1 /* 2 * This is the Fusion MPT base driver providing common API layer interface 3 * for access to MPT (Message Passing Technology) firmware. 4 * 5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c 6 * Copyright (C) 2012-2014 LSI Corporation 7 * Copyright (C) 2013-2014 Avago Technologies 8 * (mailto: MPT-FusionLinux.pdl@avagotech.com) 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License 12 * as published by the Free Software Foundation; either version 2 13 * of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * NO WARRANTY 21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR 22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT 23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, 24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is 25 * solely responsible for determining the appropriateness of using and 26 * distributing the Program and assumes all risks associated with its 27 * exercise of rights under this Agreement, including but not limited to 28 * the risks and costs of program errors, damage to or loss of data, 29 * programs or equipment, and unavailability or interruption of operations. 30 31 * DISCLAIMER OF LIABILITY 32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY 33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND 35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED 38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES 39 40 * You should have received a copy of the GNU General Public License 41 * along with this program; if not, write to the Free Software 42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, 43 * USA. 44 */ 45 46 #include <linux/kernel.h> 47 #include <linux/module.h> 48 #include <linux/errno.h> 49 #include <linux/init.h> 50 #include <linux/slab.h> 51 #include <linux/types.h> 52 #include <linux/pci.h> 53 #include <linux/kdev_t.h> 54 #include <linux/blkdev.h> 55 #include <linux/delay.h> 56 #include <linux/interrupt.h> 57 #include <linux/dma-mapping.h> 58 #include <linux/io.h> 59 #include <linux/time.h> 60 #include <linux/ktime.h> 61 #include <linux/kthread.h> 62 #include <asm/page.h> /* To get host page size per arch */ 63 64 65 #include "mpt3sas_base.h" 66 67 static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS]; 68 69 70 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */ 71 72 /* maximum controller queue depth */ 73 #define MAX_HBA_QUEUE_DEPTH 30000 74 #define MAX_CHAIN_DEPTH 100000 75 static int max_queue_depth = -1; 76 module_param(max_queue_depth, int, 0444); 77 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth "); 78 79 static int max_sgl_entries = -1; 80 module_param(max_sgl_entries, int, 0444); 81 MODULE_PARM_DESC(max_sgl_entries, " max sg entries "); 82 83 static int msix_disable = -1; 84 module_param(msix_disable, int, 0444); 85 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)"); 86 87 static int smp_affinity_enable = 1; 88 module_param(smp_affinity_enable, int, 0444); 89 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)"); 90 91 static int max_msix_vectors = -1; 92 module_param(max_msix_vectors, int, 0444); 93 MODULE_PARM_DESC(max_msix_vectors, 94 " max msix vectors"); 95 96 static int irqpoll_weight = -1; 97 module_param(irqpoll_weight, int, 0444); 98 MODULE_PARM_DESC(irqpoll_weight, 99 "irq poll weight (default= one fourth of HBA queue depth)"); 100 101 static int mpt3sas_fwfault_debug; 102 MODULE_PARM_DESC(mpt3sas_fwfault_debug, 103 " enable detection of firmware fault and halt firmware - (default=0)"); 104 105 static int perf_mode = -1; 106 module_param(perf_mode, int, 0444); 107 MODULE_PARM_DESC(perf_mode, 108 "Performance mode (only for Aero/Sea Generation), options:\n\t\t" 109 "0 - balanced: high iops mode is enabled &\n\t\t" 110 "interrupt coalescing is enabled only on high iops queues,\n\t\t" 111 "1 - iops: high iops mode is disabled &\n\t\t" 112 "interrupt coalescing is enabled on all queues,\n\t\t" 113 "2 - latency: high iops mode is disabled &\n\t\t" 114 "interrupt coalescing is enabled on all queues with timeout value 0xA,\n" 115 "\t\tdefault - default perf_mode is 'balanced'" 116 ); 117 118 static int poll_queues; 119 module_param(poll_queues, int, 0444); 120 MODULE_PARM_DESC(poll_queues, "Number of queues to be use for io_uring poll mode.\n\t\t" 121 "This parameter is effective only if host_tagset_enable=1. &\n\t\t" 122 "when poll_queues are enabled then &\n\t\t" 123 "perf_mode is set to latency mode. &\n\t\t" 124 ); 125 126 enum mpt3sas_perf_mode { 127 MPT_PERF_MODE_DEFAULT = -1, 128 MPT_PERF_MODE_BALANCED = 0, 129 MPT_PERF_MODE_IOPS = 1, 130 MPT_PERF_MODE_LATENCY = 2, 131 }; 132 133 static int 134 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, 135 u32 ioc_state, int timeout); 136 static int 137 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc); 138 static void 139 _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc); 140 141 /** 142 * mpt3sas_base_check_cmd_timeout - Function 143 * to check timeout and command termination due 144 * to Host reset. 145 * 146 * @ioc: per adapter object. 147 * @status: Status of issued command. 148 * @mpi_request:mf request pointer. 149 * @sz: size of buffer. 150 * 151 * Return: 1/0 Reset to be done or Not 152 */ 153 u8 154 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc, 155 u8 status, void *mpi_request, int sz) 156 { 157 u8 issue_reset = 0; 158 159 if (!(status & MPT3_CMD_RESET)) 160 issue_reset = 1; 161 162 ioc_err(ioc, "Command %s\n", 163 issue_reset == 0 ? "terminated due to Host Reset" : "Timeout"); 164 _debug_dump_mf(mpi_request, sz); 165 166 return issue_reset; 167 } 168 169 /** 170 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug. 171 * @val: ? 172 * @kp: ? 173 * 174 * Return: ? 175 */ 176 static int 177 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp) 178 { 179 int ret = param_set_int(val, kp); 180 struct MPT3SAS_ADAPTER *ioc; 181 182 if (ret) 183 return ret; 184 185 /* global ioc spinlock to protect controller list on list operations */ 186 pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug); 187 spin_lock(&gioc_lock); 188 list_for_each_entry(ioc, &mpt3sas_ioc_list, list) 189 ioc->fwfault_debug = mpt3sas_fwfault_debug; 190 spin_unlock(&gioc_lock); 191 return 0; 192 } 193 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug, 194 param_get_int, &mpt3sas_fwfault_debug, 0644); 195 196 /** 197 * _base_readl_aero - retry readl for max three times. 198 * @addr: MPT Fusion system interface register address 199 * 200 * Retry the readl() for max three times if it gets zero value 201 * while reading the system interface register. 202 */ 203 static inline u32 204 _base_readl_aero(const volatile void __iomem *addr) 205 { 206 u32 i = 0, ret_val; 207 208 do { 209 ret_val = readl(addr); 210 i++; 211 } while (ret_val == 0 && i < 3); 212 213 return ret_val; 214 } 215 216 static inline u32 217 _base_readl(const volatile void __iomem *addr) 218 { 219 return readl(addr); 220 } 221 222 /** 223 * _base_clone_reply_to_sys_mem - copies reply to reply free iomem 224 * in BAR0 space. 225 * 226 * @ioc: per adapter object 227 * @reply: reply message frame(lower 32bit addr) 228 * @index: System request message index. 229 */ 230 static void 231 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply, 232 u32 index) 233 { 234 /* 235 * 256 is offset within sys register. 236 * 256 offset MPI frame starts. Max MPI frame supported is 32. 237 * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts 238 */ 239 u16 cmd_credit = ioc->facts.RequestCredit + 1; 240 void __iomem *reply_free_iomem = (void __iomem *)ioc->chip + 241 MPI_FRAME_START_OFFSET + 242 (cmd_credit * ioc->request_sz) + (index * sizeof(u32)); 243 244 writel(reply, reply_free_iomem); 245 } 246 247 /** 248 * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames 249 * to system/BAR0 region. 250 * 251 * @dst_iomem: Pointer to the destination location in BAR0 space. 252 * @src: Pointer to the Source data. 253 * @size: Size of data to be copied. 254 */ 255 static void 256 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size) 257 { 258 int i; 259 u32 *src_virt_mem = (u32 *)src; 260 261 for (i = 0; i < size/4; i++) 262 writel((u32)src_virt_mem[i], 263 (void __iomem *)dst_iomem + (i * 4)); 264 } 265 266 /** 267 * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region 268 * 269 * @dst_iomem: Pointer to the destination location in BAR0 space. 270 * @src: Pointer to the Source data. 271 * @size: Size of data to be copied. 272 */ 273 static void 274 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size) 275 { 276 int i; 277 u32 *src_virt_mem = (u32 *)(src); 278 279 for (i = 0; i < size/4; i++) 280 writel((u32)src_virt_mem[i], 281 (void __iomem *)dst_iomem + (i * 4)); 282 } 283 284 /** 285 * _base_get_chain - Calculates and Returns virtual chain address 286 * for the provided smid in BAR0 space. 287 * 288 * @ioc: per adapter object 289 * @smid: system request message index 290 * @sge_chain_count: Scatter gather chain count. 291 * 292 * Return: the chain address. 293 */ 294 static inline void __iomem* 295 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid, 296 u8 sge_chain_count) 297 { 298 void __iomem *base_chain, *chain_virt; 299 u16 cmd_credit = ioc->facts.RequestCredit + 1; 300 301 base_chain = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET + 302 (cmd_credit * ioc->request_sz) + 303 REPLY_FREE_POOL_SIZE; 304 chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth * 305 ioc->request_sz) + (sge_chain_count * ioc->request_sz); 306 return chain_virt; 307 } 308 309 /** 310 * _base_get_chain_phys - Calculates and Returns physical address 311 * in BAR0 for scatter gather chains, for 312 * the provided smid. 313 * 314 * @ioc: per adapter object 315 * @smid: system request message index 316 * @sge_chain_count: Scatter gather chain count. 317 * 318 * Return: Physical chain address. 319 */ 320 static inline phys_addr_t 321 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid, 322 u8 sge_chain_count) 323 { 324 phys_addr_t base_chain_phys, chain_phys; 325 u16 cmd_credit = ioc->facts.RequestCredit + 1; 326 327 base_chain_phys = ioc->chip_phys + MPI_FRAME_START_OFFSET + 328 (cmd_credit * ioc->request_sz) + 329 REPLY_FREE_POOL_SIZE; 330 chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth * 331 ioc->request_sz) + (sge_chain_count * ioc->request_sz); 332 return chain_phys; 333 } 334 335 /** 336 * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host 337 * buffer address for the provided smid. 338 * (Each smid can have 64K starts from 17024) 339 * 340 * @ioc: per adapter object 341 * @smid: system request message index 342 * 343 * Return: Pointer to buffer location in BAR0. 344 */ 345 346 static void __iomem * 347 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid) 348 { 349 u16 cmd_credit = ioc->facts.RequestCredit + 1; 350 // Added extra 1 to reach end of chain. 351 void __iomem *chain_end = _base_get_chain(ioc, 352 cmd_credit + 1, 353 ioc->facts.MaxChainDepth); 354 return chain_end + (smid * 64 * 1024); 355 } 356 357 /** 358 * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped 359 * Host buffer Physical address for the provided smid. 360 * (Each smid can have 64K starts from 17024) 361 * 362 * @ioc: per adapter object 363 * @smid: system request message index 364 * 365 * Return: Pointer to buffer location in BAR0. 366 */ 367 static phys_addr_t 368 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid) 369 { 370 u16 cmd_credit = ioc->facts.RequestCredit + 1; 371 phys_addr_t chain_end_phys = _base_get_chain_phys(ioc, 372 cmd_credit + 1, 373 ioc->facts.MaxChainDepth); 374 return chain_end_phys + (smid * 64 * 1024); 375 } 376 377 /** 378 * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain 379 * lookup list and Provides chain_buffer 380 * address for the matching dma address. 381 * (Each smid can have 64K starts from 17024) 382 * 383 * @ioc: per adapter object 384 * @chain_buffer_dma: Chain buffer dma address. 385 * 386 * Return: Pointer to chain buffer. Or Null on Failure. 387 */ 388 static void * 389 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc, 390 dma_addr_t chain_buffer_dma) 391 { 392 u16 index, j; 393 struct chain_tracker *ct; 394 395 for (index = 0; index < ioc->scsiio_depth; index++) { 396 for (j = 0; j < ioc->chains_needed_per_io; j++) { 397 ct = &ioc->chain_lookup[index].chains_per_smid[j]; 398 if (ct && ct->chain_buffer_dma == chain_buffer_dma) 399 return ct->chain_buffer; 400 } 401 } 402 ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n"); 403 return NULL; 404 } 405 406 /** 407 * _clone_sg_entries - MPI EP's scsiio and config requests 408 * are handled here. Base function for 409 * double buffering, before submitting 410 * the requests. 411 * 412 * @ioc: per adapter object. 413 * @mpi_request: mf request pointer. 414 * @smid: system request message index. 415 */ 416 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc, 417 void *mpi_request, u16 smid) 418 { 419 Mpi2SGESimple32_t *sgel, *sgel_next; 420 u32 sgl_flags, sge_chain_count = 0; 421 bool is_write = false; 422 u16 i = 0; 423 void __iomem *buffer_iomem; 424 phys_addr_t buffer_iomem_phys; 425 void __iomem *buff_ptr; 426 phys_addr_t buff_ptr_phys; 427 void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO]; 428 void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO]; 429 phys_addr_t dst_addr_phys; 430 MPI2RequestHeader_t *request_hdr; 431 struct scsi_cmnd *scmd; 432 struct scatterlist *sg_scmd = NULL; 433 int is_scsiio_req = 0; 434 435 request_hdr = (MPI2RequestHeader_t *) mpi_request; 436 437 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) { 438 Mpi25SCSIIORequest_t *scsiio_request = 439 (Mpi25SCSIIORequest_t *)mpi_request; 440 sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL; 441 is_scsiio_req = 1; 442 } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) { 443 Mpi2ConfigRequest_t *config_req = 444 (Mpi2ConfigRequest_t *)mpi_request; 445 sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE; 446 } else 447 return; 448 449 /* From smid we can get scsi_cmd, once we have sg_scmd, 450 * we just need to get sg_virt and sg_next to get virtual 451 * address associated with sgel->Address. 452 */ 453 454 if (is_scsiio_req) { 455 /* Get scsi_cmd using smid */ 456 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid); 457 if (scmd == NULL) { 458 ioc_err(ioc, "scmd is NULL\n"); 459 return; 460 } 461 462 /* Get sg_scmd from scmd provided */ 463 sg_scmd = scsi_sglist(scmd); 464 } 465 466 /* 467 * 0 - 255 System register 468 * 256 - 4352 MPI Frame. (This is based on maxCredit 32) 469 * 4352 - 4864 Reply_free pool (512 byte is reserved 470 * considering maxCredit 32. Reply need extra 471 * room, for mCPU case kept four times of 472 * maxCredit). 473 * 4864 - 17152 SGE chain element. (32cmd * 3 chain of 474 * 128 byte size = 12288) 475 * 17152 - x Host buffer mapped with smid. 476 * (Each smid can have 64K Max IO.) 477 * BAR0+Last 1K MSIX Addr and Data 478 * Total size in use 2113664 bytes of 4MB BAR0 479 */ 480 481 buffer_iomem = _base_get_buffer_bar0(ioc, smid); 482 buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid); 483 484 buff_ptr = buffer_iomem; 485 buff_ptr_phys = buffer_iomem_phys; 486 WARN_ON(buff_ptr_phys > U32_MAX); 487 488 if (le32_to_cpu(sgel->FlagsLength) & 489 (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT)) 490 is_write = true; 491 492 for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) { 493 494 sgl_flags = 495 (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT); 496 497 switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) { 498 case MPI2_SGE_FLAGS_CHAIN_ELEMENT: 499 /* 500 * Helper function which on passing 501 * chain_buffer_dma returns chain_buffer. Get 502 * the virtual address for sgel->Address 503 */ 504 sgel_next = 505 _base_get_chain_buffer_dma_to_chain_buffer(ioc, 506 le32_to_cpu(sgel->Address)); 507 if (sgel_next == NULL) 508 return; 509 /* 510 * This is coping 128 byte chain 511 * frame (not a host buffer) 512 */ 513 dst_chain_addr[sge_chain_count] = 514 _base_get_chain(ioc, 515 smid, sge_chain_count); 516 src_chain_addr[sge_chain_count] = 517 (void *) sgel_next; 518 dst_addr_phys = _base_get_chain_phys(ioc, 519 smid, sge_chain_count); 520 WARN_ON(dst_addr_phys > U32_MAX); 521 sgel->Address = 522 cpu_to_le32(lower_32_bits(dst_addr_phys)); 523 sgel = sgel_next; 524 sge_chain_count++; 525 break; 526 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT: 527 if (is_write) { 528 if (is_scsiio_req) { 529 _base_clone_to_sys_mem(buff_ptr, 530 sg_virt(sg_scmd), 531 (le32_to_cpu(sgel->FlagsLength) & 532 0x00ffffff)); 533 /* 534 * FIXME: this relies on a a zero 535 * PCI mem_offset. 536 */ 537 sgel->Address = 538 cpu_to_le32((u32)buff_ptr_phys); 539 } else { 540 _base_clone_to_sys_mem(buff_ptr, 541 ioc->config_vaddr, 542 (le32_to_cpu(sgel->FlagsLength) & 543 0x00ffffff)); 544 sgel->Address = 545 cpu_to_le32((u32)buff_ptr_phys); 546 } 547 } 548 buff_ptr += (le32_to_cpu(sgel->FlagsLength) & 549 0x00ffffff); 550 buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) & 551 0x00ffffff); 552 if ((le32_to_cpu(sgel->FlagsLength) & 553 (MPI2_SGE_FLAGS_END_OF_BUFFER 554 << MPI2_SGE_FLAGS_SHIFT))) 555 goto eob_clone_chain; 556 else { 557 /* 558 * Every single element in MPT will have 559 * associated sg_next. Better to sanity that 560 * sg_next is not NULL, but it will be a bug 561 * if it is null. 562 */ 563 if (is_scsiio_req) { 564 sg_scmd = sg_next(sg_scmd); 565 if (sg_scmd) 566 sgel++; 567 else 568 goto eob_clone_chain; 569 } 570 } 571 break; 572 } 573 } 574 575 eob_clone_chain: 576 for (i = 0; i < sge_chain_count; i++) { 577 if (is_scsiio_req) 578 _base_clone_to_sys_mem(dst_chain_addr[i], 579 src_chain_addr[i], ioc->request_sz); 580 } 581 } 582 583 /** 584 * mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc 585 * @arg: input argument, used to derive ioc 586 * 587 * Return: 588 * 0 if controller is removed from pci subsystem. 589 * -1 for other case. 590 */ 591 static int mpt3sas_remove_dead_ioc_func(void *arg) 592 { 593 struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg; 594 struct pci_dev *pdev; 595 596 if (!ioc) 597 return -1; 598 599 pdev = ioc->pdev; 600 if (!pdev) 601 return -1; 602 pci_stop_and_remove_bus_device_locked(pdev); 603 return 0; 604 } 605 606 /** 607 * _base_sync_drv_fw_timestamp - Sync Drive-Fw TimeStamp. 608 * @ioc: Per Adapter Object 609 * 610 * Return: nothing. 611 */ 612 static void _base_sync_drv_fw_timestamp(struct MPT3SAS_ADAPTER *ioc) 613 { 614 Mpi26IoUnitControlRequest_t *mpi_request; 615 Mpi26IoUnitControlReply_t *mpi_reply; 616 u16 smid; 617 ktime_t current_time; 618 u64 TimeStamp = 0; 619 u8 issue_reset = 0; 620 621 mutex_lock(&ioc->scsih_cmds.mutex); 622 if (ioc->scsih_cmds.status != MPT3_CMD_NOT_USED) { 623 ioc_err(ioc, "scsih_cmd in use %s\n", __func__); 624 goto out; 625 } 626 ioc->scsih_cmds.status = MPT3_CMD_PENDING; 627 smid = mpt3sas_base_get_smid(ioc, ioc->scsih_cb_idx); 628 if (!smid) { 629 ioc_err(ioc, "Failed obtaining a smid %s\n", __func__); 630 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED; 631 goto out; 632 } 633 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 634 ioc->scsih_cmds.smid = smid; 635 memset(mpi_request, 0, sizeof(Mpi26IoUnitControlRequest_t)); 636 mpi_request->Function = MPI2_FUNCTION_IO_UNIT_CONTROL; 637 mpi_request->Operation = MPI26_CTRL_OP_SET_IOC_PARAMETER; 638 mpi_request->IOCParameter = MPI26_SET_IOC_PARAMETER_SYNC_TIMESTAMP; 639 current_time = ktime_get_real(); 640 TimeStamp = ktime_to_ms(current_time); 641 mpi_request->Reserved7 = cpu_to_le32(TimeStamp >> 32); 642 mpi_request->IOCParameterValue = cpu_to_le32(TimeStamp & 0xFFFFFFFF); 643 init_completion(&ioc->scsih_cmds.done); 644 ioc->put_smid_default(ioc, smid); 645 dinitprintk(ioc, ioc_info(ioc, 646 "Io Unit Control Sync TimeStamp (sending), @time %lld ms\n", 647 TimeStamp)); 648 wait_for_completion_timeout(&ioc->scsih_cmds.done, 649 MPT3SAS_TIMESYNC_TIMEOUT_SECONDS*HZ); 650 if (!(ioc->scsih_cmds.status & MPT3_CMD_COMPLETE)) { 651 mpt3sas_check_cmd_timeout(ioc, 652 ioc->scsih_cmds.status, mpi_request, 653 sizeof(Mpi2SasIoUnitControlRequest_t)/4, issue_reset); 654 goto issue_host_reset; 655 } 656 if (ioc->scsih_cmds.status & MPT3_CMD_REPLY_VALID) { 657 mpi_reply = ioc->scsih_cmds.reply; 658 dinitprintk(ioc, ioc_info(ioc, 659 "Io Unit Control sync timestamp (complete): ioc_status(0x%04x), loginfo(0x%08x)\n", 660 le16_to_cpu(mpi_reply->IOCStatus), 661 le32_to_cpu(mpi_reply->IOCLogInfo))); 662 } 663 issue_host_reset: 664 if (issue_reset) 665 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 666 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED; 667 out: 668 mutex_unlock(&ioc->scsih_cmds.mutex); 669 } 670 671 /** 672 * _base_fault_reset_work - workq handling ioc fault conditions 673 * @work: input argument, used to derive ioc 674 * 675 * Context: sleep. 676 */ 677 static void 678 _base_fault_reset_work(struct work_struct *work) 679 { 680 struct MPT3SAS_ADAPTER *ioc = 681 container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work); 682 unsigned long flags; 683 u32 doorbell; 684 int rc; 685 struct task_struct *p; 686 687 688 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 689 if ((ioc->shost_recovery && (ioc->ioc_coredump_loop == 0)) || 690 ioc->pci_error_recovery) 691 goto rearm_timer; 692 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 693 694 doorbell = mpt3sas_base_get_iocstate(ioc, 0); 695 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) { 696 ioc_err(ioc, "SAS host is non-operational !!!!\n"); 697 698 /* It may be possible that EEH recovery can resolve some of 699 * pci bus failure issues rather removing the dead ioc function 700 * by considering controller is in a non-operational state. So 701 * here priority is given to the EEH recovery. If it doesn't 702 * not resolve this issue, mpt3sas driver will consider this 703 * controller to non-operational state and remove the dead ioc 704 * function. 705 */ 706 if (ioc->non_operational_loop++ < 5) { 707 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, 708 flags); 709 goto rearm_timer; 710 } 711 712 /* 713 * Call _scsih_flush_pending_cmds callback so that we flush all 714 * pending commands back to OS. This call is required to avoid 715 * deadlock at block layer. Dead IOC will fail to do diag reset, 716 * and this call is safe since dead ioc will never return any 717 * command back from HW. 718 */ 719 mpt3sas_base_pause_mq_polling(ioc); 720 ioc->schedule_dead_ioc_flush_running_cmds(ioc); 721 /* 722 * Set remove_host flag early since kernel thread will 723 * take some time to execute. 724 */ 725 ioc->remove_host = 1; 726 /*Remove the Dead Host */ 727 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc, 728 "%s_dead_ioc_%d", ioc->driver_name, ioc->id); 729 if (IS_ERR(p)) 730 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n", 731 __func__); 732 else 733 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n", 734 __func__); 735 return; /* don't rearm timer */ 736 } 737 738 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) { 739 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ? 740 ioc->manu_pg11.CoreDumpTOSec : 741 MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS; 742 743 timeout /= (FAULT_POLLING_INTERVAL/1000); 744 745 if (ioc->ioc_coredump_loop == 0) { 746 mpt3sas_print_coredump_info(ioc, 747 doorbell & MPI2_DOORBELL_DATA_MASK); 748 /* do not accept any IOs and disable the interrupts */ 749 spin_lock_irqsave( 750 &ioc->ioc_reset_in_progress_lock, flags); 751 ioc->shost_recovery = 1; 752 spin_unlock_irqrestore( 753 &ioc->ioc_reset_in_progress_lock, flags); 754 mpt3sas_base_mask_interrupts(ioc); 755 mpt3sas_base_pause_mq_polling(ioc); 756 _base_clear_outstanding_commands(ioc); 757 } 758 759 ioc_info(ioc, "%s: CoreDump loop %d.", 760 __func__, ioc->ioc_coredump_loop); 761 762 /* Wait until CoreDump completes or times out */ 763 if (ioc->ioc_coredump_loop++ < timeout) { 764 spin_lock_irqsave( 765 &ioc->ioc_reset_in_progress_lock, flags); 766 goto rearm_timer; 767 } 768 } 769 770 if (ioc->ioc_coredump_loop) { 771 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_COREDUMP) 772 ioc_err(ioc, "%s: CoreDump completed. LoopCount: %d", 773 __func__, ioc->ioc_coredump_loop); 774 else 775 ioc_err(ioc, "%s: CoreDump Timed out. LoopCount: %d", 776 __func__, ioc->ioc_coredump_loop); 777 ioc->ioc_coredump_loop = MPT3SAS_COREDUMP_LOOP_DONE; 778 } 779 ioc->non_operational_loop = 0; 780 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) { 781 rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 782 ioc_warn(ioc, "%s: hard reset: %s\n", 783 __func__, rc == 0 ? "success" : "failed"); 784 doorbell = mpt3sas_base_get_iocstate(ioc, 0); 785 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 786 mpt3sas_print_fault_code(ioc, doorbell & 787 MPI2_DOORBELL_DATA_MASK); 788 } else if ((doorbell & MPI2_IOC_STATE_MASK) == 789 MPI2_IOC_STATE_COREDUMP) 790 mpt3sas_print_coredump_info(ioc, doorbell & 791 MPI2_DOORBELL_DATA_MASK); 792 if (rc && (doorbell & MPI2_IOC_STATE_MASK) != 793 MPI2_IOC_STATE_OPERATIONAL) 794 return; /* don't rearm timer */ 795 } 796 ioc->ioc_coredump_loop = 0; 797 if (ioc->time_sync_interval && 798 ++ioc->timestamp_update_count >= ioc->time_sync_interval) { 799 ioc->timestamp_update_count = 0; 800 _base_sync_drv_fw_timestamp(ioc); 801 } 802 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 803 rearm_timer: 804 if (ioc->fault_reset_work_q) 805 queue_delayed_work(ioc->fault_reset_work_q, 806 &ioc->fault_reset_work, 807 msecs_to_jiffies(FAULT_POLLING_INTERVAL)); 808 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 809 } 810 811 /** 812 * mpt3sas_base_start_watchdog - start the fault_reset_work_q 813 * @ioc: per adapter object 814 * 815 * Context: sleep. 816 */ 817 void 818 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc) 819 { 820 unsigned long flags; 821 822 if (ioc->fault_reset_work_q) 823 return; 824 825 ioc->timestamp_update_count = 0; 826 /* initialize fault polling */ 827 828 INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work); 829 snprintf(ioc->fault_reset_work_q_name, 830 sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status", 831 ioc->driver_name, ioc->id); 832 ioc->fault_reset_work_q = 833 create_singlethread_workqueue(ioc->fault_reset_work_q_name); 834 if (!ioc->fault_reset_work_q) { 835 ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__); 836 return; 837 } 838 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 839 if (ioc->fault_reset_work_q) 840 queue_delayed_work(ioc->fault_reset_work_q, 841 &ioc->fault_reset_work, 842 msecs_to_jiffies(FAULT_POLLING_INTERVAL)); 843 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 844 } 845 846 /** 847 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q 848 * @ioc: per adapter object 849 * 850 * Context: sleep. 851 */ 852 void 853 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc) 854 { 855 unsigned long flags; 856 struct workqueue_struct *wq; 857 858 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 859 wq = ioc->fault_reset_work_q; 860 ioc->fault_reset_work_q = NULL; 861 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 862 if (wq) { 863 if (!cancel_delayed_work_sync(&ioc->fault_reset_work)) 864 flush_workqueue(wq); 865 destroy_workqueue(wq); 866 } 867 } 868 869 /** 870 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code 871 * @ioc: per adapter object 872 * @fault_code: fault code 873 */ 874 void 875 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code) 876 { 877 ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code); 878 } 879 880 /** 881 * mpt3sas_base_coredump_info - verbose translation of firmware CoreDump state 882 * @ioc: per adapter object 883 * @fault_code: fault code 884 * 885 * Return: nothing. 886 */ 887 void 888 mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code) 889 { 890 ioc_err(ioc, "coredump_state(0x%04x)!\n", fault_code); 891 } 892 893 /** 894 * mpt3sas_base_wait_for_coredump_completion - Wait until coredump 895 * completes or times out 896 * @ioc: per adapter object 897 * @caller: caller function name 898 * 899 * Return: 0 for success, non-zero for failure. 900 */ 901 int 902 mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER *ioc, 903 const char *caller) 904 { 905 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ? 906 ioc->manu_pg11.CoreDumpTOSec : 907 MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS; 908 909 int ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_FAULT, 910 timeout); 911 912 if (ioc_state) 913 ioc_err(ioc, 914 "%s: CoreDump timed out. (ioc_state=0x%x)\n", 915 caller, ioc_state); 916 else 917 ioc_info(ioc, 918 "%s: CoreDump completed. (ioc_state=0x%x)\n", 919 caller, ioc_state); 920 921 return ioc_state; 922 } 923 924 /** 925 * mpt3sas_halt_firmware - halt's mpt controller firmware 926 * @ioc: per adapter object 927 * 928 * For debugging timeout related issues. Writing 0xCOFFEE00 929 * to the doorbell register will halt controller firmware. With 930 * the purpose to stop both driver and firmware, the enduser can 931 * obtain a ring buffer from controller UART. 932 */ 933 void 934 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc) 935 { 936 u32 doorbell; 937 938 if (!ioc->fwfault_debug) 939 return; 940 941 dump_stack(); 942 943 doorbell = ioc->base_readl(&ioc->chip->Doorbell); 944 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 945 mpt3sas_print_fault_code(ioc, doorbell & 946 MPI2_DOORBELL_DATA_MASK); 947 } else if ((doorbell & MPI2_IOC_STATE_MASK) == 948 MPI2_IOC_STATE_COREDUMP) { 949 mpt3sas_print_coredump_info(ioc, doorbell & 950 MPI2_DOORBELL_DATA_MASK); 951 } else { 952 writel(0xC0FFEE00, &ioc->chip->Doorbell); 953 ioc_err(ioc, "Firmware is halted due to command timeout\n"); 954 } 955 956 if (ioc->fwfault_debug == 2) 957 for (;;) 958 ; 959 else 960 panic("panic in %s\n", __func__); 961 } 962 963 /** 964 * _base_sas_ioc_info - verbose translation of the ioc status 965 * @ioc: per adapter object 966 * @mpi_reply: reply mf payload returned from firmware 967 * @request_hdr: request mf 968 */ 969 static void 970 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply, 971 MPI2RequestHeader_t *request_hdr) 972 { 973 u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & 974 MPI2_IOCSTATUS_MASK; 975 char *desc = NULL; 976 u16 frame_sz; 977 char *func_str = NULL; 978 979 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */ 980 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST || 981 request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH || 982 request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION) 983 return; 984 985 if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE) 986 return; 987 /* 988 * Older Firmware version doesn't support driver trigger pages. 989 * So, skip displaying 'config invalid type' type 990 * of error message. 991 */ 992 if (request_hdr->Function == MPI2_FUNCTION_CONFIG) { 993 Mpi2ConfigRequest_t *rqst = (Mpi2ConfigRequest_t *)request_hdr; 994 995 if ((rqst->ExtPageType == 996 MPI2_CONFIG_EXTPAGETYPE_DRIVER_PERSISTENT_TRIGGER) && 997 !(ioc->logging_level & MPT_DEBUG_CONFIG)) { 998 return; 999 } 1000 } 1001 1002 switch (ioc_status) { 1003 1004 /**************************************************************************** 1005 * Common IOCStatus values for all replies 1006 ****************************************************************************/ 1007 1008 case MPI2_IOCSTATUS_INVALID_FUNCTION: 1009 desc = "invalid function"; 1010 break; 1011 case MPI2_IOCSTATUS_BUSY: 1012 desc = "busy"; 1013 break; 1014 case MPI2_IOCSTATUS_INVALID_SGL: 1015 desc = "invalid sgl"; 1016 break; 1017 case MPI2_IOCSTATUS_INTERNAL_ERROR: 1018 desc = "internal error"; 1019 break; 1020 case MPI2_IOCSTATUS_INVALID_VPID: 1021 desc = "invalid vpid"; 1022 break; 1023 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES: 1024 desc = "insufficient resources"; 1025 break; 1026 case MPI2_IOCSTATUS_INSUFFICIENT_POWER: 1027 desc = "insufficient power"; 1028 break; 1029 case MPI2_IOCSTATUS_INVALID_FIELD: 1030 desc = "invalid field"; 1031 break; 1032 case MPI2_IOCSTATUS_INVALID_STATE: 1033 desc = "invalid state"; 1034 break; 1035 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED: 1036 desc = "op state not supported"; 1037 break; 1038 1039 /**************************************************************************** 1040 * Config IOCStatus values 1041 ****************************************************************************/ 1042 1043 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION: 1044 desc = "config invalid action"; 1045 break; 1046 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE: 1047 desc = "config invalid type"; 1048 break; 1049 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE: 1050 desc = "config invalid page"; 1051 break; 1052 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA: 1053 desc = "config invalid data"; 1054 break; 1055 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS: 1056 desc = "config no defaults"; 1057 break; 1058 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT: 1059 desc = "config can't commit"; 1060 break; 1061 1062 /**************************************************************************** 1063 * SCSI IO Reply 1064 ****************************************************************************/ 1065 1066 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR: 1067 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE: 1068 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE: 1069 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN: 1070 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN: 1071 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR: 1072 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR: 1073 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED: 1074 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH: 1075 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED: 1076 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED: 1077 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED: 1078 break; 1079 1080 /**************************************************************************** 1081 * For use by SCSI Initiator and SCSI Target end-to-end data protection 1082 ****************************************************************************/ 1083 1084 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR: 1085 desc = "eedp guard error"; 1086 break; 1087 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR: 1088 desc = "eedp ref tag error"; 1089 break; 1090 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR: 1091 desc = "eedp app tag error"; 1092 break; 1093 1094 /**************************************************************************** 1095 * SCSI Target values 1096 ****************************************************************************/ 1097 1098 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX: 1099 desc = "target invalid io index"; 1100 break; 1101 case MPI2_IOCSTATUS_TARGET_ABORTED: 1102 desc = "target aborted"; 1103 break; 1104 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE: 1105 desc = "target no conn retryable"; 1106 break; 1107 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION: 1108 desc = "target no connection"; 1109 break; 1110 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH: 1111 desc = "target xfer count mismatch"; 1112 break; 1113 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR: 1114 desc = "target data offset error"; 1115 break; 1116 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA: 1117 desc = "target too much write data"; 1118 break; 1119 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT: 1120 desc = "target iu too short"; 1121 break; 1122 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT: 1123 desc = "target ack nak timeout"; 1124 break; 1125 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED: 1126 desc = "target nak received"; 1127 break; 1128 1129 /**************************************************************************** 1130 * Serial Attached SCSI values 1131 ****************************************************************************/ 1132 1133 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED: 1134 desc = "smp request failed"; 1135 break; 1136 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN: 1137 desc = "smp data overrun"; 1138 break; 1139 1140 /**************************************************************************** 1141 * Diagnostic Buffer Post / Diagnostic Release values 1142 ****************************************************************************/ 1143 1144 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED: 1145 desc = "diagnostic released"; 1146 break; 1147 default: 1148 break; 1149 } 1150 1151 if (!desc) 1152 return; 1153 1154 switch (request_hdr->Function) { 1155 case MPI2_FUNCTION_CONFIG: 1156 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size; 1157 func_str = "config_page"; 1158 break; 1159 case MPI2_FUNCTION_SCSI_TASK_MGMT: 1160 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t); 1161 func_str = "task_mgmt"; 1162 break; 1163 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL: 1164 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t); 1165 func_str = "sas_iounit_ctl"; 1166 break; 1167 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR: 1168 frame_sz = sizeof(Mpi2SepRequest_t); 1169 func_str = "enclosure"; 1170 break; 1171 case MPI2_FUNCTION_IOC_INIT: 1172 frame_sz = sizeof(Mpi2IOCInitRequest_t); 1173 func_str = "ioc_init"; 1174 break; 1175 case MPI2_FUNCTION_PORT_ENABLE: 1176 frame_sz = sizeof(Mpi2PortEnableRequest_t); 1177 func_str = "port_enable"; 1178 break; 1179 case MPI2_FUNCTION_SMP_PASSTHROUGH: 1180 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size; 1181 func_str = "smp_passthru"; 1182 break; 1183 case MPI2_FUNCTION_NVME_ENCAPSULATED: 1184 frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) + 1185 ioc->sge_size; 1186 func_str = "nvme_encapsulated"; 1187 break; 1188 default: 1189 frame_sz = 32; 1190 func_str = "unknown"; 1191 break; 1192 } 1193 1194 ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n", 1195 desc, ioc_status, request_hdr, func_str); 1196 1197 _debug_dump_mf(request_hdr, frame_sz/4); 1198 } 1199 1200 /** 1201 * _base_display_event_data - verbose translation of firmware asyn events 1202 * @ioc: per adapter object 1203 * @mpi_reply: reply mf payload returned from firmware 1204 */ 1205 static void 1206 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc, 1207 Mpi2EventNotificationReply_t *mpi_reply) 1208 { 1209 char *desc = NULL; 1210 u16 event; 1211 1212 if (!(ioc->logging_level & MPT_DEBUG_EVENTS)) 1213 return; 1214 1215 event = le16_to_cpu(mpi_reply->Event); 1216 1217 switch (event) { 1218 case MPI2_EVENT_LOG_DATA: 1219 desc = "Log Data"; 1220 break; 1221 case MPI2_EVENT_STATE_CHANGE: 1222 desc = "Status Change"; 1223 break; 1224 case MPI2_EVENT_HARD_RESET_RECEIVED: 1225 desc = "Hard Reset Received"; 1226 break; 1227 case MPI2_EVENT_EVENT_CHANGE: 1228 desc = "Event Change"; 1229 break; 1230 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE: 1231 desc = "Device Status Change"; 1232 break; 1233 case MPI2_EVENT_IR_OPERATION_STATUS: 1234 if (!ioc->hide_ir_msg) 1235 desc = "IR Operation Status"; 1236 break; 1237 case MPI2_EVENT_SAS_DISCOVERY: 1238 { 1239 Mpi2EventDataSasDiscovery_t *event_data = 1240 (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData; 1241 ioc_info(ioc, "Discovery: (%s)", 1242 event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ? 1243 "start" : "stop"); 1244 if (event_data->DiscoveryStatus) 1245 pr_cont(" discovery_status(0x%08x)", 1246 le32_to_cpu(event_data->DiscoveryStatus)); 1247 pr_cont("\n"); 1248 return; 1249 } 1250 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE: 1251 desc = "SAS Broadcast Primitive"; 1252 break; 1253 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE: 1254 desc = "SAS Init Device Status Change"; 1255 break; 1256 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW: 1257 desc = "SAS Init Table Overflow"; 1258 break; 1259 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST: 1260 desc = "SAS Topology Change List"; 1261 break; 1262 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE: 1263 desc = "SAS Enclosure Device Status Change"; 1264 break; 1265 case MPI2_EVENT_IR_VOLUME: 1266 if (!ioc->hide_ir_msg) 1267 desc = "IR Volume"; 1268 break; 1269 case MPI2_EVENT_IR_PHYSICAL_DISK: 1270 if (!ioc->hide_ir_msg) 1271 desc = "IR Physical Disk"; 1272 break; 1273 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST: 1274 if (!ioc->hide_ir_msg) 1275 desc = "IR Configuration Change List"; 1276 break; 1277 case MPI2_EVENT_LOG_ENTRY_ADDED: 1278 if (!ioc->hide_ir_msg) 1279 desc = "Log Entry Added"; 1280 break; 1281 case MPI2_EVENT_TEMP_THRESHOLD: 1282 desc = "Temperature Threshold"; 1283 break; 1284 case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION: 1285 desc = "Cable Event"; 1286 break; 1287 case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR: 1288 desc = "SAS Device Discovery Error"; 1289 break; 1290 case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE: 1291 desc = "PCIE Device Status Change"; 1292 break; 1293 case MPI2_EVENT_PCIE_ENUMERATION: 1294 { 1295 Mpi26EventDataPCIeEnumeration_t *event_data = 1296 (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData; 1297 ioc_info(ioc, "PCIE Enumeration: (%s)", 1298 event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ? 1299 "start" : "stop"); 1300 if (event_data->EnumerationStatus) 1301 pr_cont("enumeration_status(0x%08x)", 1302 le32_to_cpu(event_data->EnumerationStatus)); 1303 pr_cont("\n"); 1304 return; 1305 } 1306 case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST: 1307 desc = "PCIE Topology Change List"; 1308 break; 1309 } 1310 1311 if (!desc) 1312 return; 1313 1314 ioc_info(ioc, "%s\n", desc); 1315 } 1316 1317 /** 1318 * _base_sas_log_info - verbose translation of firmware log info 1319 * @ioc: per adapter object 1320 * @log_info: log info 1321 */ 1322 static void 1323 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc, u32 log_info) 1324 { 1325 union loginfo_type { 1326 u32 loginfo; 1327 struct { 1328 u32 subcode:16; 1329 u32 code:8; 1330 u32 originator:4; 1331 u32 bus_type:4; 1332 } dw; 1333 }; 1334 union loginfo_type sas_loginfo; 1335 char *originator_str = NULL; 1336 1337 sas_loginfo.loginfo = log_info; 1338 if (sas_loginfo.dw.bus_type != 3 /*SAS*/) 1339 return; 1340 1341 /* each nexus loss loginfo */ 1342 if (log_info == 0x31170000) 1343 return; 1344 1345 /* eat the loginfos associated with task aborts */ 1346 if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info == 1347 0x31140000 || log_info == 0x31130000)) 1348 return; 1349 1350 switch (sas_loginfo.dw.originator) { 1351 case 0: 1352 originator_str = "IOP"; 1353 break; 1354 case 1: 1355 originator_str = "PL"; 1356 break; 1357 case 2: 1358 if (!ioc->hide_ir_msg) 1359 originator_str = "IR"; 1360 else 1361 originator_str = "WarpDrive"; 1362 break; 1363 } 1364 1365 ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n", 1366 log_info, 1367 originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode); 1368 } 1369 1370 /** 1371 * _base_display_reply_info - handle reply descriptors depending on IOC Status 1372 * @ioc: per adapter object 1373 * @smid: system request message index 1374 * @msix_index: MSIX table index supplied by the OS 1375 * @reply: reply message frame (lower 32bit addr) 1376 */ 1377 static void 1378 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 1379 u32 reply) 1380 { 1381 MPI2DefaultReply_t *mpi_reply; 1382 u16 ioc_status; 1383 u32 loginfo = 0; 1384 1385 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1386 if (unlikely(!mpi_reply)) { 1387 ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n", 1388 __FILE__, __LINE__, __func__); 1389 return; 1390 } 1391 ioc_status = le16_to_cpu(mpi_reply->IOCStatus); 1392 1393 if ((ioc_status & MPI2_IOCSTATUS_MASK) && 1394 (ioc->logging_level & MPT_DEBUG_REPLY)) { 1395 _base_sas_ioc_info(ioc, mpi_reply, 1396 mpt3sas_base_get_msg_frame(ioc, smid)); 1397 } 1398 1399 if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) { 1400 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo); 1401 _base_sas_log_info(ioc, loginfo); 1402 } 1403 1404 if (ioc_status || loginfo) { 1405 ioc_status &= MPI2_IOCSTATUS_MASK; 1406 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo); 1407 } 1408 } 1409 1410 /** 1411 * mpt3sas_base_done - base internal command completion routine 1412 * @ioc: per adapter object 1413 * @smid: system request message index 1414 * @msix_index: MSIX table index supplied by the OS 1415 * @reply: reply message frame(lower 32bit addr) 1416 * 1417 * Return: 1418 * 1 meaning mf should be freed from _base_interrupt 1419 * 0 means the mf is freed from this function. 1420 */ 1421 u8 1422 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 1423 u32 reply) 1424 { 1425 MPI2DefaultReply_t *mpi_reply; 1426 1427 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1428 if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK) 1429 return mpt3sas_check_for_pending_internal_cmds(ioc, smid); 1430 1431 if (ioc->base_cmds.status == MPT3_CMD_NOT_USED) 1432 return 1; 1433 1434 ioc->base_cmds.status |= MPT3_CMD_COMPLETE; 1435 if (mpi_reply) { 1436 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID; 1437 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4); 1438 } 1439 ioc->base_cmds.status &= ~MPT3_CMD_PENDING; 1440 1441 complete(&ioc->base_cmds.done); 1442 return 1; 1443 } 1444 1445 /** 1446 * _base_async_event - main callback handler for firmware asyn events 1447 * @ioc: per adapter object 1448 * @msix_index: MSIX table index supplied by the OS 1449 * @reply: reply message frame(lower 32bit addr) 1450 * 1451 * Return: 1452 * 1 meaning mf should be freed from _base_interrupt 1453 * 0 means the mf is freed from this function. 1454 */ 1455 static u8 1456 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply) 1457 { 1458 Mpi2EventNotificationReply_t *mpi_reply; 1459 Mpi2EventAckRequest_t *ack_request; 1460 u16 smid; 1461 struct _event_ack_list *delayed_event_ack; 1462 1463 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1464 if (!mpi_reply) 1465 return 1; 1466 if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION) 1467 return 1; 1468 1469 _base_display_event_data(ioc, mpi_reply); 1470 1471 if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED)) 1472 goto out; 1473 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 1474 if (!smid) { 1475 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack), 1476 GFP_ATOMIC); 1477 if (!delayed_event_ack) 1478 goto out; 1479 INIT_LIST_HEAD(&delayed_event_ack->list); 1480 delayed_event_ack->Event = mpi_reply->Event; 1481 delayed_event_ack->EventContext = mpi_reply->EventContext; 1482 list_add_tail(&delayed_event_ack->list, 1483 &ioc->delayed_event_ack_list); 1484 dewtprintk(ioc, 1485 ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n", 1486 le16_to_cpu(mpi_reply->Event))); 1487 goto out; 1488 } 1489 1490 ack_request = mpt3sas_base_get_msg_frame(ioc, smid); 1491 memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t)); 1492 ack_request->Function = MPI2_FUNCTION_EVENT_ACK; 1493 ack_request->Event = mpi_reply->Event; 1494 ack_request->EventContext = mpi_reply->EventContext; 1495 ack_request->VF_ID = 0; /* TODO */ 1496 ack_request->VP_ID = 0; 1497 ioc->put_smid_default(ioc, smid); 1498 1499 out: 1500 1501 /* scsih callback handler */ 1502 mpt3sas_scsih_event_callback(ioc, msix_index, reply); 1503 1504 /* ctl callback handler */ 1505 mpt3sas_ctl_event_callback(ioc, msix_index, reply); 1506 1507 return 1; 1508 } 1509 1510 static struct scsiio_tracker * 1511 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid) 1512 { 1513 struct scsi_cmnd *cmd; 1514 1515 if (WARN_ON(!smid) || 1516 WARN_ON(smid >= ioc->hi_priority_smid)) 1517 return NULL; 1518 1519 cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid); 1520 if (cmd) 1521 return scsi_cmd_priv(cmd); 1522 1523 return NULL; 1524 } 1525 1526 /** 1527 * _base_get_cb_idx - obtain the callback index 1528 * @ioc: per adapter object 1529 * @smid: system request message index 1530 * 1531 * Return: callback index. 1532 */ 1533 static u8 1534 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid) 1535 { 1536 int i; 1537 u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1; 1538 u8 cb_idx = 0xFF; 1539 1540 if (smid < ioc->hi_priority_smid) { 1541 struct scsiio_tracker *st; 1542 1543 if (smid < ctl_smid) { 1544 st = _get_st_from_smid(ioc, smid); 1545 if (st) 1546 cb_idx = st->cb_idx; 1547 } else if (smid == ctl_smid) 1548 cb_idx = ioc->ctl_cb_idx; 1549 } else if (smid < ioc->internal_smid) { 1550 i = smid - ioc->hi_priority_smid; 1551 cb_idx = ioc->hpr_lookup[i].cb_idx; 1552 } else if (smid <= ioc->hba_queue_depth) { 1553 i = smid - ioc->internal_smid; 1554 cb_idx = ioc->internal_lookup[i].cb_idx; 1555 } 1556 return cb_idx; 1557 } 1558 1559 /** 1560 * mpt3sas_base_pause_mq_polling - pause polling on the mq poll queues 1561 * when driver is flushing out the IOs. 1562 * @ioc: per adapter object 1563 * 1564 * Pause polling on the mq poll (io uring) queues when driver is flushing 1565 * out the IOs. Otherwise we may see the race condition of completing the same 1566 * IO from two paths. 1567 * 1568 * Returns nothing. 1569 */ 1570 void 1571 mpt3sas_base_pause_mq_polling(struct MPT3SAS_ADAPTER *ioc) 1572 { 1573 int iopoll_q_count = 1574 ioc->reply_queue_count - ioc->iopoll_q_start_index; 1575 int qid; 1576 1577 for (qid = 0; qid < iopoll_q_count; qid++) 1578 atomic_set(&ioc->io_uring_poll_queues[qid].pause, 1); 1579 1580 /* 1581 * wait for current poll to complete. 1582 */ 1583 for (qid = 0; qid < iopoll_q_count; qid++) { 1584 while (atomic_read(&ioc->io_uring_poll_queues[qid].busy)) { 1585 cpu_relax(); 1586 udelay(500); 1587 } 1588 } 1589 } 1590 1591 /** 1592 * mpt3sas_base_resume_mq_polling - Resume polling on mq poll queues. 1593 * @ioc: per adapter object 1594 * 1595 * Returns nothing. 1596 */ 1597 void 1598 mpt3sas_base_resume_mq_polling(struct MPT3SAS_ADAPTER *ioc) 1599 { 1600 int iopoll_q_count = 1601 ioc->reply_queue_count - ioc->iopoll_q_start_index; 1602 int qid; 1603 1604 for (qid = 0; qid < iopoll_q_count; qid++) 1605 atomic_set(&ioc->io_uring_poll_queues[qid].pause, 0); 1606 } 1607 1608 /** 1609 * mpt3sas_base_mask_interrupts - disable interrupts 1610 * @ioc: per adapter object 1611 * 1612 * Disabling ResetIRQ, Reply and Doorbell Interrupts 1613 */ 1614 void 1615 mpt3sas_base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc) 1616 { 1617 u32 him_register; 1618 1619 ioc->mask_interrupts = 1; 1620 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask); 1621 him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK; 1622 writel(him_register, &ioc->chip->HostInterruptMask); 1623 ioc->base_readl(&ioc->chip->HostInterruptMask); 1624 } 1625 1626 /** 1627 * mpt3sas_base_unmask_interrupts - enable interrupts 1628 * @ioc: per adapter object 1629 * 1630 * Enabling only Reply Interrupts 1631 */ 1632 void 1633 mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc) 1634 { 1635 u32 him_register; 1636 1637 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask); 1638 him_register &= ~MPI2_HIM_RIM; 1639 writel(him_register, &ioc->chip->HostInterruptMask); 1640 ioc->mask_interrupts = 0; 1641 } 1642 1643 union reply_descriptor { 1644 u64 word; 1645 struct { 1646 u32 low; 1647 u32 high; 1648 } u; 1649 }; 1650 1651 static u32 base_mod64(u64 dividend, u32 divisor) 1652 { 1653 u32 remainder; 1654 1655 if (!divisor) 1656 pr_err("mpt3sas: DIVISOR is zero, in div fn\n"); 1657 remainder = do_div(dividend, divisor); 1658 return remainder; 1659 } 1660 1661 /** 1662 * _base_process_reply_queue - Process reply descriptors from reply 1663 * descriptor post queue. 1664 * @reply_q: per IRQ's reply queue object. 1665 * 1666 * Return: number of reply descriptors processed from reply 1667 * descriptor queue. 1668 */ 1669 static int 1670 _base_process_reply_queue(struct adapter_reply_queue *reply_q) 1671 { 1672 union reply_descriptor rd; 1673 u64 completed_cmds; 1674 u8 request_descript_type; 1675 u16 smid; 1676 u8 cb_idx; 1677 u32 reply; 1678 u8 msix_index = reply_q->msix_index; 1679 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc; 1680 Mpi2ReplyDescriptorsUnion_t *rpf; 1681 u8 rc; 1682 1683 completed_cmds = 0; 1684 if (!atomic_add_unless(&reply_q->busy, 1, 1)) 1685 return completed_cmds; 1686 1687 rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index]; 1688 request_descript_type = rpf->Default.ReplyFlags 1689 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 1690 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) { 1691 atomic_dec(&reply_q->busy); 1692 return completed_cmds; 1693 } 1694 1695 cb_idx = 0xFF; 1696 do { 1697 rd.word = le64_to_cpu(rpf->Words); 1698 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX) 1699 goto out; 1700 reply = 0; 1701 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1); 1702 if (request_descript_type == 1703 MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS || 1704 request_descript_type == 1705 MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS || 1706 request_descript_type == 1707 MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) { 1708 cb_idx = _base_get_cb_idx(ioc, smid); 1709 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) && 1710 (likely(mpt_callbacks[cb_idx] != NULL))) { 1711 rc = mpt_callbacks[cb_idx](ioc, smid, 1712 msix_index, 0); 1713 if (rc) 1714 mpt3sas_base_free_smid(ioc, smid); 1715 } 1716 } else if (request_descript_type == 1717 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) { 1718 reply = le32_to_cpu( 1719 rpf->AddressReply.ReplyFrameAddress); 1720 if (reply > ioc->reply_dma_max_address || 1721 reply < ioc->reply_dma_min_address) 1722 reply = 0; 1723 if (smid) { 1724 cb_idx = _base_get_cb_idx(ioc, smid); 1725 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) && 1726 (likely(mpt_callbacks[cb_idx] != NULL))) { 1727 rc = mpt_callbacks[cb_idx](ioc, smid, 1728 msix_index, reply); 1729 if (reply) 1730 _base_display_reply_info(ioc, 1731 smid, msix_index, reply); 1732 if (rc) 1733 mpt3sas_base_free_smid(ioc, 1734 smid); 1735 } 1736 } else { 1737 _base_async_event(ioc, msix_index, reply); 1738 } 1739 1740 /* reply free queue handling */ 1741 if (reply) { 1742 ioc->reply_free_host_index = 1743 (ioc->reply_free_host_index == 1744 (ioc->reply_free_queue_depth - 1)) ? 1745 0 : ioc->reply_free_host_index + 1; 1746 ioc->reply_free[ioc->reply_free_host_index] = 1747 cpu_to_le32(reply); 1748 if (ioc->is_mcpu_endpoint) 1749 _base_clone_reply_to_sys_mem(ioc, 1750 reply, 1751 ioc->reply_free_host_index); 1752 writel(ioc->reply_free_host_index, 1753 &ioc->chip->ReplyFreeHostIndex); 1754 } 1755 } 1756 1757 rpf->Words = cpu_to_le64(ULLONG_MAX); 1758 reply_q->reply_post_host_index = 1759 (reply_q->reply_post_host_index == 1760 (ioc->reply_post_queue_depth - 1)) ? 0 : 1761 reply_q->reply_post_host_index + 1; 1762 request_descript_type = 1763 reply_q->reply_post_free[reply_q->reply_post_host_index]. 1764 Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 1765 completed_cmds++; 1766 /* Update the reply post host index after continuously 1767 * processing the threshold number of Reply Descriptors. 1768 * So that FW can find enough entries to post the Reply 1769 * Descriptors in the reply descriptor post queue. 1770 */ 1771 if (completed_cmds >= ioc->thresh_hold) { 1772 if (ioc->combined_reply_queue) { 1773 writel(reply_q->reply_post_host_index | 1774 ((msix_index & 7) << 1775 MPI2_RPHI_MSIX_INDEX_SHIFT), 1776 ioc->replyPostRegisterIndex[msix_index/8]); 1777 } else { 1778 writel(reply_q->reply_post_host_index | 1779 (msix_index << 1780 MPI2_RPHI_MSIX_INDEX_SHIFT), 1781 &ioc->chip->ReplyPostHostIndex); 1782 } 1783 if (!reply_q->is_iouring_poll_q && 1784 !reply_q->irq_poll_scheduled) { 1785 reply_q->irq_poll_scheduled = true; 1786 irq_poll_sched(&reply_q->irqpoll); 1787 } 1788 atomic_dec(&reply_q->busy); 1789 return completed_cmds; 1790 } 1791 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) 1792 goto out; 1793 if (!reply_q->reply_post_host_index) 1794 rpf = reply_q->reply_post_free; 1795 else 1796 rpf++; 1797 } while (1); 1798 1799 out: 1800 1801 if (!completed_cmds) { 1802 atomic_dec(&reply_q->busy); 1803 return completed_cmds; 1804 } 1805 1806 if (ioc->is_warpdrive) { 1807 writel(reply_q->reply_post_host_index, 1808 ioc->reply_post_host_index[msix_index]); 1809 atomic_dec(&reply_q->busy); 1810 return completed_cmds; 1811 } 1812 1813 /* Update Reply Post Host Index. 1814 * For those HBA's which support combined reply queue feature 1815 * 1. Get the correct Supplemental Reply Post Host Index Register. 1816 * i.e. (msix_index / 8)th entry from Supplemental Reply Post Host 1817 * Index Register address bank i.e replyPostRegisterIndex[], 1818 * 2. Then update this register with new reply host index value 1819 * in ReplyPostIndex field and the MSIxIndex field with 1820 * msix_index value reduced to a value between 0 and 7, 1821 * using a modulo 8 operation. Since each Supplemental Reply Post 1822 * Host Index Register supports 8 MSI-X vectors. 1823 * 1824 * For other HBA's just update the Reply Post Host Index register with 1825 * new reply host index value in ReplyPostIndex Field and msix_index 1826 * value in MSIxIndex field. 1827 */ 1828 if (ioc->combined_reply_queue) 1829 writel(reply_q->reply_post_host_index | ((msix_index & 7) << 1830 MPI2_RPHI_MSIX_INDEX_SHIFT), 1831 ioc->replyPostRegisterIndex[msix_index/8]); 1832 else 1833 writel(reply_q->reply_post_host_index | (msix_index << 1834 MPI2_RPHI_MSIX_INDEX_SHIFT), 1835 &ioc->chip->ReplyPostHostIndex); 1836 atomic_dec(&reply_q->busy); 1837 return completed_cmds; 1838 } 1839 1840 /** 1841 * mpt3sas_blk_mq_poll - poll the blk mq poll queue 1842 * @shost: Scsi_Host object 1843 * @queue_num: hw ctx queue number 1844 * 1845 * Return number of entries that has been processed from poll queue. 1846 */ 1847 int mpt3sas_blk_mq_poll(struct Scsi_Host *shost, unsigned int queue_num) 1848 { 1849 struct MPT3SAS_ADAPTER *ioc = 1850 (struct MPT3SAS_ADAPTER *)shost->hostdata; 1851 struct adapter_reply_queue *reply_q; 1852 int num_entries = 0; 1853 int qid = queue_num - ioc->iopoll_q_start_index; 1854 1855 if (atomic_read(&ioc->io_uring_poll_queues[qid].pause) || 1856 !atomic_add_unless(&ioc->io_uring_poll_queues[qid].busy, 1, 1)) 1857 return 0; 1858 1859 reply_q = ioc->io_uring_poll_queues[qid].reply_q; 1860 1861 num_entries = _base_process_reply_queue(reply_q); 1862 atomic_dec(&ioc->io_uring_poll_queues[qid].busy); 1863 1864 return num_entries; 1865 } 1866 1867 /** 1868 * _base_interrupt - MPT adapter (IOC) specific interrupt handler. 1869 * @irq: irq number (not used) 1870 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure 1871 * 1872 * Return: IRQ_HANDLED if processed, else IRQ_NONE. 1873 */ 1874 static irqreturn_t 1875 _base_interrupt(int irq, void *bus_id) 1876 { 1877 struct adapter_reply_queue *reply_q = bus_id; 1878 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc; 1879 1880 if (ioc->mask_interrupts) 1881 return IRQ_NONE; 1882 if (reply_q->irq_poll_scheduled) 1883 return IRQ_HANDLED; 1884 return ((_base_process_reply_queue(reply_q) > 0) ? 1885 IRQ_HANDLED : IRQ_NONE); 1886 } 1887 1888 /** 1889 * _base_irqpoll - IRQ poll callback handler 1890 * @irqpoll: irq_poll object 1891 * @budget: irq poll weight 1892 * 1893 * Return: number of reply descriptors processed 1894 */ 1895 static int 1896 _base_irqpoll(struct irq_poll *irqpoll, int budget) 1897 { 1898 struct adapter_reply_queue *reply_q; 1899 int num_entries = 0; 1900 1901 reply_q = container_of(irqpoll, struct adapter_reply_queue, 1902 irqpoll); 1903 if (reply_q->irq_line_enable) { 1904 disable_irq_nosync(reply_q->os_irq); 1905 reply_q->irq_line_enable = false; 1906 } 1907 num_entries = _base_process_reply_queue(reply_q); 1908 if (num_entries < budget) { 1909 irq_poll_complete(irqpoll); 1910 reply_q->irq_poll_scheduled = false; 1911 reply_q->irq_line_enable = true; 1912 enable_irq(reply_q->os_irq); 1913 /* 1914 * Go for one more round of processing the 1915 * reply descriptor post queue in case the HBA 1916 * Firmware has posted some reply descriptors 1917 * while reenabling the IRQ. 1918 */ 1919 _base_process_reply_queue(reply_q); 1920 } 1921 1922 return num_entries; 1923 } 1924 1925 /** 1926 * _base_init_irqpolls - initliaze IRQ polls 1927 * @ioc: per adapter object 1928 * 1929 * Return: nothing 1930 */ 1931 static void 1932 _base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc) 1933 { 1934 struct adapter_reply_queue *reply_q, *next; 1935 1936 if (list_empty(&ioc->reply_queue_list)) 1937 return; 1938 1939 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) { 1940 if (reply_q->is_iouring_poll_q) 1941 continue; 1942 irq_poll_init(&reply_q->irqpoll, 1943 ioc->hba_queue_depth/4, _base_irqpoll); 1944 reply_q->irq_poll_scheduled = false; 1945 reply_q->irq_line_enable = true; 1946 reply_q->os_irq = pci_irq_vector(ioc->pdev, 1947 reply_q->msix_index); 1948 } 1949 } 1950 1951 /** 1952 * _base_is_controller_msix_enabled - is controller support muli-reply queues 1953 * @ioc: per adapter object 1954 * 1955 * Return: Whether or not MSI/X is enabled. 1956 */ 1957 static inline int 1958 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc) 1959 { 1960 return (ioc->facts.IOCCapabilities & 1961 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable; 1962 } 1963 1964 /** 1965 * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts 1966 * @ioc: per adapter object 1967 * @poll: poll over reply descriptor pools incase interrupt for 1968 * timed-out SCSI command got delayed 1969 * Context: non-ISR context 1970 * 1971 * Called when a Task Management request has completed. 1972 */ 1973 void 1974 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc, u8 poll) 1975 { 1976 struct adapter_reply_queue *reply_q; 1977 1978 /* If MSIX capability is turned off 1979 * then multi-queues are not enabled 1980 */ 1981 if (!_base_is_controller_msix_enabled(ioc)) 1982 return; 1983 1984 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 1985 if (ioc->shost_recovery || ioc->remove_host || 1986 ioc->pci_error_recovery) 1987 return; 1988 /* TMs are on msix_index == 0 */ 1989 if (reply_q->msix_index == 0) 1990 continue; 1991 1992 if (reply_q->is_iouring_poll_q) { 1993 _base_process_reply_queue(reply_q); 1994 continue; 1995 } 1996 1997 synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index)); 1998 if (reply_q->irq_poll_scheduled) { 1999 /* Calling irq_poll_disable will wait for any pending 2000 * callbacks to have completed. 2001 */ 2002 irq_poll_disable(&reply_q->irqpoll); 2003 irq_poll_enable(&reply_q->irqpoll); 2004 /* check how the scheduled poll has ended, 2005 * clean up only if necessary 2006 */ 2007 if (reply_q->irq_poll_scheduled) { 2008 reply_q->irq_poll_scheduled = false; 2009 reply_q->irq_line_enable = true; 2010 enable_irq(reply_q->os_irq); 2011 } 2012 } 2013 2014 if (poll) 2015 _base_process_reply_queue(reply_q); 2016 } 2017 } 2018 2019 /** 2020 * mpt3sas_base_release_callback_handler - clear interrupt callback handler 2021 * @cb_idx: callback index 2022 */ 2023 void 2024 mpt3sas_base_release_callback_handler(u8 cb_idx) 2025 { 2026 mpt_callbacks[cb_idx] = NULL; 2027 } 2028 2029 /** 2030 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler 2031 * @cb_func: callback function 2032 * 2033 * Return: Index of @cb_func. 2034 */ 2035 u8 2036 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func) 2037 { 2038 u8 cb_idx; 2039 2040 for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--) 2041 if (mpt_callbacks[cb_idx] == NULL) 2042 break; 2043 2044 mpt_callbacks[cb_idx] = cb_func; 2045 return cb_idx; 2046 } 2047 2048 /** 2049 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler 2050 */ 2051 void 2052 mpt3sas_base_initialize_callback_handler(void) 2053 { 2054 u8 cb_idx; 2055 2056 for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++) 2057 mpt3sas_base_release_callback_handler(cb_idx); 2058 } 2059 2060 2061 /** 2062 * _base_build_zero_len_sge - build zero length sg entry 2063 * @ioc: per adapter object 2064 * @paddr: virtual address for SGE 2065 * 2066 * Create a zero length scatter gather entry to insure the IOCs hardware has 2067 * something to use if the target device goes brain dead and tries 2068 * to send data even when none is asked for. 2069 */ 2070 static void 2071 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr) 2072 { 2073 u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT | 2074 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST | 2075 MPI2_SGE_FLAGS_SIMPLE_ELEMENT) << 2076 MPI2_SGE_FLAGS_SHIFT); 2077 ioc->base_add_sg_single(paddr, flags_length, -1); 2078 } 2079 2080 /** 2081 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr. 2082 * @paddr: virtual address for SGE 2083 * @flags_length: SGE flags and data transfer length 2084 * @dma_addr: Physical address 2085 */ 2086 static void 2087 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr) 2088 { 2089 Mpi2SGESimple32_t *sgel = paddr; 2090 2091 flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING | 2092 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT; 2093 sgel->FlagsLength = cpu_to_le32(flags_length); 2094 sgel->Address = cpu_to_le32(dma_addr); 2095 } 2096 2097 2098 /** 2099 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr. 2100 * @paddr: virtual address for SGE 2101 * @flags_length: SGE flags and data transfer length 2102 * @dma_addr: Physical address 2103 */ 2104 static void 2105 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr) 2106 { 2107 Mpi2SGESimple64_t *sgel = paddr; 2108 2109 flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING | 2110 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT; 2111 sgel->FlagsLength = cpu_to_le32(flags_length); 2112 sgel->Address = cpu_to_le64(dma_addr); 2113 } 2114 2115 /** 2116 * _base_get_chain_buffer_tracker - obtain chain tracker 2117 * @ioc: per adapter object 2118 * @scmd: SCSI commands of the IO request 2119 * 2120 * Return: chain tracker from chain_lookup table using key as 2121 * smid and smid's chain_offset. 2122 */ 2123 static struct chain_tracker * 2124 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc, 2125 struct scsi_cmnd *scmd) 2126 { 2127 struct chain_tracker *chain_req; 2128 struct scsiio_tracker *st = scsi_cmd_priv(scmd); 2129 u16 smid = st->smid; 2130 u8 chain_offset = 2131 atomic_read(&ioc->chain_lookup[smid - 1].chain_offset); 2132 2133 if (chain_offset == ioc->chains_needed_per_io) 2134 return NULL; 2135 2136 chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset]; 2137 atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset); 2138 return chain_req; 2139 } 2140 2141 2142 /** 2143 * _base_build_sg - build generic sg 2144 * @ioc: per adapter object 2145 * @psge: virtual address for SGE 2146 * @data_out_dma: physical address for WRITES 2147 * @data_out_sz: data xfer size for WRITES 2148 * @data_in_dma: physical address for READS 2149 * @data_in_sz: data xfer size for READS 2150 */ 2151 static void 2152 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge, 2153 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 2154 size_t data_in_sz) 2155 { 2156 u32 sgl_flags; 2157 2158 if (!data_out_sz && !data_in_sz) { 2159 _base_build_zero_len_sge(ioc, psge); 2160 return; 2161 } 2162 2163 if (data_out_sz && data_in_sz) { 2164 /* WRITE sgel first */ 2165 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2166 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC); 2167 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2168 ioc->base_add_sg_single(psge, sgl_flags | 2169 data_out_sz, data_out_dma); 2170 2171 /* incr sgel */ 2172 psge += ioc->sge_size; 2173 2174 /* READ sgel last */ 2175 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2176 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 2177 MPI2_SGE_FLAGS_END_OF_LIST); 2178 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2179 ioc->base_add_sg_single(psge, sgl_flags | 2180 data_in_sz, data_in_dma); 2181 } else if (data_out_sz) /* WRITE */ { 2182 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2183 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 2184 MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC); 2185 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2186 ioc->base_add_sg_single(psge, sgl_flags | 2187 data_out_sz, data_out_dma); 2188 } else if (data_in_sz) /* READ */ { 2189 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2190 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 2191 MPI2_SGE_FLAGS_END_OF_LIST); 2192 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2193 ioc->base_add_sg_single(psge, sgl_flags | 2194 data_in_sz, data_in_dma); 2195 } 2196 } 2197 2198 /* IEEE format sgls */ 2199 2200 /** 2201 * _base_build_nvme_prp - This function is called for NVMe end devices to build 2202 * a native SGL (NVMe PRP). 2203 * @ioc: per adapter object 2204 * @smid: system request message index for getting asscociated SGL 2205 * @nvme_encap_request: the NVMe request msg frame pointer 2206 * @data_out_dma: physical address for WRITES 2207 * @data_out_sz: data xfer size for WRITES 2208 * @data_in_dma: physical address for READS 2209 * @data_in_sz: data xfer size for READS 2210 * 2211 * The native SGL is built starting in the first PRP 2212 * entry of the NVMe message (PRP1). If the data buffer is small enough to be 2213 * described entirely using PRP1, then PRP2 is not used. If needed, PRP2 is 2214 * used to describe a larger data buffer. If the data buffer is too large to 2215 * describe using the two PRP entriess inside the NVMe message, then PRP1 2216 * describes the first data memory segment, and PRP2 contains a pointer to a PRP 2217 * list located elsewhere in memory to describe the remaining data memory 2218 * segments. The PRP list will be contiguous. 2219 * 2220 * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP 2221 * consists of a list of PRP entries to describe a number of noncontigous 2222 * physical memory segments as a single memory buffer, just as a SGL does. Note 2223 * however, that this function is only used by the IOCTL call, so the memory 2224 * given will be guaranteed to be contiguous. There is no need to translate 2225 * non-contiguous SGL into a PRP in this case. All PRPs will describe 2226 * contiguous space that is one page size each. 2227 * 2228 * Each NVMe message contains two PRP entries. The first (PRP1) either contains 2229 * a PRP list pointer or a PRP element, depending upon the command. PRP2 2230 * contains the second PRP element if the memory being described fits within 2 2231 * PRP entries, or a PRP list pointer if the PRP spans more than two entries. 2232 * 2233 * A PRP list pointer contains the address of a PRP list, structured as a linear 2234 * array of PRP entries. Each PRP entry in this list describes a segment of 2235 * physical memory. 2236 * 2237 * Each 64-bit PRP entry comprises an address and an offset field. The address 2238 * always points at the beginning of a 4KB physical memory page, and the offset 2239 * describes where within that 4KB page the memory segment begins. Only the 2240 * first element in a PRP list may contain a non-zero offset, implying that all 2241 * memory segments following the first begin at the start of a 4KB page. 2242 * 2243 * Each PRP element normally describes 4KB of physical memory, with exceptions 2244 * for the first and last elements in the list. If the memory being described 2245 * by the list begins at a non-zero offset within the first 4KB page, then the 2246 * first PRP element will contain a non-zero offset indicating where the region 2247 * begins within the 4KB page. The last memory segment may end before the end 2248 * of the 4KB segment, depending upon the overall size of the memory being 2249 * described by the PRP list. 2250 * 2251 * Since PRP entries lack any indication of size, the overall data buffer length 2252 * is used to determine where the end of the data memory buffer is located, and 2253 * how many PRP entries are required to describe it. 2254 */ 2255 static void 2256 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid, 2257 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request, 2258 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 2259 size_t data_in_sz) 2260 { 2261 int prp_size = NVME_PRP_SIZE; 2262 __le64 *prp_entry, *prp1_entry, *prp2_entry; 2263 __le64 *prp_page; 2264 dma_addr_t prp_entry_dma, prp_page_dma, dma_addr; 2265 u32 offset, entry_len; 2266 u32 page_mask_result, page_mask; 2267 size_t length; 2268 struct mpt3sas_nvme_cmd *nvme_cmd = 2269 (void *)nvme_encap_request->NVMe_Command; 2270 2271 /* 2272 * Not all commands require a data transfer. If no data, just return 2273 * without constructing any PRP. 2274 */ 2275 if (!data_in_sz && !data_out_sz) 2276 return; 2277 prp1_entry = &nvme_cmd->prp1; 2278 prp2_entry = &nvme_cmd->prp2; 2279 prp_entry = prp1_entry; 2280 /* 2281 * For the PRP entries, use the specially allocated buffer of 2282 * contiguous memory. 2283 */ 2284 prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid); 2285 prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid); 2286 2287 /* 2288 * Check if we are within 1 entry of a page boundary we don't 2289 * want our first entry to be a PRP List entry. 2290 */ 2291 page_mask = ioc->page_size - 1; 2292 page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask; 2293 if (!page_mask_result) { 2294 /* Bump up to next page boundary. */ 2295 prp_page = (__le64 *)((u8 *)prp_page + prp_size); 2296 prp_page_dma = prp_page_dma + prp_size; 2297 } 2298 2299 /* 2300 * Set PRP physical pointer, which initially points to the current PRP 2301 * DMA memory page. 2302 */ 2303 prp_entry_dma = prp_page_dma; 2304 2305 /* Get physical address and length of the data buffer. */ 2306 if (data_in_sz) { 2307 dma_addr = data_in_dma; 2308 length = data_in_sz; 2309 } else { 2310 dma_addr = data_out_dma; 2311 length = data_out_sz; 2312 } 2313 2314 /* Loop while the length is not zero. */ 2315 while (length) { 2316 /* 2317 * Check if we need to put a list pointer here if we are at 2318 * page boundary - prp_size (8 bytes). 2319 */ 2320 page_mask_result = (prp_entry_dma + prp_size) & page_mask; 2321 if (!page_mask_result) { 2322 /* 2323 * This is the last entry in a PRP List, so we need to 2324 * put a PRP list pointer here. What this does is: 2325 * - bump the current memory pointer to the next 2326 * address, which will be the next full page. 2327 * - set the PRP Entry to point to that page. This 2328 * is now the PRP List pointer. 2329 * - bump the PRP Entry pointer the start of the 2330 * next page. Since all of this PRP memory is 2331 * contiguous, no need to get a new page - it's 2332 * just the next address. 2333 */ 2334 prp_entry_dma++; 2335 *prp_entry = cpu_to_le64(prp_entry_dma); 2336 prp_entry++; 2337 } 2338 2339 /* Need to handle if entry will be part of a page. */ 2340 offset = dma_addr & page_mask; 2341 entry_len = ioc->page_size - offset; 2342 2343 if (prp_entry == prp1_entry) { 2344 /* 2345 * Must fill in the first PRP pointer (PRP1) before 2346 * moving on. 2347 */ 2348 *prp1_entry = cpu_to_le64(dma_addr); 2349 2350 /* 2351 * Now point to the second PRP entry within the 2352 * command (PRP2). 2353 */ 2354 prp_entry = prp2_entry; 2355 } else if (prp_entry == prp2_entry) { 2356 /* 2357 * Should the PRP2 entry be a PRP List pointer or just 2358 * a regular PRP pointer? If there is more than one 2359 * more page of data, must use a PRP List pointer. 2360 */ 2361 if (length > ioc->page_size) { 2362 /* 2363 * PRP2 will contain a PRP List pointer because 2364 * more PRP's are needed with this command. The 2365 * list will start at the beginning of the 2366 * contiguous buffer. 2367 */ 2368 *prp2_entry = cpu_to_le64(prp_entry_dma); 2369 2370 /* 2371 * The next PRP Entry will be the start of the 2372 * first PRP List. 2373 */ 2374 prp_entry = prp_page; 2375 } else { 2376 /* 2377 * After this, the PRP Entries are complete. 2378 * This command uses 2 PRP's and no PRP list. 2379 */ 2380 *prp2_entry = cpu_to_le64(dma_addr); 2381 } 2382 } else { 2383 /* 2384 * Put entry in list and bump the addresses. 2385 * 2386 * After PRP1 and PRP2 are filled in, this will fill in 2387 * all remaining PRP entries in a PRP List, one per 2388 * each time through the loop. 2389 */ 2390 *prp_entry = cpu_to_le64(dma_addr); 2391 prp_entry++; 2392 prp_entry_dma++; 2393 } 2394 2395 /* 2396 * Bump the phys address of the command's data buffer by the 2397 * entry_len. 2398 */ 2399 dma_addr += entry_len; 2400 2401 /* Decrement length accounting for last partial page. */ 2402 if (entry_len > length) 2403 length = 0; 2404 else 2405 length -= entry_len; 2406 } 2407 } 2408 2409 /** 2410 * base_make_prp_nvme - Prepare PRPs (Physical Region Page) - 2411 * SGLs specific to NVMe drives only 2412 * 2413 * @ioc: per adapter object 2414 * @scmd: SCSI command from the mid-layer 2415 * @mpi_request: mpi request 2416 * @smid: msg Index 2417 * @sge_count: scatter gather element count. 2418 * 2419 * Return: true: PRPs are built 2420 * false: IEEE SGLs needs to be built 2421 */ 2422 static void 2423 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc, 2424 struct scsi_cmnd *scmd, 2425 Mpi25SCSIIORequest_t *mpi_request, 2426 u16 smid, int sge_count) 2427 { 2428 int sge_len, num_prp_in_chain = 0; 2429 Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl; 2430 __le64 *curr_buff; 2431 dma_addr_t msg_dma, sge_addr, offset; 2432 u32 page_mask, page_mask_result; 2433 struct scatterlist *sg_scmd; 2434 u32 first_prp_len; 2435 int data_len = scsi_bufflen(scmd); 2436 u32 nvme_pg_size; 2437 2438 nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE); 2439 /* 2440 * Nvme has a very convoluted prp format. One prp is required 2441 * for each page or partial page. Driver need to split up OS sg_list 2442 * entries if it is longer than one page or cross a page 2443 * boundary. Driver also have to insert a PRP list pointer entry as 2444 * the last entry in each physical page of the PRP list. 2445 * 2446 * NOTE: The first PRP "entry" is actually placed in the first 2447 * SGL entry in the main message as IEEE 64 format. The 2nd 2448 * entry in the main message is the chain element, and the rest 2449 * of the PRP entries are built in the contiguous pcie buffer. 2450 */ 2451 page_mask = nvme_pg_size - 1; 2452 2453 /* 2454 * Native SGL is needed. 2455 * Put a chain element in main message frame that points to the first 2456 * chain buffer. 2457 * 2458 * NOTE: The ChainOffset field must be 0 when using a chain pointer to 2459 * a native SGL. 2460 */ 2461 2462 /* Set main message chain element pointer */ 2463 main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL; 2464 /* 2465 * For NVMe the chain element needs to be the 2nd SG entry in the main 2466 * message. 2467 */ 2468 main_chain_element = (Mpi25IeeeSgeChain64_t *) 2469 ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64)); 2470 2471 /* 2472 * For the PRP entries, use the specially allocated buffer of 2473 * contiguous memory. Normal chain buffers can't be used 2474 * because each chain buffer would need to be the size of an OS 2475 * page (4k). 2476 */ 2477 curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid); 2478 msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid); 2479 2480 main_chain_element->Address = cpu_to_le64(msg_dma); 2481 main_chain_element->NextChainOffset = 0; 2482 main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 2483 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | 2484 MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP; 2485 2486 /* Build first prp, sge need not to be page aligned*/ 2487 ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL; 2488 sg_scmd = scsi_sglist(scmd); 2489 sge_addr = sg_dma_address(sg_scmd); 2490 sge_len = sg_dma_len(sg_scmd); 2491 2492 offset = sge_addr & page_mask; 2493 first_prp_len = nvme_pg_size - offset; 2494 2495 ptr_first_sgl->Address = cpu_to_le64(sge_addr); 2496 ptr_first_sgl->Length = cpu_to_le32(first_prp_len); 2497 2498 data_len -= first_prp_len; 2499 2500 if (sge_len > first_prp_len) { 2501 sge_addr += first_prp_len; 2502 sge_len -= first_prp_len; 2503 } else if (data_len && (sge_len == first_prp_len)) { 2504 sg_scmd = sg_next(sg_scmd); 2505 sge_addr = sg_dma_address(sg_scmd); 2506 sge_len = sg_dma_len(sg_scmd); 2507 } 2508 2509 for (;;) { 2510 offset = sge_addr & page_mask; 2511 2512 /* Put PRP pointer due to page boundary*/ 2513 page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask; 2514 if (unlikely(!page_mask_result)) { 2515 scmd_printk(KERN_NOTICE, 2516 scmd, "page boundary curr_buff: 0x%p\n", 2517 curr_buff); 2518 msg_dma += 8; 2519 *curr_buff = cpu_to_le64(msg_dma); 2520 curr_buff++; 2521 num_prp_in_chain++; 2522 } 2523 2524 *curr_buff = cpu_to_le64(sge_addr); 2525 curr_buff++; 2526 msg_dma += 8; 2527 num_prp_in_chain++; 2528 2529 sge_addr += nvme_pg_size; 2530 sge_len -= nvme_pg_size; 2531 data_len -= nvme_pg_size; 2532 2533 if (data_len <= 0) 2534 break; 2535 2536 if (sge_len > 0) 2537 continue; 2538 2539 sg_scmd = sg_next(sg_scmd); 2540 sge_addr = sg_dma_address(sg_scmd); 2541 sge_len = sg_dma_len(sg_scmd); 2542 } 2543 2544 main_chain_element->Length = 2545 cpu_to_le32(num_prp_in_chain * sizeof(u64)); 2546 return; 2547 } 2548 2549 static bool 2550 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc, 2551 struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count) 2552 { 2553 u32 data_length = 0; 2554 bool build_prp = true; 2555 2556 data_length = scsi_bufflen(scmd); 2557 if (pcie_device && 2558 (mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))) { 2559 build_prp = false; 2560 return build_prp; 2561 } 2562 2563 /* If Datalenth is <= 16K and number of SGE’s entries are <= 2 2564 * we built IEEE SGL 2565 */ 2566 if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2)) 2567 build_prp = false; 2568 2569 return build_prp; 2570 } 2571 2572 /** 2573 * _base_check_pcie_native_sgl - This function is called for PCIe end devices to 2574 * determine if the driver needs to build a native SGL. If so, that native 2575 * SGL is built in the special contiguous buffers allocated especially for 2576 * PCIe SGL creation. If the driver will not build a native SGL, return 2577 * TRUE and a normal IEEE SGL will be built. Currently this routine 2578 * supports NVMe. 2579 * @ioc: per adapter object 2580 * @mpi_request: mf request pointer 2581 * @smid: system request message index 2582 * @scmd: scsi command 2583 * @pcie_device: points to the PCIe device's info 2584 * 2585 * Return: 0 if native SGL was built, 1 if no SGL was built 2586 */ 2587 static int 2588 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc, 2589 Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd, 2590 struct _pcie_device *pcie_device) 2591 { 2592 int sges_left; 2593 2594 /* Get the SG list pointer and info. */ 2595 sges_left = scsi_dma_map(scmd); 2596 if (sges_left < 0) 2597 return 1; 2598 2599 /* Check if we need to build a native SG list. */ 2600 if (!base_is_prp_possible(ioc, pcie_device, 2601 scmd, sges_left)) { 2602 /* We built a native SG list, just return. */ 2603 goto out; 2604 } 2605 2606 /* 2607 * Build native NVMe PRP. 2608 */ 2609 base_make_prp_nvme(ioc, scmd, mpi_request, 2610 smid, sges_left); 2611 2612 return 0; 2613 out: 2614 scsi_dma_unmap(scmd); 2615 return 1; 2616 } 2617 2618 /** 2619 * _base_add_sg_single_ieee - add sg element for IEEE format 2620 * @paddr: virtual address for SGE 2621 * @flags: SGE flags 2622 * @chain_offset: number of 128 byte elements from start of segment 2623 * @length: data transfer length 2624 * @dma_addr: Physical address 2625 */ 2626 static void 2627 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length, 2628 dma_addr_t dma_addr) 2629 { 2630 Mpi25IeeeSgeChain64_t *sgel = paddr; 2631 2632 sgel->Flags = flags; 2633 sgel->NextChainOffset = chain_offset; 2634 sgel->Length = cpu_to_le32(length); 2635 sgel->Address = cpu_to_le64(dma_addr); 2636 } 2637 2638 /** 2639 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format 2640 * @ioc: per adapter object 2641 * @paddr: virtual address for SGE 2642 * 2643 * Create a zero length scatter gather entry to insure the IOCs hardware has 2644 * something to use if the target device goes brain dead and tries 2645 * to send data even when none is asked for. 2646 */ 2647 static void 2648 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr) 2649 { 2650 u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2651 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | 2652 MPI25_IEEE_SGE_FLAGS_END_OF_LIST); 2653 2654 _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1); 2655 } 2656 2657 /** 2658 * _base_build_sg_scmd - main sg creation routine 2659 * pcie_device is unused here! 2660 * @ioc: per adapter object 2661 * @scmd: scsi command 2662 * @smid: system request message index 2663 * @unused: unused pcie_device pointer 2664 * Context: none. 2665 * 2666 * The main routine that builds scatter gather table from a given 2667 * scsi request sent via the .queuecommand main handler. 2668 * 2669 * Return: 0 success, anything else error 2670 */ 2671 static int 2672 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc, 2673 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused) 2674 { 2675 Mpi2SCSIIORequest_t *mpi_request; 2676 dma_addr_t chain_dma; 2677 struct scatterlist *sg_scmd; 2678 void *sg_local, *chain; 2679 u32 chain_offset; 2680 u32 chain_length; 2681 u32 chain_flags; 2682 int sges_left; 2683 u32 sges_in_segment; 2684 u32 sgl_flags; 2685 u32 sgl_flags_last_element; 2686 u32 sgl_flags_end_buffer; 2687 struct chain_tracker *chain_req; 2688 2689 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 2690 2691 /* init scatter gather flags */ 2692 sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT; 2693 if (scmd->sc_data_direction == DMA_TO_DEVICE) 2694 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC; 2695 sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT) 2696 << MPI2_SGE_FLAGS_SHIFT; 2697 sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT | 2698 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST) 2699 << MPI2_SGE_FLAGS_SHIFT; 2700 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2701 2702 sg_scmd = scsi_sglist(scmd); 2703 sges_left = scsi_dma_map(scmd); 2704 if (sges_left < 0) 2705 return -ENOMEM; 2706 2707 sg_local = &mpi_request->SGL; 2708 sges_in_segment = ioc->max_sges_in_main_message; 2709 if (sges_left <= sges_in_segment) 2710 goto fill_in_last_segment; 2711 2712 mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) + 2713 (sges_in_segment * ioc->sge_size))/4; 2714 2715 /* fill in main message segment when there is a chain following */ 2716 while (sges_in_segment) { 2717 if (sges_in_segment == 1) 2718 ioc->base_add_sg_single(sg_local, 2719 sgl_flags_last_element | sg_dma_len(sg_scmd), 2720 sg_dma_address(sg_scmd)); 2721 else 2722 ioc->base_add_sg_single(sg_local, sgl_flags | 2723 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2724 sg_scmd = sg_next(sg_scmd); 2725 sg_local += ioc->sge_size; 2726 sges_left--; 2727 sges_in_segment--; 2728 } 2729 2730 /* initializing the chain flags and pointers */ 2731 chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT; 2732 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2733 if (!chain_req) 2734 return -1; 2735 chain = chain_req->chain_buffer; 2736 chain_dma = chain_req->chain_buffer_dma; 2737 do { 2738 sges_in_segment = (sges_left <= 2739 ioc->max_sges_in_chain_message) ? sges_left : 2740 ioc->max_sges_in_chain_message; 2741 chain_offset = (sges_left == sges_in_segment) ? 2742 0 : (sges_in_segment * ioc->sge_size)/4; 2743 chain_length = sges_in_segment * ioc->sge_size; 2744 if (chain_offset) { 2745 chain_offset = chain_offset << 2746 MPI2_SGE_CHAIN_OFFSET_SHIFT; 2747 chain_length += ioc->sge_size; 2748 } 2749 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset | 2750 chain_length, chain_dma); 2751 sg_local = chain; 2752 if (!chain_offset) 2753 goto fill_in_last_segment; 2754 2755 /* fill in chain segments */ 2756 while (sges_in_segment) { 2757 if (sges_in_segment == 1) 2758 ioc->base_add_sg_single(sg_local, 2759 sgl_flags_last_element | 2760 sg_dma_len(sg_scmd), 2761 sg_dma_address(sg_scmd)); 2762 else 2763 ioc->base_add_sg_single(sg_local, sgl_flags | 2764 sg_dma_len(sg_scmd), 2765 sg_dma_address(sg_scmd)); 2766 sg_scmd = sg_next(sg_scmd); 2767 sg_local += ioc->sge_size; 2768 sges_left--; 2769 sges_in_segment--; 2770 } 2771 2772 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2773 if (!chain_req) 2774 return -1; 2775 chain = chain_req->chain_buffer; 2776 chain_dma = chain_req->chain_buffer_dma; 2777 } while (1); 2778 2779 2780 fill_in_last_segment: 2781 2782 /* fill the last segment */ 2783 while (sges_left) { 2784 if (sges_left == 1) 2785 ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer | 2786 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2787 else 2788 ioc->base_add_sg_single(sg_local, sgl_flags | 2789 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2790 sg_scmd = sg_next(sg_scmd); 2791 sg_local += ioc->sge_size; 2792 sges_left--; 2793 } 2794 2795 return 0; 2796 } 2797 2798 /** 2799 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format 2800 * @ioc: per adapter object 2801 * @scmd: scsi command 2802 * @smid: system request message index 2803 * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be 2804 * constructed on need. 2805 * Context: none. 2806 * 2807 * The main routine that builds scatter gather table from a given 2808 * scsi request sent via the .queuecommand main handler. 2809 * 2810 * Return: 0 success, anything else error 2811 */ 2812 static int 2813 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc, 2814 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device) 2815 { 2816 Mpi25SCSIIORequest_t *mpi_request; 2817 dma_addr_t chain_dma; 2818 struct scatterlist *sg_scmd; 2819 void *sg_local, *chain; 2820 u32 chain_offset; 2821 u32 chain_length; 2822 int sges_left; 2823 u32 sges_in_segment; 2824 u8 simple_sgl_flags; 2825 u8 simple_sgl_flags_last; 2826 u8 chain_sgl_flags; 2827 struct chain_tracker *chain_req; 2828 2829 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 2830 2831 /* init scatter gather flags */ 2832 simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2833 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2834 simple_sgl_flags_last = simple_sgl_flags | 2835 MPI25_IEEE_SGE_FLAGS_END_OF_LIST; 2836 chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 2837 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2838 2839 /* Check if we need to build a native SG list. */ 2840 if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request, 2841 smid, scmd, pcie_device) == 0)) { 2842 /* We built a native SG list, just return. */ 2843 return 0; 2844 } 2845 2846 sg_scmd = scsi_sglist(scmd); 2847 sges_left = scsi_dma_map(scmd); 2848 if (sges_left < 0) 2849 return -ENOMEM; 2850 2851 sg_local = &mpi_request->SGL; 2852 sges_in_segment = (ioc->request_sz - 2853 offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee; 2854 if (sges_left <= sges_in_segment) 2855 goto fill_in_last_segment; 2856 2857 mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) + 2858 (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee); 2859 2860 /* fill in main message segment when there is a chain following */ 2861 while (sges_in_segment > 1) { 2862 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2863 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2864 sg_scmd = sg_next(sg_scmd); 2865 sg_local += ioc->sge_size_ieee; 2866 sges_left--; 2867 sges_in_segment--; 2868 } 2869 2870 /* initializing the pointers */ 2871 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2872 if (!chain_req) 2873 return -1; 2874 chain = chain_req->chain_buffer; 2875 chain_dma = chain_req->chain_buffer_dma; 2876 do { 2877 sges_in_segment = (sges_left <= 2878 ioc->max_sges_in_chain_message) ? sges_left : 2879 ioc->max_sges_in_chain_message; 2880 chain_offset = (sges_left == sges_in_segment) ? 2881 0 : sges_in_segment; 2882 chain_length = sges_in_segment * ioc->sge_size_ieee; 2883 if (chain_offset) 2884 chain_length += ioc->sge_size_ieee; 2885 _base_add_sg_single_ieee(sg_local, chain_sgl_flags, 2886 chain_offset, chain_length, chain_dma); 2887 2888 sg_local = chain; 2889 if (!chain_offset) 2890 goto fill_in_last_segment; 2891 2892 /* fill in chain segments */ 2893 while (sges_in_segment) { 2894 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2895 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2896 sg_scmd = sg_next(sg_scmd); 2897 sg_local += ioc->sge_size_ieee; 2898 sges_left--; 2899 sges_in_segment--; 2900 } 2901 2902 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2903 if (!chain_req) 2904 return -1; 2905 chain = chain_req->chain_buffer; 2906 chain_dma = chain_req->chain_buffer_dma; 2907 } while (1); 2908 2909 2910 fill_in_last_segment: 2911 2912 /* fill the last segment */ 2913 while (sges_left > 0) { 2914 if (sges_left == 1) 2915 _base_add_sg_single_ieee(sg_local, 2916 simple_sgl_flags_last, 0, sg_dma_len(sg_scmd), 2917 sg_dma_address(sg_scmd)); 2918 else 2919 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2920 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2921 sg_scmd = sg_next(sg_scmd); 2922 sg_local += ioc->sge_size_ieee; 2923 sges_left--; 2924 } 2925 2926 return 0; 2927 } 2928 2929 /** 2930 * _base_build_sg_ieee - build generic sg for IEEE format 2931 * @ioc: per adapter object 2932 * @psge: virtual address for SGE 2933 * @data_out_dma: physical address for WRITES 2934 * @data_out_sz: data xfer size for WRITES 2935 * @data_in_dma: physical address for READS 2936 * @data_in_sz: data xfer size for READS 2937 */ 2938 static void 2939 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge, 2940 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 2941 size_t data_in_sz) 2942 { 2943 u8 sgl_flags; 2944 2945 if (!data_out_sz && !data_in_sz) { 2946 _base_build_zero_len_sge_ieee(ioc, psge); 2947 return; 2948 } 2949 2950 if (data_out_sz && data_in_sz) { 2951 /* WRITE sgel first */ 2952 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2953 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2954 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz, 2955 data_out_dma); 2956 2957 /* incr sgel */ 2958 psge += ioc->sge_size_ieee; 2959 2960 /* READ sgel last */ 2961 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST; 2962 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz, 2963 data_in_dma); 2964 } else if (data_out_sz) /* WRITE */ { 2965 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2966 MPI25_IEEE_SGE_FLAGS_END_OF_LIST | 2967 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2968 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz, 2969 data_out_dma); 2970 } else if (data_in_sz) /* READ */ { 2971 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2972 MPI25_IEEE_SGE_FLAGS_END_OF_LIST | 2973 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2974 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz, 2975 data_in_dma); 2976 } 2977 } 2978 2979 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10)) 2980 2981 /** 2982 * _base_config_dma_addressing - set dma addressing 2983 * @ioc: per adapter object 2984 * @pdev: PCI device struct 2985 * 2986 * Return: 0 for success, non-zero for failure. 2987 */ 2988 static int 2989 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev) 2990 { 2991 struct sysinfo s; 2992 u64 coherent_dma_mask, dma_mask; 2993 2994 if (ioc->is_mcpu_endpoint || sizeof(dma_addr_t) == 4) { 2995 ioc->dma_mask = 32; 2996 coherent_dma_mask = dma_mask = DMA_BIT_MASK(32); 2997 /* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */ 2998 } else if (ioc->hba_mpi_version_belonged > MPI2_VERSION) { 2999 ioc->dma_mask = 63; 3000 coherent_dma_mask = dma_mask = DMA_BIT_MASK(63); 3001 } else { 3002 ioc->dma_mask = 64; 3003 coherent_dma_mask = dma_mask = DMA_BIT_MASK(64); 3004 } 3005 3006 if (ioc->use_32bit_dma) 3007 coherent_dma_mask = DMA_BIT_MASK(32); 3008 3009 if (dma_set_mask(&pdev->dev, dma_mask) || 3010 dma_set_coherent_mask(&pdev->dev, coherent_dma_mask)) 3011 return -ENODEV; 3012 3013 if (ioc->dma_mask > 32) { 3014 ioc->base_add_sg_single = &_base_add_sg_single_64; 3015 ioc->sge_size = sizeof(Mpi2SGESimple64_t); 3016 } else { 3017 ioc->base_add_sg_single = &_base_add_sg_single_32; 3018 ioc->sge_size = sizeof(Mpi2SGESimple32_t); 3019 } 3020 3021 si_meminfo(&s); 3022 ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n", 3023 ioc->dma_mask, convert_to_kb(s.totalram)); 3024 3025 return 0; 3026 } 3027 3028 /** 3029 * _base_check_enable_msix - checks MSIX capabable. 3030 * @ioc: per adapter object 3031 * 3032 * Check to see if card is capable of MSIX, and set number 3033 * of available msix vectors 3034 */ 3035 static int 3036 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc) 3037 { 3038 int base; 3039 u16 message_control; 3040 3041 /* Check whether controller SAS2008 B0 controller, 3042 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX 3043 */ 3044 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 && 3045 ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) { 3046 return -EINVAL; 3047 } 3048 3049 base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX); 3050 if (!base) { 3051 dfailprintk(ioc, ioc_info(ioc, "msix not supported\n")); 3052 return -EINVAL; 3053 } 3054 3055 /* get msix vector count */ 3056 /* NUMA_IO not supported for older controllers */ 3057 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 || 3058 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 || 3059 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 || 3060 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 || 3061 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 || 3062 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 || 3063 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2) 3064 ioc->msix_vector_count = 1; 3065 else { 3066 pci_read_config_word(ioc->pdev, base + 2, &message_control); 3067 ioc->msix_vector_count = (message_control & 0x3FF) + 1; 3068 } 3069 dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n", 3070 ioc->msix_vector_count)); 3071 return 0; 3072 } 3073 3074 /** 3075 * mpt3sas_base_free_irq - free irq 3076 * @ioc: per adapter object 3077 * 3078 * Freeing respective reply_queue from the list. 3079 */ 3080 void 3081 mpt3sas_base_free_irq(struct MPT3SAS_ADAPTER *ioc) 3082 { 3083 unsigned int irq; 3084 struct adapter_reply_queue *reply_q, *next; 3085 3086 if (list_empty(&ioc->reply_queue_list)) 3087 return; 3088 3089 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) { 3090 list_del(&reply_q->list); 3091 if (reply_q->is_iouring_poll_q) { 3092 kfree(reply_q); 3093 continue; 3094 } 3095 3096 if (ioc->smp_affinity_enable) { 3097 irq = pci_irq_vector(ioc->pdev, reply_q->msix_index); 3098 irq_update_affinity_hint(irq, NULL); 3099 } 3100 free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index), 3101 reply_q); 3102 kfree(reply_q); 3103 } 3104 } 3105 3106 /** 3107 * _base_request_irq - request irq 3108 * @ioc: per adapter object 3109 * @index: msix index into vector table 3110 * 3111 * Inserting respective reply_queue into the list. 3112 */ 3113 static int 3114 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index) 3115 { 3116 struct pci_dev *pdev = ioc->pdev; 3117 struct adapter_reply_queue *reply_q; 3118 int r, qid; 3119 3120 reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL); 3121 if (!reply_q) { 3122 ioc_err(ioc, "unable to allocate memory %zu!\n", 3123 sizeof(struct adapter_reply_queue)); 3124 return -ENOMEM; 3125 } 3126 reply_q->ioc = ioc; 3127 reply_q->msix_index = index; 3128 3129 atomic_set(&reply_q->busy, 0); 3130 3131 if (index >= ioc->iopoll_q_start_index) { 3132 qid = index - ioc->iopoll_q_start_index; 3133 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-mq-poll%d", 3134 ioc->driver_name, ioc->id, qid); 3135 reply_q->is_iouring_poll_q = 1; 3136 ioc->io_uring_poll_queues[qid].reply_q = reply_q; 3137 goto out; 3138 } 3139 3140 3141 if (ioc->msix_enable) 3142 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d", 3143 ioc->driver_name, ioc->id, index); 3144 else 3145 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d", 3146 ioc->driver_name, ioc->id); 3147 r = request_irq(pci_irq_vector(pdev, index), _base_interrupt, 3148 IRQF_SHARED, reply_q->name, reply_q); 3149 if (r) { 3150 pr_err("%s: unable to allocate interrupt %d!\n", 3151 reply_q->name, pci_irq_vector(pdev, index)); 3152 kfree(reply_q); 3153 return -EBUSY; 3154 } 3155 out: 3156 INIT_LIST_HEAD(&reply_q->list); 3157 list_add_tail(&reply_q->list, &ioc->reply_queue_list); 3158 return 0; 3159 } 3160 3161 /** 3162 * _base_assign_reply_queues - assigning msix index for each cpu 3163 * @ioc: per adapter object 3164 * 3165 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity 3166 */ 3167 static void 3168 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc) 3169 { 3170 unsigned int cpu, nr_cpus, nr_msix, index = 0, irq; 3171 struct adapter_reply_queue *reply_q; 3172 int iopoll_q_count = ioc->reply_queue_count - 3173 ioc->iopoll_q_start_index; 3174 const struct cpumask *mask; 3175 3176 if (!_base_is_controller_msix_enabled(ioc)) 3177 return; 3178 3179 if (ioc->msix_load_balance) 3180 return; 3181 3182 memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz); 3183 3184 nr_cpus = num_online_cpus(); 3185 nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count, 3186 ioc->facts.MaxMSIxVectors); 3187 if (!nr_msix) 3188 return; 3189 3190 if (ioc->smp_affinity_enable) { 3191 3192 /* 3193 * set irq affinity to local numa node for those irqs 3194 * corresponding to high iops queues. 3195 */ 3196 if (ioc->high_iops_queues) { 3197 mask = cpumask_of_node(dev_to_node(&ioc->pdev->dev)); 3198 for (index = 0; index < ioc->high_iops_queues; 3199 index++) { 3200 irq = pci_irq_vector(ioc->pdev, index); 3201 irq_set_affinity_and_hint(irq, mask); 3202 } 3203 } 3204 3205 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 3206 const cpumask_t *mask; 3207 3208 if (reply_q->msix_index < ioc->high_iops_queues || 3209 reply_q->msix_index >= ioc->iopoll_q_start_index) 3210 continue; 3211 3212 mask = pci_irq_get_affinity(ioc->pdev, 3213 reply_q->msix_index); 3214 if (!mask) { 3215 ioc_warn(ioc, "no affinity for msi %x\n", 3216 reply_q->msix_index); 3217 goto fall_back; 3218 } 3219 3220 for_each_cpu_and(cpu, mask, cpu_online_mask) { 3221 if (cpu >= ioc->cpu_msix_table_sz) 3222 break; 3223 ioc->cpu_msix_table[cpu] = reply_q->msix_index; 3224 } 3225 } 3226 return; 3227 } 3228 3229 fall_back: 3230 cpu = cpumask_first(cpu_online_mask); 3231 nr_msix -= (ioc->high_iops_queues - iopoll_q_count); 3232 index = 0; 3233 3234 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 3235 unsigned int i, group = nr_cpus / nr_msix; 3236 3237 if (reply_q->msix_index < ioc->high_iops_queues || 3238 reply_q->msix_index >= ioc->iopoll_q_start_index) 3239 continue; 3240 3241 if (cpu >= nr_cpus) 3242 break; 3243 3244 if (index < nr_cpus % nr_msix) 3245 group++; 3246 3247 for (i = 0 ; i < group ; i++) { 3248 ioc->cpu_msix_table[cpu] = reply_q->msix_index; 3249 cpu = cpumask_next(cpu, cpu_online_mask); 3250 } 3251 index++; 3252 } 3253 } 3254 3255 /** 3256 * _base_check_and_enable_high_iops_queues - enable high iops mode 3257 * @ioc: per adapter object 3258 * @hba_msix_vector_count: msix vectors supported by HBA 3259 * 3260 * Enable high iops queues only if 3261 * - HBA is a SEA/AERO controller and 3262 * - MSI-Xs vector supported by the HBA is 128 and 3263 * - total CPU count in the system >=16 and 3264 * - loaded driver with default max_msix_vectors module parameter and 3265 * - system booted in non kdump mode 3266 * 3267 * Return: nothing. 3268 */ 3269 static void 3270 _base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc, 3271 int hba_msix_vector_count) 3272 { 3273 u16 lnksta, speed; 3274 3275 /* 3276 * Disable high iops queues if io uring poll queues are enabled. 3277 */ 3278 if (perf_mode == MPT_PERF_MODE_IOPS || 3279 perf_mode == MPT_PERF_MODE_LATENCY || 3280 ioc->io_uring_poll_queues) { 3281 ioc->high_iops_queues = 0; 3282 return; 3283 } 3284 3285 if (perf_mode == MPT_PERF_MODE_DEFAULT) { 3286 3287 pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta); 3288 speed = lnksta & PCI_EXP_LNKSTA_CLS; 3289 3290 if (speed < 0x4) { 3291 ioc->high_iops_queues = 0; 3292 return; 3293 } 3294 } 3295 3296 if (!reset_devices && ioc->is_aero_ioc && 3297 hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES && 3298 num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES && 3299 max_msix_vectors == -1) 3300 ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES; 3301 else 3302 ioc->high_iops_queues = 0; 3303 } 3304 3305 /** 3306 * mpt3sas_base_disable_msix - disables msix 3307 * @ioc: per adapter object 3308 * 3309 */ 3310 void 3311 mpt3sas_base_disable_msix(struct MPT3SAS_ADAPTER *ioc) 3312 { 3313 if (!ioc->msix_enable) 3314 return; 3315 pci_free_irq_vectors(ioc->pdev); 3316 ioc->msix_enable = 0; 3317 kfree(ioc->io_uring_poll_queues); 3318 } 3319 3320 /** 3321 * _base_alloc_irq_vectors - allocate msix vectors 3322 * @ioc: per adapter object 3323 * 3324 */ 3325 static int 3326 _base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc) 3327 { 3328 int i, irq_flags = PCI_IRQ_MSIX; 3329 struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues }; 3330 struct irq_affinity *descp = &desc; 3331 /* 3332 * Don't allocate msix vectors for poll_queues. 3333 * msix_vectors is always within a range of FW supported reply queue. 3334 */ 3335 int nr_msix_vectors = ioc->iopoll_q_start_index; 3336 3337 3338 if (ioc->smp_affinity_enable) 3339 irq_flags |= PCI_IRQ_AFFINITY | PCI_IRQ_ALL_TYPES; 3340 else 3341 descp = NULL; 3342 3343 ioc_info(ioc, " %d %d %d\n", ioc->high_iops_queues, 3344 ioc->reply_queue_count, nr_msix_vectors); 3345 3346 i = pci_alloc_irq_vectors_affinity(ioc->pdev, 3347 ioc->high_iops_queues, 3348 nr_msix_vectors, irq_flags, descp); 3349 3350 return i; 3351 } 3352 3353 /** 3354 * _base_enable_msix - enables msix, failback to io_apic 3355 * @ioc: per adapter object 3356 * 3357 */ 3358 static int 3359 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc) 3360 { 3361 int r; 3362 int i, local_max_msix_vectors; 3363 u8 try_msix = 0; 3364 int iopoll_q_count = 0; 3365 3366 ioc->msix_load_balance = false; 3367 3368 if (msix_disable == -1 || msix_disable == 0) 3369 try_msix = 1; 3370 3371 if (!try_msix) 3372 goto try_ioapic; 3373 3374 if (_base_check_enable_msix(ioc) != 0) 3375 goto try_ioapic; 3376 3377 ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count); 3378 pr_info("\t no of cores: %d, max_msix_vectors: %d\n", 3379 ioc->cpu_count, max_msix_vectors); 3380 3381 ioc->reply_queue_count = 3382 min_t(int, ioc->cpu_count, ioc->msix_vector_count); 3383 3384 if (!ioc->rdpq_array_enable && max_msix_vectors == -1) 3385 local_max_msix_vectors = (reset_devices) ? 1 : 8; 3386 else 3387 local_max_msix_vectors = max_msix_vectors; 3388 3389 if (local_max_msix_vectors == 0) 3390 goto try_ioapic; 3391 3392 /* 3393 * Enable msix_load_balance only if combined reply queue mode is 3394 * disabled on SAS3 & above generation HBA devices. 3395 */ 3396 if (!ioc->combined_reply_queue && 3397 ioc->hba_mpi_version_belonged != MPI2_VERSION) { 3398 ioc_info(ioc, 3399 "combined ReplyQueue is off, Enabling msix load balance\n"); 3400 ioc->msix_load_balance = true; 3401 } 3402 3403 /* 3404 * smp affinity setting is not need when msix load balance 3405 * is enabled. 3406 */ 3407 if (ioc->msix_load_balance) 3408 ioc->smp_affinity_enable = 0; 3409 3410 if (!ioc->smp_affinity_enable || ioc->reply_queue_count <= 1) 3411 ioc->shost->host_tagset = 0; 3412 3413 /* 3414 * Enable io uring poll queues only if host_tagset is enabled. 3415 */ 3416 if (ioc->shost->host_tagset) 3417 iopoll_q_count = poll_queues; 3418 3419 if (iopoll_q_count) { 3420 ioc->io_uring_poll_queues = kcalloc(iopoll_q_count, 3421 sizeof(struct io_uring_poll_queue), GFP_KERNEL); 3422 if (!ioc->io_uring_poll_queues) 3423 iopoll_q_count = 0; 3424 } 3425 3426 if (ioc->is_aero_ioc) 3427 _base_check_and_enable_high_iops_queues(ioc, 3428 ioc->msix_vector_count); 3429 3430 /* 3431 * Add high iops queues count to reply queue count if high iops queues 3432 * are enabled. 3433 */ 3434 ioc->reply_queue_count = min_t(int, 3435 ioc->reply_queue_count + ioc->high_iops_queues, 3436 ioc->msix_vector_count); 3437 3438 /* 3439 * Adjust the reply queue count incase reply queue count 3440 * exceeds the user provided MSIx vectors count. 3441 */ 3442 if (local_max_msix_vectors > 0) 3443 ioc->reply_queue_count = min_t(int, local_max_msix_vectors, 3444 ioc->reply_queue_count); 3445 /* 3446 * Add io uring poll queues count to reply queues count 3447 * if io uring is enabled in driver. 3448 */ 3449 if (iopoll_q_count) { 3450 if (ioc->reply_queue_count < (iopoll_q_count + MPT3_MIN_IRQS)) 3451 iopoll_q_count = 0; 3452 ioc->reply_queue_count = min_t(int, 3453 ioc->reply_queue_count + iopoll_q_count, 3454 ioc->msix_vector_count); 3455 } 3456 3457 /* 3458 * Starting index of io uring poll queues in reply queue list. 3459 */ 3460 ioc->iopoll_q_start_index = 3461 ioc->reply_queue_count - iopoll_q_count; 3462 3463 r = _base_alloc_irq_vectors(ioc); 3464 if (r < 0) { 3465 ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", r); 3466 goto try_ioapic; 3467 } 3468 3469 /* 3470 * Adjust the reply queue count if the allocated 3471 * MSIx vectors is less then the requested number 3472 * of MSIx vectors. 3473 */ 3474 if (r < ioc->iopoll_q_start_index) { 3475 ioc->reply_queue_count = r + iopoll_q_count; 3476 ioc->iopoll_q_start_index = 3477 ioc->reply_queue_count - iopoll_q_count; 3478 } 3479 3480 ioc->msix_enable = 1; 3481 for (i = 0; i < ioc->reply_queue_count; i++) { 3482 r = _base_request_irq(ioc, i); 3483 if (r) { 3484 mpt3sas_base_free_irq(ioc); 3485 mpt3sas_base_disable_msix(ioc); 3486 goto try_ioapic; 3487 } 3488 } 3489 3490 ioc_info(ioc, "High IOPs queues : %s\n", 3491 ioc->high_iops_queues ? "enabled" : "disabled"); 3492 3493 return 0; 3494 3495 /* failback to io_apic interrupt routing */ 3496 try_ioapic: 3497 ioc->high_iops_queues = 0; 3498 ioc_info(ioc, "High IOPs queues : disabled\n"); 3499 ioc->reply_queue_count = 1; 3500 ioc->iopoll_q_start_index = ioc->reply_queue_count - 0; 3501 r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY); 3502 if (r < 0) { 3503 dfailprintk(ioc, 3504 ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n", 3505 r)); 3506 } else 3507 r = _base_request_irq(ioc, 0); 3508 3509 return r; 3510 } 3511 3512 /** 3513 * mpt3sas_base_unmap_resources - free controller resources 3514 * @ioc: per adapter object 3515 */ 3516 static void 3517 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc) 3518 { 3519 struct pci_dev *pdev = ioc->pdev; 3520 3521 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 3522 3523 mpt3sas_base_free_irq(ioc); 3524 mpt3sas_base_disable_msix(ioc); 3525 3526 kfree(ioc->replyPostRegisterIndex); 3527 ioc->replyPostRegisterIndex = NULL; 3528 3529 3530 if (ioc->chip_phys) { 3531 iounmap(ioc->chip); 3532 ioc->chip_phys = 0; 3533 } 3534 3535 if (pci_is_enabled(pdev)) { 3536 pci_release_selected_regions(ioc->pdev, ioc->bars); 3537 pci_disable_device(pdev); 3538 } 3539 } 3540 3541 static int 3542 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc); 3543 3544 /** 3545 * mpt3sas_base_check_for_fault_and_issue_reset - check if IOC is in fault state 3546 * and if it is in fault state then issue diag reset. 3547 * @ioc: per adapter object 3548 * 3549 * Return: 0 for success, non-zero for failure. 3550 */ 3551 int 3552 mpt3sas_base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc) 3553 { 3554 u32 ioc_state; 3555 int rc = -EFAULT; 3556 3557 dinitprintk(ioc, pr_info("%s\n", __func__)); 3558 if (ioc->pci_error_recovery) 3559 return 0; 3560 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 3561 dhsprintk(ioc, pr_info("%s: ioc_state(0x%08x)\n", __func__, ioc_state)); 3562 3563 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 3564 mpt3sas_print_fault_code(ioc, ioc_state & 3565 MPI2_DOORBELL_DATA_MASK); 3566 mpt3sas_base_mask_interrupts(ioc); 3567 rc = _base_diag_reset(ioc); 3568 } else if ((ioc_state & MPI2_IOC_STATE_MASK) == 3569 MPI2_IOC_STATE_COREDUMP) { 3570 mpt3sas_print_coredump_info(ioc, ioc_state & 3571 MPI2_DOORBELL_DATA_MASK); 3572 mpt3sas_base_wait_for_coredump_completion(ioc, __func__); 3573 mpt3sas_base_mask_interrupts(ioc); 3574 rc = _base_diag_reset(ioc); 3575 } 3576 3577 return rc; 3578 } 3579 3580 /** 3581 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap) 3582 * @ioc: per adapter object 3583 * 3584 * Return: 0 for success, non-zero for failure. 3585 */ 3586 int 3587 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc) 3588 { 3589 struct pci_dev *pdev = ioc->pdev; 3590 u32 memap_sz; 3591 u32 pio_sz; 3592 int i, r = 0, rc; 3593 u64 pio_chip = 0; 3594 phys_addr_t chip_phys = 0; 3595 struct adapter_reply_queue *reply_q; 3596 int iopoll_q_count = 0; 3597 3598 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 3599 3600 ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM); 3601 if (pci_enable_device_mem(pdev)) { 3602 ioc_warn(ioc, "pci_enable_device_mem: failed\n"); 3603 ioc->bars = 0; 3604 return -ENODEV; 3605 } 3606 3607 3608 if (pci_request_selected_regions(pdev, ioc->bars, 3609 ioc->driver_name)) { 3610 ioc_warn(ioc, "pci_request_selected_regions: failed\n"); 3611 ioc->bars = 0; 3612 r = -ENODEV; 3613 goto out_fail; 3614 } 3615 3616 pci_set_master(pdev); 3617 3618 3619 if (_base_config_dma_addressing(ioc, pdev) != 0) { 3620 ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev)); 3621 r = -ENODEV; 3622 goto out_fail; 3623 } 3624 3625 for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) && 3626 (!memap_sz || !pio_sz); i++) { 3627 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { 3628 if (pio_sz) 3629 continue; 3630 pio_chip = (u64)pci_resource_start(pdev, i); 3631 pio_sz = pci_resource_len(pdev, i); 3632 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) { 3633 if (memap_sz) 3634 continue; 3635 ioc->chip_phys = pci_resource_start(pdev, i); 3636 chip_phys = ioc->chip_phys; 3637 memap_sz = pci_resource_len(pdev, i); 3638 ioc->chip = ioremap(ioc->chip_phys, memap_sz); 3639 } 3640 } 3641 3642 if (ioc->chip == NULL) { 3643 ioc_err(ioc, 3644 "unable to map adapter memory! or resource not found\n"); 3645 r = -EINVAL; 3646 goto out_fail; 3647 } 3648 3649 mpt3sas_base_mask_interrupts(ioc); 3650 3651 r = _base_get_ioc_facts(ioc); 3652 if (r) { 3653 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc); 3654 if (rc || (_base_get_ioc_facts(ioc))) 3655 goto out_fail; 3656 } 3657 3658 if (!ioc->rdpq_array_enable_assigned) { 3659 ioc->rdpq_array_enable = ioc->rdpq_array_capable; 3660 ioc->rdpq_array_enable_assigned = 1; 3661 } 3662 3663 r = _base_enable_msix(ioc); 3664 if (r) 3665 goto out_fail; 3666 3667 iopoll_q_count = ioc->reply_queue_count - ioc->iopoll_q_start_index; 3668 for (i = 0; i < iopoll_q_count; i++) { 3669 atomic_set(&ioc->io_uring_poll_queues[i].busy, 0); 3670 atomic_set(&ioc->io_uring_poll_queues[i].pause, 0); 3671 } 3672 3673 if (!ioc->is_driver_loading) 3674 _base_init_irqpolls(ioc); 3675 /* Use the Combined reply queue feature only for SAS3 C0 & higher 3676 * revision HBAs and also only when reply queue count is greater than 8 3677 */ 3678 if (ioc->combined_reply_queue) { 3679 /* Determine the Supplemental Reply Post Host Index Registers 3680 * Addresse. Supplemental Reply Post Host Index Registers 3681 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and 3682 * each register is at offset bytes of 3683 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one. 3684 */ 3685 ioc->replyPostRegisterIndex = kcalloc( 3686 ioc->combined_reply_index_count, 3687 sizeof(resource_size_t *), GFP_KERNEL); 3688 if (!ioc->replyPostRegisterIndex) { 3689 ioc_err(ioc, 3690 "allocation for replyPostRegisterIndex failed!\n"); 3691 r = -ENOMEM; 3692 goto out_fail; 3693 } 3694 3695 for (i = 0; i < ioc->combined_reply_index_count; i++) { 3696 ioc->replyPostRegisterIndex[i] = 3697 (resource_size_t __iomem *) 3698 ((u8 __force *)&ioc->chip->Doorbell + 3699 MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET + 3700 (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET)); 3701 } 3702 } 3703 3704 if (ioc->is_warpdrive) { 3705 ioc->reply_post_host_index[0] = (resource_size_t __iomem *) 3706 &ioc->chip->ReplyPostHostIndex; 3707 3708 for (i = 1; i < ioc->cpu_msix_table_sz; i++) 3709 ioc->reply_post_host_index[i] = 3710 (resource_size_t __iomem *) 3711 ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1) 3712 * 4))); 3713 } 3714 3715 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 3716 if (reply_q->msix_index >= ioc->iopoll_q_start_index) { 3717 pr_info("%s: enabled: index: %d\n", 3718 reply_q->name, reply_q->msix_index); 3719 continue; 3720 } 3721 3722 pr_info("%s: %s enabled: IRQ %d\n", 3723 reply_q->name, 3724 ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC", 3725 pci_irq_vector(ioc->pdev, reply_q->msix_index)); 3726 } 3727 3728 ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n", 3729 &chip_phys, ioc->chip, memap_sz); 3730 ioc_info(ioc, "ioport(0x%016llx), size(%d)\n", 3731 (unsigned long long)pio_chip, pio_sz); 3732 3733 /* Save PCI configuration state for recovery from PCI AER/EEH errors */ 3734 pci_save_state(pdev); 3735 return 0; 3736 3737 out_fail: 3738 mpt3sas_base_unmap_resources(ioc); 3739 return r; 3740 } 3741 3742 /** 3743 * mpt3sas_base_get_msg_frame - obtain request mf pointer 3744 * @ioc: per adapter object 3745 * @smid: system request message index(smid zero is invalid) 3746 * 3747 * Return: virt pointer to message frame. 3748 */ 3749 void * 3750 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3751 { 3752 return (void *)(ioc->request + (smid * ioc->request_sz)); 3753 } 3754 3755 /** 3756 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr 3757 * @ioc: per adapter object 3758 * @smid: system request message index 3759 * 3760 * Return: virt pointer to sense buffer. 3761 */ 3762 void * 3763 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3764 { 3765 return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE)); 3766 } 3767 3768 /** 3769 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr 3770 * @ioc: per adapter object 3771 * @smid: system request message index 3772 * 3773 * Return: phys pointer to the low 32bit address of the sense buffer. 3774 */ 3775 __le32 3776 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3777 { 3778 return cpu_to_le32(ioc->sense_dma + ((smid - 1) * 3779 SCSI_SENSE_BUFFERSIZE)); 3780 } 3781 3782 /** 3783 * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr 3784 * @ioc: per adapter object 3785 * @smid: system request message index 3786 * 3787 * Return: virt pointer to a PCIe SGL. 3788 */ 3789 void * 3790 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3791 { 3792 return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl); 3793 } 3794 3795 /** 3796 * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr 3797 * @ioc: per adapter object 3798 * @smid: system request message index 3799 * 3800 * Return: phys pointer to the address of the PCIe buffer. 3801 */ 3802 dma_addr_t 3803 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3804 { 3805 return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma; 3806 } 3807 3808 /** 3809 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address 3810 * @ioc: per adapter object 3811 * @phys_addr: lower 32 physical addr of the reply 3812 * 3813 * Converts 32bit lower physical addr into a virt address. 3814 */ 3815 void * 3816 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr) 3817 { 3818 if (!phys_addr) 3819 return NULL; 3820 return ioc->reply + (phys_addr - (u32)ioc->reply_dma); 3821 } 3822 3823 /** 3824 * _base_get_msix_index - get the msix index 3825 * @ioc: per adapter object 3826 * @scmd: scsi_cmnd object 3827 * 3828 * Return: msix index of general reply queues, 3829 * i.e. reply queue on which IO request's reply 3830 * should be posted by the HBA firmware. 3831 */ 3832 static inline u8 3833 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc, 3834 struct scsi_cmnd *scmd) 3835 { 3836 /* Enables reply_queue load balancing */ 3837 if (ioc->msix_load_balance) 3838 return ioc->reply_queue_count ? 3839 base_mod64(atomic64_add_return(1, 3840 &ioc->total_io_cnt), ioc->reply_queue_count) : 0; 3841 3842 if (scmd && ioc->shost->nr_hw_queues > 1) { 3843 u32 tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd)); 3844 3845 return blk_mq_unique_tag_to_hwq(tag) + 3846 ioc->high_iops_queues; 3847 } 3848 3849 return ioc->cpu_msix_table[raw_smp_processor_id()]; 3850 } 3851 3852 /** 3853 * _base_get_high_iops_msix_index - get the msix index of 3854 * high iops queues 3855 * @ioc: per adapter object 3856 * @scmd: scsi_cmnd object 3857 * 3858 * Return: msix index of high iops reply queues. 3859 * i.e. high iops reply queue on which IO request's 3860 * reply should be posted by the HBA firmware. 3861 */ 3862 static inline u8 3863 _base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc, 3864 struct scsi_cmnd *scmd) 3865 { 3866 /** 3867 * Round robin the IO interrupts among the high iops 3868 * reply queues in terms of batch count 16 when outstanding 3869 * IOs on the target device is >=8. 3870 */ 3871 3872 if (scsi_device_busy(scmd->device) > MPT3SAS_DEVICE_HIGH_IOPS_DEPTH) 3873 return base_mod64(( 3874 atomic64_add_return(1, &ioc->high_iops_outstanding) / 3875 MPT3SAS_HIGH_IOPS_BATCH_COUNT), 3876 MPT3SAS_HIGH_IOPS_REPLY_QUEUES); 3877 3878 return _base_get_msix_index(ioc, scmd); 3879 } 3880 3881 /** 3882 * mpt3sas_base_get_smid - obtain a free smid from internal queue 3883 * @ioc: per adapter object 3884 * @cb_idx: callback index 3885 * 3886 * Return: smid (zero is invalid) 3887 */ 3888 u16 3889 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx) 3890 { 3891 unsigned long flags; 3892 struct request_tracker *request; 3893 u16 smid; 3894 3895 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3896 if (list_empty(&ioc->internal_free_list)) { 3897 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3898 ioc_err(ioc, "%s: smid not available\n", __func__); 3899 return 0; 3900 } 3901 3902 request = list_entry(ioc->internal_free_list.next, 3903 struct request_tracker, tracker_list); 3904 request->cb_idx = cb_idx; 3905 smid = request->smid; 3906 list_del(&request->tracker_list); 3907 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3908 return smid; 3909 } 3910 3911 /** 3912 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue 3913 * @ioc: per adapter object 3914 * @cb_idx: callback index 3915 * @scmd: pointer to scsi command object 3916 * 3917 * Return: smid (zero is invalid) 3918 */ 3919 u16 3920 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx, 3921 struct scsi_cmnd *scmd) 3922 { 3923 struct scsiio_tracker *request = scsi_cmd_priv(scmd); 3924 u16 smid; 3925 u32 tag, unique_tag; 3926 3927 unique_tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd)); 3928 tag = blk_mq_unique_tag_to_tag(unique_tag); 3929 3930 /* 3931 * Store hw queue number corresponding to the tag. 3932 * This hw queue number is used later to determine 3933 * the unique_tag using the logic below. This unique_tag 3934 * is used to retrieve the scmd pointer corresponding 3935 * to tag using scsi_host_find_tag() API. 3936 * 3937 * tag = smid - 1; 3938 * unique_tag = ioc->io_queue_num[tag] << BLK_MQ_UNIQUE_TAG_BITS | tag; 3939 */ 3940 ioc->io_queue_num[tag] = blk_mq_unique_tag_to_hwq(unique_tag); 3941 3942 smid = tag + 1; 3943 request->cb_idx = cb_idx; 3944 request->smid = smid; 3945 request->scmd = scmd; 3946 INIT_LIST_HEAD(&request->chain_list); 3947 return smid; 3948 } 3949 3950 /** 3951 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue 3952 * @ioc: per adapter object 3953 * @cb_idx: callback index 3954 * 3955 * Return: smid (zero is invalid) 3956 */ 3957 u16 3958 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx) 3959 { 3960 unsigned long flags; 3961 struct request_tracker *request; 3962 u16 smid; 3963 3964 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3965 if (list_empty(&ioc->hpr_free_list)) { 3966 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3967 return 0; 3968 } 3969 3970 request = list_entry(ioc->hpr_free_list.next, 3971 struct request_tracker, tracker_list); 3972 request->cb_idx = cb_idx; 3973 smid = request->smid; 3974 list_del(&request->tracker_list); 3975 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3976 return smid; 3977 } 3978 3979 static void 3980 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc) 3981 { 3982 /* 3983 * See _wait_for_commands_to_complete() call with regards to this code. 3984 */ 3985 if (ioc->shost_recovery && ioc->pending_io_count) { 3986 ioc->pending_io_count = scsi_host_busy(ioc->shost); 3987 if (ioc->pending_io_count == 0) 3988 wake_up(&ioc->reset_wq); 3989 } 3990 } 3991 3992 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc, 3993 struct scsiio_tracker *st) 3994 { 3995 if (WARN_ON(st->smid == 0)) 3996 return; 3997 st->cb_idx = 0xFF; 3998 st->direct_io = 0; 3999 st->scmd = NULL; 4000 atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0); 4001 st->smid = 0; 4002 } 4003 4004 /** 4005 * mpt3sas_base_free_smid - put smid back on free_list 4006 * @ioc: per adapter object 4007 * @smid: system request message index 4008 */ 4009 void 4010 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid) 4011 { 4012 unsigned long flags; 4013 int i; 4014 4015 if (smid < ioc->hi_priority_smid) { 4016 struct scsiio_tracker *st; 4017 void *request; 4018 4019 st = _get_st_from_smid(ioc, smid); 4020 if (!st) { 4021 _base_recovery_check(ioc); 4022 return; 4023 } 4024 4025 /* Clear MPI request frame */ 4026 request = mpt3sas_base_get_msg_frame(ioc, smid); 4027 memset(request, 0, ioc->request_sz); 4028 4029 mpt3sas_base_clear_st(ioc, st); 4030 _base_recovery_check(ioc); 4031 ioc->io_queue_num[smid - 1] = 0; 4032 return; 4033 } 4034 4035 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 4036 if (smid < ioc->internal_smid) { 4037 /* hi-priority */ 4038 i = smid - ioc->hi_priority_smid; 4039 ioc->hpr_lookup[i].cb_idx = 0xFF; 4040 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list); 4041 } else if (smid <= ioc->hba_queue_depth) { 4042 /* internal queue */ 4043 i = smid - ioc->internal_smid; 4044 ioc->internal_lookup[i].cb_idx = 0xFF; 4045 list_add(&ioc->internal_lookup[i].tracker_list, 4046 &ioc->internal_free_list); 4047 } 4048 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 4049 } 4050 4051 /** 4052 * _base_mpi_ep_writeq - 32 bit write to MMIO 4053 * @b: data payload 4054 * @addr: address in MMIO space 4055 * @writeq_lock: spin lock 4056 * 4057 * This special handling for MPI EP to take care of 32 bit 4058 * environment where its not quarenteed to send the entire word 4059 * in one transfer. 4060 */ 4061 static inline void 4062 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr, 4063 spinlock_t *writeq_lock) 4064 { 4065 unsigned long flags; 4066 4067 spin_lock_irqsave(writeq_lock, flags); 4068 __raw_writel((u32)(b), addr); 4069 __raw_writel((u32)(b >> 32), (addr + 4)); 4070 spin_unlock_irqrestore(writeq_lock, flags); 4071 } 4072 4073 /** 4074 * _base_writeq - 64 bit write to MMIO 4075 * @b: data payload 4076 * @addr: address in MMIO space 4077 * @writeq_lock: spin lock 4078 * 4079 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes 4080 * care of 32 bit environment where its not quarenteed to send the entire word 4081 * in one transfer. 4082 */ 4083 #if defined(writeq) && defined(CONFIG_64BIT) 4084 static inline void 4085 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock) 4086 { 4087 wmb(); 4088 __raw_writeq(b, addr); 4089 barrier(); 4090 } 4091 #else 4092 static inline void 4093 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock) 4094 { 4095 _base_mpi_ep_writeq(b, addr, writeq_lock); 4096 } 4097 #endif 4098 4099 /** 4100 * _base_set_and_get_msix_index - get the msix index and assign to msix_io 4101 * variable of scsi tracker 4102 * @ioc: per adapter object 4103 * @smid: system request message index 4104 * 4105 * Return: msix index. 4106 */ 4107 static u8 4108 _base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid) 4109 { 4110 struct scsiio_tracker *st = NULL; 4111 4112 if (smid < ioc->hi_priority_smid) 4113 st = _get_st_from_smid(ioc, smid); 4114 4115 if (st == NULL) 4116 return _base_get_msix_index(ioc, NULL); 4117 4118 st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd); 4119 return st->msix_io; 4120 } 4121 4122 /** 4123 * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware 4124 * @ioc: per adapter object 4125 * @smid: system request message index 4126 * @handle: device handle 4127 */ 4128 static void 4129 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc, 4130 u16 smid, u16 handle) 4131 { 4132 Mpi2RequestDescriptorUnion_t descriptor; 4133 u64 *request = (u64 *)&descriptor; 4134 void *mpi_req_iomem; 4135 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 4136 4137 _clone_sg_entries(ioc, (void *) mfp, smid); 4138 mpi_req_iomem = (void __force *)ioc->chip + 4139 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz); 4140 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 4141 ioc->request_sz); 4142 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 4143 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4144 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 4145 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 4146 descriptor.SCSIIO.LMID = 0; 4147 _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 4148 &ioc->scsi_lookup_lock); 4149 } 4150 4151 /** 4152 * _base_put_smid_scsi_io - send SCSI_IO request to firmware 4153 * @ioc: per adapter object 4154 * @smid: system request message index 4155 * @handle: device handle 4156 */ 4157 static void 4158 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle) 4159 { 4160 Mpi2RequestDescriptorUnion_t descriptor; 4161 u64 *request = (u64 *)&descriptor; 4162 4163 4164 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 4165 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4166 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 4167 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 4168 descriptor.SCSIIO.LMID = 0; 4169 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 4170 &ioc->scsi_lookup_lock); 4171 } 4172 4173 /** 4174 * _base_put_smid_fast_path - send fast path request to firmware 4175 * @ioc: per adapter object 4176 * @smid: system request message index 4177 * @handle: device handle 4178 */ 4179 static void 4180 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4181 u16 handle) 4182 { 4183 Mpi2RequestDescriptorUnion_t descriptor; 4184 u64 *request = (u64 *)&descriptor; 4185 4186 descriptor.SCSIIO.RequestFlags = 4187 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 4188 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4189 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 4190 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 4191 descriptor.SCSIIO.LMID = 0; 4192 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 4193 &ioc->scsi_lookup_lock); 4194 } 4195 4196 /** 4197 * _base_put_smid_hi_priority - send Task Management request to firmware 4198 * @ioc: per adapter object 4199 * @smid: system request message index 4200 * @msix_task: msix_task will be same as msix of IO in case of task abort else 0 4201 */ 4202 static void 4203 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4204 u16 msix_task) 4205 { 4206 Mpi2RequestDescriptorUnion_t descriptor; 4207 void *mpi_req_iomem; 4208 u64 *request; 4209 4210 if (ioc->is_mcpu_endpoint) { 4211 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 4212 4213 /* TBD 256 is offset within sys register. */ 4214 mpi_req_iomem = (void __force *)ioc->chip 4215 + MPI_FRAME_START_OFFSET 4216 + (smid * ioc->request_sz); 4217 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 4218 ioc->request_sz); 4219 } 4220 4221 request = (u64 *)&descriptor; 4222 4223 descriptor.HighPriority.RequestFlags = 4224 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 4225 descriptor.HighPriority.MSIxIndex = msix_task; 4226 descriptor.HighPriority.SMID = cpu_to_le16(smid); 4227 descriptor.HighPriority.LMID = 0; 4228 descriptor.HighPriority.Reserved1 = 0; 4229 if (ioc->is_mcpu_endpoint) 4230 _base_mpi_ep_writeq(*request, 4231 &ioc->chip->RequestDescriptorPostLow, 4232 &ioc->scsi_lookup_lock); 4233 else 4234 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 4235 &ioc->scsi_lookup_lock); 4236 } 4237 4238 /** 4239 * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to 4240 * firmware 4241 * @ioc: per adapter object 4242 * @smid: system request message index 4243 */ 4244 void 4245 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid) 4246 { 4247 Mpi2RequestDescriptorUnion_t descriptor; 4248 u64 *request = (u64 *)&descriptor; 4249 4250 descriptor.Default.RequestFlags = 4251 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED; 4252 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4253 descriptor.Default.SMID = cpu_to_le16(smid); 4254 descriptor.Default.LMID = 0; 4255 descriptor.Default.DescriptorTypeDependent = 0; 4256 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 4257 &ioc->scsi_lookup_lock); 4258 } 4259 4260 /** 4261 * _base_put_smid_default - Default, primarily used for config pages 4262 * @ioc: per adapter object 4263 * @smid: system request message index 4264 */ 4265 static void 4266 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid) 4267 { 4268 Mpi2RequestDescriptorUnion_t descriptor; 4269 void *mpi_req_iomem; 4270 u64 *request; 4271 4272 if (ioc->is_mcpu_endpoint) { 4273 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 4274 4275 _clone_sg_entries(ioc, (void *) mfp, smid); 4276 /* TBD 256 is offset within sys register */ 4277 mpi_req_iomem = (void __force *)ioc->chip + 4278 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz); 4279 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 4280 ioc->request_sz); 4281 } 4282 request = (u64 *)&descriptor; 4283 descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 4284 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4285 descriptor.Default.SMID = cpu_to_le16(smid); 4286 descriptor.Default.LMID = 0; 4287 descriptor.Default.DescriptorTypeDependent = 0; 4288 if (ioc->is_mcpu_endpoint) 4289 _base_mpi_ep_writeq(*request, 4290 &ioc->chip->RequestDescriptorPostLow, 4291 &ioc->scsi_lookup_lock); 4292 else 4293 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 4294 &ioc->scsi_lookup_lock); 4295 } 4296 4297 /** 4298 * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using 4299 * Atomic Request Descriptor 4300 * @ioc: per adapter object 4301 * @smid: system request message index 4302 * @handle: device handle, unused in this function, for function type match 4303 * 4304 * Return: nothing. 4305 */ 4306 static void 4307 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4308 u16 handle) 4309 { 4310 Mpi26AtomicRequestDescriptor_t descriptor; 4311 u32 *request = (u32 *)&descriptor; 4312 4313 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 4314 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4315 descriptor.SMID = cpu_to_le16(smid); 4316 4317 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4318 } 4319 4320 /** 4321 * _base_put_smid_fast_path_atomic - send fast path request to firmware 4322 * using Atomic Request Descriptor 4323 * @ioc: per adapter object 4324 * @smid: system request message index 4325 * @handle: device handle, unused in this function, for function type match 4326 * Return: nothing 4327 */ 4328 static void 4329 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4330 u16 handle) 4331 { 4332 Mpi26AtomicRequestDescriptor_t descriptor; 4333 u32 *request = (u32 *)&descriptor; 4334 4335 descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 4336 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4337 descriptor.SMID = cpu_to_le16(smid); 4338 4339 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4340 } 4341 4342 /** 4343 * _base_put_smid_hi_priority_atomic - send Task Management request to 4344 * firmware using Atomic Request Descriptor 4345 * @ioc: per adapter object 4346 * @smid: system request message index 4347 * @msix_task: msix_task will be same as msix of IO in case of task abort else 0 4348 * 4349 * Return: nothing. 4350 */ 4351 static void 4352 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4353 u16 msix_task) 4354 { 4355 Mpi26AtomicRequestDescriptor_t descriptor; 4356 u32 *request = (u32 *)&descriptor; 4357 4358 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 4359 descriptor.MSIxIndex = msix_task; 4360 descriptor.SMID = cpu_to_le16(smid); 4361 4362 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4363 } 4364 4365 /** 4366 * _base_put_smid_default_atomic - Default, primarily used for config pages 4367 * use Atomic Request Descriptor 4368 * @ioc: per adapter object 4369 * @smid: system request message index 4370 * 4371 * Return: nothing. 4372 */ 4373 static void 4374 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid) 4375 { 4376 Mpi26AtomicRequestDescriptor_t descriptor; 4377 u32 *request = (u32 *)&descriptor; 4378 4379 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 4380 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4381 descriptor.SMID = cpu_to_le16(smid); 4382 4383 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4384 } 4385 4386 /** 4387 * _base_display_OEMs_branding - Display branding string 4388 * @ioc: per adapter object 4389 */ 4390 static void 4391 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc) 4392 { 4393 if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL) 4394 return; 4395 4396 switch (ioc->pdev->subsystem_vendor) { 4397 case PCI_VENDOR_ID_INTEL: 4398 switch (ioc->pdev->device) { 4399 case MPI2_MFGPAGE_DEVID_SAS2008: 4400 switch (ioc->pdev->subsystem_device) { 4401 case MPT2SAS_INTEL_RMS2LL080_SSDID: 4402 ioc_info(ioc, "%s\n", 4403 MPT2SAS_INTEL_RMS2LL080_BRANDING); 4404 break; 4405 case MPT2SAS_INTEL_RMS2LL040_SSDID: 4406 ioc_info(ioc, "%s\n", 4407 MPT2SAS_INTEL_RMS2LL040_BRANDING); 4408 break; 4409 case MPT2SAS_INTEL_SSD910_SSDID: 4410 ioc_info(ioc, "%s\n", 4411 MPT2SAS_INTEL_SSD910_BRANDING); 4412 break; 4413 default: 4414 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4415 ioc->pdev->subsystem_device); 4416 break; 4417 } 4418 break; 4419 case MPI2_MFGPAGE_DEVID_SAS2308_2: 4420 switch (ioc->pdev->subsystem_device) { 4421 case MPT2SAS_INTEL_RS25GB008_SSDID: 4422 ioc_info(ioc, "%s\n", 4423 MPT2SAS_INTEL_RS25GB008_BRANDING); 4424 break; 4425 case MPT2SAS_INTEL_RMS25JB080_SSDID: 4426 ioc_info(ioc, "%s\n", 4427 MPT2SAS_INTEL_RMS25JB080_BRANDING); 4428 break; 4429 case MPT2SAS_INTEL_RMS25JB040_SSDID: 4430 ioc_info(ioc, "%s\n", 4431 MPT2SAS_INTEL_RMS25JB040_BRANDING); 4432 break; 4433 case MPT2SAS_INTEL_RMS25KB080_SSDID: 4434 ioc_info(ioc, "%s\n", 4435 MPT2SAS_INTEL_RMS25KB080_BRANDING); 4436 break; 4437 case MPT2SAS_INTEL_RMS25KB040_SSDID: 4438 ioc_info(ioc, "%s\n", 4439 MPT2SAS_INTEL_RMS25KB040_BRANDING); 4440 break; 4441 case MPT2SAS_INTEL_RMS25LB040_SSDID: 4442 ioc_info(ioc, "%s\n", 4443 MPT2SAS_INTEL_RMS25LB040_BRANDING); 4444 break; 4445 case MPT2SAS_INTEL_RMS25LB080_SSDID: 4446 ioc_info(ioc, "%s\n", 4447 MPT2SAS_INTEL_RMS25LB080_BRANDING); 4448 break; 4449 default: 4450 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4451 ioc->pdev->subsystem_device); 4452 break; 4453 } 4454 break; 4455 case MPI25_MFGPAGE_DEVID_SAS3008: 4456 switch (ioc->pdev->subsystem_device) { 4457 case MPT3SAS_INTEL_RMS3JC080_SSDID: 4458 ioc_info(ioc, "%s\n", 4459 MPT3SAS_INTEL_RMS3JC080_BRANDING); 4460 break; 4461 4462 case MPT3SAS_INTEL_RS3GC008_SSDID: 4463 ioc_info(ioc, "%s\n", 4464 MPT3SAS_INTEL_RS3GC008_BRANDING); 4465 break; 4466 case MPT3SAS_INTEL_RS3FC044_SSDID: 4467 ioc_info(ioc, "%s\n", 4468 MPT3SAS_INTEL_RS3FC044_BRANDING); 4469 break; 4470 case MPT3SAS_INTEL_RS3UC080_SSDID: 4471 ioc_info(ioc, "%s\n", 4472 MPT3SAS_INTEL_RS3UC080_BRANDING); 4473 break; 4474 default: 4475 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4476 ioc->pdev->subsystem_device); 4477 break; 4478 } 4479 break; 4480 default: 4481 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4482 ioc->pdev->subsystem_device); 4483 break; 4484 } 4485 break; 4486 case PCI_VENDOR_ID_DELL: 4487 switch (ioc->pdev->device) { 4488 case MPI2_MFGPAGE_DEVID_SAS2008: 4489 switch (ioc->pdev->subsystem_device) { 4490 case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID: 4491 ioc_info(ioc, "%s\n", 4492 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING); 4493 break; 4494 case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID: 4495 ioc_info(ioc, "%s\n", 4496 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING); 4497 break; 4498 case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID: 4499 ioc_info(ioc, "%s\n", 4500 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING); 4501 break; 4502 case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID: 4503 ioc_info(ioc, "%s\n", 4504 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING); 4505 break; 4506 case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID: 4507 ioc_info(ioc, "%s\n", 4508 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING); 4509 break; 4510 case MPT2SAS_DELL_PERC_H200_SSDID: 4511 ioc_info(ioc, "%s\n", 4512 MPT2SAS_DELL_PERC_H200_BRANDING); 4513 break; 4514 case MPT2SAS_DELL_6GBPS_SAS_SSDID: 4515 ioc_info(ioc, "%s\n", 4516 MPT2SAS_DELL_6GBPS_SAS_BRANDING); 4517 break; 4518 default: 4519 ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n", 4520 ioc->pdev->subsystem_device); 4521 break; 4522 } 4523 break; 4524 case MPI25_MFGPAGE_DEVID_SAS3008: 4525 switch (ioc->pdev->subsystem_device) { 4526 case MPT3SAS_DELL_12G_HBA_SSDID: 4527 ioc_info(ioc, "%s\n", 4528 MPT3SAS_DELL_12G_HBA_BRANDING); 4529 break; 4530 default: 4531 ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n", 4532 ioc->pdev->subsystem_device); 4533 break; 4534 } 4535 break; 4536 default: 4537 ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n", 4538 ioc->pdev->subsystem_device); 4539 break; 4540 } 4541 break; 4542 case PCI_VENDOR_ID_CISCO: 4543 switch (ioc->pdev->device) { 4544 case MPI25_MFGPAGE_DEVID_SAS3008: 4545 switch (ioc->pdev->subsystem_device) { 4546 case MPT3SAS_CISCO_12G_8E_HBA_SSDID: 4547 ioc_info(ioc, "%s\n", 4548 MPT3SAS_CISCO_12G_8E_HBA_BRANDING); 4549 break; 4550 case MPT3SAS_CISCO_12G_8I_HBA_SSDID: 4551 ioc_info(ioc, "%s\n", 4552 MPT3SAS_CISCO_12G_8I_HBA_BRANDING); 4553 break; 4554 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID: 4555 ioc_info(ioc, "%s\n", 4556 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING); 4557 break; 4558 default: 4559 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n", 4560 ioc->pdev->subsystem_device); 4561 break; 4562 } 4563 break; 4564 case MPI25_MFGPAGE_DEVID_SAS3108_1: 4565 switch (ioc->pdev->subsystem_device) { 4566 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID: 4567 ioc_info(ioc, "%s\n", 4568 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING); 4569 break; 4570 case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID: 4571 ioc_info(ioc, "%s\n", 4572 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING); 4573 break; 4574 default: 4575 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n", 4576 ioc->pdev->subsystem_device); 4577 break; 4578 } 4579 break; 4580 default: 4581 ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n", 4582 ioc->pdev->subsystem_device); 4583 break; 4584 } 4585 break; 4586 case MPT2SAS_HP_3PAR_SSVID: 4587 switch (ioc->pdev->device) { 4588 case MPI2_MFGPAGE_DEVID_SAS2004: 4589 switch (ioc->pdev->subsystem_device) { 4590 case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID: 4591 ioc_info(ioc, "%s\n", 4592 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING); 4593 break; 4594 default: 4595 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n", 4596 ioc->pdev->subsystem_device); 4597 break; 4598 } 4599 break; 4600 case MPI2_MFGPAGE_DEVID_SAS2308_2: 4601 switch (ioc->pdev->subsystem_device) { 4602 case MPT2SAS_HP_2_4_INTERNAL_SSDID: 4603 ioc_info(ioc, "%s\n", 4604 MPT2SAS_HP_2_4_INTERNAL_BRANDING); 4605 break; 4606 case MPT2SAS_HP_2_4_EXTERNAL_SSDID: 4607 ioc_info(ioc, "%s\n", 4608 MPT2SAS_HP_2_4_EXTERNAL_BRANDING); 4609 break; 4610 case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID: 4611 ioc_info(ioc, "%s\n", 4612 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING); 4613 break; 4614 case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID: 4615 ioc_info(ioc, "%s\n", 4616 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING); 4617 break; 4618 default: 4619 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n", 4620 ioc->pdev->subsystem_device); 4621 break; 4622 } 4623 break; 4624 default: 4625 ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n", 4626 ioc->pdev->subsystem_device); 4627 break; 4628 } 4629 break; 4630 default: 4631 break; 4632 } 4633 } 4634 4635 /** 4636 * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg 4637 * version from FW Image Header. 4638 * @ioc: per adapter object 4639 * 4640 * Return: 0 for success, non-zero for failure. 4641 */ 4642 static int 4643 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc) 4644 { 4645 Mpi2FWImageHeader_t *fw_img_hdr; 4646 Mpi26ComponentImageHeader_t *cmp_img_hdr; 4647 Mpi25FWUploadRequest_t *mpi_request; 4648 Mpi2FWUploadReply_t mpi_reply; 4649 int r = 0, issue_diag_reset = 0; 4650 u32 package_version = 0; 4651 void *fwpkg_data = NULL; 4652 dma_addr_t fwpkg_data_dma; 4653 u16 smid, ioc_status; 4654 size_t data_length; 4655 4656 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 4657 4658 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 4659 ioc_err(ioc, "%s: internal command already in use\n", __func__); 4660 return -EAGAIN; 4661 } 4662 4663 data_length = sizeof(Mpi2FWImageHeader_t); 4664 fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length, 4665 &fwpkg_data_dma, GFP_KERNEL); 4666 if (!fwpkg_data) { 4667 ioc_err(ioc, 4668 "Memory allocation for fwpkg data failed at %s:%d/%s()!\n", 4669 __FILE__, __LINE__, __func__); 4670 return -ENOMEM; 4671 } 4672 4673 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 4674 if (!smid) { 4675 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 4676 r = -EAGAIN; 4677 goto out; 4678 } 4679 4680 ioc->base_cmds.status = MPT3_CMD_PENDING; 4681 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 4682 ioc->base_cmds.smid = smid; 4683 memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t)); 4684 mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD; 4685 mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH; 4686 mpi_request->ImageSize = cpu_to_le32(data_length); 4687 ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma, 4688 data_length); 4689 init_completion(&ioc->base_cmds.done); 4690 ioc->put_smid_default(ioc, smid); 4691 /* Wait for 15 seconds */ 4692 wait_for_completion_timeout(&ioc->base_cmds.done, 4693 FW_IMG_HDR_READ_TIMEOUT*HZ); 4694 ioc_info(ioc, "%s: complete\n", __func__); 4695 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 4696 ioc_err(ioc, "%s: timeout\n", __func__); 4697 _debug_dump_mf(mpi_request, 4698 sizeof(Mpi25FWUploadRequest_t)/4); 4699 issue_diag_reset = 1; 4700 } else { 4701 memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t)); 4702 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) { 4703 memcpy(&mpi_reply, ioc->base_cmds.reply, 4704 sizeof(Mpi2FWUploadReply_t)); 4705 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 4706 MPI2_IOCSTATUS_MASK; 4707 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 4708 fw_img_hdr = (Mpi2FWImageHeader_t *)fwpkg_data; 4709 if (le32_to_cpu(fw_img_hdr->Signature) == 4710 MPI26_IMAGE_HEADER_SIGNATURE0_MPI26) { 4711 cmp_img_hdr = 4712 (Mpi26ComponentImageHeader_t *) 4713 (fwpkg_data); 4714 package_version = 4715 le32_to_cpu( 4716 cmp_img_hdr->ApplicationSpecific); 4717 } else 4718 package_version = 4719 le32_to_cpu( 4720 fw_img_hdr->PackageVersion.Word); 4721 if (package_version) 4722 ioc_info(ioc, 4723 "FW Package Ver(%02d.%02d.%02d.%02d)\n", 4724 ((package_version) & 0xFF000000) >> 24, 4725 ((package_version) & 0x00FF0000) >> 16, 4726 ((package_version) & 0x0000FF00) >> 8, 4727 (package_version) & 0x000000FF); 4728 } else { 4729 _debug_dump_mf(&mpi_reply, 4730 sizeof(Mpi2FWUploadReply_t)/4); 4731 } 4732 } 4733 } 4734 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 4735 out: 4736 if (fwpkg_data) 4737 dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data, 4738 fwpkg_data_dma); 4739 if (issue_diag_reset) { 4740 if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED) 4741 return -EFAULT; 4742 if (mpt3sas_base_check_for_fault_and_issue_reset(ioc)) 4743 return -EFAULT; 4744 r = -EAGAIN; 4745 } 4746 return r; 4747 } 4748 4749 /** 4750 * _base_display_ioc_capabilities - Display IOC's capabilities. 4751 * @ioc: per adapter object 4752 */ 4753 static void 4754 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc) 4755 { 4756 int i = 0; 4757 char desc[17] = {0}; 4758 u32 iounit_pg1_flags; 4759 4760 strncpy(desc, ioc->manu_pg0.ChipName, 16); 4761 ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x)\n", 4762 desc, 4763 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24, 4764 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16, 4765 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8, 4766 ioc->facts.FWVersion.Word & 0x000000FF, 4767 ioc->pdev->revision); 4768 4769 _base_display_OEMs_branding(ioc); 4770 4771 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) { 4772 pr_info("%sNVMe", i ? "," : ""); 4773 i++; 4774 } 4775 4776 ioc_info(ioc, "Protocol=("); 4777 4778 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) { 4779 pr_cont("Initiator"); 4780 i++; 4781 } 4782 4783 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) { 4784 pr_cont("%sTarget", i ? "," : ""); 4785 i++; 4786 } 4787 4788 i = 0; 4789 pr_cont("), Capabilities=("); 4790 4791 if (!ioc->hide_ir_msg) { 4792 if (ioc->facts.IOCCapabilities & 4793 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) { 4794 pr_cont("Raid"); 4795 i++; 4796 } 4797 } 4798 4799 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) { 4800 pr_cont("%sTLR", i ? "," : ""); 4801 i++; 4802 } 4803 4804 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) { 4805 pr_cont("%sMulticast", i ? "," : ""); 4806 i++; 4807 } 4808 4809 if (ioc->facts.IOCCapabilities & 4810 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) { 4811 pr_cont("%sBIDI Target", i ? "," : ""); 4812 i++; 4813 } 4814 4815 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) { 4816 pr_cont("%sEEDP", i ? "," : ""); 4817 i++; 4818 } 4819 4820 if (ioc->facts.IOCCapabilities & 4821 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) { 4822 pr_cont("%sSnapshot Buffer", i ? "," : ""); 4823 i++; 4824 } 4825 4826 if (ioc->facts.IOCCapabilities & 4827 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) { 4828 pr_cont("%sDiag Trace Buffer", i ? "," : ""); 4829 i++; 4830 } 4831 4832 if (ioc->facts.IOCCapabilities & 4833 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) { 4834 pr_cont("%sDiag Extended Buffer", i ? "," : ""); 4835 i++; 4836 } 4837 4838 if (ioc->facts.IOCCapabilities & 4839 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) { 4840 pr_cont("%sTask Set Full", i ? "," : ""); 4841 i++; 4842 } 4843 4844 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags); 4845 if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) { 4846 pr_cont("%sNCQ", i ? "," : ""); 4847 i++; 4848 } 4849 4850 pr_cont(")\n"); 4851 } 4852 4853 /** 4854 * mpt3sas_base_update_missing_delay - change the missing delay timers 4855 * @ioc: per adapter object 4856 * @device_missing_delay: amount of time till device is reported missing 4857 * @io_missing_delay: interval IO is returned when there is a missing device 4858 * 4859 * Passed on the command line, this function will modify the device missing 4860 * delay, as well as the io missing delay. This should be called at driver 4861 * load time. 4862 */ 4863 void 4864 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc, 4865 u16 device_missing_delay, u8 io_missing_delay) 4866 { 4867 u16 dmd, dmd_new, dmd_orignal; 4868 u8 io_missing_delay_original; 4869 u16 sz; 4870 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL; 4871 Mpi2ConfigReply_t mpi_reply; 4872 u8 num_phys = 0; 4873 u16 ioc_status; 4874 4875 mpt3sas_config_get_number_hba_phys(ioc, &num_phys); 4876 if (!num_phys) 4877 return; 4878 4879 sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys * 4880 sizeof(Mpi2SasIOUnit1PhyData_t)); 4881 sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL); 4882 if (!sas_iounit_pg1) { 4883 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4884 __FILE__, __LINE__, __func__); 4885 goto out; 4886 } 4887 if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply, 4888 sas_iounit_pg1, sz))) { 4889 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4890 __FILE__, __LINE__, __func__); 4891 goto out; 4892 } 4893 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 4894 MPI2_IOCSTATUS_MASK; 4895 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 4896 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4897 __FILE__, __LINE__, __func__); 4898 goto out; 4899 } 4900 4901 /* device missing delay */ 4902 dmd = sas_iounit_pg1->ReportDeviceMissingDelay; 4903 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16) 4904 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16; 4905 else 4906 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK; 4907 dmd_orignal = dmd; 4908 if (device_missing_delay > 0x7F) { 4909 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 : 4910 device_missing_delay; 4911 dmd = dmd / 16; 4912 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16; 4913 } else 4914 dmd = device_missing_delay; 4915 sas_iounit_pg1->ReportDeviceMissingDelay = dmd; 4916 4917 /* io missing delay */ 4918 io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay; 4919 sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay; 4920 4921 if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1, 4922 sz)) { 4923 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16) 4924 dmd_new = (dmd & 4925 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16; 4926 else 4927 dmd_new = 4928 dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK; 4929 ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n", 4930 dmd_orignal, dmd_new); 4931 ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n", 4932 io_missing_delay_original, 4933 io_missing_delay); 4934 ioc->device_missing_delay = dmd_new; 4935 ioc->io_missing_delay = io_missing_delay; 4936 } 4937 4938 out: 4939 kfree(sas_iounit_pg1); 4940 } 4941 4942 /** 4943 * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields 4944 * according to performance mode. 4945 * @ioc : per adapter object 4946 * 4947 * Return: zero on success; otherwise return EAGAIN error code asking the 4948 * caller to retry. 4949 */ 4950 static int 4951 _base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc) 4952 { 4953 Mpi2IOCPage1_t ioc_pg1; 4954 Mpi2ConfigReply_t mpi_reply; 4955 int rc; 4956 4957 rc = mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy); 4958 if (rc) 4959 return rc; 4960 memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t)); 4961 4962 switch (perf_mode) { 4963 case MPT_PERF_MODE_DEFAULT: 4964 case MPT_PERF_MODE_BALANCED: 4965 if (ioc->high_iops_queues) { 4966 ioc_info(ioc, 4967 "Enable interrupt coalescing only for first\t" 4968 "%d reply queues\n", 4969 MPT3SAS_HIGH_IOPS_REPLY_QUEUES); 4970 /* 4971 * If 31st bit is zero then interrupt coalescing is 4972 * enabled for all reply descriptor post queues. 4973 * If 31st bit is set to one then user can 4974 * enable/disable interrupt coalescing on per reply 4975 * descriptor post queue group(8) basis. So to enable 4976 * interrupt coalescing only on first reply descriptor 4977 * post queue group 31st bit and zero th bit is enabled. 4978 */ 4979 ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 | 4980 ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1)); 4981 rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1); 4982 if (rc) 4983 return rc; 4984 ioc_info(ioc, "performance mode: balanced\n"); 4985 return 0; 4986 } 4987 fallthrough; 4988 case MPT_PERF_MODE_LATENCY: 4989 /* 4990 * Enable interrupt coalescing on all reply queues 4991 * with timeout value 0xA 4992 */ 4993 ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa); 4994 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING); 4995 ioc_pg1.ProductSpecific = 0; 4996 rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1); 4997 if (rc) 4998 return rc; 4999 ioc_info(ioc, "performance mode: latency\n"); 5000 break; 5001 case MPT_PERF_MODE_IOPS: 5002 /* 5003 * Enable interrupt coalescing on all reply queues. 5004 */ 5005 ioc_info(ioc, 5006 "performance mode: iops with coalescing timeout: 0x%x\n", 5007 le32_to_cpu(ioc_pg1.CoalescingTimeout)); 5008 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING); 5009 ioc_pg1.ProductSpecific = 0; 5010 rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1); 5011 if (rc) 5012 return rc; 5013 break; 5014 } 5015 return 0; 5016 } 5017 5018 /** 5019 * _base_get_event_diag_triggers - get event diag trigger values from 5020 * persistent pages 5021 * @ioc : per adapter object 5022 * 5023 * Return: nothing. 5024 */ 5025 static int 5026 _base_get_event_diag_triggers(struct MPT3SAS_ADAPTER *ioc) 5027 { 5028 Mpi26DriverTriggerPage2_t trigger_pg2; 5029 struct SL_WH_EVENT_TRIGGER_T *event_tg; 5030 MPI26_DRIVER_MPI_EVENT_TIGGER_ENTRY *mpi_event_tg; 5031 Mpi2ConfigReply_t mpi_reply; 5032 int r = 0, i = 0; 5033 u16 count = 0; 5034 u16 ioc_status; 5035 5036 r = mpt3sas_config_get_driver_trigger_pg2(ioc, &mpi_reply, 5037 &trigger_pg2); 5038 if (r) 5039 return r; 5040 5041 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 5042 MPI2_IOCSTATUS_MASK; 5043 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 5044 dinitprintk(ioc, 5045 ioc_err(ioc, 5046 "%s: Failed to get trigger pg2, ioc_status(0x%04x)\n", 5047 __func__, ioc_status)); 5048 return 0; 5049 } 5050 5051 if (le16_to_cpu(trigger_pg2.NumMPIEventTrigger)) { 5052 count = le16_to_cpu(trigger_pg2.NumMPIEventTrigger); 5053 count = min_t(u16, NUM_VALID_ENTRIES, count); 5054 ioc->diag_trigger_event.ValidEntries = count; 5055 5056 event_tg = &ioc->diag_trigger_event.EventTriggerEntry[0]; 5057 mpi_event_tg = &trigger_pg2.MPIEventTriggers[0]; 5058 for (i = 0; i < count; i++) { 5059 event_tg->EventValue = le16_to_cpu( 5060 mpi_event_tg->MPIEventCode); 5061 event_tg->LogEntryQualifier = le16_to_cpu( 5062 mpi_event_tg->MPIEventCodeSpecific); 5063 event_tg++; 5064 mpi_event_tg++; 5065 } 5066 } 5067 return 0; 5068 } 5069 5070 /** 5071 * _base_get_scsi_diag_triggers - get scsi diag trigger values from 5072 * persistent pages 5073 * @ioc : per adapter object 5074 * 5075 * Return: 0 on success; otherwise return failure status. 5076 */ 5077 static int 5078 _base_get_scsi_diag_triggers(struct MPT3SAS_ADAPTER *ioc) 5079 { 5080 Mpi26DriverTriggerPage3_t trigger_pg3; 5081 struct SL_WH_SCSI_TRIGGER_T *scsi_tg; 5082 MPI26_DRIVER_SCSI_SENSE_TIGGER_ENTRY *mpi_scsi_tg; 5083 Mpi2ConfigReply_t mpi_reply; 5084 int r = 0, i = 0; 5085 u16 count = 0; 5086 u16 ioc_status; 5087 5088 r = mpt3sas_config_get_driver_trigger_pg3(ioc, &mpi_reply, 5089 &trigger_pg3); 5090 if (r) 5091 return r; 5092 5093 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 5094 MPI2_IOCSTATUS_MASK; 5095 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 5096 dinitprintk(ioc, 5097 ioc_err(ioc, 5098 "%s: Failed to get trigger pg3, ioc_status(0x%04x)\n", 5099 __func__, ioc_status)); 5100 return 0; 5101 } 5102 5103 if (le16_to_cpu(trigger_pg3.NumSCSISenseTrigger)) { 5104 count = le16_to_cpu(trigger_pg3.NumSCSISenseTrigger); 5105 count = min_t(u16, NUM_VALID_ENTRIES, count); 5106 ioc->diag_trigger_scsi.ValidEntries = count; 5107 5108 scsi_tg = &ioc->diag_trigger_scsi.SCSITriggerEntry[0]; 5109 mpi_scsi_tg = &trigger_pg3.SCSISenseTriggers[0]; 5110 for (i = 0; i < count; i++) { 5111 scsi_tg->ASCQ = mpi_scsi_tg->ASCQ; 5112 scsi_tg->ASC = mpi_scsi_tg->ASC; 5113 scsi_tg->SenseKey = mpi_scsi_tg->SenseKey; 5114 5115 scsi_tg++; 5116 mpi_scsi_tg++; 5117 } 5118 } 5119 return 0; 5120 } 5121 5122 /** 5123 * _base_get_mpi_diag_triggers - get mpi diag trigger values from 5124 * persistent pages 5125 * @ioc : per adapter object 5126 * 5127 * Return: 0 on success; otherwise return failure status. 5128 */ 5129 static int 5130 _base_get_mpi_diag_triggers(struct MPT3SAS_ADAPTER *ioc) 5131 { 5132 Mpi26DriverTriggerPage4_t trigger_pg4; 5133 struct SL_WH_MPI_TRIGGER_T *status_tg; 5134 MPI26_DRIVER_IOCSTATUS_LOGINFO_TIGGER_ENTRY *mpi_status_tg; 5135 Mpi2ConfigReply_t mpi_reply; 5136 int r = 0, i = 0; 5137 u16 count = 0; 5138 u16 ioc_status; 5139 5140 r = mpt3sas_config_get_driver_trigger_pg4(ioc, &mpi_reply, 5141 &trigger_pg4); 5142 if (r) 5143 return r; 5144 5145 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 5146 MPI2_IOCSTATUS_MASK; 5147 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 5148 dinitprintk(ioc, 5149 ioc_err(ioc, 5150 "%s: Failed to get trigger pg4, ioc_status(0x%04x)\n", 5151 __func__, ioc_status)); 5152 return 0; 5153 } 5154 5155 if (le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger)) { 5156 count = le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger); 5157 count = min_t(u16, NUM_VALID_ENTRIES, count); 5158 ioc->diag_trigger_mpi.ValidEntries = count; 5159 5160 status_tg = &ioc->diag_trigger_mpi.MPITriggerEntry[0]; 5161 mpi_status_tg = &trigger_pg4.IOCStatusLoginfoTriggers[0]; 5162 5163 for (i = 0; i < count; i++) { 5164 status_tg->IOCStatus = le16_to_cpu( 5165 mpi_status_tg->IOCStatus); 5166 status_tg->IocLogInfo = le32_to_cpu( 5167 mpi_status_tg->LogInfo); 5168 5169 status_tg++; 5170 mpi_status_tg++; 5171 } 5172 } 5173 return 0; 5174 } 5175 5176 /** 5177 * _base_get_master_diag_triggers - get master diag trigger values from 5178 * persistent pages 5179 * @ioc : per adapter object 5180 * 5181 * Return: nothing. 5182 */ 5183 static int 5184 _base_get_master_diag_triggers(struct MPT3SAS_ADAPTER *ioc) 5185 { 5186 Mpi26DriverTriggerPage1_t trigger_pg1; 5187 Mpi2ConfigReply_t mpi_reply; 5188 int r; 5189 u16 ioc_status; 5190 5191 r = mpt3sas_config_get_driver_trigger_pg1(ioc, &mpi_reply, 5192 &trigger_pg1); 5193 if (r) 5194 return r; 5195 5196 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 5197 MPI2_IOCSTATUS_MASK; 5198 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 5199 dinitprintk(ioc, 5200 ioc_err(ioc, 5201 "%s: Failed to get trigger pg1, ioc_status(0x%04x)\n", 5202 __func__, ioc_status)); 5203 return 0; 5204 } 5205 5206 if (le16_to_cpu(trigger_pg1.NumMasterTrigger)) 5207 ioc->diag_trigger_master.MasterData |= 5208 le32_to_cpu( 5209 trigger_pg1.MasterTriggers[0].MasterTriggerFlags); 5210 return 0; 5211 } 5212 5213 /** 5214 * _base_check_for_trigger_pages_support - checks whether HBA FW supports 5215 * driver trigger pages or not 5216 * @ioc : per adapter object 5217 * @trigger_flags : address where trigger page0's TriggerFlags value is copied 5218 * 5219 * Return: trigger flags mask if HBA FW supports driver trigger pages; 5220 * otherwise returns %-EFAULT if driver trigger pages are not supported by FW or 5221 * return EAGAIN if diag reset occurred due to FW fault and asking the 5222 * caller to retry the command. 5223 * 5224 */ 5225 static int 5226 _base_check_for_trigger_pages_support(struct MPT3SAS_ADAPTER *ioc, u32 *trigger_flags) 5227 { 5228 Mpi26DriverTriggerPage0_t trigger_pg0; 5229 int r = 0; 5230 Mpi2ConfigReply_t mpi_reply; 5231 u16 ioc_status; 5232 5233 r = mpt3sas_config_get_driver_trigger_pg0(ioc, &mpi_reply, 5234 &trigger_pg0); 5235 if (r) 5236 return r; 5237 5238 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 5239 MPI2_IOCSTATUS_MASK; 5240 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) 5241 return -EFAULT; 5242 5243 *trigger_flags = le16_to_cpu(trigger_pg0.TriggerFlags); 5244 return 0; 5245 } 5246 5247 /** 5248 * _base_get_diag_triggers - Retrieve diag trigger values from 5249 * persistent pages. 5250 * @ioc : per adapter object 5251 * 5252 * Return: zero on success; otherwise return EAGAIN error codes 5253 * asking the caller to retry. 5254 */ 5255 static int 5256 _base_get_diag_triggers(struct MPT3SAS_ADAPTER *ioc) 5257 { 5258 int trigger_flags; 5259 int r; 5260 5261 /* 5262 * Default setting of master trigger. 5263 */ 5264 ioc->diag_trigger_master.MasterData = 5265 (MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET); 5266 5267 r = _base_check_for_trigger_pages_support(ioc, &trigger_flags); 5268 if (r) { 5269 if (r == -EAGAIN) 5270 return r; 5271 /* 5272 * Don't go for error handling when FW doesn't support 5273 * driver trigger pages. 5274 */ 5275 return 0; 5276 } 5277 5278 ioc->supports_trigger_pages = 1; 5279 5280 /* 5281 * Retrieve master diag trigger values from driver trigger pg1 5282 * if master trigger bit enabled in TriggerFlags. 5283 */ 5284 if ((u16)trigger_flags & 5285 MPI26_DRIVER_TRIGGER0_FLAG_MASTER_TRIGGER_VALID) { 5286 r = _base_get_master_diag_triggers(ioc); 5287 if (r) 5288 return r; 5289 } 5290 5291 /* 5292 * Retrieve event diag trigger values from driver trigger pg2 5293 * if event trigger bit enabled in TriggerFlags. 5294 */ 5295 if ((u16)trigger_flags & 5296 MPI26_DRIVER_TRIGGER0_FLAG_MPI_EVENT_TRIGGER_VALID) { 5297 r = _base_get_event_diag_triggers(ioc); 5298 if (r) 5299 return r; 5300 } 5301 5302 /* 5303 * Retrieve scsi diag trigger values from driver trigger pg3 5304 * if scsi trigger bit enabled in TriggerFlags. 5305 */ 5306 if ((u16)trigger_flags & 5307 MPI26_DRIVER_TRIGGER0_FLAG_SCSI_SENSE_TRIGGER_VALID) { 5308 r = _base_get_scsi_diag_triggers(ioc); 5309 if (r) 5310 return r; 5311 } 5312 /* 5313 * Retrieve mpi error diag trigger values from driver trigger pg4 5314 * if loginfo trigger bit enabled in TriggerFlags. 5315 */ 5316 if ((u16)trigger_flags & 5317 MPI26_DRIVER_TRIGGER0_FLAG_LOGINFO_TRIGGER_VALID) { 5318 r = _base_get_mpi_diag_triggers(ioc); 5319 if (r) 5320 return r; 5321 } 5322 return 0; 5323 } 5324 5325 /** 5326 * _base_update_diag_trigger_pages - Update the driver trigger pages after 5327 * online FW update, in case updated FW supports driver 5328 * trigger pages. 5329 * @ioc : per adapter object 5330 * 5331 * Return: nothing. 5332 */ 5333 static void 5334 _base_update_diag_trigger_pages(struct MPT3SAS_ADAPTER *ioc) 5335 { 5336 5337 if (ioc->diag_trigger_master.MasterData) 5338 mpt3sas_config_update_driver_trigger_pg1(ioc, 5339 &ioc->diag_trigger_master, 1); 5340 5341 if (ioc->diag_trigger_event.ValidEntries) 5342 mpt3sas_config_update_driver_trigger_pg2(ioc, 5343 &ioc->diag_trigger_event, 1); 5344 5345 if (ioc->diag_trigger_scsi.ValidEntries) 5346 mpt3sas_config_update_driver_trigger_pg3(ioc, 5347 &ioc->diag_trigger_scsi, 1); 5348 5349 if (ioc->diag_trigger_mpi.ValidEntries) 5350 mpt3sas_config_update_driver_trigger_pg4(ioc, 5351 &ioc->diag_trigger_mpi, 1); 5352 } 5353 5354 /** 5355 * _base_assign_fw_reported_qd - Get FW reported QD for SAS/SATA devices. 5356 * - On failure set default QD values. 5357 * @ioc : per adapter object 5358 * 5359 * Returns 0 for success, non-zero for failure. 5360 * 5361 */ 5362 static int _base_assign_fw_reported_qd(struct MPT3SAS_ADAPTER *ioc) 5363 { 5364 Mpi2ConfigReply_t mpi_reply; 5365 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL; 5366 Mpi26PCIeIOUnitPage1_t pcie_iounit_pg1; 5367 u16 depth; 5368 int sz; 5369 int rc = 0; 5370 5371 ioc->max_wideport_qd = MPT3SAS_SAS_QUEUE_DEPTH; 5372 ioc->max_narrowport_qd = MPT3SAS_SAS_QUEUE_DEPTH; 5373 ioc->max_sata_qd = MPT3SAS_SATA_QUEUE_DEPTH; 5374 ioc->max_nvme_qd = MPT3SAS_NVME_QUEUE_DEPTH; 5375 if (!ioc->is_gen35_ioc) 5376 goto out; 5377 /* sas iounit page 1 */ 5378 sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData); 5379 sas_iounit_pg1 = kzalloc(sizeof(Mpi2SasIOUnitPage1_t), GFP_KERNEL); 5380 if (!sas_iounit_pg1) { 5381 pr_err("%s: failure at %s:%d/%s()!\n", 5382 ioc->name, __FILE__, __LINE__, __func__); 5383 return rc; 5384 } 5385 rc = mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply, 5386 sas_iounit_pg1, sz); 5387 if (rc) { 5388 pr_err("%s: failure at %s:%d/%s()!\n", 5389 ioc->name, __FILE__, __LINE__, __func__); 5390 goto out; 5391 } 5392 5393 depth = le16_to_cpu(sas_iounit_pg1->SASWideMaxQueueDepth); 5394 ioc->max_wideport_qd = (depth ? depth : MPT3SAS_SAS_QUEUE_DEPTH); 5395 5396 depth = le16_to_cpu(sas_iounit_pg1->SASNarrowMaxQueueDepth); 5397 ioc->max_narrowport_qd = (depth ? depth : MPT3SAS_SAS_QUEUE_DEPTH); 5398 5399 depth = sas_iounit_pg1->SATAMaxQDepth; 5400 ioc->max_sata_qd = (depth ? depth : MPT3SAS_SATA_QUEUE_DEPTH); 5401 5402 /* pcie iounit page 1 */ 5403 rc = mpt3sas_config_get_pcie_iounit_pg1(ioc, &mpi_reply, 5404 &pcie_iounit_pg1, sizeof(Mpi26PCIeIOUnitPage1_t)); 5405 if (rc) { 5406 pr_err("%s: failure at %s:%d/%s()!\n", 5407 ioc->name, __FILE__, __LINE__, __func__); 5408 goto out; 5409 } 5410 ioc->max_nvme_qd = (le16_to_cpu(pcie_iounit_pg1.NVMeMaxQueueDepth)) ? 5411 (le16_to_cpu(pcie_iounit_pg1.NVMeMaxQueueDepth)) : 5412 MPT3SAS_NVME_QUEUE_DEPTH; 5413 out: 5414 dinitprintk(ioc, pr_err( 5415 "MaxWidePortQD: 0x%x MaxNarrowPortQD: 0x%x MaxSataQD: 0x%x MaxNvmeQD: 0x%x\n", 5416 ioc->max_wideport_qd, ioc->max_narrowport_qd, 5417 ioc->max_sata_qd, ioc->max_nvme_qd)); 5418 kfree(sas_iounit_pg1); 5419 return rc; 5420 } 5421 5422 /** 5423 * mpt3sas_atto_validate_nvram - validate the ATTO nvram read from mfg pg1 5424 * 5425 * @ioc : per adapter object 5426 * @n : ptr to the ATTO nvram structure 5427 * Return: 0 for success, non-zero for failure. 5428 */ 5429 static int 5430 mpt3sas_atto_validate_nvram(struct MPT3SAS_ADAPTER *ioc, 5431 struct ATTO_SAS_NVRAM *n) 5432 { 5433 int r = -EINVAL; 5434 union ATTO_SAS_ADDRESS *s1; 5435 u32 len; 5436 u8 *pb; 5437 u8 ckSum; 5438 5439 /* validate nvram checksum */ 5440 pb = (u8 *) n; 5441 ckSum = ATTO_SASNVR_CKSUM_SEED; 5442 len = sizeof(struct ATTO_SAS_NVRAM); 5443 5444 while (len--) 5445 ckSum = ckSum + pb[len]; 5446 5447 if (ckSum) { 5448 ioc_err(ioc, "Invalid ATTO NVRAM checksum\n"); 5449 return r; 5450 } 5451 5452 s1 = (union ATTO_SAS_ADDRESS *) n->SasAddr; 5453 5454 if (n->Signature[0] != 'E' 5455 || n->Signature[1] != 'S' 5456 || n->Signature[2] != 'A' 5457 || n->Signature[3] != 'S') 5458 ioc_err(ioc, "Invalid ATTO NVRAM signature\n"); 5459 else if (n->Version > ATTO_SASNVR_VERSION) 5460 ioc_info(ioc, "Invalid ATTO NVRAM version"); 5461 else if ((n->SasAddr[7] & (ATTO_SAS_ADDR_ALIGN - 1)) 5462 || s1->b[0] != 0x50 5463 || s1->b[1] != 0x01 5464 || s1->b[2] != 0x08 5465 || (s1->b[3] & 0xF0) != 0x60 5466 || ((s1->b[3] & 0x0F) | le32_to_cpu(s1->d[1])) == 0) { 5467 ioc_err(ioc, "Invalid ATTO SAS address\n"); 5468 } else 5469 r = 0; 5470 return r; 5471 } 5472 5473 /** 5474 * mpt3sas_atto_get_sas_addr - get the ATTO SAS address from mfg page 1 5475 * 5476 * @ioc : per adapter object 5477 * @*sas_addr : return sas address 5478 * Return: 0 for success, non-zero for failure. 5479 */ 5480 static int 5481 mpt3sas_atto_get_sas_addr(struct MPT3SAS_ADAPTER *ioc, union ATTO_SAS_ADDRESS *sas_addr) 5482 { 5483 Mpi2ManufacturingPage1_t mfg_pg1; 5484 Mpi2ConfigReply_t mpi_reply; 5485 struct ATTO_SAS_NVRAM *nvram; 5486 int r; 5487 __be64 addr; 5488 5489 r = mpt3sas_config_get_manufacturing_pg1(ioc, &mpi_reply, &mfg_pg1); 5490 if (r) { 5491 ioc_err(ioc, "Failed to read manufacturing page 1\n"); 5492 return r; 5493 } 5494 5495 /* validate nvram */ 5496 nvram = (struct ATTO_SAS_NVRAM *) mfg_pg1.VPD; 5497 r = mpt3sas_atto_validate_nvram(ioc, nvram); 5498 if (r) 5499 return r; 5500 5501 addr = *((__be64 *) nvram->SasAddr); 5502 sas_addr->q = cpu_to_le64(be64_to_cpu(addr)); 5503 return r; 5504 } 5505 5506 /** 5507 * mpt3sas_atto_init - perform initializaion for ATTO branded 5508 * adapter. 5509 * @ioc : per adapter object 5510 *5 5511 * Return: 0 for success, non-zero for failure. 5512 */ 5513 static int 5514 mpt3sas_atto_init(struct MPT3SAS_ADAPTER *ioc) 5515 { 5516 int sz = 0; 5517 Mpi2BiosPage4_t *bios_pg4 = NULL; 5518 Mpi2ConfigReply_t mpi_reply; 5519 int r; 5520 int ix; 5521 union ATTO_SAS_ADDRESS sas_addr; 5522 union ATTO_SAS_ADDRESS temp; 5523 union ATTO_SAS_ADDRESS bias; 5524 5525 r = mpt3sas_atto_get_sas_addr(ioc, &sas_addr); 5526 if (r) 5527 return r; 5528 5529 /* get header first to get size */ 5530 r = mpt3sas_config_get_bios_pg4(ioc, &mpi_reply, NULL, 0); 5531 if (r) { 5532 ioc_err(ioc, "Failed to read ATTO bios page 4 header.\n"); 5533 return r; 5534 } 5535 5536 sz = mpi_reply.Header.PageLength * sizeof(u32); 5537 bios_pg4 = kzalloc(sz, GFP_KERNEL); 5538 if (!bios_pg4) { 5539 ioc_err(ioc, "Failed to allocate memory for ATTO bios page.\n"); 5540 return -ENOMEM; 5541 } 5542 5543 /* read bios page 4 */ 5544 r = mpt3sas_config_get_bios_pg4(ioc, &mpi_reply, bios_pg4, sz); 5545 if (r) { 5546 ioc_err(ioc, "Failed to read ATTO bios page 4\n"); 5547 goto out; 5548 } 5549 5550 /* Update bios page 4 with the ATTO WWID */ 5551 bias.q = sas_addr.q; 5552 bias.b[7] += ATTO_SAS_ADDR_DEVNAME_BIAS; 5553 5554 for (ix = 0; ix < bios_pg4->NumPhys; ix++) { 5555 temp.q = sas_addr.q; 5556 temp.b[7] += ix; 5557 bios_pg4->Phy[ix].ReassignmentWWID = temp.q; 5558 bios_pg4->Phy[ix].ReassignmentDeviceName = bias.q; 5559 } 5560 r = mpt3sas_config_set_bios_pg4(ioc, &mpi_reply, bios_pg4, sz); 5561 5562 out: 5563 kfree(bios_pg4); 5564 return r; 5565 } 5566 5567 /** 5568 * _base_static_config_pages - static start of day config pages 5569 * @ioc: per adapter object 5570 */ 5571 static int 5572 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc) 5573 { 5574 Mpi2ConfigReply_t mpi_reply; 5575 u32 iounit_pg1_flags; 5576 int tg_flags = 0; 5577 int rc; 5578 ioc->nvme_abort_timeout = 30; 5579 5580 rc = mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, 5581 &ioc->manu_pg0); 5582 if (rc) 5583 return rc; 5584 if (ioc->ir_firmware) { 5585 rc = mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply, 5586 &ioc->manu_pg10); 5587 if (rc) 5588 return rc; 5589 } 5590 5591 if (ioc->pdev->vendor == MPI2_MFGPAGE_VENDORID_ATTO) { 5592 rc = mpt3sas_atto_init(ioc); 5593 if (rc) 5594 return rc; 5595 } 5596 5597 /* 5598 * Ensure correct T10 PI operation if vendor left EEDPTagMode 5599 * flag unset in NVDATA. 5600 */ 5601 rc = mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, 5602 &ioc->manu_pg11); 5603 if (rc) 5604 return rc; 5605 if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) { 5606 pr_err("%s: overriding NVDATA EEDPTagMode setting\n", 5607 ioc->name); 5608 ioc->manu_pg11.EEDPTagMode &= ~0x3; 5609 ioc->manu_pg11.EEDPTagMode |= 0x1; 5610 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply, 5611 &ioc->manu_pg11); 5612 } 5613 if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK) 5614 ioc->tm_custom_handling = 1; 5615 else { 5616 ioc->tm_custom_handling = 0; 5617 if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT) 5618 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT; 5619 else if (ioc->manu_pg11.NVMeAbortTO > 5620 NVME_TASK_ABORT_MAX_TIMEOUT) 5621 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT; 5622 else 5623 ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO; 5624 } 5625 ioc->time_sync_interval = 5626 ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_MASK; 5627 if (ioc->time_sync_interval) { 5628 if (ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_UNIT_MASK) 5629 ioc->time_sync_interval = 5630 ioc->time_sync_interval * SECONDS_PER_HOUR; 5631 else 5632 ioc->time_sync_interval = 5633 ioc->time_sync_interval * SECONDS_PER_MIN; 5634 dinitprintk(ioc, ioc_info(ioc, 5635 "Driver-FW TimeSync interval is %d seconds. ManuPg11 TimeSync Unit is in %s\n", 5636 ioc->time_sync_interval, (ioc->manu_pg11.TimeSyncInterval & 5637 MPT3SAS_TIMESYNC_UNIT_MASK) ? "Hour" : "Minute")); 5638 } else { 5639 if (ioc->is_gen35_ioc) 5640 ioc_warn(ioc, 5641 "TimeSync Interval in Manuf page-11 is not enabled. Periodic Time-Sync will be disabled\n"); 5642 } 5643 rc = _base_assign_fw_reported_qd(ioc); 5644 if (rc) 5645 return rc; 5646 5647 /* 5648 * ATTO doesn't use bios page 2 and 3 for bios settings. 5649 */ 5650 if (ioc->pdev->vendor == MPI2_MFGPAGE_VENDORID_ATTO) 5651 ioc->bios_pg3.BiosVersion = 0; 5652 else { 5653 rc = mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2); 5654 if (rc) 5655 return rc; 5656 rc = mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3); 5657 if (rc) 5658 return rc; 5659 } 5660 5661 rc = mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8); 5662 if (rc) 5663 return rc; 5664 rc = mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0); 5665 if (rc) 5666 return rc; 5667 rc = mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1); 5668 if (rc) 5669 return rc; 5670 rc = mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8); 5671 if (rc) 5672 return rc; 5673 _base_display_ioc_capabilities(ioc); 5674 5675 /* 5676 * Enable task_set_full handling in iounit_pg1 when the 5677 * facts capabilities indicate that its supported. 5678 */ 5679 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags); 5680 if ((ioc->facts.IOCCapabilities & 5681 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING)) 5682 iounit_pg1_flags &= 5683 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING; 5684 else 5685 iounit_pg1_flags |= 5686 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING; 5687 ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags); 5688 rc = mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1); 5689 if (rc) 5690 return rc; 5691 5692 if (ioc->iounit_pg8.NumSensors) 5693 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors; 5694 if (ioc->is_aero_ioc) { 5695 rc = _base_update_ioc_page1_inlinewith_perf_mode(ioc); 5696 if (rc) 5697 return rc; 5698 } 5699 if (ioc->is_gen35_ioc) { 5700 if (ioc->is_driver_loading) { 5701 rc = _base_get_diag_triggers(ioc); 5702 if (rc) 5703 return rc; 5704 } else { 5705 /* 5706 * In case of online HBA FW update operation, 5707 * check whether updated FW supports the driver trigger 5708 * pages or not. 5709 * - If previous FW has not supported driver trigger 5710 * pages and newer FW supports them then update these 5711 * pages with current diag trigger values. 5712 * - If previous FW has supported driver trigger pages 5713 * and new FW doesn't support them then disable 5714 * support_trigger_pages flag. 5715 */ 5716 _base_check_for_trigger_pages_support(ioc, &tg_flags); 5717 if (!ioc->supports_trigger_pages && tg_flags != -EFAULT) 5718 _base_update_diag_trigger_pages(ioc); 5719 else if (ioc->supports_trigger_pages && 5720 tg_flags == -EFAULT) 5721 ioc->supports_trigger_pages = 0; 5722 } 5723 } 5724 return 0; 5725 } 5726 5727 /** 5728 * mpt3sas_free_enclosure_list - release memory 5729 * @ioc: per adapter object 5730 * 5731 * Free memory allocated during enclosure add. 5732 */ 5733 void 5734 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc) 5735 { 5736 struct _enclosure_node *enclosure_dev, *enclosure_dev_next; 5737 5738 /* Free enclosure list */ 5739 list_for_each_entry_safe(enclosure_dev, 5740 enclosure_dev_next, &ioc->enclosure_list, list) { 5741 list_del(&enclosure_dev->list); 5742 kfree(enclosure_dev); 5743 } 5744 } 5745 5746 /** 5747 * _base_release_memory_pools - release memory 5748 * @ioc: per adapter object 5749 * 5750 * Free memory allocated from _base_allocate_memory_pools. 5751 */ 5752 static void 5753 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc) 5754 { 5755 int i = 0; 5756 int j = 0; 5757 int dma_alloc_count = 0; 5758 struct chain_tracker *ct; 5759 int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1; 5760 5761 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 5762 5763 if (ioc->request) { 5764 dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz, 5765 ioc->request, ioc->request_dma); 5766 dexitprintk(ioc, 5767 ioc_info(ioc, "request_pool(0x%p): free\n", 5768 ioc->request)); 5769 ioc->request = NULL; 5770 } 5771 5772 if (ioc->sense) { 5773 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma); 5774 dma_pool_destroy(ioc->sense_dma_pool); 5775 dexitprintk(ioc, 5776 ioc_info(ioc, "sense_pool(0x%p): free\n", 5777 ioc->sense)); 5778 ioc->sense = NULL; 5779 } 5780 5781 if (ioc->reply) { 5782 dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma); 5783 dma_pool_destroy(ioc->reply_dma_pool); 5784 dexitprintk(ioc, 5785 ioc_info(ioc, "reply_pool(0x%p): free\n", 5786 ioc->reply)); 5787 ioc->reply = NULL; 5788 } 5789 5790 if (ioc->reply_free) { 5791 dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free, 5792 ioc->reply_free_dma); 5793 dma_pool_destroy(ioc->reply_free_dma_pool); 5794 dexitprintk(ioc, 5795 ioc_info(ioc, "reply_free_pool(0x%p): free\n", 5796 ioc->reply_free)); 5797 ioc->reply_free = NULL; 5798 } 5799 5800 if (ioc->reply_post) { 5801 dma_alloc_count = DIV_ROUND_UP(count, 5802 RDPQ_MAX_INDEX_IN_ONE_CHUNK); 5803 for (i = 0; i < count; i++) { 5804 if (i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0 5805 && dma_alloc_count) { 5806 if (ioc->reply_post[i].reply_post_free) { 5807 dma_pool_free( 5808 ioc->reply_post_free_dma_pool, 5809 ioc->reply_post[i].reply_post_free, 5810 ioc->reply_post[i].reply_post_free_dma); 5811 dexitprintk(ioc, ioc_info(ioc, 5812 "reply_post_free_pool(0x%p): free\n", 5813 ioc->reply_post[i].reply_post_free)); 5814 ioc->reply_post[i].reply_post_free = 5815 NULL; 5816 } 5817 --dma_alloc_count; 5818 } 5819 } 5820 dma_pool_destroy(ioc->reply_post_free_dma_pool); 5821 if (ioc->reply_post_free_array && 5822 ioc->rdpq_array_enable) { 5823 dma_pool_free(ioc->reply_post_free_array_dma_pool, 5824 ioc->reply_post_free_array, 5825 ioc->reply_post_free_array_dma); 5826 ioc->reply_post_free_array = NULL; 5827 } 5828 dma_pool_destroy(ioc->reply_post_free_array_dma_pool); 5829 kfree(ioc->reply_post); 5830 } 5831 5832 if (ioc->pcie_sgl_dma_pool) { 5833 for (i = 0; i < ioc->scsiio_depth; i++) { 5834 dma_pool_free(ioc->pcie_sgl_dma_pool, 5835 ioc->pcie_sg_lookup[i].pcie_sgl, 5836 ioc->pcie_sg_lookup[i].pcie_sgl_dma); 5837 ioc->pcie_sg_lookup[i].pcie_sgl = NULL; 5838 } 5839 dma_pool_destroy(ioc->pcie_sgl_dma_pool); 5840 } 5841 kfree(ioc->pcie_sg_lookup); 5842 ioc->pcie_sg_lookup = NULL; 5843 5844 if (ioc->config_page) { 5845 dexitprintk(ioc, 5846 ioc_info(ioc, "config_page(0x%p): free\n", 5847 ioc->config_page)); 5848 dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz, 5849 ioc->config_page, ioc->config_page_dma); 5850 } 5851 5852 kfree(ioc->hpr_lookup); 5853 ioc->hpr_lookup = NULL; 5854 kfree(ioc->internal_lookup); 5855 ioc->internal_lookup = NULL; 5856 if (ioc->chain_lookup) { 5857 for (i = 0; i < ioc->scsiio_depth; i++) { 5858 for (j = ioc->chains_per_prp_buffer; 5859 j < ioc->chains_needed_per_io; j++) { 5860 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 5861 if (ct && ct->chain_buffer) 5862 dma_pool_free(ioc->chain_dma_pool, 5863 ct->chain_buffer, 5864 ct->chain_buffer_dma); 5865 } 5866 kfree(ioc->chain_lookup[i].chains_per_smid); 5867 } 5868 dma_pool_destroy(ioc->chain_dma_pool); 5869 kfree(ioc->chain_lookup); 5870 ioc->chain_lookup = NULL; 5871 } 5872 5873 kfree(ioc->io_queue_num); 5874 ioc->io_queue_num = NULL; 5875 } 5876 5877 /** 5878 * mpt3sas_check_same_4gb_region - checks whether all reply queues in a set are 5879 * having same upper 32bits in their base memory address. 5880 * @start_address: Base address of a reply queue set 5881 * @pool_sz: Size of single Reply Descriptor Post Queues pool size 5882 * 5883 * Return: 1 if reply queues in a set have a same upper 32bits in their base 5884 * memory address, else 0. 5885 */ 5886 static int 5887 mpt3sas_check_same_4gb_region(dma_addr_t start_address, u32 pool_sz) 5888 { 5889 dma_addr_t end_address; 5890 5891 end_address = start_address + pool_sz - 1; 5892 5893 if (upper_32_bits(start_address) == upper_32_bits(end_address)) 5894 return 1; 5895 else 5896 return 0; 5897 } 5898 5899 /** 5900 * _base_reduce_hba_queue_depth- Retry with reduced queue depth 5901 * @ioc: Adapter object 5902 * 5903 * Return: 0 for success, non-zero for failure. 5904 **/ 5905 static inline int 5906 _base_reduce_hba_queue_depth(struct MPT3SAS_ADAPTER *ioc) 5907 { 5908 int reduce_sz = 64; 5909 5910 if ((ioc->hba_queue_depth - reduce_sz) > 5911 (ioc->internal_depth + INTERNAL_SCSIIO_CMDS_COUNT)) { 5912 ioc->hba_queue_depth -= reduce_sz; 5913 return 0; 5914 } else 5915 return -ENOMEM; 5916 } 5917 5918 /** 5919 * _base_allocate_pcie_sgl_pool - Allocating DMA'able memory 5920 * for pcie sgl pools. 5921 * @ioc: Adapter object 5922 * @sz: DMA Pool size 5923 * 5924 * Return: 0 for success, non-zero for failure. 5925 */ 5926 5927 static int 5928 _base_allocate_pcie_sgl_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz) 5929 { 5930 int i = 0, j = 0; 5931 struct chain_tracker *ct; 5932 5933 ioc->pcie_sgl_dma_pool = 5934 dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz, 5935 ioc->page_size, 0); 5936 if (!ioc->pcie_sgl_dma_pool) { 5937 ioc_err(ioc, "PCIe SGL pool: dma_pool_create failed\n"); 5938 return -ENOMEM; 5939 } 5940 5941 ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz; 5942 ioc->chains_per_prp_buffer = 5943 min(ioc->chains_per_prp_buffer, ioc->chains_needed_per_io); 5944 for (i = 0; i < ioc->scsiio_depth; i++) { 5945 ioc->pcie_sg_lookup[i].pcie_sgl = 5946 dma_pool_alloc(ioc->pcie_sgl_dma_pool, GFP_KERNEL, 5947 &ioc->pcie_sg_lookup[i].pcie_sgl_dma); 5948 if (!ioc->pcie_sg_lookup[i].pcie_sgl) { 5949 ioc_err(ioc, "PCIe SGL pool: dma_pool_alloc failed\n"); 5950 return -EAGAIN; 5951 } 5952 5953 if (!mpt3sas_check_same_4gb_region( 5954 ioc->pcie_sg_lookup[i].pcie_sgl_dma, sz)) { 5955 ioc_err(ioc, "PCIE SGLs are not in same 4G !! pcie sgl (0x%p) dma = (0x%llx)\n", 5956 ioc->pcie_sg_lookup[i].pcie_sgl, 5957 (unsigned long long) 5958 ioc->pcie_sg_lookup[i].pcie_sgl_dma); 5959 ioc->use_32bit_dma = true; 5960 return -EAGAIN; 5961 } 5962 5963 for (j = 0; j < ioc->chains_per_prp_buffer; j++) { 5964 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 5965 ct->chain_buffer = 5966 ioc->pcie_sg_lookup[i].pcie_sgl + 5967 (j * ioc->chain_segment_sz); 5968 ct->chain_buffer_dma = 5969 ioc->pcie_sg_lookup[i].pcie_sgl_dma + 5970 (j * ioc->chain_segment_sz); 5971 } 5972 } 5973 dinitprintk(ioc, ioc_info(ioc, 5974 "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n", 5975 ioc->scsiio_depth, sz, (sz * ioc->scsiio_depth)/1024)); 5976 dinitprintk(ioc, ioc_info(ioc, 5977 "Number of chains can fit in a PRP page(%d)\n", 5978 ioc->chains_per_prp_buffer)); 5979 return 0; 5980 } 5981 5982 /** 5983 * _base_allocate_chain_dma_pool - Allocating DMA'able memory 5984 * for chain dma pool. 5985 * @ioc: Adapter object 5986 * @sz: DMA Pool size 5987 * 5988 * Return: 0 for success, non-zero for failure. 5989 */ 5990 static int 5991 _base_allocate_chain_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz) 5992 { 5993 int i = 0, j = 0; 5994 struct chain_tracker *ctr; 5995 5996 ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev, 5997 ioc->chain_segment_sz, 16, 0); 5998 if (!ioc->chain_dma_pool) 5999 return -ENOMEM; 6000 6001 for (i = 0; i < ioc->scsiio_depth; i++) { 6002 for (j = ioc->chains_per_prp_buffer; 6003 j < ioc->chains_needed_per_io; j++) { 6004 ctr = &ioc->chain_lookup[i].chains_per_smid[j]; 6005 ctr->chain_buffer = dma_pool_alloc(ioc->chain_dma_pool, 6006 GFP_KERNEL, &ctr->chain_buffer_dma); 6007 if (!ctr->chain_buffer) 6008 return -EAGAIN; 6009 if (!mpt3sas_check_same_4gb_region( 6010 ctr->chain_buffer_dma, ioc->chain_segment_sz)) { 6011 ioc_err(ioc, 6012 "Chain buffers are not in same 4G !!! Chain buff (0x%p) dma = (0x%llx)\n", 6013 ctr->chain_buffer, 6014 (unsigned long long)ctr->chain_buffer_dma); 6015 ioc->use_32bit_dma = true; 6016 return -EAGAIN; 6017 } 6018 } 6019 } 6020 dinitprintk(ioc, ioc_info(ioc, 6021 "chain_lookup depth (%d), frame_size(%d), pool_size(%d kB)\n", 6022 ioc->scsiio_depth, ioc->chain_segment_sz, ((ioc->scsiio_depth * 6023 (ioc->chains_needed_per_io - ioc->chains_per_prp_buffer) * 6024 ioc->chain_segment_sz))/1024)); 6025 return 0; 6026 } 6027 6028 /** 6029 * _base_allocate_sense_dma_pool - Allocating DMA'able memory 6030 * for sense dma pool. 6031 * @ioc: Adapter object 6032 * @sz: DMA Pool size 6033 * Return: 0 for success, non-zero for failure. 6034 */ 6035 static int 6036 _base_allocate_sense_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz) 6037 { 6038 ioc->sense_dma_pool = 6039 dma_pool_create("sense pool", &ioc->pdev->dev, sz, 4, 0); 6040 if (!ioc->sense_dma_pool) 6041 return -ENOMEM; 6042 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, 6043 GFP_KERNEL, &ioc->sense_dma); 6044 if (!ioc->sense) 6045 return -EAGAIN; 6046 if (!mpt3sas_check_same_4gb_region(ioc->sense_dma, sz)) { 6047 dinitprintk(ioc, pr_err( 6048 "Bad Sense Pool! sense (0x%p) sense_dma = (0x%llx)\n", 6049 ioc->sense, (unsigned long long) ioc->sense_dma)); 6050 ioc->use_32bit_dma = true; 6051 return -EAGAIN; 6052 } 6053 ioc_info(ioc, 6054 "sense pool(0x%p) - dma(0x%llx): depth(%d), element_size(%d), pool_size (%d kB)\n", 6055 ioc->sense, (unsigned long long)ioc->sense_dma, 6056 ioc->scsiio_depth, SCSI_SENSE_BUFFERSIZE, sz/1024); 6057 return 0; 6058 } 6059 6060 /** 6061 * _base_allocate_reply_pool - Allocating DMA'able memory 6062 * for reply pool. 6063 * @ioc: Adapter object 6064 * @sz: DMA Pool size 6065 * Return: 0 for success, non-zero for failure. 6066 */ 6067 static int 6068 _base_allocate_reply_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz) 6069 { 6070 /* reply pool, 4 byte align */ 6071 ioc->reply_dma_pool = dma_pool_create("reply pool", 6072 &ioc->pdev->dev, sz, 4, 0); 6073 if (!ioc->reply_dma_pool) 6074 return -ENOMEM; 6075 ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL, 6076 &ioc->reply_dma); 6077 if (!ioc->reply) 6078 return -EAGAIN; 6079 if (!mpt3sas_check_same_4gb_region(ioc->reply_dma, sz)) { 6080 dinitprintk(ioc, pr_err( 6081 "Bad Reply Pool! Reply (0x%p) Reply dma = (0x%llx)\n", 6082 ioc->reply, (unsigned long long) ioc->reply_dma)); 6083 ioc->use_32bit_dma = true; 6084 return -EAGAIN; 6085 } 6086 ioc->reply_dma_min_address = (u32)(ioc->reply_dma); 6087 ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz; 6088 ioc_info(ioc, 6089 "reply pool(0x%p) - dma(0x%llx): depth(%d), frame_size(%d), pool_size(%d kB)\n", 6090 ioc->reply, (unsigned long long)ioc->reply_dma, 6091 ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024); 6092 return 0; 6093 } 6094 6095 /** 6096 * _base_allocate_reply_free_dma_pool - Allocating DMA'able memory 6097 * for reply free dma pool. 6098 * @ioc: Adapter object 6099 * @sz: DMA Pool size 6100 * Return: 0 for success, non-zero for failure. 6101 */ 6102 static int 6103 _base_allocate_reply_free_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz) 6104 { 6105 /* reply free queue, 16 byte align */ 6106 ioc->reply_free_dma_pool = dma_pool_create( 6107 "reply_free pool", &ioc->pdev->dev, sz, 16, 0); 6108 if (!ioc->reply_free_dma_pool) 6109 return -ENOMEM; 6110 ioc->reply_free = dma_pool_alloc(ioc->reply_free_dma_pool, 6111 GFP_KERNEL, &ioc->reply_free_dma); 6112 if (!ioc->reply_free) 6113 return -EAGAIN; 6114 if (!mpt3sas_check_same_4gb_region(ioc->reply_free_dma, sz)) { 6115 dinitprintk(ioc, 6116 pr_err("Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n", 6117 ioc->reply_free, (unsigned long long) ioc->reply_free_dma)); 6118 ioc->use_32bit_dma = true; 6119 return -EAGAIN; 6120 } 6121 memset(ioc->reply_free, 0, sz); 6122 dinitprintk(ioc, ioc_info(ioc, 6123 "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n", 6124 ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024)); 6125 dinitprintk(ioc, ioc_info(ioc, 6126 "reply_free_dma (0x%llx)\n", 6127 (unsigned long long)ioc->reply_free_dma)); 6128 return 0; 6129 } 6130 6131 /** 6132 * _base_allocate_reply_post_free_array - Allocating DMA'able memory 6133 * for reply post free array. 6134 * @ioc: Adapter object 6135 * @reply_post_free_array_sz: DMA Pool size 6136 * Return: 0 for success, non-zero for failure. 6137 */ 6138 6139 static int 6140 _base_allocate_reply_post_free_array(struct MPT3SAS_ADAPTER *ioc, 6141 u32 reply_post_free_array_sz) 6142 { 6143 ioc->reply_post_free_array_dma_pool = 6144 dma_pool_create("reply_post_free_array pool", 6145 &ioc->pdev->dev, reply_post_free_array_sz, 16, 0); 6146 if (!ioc->reply_post_free_array_dma_pool) 6147 return -ENOMEM; 6148 ioc->reply_post_free_array = 6149 dma_pool_alloc(ioc->reply_post_free_array_dma_pool, 6150 GFP_KERNEL, &ioc->reply_post_free_array_dma); 6151 if (!ioc->reply_post_free_array) 6152 return -EAGAIN; 6153 if (!mpt3sas_check_same_4gb_region(ioc->reply_post_free_array_dma, 6154 reply_post_free_array_sz)) { 6155 dinitprintk(ioc, pr_err( 6156 "Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n", 6157 ioc->reply_free, 6158 (unsigned long long) ioc->reply_free_dma)); 6159 ioc->use_32bit_dma = true; 6160 return -EAGAIN; 6161 } 6162 return 0; 6163 } 6164 /** 6165 * base_alloc_rdpq_dma_pool - Allocating DMA'able memory 6166 * for reply queues. 6167 * @ioc: per adapter object 6168 * @sz: DMA Pool size 6169 * Return: 0 for success, non-zero for failure. 6170 */ 6171 static int 6172 base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER *ioc, int sz) 6173 { 6174 int i = 0; 6175 u32 dma_alloc_count = 0; 6176 int reply_post_free_sz = ioc->reply_post_queue_depth * 6177 sizeof(Mpi2DefaultReplyDescriptor_t); 6178 int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1; 6179 6180 ioc->reply_post = kcalloc(count, sizeof(struct reply_post_struct), 6181 GFP_KERNEL); 6182 if (!ioc->reply_post) 6183 return -ENOMEM; 6184 /* 6185 * For INVADER_SERIES each set of 8 reply queues(0-7, 8-15, ..) and 6186 * VENTURA_SERIES each set of 16 reply queues(0-15, 16-31, ..) should 6187 * be within 4GB boundary i.e reply queues in a set must have same 6188 * upper 32-bits in their memory address. so here driver is allocating 6189 * the DMA'able memory for reply queues according. 6190 * Driver uses limitation of 6191 * VENTURA_SERIES to manage INVADER_SERIES as well. 6192 */ 6193 dma_alloc_count = DIV_ROUND_UP(count, 6194 RDPQ_MAX_INDEX_IN_ONE_CHUNK); 6195 ioc->reply_post_free_dma_pool = 6196 dma_pool_create("reply_post_free pool", 6197 &ioc->pdev->dev, sz, 16, 0); 6198 if (!ioc->reply_post_free_dma_pool) 6199 return -ENOMEM; 6200 for (i = 0; i < count; i++) { 6201 if ((i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0) && dma_alloc_count) { 6202 ioc->reply_post[i].reply_post_free = 6203 dma_pool_zalloc(ioc->reply_post_free_dma_pool, 6204 GFP_KERNEL, 6205 &ioc->reply_post[i].reply_post_free_dma); 6206 if (!ioc->reply_post[i].reply_post_free) 6207 return -ENOMEM; 6208 /* 6209 * Each set of RDPQ pool must satisfy 4gb boundary 6210 * restriction. 6211 * 1) Check if allocated resources for RDPQ pool are in 6212 * the same 4GB range. 6213 * 2) If #1 is true, continue with 64 bit DMA. 6214 * 3) If #1 is false, return 1. which means free all the 6215 * resources and set DMA mask to 32 and allocate. 6216 */ 6217 if (!mpt3sas_check_same_4gb_region( 6218 ioc->reply_post[i].reply_post_free_dma, sz)) { 6219 dinitprintk(ioc, 6220 ioc_err(ioc, "bad Replypost free pool(0x%p)" 6221 "reply_post_free_dma = (0x%llx)\n", 6222 ioc->reply_post[i].reply_post_free, 6223 (unsigned long long) 6224 ioc->reply_post[i].reply_post_free_dma)); 6225 return -EAGAIN; 6226 } 6227 dma_alloc_count--; 6228 6229 } else { 6230 ioc->reply_post[i].reply_post_free = 6231 (Mpi2ReplyDescriptorsUnion_t *) 6232 ((long)ioc->reply_post[i-1].reply_post_free 6233 + reply_post_free_sz); 6234 ioc->reply_post[i].reply_post_free_dma = 6235 (dma_addr_t) 6236 (ioc->reply_post[i-1].reply_post_free_dma + 6237 reply_post_free_sz); 6238 } 6239 } 6240 return 0; 6241 } 6242 6243 /** 6244 * _base_allocate_memory_pools - allocate start of day memory pools 6245 * @ioc: per adapter object 6246 * 6247 * Return: 0 success, anything else error. 6248 */ 6249 static int 6250 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc) 6251 { 6252 struct mpt3sas_facts *facts; 6253 u16 max_sge_elements; 6254 u16 chains_needed_per_io; 6255 u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz; 6256 u32 retry_sz; 6257 u32 rdpq_sz = 0, sense_sz = 0; 6258 u16 max_request_credit, nvme_blocks_needed; 6259 unsigned short sg_tablesize; 6260 u16 sge_size; 6261 int i; 6262 int ret = 0, rc = 0; 6263 6264 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6265 6266 6267 retry_sz = 0; 6268 facts = &ioc->facts; 6269 6270 /* command line tunables for max sgl entries */ 6271 if (max_sgl_entries != -1) 6272 sg_tablesize = max_sgl_entries; 6273 else { 6274 if (ioc->hba_mpi_version_belonged == MPI2_VERSION) 6275 sg_tablesize = MPT2SAS_SG_DEPTH; 6276 else 6277 sg_tablesize = MPT3SAS_SG_DEPTH; 6278 } 6279 6280 /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */ 6281 if (reset_devices) 6282 sg_tablesize = min_t(unsigned short, sg_tablesize, 6283 MPT_KDUMP_MIN_PHYS_SEGMENTS); 6284 6285 if (ioc->is_mcpu_endpoint) 6286 ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS; 6287 else { 6288 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS) 6289 sg_tablesize = MPT_MIN_PHYS_SEGMENTS; 6290 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) { 6291 sg_tablesize = min_t(unsigned short, sg_tablesize, 6292 SG_MAX_SEGMENTS); 6293 ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n", 6294 sg_tablesize, MPT_MAX_PHYS_SEGMENTS); 6295 } 6296 ioc->shost->sg_tablesize = sg_tablesize; 6297 } 6298 6299 ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)), 6300 (facts->RequestCredit / 4)); 6301 if (ioc->internal_depth < INTERNAL_CMDS_COUNT) { 6302 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT + 6303 INTERNAL_SCSIIO_CMDS_COUNT)) { 6304 ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n", 6305 facts->RequestCredit); 6306 return -ENOMEM; 6307 } 6308 ioc->internal_depth = 10; 6309 } 6310 6311 ioc->hi_priority_depth = ioc->internal_depth - (5); 6312 /* command line tunables for max controller queue depth */ 6313 if (max_queue_depth != -1 && max_queue_depth != 0) { 6314 max_request_credit = min_t(u16, max_queue_depth + 6315 ioc->internal_depth, facts->RequestCredit); 6316 if (max_request_credit > MAX_HBA_QUEUE_DEPTH) 6317 max_request_credit = MAX_HBA_QUEUE_DEPTH; 6318 } else if (reset_devices) 6319 max_request_credit = min_t(u16, facts->RequestCredit, 6320 (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth)); 6321 else 6322 max_request_credit = min_t(u16, facts->RequestCredit, 6323 MAX_HBA_QUEUE_DEPTH); 6324 6325 /* Firmware maintains additional facts->HighPriorityCredit number of 6326 * credits for HiPriprity Request messages, so hba queue depth will be 6327 * sum of max_request_credit and high priority queue depth. 6328 */ 6329 ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth; 6330 6331 /* request frame size */ 6332 ioc->request_sz = facts->IOCRequestFrameSize * 4; 6333 6334 /* reply frame size */ 6335 ioc->reply_sz = facts->ReplyFrameSize * 4; 6336 6337 /* chain segment size */ 6338 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 6339 if (facts->IOCMaxChainSegmentSize) 6340 ioc->chain_segment_sz = 6341 facts->IOCMaxChainSegmentSize * 6342 MAX_CHAIN_ELEMT_SZ; 6343 else 6344 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */ 6345 ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS * 6346 MAX_CHAIN_ELEMT_SZ; 6347 } else 6348 ioc->chain_segment_sz = ioc->request_sz; 6349 6350 /* calculate the max scatter element size */ 6351 sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee); 6352 6353 retry_allocation: 6354 total_sz = 0; 6355 /* calculate number of sg elements left over in the 1st frame */ 6356 max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) - 6357 sizeof(Mpi2SGEIOUnion_t)) + sge_size); 6358 ioc->max_sges_in_main_message = max_sge_elements/sge_size; 6359 6360 /* now do the same for a chain buffer */ 6361 max_sge_elements = ioc->chain_segment_sz - sge_size; 6362 ioc->max_sges_in_chain_message = max_sge_elements/sge_size; 6363 6364 /* 6365 * MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE 6366 */ 6367 chains_needed_per_io = ((ioc->shost->sg_tablesize - 6368 ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message) 6369 + 1; 6370 if (chains_needed_per_io > facts->MaxChainDepth) { 6371 chains_needed_per_io = facts->MaxChainDepth; 6372 ioc->shost->sg_tablesize = min_t(u16, 6373 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message 6374 * chains_needed_per_io), ioc->shost->sg_tablesize); 6375 } 6376 ioc->chains_needed_per_io = chains_needed_per_io; 6377 6378 /* reply free queue sizing - taking into account for 64 FW events */ 6379 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64; 6380 6381 /* mCPU manage single counters for simplicity */ 6382 if (ioc->is_mcpu_endpoint) 6383 ioc->reply_post_queue_depth = ioc->reply_free_queue_depth; 6384 else { 6385 /* calculate reply descriptor post queue depth */ 6386 ioc->reply_post_queue_depth = ioc->hba_queue_depth + 6387 ioc->reply_free_queue_depth + 1; 6388 /* align the reply post queue on the next 16 count boundary */ 6389 if (ioc->reply_post_queue_depth % 16) 6390 ioc->reply_post_queue_depth += 16 - 6391 (ioc->reply_post_queue_depth % 16); 6392 } 6393 6394 if (ioc->reply_post_queue_depth > 6395 facts->MaxReplyDescriptorPostQueueDepth) { 6396 ioc->reply_post_queue_depth = 6397 facts->MaxReplyDescriptorPostQueueDepth - 6398 (facts->MaxReplyDescriptorPostQueueDepth % 16); 6399 ioc->hba_queue_depth = 6400 ((ioc->reply_post_queue_depth - 64) / 2) - 1; 6401 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64; 6402 } 6403 6404 ioc_info(ioc, 6405 "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), " 6406 "sge_per_io(%d), chains_per_io(%d)\n", 6407 ioc->max_sges_in_main_message, 6408 ioc->max_sges_in_chain_message, 6409 ioc->shost->sg_tablesize, 6410 ioc->chains_needed_per_io); 6411 6412 /* reply post queue, 16 byte align */ 6413 reply_post_free_sz = ioc->reply_post_queue_depth * 6414 sizeof(Mpi2DefaultReplyDescriptor_t); 6415 rdpq_sz = reply_post_free_sz * RDPQ_MAX_INDEX_IN_ONE_CHUNK; 6416 if ((_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable) 6417 || (ioc->reply_queue_count < RDPQ_MAX_INDEX_IN_ONE_CHUNK)) 6418 rdpq_sz = reply_post_free_sz * ioc->reply_queue_count; 6419 ret = base_alloc_rdpq_dma_pool(ioc, rdpq_sz); 6420 if (ret == -EAGAIN) { 6421 /* 6422 * Free allocated bad RDPQ memory pools. 6423 * Change dma coherent mask to 32 bit and reallocate RDPQ 6424 */ 6425 _base_release_memory_pools(ioc); 6426 ioc->use_32bit_dma = true; 6427 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) { 6428 ioc_err(ioc, 6429 "32 DMA mask failed %s\n", pci_name(ioc->pdev)); 6430 return -ENODEV; 6431 } 6432 if (base_alloc_rdpq_dma_pool(ioc, rdpq_sz)) 6433 return -ENOMEM; 6434 } else if (ret == -ENOMEM) 6435 return -ENOMEM; 6436 total_sz = rdpq_sz * (!ioc->rdpq_array_enable ? 1 : 6437 DIV_ROUND_UP(ioc->reply_queue_count, RDPQ_MAX_INDEX_IN_ONE_CHUNK)); 6438 ioc->scsiio_depth = ioc->hba_queue_depth - 6439 ioc->hi_priority_depth - ioc->internal_depth; 6440 6441 /* set the scsi host can_queue depth 6442 * with some internal commands that could be outstanding 6443 */ 6444 ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT; 6445 dinitprintk(ioc, 6446 ioc_info(ioc, "scsi host: can_queue depth (%d)\n", 6447 ioc->shost->can_queue)); 6448 6449 /* contiguous pool for request and chains, 16 byte align, one extra " 6450 * "frame for smid=0 6451 */ 6452 ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth; 6453 sz = ((ioc->scsiio_depth + 1) * ioc->request_sz); 6454 6455 /* hi-priority queue */ 6456 sz += (ioc->hi_priority_depth * ioc->request_sz); 6457 6458 /* internal queue */ 6459 sz += (ioc->internal_depth * ioc->request_sz); 6460 6461 ioc->request_dma_sz = sz; 6462 ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz, 6463 &ioc->request_dma, GFP_KERNEL); 6464 if (!ioc->request) { 6465 ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n", 6466 ioc->hba_queue_depth, ioc->chains_needed_per_io, 6467 ioc->request_sz, sz / 1024); 6468 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH) 6469 goto out; 6470 retry_sz = 64; 6471 ioc->hba_queue_depth -= retry_sz; 6472 _base_release_memory_pools(ioc); 6473 goto retry_allocation; 6474 } 6475 6476 if (retry_sz) 6477 ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n", 6478 ioc->hba_queue_depth, ioc->chains_needed_per_io, 6479 ioc->request_sz, sz / 1024); 6480 6481 /* hi-priority queue */ 6482 ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) * 6483 ioc->request_sz); 6484 ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) * 6485 ioc->request_sz); 6486 6487 /* internal queue */ 6488 ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth * 6489 ioc->request_sz); 6490 ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth * 6491 ioc->request_sz); 6492 6493 ioc_info(ioc, 6494 "request pool(0x%p) - dma(0x%llx): " 6495 "depth(%d), frame_size(%d), pool_size(%d kB)\n", 6496 ioc->request, (unsigned long long) ioc->request_dma, 6497 ioc->hba_queue_depth, ioc->request_sz, 6498 (ioc->hba_queue_depth * ioc->request_sz) / 1024); 6499 6500 total_sz += sz; 6501 6502 dinitprintk(ioc, 6503 ioc_info(ioc, "scsiio(0x%p): depth(%d)\n", 6504 ioc->request, ioc->scsiio_depth)); 6505 6506 ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH); 6507 sz = ioc->scsiio_depth * sizeof(struct chain_lookup); 6508 ioc->chain_lookup = kzalloc(sz, GFP_KERNEL); 6509 if (!ioc->chain_lookup) { 6510 ioc_err(ioc, "chain_lookup: __get_free_pages failed\n"); 6511 goto out; 6512 } 6513 6514 sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker); 6515 for (i = 0; i < ioc->scsiio_depth; i++) { 6516 ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL); 6517 if (!ioc->chain_lookup[i].chains_per_smid) { 6518 ioc_err(ioc, "chain_lookup: kzalloc failed\n"); 6519 goto out; 6520 } 6521 } 6522 6523 /* initialize hi-priority queue smid's */ 6524 ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth, 6525 sizeof(struct request_tracker), GFP_KERNEL); 6526 if (!ioc->hpr_lookup) { 6527 ioc_err(ioc, "hpr_lookup: kcalloc failed\n"); 6528 goto out; 6529 } 6530 ioc->hi_priority_smid = ioc->scsiio_depth + 1; 6531 dinitprintk(ioc, 6532 ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n", 6533 ioc->hi_priority, 6534 ioc->hi_priority_depth, ioc->hi_priority_smid)); 6535 6536 /* initialize internal queue smid's */ 6537 ioc->internal_lookup = kcalloc(ioc->internal_depth, 6538 sizeof(struct request_tracker), GFP_KERNEL); 6539 if (!ioc->internal_lookup) { 6540 ioc_err(ioc, "internal_lookup: kcalloc failed\n"); 6541 goto out; 6542 } 6543 ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth; 6544 dinitprintk(ioc, 6545 ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n", 6546 ioc->internal, 6547 ioc->internal_depth, ioc->internal_smid)); 6548 6549 ioc->io_queue_num = kcalloc(ioc->scsiio_depth, 6550 sizeof(u16), GFP_KERNEL); 6551 if (!ioc->io_queue_num) 6552 goto out; 6553 /* 6554 * The number of NVMe page sized blocks needed is: 6555 * (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1 6556 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry 6557 * that is placed in the main message frame. 8 is the size of each PRP 6558 * entry or PRP list pointer entry. 8 is subtracted from page_size 6559 * because of the PRP list pointer entry at the end of a page, so this 6560 * is not counted as a PRP entry. The 1 added page is a round up. 6561 * 6562 * To avoid allocation failures due to the amount of memory that could 6563 * be required for NVMe PRP's, only each set of NVMe blocks will be 6564 * contiguous, so a new set is allocated for each possible I/O. 6565 */ 6566 6567 ioc->chains_per_prp_buffer = 0; 6568 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) { 6569 nvme_blocks_needed = 6570 (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1; 6571 nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE); 6572 nvme_blocks_needed++; 6573 6574 sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth; 6575 ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL); 6576 if (!ioc->pcie_sg_lookup) { 6577 ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n"); 6578 goto out; 6579 } 6580 sz = nvme_blocks_needed * ioc->page_size; 6581 rc = _base_allocate_pcie_sgl_pool(ioc, sz); 6582 if (rc == -ENOMEM) 6583 return -ENOMEM; 6584 else if (rc == -EAGAIN) 6585 goto try_32bit_dma; 6586 total_sz += sz * ioc->scsiio_depth; 6587 } 6588 6589 rc = _base_allocate_chain_dma_pool(ioc, ioc->chain_segment_sz); 6590 if (rc == -ENOMEM) 6591 return -ENOMEM; 6592 else if (rc == -EAGAIN) 6593 goto try_32bit_dma; 6594 total_sz += ioc->chain_segment_sz * ((ioc->chains_needed_per_io - 6595 ioc->chains_per_prp_buffer) * ioc->scsiio_depth); 6596 dinitprintk(ioc, 6597 ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n", 6598 ioc->chain_depth, ioc->chain_segment_sz, 6599 (ioc->chain_depth * ioc->chain_segment_sz) / 1024)); 6600 /* sense buffers, 4 byte align */ 6601 sense_sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE; 6602 rc = _base_allocate_sense_dma_pool(ioc, sense_sz); 6603 if (rc == -ENOMEM) 6604 return -ENOMEM; 6605 else if (rc == -EAGAIN) 6606 goto try_32bit_dma; 6607 total_sz += sense_sz; 6608 /* reply pool, 4 byte align */ 6609 sz = ioc->reply_free_queue_depth * ioc->reply_sz; 6610 rc = _base_allocate_reply_pool(ioc, sz); 6611 if (rc == -ENOMEM) 6612 return -ENOMEM; 6613 else if (rc == -EAGAIN) 6614 goto try_32bit_dma; 6615 total_sz += sz; 6616 6617 /* reply free queue, 16 byte align */ 6618 sz = ioc->reply_free_queue_depth * 4; 6619 rc = _base_allocate_reply_free_dma_pool(ioc, sz); 6620 if (rc == -ENOMEM) 6621 return -ENOMEM; 6622 else if (rc == -EAGAIN) 6623 goto try_32bit_dma; 6624 dinitprintk(ioc, 6625 ioc_info(ioc, "reply_free_dma (0x%llx)\n", 6626 (unsigned long long)ioc->reply_free_dma)); 6627 total_sz += sz; 6628 if (ioc->rdpq_array_enable) { 6629 reply_post_free_array_sz = ioc->reply_queue_count * 6630 sizeof(Mpi2IOCInitRDPQArrayEntry); 6631 rc = _base_allocate_reply_post_free_array(ioc, 6632 reply_post_free_array_sz); 6633 if (rc == -ENOMEM) 6634 return -ENOMEM; 6635 else if (rc == -EAGAIN) 6636 goto try_32bit_dma; 6637 } 6638 ioc->config_page_sz = 512; 6639 ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev, 6640 ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL); 6641 if (!ioc->config_page) { 6642 ioc_err(ioc, "config page: dma_pool_alloc failed\n"); 6643 goto out; 6644 } 6645 6646 ioc_info(ioc, "config page(0x%p) - dma(0x%llx): size(%d)\n", 6647 ioc->config_page, (unsigned long long)ioc->config_page_dma, 6648 ioc->config_page_sz); 6649 total_sz += ioc->config_page_sz; 6650 6651 ioc_info(ioc, "Allocated physical memory: size(%d kB)\n", 6652 total_sz / 1024); 6653 ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n", 6654 ioc->shost->can_queue, facts->RequestCredit); 6655 ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n", 6656 ioc->shost->sg_tablesize); 6657 return 0; 6658 6659 try_32bit_dma: 6660 _base_release_memory_pools(ioc); 6661 if (ioc->use_32bit_dma && (ioc->dma_mask > 32)) { 6662 /* Change dma coherent mask to 32 bit and reallocate */ 6663 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) { 6664 pr_err("Setting 32 bit coherent DMA mask Failed %s\n", 6665 pci_name(ioc->pdev)); 6666 return -ENODEV; 6667 } 6668 } else if (_base_reduce_hba_queue_depth(ioc) != 0) 6669 return -ENOMEM; 6670 goto retry_allocation; 6671 6672 out: 6673 return -ENOMEM; 6674 } 6675 6676 /** 6677 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter. 6678 * @ioc: Pointer to MPT_ADAPTER structure 6679 * @cooked: Request raw or cooked IOC state 6680 * 6681 * Return: all IOC Doorbell register bits if cooked==0, else just the 6682 * Doorbell bits in MPI_IOC_STATE_MASK. 6683 */ 6684 u32 6685 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked) 6686 { 6687 u32 s, sc; 6688 6689 s = ioc->base_readl(&ioc->chip->Doorbell); 6690 sc = s & MPI2_IOC_STATE_MASK; 6691 return cooked ? sc : s; 6692 } 6693 6694 /** 6695 * _base_wait_on_iocstate - waiting on a particular ioc state 6696 * @ioc: ? 6697 * @ioc_state: controller state { READY, OPERATIONAL, or RESET } 6698 * @timeout: timeout in second 6699 * 6700 * Return: 0 for success, non-zero for failure. 6701 */ 6702 static int 6703 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout) 6704 { 6705 u32 count, cntdn; 6706 u32 current_state; 6707 6708 count = 0; 6709 cntdn = 1000 * timeout; 6710 do { 6711 current_state = mpt3sas_base_get_iocstate(ioc, 1); 6712 if (current_state == ioc_state) 6713 return 0; 6714 if (count && current_state == MPI2_IOC_STATE_FAULT) 6715 break; 6716 if (count && current_state == MPI2_IOC_STATE_COREDUMP) 6717 break; 6718 6719 usleep_range(1000, 1500); 6720 count++; 6721 } while (--cntdn); 6722 6723 return current_state; 6724 } 6725 6726 /** 6727 * _base_dump_reg_set - This function will print hexdump of register set. 6728 * @ioc: per adapter object 6729 * 6730 * Return: nothing. 6731 */ 6732 static inline void 6733 _base_dump_reg_set(struct MPT3SAS_ADAPTER *ioc) 6734 { 6735 unsigned int i, sz = 256; 6736 u32 __iomem *reg = (u32 __iomem *)ioc->chip; 6737 6738 ioc_info(ioc, "System Register set:\n"); 6739 for (i = 0; i < (sz / sizeof(u32)); i++) 6740 pr_info("%08x: %08x\n", (i * 4), readl(®[i])); 6741 } 6742 6743 /** 6744 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by 6745 * a write to the doorbell) 6746 * @ioc: per adapter object 6747 * @timeout: timeout in seconds 6748 * 6749 * Return: 0 for success, non-zero for failure. 6750 * 6751 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell. 6752 */ 6753 6754 static int 6755 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout) 6756 { 6757 u32 cntdn, count; 6758 u32 int_status; 6759 6760 count = 0; 6761 cntdn = 1000 * timeout; 6762 do { 6763 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 6764 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 6765 dhsprintk(ioc, 6766 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 6767 __func__, count, timeout)); 6768 return 0; 6769 } 6770 6771 usleep_range(1000, 1500); 6772 count++; 6773 } while (--cntdn); 6774 6775 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 6776 __func__, count, int_status); 6777 return -EFAULT; 6778 } 6779 6780 static int 6781 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout) 6782 { 6783 u32 cntdn, count; 6784 u32 int_status; 6785 6786 count = 0; 6787 cntdn = 2000 * timeout; 6788 do { 6789 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 6790 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 6791 dhsprintk(ioc, 6792 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 6793 __func__, count, timeout)); 6794 return 0; 6795 } 6796 6797 udelay(500); 6798 count++; 6799 } while (--cntdn); 6800 6801 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 6802 __func__, count, int_status); 6803 return -EFAULT; 6804 6805 } 6806 6807 /** 6808 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell. 6809 * @ioc: per adapter object 6810 * @timeout: timeout in second 6811 * 6812 * Return: 0 for success, non-zero for failure. 6813 * 6814 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to 6815 * doorbell. 6816 */ 6817 static int 6818 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout) 6819 { 6820 u32 cntdn, count; 6821 u32 int_status; 6822 u32 doorbell; 6823 6824 count = 0; 6825 cntdn = 1000 * timeout; 6826 do { 6827 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 6828 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) { 6829 dhsprintk(ioc, 6830 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 6831 __func__, count, timeout)); 6832 return 0; 6833 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 6834 doorbell = ioc->base_readl(&ioc->chip->Doorbell); 6835 if ((doorbell & MPI2_IOC_STATE_MASK) == 6836 MPI2_IOC_STATE_FAULT) { 6837 mpt3sas_print_fault_code(ioc, doorbell); 6838 return -EFAULT; 6839 } 6840 if ((doorbell & MPI2_IOC_STATE_MASK) == 6841 MPI2_IOC_STATE_COREDUMP) { 6842 mpt3sas_print_coredump_info(ioc, doorbell); 6843 return -EFAULT; 6844 } 6845 } else if (int_status == 0xFFFFFFFF) 6846 goto out; 6847 6848 usleep_range(1000, 1500); 6849 count++; 6850 } while (--cntdn); 6851 6852 out: 6853 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 6854 __func__, count, int_status); 6855 return -EFAULT; 6856 } 6857 6858 /** 6859 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use 6860 * @ioc: per adapter object 6861 * @timeout: timeout in second 6862 * 6863 * Return: 0 for success, non-zero for failure. 6864 */ 6865 static int 6866 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout) 6867 { 6868 u32 cntdn, count; 6869 u32 doorbell_reg; 6870 6871 count = 0; 6872 cntdn = 1000 * timeout; 6873 do { 6874 doorbell_reg = ioc->base_readl(&ioc->chip->Doorbell); 6875 if (!(doorbell_reg & MPI2_DOORBELL_USED)) { 6876 dhsprintk(ioc, 6877 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 6878 __func__, count, timeout)); 6879 return 0; 6880 } 6881 6882 usleep_range(1000, 1500); 6883 count++; 6884 } while (--cntdn); 6885 6886 ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n", 6887 __func__, count, doorbell_reg); 6888 return -EFAULT; 6889 } 6890 6891 /** 6892 * _base_send_ioc_reset - send doorbell reset 6893 * @ioc: per adapter object 6894 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET 6895 * @timeout: timeout in second 6896 * 6897 * Return: 0 for success, non-zero for failure. 6898 */ 6899 static int 6900 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout) 6901 { 6902 u32 ioc_state; 6903 int r = 0; 6904 unsigned long flags; 6905 6906 if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) { 6907 ioc_err(ioc, "%s: unknown reset_type\n", __func__); 6908 return -EFAULT; 6909 } 6910 6911 if (!(ioc->facts.IOCCapabilities & 6912 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY)) 6913 return -EFAULT; 6914 6915 ioc_info(ioc, "sending message unit reset !!\n"); 6916 6917 writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT, 6918 &ioc->chip->Doorbell); 6919 if ((_base_wait_for_doorbell_ack(ioc, 15))) { 6920 r = -EFAULT; 6921 goto out; 6922 } 6923 6924 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout); 6925 if (ioc_state) { 6926 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 6927 __func__, ioc_state); 6928 r = -EFAULT; 6929 goto out; 6930 } 6931 out: 6932 if (r != 0) { 6933 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 6934 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 6935 /* 6936 * Wait for IOC state CoreDump to clear only during 6937 * HBA initialization & release time. 6938 */ 6939 if ((ioc_state & MPI2_IOC_STATE_MASK) == 6940 MPI2_IOC_STATE_COREDUMP && (ioc->is_driver_loading == 1 || 6941 ioc->fault_reset_work_q == NULL)) { 6942 spin_unlock_irqrestore( 6943 &ioc->ioc_reset_in_progress_lock, flags); 6944 mpt3sas_print_coredump_info(ioc, ioc_state); 6945 mpt3sas_base_wait_for_coredump_completion(ioc, 6946 __func__); 6947 spin_lock_irqsave( 6948 &ioc->ioc_reset_in_progress_lock, flags); 6949 } 6950 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 6951 } 6952 ioc_info(ioc, "message unit reset: %s\n", 6953 r == 0 ? "SUCCESS" : "FAILED"); 6954 return r; 6955 } 6956 6957 /** 6958 * mpt3sas_wait_for_ioc - IOC's operational state is checked here. 6959 * @ioc: per adapter object 6960 * @timeout: timeout in seconds 6961 * 6962 * Return: Waits up to timeout seconds for the IOC to 6963 * become operational. Returns 0 if IOC is present 6964 * and operational; otherwise returns %-EFAULT. 6965 */ 6966 6967 int 6968 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout) 6969 { 6970 int wait_state_count = 0; 6971 u32 ioc_state; 6972 6973 do { 6974 ioc_state = mpt3sas_base_get_iocstate(ioc, 1); 6975 if (ioc_state == MPI2_IOC_STATE_OPERATIONAL) 6976 break; 6977 6978 /* 6979 * Watchdog thread will be started after IOC Initialization, so 6980 * no need to wait here for IOC state to become operational 6981 * when IOC Initialization is on. Instead the driver will 6982 * return ETIME status, so that calling function can issue 6983 * diag reset operation and retry the command. 6984 */ 6985 if (ioc->is_driver_loading) 6986 return -ETIME; 6987 6988 ssleep(1); 6989 ioc_info(ioc, "%s: waiting for operational state(count=%d)\n", 6990 __func__, ++wait_state_count); 6991 } while (--timeout); 6992 if (!timeout) { 6993 ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__); 6994 return -EFAULT; 6995 } 6996 if (wait_state_count) 6997 ioc_info(ioc, "ioc is operational\n"); 6998 return 0; 6999 } 7000 7001 /** 7002 * _base_handshake_req_reply_wait - send request thru doorbell interface 7003 * @ioc: per adapter object 7004 * @request_bytes: request length 7005 * @request: pointer having request payload 7006 * @reply_bytes: reply length 7007 * @reply: pointer to reply payload 7008 * @timeout: timeout in second 7009 * 7010 * Return: 0 for success, non-zero for failure. 7011 */ 7012 static int 7013 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes, 7014 u32 *request, int reply_bytes, u16 *reply, int timeout) 7015 { 7016 MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply; 7017 int i; 7018 u8 failed; 7019 __le32 *mfp; 7020 7021 /* make sure doorbell is not in use */ 7022 if ((ioc->base_readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) { 7023 ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__); 7024 return -EFAULT; 7025 } 7026 7027 /* clear pending doorbell interrupts from previous state changes */ 7028 if (ioc->base_readl(&ioc->chip->HostInterruptStatus) & 7029 MPI2_HIS_IOC2SYS_DB_STATUS) 7030 writel(0, &ioc->chip->HostInterruptStatus); 7031 7032 /* send message to ioc */ 7033 writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) | 7034 ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)), 7035 &ioc->chip->Doorbell); 7036 7037 if ((_base_spin_on_doorbell_int(ioc, 5))) { 7038 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 7039 __LINE__); 7040 return -EFAULT; 7041 } 7042 writel(0, &ioc->chip->HostInterruptStatus); 7043 7044 if ((_base_wait_for_doorbell_ack(ioc, 5))) { 7045 ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n", 7046 __LINE__); 7047 return -EFAULT; 7048 } 7049 7050 /* send message 32-bits at a time */ 7051 for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) { 7052 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell); 7053 if ((_base_wait_for_doorbell_ack(ioc, 5))) 7054 failed = 1; 7055 } 7056 7057 if (failed) { 7058 ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n", 7059 __LINE__); 7060 return -EFAULT; 7061 } 7062 7063 /* now wait for the reply */ 7064 if ((_base_wait_for_doorbell_int(ioc, timeout))) { 7065 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 7066 __LINE__); 7067 return -EFAULT; 7068 } 7069 7070 /* read the first two 16-bits, it gives the total length of the reply */ 7071 reply[0] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell) 7072 & MPI2_DOORBELL_DATA_MASK); 7073 writel(0, &ioc->chip->HostInterruptStatus); 7074 if ((_base_wait_for_doorbell_int(ioc, 5))) { 7075 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 7076 __LINE__); 7077 return -EFAULT; 7078 } 7079 reply[1] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell) 7080 & MPI2_DOORBELL_DATA_MASK); 7081 writel(0, &ioc->chip->HostInterruptStatus); 7082 7083 for (i = 2; i < default_reply->MsgLength * 2; i++) { 7084 if ((_base_wait_for_doorbell_int(ioc, 5))) { 7085 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 7086 __LINE__); 7087 return -EFAULT; 7088 } 7089 if (i >= reply_bytes/2) /* overflow case */ 7090 ioc->base_readl(&ioc->chip->Doorbell); 7091 else 7092 reply[i] = le16_to_cpu( 7093 ioc->base_readl(&ioc->chip->Doorbell) 7094 & MPI2_DOORBELL_DATA_MASK); 7095 writel(0, &ioc->chip->HostInterruptStatus); 7096 } 7097 7098 _base_wait_for_doorbell_int(ioc, 5); 7099 if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) { 7100 dhsprintk(ioc, 7101 ioc_info(ioc, "doorbell is in use (line=%d)\n", 7102 __LINE__)); 7103 } 7104 writel(0, &ioc->chip->HostInterruptStatus); 7105 7106 if (ioc->logging_level & MPT_DEBUG_INIT) { 7107 mfp = (__le32 *)reply; 7108 pr_info("\toffset:data\n"); 7109 for (i = 0; i < reply_bytes/4; i++) 7110 ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4, 7111 le32_to_cpu(mfp[i])); 7112 } 7113 return 0; 7114 } 7115 7116 /** 7117 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW 7118 * @ioc: per adapter object 7119 * @mpi_reply: the reply payload from FW 7120 * @mpi_request: the request payload sent to FW 7121 * 7122 * The SAS IO Unit Control Request message allows the host to perform low-level 7123 * operations, such as resets on the PHYs of the IO Unit, also allows the host 7124 * to obtain the IOC assigned device handles for a device if it has other 7125 * identifying information about the device, in addition allows the host to 7126 * remove IOC resources associated with the device. 7127 * 7128 * Return: 0 for success, non-zero for failure. 7129 */ 7130 int 7131 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc, 7132 Mpi2SasIoUnitControlReply_t *mpi_reply, 7133 Mpi2SasIoUnitControlRequest_t *mpi_request) 7134 { 7135 u16 smid; 7136 u8 issue_reset = 0; 7137 int rc; 7138 void *request; 7139 7140 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7141 7142 mutex_lock(&ioc->base_cmds.mutex); 7143 7144 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) { 7145 ioc_err(ioc, "%s: base_cmd in use\n", __func__); 7146 rc = -EAGAIN; 7147 goto out; 7148 } 7149 7150 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT); 7151 if (rc) 7152 goto out; 7153 7154 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 7155 if (!smid) { 7156 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 7157 rc = -EAGAIN; 7158 goto out; 7159 } 7160 7161 rc = 0; 7162 ioc->base_cmds.status = MPT3_CMD_PENDING; 7163 request = mpt3sas_base_get_msg_frame(ioc, smid); 7164 ioc->base_cmds.smid = smid; 7165 memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)); 7166 if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET || 7167 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) 7168 ioc->ioc_link_reset_in_progress = 1; 7169 init_completion(&ioc->base_cmds.done); 7170 ioc->put_smid_default(ioc, smid); 7171 wait_for_completion_timeout(&ioc->base_cmds.done, 7172 msecs_to_jiffies(10000)); 7173 if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET || 7174 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) && 7175 ioc->ioc_link_reset_in_progress) 7176 ioc->ioc_link_reset_in_progress = 0; 7177 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 7178 mpt3sas_check_cmd_timeout(ioc, ioc->base_cmds.status, 7179 mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)/4, 7180 issue_reset); 7181 goto issue_host_reset; 7182 } 7183 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) 7184 memcpy(mpi_reply, ioc->base_cmds.reply, 7185 sizeof(Mpi2SasIoUnitControlReply_t)); 7186 else 7187 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t)); 7188 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 7189 goto out; 7190 7191 issue_host_reset: 7192 if (issue_reset) 7193 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 7194 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 7195 rc = -EFAULT; 7196 out: 7197 mutex_unlock(&ioc->base_cmds.mutex); 7198 return rc; 7199 } 7200 7201 /** 7202 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device 7203 * @ioc: per adapter object 7204 * @mpi_reply: the reply payload from FW 7205 * @mpi_request: the request payload sent to FW 7206 * 7207 * The SCSI Enclosure Processor request message causes the IOC to 7208 * communicate with SES devices to control LED status signals. 7209 * 7210 * Return: 0 for success, non-zero for failure. 7211 */ 7212 int 7213 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc, 7214 Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request) 7215 { 7216 u16 smid; 7217 u8 issue_reset = 0; 7218 int rc; 7219 void *request; 7220 7221 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7222 7223 mutex_lock(&ioc->base_cmds.mutex); 7224 7225 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) { 7226 ioc_err(ioc, "%s: base_cmd in use\n", __func__); 7227 rc = -EAGAIN; 7228 goto out; 7229 } 7230 7231 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT); 7232 if (rc) 7233 goto out; 7234 7235 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 7236 if (!smid) { 7237 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 7238 rc = -EAGAIN; 7239 goto out; 7240 } 7241 7242 rc = 0; 7243 ioc->base_cmds.status = MPT3_CMD_PENDING; 7244 request = mpt3sas_base_get_msg_frame(ioc, smid); 7245 ioc->base_cmds.smid = smid; 7246 memset(request, 0, ioc->request_sz); 7247 memcpy(request, mpi_request, sizeof(Mpi2SepReply_t)); 7248 init_completion(&ioc->base_cmds.done); 7249 ioc->put_smid_default(ioc, smid); 7250 wait_for_completion_timeout(&ioc->base_cmds.done, 7251 msecs_to_jiffies(10000)); 7252 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 7253 mpt3sas_check_cmd_timeout(ioc, 7254 ioc->base_cmds.status, mpi_request, 7255 sizeof(Mpi2SepRequest_t)/4, issue_reset); 7256 goto issue_host_reset; 7257 } 7258 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) 7259 memcpy(mpi_reply, ioc->base_cmds.reply, 7260 sizeof(Mpi2SepReply_t)); 7261 else 7262 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t)); 7263 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 7264 goto out; 7265 7266 issue_host_reset: 7267 if (issue_reset) 7268 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 7269 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 7270 rc = -EFAULT; 7271 out: 7272 mutex_unlock(&ioc->base_cmds.mutex); 7273 return rc; 7274 } 7275 7276 /** 7277 * _base_get_port_facts - obtain port facts reply and save in ioc 7278 * @ioc: per adapter object 7279 * @port: ? 7280 * 7281 * Return: 0 for success, non-zero for failure. 7282 */ 7283 static int 7284 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port) 7285 { 7286 Mpi2PortFactsRequest_t mpi_request; 7287 Mpi2PortFactsReply_t mpi_reply; 7288 struct mpt3sas_port_facts *pfacts; 7289 int mpi_reply_sz, mpi_request_sz, r; 7290 7291 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7292 7293 mpi_reply_sz = sizeof(Mpi2PortFactsReply_t); 7294 mpi_request_sz = sizeof(Mpi2PortFactsRequest_t); 7295 memset(&mpi_request, 0, mpi_request_sz); 7296 mpi_request.Function = MPI2_FUNCTION_PORT_FACTS; 7297 mpi_request.PortNumber = port; 7298 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz, 7299 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5); 7300 7301 if (r != 0) { 7302 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 7303 return r; 7304 } 7305 7306 pfacts = &ioc->pfacts[port]; 7307 memset(pfacts, 0, sizeof(struct mpt3sas_port_facts)); 7308 pfacts->PortNumber = mpi_reply.PortNumber; 7309 pfacts->VP_ID = mpi_reply.VP_ID; 7310 pfacts->VF_ID = mpi_reply.VF_ID; 7311 pfacts->MaxPostedCmdBuffers = 7312 le16_to_cpu(mpi_reply.MaxPostedCmdBuffers); 7313 7314 return 0; 7315 } 7316 7317 /** 7318 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL 7319 * @ioc: per adapter object 7320 * @timeout: 7321 * 7322 * Return: 0 for success, non-zero for failure. 7323 */ 7324 static int 7325 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout) 7326 { 7327 u32 ioc_state; 7328 int rc; 7329 7330 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7331 7332 if (ioc->pci_error_recovery) { 7333 dfailprintk(ioc, 7334 ioc_info(ioc, "%s: host in pci error recovery\n", 7335 __func__)); 7336 return -EFAULT; 7337 } 7338 7339 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 7340 dhsprintk(ioc, 7341 ioc_info(ioc, "%s: ioc_state(0x%08x)\n", 7342 __func__, ioc_state)); 7343 7344 if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) || 7345 (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL) 7346 return 0; 7347 7348 if (ioc_state & MPI2_DOORBELL_USED) { 7349 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n")); 7350 goto issue_diag_reset; 7351 } 7352 7353 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 7354 mpt3sas_print_fault_code(ioc, ioc_state & 7355 MPI2_DOORBELL_DATA_MASK); 7356 goto issue_diag_reset; 7357 } else if ((ioc_state & MPI2_IOC_STATE_MASK) == 7358 MPI2_IOC_STATE_COREDUMP) { 7359 ioc_info(ioc, 7360 "%s: Skipping the diag reset here. (ioc_state=0x%x)\n", 7361 __func__, ioc_state); 7362 return -EFAULT; 7363 } 7364 7365 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout); 7366 if (ioc_state) { 7367 dfailprintk(ioc, 7368 ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 7369 __func__, ioc_state)); 7370 return -EFAULT; 7371 } 7372 7373 issue_diag_reset: 7374 rc = _base_diag_reset(ioc); 7375 return rc; 7376 } 7377 7378 /** 7379 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc 7380 * @ioc: per adapter object 7381 * 7382 * Return: 0 for success, non-zero for failure. 7383 */ 7384 static int 7385 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc) 7386 { 7387 Mpi2IOCFactsRequest_t mpi_request; 7388 Mpi2IOCFactsReply_t mpi_reply; 7389 struct mpt3sas_facts *facts; 7390 int mpi_reply_sz, mpi_request_sz, r; 7391 7392 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7393 7394 r = _base_wait_for_iocstate(ioc, 10); 7395 if (r) { 7396 dfailprintk(ioc, 7397 ioc_info(ioc, "%s: failed getting to correct state\n", 7398 __func__)); 7399 return r; 7400 } 7401 mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t); 7402 mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t); 7403 memset(&mpi_request, 0, mpi_request_sz); 7404 mpi_request.Function = MPI2_FUNCTION_IOC_FACTS; 7405 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz, 7406 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5); 7407 7408 if (r != 0) { 7409 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 7410 return r; 7411 } 7412 7413 facts = &ioc->facts; 7414 memset(facts, 0, sizeof(struct mpt3sas_facts)); 7415 facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion); 7416 facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion); 7417 facts->VP_ID = mpi_reply.VP_ID; 7418 facts->VF_ID = mpi_reply.VF_ID; 7419 facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions); 7420 facts->MaxChainDepth = mpi_reply.MaxChainDepth; 7421 facts->WhoInit = mpi_reply.WhoInit; 7422 facts->NumberOfPorts = mpi_reply.NumberOfPorts; 7423 facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors; 7424 if (ioc->msix_enable && (facts->MaxMSIxVectors <= 7425 MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc))) 7426 ioc->combined_reply_queue = 0; 7427 facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit); 7428 facts->MaxReplyDescriptorPostQueueDepth = 7429 le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth); 7430 facts->ProductID = le16_to_cpu(mpi_reply.ProductID); 7431 facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities); 7432 if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)) 7433 ioc->ir_firmware = 1; 7434 if ((facts->IOCCapabilities & 7435 MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices)) 7436 ioc->rdpq_array_capable = 1; 7437 if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ) 7438 && ioc->is_aero_ioc) 7439 ioc->atomic_desc_capable = 1; 7440 facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word); 7441 facts->IOCRequestFrameSize = 7442 le16_to_cpu(mpi_reply.IOCRequestFrameSize); 7443 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 7444 facts->IOCMaxChainSegmentSize = 7445 le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize); 7446 } 7447 facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators); 7448 facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets); 7449 ioc->shost->max_id = -1; 7450 facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders); 7451 facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures); 7452 facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags); 7453 facts->HighPriorityCredit = 7454 le16_to_cpu(mpi_reply.HighPriorityCredit); 7455 facts->ReplyFrameSize = mpi_reply.ReplyFrameSize; 7456 facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle); 7457 facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize; 7458 7459 /* 7460 * Get the Page Size from IOC Facts. If it's 0, default to 4k. 7461 */ 7462 ioc->page_size = 1 << facts->CurrentHostPageSize; 7463 if (ioc->page_size == 1) { 7464 ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n"); 7465 ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K; 7466 } 7467 dinitprintk(ioc, 7468 ioc_info(ioc, "CurrentHostPageSize(%d)\n", 7469 facts->CurrentHostPageSize)); 7470 7471 dinitprintk(ioc, 7472 ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n", 7473 facts->RequestCredit, facts->MaxChainDepth)); 7474 dinitprintk(ioc, 7475 ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n", 7476 facts->IOCRequestFrameSize * 4, 7477 facts->ReplyFrameSize * 4)); 7478 return 0; 7479 } 7480 7481 /** 7482 * _base_send_ioc_init - send ioc_init to firmware 7483 * @ioc: per adapter object 7484 * 7485 * Return: 0 for success, non-zero for failure. 7486 */ 7487 static int 7488 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc) 7489 { 7490 Mpi2IOCInitRequest_t mpi_request; 7491 Mpi2IOCInitReply_t mpi_reply; 7492 int i, r = 0; 7493 ktime_t current_time; 7494 u16 ioc_status; 7495 u32 reply_post_free_array_sz = 0; 7496 7497 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7498 7499 memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t)); 7500 mpi_request.Function = MPI2_FUNCTION_IOC_INIT; 7501 mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER; 7502 mpi_request.VF_ID = 0; /* TODO */ 7503 mpi_request.VP_ID = 0; 7504 mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged); 7505 mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION); 7506 mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K; 7507 7508 if (_base_is_controller_msix_enabled(ioc)) 7509 mpi_request.HostMSIxVectors = ioc->reply_queue_count; 7510 mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4); 7511 mpi_request.ReplyDescriptorPostQueueDepth = 7512 cpu_to_le16(ioc->reply_post_queue_depth); 7513 mpi_request.ReplyFreeQueueDepth = 7514 cpu_to_le16(ioc->reply_free_queue_depth); 7515 7516 mpi_request.SenseBufferAddressHigh = 7517 cpu_to_le32((u64)ioc->sense_dma >> 32); 7518 mpi_request.SystemReplyAddressHigh = 7519 cpu_to_le32((u64)ioc->reply_dma >> 32); 7520 mpi_request.SystemRequestFrameBaseAddress = 7521 cpu_to_le64((u64)ioc->request_dma); 7522 mpi_request.ReplyFreeQueueAddress = 7523 cpu_to_le64((u64)ioc->reply_free_dma); 7524 7525 if (ioc->rdpq_array_enable) { 7526 reply_post_free_array_sz = ioc->reply_queue_count * 7527 sizeof(Mpi2IOCInitRDPQArrayEntry); 7528 memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz); 7529 for (i = 0; i < ioc->reply_queue_count; i++) 7530 ioc->reply_post_free_array[i].RDPQBaseAddress = 7531 cpu_to_le64( 7532 (u64)ioc->reply_post[i].reply_post_free_dma); 7533 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE; 7534 mpi_request.ReplyDescriptorPostQueueAddress = 7535 cpu_to_le64((u64)ioc->reply_post_free_array_dma); 7536 } else { 7537 mpi_request.ReplyDescriptorPostQueueAddress = 7538 cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma); 7539 } 7540 7541 /* 7542 * Set the flag to enable CoreDump state feature in IOC firmware. 7543 */ 7544 mpi_request.ConfigurationFlags |= 7545 cpu_to_le16(MPI26_IOCINIT_CFGFLAGS_COREDUMP_ENABLE); 7546 7547 /* This time stamp specifies number of milliseconds 7548 * since epoch ~ midnight January 1, 1970. 7549 */ 7550 current_time = ktime_get_real(); 7551 mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time)); 7552 7553 if (ioc->logging_level & MPT_DEBUG_INIT) { 7554 __le32 *mfp; 7555 int i; 7556 7557 mfp = (__le32 *)&mpi_request; 7558 ioc_info(ioc, "\toffset:data\n"); 7559 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++) 7560 ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4, 7561 le32_to_cpu(mfp[i])); 7562 } 7563 7564 r = _base_handshake_req_reply_wait(ioc, 7565 sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request, 7566 sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 30); 7567 7568 if (r != 0) { 7569 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 7570 return r; 7571 } 7572 7573 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK; 7574 if (ioc_status != MPI2_IOCSTATUS_SUCCESS || 7575 mpi_reply.IOCLogInfo) { 7576 ioc_err(ioc, "%s: failed\n", __func__); 7577 r = -EIO; 7578 } 7579 7580 /* Reset TimeSync Counter*/ 7581 ioc->timestamp_update_count = 0; 7582 return r; 7583 } 7584 7585 /** 7586 * mpt3sas_port_enable_done - command completion routine for port enable 7587 * @ioc: per adapter object 7588 * @smid: system request message index 7589 * @msix_index: MSIX table index supplied by the OS 7590 * @reply: reply message frame(lower 32bit addr) 7591 * 7592 * Return: 1 meaning mf should be freed from _base_interrupt 7593 * 0 means the mf is freed from this function. 7594 */ 7595 u8 7596 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 7597 u32 reply) 7598 { 7599 MPI2DefaultReply_t *mpi_reply; 7600 u16 ioc_status; 7601 7602 if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED) 7603 return 1; 7604 7605 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 7606 if (!mpi_reply) 7607 return 1; 7608 7609 if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE) 7610 return 1; 7611 7612 ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING; 7613 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE; 7614 ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID; 7615 memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4); 7616 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 7617 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) 7618 ioc->port_enable_failed = 1; 7619 7620 if (ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE_ASYNC) { 7621 ioc->port_enable_cmds.status &= ~MPT3_CMD_COMPLETE_ASYNC; 7622 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 7623 mpt3sas_port_enable_complete(ioc); 7624 return 1; 7625 } else { 7626 ioc->start_scan_failed = ioc_status; 7627 ioc->start_scan = 0; 7628 return 1; 7629 } 7630 } 7631 complete(&ioc->port_enable_cmds.done); 7632 return 1; 7633 } 7634 7635 /** 7636 * _base_send_port_enable - send port_enable(discovery stuff) to firmware 7637 * @ioc: per adapter object 7638 * 7639 * Return: 0 for success, non-zero for failure. 7640 */ 7641 static int 7642 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc) 7643 { 7644 Mpi2PortEnableRequest_t *mpi_request; 7645 Mpi2PortEnableReply_t *mpi_reply; 7646 int r = 0; 7647 u16 smid; 7648 u16 ioc_status; 7649 7650 ioc_info(ioc, "sending port enable !!\n"); 7651 7652 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 7653 ioc_err(ioc, "%s: internal command already in use\n", __func__); 7654 return -EAGAIN; 7655 } 7656 7657 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx); 7658 if (!smid) { 7659 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 7660 return -EAGAIN; 7661 } 7662 7663 ioc->port_enable_cmds.status = MPT3_CMD_PENDING; 7664 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 7665 ioc->port_enable_cmds.smid = smid; 7666 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t)); 7667 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE; 7668 7669 init_completion(&ioc->port_enable_cmds.done); 7670 ioc->put_smid_default(ioc, smid); 7671 wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ); 7672 if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) { 7673 ioc_err(ioc, "%s: timeout\n", __func__); 7674 _debug_dump_mf(mpi_request, 7675 sizeof(Mpi2PortEnableRequest_t)/4); 7676 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET) 7677 r = -EFAULT; 7678 else 7679 r = -ETIME; 7680 goto out; 7681 } 7682 7683 mpi_reply = ioc->port_enable_cmds.reply; 7684 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 7685 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 7686 ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n", 7687 __func__, ioc_status); 7688 r = -EFAULT; 7689 goto out; 7690 } 7691 7692 out: 7693 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED; 7694 ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED"); 7695 return r; 7696 } 7697 7698 /** 7699 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply) 7700 * @ioc: per adapter object 7701 * 7702 * Return: 0 for success, non-zero for failure. 7703 */ 7704 int 7705 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc) 7706 { 7707 Mpi2PortEnableRequest_t *mpi_request; 7708 u16 smid; 7709 7710 ioc_info(ioc, "sending port enable !!\n"); 7711 7712 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 7713 ioc_err(ioc, "%s: internal command already in use\n", __func__); 7714 return -EAGAIN; 7715 } 7716 7717 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx); 7718 if (!smid) { 7719 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 7720 return -EAGAIN; 7721 } 7722 ioc->drv_internal_flags |= MPT_DRV_INTERNAL_FIRST_PE_ISSUED; 7723 ioc->port_enable_cmds.status = MPT3_CMD_PENDING; 7724 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE_ASYNC; 7725 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 7726 ioc->port_enable_cmds.smid = smid; 7727 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t)); 7728 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE; 7729 7730 ioc->put_smid_default(ioc, smid); 7731 return 0; 7732 } 7733 7734 /** 7735 * _base_determine_wait_on_discovery - desposition 7736 * @ioc: per adapter object 7737 * 7738 * Decide whether to wait on discovery to complete. Used to either 7739 * locate boot device, or report volumes ahead of physical devices. 7740 * 7741 * Return: 1 for wait, 0 for don't wait. 7742 */ 7743 static int 7744 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc) 7745 { 7746 /* We wait for discovery to complete if IR firmware is loaded. 7747 * The sas topology events arrive before PD events, so we need time to 7748 * turn on the bit in ioc->pd_handles to indicate PD 7749 * Also, it maybe required to report Volumes ahead of physical 7750 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set. 7751 */ 7752 if (ioc->ir_firmware) 7753 return 1; 7754 7755 /* if no Bios, then we don't need to wait */ 7756 if (!ioc->bios_pg3.BiosVersion) 7757 return 0; 7758 7759 /* Bios is present, then we drop down here. 7760 * 7761 * If there any entries in the Bios Page 2, then we wait 7762 * for discovery to complete. 7763 */ 7764 7765 /* Current Boot Device */ 7766 if ((ioc->bios_pg2.CurrentBootDeviceForm & 7767 MPI2_BIOSPAGE2_FORM_MASK) == 7768 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED && 7769 /* Request Boot Device */ 7770 (ioc->bios_pg2.ReqBootDeviceForm & 7771 MPI2_BIOSPAGE2_FORM_MASK) == 7772 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED && 7773 /* Alternate Request Boot Device */ 7774 (ioc->bios_pg2.ReqAltBootDeviceForm & 7775 MPI2_BIOSPAGE2_FORM_MASK) == 7776 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED) 7777 return 0; 7778 7779 return 1; 7780 } 7781 7782 /** 7783 * _base_unmask_events - turn on notification for this event 7784 * @ioc: per adapter object 7785 * @event: firmware event 7786 * 7787 * The mask is stored in ioc->event_masks. 7788 */ 7789 static void 7790 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event) 7791 { 7792 u32 desired_event; 7793 7794 if (event >= 128) 7795 return; 7796 7797 desired_event = (1 << (event % 32)); 7798 7799 if (event < 32) 7800 ioc->event_masks[0] &= ~desired_event; 7801 else if (event < 64) 7802 ioc->event_masks[1] &= ~desired_event; 7803 else if (event < 96) 7804 ioc->event_masks[2] &= ~desired_event; 7805 else if (event < 128) 7806 ioc->event_masks[3] &= ~desired_event; 7807 } 7808 7809 /** 7810 * _base_event_notification - send event notification 7811 * @ioc: per adapter object 7812 * 7813 * Return: 0 for success, non-zero for failure. 7814 */ 7815 static int 7816 _base_event_notification(struct MPT3SAS_ADAPTER *ioc) 7817 { 7818 Mpi2EventNotificationRequest_t *mpi_request; 7819 u16 smid; 7820 int r = 0; 7821 int i, issue_diag_reset = 0; 7822 7823 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7824 7825 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 7826 ioc_err(ioc, "%s: internal command already in use\n", __func__); 7827 return -EAGAIN; 7828 } 7829 7830 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 7831 if (!smid) { 7832 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 7833 return -EAGAIN; 7834 } 7835 ioc->base_cmds.status = MPT3_CMD_PENDING; 7836 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 7837 ioc->base_cmds.smid = smid; 7838 memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t)); 7839 mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION; 7840 mpi_request->VF_ID = 0; /* TODO */ 7841 mpi_request->VP_ID = 0; 7842 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 7843 mpi_request->EventMasks[i] = 7844 cpu_to_le32(ioc->event_masks[i]); 7845 init_completion(&ioc->base_cmds.done); 7846 ioc->put_smid_default(ioc, smid); 7847 wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ); 7848 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 7849 ioc_err(ioc, "%s: timeout\n", __func__); 7850 _debug_dump_mf(mpi_request, 7851 sizeof(Mpi2EventNotificationRequest_t)/4); 7852 if (ioc->base_cmds.status & MPT3_CMD_RESET) 7853 r = -EFAULT; 7854 else 7855 issue_diag_reset = 1; 7856 7857 } else 7858 dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__)); 7859 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 7860 7861 if (issue_diag_reset) { 7862 if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED) 7863 return -EFAULT; 7864 if (mpt3sas_base_check_for_fault_and_issue_reset(ioc)) 7865 return -EFAULT; 7866 r = -EAGAIN; 7867 } 7868 return r; 7869 } 7870 7871 /** 7872 * mpt3sas_base_validate_event_type - validating event types 7873 * @ioc: per adapter object 7874 * @event_type: firmware event 7875 * 7876 * This will turn on firmware event notification when application 7877 * ask for that event. We don't mask events that are already enabled. 7878 */ 7879 void 7880 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type) 7881 { 7882 int i, j; 7883 u32 event_mask, desired_event; 7884 u8 send_update_to_fw; 7885 7886 for (i = 0, send_update_to_fw = 0; i < 7887 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) { 7888 event_mask = ~event_type[i]; 7889 desired_event = 1; 7890 for (j = 0; j < 32; j++) { 7891 if (!(event_mask & desired_event) && 7892 (ioc->event_masks[i] & desired_event)) { 7893 ioc->event_masks[i] &= ~desired_event; 7894 send_update_to_fw = 1; 7895 } 7896 desired_event = (desired_event << 1); 7897 } 7898 } 7899 7900 if (!send_update_to_fw) 7901 return; 7902 7903 mutex_lock(&ioc->base_cmds.mutex); 7904 _base_event_notification(ioc); 7905 mutex_unlock(&ioc->base_cmds.mutex); 7906 } 7907 7908 /** 7909 * _base_diag_reset - the "big hammer" start of day reset 7910 * @ioc: per adapter object 7911 * 7912 * Return: 0 for success, non-zero for failure. 7913 */ 7914 static int 7915 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc) 7916 { 7917 u32 host_diagnostic; 7918 u32 ioc_state; 7919 u32 count; 7920 u32 hcb_size; 7921 7922 ioc_info(ioc, "sending diag reset !!\n"); 7923 7924 pci_cfg_access_lock(ioc->pdev); 7925 7926 drsprintk(ioc, ioc_info(ioc, "clear interrupts\n")); 7927 7928 count = 0; 7929 do { 7930 /* Write magic sequence to WriteSequence register 7931 * Loop until in diagnostic mode 7932 */ 7933 drsprintk(ioc, ioc_info(ioc, "write magic sequence\n")); 7934 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence); 7935 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence); 7936 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence); 7937 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence); 7938 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence); 7939 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence); 7940 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence); 7941 7942 /* wait 100 msec */ 7943 msleep(100); 7944 7945 if (count++ > 20) { 7946 ioc_info(ioc, 7947 "Stop writing magic sequence after 20 retries\n"); 7948 _base_dump_reg_set(ioc); 7949 goto out; 7950 } 7951 7952 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic); 7953 drsprintk(ioc, 7954 ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n", 7955 count, host_diagnostic)); 7956 7957 } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0); 7958 7959 hcb_size = ioc->base_readl(&ioc->chip->HCBSize); 7960 7961 drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n")); 7962 writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER, 7963 &ioc->chip->HostDiagnostic); 7964 7965 /*This delay allows the chip PCIe hardware time to finish reset tasks*/ 7966 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000); 7967 7968 /* Approximately 300 second max wait */ 7969 for (count = 0; count < (300000000 / 7970 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) { 7971 7972 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic); 7973 7974 if (host_diagnostic == 0xFFFFFFFF) { 7975 ioc_info(ioc, 7976 "Invalid host diagnostic register value\n"); 7977 _base_dump_reg_set(ioc); 7978 goto out; 7979 } 7980 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER)) 7981 break; 7982 7983 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000); 7984 } 7985 7986 if (host_diagnostic & MPI2_DIAG_HCB_MODE) { 7987 7988 drsprintk(ioc, 7989 ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n")); 7990 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK; 7991 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW; 7992 writel(host_diagnostic, &ioc->chip->HostDiagnostic); 7993 7994 drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n")); 7995 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE, 7996 &ioc->chip->HCBSize); 7997 } 7998 7999 drsprintk(ioc, ioc_info(ioc, "restart the adapter\n")); 8000 writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET, 8001 &ioc->chip->HostDiagnostic); 8002 8003 drsprintk(ioc, 8004 ioc_info(ioc, "disable writes to the diagnostic register\n")); 8005 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence); 8006 8007 drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n")); 8008 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20); 8009 if (ioc_state) { 8010 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 8011 __func__, ioc_state); 8012 _base_dump_reg_set(ioc); 8013 goto out; 8014 } 8015 8016 pci_cfg_access_unlock(ioc->pdev); 8017 ioc_info(ioc, "diag reset: SUCCESS\n"); 8018 return 0; 8019 8020 out: 8021 pci_cfg_access_unlock(ioc->pdev); 8022 ioc_err(ioc, "diag reset: FAILED\n"); 8023 return -EFAULT; 8024 } 8025 8026 /** 8027 * mpt3sas_base_make_ioc_ready - put controller in READY state 8028 * @ioc: per adapter object 8029 * @type: FORCE_BIG_HAMMER or SOFT_RESET 8030 * 8031 * Return: 0 for success, non-zero for failure. 8032 */ 8033 int 8034 mpt3sas_base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type) 8035 { 8036 u32 ioc_state; 8037 int rc; 8038 int count; 8039 8040 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 8041 8042 if (ioc->pci_error_recovery) 8043 return 0; 8044 8045 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 8046 dhsprintk(ioc, 8047 ioc_info(ioc, "%s: ioc_state(0x%08x)\n", 8048 __func__, ioc_state)); 8049 8050 /* if in RESET state, it should move to READY state shortly */ 8051 count = 0; 8052 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) { 8053 while ((ioc_state & MPI2_IOC_STATE_MASK) != 8054 MPI2_IOC_STATE_READY) { 8055 if (count++ == 10) { 8056 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 8057 __func__, ioc_state); 8058 return -EFAULT; 8059 } 8060 ssleep(1); 8061 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 8062 } 8063 } 8064 8065 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) 8066 return 0; 8067 8068 if (ioc_state & MPI2_DOORBELL_USED) { 8069 ioc_info(ioc, "unexpected doorbell active!\n"); 8070 goto issue_diag_reset; 8071 } 8072 8073 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 8074 mpt3sas_print_fault_code(ioc, ioc_state & 8075 MPI2_DOORBELL_DATA_MASK); 8076 goto issue_diag_reset; 8077 } 8078 8079 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) { 8080 /* 8081 * if host reset is invoked while watch dog thread is waiting 8082 * for IOC state to be changed to Fault state then driver has 8083 * to wait here for CoreDump state to clear otherwise reset 8084 * will be issued to the FW and FW move the IOC state to 8085 * reset state without copying the FW logs to coredump region. 8086 */ 8087 if (ioc->ioc_coredump_loop != MPT3SAS_COREDUMP_LOOP_DONE) { 8088 mpt3sas_print_coredump_info(ioc, ioc_state & 8089 MPI2_DOORBELL_DATA_MASK); 8090 mpt3sas_base_wait_for_coredump_completion(ioc, 8091 __func__); 8092 } 8093 goto issue_diag_reset; 8094 } 8095 8096 if (type == FORCE_BIG_HAMMER) 8097 goto issue_diag_reset; 8098 8099 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL) 8100 if (!(_base_send_ioc_reset(ioc, 8101 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) { 8102 return 0; 8103 } 8104 8105 issue_diag_reset: 8106 rc = _base_diag_reset(ioc); 8107 return rc; 8108 } 8109 8110 /** 8111 * _base_make_ioc_operational - put controller in OPERATIONAL state 8112 * @ioc: per adapter object 8113 * 8114 * Return: 0 for success, non-zero for failure. 8115 */ 8116 static int 8117 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc) 8118 { 8119 int r, i, index, rc; 8120 unsigned long flags; 8121 u32 reply_address; 8122 u16 smid; 8123 struct _tr_list *delayed_tr, *delayed_tr_next; 8124 struct _sc_list *delayed_sc, *delayed_sc_next; 8125 struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next; 8126 u8 hide_flag; 8127 struct adapter_reply_queue *reply_q; 8128 Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig; 8129 8130 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 8131 8132 /* clean the delayed target reset list */ 8133 list_for_each_entry_safe(delayed_tr, delayed_tr_next, 8134 &ioc->delayed_tr_list, list) { 8135 list_del(&delayed_tr->list); 8136 kfree(delayed_tr); 8137 } 8138 8139 8140 list_for_each_entry_safe(delayed_tr, delayed_tr_next, 8141 &ioc->delayed_tr_volume_list, list) { 8142 list_del(&delayed_tr->list); 8143 kfree(delayed_tr); 8144 } 8145 8146 list_for_each_entry_safe(delayed_sc, delayed_sc_next, 8147 &ioc->delayed_sc_list, list) { 8148 list_del(&delayed_sc->list); 8149 kfree(delayed_sc); 8150 } 8151 8152 list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next, 8153 &ioc->delayed_event_ack_list, list) { 8154 list_del(&delayed_event_ack->list); 8155 kfree(delayed_event_ack); 8156 } 8157 8158 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 8159 8160 /* hi-priority queue */ 8161 INIT_LIST_HEAD(&ioc->hpr_free_list); 8162 smid = ioc->hi_priority_smid; 8163 for (i = 0; i < ioc->hi_priority_depth; i++, smid++) { 8164 ioc->hpr_lookup[i].cb_idx = 0xFF; 8165 ioc->hpr_lookup[i].smid = smid; 8166 list_add_tail(&ioc->hpr_lookup[i].tracker_list, 8167 &ioc->hpr_free_list); 8168 } 8169 8170 /* internal queue */ 8171 INIT_LIST_HEAD(&ioc->internal_free_list); 8172 smid = ioc->internal_smid; 8173 for (i = 0; i < ioc->internal_depth; i++, smid++) { 8174 ioc->internal_lookup[i].cb_idx = 0xFF; 8175 ioc->internal_lookup[i].smid = smid; 8176 list_add_tail(&ioc->internal_lookup[i].tracker_list, 8177 &ioc->internal_free_list); 8178 } 8179 8180 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 8181 8182 /* initialize Reply Free Queue */ 8183 for (i = 0, reply_address = (u32)ioc->reply_dma ; 8184 i < ioc->reply_free_queue_depth ; i++, reply_address += 8185 ioc->reply_sz) { 8186 ioc->reply_free[i] = cpu_to_le32(reply_address); 8187 if (ioc->is_mcpu_endpoint) 8188 _base_clone_reply_to_sys_mem(ioc, 8189 reply_address, i); 8190 } 8191 8192 /* initialize reply queues */ 8193 if (ioc->is_driver_loading) 8194 _base_assign_reply_queues(ioc); 8195 8196 /* initialize Reply Post Free Queue */ 8197 index = 0; 8198 reply_post_free_contig = ioc->reply_post[0].reply_post_free; 8199 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 8200 /* 8201 * If RDPQ is enabled, switch to the next allocation. 8202 * Otherwise advance within the contiguous region. 8203 */ 8204 if (ioc->rdpq_array_enable) { 8205 reply_q->reply_post_free = 8206 ioc->reply_post[index++].reply_post_free; 8207 } else { 8208 reply_q->reply_post_free = reply_post_free_contig; 8209 reply_post_free_contig += ioc->reply_post_queue_depth; 8210 } 8211 8212 reply_q->reply_post_host_index = 0; 8213 for (i = 0; i < ioc->reply_post_queue_depth; i++) 8214 reply_q->reply_post_free[i].Words = 8215 cpu_to_le64(ULLONG_MAX); 8216 if (!_base_is_controller_msix_enabled(ioc)) 8217 goto skip_init_reply_post_free_queue; 8218 } 8219 skip_init_reply_post_free_queue: 8220 8221 r = _base_send_ioc_init(ioc); 8222 if (r) { 8223 /* 8224 * No need to check IOC state for fault state & issue 8225 * diag reset during host reset. This check is need 8226 * only during driver load time. 8227 */ 8228 if (!ioc->is_driver_loading) 8229 return r; 8230 8231 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc); 8232 if (rc || (_base_send_ioc_init(ioc))) 8233 return r; 8234 } 8235 8236 /* initialize reply free host index */ 8237 ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1; 8238 writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex); 8239 8240 /* initialize reply post host index */ 8241 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 8242 if (ioc->combined_reply_queue) 8243 writel((reply_q->msix_index & 7)<< 8244 MPI2_RPHI_MSIX_INDEX_SHIFT, 8245 ioc->replyPostRegisterIndex[reply_q->msix_index/8]); 8246 else 8247 writel(reply_q->msix_index << 8248 MPI2_RPHI_MSIX_INDEX_SHIFT, 8249 &ioc->chip->ReplyPostHostIndex); 8250 8251 if (!_base_is_controller_msix_enabled(ioc)) 8252 goto skip_init_reply_post_host_index; 8253 } 8254 8255 skip_init_reply_post_host_index: 8256 8257 mpt3sas_base_unmask_interrupts(ioc); 8258 8259 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 8260 r = _base_display_fwpkg_version(ioc); 8261 if (r) 8262 return r; 8263 } 8264 8265 r = _base_static_config_pages(ioc); 8266 if (r) 8267 return r; 8268 8269 r = _base_event_notification(ioc); 8270 if (r) 8271 return r; 8272 8273 if (!ioc->shost_recovery) { 8274 8275 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier 8276 == 0x80) { 8277 hide_flag = (u8) ( 8278 le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) & 8279 MFG_PAGE10_HIDE_SSDS_MASK); 8280 if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK) 8281 ioc->mfg_pg10_hide_flag = hide_flag; 8282 } 8283 8284 ioc->wait_for_discovery_to_complete = 8285 _base_determine_wait_on_discovery(ioc); 8286 8287 return r; /* scan_start and scan_finished support */ 8288 } 8289 8290 r = _base_send_port_enable(ioc); 8291 if (r) 8292 return r; 8293 8294 return r; 8295 } 8296 8297 /** 8298 * mpt3sas_base_free_resources - free resources controller resources 8299 * @ioc: per adapter object 8300 */ 8301 void 8302 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc) 8303 { 8304 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 8305 8306 /* synchronizing freeing resource with pci_access_mutex lock */ 8307 mutex_lock(&ioc->pci_access_mutex); 8308 if (ioc->chip_phys && ioc->chip) { 8309 mpt3sas_base_mask_interrupts(ioc); 8310 ioc->shost_recovery = 1; 8311 mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET); 8312 ioc->shost_recovery = 0; 8313 } 8314 8315 mpt3sas_base_unmap_resources(ioc); 8316 mutex_unlock(&ioc->pci_access_mutex); 8317 return; 8318 } 8319 8320 /** 8321 * mpt3sas_base_attach - attach controller instance 8322 * @ioc: per adapter object 8323 * 8324 * Return: 0 for success, non-zero for failure. 8325 */ 8326 int 8327 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc) 8328 { 8329 int r, i, rc; 8330 int cpu_id, last_cpu_id = 0; 8331 8332 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 8333 8334 /* setup cpu_msix_table */ 8335 ioc->cpu_count = num_online_cpus(); 8336 for_each_online_cpu(cpu_id) 8337 last_cpu_id = cpu_id; 8338 ioc->cpu_msix_table_sz = last_cpu_id + 1; 8339 ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL); 8340 ioc->reply_queue_count = 1; 8341 if (!ioc->cpu_msix_table) { 8342 ioc_info(ioc, "Allocation for cpu_msix_table failed!!!\n"); 8343 r = -ENOMEM; 8344 goto out_free_resources; 8345 } 8346 8347 if (ioc->is_warpdrive) { 8348 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz, 8349 sizeof(resource_size_t *), GFP_KERNEL); 8350 if (!ioc->reply_post_host_index) { 8351 ioc_info(ioc, "Allocation for reply_post_host_index failed!!!\n"); 8352 r = -ENOMEM; 8353 goto out_free_resources; 8354 } 8355 } 8356 8357 ioc->smp_affinity_enable = smp_affinity_enable; 8358 8359 ioc->rdpq_array_enable_assigned = 0; 8360 ioc->use_32bit_dma = false; 8361 ioc->dma_mask = 64; 8362 if (ioc->is_aero_ioc) 8363 ioc->base_readl = &_base_readl_aero; 8364 else 8365 ioc->base_readl = &_base_readl; 8366 r = mpt3sas_base_map_resources(ioc); 8367 if (r) 8368 goto out_free_resources; 8369 8370 pci_set_drvdata(ioc->pdev, ioc->shost); 8371 r = _base_get_ioc_facts(ioc); 8372 if (r) { 8373 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc); 8374 if (rc || (_base_get_ioc_facts(ioc))) 8375 goto out_free_resources; 8376 } 8377 8378 switch (ioc->hba_mpi_version_belonged) { 8379 case MPI2_VERSION: 8380 ioc->build_sg_scmd = &_base_build_sg_scmd; 8381 ioc->build_sg = &_base_build_sg; 8382 ioc->build_zero_len_sge = &_base_build_zero_len_sge; 8383 ioc->get_msix_index_for_smlio = &_base_get_msix_index; 8384 break; 8385 case MPI25_VERSION: 8386 case MPI26_VERSION: 8387 /* 8388 * In SAS3.0, 8389 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and 8390 * Target Status - all require the IEEE formatted scatter gather 8391 * elements. 8392 */ 8393 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee; 8394 ioc->build_sg = &_base_build_sg_ieee; 8395 ioc->build_nvme_prp = &_base_build_nvme_prp; 8396 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee; 8397 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t); 8398 if (ioc->high_iops_queues) 8399 ioc->get_msix_index_for_smlio = 8400 &_base_get_high_iops_msix_index; 8401 else 8402 ioc->get_msix_index_for_smlio = &_base_get_msix_index; 8403 break; 8404 } 8405 if (ioc->atomic_desc_capable) { 8406 ioc->put_smid_default = &_base_put_smid_default_atomic; 8407 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic; 8408 ioc->put_smid_fast_path = 8409 &_base_put_smid_fast_path_atomic; 8410 ioc->put_smid_hi_priority = 8411 &_base_put_smid_hi_priority_atomic; 8412 } else { 8413 ioc->put_smid_default = &_base_put_smid_default; 8414 ioc->put_smid_fast_path = &_base_put_smid_fast_path; 8415 ioc->put_smid_hi_priority = &_base_put_smid_hi_priority; 8416 if (ioc->is_mcpu_endpoint) 8417 ioc->put_smid_scsi_io = 8418 &_base_put_smid_mpi_ep_scsi_io; 8419 else 8420 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io; 8421 } 8422 /* 8423 * These function pointers for other requests that don't 8424 * the require IEEE scatter gather elements. 8425 * 8426 * For example Configuration Pages and SAS IOUNIT Control don't. 8427 */ 8428 ioc->build_sg_mpi = &_base_build_sg; 8429 ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge; 8430 8431 r = mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET); 8432 if (r) 8433 goto out_free_resources; 8434 8435 ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts, 8436 sizeof(struct mpt3sas_port_facts), GFP_KERNEL); 8437 if (!ioc->pfacts) { 8438 r = -ENOMEM; 8439 goto out_free_resources; 8440 } 8441 8442 for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) { 8443 r = _base_get_port_facts(ioc, i); 8444 if (r) { 8445 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc); 8446 if (rc || (_base_get_port_facts(ioc, i))) 8447 goto out_free_resources; 8448 } 8449 } 8450 8451 r = _base_allocate_memory_pools(ioc); 8452 if (r) 8453 goto out_free_resources; 8454 8455 if (irqpoll_weight > 0) 8456 ioc->thresh_hold = irqpoll_weight; 8457 else 8458 ioc->thresh_hold = ioc->hba_queue_depth/4; 8459 8460 _base_init_irqpolls(ioc); 8461 init_waitqueue_head(&ioc->reset_wq); 8462 8463 /* allocate memory pd handle bitmask list */ 8464 ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8); 8465 if (ioc->facts.MaxDevHandle % 8) 8466 ioc->pd_handles_sz++; 8467 ioc->pd_handles = kzalloc(ioc->pd_handles_sz, 8468 GFP_KERNEL); 8469 if (!ioc->pd_handles) { 8470 r = -ENOMEM; 8471 goto out_free_resources; 8472 } 8473 ioc->blocking_handles = kzalloc(ioc->pd_handles_sz, 8474 GFP_KERNEL); 8475 if (!ioc->blocking_handles) { 8476 r = -ENOMEM; 8477 goto out_free_resources; 8478 } 8479 8480 /* allocate memory for pending OS device add list */ 8481 ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8); 8482 if (ioc->facts.MaxDevHandle % 8) 8483 ioc->pend_os_device_add_sz++; 8484 ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz, 8485 GFP_KERNEL); 8486 if (!ioc->pend_os_device_add) { 8487 r = -ENOMEM; 8488 goto out_free_resources; 8489 } 8490 8491 ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz; 8492 ioc->device_remove_in_progress = 8493 kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL); 8494 if (!ioc->device_remove_in_progress) { 8495 r = -ENOMEM; 8496 goto out_free_resources; 8497 } 8498 8499 ioc->fwfault_debug = mpt3sas_fwfault_debug; 8500 8501 /* base internal command bits */ 8502 mutex_init(&ioc->base_cmds.mutex); 8503 ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 8504 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 8505 8506 /* port_enable command bits */ 8507 ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 8508 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED; 8509 8510 /* transport internal command bits */ 8511 ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 8512 ioc->transport_cmds.status = MPT3_CMD_NOT_USED; 8513 mutex_init(&ioc->transport_cmds.mutex); 8514 8515 /* scsih internal command bits */ 8516 ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 8517 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED; 8518 mutex_init(&ioc->scsih_cmds.mutex); 8519 8520 /* task management internal command bits */ 8521 ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 8522 ioc->tm_cmds.status = MPT3_CMD_NOT_USED; 8523 mutex_init(&ioc->tm_cmds.mutex); 8524 8525 /* config page internal command bits */ 8526 ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 8527 ioc->config_cmds.status = MPT3_CMD_NOT_USED; 8528 mutex_init(&ioc->config_cmds.mutex); 8529 8530 /* ctl module internal command bits */ 8531 ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 8532 ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL); 8533 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED; 8534 mutex_init(&ioc->ctl_cmds.mutex); 8535 8536 if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply || 8537 !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply || 8538 !ioc->tm_cmds.reply || !ioc->config_cmds.reply || 8539 !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) { 8540 r = -ENOMEM; 8541 goto out_free_resources; 8542 } 8543 8544 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 8545 ioc->event_masks[i] = -1; 8546 8547 /* here we enable the events we care about */ 8548 _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY); 8549 _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE); 8550 _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST); 8551 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE); 8552 _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE); 8553 _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST); 8554 _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME); 8555 _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK); 8556 _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS); 8557 _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED); 8558 _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD); 8559 _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION); 8560 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR); 8561 if (ioc->hba_mpi_version_belonged == MPI26_VERSION) { 8562 if (ioc->is_gen35_ioc) { 8563 _base_unmask_events(ioc, 8564 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE); 8565 _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION); 8566 _base_unmask_events(ioc, 8567 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST); 8568 } 8569 } 8570 r = _base_make_ioc_operational(ioc); 8571 if (r == -EAGAIN) { 8572 r = _base_make_ioc_operational(ioc); 8573 if (r) 8574 goto out_free_resources; 8575 } 8576 8577 /* 8578 * Copy current copy of IOCFacts in prev_fw_facts 8579 * and it will be used during online firmware upgrade. 8580 */ 8581 memcpy(&ioc->prev_fw_facts, &ioc->facts, 8582 sizeof(struct mpt3sas_facts)); 8583 8584 ioc->non_operational_loop = 0; 8585 ioc->ioc_coredump_loop = 0; 8586 ioc->got_task_abort_from_ioctl = 0; 8587 return 0; 8588 8589 out_free_resources: 8590 8591 ioc->remove_host = 1; 8592 8593 mpt3sas_base_free_resources(ioc); 8594 _base_release_memory_pools(ioc); 8595 pci_set_drvdata(ioc->pdev, NULL); 8596 kfree(ioc->cpu_msix_table); 8597 if (ioc->is_warpdrive) 8598 kfree(ioc->reply_post_host_index); 8599 kfree(ioc->pd_handles); 8600 kfree(ioc->blocking_handles); 8601 kfree(ioc->device_remove_in_progress); 8602 kfree(ioc->pend_os_device_add); 8603 kfree(ioc->tm_cmds.reply); 8604 kfree(ioc->transport_cmds.reply); 8605 kfree(ioc->scsih_cmds.reply); 8606 kfree(ioc->config_cmds.reply); 8607 kfree(ioc->base_cmds.reply); 8608 kfree(ioc->port_enable_cmds.reply); 8609 kfree(ioc->ctl_cmds.reply); 8610 kfree(ioc->ctl_cmds.sense); 8611 kfree(ioc->pfacts); 8612 ioc->ctl_cmds.reply = NULL; 8613 ioc->base_cmds.reply = NULL; 8614 ioc->tm_cmds.reply = NULL; 8615 ioc->scsih_cmds.reply = NULL; 8616 ioc->transport_cmds.reply = NULL; 8617 ioc->config_cmds.reply = NULL; 8618 ioc->pfacts = NULL; 8619 return r; 8620 } 8621 8622 8623 /** 8624 * mpt3sas_base_detach - remove controller instance 8625 * @ioc: per adapter object 8626 */ 8627 void 8628 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc) 8629 { 8630 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 8631 8632 mpt3sas_base_stop_watchdog(ioc); 8633 mpt3sas_base_free_resources(ioc); 8634 _base_release_memory_pools(ioc); 8635 mpt3sas_free_enclosure_list(ioc); 8636 pci_set_drvdata(ioc->pdev, NULL); 8637 kfree(ioc->cpu_msix_table); 8638 if (ioc->is_warpdrive) 8639 kfree(ioc->reply_post_host_index); 8640 kfree(ioc->pd_handles); 8641 kfree(ioc->blocking_handles); 8642 kfree(ioc->device_remove_in_progress); 8643 kfree(ioc->pend_os_device_add); 8644 kfree(ioc->pfacts); 8645 kfree(ioc->ctl_cmds.reply); 8646 kfree(ioc->ctl_cmds.sense); 8647 kfree(ioc->base_cmds.reply); 8648 kfree(ioc->port_enable_cmds.reply); 8649 kfree(ioc->tm_cmds.reply); 8650 kfree(ioc->transport_cmds.reply); 8651 kfree(ioc->scsih_cmds.reply); 8652 kfree(ioc->config_cmds.reply); 8653 } 8654 8655 /** 8656 * _base_pre_reset_handler - pre reset handler 8657 * @ioc: per adapter object 8658 */ 8659 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc) 8660 { 8661 mpt3sas_scsih_pre_reset_handler(ioc); 8662 mpt3sas_ctl_pre_reset_handler(ioc); 8663 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__)); 8664 } 8665 8666 /** 8667 * _base_clear_outstanding_mpt_commands - clears outstanding mpt commands 8668 * @ioc: per adapter object 8669 */ 8670 static void 8671 _base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER *ioc) 8672 { 8673 dtmprintk(ioc, 8674 ioc_info(ioc, "%s: clear outstanding mpt cmds\n", __func__)); 8675 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) { 8676 ioc->transport_cmds.status |= MPT3_CMD_RESET; 8677 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid); 8678 complete(&ioc->transport_cmds.done); 8679 } 8680 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 8681 ioc->base_cmds.status |= MPT3_CMD_RESET; 8682 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid); 8683 complete(&ioc->base_cmds.done); 8684 } 8685 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 8686 ioc->port_enable_failed = 1; 8687 ioc->port_enable_cmds.status |= MPT3_CMD_RESET; 8688 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid); 8689 if (ioc->is_driver_loading) { 8690 ioc->start_scan_failed = 8691 MPI2_IOCSTATUS_INTERNAL_ERROR; 8692 ioc->start_scan = 0; 8693 } else { 8694 complete(&ioc->port_enable_cmds.done); 8695 } 8696 } 8697 if (ioc->config_cmds.status & MPT3_CMD_PENDING) { 8698 ioc->config_cmds.status |= MPT3_CMD_RESET; 8699 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid); 8700 ioc->config_cmds.smid = USHRT_MAX; 8701 complete(&ioc->config_cmds.done); 8702 } 8703 } 8704 8705 /** 8706 * _base_clear_outstanding_commands - clear all outstanding commands 8707 * @ioc: per adapter object 8708 */ 8709 static void _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc) 8710 { 8711 mpt3sas_scsih_clear_outstanding_scsi_tm_commands(ioc); 8712 mpt3sas_ctl_clear_outstanding_ioctls(ioc); 8713 _base_clear_outstanding_mpt_commands(ioc); 8714 } 8715 8716 /** 8717 * _base_reset_done_handler - reset done handler 8718 * @ioc: per adapter object 8719 */ 8720 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc) 8721 { 8722 mpt3sas_scsih_reset_done_handler(ioc); 8723 mpt3sas_ctl_reset_done_handler(ioc); 8724 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__)); 8725 } 8726 8727 /** 8728 * mpt3sas_wait_for_commands_to_complete - reset controller 8729 * @ioc: Pointer to MPT_ADAPTER structure 8730 * 8731 * This function is waiting 10s for all pending commands to complete 8732 * prior to putting controller in reset. 8733 */ 8734 void 8735 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc) 8736 { 8737 u32 ioc_state; 8738 8739 ioc->pending_io_count = 0; 8740 8741 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 8742 if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) 8743 return; 8744 8745 /* pending command count */ 8746 ioc->pending_io_count = scsi_host_busy(ioc->shost); 8747 8748 if (!ioc->pending_io_count) 8749 return; 8750 8751 /* wait for pending commands to complete */ 8752 wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ); 8753 } 8754 8755 /** 8756 * _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts 8757 * attributes during online firmware upgrade and update the corresponding 8758 * IOC variables accordingly. 8759 * 8760 * @ioc: Pointer to MPT_ADAPTER structure 8761 */ 8762 static int 8763 _base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc) 8764 { 8765 u16 pd_handles_sz; 8766 void *pd_handles = NULL, *blocking_handles = NULL; 8767 void *pend_os_device_add = NULL, *device_remove_in_progress = NULL; 8768 struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts; 8769 8770 if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle) { 8771 pd_handles_sz = (ioc->facts.MaxDevHandle / 8); 8772 if (ioc->facts.MaxDevHandle % 8) 8773 pd_handles_sz++; 8774 8775 pd_handles = krealloc(ioc->pd_handles, pd_handles_sz, 8776 GFP_KERNEL); 8777 if (!pd_handles) { 8778 ioc_info(ioc, 8779 "Unable to allocate the memory for pd_handles of sz: %d\n", 8780 pd_handles_sz); 8781 return -ENOMEM; 8782 } 8783 memset(pd_handles + ioc->pd_handles_sz, 0, 8784 (pd_handles_sz - ioc->pd_handles_sz)); 8785 ioc->pd_handles = pd_handles; 8786 8787 blocking_handles = krealloc(ioc->blocking_handles, 8788 pd_handles_sz, GFP_KERNEL); 8789 if (!blocking_handles) { 8790 ioc_info(ioc, 8791 "Unable to allocate the memory for " 8792 "blocking_handles of sz: %d\n", 8793 pd_handles_sz); 8794 return -ENOMEM; 8795 } 8796 memset(blocking_handles + ioc->pd_handles_sz, 0, 8797 (pd_handles_sz - ioc->pd_handles_sz)); 8798 ioc->blocking_handles = blocking_handles; 8799 ioc->pd_handles_sz = pd_handles_sz; 8800 8801 pend_os_device_add = krealloc(ioc->pend_os_device_add, 8802 pd_handles_sz, GFP_KERNEL); 8803 if (!pend_os_device_add) { 8804 ioc_info(ioc, 8805 "Unable to allocate the memory for pend_os_device_add of sz: %d\n", 8806 pd_handles_sz); 8807 return -ENOMEM; 8808 } 8809 memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0, 8810 (pd_handles_sz - ioc->pend_os_device_add_sz)); 8811 ioc->pend_os_device_add = pend_os_device_add; 8812 ioc->pend_os_device_add_sz = pd_handles_sz; 8813 8814 device_remove_in_progress = krealloc( 8815 ioc->device_remove_in_progress, pd_handles_sz, GFP_KERNEL); 8816 if (!device_remove_in_progress) { 8817 ioc_info(ioc, 8818 "Unable to allocate the memory for " 8819 "device_remove_in_progress of sz: %d\n " 8820 , pd_handles_sz); 8821 return -ENOMEM; 8822 } 8823 memset(device_remove_in_progress + 8824 ioc->device_remove_in_progress_sz, 0, 8825 (pd_handles_sz - ioc->device_remove_in_progress_sz)); 8826 ioc->device_remove_in_progress = device_remove_in_progress; 8827 ioc->device_remove_in_progress_sz = pd_handles_sz; 8828 } 8829 8830 memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts)); 8831 return 0; 8832 } 8833 8834 /** 8835 * mpt3sas_base_hard_reset_handler - reset controller 8836 * @ioc: Pointer to MPT_ADAPTER structure 8837 * @type: FORCE_BIG_HAMMER or SOFT_RESET 8838 * 8839 * Return: 0 for success, non-zero for failure. 8840 */ 8841 int 8842 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc, 8843 enum reset_type type) 8844 { 8845 int r; 8846 unsigned long flags; 8847 u32 ioc_state; 8848 u8 is_fault = 0, is_trigger = 0; 8849 8850 dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__)); 8851 8852 if (ioc->pci_error_recovery) { 8853 ioc_err(ioc, "%s: pci error recovery reset\n", __func__); 8854 r = 0; 8855 goto out_unlocked; 8856 } 8857 8858 if (mpt3sas_fwfault_debug) 8859 mpt3sas_halt_firmware(ioc); 8860 8861 /* wait for an active reset in progress to complete */ 8862 mutex_lock(&ioc->reset_in_progress_mutex); 8863 8864 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 8865 ioc->shost_recovery = 1; 8866 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 8867 8868 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 8869 MPT3_DIAG_BUFFER_IS_REGISTERED) && 8870 (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 8871 MPT3_DIAG_BUFFER_IS_RELEASED))) { 8872 is_trigger = 1; 8873 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 8874 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT || 8875 (ioc_state & MPI2_IOC_STATE_MASK) == 8876 MPI2_IOC_STATE_COREDUMP) { 8877 is_fault = 1; 8878 ioc->htb_rel.trigger_info_dwords[1] = 8879 (ioc_state & MPI2_DOORBELL_DATA_MASK); 8880 } 8881 } 8882 _base_pre_reset_handler(ioc); 8883 mpt3sas_wait_for_commands_to_complete(ioc); 8884 mpt3sas_base_mask_interrupts(ioc); 8885 mpt3sas_base_pause_mq_polling(ioc); 8886 r = mpt3sas_base_make_ioc_ready(ioc, type); 8887 if (r) 8888 goto out; 8889 _base_clear_outstanding_commands(ioc); 8890 8891 /* If this hard reset is called while port enable is active, then 8892 * there is no reason to call make_ioc_operational 8893 */ 8894 if (ioc->is_driver_loading && ioc->port_enable_failed) { 8895 ioc->remove_host = 1; 8896 r = -EFAULT; 8897 goto out; 8898 } 8899 r = _base_get_ioc_facts(ioc); 8900 if (r) 8901 goto out; 8902 8903 r = _base_check_ioc_facts_changes(ioc); 8904 if (r) { 8905 ioc_info(ioc, 8906 "Some of the parameters got changed in this new firmware" 8907 " image and it requires system reboot\n"); 8908 goto out; 8909 } 8910 if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable) 8911 panic("%s: Issue occurred with flashing controller firmware." 8912 "Please reboot the system and ensure that the correct" 8913 " firmware version is running\n", ioc->name); 8914 8915 r = _base_make_ioc_operational(ioc); 8916 if (!r) 8917 _base_reset_done_handler(ioc); 8918 8919 out: 8920 ioc_info(ioc, "%s: %s\n", __func__, r == 0 ? "SUCCESS" : "FAILED"); 8921 8922 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 8923 ioc->shost_recovery = 0; 8924 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 8925 ioc->ioc_reset_count++; 8926 mutex_unlock(&ioc->reset_in_progress_mutex); 8927 mpt3sas_base_resume_mq_polling(ioc); 8928 8929 out_unlocked: 8930 if ((r == 0) && is_trigger) { 8931 if (is_fault) 8932 mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT); 8933 else 8934 mpt3sas_trigger_master(ioc, 8935 MASTER_TRIGGER_ADAPTER_RESET); 8936 } 8937 dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__)); 8938 return r; 8939 } 8940