1 /* 2 * This is the Fusion MPT base driver providing common API layer interface 3 * for access to MPT (Message Passing Technology) firmware. 4 * 5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c 6 * Copyright (C) 2012-2014 LSI Corporation 7 * Copyright (C) 2013-2014 Avago Technologies 8 * (mailto: MPT-FusionLinux.pdl@avagotech.com) 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License 12 * as published by the Free Software Foundation; either version 2 13 * of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * NO WARRANTY 21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR 22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT 23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, 24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is 25 * solely responsible for determining the appropriateness of using and 26 * distributing the Program and assumes all risks associated with its 27 * exercise of rights under this Agreement, including but not limited to 28 * the risks and costs of program errors, damage to or loss of data, 29 * programs or equipment, and unavailability or interruption of operations. 30 31 * DISCLAIMER OF LIABILITY 32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY 33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND 35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED 38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES 39 40 * You should have received a copy of the GNU General Public License 41 * along with this program; if not, write to the Free Software 42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, 43 * USA. 44 */ 45 46 #include <linux/kernel.h> 47 #include <linux/module.h> 48 #include <linux/errno.h> 49 #include <linux/init.h> 50 #include <linux/slab.h> 51 #include <linux/types.h> 52 #include <linux/pci.h> 53 #include <linux/kdev_t.h> 54 #include <linux/blkdev.h> 55 #include <linux/delay.h> 56 #include <linux/interrupt.h> 57 #include <linux/dma-mapping.h> 58 #include <linux/io.h> 59 #include <linux/time.h> 60 #include <linux/ktime.h> 61 #include <linux/kthread.h> 62 #include <asm/page.h> /* To get host page size per arch */ 63 #include <linux/aer.h> 64 65 66 #include "mpt3sas_base.h" 67 68 static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS]; 69 70 71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */ 72 73 /* maximum controller queue depth */ 74 #define MAX_HBA_QUEUE_DEPTH 30000 75 #define MAX_CHAIN_DEPTH 100000 76 static int max_queue_depth = -1; 77 module_param(max_queue_depth, int, 0444); 78 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth "); 79 80 static int max_sgl_entries = -1; 81 module_param(max_sgl_entries, int, 0444); 82 MODULE_PARM_DESC(max_sgl_entries, " max sg entries "); 83 84 static int msix_disable = -1; 85 module_param(msix_disable, int, 0444); 86 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)"); 87 88 static int smp_affinity_enable = 1; 89 module_param(smp_affinity_enable, int, 0444); 90 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)"); 91 92 static int max_msix_vectors = -1; 93 module_param(max_msix_vectors, int, 0444); 94 MODULE_PARM_DESC(max_msix_vectors, 95 " max msix vectors"); 96 97 static int irqpoll_weight = -1; 98 module_param(irqpoll_weight, int, 0444); 99 MODULE_PARM_DESC(irqpoll_weight, 100 "irq poll weight (default= one fourth of HBA queue depth)"); 101 102 static int mpt3sas_fwfault_debug; 103 MODULE_PARM_DESC(mpt3sas_fwfault_debug, 104 " enable detection of firmware fault and halt firmware - (default=0)"); 105 106 static int perf_mode = -1; 107 module_param(perf_mode, int, 0444); 108 MODULE_PARM_DESC(perf_mode, 109 "Performance mode (only for Aero/Sea Generation), options:\n\t\t" 110 "0 - balanced: high iops mode is enabled &\n\t\t" 111 "interrupt coalescing is enabled only on high iops queues,\n\t\t" 112 "1 - iops: high iops mode is disabled &\n\t\t" 113 "interrupt coalescing is enabled on all queues,\n\t\t" 114 "2 - latency: high iops mode is disabled &\n\t\t" 115 "interrupt coalescing is enabled on all queues with timeout value 0xA,\n" 116 "\t\tdefault - default perf_mode is 'balanced'" 117 ); 118 119 enum mpt3sas_perf_mode { 120 MPT_PERF_MODE_DEFAULT = -1, 121 MPT_PERF_MODE_BALANCED = 0, 122 MPT_PERF_MODE_IOPS = 1, 123 MPT_PERF_MODE_LATENCY = 2, 124 }; 125 126 static int 127 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, 128 u32 ioc_state, int timeout); 129 static int 130 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc); 131 static void 132 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc); 133 static void 134 _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc); 135 136 /** 137 * mpt3sas_base_check_cmd_timeout - Function 138 * to check timeout and command termination due 139 * to Host reset. 140 * 141 * @ioc: per adapter object. 142 * @status: Status of issued command. 143 * @mpi_request:mf request pointer. 144 * @sz: size of buffer. 145 * 146 * @Returns - 1/0 Reset to be done or Not 147 */ 148 u8 149 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc, 150 u8 status, void *mpi_request, int sz) 151 { 152 u8 issue_reset = 0; 153 154 if (!(status & MPT3_CMD_RESET)) 155 issue_reset = 1; 156 157 ioc_err(ioc, "Command %s\n", 158 issue_reset == 0 ? "terminated due to Host Reset" : "Timeout"); 159 _debug_dump_mf(mpi_request, sz); 160 161 return issue_reset; 162 } 163 164 /** 165 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug. 166 * @val: ? 167 * @kp: ? 168 * 169 * Return: ? 170 */ 171 static int 172 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp) 173 { 174 int ret = param_set_int(val, kp); 175 struct MPT3SAS_ADAPTER *ioc; 176 177 if (ret) 178 return ret; 179 180 /* global ioc spinlock to protect controller list on list operations */ 181 pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug); 182 spin_lock(&gioc_lock); 183 list_for_each_entry(ioc, &mpt3sas_ioc_list, list) 184 ioc->fwfault_debug = mpt3sas_fwfault_debug; 185 spin_unlock(&gioc_lock); 186 return 0; 187 } 188 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug, 189 param_get_int, &mpt3sas_fwfault_debug, 0644); 190 191 /** 192 * _base_readl_aero - retry readl for max three times. 193 * @addr - MPT Fusion system interface register address 194 * 195 * Retry the readl() for max three times if it gets zero value 196 * while reading the system interface register. 197 */ 198 static inline u32 199 _base_readl_aero(const volatile void __iomem *addr) 200 { 201 u32 i = 0, ret_val; 202 203 do { 204 ret_val = readl(addr); 205 i++; 206 } while (ret_val == 0 && i < 3); 207 208 return ret_val; 209 } 210 211 static inline u32 212 _base_readl(const volatile void __iomem *addr) 213 { 214 return readl(addr); 215 } 216 217 /** 218 * _base_clone_reply_to_sys_mem - copies reply to reply free iomem 219 * in BAR0 space. 220 * 221 * @ioc: per adapter object 222 * @reply: reply message frame(lower 32bit addr) 223 * @index: System request message index. 224 */ 225 static void 226 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply, 227 u32 index) 228 { 229 /* 230 * 256 is offset within sys register. 231 * 256 offset MPI frame starts. Max MPI frame supported is 32. 232 * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts 233 */ 234 u16 cmd_credit = ioc->facts.RequestCredit + 1; 235 void __iomem *reply_free_iomem = (void __iomem *)ioc->chip + 236 MPI_FRAME_START_OFFSET + 237 (cmd_credit * ioc->request_sz) + (index * sizeof(u32)); 238 239 writel(reply, reply_free_iomem); 240 } 241 242 /** 243 * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames 244 * to system/BAR0 region. 245 * 246 * @dst_iomem: Pointer to the destination location in BAR0 space. 247 * @src: Pointer to the Source data. 248 * @size: Size of data to be copied. 249 */ 250 static void 251 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size) 252 { 253 int i; 254 u32 *src_virt_mem = (u32 *)src; 255 256 for (i = 0; i < size/4; i++) 257 writel((u32)src_virt_mem[i], 258 (void __iomem *)dst_iomem + (i * 4)); 259 } 260 261 /** 262 * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region 263 * 264 * @dst_iomem: Pointer to the destination location in BAR0 space. 265 * @src: Pointer to the Source data. 266 * @size: Size of data to be copied. 267 */ 268 static void 269 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size) 270 { 271 int i; 272 u32 *src_virt_mem = (u32 *)(src); 273 274 for (i = 0; i < size/4; i++) 275 writel((u32)src_virt_mem[i], 276 (void __iomem *)dst_iomem + (i * 4)); 277 } 278 279 /** 280 * _base_get_chain - Calculates and Returns virtual chain address 281 * for the provided smid in BAR0 space. 282 * 283 * @ioc: per adapter object 284 * @smid: system request message index 285 * @sge_chain_count: Scatter gather chain count. 286 * 287 * Return: the chain address. 288 */ 289 static inline void __iomem* 290 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid, 291 u8 sge_chain_count) 292 { 293 void __iomem *base_chain, *chain_virt; 294 u16 cmd_credit = ioc->facts.RequestCredit + 1; 295 296 base_chain = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET + 297 (cmd_credit * ioc->request_sz) + 298 REPLY_FREE_POOL_SIZE; 299 chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth * 300 ioc->request_sz) + (sge_chain_count * ioc->request_sz); 301 return chain_virt; 302 } 303 304 /** 305 * _base_get_chain_phys - Calculates and Returns physical address 306 * in BAR0 for scatter gather chains, for 307 * the provided smid. 308 * 309 * @ioc: per adapter object 310 * @smid: system request message index 311 * @sge_chain_count: Scatter gather chain count. 312 * 313 * Return: Physical chain address. 314 */ 315 static inline phys_addr_t 316 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid, 317 u8 sge_chain_count) 318 { 319 phys_addr_t base_chain_phys, chain_phys; 320 u16 cmd_credit = ioc->facts.RequestCredit + 1; 321 322 base_chain_phys = ioc->chip_phys + MPI_FRAME_START_OFFSET + 323 (cmd_credit * ioc->request_sz) + 324 REPLY_FREE_POOL_SIZE; 325 chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth * 326 ioc->request_sz) + (sge_chain_count * ioc->request_sz); 327 return chain_phys; 328 } 329 330 /** 331 * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host 332 * buffer address for the provided smid. 333 * (Each smid can have 64K starts from 17024) 334 * 335 * @ioc: per adapter object 336 * @smid: system request message index 337 * 338 * Return: Pointer to buffer location in BAR0. 339 */ 340 341 static void __iomem * 342 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid) 343 { 344 u16 cmd_credit = ioc->facts.RequestCredit + 1; 345 // Added extra 1 to reach end of chain. 346 void __iomem *chain_end = _base_get_chain(ioc, 347 cmd_credit + 1, 348 ioc->facts.MaxChainDepth); 349 return chain_end + (smid * 64 * 1024); 350 } 351 352 /** 353 * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped 354 * Host buffer Physical address for the provided smid. 355 * (Each smid can have 64K starts from 17024) 356 * 357 * @ioc: per adapter object 358 * @smid: system request message index 359 * 360 * Return: Pointer to buffer location in BAR0. 361 */ 362 static phys_addr_t 363 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid) 364 { 365 u16 cmd_credit = ioc->facts.RequestCredit + 1; 366 phys_addr_t chain_end_phys = _base_get_chain_phys(ioc, 367 cmd_credit + 1, 368 ioc->facts.MaxChainDepth); 369 return chain_end_phys + (smid * 64 * 1024); 370 } 371 372 /** 373 * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain 374 * lookup list and Provides chain_buffer 375 * address for the matching dma address. 376 * (Each smid can have 64K starts from 17024) 377 * 378 * @ioc: per adapter object 379 * @chain_buffer_dma: Chain buffer dma address. 380 * 381 * Return: Pointer to chain buffer. Or Null on Failure. 382 */ 383 static void * 384 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc, 385 dma_addr_t chain_buffer_dma) 386 { 387 u16 index, j; 388 struct chain_tracker *ct; 389 390 for (index = 0; index < ioc->scsiio_depth; index++) { 391 for (j = 0; j < ioc->chains_needed_per_io; j++) { 392 ct = &ioc->chain_lookup[index].chains_per_smid[j]; 393 if (ct && ct->chain_buffer_dma == chain_buffer_dma) 394 return ct->chain_buffer; 395 } 396 } 397 ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n"); 398 return NULL; 399 } 400 401 /** 402 * _clone_sg_entries - MPI EP's scsiio and config requests 403 * are handled here. Base function for 404 * double buffering, before submitting 405 * the requests. 406 * 407 * @ioc: per adapter object. 408 * @mpi_request: mf request pointer. 409 * @smid: system request message index. 410 */ 411 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc, 412 void *mpi_request, u16 smid) 413 { 414 Mpi2SGESimple32_t *sgel, *sgel_next; 415 u32 sgl_flags, sge_chain_count = 0; 416 bool is_write = false; 417 u16 i = 0; 418 void __iomem *buffer_iomem; 419 phys_addr_t buffer_iomem_phys; 420 void __iomem *buff_ptr; 421 phys_addr_t buff_ptr_phys; 422 void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO]; 423 void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO]; 424 phys_addr_t dst_addr_phys; 425 MPI2RequestHeader_t *request_hdr; 426 struct scsi_cmnd *scmd; 427 struct scatterlist *sg_scmd = NULL; 428 int is_scsiio_req = 0; 429 430 request_hdr = (MPI2RequestHeader_t *) mpi_request; 431 432 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) { 433 Mpi25SCSIIORequest_t *scsiio_request = 434 (Mpi25SCSIIORequest_t *)mpi_request; 435 sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL; 436 is_scsiio_req = 1; 437 } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) { 438 Mpi2ConfigRequest_t *config_req = 439 (Mpi2ConfigRequest_t *)mpi_request; 440 sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE; 441 } else 442 return; 443 444 /* From smid we can get scsi_cmd, once we have sg_scmd, 445 * we just need to get sg_virt and sg_next to get virual 446 * address associated with sgel->Address. 447 */ 448 449 if (is_scsiio_req) { 450 /* Get scsi_cmd using smid */ 451 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid); 452 if (scmd == NULL) { 453 ioc_err(ioc, "scmd is NULL\n"); 454 return; 455 } 456 457 /* Get sg_scmd from scmd provided */ 458 sg_scmd = scsi_sglist(scmd); 459 } 460 461 /* 462 * 0 - 255 System register 463 * 256 - 4352 MPI Frame. (This is based on maxCredit 32) 464 * 4352 - 4864 Reply_free pool (512 byte is reserved 465 * considering maxCredit 32. Reply need extra 466 * room, for mCPU case kept four times of 467 * maxCredit). 468 * 4864 - 17152 SGE chain element. (32cmd * 3 chain of 469 * 128 byte size = 12288) 470 * 17152 - x Host buffer mapped with smid. 471 * (Each smid can have 64K Max IO.) 472 * BAR0+Last 1K MSIX Addr and Data 473 * Total size in use 2113664 bytes of 4MB BAR0 474 */ 475 476 buffer_iomem = _base_get_buffer_bar0(ioc, smid); 477 buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid); 478 479 buff_ptr = buffer_iomem; 480 buff_ptr_phys = buffer_iomem_phys; 481 WARN_ON(buff_ptr_phys > U32_MAX); 482 483 if (le32_to_cpu(sgel->FlagsLength) & 484 (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT)) 485 is_write = true; 486 487 for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) { 488 489 sgl_flags = 490 (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT); 491 492 switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) { 493 case MPI2_SGE_FLAGS_CHAIN_ELEMENT: 494 /* 495 * Helper function which on passing 496 * chain_buffer_dma returns chain_buffer. Get 497 * the virtual address for sgel->Address 498 */ 499 sgel_next = 500 _base_get_chain_buffer_dma_to_chain_buffer(ioc, 501 le32_to_cpu(sgel->Address)); 502 if (sgel_next == NULL) 503 return; 504 /* 505 * This is coping 128 byte chain 506 * frame (not a host buffer) 507 */ 508 dst_chain_addr[sge_chain_count] = 509 _base_get_chain(ioc, 510 smid, sge_chain_count); 511 src_chain_addr[sge_chain_count] = 512 (void *) sgel_next; 513 dst_addr_phys = _base_get_chain_phys(ioc, 514 smid, sge_chain_count); 515 WARN_ON(dst_addr_phys > U32_MAX); 516 sgel->Address = 517 cpu_to_le32(lower_32_bits(dst_addr_phys)); 518 sgel = sgel_next; 519 sge_chain_count++; 520 break; 521 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT: 522 if (is_write) { 523 if (is_scsiio_req) { 524 _base_clone_to_sys_mem(buff_ptr, 525 sg_virt(sg_scmd), 526 (le32_to_cpu(sgel->FlagsLength) & 527 0x00ffffff)); 528 /* 529 * FIXME: this relies on a a zero 530 * PCI mem_offset. 531 */ 532 sgel->Address = 533 cpu_to_le32((u32)buff_ptr_phys); 534 } else { 535 _base_clone_to_sys_mem(buff_ptr, 536 ioc->config_vaddr, 537 (le32_to_cpu(sgel->FlagsLength) & 538 0x00ffffff)); 539 sgel->Address = 540 cpu_to_le32((u32)buff_ptr_phys); 541 } 542 } 543 buff_ptr += (le32_to_cpu(sgel->FlagsLength) & 544 0x00ffffff); 545 buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) & 546 0x00ffffff); 547 if ((le32_to_cpu(sgel->FlagsLength) & 548 (MPI2_SGE_FLAGS_END_OF_BUFFER 549 << MPI2_SGE_FLAGS_SHIFT))) 550 goto eob_clone_chain; 551 else { 552 /* 553 * Every single element in MPT will have 554 * associated sg_next. Better to sanity that 555 * sg_next is not NULL, but it will be a bug 556 * if it is null. 557 */ 558 if (is_scsiio_req) { 559 sg_scmd = sg_next(sg_scmd); 560 if (sg_scmd) 561 sgel++; 562 else 563 goto eob_clone_chain; 564 } 565 } 566 break; 567 } 568 } 569 570 eob_clone_chain: 571 for (i = 0; i < sge_chain_count; i++) { 572 if (is_scsiio_req) 573 _base_clone_to_sys_mem(dst_chain_addr[i], 574 src_chain_addr[i], ioc->request_sz); 575 } 576 } 577 578 /** 579 * mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc 580 * @arg: input argument, used to derive ioc 581 * 582 * Return: 583 * 0 if controller is removed from pci subsystem. 584 * -1 for other case. 585 */ 586 static int mpt3sas_remove_dead_ioc_func(void *arg) 587 { 588 struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg; 589 struct pci_dev *pdev; 590 591 if (!ioc) 592 return -1; 593 594 pdev = ioc->pdev; 595 if (!pdev) 596 return -1; 597 pci_stop_and_remove_bus_device_locked(pdev); 598 return 0; 599 } 600 601 /** 602 * _base_fault_reset_work - workq handling ioc fault conditions 603 * @work: input argument, used to derive ioc 604 * 605 * Context: sleep. 606 */ 607 static void 608 _base_fault_reset_work(struct work_struct *work) 609 { 610 struct MPT3SAS_ADAPTER *ioc = 611 container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work); 612 unsigned long flags; 613 u32 doorbell; 614 int rc; 615 struct task_struct *p; 616 617 618 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 619 if ((ioc->shost_recovery && (ioc->ioc_coredump_loop == 0)) || 620 ioc->pci_error_recovery) 621 goto rearm_timer; 622 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 623 624 doorbell = mpt3sas_base_get_iocstate(ioc, 0); 625 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) { 626 ioc_err(ioc, "SAS host is non-operational !!!!\n"); 627 628 /* It may be possible that EEH recovery can resolve some of 629 * pci bus failure issues rather removing the dead ioc function 630 * by considering controller is in a non-operational state. So 631 * here priority is given to the EEH recovery. If it doesn't 632 * not resolve this issue, mpt3sas driver will consider this 633 * controller to non-operational state and remove the dead ioc 634 * function. 635 */ 636 if (ioc->non_operational_loop++ < 5) { 637 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, 638 flags); 639 goto rearm_timer; 640 } 641 642 /* 643 * Call _scsih_flush_pending_cmds callback so that we flush all 644 * pending commands back to OS. This call is required to aovid 645 * deadlock at block layer. Dead IOC will fail to do diag reset, 646 * and this call is safe since dead ioc will never return any 647 * command back from HW. 648 */ 649 ioc->schedule_dead_ioc_flush_running_cmds(ioc); 650 /* 651 * Set remove_host flag early since kernel thread will 652 * take some time to execute. 653 */ 654 ioc->remove_host = 1; 655 /*Remove the Dead Host */ 656 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc, 657 "%s_dead_ioc_%d", ioc->driver_name, ioc->id); 658 if (IS_ERR(p)) 659 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n", 660 __func__); 661 else 662 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n", 663 __func__); 664 return; /* don't rearm timer */ 665 } 666 667 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) { 668 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ? 669 ioc->manu_pg11.CoreDumpTOSec : 670 MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS; 671 672 timeout /= (FAULT_POLLING_INTERVAL/1000); 673 674 if (ioc->ioc_coredump_loop == 0) { 675 mpt3sas_print_coredump_info(ioc, 676 doorbell & MPI2_DOORBELL_DATA_MASK); 677 /* do not accept any IOs and disable the interrupts */ 678 spin_lock_irqsave( 679 &ioc->ioc_reset_in_progress_lock, flags); 680 ioc->shost_recovery = 1; 681 spin_unlock_irqrestore( 682 &ioc->ioc_reset_in_progress_lock, flags); 683 _base_mask_interrupts(ioc); 684 _base_clear_outstanding_commands(ioc); 685 } 686 687 ioc_info(ioc, "%s: CoreDump loop %d.", 688 __func__, ioc->ioc_coredump_loop); 689 690 /* Wait until CoreDump completes or times out */ 691 if (ioc->ioc_coredump_loop++ < timeout) { 692 spin_lock_irqsave( 693 &ioc->ioc_reset_in_progress_lock, flags); 694 goto rearm_timer; 695 } 696 } 697 698 if (ioc->ioc_coredump_loop) { 699 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_COREDUMP) 700 ioc_err(ioc, "%s: CoreDump completed. LoopCount: %d", 701 __func__, ioc->ioc_coredump_loop); 702 else 703 ioc_err(ioc, "%s: CoreDump Timed out. LoopCount: %d", 704 __func__, ioc->ioc_coredump_loop); 705 ioc->ioc_coredump_loop = MPT3SAS_COREDUMP_LOOP_DONE; 706 } 707 ioc->non_operational_loop = 0; 708 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) { 709 rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 710 ioc_warn(ioc, "%s: hard reset: %s\n", 711 __func__, rc == 0 ? "success" : "failed"); 712 doorbell = mpt3sas_base_get_iocstate(ioc, 0); 713 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 714 mpt3sas_print_fault_code(ioc, doorbell & 715 MPI2_DOORBELL_DATA_MASK); 716 } else if ((doorbell & MPI2_IOC_STATE_MASK) == 717 MPI2_IOC_STATE_COREDUMP) 718 mpt3sas_print_coredump_info(ioc, doorbell & 719 MPI2_DOORBELL_DATA_MASK); 720 if (rc && (doorbell & MPI2_IOC_STATE_MASK) != 721 MPI2_IOC_STATE_OPERATIONAL) 722 return; /* don't rearm timer */ 723 } 724 ioc->ioc_coredump_loop = 0; 725 726 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 727 rearm_timer: 728 if (ioc->fault_reset_work_q) 729 queue_delayed_work(ioc->fault_reset_work_q, 730 &ioc->fault_reset_work, 731 msecs_to_jiffies(FAULT_POLLING_INTERVAL)); 732 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 733 } 734 735 /** 736 * mpt3sas_base_start_watchdog - start the fault_reset_work_q 737 * @ioc: per adapter object 738 * 739 * Context: sleep. 740 */ 741 void 742 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc) 743 { 744 unsigned long flags; 745 746 if (ioc->fault_reset_work_q) 747 return; 748 749 /* initialize fault polling */ 750 751 INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work); 752 snprintf(ioc->fault_reset_work_q_name, 753 sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status", 754 ioc->driver_name, ioc->id); 755 ioc->fault_reset_work_q = 756 create_singlethread_workqueue(ioc->fault_reset_work_q_name); 757 if (!ioc->fault_reset_work_q) { 758 ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__); 759 return; 760 } 761 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 762 if (ioc->fault_reset_work_q) 763 queue_delayed_work(ioc->fault_reset_work_q, 764 &ioc->fault_reset_work, 765 msecs_to_jiffies(FAULT_POLLING_INTERVAL)); 766 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 767 } 768 769 /** 770 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q 771 * @ioc: per adapter object 772 * 773 * Context: sleep. 774 */ 775 void 776 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc) 777 { 778 unsigned long flags; 779 struct workqueue_struct *wq; 780 781 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 782 wq = ioc->fault_reset_work_q; 783 ioc->fault_reset_work_q = NULL; 784 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 785 if (wq) { 786 if (!cancel_delayed_work_sync(&ioc->fault_reset_work)) 787 flush_workqueue(wq); 788 destroy_workqueue(wq); 789 } 790 } 791 792 /** 793 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code 794 * @ioc: per adapter object 795 * @fault_code: fault code 796 */ 797 void 798 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code) 799 { 800 ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code); 801 } 802 803 /** 804 * mpt3sas_base_coredump_info - verbose translation of firmware CoreDump state 805 * @ioc: per adapter object 806 * @fault_code: fault code 807 * 808 * Return nothing. 809 */ 810 void 811 mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code) 812 { 813 ioc_err(ioc, "coredump_state(0x%04x)!\n", fault_code); 814 } 815 816 /** 817 * mpt3sas_base_wait_for_coredump_completion - Wait until coredump 818 * completes or times out 819 * @ioc: per adapter object 820 * 821 * Returns 0 for success, non-zero for failure. 822 */ 823 int 824 mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER *ioc, 825 const char *caller) 826 { 827 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ? 828 ioc->manu_pg11.CoreDumpTOSec : 829 MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS; 830 831 int ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_FAULT, 832 timeout); 833 834 if (ioc_state) 835 ioc_err(ioc, 836 "%s: CoreDump timed out. (ioc_state=0x%x)\n", 837 caller, ioc_state); 838 else 839 ioc_info(ioc, 840 "%s: CoreDump completed. (ioc_state=0x%x)\n", 841 caller, ioc_state); 842 843 return ioc_state; 844 } 845 846 /** 847 * mpt3sas_halt_firmware - halt's mpt controller firmware 848 * @ioc: per adapter object 849 * 850 * For debugging timeout related issues. Writing 0xCOFFEE00 851 * to the doorbell register will halt controller firmware. With 852 * the purpose to stop both driver and firmware, the enduser can 853 * obtain a ring buffer from controller UART. 854 */ 855 void 856 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc) 857 { 858 u32 doorbell; 859 860 if (!ioc->fwfault_debug) 861 return; 862 863 dump_stack(); 864 865 doorbell = ioc->base_readl(&ioc->chip->Doorbell); 866 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 867 mpt3sas_print_fault_code(ioc, doorbell & 868 MPI2_DOORBELL_DATA_MASK); 869 } else if ((doorbell & MPI2_IOC_STATE_MASK) == 870 MPI2_IOC_STATE_COREDUMP) { 871 mpt3sas_print_coredump_info(ioc, doorbell & 872 MPI2_DOORBELL_DATA_MASK); 873 } else { 874 writel(0xC0FFEE00, &ioc->chip->Doorbell); 875 ioc_err(ioc, "Firmware is halted due to command timeout\n"); 876 } 877 878 if (ioc->fwfault_debug == 2) 879 for (;;) 880 ; 881 else 882 panic("panic in %s\n", __func__); 883 } 884 885 /** 886 * _base_sas_ioc_info - verbose translation of the ioc status 887 * @ioc: per adapter object 888 * @mpi_reply: reply mf payload returned from firmware 889 * @request_hdr: request mf 890 */ 891 static void 892 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply, 893 MPI2RequestHeader_t *request_hdr) 894 { 895 u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & 896 MPI2_IOCSTATUS_MASK; 897 char *desc = NULL; 898 u16 frame_sz; 899 char *func_str = NULL; 900 901 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */ 902 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST || 903 request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH || 904 request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION) 905 return; 906 907 if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE) 908 return; 909 910 switch (ioc_status) { 911 912 /**************************************************************************** 913 * Common IOCStatus values for all replies 914 ****************************************************************************/ 915 916 case MPI2_IOCSTATUS_INVALID_FUNCTION: 917 desc = "invalid function"; 918 break; 919 case MPI2_IOCSTATUS_BUSY: 920 desc = "busy"; 921 break; 922 case MPI2_IOCSTATUS_INVALID_SGL: 923 desc = "invalid sgl"; 924 break; 925 case MPI2_IOCSTATUS_INTERNAL_ERROR: 926 desc = "internal error"; 927 break; 928 case MPI2_IOCSTATUS_INVALID_VPID: 929 desc = "invalid vpid"; 930 break; 931 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES: 932 desc = "insufficient resources"; 933 break; 934 case MPI2_IOCSTATUS_INSUFFICIENT_POWER: 935 desc = "insufficient power"; 936 break; 937 case MPI2_IOCSTATUS_INVALID_FIELD: 938 desc = "invalid field"; 939 break; 940 case MPI2_IOCSTATUS_INVALID_STATE: 941 desc = "invalid state"; 942 break; 943 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED: 944 desc = "op state not supported"; 945 break; 946 947 /**************************************************************************** 948 * Config IOCStatus values 949 ****************************************************************************/ 950 951 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION: 952 desc = "config invalid action"; 953 break; 954 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE: 955 desc = "config invalid type"; 956 break; 957 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE: 958 desc = "config invalid page"; 959 break; 960 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA: 961 desc = "config invalid data"; 962 break; 963 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS: 964 desc = "config no defaults"; 965 break; 966 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT: 967 desc = "config cant commit"; 968 break; 969 970 /**************************************************************************** 971 * SCSI IO Reply 972 ****************************************************************************/ 973 974 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR: 975 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE: 976 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE: 977 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN: 978 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN: 979 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR: 980 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR: 981 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED: 982 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH: 983 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED: 984 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED: 985 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED: 986 break; 987 988 /**************************************************************************** 989 * For use by SCSI Initiator and SCSI Target end-to-end data protection 990 ****************************************************************************/ 991 992 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR: 993 desc = "eedp guard error"; 994 break; 995 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR: 996 desc = "eedp ref tag error"; 997 break; 998 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR: 999 desc = "eedp app tag error"; 1000 break; 1001 1002 /**************************************************************************** 1003 * SCSI Target values 1004 ****************************************************************************/ 1005 1006 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX: 1007 desc = "target invalid io index"; 1008 break; 1009 case MPI2_IOCSTATUS_TARGET_ABORTED: 1010 desc = "target aborted"; 1011 break; 1012 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE: 1013 desc = "target no conn retryable"; 1014 break; 1015 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION: 1016 desc = "target no connection"; 1017 break; 1018 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH: 1019 desc = "target xfer count mismatch"; 1020 break; 1021 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR: 1022 desc = "target data offset error"; 1023 break; 1024 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA: 1025 desc = "target too much write data"; 1026 break; 1027 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT: 1028 desc = "target iu too short"; 1029 break; 1030 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT: 1031 desc = "target ack nak timeout"; 1032 break; 1033 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED: 1034 desc = "target nak received"; 1035 break; 1036 1037 /**************************************************************************** 1038 * Serial Attached SCSI values 1039 ****************************************************************************/ 1040 1041 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED: 1042 desc = "smp request failed"; 1043 break; 1044 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN: 1045 desc = "smp data overrun"; 1046 break; 1047 1048 /**************************************************************************** 1049 * Diagnostic Buffer Post / Diagnostic Release values 1050 ****************************************************************************/ 1051 1052 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED: 1053 desc = "diagnostic released"; 1054 break; 1055 default: 1056 break; 1057 } 1058 1059 if (!desc) 1060 return; 1061 1062 switch (request_hdr->Function) { 1063 case MPI2_FUNCTION_CONFIG: 1064 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size; 1065 func_str = "config_page"; 1066 break; 1067 case MPI2_FUNCTION_SCSI_TASK_MGMT: 1068 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t); 1069 func_str = "task_mgmt"; 1070 break; 1071 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL: 1072 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t); 1073 func_str = "sas_iounit_ctl"; 1074 break; 1075 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR: 1076 frame_sz = sizeof(Mpi2SepRequest_t); 1077 func_str = "enclosure"; 1078 break; 1079 case MPI2_FUNCTION_IOC_INIT: 1080 frame_sz = sizeof(Mpi2IOCInitRequest_t); 1081 func_str = "ioc_init"; 1082 break; 1083 case MPI2_FUNCTION_PORT_ENABLE: 1084 frame_sz = sizeof(Mpi2PortEnableRequest_t); 1085 func_str = "port_enable"; 1086 break; 1087 case MPI2_FUNCTION_SMP_PASSTHROUGH: 1088 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size; 1089 func_str = "smp_passthru"; 1090 break; 1091 case MPI2_FUNCTION_NVME_ENCAPSULATED: 1092 frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) + 1093 ioc->sge_size; 1094 func_str = "nvme_encapsulated"; 1095 break; 1096 default: 1097 frame_sz = 32; 1098 func_str = "unknown"; 1099 break; 1100 } 1101 1102 ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n", 1103 desc, ioc_status, request_hdr, func_str); 1104 1105 _debug_dump_mf(request_hdr, frame_sz/4); 1106 } 1107 1108 /** 1109 * _base_display_event_data - verbose translation of firmware asyn events 1110 * @ioc: per adapter object 1111 * @mpi_reply: reply mf payload returned from firmware 1112 */ 1113 static void 1114 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc, 1115 Mpi2EventNotificationReply_t *mpi_reply) 1116 { 1117 char *desc = NULL; 1118 u16 event; 1119 1120 if (!(ioc->logging_level & MPT_DEBUG_EVENTS)) 1121 return; 1122 1123 event = le16_to_cpu(mpi_reply->Event); 1124 1125 switch (event) { 1126 case MPI2_EVENT_LOG_DATA: 1127 desc = "Log Data"; 1128 break; 1129 case MPI2_EVENT_STATE_CHANGE: 1130 desc = "Status Change"; 1131 break; 1132 case MPI2_EVENT_HARD_RESET_RECEIVED: 1133 desc = "Hard Reset Received"; 1134 break; 1135 case MPI2_EVENT_EVENT_CHANGE: 1136 desc = "Event Change"; 1137 break; 1138 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE: 1139 desc = "Device Status Change"; 1140 break; 1141 case MPI2_EVENT_IR_OPERATION_STATUS: 1142 if (!ioc->hide_ir_msg) 1143 desc = "IR Operation Status"; 1144 break; 1145 case MPI2_EVENT_SAS_DISCOVERY: 1146 { 1147 Mpi2EventDataSasDiscovery_t *event_data = 1148 (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData; 1149 ioc_info(ioc, "Discovery: (%s)", 1150 event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ? 1151 "start" : "stop"); 1152 if (event_data->DiscoveryStatus) 1153 pr_cont(" discovery_status(0x%08x)", 1154 le32_to_cpu(event_data->DiscoveryStatus)); 1155 pr_cont("\n"); 1156 return; 1157 } 1158 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE: 1159 desc = "SAS Broadcast Primitive"; 1160 break; 1161 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE: 1162 desc = "SAS Init Device Status Change"; 1163 break; 1164 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW: 1165 desc = "SAS Init Table Overflow"; 1166 break; 1167 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST: 1168 desc = "SAS Topology Change List"; 1169 break; 1170 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE: 1171 desc = "SAS Enclosure Device Status Change"; 1172 break; 1173 case MPI2_EVENT_IR_VOLUME: 1174 if (!ioc->hide_ir_msg) 1175 desc = "IR Volume"; 1176 break; 1177 case MPI2_EVENT_IR_PHYSICAL_DISK: 1178 if (!ioc->hide_ir_msg) 1179 desc = "IR Physical Disk"; 1180 break; 1181 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST: 1182 if (!ioc->hide_ir_msg) 1183 desc = "IR Configuration Change List"; 1184 break; 1185 case MPI2_EVENT_LOG_ENTRY_ADDED: 1186 if (!ioc->hide_ir_msg) 1187 desc = "Log Entry Added"; 1188 break; 1189 case MPI2_EVENT_TEMP_THRESHOLD: 1190 desc = "Temperature Threshold"; 1191 break; 1192 case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION: 1193 desc = "Cable Event"; 1194 break; 1195 case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR: 1196 desc = "SAS Device Discovery Error"; 1197 break; 1198 case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE: 1199 desc = "PCIE Device Status Change"; 1200 break; 1201 case MPI2_EVENT_PCIE_ENUMERATION: 1202 { 1203 Mpi26EventDataPCIeEnumeration_t *event_data = 1204 (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData; 1205 ioc_info(ioc, "PCIE Enumeration: (%s)", 1206 event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ? 1207 "start" : "stop"); 1208 if (event_data->EnumerationStatus) 1209 pr_cont("enumeration_status(0x%08x)", 1210 le32_to_cpu(event_data->EnumerationStatus)); 1211 pr_cont("\n"); 1212 return; 1213 } 1214 case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST: 1215 desc = "PCIE Topology Change List"; 1216 break; 1217 } 1218 1219 if (!desc) 1220 return; 1221 1222 ioc_info(ioc, "%s\n", desc); 1223 } 1224 1225 /** 1226 * _base_sas_log_info - verbose translation of firmware log info 1227 * @ioc: per adapter object 1228 * @log_info: log info 1229 */ 1230 static void 1231 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info) 1232 { 1233 union loginfo_type { 1234 u32 loginfo; 1235 struct { 1236 u32 subcode:16; 1237 u32 code:8; 1238 u32 originator:4; 1239 u32 bus_type:4; 1240 } dw; 1241 }; 1242 union loginfo_type sas_loginfo; 1243 char *originator_str = NULL; 1244 1245 sas_loginfo.loginfo = log_info; 1246 if (sas_loginfo.dw.bus_type != 3 /*SAS*/) 1247 return; 1248 1249 /* each nexus loss loginfo */ 1250 if (log_info == 0x31170000) 1251 return; 1252 1253 /* eat the loginfos associated with task aborts */ 1254 if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info == 1255 0x31140000 || log_info == 0x31130000)) 1256 return; 1257 1258 switch (sas_loginfo.dw.originator) { 1259 case 0: 1260 originator_str = "IOP"; 1261 break; 1262 case 1: 1263 originator_str = "PL"; 1264 break; 1265 case 2: 1266 if (!ioc->hide_ir_msg) 1267 originator_str = "IR"; 1268 else 1269 originator_str = "WarpDrive"; 1270 break; 1271 } 1272 1273 ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n", 1274 log_info, 1275 originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode); 1276 } 1277 1278 /** 1279 * _base_display_reply_info - 1280 * @ioc: per adapter object 1281 * @smid: system request message index 1282 * @msix_index: MSIX table index supplied by the OS 1283 * @reply: reply message frame(lower 32bit addr) 1284 */ 1285 static void 1286 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 1287 u32 reply) 1288 { 1289 MPI2DefaultReply_t *mpi_reply; 1290 u16 ioc_status; 1291 u32 loginfo = 0; 1292 1293 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1294 if (unlikely(!mpi_reply)) { 1295 ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n", 1296 __FILE__, __LINE__, __func__); 1297 return; 1298 } 1299 ioc_status = le16_to_cpu(mpi_reply->IOCStatus); 1300 1301 if ((ioc_status & MPI2_IOCSTATUS_MASK) && 1302 (ioc->logging_level & MPT_DEBUG_REPLY)) { 1303 _base_sas_ioc_info(ioc , mpi_reply, 1304 mpt3sas_base_get_msg_frame(ioc, smid)); 1305 } 1306 1307 if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) { 1308 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo); 1309 _base_sas_log_info(ioc, loginfo); 1310 } 1311 1312 if (ioc_status || loginfo) { 1313 ioc_status &= MPI2_IOCSTATUS_MASK; 1314 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo); 1315 } 1316 } 1317 1318 /** 1319 * mpt3sas_base_done - base internal command completion routine 1320 * @ioc: per adapter object 1321 * @smid: system request message index 1322 * @msix_index: MSIX table index supplied by the OS 1323 * @reply: reply message frame(lower 32bit addr) 1324 * 1325 * Return: 1326 * 1 meaning mf should be freed from _base_interrupt 1327 * 0 means the mf is freed from this function. 1328 */ 1329 u8 1330 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 1331 u32 reply) 1332 { 1333 MPI2DefaultReply_t *mpi_reply; 1334 1335 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1336 if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK) 1337 return mpt3sas_check_for_pending_internal_cmds(ioc, smid); 1338 1339 if (ioc->base_cmds.status == MPT3_CMD_NOT_USED) 1340 return 1; 1341 1342 ioc->base_cmds.status |= MPT3_CMD_COMPLETE; 1343 if (mpi_reply) { 1344 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID; 1345 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4); 1346 } 1347 ioc->base_cmds.status &= ~MPT3_CMD_PENDING; 1348 1349 complete(&ioc->base_cmds.done); 1350 return 1; 1351 } 1352 1353 /** 1354 * _base_async_event - main callback handler for firmware asyn events 1355 * @ioc: per adapter object 1356 * @msix_index: MSIX table index supplied by the OS 1357 * @reply: reply message frame(lower 32bit addr) 1358 * 1359 * Return: 1360 * 1 meaning mf should be freed from _base_interrupt 1361 * 0 means the mf is freed from this function. 1362 */ 1363 static u8 1364 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply) 1365 { 1366 Mpi2EventNotificationReply_t *mpi_reply; 1367 Mpi2EventAckRequest_t *ack_request; 1368 u16 smid; 1369 struct _event_ack_list *delayed_event_ack; 1370 1371 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1372 if (!mpi_reply) 1373 return 1; 1374 if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION) 1375 return 1; 1376 1377 _base_display_event_data(ioc, mpi_reply); 1378 1379 if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED)) 1380 goto out; 1381 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 1382 if (!smid) { 1383 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack), 1384 GFP_ATOMIC); 1385 if (!delayed_event_ack) 1386 goto out; 1387 INIT_LIST_HEAD(&delayed_event_ack->list); 1388 delayed_event_ack->Event = mpi_reply->Event; 1389 delayed_event_ack->EventContext = mpi_reply->EventContext; 1390 list_add_tail(&delayed_event_ack->list, 1391 &ioc->delayed_event_ack_list); 1392 dewtprintk(ioc, 1393 ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n", 1394 le16_to_cpu(mpi_reply->Event))); 1395 goto out; 1396 } 1397 1398 ack_request = mpt3sas_base_get_msg_frame(ioc, smid); 1399 memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t)); 1400 ack_request->Function = MPI2_FUNCTION_EVENT_ACK; 1401 ack_request->Event = mpi_reply->Event; 1402 ack_request->EventContext = mpi_reply->EventContext; 1403 ack_request->VF_ID = 0; /* TODO */ 1404 ack_request->VP_ID = 0; 1405 ioc->put_smid_default(ioc, smid); 1406 1407 out: 1408 1409 /* scsih callback handler */ 1410 mpt3sas_scsih_event_callback(ioc, msix_index, reply); 1411 1412 /* ctl callback handler */ 1413 mpt3sas_ctl_event_callback(ioc, msix_index, reply); 1414 1415 return 1; 1416 } 1417 1418 static struct scsiio_tracker * 1419 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid) 1420 { 1421 struct scsi_cmnd *cmd; 1422 1423 if (WARN_ON(!smid) || 1424 WARN_ON(smid >= ioc->hi_priority_smid)) 1425 return NULL; 1426 1427 cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid); 1428 if (cmd) 1429 return scsi_cmd_priv(cmd); 1430 1431 return NULL; 1432 } 1433 1434 /** 1435 * _base_get_cb_idx - obtain the callback index 1436 * @ioc: per adapter object 1437 * @smid: system request message index 1438 * 1439 * Return: callback index. 1440 */ 1441 static u8 1442 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid) 1443 { 1444 int i; 1445 u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1; 1446 u8 cb_idx = 0xFF; 1447 1448 if (smid < ioc->hi_priority_smid) { 1449 struct scsiio_tracker *st; 1450 1451 if (smid < ctl_smid) { 1452 st = _get_st_from_smid(ioc, smid); 1453 if (st) 1454 cb_idx = st->cb_idx; 1455 } else if (smid == ctl_smid) 1456 cb_idx = ioc->ctl_cb_idx; 1457 } else if (smid < ioc->internal_smid) { 1458 i = smid - ioc->hi_priority_smid; 1459 cb_idx = ioc->hpr_lookup[i].cb_idx; 1460 } else if (smid <= ioc->hba_queue_depth) { 1461 i = smid - ioc->internal_smid; 1462 cb_idx = ioc->internal_lookup[i].cb_idx; 1463 } 1464 return cb_idx; 1465 } 1466 1467 /** 1468 * _base_mask_interrupts - disable interrupts 1469 * @ioc: per adapter object 1470 * 1471 * Disabling ResetIRQ, Reply and Doorbell Interrupts 1472 */ 1473 static void 1474 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc) 1475 { 1476 u32 him_register; 1477 1478 ioc->mask_interrupts = 1; 1479 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask); 1480 him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK; 1481 writel(him_register, &ioc->chip->HostInterruptMask); 1482 ioc->base_readl(&ioc->chip->HostInterruptMask); 1483 } 1484 1485 /** 1486 * _base_unmask_interrupts - enable interrupts 1487 * @ioc: per adapter object 1488 * 1489 * Enabling only Reply Interrupts 1490 */ 1491 static void 1492 _base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc) 1493 { 1494 u32 him_register; 1495 1496 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask); 1497 him_register &= ~MPI2_HIM_RIM; 1498 writel(him_register, &ioc->chip->HostInterruptMask); 1499 ioc->mask_interrupts = 0; 1500 } 1501 1502 union reply_descriptor { 1503 u64 word; 1504 struct { 1505 u32 low; 1506 u32 high; 1507 } u; 1508 }; 1509 1510 static u32 base_mod64(u64 dividend, u32 divisor) 1511 { 1512 u32 remainder; 1513 1514 if (!divisor) 1515 pr_err("mpt3sas: DIVISOR is zero, in div fn\n"); 1516 remainder = do_div(dividend, divisor); 1517 return remainder; 1518 } 1519 1520 /** 1521 * _base_process_reply_queue - Process reply descriptors from reply 1522 * descriptor post queue. 1523 * @reply_q: per IRQ's reply queue object. 1524 * 1525 * Return: number of reply descriptors processed from reply 1526 * descriptor queue. 1527 */ 1528 static int 1529 _base_process_reply_queue(struct adapter_reply_queue *reply_q) 1530 { 1531 union reply_descriptor rd; 1532 u64 completed_cmds; 1533 u8 request_descript_type; 1534 u16 smid; 1535 u8 cb_idx; 1536 u32 reply; 1537 u8 msix_index = reply_q->msix_index; 1538 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc; 1539 Mpi2ReplyDescriptorsUnion_t *rpf; 1540 u8 rc; 1541 1542 completed_cmds = 0; 1543 if (!atomic_add_unless(&reply_q->busy, 1, 1)) 1544 return completed_cmds; 1545 1546 rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index]; 1547 request_descript_type = rpf->Default.ReplyFlags 1548 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 1549 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) { 1550 atomic_dec(&reply_q->busy); 1551 return completed_cmds; 1552 } 1553 1554 cb_idx = 0xFF; 1555 do { 1556 rd.word = le64_to_cpu(rpf->Words); 1557 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX) 1558 goto out; 1559 reply = 0; 1560 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1); 1561 if (request_descript_type == 1562 MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS || 1563 request_descript_type == 1564 MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS || 1565 request_descript_type == 1566 MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) { 1567 cb_idx = _base_get_cb_idx(ioc, smid); 1568 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) && 1569 (likely(mpt_callbacks[cb_idx] != NULL))) { 1570 rc = mpt_callbacks[cb_idx](ioc, smid, 1571 msix_index, 0); 1572 if (rc) 1573 mpt3sas_base_free_smid(ioc, smid); 1574 } 1575 } else if (request_descript_type == 1576 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) { 1577 reply = le32_to_cpu( 1578 rpf->AddressReply.ReplyFrameAddress); 1579 if (reply > ioc->reply_dma_max_address || 1580 reply < ioc->reply_dma_min_address) 1581 reply = 0; 1582 if (smid) { 1583 cb_idx = _base_get_cb_idx(ioc, smid); 1584 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) && 1585 (likely(mpt_callbacks[cb_idx] != NULL))) { 1586 rc = mpt_callbacks[cb_idx](ioc, smid, 1587 msix_index, reply); 1588 if (reply) 1589 _base_display_reply_info(ioc, 1590 smid, msix_index, reply); 1591 if (rc) 1592 mpt3sas_base_free_smid(ioc, 1593 smid); 1594 } 1595 } else { 1596 _base_async_event(ioc, msix_index, reply); 1597 } 1598 1599 /* reply free queue handling */ 1600 if (reply) { 1601 ioc->reply_free_host_index = 1602 (ioc->reply_free_host_index == 1603 (ioc->reply_free_queue_depth - 1)) ? 1604 0 : ioc->reply_free_host_index + 1; 1605 ioc->reply_free[ioc->reply_free_host_index] = 1606 cpu_to_le32(reply); 1607 if (ioc->is_mcpu_endpoint) 1608 _base_clone_reply_to_sys_mem(ioc, 1609 reply, 1610 ioc->reply_free_host_index); 1611 writel(ioc->reply_free_host_index, 1612 &ioc->chip->ReplyFreeHostIndex); 1613 } 1614 } 1615 1616 rpf->Words = cpu_to_le64(ULLONG_MAX); 1617 reply_q->reply_post_host_index = 1618 (reply_q->reply_post_host_index == 1619 (ioc->reply_post_queue_depth - 1)) ? 0 : 1620 reply_q->reply_post_host_index + 1; 1621 request_descript_type = 1622 reply_q->reply_post_free[reply_q->reply_post_host_index]. 1623 Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 1624 completed_cmds++; 1625 /* Update the reply post host index after continuously 1626 * processing the threshold number of Reply Descriptors. 1627 * So that FW can find enough entries to post the Reply 1628 * Descriptors in the reply descriptor post queue. 1629 */ 1630 if (!base_mod64(completed_cmds, ioc->thresh_hold)) { 1631 if (ioc->combined_reply_queue) { 1632 writel(reply_q->reply_post_host_index | 1633 ((msix_index & 7) << 1634 MPI2_RPHI_MSIX_INDEX_SHIFT), 1635 ioc->replyPostRegisterIndex[msix_index/8]); 1636 } else { 1637 writel(reply_q->reply_post_host_index | 1638 (msix_index << 1639 MPI2_RPHI_MSIX_INDEX_SHIFT), 1640 &ioc->chip->ReplyPostHostIndex); 1641 } 1642 if (!reply_q->irq_poll_scheduled) { 1643 reply_q->irq_poll_scheduled = true; 1644 irq_poll_sched(&reply_q->irqpoll); 1645 } 1646 atomic_dec(&reply_q->busy); 1647 return completed_cmds; 1648 } 1649 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) 1650 goto out; 1651 if (!reply_q->reply_post_host_index) 1652 rpf = reply_q->reply_post_free; 1653 else 1654 rpf++; 1655 } while (1); 1656 1657 out: 1658 1659 if (!completed_cmds) { 1660 atomic_dec(&reply_q->busy); 1661 return completed_cmds; 1662 } 1663 1664 if (ioc->is_warpdrive) { 1665 writel(reply_q->reply_post_host_index, 1666 ioc->reply_post_host_index[msix_index]); 1667 atomic_dec(&reply_q->busy); 1668 return completed_cmds; 1669 } 1670 1671 /* Update Reply Post Host Index. 1672 * For those HBA's which support combined reply queue feature 1673 * 1. Get the correct Supplemental Reply Post Host Index Register. 1674 * i.e. (msix_index / 8)th entry from Supplemental Reply Post Host 1675 * Index Register address bank i.e replyPostRegisterIndex[], 1676 * 2. Then update this register with new reply host index value 1677 * in ReplyPostIndex field and the MSIxIndex field with 1678 * msix_index value reduced to a value between 0 and 7, 1679 * using a modulo 8 operation. Since each Supplemental Reply Post 1680 * Host Index Register supports 8 MSI-X vectors. 1681 * 1682 * For other HBA's just update the Reply Post Host Index register with 1683 * new reply host index value in ReplyPostIndex Field and msix_index 1684 * value in MSIxIndex field. 1685 */ 1686 if (ioc->combined_reply_queue) 1687 writel(reply_q->reply_post_host_index | ((msix_index & 7) << 1688 MPI2_RPHI_MSIX_INDEX_SHIFT), 1689 ioc->replyPostRegisterIndex[msix_index/8]); 1690 else 1691 writel(reply_q->reply_post_host_index | (msix_index << 1692 MPI2_RPHI_MSIX_INDEX_SHIFT), 1693 &ioc->chip->ReplyPostHostIndex); 1694 atomic_dec(&reply_q->busy); 1695 return completed_cmds; 1696 } 1697 1698 /** 1699 * _base_interrupt - MPT adapter (IOC) specific interrupt handler. 1700 * @irq: irq number (not used) 1701 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure 1702 * 1703 * Return: IRQ_HANDLED if processed, else IRQ_NONE. 1704 */ 1705 static irqreturn_t 1706 _base_interrupt(int irq, void *bus_id) 1707 { 1708 struct adapter_reply_queue *reply_q = bus_id; 1709 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc; 1710 1711 if (ioc->mask_interrupts) 1712 return IRQ_NONE; 1713 if (reply_q->irq_poll_scheduled) 1714 return IRQ_HANDLED; 1715 return ((_base_process_reply_queue(reply_q) > 0) ? 1716 IRQ_HANDLED : IRQ_NONE); 1717 } 1718 1719 /** 1720 * _base_irqpoll - IRQ poll callback handler 1721 * @irqpoll - irq_poll object 1722 * @budget - irq poll weight 1723 * 1724 * returns number of reply descriptors processed 1725 */ 1726 static int 1727 _base_irqpoll(struct irq_poll *irqpoll, int budget) 1728 { 1729 struct adapter_reply_queue *reply_q; 1730 int num_entries = 0; 1731 1732 reply_q = container_of(irqpoll, struct adapter_reply_queue, 1733 irqpoll); 1734 if (reply_q->irq_line_enable) { 1735 disable_irq(reply_q->os_irq); 1736 reply_q->irq_line_enable = false; 1737 } 1738 num_entries = _base_process_reply_queue(reply_q); 1739 if (num_entries < budget) { 1740 irq_poll_complete(irqpoll); 1741 reply_q->irq_poll_scheduled = false; 1742 reply_q->irq_line_enable = true; 1743 enable_irq(reply_q->os_irq); 1744 } 1745 1746 return num_entries; 1747 } 1748 1749 /** 1750 * _base_init_irqpolls - initliaze IRQ polls 1751 * @ioc: per adapter object 1752 * 1753 * returns nothing 1754 */ 1755 static void 1756 _base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc) 1757 { 1758 struct adapter_reply_queue *reply_q, *next; 1759 1760 if (list_empty(&ioc->reply_queue_list)) 1761 return; 1762 1763 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) { 1764 irq_poll_init(&reply_q->irqpoll, 1765 ioc->hba_queue_depth/4, _base_irqpoll); 1766 reply_q->irq_poll_scheduled = false; 1767 reply_q->irq_line_enable = true; 1768 reply_q->os_irq = pci_irq_vector(ioc->pdev, 1769 reply_q->msix_index); 1770 } 1771 } 1772 1773 /** 1774 * _base_is_controller_msix_enabled - is controller support muli-reply queues 1775 * @ioc: per adapter object 1776 * 1777 * Return: Whether or not MSI/X is enabled. 1778 */ 1779 static inline int 1780 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc) 1781 { 1782 return (ioc->facts.IOCCapabilities & 1783 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable; 1784 } 1785 1786 /** 1787 * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts 1788 * @ioc: per adapter object 1789 * Context: non ISR conext 1790 * 1791 * Called when a Task Management request has completed. 1792 */ 1793 void 1794 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc) 1795 { 1796 struct adapter_reply_queue *reply_q; 1797 1798 /* If MSIX capability is turned off 1799 * then multi-queues are not enabled 1800 */ 1801 if (!_base_is_controller_msix_enabled(ioc)) 1802 return; 1803 1804 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 1805 if (ioc->shost_recovery || ioc->remove_host || 1806 ioc->pci_error_recovery) 1807 return; 1808 /* TMs are on msix_index == 0 */ 1809 if (reply_q->msix_index == 0) 1810 continue; 1811 if (reply_q->irq_poll_scheduled) { 1812 /* Calling irq_poll_disable will wait for any pending 1813 * callbacks to have completed. 1814 */ 1815 irq_poll_disable(&reply_q->irqpoll); 1816 irq_poll_enable(&reply_q->irqpoll); 1817 reply_q->irq_poll_scheduled = false; 1818 reply_q->irq_line_enable = true; 1819 enable_irq(reply_q->os_irq); 1820 continue; 1821 } 1822 synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index)); 1823 } 1824 } 1825 1826 /** 1827 * mpt3sas_base_release_callback_handler - clear interrupt callback handler 1828 * @cb_idx: callback index 1829 */ 1830 void 1831 mpt3sas_base_release_callback_handler(u8 cb_idx) 1832 { 1833 mpt_callbacks[cb_idx] = NULL; 1834 } 1835 1836 /** 1837 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler 1838 * @cb_func: callback function 1839 * 1840 * Return: Index of @cb_func. 1841 */ 1842 u8 1843 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func) 1844 { 1845 u8 cb_idx; 1846 1847 for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--) 1848 if (mpt_callbacks[cb_idx] == NULL) 1849 break; 1850 1851 mpt_callbacks[cb_idx] = cb_func; 1852 return cb_idx; 1853 } 1854 1855 /** 1856 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler 1857 */ 1858 void 1859 mpt3sas_base_initialize_callback_handler(void) 1860 { 1861 u8 cb_idx; 1862 1863 for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++) 1864 mpt3sas_base_release_callback_handler(cb_idx); 1865 } 1866 1867 1868 /** 1869 * _base_build_zero_len_sge - build zero length sg entry 1870 * @ioc: per adapter object 1871 * @paddr: virtual address for SGE 1872 * 1873 * Create a zero length scatter gather entry to insure the IOCs hardware has 1874 * something to use if the target device goes brain dead and tries 1875 * to send data even when none is asked for. 1876 */ 1877 static void 1878 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr) 1879 { 1880 u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT | 1881 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST | 1882 MPI2_SGE_FLAGS_SIMPLE_ELEMENT) << 1883 MPI2_SGE_FLAGS_SHIFT); 1884 ioc->base_add_sg_single(paddr, flags_length, -1); 1885 } 1886 1887 /** 1888 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr. 1889 * @paddr: virtual address for SGE 1890 * @flags_length: SGE flags and data transfer length 1891 * @dma_addr: Physical address 1892 */ 1893 static void 1894 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr) 1895 { 1896 Mpi2SGESimple32_t *sgel = paddr; 1897 1898 flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING | 1899 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT; 1900 sgel->FlagsLength = cpu_to_le32(flags_length); 1901 sgel->Address = cpu_to_le32(dma_addr); 1902 } 1903 1904 1905 /** 1906 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr. 1907 * @paddr: virtual address for SGE 1908 * @flags_length: SGE flags and data transfer length 1909 * @dma_addr: Physical address 1910 */ 1911 static void 1912 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr) 1913 { 1914 Mpi2SGESimple64_t *sgel = paddr; 1915 1916 flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING | 1917 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT; 1918 sgel->FlagsLength = cpu_to_le32(flags_length); 1919 sgel->Address = cpu_to_le64(dma_addr); 1920 } 1921 1922 /** 1923 * _base_get_chain_buffer_tracker - obtain chain tracker 1924 * @ioc: per adapter object 1925 * @scmd: SCSI commands of the IO request 1926 * 1927 * Return: chain tracker from chain_lookup table using key as 1928 * smid and smid's chain_offset. 1929 */ 1930 static struct chain_tracker * 1931 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc, 1932 struct scsi_cmnd *scmd) 1933 { 1934 struct chain_tracker *chain_req; 1935 struct scsiio_tracker *st = scsi_cmd_priv(scmd); 1936 u16 smid = st->smid; 1937 u8 chain_offset = 1938 atomic_read(&ioc->chain_lookup[smid - 1].chain_offset); 1939 1940 if (chain_offset == ioc->chains_needed_per_io) 1941 return NULL; 1942 1943 chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset]; 1944 atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset); 1945 return chain_req; 1946 } 1947 1948 1949 /** 1950 * _base_build_sg - build generic sg 1951 * @ioc: per adapter object 1952 * @psge: virtual address for SGE 1953 * @data_out_dma: physical address for WRITES 1954 * @data_out_sz: data xfer size for WRITES 1955 * @data_in_dma: physical address for READS 1956 * @data_in_sz: data xfer size for READS 1957 */ 1958 static void 1959 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge, 1960 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 1961 size_t data_in_sz) 1962 { 1963 u32 sgl_flags; 1964 1965 if (!data_out_sz && !data_in_sz) { 1966 _base_build_zero_len_sge(ioc, psge); 1967 return; 1968 } 1969 1970 if (data_out_sz && data_in_sz) { 1971 /* WRITE sgel first */ 1972 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 1973 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC); 1974 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 1975 ioc->base_add_sg_single(psge, sgl_flags | 1976 data_out_sz, data_out_dma); 1977 1978 /* incr sgel */ 1979 psge += ioc->sge_size; 1980 1981 /* READ sgel last */ 1982 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 1983 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 1984 MPI2_SGE_FLAGS_END_OF_LIST); 1985 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 1986 ioc->base_add_sg_single(psge, sgl_flags | 1987 data_in_sz, data_in_dma); 1988 } else if (data_out_sz) /* WRITE */ { 1989 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 1990 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 1991 MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC); 1992 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 1993 ioc->base_add_sg_single(psge, sgl_flags | 1994 data_out_sz, data_out_dma); 1995 } else if (data_in_sz) /* READ */ { 1996 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 1997 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 1998 MPI2_SGE_FLAGS_END_OF_LIST); 1999 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2000 ioc->base_add_sg_single(psge, sgl_flags | 2001 data_in_sz, data_in_dma); 2002 } 2003 } 2004 2005 /* IEEE format sgls */ 2006 2007 /** 2008 * _base_build_nvme_prp - This function is called for NVMe end devices to build 2009 * a native SGL (NVMe PRP). The native SGL is built starting in the first PRP 2010 * entry of the NVMe message (PRP1). If the data buffer is small enough to be 2011 * described entirely using PRP1, then PRP2 is not used. If needed, PRP2 is 2012 * used to describe a larger data buffer. If the data buffer is too large to 2013 * describe using the two PRP entriess inside the NVMe message, then PRP1 2014 * describes the first data memory segment, and PRP2 contains a pointer to a PRP 2015 * list located elsewhere in memory to describe the remaining data memory 2016 * segments. The PRP list will be contiguous. 2017 * 2018 * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP 2019 * consists of a list of PRP entries to describe a number of noncontigous 2020 * physical memory segments as a single memory buffer, just as a SGL does. Note 2021 * however, that this function is only used by the IOCTL call, so the memory 2022 * given will be guaranteed to be contiguous. There is no need to translate 2023 * non-contiguous SGL into a PRP in this case. All PRPs will describe 2024 * contiguous space that is one page size each. 2025 * 2026 * Each NVMe message contains two PRP entries. The first (PRP1) either contains 2027 * a PRP list pointer or a PRP element, depending upon the command. PRP2 2028 * contains the second PRP element if the memory being described fits within 2 2029 * PRP entries, or a PRP list pointer if the PRP spans more than two entries. 2030 * 2031 * A PRP list pointer contains the address of a PRP list, structured as a linear 2032 * array of PRP entries. Each PRP entry in this list describes a segment of 2033 * physical memory. 2034 * 2035 * Each 64-bit PRP entry comprises an address and an offset field. The address 2036 * always points at the beginning of a 4KB physical memory page, and the offset 2037 * describes where within that 4KB page the memory segment begins. Only the 2038 * first element in a PRP list may contain a non-zero offest, implying that all 2039 * memory segments following the first begin at the start of a 4KB page. 2040 * 2041 * Each PRP element normally describes 4KB of physical memory, with exceptions 2042 * for the first and last elements in the list. If the memory being described 2043 * by the list begins at a non-zero offset within the first 4KB page, then the 2044 * first PRP element will contain a non-zero offset indicating where the region 2045 * begins within the 4KB page. The last memory segment may end before the end 2046 * of the 4KB segment, depending upon the overall size of the memory being 2047 * described by the PRP list. 2048 * 2049 * Since PRP entries lack any indication of size, the overall data buffer length 2050 * is used to determine where the end of the data memory buffer is located, and 2051 * how many PRP entries are required to describe it. 2052 * 2053 * @ioc: per adapter object 2054 * @smid: system request message index for getting asscociated SGL 2055 * @nvme_encap_request: the NVMe request msg frame pointer 2056 * @data_out_dma: physical address for WRITES 2057 * @data_out_sz: data xfer size for WRITES 2058 * @data_in_dma: physical address for READS 2059 * @data_in_sz: data xfer size for READS 2060 */ 2061 static void 2062 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid, 2063 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request, 2064 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 2065 size_t data_in_sz) 2066 { 2067 int prp_size = NVME_PRP_SIZE; 2068 __le64 *prp_entry, *prp1_entry, *prp2_entry; 2069 __le64 *prp_page; 2070 dma_addr_t prp_entry_dma, prp_page_dma, dma_addr; 2071 u32 offset, entry_len; 2072 u32 page_mask_result, page_mask; 2073 size_t length; 2074 struct mpt3sas_nvme_cmd *nvme_cmd = 2075 (void *)nvme_encap_request->NVMe_Command; 2076 2077 /* 2078 * Not all commands require a data transfer. If no data, just return 2079 * without constructing any PRP. 2080 */ 2081 if (!data_in_sz && !data_out_sz) 2082 return; 2083 prp1_entry = &nvme_cmd->prp1; 2084 prp2_entry = &nvme_cmd->prp2; 2085 prp_entry = prp1_entry; 2086 /* 2087 * For the PRP entries, use the specially allocated buffer of 2088 * contiguous memory. 2089 */ 2090 prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid); 2091 prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid); 2092 2093 /* 2094 * Check if we are within 1 entry of a page boundary we don't 2095 * want our first entry to be a PRP List entry. 2096 */ 2097 page_mask = ioc->page_size - 1; 2098 page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask; 2099 if (!page_mask_result) { 2100 /* Bump up to next page boundary. */ 2101 prp_page = (__le64 *)((u8 *)prp_page + prp_size); 2102 prp_page_dma = prp_page_dma + prp_size; 2103 } 2104 2105 /* 2106 * Set PRP physical pointer, which initially points to the current PRP 2107 * DMA memory page. 2108 */ 2109 prp_entry_dma = prp_page_dma; 2110 2111 /* Get physical address and length of the data buffer. */ 2112 if (data_in_sz) { 2113 dma_addr = data_in_dma; 2114 length = data_in_sz; 2115 } else { 2116 dma_addr = data_out_dma; 2117 length = data_out_sz; 2118 } 2119 2120 /* Loop while the length is not zero. */ 2121 while (length) { 2122 /* 2123 * Check if we need to put a list pointer here if we are at 2124 * page boundary - prp_size (8 bytes). 2125 */ 2126 page_mask_result = (prp_entry_dma + prp_size) & page_mask; 2127 if (!page_mask_result) { 2128 /* 2129 * This is the last entry in a PRP List, so we need to 2130 * put a PRP list pointer here. What this does is: 2131 * - bump the current memory pointer to the next 2132 * address, which will be the next full page. 2133 * - set the PRP Entry to point to that page. This 2134 * is now the PRP List pointer. 2135 * - bump the PRP Entry pointer the start of the 2136 * next page. Since all of this PRP memory is 2137 * contiguous, no need to get a new page - it's 2138 * just the next address. 2139 */ 2140 prp_entry_dma++; 2141 *prp_entry = cpu_to_le64(prp_entry_dma); 2142 prp_entry++; 2143 } 2144 2145 /* Need to handle if entry will be part of a page. */ 2146 offset = dma_addr & page_mask; 2147 entry_len = ioc->page_size - offset; 2148 2149 if (prp_entry == prp1_entry) { 2150 /* 2151 * Must fill in the first PRP pointer (PRP1) before 2152 * moving on. 2153 */ 2154 *prp1_entry = cpu_to_le64(dma_addr); 2155 2156 /* 2157 * Now point to the second PRP entry within the 2158 * command (PRP2). 2159 */ 2160 prp_entry = prp2_entry; 2161 } else if (prp_entry == prp2_entry) { 2162 /* 2163 * Should the PRP2 entry be a PRP List pointer or just 2164 * a regular PRP pointer? If there is more than one 2165 * more page of data, must use a PRP List pointer. 2166 */ 2167 if (length > ioc->page_size) { 2168 /* 2169 * PRP2 will contain a PRP List pointer because 2170 * more PRP's are needed with this command. The 2171 * list will start at the beginning of the 2172 * contiguous buffer. 2173 */ 2174 *prp2_entry = cpu_to_le64(prp_entry_dma); 2175 2176 /* 2177 * The next PRP Entry will be the start of the 2178 * first PRP List. 2179 */ 2180 prp_entry = prp_page; 2181 } else { 2182 /* 2183 * After this, the PRP Entries are complete. 2184 * This command uses 2 PRP's and no PRP list. 2185 */ 2186 *prp2_entry = cpu_to_le64(dma_addr); 2187 } 2188 } else { 2189 /* 2190 * Put entry in list and bump the addresses. 2191 * 2192 * After PRP1 and PRP2 are filled in, this will fill in 2193 * all remaining PRP entries in a PRP List, one per 2194 * each time through the loop. 2195 */ 2196 *prp_entry = cpu_to_le64(dma_addr); 2197 prp_entry++; 2198 prp_entry_dma++; 2199 } 2200 2201 /* 2202 * Bump the phys address of the command's data buffer by the 2203 * entry_len. 2204 */ 2205 dma_addr += entry_len; 2206 2207 /* Decrement length accounting for last partial page. */ 2208 if (entry_len > length) 2209 length = 0; 2210 else 2211 length -= entry_len; 2212 } 2213 } 2214 2215 /** 2216 * base_make_prp_nvme - 2217 * Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only 2218 * 2219 * @ioc: per adapter object 2220 * @scmd: SCSI command from the mid-layer 2221 * @mpi_request: mpi request 2222 * @smid: msg Index 2223 * @sge_count: scatter gather element count. 2224 * 2225 * Return: true: PRPs are built 2226 * false: IEEE SGLs needs to be built 2227 */ 2228 static void 2229 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc, 2230 struct scsi_cmnd *scmd, 2231 Mpi25SCSIIORequest_t *mpi_request, 2232 u16 smid, int sge_count) 2233 { 2234 int sge_len, num_prp_in_chain = 0; 2235 Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl; 2236 __le64 *curr_buff; 2237 dma_addr_t msg_dma, sge_addr, offset; 2238 u32 page_mask, page_mask_result; 2239 struct scatterlist *sg_scmd; 2240 u32 first_prp_len; 2241 int data_len = scsi_bufflen(scmd); 2242 u32 nvme_pg_size; 2243 2244 nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE); 2245 /* 2246 * Nvme has a very convoluted prp format. One prp is required 2247 * for each page or partial page. Driver need to split up OS sg_list 2248 * entries if it is longer than one page or cross a page 2249 * boundary. Driver also have to insert a PRP list pointer entry as 2250 * the last entry in each physical page of the PRP list. 2251 * 2252 * NOTE: The first PRP "entry" is actually placed in the first 2253 * SGL entry in the main message as IEEE 64 format. The 2nd 2254 * entry in the main message is the chain element, and the rest 2255 * of the PRP entries are built in the contiguous pcie buffer. 2256 */ 2257 page_mask = nvme_pg_size - 1; 2258 2259 /* 2260 * Native SGL is needed. 2261 * Put a chain element in main message frame that points to the first 2262 * chain buffer. 2263 * 2264 * NOTE: The ChainOffset field must be 0 when using a chain pointer to 2265 * a native SGL. 2266 */ 2267 2268 /* Set main message chain element pointer */ 2269 main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL; 2270 /* 2271 * For NVMe the chain element needs to be the 2nd SG entry in the main 2272 * message. 2273 */ 2274 main_chain_element = (Mpi25IeeeSgeChain64_t *) 2275 ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64)); 2276 2277 /* 2278 * For the PRP entries, use the specially allocated buffer of 2279 * contiguous memory. Normal chain buffers can't be used 2280 * because each chain buffer would need to be the size of an OS 2281 * page (4k). 2282 */ 2283 curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid); 2284 msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid); 2285 2286 main_chain_element->Address = cpu_to_le64(msg_dma); 2287 main_chain_element->NextChainOffset = 0; 2288 main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 2289 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | 2290 MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP; 2291 2292 /* Build first prp, sge need not to be page aligned*/ 2293 ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL; 2294 sg_scmd = scsi_sglist(scmd); 2295 sge_addr = sg_dma_address(sg_scmd); 2296 sge_len = sg_dma_len(sg_scmd); 2297 2298 offset = sge_addr & page_mask; 2299 first_prp_len = nvme_pg_size - offset; 2300 2301 ptr_first_sgl->Address = cpu_to_le64(sge_addr); 2302 ptr_first_sgl->Length = cpu_to_le32(first_prp_len); 2303 2304 data_len -= first_prp_len; 2305 2306 if (sge_len > first_prp_len) { 2307 sge_addr += first_prp_len; 2308 sge_len -= first_prp_len; 2309 } else if (data_len && (sge_len == first_prp_len)) { 2310 sg_scmd = sg_next(sg_scmd); 2311 sge_addr = sg_dma_address(sg_scmd); 2312 sge_len = sg_dma_len(sg_scmd); 2313 } 2314 2315 for (;;) { 2316 offset = sge_addr & page_mask; 2317 2318 /* Put PRP pointer due to page boundary*/ 2319 page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask; 2320 if (unlikely(!page_mask_result)) { 2321 scmd_printk(KERN_NOTICE, 2322 scmd, "page boundary curr_buff: 0x%p\n", 2323 curr_buff); 2324 msg_dma += 8; 2325 *curr_buff = cpu_to_le64(msg_dma); 2326 curr_buff++; 2327 num_prp_in_chain++; 2328 } 2329 2330 *curr_buff = cpu_to_le64(sge_addr); 2331 curr_buff++; 2332 msg_dma += 8; 2333 num_prp_in_chain++; 2334 2335 sge_addr += nvme_pg_size; 2336 sge_len -= nvme_pg_size; 2337 data_len -= nvme_pg_size; 2338 2339 if (data_len <= 0) 2340 break; 2341 2342 if (sge_len > 0) 2343 continue; 2344 2345 sg_scmd = sg_next(sg_scmd); 2346 sge_addr = sg_dma_address(sg_scmd); 2347 sge_len = sg_dma_len(sg_scmd); 2348 } 2349 2350 main_chain_element->Length = 2351 cpu_to_le32(num_prp_in_chain * sizeof(u64)); 2352 return; 2353 } 2354 2355 static bool 2356 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc, 2357 struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count) 2358 { 2359 u32 data_length = 0; 2360 bool build_prp = true; 2361 2362 data_length = scsi_bufflen(scmd); 2363 if (pcie_device && 2364 (mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))) { 2365 build_prp = false; 2366 return build_prp; 2367 } 2368 2369 /* If Datalenth is <= 16K and number of SGE’s entries are <= 2 2370 * we built IEEE SGL 2371 */ 2372 if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2)) 2373 build_prp = false; 2374 2375 return build_prp; 2376 } 2377 2378 /** 2379 * _base_check_pcie_native_sgl - This function is called for PCIe end devices to 2380 * determine if the driver needs to build a native SGL. If so, that native 2381 * SGL is built in the special contiguous buffers allocated especially for 2382 * PCIe SGL creation. If the driver will not build a native SGL, return 2383 * TRUE and a normal IEEE SGL will be built. Currently this routine 2384 * supports NVMe. 2385 * @ioc: per adapter object 2386 * @mpi_request: mf request pointer 2387 * @smid: system request message index 2388 * @scmd: scsi command 2389 * @pcie_device: points to the PCIe device's info 2390 * 2391 * Return: 0 if native SGL was built, 1 if no SGL was built 2392 */ 2393 static int 2394 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc, 2395 Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd, 2396 struct _pcie_device *pcie_device) 2397 { 2398 int sges_left; 2399 2400 /* Get the SG list pointer and info. */ 2401 sges_left = scsi_dma_map(scmd); 2402 if (sges_left < 0) { 2403 sdev_printk(KERN_ERR, scmd->device, 2404 "scsi_dma_map failed: request for %d bytes!\n", 2405 scsi_bufflen(scmd)); 2406 return 1; 2407 } 2408 2409 /* Check if we need to build a native SG list. */ 2410 if (base_is_prp_possible(ioc, pcie_device, 2411 scmd, sges_left) == 0) { 2412 /* We built a native SG list, just return. */ 2413 goto out; 2414 } 2415 2416 /* 2417 * Build native NVMe PRP. 2418 */ 2419 base_make_prp_nvme(ioc, scmd, mpi_request, 2420 smid, sges_left); 2421 2422 return 0; 2423 out: 2424 scsi_dma_unmap(scmd); 2425 return 1; 2426 } 2427 2428 /** 2429 * _base_add_sg_single_ieee - add sg element for IEEE format 2430 * @paddr: virtual address for SGE 2431 * @flags: SGE flags 2432 * @chain_offset: number of 128 byte elements from start of segment 2433 * @length: data transfer length 2434 * @dma_addr: Physical address 2435 */ 2436 static void 2437 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length, 2438 dma_addr_t dma_addr) 2439 { 2440 Mpi25IeeeSgeChain64_t *sgel = paddr; 2441 2442 sgel->Flags = flags; 2443 sgel->NextChainOffset = chain_offset; 2444 sgel->Length = cpu_to_le32(length); 2445 sgel->Address = cpu_to_le64(dma_addr); 2446 } 2447 2448 /** 2449 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format 2450 * @ioc: per adapter object 2451 * @paddr: virtual address for SGE 2452 * 2453 * Create a zero length scatter gather entry to insure the IOCs hardware has 2454 * something to use if the target device goes brain dead and tries 2455 * to send data even when none is asked for. 2456 */ 2457 static void 2458 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr) 2459 { 2460 u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2461 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | 2462 MPI25_IEEE_SGE_FLAGS_END_OF_LIST); 2463 2464 _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1); 2465 } 2466 2467 /** 2468 * _base_build_sg_scmd - main sg creation routine 2469 * pcie_device is unused here! 2470 * @ioc: per adapter object 2471 * @scmd: scsi command 2472 * @smid: system request message index 2473 * @unused: unused pcie_device pointer 2474 * Context: none. 2475 * 2476 * The main routine that builds scatter gather table from a given 2477 * scsi request sent via the .queuecommand main handler. 2478 * 2479 * Return: 0 success, anything else error 2480 */ 2481 static int 2482 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc, 2483 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused) 2484 { 2485 Mpi2SCSIIORequest_t *mpi_request; 2486 dma_addr_t chain_dma; 2487 struct scatterlist *sg_scmd; 2488 void *sg_local, *chain; 2489 u32 chain_offset; 2490 u32 chain_length; 2491 u32 chain_flags; 2492 int sges_left; 2493 u32 sges_in_segment; 2494 u32 sgl_flags; 2495 u32 sgl_flags_last_element; 2496 u32 sgl_flags_end_buffer; 2497 struct chain_tracker *chain_req; 2498 2499 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 2500 2501 /* init scatter gather flags */ 2502 sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT; 2503 if (scmd->sc_data_direction == DMA_TO_DEVICE) 2504 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC; 2505 sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT) 2506 << MPI2_SGE_FLAGS_SHIFT; 2507 sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT | 2508 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST) 2509 << MPI2_SGE_FLAGS_SHIFT; 2510 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2511 2512 sg_scmd = scsi_sglist(scmd); 2513 sges_left = scsi_dma_map(scmd); 2514 if (sges_left < 0) { 2515 sdev_printk(KERN_ERR, scmd->device, 2516 "scsi_dma_map failed: request for %d bytes!\n", 2517 scsi_bufflen(scmd)); 2518 return -ENOMEM; 2519 } 2520 2521 sg_local = &mpi_request->SGL; 2522 sges_in_segment = ioc->max_sges_in_main_message; 2523 if (sges_left <= sges_in_segment) 2524 goto fill_in_last_segment; 2525 2526 mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) + 2527 (sges_in_segment * ioc->sge_size))/4; 2528 2529 /* fill in main message segment when there is a chain following */ 2530 while (sges_in_segment) { 2531 if (sges_in_segment == 1) 2532 ioc->base_add_sg_single(sg_local, 2533 sgl_flags_last_element | sg_dma_len(sg_scmd), 2534 sg_dma_address(sg_scmd)); 2535 else 2536 ioc->base_add_sg_single(sg_local, sgl_flags | 2537 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2538 sg_scmd = sg_next(sg_scmd); 2539 sg_local += ioc->sge_size; 2540 sges_left--; 2541 sges_in_segment--; 2542 } 2543 2544 /* initializing the chain flags and pointers */ 2545 chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT; 2546 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2547 if (!chain_req) 2548 return -1; 2549 chain = chain_req->chain_buffer; 2550 chain_dma = chain_req->chain_buffer_dma; 2551 do { 2552 sges_in_segment = (sges_left <= 2553 ioc->max_sges_in_chain_message) ? sges_left : 2554 ioc->max_sges_in_chain_message; 2555 chain_offset = (sges_left == sges_in_segment) ? 2556 0 : (sges_in_segment * ioc->sge_size)/4; 2557 chain_length = sges_in_segment * ioc->sge_size; 2558 if (chain_offset) { 2559 chain_offset = chain_offset << 2560 MPI2_SGE_CHAIN_OFFSET_SHIFT; 2561 chain_length += ioc->sge_size; 2562 } 2563 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset | 2564 chain_length, chain_dma); 2565 sg_local = chain; 2566 if (!chain_offset) 2567 goto fill_in_last_segment; 2568 2569 /* fill in chain segments */ 2570 while (sges_in_segment) { 2571 if (sges_in_segment == 1) 2572 ioc->base_add_sg_single(sg_local, 2573 sgl_flags_last_element | 2574 sg_dma_len(sg_scmd), 2575 sg_dma_address(sg_scmd)); 2576 else 2577 ioc->base_add_sg_single(sg_local, sgl_flags | 2578 sg_dma_len(sg_scmd), 2579 sg_dma_address(sg_scmd)); 2580 sg_scmd = sg_next(sg_scmd); 2581 sg_local += ioc->sge_size; 2582 sges_left--; 2583 sges_in_segment--; 2584 } 2585 2586 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2587 if (!chain_req) 2588 return -1; 2589 chain = chain_req->chain_buffer; 2590 chain_dma = chain_req->chain_buffer_dma; 2591 } while (1); 2592 2593 2594 fill_in_last_segment: 2595 2596 /* fill the last segment */ 2597 while (sges_left) { 2598 if (sges_left == 1) 2599 ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer | 2600 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2601 else 2602 ioc->base_add_sg_single(sg_local, sgl_flags | 2603 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2604 sg_scmd = sg_next(sg_scmd); 2605 sg_local += ioc->sge_size; 2606 sges_left--; 2607 } 2608 2609 return 0; 2610 } 2611 2612 /** 2613 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format 2614 * @ioc: per adapter object 2615 * @scmd: scsi command 2616 * @smid: system request message index 2617 * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be 2618 * constructed on need. 2619 * Context: none. 2620 * 2621 * The main routine that builds scatter gather table from a given 2622 * scsi request sent via the .queuecommand main handler. 2623 * 2624 * Return: 0 success, anything else error 2625 */ 2626 static int 2627 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc, 2628 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device) 2629 { 2630 Mpi25SCSIIORequest_t *mpi_request; 2631 dma_addr_t chain_dma; 2632 struct scatterlist *sg_scmd; 2633 void *sg_local, *chain; 2634 u32 chain_offset; 2635 u32 chain_length; 2636 int sges_left; 2637 u32 sges_in_segment; 2638 u8 simple_sgl_flags; 2639 u8 simple_sgl_flags_last; 2640 u8 chain_sgl_flags; 2641 struct chain_tracker *chain_req; 2642 2643 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 2644 2645 /* init scatter gather flags */ 2646 simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2647 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2648 simple_sgl_flags_last = simple_sgl_flags | 2649 MPI25_IEEE_SGE_FLAGS_END_OF_LIST; 2650 chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 2651 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2652 2653 /* Check if we need to build a native SG list. */ 2654 if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request, 2655 smid, scmd, pcie_device) == 0)) { 2656 /* We built a native SG list, just return. */ 2657 return 0; 2658 } 2659 2660 sg_scmd = scsi_sglist(scmd); 2661 sges_left = scsi_dma_map(scmd); 2662 if (sges_left < 0) { 2663 sdev_printk(KERN_ERR, scmd->device, 2664 "scsi_dma_map failed: request for %d bytes!\n", 2665 scsi_bufflen(scmd)); 2666 return -ENOMEM; 2667 } 2668 2669 sg_local = &mpi_request->SGL; 2670 sges_in_segment = (ioc->request_sz - 2671 offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee; 2672 if (sges_left <= sges_in_segment) 2673 goto fill_in_last_segment; 2674 2675 mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) + 2676 (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee); 2677 2678 /* fill in main message segment when there is a chain following */ 2679 while (sges_in_segment > 1) { 2680 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2681 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2682 sg_scmd = sg_next(sg_scmd); 2683 sg_local += ioc->sge_size_ieee; 2684 sges_left--; 2685 sges_in_segment--; 2686 } 2687 2688 /* initializing the pointers */ 2689 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2690 if (!chain_req) 2691 return -1; 2692 chain = chain_req->chain_buffer; 2693 chain_dma = chain_req->chain_buffer_dma; 2694 do { 2695 sges_in_segment = (sges_left <= 2696 ioc->max_sges_in_chain_message) ? sges_left : 2697 ioc->max_sges_in_chain_message; 2698 chain_offset = (sges_left == sges_in_segment) ? 2699 0 : sges_in_segment; 2700 chain_length = sges_in_segment * ioc->sge_size_ieee; 2701 if (chain_offset) 2702 chain_length += ioc->sge_size_ieee; 2703 _base_add_sg_single_ieee(sg_local, chain_sgl_flags, 2704 chain_offset, chain_length, chain_dma); 2705 2706 sg_local = chain; 2707 if (!chain_offset) 2708 goto fill_in_last_segment; 2709 2710 /* fill in chain segments */ 2711 while (sges_in_segment) { 2712 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2713 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2714 sg_scmd = sg_next(sg_scmd); 2715 sg_local += ioc->sge_size_ieee; 2716 sges_left--; 2717 sges_in_segment--; 2718 } 2719 2720 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2721 if (!chain_req) 2722 return -1; 2723 chain = chain_req->chain_buffer; 2724 chain_dma = chain_req->chain_buffer_dma; 2725 } while (1); 2726 2727 2728 fill_in_last_segment: 2729 2730 /* fill the last segment */ 2731 while (sges_left > 0) { 2732 if (sges_left == 1) 2733 _base_add_sg_single_ieee(sg_local, 2734 simple_sgl_flags_last, 0, sg_dma_len(sg_scmd), 2735 sg_dma_address(sg_scmd)); 2736 else 2737 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2738 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2739 sg_scmd = sg_next(sg_scmd); 2740 sg_local += ioc->sge_size_ieee; 2741 sges_left--; 2742 } 2743 2744 return 0; 2745 } 2746 2747 /** 2748 * _base_build_sg_ieee - build generic sg for IEEE format 2749 * @ioc: per adapter object 2750 * @psge: virtual address for SGE 2751 * @data_out_dma: physical address for WRITES 2752 * @data_out_sz: data xfer size for WRITES 2753 * @data_in_dma: physical address for READS 2754 * @data_in_sz: data xfer size for READS 2755 */ 2756 static void 2757 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge, 2758 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 2759 size_t data_in_sz) 2760 { 2761 u8 sgl_flags; 2762 2763 if (!data_out_sz && !data_in_sz) { 2764 _base_build_zero_len_sge_ieee(ioc, psge); 2765 return; 2766 } 2767 2768 if (data_out_sz && data_in_sz) { 2769 /* WRITE sgel first */ 2770 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2771 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2772 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz, 2773 data_out_dma); 2774 2775 /* incr sgel */ 2776 psge += ioc->sge_size_ieee; 2777 2778 /* READ sgel last */ 2779 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST; 2780 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz, 2781 data_in_dma); 2782 } else if (data_out_sz) /* WRITE */ { 2783 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2784 MPI25_IEEE_SGE_FLAGS_END_OF_LIST | 2785 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2786 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz, 2787 data_out_dma); 2788 } else if (data_in_sz) /* READ */ { 2789 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2790 MPI25_IEEE_SGE_FLAGS_END_OF_LIST | 2791 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2792 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz, 2793 data_in_dma); 2794 } 2795 } 2796 2797 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10)) 2798 2799 /** 2800 * _base_config_dma_addressing - set dma addressing 2801 * @ioc: per adapter object 2802 * @pdev: PCI device struct 2803 * 2804 * Return: 0 for success, non-zero for failure. 2805 */ 2806 static int 2807 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev) 2808 { 2809 struct sysinfo s; 2810 int dma_mask; 2811 2812 if (ioc->is_mcpu_endpoint || 2813 sizeof(dma_addr_t) == 4 || ioc->use_32bit_dma || 2814 dma_get_required_mask(&pdev->dev) <= 32) 2815 dma_mask = 32; 2816 /* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */ 2817 else if (ioc->hba_mpi_version_belonged > MPI2_VERSION) 2818 dma_mask = 63; 2819 else 2820 dma_mask = 64; 2821 2822 if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(dma_mask)) || 2823 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(dma_mask))) 2824 return -ENODEV; 2825 2826 if (dma_mask > 32) { 2827 ioc->base_add_sg_single = &_base_add_sg_single_64; 2828 ioc->sge_size = sizeof(Mpi2SGESimple64_t); 2829 } else { 2830 ioc->base_add_sg_single = &_base_add_sg_single_32; 2831 ioc->sge_size = sizeof(Mpi2SGESimple32_t); 2832 } 2833 2834 si_meminfo(&s); 2835 ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n", 2836 dma_mask, convert_to_kb(s.totalram)); 2837 2838 return 0; 2839 } 2840 2841 /** 2842 * _base_check_enable_msix - checks MSIX capabable. 2843 * @ioc: per adapter object 2844 * 2845 * Check to see if card is capable of MSIX, and set number 2846 * of available msix vectors 2847 */ 2848 static int 2849 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc) 2850 { 2851 int base; 2852 u16 message_control; 2853 2854 /* Check whether controller SAS2008 B0 controller, 2855 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX 2856 */ 2857 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 && 2858 ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) { 2859 return -EINVAL; 2860 } 2861 2862 base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX); 2863 if (!base) { 2864 dfailprintk(ioc, ioc_info(ioc, "msix not supported\n")); 2865 return -EINVAL; 2866 } 2867 2868 /* get msix vector count */ 2869 /* NUMA_IO not supported for older controllers */ 2870 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 || 2871 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 || 2872 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 || 2873 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 || 2874 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 || 2875 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 || 2876 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2) 2877 ioc->msix_vector_count = 1; 2878 else { 2879 pci_read_config_word(ioc->pdev, base + 2, &message_control); 2880 ioc->msix_vector_count = (message_control & 0x3FF) + 1; 2881 } 2882 dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n", 2883 ioc->msix_vector_count)); 2884 return 0; 2885 } 2886 2887 /** 2888 * _base_free_irq - free irq 2889 * @ioc: per adapter object 2890 * 2891 * Freeing respective reply_queue from the list. 2892 */ 2893 static void 2894 _base_free_irq(struct MPT3SAS_ADAPTER *ioc) 2895 { 2896 struct adapter_reply_queue *reply_q, *next; 2897 2898 if (list_empty(&ioc->reply_queue_list)) 2899 return; 2900 2901 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) { 2902 list_del(&reply_q->list); 2903 if (ioc->smp_affinity_enable) 2904 irq_set_affinity_hint(pci_irq_vector(ioc->pdev, 2905 reply_q->msix_index), NULL); 2906 free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index), 2907 reply_q); 2908 kfree(reply_q); 2909 } 2910 } 2911 2912 /** 2913 * _base_request_irq - request irq 2914 * @ioc: per adapter object 2915 * @index: msix index into vector table 2916 * 2917 * Inserting respective reply_queue into the list. 2918 */ 2919 static int 2920 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index) 2921 { 2922 struct pci_dev *pdev = ioc->pdev; 2923 struct adapter_reply_queue *reply_q; 2924 int r; 2925 2926 reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL); 2927 if (!reply_q) { 2928 ioc_err(ioc, "unable to allocate memory %zu!\n", 2929 sizeof(struct adapter_reply_queue)); 2930 return -ENOMEM; 2931 } 2932 reply_q->ioc = ioc; 2933 reply_q->msix_index = index; 2934 2935 atomic_set(&reply_q->busy, 0); 2936 if (ioc->msix_enable) 2937 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d", 2938 ioc->driver_name, ioc->id, index); 2939 else 2940 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d", 2941 ioc->driver_name, ioc->id); 2942 r = request_irq(pci_irq_vector(pdev, index), _base_interrupt, 2943 IRQF_SHARED, reply_q->name, reply_q); 2944 if (r) { 2945 pr_err("%s: unable to allocate interrupt %d!\n", 2946 reply_q->name, pci_irq_vector(pdev, index)); 2947 kfree(reply_q); 2948 return -EBUSY; 2949 } 2950 2951 INIT_LIST_HEAD(&reply_q->list); 2952 list_add_tail(&reply_q->list, &ioc->reply_queue_list); 2953 return 0; 2954 } 2955 2956 /** 2957 * _base_assign_reply_queues - assigning msix index for each cpu 2958 * @ioc: per adapter object 2959 * 2960 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity 2961 * 2962 * It would nice if we could call irq_set_affinity, however it is not 2963 * an exported symbol 2964 */ 2965 static void 2966 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc) 2967 { 2968 unsigned int cpu, nr_cpus, nr_msix, index = 0; 2969 struct adapter_reply_queue *reply_q; 2970 int local_numa_node; 2971 2972 if (!_base_is_controller_msix_enabled(ioc)) 2973 return; 2974 2975 if (ioc->msix_load_balance) 2976 return; 2977 2978 memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz); 2979 2980 nr_cpus = num_online_cpus(); 2981 nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count, 2982 ioc->facts.MaxMSIxVectors); 2983 if (!nr_msix) 2984 return; 2985 2986 if (ioc->smp_affinity_enable) { 2987 2988 /* 2989 * set irq affinity to local numa node for those irqs 2990 * corresponding to high iops queues. 2991 */ 2992 if (ioc->high_iops_queues) { 2993 local_numa_node = dev_to_node(&ioc->pdev->dev); 2994 for (index = 0; index < ioc->high_iops_queues; 2995 index++) { 2996 irq_set_affinity_hint(pci_irq_vector(ioc->pdev, 2997 index), cpumask_of_node(local_numa_node)); 2998 } 2999 } 3000 3001 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 3002 const cpumask_t *mask; 3003 3004 if (reply_q->msix_index < ioc->high_iops_queues) 3005 continue; 3006 3007 mask = pci_irq_get_affinity(ioc->pdev, 3008 reply_q->msix_index); 3009 if (!mask) { 3010 ioc_warn(ioc, "no affinity for msi %x\n", 3011 reply_q->msix_index); 3012 goto fall_back; 3013 } 3014 3015 for_each_cpu_and(cpu, mask, cpu_online_mask) { 3016 if (cpu >= ioc->cpu_msix_table_sz) 3017 break; 3018 ioc->cpu_msix_table[cpu] = reply_q->msix_index; 3019 } 3020 } 3021 return; 3022 } 3023 3024 fall_back: 3025 cpu = cpumask_first(cpu_online_mask); 3026 nr_msix -= ioc->high_iops_queues; 3027 index = 0; 3028 3029 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 3030 unsigned int i, group = nr_cpus / nr_msix; 3031 3032 if (reply_q->msix_index < ioc->high_iops_queues) 3033 continue; 3034 3035 if (cpu >= nr_cpus) 3036 break; 3037 3038 if (index < nr_cpus % nr_msix) 3039 group++; 3040 3041 for (i = 0 ; i < group ; i++) { 3042 ioc->cpu_msix_table[cpu] = reply_q->msix_index; 3043 cpu = cpumask_next(cpu, cpu_online_mask); 3044 } 3045 index++; 3046 } 3047 } 3048 3049 /** 3050 * _base_check_and_enable_high_iops_queues - enable high iops mode 3051 * @ ioc - per adapter object 3052 * @ hba_msix_vector_count - msix vectors supported by HBA 3053 * 3054 * Enable high iops queues only if 3055 * - HBA is a SEA/AERO controller and 3056 * - MSI-Xs vector supported by the HBA is 128 and 3057 * - total CPU count in the system >=16 and 3058 * - loaded driver with default max_msix_vectors module parameter and 3059 * - system booted in non kdump mode 3060 * 3061 * returns nothing. 3062 */ 3063 static void 3064 _base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc, 3065 int hba_msix_vector_count) 3066 { 3067 u16 lnksta, speed; 3068 3069 if (perf_mode == MPT_PERF_MODE_IOPS || 3070 perf_mode == MPT_PERF_MODE_LATENCY) { 3071 ioc->high_iops_queues = 0; 3072 return; 3073 } 3074 3075 if (perf_mode == MPT_PERF_MODE_DEFAULT) { 3076 3077 pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta); 3078 speed = lnksta & PCI_EXP_LNKSTA_CLS; 3079 3080 if (speed < 0x4) { 3081 ioc->high_iops_queues = 0; 3082 return; 3083 } 3084 } 3085 3086 if (!reset_devices && ioc->is_aero_ioc && 3087 hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES && 3088 num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES && 3089 max_msix_vectors == -1) 3090 ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES; 3091 else 3092 ioc->high_iops_queues = 0; 3093 } 3094 3095 /** 3096 * _base_disable_msix - disables msix 3097 * @ioc: per adapter object 3098 * 3099 */ 3100 static void 3101 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc) 3102 { 3103 if (!ioc->msix_enable) 3104 return; 3105 pci_free_irq_vectors(ioc->pdev); 3106 ioc->msix_enable = 0; 3107 } 3108 3109 /** 3110 * _base_alloc_irq_vectors - allocate msix vectors 3111 * @ioc: per adapter object 3112 * 3113 */ 3114 static int 3115 _base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc) 3116 { 3117 int i, irq_flags = PCI_IRQ_MSIX; 3118 struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues }; 3119 struct irq_affinity *descp = &desc; 3120 3121 if (ioc->smp_affinity_enable) 3122 irq_flags |= PCI_IRQ_AFFINITY; 3123 else 3124 descp = NULL; 3125 3126 ioc_info(ioc, " %d %d\n", ioc->high_iops_queues, 3127 ioc->reply_queue_count); 3128 3129 i = pci_alloc_irq_vectors_affinity(ioc->pdev, 3130 ioc->high_iops_queues, 3131 ioc->reply_queue_count, irq_flags, descp); 3132 3133 return i; 3134 } 3135 3136 /** 3137 * _base_enable_msix - enables msix, failback to io_apic 3138 * @ioc: per adapter object 3139 * 3140 */ 3141 static int 3142 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc) 3143 { 3144 int r; 3145 int i, local_max_msix_vectors; 3146 u8 try_msix = 0; 3147 3148 ioc->msix_load_balance = false; 3149 3150 if (msix_disable == -1 || msix_disable == 0) 3151 try_msix = 1; 3152 3153 if (!try_msix) 3154 goto try_ioapic; 3155 3156 if (_base_check_enable_msix(ioc) != 0) 3157 goto try_ioapic; 3158 3159 ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count); 3160 pr_info("\t no of cores: %d, max_msix_vectors: %d\n", 3161 ioc->cpu_count, max_msix_vectors); 3162 if (ioc->is_aero_ioc) 3163 _base_check_and_enable_high_iops_queues(ioc, 3164 ioc->msix_vector_count); 3165 ioc->reply_queue_count = 3166 min_t(int, ioc->cpu_count + ioc->high_iops_queues, 3167 ioc->msix_vector_count); 3168 3169 if (!ioc->rdpq_array_enable && max_msix_vectors == -1) 3170 local_max_msix_vectors = (reset_devices) ? 1 : 8; 3171 else 3172 local_max_msix_vectors = max_msix_vectors; 3173 3174 if (local_max_msix_vectors > 0) 3175 ioc->reply_queue_count = min_t(int, local_max_msix_vectors, 3176 ioc->reply_queue_count); 3177 else if (local_max_msix_vectors == 0) 3178 goto try_ioapic; 3179 3180 /* 3181 * Enable msix_load_balance only if combined reply queue mode is 3182 * disabled on SAS3 & above generation HBA devices. 3183 */ 3184 if (!ioc->combined_reply_queue && 3185 ioc->hba_mpi_version_belonged != MPI2_VERSION) { 3186 ioc_info(ioc, 3187 "combined ReplyQueue is off, Enabling msix load balance\n"); 3188 ioc->msix_load_balance = true; 3189 } 3190 3191 /* 3192 * smp affinity setting is not need when msix load balance 3193 * is enabled. 3194 */ 3195 if (ioc->msix_load_balance) 3196 ioc->smp_affinity_enable = 0; 3197 3198 r = _base_alloc_irq_vectors(ioc); 3199 if (r < 0) { 3200 ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", r); 3201 goto try_ioapic; 3202 } 3203 3204 ioc->msix_enable = 1; 3205 ioc->reply_queue_count = r; 3206 for (i = 0; i < ioc->reply_queue_count; i++) { 3207 r = _base_request_irq(ioc, i); 3208 if (r) { 3209 _base_free_irq(ioc); 3210 _base_disable_msix(ioc); 3211 goto try_ioapic; 3212 } 3213 } 3214 3215 ioc_info(ioc, "High IOPs queues : %s\n", 3216 ioc->high_iops_queues ? "enabled" : "disabled"); 3217 3218 return 0; 3219 3220 /* failback to io_apic interrupt routing */ 3221 try_ioapic: 3222 ioc->high_iops_queues = 0; 3223 ioc_info(ioc, "High IOPs queues : disabled\n"); 3224 ioc->reply_queue_count = 1; 3225 r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY); 3226 if (r < 0) { 3227 dfailprintk(ioc, 3228 ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n", 3229 r)); 3230 } else 3231 r = _base_request_irq(ioc, 0); 3232 3233 return r; 3234 } 3235 3236 /** 3237 * mpt3sas_base_unmap_resources - free controller resources 3238 * @ioc: per adapter object 3239 */ 3240 static void 3241 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc) 3242 { 3243 struct pci_dev *pdev = ioc->pdev; 3244 3245 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 3246 3247 _base_free_irq(ioc); 3248 _base_disable_msix(ioc); 3249 3250 kfree(ioc->replyPostRegisterIndex); 3251 ioc->replyPostRegisterIndex = NULL; 3252 3253 3254 if (ioc->chip_phys) { 3255 iounmap(ioc->chip); 3256 ioc->chip_phys = 0; 3257 } 3258 3259 if (pci_is_enabled(pdev)) { 3260 pci_release_selected_regions(ioc->pdev, ioc->bars); 3261 pci_disable_pcie_error_reporting(pdev); 3262 pci_disable_device(pdev); 3263 } 3264 } 3265 3266 static int 3267 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc); 3268 3269 /** 3270 * _base_check_for_fault_and_issue_reset - check if IOC is in fault state 3271 * and if it is in fault state then issue diag reset. 3272 * @ioc: per adapter object 3273 * 3274 * Returns: 0 for success, non-zero for failure. 3275 */ 3276 static int 3277 _base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc) 3278 { 3279 u32 ioc_state; 3280 int rc = -EFAULT; 3281 3282 dinitprintk(ioc, pr_info("%s\n", __func__)); 3283 if (ioc->pci_error_recovery) 3284 return 0; 3285 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 3286 dhsprintk(ioc, pr_info("%s: ioc_state(0x%08x)\n", __func__, ioc_state)); 3287 3288 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 3289 mpt3sas_print_fault_code(ioc, ioc_state & 3290 MPI2_DOORBELL_DATA_MASK); 3291 rc = _base_diag_reset(ioc); 3292 } else if ((ioc_state & MPI2_IOC_STATE_MASK) == 3293 MPI2_IOC_STATE_COREDUMP) { 3294 mpt3sas_print_coredump_info(ioc, ioc_state & 3295 MPI2_DOORBELL_DATA_MASK); 3296 mpt3sas_base_wait_for_coredump_completion(ioc, __func__); 3297 rc = _base_diag_reset(ioc); 3298 } 3299 3300 return rc; 3301 } 3302 3303 /** 3304 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap) 3305 * @ioc: per adapter object 3306 * 3307 * Return: 0 for success, non-zero for failure. 3308 */ 3309 int 3310 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc) 3311 { 3312 struct pci_dev *pdev = ioc->pdev; 3313 u32 memap_sz; 3314 u32 pio_sz; 3315 int i, r = 0, rc; 3316 u64 pio_chip = 0; 3317 phys_addr_t chip_phys = 0; 3318 struct adapter_reply_queue *reply_q; 3319 3320 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 3321 3322 ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM); 3323 if (pci_enable_device_mem(pdev)) { 3324 ioc_warn(ioc, "pci_enable_device_mem: failed\n"); 3325 ioc->bars = 0; 3326 return -ENODEV; 3327 } 3328 3329 3330 if (pci_request_selected_regions(pdev, ioc->bars, 3331 ioc->driver_name)) { 3332 ioc_warn(ioc, "pci_request_selected_regions: failed\n"); 3333 ioc->bars = 0; 3334 r = -ENODEV; 3335 goto out_fail; 3336 } 3337 3338 /* AER (Advanced Error Reporting) hooks */ 3339 pci_enable_pcie_error_reporting(pdev); 3340 3341 pci_set_master(pdev); 3342 3343 3344 if (_base_config_dma_addressing(ioc, pdev) != 0) { 3345 ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev)); 3346 r = -ENODEV; 3347 goto out_fail; 3348 } 3349 3350 for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) && 3351 (!memap_sz || !pio_sz); i++) { 3352 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { 3353 if (pio_sz) 3354 continue; 3355 pio_chip = (u64)pci_resource_start(pdev, i); 3356 pio_sz = pci_resource_len(pdev, i); 3357 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) { 3358 if (memap_sz) 3359 continue; 3360 ioc->chip_phys = pci_resource_start(pdev, i); 3361 chip_phys = ioc->chip_phys; 3362 memap_sz = pci_resource_len(pdev, i); 3363 ioc->chip = ioremap(ioc->chip_phys, memap_sz); 3364 } 3365 } 3366 3367 if (ioc->chip == NULL) { 3368 ioc_err(ioc, 3369 "unable to map adapter memory! or resource not found\n"); 3370 r = -EINVAL; 3371 goto out_fail; 3372 } 3373 3374 _base_mask_interrupts(ioc); 3375 3376 r = _base_get_ioc_facts(ioc); 3377 if (r) { 3378 rc = _base_check_for_fault_and_issue_reset(ioc); 3379 if (rc || (_base_get_ioc_facts(ioc))) 3380 goto out_fail; 3381 } 3382 3383 if (!ioc->rdpq_array_enable_assigned) { 3384 ioc->rdpq_array_enable = ioc->rdpq_array_capable; 3385 ioc->rdpq_array_enable_assigned = 1; 3386 } 3387 3388 r = _base_enable_msix(ioc); 3389 if (r) 3390 goto out_fail; 3391 3392 if (!ioc->is_driver_loading) 3393 _base_init_irqpolls(ioc); 3394 /* Use the Combined reply queue feature only for SAS3 C0 & higher 3395 * revision HBAs and also only when reply queue count is greater than 8 3396 */ 3397 if (ioc->combined_reply_queue) { 3398 /* Determine the Supplemental Reply Post Host Index Registers 3399 * Addresse. Supplemental Reply Post Host Index Registers 3400 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and 3401 * each register is at offset bytes of 3402 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one. 3403 */ 3404 ioc->replyPostRegisterIndex = kcalloc( 3405 ioc->combined_reply_index_count, 3406 sizeof(resource_size_t *), GFP_KERNEL); 3407 if (!ioc->replyPostRegisterIndex) { 3408 ioc_err(ioc, 3409 "allocation for replyPostRegisterIndex failed!\n"); 3410 r = -ENOMEM; 3411 goto out_fail; 3412 } 3413 3414 for (i = 0; i < ioc->combined_reply_index_count; i++) { 3415 ioc->replyPostRegisterIndex[i] = (resource_size_t *) 3416 ((u8 __force *)&ioc->chip->Doorbell + 3417 MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET + 3418 (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET)); 3419 } 3420 } 3421 3422 if (ioc->is_warpdrive) { 3423 ioc->reply_post_host_index[0] = (resource_size_t __iomem *) 3424 &ioc->chip->ReplyPostHostIndex; 3425 3426 for (i = 1; i < ioc->cpu_msix_table_sz; i++) 3427 ioc->reply_post_host_index[i] = 3428 (resource_size_t __iomem *) 3429 ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1) 3430 * 4))); 3431 } 3432 3433 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) 3434 pr_info("%s: %s enabled: IRQ %d\n", 3435 reply_q->name, 3436 ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC", 3437 pci_irq_vector(ioc->pdev, reply_q->msix_index)); 3438 3439 ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n", 3440 &chip_phys, ioc->chip, memap_sz); 3441 ioc_info(ioc, "ioport(0x%016llx), size(%d)\n", 3442 (unsigned long long)pio_chip, pio_sz); 3443 3444 /* Save PCI configuration state for recovery from PCI AER/EEH errors */ 3445 pci_save_state(pdev); 3446 return 0; 3447 3448 out_fail: 3449 mpt3sas_base_unmap_resources(ioc); 3450 return r; 3451 } 3452 3453 /** 3454 * mpt3sas_base_get_msg_frame - obtain request mf pointer 3455 * @ioc: per adapter object 3456 * @smid: system request message index(smid zero is invalid) 3457 * 3458 * Return: virt pointer to message frame. 3459 */ 3460 void * 3461 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3462 { 3463 return (void *)(ioc->request + (smid * ioc->request_sz)); 3464 } 3465 3466 /** 3467 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr 3468 * @ioc: per adapter object 3469 * @smid: system request message index 3470 * 3471 * Return: virt pointer to sense buffer. 3472 */ 3473 void * 3474 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3475 { 3476 return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE)); 3477 } 3478 3479 /** 3480 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr 3481 * @ioc: per adapter object 3482 * @smid: system request message index 3483 * 3484 * Return: phys pointer to the low 32bit address of the sense buffer. 3485 */ 3486 __le32 3487 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3488 { 3489 return cpu_to_le32(ioc->sense_dma + ((smid - 1) * 3490 SCSI_SENSE_BUFFERSIZE)); 3491 } 3492 3493 /** 3494 * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr 3495 * @ioc: per adapter object 3496 * @smid: system request message index 3497 * 3498 * Return: virt pointer to a PCIe SGL. 3499 */ 3500 void * 3501 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3502 { 3503 return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl); 3504 } 3505 3506 /** 3507 * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr 3508 * @ioc: per adapter object 3509 * @smid: system request message index 3510 * 3511 * Return: phys pointer to the address of the PCIe buffer. 3512 */ 3513 dma_addr_t 3514 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3515 { 3516 return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma; 3517 } 3518 3519 /** 3520 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address 3521 * @ioc: per adapter object 3522 * @phys_addr: lower 32 physical addr of the reply 3523 * 3524 * Converts 32bit lower physical addr into a virt address. 3525 */ 3526 void * 3527 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr) 3528 { 3529 if (!phys_addr) 3530 return NULL; 3531 return ioc->reply + (phys_addr - (u32)ioc->reply_dma); 3532 } 3533 3534 /** 3535 * _base_get_msix_index - get the msix index 3536 * @ioc: per adapter object 3537 * @scmd: scsi_cmnd object 3538 * 3539 * returns msix index of general reply queues, 3540 * i.e. reply queue on which IO request's reply 3541 * should be posted by the HBA firmware. 3542 */ 3543 static inline u8 3544 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc, 3545 struct scsi_cmnd *scmd) 3546 { 3547 /* Enables reply_queue load balancing */ 3548 if (ioc->msix_load_balance) 3549 return ioc->reply_queue_count ? 3550 base_mod64(atomic64_add_return(1, 3551 &ioc->total_io_cnt), ioc->reply_queue_count) : 0; 3552 3553 return ioc->cpu_msix_table[raw_smp_processor_id()]; 3554 } 3555 3556 /** 3557 * _base_sdev_nr_inflight_request -get number of inflight requests 3558 * of a request queue. 3559 * @q: request_queue object 3560 * 3561 * returns number of inflight request of a request queue. 3562 */ 3563 inline unsigned long 3564 _base_sdev_nr_inflight_request(struct request_queue *q) 3565 { 3566 struct blk_mq_hw_ctx *hctx = q->queue_hw_ctx[0]; 3567 3568 return atomic_read(&hctx->nr_active); 3569 } 3570 3571 3572 /** 3573 * _base_get_high_iops_msix_index - get the msix index of 3574 * high iops queues 3575 * @ioc: per adapter object 3576 * @scmd: scsi_cmnd object 3577 * 3578 * Returns: msix index of high iops reply queues. 3579 * i.e. high iops reply queue on which IO request's 3580 * reply should be posted by the HBA firmware. 3581 */ 3582 static inline u8 3583 _base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc, 3584 struct scsi_cmnd *scmd) 3585 { 3586 /** 3587 * Round robin the IO interrupts among the high iops 3588 * reply queues in terms of batch count 16 when outstanding 3589 * IOs on the target device is >=8. 3590 */ 3591 if (_base_sdev_nr_inflight_request(scmd->device->request_queue) > 3592 MPT3SAS_DEVICE_HIGH_IOPS_DEPTH) 3593 return base_mod64(( 3594 atomic64_add_return(1, &ioc->high_iops_outstanding) / 3595 MPT3SAS_HIGH_IOPS_BATCH_COUNT), 3596 MPT3SAS_HIGH_IOPS_REPLY_QUEUES); 3597 3598 return _base_get_msix_index(ioc, scmd); 3599 } 3600 3601 /** 3602 * mpt3sas_base_get_smid - obtain a free smid from internal queue 3603 * @ioc: per adapter object 3604 * @cb_idx: callback index 3605 * 3606 * Return: smid (zero is invalid) 3607 */ 3608 u16 3609 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx) 3610 { 3611 unsigned long flags; 3612 struct request_tracker *request; 3613 u16 smid; 3614 3615 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3616 if (list_empty(&ioc->internal_free_list)) { 3617 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3618 ioc_err(ioc, "%s: smid not available\n", __func__); 3619 return 0; 3620 } 3621 3622 request = list_entry(ioc->internal_free_list.next, 3623 struct request_tracker, tracker_list); 3624 request->cb_idx = cb_idx; 3625 smid = request->smid; 3626 list_del(&request->tracker_list); 3627 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3628 return smid; 3629 } 3630 3631 /** 3632 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue 3633 * @ioc: per adapter object 3634 * @cb_idx: callback index 3635 * @scmd: pointer to scsi command object 3636 * 3637 * Return: smid (zero is invalid) 3638 */ 3639 u16 3640 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx, 3641 struct scsi_cmnd *scmd) 3642 { 3643 struct scsiio_tracker *request = scsi_cmd_priv(scmd); 3644 unsigned int tag = scmd->request->tag; 3645 u16 smid; 3646 3647 smid = tag + 1; 3648 request->cb_idx = cb_idx; 3649 request->smid = smid; 3650 request->scmd = scmd; 3651 INIT_LIST_HEAD(&request->chain_list); 3652 return smid; 3653 } 3654 3655 /** 3656 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue 3657 * @ioc: per adapter object 3658 * @cb_idx: callback index 3659 * 3660 * Return: smid (zero is invalid) 3661 */ 3662 u16 3663 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx) 3664 { 3665 unsigned long flags; 3666 struct request_tracker *request; 3667 u16 smid; 3668 3669 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3670 if (list_empty(&ioc->hpr_free_list)) { 3671 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3672 return 0; 3673 } 3674 3675 request = list_entry(ioc->hpr_free_list.next, 3676 struct request_tracker, tracker_list); 3677 request->cb_idx = cb_idx; 3678 smid = request->smid; 3679 list_del(&request->tracker_list); 3680 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3681 return smid; 3682 } 3683 3684 static void 3685 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc) 3686 { 3687 /* 3688 * See _wait_for_commands_to_complete() call with regards to this code. 3689 */ 3690 if (ioc->shost_recovery && ioc->pending_io_count) { 3691 ioc->pending_io_count = scsi_host_busy(ioc->shost); 3692 if (ioc->pending_io_count == 0) 3693 wake_up(&ioc->reset_wq); 3694 } 3695 } 3696 3697 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc, 3698 struct scsiio_tracker *st) 3699 { 3700 if (WARN_ON(st->smid == 0)) 3701 return; 3702 st->cb_idx = 0xFF; 3703 st->direct_io = 0; 3704 st->scmd = NULL; 3705 atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0); 3706 st->smid = 0; 3707 } 3708 3709 /** 3710 * mpt3sas_base_free_smid - put smid back on free_list 3711 * @ioc: per adapter object 3712 * @smid: system request message index 3713 */ 3714 void 3715 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3716 { 3717 unsigned long flags; 3718 int i; 3719 3720 if (smid < ioc->hi_priority_smid) { 3721 struct scsiio_tracker *st; 3722 void *request; 3723 3724 st = _get_st_from_smid(ioc, smid); 3725 if (!st) { 3726 _base_recovery_check(ioc); 3727 return; 3728 } 3729 3730 /* Clear MPI request frame */ 3731 request = mpt3sas_base_get_msg_frame(ioc, smid); 3732 memset(request, 0, ioc->request_sz); 3733 3734 mpt3sas_base_clear_st(ioc, st); 3735 _base_recovery_check(ioc); 3736 return; 3737 } 3738 3739 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3740 if (smid < ioc->internal_smid) { 3741 /* hi-priority */ 3742 i = smid - ioc->hi_priority_smid; 3743 ioc->hpr_lookup[i].cb_idx = 0xFF; 3744 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list); 3745 } else if (smid <= ioc->hba_queue_depth) { 3746 /* internal queue */ 3747 i = smid - ioc->internal_smid; 3748 ioc->internal_lookup[i].cb_idx = 0xFF; 3749 list_add(&ioc->internal_lookup[i].tracker_list, 3750 &ioc->internal_free_list); 3751 } 3752 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3753 } 3754 3755 /** 3756 * _base_mpi_ep_writeq - 32 bit write to MMIO 3757 * @b: data payload 3758 * @addr: address in MMIO space 3759 * @writeq_lock: spin lock 3760 * 3761 * This special handling for MPI EP to take care of 32 bit 3762 * environment where its not quarenteed to send the entire word 3763 * in one transfer. 3764 */ 3765 static inline void 3766 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr, 3767 spinlock_t *writeq_lock) 3768 { 3769 unsigned long flags; 3770 3771 spin_lock_irqsave(writeq_lock, flags); 3772 __raw_writel((u32)(b), addr); 3773 __raw_writel((u32)(b >> 32), (addr + 4)); 3774 spin_unlock_irqrestore(writeq_lock, flags); 3775 } 3776 3777 /** 3778 * _base_writeq - 64 bit write to MMIO 3779 * @b: data payload 3780 * @addr: address in MMIO space 3781 * @writeq_lock: spin lock 3782 * 3783 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes 3784 * care of 32 bit environment where its not quarenteed to send the entire word 3785 * in one transfer. 3786 */ 3787 #if defined(writeq) && defined(CONFIG_64BIT) 3788 static inline void 3789 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock) 3790 { 3791 wmb(); 3792 __raw_writeq(b, addr); 3793 barrier(); 3794 } 3795 #else 3796 static inline void 3797 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock) 3798 { 3799 _base_mpi_ep_writeq(b, addr, writeq_lock); 3800 } 3801 #endif 3802 3803 /** 3804 * _base_set_and_get_msix_index - get the msix index and assign to msix_io 3805 * variable of scsi tracker 3806 * @ioc: per adapter object 3807 * @smid: system request message index 3808 * 3809 * returns msix index. 3810 */ 3811 static u8 3812 _base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3813 { 3814 struct scsiio_tracker *st = NULL; 3815 3816 if (smid < ioc->hi_priority_smid) 3817 st = _get_st_from_smid(ioc, smid); 3818 3819 if (st == NULL) 3820 return _base_get_msix_index(ioc, NULL); 3821 3822 st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd); 3823 return st->msix_io; 3824 } 3825 3826 /** 3827 * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware 3828 * @ioc: per adapter object 3829 * @smid: system request message index 3830 * @handle: device handle 3831 */ 3832 static void 3833 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc, 3834 u16 smid, u16 handle) 3835 { 3836 Mpi2RequestDescriptorUnion_t descriptor; 3837 u64 *request = (u64 *)&descriptor; 3838 void *mpi_req_iomem; 3839 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 3840 3841 _clone_sg_entries(ioc, (void *) mfp, smid); 3842 mpi_req_iomem = (void __force *)ioc->chip + 3843 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz); 3844 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 3845 ioc->request_sz); 3846 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 3847 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3848 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 3849 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 3850 descriptor.SCSIIO.LMID = 0; 3851 _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3852 &ioc->scsi_lookup_lock); 3853 } 3854 3855 /** 3856 * _base_put_smid_scsi_io - send SCSI_IO request to firmware 3857 * @ioc: per adapter object 3858 * @smid: system request message index 3859 * @handle: device handle 3860 */ 3861 static void 3862 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle) 3863 { 3864 Mpi2RequestDescriptorUnion_t descriptor; 3865 u64 *request = (u64 *)&descriptor; 3866 3867 3868 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 3869 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3870 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 3871 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 3872 descriptor.SCSIIO.LMID = 0; 3873 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3874 &ioc->scsi_lookup_lock); 3875 } 3876 3877 /** 3878 * _base_put_smid_fast_path - send fast path request to firmware 3879 * @ioc: per adapter object 3880 * @smid: system request message index 3881 * @handle: device handle 3882 */ 3883 static void 3884 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid, 3885 u16 handle) 3886 { 3887 Mpi2RequestDescriptorUnion_t descriptor; 3888 u64 *request = (u64 *)&descriptor; 3889 3890 descriptor.SCSIIO.RequestFlags = 3891 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 3892 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3893 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 3894 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 3895 descriptor.SCSIIO.LMID = 0; 3896 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3897 &ioc->scsi_lookup_lock); 3898 } 3899 3900 /** 3901 * _base_put_smid_hi_priority - send Task Management request to firmware 3902 * @ioc: per adapter object 3903 * @smid: system request message index 3904 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0. 3905 */ 3906 static void 3907 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid, 3908 u16 msix_task) 3909 { 3910 Mpi2RequestDescriptorUnion_t descriptor; 3911 void *mpi_req_iomem; 3912 u64 *request; 3913 3914 if (ioc->is_mcpu_endpoint) { 3915 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 3916 3917 /* TBD 256 is offset within sys register. */ 3918 mpi_req_iomem = (void __force *)ioc->chip 3919 + MPI_FRAME_START_OFFSET 3920 + (smid * ioc->request_sz); 3921 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 3922 ioc->request_sz); 3923 } 3924 3925 request = (u64 *)&descriptor; 3926 3927 descriptor.HighPriority.RequestFlags = 3928 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 3929 descriptor.HighPriority.MSIxIndex = msix_task; 3930 descriptor.HighPriority.SMID = cpu_to_le16(smid); 3931 descriptor.HighPriority.LMID = 0; 3932 descriptor.HighPriority.Reserved1 = 0; 3933 if (ioc->is_mcpu_endpoint) 3934 _base_mpi_ep_writeq(*request, 3935 &ioc->chip->RequestDescriptorPostLow, 3936 &ioc->scsi_lookup_lock); 3937 else 3938 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3939 &ioc->scsi_lookup_lock); 3940 } 3941 3942 /** 3943 * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to 3944 * firmware 3945 * @ioc: per adapter object 3946 * @smid: system request message index 3947 */ 3948 void 3949 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3950 { 3951 Mpi2RequestDescriptorUnion_t descriptor; 3952 u64 *request = (u64 *)&descriptor; 3953 3954 descriptor.Default.RequestFlags = 3955 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED; 3956 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3957 descriptor.Default.SMID = cpu_to_le16(smid); 3958 descriptor.Default.LMID = 0; 3959 descriptor.Default.DescriptorTypeDependent = 0; 3960 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3961 &ioc->scsi_lookup_lock); 3962 } 3963 3964 /** 3965 * _base_put_smid_default - Default, primarily used for config pages 3966 * @ioc: per adapter object 3967 * @smid: system request message index 3968 */ 3969 static void 3970 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3971 { 3972 Mpi2RequestDescriptorUnion_t descriptor; 3973 void *mpi_req_iomem; 3974 u64 *request; 3975 3976 if (ioc->is_mcpu_endpoint) { 3977 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 3978 3979 _clone_sg_entries(ioc, (void *) mfp, smid); 3980 /* TBD 256 is offset within sys register */ 3981 mpi_req_iomem = (void __force *)ioc->chip + 3982 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz); 3983 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 3984 ioc->request_sz); 3985 } 3986 request = (u64 *)&descriptor; 3987 descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 3988 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3989 descriptor.Default.SMID = cpu_to_le16(smid); 3990 descriptor.Default.LMID = 0; 3991 descriptor.Default.DescriptorTypeDependent = 0; 3992 if (ioc->is_mcpu_endpoint) 3993 _base_mpi_ep_writeq(*request, 3994 &ioc->chip->RequestDescriptorPostLow, 3995 &ioc->scsi_lookup_lock); 3996 else 3997 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3998 &ioc->scsi_lookup_lock); 3999 } 4000 4001 /** 4002 * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using 4003 * Atomic Request Descriptor 4004 * @ioc: per adapter object 4005 * @smid: system request message index 4006 * @handle: device handle, unused in this function, for function type match 4007 * 4008 * Return nothing. 4009 */ 4010 static void 4011 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4012 u16 handle) 4013 { 4014 Mpi26AtomicRequestDescriptor_t descriptor; 4015 u32 *request = (u32 *)&descriptor; 4016 4017 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 4018 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4019 descriptor.SMID = cpu_to_le16(smid); 4020 4021 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4022 } 4023 4024 /** 4025 * _base_put_smid_fast_path_atomic - send fast path request to firmware 4026 * using Atomic Request Descriptor 4027 * @ioc: per adapter object 4028 * @smid: system request message index 4029 * @handle: device handle, unused in this function, for function type match 4030 * Return nothing 4031 */ 4032 static void 4033 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4034 u16 handle) 4035 { 4036 Mpi26AtomicRequestDescriptor_t descriptor; 4037 u32 *request = (u32 *)&descriptor; 4038 4039 descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 4040 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4041 descriptor.SMID = cpu_to_le16(smid); 4042 4043 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4044 } 4045 4046 /** 4047 * _base_put_smid_hi_priority_atomic - send Task Management request to 4048 * firmware using Atomic Request Descriptor 4049 * @ioc: per adapter object 4050 * @smid: system request message index 4051 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0 4052 * 4053 * Return nothing. 4054 */ 4055 static void 4056 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4057 u16 msix_task) 4058 { 4059 Mpi26AtomicRequestDescriptor_t descriptor; 4060 u32 *request = (u32 *)&descriptor; 4061 4062 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 4063 descriptor.MSIxIndex = msix_task; 4064 descriptor.SMID = cpu_to_le16(smid); 4065 4066 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4067 } 4068 4069 /** 4070 * _base_put_smid_default - Default, primarily used for config pages 4071 * use Atomic Request Descriptor 4072 * @ioc: per adapter object 4073 * @smid: system request message index 4074 * 4075 * Return nothing. 4076 */ 4077 static void 4078 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid) 4079 { 4080 Mpi26AtomicRequestDescriptor_t descriptor; 4081 u32 *request = (u32 *)&descriptor; 4082 4083 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 4084 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4085 descriptor.SMID = cpu_to_le16(smid); 4086 4087 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4088 } 4089 4090 /** 4091 * _base_display_OEMs_branding - Display branding string 4092 * @ioc: per adapter object 4093 */ 4094 static void 4095 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc) 4096 { 4097 if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL) 4098 return; 4099 4100 switch (ioc->pdev->subsystem_vendor) { 4101 case PCI_VENDOR_ID_INTEL: 4102 switch (ioc->pdev->device) { 4103 case MPI2_MFGPAGE_DEVID_SAS2008: 4104 switch (ioc->pdev->subsystem_device) { 4105 case MPT2SAS_INTEL_RMS2LL080_SSDID: 4106 ioc_info(ioc, "%s\n", 4107 MPT2SAS_INTEL_RMS2LL080_BRANDING); 4108 break; 4109 case MPT2SAS_INTEL_RMS2LL040_SSDID: 4110 ioc_info(ioc, "%s\n", 4111 MPT2SAS_INTEL_RMS2LL040_BRANDING); 4112 break; 4113 case MPT2SAS_INTEL_SSD910_SSDID: 4114 ioc_info(ioc, "%s\n", 4115 MPT2SAS_INTEL_SSD910_BRANDING); 4116 break; 4117 default: 4118 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4119 ioc->pdev->subsystem_device); 4120 break; 4121 } 4122 break; 4123 case MPI2_MFGPAGE_DEVID_SAS2308_2: 4124 switch (ioc->pdev->subsystem_device) { 4125 case MPT2SAS_INTEL_RS25GB008_SSDID: 4126 ioc_info(ioc, "%s\n", 4127 MPT2SAS_INTEL_RS25GB008_BRANDING); 4128 break; 4129 case MPT2SAS_INTEL_RMS25JB080_SSDID: 4130 ioc_info(ioc, "%s\n", 4131 MPT2SAS_INTEL_RMS25JB080_BRANDING); 4132 break; 4133 case MPT2SAS_INTEL_RMS25JB040_SSDID: 4134 ioc_info(ioc, "%s\n", 4135 MPT2SAS_INTEL_RMS25JB040_BRANDING); 4136 break; 4137 case MPT2SAS_INTEL_RMS25KB080_SSDID: 4138 ioc_info(ioc, "%s\n", 4139 MPT2SAS_INTEL_RMS25KB080_BRANDING); 4140 break; 4141 case MPT2SAS_INTEL_RMS25KB040_SSDID: 4142 ioc_info(ioc, "%s\n", 4143 MPT2SAS_INTEL_RMS25KB040_BRANDING); 4144 break; 4145 case MPT2SAS_INTEL_RMS25LB040_SSDID: 4146 ioc_info(ioc, "%s\n", 4147 MPT2SAS_INTEL_RMS25LB040_BRANDING); 4148 break; 4149 case MPT2SAS_INTEL_RMS25LB080_SSDID: 4150 ioc_info(ioc, "%s\n", 4151 MPT2SAS_INTEL_RMS25LB080_BRANDING); 4152 break; 4153 default: 4154 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4155 ioc->pdev->subsystem_device); 4156 break; 4157 } 4158 break; 4159 case MPI25_MFGPAGE_DEVID_SAS3008: 4160 switch (ioc->pdev->subsystem_device) { 4161 case MPT3SAS_INTEL_RMS3JC080_SSDID: 4162 ioc_info(ioc, "%s\n", 4163 MPT3SAS_INTEL_RMS3JC080_BRANDING); 4164 break; 4165 4166 case MPT3SAS_INTEL_RS3GC008_SSDID: 4167 ioc_info(ioc, "%s\n", 4168 MPT3SAS_INTEL_RS3GC008_BRANDING); 4169 break; 4170 case MPT3SAS_INTEL_RS3FC044_SSDID: 4171 ioc_info(ioc, "%s\n", 4172 MPT3SAS_INTEL_RS3FC044_BRANDING); 4173 break; 4174 case MPT3SAS_INTEL_RS3UC080_SSDID: 4175 ioc_info(ioc, "%s\n", 4176 MPT3SAS_INTEL_RS3UC080_BRANDING); 4177 break; 4178 default: 4179 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4180 ioc->pdev->subsystem_device); 4181 break; 4182 } 4183 break; 4184 default: 4185 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4186 ioc->pdev->subsystem_device); 4187 break; 4188 } 4189 break; 4190 case PCI_VENDOR_ID_DELL: 4191 switch (ioc->pdev->device) { 4192 case MPI2_MFGPAGE_DEVID_SAS2008: 4193 switch (ioc->pdev->subsystem_device) { 4194 case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID: 4195 ioc_info(ioc, "%s\n", 4196 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING); 4197 break; 4198 case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID: 4199 ioc_info(ioc, "%s\n", 4200 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING); 4201 break; 4202 case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID: 4203 ioc_info(ioc, "%s\n", 4204 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING); 4205 break; 4206 case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID: 4207 ioc_info(ioc, "%s\n", 4208 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING); 4209 break; 4210 case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID: 4211 ioc_info(ioc, "%s\n", 4212 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING); 4213 break; 4214 case MPT2SAS_DELL_PERC_H200_SSDID: 4215 ioc_info(ioc, "%s\n", 4216 MPT2SAS_DELL_PERC_H200_BRANDING); 4217 break; 4218 case MPT2SAS_DELL_6GBPS_SAS_SSDID: 4219 ioc_info(ioc, "%s\n", 4220 MPT2SAS_DELL_6GBPS_SAS_BRANDING); 4221 break; 4222 default: 4223 ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n", 4224 ioc->pdev->subsystem_device); 4225 break; 4226 } 4227 break; 4228 case MPI25_MFGPAGE_DEVID_SAS3008: 4229 switch (ioc->pdev->subsystem_device) { 4230 case MPT3SAS_DELL_12G_HBA_SSDID: 4231 ioc_info(ioc, "%s\n", 4232 MPT3SAS_DELL_12G_HBA_BRANDING); 4233 break; 4234 default: 4235 ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n", 4236 ioc->pdev->subsystem_device); 4237 break; 4238 } 4239 break; 4240 default: 4241 ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n", 4242 ioc->pdev->subsystem_device); 4243 break; 4244 } 4245 break; 4246 case PCI_VENDOR_ID_CISCO: 4247 switch (ioc->pdev->device) { 4248 case MPI25_MFGPAGE_DEVID_SAS3008: 4249 switch (ioc->pdev->subsystem_device) { 4250 case MPT3SAS_CISCO_12G_8E_HBA_SSDID: 4251 ioc_info(ioc, "%s\n", 4252 MPT3SAS_CISCO_12G_8E_HBA_BRANDING); 4253 break; 4254 case MPT3SAS_CISCO_12G_8I_HBA_SSDID: 4255 ioc_info(ioc, "%s\n", 4256 MPT3SAS_CISCO_12G_8I_HBA_BRANDING); 4257 break; 4258 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID: 4259 ioc_info(ioc, "%s\n", 4260 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING); 4261 break; 4262 default: 4263 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n", 4264 ioc->pdev->subsystem_device); 4265 break; 4266 } 4267 break; 4268 case MPI25_MFGPAGE_DEVID_SAS3108_1: 4269 switch (ioc->pdev->subsystem_device) { 4270 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID: 4271 ioc_info(ioc, "%s\n", 4272 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING); 4273 break; 4274 case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID: 4275 ioc_info(ioc, "%s\n", 4276 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING); 4277 break; 4278 default: 4279 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n", 4280 ioc->pdev->subsystem_device); 4281 break; 4282 } 4283 break; 4284 default: 4285 ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n", 4286 ioc->pdev->subsystem_device); 4287 break; 4288 } 4289 break; 4290 case MPT2SAS_HP_3PAR_SSVID: 4291 switch (ioc->pdev->device) { 4292 case MPI2_MFGPAGE_DEVID_SAS2004: 4293 switch (ioc->pdev->subsystem_device) { 4294 case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID: 4295 ioc_info(ioc, "%s\n", 4296 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING); 4297 break; 4298 default: 4299 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n", 4300 ioc->pdev->subsystem_device); 4301 break; 4302 } 4303 break; 4304 case MPI2_MFGPAGE_DEVID_SAS2308_2: 4305 switch (ioc->pdev->subsystem_device) { 4306 case MPT2SAS_HP_2_4_INTERNAL_SSDID: 4307 ioc_info(ioc, "%s\n", 4308 MPT2SAS_HP_2_4_INTERNAL_BRANDING); 4309 break; 4310 case MPT2SAS_HP_2_4_EXTERNAL_SSDID: 4311 ioc_info(ioc, "%s\n", 4312 MPT2SAS_HP_2_4_EXTERNAL_BRANDING); 4313 break; 4314 case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID: 4315 ioc_info(ioc, "%s\n", 4316 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING); 4317 break; 4318 case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID: 4319 ioc_info(ioc, "%s\n", 4320 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING); 4321 break; 4322 default: 4323 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n", 4324 ioc->pdev->subsystem_device); 4325 break; 4326 } 4327 break; 4328 default: 4329 ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n", 4330 ioc->pdev->subsystem_device); 4331 break; 4332 } 4333 default: 4334 break; 4335 } 4336 } 4337 4338 /** 4339 * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg 4340 * version from FW Image Header. 4341 * @ioc: per adapter object 4342 * 4343 * Return: 0 for success, non-zero for failure. 4344 */ 4345 static int 4346 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc) 4347 { 4348 Mpi2FWImageHeader_t *fw_img_hdr; 4349 Mpi26ComponentImageHeader_t *cmp_img_hdr; 4350 Mpi25FWUploadRequest_t *mpi_request; 4351 Mpi2FWUploadReply_t mpi_reply; 4352 int r = 0; 4353 u32 package_version = 0; 4354 void *fwpkg_data = NULL; 4355 dma_addr_t fwpkg_data_dma; 4356 u16 smid, ioc_status; 4357 size_t data_length; 4358 4359 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 4360 4361 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 4362 ioc_err(ioc, "%s: internal command already in use\n", __func__); 4363 return -EAGAIN; 4364 } 4365 4366 data_length = sizeof(Mpi2FWImageHeader_t); 4367 fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length, 4368 &fwpkg_data_dma, GFP_KERNEL); 4369 if (!fwpkg_data) { 4370 ioc_err(ioc, 4371 "Memory allocation for fwpkg data failed at %s:%d/%s()!\n", 4372 __FILE__, __LINE__, __func__); 4373 return -ENOMEM; 4374 } 4375 4376 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 4377 if (!smid) { 4378 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 4379 r = -EAGAIN; 4380 goto out; 4381 } 4382 4383 ioc->base_cmds.status = MPT3_CMD_PENDING; 4384 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 4385 ioc->base_cmds.smid = smid; 4386 memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t)); 4387 mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD; 4388 mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH; 4389 mpi_request->ImageSize = cpu_to_le32(data_length); 4390 ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma, 4391 data_length); 4392 init_completion(&ioc->base_cmds.done); 4393 ioc->put_smid_default(ioc, smid); 4394 /* Wait for 15 seconds */ 4395 wait_for_completion_timeout(&ioc->base_cmds.done, 4396 FW_IMG_HDR_READ_TIMEOUT*HZ); 4397 ioc_info(ioc, "%s: complete\n", __func__); 4398 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 4399 ioc_err(ioc, "%s: timeout\n", __func__); 4400 _debug_dump_mf(mpi_request, 4401 sizeof(Mpi25FWUploadRequest_t)/4); 4402 r = -ETIME; 4403 } else { 4404 memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t)); 4405 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) { 4406 memcpy(&mpi_reply, ioc->base_cmds.reply, 4407 sizeof(Mpi2FWUploadReply_t)); 4408 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 4409 MPI2_IOCSTATUS_MASK; 4410 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 4411 fw_img_hdr = (Mpi2FWImageHeader_t *)fwpkg_data; 4412 if (le32_to_cpu(fw_img_hdr->Signature) == 4413 MPI26_IMAGE_HEADER_SIGNATURE0_MPI26) { 4414 cmp_img_hdr = 4415 (Mpi26ComponentImageHeader_t *) 4416 (fwpkg_data); 4417 package_version = 4418 le32_to_cpu( 4419 cmp_img_hdr->ApplicationSpecific); 4420 } else 4421 package_version = 4422 le32_to_cpu( 4423 fw_img_hdr->PackageVersion.Word); 4424 if (package_version) 4425 ioc_info(ioc, 4426 "FW Package Ver(%02d.%02d.%02d.%02d)\n", 4427 ((package_version) & 0xFF000000) >> 24, 4428 ((package_version) & 0x00FF0000) >> 16, 4429 ((package_version) & 0x0000FF00) >> 8, 4430 (package_version) & 0x000000FF); 4431 } else { 4432 _debug_dump_mf(&mpi_reply, 4433 sizeof(Mpi2FWUploadReply_t)/4); 4434 } 4435 } 4436 } 4437 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 4438 out: 4439 if (fwpkg_data) 4440 dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data, 4441 fwpkg_data_dma); 4442 return r; 4443 } 4444 4445 /** 4446 * _base_display_ioc_capabilities - Disply IOC's capabilities. 4447 * @ioc: per adapter object 4448 */ 4449 static void 4450 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc) 4451 { 4452 int i = 0; 4453 char desc[16]; 4454 u32 iounit_pg1_flags; 4455 u32 bios_version; 4456 4457 bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion); 4458 strncpy(desc, ioc->manu_pg0.ChipName, 16); 4459 ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n", 4460 desc, 4461 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24, 4462 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16, 4463 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8, 4464 ioc->facts.FWVersion.Word & 0x000000FF, 4465 ioc->pdev->revision, 4466 (bios_version & 0xFF000000) >> 24, 4467 (bios_version & 0x00FF0000) >> 16, 4468 (bios_version & 0x0000FF00) >> 8, 4469 bios_version & 0x000000FF); 4470 4471 _base_display_OEMs_branding(ioc); 4472 4473 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) { 4474 pr_info("%sNVMe", i ? "," : ""); 4475 i++; 4476 } 4477 4478 ioc_info(ioc, "Protocol=("); 4479 4480 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) { 4481 pr_cont("Initiator"); 4482 i++; 4483 } 4484 4485 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) { 4486 pr_cont("%sTarget", i ? "," : ""); 4487 i++; 4488 } 4489 4490 i = 0; 4491 pr_cont("), Capabilities=("); 4492 4493 if (!ioc->hide_ir_msg) { 4494 if (ioc->facts.IOCCapabilities & 4495 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) { 4496 pr_cont("Raid"); 4497 i++; 4498 } 4499 } 4500 4501 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) { 4502 pr_cont("%sTLR", i ? "," : ""); 4503 i++; 4504 } 4505 4506 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) { 4507 pr_cont("%sMulticast", i ? "," : ""); 4508 i++; 4509 } 4510 4511 if (ioc->facts.IOCCapabilities & 4512 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) { 4513 pr_cont("%sBIDI Target", i ? "," : ""); 4514 i++; 4515 } 4516 4517 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) { 4518 pr_cont("%sEEDP", i ? "," : ""); 4519 i++; 4520 } 4521 4522 if (ioc->facts.IOCCapabilities & 4523 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) { 4524 pr_cont("%sSnapshot Buffer", i ? "," : ""); 4525 i++; 4526 } 4527 4528 if (ioc->facts.IOCCapabilities & 4529 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) { 4530 pr_cont("%sDiag Trace Buffer", i ? "," : ""); 4531 i++; 4532 } 4533 4534 if (ioc->facts.IOCCapabilities & 4535 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) { 4536 pr_cont("%sDiag Extended Buffer", i ? "," : ""); 4537 i++; 4538 } 4539 4540 if (ioc->facts.IOCCapabilities & 4541 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) { 4542 pr_cont("%sTask Set Full", i ? "," : ""); 4543 i++; 4544 } 4545 4546 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags); 4547 if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) { 4548 pr_cont("%sNCQ", i ? "," : ""); 4549 i++; 4550 } 4551 4552 pr_cont(")\n"); 4553 } 4554 4555 /** 4556 * mpt3sas_base_update_missing_delay - change the missing delay timers 4557 * @ioc: per adapter object 4558 * @device_missing_delay: amount of time till device is reported missing 4559 * @io_missing_delay: interval IO is returned when there is a missing device 4560 * 4561 * Passed on the command line, this function will modify the device missing 4562 * delay, as well as the io missing delay. This should be called at driver 4563 * load time. 4564 */ 4565 void 4566 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc, 4567 u16 device_missing_delay, u8 io_missing_delay) 4568 { 4569 u16 dmd, dmd_new, dmd_orignal; 4570 u8 io_missing_delay_original; 4571 u16 sz; 4572 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL; 4573 Mpi2ConfigReply_t mpi_reply; 4574 u8 num_phys = 0; 4575 u16 ioc_status; 4576 4577 mpt3sas_config_get_number_hba_phys(ioc, &num_phys); 4578 if (!num_phys) 4579 return; 4580 4581 sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys * 4582 sizeof(Mpi2SasIOUnit1PhyData_t)); 4583 sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL); 4584 if (!sas_iounit_pg1) { 4585 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4586 __FILE__, __LINE__, __func__); 4587 goto out; 4588 } 4589 if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply, 4590 sas_iounit_pg1, sz))) { 4591 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4592 __FILE__, __LINE__, __func__); 4593 goto out; 4594 } 4595 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 4596 MPI2_IOCSTATUS_MASK; 4597 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 4598 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4599 __FILE__, __LINE__, __func__); 4600 goto out; 4601 } 4602 4603 /* device missing delay */ 4604 dmd = sas_iounit_pg1->ReportDeviceMissingDelay; 4605 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16) 4606 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16; 4607 else 4608 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK; 4609 dmd_orignal = dmd; 4610 if (device_missing_delay > 0x7F) { 4611 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 : 4612 device_missing_delay; 4613 dmd = dmd / 16; 4614 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16; 4615 } else 4616 dmd = device_missing_delay; 4617 sas_iounit_pg1->ReportDeviceMissingDelay = dmd; 4618 4619 /* io missing delay */ 4620 io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay; 4621 sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay; 4622 4623 if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1, 4624 sz)) { 4625 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16) 4626 dmd_new = (dmd & 4627 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16; 4628 else 4629 dmd_new = 4630 dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK; 4631 ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n", 4632 dmd_orignal, dmd_new); 4633 ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n", 4634 io_missing_delay_original, 4635 io_missing_delay); 4636 ioc->device_missing_delay = dmd_new; 4637 ioc->io_missing_delay = io_missing_delay; 4638 } 4639 4640 out: 4641 kfree(sas_iounit_pg1); 4642 } 4643 4644 /** 4645 * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields 4646 * according to performance mode. 4647 * @ioc : per adapter object 4648 * 4649 * Return nothing. 4650 */ 4651 static void 4652 _base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc) 4653 { 4654 Mpi2IOCPage1_t ioc_pg1; 4655 Mpi2ConfigReply_t mpi_reply; 4656 4657 mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy); 4658 memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t)); 4659 4660 switch (perf_mode) { 4661 case MPT_PERF_MODE_DEFAULT: 4662 case MPT_PERF_MODE_BALANCED: 4663 if (ioc->high_iops_queues) { 4664 ioc_info(ioc, 4665 "Enable interrupt coalescing only for first\t" 4666 "%d reply queues\n", 4667 MPT3SAS_HIGH_IOPS_REPLY_QUEUES); 4668 /* 4669 * If 31st bit is zero then interrupt coalescing is 4670 * enabled for all reply descriptor post queues. 4671 * If 31st bit is set to one then user can 4672 * enable/disable interrupt coalescing on per reply 4673 * descriptor post queue group(8) basis. So to enable 4674 * interrupt coalescing only on first reply descriptor 4675 * post queue group 31st bit and zero th bit is enabled. 4676 */ 4677 ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 | 4678 ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1)); 4679 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1); 4680 ioc_info(ioc, "performance mode: balanced\n"); 4681 return; 4682 } 4683 /* Fall through */ 4684 case MPT_PERF_MODE_LATENCY: 4685 /* 4686 * Enable interrupt coalescing on all reply queues 4687 * with timeout value 0xA 4688 */ 4689 ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa); 4690 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING); 4691 ioc_pg1.ProductSpecific = 0; 4692 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1); 4693 ioc_info(ioc, "performance mode: latency\n"); 4694 break; 4695 case MPT_PERF_MODE_IOPS: 4696 /* 4697 * Enable interrupt coalescing on all reply queues. 4698 */ 4699 ioc_info(ioc, 4700 "performance mode: iops with coalescing timeout: 0x%x\n", 4701 le32_to_cpu(ioc_pg1.CoalescingTimeout)); 4702 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING); 4703 ioc_pg1.ProductSpecific = 0; 4704 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1); 4705 break; 4706 } 4707 } 4708 4709 /** 4710 * _base_static_config_pages - static start of day config pages 4711 * @ioc: per adapter object 4712 */ 4713 static void 4714 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc) 4715 { 4716 Mpi2ConfigReply_t mpi_reply; 4717 u32 iounit_pg1_flags; 4718 4719 ioc->nvme_abort_timeout = 30; 4720 mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0); 4721 if (ioc->ir_firmware) 4722 mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply, 4723 &ioc->manu_pg10); 4724 4725 /* 4726 * Ensure correct T10 PI operation if vendor left EEDPTagMode 4727 * flag unset in NVDATA. 4728 */ 4729 mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11); 4730 if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) { 4731 pr_err("%s: overriding NVDATA EEDPTagMode setting\n", 4732 ioc->name); 4733 ioc->manu_pg11.EEDPTagMode &= ~0x3; 4734 ioc->manu_pg11.EEDPTagMode |= 0x1; 4735 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply, 4736 &ioc->manu_pg11); 4737 } 4738 if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK) 4739 ioc->tm_custom_handling = 1; 4740 else { 4741 ioc->tm_custom_handling = 0; 4742 if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT) 4743 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT; 4744 else if (ioc->manu_pg11.NVMeAbortTO > 4745 NVME_TASK_ABORT_MAX_TIMEOUT) 4746 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT; 4747 else 4748 ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO; 4749 } 4750 4751 mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2); 4752 mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3); 4753 mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8); 4754 mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0); 4755 mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1); 4756 mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8); 4757 _base_display_ioc_capabilities(ioc); 4758 4759 /* 4760 * Enable task_set_full handling in iounit_pg1 when the 4761 * facts capabilities indicate that its supported. 4762 */ 4763 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags); 4764 if ((ioc->facts.IOCCapabilities & 4765 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING)) 4766 iounit_pg1_flags &= 4767 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING; 4768 else 4769 iounit_pg1_flags |= 4770 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING; 4771 ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags); 4772 mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1); 4773 4774 if (ioc->iounit_pg8.NumSensors) 4775 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors; 4776 if (ioc->is_aero_ioc) 4777 _base_update_ioc_page1_inlinewith_perf_mode(ioc); 4778 } 4779 4780 /** 4781 * mpt3sas_free_enclosure_list - release memory 4782 * @ioc: per adapter object 4783 * 4784 * Free memory allocated during encloure add. 4785 */ 4786 void 4787 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc) 4788 { 4789 struct _enclosure_node *enclosure_dev, *enclosure_dev_next; 4790 4791 /* Free enclosure list */ 4792 list_for_each_entry_safe(enclosure_dev, 4793 enclosure_dev_next, &ioc->enclosure_list, list) { 4794 list_del(&enclosure_dev->list); 4795 kfree(enclosure_dev); 4796 } 4797 } 4798 4799 /** 4800 * _base_release_memory_pools - release memory 4801 * @ioc: per adapter object 4802 * 4803 * Free memory allocated from _base_allocate_memory_pools. 4804 */ 4805 static void 4806 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc) 4807 { 4808 int i = 0; 4809 int j = 0; 4810 int dma_alloc_count = 0; 4811 struct chain_tracker *ct; 4812 int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1; 4813 4814 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 4815 4816 if (ioc->request) { 4817 dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz, 4818 ioc->request, ioc->request_dma); 4819 dexitprintk(ioc, 4820 ioc_info(ioc, "request_pool(0x%p): free\n", 4821 ioc->request)); 4822 ioc->request = NULL; 4823 } 4824 4825 if (ioc->sense) { 4826 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma); 4827 dma_pool_destroy(ioc->sense_dma_pool); 4828 dexitprintk(ioc, 4829 ioc_info(ioc, "sense_pool(0x%p): free\n", 4830 ioc->sense)); 4831 ioc->sense = NULL; 4832 } 4833 4834 if (ioc->reply) { 4835 dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma); 4836 dma_pool_destroy(ioc->reply_dma_pool); 4837 dexitprintk(ioc, 4838 ioc_info(ioc, "reply_pool(0x%p): free\n", 4839 ioc->reply)); 4840 ioc->reply = NULL; 4841 } 4842 4843 if (ioc->reply_free) { 4844 dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free, 4845 ioc->reply_free_dma); 4846 dma_pool_destroy(ioc->reply_free_dma_pool); 4847 dexitprintk(ioc, 4848 ioc_info(ioc, "reply_free_pool(0x%p): free\n", 4849 ioc->reply_free)); 4850 ioc->reply_free = NULL; 4851 } 4852 4853 if (ioc->reply_post) { 4854 dma_alloc_count = DIV_ROUND_UP(count, 4855 RDPQ_MAX_INDEX_IN_ONE_CHUNK); 4856 for (i = 0; i < count; i++) { 4857 if (i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0 4858 && dma_alloc_count) { 4859 if (ioc->reply_post[i].reply_post_free) { 4860 dma_pool_free( 4861 ioc->reply_post_free_dma_pool, 4862 ioc->reply_post[i].reply_post_free, 4863 ioc->reply_post[i].reply_post_free_dma); 4864 dexitprintk(ioc, ioc_info(ioc, 4865 "reply_post_free_pool(0x%p): free\n", 4866 ioc->reply_post[i].reply_post_free)); 4867 ioc->reply_post[i].reply_post_free = 4868 NULL; 4869 } 4870 --dma_alloc_count; 4871 } 4872 } 4873 dma_pool_destroy(ioc->reply_post_free_dma_pool); 4874 if (ioc->reply_post_free_array && 4875 ioc->rdpq_array_enable) { 4876 dma_pool_free(ioc->reply_post_free_array_dma_pool, 4877 ioc->reply_post_free_array, 4878 ioc->reply_post_free_array_dma); 4879 ioc->reply_post_free_array = NULL; 4880 } 4881 dma_pool_destroy(ioc->reply_post_free_array_dma_pool); 4882 kfree(ioc->reply_post); 4883 } 4884 4885 if (ioc->pcie_sgl_dma_pool) { 4886 for (i = 0; i < ioc->scsiio_depth; i++) { 4887 dma_pool_free(ioc->pcie_sgl_dma_pool, 4888 ioc->pcie_sg_lookup[i].pcie_sgl, 4889 ioc->pcie_sg_lookup[i].pcie_sgl_dma); 4890 } 4891 dma_pool_destroy(ioc->pcie_sgl_dma_pool); 4892 } 4893 4894 if (ioc->config_page) { 4895 dexitprintk(ioc, 4896 ioc_info(ioc, "config_page(0x%p): free\n", 4897 ioc->config_page)); 4898 dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz, 4899 ioc->config_page, ioc->config_page_dma); 4900 } 4901 4902 kfree(ioc->hpr_lookup); 4903 ioc->hpr_lookup = NULL; 4904 kfree(ioc->internal_lookup); 4905 ioc->internal_lookup = NULL; 4906 if (ioc->chain_lookup) { 4907 for (i = 0; i < ioc->scsiio_depth; i++) { 4908 for (j = ioc->chains_per_prp_buffer; 4909 j < ioc->chains_needed_per_io; j++) { 4910 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 4911 if (ct && ct->chain_buffer) 4912 dma_pool_free(ioc->chain_dma_pool, 4913 ct->chain_buffer, 4914 ct->chain_buffer_dma); 4915 } 4916 kfree(ioc->chain_lookup[i].chains_per_smid); 4917 } 4918 dma_pool_destroy(ioc->chain_dma_pool); 4919 kfree(ioc->chain_lookup); 4920 ioc->chain_lookup = NULL; 4921 } 4922 } 4923 4924 /** 4925 * mpt3sas_check_same_4gb_region - checks whether all reply queues in a set are 4926 * having same upper 32bits in their base memory address. 4927 * @reply_pool_start_address: Base address of a reply queue set 4928 * @pool_sz: Size of single Reply Descriptor Post Queues pool size 4929 * 4930 * Return: 1 if reply queues in a set have a same upper 32bits in their base 4931 * memory address, else 0. 4932 */ 4933 4934 static int 4935 mpt3sas_check_same_4gb_region(long reply_pool_start_address, u32 pool_sz) 4936 { 4937 long reply_pool_end_address; 4938 4939 reply_pool_end_address = reply_pool_start_address + pool_sz; 4940 4941 if (upper_32_bits(reply_pool_start_address) == 4942 upper_32_bits(reply_pool_end_address)) 4943 return 1; 4944 else 4945 return 0; 4946 } 4947 4948 /** 4949 * base_alloc_rdpq_dma_pool - Allocating DMA'able memory 4950 * for reply queues. 4951 * @ioc: per adapter object 4952 * @sz: DMA Pool size 4953 * Return: 0 for success, non-zero for failure. 4954 */ 4955 static int 4956 base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER *ioc, int sz) 4957 { 4958 int i = 0; 4959 u32 dma_alloc_count = 0; 4960 int reply_post_free_sz = ioc->reply_post_queue_depth * 4961 sizeof(Mpi2DefaultReplyDescriptor_t); 4962 int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1; 4963 4964 ioc->reply_post = kcalloc(count, sizeof(struct reply_post_struct), 4965 GFP_KERNEL); 4966 if (!ioc->reply_post) 4967 return -ENOMEM; 4968 /* 4969 * For INVADER_SERIES each set of 8 reply queues(0-7, 8-15, ..) and 4970 * VENTURA_SERIES each set of 16 reply queues(0-15, 16-31, ..) should 4971 * be within 4GB boundary i.e reply queues in a set must have same 4972 * upper 32-bits in their memory address. so here driver is allocating 4973 * the DMA'able memory for reply queues according. 4974 * Driver uses limitation of 4975 * VENTURA_SERIES to manage INVADER_SERIES as well. 4976 */ 4977 dma_alloc_count = DIV_ROUND_UP(count, 4978 RDPQ_MAX_INDEX_IN_ONE_CHUNK); 4979 ioc->reply_post_free_dma_pool = 4980 dma_pool_create("reply_post_free pool", 4981 &ioc->pdev->dev, sz, 16, 0); 4982 if (!ioc->reply_post_free_dma_pool) 4983 return -ENOMEM; 4984 for (i = 0; i < count; i++) { 4985 if ((i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0) && dma_alloc_count) { 4986 ioc->reply_post[i].reply_post_free = 4987 dma_pool_zalloc(ioc->reply_post_free_dma_pool, 4988 GFP_KERNEL, 4989 &ioc->reply_post[i].reply_post_free_dma); 4990 if (!ioc->reply_post[i].reply_post_free) 4991 return -ENOMEM; 4992 /* 4993 * Each set of RDPQ pool must satisfy 4gb boundary 4994 * restriction. 4995 * 1) Check if allocated resources for RDPQ pool are in 4996 * the same 4GB range. 4997 * 2) If #1 is true, continue with 64 bit DMA. 4998 * 3) If #1 is false, return 1. which means free all the 4999 * resources and set DMA mask to 32 and allocate. 5000 */ 5001 if (!mpt3sas_check_same_4gb_region( 5002 (long)ioc->reply_post[i].reply_post_free, sz)) { 5003 dinitprintk(ioc, 5004 ioc_err(ioc, "bad Replypost free pool(0x%p)" 5005 "reply_post_free_dma = (0x%llx)\n", 5006 ioc->reply_post[i].reply_post_free, 5007 (unsigned long long) 5008 ioc->reply_post[i].reply_post_free_dma)); 5009 return -EAGAIN; 5010 } 5011 dma_alloc_count--; 5012 5013 } else { 5014 ioc->reply_post[i].reply_post_free = 5015 (Mpi2ReplyDescriptorsUnion_t *) 5016 ((long)ioc->reply_post[i-1].reply_post_free 5017 + reply_post_free_sz); 5018 ioc->reply_post[i].reply_post_free_dma = 5019 (dma_addr_t) 5020 (ioc->reply_post[i-1].reply_post_free_dma + 5021 reply_post_free_sz); 5022 } 5023 } 5024 return 0; 5025 } 5026 5027 /** 5028 * _base_allocate_memory_pools - allocate start of day memory pools 5029 * @ioc: per adapter object 5030 * 5031 * Return: 0 success, anything else error. 5032 */ 5033 static int 5034 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc) 5035 { 5036 struct mpt3sas_facts *facts; 5037 u16 max_sge_elements; 5038 u16 chains_needed_per_io; 5039 u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz; 5040 u32 retry_sz; 5041 u32 rdpq_sz = 0; 5042 u16 max_request_credit, nvme_blocks_needed; 5043 unsigned short sg_tablesize; 5044 u16 sge_size; 5045 int i, j; 5046 int ret = 0; 5047 struct chain_tracker *ct; 5048 5049 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 5050 5051 5052 retry_sz = 0; 5053 facts = &ioc->facts; 5054 5055 /* command line tunables for max sgl entries */ 5056 if (max_sgl_entries != -1) 5057 sg_tablesize = max_sgl_entries; 5058 else { 5059 if (ioc->hba_mpi_version_belonged == MPI2_VERSION) 5060 sg_tablesize = MPT2SAS_SG_DEPTH; 5061 else 5062 sg_tablesize = MPT3SAS_SG_DEPTH; 5063 } 5064 5065 /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */ 5066 if (reset_devices) 5067 sg_tablesize = min_t(unsigned short, sg_tablesize, 5068 MPT_KDUMP_MIN_PHYS_SEGMENTS); 5069 5070 if (ioc->is_mcpu_endpoint) 5071 ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS; 5072 else { 5073 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS) 5074 sg_tablesize = MPT_MIN_PHYS_SEGMENTS; 5075 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) { 5076 sg_tablesize = min_t(unsigned short, sg_tablesize, 5077 SG_MAX_SEGMENTS); 5078 ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n", 5079 sg_tablesize, MPT_MAX_PHYS_SEGMENTS); 5080 } 5081 ioc->shost->sg_tablesize = sg_tablesize; 5082 } 5083 5084 ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)), 5085 (facts->RequestCredit / 4)); 5086 if (ioc->internal_depth < INTERNAL_CMDS_COUNT) { 5087 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT + 5088 INTERNAL_SCSIIO_CMDS_COUNT)) { 5089 ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n", 5090 facts->RequestCredit); 5091 return -ENOMEM; 5092 } 5093 ioc->internal_depth = 10; 5094 } 5095 5096 ioc->hi_priority_depth = ioc->internal_depth - (5); 5097 /* command line tunables for max controller queue depth */ 5098 if (max_queue_depth != -1 && max_queue_depth != 0) { 5099 max_request_credit = min_t(u16, max_queue_depth + 5100 ioc->internal_depth, facts->RequestCredit); 5101 if (max_request_credit > MAX_HBA_QUEUE_DEPTH) 5102 max_request_credit = MAX_HBA_QUEUE_DEPTH; 5103 } else if (reset_devices) 5104 max_request_credit = min_t(u16, facts->RequestCredit, 5105 (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth)); 5106 else 5107 max_request_credit = min_t(u16, facts->RequestCredit, 5108 MAX_HBA_QUEUE_DEPTH); 5109 5110 /* Firmware maintains additional facts->HighPriorityCredit number of 5111 * credits for HiPriprity Request messages, so hba queue depth will be 5112 * sum of max_request_credit and high priority queue depth. 5113 */ 5114 ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth; 5115 5116 /* request frame size */ 5117 ioc->request_sz = facts->IOCRequestFrameSize * 4; 5118 5119 /* reply frame size */ 5120 ioc->reply_sz = facts->ReplyFrameSize * 4; 5121 5122 /* chain segment size */ 5123 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 5124 if (facts->IOCMaxChainSegmentSize) 5125 ioc->chain_segment_sz = 5126 facts->IOCMaxChainSegmentSize * 5127 MAX_CHAIN_ELEMT_SZ; 5128 else 5129 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */ 5130 ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS * 5131 MAX_CHAIN_ELEMT_SZ; 5132 } else 5133 ioc->chain_segment_sz = ioc->request_sz; 5134 5135 /* calculate the max scatter element size */ 5136 sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee); 5137 5138 retry_allocation: 5139 total_sz = 0; 5140 /* calculate number of sg elements left over in the 1st frame */ 5141 max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) - 5142 sizeof(Mpi2SGEIOUnion_t)) + sge_size); 5143 ioc->max_sges_in_main_message = max_sge_elements/sge_size; 5144 5145 /* now do the same for a chain buffer */ 5146 max_sge_elements = ioc->chain_segment_sz - sge_size; 5147 ioc->max_sges_in_chain_message = max_sge_elements/sge_size; 5148 5149 /* 5150 * MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE 5151 */ 5152 chains_needed_per_io = ((ioc->shost->sg_tablesize - 5153 ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message) 5154 + 1; 5155 if (chains_needed_per_io > facts->MaxChainDepth) { 5156 chains_needed_per_io = facts->MaxChainDepth; 5157 ioc->shost->sg_tablesize = min_t(u16, 5158 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message 5159 * chains_needed_per_io), ioc->shost->sg_tablesize); 5160 } 5161 ioc->chains_needed_per_io = chains_needed_per_io; 5162 5163 /* reply free queue sizing - taking into account for 64 FW events */ 5164 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64; 5165 5166 /* mCPU manage single counters for simplicity */ 5167 if (ioc->is_mcpu_endpoint) 5168 ioc->reply_post_queue_depth = ioc->reply_free_queue_depth; 5169 else { 5170 /* calculate reply descriptor post queue depth */ 5171 ioc->reply_post_queue_depth = ioc->hba_queue_depth + 5172 ioc->reply_free_queue_depth + 1; 5173 /* align the reply post queue on the next 16 count boundary */ 5174 if (ioc->reply_post_queue_depth % 16) 5175 ioc->reply_post_queue_depth += 16 - 5176 (ioc->reply_post_queue_depth % 16); 5177 } 5178 5179 if (ioc->reply_post_queue_depth > 5180 facts->MaxReplyDescriptorPostQueueDepth) { 5181 ioc->reply_post_queue_depth = 5182 facts->MaxReplyDescriptorPostQueueDepth - 5183 (facts->MaxReplyDescriptorPostQueueDepth % 16); 5184 ioc->hba_queue_depth = 5185 ((ioc->reply_post_queue_depth - 64) / 2) - 1; 5186 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64; 5187 } 5188 5189 ioc_info(ioc, 5190 "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), " 5191 "sge_per_io(%d), chains_per_io(%d)\n", 5192 ioc->max_sges_in_main_message, 5193 ioc->max_sges_in_chain_message, 5194 ioc->shost->sg_tablesize, 5195 ioc->chains_needed_per_io); 5196 5197 /* reply post queue, 16 byte align */ 5198 reply_post_free_sz = ioc->reply_post_queue_depth * 5199 sizeof(Mpi2DefaultReplyDescriptor_t); 5200 rdpq_sz = reply_post_free_sz * RDPQ_MAX_INDEX_IN_ONE_CHUNK; 5201 if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable) 5202 rdpq_sz = reply_post_free_sz * ioc->reply_queue_count; 5203 ret = base_alloc_rdpq_dma_pool(ioc, rdpq_sz); 5204 if (ret == -EAGAIN) { 5205 /* 5206 * Free allocated bad RDPQ memory pools. 5207 * Change dma coherent mask to 32 bit and reallocate RDPQ 5208 */ 5209 _base_release_memory_pools(ioc); 5210 ioc->use_32bit_dma = true; 5211 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) { 5212 ioc_err(ioc, 5213 "32 DMA mask failed %s\n", pci_name(ioc->pdev)); 5214 return -ENODEV; 5215 } 5216 if (base_alloc_rdpq_dma_pool(ioc, rdpq_sz)) 5217 return -ENOMEM; 5218 } else if (ret == -ENOMEM) 5219 return -ENOMEM; 5220 total_sz = rdpq_sz * (!ioc->rdpq_array_enable ? 1 : 5221 DIV_ROUND_UP(ioc->reply_queue_count, RDPQ_MAX_INDEX_IN_ONE_CHUNK)); 5222 ioc->scsiio_depth = ioc->hba_queue_depth - 5223 ioc->hi_priority_depth - ioc->internal_depth; 5224 5225 /* set the scsi host can_queue depth 5226 * with some internal commands that could be outstanding 5227 */ 5228 ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT; 5229 dinitprintk(ioc, 5230 ioc_info(ioc, "scsi host: can_queue depth (%d)\n", 5231 ioc->shost->can_queue)); 5232 5233 /* contiguous pool for request and chains, 16 byte align, one extra " 5234 * "frame for smid=0 5235 */ 5236 ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth; 5237 sz = ((ioc->scsiio_depth + 1) * ioc->request_sz); 5238 5239 /* hi-priority queue */ 5240 sz += (ioc->hi_priority_depth * ioc->request_sz); 5241 5242 /* internal queue */ 5243 sz += (ioc->internal_depth * ioc->request_sz); 5244 5245 ioc->request_dma_sz = sz; 5246 ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz, 5247 &ioc->request_dma, GFP_KERNEL); 5248 if (!ioc->request) { 5249 ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n", 5250 ioc->hba_queue_depth, ioc->chains_needed_per_io, 5251 ioc->request_sz, sz / 1024); 5252 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH) 5253 goto out; 5254 retry_sz = 64; 5255 ioc->hba_queue_depth -= retry_sz; 5256 _base_release_memory_pools(ioc); 5257 goto retry_allocation; 5258 } 5259 memset(ioc->request, 0, sz); 5260 5261 if (retry_sz) 5262 ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n", 5263 ioc->hba_queue_depth, ioc->chains_needed_per_io, 5264 ioc->request_sz, sz / 1024); 5265 5266 /* hi-priority queue */ 5267 ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) * 5268 ioc->request_sz); 5269 ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) * 5270 ioc->request_sz); 5271 5272 /* internal queue */ 5273 ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth * 5274 ioc->request_sz); 5275 ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth * 5276 ioc->request_sz); 5277 5278 ioc_info(ioc, 5279 "request pool(0x%p) - dma(0x%llx): " 5280 "depth(%d), frame_size(%d), pool_size(%d kB)\n", 5281 ioc->request, (unsigned long long) ioc->request_dma, 5282 ioc->hba_queue_depth, ioc->request_sz, 5283 (ioc->hba_queue_depth * ioc->request_sz) / 1024); 5284 5285 total_sz += sz; 5286 5287 dinitprintk(ioc, 5288 ioc_info(ioc, "scsiio(0x%p): depth(%d)\n", 5289 ioc->request, ioc->scsiio_depth)); 5290 5291 ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH); 5292 sz = ioc->scsiio_depth * sizeof(struct chain_lookup); 5293 ioc->chain_lookup = kzalloc(sz, GFP_KERNEL); 5294 if (!ioc->chain_lookup) { 5295 ioc_err(ioc, "chain_lookup: __get_free_pages failed\n"); 5296 goto out; 5297 } 5298 5299 sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker); 5300 for (i = 0; i < ioc->scsiio_depth; i++) { 5301 ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL); 5302 if (!ioc->chain_lookup[i].chains_per_smid) { 5303 ioc_err(ioc, "chain_lookup: kzalloc failed\n"); 5304 goto out; 5305 } 5306 } 5307 5308 /* initialize hi-priority queue smid's */ 5309 ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth, 5310 sizeof(struct request_tracker), GFP_KERNEL); 5311 if (!ioc->hpr_lookup) { 5312 ioc_err(ioc, "hpr_lookup: kcalloc failed\n"); 5313 goto out; 5314 } 5315 ioc->hi_priority_smid = ioc->scsiio_depth + 1; 5316 dinitprintk(ioc, 5317 ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n", 5318 ioc->hi_priority, 5319 ioc->hi_priority_depth, ioc->hi_priority_smid)); 5320 5321 /* initialize internal queue smid's */ 5322 ioc->internal_lookup = kcalloc(ioc->internal_depth, 5323 sizeof(struct request_tracker), GFP_KERNEL); 5324 if (!ioc->internal_lookup) { 5325 ioc_err(ioc, "internal_lookup: kcalloc failed\n"); 5326 goto out; 5327 } 5328 ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth; 5329 dinitprintk(ioc, 5330 ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n", 5331 ioc->internal, 5332 ioc->internal_depth, ioc->internal_smid)); 5333 /* 5334 * The number of NVMe page sized blocks needed is: 5335 * (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1 5336 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry 5337 * that is placed in the main message frame. 8 is the size of each PRP 5338 * entry or PRP list pointer entry. 8 is subtracted from page_size 5339 * because of the PRP list pointer entry at the end of a page, so this 5340 * is not counted as a PRP entry. The 1 added page is a round up. 5341 * 5342 * To avoid allocation failures due to the amount of memory that could 5343 * be required for NVMe PRP's, only each set of NVMe blocks will be 5344 * contiguous, so a new set is allocated for each possible I/O. 5345 */ 5346 ioc->chains_per_prp_buffer = 0; 5347 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) { 5348 nvme_blocks_needed = 5349 (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1; 5350 nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE); 5351 nvme_blocks_needed++; 5352 5353 sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth; 5354 ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL); 5355 if (!ioc->pcie_sg_lookup) { 5356 ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n"); 5357 goto out; 5358 } 5359 sz = nvme_blocks_needed * ioc->page_size; 5360 ioc->pcie_sgl_dma_pool = 5361 dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz, 16, 0); 5362 if (!ioc->pcie_sgl_dma_pool) { 5363 ioc_info(ioc, "PCIe SGL pool: dma_pool_create failed\n"); 5364 goto out; 5365 } 5366 5367 ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz; 5368 ioc->chains_per_prp_buffer = min(ioc->chains_per_prp_buffer, 5369 ioc->chains_needed_per_io); 5370 5371 for (i = 0; i < ioc->scsiio_depth; i++) { 5372 ioc->pcie_sg_lookup[i].pcie_sgl = dma_pool_alloc( 5373 ioc->pcie_sgl_dma_pool, GFP_KERNEL, 5374 &ioc->pcie_sg_lookup[i].pcie_sgl_dma); 5375 if (!ioc->pcie_sg_lookup[i].pcie_sgl) { 5376 ioc_info(ioc, "PCIe SGL pool: dma_pool_alloc failed\n"); 5377 goto out; 5378 } 5379 for (j = 0; j < ioc->chains_per_prp_buffer; j++) { 5380 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 5381 ct->chain_buffer = 5382 ioc->pcie_sg_lookup[i].pcie_sgl + 5383 (j * ioc->chain_segment_sz); 5384 ct->chain_buffer_dma = 5385 ioc->pcie_sg_lookup[i].pcie_sgl_dma + 5386 (j * ioc->chain_segment_sz); 5387 } 5388 } 5389 5390 dinitprintk(ioc, 5391 ioc_info(ioc, "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n", 5392 ioc->scsiio_depth, sz, 5393 (sz * ioc->scsiio_depth) / 1024)); 5394 dinitprintk(ioc, 5395 ioc_info(ioc, "Number of chains can fit in a PRP page(%d)\n", 5396 ioc->chains_per_prp_buffer)); 5397 total_sz += sz * ioc->scsiio_depth; 5398 } 5399 5400 ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev, 5401 ioc->chain_segment_sz, 16, 0); 5402 if (!ioc->chain_dma_pool) { 5403 ioc_err(ioc, "chain_dma_pool: dma_pool_create failed\n"); 5404 goto out; 5405 } 5406 for (i = 0; i < ioc->scsiio_depth; i++) { 5407 for (j = ioc->chains_per_prp_buffer; 5408 j < ioc->chains_needed_per_io; j++) { 5409 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 5410 ct->chain_buffer = dma_pool_alloc( 5411 ioc->chain_dma_pool, GFP_KERNEL, 5412 &ct->chain_buffer_dma); 5413 if (!ct->chain_buffer) { 5414 ioc_err(ioc, "chain_lookup: pci_pool_alloc failed\n"); 5415 goto out; 5416 } 5417 } 5418 total_sz += ioc->chain_segment_sz; 5419 } 5420 5421 dinitprintk(ioc, 5422 ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n", 5423 ioc->chain_depth, ioc->chain_segment_sz, 5424 (ioc->chain_depth * ioc->chain_segment_sz) / 1024)); 5425 5426 /* sense buffers, 4 byte align */ 5427 sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE; 5428 ioc->sense_dma_pool = dma_pool_create("sense pool", &ioc->pdev->dev, sz, 5429 4, 0); 5430 if (!ioc->sense_dma_pool) { 5431 ioc_err(ioc, "sense pool: dma_pool_create failed\n"); 5432 goto out; 5433 } 5434 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL, 5435 &ioc->sense_dma); 5436 if (!ioc->sense) { 5437 ioc_err(ioc, "sense pool: dma_pool_alloc failed\n"); 5438 goto out; 5439 } 5440 /* sense buffer requires to be in same 4 gb region. 5441 * Below function will check the same. 5442 * In case of failure, new pci pool will be created with updated 5443 * alignment. Older allocation and pool will be destroyed. 5444 * Alignment will be used such a way that next allocation if 5445 * success, will always meet same 4gb region requirement. 5446 * Actual requirement is not alignment, but we need start and end of 5447 * DMA address must have same upper 32 bit address. 5448 */ 5449 if (!mpt3sas_check_same_4gb_region((long)ioc->sense, sz)) { 5450 //Release Sense pool & Reallocate 5451 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma); 5452 dma_pool_destroy(ioc->sense_dma_pool); 5453 ioc->sense = NULL; 5454 5455 ioc->sense_dma_pool = 5456 dma_pool_create("sense pool", &ioc->pdev->dev, sz, 5457 roundup_pow_of_two(sz), 0); 5458 if (!ioc->sense_dma_pool) { 5459 ioc_err(ioc, "sense pool: pci_pool_create failed\n"); 5460 goto out; 5461 } 5462 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL, 5463 &ioc->sense_dma); 5464 if (!ioc->sense) { 5465 ioc_err(ioc, "sense pool: pci_pool_alloc failed\n"); 5466 goto out; 5467 } 5468 } 5469 ioc_info(ioc, 5470 "sense pool(0x%p)- dma(0x%llx): depth(%d)," 5471 "element_size(%d), pool_size(%d kB)\n", 5472 ioc->sense, (unsigned long long)ioc->sense_dma, ioc->scsiio_depth, 5473 SCSI_SENSE_BUFFERSIZE, sz / 1024); 5474 5475 total_sz += sz; 5476 5477 /* reply pool, 4 byte align */ 5478 sz = ioc->reply_free_queue_depth * ioc->reply_sz; 5479 ioc->reply_dma_pool = dma_pool_create("reply pool", &ioc->pdev->dev, sz, 5480 4, 0); 5481 if (!ioc->reply_dma_pool) { 5482 ioc_err(ioc, "reply pool: dma_pool_create failed\n"); 5483 goto out; 5484 } 5485 ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL, 5486 &ioc->reply_dma); 5487 if (!ioc->reply) { 5488 ioc_err(ioc, "reply pool: dma_pool_alloc failed\n"); 5489 goto out; 5490 } 5491 ioc->reply_dma_min_address = (u32)(ioc->reply_dma); 5492 ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz; 5493 dinitprintk(ioc, 5494 ioc_info(ioc, "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n", 5495 ioc->reply, ioc->reply_free_queue_depth, 5496 ioc->reply_sz, sz / 1024)); 5497 dinitprintk(ioc, 5498 ioc_info(ioc, "reply_dma(0x%llx)\n", 5499 (unsigned long long)ioc->reply_dma)); 5500 total_sz += sz; 5501 5502 /* reply free queue, 16 byte align */ 5503 sz = ioc->reply_free_queue_depth * 4; 5504 ioc->reply_free_dma_pool = dma_pool_create("reply_free pool", 5505 &ioc->pdev->dev, sz, 16, 0); 5506 if (!ioc->reply_free_dma_pool) { 5507 ioc_err(ioc, "reply_free pool: dma_pool_create failed\n"); 5508 goto out; 5509 } 5510 ioc->reply_free = dma_pool_zalloc(ioc->reply_free_dma_pool, GFP_KERNEL, 5511 &ioc->reply_free_dma); 5512 if (!ioc->reply_free) { 5513 ioc_err(ioc, "reply_free pool: dma_pool_alloc failed\n"); 5514 goto out; 5515 } 5516 dinitprintk(ioc, 5517 ioc_info(ioc, "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n", 5518 ioc->reply_free, ioc->reply_free_queue_depth, 5519 4, sz / 1024)); 5520 dinitprintk(ioc, 5521 ioc_info(ioc, "reply_free_dma (0x%llx)\n", 5522 (unsigned long long)ioc->reply_free_dma)); 5523 total_sz += sz; 5524 5525 if (ioc->rdpq_array_enable) { 5526 reply_post_free_array_sz = ioc->reply_queue_count * 5527 sizeof(Mpi2IOCInitRDPQArrayEntry); 5528 ioc->reply_post_free_array_dma_pool = 5529 dma_pool_create("reply_post_free_array pool", 5530 &ioc->pdev->dev, reply_post_free_array_sz, 16, 0); 5531 if (!ioc->reply_post_free_array_dma_pool) { 5532 dinitprintk(ioc, 5533 ioc_info(ioc, "reply_post_free_array pool: dma_pool_create failed\n")); 5534 goto out; 5535 } 5536 ioc->reply_post_free_array = 5537 dma_pool_alloc(ioc->reply_post_free_array_dma_pool, 5538 GFP_KERNEL, &ioc->reply_post_free_array_dma); 5539 if (!ioc->reply_post_free_array) { 5540 dinitprintk(ioc, 5541 ioc_info(ioc, "reply_post_free_array pool: dma_pool_alloc failed\n")); 5542 goto out; 5543 } 5544 } 5545 ioc->config_page_sz = 512; 5546 ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev, 5547 ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL); 5548 if (!ioc->config_page) { 5549 ioc_err(ioc, "config page: dma_pool_alloc failed\n"); 5550 goto out; 5551 } 5552 5553 ioc_info(ioc, "config page(0x%p) - dma(0x%llx): size(%d)\n", 5554 ioc->config_page, (unsigned long long)ioc->config_page_dma, 5555 ioc->config_page_sz); 5556 total_sz += ioc->config_page_sz; 5557 5558 ioc_info(ioc, "Allocated physical memory: size(%d kB)\n", 5559 total_sz / 1024); 5560 ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n", 5561 ioc->shost->can_queue, facts->RequestCredit); 5562 ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n", 5563 ioc->shost->sg_tablesize); 5564 return 0; 5565 5566 out: 5567 return -ENOMEM; 5568 } 5569 5570 /** 5571 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter. 5572 * @ioc: Pointer to MPT_ADAPTER structure 5573 * @cooked: Request raw or cooked IOC state 5574 * 5575 * Return: all IOC Doorbell register bits if cooked==0, else just the 5576 * Doorbell bits in MPI_IOC_STATE_MASK. 5577 */ 5578 u32 5579 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked) 5580 { 5581 u32 s, sc; 5582 5583 s = ioc->base_readl(&ioc->chip->Doorbell); 5584 sc = s & MPI2_IOC_STATE_MASK; 5585 return cooked ? sc : s; 5586 } 5587 5588 /** 5589 * _base_wait_on_iocstate - waiting on a particular ioc state 5590 * @ioc: ? 5591 * @ioc_state: controller state { READY, OPERATIONAL, or RESET } 5592 * @timeout: timeout in second 5593 * 5594 * Return: 0 for success, non-zero for failure. 5595 */ 5596 static int 5597 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout) 5598 { 5599 u32 count, cntdn; 5600 u32 current_state; 5601 5602 count = 0; 5603 cntdn = 1000 * timeout; 5604 do { 5605 current_state = mpt3sas_base_get_iocstate(ioc, 1); 5606 if (current_state == ioc_state) 5607 return 0; 5608 if (count && current_state == MPI2_IOC_STATE_FAULT) 5609 break; 5610 if (count && current_state == MPI2_IOC_STATE_COREDUMP) 5611 break; 5612 5613 usleep_range(1000, 1500); 5614 count++; 5615 } while (--cntdn); 5616 5617 return current_state; 5618 } 5619 5620 /** 5621 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by 5622 * a write to the doorbell) 5623 * @ioc: per adapter object 5624 * 5625 * Return: 0 for success, non-zero for failure. 5626 * 5627 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell. 5628 */ 5629 5630 static int 5631 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout) 5632 { 5633 u32 cntdn, count; 5634 u32 int_status; 5635 5636 count = 0; 5637 cntdn = 1000 * timeout; 5638 do { 5639 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 5640 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 5641 dhsprintk(ioc, 5642 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 5643 __func__, count, timeout)); 5644 return 0; 5645 } 5646 5647 usleep_range(1000, 1500); 5648 count++; 5649 } while (--cntdn); 5650 5651 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 5652 __func__, count, int_status); 5653 return -EFAULT; 5654 } 5655 5656 static int 5657 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout) 5658 { 5659 u32 cntdn, count; 5660 u32 int_status; 5661 5662 count = 0; 5663 cntdn = 2000 * timeout; 5664 do { 5665 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 5666 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 5667 dhsprintk(ioc, 5668 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 5669 __func__, count, timeout)); 5670 return 0; 5671 } 5672 5673 udelay(500); 5674 count++; 5675 } while (--cntdn); 5676 5677 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 5678 __func__, count, int_status); 5679 return -EFAULT; 5680 5681 } 5682 5683 /** 5684 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell. 5685 * @ioc: per adapter object 5686 * @timeout: timeout in second 5687 * 5688 * Return: 0 for success, non-zero for failure. 5689 * 5690 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to 5691 * doorbell. 5692 */ 5693 static int 5694 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout) 5695 { 5696 u32 cntdn, count; 5697 u32 int_status; 5698 u32 doorbell; 5699 5700 count = 0; 5701 cntdn = 1000 * timeout; 5702 do { 5703 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 5704 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) { 5705 dhsprintk(ioc, 5706 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 5707 __func__, count, timeout)); 5708 return 0; 5709 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 5710 doorbell = ioc->base_readl(&ioc->chip->Doorbell); 5711 if ((doorbell & MPI2_IOC_STATE_MASK) == 5712 MPI2_IOC_STATE_FAULT) { 5713 mpt3sas_print_fault_code(ioc, doorbell); 5714 return -EFAULT; 5715 } 5716 if ((doorbell & MPI2_IOC_STATE_MASK) == 5717 MPI2_IOC_STATE_COREDUMP) { 5718 mpt3sas_print_coredump_info(ioc, doorbell); 5719 return -EFAULT; 5720 } 5721 } else if (int_status == 0xFFFFFFFF) 5722 goto out; 5723 5724 usleep_range(1000, 1500); 5725 count++; 5726 } while (--cntdn); 5727 5728 out: 5729 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 5730 __func__, count, int_status); 5731 return -EFAULT; 5732 } 5733 5734 /** 5735 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use 5736 * @ioc: per adapter object 5737 * @timeout: timeout in second 5738 * 5739 * Return: 0 for success, non-zero for failure. 5740 */ 5741 static int 5742 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout) 5743 { 5744 u32 cntdn, count; 5745 u32 doorbell_reg; 5746 5747 count = 0; 5748 cntdn = 1000 * timeout; 5749 do { 5750 doorbell_reg = ioc->base_readl(&ioc->chip->Doorbell); 5751 if (!(doorbell_reg & MPI2_DOORBELL_USED)) { 5752 dhsprintk(ioc, 5753 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 5754 __func__, count, timeout)); 5755 return 0; 5756 } 5757 5758 usleep_range(1000, 1500); 5759 count++; 5760 } while (--cntdn); 5761 5762 ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n", 5763 __func__, count, doorbell_reg); 5764 return -EFAULT; 5765 } 5766 5767 /** 5768 * _base_send_ioc_reset - send doorbell reset 5769 * @ioc: per adapter object 5770 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET 5771 * @timeout: timeout in second 5772 * 5773 * Return: 0 for success, non-zero for failure. 5774 */ 5775 static int 5776 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout) 5777 { 5778 u32 ioc_state; 5779 int r = 0; 5780 unsigned long flags; 5781 5782 if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) { 5783 ioc_err(ioc, "%s: unknown reset_type\n", __func__); 5784 return -EFAULT; 5785 } 5786 5787 if (!(ioc->facts.IOCCapabilities & 5788 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY)) 5789 return -EFAULT; 5790 5791 ioc_info(ioc, "sending message unit reset !!\n"); 5792 5793 writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT, 5794 &ioc->chip->Doorbell); 5795 if ((_base_wait_for_doorbell_ack(ioc, 15))) { 5796 r = -EFAULT; 5797 goto out; 5798 } 5799 5800 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout); 5801 if (ioc_state) { 5802 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 5803 __func__, ioc_state); 5804 r = -EFAULT; 5805 goto out; 5806 } 5807 out: 5808 if (r != 0) { 5809 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 5810 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 5811 /* 5812 * Wait for IOC state CoreDump to clear only during 5813 * HBA initialization & release time. 5814 */ 5815 if ((ioc_state & MPI2_IOC_STATE_MASK) == 5816 MPI2_IOC_STATE_COREDUMP && (ioc->is_driver_loading == 1 || 5817 ioc->fault_reset_work_q == NULL)) { 5818 spin_unlock_irqrestore( 5819 &ioc->ioc_reset_in_progress_lock, flags); 5820 mpt3sas_print_coredump_info(ioc, ioc_state); 5821 mpt3sas_base_wait_for_coredump_completion(ioc, 5822 __func__); 5823 spin_lock_irqsave( 5824 &ioc->ioc_reset_in_progress_lock, flags); 5825 } 5826 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 5827 } 5828 ioc_info(ioc, "message unit reset: %s\n", 5829 r == 0 ? "SUCCESS" : "FAILED"); 5830 return r; 5831 } 5832 5833 /** 5834 * mpt3sas_wait_for_ioc - IOC's operational state is checked here. 5835 * @ioc: per adapter object 5836 * @wait_count: timeout in seconds 5837 * 5838 * Return: Waits up to timeout seconds for the IOC to 5839 * become operational. Returns 0 if IOC is present 5840 * and operational; otherwise returns -EFAULT. 5841 */ 5842 5843 int 5844 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout) 5845 { 5846 int wait_state_count = 0; 5847 u32 ioc_state; 5848 5849 do { 5850 ioc_state = mpt3sas_base_get_iocstate(ioc, 1); 5851 if (ioc_state == MPI2_IOC_STATE_OPERATIONAL) 5852 break; 5853 ssleep(1); 5854 ioc_info(ioc, "%s: waiting for operational state(count=%d)\n", 5855 __func__, ++wait_state_count); 5856 } while (--timeout); 5857 if (!timeout) { 5858 ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__); 5859 return -EFAULT; 5860 } 5861 if (wait_state_count) 5862 ioc_info(ioc, "ioc is operational\n"); 5863 return 0; 5864 } 5865 5866 /** 5867 * _base_handshake_req_reply_wait - send request thru doorbell interface 5868 * @ioc: per adapter object 5869 * @request_bytes: request length 5870 * @request: pointer having request payload 5871 * @reply_bytes: reply length 5872 * @reply: pointer to reply payload 5873 * @timeout: timeout in second 5874 * 5875 * Return: 0 for success, non-zero for failure. 5876 */ 5877 static int 5878 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes, 5879 u32 *request, int reply_bytes, u16 *reply, int timeout) 5880 { 5881 MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply; 5882 int i; 5883 u8 failed; 5884 __le32 *mfp; 5885 5886 /* make sure doorbell is not in use */ 5887 if ((ioc->base_readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) { 5888 ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__); 5889 return -EFAULT; 5890 } 5891 5892 /* clear pending doorbell interrupts from previous state changes */ 5893 if (ioc->base_readl(&ioc->chip->HostInterruptStatus) & 5894 MPI2_HIS_IOC2SYS_DB_STATUS) 5895 writel(0, &ioc->chip->HostInterruptStatus); 5896 5897 /* send message to ioc */ 5898 writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) | 5899 ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)), 5900 &ioc->chip->Doorbell); 5901 5902 if ((_base_spin_on_doorbell_int(ioc, 5))) { 5903 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 5904 __LINE__); 5905 return -EFAULT; 5906 } 5907 writel(0, &ioc->chip->HostInterruptStatus); 5908 5909 if ((_base_wait_for_doorbell_ack(ioc, 5))) { 5910 ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n", 5911 __LINE__); 5912 return -EFAULT; 5913 } 5914 5915 /* send message 32-bits at a time */ 5916 for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) { 5917 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell); 5918 if ((_base_wait_for_doorbell_ack(ioc, 5))) 5919 failed = 1; 5920 } 5921 5922 if (failed) { 5923 ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n", 5924 __LINE__); 5925 return -EFAULT; 5926 } 5927 5928 /* now wait for the reply */ 5929 if ((_base_wait_for_doorbell_int(ioc, timeout))) { 5930 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 5931 __LINE__); 5932 return -EFAULT; 5933 } 5934 5935 /* read the first two 16-bits, it gives the total length of the reply */ 5936 reply[0] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell) 5937 & MPI2_DOORBELL_DATA_MASK); 5938 writel(0, &ioc->chip->HostInterruptStatus); 5939 if ((_base_wait_for_doorbell_int(ioc, 5))) { 5940 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 5941 __LINE__); 5942 return -EFAULT; 5943 } 5944 reply[1] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell) 5945 & MPI2_DOORBELL_DATA_MASK); 5946 writel(0, &ioc->chip->HostInterruptStatus); 5947 5948 for (i = 2; i < default_reply->MsgLength * 2; i++) { 5949 if ((_base_wait_for_doorbell_int(ioc, 5))) { 5950 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 5951 __LINE__); 5952 return -EFAULT; 5953 } 5954 if (i >= reply_bytes/2) /* overflow case */ 5955 ioc->base_readl(&ioc->chip->Doorbell); 5956 else 5957 reply[i] = le16_to_cpu( 5958 ioc->base_readl(&ioc->chip->Doorbell) 5959 & MPI2_DOORBELL_DATA_MASK); 5960 writel(0, &ioc->chip->HostInterruptStatus); 5961 } 5962 5963 _base_wait_for_doorbell_int(ioc, 5); 5964 if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) { 5965 dhsprintk(ioc, 5966 ioc_info(ioc, "doorbell is in use (line=%d)\n", 5967 __LINE__)); 5968 } 5969 writel(0, &ioc->chip->HostInterruptStatus); 5970 5971 if (ioc->logging_level & MPT_DEBUG_INIT) { 5972 mfp = (__le32 *)reply; 5973 pr_info("\toffset:data\n"); 5974 for (i = 0; i < reply_bytes/4; i++) 5975 ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4, 5976 le32_to_cpu(mfp[i])); 5977 } 5978 return 0; 5979 } 5980 5981 /** 5982 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW 5983 * @ioc: per adapter object 5984 * @mpi_reply: the reply payload from FW 5985 * @mpi_request: the request payload sent to FW 5986 * 5987 * The SAS IO Unit Control Request message allows the host to perform low-level 5988 * operations, such as resets on the PHYs of the IO Unit, also allows the host 5989 * to obtain the IOC assigned device handles for a device if it has other 5990 * identifying information about the device, in addition allows the host to 5991 * remove IOC resources associated with the device. 5992 * 5993 * Return: 0 for success, non-zero for failure. 5994 */ 5995 int 5996 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc, 5997 Mpi2SasIoUnitControlReply_t *mpi_reply, 5998 Mpi2SasIoUnitControlRequest_t *mpi_request) 5999 { 6000 u16 smid; 6001 u8 issue_reset = 0; 6002 int rc; 6003 void *request; 6004 6005 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6006 6007 mutex_lock(&ioc->base_cmds.mutex); 6008 6009 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) { 6010 ioc_err(ioc, "%s: base_cmd in use\n", __func__); 6011 rc = -EAGAIN; 6012 goto out; 6013 } 6014 6015 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT); 6016 if (rc) 6017 goto out; 6018 6019 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 6020 if (!smid) { 6021 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 6022 rc = -EAGAIN; 6023 goto out; 6024 } 6025 6026 rc = 0; 6027 ioc->base_cmds.status = MPT3_CMD_PENDING; 6028 request = mpt3sas_base_get_msg_frame(ioc, smid); 6029 ioc->base_cmds.smid = smid; 6030 memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)); 6031 if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET || 6032 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) 6033 ioc->ioc_link_reset_in_progress = 1; 6034 init_completion(&ioc->base_cmds.done); 6035 ioc->put_smid_default(ioc, smid); 6036 wait_for_completion_timeout(&ioc->base_cmds.done, 6037 msecs_to_jiffies(10000)); 6038 if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET || 6039 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) && 6040 ioc->ioc_link_reset_in_progress) 6041 ioc->ioc_link_reset_in_progress = 0; 6042 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 6043 mpt3sas_check_cmd_timeout(ioc, ioc->base_cmds.status, 6044 mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)/4, 6045 issue_reset); 6046 goto issue_host_reset; 6047 } 6048 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) 6049 memcpy(mpi_reply, ioc->base_cmds.reply, 6050 sizeof(Mpi2SasIoUnitControlReply_t)); 6051 else 6052 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t)); 6053 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 6054 goto out; 6055 6056 issue_host_reset: 6057 if (issue_reset) 6058 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 6059 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 6060 rc = -EFAULT; 6061 out: 6062 mutex_unlock(&ioc->base_cmds.mutex); 6063 return rc; 6064 } 6065 6066 /** 6067 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device 6068 * @ioc: per adapter object 6069 * @mpi_reply: the reply payload from FW 6070 * @mpi_request: the request payload sent to FW 6071 * 6072 * The SCSI Enclosure Processor request message causes the IOC to 6073 * communicate with SES devices to control LED status signals. 6074 * 6075 * Return: 0 for success, non-zero for failure. 6076 */ 6077 int 6078 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc, 6079 Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request) 6080 { 6081 u16 smid; 6082 u8 issue_reset = 0; 6083 int rc; 6084 void *request; 6085 6086 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6087 6088 mutex_lock(&ioc->base_cmds.mutex); 6089 6090 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) { 6091 ioc_err(ioc, "%s: base_cmd in use\n", __func__); 6092 rc = -EAGAIN; 6093 goto out; 6094 } 6095 6096 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT); 6097 if (rc) 6098 goto out; 6099 6100 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 6101 if (!smid) { 6102 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 6103 rc = -EAGAIN; 6104 goto out; 6105 } 6106 6107 rc = 0; 6108 ioc->base_cmds.status = MPT3_CMD_PENDING; 6109 request = mpt3sas_base_get_msg_frame(ioc, smid); 6110 ioc->base_cmds.smid = smid; 6111 memset(request, 0, ioc->request_sz); 6112 memcpy(request, mpi_request, sizeof(Mpi2SepReply_t)); 6113 init_completion(&ioc->base_cmds.done); 6114 ioc->put_smid_default(ioc, smid); 6115 wait_for_completion_timeout(&ioc->base_cmds.done, 6116 msecs_to_jiffies(10000)); 6117 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 6118 mpt3sas_check_cmd_timeout(ioc, 6119 ioc->base_cmds.status, mpi_request, 6120 sizeof(Mpi2SepRequest_t)/4, issue_reset); 6121 goto issue_host_reset; 6122 } 6123 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) 6124 memcpy(mpi_reply, ioc->base_cmds.reply, 6125 sizeof(Mpi2SepReply_t)); 6126 else 6127 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t)); 6128 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 6129 goto out; 6130 6131 issue_host_reset: 6132 if (issue_reset) 6133 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 6134 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 6135 rc = -EFAULT; 6136 out: 6137 mutex_unlock(&ioc->base_cmds.mutex); 6138 return rc; 6139 } 6140 6141 /** 6142 * _base_get_port_facts - obtain port facts reply and save in ioc 6143 * @ioc: per adapter object 6144 * @port: ? 6145 * 6146 * Return: 0 for success, non-zero for failure. 6147 */ 6148 static int 6149 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port) 6150 { 6151 Mpi2PortFactsRequest_t mpi_request; 6152 Mpi2PortFactsReply_t mpi_reply; 6153 struct mpt3sas_port_facts *pfacts; 6154 int mpi_reply_sz, mpi_request_sz, r; 6155 6156 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6157 6158 mpi_reply_sz = sizeof(Mpi2PortFactsReply_t); 6159 mpi_request_sz = sizeof(Mpi2PortFactsRequest_t); 6160 memset(&mpi_request, 0, mpi_request_sz); 6161 mpi_request.Function = MPI2_FUNCTION_PORT_FACTS; 6162 mpi_request.PortNumber = port; 6163 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz, 6164 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5); 6165 6166 if (r != 0) { 6167 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 6168 return r; 6169 } 6170 6171 pfacts = &ioc->pfacts[port]; 6172 memset(pfacts, 0, sizeof(struct mpt3sas_port_facts)); 6173 pfacts->PortNumber = mpi_reply.PortNumber; 6174 pfacts->VP_ID = mpi_reply.VP_ID; 6175 pfacts->VF_ID = mpi_reply.VF_ID; 6176 pfacts->MaxPostedCmdBuffers = 6177 le16_to_cpu(mpi_reply.MaxPostedCmdBuffers); 6178 6179 return 0; 6180 } 6181 6182 /** 6183 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL 6184 * @ioc: per adapter object 6185 * @timeout: 6186 * 6187 * Return: 0 for success, non-zero for failure. 6188 */ 6189 static int 6190 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout) 6191 { 6192 u32 ioc_state; 6193 int rc; 6194 6195 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6196 6197 if (ioc->pci_error_recovery) { 6198 dfailprintk(ioc, 6199 ioc_info(ioc, "%s: host in pci error recovery\n", 6200 __func__)); 6201 return -EFAULT; 6202 } 6203 6204 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 6205 dhsprintk(ioc, 6206 ioc_info(ioc, "%s: ioc_state(0x%08x)\n", 6207 __func__, ioc_state)); 6208 6209 if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) || 6210 (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL) 6211 return 0; 6212 6213 if (ioc_state & MPI2_DOORBELL_USED) { 6214 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n")); 6215 goto issue_diag_reset; 6216 } 6217 6218 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 6219 mpt3sas_print_fault_code(ioc, ioc_state & 6220 MPI2_DOORBELL_DATA_MASK); 6221 goto issue_diag_reset; 6222 } else if ((ioc_state & MPI2_IOC_STATE_MASK) == 6223 MPI2_IOC_STATE_COREDUMP) { 6224 ioc_info(ioc, 6225 "%s: Skipping the diag reset here. (ioc_state=0x%x)\n", 6226 __func__, ioc_state); 6227 return -EFAULT; 6228 } 6229 6230 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout); 6231 if (ioc_state) { 6232 dfailprintk(ioc, 6233 ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 6234 __func__, ioc_state)); 6235 return -EFAULT; 6236 } 6237 6238 issue_diag_reset: 6239 rc = _base_diag_reset(ioc); 6240 return rc; 6241 } 6242 6243 /** 6244 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc 6245 * @ioc: per adapter object 6246 * 6247 * Return: 0 for success, non-zero for failure. 6248 */ 6249 static int 6250 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc) 6251 { 6252 Mpi2IOCFactsRequest_t mpi_request; 6253 Mpi2IOCFactsReply_t mpi_reply; 6254 struct mpt3sas_facts *facts; 6255 int mpi_reply_sz, mpi_request_sz, r; 6256 6257 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6258 6259 r = _base_wait_for_iocstate(ioc, 10); 6260 if (r) { 6261 dfailprintk(ioc, 6262 ioc_info(ioc, "%s: failed getting to correct state\n", 6263 __func__)); 6264 return r; 6265 } 6266 mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t); 6267 mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t); 6268 memset(&mpi_request, 0, mpi_request_sz); 6269 mpi_request.Function = MPI2_FUNCTION_IOC_FACTS; 6270 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz, 6271 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5); 6272 6273 if (r != 0) { 6274 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 6275 return r; 6276 } 6277 6278 facts = &ioc->facts; 6279 memset(facts, 0, sizeof(struct mpt3sas_facts)); 6280 facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion); 6281 facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion); 6282 facts->VP_ID = mpi_reply.VP_ID; 6283 facts->VF_ID = mpi_reply.VF_ID; 6284 facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions); 6285 facts->MaxChainDepth = mpi_reply.MaxChainDepth; 6286 facts->WhoInit = mpi_reply.WhoInit; 6287 facts->NumberOfPorts = mpi_reply.NumberOfPorts; 6288 facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors; 6289 if (ioc->msix_enable && (facts->MaxMSIxVectors <= 6290 MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc))) 6291 ioc->combined_reply_queue = 0; 6292 facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit); 6293 facts->MaxReplyDescriptorPostQueueDepth = 6294 le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth); 6295 facts->ProductID = le16_to_cpu(mpi_reply.ProductID); 6296 facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities); 6297 if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)) 6298 ioc->ir_firmware = 1; 6299 if ((facts->IOCCapabilities & 6300 MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices)) 6301 ioc->rdpq_array_capable = 1; 6302 if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ) 6303 && ioc->is_aero_ioc) 6304 ioc->atomic_desc_capable = 1; 6305 facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word); 6306 facts->IOCRequestFrameSize = 6307 le16_to_cpu(mpi_reply.IOCRequestFrameSize); 6308 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 6309 facts->IOCMaxChainSegmentSize = 6310 le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize); 6311 } 6312 facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators); 6313 facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets); 6314 ioc->shost->max_id = -1; 6315 facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders); 6316 facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures); 6317 facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags); 6318 facts->HighPriorityCredit = 6319 le16_to_cpu(mpi_reply.HighPriorityCredit); 6320 facts->ReplyFrameSize = mpi_reply.ReplyFrameSize; 6321 facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle); 6322 facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize; 6323 6324 /* 6325 * Get the Page Size from IOC Facts. If it's 0, default to 4k. 6326 */ 6327 ioc->page_size = 1 << facts->CurrentHostPageSize; 6328 if (ioc->page_size == 1) { 6329 ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n"); 6330 ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K; 6331 } 6332 dinitprintk(ioc, 6333 ioc_info(ioc, "CurrentHostPageSize(%d)\n", 6334 facts->CurrentHostPageSize)); 6335 6336 dinitprintk(ioc, 6337 ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n", 6338 facts->RequestCredit, facts->MaxChainDepth)); 6339 dinitprintk(ioc, 6340 ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n", 6341 facts->IOCRequestFrameSize * 4, 6342 facts->ReplyFrameSize * 4)); 6343 return 0; 6344 } 6345 6346 /** 6347 * _base_send_ioc_init - send ioc_init to firmware 6348 * @ioc: per adapter object 6349 * 6350 * Return: 0 for success, non-zero for failure. 6351 */ 6352 static int 6353 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc) 6354 { 6355 Mpi2IOCInitRequest_t mpi_request; 6356 Mpi2IOCInitReply_t mpi_reply; 6357 int i, r = 0; 6358 ktime_t current_time; 6359 u16 ioc_status; 6360 u32 reply_post_free_array_sz = 0; 6361 6362 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6363 6364 memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t)); 6365 mpi_request.Function = MPI2_FUNCTION_IOC_INIT; 6366 mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER; 6367 mpi_request.VF_ID = 0; /* TODO */ 6368 mpi_request.VP_ID = 0; 6369 mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged); 6370 mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION); 6371 mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K; 6372 6373 if (_base_is_controller_msix_enabled(ioc)) 6374 mpi_request.HostMSIxVectors = ioc->reply_queue_count; 6375 mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4); 6376 mpi_request.ReplyDescriptorPostQueueDepth = 6377 cpu_to_le16(ioc->reply_post_queue_depth); 6378 mpi_request.ReplyFreeQueueDepth = 6379 cpu_to_le16(ioc->reply_free_queue_depth); 6380 6381 mpi_request.SenseBufferAddressHigh = 6382 cpu_to_le32((u64)ioc->sense_dma >> 32); 6383 mpi_request.SystemReplyAddressHigh = 6384 cpu_to_le32((u64)ioc->reply_dma >> 32); 6385 mpi_request.SystemRequestFrameBaseAddress = 6386 cpu_to_le64((u64)ioc->request_dma); 6387 mpi_request.ReplyFreeQueueAddress = 6388 cpu_to_le64((u64)ioc->reply_free_dma); 6389 6390 if (ioc->rdpq_array_enable) { 6391 reply_post_free_array_sz = ioc->reply_queue_count * 6392 sizeof(Mpi2IOCInitRDPQArrayEntry); 6393 memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz); 6394 for (i = 0; i < ioc->reply_queue_count; i++) 6395 ioc->reply_post_free_array[i].RDPQBaseAddress = 6396 cpu_to_le64( 6397 (u64)ioc->reply_post[i].reply_post_free_dma); 6398 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE; 6399 mpi_request.ReplyDescriptorPostQueueAddress = 6400 cpu_to_le64((u64)ioc->reply_post_free_array_dma); 6401 } else { 6402 mpi_request.ReplyDescriptorPostQueueAddress = 6403 cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma); 6404 } 6405 6406 /* 6407 * Set the flag to enable CoreDump state feature in IOC firmware. 6408 */ 6409 mpi_request.ConfigurationFlags |= 6410 cpu_to_le16(MPI26_IOCINIT_CFGFLAGS_COREDUMP_ENABLE); 6411 6412 /* This time stamp specifies number of milliseconds 6413 * since epoch ~ midnight January 1, 1970. 6414 */ 6415 current_time = ktime_get_real(); 6416 mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time)); 6417 6418 if (ioc->logging_level & MPT_DEBUG_INIT) { 6419 __le32 *mfp; 6420 int i; 6421 6422 mfp = (__le32 *)&mpi_request; 6423 ioc_info(ioc, "\toffset:data\n"); 6424 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++) 6425 ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4, 6426 le32_to_cpu(mfp[i])); 6427 } 6428 6429 r = _base_handshake_req_reply_wait(ioc, 6430 sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request, 6431 sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10); 6432 6433 if (r != 0) { 6434 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 6435 return r; 6436 } 6437 6438 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK; 6439 if (ioc_status != MPI2_IOCSTATUS_SUCCESS || 6440 mpi_reply.IOCLogInfo) { 6441 ioc_err(ioc, "%s: failed\n", __func__); 6442 r = -EIO; 6443 } 6444 6445 return r; 6446 } 6447 6448 /** 6449 * mpt3sas_port_enable_done - command completion routine for port enable 6450 * @ioc: per adapter object 6451 * @smid: system request message index 6452 * @msix_index: MSIX table index supplied by the OS 6453 * @reply: reply message frame(lower 32bit addr) 6454 * 6455 * Return: 1 meaning mf should be freed from _base_interrupt 6456 * 0 means the mf is freed from this function. 6457 */ 6458 u8 6459 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 6460 u32 reply) 6461 { 6462 MPI2DefaultReply_t *mpi_reply; 6463 u16 ioc_status; 6464 6465 if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED) 6466 return 1; 6467 6468 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 6469 if (!mpi_reply) 6470 return 1; 6471 6472 if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE) 6473 return 1; 6474 6475 ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING; 6476 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE; 6477 ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID; 6478 memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4); 6479 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 6480 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) 6481 ioc->port_enable_failed = 1; 6482 6483 if (ioc->is_driver_loading) { 6484 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 6485 mpt3sas_port_enable_complete(ioc); 6486 return 1; 6487 } else { 6488 ioc->start_scan_failed = ioc_status; 6489 ioc->start_scan = 0; 6490 return 1; 6491 } 6492 } 6493 complete(&ioc->port_enable_cmds.done); 6494 return 1; 6495 } 6496 6497 /** 6498 * _base_send_port_enable - send port_enable(discovery stuff) to firmware 6499 * @ioc: per adapter object 6500 * 6501 * Return: 0 for success, non-zero for failure. 6502 */ 6503 static int 6504 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc) 6505 { 6506 Mpi2PortEnableRequest_t *mpi_request; 6507 Mpi2PortEnableReply_t *mpi_reply; 6508 int r = 0; 6509 u16 smid; 6510 u16 ioc_status; 6511 6512 ioc_info(ioc, "sending port enable !!\n"); 6513 6514 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 6515 ioc_err(ioc, "%s: internal command already in use\n", __func__); 6516 return -EAGAIN; 6517 } 6518 6519 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx); 6520 if (!smid) { 6521 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 6522 return -EAGAIN; 6523 } 6524 6525 ioc->port_enable_cmds.status = MPT3_CMD_PENDING; 6526 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 6527 ioc->port_enable_cmds.smid = smid; 6528 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t)); 6529 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE; 6530 6531 init_completion(&ioc->port_enable_cmds.done); 6532 ioc->put_smid_default(ioc, smid); 6533 wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ); 6534 if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) { 6535 ioc_err(ioc, "%s: timeout\n", __func__); 6536 _debug_dump_mf(mpi_request, 6537 sizeof(Mpi2PortEnableRequest_t)/4); 6538 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET) 6539 r = -EFAULT; 6540 else 6541 r = -ETIME; 6542 goto out; 6543 } 6544 6545 mpi_reply = ioc->port_enable_cmds.reply; 6546 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 6547 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 6548 ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n", 6549 __func__, ioc_status); 6550 r = -EFAULT; 6551 goto out; 6552 } 6553 6554 out: 6555 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED; 6556 ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED"); 6557 return r; 6558 } 6559 6560 /** 6561 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply) 6562 * @ioc: per adapter object 6563 * 6564 * Return: 0 for success, non-zero for failure. 6565 */ 6566 int 6567 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc) 6568 { 6569 Mpi2PortEnableRequest_t *mpi_request; 6570 u16 smid; 6571 6572 ioc_info(ioc, "sending port enable !!\n"); 6573 6574 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 6575 ioc_err(ioc, "%s: internal command already in use\n", __func__); 6576 return -EAGAIN; 6577 } 6578 6579 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx); 6580 if (!smid) { 6581 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 6582 return -EAGAIN; 6583 } 6584 6585 ioc->port_enable_cmds.status = MPT3_CMD_PENDING; 6586 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 6587 ioc->port_enable_cmds.smid = smid; 6588 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t)); 6589 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE; 6590 6591 ioc->put_smid_default(ioc, smid); 6592 return 0; 6593 } 6594 6595 /** 6596 * _base_determine_wait_on_discovery - desposition 6597 * @ioc: per adapter object 6598 * 6599 * Decide whether to wait on discovery to complete. Used to either 6600 * locate boot device, or report volumes ahead of physical devices. 6601 * 6602 * Return: 1 for wait, 0 for don't wait. 6603 */ 6604 static int 6605 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc) 6606 { 6607 /* We wait for discovery to complete if IR firmware is loaded. 6608 * The sas topology events arrive before PD events, so we need time to 6609 * turn on the bit in ioc->pd_handles to indicate PD 6610 * Also, it maybe required to report Volumes ahead of physical 6611 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set. 6612 */ 6613 if (ioc->ir_firmware) 6614 return 1; 6615 6616 /* if no Bios, then we don't need to wait */ 6617 if (!ioc->bios_pg3.BiosVersion) 6618 return 0; 6619 6620 /* Bios is present, then we drop down here. 6621 * 6622 * If there any entries in the Bios Page 2, then we wait 6623 * for discovery to complete. 6624 */ 6625 6626 /* Current Boot Device */ 6627 if ((ioc->bios_pg2.CurrentBootDeviceForm & 6628 MPI2_BIOSPAGE2_FORM_MASK) == 6629 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED && 6630 /* Request Boot Device */ 6631 (ioc->bios_pg2.ReqBootDeviceForm & 6632 MPI2_BIOSPAGE2_FORM_MASK) == 6633 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED && 6634 /* Alternate Request Boot Device */ 6635 (ioc->bios_pg2.ReqAltBootDeviceForm & 6636 MPI2_BIOSPAGE2_FORM_MASK) == 6637 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED) 6638 return 0; 6639 6640 return 1; 6641 } 6642 6643 /** 6644 * _base_unmask_events - turn on notification for this event 6645 * @ioc: per adapter object 6646 * @event: firmware event 6647 * 6648 * The mask is stored in ioc->event_masks. 6649 */ 6650 static void 6651 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event) 6652 { 6653 u32 desired_event; 6654 6655 if (event >= 128) 6656 return; 6657 6658 desired_event = (1 << (event % 32)); 6659 6660 if (event < 32) 6661 ioc->event_masks[0] &= ~desired_event; 6662 else if (event < 64) 6663 ioc->event_masks[1] &= ~desired_event; 6664 else if (event < 96) 6665 ioc->event_masks[2] &= ~desired_event; 6666 else if (event < 128) 6667 ioc->event_masks[3] &= ~desired_event; 6668 } 6669 6670 /** 6671 * _base_event_notification - send event notification 6672 * @ioc: per adapter object 6673 * 6674 * Return: 0 for success, non-zero for failure. 6675 */ 6676 static int 6677 _base_event_notification(struct MPT3SAS_ADAPTER *ioc) 6678 { 6679 Mpi2EventNotificationRequest_t *mpi_request; 6680 u16 smid; 6681 int r = 0; 6682 int i; 6683 6684 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6685 6686 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 6687 ioc_err(ioc, "%s: internal command already in use\n", __func__); 6688 return -EAGAIN; 6689 } 6690 6691 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 6692 if (!smid) { 6693 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 6694 return -EAGAIN; 6695 } 6696 ioc->base_cmds.status = MPT3_CMD_PENDING; 6697 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 6698 ioc->base_cmds.smid = smid; 6699 memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t)); 6700 mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION; 6701 mpi_request->VF_ID = 0; /* TODO */ 6702 mpi_request->VP_ID = 0; 6703 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 6704 mpi_request->EventMasks[i] = 6705 cpu_to_le32(ioc->event_masks[i]); 6706 init_completion(&ioc->base_cmds.done); 6707 ioc->put_smid_default(ioc, smid); 6708 wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ); 6709 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 6710 ioc_err(ioc, "%s: timeout\n", __func__); 6711 _debug_dump_mf(mpi_request, 6712 sizeof(Mpi2EventNotificationRequest_t)/4); 6713 if (ioc->base_cmds.status & MPT3_CMD_RESET) 6714 r = -EFAULT; 6715 else 6716 r = -ETIME; 6717 } else 6718 dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__)); 6719 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 6720 return r; 6721 } 6722 6723 /** 6724 * mpt3sas_base_validate_event_type - validating event types 6725 * @ioc: per adapter object 6726 * @event_type: firmware event 6727 * 6728 * This will turn on firmware event notification when application 6729 * ask for that event. We don't mask events that are already enabled. 6730 */ 6731 void 6732 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type) 6733 { 6734 int i, j; 6735 u32 event_mask, desired_event; 6736 u8 send_update_to_fw; 6737 6738 for (i = 0, send_update_to_fw = 0; i < 6739 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) { 6740 event_mask = ~event_type[i]; 6741 desired_event = 1; 6742 for (j = 0; j < 32; j++) { 6743 if (!(event_mask & desired_event) && 6744 (ioc->event_masks[i] & desired_event)) { 6745 ioc->event_masks[i] &= ~desired_event; 6746 send_update_to_fw = 1; 6747 } 6748 desired_event = (desired_event << 1); 6749 } 6750 } 6751 6752 if (!send_update_to_fw) 6753 return; 6754 6755 mutex_lock(&ioc->base_cmds.mutex); 6756 _base_event_notification(ioc); 6757 mutex_unlock(&ioc->base_cmds.mutex); 6758 } 6759 6760 /** 6761 * _base_diag_reset - the "big hammer" start of day reset 6762 * @ioc: per adapter object 6763 * 6764 * Return: 0 for success, non-zero for failure. 6765 */ 6766 static int 6767 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc) 6768 { 6769 u32 host_diagnostic; 6770 u32 ioc_state; 6771 u32 count; 6772 u32 hcb_size; 6773 6774 ioc_info(ioc, "sending diag reset !!\n"); 6775 6776 drsprintk(ioc, ioc_info(ioc, "clear interrupts\n")); 6777 6778 count = 0; 6779 do { 6780 /* Write magic sequence to WriteSequence register 6781 * Loop until in diagnostic mode 6782 */ 6783 drsprintk(ioc, ioc_info(ioc, "write magic sequence\n")); 6784 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence); 6785 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence); 6786 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence); 6787 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence); 6788 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence); 6789 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence); 6790 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence); 6791 6792 /* wait 100 msec */ 6793 msleep(100); 6794 6795 if (count++ > 20) { 6796 ioc_info(ioc, 6797 "Stop writing magic sequence after 20 retries\n"); 6798 goto out; 6799 } 6800 6801 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic); 6802 drsprintk(ioc, 6803 ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n", 6804 count, host_diagnostic)); 6805 6806 } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0); 6807 6808 hcb_size = ioc->base_readl(&ioc->chip->HCBSize); 6809 6810 drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n")); 6811 writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER, 6812 &ioc->chip->HostDiagnostic); 6813 6814 /*This delay allows the chip PCIe hardware time to finish reset tasks*/ 6815 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000); 6816 6817 /* Approximately 300 second max wait */ 6818 for (count = 0; count < (300000000 / 6819 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) { 6820 6821 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic); 6822 6823 if (host_diagnostic == 0xFFFFFFFF) { 6824 ioc_info(ioc, 6825 "Invalid host diagnostic register value\n"); 6826 goto out; 6827 } 6828 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER)) 6829 break; 6830 6831 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000); 6832 } 6833 6834 if (host_diagnostic & MPI2_DIAG_HCB_MODE) { 6835 6836 drsprintk(ioc, 6837 ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n")); 6838 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK; 6839 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW; 6840 writel(host_diagnostic, &ioc->chip->HostDiagnostic); 6841 6842 drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n")); 6843 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE, 6844 &ioc->chip->HCBSize); 6845 } 6846 6847 drsprintk(ioc, ioc_info(ioc, "restart the adapter\n")); 6848 writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET, 6849 &ioc->chip->HostDiagnostic); 6850 6851 drsprintk(ioc, 6852 ioc_info(ioc, "disable writes to the diagnostic register\n")); 6853 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence); 6854 6855 drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n")); 6856 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20); 6857 if (ioc_state) { 6858 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 6859 __func__, ioc_state); 6860 goto out; 6861 } 6862 6863 ioc_info(ioc, "diag reset: SUCCESS\n"); 6864 return 0; 6865 6866 out: 6867 ioc_err(ioc, "diag reset: FAILED\n"); 6868 return -EFAULT; 6869 } 6870 6871 /** 6872 * _base_make_ioc_ready - put controller in READY state 6873 * @ioc: per adapter object 6874 * @type: FORCE_BIG_HAMMER or SOFT_RESET 6875 * 6876 * Return: 0 for success, non-zero for failure. 6877 */ 6878 static int 6879 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type) 6880 { 6881 u32 ioc_state; 6882 int rc; 6883 int count; 6884 6885 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6886 6887 if (ioc->pci_error_recovery) 6888 return 0; 6889 6890 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 6891 dhsprintk(ioc, 6892 ioc_info(ioc, "%s: ioc_state(0x%08x)\n", 6893 __func__, ioc_state)); 6894 6895 /* if in RESET state, it should move to READY state shortly */ 6896 count = 0; 6897 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) { 6898 while ((ioc_state & MPI2_IOC_STATE_MASK) != 6899 MPI2_IOC_STATE_READY) { 6900 if (count++ == 10) { 6901 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 6902 __func__, ioc_state); 6903 return -EFAULT; 6904 } 6905 ssleep(1); 6906 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 6907 } 6908 } 6909 6910 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) 6911 return 0; 6912 6913 if (ioc_state & MPI2_DOORBELL_USED) { 6914 ioc_info(ioc, "unexpected doorbell active!\n"); 6915 goto issue_diag_reset; 6916 } 6917 6918 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 6919 mpt3sas_print_fault_code(ioc, ioc_state & 6920 MPI2_DOORBELL_DATA_MASK); 6921 goto issue_diag_reset; 6922 } 6923 6924 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) { 6925 /* 6926 * if host reset is invoked while watch dog thread is waiting 6927 * for IOC state to be changed to Fault state then driver has 6928 * to wait here for CoreDump state to clear otherwise reset 6929 * will be issued to the FW and FW move the IOC state to 6930 * reset state without copying the FW logs to coredump region. 6931 */ 6932 if (ioc->ioc_coredump_loop != MPT3SAS_COREDUMP_LOOP_DONE) { 6933 mpt3sas_print_coredump_info(ioc, ioc_state & 6934 MPI2_DOORBELL_DATA_MASK); 6935 mpt3sas_base_wait_for_coredump_completion(ioc, 6936 __func__); 6937 } 6938 goto issue_diag_reset; 6939 } 6940 6941 if (type == FORCE_BIG_HAMMER) 6942 goto issue_diag_reset; 6943 6944 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL) 6945 if (!(_base_send_ioc_reset(ioc, 6946 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) { 6947 return 0; 6948 } 6949 6950 issue_diag_reset: 6951 rc = _base_diag_reset(ioc); 6952 return rc; 6953 } 6954 6955 /** 6956 * _base_make_ioc_operational - put controller in OPERATIONAL state 6957 * @ioc: per adapter object 6958 * 6959 * Return: 0 for success, non-zero for failure. 6960 */ 6961 static int 6962 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc) 6963 { 6964 int r, i, index, rc; 6965 unsigned long flags; 6966 u32 reply_address; 6967 u16 smid; 6968 struct _tr_list *delayed_tr, *delayed_tr_next; 6969 struct _sc_list *delayed_sc, *delayed_sc_next; 6970 struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next; 6971 u8 hide_flag; 6972 struct adapter_reply_queue *reply_q; 6973 Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig; 6974 6975 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6976 6977 /* clean the delayed target reset list */ 6978 list_for_each_entry_safe(delayed_tr, delayed_tr_next, 6979 &ioc->delayed_tr_list, list) { 6980 list_del(&delayed_tr->list); 6981 kfree(delayed_tr); 6982 } 6983 6984 6985 list_for_each_entry_safe(delayed_tr, delayed_tr_next, 6986 &ioc->delayed_tr_volume_list, list) { 6987 list_del(&delayed_tr->list); 6988 kfree(delayed_tr); 6989 } 6990 6991 list_for_each_entry_safe(delayed_sc, delayed_sc_next, 6992 &ioc->delayed_sc_list, list) { 6993 list_del(&delayed_sc->list); 6994 kfree(delayed_sc); 6995 } 6996 6997 list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next, 6998 &ioc->delayed_event_ack_list, list) { 6999 list_del(&delayed_event_ack->list); 7000 kfree(delayed_event_ack); 7001 } 7002 7003 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 7004 7005 /* hi-priority queue */ 7006 INIT_LIST_HEAD(&ioc->hpr_free_list); 7007 smid = ioc->hi_priority_smid; 7008 for (i = 0; i < ioc->hi_priority_depth; i++, smid++) { 7009 ioc->hpr_lookup[i].cb_idx = 0xFF; 7010 ioc->hpr_lookup[i].smid = smid; 7011 list_add_tail(&ioc->hpr_lookup[i].tracker_list, 7012 &ioc->hpr_free_list); 7013 } 7014 7015 /* internal queue */ 7016 INIT_LIST_HEAD(&ioc->internal_free_list); 7017 smid = ioc->internal_smid; 7018 for (i = 0; i < ioc->internal_depth; i++, smid++) { 7019 ioc->internal_lookup[i].cb_idx = 0xFF; 7020 ioc->internal_lookup[i].smid = smid; 7021 list_add_tail(&ioc->internal_lookup[i].tracker_list, 7022 &ioc->internal_free_list); 7023 } 7024 7025 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 7026 7027 /* initialize Reply Free Queue */ 7028 for (i = 0, reply_address = (u32)ioc->reply_dma ; 7029 i < ioc->reply_free_queue_depth ; i++, reply_address += 7030 ioc->reply_sz) { 7031 ioc->reply_free[i] = cpu_to_le32(reply_address); 7032 if (ioc->is_mcpu_endpoint) 7033 _base_clone_reply_to_sys_mem(ioc, 7034 reply_address, i); 7035 } 7036 7037 /* initialize reply queues */ 7038 if (ioc->is_driver_loading) 7039 _base_assign_reply_queues(ioc); 7040 7041 /* initialize Reply Post Free Queue */ 7042 index = 0; 7043 reply_post_free_contig = ioc->reply_post[0].reply_post_free; 7044 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 7045 /* 7046 * If RDPQ is enabled, switch to the next allocation. 7047 * Otherwise advance within the contiguous region. 7048 */ 7049 if (ioc->rdpq_array_enable) { 7050 reply_q->reply_post_free = 7051 ioc->reply_post[index++].reply_post_free; 7052 } else { 7053 reply_q->reply_post_free = reply_post_free_contig; 7054 reply_post_free_contig += ioc->reply_post_queue_depth; 7055 } 7056 7057 reply_q->reply_post_host_index = 0; 7058 for (i = 0; i < ioc->reply_post_queue_depth; i++) 7059 reply_q->reply_post_free[i].Words = 7060 cpu_to_le64(ULLONG_MAX); 7061 if (!_base_is_controller_msix_enabled(ioc)) 7062 goto skip_init_reply_post_free_queue; 7063 } 7064 skip_init_reply_post_free_queue: 7065 7066 r = _base_send_ioc_init(ioc); 7067 if (r) { 7068 /* 7069 * No need to check IOC state for fault state & issue 7070 * diag reset during host reset. This check is need 7071 * only during driver load time. 7072 */ 7073 if (!ioc->is_driver_loading) 7074 return r; 7075 7076 rc = _base_check_for_fault_and_issue_reset(ioc); 7077 if (rc || (_base_send_ioc_init(ioc))) 7078 return r; 7079 } 7080 7081 /* initialize reply free host index */ 7082 ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1; 7083 writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex); 7084 7085 /* initialize reply post host index */ 7086 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 7087 if (ioc->combined_reply_queue) 7088 writel((reply_q->msix_index & 7)<< 7089 MPI2_RPHI_MSIX_INDEX_SHIFT, 7090 ioc->replyPostRegisterIndex[reply_q->msix_index/8]); 7091 else 7092 writel(reply_q->msix_index << 7093 MPI2_RPHI_MSIX_INDEX_SHIFT, 7094 &ioc->chip->ReplyPostHostIndex); 7095 7096 if (!_base_is_controller_msix_enabled(ioc)) 7097 goto skip_init_reply_post_host_index; 7098 } 7099 7100 skip_init_reply_post_host_index: 7101 7102 _base_unmask_interrupts(ioc); 7103 7104 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 7105 r = _base_display_fwpkg_version(ioc); 7106 if (r) 7107 return r; 7108 } 7109 7110 _base_static_config_pages(ioc); 7111 r = _base_event_notification(ioc); 7112 if (r) 7113 return r; 7114 7115 if (ioc->is_driver_loading) { 7116 7117 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier 7118 == 0x80) { 7119 hide_flag = (u8) ( 7120 le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) & 7121 MFG_PAGE10_HIDE_SSDS_MASK); 7122 if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK) 7123 ioc->mfg_pg10_hide_flag = hide_flag; 7124 } 7125 7126 ioc->wait_for_discovery_to_complete = 7127 _base_determine_wait_on_discovery(ioc); 7128 7129 return r; /* scan_start and scan_finished support */ 7130 } 7131 7132 r = _base_send_port_enable(ioc); 7133 if (r) 7134 return r; 7135 7136 return r; 7137 } 7138 7139 /** 7140 * mpt3sas_base_free_resources - free resources controller resources 7141 * @ioc: per adapter object 7142 */ 7143 void 7144 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc) 7145 { 7146 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7147 7148 /* synchronizing freeing resource with pci_access_mutex lock */ 7149 mutex_lock(&ioc->pci_access_mutex); 7150 if (ioc->chip_phys && ioc->chip) { 7151 _base_mask_interrupts(ioc); 7152 ioc->shost_recovery = 1; 7153 _base_make_ioc_ready(ioc, SOFT_RESET); 7154 ioc->shost_recovery = 0; 7155 } 7156 7157 mpt3sas_base_unmap_resources(ioc); 7158 mutex_unlock(&ioc->pci_access_mutex); 7159 return; 7160 } 7161 7162 /** 7163 * mpt3sas_base_attach - attach controller instance 7164 * @ioc: per adapter object 7165 * 7166 * Return: 0 for success, non-zero for failure. 7167 */ 7168 int 7169 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc) 7170 { 7171 int r, i, rc; 7172 int cpu_id, last_cpu_id = 0; 7173 7174 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7175 7176 /* setup cpu_msix_table */ 7177 ioc->cpu_count = num_online_cpus(); 7178 for_each_online_cpu(cpu_id) 7179 last_cpu_id = cpu_id; 7180 ioc->cpu_msix_table_sz = last_cpu_id + 1; 7181 ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL); 7182 ioc->reply_queue_count = 1; 7183 if (!ioc->cpu_msix_table) { 7184 ioc_info(ioc, "Allocation for cpu_msix_table failed!!!\n"); 7185 r = -ENOMEM; 7186 goto out_free_resources; 7187 } 7188 7189 if (ioc->is_warpdrive) { 7190 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz, 7191 sizeof(resource_size_t *), GFP_KERNEL); 7192 if (!ioc->reply_post_host_index) { 7193 ioc_info(ioc, "Allocation for reply_post_host_index failed!!!\n"); 7194 r = -ENOMEM; 7195 goto out_free_resources; 7196 } 7197 } 7198 7199 ioc->smp_affinity_enable = smp_affinity_enable; 7200 7201 ioc->rdpq_array_enable_assigned = 0; 7202 ioc->use_32bit_dma = false; 7203 if (ioc->is_aero_ioc) 7204 ioc->base_readl = &_base_readl_aero; 7205 else 7206 ioc->base_readl = &_base_readl; 7207 r = mpt3sas_base_map_resources(ioc); 7208 if (r) 7209 goto out_free_resources; 7210 7211 pci_set_drvdata(ioc->pdev, ioc->shost); 7212 r = _base_get_ioc_facts(ioc); 7213 if (r) { 7214 rc = _base_check_for_fault_and_issue_reset(ioc); 7215 if (rc || (_base_get_ioc_facts(ioc))) 7216 goto out_free_resources; 7217 } 7218 7219 switch (ioc->hba_mpi_version_belonged) { 7220 case MPI2_VERSION: 7221 ioc->build_sg_scmd = &_base_build_sg_scmd; 7222 ioc->build_sg = &_base_build_sg; 7223 ioc->build_zero_len_sge = &_base_build_zero_len_sge; 7224 ioc->get_msix_index_for_smlio = &_base_get_msix_index; 7225 break; 7226 case MPI25_VERSION: 7227 case MPI26_VERSION: 7228 /* 7229 * In SAS3.0, 7230 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and 7231 * Target Status - all require the IEEE formated scatter gather 7232 * elements. 7233 */ 7234 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee; 7235 ioc->build_sg = &_base_build_sg_ieee; 7236 ioc->build_nvme_prp = &_base_build_nvme_prp; 7237 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee; 7238 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t); 7239 if (ioc->high_iops_queues) 7240 ioc->get_msix_index_for_smlio = 7241 &_base_get_high_iops_msix_index; 7242 else 7243 ioc->get_msix_index_for_smlio = &_base_get_msix_index; 7244 break; 7245 } 7246 if (ioc->atomic_desc_capable) { 7247 ioc->put_smid_default = &_base_put_smid_default_atomic; 7248 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic; 7249 ioc->put_smid_fast_path = 7250 &_base_put_smid_fast_path_atomic; 7251 ioc->put_smid_hi_priority = 7252 &_base_put_smid_hi_priority_atomic; 7253 } else { 7254 ioc->put_smid_default = &_base_put_smid_default; 7255 ioc->put_smid_fast_path = &_base_put_smid_fast_path; 7256 ioc->put_smid_hi_priority = &_base_put_smid_hi_priority; 7257 if (ioc->is_mcpu_endpoint) 7258 ioc->put_smid_scsi_io = 7259 &_base_put_smid_mpi_ep_scsi_io; 7260 else 7261 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io; 7262 } 7263 /* 7264 * These function pointers for other requests that don't 7265 * the require IEEE scatter gather elements. 7266 * 7267 * For example Configuration Pages and SAS IOUNIT Control don't. 7268 */ 7269 ioc->build_sg_mpi = &_base_build_sg; 7270 ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge; 7271 7272 r = _base_make_ioc_ready(ioc, SOFT_RESET); 7273 if (r) 7274 goto out_free_resources; 7275 7276 ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts, 7277 sizeof(struct mpt3sas_port_facts), GFP_KERNEL); 7278 if (!ioc->pfacts) { 7279 r = -ENOMEM; 7280 goto out_free_resources; 7281 } 7282 7283 for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) { 7284 r = _base_get_port_facts(ioc, i); 7285 if (r) { 7286 rc = _base_check_for_fault_and_issue_reset(ioc); 7287 if (rc || (_base_get_port_facts(ioc, i))) 7288 goto out_free_resources; 7289 } 7290 } 7291 7292 r = _base_allocate_memory_pools(ioc); 7293 if (r) 7294 goto out_free_resources; 7295 7296 if (irqpoll_weight > 0) 7297 ioc->thresh_hold = irqpoll_weight; 7298 else 7299 ioc->thresh_hold = ioc->hba_queue_depth/4; 7300 7301 _base_init_irqpolls(ioc); 7302 init_waitqueue_head(&ioc->reset_wq); 7303 7304 /* allocate memory pd handle bitmask list */ 7305 ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8); 7306 if (ioc->facts.MaxDevHandle % 8) 7307 ioc->pd_handles_sz++; 7308 ioc->pd_handles = kzalloc(ioc->pd_handles_sz, 7309 GFP_KERNEL); 7310 if (!ioc->pd_handles) { 7311 r = -ENOMEM; 7312 goto out_free_resources; 7313 } 7314 ioc->blocking_handles = kzalloc(ioc->pd_handles_sz, 7315 GFP_KERNEL); 7316 if (!ioc->blocking_handles) { 7317 r = -ENOMEM; 7318 goto out_free_resources; 7319 } 7320 7321 /* allocate memory for pending OS device add list */ 7322 ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8); 7323 if (ioc->facts.MaxDevHandle % 8) 7324 ioc->pend_os_device_add_sz++; 7325 ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz, 7326 GFP_KERNEL); 7327 if (!ioc->pend_os_device_add) 7328 goto out_free_resources; 7329 7330 ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz; 7331 ioc->device_remove_in_progress = 7332 kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL); 7333 if (!ioc->device_remove_in_progress) 7334 goto out_free_resources; 7335 7336 ioc->fwfault_debug = mpt3sas_fwfault_debug; 7337 7338 /* base internal command bits */ 7339 mutex_init(&ioc->base_cmds.mutex); 7340 ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7341 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 7342 7343 /* port_enable command bits */ 7344 ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7345 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED; 7346 7347 /* transport internal command bits */ 7348 ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7349 ioc->transport_cmds.status = MPT3_CMD_NOT_USED; 7350 mutex_init(&ioc->transport_cmds.mutex); 7351 7352 /* scsih internal command bits */ 7353 ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7354 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED; 7355 mutex_init(&ioc->scsih_cmds.mutex); 7356 7357 /* task management internal command bits */ 7358 ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7359 ioc->tm_cmds.status = MPT3_CMD_NOT_USED; 7360 mutex_init(&ioc->tm_cmds.mutex); 7361 7362 /* config page internal command bits */ 7363 ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7364 ioc->config_cmds.status = MPT3_CMD_NOT_USED; 7365 mutex_init(&ioc->config_cmds.mutex); 7366 7367 /* ctl module internal command bits */ 7368 ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7369 ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL); 7370 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED; 7371 mutex_init(&ioc->ctl_cmds.mutex); 7372 7373 if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply || 7374 !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply || 7375 !ioc->tm_cmds.reply || !ioc->config_cmds.reply || 7376 !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) { 7377 r = -ENOMEM; 7378 goto out_free_resources; 7379 } 7380 7381 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 7382 ioc->event_masks[i] = -1; 7383 7384 /* here we enable the events we care about */ 7385 _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY); 7386 _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE); 7387 _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST); 7388 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE); 7389 _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE); 7390 _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST); 7391 _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME); 7392 _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK); 7393 _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS); 7394 _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED); 7395 _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD); 7396 _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION); 7397 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR); 7398 if (ioc->hba_mpi_version_belonged == MPI26_VERSION) { 7399 if (ioc->is_gen35_ioc) { 7400 _base_unmask_events(ioc, 7401 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE); 7402 _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION); 7403 _base_unmask_events(ioc, 7404 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST); 7405 } 7406 } 7407 r = _base_make_ioc_operational(ioc); 7408 if (r) 7409 goto out_free_resources; 7410 7411 /* 7412 * Copy current copy of IOCFacts in prev_fw_facts 7413 * and it will be used during online firmware upgrade. 7414 */ 7415 memcpy(&ioc->prev_fw_facts, &ioc->facts, 7416 sizeof(struct mpt3sas_facts)); 7417 7418 ioc->non_operational_loop = 0; 7419 ioc->ioc_coredump_loop = 0; 7420 ioc->got_task_abort_from_ioctl = 0; 7421 return 0; 7422 7423 out_free_resources: 7424 7425 ioc->remove_host = 1; 7426 7427 mpt3sas_base_free_resources(ioc); 7428 _base_release_memory_pools(ioc); 7429 pci_set_drvdata(ioc->pdev, NULL); 7430 kfree(ioc->cpu_msix_table); 7431 if (ioc->is_warpdrive) 7432 kfree(ioc->reply_post_host_index); 7433 kfree(ioc->pd_handles); 7434 kfree(ioc->blocking_handles); 7435 kfree(ioc->device_remove_in_progress); 7436 kfree(ioc->pend_os_device_add); 7437 kfree(ioc->tm_cmds.reply); 7438 kfree(ioc->transport_cmds.reply); 7439 kfree(ioc->scsih_cmds.reply); 7440 kfree(ioc->config_cmds.reply); 7441 kfree(ioc->base_cmds.reply); 7442 kfree(ioc->port_enable_cmds.reply); 7443 kfree(ioc->ctl_cmds.reply); 7444 kfree(ioc->ctl_cmds.sense); 7445 kfree(ioc->pfacts); 7446 ioc->ctl_cmds.reply = NULL; 7447 ioc->base_cmds.reply = NULL; 7448 ioc->tm_cmds.reply = NULL; 7449 ioc->scsih_cmds.reply = NULL; 7450 ioc->transport_cmds.reply = NULL; 7451 ioc->config_cmds.reply = NULL; 7452 ioc->pfacts = NULL; 7453 return r; 7454 } 7455 7456 7457 /** 7458 * mpt3sas_base_detach - remove controller instance 7459 * @ioc: per adapter object 7460 */ 7461 void 7462 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc) 7463 { 7464 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7465 7466 mpt3sas_base_stop_watchdog(ioc); 7467 mpt3sas_base_free_resources(ioc); 7468 _base_release_memory_pools(ioc); 7469 mpt3sas_free_enclosure_list(ioc); 7470 pci_set_drvdata(ioc->pdev, NULL); 7471 kfree(ioc->cpu_msix_table); 7472 if (ioc->is_warpdrive) 7473 kfree(ioc->reply_post_host_index); 7474 kfree(ioc->pd_handles); 7475 kfree(ioc->blocking_handles); 7476 kfree(ioc->device_remove_in_progress); 7477 kfree(ioc->pend_os_device_add); 7478 kfree(ioc->pfacts); 7479 kfree(ioc->ctl_cmds.reply); 7480 kfree(ioc->ctl_cmds.sense); 7481 kfree(ioc->base_cmds.reply); 7482 kfree(ioc->port_enable_cmds.reply); 7483 kfree(ioc->tm_cmds.reply); 7484 kfree(ioc->transport_cmds.reply); 7485 kfree(ioc->scsih_cmds.reply); 7486 kfree(ioc->config_cmds.reply); 7487 } 7488 7489 /** 7490 * _base_pre_reset_handler - pre reset handler 7491 * @ioc: per adapter object 7492 */ 7493 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc) 7494 { 7495 mpt3sas_scsih_pre_reset_handler(ioc); 7496 mpt3sas_ctl_pre_reset_handler(ioc); 7497 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__)); 7498 } 7499 7500 /** 7501 * _base_clear_outstanding_mpt_commands - clears outstanding mpt commands 7502 * @ioc: per adapter object 7503 */ 7504 static void 7505 _base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER *ioc) 7506 { 7507 dtmprintk(ioc, 7508 ioc_info(ioc, "%s: clear outstanding mpt cmds\n", __func__)); 7509 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) { 7510 ioc->transport_cmds.status |= MPT3_CMD_RESET; 7511 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid); 7512 complete(&ioc->transport_cmds.done); 7513 } 7514 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 7515 ioc->base_cmds.status |= MPT3_CMD_RESET; 7516 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid); 7517 complete(&ioc->base_cmds.done); 7518 } 7519 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 7520 ioc->port_enable_failed = 1; 7521 ioc->port_enable_cmds.status |= MPT3_CMD_RESET; 7522 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid); 7523 if (ioc->is_driver_loading) { 7524 ioc->start_scan_failed = 7525 MPI2_IOCSTATUS_INTERNAL_ERROR; 7526 ioc->start_scan = 0; 7527 ioc->port_enable_cmds.status = 7528 MPT3_CMD_NOT_USED; 7529 } else { 7530 complete(&ioc->port_enable_cmds.done); 7531 } 7532 } 7533 if (ioc->config_cmds.status & MPT3_CMD_PENDING) { 7534 ioc->config_cmds.status |= MPT3_CMD_RESET; 7535 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid); 7536 ioc->config_cmds.smid = USHRT_MAX; 7537 complete(&ioc->config_cmds.done); 7538 } 7539 } 7540 7541 /** 7542 * _base_clear_outstanding_commands - clear all outstanding commands 7543 * @ioc: per adapter object 7544 */ 7545 static void _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc) 7546 { 7547 mpt3sas_scsih_clear_outstanding_scsi_tm_commands(ioc); 7548 mpt3sas_ctl_clear_outstanding_ioctls(ioc); 7549 _base_clear_outstanding_mpt_commands(ioc); 7550 } 7551 7552 /** 7553 * _base_reset_done_handler - reset done handler 7554 * @ioc: per adapter object 7555 */ 7556 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc) 7557 { 7558 mpt3sas_scsih_reset_done_handler(ioc); 7559 mpt3sas_ctl_reset_done_handler(ioc); 7560 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__)); 7561 } 7562 7563 /** 7564 * mpt3sas_wait_for_commands_to_complete - reset controller 7565 * @ioc: Pointer to MPT_ADAPTER structure 7566 * 7567 * This function is waiting 10s for all pending commands to complete 7568 * prior to putting controller in reset. 7569 */ 7570 void 7571 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc) 7572 { 7573 u32 ioc_state; 7574 7575 ioc->pending_io_count = 0; 7576 7577 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 7578 if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) 7579 return; 7580 7581 /* pending command count */ 7582 ioc->pending_io_count = scsi_host_busy(ioc->shost); 7583 7584 if (!ioc->pending_io_count) 7585 return; 7586 7587 /* wait for pending commands to complete */ 7588 wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ); 7589 } 7590 7591 /** 7592 * _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts 7593 * attributes during online firmware upgrade and update the corresponding 7594 * IOC variables accordingly. 7595 * 7596 * @ioc: Pointer to MPT_ADAPTER structure 7597 */ 7598 static int 7599 _base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc) 7600 { 7601 u16 pd_handles_sz; 7602 void *pd_handles = NULL, *blocking_handles = NULL; 7603 void *pend_os_device_add = NULL, *device_remove_in_progress = NULL; 7604 struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts; 7605 7606 if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle) { 7607 pd_handles_sz = (ioc->facts.MaxDevHandle / 8); 7608 if (ioc->facts.MaxDevHandle % 8) 7609 pd_handles_sz++; 7610 7611 pd_handles = krealloc(ioc->pd_handles, pd_handles_sz, 7612 GFP_KERNEL); 7613 if (!pd_handles) { 7614 ioc_info(ioc, 7615 "Unable to allocate the memory for pd_handles of sz: %d\n", 7616 pd_handles_sz); 7617 return -ENOMEM; 7618 } 7619 memset(pd_handles + ioc->pd_handles_sz, 0, 7620 (pd_handles_sz - ioc->pd_handles_sz)); 7621 ioc->pd_handles = pd_handles; 7622 7623 blocking_handles = krealloc(ioc->blocking_handles, 7624 pd_handles_sz, GFP_KERNEL); 7625 if (!blocking_handles) { 7626 ioc_info(ioc, 7627 "Unable to allocate the memory for " 7628 "blocking_handles of sz: %d\n", 7629 pd_handles_sz); 7630 return -ENOMEM; 7631 } 7632 memset(blocking_handles + ioc->pd_handles_sz, 0, 7633 (pd_handles_sz - ioc->pd_handles_sz)); 7634 ioc->blocking_handles = blocking_handles; 7635 ioc->pd_handles_sz = pd_handles_sz; 7636 7637 pend_os_device_add = krealloc(ioc->pend_os_device_add, 7638 pd_handles_sz, GFP_KERNEL); 7639 if (!pend_os_device_add) { 7640 ioc_info(ioc, 7641 "Unable to allocate the memory for pend_os_device_add of sz: %d\n", 7642 pd_handles_sz); 7643 return -ENOMEM; 7644 } 7645 memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0, 7646 (pd_handles_sz - ioc->pend_os_device_add_sz)); 7647 ioc->pend_os_device_add = pend_os_device_add; 7648 ioc->pend_os_device_add_sz = pd_handles_sz; 7649 7650 device_remove_in_progress = krealloc( 7651 ioc->device_remove_in_progress, pd_handles_sz, GFP_KERNEL); 7652 if (!device_remove_in_progress) { 7653 ioc_info(ioc, 7654 "Unable to allocate the memory for " 7655 "device_remove_in_progress of sz: %d\n " 7656 , pd_handles_sz); 7657 return -ENOMEM; 7658 } 7659 memset(device_remove_in_progress + 7660 ioc->device_remove_in_progress_sz, 0, 7661 (pd_handles_sz - ioc->device_remove_in_progress_sz)); 7662 ioc->device_remove_in_progress = device_remove_in_progress; 7663 ioc->device_remove_in_progress_sz = pd_handles_sz; 7664 } 7665 7666 memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts)); 7667 return 0; 7668 } 7669 7670 /** 7671 * mpt3sas_base_hard_reset_handler - reset controller 7672 * @ioc: Pointer to MPT_ADAPTER structure 7673 * @type: FORCE_BIG_HAMMER or SOFT_RESET 7674 * 7675 * Return: 0 for success, non-zero for failure. 7676 */ 7677 int 7678 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc, 7679 enum reset_type type) 7680 { 7681 int r; 7682 unsigned long flags; 7683 u32 ioc_state; 7684 u8 is_fault = 0, is_trigger = 0; 7685 7686 dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__)); 7687 7688 if (ioc->pci_error_recovery) { 7689 ioc_err(ioc, "%s: pci error recovery reset\n", __func__); 7690 r = 0; 7691 goto out_unlocked; 7692 } 7693 7694 if (mpt3sas_fwfault_debug) 7695 mpt3sas_halt_firmware(ioc); 7696 7697 /* wait for an active reset in progress to complete */ 7698 mutex_lock(&ioc->reset_in_progress_mutex); 7699 7700 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 7701 ioc->shost_recovery = 1; 7702 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 7703 7704 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 7705 MPT3_DIAG_BUFFER_IS_REGISTERED) && 7706 (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 7707 MPT3_DIAG_BUFFER_IS_RELEASED))) { 7708 is_trigger = 1; 7709 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 7710 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT || 7711 (ioc_state & MPI2_IOC_STATE_MASK) == 7712 MPI2_IOC_STATE_COREDUMP) 7713 is_fault = 1; 7714 } 7715 _base_pre_reset_handler(ioc); 7716 mpt3sas_wait_for_commands_to_complete(ioc); 7717 _base_mask_interrupts(ioc); 7718 r = _base_make_ioc_ready(ioc, type); 7719 if (r) 7720 goto out; 7721 _base_clear_outstanding_commands(ioc); 7722 7723 /* If this hard reset is called while port enable is active, then 7724 * there is no reason to call make_ioc_operational 7725 */ 7726 if (ioc->is_driver_loading && ioc->port_enable_failed) { 7727 ioc->remove_host = 1; 7728 r = -EFAULT; 7729 goto out; 7730 } 7731 r = _base_get_ioc_facts(ioc); 7732 if (r) 7733 goto out; 7734 7735 r = _base_check_ioc_facts_changes(ioc); 7736 if (r) { 7737 ioc_info(ioc, 7738 "Some of the parameters got changed in this new firmware" 7739 " image and it requires system reboot\n"); 7740 goto out; 7741 } 7742 if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable) 7743 panic("%s: Issue occurred with flashing controller firmware." 7744 "Please reboot the system and ensure that the correct" 7745 " firmware version is running\n", ioc->name); 7746 7747 r = _base_make_ioc_operational(ioc); 7748 if (!r) 7749 _base_reset_done_handler(ioc); 7750 7751 out: 7752 ioc_info(ioc, "%s: %s\n", __func__, r == 0 ? "SUCCESS" : "FAILED"); 7753 7754 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 7755 ioc->shost_recovery = 0; 7756 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 7757 ioc->ioc_reset_count++; 7758 mutex_unlock(&ioc->reset_in_progress_mutex); 7759 7760 out_unlocked: 7761 if ((r == 0) && is_trigger) { 7762 if (is_fault) 7763 mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT); 7764 else 7765 mpt3sas_trigger_master(ioc, 7766 MASTER_TRIGGER_ADAPTER_RESET); 7767 } 7768 dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__)); 7769 return r; 7770 } 7771