smid = tag + 1;
3648 	request->cb_idx = cb_idx;
3649 	request->smid = smid;
3650 	request->scmd = scmd;
3651 	INIT_LIST_HEAD(&request->chain_list);
3652 	return smid;
3653 }
3654 
3655 /**
3656  * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
3657  * @ioc: per adapter object
3658  * @cb_idx: callback index
3659  *
3660  * Return: smid (zero is invalid)
3661  */
3662 u16
3663 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3664 {
3665 	unsigned long flags;
3666 	struct request_tracker *request;
3667 	u16 smid;
3668 
3669 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3670 	if (list_empty(&ioc->hpr_free_list)) {
3671 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3672 		return 0;
3673 	}
3674 
3675 	request = list_entry(ioc->hpr_free_list.next,
3676 	    struct request_tracker, tracker_list);
3677 	request->cb_idx = cb_idx;
3678 	smid = request->smid;
3679 	list_del(&request->tracker_list);
3680 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3681 	return smid;
3682 }
3683 
3684 static void
3685 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc)
3686 {
3687 	/*
3688 	 * See _wait_for_commands_to_complete() call with regards to this code.
3689 	 */
3690 	if (ioc->shost_recovery && ioc->pending_io_count) {
3691 		ioc->pending_io_count = scsi_host_busy(ioc->shost);
3692 		if (ioc->pending_io_count == 0)
3693 			wake_up(&ioc->reset_wq);
3694 	}
3695 }
3696 
3697 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc,
3698 			   struct scsiio_tracker *st)
3699 {
3700 	if (WARN_ON(st->smid == 0))
3701 		return;
3702 	st->cb_idx = 0xFF;
3703 	st->direct_io = 0;
3704 	st->scmd = NULL;
3705 	atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0);
3706 	st->smid = 0;
3707 }
3708 
3709 /**
3710  * mpt3sas_base_free_smid - put smid back on free_list
3711  * @ioc: per adapter object
3712  * @smid: system request message index
3713  */
3714 void
3715 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3716 {
3717 	unsigned long flags;
3718 	int i;
3719 
3720 	if (smid < ioc->hi_priority_smid) {
3721 		struct scsiio_tracker *st;
3722 		void *request;
3723 
3724 		st = _get_st_from_smid(ioc, smid);
3725 		if (!st) {
3726 			_base_recovery_check(ioc);
3727 			return;
3728 		}
3729 
3730 		/* Clear MPI request frame */
3731 		request = mpt3sas_base_get_msg_frame(ioc, smid);
3732 		memset(request, 0, ioc->request_sz);
3733 
3734 		mpt3sas_base_clear_st(ioc, st);
3735 		_base_recovery_check(ioc);
3736 		return;
3737 	}
3738 
3739 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3740 	if (smid < ioc->internal_smid) {
3741 		/* hi-priority */
3742 		i = smid - ioc->hi_priority_smid;
3743 		ioc->hpr_lookup[i].cb_idx = 0xFF;
3744 		list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
3745 	} else if (smid <= ioc->hba_queue_depth) {
3746 		/* internal queue */
3747 		i = smid - ioc->internal_smid;
3748 		ioc->internal_lookup[i].cb_idx = 0xFF;
3749 		list_add(&ioc->internal_lookup[i].tracker_list,
3750 		    &ioc->internal_free_list);
3751 	}
3752 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3753 }
3754 
3755 /**
3756  * _base_mpi_ep_writeq - 32 bit write to MMIO
3757  * @b: data payload
3758  * @addr: address in MMIO space
3759  * @writeq_lock: spin lock
3760  *
3761  * This special handling for MPI EP to take care of 32 bit
3762  * environment where its not quarenteed to send the entire word
3763  * in one transfer.
3764  */
3765 static inline void
3766 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr,
3767 					spinlock_t *writeq_lock)
3768 {
3769 	unsigned long flags;
3770 
3771 	spin_lock_irqsave(writeq_lock, flags);
3772 	__raw_writel((u32)(b), addr);
3773 	__raw_writel((u32)(b >> 32), (addr + 4));
3774 	spin_unlock_irqrestore(writeq_lock, flags);
3775 }
3776 
3777 /**
3778  * _base_writeq - 64 bit write to MMIO
3779  * @b: data payload
3780  * @addr: address in MMIO space
3781  * @writeq_lock: spin lock
3782  *
3783  * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
3784  * care of 32 bit environment where its not quarenteed to send the entire word
3785  * in one transfer.
3786  */
3787 #if defined(writeq) && defined(CONFIG_64BIT)
3788 static inline void
3789 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
3790 {
3791 	wmb();
3792 	__raw_writeq(b, addr);
3793 	barrier();
3794 }
3795 #else
3796 static inline void
3797 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
3798 {
3799 	_base_mpi_ep_writeq(b, addr, writeq_lock);
3800 }
3801 #endif
3802 
3803 /**
3804  * _base_set_and_get_msix_index - get the msix index and assign to msix_io
3805  *                                variable of scsi tracker
3806  * @ioc: per adapter object
3807  * @smid: system request message index
3808  *
3809  * returns msix index.
3810  */
3811 static u8
3812 _base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3813 {
3814 	struct scsiio_tracker *st = NULL;
3815 
3816 	if (smid < ioc->hi_priority_smid)
3817 		st = _get_st_from_smid(ioc, smid);
3818 
3819 	if (st == NULL)
3820 		return  _base_get_msix_index(ioc, NULL);
3821 
3822 	st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd);
3823 	return st->msix_io;
3824 }
3825 
3826 /**
3827  * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware
3828  * @ioc: per adapter object
3829  * @smid: system request message index
3830  * @handle: device handle
3831  */
3832 static void
3833 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc,
3834 	u16 smid, u16 handle)
3835 {
3836 	Mpi2RequestDescriptorUnion_t descriptor;
3837 	u64 *request = (u64 *)&descriptor;
3838 	void *mpi_req_iomem;
3839 	__le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3840 
3841 	_clone_sg_entries(ioc, (void *) mfp, smid);
3842 	mpi_req_iomem = (void __force *)ioc->chip +
3843 			MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
3844 	_base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3845 					ioc->request_sz);
3846 	descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3847 	descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3848 	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3849 	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3850 	descriptor.SCSIIO.LMID = 0;
3851 	_base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3852 	    &ioc->scsi_lookup_lock);
3853 }
3854 
3855 /**
3856  * _base_put_smid_scsi_io - send SCSI_IO request to firmware
3857  * @ioc: per adapter object
3858  * @smid: system request message index
3859  * @handle: device handle
3860  */
3861 static void
3862 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
3863 {
3864 	Mpi2RequestDescriptorUnion_t descriptor;
3865 	u64 *request = (u64 *)&descriptor;
3866 
3867 
3868 	descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3869 	descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3870 	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3871 	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3872 	descriptor.SCSIIO.LMID = 0;
3873 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3874 	    &ioc->scsi_lookup_lock);
3875 }
3876 
3877 /**
3878  * _base_put_smid_fast_path - send fast path request to firmware
3879  * @ioc: per adapter object
3880  * @smid: system request message index
3881  * @handle: device handle
3882  */
3883 static void
3884 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3885 	u16 handle)
3886 {
3887 	Mpi2RequestDescriptorUnion_t descriptor;
3888 	u64 *request = (u64 *)&descriptor;
3889 
3890 	descriptor.SCSIIO.RequestFlags =
3891 	    MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
3892 	descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3893 	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3894 	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3895 	descriptor.SCSIIO.LMID = 0;
3896 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3897 	    &ioc->scsi_lookup_lock);
3898 }
3899 
3900 /**
3901  * _base_put_smid_hi_priority - send Task Management request to firmware
3902  * @ioc: per adapter object
3903  * @smid: system request message index
3904  * @msix_task: msix_task will be same as msix of IO incase of task abort else 0.
3905  */
3906 static void
3907 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3908 	u16 msix_task)
3909 {
3910 	Mpi2RequestDescriptorUnion_t descriptor;
3911 	void *mpi_req_iomem;
3912 	u64 *request;
3913 
3914 	if (ioc->is_mcpu_endpoint) {
3915 		__le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3916 
3917 		/* TBD 256 is offset within sys register. */
3918 		mpi_req_iomem = (void __force *)ioc->chip
3919 					+ MPI_FRAME_START_OFFSET
3920 					+ (smid * ioc->request_sz);
3921 		_base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3922 							ioc->request_sz);
3923 	}
3924 
3925 	request = (u64 *)&descriptor;
3926 
3927 	descriptor.HighPriority.RequestFlags =
3928 	    MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
3929 	descriptor.HighPriority.MSIxIndex =  msix_task;
3930 	descriptor.HighPriority.SMID = cpu_to_le16(smid);
3931 	descriptor.HighPriority.LMID = 0;
3932 	descriptor.HighPriority.Reserved1 = 0;
3933 	if (ioc->is_mcpu_endpoint)
3934 		_base_mpi_ep_writeq(*request,
3935 				&ioc->chip->RequestDescriptorPostLow,
3936 				&ioc->scsi_lookup_lock);
3937 	else
3938 		_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3939 		    &ioc->scsi_lookup_lock);
3940 }
3941 
3942 /**
3943  * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to
3944  *  firmware
3945  * @ioc: per adapter object
3946  * @smid: system request message index
3947  */
3948 void
3949 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3950 {
3951 	Mpi2RequestDescriptorUnion_t descriptor;
3952 	u64 *request = (u64 *)&descriptor;
3953 
3954 	descriptor.Default.RequestFlags =
3955 		MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
3956 	descriptor.Default.MSIxIndex =  _base_set_and_get_msix_index(ioc, smid);
3957 	descriptor.Default.SMID = cpu_to_le16(smid);
3958 	descriptor.Default.LMID = 0;
3959 	descriptor.Default.DescriptorTypeDependent = 0;
3960 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3961 	    &ioc->scsi_lookup_lock);
3962 }
3963 
3964 /**
3965  * _base_put_smid_default - Default, primarily used for config pages
3966  * @ioc: per adapter object
3967  * @smid: system request message index
3968  */
3969 static void
3970 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3971 {
3972 	Mpi2RequestDescriptorUnion_t descriptor;
3973 	void *mpi_req_iomem;
3974 	u64 *request;
3975 
3976 	if (ioc->is_mcpu_endpoint) {
3977 		__le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3978 
3979 		_clone_sg_entries(ioc, (void *) mfp, smid);
3980 		/* TBD 256 is offset within sys register */
3981 		mpi_req_iomem = (void __force *)ioc->chip +
3982 			MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
3983 		_base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3984 							ioc->request_sz);
3985 	}
3986 	request = (u64 *)&descriptor;
3987 	descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
3988 	descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3989 	descriptor.Default.SMID = cpu_to_le16(smid);
3990 	descriptor.Default.LMID = 0;
3991 	descriptor.Default.DescriptorTypeDependent = 0;
3992 	if (ioc->is_mcpu_endpoint)
3993 		_base_mpi_ep_writeq(*request,
3994 				&ioc->chip->RequestDescriptorPostLow,
3995 				&ioc->scsi_lookup_lock);
3996 	else
3997 		_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3998 				&ioc->scsi_lookup_lock);
3999 }
4000 
4001 /**
4002  * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using
4003  *   Atomic Request Descriptor
4004  * @ioc: per adapter object
4005  * @smid: system request message index
4006  * @handle: device handle, unused in this function, for function type match
4007  *
4008  * Return nothing.
4009  */
4010 static void
4011 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4012 	u16 handle)
4013 {
4014 	Mpi26AtomicRequestDescriptor_t descriptor;
4015 	u32 *request = (u32 *)&descriptor;
4016 
4017 	descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4018 	descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4019 	descriptor.SMID = cpu_to_le16(smid);
4020 
4021 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4022 }
4023 
4024 /**
4025  * _base_put_smid_fast_path_atomic - send fast path request to firmware
4026  * using Atomic Request Descriptor
4027  * @ioc: per adapter object
4028  * @smid: system request message index
4029  * @handle: device handle, unused in this function, for function type match
4030  * Return nothing
4031  */
4032 static void
4033 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4034 	u16 handle)
4035 {
4036 	Mpi26AtomicRequestDescriptor_t descriptor;
4037 	u32 *request = (u32 *)&descriptor;
4038 
4039 	descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4040 	descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4041 	descriptor.SMID = cpu_to_le16(smid);
4042 
4043 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4044 }
4045 
4046 /**
4047  * _base_put_smid_hi_priority_atomic - send Task Management request to
4048  * firmware using Atomic Request Descriptor
4049  * @ioc: per adapter object
4050  * @smid: system request message index
4051  * @msix_task: msix_task will be same as msix of IO incase of task abort else 0
4052  *
4053  * Return nothing.
4054  */
4055 static void
4056 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4057 	u16 msix_task)
4058 {
4059 	Mpi26AtomicRequestDescriptor_t descriptor;
4060 	u32 *request = (u32 *)&descriptor;
4061 
4062 	descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4063 	descriptor.MSIxIndex = msix_task;
4064 	descriptor.SMID = cpu_to_le16(smid);
4065 
4066 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4067 }
4068 
4069 /**
4070  * _base_put_smid_default - Default, primarily used for config pages
4071  * use Atomic Request Descriptor
4072  * @ioc: per adapter object
4073  * @smid: system request message index
4074  *
4075  * Return nothing.
4076  */
4077 static void
4078 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4079 {
4080 	Mpi26AtomicRequestDescriptor_t descriptor;
4081 	u32 *request = (u32 *)&descriptor;
4082 
4083 	descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4084 	descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4085 	descriptor.SMID = cpu_to_le16(smid);
4086 
4087 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4088 }
4089 
4090 /**
4091  * _base_display_OEMs_branding - Display branding string
4092  * @ioc: per adapter object
4093  */
4094 static void
4095 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
4096 {
4097 	if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
4098 		return;
4099 
4100 	switch (ioc->pdev->subsystem_vendor) {
4101 	case PCI_VENDOR_ID_INTEL:
4102 		switch (ioc->pdev->device) {
4103 		case MPI2_MFGPAGE_DEVID_SAS2008:
4104 			switch (ioc->pdev->subsystem_device) {
4105 			case MPT2SAS_INTEL_RMS2LL080_SSDID:
4106 				ioc_info(ioc, "%s\n",
4107 					 MPT2SAS_INTEL_RMS2LL080_BRANDING);
4108 				break;
4109 			case MPT2SAS_INTEL_RMS2LL040_SSDID:
4110 				ioc_info(ioc, "%s\n",
4111 					 MPT2SAS_INTEL_RMS2LL040_BRANDING);
4112 				break;
4113 			case MPT2SAS_INTEL_SSD910_SSDID:
4114 				ioc_info(ioc, "%s\n",
4115 					 MPT2SAS_INTEL_SSD910_BRANDING);
4116 				break;
4117 			default:
4118 				ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4119 					 ioc->pdev->subsystem_device);
4120 				break;
4121 			}
4122 			break;
4123 		case MPI2_MFGPAGE_DEVID_SAS2308_2:
4124 			switch (ioc->pdev->subsystem_device) {
4125 			case MPT2SAS_INTEL_RS25GB008_SSDID:
4126 				ioc_info(ioc, "%s\n",
4127 					 MPT2SAS_INTEL_RS25GB008_BRANDING);
4128 				break;
4129 			case MPT2SAS_INTEL_RMS25JB080_SSDID:
4130 				ioc_info(ioc, "%s\n",
4131 					 MPT2SAS_INTEL_RMS25JB080_BRANDING);
4132 				break;
4133 			case MPT2SAS_INTEL_RMS25JB040_SSDID:
4134 				ioc_info(ioc, "%s\n",
4135 					 MPT2SAS_INTEL_RMS25JB040_BRANDING);
4136 				break;
4137 			case MPT2SAS_INTEL_RMS25KB080_SSDID:
4138 				ioc_info(ioc, "%s\n",
4139 					 MPT2SAS_INTEL_RMS25KB080_BRANDING);
4140 				break;
4141 			case MPT2SAS_INTEL_RMS25KB040_SSDID:
4142 				ioc_info(ioc, "%s\n",
4143 					 MPT2SAS_INTEL_RMS25KB040_BRANDING);
4144 				break;
4145 			case MPT2SAS_INTEL_RMS25LB040_SSDID:
4146 				ioc_info(ioc, "%s\n",
4147 					 MPT2SAS_INTEL_RMS25LB040_BRANDING);
4148 				break;
4149 			case MPT2SAS_INTEL_RMS25LB080_SSDID:
4150 				ioc_info(ioc, "%s\n",
4151 					 MPT2SAS_INTEL_RMS25LB080_BRANDING);
4152 				break;
4153 			default:
4154 				ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4155 					 ioc->pdev->subsystem_device);
4156 				break;
4157 			}
4158 			break;
4159 		case MPI25_MFGPAGE_DEVID_SAS3008:
4160 			switch (ioc->pdev->subsystem_device) {
4161 			case MPT3SAS_INTEL_RMS3JC080_SSDID:
4162 				ioc_info(ioc, "%s\n",
4163 					 MPT3SAS_INTEL_RMS3JC080_BRANDING);
4164 				break;
4165 
4166 			case MPT3SAS_INTEL_RS3GC008_SSDID:
4167 				ioc_info(ioc, "%s\n",
4168 					 MPT3SAS_INTEL_RS3GC008_BRANDING);
4169 				break;
4170 			case MPT3SAS_INTEL_RS3FC044_SSDID:
4171 				ioc_info(ioc, "%s\n",
4172 					 MPT3SAS_INTEL_RS3FC044_BRANDING);
4173 				break;
4174 			case MPT3SAS_INTEL_RS3UC080_SSDID:
4175 				ioc_info(ioc, "%s\n",
4176 					 MPT3SAS_INTEL_RS3UC080_BRANDING);
4177 				break;
4178 			default:
4179 				ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4180 					 ioc->pdev->subsystem_device);
4181 				break;
4182 			}
4183 			break;
4184 		default:
4185 			ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4186 				 ioc->pdev->subsystem_device);
4187 			break;
4188 		}
4189 		break;
4190 	case PCI_VENDOR_ID_DELL:
4191 		switch (ioc->pdev->device) {
4192 		case MPI2_MFGPAGE_DEVID_SAS2008:
4193 			switch (ioc->pdev->subsystem_device) {
4194 			case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
4195 				ioc_info(ioc, "%s\n",
4196 					 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
4197 				break;
4198 			case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
4199 				ioc_info(ioc, "%s\n",
4200 					 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
4201 				break;
4202 			case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
4203 				ioc_info(ioc, "%s\n",
4204 					 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
4205 				break;
4206 			case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
4207 				ioc_info(ioc, "%s\n",
4208 					 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
4209 				break;
4210 			case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
4211 				ioc_info(ioc, "%s\n",
4212 					 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
4213 				break;
4214 			case MPT2SAS_DELL_PERC_H200_SSDID:
4215 				ioc_info(ioc, "%s\n",
4216 					 MPT2SAS_DELL_PERC_H200_BRANDING);
4217 				break;
4218 			case MPT2SAS_DELL_6GBPS_SAS_SSDID:
4219 				ioc_info(ioc, "%s\n",
4220 					 MPT2SAS_DELL_6GBPS_SAS_BRANDING);
4221 				break;
4222 			default:
4223 				ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
4224 					 ioc->pdev->subsystem_device);
4225 				break;
4226 			}
4227 			break;
4228 		case MPI25_MFGPAGE_DEVID_SAS3008:
4229 			switch (ioc->pdev->subsystem_device) {
4230 			case MPT3SAS_DELL_12G_HBA_SSDID:
4231 				ioc_info(ioc, "%s\n",
4232 					 MPT3SAS_DELL_12G_HBA_BRANDING);
4233 				break;
4234 			default:
4235 				ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
4236 					 ioc->pdev->subsystem_device);
4237 				break;
4238 			}
4239 			break;
4240 		default:
4241 			ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n",
4242 				 ioc->pdev->subsystem_device);
4243 			break;
4244 		}
4245 		break;
4246 	case PCI_VENDOR_ID_CISCO:
4247 		switch (ioc->pdev->device) {
4248 		case MPI25_MFGPAGE_DEVID_SAS3008:
4249 			switch (ioc->pdev->subsystem_device) {
4250 			case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
4251 				ioc_info(ioc, "%s\n",
4252 					 MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
4253 				break;
4254 			case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
4255 				ioc_info(ioc, "%s\n",
4256 					 MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
4257 				break;
4258 			case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4259 				ioc_info(ioc, "%s\n",
4260 					 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4261 				break;
4262 			default:
4263 				ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4264 					 ioc->pdev->subsystem_device);
4265 				break;
4266 			}
4267 			break;
4268 		case MPI25_MFGPAGE_DEVID_SAS3108_1:
4269 			switch (ioc->pdev->subsystem_device) {
4270 			case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4271 				ioc_info(ioc, "%s\n",
4272 					 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4273 				break;
4274 			case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
4275 				ioc_info(ioc, "%s\n",
4276 					 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING);
4277 				break;
4278 			default:
4279 				ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4280 					 ioc->pdev->subsystem_device);
4281 				break;
4282 			}
4283 			break;
4284 		default:
4285 			ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n",
4286 				 ioc->pdev->subsystem_device);
4287 			break;
4288 		}
4289 		break;
4290 	case MPT2SAS_HP_3PAR_SSVID:
4291 		switch (ioc->pdev->device) {
4292 		case MPI2_MFGPAGE_DEVID_SAS2004:
4293 			switch (ioc->pdev->subsystem_device) {
4294 			case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
4295 				ioc_info(ioc, "%s\n",
4296 					 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
4297 				break;
4298 			default:
4299 				ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4300 					 ioc->pdev->subsystem_device);
4301 				break;
4302 			}
4303 			break;
4304 		case MPI2_MFGPAGE_DEVID_SAS2308_2:
4305 			switch (ioc->pdev->subsystem_device) {
4306 			case MPT2SAS_HP_2_4_INTERNAL_SSDID:
4307 				ioc_info(ioc, "%s\n",
4308 					 MPT2SAS_HP_2_4_INTERNAL_BRANDING);
4309 				break;
4310 			case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
4311 				ioc_info(ioc, "%s\n",
4312 					 MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
4313 				break;
4314 			case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
4315 				ioc_info(ioc, "%s\n",
4316 					 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
4317 				break;
4318 			case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
4319 				ioc_info(ioc, "%s\n",
4320 					 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
4321 				break;
4322 			default:
4323 				ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4324 					 ioc->pdev->subsystem_device);
4325 				break;
4326 			}
4327 			break;
4328 		default:
4329 			ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n",
4330 				 ioc->pdev->subsystem_device);
4331 			break;
4332 		}
4333 	default:
4334 		break;
4335 	}
4336 }
4337 
4338 /**
4339  * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg
4340  *				version from FW Image Header.
4341  * @ioc: per adapter object
4342  *
4343  * Return: 0 for success, non-zero for failure.
4344  */
4345 	static int
4346 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc)
4347 {
4348 	Mpi2FWImageHeader_t *fw_img_hdr;
4349 	Mpi26ComponentImageHeader_t *cmp_img_hdr;
4350 	Mpi25FWUploadRequest_t *mpi_request;
4351 	Mpi2FWUploadReply_t mpi_reply;
4352 	int r = 0;
4353 	u32  package_version = 0;
4354 	void *fwpkg_data = NULL;
4355 	dma_addr_t fwpkg_data_dma;
4356 	u16 smid, ioc_status;
4357 	size_t data_length;
4358 
4359 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4360 
4361 	if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4362 		ioc_err(ioc, "%s: internal command already in use\n", __func__);
4363 		return -EAGAIN;
4364 	}
4365 
4366 	data_length = sizeof(Mpi2FWImageHeader_t);
4367 	fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length,
4368 			&fwpkg_data_dma, GFP_KERNEL);
4369 	if (!fwpkg_data) {
4370 		ioc_err(ioc,
4371 		    "Memory allocation for fwpkg data failed at %s:%d/%s()!\n",
4372 			__FILE__, __LINE__, __func__);
4373 		return -ENOMEM;
4374 	}
4375 
4376 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4377 	if (!smid) {
4378 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
4379 		r = -EAGAIN;
4380 		goto out;
4381 	}
4382 
4383 	ioc->base_cmds.status = MPT3_CMD_PENDING;
4384 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4385 	ioc->base_cmds.smid = smid;
4386 	memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t));
4387 	mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD;
4388 	mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH;
4389 	mpi_request->ImageSize = cpu_to_le32(data_length);
4390 	ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma,
4391 			data_length);
4392 	init_completion(&ioc->base_cmds.done);
4393 	ioc->put_smid_default(ioc, smid);
4394 	/* Wait for 15 seconds */
4395 	wait_for_completion_timeout(&ioc->base_cmds.done,
4396 			FW_IMG_HDR_READ_TIMEOUT*HZ);
4397 	ioc_info(ioc, "%s: complete\n", __func__);
4398 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4399 		ioc_err(ioc, "%s: timeout\n", __func__);
4400 		_debug_dump_mf(mpi_request,
4401 				sizeof(Mpi25FWUploadRequest_t)/4);
4402 		r = -ETIME;
4403 	} else {
4404 		memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t));
4405 		if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) {
4406 			memcpy(&mpi_reply, ioc->base_cmds.reply,
4407 					sizeof(Mpi2FWUploadReply_t));
4408 			ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4409 						MPI2_IOCSTATUS_MASK;
4410 			if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4411 				fw_img_hdr = (Mpi2FWImageHeader_t *)fwpkg_data;
4412 				if (le32_to_cpu(fw_img_hdr->Signature) ==
4413 				    MPI26_IMAGE_HEADER_SIGNATURE0_MPI26) {
4414 					cmp_img_hdr =
4415 					    (Mpi26ComponentImageHeader_t *)
4416 					    (fwpkg_data);
4417 					package_version =
4418 					    le32_to_cpu(
4419 					    cmp_img_hdr->ApplicationSpecific);
4420 				} else
4421 					package_version =
4422 					    le32_to_cpu(
4423 					    fw_img_hdr->PackageVersion.Word);
4424 				if (package_version)
4425 					ioc_info(ioc,
4426 					"FW Package Ver(%02d.%02d.%02d.%02d)\n",
4427 					((package_version) & 0xFF000000) >> 24,
4428 					((package_version) & 0x00FF0000) >> 16,
4429 					((package_version) & 0x0000FF00) >> 8,
4430 					(package_version) & 0x000000FF);
4431 			} else {
4432 				_debug_dump_mf(&mpi_reply,
4433 						sizeof(Mpi2FWUploadReply_t)/4);
4434 			}
4435 		}
4436 	}
4437 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4438 out:
4439 	if (fwpkg_data)
4440 		dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data,
4441 				fwpkg_data_dma);
4442 	return r;
4443 }
4444 
4445 /**
4446  * _base_display_ioc_capabilities - Disply IOC's capabilities.
4447  * @ioc: per adapter object
4448  */
4449 static void
4450 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
4451 {
4452 	int i = 0;
4453 	char desc[16];
4454 	u32 iounit_pg1_flags;
4455 	u32 bios_version;
4456 
4457 	bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
4458 	strncpy(desc, ioc->manu_pg0.ChipName, 16);
4459 	ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
4460 		 desc,
4461 		 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
4462 		 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
4463 		 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
4464 		 ioc->facts.FWVersion.Word & 0x000000FF,
4465 		 ioc->pdev->revision,
4466 		 (bios_version & 0xFF000000) >> 24,
4467 		 (bios_version & 0x00FF0000) >> 16,
4468 		 (bios_version & 0x0000FF00) >> 8,
4469 		 bios_version & 0x000000FF);
4470 
4471 	_base_display_OEMs_branding(ioc);
4472 
4473 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
4474 		pr_info("%sNVMe", i ? "," : "");
4475 		i++;
4476 	}
4477 
4478 	ioc_info(ioc, "Protocol=(");
4479 
4480 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
4481 		pr_cont("Initiator");
4482 		i++;
4483 	}
4484 
4485 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
4486 		pr_cont("%sTarget", i ? "," : "");
4487 		i++;
4488 	}
4489 
4490 	i = 0;
4491 	pr_cont("), Capabilities=(");
4492 
4493 	if (!ioc->hide_ir_msg) {
4494 		if (ioc->facts.IOCCapabilities &
4495 		    MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
4496 			pr_cont("Raid");
4497 			i++;
4498 		}
4499 	}
4500 
4501 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
4502 		pr_cont("%sTLR", i ? "," : "");
4503 		i++;
4504 	}
4505 
4506 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
4507 		pr_cont("%sMulticast", i ? "," : "");
4508 		i++;
4509 	}
4510 
4511 	if (ioc->facts.IOCCapabilities &
4512 	    MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
4513 		pr_cont("%sBIDI Target", i ? "," : "");
4514 		i++;
4515 	}
4516 
4517 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
4518 		pr_cont("%sEEDP", i ? "," : "");
4519 		i++;
4520 	}
4521 
4522 	if (ioc->facts.IOCCapabilities &
4523 	    MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
4524 		pr_cont("%sSnapshot Buffer", i ? "," : "");
4525 		i++;
4526 	}
4527 
4528 	if (ioc->facts.IOCCapabilities &
4529 	    MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
4530 		pr_cont("%sDiag Trace Buffer", i ? "," : "");
4531 		i++;
4532 	}
4533 
4534 	if (ioc->facts.IOCCapabilities &
4535 	    MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
4536 		pr_cont("%sDiag Extended Buffer", i ? "," : "");
4537 		i++;
4538 	}
4539 
4540 	if (ioc->facts.IOCCapabilities &
4541 	    MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
4542 		pr_cont("%sTask Set Full", i ? "," : "");
4543 		i++;
4544 	}
4545 
4546 	iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4547 	if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
4548 		pr_cont("%sNCQ", i ? "," : "");
4549 		i++;
4550 	}
4551 
4552 	pr_cont(")\n");
4553 }
4554 
4555 /**
4556  * mpt3sas_base_update_missing_delay - change the missing delay timers
4557  * @ioc: per adapter object
4558  * @device_missing_delay: amount of time till device is reported missing
4559  * @io_missing_delay: interval IO is returned when there is a missing device
4560  *
4561  * Passed on the command line, this function will modify the device missing
4562  * delay, as well as the io missing delay. This should be called at driver
4563  * load time.
4564  */
4565 void
4566 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
4567 	u16 device_missing_delay, u8 io_missing_delay)
4568 {
4569 	u16 dmd, dmd_new, dmd_orignal;
4570 	u8 io_missing_delay_original;
4571 	u16 sz;
4572 	Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
4573 	Mpi2ConfigReply_t mpi_reply;
4574 	u8 num_phys = 0;
4575 	u16 ioc_status;
4576 
4577 	mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
4578 	if (!num_phys)
4579 		return;
4580 
4581 	sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
4582 	    sizeof(Mpi2SasIOUnit1PhyData_t));
4583 	sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
4584 	if (!sas_iounit_pg1) {
4585 		ioc_err(ioc, "failure at %s:%d/%s()!\n",
4586 			__FILE__, __LINE__, __func__);
4587 		goto out;
4588 	}
4589 	if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
4590 	    sas_iounit_pg1, sz))) {
4591 		ioc_err(ioc, "failure at %s:%d/%s()!\n",
4592 			__FILE__, __LINE__, __func__);
4593 		goto out;
4594 	}
4595 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4596 	    MPI2_IOCSTATUS_MASK;
4597 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4598 		ioc_err(ioc, "failure at %s:%d/%s()!\n",
4599 			__FILE__, __LINE__, __func__);
4600 		goto out;
4601 	}
4602 
4603 	/* device missing delay */
4604 	dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
4605 	if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4606 		dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4607 	else
4608 		dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4609 	dmd_orignal = dmd;
4610 	if (device_missing_delay > 0x7F) {
4611 		dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
4612 		    device_missing_delay;
4613 		dmd = dmd / 16;
4614 		dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
4615 	} else
4616 		dmd = device_missing_delay;
4617 	sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
4618 
4619 	/* io missing delay */
4620 	io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
4621 	sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
4622 
4623 	if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
4624 	    sz)) {
4625 		if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4626 			dmd_new = (dmd &
4627 			    MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4628 		else
4629 			dmd_new =
4630 		    dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4631 		ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n",
4632 			 dmd_orignal, dmd_new);
4633 		ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n",
4634 			 io_missing_delay_original,
4635 			 io_missing_delay);
4636 		ioc->device_missing_delay = dmd_new;
4637 		ioc->io_missing_delay = io_missing_delay;
4638 	}
4639 
4640 out:
4641 	kfree(sas_iounit_pg1);
4642 }
4643 
4644 /**
4645  * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields
4646  *    according to performance mode.
4647  * @ioc : per adapter object
4648  *
4649  * Return nothing.
4650  */
4651 static void
4652 _base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc)
4653 {
4654 	Mpi2IOCPage1_t ioc_pg1;
4655 	Mpi2ConfigReply_t mpi_reply;
4656 
4657 	mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy);
4658 	memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t));
4659 
4660 	switch (perf_mode) {
4661 	case MPT_PERF_MODE_DEFAULT:
4662 	case MPT_PERF_MODE_BALANCED:
4663 		if (ioc->high_iops_queues) {
4664 			ioc_info(ioc,
4665 				"Enable interrupt coalescing only for first\t"
4666 				"%d reply queues\n",
4667 				MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
4668 			/*
4669 			 * If 31st bit is zero then interrupt coalescing is
4670 			 * enabled for all reply descriptor post queues.
4671 			 * If 31st bit is set to one then user can
4672 			 * enable/disable interrupt coalescing on per reply
4673 			 * descriptor post queue group(8) basis. So to enable
4674 			 * interrupt coalescing only on first reply descriptor
4675 			 * post queue group 31st bit and zero th bit is enabled.
4676 			 */
4677 			ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 |
4678 			    ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1));
4679 			mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4680 			ioc_info(ioc, "performance mode: balanced\n");
4681 			return;
4682 		}
4683 		/* Fall through */
4684 	case MPT_PERF_MODE_LATENCY:
4685 		/*
4686 		 * Enable interrupt coalescing on all reply queues
4687 		 * with timeout value 0xA
4688 		 */
4689 		ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa);
4690 		ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
4691 		ioc_pg1.ProductSpecific = 0;
4692 		mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4693 		ioc_info(ioc, "performance mode: latency\n");
4694 		break;
4695 	case MPT_PERF_MODE_IOPS:
4696 		/*
4697 		 * Enable interrupt coalescing on all reply queues.
4698 		 */
4699 		ioc_info(ioc,
4700 		    "performance mode: iops with coalescing timeout: 0x%x\n",
4701 		    le32_to_cpu(ioc_pg1.CoalescingTimeout));
4702 		ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
4703 		ioc_pg1.ProductSpecific = 0;
4704 		mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4705 		break;
4706 	}
4707 }
4708 
4709 /**
4710  * _base_static_config_pages - static start of day config pages
4711  * @ioc: per adapter object
4712  */
4713 static void
4714 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
4715 {
4716 	Mpi2ConfigReply_t mpi_reply;
4717 	u32 iounit_pg1_flags;
4718 
4719 	ioc->nvme_abort_timeout = 30;
4720 	mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
4721 	if (ioc->ir_firmware)
4722 		mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
4723 		    &ioc->manu_pg10);
4724 
4725 	/*
4726 	 * Ensure correct T10 PI operation if vendor left EEDPTagMode
4727 	 * flag unset in NVDATA.
4728 	 */
4729 	mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
4730 	if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) {
4731 		pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
4732 		    ioc->name);
4733 		ioc->manu_pg11.EEDPTagMode &= ~0x3;
4734 		ioc->manu_pg11.EEDPTagMode |= 0x1;
4735 		mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
4736 		    &ioc->manu_pg11);
4737 	}
4738 	if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK)
4739 		ioc->tm_custom_handling = 1;
4740 	else {
4741 		ioc->tm_custom_handling = 0;
4742 		if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT)
4743 			ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT;
4744 		else if (ioc->manu_pg11.NVMeAbortTO >
4745 					NVME_TASK_ABORT_MAX_TIMEOUT)
4746 			ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT;
4747 		else
4748 			ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO;
4749 	}
4750 
4751 	mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
4752 	mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
4753 	mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
4754 	mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
4755 	mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
4756 	mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
4757 	_base_display_ioc_capabilities(ioc);
4758 
4759 	/*
4760 	 * Enable task_set_full handling in iounit_pg1 when the
4761 	 * facts capabilities indicate that its supported.
4762 	 */
4763 	iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4764 	if ((ioc->facts.IOCCapabilities &
4765 	    MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
4766 		iounit_pg1_flags &=
4767 		    ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
4768 	else
4769 		iounit_pg1_flags |=
4770 		    MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
4771 	ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
4772 	mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
4773 
4774 	if (ioc->iounit_pg8.NumSensors)
4775 		ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
4776 	if (ioc->is_aero_ioc)
4777 		_base_update_ioc_page1_inlinewith_perf_mode(ioc);
4778 }
4779 
4780 /**
4781  * mpt3sas_free_enclosure_list - release memory
4782  * @ioc: per adapter object
4783  *
4784  * Free memory allocated during encloure add.
4785  */
4786 void
4787 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc)
4788 {
4789 	struct _enclosure_node *enclosure_dev, *enclosure_dev_next;
4790 
4791 	/* Free enclosure list */
4792 	list_for_each_entry_safe(enclosure_dev,
4793 			enclosure_dev_next, &ioc->enclosure_list, list) {
4794 		list_del(&enclosure_dev->list);
4795 		kfree(enclosure_dev);
4796 	}
4797 }
4798 
4799 /**
4800  * _base_release_memory_pools - release memory
4801  * @ioc: per adapter object
4802  *
4803  * Free memory allocated from _base_allocate_memory_pools.
4804  */
4805 static void
4806 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
4807 {
4808 	int i = 0;
4809 	int j = 0;
4810 	int dma_alloc_count = 0;
4811 	struct chain_tracker *ct;
4812 	int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
4813 
4814 	dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4815 
4816 	if (ioc->request) {
4817 		dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz,
4818 		    ioc->request,  ioc->request_dma);
4819 		dexitprintk(ioc,
4820 			    ioc_info(ioc, "request_pool(0x%p): free\n",
4821 				     ioc->request));
4822 		ioc->request = NULL;
4823 	}
4824 
4825 	if (ioc->sense) {
4826 		dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
4827 		dma_pool_destroy(ioc->sense_dma_pool);
4828 		dexitprintk(ioc,
4829 			    ioc_info(ioc, "sense_pool(0x%p): free\n",
4830 				     ioc->sense));
4831 		ioc->sense = NULL;
4832 	}
4833 
4834 	if (ioc->reply) {
4835 		dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
4836 		dma_pool_destroy(ioc->reply_dma_pool);
4837 		dexitprintk(ioc,
4838 			    ioc_info(ioc, "reply_pool(0x%p): free\n",
4839 				     ioc->reply));
4840 		ioc->reply = NULL;
4841 	}
4842 
4843 	if (ioc->reply_free) {
4844 		dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
4845 		    ioc->reply_free_dma);
4846 		dma_pool_destroy(ioc->reply_free_dma_pool);
4847 		dexitprintk(ioc,
4848 			    ioc_info(ioc, "reply_free_pool(0x%p): free\n",
4849 				     ioc->reply_free));
4850 		ioc->reply_free = NULL;
4851 	}
4852 
4853 	if (ioc->reply_post) {
4854 		dma_alloc_count = DIV_ROUND_UP(count,
4855 				RDPQ_MAX_INDEX_IN_ONE_CHUNK);
4856 		for (i = 0; i < count; i++) {
4857 			if (i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0
4858 			    && dma_alloc_count) {
4859 				if (ioc->reply_post[i].reply_post_free) {
4860 					dma_pool_free(
4861 					    ioc->reply_post_free_dma_pool,
4862 					    ioc->reply_post[i].reply_post_free,
4863 					ioc->reply_post[i].reply_post_free_dma);
4864 					dexitprintk(ioc, ioc_info(ioc,
4865 					   "reply_post_free_pool(0x%p): free\n",
4866 					   ioc->reply_post[i].reply_post_free));
4867 					ioc->reply_post[i].reply_post_free =
4868 									NULL;
4869 				}
4870 				--dma_alloc_count;
4871 			}
4872 		}
4873 		dma_pool_destroy(ioc->reply_post_free_dma_pool);
4874 		if (ioc->reply_post_free_array &&
4875 			ioc->rdpq_array_enable) {
4876 			dma_pool_free(ioc->reply_post_free_array_dma_pool,
4877 			    ioc->reply_post_free_array,
4878 			    ioc->reply_post_free_array_dma);
4879 			ioc->reply_post_free_array = NULL;
4880 		}
4881 		dma_pool_destroy(ioc->reply_post_free_array_dma_pool);
4882 		kfree(ioc->reply_post);
4883 	}
4884 
4885 	if (ioc->pcie_sgl_dma_pool) {
4886 		for (i = 0; i < ioc->scsiio_depth; i++) {
4887 			dma_pool_free(ioc->pcie_sgl_dma_pool,
4888 					ioc->pcie_sg_lookup[i].pcie_sgl,
4889 					ioc->pcie_sg_lookup[i].pcie_sgl_dma);
4890 		}
4891 		dma_pool_destroy(ioc->pcie_sgl_dma_pool);
4892 	}
4893 
4894 	if (ioc->config_page) {
4895 		dexitprintk(ioc,
4896 			    ioc_info(ioc, "config_page(0x%p): free\n",
4897 				     ioc->config_page));
4898 		dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz,
4899 		    ioc->config_page, ioc->config_page_dma);
4900 	}
4901 
4902 	kfree(ioc->hpr_lookup);
4903 	ioc->hpr_lookup = NULL;
4904 	kfree(ioc->internal_lookup);
4905 	ioc->internal_lookup = NULL;
4906 	if (ioc->chain_lookup) {
4907 		for (i = 0; i < ioc->scsiio_depth; i++) {
4908 			for (j = ioc->chains_per_prp_buffer;
4909 			    j < ioc->chains_needed_per_io; j++) {
4910 				ct = &ioc->chain_lookup[i].chains_per_smid[j];
4911 				if (ct && ct->chain_buffer)
4912 					dma_pool_free(ioc->chain_dma_pool,
4913 						ct->chain_buffer,
4914 						ct->chain_buffer_dma);
4915 			}
4916 			kfree(ioc->chain_lookup[i].chains_per_smid);
4917 		}
4918 		dma_pool_destroy(ioc->chain_dma_pool);
4919 		kfree(ioc->chain_lookup);
4920 		ioc->chain_lookup = NULL;
4921 	}
4922 }
4923 
4924 /**
4925  * mpt3sas_check_same_4gb_region - checks whether all reply queues in a set are
4926  *	having same upper 32bits in their base memory address.
4927  * @reply_pool_start_address: Base address of a reply queue set
4928  * @pool_sz: Size of single Reply Descriptor Post Queues pool size
4929  *
4930  * Return: 1 if reply queues in a set have a same upper 32bits in their base
4931  * memory address, else 0.
4932  */
4933 
4934 static int
4935 mpt3sas_check_same_4gb_region(long reply_pool_start_address, u32 pool_sz)
4936 {
4937 	long reply_pool_end_address;
4938 
4939 	reply_pool_end_address = reply_pool_start_address + pool_sz;
4940 
4941 	if (upper_32_bits(reply_pool_start_address) ==
4942 		upper_32_bits(reply_pool_end_address))
4943 		return 1;
4944 	else
4945 		return 0;
4946 }
4947 
4948 /**
4949  * base_alloc_rdpq_dma_pool - Allocating DMA'able memory
4950  *                     for reply queues.
4951  * @ioc: per adapter object
4952  * @sz: DMA Pool size
4953  * Return: 0 for success, non-zero for failure.
4954  */
4955 static int
4956 base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER *ioc, int sz)
4957 {
4958 	int i = 0;
4959 	u32 dma_alloc_count = 0;
4960 	int reply_post_free_sz = ioc->reply_post_queue_depth *
4961 		sizeof(Mpi2DefaultReplyDescriptor_t);
4962 	int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
4963 
4964 	ioc->reply_post = kcalloc(count, sizeof(struct reply_post_struct),
4965 			GFP_KERNEL);
4966 	if (!ioc->reply_post)
4967 		return -ENOMEM;
4968 	/*
4969 	 *  For INVADER_SERIES each set of 8 reply queues(0-7, 8-15, ..) and
4970 	 *  VENTURA_SERIES each set of 16 reply queues(0-15, 16-31, ..) should
4971 	 *  be within 4GB boundary i.e reply queues in a set must have same
4972 	 *  upper 32-bits in their memory address. so here driver is allocating
4973 	 *  the DMA'able memory for reply queues according.
4974 	 *  Driver uses limitation of
4975 	 *  VENTURA_SERIES to manage INVADER_SERIES as well.
4976 	 */
4977 	dma_alloc_count = DIV_ROUND_UP(count,
4978 				RDPQ_MAX_INDEX_IN_ONE_CHUNK);
4979 	ioc->reply_post_free_dma_pool =
4980 		dma_pool_create("reply_post_free pool",
4981 		    &ioc->pdev->dev, sz, 16, 0);
4982 	if (!ioc->reply_post_free_dma_pool)
4983 		return -ENOMEM;
4984 	for (i = 0; i < count; i++) {
4985 		if ((i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0) && dma_alloc_count) {
4986 			ioc->reply_post[i].reply_post_free =
4987 			    dma_pool_zalloc(ioc->reply_post_free_dma_pool,
4988 				GFP_KERNEL,
4989 				&ioc->reply_post[i].reply_post_free_dma);
4990 			if (!ioc->reply_post[i].reply_post_free)
4991 				return -ENOMEM;
4992 			/*
4993 			 * Each set of RDPQ pool must satisfy 4gb boundary
4994 			 * restriction.
4995 			 * 1) Check if allocated resources for RDPQ pool are in
4996 			 *	the same 4GB range.
4997 			 * 2) If #1 is true, continue with 64 bit DMA.
4998 			 * 3) If #1 is false, return 1. which means free all the
4999 			 * resources and set DMA mask to 32 and allocate.
5000 			 */
5001 			if (!mpt3sas_check_same_4gb_region(
5002 				(long)ioc->reply_post[i].reply_post_free, sz)) {
5003 				dinitprintk(ioc,
5004 				    ioc_err(ioc, "bad Replypost free pool(0x%p)"
5005 				    "reply_post_free_dma = (0x%llx)\n",
5006 				    ioc->reply_post[i].reply_post_free,
5007 				    (unsigned long long)
5008 				    ioc->reply_post[i].reply_post_free_dma));
5009 				return -EAGAIN;
5010 			}
5011 			dma_alloc_count--;
5012 
5013 		} else {
5014 			ioc->reply_post[i].reply_post_free =
5015 			    (Mpi2ReplyDescriptorsUnion_t *)
5016 			    ((long)ioc->reply_post[i-1].reply_post_free
5017 			    + reply_post_free_sz);
5018 			ioc->reply_post[i].reply_post_free_dma =
5019 			    (dma_addr_t)
5020 			    (ioc->reply_post[i-1].reply_post_free_dma +
5021 			    reply_post_free_sz);
5022 		}
5023 	}
5024 	return 0;
5025 }
5026 
5027 /**
5028  * _base_allocate_memory_pools - allocate start of day memory pools
5029  * @ioc: per adapter object
5030  *
5031  * Return: 0 success, anything else error.
5032  */
5033 static int
5034 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
5035 {
5036 	struct mpt3sas_facts *facts;
5037 	u16 max_sge_elements;
5038 	u16 chains_needed_per_io;
5039 	u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz;
5040 	u32 retry_sz;
5041 	u32 rdpq_sz = 0;
5042 	u16 max_request_credit, nvme_blocks_needed;
5043 	unsigned short sg_tablesize;
5044 	u16 sge_size;
5045 	int i, j;
5046 	int ret = 0;
5047 	struct chain_tracker *ct;
5048 
5049 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5050 
5051 
5052 	retry_sz = 0;
5053 	facts = &ioc->facts;
5054 
5055 	/* command line tunables for max sgl entries */
5056 	if (max_sgl_entries != -1)
5057 		sg_tablesize = max_sgl_entries;
5058 	else {
5059 		if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
5060 			sg_tablesize = MPT2SAS_SG_DEPTH;
5061 		else
5062 			sg_tablesize = MPT3SAS_SG_DEPTH;
5063 	}
5064 
5065 	/* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
5066 	if (reset_devices)
5067 		sg_tablesize = min_t(unsigned short, sg_tablesize,
5068 		   MPT_KDUMP_MIN_PHYS_SEGMENTS);
5069 
5070 	if (ioc->is_mcpu_endpoint)
5071 		ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
5072 	else {
5073 		if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
5074 			sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
5075 		else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
5076 			sg_tablesize = min_t(unsigned short, sg_tablesize,
5077 					SG_MAX_SEGMENTS);
5078 			ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n",
5079 				 sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
5080 		}
5081 		ioc->shost->sg_tablesize = sg_tablesize;
5082 	}
5083 
5084 	ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
5085 		(facts->RequestCredit / 4));
5086 	if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
5087 		if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
5088 				INTERNAL_SCSIIO_CMDS_COUNT)) {
5089 			ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n",
5090 				facts->RequestCredit);
5091 			return -ENOMEM;
5092 		}
5093 		ioc->internal_depth = 10;
5094 	}
5095 
5096 	ioc->hi_priority_depth = ioc->internal_depth - (5);
5097 	/* command line tunables  for max controller queue depth */
5098 	if (max_queue_depth != -1 && max_queue_depth != 0) {
5099 		max_request_credit = min_t(u16, max_queue_depth +
5100 			ioc->internal_depth, facts->RequestCredit);
5101 		if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
5102 			max_request_credit =  MAX_HBA_QUEUE_DEPTH;
5103 	} else if (reset_devices)
5104 		max_request_credit = min_t(u16, facts->RequestCredit,
5105 		    (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth));
5106 	else
5107 		max_request_credit = min_t(u16, facts->RequestCredit,
5108 		    MAX_HBA_QUEUE_DEPTH);
5109 
5110 	/* Firmware maintains additional facts->HighPriorityCredit number of
5111 	 * credits for HiPriprity Request messages, so hba queue depth will be
5112 	 * sum of max_request_credit and high priority queue depth.
5113 	 */
5114 	ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
5115 
5116 	/* request frame size */
5117 	ioc->request_sz = facts->IOCRequestFrameSize * 4;
5118 
5119 	/* reply frame size */
5120 	ioc->reply_sz = facts->ReplyFrameSize * 4;
5121 
5122 	/* chain segment size */
5123 	if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
5124 		if (facts->IOCMaxChainSegmentSize)
5125 			ioc->chain_segment_sz =
5126 					facts->IOCMaxChainSegmentSize *
5127 					MAX_CHAIN_ELEMT_SZ;
5128 		else
5129 		/* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
5130 			ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
5131 						    MAX_CHAIN_ELEMT_SZ;
5132 	} else
5133 		ioc->chain_segment_sz = ioc->request_sz;
5134 
5135 	/* calculate the max scatter element size */
5136 	sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
5137 
5138  retry_allocation:
5139 	total_sz = 0;
5140 	/* calculate number of sg elements left over in the 1st frame */
5141 	max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
5142 	    sizeof(Mpi2SGEIOUnion_t)) + sge_size);
5143 	ioc->max_sges_in_main_message = max_sge_elements/sge_size;
5144 
5145 	/* now do the same for a chain buffer */
5146 	max_sge_elements = ioc->chain_segment_sz - sge_size;
5147 	ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
5148 
5149 	/*
5150 	 *  MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
5151 	 */
5152 	chains_needed_per_io = ((ioc->shost->sg_tablesize -
5153 	   ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
5154 	    + 1;
5155 	if (chains_needed_per_io > facts->MaxChainDepth) {
5156 		chains_needed_per_io = facts->MaxChainDepth;
5157 		ioc->shost->sg_tablesize = min_t(u16,
5158 		ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
5159 		* chains_needed_per_io), ioc->shost->sg_tablesize);
5160 	}
5161 	ioc->chains_needed_per_io = chains_needed_per_io;
5162 
5163 	/* reply free queue sizing - taking into account for 64 FW events */
5164 	ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
5165 
5166 	/* mCPU manage single counters for simplicity */
5167 	if (ioc->is_mcpu_endpoint)
5168 		ioc->reply_post_queue_depth = ioc->reply_free_queue_depth;
5169 	else {
5170 		/* calculate reply descriptor post queue depth */
5171 		ioc->reply_post_queue_depth = ioc->hba_queue_depth +
5172 			ioc->reply_free_queue_depth +  1;
5173 		/* align the reply post queue on the next 16 count boundary */
5174 		if (ioc->reply_post_queue_depth % 16)
5175 			ioc->reply_post_queue_depth += 16 -
5176 				(ioc->reply_post_queue_depth % 16);
5177 	}
5178 
5179 	if (ioc->reply_post_queue_depth >
5180 	    facts->MaxReplyDescriptorPostQueueDepth) {
5181 		ioc->reply_post_queue_depth =
5182 				facts->MaxReplyDescriptorPostQueueDepth -
5183 		    (facts->MaxReplyDescriptorPostQueueDepth % 16);
5184 		ioc->hba_queue_depth =
5185 				((ioc->reply_post_queue_depth - 64) / 2) - 1;
5186 		ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
5187 	}
5188 
5189 	ioc_info(ioc,
5190 	    "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), "
5191 	    "sge_per_io(%d), chains_per_io(%d)\n",
5192 	    ioc->max_sges_in_main_message,
5193 	    ioc->max_sges_in_chain_message,
5194 	    ioc->shost->sg_tablesize,
5195 	    ioc->chains_needed_per_io);
5196 
5197 	/* reply post queue, 16 byte align */
5198 	reply_post_free_sz = ioc->reply_post_queue_depth *
5199 	    sizeof(Mpi2DefaultReplyDescriptor_t);
5200 	rdpq_sz = reply_post_free_sz * RDPQ_MAX_INDEX_IN_ONE_CHUNK;
5201 	if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
5202 		rdpq_sz = reply_post_free_sz * ioc->reply_queue_count;
5203 	ret = base_alloc_rdpq_dma_pool(ioc, rdpq_sz);
5204 	if (ret == -EAGAIN) {
5205 		/*
5206 		 * Free allocated bad RDPQ memory pools.
5207 		 * Change dma coherent mask to 32 bit and reallocate RDPQ
5208 		 */
5209 		_base_release_memory_pools(ioc);
5210 		ioc->use_32bit_dma = true;
5211 		if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
5212 			ioc_err(ioc,
5213 			    "32 DMA mask failed %s\n", pci_name(ioc->pdev));
5214 			return -ENODEV;
5215 		}
5216 		if (base_alloc_rdpq_dma_pool(ioc, rdpq_sz))
5217 			return -ENOMEM;
5218 	} else if (ret == -ENOMEM)
5219 		return -ENOMEM;
5220 	total_sz = rdpq_sz * (!ioc->rdpq_array_enable ? 1 :
5221 	    DIV_ROUND_UP(ioc->reply_queue_count, RDPQ_MAX_INDEX_IN_ONE_CHUNK));
5222 	ioc->scsiio_depth = ioc->hba_queue_depth -
5223 	    ioc->hi_priority_depth - ioc->internal_depth;
5224 
5225 	/* set the scsi host can_queue depth
5226 	 * with some internal commands that could be outstanding
5227 	 */
5228 	ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
5229 	dinitprintk(ioc,
5230 		    ioc_info(ioc, "scsi host: can_queue depth (%d)\n",
5231 			     ioc->shost->can_queue));
5232 
5233 	/* contiguous pool for request and chains, 16 byte align, one extra "
5234 	 * "frame for smid=0
5235 	 */
5236 	ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
5237 	sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
5238 
5239 	/* hi-priority queue */
5240 	sz += (ioc->hi_priority_depth * ioc->request_sz);
5241 
5242 	/* internal queue */
5243 	sz += (ioc->internal_depth * ioc->request_sz);
5244 
5245 	ioc->request_dma_sz = sz;
5246 	ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz,
5247 			&ioc->request_dma, GFP_KERNEL);
5248 	if (!ioc->request) {
5249 		ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n",
5250 			ioc->hba_queue_depth, ioc->chains_needed_per_io,
5251 			ioc->request_sz, sz / 1024);
5252 		if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
5253 			goto out;
5254 		retry_sz = 64;
5255 		ioc->hba_queue_depth -= retry_sz;
5256 		_base_release_memory_pools(ioc);
5257 		goto retry_allocation;
5258 	}
5259 	memset(ioc->request, 0, sz);
5260 
5261 	if (retry_sz)
5262 		ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n",
5263 			ioc->hba_queue_depth, ioc->chains_needed_per_io,
5264 			ioc->request_sz, sz / 1024);
5265 
5266 	/* hi-priority queue */
5267 	ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
5268 	    ioc->request_sz);
5269 	ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
5270 	    ioc->request_sz);
5271 
5272 	/* internal queue */
5273 	ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
5274 	    ioc->request_sz);
5275 	ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
5276 	    ioc->request_sz);
5277 
5278 	ioc_info(ioc,
5279 	    "request pool(0x%p) - dma(0x%llx): "
5280 	    "depth(%d), frame_size(%d), pool_size(%d kB)\n",
5281 	    ioc->request, (unsigned long long) ioc->request_dma,
5282 	    ioc->hba_queue_depth, ioc->request_sz,
5283 	    (ioc->hba_queue_depth * ioc->request_sz) / 1024);
5284 
5285 	total_sz += sz;
5286 
5287 	dinitprintk(ioc,
5288 		    ioc_info(ioc, "scsiio(0x%p): depth(%d)\n",
5289 			     ioc->request, ioc->scsiio_depth));
5290 
5291 	ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
5292 	sz = ioc->scsiio_depth * sizeof(struct chain_lookup);
5293 	ioc->chain_lookup = kzalloc(sz, GFP_KERNEL);
5294 	if (!ioc->chain_lookup) {
5295 		ioc_err(ioc, "chain_lookup: __get_free_pages failed\n");
5296 		goto out;
5297 	}
5298 
5299 	sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker);
5300 	for (i = 0; i < ioc->scsiio_depth; i++) {
5301 		ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL);
5302 		if (!ioc->chain_lookup[i].chains_per_smid) {
5303 			ioc_err(ioc, "chain_lookup: kzalloc failed\n");
5304 			goto out;
5305 		}
5306 	}
5307 
5308 	/* initialize hi-priority queue smid's */
5309 	ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
5310 	    sizeof(struct request_tracker), GFP_KERNEL);
5311 	if (!ioc->hpr_lookup) {
5312 		ioc_err(ioc, "hpr_lookup: kcalloc failed\n");
5313 		goto out;
5314 	}
5315 	ioc->hi_priority_smid = ioc->scsiio_depth + 1;
5316 	dinitprintk(ioc,
5317 		    ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n",
5318 			     ioc->hi_priority,
5319 			     ioc->hi_priority_depth, ioc->hi_priority_smid));
5320 
5321 	/* initialize internal queue smid's */
5322 	ioc->internal_lookup = kcalloc(ioc->internal_depth,
5323 	    sizeof(struct request_tracker), GFP_KERNEL);
5324 	if (!ioc->internal_lookup) {
5325 		ioc_err(ioc, "internal_lookup: kcalloc failed\n");
5326 		goto out;
5327 	}
5328 	ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
5329 	dinitprintk(ioc,
5330 		    ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n",
5331 			     ioc->internal,
5332 			     ioc->internal_depth, ioc->internal_smid));
5333 	/*
5334 	 * The number of NVMe page sized blocks needed is:
5335 	 *     (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
5336 	 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
5337 	 * that is placed in the main message frame.  8 is the size of each PRP
5338 	 * entry or PRP list pointer entry.  8 is subtracted from page_size
5339 	 * because of the PRP list pointer entry at the end of a page, so this
5340 	 * is not counted as a PRP entry.  The 1 added page is a round up.
5341 	 *
5342 	 * To avoid allocation failures due to the amount of memory that could
5343 	 * be required for NVMe PRP's, only each set of NVMe blocks will be
5344 	 * contiguous, so a new set is allocated for each possible I/O.
5345 	 */
5346 	ioc->chains_per_prp_buffer = 0;
5347 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
5348 		nvme_blocks_needed =
5349 			(ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1;
5350 		nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE);
5351 		nvme_blocks_needed++;
5352 
5353 		sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth;
5354 		ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL);
5355 		if (!ioc->pcie_sg_lookup) {
5356 			ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n");
5357 			goto out;
5358 		}
5359 		sz = nvme_blocks_needed * ioc->page_size;
5360 		ioc->pcie_sgl_dma_pool =
5361 			dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz, 16, 0);
5362 		if (!ioc->pcie_sgl_dma_pool) {
5363 			ioc_info(ioc, "PCIe SGL pool: dma_pool_create failed\n");
5364 			goto out;
5365 		}
5366 
5367 		ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz;
5368 		ioc->chains_per_prp_buffer = min(ioc->chains_per_prp_buffer,
5369 						ioc->chains_needed_per_io);
5370 
5371 		for (i = 0; i < ioc->scsiio_depth; i++) {
5372 			ioc->pcie_sg_lookup[i].pcie_sgl = dma_pool_alloc(
5373 				ioc->pcie_sgl_dma_pool, GFP_KERNEL,
5374 				&ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5375 			if (!ioc->pcie_sg_lookup[i].pcie_sgl) {
5376 				ioc_info(ioc, "PCIe SGL pool: dma_pool_alloc failed\n");
5377 				goto out;
5378 			}
5379 			for (j = 0; j < ioc->chains_per_prp_buffer; j++) {
5380 				ct = &ioc->chain_lookup[i].chains_per_smid[j];
5381 				ct->chain_buffer =
5382 				    ioc->pcie_sg_lookup[i].pcie_sgl +
5383 				    (j * ioc->chain_segment_sz);
5384 				ct->chain_buffer_dma =
5385 				    ioc->pcie_sg_lookup[i].pcie_sgl_dma +
5386 				    (j * ioc->chain_segment_sz);
5387 			}
5388 		}
5389 
5390 		dinitprintk(ioc,
5391 			    ioc_info(ioc, "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n",
5392 				     ioc->scsiio_depth, sz,
5393 				     (sz * ioc->scsiio_depth) / 1024));
5394 		dinitprintk(ioc,
5395 			    ioc_info(ioc, "Number of chains can fit in a PRP page(%d)\n",
5396 				     ioc->chains_per_prp_buffer));
5397 		total_sz += sz * ioc->scsiio_depth;
5398 	}
5399 
5400 	ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev,
5401 	    ioc->chain_segment_sz, 16, 0);
5402 	if (!ioc->chain_dma_pool) {
5403 		ioc_err(ioc, "chain_dma_pool: dma_pool_create failed\n");
5404 		goto out;
5405 	}
5406 	for (i = 0; i < ioc->scsiio_depth; i++) {
5407 		for (j = ioc->chains_per_prp_buffer;
5408 				j < ioc->chains_needed_per_io; j++) {
5409 			ct = &ioc->chain_lookup[i].chains_per_smid[j];
5410 			ct->chain_buffer = dma_pool_alloc(
5411 					ioc->chain_dma_pool, GFP_KERNEL,
5412 					&ct->chain_buffer_dma);
5413 			if (!ct->chain_buffer) {
5414 				ioc_err(ioc, "chain_lookup: pci_pool_alloc failed\n");
5415 				goto out;
5416 			}
5417 		}
5418 		total_sz += ioc->chain_segment_sz;
5419 	}
5420 
5421 	dinitprintk(ioc,
5422 		    ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
5423 			     ioc->chain_depth, ioc->chain_segment_sz,
5424 			     (ioc->chain_depth * ioc->chain_segment_sz) / 1024));
5425 
5426 	/* sense buffers, 4 byte align */
5427 	sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
5428 	ioc->sense_dma_pool = dma_pool_create("sense pool", &ioc->pdev->dev, sz,
5429 					      4, 0);
5430 	if (!ioc->sense_dma_pool) {
5431 		ioc_err(ioc, "sense pool: dma_pool_create failed\n");
5432 		goto out;
5433 	}
5434 	ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
5435 	    &ioc->sense_dma);
5436 	if (!ioc->sense) {
5437 		ioc_err(ioc, "sense pool: dma_pool_alloc failed\n");
5438 		goto out;
5439 	}
5440 	/* sense buffer requires to be in same 4 gb region.
5441 	 * Below function will check the same.
5442 	 * In case of failure, new pci pool will be created with updated
5443 	 * alignment. Older allocation and pool will be destroyed.
5444 	 * Alignment will be used such a way that next allocation if
5445 	 * success, will always meet same 4gb region requirement.
5446 	 * Actual requirement is not alignment, but we need start and end of
5447 	 * DMA address must have same upper 32 bit address.
5448 	 */
5449 	if (!mpt3sas_check_same_4gb_region((long)ioc->sense, sz)) {
5450 		//Release Sense pool & Reallocate
5451 		dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
5452 		dma_pool_destroy(ioc->sense_dma_pool);
5453 		ioc->sense = NULL;
5454 
5455 		ioc->sense_dma_pool =
5456 			dma_pool_create("sense pool", &ioc->pdev->dev, sz,
5457 						roundup_pow_of_two(sz), 0);
5458 		if (!ioc->sense_dma_pool) {
5459 			ioc_err(ioc, "sense pool: pci_pool_create failed\n");
5460 			goto out;
5461 		}
5462 		ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
5463 				&ioc->sense_dma);
5464 		if (!ioc->sense) {
5465 			ioc_err(ioc, "sense pool: pci_pool_alloc failed\n");
5466 			goto out;
5467 		}
5468 	}
5469 	ioc_info(ioc,
5470 	    "sense pool(0x%p)- dma(0x%llx): depth(%d),"
5471 	    "element_size(%d), pool_size(%d kB)\n",
5472 	    ioc->sense, (unsigned long long)ioc->sense_dma, ioc->scsiio_depth,
5473 	    SCSI_SENSE_BUFFERSIZE, sz / 1024);
5474 
5475 	total_sz += sz;
5476 
5477 	/* reply pool, 4 byte align */
5478 	sz = ioc->reply_free_queue_depth * ioc->reply_sz;
5479 	ioc->reply_dma_pool = dma_pool_create("reply pool", &ioc->pdev->dev, sz,
5480 					      4, 0);
5481 	if (!ioc->reply_dma_pool) {
5482 		ioc_err(ioc, "reply pool: dma_pool_create failed\n");
5483 		goto out;
5484 	}
5485 	ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL,
5486 	    &ioc->reply_dma);
5487 	if (!ioc->reply) {
5488 		ioc_err(ioc, "reply pool: dma_pool_alloc failed\n");
5489 		goto out;
5490 	}
5491 	ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
5492 	ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
5493 	dinitprintk(ioc,
5494 		    ioc_info(ioc, "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
5495 			     ioc->reply, ioc->reply_free_queue_depth,
5496 			     ioc->reply_sz, sz / 1024));
5497 	dinitprintk(ioc,
5498 		    ioc_info(ioc, "reply_dma(0x%llx)\n",
5499 			     (unsigned long long)ioc->reply_dma));
5500 	total_sz += sz;
5501 
5502 	/* reply free queue, 16 byte align */
5503 	sz = ioc->reply_free_queue_depth * 4;
5504 	ioc->reply_free_dma_pool = dma_pool_create("reply_free pool",
5505 	    &ioc->pdev->dev, sz, 16, 0);
5506 	if (!ioc->reply_free_dma_pool) {
5507 		ioc_err(ioc, "reply_free pool: dma_pool_create failed\n");
5508 		goto out;
5509 	}
5510 	ioc->reply_free = dma_pool_zalloc(ioc->reply_free_dma_pool, GFP_KERNEL,
5511 	    &ioc->reply_free_dma);
5512 	if (!ioc->reply_free) {
5513 		ioc_err(ioc, "reply_free pool: dma_pool_alloc failed\n");
5514 		goto out;
5515 	}
5516 	dinitprintk(ioc,
5517 		    ioc_info(ioc, "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
5518 			     ioc->reply_free, ioc->reply_free_queue_depth,
5519 			     4, sz / 1024));
5520 	dinitprintk(ioc,
5521 		    ioc_info(ioc, "reply_free_dma (0x%llx)\n",
5522 			     (unsigned long long)ioc->reply_free_dma));
5523 	total_sz += sz;
5524 
5525 	if (ioc->rdpq_array_enable) {
5526 		reply_post_free_array_sz = ioc->reply_queue_count *
5527 		    sizeof(Mpi2IOCInitRDPQArrayEntry);
5528 		ioc->reply_post_free_array_dma_pool =
5529 		    dma_pool_create("reply_post_free_array pool",
5530 		    &ioc->pdev->dev, reply_post_free_array_sz, 16, 0);
5531 		if (!ioc->reply_post_free_array_dma_pool) {
5532 			dinitprintk(ioc,
5533 				    ioc_info(ioc, "reply_post_free_array pool: dma_pool_create failed\n"));
5534 			goto out;
5535 		}
5536 		ioc->reply_post_free_array =
5537 		    dma_pool_alloc(ioc->reply_post_free_array_dma_pool,
5538 		    GFP_KERNEL, &ioc->reply_post_free_array_dma);
5539 		if (!ioc->reply_post_free_array) {
5540 			dinitprintk(ioc,
5541 				    ioc_info(ioc, "reply_post_free_array pool: dma_pool_alloc failed\n"));
5542 			goto out;
5543 		}
5544 	}
5545 	ioc->config_page_sz = 512;
5546 	ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev,
5547 			ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL);
5548 	if (!ioc->config_page) {
5549 		ioc_err(ioc, "config page: dma_pool_alloc failed\n");
5550 		goto out;
5551 	}
5552 
5553 	ioc_info(ioc, "config page(0x%p) - dma(0x%llx): size(%d)\n",
5554 	    ioc->config_page, (unsigned long long)ioc->config_page_dma,
5555 	    ioc->config_page_sz);
5556 	total_sz += ioc->config_page_sz;
5557 
5558 	ioc_info(ioc, "Allocated physical memory: size(%d kB)\n",
5559 		 total_sz / 1024);
5560 	ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
5561 		 ioc->shost->can_queue, facts->RequestCredit);
5562 	ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n",
5563 		 ioc->shost->sg_tablesize);
5564 	return 0;
5565 
5566  out:
5567 	return -ENOMEM;
5568 }
5569 
5570 /**
5571  * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
5572  * @ioc: Pointer to MPT_ADAPTER structure
5573  * @cooked: Request raw or cooked IOC state
5574  *
5575  * Return: all IOC Doorbell register bits if cooked==0, else just the
5576  * Doorbell bits in MPI_IOC_STATE_MASK.
5577  */
5578 u32
5579 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
5580 {
5581 	u32 s, sc;
5582 
5583 	s = ioc->base_readl(&ioc->chip->Doorbell);
5584 	sc = s & MPI2_IOC_STATE_MASK;
5585 	return cooked ? sc : s;
5586 }
5587 
5588 /**
5589  * _base_wait_on_iocstate - waiting on a particular ioc state
5590  * @ioc: ?
5591  * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
5592  * @timeout: timeout in second
5593  *
5594  * Return: 0 for success, non-zero for failure.
5595  */
5596 static int
5597 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
5598 {
5599 	u32 count, cntdn;
5600 	u32 current_state;
5601 
5602 	count = 0;
5603 	cntdn = 1000 * timeout;
5604 	do {
5605 		current_state = mpt3sas_base_get_iocstate(ioc, 1);
5606 		if (current_state == ioc_state)
5607 			return 0;
5608 		if (count && current_state == MPI2_IOC_STATE_FAULT)
5609 			break;
5610 		if (count && current_state == MPI2_IOC_STATE_COREDUMP)
5611 			break;
5612 
5613 		usleep_range(1000, 1500);
5614 		count++;
5615 	} while (--cntdn);
5616 
5617 	return current_state;
5618 }
5619 
5620 /**
5621  * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
5622  * a write to the doorbell)
5623  * @ioc: per adapter object
5624  *
5625  * Return: 0 for success, non-zero for failure.
5626  *
5627  * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
5628  */
5629 
5630 static int
5631 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
5632 {
5633 	u32 cntdn, count;
5634 	u32 int_status;
5635 
5636 	count = 0;
5637 	cntdn = 1000 * timeout;
5638 	do {
5639 		int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
5640 		if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5641 			dhsprintk(ioc,
5642 				  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5643 					   __func__, count, timeout));
5644 			return 0;
5645 		}
5646 
5647 		usleep_range(1000, 1500);
5648 		count++;
5649 	} while (--cntdn);
5650 
5651 	ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
5652 		__func__, count, int_status);
5653 	return -EFAULT;
5654 }
5655 
5656 static int
5657 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
5658 {
5659 	u32 cntdn, count;
5660 	u32 int_status;
5661 
5662 	count = 0;
5663 	cntdn = 2000 * timeout;
5664 	do {
5665 		int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
5666 		if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5667 			dhsprintk(ioc,
5668 				  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5669 					   __func__, count, timeout));
5670 			return 0;
5671 		}
5672 
5673 		udelay(500);
5674 		count++;
5675 	} while (--cntdn);
5676 
5677 	ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
5678 		__func__, count, int_status);
5679 	return -EFAULT;
5680 
5681 }
5682 
5683 /**
5684  * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
5685  * @ioc: per adapter object
5686  * @timeout: timeout in second
5687  *
5688  * Return: 0 for success, non-zero for failure.
5689  *
5690  * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
5691  * doorbell.
5692  */
5693 static int
5694 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
5695 {
5696 	u32 cntdn, count;
5697 	u32 int_status;
5698 	u32 doorbell;
5699 
5700 	count = 0;
5701 	cntdn = 1000 * timeout;
5702 	do {
5703 		int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
5704 		if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
5705 			dhsprintk(ioc,
5706 				  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5707 					   __func__, count, timeout));
5708 			return 0;
5709 		} else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5710 			doorbell = ioc->base_readl(&ioc->chip->Doorbell);
5711 			if ((doorbell & MPI2_IOC_STATE_MASK) ==
5712 			    MPI2_IOC_STATE_FAULT) {
5713 				mpt3sas_print_fault_code(ioc, doorbell);
5714 				return -EFAULT;
5715 			}
5716 			if ((doorbell & MPI2_IOC_STATE_MASK) ==
5717 			    MPI2_IOC_STATE_COREDUMP) {
5718 				mpt3sas_print_coredump_info(ioc, doorbell);
5719 				return -EFAULT;
5720 			}
5721 		} else if (int_status == 0xFFFFFFFF)
5722 			goto out;
5723 
5724 		usleep_range(1000, 1500);
5725 		count++;
5726 	} while (--cntdn);
5727 
5728  out:
5729 	ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
5730 		__func__, count, int_status);
5731 	return -EFAULT;
5732 }
5733 
5734 /**
5735  * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
5736  * @ioc: per adapter object
5737  * @timeout: timeout in second
5738  *
5739  * Return: 0 for success, non-zero for failure.
5740  */
5741 static int
5742 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
5743 {
5744 	u32 cntdn, count;
5745 	u32 doorbell_reg;
5746 
5747 	count = 0;
5748 	cntdn = 1000 * timeout;
5749 	do {
5750 		doorbell_reg = ioc->base_readl(&ioc->chip->Doorbell);
5751 		if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
5752 			dhsprintk(ioc,
5753 				  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5754 					   __func__, count, timeout));
5755 			return 0;
5756 		}
5757 
5758 		usleep_range(1000, 1500);
5759 		count++;
5760 	} while (--cntdn);
5761 
5762 	ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
5763 		__func__, count, doorbell_reg);
5764 	return -EFAULT;
5765 }
5766 
5767 /**
5768  * _base_send_ioc_reset - send doorbell reset
5769  * @ioc: per adapter object
5770  * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
5771  * @timeout: timeout in second
5772  *
5773  * Return: 0 for success, non-zero for failure.
5774  */
5775 static int
5776 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
5777 {
5778 	u32 ioc_state;
5779 	int r = 0;
5780 	unsigned long flags;
5781 
5782 	if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
5783 		ioc_err(ioc, "%s: unknown reset_type\n", __func__);
5784 		return -EFAULT;
5785 	}
5786 
5787 	if (!(ioc->facts.IOCCapabilities &
5788 	   MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
5789 		return -EFAULT;
5790 
5791 	ioc_info(ioc, "sending message unit reset !!\n");
5792 
5793 	writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
5794 	    &ioc->chip->Doorbell);
5795 	if ((_base_wait_for_doorbell_ack(ioc, 15))) {
5796 		r = -EFAULT;
5797 		goto out;
5798 	}
5799 
5800 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
5801 	if (ioc_state) {
5802 		ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
5803 			__func__, ioc_state);
5804 		r = -EFAULT;
5805 		goto out;
5806 	}
5807  out:
5808 	if (r != 0) {
5809 		ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5810 		spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5811 		/*
5812 		 * Wait for IOC state CoreDump to clear only during
5813 		 * HBA initialization & release time.
5814 		 */
5815 		if ((ioc_state & MPI2_IOC_STATE_MASK) ==
5816 		    MPI2_IOC_STATE_COREDUMP && (ioc->is_driver_loading == 1 ||
5817 		    ioc->fault_reset_work_q == NULL)) {
5818 			spin_unlock_irqrestore(
5819 			    &ioc->ioc_reset_in_progress_lock, flags);
5820 			mpt3sas_print_coredump_info(ioc, ioc_state);
5821 			mpt3sas_base_wait_for_coredump_completion(ioc,
5822 			    __func__);
5823 			spin_lock_irqsave(
5824 			    &ioc->ioc_reset_in_progress_lock, flags);
5825 		}
5826 		spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5827 	}
5828 	ioc_info(ioc, "message unit reset: %s\n",
5829 		 r == 0 ? "SUCCESS" : "FAILED");
5830 	return r;
5831 }
5832 
5833 /**
5834  * mpt3sas_wait_for_ioc - IOC's operational state is checked here.
5835  * @ioc: per adapter object
5836  * @wait_count: timeout in seconds
5837  *
5838  * Return: Waits up to timeout seconds for the IOC to
5839  * become operational. Returns 0 if IOC is present
5840  * and operational; otherwise returns -EFAULT.
5841  */
5842 
5843 int
5844 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout)
5845 {
5846 	int wait_state_count = 0;
5847 	u32 ioc_state;
5848 
5849 	do {
5850 		ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
5851 		if (ioc_state == MPI2_IOC_STATE_OPERATIONAL)
5852 			break;
5853 		ssleep(1);
5854 		ioc_info(ioc, "%s: waiting for operational state(count=%d)\n",
5855 				__func__, ++wait_state_count);
5856 	} while (--timeout);
5857 	if (!timeout) {
5858 		ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__);
5859 		return -EFAULT;
5860 	}
5861 	if (wait_state_count)
5862 		ioc_info(ioc, "ioc is operational\n");
5863 	return 0;
5864 }
5865 
5866 /**
5867  * _base_handshake_req_reply_wait - send request thru doorbell interface
5868  * @ioc: per adapter object
5869  * @request_bytes: request length
5870  * @request: pointer having request payload
5871  * @reply_bytes: reply length
5872  * @reply: pointer to reply payload
5873  * @timeout: timeout in second
5874  *
5875  * Return: 0 for success, non-zero for failure.
5876  */
5877 static int
5878 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
5879 	u32 *request, int reply_bytes, u16 *reply, int timeout)
5880 {
5881 	MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
5882 	int i;
5883 	u8 failed;
5884 	__le32 *mfp;
5885 
5886 	/* make sure doorbell is not in use */
5887 	if ((ioc->base_readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
5888 		ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__);
5889 		return -EFAULT;
5890 	}
5891 
5892 	/* clear pending doorbell interrupts from previous state changes */
5893 	if (ioc->base_readl(&ioc->chip->HostInterruptStatus) &
5894 	    MPI2_HIS_IOC2SYS_DB_STATUS)
5895 		writel(0, &ioc->chip->HostInterruptStatus);
5896 
5897 	/* send message to ioc */
5898 	writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
5899 	    ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
5900 	    &ioc->chip->Doorbell);
5901 
5902 	if ((_base_spin_on_doorbell_int(ioc, 5))) {
5903 		ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
5904 			__LINE__);
5905 		return -EFAULT;
5906 	}
5907 	writel(0, &ioc->chip->HostInterruptStatus);
5908 
5909 	if ((_base_wait_for_doorbell_ack(ioc, 5))) {
5910 		ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n",
5911 			__LINE__);
5912 		return -EFAULT;
5913 	}
5914 
5915 	/* send message 32-bits at a time */
5916 	for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
5917 		writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
5918 		if ((_base_wait_for_doorbell_ack(ioc, 5)))
5919 			failed = 1;
5920 	}
5921 
5922 	if (failed) {
5923 		ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n",
5924 			__LINE__);
5925 		return -EFAULT;
5926 	}
5927 
5928 	/* now wait for the reply */
5929 	if ((_base_wait_for_doorbell_int(ioc, timeout))) {
5930 		ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
5931 			__LINE__);
5932 		return -EFAULT;
5933 	}
5934 
5935 	/* read the first two 16-bits, it gives the total length of the reply */
5936 	reply[0] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
5937 	    & MPI2_DOORBELL_DATA_MASK);
5938 	writel(0, &ioc->chip->HostInterruptStatus);
5939 	if ((_base_wait_for_doorbell_int(ioc, 5))) {
5940 		ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
5941 			__LINE__);
5942 		return -EFAULT;
5943 	}
5944 	reply[1] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
5945 	    & MPI2_DOORBELL_DATA_MASK);
5946 	writel(0, &ioc->chip->HostInterruptStatus);
5947 
5948 	for (i = 2; i < default_reply->MsgLength * 2; i++)  {
5949 		if ((_base_wait_for_doorbell_int(ioc, 5))) {
5950 			ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
5951 				__LINE__);
5952 			return -EFAULT;
5953 		}
5954 		if (i >=  reply_bytes/2) /* overflow case */
5955 			ioc->base_readl(&ioc->chip->Doorbell);
5956 		else
5957 			reply[i] = le16_to_cpu(
5958 			    ioc->base_readl(&ioc->chip->Doorbell)
5959 			    & MPI2_DOORBELL_DATA_MASK);
5960 		writel(0, &ioc->chip->HostInterruptStatus);
5961 	}
5962 
5963 	_base_wait_for_doorbell_int(ioc, 5);
5964 	if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
5965 		dhsprintk(ioc,
5966 			  ioc_info(ioc, "doorbell is in use (line=%d)\n",
5967 				   __LINE__));
5968 	}
5969 	writel(0, &ioc->chip->HostInterruptStatus);
5970 
5971 	if (ioc->logging_level & MPT_DEBUG_INIT) {
5972 		mfp = (__le32 *)reply;
5973 		pr_info("\toffset:data\n");
5974 		for (i = 0; i < reply_bytes/4; i++)
5975 			ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
5976 			    le32_to_cpu(mfp[i]));
5977 	}
5978 	return 0;
5979 }
5980 
5981 /**
5982  * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
5983  * @ioc: per adapter object
5984  * @mpi_reply: the reply payload from FW
5985  * @mpi_request: the request payload sent to FW
5986  *
5987  * The SAS IO Unit Control Request message allows the host to perform low-level
5988  * operations, such as resets on the PHYs of the IO Unit, also allows the host
5989  * to obtain the IOC assigned device handles for a device if it has other
5990  * identifying information about the device, in addition allows the host to
5991  * remove IOC resources associated with the device.
5992  *
5993  * Return: 0 for success, non-zero for failure.
5994  */
5995 int
5996 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
5997 	Mpi2SasIoUnitControlReply_t *mpi_reply,
5998 	Mpi2SasIoUnitControlRequest_t *mpi_request)
5999 {
6000 	u16 smid;
6001 	u8 issue_reset = 0;
6002 	int rc;
6003 	void *request;
6004 
6005 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6006 
6007 	mutex_lock(&ioc->base_cmds.mutex);
6008 
6009 	if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
6010 		ioc_err(ioc, "%s: base_cmd in use\n", __func__);
6011 		rc = -EAGAIN;
6012 		goto out;
6013 	}
6014 
6015 	rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
6016 	if (rc)
6017 		goto out;
6018 
6019 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
6020 	if (!smid) {
6021 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6022 		rc = -EAGAIN;
6023 		goto out;
6024 	}
6025 
6026 	rc = 0;
6027 	ioc->base_cmds.status = MPT3_CMD_PENDING;
6028 	request = mpt3sas_base_get_msg_frame(ioc, smid);
6029 	ioc->base_cmds.smid = smid;
6030 	memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
6031 	if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
6032 	    mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
6033 		ioc->ioc_link_reset_in_progress = 1;
6034 	init_completion(&ioc->base_cmds.done);
6035 	ioc->put_smid_default(ioc, smid);
6036 	wait_for_completion_timeout(&ioc->base_cmds.done,
6037 	    msecs_to_jiffies(10000));
6038 	if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
6039 	    mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
6040 	    ioc->ioc_link_reset_in_progress)
6041 		ioc->ioc_link_reset_in_progress = 0;
6042 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
6043 		mpt3sas_check_cmd_timeout(ioc, ioc->base_cmds.status,
6044 		    mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)/4,
6045 		    issue_reset);
6046 		goto issue_host_reset;
6047 	}
6048 	if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
6049 		memcpy(mpi_reply, ioc->base_cmds.reply,
6050 		    sizeof(Mpi2SasIoUnitControlReply_t));
6051 	else
6052 		memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
6053 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6054 	goto out;
6055 
6056  issue_host_reset:
6057 	if (issue_reset)
6058 		mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
6059 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6060 	rc = -EFAULT;
6061  out:
6062 	mutex_unlock(&ioc->base_cmds.mutex);
6063 	return rc;
6064 }
6065 
6066 /**
6067  * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
6068  * @ioc: per adapter object
6069  * @mpi_reply: the reply payload from FW
6070  * @mpi_request: the request payload sent to FW
6071  *
6072  * The SCSI Enclosure Processor request message causes the IOC to
6073  * communicate with SES devices to control LED status signals.
6074  *
6075  * Return: 0 for success, non-zero for failure.
6076  */
6077 int
6078 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
6079 	Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
6080 {
6081 	u16 smid;
6082 	u8 issue_reset = 0;
6083 	int rc;
6084 	void *request;
6085 
6086 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6087 
6088 	mutex_lock(&ioc->base_cmds.mutex);
6089 
6090 	if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
6091 		ioc_err(ioc, "%s: base_cmd in use\n", __func__);
6092 		rc = -EAGAIN;
6093 		goto out;
6094 	}
6095 
6096 	rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
6097 	if (rc)
6098 		goto out;
6099 
6100 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
6101 	if (!smid) {
6102 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6103 		rc = -EAGAIN;
6104 		goto out;
6105 	}
6106 
6107 	rc = 0;
6108 	ioc->base_cmds.status = MPT3_CMD_PENDING;
6109 	request = mpt3sas_base_get_msg_frame(ioc, smid);
6110 	ioc->base_cmds.smid = smid;
6111 	memset(request, 0, ioc->request_sz);
6112 	memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
6113 	init_completion(&ioc->base_cmds.done);
6114 	ioc->put_smid_default(ioc, smid);
6115 	wait_for_completion_timeout(&ioc->base_cmds.done,
6116 	    msecs_to_jiffies(10000));
6117 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
6118 		mpt3sas_check_cmd_timeout(ioc,
6119 		    ioc->base_cmds.status, mpi_request,
6120 		    sizeof(Mpi2SepRequest_t)/4, issue_reset);
6121 		goto issue_host_reset;
6122 	}
6123 	if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
6124 		memcpy(mpi_reply, ioc->base_cmds.reply,
6125 		    sizeof(Mpi2SepReply_t));
6126 	else
6127 		memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
6128 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6129 	goto out;
6130 
6131  issue_host_reset:
6132 	if (issue_reset)
6133 		mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
6134 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6135 	rc = -EFAULT;
6136  out:
6137 	mutex_unlock(&ioc->base_cmds.mutex);
6138 	return rc;
6139 }
6140 
6141 /**
6142  * _base_get_port_facts - obtain port facts reply and save in ioc
6143  * @ioc: per adapter object
6144  * @port: ?
6145  *
6146  * Return: 0 for success, non-zero for failure.
6147  */
6148 static int
6149 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
6150 {
6151 	Mpi2PortFactsRequest_t mpi_request;
6152 	Mpi2PortFactsReply_t mpi_reply;
6153 	struct mpt3sas_port_facts *pfacts;
6154 	int mpi_reply_sz, mpi_request_sz, r;
6155 
6156 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6157 
6158 	mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
6159 	mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
6160 	memset(&mpi_request, 0, mpi_request_sz);
6161 	mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
6162 	mpi_request.PortNumber = port;
6163 	r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
6164 	    (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
6165 
6166 	if (r != 0) {
6167 		ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
6168 		return r;
6169 	}
6170 
6171 	pfacts = &ioc->pfacts[port];
6172 	memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
6173 	pfacts->PortNumber = mpi_reply.PortNumber;
6174 	pfacts->VP_ID = mpi_reply.VP_ID;
6175 	pfacts->VF_ID = mpi_reply.VF_ID;
6176 	pfacts->MaxPostedCmdBuffers =
6177 	    le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
6178 
6179 	return 0;
6180 }
6181 
6182 /**
6183  * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
6184  * @ioc: per adapter object
6185  * @timeout:
6186  *
6187  * Return: 0 for success, non-zero for failure.
6188  */
6189 static int
6190 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
6191 {
6192 	u32 ioc_state;
6193 	int rc;
6194 
6195 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6196 
6197 	if (ioc->pci_error_recovery) {
6198 		dfailprintk(ioc,
6199 			    ioc_info(ioc, "%s: host in pci error recovery\n",
6200 				     __func__));
6201 		return -EFAULT;
6202 	}
6203 
6204 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6205 	dhsprintk(ioc,
6206 		  ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
6207 			   __func__, ioc_state));
6208 
6209 	if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
6210 	    (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
6211 		return 0;
6212 
6213 	if (ioc_state & MPI2_DOORBELL_USED) {
6214 		dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n"));
6215 		goto issue_diag_reset;
6216 	}
6217 
6218 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
6219 		mpt3sas_print_fault_code(ioc, ioc_state &
6220 		    MPI2_DOORBELL_DATA_MASK);
6221 		goto issue_diag_reset;
6222 	} else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
6223 	    MPI2_IOC_STATE_COREDUMP) {
6224 		ioc_info(ioc,
6225 		    "%s: Skipping the diag reset here. (ioc_state=0x%x)\n",
6226 		    __func__, ioc_state);
6227 		return -EFAULT;
6228 	}
6229 
6230 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
6231 	if (ioc_state) {
6232 		dfailprintk(ioc,
6233 			    ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6234 				     __func__, ioc_state));
6235 		return -EFAULT;
6236 	}
6237 
6238  issue_diag_reset:
6239 	rc = _base_diag_reset(ioc);
6240 	return rc;
6241 }
6242 
6243 /**
6244  * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
6245  * @ioc: per adapter object
6246  *
6247  * Return: 0 for success, non-zero for failure.
6248  */
6249 static int
6250 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
6251 {
6252 	Mpi2IOCFactsRequest_t mpi_request;
6253 	Mpi2IOCFactsReply_t mpi_reply;
6254 	struct mpt3sas_facts *facts;
6255 	int mpi_reply_sz, mpi_request_sz, r;
6256 
6257 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6258 
6259 	r = _base_wait_for_iocstate(ioc, 10);
6260 	if (r) {
6261 		dfailprintk(ioc,
6262 			    ioc_info(ioc, "%s: failed getting to correct state\n",
6263 				     __func__));
6264 		return r;
6265 	}
6266 	mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
6267 	mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
6268 	memset(&mpi_request, 0, mpi_request_sz);
6269 	mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
6270 	r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
6271 	    (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
6272 
6273 	if (r != 0) {
6274 		ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
6275 		return r;
6276 	}
6277 
6278 	facts = &ioc->facts;
6279 	memset(facts, 0, sizeof(struct mpt3sas_facts));
6280 	facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
6281 	facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
6282 	facts->VP_ID = mpi_reply.VP_ID;
6283 	facts->VF_ID = mpi_reply.VF_ID;
6284 	facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
6285 	facts->MaxChainDepth = mpi_reply.MaxChainDepth;
6286 	facts->WhoInit = mpi_reply.WhoInit;
6287 	facts->NumberOfPorts = mpi_reply.NumberOfPorts;
6288 	facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
6289 	if (ioc->msix_enable && (facts->MaxMSIxVectors <=
6290 	    MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc)))
6291 		ioc->combined_reply_queue = 0;
6292 	facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
6293 	facts->MaxReplyDescriptorPostQueueDepth =
6294 	    le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
6295 	facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
6296 	facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
6297 	if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
6298 		ioc->ir_firmware = 1;
6299 	if ((facts->IOCCapabilities &
6300 	      MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices))
6301 		ioc->rdpq_array_capable = 1;
6302 	if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
6303 	    && ioc->is_aero_ioc)
6304 		ioc->atomic_desc_capable = 1;
6305 	facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
6306 	facts->IOCRequestFrameSize =
6307 	    le16_to_cpu(mpi_reply.IOCRequestFrameSize);
6308 	if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
6309 		facts->IOCMaxChainSegmentSize =
6310 			le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
6311 	}
6312 	facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
6313 	facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
6314 	ioc->shost->max_id = -1;
6315 	facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
6316 	facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
6317 	facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
6318 	facts->HighPriorityCredit =
6319 	    le16_to_cpu(mpi_reply.HighPriorityCredit);
6320 	facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
6321 	facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
6322 	facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize;
6323 
6324 	/*
6325 	 * Get the Page Size from IOC Facts. If it's 0, default to 4k.
6326 	 */
6327 	ioc->page_size = 1 << facts->CurrentHostPageSize;
6328 	if (ioc->page_size == 1) {
6329 		ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n");
6330 		ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K;
6331 	}
6332 	dinitprintk(ioc,
6333 		    ioc_info(ioc, "CurrentHostPageSize(%d)\n",
6334 			     facts->CurrentHostPageSize));
6335 
6336 	dinitprintk(ioc,
6337 		    ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n",
6338 			     facts->RequestCredit, facts->MaxChainDepth));
6339 	dinitprintk(ioc,
6340 		    ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n",
6341 			     facts->IOCRequestFrameSize * 4,
6342 			     facts->ReplyFrameSize * 4));
6343 	return 0;
6344 }
6345 
6346 /**
6347  * _base_send_ioc_init - send ioc_init to firmware
6348  * @ioc: per adapter object
6349  *
6350  * Return: 0 for success, non-zero for failure.
6351  */
6352 static int
6353 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
6354 {
6355 	Mpi2IOCInitRequest_t mpi_request;
6356 	Mpi2IOCInitReply_t mpi_reply;
6357 	int i, r = 0;
6358 	ktime_t current_time;
6359 	u16 ioc_status;
6360 	u32 reply_post_free_array_sz = 0;
6361 
6362 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6363 
6364 	memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
6365 	mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
6366 	mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
6367 	mpi_request.VF_ID = 0; /* TODO */
6368 	mpi_request.VP_ID = 0;
6369 	mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
6370 	mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
6371 	mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K;
6372 
6373 	if (_base_is_controller_msix_enabled(ioc))
6374 		mpi_request.HostMSIxVectors = ioc->reply_queue_count;
6375 	mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
6376 	mpi_request.ReplyDescriptorPostQueueDepth =
6377 	    cpu_to_le16(ioc->reply_post_queue_depth);
6378 	mpi_request.ReplyFreeQueueDepth =
6379 	    cpu_to_le16(ioc->reply_free_queue_depth);
6380 
6381 	mpi_request.SenseBufferAddressHigh =
6382 	    cpu_to_le32((u64)ioc->sense_dma >> 32);
6383 	mpi_request.SystemReplyAddressHigh =
6384 	    cpu_to_le32((u64)ioc->reply_dma >> 32);
6385 	mpi_request.SystemRequestFrameBaseAddress =
6386 	    cpu_to_le64((u64)ioc->request_dma);
6387 	mpi_request.ReplyFreeQueueAddress =
6388 	    cpu_to_le64((u64)ioc->reply_free_dma);
6389 
6390 	if (ioc->rdpq_array_enable) {
6391 		reply_post_free_array_sz = ioc->reply_queue_count *
6392 		    sizeof(Mpi2IOCInitRDPQArrayEntry);
6393 		memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz);
6394 		for (i = 0; i < ioc->reply_queue_count; i++)
6395 			ioc->reply_post_free_array[i].RDPQBaseAddress =
6396 			    cpu_to_le64(
6397 				(u64)ioc->reply_post[i].reply_post_free_dma);
6398 		mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
6399 		mpi_request.ReplyDescriptorPostQueueAddress =
6400 		    cpu_to_le64((u64)ioc->reply_post_free_array_dma);
6401 	} else {
6402 		mpi_request.ReplyDescriptorPostQueueAddress =
6403 		    cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
6404 	}
6405 
6406 	/*
6407 	 * Set the flag to enable CoreDump state feature in IOC firmware.
6408 	 */
6409 	mpi_request.ConfigurationFlags |=
6410 	    cpu_to_le16(MPI26_IOCINIT_CFGFLAGS_COREDUMP_ENABLE);
6411 
6412 	/* This time stamp specifies number of milliseconds
6413 	 * since epoch ~ midnight January 1, 1970.
6414 	 */
6415 	current_time = ktime_get_real();
6416 	mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
6417 
6418 	if (ioc->logging_level & MPT_DEBUG_INIT) {
6419 		__le32 *mfp;
6420 		int i;
6421 
6422 		mfp = (__le32 *)&mpi_request;
6423 		ioc_info(ioc, "\toffset:data\n");
6424 		for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
6425 			ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
6426 			    le32_to_cpu(mfp[i]));
6427 	}
6428 
6429 	r = _base_handshake_req_reply_wait(ioc,
6430 	    sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
6431 	    sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10);
6432 
6433 	if (r != 0) {
6434 		ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
6435 		return r;
6436 	}
6437 
6438 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
6439 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
6440 	    mpi_reply.IOCLogInfo) {
6441 		ioc_err(ioc, "%s: failed\n", __func__);
6442 		r = -EIO;
6443 	}
6444 
6445 	return r;
6446 }
6447 
6448 /**
6449  * mpt3sas_port_enable_done - command completion routine for port enable
6450  * @ioc: per adapter object
6451  * @smid: system request message index
6452  * @msix_index: MSIX table index supplied by the OS
6453  * @reply: reply message frame(lower 32bit addr)
6454  *
6455  * Return: 1 meaning mf should be freed from _base_interrupt
6456  *          0 means the mf is freed from this function.
6457  */
6458 u8
6459 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
6460 	u32 reply)
6461 {
6462 	MPI2DefaultReply_t *mpi_reply;
6463 	u16 ioc_status;
6464 
6465 	if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
6466 		return 1;
6467 
6468 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
6469 	if (!mpi_reply)
6470 		return 1;
6471 
6472 	if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
6473 		return 1;
6474 
6475 	ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
6476 	ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
6477 	ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
6478 	memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
6479 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
6480 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
6481 		ioc->port_enable_failed = 1;
6482 
6483 	if (ioc->is_driver_loading) {
6484 		if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
6485 			mpt3sas_port_enable_complete(ioc);
6486 			return 1;
6487 		} else {
6488 			ioc->start_scan_failed = ioc_status;
6489 			ioc->start_scan = 0;
6490 			return 1;
6491 		}
6492 	}
6493 	complete(&ioc->port_enable_cmds.done);
6494 	return 1;
6495 }
6496 
6497 /**
6498  * _base_send_port_enable - send port_enable(discovery stuff) to firmware
6499  * @ioc: per adapter object
6500  *
6501  * Return: 0 for success, non-zero for failure.
6502  */
6503 static int
6504 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
6505 {
6506 	Mpi2PortEnableRequest_t *mpi_request;
6507 	Mpi2PortEnableReply_t *mpi_reply;
6508 	int r = 0;
6509 	u16 smid;
6510 	u16 ioc_status;
6511 
6512 	ioc_info(ioc, "sending port enable !!\n");
6513 
6514 	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
6515 		ioc_err(ioc, "%s: internal command already in use\n", __func__);
6516 		return -EAGAIN;
6517 	}
6518 
6519 	smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
6520 	if (!smid) {
6521 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6522 		return -EAGAIN;
6523 	}
6524 
6525 	ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
6526 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
6527 	ioc->port_enable_cmds.smid = smid;
6528 	memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
6529 	mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
6530 
6531 	init_completion(&ioc->port_enable_cmds.done);
6532 	ioc->put_smid_default(ioc, smid);
6533 	wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
6534 	if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
6535 		ioc_err(ioc, "%s: timeout\n", __func__);
6536 		_debug_dump_mf(mpi_request,
6537 		    sizeof(Mpi2PortEnableRequest_t)/4);
6538 		if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
6539 			r = -EFAULT;
6540 		else
6541 			r = -ETIME;
6542 		goto out;
6543 	}
6544 
6545 	mpi_reply = ioc->port_enable_cmds.reply;
6546 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
6547 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
6548 		ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n",
6549 			__func__, ioc_status);
6550 		r = -EFAULT;
6551 		goto out;
6552 	}
6553 
6554  out:
6555 	ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
6556 	ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED");
6557 	return r;
6558 }
6559 
6560 /**
6561  * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
6562  * @ioc: per adapter object
6563  *
6564  * Return: 0 for success, non-zero for failure.
6565  */
6566 int
6567 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
6568 {
6569 	Mpi2PortEnableRequest_t *mpi_request;
6570 	u16 smid;
6571 
6572 	ioc_info(ioc, "sending port enable !!\n");
6573 
6574 	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
6575 		ioc_err(ioc, "%s: internal command already in use\n", __func__);
6576 		return -EAGAIN;
6577 	}
6578 
6579 	smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
6580 	if (!smid) {
6581 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6582 		return -EAGAIN;
6583 	}
6584 
6585 	ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
6586 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
6587 	ioc->port_enable_cmds.smid = smid;
6588 	memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
6589 	mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
6590 
6591 	ioc->put_smid_default(ioc, smid);
6592 	return 0;
6593 }
6594 
6595 /**
6596  * _base_determine_wait_on_discovery - desposition
6597  * @ioc: per adapter object
6598  *
6599  * Decide whether to wait on discovery to complete. Used to either
6600  * locate boot device, or report volumes ahead of physical devices.
6601  *
6602  * Return: 1 for wait, 0 for don't wait.
6603  */
6604 static int
6605 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
6606 {
6607 	/* We wait for discovery to complete if IR firmware is loaded.
6608 	 * The sas topology events arrive before PD events, so we need time to
6609 	 * turn on the bit in ioc->pd_handles to indicate PD
6610 	 * Also, it maybe required to report Volumes ahead of physical
6611 	 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
6612 	 */
6613 	if (ioc->ir_firmware)
6614 		return 1;
6615 
6616 	/* if no Bios, then we don't need to wait */
6617 	if (!ioc->bios_pg3.BiosVersion)
6618 		return 0;
6619 
6620 	/* Bios is present, then we drop down here.
6621 	 *
6622 	 * If there any entries in the Bios Page 2, then we wait
6623 	 * for discovery to complete.
6624 	 */
6625 
6626 	/* Current Boot Device */
6627 	if ((ioc->bios_pg2.CurrentBootDeviceForm &
6628 	    MPI2_BIOSPAGE2_FORM_MASK) ==
6629 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
6630 	/* Request Boot Device */
6631 	   (ioc->bios_pg2.ReqBootDeviceForm &
6632 	    MPI2_BIOSPAGE2_FORM_MASK) ==
6633 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
6634 	/* Alternate Request Boot Device */
6635 	   (ioc->bios_pg2.ReqAltBootDeviceForm &
6636 	    MPI2_BIOSPAGE2_FORM_MASK) ==
6637 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
6638 		return 0;
6639 
6640 	return 1;
6641 }
6642 
6643 /**
6644  * _base_unmask_events - turn on notification for this event
6645  * @ioc: per adapter object
6646  * @event: firmware event
6647  *
6648  * The mask is stored in ioc->event_masks.
6649  */
6650 static void
6651 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
6652 {
6653 	u32 desired_event;
6654 
6655 	if (event >= 128)
6656 		return;
6657 
6658 	desired_event = (1 << (event % 32));
6659 
6660 	if (event < 32)
6661 		ioc->event_masks[0] &= ~desired_event;
6662 	else if (event < 64)
6663 		ioc->event_masks[1] &= ~desired_event;
6664 	else if (event < 96)
6665 		ioc->event_masks[2] &= ~desired_event;
6666 	else if (event < 128)
6667 		ioc->event_masks[3] &= ~desired_event;
6668 }
6669 
6670 /**
6671  * _base_event_notification - send event notification
6672  * @ioc: per adapter object
6673  *
6674  * Return: 0 for success, non-zero for failure.
6675  */
6676 static int
6677 _base_event_notification(struct MPT3SAS_ADAPTER *ioc)
6678 {
6679 	Mpi2EventNotificationRequest_t *mpi_request;
6680 	u16 smid;
6681 	int r = 0;
6682 	int i;
6683 
6684 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6685 
6686 	if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
6687 		ioc_err(ioc, "%s: internal command already in use\n", __func__);
6688 		return -EAGAIN;
6689 	}
6690 
6691 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
6692 	if (!smid) {
6693 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6694 		return -EAGAIN;
6695 	}
6696 	ioc->base_cmds.status = MPT3_CMD_PENDING;
6697 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
6698 	ioc->base_cmds.smid = smid;
6699 	memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
6700 	mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
6701 	mpi_request->VF_ID = 0; /* TODO */
6702 	mpi_request->VP_ID = 0;
6703 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
6704 		mpi_request->EventMasks[i] =
6705 		    cpu_to_le32(ioc->event_masks[i]);
6706 	init_completion(&ioc->base_cmds.done);
6707 	ioc->put_smid_default(ioc, smid);
6708 	wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
6709 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
6710 		ioc_err(ioc, "%s: timeout\n", __func__);
6711 		_debug_dump_mf(mpi_request,
6712 		    sizeof(Mpi2EventNotificationRequest_t)/4);
6713 		if (ioc->base_cmds.status & MPT3_CMD_RESET)
6714 			r = -EFAULT;
6715 		else
6716 			r = -ETIME;
6717 	} else
6718 		dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__));
6719 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6720 	return r;
6721 }
6722 
6723 /**
6724  * mpt3sas_base_validate_event_type - validating event types
6725  * @ioc: per adapter object
6726  * @event_type: firmware event
6727  *
6728  * This will turn on firmware event notification when application
6729  * ask for that event. We don't mask events that are already enabled.
6730  */
6731 void
6732 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
6733 {
6734 	int i, j;
6735 	u32 event_mask, desired_event;
6736 	u8 send_update_to_fw;
6737 
6738 	for (i = 0, send_update_to_fw = 0; i <
6739 	    MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
6740 		event_mask = ~event_type[i];
6741 		desired_event = 1;
6742 		for (j = 0; j < 32; j++) {
6743 			if (!(event_mask & desired_event) &&
6744 			    (ioc->event_masks[i] & desired_event)) {
6745 				ioc->event_masks[i] &= ~desired_event;
6746 				send_update_to_fw = 1;
6747 			}
6748 			desired_event = (desired_event << 1);
6749 		}
6750 	}
6751 
6752 	if (!send_update_to_fw)
6753 		return;
6754 
6755 	mutex_lock(&ioc->base_cmds.mutex);
6756 	_base_event_notification(ioc);
6757 	mutex_unlock(&ioc->base_cmds.mutex);
6758 }
6759 
6760 /**
6761  * _base_diag_reset - the "big hammer" start of day reset
6762  * @ioc: per adapter object
6763  *
6764  * Return: 0 for success, non-zero for failure.
6765  */
6766 static int
6767 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
6768 {
6769 	u32 host_diagnostic;
6770 	u32 ioc_state;
6771 	u32 count;
6772 	u32 hcb_size;
6773 
6774 	ioc_info(ioc, "sending diag reset !!\n");
6775 
6776 	drsprintk(ioc, ioc_info(ioc, "clear interrupts\n"));
6777 
6778 	count = 0;
6779 	do {
6780 		/* Write magic sequence to WriteSequence register
6781 		 * Loop until in diagnostic mode
6782 		 */
6783 		drsprintk(ioc, ioc_info(ioc, "write magic sequence\n"));
6784 		writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
6785 		writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
6786 		writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
6787 		writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
6788 		writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
6789 		writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
6790 		writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
6791 
6792 		/* wait 100 msec */
6793 		msleep(100);
6794 
6795 		if (count++ > 20) {
6796 			ioc_info(ioc,
6797 			    "Stop writing magic sequence after 20 retries\n");
6798 			goto out;
6799 		}
6800 
6801 		host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
6802 		drsprintk(ioc,
6803 			  ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
6804 				   count, host_diagnostic));
6805 
6806 	} while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
6807 
6808 	hcb_size = ioc->base_readl(&ioc->chip->HCBSize);
6809 
6810 	drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n"));
6811 	writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
6812 	     &ioc->chip->HostDiagnostic);
6813 
6814 	/*This delay allows the chip PCIe hardware time to finish reset tasks*/
6815 	msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
6816 
6817 	/* Approximately 300 second max wait */
6818 	for (count = 0; count < (300000000 /
6819 		MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
6820 
6821 		host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
6822 
6823 		if (host_diagnostic == 0xFFFFFFFF) {
6824 			ioc_info(ioc,
6825 			    "Invalid host diagnostic register value\n");
6826 			goto out;
6827 		}
6828 		if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
6829 			break;
6830 
6831 		msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000);
6832 	}
6833 
6834 	if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
6835 
6836 		drsprintk(ioc,
6837 			  ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n"));
6838 		host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
6839 		host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
6840 		writel(host_diagnostic, &ioc->chip->HostDiagnostic);
6841 
6842 		drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n"));
6843 		writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
6844 		    &ioc->chip->HCBSize);
6845 	}
6846 
6847 	drsprintk(ioc, ioc_info(ioc, "restart the adapter\n"));
6848 	writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
6849 	    &ioc->chip->HostDiagnostic);
6850 
6851 	drsprintk(ioc,
6852 		  ioc_info(ioc, "disable writes to the diagnostic register\n"));
6853 	writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
6854 
6855 	drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n"));
6856 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
6857 	if (ioc_state) {
6858 		ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6859 			__func__, ioc_state);
6860 		goto out;
6861 	}
6862 
6863 	ioc_info(ioc, "diag reset: SUCCESS\n");
6864 	return 0;
6865 
6866  out:
6867 	ioc_err(ioc, "diag reset: FAILED\n");
6868 	return -EFAULT;
6869 }
6870 
6871 /**
6872  * _base_make_ioc_ready - put controller in READY state
6873  * @ioc: per adapter object
6874  * @type: FORCE_BIG_HAMMER or SOFT_RESET
6875  *
6876  * Return: 0 for success, non-zero for failure.
6877  */
6878 static int
6879 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
6880 {
6881 	u32 ioc_state;
6882 	int rc;
6883 	int count;
6884 
6885 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6886 
6887 	if (ioc->pci_error_recovery)
6888 		return 0;
6889 
6890 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6891 	dhsprintk(ioc,
6892 		  ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
6893 			   __func__, ioc_state));
6894 
6895 	/* if in RESET state, it should move to READY state shortly */
6896 	count = 0;
6897 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
6898 		while ((ioc_state & MPI2_IOC_STATE_MASK) !=
6899 		    MPI2_IOC_STATE_READY) {
6900 			if (count++ == 10) {
6901 				ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6902 					__func__, ioc_state);
6903 				return -EFAULT;
6904 			}
6905 			ssleep(1);
6906 			ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6907 		}
6908 	}
6909 
6910 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
6911 		return 0;
6912 
6913 	if (ioc_state & MPI2_DOORBELL_USED) {
6914 		ioc_info(ioc, "unexpected doorbell active!\n");
6915 		goto issue_diag_reset;
6916 	}
6917 
6918 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
6919 		mpt3sas_print_fault_code(ioc, ioc_state &
6920 		    MPI2_DOORBELL_DATA_MASK);
6921 		goto issue_diag_reset;
6922 	}
6923 
6924 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
6925 		/*
6926 		 * if host reset is invoked while watch dog thread is waiting
6927 		 * for IOC state to be changed to Fault state then driver has
6928 		 * to wait here for CoreDump state to clear otherwise reset
6929 		 * will be issued to the FW and FW move the IOC state to
6930 		 * reset state without copying the FW logs to coredump region.
6931 		 */
6932 		if (ioc->ioc_coredump_loop != MPT3SAS_COREDUMP_LOOP_DONE) {
6933 			mpt3sas_print_coredump_info(ioc, ioc_state &
6934 			    MPI2_DOORBELL_DATA_MASK);
6935 			mpt3sas_base_wait_for_coredump_completion(ioc,
6936 			    __func__);
6937 		}
6938 		goto issue_diag_reset;
6939 	}
6940 
6941 	if (type == FORCE_BIG_HAMMER)
6942 		goto issue_diag_reset;
6943 
6944 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
6945 		if (!(_base_send_ioc_reset(ioc,
6946 		    MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
6947 			return 0;
6948 	}
6949 
6950  issue_diag_reset:
6951 	rc = _base_diag_reset(ioc);
6952 	return rc;
6953 }
6954 
6955 /**
6956  * _base_make_ioc_operational - put controller in OPERATIONAL state
6957  * @ioc: per adapter object
6958  *
6959  * Return: 0 for success, non-zero for failure.
6960  */
6961 static int
6962 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
6963 {
6964 	int r, i, index, rc;
6965 	unsigned long	flags;
6966 	u32 reply_address;
6967 	u16 smid;
6968 	struct _tr_list *delayed_tr, *delayed_tr_next;
6969 	struct _sc_list *delayed_sc, *delayed_sc_next;
6970 	struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
6971 	u8 hide_flag;
6972 	struct adapter_reply_queue *reply_q;
6973 	Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
6974 
6975 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6976 
6977 	/* clean the delayed target reset list */
6978 	list_for_each_entry_safe(delayed_tr, delayed_tr_next,
6979 	    &ioc->delayed_tr_list, list) {
6980 		list_del(&delayed_tr->list);
6981 		kfree(delayed_tr);
6982 	}
6983 
6984 
6985 	list_for_each_entry_safe(delayed_tr, delayed_tr_next,
6986 	    &ioc->delayed_tr_volume_list, list) {
6987 		list_del(&delayed_tr->list);
6988 		kfree(delayed_tr);
6989 	}
6990 
6991 	list_for_each_entry_safe(delayed_sc, delayed_sc_next,
6992 	    &ioc->delayed_sc_list, list) {
6993 		list_del(&delayed_sc->list);
6994 		kfree(delayed_sc);
6995 	}
6996 
6997 	list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
6998 	    &ioc->delayed_event_ack_list, list) {
6999 		list_del(&delayed_event_ack->list);
7000 		kfree(delayed_event_ack);
7001 	}
7002 
7003 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
7004 
7005 	/* hi-priority queue */
7006 	INIT_LIST_HEAD(&ioc->hpr_free_list);
7007 	smid = ioc->hi_priority_smid;
7008 	for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
7009 		ioc->hpr_lookup[i].cb_idx = 0xFF;
7010 		ioc->hpr_lookup[i].smid = smid;
7011 		list_add_tail(&ioc->hpr_lookup[i].tracker_list,
7012 		    &ioc->hpr_free_list);
7013 	}
7014 
7015 	/* internal queue */
7016 	INIT_LIST_HEAD(&ioc->internal_free_list);
7017 	smid = ioc->internal_smid;
7018 	for (i = 0; i < ioc->internal_depth; i++, smid++) {
7019 		ioc->internal_lookup[i].cb_idx = 0xFF;
7020 		ioc->internal_lookup[i].smid = smid;
7021 		list_add_tail(&ioc->internal_lookup[i].tracker_list,
7022 		    &ioc->internal_free_list);
7023 	}
7024 
7025 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
7026 
7027 	/* initialize Reply Free Queue */
7028 	for (i = 0, reply_address = (u32)ioc->reply_dma ;
7029 	    i < ioc->reply_free_queue_depth ; i++, reply_address +=
7030 	    ioc->reply_sz) {
7031 		ioc->reply_free[i] = cpu_to_le32(reply_address);
7032 		if (ioc->is_mcpu_endpoint)
7033 			_base_clone_reply_to_sys_mem(ioc,
7034 					reply_address, i);
7035 	}
7036 
7037 	/* initialize reply queues */
7038 	if (ioc->is_driver_loading)
7039 		_base_assign_reply_queues(ioc);
7040 
7041 	/* initialize Reply Post Free Queue */
7042 	index = 0;
7043 	reply_post_free_contig = ioc->reply_post[0].reply_post_free;
7044 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
7045 		/*
7046 		 * If RDPQ is enabled, switch to the next allocation.
7047 		 * Otherwise advance within the contiguous region.
7048 		 */
7049 		if (ioc->rdpq_array_enable) {
7050 			reply_q->reply_post_free =
7051 				ioc->reply_post[index++].reply_post_free;
7052 		} else {
7053 			reply_q->reply_post_free = reply_post_free_contig;
7054 			reply_post_free_contig += ioc->reply_post_queue_depth;
7055 		}
7056 
7057 		reply_q->reply_post_host_index = 0;
7058 		for (i = 0; i < ioc->reply_post_queue_depth; i++)
7059 			reply_q->reply_post_free[i].Words =
7060 			    cpu_to_le64(ULLONG_MAX);
7061 		if (!_base_is_controller_msix_enabled(ioc))
7062 			goto skip_init_reply_post_free_queue;
7063 	}
7064  skip_init_reply_post_free_queue:
7065 
7066 	r = _base_send_ioc_init(ioc);
7067 	if (r) {
7068 		/*
7069 		 * No need to check IOC state for fault state & issue
7070 		 * diag reset during host reset. This check is need
7071 		 * only during driver load time.
7072 		 */
7073 		if (!ioc->is_driver_loading)
7074 			return r;
7075 
7076 		rc = _base_check_for_fault_and_issue_reset(ioc);
7077 		if (rc || (_base_send_ioc_init(ioc)))
7078 			return r;
7079 	}
7080 
7081 	/* initialize reply free host index */
7082 	ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
7083 	writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
7084 
7085 	/* initialize reply post host index */
7086 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
7087 		if (ioc->combined_reply_queue)
7088 			writel((reply_q->msix_index & 7)<<
7089 			   MPI2_RPHI_MSIX_INDEX_SHIFT,
7090 			   ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
7091 		else
7092 			writel(reply_q->msix_index <<
7093 				MPI2_RPHI_MSIX_INDEX_SHIFT,
7094 				&ioc->chip->ReplyPostHostIndex);
7095 
7096 		if (!_base_is_controller_msix_enabled(ioc))
7097 			goto skip_init_reply_post_host_index;
7098 	}
7099 
7100  skip_init_reply_post_host_index:
7101 
7102 	_base_unmask_interrupts(ioc);
7103 
7104 	if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
7105 		r = _base_display_fwpkg_version(ioc);
7106 		if (r)
7107 			return r;
7108 	}
7109 
7110 	_base_static_config_pages(ioc);
7111 	r = _base_event_notification(ioc);
7112 	if (r)
7113 		return r;
7114 
7115 	if (ioc->is_driver_loading) {
7116 
7117 		if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
7118 		    == 0x80) {
7119 			hide_flag = (u8) (
7120 			    le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
7121 			    MFG_PAGE10_HIDE_SSDS_MASK);
7122 			if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
7123 				ioc->mfg_pg10_hide_flag = hide_flag;
7124 		}
7125 
7126 		ioc->wait_for_discovery_to_complete =
7127 		    _base_determine_wait_on_discovery(ioc);
7128 
7129 		return r; /* scan_start and scan_finished support */
7130 	}
7131 
7132 	r = _base_send_port_enable(ioc);
7133 	if (r)
7134 		return r;
7135 
7136 	return r;
7137 }
7138 
7139 /**
7140  * mpt3sas_base_free_resources - free resources controller resources
7141  * @ioc: per adapter object
7142  */
7143 void
7144 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
7145 {
7146 	dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7147 
7148 	/* synchronizing freeing resource with pci_access_mutex lock */
7149 	mutex_lock(&ioc->pci_access_mutex);
7150 	if (ioc->chip_phys && ioc->chip) {
7151 		_base_mask_interrupts(ioc);
7152 		ioc->shost_recovery = 1;
7153 		_base_make_ioc_ready(ioc, SOFT_RESET);
7154 		ioc->shost_recovery = 0;
7155 	}
7156 
7157 	mpt3sas_base_unmap_resources(ioc);
7158 	mutex_unlock(&ioc->pci_access_mutex);
7159 	return;
7160 }
7161 
7162 /**
7163  * mpt3sas_base_attach - attach controller instance
7164  * @ioc: per adapter object
7165  *
7166  * Return: 0 for success, non-zero for failure.
7167  */
7168 int
7169 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
7170 {
7171 	int r, i, rc;
7172 	int cpu_id, last_cpu_id = 0;
7173 
7174 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7175 
7176 	/* setup cpu_msix_table */
7177 	ioc->cpu_count = num_online_cpus();
7178 	for_each_online_cpu(cpu_id)
7179 		last_cpu_id = cpu_id;
7180 	ioc->cpu_msix_table_sz = last_cpu_id + 1;
7181 	ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
7182 	ioc->reply_queue_count = 1;
7183 	if (!ioc->cpu_msix_table) {
7184 		ioc_info(ioc, "Allocation for cpu_msix_table failed!!!\n");
7185 		r = -ENOMEM;
7186 		goto out_free_resources;
7187 	}
7188 
7189 	if (ioc->is_warpdrive) {
7190 		ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
7191 		    sizeof(resource_size_t *), GFP_KERNEL);
7192 		if (!ioc->reply_post_host_index) {
7193 			ioc_info(ioc, "Allocation for reply_post_host_index failed!!!\n");
7194 			r = -ENOMEM;
7195 			goto out_free_resources;
7196 		}
7197 	}
7198 
7199 	ioc->smp_affinity_enable = smp_affinity_enable;
7200 
7201 	ioc->rdpq_array_enable_assigned = 0;
7202 	ioc->use_32bit_dma = false;
7203 	if (ioc->is_aero_ioc)
7204 		ioc->base_readl = &_base_readl_aero;
7205 	else
7206 		ioc->base_readl = &_base_readl;
7207 	r = mpt3sas_base_map_resources(ioc);
7208 	if (r)
7209 		goto out_free_resources;
7210 
7211 	pci_set_drvdata(ioc->pdev, ioc->shost);
7212 	r = _base_get_ioc_facts(ioc);
7213 	if (r) {
7214 		rc = _base_check_for_fault_and_issue_reset(ioc);
7215 		if (rc || (_base_get_ioc_facts(ioc)))
7216 			goto out_free_resources;
7217 	}
7218 
7219 	switch (ioc->hba_mpi_version_belonged) {
7220 	case MPI2_VERSION:
7221 		ioc->build_sg_scmd = &_base_build_sg_scmd;
7222 		ioc->build_sg = &_base_build_sg;
7223 		ioc->build_zero_len_sge = &_base_build_zero_len_sge;
7224 		ioc->get_msix_index_for_smlio = &_base_get_msix_index;
7225 		break;
7226 	case MPI25_VERSION:
7227 	case MPI26_VERSION:
7228 		/*
7229 		 * In SAS3.0,
7230 		 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
7231 		 * Target Status - all require the IEEE formated scatter gather
7232 		 * elements.
7233 		 */
7234 		ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
7235 		ioc->build_sg = &_base_build_sg_ieee;
7236 		ioc->build_nvme_prp = &_base_build_nvme_prp;
7237 		ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
7238 		ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
7239 		if (ioc->high_iops_queues)
7240 			ioc->get_msix_index_for_smlio =
7241 					&_base_get_high_iops_msix_index;
7242 		else
7243 			ioc->get_msix_index_for_smlio = &_base_get_msix_index;
7244 		break;
7245 	}
7246 	if (ioc->atomic_desc_capable) {
7247 		ioc->put_smid_default = &_base_put_smid_default_atomic;
7248 		ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic;
7249 		ioc->put_smid_fast_path =
7250 				&_base_put_smid_fast_path_atomic;
7251 		ioc->put_smid_hi_priority =
7252 				&_base_put_smid_hi_priority_atomic;
7253 	} else {
7254 		ioc->put_smid_default = &_base_put_smid_default;
7255 		ioc->put_smid_fast_path = &_base_put_smid_fast_path;
7256 		ioc->put_smid_hi_priority = &_base_put_smid_hi_priority;
7257 		if (ioc->is_mcpu_endpoint)
7258 			ioc->put_smid_scsi_io =
7259 				&_base_put_smid_mpi_ep_scsi_io;
7260 		else
7261 			ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
7262 	}
7263 	/*
7264 	 * These function pointers for other requests that don't
7265 	 * the require IEEE scatter gather elements.
7266 	 *
7267 	 * For example Configuration Pages and SAS IOUNIT Control don't.
7268 	 */
7269 	ioc->build_sg_mpi = &_base_build_sg;
7270 	ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
7271 
7272 	r = _base_make_ioc_ready(ioc, SOFT_RESET);
7273 	if (r)
7274 		goto out_free_resources;
7275 
7276 	ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
7277 	    sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
7278 	if (!ioc->pfacts) {
7279 		r = -ENOMEM;
7280 		goto out_free_resources;
7281 	}
7282 
7283 	for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
7284 		r = _base_get_port_facts(ioc, i);
7285 		if (r) {
7286 			rc = _base_check_for_fault_and_issue_reset(ioc);
7287 			if (rc || (_base_get_port_facts(ioc, i)))
7288 				goto out_free_resources;
7289 		}
7290 	}
7291 
7292 	r = _base_allocate_memory_pools(ioc);
7293 	if (r)
7294 		goto out_free_resources;
7295 
7296 	if (irqpoll_weight > 0)
7297 		ioc->thresh_hold = irqpoll_weight;
7298 	else
7299 		ioc->thresh_hold = ioc->hba_queue_depth/4;
7300 
7301 	_base_init_irqpolls(ioc);
7302 	init_waitqueue_head(&ioc->reset_wq);
7303 
7304 	/* allocate memory pd handle bitmask list */
7305 	ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
7306 	if (ioc->facts.MaxDevHandle % 8)
7307 		ioc->pd_handles_sz++;
7308 	ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
7309 	    GFP_KERNEL);
7310 	if (!ioc->pd_handles) {
7311 		r = -ENOMEM;
7312 		goto out_free_resources;
7313 	}
7314 	ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
7315 	    GFP_KERNEL);
7316 	if (!ioc->blocking_handles) {
7317 		r = -ENOMEM;
7318 		goto out_free_resources;
7319 	}
7320 
7321 	/* allocate memory for pending OS device add list */
7322 	ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
7323 	if (ioc->facts.MaxDevHandle % 8)
7324 		ioc->pend_os_device_add_sz++;
7325 	ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
7326 	    GFP_KERNEL);
7327 	if (!ioc->pend_os_device_add)
7328 		goto out_free_resources;
7329 
7330 	ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
7331 	ioc->device_remove_in_progress =
7332 		kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
7333 	if (!ioc->device_remove_in_progress)
7334 		goto out_free_resources;
7335 
7336 	ioc->fwfault_debug = mpt3sas_fwfault_debug;
7337 
7338 	/* base internal command bits */
7339 	mutex_init(&ioc->base_cmds.mutex);
7340 	ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7341 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7342 
7343 	/* port_enable command bits */
7344 	ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7345 	ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
7346 
7347 	/* transport internal command bits */
7348 	ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7349 	ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
7350 	mutex_init(&ioc->transport_cmds.mutex);
7351 
7352 	/* scsih internal command bits */
7353 	ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7354 	ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
7355 	mutex_init(&ioc->scsih_cmds.mutex);
7356 
7357 	/* task management internal command bits */
7358 	ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7359 	ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
7360 	mutex_init(&ioc->tm_cmds.mutex);
7361 
7362 	/* config page internal command bits */
7363 	ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7364 	ioc->config_cmds.status = MPT3_CMD_NOT_USED;
7365 	mutex_init(&ioc->config_cmds.mutex);
7366 
7367 	/* ctl module internal command bits */
7368 	ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7369 	ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
7370 	ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
7371 	mutex_init(&ioc->ctl_cmds.mutex);
7372 
7373 	if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
7374 	    !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
7375 	    !ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
7376 	    !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) {
7377 		r = -ENOMEM;
7378 		goto out_free_resources;
7379 	}
7380 
7381 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
7382 		ioc->event_masks[i] = -1;
7383 
7384 	/* here we enable the events we care about */
7385 	_base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
7386 	_base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
7387 	_base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
7388 	_base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
7389 	_base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
7390 	_base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
7391 	_base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
7392 	_base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
7393 	_base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
7394 	_base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
7395 	_base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
7396 	_base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
7397 	_base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR);
7398 	if (ioc->hba_mpi_version_belonged == MPI26_VERSION) {
7399 		if (ioc->is_gen35_ioc) {
7400 			_base_unmask_events(ioc,
7401 				MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE);
7402 			_base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION);
7403 			_base_unmask_events(ioc,
7404 				MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
7405 		}
7406 	}
7407 	r = _base_make_ioc_operational(ioc);
7408 	if (r)
7409 		goto out_free_resources;
7410 
7411 	/*
7412 	 * Copy current copy of IOCFacts in prev_fw_facts
7413 	 * and it will be used during online firmware upgrade.
7414 	 */
7415 	memcpy(&ioc->prev_fw_facts, &ioc->facts,
7416 	    sizeof(struct mpt3sas_facts));
7417 
7418 	ioc->non_operational_loop = 0;
7419 	ioc->ioc_coredump_loop = 0;
7420 	ioc->got_task_abort_from_ioctl = 0;
7421 	return 0;
7422 
7423  out_free_resources:
7424 
7425 	ioc->remove_host = 1;
7426 
7427 	mpt3sas_base_free_resources(ioc);
7428 	_base_release_memory_pools(ioc);
7429 	pci_set_drvdata(ioc->pdev, NULL);
7430 	kfree(ioc->cpu_msix_table);
7431 	if (ioc->is_warpdrive)
7432 		kfree(ioc->reply_post_host_index);
7433 	kfree(ioc->pd_handles);
7434 	kfree(ioc->blocking_handles);
7435 	kfree(ioc->device_remove_in_progress);
7436 	kfree(ioc->pend_os_device_add);
7437 	kfree(ioc->tm_cmds.reply);
7438 	kfree(ioc->transport_cmds.reply);
7439 	kfree(ioc->scsih_cmds.reply);
7440 	kfree(ioc->config_cmds.reply);
7441 	kfree(ioc->base_cmds.reply);
7442 	kfree(ioc->port_enable_cmds.reply);
7443 	kfree(ioc->ctl_cmds.reply);
7444 	kfree(ioc->ctl_cmds.sense);
7445 	kfree(ioc->pfacts);
7446 	ioc->ctl_cmds.reply = NULL;
7447 	ioc->base_cmds.reply = NULL;
7448 	ioc->tm_cmds.reply = NULL;
7449 	ioc->scsih_cmds.reply = NULL;
7450 	ioc->transport_cmds.reply = NULL;
7451 	ioc->config_cmds.reply = NULL;
7452 	ioc->pfacts = NULL;
7453 	return r;
7454 }
7455 
7456 
7457 /**
7458  * mpt3sas_base_detach - remove controller instance
7459  * @ioc: per adapter object
7460  */
7461 void
7462 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
7463 {
7464 	dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7465 
7466 	mpt3sas_base_stop_watchdog(ioc);
7467 	mpt3sas_base_free_resources(ioc);
7468 	_base_release_memory_pools(ioc);
7469 	mpt3sas_free_enclosure_list(ioc);
7470 	pci_set_drvdata(ioc->pdev, NULL);
7471 	kfree(ioc->cpu_msix_table);
7472 	if (ioc->is_warpdrive)
7473 		kfree(ioc->reply_post_host_index);
7474 	kfree(ioc->pd_handles);
7475 	kfree(ioc->blocking_handles);
7476 	kfree(ioc->device_remove_in_progress);
7477 	kfree(ioc->pend_os_device_add);
7478 	kfree(ioc->pfacts);
7479 	kfree(ioc->ctl_cmds.reply);
7480 	kfree(ioc->ctl_cmds.sense);
7481 	kfree(ioc->base_cmds.reply);
7482 	kfree(ioc->port_enable_cmds.reply);
7483 	kfree(ioc->tm_cmds.reply);
7484 	kfree(ioc->transport_cmds.reply);
7485 	kfree(ioc->scsih_cmds.reply);
7486 	kfree(ioc->config_cmds.reply);
7487 }
7488 
7489 /**
7490  * _base_pre_reset_handler - pre reset handler
7491  * @ioc: per adapter object
7492  */
7493 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc)
7494 {
7495 	mpt3sas_scsih_pre_reset_handler(ioc);
7496 	mpt3sas_ctl_pre_reset_handler(ioc);
7497 	dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__));
7498 }
7499 
7500 /**
7501  * _base_clear_outstanding_mpt_commands - clears outstanding mpt commands
7502  * @ioc: per adapter object
7503  */
7504 static void
7505 _base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER *ioc)
7506 {
7507 	dtmprintk(ioc,
7508 	    ioc_info(ioc, "%s: clear outstanding mpt cmds\n", __func__));
7509 	if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
7510 		ioc->transport_cmds.status |= MPT3_CMD_RESET;
7511 		mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
7512 		complete(&ioc->transport_cmds.done);
7513 	}
7514 	if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
7515 		ioc->base_cmds.status |= MPT3_CMD_RESET;
7516 		mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
7517 		complete(&ioc->base_cmds.done);
7518 	}
7519 	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7520 		ioc->port_enable_failed = 1;
7521 		ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
7522 		mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
7523 		if (ioc->is_driver_loading) {
7524 			ioc->start_scan_failed =
7525 				MPI2_IOCSTATUS_INTERNAL_ERROR;
7526 			ioc->start_scan = 0;
7527 			ioc->port_enable_cmds.status =
7528 				MPT3_CMD_NOT_USED;
7529 		} else {
7530 			complete(&ioc->port_enable_cmds.done);
7531 		}
7532 	}
7533 	if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
7534 		ioc->config_cmds.status |= MPT3_CMD_RESET;
7535 		mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
7536 		ioc->config_cmds.smid = USHRT_MAX;
7537 		complete(&ioc->config_cmds.done);
7538 	}
7539 }
7540 
7541 /**
7542  * _base_clear_outstanding_commands - clear all outstanding commands
7543  * @ioc: per adapter object
7544  */
7545 static void _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc)
7546 {
7547 	mpt3sas_scsih_clear_outstanding_scsi_tm_commands(ioc);
7548 	mpt3sas_ctl_clear_outstanding_ioctls(ioc);
7549 	_base_clear_outstanding_mpt_commands(ioc);
7550 }
7551 
7552 /**
7553  * _base_reset_done_handler - reset done handler
7554  * @ioc: per adapter object
7555  */
7556 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc)
7557 {
7558 	mpt3sas_scsih_reset_done_handler(ioc);
7559 	mpt3sas_ctl_reset_done_handler(ioc);
7560 	dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__));
7561 }
7562 
7563 /**
7564  * mpt3sas_wait_for_commands_to_complete - reset controller
7565  * @ioc: Pointer to MPT_ADAPTER structure
7566  *
7567  * This function is waiting 10s for all pending commands to complete
7568  * prior to putting controller in reset.
7569  */
7570 void
7571 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
7572 {
7573 	u32 ioc_state;
7574 
7575 	ioc->pending_io_count = 0;
7576 
7577 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7578 	if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
7579 		return;
7580 
7581 	/* pending command count */
7582 	ioc->pending_io_count = scsi_host_busy(ioc->shost);
7583 
7584 	if (!ioc->pending_io_count)
7585 		return;
7586 
7587 	/* wait for pending commands to complete */
7588 	wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
7589 }
7590 
7591 /**
7592  * _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts
7593  *     attributes during online firmware upgrade and update the corresponding
7594  *     IOC variables accordingly.
7595  *
7596  * @ioc: Pointer to MPT_ADAPTER structure
7597  */
7598 static int
7599 _base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc)
7600 {
7601 	u16 pd_handles_sz;
7602 	void *pd_handles = NULL, *blocking_handles = NULL;
7603 	void *pend_os_device_add = NULL, *device_remove_in_progress = NULL;
7604 	struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts;
7605 
7606 	if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle) {
7607 		pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
7608 		if (ioc->facts.MaxDevHandle % 8)
7609 			pd_handles_sz++;
7610 
7611 		pd_handles = krealloc(ioc->pd_handles, pd_handles_sz,
7612 		    GFP_KERNEL);
7613 		if (!pd_handles) {
7614 			ioc_info(ioc,
7615 			    "Unable to allocate the memory for pd_handles of sz: %d\n",
7616 			    pd_handles_sz);
7617 			return -ENOMEM;
7618 		}
7619 		memset(pd_handles + ioc->pd_handles_sz, 0,
7620 		    (pd_handles_sz - ioc->pd_handles_sz));
7621 		ioc->pd_handles = pd_handles;
7622 
7623 		blocking_handles = krealloc(ioc->blocking_handles,
7624 		    pd_handles_sz, GFP_KERNEL);
7625 		if (!blocking_handles) {
7626 			ioc_info(ioc,
7627 			    "Unable to allocate the memory for "
7628 			    "blocking_handles of sz: %d\n",
7629 			    pd_handles_sz);
7630 			return -ENOMEM;
7631 		}
7632 		memset(blocking_handles + ioc->pd_handles_sz, 0,
7633 		    (pd_handles_sz - ioc->pd_handles_sz));
7634 		ioc->blocking_handles = blocking_handles;
7635 		ioc->pd_handles_sz = pd_handles_sz;
7636 
7637 		pend_os_device_add = krealloc(ioc->pend_os_device_add,
7638 		    pd_handles_sz, GFP_KERNEL);
7639 		if (!pend_os_device_add) {
7640 			ioc_info(ioc,
7641 			    "Unable to allocate the memory for pend_os_device_add of sz: %d\n",
7642 			    pd_handles_sz);
7643 			return -ENOMEM;
7644 		}
7645 		memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0,
7646 		    (pd_handles_sz - ioc->pend_os_device_add_sz));
7647 		ioc->pend_os_device_add = pend_os_device_add;
7648 		ioc->pend_os_device_add_sz = pd_handles_sz;
7649 
7650 		device_remove_in_progress = krealloc(
7651 		    ioc->device_remove_in_progress, pd_handles_sz, GFP_KERNEL);
7652 		if (!device_remove_in_progress) {
7653 			ioc_info(ioc,
7654 			    "Unable to allocate the memory for "
7655 			    "device_remove_in_progress of sz: %d\n "
7656 			    , pd_handles_sz);
7657 			return -ENOMEM;
7658 		}
7659 		memset(device_remove_in_progress +
7660 		    ioc->device_remove_in_progress_sz, 0,
7661 		    (pd_handles_sz - ioc->device_remove_in_progress_sz));
7662 		ioc->device_remove_in_progress = device_remove_in_progress;
7663 		ioc->device_remove_in_progress_sz = pd_handles_sz;
7664 	}
7665 
7666 	memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts));
7667 	return 0;
7668 }
7669 
7670 /**
7671  * mpt3sas_base_hard_reset_handler - reset controller
7672  * @ioc: Pointer to MPT_ADAPTER structure
7673  * @type: FORCE_BIG_HAMMER or SOFT_RESET
7674  *
7675  * Return: 0 for success, non-zero for failure.
7676  */
7677 int
7678 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
7679 	enum reset_type type)
7680 {
7681 	int r;
7682 	unsigned long flags;
7683 	u32 ioc_state;
7684 	u8 is_fault = 0, is_trigger = 0;
7685 
7686 	dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__));
7687 
7688 	if (ioc->pci_error_recovery) {
7689 		ioc_err(ioc, "%s: pci error recovery reset\n", __func__);
7690 		r = 0;
7691 		goto out_unlocked;
7692 	}
7693 
7694 	if (mpt3sas_fwfault_debug)
7695 		mpt3sas_halt_firmware(ioc);
7696 
7697 	/* wait for an active reset in progress to complete */
7698 	mutex_lock(&ioc->reset_in_progress_mutex);
7699 
7700 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
7701 	ioc->shost_recovery = 1;
7702 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
7703 
7704 	if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
7705 	    MPT3_DIAG_BUFFER_IS_REGISTERED) &&
7706 	    (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
7707 	    MPT3_DIAG_BUFFER_IS_RELEASED))) {
7708 		is_trigger = 1;
7709 		ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7710 		if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT ||
7711 		    (ioc_state & MPI2_IOC_STATE_MASK) ==
7712 		    MPI2_IOC_STATE_COREDUMP)
7713 			is_fault = 1;
7714 	}
7715 	_base_pre_reset_handler(ioc);
7716 	mpt3sas_wait_for_commands_to_complete(ioc);
7717 	_base_mask_interrupts(ioc);
7718 	r = _base_make_ioc_ready(ioc, type);
7719 	if (r)
7720 		goto out;
7721 	_base_clear_outstanding_commands(ioc);
7722 
7723 	/* If this hard reset is called while port enable is active, then
7724 	 * there is no reason to call make_ioc_operational
7725 	 */
7726 	if (ioc->is_driver_loading && ioc->port_enable_failed) {
7727 		ioc->remove_host = 1;
7728 		r = -EFAULT;
7729 		goto out;
7730 	}
7731 	r = _base_get_ioc_facts(ioc);
7732 	if (r)
7733 		goto out;
7734 
7735 	r = _base_check_ioc_facts_changes(ioc);
7736 	if (r) {
7737 		ioc_info(ioc,
7738 		    "Some of the parameters got changed in this new firmware"
7739 		    " image and it requires system reboot\n");
7740 		goto out;
7741 	}
7742 	if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
7743 		panic("%s: Issue occurred with flashing controller firmware."
7744 		      "Please reboot the system and ensure that the correct"
7745 		      " firmware version is running\n", ioc->name);
7746 
7747 	r = _base_make_ioc_operational(ioc);
7748 	if (!r)
7749 		_base_reset_done_handler(ioc);
7750 
7751  out:
7752 	ioc_info(ioc, "%s: %s\n", __func__, r == 0 ? "SUCCESS" : "FAILED");
7753 
7754 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
7755 	ioc->shost_recovery = 0;
7756 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
7757 	ioc->ioc_reset_count++;
7758 	mutex_unlock(&ioc->reset_in_progress_mutex);
7759 
7760  out_unlocked:
7761 	if ((r == 0) && is_trigger) {
7762 		if (is_fault)
7763 			mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
7764 		else
7765 			mpt3sas_trigger_master(ioc,
7766 			    MASTER_TRIGGER_ADAPTER_RESET);
7767 	}
7768 	dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__));
7769 	return r;
7770 }
7771