1 /* 2 * This is the Fusion MPT base driver providing common API layer interface 3 * for access to MPT (Message Passing Technology) firmware. 4 * 5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c 6 * Copyright (C) 2012-2014 LSI Corporation 7 * Copyright (C) 2013-2014 Avago Technologies 8 * (mailto: MPT-FusionLinux.pdl@avagotech.com) 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License 12 * as published by the Free Software Foundation; either version 2 13 * of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * NO WARRANTY 21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR 22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT 23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, 24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is 25 * solely responsible for determining the appropriateness of using and 26 * distributing the Program and assumes all risks associated with its 27 * exercise of rights under this Agreement, including but not limited to 28 * the risks and costs of program errors, damage to or loss of data, 29 * programs or equipment, and unavailability or interruption of operations. 30 31 * DISCLAIMER OF LIABILITY 32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY 33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND 35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED 38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES 39 40 * You should have received a copy of the GNU General Public License 41 * along with this program; if not, write to the Free Software 42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, 43 * USA. 44 */ 45 46 #include <linux/kernel.h> 47 #include <linux/module.h> 48 #include <linux/errno.h> 49 #include <linux/init.h> 50 #include <linux/slab.h> 51 #include <linux/types.h> 52 #include <linux/pci.h> 53 #include <linux/kdev_t.h> 54 #include <linux/blkdev.h> 55 #include <linux/delay.h> 56 #include <linux/interrupt.h> 57 #include <linux/dma-mapping.h> 58 #include <linux/io.h> 59 #include <linux/time.h> 60 #include <linux/ktime.h> 61 #include <linux/kthread.h> 62 #include <asm/page.h> /* To get host page size per arch */ 63 64 65 #include "mpt3sas_base.h" 66 67 static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS]; 68 69 70 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */ 71 72 /* maximum controller queue depth */ 73 #define MAX_HBA_QUEUE_DEPTH 30000 74 #define MAX_CHAIN_DEPTH 100000 75 static int max_queue_depth = -1; 76 module_param(max_queue_depth, int, 0444); 77 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth "); 78 79 static int max_sgl_entries = -1; 80 module_param(max_sgl_entries, int, 0444); 81 MODULE_PARM_DESC(max_sgl_entries, " max sg entries "); 82 83 static int msix_disable = -1; 84 module_param(msix_disable, int, 0444); 85 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)"); 86 87 static int smp_affinity_enable = 1; 88 module_param(smp_affinity_enable, int, 0444); 89 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)"); 90 91 static int max_msix_vectors = -1; 92 module_param(max_msix_vectors, int, 0444); 93 MODULE_PARM_DESC(max_msix_vectors, 94 " max msix vectors"); 95 96 static int irqpoll_weight = -1; 97 module_param(irqpoll_weight, int, 0444); 98 MODULE_PARM_DESC(irqpoll_weight, 99 "irq poll weight (default= one fourth of HBA queue depth)"); 100 101 static int mpt3sas_fwfault_debug; 102 MODULE_PARM_DESC(mpt3sas_fwfault_debug, 103 " enable detection of firmware fault and halt firmware - (default=0)"); 104 105 static int perf_mode = -1; 106 module_param(perf_mode, int, 0444); 107 MODULE_PARM_DESC(perf_mode, 108 "Performance mode (only for Aero/Sea Generation), options:\n\t\t" 109 "0 - balanced: high iops mode is enabled &\n\t\t" 110 "interrupt coalescing is enabled only on high iops queues,\n\t\t" 111 "1 - iops: high iops mode is disabled &\n\t\t" 112 "interrupt coalescing is enabled on all queues,\n\t\t" 113 "2 - latency: high iops mode is disabled &\n\t\t" 114 "interrupt coalescing is enabled on all queues with timeout value 0xA,\n" 115 "\t\tdefault - default perf_mode is 'balanced'" 116 ); 117 118 static int poll_queues; 119 module_param(poll_queues, int, 0444); 120 MODULE_PARM_DESC(poll_queues, "Number of queues to be use for io_uring poll mode.\n\t\t" 121 "This parameter is effective only if host_tagset_enable=1. &\n\t\t" 122 "when poll_queues are enabled then &\n\t\t" 123 "perf_mode is set to latency mode. &\n\t\t" 124 ); 125 126 enum mpt3sas_perf_mode { 127 MPT_PERF_MODE_DEFAULT = -1, 128 MPT_PERF_MODE_BALANCED = 0, 129 MPT_PERF_MODE_IOPS = 1, 130 MPT_PERF_MODE_LATENCY = 2, 131 }; 132 133 static int 134 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, 135 u32 ioc_state, int timeout); 136 static int 137 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc); 138 static void 139 _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc); 140 141 static u32 142 _base_readl_ext_retry(const void __iomem *addr); 143 144 /** 145 * mpt3sas_base_check_cmd_timeout - Function 146 * to check timeout and command termination due 147 * to Host reset. 148 * 149 * @ioc: per adapter object. 150 * @status: Status of issued command. 151 * @mpi_request:mf request pointer. 152 * @sz: size of buffer. 153 * 154 * Return: 1/0 Reset to be done or Not 155 */ 156 u8 157 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc, 158 u8 status, void *mpi_request, int sz) 159 { 160 u8 issue_reset = 0; 161 162 if (!(status & MPT3_CMD_RESET)) 163 issue_reset = 1; 164 165 ioc_err(ioc, "Command %s\n", 166 issue_reset == 0 ? "terminated due to Host Reset" : "Timeout"); 167 _debug_dump_mf(mpi_request, sz); 168 169 return issue_reset; 170 } 171 172 /** 173 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug. 174 * @val: ? 175 * @kp: ? 176 * 177 * Return: ? 178 */ 179 static int 180 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp) 181 { 182 int ret = param_set_int(val, kp); 183 struct MPT3SAS_ADAPTER *ioc; 184 185 if (ret) 186 return ret; 187 188 /* global ioc spinlock to protect controller list on list operations */ 189 pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug); 190 spin_lock(&gioc_lock); 191 list_for_each_entry(ioc, &mpt3sas_ioc_list, list) 192 ioc->fwfault_debug = mpt3sas_fwfault_debug; 193 spin_unlock(&gioc_lock); 194 return 0; 195 } 196 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug, 197 param_get_int, &mpt3sas_fwfault_debug, 0644); 198 199 /** 200 * _base_readl_aero - retry readl for max three times. 201 * @addr: MPT Fusion system interface register address 202 * 203 * Retry the readl() for max three times if it gets zero value 204 * while reading the system interface register. 205 */ 206 static inline u32 207 _base_readl_aero(const void __iomem *addr) 208 { 209 u32 i = 0, ret_val; 210 211 do { 212 ret_val = readl(addr); 213 i++; 214 } while (ret_val == 0 && i < 3); 215 216 return ret_val; 217 } 218 219 static u32 220 _base_readl_ext_retry(const void __iomem *addr) 221 { 222 u32 i, ret_val; 223 224 for (i = 0 ; i < 30 ; i++) { 225 ret_val = readl(addr); 226 if (ret_val != 0) 227 break; 228 } 229 230 return ret_val; 231 } 232 233 static inline u32 234 _base_readl(const void __iomem *addr) 235 { 236 return readl(addr); 237 } 238 239 /** 240 * _base_clone_reply_to_sys_mem - copies reply to reply free iomem 241 * in BAR0 space. 242 * 243 * @ioc: per adapter object 244 * @reply: reply message frame(lower 32bit addr) 245 * @index: System request message index. 246 */ 247 static void 248 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply, 249 u32 index) 250 { 251 /* 252 * 256 is offset within sys register. 253 * 256 offset MPI frame starts. Max MPI frame supported is 32. 254 * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts 255 */ 256 u16 cmd_credit = ioc->facts.RequestCredit + 1; 257 void __iomem *reply_free_iomem = (void __iomem *)ioc->chip + 258 MPI_FRAME_START_OFFSET + 259 (cmd_credit * ioc->request_sz) + (index * sizeof(u32)); 260 261 writel(reply, reply_free_iomem); 262 } 263 264 /** 265 * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames 266 * to system/BAR0 region. 267 * 268 * @dst_iomem: Pointer to the destination location in BAR0 space. 269 * @src: Pointer to the Source data. 270 * @size: Size of data to be copied. 271 */ 272 static void 273 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size) 274 { 275 int i; 276 u32 *src_virt_mem = (u32 *)src; 277 278 for (i = 0; i < size/4; i++) 279 writel((u32)src_virt_mem[i], 280 (void __iomem *)dst_iomem + (i * 4)); 281 } 282 283 /** 284 * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region 285 * 286 * @dst_iomem: Pointer to the destination location in BAR0 space. 287 * @src: Pointer to the Source data. 288 * @size: Size of data to be copied. 289 */ 290 static void 291 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size) 292 { 293 int i; 294 u32 *src_virt_mem = (u32 *)(src); 295 296 for (i = 0; i < size/4; i++) 297 writel((u32)src_virt_mem[i], 298 (void __iomem *)dst_iomem + (i * 4)); 299 } 300 301 /** 302 * _base_get_chain - Calculates and Returns virtual chain address 303 * for the provided smid in BAR0 space. 304 * 305 * @ioc: per adapter object 306 * @smid: system request message index 307 * @sge_chain_count: Scatter gather chain count. 308 * 309 * Return: the chain address. 310 */ 311 static inline void __iomem* 312 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid, 313 u8 sge_chain_count) 314 { 315 void __iomem *base_chain, *chain_virt; 316 u16 cmd_credit = ioc->facts.RequestCredit + 1; 317 318 base_chain = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET + 319 (cmd_credit * ioc->request_sz) + 320 REPLY_FREE_POOL_SIZE; 321 chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth * 322 ioc->request_sz) + (sge_chain_count * ioc->request_sz); 323 return chain_virt; 324 } 325 326 /** 327 * _base_get_chain_phys - Calculates and Returns physical address 328 * in BAR0 for scatter gather chains, for 329 * the provided smid. 330 * 331 * @ioc: per adapter object 332 * @smid: system request message index 333 * @sge_chain_count: Scatter gather chain count. 334 * 335 * Return: Physical chain address. 336 */ 337 static inline phys_addr_t 338 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid, 339 u8 sge_chain_count) 340 { 341 phys_addr_t base_chain_phys, chain_phys; 342 u16 cmd_credit = ioc->facts.RequestCredit + 1; 343 344 base_chain_phys = ioc->chip_phys + MPI_FRAME_START_OFFSET + 345 (cmd_credit * ioc->request_sz) + 346 REPLY_FREE_POOL_SIZE; 347 chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth * 348 ioc->request_sz) + (sge_chain_count * ioc->request_sz); 349 return chain_phys; 350 } 351 352 /** 353 * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host 354 * buffer address for the provided smid. 355 * (Each smid can have 64K starts from 17024) 356 * 357 * @ioc: per adapter object 358 * @smid: system request message index 359 * 360 * Return: Pointer to buffer location in BAR0. 361 */ 362 363 static void __iomem * 364 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid) 365 { 366 u16 cmd_credit = ioc->facts.RequestCredit + 1; 367 // Added extra 1 to reach end of chain. 368 void __iomem *chain_end = _base_get_chain(ioc, 369 cmd_credit + 1, 370 ioc->facts.MaxChainDepth); 371 return chain_end + (smid * 64 * 1024); 372 } 373 374 /** 375 * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped 376 * Host buffer Physical address for the provided smid. 377 * (Each smid can have 64K starts from 17024) 378 * 379 * @ioc: per adapter object 380 * @smid: system request message index 381 * 382 * Return: Pointer to buffer location in BAR0. 383 */ 384 static phys_addr_t 385 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid) 386 { 387 u16 cmd_credit = ioc->facts.RequestCredit + 1; 388 phys_addr_t chain_end_phys = _base_get_chain_phys(ioc, 389 cmd_credit + 1, 390 ioc->facts.MaxChainDepth); 391 return chain_end_phys + (smid * 64 * 1024); 392 } 393 394 /** 395 * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain 396 * lookup list and Provides chain_buffer 397 * address for the matching dma address. 398 * (Each smid can have 64K starts from 17024) 399 * 400 * @ioc: per adapter object 401 * @chain_buffer_dma: Chain buffer dma address. 402 * 403 * Return: Pointer to chain buffer. Or Null on Failure. 404 */ 405 static void * 406 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc, 407 dma_addr_t chain_buffer_dma) 408 { 409 u16 index, j; 410 struct chain_tracker *ct; 411 412 for (index = 0; index < ioc->scsiio_depth; index++) { 413 for (j = 0; j < ioc->chains_needed_per_io; j++) { 414 ct = &ioc->chain_lookup[index].chains_per_smid[j]; 415 if (ct && ct->chain_buffer_dma == chain_buffer_dma) 416 return ct->chain_buffer; 417 } 418 } 419 ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n"); 420 return NULL; 421 } 422 423 /** 424 * _clone_sg_entries - MPI EP's scsiio and config requests 425 * are handled here. Base function for 426 * double buffering, before submitting 427 * the requests. 428 * 429 * @ioc: per adapter object. 430 * @mpi_request: mf request pointer. 431 * @smid: system request message index. 432 */ 433 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc, 434 void *mpi_request, u16 smid) 435 { 436 Mpi2SGESimple32_t *sgel, *sgel_next; 437 u32 sgl_flags, sge_chain_count = 0; 438 bool is_write = false; 439 u16 i = 0; 440 void __iomem *buffer_iomem; 441 phys_addr_t buffer_iomem_phys; 442 void __iomem *buff_ptr; 443 phys_addr_t buff_ptr_phys; 444 void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO]; 445 void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO]; 446 phys_addr_t dst_addr_phys; 447 MPI2RequestHeader_t *request_hdr; 448 struct scsi_cmnd *scmd; 449 struct scatterlist *sg_scmd = NULL; 450 int is_scsiio_req = 0; 451 452 request_hdr = (MPI2RequestHeader_t *) mpi_request; 453 454 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) { 455 Mpi25SCSIIORequest_t *scsiio_request = 456 (Mpi25SCSIIORequest_t *)mpi_request; 457 sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL; 458 is_scsiio_req = 1; 459 } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) { 460 Mpi2ConfigRequest_t *config_req = 461 (Mpi2ConfigRequest_t *)mpi_request; 462 sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE; 463 } else 464 return; 465 466 /* From smid we can get scsi_cmd, once we have sg_scmd, 467 * we just need to get sg_virt and sg_next to get virtual 468 * address associated with sgel->Address. 469 */ 470 471 if (is_scsiio_req) { 472 /* Get scsi_cmd using smid */ 473 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid); 474 if (scmd == NULL) { 475 ioc_err(ioc, "scmd is NULL\n"); 476 return; 477 } 478 479 /* Get sg_scmd from scmd provided */ 480 sg_scmd = scsi_sglist(scmd); 481 } 482 483 /* 484 * 0 - 255 System register 485 * 256 - 4352 MPI Frame. (This is based on maxCredit 32) 486 * 4352 - 4864 Reply_free pool (512 byte is reserved 487 * considering maxCredit 32. Reply need extra 488 * room, for mCPU case kept four times of 489 * maxCredit). 490 * 4864 - 17152 SGE chain element. (32cmd * 3 chain of 491 * 128 byte size = 12288) 492 * 17152 - x Host buffer mapped with smid. 493 * (Each smid can have 64K Max IO.) 494 * BAR0+Last 1K MSIX Addr and Data 495 * Total size in use 2113664 bytes of 4MB BAR0 496 */ 497 498 buffer_iomem = _base_get_buffer_bar0(ioc, smid); 499 buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid); 500 501 buff_ptr = buffer_iomem; 502 buff_ptr_phys = buffer_iomem_phys; 503 WARN_ON(buff_ptr_phys > U32_MAX); 504 505 if (le32_to_cpu(sgel->FlagsLength) & 506 (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT)) 507 is_write = true; 508 509 for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) { 510 511 sgl_flags = 512 (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT); 513 514 switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) { 515 case MPI2_SGE_FLAGS_CHAIN_ELEMENT: 516 /* 517 * Helper function which on passing 518 * chain_buffer_dma returns chain_buffer. Get 519 * the virtual address for sgel->Address 520 */ 521 sgel_next = 522 _base_get_chain_buffer_dma_to_chain_buffer(ioc, 523 le32_to_cpu(sgel->Address)); 524 if (sgel_next == NULL) 525 return; 526 /* 527 * This is coping 128 byte chain 528 * frame (not a host buffer) 529 */ 530 dst_chain_addr[sge_chain_count] = 531 _base_get_chain(ioc, 532 smid, sge_chain_count); 533 src_chain_addr[sge_chain_count] = 534 (void *) sgel_next; 535 dst_addr_phys = _base_get_chain_phys(ioc, 536 smid, sge_chain_count); 537 WARN_ON(dst_addr_phys > U32_MAX); 538 sgel->Address = 539 cpu_to_le32(lower_32_bits(dst_addr_phys)); 540 sgel = sgel_next; 541 sge_chain_count++; 542 break; 543 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT: 544 if (is_write) { 545 if (is_scsiio_req) { 546 _base_clone_to_sys_mem(buff_ptr, 547 sg_virt(sg_scmd), 548 (le32_to_cpu(sgel->FlagsLength) & 549 0x00ffffff)); 550 /* 551 * FIXME: this relies on a a zero 552 * PCI mem_offset. 553 */ 554 sgel->Address = 555 cpu_to_le32((u32)buff_ptr_phys); 556 } else { 557 _base_clone_to_sys_mem(buff_ptr, 558 ioc->config_vaddr, 559 (le32_to_cpu(sgel->FlagsLength) & 560 0x00ffffff)); 561 sgel->Address = 562 cpu_to_le32((u32)buff_ptr_phys); 563 } 564 } 565 buff_ptr += (le32_to_cpu(sgel->FlagsLength) & 566 0x00ffffff); 567 buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) & 568 0x00ffffff); 569 if ((le32_to_cpu(sgel->FlagsLength) & 570 (MPI2_SGE_FLAGS_END_OF_BUFFER 571 << MPI2_SGE_FLAGS_SHIFT))) 572 goto eob_clone_chain; 573 else { 574 /* 575 * Every single element in MPT will have 576 * associated sg_next. Better to sanity that 577 * sg_next is not NULL, but it will be a bug 578 * if it is null. 579 */ 580 if (is_scsiio_req) { 581 sg_scmd = sg_next(sg_scmd); 582 if (sg_scmd) 583 sgel++; 584 else 585 goto eob_clone_chain; 586 } 587 } 588 break; 589 } 590 } 591 592 eob_clone_chain: 593 for (i = 0; i < sge_chain_count; i++) { 594 if (is_scsiio_req) 595 _base_clone_to_sys_mem(dst_chain_addr[i], 596 src_chain_addr[i], ioc->request_sz); 597 } 598 } 599 600 /** 601 * mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc 602 * @arg: input argument, used to derive ioc 603 * 604 * Return: 605 * 0 if controller is removed from pci subsystem. 606 * -1 for other case. 607 */ 608 static int mpt3sas_remove_dead_ioc_func(void *arg) 609 { 610 struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg; 611 struct pci_dev *pdev; 612 613 if (!ioc) 614 return -1; 615 616 pdev = ioc->pdev; 617 if (!pdev) 618 return -1; 619 pci_stop_and_remove_bus_device_locked(pdev); 620 return 0; 621 } 622 623 /** 624 * _base_sync_drv_fw_timestamp - Sync Drive-Fw TimeStamp. 625 * @ioc: Per Adapter Object 626 * 627 * Return: nothing. 628 */ 629 static void _base_sync_drv_fw_timestamp(struct MPT3SAS_ADAPTER *ioc) 630 { 631 Mpi26IoUnitControlRequest_t *mpi_request; 632 Mpi26IoUnitControlReply_t *mpi_reply; 633 u16 smid; 634 ktime_t current_time; 635 u64 TimeStamp = 0; 636 u8 issue_reset = 0; 637 638 mutex_lock(&ioc->scsih_cmds.mutex); 639 if (ioc->scsih_cmds.status != MPT3_CMD_NOT_USED) { 640 ioc_err(ioc, "scsih_cmd in use %s\n", __func__); 641 goto out; 642 } 643 ioc->scsih_cmds.status = MPT3_CMD_PENDING; 644 smid = mpt3sas_base_get_smid(ioc, ioc->scsih_cb_idx); 645 if (!smid) { 646 ioc_err(ioc, "Failed obtaining a smid %s\n", __func__); 647 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED; 648 goto out; 649 } 650 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 651 ioc->scsih_cmds.smid = smid; 652 memset(mpi_request, 0, sizeof(Mpi26IoUnitControlRequest_t)); 653 mpi_request->Function = MPI2_FUNCTION_IO_UNIT_CONTROL; 654 mpi_request->Operation = MPI26_CTRL_OP_SET_IOC_PARAMETER; 655 mpi_request->IOCParameter = MPI26_SET_IOC_PARAMETER_SYNC_TIMESTAMP; 656 current_time = ktime_get_real(); 657 TimeStamp = ktime_to_ms(current_time); 658 mpi_request->Reserved7 = cpu_to_le32(TimeStamp >> 32); 659 mpi_request->IOCParameterValue = cpu_to_le32(TimeStamp & 0xFFFFFFFF); 660 init_completion(&ioc->scsih_cmds.done); 661 ioc->put_smid_default(ioc, smid); 662 dinitprintk(ioc, ioc_info(ioc, 663 "Io Unit Control Sync TimeStamp (sending), @time %lld ms\n", 664 TimeStamp)); 665 wait_for_completion_timeout(&ioc->scsih_cmds.done, 666 MPT3SAS_TIMESYNC_TIMEOUT_SECONDS*HZ); 667 if (!(ioc->scsih_cmds.status & MPT3_CMD_COMPLETE)) { 668 mpt3sas_check_cmd_timeout(ioc, 669 ioc->scsih_cmds.status, mpi_request, 670 sizeof(Mpi2SasIoUnitControlRequest_t)/4, issue_reset); 671 goto issue_host_reset; 672 } 673 if (ioc->scsih_cmds.status & MPT3_CMD_REPLY_VALID) { 674 mpi_reply = ioc->scsih_cmds.reply; 675 dinitprintk(ioc, ioc_info(ioc, 676 "Io Unit Control sync timestamp (complete): ioc_status(0x%04x), loginfo(0x%08x)\n", 677 le16_to_cpu(mpi_reply->IOCStatus), 678 le32_to_cpu(mpi_reply->IOCLogInfo))); 679 } 680 issue_host_reset: 681 if (issue_reset) 682 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 683 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED; 684 out: 685 mutex_unlock(&ioc->scsih_cmds.mutex); 686 } 687 688 /** 689 * _base_fault_reset_work - workq handling ioc fault conditions 690 * @work: input argument, used to derive ioc 691 * 692 * Context: sleep. 693 */ 694 static void 695 _base_fault_reset_work(struct work_struct *work) 696 { 697 struct MPT3SAS_ADAPTER *ioc = 698 container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work); 699 unsigned long flags; 700 u32 doorbell; 701 int rc; 702 struct task_struct *p; 703 704 705 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 706 if ((ioc->shost_recovery && (ioc->ioc_coredump_loop == 0)) || 707 ioc->pci_error_recovery) 708 goto rearm_timer; 709 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 710 711 doorbell = mpt3sas_base_get_iocstate(ioc, 0); 712 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) { 713 ioc_err(ioc, "SAS host is non-operational !!!!\n"); 714 715 /* It may be possible that EEH recovery can resolve some of 716 * pci bus failure issues rather removing the dead ioc function 717 * by considering controller is in a non-operational state. So 718 * here priority is given to the EEH recovery. If it doesn't 719 * not resolve this issue, mpt3sas driver will consider this 720 * controller to non-operational state and remove the dead ioc 721 * function. 722 */ 723 if (ioc->non_operational_loop++ < 5) { 724 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, 725 flags); 726 goto rearm_timer; 727 } 728 729 /* 730 * Call _scsih_flush_pending_cmds callback so that we flush all 731 * pending commands back to OS. This call is required to avoid 732 * deadlock at block layer. Dead IOC will fail to do diag reset, 733 * and this call is safe since dead ioc will never return any 734 * command back from HW. 735 */ 736 mpt3sas_base_pause_mq_polling(ioc); 737 ioc->schedule_dead_ioc_flush_running_cmds(ioc); 738 /* 739 * Set remove_host flag early since kernel thread will 740 * take some time to execute. 741 */ 742 ioc->remove_host = 1; 743 /*Remove the Dead Host */ 744 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc, 745 "%s_dead_ioc_%d", ioc->driver_name, ioc->id); 746 if (IS_ERR(p)) 747 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n", 748 __func__); 749 else 750 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n", 751 __func__); 752 return; /* don't rearm timer */ 753 } 754 755 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) { 756 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ? 757 ioc->manu_pg11.CoreDumpTOSec : 758 MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS; 759 760 timeout /= (FAULT_POLLING_INTERVAL/1000); 761 762 if (ioc->ioc_coredump_loop == 0) { 763 mpt3sas_print_coredump_info(ioc, 764 doorbell & MPI2_DOORBELL_DATA_MASK); 765 /* do not accept any IOs and disable the interrupts */ 766 spin_lock_irqsave( 767 &ioc->ioc_reset_in_progress_lock, flags); 768 ioc->shost_recovery = 1; 769 spin_unlock_irqrestore( 770 &ioc->ioc_reset_in_progress_lock, flags); 771 mpt3sas_base_mask_interrupts(ioc); 772 mpt3sas_base_pause_mq_polling(ioc); 773 _base_clear_outstanding_commands(ioc); 774 } 775 776 ioc_info(ioc, "%s: CoreDump loop %d.", 777 __func__, ioc->ioc_coredump_loop); 778 779 /* Wait until CoreDump completes or times out */ 780 if (ioc->ioc_coredump_loop++ < timeout) { 781 spin_lock_irqsave( 782 &ioc->ioc_reset_in_progress_lock, flags); 783 goto rearm_timer; 784 } 785 } 786 787 if (ioc->ioc_coredump_loop) { 788 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_COREDUMP) 789 ioc_err(ioc, "%s: CoreDump completed. LoopCount: %d", 790 __func__, ioc->ioc_coredump_loop); 791 else 792 ioc_err(ioc, "%s: CoreDump Timed out. LoopCount: %d", 793 __func__, ioc->ioc_coredump_loop); 794 ioc->ioc_coredump_loop = MPT3SAS_COREDUMP_LOOP_DONE; 795 } 796 ioc->non_operational_loop = 0; 797 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) { 798 rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 799 ioc_warn(ioc, "%s: hard reset: %s\n", 800 __func__, rc == 0 ? "success" : "failed"); 801 doorbell = mpt3sas_base_get_iocstate(ioc, 0); 802 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 803 mpt3sas_print_fault_code(ioc, doorbell & 804 MPI2_DOORBELL_DATA_MASK); 805 } else if ((doorbell & MPI2_IOC_STATE_MASK) == 806 MPI2_IOC_STATE_COREDUMP) 807 mpt3sas_print_coredump_info(ioc, doorbell & 808 MPI2_DOORBELL_DATA_MASK); 809 if (rc && (doorbell & MPI2_IOC_STATE_MASK) != 810 MPI2_IOC_STATE_OPERATIONAL) 811 return; /* don't rearm timer */ 812 } 813 ioc->ioc_coredump_loop = 0; 814 if (ioc->time_sync_interval && 815 ++ioc->timestamp_update_count >= ioc->time_sync_interval) { 816 ioc->timestamp_update_count = 0; 817 _base_sync_drv_fw_timestamp(ioc); 818 } 819 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 820 rearm_timer: 821 if (ioc->fault_reset_work_q) 822 queue_delayed_work(ioc->fault_reset_work_q, 823 &ioc->fault_reset_work, 824 msecs_to_jiffies(FAULT_POLLING_INTERVAL)); 825 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 826 } 827 828 /** 829 * mpt3sas_base_start_watchdog - start the fault_reset_work_q 830 * @ioc: per adapter object 831 * 832 * Context: sleep. 833 */ 834 void 835 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc) 836 { 837 unsigned long flags; 838 839 if (ioc->fault_reset_work_q) 840 return; 841 842 ioc->timestamp_update_count = 0; 843 /* initialize fault polling */ 844 845 INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work); 846 snprintf(ioc->fault_reset_work_q_name, 847 sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status", 848 ioc->driver_name, ioc->id); 849 ioc->fault_reset_work_q = 850 create_singlethread_workqueue(ioc->fault_reset_work_q_name); 851 if (!ioc->fault_reset_work_q) { 852 ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__); 853 return; 854 } 855 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 856 if (ioc->fault_reset_work_q) 857 queue_delayed_work(ioc->fault_reset_work_q, 858 &ioc->fault_reset_work, 859 msecs_to_jiffies(FAULT_POLLING_INTERVAL)); 860 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 861 } 862 863 /** 864 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q 865 * @ioc: per adapter object 866 * 867 * Context: sleep. 868 */ 869 void 870 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc) 871 { 872 unsigned long flags; 873 struct workqueue_struct *wq; 874 875 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 876 wq = ioc->fault_reset_work_q; 877 ioc->fault_reset_work_q = NULL; 878 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 879 if (wq) { 880 if (!cancel_delayed_work_sync(&ioc->fault_reset_work)) 881 flush_workqueue(wq); 882 destroy_workqueue(wq); 883 } 884 } 885 886 /** 887 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code 888 * @ioc: per adapter object 889 * @fault_code: fault code 890 */ 891 void 892 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code) 893 { 894 ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code); 895 } 896 897 /** 898 * mpt3sas_base_coredump_info - verbose translation of firmware CoreDump state 899 * @ioc: per adapter object 900 * @fault_code: fault code 901 * 902 * Return: nothing. 903 */ 904 void 905 mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code) 906 { 907 ioc_err(ioc, "coredump_state(0x%04x)!\n", fault_code); 908 } 909 910 /** 911 * mpt3sas_base_wait_for_coredump_completion - Wait until coredump 912 * completes or times out 913 * @ioc: per adapter object 914 * @caller: caller function name 915 * 916 * Return: 0 for success, non-zero for failure. 917 */ 918 int 919 mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER *ioc, 920 const char *caller) 921 { 922 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ? 923 ioc->manu_pg11.CoreDumpTOSec : 924 MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS; 925 926 int ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_FAULT, 927 timeout); 928 929 if (ioc_state) 930 ioc_err(ioc, 931 "%s: CoreDump timed out. (ioc_state=0x%x)\n", 932 caller, ioc_state); 933 else 934 ioc_info(ioc, 935 "%s: CoreDump completed. (ioc_state=0x%x)\n", 936 caller, ioc_state); 937 938 return ioc_state; 939 } 940 941 /** 942 * mpt3sas_halt_firmware - halt's mpt controller firmware 943 * @ioc: per adapter object 944 * 945 * For debugging timeout related issues. Writing 0xCOFFEE00 946 * to the doorbell register will halt controller firmware. With 947 * the purpose to stop both driver and firmware, the enduser can 948 * obtain a ring buffer from controller UART. 949 */ 950 void 951 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc) 952 { 953 u32 doorbell; 954 955 if (!ioc->fwfault_debug) 956 return; 957 958 dump_stack(); 959 960 doorbell = ioc->base_readl_ext_retry(&ioc->chip->Doorbell); 961 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 962 mpt3sas_print_fault_code(ioc, doorbell & 963 MPI2_DOORBELL_DATA_MASK); 964 } else if ((doorbell & MPI2_IOC_STATE_MASK) == 965 MPI2_IOC_STATE_COREDUMP) { 966 mpt3sas_print_coredump_info(ioc, doorbell & 967 MPI2_DOORBELL_DATA_MASK); 968 } else { 969 writel(0xC0FFEE00, &ioc->chip->Doorbell); 970 ioc_err(ioc, "Firmware is halted due to command timeout\n"); 971 } 972 973 if (ioc->fwfault_debug == 2) 974 for (;;) 975 ; 976 else 977 panic("panic in %s\n", __func__); 978 } 979 980 /** 981 * _base_sas_ioc_info - verbose translation of the ioc status 982 * @ioc: per adapter object 983 * @mpi_reply: reply mf payload returned from firmware 984 * @request_hdr: request mf 985 */ 986 static void 987 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply, 988 MPI2RequestHeader_t *request_hdr) 989 { 990 u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & 991 MPI2_IOCSTATUS_MASK; 992 char *desc = NULL; 993 u16 frame_sz; 994 char *func_str = NULL; 995 996 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */ 997 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST || 998 request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH || 999 request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION) 1000 return; 1001 1002 if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE) 1003 return; 1004 /* 1005 * Older Firmware version doesn't support driver trigger pages. 1006 * So, skip displaying 'config invalid type' type 1007 * of error message. 1008 */ 1009 if (request_hdr->Function == MPI2_FUNCTION_CONFIG) { 1010 Mpi2ConfigRequest_t *rqst = (Mpi2ConfigRequest_t *)request_hdr; 1011 1012 if ((rqst->ExtPageType == 1013 MPI2_CONFIG_EXTPAGETYPE_DRIVER_PERSISTENT_TRIGGER) && 1014 !(ioc->logging_level & MPT_DEBUG_CONFIG)) { 1015 return; 1016 } 1017 } 1018 1019 switch (ioc_status) { 1020 1021 /**************************************************************************** 1022 * Common IOCStatus values for all replies 1023 ****************************************************************************/ 1024 1025 case MPI2_IOCSTATUS_INVALID_FUNCTION: 1026 desc = "invalid function"; 1027 break; 1028 case MPI2_IOCSTATUS_BUSY: 1029 desc = "busy"; 1030 break; 1031 case MPI2_IOCSTATUS_INVALID_SGL: 1032 desc = "invalid sgl"; 1033 break; 1034 case MPI2_IOCSTATUS_INTERNAL_ERROR: 1035 desc = "internal error"; 1036 break; 1037 case MPI2_IOCSTATUS_INVALID_VPID: 1038 desc = "invalid vpid"; 1039 break; 1040 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES: 1041 desc = "insufficient resources"; 1042 break; 1043 case MPI2_IOCSTATUS_INSUFFICIENT_POWER: 1044 desc = "insufficient power"; 1045 break; 1046 case MPI2_IOCSTATUS_INVALID_FIELD: 1047 desc = "invalid field"; 1048 break; 1049 case MPI2_IOCSTATUS_INVALID_STATE: 1050 desc = "invalid state"; 1051 break; 1052 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED: 1053 desc = "op state not supported"; 1054 break; 1055 1056 /**************************************************************************** 1057 * Config IOCStatus values 1058 ****************************************************************************/ 1059 1060 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION: 1061 desc = "config invalid action"; 1062 break; 1063 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE: 1064 desc = "config invalid type"; 1065 break; 1066 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE: 1067 desc = "config invalid page"; 1068 break; 1069 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA: 1070 desc = "config invalid data"; 1071 break; 1072 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS: 1073 desc = "config no defaults"; 1074 break; 1075 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT: 1076 desc = "config can't commit"; 1077 break; 1078 1079 /**************************************************************************** 1080 * SCSI IO Reply 1081 ****************************************************************************/ 1082 1083 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR: 1084 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE: 1085 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE: 1086 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN: 1087 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN: 1088 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR: 1089 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR: 1090 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED: 1091 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH: 1092 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED: 1093 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED: 1094 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED: 1095 break; 1096 1097 /**************************************************************************** 1098 * For use by SCSI Initiator and SCSI Target end-to-end data protection 1099 ****************************************************************************/ 1100 1101 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR: 1102 desc = "eedp guard error"; 1103 break; 1104 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR: 1105 desc = "eedp ref tag error"; 1106 break; 1107 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR: 1108 desc = "eedp app tag error"; 1109 break; 1110 1111 /**************************************************************************** 1112 * SCSI Target values 1113 ****************************************************************************/ 1114 1115 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX: 1116 desc = "target invalid io index"; 1117 break; 1118 case MPI2_IOCSTATUS_TARGET_ABORTED: 1119 desc = "target aborted"; 1120 break; 1121 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE: 1122 desc = "target no conn retryable"; 1123 break; 1124 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION: 1125 desc = "target no connection"; 1126 break; 1127 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH: 1128 desc = "target xfer count mismatch"; 1129 break; 1130 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR: 1131 desc = "target data offset error"; 1132 break; 1133 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA: 1134 desc = "target too much write data"; 1135 break; 1136 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT: 1137 desc = "target iu too short"; 1138 break; 1139 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT: 1140 desc = "target ack nak timeout"; 1141 break; 1142 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED: 1143 desc = "target nak received"; 1144 break; 1145 1146 /**************************************************************************** 1147 * Serial Attached SCSI values 1148 ****************************************************************************/ 1149 1150 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED: 1151 desc = "smp request failed"; 1152 break; 1153 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN: 1154 desc = "smp data overrun"; 1155 break; 1156 1157 /**************************************************************************** 1158 * Diagnostic Buffer Post / Diagnostic Release values 1159 ****************************************************************************/ 1160 1161 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED: 1162 desc = "diagnostic released"; 1163 break; 1164 default: 1165 break; 1166 } 1167 1168 if (!desc) 1169 return; 1170 1171 switch (request_hdr->Function) { 1172 case MPI2_FUNCTION_CONFIG: 1173 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size; 1174 func_str = "config_page"; 1175 break; 1176 case MPI2_FUNCTION_SCSI_TASK_MGMT: 1177 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t); 1178 func_str = "task_mgmt"; 1179 break; 1180 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL: 1181 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t); 1182 func_str = "sas_iounit_ctl"; 1183 break; 1184 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR: 1185 frame_sz = sizeof(Mpi2SepRequest_t); 1186 func_str = "enclosure"; 1187 break; 1188 case MPI2_FUNCTION_IOC_INIT: 1189 frame_sz = sizeof(Mpi2IOCInitRequest_t); 1190 func_str = "ioc_init"; 1191 break; 1192 case MPI2_FUNCTION_PORT_ENABLE: 1193 frame_sz = sizeof(Mpi2PortEnableRequest_t); 1194 func_str = "port_enable"; 1195 break; 1196 case MPI2_FUNCTION_SMP_PASSTHROUGH: 1197 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size; 1198 func_str = "smp_passthru"; 1199 break; 1200 case MPI2_FUNCTION_NVME_ENCAPSULATED: 1201 frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) + 1202 ioc->sge_size; 1203 func_str = "nvme_encapsulated"; 1204 break; 1205 default: 1206 frame_sz = 32; 1207 func_str = "unknown"; 1208 break; 1209 } 1210 1211 ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n", 1212 desc, ioc_status, request_hdr, func_str); 1213 1214 _debug_dump_mf(request_hdr, frame_sz/4); 1215 } 1216 1217 /** 1218 * _base_display_event_data - verbose translation of firmware asyn events 1219 * @ioc: per adapter object 1220 * @mpi_reply: reply mf payload returned from firmware 1221 */ 1222 static void 1223 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc, 1224 Mpi2EventNotificationReply_t *mpi_reply) 1225 { 1226 char *desc = NULL; 1227 u16 event; 1228 1229 if (!(ioc->logging_level & MPT_DEBUG_EVENTS)) 1230 return; 1231 1232 event = le16_to_cpu(mpi_reply->Event); 1233 1234 switch (event) { 1235 case MPI2_EVENT_LOG_DATA: 1236 desc = "Log Data"; 1237 break; 1238 case MPI2_EVENT_STATE_CHANGE: 1239 desc = "Status Change"; 1240 break; 1241 case MPI2_EVENT_HARD_RESET_RECEIVED: 1242 desc = "Hard Reset Received"; 1243 break; 1244 case MPI2_EVENT_EVENT_CHANGE: 1245 desc = "Event Change"; 1246 break; 1247 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE: 1248 desc = "Device Status Change"; 1249 break; 1250 case MPI2_EVENT_IR_OPERATION_STATUS: 1251 if (!ioc->hide_ir_msg) 1252 desc = "IR Operation Status"; 1253 break; 1254 case MPI2_EVENT_SAS_DISCOVERY: 1255 { 1256 Mpi2EventDataSasDiscovery_t *event_data = 1257 (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData; 1258 ioc_info(ioc, "Discovery: (%s)", 1259 event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ? 1260 "start" : "stop"); 1261 if (event_data->DiscoveryStatus) 1262 pr_cont(" discovery_status(0x%08x)", 1263 le32_to_cpu(event_data->DiscoveryStatus)); 1264 pr_cont("\n"); 1265 return; 1266 } 1267 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE: 1268 desc = "SAS Broadcast Primitive"; 1269 break; 1270 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE: 1271 desc = "SAS Init Device Status Change"; 1272 break; 1273 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW: 1274 desc = "SAS Init Table Overflow"; 1275 break; 1276 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST: 1277 desc = "SAS Topology Change List"; 1278 break; 1279 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE: 1280 desc = "SAS Enclosure Device Status Change"; 1281 break; 1282 case MPI2_EVENT_IR_VOLUME: 1283 if (!ioc->hide_ir_msg) 1284 desc = "IR Volume"; 1285 break; 1286 case MPI2_EVENT_IR_PHYSICAL_DISK: 1287 if (!ioc->hide_ir_msg) 1288 desc = "IR Physical Disk"; 1289 break; 1290 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST: 1291 if (!ioc->hide_ir_msg) 1292 desc = "IR Configuration Change List"; 1293 break; 1294 case MPI2_EVENT_LOG_ENTRY_ADDED: 1295 if (!ioc->hide_ir_msg) 1296 desc = "Log Entry Added"; 1297 break; 1298 case MPI2_EVENT_TEMP_THRESHOLD: 1299 desc = "Temperature Threshold"; 1300 break; 1301 case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION: 1302 desc = "Cable Event"; 1303 break; 1304 case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR: 1305 desc = "SAS Device Discovery Error"; 1306 break; 1307 case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE: 1308 desc = "PCIE Device Status Change"; 1309 break; 1310 case MPI2_EVENT_PCIE_ENUMERATION: 1311 { 1312 Mpi26EventDataPCIeEnumeration_t *event_data = 1313 (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData; 1314 ioc_info(ioc, "PCIE Enumeration: (%s)", 1315 event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ? 1316 "start" : "stop"); 1317 if (event_data->EnumerationStatus) 1318 pr_cont("enumeration_status(0x%08x)", 1319 le32_to_cpu(event_data->EnumerationStatus)); 1320 pr_cont("\n"); 1321 return; 1322 } 1323 case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST: 1324 desc = "PCIE Topology Change List"; 1325 break; 1326 } 1327 1328 if (!desc) 1329 return; 1330 1331 ioc_info(ioc, "%s\n", desc); 1332 } 1333 1334 /** 1335 * _base_sas_log_info - verbose translation of firmware log info 1336 * @ioc: per adapter object 1337 * @log_info: log info 1338 */ 1339 static void 1340 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc, u32 log_info) 1341 { 1342 union loginfo_type { 1343 u32 loginfo; 1344 struct { 1345 u32 subcode:16; 1346 u32 code:8; 1347 u32 originator:4; 1348 u32 bus_type:4; 1349 } dw; 1350 }; 1351 union loginfo_type sas_loginfo; 1352 char *originator_str = NULL; 1353 1354 sas_loginfo.loginfo = log_info; 1355 if (sas_loginfo.dw.bus_type != 3 /*SAS*/) 1356 return; 1357 1358 /* each nexus loss loginfo */ 1359 if (log_info == 0x31170000) 1360 return; 1361 1362 /* eat the loginfos associated with task aborts */ 1363 if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info == 1364 0x31140000 || log_info == 0x31130000)) 1365 return; 1366 1367 switch (sas_loginfo.dw.originator) { 1368 case 0: 1369 originator_str = "IOP"; 1370 break; 1371 case 1: 1372 originator_str = "PL"; 1373 break; 1374 case 2: 1375 if (!ioc->hide_ir_msg) 1376 originator_str = "IR"; 1377 else 1378 originator_str = "WarpDrive"; 1379 break; 1380 } 1381 1382 ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n", 1383 log_info, 1384 originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode); 1385 } 1386 1387 /** 1388 * _base_display_reply_info - handle reply descriptors depending on IOC Status 1389 * @ioc: per adapter object 1390 * @smid: system request message index 1391 * @msix_index: MSIX table index supplied by the OS 1392 * @reply: reply message frame (lower 32bit addr) 1393 */ 1394 static void 1395 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 1396 u32 reply) 1397 { 1398 MPI2DefaultReply_t *mpi_reply; 1399 u16 ioc_status; 1400 u32 loginfo = 0; 1401 1402 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1403 if (unlikely(!mpi_reply)) { 1404 ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n", 1405 __FILE__, __LINE__, __func__); 1406 return; 1407 } 1408 ioc_status = le16_to_cpu(mpi_reply->IOCStatus); 1409 1410 if ((ioc_status & MPI2_IOCSTATUS_MASK) && 1411 (ioc->logging_level & MPT_DEBUG_REPLY)) { 1412 _base_sas_ioc_info(ioc, mpi_reply, 1413 mpt3sas_base_get_msg_frame(ioc, smid)); 1414 } 1415 1416 if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) { 1417 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo); 1418 _base_sas_log_info(ioc, loginfo); 1419 } 1420 1421 if (ioc_status || loginfo) { 1422 ioc_status &= MPI2_IOCSTATUS_MASK; 1423 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo); 1424 } 1425 } 1426 1427 /** 1428 * mpt3sas_base_done - base internal command completion routine 1429 * @ioc: per adapter object 1430 * @smid: system request message index 1431 * @msix_index: MSIX table index supplied by the OS 1432 * @reply: reply message frame(lower 32bit addr) 1433 * 1434 * Return: 1435 * 1 meaning mf should be freed from _base_interrupt 1436 * 0 means the mf is freed from this function. 1437 */ 1438 u8 1439 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 1440 u32 reply) 1441 { 1442 MPI2DefaultReply_t *mpi_reply; 1443 1444 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1445 if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK) 1446 return mpt3sas_check_for_pending_internal_cmds(ioc, smid); 1447 1448 if (ioc->base_cmds.status == MPT3_CMD_NOT_USED) 1449 return 1; 1450 1451 ioc->base_cmds.status |= MPT3_CMD_COMPLETE; 1452 if (mpi_reply) { 1453 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID; 1454 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4); 1455 } 1456 ioc->base_cmds.status &= ~MPT3_CMD_PENDING; 1457 1458 complete(&ioc->base_cmds.done); 1459 return 1; 1460 } 1461 1462 /** 1463 * _base_async_event - main callback handler for firmware asyn events 1464 * @ioc: per adapter object 1465 * @msix_index: MSIX table index supplied by the OS 1466 * @reply: reply message frame(lower 32bit addr) 1467 * 1468 * Return: 1469 * 1 meaning mf should be freed from _base_interrupt 1470 * 0 means the mf is freed from this function. 1471 */ 1472 static u8 1473 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply) 1474 { 1475 Mpi2EventNotificationReply_t *mpi_reply; 1476 Mpi2EventAckRequest_t *ack_request; 1477 u16 smid; 1478 struct _event_ack_list *delayed_event_ack; 1479 1480 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1481 if (!mpi_reply) 1482 return 1; 1483 if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION) 1484 return 1; 1485 1486 _base_display_event_data(ioc, mpi_reply); 1487 1488 if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED)) 1489 goto out; 1490 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 1491 if (!smid) { 1492 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack), 1493 GFP_ATOMIC); 1494 if (!delayed_event_ack) 1495 goto out; 1496 INIT_LIST_HEAD(&delayed_event_ack->list); 1497 delayed_event_ack->Event = mpi_reply->Event; 1498 delayed_event_ack->EventContext = mpi_reply->EventContext; 1499 list_add_tail(&delayed_event_ack->list, 1500 &ioc->delayed_event_ack_list); 1501 dewtprintk(ioc, 1502 ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n", 1503 le16_to_cpu(mpi_reply->Event))); 1504 goto out; 1505 } 1506 1507 ack_request = mpt3sas_base_get_msg_frame(ioc, smid); 1508 memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t)); 1509 ack_request->Function = MPI2_FUNCTION_EVENT_ACK; 1510 ack_request->Event = mpi_reply->Event; 1511 ack_request->EventContext = mpi_reply->EventContext; 1512 ack_request->VF_ID = 0; /* TODO */ 1513 ack_request->VP_ID = 0; 1514 ioc->put_smid_default(ioc, smid); 1515 1516 out: 1517 1518 /* scsih callback handler */ 1519 mpt3sas_scsih_event_callback(ioc, msix_index, reply); 1520 1521 /* ctl callback handler */ 1522 mpt3sas_ctl_event_callback(ioc, msix_index, reply); 1523 1524 return 1; 1525 } 1526 1527 static struct scsiio_tracker * 1528 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid) 1529 { 1530 struct scsi_cmnd *cmd; 1531 1532 if (WARN_ON(!smid) || 1533 WARN_ON(smid >= ioc->hi_priority_smid)) 1534 return NULL; 1535 1536 cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid); 1537 if (cmd) 1538 return scsi_cmd_priv(cmd); 1539 1540 return NULL; 1541 } 1542 1543 /** 1544 * _base_get_cb_idx - obtain the callback index 1545 * @ioc: per adapter object 1546 * @smid: system request message index 1547 * 1548 * Return: callback index. 1549 */ 1550 static u8 1551 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid) 1552 { 1553 int i; 1554 u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1; 1555 u8 cb_idx = 0xFF; 1556 1557 if (smid < ioc->hi_priority_smid) { 1558 struct scsiio_tracker *st; 1559 1560 if (smid < ctl_smid) { 1561 st = _get_st_from_smid(ioc, smid); 1562 if (st) 1563 cb_idx = st->cb_idx; 1564 } else if (smid == ctl_smid) 1565 cb_idx = ioc->ctl_cb_idx; 1566 } else if (smid < ioc->internal_smid) { 1567 i = smid - ioc->hi_priority_smid; 1568 cb_idx = ioc->hpr_lookup[i].cb_idx; 1569 } else if (smid <= ioc->hba_queue_depth) { 1570 i = smid - ioc->internal_smid; 1571 cb_idx = ioc->internal_lookup[i].cb_idx; 1572 } 1573 return cb_idx; 1574 } 1575 1576 /** 1577 * mpt3sas_base_pause_mq_polling - pause polling on the mq poll queues 1578 * when driver is flushing out the IOs. 1579 * @ioc: per adapter object 1580 * 1581 * Pause polling on the mq poll (io uring) queues when driver is flushing 1582 * out the IOs. Otherwise we may see the race condition of completing the same 1583 * IO from two paths. 1584 * 1585 * Returns nothing. 1586 */ 1587 void 1588 mpt3sas_base_pause_mq_polling(struct MPT3SAS_ADAPTER *ioc) 1589 { 1590 int iopoll_q_count = 1591 ioc->reply_queue_count - ioc->iopoll_q_start_index; 1592 int qid; 1593 1594 for (qid = 0; qid < iopoll_q_count; qid++) 1595 atomic_set(&ioc->io_uring_poll_queues[qid].pause, 1); 1596 1597 /* 1598 * wait for current poll to complete. 1599 */ 1600 for (qid = 0; qid < iopoll_q_count; qid++) { 1601 while (atomic_read(&ioc->io_uring_poll_queues[qid].busy)) { 1602 cpu_relax(); 1603 udelay(500); 1604 } 1605 } 1606 } 1607 1608 /** 1609 * mpt3sas_base_resume_mq_polling - Resume polling on mq poll queues. 1610 * @ioc: per adapter object 1611 * 1612 * Returns nothing. 1613 */ 1614 void 1615 mpt3sas_base_resume_mq_polling(struct MPT3SAS_ADAPTER *ioc) 1616 { 1617 int iopoll_q_count = 1618 ioc->reply_queue_count - ioc->iopoll_q_start_index; 1619 int qid; 1620 1621 for (qid = 0; qid < iopoll_q_count; qid++) 1622 atomic_set(&ioc->io_uring_poll_queues[qid].pause, 0); 1623 } 1624 1625 /** 1626 * mpt3sas_base_mask_interrupts - disable interrupts 1627 * @ioc: per adapter object 1628 * 1629 * Disabling ResetIRQ, Reply and Doorbell Interrupts 1630 */ 1631 void 1632 mpt3sas_base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc) 1633 { 1634 u32 him_register; 1635 1636 ioc->mask_interrupts = 1; 1637 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask); 1638 him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK; 1639 writel(him_register, &ioc->chip->HostInterruptMask); 1640 ioc->base_readl(&ioc->chip->HostInterruptMask); 1641 } 1642 1643 /** 1644 * mpt3sas_base_unmask_interrupts - enable interrupts 1645 * @ioc: per adapter object 1646 * 1647 * Enabling only Reply Interrupts 1648 */ 1649 void 1650 mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc) 1651 { 1652 u32 him_register; 1653 1654 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask); 1655 him_register &= ~MPI2_HIM_RIM; 1656 writel(him_register, &ioc->chip->HostInterruptMask); 1657 ioc->mask_interrupts = 0; 1658 } 1659 1660 union reply_descriptor { 1661 u64 word; 1662 struct { 1663 u32 low; 1664 u32 high; 1665 } u; 1666 }; 1667 1668 static u32 base_mod64(u64 dividend, u32 divisor) 1669 { 1670 u32 remainder; 1671 1672 if (!divisor) 1673 pr_err("mpt3sas: DIVISOR is zero, in div fn\n"); 1674 remainder = do_div(dividend, divisor); 1675 return remainder; 1676 } 1677 1678 /** 1679 * _base_process_reply_queue - Process reply descriptors from reply 1680 * descriptor post queue. 1681 * @reply_q: per IRQ's reply queue object. 1682 * 1683 * Return: number of reply descriptors processed from reply 1684 * descriptor queue. 1685 */ 1686 static int 1687 _base_process_reply_queue(struct adapter_reply_queue *reply_q) 1688 { 1689 union reply_descriptor rd; 1690 u64 completed_cmds; 1691 u8 request_descript_type; 1692 u16 smid; 1693 u8 cb_idx; 1694 u32 reply; 1695 u8 msix_index = reply_q->msix_index; 1696 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc; 1697 Mpi2ReplyDescriptorsUnion_t *rpf; 1698 u8 rc; 1699 1700 completed_cmds = 0; 1701 if (!atomic_add_unless(&reply_q->busy, 1, 1)) 1702 return completed_cmds; 1703 1704 rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index]; 1705 request_descript_type = rpf->Default.ReplyFlags 1706 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 1707 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) { 1708 atomic_dec(&reply_q->busy); 1709 return completed_cmds; 1710 } 1711 1712 cb_idx = 0xFF; 1713 do { 1714 rd.word = le64_to_cpu(rpf->Words); 1715 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX) 1716 goto out; 1717 reply = 0; 1718 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1); 1719 if (request_descript_type == 1720 MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS || 1721 request_descript_type == 1722 MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS || 1723 request_descript_type == 1724 MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) { 1725 cb_idx = _base_get_cb_idx(ioc, smid); 1726 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) && 1727 (likely(mpt_callbacks[cb_idx] != NULL))) { 1728 rc = mpt_callbacks[cb_idx](ioc, smid, 1729 msix_index, 0); 1730 if (rc) 1731 mpt3sas_base_free_smid(ioc, smid); 1732 } 1733 } else if (request_descript_type == 1734 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) { 1735 reply = le32_to_cpu( 1736 rpf->AddressReply.ReplyFrameAddress); 1737 if (reply > ioc->reply_dma_max_address || 1738 reply < ioc->reply_dma_min_address) 1739 reply = 0; 1740 if (smid) { 1741 cb_idx = _base_get_cb_idx(ioc, smid); 1742 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) && 1743 (likely(mpt_callbacks[cb_idx] != NULL))) { 1744 rc = mpt_callbacks[cb_idx](ioc, smid, 1745 msix_index, reply); 1746 if (reply) 1747 _base_display_reply_info(ioc, 1748 smid, msix_index, reply); 1749 if (rc) 1750 mpt3sas_base_free_smid(ioc, 1751 smid); 1752 } 1753 } else { 1754 _base_async_event(ioc, msix_index, reply); 1755 } 1756 1757 /* reply free queue handling */ 1758 if (reply) { 1759 ioc->reply_free_host_index = 1760 (ioc->reply_free_host_index == 1761 (ioc->reply_free_queue_depth - 1)) ? 1762 0 : ioc->reply_free_host_index + 1; 1763 ioc->reply_free[ioc->reply_free_host_index] = 1764 cpu_to_le32(reply); 1765 if (ioc->is_mcpu_endpoint) 1766 _base_clone_reply_to_sys_mem(ioc, 1767 reply, 1768 ioc->reply_free_host_index); 1769 writel(ioc->reply_free_host_index, 1770 &ioc->chip->ReplyFreeHostIndex); 1771 } 1772 } 1773 1774 rpf->Words = cpu_to_le64(ULLONG_MAX); 1775 reply_q->reply_post_host_index = 1776 (reply_q->reply_post_host_index == 1777 (ioc->reply_post_queue_depth - 1)) ? 0 : 1778 reply_q->reply_post_host_index + 1; 1779 request_descript_type = 1780 reply_q->reply_post_free[reply_q->reply_post_host_index]. 1781 Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 1782 completed_cmds++; 1783 /* Update the reply post host index after continuously 1784 * processing the threshold number of Reply Descriptors. 1785 * So that FW can find enough entries to post the Reply 1786 * Descriptors in the reply descriptor post queue. 1787 */ 1788 if (completed_cmds >= ioc->thresh_hold) { 1789 if (ioc->combined_reply_queue) { 1790 writel(reply_q->reply_post_host_index | 1791 ((msix_index & 7) << 1792 MPI2_RPHI_MSIX_INDEX_SHIFT), 1793 ioc->replyPostRegisterIndex[msix_index/8]); 1794 } else { 1795 writel(reply_q->reply_post_host_index | 1796 (msix_index << 1797 MPI2_RPHI_MSIX_INDEX_SHIFT), 1798 &ioc->chip->ReplyPostHostIndex); 1799 } 1800 if (!reply_q->is_iouring_poll_q && 1801 !reply_q->irq_poll_scheduled) { 1802 reply_q->irq_poll_scheduled = true; 1803 irq_poll_sched(&reply_q->irqpoll); 1804 } 1805 atomic_dec(&reply_q->busy); 1806 return completed_cmds; 1807 } 1808 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) 1809 goto out; 1810 if (!reply_q->reply_post_host_index) 1811 rpf = reply_q->reply_post_free; 1812 else 1813 rpf++; 1814 } while (1); 1815 1816 out: 1817 1818 if (!completed_cmds) { 1819 atomic_dec(&reply_q->busy); 1820 return completed_cmds; 1821 } 1822 1823 if (ioc->is_warpdrive) { 1824 writel(reply_q->reply_post_host_index, 1825 ioc->reply_post_host_index[msix_index]); 1826 atomic_dec(&reply_q->busy); 1827 return completed_cmds; 1828 } 1829 1830 /* Update Reply Post Host Index. 1831 * For those HBA's which support combined reply queue feature 1832 * 1. Get the correct Supplemental Reply Post Host Index Register. 1833 * i.e. (msix_index / 8)th entry from Supplemental Reply Post Host 1834 * Index Register address bank i.e replyPostRegisterIndex[], 1835 * 2. Then update this register with new reply host index value 1836 * in ReplyPostIndex field and the MSIxIndex field with 1837 * msix_index value reduced to a value between 0 and 7, 1838 * using a modulo 8 operation. Since each Supplemental Reply Post 1839 * Host Index Register supports 8 MSI-X vectors. 1840 * 1841 * For other HBA's just update the Reply Post Host Index register with 1842 * new reply host index value in ReplyPostIndex Field and msix_index 1843 * value in MSIxIndex field. 1844 */ 1845 if (ioc->combined_reply_queue) 1846 writel(reply_q->reply_post_host_index | ((msix_index & 7) << 1847 MPI2_RPHI_MSIX_INDEX_SHIFT), 1848 ioc->replyPostRegisterIndex[msix_index/8]); 1849 else 1850 writel(reply_q->reply_post_host_index | (msix_index << 1851 MPI2_RPHI_MSIX_INDEX_SHIFT), 1852 &ioc->chip->ReplyPostHostIndex); 1853 atomic_dec(&reply_q->busy); 1854 return completed_cmds; 1855 } 1856 1857 /** 1858 * mpt3sas_blk_mq_poll - poll the blk mq poll queue 1859 * @shost: Scsi_Host object 1860 * @queue_num: hw ctx queue number 1861 * 1862 * Return number of entries that has been processed from poll queue. 1863 */ 1864 int mpt3sas_blk_mq_poll(struct Scsi_Host *shost, unsigned int queue_num) 1865 { 1866 struct MPT3SAS_ADAPTER *ioc = 1867 (struct MPT3SAS_ADAPTER *)shost->hostdata; 1868 struct adapter_reply_queue *reply_q; 1869 int num_entries = 0; 1870 int qid = queue_num - ioc->iopoll_q_start_index; 1871 1872 if (atomic_read(&ioc->io_uring_poll_queues[qid].pause) || 1873 !atomic_add_unless(&ioc->io_uring_poll_queues[qid].busy, 1, 1)) 1874 return 0; 1875 1876 reply_q = ioc->io_uring_poll_queues[qid].reply_q; 1877 1878 num_entries = _base_process_reply_queue(reply_q); 1879 atomic_dec(&ioc->io_uring_poll_queues[qid].busy); 1880 1881 return num_entries; 1882 } 1883 1884 /** 1885 * _base_interrupt - MPT adapter (IOC) specific interrupt handler. 1886 * @irq: irq number (not used) 1887 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure 1888 * 1889 * Return: IRQ_HANDLED if processed, else IRQ_NONE. 1890 */ 1891 static irqreturn_t 1892 _base_interrupt(int irq, void *bus_id) 1893 { 1894 struct adapter_reply_queue *reply_q = bus_id; 1895 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc; 1896 1897 if (ioc->mask_interrupts) 1898 return IRQ_NONE; 1899 if (reply_q->irq_poll_scheduled) 1900 return IRQ_HANDLED; 1901 return ((_base_process_reply_queue(reply_q) > 0) ? 1902 IRQ_HANDLED : IRQ_NONE); 1903 } 1904 1905 /** 1906 * _base_irqpoll - IRQ poll callback handler 1907 * @irqpoll: irq_poll object 1908 * @budget: irq poll weight 1909 * 1910 * Return: number of reply descriptors processed 1911 */ 1912 static int 1913 _base_irqpoll(struct irq_poll *irqpoll, int budget) 1914 { 1915 struct adapter_reply_queue *reply_q; 1916 int num_entries = 0; 1917 1918 reply_q = container_of(irqpoll, struct adapter_reply_queue, 1919 irqpoll); 1920 if (reply_q->irq_line_enable) { 1921 disable_irq_nosync(reply_q->os_irq); 1922 reply_q->irq_line_enable = false; 1923 } 1924 num_entries = _base_process_reply_queue(reply_q); 1925 if (num_entries < budget) { 1926 irq_poll_complete(irqpoll); 1927 reply_q->irq_poll_scheduled = false; 1928 reply_q->irq_line_enable = true; 1929 enable_irq(reply_q->os_irq); 1930 /* 1931 * Go for one more round of processing the 1932 * reply descriptor post queue in case the HBA 1933 * Firmware has posted some reply descriptors 1934 * while reenabling the IRQ. 1935 */ 1936 _base_process_reply_queue(reply_q); 1937 } 1938 1939 return num_entries; 1940 } 1941 1942 /** 1943 * _base_init_irqpolls - initliaze IRQ polls 1944 * @ioc: per adapter object 1945 * 1946 * Return: nothing 1947 */ 1948 static void 1949 _base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc) 1950 { 1951 struct adapter_reply_queue *reply_q, *next; 1952 1953 if (list_empty(&ioc->reply_queue_list)) 1954 return; 1955 1956 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) { 1957 if (reply_q->is_iouring_poll_q) 1958 continue; 1959 irq_poll_init(&reply_q->irqpoll, 1960 ioc->hba_queue_depth/4, _base_irqpoll); 1961 reply_q->irq_poll_scheduled = false; 1962 reply_q->irq_line_enable = true; 1963 reply_q->os_irq = pci_irq_vector(ioc->pdev, 1964 reply_q->msix_index); 1965 } 1966 } 1967 1968 /** 1969 * _base_is_controller_msix_enabled - is controller support muli-reply queues 1970 * @ioc: per adapter object 1971 * 1972 * Return: Whether or not MSI/X is enabled. 1973 */ 1974 static inline int 1975 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc) 1976 { 1977 return (ioc->facts.IOCCapabilities & 1978 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable; 1979 } 1980 1981 /** 1982 * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts 1983 * @ioc: per adapter object 1984 * @poll: poll over reply descriptor pools incase interrupt for 1985 * timed-out SCSI command got delayed 1986 * Context: non-ISR context 1987 * 1988 * Called when a Task Management request has completed. 1989 */ 1990 void 1991 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc, u8 poll) 1992 { 1993 struct adapter_reply_queue *reply_q; 1994 1995 /* If MSIX capability is turned off 1996 * then multi-queues are not enabled 1997 */ 1998 if (!_base_is_controller_msix_enabled(ioc)) 1999 return; 2000 2001 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 2002 if (ioc->shost_recovery || ioc->remove_host || 2003 ioc->pci_error_recovery) 2004 return; 2005 /* TMs are on msix_index == 0 */ 2006 if (reply_q->msix_index == 0) 2007 continue; 2008 2009 if (reply_q->is_iouring_poll_q) { 2010 _base_process_reply_queue(reply_q); 2011 continue; 2012 } 2013 2014 synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index)); 2015 if (reply_q->irq_poll_scheduled) { 2016 /* Calling irq_poll_disable will wait for any pending 2017 * callbacks to have completed. 2018 */ 2019 irq_poll_disable(&reply_q->irqpoll); 2020 irq_poll_enable(&reply_q->irqpoll); 2021 /* check how the scheduled poll has ended, 2022 * clean up only if necessary 2023 */ 2024 if (reply_q->irq_poll_scheduled) { 2025 reply_q->irq_poll_scheduled = false; 2026 reply_q->irq_line_enable = true; 2027 enable_irq(reply_q->os_irq); 2028 } 2029 } 2030 2031 if (poll) 2032 _base_process_reply_queue(reply_q); 2033 } 2034 } 2035 2036 /** 2037 * mpt3sas_base_release_callback_handler - clear interrupt callback handler 2038 * @cb_idx: callback index 2039 */ 2040 void 2041 mpt3sas_base_release_callback_handler(u8 cb_idx) 2042 { 2043 mpt_callbacks[cb_idx] = NULL; 2044 } 2045 2046 /** 2047 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler 2048 * @cb_func: callback function 2049 * 2050 * Return: Index of @cb_func. 2051 */ 2052 u8 2053 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func) 2054 { 2055 u8 cb_idx; 2056 2057 for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--) 2058 if (mpt_callbacks[cb_idx] == NULL) 2059 break; 2060 2061 mpt_callbacks[cb_idx] = cb_func; 2062 return cb_idx; 2063 } 2064 2065 /** 2066 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler 2067 */ 2068 void 2069 mpt3sas_base_initialize_callback_handler(void) 2070 { 2071 u8 cb_idx; 2072 2073 for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++) 2074 mpt3sas_base_release_callback_handler(cb_idx); 2075 } 2076 2077 2078 /** 2079 * _base_build_zero_len_sge - build zero length sg entry 2080 * @ioc: per adapter object 2081 * @paddr: virtual address for SGE 2082 * 2083 * Create a zero length scatter gather entry to insure the IOCs hardware has 2084 * something to use if the target device goes brain dead and tries 2085 * to send data even when none is asked for. 2086 */ 2087 static void 2088 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr) 2089 { 2090 u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT | 2091 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST | 2092 MPI2_SGE_FLAGS_SIMPLE_ELEMENT) << 2093 MPI2_SGE_FLAGS_SHIFT); 2094 ioc->base_add_sg_single(paddr, flags_length, -1); 2095 } 2096 2097 /** 2098 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr. 2099 * @paddr: virtual address for SGE 2100 * @flags_length: SGE flags and data transfer length 2101 * @dma_addr: Physical address 2102 */ 2103 static void 2104 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr) 2105 { 2106 Mpi2SGESimple32_t *sgel = paddr; 2107 2108 flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING | 2109 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT; 2110 sgel->FlagsLength = cpu_to_le32(flags_length); 2111 sgel->Address = cpu_to_le32(dma_addr); 2112 } 2113 2114 2115 /** 2116 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr. 2117 * @paddr: virtual address for SGE 2118 * @flags_length: SGE flags and data transfer length 2119 * @dma_addr: Physical address 2120 */ 2121 static void 2122 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr) 2123 { 2124 Mpi2SGESimple64_t *sgel = paddr; 2125 2126 flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING | 2127 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT; 2128 sgel->FlagsLength = cpu_to_le32(flags_length); 2129 sgel->Address = cpu_to_le64(dma_addr); 2130 } 2131 2132 /** 2133 * _base_get_chain_buffer_tracker - obtain chain tracker 2134 * @ioc: per adapter object 2135 * @scmd: SCSI commands of the IO request 2136 * 2137 * Return: chain tracker from chain_lookup table using key as 2138 * smid and smid's chain_offset. 2139 */ 2140 static struct chain_tracker * 2141 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc, 2142 struct scsi_cmnd *scmd) 2143 { 2144 struct chain_tracker *chain_req; 2145 struct scsiio_tracker *st = scsi_cmd_priv(scmd); 2146 u16 smid = st->smid; 2147 u8 chain_offset = 2148 atomic_read(&ioc->chain_lookup[smid - 1].chain_offset); 2149 2150 if (chain_offset == ioc->chains_needed_per_io) 2151 return NULL; 2152 2153 chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset]; 2154 atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset); 2155 return chain_req; 2156 } 2157 2158 2159 /** 2160 * _base_build_sg - build generic sg 2161 * @ioc: per adapter object 2162 * @psge: virtual address for SGE 2163 * @data_out_dma: physical address for WRITES 2164 * @data_out_sz: data xfer size for WRITES 2165 * @data_in_dma: physical address for READS 2166 * @data_in_sz: data xfer size for READS 2167 */ 2168 static void 2169 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge, 2170 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 2171 size_t data_in_sz) 2172 { 2173 u32 sgl_flags; 2174 2175 if (!data_out_sz && !data_in_sz) { 2176 _base_build_zero_len_sge(ioc, psge); 2177 return; 2178 } 2179 2180 if (data_out_sz && data_in_sz) { 2181 /* WRITE sgel first */ 2182 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2183 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC); 2184 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2185 ioc->base_add_sg_single(psge, sgl_flags | 2186 data_out_sz, data_out_dma); 2187 2188 /* incr sgel */ 2189 psge += ioc->sge_size; 2190 2191 /* READ sgel last */ 2192 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2193 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 2194 MPI2_SGE_FLAGS_END_OF_LIST); 2195 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2196 ioc->base_add_sg_single(psge, sgl_flags | 2197 data_in_sz, data_in_dma); 2198 } else if (data_out_sz) /* WRITE */ { 2199 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2200 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 2201 MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC); 2202 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2203 ioc->base_add_sg_single(psge, sgl_flags | 2204 data_out_sz, data_out_dma); 2205 } else if (data_in_sz) /* READ */ { 2206 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2207 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 2208 MPI2_SGE_FLAGS_END_OF_LIST); 2209 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2210 ioc->base_add_sg_single(psge, sgl_flags | 2211 data_in_sz, data_in_dma); 2212 } 2213 } 2214 2215 /* IEEE format sgls */ 2216 2217 /** 2218 * _base_build_nvme_prp - This function is called for NVMe end devices to build 2219 * a native SGL (NVMe PRP). 2220 * @ioc: per adapter object 2221 * @smid: system request message index for getting asscociated SGL 2222 * @nvme_encap_request: the NVMe request msg frame pointer 2223 * @data_out_dma: physical address for WRITES 2224 * @data_out_sz: data xfer size for WRITES 2225 * @data_in_dma: physical address for READS 2226 * @data_in_sz: data xfer size for READS 2227 * 2228 * The native SGL is built starting in the first PRP 2229 * entry of the NVMe message (PRP1). If the data buffer is small enough to be 2230 * described entirely using PRP1, then PRP2 is not used. If needed, PRP2 is 2231 * used to describe a larger data buffer. If the data buffer is too large to 2232 * describe using the two PRP entriess inside the NVMe message, then PRP1 2233 * describes the first data memory segment, and PRP2 contains a pointer to a PRP 2234 * list located elsewhere in memory to describe the remaining data memory 2235 * segments. The PRP list will be contiguous. 2236 * 2237 * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP 2238 * consists of a list of PRP entries to describe a number of noncontigous 2239 * physical memory segments as a single memory buffer, just as a SGL does. Note 2240 * however, that this function is only used by the IOCTL call, so the memory 2241 * given will be guaranteed to be contiguous. There is no need to translate 2242 * non-contiguous SGL into a PRP in this case. All PRPs will describe 2243 * contiguous space that is one page size each. 2244 * 2245 * Each NVMe message contains two PRP entries. The first (PRP1) either contains 2246 * a PRP list pointer or a PRP element, depending upon the command. PRP2 2247 * contains the second PRP element if the memory being described fits within 2 2248 * PRP entries, or a PRP list pointer if the PRP spans more than two entries. 2249 * 2250 * A PRP list pointer contains the address of a PRP list, structured as a linear 2251 * array of PRP entries. Each PRP entry in this list describes a segment of 2252 * physical memory. 2253 * 2254 * Each 64-bit PRP entry comprises an address and an offset field. The address 2255 * always points at the beginning of a 4KB physical memory page, and the offset 2256 * describes where within that 4KB page the memory segment begins. Only the 2257 * first element in a PRP list may contain a non-zero offset, implying that all 2258 * memory segments following the first begin at the start of a 4KB page. 2259 * 2260 * Each PRP element normally describes 4KB of physical memory, with exceptions 2261 * for the first and last elements in the list. If the memory being described 2262 * by the list begins at a non-zero offset within the first 4KB page, then the 2263 * first PRP element will contain a non-zero offset indicating where the region 2264 * begins within the 4KB page. The last memory segment may end before the end 2265 * of the 4KB segment, depending upon the overall size of the memory being 2266 * described by the PRP list. 2267 * 2268 * Since PRP entries lack any indication of size, the overall data buffer length 2269 * is used to determine where the end of the data memory buffer is located, and 2270 * how many PRP entries are required to describe it. 2271 */ 2272 static void 2273 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid, 2274 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request, 2275 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 2276 size_t data_in_sz) 2277 { 2278 int prp_size = NVME_PRP_SIZE; 2279 __le64 *prp_entry, *prp1_entry, *prp2_entry; 2280 __le64 *prp_page; 2281 dma_addr_t prp_entry_dma, prp_page_dma, dma_addr; 2282 u32 offset, entry_len; 2283 u32 page_mask_result, page_mask; 2284 size_t length; 2285 struct mpt3sas_nvme_cmd *nvme_cmd = 2286 (void *)nvme_encap_request->NVMe_Command; 2287 2288 /* 2289 * Not all commands require a data transfer. If no data, just return 2290 * without constructing any PRP. 2291 */ 2292 if (!data_in_sz && !data_out_sz) 2293 return; 2294 prp1_entry = &nvme_cmd->prp1; 2295 prp2_entry = &nvme_cmd->prp2; 2296 prp_entry = prp1_entry; 2297 /* 2298 * For the PRP entries, use the specially allocated buffer of 2299 * contiguous memory. 2300 */ 2301 prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid); 2302 prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid); 2303 2304 /* 2305 * Check if we are within 1 entry of a page boundary we don't 2306 * want our first entry to be a PRP List entry. 2307 */ 2308 page_mask = ioc->page_size - 1; 2309 page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask; 2310 if (!page_mask_result) { 2311 /* Bump up to next page boundary. */ 2312 prp_page = (__le64 *)((u8 *)prp_page + prp_size); 2313 prp_page_dma = prp_page_dma + prp_size; 2314 } 2315 2316 /* 2317 * Set PRP physical pointer, which initially points to the current PRP 2318 * DMA memory page. 2319 */ 2320 prp_entry_dma = prp_page_dma; 2321 2322 /* Get physical address and length of the data buffer. */ 2323 if (data_in_sz) { 2324 dma_addr = data_in_dma; 2325 length = data_in_sz; 2326 } else { 2327 dma_addr = data_out_dma; 2328 length = data_out_sz; 2329 } 2330 2331 /* Loop while the length is not zero. */ 2332 while (length) { 2333 /* 2334 * Check if we need to put a list pointer here if we are at 2335 * page boundary - prp_size (8 bytes). 2336 */ 2337 page_mask_result = (prp_entry_dma + prp_size) & page_mask; 2338 if (!page_mask_result) { 2339 /* 2340 * This is the last entry in a PRP List, so we need to 2341 * put a PRP list pointer here. What this does is: 2342 * - bump the current memory pointer to the next 2343 * address, which will be the next full page. 2344 * - set the PRP Entry to point to that page. This 2345 * is now the PRP List pointer. 2346 * - bump the PRP Entry pointer the start of the 2347 * next page. Since all of this PRP memory is 2348 * contiguous, no need to get a new page - it's 2349 * just the next address. 2350 */ 2351 prp_entry_dma++; 2352 *prp_entry = cpu_to_le64(prp_entry_dma); 2353 prp_entry++; 2354 } 2355 2356 /* Need to handle if entry will be part of a page. */ 2357 offset = dma_addr & page_mask; 2358 entry_len = ioc->page_size - offset; 2359 2360 if (prp_entry == prp1_entry) { 2361 /* 2362 * Must fill in the first PRP pointer (PRP1) before 2363 * moving on. 2364 */ 2365 *prp1_entry = cpu_to_le64(dma_addr); 2366 2367 /* 2368 * Now point to the second PRP entry within the 2369 * command (PRP2). 2370 */ 2371 prp_entry = prp2_entry; 2372 } else if (prp_entry == prp2_entry) { 2373 /* 2374 * Should the PRP2 entry be a PRP List pointer or just 2375 * a regular PRP pointer? If there is more than one 2376 * more page of data, must use a PRP List pointer. 2377 */ 2378 if (length > ioc->page_size) { 2379 /* 2380 * PRP2 will contain a PRP List pointer because 2381 * more PRP's are needed with this command. The 2382 * list will start at the beginning of the 2383 * contiguous buffer. 2384 */ 2385 *prp2_entry = cpu_to_le64(prp_entry_dma); 2386 2387 /* 2388 * The next PRP Entry will be the start of the 2389 * first PRP List. 2390 */ 2391 prp_entry = prp_page; 2392 } else { 2393 /* 2394 * After this, the PRP Entries are complete. 2395 * This command uses 2 PRP's and no PRP list. 2396 */ 2397 *prp2_entry = cpu_to_le64(dma_addr); 2398 } 2399 } else { 2400 /* 2401 * Put entry in list and bump the addresses. 2402 * 2403 * After PRP1 and PRP2 are filled in, this will fill in 2404 * all remaining PRP entries in a PRP List, one per 2405 * each time through the loop. 2406 */ 2407 *prp_entry = cpu_to_le64(dma_addr); 2408 prp_entry++; 2409 prp_entry_dma++; 2410 } 2411 2412 /* 2413 * Bump the phys address of the command's data buffer by the 2414 * entry_len. 2415 */ 2416 dma_addr += entry_len; 2417 2418 /* Decrement length accounting for last partial page. */ 2419 if (entry_len > length) 2420 length = 0; 2421 else 2422 length -= entry_len; 2423 } 2424 } 2425 2426 /** 2427 * base_make_prp_nvme - Prepare PRPs (Physical Region Page) - 2428 * SGLs specific to NVMe drives only 2429 * 2430 * @ioc: per adapter object 2431 * @scmd: SCSI command from the mid-layer 2432 * @mpi_request: mpi request 2433 * @smid: msg Index 2434 * @sge_count: scatter gather element count. 2435 * 2436 * Return: true: PRPs are built 2437 * false: IEEE SGLs needs to be built 2438 */ 2439 static void 2440 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc, 2441 struct scsi_cmnd *scmd, 2442 Mpi25SCSIIORequest_t *mpi_request, 2443 u16 smid, int sge_count) 2444 { 2445 int sge_len, num_prp_in_chain = 0; 2446 Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl; 2447 __le64 *curr_buff; 2448 dma_addr_t msg_dma, sge_addr, offset; 2449 u32 page_mask, page_mask_result; 2450 struct scatterlist *sg_scmd; 2451 u32 first_prp_len; 2452 int data_len = scsi_bufflen(scmd); 2453 u32 nvme_pg_size; 2454 2455 nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE); 2456 /* 2457 * Nvme has a very convoluted prp format. One prp is required 2458 * for each page or partial page. Driver need to split up OS sg_list 2459 * entries if it is longer than one page or cross a page 2460 * boundary. Driver also have to insert a PRP list pointer entry as 2461 * the last entry in each physical page of the PRP list. 2462 * 2463 * NOTE: The first PRP "entry" is actually placed in the first 2464 * SGL entry in the main message as IEEE 64 format. The 2nd 2465 * entry in the main message is the chain element, and the rest 2466 * of the PRP entries are built in the contiguous pcie buffer. 2467 */ 2468 page_mask = nvme_pg_size - 1; 2469 2470 /* 2471 * Native SGL is needed. 2472 * Put a chain element in main message frame that points to the first 2473 * chain buffer. 2474 * 2475 * NOTE: The ChainOffset field must be 0 when using a chain pointer to 2476 * a native SGL. 2477 */ 2478 2479 /* Set main message chain element pointer */ 2480 main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL; 2481 /* 2482 * For NVMe the chain element needs to be the 2nd SG entry in the main 2483 * message. 2484 */ 2485 main_chain_element = (Mpi25IeeeSgeChain64_t *) 2486 ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64)); 2487 2488 /* 2489 * For the PRP entries, use the specially allocated buffer of 2490 * contiguous memory. Normal chain buffers can't be used 2491 * because each chain buffer would need to be the size of an OS 2492 * page (4k). 2493 */ 2494 curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid); 2495 msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid); 2496 2497 main_chain_element->Address = cpu_to_le64(msg_dma); 2498 main_chain_element->NextChainOffset = 0; 2499 main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 2500 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | 2501 MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP; 2502 2503 /* Build first prp, sge need not to be page aligned*/ 2504 ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL; 2505 sg_scmd = scsi_sglist(scmd); 2506 sge_addr = sg_dma_address(sg_scmd); 2507 sge_len = sg_dma_len(sg_scmd); 2508 2509 offset = sge_addr & page_mask; 2510 first_prp_len = nvme_pg_size - offset; 2511 2512 ptr_first_sgl->Address = cpu_to_le64(sge_addr); 2513 ptr_first_sgl->Length = cpu_to_le32(first_prp_len); 2514 2515 data_len -= first_prp_len; 2516 2517 if (sge_len > first_prp_len) { 2518 sge_addr += first_prp_len; 2519 sge_len -= first_prp_len; 2520 } else if (data_len && (sge_len == first_prp_len)) { 2521 sg_scmd = sg_next(sg_scmd); 2522 sge_addr = sg_dma_address(sg_scmd); 2523 sge_len = sg_dma_len(sg_scmd); 2524 } 2525 2526 for (;;) { 2527 offset = sge_addr & page_mask; 2528 2529 /* Put PRP pointer due to page boundary*/ 2530 page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask; 2531 if (unlikely(!page_mask_result)) { 2532 scmd_printk(KERN_NOTICE, 2533 scmd, "page boundary curr_buff: 0x%p\n", 2534 curr_buff); 2535 msg_dma += 8; 2536 *curr_buff = cpu_to_le64(msg_dma); 2537 curr_buff++; 2538 num_prp_in_chain++; 2539 } 2540 2541 *curr_buff = cpu_to_le64(sge_addr); 2542 curr_buff++; 2543 msg_dma += 8; 2544 num_prp_in_chain++; 2545 2546 sge_addr += nvme_pg_size; 2547 sge_len -= nvme_pg_size; 2548 data_len -= nvme_pg_size; 2549 2550 if (data_len <= 0) 2551 break; 2552 2553 if (sge_len > 0) 2554 continue; 2555 2556 sg_scmd = sg_next(sg_scmd); 2557 sge_addr = sg_dma_address(sg_scmd); 2558 sge_len = sg_dma_len(sg_scmd); 2559 } 2560 2561 main_chain_element->Length = 2562 cpu_to_le32(num_prp_in_chain * sizeof(u64)); 2563 return; 2564 } 2565 2566 static bool 2567 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc, 2568 struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count) 2569 { 2570 u32 data_length = 0; 2571 bool build_prp = true; 2572 2573 data_length = scsi_bufflen(scmd); 2574 if (pcie_device && 2575 (mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))) { 2576 build_prp = false; 2577 return build_prp; 2578 } 2579 2580 /* If Datalenth is <= 16K and number of SGE’s entries are <= 2 2581 * we built IEEE SGL 2582 */ 2583 if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2)) 2584 build_prp = false; 2585 2586 return build_prp; 2587 } 2588 2589 /** 2590 * _base_check_pcie_native_sgl - This function is called for PCIe end devices to 2591 * determine if the driver needs to build a native SGL. If so, that native 2592 * SGL is built in the special contiguous buffers allocated especially for 2593 * PCIe SGL creation. If the driver will not build a native SGL, return 2594 * TRUE and a normal IEEE SGL will be built. Currently this routine 2595 * supports NVMe. 2596 * @ioc: per adapter object 2597 * @mpi_request: mf request pointer 2598 * @smid: system request message index 2599 * @scmd: scsi command 2600 * @pcie_device: points to the PCIe device's info 2601 * 2602 * Return: 0 if native SGL was built, 1 if no SGL was built 2603 */ 2604 static int 2605 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc, 2606 Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd, 2607 struct _pcie_device *pcie_device) 2608 { 2609 int sges_left; 2610 2611 /* Get the SG list pointer and info. */ 2612 sges_left = scsi_dma_map(scmd); 2613 if (sges_left < 0) 2614 return 1; 2615 2616 /* Check if we need to build a native SG list. */ 2617 if (!base_is_prp_possible(ioc, pcie_device, 2618 scmd, sges_left)) { 2619 /* We built a native SG list, just return. */ 2620 goto out; 2621 } 2622 2623 /* 2624 * Build native NVMe PRP. 2625 */ 2626 base_make_prp_nvme(ioc, scmd, mpi_request, 2627 smid, sges_left); 2628 2629 return 0; 2630 out: 2631 scsi_dma_unmap(scmd); 2632 return 1; 2633 } 2634 2635 /** 2636 * _base_add_sg_single_ieee - add sg element for IEEE format 2637 * @paddr: virtual address for SGE 2638 * @flags: SGE flags 2639 * @chain_offset: number of 128 byte elements from start of segment 2640 * @length: data transfer length 2641 * @dma_addr: Physical address 2642 */ 2643 static void 2644 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length, 2645 dma_addr_t dma_addr) 2646 { 2647 Mpi25IeeeSgeChain64_t *sgel = paddr; 2648 2649 sgel->Flags = flags; 2650 sgel->NextChainOffset = chain_offset; 2651 sgel->Length = cpu_to_le32(length); 2652 sgel->Address = cpu_to_le64(dma_addr); 2653 } 2654 2655 /** 2656 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format 2657 * @ioc: per adapter object 2658 * @paddr: virtual address for SGE 2659 * 2660 * Create a zero length scatter gather entry to insure the IOCs hardware has 2661 * something to use if the target device goes brain dead and tries 2662 * to send data even when none is asked for. 2663 */ 2664 static void 2665 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr) 2666 { 2667 u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2668 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | 2669 MPI25_IEEE_SGE_FLAGS_END_OF_LIST); 2670 2671 _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1); 2672 } 2673 2674 static inline int _base_scsi_dma_map(struct scsi_cmnd *cmd) 2675 { 2676 /* 2677 * Some firmware versions byte-swap the REPORT ZONES command reply from 2678 * ATA-ZAC devices by directly accessing in the host buffer. This does 2679 * not respect the default command DMA direction and causes IOMMU page 2680 * faults on some architectures with an IOMMU enforcing write mappings 2681 * (e.g. AMD hosts). Avoid such issue by making the report zones buffer 2682 * mapping bi-directional. 2683 */ 2684 if (cmd->cmnd[0] == ZBC_IN && cmd->cmnd[1] == ZI_REPORT_ZONES) 2685 cmd->sc_data_direction = DMA_BIDIRECTIONAL; 2686 2687 return scsi_dma_map(cmd); 2688 } 2689 2690 /** 2691 * _base_build_sg_scmd - main sg creation routine 2692 * pcie_device is unused here! 2693 * @ioc: per adapter object 2694 * @scmd: scsi command 2695 * @smid: system request message index 2696 * @unused: unused pcie_device pointer 2697 * Context: none. 2698 * 2699 * The main routine that builds scatter gather table from a given 2700 * scsi request sent via the .queuecommand main handler. 2701 * 2702 * Return: 0 success, anything else error 2703 */ 2704 static int 2705 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc, 2706 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused) 2707 { 2708 Mpi2SCSIIORequest_t *mpi_request; 2709 dma_addr_t chain_dma; 2710 struct scatterlist *sg_scmd; 2711 void *sg_local, *chain; 2712 u32 chain_offset; 2713 u32 chain_length; 2714 u32 chain_flags; 2715 int sges_left; 2716 u32 sges_in_segment; 2717 u32 sgl_flags; 2718 u32 sgl_flags_last_element; 2719 u32 sgl_flags_end_buffer; 2720 struct chain_tracker *chain_req; 2721 2722 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 2723 2724 /* init scatter gather flags */ 2725 sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT; 2726 if (scmd->sc_data_direction == DMA_TO_DEVICE) 2727 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC; 2728 sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT) 2729 << MPI2_SGE_FLAGS_SHIFT; 2730 sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT | 2731 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST) 2732 << MPI2_SGE_FLAGS_SHIFT; 2733 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2734 2735 sg_scmd = scsi_sglist(scmd); 2736 sges_left = _base_scsi_dma_map(scmd); 2737 if (sges_left < 0) 2738 return -ENOMEM; 2739 2740 sg_local = &mpi_request->SGL; 2741 sges_in_segment = ioc->max_sges_in_main_message; 2742 if (sges_left <= sges_in_segment) 2743 goto fill_in_last_segment; 2744 2745 mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) + 2746 (sges_in_segment * ioc->sge_size))/4; 2747 2748 /* fill in main message segment when there is a chain following */ 2749 while (sges_in_segment) { 2750 if (sges_in_segment == 1) 2751 ioc->base_add_sg_single(sg_local, 2752 sgl_flags_last_element | sg_dma_len(sg_scmd), 2753 sg_dma_address(sg_scmd)); 2754 else 2755 ioc->base_add_sg_single(sg_local, sgl_flags | 2756 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2757 sg_scmd = sg_next(sg_scmd); 2758 sg_local += ioc->sge_size; 2759 sges_left--; 2760 sges_in_segment--; 2761 } 2762 2763 /* initializing the chain flags and pointers */ 2764 chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT; 2765 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2766 if (!chain_req) 2767 return -1; 2768 chain = chain_req->chain_buffer; 2769 chain_dma = chain_req->chain_buffer_dma; 2770 do { 2771 sges_in_segment = (sges_left <= 2772 ioc->max_sges_in_chain_message) ? sges_left : 2773 ioc->max_sges_in_chain_message; 2774 chain_offset = (sges_left == sges_in_segment) ? 2775 0 : (sges_in_segment * ioc->sge_size)/4; 2776 chain_length = sges_in_segment * ioc->sge_size; 2777 if (chain_offset) { 2778 chain_offset = chain_offset << 2779 MPI2_SGE_CHAIN_OFFSET_SHIFT; 2780 chain_length += ioc->sge_size; 2781 } 2782 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset | 2783 chain_length, chain_dma); 2784 sg_local = chain; 2785 if (!chain_offset) 2786 goto fill_in_last_segment; 2787 2788 /* fill in chain segments */ 2789 while (sges_in_segment) { 2790 if (sges_in_segment == 1) 2791 ioc->base_add_sg_single(sg_local, 2792 sgl_flags_last_element | 2793 sg_dma_len(sg_scmd), 2794 sg_dma_address(sg_scmd)); 2795 else 2796 ioc->base_add_sg_single(sg_local, sgl_flags | 2797 sg_dma_len(sg_scmd), 2798 sg_dma_address(sg_scmd)); 2799 sg_scmd = sg_next(sg_scmd); 2800 sg_local += ioc->sge_size; 2801 sges_left--; 2802 sges_in_segment--; 2803 } 2804 2805 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2806 if (!chain_req) 2807 return -1; 2808 chain = chain_req->chain_buffer; 2809 chain_dma = chain_req->chain_buffer_dma; 2810 } while (1); 2811 2812 2813 fill_in_last_segment: 2814 2815 /* fill the last segment */ 2816 while (sges_left) { 2817 if (sges_left == 1) 2818 ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer | 2819 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2820 else 2821 ioc->base_add_sg_single(sg_local, sgl_flags | 2822 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2823 sg_scmd = sg_next(sg_scmd); 2824 sg_local += ioc->sge_size; 2825 sges_left--; 2826 } 2827 2828 return 0; 2829 } 2830 2831 /** 2832 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format 2833 * @ioc: per adapter object 2834 * @scmd: scsi command 2835 * @smid: system request message index 2836 * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be 2837 * constructed on need. 2838 * Context: none. 2839 * 2840 * The main routine that builds scatter gather table from a given 2841 * scsi request sent via the .queuecommand main handler. 2842 * 2843 * Return: 0 success, anything else error 2844 */ 2845 static int 2846 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc, 2847 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device) 2848 { 2849 Mpi25SCSIIORequest_t *mpi_request; 2850 dma_addr_t chain_dma; 2851 struct scatterlist *sg_scmd; 2852 void *sg_local, *chain; 2853 u32 chain_offset; 2854 u32 chain_length; 2855 int sges_left; 2856 u32 sges_in_segment; 2857 u8 simple_sgl_flags; 2858 u8 simple_sgl_flags_last; 2859 u8 chain_sgl_flags; 2860 struct chain_tracker *chain_req; 2861 2862 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 2863 2864 /* init scatter gather flags */ 2865 simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2866 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2867 simple_sgl_flags_last = simple_sgl_flags | 2868 MPI25_IEEE_SGE_FLAGS_END_OF_LIST; 2869 chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 2870 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2871 2872 /* Check if we need to build a native SG list. */ 2873 if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request, 2874 smid, scmd, pcie_device) == 0)) { 2875 /* We built a native SG list, just return. */ 2876 return 0; 2877 } 2878 2879 sg_scmd = scsi_sglist(scmd); 2880 sges_left = _base_scsi_dma_map(scmd); 2881 if (sges_left < 0) 2882 return -ENOMEM; 2883 2884 sg_local = &mpi_request->SGL; 2885 sges_in_segment = (ioc->request_sz - 2886 offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee; 2887 if (sges_left <= sges_in_segment) 2888 goto fill_in_last_segment; 2889 2890 mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) + 2891 (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee); 2892 2893 /* fill in main message segment when there is a chain following */ 2894 while (sges_in_segment > 1) { 2895 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2896 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2897 sg_scmd = sg_next(sg_scmd); 2898 sg_local += ioc->sge_size_ieee; 2899 sges_left--; 2900 sges_in_segment--; 2901 } 2902 2903 /* initializing the pointers */ 2904 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2905 if (!chain_req) 2906 return -1; 2907 chain = chain_req->chain_buffer; 2908 chain_dma = chain_req->chain_buffer_dma; 2909 do { 2910 sges_in_segment = (sges_left <= 2911 ioc->max_sges_in_chain_message) ? sges_left : 2912 ioc->max_sges_in_chain_message; 2913 chain_offset = (sges_left == sges_in_segment) ? 2914 0 : sges_in_segment; 2915 chain_length = sges_in_segment * ioc->sge_size_ieee; 2916 if (chain_offset) 2917 chain_length += ioc->sge_size_ieee; 2918 _base_add_sg_single_ieee(sg_local, chain_sgl_flags, 2919 chain_offset, chain_length, chain_dma); 2920 2921 sg_local = chain; 2922 if (!chain_offset) 2923 goto fill_in_last_segment; 2924 2925 /* fill in chain segments */ 2926 while (sges_in_segment) { 2927 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2928 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2929 sg_scmd = sg_next(sg_scmd); 2930 sg_local += ioc->sge_size_ieee; 2931 sges_left--; 2932 sges_in_segment--; 2933 } 2934 2935 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2936 if (!chain_req) 2937 return -1; 2938 chain = chain_req->chain_buffer; 2939 chain_dma = chain_req->chain_buffer_dma; 2940 } while (1); 2941 2942 2943 fill_in_last_segment: 2944 2945 /* fill the last segment */ 2946 while (sges_left > 0) { 2947 if (sges_left == 1) 2948 _base_add_sg_single_ieee(sg_local, 2949 simple_sgl_flags_last, 0, sg_dma_len(sg_scmd), 2950 sg_dma_address(sg_scmd)); 2951 else 2952 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2953 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2954 sg_scmd = sg_next(sg_scmd); 2955 sg_local += ioc->sge_size_ieee; 2956 sges_left--; 2957 } 2958 2959 return 0; 2960 } 2961 2962 /** 2963 * _base_build_sg_ieee - build generic sg for IEEE format 2964 * @ioc: per adapter object 2965 * @psge: virtual address for SGE 2966 * @data_out_dma: physical address for WRITES 2967 * @data_out_sz: data xfer size for WRITES 2968 * @data_in_dma: physical address for READS 2969 * @data_in_sz: data xfer size for READS 2970 */ 2971 static void 2972 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge, 2973 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 2974 size_t data_in_sz) 2975 { 2976 u8 sgl_flags; 2977 2978 if (!data_out_sz && !data_in_sz) { 2979 _base_build_zero_len_sge_ieee(ioc, psge); 2980 return; 2981 } 2982 2983 if (data_out_sz && data_in_sz) { 2984 /* WRITE sgel first */ 2985 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2986 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2987 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz, 2988 data_out_dma); 2989 2990 /* incr sgel */ 2991 psge += ioc->sge_size_ieee; 2992 2993 /* READ sgel last */ 2994 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST; 2995 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz, 2996 data_in_dma); 2997 } else if (data_out_sz) /* WRITE */ { 2998 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2999 MPI25_IEEE_SGE_FLAGS_END_OF_LIST | 3000 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 3001 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz, 3002 data_out_dma); 3003 } else if (data_in_sz) /* READ */ { 3004 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 3005 MPI25_IEEE_SGE_FLAGS_END_OF_LIST | 3006 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 3007 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz, 3008 data_in_dma); 3009 } 3010 } 3011 3012 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10)) 3013 3014 /** 3015 * _base_config_dma_addressing - set dma addressing 3016 * @ioc: per adapter object 3017 * @pdev: PCI device struct 3018 * 3019 * Return: 0 for success, non-zero for failure. 3020 */ 3021 static int 3022 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev) 3023 { 3024 struct sysinfo s; 3025 u64 coherent_dma_mask, dma_mask; 3026 3027 if (ioc->is_mcpu_endpoint || sizeof(dma_addr_t) == 4) { 3028 ioc->dma_mask = 32; 3029 coherent_dma_mask = dma_mask = DMA_BIT_MASK(32); 3030 /* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */ 3031 } else if (ioc->hba_mpi_version_belonged > MPI2_VERSION) { 3032 ioc->dma_mask = 63; 3033 coherent_dma_mask = dma_mask = DMA_BIT_MASK(63); 3034 } else { 3035 ioc->dma_mask = 64; 3036 coherent_dma_mask = dma_mask = DMA_BIT_MASK(64); 3037 } 3038 3039 if (ioc->use_32bit_dma) 3040 coherent_dma_mask = DMA_BIT_MASK(32); 3041 3042 if (dma_set_mask(&pdev->dev, dma_mask) || 3043 dma_set_coherent_mask(&pdev->dev, coherent_dma_mask)) 3044 return -ENODEV; 3045 3046 if (ioc->dma_mask > 32) { 3047 ioc->base_add_sg_single = &_base_add_sg_single_64; 3048 ioc->sge_size = sizeof(Mpi2SGESimple64_t); 3049 } else { 3050 ioc->base_add_sg_single = &_base_add_sg_single_32; 3051 ioc->sge_size = sizeof(Mpi2SGESimple32_t); 3052 } 3053 3054 si_meminfo(&s); 3055 ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n", 3056 ioc->dma_mask, convert_to_kb(s.totalram)); 3057 3058 return 0; 3059 } 3060 3061 /** 3062 * _base_check_enable_msix - checks MSIX capabable. 3063 * @ioc: per adapter object 3064 * 3065 * Check to see if card is capable of MSIX, and set number 3066 * of available msix vectors 3067 */ 3068 static int 3069 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc) 3070 { 3071 int base; 3072 u16 message_control; 3073 3074 /* Check whether controller SAS2008 B0 controller, 3075 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX 3076 */ 3077 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 && 3078 ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) { 3079 return -EINVAL; 3080 } 3081 3082 base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX); 3083 if (!base) { 3084 dfailprintk(ioc, ioc_info(ioc, "msix not supported\n")); 3085 return -EINVAL; 3086 } 3087 3088 /* get msix vector count */ 3089 /* NUMA_IO not supported for older controllers */ 3090 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 || 3091 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 || 3092 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 || 3093 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 || 3094 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 || 3095 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 || 3096 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2) 3097 ioc->msix_vector_count = 1; 3098 else { 3099 pci_read_config_word(ioc->pdev, base + 2, &message_control); 3100 ioc->msix_vector_count = (message_control & 0x3FF) + 1; 3101 } 3102 dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n", 3103 ioc->msix_vector_count)); 3104 return 0; 3105 } 3106 3107 /** 3108 * mpt3sas_base_free_irq - free irq 3109 * @ioc: per adapter object 3110 * 3111 * Freeing respective reply_queue from the list. 3112 */ 3113 void 3114 mpt3sas_base_free_irq(struct MPT3SAS_ADAPTER *ioc) 3115 { 3116 unsigned int irq; 3117 struct adapter_reply_queue *reply_q, *next; 3118 3119 if (list_empty(&ioc->reply_queue_list)) 3120 return; 3121 3122 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) { 3123 list_del(&reply_q->list); 3124 if (reply_q->is_iouring_poll_q) { 3125 kfree(reply_q); 3126 continue; 3127 } 3128 3129 if (ioc->smp_affinity_enable) { 3130 irq = pci_irq_vector(ioc->pdev, reply_q->msix_index); 3131 irq_update_affinity_hint(irq, NULL); 3132 } 3133 free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index), 3134 reply_q); 3135 kfree(reply_q); 3136 } 3137 } 3138 3139 /** 3140 * _base_request_irq - request irq 3141 * @ioc: per adapter object 3142 * @index: msix index into vector table 3143 * 3144 * Inserting respective reply_queue into the list. 3145 */ 3146 static int 3147 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index) 3148 { 3149 struct pci_dev *pdev = ioc->pdev; 3150 struct adapter_reply_queue *reply_q; 3151 int r, qid; 3152 3153 reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL); 3154 if (!reply_q) { 3155 ioc_err(ioc, "unable to allocate memory %zu!\n", 3156 sizeof(struct adapter_reply_queue)); 3157 return -ENOMEM; 3158 } 3159 reply_q->ioc = ioc; 3160 reply_q->msix_index = index; 3161 3162 atomic_set(&reply_q->busy, 0); 3163 3164 if (index >= ioc->iopoll_q_start_index) { 3165 qid = index - ioc->iopoll_q_start_index; 3166 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-mq-poll%d", 3167 ioc->driver_name, ioc->id, qid); 3168 reply_q->is_iouring_poll_q = 1; 3169 ioc->io_uring_poll_queues[qid].reply_q = reply_q; 3170 goto out; 3171 } 3172 3173 3174 if (ioc->msix_enable) 3175 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d", 3176 ioc->driver_name, ioc->id, index); 3177 else 3178 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d", 3179 ioc->driver_name, ioc->id); 3180 r = request_irq(pci_irq_vector(pdev, index), _base_interrupt, 3181 IRQF_SHARED, reply_q->name, reply_q); 3182 if (r) { 3183 pr_err("%s: unable to allocate interrupt %d!\n", 3184 reply_q->name, pci_irq_vector(pdev, index)); 3185 kfree(reply_q); 3186 return -EBUSY; 3187 } 3188 out: 3189 INIT_LIST_HEAD(&reply_q->list); 3190 list_add_tail(&reply_q->list, &ioc->reply_queue_list); 3191 return 0; 3192 } 3193 3194 /** 3195 * _base_assign_reply_queues - assigning msix index for each cpu 3196 * @ioc: per adapter object 3197 * 3198 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity 3199 */ 3200 static void 3201 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc) 3202 { 3203 unsigned int cpu, nr_cpus, nr_msix, index = 0, irq; 3204 struct adapter_reply_queue *reply_q; 3205 int iopoll_q_count = ioc->reply_queue_count - 3206 ioc->iopoll_q_start_index; 3207 const struct cpumask *mask; 3208 3209 if (!_base_is_controller_msix_enabled(ioc)) 3210 return; 3211 3212 if (ioc->msix_load_balance) 3213 return; 3214 3215 memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz); 3216 3217 nr_cpus = num_online_cpus(); 3218 nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count, 3219 ioc->facts.MaxMSIxVectors); 3220 if (!nr_msix) 3221 return; 3222 3223 if (ioc->smp_affinity_enable) { 3224 3225 /* 3226 * set irq affinity to local numa node for those irqs 3227 * corresponding to high iops queues. 3228 */ 3229 if (ioc->high_iops_queues) { 3230 mask = cpumask_of_node(dev_to_node(&ioc->pdev->dev)); 3231 for (index = 0; index < ioc->high_iops_queues; 3232 index++) { 3233 irq = pci_irq_vector(ioc->pdev, index); 3234 irq_set_affinity_and_hint(irq, mask); 3235 } 3236 } 3237 3238 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 3239 const cpumask_t *mask; 3240 3241 if (reply_q->msix_index < ioc->high_iops_queues || 3242 reply_q->msix_index >= ioc->iopoll_q_start_index) 3243 continue; 3244 3245 mask = pci_irq_get_affinity(ioc->pdev, 3246 reply_q->msix_index); 3247 if (!mask) { 3248 ioc_warn(ioc, "no affinity for msi %x\n", 3249 reply_q->msix_index); 3250 goto fall_back; 3251 } 3252 3253 for_each_cpu_and(cpu, mask, cpu_online_mask) { 3254 if (cpu >= ioc->cpu_msix_table_sz) 3255 break; 3256 ioc->cpu_msix_table[cpu] = reply_q->msix_index; 3257 } 3258 } 3259 return; 3260 } 3261 3262 fall_back: 3263 cpu = cpumask_first(cpu_online_mask); 3264 nr_msix -= (ioc->high_iops_queues - iopoll_q_count); 3265 index = 0; 3266 3267 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 3268 unsigned int i, group = nr_cpus / nr_msix; 3269 3270 if (reply_q->msix_index < ioc->high_iops_queues || 3271 reply_q->msix_index >= ioc->iopoll_q_start_index) 3272 continue; 3273 3274 if (cpu >= nr_cpus) 3275 break; 3276 3277 if (index < nr_cpus % nr_msix) 3278 group++; 3279 3280 for (i = 0 ; i < group ; i++) { 3281 ioc->cpu_msix_table[cpu] = reply_q->msix_index; 3282 cpu = cpumask_next(cpu, cpu_online_mask); 3283 } 3284 index++; 3285 } 3286 } 3287 3288 /** 3289 * _base_check_and_enable_high_iops_queues - enable high iops mode 3290 * @ioc: per adapter object 3291 * @hba_msix_vector_count: msix vectors supported by HBA 3292 * 3293 * Enable high iops queues only if 3294 * - HBA is a SEA/AERO controller and 3295 * - MSI-Xs vector supported by the HBA is 128 and 3296 * - total CPU count in the system >=16 and 3297 * - loaded driver with default max_msix_vectors module parameter and 3298 * - system booted in non kdump mode 3299 * 3300 * Return: nothing. 3301 */ 3302 static void 3303 _base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc, 3304 int hba_msix_vector_count) 3305 { 3306 u16 lnksta, speed; 3307 3308 /* 3309 * Disable high iops queues if io uring poll queues are enabled. 3310 */ 3311 if (perf_mode == MPT_PERF_MODE_IOPS || 3312 perf_mode == MPT_PERF_MODE_LATENCY || 3313 ioc->io_uring_poll_queues) { 3314 ioc->high_iops_queues = 0; 3315 return; 3316 } 3317 3318 if (perf_mode == MPT_PERF_MODE_DEFAULT) { 3319 3320 pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta); 3321 speed = lnksta & PCI_EXP_LNKSTA_CLS; 3322 3323 if (speed < 0x4) { 3324 ioc->high_iops_queues = 0; 3325 return; 3326 } 3327 } 3328 3329 if (!reset_devices && ioc->is_aero_ioc && 3330 hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES && 3331 num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES && 3332 max_msix_vectors == -1) 3333 ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES; 3334 else 3335 ioc->high_iops_queues = 0; 3336 } 3337 3338 /** 3339 * mpt3sas_base_disable_msix - disables msix 3340 * @ioc: per adapter object 3341 * 3342 */ 3343 void 3344 mpt3sas_base_disable_msix(struct MPT3SAS_ADAPTER *ioc) 3345 { 3346 if (!ioc->msix_enable) 3347 return; 3348 pci_free_irq_vectors(ioc->pdev); 3349 ioc->msix_enable = 0; 3350 kfree(ioc->io_uring_poll_queues); 3351 } 3352 3353 /** 3354 * _base_alloc_irq_vectors - allocate msix vectors 3355 * @ioc: per adapter object 3356 * 3357 */ 3358 static int 3359 _base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc) 3360 { 3361 int i, irq_flags = PCI_IRQ_MSIX; 3362 struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues }; 3363 struct irq_affinity *descp = &desc; 3364 /* 3365 * Don't allocate msix vectors for poll_queues. 3366 * msix_vectors is always within a range of FW supported reply queue. 3367 */ 3368 int nr_msix_vectors = ioc->iopoll_q_start_index; 3369 3370 3371 if (ioc->smp_affinity_enable) 3372 irq_flags |= PCI_IRQ_AFFINITY | PCI_IRQ_ALL_TYPES; 3373 else 3374 descp = NULL; 3375 3376 ioc_info(ioc, " %d %d %d\n", ioc->high_iops_queues, 3377 ioc->reply_queue_count, nr_msix_vectors); 3378 3379 i = pci_alloc_irq_vectors_affinity(ioc->pdev, 3380 ioc->high_iops_queues, 3381 nr_msix_vectors, irq_flags, descp); 3382 3383 return i; 3384 } 3385 3386 /** 3387 * _base_enable_msix - enables msix, failback to io_apic 3388 * @ioc: per adapter object 3389 * 3390 */ 3391 static int 3392 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc) 3393 { 3394 int r; 3395 int i, local_max_msix_vectors; 3396 u8 try_msix = 0; 3397 int iopoll_q_count = 0; 3398 3399 ioc->msix_load_balance = false; 3400 3401 if (msix_disable == -1 || msix_disable == 0) 3402 try_msix = 1; 3403 3404 if (!try_msix) 3405 goto try_ioapic; 3406 3407 if (_base_check_enable_msix(ioc) != 0) 3408 goto try_ioapic; 3409 3410 ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count); 3411 pr_info("\t no of cores: %d, max_msix_vectors: %d\n", 3412 ioc->cpu_count, max_msix_vectors); 3413 3414 ioc->reply_queue_count = 3415 min_t(int, ioc->cpu_count, ioc->msix_vector_count); 3416 3417 if (!ioc->rdpq_array_enable && max_msix_vectors == -1) 3418 local_max_msix_vectors = (reset_devices) ? 1 : 8; 3419 else 3420 local_max_msix_vectors = max_msix_vectors; 3421 3422 if (local_max_msix_vectors == 0) 3423 goto try_ioapic; 3424 3425 /* 3426 * Enable msix_load_balance only if combined reply queue mode is 3427 * disabled on SAS3 & above generation HBA devices. 3428 */ 3429 if (!ioc->combined_reply_queue && 3430 ioc->hba_mpi_version_belonged != MPI2_VERSION) { 3431 ioc_info(ioc, 3432 "combined ReplyQueue is off, Enabling msix load balance\n"); 3433 ioc->msix_load_balance = true; 3434 } 3435 3436 /* 3437 * smp affinity setting is not need when msix load balance 3438 * is enabled. 3439 */ 3440 if (ioc->msix_load_balance) 3441 ioc->smp_affinity_enable = 0; 3442 3443 if (!ioc->smp_affinity_enable || ioc->reply_queue_count <= 1) 3444 ioc->shost->host_tagset = 0; 3445 3446 /* 3447 * Enable io uring poll queues only if host_tagset is enabled. 3448 */ 3449 if (ioc->shost->host_tagset) 3450 iopoll_q_count = poll_queues; 3451 3452 if (iopoll_q_count) { 3453 ioc->io_uring_poll_queues = kcalloc(iopoll_q_count, 3454 sizeof(struct io_uring_poll_queue), GFP_KERNEL); 3455 if (!ioc->io_uring_poll_queues) 3456 iopoll_q_count = 0; 3457 } 3458 3459 if (ioc->is_aero_ioc) 3460 _base_check_and_enable_high_iops_queues(ioc, 3461 ioc->msix_vector_count); 3462 3463 /* 3464 * Add high iops queues count to reply queue count if high iops queues 3465 * are enabled. 3466 */ 3467 ioc->reply_queue_count = min_t(int, 3468 ioc->reply_queue_count + ioc->high_iops_queues, 3469 ioc->msix_vector_count); 3470 3471 /* 3472 * Adjust the reply queue count incase reply queue count 3473 * exceeds the user provided MSIx vectors count. 3474 */ 3475 if (local_max_msix_vectors > 0) 3476 ioc->reply_queue_count = min_t(int, local_max_msix_vectors, 3477 ioc->reply_queue_count); 3478 /* 3479 * Add io uring poll queues count to reply queues count 3480 * if io uring is enabled in driver. 3481 */ 3482 if (iopoll_q_count) { 3483 if (ioc->reply_queue_count < (iopoll_q_count + MPT3_MIN_IRQS)) 3484 iopoll_q_count = 0; 3485 ioc->reply_queue_count = min_t(int, 3486 ioc->reply_queue_count + iopoll_q_count, 3487 ioc->msix_vector_count); 3488 } 3489 3490 /* 3491 * Starting index of io uring poll queues in reply queue list. 3492 */ 3493 ioc->iopoll_q_start_index = 3494 ioc->reply_queue_count - iopoll_q_count; 3495 3496 r = _base_alloc_irq_vectors(ioc); 3497 if (r < 0) { 3498 ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", r); 3499 goto try_ioapic; 3500 } 3501 3502 /* 3503 * Adjust the reply queue count if the allocated 3504 * MSIx vectors is less then the requested number 3505 * of MSIx vectors. 3506 */ 3507 if (r < ioc->iopoll_q_start_index) { 3508 ioc->reply_queue_count = r + iopoll_q_count; 3509 ioc->iopoll_q_start_index = 3510 ioc->reply_queue_count - iopoll_q_count; 3511 } 3512 3513 ioc->msix_enable = 1; 3514 for (i = 0; i < ioc->reply_queue_count; i++) { 3515 r = _base_request_irq(ioc, i); 3516 if (r) { 3517 mpt3sas_base_free_irq(ioc); 3518 mpt3sas_base_disable_msix(ioc); 3519 goto try_ioapic; 3520 } 3521 } 3522 3523 ioc_info(ioc, "High IOPs queues : %s\n", 3524 ioc->high_iops_queues ? "enabled" : "disabled"); 3525 3526 return 0; 3527 3528 /* failback to io_apic interrupt routing */ 3529 try_ioapic: 3530 ioc->high_iops_queues = 0; 3531 ioc_info(ioc, "High IOPs queues : disabled\n"); 3532 ioc->reply_queue_count = 1; 3533 ioc->iopoll_q_start_index = ioc->reply_queue_count - 0; 3534 r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY); 3535 if (r < 0) { 3536 dfailprintk(ioc, 3537 ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n", 3538 r)); 3539 } else 3540 r = _base_request_irq(ioc, 0); 3541 3542 return r; 3543 } 3544 3545 /** 3546 * mpt3sas_base_unmap_resources - free controller resources 3547 * @ioc: per adapter object 3548 */ 3549 static void 3550 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc) 3551 { 3552 struct pci_dev *pdev = ioc->pdev; 3553 3554 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 3555 3556 mpt3sas_base_free_irq(ioc); 3557 mpt3sas_base_disable_msix(ioc); 3558 3559 kfree(ioc->replyPostRegisterIndex); 3560 ioc->replyPostRegisterIndex = NULL; 3561 3562 3563 if (ioc->chip_phys) { 3564 iounmap(ioc->chip); 3565 ioc->chip_phys = 0; 3566 } 3567 3568 if (pci_is_enabled(pdev)) { 3569 pci_release_selected_regions(ioc->pdev, ioc->bars); 3570 pci_disable_device(pdev); 3571 } 3572 } 3573 3574 static int 3575 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc); 3576 3577 /** 3578 * mpt3sas_base_check_for_fault_and_issue_reset - check if IOC is in fault state 3579 * and if it is in fault state then issue diag reset. 3580 * @ioc: per adapter object 3581 * 3582 * Return: 0 for success, non-zero for failure. 3583 */ 3584 int 3585 mpt3sas_base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc) 3586 { 3587 u32 ioc_state; 3588 int rc = -EFAULT; 3589 3590 dinitprintk(ioc, pr_info("%s\n", __func__)); 3591 if (ioc->pci_error_recovery) 3592 return 0; 3593 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 3594 dhsprintk(ioc, pr_info("%s: ioc_state(0x%08x)\n", __func__, ioc_state)); 3595 3596 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 3597 mpt3sas_print_fault_code(ioc, ioc_state & 3598 MPI2_DOORBELL_DATA_MASK); 3599 mpt3sas_base_mask_interrupts(ioc); 3600 rc = _base_diag_reset(ioc); 3601 } else if ((ioc_state & MPI2_IOC_STATE_MASK) == 3602 MPI2_IOC_STATE_COREDUMP) { 3603 mpt3sas_print_coredump_info(ioc, ioc_state & 3604 MPI2_DOORBELL_DATA_MASK); 3605 mpt3sas_base_wait_for_coredump_completion(ioc, __func__); 3606 mpt3sas_base_mask_interrupts(ioc); 3607 rc = _base_diag_reset(ioc); 3608 } 3609 3610 return rc; 3611 } 3612 3613 /** 3614 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap) 3615 * @ioc: per adapter object 3616 * 3617 * Return: 0 for success, non-zero for failure. 3618 */ 3619 int 3620 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc) 3621 { 3622 struct pci_dev *pdev = ioc->pdev; 3623 u32 memap_sz; 3624 u32 pio_sz; 3625 int i, r = 0, rc; 3626 u64 pio_chip = 0; 3627 phys_addr_t chip_phys = 0; 3628 struct adapter_reply_queue *reply_q; 3629 int iopoll_q_count = 0; 3630 3631 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 3632 3633 ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM); 3634 if (pci_enable_device_mem(pdev)) { 3635 ioc_warn(ioc, "pci_enable_device_mem: failed\n"); 3636 ioc->bars = 0; 3637 return -ENODEV; 3638 } 3639 3640 3641 if (pci_request_selected_regions(pdev, ioc->bars, 3642 ioc->driver_name)) { 3643 ioc_warn(ioc, "pci_request_selected_regions: failed\n"); 3644 ioc->bars = 0; 3645 r = -ENODEV; 3646 goto out_fail; 3647 } 3648 3649 pci_set_master(pdev); 3650 3651 3652 if (_base_config_dma_addressing(ioc, pdev) != 0) { 3653 ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev)); 3654 r = -ENODEV; 3655 goto out_fail; 3656 } 3657 3658 for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) && 3659 (!memap_sz || !pio_sz); i++) { 3660 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { 3661 if (pio_sz) 3662 continue; 3663 pio_chip = (u64)pci_resource_start(pdev, i); 3664 pio_sz = pci_resource_len(pdev, i); 3665 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) { 3666 if (memap_sz) 3667 continue; 3668 ioc->chip_phys = pci_resource_start(pdev, i); 3669 chip_phys = ioc->chip_phys; 3670 memap_sz = pci_resource_len(pdev, i); 3671 ioc->chip = ioremap(ioc->chip_phys, memap_sz); 3672 } 3673 } 3674 3675 if (ioc->chip == NULL) { 3676 ioc_err(ioc, 3677 "unable to map adapter memory! or resource not found\n"); 3678 r = -EINVAL; 3679 goto out_fail; 3680 } 3681 3682 mpt3sas_base_mask_interrupts(ioc); 3683 3684 r = _base_get_ioc_facts(ioc); 3685 if (r) { 3686 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc); 3687 if (rc || (_base_get_ioc_facts(ioc))) 3688 goto out_fail; 3689 } 3690 3691 if (!ioc->rdpq_array_enable_assigned) { 3692 ioc->rdpq_array_enable = ioc->rdpq_array_capable; 3693 ioc->rdpq_array_enable_assigned = 1; 3694 } 3695 3696 r = _base_enable_msix(ioc); 3697 if (r) 3698 goto out_fail; 3699 3700 iopoll_q_count = ioc->reply_queue_count - ioc->iopoll_q_start_index; 3701 for (i = 0; i < iopoll_q_count; i++) { 3702 atomic_set(&ioc->io_uring_poll_queues[i].busy, 0); 3703 atomic_set(&ioc->io_uring_poll_queues[i].pause, 0); 3704 } 3705 3706 if (!ioc->is_driver_loading) 3707 _base_init_irqpolls(ioc); 3708 /* Use the Combined reply queue feature only for SAS3 C0 & higher 3709 * revision HBAs and also only when reply queue count is greater than 8 3710 */ 3711 if (ioc->combined_reply_queue) { 3712 /* Determine the Supplemental Reply Post Host Index Registers 3713 * Addresse. Supplemental Reply Post Host Index Registers 3714 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and 3715 * each register is at offset bytes of 3716 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one. 3717 */ 3718 ioc->replyPostRegisterIndex = kcalloc( 3719 ioc->combined_reply_index_count, 3720 sizeof(resource_size_t *), GFP_KERNEL); 3721 if (!ioc->replyPostRegisterIndex) { 3722 ioc_err(ioc, 3723 "allocation for replyPostRegisterIndex failed!\n"); 3724 r = -ENOMEM; 3725 goto out_fail; 3726 } 3727 3728 for (i = 0; i < ioc->combined_reply_index_count; i++) { 3729 ioc->replyPostRegisterIndex[i] = 3730 (resource_size_t __iomem *) 3731 ((u8 __force *)&ioc->chip->Doorbell + 3732 MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET + 3733 (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET)); 3734 } 3735 } 3736 3737 if (ioc->is_warpdrive) { 3738 ioc->reply_post_host_index[0] = (resource_size_t __iomem *) 3739 &ioc->chip->ReplyPostHostIndex; 3740 3741 for (i = 1; i < ioc->cpu_msix_table_sz; i++) 3742 ioc->reply_post_host_index[i] = 3743 (resource_size_t __iomem *) 3744 ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1) 3745 * 4))); 3746 } 3747 3748 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 3749 if (reply_q->msix_index >= ioc->iopoll_q_start_index) { 3750 pr_info("%s: enabled: index: %d\n", 3751 reply_q->name, reply_q->msix_index); 3752 continue; 3753 } 3754 3755 pr_info("%s: %s enabled: IRQ %d\n", 3756 reply_q->name, 3757 ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC", 3758 pci_irq_vector(ioc->pdev, reply_q->msix_index)); 3759 } 3760 3761 ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n", 3762 &chip_phys, ioc->chip, memap_sz); 3763 ioc_info(ioc, "ioport(0x%016llx), size(%d)\n", 3764 (unsigned long long)pio_chip, pio_sz); 3765 3766 /* Save PCI configuration state for recovery from PCI AER/EEH errors */ 3767 pci_save_state(pdev); 3768 return 0; 3769 3770 out_fail: 3771 mpt3sas_base_unmap_resources(ioc); 3772 return r; 3773 } 3774 3775 /** 3776 * mpt3sas_base_get_msg_frame - obtain request mf pointer 3777 * @ioc: per adapter object 3778 * @smid: system request message index(smid zero is invalid) 3779 * 3780 * Return: virt pointer to message frame. 3781 */ 3782 void * 3783 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3784 { 3785 return (void *)(ioc->request + (smid * ioc->request_sz)); 3786 } 3787 3788 /** 3789 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr 3790 * @ioc: per adapter object 3791 * @smid: system request message index 3792 * 3793 * Return: virt pointer to sense buffer. 3794 */ 3795 void * 3796 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3797 { 3798 return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE)); 3799 } 3800 3801 /** 3802 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr 3803 * @ioc: per adapter object 3804 * @smid: system request message index 3805 * 3806 * Return: phys pointer to the low 32bit address of the sense buffer. 3807 */ 3808 __le32 3809 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3810 { 3811 return cpu_to_le32(ioc->sense_dma + ((smid - 1) * 3812 SCSI_SENSE_BUFFERSIZE)); 3813 } 3814 3815 /** 3816 * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr 3817 * @ioc: per adapter object 3818 * @smid: system request message index 3819 * 3820 * Return: virt pointer to a PCIe SGL. 3821 */ 3822 void * 3823 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3824 { 3825 return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl); 3826 } 3827 3828 /** 3829 * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr 3830 * @ioc: per adapter object 3831 * @smid: system request message index 3832 * 3833 * Return: phys pointer to the address of the PCIe buffer. 3834 */ 3835 dma_addr_t 3836 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3837 { 3838 return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma; 3839 } 3840 3841 /** 3842 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address 3843 * @ioc: per adapter object 3844 * @phys_addr: lower 32 physical addr of the reply 3845 * 3846 * Converts 32bit lower physical addr into a virt address. 3847 */ 3848 void * 3849 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr) 3850 { 3851 if (!phys_addr) 3852 return NULL; 3853 return ioc->reply + (phys_addr - (u32)ioc->reply_dma); 3854 } 3855 3856 /** 3857 * _base_get_msix_index - get the msix index 3858 * @ioc: per adapter object 3859 * @scmd: scsi_cmnd object 3860 * 3861 * Return: msix index of general reply queues, 3862 * i.e. reply queue on which IO request's reply 3863 * should be posted by the HBA firmware. 3864 */ 3865 static inline u8 3866 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc, 3867 struct scsi_cmnd *scmd) 3868 { 3869 /* Enables reply_queue load balancing */ 3870 if (ioc->msix_load_balance) 3871 return ioc->reply_queue_count ? 3872 base_mod64(atomic64_add_return(1, 3873 &ioc->total_io_cnt), ioc->reply_queue_count) : 0; 3874 3875 if (scmd && ioc->shost->nr_hw_queues > 1) { 3876 u32 tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd)); 3877 3878 return blk_mq_unique_tag_to_hwq(tag) + 3879 ioc->high_iops_queues; 3880 } 3881 3882 return ioc->cpu_msix_table[raw_smp_processor_id()]; 3883 } 3884 3885 /** 3886 * _base_get_high_iops_msix_index - get the msix index of 3887 * high iops queues 3888 * @ioc: per adapter object 3889 * @scmd: scsi_cmnd object 3890 * 3891 * Return: msix index of high iops reply queues. 3892 * i.e. high iops reply queue on which IO request's 3893 * reply should be posted by the HBA firmware. 3894 */ 3895 static inline u8 3896 _base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc, 3897 struct scsi_cmnd *scmd) 3898 { 3899 /** 3900 * Round robin the IO interrupts among the high iops 3901 * reply queues in terms of batch count 16 when outstanding 3902 * IOs on the target device is >=8. 3903 */ 3904 3905 if (scsi_device_busy(scmd->device) > MPT3SAS_DEVICE_HIGH_IOPS_DEPTH) 3906 return base_mod64(( 3907 atomic64_add_return(1, &ioc->high_iops_outstanding) / 3908 MPT3SAS_HIGH_IOPS_BATCH_COUNT), 3909 MPT3SAS_HIGH_IOPS_REPLY_QUEUES); 3910 3911 return _base_get_msix_index(ioc, scmd); 3912 } 3913 3914 /** 3915 * mpt3sas_base_get_smid - obtain a free smid from internal queue 3916 * @ioc: per adapter object 3917 * @cb_idx: callback index 3918 * 3919 * Return: smid (zero is invalid) 3920 */ 3921 u16 3922 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx) 3923 { 3924 unsigned long flags; 3925 struct request_tracker *request; 3926 u16 smid; 3927 3928 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3929 if (list_empty(&ioc->internal_free_list)) { 3930 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3931 ioc_err(ioc, "%s: smid not available\n", __func__); 3932 return 0; 3933 } 3934 3935 request = list_entry(ioc->internal_free_list.next, 3936 struct request_tracker, tracker_list); 3937 request->cb_idx = cb_idx; 3938 smid = request->smid; 3939 list_del(&request->tracker_list); 3940 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3941 return smid; 3942 } 3943 3944 /** 3945 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue 3946 * @ioc: per adapter object 3947 * @cb_idx: callback index 3948 * @scmd: pointer to scsi command object 3949 * 3950 * Return: smid (zero is invalid) 3951 */ 3952 u16 3953 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx, 3954 struct scsi_cmnd *scmd) 3955 { 3956 struct scsiio_tracker *request = scsi_cmd_priv(scmd); 3957 u16 smid; 3958 u32 tag, unique_tag; 3959 3960 unique_tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd)); 3961 tag = blk_mq_unique_tag_to_tag(unique_tag); 3962 3963 /* 3964 * Store hw queue number corresponding to the tag. 3965 * This hw queue number is used later to determine 3966 * the unique_tag using the logic below. This unique_tag 3967 * is used to retrieve the scmd pointer corresponding 3968 * to tag using scsi_host_find_tag() API. 3969 * 3970 * tag = smid - 1; 3971 * unique_tag = ioc->io_queue_num[tag] << BLK_MQ_UNIQUE_TAG_BITS | tag; 3972 */ 3973 ioc->io_queue_num[tag] = blk_mq_unique_tag_to_hwq(unique_tag); 3974 3975 smid = tag + 1; 3976 request->cb_idx = cb_idx; 3977 request->smid = smid; 3978 request->scmd = scmd; 3979 INIT_LIST_HEAD(&request->chain_list); 3980 return smid; 3981 } 3982 3983 /** 3984 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue 3985 * @ioc: per adapter object 3986 * @cb_idx: callback index 3987 * 3988 * Return: smid (zero is invalid) 3989 */ 3990 u16 3991 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx) 3992 { 3993 unsigned long flags; 3994 struct request_tracker *request; 3995 u16 smid; 3996 3997 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3998 if (list_empty(&ioc->hpr_free_list)) { 3999 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 4000 return 0; 4001 } 4002 4003 request = list_entry(ioc->hpr_free_list.next, 4004 struct request_tracker, tracker_list); 4005 request->cb_idx = cb_idx; 4006 smid = request->smid; 4007 list_del(&request->tracker_list); 4008 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 4009 return smid; 4010 } 4011 4012 static void 4013 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc) 4014 { 4015 /* 4016 * See _wait_for_commands_to_complete() call with regards to this code. 4017 */ 4018 if (ioc->shost_recovery && ioc->pending_io_count) { 4019 ioc->pending_io_count = scsi_host_busy(ioc->shost); 4020 if (ioc->pending_io_count == 0) 4021 wake_up(&ioc->reset_wq); 4022 } 4023 } 4024 4025 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc, 4026 struct scsiio_tracker *st) 4027 { 4028 if (WARN_ON(st->smid == 0)) 4029 return; 4030 st->cb_idx = 0xFF; 4031 st->direct_io = 0; 4032 st->scmd = NULL; 4033 atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0); 4034 st->smid = 0; 4035 } 4036 4037 /** 4038 * mpt3sas_base_free_smid - put smid back on free_list 4039 * @ioc: per adapter object 4040 * @smid: system request message index 4041 */ 4042 void 4043 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid) 4044 { 4045 unsigned long flags; 4046 int i; 4047 4048 if (smid < ioc->hi_priority_smid) { 4049 struct scsiio_tracker *st; 4050 void *request; 4051 4052 st = _get_st_from_smid(ioc, smid); 4053 if (!st) { 4054 _base_recovery_check(ioc); 4055 return; 4056 } 4057 4058 /* Clear MPI request frame */ 4059 request = mpt3sas_base_get_msg_frame(ioc, smid); 4060 memset(request, 0, ioc->request_sz); 4061 4062 mpt3sas_base_clear_st(ioc, st); 4063 _base_recovery_check(ioc); 4064 ioc->io_queue_num[smid - 1] = 0; 4065 return; 4066 } 4067 4068 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 4069 if (smid < ioc->internal_smid) { 4070 /* hi-priority */ 4071 i = smid - ioc->hi_priority_smid; 4072 ioc->hpr_lookup[i].cb_idx = 0xFF; 4073 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list); 4074 } else if (smid <= ioc->hba_queue_depth) { 4075 /* internal queue */ 4076 i = smid - ioc->internal_smid; 4077 ioc->internal_lookup[i].cb_idx = 0xFF; 4078 list_add(&ioc->internal_lookup[i].tracker_list, 4079 &ioc->internal_free_list); 4080 } 4081 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 4082 } 4083 4084 /** 4085 * _base_mpi_ep_writeq - 32 bit write to MMIO 4086 * @b: data payload 4087 * @addr: address in MMIO space 4088 * @writeq_lock: spin lock 4089 * 4090 * This special handling for MPI EP to take care of 32 bit 4091 * environment where its not quarenteed to send the entire word 4092 * in one transfer. 4093 */ 4094 static inline void 4095 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr, 4096 spinlock_t *writeq_lock) 4097 { 4098 unsigned long flags; 4099 4100 spin_lock_irqsave(writeq_lock, flags); 4101 __raw_writel((u32)(b), addr); 4102 __raw_writel((u32)(b >> 32), (addr + 4)); 4103 spin_unlock_irqrestore(writeq_lock, flags); 4104 } 4105 4106 /** 4107 * _base_writeq - 64 bit write to MMIO 4108 * @b: data payload 4109 * @addr: address in MMIO space 4110 * @writeq_lock: spin lock 4111 * 4112 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes 4113 * care of 32 bit environment where its not quarenteed to send the entire word 4114 * in one transfer. 4115 */ 4116 #if defined(writeq) && defined(CONFIG_64BIT) 4117 static inline void 4118 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock) 4119 { 4120 wmb(); 4121 __raw_writeq(b, addr); 4122 barrier(); 4123 } 4124 #else 4125 static inline void 4126 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock) 4127 { 4128 _base_mpi_ep_writeq(b, addr, writeq_lock); 4129 } 4130 #endif 4131 4132 /** 4133 * _base_set_and_get_msix_index - get the msix index and assign to msix_io 4134 * variable of scsi tracker 4135 * @ioc: per adapter object 4136 * @smid: system request message index 4137 * 4138 * Return: msix index. 4139 */ 4140 static u8 4141 _base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid) 4142 { 4143 struct scsiio_tracker *st = NULL; 4144 4145 if (smid < ioc->hi_priority_smid) 4146 st = _get_st_from_smid(ioc, smid); 4147 4148 if (st == NULL) 4149 return _base_get_msix_index(ioc, NULL); 4150 4151 st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd); 4152 return st->msix_io; 4153 } 4154 4155 /** 4156 * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware 4157 * @ioc: per adapter object 4158 * @smid: system request message index 4159 * @handle: device handle 4160 */ 4161 static void 4162 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc, 4163 u16 smid, u16 handle) 4164 { 4165 Mpi2RequestDescriptorUnion_t descriptor; 4166 u64 *request = (u64 *)&descriptor; 4167 void *mpi_req_iomem; 4168 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 4169 4170 _clone_sg_entries(ioc, (void *) mfp, smid); 4171 mpi_req_iomem = (void __force *)ioc->chip + 4172 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz); 4173 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 4174 ioc->request_sz); 4175 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 4176 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4177 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 4178 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 4179 descriptor.SCSIIO.LMID = 0; 4180 _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 4181 &ioc->scsi_lookup_lock); 4182 } 4183 4184 /** 4185 * _base_put_smid_scsi_io - send SCSI_IO request to firmware 4186 * @ioc: per adapter object 4187 * @smid: system request message index 4188 * @handle: device handle 4189 */ 4190 static void 4191 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle) 4192 { 4193 Mpi2RequestDescriptorUnion_t descriptor; 4194 u64 *request = (u64 *)&descriptor; 4195 4196 4197 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 4198 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4199 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 4200 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 4201 descriptor.SCSIIO.LMID = 0; 4202 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 4203 &ioc->scsi_lookup_lock); 4204 } 4205 4206 /** 4207 * _base_put_smid_fast_path - send fast path request to firmware 4208 * @ioc: per adapter object 4209 * @smid: system request message index 4210 * @handle: device handle 4211 */ 4212 static void 4213 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4214 u16 handle) 4215 { 4216 Mpi2RequestDescriptorUnion_t descriptor; 4217 u64 *request = (u64 *)&descriptor; 4218 4219 descriptor.SCSIIO.RequestFlags = 4220 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 4221 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4222 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 4223 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 4224 descriptor.SCSIIO.LMID = 0; 4225 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 4226 &ioc->scsi_lookup_lock); 4227 } 4228 4229 /** 4230 * _base_put_smid_hi_priority - send Task Management request to firmware 4231 * @ioc: per adapter object 4232 * @smid: system request message index 4233 * @msix_task: msix_task will be same as msix of IO in case of task abort else 0 4234 */ 4235 static void 4236 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4237 u16 msix_task) 4238 { 4239 Mpi2RequestDescriptorUnion_t descriptor; 4240 void *mpi_req_iomem; 4241 u64 *request; 4242 4243 if (ioc->is_mcpu_endpoint) { 4244 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 4245 4246 /* TBD 256 is offset within sys register. */ 4247 mpi_req_iomem = (void __force *)ioc->chip 4248 + MPI_FRAME_START_OFFSET 4249 + (smid * ioc->request_sz); 4250 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 4251 ioc->request_sz); 4252 } 4253 4254 request = (u64 *)&descriptor; 4255 4256 descriptor.HighPriority.RequestFlags = 4257 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 4258 descriptor.HighPriority.MSIxIndex = msix_task; 4259 descriptor.HighPriority.SMID = cpu_to_le16(smid); 4260 descriptor.HighPriority.LMID = 0; 4261 descriptor.HighPriority.Reserved1 = 0; 4262 if (ioc->is_mcpu_endpoint) 4263 _base_mpi_ep_writeq(*request, 4264 &ioc->chip->RequestDescriptorPostLow, 4265 &ioc->scsi_lookup_lock); 4266 else 4267 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 4268 &ioc->scsi_lookup_lock); 4269 } 4270 4271 /** 4272 * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to 4273 * firmware 4274 * @ioc: per adapter object 4275 * @smid: system request message index 4276 */ 4277 void 4278 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid) 4279 { 4280 Mpi2RequestDescriptorUnion_t descriptor; 4281 u64 *request = (u64 *)&descriptor; 4282 4283 descriptor.Default.RequestFlags = 4284 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED; 4285 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4286 descriptor.Default.SMID = cpu_to_le16(smid); 4287 descriptor.Default.LMID = 0; 4288 descriptor.Default.DescriptorTypeDependent = 0; 4289 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 4290 &ioc->scsi_lookup_lock); 4291 } 4292 4293 /** 4294 * _base_put_smid_default - Default, primarily used for config pages 4295 * @ioc: per adapter object 4296 * @smid: system request message index 4297 */ 4298 static void 4299 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid) 4300 { 4301 Mpi2RequestDescriptorUnion_t descriptor; 4302 void *mpi_req_iomem; 4303 u64 *request; 4304 4305 if (ioc->is_mcpu_endpoint) { 4306 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 4307 4308 _clone_sg_entries(ioc, (void *) mfp, smid); 4309 /* TBD 256 is offset within sys register */ 4310 mpi_req_iomem = (void __force *)ioc->chip + 4311 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz); 4312 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 4313 ioc->request_sz); 4314 } 4315 request = (u64 *)&descriptor; 4316 descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 4317 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4318 descriptor.Default.SMID = cpu_to_le16(smid); 4319 descriptor.Default.LMID = 0; 4320 descriptor.Default.DescriptorTypeDependent = 0; 4321 if (ioc->is_mcpu_endpoint) 4322 _base_mpi_ep_writeq(*request, 4323 &ioc->chip->RequestDescriptorPostLow, 4324 &ioc->scsi_lookup_lock); 4325 else 4326 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 4327 &ioc->scsi_lookup_lock); 4328 } 4329 4330 /** 4331 * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using 4332 * Atomic Request Descriptor 4333 * @ioc: per adapter object 4334 * @smid: system request message index 4335 * @handle: device handle, unused in this function, for function type match 4336 * 4337 * Return: nothing. 4338 */ 4339 static void 4340 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4341 u16 handle) 4342 { 4343 Mpi26AtomicRequestDescriptor_t descriptor; 4344 u32 *request = (u32 *)&descriptor; 4345 4346 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 4347 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4348 descriptor.SMID = cpu_to_le16(smid); 4349 4350 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4351 } 4352 4353 /** 4354 * _base_put_smid_fast_path_atomic - send fast path request to firmware 4355 * using Atomic Request Descriptor 4356 * @ioc: per adapter object 4357 * @smid: system request message index 4358 * @handle: device handle, unused in this function, for function type match 4359 * Return: nothing 4360 */ 4361 static void 4362 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4363 u16 handle) 4364 { 4365 Mpi26AtomicRequestDescriptor_t descriptor; 4366 u32 *request = (u32 *)&descriptor; 4367 4368 descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 4369 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4370 descriptor.SMID = cpu_to_le16(smid); 4371 4372 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4373 } 4374 4375 /** 4376 * _base_put_smid_hi_priority_atomic - send Task Management request to 4377 * firmware using Atomic Request Descriptor 4378 * @ioc: per adapter object 4379 * @smid: system request message index 4380 * @msix_task: msix_task will be same as msix of IO in case of task abort else 0 4381 * 4382 * Return: nothing. 4383 */ 4384 static void 4385 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4386 u16 msix_task) 4387 { 4388 Mpi26AtomicRequestDescriptor_t descriptor; 4389 u32 *request = (u32 *)&descriptor; 4390 4391 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 4392 descriptor.MSIxIndex = msix_task; 4393 descriptor.SMID = cpu_to_le16(smid); 4394 4395 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4396 } 4397 4398 /** 4399 * _base_put_smid_default_atomic - Default, primarily used for config pages 4400 * use Atomic Request Descriptor 4401 * @ioc: per adapter object 4402 * @smid: system request message index 4403 * 4404 * Return: nothing. 4405 */ 4406 static void 4407 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid) 4408 { 4409 Mpi26AtomicRequestDescriptor_t descriptor; 4410 u32 *request = (u32 *)&descriptor; 4411 4412 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 4413 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4414 descriptor.SMID = cpu_to_le16(smid); 4415 4416 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4417 } 4418 4419 /** 4420 * _base_display_OEMs_branding - Display branding string 4421 * @ioc: per adapter object 4422 */ 4423 static void 4424 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc) 4425 { 4426 if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL) 4427 return; 4428 4429 switch (ioc->pdev->subsystem_vendor) { 4430 case PCI_VENDOR_ID_INTEL: 4431 switch (ioc->pdev->device) { 4432 case MPI2_MFGPAGE_DEVID_SAS2008: 4433 switch (ioc->pdev->subsystem_device) { 4434 case MPT2SAS_INTEL_RMS2LL080_SSDID: 4435 ioc_info(ioc, "%s\n", 4436 MPT2SAS_INTEL_RMS2LL080_BRANDING); 4437 break; 4438 case MPT2SAS_INTEL_RMS2LL040_SSDID: 4439 ioc_info(ioc, "%s\n", 4440 MPT2SAS_INTEL_RMS2LL040_BRANDING); 4441 break; 4442 case MPT2SAS_INTEL_SSD910_SSDID: 4443 ioc_info(ioc, "%s\n", 4444 MPT2SAS_INTEL_SSD910_BRANDING); 4445 break; 4446 default: 4447 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4448 ioc->pdev->subsystem_device); 4449 break; 4450 } 4451 break; 4452 case MPI2_MFGPAGE_DEVID_SAS2308_2: 4453 switch (ioc->pdev->subsystem_device) { 4454 case MPT2SAS_INTEL_RS25GB008_SSDID: 4455 ioc_info(ioc, "%s\n", 4456 MPT2SAS_INTEL_RS25GB008_BRANDING); 4457 break; 4458 case MPT2SAS_INTEL_RMS25JB080_SSDID: 4459 ioc_info(ioc, "%s\n", 4460 MPT2SAS_INTEL_RMS25JB080_BRANDING); 4461 break; 4462 case MPT2SAS_INTEL_RMS25JB040_SSDID: 4463 ioc_info(ioc, "%s\n", 4464 MPT2SAS_INTEL_RMS25JB040_BRANDING); 4465 break; 4466 case MPT2SAS_INTEL_RMS25KB080_SSDID: 4467 ioc_info(ioc, "%s\n", 4468 MPT2SAS_INTEL_RMS25KB080_BRANDING); 4469 break; 4470 case MPT2SAS_INTEL_RMS25KB040_SSDID: 4471 ioc_info(ioc, "%s\n", 4472 MPT2SAS_INTEL_RMS25KB040_BRANDING); 4473 break; 4474 case MPT2SAS_INTEL_RMS25LB040_SSDID: 4475 ioc_info(ioc, "%s\n", 4476 MPT2SAS_INTEL_RMS25LB040_BRANDING); 4477 break; 4478 case MPT2SAS_INTEL_RMS25LB080_SSDID: 4479 ioc_info(ioc, "%s\n", 4480 MPT2SAS_INTEL_RMS25LB080_BRANDING); 4481 break; 4482 default: 4483 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4484 ioc->pdev->subsystem_device); 4485 break; 4486 } 4487 break; 4488 case MPI25_MFGPAGE_DEVID_SAS3008: 4489 switch (ioc->pdev->subsystem_device) { 4490 case MPT3SAS_INTEL_RMS3JC080_SSDID: 4491 ioc_info(ioc, "%s\n", 4492 MPT3SAS_INTEL_RMS3JC080_BRANDING); 4493 break; 4494 4495 case MPT3SAS_INTEL_RS3GC008_SSDID: 4496 ioc_info(ioc, "%s\n", 4497 MPT3SAS_INTEL_RS3GC008_BRANDING); 4498 break; 4499 case MPT3SAS_INTEL_RS3FC044_SSDID: 4500 ioc_info(ioc, "%s\n", 4501 MPT3SAS_INTEL_RS3FC044_BRANDING); 4502 break; 4503 case MPT3SAS_INTEL_RS3UC080_SSDID: 4504 ioc_info(ioc, "%s\n", 4505 MPT3SAS_INTEL_RS3UC080_BRANDING); 4506 break; 4507 default: 4508 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4509 ioc->pdev->subsystem_device); 4510 break; 4511 } 4512 break; 4513 default: 4514 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4515 ioc->pdev->subsystem_device); 4516 break; 4517 } 4518 break; 4519 case PCI_VENDOR_ID_DELL: 4520 switch (ioc->pdev->device) { 4521 case MPI2_MFGPAGE_DEVID_SAS2008: 4522 switch (ioc->pdev->subsystem_device) { 4523 case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID: 4524 ioc_info(ioc, "%s\n", 4525 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING); 4526 break; 4527 case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID: 4528 ioc_info(ioc, "%s\n", 4529 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING); 4530 break; 4531 case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID: 4532 ioc_info(ioc, "%s\n", 4533 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING); 4534 break; 4535 case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID: 4536 ioc_info(ioc, "%s\n", 4537 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING); 4538 break; 4539 case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID: 4540 ioc_info(ioc, "%s\n", 4541 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING); 4542 break; 4543 case MPT2SAS_DELL_PERC_H200_SSDID: 4544 ioc_info(ioc, "%s\n", 4545 MPT2SAS_DELL_PERC_H200_BRANDING); 4546 break; 4547 case MPT2SAS_DELL_6GBPS_SAS_SSDID: 4548 ioc_info(ioc, "%s\n", 4549 MPT2SAS_DELL_6GBPS_SAS_BRANDING); 4550 break; 4551 default: 4552 ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n", 4553 ioc->pdev->subsystem_device); 4554 break; 4555 } 4556 break; 4557 case MPI25_MFGPAGE_DEVID_SAS3008: 4558 switch (ioc->pdev->subsystem_device) { 4559 case MPT3SAS_DELL_12G_HBA_SSDID: 4560 ioc_info(ioc, "%s\n", 4561 MPT3SAS_DELL_12G_HBA_BRANDING); 4562 break; 4563 default: 4564 ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n", 4565 ioc->pdev->subsystem_device); 4566 break; 4567 } 4568 break; 4569 default: 4570 ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n", 4571 ioc->pdev->subsystem_device); 4572 break; 4573 } 4574 break; 4575 case PCI_VENDOR_ID_CISCO: 4576 switch (ioc->pdev->device) { 4577 case MPI25_MFGPAGE_DEVID_SAS3008: 4578 switch (ioc->pdev->subsystem_device) { 4579 case MPT3SAS_CISCO_12G_8E_HBA_SSDID: 4580 ioc_info(ioc, "%s\n", 4581 MPT3SAS_CISCO_12G_8E_HBA_BRANDING); 4582 break; 4583 case MPT3SAS_CISCO_12G_8I_HBA_SSDID: 4584 ioc_info(ioc, "%s\n", 4585 MPT3SAS_CISCO_12G_8I_HBA_BRANDING); 4586 break; 4587 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID: 4588 ioc_info(ioc, "%s\n", 4589 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING); 4590 break; 4591 default: 4592 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n", 4593 ioc->pdev->subsystem_device); 4594 break; 4595 } 4596 break; 4597 case MPI25_MFGPAGE_DEVID_SAS3108_1: 4598 switch (ioc->pdev->subsystem_device) { 4599 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID: 4600 ioc_info(ioc, "%s\n", 4601 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING); 4602 break; 4603 case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID: 4604 ioc_info(ioc, "%s\n", 4605 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING); 4606 break; 4607 default: 4608 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n", 4609 ioc->pdev->subsystem_device); 4610 break; 4611 } 4612 break; 4613 default: 4614 ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n", 4615 ioc->pdev->subsystem_device); 4616 break; 4617 } 4618 break; 4619 case MPT2SAS_HP_3PAR_SSVID: 4620 switch (ioc->pdev->device) { 4621 case MPI2_MFGPAGE_DEVID_SAS2004: 4622 switch (ioc->pdev->subsystem_device) { 4623 case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID: 4624 ioc_info(ioc, "%s\n", 4625 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING); 4626 break; 4627 default: 4628 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n", 4629 ioc->pdev->subsystem_device); 4630 break; 4631 } 4632 break; 4633 case MPI2_MFGPAGE_DEVID_SAS2308_2: 4634 switch (ioc->pdev->subsystem_device) { 4635 case MPT2SAS_HP_2_4_INTERNAL_SSDID: 4636 ioc_info(ioc, "%s\n", 4637 MPT2SAS_HP_2_4_INTERNAL_BRANDING); 4638 break; 4639 case MPT2SAS_HP_2_4_EXTERNAL_SSDID: 4640 ioc_info(ioc, "%s\n", 4641 MPT2SAS_HP_2_4_EXTERNAL_BRANDING); 4642 break; 4643 case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID: 4644 ioc_info(ioc, "%s\n", 4645 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING); 4646 break; 4647 case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID: 4648 ioc_info(ioc, "%s\n", 4649 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING); 4650 break; 4651 default: 4652 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n", 4653 ioc->pdev->subsystem_device); 4654 break; 4655 } 4656 break; 4657 default: 4658 ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n", 4659 ioc->pdev->subsystem_device); 4660 break; 4661 } 4662 break; 4663 default: 4664 break; 4665 } 4666 } 4667 4668 /** 4669 * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg 4670 * version from FW Image Header. 4671 * @ioc: per adapter object 4672 * 4673 * Return: 0 for success, non-zero for failure. 4674 */ 4675 static int 4676 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc) 4677 { 4678 Mpi2FWImageHeader_t *fw_img_hdr; 4679 Mpi26ComponentImageHeader_t *cmp_img_hdr; 4680 Mpi25FWUploadRequest_t *mpi_request; 4681 Mpi2FWUploadReply_t mpi_reply; 4682 int r = 0, issue_diag_reset = 0; 4683 u32 package_version = 0; 4684 void *fwpkg_data = NULL; 4685 dma_addr_t fwpkg_data_dma; 4686 u16 smid, ioc_status; 4687 size_t data_length; 4688 4689 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 4690 4691 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 4692 ioc_err(ioc, "%s: internal command already in use\n", __func__); 4693 return -EAGAIN; 4694 } 4695 4696 data_length = sizeof(Mpi2FWImageHeader_t); 4697 fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length, 4698 &fwpkg_data_dma, GFP_KERNEL); 4699 if (!fwpkg_data) { 4700 ioc_err(ioc, 4701 "Memory allocation for fwpkg data failed at %s:%d/%s()!\n", 4702 __FILE__, __LINE__, __func__); 4703 return -ENOMEM; 4704 } 4705 4706 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 4707 if (!smid) { 4708 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 4709 r = -EAGAIN; 4710 goto out; 4711 } 4712 4713 ioc->base_cmds.status = MPT3_CMD_PENDING; 4714 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 4715 ioc->base_cmds.smid = smid; 4716 memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t)); 4717 mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD; 4718 mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH; 4719 mpi_request->ImageSize = cpu_to_le32(data_length); 4720 ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma, 4721 data_length); 4722 init_completion(&ioc->base_cmds.done); 4723 ioc->put_smid_default(ioc, smid); 4724 /* Wait for 15 seconds */ 4725 wait_for_completion_timeout(&ioc->base_cmds.done, 4726 FW_IMG_HDR_READ_TIMEOUT*HZ); 4727 ioc_info(ioc, "%s: complete\n", __func__); 4728 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 4729 ioc_err(ioc, "%s: timeout\n", __func__); 4730 _debug_dump_mf(mpi_request, 4731 sizeof(Mpi25FWUploadRequest_t)/4); 4732 issue_diag_reset = 1; 4733 } else { 4734 memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t)); 4735 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) { 4736 memcpy(&mpi_reply, ioc->base_cmds.reply, 4737 sizeof(Mpi2FWUploadReply_t)); 4738 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 4739 MPI2_IOCSTATUS_MASK; 4740 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 4741 fw_img_hdr = (Mpi2FWImageHeader_t *)fwpkg_data; 4742 if (le32_to_cpu(fw_img_hdr->Signature) == 4743 MPI26_IMAGE_HEADER_SIGNATURE0_MPI26) { 4744 cmp_img_hdr = 4745 (Mpi26ComponentImageHeader_t *) 4746 (fwpkg_data); 4747 package_version = 4748 le32_to_cpu( 4749 cmp_img_hdr->ApplicationSpecific); 4750 } else 4751 package_version = 4752 le32_to_cpu( 4753 fw_img_hdr->PackageVersion.Word); 4754 if (package_version) 4755 ioc_info(ioc, 4756 "FW Package Ver(%02d.%02d.%02d.%02d)\n", 4757 ((package_version) & 0xFF000000) >> 24, 4758 ((package_version) & 0x00FF0000) >> 16, 4759 ((package_version) & 0x0000FF00) >> 8, 4760 (package_version) & 0x000000FF); 4761 } else { 4762 _debug_dump_mf(&mpi_reply, 4763 sizeof(Mpi2FWUploadReply_t)/4); 4764 } 4765 } 4766 } 4767 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 4768 out: 4769 if (fwpkg_data) 4770 dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data, 4771 fwpkg_data_dma); 4772 if (issue_diag_reset) { 4773 if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED) 4774 return -EFAULT; 4775 if (mpt3sas_base_check_for_fault_and_issue_reset(ioc)) 4776 return -EFAULT; 4777 r = -EAGAIN; 4778 } 4779 return r; 4780 } 4781 4782 /** 4783 * _base_display_ioc_capabilities - Display IOC's capabilities. 4784 * @ioc: per adapter object 4785 */ 4786 static void 4787 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc) 4788 { 4789 int i = 0; 4790 char desc[17] = {0}; 4791 u32 iounit_pg1_flags; 4792 4793 strncpy(desc, ioc->manu_pg0.ChipName, 16); 4794 ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x)\n", 4795 desc, 4796 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24, 4797 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16, 4798 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8, 4799 ioc->facts.FWVersion.Word & 0x000000FF, 4800 ioc->pdev->revision); 4801 4802 _base_display_OEMs_branding(ioc); 4803 4804 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) { 4805 pr_info("%sNVMe", i ? "," : ""); 4806 i++; 4807 } 4808 4809 ioc_info(ioc, "Protocol=("); 4810 4811 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) { 4812 pr_cont("Initiator"); 4813 i++; 4814 } 4815 4816 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) { 4817 pr_cont("%sTarget", i ? "," : ""); 4818 i++; 4819 } 4820 4821 i = 0; 4822 pr_cont("), Capabilities=("); 4823 4824 if (!ioc->hide_ir_msg) { 4825 if (ioc->facts.IOCCapabilities & 4826 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) { 4827 pr_cont("Raid"); 4828 i++; 4829 } 4830 } 4831 4832 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) { 4833 pr_cont("%sTLR", i ? "," : ""); 4834 i++; 4835 } 4836 4837 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) { 4838 pr_cont("%sMulticast", i ? "," : ""); 4839 i++; 4840 } 4841 4842 if (ioc->facts.IOCCapabilities & 4843 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) { 4844 pr_cont("%sBIDI Target", i ? "," : ""); 4845 i++; 4846 } 4847 4848 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) { 4849 pr_cont("%sEEDP", i ? "," : ""); 4850 i++; 4851 } 4852 4853 if (ioc->facts.IOCCapabilities & 4854 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) { 4855 pr_cont("%sSnapshot Buffer", i ? "," : ""); 4856 i++; 4857 } 4858 4859 if (ioc->facts.IOCCapabilities & 4860 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) { 4861 pr_cont("%sDiag Trace Buffer", i ? "," : ""); 4862 i++; 4863 } 4864 4865 if (ioc->facts.IOCCapabilities & 4866 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) { 4867 pr_cont("%sDiag Extended Buffer", i ? "," : ""); 4868 i++; 4869 } 4870 4871 if (ioc->facts.IOCCapabilities & 4872 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) { 4873 pr_cont("%sTask Set Full", i ? "," : ""); 4874 i++; 4875 } 4876 4877 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags); 4878 if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) { 4879 pr_cont("%sNCQ", i ? "," : ""); 4880 i++; 4881 } 4882 4883 pr_cont(")\n"); 4884 } 4885 4886 /** 4887 * mpt3sas_base_update_missing_delay - change the missing delay timers 4888 * @ioc: per adapter object 4889 * @device_missing_delay: amount of time till device is reported missing 4890 * @io_missing_delay: interval IO is returned when there is a missing device 4891 * 4892 * Passed on the command line, this function will modify the device missing 4893 * delay, as well as the io missing delay. This should be called at driver 4894 * load time. 4895 */ 4896 void 4897 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc, 4898 u16 device_missing_delay, u8 io_missing_delay) 4899 { 4900 u16 dmd, dmd_new, dmd_orignal; 4901 u8 io_missing_delay_original; 4902 u16 sz; 4903 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL; 4904 Mpi2ConfigReply_t mpi_reply; 4905 u8 num_phys = 0; 4906 u16 ioc_status; 4907 4908 mpt3sas_config_get_number_hba_phys(ioc, &num_phys); 4909 if (!num_phys) 4910 return; 4911 4912 sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys * 4913 sizeof(Mpi2SasIOUnit1PhyData_t)); 4914 sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL); 4915 if (!sas_iounit_pg1) { 4916 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4917 __FILE__, __LINE__, __func__); 4918 goto out; 4919 } 4920 if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply, 4921 sas_iounit_pg1, sz))) { 4922 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4923 __FILE__, __LINE__, __func__); 4924 goto out; 4925 } 4926 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 4927 MPI2_IOCSTATUS_MASK; 4928 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 4929 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4930 __FILE__, __LINE__, __func__); 4931 goto out; 4932 } 4933 4934 /* device missing delay */ 4935 dmd = sas_iounit_pg1->ReportDeviceMissingDelay; 4936 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16) 4937 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16; 4938 else 4939 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK; 4940 dmd_orignal = dmd; 4941 if (device_missing_delay > 0x7F) { 4942 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 : 4943 device_missing_delay; 4944 dmd = dmd / 16; 4945 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16; 4946 } else 4947 dmd = device_missing_delay; 4948 sas_iounit_pg1->ReportDeviceMissingDelay = dmd; 4949 4950 /* io missing delay */ 4951 io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay; 4952 sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay; 4953 4954 if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1, 4955 sz)) { 4956 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16) 4957 dmd_new = (dmd & 4958 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16; 4959 else 4960 dmd_new = 4961 dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK; 4962 ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n", 4963 dmd_orignal, dmd_new); 4964 ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n", 4965 io_missing_delay_original, 4966 io_missing_delay); 4967 ioc->device_missing_delay = dmd_new; 4968 ioc->io_missing_delay = io_missing_delay; 4969 } 4970 4971 out: 4972 kfree(sas_iounit_pg1); 4973 } 4974 4975 /** 4976 * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields 4977 * according to performance mode. 4978 * @ioc : per adapter object 4979 * 4980 * Return: zero on success; otherwise return EAGAIN error code asking the 4981 * caller to retry. 4982 */ 4983 static int 4984 _base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc) 4985 { 4986 Mpi2IOCPage1_t ioc_pg1; 4987 Mpi2ConfigReply_t mpi_reply; 4988 int rc; 4989 4990 rc = mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy); 4991 if (rc) 4992 return rc; 4993 memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t)); 4994 4995 switch (perf_mode) { 4996 case MPT_PERF_MODE_DEFAULT: 4997 case MPT_PERF_MODE_BALANCED: 4998 if (ioc->high_iops_queues) { 4999 ioc_info(ioc, 5000 "Enable interrupt coalescing only for first\t" 5001 "%d reply queues\n", 5002 MPT3SAS_HIGH_IOPS_REPLY_QUEUES); 5003 /* 5004 * If 31st bit is zero then interrupt coalescing is 5005 * enabled for all reply descriptor post queues. 5006 * If 31st bit is set to one then user can 5007 * enable/disable interrupt coalescing on per reply 5008 * descriptor post queue group(8) basis. So to enable 5009 * interrupt coalescing only on first reply descriptor 5010 * post queue group 31st bit and zero th bit is enabled. 5011 */ 5012 ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 | 5013 ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1)); 5014 rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1); 5015 if (rc) 5016 return rc; 5017 ioc_info(ioc, "performance mode: balanced\n"); 5018 return 0; 5019 } 5020 fallthrough; 5021 case MPT_PERF_MODE_LATENCY: 5022 /* 5023 * Enable interrupt coalescing on all reply queues 5024 * with timeout value 0xA 5025 */ 5026 ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa); 5027 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING); 5028 ioc_pg1.ProductSpecific = 0; 5029 rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1); 5030 if (rc) 5031 return rc; 5032 ioc_info(ioc, "performance mode: latency\n"); 5033 break; 5034 case MPT_PERF_MODE_IOPS: 5035 /* 5036 * Enable interrupt coalescing on all reply queues. 5037 */ 5038 ioc_info(ioc, 5039 "performance mode: iops with coalescing timeout: 0x%x\n", 5040 le32_to_cpu(ioc_pg1.CoalescingTimeout)); 5041 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING); 5042 ioc_pg1.ProductSpecific = 0; 5043 rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1); 5044 if (rc) 5045 return rc; 5046 break; 5047 } 5048 return 0; 5049 } 5050 5051 /** 5052 * _base_get_event_diag_triggers - get event diag trigger values from 5053 * persistent pages 5054 * @ioc : per adapter object 5055 * 5056 * Return: nothing. 5057 */ 5058 static int 5059 _base_get_event_diag_triggers(struct MPT3SAS_ADAPTER *ioc) 5060 { 5061 Mpi26DriverTriggerPage2_t trigger_pg2; 5062 struct SL_WH_EVENT_TRIGGER_T *event_tg; 5063 MPI26_DRIVER_MPI_EVENT_TIGGER_ENTRY *mpi_event_tg; 5064 Mpi2ConfigReply_t mpi_reply; 5065 int r = 0, i = 0; 5066 u16 count = 0; 5067 u16 ioc_status; 5068 5069 r = mpt3sas_config_get_driver_trigger_pg2(ioc, &mpi_reply, 5070 &trigger_pg2); 5071 if (r) 5072 return r; 5073 5074 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 5075 MPI2_IOCSTATUS_MASK; 5076 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 5077 dinitprintk(ioc, 5078 ioc_err(ioc, 5079 "%s: Failed to get trigger pg2, ioc_status(0x%04x)\n", 5080 __func__, ioc_status)); 5081 return 0; 5082 } 5083 5084 if (le16_to_cpu(trigger_pg2.NumMPIEventTrigger)) { 5085 count = le16_to_cpu(trigger_pg2.NumMPIEventTrigger); 5086 count = min_t(u16, NUM_VALID_ENTRIES, count); 5087 ioc->diag_trigger_event.ValidEntries = count; 5088 5089 event_tg = &ioc->diag_trigger_event.EventTriggerEntry[0]; 5090 mpi_event_tg = &trigger_pg2.MPIEventTriggers[0]; 5091 for (i = 0; i < count; i++) { 5092 event_tg->EventValue = le16_to_cpu( 5093 mpi_event_tg->MPIEventCode); 5094 event_tg->LogEntryQualifier = le16_to_cpu( 5095 mpi_event_tg->MPIEventCodeSpecific); 5096 event_tg++; 5097 mpi_event_tg++; 5098 } 5099 } 5100 return 0; 5101 } 5102 5103 /** 5104 * _base_get_scsi_diag_triggers - get scsi diag trigger values from 5105 * persistent pages 5106 * @ioc : per adapter object 5107 * 5108 * Return: 0 on success; otherwise return failure status. 5109 */ 5110 static int 5111 _base_get_scsi_diag_triggers(struct MPT3SAS_ADAPTER *ioc) 5112 { 5113 Mpi26DriverTriggerPage3_t trigger_pg3; 5114 struct SL_WH_SCSI_TRIGGER_T *scsi_tg; 5115 MPI26_DRIVER_SCSI_SENSE_TIGGER_ENTRY *mpi_scsi_tg; 5116 Mpi2ConfigReply_t mpi_reply; 5117 int r = 0, i = 0; 5118 u16 count = 0; 5119 u16 ioc_status; 5120 5121 r = mpt3sas_config_get_driver_trigger_pg3(ioc, &mpi_reply, 5122 &trigger_pg3); 5123 if (r) 5124 return r; 5125 5126 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 5127 MPI2_IOCSTATUS_MASK; 5128 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 5129 dinitprintk(ioc, 5130 ioc_err(ioc, 5131 "%s: Failed to get trigger pg3, ioc_status(0x%04x)\n", 5132 __func__, ioc_status)); 5133 return 0; 5134 } 5135 5136 if (le16_to_cpu(trigger_pg3.NumSCSISenseTrigger)) { 5137 count = le16_to_cpu(trigger_pg3.NumSCSISenseTrigger); 5138 count = min_t(u16, NUM_VALID_ENTRIES, count); 5139 ioc->diag_trigger_scsi.ValidEntries = count; 5140 5141 scsi_tg = &ioc->diag_trigger_scsi.SCSITriggerEntry[0]; 5142 mpi_scsi_tg = &trigger_pg3.SCSISenseTriggers[0]; 5143 for (i = 0; i < count; i++) { 5144 scsi_tg->ASCQ = mpi_scsi_tg->ASCQ; 5145 scsi_tg->ASC = mpi_scsi_tg->ASC; 5146 scsi_tg->SenseKey = mpi_scsi_tg->SenseKey; 5147 5148 scsi_tg++; 5149 mpi_scsi_tg++; 5150 } 5151 } 5152 return 0; 5153 } 5154 5155 /** 5156 * _base_get_mpi_diag_triggers - get mpi diag trigger values from 5157 * persistent pages 5158 * @ioc : per adapter object 5159 * 5160 * Return: 0 on success; otherwise return failure status. 5161 */ 5162 static int 5163 _base_get_mpi_diag_triggers(struct MPT3SAS_ADAPTER *ioc) 5164 { 5165 Mpi26DriverTriggerPage4_t trigger_pg4; 5166 struct SL_WH_MPI_TRIGGER_T *status_tg; 5167 MPI26_DRIVER_IOCSTATUS_LOGINFO_TIGGER_ENTRY *mpi_status_tg; 5168 Mpi2ConfigReply_t mpi_reply; 5169 int r = 0, i = 0; 5170 u16 count = 0; 5171 u16 ioc_status; 5172 5173 r = mpt3sas_config_get_driver_trigger_pg4(ioc, &mpi_reply, 5174 &trigger_pg4); 5175 if (r) 5176 return r; 5177 5178 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 5179 MPI2_IOCSTATUS_MASK; 5180 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 5181 dinitprintk(ioc, 5182 ioc_err(ioc, 5183 "%s: Failed to get trigger pg4, ioc_status(0x%04x)\n", 5184 __func__, ioc_status)); 5185 return 0; 5186 } 5187 5188 if (le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger)) { 5189 count = le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger); 5190 count = min_t(u16, NUM_VALID_ENTRIES, count); 5191 ioc->diag_trigger_mpi.ValidEntries = count; 5192 5193 status_tg = &ioc->diag_trigger_mpi.MPITriggerEntry[0]; 5194 mpi_status_tg = &trigger_pg4.IOCStatusLoginfoTriggers[0]; 5195 5196 for (i = 0; i < count; i++) { 5197 status_tg->IOCStatus = le16_to_cpu( 5198 mpi_status_tg->IOCStatus); 5199 status_tg->IocLogInfo = le32_to_cpu( 5200 mpi_status_tg->LogInfo); 5201 5202 status_tg++; 5203 mpi_status_tg++; 5204 } 5205 } 5206 return 0; 5207 } 5208 5209 /** 5210 * _base_get_master_diag_triggers - get master diag trigger values from 5211 * persistent pages 5212 * @ioc : per adapter object 5213 * 5214 * Return: nothing. 5215 */ 5216 static int 5217 _base_get_master_diag_triggers(struct MPT3SAS_ADAPTER *ioc) 5218 { 5219 Mpi26DriverTriggerPage1_t trigger_pg1; 5220 Mpi2ConfigReply_t mpi_reply; 5221 int r; 5222 u16 ioc_status; 5223 5224 r = mpt3sas_config_get_driver_trigger_pg1(ioc, &mpi_reply, 5225 &trigger_pg1); 5226 if (r) 5227 return r; 5228 5229 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 5230 MPI2_IOCSTATUS_MASK; 5231 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 5232 dinitprintk(ioc, 5233 ioc_err(ioc, 5234 "%s: Failed to get trigger pg1, ioc_status(0x%04x)\n", 5235 __func__, ioc_status)); 5236 return 0; 5237 } 5238 5239 if (le16_to_cpu(trigger_pg1.NumMasterTrigger)) 5240 ioc->diag_trigger_master.MasterData |= 5241 le32_to_cpu( 5242 trigger_pg1.MasterTriggers[0].MasterTriggerFlags); 5243 return 0; 5244 } 5245 5246 /** 5247 * _base_check_for_trigger_pages_support - checks whether HBA FW supports 5248 * driver trigger pages or not 5249 * @ioc : per adapter object 5250 * @trigger_flags : address where trigger page0's TriggerFlags value is copied 5251 * 5252 * Return: trigger flags mask if HBA FW supports driver trigger pages; 5253 * otherwise returns %-EFAULT if driver trigger pages are not supported by FW or 5254 * return EAGAIN if diag reset occurred due to FW fault and asking the 5255 * caller to retry the command. 5256 * 5257 */ 5258 static int 5259 _base_check_for_trigger_pages_support(struct MPT3SAS_ADAPTER *ioc, u32 *trigger_flags) 5260 { 5261 Mpi26DriverTriggerPage0_t trigger_pg0; 5262 int r = 0; 5263 Mpi2ConfigReply_t mpi_reply; 5264 u16 ioc_status; 5265 5266 r = mpt3sas_config_get_driver_trigger_pg0(ioc, &mpi_reply, 5267 &trigger_pg0); 5268 if (r) 5269 return r; 5270 5271 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 5272 MPI2_IOCSTATUS_MASK; 5273 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) 5274 return -EFAULT; 5275 5276 *trigger_flags = le16_to_cpu(trigger_pg0.TriggerFlags); 5277 return 0; 5278 } 5279 5280 /** 5281 * _base_get_diag_triggers - Retrieve diag trigger values from 5282 * persistent pages. 5283 * @ioc : per adapter object 5284 * 5285 * Return: zero on success; otherwise return EAGAIN error codes 5286 * asking the caller to retry. 5287 */ 5288 static int 5289 _base_get_diag_triggers(struct MPT3SAS_ADAPTER *ioc) 5290 { 5291 int trigger_flags; 5292 int r; 5293 5294 /* 5295 * Default setting of master trigger. 5296 */ 5297 ioc->diag_trigger_master.MasterData = 5298 (MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET); 5299 5300 r = _base_check_for_trigger_pages_support(ioc, &trigger_flags); 5301 if (r) { 5302 if (r == -EAGAIN) 5303 return r; 5304 /* 5305 * Don't go for error handling when FW doesn't support 5306 * driver trigger pages. 5307 */ 5308 return 0; 5309 } 5310 5311 ioc->supports_trigger_pages = 1; 5312 5313 /* 5314 * Retrieve master diag trigger values from driver trigger pg1 5315 * if master trigger bit enabled in TriggerFlags. 5316 */ 5317 if ((u16)trigger_flags & 5318 MPI26_DRIVER_TRIGGER0_FLAG_MASTER_TRIGGER_VALID) { 5319 r = _base_get_master_diag_triggers(ioc); 5320 if (r) 5321 return r; 5322 } 5323 5324 /* 5325 * Retrieve event diag trigger values from driver trigger pg2 5326 * if event trigger bit enabled in TriggerFlags. 5327 */ 5328 if ((u16)trigger_flags & 5329 MPI26_DRIVER_TRIGGER0_FLAG_MPI_EVENT_TRIGGER_VALID) { 5330 r = _base_get_event_diag_triggers(ioc); 5331 if (r) 5332 return r; 5333 } 5334 5335 /* 5336 * Retrieve scsi diag trigger values from driver trigger pg3 5337 * if scsi trigger bit enabled in TriggerFlags. 5338 */ 5339 if ((u16)trigger_flags & 5340 MPI26_DRIVER_TRIGGER0_FLAG_SCSI_SENSE_TRIGGER_VALID) { 5341 r = _base_get_scsi_diag_triggers(ioc); 5342 if (r) 5343 return r; 5344 } 5345 /* 5346 * Retrieve mpi error diag trigger values from driver trigger pg4 5347 * if loginfo trigger bit enabled in TriggerFlags. 5348 */ 5349 if ((u16)trigger_flags & 5350 MPI26_DRIVER_TRIGGER0_FLAG_LOGINFO_TRIGGER_VALID) { 5351 r = _base_get_mpi_diag_triggers(ioc); 5352 if (r) 5353 return r; 5354 } 5355 return 0; 5356 } 5357 5358 /** 5359 * _base_update_diag_trigger_pages - Update the driver trigger pages after 5360 * online FW update, in case updated FW supports driver 5361 * trigger pages. 5362 * @ioc : per adapter object 5363 * 5364 * Return: nothing. 5365 */ 5366 static void 5367 _base_update_diag_trigger_pages(struct MPT3SAS_ADAPTER *ioc) 5368 { 5369 5370 if (ioc->diag_trigger_master.MasterData) 5371 mpt3sas_config_update_driver_trigger_pg1(ioc, 5372 &ioc->diag_trigger_master, 1); 5373 5374 if (ioc->diag_trigger_event.ValidEntries) 5375 mpt3sas_config_update_driver_trigger_pg2(ioc, 5376 &ioc->diag_trigger_event, 1); 5377 5378 if (ioc->diag_trigger_scsi.ValidEntries) 5379 mpt3sas_config_update_driver_trigger_pg3(ioc, 5380 &ioc->diag_trigger_scsi, 1); 5381 5382 if (ioc->diag_trigger_mpi.ValidEntries) 5383 mpt3sas_config_update_driver_trigger_pg4(ioc, 5384 &ioc->diag_trigger_mpi, 1); 5385 } 5386 5387 /** 5388 * _base_assign_fw_reported_qd - Get FW reported QD for SAS/SATA devices. 5389 * - On failure set default QD values. 5390 * @ioc : per adapter object 5391 * 5392 * Returns 0 for success, non-zero for failure. 5393 * 5394 */ 5395 static int _base_assign_fw_reported_qd(struct MPT3SAS_ADAPTER *ioc) 5396 { 5397 Mpi2ConfigReply_t mpi_reply; 5398 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL; 5399 Mpi26PCIeIOUnitPage1_t pcie_iounit_pg1; 5400 u16 depth; 5401 int sz; 5402 int rc = 0; 5403 5404 ioc->max_wideport_qd = MPT3SAS_SAS_QUEUE_DEPTH; 5405 ioc->max_narrowport_qd = MPT3SAS_SAS_QUEUE_DEPTH; 5406 ioc->max_sata_qd = MPT3SAS_SATA_QUEUE_DEPTH; 5407 ioc->max_nvme_qd = MPT3SAS_NVME_QUEUE_DEPTH; 5408 if (!ioc->is_gen35_ioc) 5409 goto out; 5410 /* sas iounit page 1 */ 5411 sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData); 5412 sas_iounit_pg1 = kzalloc(sizeof(Mpi2SasIOUnitPage1_t), GFP_KERNEL); 5413 if (!sas_iounit_pg1) { 5414 pr_err("%s: failure at %s:%d/%s()!\n", 5415 ioc->name, __FILE__, __LINE__, __func__); 5416 return rc; 5417 } 5418 rc = mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply, 5419 sas_iounit_pg1, sz); 5420 if (rc) { 5421 pr_err("%s: failure at %s:%d/%s()!\n", 5422 ioc->name, __FILE__, __LINE__, __func__); 5423 goto out; 5424 } 5425 5426 depth = le16_to_cpu(sas_iounit_pg1->SASWideMaxQueueDepth); 5427 ioc->max_wideport_qd = (depth ? depth : MPT3SAS_SAS_QUEUE_DEPTH); 5428 5429 depth = le16_to_cpu(sas_iounit_pg1->SASNarrowMaxQueueDepth); 5430 ioc->max_narrowport_qd = (depth ? depth : MPT3SAS_SAS_QUEUE_DEPTH); 5431 5432 depth = sas_iounit_pg1->SATAMaxQDepth; 5433 ioc->max_sata_qd = (depth ? depth : MPT3SAS_SATA_QUEUE_DEPTH); 5434 5435 /* pcie iounit page 1 */ 5436 rc = mpt3sas_config_get_pcie_iounit_pg1(ioc, &mpi_reply, 5437 &pcie_iounit_pg1, sizeof(Mpi26PCIeIOUnitPage1_t)); 5438 if (rc) { 5439 pr_err("%s: failure at %s:%d/%s()!\n", 5440 ioc->name, __FILE__, __LINE__, __func__); 5441 goto out; 5442 } 5443 ioc->max_nvme_qd = (le16_to_cpu(pcie_iounit_pg1.NVMeMaxQueueDepth)) ? 5444 (le16_to_cpu(pcie_iounit_pg1.NVMeMaxQueueDepth)) : 5445 MPT3SAS_NVME_QUEUE_DEPTH; 5446 out: 5447 dinitprintk(ioc, pr_err( 5448 "MaxWidePortQD: 0x%x MaxNarrowPortQD: 0x%x MaxSataQD: 0x%x MaxNvmeQD: 0x%x\n", 5449 ioc->max_wideport_qd, ioc->max_narrowport_qd, 5450 ioc->max_sata_qd, ioc->max_nvme_qd)); 5451 kfree(sas_iounit_pg1); 5452 return rc; 5453 } 5454 5455 /** 5456 * mpt3sas_atto_validate_nvram - validate the ATTO nvram read from mfg pg1 5457 * 5458 * @ioc : per adapter object 5459 * @n : ptr to the ATTO nvram structure 5460 * Return: 0 for success, non-zero for failure. 5461 */ 5462 static int 5463 mpt3sas_atto_validate_nvram(struct MPT3SAS_ADAPTER *ioc, 5464 struct ATTO_SAS_NVRAM *n) 5465 { 5466 int r = -EINVAL; 5467 union ATTO_SAS_ADDRESS *s1; 5468 u32 len; 5469 u8 *pb; 5470 u8 ckSum; 5471 5472 /* validate nvram checksum */ 5473 pb = (u8 *) n; 5474 ckSum = ATTO_SASNVR_CKSUM_SEED; 5475 len = sizeof(struct ATTO_SAS_NVRAM); 5476 5477 while (len--) 5478 ckSum = ckSum + pb[len]; 5479 5480 if (ckSum) { 5481 ioc_err(ioc, "Invalid ATTO NVRAM checksum\n"); 5482 return r; 5483 } 5484 5485 s1 = (union ATTO_SAS_ADDRESS *) n->SasAddr; 5486 5487 if (n->Signature[0] != 'E' 5488 || n->Signature[1] != 'S' 5489 || n->Signature[2] != 'A' 5490 || n->Signature[3] != 'S') 5491 ioc_err(ioc, "Invalid ATTO NVRAM signature\n"); 5492 else if (n->Version > ATTO_SASNVR_VERSION) 5493 ioc_info(ioc, "Invalid ATTO NVRAM version"); 5494 else if ((n->SasAddr[7] & (ATTO_SAS_ADDR_ALIGN - 1)) 5495 || s1->b[0] != 0x50 5496 || s1->b[1] != 0x01 5497 || s1->b[2] != 0x08 5498 || (s1->b[3] & 0xF0) != 0x60 5499 || ((s1->b[3] & 0x0F) | le32_to_cpu(s1->d[1])) == 0) { 5500 ioc_err(ioc, "Invalid ATTO SAS address\n"); 5501 } else 5502 r = 0; 5503 return r; 5504 } 5505 5506 /** 5507 * mpt3sas_atto_get_sas_addr - get the ATTO SAS address from mfg page 1 5508 * 5509 * @ioc : per adapter object 5510 * @*sas_addr : return sas address 5511 * Return: 0 for success, non-zero for failure. 5512 */ 5513 static int 5514 mpt3sas_atto_get_sas_addr(struct MPT3SAS_ADAPTER *ioc, union ATTO_SAS_ADDRESS *sas_addr) 5515 { 5516 Mpi2ManufacturingPage1_t mfg_pg1; 5517 Mpi2ConfigReply_t mpi_reply; 5518 struct ATTO_SAS_NVRAM *nvram; 5519 int r; 5520 __be64 addr; 5521 5522 r = mpt3sas_config_get_manufacturing_pg1(ioc, &mpi_reply, &mfg_pg1); 5523 if (r) { 5524 ioc_err(ioc, "Failed to read manufacturing page 1\n"); 5525 return r; 5526 } 5527 5528 /* validate nvram */ 5529 nvram = (struct ATTO_SAS_NVRAM *) mfg_pg1.VPD; 5530 r = mpt3sas_atto_validate_nvram(ioc, nvram); 5531 if (r) 5532 return r; 5533 5534 addr = *((__be64 *) nvram->SasAddr); 5535 sas_addr->q = cpu_to_le64(be64_to_cpu(addr)); 5536 return r; 5537 } 5538 5539 /** 5540 * mpt3sas_atto_init - perform initializaion for ATTO branded 5541 * adapter. 5542 * @ioc : per adapter object 5543 *5 5544 * Return: 0 for success, non-zero for failure. 5545 */ 5546 static int 5547 mpt3sas_atto_init(struct MPT3SAS_ADAPTER *ioc) 5548 { 5549 int sz = 0; 5550 Mpi2BiosPage4_t *bios_pg4 = NULL; 5551 Mpi2ConfigReply_t mpi_reply; 5552 int r; 5553 int ix; 5554 union ATTO_SAS_ADDRESS sas_addr; 5555 union ATTO_SAS_ADDRESS temp; 5556 union ATTO_SAS_ADDRESS bias; 5557 5558 r = mpt3sas_atto_get_sas_addr(ioc, &sas_addr); 5559 if (r) 5560 return r; 5561 5562 /* get header first to get size */ 5563 r = mpt3sas_config_get_bios_pg4(ioc, &mpi_reply, NULL, 0); 5564 if (r) { 5565 ioc_err(ioc, "Failed to read ATTO bios page 4 header.\n"); 5566 return r; 5567 } 5568 5569 sz = mpi_reply.Header.PageLength * sizeof(u32); 5570 bios_pg4 = kzalloc(sz, GFP_KERNEL); 5571 if (!bios_pg4) { 5572 ioc_err(ioc, "Failed to allocate memory for ATTO bios page.\n"); 5573 return -ENOMEM; 5574 } 5575 5576 /* read bios page 4 */ 5577 r = mpt3sas_config_get_bios_pg4(ioc, &mpi_reply, bios_pg4, sz); 5578 if (r) { 5579 ioc_err(ioc, "Failed to read ATTO bios page 4\n"); 5580 goto out; 5581 } 5582 5583 /* Update bios page 4 with the ATTO WWID */ 5584 bias.q = sas_addr.q; 5585 bias.b[7] += ATTO_SAS_ADDR_DEVNAME_BIAS; 5586 5587 for (ix = 0; ix < bios_pg4->NumPhys; ix++) { 5588 temp.q = sas_addr.q; 5589 temp.b[7] += ix; 5590 bios_pg4->Phy[ix].ReassignmentWWID = temp.q; 5591 bios_pg4->Phy[ix].ReassignmentDeviceName = bias.q; 5592 } 5593 r = mpt3sas_config_set_bios_pg4(ioc, &mpi_reply, bios_pg4, sz); 5594 5595 out: 5596 kfree(bios_pg4); 5597 return r; 5598 } 5599 5600 /** 5601 * _base_static_config_pages - static start of day config pages 5602 * @ioc: per adapter object 5603 */ 5604 static int 5605 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc) 5606 { 5607 Mpi2ConfigReply_t mpi_reply; 5608 u32 iounit_pg1_flags; 5609 int tg_flags = 0; 5610 int rc; 5611 ioc->nvme_abort_timeout = 30; 5612 5613 rc = mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, 5614 &ioc->manu_pg0); 5615 if (rc) 5616 return rc; 5617 if (ioc->ir_firmware) { 5618 rc = mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply, 5619 &ioc->manu_pg10); 5620 if (rc) 5621 return rc; 5622 } 5623 5624 if (ioc->pdev->vendor == MPI2_MFGPAGE_VENDORID_ATTO) { 5625 rc = mpt3sas_atto_init(ioc); 5626 if (rc) 5627 return rc; 5628 } 5629 5630 /* 5631 * Ensure correct T10 PI operation if vendor left EEDPTagMode 5632 * flag unset in NVDATA. 5633 */ 5634 rc = mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, 5635 &ioc->manu_pg11); 5636 if (rc) 5637 return rc; 5638 if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) { 5639 pr_err("%s: overriding NVDATA EEDPTagMode setting\n", 5640 ioc->name); 5641 ioc->manu_pg11.EEDPTagMode &= ~0x3; 5642 ioc->manu_pg11.EEDPTagMode |= 0x1; 5643 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply, 5644 &ioc->manu_pg11); 5645 } 5646 if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK) 5647 ioc->tm_custom_handling = 1; 5648 else { 5649 ioc->tm_custom_handling = 0; 5650 if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT) 5651 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT; 5652 else if (ioc->manu_pg11.NVMeAbortTO > 5653 NVME_TASK_ABORT_MAX_TIMEOUT) 5654 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT; 5655 else 5656 ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO; 5657 } 5658 ioc->time_sync_interval = 5659 ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_MASK; 5660 if (ioc->time_sync_interval) { 5661 if (ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_UNIT_MASK) 5662 ioc->time_sync_interval = 5663 ioc->time_sync_interval * SECONDS_PER_HOUR; 5664 else 5665 ioc->time_sync_interval = 5666 ioc->time_sync_interval * SECONDS_PER_MIN; 5667 dinitprintk(ioc, ioc_info(ioc, 5668 "Driver-FW TimeSync interval is %d seconds. ManuPg11 TimeSync Unit is in %s\n", 5669 ioc->time_sync_interval, (ioc->manu_pg11.TimeSyncInterval & 5670 MPT3SAS_TIMESYNC_UNIT_MASK) ? "Hour" : "Minute")); 5671 } else { 5672 if (ioc->is_gen35_ioc) 5673 ioc_warn(ioc, 5674 "TimeSync Interval in Manuf page-11 is not enabled. Periodic Time-Sync will be disabled\n"); 5675 } 5676 rc = _base_assign_fw_reported_qd(ioc); 5677 if (rc) 5678 return rc; 5679 5680 /* 5681 * ATTO doesn't use bios page 2 and 3 for bios settings. 5682 */ 5683 if (ioc->pdev->vendor == MPI2_MFGPAGE_VENDORID_ATTO) 5684 ioc->bios_pg3.BiosVersion = 0; 5685 else { 5686 rc = mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2); 5687 if (rc) 5688 return rc; 5689 rc = mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3); 5690 if (rc) 5691 return rc; 5692 } 5693 5694 rc = mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8); 5695 if (rc) 5696 return rc; 5697 rc = mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0); 5698 if (rc) 5699 return rc; 5700 rc = mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1); 5701 if (rc) 5702 return rc; 5703 rc = mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8); 5704 if (rc) 5705 return rc; 5706 _base_display_ioc_capabilities(ioc); 5707 5708 /* 5709 * Enable task_set_full handling in iounit_pg1 when the 5710 * facts capabilities indicate that its supported. 5711 */ 5712 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags); 5713 if ((ioc->facts.IOCCapabilities & 5714 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING)) 5715 iounit_pg1_flags &= 5716 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING; 5717 else 5718 iounit_pg1_flags |= 5719 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING; 5720 ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags); 5721 rc = mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1); 5722 if (rc) 5723 return rc; 5724 5725 if (ioc->iounit_pg8.NumSensors) 5726 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors; 5727 if (ioc->is_aero_ioc) { 5728 rc = _base_update_ioc_page1_inlinewith_perf_mode(ioc); 5729 if (rc) 5730 return rc; 5731 } 5732 if (ioc->is_gen35_ioc) { 5733 if (ioc->is_driver_loading) { 5734 rc = _base_get_diag_triggers(ioc); 5735 if (rc) 5736 return rc; 5737 } else { 5738 /* 5739 * In case of online HBA FW update operation, 5740 * check whether updated FW supports the driver trigger 5741 * pages or not. 5742 * - If previous FW has not supported driver trigger 5743 * pages and newer FW supports them then update these 5744 * pages with current diag trigger values. 5745 * - If previous FW has supported driver trigger pages 5746 * and new FW doesn't support them then disable 5747 * support_trigger_pages flag. 5748 */ 5749 _base_check_for_trigger_pages_support(ioc, &tg_flags); 5750 if (!ioc->supports_trigger_pages && tg_flags != -EFAULT) 5751 _base_update_diag_trigger_pages(ioc); 5752 else if (ioc->supports_trigger_pages && 5753 tg_flags == -EFAULT) 5754 ioc->supports_trigger_pages = 0; 5755 } 5756 } 5757 return 0; 5758 } 5759 5760 /** 5761 * mpt3sas_free_enclosure_list - release memory 5762 * @ioc: per adapter object 5763 * 5764 * Free memory allocated during enclosure add. 5765 */ 5766 void 5767 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc) 5768 { 5769 struct _enclosure_node *enclosure_dev, *enclosure_dev_next; 5770 5771 /* Free enclosure list */ 5772 list_for_each_entry_safe(enclosure_dev, 5773 enclosure_dev_next, &ioc->enclosure_list, list) { 5774 list_del(&enclosure_dev->list); 5775 kfree(enclosure_dev); 5776 } 5777 } 5778 5779 /** 5780 * _base_release_memory_pools - release memory 5781 * @ioc: per adapter object 5782 * 5783 * Free memory allocated from _base_allocate_memory_pools. 5784 */ 5785 static void 5786 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc) 5787 { 5788 int i = 0; 5789 int j = 0; 5790 int dma_alloc_count = 0; 5791 struct chain_tracker *ct; 5792 int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1; 5793 5794 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 5795 5796 if (ioc->request) { 5797 dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz, 5798 ioc->request, ioc->request_dma); 5799 dexitprintk(ioc, 5800 ioc_info(ioc, "request_pool(0x%p): free\n", 5801 ioc->request)); 5802 ioc->request = NULL; 5803 } 5804 5805 if (ioc->sense) { 5806 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma); 5807 dma_pool_destroy(ioc->sense_dma_pool); 5808 dexitprintk(ioc, 5809 ioc_info(ioc, "sense_pool(0x%p): free\n", 5810 ioc->sense)); 5811 ioc->sense = NULL; 5812 } 5813 5814 if (ioc->reply) { 5815 dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma); 5816 dma_pool_destroy(ioc->reply_dma_pool); 5817 dexitprintk(ioc, 5818 ioc_info(ioc, "reply_pool(0x%p): free\n", 5819 ioc->reply)); 5820 ioc->reply = NULL; 5821 } 5822 5823 if (ioc->reply_free) { 5824 dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free, 5825 ioc->reply_free_dma); 5826 dma_pool_destroy(ioc->reply_free_dma_pool); 5827 dexitprintk(ioc, 5828 ioc_info(ioc, "reply_free_pool(0x%p): free\n", 5829 ioc->reply_free)); 5830 ioc->reply_free = NULL; 5831 } 5832 5833 if (ioc->reply_post) { 5834 dma_alloc_count = DIV_ROUND_UP(count, 5835 RDPQ_MAX_INDEX_IN_ONE_CHUNK); 5836 for (i = 0; i < count; i++) { 5837 if (i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0 5838 && dma_alloc_count) { 5839 if (ioc->reply_post[i].reply_post_free) { 5840 dma_pool_free( 5841 ioc->reply_post_free_dma_pool, 5842 ioc->reply_post[i].reply_post_free, 5843 ioc->reply_post[i].reply_post_free_dma); 5844 dexitprintk(ioc, ioc_info(ioc, 5845 "reply_post_free_pool(0x%p): free\n", 5846 ioc->reply_post[i].reply_post_free)); 5847 ioc->reply_post[i].reply_post_free = 5848 NULL; 5849 } 5850 --dma_alloc_count; 5851 } 5852 } 5853 dma_pool_destroy(ioc->reply_post_free_dma_pool); 5854 if (ioc->reply_post_free_array && 5855 ioc->rdpq_array_enable) { 5856 dma_pool_free(ioc->reply_post_free_array_dma_pool, 5857 ioc->reply_post_free_array, 5858 ioc->reply_post_free_array_dma); 5859 ioc->reply_post_free_array = NULL; 5860 } 5861 dma_pool_destroy(ioc->reply_post_free_array_dma_pool); 5862 kfree(ioc->reply_post); 5863 } 5864 5865 if (ioc->pcie_sgl_dma_pool) { 5866 for (i = 0; i < ioc->scsiio_depth; i++) { 5867 dma_pool_free(ioc->pcie_sgl_dma_pool, 5868 ioc->pcie_sg_lookup[i].pcie_sgl, 5869 ioc->pcie_sg_lookup[i].pcie_sgl_dma); 5870 ioc->pcie_sg_lookup[i].pcie_sgl = NULL; 5871 } 5872 dma_pool_destroy(ioc->pcie_sgl_dma_pool); 5873 } 5874 kfree(ioc->pcie_sg_lookup); 5875 ioc->pcie_sg_lookup = NULL; 5876 5877 if (ioc->config_page) { 5878 dexitprintk(ioc, 5879 ioc_info(ioc, "config_page(0x%p): free\n", 5880 ioc->config_page)); 5881 dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz, 5882 ioc->config_page, ioc->config_page_dma); 5883 } 5884 5885 kfree(ioc->hpr_lookup); 5886 ioc->hpr_lookup = NULL; 5887 kfree(ioc->internal_lookup); 5888 ioc->internal_lookup = NULL; 5889 if (ioc->chain_lookup) { 5890 for (i = 0; i < ioc->scsiio_depth; i++) { 5891 for (j = ioc->chains_per_prp_buffer; 5892 j < ioc->chains_needed_per_io; j++) { 5893 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 5894 if (ct && ct->chain_buffer) 5895 dma_pool_free(ioc->chain_dma_pool, 5896 ct->chain_buffer, 5897 ct->chain_buffer_dma); 5898 } 5899 kfree(ioc->chain_lookup[i].chains_per_smid); 5900 } 5901 dma_pool_destroy(ioc->chain_dma_pool); 5902 kfree(ioc->chain_lookup); 5903 ioc->chain_lookup = NULL; 5904 } 5905 5906 kfree(ioc->io_queue_num); 5907 ioc->io_queue_num = NULL; 5908 } 5909 5910 /** 5911 * mpt3sas_check_same_4gb_region - checks whether all reply queues in a set are 5912 * having same upper 32bits in their base memory address. 5913 * @start_address: Base address of a reply queue set 5914 * @pool_sz: Size of single Reply Descriptor Post Queues pool size 5915 * 5916 * Return: 1 if reply queues in a set have a same upper 32bits in their base 5917 * memory address, else 0. 5918 */ 5919 static int 5920 mpt3sas_check_same_4gb_region(dma_addr_t start_address, u32 pool_sz) 5921 { 5922 dma_addr_t end_address; 5923 5924 end_address = start_address + pool_sz - 1; 5925 5926 if (upper_32_bits(start_address) == upper_32_bits(end_address)) 5927 return 1; 5928 else 5929 return 0; 5930 } 5931 5932 /** 5933 * _base_reduce_hba_queue_depth- Retry with reduced queue depth 5934 * @ioc: Adapter object 5935 * 5936 * Return: 0 for success, non-zero for failure. 5937 **/ 5938 static inline int 5939 _base_reduce_hba_queue_depth(struct MPT3SAS_ADAPTER *ioc) 5940 { 5941 int reduce_sz = 64; 5942 5943 if ((ioc->hba_queue_depth - reduce_sz) > 5944 (ioc->internal_depth + INTERNAL_SCSIIO_CMDS_COUNT)) { 5945 ioc->hba_queue_depth -= reduce_sz; 5946 return 0; 5947 } else 5948 return -ENOMEM; 5949 } 5950 5951 /** 5952 * _base_allocate_pcie_sgl_pool - Allocating DMA'able memory 5953 * for pcie sgl pools. 5954 * @ioc: Adapter object 5955 * @sz: DMA Pool size 5956 * 5957 * Return: 0 for success, non-zero for failure. 5958 */ 5959 5960 static int 5961 _base_allocate_pcie_sgl_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz) 5962 { 5963 int i = 0, j = 0; 5964 struct chain_tracker *ct; 5965 5966 ioc->pcie_sgl_dma_pool = 5967 dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz, 5968 ioc->page_size, 0); 5969 if (!ioc->pcie_sgl_dma_pool) { 5970 ioc_err(ioc, "PCIe SGL pool: dma_pool_create failed\n"); 5971 return -ENOMEM; 5972 } 5973 5974 ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz; 5975 ioc->chains_per_prp_buffer = 5976 min(ioc->chains_per_prp_buffer, ioc->chains_needed_per_io); 5977 for (i = 0; i < ioc->scsiio_depth; i++) { 5978 ioc->pcie_sg_lookup[i].pcie_sgl = 5979 dma_pool_alloc(ioc->pcie_sgl_dma_pool, GFP_KERNEL, 5980 &ioc->pcie_sg_lookup[i].pcie_sgl_dma); 5981 if (!ioc->pcie_sg_lookup[i].pcie_sgl) { 5982 ioc_err(ioc, "PCIe SGL pool: dma_pool_alloc failed\n"); 5983 return -EAGAIN; 5984 } 5985 5986 if (!mpt3sas_check_same_4gb_region( 5987 ioc->pcie_sg_lookup[i].pcie_sgl_dma, sz)) { 5988 ioc_err(ioc, "PCIE SGLs are not in same 4G !! pcie sgl (0x%p) dma = (0x%llx)\n", 5989 ioc->pcie_sg_lookup[i].pcie_sgl, 5990 (unsigned long long) 5991 ioc->pcie_sg_lookup[i].pcie_sgl_dma); 5992 ioc->use_32bit_dma = true; 5993 return -EAGAIN; 5994 } 5995 5996 for (j = 0; j < ioc->chains_per_prp_buffer; j++) { 5997 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 5998 ct->chain_buffer = 5999 ioc->pcie_sg_lookup[i].pcie_sgl + 6000 (j * ioc->chain_segment_sz); 6001 ct->chain_buffer_dma = 6002 ioc->pcie_sg_lookup[i].pcie_sgl_dma + 6003 (j * ioc->chain_segment_sz); 6004 } 6005 } 6006 dinitprintk(ioc, ioc_info(ioc, 6007 "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n", 6008 ioc->scsiio_depth, sz, (sz * ioc->scsiio_depth)/1024)); 6009 dinitprintk(ioc, ioc_info(ioc, 6010 "Number of chains can fit in a PRP page(%d)\n", 6011 ioc->chains_per_prp_buffer)); 6012 return 0; 6013 } 6014 6015 /** 6016 * _base_allocate_chain_dma_pool - Allocating DMA'able memory 6017 * for chain dma pool. 6018 * @ioc: Adapter object 6019 * @sz: DMA Pool size 6020 * 6021 * Return: 0 for success, non-zero for failure. 6022 */ 6023 static int 6024 _base_allocate_chain_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz) 6025 { 6026 int i = 0, j = 0; 6027 struct chain_tracker *ctr; 6028 6029 ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev, 6030 ioc->chain_segment_sz, 16, 0); 6031 if (!ioc->chain_dma_pool) 6032 return -ENOMEM; 6033 6034 for (i = 0; i < ioc->scsiio_depth; i++) { 6035 for (j = ioc->chains_per_prp_buffer; 6036 j < ioc->chains_needed_per_io; j++) { 6037 ctr = &ioc->chain_lookup[i].chains_per_smid[j]; 6038 ctr->chain_buffer = dma_pool_alloc(ioc->chain_dma_pool, 6039 GFP_KERNEL, &ctr->chain_buffer_dma); 6040 if (!ctr->chain_buffer) 6041 return -EAGAIN; 6042 if (!mpt3sas_check_same_4gb_region( 6043 ctr->chain_buffer_dma, ioc->chain_segment_sz)) { 6044 ioc_err(ioc, 6045 "Chain buffers are not in same 4G !!! Chain buff (0x%p) dma = (0x%llx)\n", 6046 ctr->chain_buffer, 6047 (unsigned long long)ctr->chain_buffer_dma); 6048 ioc->use_32bit_dma = true; 6049 return -EAGAIN; 6050 } 6051 } 6052 } 6053 dinitprintk(ioc, ioc_info(ioc, 6054 "chain_lookup depth (%d), frame_size(%d), pool_size(%d kB)\n", 6055 ioc->scsiio_depth, ioc->chain_segment_sz, ((ioc->scsiio_depth * 6056 (ioc->chains_needed_per_io - ioc->chains_per_prp_buffer) * 6057 ioc->chain_segment_sz))/1024)); 6058 return 0; 6059 } 6060 6061 /** 6062 * _base_allocate_sense_dma_pool - Allocating DMA'able memory 6063 * for sense dma pool. 6064 * @ioc: Adapter object 6065 * @sz: DMA Pool size 6066 * Return: 0 for success, non-zero for failure. 6067 */ 6068 static int 6069 _base_allocate_sense_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz) 6070 { 6071 ioc->sense_dma_pool = 6072 dma_pool_create("sense pool", &ioc->pdev->dev, sz, 4, 0); 6073 if (!ioc->sense_dma_pool) 6074 return -ENOMEM; 6075 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, 6076 GFP_KERNEL, &ioc->sense_dma); 6077 if (!ioc->sense) 6078 return -EAGAIN; 6079 if (!mpt3sas_check_same_4gb_region(ioc->sense_dma, sz)) { 6080 dinitprintk(ioc, pr_err( 6081 "Bad Sense Pool! sense (0x%p) sense_dma = (0x%llx)\n", 6082 ioc->sense, (unsigned long long) ioc->sense_dma)); 6083 ioc->use_32bit_dma = true; 6084 return -EAGAIN; 6085 } 6086 ioc_info(ioc, 6087 "sense pool(0x%p) - dma(0x%llx): depth(%d), element_size(%d), pool_size (%d kB)\n", 6088 ioc->sense, (unsigned long long)ioc->sense_dma, 6089 ioc->scsiio_depth, SCSI_SENSE_BUFFERSIZE, sz/1024); 6090 return 0; 6091 } 6092 6093 /** 6094 * _base_allocate_reply_pool - Allocating DMA'able memory 6095 * for reply pool. 6096 * @ioc: Adapter object 6097 * @sz: DMA Pool size 6098 * Return: 0 for success, non-zero for failure. 6099 */ 6100 static int 6101 _base_allocate_reply_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz) 6102 { 6103 /* reply pool, 4 byte align */ 6104 ioc->reply_dma_pool = dma_pool_create("reply pool", 6105 &ioc->pdev->dev, sz, 4, 0); 6106 if (!ioc->reply_dma_pool) 6107 return -ENOMEM; 6108 ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL, 6109 &ioc->reply_dma); 6110 if (!ioc->reply) 6111 return -EAGAIN; 6112 if (!mpt3sas_check_same_4gb_region(ioc->reply_dma, sz)) { 6113 dinitprintk(ioc, pr_err( 6114 "Bad Reply Pool! Reply (0x%p) Reply dma = (0x%llx)\n", 6115 ioc->reply, (unsigned long long) ioc->reply_dma)); 6116 ioc->use_32bit_dma = true; 6117 return -EAGAIN; 6118 } 6119 ioc->reply_dma_min_address = (u32)(ioc->reply_dma); 6120 ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz; 6121 ioc_info(ioc, 6122 "reply pool(0x%p) - dma(0x%llx): depth(%d), frame_size(%d), pool_size(%d kB)\n", 6123 ioc->reply, (unsigned long long)ioc->reply_dma, 6124 ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024); 6125 return 0; 6126 } 6127 6128 /** 6129 * _base_allocate_reply_free_dma_pool - Allocating DMA'able memory 6130 * for reply free dma pool. 6131 * @ioc: Adapter object 6132 * @sz: DMA Pool size 6133 * Return: 0 for success, non-zero for failure. 6134 */ 6135 static int 6136 _base_allocate_reply_free_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz) 6137 { 6138 /* reply free queue, 16 byte align */ 6139 ioc->reply_free_dma_pool = dma_pool_create( 6140 "reply_free pool", &ioc->pdev->dev, sz, 16, 0); 6141 if (!ioc->reply_free_dma_pool) 6142 return -ENOMEM; 6143 ioc->reply_free = dma_pool_alloc(ioc->reply_free_dma_pool, 6144 GFP_KERNEL, &ioc->reply_free_dma); 6145 if (!ioc->reply_free) 6146 return -EAGAIN; 6147 if (!mpt3sas_check_same_4gb_region(ioc->reply_free_dma, sz)) { 6148 dinitprintk(ioc, 6149 pr_err("Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n", 6150 ioc->reply_free, (unsigned long long) ioc->reply_free_dma)); 6151 ioc->use_32bit_dma = true; 6152 return -EAGAIN; 6153 } 6154 memset(ioc->reply_free, 0, sz); 6155 dinitprintk(ioc, ioc_info(ioc, 6156 "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n", 6157 ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024)); 6158 dinitprintk(ioc, ioc_info(ioc, 6159 "reply_free_dma (0x%llx)\n", 6160 (unsigned long long)ioc->reply_free_dma)); 6161 return 0; 6162 } 6163 6164 /** 6165 * _base_allocate_reply_post_free_array - Allocating DMA'able memory 6166 * for reply post free array. 6167 * @ioc: Adapter object 6168 * @reply_post_free_array_sz: DMA Pool size 6169 * Return: 0 for success, non-zero for failure. 6170 */ 6171 6172 static int 6173 _base_allocate_reply_post_free_array(struct MPT3SAS_ADAPTER *ioc, 6174 u32 reply_post_free_array_sz) 6175 { 6176 ioc->reply_post_free_array_dma_pool = 6177 dma_pool_create("reply_post_free_array pool", 6178 &ioc->pdev->dev, reply_post_free_array_sz, 16, 0); 6179 if (!ioc->reply_post_free_array_dma_pool) 6180 return -ENOMEM; 6181 ioc->reply_post_free_array = 6182 dma_pool_alloc(ioc->reply_post_free_array_dma_pool, 6183 GFP_KERNEL, &ioc->reply_post_free_array_dma); 6184 if (!ioc->reply_post_free_array) 6185 return -EAGAIN; 6186 if (!mpt3sas_check_same_4gb_region(ioc->reply_post_free_array_dma, 6187 reply_post_free_array_sz)) { 6188 dinitprintk(ioc, pr_err( 6189 "Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n", 6190 ioc->reply_free, 6191 (unsigned long long) ioc->reply_free_dma)); 6192 ioc->use_32bit_dma = true; 6193 return -EAGAIN; 6194 } 6195 return 0; 6196 } 6197 /** 6198 * base_alloc_rdpq_dma_pool - Allocating DMA'able memory 6199 * for reply queues. 6200 * @ioc: per adapter object 6201 * @sz: DMA Pool size 6202 * Return: 0 for success, non-zero for failure. 6203 */ 6204 static int 6205 base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER *ioc, int sz) 6206 { 6207 int i = 0; 6208 u32 dma_alloc_count = 0; 6209 int reply_post_free_sz = ioc->reply_post_queue_depth * 6210 sizeof(Mpi2DefaultReplyDescriptor_t); 6211 int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1; 6212 6213 ioc->reply_post = kcalloc(count, sizeof(struct reply_post_struct), 6214 GFP_KERNEL); 6215 if (!ioc->reply_post) 6216 return -ENOMEM; 6217 /* 6218 * For INVADER_SERIES each set of 8 reply queues(0-7, 8-15, ..) and 6219 * VENTURA_SERIES each set of 16 reply queues(0-15, 16-31, ..) should 6220 * be within 4GB boundary i.e reply queues in a set must have same 6221 * upper 32-bits in their memory address. so here driver is allocating 6222 * the DMA'able memory for reply queues according. 6223 * Driver uses limitation of 6224 * VENTURA_SERIES to manage INVADER_SERIES as well. 6225 */ 6226 dma_alloc_count = DIV_ROUND_UP(count, 6227 RDPQ_MAX_INDEX_IN_ONE_CHUNK); 6228 ioc->reply_post_free_dma_pool = 6229 dma_pool_create("reply_post_free pool", 6230 &ioc->pdev->dev, sz, 16, 0); 6231 if (!ioc->reply_post_free_dma_pool) 6232 return -ENOMEM; 6233 for (i = 0; i < count; i++) { 6234 if ((i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0) && dma_alloc_count) { 6235 ioc->reply_post[i].reply_post_free = 6236 dma_pool_zalloc(ioc->reply_post_free_dma_pool, 6237 GFP_KERNEL, 6238 &ioc->reply_post[i].reply_post_free_dma); 6239 if (!ioc->reply_post[i].reply_post_free) 6240 return -ENOMEM; 6241 /* 6242 * Each set of RDPQ pool must satisfy 4gb boundary 6243 * restriction. 6244 * 1) Check if allocated resources for RDPQ pool are in 6245 * the same 4GB range. 6246 * 2) If #1 is true, continue with 64 bit DMA. 6247 * 3) If #1 is false, return 1. which means free all the 6248 * resources and set DMA mask to 32 and allocate. 6249 */ 6250 if (!mpt3sas_check_same_4gb_region( 6251 ioc->reply_post[i].reply_post_free_dma, sz)) { 6252 dinitprintk(ioc, 6253 ioc_err(ioc, "bad Replypost free pool(0x%p)" 6254 "reply_post_free_dma = (0x%llx)\n", 6255 ioc->reply_post[i].reply_post_free, 6256 (unsigned long long) 6257 ioc->reply_post[i].reply_post_free_dma)); 6258 return -EAGAIN; 6259 } 6260 dma_alloc_count--; 6261 6262 } else { 6263 ioc->reply_post[i].reply_post_free = 6264 (Mpi2ReplyDescriptorsUnion_t *) 6265 ((long)ioc->reply_post[i-1].reply_post_free 6266 + reply_post_free_sz); 6267 ioc->reply_post[i].reply_post_free_dma = 6268 (dma_addr_t) 6269 (ioc->reply_post[i-1].reply_post_free_dma + 6270 reply_post_free_sz); 6271 } 6272 } 6273 return 0; 6274 } 6275 6276 /** 6277 * _base_allocate_memory_pools - allocate start of day memory pools 6278 * @ioc: per adapter object 6279 * 6280 * Return: 0 success, anything else error. 6281 */ 6282 static int 6283 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc) 6284 { 6285 struct mpt3sas_facts *facts; 6286 u16 max_sge_elements; 6287 u16 chains_needed_per_io; 6288 u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz; 6289 u32 retry_sz; 6290 u32 rdpq_sz = 0, sense_sz = 0; 6291 u16 max_request_credit, nvme_blocks_needed; 6292 unsigned short sg_tablesize; 6293 u16 sge_size; 6294 int i; 6295 int ret = 0, rc = 0; 6296 6297 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6298 6299 6300 retry_sz = 0; 6301 facts = &ioc->facts; 6302 6303 /* command line tunables for max sgl entries */ 6304 if (max_sgl_entries != -1) 6305 sg_tablesize = max_sgl_entries; 6306 else { 6307 if (ioc->hba_mpi_version_belonged == MPI2_VERSION) 6308 sg_tablesize = MPT2SAS_SG_DEPTH; 6309 else 6310 sg_tablesize = MPT3SAS_SG_DEPTH; 6311 } 6312 6313 /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */ 6314 if (reset_devices) 6315 sg_tablesize = min_t(unsigned short, sg_tablesize, 6316 MPT_KDUMP_MIN_PHYS_SEGMENTS); 6317 6318 if (ioc->is_mcpu_endpoint) 6319 ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS; 6320 else { 6321 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS) 6322 sg_tablesize = MPT_MIN_PHYS_SEGMENTS; 6323 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) { 6324 sg_tablesize = min_t(unsigned short, sg_tablesize, 6325 SG_MAX_SEGMENTS); 6326 ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n", 6327 sg_tablesize, MPT_MAX_PHYS_SEGMENTS); 6328 } 6329 ioc->shost->sg_tablesize = sg_tablesize; 6330 } 6331 6332 ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)), 6333 (facts->RequestCredit / 4)); 6334 if (ioc->internal_depth < INTERNAL_CMDS_COUNT) { 6335 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT + 6336 INTERNAL_SCSIIO_CMDS_COUNT)) { 6337 ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n", 6338 facts->RequestCredit); 6339 return -ENOMEM; 6340 } 6341 ioc->internal_depth = 10; 6342 } 6343 6344 ioc->hi_priority_depth = ioc->internal_depth - (5); 6345 /* command line tunables for max controller queue depth */ 6346 if (max_queue_depth != -1 && max_queue_depth != 0) { 6347 max_request_credit = min_t(u16, max_queue_depth + 6348 ioc->internal_depth, facts->RequestCredit); 6349 if (max_request_credit > MAX_HBA_QUEUE_DEPTH) 6350 max_request_credit = MAX_HBA_QUEUE_DEPTH; 6351 } else if (reset_devices) 6352 max_request_credit = min_t(u16, facts->RequestCredit, 6353 (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth)); 6354 else 6355 max_request_credit = min_t(u16, facts->RequestCredit, 6356 MAX_HBA_QUEUE_DEPTH); 6357 6358 /* Firmware maintains additional facts->HighPriorityCredit number of 6359 * credits for HiPriprity Request messages, so hba queue depth will be 6360 * sum of max_request_credit and high priority queue depth. 6361 */ 6362 ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth; 6363 6364 /* request frame size */ 6365 ioc->request_sz = facts->IOCRequestFrameSize * 4; 6366 6367 /* reply frame size */ 6368 ioc->reply_sz = facts->ReplyFrameSize * 4; 6369 6370 /* chain segment size */ 6371 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 6372 if (facts->IOCMaxChainSegmentSize) 6373 ioc->chain_segment_sz = 6374 facts->IOCMaxChainSegmentSize * 6375 MAX_CHAIN_ELEMT_SZ; 6376 else 6377 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */ 6378 ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS * 6379 MAX_CHAIN_ELEMT_SZ; 6380 } else 6381 ioc->chain_segment_sz = ioc->request_sz; 6382 6383 /* calculate the max scatter element size */ 6384 sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee); 6385 6386 retry_allocation: 6387 total_sz = 0; 6388 /* calculate number of sg elements left over in the 1st frame */ 6389 max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) - 6390 sizeof(Mpi2SGEIOUnion_t)) + sge_size); 6391 ioc->max_sges_in_main_message = max_sge_elements/sge_size; 6392 6393 /* now do the same for a chain buffer */ 6394 max_sge_elements = ioc->chain_segment_sz - sge_size; 6395 ioc->max_sges_in_chain_message = max_sge_elements/sge_size; 6396 6397 /* 6398 * MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE 6399 */ 6400 chains_needed_per_io = ((ioc->shost->sg_tablesize - 6401 ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message) 6402 + 1; 6403 if (chains_needed_per_io > facts->MaxChainDepth) { 6404 chains_needed_per_io = facts->MaxChainDepth; 6405 ioc->shost->sg_tablesize = min_t(u16, 6406 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message 6407 * chains_needed_per_io), ioc->shost->sg_tablesize); 6408 } 6409 ioc->chains_needed_per_io = chains_needed_per_io; 6410 6411 /* reply free queue sizing - taking into account for 64 FW events */ 6412 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64; 6413 6414 /* mCPU manage single counters for simplicity */ 6415 if (ioc->is_mcpu_endpoint) 6416 ioc->reply_post_queue_depth = ioc->reply_free_queue_depth; 6417 else { 6418 /* calculate reply descriptor post queue depth */ 6419 ioc->reply_post_queue_depth = ioc->hba_queue_depth + 6420 ioc->reply_free_queue_depth + 1; 6421 /* align the reply post queue on the next 16 count boundary */ 6422 if (ioc->reply_post_queue_depth % 16) 6423 ioc->reply_post_queue_depth += 16 - 6424 (ioc->reply_post_queue_depth % 16); 6425 } 6426 6427 if (ioc->reply_post_queue_depth > 6428 facts->MaxReplyDescriptorPostQueueDepth) { 6429 ioc->reply_post_queue_depth = 6430 facts->MaxReplyDescriptorPostQueueDepth - 6431 (facts->MaxReplyDescriptorPostQueueDepth % 16); 6432 ioc->hba_queue_depth = 6433 ((ioc->reply_post_queue_depth - 64) / 2) - 1; 6434 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64; 6435 } 6436 6437 ioc_info(ioc, 6438 "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), " 6439 "sge_per_io(%d), chains_per_io(%d)\n", 6440 ioc->max_sges_in_main_message, 6441 ioc->max_sges_in_chain_message, 6442 ioc->shost->sg_tablesize, 6443 ioc->chains_needed_per_io); 6444 6445 /* reply post queue, 16 byte align */ 6446 reply_post_free_sz = ioc->reply_post_queue_depth * 6447 sizeof(Mpi2DefaultReplyDescriptor_t); 6448 rdpq_sz = reply_post_free_sz * RDPQ_MAX_INDEX_IN_ONE_CHUNK; 6449 if ((_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable) 6450 || (ioc->reply_queue_count < RDPQ_MAX_INDEX_IN_ONE_CHUNK)) 6451 rdpq_sz = reply_post_free_sz * ioc->reply_queue_count; 6452 ret = base_alloc_rdpq_dma_pool(ioc, rdpq_sz); 6453 if (ret == -EAGAIN) { 6454 /* 6455 * Free allocated bad RDPQ memory pools. 6456 * Change dma coherent mask to 32 bit and reallocate RDPQ 6457 */ 6458 _base_release_memory_pools(ioc); 6459 ioc->use_32bit_dma = true; 6460 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) { 6461 ioc_err(ioc, 6462 "32 DMA mask failed %s\n", pci_name(ioc->pdev)); 6463 return -ENODEV; 6464 } 6465 if (base_alloc_rdpq_dma_pool(ioc, rdpq_sz)) 6466 return -ENOMEM; 6467 } else if (ret == -ENOMEM) 6468 return -ENOMEM; 6469 total_sz = rdpq_sz * (!ioc->rdpq_array_enable ? 1 : 6470 DIV_ROUND_UP(ioc->reply_queue_count, RDPQ_MAX_INDEX_IN_ONE_CHUNK)); 6471 ioc->scsiio_depth = ioc->hba_queue_depth - 6472 ioc->hi_priority_depth - ioc->internal_depth; 6473 6474 /* set the scsi host can_queue depth 6475 * with some internal commands that could be outstanding 6476 */ 6477 ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT; 6478 dinitprintk(ioc, 6479 ioc_info(ioc, "scsi host: can_queue depth (%d)\n", 6480 ioc->shost->can_queue)); 6481 6482 /* contiguous pool for request and chains, 16 byte align, one extra " 6483 * "frame for smid=0 6484 */ 6485 ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth; 6486 sz = ((ioc->scsiio_depth + 1) * ioc->request_sz); 6487 6488 /* hi-priority queue */ 6489 sz += (ioc->hi_priority_depth * ioc->request_sz); 6490 6491 /* internal queue */ 6492 sz += (ioc->internal_depth * ioc->request_sz); 6493 6494 ioc->request_dma_sz = sz; 6495 ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz, 6496 &ioc->request_dma, GFP_KERNEL); 6497 if (!ioc->request) { 6498 ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n", 6499 ioc->hba_queue_depth, ioc->chains_needed_per_io, 6500 ioc->request_sz, sz / 1024); 6501 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH) 6502 goto out; 6503 retry_sz = 64; 6504 ioc->hba_queue_depth -= retry_sz; 6505 _base_release_memory_pools(ioc); 6506 goto retry_allocation; 6507 } 6508 6509 if (retry_sz) 6510 ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n", 6511 ioc->hba_queue_depth, ioc->chains_needed_per_io, 6512 ioc->request_sz, sz / 1024); 6513 6514 /* hi-priority queue */ 6515 ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) * 6516 ioc->request_sz); 6517 ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) * 6518 ioc->request_sz); 6519 6520 /* internal queue */ 6521 ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth * 6522 ioc->request_sz); 6523 ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth * 6524 ioc->request_sz); 6525 6526 ioc_info(ioc, 6527 "request pool(0x%p) - dma(0x%llx): " 6528 "depth(%d), frame_size(%d), pool_size(%d kB)\n", 6529 ioc->request, (unsigned long long) ioc->request_dma, 6530 ioc->hba_queue_depth, ioc->request_sz, 6531 (ioc->hba_queue_depth * ioc->request_sz) / 1024); 6532 6533 total_sz += sz; 6534 6535 dinitprintk(ioc, 6536 ioc_info(ioc, "scsiio(0x%p): depth(%d)\n", 6537 ioc->request, ioc->scsiio_depth)); 6538 6539 ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH); 6540 sz = ioc->scsiio_depth * sizeof(struct chain_lookup); 6541 ioc->chain_lookup = kzalloc(sz, GFP_KERNEL); 6542 if (!ioc->chain_lookup) { 6543 ioc_err(ioc, "chain_lookup: __get_free_pages failed\n"); 6544 goto out; 6545 } 6546 6547 sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker); 6548 for (i = 0; i < ioc->scsiio_depth; i++) { 6549 ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL); 6550 if (!ioc->chain_lookup[i].chains_per_smid) { 6551 ioc_err(ioc, "chain_lookup: kzalloc failed\n"); 6552 goto out; 6553 } 6554 } 6555 6556 /* initialize hi-priority queue smid's */ 6557 ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth, 6558 sizeof(struct request_tracker), GFP_KERNEL); 6559 if (!ioc->hpr_lookup) { 6560 ioc_err(ioc, "hpr_lookup: kcalloc failed\n"); 6561 goto out; 6562 } 6563 ioc->hi_priority_smid = ioc->scsiio_depth + 1; 6564 dinitprintk(ioc, 6565 ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n", 6566 ioc->hi_priority, 6567 ioc->hi_priority_depth, ioc->hi_priority_smid)); 6568 6569 /* initialize internal queue smid's */ 6570 ioc->internal_lookup = kcalloc(ioc->internal_depth, 6571 sizeof(struct request_tracker), GFP_KERNEL); 6572 if (!ioc->internal_lookup) { 6573 ioc_err(ioc, "internal_lookup: kcalloc failed\n"); 6574 goto out; 6575 } 6576 ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth; 6577 dinitprintk(ioc, 6578 ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n", 6579 ioc->internal, 6580 ioc->internal_depth, ioc->internal_smid)); 6581 6582 ioc->io_queue_num = kcalloc(ioc->scsiio_depth, 6583 sizeof(u16), GFP_KERNEL); 6584 if (!ioc->io_queue_num) 6585 goto out; 6586 /* 6587 * The number of NVMe page sized blocks needed is: 6588 * (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1 6589 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry 6590 * that is placed in the main message frame. 8 is the size of each PRP 6591 * entry or PRP list pointer entry. 8 is subtracted from page_size 6592 * because of the PRP list pointer entry at the end of a page, so this 6593 * is not counted as a PRP entry. The 1 added page is a round up. 6594 * 6595 * To avoid allocation failures due to the amount of memory that could 6596 * be required for NVMe PRP's, only each set of NVMe blocks will be 6597 * contiguous, so a new set is allocated for each possible I/O. 6598 */ 6599 6600 ioc->chains_per_prp_buffer = 0; 6601 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) { 6602 nvme_blocks_needed = 6603 (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1; 6604 nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE); 6605 nvme_blocks_needed++; 6606 6607 sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth; 6608 ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL); 6609 if (!ioc->pcie_sg_lookup) { 6610 ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n"); 6611 goto out; 6612 } 6613 sz = nvme_blocks_needed * ioc->page_size; 6614 rc = _base_allocate_pcie_sgl_pool(ioc, sz); 6615 if (rc == -ENOMEM) 6616 return -ENOMEM; 6617 else if (rc == -EAGAIN) 6618 goto try_32bit_dma; 6619 total_sz += sz * ioc->scsiio_depth; 6620 } 6621 6622 rc = _base_allocate_chain_dma_pool(ioc, ioc->chain_segment_sz); 6623 if (rc == -ENOMEM) 6624 return -ENOMEM; 6625 else if (rc == -EAGAIN) 6626 goto try_32bit_dma; 6627 total_sz += ioc->chain_segment_sz * ((ioc->chains_needed_per_io - 6628 ioc->chains_per_prp_buffer) * ioc->scsiio_depth); 6629 dinitprintk(ioc, 6630 ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n", 6631 ioc->chain_depth, ioc->chain_segment_sz, 6632 (ioc->chain_depth * ioc->chain_segment_sz) / 1024)); 6633 /* sense buffers, 4 byte align */ 6634 sense_sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE; 6635 rc = _base_allocate_sense_dma_pool(ioc, sense_sz); 6636 if (rc == -ENOMEM) 6637 return -ENOMEM; 6638 else if (rc == -EAGAIN) 6639 goto try_32bit_dma; 6640 total_sz += sense_sz; 6641 /* reply pool, 4 byte align */ 6642 sz = ioc->reply_free_queue_depth * ioc->reply_sz; 6643 rc = _base_allocate_reply_pool(ioc, sz); 6644 if (rc == -ENOMEM) 6645 return -ENOMEM; 6646 else if (rc == -EAGAIN) 6647 goto try_32bit_dma; 6648 total_sz += sz; 6649 6650 /* reply free queue, 16 byte align */ 6651 sz = ioc->reply_free_queue_depth * 4; 6652 rc = _base_allocate_reply_free_dma_pool(ioc, sz); 6653 if (rc == -ENOMEM) 6654 return -ENOMEM; 6655 else if (rc == -EAGAIN) 6656 goto try_32bit_dma; 6657 dinitprintk(ioc, 6658 ioc_info(ioc, "reply_free_dma (0x%llx)\n", 6659 (unsigned long long)ioc->reply_free_dma)); 6660 total_sz += sz; 6661 if (ioc->rdpq_array_enable) { 6662 reply_post_free_array_sz = ioc->reply_queue_count * 6663 sizeof(Mpi2IOCInitRDPQArrayEntry); 6664 rc = _base_allocate_reply_post_free_array(ioc, 6665 reply_post_free_array_sz); 6666 if (rc == -ENOMEM) 6667 return -ENOMEM; 6668 else if (rc == -EAGAIN) 6669 goto try_32bit_dma; 6670 } 6671 ioc->config_page_sz = 512; 6672 ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev, 6673 ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL); 6674 if (!ioc->config_page) { 6675 ioc_err(ioc, "config page: dma_pool_alloc failed\n"); 6676 goto out; 6677 } 6678 6679 ioc_info(ioc, "config page(0x%p) - dma(0x%llx): size(%d)\n", 6680 ioc->config_page, (unsigned long long)ioc->config_page_dma, 6681 ioc->config_page_sz); 6682 total_sz += ioc->config_page_sz; 6683 6684 ioc_info(ioc, "Allocated physical memory: size(%d kB)\n", 6685 total_sz / 1024); 6686 ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n", 6687 ioc->shost->can_queue, facts->RequestCredit); 6688 ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n", 6689 ioc->shost->sg_tablesize); 6690 return 0; 6691 6692 try_32bit_dma: 6693 _base_release_memory_pools(ioc); 6694 if (ioc->use_32bit_dma && (ioc->dma_mask > 32)) { 6695 /* Change dma coherent mask to 32 bit and reallocate */ 6696 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) { 6697 pr_err("Setting 32 bit coherent DMA mask Failed %s\n", 6698 pci_name(ioc->pdev)); 6699 return -ENODEV; 6700 } 6701 } else if (_base_reduce_hba_queue_depth(ioc) != 0) 6702 return -ENOMEM; 6703 goto retry_allocation; 6704 6705 out: 6706 return -ENOMEM; 6707 } 6708 6709 /** 6710 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter. 6711 * @ioc: Pointer to MPT_ADAPTER structure 6712 * @cooked: Request raw or cooked IOC state 6713 * 6714 * Return: all IOC Doorbell register bits if cooked==0, else just the 6715 * Doorbell bits in MPI_IOC_STATE_MASK. 6716 */ 6717 u32 6718 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked) 6719 { 6720 u32 s, sc; 6721 6722 s = ioc->base_readl_ext_retry(&ioc->chip->Doorbell); 6723 sc = s & MPI2_IOC_STATE_MASK; 6724 return cooked ? sc : s; 6725 } 6726 6727 /** 6728 * _base_wait_on_iocstate - waiting on a particular ioc state 6729 * @ioc: ? 6730 * @ioc_state: controller state { READY, OPERATIONAL, or RESET } 6731 * @timeout: timeout in second 6732 * 6733 * Return: 0 for success, non-zero for failure. 6734 */ 6735 static int 6736 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout) 6737 { 6738 u32 count, cntdn; 6739 u32 current_state; 6740 6741 count = 0; 6742 cntdn = 1000 * timeout; 6743 do { 6744 current_state = mpt3sas_base_get_iocstate(ioc, 1); 6745 if (current_state == ioc_state) 6746 return 0; 6747 if (count && current_state == MPI2_IOC_STATE_FAULT) 6748 break; 6749 if (count && current_state == MPI2_IOC_STATE_COREDUMP) 6750 break; 6751 6752 usleep_range(1000, 1500); 6753 count++; 6754 } while (--cntdn); 6755 6756 return current_state; 6757 } 6758 6759 /** 6760 * _base_dump_reg_set - This function will print hexdump of register set. 6761 * @ioc: per adapter object 6762 * 6763 * Return: nothing. 6764 */ 6765 static inline void 6766 _base_dump_reg_set(struct MPT3SAS_ADAPTER *ioc) 6767 { 6768 unsigned int i, sz = 256; 6769 u32 __iomem *reg = (u32 __iomem *)ioc->chip; 6770 6771 ioc_info(ioc, "System Register set:\n"); 6772 for (i = 0; i < (sz / sizeof(u32)); i++) 6773 pr_info("%08x: %08x\n", (i * 4), readl(®[i])); 6774 } 6775 6776 /** 6777 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by 6778 * a write to the doorbell) 6779 * @ioc: per adapter object 6780 * @timeout: timeout in seconds 6781 * 6782 * Return: 0 for success, non-zero for failure. 6783 * 6784 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell. 6785 */ 6786 6787 static int 6788 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout) 6789 { 6790 u32 cntdn, count; 6791 u32 int_status; 6792 6793 count = 0; 6794 cntdn = 1000 * timeout; 6795 do { 6796 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 6797 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 6798 dhsprintk(ioc, 6799 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 6800 __func__, count, timeout)); 6801 return 0; 6802 } 6803 6804 usleep_range(1000, 1500); 6805 count++; 6806 } while (--cntdn); 6807 6808 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 6809 __func__, count, int_status); 6810 return -EFAULT; 6811 } 6812 6813 static int 6814 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout) 6815 { 6816 u32 cntdn, count; 6817 u32 int_status; 6818 6819 count = 0; 6820 cntdn = 2000 * timeout; 6821 do { 6822 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 6823 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 6824 dhsprintk(ioc, 6825 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 6826 __func__, count, timeout)); 6827 return 0; 6828 } 6829 6830 udelay(500); 6831 count++; 6832 } while (--cntdn); 6833 6834 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 6835 __func__, count, int_status); 6836 return -EFAULT; 6837 6838 } 6839 6840 /** 6841 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell. 6842 * @ioc: per adapter object 6843 * @timeout: timeout in second 6844 * 6845 * Return: 0 for success, non-zero for failure. 6846 * 6847 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to 6848 * doorbell. 6849 */ 6850 static int 6851 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout) 6852 { 6853 u32 cntdn, count; 6854 u32 int_status; 6855 u32 doorbell; 6856 6857 count = 0; 6858 cntdn = 1000 * timeout; 6859 do { 6860 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 6861 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) { 6862 dhsprintk(ioc, 6863 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 6864 __func__, count, timeout)); 6865 return 0; 6866 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 6867 doorbell = ioc->base_readl_ext_retry(&ioc->chip->Doorbell); 6868 if ((doorbell & MPI2_IOC_STATE_MASK) == 6869 MPI2_IOC_STATE_FAULT) { 6870 mpt3sas_print_fault_code(ioc, doorbell); 6871 return -EFAULT; 6872 } 6873 if ((doorbell & MPI2_IOC_STATE_MASK) == 6874 MPI2_IOC_STATE_COREDUMP) { 6875 mpt3sas_print_coredump_info(ioc, doorbell); 6876 return -EFAULT; 6877 } 6878 } else if (int_status == 0xFFFFFFFF) 6879 goto out; 6880 6881 usleep_range(1000, 1500); 6882 count++; 6883 } while (--cntdn); 6884 6885 out: 6886 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 6887 __func__, count, int_status); 6888 return -EFAULT; 6889 } 6890 6891 /** 6892 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use 6893 * @ioc: per adapter object 6894 * @timeout: timeout in second 6895 * 6896 * Return: 0 for success, non-zero for failure. 6897 */ 6898 static int 6899 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout) 6900 { 6901 u32 cntdn, count; 6902 u32 doorbell_reg; 6903 6904 count = 0; 6905 cntdn = 1000 * timeout; 6906 do { 6907 doorbell_reg = ioc->base_readl_ext_retry(&ioc->chip->Doorbell); 6908 if (!(doorbell_reg & MPI2_DOORBELL_USED)) { 6909 dhsprintk(ioc, 6910 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 6911 __func__, count, timeout)); 6912 return 0; 6913 } 6914 6915 usleep_range(1000, 1500); 6916 count++; 6917 } while (--cntdn); 6918 6919 ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n", 6920 __func__, count, doorbell_reg); 6921 return -EFAULT; 6922 } 6923 6924 /** 6925 * _base_send_ioc_reset - send doorbell reset 6926 * @ioc: per adapter object 6927 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET 6928 * @timeout: timeout in second 6929 * 6930 * Return: 0 for success, non-zero for failure. 6931 */ 6932 static int 6933 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout) 6934 { 6935 u32 ioc_state; 6936 int r = 0; 6937 unsigned long flags; 6938 6939 if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) { 6940 ioc_err(ioc, "%s: unknown reset_type\n", __func__); 6941 return -EFAULT; 6942 } 6943 6944 if (!(ioc->facts.IOCCapabilities & 6945 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY)) 6946 return -EFAULT; 6947 6948 ioc_info(ioc, "sending message unit reset !!\n"); 6949 6950 writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT, 6951 &ioc->chip->Doorbell); 6952 if ((_base_wait_for_doorbell_ack(ioc, 15))) { 6953 r = -EFAULT; 6954 goto out; 6955 } 6956 6957 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout); 6958 if (ioc_state) { 6959 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 6960 __func__, ioc_state); 6961 r = -EFAULT; 6962 goto out; 6963 } 6964 out: 6965 if (r != 0) { 6966 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 6967 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 6968 /* 6969 * Wait for IOC state CoreDump to clear only during 6970 * HBA initialization & release time. 6971 */ 6972 if ((ioc_state & MPI2_IOC_STATE_MASK) == 6973 MPI2_IOC_STATE_COREDUMP && (ioc->is_driver_loading == 1 || 6974 ioc->fault_reset_work_q == NULL)) { 6975 spin_unlock_irqrestore( 6976 &ioc->ioc_reset_in_progress_lock, flags); 6977 mpt3sas_print_coredump_info(ioc, ioc_state); 6978 mpt3sas_base_wait_for_coredump_completion(ioc, 6979 __func__); 6980 spin_lock_irqsave( 6981 &ioc->ioc_reset_in_progress_lock, flags); 6982 } 6983 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 6984 } 6985 ioc_info(ioc, "message unit reset: %s\n", 6986 r == 0 ? "SUCCESS" : "FAILED"); 6987 return r; 6988 } 6989 6990 /** 6991 * mpt3sas_wait_for_ioc - IOC's operational state is checked here. 6992 * @ioc: per adapter object 6993 * @timeout: timeout in seconds 6994 * 6995 * Return: Waits up to timeout seconds for the IOC to 6996 * become operational. Returns 0 if IOC is present 6997 * and operational; otherwise returns %-EFAULT. 6998 */ 6999 7000 int 7001 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout) 7002 { 7003 int wait_state_count = 0; 7004 u32 ioc_state; 7005 7006 do { 7007 ioc_state = mpt3sas_base_get_iocstate(ioc, 1); 7008 if (ioc_state == MPI2_IOC_STATE_OPERATIONAL) 7009 break; 7010 7011 /* 7012 * Watchdog thread will be started after IOC Initialization, so 7013 * no need to wait here for IOC state to become operational 7014 * when IOC Initialization is on. Instead the driver will 7015 * return ETIME status, so that calling function can issue 7016 * diag reset operation and retry the command. 7017 */ 7018 if (ioc->is_driver_loading) 7019 return -ETIME; 7020 7021 ssleep(1); 7022 ioc_info(ioc, "%s: waiting for operational state(count=%d)\n", 7023 __func__, ++wait_state_count); 7024 } while (--timeout); 7025 if (!timeout) { 7026 ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__); 7027 return -EFAULT; 7028 } 7029 if (wait_state_count) 7030 ioc_info(ioc, "ioc is operational\n"); 7031 return 0; 7032 } 7033 7034 /** 7035 * _base_handshake_req_reply_wait - send request thru doorbell interface 7036 * @ioc: per adapter object 7037 * @request_bytes: request length 7038 * @request: pointer having request payload 7039 * @reply_bytes: reply length 7040 * @reply: pointer to reply payload 7041 * @timeout: timeout in second 7042 * 7043 * Return: 0 for success, non-zero for failure. 7044 */ 7045 static int 7046 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes, 7047 u32 *request, int reply_bytes, u16 *reply, int timeout) 7048 { 7049 MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply; 7050 int i; 7051 u8 failed; 7052 __le32 *mfp; 7053 7054 /* make sure doorbell is not in use */ 7055 if ((ioc->base_readl_ext_retry(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) { 7056 ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__); 7057 return -EFAULT; 7058 } 7059 7060 /* clear pending doorbell interrupts from previous state changes */ 7061 if (ioc->base_readl(&ioc->chip->HostInterruptStatus) & 7062 MPI2_HIS_IOC2SYS_DB_STATUS) 7063 writel(0, &ioc->chip->HostInterruptStatus); 7064 7065 /* send message to ioc */ 7066 writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) | 7067 ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)), 7068 &ioc->chip->Doorbell); 7069 7070 if ((_base_spin_on_doorbell_int(ioc, 5))) { 7071 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 7072 __LINE__); 7073 return -EFAULT; 7074 } 7075 writel(0, &ioc->chip->HostInterruptStatus); 7076 7077 if ((_base_wait_for_doorbell_ack(ioc, 5))) { 7078 ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n", 7079 __LINE__); 7080 return -EFAULT; 7081 } 7082 7083 /* send message 32-bits at a time */ 7084 for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) { 7085 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell); 7086 if ((_base_wait_for_doorbell_ack(ioc, 5))) 7087 failed = 1; 7088 } 7089 7090 if (failed) { 7091 ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n", 7092 __LINE__); 7093 return -EFAULT; 7094 } 7095 7096 /* now wait for the reply */ 7097 if ((_base_wait_for_doorbell_int(ioc, timeout))) { 7098 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 7099 __LINE__); 7100 return -EFAULT; 7101 } 7102 7103 /* read the first two 16-bits, it gives the total length of the reply */ 7104 reply[0] = le16_to_cpu(ioc->base_readl_ext_retry(&ioc->chip->Doorbell) 7105 & MPI2_DOORBELL_DATA_MASK); 7106 writel(0, &ioc->chip->HostInterruptStatus); 7107 if ((_base_wait_for_doorbell_int(ioc, 5))) { 7108 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 7109 __LINE__); 7110 return -EFAULT; 7111 } 7112 reply[1] = le16_to_cpu(ioc->base_readl_ext_retry(&ioc->chip->Doorbell) 7113 & MPI2_DOORBELL_DATA_MASK); 7114 writel(0, &ioc->chip->HostInterruptStatus); 7115 7116 for (i = 2; i < default_reply->MsgLength * 2; i++) { 7117 if ((_base_wait_for_doorbell_int(ioc, 5))) { 7118 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 7119 __LINE__); 7120 return -EFAULT; 7121 } 7122 if (i >= reply_bytes/2) /* overflow case */ 7123 ioc->base_readl_ext_retry(&ioc->chip->Doorbell); 7124 else 7125 reply[i] = le16_to_cpu( 7126 ioc->base_readl_ext_retry(&ioc->chip->Doorbell) 7127 & MPI2_DOORBELL_DATA_MASK); 7128 writel(0, &ioc->chip->HostInterruptStatus); 7129 } 7130 7131 _base_wait_for_doorbell_int(ioc, 5); 7132 if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) { 7133 dhsprintk(ioc, 7134 ioc_info(ioc, "doorbell is in use (line=%d)\n", 7135 __LINE__)); 7136 } 7137 writel(0, &ioc->chip->HostInterruptStatus); 7138 7139 if (ioc->logging_level & MPT_DEBUG_INIT) { 7140 mfp = (__le32 *)reply; 7141 pr_info("\toffset:data\n"); 7142 for (i = 0; i < reply_bytes/4; i++) 7143 ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4, 7144 le32_to_cpu(mfp[i])); 7145 } 7146 return 0; 7147 } 7148 7149 /** 7150 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW 7151 * @ioc: per adapter object 7152 * @mpi_reply: the reply payload from FW 7153 * @mpi_request: the request payload sent to FW 7154 * 7155 * The SAS IO Unit Control Request message allows the host to perform low-level 7156 * operations, such as resets on the PHYs of the IO Unit, also allows the host 7157 * to obtain the IOC assigned device handles for a device if it has other 7158 * identifying information about the device, in addition allows the host to 7159 * remove IOC resources associated with the device. 7160 * 7161 * Return: 0 for success, non-zero for failure. 7162 */ 7163 int 7164 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc, 7165 Mpi2SasIoUnitControlReply_t *mpi_reply, 7166 Mpi2SasIoUnitControlRequest_t *mpi_request) 7167 { 7168 u16 smid; 7169 u8 issue_reset = 0; 7170 int rc; 7171 void *request; 7172 7173 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7174 7175 mutex_lock(&ioc->base_cmds.mutex); 7176 7177 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) { 7178 ioc_err(ioc, "%s: base_cmd in use\n", __func__); 7179 rc = -EAGAIN; 7180 goto out; 7181 } 7182 7183 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT); 7184 if (rc) 7185 goto out; 7186 7187 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 7188 if (!smid) { 7189 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 7190 rc = -EAGAIN; 7191 goto out; 7192 } 7193 7194 rc = 0; 7195 ioc->base_cmds.status = MPT3_CMD_PENDING; 7196 request = mpt3sas_base_get_msg_frame(ioc, smid); 7197 ioc->base_cmds.smid = smid; 7198 memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)); 7199 if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET || 7200 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) 7201 ioc->ioc_link_reset_in_progress = 1; 7202 init_completion(&ioc->base_cmds.done); 7203 ioc->put_smid_default(ioc, smid); 7204 wait_for_completion_timeout(&ioc->base_cmds.done, 7205 msecs_to_jiffies(10000)); 7206 if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET || 7207 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) && 7208 ioc->ioc_link_reset_in_progress) 7209 ioc->ioc_link_reset_in_progress = 0; 7210 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 7211 mpt3sas_check_cmd_timeout(ioc, ioc->base_cmds.status, 7212 mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)/4, 7213 issue_reset); 7214 goto issue_host_reset; 7215 } 7216 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) 7217 memcpy(mpi_reply, ioc->base_cmds.reply, 7218 sizeof(Mpi2SasIoUnitControlReply_t)); 7219 else 7220 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t)); 7221 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 7222 goto out; 7223 7224 issue_host_reset: 7225 if (issue_reset) 7226 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 7227 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 7228 rc = -EFAULT; 7229 out: 7230 mutex_unlock(&ioc->base_cmds.mutex); 7231 return rc; 7232 } 7233 7234 /** 7235 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device 7236 * @ioc: per adapter object 7237 * @mpi_reply: the reply payload from FW 7238 * @mpi_request: the request payload sent to FW 7239 * 7240 * The SCSI Enclosure Processor request message causes the IOC to 7241 * communicate with SES devices to control LED status signals. 7242 * 7243 * Return: 0 for success, non-zero for failure. 7244 */ 7245 int 7246 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc, 7247 Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request) 7248 { 7249 u16 smid; 7250 u8 issue_reset = 0; 7251 int rc; 7252 void *request; 7253 7254 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7255 7256 mutex_lock(&ioc->base_cmds.mutex); 7257 7258 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) { 7259 ioc_err(ioc, "%s: base_cmd in use\n", __func__); 7260 rc = -EAGAIN; 7261 goto out; 7262 } 7263 7264 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT); 7265 if (rc) 7266 goto out; 7267 7268 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 7269 if (!smid) { 7270 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 7271 rc = -EAGAIN; 7272 goto out; 7273 } 7274 7275 rc = 0; 7276 ioc->base_cmds.status = MPT3_CMD_PENDING; 7277 request = mpt3sas_base_get_msg_frame(ioc, smid); 7278 ioc->base_cmds.smid = smid; 7279 memset(request, 0, ioc->request_sz); 7280 memcpy(request, mpi_request, sizeof(Mpi2SepReply_t)); 7281 init_completion(&ioc->base_cmds.done); 7282 ioc->put_smid_default(ioc, smid); 7283 wait_for_completion_timeout(&ioc->base_cmds.done, 7284 msecs_to_jiffies(10000)); 7285 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 7286 mpt3sas_check_cmd_timeout(ioc, 7287 ioc->base_cmds.status, mpi_request, 7288 sizeof(Mpi2SepRequest_t)/4, issue_reset); 7289 goto issue_host_reset; 7290 } 7291 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) 7292 memcpy(mpi_reply, ioc->base_cmds.reply, 7293 sizeof(Mpi2SepReply_t)); 7294 else 7295 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t)); 7296 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 7297 goto out; 7298 7299 issue_host_reset: 7300 if (issue_reset) 7301 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 7302 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 7303 rc = -EFAULT; 7304 out: 7305 mutex_unlock(&ioc->base_cmds.mutex); 7306 return rc; 7307 } 7308 7309 /** 7310 * _base_get_port_facts - obtain port facts reply and save in ioc 7311 * @ioc: per adapter object 7312 * @port: ? 7313 * 7314 * Return: 0 for success, non-zero for failure. 7315 */ 7316 static int 7317 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port) 7318 { 7319 Mpi2PortFactsRequest_t mpi_request; 7320 Mpi2PortFactsReply_t mpi_reply; 7321 struct mpt3sas_port_facts *pfacts; 7322 int mpi_reply_sz, mpi_request_sz, r; 7323 7324 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7325 7326 mpi_reply_sz = sizeof(Mpi2PortFactsReply_t); 7327 mpi_request_sz = sizeof(Mpi2PortFactsRequest_t); 7328 memset(&mpi_request, 0, mpi_request_sz); 7329 mpi_request.Function = MPI2_FUNCTION_PORT_FACTS; 7330 mpi_request.PortNumber = port; 7331 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz, 7332 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5); 7333 7334 if (r != 0) { 7335 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 7336 return r; 7337 } 7338 7339 pfacts = &ioc->pfacts[port]; 7340 memset(pfacts, 0, sizeof(struct mpt3sas_port_facts)); 7341 pfacts->PortNumber = mpi_reply.PortNumber; 7342 pfacts->VP_ID = mpi_reply.VP_ID; 7343 pfacts->VF_ID = mpi_reply.VF_ID; 7344 pfacts->MaxPostedCmdBuffers = 7345 le16_to_cpu(mpi_reply.MaxPostedCmdBuffers); 7346 7347 return 0; 7348 } 7349 7350 /** 7351 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL 7352 * @ioc: per adapter object 7353 * @timeout: 7354 * 7355 * Return: 0 for success, non-zero for failure. 7356 */ 7357 static int 7358 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout) 7359 { 7360 u32 ioc_state; 7361 int rc; 7362 7363 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7364 7365 if (ioc->pci_error_recovery) { 7366 dfailprintk(ioc, 7367 ioc_info(ioc, "%s: host in pci error recovery\n", 7368 __func__)); 7369 return -EFAULT; 7370 } 7371 7372 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 7373 dhsprintk(ioc, 7374 ioc_info(ioc, "%s: ioc_state(0x%08x)\n", 7375 __func__, ioc_state)); 7376 7377 if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) || 7378 (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL) 7379 return 0; 7380 7381 if (ioc_state & MPI2_DOORBELL_USED) { 7382 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n")); 7383 goto issue_diag_reset; 7384 } 7385 7386 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 7387 mpt3sas_print_fault_code(ioc, ioc_state & 7388 MPI2_DOORBELL_DATA_MASK); 7389 goto issue_diag_reset; 7390 } else if ((ioc_state & MPI2_IOC_STATE_MASK) == 7391 MPI2_IOC_STATE_COREDUMP) { 7392 ioc_info(ioc, 7393 "%s: Skipping the diag reset here. (ioc_state=0x%x)\n", 7394 __func__, ioc_state); 7395 return -EFAULT; 7396 } 7397 7398 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout); 7399 if (ioc_state) { 7400 dfailprintk(ioc, 7401 ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 7402 __func__, ioc_state)); 7403 return -EFAULT; 7404 } 7405 7406 return 0; 7407 7408 issue_diag_reset: 7409 rc = _base_diag_reset(ioc); 7410 return rc; 7411 } 7412 7413 /** 7414 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc 7415 * @ioc: per adapter object 7416 * 7417 * Return: 0 for success, non-zero for failure. 7418 */ 7419 static int 7420 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc) 7421 { 7422 Mpi2IOCFactsRequest_t mpi_request; 7423 Mpi2IOCFactsReply_t mpi_reply; 7424 struct mpt3sas_facts *facts; 7425 int mpi_reply_sz, mpi_request_sz, r; 7426 7427 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7428 7429 r = _base_wait_for_iocstate(ioc, 10); 7430 if (r) { 7431 dfailprintk(ioc, 7432 ioc_info(ioc, "%s: failed getting to correct state\n", 7433 __func__)); 7434 return r; 7435 } 7436 mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t); 7437 mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t); 7438 memset(&mpi_request, 0, mpi_request_sz); 7439 mpi_request.Function = MPI2_FUNCTION_IOC_FACTS; 7440 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz, 7441 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5); 7442 7443 if (r != 0) { 7444 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 7445 return r; 7446 } 7447 7448 facts = &ioc->facts; 7449 memset(facts, 0, sizeof(struct mpt3sas_facts)); 7450 facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion); 7451 facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion); 7452 facts->VP_ID = mpi_reply.VP_ID; 7453 facts->VF_ID = mpi_reply.VF_ID; 7454 facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions); 7455 facts->MaxChainDepth = mpi_reply.MaxChainDepth; 7456 facts->WhoInit = mpi_reply.WhoInit; 7457 facts->NumberOfPorts = mpi_reply.NumberOfPorts; 7458 facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors; 7459 if (ioc->msix_enable && (facts->MaxMSIxVectors <= 7460 MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc))) 7461 ioc->combined_reply_queue = 0; 7462 facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit); 7463 facts->MaxReplyDescriptorPostQueueDepth = 7464 le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth); 7465 facts->ProductID = le16_to_cpu(mpi_reply.ProductID); 7466 facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities); 7467 if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)) 7468 ioc->ir_firmware = 1; 7469 if ((facts->IOCCapabilities & 7470 MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices)) 7471 ioc->rdpq_array_capable = 1; 7472 if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ) 7473 && ioc->is_aero_ioc) 7474 ioc->atomic_desc_capable = 1; 7475 facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word); 7476 facts->IOCRequestFrameSize = 7477 le16_to_cpu(mpi_reply.IOCRequestFrameSize); 7478 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 7479 facts->IOCMaxChainSegmentSize = 7480 le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize); 7481 } 7482 facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators); 7483 facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets); 7484 ioc->shost->max_id = -1; 7485 facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders); 7486 facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures); 7487 facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags); 7488 facts->HighPriorityCredit = 7489 le16_to_cpu(mpi_reply.HighPriorityCredit); 7490 facts->ReplyFrameSize = mpi_reply.ReplyFrameSize; 7491 facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle); 7492 facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize; 7493 7494 /* 7495 * Get the Page Size from IOC Facts. If it's 0, default to 4k. 7496 */ 7497 ioc->page_size = 1 << facts->CurrentHostPageSize; 7498 if (ioc->page_size == 1) { 7499 ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n"); 7500 ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K; 7501 } 7502 dinitprintk(ioc, 7503 ioc_info(ioc, "CurrentHostPageSize(%d)\n", 7504 facts->CurrentHostPageSize)); 7505 7506 dinitprintk(ioc, 7507 ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n", 7508 facts->RequestCredit, facts->MaxChainDepth)); 7509 dinitprintk(ioc, 7510 ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n", 7511 facts->IOCRequestFrameSize * 4, 7512 facts->ReplyFrameSize * 4)); 7513 return 0; 7514 } 7515 7516 /** 7517 * _base_send_ioc_init - send ioc_init to firmware 7518 * @ioc: per adapter object 7519 * 7520 * Return: 0 for success, non-zero for failure. 7521 */ 7522 static int 7523 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc) 7524 { 7525 Mpi2IOCInitRequest_t mpi_request; 7526 Mpi2IOCInitReply_t mpi_reply; 7527 int i, r = 0; 7528 ktime_t current_time; 7529 u16 ioc_status; 7530 u32 reply_post_free_array_sz = 0; 7531 7532 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7533 7534 memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t)); 7535 mpi_request.Function = MPI2_FUNCTION_IOC_INIT; 7536 mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER; 7537 mpi_request.VF_ID = 0; /* TODO */ 7538 mpi_request.VP_ID = 0; 7539 mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged); 7540 mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION); 7541 mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K; 7542 7543 if (_base_is_controller_msix_enabled(ioc)) 7544 mpi_request.HostMSIxVectors = ioc->reply_queue_count; 7545 mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4); 7546 mpi_request.ReplyDescriptorPostQueueDepth = 7547 cpu_to_le16(ioc->reply_post_queue_depth); 7548 mpi_request.ReplyFreeQueueDepth = 7549 cpu_to_le16(ioc->reply_free_queue_depth); 7550 7551 mpi_request.SenseBufferAddressHigh = 7552 cpu_to_le32((u64)ioc->sense_dma >> 32); 7553 mpi_request.SystemReplyAddressHigh = 7554 cpu_to_le32((u64)ioc->reply_dma >> 32); 7555 mpi_request.SystemRequestFrameBaseAddress = 7556 cpu_to_le64((u64)ioc->request_dma); 7557 mpi_request.ReplyFreeQueueAddress = 7558 cpu_to_le64((u64)ioc->reply_free_dma); 7559 7560 if (ioc->rdpq_array_enable) { 7561 reply_post_free_array_sz = ioc->reply_queue_count * 7562 sizeof(Mpi2IOCInitRDPQArrayEntry); 7563 memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz); 7564 for (i = 0; i < ioc->reply_queue_count; i++) 7565 ioc->reply_post_free_array[i].RDPQBaseAddress = 7566 cpu_to_le64( 7567 (u64)ioc->reply_post[i].reply_post_free_dma); 7568 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE; 7569 mpi_request.ReplyDescriptorPostQueueAddress = 7570 cpu_to_le64((u64)ioc->reply_post_free_array_dma); 7571 } else { 7572 mpi_request.ReplyDescriptorPostQueueAddress = 7573 cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma); 7574 } 7575 7576 /* 7577 * Set the flag to enable CoreDump state feature in IOC firmware. 7578 */ 7579 mpi_request.ConfigurationFlags |= 7580 cpu_to_le16(MPI26_IOCINIT_CFGFLAGS_COREDUMP_ENABLE); 7581 7582 /* This time stamp specifies number of milliseconds 7583 * since epoch ~ midnight January 1, 1970. 7584 */ 7585 current_time = ktime_get_real(); 7586 mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time)); 7587 7588 if (ioc->logging_level & MPT_DEBUG_INIT) { 7589 __le32 *mfp; 7590 int i; 7591 7592 mfp = (__le32 *)&mpi_request; 7593 ioc_info(ioc, "\toffset:data\n"); 7594 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++) 7595 ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4, 7596 le32_to_cpu(mfp[i])); 7597 } 7598 7599 r = _base_handshake_req_reply_wait(ioc, 7600 sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request, 7601 sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 30); 7602 7603 if (r != 0) { 7604 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 7605 return r; 7606 } 7607 7608 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK; 7609 if (ioc_status != MPI2_IOCSTATUS_SUCCESS || 7610 mpi_reply.IOCLogInfo) { 7611 ioc_err(ioc, "%s: failed\n", __func__); 7612 r = -EIO; 7613 } 7614 7615 /* Reset TimeSync Counter*/ 7616 ioc->timestamp_update_count = 0; 7617 return r; 7618 } 7619 7620 /** 7621 * mpt3sas_port_enable_done - command completion routine for port enable 7622 * @ioc: per adapter object 7623 * @smid: system request message index 7624 * @msix_index: MSIX table index supplied by the OS 7625 * @reply: reply message frame(lower 32bit addr) 7626 * 7627 * Return: 1 meaning mf should be freed from _base_interrupt 7628 * 0 means the mf is freed from this function. 7629 */ 7630 u8 7631 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 7632 u32 reply) 7633 { 7634 MPI2DefaultReply_t *mpi_reply; 7635 u16 ioc_status; 7636 7637 if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED) 7638 return 1; 7639 7640 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 7641 if (!mpi_reply) 7642 return 1; 7643 7644 if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE) 7645 return 1; 7646 7647 ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING; 7648 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE; 7649 ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID; 7650 memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4); 7651 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 7652 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) 7653 ioc->port_enable_failed = 1; 7654 7655 if (ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE_ASYNC) { 7656 ioc->port_enable_cmds.status &= ~MPT3_CMD_COMPLETE_ASYNC; 7657 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 7658 mpt3sas_port_enable_complete(ioc); 7659 return 1; 7660 } else { 7661 ioc->start_scan_failed = ioc_status; 7662 ioc->start_scan = 0; 7663 return 1; 7664 } 7665 } 7666 complete(&ioc->port_enable_cmds.done); 7667 return 1; 7668 } 7669 7670 /** 7671 * _base_send_port_enable - send port_enable(discovery stuff) to firmware 7672 * @ioc: per adapter object 7673 * 7674 * Return: 0 for success, non-zero for failure. 7675 */ 7676 static int 7677 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc) 7678 { 7679 Mpi2PortEnableRequest_t *mpi_request; 7680 Mpi2PortEnableReply_t *mpi_reply; 7681 int r = 0; 7682 u16 smid; 7683 u16 ioc_status; 7684 7685 ioc_info(ioc, "sending port enable !!\n"); 7686 7687 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 7688 ioc_err(ioc, "%s: internal command already in use\n", __func__); 7689 return -EAGAIN; 7690 } 7691 7692 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx); 7693 if (!smid) { 7694 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 7695 return -EAGAIN; 7696 } 7697 7698 ioc->port_enable_cmds.status = MPT3_CMD_PENDING; 7699 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 7700 ioc->port_enable_cmds.smid = smid; 7701 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t)); 7702 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE; 7703 7704 init_completion(&ioc->port_enable_cmds.done); 7705 ioc->put_smid_default(ioc, smid); 7706 wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ); 7707 if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) { 7708 ioc_err(ioc, "%s: timeout\n", __func__); 7709 _debug_dump_mf(mpi_request, 7710 sizeof(Mpi2PortEnableRequest_t)/4); 7711 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET) 7712 r = -EFAULT; 7713 else 7714 r = -ETIME; 7715 goto out; 7716 } 7717 7718 mpi_reply = ioc->port_enable_cmds.reply; 7719 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 7720 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 7721 ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n", 7722 __func__, ioc_status); 7723 r = -EFAULT; 7724 goto out; 7725 } 7726 7727 out: 7728 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED; 7729 ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED"); 7730 return r; 7731 } 7732 7733 /** 7734 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply) 7735 * @ioc: per adapter object 7736 * 7737 * Return: 0 for success, non-zero for failure. 7738 */ 7739 int 7740 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc) 7741 { 7742 Mpi2PortEnableRequest_t *mpi_request; 7743 u16 smid; 7744 7745 ioc_info(ioc, "sending port enable !!\n"); 7746 7747 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 7748 ioc_err(ioc, "%s: internal command already in use\n", __func__); 7749 return -EAGAIN; 7750 } 7751 7752 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx); 7753 if (!smid) { 7754 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 7755 return -EAGAIN; 7756 } 7757 ioc->drv_internal_flags |= MPT_DRV_INTERNAL_FIRST_PE_ISSUED; 7758 ioc->port_enable_cmds.status = MPT3_CMD_PENDING; 7759 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE_ASYNC; 7760 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 7761 ioc->port_enable_cmds.smid = smid; 7762 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t)); 7763 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE; 7764 7765 ioc->put_smid_default(ioc, smid); 7766 return 0; 7767 } 7768 7769 /** 7770 * _base_determine_wait_on_discovery - desposition 7771 * @ioc: per adapter object 7772 * 7773 * Decide whether to wait on discovery to complete. Used to either 7774 * locate boot device, or report volumes ahead of physical devices. 7775 * 7776 * Return: 1 for wait, 0 for don't wait. 7777 */ 7778 static int 7779 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc) 7780 { 7781 /* We wait for discovery to complete if IR firmware is loaded. 7782 * The sas topology events arrive before PD events, so we need time to 7783 * turn on the bit in ioc->pd_handles to indicate PD 7784 * Also, it maybe required to report Volumes ahead of physical 7785 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set. 7786 */ 7787 if (ioc->ir_firmware) 7788 return 1; 7789 7790 /* if no Bios, then we don't need to wait */ 7791 if (!ioc->bios_pg3.BiosVersion) 7792 return 0; 7793 7794 /* Bios is present, then we drop down here. 7795 * 7796 * If there any entries in the Bios Page 2, then we wait 7797 * for discovery to complete. 7798 */ 7799 7800 /* Current Boot Device */ 7801 if ((ioc->bios_pg2.CurrentBootDeviceForm & 7802 MPI2_BIOSPAGE2_FORM_MASK) == 7803 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED && 7804 /* Request Boot Device */ 7805 (ioc->bios_pg2.ReqBootDeviceForm & 7806 MPI2_BIOSPAGE2_FORM_MASK) == 7807 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED && 7808 /* Alternate Request Boot Device */ 7809 (ioc->bios_pg2.ReqAltBootDeviceForm & 7810 MPI2_BIOSPAGE2_FORM_MASK) == 7811 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED) 7812 return 0; 7813 7814 return 1; 7815 } 7816 7817 /** 7818 * _base_unmask_events - turn on notification for this event 7819 * @ioc: per adapter object 7820 * @event: firmware event 7821 * 7822 * The mask is stored in ioc->event_masks. 7823 */ 7824 static void 7825 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event) 7826 { 7827 u32 desired_event; 7828 7829 if (event >= 128) 7830 return; 7831 7832 desired_event = (1 << (event % 32)); 7833 7834 if (event < 32) 7835 ioc->event_masks[0] &= ~desired_event; 7836 else if (event < 64) 7837 ioc->event_masks[1] &= ~desired_event; 7838 else if (event < 96) 7839 ioc->event_masks[2] &= ~desired_event; 7840 else if (event < 128) 7841 ioc->event_masks[3] &= ~desired_event; 7842 } 7843 7844 /** 7845 * _base_event_notification - send event notification 7846 * @ioc: per adapter object 7847 * 7848 * Return: 0 for success, non-zero for failure. 7849 */ 7850 static int 7851 _base_event_notification(struct MPT3SAS_ADAPTER *ioc) 7852 { 7853 Mpi2EventNotificationRequest_t *mpi_request; 7854 u16 smid; 7855 int r = 0; 7856 int i, issue_diag_reset = 0; 7857 7858 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7859 7860 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 7861 ioc_err(ioc, "%s: internal command already in use\n", __func__); 7862 return -EAGAIN; 7863 } 7864 7865 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 7866 if (!smid) { 7867 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 7868 return -EAGAIN; 7869 } 7870 ioc->base_cmds.status = MPT3_CMD_PENDING; 7871 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 7872 ioc->base_cmds.smid = smid; 7873 memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t)); 7874 mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION; 7875 mpi_request->VF_ID = 0; /* TODO */ 7876 mpi_request->VP_ID = 0; 7877 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 7878 mpi_request->EventMasks[i] = 7879 cpu_to_le32(ioc->event_masks[i]); 7880 init_completion(&ioc->base_cmds.done); 7881 ioc->put_smid_default(ioc, smid); 7882 wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ); 7883 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 7884 ioc_err(ioc, "%s: timeout\n", __func__); 7885 _debug_dump_mf(mpi_request, 7886 sizeof(Mpi2EventNotificationRequest_t)/4); 7887 if (ioc->base_cmds.status & MPT3_CMD_RESET) 7888 r = -EFAULT; 7889 else 7890 issue_diag_reset = 1; 7891 7892 } else 7893 dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__)); 7894 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 7895 7896 if (issue_diag_reset) { 7897 if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED) 7898 return -EFAULT; 7899 if (mpt3sas_base_check_for_fault_and_issue_reset(ioc)) 7900 return -EFAULT; 7901 r = -EAGAIN; 7902 } 7903 return r; 7904 } 7905 7906 /** 7907 * mpt3sas_base_validate_event_type - validating event types 7908 * @ioc: per adapter object 7909 * @event_type: firmware event 7910 * 7911 * This will turn on firmware event notification when application 7912 * ask for that event. We don't mask events that are already enabled. 7913 */ 7914 void 7915 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type) 7916 { 7917 int i, j; 7918 u32 event_mask, desired_event; 7919 u8 send_update_to_fw; 7920 7921 for (i = 0, send_update_to_fw = 0; i < 7922 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) { 7923 event_mask = ~event_type[i]; 7924 desired_event = 1; 7925 for (j = 0; j < 32; j++) { 7926 if (!(event_mask & desired_event) && 7927 (ioc->event_masks[i] & desired_event)) { 7928 ioc->event_masks[i] &= ~desired_event; 7929 send_update_to_fw = 1; 7930 } 7931 desired_event = (desired_event << 1); 7932 } 7933 } 7934 7935 if (!send_update_to_fw) 7936 return; 7937 7938 mutex_lock(&ioc->base_cmds.mutex); 7939 _base_event_notification(ioc); 7940 mutex_unlock(&ioc->base_cmds.mutex); 7941 } 7942 7943 /** 7944 * _base_diag_reset - the "big hammer" start of day reset 7945 * @ioc: per adapter object 7946 * 7947 * Return: 0 for success, non-zero for failure. 7948 */ 7949 static int 7950 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc) 7951 { 7952 u32 host_diagnostic; 7953 u32 ioc_state; 7954 u32 count; 7955 u32 hcb_size; 7956 7957 ioc_info(ioc, "sending diag reset !!\n"); 7958 7959 pci_cfg_access_lock(ioc->pdev); 7960 7961 drsprintk(ioc, ioc_info(ioc, "clear interrupts\n")); 7962 7963 count = 0; 7964 do { 7965 /* Write magic sequence to WriteSequence register 7966 * Loop until in diagnostic mode 7967 */ 7968 drsprintk(ioc, ioc_info(ioc, "write magic sequence\n")); 7969 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence); 7970 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence); 7971 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence); 7972 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence); 7973 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence); 7974 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence); 7975 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence); 7976 7977 /* wait 100 msec */ 7978 msleep(100); 7979 7980 if (count++ > 20) { 7981 ioc_info(ioc, 7982 "Stop writing magic sequence after 20 retries\n"); 7983 _base_dump_reg_set(ioc); 7984 goto out; 7985 } 7986 7987 host_diagnostic = ioc->base_readl_ext_retry(&ioc->chip->HostDiagnostic); 7988 drsprintk(ioc, 7989 ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n", 7990 count, host_diagnostic)); 7991 7992 } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0); 7993 7994 hcb_size = ioc->base_readl(&ioc->chip->HCBSize); 7995 7996 drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n")); 7997 writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER, 7998 &ioc->chip->HostDiagnostic); 7999 8000 /*This delay allows the chip PCIe hardware time to finish reset tasks*/ 8001 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000); 8002 8003 /* Approximately 300 second max wait */ 8004 for (count = 0; count < (300000000 / 8005 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) { 8006 8007 host_diagnostic = ioc->base_readl_ext_retry(&ioc->chip->HostDiagnostic); 8008 8009 if (host_diagnostic == 0xFFFFFFFF) { 8010 ioc_info(ioc, 8011 "Invalid host diagnostic register value\n"); 8012 _base_dump_reg_set(ioc); 8013 goto out; 8014 } 8015 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER)) 8016 break; 8017 8018 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000); 8019 } 8020 8021 if (host_diagnostic & MPI2_DIAG_HCB_MODE) { 8022 8023 drsprintk(ioc, 8024 ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n")); 8025 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK; 8026 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW; 8027 writel(host_diagnostic, &ioc->chip->HostDiagnostic); 8028 8029 drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n")); 8030 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE, 8031 &ioc->chip->HCBSize); 8032 } 8033 8034 drsprintk(ioc, ioc_info(ioc, "restart the adapter\n")); 8035 writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET, 8036 &ioc->chip->HostDiagnostic); 8037 8038 drsprintk(ioc, 8039 ioc_info(ioc, "disable writes to the diagnostic register\n")); 8040 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence); 8041 8042 drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n")); 8043 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20); 8044 if (ioc_state) { 8045 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 8046 __func__, ioc_state); 8047 _base_dump_reg_set(ioc); 8048 goto out; 8049 } 8050 8051 pci_cfg_access_unlock(ioc->pdev); 8052 ioc_info(ioc, "diag reset: SUCCESS\n"); 8053 return 0; 8054 8055 out: 8056 pci_cfg_access_unlock(ioc->pdev); 8057 ioc_err(ioc, "diag reset: FAILED\n"); 8058 return -EFAULT; 8059 } 8060 8061 /** 8062 * mpt3sas_base_make_ioc_ready - put controller in READY state 8063 * @ioc: per adapter object 8064 * @type: FORCE_BIG_HAMMER or SOFT_RESET 8065 * 8066 * Return: 0 for success, non-zero for failure. 8067 */ 8068 int 8069 mpt3sas_base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type) 8070 { 8071 u32 ioc_state; 8072 int rc; 8073 int count; 8074 8075 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 8076 8077 if (ioc->pci_error_recovery) 8078 return 0; 8079 8080 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 8081 dhsprintk(ioc, 8082 ioc_info(ioc, "%s: ioc_state(0x%08x)\n", 8083 __func__, ioc_state)); 8084 8085 /* if in RESET state, it should move to READY state shortly */ 8086 count = 0; 8087 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) { 8088 while ((ioc_state & MPI2_IOC_STATE_MASK) != 8089 MPI2_IOC_STATE_READY) { 8090 if (count++ == 10) { 8091 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 8092 __func__, ioc_state); 8093 return -EFAULT; 8094 } 8095 ssleep(1); 8096 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 8097 } 8098 } 8099 8100 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) 8101 return 0; 8102 8103 if (ioc_state & MPI2_DOORBELL_USED) { 8104 ioc_info(ioc, "unexpected doorbell active!\n"); 8105 goto issue_diag_reset; 8106 } 8107 8108 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 8109 mpt3sas_print_fault_code(ioc, ioc_state & 8110 MPI2_DOORBELL_DATA_MASK); 8111 goto issue_diag_reset; 8112 } 8113 8114 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) { 8115 /* 8116 * if host reset is invoked while watch dog thread is waiting 8117 * for IOC state to be changed to Fault state then driver has 8118 * to wait here for CoreDump state to clear otherwise reset 8119 * will be issued to the FW and FW move the IOC state to 8120 * reset state without copying the FW logs to coredump region. 8121 */ 8122 if (ioc->ioc_coredump_loop != MPT3SAS_COREDUMP_LOOP_DONE) { 8123 mpt3sas_print_coredump_info(ioc, ioc_state & 8124 MPI2_DOORBELL_DATA_MASK); 8125 mpt3sas_base_wait_for_coredump_completion(ioc, 8126 __func__); 8127 } 8128 goto issue_diag_reset; 8129 } 8130 8131 if (type == FORCE_BIG_HAMMER) 8132 goto issue_diag_reset; 8133 8134 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL) 8135 if (!(_base_send_ioc_reset(ioc, 8136 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) { 8137 return 0; 8138 } 8139 8140 issue_diag_reset: 8141 rc = _base_diag_reset(ioc); 8142 return rc; 8143 } 8144 8145 /** 8146 * _base_make_ioc_operational - put controller in OPERATIONAL state 8147 * @ioc: per adapter object 8148 * 8149 * Return: 0 for success, non-zero for failure. 8150 */ 8151 static int 8152 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc) 8153 { 8154 int r, i, index, rc; 8155 unsigned long flags; 8156 u32 reply_address; 8157 u16 smid; 8158 struct _tr_list *delayed_tr, *delayed_tr_next; 8159 struct _sc_list *delayed_sc, *delayed_sc_next; 8160 struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next; 8161 u8 hide_flag; 8162 struct adapter_reply_queue *reply_q; 8163 Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig; 8164 8165 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 8166 8167 /* clean the delayed target reset list */ 8168 list_for_each_entry_safe(delayed_tr, delayed_tr_next, 8169 &ioc->delayed_tr_list, list) { 8170 list_del(&delayed_tr->list); 8171 kfree(delayed_tr); 8172 } 8173 8174 8175 list_for_each_entry_safe(delayed_tr, delayed_tr_next, 8176 &ioc->delayed_tr_volume_list, list) { 8177 list_del(&delayed_tr->list); 8178 kfree(delayed_tr); 8179 } 8180 8181 list_for_each_entry_safe(delayed_sc, delayed_sc_next, 8182 &ioc->delayed_sc_list, list) { 8183 list_del(&delayed_sc->list); 8184 kfree(delayed_sc); 8185 } 8186 8187 list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next, 8188 &ioc->delayed_event_ack_list, list) { 8189 list_del(&delayed_event_ack->list); 8190 kfree(delayed_event_ack); 8191 } 8192 8193 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 8194 8195 /* hi-priority queue */ 8196 INIT_LIST_HEAD(&ioc->hpr_free_list); 8197 smid = ioc->hi_priority_smid; 8198 for (i = 0; i < ioc->hi_priority_depth; i++, smid++) { 8199 ioc->hpr_lookup[i].cb_idx = 0xFF; 8200 ioc->hpr_lookup[i].smid = smid; 8201 list_add_tail(&ioc->hpr_lookup[i].tracker_list, 8202 &ioc->hpr_free_list); 8203 } 8204 8205 /* internal queue */ 8206 INIT_LIST_HEAD(&ioc->internal_free_list); 8207 smid = ioc->internal_smid; 8208 for (i = 0; i < ioc->internal_depth; i++, smid++) { 8209 ioc->internal_lookup[i].cb_idx = 0xFF; 8210 ioc->internal_lookup[i].smid = smid; 8211 list_add_tail(&ioc->internal_lookup[i].tracker_list, 8212 &ioc->internal_free_list); 8213 } 8214 8215 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 8216 8217 /* initialize Reply Free Queue */ 8218 for (i = 0, reply_address = (u32)ioc->reply_dma ; 8219 i < ioc->reply_free_queue_depth ; i++, reply_address += 8220 ioc->reply_sz) { 8221 ioc->reply_free[i] = cpu_to_le32(reply_address); 8222 if (ioc->is_mcpu_endpoint) 8223 _base_clone_reply_to_sys_mem(ioc, 8224 reply_address, i); 8225 } 8226 8227 /* initialize reply queues */ 8228 if (ioc->is_driver_loading) 8229 _base_assign_reply_queues(ioc); 8230 8231 /* initialize Reply Post Free Queue */ 8232 index = 0; 8233 reply_post_free_contig = ioc->reply_post[0].reply_post_free; 8234 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 8235 /* 8236 * If RDPQ is enabled, switch to the next allocation. 8237 * Otherwise advance within the contiguous region. 8238 */ 8239 if (ioc->rdpq_array_enable) { 8240 reply_q->reply_post_free = 8241 ioc->reply_post[index++].reply_post_free; 8242 } else { 8243 reply_q->reply_post_free = reply_post_free_contig; 8244 reply_post_free_contig += ioc->reply_post_queue_depth; 8245 } 8246 8247 reply_q->reply_post_host_index = 0; 8248 for (i = 0; i < ioc->reply_post_queue_depth; i++) 8249 reply_q->reply_post_free[i].Words = 8250 cpu_to_le64(ULLONG_MAX); 8251 if (!_base_is_controller_msix_enabled(ioc)) 8252 goto skip_init_reply_post_free_queue; 8253 } 8254 skip_init_reply_post_free_queue: 8255 8256 r = _base_send_ioc_init(ioc); 8257 if (r) { 8258 /* 8259 * No need to check IOC state for fault state & issue 8260 * diag reset during host reset. This check is need 8261 * only during driver load time. 8262 */ 8263 if (!ioc->is_driver_loading) 8264 return r; 8265 8266 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc); 8267 if (rc || (_base_send_ioc_init(ioc))) 8268 return r; 8269 } 8270 8271 /* initialize reply free host index */ 8272 ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1; 8273 writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex); 8274 8275 /* initialize reply post host index */ 8276 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 8277 if (ioc->combined_reply_queue) 8278 writel((reply_q->msix_index & 7)<< 8279 MPI2_RPHI_MSIX_INDEX_SHIFT, 8280 ioc->replyPostRegisterIndex[reply_q->msix_index/8]); 8281 else 8282 writel(reply_q->msix_index << 8283 MPI2_RPHI_MSIX_INDEX_SHIFT, 8284 &ioc->chip->ReplyPostHostIndex); 8285 8286 if (!_base_is_controller_msix_enabled(ioc)) 8287 goto skip_init_reply_post_host_index; 8288 } 8289 8290 skip_init_reply_post_host_index: 8291 8292 mpt3sas_base_unmask_interrupts(ioc); 8293 8294 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 8295 r = _base_display_fwpkg_version(ioc); 8296 if (r) 8297 return r; 8298 } 8299 8300 r = _base_static_config_pages(ioc); 8301 if (r) 8302 return r; 8303 8304 r = _base_event_notification(ioc); 8305 if (r) 8306 return r; 8307 8308 if (!ioc->shost_recovery) { 8309 8310 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier 8311 == 0x80) { 8312 hide_flag = (u8) ( 8313 le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) & 8314 MFG_PAGE10_HIDE_SSDS_MASK); 8315 if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK) 8316 ioc->mfg_pg10_hide_flag = hide_flag; 8317 } 8318 8319 ioc->wait_for_discovery_to_complete = 8320 _base_determine_wait_on_discovery(ioc); 8321 8322 return r; /* scan_start and scan_finished support */ 8323 } 8324 8325 r = _base_send_port_enable(ioc); 8326 if (r) 8327 return r; 8328 8329 return r; 8330 } 8331 8332 /** 8333 * mpt3sas_base_free_resources - free resources controller resources 8334 * @ioc: per adapter object 8335 */ 8336 void 8337 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc) 8338 { 8339 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 8340 8341 /* synchronizing freeing resource with pci_access_mutex lock */ 8342 mutex_lock(&ioc->pci_access_mutex); 8343 if (ioc->chip_phys && ioc->chip) { 8344 mpt3sas_base_mask_interrupts(ioc); 8345 ioc->shost_recovery = 1; 8346 mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET); 8347 ioc->shost_recovery = 0; 8348 } 8349 8350 mpt3sas_base_unmap_resources(ioc); 8351 mutex_unlock(&ioc->pci_access_mutex); 8352 return; 8353 } 8354 8355 /** 8356 * mpt3sas_base_attach - attach controller instance 8357 * @ioc: per adapter object 8358 * 8359 * Return: 0 for success, non-zero for failure. 8360 */ 8361 int 8362 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc) 8363 { 8364 int r, i, rc; 8365 int cpu_id, last_cpu_id = 0; 8366 8367 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 8368 8369 /* setup cpu_msix_table */ 8370 ioc->cpu_count = num_online_cpus(); 8371 for_each_online_cpu(cpu_id) 8372 last_cpu_id = cpu_id; 8373 ioc->cpu_msix_table_sz = last_cpu_id + 1; 8374 ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL); 8375 ioc->reply_queue_count = 1; 8376 if (!ioc->cpu_msix_table) { 8377 ioc_info(ioc, "Allocation for cpu_msix_table failed!!!\n"); 8378 r = -ENOMEM; 8379 goto out_free_resources; 8380 } 8381 8382 if (ioc->is_warpdrive) { 8383 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz, 8384 sizeof(resource_size_t *), GFP_KERNEL); 8385 if (!ioc->reply_post_host_index) { 8386 ioc_info(ioc, "Allocation for reply_post_host_index failed!!!\n"); 8387 r = -ENOMEM; 8388 goto out_free_resources; 8389 } 8390 } 8391 8392 ioc->smp_affinity_enable = smp_affinity_enable; 8393 8394 ioc->rdpq_array_enable_assigned = 0; 8395 ioc->use_32bit_dma = false; 8396 ioc->dma_mask = 64; 8397 if (ioc->is_aero_ioc) { 8398 ioc->base_readl = &_base_readl_aero; 8399 ioc->base_readl_ext_retry = &_base_readl_ext_retry; 8400 } else { 8401 ioc->base_readl = &_base_readl; 8402 ioc->base_readl_ext_retry = &_base_readl; 8403 } 8404 r = mpt3sas_base_map_resources(ioc); 8405 if (r) 8406 goto out_free_resources; 8407 8408 pci_set_drvdata(ioc->pdev, ioc->shost); 8409 r = _base_get_ioc_facts(ioc); 8410 if (r) { 8411 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc); 8412 if (rc || (_base_get_ioc_facts(ioc))) 8413 goto out_free_resources; 8414 } 8415 8416 switch (ioc->hba_mpi_version_belonged) { 8417 case MPI2_VERSION: 8418 ioc->build_sg_scmd = &_base_build_sg_scmd; 8419 ioc->build_sg = &_base_build_sg; 8420 ioc->build_zero_len_sge = &_base_build_zero_len_sge; 8421 ioc->get_msix_index_for_smlio = &_base_get_msix_index; 8422 break; 8423 case MPI25_VERSION: 8424 case MPI26_VERSION: 8425 /* 8426 * In SAS3.0, 8427 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and 8428 * Target Status - all require the IEEE formatted scatter gather 8429 * elements. 8430 */ 8431 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee; 8432 ioc->build_sg = &_base_build_sg_ieee; 8433 ioc->build_nvme_prp = &_base_build_nvme_prp; 8434 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee; 8435 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t); 8436 if (ioc->high_iops_queues) 8437 ioc->get_msix_index_for_smlio = 8438 &_base_get_high_iops_msix_index; 8439 else 8440 ioc->get_msix_index_for_smlio = &_base_get_msix_index; 8441 break; 8442 } 8443 if (ioc->atomic_desc_capable) { 8444 ioc->put_smid_default = &_base_put_smid_default_atomic; 8445 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic; 8446 ioc->put_smid_fast_path = 8447 &_base_put_smid_fast_path_atomic; 8448 ioc->put_smid_hi_priority = 8449 &_base_put_smid_hi_priority_atomic; 8450 } else { 8451 ioc->put_smid_default = &_base_put_smid_default; 8452 ioc->put_smid_fast_path = &_base_put_smid_fast_path; 8453 ioc->put_smid_hi_priority = &_base_put_smid_hi_priority; 8454 if (ioc->is_mcpu_endpoint) 8455 ioc->put_smid_scsi_io = 8456 &_base_put_smid_mpi_ep_scsi_io; 8457 else 8458 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io; 8459 } 8460 /* 8461 * These function pointers for other requests that don't 8462 * the require IEEE scatter gather elements. 8463 * 8464 * For example Configuration Pages and SAS IOUNIT Control don't. 8465 */ 8466 ioc->build_sg_mpi = &_base_build_sg; 8467 ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge; 8468 8469 r = mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET); 8470 if (r) 8471 goto out_free_resources; 8472 8473 ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts, 8474 sizeof(struct mpt3sas_port_facts), GFP_KERNEL); 8475 if (!ioc->pfacts) { 8476 r = -ENOMEM; 8477 goto out_free_resources; 8478 } 8479 8480 for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) { 8481 r = _base_get_port_facts(ioc, i); 8482 if (r) { 8483 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc); 8484 if (rc || (_base_get_port_facts(ioc, i))) 8485 goto out_free_resources; 8486 } 8487 } 8488 8489 r = _base_allocate_memory_pools(ioc); 8490 if (r) 8491 goto out_free_resources; 8492 8493 if (irqpoll_weight > 0) 8494 ioc->thresh_hold = irqpoll_weight; 8495 else 8496 ioc->thresh_hold = ioc->hba_queue_depth/4; 8497 8498 _base_init_irqpolls(ioc); 8499 init_waitqueue_head(&ioc->reset_wq); 8500 8501 /* allocate memory pd handle bitmask list */ 8502 ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8); 8503 if (ioc->facts.MaxDevHandle % 8) 8504 ioc->pd_handles_sz++; 8505 /* 8506 * pd_handles_sz should have, at least, the minimal room for 8507 * set_bit()/test_bit(), otherwise out-of-memory touch may occur. 8508 */ 8509 ioc->pd_handles_sz = ALIGN(ioc->pd_handles_sz, sizeof(unsigned long)); 8510 8511 ioc->pd_handles = kzalloc(ioc->pd_handles_sz, 8512 GFP_KERNEL); 8513 if (!ioc->pd_handles) { 8514 r = -ENOMEM; 8515 goto out_free_resources; 8516 } 8517 ioc->blocking_handles = kzalloc(ioc->pd_handles_sz, 8518 GFP_KERNEL); 8519 if (!ioc->blocking_handles) { 8520 r = -ENOMEM; 8521 goto out_free_resources; 8522 } 8523 8524 /* allocate memory for pending OS device add list */ 8525 ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8); 8526 if (ioc->facts.MaxDevHandle % 8) 8527 ioc->pend_os_device_add_sz++; 8528 8529 /* 8530 * pend_os_device_add_sz should have, at least, the minimal room for 8531 * set_bit()/test_bit(), otherwise out-of-memory may occur. 8532 */ 8533 ioc->pend_os_device_add_sz = ALIGN(ioc->pend_os_device_add_sz, 8534 sizeof(unsigned long)); 8535 ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz, 8536 GFP_KERNEL); 8537 if (!ioc->pend_os_device_add) { 8538 r = -ENOMEM; 8539 goto out_free_resources; 8540 } 8541 8542 ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz; 8543 ioc->device_remove_in_progress = 8544 kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL); 8545 if (!ioc->device_remove_in_progress) { 8546 r = -ENOMEM; 8547 goto out_free_resources; 8548 } 8549 8550 ioc->fwfault_debug = mpt3sas_fwfault_debug; 8551 8552 /* base internal command bits */ 8553 mutex_init(&ioc->base_cmds.mutex); 8554 ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 8555 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 8556 8557 /* port_enable command bits */ 8558 ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 8559 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED; 8560 8561 /* transport internal command bits */ 8562 ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 8563 ioc->transport_cmds.status = MPT3_CMD_NOT_USED; 8564 mutex_init(&ioc->transport_cmds.mutex); 8565 8566 /* scsih internal command bits */ 8567 ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 8568 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED; 8569 mutex_init(&ioc->scsih_cmds.mutex); 8570 8571 /* task management internal command bits */ 8572 ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 8573 ioc->tm_cmds.status = MPT3_CMD_NOT_USED; 8574 mutex_init(&ioc->tm_cmds.mutex); 8575 8576 /* config page internal command bits */ 8577 ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 8578 ioc->config_cmds.status = MPT3_CMD_NOT_USED; 8579 mutex_init(&ioc->config_cmds.mutex); 8580 8581 /* ctl module internal command bits */ 8582 ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 8583 ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL); 8584 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED; 8585 mutex_init(&ioc->ctl_cmds.mutex); 8586 8587 if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply || 8588 !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply || 8589 !ioc->tm_cmds.reply || !ioc->config_cmds.reply || 8590 !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) { 8591 r = -ENOMEM; 8592 goto out_free_resources; 8593 } 8594 8595 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 8596 ioc->event_masks[i] = -1; 8597 8598 /* here we enable the events we care about */ 8599 _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY); 8600 _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE); 8601 _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST); 8602 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE); 8603 _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE); 8604 _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST); 8605 _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME); 8606 _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK); 8607 _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS); 8608 _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED); 8609 _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD); 8610 _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION); 8611 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR); 8612 if (ioc->hba_mpi_version_belonged == MPI26_VERSION) { 8613 if (ioc->is_gen35_ioc) { 8614 _base_unmask_events(ioc, 8615 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE); 8616 _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION); 8617 _base_unmask_events(ioc, 8618 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST); 8619 } 8620 } 8621 r = _base_make_ioc_operational(ioc); 8622 if (r == -EAGAIN) { 8623 r = _base_make_ioc_operational(ioc); 8624 if (r) 8625 goto out_free_resources; 8626 } 8627 8628 /* 8629 * Copy current copy of IOCFacts in prev_fw_facts 8630 * and it will be used during online firmware upgrade. 8631 */ 8632 memcpy(&ioc->prev_fw_facts, &ioc->facts, 8633 sizeof(struct mpt3sas_facts)); 8634 8635 ioc->non_operational_loop = 0; 8636 ioc->ioc_coredump_loop = 0; 8637 ioc->got_task_abort_from_ioctl = 0; 8638 return 0; 8639 8640 out_free_resources: 8641 8642 ioc->remove_host = 1; 8643 8644 mpt3sas_base_free_resources(ioc); 8645 _base_release_memory_pools(ioc); 8646 pci_set_drvdata(ioc->pdev, NULL); 8647 kfree(ioc->cpu_msix_table); 8648 if (ioc->is_warpdrive) 8649 kfree(ioc->reply_post_host_index); 8650 kfree(ioc->pd_handles); 8651 kfree(ioc->blocking_handles); 8652 kfree(ioc->device_remove_in_progress); 8653 kfree(ioc->pend_os_device_add); 8654 kfree(ioc->tm_cmds.reply); 8655 kfree(ioc->transport_cmds.reply); 8656 kfree(ioc->scsih_cmds.reply); 8657 kfree(ioc->config_cmds.reply); 8658 kfree(ioc->base_cmds.reply); 8659 kfree(ioc->port_enable_cmds.reply); 8660 kfree(ioc->ctl_cmds.reply); 8661 kfree(ioc->ctl_cmds.sense); 8662 kfree(ioc->pfacts); 8663 ioc->ctl_cmds.reply = NULL; 8664 ioc->base_cmds.reply = NULL; 8665 ioc->tm_cmds.reply = NULL; 8666 ioc->scsih_cmds.reply = NULL; 8667 ioc->transport_cmds.reply = NULL; 8668 ioc->config_cmds.reply = NULL; 8669 ioc->pfacts = NULL; 8670 return r; 8671 } 8672 8673 8674 /** 8675 * mpt3sas_base_detach - remove controller instance 8676 * @ioc: per adapter object 8677 */ 8678 void 8679 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc) 8680 { 8681 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 8682 8683 mpt3sas_base_stop_watchdog(ioc); 8684 mpt3sas_base_free_resources(ioc); 8685 _base_release_memory_pools(ioc); 8686 mpt3sas_free_enclosure_list(ioc); 8687 pci_set_drvdata(ioc->pdev, NULL); 8688 kfree(ioc->cpu_msix_table); 8689 if (ioc->is_warpdrive) 8690 kfree(ioc->reply_post_host_index); 8691 kfree(ioc->pd_handles); 8692 kfree(ioc->blocking_handles); 8693 kfree(ioc->device_remove_in_progress); 8694 kfree(ioc->pend_os_device_add); 8695 kfree(ioc->pfacts); 8696 kfree(ioc->ctl_cmds.reply); 8697 kfree(ioc->ctl_cmds.sense); 8698 kfree(ioc->base_cmds.reply); 8699 kfree(ioc->port_enable_cmds.reply); 8700 kfree(ioc->tm_cmds.reply); 8701 kfree(ioc->transport_cmds.reply); 8702 kfree(ioc->scsih_cmds.reply); 8703 kfree(ioc->config_cmds.reply); 8704 } 8705 8706 /** 8707 * _base_pre_reset_handler - pre reset handler 8708 * @ioc: per adapter object 8709 */ 8710 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc) 8711 { 8712 mpt3sas_scsih_pre_reset_handler(ioc); 8713 mpt3sas_ctl_pre_reset_handler(ioc); 8714 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__)); 8715 } 8716 8717 /** 8718 * _base_clear_outstanding_mpt_commands - clears outstanding mpt commands 8719 * @ioc: per adapter object 8720 */ 8721 static void 8722 _base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER *ioc) 8723 { 8724 dtmprintk(ioc, 8725 ioc_info(ioc, "%s: clear outstanding mpt cmds\n", __func__)); 8726 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) { 8727 ioc->transport_cmds.status |= MPT3_CMD_RESET; 8728 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid); 8729 complete(&ioc->transport_cmds.done); 8730 } 8731 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 8732 ioc->base_cmds.status |= MPT3_CMD_RESET; 8733 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid); 8734 complete(&ioc->base_cmds.done); 8735 } 8736 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 8737 ioc->port_enable_failed = 1; 8738 ioc->port_enable_cmds.status |= MPT3_CMD_RESET; 8739 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid); 8740 if (ioc->is_driver_loading) { 8741 ioc->start_scan_failed = 8742 MPI2_IOCSTATUS_INTERNAL_ERROR; 8743 ioc->start_scan = 0; 8744 } else { 8745 complete(&ioc->port_enable_cmds.done); 8746 } 8747 } 8748 if (ioc->config_cmds.status & MPT3_CMD_PENDING) { 8749 ioc->config_cmds.status |= MPT3_CMD_RESET; 8750 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid); 8751 ioc->config_cmds.smid = USHRT_MAX; 8752 complete(&ioc->config_cmds.done); 8753 } 8754 } 8755 8756 /** 8757 * _base_clear_outstanding_commands - clear all outstanding commands 8758 * @ioc: per adapter object 8759 */ 8760 static void _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc) 8761 { 8762 mpt3sas_scsih_clear_outstanding_scsi_tm_commands(ioc); 8763 mpt3sas_ctl_clear_outstanding_ioctls(ioc); 8764 _base_clear_outstanding_mpt_commands(ioc); 8765 } 8766 8767 /** 8768 * _base_reset_done_handler - reset done handler 8769 * @ioc: per adapter object 8770 */ 8771 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc) 8772 { 8773 mpt3sas_scsih_reset_done_handler(ioc); 8774 mpt3sas_ctl_reset_done_handler(ioc); 8775 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__)); 8776 } 8777 8778 /** 8779 * mpt3sas_wait_for_commands_to_complete - reset controller 8780 * @ioc: Pointer to MPT_ADAPTER structure 8781 * 8782 * This function is waiting 10s for all pending commands to complete 8783 * prior to putting controller in reset. 8784 */ 8785 void 8786 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc) 8787 { 8788 u32 ioc_state; 8789 8790 ioc->pending_io_count = 0; 8791 8792 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 8793 if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) 8794 return; 8795 8796 /* pending command count */ 8797 ioc->pending_io_count = scsi_host_busy(ioc->shost); 8798 8799 if (!ioc->pending_io_count) 8800 return; 8801 8802 /* wait for pending commands to complete */ 8803 wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ); 8804 } 8805 8806 /** 8807 * _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts 8808 * attributes during online firmware upgrade and update the corresponding 8809 * IOC variables accordingly. 8810 * 8811 * @ioc: Pointer to MPT_ADAPTER structure 8812 */ 8813 static int 8814 _base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc) 8815 { 8816 u16 pd_handles_sz; 8817 void *pd_handles = NULL, *blocking_handles = NULL; 8818 void *pend_os_device_add = NULL, *device_remove_in_progress = NULL; 8819 struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts; 8820 8821 if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle) { 8822 pd_handles_sz = (ioc->facts.MaxDevHandle / 8); 8823 if (ioc->facts.MaxDevHandle % 8) 8824 pd_handles_sz++; 8825 8826 /* 8827 * pd_handles should have, at least, the minimal room for 8828 * set_bit()/test_bit(), otherwise out-of-memory touch may 8829 * occur. 8830 */ 8831 pd_handles_sz = ALIGN(pd_handles_sz, sizeof(unsigned long)); 8832 pd_handles = krealloc(ioc->pd_handles, pd_handles_sz, 8833 GFP_KERNEL); 8834 if (!pd_handles) { 8835 ioc_info(ioc, 8836 "Unable to allocate the memory for pd_handles of sz: %d\n", 8837 pd_handles_sz); 8838 return -ENOMEM; 8839 } 8840 memset(pd_handles + ioc->pd_handles_sz, 0, 8841 (pd_handles_sz - ioc->pd_handles_sz)); 8842 ioc->pd_handles = pd_handles; 8843 8844 blocking_handles = krealloc(ioc->blocking_handles, 8845 pd_handles_sz, GFP_KERNEL); 8846 if (!blocking_handles) { 8847 ioc_info(ioc, 8848 "Unable to allocate the memory for " 8849 "blocking_handles of sz: %d\n", 8850 pd_handles_sz); 8851 return -ENOMEM; 8852 } 8853 memset(blocking_handles + ioc->pd_handles_sz, 0, 8854 (pd_handles_sz - ioc->pd_handles_sz)); 8855 ioc->blocking_handles = blocking_handles; 8856 ioc->pd_handles_sz = pd_handles_sz; 8857 8858 pend_os_device_add = krealloc(ioc->pend_os_device_add, 8859 pd_handles_sz, GFP_KERNEL); 8860 if (!pend_os_device_add) { 8861 ioc_info(ioc, 8862 "Unable to allocate the memory for pend_os_device_add of sz: %d\n", 8863 pd_handles_sz); 8864 return -ENOMEM; 8865 } 8866 memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0, 8867 (pd_handles_sz - ioc->pend_os_device_add_sz)); 8868 ioc->pend_os_device_add = pend_os_device_add; 8869 ioc->pend_os_device_add_sz = pd_handles_sz; 8870 8871 device_remove_in_progress = krealloc( 8872 ioc->device_remove_in_progress, pd_handles_sz, GFP_KERNEL); 8873 if (!device_remove_in_progress) { 8874 ioc_info(ioc, 8875 "Unable to allocate the memory for " 8876 "device_remove_in_progress of sz: %d\n " 8877 , pd_handles_sz); 8878 return -ENOMEM; 8879 } 8880 memset(device_remove_in_progress + 8881 ioc->device_remove_in_progress_sz, 0, 8882 (pd_handles_sz - ioc->device_remove_in_progress_sz)); 8883 ioc->device_remove_in_progress = device_remove_in_progress; 8884 ioc->device_remove_in_progress_sz = pd_handles_sz; 8885 } 8886 8887 memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts)); 8888 return 0; 8889 } 8890 8891 /** 8892 * mpt3sas_base_hard_reset_handler - reset controller 8893 * @ioc: Pointer to MPT_ADAPTER structure 8894 * @type: FORCE_BIG_HAMMER or SOFT_RESET 8895 * 8896 * Return: 0 for success, non-zero for failure. 8897 */ 8898 int 8899 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc, 8900 enum reset_type type) 8901 { 8902 int r; 8903 unsigned long flags; 8904 u32 ioc_state; 8905 u8 is_fault = 0, is_trigger = 0; 8906 8907 dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__)); 8908 8909 if (ioc->pci_error_recovery) { 8910 ioc_err(ioc, "%s: pci error recovery reset\n", __func__); 8911 r = 0; 8912 goto out_unlocked; 8913 } 8914 8915 if (mpt3sas_fwfault_debug) 8916 mpt3sas_halt_firmware(ioc); 8917 8918 /* wait for an active reset in progress to complete */ 8919 mutex_lock(&ioc->reset_in_progress_mutex); 8920 8921 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 8922 ioc->shost_recovery = 1; 8923 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 8924 8925 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 8926 MPT3_DIAG_BUFFER_IS_REGISTERED) && 8927 (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 8928 MPT3_DIAG_BUFFER_IS_RELEASED))) { 8929 is_trigger = 1; 8930 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 8931 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT || 8932 (ioc_state & MPI2_IOC_STATE_MASK) == 8933 MPI2_IOC_STATE_COREDUMP) { 8934 is_fault = 1; 8935 ioc->htb_rel.trigger_info_dwords[1] = 8936 (ioc_state & MPI2_DOORBELL_DATA_MASK); 8937 } 8938 } 8939 _base_pre_reset_handler(ioc); 8940 mpt3sas_wait_for_commands_to_complete(ioc); 8941 mpt3sas_base_mask_interrupts(ioc); 8942 mpt3sas_base_pause_mq_polling(ioc); 8943 r = mpt3sas_base_make_ioc_ready(ioc, type); 8944 if (r) 8945 goto out; 8946 _base_clear_outstanding_commands(ioc); 8947 8948 /* If this hard reset is called while port enable is active, then 8949 * there is no reason to call make_ioc_operational 8950 */ 8951 if (ioc->is_driver_loading && ioc->port_enable_failed) { 8952 ioc->remove_host = 1; 8953 r = -EFAULT; 8954 goto out; 8955 } 8956 r = _base_get_ioc_facts(ioc); 8957 if (r) 8958 goto out; 8959 8960 r = _base_check_ioc_facts_changes(ioc); 8961 if (r) { 8962 ioc_info(ioc, 8963 "Some of the parameters got changed in this new firmware" 8964 " image and it requires system reboot\n"); 8965 goto out; 8966 } 8967 if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable) 8968 panic("%s: Issue occurred with flashing controller firmware." 8969 "Please reboot the system and ensure that the correct" 8970 " firmware version is running\n", ioc->name); 8971 8972 r = _base_make_ioc_operational(ioc); 8973 if (!r) 8974 _base_reset_done_handler(ioc); 8975 8976 out: 8977 ioc_info(ioc, "%s: %s\n", __func__, r == 0 ? "SUCCESS" : "FAILED"); 8978 8979 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 8980 ioc->shost_recovery = 0; 8981 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 8982 ioc->ioc_reset_count++; 8983 mutex_unlock(&ioc->reset_in_progress_mutex); 8984 mpt3sas_base_resume_mq_polling(ioc); 8985 8986 out_unlocked: 8987 if ((r == 0) && is_trigger) { 8988 if (is_fault) 8989 mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT); 8990 else 8991 mpt3sas_trigger_master(ioc, 8992 MASTER_TRIGGER_ADAPTER_RESET); 8993 } 8994 dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__)); 8995 return r; 8996 } 8997