1 /* 2 * This is the Fusion MPT base driver providing common API layer interface 3 * for access to MPT (Message Passing Technology) firmware. 4 * 5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c 6 * Copyright (C) 2012-2014 LSI Corporation 7 * Copyright (C) 2013-2014 Avago Technologies 8 * (mailto: MPT-FusionLinux.pdl@avagotech.com) 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License 12 * as published by the Free Software Foundation; either version 2 13 * of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * NO WARRANTY 21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR 22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT 23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, 24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is 25 * solely responsible for determining the appropriateness of using and 26 * distributing the Program and assumes all risks associated with its 27 * exercise of rights under this Agreement, including but not limited to 28 * the risks and costs of program errors, damage to or loss of data, 29 * programs or equipment, and unavailability or interruption of operations. 30 31 * DISCLAIMER OF LIABILITY 32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY 33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND 35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED 38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES 39 40 * You should have received a copy of the GNU General Public License 41 * along with this program; if not, write to the Free Software 42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, 43 * USA. 44 */ 45 46 #include <linux/kernel.h> 47 #include <linux/module.h> 48 #include <linux/errno.h> 49 #include <linux/init.h> 50 #include <linux/slab.h> 51 #include <linux/types.h> 52 #include <linux/pci.h> 53 #include <linux/kdev_t.h> 54 #include <linux/blkdev.h> 55 #include <linux/delay.h> 56 #include <linux/interrupt.h> 57 #include <linux/dma-mapping.h> 58 #include <linux/io.h> 59 #include <linux/time.h> 60 #include <linux/ktime.h> 61 #include <linux/kthread.h> 62 #include <asm/page.h> /* To get host page size per arch */ 63 #include <linux/aer.h> 64 65 66 #include "mpt3sas_base.h" 67 68 static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS]; 69 70 71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */ 72 73 /* maximum controller queue depth */ 74 #define MAX_HBA_QUEUE_DEPTH 30000 75 #define MAX_CHAIN_DEPTH 100000 76 static int max_queue_depth = -1; 77 module_param(max_queue_depth, int, 0444); 78 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth "); 79 80 static int max_sgl_entries = -1; 81 module_param(max_sgl_entries, int, 0444); 82 MODULE_PARM_DESC(max_sgl_entries, " max sg entries "); 83 84 static int msix_disable = -1; 85 module_param(msix_disable, int, 0444); 86 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)"); 87 88 static int smp_affinity_enable = 1; 89 module_param(smp_affinity_enable, int, 0444); 90 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)"); 91 92 static int max_msix_vectors = -1; 93 module_param(max_msix_vectors, int, 0444); 94 MODULE_PARM_DESC(max_msix_vectors, 95 " max msix vectors"); 96 97 static int irqpoll_weight = -1; 98 module_param(irqpoll_weight, int, 0444); 99 MODULE_PARM_DESC(irqpoll_weight, 100 "irq poll weight (default= one fourth of HBA queue depth)"); 101 102 static int mpt3sas_fwfault_debug; 103 MODULE_PARM_DESC(mpt3sas_fwfault_debug, 104 " enable detection of firmware fault and halt firmware - (default=0)"); 105 106 static int perf_mode = -1; 107 module_param(perf_mode, int, 0444); 108 MODULE_PARM_DESC(perf_mode, 109 "Performance mode (only for Aero/Sea Generation), options:\n\t\t" 110 "0 - balanced: high iops mode is enabled &\n\t\t" 111 "interrupt coalescing is enabled only on high iops queues,\n\t\t" 112 "1 - iops: high iops mode is disabled &\n\t\t" 113 "interrupt coalescing is enabled on all queues,\n\t\t" 114 "2 - latency: high iops mode is disabled &\n\t\t" 115 "interrupt coalescing is enabled on all queues with timeout value 0xA,\n" 116 "\t\tdefault - default perf_mode is 'balanced'" 117 ); 118 119 enum mpt3sas_perf_mode { 120 MPT_PERF_MODE_DEFAULT = -1, 121 MPT_PERF_MODE_BALANCED = 0, 122 MPT_PERF_MODE_IOPS = 1, 123 MPT_PERF_MODE_LATENCY = 2, 124 }; 125 126 static int 127 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc); 128 129 /** 130 * mpt3sas_base_check_cmd_timeout - Function 131 * to check timeout and command termination due 132 * to Host reset. 133 * 134 * @ioc: per adapter object. 135 * @status: Status of issued command. 136 * @mpi_request:mf request pointer. 137 * @sz: size of buffer. 138 * 139 * @Returns - 1/0 Reset to be done or Not 140 */ 141 u8 142 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc, 143 u8 status, void *mpi_request, int sz) 144 { 145 u8 issue_reset = 0; 146 147 if (!(status & MPT3_CMD_RESET)) 148 issue_reset = 1; 149 150 ioc_err(ioc, "Command %s\n", 151 issue_reset == 0 ? "terminated due to Host Reset" : "Timeout"); 152 _debug_dump_mf(mpi_request, sz); 153 154 return issue_reset; 155 } 156 157 /** 158 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug. 159 * @val: ? 160 * @kp: ? 161 * 162 * Return: ? 163 */ 164 static int 165 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp) 166 { 167 int ret = param_set_int(val, kp); 168 struct MPT3SAS_ADAPTER *ioc; 169 170 if (ret) 171 return ret; 172 173 /* global ioc spinlock to protect controller list on list operations */ 174 pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug); 175 spin_lock(&gioc_lock); 176 list_for_each_entry(ioc, &mpt3sas_ioc_list, list) 177 ioc->fwfault_debug = mpt3sas_fwfault_debug; 178 spin_unlock(&gioc_lock); 179 return 0; 180 } 181 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug, 182 param_get_int, &mpt3sas_fwfault_debug, 0644); 183 184 /** 185 * _base_readl_aero - retry readl for max three times. 186 * @addr - MPT Fusion system interface register address 187 * 188 * Retry the readl() for max three times if it gets zero value 189 * while reading the system interface register. 190 */ 191 static inline u32 192 _base_readl_aero(const volatile void __iomem *addr) 193 { 194 u32 i = 0, ret_val; 195 196 do { 197 ret_val = readl(addr); 198 i++; 199 } while (ret_val == 0 && i < 3); 200 201 return ret_val; 202 } 203 204 static inline u32 205 _base_readl(const volatile void __iomem *addr) 206 { 207 return readl(addr); 208 } 209 210 /** 211 * _base_clone_reply_to_sys_mem - copies reply to reply free iomem 212 * in BAR0 space. 213 * 214 * @ioc: per adapter object 215 * @reply: reply message frame(lower 32bit addr) 216 * @index: System request message index. 217 */ 218 static void 219 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply, 220 u32 index) 221 { 222 /* 223 * 256 is offset within sys register. 224 * 256 offset MPI frame starts. Max MPI frame supported is 32. 225 * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts 226 */ 227 u16 cmd_credit = ioc->facts.RequestCredit + 1; 228 void __iomem *reply_free_iomem = (void __iomem *)ioc->chip + 229 MPI_FRAME_START_OFFSET + 230 (cmd_credit * ioc->request_sz) + (index * sizeof(u32)); 231 232 writel(reply, reply_free_iomem); 233 } 234 235 /** 236 * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames 237 * to system/BAR0 region. 238 * 239 * @dst_iomem: Pointer to the destination location in BAR0 space. 240 * @src: Pointer to the Source data. 241 * @size: Size of data to be copied. 242 */ 243 static void 244 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size) 245 { 246 int i; 247 u32 *src_virt_mem = (u32 *)src; 248 249 for (i = 0; i < size/4; i++) 250 writel((u32)src_virt_mem[i], 251 (void __iomem *)dst_iomem + (i * 4)); 252 } 253 254 /** 255 * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region 256 * 257 * @dst_iomem: Pointer to the destination location in BAR0 space. 258 * @src: Pointer to the Source data. 259 * @size: Size of data to be copied. 260 */ 261 static void 262 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size) 263 { 264 int i; 265 u32 *src_virt_mem = (u32 *)(src); 266 267 for (i = 0; i < size/4; i++) 268 writel((u32)src_virt_mem[i], 269 (void __iomem *)dst_iomem + (i * 4)); 270 } 271 272 /** 273 * _base_get_chain - Calculates and Returns virtual chain address 274 * for the provided smid in BAR0 space. 275 * 276 * @ioc: per adapter object 277 * @smid: system request message index 278 * @sge_chain_count: Scatter gather chain count. 279 * 280 * Return: the chain address. 281 */ 282 static inline void __iomem* 283 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid, 284 u8 sge_chain_count) 285 { 286 void __iomem *base_chain, *chain_virt; 287 u16 cmd_credit = ioc->facts.RequestCredit + 1; 288 289 base_chain = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET + 290 (cmd_credit * ioc->request_sz) + 291 REPLY_FREE_POOL_SIZE; 292 chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth * 293 ioc->request_sz) + (sge_chain_count * ioc->request_sz); 294 return chain_virt; 295 } 296 297 /** 298 * _base_get_chain_phys - Calculates and Returns physical address 299 * in BAR0 for scatter gather chains, for 300 * the provided smid. 301 * 302 * @ioc: per adapter object 303 * @smid: system request message index 304 * @sge_chain_count: Scatter gather chain count. 305 * 306 * Return: Physical chain address. 307 */ 308 static inline phys_addr_t 309 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid, 310 u8 sge_chain_count) 311 { 312 phys_addr_t base_chain_phys, chain_phys; 313 u16 cmd_credit = ioc->facts.RequestCredit + 1; 314 315 base_chain_phys = ioc->chip_phys + MPI_FRAME_START_OFFSET + 316 (cmd_credit * ioc->request_sz) + 317 REPLY_FREE_POOL_SIZE; 318 chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth * 319 ioc->request_sz) + (sge_chain_count * ioc->request_sz); 320 return chain_phys; 321 } 322 323 /** 324 * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host 325 * buffer address for the provided smid. 326 * (Each smid can have 64K starts from 17024) 327 * 328 * @ioc: per adapter object 329 * @smid: system request message index 330 * 331 * Return: Pointer to buffer location in BAR0. 332 */ 333 334 static void __iomem * 335 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid) 336 { 337 u16 cmd_credit = ioc->facts.RequestCredit + 1; 338 // Added extra 1 to reach end of chain. 339 void __iomem *chain_end = _base_get_chain(ioc, 340 cmd_credit + 1, 341 ioc->facts.MaxChainDepth); 342 return chain_end + (smid * 64 * 1024); 343 } 344 345 /** 346 * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped 347 * Host buffer Physical address for the provided smid. 348 * (Each smid can have 64K starts from 17024) 349 * 350 * @ioc: per adapter object 351 * @smid: system request message index 352 * 353 * Return: Pointer to buffer location in BAR0. 354 */ 355 static phys_addr_t 356 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid) 357 { 358 u16 cmd_credit = ioc->facts.RequestCredit + 1; 359 phys_addr_t chain_end_phys = _base_get_chain_phys(ioc, 360 cmd_credit + 1, 361 ioc->facts.MaxChainDepth); 362 return chain_end_phys + (smid * 64 * 1024); 363 } 364 365 /** 366 * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain 367 * lookup list and Provides chain_buffer 368 * address for the matching dma address. 369 * (Each smid can have 64K starts from 17024) 370 * 371 * @ioc: per adapter object 372 * @chain_buffer_dma: Chain buffer dma address. 373 * 374 * Return: Pointer to chain buffer. Or Null on Failure. 375 */ 376 static void * 377 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc, 378 dma_addr_t chain_buffer_dma) 379 { 380 u16 index, j; 381 struct chain_tracker *ct; 382 383 for (index = 0; index < ioc->scsiio_depth; index++) { 384 for (j = 0; j < ioc->chains_needed_per_io; j++) { 385 ct = &ioc->chain_lookup[index].chains_per_smid[j]; 386 if (ct && ct->chain_buffer_dma == chain_buffer_dma) 387 return ct->chain_buffer; 388 } 389 } 390 ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n"); 391 return NULL; 392 } 393 394 /** 395 * _clone_sg_entries - MPI EP's scsiio and config requests 396 * are handled here. Base function for 397 * double buffering, before submitting 398 * the requests. 399 * 400 * @ioc: per adapter object. 401 * @mpi_request: mf request pointer. 402 * @smid: system request message index. 403 */ 404 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc, 405 void *mpi_request, u16 smid) 406 { 407 Mpi2SGESimple32_t *sgel, *sgel_next; 408 u32 sgl_flags, sge_chain_count = 0; 409 bool is_write = 0; 410 u16 i = 0; 411 void __iomem *buffer_iomem; 412 phys_addr_t buffer_iomem_phys; 413 void __iomem *buff_ptr; 414 phys_addr_t buff_ptr_phys; 415 void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO]; 416 void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO]; 417 phys_addr_t dst_addr_phys; 418 MPI2RequestHeader_t *request_hdr; 419 struct scsi_cmnd *scmd; 420 struct scatterlist *sg_scmd = NULL; 421 int is_scsiio_req = 0; 422 423 request_hdr = (MPI2RequestHeader_t *) mpi_request; 424 425 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) { 426 Mpi25SCSIIORequest_t *scsiio_request = 427 (Mpi25SCSIIORequest_t *)mpi_request; 428 sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL; 429 is_scsiio_req = 1; 430 } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) { 431 Mpi2ConfigRequest_t *config_req = 432 (Mpi2ConfigRequest_t *)mpi_request; 433 sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE; 434 } else 435 return; 436 437 /* From smid we can get scsi_cmd, once we have sg_scmd, 438 * we just need to get sg_virt and sg_next to get virual 439 * address associated with sgel->Address. 440 */ 441 442 if (is_scsiio_req) { 443 /* Get scsi_cmd using smid */ 444 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid); 445 if (scmd == NULL) { 446 ioc_err(ioc, "scmd is NULL\n"); 447 return; 448 } 449 450 /* Get sg_scmd from scmd provided */ 451 sg_scmd = scsi_sglist(scmd); 452 } 453 454 /* 455 * 0 - 255 System register 456 * 256 - 4352 MPI Frame. (This is based on maxCredit 32) 457 * 4352 - 4864 Reply_free pool (512 byte is reserved 458 * considering maxCredit 32. Reply need extra 459 * room, for mCPU case kept four times of 460 * maxCredit). 461 * 4864 - 17152 SGE chain element. (32cmd * 3 chain of 462 * 128 byte size = 12288) 463 * 17152 - x Host buffer mapped with smid. 464 * (Each smid can have 64K Max IO.) 465 * BAR0+Last 1K MSIX Addr and Data 466 * Total size in use 2113664 bytes of 4MB BAR0 467 */ 468 469 buffer_iomem = _base_get_buffer_bar0(ioc, smid); 470 buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid); 471 472 buff_ptr = buffer_iomem; 473 buff_ptr_phys = buffer_iomem_phys; 474 WARN_ON(buff_ptr_phys > U32_MAX); 475 476 if (le32_to_cpu(sgel->FlagsLength) & 477 (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT)) 478 is_write = 1; 479 480 for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) { 481 482 sgl_flags = 483 (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT); 484 485 switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) { 486 case MPI2_SGE_FLAGS_CHAIN_ELEMENT: 487 /* 488 * Helper function which on passing 489 * chain_buffer_dma returns chain_buffer. Get 490 * the virtual address for sgel->Address 491 */ 492 sgel_next = 493 _base_get_chain_buffer_dma_to_chain_buffer(ioc, 494 le32_to_cpu(sgel->Address)); 495 if (sgel_next == NULL) 496 return; 497 /* 498 * This is coping 128 byte chain 499 * frame (not a host buffer) 500 */ 501 dst_chain_addr[sge_chain_count] = 502 _base_get_chain(ioc, 503 smid, sge_chain_count); 504 src_chain_addr[sge_chain_count] = 505 (void *) sgel_next; 506 dst_addr_phys = _base_get_chain_phys(ioc, 507 smid, sge_chain_count); 508 WARN_ON(dst_addr_phys > U32_MAX); 509 sgel->Address = 510 cpu_to_le32(lower_32_bits(dst_addr_phys)); 511 sgel = sgel_next; 512 sge_chain_count++; 513 break; 514 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT: 515 if (is_write) { 516 if (is_scsiio_req) { 517 _base_clone_to_sys_mem(buff_ptr, 518 sg_virt(sg_scmd), 519 (le32_to_cpu(sgel->FlagsLength) & 520 0x00ffffff)); 521 /* 522 * FIXME: this relies on a a zero 523 * PCI mem_offset. 524 */ 525 sgel->Address = 526 cpu_to_le32((u32)buff_ptr_phys); 527 } else { 528 _base_clone_to_sys_mem(buff_ptr, 529 ioc->config_vaddr, 530 (le32_to_cpu(sgel->FlagsLength) & 531 0x00ffffff)); 532 sgel->Address = 533 cpu_to_le32((u32)buff_ptr_phys); 534 } 535 } 536 buff_ptr += (le32_to_cpu(sgel->FlagsLength) & 537 0x00ffffff); 538 buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) & 539 0x00ffffff); 540 if ((le32_to_cpu(sgel->FlagsLength) & 541 (MPI2_SGE_FLAGS_END_OF_BUFFER 542 << MPI2_SGE_FLAGS_SHIFT))) 543 goto eob_clone_chain; 544 else { 545 /* 546 * Every single element in MPT will have 547 * associated sg_next. Better to sanity that 548 * sg_next is not NULL, but it will be a bug 549 * if it is null. 550 */ 551 if (is_scsiio_req) { 552 sg_scmd = sg_next(sg_scmd); 553 if (sg_scmd) 554 sgel++; 555 else 556 goto eob_clone_chain; 557 } 558 } 559 break; 560 } 561 } 562 563 eob_clone_chain: 564 for (i = 0; i < sge_chain_count; i++) { 565 if (is_scsiio_req) 566 _base_clone_to_sys_mem(dst_chain_addr[i], 567 src_chain_addr[i], ioc->request_sz); 568 } 569 } 570 571 /** 572 * mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc 573 * @arg: input argument, used to derive ioc 574 * 575 * Return: 576 * 0 if controller is removed from pci subsystem. 577 * -1 for other case. 578 */ 579 static int mpt3sas_remove_dead_ioc_func(void *arg) 580 { 581 struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg; 582 struct pci_dev *pdev; 583 584 if (!ioc) 585 return -1; 586 587 pdev = ioc->pdev; 588 if (!pdev) 589 return -1; 590 pci_stop_and_remove_bus_device_locked(pdev); 591 return 0; 592 } 593 594 /** 595 * _base_fault_reset_work - workq handling ioc fault conditions 596 * @work: input argument, used to derive ioc 597 * 598 * Context: sleep. 599 */ 600 static void 601 _base_fault_reset_work(struct work_struct *work) 602 { 603 struct MPT3SAS_ADAPTER *ioc = 604 container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work); 605 unsigned long flags; 606 u32 doorbell; 607 int rc; 608 struct task_struct *p; 609 610 611 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 612 if (ioc->shost_recovery || ioc->pci_error_recovery) 613 goto rearm_timer; 614 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 615 616 doorbell = mpt3sas_base_get_iocstate(ioc, 0); 617 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) { 618 ioc_err(ioc, "SAS host is non-operational !!!!\n"); 619 620 /* It may be possible that EEH recovery can resolve some of 621 * pci bus failure issues rather removing the dead ioc function 622 * by considering controller is in a non-operational state. So 623 * here priority is given to the EEH recovery. If it doesn't 624 * not resolve this issue, mpt3sas driver will consider this 625 * controller to non-operational state and remove the dead ioc 626 * function. 627 */ 628 if (ioc->non_operational_loop++ < 5) { 629 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, 630 flags); 631 goto rearm_timer; 632 } 633 634 /* 635 * Call _scsih_flush_pending_cmds callback so that we flush all 636 * pending commands back to OS. This call is required to aovid 637 * deadlock at block layer. Dead IOC will fail to do diag reset, 638 * and this call is safe since dead ioc will never return any 639 * command back from HW. 640 */ 641 ioc->schedule_dead_ioc_flush_running_cmds(ioc); 642 /* 643 * Set remove_host flag early since kernel thread will 644 * take some time to execute. 645 */ 646 ioc->remove_host = 1; 647 /*Remove the Dead Host */ 648 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc, 649 "%s_dead_ioc_%d", ioc->driver_name, ioc->id); 650 if (IS_ERR(p)) 651 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n", 652 __func__); 653 else 654 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n", 655 __func__); 656 return; /* don't rearm timer */ 657 } 658 659 ioc->non_operational_loop = 0; 660 661 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) { 662 rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 663 ioc_warn(ioc, "%s: hard reset: %s\n", 664 __func__, rc == 0 ? "success" : "failed"); 665 doorbell = mpt3sas_base_get_iocstate(ioc, 0); 666 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) 667 mpt3sas_base_fault_info(ioc, doorbell & 668 MPI2_DOORBELL_DATA_MASK); 669 if (rc && (doorbell & MPI2_IOC_STATE_MASK) != 670 MPI2_IOC_STATE_OPERATIONAL) 671 return; /* don't rearm timer */ 672 } 673 674 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 675 rearm_timer: 676 if (ioc->fault_reset_work_q) 677 queue_delayed_work(ioc->fault_reset_work_q, 678 &ioc->fault_reset_work, 679 msecs_to_jiffies(FAULT_POLLING_INTERVAL)); 680 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 681 } 682 683 /** 684 * mpt3sas_base_start_watchdog - start the fault_reset_work_q 685 * @ioc: per adapter object 686 * 687 * Context: sleep. 688 */ 689 void 690 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc) 691 { 692 unsigned long flags; 693 694 if (ioc->fault_reset_work_q) 695 return; 696 697 /* initialize fault polling */ 698 699 INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work); 700 snprintf(ioc->fault_reset_work_q_name, 701 sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status", 702 ioc->driver_name, ioc->id); 703 ioc->fault_reset_work_q = 704 create_singlethread_workqueue(ioc->fault_reset_work_q_name); 705 if (!ioc->fault_reset_work_q) { 706 ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__); 707 return; 708 } 709 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 710 if (ioc->fault_reset_work_q) 711 queue_delayed_work(ioc->fault_reset_work_q, 712 &ioc->fault_reset_work, 713 msecs_to_jiffies(FAULT_POLLING_INTERVAL)); 714 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 715 } 716 717 /** 718 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q 719 * @ioc: per adapter object 720 * 721 * Context: sleep. 722 */ 723 void 724 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc) 725 { 726 unsigned long flags; 727 struct workqueue_struct *wq; 728 729 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 730 wq = ioc->fault_reset_work_q; 731 ioc->fault_reset_work_q = NULL; 732 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 733 if (wq) { 734 if (!cancel_delayed_work_sync(&ioc->fault_reset_work)) 735 flush_workqueue(wq); 736 destroy_workqueue(wq); 737 } 738 } 739 740 /** 741 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code 742 * @ioc: per adapter object 743 * @fault_code: fault code 744 */ 745 void 746 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code) 747 { 748 ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code); 749 } 750 751 /** 752 * mpt3sas_halt_firmware - halt's mpt controller firmware 753 * @ioc: per adapter object 754 * 755 * For debugging timeout related issues. Writing 0xCOFFEE00 756 * to the doorbell register will halt controller firmware. With 757 * the purpose to stop both driver and firmware, the enduser can 758 * obtain a ring buffer from controller UART. 759 */ 760 void 761 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc) 762 { 763 u32 doorbell; 764 765 if (!ioc->fwfault_debug) 766 return; 767 768 dump_stack(); 769 770 doorbell = ioc->base_readl(&ioc->chip->Doorbell); 771 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) 772 mpt3sas_base_fault_info(ioc , doorbell); 773 else { 774 writel(0xC0FFEE00, &ioc->chip->Doorbell); 775 ioc_err(ioc, "Firmware is halted due to command timeout\n"); 776 } 777 778 if (ioc->fwfault_debug == 2) 779 for (;;) 780 ; 781 else 782 panic("panic in %s\n", __func__); 783 } 784 785 /** 786 * _base_sas_ioc_info - verbose translation of the ioc status 787 * @ioc: per adapter object 788 * @mpi_reply: reply mf payload returned from firmware 789 * @request_hdr: request mf 790 */ 791 static void 792 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply, 793 MPI2RequestHeader_t *request_hdr) 794 { 795 u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & 796 MPI2_IOCSTATUS_MASK; 797 char *desc = NULL; 798 u16 frame_sz; 799 char *func_str = NULL; 800 801 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */ 802 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST || 803 request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH || 804 request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION) 805 return; 806 807 if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE) 808 return; 809 810 switch (ioc_status) { 811 812 /**************************************************************************** 813 * Common IOCStatus values for all replies 814 ****************************************************************************/ 815 816 case MPI2_IOCSTATUS_INVALID_FUNCTION: 817 desc = "invalid function"; 818 break; 819 case MPI2_IOCSTATUS_BUSY: 820 desc = "busy"; 821 break; 822 case MPI2_IOCSTATUS_INVALID_SGL: 823 desc = "invalid sgl"; 824 break; 825 case MPI2_IOCSTATUS_INTERNAL_ERROR: 826 desc = "internal error"; 827 break; 828 case MPI2_IOCSTATUS_INVALID_VPID: 829 desc = "invalid vpid"; 830 break; 831 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES: 832 desc = "insufficient resources"; 833 break; 834 case MPI2_IOCSTATUS_INSUFFICIENT_POWER: 835 desc = "insufficient power"; 836 break; 837 case MPI2_IOCSTATUS_INVALID_FIELD: 838 desc = "invalid field"; 839 break; 840 case MPI2_IOCSTATUS_INVALID_STATE: 841 desc = "invalid state"; 842 break; 843 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED: 844 desc = "op state not supported"; 845 break; 846 847 /**************************************************************************** 848 * Config IOCStatus values 849 ****************************************************************************/ 850 851 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION: 852 desc = "config invalid action"; 853 break; 854 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE: 855 desc = "config invalid type"; 856 break; 857 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE: 858 desc = "config invalid page"; 859 break; 860 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA: 861 desc = "config invalid data"; 862 break; 863 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS: 864 desc = "config no defaults"; 865 break; 866 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT: 867 desc = "config cant commit"; 868 break; 869 870 /**************************************************************************** 871 * SCSI IO Reply 872 ****************************************************************************/ 873 874 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR: 875 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE: 876 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE: 877 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN: 878 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN: 879 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR: 880 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR: 881 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED: 882 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH: 883 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED: 884 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED: 885 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED: 886 break; 887 888 /**************************************************************************** 889 * For use by SCSI Initiator and SCSI Target end-to-end data protection 890 ****************************************************************************/ 891 892 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR: 893 desc = "eedp guard error"; 894 break; 895 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR: 896 desc = "eedp ref tag error"; 897 break; 898 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR: 899 desc = "eedp app tag error"; 900 break; 901 902 /**************************************************************************** 903 * SCSI Target values 904 ****************************************************************************/ 905 906 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX: 907 desc = "target invalid io index"; 908 break; 909 case MPI2_IOCSTATUS_TARGET_ABORTED: 910 desc = "target aborted"; 911 break; 912 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE: 913 desc = "target no conn retryable"; 914 break; 915 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION: 916 desc = "target no connection"; 917 break; 918 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH: 919 desc = "target xfer count mismatch"; 920 break; 921 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR: 922 desc = "target data offset error"; 923 break; 924 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA: 925 desc = "target too much write data"; 926 break; 927 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT: 928 desc = "target iu too short"; 929 break; 930 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT: 931 desc = "target ack nak timeout"; 932 break; 933 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED: 934 desc = "target nak received"; 935 break; 936 937 /**************************************************************************** 938 * Serial Attached SCSI values 939 ****************************************************************************/ 940 941 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED: 942 desc = "smp request failed"; 943 break; 944 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN: 945 desc = "smp data overrun"; 946 break; 947 948 /**************************************************************************** 949 * Diagnostic Buffer Post / Diagnostic Release values 950 ****************************************************************************/ 951 952 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED: 953 desc = "diagnostic released"; 954 break; 955 default: 956 break; 957 } 958 959 if (!desc) 960 return; 961 962 switch (request_hdr->Function) { 963 case MPI2_FUNCTION_CONFIG: 964 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size; 965 func_str = "config_page"; 966 break; 967 case MPI2_FUNCTION_SCSI_TASK_MGMT: 968 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t); 969 func_str = "task_mgmt"; 970 break; 971 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL: 972 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t); 973 func_str = "sas_iounit_ctl"; 974 break; 975 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR: 976 frame_sz = sizeof(Mpi2SepRequest_t); 977 func_str = "enclosure"; 978 break; 979 case MPI2_FUNCTION_IOC_INIT: 980 frame_sz = sizeof(Mpi2IOCInitRequest_t); 981 func_str = "ioc_init"; 982 break; 983 case MPI2_FUNCTION_PORT_ENABLE: 984 frame_sz = sizeof(Mpi2PortEnableRequest_t); 985 func_str = "port_enable"; 986 break; 987 case MPI2_FUNCTION_SMP_PASSTHROUGH: 988 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size; 989 func_str = "smp_passthru"; 990 break; 991 case MPI2_FUNCTION_NVME_ENCAPSULATED: 992 frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) + 993 ioc->sge_size; 994 func_str = "nvme_encapsulated"; 995 break; 996 default: 997 frame_sz = 32; 998 func_str = "unknown"; 999 break; 1000 } 1001 1002 ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n", 1003 desc, ioc_status, request_hdr, func_str); 1004 1005 _debug_dump_mf(request_hdr, frame_sz/4); 1006 } 1007 1008 /** 1009 * _base_display_event_data - verbose translation of firmware asyn events 1010 * @ioc: per adapter object 1011 * @mpi_reply: reply mf payload returned from firmware 1012 */ 1013 static void 1014 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc, 1015 Mpi2EventNotificationReply_t *mpi_reply) 1016 { 1017 char *desc = NULL; 1018 u16 event; 1019 1020 if (!(ioc->logging_level & MPT_DEBUG_EVENTS)) 1021 return; 1022 1023 event = le16_to_cpu(mpi_reply->Event); 1024 1025 switch (event) { 1026 case MPI2_EVENT_LOG_DATA: 1027 desc = "Log Data"; 1028 break; 1029 case MPI2_EVENT_STATE_CHANGE: 1030 desc = "Status Change"; 1031 break; 1032 case MPI2_EVENT_HARD_RESET_RECEIVED: 1033 desc = "Hard Reset Received"; 1034 break; 1035 case MPI2_EVENT_EVENT_CHANGE: 1036 desc = "Event Change"; 1037 break; 1038 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE: 1039 desc = "Device Status Change"; 1040 break; 1041 case MPI2_EVENT_IR_OPERATION_STATUS: 1042 if (!ioc->hide_ir_msg) 1043 desc = "IR Operation Status"; 1044 break; 1045 case MPI2_EVENT_SAS_DISCOVERY: 1046 { 1047 Mpi2EventDataSasDiscovery_t *event_data = 1048 (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData; 1049 ioc_info(ioc, "Discovery: (%s)", 1050 event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ? 1051 "start" : "stop"); 1052 if (event_data->DiscoveryStatus) 1053 pr_cont(" discovery_status(0x%08x)", 1054 le32_to_cpu(event_data->DiscoveryStatus)); 1055 pr_cont("\n"); 1056 return; 1057 } 1058 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE: 1059 desc = "SAS Broadcast Primitive"; 1060 break; 1061 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE: 1062 desc = "SAS Init Device Status Change"; 1063 break; 1064 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW: 1065 desc = "SAS Init Table Overflow"; 1066 break; 1067 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST: 1068 desc = "SAS Topology Change List"; 1069 break; 1070 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE: 1071 desc = "SAS Enclosure Device Status Change"; 1072 break; 1073 case MPI2_EVENT_IR_VOLUME: 1074 if (!ioc->hide_ir_msg) 1075 desc = "IR Volume"; 1076 break; 1077 case MPI2_EVENT_IR_PHYSICAL_DISK: 1078 if (!ioc->hide_ir_msg) 1079 desc = "IR Physical Disk"; 1080 break; 1081 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST: 1082 if (!ioc->hide_ir_msg) 1083 desc = "IR Configuration Change List"; 1084 break; 1085 case MPI2_EVENT_LOG_ENTRY_ADDED: 1086 if (!ioc->hide_ir_msg) 1087 desc = "Log Entry Added"; 1088 break; 1089 case MPI2_EVENT_TEMP_THRESHOLD: 1090 desc = "Temperature Threshold"; 1091 break; 1092 case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION: 1093 desc = "Cable Event"; 1094 break; 1095 case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR: 1096 desc = "SAS Device Discovery Error"; 1097 break; 1098 case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE: 1099 desc = "PCIE Device Status Change"; 1100 break; 1101 case MPI2_EVENT_PCIE_ENUMERATION: 1102 { 1103 Mpi26EventDataPCIeEnumeration_t *event_data = 1104 (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData; 1105 ioc_info(ioc, "PCIE Enumeration: (%s)", 1106 event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ? 1107 "start" : "stop"); 1108 if (event_data->EnumerationStatus) 1109 pr_cont("enumeration_status(0x%08x)", 1110 le32_to_cpu(event_data->EnumerationStatus)); 1111 pr_cont("\n"); 1112 return; 1113 } 1114 case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST: 1115 desc = "PCIE Topology Change List"; 1116 break; 1117 } 1118 1119 if (!desc) 1120 return; 1121 1122 ioc_info(ioc, "%s\n", desc); 1123 } 1124 1125 /** 1126 * _base_sas_log_info - verbose translation of firmware log info 1127 * @ioc: per adapter object 1128 * @log_info: log info 1129 */ 1130 static void 1131 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info) 1132 { 1133 union loginfo_type { 1134 u32 loginfo; 1135 struct { 1136 u32 subcode:16; 1137 u32 code:8; 1138 u32 originator:4; 1139 u32 bus_type:4; 1140 } dw; 1141 }; 1142 union loginfo_type sas_loginfo; 1143 char *originator_str = NULL; 1144 1145 sas_loginfo.loginfo = log_info; 1146 if (sas_loginfo.dw.bus_type != 3 /*SAS*/) 1147 return; 1148 1149 /* each nexus loss loginfo */ 1150 if (log_info == 0x31170000) 1151 return; 1152 1153 /* eat the loginfos associated with task aborts */ 1154 if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info == 1155 0x31140000 || log_info == 0x31130000)) 1156 return; 1157 1158 switch (sas_loginfo.dw.originator) { 1159 case 0: 1160 originator_str = "IOP"; 1161 break; 1162 case 1: 1163 originator_str = "PL"; 1164 break; 1165 case 2: 1166 if (!ioc->hide_ir_msg) 1167 originator_str = "IR"; 1168 else 1169 originator_str = "WarpDrive"; 1170 break; 1171 } 1172 1173 ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n", 1174 log_info, 1175 originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode); 1176 } 1177 1178 /** 1179 * _base_display_reply_info - 1180 * @ioc: per adapter object 1181 * @smid: system request message index 1182 * @msix_index: MSIX table index supplied by the OS 1183 * @reply: reply message frame(lower 32bit addr) 1184 */ 1185 static void 1186 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 1187 u32 reply) 1188 { 1189 MPI2DefaultReply_t *mpi_reply; 1190 u16 ioc_status; 1191 u32 loginfo = 0; 1192 1193 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1194 if (unlikely(!mpi_reply)) { 1195 ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n", 1196 __FILE__, __LINE__, __func__); 1197 return; 1198 } 1199 ioc_status = le16_to_cpu(mpi_reply->IOCStatus); 1200 1201 if ((ioc_status & MPI2_IOCSTATUS_MASK) && 1202 (ioc->logging_level & MPT_DEBUG_REPLY)) { 1203 _base_sas_ioc_info(ioc , mpi_reply, 1204 mpt3sas_base_get_msg_frame(ioc, smid)); 1205 } 1206 1207 if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) { 1208 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo); 1209 _base_sas_log_info(ioc, loginfo); 1210 } 1211 1212 if (ioc_status || loginfo) { 1213 ioc_status &= MPI2_IOCSTATUS_MASK; 1214 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo); 1215 } 1216 } 1217 1218 /** 1219 * mpt3sas_base_done - base internal command completion routine 1220 * @ioc: per adapter object 1221 * @smid: system request message index 1222 * @msix_index: MSIX table index supplied by the OS 1223 * @reply: reply message frame(lower 32bit addr) 1224 * 1225 * Return: 1226 * 1 meaning mf should be freed from _base_interrupt 1227 * 0 means the mf is freed from this function. 1228 */ 1229 u8 1230 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 1231 u32 reply) 1232 { 1233 MPI2DefaultReply_t *mpi_reply; 1234 1235 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1236 if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK) 1237 return mpt3sas_check_for_pending_internal_cmds(ioc, smid); 1238 1239 if (ioc->base_cmds.status == MPT3_CMD_NOT_USED) 1240 return 1; 1241 1242 ioc->base_cmds.status |= MPT3_CMD_COMPLETE; 1243 if (mpi_reply) { 1244 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID; 1245 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4); 1246 } 1247 ioc->base_cmds.status &= ~MPT3_CMD_PENDING; 1248 1249 complete(&ioc->base_cmds.done); 1250 return 1; 1251 } 1252 1253 /** 1254 * _base_async_event - main callback handler for firmware asyn events 1255 * @ioc: per adapter object 1256 * @msix_index: MSIX table index supplied by the OS 1257 * @reply: reply message frame(lower 32bit addr) 1258 * 1259 * Return: 1260 * 1 meaning mf should be freed from _base_interrupt 1261 * 0 means the mf is freed from this function. 1262 */ 1263 static u8 1264 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply) 1265 { 1266 Mpi2EventNotificationReply_t *mpi_reply; 1267 Mpi2EventAckRequest_t *ack_request; 1268 u16 smid; 1269 struct _event_ack_list *delayed_event_ack; 1270 1271 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1272 if (!mpi_reply) 1273 return 1; 1274 if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION) 1275 return 1; 1276 1277 _base_display_event_data(ioc, mpi_reply); 1278 1279 if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED)) 1280 goto out; 1281 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 1282 if (!smid) { 1283 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack), 1284 GFP_ATOMIC); 1285 if (!delayed_event_ack) 1286 goto out; 1287 INIT_LIST_HEAD(&delayed_event_ack->list); 1288 delayed_event_ack->Event = mpi_reply->Event; 1289 delayed_event_ack->EventContext = mpi_reply->EventContext; 1290 list_add_tail(&delayed_event_ack->list, 1291 &ioc->delayed_event_ack_list); 1292 dewtprintk(ioc, 1293 ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n", 1294 le16_to_cpu(mpi_reply->Event))); 1295 goto out; 1296 } 1297 1298 ack_request = mpt3sas_base_get_msg_frame(ioc, smid); 1299 memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t)); 1300 ack_request->Function = MPI2_FUNCTION_EVENT_ACK; 1301 ack_request->Event = mpi_reply->Event; 1302 ack_request->EventContext = mpi_reply->EventContext; 1303 ack_request->VF_ID = 0; /* TODO */ 1304 ack_request->VP_ID = 0; 1305 ioc->put_smid_default(ioc, smid); 1306 1307 out: 1308 1309 /* scsih callback handler */ 1310 mpt3sas_scsih_event_callback(ioc, msix_index, reply); 1311 1312 /* ctl callback handler */ 1313 mpt3sas_ctl_event_callback(ioc, msix_index, reply); 1314 1315 return 1; 1316 } 1317 1318 static struct scsiio_tracker * 1319 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid) 1320 { 1321 struct scsi_cmnd *cmd; 1322 1323 if (WARN_ON(!smid) || 1324 WARN_ON(smid >= ioc->hi_priority_smid)) 1325 return NULL; 1326 1327 cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid); 1328 if (cmd) 1329 return scsi_cmd_priv(cmd); 1330 1331 return NULL; 1332 } 1333 1334 /** 1335 * _base_get_cb_idx - obtain the callback index 1336 * @ioc: per adapter object 1337 * @smid: system request message index 1338 * 1339 * Return: callback index. 1340 */ 1341 static u8 1342 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid) 1343 { 1344 int i; 1345 u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1; 1346 u8 cb_idx = 0xFF; 1347 1348 if (smid < ioc->hi_priority_smid) { 1349 struct scsiio_tracker *st; 1350 1351 if (smid < ctl_smid) { 1352 st = _get_st_from_smid(ioc, smid); 1353 if (st) 1354 cb_idx = st->cb_idx; 1355 } else if (smid == ctl_smid) 1356 cb_idx = ioc->ctl_cb_idx; 1357 } else if (smid < ioc->internal_smid) { 1358 i = smid - ioc->hi_priority_smid; 1359 cb_idx = ioc->hpr_lookup[i].cb_idx; 1360 } else if (smid <= ioc->hba_queue_depth) { 1361 i = smid - ioc->internal_smid; 1362 cb_idx = ioc->internal_lookup[i].cb_idx; 1363 } 1364 return cb_idx; 1365 } 1366 1367 /** 1368 * _base_mask_interrupts - disable interrupts 1369 * @ioc: per adapter object 1370 * 1371 * Disabling ResetIRQ, Reply and Doorbell Interrupts 1372 */ 1373 static void 1374 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc) 1375 { 1376 u32 him_register; 1377 1378 ioc->mask_interrupts = 1; 1379 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask); 1380 him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK; 1381 writel(him_register, &ioc->chip->HostInterruptMask); 1382 ioc->base_readl(&ioc->chip->HostInterruptMask); 1383 } 1384 1385 /** 1386 * _base_unmask_interrupts - enable interrupts 1387 * @ioc: per adapter object 1388 * 1389 * Enabling only Reply Interrupts 1390 */ 1391 static void 1392 _base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc) 1393 { 1394 u32 him_register; 1395 1396 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask); 1397 him_register &= ~MPI2_HIM_RIM; 1398 writel(him_register, &ioc->chip->HostInterruptMask); 1399 ioc->mask_interrupts = 0; 1400 } 1401 1402 union reply_descriptor { 1403 u64 word; 1404 struct { 1405 u32 low; 1406 u32 high; 1407 } u; 1408 }; 1409 1410 static u32 base_mod64(u64 dividend, u32 divisor) 1411 { 1412 u32 remainder; 1413 1414 if (!divisor) 1415 pr_err("mpt3sas: DIVISOR is zero, in div fn\n"); 1416 remainder = do_div(dividend, divisor); 1417 return remainder; 1418 } 1419 1420 /** 1421 * _base_process_reply_queue - Process reply descriptors from reply 1422 * descriptor post queue. 1423 * @reply_q: per IRQ's reply queue object. 1424 * 1425 * Return: number of reply descriptors processed from reply 1426 * descriptor queue. 1427 */ 1428 static int 1429 _base_process_reply_queue(struct adapter_reply_queue *reply_q) 1430 { 1431 union reply_descriptor rd; 1432 u64 completed_cmds; 1433 u8 request_descript_type; 1434 u16 smid; 1435 u8 cb_idx; 1436 u32 reply; 1437 u8 msix_index = reply_q->msix_index; 1438 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc; 1439 Mpi2ReplyDescriptorsUnion_t *rpf; 1440 u8 rc; 1441 1442 completed_cmds = 0; 1443 if (!atomic_add_unless(&reply_q->busy, 1, 1)) 1444 return completed_cmds; 1445 1446 rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index]; 1447 request_descript_type = rpf->Default.ReplyFlags 1448 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 1449 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) { 1450 atomic_dec(&reply_q->busy); 1451 return completed_cmds; 1452 } 1453 1454 cb_idx = 0xFF; 1455 do { 1456 rd.word = le64_to_cpu(rpf->Words); 1457 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX) 1458 goto out; 1459 reply = 0; 1460 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1); 1461 if (request_descript_type == 1462 MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS || 1463 request_descript_type == 1464 MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS || 1465 request_descript_type == 1466 MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) { 1467 cb_idx = _base_get_cb_idx(ioc, smid); 1468 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) && 1469 (likely(mpt_callbacks[cb_idx] != NULL))) { 1470 rc = mpt_callbacks[cb_idx](ioc, smid, 1471 msix_index, 0); 1472 if (rc) 1473 mpt3sas_base_free_smid(ioc, smid); 1474 } 1475 } else if (request_descript_type == 1476 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) { 1477 reply = le32_to_cpu( 1478 rpf->AddressReply.ReplyFrameAddress); 1479 if (reply > ioc->reply_dma_max_address || 1480 reply < ioc->reply_dma_min_address) 1481 reply = 0; 1482 if (smid) { 1483 cb_idx = _base_get_cb_idx(ioc, smid); 1484 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) && 1485 (likely(mpt_callbacks[cb_idx] != NULL))) { 1486 rc = mpt_callbacks[cb_idx](ioc, smid, 1487 msix_index, reply); 1488 if (reply) 1489 _base_display_reply_info(ioc, 1490 smid, msix_index, reply); 1491 if (rc) 1492 mpt3sas_base_free_smid(ioc, 1493 smid); 1494 } 1495 } else { 1496 _base_async_event(ioc, msix_index, reply); 1497 } 1498 1499 /* reply free queue handling */ 1500 if (reply) { 1501 ioc->reply_free_host_index = 1502 (ioc->reply_free_host_index == 1503 (ioc->reply_free_queue_depth - 1)) ? 1504 0 : ioc->reply_free_host_index + 1; 1505 ioc->reply_free[ioc->reply_free_host_index] = 1506 cpu_to_le32(reply); 1507 if (ioc->is_mcpu_endpoint) 1508 _base_clone_reply_to_sys_mem(ioc, 1509 reply, 1510 ioc->reply_free_host_index); 1511 writel(ioc->reply_free_host_index, 1512 &ioc->chip->ReplyFreeHostIndex); 1513 } 1514 } 1515 1516 rpf->Words = cpu_to_le64(ULLONG_MAX); 1517 reply_q->reply_post_host_index = 1518 (reply_q->reply_post_host_index == 1519 (ioc->reply_post_queue_depth - 1)) ? 0 : 1520 reply_q->reply_post_host_index + 1; 1521 request_descript_type = 1522 reply_q->reply_post_free[reply_q->reply_post_host_index]. 1523 Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 1524 completed_cmds++; 1525 /* Update the reply post host index after continuously 1526 * processing the threshold number of Reply Descriptors. 1527 * So that FW can find enough entries to post the Reply 1528 * Descriptors in the reply descriptor post queue. 1529 */ 1530 if (!base_mod64(completed_cmds, ioc->thresh_hold)) { 1531 if (ioc->combined_reply_queue) { 1532 writel(reply_q->reply_post_host_index | 1533 ((msix_index & 7) << 1534 MPI2_RPHI_MSIX_INDEX_SHIFT), 1535 ioc->replyPostRegisterIndex[msix_index/8]); 1536 } else { 1537 writel(reply_q->reply_post_host_index | 1538 (msix_index << 1539 MPI2_RPHI_MSIX_INDEX_SHIFT), 1540 &ioc->chip->ReplyPostHostIndex); 1541 } 1542 if (!reply_q->irq_poll_scheduled) { 1543 reply_q->irq_poll_scheduled = true; 1544 irq_poll_sched(&reply_q->irqpoll); 1545 } 1546 atomic_dec(&reply_q->busy); 1547 return completed_cmds; 1548 } 1549 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) 1550 goto out; 1551 if (!reply_q->reply_post_host_index) 1552 rpf = reply_q->reply_post_free; 1553 else 1554 rpf++; 1555 } while (1); 1556 1557 out: 1558 1559 if (!completed_cmds) { 1560 atomic_dec(&reply_q->busy); 1561 return completed_cmds; 1562 } 1563 1564 if (ioc->is_warpdrive) { 1565 writel(reply_q->reply_post_host_index, 1566 ioc->reply_post_host_index[msix_index]); 1567 atomic_dec(&reply_q->busy); 1568 return completed_cmds; 1569 } 1570 1571 /* Update Reply Post Host Index. 1572 * For those HBA's which support combined reply queue feature 1573 * 1. Get the correct Supplemental Reply Post Host Index Register. 1574 * i.e. (msix_index / 8)th entry from Supplemental Reply Post Host 1575 * Index Register address bank i.e replyPostRegisterIndex[], 1576 * 2. Then update this register with new reply host index value 1577 * in ReplyPostIndex field and the MSIxIndex field with 1578 * msix_index value reduced to a value between 0 and 7, 1579 * using a modulo 8 operation. Since each Supplemental Reply Post 1580 * Host Index Register supports 8 MSI-X vectors. 1581 * 1582 * For other HBA's just update the Reply Post Host Index register with 1583 * new reply host index value in ReplyPostIndex Field and msix_index 1584 * value in MSIxIndex field. 1585 */ 1586 if (ioc->combined_reply_queue) 1587 writel(reply_q->reply_post_host_index | ((msix_index & 7) << 1588 MPI2_RPHI_MSIX_INDEX_SHIFT), 1589 ioc->replyPostRegisterIndex[msix_index/8]); 1590 else 1591 writel(reply_q->reply_post_host_index | (msix_index << 1592 MPI2_RPHI_MSIX_INDEX_SHIFT), 1593 &ioc->chip->ReplyPostHostIndex); 1594 atomic_dec(&reply_q->busy); 1595 return completed_cmds; 1596 } 1597 1598 /** 1599 * _base_interrupt - MPT adapter (IOC) specific interrupt handler. 1600 * @irq: irq number (not used) 1601 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure 1602 * 1603 * Return: IRQ_HANDLED if processed, else IRQ_NONE. 1604 */ 1605 static irqreturn_t 1606 _base_interrupt(int irq, void *bus_id) 1607 { 1608 struct adapter_reply_queue *reply_q = bus_id; 1609 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc; 1610 1611 if (ioc->mask_interrupts) 1612 return IRQ_NONE; 1613 if (reply_q->irq_poll_scheduled) 1614 return IRQ_HANDLED; 1615 return ((_base_process_reply_queue(reply_q) > 0) ? 1616 IRQ_HANDLED : IRQ_NONE); 1617 } 1618 1619 /** 1620 * _base_irqpoll - IRQ poll callback handler 1621 * @irqpoll - irq_poll object 1622 * @budget - irq poll weight 1623 * 1624 * returns number of reply descriptors processed 1625 */ 1626 static int 1627 _base_irqpoll(struct irq_poll *irqpoll, int budget) 1628 { 1629 struct adapter_reply_queue *reply_q; 1630 int num_entries = 0; 1631 1632 reply_q = container_of(irqpoll, struct adapter_reply_queue, 1633 irqpoll); 1634 if (reply_q->irq_line_enable) { 1635 disable_irq(reply_q->os_irq); 1636 reply_q->irq_line_enable = false; 1637 } 1638 num_entries = _base_process_reply_queue(reply_q); 1639 if (num_entries < budget) { 1640 irq_poll_complete(irqpoll); 1641 reply_q->irq_poll_scheduled = false; 1642 reply_q->irq_line_enable = true; 1643 enable_irq(reply_q->os_irq); 1644 } 1645 1646 return num_entries; 1647 } 1648 1649 /** 1650 * _base_init_irqpolls - initliaze IRQ polls 1651 * @ioc: per adapter object 1652 * 1653 * returns nothing 1654 */ 1655 static void 1656 _base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc) 1657 { 1658 struct adapter_reply_queue *reply_q, *next; 1659 1660 if (list_empty(&ioc->reply_queue_list)) 1661 return; 1662 1663 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) { 1664 irq_poll_init(&reply_q->irqpoll, 1665 ioc->hba_queue_depth/4, _base_irqpoll); 1666 reply_q->irq_poll_scheduled = false; 1667 reply_q->irq_line_enable = true; 1668 reply_q->os_irq = pci_irq_vector(ioc->pdev, 1669 reply_q->msix_index); 1670 } 1671 } 1672 1673 /** 1674 * _base_is_controller_msix_enabled - is controller support muli-reply queues 1675 * @ioc: per adapter object 1676 * 1677 * Return: Whether or not MSI/X is enabled. 1678 */ 1679 static inline int 1680 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc) 1681 { 1682 return (ioc->facts.IOCCapabilities & 1683 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable; 1684 } 1685 1686 /** 1687 * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts 1688 * @ioc: per adapter object 1689 * Context: non ISR conext 1690 * 1691 * Called when a Task Management request has completed. 1692 */ 1693 void 1694 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc) 1695 { 1696 struct adapter_reply_queue *reply_q; 1697 1698 /* If MSIX capability is turned off 1699 * then multi-queues are not enabled 1700 */ 1701 if (!_base_is_controller_msix_enabled(ioc)) 1702 return; 1703 1704 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 1705 if (ioc->shost_recovery || ioc->remove_host || 1706 ioc->pci_error_recovery) 1707 return; 1708 /* TMs are on msix_index == 0 */ 1709 if (reply_q->msix_index == 0) 1710 continue; 1711 if (reply_q->irq_poll_scheduled) { 1712 /* Calling irq_poll_disable will wait for any pending 1713 * callbacks to have completed. 1714 */ 1715 irq_poll_disable(&reply_q->irqpoll); 1716 irq_poll_enable(&reply_q->irqpoll); 1717 reply_q->irq_poll_scheduled = false; 1718 reply_q->irq_line_enable = true; 1719 enable_irq(reply_q->os_irq); 1720 continue; 1721 } 1722 synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index)); 1723 } 1724 } 1725 1726 /** 1727 * mpt3sas_base_release_callback_handler - clear interrupt callback handler 1728 * @cb_idx: callback index 1729 */ 1730 void 1731 mpt3sas_base_release_callback_handler(u8 cb_idx) 1732 { 1733 mpt_callbacks[cb_idx] = NULL; 1734 } 1735 1736 /** 1737 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler 1738 * @cb_func: callback function 1739 * 1740 * Return: Index of @cb_func. 1741 */ 1742 u8 1743 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func) 1744 { 1745 u8 cb_idx; 1746 1747 for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--) 1748 if (mpt_callbacks[cb_idx] == NULL) 1749 break; 1750 1751 mpt_callbacks[cb_idx] = cb_func; 1752 return cb_idx; 1753 } 1754 1755 /** 1756 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler 1757 */ 1758 void 1759 mpt3sas_base_initialize_callback_handler(void) 1760 { 1761 u8 cb_idx; 1762 1763 for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++) 1764 mpt3sas_base_release_callback_handler(cb_idx); 1765 } 1766 1767 1768 /** 1769 * _base_build_zero_len_sge - build zero length sg entry 1770 * @ioc: per adapter object 1771 * @paddr: virtual address for SGE 1772 * 1773 * Create a zero length scatter gather entry to insure the IOCs hardware has 1774 * something to use if the target device goes brain dead and tries 1775 * to send data even when none is asked for. 1776 */ 1777 static void 1778 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr) 1779 { 1780 u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT | 1781 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST | 1782 MPI2_SGE_FLAGS_SIMPLE_ELEMENT) << 1783 MPI2_SGE_FLAGS_SHIFT); 1784 ioc->base_add_sg_single(paddr, flags_length, -1); 1785 } 1786 1787 /** 1788 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr. 1789 * @paddr: virtual address for SGE 1790 * @flags_length: SGE flags and data transfer length 1791 * @dma_addr: Physical address 1792 */ 1793 static void 1794 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr) 1795 { 1796 Mpi2SGESimple32_t *sgel = paddr; 1797 1798 flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING | 1799 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT; 1800 sgel->FlagsLength = cpu_to_le32(flags_length); 1801 sgel->Address = cpu_to_le32(dma_addr); 1802 } 1803 1804 1805 /** 1806 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr. 1807 * @paddr: virtual address for SGE 1808 * @flags_length: SGE flags and data transfer length 1809 * @dma_addr: Physical address 1810 */ 1811 static void 1812 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr) 1813 { 1814 Mpi2SGESimple64_t *sgel = paddr; 1815 1816 flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING | 1817 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT; 1818 sgel->FlagsLength = cpu_to_le32(flags_length); 1819 sgel->Address = cpu_to_le64(dma_addr); 1820 } 1821 1822 /** 1823 * _base_get_chain_buffer_tracker - obtain chain tracker 1824 * @ioc: per adapter object 1825 * @scmd: SCSI commands of the IO request 1826 * 1827 * Return: chain tracker from chain_lookup table using key as 1828 * smid and smid's chain_offset. 1829 */ 1830 static struct chain_tracker * 1831 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc, 1832 struct scsi_cmnd *scmd) 1833 { 1834 struct chain_tracker *chain_req; 1835 struct scsiio_tracker *st = scsi_cmd_priv(scmd); 1836 u16 smid = st->smid; 1837 u8 chain_offset = 1838 atomic_read(&ioc->chain_lookup[smid - 1].chain_offset); 1839 1840 if (chain_offset == ioc->chains_needed_per_io) 1841 return NULL; 1842 1843 chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset]; 1844 atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset); 1845 return chain_req; 1846 } 1847 1848 1849 /** 1850 * _base_build_sg - build generic sg 1851 * @ioc: per adapter object 1852 * @psge: virtual address for SGE 1853 * @data_out_dma: physical address for WRITES 1854 * @data_out_sz: data xfer size for WRITES 1855 * @data_in_dma: physical address for READS 1856 * @data_in_sz: data xfer size for READS 1857 */ 1858 static void 1859 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge, 1860 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 1861 size_t data_in_sz) 1862 { 1863 u32 sgl_flags; 1864 1865 if (!data_out_sz && !data_in_sz) { 1866 _base_build_zero_len_sge(ioc, psge); 1867 return; 1868 } 1869 1870 if (data_out_sz && data_in_sz) { 1871 /* WRITE sgel first */ 1872 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 1873 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC); 1874 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 1875 ioc->base_add_sg_single(psge, sgl_flags | 1876 data_out_sz, data_out_dma); 1877 1878 /* incr sgel */ 1879 psge += ioc->sge_size; 1880 1881 /* READ sgel last */ 1882 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 1883 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 1884 MPI2_SGE_FLAGS_END_OF_LIST); 1885 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 1886 ioc->base_add_sg_single(psge, sgl_flags | 1887 data_in_sz, data_in_dma); 1888 } else if (data_out_sz) /* WRITE */ { 1889 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 1890 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 1891 MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC); 1892 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 1893 ioc->base_add_sg_single(psge, sgl_flags | 1894 data_out_sz, data_out_dma); 1895 } else if (data_in_sz) /* READ */ { 1896 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 1897 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 1898 MPI2_SGE_FLAGS_END_OF_LIST); 1899 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 1900 ioc->base_add_sg_single(psge, sgl_flags | 1901 data_in_sz, data_in_dma); 1902 } 1903 } 1904 1905 /* IEEE format sgls */ 1906 1907 /** 1908 * _base_build_nvme_prp - This function is called for NVMe end devices to build 1909 * a native SGL (NVMe PRP). The native SGL is built starting in the first PRP 1910 * entry of the NVMe message (PRP1). If the data buffer is small enough to be 1911 * described entirely using PRP1, then PRP2 is not used. If needed, PRP2 is 1912 * used to describe a larger data buffer. If the data buffer is too large to 1913 * describe using the two PRP entriess inside the NVMe message, then PRP1 1914 * describes the first data memory segment, and PRP2 contains a pointer to a PRP 1915 * list located elsewhere in memory to describe the remaining data memory 1916 * segments. The PRP list will be contiguous. 1917 * 1918 * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP 1919 * consists of a list of PRP entries to describe a number of noncontigous 1920 * physical memory segments as a single memory buffer, just as a SGL does. Note 1921 * however, that this function is only used by the IOCTL call, so the memory 1922 * given will be guaranteed to be contiguous. There is no need to translate 1923 * non-contiguous SGL into a PRP in this case. All PRPs will describe 1924 * contiguous space that is one page size each. 1925 * 1926 * Each NVMe message contains two PRP entries. The first (PRP1) either contains 1927 * a PRP list pointer or a PRP element, depending upon the command. PRP2 1928 * contains the second PRP element if the memory being described fits within 2 1929 * PRP entries, or a PRP list pointer if the PRP spans more than two entries. 1930 * 1931 * A PRP list pointer contains the address of a PRP list, structured as a linear 1932 * array of PRP entries. Each PRP entry in this list describes a segment of 1933 * physical memory. 1934 * 1935 * Each 64-bit PRP entry comprises an address and an offset field. The address 1936 * always points at the beginning of a 4KB physical memory page, and the offset 1937 * describes where within that 4KB page the memory segment begins. Only the 1938 * first element in a PRP list may contain a non-zero offest, implying that all 1939 * memory segments following the first begin at the start of a 4KB page. 1940 * 1941 * Each PRP element normally describes 4KB of physical memory, with exceptions 1942 * for the first and last elements in the list. If the memory being described 1943 * by the list begins at a non-zero offset within the first 4KB page, then the 1944 * first PRP element will contain a non-zero offset indicating where the region 1945 * begins within the 4KB page. The last memory segment may end before the end 1946 * of the 4KB segment, depending upon the overall size of the memory being 1947 * described by the PRP list. 1948 * 1949 * Since PRP entries lack any indication of size, the overall data buffer length 1950 * is used to determine where the end of the data memory buffer is located, and 1951 * how many PRP entries are required to describe it. 1952 * 1953 * @ioc: per adapter object 1954 * @smid: system request message index for getting asscociated SGL 1955 * @nvme_encap_request: the NVMe request msg frame pointer 1956 * @data_out_dma: physical address for WRITES 1957 * @data_out_sz: data xfer size for WRITES 1958 * @data_in_dma: physical address for READS 1959 * @data_in_sz: data xfer size for READS 1960 */ 1961 static void 1962 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid, 1963 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request, 1964 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 1965 size_t data_in_sz) 1966 { 1967 int prp_size = NVME_PRP_SIZE; 1968 __le64 *prp_entry, *prp1_entry, *prp2_entry; 1969 __le64 *prp_page; 1970 dma_addr_t prp_entry_dma, prp_page_dma, dma_addr; 1971 u32 offset, entry_len; 1972 u32 page_mask_result, page_mask; 1973 size_t length; 1974 struct mpt3sas_nvme_cmd *nvme_cmd = 1975 (void *)nvme_encap_request->NVMe_Command; 1976 1977 /* 1978 * Not all commands require a data transfer. If no data, just return 1979 * without constructing any PRP. 1980 */ 1981 if (!data_in_sz && !data_out_sz) 1982 return; 1983 prp1_entry = &nvme_cmd->prp1; 1984 prp2_entry = &nvme_cmd->prp2; 1985 prp_entry = prp1_entry; 1986 /* 1987 * For the PRP entries, use the specially allocated buffer of 1988 * contiguous memory. 1989 */ 1990 prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid); 1991 prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid); 1992 1993 /* 1994 * Check if we are within 1 entry of a page boundary we don't 1995 * want our first entry to be a PRP List entry. 1996 */ 1997 page_mask = ioc->page_size - 1; 1998 page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask; 1999 if (!page_mask_result) { 2000 /* Bump up to next page boundary. */ 2001 prp_page = (__le64 *)((u8 *)prp_page + prp_size); 2002 prp_page_dma = prp_page_dma + prp_size; 2003 } 2004 2005 /* 2006 * Set PRP physical pointer, which initially points to the current PRP 2007 * DMA memory page. 2008 */ 2009 prp_entry_dma = prp_page_dma; 2010 2011 /* Get physical address and length of the data buffer. */ 2012 if (data_in_sz) { 2013 dma_addr = data_in_dma; 2014 length = data_in_sz; 2015 } else { 2016 dma_addr = data_out_dma; 2017 length = data_out_sz; 2018 } 2019 2020 /* Loop while the length is not zero. */ 2021 while (length) { 2022 /* 2023 * Check if we need to put a list pointer here if we are at 2024 * page boundary - prp_size (8 bytes). 2025 */ 2026 page_mask_result = (prp_entry_dma + prp_size) & page_mask; 2027 if (!page_mask_result) { 2028 /* 2029 * This is the last entry in a PRP List, so we need to 2030 * put a PRP list pointer here. What this does is: 2031 * - bump the current memory pointer to the next 2032 * address, which will be the next full page. 2033 * - set the PRP Entry to point to that page. This 2034 * is now the PRP List pointer. 2035 * - bump the PRP Entry pointer the start of the 2036 * next page. Since all of this PRP memory is 2037 * contiguous, no need to get a new page - it's 2038 * just the next address. 2039 */ 2040 prp_entry_dma++; 2041 *prp_entry = cpu_to_le64(prp_entry_dma); 2042 prp_entry++; 2043 } 2044 2045 /* Need to handle if entry will be part of a page. */ 2046 offset = dma_addr & page_mask; 2047 entry_len = ioc->page_size - offset; 2048 2049 if (prp_entry == prp1_entry) { 2050 /* 2051 * Must fill in the first PRP pointer (PRP1) before 2052 * moving on. 2053 */ 2054 *prp1_entry = cpu_to_le64(dma_addr); 2055 2056 /* 2057 * Now point to the second PRP entry within the 2058 * command (PRP2). 2059 */ 2060 prp_entry = prp2_entry; 2061 } else if (prp_entry == prp2_entry) { 2062 /* 2063 * Should the PRP2 entry be a PRP List pointer or just 2064 * a regular PRP pointer? If there is more than one 2065 * more page of data, must use a PRP List pointer. 2066 */ 2067 if (length > ioc->page_size) { 2068 /* 2069 * PRP2 will contain a PRP List pointer because 2070 * more PRP's are needed with this command. The 2071 * list will start at the beginning of the 2072 * contiguous buffer. 2073 */ 2074 *prp2_entry = cpu_to_le64(prp_entry_dma); 2075 2076 /* 2077 * The next PRP Entry will be the start of the 2078 * first PRP List. 2079 */ 2080 prp_entry = prp_page; 2081 } else { 2082 /* 2083 * After this, the PRP Entries are complete. 2084 * This command uses 2 PRP's and no PRP list. 2085 */ 2086 *prp2_entry = cpu_to_le64(dma_addr); 2087 } 2088 } else { 2089 /* 2090 * Put entry in list and bump the addresses. 2091 * 2092 * After PRP1 and PRP2 are filled in, this will fill in 2093 * all remaining PRP entries in a PRP List, one per 2094 * each time through the loop. 2095 */ 2096 *prp_entry = cpu_to_le64(dma_addr); 2097 prp_entry++; 2098 prp_entry_dma++; 2099 } 2100 2101 /* 2102 * Bump the phys address of the command's data buffer by the 2103 * entry_len. 2104 */ 2105 dma_addr += entry_len; 2106 2107 /* Decrement length accounting for last partial page. */ 2108 if (entry_len > length) 2109 length = 0; 2110 else 2111 length -= entry_len; 2112 } 2113 } 2114 2115 /** 2116 * base_make_prp_nvme - 2117 * Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only 2118 * 2119 * @ioc: per adapter object 2120 * @scmd: SCSI command from the mid-layer 2121 * @mpi_request: mpi request 2122 * @smid: msg Index 2123 * @sge_count: scatter gather element count. 2124 * 2125 * Return: true: PRPs are built 2126 * false: IEEE SGLs needs to be built 2127 */ 2128 static void 2129 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc, 2130 struct scsi_cmnd *scmd, 2131 Mpi25SCSIIORequest_t *mpi_request, 2132 u16 smid, int sge_count) 2133 { 2134 int sge_len, num_prp_in_chain = 0; 2135 Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl; 2136 __le64 *curr_buff; 2137 dma_addr_t msg_dma, sge_addr, offset; 2138 u32 page_mask, page_mask_result; 2139 struct scatterlist *sg_scmd; 2140 u32 first_prp_len; 2141 int data_len = scsi_bufflen(scmd); 2142 u32 nvme_pg_size; 2143 2144 nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE); 2145 /* 2146 * Nvme has a very convoluted prp format. One prp is required 2147 * for each page or partial page. Driver need to split up OS sg_list 2148 * entries if it is longer than one page or cross a page 2149 * boundary. Driver also have to insert a PRP list pointer entry as 2150 * the last entry in each physical page of the PRP list. 2151 * 2152 * NOTE: The first PRP "entry" is actually placed in the first 2153 * SGL entry in the main message as IEEE 64 format. The 2nd 2154 * entry in the main message is the chain element, and the rest 2155 * of the PRP entries are built in the contiguous pcie buffer. 2156 */ 2157 page_mask = nvme_pg_size - 1; 2158 2159 /* 2160 * Native SGL is needed. 2161 * Put a chain element in main message frame that points to the first 2162 * chain buffer. 2163 * 2164 * NOTE: The ChainOffset field must be 0 when using a chain pointer to 2165 * a native SGL. 2166 */ 2167 2168 /* Set main message chain element pointer */ 2169 main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL; 2170 /* 2171 * For NVMe the chain element needs to be the 2nd SG entry in the main 2172 * message. 2173 */ 2174 main_chain_element = (Mpi25IeeeSgeChain64_t *) 2175 ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64)); 2176 2177 /* 2178 * For the PRP entries, use the specially allocated buffer of 2179 * contiguous memory. Normal chain buffers can't be used 2180 * because each chain buffer would need to be the size of an OS 2181 * page (4k). 2182 */ 2183 curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid); 2184 msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid); 2185 2186 main_chain_element->Address = cpu_to_le64(msg_dma); 2187 main_chain_element->NextChainOffset = 0; 2188 main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 2189 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | 2190 MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP; 2191 2192 /* Build first prp, sge need not to be page aligned*/ 2193 ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL; 2194 sg_scmd = scsi_sglist(scmd); 2195 sge_addr = sg_dma_address(sg_scmd); 2196 sge_len = sg_dma_len(sg_scmd); 2197 2198 offset = sge_addr & page_mask; 2199 first_prp_len = nvme_pg_size - offset; 2200 2201 ptr_first_sgl->Address = cpu_to_le64(sge_addr); 2202 ptr_first_sgl->Length = cpu_to_le32(first_prp_len); 2203 2204 data_len -= first_prp_len; 2205 2206 if (sge_len > first_prp_len) { 2207 sge_addr += first_prp_len; 2208 sge_len -= first_prp_len; 2209 } else if (data_len && (sge_len == first_prp_len)) { 2210 sg_scmd = sg_next(sg_scmd); 2211 sge_addr = sg_dma_address(sg_scmd); 2212 sge_len = sg_dma_len(sg_scmd); 2213 } 2214 2215 for (;;) { 2216 offset = sge_addr & page_mask; 2217 2218 /* Put PRP pointer due to page boundary*/ 2219 page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask; 2220 if (unlikely(!page_mask_result)) { 2221 scmd_printk(KERN_NOTICE, 2222 scmd, "page boundary curr_buff: 0x%p\n", 2223 curr_buff); 2224 msg_dma += 8; 2225 *curr_buff = cpu_to_le64(msg_dma); 2226 curr_buff++; 2227 num_prp_in_chain++; 2228 } 2229 2230 *curr_buff = cpu_to_le64(sge_addr); 2231 curr_buff++; 2232 msg_dma += 8; 2233 num_prp_in_chain++; 2234 2235 sge_addr += nvme_pg_size; 2236 sge_len -= nvme_pg_size; 2237 data_len -= nvme_pg_size; 2238 2239 if (data_len <= 0) 2240 break; 2241 2242 if (sge_len > 0) 2243 continue; 2244 2245 sg_scmd = sg_next(sg_scmd); 2246 sge_addr = sg_dma_address(sg_scmd); 2247 sge_len = sg_dma_len(sg_scmd); 2248 } 2249 2250 main_chain_element->Length = 2251 cpu_to_le32(num_prp_in_chain * sizeof(u64)); 2252 return; 2253 } 2254 2255 static bool 2256 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc, 2257 struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count) 2258 { 2259 u32 data_length = 0; 2260 bool build_prp = true; 2261 2262 data_length = scsi_bufflen(scmd); 2263 if (pcie_device && 2264 (mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))) { 2265 build_prp = false; 2266 return build_prp; 2267 } 2268 2269 /* If Datalenth is <= 16K and number of SGE’s entries are <= 2 2270 * we built IEEE SGL 2271 */ 2272 if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2)) 2273 build_prp = false; 2274 2275 return build_prp; 2276 } 2277 2278 /** 2279 * _base_check_pcie_native_sgl - This function is called for PCIe end devices to 2280 * determine if the driver needs to build a native SGL. If so, that native 2281 * SGL is built in the special contiguous buffers allocated especially for 2282 * PCIe SGL creation. If the driver will not build a native SGL, return 2283 * TRUE and a normal IEEE SGL will be built. Currently this routine 2284 * supports NVMe. 2285 * @ioc: per adapter object 2286 * @mpi_request: mf request pointer 2287 * @smid: system request message index 2288 * @scmd: scsi command 2289 * @pcie_device: points to the PCIe device's info 2290 * 2291 * Return: 0 if native SGL was built, 1 if no SGL was built 2292 */ 2293 static int 2294 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc, 2295 Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd, 2296 struct _pcie_device *pcie_device) 2297 { 2298 int sges_left; 2299 2300 /* Get the SG list pointer and info. */ 2301 sges_left = scsi_dma_map(scmd); 2302 if (sges_left < 0) { 2303 sdev_printk(KERN_ERR, scmd->device, 2304 "scsi_dma_map failed: request for %d bytes!\n", 2305 scsi_bufflen(scmd)); 2306 return 1; 2307 } 2308 2309 /* Check if we need to build a native SG list. */ 2310 if (base_is_prp_possible(ioc, pcie_device, 2311 scmd, sges_left) == 0) { 2312 /* We built a native SG list, just return. */ 2313 goto out; 2314 } 2315 2316 /* 2317 * Build native NVMe PRP. 2318 */ 2319 base_make_prp_nvme(ioc, scmd, mpi_request, 2320 smid, sges_left); 2321 2322 return 0; 2323 out: 2324 scsi_dma_unmap(scmd); 2325 return 1; 2326 } 2327 2328 /** 2329 * _base_add_sg_single_ieee - add sg element for IEEE format 2330 * @paddr: virtual address for SGE 2331 * @flags: SGE flags 2332 * @chain_offset: number of 128 byte elements from start of segment 2333 * @length: data transfer length 2334 * @dma_addr: Physical address 2335 */ 2336 static void 2337 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length, 2338 dma_addr_t dma_addr) 2339 { 2340 Mpi25IeeeSgeChain64_t *sgel = paddr; 2341 2342 sgel->Flags = flags; 2343 sgel->NextChainOffset = chain_offset; 2344 sgel->Length = cpu_to_le32(length); 2345 sgel->Address = cpu_to_le64(dma_addr); 2346 } 2347 2348 /** 2349 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format 2350 * @ioc: per adapter object 2351 * @paddr: virtual address for SGE 2352 * 2353 * Create a zero length scatter gather entry to insure the IOCs hardware has 2354 * something to use if the target device goes brain dead and tries 2355 * to send data even when none is asked for. 2356 */ 2357 static void 2358 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr) 2359 { 2360 u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2361 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | 2362 MPI25_IEEE_SGE_FLAGS_END_OF_LIST); 2363 2364 _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1); 2365 } 2366 2367 /** 2368 * _base_build_sg_scmd - main sg creation routine 2369 * pcie_device is unused here! 2370 * @ioc: per adapter object 2371 * @scmd: scsi command 2372 * @smid: system request message index 2373 * @unused: unused pcie_device pointer 2374 * Context: none. 2375 * 2376 * The main routine that builds scatter gather table from a given 2377 * scsi request sent via the .queuecommand main handler. 2378 * 2379 * Return: 0 success, anything else error 2380 */ 2381 static int 2382 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc, 2383 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused) 2384 { 2385 Mpi2SCSIIORequest_t *mpi_request; 2386 dma_addr_t chain_dma; 2387 struct scatterlist *sg_scmd; 2388 void *sg_local, *chain; 2389 u32 chain_offset; 2390 u32 chain_length; 2391 u32 chain_flags; 2392 int sges_left; 2393 u32 sges_in_segment; 2394 u32 sgl_flags; 2395 u32 sgl_flags_last_element; 2396 u32 sgl_flags_end_buffer; 2397 struct chain_tracker *chain_req; 2398 2399 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 2400 2401 /* init scatter gather flags */ 2402 sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT; 2403 if (scmd->sc_data_direction == DMA_TO_DEVICE) 2404 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC; 2405 sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT) 2406 << MPI2_SGE_FLAGS_SHIFT; 2407 sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT | 2408 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST) 2409 << MPI2_SGE_FLAGS_SHIFT; 2410 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2411 2412 sg_scmd = scsi_sglist(scmd); 2413 sges_left = scsi_dma_map(scmd); 2414 if (sges_left < 0) { 2415 sdev_printk(KERN_ERR, scmd->device, 2416 "scsi_dma_map failed: request for %d bytes!\n", 2417 scsi_bufflen(scmd)); 2418 return -ENOMEM; 2419 } 2420 2421 sg_local = &mpi_request->SGL; 2422 sges_in_segment = ioc->max_sges_in_main_message; 2423 if (sges_left <= sges_in_segment) 2424 goto fill_in_last_segment; 2425 2426 mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) + 2427 (sges_in_segment * ioc->sge_size))/4; 2428 2429 /* fill in main message segment when there is a chain following */ 2430 while (sges_in_segment) { 2431 if (sges_in_segment == 1) 2432 ioc->base_add_sg_single(sg_local, 2433 sgl_flags_last_element | sg_dma_len(sg_scmd), 2434 sg_dma_address(sg_scmd)); 2435 else 2436 ioc->base_add_sg_single(sg_local, sgl_flags | 2437 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2438 sg_scmd = sg_next(sg_scmd); 2439 sg_local += ioc->sge_size; 2440 sges_left--; 2441 sges_in_segment--; 2442 } 2443 2444 /* initializing the chain flags and pointers */ 2445 chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT; 2446 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2447 if (!chain_req) 2448 return -1; 2449 chain = chain_req->chain_buffer; 2450 chain_dma = chain_req->chain_buffer_dma; 2451 do { 2452 sges_in_segment = (sges_left <= 2453 ioc->max_sges_in_chain_message) ? sges_left : 2454 ioc->max_sges_in_chain_message; 2455 chain_offset = (sges_left == sges_in_segment) ? 2456 0 : (sges_in_segment * ioc->sge_size)/4; 2457 chain_length = sges_in_segment * ioc->sge_size; 2458 if (chain_offset) { 2459 chain_offset = chain_offset << 2460 MPI2_SGE_CHAIN_OFFSET_SHIFT; 2461 chain_length += ioc->sge_size; 2462 } 2463 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset | 2464 chain_length, chain_dma); 2465 sg_local = chain; 2466 if (!chain_offset) 2467 goto fill_in_last_segment; 2468 2469 /* fill in chain segments */ 2470 while (sges_in_segment) { 2471 if (sges_in_segment == 1) 2472 ioc->base_add_sg_single(sg_local, 2473 sgl_flags_last_element | 2474 sg_dma_len(sg_scmd), 2475 sg_dma_address(sg_scmd)); 2476 else 2477 ioc->base_add_sg_single(sg_local, sgl_flags | 2478 sg_dma_len(sg_scmd), 2479 sg_dma_address(sg_scmd)); 2480 sg_scmd = sg_next(sg_scmd); 2481 sg_local += ioc->sge_size; 2482 sges_left--; 2483 sges_in_segment--; 2484 } 2485 2486 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2487 if (!chain_req) 2488 return -1; 2489 chain = chain_req->chain_buffer; 2490 chain_dma = chain_req->chain_buffer_dma; 2491 } while (1); 2492 2493 2494 fill_in_last_segment: 2495 2496 /* fill the last segment */ 2497 while (sges_left) { 2498 if (sges_left == 1) 2499 ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer | 2500 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2501 else 2502 ioc->base_add_sg_single(sg_local, sgl_flags | 2503 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2504 sg_scmd = sg_next(sg_scmd); 2505 sg_local += ioc->sge_size; 2506 sges_left--; 2507 } 2508 2509 return 0; 2510 } 2511 2512 /** 2513 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format 2514 * @ioc: per adapter object 2515 * @scmd: scsi command 2516 * @smid: system request message index 2517 * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be 2518 * constructed on need. 2519 * Context: none. 2520 * 2521 * The main routine that builds scatter gather table from a given 2522 * scsi request sent via the .queuecommand main handler. 2523 * 2524 * Return: 0 success, anything else error 2525 */ 2526 static int 2527 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc, 2528 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device) 2529 { 2530 Mpi25SCSIIORequest_t *mpi_request; 2531 dma_addr_t chain_dma; 2532 struct scatterlist *sg_scmd; 2533 void *sg_local, *chain; 2534 u32 chain_offset; 2535 u32 chain_length; 2536 int sges_left; 2537 u32 sges_in_segment; 2538 u8 simple_sgl_flags; 2539 u8 simple_sgl_flags_last; 2540 u8 chain_sgl_flags; 2541 struct chain_tracker *chain_req; 2542 2543 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 2544 2545 /* init scatter gather flags */ 2546 simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2547 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2548 simple_sgl_flags_last = simple_sgl_flags | 2549 MPI25_IEEE_SGE_FLAGS_END_OF_LIST; 2550 chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 2551 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2552 2553 /* Check if we need to build a native SG list. */ 2554 if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request, 2555 smid, scmd, pcie_device) == 0)) { 2556 /* We built a native SG list, just return. */ 2557 return 0; 2558 } 2559 2560 sg_scmd = scsi_sglist(scmd); 2561 sges_left = scsi_dma_map(scmd); 2562 if (sges_left < 0) { 2563 sdev_printk(KERN_ERR, scmd->device, 2564 "scsi_dma_map failed: request for %d bytes!\n", 2565 scsi_bufflen(scmd)); 2566 return -ENOMEM; 2567 } 2568 2569 sg_local = &mpi_request->SGL; 2570 sges_in_segment = (ioc->request_sz - 2571 offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee; 2572 if (sges_left <= sges_in_segment) 2573 goto fill_in_last_segment; 2574 2575 mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) + 2576 (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee); 2577 2578 /* fill in main message segment when there is a chain following */ 2579 while (sges_in_segment > 1) { 2580 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2581 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2582 sg_scmd = sg_next(sg_scmd); 2583 sg_local += ioc->sge_size_ieee; 2584 sges_left--; 2585 sges_in_segment--; 2586 } 2587 2588 /* initializing the pointers */ 2589 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2590 if (!chain_req) 2591 return -1; 2592 chain = chain_req->chain_buffer; 2593 chain_dma = chain_req->chain_buffer_dma; 2594 do { 2595 sges_in_segment = (sges_left <= 2596 ioc->max_sges_in_chain_message) ? sges_left : 2597 ioc->max_sges_in_chain_message; 2598 chain_offset = (sges_left == sges_in_segment) ? 2599 0 : sges_in_segment; 2600 chain_length = sges_in_segment * ioc->sge_size_ieee; 2601 if (chain_offset) 2602 chain_length += ioc->sge_size_ieee; 2603 _base_add_sg_single_ieee(sg_local, chain_sgl_flags, 2604 chain_offset, chain_length, chain_dma); 2605 2606 sg_local = chain; 2607 if (!chain_offset) 2608 goto fill_in_last_segment; 2609 2610 /* fill in chain segments */ 2611 while (sges_in_segment) { 2612 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2613 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2614 sg_scmd = sg_next(sg_scmd); 2615 sg_local += ioc->sge_size_ieee; 2616 sges_left--; 2617 sges_in_segment--; 2618 } 2619 2620 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2621 if (!chain_req) 2622 return -1; 2623 chain = chain_req->chain_buffer; 2624 chain_dma = chain_req->chain_buffer_dma; 2625 } while (1); 2626 2627 2628 fill_in_last_segment: 2629 2630 /* fill the last segment */ 2631 while (sges_left > 0) { 2632 if (sges_left == 1) 2633 _base_add_sg_single_ieee(sg_local, 2634 simple_sgl_flags_last, 0, sg_dma_len(sg_scmd), 2635 sg_dma_address(sg_scmd)); 2636 else 2637 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2638 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2639 sg_scmd = sg_next(sg_scmd); 2640 sg_local += ioc->sge_size_ieee; 2641 sges_left--; 2642 } 2643 2644 return 0; 2645 } 2646 2647 /** 2648 * _base_build_sg_ieee - build generic sg for IEEE format 2649 * @ioc: per adapter object 2650 * @psge: virtual address for SGE 2651 * @data_out_dma: physical address for WRITES 2652 * @data_out_sz: data xfer size for WRITES 2653 * @data_in_dma: physical address for READS 2654 * @data_in_sz: data xfer size for READS 2655 */ 2656 static void 2657 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge, 2658 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 2659 size_t data_in_sz) 2660 { 2661 u8 sgl_flags; 2662 2663 if (!data_out_sz && !data_in_sz) { 2664 _base_build_zero_len_sge_ieee(ioc, psge); 2665 return; 2666 } 2667 2668 if (data_out_sz && data_in_sz) { 2669 /* WRITE sgel first */ 2670 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2671 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2672 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz, 2673 data_out_dma); 2674 2675 /* incr sgel */ 2676 psge += ioc->sge_size_ieee; 2677 2678 /* READ sgel last */ 2679 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST; 2680 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz, 2681 data_in_dma); 2682 } else if (data_out_sz) /* WRITE */ { 2683 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2684 MPI25_IEEE_SGE_FLAGS_END_OF_LIST | 2685 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2686 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz, 2687 data_out_dma); 2688 } else if (data_in_sz) /* READ */ { 2689 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2690 MPI25_IEEE_SGE_FLAGS_END_OF_LIST | 2691 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2692 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz, 2693 data_in_dma); 2694 } 2695 } 2696 2697 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10)) 2698 2699 /** 2700 * _base_config_dma_addressing - set dma addressing 2701 * @ioc: per adapter object 2702 * @pdev: PCI device struct 2703 * 2704 * Return: 0 for success, non-zero for failure. 2705 */ 2706 static int 2707 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev) 2708 { 2709 u64 required_mask, coherent_mask; 2710 struct sysinfo s; 2711 /* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */ 2712 int dma_mask = (ioc->hba_mpi_version_belonged > MPI2_VERSION) ? 63 : 64; 2713 2714 if (ioc->is_mcpu_endpoint) 2715 goto try_32bit; 2716 2717 required_mask = dma_get_required_mask(&pdev->dev); 2718 if (sizeof(dma_addr_t) == 4 || required_mask == 32) 2719 goto try_32bit; 2720 2721 if (ioc->dma_mask) 2722 coherent_mask = DMA_BIT_MASK(dma_mask); 2723 else 2724 coherent_mask = DMA_BIT_MASK(32); 2725 2726 if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(dma_mask)) || 2727 dma_set_coherent_mask(&pdev->dev, coherent_mask)) 2728 goto try_32bit; 2729 2730 ioc->base_add_sg_single = &_base_add_sg_single_64; 2731 ioc->sge_size = sizeof(Mpi2SGESimple64_t); 2732 ioc->dma_mask = dma_mask; 2733 goto out; 2734 2735 try_32bit: 2736 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32))) 2737 return -ENODEV; 2738 2739 ioc->base_add_sg_single = &_base_add_sg_single_32; 2740 ioc->sge_size = sizeof(Mpi2SGESimple32_t); 2741 ioc->dma_mask = 32; 2742 out: 2743 si_meminfo(&s); 2744 ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n", 2745 ioc->dma_mask, convert_to_kb(s.totalram)); 2746 2747 return 0; 2748 } 2749 2750 static int 2751 _base_change_consistent_dma_mask(struct MPT3SAS_ADAPTER *ioc, 2752 struct pci_dev *pdev) 2753 { 2754 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(ioc->dma_mask))) { 2755 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) 2756 return -ENODEV; 2757 } 2758 return 0; 2759 } 2760 2761 /** 2762 * _base_check_enable_msix - checks MSIX capabable. 2763 * @ioc: per adapter object 2764 * 2765 * Check to see if card is capable of MSIX, and set number 2766 * of available msix vectors 2767 */ 2768 static int 2769 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc) 2770 { 2771 int base; 2772 u16 message_control; 2773 2774 /* Check whether controller SAS2008 B0 controller, 2775 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX 2776 */ 2777 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 && 2778 ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) { 2779 return -EINVAL; 2780 } 2781 2782 base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX); 2783 if (!base) { 2784 dfailprintk(ioc, ioc_info(ioc, "msix not supported\n")); 2785 return -EINVAL; 2786 } 2787 2788 /* get msix vector count */ 2789 /* NUMA_IO not supported for older controllers */ 2790 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 || 2791 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 || 2792 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 || 2793 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 || 2794 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 || 2795 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 || 2796 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2) 2797 ioc->msix_vector_count = 1; 2798 else { 2799 pci_read_config_word(ioc->pdev, base + 2, &message_control); 2800 ioc->msix_vector_count = (message_control & 0x3FF) + 1; 2801 } 2802 dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n", 2803 ioc->msix_vector_count)); 2804 return 0; 2805 } 2806 2807 /** 2808 * _base_free_irq - free irq 2809 * @ioc: per adapter object 2810 * 2811 * Freeing respective reply_queue from the list. 2812 */ 2813 static void 2814 _base_free_irq(struct MPT3SAS_ADAPTER *ioc) 2815 { 2816 struct adapter_reply_queue *reply_q, *next; 2817 2818 if (list_empty(&ioc->reply_queue_list)) 2819 return; 2820 2821 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) { 2822 list_del(&reply_q->list); 2823 if (ioc->smp_affinity_enable) 2824 irq_set_affinity_hint(pci_irq_vector(ioc->pdev, 2825 reply_q->msix_index), NULL); 2826 free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index), 2827 reply_q); 2828 kfree(reply_q); 2829 } 2830 } 2831 2832 /** 2833 * _base_request_irq - request irq 2834 * @ioc: per adapter object 2835 * @index: msix index into vector table 2836 * 2837 * Inserting respective reply_queue into the list. 2838 */ 2839 static int 2840 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index) 2841 { 2842 struct pci_dev *pdev = ioc->pdev; 2843 struct adapter_reply_queue *reply_q; 2844 int r; 2845 2846 reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL); 2847 if (!reply_q) { 2848 ioc_err(ioc, "unable to allocate memory %zu!\n", 2849 sizeof(struct adapter_reply_queue)); 2850 return -ENOMEM; 2851 } 2852 reply_q->ioc = ioc; 2853 reply_q->msix_index = index; 2854 2855 atomic_set(&reply_q->busy, 0); 2856 if (ioc->msix_enable) 2857 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d", 2858 ioc->driver_name, ioc->id, index); 2859 else 2860 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d", 2861 ioc->driver_name, ioc->id); 2862 r = request_irq(pci_irq_vector(pdev, index), _base_interrupt, 2863 IRQF_SHARED, reply_q->name, reply_q); 2864 if (r) { 2865 pr_err("%s: unable to allocate interrupt %d!\n", 2866 reply_q->name, pci_irq_vector(pdev, index)); 2867 kfree(reply_q); 2868 return -EBUSY; 2869 } 2870 2871 INIT_LIST_HEAD(&reply_q->list); 2872 list_add_tail(&reply_q->list, &ioc->reply_queue_list); 2873 return 0; 2874 } 2875 2876 /** 2877 * _base_assign_reply_queues - assigning msix index for each cpu 2878 * @ioc: per adapter object 2879 * 2880 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity 2881 * 2882 * It would nice if we could call irq_set_affinity, however it is not 2883 * an exported symbol 2884 */ 2885 static void 2886 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc) 2887 { 2888 unsigned int cpu, nr_cpus, nr_msix, index = 0; 2889 struct adapter_reply_queue *reply_q; 2890 int local_numa_node; 2891 2892 if (!_base_is_controller_msix_enabled(ioc)) 2893 return; 2894 2895 if (ioc->msix_load_balance) 2896 return; 2897 2898 memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz); 2899 2900 nr_cpus = num_online_cpus(); 2901 nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count, 2902 ioc->facts.MaxMSIxVectors); 2903 if (!nr_msix) 2904 return; 2905 2906 if (ioc->smp_affinity_enable) { 2907 2908 /* 2909 * set irq affinity to local numa node for those irqs 2910 * corresponding to high iops queues. 2911 */ 2912 if (ioc->high_iops_queues) { 2913 local_numa_node = dev_to_node(&ioc->pdev->dev); 2914 for (index = 0; index < ioc->high_iops_queues; 2915 index++) { 2916 irq_set_affinity_hint(pci_irq_vector(ioc->pdev, 2917 index), cpumask_of_node(local_numa_node)); 2918 } 2919 } 2920 2921 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 2922 const cpumask_t *mask; 2923 2924 if (reply_q->msix_index < ioc->high_iops_queues) 2925 continue; 2926 2927 mask = pci_irq_get_affinity(ioc->pdev, 2928 reply_q->msix_index); 2929 if (!mask) { 2930 ioc_warn(ioc, "no affinity for msi %x\n", 2931 reply_q->msix_index); 2932 goto fall_back; 2933 } 2934 2935 for_each_cpu_and(cpu, mask, cpu_online_mask) { 2936 if (cpu >= ioc->cpu_msix_table_sz) 2937 break; 2938 ioc->cpu_msix_table[cpu] = reply_q->msix_index; 2939 } 2940 } 2941 return; 2942 } 2943 2944 fall_back: 2945 cpu = cpumask_first(cpu_online_mask); 2946 nr_msix -= ioc->high_iops_queues; 2947 index = 0; 2948 2949 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 2950 unsigned int i, group = nr_cpus / nr_msix; 2951 2952 if (reply_q->msix_index < ioc->high_iops_queues) 2953 continue; 2954 2955 if (cpu >= nr_cpus) 2956 break; 2957 2958 if (index < nr_cpus % nr_msix) 2959 group++; 2960 2961 for (i = 0 ; i < group ; i++) { 2962 ioc->cpu_msix_table[cpu] = reply_q->msix_index; 2963 cpu = cpumask_next(cpu, cpu_online_mask); 2964 } 2965 index++; 2966 } 2967 } 2968 2969 /** 2970 * _base_check_and_enable_high_iops_queues - enable high iops mode 2971 * @ ioc - per adapter object 2972 * @ hba_msix_vector_count - msix vectors supported by HBA 2973 * 2974 * Enable high iops queues only if 2975 * - HBA is a SEA/AERO controller and 2976 * - MSI-Xs vector supported by the HBA is 128 and 2977 * - total CPU count in the system >=16 and 2978 * - loaded driver with default max_msix_vectors module parameter and 2979 * - system booted in non kdump mode 2980 * 2981 * returns nothing. 2982 */ 2983 static void 2984 _base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc, 2985 int hba_msix_vector_count) 2986 { 2987 u16 lnksta, speed; 2988 2989 if (perf_mode == MPT_PERF_MODE_IOPS || 2990 perf_mode == MPT_PERF_MODE_LATENCY) { 2991 ioc->high_iops_queues = 0; 2992 return; 2993 } 2994 2995 if (perf_mode == MPT_PERF_MODE_DEFAULT) { 2996 2997 pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta); 2998 speed = lnksta & PCI_EXP_LNKSTA_CLS; 2999 3000 if (speed < 0x4) { 3001 ioc->high_iops_queues = 0; 3002 return; 3003 } 3004 } 3005 3006 if (!reset_devices && ioc->is_aero_ioc && 3007 hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES && 3008 num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES && 3009 max_msix_vectors == -1) 3010 ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES; 3011 else 3012 ioc->high_iops_queues = 0; 3013 } 3014 3015 /** 3016 * _base_disable_msix - disables msix 3017 * @ioc: per adapter object 3018 * 3019 */ 3020 static void 3021 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc) 3022 { 3023 if (!ioc->msix_enable) 3024 return; 3025 pci_free_irq_vectors(ioc->pdev); 3026 ioc->msix_enable = 0; 3027 } 3028 3029 /** 3030 * _base_alloc_irq_vectors - allocate msix vectors 3031 * @ioc: per adapter object 3032 * 3033 */ 3034 static int 3035 _base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc) 3036 { 3037 int i, irq_flags = PCI_IRQ_MSIX; 3038 struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues }; 3039 struct irq_affinity *descp = &desc; 3040 3041 if (ioc->smp_affinity_enable) 3042 irq_flags |= PCI_IRQ_AFFINITY; 3043 else 3044 descp = NULL; 3045 3046 ioc_info(ioc, " %d %d\n", ioc->high_iops_queues, 3047 ioc->reply_queue_count); 3048 3049 i = pci_alloc_irq_vectors_affinity(ioc->pdev, 3050 ioc->high_iops_queues, 3051 ioc->reply_queue_count, irq_flags, descp); 3052 3053 return i; 3054 } 3055 3056 /** 3057 * _base_enable_msix - enables msix, failback to io_apic 3058 * @ioc: per adapter object 3059 * 3060 */ 3061 static int 3062 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc) 3063 { 3064 int r; 3065 int i, local_max_msix_vectors; 3066 u8 try_msix = 0; 3067 3068 ioc->msix_load_balance = false; 3069 3070 if (msix_disable == -1 || msix_disable == 0) 3071 try_msix = 1; 3072 3073 if (!try_msix) 3074 goto try_ioapic; 3075 3076 if (_base_check_enable_msix(ioc) != 0) 3077 goto try_ioapic; 3078 3079 ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count); 3080 pr_info("\t no of cores: %d, max_msix_vectors: %d\n", 3081 ioc->cpu_count, max_msix_vectors); 3082 if (ioc->is_aero_ioc) 3083 _base_check_and_enable_high_iops_queues(ioc, 3084 ioc->msix_vector_count); 3085 ioc->reply_queue_count = 3086 min_t(int, ioc->cpu_count + ioc->high_iops_queues, 3087 ioc->msix_vector_count); 3088 3089 if (!ioc->rdpq_array_enable && max_msix_vectors == -1) 3090 local_max_msix_vectors = (reset_devices) ? 1 : 8; 3091 else 3092 local_max_msix_vectors = max_msix_vectors; 3093 3094 if (local_max_msix_vectors > 0) 3095 ioc->reply_queue_count = min_t(int, local_max_msix_vectors, 3096 ioc->reply_queue_count); 3097 else if (local_max_msix_vectors == 0) 3098 goto try_ioapic; 3099 3100 /* 3101 * Enable msix_load_balance only if combined reply queue mode is 3102 * disabled on SAS3 & above generation HBA devices. 3103 */ 3104 if (!ioc->combined_reply_queue && 3105 ioc->hba_mpi_version_belonged != MPI2_VERSION) { 3106 ioc->msix_load_balance = true; 3107 } 3108 3109 /* 3110 * smp affinity setting is not need when msix load balance 3111 * is enabled. 3112 */ 3113 if (ioc->msix_load_balance) 3114 ioc->smp_affinity_enable = 0; 3115 3116 r = _base_alloc_irq_vectors(ioc); 3117 if (r < 0) { 3118 dfailprintk(ioc, 3119 ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", 3120 r)); 3121 goto try_ioapic; 3122 } 3123 3124 ioc->msix_enable = 1; 3125 ioc->reply_queue_count = r; 3126 for (i = 0; i < ioc->reply_queue_count; i++) { 3127 r = _base_request_irq(ioc, i); 3128 if (r) { 3129 _base_free_irq(ioc); 3130 _base_disable_msix(ioc); 3131 goto try_ioapic; 3132 } 3133 } 3134 3135 ioc_info(ioc, "High IOPs queues : %s\n", 3136 ioc->high_iops_queues ? "enabled" : "disabled"); 3137 3138 return 0; 3139 3140 /* failback to io_apic interrupt routing */ 3141 try_ioapic: 3142 ioc->high_iops_queues = 0; 3143 ioc_info(ioc, "High IOPs queues : disabled\n"); 3144 ioc->reply_queue_count = 1; 3145 r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY); 3146 if (r < 0) { 3147 dfailprintk(ioc, 3148 ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n", 3149 r)); 3150 } else 3151 r = _base_request_irq(ioc, 0); 3152 3153 return r; 3154 } 3155 3156 /** 3157 * mpt3sas_base_unmap_resources - free controller resources 3158 * @ioc: per adapter object 3159 */ 3160 static void 3161 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc) 3162 { 3163 struct pci_dev *pdev = ioc->pdev; 3164 3165 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 3166 3167 _base_free_irq(ioc); 3168 _base_disable_msix(ioc); 3169 3170 kfree(ioc->replyPostRegisterIndex); 3171 ioc->replyPostRegisterIndex = NULL; 3172 3173 3174 if (ioc->chip_phys) { 3175 iounmap(ioc->chip); 3176 ioc->chip_phys = 0; 3177 } 3178 3179 if (pci_is_enabled(pdev)) { 3180 pci_release_selected_regions(ioc->pdev, ioc->bars); 3181 pci_disable_pcie_error_reporting(pdev); 3182 pci_disable_device(pdev); 3183 } 3184 } 3185 3186 static int 3187 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc); 3188 3189 /** 3190 * _base_check_for_fault_and_issue_reset - check if IOC is in fault state 3191 * and if it is in fault state then issue diag reset. 3192 * @ioc: per adapter object 3193 * 3194 * Returns: 0 for success, non-zero for failure. 3195 */ 3196 static int 3197 _base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc) 3198 { 3199 u32 ioc_state; 3200 int rc = -EFAULT; 3201 3202 dinitprintk(ioc, pr_info("%s\n", __func__)); 3203 if (ioc->pci_error_recovery) 3204 return 0; 3205 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 3206 dhsprintk(ioc, pr_info("%s: ioc_state(0x%08x)\n", __func__, ioc_state)); 3207 3208 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 3209 mpt3sas_base_fault_info(ioc, ioc_state & 3210 MPI2_DOORBELL_DATA_MASK); 3211 rc = _base_diag_reset(ioc); 3212 } 3213 3214 return rc; 3215 } 3216 3217 /** 3218 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap) 3219 * @ioc: per adapter object 3220 * 3221 * Return: 0 for success, non-zero for failure. 3222 */ 3223 int 3224 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc) 3225 { 3226 struct pci_dev *pdev = ioc->pdev; 3227 u32 memap_sz; 3228 u32 pio_sz; 3229 int i, r = 0, rc; 3230 u64 pio_chip = 0; 3231 phys_addr_t chip_phys = 0; 3232 struct adapter_reply_queue *reply_q; 3233 3234 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 3235 3236 ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM); 3237 if (pci_enable_device_mem(pdev)) { 3238 ioc_warn(ioc, "pci_enable_device_mem: failed\n"); 3239 ioc->bars = 0; 3240 return -ENODEV; 3241 } 3242 3243 3244 if (pci_request_selected_regions(pdev, ioc->bars, 3245 ioc->driver_name)) { 3246 ioc_warn(ioc, "pci_request_selected_regions: failed\n"); 3247 ioc->bars = 0; 3248 r = -ENODEV; 3249 goto out_fail; 3250 } 3251 3252 /* AER (Advanced Error Reporting) hooks */ 3253 pci_enable_pcie_error_reporting(pdev); 3254 3255 pci_set_master(pdev); 3256 3257 3258 if (_base_config_dma_addressing(ioc, pdev) != 0) { 3259 ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev)); 3260 r = -ENODEV; 3261 goto out_fail; 3262 } 3263 3264 for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) && 3265 (!memap_sz || !pio_sz); i++) { 3266 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { 3267 if (pio_sz) 3268 continue; 3269 pio_chip = (u64)pci_resource_start(pdev, i); 3270 pio_sz = pci_resource_len(pdev, i); 3271 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) { 3272 if (memap_sz) 3273 continue; 3274 ioc->chip_phys = pci_resource_start(pdev, i); 3275 chip_phys = ioc->chip_phys; 3276 memap_sz = pci_resource_len(pdev, i); 3277 ioc->chip = ioremap(ioc->chip_phys, memap_sz); 3278 } 3279 } 3280 3281 if (ioc->chip == NULL) { 3282 ioc_err(ioc, "unable to map adapter memory! or resource not found\n"); 3283 r = -EINVAL; 3284 goto out_fail; 3285 } 3286 3287 _base_mask_interrupts(ioc); 3288 3289 r = _base_get_ioc_facts(ioc); 3290 if (r) { 3291 rc = _base_check_for_fault_and_issue_reset(ioc); 3292 if (rc || (_base_get_ioc_facts(ioc))) 3293 goto out_fail; 3294 } 3295 3296 if (!ioc->rdpq_array_enable_assigned) { 3297 ioc->rdpq_array_enable = ioc->rdpq_array_capable; 3298 ioc->rdpq_array_enable_assigned = 1; 3299 } 3300 3301 r = _base_enable_msix(ioc); 3302 if (r) 3303 goto out_fail; 3304 3305 if (!ioc->is_driver_loading) 3306 _base_init_irqpolls(ioc); 3307 /* Use the Combined reply queue feature only for SAS3 C0 & higher 3308 * revision HBAs and also only when reply queue count is greater than 8 3309 */ 3310 if (ioc->combined_reply_queue) { 3311 /* Determine the Supplemental Reply Post Host Index Registers 3312 * Addresse. Supplemental Reply Post Host Index Registers 3313 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and 3314 * each register is at offset bytes of 3315 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one. 3316 */ 3317 ioc->replyPostRegisterIndex = kcalloc( 3318 ioc->combined_reply_index_count, 3319 sizeof(resource_size_t *), GFP_KERNEL); 3320 if (!ioc->replyPostRegisterIndex) { 3321 dfailprintk(ioc, 3322 ioc_warn(ioc, "allocation for reply Post Register Index failed!!!\n")); 3323 r = -ENOMEM; 3324 goto out_fail; 3325 } 3326 3327 for (i = 0; i < ioc->combined_reply_index_count; i++) { 3328 ioc->replyPostRegisterIndex[i] = (resource_size_t *) 3329 ((u8 __force *)&ioc->chip->Doorbell + 3330 MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET + 3331 (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET)); 3332 } 3333 } 3334 3335 if (ioc->is_warpdrive) { 3336 ioc->reply_post_host_index[0] = (resource_size_t __iomem *) 3337 &ioc->chip->ReplyPostHostIndex; 3338 3339 for (i = 1; i < ioc->cpu_msix_table_sz; i++) 3340 ioc->reply_post_host_index[i] = 3341 (resource_size_t __iomem *) 3342 ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1) 3343 * 4))); 3344 } 3345 3346 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) 3347 pr_info("%s: %s enabled: IRQ %d\n", 3348 reply_q->name, 3349 ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC", 3350 pci_irq_vector(ioc->pdev, reply_q->msix_index)); 3351 3352 ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n", 3353 &chip_phys, ioc->chip, memap_sz); 3354 ioc_info(ioc, "ioport(0x%016llx), size(%d)\n", 3355 (unsigned long long)pio_chip, pio_sz); 3356 3357 /* Save PCI configuration state for recovery from PCI AER/EEH errors */ 3358 pci_save_state(pdev); 3359 return 0; 3360 3361 out_fail: 3362 mpt3sas_base_unmap_resources(ioc); 3363 return r; 3364 } 3365 3366 /** 3367 * mpt3sas_base_get_msg_frame - obtain request mf pointer 3368 * @ioc: per adapter object 3369 * @smid: system request message index(smid zero is invalid) 3370 * 3371 * Return: virt pointer to message frame. 3372 */ 3373 void * 3374 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3375 { 3376 return (void *)(ioc->request + (smid * ioc->request_sz)); 3377 } 3378 3379 /** 3380 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr 3381 * @ioc: per adapter object 3382 * @smid: system request message index 3383 * 3384 * Return: virt pointer to sense buffer. 3385 */ 3386 void * 3387 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3388 { 3389 return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE)); 3390 } 3391 3392 /** 3393 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr 3394 * @ioc: per adapter object 3395 * @smid: system request message index 3396 * 3397 * Return: phys pointer to the low 32bit address of the sense buffer. 3398 */ 3399 __le32 3400 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3401 { 3402 return cpu_to_le32(ioc->sense_dma + ((smid - 1) * 3403 SCSI_SENSE_BUFFERSIZE)); 3404 } 3405 3406 /** 3407 * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr 3408 * @ioc: per adapter object 3409 * @smid: system request message index 3410 * 3411 * Return: virt pointer to a PCIe SGL. 3412 */ 3413 void * 3414 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3415 { 3416 return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl); 3417 } 3418 3419 /** 3420 * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr 3421 * @ioc: per adapter object 3422 * @smid: system request message index 3423 * 3424 * Return: phys pointer to the address of the PCIe buffer. 3425 */ 3426 dma_addr_t 3427 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3428 { 3429 return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma; 3430 } 3431 3432 /** 3433 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address 3434 * @ioc: per adapter object 3435 * @phys_addr: lower 32 physical addr of the reply 3436 * 3437 * Converts 32bit lower physical addr into a virt address. 3438 */ 3439 void * 3440 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr) 3441 { 3442 if (!phys_addr) 3443 return NULL; 3444 return ioc->reply + (phys_addr - (u32)ioc->reply_dma); 3445 } 3446 3447 /** 3448 * _base_get_msix_index - get the msix index 3449 * @ioc: per adapter object 3450 * @scmd: scsi_cmnd object 3451 * 3452 * returns msix index of general reply queues, 3453 * i.e. reply queue on which IO request's reply 3454 * should be posted by the HBA firmware. 3455 */ 3456 static inline u8 3457 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc, 3458 struct scsi_cmnd *scmd) 3459 { 3460 /* Enables reply_queue load balancing */ 3461 if (ioc->msix_load_balance) 3462 return ioc->reply_queue_count ? 3463 base_mod64(atomic64_add_return(1, 3464 &ioc->total_io_cnt), ioc->reply_queue_count) : 0; 3465 3466 return ioc->cpu_msix_table[raw_smp_processor_id()]; 3467 } 3468 3469 /** 3470 * _base_get_high_iops_msix_index - get the msix index of 3471 * high iops queues 3472 * @ioc: per adapter object 3473 * @scmd: scsi_cmnd object 3474 * 3475 * Returns: msix index of high iops reply queues. 3476 * i.e. high iops reply queue on which IO request's 3477 * reply should be posted by the HBA firmware. 3478 */ 3479 static inline u8 3480 _base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc, 3481 struct scsi_cmnd *scmd) 3482 { 3483 /** 3484 * Round robin the IO interrupts among the high iops 3485 * reply queues in terms of batch count 16 when outstanding 3486 * IOs on the target device is >=8. 3487 */ 3488 if (atomic_read(&scmd->device->device_busy) > 3489 MPT3SAS_DEVICE_HIGH_IOPS_DEPTH) 3490 return base_mod64(( 3491 atomic64_add_return(1, &ioc->high_iops_outstanding) / 3492 MPT3SAS_HIGH_IOPS_BATCH_COUNT), 3493 MPT3SAS_HIGH_IOPS_REPLY_QUEUES); 3494 3495 return _base_get_msix_index(ioc, scmd); 3496 } 3497 3498 /** 3499 * mpt3sas_base_get_smid - obtain a free smid from internal queue 3500 * @ioc: per adapter object 3501 * @cb_idx: callback index 3502 * 3503 * Return: smid (zero is invalid) 3504 */ 3505 u16 3506 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx) 3507 { 3508 unsigned long flags; 3509 struct request_tracker *request; 3510 u16 smid; 3511 3512 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3513 if (list_empty(&ioc->internal_free_list)) { 3514 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3515 ioc_err(ioc, "%s: smid not available\n", __func__); 3516 return 0; 3517 } 3518 3519 request = list_entry(ioc->internal_free_list.next, 3520 struct request_tracker, tracker_list); 3521 request->cb_idx = cb_idx; 3522 smid = request->smid; 3523 list_del(&request->tracker_list); 3524 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3525 return smid; 3526 } 3527 3528 /** 3529 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue 3530 * @ioc: per adapter object 3531 * @cb_idx: callback index 3532 * @scmd: pointer to scsi command object 3533 * 3534 * Return: smid (zero is invalid) 3535 */ 3536 u16 3537 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx, 3538 struct scsi_cmnd *scmd) 3539 { 3540 struct scsiio_tracker *request = scsi_cmd_priv(scmd); 3541 unsigned int tag = scmd->request->tag; 3542 u16 smid; 3543 3544 smid = tag + 1; 3545 request->cb_idx = cb_idx; 3546 request->smid = smid; 3547 request->scmd = scmd; 3548 INIT_LIST_HEAD(&request->chain_list); 3549 return smid; 3550 } 3551 3552 /** 3553 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue 3554 * @ioc: per adapter object 3555 * @cb_idx: callback index 3556 * 3557 * Return: smid (zero is invalid) 3558 */ 3559 u16 3560 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx) 3561 { 3562 unsigned long flags; 3563 struct request_tracker *request; 3564 u16 smid; 3565 3566 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3567 if (list_empty(&ioc->hpr_free_list)) { 3568 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3569 return 0; 3570 } 3571 3572 request = list_entry(ioc->hpr_free_list.next, 3573 struct request_tracker, tracker_list); 3574 request->cb_idx = cb_idx; 3575 smid = request->smid; 3576 list_del(&request->tracker_list); 3577 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3578 return smid; 3579 } 3580 3581 static void 3582 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc) 3583 { 3584 /* 3585 * See _wait_for_commands_to_complete() call with regards to this code. 3586 */ 3587 if (ioc->shost_recovery && ioc->pending_io_count) { 3588 ioc->pending_io_count = scsi_host_busy(ioc->shost); 3589 if (ioc->pending_io_count == 0) 3590 wake_up(&ioc->reset_wq); 3591 } 3592 } 3593 3594 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc, 3595 struct scsiio_tracker *st) 3596 { 3597 if (WARN_ON(st->smid == 0)) 3598 return; 3599 st->cb_idx = 0xFF; 3600 st->direct_io = 0; 3601 st->scmd = NULL; 3602 atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0); 3603 st->smid = 0; 3604 } 3605 3606 /** 3607 * mpt3sas_base_free_smid - put smid back on free_list 3608 * @ioc: per adapter object 3609 * @smid: system request message index 3610 */ 3611 void 3612 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3613 { 3614 unsigned long flags; 3615 int i; 3616 3617 if (smid < ioc->hi_priority_smid) { 3618 struct scsiio_tracker *st; 3619 void *request; 3620 3621 st = _get_st_from_smid(ioc, smid); 3622 if (!st) { 3623 _base_recovery_check(ioc); 3624 return; 3625 } 3626 3627 /* Clear MPI request frame */ 3628 request = mpt3sas_base_get_msg_frame(ioc, smid); 3629 memset(request, 0, ioc->request_sz); 3630 3631 mpt3sas_base_clear_st(ioc, st); 3632 _base_recovery_check(ioc); 3633 return; 3634 } 3635 3636 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3637 if (smid < ioc->internal_smid) { 3638 /* hi-priority */ 3639 i = smid - ioc->hi_priority_smid; 3640 ioc->hpr_lookup[i].cb_idx = 0xFF; 3641 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list); 3642 } else if (smid <= ioc->hba_queue_depth) { 3643 /* internal queue */ 3644 i = smid - ioc->internal_smid; 3645 ioc->internal_lookup[i].cb_idx = 0xFF; 3646 list_add(&ioc->internal_lookup[i].tracker_list, 3647 &ioc->internal_free_list); 3648 } 3649 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3650 } 3651 3652 /** 3653 * _base_mpi_ep_writeq - 32 bit write to MMIO 3654 * @b: data payload 3655 * @addr: address in MMIO space 3656 * @writeq_lock: spin lock 3657 * 3658 * This special handling for MPI EP to take care of 32 bit 3659 * environment where its not quarenteed to send the entire word 3660 * in one transfer. 3661 */ 3662 static inline void 3663 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr, 3664 spinlock_t *writeq_lock) 3665 { 3666 unsigned long flags; 3667 3668 spin_lock_irqsave(writeq_lock, flags); 3669 __raw_writel((u32)(b), addr); 3670 __raw_writel((u32)(b >> 32), (addr + 4)); 3671 spin_unlock_irqrestore(writeq_lock, flags); 3672 } 3673 3674 /** 3675 * _base_writeq - 64 bit write to MMIO 3676 * @b: data payload 3677 * @addr: address in MMIO space 3678 * @writeq_lock: spin lock 3679 * 3680 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes 3681 * care of 32 bit environment where its not quarenteed to send the entire word 3682 * in one transfer. 3683 */ 3684 #if defined(writeq) && defined(CONFIG_64BIT) 3685 static inline void 3686 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock) 3687 { 3688 wmb(); 3689 __raw_writeq(b, addr); 3690 barrier(); 3691 } 3692 #else 3693 static inline void 3694 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock) 3695 { 3696 _base_mpi_ep_writeq(b, addr, writeq_lock); 3697 } 3698 #endif 3699 3700 /** 3701 * _base_set_and_get_msix_index - get the msix index and assign to msix_io 3702 * variable of scsi tracker 3703 * @ioc: per adapter object 3704 * @smid: system request message index 3705 * 3706 * returns msix index. 3707 */ 3708 static u8 3709 _base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3710 { 3711 struct scsiio_tracker *st = NULL; 3712 3713 if (smid < ioc->hi_priority_smid) 3714 st = _get_st_from_smid(ioc, smid); 3715 3716 if (st == NULL) 3717 return _base_get_msix_index(ioc, NULL); 3718 3719 st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd); 3720 return st->msix_io; 3721 } 3722 3723 /** 3724 * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware 3725 * @ioc: per adapter object 3726 * @smid: system request message index 3727 * @handle: device handle 3728 */ 3729 static void 3730 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc, 3731 u16 smid, u16 handle) 3732 { 3733 Mpi2RequestDescriptorUnion_t descriptor; 3734 u64 *request = (u64 *)&descriptor; 3735 void *mpi_req_iomem; 3736 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 3737 3738 _clone_sg_entries(ioc, (void *) mfp, smid); 3739 mpi_req_iomem = (void __force *)ioc->chip + 3740 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz); 3741 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 3742 ioc->request_sz); 3743 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 3744 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3745 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 3746 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 3747 descriptor.SCSIIO.LMID = 0; 3748 _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3749 &ioc->scsi_lookup_lock); 3750 } 3751 3752 /** 3753 * _base_put_smid_scsi_io - send SCSI_IO request to firmware 3754 * @ioc: per adapter object 3755 * @smid: system request message index 3756 * @handle: device handle 3757 */ 3758 static void 3759 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle) 3760 { 3761 Mpi2RequestDescriptorUnion_t descriptor; 3762 u64 *request = (u64 *)&descriptor; 3763 3764 3765 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 3766 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3767 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 3768 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 3769 descriptor.SCSIIO.LMID = 0; 3770 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3771 &ioc->scsi_lookup_lock); 3772 } 3773 3774 /** 3775 * _base_put_smid_fast_path - send fast path request to firmware 3776 * @ioc: per adapter object 3777 * @smid: system request message index 3778 * @handle: device handle 3779 */ 3780 static void 3781 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid, 3782 u16 handle) 3783 { 3784 Mpi2RequestDescriptorUnion_t descriptor; 3785 u64 *request = (u64 *)&descriptor; 3786 3787 descriptor.SCSIIO.RequestFlags = 3788 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 3789 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3790 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 3791 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 3792 descriptor.SCSIIO.LMID = 0; 3793 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3794 &ioc->scsi_lookup_lock); 3795 } 3796 3797 /** 3798 * _base_put_smid_hi_priority - send Task Management request to firmware 3799 * @ioc: per adapter object 3800 * @smid: system request message index 3801 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0. 3802 */ 3803 static void 3804 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid, 3805 u16 msix_task) 3806 { 3807 Mpi2RequestDescriptorUnion_t descriptor; 3808 void *mpi_req_iomem; 3809 u64 *request; 3810 3811 if (ioc->is_mcpu_endpoint) { 3812 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 3813 3814 /* TBD 256 is offset within sys register. */ 3815 mpi_req_iomem = (void __force *)ioc->chip 3816 + MPI_FRAME_START_OFFSET 3817 + (smid * ioc->request_sz); 3818 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 3819 ioc->request_sz); 3820 } 3821 3822 request = (u64 *)&descriptor; 3823 3824 descriptor.HighPriority.RequestFlags = 3825 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 3826 descriptor.HighPriority.MSIxIndex = msix_task; 3827 descriptor.HighPriority.SMID = cpu_to_le16(smid); 3828 descriptor.HighPriority.LMID = 0; 3829 descriptor.HighPriority.Reserved1 = 0; 3830 if (ioc->is_mcpu_endpoint) 3831 _base_mpi_ep_writeq(*request, 3832 &ioc->chip->RequestDescriptorPostLow, 3833 &ioc->scsi_lookup_lock); 3834 else 3835 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3836 &ioc->scsi_lookup_lock); 3837 } 3838 3839 /** 3840 * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to 3841 * firmware 3842 * @ioc: per adapter object 3843 * @smid: system request message index 3844 */ 3845 void 3846 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3847 { 3848 Mpi2RequestDescriptorUnion_t descriptor; 3849 u64 *request = (u64 *)&descriptor; 3850 3851 descriptor.Default.RequestFlags = 3852 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED; 3853 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3854 descriptor.Default.SMID = cpu_to_le16(smid); 3855 descriptor.Default.LMID = 0; 3856 descriptor.Default.DescriptorTypeDependent = 0; 3857 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3858 &ioc->scsi_lookup_lock); 3859 } 3860 3861 /** 3862 * _base_put_smid_default - Default, primarily used for config pages 3863 * @ioc: per adapter object 3864 * @smid: system request message index 3865 */ 3866 static void 3867 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3868 { 3869 Mpi2RequestDescriptorUnion_t descriptor; 3870 void *mpi_req_iomem; 3871 u64 *request; 3872 3873 if (ioc->is_mcpu_endpoint) { 3874 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 3875 3876 _clone_sg_entries(ioc, (void *) mfp, smid); 3877 /* TBD 256 is offset within sys register */ 3878 mpi_req_iomem = (void __force *)ioc->chip + 3879 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz); 3880 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 3881 ioc->request_sz); 3882 } 3883 request = (u64 *)&descriptor; 3884 descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 3885 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3886 descriptor.Default.SMID = cpu_to_le16(smid); 3887 descriptor.Default.LMID = 0; 3888 descriptor.Default.DescriptorTypeDependent = 0; 3889 if (ioc->is_mcpu_endpoint) 3890 _base_mpi_ep_writeq(*request, 3891 &ioc->chip->RequestDescriptorPostLow, 3892 &ioc->scsi_lookup_lock); 3893 else 3894 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3895 &ioc->scsi_lookup_lock); 3896 } 3897 3898 /** 3899 * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using 3900 * Atomic Request Descriptor 3901 * @ioc: per adapter object 3902 * @smid: system request message index 3903 * @handle: device handle, unused in this function, for function type match 3904 * 3905 * Return nothing. 3906 */ 3907 static void 3908 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, 3909 u16 handle) 3910 { 3911 Mpi26AtomicRequestDescriptor_t descriptor; 3912 u32 *request = (u32 *)&descriptor; 3913 3914 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 3915 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3916 descriptor.SMID = cpu_to_le16(smid); 3917 3918 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 3919 } 3920 3921 /** 3922 * _base_put_smid_fast_path_atomic - send fast path request to firmware 3923 * using Atomic Request Descriptor 3924 * @ioc: per adapter object 3925 * @smid: system request message index 3926 * @handle: device handle, unused in this function, for function type match 3927 * Return nothing 3928 */ 3929 static void 3930 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, 3931 u16 handle) 3932 { 3933 Mpi26AtomicRequestDescriptor_t descriptor; 3934 u32 *request = (u32 *)&descriptor; 3935 3936 descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 3937 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3938 descriptor.SMID = cpu_to_le16(smid); 3939 3940 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 3941 } 3942 3943 /** 3944 * _base_put_smid_hi_priority_atomic - send Task Management request to 3945 * firmware using Atomic Request Descriptor 3946 * @ioc: per adapter object 3947 * @smid: system request message index 3948 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0 3949 * 3950 * Return nothing. 3951 */ 3952 static void 3953 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, 3954 u16 msix_task) 3955 { 3956 Mpi26AtomicRequestDescriptor_t descriptor; 3957 u32 *request = (u32 *)&descriptor; 3958 3959 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 3960 descriptor.MSIxIndex = msix_task; 3961 descriptor.SMID = cpu_to_le16(smid); 3962 3963 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 3964 } 3965 3966 /** 3967 * _base_put_smid_default - Default, primarily used for config pages 3968 * use Atomic Request Descriptor 3969 * @ioc: per adapter object 3970 * @smid: system request message index 3971 * 3972 * Return nothing. 3973 */ 3974 static void 3975 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3976 { 3977 Mpi26AtomicRequestDescriptor_t descriptor; 3978 u32 *request = (u32 *)&descriptor; 3979 3980 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 3981 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3982 descriptor.SMID = cpu_to_le16(smid); 3983 3984 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 3985 } 3986 3987 /** 3988 * _base_display_OEMs_branding - Display branding string 3989 * @ioc: per adapter object 3990 */ 3991 static void 3992 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc) 3993 { 3994 if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL) 3995 return; 3996 3997 switch (ioc->pdev->subsystem_vendor) { 3998 case PCI_VENDOR_ID_INTEL: 3999 switch (ioc->pdev->device) { 4000 case MPI2_MFGPAGE_DEVID_SAS2008: 4001 switch (ioc->pdev->subsystem_device) { 4002 case MPT2SAS_INTEL_RMS2LL080_SSDID: 4003 ioc_info(ioc, "%s\n", 4004 MPT2SAS_INTEL_RMS2LL080_BRANDING); 4005 break; 4006 case MPT2SAS_INTEL_RMS2LL040_SSDID: 4007 ioc_info(ioc, "%s\n", 4008 MPT2SAS_INTEL_RMS2LL040_BRANDING); 4009 break; 4010 case MPT2SAS_INTEL_SSD910_SSDID: 4011 ioc_info(ioc, "%s\n", 4012 MPT2SAS_INTEL_SSD910_BRANDING); 4013 break; 4014 default: 4015 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4016 ioc->pdev->subsystem_device); 4017 break; 4018 } 4019 break; 4020 case MPI2_MFGPAGE_DEVID_SAS2308_2: 4021 switch (ioc->pdev->subsystem_device) { 4022 case MPT2SAS_INTEL_RS25GB008_SSDID: 4023 ioc_info(ioc, "%s\n", 4024 MPT2SAS_INTEL_RS25GB008_BRANDING); 4025 break; 4026 case MPT2SAS_INTEL_RMS25JB080_SSDID: 4027 ioc_info(ioc, "%s\n", 4028 MPT2SAS_INTEL_RMS25JB080_BRANDING); 4029 break; 4030 case MPT2SAS_INTEL_RMS25JB040_SSDID: 4031 ioc_info(ioc, "%s\n", 4032 MPT2SAS_INTEL_RMS25JB040_BRANDING); 4033 break; 4034 case MPT2SAS_INTEL_RMS25KB080_SSDID: 4035 ioc_info(ioc, "%s\n", 4036 MPT2SAS_INTEL_RMS25KB080_BRANDING); 4037 break; 4038 case MPT2SAS_INTEL_RMS25KB040_SSDID: 4039 ioc_info(ioc, "%s\n", 4040 MPT2SAS_INTEL_RMS25KB040_BRANDING); 4041 break; 4042 case MPT2SAS_INTEL_RMS25LB040_SSDID: 4043 ioc_info(ioc, "%s\n", 4044 MPT2SAS_INTEL_RMS25LB040_BRANDING); 4045 break; 4046 case MPT2SAS_INTEL_RMS25LB080_SSDID: 4047 ioc_info(ioc, "%s\n", 4048 MPT2SAS_INTEL_RMS25LB080_BRANDING); 4049 break; 4050 default: 4051 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4052 ioc->pdev->subsystem_device); 4053 break; 4054 } 4055 break; 4056 case MPI25_MFGPAGE_DEVID_SAS3008: 4057 switch (ioc->pdev->subsystem_device) { 4058 case MPT3SAS_INTEL_RMS3JC080_SSDID: 4059 ioc_info(ioc, "%s\n", 4060 MPT3SAS_INTEL_RMS3JC080_BRANDING); 4061 break; 4062 4063 case MPT3SAS_INTEL_RS3GC008_SSDID: 4064 ioc_info(ioc, "%s\n", 4065 MPT3SAS_INTEL_RS3GC008_BRANDING); 4066 break; 4067 case MPT3SAS_INTEL_RS3FC044_SSDID: 4068 ioc_info(ioc, "%s\n", 4069 MPT3SAS_INTEL_RS3FC044_BRANDING); 4070 break; 4071 case MPT3SAS_INTEL_RS3UC080_SSDID: 4072 ioc_info(ioc, "%s\n", 4073 MPT3SAS_INTEL_RS3UC080_BRANDING); 4074 break; 4075 default: 4076 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4077 ioc->pdev->subsystem_device); 4078 break; 4079 } 4080 break; 4081 default: 4082 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4083 ioc->pdev->subsystem_device); 4084 break; 4085 } 4086 break; 4087 case PCI_VENDOR_ID_DELL: 4088 switch (ioc->pdev->device) { 4089 case MPI2_MFGPAGE_DEVID_SAS2008: 4090 switch (ioc->pdev->subsystem_device) { 4091 case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID: 4092 ioc_info(ioc, "%s\n", 4093 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING); 4094 break; 4095 case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID: 4096 ioc_info(ioc, "%s\n", 4097 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING); 4098 break; 4099 case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID: 4100 ioc_info(ioc, "%s\n", 4101 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING); 4102 break; 4103 case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID: 4104 ioc_info(ioc, "%s\n", 4105 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING); 4106 break; 4107 case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID: 4108 ioc_info(ioc, "%s\n", 4109 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING); 4110 break; 4111 case MPT2SAS_DELL_PERC_H200_SSDID: 4112 ioc_info(ioc, "%s\n", 4113 MPT2SAS_DELL_PERC_H200_BRANDING); 4114 break; 4115 case MPT2SAS_DELL_6GBPS_SAS_SSDID: 4116 ioc_info(ioc, "%s\n", 4117 MPT2SAS_DELL_6GBPS_SAS_BRANDING); 4118 break; 4119 default: 4120 ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n", 4121 ioc->pdev->subsystem_device); 4122 break; 4123 } 4124 break; 4125 case MPI25_MFGPAGE_DEVID_SAS3008: 4126 switch (ioc->pdev->subsystem_device) { 4127 case MPT3SAS_DELL_12G_HBA_SSDID: 4128 ioc_info(ioc, "%s\n", 4129 MPT3SAS_DELL_12G_HBA_BRANDING); 4130 break; 4131 default: 4132 ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n", 4133 ioc->pdev->subsystem_device); 4134 break; 4135 } 4136 break; 4137 default: 4138 ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n", 4139 ioc->pdev->subsystem_device); 4140 break; 4141 } 4142 break; 4143 case PCI_VENDOR_ID_CISCO: 4144 switch (ioc->pdev->device) { 4145 case MPI25_MFGPAGE_DEVID_SAS3008: 4146 switch (ioc->pdev->subsystem_device) { 4147 case MPT3SAS_CISCO_12G_8E_HBA_SSDID: 4148 ioc_info(ioc, "%s\n", 4149 MPT3SAS_CISCO_12G_8E_HBA_BRANDING); 4150 break; 4151 case MPT3SAS_CISCO_12G_8I_HBA_SSDID: 4152 ioc_info(ioc, "%s\n", 4153 MPT3SAS_CISCO_12G_8I_HBA_BRANDING); 4154 break; 4155 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID: 4156 ioc_info(ioc, "%s\n", 4157 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING); 4158 break; 4159 default: 4160 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n", 4161 ioc->pdev->subsystem_device); 4162 break; 4163 } 4164 break; 4165 case MPI25_MFGPAGE_DEVID_SAS3108_1: 4166 switch (ioc->pdev->subsystem_device) { 4167 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID: 4168 ioc_info(ioc, "%s\n", 4169 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING); 4170 break; 4171 case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID: 4172 ioc_info(ioc, "%s\n", 4173 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING); 4174 break; 4175 default: 4176 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n", 4177 ioc->pdev->subsystem_device); 4178 break; 4179 } 4180 break; 4181 default: 4182 ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n", 4183 ioc->pdev->subsystem_device); 4184 break; 4185 } 4186 break; 4187 case MPT2SAS_HP_3PAR_SSVID: 4188 switch (ioc->pdev->device) { 4189 case MPI2_MFGPAGE_DEVID_SAS2004: 4190 switch (ioc->pdev->subsystem_device) { 4191 case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID: 4192 ioc_info(ioc, "%s\n", 4193 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING); 4194 break; 4195 default: 4196 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n", 4197 ioc->pdev->subsystem_device); 4198 break; 4199 } 4200 break; 4201 case MPI2_MFGPAGE_DEVID_SAS2308_2: 4202 switch (ioc->pdev->subsystem_device) { 4203 case MPT2SAS_HP_2_4_INTERNAL_SSDID: 4204 ioc_info(ioc, "%s\n", 4205 MPT2SAS_HP_2_4_INTERNAL_BRANDING); 4206 break; 4207 case MPT2SAS_HP_2_4_EXTERNAL_SSDID: 4208 ioc_info(ioc, "%s\n", 4209 MPT2SAS_HP_2_4_EXTERNAL_BRANDING); 4210 break; 4211 case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID: 4212 ioc_info(ioc, "%s\n", 4213 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING); 4214 break; 4215 case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID: 4216 ioc_info(ioc, "%s\n", 4217 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING); 4218 break; 4219 default: 4220 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n", 4221 ioc->pdev->subsystem_device); 4222 break; 4223 } 4224 break; 4225 default: 4226 ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n", 4227 ioc->pdev->subsystem_device); 4228 break; 4229 } 4230 default: 4231 break; 4232 } 4233 } 4234 4235 /** 4236 * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg 4237 * version from FW Image Header. 4238 * @ioc: per adapter object 4239 * 4240 * Return: 0 for success, non-zero for failure. 4241 */ 4242 static int 4243 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc) 4244 { 4245 Mpi2FWImageHeader_t *fw_img_hdr; 4246 Mpi26ComponentImageHeader_t *cmp_img_hdr; 4247 Mpi25FWUploadRequest_t *mpi_request; 4248 Mpi2FWUploadReply_t mpi_reply; 4249 int r = 0; 4250 u32 package_version = 0; 4251 void *fwpkg_data = NULL; 4252 dma_addr_t fwpkg_data_dma; 4253 u16 smid, ioc_status; 4254 size_t data_length; 4255 4256 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 4257 4258 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 4259 ioc_err(ioc, "%s: internal command already in use\n", __func__); 4260 return -EAGAIN; 4261 } 4262 4263 data_length = sizeof(Mpi2FWImageHeader_t); 4264 fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length, 4265 &fwpkg_data_dma, GFP_KERNEL); 4266 if (!fwpkg_data) { 4267 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4268 __FILE__, __LINE__, __func__); 4269 return -ENOMEM; 4270 } 4271 4272 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 4273 if (!smid) { 4274 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 4275 r = -EAGAIN; 4276 goto out; 4277 } 4278 4279 ioc->base_cmds.status = MPT3_CMD_PENDING; 4280 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 4281 ioc->base_cmds.smid = smid; 4282 memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t)); 4283 mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD; 4284 mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH; 4285 mpi_request->ImageSize = cpu_to_le32(data_length); 4286 ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma, 4287 data_length); 4288 init_completion(&ioc->base_cmds.done); 4289 ioc->put_smid_default(ioc, smid); 4290 /* Wait for 15 seconds */ 4291 wait_for_completion_timeout(&ioc->base_cmds.done, 4292 FW_IMG_HDR_READ_TIMEOUT*HZ); 4293 ioc_info(ioc, "%s: complete\n", __func__); 4294 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 4295 ioc_err(ioc, "%s: timeout\n", __func__); 4296 _debug_dump_mf(mpi_request, 4297 sizeof(Mpi25FWUploadRequest_t)/4); 4298 r = -ETIME; 4299 } else { 4300 memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t)); 4301 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) { 4302 memcpy(&mpi_reply, ioc->base_cmds.reply, 4303 sizeof(Mpi2FWUploadReply_t)); 4304 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 4305 MPI2_IOCSTATUS_MASK; 4306 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 4307 fw_img_hdr = (Mpi2FWImageHeader_t *)fwpkg_data; 4308 if (le32_to_cpu(fw_img_hdr->Signature) == 4309 MPI26_IMAGE_HEADER_SIGNATURE0_MPI26) { 4310 cmp_img_hdr = 4311 (Mpi26ComponentImageHeader_t *) 4312 (fwpkg_data); 4313 package_version = 4314 le32_to_cpu( 4315 cmp_img_hdr->ApplicationSpecific); 4316 } else 4317 package_version = 4318 le32_to_cpu( 4319 fw_img_hdr->PackageVersion.Word); 4320 if (package_version) 4321 ioc_info(ioc, 4322 "FW Package Ver(%02d.%02d.%02d.%02d)\n", 4323 ((package_version) & 0xFF000000) >> 24, 4324 ((package_version) & 0x00FF0000) >> 16, 4325 ((package_version) & 0x0000FF00) >> 8, 4326 (package_version) & 0x000000FF); 4327 } else { 4328 _debug_dump_mf(&mpi_reply, 4329 sizeof(Mpi2FWUploadReply_t)/4); 4330 } 4331 } 4332 } 4333 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 4334 out: 4335 if (fwpkg_data) 4336 dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data, 4337 fwpkg_data_dma); 4338 return r; 4339 } 4340 4341 /** 4342 * _base_display_ioc_capabilities - Disply IOC's capabilities. 4343 * @ioc: per adapter object 4344 */ 4345 static void 4346 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc) 4347 { 4348 int i = 0; 4349 char desc[16]; 4350 u32 iounit_pg1_flags; 4351 u32 bios_version; 4352 4353 bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion); 4354 strncpy(desc, ioc->manu_pg0.ChipName, 16); 4355 ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n", 4356 desc, 4357 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24, 4358 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16, 4359 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8, 4360 ioc->facts.FWVersion.Word & 0x000000FF, 4361 ioc->pdev->revision, 4362 (bios_version & 0xFF000000) >> 24, 4363 (bios_version & 0x00FF0000) >> 16, 4364 (bios_version & 0x0000FF00) >> 8, 4365 bios_version & 0x000000FF); 4366 4367 _base_display_OEMs_branding(ioc); 4368 4369 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) { 4370 pr_info("%sNVMe", i ? "," : ""); 4371 i++; 4372 } 4373 4374 ioc_info(ioc, "Protocol=("); 4375 4376 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) { 4377 pr_cont("Initiator"); 4378 i++; 4379 } 4380 4381 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) { 4382 pr_cont("%sTarget", i ? "," : ""); 4383 i++; 4384 } 4385 4386 i = 0; 4387 pr_cont("), Capabilities=("); 4388 4389 if (!ioc->hide_ir_msg) { 4390 if (ioc->facts.IOCCapabilities & 4391 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) { 4392 pr_cont("Raid"); 4393 i++; 4394 } 4395 } 4396 4397 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) { 4398 pr_cont("%sTLR", i ? "," : ""); 4399 i++; 4400 } 4401 4402 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) { 4403 pr_cont("%sMulticast", i ? "," : ""); 4404 i++; 4405 } 4406 4407 if (ioc->facts.IOCCapabilities & 4408 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) { 4409 pr_cont("%sBIDI Target", i ? "," : ""); 4410 i++; 4411 } 4412 4413 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) { 4414 pr_cont("%sEEDP", i ? "," : ""); 4415 i++; 4416 } 4417 4418 if (ioc->facts.IOCCapabilities & 4419 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) { 4420 pr_cont("%sSnapshot Buffer", i ? "," : ""); 4421 i++; 4422 } 4423 4424 if (ioc->facts.IOCCapabilities & 4425 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) { 4426 pr_cont("%sDiag Trace Buffer", i ? "," : ""); 4427 i++; 4428 } 4429 4430 if (ioc->facts.IOCCapabilities & 4431 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) { 4432 pr_cont("%sDiag Extended Buffer", i ? "," : ""); 4433 i++; 4434 } 4435 4436 if (ioc->facts.IOCCapabilities & 4437 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) { 4438 pr_cont("%sTask Set Full", i ? "," : ""); 4439 i++; 4440 } 4441 4442 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags); 4443 if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) { 4444 pr_cont("%sNCQ", i ? "," : ""); 4445 i++; 4446 } 4447 4448 pr_cont(")\n"); 4449 } 4450 4451 /** 4452 * mpt3sas_base_update_missing_delay - change the missing delay timers 4453 * @ioc: per adapter object 4454 * @device_missing_delay: amount of time till device is reported missing 4455 * @io_missing_delay: interval IO is returned when there is a missing device 4456 * 4457 * Passed on the command line, this function will modify the device missing 4458 * delay, as well as the io missing delay. This should be called at driver 4459 * load time. 4460 */ 4461 void 4462 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc, 4463 u16 device_missing_delay, u8 io_missing_delay) 4464 { 4465 u16 dmd, dmd_new, dmd_orignal; 4466 u8 io_missing_delay_original; 4467 u16 sz; 4468 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL; 4469 Mpi2ConfigReply_t mpi_reply; 4470 u8 num_phys = 0; 4471 u16 ioc_status; 4472 4473 mpt3sas_config_get_number_hba_phys(ioc, &num_phys); 4474 if (!num_phys) 4475 return; 4476 4477 sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys * 4478 sizeof(Mpi2SasIOUnit1PhyData_t)); 4479 sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL); 4480 if (!sas_iounit_pg1) { 4481 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4482 __FILE__, __LINE__, __func__); 4483 goto out; 4484 } 4485 if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply, 4486 sas_iounit_pg1, sz))) { 4487 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4488 __FILE__, __LINE__, __func__); 4489 goto out; 4490 } 4491 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 4492 MPI2_IOCSTATUS_MASK; 4493 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 4494 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4495 __FILE__, __LINE__, __func__); 4496 goto out; 4497 } 4498 4499 /* device missing delay */ 4500 dmd = sas_iounit_pg1->ReportDeviceMissingDelay; 4501 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16) 4502 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16; 4503 else 4504 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK; 4505 dmd_orignal = dmd; 4506 if (device_missing_delay > 0x7F) { 4507 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 : 4508 device_missing_delay; 4509 dmd = dmd / 16; 4510 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16; 4511 } else 4512 dmd = device_missing_delay; 4513 sas_iounit_pg1->ReportDeviceMissingDelay = dmd; 4514 4515 /* io missing delay */ 4516 io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay; 4517 sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay; 4518 4519 if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1, 4520 sz)) { 4521 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16) 4522 dmd_new = (dmd & 4523 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16; 4524 else 4525 dmd_new = 4526 dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK; 4527 ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n", 4528 dmd_orignal, dmd_new); 4529 ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n", 4530 io_missing_delay_original, 4531 io_missing_delay); 4532 ioc->device_missing_delay = dmd_new; 4533 ioc->io_missing_delay = io_missing_delay; 4534 } 4535 4536 out: 4537 kfree(sas_iounit_pg1); 4538 } 4539 4540 /** 4541 * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields 4542 * according to performance mode. 4543 * @ioc : per adapter object 4544 * 4545 * Return nothing. 4546 */ 4547 static void 4548 _base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc) 4549 { 4550 Mpi2IOCPage1_t ioc_pg1; 4551 Mpi2ConfigReply_t mpi_reply; 4552 4553 mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy); 4554 memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t)); 4555 4556 switch (perf_mode) { 4557 case MPT_PERF_MODE_DEFAULT: 4558 case MPT_PERF_MODE_BALANCED: 4559 if (ioc->high_iops_queues) { 4560 ioc_info(ioc, 4561 "Enable interrupt coalescing only for first\t" 4562 "%d reply queues\n", 4563 MPT3SAS_HIGH_IOPS_REPLY_QUEUES); 4564 /* 4565 * If 31st bit is zero then interrupt coalescing is 4566 * enabled for all reply descriptor post queues. 4567 * If 31st bit is set to one then user can 4568 * enable/disable interrupt coalescing on per reply 4569 * descriptor post queue group(8) basis. So to enable 4570 * interrupt coalescing only on first reply descriptor 4571 * post queue group 31st bit and zero th bit is enabled. 4572 */ 4573 ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 | 4574 ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1)); 4575 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1); 4576 ioc_info(ioc, "performance mode: balanced\n"); 4577 return; 4578 } 4579 /* Fall through */ 4580 case MPT_PERF_MODE_LATENCY: 4581 /* 4582 * Enable interrupt coalescing on all reply queues 4583 * with timeout value 0xA 4584 */ 4585 ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa); 4586 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING); 4587 ioc_pg1.ProductSpecific = 0; 4588 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1); 4589 ioc_info(ioc, "performance mode: latency\n"); 4590 break; 4591 case MPT_PERF_MODE_IOPS: 4592 /* 4593 * Enable interrupt coalescing on all reply queues. 4594 */ 4595 ioc_info(ioc, 4596 "performance mode: iops with coalescing timeout: 0x%x\n", 4597 le32_to_cpu(ioc_pg1.CoalescingTimeout)); 4598 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING); 4599 ioc_pg1.ProductSpecific = 0; 4600 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1); 4601 break; 4602 } 4603 } 4604 4605 /** 4606 * _base_static_config_pages - static start of day config pages 4607 * @ioc: per adapter object 4608 */ 4609 static void 4610 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc) 4611 { 4612 Mpi2ConfigReply_t mpi_reply; 4613 u32 iounit_pg1_flags; 4614 4615 ioc->nvme_abort_timeout = 30; 4616 mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0); 4617 if (ioc->ir_firmware) 4618 mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply, 4619 &ioc->manu_pg10); 4620 4621 /* 4622 * Ensure correct T10 PI operation if vendor left EEDPTagMode 4623 * flag unset in NVDATA. 4624 */ 4625 mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11); 4626 if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) { 4627 pr_err("%s: overriding NVDATA EEDPTagMode setting\n", 4628 ioc->name); 4629 ioc->manu_pg11.EEDPTagMode &= ~0x3; 4630 ioc->manu_pg11.EEDPTagMode |= 0x1; 4631 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply, 4632 &ioc->manu_pg11); 4633 } 4634 if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK) 4635 ioc->tm_custom_handling = 1; 4636 else { 4637 ioc->tm_custom_handling = 0; 4638 if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT) 4639 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT; 4640 else if (ioc->manu_pg11.NVMeAbortTO > 4641 NVME_TASK_ABORT_MAX_TIMEOUT) 4642 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT; 4643 else 4644 ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO; 4645 } 4646 4647 mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2); 4648 mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3); 4649 mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8); 4650 mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0); 4651 mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1); 4652 mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8); 4653 _base_display_ioc_capabilities(ioc); 4654 4655 /* 4656 * Enable task_set_full handling in iounit_pg1 when the 4657 * facts capabilities indicate that its supported. 4658 */ 4659 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags); 4660 if ((ioc->facts.IOCCapabilities & 4661 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING)) 4662 iounit_pg1_flags &= 4663 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING; 4664 else 4665 iounit_pg1_flags |= 4666 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING; 4667 ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags); 4668 mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1); 4669 4670 if (ioc->iounit_pg8.NumSensors) 4671 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors; 4672 if (ioc->is_aero_ioc) 4673 _base_update_ioc_page1_inlinewith_perf_mode(ioc); 4674 } 4675 4676 /** 4677 * mpt3sas_free_enclosure_list - release memory 4678 * @ioc: per adapter object 4679 * 4680 * Free memory allocated during encloure add. 4681 */ 4682 void 4683 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc) 4684 { 4685 struct _enclosure_node *enclosure_dev, *enclosure_dev_next; 4686 4687 /* Free enclosure list */ 4688 list_for_each_entry_safe(enclosure_dev, 4689 enclosure_dev_next, &ioc->enclosure_list, list) { 4690 list_del(&enclosure_dev->list); 4691 kfree(enclosure_dev); 4692 } 4693 } 4694 4695 /** 4696 * _base_release_memory_pools - release memory 4697 * @ioc: per adapter object 4698 * 4699 * Free memory allocated from _base_allocate_memory_pools. 4700 */ 4701 static void 4702 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc) 4703 { 4704 int i = 0; 4705 int j = 0; 4706 struct chain_tracker *ct; 4707 struct reply_post_struct *rps; 4708 4709 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 4710 4711 if (ioc->request) { 4712 dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz, 4713 ioc->request, ioc->request_dma); 4714 dexitprintk(ioc, 4715 ioc_info(ioc, "request_pool(0x%p): free\n", 4716 ioc->request)); 4717 ioc->request = NULL; 4718 } 4719 4720 if (ioc->sense) { 4721 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma); 4722 dma_pool_destroy(ioc->sense_dma_pool); 4723 dexitprintk(ioc, 4724 ioc_info(ioc, "sense_pool(0x%p): free\n", 4725 ioc->sense)); 4726 ioc->sense = NULL; 4727 } 4728 4729 if (ioc->reply) { 4730 dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma); 4731 dma_pool_destroy(ioc->reply_dma_pool); 4732 dexitprintk(ioc, 4733 ioc_info(ioc, "reply_pool(0x%p): free\n", 4734 ioc->reply)); 4735 ioc->reply = NULL; 4736 } 4737 4738 if (ioc->reply_free) { 4739 dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free, 4740 ioc->reply_free_dma); 4741 dma_pool_destroy(ioc->reply_free_dma_pool); 4742 dexitprintk(ioc, 4743 ioc_info(ioc, "reply_free_pool(0x%p): free\n", 4744 ioc->reply_free)); 4745 ioc->reply_free = NULL; 4746 } 4747 4748 if (ioc->reply_post) { 4749 do { 4750 rps = &ioc->reply_post[i]; 4751 if (rps->reply_post_free) { 4752 dma_pool_free( 4753 ioc->reply_post_free_dma_pool, 4754 rps->reply_post_free, 4755 rps->reply_post_free_dma); 4756 dexitprintk(ioc, 4757 ioc_info(ioc, "reply_post_free_pool(0x%p): free\n", 4758 rps->reply_post_free)); 4759 rps->reply_post_free = NULL; 4760 } 4761 } while (ioc->rdpq_array_enable && 4762 (++i < ioc->reply_queue_count)); 4763 if (ioc->reply_post_free_array && 4764 ioc->rdpq_array_enable) { 4765 dma_pool_free(ioc->reply_post_free_array_dma_pool, 4766 ioc->reply_post_free_array, 4767 ioc->reply_post_free_array_dma); 4768 ioc->reply_post_free_array = NULL; 4769 } 4770 dma_pool_destroy(ioc->reply_post_free_array_dma_pool); 4771 dma_pool_destroy(ioc->reply_post_free_dma_pool); 4772 kfree(ioc->reply_post); 4773 } 4774 4775 if (ioc->pcie_sgl_dma_pool) { 4776 for (i = 0; i < ioc->scsiio_depth; i++) { 4777 dma_pool_free(ioc->pcie_sgl_dma_pool, 4778 ioc->pcie_sg_lookup[i].pcie_sgl, 4779 ioc->pcie_sg_lookup[i].pcie_sgl_dma); 4780 } 4781 if (ioc->pcie_sgl_dma_pool) 4782 dma_pool_destroy(ioc->pcie_sgl_dma_pool); 4783 } 4784 4785 if (ioc->config_page) { 4786 dexitprintk(ioc, 4787 ioc_info(ioc, "config_page(0x%p): free\n", 4788 ioc->config_page)); 4789 dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz, 4790 ioc->config_page, ioc->config_page_dma); 4791 } 4792 4793 kfree(ioc->hpr_lookup); 4794 kfree(ioc->internal_lookup); 4795 if (ioc->chain_lookup) { 4796 for (i = 0; i < ioc->scsiio_depth; i++) { 4797 for (j = ioc->chains_per_prp_buffer; 4798 j < ioc->chains_needed_per_io; j++) { 4799 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 4800 if (ct && ct->chain_buffer) 4801 dma_pool_free(ioc->chain_dma_pool, 4802 ct->chain_buffer, 4803 ct->chain_buffer_dma); 4804 } 4805 kfree(ioc->chain_lookup[i].chains_per_smid); 4806 } 4807 dma_pool_destroy(ioc->chain_dma_pool); 4808 kfree(ioc->chain_lookup); 4809 ioc->chain_lookup = NULL; 4810 } 4811 } 4812 4813 /** 4814 * is_MSB_are_same - checks whether all reply queues in a set are 4815 * having same upper 32bits in their base memory address. 4816 * @reply_pool_start_address: Base address of a reply queue set 4817 * @pool_sz: Size of single Reply Descriptor Post Queues pool size 4818 * 4819 * Return: 1 if reply queues in a set have a same upper 32bits in their base 4820 * memory address, else 0. 4821 */ 4822 4823 static int 4824 is_MSB_are_same(long reply_pool_start_address, u32 pool_sz) 4825 { 4826 long reply_pool_end_address; 4827 4828 reply_pool_end_address = reply_pool_start_address + pool_sz; 4829 4830 if (upper_32_bits(reply_pool_start_address) == 4831 upper_32_bits(reply_pool_end_address)) 4832 return 1; 4833 else 4834 return 0; 4835 } 4836 4837 /** 4838 * _base_allocate_memory_pools - allocate start of day memory pools 4839 * @ioc: per adapter object 4840 * 4841 * Return: 0 success, anything else error. 4842 */ 4843 static int 4844 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc) 4845 { 4846 struct mpt3sas_facts *facts; 4847 u16 max_sge_elements; 4848 u16 chains_needed_per_io; 4849 u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz; 4850 u32 retry_sz; 4851 u16 max_request_credit, nvme_blocks_needed; 4852 unsigned short sg_tablesize; 4853 u16 sge_size; 4854 int i, j; 4855 struct chain_tracker *ct; 4856 4857 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 4858 4859 4860 retry_sz = 0; 4861 facts = &ioc->facts; 4862 4863 /* command line tunables for max sgl entries */ 4864 if (max_sgl_entries != -1) 4865 sg_tablesize = max_sgl_entries; 4866 else { 4867 if (ioc->hba_mpi_version_belonged == MPI2_VERSION) 4868 sg_tablesize = MPT2SAS_SG_DEPTH; 4869 else 4870 sg_tablesize = MPT3SAS_SG_DEPTH; 4871 } 4872 4873 /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */ 4874 if (reset_devices) 4875 sg_tablesize = min_t(unsigned short, sg_tablesize, 4876 MPT_KDUMP_MIN_PHYS_SEGMENTS); 4877 4878 if (ioc->is_mcpu_endpoint) 4879 ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS; 4880 else { 4881 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS) 4882 sg_tablesize = MPT_MIN_PHYS_SEGMENTS; 4883 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) { 4884 sg_tablesize = min_t(unsigned short, sg_tablesize, 4885 SG_MAX_SEGMENTS); 4886 ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n", 4887 sg_tablesize, MPT_MAX_PHYS_SEGMENTS); 4888 } 4889 ioc->shost->sg_tablesize = sg_tablesize; 4890 } 4891 4892 ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)), 4893 (facts->RequestCredit / 4)); 4894 if (ioc->internal_depth < INTERNAL_CMDS_COUNT) { 4895 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT + 4896 INTERNAL_SCSIIO_CMDS_COUNT)) { 4897 ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n", 4898 facts->RequestCredit); 4899 return -ENOMEM; 4900 } 4901 ioc->internal_depth = 10; 4902 } 4903 4904 ioc->hi_priority_depth = ioc->internal_depth - (5); 4905 /* command line tunables for max controller queue depth */ 4906 if (max_queue_depth != -1 && max_queue_depth != 0) { 4907 max_request_credit = min_t(u16, max_queue_depth + 4908 ioc->internal_depth, facts->RequestCredit); 4909 if (max_request_credit > MAX_HBA_QUEUE_DEPTH) 4910 max_request_credit = MAX_HBA_QUEUE_DEPTH; 4911 } else if (reset_devices) 4912 max_request_credit = min_t(u16, facts->RequestCredit, 4913 (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth)); 4914 else 4915 max_request_credit = min_t(u16, facts->RequestCredit, 4916 MAX_HBA_QUEUE_DEPTH); 4917 4918 /* Firmware maintains additional facts->HighPriorityCredit number of 4919 * credits for HiPriprity Request messages, so hba queue depth will be 4920 * sum of max_request_credit and high priority queue depth. 4921 */ 4922 ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth; 4923 4924 /* request frame size */ 4925 ioc->request_sz = facts->IOCRequestFrameSize * 4; 4926 4927 /* reply frame size */ 4928 ioc->reply_sz = facts->ReplyFrameSize * 4; 4929 4930 /* chain segment size */ 4931 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 4932 if (facts->IOCMaxChainSegmentSize) 4933 ioc->chain_segment_sz = 4934 facts->IOCMaxChainSegmentSize * 4935 MAX_CHAIN_ELEMT_SZ; 4936 else 4937 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */ 4938 ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS * 4939 MAX_CHAIN_ELEMT_SZ; 4940 } else 4941 ioc->chain_segment_sz = ioc->request_sz; 4942 4943 /* calculate the max scatter element size */ 4944 sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee); 4945 4946 retry_allocation: 4947 total_sz = 0; 4948 /* calculate number of sg elements left over in the 1st frame */ 4949 max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) - 4950 sizeof(Mpi2SGEIOUnion_t)) + sge_size); 4951 ioc->max_sges_in_main_message = max_sge_elements/sge_size; 4952 4953 /* now do the same for a chain buffer */ 4954 max_sge_elements = ioc->chain_segment_sz - sge_size; 4955 ioc->max_sges_in_chain_message = max_sge_elements/sge_size; 4956 4957 /* 4958 * MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE 4959 */ 4960 chains_needed_per_io = ((ioc->shost->sg_tablesize - 4961 ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message) 4962 + 1; 4963 if (chains_needed_per_io > facts->MaxChainDepth) { 4964 chains_needed_per_io = facts->MaxChainDepth; 4965 ioc->shost->sg_tablesize = min_t(u16, 4966 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message 4967 * chains_needed_per_io), ioc->shost->sg_tablesize); 4968 } 4969 ioc->chains_needed_per_io = chains_needed_per_io; 4970 4971 /* reply free queue sizing - taking into account for 64 FW events */ 4972 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64; 4973 4974 /* mCPU manage single counters for simplicity */ 4975 if (ioc->is_mcpu_endpoint) 4976 ioc->reply_post_queue_depth = ioc->reply_free_queue_depth; 4977 else { 4978 /* calculate reply descriptor post queue depth */ 4979 ioc->reply_post_queue_depth = ioc->hba_queue_depth + 4980 ioc->reply_free_queue_depth + 1; 4981 /* align the reply post queue on the next 16 count boundary */ 4982 if (ioc->reply_post_queue_depth % 16) 4983 ioc->reply_post_queue_depth += 16 - 4984 (ioc->reply_post_queue_depth % 16); 4985 } 4986 4987 if (ioc->reply_post_queue_depth > 4988 facts->MaxReplyDescriptorPostQueueDepth) { 4989 ioc->reply_post_queue_depth = 4990 facts->MaxReplyDescriptorPostQueueDepth - 4991 (facts->MaxReplyDescriptorPostQueueDepth % 16); 4992 ioc->hba_queue_depth = 4993 ((ioc->reply_post_queue_depth - 64) / 2) - 1; 4994 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64; 4995 } 4996 4997 dinitprintk(ioc, 4998 ioc_info(ioc, "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), chains_per_io(%d)\n", 4999 ioc->max_sges_in_main_message, 5000 ioc->max_sges_in_chain_message, 5001 ioc->shost->sg_tablesize, 5002 ioc->chains_needed_per_io)); 5003 5004 /* reply post queue, 16 byte align */ 5005 reply_post_free_sz = ioc->reply_post_queue_depth * 5006 sizeof(Mpi2DefaultReplyDescriptor_t); 5007 5008 sz = reply_post_free_sz; 5009 if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable) 5010 sz *= ioc->reply_queue_count; 5011 5012 ioc->reply_post = kcalloc((ioc->rdpq_array_enable) ? 5013 (ioc->reply_queue_count):1, 5014 sizeof(struct reply_post_struct), GFP_KERNEL); 5015 5016 if (!ioc->reply_post) { 5017 ioc_err(ioc, "reply_post_free pool: kcalloc failed\n"); 5018 goto out; 5019 } 5020 ioc->reply_post_free_dma_pool = dma_pool_create("reply_post_free pool", 5021 &ioc->pdev->dev, sz, 16, 0); 5022 if (!ioc->reply_post_free_dma_pool) { 5023 ioc_err(ioc, "reply_post_free pool: dma_pool_create failed\n"); 5024 goto out; 5025 } 5026 i = 0; 5027 do { 5028 ioc->reply_post[i].reply_post_free = 5029 dma_pool_zalloc(ioc->reply_post_free_dma_pool, 5030 GFP_KERNEL, 5031 &ioc->reply_post[i].reply_post_free_dma); 5032 if (!ioc->reply_post[i].reply_post_free) { 5033 ioc_err(ioc, "reply_post_free pool: dma_pool_alloc failed\n"); 5034 goto out; 5035 } 5036 dinitprintk(ioc, 5037 ioc_info(ioc, "reply post free pool (0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n", 5038 ioc->reply_post[i].reply_post_free, 5039 ioc->reply_post_queue_depth, 5040 8, sz / 1024)); 5041 dinitprintk(ioc, 5042 ioc_info(ioc, "reply_post_free_dma = (0x%llx)\n", 5043 (u64)ioc->reply_post[i].reply_post_free_dma)); 5044 total_sz += sz; 5045 } while (ioc->rdpq_array_enable && (++i < ioc->reply_queue_count)); 5046 5047 if (ioc->dma_mask > 32) { 5048 if (_base_change_consistent_dma_mask(ioc, ioc->pdev) != 0) { 5049 ioc_warn(ioc, "no suitable consistent DMA mask for %s\n", 5050 pci_name(ioc->pdev)); 5051 goto out; 5052 } 5053 } 5054 5055 ioc->scsiio_depth = ioc->hba_queue_depth - 5056 ioc->hi_priority_depth - ioc->internal_depth; 5057 5058 /* set the scsi host can_queue depth 5059 * with some internal commands that could be outstanding 5060 */ 5061 ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT; 5062 dinitprintk(ioc, 5063 ioc_info(ioc, "scsi host: can_queue depth (%d)\n", 5064 ioc->shost->can_queue)); 5065 5066 5067 /* contiguous pool for request and chains, 16 byte align, one extra " 5068 * "frame for smid=0 5069 */ 5070 ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth; 5071 sz = ((ioc->scsiio_depth + 1) * ioc->request_sz); 5072 5073 /* hi-priority queue */ 5074 sz += (ioc->hi_priority_depth * ioc->request_sz); 5075 5076 /* internal queue */ 5077 sz += (ioc->internal_depth * ioc->request_sz); 5078 5079 ioc->request_dma_sz = sz; 5080 ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz, 5081 &ioc->request_dma, GFP_KERNEL); 5082 if (!ioc->request) { 5083 ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n", 5084 ioc->hba_queue_depth, ioc->chains_needed_per_io, 5085 ioc->request_sz, sz / 1024); 5086 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH) 5087 goto out; 5088 retry_sz = 64; 5089 ioc->hba_queue_depth -= retry_sz; 5090 _base_release_memory_pools(ioc); 5091 goto retry_allocation; 5092 } 5093 memset(ioc->request, 0, sz); 5094 5095 if (retry_sz) 5096 ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n", 5097 ioc->hba_queue_depth, ioc->chains_needed_per_io, 5098 ioc->request_sz, sz / 1024); 5099 5100 /* hi-priority queue */ 5101 ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) * 5102 ioc->request_sz); 5103 ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) * 5104 ioc->request_sz); 5105 5106 /* internal queue */ 5107 ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth * 5108 ioc->request_sz); 5109 ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth * 5110 ioc->request_sz); 5111 5112 dinitprintk(ioc, 5113 ioc_info(ioc, "request pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n", 5114 ioc->request, ioc->hba_queue_depth, 5115 ioc->request_sz, 5116 (ioc->hba_queue_depth * ioc->request_sz) / 1024)); 5117 5118 dinitprintk(ioc, 5119 ioc_info(ioc, "request pool: dma(0x%llx)\n", 5120 (unsigned long long)ioc->request_dma)); 5121 total_sz += sz; 5122 5123 dinitprintk(ioc, 5124 ioc_info(ioc, "scsiio(0x%p): depth(%d)\n", 5125 ioc->request, ioc->scsiio_depth)); 5126 5127 ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH); 5128 sz = ioc->scsiio_depth * sizeof(struct chain_lookup); 5129 ioc->chain_lookup = kzalloc(sz, GFP_KERNEL); 5130 if (!ioc->chain_lookup) { 5131 ioc_err(ioc, "chain_lookup: __get_free_pages failed\n"); 5132 goto out; 5133 } 5134 5135 sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker); 5136 for (i = 0; i < ioc->scsiio_depth; i++) { 5137 ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL); 5138 if (!ioc->chain_lookup[i].chains_per_smid) { 5139 ioc_err(ioc, "chain_lookup: kzalloc failed\n"); 5140 goto out; 5141 } 5142 } 5143 5144 /* initialize hi-priority queue smid's */ 5145 ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth, 5146 sizeof(struct request_tracker), GFP_KERNEL); 5147 if (!ioc->hpr_lookup) { 5148 ioc_err(ioc, "hpr_lookup: kcalloc failed\n"); 5149 goto out; 5150 } 5151 ioc->hi_priority_smid = ioc->scsiio_depth + 1; 5152 dinitprintk(ioc, 5153 ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n", 5154 ioc->hi_priority, 5155 ioc->hi_priority_depth, ioc->hi_priority_smid)); 5156 5157 /* initialize internal queue smid's */ 5158 ioc->internal_lookup = kcalloc(ioc->internal_depth, 5159 sizeof(struct request_tracker), GFP_KERNEL); 5160 if (!ioc->internal_lookup) { 5161 ioc_err(ioc, "internal_lookup: kcalloc failed\n"); 5162 goto out; 5163 } 5164 ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth; 5165 dinitprintk(ioc, 5166 ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n", 5167 ioc->internal, 5168 ioc->internal_depth, ioc->internal_smid)); 5169 /* 5170 * The number of NVMe page sized blocks needed is: 5171 * (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1 5172 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry 5173 * that is placed in the main message frame. 8 is the size of each PRP 5174 * entry or PRP list pointer entry. 8 is subtracted from page_size 5175 * because of the PRP list pointer entry at the end of a page, so this 5176 * is not counted as a PRP entry. The 1 added page is a round up. 5177 * 5178 * To avoid allocation failures due to the amount of memory that could 5179 * be required for NVMe PRP's, only each set of NVMe blocks will be 5180 * contiguous, so a new set is allocated for each possible I/O. 5181 */ 5182 ioc->chains_per_prp_buffer = 0; 5183 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) { 5184 nvme_blocks_needed = 5185 (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1; 5186 nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE); 5187 nvme_blocks_needed++; 5188 5189 sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth; 5190 ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL); 5191 if (!ioc->pcie_sg_lookup) { 5192 ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n"); 5193 goto out; 5194 } 5195 sz = nvme_blocks_needed * ioc->page_size; 5196 ioc->pcie_sgl_dma_pool = 5197 dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz, 16, 0); 5198 if (!ioc->pcie_sgl_dma_pool) { 5199 ioc_info(ioc, "PCIe SGL pool: dma_pool_create failed\n"); 5200 goto out; 5201 } 5202 5203 ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz; 5204 ioc->chains_per_prp_buffer = min(ioc->chains_per_prp_buffer, 5205 ioc->chains_needed_per_io); 5206 5207 for (i = 0; i < ioc->scsiio_depth; i++) { 5208 ioc->pcie_sg_lookup[i].pcie_sgl = dma_pool_alloc( 5209 ioc->pcie_sgl_dma_pool, GFP_KERNEL, 5210 &ioc->pcie_sg_lookup[i].pcie_sgl_dma); 5211 if (!ioc->pcie_sg_lookup[i].pcie_sgl) { 5212 ioc_info(ioc, "PCIe SGL pool: dma_pool_alloc failed\n"); 5213 goto out; 5214 } 5215 for (j = 0; j < ioc->chains_per_prp_buffer; j++) { 5216 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 5217 ct->chain_buffer = 5218 ioc->pcie_sg_lookup[i].pcie_sgl + 5219 (j * ioc->chain_segment_sz); 5220 ct->chain_buffer_dma = 5221 ioc->pcie_sg_lookup[i].pcie_sgl_dma + 5222 (j * ioc->chain_segment_sz); 5223 } 5224 } 5225 5226 dinitprintk(ioc, 5227 ioc_info(ioc, "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n", 5228 ioc->scsiio_depth, sz, 5229 (sz * ioc->scsiio_depth) / 1024)); 5230 dinitprintk(ioc, 5231 ioc_info(ioc, "Number of chains can fit in a PRP page(%d)\n", 5232 ioc->chains_per_prp_buffer)); 5233 total_sz += sz * ioc->scsiio_depth; 5234 } 5235 5236 ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev, 5237 ioc->chain_segment_sz, 16, 0); 5238 if (!ioc->chain_dma_pool) { 5239 ioc_err(ioc, "chain_dma_pool: dma_pool_create failed\n"); 5240 goto out; 5241 } 5242 for (i = 0; i < ioc->scsiio_depth; i++) { 5243 for (j = ioc->chains_per_prp_buffer; 5244 j < ioc->chains_needed_per_io; j++) { 5245 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 5246 ct->chain_buffer = dma_pool_alloc( 5247 ioc->chain_dma_pool, GFP_KERNEL, 5248 &ct->chain_buffer_dma); 5249 if (!ct->chain_buffer) { 5250 ioc_err(ioc, "chain_lookup: pci_pool_alloc failed\n"); 5251 goto out; 5252 } 5253 } 5254 total_sz += ioc->chain_segment_sz; 5255 } 5256 5257 dinitprintk(ioc, 5258 ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n", 5259 ioc->chain_depth, ioc->chain_segment_sz, 5260 (ioc->chain_depth * ioc->chain_segment_sz) / 1024)); 5261 5262 /* sense buffers, 4 byte align */ 5263 sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE; 5264 ioc->sense_dma_pool = dma_pool_create("sense pool", &ioc->pdev->dev, sz, 5265 4, 0); 5266 if (!ioc->sense_dma_pool) { 5267 ioc_err(ioc, "sense pool: dma_pool_create failed\n"); 5268 goto out; 5269 } 5270 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL, 5271 &ioc->sense_dma); 5272 if (!ioc->sense) { 5273 ioc_err(ioc, "sense pool: dma_pool_alloc failed\n"); 5274 goto out; 5275 } 5276 /* sense buffer requires to be in same 4 gb region. 5277 * Below function will check the same. 5278 * In case of failure, new pci pool will be created with updated 5279 * alignment. Older allocation and pool will be destroyed. 5280 * Alignment will be used such a way that next allocation if 5281 * success, will always meet same 4gb region requirement. 5282 * Actual requirement is not alignment, but we need start and end of 5283 * DMA address must have same upper 32 bit address. 5284 */ 5285 if (!is_MSB_are_same((long)ioc->sense, sz)) { 5286 //Release Sense pool & Reallocate 5287 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma); 5288 dma_pool_destroy(ioc->sense_dma_pool); 5289 ioc->sense = NULL; 5290 5291 ioc->sense_dma_pool = 5292 dma_pool_create("sense pool", &ioc->pdev->dev, sz, 5293 roundup_pow_of_two(sz), 0); 5294 if (!ioc->sense_dma_pool) { 5295 ioc_err(ioc, "sense pool: pci_pool_create failed\n"); 5296 goto out; 5297 } 5298 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL, 5299 &ioc->sense_dma); 5300 if (!ioc->sense) { 5301 ioc_err(ioc, "sense pool: pci_pool_alloc failed\n"); 5302 goto out; 5303 } 5304 } 5305 dinitprintk(ioc, 5306 ioc_info(ioc, "sense pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n", 5307 ioc->sense, ioc->scsiio_depth, 5308 SCSI_SENSE_BUFFERSIZE, sz / 1024)); 5309 dinitprintk(ioc, 5310 ioc_info(ioc, "sense_dma(0x%llx)\n", 5311 (unsigned long long)ioc->sense_dma)); 5312 total_sz += sz; 5313 5314 /* reply pool, 4 byte align */ 5315 sz = ioc->reply_free_queue_depth * ioc->reply_sz; 5316 ioc->reply_dma_pool = dma_pool_create("reply pool", &ioc->pdev->dev, sz, 5317 4, 0); 5318 if (!ioc->reply_dma_pool) { 5319 ioc_err(ioc, "reply pool: dma_pool_create failed\n"); 5320 goto out; 5321 } 5322 ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL, 5323 &ioc->reply_dma); 5324 if (!ioc->reply) { 5325 ioc_err(ioc, "reply pool: dma_pool_alloc failed\n"); 5326 goto out; 5327 } 5328 ioc->reply_dma_min_address = (u32)(ioc->reply_dma); 5329 ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz; 5330 dinitprintk(ioc, 5331 ioc_info(ioc, "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n", 5332 ioc->reply, ioc->reply_free_queue_depth, 5333 ioc->reply_sz, sz / 1024)); 5334 dinitprintk(ioc, 5335 ioc_info(ioc, "reply_dma(0x%llx)\n", 5336 (unsigned long long)ioc->reply_dma)); 5337 total_sz += sz; 5338 5339 /* reply free queue, 16 byte align */ 5340 sz = ioc->reply_free_queue_depth * 4; 5341 ioc->reply_free_dma_pool = dma_pool_create("reply_free pool", 5342 &ioc->pdev->dev, sz, 16, 0); 5343 if (!ioc->reply_free_dma_pool) { 5344 ioc_err(ioc, "reply_free pool: dma_pool_create failed\n"); 5345 goto out; 5346 } 5347 ioc->reply_free = dma_pool_zalloc(ioc->reply_free_dma_pool, GFP_KERNEL, 5348 &ioc->reply_free_dma); 5349 if (!ioc->reply_free) { 5350 ioc_err(ioc, "reply_free pool: dma_pool_alloc failed\n"); 5351 goto out; 5352 } 5353 dinitprintk(ioc, 5354 ioc_info(ioc, "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n", 5355 ioc->reply_free, ioc->reply_free_queue_depth, 5356 4, sz / 1024)); 5357 dinitprintk(ioc, 5358 ioc_info(ioc, "reply_free_dma (0x%llx)\n", 5359 (unsigned long long)ioc->reply_free_dma)); 5360 total_sz += sz; 5361 5362 if (ioc->rdpq_array_enable) { 5363 reply_post_free_array_sz = ioc->reply_queue_count * 5364 sizeof(Mpi2IOCInitRDPQArrayEntry); 5365 ioc->reply_post_free_array_dma_pool = 5366 dma_pool_create("reply_post_free_array pool", 5367 &ioc->pdev->dev, reply_post_free_array_sz, 16, 0); 5368 if (!ioc->reply_post_free_array_dma_pool) { 5369 dinitprintk(ioc, 5370 ioc_info(ioc, "reply_post_free_array pool: dma_pool_create failed\n")); 5371 goto out; 5372 } 5373 ioc->reply_post_free_array = 5374 dma_pool_alloc(ioc->reply_post_free_array_dma_pool, 5375 GFP_KERNEL, &ioc->reply_post_free_array_dma); 5376 if (!ioc->reply_post_free_array) { 5377 dinitprintk(ioc, 5378 ioc_info(ioc, "reply_post_free_array pool: dma_pool_alloc failed\n")); 5379 goto out; 5380 } 5381 } 5382 ioc->config_page_sz = 512; 5383 ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev, 5384 ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL); 5385 if (!ioc->config_page) { 5386 ioc_err(ioc, "config page: dma_pool_alloc failed\n"); 5387 goto out; 5388 } 5389 dinitprintk(ioc, 5390 ioc_info(ioc, "config page(0x%p): size(%d)\n", 5391 ioc->config_page, ioc->config_page_sz)); 5392 dinitprintk(ioc, 5393 ioc_info(ioc, "config_page_dma(0x%llx)\n", 5394 (unsigned long long)ioc->config_page_dma)); 5395 total_sz += ioc->config_page_sz; 5396 5397 ioc_info(ioc, "Allocated physical memory: size(%d kB)\n", 5398 total_sz / 1024); 5399 ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n", 5400 ioc->shost->can_queue, facts->RequestCredit); 5401 ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n", 5402 ioc->shost->sg_tablesize); 5403 return 0; 5404 5405 out: 5406 return -ENOMEM; 5407 } 5408 5409 /** 5410 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter. 5411 * @ioc: Pointer to MPT_ADAPTER structure 5412 * @cooked: Request raw or cooked IOC state 5413 * 5414 * Return: all IOC Doorbell register bits if cooked==0, else just the 5415 * Doorbell bits in MPI_IOC_STATE_MASK. 5416 */ 5417 u32 5418 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked) 5419 { 5420 u32 s, sc; 5421 5422 s = ioc->base_readl(&ioc->chip->Doorbell); 5423 sc = s & MPI2_IOC_STATE_MASK; 5424 return cooked ? sc : s; 5425 } 5426 5427 /** 5428 * _base_wait_on_iocstate - waiting on a particular ioc state 5429 * @ioc: ? 5430 * @ioc_state: controller state { READY, OPERATIONAL, or RESET } 5431 * @timeout: timeout in second 5432 * 5433 * Return: 0 for success, non-zero for failure. 5434 */ 5435 static int 5436 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout) 5437 { 5438 u32 count, cntdn; 5439 u32 current_state; 5440 5441 count = 0; 5442 cntdn = 1000 * timeout; 5443 do { 5444 current_state = mpt3sas_base_get_iocstate(ioc, 1); 5445 if (current_state == ioc_state) 5446 return 0; 5447 if (count && current_state == MPI2_IOC_STATE_FAULT) 5448 break; 5449 5450 usleep_range(1000, 1500); 5451 count++; 5452 } while (--cntdn); 5453 5454 return current_state; 5455 } 5456 5457 /** 5458 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by 5459 * a write to the doorbell) 5460 * @ioc: per adapter object 5461 * 5462 * Return: 0 for success, non-zero for failure. 5463 * 5464 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell. 5465 */ 5466 5467 static int 5468 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout) 5469 { 5470 u32 cntdn, count; 5471 u32 int_status; 5472 5473 count = 0; 5474 cntdn = 1000 * timeout; 5475 do { 5476 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 5477 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 5478 dhsprintk(ioc, 5479 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 5480 __func__, count, timeout)); 5481 return 0; 5482 } 5483 5484 usleep_range(1000, 1500); 5485 count++; 5486 } while (--cntdn); 5487 5488 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 5489 __func__, count, int_status); 5490 return -EFAULT; 5491 } 5492 5493 static int 5494 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout) 5495 { 5496 u32 cntdn, count; 5497 u32 int_status; 5498 5499 count = 0; 5500 cntdn = 2000 * timeout; 5501 do { 5502 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 5503 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 5504 dhsprintk(ioc, 5505 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 5506 __func__, count, timeout)); 5507 return 0; 5508 } 5509 5510 udelay(500); 5511 count++; 5512 } while (--cntdn); 5513 5514 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 5515 __func__, count, int_status); 5516 return -EFAULT; 5517 5518 } 5519 5520 /** 5521 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell. 5522 * @ioc: per adapter object 5523 * @timeout: timeout in second 5524 * 5525 * Return: 0 for success, non-zero for failure. 5526 * 5527 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to 5528 * doorbell. 5529 */ 5530 static int 5531 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout) 5532 { 5533 u32 cntdn, count; 5534 u32 int_status; 5535 u32 doorbell; 5536 5537 count = 0; 5538 cntdn = 1000 * timeout; 5539 do { 5540 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 5541 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) { 5542 dhsprintk(ioc, 5543 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 5544 __func__, count, timeout)); 5545 return 0; 5546 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 5547 doorbell = ioc->base_readl(&ioc->chip->Doorbell); 5548 if ((doorbell & MPI2_IOC_STATE_MASK) == 5549 MPI2_IOC_STATE_FAULT) { 5550 mpt3sas_base_fault_info(ioc , doorbell); 5551 return -EFAULT; 5552 } 5553 } else if (int_status == 0xFFFFFFFF) 5554 goto out; 5555 5556 usleep_range(1000, 1500); 5557 count++; 5558 } while (--cntdn); 5559 5560 out: 5561 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 5562 __func__, count, int_status); 5563 return -EFAULT; 5564 } 5565 5566 /** 5567 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use 5568 * @ioc: per adapter object 5569 * @timeout: timeout in second 5570 * 5571 * Return: 0 for success, non-zero for failure. 5572 */ 5573 static int 5574 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout) 5575 { 5576 u32 cntdn, count; 5577 u32 doorbell_reg; 5578 5579 count = 0; 5580 cntdn = 1000 * timeout; 5581 do { 5582 doorbell_reg = ioc->base_readl(&ioc->chip->Doorbell); 5583 if (!(doorbell_reg & MPI2_DOORBELL_USED)) { 5584 dhsprintk(ioc, 5585 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 5586 __func__, count, timeout)); 5587 return 0; 5588 } 5589 5590 usleep_range(1000, 1500); 5591 count++; 5592 } while (--cntdn); 5593 5594 ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n", 5595 __func__, count, doorbell_reg); 5596 return -EFAULT; 5597 } 5598 5599 /** 5600 * _base_send_ioc_reset - send doorbell reset 5601 * @ioc: per adapter object 5602 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET 5603 * @timeout: timeout in second 5604 * 5605 * Return: 0 for success, non-zero for failure. 5606 */ 5607 static int 5608 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout) 5609 { 5610 u32 ioc_state; 5611 int r = 0; 5612 5613 if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) { 5614 ioc_err(ioc, "%s: unknown reset_type\n", __func__); 5615 return -EFAULT; 5616 } 5617 5618 if (!(ioc->facts.IOCCapabilities & 5619 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY)) 5620 return -EFAULT; 5621 5622 ioc_info(ioc, "sending message unit reset !!\n"); 5623 5624 writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT, 5625 &ioc->chip->Doorbell); 5626 if ((_base_wait_for_doorbell_ack(ioc, 15))) { 5627 r = -EFAULT; 5628 goto out; 5629 } 5630 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout); 5631 if (ioc_state) { 5632 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 5633 __func__, ioc_state); 5634 r = -EFAULT; 5635 goto out; 5636 } 5637 out: 5638 ioc_info(ioc, "message unit reset: %s\n", 5639 r == 0 ? "SUCCESS" : "FAILED"); 5640 return r; 5641 } 5642 5643 /** 5644 * mpt3sas_wait_for_ioc - IOC's operational state is checked here. 5645 * @ioc: per adapter object 5646 * @wait_count: timeout in seconds 5647 * 5648 * Return: Waits up to timeout seconds for the IOC to 5649 * become operational. Returns 0 if IOC is present 5650 * and operational; otherwise returns -EFAULT. 5651 */ 5652 5653 int 5654 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout) 5655 { 5656 int wait_state_count = 0; 5657 u32 ioc_state; 5658 5659 do { 5660 ioc_state = mpt3sas_base_get_iocstate(ioc, 1); 5661 if (ioc_state == MPI2_IOC_STATE_OPERATIONAL) 5662 break; 5663 ssleep(1); 5664 ioc_info(ioc, "%s: waiting for operational state(count=%d)\n", 5665 __func__, ++wait_state_count); 5666 } while (--timeout); 5667 if (!timeout) { 5668 ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__); 5669 return -EFAULT; 5670 } 5671 if (wait_state_count) 5672 ioc_info(ioc, "ioc is operational\n"); 5673 return 0; 5674 } 5675 5676 /** 5677 * _base_handshake_req_reply_wait - send request thru doorbell interface 5678 * @ioc: per adapter object 5679 * @request_bytes: request length 5680 * @request: pointer having request payload 5681 * @reply_bytes: reply length 5682 * @reply: pointer to reply payload 5683 * @timeout: timeout in second 5684 * 5685 * Return: 0 for success, non-zero for failure. 5686 */ 5687 static int 5688 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes, 5689 u32 *request, int reply_bytes, u16 *reply, int timeout) 5690 { 5691 MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply; 5692 int i; 5693 u8 failed; 5694 __le32 *mfp; 5695 5696 /* make sure doorbell is not in use */ 5697 if ((ioc->base_readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) { 5698 ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__); 5699 return -EFAULT; 5700 } 5701 5702 /* clear pending doorbell interrupts from previous state changes */ 5703 if (ioc->base_readl(&ioc->chip->HostInterruptStatus) & 5704 MPI2_HIS_IOC2SYS_DB_STATUS) 5705 writel(0, &ioc->chip->HostInterruptStatus); 5706 5707 /* send message to ioc */ 5708 writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) | 5709 ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)), 5710 &ioc->chip->Doorbell); 5711 5712 if ((_base_spin_on_doorbell_int(ioc, 5))) { 5713 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 5714 __LINE__); 5715 return -EFAULT; 5716 } 5717 writel(0, &ioc->chip->HostInterruptStatus); 5718 5719 if ((_base_wait_for_doorbell_ack(ioc, 5))) { 5720 ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n", 5721 __LINE__); 5722 return -EFAULT; 5723 } 5724 5725 /* send message 32-bits at a time */ 5726 for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) { 5727 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell); 5728 if ((_base_wait_for_doorbell_ack(ioc, 5))) 5729 failed = 1; 5730 } 5731 5732 if (failed) { 5733 ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n", 5734 __LINE__); 5735 return -EFAULT; 5736 } 5737 5738 /* now wait for the reply */ 5739 if ((_base_wait_for_doorbell_int(ioc, timeout))) { 5740 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 5741 __LINE__); 5742 return -EFAULT; 5743 } 5744 5745 /* read the first two 16-bits, it gives the total length of the reply */ 5746 reply[0] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell) 5747 & MPI2_DOORBELL_DATA_MASK); 5748 writel(0, &ioc->chip->HostInterruptStatus); 5749 if ((_base_wait_for_doorbell_int(ioc, 5))) { 5750 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 5751 __LINE__); 5752 return -EFAULT; 5753 } 5754 reply[1] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell) 5755 & MPI2_DOORBELL_DATA_MASK); 5756 writel(0, &ioc->chip->HostInterruptStatus); 5757 5758 for (i = 2; i < default_reply->MsgLength * 2; i++) { 5759 if ((_base_wait_for_doorbell_int(ioc, 5))) { 5760 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 5761 __LINE__); 5762 return -EFAULT; 5763 } 5764 if (i >= reply_bytes/2) /* overflow case */ 5765 ioc->base_readl(&ioc->chip->Doorbell); 5766 else 5767 reply[i] = le16_to_cpu( 5768 ioc->base_readl(&ioc->chip->Doorbell) 5769 & MPI2_DOORBELL_DATA_MASK); 5770 writel(0, &ioc->chip->HostInterruptStatus); 5771 } 5772 5773 _base_wait_for_doorbell_int(ioc, 5); 5774 if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) { 5775 dhsprintk(ioc, 5776 ioc_info(ioc, "doorbell is in use (line=%d)\n", 5777 __LINE__)); 5778 } 5779 writel(0, &ioc->chip->HostInterruptStatus); 5780 5781 if (ioc->logging_level & MPT_DEBUG_INIT) { 5782 mfp = (__le32 *)reply; 5783 pr_info("\toffset:data\n"); 5784 for (i = 0; i < reply_bytes/4; i++) 5785 pr_info("\t[0x%02x]:%08x\n", i*4, 5786 le32_to_cpu(mfp[i])); 5787 } 5788 return 0; 5789 } 5790 5791 /** 5792 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW 5793 * @ioc: per adapter object 5794 * @mpi_reply: the reply payload from FW 5795 * @mpi_request: the request payload sent to FW 5796 * 5797 * The SAS IO Unit Control Request message allows the host to perform low-level 5798 * operations, such as resets on the PHYs of the IO Unit, also allows the host 5799 * to obtain the IOC assigned device handles for a device if it has other 5800 * identifying information about the device, in addition allows the host to 5801 * remove IOC resources associated with the device. 5802 * 5803 * Return: 0 for success, non-zero for failure. 5804 */ 5805 int 5806 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc, 5807 Mpi2SasIoUnitControlReply_t *mpi_reply, 5808 Mpi2SasIoUnitControlRequest_t *mpi_request) 5809 { 5810 u16 smid; 5811 u8 issue_reset = 0; 5812 int rc; 5813 void *request; 5814 5815 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 5816 5817 mutex_lock(&ioc->base_cmds.mutex); 5818 5819 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) { 5820 ioc_err(ioc, "%s: base_cmd in use\n", __func__); 5821 rc = -EAGAIN; 5822 goto out; 5823 } 5824 5825 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT); 5826 if (rc) 5827 goto out; 5828 5829 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 5830 if (!smid) { 5831 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 5832 rc = -EAGAIN; 5833 goto out; 5834 } 5835 5836 rc = 0; 5837 ioc->base_cmds.status = MPT3_CMD_PENDING; 5838 request = mpt3sas_base_get_msg_frame(ioc, smid); 5839 ioc->base_cmds.smid = smid; 5840 memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)); 5841 if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET || 5842 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) 5843 ioc->ioc_link_reset_in_progress = 1; 5844 init_completion(&ioc->base_cmds.done); 5845 ioc->put_smid_default(ioc, smid); 5846 wait_for_completion_timeout(&ioc->base_cmds.done, 5847 msecs_to_jiffies(10000)); 5848 if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET || 5849 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) && 5850 ioc->ioc_link_reset_in_progress) 5851 ioc->ioc_link_reset_in_progress = 0; 5852 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 5853 issue_reset = 5854 mpt3sas_base_check_cmd_timeout(ioc, 5855 ioc->base_cmds.status, mpi_request, 5856 sizeof(Mpi2SasIoUnitControlRequest_t)/4); 5857 goto issue_host_reset; 5858 } 5859 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) 5860 memcpy(mpi_reply, ioc->base_cmds.reply, 5861 sizeof(Mpi2SasIoUnitControlReply_t)); 5862 else 5863 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t)); 5864 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 5865 goto out; 5866 5867 issue_host_reset: 5868 if (issue_reset) 5869 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 5870 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 5871 rc = -EFAULT; 5872 out: 5873 mutex_unlock(&ioc->base_cmds.mutex); 5874 return rc; 5875 } 5876 5877 /** 5878 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device 5879 * @ioc: per adapter object 5880 * @mpi_reply: the reply payload from FW 5881 * @mpi_request: the request payload sent to FW 5882 * 5883 * The SCSI Enclosure Processor request message causes the IOC to 5884 * communicate with SES devices to control LED status signals. 5885 * 5886 * Return: 0 for success, non-zero for failure. 5887 */ 5888 int 5889 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc, 5890 Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request) 5891 { 5892 u16 smid; 5893 u8 issue_reset = 0; 5894 int rc; 5895 void *request; 5896 5897 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 5898 5899 mutex_lock(&ioc->base_cmds.mutex); 5900 5901 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) { 5902 ioc_err(ioc, "%s: base_cmd in use\n", __func__); 5903 rc = -EAGAIN; 5904 goto out; 5905 } 5906 5907 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT); 5908 if (rc) 5909 goto out; 5910 5911 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 5912 if (!smid) { 5913 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 5914 rc = -EAGAIN; 5915 goto out; 5916 } 5917 5918 rc = 0; 5919 ioc->base_cmds.status = MPT3_CMD_PENDING; 5920 request = mpt3sas_base_get_msg_frame(ioc, smid); 5921 ioc->base_cmds.smid = smid; 5922 memset(request, 0, ioc->request_sz); 5923 memcpy(request, mpi_request, sizeof(Mpi2SepReply_t)); 5924 init_completion(&ioc->base_cmds.done); 5925 ioc->put_smid_default(ioc, smid); 5926 wait_for_completion_timeout(&ioc->base_cmds.done, 5927 msecs_to_jiffies(10000)); 5928 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 5929 issue_reset = 5930 mpt3sas_base_check_cmd_timeout(ioc, 5931 ioc->base_cmds.status, mpi_request, 5932 sizeof(Mpi2SepRequest_t)/4); 5933 goto issue_host_reset; 5934 } 5935 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) 5936 memcpy(mpi_reply, ioc->base_cmds.reply, 5937 sizeof(Mpi2SepReply_t)); 5938 else 5939 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t)); 5940 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 5941 goto out; 5942 5943 issue_host_reset: 5944 if (issue_reset) 5945 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 5946 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 5947 rc = -EFAULT; 5948 out: 5949 mutex_unlock(&ioc->base_cmds.mutex); 5950 return rc; 5951 } 5952 5953 /** 5954 * _base_get_port_facts - obtain port facts reply and save in ioc 5955 * @ioc: per adapter object 5956 * @port: ? 5957 * 5958 * Return: 0 for success, non-zero for failure. 5959 */ 5960 static int 5961 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port) 5962 { 5963 Mpi2PortFactsRequest_t mpi_request; 5964 Mpi2PortFactsReply_t mpi_reply; 5965 struct mpt3sas_port_facts *pfacts; 5966 int mpi_reply_sz, mpi_request_sz, r; 5967 5968 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 5969 5970 mpi_reply_sz = sizeof(Mpi2PortFactsReply_t); 5971 mpi_request_sz = sizeof(Mpi2PortFactsRequest_t); 5972 memset(&mpi_request, 0, mpi_request_sz); 5973 mpi_request.Function = MPI2_FUNCTION_PORT_FACTS; 5974 mpi_request.PortNumber = port; 5975 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz, 5976 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5); 5977 5978 if (r != 0) { 5979 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 5980 return r; 5981 } 5982 5983 pfacts = &ioc->pfacts[port]; 5984 memset(pfacts, 0, sizeof(struct mpt3sas_port_facts)); 5985 pfacts->PortNumber = mpi_reply.PortNumber; 5986 pfacts->VP_ID = mpi_reply.VP_ID; 5987 pfacts->VF_ID = mpi_reply.VF_ID; 5988 pfacts->MaxPostedCmdBuffers = 5989 le16_to_cpu(mpi_reply.MaxPostedCmdBuffers); 5990 5991 return 0; 5992 } 5993 5994 /** 5995 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL 5996 * @ioc: per adapter object 5997 * @timeout: 5998 * 5999 * Return: 0 for success, non-zero for failure. 6000 */ 6001 static int 6002 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout) 6003 { 6004 u32 ioc_state; 6005 int rc; 6006 6007 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6008 6009 if (ioc->pci_error_recovery) { 6010 dfailprintk(ioc, 6011 ioc_info(ioc, "%s: host in pci error recovery\n", 6012 __func__)); 6013 return -EFAULT; 6014 } 6015 6016 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 6017 dhsprintk(ioc, 6018 ioc_info(ioc, "%s: ioc_state(0x%08x)\n", 6019 __func__, ioc_state)); 6020 6021 if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) || 6022 (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL) 6023 return 0; 6024 6025 if (ioc_state & MPI2_DOORBELL_USED) { 6026 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n")); 6027 goto issue_diag_reset; 6028 } 6029 6030 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 6031 mpt3sas_base_fault_info(ioc, ioc_state & 6032 MPI2_DOORBELL_DATA_MASK); 6033 goto issue_diag_reset; 6034 } 6035 6036 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout); 6037 if (ioc_state) { 6038 dfailprintk(ioc, 6039 ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 6040 __func__, ioc_state)); 6041 return -EFAULT; 6042 } 6043 6044 issue_diag_reset: 6045 rc = _base_diag_reset(ioc); 6046 return rc; 6047 } 6048 6049 /** 6050 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc 6051 * @ioc: per adapter object 6052 * 6053 * Return: 0 for success, non-zero for failure. 6054 */ 6055 static int 6056 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc) 6057 { 6058 Mpi2IOCFactsRequest_t mpi_request; 6059 Mpi2IOCFactsReply_t mpi_reply; 6060 struct mpt3sas_facts *facts; 6061 int mpi_reply_sz, mpi_request_sz, r; 6062 6063 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6064 6065 r = _base_wait_for_iocstate(ioc, 10); 6066 if (r) { 6067 dfailprintk(ioc, 6068 ioc_info(ioc, "%s: failed getting to correct state\n", 6069 __func__)); 6070 return r; 6071 } 6072 mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t); 6073 mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t); 6074 memset(&mpi_request, 0, mpi_request_sz); 6075 mpi_request.Function = MPI2_FUNCTION_IOC_FACTS; 6076 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz, 6077 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5); 6078 6079 if (r != 0) { 6080 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 6081 return r; 6082 } 6083 6084 facts = &ioc->facts; 6085 memset(facts, 0, sizeof(struct mpt3sas_facts)); 6086 facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion); 6087 facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion); 6088 facts->VP_ID = mpi_reply.VP_ID; 6089 facts->VF_ID = mpi_reply.VF_ID; 6090 facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions); 6091 facts->MaxChainDepth = mpi_reply.MaxChainDepth; 6092 facts->WhoInit = mpi_reply.WhoInit; 6093 facts->NumberOfPorts = mpi_reply.NumberOfPorts; 6094 facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors; 6095 if (ioc->msix_enable && (facts->MaxMSIxVectors <= 6096 MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc))) 6097 ioc->combined_reply_queue = 0; 6098 facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit); 6099 facts->MaxReplyDescriptorPostQueueDepth = 6100 le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth); 6101 facts->ProductID = le16_to_cpu(mpi_reply.ProductID); 6102 facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities); 6103 if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)) 6104 ioc->ir_firmware = 1; 6105 if ((facts->IOCCapabilities & 6106 MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices)) 6107 ioc->rdpq_array_capable = 1; 6108 if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ) 6109 && ioc->is_aero_ioc) 6110 ioc->atomic_desc_capable = 1; 6111 facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word); 6112 facts->IOCRequestFrameSize = 6113 le16_to_cpu(mpi_reply.IOCRequestFrameSize); 6114 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 6115 facts->IOCMaxChainSegmentSize = 6116 le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize); 6117 } 6118 facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators); 6119 facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets); 6120 ioc->shost->max_id = -1; 6121 facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders); 6122 facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures); 6123 facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags); 6124 facts->HighPriorityCredit = 6125 le16_to_cpu(mpi_reply.HighPriorityCredit); 6126 facts->ReplyFrameSize = mpi_reply.ReplyFrameSize; 6127 facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle); 6128 facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize; 6129 6130 /* 6131 * Get the Page Size from IOC Facts. If it's 0, default to 4k. 6132 */ 6133 ioc->page_size = 1 << facts->CurrentHostPageSize; 6134 if (ioc->page_size == 1) { 6135 ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n"); 6136 ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K; 6137 } 6138 dinitprintk(ioc, 6139 ioc_info(ioc, "CurrentHostPageSize(%d)\n", 6140 facts->CurrentHostPageSize)); 6141 6142 dinitprintk(ioc, 6143 ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n", 6144 facts->RequestCredit, facts->MaxChainDepth)); 6145 dinitprintk(ioc, 6146 ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n", 6147 facts->IOCRequestFrameSize * 4, 6148 facts->ReplyFrameSize * 4)); 6149 return 0; 6150 } 6151 6152 /** 6153 * _base_send_ioc_init - send ioc_init to firmware 6154 * @ioc: per adapter object 6155 * 6156 * Return: 0 for success, non-zero for failure. 6157 */ 6158 static int 6159 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc) 6160 { 6161 Mpi2IOCInitRequest_t mpi_request; 6162 Mpi2IOCInitReply_t mpi_reply; 6163 int i, r = 0; 6164 ktime_t current_time; 6165 u16 ioc_status; 6166 u32 reply_post_free_array_sz = 0; 6167 6168 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6169 6170 memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t)); 6171 mpi_request.Function = MPI2_FUNCTION_IOC_INIT; 6172 mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER; 6173 mpi_request.VF_ID = 0; /* TODO */ 6174 mpi_request.VP_ID = 0; 6175 mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged); 6176 mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION); 6177 mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K; 6178 6179 if (_base_is_controller_msix_enabled(ioc)) 6180 mpi_request.HostMSIxVectors = ioc->reply_queue_count; 6181 mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4); 6182 mpi_request.ReplyDescriptorPostQueueDepth = 6183 cpu_to_le16(ioc->reply_post_queue_depth); 6184 mpi_request.ReplyFreeQueueDepth = 6185 cpu_to_le16(ioc->reply_free_queue_depth); 6186 6187 mpi_request.SenseBufferAddressHigh = 6188 cpu_to_le32((u64)ioc->sense_dma >> 32); 6189 mpi_request.SystemReplyAddressHigh = 6190 cpu_to_le32((u64)ioc->reply_dma >> 32); 6191 mpi_request.SystemRequestFrameBaseAddress = 6192 cpu_to_le64((u64)ioc->request_dma); 6193 mpi_request.ReplyFreeQueueAddress = 6194 cpu_to_le64((u64)ioc->reply_free_dma); 6195 6196 if (ioc->rdpq_array_enable) { 6197 reply_post_free_array_sz = ioc->reply_queue_count * 6198 sizeof(Mpi2IOCInitRDPQArrayEntry); 6199 memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz); 6200 for (i = 0; i < ioc->reply_queue_count; i++) 6201 ioc->reply_post_free_array[i].RDPQBaseAddress = 6202 cpu_to_le64( 6203 (u64)ioc->reply_post[i].reply_post_free_dma); 6204 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE; 6205 mpi_request.ReplyDescriptorPostQueueAddress = 6206 cpu_to_le64((u64)ioc->reply_post_free_array_dma); 6207 } else { 6208 mpi_request.ReplyDescriptorPostQueueAddress = 6209 cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma); 6210 } 6211 6212 /* This time stamp specifies number of milliseconds 6213 * since epoch ~ midnight January 1, 1970. 6214 */ 6215 current_time = ktime_get_real(); 6216 mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time)); 6217 6218 if (ioc->logging_level & MPT_DEBUG_INIT) { 6219 __le32 *mfp; 6220 int i; 6221 6222 mfp = (__le32 *)&mpi_request; 6223 pr_info("\toffset:data\n"); 6224 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++) 6225 pr_info("\t[0x%02x]:%08x\n", i*4, 6226 le32_to_cpu(mfp[i])); 6227 } 6228 6229 r = _base_handshake_req_reply_wait(ioc, 6230 sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request, 6231 sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10); 6232 6233 if (r != 0) { 6234 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 6235 return r; 6236 } 6237 6238 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK; 6239 if (ioc_status != MPI2_IOCSTATUS_SUCCESS || 6240 mpi_reply.IOCLogInfo) { 6241 ioc_err(ioc, "%s: failed\n", __func__); 6242 r = -EIO; 6243 } 6244 6245 return r; 6246 } 6247 6248 /** 6249 * mpt3sas_port_enable_done - command completion routine for port enable 6250 * @ioc: per adapter object 6251 * @smid: system request message index 6252 * @msix_index: MSIX table index supplied by the OS 6253 * @reply: reply message frame(lower 32bit addr) 6254 * 6255 * Return: 1 meaning mf should be freed from _base_interrupt 6256 * 0 means the mf is freed from this function. 6257 */ 6258 u8 6259 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 6260 u32 reply) 6261 { 6262 MPI2DefaultReply_t *mpi_reply; 6263 u16 ioc_status; 6264 6265 if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED) 6266 return 1; 6267 6268 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 6269 if (!mpi_reply) 6270 return 1; 6271 6272 if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE) 6273 return 1; 6274 6275 ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING; 6276 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE; 6277 ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID; 6278 memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4); 6279 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 6280 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) 6281 ioc->port_enable_failed = 1; 6282 6283 if (ioc->is_driver_loading) { 6284 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 6285 mpt3sas_port_enable_complete(ioc); 6286 return 1; 6287 } else { 6288 ioc->start_scan_failed = ioc_status; 6289 ioc->start_scan = 0; 6290 return 1; 6291 } 6292 } 6293 complete(&ioc->port_enable_cmds.done); 6294 return 1; 6295 } 6296 6297 /** 6298 * _base_send_port_enable - send port_enable(discovery stuff) to firmware 6299 * @ioc: per adapter object 6300 * 6301 * Return: 0 for success, non-zero for failure. 6302 */ 6303 static int 6304 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc) 6305 { 6306 Mpi2PortEnableRequest_t *mpi_request; 6307 Mpi2PortEnableReply_t *mpi_reply; 6308 int r = 0; 6309 u16 smid; 6310 u16 ioc_status; 6311 6312 ioc_info(ioc, "sending port enable !!\n"); 6313 6314 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 6315 ioc_err(ioc, "%s: internal command already in use\n", __func__); 6316 return -EAGAIN; 6317 } 6318 6319 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx); 6320 if (!smid) { 6321 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 6322 return -EAGAIN; 6323 } 6324 6325 ioc->port_enable_cmds.status = MPT3_CMD_PENDING; 6326 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 6327 ioc->port_enable_cmds.smid = smid; 6328 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t)); 6329 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE; 6330 6331 init_completion(&ioc->port_enable_cmds.done); 6332 ioc->put_smid_default(ioc, smid); 6333 wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ); 6334 if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) { 6335 ioc_err(ioc, "%s: timeout\n", __func__); 6336 _debug_dump_mf(mpi_request, 6337 sizeof(Mpi2PortEnableRequest_t)/4); 6338 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET) 6339 r = -EFAULT; 6340 else 6341 r = -ETIME; 6342 goto out; 6343 } 6344 6345 mpi_reply = ioc->port_enable_cmds.reply; 6346 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 6347 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 6348 ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n", 6349 __func__, ioc_status); 6350 r = -EFAULT; 6351 goto out; 6352 } 6353 6354 out: 6355 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED; 6356 ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED"); 6357 return r; 6358 } 6359 6360 /** 6361 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply) 6362 * @ioc: per adapter object 6363 * 6364 * Return: 0 for success, non-zero for failure. 6365 */ 6366 int 6367 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc) 6368 { 6369 Mpi2PortEnableRequest_t *mpi_request; 6370 u16 smid; 6371 6372 ioc_info(ioc, "sending port enable !!\n"); 6373 6374 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 6375 ioc_err(ioc, "%s: internal command already in use\n", __func__); 6376 return -EAGAIN; 6377 } 6378 6379 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx); 6380 if (!smid) { 6381 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 6382 return -EAGAIN; 6383 } 6384 6385 ioc->port_enable_cmds.status = MPT3_CMD_PENDING; 6386 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 6387 ioc->port_enable_cmds.smid = smid; 6388 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t)); 6389 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE; 6390 6391 ioc->put_smid_default(ioc, smid); 6392 return 0; 6393 } 6394 6395 /** 6396 * _base_determine_wait_on_discovery - desposition 6397 * @ioc: per adapter object 6398 * 6399 * Decide whether to wait on discovery to complete. Used to either 6400 * locate boot device, or report volumes ahead of physical devices. 6401 * 6402 * Return: 1 for wait, 0 for don't wait. 6403 */ 6404 static int 6405 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc) 6406 { 6407 /* We wait for discovery to complete if IR firmware is loaded. 6408 * The sas topology events arrive before PD events, so we need time to 6409 * turn on the bit in ioc->pd_handles to indicate PD 6410 * Also, it maybe required to report Volumes ahead of physical 6411 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set. 6412 */ 6413 if (ioc->ir_firmware) 6414 return 1; 6415 6416 /* if no Bios, then we don't need to wait */ 6417 if (!ioc->bios_pg3.BiosVersion) 6418 return 0; 6419 6420 /* Bios is present, then we drop down here. 6421 * 6422 * If there any entries in the Bios Page 2, then we wait 6423 * for discovery to complete. 6424 */ 6425 6426 /* Current Boot Device */ 6427 if ((ioc->bios_pg2.CurrentBootDeviceForm & 6428 MPI2_BIOSPAGE2_FORM_MASK) == 6429 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED && 6430 /* Request Boot Device */ 6431 (ioc->bios_pg2.ReqBootDeviceForm & 6432 MPI2_BIOSPAGE2_FORM_MASK) == 6433 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED && 6434 /* Alternate Request Boot Device */ 6435 (ioc->bios_pg2.ReqAltBootDeviceForm & 6436 MPI2_BIOSPAGE2_FORM_MASK) == 6437 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED) 6438 return 0; 6439 6440 return 1; 6441 } 6442 6443 /** 6444 * _base_unmask_events - turn on notification for this event 6445 * @ioc: per adapter object 6446 * @event: firmware event 6447 * 6448 * The mask is stored in ioc->event_masks. 6449 */ 6450 static void 6451 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event) 6452 { 6453 u32 desired_event; 6454 6455 if (event >= 128) 6456 return; 6457 6458 desired_event = (1 << (event % 32)); 6459 6460 if (event < 32) 6461 ioc->event_masks[0] &= ~desired_event; 6462 else if (event < 64) 6463 ioc->event_masks[1] &= ~desired_event; 6464 else if (event < 96) 6465 ioc->event_masks[2] &= ~desired_event; 6466 else if (event < 128) 6467 ioc->event_masks[3] &= ~desired_event; 6468 } 6469 6470 /** 6471 * _base_event_notification - send event notification 6472 * @ioc: per adapter object 6473 * 6474 * Return: 0 for success, non-zero for failure. 6475 */ 6476 static int 6477 _base_event_notification(struct MPT3SAS_ADAPTER *ioc) 6478 { 6479 Mpi2EventNotificationRequest_t *mpi_request; 6480 u16 smid; 6481 int r = 0; 6482 int i; 6483 6484 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6485 6486 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 6487 ioc_err(ioc, "%s: internal command already in use\n", __func__); 6488 return -EAGAIN; 6489 } 6490 6491 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 6492 if (!smid) { 6493 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 6494 return -EAGAIN; 6495 } 6496 ioc->base_cmds.status = MPT3_CMD_PENDING; 6497 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 6498 ioc->base_cmds.smid = smid; 6499 memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t)); 6500 mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION; 6501 mpi_request->VF_ID = 0; /* TODO */ 6502 mpi_request->VP_ID = 0; 6503 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 6504 mpi_request->EventMasks[i] = 6505 cpu_to_le32(ioc->event_masks[i]); 6506 init_completion(&ioc->base_cmds.done); 6507 ioc->put_smid_default(ioc, smid); 6508 wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ); 6509 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 6510 ioc_err(ioc, "%s: timeout\n", __func__); 6511 _debug_dump_mf(mpi_request, 6512 sizeof(Mpi2EventNotificationRequest_t)/4); 6513 if (ioc->base_cmds.status & MPT3_CMD_RESET) 6514 r = -EFAULT; 6515 else 6516 r = -ETIME; 6517 } else 6518 dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__)); 6519 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 6520 return r; 6521 } 6522 6523 /** 6524 * mpt3sas_base_validate_event_type - validating event types 6525 * @ioc: per adapter object 6526 * @event_type: firmware event 6527 * 6528 * This will turn on firmware event notification when application 6529 * ask for that event. We don't mask events that are already enabled. 6530 */ 6531 void 6532 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type) 6533 { 6534 int i, j; 6535 u32 event_mask, desired_event; 6536 u8 send_update_to_fw; 6537 6538 for (i = 0, send_update_to_fw = 0; i < 6539 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) { 6540 event_mask = ~event_type[i]; 6541 desired_event = 1; 6542 for (j = 0; j < 32; j++) { 6543 if (!(event_mask & desired_event) && 6544 (ioc->event_masks[i] & desired_event)) { 6545 ioc->event_masks[i] &= ~desired_event; 6546 send_update_to_fw = 1; 6547 } 6548 desired_event = (desired_event << 1); 6549 } 6550 } 6551 6552 if (!send_update_to_fw) 6553 return; 6554 6555 mutex_lock(&ioc->base_cmds.mutex); 6556 _base_event_notification(ioc); 6557 mutex_unlock(&ioc->base_cmds.mutex); 6558 } 6559 6560 /** 6561 * _base_diag_reset - the "big hammer" start of day reset 6562 * @ioc: per adapter object 6563 * 6564 * Return: 0 for success, non-zero for failure. 6565 */ 6566 static int 6567 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc) 6568 { 6569 u32 host_diagnostic; 6570 u32 ioc_state; 6571 u32 count; 6572 u32 hcb_size; 6573 6574 ioc_info(ioc, "sending diag reset !!\n"); 6575 6576 drsprintk(ioc, ioc_info(ioc, "clear interrupts\n")); 6577 6578 count = 0; 6579 do { 6580 /* Write magic sequence to WriteSequence register 6581 * Loop until in diagnostic mode 6582 */ 6583 drsprintk(ioc, ioc_info(ioc, "write magic sequence\n")); 6584 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence); 6585 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence); 6586 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence); 6587 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence); 6588 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence); 6589 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence); 6590 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence); 6591 6592 /* wait 100 msec */ 6593 msleep(100); 6594 6595 if (count++ > 20) 6596 goto out; 6597 6598 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic); 6599 drsprintk(ioc, 6600 ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n", 6601 count, host_diagnostic)); 6602 6603 } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0); 6604 6605 hcb_size = ioc->base_readl(&ioc->chip->HCBSize); 6606 6607 drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n")); 6608 writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER, 6609 &ioc->chip->HostDiagnostic); 6610 6611 /*This delay allows the chip PCIe hardware time to finish reset tasks*/ 6612 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000); 6613 6614 /* Approximately 300 second max wait */ 6615 for (count = 0; count < (300000000 / 6616 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) { 6617 6618 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic); 6619 6620 if (host_diagnostic == 0xFFFFFFFF) 6621 goto out; 6622 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER)) 6623 break; 6624 6625 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000); 6626 } 6627 6628 if (host_diagnostic & MPI2_DIAG_HCB_MODE) { 6629 6630 drsprintk(ioc, 6631 ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n")); 6632 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK; 6633 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW; 6634 writel(host_diagnostic, &ioc->chip->HostDiagnostic); 6635 6636 drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n")); 6637 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE, 6638 &ioc->chip->HCBSize); 6639 } 6640 6641 drsprintk(ioc, ioc_info(ioc, "restart the adapter\n")); 6642 writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET, 6643 &ioc->chip->HostDiagnostic); 6644 6645 drsprintk(ioc, 6646 ioc_info(ioc, "disable writes to the diagnostic register\n")); 6647 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence); 6648 6649 drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n")); 6650 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20); 6651 if (ioc_state) { 6652 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 6653 __func__, ioc_state); 6654 goto out; 6655 } 6656 6657 ioc_info(ioc, "diag reset: SUCCESS\n"); 6658 return 0; 6659 6660 out: 6661 ioc_err(ioc, "diag reset: FAILED\n"); 6662 return -EFAULT; 6663 } 6664 6665 /** 6666 * _base_make_ioc_ready - put controller in READY state 6667 * @ioc: per adapter object 6668 * @type: FORCE_BIG_HAMMER or SOFT_RESET 6669 * 6670 * Return: 0 for success, non-zero for failure. 6671 */ 6672 static int 6673 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type) 6674 { 6675 u32 ioc_state; 6676 int rc; 6677 int count; 6678 6679 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6680 6681 if (ioc->pci_error_recovery) 6682 return 0; 6683 6684 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 6685 dhsprintk(ioc, 6686 ioc_info(ioc, "%s: ioc_state(0x%08x)\n", 6687 __func__, ioc_state)); 6688 6689 /* if in RESET state, it should move to READY state shortly */ 6690 count = 0; 6691 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) { 6692 while ((ioc_state & MPI2_IOC_STATE_MASK) != 6693 MPI2_IOC_STATE_READY) { 6694 if (count++ == 10) { 6695 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 6696 __func__, ioc_state); 6697 return -EFAULT; 6698 } 6699 ssleep(1); 6700 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 6701 } 6702 } 6703 6704 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) 6705 return 0; 6706 6707 if (ioc_state & MPI2_DOORBELL_USED) { 6708 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n")); 6709 goto issue_diag_reset; 6710 } 6711 6712 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 6713 mpt3sas_base_fault_info(ioc, ioc_state & 6714 MPI2_DOORBELL_DATA_MASK); 6715 goto issue_diag_reset; 6716 } 6717 6718 if (type == FORCE_BIG_HAMMER) 6719 goto issue_diag_reset; 6720 6721 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL) 6722 if (!(_base_send_ioc_reset(ioc, 6723 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) { 6724 return 0; 6725 } 6726 6727 issue_diag_reset: 6728 rc = _base_diag_reset(ioc); 6729 return rc; 6730 } 6731 6732 /** 6733 * _base_make_ioc_operational - put controller in OPERATIONAL state 6734 * @ioc: per adapter object 6735 * 6736 * Return: 0 for success, non-zero for failure. 6737 */ 6738 static int 6739 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc) 6740 { 6741 int r, i, index, rc; 6742 unsigned long flags; 6743 u32 reply_address; 6744 u16 smid; 6745 struct _tr_list *delayed_tr, *delayed_tr_next; 6746 struct _sc_list *delayed_sc, *delayed_sc_next; 6747 struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next; 6748 u8 hide_flag; 6749 struct adapter_reply_queue *reply_q; 6750 Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig; 6751 6752 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6753 6754 /* clean the delayed target reset list */ 6755 list_for_each_entry_safe(delayed_tr, delayed_tr_next, 6756 &ioc->delayed_tr_list, list) { 6757 list_del(&delayed_tr->list); 6758 kfree(delayed_tr); 6759 } 6760 6761 6762 list_for_each_entry_safe(delayed_tr, delayed_tr_next, 6763 &ioc->delayed_tr_volume_list, list) { 6764 list_del(&delayed_tr->list); 6765 kfree(delayed_tr); 6766 } 6767 6768 list_for_each_entry_safe(delayed_sc, delayed_sc_next, 6769 &ioc->delayed_sc_list, list) { 6770 list_del(&delayed_sc->list); 6771 kfree(delayed_sc); 6772 } 6773 6774 list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next, 6775 &ioc->delayed_event_ack_list, list) { 6776 list_del(&delayed_event_ack->list); 6777 kfree(delayed_event_ack); 6778 } 6779 6780 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 6781 6782 /* hi-priority queue */ 6783 INIT_LIST_HEAD(&ioc->hpr_free_list); 6784 smid = ioc->hi_priority_smid; 6785 for (i = 0; i < ioc->hi_priority_depth; i++, smid++) { 6786 ioc->hpr_lookup[i].cb_idx = 0xFF; 6787 ioc->hpr_lookup[i].smid = smid; 6788 list_add_tail(&ioc->hpr_lookup[i].tracker_list, 6789 &ioc->hpr_free_list); 6790 } 6791 6792 /* internal queue */ 6793 INIT_LIST_HEAD(&ioc->internal_free_list); 6794 smid = ioc->internal_smid; 6795 for (i = 0; i < ioc->internal_depth; i++, smid++) { 6796 ioc->internal_lookup[i].cb_idx = 0xFF; 6797 ioc->internal_lookup[i].smid = smid; 6798 list_add_tail(&ioc->internal_lookup[i].tracker_list, 6799 &ioc->internal_free_list); 6800 } 6801 6802 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 6803 6804 /* initialize Reply Free Queue */ 6805 for (i = 0, reply_address = (u32)ioc->reply_dma ; 6806 i < ioc->reply_free_queue_depth ; i++, reply_address += 6807 ioc->reply_sz) { 6808 ioc->reply_free[i] = cpu_to_le32(reply_address); 6809 if (ioc->is_mcpu_endpoint) 6810 _base_clone_reply_to_sys_mem(ioc, 6811 reply_address, i); 6812 } 6813 6814 /* initialize reply queues */ 6815 if (ioc->is_driver_loading) 6816 _base_assign_reply_queues(ioc); 6817 6818 /* initialize Reply Post Free Queue */ 6819 index = 0; 6820 reply_post_free_contig = ioc->reply_post[0].reply_post_free; 6821 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 6822 /* 6823 * If RDPQ is enabled, switch to the next allocation. 6824 * Otherwise advance within the contiguous region. 6825 */ 6826 if (ioc->rdpq_array_enable) { 6827 reply_q->reply_post_free = 6828 ioc->reply_post[index++].reply_post_free; 6829 } else { 6830 reply_q->reply_post_free = reply_post_free_contig; 6831 reply_post_free_contig += ioc->reply_post_queue_depth; 6832 } 6833 6834 reply_q->reply_post_host_index = 0; 6835 for (i = 0; i < ioc->reply_post_queue_depth; i++) 6836 reply_q->reply_post_free[i].Words = 6837 cpu_to_le64(ULLONG_MAX); 6838 if (!_base_is_controller_msix_enabled(ioc)) 6839 goto skip_init_reply_post_free_queue; 6840 } 6841 skip_init_reply_post_free_queue: 6842 6843 r = _base_send_ioc_init(ioc); 6844 if (r) { 6845 /* 6846 * No need to check IOC state for fault state & issue 6847 * diag reset during host reset. This check is need 6848 * only during driver load time. 6849 */ 6850 if (!ioc->is_driver_loading) 6851 return r; 6852 6853 rc = _base_check_for_fault_and_issue_reset(ioc); 6854 if (rc || (_base_send_ioc_init(ioc))) 6855 return r; 6856 } 6857 6858 /* initialize reply free host index */ 6859 ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1; 6860 writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex); 6861 6862 /* initialize reply post host index */ 6863 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 6864 if (ioc->combined_reply_queue) 6865 writel((reply_q->msix_index & 7)<< 6866 MPI2_RPHI_MSIX_INDEX_SHIFT, 6867 ioc->replyPostRegisterIndex[reply_q->msix_index/8]); 6868 else 6869 writel(reply_q->msix_index << 6870 MPI2_RPHI_MSIX_INDEX_SHIFT, 6871 &ioc->chip->ReplyPostHostIndex); 6872 6873 if (!_base_is_controller_msix_enabled(ioc)) 6874 goto skip_init_reply_post_host_index; 6875 } 6876 6877 skip_init_reply_post_host_index: 6878 6879 _base_unmask_interrupts(ioc); 6880 6881 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 6882 r = _base_display_fwpkg_version(ioc); 6883 if (r) 6884 return r; 6885 } 6886 6887 _base_static_config_pages(ioc); 6888 r = _base_event_notification(ioc); 6889 if (r) 6890 return r; 6891 6892 if (ioc->is_driver_loading) { 6893 6894 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier 6895 == 0x80) { 6896 hide_flag = (u8) ( 6897 le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) & 6898 MFG_PAGE10_HIDE_SSDS_MASK); 6899 if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK) 6900 ioc->mfg_pg10_hide_flag = hide_flag; 6901 } 6902 6903 ioc->wait_for_discovery_to_complete = 6904 _base_determine_wait_on_discovery(ioc); 6905 6906 return r; /* scan_start and scan_finished support */ 6907 } 6908 6909 r = _base_send_port_enable(ioc); 6910 if (r) 6911 return r; 6912 6913 return r; 6914 } 6915 6916 /** 6917 * mpt3sas_base_free_resources - free resources controller resources 6918 * @ioc: per adapter object 6919 */ 6920 void 6921 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc) 6922 { 6923 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6924 6925 /* synchronizing freeing resource with pci_access_mutex lock */ 6926 mutex_lock(&ioc->pci_access_mutex); 6927 if (ioc->chip_phys && ioc->chip) { 6928 _base_mask_interrupts(ioc); 6929 ioc->shost_recovery = 1; 6930 _base_make_ioc_ready(ioc, SOFT_RESET); 6931 ioc->shost_recovery = 0; 6932 } 6933 6934 mpt3sas_base_unmap_resources(ioc); 6935 mutex_unlock(&ioc->pci_access_mutex); 6936 return; 6937 } 6938 6939 /** 6940 * mpt3sas_base_attach - attach controller instance 6941 * @ioc: per adapter object 6942 * 6943 * Return: 0 for success, non-zero for failure. 6944 */ 6945 int 6946 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc) 6947 { 6948 int r, i, rc; 6949 int cpu_id, last_cpu_id = 0; 6950 6951 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6952 6953 /* setup cpu_msix_table */ 6954 ioc->cpu_count = num_online_cpus(); 6955 for_each_online_cpu(cpu_id) 6956 last_cpu_id = cpu_id; 6957 ioc->cpu_msix_table_sz = last_cpu_id + 1; 6958 ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL); 6959 ioc->reply_queue_count = 1; 6960 if (!ioc->cpu_msix_table) { 6961 dfailprintk(ioc, 6962 ioc_info(ioc, "allocation for cpu_msix_table failed!!!\n")); 6963 r = -ENOMEM; 6964 goto out_free_resources; 6965 } 6966 6967 if (ioc->is_warpdrive) { 6968 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz, 6969 sizeof(resource_size_t *), GFP_KERNEL); 6970 if (!ioc->reply_post_host_index) { 6971 dfailprintk(ioc, 6972 ioc_info(ioc, "allocation for reply_post_host_index failed!!!\n")); 6973 r = -ENOMEM; 6974 goto out_free_resources; 6975 } 6976 } 6977 6978 ioc->smp_affinity_enable = smp_affinity_enable; 6979 6980 ioc->rdpq_array_enable_assigned = 0; 6981 ioc->dma_mask = 0; 6982 if (ioc->is_aero_ioc) 6983 ioc->base_readl = &_base_readl_aero; 6984 else 6985 ioc->base_readl = &_base_readl; 6986 r = mpt3sas_base_map_resources(ioc); 6987 if (r) 6988 goto out_free_resources; 6989 6990 pci_set_drvdata(ioc->pdev, ioc->shost); 6991 r = _base_get_ioc_facts(ioc); 6992 if (r) { 6993 rc = _base_check_for_fault_and_issue_reset(ioc); 6994 if (rc || (_base_get_ioc_facts(ioc))) 6995 goto out_free_resources; 6996 } 6997 6998 switch (ioc->hba_mpi_version_belonged) { 6999 case MPI2_VERSION: 7000 ioc->build_sg_scmd = &_base_build_sg_scmd; 7001 ioc->build_sg = &_base_build_sg; 7002 ioc->build_zero_len_sge = &_base_build_zero_len_sge; 7003 ioc->get_msix_index_for_smlio = &_base_get_msix_index; 7004 break; 7005 case MPI25_VERSION: 7006 case MPI26_VERSION: 7007 /* 7008 * In SAS3.0, 7009 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and 7010 * Target Status - all require the IEEE formated scatter gather 7011 * elements. 7012 */ 7013 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee; 7014 ioc->build_sg = &_base_build_sg_ieee; 7015 ioc->build_nvme_prp = &_base_build_nvme_prp; 7016 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee; 7017 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t); 7018 if (ioc->high_iops_queues) 7019 ioc->get_msix_index_for_smlio = 7020 &_base_get_high_iops_msix_index; 7021 else 7022 ioc->get_msix_index_for_smlio = &_base_get_msix_index; 7023 break; 7024 } 7025 if (ioc->atomic_desc_capable) { 7026 ioc->put_smid_default = &_base_put_smid_default_atomic; 7027 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic; 7028 ioc->put_smid_fast_path = 7029 &_base_put_smid_fast_path_atomic; 7030 ioc->put_smid_hi_priority = 7031 &_base_put_smid_hi_priority_atomic; 7032 } else { 7033 ioc->put_smid_default = &_base_put_smid_default; 7034 ioc->put_smid_fast_path = &_base_put_smid_fast_path; 7035 ioc->put_smid_hi_priority = &_base_put_smid_hi_priority; 7036 if (ioc->is_mcpu_endpoint) 7037 ioc->put_smid_scsi_io = 7038 &_base_put_smid_mpi_ep_scsi_io; 7039 else 7040 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io; 7041 } 7042 /* 7043 * These function pointers for other requests that don't 7044 * the require IEEE scatter gather elements. 7045 * 7046 * For example Configuration Pages and SAS IOUNIT Control don't. 7047 */ 7048 ioc->build_sg_mpi = &_base_build_sg; 7049 ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge; 7050 7051 r = _base_make_ioc_ready(ioc, SOFT_RESET); 7052 if (r) 7053 goto out_free_resources; 7054 7055 ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts, 7056 sizeof(struct mpt3sas_port_facts), GFP_KERNEL); 7057 if (!ioc->pfacts) { 7058 r = -ENOMEM; 7059 goto out_free_resources; 7060 } 7061 7062 for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) { 7063 r = _base_get_port_facts(ioc, i); 7064 if (r) { 7065 rc = _base_check_for_fault_and_issue_reset(ioc); 7066 if (rc || (_base_get_port_facts(ioc, i))) 7067 goto out_free_resources; 7068 } 7069 } 7070 7071 r = _base_allocate_memory_pools(ioc); 7072 if (r) 7073 goto out_free_resources; 7074 7075 if (irqpoll_weight > 0) 7076 ioc->thresh_hold = irqpoll_weight; 7077 else 7078 ioc->thresh_hold = ioc->hba_queue_depth/4; 7079 7080 _base_init_irqpolls(ioc); 7081 init_waitqueue_head(&ioc->reset_wq); 7082 7083 /* allocate memory pd handle bitmask list */ 7084 ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8); 7085 if (ioc->facts.MaxDevHandle % 8) 7086 ioc->pd_handles_sz++; 7087 ioc->pd_handles = kzalloc(ioc->pd_handles_sz, 7088 GFP_KERNEL); 7089 if (!ioc->pd_handles) { 7090 r = -ENOMEM; 7091 goto out_free_resources; 7092 } 7093 ioc->blocking_handles = kzalloc(ioc->pd_handles_sz, 7094 GFP_KERNEL); 7095 if (!ioc->blocking_handles) { 7096 r = -ENOMEM; 7097 goto out_free_resources; 7098 } 7099 7100 /* allocate memory for pending OS device add list */ 7101 ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8); 7102 if (ioc->facts.MaxDevHandle % 8) 7103 ioc->pend_os_device_add_sz++; 7104 ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz, 7105 GFP_KERNEL); 7106 if (!ioc->pend_os_device_add) 7107 goto out_free_resources; 7108 7109 ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz; 7110 ioc->device_remove_in_progress = 7111 kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL); 7112 if (!ioc->device_remove_in_progress) 7113 goto out_free_resources; 7114 7115 ioc->fwfault_debug = mpt3sas_fwfault_debug; 7116 7117 /* base internal command bits */ 7118 mutex_init(&ioc->base_cmds.mutex); 7119 ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7120 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 7121 7122 /* port_enable command bits */ 7123 ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7124 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED; 7125 7126 /* transport internal command bits */ 7127 ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7128 ioc->transport_cmds.status = MPT3_CMD_NOT_USED; 7129 mutex_init(&ioc->transport_cmds.mutex); 7130 7131 /* scsih internal command bits */ 7132 ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7133 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED; 7134 mutex_init(&ioc->scsih_cmds.mutex); 7135 7136 /* task management internal command bits */ 7137 ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7138 ioc->tm_cmds.status = MPT3_CMD_NOT_USED; 7139 mutex_init(&ioc->tm_cmds.mutex); 7140 7141 /* config page internal command bits */ 7142 ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7143 ioc->config_cmds.status = MPT3_CMD_NOT_USED; 7144 mutex_init(&ioc->config_cmds.mutex); 7145 7146 /* ctl module internal command bits */ 7147 ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7148 ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL); 7149 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED; 7150 mutex_init(&ioc->ctl_cmds.mutex); 7151 7152 if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply || 7153 !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply || 7154 !ioc->tm_cmds.reply || !ioc->config_cmds.reply || 7155 !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) { 7156 r = -ENOMEM; 7157 goto out_free_resources; 7158 } 7159 7160 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 7161 ioc->event_masks[i] = -1; 7162 7163 /* here we enable the events we care about */ 7164 _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY); 7165 _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE); 7166 _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST); 7167 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE); 7168 _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE); 7169 _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST); 7170 _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME); 7171 _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK); 7172 _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS); 7173 _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED); 7174 _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD); 7175 _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION); 7176 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR); 7177 if (ioc->hba_mpi_version_belonged == MPI26_VERSION) { 7178 if (ioc->is_gen35_ioc) { 7179 _base_unmask_events(ioc, 7180 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE); 7181 _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION); 7182 _base_unmask_events(ioc, 7183 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST); 7184 } 7185 } 7186 r = _base_make_ioc_operational(ioc); 7187 if (r) 7188 goto out_free_resources; 7189 7190 /* 7191 * Copy current copy of IOCFacts in prev_fw_facts 7192 * and it will be used during online firmware upgrade. 7193 */ 7194 memcpy(&ioc->prev_fw_facts, &ioc->facts, 7195 sizeof(struct mpt3sas_facts)); 7196 7197 ioc->non_operational_loop = 0; 7198 ioc->got_task_abort_from_ioctl = 0; 7199 return 0; 7200 7201 out_free_resources: 7202 7203 ioc->remove_host = 1; 7204 7205 mpt3sas_base_free_resources(ioc); 7206 _base_release_memory_pools(ioc); 7207 pci_set_drvdata(ioc->pdev, NULL); 7208 kfree(ioc->cpu_msix_table); 7209 if (ioc->is_warpdrive) 7210 kfree(ioc->reply_post_host_index); 7211 kfree(ioc->pd_handles); 7212 kfree(ioc->blocking_handles); 7213 kfree(ioc->device_remove_in_progress); 7214 kfree(ioc->pend_os_device_add); 7215 kfree(ioc->tm_cmds.reply); 7216 kfree(ioc->transport_cmds.reply); 7217 kfree(ioc->scsih_cmds.reply); 7218 kfree(ioc->config_cmds.reply); 7219 kfree(ioc->base_cmds.reply); 7220 kfree(ioc->port_enable_cmds.reply); 7221 kfree(ioc->ctl_cmds.reply); 7222 kfree(ioc->ctl_cmds.sense); 7223 kfree(ioc->pfacts); 7224 ioc->ctl_cmds.reply = NULL; 7225 ioc->base_cmds.reply = NULL; 7226 ioc->tm_cmds.reply = NULL; 7227 ioc->scsih_cmds.reply = NULL; 7228 ioc->transport_cmds.reply = NULL; 7229 ioc->config_cmds.reply = NULL; 7230 ioc->pfacts = NULL; 7231 return r; 7232 } 7233 7234 7235 /** 7236 * mpt3sas_base_detach - remove controller instance 7237 * @ioc: per adapter object 7238 */ 7239 void 7240 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc) 7241 { 7242 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7243 7244 mpt3sas_base_stop_watchdog(ioc); 7245 mpt3sas_base_free_resources(ioc); 7246 _base_release_memory_pools(ioc); 7247 mpt3sas_free_enclosure_list(ioc); 7248 pci_set_drvdata(ioc->pdev, NULL); 7249 kfree(ioc->cpu_msix_table); 7250 if (ioc->is_warpdrive) 7251 kfree(ioc->reply_post_host_index); 7252 kfree(ioc->pd_handles); 7253 kfree(ioc->blocking_handles); 7254 kfree(ioc->device_remove_in_progress); 7255 kfree(ioc->pend_os_device_add); 7256 kfree(ioc->pfacts); 7257 kfree(ioc->ctl_cmds.reply); 7258 kfree(ioc->ctl_cmds.sense); 7259 kfree(ioc->base_cmds.reply); 7260 kfree(ioc->port_enable_cmds.reply); 7261 kfree(ioc->tm_cmds.reply); 7262 kfree(ioc->transport_cmds.reply); 7263 kfree(ioc->scsih_cmds.reply); 7264 kfree(ioc->config_cmds.reply); 7265 } 7266 7267 /** 7268 * _base_pre_reset_handler - pre reset handler 7269 * @ioc: per adapter object 7270 */ 7271 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc) 7272 { 7273 mpt3sas_scsih_pre_reset_handler(ioc); 7274 mpt3sas_ctl_pre_reset_handler(ioc); 7275 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__)); 7276 } 7277 7278 /** 7279 * _base_after_reset_handler - after reset handler 7280 * @ioc: per adapter object 7281 */ 7282 static void _base_after_reset_handler(struct MPT3SAS_ADAPTER *ioc) 7283 { 7284 mpt3sas_scsih_after_reset_handler(ioc); 7285 mpt3sas_ctl_after_reset_handler(ioc); 7286 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_AFTER_RESET\n", __func__)); 7287 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) { 7288 ioc->transport_cmds.status |= MPT3_CMD_RESET; 7289 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid); 7290 complete(&ioc->transport_cmds.done); 7291 } 7292 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 7293 ioc->base_cmds.status |= MPT3_CMD_RESET; 7294 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid); 7295 complete(&ioc->base_cmds.done); 7296 } 7297 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 7298 ioc->port_enable_failed = 1; 7299 ioc->port_enable_cmds.status |= MPT3_CMD_RESET; 7300 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid); 7301 if (ioc->is_driver_loading) { 7302 ioc->start_scan_failed = 7303 MPI2_IOCSTATUS_INTERNAL_ERROR; 7304 ioc->start_scan = 0; 7305 ioc->port_enable_cmds.status = 7306 MPT3_CMD_NOT_USED; 7307 } else { 7308 complete(&ioc->port_enable_cmds.done); 7309 } 7310 } 7311 if (ioc->config_cmds.status & MPT3_CMD_PENDING) { 7312 ioc->config_cmds.status |= MPT3_CMD_RESET; 7313 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid); 7314 ioc->config_cmds.smid = USHRT_MAX; 7315 complete(&ioc->config_cmds.done); 7316 } 7317 } 7318 7319 /** 7320 * _base_reset_done_handler - reset done handler 7321 * @ioc: per adapter object 7322 */ 7323 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc) 7324 { 7325 mpt3sas_scsih_reset_done_handler(ioc); 7326 mpt3sas_ctl_reset_done_handler(ioc); 7327 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__)); 7328 } 7329 7330 /** 7331 * mpt3sas_wait_for_commands_to_complete - reset controller 7332 * @ioc: Pointer to MPT_ADAPTER structure 7333 * 7334 * This function is waiting 10s for all pending commands to complete 7335 * prior to putting controller in reset. 7336 */ 7337 void 7338 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc) 7339 { 7340 u32 ioc_state; 7341 7342 ioc->pending_io_count = 0; 7343 7344 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 7345 if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) 7346 return; 7347 7348 /* pending command count */ 7349 ioc->pending_io_count = scsi_host_busy(ioc->shost); 7350 7351 if (!ioc->pending_io_count) 7352 return; 7353 7354 /* wait for pending commands to complete */ 7355 wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ); 7356 } 7357 7358 /** 7359 * _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts 7360 * attributes during online firmware upgrade and update the corresponding 7361 * IOC variables accordingly. 7362 * 7363 * @ioc: Pointer to MPT_ADAPTER structure 7364 */ 7365 static int 7366 _base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc) 7367 { 7368 u16 pd_handles_sz; 7369 void *pd_handles = NULL, *blocking_handles = NULL; 7370 void *pend_os_device_add = NULL, *device_remove_in_progress = NULL; 7371 struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts; 7372 7373 if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle) { 7374 pd_handles_sz = (ioc->facts.MaxDevHandle / 8); 7375 if (ioc->facts.MaxDevHandle % 8) 7376 pd_handles_sz++; 7377 7378 pd_handles = krealloc(ioc->pd_handles, pd_handles_sz, 7379 GFP_KERNEL); 7380 if (!pd_handles) { 7381 ioc_info(ioc, 7382 "Unable to allocate the memory for pd_handles of sz: %d\n", 7383 pd_handles_sz); 7384 return -ENOMEM; 7385 } 7386 memset(pd_handles + ioc->pd_handles_sz, 0, 7387 (pd_handles_sz - ioc->pd_handles_sz)); 7388 ioc->pd_handles = pd_handles; 7389 7390 blocking_handles = krealloc(ioc->blocking_handles, 7391 pd_handles_sz, GFP_KERNEL); 7392 if (!blocking_handles) { 7393 ioc_info(ioc, 7394 "Unable to allocate the memory for " 7395 "blocking_handles of sz: %d\n", 7396 pd_handles_sz); 7397 return -ENOMEM; 7398 } 7399 memset(blocking_handles + ioc->pd_handles_sz, 0, 7400 (pd_handles_sz - ioc->pd_handles_sz)); 7401 ioc->blocking_handles = blocking_handles; 7402 ioc->pd_handles_sz = pd_handles_sz; 7403 7404 pend_os_device_add = krealloc(ioc->pend_os_device_add, 7405 pd_handles_sz, GFP_KERNEL); 7406 if (!pend_os_device_add) { 7407 ioc_info(ioc, 7408 "Unable to allocate the memory for pend_os_device_add of sz: %d\n", 7409 pd_handles_sz); 7410 return -ENOMEM; 7411 } 7412 memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0, 7413 (pd_handles_sz - ioc->pend_os_device_add_sz)); 7414 ioc->pend_os_device_add = pend_os_device_add; 7415 ioc->pend_os_device_add_sz = pd_handles_sz; 7416 7417 device_remove_in_progress = krealloc( 7418 ioc->device_remove_in_progress, pd_handles_sz, GFP_KERNEL); 7419 if (!device_remove_in_progress) { 7420 ioc_info(ioc, 7421 "Unable to allocate the memory for " 7422 "device_remove_in_progress of sz: %d\n " 7423 , pd_handles_sz); 7424 return -ENOMEM; 7425 } 7426 memset(device_remove_in_progress + 7427 ioc->device_remove_in_progress_sz, 0, 7428 (pd_handles_sz - ioc->device_remove_in_progress_sz)); 7429 ioc->device_remove_in_progress = device_remove_in_progress; 7430 ioc->device_remove_in_progress_sz = pd_handles_sz; 7431 } 7432 7433 memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts)); 7434 return 0; 7435 } 7436 7437 /** 7438 * mpt3sas_base_hard_reset_handler - reset controller 7439 * @ioc: Pointer to MPT_ADAPTER structure 7440 * @type: FORCE_BIG_HAMMER or SOFT_RESET 7441 * 7442 * Return: 0 for success, non-zero for failure. 7443 */ 7444 int 7445 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc, 7446 enum reset_type type) 7447 { 7448 int r; 7449 unsigned long flags; 7450 u32 ioc_state; 7451 u8 is_fault = 0, is_trigger = 0; 7452 7453 dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__)); 7454 7455 if (ioc->pci_error_recovery) { 7456 ioc_err(ioc, "%s: pci error recovery reset\n", __func__); 7457 r = 0; 7458 goto out_unlocked; 7459 } 7460 7461 if (mpt3sas_fwfault_debug) 7462 mpt3sas_halt_firmware(ioc); 7463 7464 /* wait for an active reset in progress to complete */ 7465 mutex_lock(&ioc->reset_in_progress_mutex); 7466 7467 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 7468 ioc->shost_recovery = 1; 7469 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 7470 7471 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 7472 MPT3_DIAG_BUFFER_IS_REGISTERED) && 7473 (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 7474 MPT3_DIAG_BUFFER_IS_RELEASED))) { 7475 is_trigger = 1; 7476 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 7477 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) 7478 is_fault = 1; 7479 } 7480 _base_pre_reset_handler(ioc); 7481 mpt3sas_wait_for_commands_to_complete(ioc); 7482 _base_mask_interrupts(ioc); 7483 r = _base_make_ioc_ready(ioc, type); 7484 if (r) 7485 goto out; 7486 _base_after_reset_handler(ioc); 7487 7488 /* If this hard reset is called while port enable is active, then 7489 * there is no reason to call make_ioc_operational 7490 */ 7491 if (ioc->is_driver_loading && ioc->port_enable_failed) { 7492 ioc->remove_host = 1; 7493 r = -EFAULT; 7494 goto out; 7495 } 7496 r = _base_get_ioc_facts(ioc); 7497 if (r) 7498 goto out; 7499 7500 r = _base_check_ioc_facts_changes(ioc); 7501 if (r) { 7502 ioc_info(ioc, 7503 "Some of the parameters got changed in this new firmware" 7504 " image and it requires system reboot\n"); 7505 goto out; 7506 } 7507 if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable) 7508 panic("%s: Issue occurred with flashing controller firmware." 7509 "Please reboot the system and ensure that the correct" 7510 " firmware version is running\n", ioc->name); 7511 7512 r = _base_make_ioc_operational(ioc); 7513 if (!r) 7514 _base_reset_done_handler(ioc); 7515 7516 out: 7517 dtmprintk(ioc, 7518 ioc_info(ioc, "%s: %s\n", 7519 __func__, r == 0 ? "SUCCESS" : "FAILED")); 7520 7521 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 7522 ioc->shost_recovery = 0; 7523 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 7524 ioc->ioc_reset_count++; 7525 mutex_unlock(&ioc->reset_in_progress_mutex); 7526 7527 out_unlocked: 7528 if ((r == 0) && is_trigger) { 7529 if (is_fault) 7530 mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT); 7531 else 7532 mpt3sas_trigger_master(ioc, 7533 MASTER_TRIGGER_ADAPTER_RESET); 7534 } 7535 dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__)); 7536 return r; 7537 } 7538