1 /*
2  * This is the Fusion MPT base driver providing common API layer interface
3  * for access to MPT (Message Passing Technology) firmware.
4  *
5  * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6  * Copyright (C) 2012-2014  LSI Corporation
7  * Copyright (C) 2013-2014 Avago Technologies
8  *  (mailto: MPT-FusionLinux.pdl@avagotech.com)
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version 2
13  * of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * NO WARRANTY
21  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25  * solely responsible for determining the appropriateness of using and
26  * distributing the Program and assumes all risks associated with its
27  * exercise of rights under this Agreement, including but not limited to
28  * the risks and costs of program errors, damage to or loss of data,
29  * programs or equipment, and unavailability or interruption of operations.
30 
31  * DISCLAIMER OF LIABILITY
32  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39 
40  * You should have received a copy of the GNU General Public License
41  * along with this program; if not, write to the Free Software
42  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
43  * USA.
44  */
45 
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <asm/page.h>        /* To get host page size per arch */
63 #include <linux/aer.h>
64 
65 
66 #include "mpt3sas_base.h"
67 
68 static MPT_CALLBACK	mpt_callbacks[MPT_MAX_CALLBACKS];
69 
70 
71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
72 
73  /* maximum controller queue depth */
74 #define MAX_HBA_QUEUE_DEPTH	30000
75 #define MAX_CHAIN_DEPTH		100000
76 static int max_queue_depth = -1;
77 module_param(max_queue_depth, int, 0444);
78 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
79 
80 static int max_sgl_entries = -1;
81 module_param(max_sgl_entries, int, 0444);
82 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
83 
84 static int msix_disable = -1;
85 module_param(msix_disable, int, 0444);
86 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
87 
88 static int smp_affinity_enable = 1;
89 module_param(smp_affinity_enable, int, 0444);
90 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)");
91 
92 static int max_msix_vectors = -1;
93 module_param(max_msix_vectors, int, 0444);
94 MODULE_PARM_DESC(max_msix_vectors,
95 	" max msix vectors");
96 
97 static int irqpoll_weight = -1;
98 module_param(irqpoll_weight, int, 0444);
99 MODULE_PARM_DESC(irqpoll_weight,
100 	"irq poll weight (default= one fourth of HBA queue depth)");
101 
102 static int mpt3sas_fwfault_debug;
103 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
104 	" enable detection of firmware fault and halt firmware - (default=0)");
105 
106 static int perf_mode = -1;
107 module_param(perf_mode, int, 0444);
108 MODULE_PARM_DESC(perf_mode,
109 	"Performance mode (only for Aero/Sea Generation), options:\n\t\t"
110 	"0 - balanced: high iops mode is enabled &\n\t\t"
111 	"interrupt coalescing is enabled only on high iops queues,\n\t\t"
112 	"1 - iops: high iops mode is disabled &\n\t\t"
113 	"interrupt coalescing is enabled on all queues,\n\t\t"
114 	"2 - latency: high iops mode is disabled &\n\t\t"
115 	"interrupt coalescing is enabled on all queues with timeout value 0xA,\n"
116 	"\t\tdefault - default perf_mode is 'balanced'"
117 	);
118 
119 enum mpt3sas_perf_mode {
120 	MPT_PERF_MODE_DEFAULT	= -1,
121 	MPT_PERF_MODE_BALANCED	= 0,
122 	MPT_PERF_MODE_IOPS	= 1,
123 	MPT_PERF_MODE_LATENCY	= 2,
124 };
125 
126 static int
127 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc,
128 		u32 ioc_state, int timeout);
129 static int
130 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
131 static void
132 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc);
133 static void
134 _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc);
135 
136 /**
137  * mpt3sas_base_check_cmd_timeout - Function
138  *		to check timeout and command termination due
139  *		to Host reset.
140  *
141  * @ioc:	per adapter object.
142  * @status:	Status of issued command.
143  * @mpi_request:mf request pointer.
144  * @sz:		size of buffer.
145  *
146  * @Returns - 1/0 Reset to be done or Not
147  */
148 u8
149 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc,
150 		u8 status, void *mpi_request, int sz)
151 {
152 	u8 issue_reset = 0;
153 
154 	if (!(status & MPT3_CMD_RESET))
155 		issue_reset = 1;
156 
157 	ioc_err(ioc, "Command %s\n",
158 		issue_reset == 0 ? "terminated due to Host Reset" : "Timeout");
159 	_debug_dump_mf(mpi_request, sz);
160 
161 	return issue_reset;
162 }
163 
164 /**
165  * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
166  * @val: ?
167  * @kp: ?
168  *
169  * Return: ?
170  */
171 static int
172 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp)
173 {
174 	int ret = param_set_int(val, kp);
175 	struct MPT3SAS_ADAPTER *ioc;
176 
177 	if (ret)
178 		return ret;
179 
180 	/* global ioc spinlock to protect controller list on list operations */
181 	pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
182 	spin_lock(&gioc_lock);
183 	list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
184 		ioc->fwfault_debug = mpt3sas_fwfault_debug;
185 	spin_unlock(&gioc_lock);
186 	return 0;
187 }
188 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
189 	param_get_int, &mpt3sas_fwfault_debug, 0644);
190 
191 /**
192  * _base_readl_aero - retry readl for max three times.
193  * @addr - MPT Fusion system interface register address
194  *
195  * Retry the readl() for max three times if it gets zero value
196  * while reading the system interface register.
197  */
198 static inline u32
199 _base_readl_aero(const volatile void __iomem *addr)
200 {
201 	u32 i = 0, ret_val;
202 
203 	do {
204 		ret_val = readl(addr);
205 		i++;
206 	} while (ret_val == 0 && i < 3);
207 
208 	return ret_val;
209 }
210 
211 static inline u32
212 _base_readl(const volatile void __iomem *addr)
213 {
214 	return readl(addr);
215 }
216 
217 /**
218  * _base_clone_reply_to_sys_mem - copies reply to reply free iomem
219  *				  in BAR0 space.
220  *
221  * @ioc: per adapter object
222  * @reply: reply message frame(lower 32bit addr)
223  * @index: System request message index.
224  */
225 static void
226 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply,
227 		u32 index)
228 {
229 	/*
230 	 * 256 is offset within sys register.
231 	 * 256 offset MPI frame starts. Max MPI frame supported is 32.
232 	 * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts
233 	 */
234 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
235 	void __iomem *reply_free_iomem = (void __iomem *)ioc->chip +
236 			MPI_FRAME_START_OFFSET +
237 			(cmd_credit * ioc->request_sz) + (index * sizeof(u32));
238 
239 	writel(reply, reply_free_iomem);
240 }
241 
242 /**
243  * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames
244  *				to system/BAR0 region.
245  *
246  * @dst_iomem: Pointer to the destination location in BAR0 space.
247  * @src: Pointer to the Source data.
248  * @size: Size of data to be copied.
249  */
250 static void
251 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size)
252 {
253 	int i;
254 	u32 *src_virt_mem = (u32 *)src;
255 
256 	for (i = 0; i < size/4; i++)
257 		writel((u32)src_virt_mem[i],
258 				(void __iomem *)dst_iomem + (i * 4));
259 }
260 
261 /**
262  * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region
263  *
264  * @dst_iomem: Pointer to the destination location in BAR0 space.
265  * @src: Pointer to the Source data.
266  * @size: Size of data to be copied.
267  */
268 static void
269 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size)
270 {
271 	int i;
272 	u32 *src_virt_mem = (u32 *)(src);
273 
274 	for (i = 0; i < size/4; i++)
275 		writel((u32)src_virt_mem[i],
276 			(void __iomem *)dst_iomem + (i * 4));
277 }
278 
279 /**
280  * _base_get_chain - Calculates and Returns virtual chain address
281  *			 for the provided smid in BAR0 space.
282  *
283  * @ioc: per adapter object
284  * @smid: system request message index
285  * @sge_chain_count: Scatter gather chain count.
286  *
287  * Return: the chain address.
288  */
289 static inline void __iomem*
290 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid,
291 		u8 sge_chain_count)
292 {
293 	void __iomem *base_chain, *chain_virt;
294 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
295 
296 	base_chain  = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET +
297 		(cmd_credit * ioc->request_sz) +
298 		REPLY_FREE_POOL_SIZE;
299 	chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth *
300 			ioc->request_sz) + (sge_chain_count * ioc->request_sz);
301 	return chain_virt;
302 }
303 
304 /**
305  * _base_get_chain_phys - Calculates and Returns physical address
306  *			in BAR0 for scatter gather chains, for
307  *			the provided smid.
308  *
309  * @ioc: per adapter object
310  * @smid: system request message index
311  * @sge_chain_count: Scatter gather chain count.
312  *
313  * Return: Physical chain address.
314  */
315 static inline phys_addr_t
316 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid,
317 		u8 sge_chain_count)
318 {
319 	phys_addr_t base_chain_phys, chain_phys;
320 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
321 
322 	base_chain_phys  = ioc->chip_phys + MPI_FRAME_START_OFFSET +
323 		(cmd_credit * ioc->request_sz) +
324 		REPLY_FREE_POOL_SIZE;
325 	chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth *
326 			ioc->request_sz) + (sge_chain_count * ioc->request_sz);
327 	return chain_phys;
328 }
329 
330 /**
331  * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host
332  *			buffer address for the provided smid.
333  *			(Each smid can have 64K starts from 17024)
334  *
335  * @ioc: per adapter object
336  * @smid: system request message index
337  *
338  * Return: Pointer to buffer location in BAR0.
339  */
340 
341 static void __iomem *
342 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
343 {
344 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
345 	// Added extra 1 to reach end of chain.
346 	void __iomem *chain_end = _base_get_chain(ioc,
347 			cmd_credit + 1,
348 			ioc->facts.MaxChainDepth);
349 	return chain_end + (smid * 64 * 1024);
350 }
351 
352 /**
353  * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped
354  *		Host buffer Physical address for the provided smid.
355  *		(Each smid can have 64K starts from 17024)
356  *
357  * @ioc: per adapter object
358  * @smid: system request message index
359  *
360  * Return: Pointer to buffer location in BAR0.
361  */
362 static phys_addr_t
363 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
364 {
365 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
366 	phys_addr_t chain_end_phys = _base_get_chain_phys(ioc,
367 			cmd_credit + 1,
368 			ioc->facts.MaxChainDepth);
369 	return chain_end_phys + (smid * 64 * 1024);
370 }
371 
372 /**
373  * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain
374  *			lookup list and Provides chain_buffer
375  *			address for the matching dma address.
376  *			(Each smid can have 64K starts from 17024)
377  *
378  * @ioc: per adapter object
379  * @chain_buffer_dma: Chain buffer dma address.
380  *
381  * Return: Pointer to chain buffer. Or Null on Failure.
382  */
383 static void *
384 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc,
385 		dma_addr_t chain_buffer_dma)
386 {
387 	u16 index, j;
388 	struct chain_tracker *ct;
389 
390 	for (index = 0; index < ioc->scsiio_depth; index++) {
391 		for (j = 0; j < ioc->chains_needed_per_io; j++) {
392 			ct = &ioc->chain_lookup[index].chains_per_smid[j];
393 			if (ct && ct->chain_buffer_dma == chain_buffer_dma)
394 				return ct->chain_buffer;
395 		}
396 	}
397 	ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n");
398 	return NULL;
399 }
400 
401 /**
402  * _clone_sg_entries -	MPI EP's scsiio and config requests
403  *			are handled here. Base function for
404  *			double buffering, before submitting
405  *			the requests.
406  *
407  * @ioc: per adapter object.
408  * @mpi_request: mf request pointer.
409  * @smid: system request message index.
410  */
411 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc,
412 		void *mpi_request, u16 smid)
413 {
414 	Mpi2SGESimple32_t *sgel, *sgel_next;
415 	u32  sgl_flags, sge_chain_count = 0;
416 	bool is_write = 0;
417 	u16 i = 0;
418 	void __iomem *buffer_iomem;
419 	phys_addr_t buffer_iomem_phys;
420 	void __iomem *buff_ptr;
421 	phys_addr_t buff_ptr_phys;
422 	void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO];
423 	void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO];
424 	phys_addr_t dst_addr_phys;
425 	MPI2RequestHeader_t *request_hdr;
426 	struct scsi_cmnd *scmd;
427 	struct scatterlist *sg_scmd = NULL;
428 	int is_scsiio_req = 0;
429 
430 	request_hdr = (MPI2RequestHeader_t *) mpi_request;
431 
432 	if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
433 		Mpi25SCSIIORequest_t *scsiio_request =
434 			(Mpi25SCSIIORequest_t *)mpi_request;
435 		sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL;
436 		is_scsiio_req = 1;
437 	} else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
438 		Mpi2ConfigRequest_t  *config_req =
439 			(Mpi2ConfigRequest_t *)mpi_request;
440 		sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE;
441 	} else
442 		return;
443 
444 	/* From smid we can get scsi_cmd, once we have sg_scmd,
445 	 * we just need to get sg_virt and sg_next to get virual
446 	 * address associated with sgel->Address.
447 	 */
448 
449 	if (is_scsiio_req) {
450 		/* Get scsi_cmd using smid */
451 		scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
452 		if (scmd == NULL) {
453 			ioc_err(ioc, "scmd is NULL\n");
454 			return;
455 		}
456 
457 		/* Get sg_scmd from scmd provided */
458 		sg_scmd = scsi_sglist(scmd);
459 	}
460 
461 	/*
462 	 * 0 - 255	System register
463 	 * 256 - 4352	MPI Frame. (This is based on maxCredit 32)
464 	 * 4352 - 4864	Reply_free pool (512 byte is reserved
465 	 *		considering maxCredit 32. Reply need extra
466 	 *		room, for mCPU case kept four times of
467 	 *		maxCredit).
468 	 * 4864 - 17152	SGE chain element. (32cmd * 3 chain of
469 	 *		128 byte size = 12288)
470 	 * 17152 - x	Host buffer mapped with smid.
471 	 *		(Each smid can have 64K Max IO.)
472 	 * BAR0+Last 1K MSIX Addr and Data
473 	 * Total size in use 2113664 bytes of 4MB BAR0
474 	 */
475 
476 	buffer_iomem = _base_get_buffer_bar0(ioc, smid);
477 	buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid);
478 
479 	buff_ptr = buffer_iomem;
480 	buff_ptr_phys = buffer_iomem_phys;
481 	WARN_ON(buff_ptr_phys > U32_MAX);
482 
483 	if (le32_to_cpu(sgel->FlagsLength) &
484 			(MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT))
485 		is_write = 1;
486 
487 	for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) {
488 
489 		sgl_flags =
490 		    (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT);
491 
492 		switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) {
493 		case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
494 			/*
495 			 * Helper function which on passing
496 			 * chain_buffer_dma returns chain_buffer. Get
497 			 * the virtual address for sgel->Address
498 			 */
499 			sgel_next =
500 				_base_get_chain_buffer_dma_to_chain_buffer(ioc,
501 						le32_to_cpu(sgel->Address));
502 			if (sgel_next == NULL)
503 				return;
504 			/*
505 			 * This is coping 128 byte chain
506 			 * frame (not a host buffer)
507 			 */
508 			dst_chain_addr[sge_chain_count] =
509 				_base_get_chain(ioc,
510 					smid, sge_chain_count);
511 			src_chain_addr[sge_chain_count] =
512 						(void *) sgel_next;
513 			dst_addr_phys = _base_get_chain_phys(ioc,
514 						smid, sge_chain_count);
515 			WARN_ON(dst_addr_phys > U32_MAX);
516 			sgel->Address =
517 				cpu_to_le32(lower_32_bits(dst_addr_phys));
518 			sgel = sgel_next;
519 			sge_chain_count++;
520 			break;
521 		case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
522 			if (is_write) {
523 				if (is_scsiio_req) {
524 					_base_clone_to_sys_mem(buff_ptr,
525 					    sg_virt(sg_scmd),
526 					    (le32_to_cpu(sgel->FlagsLength) &
527 					    0x00ffffff));
528 					/*
529 					 * FIXME: this relies on a a zero
530 					 * PCI mem_offset.
531 					 */
532 					sgel->Address =
533 					    cpu_to_le32((u32)buff_ptr_phys);
534 				} else {
535 					_base_clone_to_sys_mem(buff_ptr,
536 					    ioc->config_vaddr,
537 					    (le32_to_cpu(sgel->FlagsLength) &
538 					    0x00ffffff));
539 					sgel->Address =
540 					    cpu_to_le32((u32)buff_ptr_phys);
541 				}
542 			}
543 			buff_ptr += (le32_to_cpu(sgel->FlagsLength) &
544 			    0x00ffffff);
545 			buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) &
546 			    0x00ffffff);
547 			if ((le32_to_cpu(sgel->FlagsLength) &
548 			    (MPI2_SGE_FLAGS_END_OF_BUFFER
549 					<< MPI2_SGE_FLAGS_SHIFT)))
550 				goto eob_clone_chain;
551 			else {
552 				/*
553 				 * Every single element in MPT will have
554 				 * associated sg_next. Better to sanity that
555 				 * sg_next is not NULL, but it will be a bug
556 				 * if it is null.
557 				 */
558 				if (is_scsiio_req) {
559 					sg_scmd = sg_next(sg_scmd);
560 					if (sg_scmd)
561 						sgel++;
562 					else
563 						goto eob_clone_chain;
564 				}
565 			}
566 			break;
567 		}
568 	}
569 
570 eob_clone_chain:
571 	for (i = 0; i < sge_chain_count; i++) {
572 		if (is_scsiio_req)
573 			_base_clone_to_sys_mem(dst_chain_addr[i],
574 				src_chain_addr[i], ioc->request_sz);
575 	}
576 }
577 
578 /**
579  *  mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
580  * @arg: input argument, used to derive ioc
581  *
582  * Return:
583  * 0 if controller is removed from pci subsystem.
584  * -1 for other case.
585  */
586 static int mpt3sas_remove_dead_ioc_func(void *arg)
587 {
588 	struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
589 	struct pci_dev *pdev;
590 
591 	if (!ioc)
592 		return -1;
593 
594 	pdev = ioc->pdev;
595 	if (!pdev)
596 		return -1;
597 	pci_stop_and_remove_bus_device_locked(pdev);
598 	return 0;
599 }
600 
601 /**
602  * _base_fault_reset_work - workq handling ioc fault conditions
603  * @work: input argument, used to derive ioc
604  *
605  * Context: sleep.
606  */
607 static void
608 _base_fault_reset_work(struct work_struct *work)
609 {
610 	struct MPT3SAS_ADAPTER *ioc =
611 	    container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
612 	unsigned long	 flags;
613 	u32 doorbell;
614 	int rc;
615 	struct task_struct *p;
616 
617 
618 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
619 	if ((ioc->shost_recovery && (ioc->ioc_coredump_loop == 0)) ||
620 			ioc->pci_error_recovery)
621 		goto rearm_timer;
622 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
623 
624 	doorbell = mpt3sas_base_get_iocstate(ioc, 0);
625 	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
626 		ioc_err(ioc, "SAS host is non-operational !!!!\n");
627 
628 		/* It may be possible that EEH recovery can resolve some of
629 		 * pci bus failure issues rather removing the dead ioc function
630 		 * by considering controller is in a non-operational state. So
631 		 * here priority is given to the EEH recovery. If it doesn't
632 		 * not resolve this issue, mpt3sas driver will consider this
633 		 * controller to non-operational state and remove the dead ioc
634 		 * function.
635 		 */
636 		if (ioc->non_operational_loop++ < 5) {
637 			spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
638 							 flags);
639 			goto rearm_timer;
640 		}
641 
642 		/*
643 		 * Call _scsih_flush_pending_cmds callback so that we flush all
644 		 * pending commands back to OS. This call is required to aovid
645 		 * deadlock at block layer. Dead IOC will fail to do diag reset,
646 		 * and this call is safe since dead ioc will never return any
647 		 * command back from HW.
648 		 */
649 		ioc->schedule_dead_ioc_flush_running_cmds(ioc);
650 		/*
651 		 * Set remove_host flag early since kernel thread will
652 		 * take some time to execute.
653 		 */
654 		ioc->remove_host = 1;
655 		/*Remove the Dead Host */
656 		p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
657 		    "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
658 		if (IS_ERR(p))
659 			ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
660 				__func__);
661 		else
662 			ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
663 				__func__);
664 		return; /* don't rearm timer */
665 	}
666 
667 	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
668 		u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
669 		    ioc->manu_pg11.CoreDumpTOSec :
670 		    MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
671 
672 		timeout /= (FAULT_POLLING_INTERVAL/1000);
673 
674 		if (ioc->ioc_coredump_loop == 0) {
675 			mpt3sas_print_coredump_info(ioc,
676 			    doorbell & MPI2_DOORBELL_DATA_MASK);
677 			/* do not accept any IOs and disable the interrupts */
678 			spin_lock_irqsave(
679 			    &ioc->ioc_reset_in_progress_lock, flags);
680 			ioc->shost_recovery = 1;
681 			spin_unlock_irqrestore(
682 			    &ioc->ioc_reset_in_progress_lock, flags);
683 			_base_mask_interrupts(ioc);
684 			_base_clear_outstanding_commands(ioc);
685 		}
686 
687 		ioc_info(ioc, "%s: CoreDump loop %d.",
688 		    __func__, ioc->ioc_coredump_loop);
689 
690 		/* Wait until CoreDump completes or times out */
691 		if (ioc->ioc_coredump_loop++ < timeout) {
692 			spin_lock_irqsave(
693 			    &ioc->ioc_reset_in_progress_lock, flags);
694 			goto rearm_timer;
695 		}
696 	}
697 
698 	if (ioc->ioc_coredump_loop) {
699 		if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_COREDUMP)
700 			ioc_err(ioc, "%s: CoreDump completed. LoopCount: %d",
701 			    __func__, ioc->ioc_coredump_loop);
702 		else
703 			ioc_err(ioc, "%s: CoreDump Timed out. LoopCount: %d",
704 			    __func__, ioc->ioc_coredump_loop);
705 		ioc->ioc_coredump_loop = MPT3SAS_COREDUMP_LOOP_DONE;
706 	}
707 	ioc->non_operational_loop = 0;
708 	if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
709 		rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
710 		ioc_warn(ioc, "%s: hard reset: %s\n",
711 			 __func__, rc == 0 ? "success" : "failed");
712 		doorbell = mpt3sas_base_get_iocstate(ioc, 0);
713 		if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
714 			mpt3sas_print_fault_code(ioc, doorbell &
715 			    MPI2_DOORBELL_DATA_MASK);
716 		} else if ((doorbell & MPI2_IOC_STATE_MASK) ==
717 		    MPI2_IOC_STATE_COREDUMP)
718 			mpt3sas_print_coredump_info(ioc, doorbell &
719 			    MPI2_DOORBELL_DATA_MASK);
720 		if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
721 		    MPI2_IOC_STATE_OPERATIONAL)
722 			return; /* don't rearm timer */
723 	}
724 	ioc->ioc_coredump_loop = 0;
725 
726 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
727  rearm_timer:
728 	if (ioc->fault_reset_work_q)
729 		queue_delayed_work(ioc->fault_reset_work_q,
730 		    &ioc->fault_reset_work,
731 		    msecs_to_jiffies(FAULT_POLLING_INTERVAL));
732 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
733 }
734 
735 /**
736  * mpt3sas_base_start_watchdog - start the fault_reset_work_q
737  * @ioc: per adapter object
738  *
739  * Context: sleep.
740  */
741 void
742 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
743 {
744 	unsigned long	 flags;
745 
746 	if (ioc->fault_reset_work_q)
747 		return;
748 
749 	/* initialize fault polling */
750 
751 	INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
752 	snprintf(ioc->fault_reset_work_q_name,
753 	    sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
754 	    ioc->driver_name, ioc->id);
755 	ioc->fault_reset_work_q =
756 		create_singlethread_workqueue(ioc->fault_reset_work_q_name);
757 	if (!ioc->fault_reset_work_q) {
758 		ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__);
759 		return;
760 	}
761 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
762 	if (ioc->fault_reset_work_q)
763 		queue_delayed_work(ioc->fault_reset_work_q,
764 		    &ioc->fault_reset_work,
765 		    msecs_to_jiffies(FAULT_POLLING_INTERVAL));
766 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
767 }
768 
769 /**
770  * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
771  * @ioc: per adapter object
772  *
773  * Context: sleep.
774  */
775 void
776 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
777 {
778 	unsigned long flags;
779 	struct workqueue_struct *wq;
780 
781 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
782 	wq = ioc->fault_reset_work_q;
783 	ioc->fault_reset_work_q = NULL;
784 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
785 	if (wq) {
786 		if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
787 			flush_workqueue(wq);
788 		destroy_workqueue(wq);
789 	}
790 }
791 
792 /**
793  * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
794  * @ioc: per adapter object
795  * @fault_code: fault code
796  */
797 void
798 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
799 {
800 	ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code);
801 }
802 
803 /**
804  * mpt3sas_base_coredump_info - verbose translation of firmware CoreDump state
805  * @ioc: per adapter object
806  * @fault_code: fault code
807  *
808  * Return nothing.
809  */
810 void
811 mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code)
812 {
813 	ioc_err(ioc, "coredump_state(0x%04x)!\n", fault_code);
814 }
815 
816 /**
817  * mpt3sas_base_wait_for_coredump_completion - Wait until coredump
818  * completes or times out
819  * @ioc: per adapter object
820  *
821  * Returns 0 for success, non-zero for failure.
822  */
823 int
824 mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER *ioc,
825 		const char *caller)
826 {
827 	u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
828 			ioc->manu_pg11.CoreDumpTOSec :
829 			MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
830 
831 	int ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_FAULT,
832 					timeout);
833 
834 	if (ioc_state)
835 		ioc_err(ioc,
836 		    "%s: CoreDump timed out. (ioc_state=0x%x)\n",
837 		    caller, ioc_state);
838 	else
839 		ioc_info(ioc,
840 		    "%s: CoreDump completed. (ioc_state=0x%x)\n",
841 		    caller, ioc_state);
842 
843 	return ioc_state;
844 }
845 
846 /**
847  * mpt3sas_halt_firmware - halt's mpt controller firmware
848  * @ioc: per adapter object
849  *
850  * For debugging timeout related issues.  Writing 0xCOFFEE00
851  * to the doorbell register will halt controller firmware. With
852  * the purpose to stop both driver and firmware, the enduser can
853  * obtain a ring buffer from controller UART.
854  */
855 void
856 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
857 {
858 	u32 doorbell;
859 
860 	if (!ioc->fwfault_debug)
861 		return;
862 
863 	dump_stack();
864 
865 	doorbell = ioc->base_readl(&ioc->chip->Doorbell);
866 	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
867 		mpt3sas_print_fault_code(ioc, doorbell &
868 		    MPI2_DOORBELL_DATA_MASK);
869 	} else if ((doorbell & MPI2_IOC_STATE_MASK) ==
870 	    MPI2_IOC_STATE_COREDUMP) {
871 		mpt3sas_print_coredump_info(ioc, doorbell &
872 		    MPI2_DOORBELL_DATA_MASK);
873 	} else {
874 		writel(0xC0FFEE00, &ioc->chip->Doorbell);
875 		ioc_err(ioc, "Firmware is halted due to command timeout\n");
876 	}
877 
878 	if (ioc->fwfault_debug == 2)
879 		for (;;)
880 			;
881 	else
882 		panic("panic in %s\n", __func__);
883 }
884 
885 /**
886  * _base_sas_ioc_info - verbose translation of the ioc status
887  * @ioc: per adapter object
888  * @mpi_reply: reply mf payload returned from firmware
889  * @request_hdr: request mf
890  */
891 static void
892 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
893 	MPI2RequestHeader_t *request_hdr)
894 {
895 	u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
896 	    MPI2_IOCSTATUS_MASK;
897 	char *desc = NULL;
898 	u16 frame_sz;
899 	char *func_str = NULL;
900 
901 	/* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
902 	if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
903 	    request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
904 	    request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
905 		return;
906 
907 	if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
908 		return;
909 
910 	switch (ioc_status) {
911 
912 /****************************************************************************
913 *  Common IOCStatus values for all replies
914 ****************************************************************************/
915 
916 	case MPI2_IOCSTATUS_INVALID_FUNCTION:
917 		desc = "invalid function";
918 		break;
919 	case MPI2_IOCSTATUS_BUSY:
920 		desc = "busy";
921 		break;
922 	case MPI2_IOCSTATUS_INVALID_SGL:
923 		desc = "invalid sgl";
924 		break;
925 	case MPI2_IOCSTATUS_INTERNAL_ERROR:
926 		desc = "internal error";
927 		break;
928 	case MPI2_IOCSTATUS_INVALID_VPID:
929 		desc = "invalid vpid";
930 		break;
931 	case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
932 		desc = "insufficient resources";
933 		break;
934 	case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
935 		desc = "insufficient power";
936 		break;
937 	case MPI2_IOCSTATUS_INVALID_FIELD:
938 		desc = "invalid field";
939 		break;
940 	case MPI2_IOCSTATUS_INVALID_STATE:
941 		desc = "invalid state";
942 		break;
943 	case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
944 		desc = "op state not supported";
945 		break;
946 
947 /****************************************************************************
948 *  Config IOCStatus values
949 ****************************************************************************/
950 
951 	case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
952 		desc = "config invalid action";
953 		break;
954 	case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
955 		desc = "config invalid type";
956 		break;
957 	case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
958 		desc = "config invalid page";
959 		break;
960 	case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
961 		desc = "config invalid data";
962 		break;
963 	case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
964 		desc = "config no defaults";
965 		break;
966 	case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
967 		desc = "config cant commit";
968 		break;
969 
970 /****************************************************************************
971 *  SCSI IO Reply
972 ****************************************************************************/
973 
974 	case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
975 	case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
976 	case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
977 	case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
978 	case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
979 	case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
980 	case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
981 	case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
982 	case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
983 	case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
984 	case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
985 	case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
986 		break;
987 
988 /****************************************************************************
989 *  For use by SCSI Initiator and SCSI Target end-to-end data protection
990 ****************************************************************************/
991 
992 	case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
993 		desc = "eedp guard error";
994 		break;
995 	case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
996 		desc = "eedp ref tag error";
997 		break;
998 	case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
999 		desc = "eedp app tag error";
1000 		break;
1001 
1002 /****************************************************************************
1003 *  SCSI Target values
1004 ****************************************************************************/
1005 
1006 	case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
1007 		desc = "target invalid io index";
1008 		break;
1009 	case MPI2_IOCSTATUS_TARGET_ABORTED:
1010 		desc = "target aborted";
1011 		break;
1012 	case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
1013 		desc = "target no conn retryable";
1014 		break;
1015 	case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
1016 		desc = "target no connection";
1017 		break;
1018 	case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
1019 		desc = "target xfer count mismatch";
1020 		break;
1021 	case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
1022 		desc = "target data offset error";
1023 		break;
1024 	case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
1025 		desc = "target too much write data";
1026 		break;
1027 	case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
1028 		desc = "target iu too short";
1029 		break;
1030 	case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
1031 		desc = "target ack nak timeout";
1032 		break;
1033 	case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
1034 		desc = "target nak received";
1035 		break;
1036 
1037 /****************************************************************************
1038 *  Serial Attached SCSI values
1039 ****************************************************************************/
1040 
1041 	case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
1042 		desc = "smp request failed";
1043 		break;
1044 	case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
1045 		desc = "smp data overrun";
1046 		break;
1047 
1048 /****************************************************************************
1049 *  Diagnostic Buffer Post / Diagnostic Release values
1050 ****************************************************************************/
1051 
1052 	case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
1053 		desc = "diagnostic released";
1054 		break;
1055 	default:
1056 		break;
1057 	}
1058 
1059 	if (!desc)
1060 		return;
1061 
1062 	switch (request_hdr->Function) {
1063 	case MPI2_FUNCTION_CONFIG:
1064 		frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
1065 		func_str = "config_page";
1066 		break;
1067 	case MPI2_FUNCTION_SCSI_TASK_MGMT:
1068 		frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
1069 		func_str = "task_mgmt";
1070 		break;
1071 	case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
1072 		frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
1073 		func_str = "sas_iounit_ctl";
1074 		break;
1075 	case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
1076 		frame_sz = sizeof(Mpi2SepRequest_t);
1077 		func_str = "enclosure";
1078 		break;
1079 	case MPI2_FUNCTION_IOC_INIT:
1080 		frame_sz = sizeof(Mpi2IOCInitRequest_t);
1081 		func_str = "ioc_init";
1082 		break;
1083 	case MPI2_FUNCTION_PORT_ENABLE:
1084 		frame_sz = sizeof(Mpi2PortEnableRequest_t);
1085 		func_str = "port_enable";
1086 		break;
1087 	case MPI2_FUNCTION_SMP_PASSTHROUGH:
1088 		frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
1089 		func_str = "smp_passthru";
1090 		break;
1091 	case MPI2_FUNCTION_NVME_ENCAPSULATED:
1092 		frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) +
1093 		    ioc->sge_size;
1094 		func_str = "nvme_encapsulated";
1095 		break;
1096 	default:
1097 		frame_sz = 32;
1098 		func_str = "unknown";
1099 		break;
1100 	}
1101 
1102 	ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
1103 		 desc, ioc_status, request_hdr, func_str);
1104 
1105 	_debug_dump_mf(request_hdr, frame_sz/4);
1106 }
1107 
1108 /**
1109  * _base_display_event_data - verbose translation of firmware asyn events
1110  * @ioc: per adapter object
1111  * @mpi_reply: reply mf payload returned from firmware
1112  */
1113 static void
1114 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
1115 	Mpi2EventNotificationReply_t *mpi_reply)
1116 {
1117 	char *desc = NULL;
1118 	u16 event;
1119 
1120 	if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
1121 		return;
1122 
1123 	event = le16_to_cpu(mpi_reply->Event);
1124 
1125 	switch (event) {
1126 	case MPI2_EVENT_LOG_DATA:
1127 		desc = "Log Data";
1128 		break;
1129 	case MPI2_EVENT_STATE_CHANGE:
1130 		desc = "Status Change";
1131 		break;
1132 	case MPI2_EVENT_HARD_RESET_RECEIVED:
1133 		desc = "Hard Reset Received";
1134 		break;
1135 	case MPI2_EVENT_EVENT_CHANGE:
1136 		desc = "Event Change";
1137 		break;
1138 	case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
1139 		desc = "Device Status Change";
1140 		break;
1141 	case MPI2_EVENT_IR_OPERATION_STATUS:
1142 		if (!ioc->hide_ir_msg)
1143 			desc = "IR Operation Status";
1144 		break;
1145 	case MPI2_EVENT_SAS_DISCOVERY:
1146 	{
1147 		Mpi2EventDataSasDiscovery_t *event_data =
1148 		    (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
1149 		ioc_info(ioc, "Discovery: (%s)",
1150 			 event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ?
1151 			 "start" : "stop");
1152 		if (event_data->DiscoveryStatus)
1153 			pr_cont(" discovery_status(0x%08x)",
1154 			    le32_to_cpu(event_data->DiscoveryStatus));
1155 		pr_cont("\n");
1156 		return;
1157 	}
1158 	case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
1159 		desc = "SAS Broadcast Primitive";
1160 		break;
1161 	case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
1162 		desc = "SAS Init Device Status Change";
1163 		break;
1164 	case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
1165 		desc = "SAS Init Table Overflow";
1166 		break;
1167 	case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
1168 		desc = "SAS Topology Change List";
1169 		break;
1170 	case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
1171 		desc = "SAS Enclosure Device Status Change";
1172 		break;
1173 	case MPI2_EVENT_IR_VOLUME:
1174 		if (!ioc->hide_ir_msg)
1175 			desc = "IR Volume";
1176 		break;
1177 	case MPI2_EVENT_IR_PHYSICAL_DISK:
1178 		if (!ioc->hide_ir_msg)
1179 			desc = "IR Physical Disk";
1180 		break;
1181 	case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
1182 		if (!ioc->hide_ir_msg)
1183 			desc = "IR Configuration Change List";
1184 		break;
1185 	case MPI2_EVENT_LOG_ENTRY_ADDED:
1186 		if (!ioc->hide_ir_msg)
1187 			desc = "Log Entry Added";
1188 		break;
1189 	case MPI2_EVENT_TEMP_THRESHOLD:
1190 		desc = "Temperature Threshold";
1191 		break;
1192 	case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
1193 		desc = "Cable Event";
1194 		break;
1195 	case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR:
1196 		desc = "SAS Device Discovery Error";
1197 		break;
1198 	case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE:
1199 		desc = "PCIE Device Status Change";
1200 		break;
1201 	case MPI2_EVENT_PCIE_ENUMERATION:
1202 	{
1203 		Mpi26EventDataPCIeEnumeration_t *event_data =
1204 			(Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData;
1205 		ioc_info(ioc, "PCIE Enumeration: (%s)",
1206 			 event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ?
1207 			 "start" : "stop");
1208 		if (event_data->EnumerationStatus)
1209 			pr_cont("enumeration_status(0x%08x)",
1210 				le32_to_cpu(event_data->EnumerationStatus));
1211 		pr_cont("\n");
1212 		return;
1213 	}
1214 	case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST:
1215 		desc = "PCIE Topology Change List";
1216 		break;
1217 	}
1218 
1219 	if (!desc)
1220 		return;
1221 
1222 	ioc_info(ioc, "%s\n", desc);
1223 }
1224 
1225 /**
1226  * _base_sas_log_info - verbose translation of firmware log info
1227  * @ioc: per adapter object
1228  * @log_info: log info
1229  */
1230 static void
1231 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
1232 {
1233 	union loginfo_type {
1234 		u32	loginfo;
1235 		struct {
1236 			u32	subcode:16;
1237 			u32	code:8;
1238 			u32	originator:4;
1239 			u32	bus_type:4;
1240 		} dw;
1241 	};
1242 	union loginfo_type sas_loginfo;
1243 	char *originator_str = NULL;
1244 
1245 	sas_loginfo.loginfo = log_info;
1246 	if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
1247 		return;
1248 
1249 	/* each nexus loss loginfo */
1250 	if (log_info == 0x31170000)
1251 		return;
1252 
1253 	/* eat the loginfos associated with task aborts */
1254 	if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
1255 	    0x31140000 || log_info == 0x31130000))
1256 		return;
1257 
1258 	switch (sas_loginfo.dw.originator) {
1259 	case 0:
1260 		originator_str = "IOP";
1261 		break;
1262 	case 1:
1263 		originator_str = "PL";
1264 		break;
1265 	case 2:
1266 		if (!ioc->hide_ir_msg)
1267 			originator_str = "IR";
1268 		else
1269 			originator_str = "WarpDrive";
1270 		break;
1271 	}
1272 
1273 	ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
1274 		 log_info,
1275 		 originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode);
1276 }
1277 
1278 /**
1279  * _base_display_reply_info -
1280  * @ioc: per adapter object
1281  * @smid: system request message index
1282  * @msix_index: MSIX table index supplied by the OS
1283  * @reply: reply message frame(lower 32bit addr)
1284  */
1285 static void
1286 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1287 	u32 reply)
1288 {
1289 	MPI2DefaultReply_t *mpi_reply;
1290 	u16 ioc_status;
1291 	u32 loginfo = 0;
1292 
1293 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1294 	if (unlikely(!mpi_reply)) {
1295 		ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n",
1296 			__FILE__, __LINE__, __func__);
1297 		return;
1298 	}
1299 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
1300 
1301 	if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
1302 	    (ioc->logging_level & MPT_DEBUG_REPLY)) {
1303 		_base_sas_ioc_info(ioc , mpi_reply,
1304 		   mpt3sas_base_get_msg_frame(ioc, smid));
1305 	}
1306 
1307 	if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
1308 		loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
1309 		_base_sas_log_info(ioc, loginfo);
1310 	}
1311 
1312 	if (ioc_status || loginfo) {
1313 		ioc_status &= MPI2_IOCSTATUS_MASK;
1314 		mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
1315 	}
1316 }
1317 
1318 /**
1319  * mpt3sas_base_done - base internal command completion routine
1320  * @ioc: per adapter object
1321  * @smid: system request message index
1322  * @msix_index: MSIX table index supplied by the OS
1323  * @reply: reply message frame(lower 32bit addr)
1324  *
1325  * Return:
1326  * 1 meaning mf should be freed from _base_interrupt
1327  * 0 means the mf is freed from this function.
1328  */
1329 u8
1330 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1331 	u32 reply)
1332 {
1333 	MPI2DefaultReply_t *mpi_reply;
1334 
1335 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1336 	if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
1337 		return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
1338 
1339 	if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
1340 		return 1;
1341 
1342 	ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
1343 	if (mpi_reply) {
1344 		ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
1345 		memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
1346 	}
1347 	ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
1348 
1349 	complete(&ioc->base_cmds.done);
1350 	return 1;
1351 }
1352 
1353 /**
1354  * _base_async_event - main callback handler for firmware asyn events
1355  * @ioc: per adapter object
1356  * @msix_index: MSIX table index supplied by the OS
1357  * @reply: reply message frame(lower 32bit addr)
1358  *
1359  * Return:
1360  * 1 meaning mf should be freed from _base_interrupt
1361  * 0 means the mf is freed from this function.
1362  */
1363 static u8
1364 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
1365 {
1366 	Mpi2EventNotificationReply_t *mpi_reply;
1367 	Mpi2EventAckRequest_t *ack_request;
1368 	u16 smid;
1369 	struct _event_ack_list *delayed_event_ack;
1370 
1371 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1372 	if (!mpi_reply)
1373 		return 1;
1374 	if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
1375 		return 1;
1376 
1377 	_base_display_event_data(ioc, mpi_reply);
1378 
1379 	if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
1380 		goto out;
1381 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
1382 	if (!smid) {
1383 		delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
1384 					GFP_ATOMIC);
1385 		if (!delayed_event_ack)
1386 			goto out;
1387 		INIT_LIST_HEAD(&delayed_event_ack->list);
1388 		delayed_event_ack->Event = mpi_reply->Event;
1389 		delayed_event_ack->EventContext = mpi_reply->EventContext;
1390 		list_add_tail(&delayed_event_ack->list,
1391 				&ioc->delayed_event_ack_list);
1392 		dewtprintk(ioc,
1393 			   ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n",
1394 				    le16_to_cpu(mpi_reply->Event)));
1395 		goto out;
1396 	}
1397 
1398 	ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
1399 	memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
1400 	ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
1401 	ack_request->Event = mpi_reply->Event;
1402 	ack_request->EventContext = mpi_reply->EventContext;
1403 	ack_request->VF_ID = 0;  /* TODO */
1404 	ack_request->VP_ID = 0;
1405 	ioc->put_smid_default(ioc, smid);
1406 
1407  out:
1408 
1409 	/* scsih callback handler */
1410 	mpt3sas_scsih_event_callback(ioc, msix_index, reply);
1411 
1412 	/* ctl callback handler */
1413 	mpt3sas_ctl_event_callback(ioc, msix_index, reply);
1414 
1415 	return 1;
1416 }
1417 
1418 static struct scsiio_tracker *
1419 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1420 {
1421 	struct scsi_cmnd *cmd;
1422 
1423 	if (WARN_ON(!smid) ||
1424 	    WARN_ON(smid >= ioc->hi_priority_smid))
1425 		return NULL;
1426 
1427 	cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
1428 	if (cmd)
1429 		return scsi_cmd_priv(cmd);
1430 
1431 	return NULL;
1432 }
1433 
1434 /**
1435  * _base_get_cb_idx - obtain the callback index
1436  * @ioc: per adapter object
1437  * @smid: system request message index
1438  *
1439  * Return: callback index.
1440  */
1441 static u8
1442 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1443 {
1444 	int i;
1445 	u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1;
1446 	u8 cb_idx = 0xFF;
1447 
1448 	if (smid < ioc->hi_priority_smid) {
1449 		struct scsiio_tracker *st;
1450 
1451 		if (smid < ctl_smid) {
1452 			st = _get_st_from_smid(ioc, smid);
1453 			if (st)
1454 				cb_idx = st->cb_idx;
1455 		} else if (smid == ctl_smid)
1456 			cb_idx = ioc->ctl_cb_idx;
1457 	} else if (smid < ioc->internal_smid) {
1458 		i = smid - ioc->hi_priority_smid;
1459 		cb_idx = ioc->hpr_lookup[i].cb_idx;
1460 	} else if (smid <= ioc->hba_queue_depth) {
1461 		i = smid - ioc->internal_smid;
1462 		cb_idx = ioc->internal_lookup[i].cb_idx;
1463 	}
1464 	return cb_idx;
1465 }
1466 
1467 /**
1468  * _base_mask_interrupts - disable interrupts
1469  * @ioc: per adapter object
1470  *
1471  * Disabling ResetIRQ, Reply and Doorbell Interrupts
1472  */
1473 static void
1474 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1475 {
1476 	u32 him_register;
1477 
1478 	ioc->mask_interrupts = 1;
1479 	him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1480 	him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
1481 	writel(him_register, &ioc->chip->HostInterruptMask);
1482 	ioc->base_readl(&ioc->chip->HostInterruptMask);
1483 }
1484 
1485 /**
1486  * _base_unmask_interrupts - enable interrupts
1487  * @ioc: per adapter object
1488  *
1489  * Enabling only Reply Interrupts
1490  */
1491 static void
1492 _base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1493 {
1494 	u32 him_register;
1495 
1496 	him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1497 	him_register &= ~MPI2_HIM_RIM;
1498 	writel(him_register, &ioc->chip->HostInterruptMask);
1499 	ioc->mask_interrupts = 0;
1500 }
1501 
1502 union reply_descriptor {
1503 	u64 word;
1504 	struct {
1505 		u32 low;
1506 		u32 high;
1507 	} u;
1508 };
1509 
1510 static u32 base_mod64(u64 dividend, u32 divisor)
1511 {
1512 	u32 remainder;
1513 
1514 	if (!divisor)
1515 		pr_err("mpt3sas: DIVISOR is zero, in div fn\n");
1516 	remainder = do_div(dividend, divisor);
1517 	return remainder;
1518 }
1519 
1520 /**
1521  * _base_process_reply_queue - Process reply descriptors from reply
1522  *		descriptor post queue.
1523  * @reply_q: per IRQ's reply queue object.
1524  *
1525  * Return: number of reply descriptors processed from reply
1526  *		descriptor queue.
1527  */
1528 static int
1529 _base_process_reply_queue(struct adapter_reply_queue *reply_q)
1530 {
1531 	union reply_descriptor rd;
1532 	u64 completed_cmds;
1533 	u8 request_descript_type;
1534 	u16 smid;
1535 	u8 cb_idx;
1536 	u32 reply;
1537 	u8 msix_index = reply_q->msix_index;
1538 	struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1539 	Mpi2ReplyDescriptorsUnion_t *rpf;
1540 	u8 rc;
1541 
1542 	completed_cmds = 0;
1543 	if (!atomic_add_unless(&reply_q->busy, 1, 1))
1544 		return completed_cmds;
1545 
1546 	rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
1547 	request_descript_type = rpf->Default.ReplyFlags
1548 	     & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1549 	if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
1550 		atomic_dec(&reply_q->busy);
1551 		return completed_cmds;
1552 	}
1553 
1554 	cb_idx = 0xFF;
1555 	do {
1556 		rd.word = le64_to_cpu(rpf->Words);
1557 		if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
1558 			goto out;
1559 		reply = 0;
1560 		smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
1561 		if (request_descript_type ==
1562 		    MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
1563 		    request_descript_type ==
1564 		    MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS ||
1565 		    request_descript_type ==
1566 		    MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) {
1567 			cb_idx = _base_get_cb_idx(ioc, smid);
1568 			if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1569 			    (likely(mpt_callbacks[cb_idx] != NULL))) {
1570 				rc = mpt_callbacks[cb_idx](ioc, smid,
1571 				    msix_index, 0);
1572 				if (rc)
1573 					mpt3sas_base_free_smid(ioc, smid);
1574 			}
1575 		} else if (request_descript_type ==
1576 		    MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
1577 			reply = le32_to_cpu(
1578 			    rpf->AddressReply.ReplyFrameAddress);
1579 			if (reply > ioc->reply_dma_max_address ||
1580 			    reply < ioc->reply_dma_min_address)
1581 				reply = 0;
1582 			if (smid) {
1583 				cb_idx = _base_get_cb_idx(ioc, smid);
1584 				if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1585 				    (likely(mpt_callbacks[cb_idx] != NULL))) {
1586 					rc = mpt_callbacks[cb_idx](ioc, smid,
1587 					    msix_index, reply);
1588 					if (reply)
1589 						_base_display_reply_info(ioc,
1590 						    smid, msix_index, reply);
1591 					if (rc)
1592 						mpt3sas_base_free_smid(ioc,
1593 						    smid);
1594 				}
1595 			} else {
1596 				_base_async_event(ioc, msix_index, reply);
1597 			}
1598 
1599 			/* reply free queue handling */
1600 			if (reply) {
1601 				ioc->reply_free_host_index =
1602 				    (ioc->reply_free_host_index ==
1603 				    (ioc->reply_free_queue_depth - 1)) ?
1604 				    0 : ioc->reply_free_host_index + 1;
1605 				ioc->reply_free[ioc->reply_free_host_index] =
1606 				    cpu_to_le32(reply);
1607 				if (ioc->is_mcpu_endpoint)
1608 					_base_clone_reply_to_sys_mem(ioc,
1609 						reply,
1610 						ioc->reply_free_host_index);
1611 				writel(ioc->reply_free_host_index,
1612 				    &ioc->chip->ReplyFreeHostIndex);
1613 			}
1614 		}
1615 
1616 		rpf->Words = cpu_to_le64(ULLONG_MAX);
1617 		reply_q->reply_post_host_index =
1618 		    (reply_q->reply_post_host_index ==
1619 		    (ioc->reply_post_queue_depth - 1)) ? 0 :
1620 		    reply_q->reply_post_host_index + 1;
1621 		request_descript_type =
1622 		    reply_q->reply_post_free[reply_q->reply_post_host_index].
1623 		    Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1624 		completed_cmds++;
1625 		/* Update the reply post host index after continuously
1626 		 * processing the threshold number of Reply Descriptors.
1627 		 * So that FW can find enough entries to post the Reply
1628 		 * Descriptors in the reply descriptor post queue.
1629 		 */
1630 		if (!base_mod64(completed_cmds, ioc->thresh_hold)) {
1631 			if (ioc->combined_reply_queue) {
1632 				writel(reply_q->reply_post_host_index |
1633 						((msix_index  & 7) <<
1634 						 MPI2_RPHI_MSIX_INDEX_SHIFT),
1635 				    ioc->replyPostRegisterIndex[msix_index/8]);
1636 			} else {
1637 				writel(reply_q->reply_post_host_index |
1638 						(msix_index <<
1639 						 MPI2_RPHI_MSIX_INDEX_SHIFT),
1640 						&ioc->chip->ReplyPostHostIndex);
1641 			}
1642 			if (!reply_q->irq_poll_scheduled) {
1643 				reply_q->irq_poll_scheduled = true;
1644 				irq_poll_sched(&reply_q->irqpoll);
1645 			}
1646 			atomic_dec(&reply_q->busy);
1647 			return completed_cmds;
1648 		}
1649 		if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1650 			goto out;
1651 		if (!reply_q->reply_post_host_index)
1652 			rpf = reply_q->reply_post_free;
1653 		else
1654 			rpf++;
1655 	} while (1);
1656 
1657  out:
1658 
1659 	if (!completed_cmds) {
1660 		atomic_dec(&reply_q->busy);
1661 		return completed_cmds;
1662 	}
1663 
1664 	if (ioc->is_warpdrive) {
1665 		writel(reply_q->reply_post_host_index,
1666 		ioc->reply_post_host_index[msix_index]);
1667 		atomic_dec(&reply_q->busy);
1668 		return completed_cmds;
1669 	}
1670 
1671 	/* Update Reply Post Host Index.
1672 	 * For those HBA's which support combined reply queue feature
1673 	 * 1. Get the correct Supplemental Reply Post Host Index Register.
1674 	 *    i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1675 	 *    Index Register address bank i.e replyPostRegisterIndex[],
1676 	 * 2. Then update this register with new reply host index value
1677 	 *    in ReplyPostIndex field and the MSIxIndex field with
1678 	 *    msix_index value reduced to a value between 0 and 7,
1679 	 *    using a modulo 8 operation. Since each Supplemental Reply Post
1680 	 *    Host Index Register supports 8 MSI-X vectors.
1681 	 *
1682 	 * For other HBA's just update the Reply Post Host Index register with
1683 	 * new reply host index value in ReplyPostIndex Field and msix_index
1684 	 * value in MSIxIndex field.
1685 	 */
1686 	if (ioc->combined_reply_queue)
1687 		writel(reply_q->reply_post_host_index | ((msix_index  & 7) <<
1688 			MPI2_RPHI_MSIX_INDEX_SHIFT),
1689 			ioc->replyPostRegisterIndex[msix_index/8]);
1690 	else
1691 		writel(reply_q->reply_post_host_index | (msix_index <<
1692 			MPI2_RPHI_MSIX_INDEX_SHIFT),
1693 			&ioc->chip->ReplyPostHostIndex);
1694 	atomic_dec(&reply_q->busy);
1695 	return completed_cmds;
1696 }
1697 
1698 /**
1699  * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
1700  * @irq: irq number (not used)
1701  * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
1702  *
1703  * Return: IRQ_HANDLED if processed, else IRQ_NONE.
1704  */
1705 static irqreturn_t
1706 _base_interrupt(int irq, void *bus_id)
1707 {
1708 	struct adapter_reply_queue *reply_q = bus_id;
1709 	struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1710 
1711 	if (ioc->mask_interrupts)
1712 		return IRQ_NONE;
1713 	if (reply_q->irq_poll_scheduled)
1714 		return IRQ_HANDLED;
1715 	return ((_base_process_reply_queue(reply_q) > 0) ?
1716 			IRQ_HANDLED : IRQ_NONE);
1717 }
1718 
1719 /**
1720  * _base_irqpoll - IRQ poll callback handler
1721  * @irqpoll - irq_poll object
1722  * @budget - irq poll weight
1723  *
1724  * returns number of reply descriptors processed
1725  */
1726 static int
1727 _base_irqpoll(struct irq_poll *irqpoll, int budget)
1728 {
1729 	struct adapter_reply_queue *reply_q;
1730 	int num_entries = 0;
1731 
1732 	reply_q = container_of(irqpoll, struct adapter_reply_queue,
1733 			irqpoll);
1734 	if (reply_q->irq_line_enable) {
1735 		disable_irq(reply_q->os_irq);
1736 		reply_q->irq_line_enable = false;
1737 	}
1738 	num_entries = _base_process_reply_queue(reply_q);
1739 	if (num_entries < budget) {
1740 		irq_poll_complete(irqpoll);
1741 		reply_q->irq_poll_scheduled = false;
1742 		reply_q->irq_line_enable = true;
1743 		enable_irq(reply_q->os_irq);
1744 	}
1745 
1746 	return num_entries;
1747 }
1748 
1749 /**
1750  * _base_init_irqpolls - initliaze IRQ polls
1751  * @ioc: per adapter object
1752  *
1753  * returns nothing
1754  */
1755 static void
1756 _base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc)
1757 {
1758 	struct adapter_reply_queue *reply_q, *next;
1759 
1760 	if (list_empty(&ioc->reply_queue_list))
1761 		return;
1762 
1763 	list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1764 		irq_poll_init(&reply_q->irqpoll,
1765 			ioc->hba_queue_depth/4, _base_irqpoll);
1766 		reply_q->irq_poll_scheduled = false;
1767 		reply_q->irq_line_enable = true;
1768 		reply_q->os_irq = pci_irq_vector(ioc->pdev,
1769 		    reply_q->msix_index);
1770 	}
1771 }
1772 
1773 /**
1774  * _base_is_controller_msix_enabled - is controller support muli-reply queues
1775  * @ioc: per adapter object
1776  *
1777  * Return: Whether or not MSI/X is enabled.
1778  */
1779 static inline int
1780 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1781 {
1782 	return (ioc->facts.IOCCapabilities &
1783 	    MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1784 }
1785 
1786 /**
1787  * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1788  * @ioc: per adapter object
1789  * Context: non ISR conext
1790  *
1791  * Called when a Task Management request has completed.
1792  */
1793 void
1794 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc)
1795 {
1796 	struct adapter_reply_queue *reply_q;
1797 
1798 	/* If MSIX capability is turned off
1799 	 * then multi-queues are not enabled
1800 	 */
1801 	if (!_base_is_controller_msix_enabled(ioc))
1802 		return;
1803 
1804 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1805 		if (ioc->shost_recovery || ioc->remove_host ||
1806 				ioc->pci_error_recovery)
1807 			return;
1808 		/* TMs are on msix_index == 0 */
1809 		if (reply_q->msix_index == 0)
1810 			continue;
1811 		if (reply_q->irq_poll_scheduled) {
1812 			/* Calling irq_poll_disable will wait for any pending
1813 			 * callbacks to have completed.
1814 			 */
1815 			irq_poll_disable(&reply_q->irqpoll);
1816 			irq_poll_enable(&reply_q->irqpoll);
1817 			reply_q->irq_poll_scheduled = false;
1818 			reply_q->irq_line_enable = true;
1819 			enable_irq(reply_q->os_irq);
1820 			continue;
1821 		}
1822 		synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
1823 	}
1824 }
1825 
1826 /**
1827  * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1828  * @cb_idx: callback index
1829  */
1830 void
1831 mpt3sas_base_release_callback_handler(u8 cb_idx)
1832 {
1833 	mpt_callbacks[cb_idx] = NULL;
1834 }
1835 
1836 /**
1837  * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1838  * @cb_func: callback function
1839  *
1840  * Return: Index of @cb_func.
1841  */
1842 u8
1843 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1844 {
1845 	u8 cb_idx;
1846 
1847 	for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1848 		if (mpt_callbacks[cb_idx] == NULL)
1849 			break;
1850 
1851 	mpt_callbacks[cb_idx] = cb_func;
1852 	return cb_idx;
1853 }
1854 
1855 /**
1856  * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1857  */
1858 void
1859 mpt3sas_base_initialize_callback_handler(void)
1860 {
1861 	u8 cb_idx;
1862 
1863 	for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1864 		mpt3sas_base_release_callback_handler(cb_idx);
1865 }
1866 
1867 
1868 /**
1869  * _base_build_zero_len_sge - build zero length sg entry
1870  * @ioc: per adapter object
1871  * @paddr: virtual address for SGE
1872  *
1873  * Create a zero length scatter gather entry to insure the IOCs hardware has
1874  * something to use if the target device goes brain dead and tries
1875  * to send data even when none is asked for.
1876  */
1877 static void
1878 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1879 {
1880 	u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1881 	    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1882 	    MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1883 	    MPI2_SGE_FLAGS_SHIFT);
1884 	ioc->base_add_sg_single(paddr, flags_length, -1);
1885 }
1886 
1887 /**
1888  * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1889  * @paddr: virtual address for SGE
1890  * @flags_length: SGE flags and data transfer length
1891  * @dma_addr: Physical address
1892  */
1893 static void
1894 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1895 {
1896 	Mpi2SGESimple32_t *sgel = paddr;
1897 
1898 	flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1899 	    MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1900 	sgel->FlagsLength = cpu_to_le32(flags_length);
1901 	sgel->Address = cpu_to_le32(dma_addr);
1902 }
1903 
1904 
1905 /**
1906  * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1907  * @paddr: virtual address for SGE
1908  * @flags_length: SGE flags and data transfer length
1909  * @dma_addr: Physical address
1910  */
1911 static void
1912 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1913 {
1914 	Mpi2SGESimple64_t *sgel = paddr;
1915 
1916 	flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
1917 	    MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1918 	sgel->FlagsLength = cpu_to_le32(flags_length);
1919 	sgel->Address = cpu_to_le64(dma_addr);
1920 }
1921 
1922 /**
1923  * _base_get_chain_buffer_tracker - obtain chain tracker
1924  * @ioc: per adapter object
1925  * @scmd: SCSI commands of the IO request
1926  *
1927  * Return: chain tracker from chain_lookup table using key as
1928  * smid and smid's chain_offset.
1929  */
1930 static struct chain_tracker *
1931 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc,
1932 			       struct scsi_cmnd *scmd)
1933 {
1934 	struct chain_tracker *chain_req;
1935 	struct scsiio_tracker *st = scsi_cmd_priv(scmd);
1936 	u16 smid = st->smid;
1937 	u8 chain_offset =
1938 	   atomic_read(&ioc->chain_lookup[smid - 1].chain_offset);
1939 
1940 	if (chain_offset == ioc->chains_needed_per_io)
1941 		return NULL;
1942 
1943 	chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset];
1944 	atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset);
1945 	return chain_req;
1946 }
1947 
1948 
1949 /**
1950  * _base_build_sg - build generic sg
1951  * @ioc: per adapter object
1952  * @psge: virtual address for SGE
1953  * @data_out_dma: physical address for WRITES
1954  * @data_out_sz: data xfer size for WRITES
1955  * @data_in_dma: physical address for READS
1956  * @data_in_sz: data xfer size for READS
1957  */
1958 static void
1959 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
1960 	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1961 	size_t data_in_sz)
1962 {
1963 	u32 sgl_flags;
1964 
1965 	if (!data_out_sz && !data_in_sz) {
1966 		_base_build_zero_len_sge(ioc, psge);
1967 		return;
1968 	}
1969 
1970 	if (data_out_sz && data_in_sz) {
1971 		/* WRITE sgel first */
1972 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1973 		    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
1974 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1975 		ioc->base_add_sg_single(psge, sgl_flags |
1976 		    data_out_sz, data_out_dma);
1977 
1978 		/* incr sgel */
1979 		psge += ioc->sge_size;
1980 
1981 		/* READ sgel last */
1982 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1983 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1984 		    MPI2_SGE_FLAGS_END_OF_LIST);
1985 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1986 		ioc->base_add_sg_single(psge, sgl_flags |
1987 		    data_in_sz, data_in_dma);
1988 	} else if (data_out_sz) /* WRITE */ {
1989 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1990 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1991 		    MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
1992 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1993 		ioc->base_add_sg_single(psge, sgl_flags |
1994 		    data_out_sz, data_out_dma);
1995 	} else if (data_in_sz) /* READ */ {
1996 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1997 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1998 		    MPI2_SGE_FLAGS_END_OF_LIST);
1999 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2000 		ioc->base_add_sg_single(psge, sgl_flags |
2001 		    data_in_sz, data_in_dma);
2002 	}
2003 }
2004 
2005 /* IEEE format sgls */
2006 
2007 /**
2008  * _base_build_nvme_prp - This function is called for NVMe end devices to build
2009  * a native SGL (NVMe PRP). The native SGL is built starting in the first PRP
2010  * entry of the NVMe message (PRP1).  If the data buffer is small enough to be
2011  * described entirely using PRP1, then PRP2 is not used.  If needed, PRP2 is
2012  * used to describe a larger data buffer.  If the data buffer is too large to
2013  * describe using the two PRP entriess inside the NVMe message, then PRP1
2014  * describes the first data memory segment, and PRP2 contains a pointer to a PRP
2015  * list located elsewhere in memory to describe the remaining data memory
2016  * segments.  The PRP list will be contiguous.
2017  *
2018  * The native SGL for NVMe devices is a Physical Region Page (PRP).  A PRP
2019  * consists of a list of PRP entries to describe a number of noncontigous
2020  * physical memory segments as a single memory buffer, just as a SGL does.  Note
2021  * however, that this function is only used by the IOCTL call, so the memory
2022  * given will be guaranteed to be contiguous.  There is no need to translate
2023  * non-contiguous SGL into a PRP in this case.  All PRPs will describe
2024  * contiguous space that is one page size each.
2025  *
2026  * Each NVMe message contains two PRP entries.  The first (PRP1) either contains
2027  * a PRP list pointer or a PRP element, depending upon the command.  PRP2
2028  * contains the second PRP element if the memory being described fits within 2
2029  * PRP entries, or a PRP list pointer if the PRP spans more than two entries.
2030  *
2031  * A PRP list pointer contains the address of a PRP list, structured as a linear
2032  * array of PRP entries.  Each PRP entry in this list describes a segment of
2033  * physical memory.
2034  *
2035  * Each 64-bit PRP entry comprises an address and an offset field.  The address
2036  * always points at the beginning of a 4KB physical memory page, and the offset
2037  * describes where within that 4KB page the memory segment begins.  Only the
2038  * first element in a PRP list may contain a non-zero offest, implying that all
2039  * memory segments following the first begin at the start of a 4KB page.
2040  *
2041  * Each PRP element normally describes 4KB of physical memory, with exceptions
2042  * for the first and last elements in the list.  If the memory being described
2043  * by the list begins at a non-zero offset within the first 4KB page, then the
2044  * first PRP element will contain a non-zero offset indicating where the region
2045  * begins within the 4KB page.  The last memory segment may end before the end
2046  * of the 4KB segment, depending upon the overall size of the memory being
2047  * described by the PRP list.
2048  *
2049  * Since PRP entries lack any indication of size, the overall data buffer length
2050  * is used to determine where the end of the data memory buffer is located, and
2051  * how many PRP entries are required to describe it.
2052  *
2053  * @ioc: per adapter object
2054  * @smid: system request message index for getting asscociated SGL
2055  * @nvme_encap_request: the NVMe request msg frame pointer
2056  * @data_out_dma: physical address for WRITES
2057  * @data_out_sz: data xfer size for WRITES
2058  * @data_in_dma: physical address for READS
2059  * @data_in_sz: data xfer size for READS
2060  */
2061 static void
2062 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2063 	Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request,
2064 	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2065 	size_t data_in_sz)
2066 {
2067 	int		prp_size = NVME_PRP_SIZE;
2068 	__le64		*prp_entry, *prp1_entry, *prp2_entry;
2069 	__le64		*prp_page;
2070 	dma_addr_t	prp_entry_dma, prp_page_dma, dma_addr;
2071 	u32		offset, entry_len;
2072 	u32		page_mask_result, page_mask;
2073 	size_t		length;
2074 	struct mpt3sas_nvme_cmd *nvme_cmd =
2075 		(void *)nvme_encap_request->NVMe_Command;
2076 
2077 	/*
2078 	 * Not all commands require a data transfer. If no data, just return
2079 	 * without constructing any PRP.
2080 	 */
2081 	if (!data_in_sz && !data_out_sz)
2082 		return;
2083 	prp1_entry = &nvme_cmd->prp1;
2084 	prp2_entry = &nvme_cmd->prp2;
2085 	prp_entry = prp1_entry;
2086 	/*
2087 	 * For the PRP entries, use the specially allocated buffer of
2088 	 * contiguous memory.
2089 	 */
2090 	prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid);
2091 	prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2092 
2093 	/*
2094 	 * Check if we are within 1 entry of a page boundary we don't
2095 	 * want our first entry to be a PRP List entry.
2096 	 */
2097 	page_mask = ioc->page_size - 1;
2098 	page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
2099 	if (!page_mask_result) {
2100 		/* Bump up to next page boundary. */
2101 		prp_page = (__le64 *)((u8 *)prp_page + prp_size);
2102 		prp_page_dma = prp_page_dma + prp_size;
2103 	}
2104 
2105 	/*
2106 	 * Set PRP physical pointer, which initially points to the current PRP
2107 	 * DMA memory page.
2108 	 */
2109 	prp_entry_dma = prp_page_dma;
2110 
2111 	/* Get physical address and length of the data buffer. */
2112 	if (data_in_sz) {
2113 		dma_addr = data_in_dma;
2114 		length = data_in_sz;
2115 	} else {
2116 		dma_addr = data_out_dma;
2117 		length = data_out_sz;
2118 	}
2119 
2120 	/* Loop while the length is not zero. */
2121 	while (length) {
2122 		/*
2123 		 * Check if we need to put a list pointer here if we are at
2124 		 * page boundary - prp_size (8 bytes).
2125 		 */
2126 		page_mask_result = (prp_entry_dma + prp_size) & page_mask;
2127 		if (!page_mask_result) {
2128 			/*
2129 			 * This is the last entry in a PRP List, so we need to
2130 			 * put a PRP list pointer here.  What this does is:
2131 			 *   - bump the current memory pointer to the next
2132 			 *     address, which will be the next full page.
2133 			 *   - set the PRP Entry to point to that page.  This
2134 			 *     is now the PRP List pointer.
2135 			 *   - bump the PRP Entry pointer the start of the
2136 			 *     next page.  Since all of this PRP memory is
2137 			 *     contiguous, no need to get a new page - it's
2138 			 *     just the next address.
2139 			 */
2140 			prp_entry_dma++;
2141 			*prp_entry = cpu_to_le64(prp_entry_dma);
2142 			prp_entry++;
2143 		}
2144 
2145 		/* Need to handle if entry will be part of a page. */
2146 		offset = dma_addr & page_mask;
2147 		entry_len = ioc->page_size - offset;
2148 
2149 		if (prp_entry == prp1_entry) {
2150 			/*
2151 			 * Must fill in the first PRP pointer (PRP1) before
2152 			 * moving on.
2153 			 */
2154 			*prp1_entry = cpu_to_le64(dma_addr);
2155 
2156 			/*
2157 			 * Now point to the second PRP entry within the
2158 			 * command (PRP2).
2159 			 */
2160 			prp_entry = prp2_entry;
2161 		} else if (prp_entry == prp2_entry) {
2162 			/*
2163 			 * Should the PRP2 entry be a PRP List pointer or just
2164 			 * a regular PRP pointer?  If there is more than one
2165 			 * more page of data, must use a PRP List pointer.
2166 			 */
2167 			if (length > ioc->page_size) {
2168 				/*
2169 				 * PRP2 will contain a PRP List pointer because
2170 				 * more PRP's are needed with this command. The
2171 				 * list will start at the beginning of the
2172 				 * contiguous buffer.
2173 				 */
2174 				*prp2_entry = cpu_to_le64(prp_entry_dma);
2175 
2176 				/*
2177 				 * The next PRP Entry will be the start of the
2178 				 * first PRP List.
2179 				 */
2180 				prp_entry = prp_page;
2181 			} else {
2182 				/*
2183 				 * After this, the PRP Entries are complete.
2184 				 * This command uses 2 PRP's and no PRP list.
2185 				 */
2186 				*prp2_entry = cpu_to_le64(dma_addr);
2187 			}
2188 		} else {
2189 			/*
2190 			 * Put entry in list and bump the addresses.
2191 			 *
2192 			 * After PRP1 and PRP2 are filled in, this will fill in
2193 			 * all remaining PRP entries in a PRP List, one per
2194 			 * each time through the loop.
2195 			 */
2196 			*prp_entry = cpu_to_le64(dma_addr);
2197 			prp_entry++;
2198 			prp_entry_dma++;
2199 		}
2200 
2201 		/*
2202 		 * Bump the phys address of the command's data buffer by the
2203 		 * entry_len.
2204 		 */
2205 		dma_addr += entry_len;
2206 
2207 		/* Decrement length accounting for last partial page. */
2208 		if (entry_len > length)
2209 			length = 0;
2210 		else
2211 			length -= entry_len;
2212 	}
2213 }
2214 
2215 /**
2216  * base_make_prp_nvme -
2217  * Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only
2218  *
2219  * @ioc:		per adapter object
2220  * @scmd:		SCSI command from the mid-layer
2221  * @mpi_request:	mpi request
2222  * @smid:		msg Index
2223  * @sge_count:		scatter gather element count.
2224  *
2225  * Return:		true: PRPs are built
2226  *			false: IEEE SGLs needs to be built
2227  */
2228 static void
2229 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
2230 		struct scsi_cmnd *scmd,
2231 		Mpi25SCSIIORequest_t *mpi_request,
2232 		u16 smid, int sge_count)
2233 {
2234 	int sge_len, num_prp_in_chain = 0;
2235 	Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl;
2236 	__le64 *curr_buff;
2237 	dma_addr_t msg_dma, sge_addr, offset;
2238 	u32 page_mask, page_mask_result;
2239 	struct scatterlist *sg_scmd;
2240 	u32 first_prp_len;
2241 	int data_len = scsi_bufflen(scmd);
2242 	u32 nvme_pg_size;
2243 
2244 	nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE);
2245 	/*
2246 	 * Nvme has a very convoluted prp format.  One prp is required
2247 	 * for each page or partial page. Driver need to split up OS sg_list
2248 	 * entries if it is longer than one page or cross a page
2249 	 * boundary.  Driver also have to insert a PRP list pointer entry as
2250 	 * the last entry in each physical page of the PRP list.
2251 	 *
2252 	 * NOTE: The first PRP "entry" is actually placed in the first
2253 	 * SGL entry in the main message as IEEE 64 format.  The 2nd
2254 	 * entry in the main message is the chain element, and the rest
2255 	 * of the PRP entries are built in the contiguous pcie buffer.
2256 	 */
2257 	page_mask = nvme_pg_size - 1;
2258 
2259 	/*
2260 	 * Native SGL is needed.
2261 	 * Put a chain element in main message frame that points to the first
2262 	 * chain buffer.
2263 	 *
2264 	 * NOTE:  The ChainOffset field must be 0 when using a chain pointer to
2265 	 *        a native SGL.
2266 	 */
2267 
2268 	/* Set main message chain element pointer */
2269 	main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2270 	/*
2271 	 * For NVMe the chain element needs to be the 2nd SG entry in the main
2272 	 * message.
2273 	 */
2274 	main_chain_element = (Mpi25IeeeSgeChain64_t *)
2275 		((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
2276 
2277 	/*
2278 	 * For the PRP entries, use the specially allocated buffer of
2279 	 * contiguous memory.  Normal chain buffers can't be used
2280 	 * because each chain buffer would need to be the size of an OS
2281 	 * page (4k).
2282 	 */
2283 	curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid);
2284 	msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2285 
2286 	main_chain_element->Address = cpu_to_le64(msg_dma);
2287 	main_chain_element->NextChainOffset = 0;
2288 	main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2289 			MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2290 			MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
2291 
2292 	/* Build first prp, sge need not to be page aligned*/
2293 	ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2294 	sg_scmd = scsi_sglist(scmd);
2295 	sge_addr = sg_dma_address(sg_scmd);
2296 	sge_len = sg_dma_len(sg_scmd);
2297 
2298 	offset = sge_addr & page_mask;
2299 	first_prp_len = nvme_pg_size - offset;
2300 
2301 	ptr_first_sgl->Address = cpu_to_le64(sge_addr);
2302 	ptr_first_sgl->Length = cpu_to_le32(first_prp_len);
2303 
2304 	data_len -= first_prp_len;
2305 
2306 	if (sge_len > first_prp_len) {
2307 		sge_addr += first_prp_len;
2308 		sge_len -= first_prp_len;
2309 	} else if (data_len && (sge_len == first_prp_len)) {
2310 		sg_scmd = sg_next(sg_scmd);
2311 		sge_addr = sg_dma_address(sg_scmd);
2312 		sge_len = sg_dma_len(sg_scmd);
2313 	}
2314 
2315 	for (;;) {
2316 		offset = sge_addr & page_mask;
2317 
2318 		/* Put PRP pointer due to page boundary*/
2319 		page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask;
2320 		if (unlikely(!page_mask_result)) {
2321 			scmd_printk(KERN_NOTICE,
2322 				scmd, "page boundary curr_buff: 0x%p\n",
2323 				curr_buff);
2324 			msg_dma += 8;
2325 			*curr_buff = cpu_to_le64(msg_dma);
2326 			curr_buff++;
2327 			num_prp_in_chain++;
2328 		}
2329 
2330 		*curr_buff = cpu_to_le64(sge_addr);
2331 		curr_buff++;
2332 		msg_dma += 8;
2333 		num_prp_in_chain++;
2334 
2335 		sge_addr += nvme_pg_size;
2336 		sge_len -= nvme_pg_size;
2337 		data_len -= nvme_pg_size;
2338 
2339 		if (data_len <= 0)
2340 			break;
2341 
2342 		if (sge_len > 0)
2343 			continue;
2344 
2345 		sg_scmd = sg_next(sg_scmd);
2346 		sge_addr = sg_dma_address(sg_scmd);
2347 		sge_len = sg_dma_len(sg_scmd);
2348 	}
2349 
2350 	main_chain_element->Length =
2351 		cpu_to_le32(num_prp_in_chain * sizeof(u64));
2352 	return;
2353 }
2354 
2355 static bool
2356 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc,
2357 	struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count)
2358 {
2359 	u32 data_length = 0;
2360 	bool build_prp = true;
2361 
2362 	data_length = scsi_bufflen(scmd);
2363 	if (pcie_device &&
2364 	    (mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))) {
2365 		build_prp = false;
2366 		return build_prp;
2367 	}
2368 
2369 	/* If Datalenth is <= 16K and number of SGE’s entries are <= 2
2370 	 * we built IEEE SGL
2371 	 */
2372 	if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2))
2373 		build_prp = false;
2374 
2375 	return build_prp;
2376 }
2377 
2378 /**
2379  * _base_check_pcie_native_sgl - This function is called for PCIe end devices to
2380  * determine if the driver needs to build a native SGL.  If so, that native
2381  * SGL is built in the special contiguous buffers allocated especially for
2382  * PCIe SGL creation.  If the driver will not build a native SGL, return
2383  * TRUE and a normal IEEE SGL will be built.  Currently this routine
2384  * supports NVMe.
2385  * @ioc: per adapter object
2386  * @mpi_request: mf request pointer
2387  * @smid: system request message index
2388  * @scmd: scsi command
2389  * @pcie_device: points to the PCIe device's info
2390  *
2391  * Return: 0 if native SGL was built, 1 if no SGL was built
2392  */
2393 static int
2394 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc,
2395 	Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd,
2396 	struct _pcie_device *pcie_device)
2397 {
2398 	int sges_left;
2399 
2400 	/* Get the SG list pointer and info. */
2401 	sges_left = scsi_dma_map(scmd);
2402 	if (sges_left < 0) {
2403 		sdev_printk(KERN_ERR, scmd->device,
2404 			"scsi_dma_map failed: request for %d bytes!\n",
2405 			scsi_bufflen(scmd));
2406 		return 1;
2407 	}
2408 
2409 	/* Check if we need to build a native SG list. */
2410 	if (base_is_prp_possible(ioc, pcie_device,
2411 				scmd, sges_left) == 0) {
2412 		/* We built a native SG list, just return. */
2413 		goto out;
2414 	}
2415 
2416 	/*
2417 	 * Build native NVMe PRP.
2418 	 */
2419 	base_make_prp_nvme(ioc, scmd, mpi_request,
2420 			smid, sges_left);
2421 
2422 	return 0;
2423 out:
2424 	scsi_dma_unmap(scmd);
2425 	return 1;
2426 }
2427 
2428 /**
2429  * _base_add_sg_single_ieee - add sg element for IEEE format
2430  * @paddr: virtual address for SGE
2431  * @flags: SGE flags
2432  * @chain_offset: number of 128 byte elements from start of segment
2433  * @length: data transfer length
2434  * @dma_addr: Physical address
2435  */
2436 static void
2437 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
2438 	dma_addr_t dma_addr)
2439 {
2440 	Mpi25IeeeSgeChain64_t *sgel = paddr;
2441 
2442 	sgel->Flags = flags;
2443 	sgel->NextChainOffset = chain_offset;
2444 	sgel->Length = cpu_to_le32(length);
2445 	sgel->Address = cpu_to_le64(dma_addr);
2446 }
2447 
2448 /**
2449  * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
2450  * @ioc: per adapter object
2451  * @paddr: virtual address for SGE
2452  *
2453  * Create a zero length scatter gather entry to insure the IOCs hardware has
2454  * something to use if the target device goes brain dead and tries
2455  * to send data even when none is asked for.
2456  */
2457 static void
2458 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2459 {
2460 	u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2461 		MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2462 		MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
2463 
2464 	_base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
2465 }
2466 
2467 /**
2468  * _base_build_sg_scmd - main sg creation routine
2469  *		pcie_device is unused here!
2470  * @ioc: per adapter object
2471  * @scmd: scsi command
2472  * @smid: system request message index
2473  * @unused: unused pcie_device pointer
2474  * Context: none.
2475  *
2476  * The main routine that builds scatter gather table from a given
2477  * scsi request sent via the .queuecommand main handler.
2478  *
2479  * Return: 0 success, anything else error
2480  */
2481 static int
2482 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
2483 	struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused)
2484 {
2485 	Mpi2SCSIIORequest_t *mpi_request;
2486 	dma_addr_t chain_dma;
2487 	struct scatterlist *sg_scmd;
2488 	void *sg_local, *chain;
2489 	u32 chain_offset;
2490 	u32 chain_length;
2491 	u32 chain_flags;
2492 	int sges_left;
2493 	u32 sges_in_segment;
2494 	u32 sgl_flags;
2495 	u32 sgl_flags_last_element;
2496 	u32 sgl_flags_end_buffer;
2497 	struct chain_tracker *chain_req;
2498 
2499 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2500 
2501 	/* init scatter gather flags */
2502 	sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
2503 	if (scmd->sc_data_direction == DMA_TO_DEVICE)
2504 		sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2505 	sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
2506 	    << MPI2_SGE_FLAGS_SHIFT;
2507 	sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
2508 	    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
2509 	    << MPI2_SGE_FLAGS_SHIFT;
2510 	sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2511 
2512 	sg_scmd = scsi_sglist(scmd);
2513 	sges_left = scsi_dma_map(scmd);
2514 	if (sges_left < 0) {
2515 		sdev_printk(KERN_ERR, scmd->device,
2516 		 "scsi_dma_map failed: request for %d bytes!\n",
2517 		 scsi_bufflen(scmd));
2518 		return -ENOMEM;
2519 	}
2520 
2521 	sg_local = &mpi_request->SGL;
2522 	sges_in_segment = ioc->max_sges_in_main_message;
2523 	if (sges_left <= sges_in_segment)
2524 		goto fill_in_last_segment;
2525 
2526 	mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
2527 	    (sges_in_segment * ioc->sge_size))/4;
2528 
2529 	/* fill in main message segment when there is a chain following */
2530 	while (sges_in_segment) {
2531 		if (sges_in_segment == 1)
2532 			ioc->base_add_sg_single(sg_local,
2533 			    sgl_flags_last_element | sg_dma_len(sg_scmd),
2534 			    sg_dma_address(sg_scmd));
2535 		else
2536 			ioc->base_add_sg_single(sg_local, sgl_flags |
2537 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2538 		sg_scmd = sg_next(sg_scmd);
2539 		sg_local += ioc->sge_size;
2540 		sges_left--;
2541 		sges_in_segment--;
2542 	}
2543 
2544 	/* initializing the chain flags and pointers */
2545 	chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
2546 	chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2547 	if (!chain_req)
2548 		return -1;
2549 	chain = chain_req->chain_buffer;
2550 	chain_dma = chain_req->chain_buffer_dma;
2551 	do {
2552 		sges_in_segment = (sges_left <=
2553 		    ioc->max_sges_in_chain_message) ? sges_left :
2554 		    ioc->max_sges_in_chain_message;
2555 		chain_offset = (sges_left == sges_in_segment) ?
2556 		    0 : (sges_in_segment * ioc->sge_size)/4;
2557 		chain_length = sges_in_segment * ioc->sge_size;
2558 		if (chain_offset) {
2559 			chain_offset = chain_offset <<
2560 			    MPI2_SGE_CHAIN_OFFSET_SHIFT;
2561 			chain_length += ioc->sge_size;
2562 		}
2563 		ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
2564 		    chain_length, chain_dma);
2565 		sg_local = chain;
2566 		if (!chain_offset)
2567 			goto fill_in_last_segment;
2568 
2569 		/* fill in chain segments */
2570 		while (sges_in_segment) {
2571 			if (sges_in_segment == 1)
2572 				ioc->base_add_sg_single(sg_local,
2573 				    sgl_flags_last_element |
2574 				    sg_dma_len(sg_scmd),
2575 				    sg_dma_address(sg_scmd));
2576 			else
2577 				ioc->base_add_sg_single(sg_local, sgl_flags |
2578 				    sg_dma_len(sg_scmd),
2579 				    sg_dma_address(sg_scmd));
2580 			sg_scmd = sg_next(sg_scmd);
2581 			sg_local += ioc->sge_size;
2582 			sges_left--;
2583 			sges_in_segment--;
2584 		}
2585 
2586 		chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2587 		if (!chain_req)
2588 			return -1;
2589 		chain = chain_req->chain_buffer;
2590 		chain_dma = chain_req->chain_buffer_dma;
2591 	} while (1);
2592 
2593 
2594  fill_in_last_segment:
2595 
2596 	/* fill the last segment */
2597 	while (sges_left) {
2598 		if (sges_left == 1)
2599 			ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
2600 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2601 		else
2602 			ioc->base_add_sg_single(sg_local, sgl_flags |
2603 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2604 		sg_scmd = sg_next(sg_scmd);
2605 		sg_local += ioc->sge_size;
2606 		sges_left--;
2607 	}
2608 
2609 	return 0;
2610 }
2611 
2612 /**
2613  * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
2614  * @ioc: per adapter object
2615  * @scmd: scsi command
2616  * @smid: system request message index
2617  * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
2618  * constructed on need.
2619  * Context: none.
2620  *
2621  * The main routine that builds scatter gather table from a given
2622  * scsi request sent via the .queuecommand main handler.
2623  *
2624  * Return: 0 success, anything else error
2625  */
2626 static int
2627 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
2628 	struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device)
2629 {
2630 	Mpi25SCSIIORequest_t *mpi_request;
2631 	dma_addr_t chain_dma;
2632 	struct scatterlist *sg_scmd;
2633 	void *sg_local, *chain;
2634 	u32 chain_offset;
2635 	u32 chain_length;
2636 	int sges_left;
2637 	u32 sges_in_segment;
2638 	u8 simple_sgl_flags;
2639 	u8 simple_sgl_flags_last;
2640 	u8 chain_sgl_flags;
2641 	struct chain_tracker *chain_req;
2642 
2643 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2644 
2645 	/* init scatter gather flags */
2646 	simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2647 	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2648 	simple_sgl_flags_last = simple_sgl_flags |
2649 	    MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2650 	chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2651 	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2652 
2653 	/* Check if we need to build a native SG list. */
2654 	if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request,
2655 			smid, scmd, pcie_device) == 0)) {
2656 		/* We built a native SG list, just return. */
2657 		return 0;
2658 	}
2659 
2660 	sg_scmd = scsi_sglist(scmd);
2661 	sges_left = scsi_dma_map(scmd);
2662 	if (sges_left < 0) {
2663 		sdev_printk(KERN_ERR, scmd->device,
2664 			"scsi_dma_map failed: request for %d bytes!\n",
2665 			scsi_bufflen(scmd));
2666 		return -ENOMEM;
2667 	}
2668 
2669 	sg_local = &mpi_request->SGL;
2670 	sges_in_segment = (ioc->request_sz -
2671 		   offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
2672 	if (sges_left <= sges_in_segment)
2673 		goto fill_in_last_segment;
2674 
2675 	mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
2676 	    (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
2677 
2678 	/* fill in main message segment when there is a chain following */
2679 	while (sges_in_segment > 1) {
2680 		_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2681 		    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2682 		sg_scmd = sg_next(sg_scmd);
2683 		sg_local += ioc->sge_size_ieee;
2684 		sges_left--;
2685 		sges_in_segment--;
2686 	}
2687 
2688 	/* initializing the pointers */
2689 	chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2690 	if (!chain_req)
2691 		return -1;
2692 	chain = chain_req->chain_buffer;
2693 	chain_dma = chain_req->chain_buffer_dma;
2694 	do {
2695 		sges_in_segment = (sges_left <=
2696 		    ioc->max_sges_in_chain_message) ? sges_left :
2697 		    ioc->max_sges_in_chain_message;
2698 		chain_offset = (sges_left == sges_in_segment) ?
2699 		    0 : sges_in_segment;
2700 		chain_length = sges_in_segment * ioc->sge_size_ieee;
2701 		if (chain_offset)
2702 			chain_length += ioc->sge_size_ieee;
2703 		_base_add_sg_single_ieee(sg_local, chain_sgl_flags,
2704 		    chain_offset, chain_length, chain_dma);
2705 
2706 		sg_local = chain;
2707 		if (!chain_offset)
2708 			goto fill_in_last_segment;
2709 
2710 		/* fill in chain segments */
2711 		while (sges_in_segment) {
2712 			_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2713 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2714 			sg_scmd = sg_next(sg_scmd);
2715 			sg_local += ioc->sge_size_ieee;
2716 			sges_left--;
2717 			sges_in_segment--;
2718 		}
2719 
2720 		chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2721 		if (!chain_req)
2722 			return -1;
2723 		chain = chain_req->chain_buffer;
2724 		chain_dma = chain_req->chain_buffer_dma;
2725 	} while (1);
2726 
2727 
2728  fill_in_last_segment:
2729 
2730 	/* fill the last segment */
2731 	while (sges_left > 0) {
2732 		if (sges_left == 1)
2733 			_base_add_sg_single_ieee(sg_local,
2734 			    simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
2735 			    sg_dma_address(sg_scmd));
2736 		else
2737 			_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2738 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2739 		sg_scmd = sg_next(sg_scmd);
2740 		sg_local += ioc->sge_size_ieee;
2741 		sges_left--;
2742 	}
2743 
2744 	return 0;
2745 }
2746 
2747 /**
2748  * _base_build_sg_ieee - build generic sg for IEEE format
2749  * @ioc: per adapter object
2750  * @psge: virtual address for SGE
2751  * @data_out_dma: physical address for WRITES
2752  * @data_out_sz: data xfer size for WRITES
2753  * @data_in_dma: physical address for READS
2754  * @data_in_sz: data xfer size for READS
2755  */
2756 static void
2757 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
2758 	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2759 	size_t data_in_sz)
2760 {
2761 	u8 sgl_flags;
2762 
2763 	if (!data_out_sz && !data_in_sz) {
2764 		_base_build_zero_len_sge_ieee(ioc, psge);
2765 		return;
2766 	}
2767 
2768 	if (data_out_sz && data_in_sz) {
2769 		/* WRITE sgel first */
2770 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2771 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2772 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2773 		    data_out_dma);
2774 
2775 		/* incr sgel */
2776 		psge += ioc->sge_size_ieee;
2777 
2778 		/* READ sgel last */
2779 		sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2780 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2781 		    data_in_dma);
2782 	} else if (data_out_sz) /* WRITE */ {
2783 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2784 		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2785 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2786 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2787 		    data_out_dma);
2788 	} else if (data_in_sz) /* READ */ {
2789 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2790 		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2791 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2792 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2793 		    data_in_dma);
2794 	}
2795 }
2796 
2797 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
2798 
2799 /**
2800  * _base_config_dma_addressing - set dma addressing
2801  * @ioc: per adapter object
2802  * @pdev: PCI device struct
2803  *
2804  * Return: 0 for success, non-zero for failure.
2805  */
2806 static int
2807 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
2808 {
2809 	u64 required_mask, coherent_mask;
2810 	struct sysinfo s;
2811 	/* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */
2812 	int dma_mask = (ioc->hba_mpi_version_belonged > MPI2_VERSION) ? 63 : 64;
2813 
2814 	if (ioc->is_mcpu_endpoint)
2815 		goto try_32bit;
2816 
2817 	required_mask = dma_get_required_mask(&pdev->dev);
2818 	if (sizeof(dma_addr_t) == 4 || required_mask == 32)
2819 		goto try_32bit;
2820 
2821 	if (ioc->dma_mask)
2822 		coherent_mask = DMA_BIT_MASK(dma_mask);
2823 	else
2824 		coherent_mask = DMA_BIT_MASK(32);
2825 
2826 	if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(dma_mask)) ||
2827 	    dma_set_coherent_mask(&pdev->dev, coherent_mask))
2828 		goto try_32bit;
2829 
2830 	ioc->base_add_sg_single = &_base_add_sg_single_64;
2831 	ioc->sge_size = sizeof(Mpi2SGESimple64_t);
2832 	ioc->dma_mask = dma_mask;
2833 	goto out;
2834 
2835  try_32bit:
2836 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)))
2837 		return -ENODEV;
2838 
2839 	ioc->base_add_sg_single = &_base_add_sg_single_32;
2840 	ioc->sge_size = sizeof(Mpi2SGESimple32_t);
2841 	ioc->dma_mask = 32;
2842  out:
2843 	si_meminfo(&s);
2844 	ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
2845 		 ioc->dma_mask, convert_to_kb(s.totalram));
2846 
2847 	return 0;
2848 }
2849 
2850 static int
2851 _base_change_consistent_dma_mask(struct MPT3SAS_ADAPTER *ioc,
2852 				      struct pci_dev *pdev)
2853 {
2854 	if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(ioc->dma_mask))) {
2855 		if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
2856 			return -ENODEV;
2857 	}
2858 	return 0;
2859 }
2860 
2861 /**
2862  * _base_check_enable_msix - checks MSIX capabable.
2863  * @ioc: per adapter object
2864  *
2865  * Check to see if card is capable of MSIX, and set number
2866  * of available msix vectors
2867  */
2868 static int
2869 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
2870 {
2871 	int base;
2872 	u16 message_control;
2873 
2874 	/* Check whether controller SAS2008 B0 controller,
2875 	 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
2876 	 */
2877 	if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
2878 	    ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
2879 		return -EINVAL;
2880 	}
2881 
2882 	base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
2883 	if (!base) {
2884 		dfailprintk(ioc, ioc_info(ioc, "msix not supported\n"));
2885 		return -EINVAL;
2886 	}
2887 
2888 	/* get msix vector count */
2889 	/* NUMA_IO not supported for older controllers */
2890 	if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
2891 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
2892 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
2893 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
2894 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
2895 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
2896 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
2897 		ioc->msix_vector_count = 1;
2898 	else {
2899 		pci_read_config_word(ioc->pdev, base + 2, &message_control);
2900 		ioc->msix_vector_count = (message_control & 0x3FF) + 1;
2901 	}
2902 	dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n",
2903 				  ioc->msix_vector_count));
2904 	return 0;
2905 }
2906 
2907 /**
2908  * _base_free_irq - free irq
2909  * @ioc: per adapter object
2910  *
2911  * Freeing respective reply_queue from the list.
2912  */
2913 static void
2914 _base_free_irq(struct MPT3SAS_ADAPTER *ioc)
2915 {
2916 	struct adapter_reply_queue *reply_q, *next;
2917 
2918 	if (list_empty(&ioc->reply_queue_list))
2919 		return;
2920 
2921 	list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
2922 		list_del(&reply_q->list);
2923 		if (ioc->smp_affinity_enable)
2924 			irq_set_affinity_hint(pci_irq_vector(ioc->pdev,
2925 			    reply_q->msix_index), NULL);
2926 		free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
2927 			 reply_q);
2928 		kfree(reply_q);
2929 	}
2930 }
2931 
2932 /**
2933  * _base_request_irq - request irq
2934  * @ioc: per adapter object
2935  * @index: msix index into vector table
2936  *
2937  * Inserting respective reply_queue into the list.
2938  */
2939 static int
2940 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
2941 {
2942 	struct pci_dev *pdev = ioc->pdev;
2943 	struct adapter_reply_queue *reply_q;
2944 	int r;
2945 
2946 	reply_q =  kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
2947 	if (!reply_q) {
2948 		ioc_err(ioc, "unable to allocate memory %zu!\n",
2949 			sizeof(struct adapter_reply_queue));
2950 		return -ENOMEM;
2951 	}
2952 	reply_q->ioc = ioc;
2953 	reply_q->msix_index = index;
2954 
2955 	atomic_set(&reply_q->busy, 0);
2956 	if (ioc->msix_enable)
2957 		snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
2958 		    ioc->driver_name, ioc->id, index);
2959 	else
2960 		snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
2961 		    ioc->driver_name, ioc->id);
2962 	r = request_irq(pci_irq_vector(pdev, index), _base_interrupt,
2963 			IRQF_SHARED, reply_q->name, reply_q);
2964 	if (r) {
2965 		pr_err("%s: unable to allocate interrupt %d!\n",
2966 		       reply_q->name, pci_irq_vector(pdev, index));
2967 		kfree(reply_q);
2968 		return -EBUSY;
2969 	}
2970 
2971 	INIT_LIST_HEAD(&reply_q->list);
2972 	list_add_tail(&reply_q->list, &ioc->reply_queue_list);
2973 	return 0;
2974 }
2975 
2976 /**
2977  * _base_assign_reply_queues - assigning msix index for each cpu
2978  * @ioc: per adapter object
2979  *
2980  * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
2981  *
2982  * It would nice if we could call irq_set_affinity, however it is not
2983  * an exported symbol
2984  */
2985 static void
2986 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
2987 {
2988 	unsigned int cpu, nr_cpus, nr_msix, index = 0;
2989 	struct adapter_reply_queue *reply_q;
2990 	int local_numa_node;
2991 
2992 	if (!_base_is_controller_msix_enabled(ioc))
2993 		return;
2994 
2995 	if (ioc->msix_load_balance)
2996 		return;
2997 
2998 	memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
2999 
3000 	nr_cpus = num_online_cpus();
3001 	nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
3002 					       ioc->facts.MaxMSIxVectors);
3003 	if (!nr_msix)
3004 		return;
3005 
3006 	if (ioc->smp_affinity_enable) {
3007 
3008 		/*
3009 		 * set irq affinity to local numa node for those irqs
3010 		 * corresponding to high iops queues.
3011 		 */
3012 		if (ioc->high_iops_queues) {
3013 			local_numa_node = dev_to_node(&ioc->pdev->dev);
3014 			for (index = 0; index < ioc->high_iops_queues;
3015 			    index++) {
3016 				irq_set_affinity_hint(pci_irq_vector(ioc->pdev,
3017 				    index), cpumask_of_node(local_numa_node));
3018 			}
3019 		}
3020 
3021 		list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3022 			const cpumask_t *mask;
3023 
3024 			if (reply_q->msix_index < ioc->high_iops_queues)
3025 				continue;
3026 
3027 			mask = pci_irq_get_affinity(ioc->pdev,
3028 			    reply_q->msix_index);
3029 			if (!mask) {
3030 				ioc_warn(ioc, "no affinity for msi %x\n",
3031 					 reply_q->msix_index);
3032 				goto fall_back;
3033 			}
3034 
3035 			for_each_cpu_and(cpu, mask, cpu_online_mask) {
3036 				if (cpu >= ioc->cpu_msix_table_sz)
3037 					break;
3038 				ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3039 			}
3040 		}
3041 		return;
3042 	}
3043 
3044 fall_back:
3045 	cpu = cpumask_first(cpu_online_mask);
3046 	nr_msix -= ioc->high_iops_queues;
3047 	index = 0;
3048 
3049 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3050 		unsigned int i, group = nr_cpus / nr_msix;
3051 
3052 		if (reply_q->msix_index < ioc->high_iops_queues)
3053 			continue;
3054 
3055 		if (cpu >= nr_cpus)
3056 			break;
3057 
3058 		if (index < nr_cpus % nr_msix)
3059 			group++;
3060 
3061 		for (i = 0 ; i < group ; i++) {
3062 			ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3063 			cpu = cpumask_next(cpu, cpu_online_mask);
3064 		}
3065 		index++;
3066 	}
3067 }
3068 
3069 /**
3070  * _base_check_and_enable_high_iops_queues - enable high iops mode
3071  * @ ioc - per adapter object
3072  * @ hba_msix_vector_count - msix vectors supported by HBA
3073  *
3074  * Enable high iops queues only if
3075  *  - HBA is a SEA/AERO controller and
3076  *  - MSI-Xs vector supported by the HBA is 128 and
3077  *  - total CPU count in the system >=16 and
3078  *  - loaded driver with default max_msix_vectors module parameter and
3079  *  - system booted in non kdump mode
3080  *
3081  * returns nothing.
3082  */
3083 static void
3084 _base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc,
3085 		int hba_msix_vector_count)
3086 {
3087 	u16 lnksta, speed;
3088 
3089 	if (perf_mode == MPT_PERF_MODE_IOPS ||
3090 	    perf_mode == MPT_PERF_MODE_LATENCY) {
3091 		ioc->high_iops_queues = 0;
3092 		return;
3093 	}
3094 
3095 	if (perf_mode == MPT_PERF_MODE_DEFAULT) {
3096 
3097 		pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta);
3098 		speed = lnksta & PCI_EXP_LNKSTA_CLS;
3099 
3100 		if (speed < 0x4) {
3101 			ioc->high_iops_queues = 0;
3102 			return;
3103 		}
3104 	}
3105 
3106 	if (!reset_devices && ioc->is_aero_ioc &&
3107 	    hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES &&
3108 	    num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES &&
3109 	    max_msix_vectors == -1)
3110 		ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES;
3111 	else
3112 		ioc->high_iops_queues = 0;
3113 }
3114 
3115 /**
3116  * _base_disable_msix - disables msix
3117  * @ioc: per adapter object
3118  *
3119  */
3120 static void
3121 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
3122 {
3123 	if (!ioc->msix_enable)
3124 		return;
3125 	pci_free_irq_vectors(ioc->pdev);
3126 	ioc->msix_enable = 0;
3127 }
3128 
3129 /**
3130  * _base_alloc_irq_vectors - allocate msix vectors
3131  * @ioc: per adapter object
3132  *
3133  */
3134 static int
3135 _base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc)
3136 {
3137 	int i, irq_flags = PCI_IRQ_MSIX;
3138 	struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues };
3139 	struct irq_affinity *descp = &desc;
3140 
3141 	if (ioc->smp_affinity_enable)
3142 		irq_flags |= PCI_IRQ_AFFINITY;
3143 	else
3144 		descp = NULL;
3145 
3146 	ioc_info(ioc, " %d %d\n", ioc->high_iops_queues,
3147 	    ioc->reply_queue_count);
3148 
3149 	i = pci_alloc_irq_vectors_affinity(ioc->pdev,
3150 	    ioc->high_iops_queues,
3151 	    ioc->reply_queue_count, irq_flags, descp);
3152 
3153 	return i;
3154 }
3155 
3156 /**
3157  * _base_enable_msix - enables msix, failback to io_apic
3158  * @ioc: per adapter object
3159  *
3160  */
3161 static int
3162 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3163 {
3164 	int r;
3165 	int i, local_max_msix_vectors;
3166 	u8 try_msix = 0;
3167 
3168 	ioc->msix_load_balance = false;
3169 
3170 	if (msix_disable == -1 || msix_disable == 0)
3171 		try_msix = 1;
3172 
3173 	if (!try_msix)
3174 		goto try_ioapic;
3175 
3176 	if (_base_check_enable_msix(ioc) != 0)
3177 		goto try_ioapic;
3178 
3179 	ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count);
3180 	pr_info("\t no of cores: %d, max_msix_vectors: %d\n",
3181 		ioc->cpu_count, max_msix_vectors);
3182 	if (ioc->is_aero_ioc)
3183 		_base_check_and_enable_high_iops_queues(ioc,
3184 			ioc->msix_vector_count);
3185 	ioc->reply_queue_count =
3186 		min_t(int, ioc->cpu_count + ioc->high_iops_queues,
3187 		ioc->msix_vector_count);
3188 
3189 	if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
3190 		local_max_msix_vectors = (reset_devices) ? 1 : 8;
3191 	else
3192 		local_max_msix_vectors = max_msix_vectors;
3193 
3194 	if (local_max_msix_vectors > 0)
3195 		ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
3196 			ioc->reply_queue_count);
3197 	else if (local_max_msix_vectors == 0)
3198 		goto try_ioapic;
3199 
3200 	/*
3201 	 * Enable msix_load_balance only if combined reply queue mode is
3202 	 * disabled on SAS3 & above generation HBA devices.
3203 	 */
3204 	if (!ioc->combined_reply_queue &&
3205 	    ioc->hba_mpi_version_belonged != MPI2_VERSION) {
3206 		ioc_info(ioc,
3207 		    "combined ReplyQueue is off, Enabling msix load balance\n");
3208 		ioc->msix_load_balance = true;
3209 	}
3210 
3211 	/*
3212 	 * smp affinity setting is not need when msix load balance
3213 	 * is enabled.
3214 	 */
3215 	if (ioc->msix_load_balance)
3216 		ioc->smp_affinity_enable = 0;
3217 
3218 	r = _base_alloc_irq_vectors(ioc);
3219 	if (r < 0) {
3220 		ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", r);
3221 		goto try_ioapic;
3222 	}
3223 
3224 	ioc->msix_enable = 1;
3225 	ioc->reply_queue_count = r;
3226 	for (i = 0; i < ioc->reply_queue_count; i++) {
3227 		r = _base_request_irq(ioc, i);
3228 		if (r) {
3229 			_base_free_irq(ioc);
3230 			_base_disable_msix(ioc);
3231 			goto try_ioapic;
3232 		}
3233 	}
3234 
3235 	ioc_info(ioc, "High IOPs queues : %s\n",
3236 			ioc->high_iops_queues ? "enabled" : "disabled");
3237 
3238 	return 0;
3239 
3240 /* failback to io_apic interrupt routing */
3241  try_ioapic:
3242 	ioc->high_iops_queues = 0;
3243 	ioc_info(ioc, "High IOPs queues : disabled\n");
3244 	ioc->reply_queue_count = 1;
3245 	r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY);
3246 	if (r < 0) {
3247 		dfailprintk(ioc,
3248 			    ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
3249 				     r));
3250 	} else
3251 		r = _base_request_irq(ioc, 0);
3252 
3253 	return r;
3254 }
3255 
3256 /**
3257  * mpt3sas_base_unmap_resources - free controller resources
3258  * @ioc: per adapter object
3259  */
3260 static void
3261 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
3262 {
3263 	struct pci_dev *pdev = ioc->pdev;
3264 
3265 	dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3266 
3267 	_base_free_irq(ioc);
3268 	_base_disable_msix(ioc);
3269 
3270 	kfree(ioc->replyPostRegisterIndex);
3271 	ioc->replyPostRegisterIndex = NULL;
3272 
3273 
3274 	if (ioc->chip_phys) {
3275 		iounmap(ioc->chip);
3276 		ioc->chip_phys = 0;
3277 	}
3278 
3279 	if (pci_is_enabled(pdev)) {
3280 		pci_release_selected_regions(ioc->pdev, ioc->bars);
3281 		pci_disable_pcie_error_reporting(pdev);
3282 		pci_disable_device(pdev);
3283 	}
3284 }
3285 
3286 static int
3287 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
3288 
3289 /**
3290  * _base_check_for_fault_and_issue_reset - check if IOC is in fault state
3291  *     and if it is in fault state then issue diag reset.
3292  * @ioc: per adapter object
3293  *
3294  * Returns: 0 for success, non-zero for failure.
3295  */
3296 static int
3297 _base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc)
3298 {
3299 	u32 ioc_state;
3300 	int rc = -EFAULT;
3301 
3302 	dinitprintk(ioc, pr_info("%s\n", __func__));
3303 	if (ioc->pci_error_recovery)
3304 		return 0;
3305 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
3306 	dhsprintk(ioc, pr_info("%s: ioc_state(0x%08x)\n", __func__, ioc_state));
3307 
3308 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
3309 		mpt3sas_print_fault_code(ioc, ioc_state &
3310 		    MPI2_DOORBELL_DATA_MASK);
3311 		rc = _base_diag_reset(ioc);
3312 	} else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
3313 	    MPI2_IOC_STATE_COREDUMP) {
3314 		mpt3sas_print_coredump_info(ioc, ioc_state &
3315 		     MPI2_DOORBELL_DATA_MASK);
3316 		mpt3sas_base_wait_for_coredump_completion(ioc, __func__);
3317 		rc = _base_diag_reset(ioc);
3318 	}
3319 
3320 	return rc;
3321 }
3322 
3323 /**
3324  * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
3325  * @ioc: per adapter object
3326  *
3327  * Return: 0 for success, non-zero for failure.
3328  */
3329 int
3330 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
3331 {
3332 	struct pci_dev *pdev = ioc->pdev;
3333 	u32 memap_sz;
3334 	u32 pio_sz;
3335 	int i, r = 0, rc;
3336 	u64 pio_chip = 0;
3337 	phys_addr_t chip_phys = 0;
3338 	struct adapter_reply_queue *reply_q;
3339 
3340 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3341 
3342 	ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
3343 	if (pci_enable_device_mem(pdev)) {
3344 		ioc_warn(ioc, "pci_enable_device_mem: failed\n");
3345 		ioc->bars = 0;
3346 		return -ENODEV;
3347 	}
3348 
3349 
3350 	if (pci_request_selected_regions(pdev, ioc->bars,
3351 	    ioc->driver_name)) {
3352 		ioc_warn(ioc, "pci_request_selected_regions: failed\n");
3353 		ioc->bars = 0;
3354 		r = -ENODEV;
3355 		goto out_fail;
3356 	}
3357 
3358 /* AER (Advanced Error Reporting) hooks */
3359 	pci_enable_pcie_error_reporting(pdev);
3360 
3361 	pci_set_master(pdev);
3362 
3363 
3364 	if (_base_config_dma_addressing(ioc, pdev) != 0) {
3365 		ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev));
3366 		r = -ENODEV;
3367 		goto out_fail;
3368 	}
3369 
3370 	for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
3371 	     (!memap_sz || !pio_sz); i++) {
3372 		if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
3373 			if (pio_sz)
3374 				continue;
3375 			pio_chip = (u64)pci_resource_start(pdev, i);
3376 			pio_sz = pci_resource_len(pdev, i);
3377 		} else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3378 			if (memap_sz)
3379 				continue;
3380 			ioc->chip_phys = pci_resource_start(pdev, i);
3381 			chip_phys = ioc->chip_phys;
3382 			memap_sz = pci_resource_len(pdev, i);
3383 			ioc->chip = ioremap(ioc->chip_phys, memap_sz);
3384 		}
3385 	}
3386 
3387 	if (ioc->chip == NULL) {
3388 		ioc_err(ioc,
3389 		    "unable to map adapter memory! or resource not found\n");
3390 		r = -EINVAL;
3391 		goto out_fail;
3392 	}
3393 
3394 	_base_mask_interrupts(ioc);
3395 
3396 	r = _base_get_ioc_facts(ioc);
3397 	if (r) {
3398 		rc = _base_check_for_fault_and_issue_reset(ioc);
3399 		if (rc || (_base_get_ioc_facts(ioc)))
3400 			goto out_fail;
3401 	}
3402 
3403 	if (!ioc->rdpq_array_enable_assigned) {
3404 		ioc->rdpq_array_enable = ioc->rdpq_array_capable;
3405 		ioc->rdpq_array_enable_assigned = 1;
3406 	}
3407 
3408 	r = _base_enable_msix(ioc);
3409 	if (r)
3410 		goto out_fail;
3411 
3412 	if (!ioc->is_driver_loading)
3413 		_base_init_irqpolls(ioc);
3414 	/* Use the Combined reply queue feature only for SAS3 C0 & higher
3415 	 * revision HBAs and also only when reply queue count is greater than 8
3416 	 */
3417 	if (ioc->combined_reply_queue) {
3418 		/* Determine the Supplemental Reply Post Host Index Registers
3419 		 * Addresse. Supplemental Reply Post Host Index Registers
3420 		 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
3421 		 * each register is at offset bytes of
3422 		 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
3423 		 */
3424 		ioc->replyPostRegisterIndex = kcalloc(
3425 		     ioc->combined_reply_index_count,
3426 		     sizeof(resource_size_t *), GFP_KERNEL);
3427 		if (!ioc->replyPostRegisterIndex) {
3428 			ioc_err(ioc,
3429 			    "allocation for replyPostRegisterIndex failed!\n");
3430 			r = -ENOMEM;
3431 			goto out_fail;
3432 		}
3433 
3434 		for (i = 0; i < ioc->combined_reply_index_count; i++) {
3435 			ioc->replyPostRegisterIndex[i] = (resource_size_t *)
3436 			     ((u8 __force *)&ioc->chip->Doorbell +
3437 			     MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
3438 			     (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
3439 		}
3440 	}
3441 
3442 	if (ioc->is_warpdrive) {
3443 		ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
3444 		    &ioc->chip->ReplyPostHostIndex;
3445 
3446 		for (i = 1; i < ioc->cpu_msix_table_sz; i++)
3447 			ioc->reply_post_host_index[i] =
3448 			(resource_size_t __iomem *)
3449 			((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
3450 			* 4)));
3451 	}
3452 
3453 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
3454 		pr_info("%s: %s enabled: IRQ %d\n",
3455 			reply_q->name,
3456 			ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC",
3457 			pci_irq_vector(ioc->pdev, reply_q->msix_index));
3458 
3459 	ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n",
3460 		 &chip_phys, ioc->chip, memap_sz);
3461 	ioc_info(ioc, "ioport(0x%016llx), size(%d)\n",
3462 		 (unsigned long long)pio_chip, pio_sz);
3463 
3464 	/* Save PCI configuration state for recovery from PCI AER/EEH errors */
3465 	pci_save_state(pdev);
3466 	return 0;
3467 
3468  out_fail:
3469 	mpt3sas_base_unmap_resources(ioc);
3470 	return r;
3471 }
3472 
3473 /**
3474  * mpt3sas_base_get_msg_frame - obtain request mf pointer
3475  * @ioc: per adapter object
3476  * @smid: system request message index(smid zero is invalid)
3477  *
3478  * Return: virt pointer to message frame.
3479  */
3480 void *
3481 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3482 {
3483 	return (void *)(ioc->request + (smid * ioc->request_sz));
3484 }
3485 
3486 /**
3487  * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
3488  * @ioc: per adapter object
3489  * @smid: system request message index
3490  *
3491  * Return: virt pointer to sense buffer.
3492  */
3493 void *
3494 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3495 {
3496 	return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
3497 }
3498 
3499 /**
3500  * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
3501  * @ioc: per adapter object
3502  * @smid: system request message index
3503  *
3504  * Return: phys pointer to the low 32bit address of the sense buffer.
3505  */
3506 __le32
3507 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3508 {
3509 	return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
3510 	    SCSI_SENSE_BUFFERSIZE));
3511 }
3512 
3513 /**
3514  * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
3515  * @ioc: per adapter object
3516  * @smid: system request message index
3517  *
3518  * Return: virt pointer to a PCIe SGL.
3519  */
3520 void *
3521 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3522 {
3523 	return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl);
3524 }
3525 
3526 /**
3527  * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
3528  * @ioc: per adapter object
3529  * @smid: system request message index
3530  *
3531  * Return: phys pointer to the address of the PCIe buffer.
3532  */
3533 dma_addr_t
3534 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3535 {
3536 	return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma;
3537 }
3538 
3539 /**
3540  * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
3541  * @ioc: per adapter object
3542  * @phys_addr: lower 32 physical addr of the reply
3543  *
3544  * Converts 32bit lower physical addr into a virt address.
3545  */
3546 void *
3547 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
3548 {
3549 	if (!phys_addr)
3550 		return NULL;
3551 	return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
3552 }
3553 
3554 /**
3555  * _base_get_msix_index - get the msix index
3556  * @ioc: per adapter object
3557  * @scmd: scsi_cmnd object
3558  *
3559  * returns msix index of general reply queues,
3560  * i.e. reply queue on which IO request's reply
3561  * should be posted by the HBA firmware.
3562  */
3563 static inline u8
3564 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc,
3565 	struct scsi_cmnd *scmd)
3566 {
3567 	/* Enables reply_queue load balancing */
3568 	if (ioc->msix_load_balance)
3569 		return ioc->reply_queue_count ?
3570 		    base_mod64(atomic64_add_return(1,
3571 		    &ioc->total_io_cnt), ioc->reply_queue_count) : 0;
3572 
3573 	return ioc->cpu_msix_table[raw_smp_processor_id()];
3574 }
3575 
3576 /**
3577  * _base_sdev_nr_inflight_request -get number of inflight requests
3578  *				   of a request queue.
3579  * @q: request_queue object
3580  *
3581  * returns number of inflight request of a request queue.
3582  */
3583 inline unsigned long
3584 _base_sdev_nr_inflight_request(struct request_queue *q)
3585 {
3586 	struct blk_mq_hw_ctx *hctx = q->queue_hw_ctx[0];
3587 
3588 	return atomic_read(&hctx->nr_active);
3589 }
3590 
3591 
3592 /**
3593  * _base_get_high_iops_msix_index - get the msix index of
3594  *				high iops queues
3595  * @ioc: per adapter object
3596  * @scmd: scsi_cmnd object
3597  *
3598  * Returns: msix index of high iops reply queues.
3599  * i.e. high iops reply queue on which IO request's
3600  * reply should be posted by the HBA firmware.
3601  */
3602 static inline u8
3603 _base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc,
3604 	struct scsi_cmnd *scmd)
3605 {
3606 	/**
3607 	 * Round robin the IO interrupts among the high iops
3608 	 * reply queues in terms of batch count 16 when outstanding
3609 	 * IOs on the target device is >=8.
3610 	 */
3611 	if (_base_sdev_nr_inflight_request(scmd->device->request_queue) >
3612 	    MPT3SAS_DEVICE_HIGH_IOPS_DEPTH)
3613 		return base_mod64((
3614 		    atomic64_add_return(1, &ioc->high_iops_outstanding) /
3615 		    MPT3SAS_HIGH_IOPS_BATCH_COUNT),
3616 		    MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
3617 
3618 	return _base_get_msix_index(ioc, scmd);
3619 }
3620 
3621 /**
3622  * mpt3sas_base_get_smid - obtain a free smid from internal queue
3623  * @ioc: per adapter object
3624  * @cb_idx: callback index
3625  *
3626  * Return: smid (zero is invalid)
3627  */
3628 u16
3629 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3630 {
3631 	unsigned long flags;
3632 	struct request_tracker *request;
3633 	u16 smid;
3634 
3635 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3636 	if (list_empty(&ioc->internal_free_list)) {
3637 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3638 		ioc_err(ioc, "%s: smid not available\n", __func__);
3639 		return 0;
3640 	}
3641 
3642 	request = list_entry(ioc->internal_free_list.next,
3643 	    struct request_tracker, tracker_list);
3644 	request->cb_idx = cb_idx;
3645 	smid = request->smid;
3646 	list_del(&request->tracker_list);
3647 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3648 	return smid;
3649 }
3650 
3651 /**
3652  * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
3653  * @ioc: per adapter object
3654  * @cb_idx: callback index
3655  * @scmd: pointer to scsi command object
3656  *
3657  * Return: smid (zero is invalid)
3658  */
3659 u16
3660 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
3661 	struct scsi_cmnd *scmd)
3662 {
3663 	struct scsiio_tracker *request = scsi_cmd_priv(scmd);
3664 	unsigned int tag = scmd->request->tag;
3665 	u16 smid;
3666 
3667 	smid = tag + 1;
3668 	request->cb_idx = cb_idx;
3669 	request->smid = smid;
3670 	request->scmd = scmd;
3671 	INIT_LIST_HEAD(&request->chain_list);
3672 	return smid;
3673 }
3674 
3675 /**
3676  * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
3677  * @ioc: per adapter object
3678  * @cb_idx: callback index
3679  *
3680  * Return: smid (zero is invalid)
3681  */
3682 u16
3683 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3684 {
3685 	unsigned long flags;
3686 	struct request_tracker *request;
3687 	u16 smid;
3688 
3689 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3690 	if (list_empty(&ioc->hpr_free_list)) {
3691 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3692 		return 0;
3693 	}
3694 
3695 	request = list_entry(ioc->hpr_free_list.next,
3696 	    struct request_tracker, tracker_list);
3697 	request->cb_idx = cb_idx;
3698 	smid = request->smid;
3699 	list_del(&request->tracker_list);
3700 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3701 	return smid;
3702 }
3703 
3704 static void
3705 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc)
3706 {
3707 	/*
3708 	 * See _wait_for_commands_to_complete() call with regards to this code.
3709 	 */
3710 	if (ioc->shost_recovery && ioc->pending_io_count) {
3711 		ioc->pending_io_count = scsi_host_busy(ioc->shost);
3712 		if (ioc->pending_io_count == 0)
3713 			wake_up(&ioc->reset_wq);
3714 	}
3715 }
3716 
3717 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc,
3718 			   struct scsiio_tracker *st)
3719 {
3720 	if (WARN_ON(st->smid == 0))
3721 		return;
3722 	st->cb_idx = 0xFF;
3723 	st->direct_io = 0;
3724 	st->scmd = NULL;
3725 	atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0);
3726 	st->smid = 0;
3727 }
3728 
3729 /**
3730  * mpt3sas_base_free_smid - put smid back on free_list
3731  * @ioc: per adapter object
3732  * @smid: system request message index
3733  */
3734 void
3735 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3736 {
3737 	unsigned long flags;
3738 	int i;
3739 
3740 	if (smid < ioc->hi_priority_smid) {
3741 		struct scsiio_tracker *st;
3742 		void *request;
3743 
3744 		st = _get_st_from_smid(ioc, smid);
3745 		if (!st) {
3746 			_base_recovery_check(ioc);
3747 			return;
3748 		}
3749 
3750 		/* Clear MPI request frame */
3751 		request = mpt3sas_base_get_msg_frame(ioc, smid);
3752 		memset(request, 0, ioc->request_sz);
3753 
3754 		mpt3sas_base_clear_st(ioc, st);
3755 		_base_recovery_check(ioc);
3756 		return;
3757 	}
3758 
3759 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3760 	if (smid < ioc->internal_smid) {
3761 		/* hi-priority */
3762 		i = smid - ioc->hi_priority_smid;
3763 		ioc->hpr_lookup[i].cb_idx = 0xFF;
3764 		list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
3765 	} else if (smid <= ioc->hba_queue_depth) {
3766 		/* internal queue */
3767 		i = smid - ioc->internal_smid;
3768 		ioc->internal_lookup[i].cb_idx = 0xFF;
3769 		list_add(&ioc->internal_lookup[i].tracker_list,
3770 		    &ioc->internal_free_list);
3771 	}
3772 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3773 }
3774 
3775 /**
3776  * _base_mpi_ep_writeq - 32 bit write to MMIO
3777  * @b: data payload
3778  * @addr: address in MMIO space
3779  * @writeq_lock: spin lock
3780  *
3781  * This special handling for MPI EP to take care of 32 bit
3782  * environment where its not quarenteed to send the entire word
3783  * in one transfer.
3784  */
3785 static inline void
3786 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr,
3787 					spinlock_t *writeq_lock)
3788 {
3789 	unsigned long flags;
3790 
3791 	spin_lock_irqsave(writeq_lock, flags);
3792 	__raw_writel((u32)(b), addr);
3793 	__raw_writel((u32)(b >> 32), (addr + 4));
3794 	spin_unlock_irqrestore(writeq_lock, flags);
3795 }
3796 
3797 /**
3798  * _base_writeq - 64 bit write to MMIO
3799  * @b: data payload
3800  * @addr: address in MMIO space
3801  * @writeq_lock: spin lock
3802  *
3803  * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
3804  * care of 32 bit environment where its not quarenteed to send the entire word
3805  * in one transfer.
3806  */
3807 #if defined(writeq) && defined(CONFIG_64BIT)
3808 static inline void
3809 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
3810 {
3811 	wmb();
3812 	__raw_writeq(b, addr);
3813 	barrier();
3814 }
3815 #else
3816 static inline void
3817 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
3818 {
3819 	_base_mpi_ep_writeq(b, addr, writeq_lock);
3820 }
3821 #endif
3822 
3823 /**
3824  * _base_set_and_get_msix_index - get the msix index and assign to msix_io
3825  *                                variable of scsi tracker
3826  * @ioc: per adapter object
3827  * @smid: system request message index
3828  *
3829  * returns msix index.
3830  */
3831 static u8
3832 _base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3833 {
3834 	struct scsiio_tracker *st = NULL;
3835 
3836 	if (smid < ioc->hi_priority_smid)
3837 		st = _get_st_from_smid(ioc, smid);
3838 
3839 	if (st == NULL)
3840 		return  _base_get_msix_index(ioc, NULL);
3841 
3842 	st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd);
3843 	return st->msix_io;
3844 }
3845 
3846 /**
3847  * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware
3848  * @ioc: per adapter object
3849  * @smid: system request message index
3850  * @handle: device handle
3851  */
3852 static void
3853 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc,
3854 	u16 smid, u16 handle)
3855 {
3856 	Mpi2RequestDescriptorUnion_t descriptor;
3857 	u64 *request = (u64 *)&descriptor;
3858 	void *mpi_req_iomem;
3859 	__le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3860 
3861 	_clone_sg_entries(ioc, (void *) mfp, smid);
3862 	mpi_req_iomem = (void __force *)ioc->chip +
3863 			MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
3864 	_base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3865 					ioc->request_sz);
3866 	descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3867 	descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3868 	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3869 	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3870 	descriptor.SCSIIO.LMID = 0;
3871 	_base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3872 	    &ioc->scsi_lookup_lock);
3873 }
3874 
3875 /**
3876  * _base_put_smid_scsi_io - send SCSI_IO request to firmware
3877  * @ioc: per adapter object
3878  * @smid: system request message index
3879  * @handle: device handle
3880  */
3881 static void
3882 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
3883 {
3884 	Mpi2RequestDescriptorUnion_t descriptor;
3885 	u64 *request = (u64 *)&descriptor;
3886 
3887 
3888 	descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3889 	descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3890 	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3891 	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3892 	descriptor.SCSIIO.LMID = 0;
3893 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3894 	    &ioc->scsi_lookup_lock);
3895 }
3896 
3897 /**
3898  * _base_put_smid_fast_path - send fast path request to firmware
3899  * @ioc: per adapter object
3900  * @smid: system request message index
3901  * @handle: device handle
3902  */
3903 static void
3904 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3905 	u16 handle)
3906 {
3907 	Mpi2RequestDescriptorUnion_t descriptor;
3908 	u64 *request = (u64 *)&descriptor;
3909 
3910 	descriptor.SCSIIO.RequestFlags =
3911 	    MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
3912 	descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3913 	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3914 	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3915 	descriptor.SCSIIO.LMID = 0;
3916 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3917 	    &ioc->scsi_lookup_lock);
3918 }
3919 
3920 /**
3921  * _base_put_smid_hi_priority - send Task Management request to firmware
3922  * @ioc: per adapter object
3923  * @smid: system request message index
3924  * @msix_task: msix_task will be same as msix of IO incase of task abort else 0.
3925  */
3926 static void
3927 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3928 	u16 msix_task)
3929 {
3930 	Mpi2RequestDescriptorUnion_t descriptor;
3931 	void *mpi_req_iomem;
3932 	u64 *request;
3933 
3934 	if (ioc->is_mcpu_endpoint) {
3935 		__le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3936 
3937 		/* TBD 256 is offset within sys register. */
3938 		mpi_req_iomem = (void __force *)ioc->chip
3939 					+ MPI_FRAME_START_OFFSET
3940 					+ (smid * ioc->request_sz);
3941 		_base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3942 							ioc->request_sz);
3943 	}
3944 
3945 	request = (u64 *)&descriptor;
3946 
3947 	descriptor.HighPriority.RequestFlags =
3948 	    MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
3949 	descriptor.HighPriority.MSIxIndex =  msix_task;
3950 	descriptor.HighPriority.SMID = cpu_to_le16(smid);
3951 	descriptor.HighPriority.LMID = 0;
3952 	descriptor.HighPriority.Reserved1 = 0;
3953 	if (ioc->is_mcpu_endpoint)
3954 		_base_mpi_ep_writeq(*request,
3955 				&ioc->chip->RequestDescriptorPostLow,
3956 				&ioc->scsi_lookup_lock);
3957 	else
3958 		_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3959 		    &ioc->scsi_lookup_lock);
3960 }
3961 
3962 /**
3963  * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to
3964  *  firmware
3965  * @ioc: per adapter object
3966  * @smid: system request message index
3967  */
3968 void
3969 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3970 {
3971 	Mpi2RequestDescriptorUnion_t descriptor;
3972 	u64 *request = (u64 *)&descriptor;
3973 
3974 	descriptor.Default.RequestFlags =
3975 		MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
3976 	descriptor.Default.MSIxIndex =  _base_set_and_get_msix_index(ioc, smid);
3977 	descriptor.Default.SMID = cpu_to_le16(smid);
3978 	descriptor.Default.LMID = 0;
3979 	descriptor.Default.DescriptorTypeDependent = 0;
3980 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3981 	    &ioc->scsi_lookup_lock);
3982 }
3983 
3984 /**
3985  * _base_put_smid_default - Default, primarily used for config pages
3986  * @ioc: per adapter object
3987  * @smid: system request message index
3988  */
3989 static void
3990 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3991 {
3992 	Mpi2RequestDescriptorUnion_t descriptor;
3993 	void *mpi_req_iomem;
3994 	u64 *request;
3995 
3996 	if (ioc->is_mcpu_endpoint) {
3997 		__le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3998 
3999 		_clone_sg_entries(ioc, (void *) mfp, smid);
4000 		/* TBD 256 is offset within sys register */
4001 		mpi_req_iomem = (void __force *)ioc->chip +
4002 			MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
4003 		_base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4004 							ioc->request_sz);
4005 	}
4006 	request = (u64 *)&descriptor;
4007 	descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4008 	descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4009 	descriptor.Default.SMID = cpu_to_le16(smid);
4010 	descriptor.Default.LMID = 0;
4011 	descriptor.Default.DescriptorTypeDependent = 0;
4012 	if (ioc->is_mcpu_endpoint)
4013 		_base_mpi_ep_writeq(*request,
4014 				&ioc->chip->RequestDescriptorPostLow,
4015 				&ioc->scsi_lookup_lock);
4016 	else
4017 		_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4018 				&ioc->scsi_lookup_lock);
4019 }
4020 
4021 /**
4022  * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using
4023  *   Atomic Request Descriptor
4024  * @ioc: per adapter object
4025  * @smid: system request message index
4026  * @handle: device handle, unused in this function, for function type match
4027  *
4028  * Return nothing.
4029  */
4030 static void
4031 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4032 	u16 handle)
4033 {
4034 	Mpi26AtomicRequestDescriptor_t descriptor;
4035 	u32 *request = (u32 *)&descriptor;
4036 
4037 	descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4038 	descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4039 	descriptor.SMID = cpu_to_le16(smid);
4040 
4041 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4042 }
4043 
4044 /**
4045  * _base_put_smid_fast_path_atomic - send fast path request to firmware
4046  * using Atomic Request Descriptor
4047  * @ioc: per adapter object
4048  * @smid: system request message index
4049  * @handle: device handle, unused in this function, for function type match
4050  * Return nothing
4051  */
4052 static void
4053 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4054 	u16 handle)
4055 {
4056 	Mpi26AtomicRequestDescriptor_t descriptor;
4057 	u32 *request = (u32 *)&descriptor;
4058 
4059 	descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4060 	descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4061 	descriptor.SMID = cpu_to_le16(smid);
4062 
4063 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4064 }
4065 
4066 /**
4067  * _base_put_smid_hi_priority_atomic - send Task Management request to
4068  * firmware using Atomic Request Descriptor
4069  * @ioc: per adapter object
4070  * @smid: system request message index
4071  * @msix_task: msix_task will be same as msix of IO incase of task abort else 0
4072  *
4073  * Return nothing.
4074  */
4075 static void
4076 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4077 	u16 msix_task)
4078 {
4079 	Mpi26AtomicRequestDescriptor_t descriptor;
4080 	u32 *request = (u32 *)&descriptor;
4081 
4082 	descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4083 	descriptor.MSIxIndex = msix_task;
4084 	descriptor.SMID = cpu_to_le16(smid);
4085 
4086 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4087 }
4088 
4089 /**
4090  * _base_put_smid_default - Default, primarily used for config pages
4091  * use Atomic Request Descriptor
4092  * @ioc: per adapter object
4093  * @smid: system request message index
4094  *
4095  * Return nothing.
4096  */
4097 static void
4098 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4099 {
4100 	Mpi26AtomicRequestDescriptor_t descriptor;
4101 	u32 *request = (u32 *)&descriptor;
4102 
4103 	descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4104 	descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4105 	descriptor.SMID = cpu_to_le16(smid);
4106 
4107 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4108 }
4109 
4110 /**
4111  * _base_display_OEMs_branding - Display branding string
4112  * @ioc: per adapter object
4113  */
4114 static void
4115 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
4116 {
4117 	if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
4118 		return;
4119 
4120 	switch (ioc->pdev->subsystem_vendor) {
4121 	case PCI_VENDOR_ID_INTEL:
4122 		switch (ioc->pdev->device) {
4123 		case MPI2_MFGPAGE_DEVID_SAS2008:
4124 			switch (ioc->pdev->subsystem_device) {
4125 			case MPT2SAS_INTEL_RMS2LL080_SSDID:
4126 				ioc_info(ioc, "%s\n",
4127 					 MPT2SAS_INTEL_RMS2LL080_BRANDING);
4128 				break;
4129 			case MPT2SAS_INTEL_RMS2LL040_SSDID:
4130 				ioc_info(ioc, "%s\n",
4131 					 MPT2SAS_INTEL_RMS2LL040_BRANDING);
4132 				break;
4133 			case MPT2SAS_INTEL_SSD910_SSDID:
4134 				ioc_info(ioc, "%s\n",
4135 					 MPT2SAS_INTEL_SSD910_BRANDING);
4136 				break;
4137 			default:
4138 				ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4139 					 ioc->pdev->subsystem_device);
4140 				break;
4141 			}
4142 			break;
4143 		case MPI2_MFGPAGE_DEVID_SAS2308_2:
4144 			switch (ioc->pdev->subsystem_device) {
4145 			case MPT2SAS_INTEL_RS25GB008_SSDID:
4146 				ioc_info(ioc, "%s\n",
4147 					 MPT2SAS_INTEL_RS25GB008_BRANDING);
4148 				break;
4149 			case MPT2SAS_INTEL_RMS25JB080_SSDID:
4150 				ioc_info(ioc, "%s\n",
4151 					 MPT2SAS_INTEL_RMS25JB080_BRANDING);
4152 				break;
4153 			case MPT2SAS_INTEL_RMS25JB040_SSDID:
4154 				ioc_info(ioc, "%s\n",
4155 					 MPT2SAS_INTEL_RMS25JB040_BRANDING);
4156 				break;
4157 			case MPT2SAS_INTEL_RMS25KB080_SSDID:
4158 				ioc_info(ioc, "%s\n",
4159 					 MPT2SAS_INTEL_RMS25KB080_BRANDING);
4160 				break;
4161 			case MPT2SAS_INTEL_RMS25KB040_SSDID:
4162 				ioc_info(ioc, "%s\n",
4163 					 MPT2SAS_INTEL_RMS25KB040_BRANDING);
4164 				break;
4165 			case MPT2SAS_INTEL_RMS25LB040_SSDID:
4166 				ioc_info(ioc, "%s\n",
4167 					 MPT2SAS_INTEL_RMS25LB040_BRANDING);
4168 				break;
4169 			case MPT2SAS_INTEL_RMS25LB080_SSDID:
4170 				ioc_info(ioc, "%s\n",
4171 					 MPT2SAS_INTEL_RMS25LB080_BRANDING);
4172 				break;
4173 			default:
4174 				ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4175 					 ioc->pdev->subsystem_device);
4176 				break;
4177 			}
4178 			break;
4179 		case MPI25_MFGPAGE_DEVID_SAS3008:
4180 			switch (ioc->pdev->subsystem_device) {
4181 			case MPT3SAS_INTEL_RMS3JC080_SSDID:
4182 				ioc_info(ioc, "%s\n",
4183 					 MPT3SAS_INTEL_RMS3JC080_BRANDING);
4184 				break;
4185 
4186 			case MPT3SAS_INTEL_RS3GC008_SSDID:
4187 				ioc_info(ioc, "%s\n",
4188 					 MPT3SAS_INTEL_RS3GC008_BRANDING);
4189 				break;
4190 			case MPT3SAS_INTEL_RS3FC044_SSDID:
4191 				ioc_info(ioc, "%s\n",
4192 					 MPT3SAS_INTEL_RS3FC044_BRANDING);
4193 				break;
4194 			case MPT3SAS_INTEL_RS3UC080_SSDID:
4195 				ioc_info(ioc, "%s\n",
4196 					 MPT3SAS_INTEL_RS3UC080_BRANDING);
4197 				break;
4198 			default:
4199 				ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4200 					 ioc->pdev->subsystem_device);
4201 				break;
4202 			}
4203 			break;
4204 		default:
4205 			ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4206 				 ioc->pdev->subsystem_device);
4207 			break;
4208 		}
4209 		break;
4210 	case PCI_VENDOR_ID_DELL:
4211 		switch (ioc->pdev->device) {
4212 		case MPI2_MFGPAGE_DEVID_SAS2008:
4213 			switch (ioc->pdev->subsystem_device) {
4214 			case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
4215 				ioc_info(ioc, "%s\n",
4216 					 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
4217 				break;
4218 			case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
4219 				ioc_info(ioc, "%s\n",
4220 					 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
4221 				break;
4222 			case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
4223 				ioc_info(ioc, "%s\n",
4224 					 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
4225 				break;
4226 			case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
4227 				ioc_info(ioc, "%s\n",
4228 					 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
4229 				break;
4230 			case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
4231 				ioc_info(ioc, "%s\n",
4232 					 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
4233 				break;
4234 			case MPT2SAS_DELL_PERC_H200_SSDID:
4235 				ioc_info(ioc, "%s\n",
4236 					 MPT2SAS_DELL_PERC_H200_BRANDING);
4237 				break;
4238 			case MPT2SAS_DELL_6GBPS_SAS_SSDID:
4239 				ioc_info(ioc, "%s\n",
4240 					 MPT2SAS_DELL_6GBPS_SAS_BRANDING);
4241 				break;
4242 			default:
4243 				ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
4244 					 ioc->pdev->subsystem_device);
4245 				break;
4246 			}
4247 			break;
4248 		case MPI25_MFGPAGE_DEVID_SAS3008:
4249 			switch (ioc->pdev->subsystem_device) {
4250 			case MPT3SAS_DELL_12G_HBA_SSDID:
4251 				ioc_info(ioc, "%s\n",
4252 					 MPT3SAS_DELL_12G_HBA_BRANDING);
4253 				break;
4254 			default:
4255 				ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
4256 					 ioc->pdev->subsystem_device);
4257 				break;
4258 			}
4259 			break;
4260 		default:
4261 			ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n",
4262 				 ioc->pdev->subsystem_device);
4263 			break;
4264 		}
4265 		break;
4266 	case PCI_VENDOR_ID_CISCO:
4267 		switch (ioc->pdev->device) {
4268 		case MPI25_MFGPAGE_DEVID_SAS3008:
4269 			switch (ioc->pdev->subsystem_device) {
4270 			case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
4271 				ioc_info(ioc, "%s\n",
4272 					 MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
4273 				break;
4274 			case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
4275 				ioc_info(ioc, "%s\n",
4276 					 MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
4277 				break;
4278 			case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4279 				ioc_info(ioc, "%s\n",
4280 					 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4281 				break;
4282 			default:
4283 				ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4284 					 ioc->pdev->subsystem_device);
4285 				break;
4286 			}
4287 			break;
4288 		case MPI25_MFGPAGE_DEVID_SAS3108_1:
4289 			switch (ioc->pdev->subsystem_device) {
4290 			case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4291 				ioc_info(ioc, "%s\n",
4292 					 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4293 				break;
4294 			case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
4295 				ioc_info(ioc, "%s\n",
4296 					 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING);
4297 				break;
4298 			default:
4299 				ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4300 					 ioc->pdev->subsystem_device);
4301 				break;
4302 			}
4303 			break;
4304 		default:
4305 			ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n",
4306 				 ioc->pdev->subsystem_device);
4307 			break;
4308 		}
4309 		break;
4310 	case MPT2SAS_HP_3PAR_SSVID:
4311 		switch (ioc->pdev->device) {
4312 		case MPI2_MFGPAGE_DEVID_SAS2004:
4313 			switch (ioc->pdev->subsystem_device) {
4314 			case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
4315 				ioc_info(ioc, "%s\n",
4316 					 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
4317 				break;
4318 			default:
4319 				ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4320 					 ioc->pdev->subsystem_device);
4321 				break;
4322 			}
4323 			break;
4324 		case MPI2_MFGPAGE_DEVID_SAS2308_2:
4325 			switch (ioc->pdev->subsystem_device) {
4326 			case MPT2SAS_HP_2_4_INTERNAL_SSDID:
4327 				ioc_info(ioc, "%s\n",
4328 					 MPT2SAS_HP_2_4_INTERNAL_BRANDING);
4329 				break;
4330 			case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
4331 				ioc_info(ioc, "%s\n",
4332 					 MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
4333 				break;
4334 			case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
4335 				ioc_info(ioc, "%s\n",
4336 					 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
4337 				break;
4338 			case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
4339 				ioc_info(ioc, "%s\n",
4340 					 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
4341 				break;
4342 			default:
4343 				ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4344 					 ioc->pdev->subsystem_device);
4345 				break;
4346 			}
4347 			break;
4348 		default:
4349 			ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n",
4350 				 ioc->pdev->subsystem_device);
4351 			break;
4352 		}
4353 	default:
4354 		break;
4355 	}
4356 }
4357 
4358 /**
4359  * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg
4360  *				version from FW Image Header.
4361  * @ioc: per adapter object
4362  *
4363  * Return: 0 for success, non-zero for failure.
4364  */
4365 	static int
4366 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc)
4367 {
4368 	Mpi2FWImageHeader_t *fw_img_hdr;
4369 	Mpi26ComponentImageHeader_t *cmp_img_hdr;
4370 	Mpi25FWUploadRequest_t *mpi_request;
4371 	Mpi2FWUploadReply_t mpi_reply;
4372 	int r = 0;
4373 	u32  package_version = 0;
4374 	void *fwpkg_data = NULL;
4375 	dma_addr_t fwpkg_data_dma;
4376 	u16 smid, ioc_status;
4377 	size_t data_length;
4378 
4379 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4380 
4381 	if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4382 		ioc_err(ioc, "%s: internal command already in use\n", __func__);
4383 		return -EAGAIN;
4384 	}
4385 
4386 	data_length = sizeof(Mpi2FWImageHeader_t);
4387 	fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length,
4388 			&fwpkg_data_dma, GFP_KERNEL);
4389 	if (!fwpkg_data) {
4390 		ioc_err(ioc,
4391 		    "Memory allocation for fwpkg data failed at %s:%d/%s()!\n",
4392 			__FILE__, __LINE__, __func__);
4393 		return -ENOMEM;
4394 	}
4395 
4396 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4397 	if (!smid) {
4398 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
4399 		r = -EAGAIN;
4400 		goto out;
4401 	}
4402 
4403 	ioc->base_cmds.status = MPT3_CMD_PENDING;
4404 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4405 	ioc->base_cmds.smid = smid;
4406 	memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t));
4407 	mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD;
4408 	mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH;
4409 	mpi_request->ImageSize = cpu_to_le32(data_length);
4410 	ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma,
4411 			data_length);
4412 	init_completion(&ioc->base_cmds.done);
4413 	ioc->put_smid_default(ioc, smid);
4414 	/* Wait for 15 seconds */
4415 	wait_for_completion_timeout(&ioc->base_cmds.done,
4416 			FW_IMG_HDR_READ_TIMEOUT*HZ);
4417 	ioc_info(ioc, "%s: complete\n", __func__);
4418 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4419 		ioc_err(ioc, "%s: timeout\n", __func__);
4420 		_debug_dump_mf(mpi_request,
4421 				sizeof(Mpi25FWUploadRequest_t)/4);
4422 		r = -ETIME;
4423 	} else {
4424 		memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t));
4425 		if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) {
4426 			memcpy(&mpi_reply, ioc->base_cmds.reply,
4427 					sizeof(Mpi2FWUploadReply_t));
4428 			ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4429 						MPI2_IOCSTATUS_MASK;
4430 			if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4431 				fw_img_hdr = (Mpi2FWImageHeader_t *)fwpkg_data;
4432 				if (le32_to_cpu(fw_img_hdr->Signature) ==
4433 				    MPI26_IMAGE_HEADER_SIGNATURE0_MPI26) {
4434 					cmp_img_hdr =
4435 					    (Mpi26ComponentImageHeader_t *)
4436 					    (fwpkg_data);
4437 					package_version =
4438 					    le32_to_cpu(
4439 					    cmp_img_hdr->ApplicationSpecific);
4440 				} else
4441 					package_version =
4442 					    le32_to_cpu(
4443 					    fw_img_hdr->PackageVersion.Word);
4444 				if (package_version)
4445 					ioc_info(ioc,
4446 					"FW Package Ver(%02d.%02d.%02d.%02d)\n",
4447 					((package_version) & 0xFF000000) >> 24,
4448 					((package_version) & 0x00FF0000) >> 16,
4449 					((package_version) & 0x0000FF00) >> 8,
4450 					(package_version) & 0x000000FF);
4451 			} else {
4452 				_debug_dump_mf(&mpi_reply,
4453 						sizeof(Mpi2FWUploadReply_t)/4);
4454 			}
4455 		}
4456 	}
4457 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4458 out:
4459 	if (fwpkg_data)
4460 		dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data,
4461 				fwpkg_data_dma);
4462 	return r;
4463 }
4464 
4465 /**
4466  * _base_display_ioc_capabilities - Disply IOC's capabilities.
4467  * @ioc: per adapter object
4468  */
4469 static void
4470 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
4471 {
4472 	int i = 0;
4473 	char desc[16];
4474 	u32 iounit_pg1_flags;
4475 	u32 bios_version;
4476 
4477 	bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
4478 	strncpy(desc, ioc->manu_pg0.ChipName, 16);
4479 	ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
4480 		 desc,
4481 		 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
4482 		 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
4483 		 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
4484 		 ioc->facts.FWVersion.Word & 0x000000FF,
4485 		 ioc->pdev->revision,
4486 		 (bios_version & 0xFF000000) >> 24,
4487 		 (bios_version & 0x00FF0000) >> 16,
4488 		 (bios_version & 0x0000FF00) >> 8,
4489 		 bios_version & 0x000000FF);
4490 
4491 	_base_display_OEMs_branding(ioc);
4492 
4493 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
4494 		pr_info("%sNVMe", i ? "," : "");
4495 		i++;
4496 	}
4497 
4498 	ioc_info(ioc, "Protocol=(");
4499 
4500 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
4501 		pr_cont("Initiator");
4502 		i++;
4503 	}
4504 
4505 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
4506 		pr_cont("%sTarget", i ? "," : "");
4507 		i++;
4508 	}
4509 
4510 	i = 0;
4511 	pr_cont("), Capabilities=(");
4512 
4513 	if (!ioc->hide_ir_msg) {
4514 		if (ioc->facts.IOCCapabilities &
4515 		    MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
4516 			pr_cont("Raid");
4517 			i++;
4518 		}
4519 	}
4520 
4521 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
4522 		pr_cont("%sTLR", i ? "," : "");
4523 		i++;
4524 	}
4525 
4526 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
4527 		pr_cont("%sMulticast", i ? "," : "");
4528 		i++;
4529 	}
4530 
4531 	if (ioc->facts.IOCCapabilities &
4532 	    MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
4533 		pr_cont("%sBIDI Target", i ? "," : "");
4534 		i++;
4535 	}
4536 
4537 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
4538 		pr_cont("%sEEDP", i ? "," : "");
4539 		i++;
4540 	}
4541 
4542 	if (ioc->facts.IOCCapabilities &
4543 	    MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
4544 		pr_cont("%sSnapshot Buffer", i ? "," : "");
4545 		i++;
4546 	}
4547 
4548 	if (ioc->facts.IOCCapabilities &
4549 	    MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
4550 		pr_cont("%sDiag Trace Buffer", i ? "," : "");
4551 		i++;
4552 	}
4553 
4554 	if (ioc->facts.IOCCapabilities &
4555 	    MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
4556 		pr_cont("%sDiag Extended Buffer", i ? "," : "");
4557 		i++;
4558 	}
4559 
4560 	if (ioc->facts.IOCCapabilities &
4561 	    MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
4562 		pr_cont("%sTask Set Full", i ? "," : "");
4563 		i++;
4564 	}
4565 
4566 	iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4567 	if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
4568 		pr_cont("%sNCQ", i ? "," : "");
4569 		i++;
4570 	}
4571 
4572 	pr_cont(")\n");
4573 }
4574 
4575 /**
4576  * mpt3sas_base_update_missing_delay - change the missing delay timers
4577  * @ioc: per adapter object
4578  * @device_missing_delay: amount of time till device is reported missing
4579  * @io_missing_delay: interval IO is returned when there is a missing device
4580  *
4581  * Passed on the command line, this function will modify the device missing
4582  * delay, as well as the io missing delay. This should be called at driver
4583  * load time.
4584  */
4585 void
4586 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
4587 	u16 device_missing_delay, u8 io_missing_delay)
4588 {
4589 	u16 dmd, dmd_new, dmd_orignal;
4590 	u8 io_missing_delay_original;
4591 	u16 sz;
4592 	Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
4593 	Mpi2ConfigReply_t mpi_reply;
4594 	u8 num_phys = 0;
4595 	u16 ioc_status;
4596 
4597 	mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
4598 	if (!num_phys)
4599 		return;
4600 
4601 	sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
4602 	    sizeof(Mpi2SasIOUnit1PhyData_t));
4603 	sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
4604 	if (!sas_iounit_pg1) {
4605 		ioc_err(ioc, "failure at %s:%d/%s()!\n",
4606 			__FILE__, __LINE__, __func__);
4607 		goto out;
4608 	}
4609 	if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
4610 	    sas_iounit_pg1, sz))) {
4611 		ioc_err(ioc, "failure at %s:%d/%s()!\n",
4612 			__FILE__, __LINE__, __func__);
4613 		goto out;
4614 	}
4615 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4616 	    MPI2_IOCSTATUS_MASK;
4617 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4618 		ioc_err(ioc, "failure at %s:%d/%s()!\n",
4619 			__FILE__, __LINE__, __func__);
4620 		goto out;
4621 	}
4622 
4623 	/* device missing delay */
4624 	dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
4625 	if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4626 		dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4627 	else
4628 		dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4629 	dmd_orignal = dmd;
4630 	if (device_missing_delay > 0x7F) {
4631 		dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
4632 		    device_missing_delay;
4633 		dmd = dmd / 16;
4634 		dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
4635 	} else
4636 		dmd = device_missing_delay;
4637 	sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
4638 
4639 	/* io missing delay */
4640 	io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
4641 	sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
4642 
4643 	if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
4644 	    sz)) {
4645 		if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4646 			dmd_new = (dmd &
4647 			    MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4648 		else
4649 			dmd_new =
4650 		    dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4651 		ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n",
4652 			 dmd_orignal, dmd_new);
4653 		ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n",
4654 			 io_missing_delay_original,
4655 			 io_missing_delay);
4656 		ioc->device_missing_delay = dmd_new;
4657 		ioc->io_missing_delay = io_missing_delay;
4658 	}
4659 
4660 out:
4661 	kfree(sas_iounit_pg1);
4662 }
4663 
4664 /**
4665  * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields
4666  *    according to performance mode.
4667  * @ioc : per adapter object
4668  *
4669  * Return nothing.
4670  */
4671 static void
4672 _base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc)
4673 {
4674 	Mpi2IOCPage1_t ioc_pg1;
4675 	Mpi2ConfigReply_t mpi_reply;
4676 
4677 	mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy);
4678 	memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t));
4679 
4680 	switch (perf_mode) {
4681 	case MPT_PERF_MODE_DEFAULT:
4682 	case MPT_PERF_MODE_BALANCED:
4683 		if (ioc->high_iops_queues) {
4684 			ioc_info(ioc,
4685 				"Enable interrupt coalescing only for first\t"
4686 				"%d reply queues\n",
4687 				MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
4688 			/*
4689 			 * If 31st bit is zero then interrupt coalescing is
4690 			 * enabled for all reply descriptor post queues.
4691 			 * If 31st bit is set to one then user can
4692 			 * enable/disable interrupt coalescing on per reply
4693 			 * descriptor post queue group(8) basis. So to enable
4694 			 * interrupt coalescing only on first reply descriptor
4695 			 * post queue group 31st bit and zero th bit is enabled.
4696 			 */
4697 			ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 |
4698 			    ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1));
4699 			mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4700 			ioc_info(ioc, "performance mode: balanced\n");
4701 			return;
4702 		}
4703 		/* Fall through */
4704 	case MPT_PERF_MODE_LATENCY:
4705 		/*
4706 		 * Enable interrupt coalescing on all reply queues
4707 		 * with timeout value 0xA
4708 		 */
4709 		ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa);
4710 		ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
4711 		ioc_pg1.ProductSpecific = 0;
4712 		mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4713 		ioc_info(ioc, "performance mode: latency\n");
4714 		break;
4715 	case MPT_PERF_MODE_IOPS:
4716 		/*
4717 		 * Enable interrupt coalescing on all reply queues.
4718 		 */
4719 		ioc_info(ioc,
4720 		    "performance mode: iops with coalescing timeout: 0x%x\n",
4721 		    le32_to_cpu(ioc_pg1.CoalescingTimeout));
4722 		ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
4723 		ioc_pg1.ProductSpecific = 0;
4724 		mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4725 		break;
4726 	}
4727 }
4728 
4729 /**
4730  * _base_static_config_pages - static start of day config pages
4731  * @ioc: per adapter object
4732  */
4733 static void
4734 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
4735 {
4736 	Mpi2ConfigReply_t mpi_reply;
4737 	u32 iounit_pg1_flags;
4738 
4739 	ioc->nvme_abort_timeout = 30;
4740 	mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
4741 	if (ioc->ir_firmware)
4742 		mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
4743 		    &ioc->manu_pg10);
4744 
4745 	/*
4746 	 * Ensure correct T10 PI operation if vendor left EEDPTagMode
4747 	 * flag unset in NVDATA.
4748 	 */
4749 	mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
4750 	if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) {
4751 		pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
4752 		    ioc->name);
4753 		ioc->manu_pg11.EEDPTagMode &= ~0x3;
4754 		ioc->manu_pg11.EEDPTagMode |= 0x1;
4755 		mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
4756 		    &ioc->manu_pg11);
4757 	}
4758 	if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK)
4759 		ioc->tm_custom_handling = 1;
4760 	else {
4761 		ioc->tm_custom_handling = 0;
4762 		if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT)
4763 			ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT;
4764 		else if (ioc->manu_pg11.NVMeAbortTO >
4765 					NVME_TASK_ABORT_MAX_TIMEOUT)
4766 			ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT;
4767 		else
4768 			ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO;
4769 	}
4770 
4771 	mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
4772 	mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
4773 	mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
4774 	mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
4775 	mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
4776 	mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
4777 	_base_display_ioc_capabilities(ioc);
4778 
4779 	/*
4780 	 * Enable task_set_full handling in iounit_pg1 when the
4781 	 * facts capabilities indicate that its supported.
4782 	 */
4783 	iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4784 	if ((ioc->facts.IOCCapabilities &
4785 	    MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
4786 		iounit_pg1_flags &=
4787 		    ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
4788 	else
4789 		iounit_pg1_flags |=
4790 		    MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
4791 	ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
4792 	mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
4793 
4794 	if (ioc->iounit_pg8.NumSensors)
4795 		ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
4796 	if (ioc->is_aero_ioc)
4797 		_base_update_ioc_page1_inlinewith_perf_mode(ioc);
4798 }
4799 
4800 /**
4801  * mpt3sas_free_enclosure_list - release memory
4802  * @ioc: per adapter object
4803  *
4804  * Free memory allocated during encloure add.
4805  */
4806 void
4807 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc)
4808 {
4809 	struct _enclosure_node *enclosure_dev, *enclosure_dev_next;
4810 
4811 	/* Free enclosure list */
4812 	list_for_each_entry_safe(enclosure_dev,
4813 			enclosure_dev_next, &ioc->enclosure_list, list) {
4814 		list_del(&enclosure_dev->list);
4815 		kfree(enclosure_dev);
4816 	}
4817 }
4818 
4819 /**
4820  * _base_release_memory_pools - release memory
4821  * @ioc: per adapter object
4822  *
4823  * Free memory allocated from _base_allocate_memory_pools.
4824  */
4825 static void
4826 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
4827 {
4828 	int i = 0;
4829 	int j = 0;
4830 	struct chain_tracker *ct;
4831 	struct reply_post_struct *rps;
4832 
4833 	dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4834 
4835 	if (ioc->request) {
4836 		dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz,
4837 		    ioc->request,  ioc->request_dma);
4838 		dexitprintk(ioc,
4839 			    ioc_info(ioc, "request_pool(0x%p): free\n",
4840 				     ioc->request));
4841 		ioc->request = NULL;
4842 	}
4843 
4844 	if (ioc->sense) {
4845 		dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
4846 		dma_pool_destroy(ioc->sense_dma_pool);
4847 		dexitprintk(ioc,
4848 			    ioc_info(ioc, "sense_pool(0x%p): free\n",
4849 				     ioc->sense));
4850 		ioc->sense = NULL;
4851 	}
4852 
4853 	if (ioc->reply) {
4854 		dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
4855 		dma_pool_destroy(ioc->reply_dma_pool);
4856 		dexitprintk(ioc,
4857 			    ioc_info(ioc, "reply_pool(0x%p): free\n",
4858 				     ioc->reply));
4859 		ioc->reply = NULL;
4860 	}
4861 
4862 	if (ioc->reply_free) {
4863 		dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
4864 		    ioc->reply_free_dma);
4865 		dma_pool_destroy(ioc->reply_free_dma_pool);
4866 		dexitprintk(ioc,
4867 			    ioc_info(ioc, "reply_free_pool(0x%p): free\n",
4868 				     ioc->reply_free));
4869 		ioc->reply_free = NULL;
4870 	}
4871 
4872 	if (ioc->reply_post) {
4873 		do {
4874 			rps = &ioc->reply_post[i];
4875 			if (rps->reply_post_free) {
4876 				dma_pool_free(
4877 				    ioc->reply_post_free_dma_pool,
4878 				    rps->reply_post_free,
4879 				    rps->reply_post_free_dma);
4880 				dexitprintk(ioc,
4881 					    ioc_info(ioc, "reply_post_free_pool(0x%p): free\n",
4882 						     rps->reply_post_free));
4883 				rps->reply_post_free = NULL;
4884 			}
4885 		} while (ioc->rdpq_array_enable &&
4886 			   (++i < ioc->reply_queue_count));
4887 		if (ioc->reply_post_free_array &&
4888 			ioc->rdpq_array_enable) {
4889 			dma_pool_free(ioc->reply_post_free_array_dma_pool,
4890 				ioc->reply_post_free_array,
4891 				ioc->reply_post_free_array_dma);
4892 			ioc->reply_post_free_array = NULL;
4893 		}
4894 		dma_pool_destroy(ioc->reply_post_free_array_dma_pool);
4895 		dma_pool_destroy(ioc->reply_post_free_dma_pool);
4896 		kfree(ioc->reply_post);
4897 	}
4898 
4899 	if (ioc->pcie_sgl_dma_pool) {
4900 		for (i = 0; i < ioc->scsiio_depth; i++) {
4901 			dma_pool_free(ioc->pcie_sgl_dma_pool,
4902 					ioc->pcie_sg_lookup[i].pcie_sgl,
4903 					ioc->pcie_sg_lookup[i].pcie_sgl_dma);
4904 		}
4905 		if (ioc->pcie_sgl_dma_pool)
4906 			dma_pool_destroy(ioc->pcie_sgl_dma_pool);
4907 	}
4908 
4909 	if (ioc->config_page) {
4910 		dexitprintk(ioc,
4911 			    ioc_info(ioc, "config_page(0x%p): free\n",
4912 				     ioc->config_page));
4913 		dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz,
4914 		    ioc->config_page, ioc->config_page_dma);
4915 	}
4916 
4917 	kfree(ioc->hpr_lookup);
4918 	kfree(ioc->internal_lookup);
4919 	if (ioc->chain_lookup) {
4920 		for (i = 0; i < ioc->scsiio_depth; i++) {
4921 			for (j = ioc->chains_per_prp_buffer;
4922 			    j < ioc->chains_needed_per_io; j++) {
4923 				ct = &ioc->chain_lookup[i].chains_per_smid[j];
4924 				if (ct && ct->chain_buffer)
4925 					dma_pool_free(ioc->chain_dma_pool,
4926 						ct->chain_buffer,
4927 						ct->chain_buffer_dma);
4928 			}
4929 			kfree(ioc->chain_lookup[i].chains_per_smid);
4930 		}
4931 		dma_pool_destroy(ioc->chain_dma_pool);
4932 		kfree(ioc->chain_lookup);
4933 		ioc->chain_lookup = NULL;
4934 	}
4935 }
4936 
4937 /**
4938  * is_MSB_are_same - checks whether all reply queues in a set are
4939  *	having same upper 32bits in their base memory address.
4940  * @reply_pool_start_address: Base address of a reply queue set
4941  * @pool_sz: Size of single Reply Descriptor Post Queues pool size
4942  *
4943  * Return: 1 if reply queues in a set have a same upper 32bits in their base
4944  * memory address, else 0.
4945  */
4946 
4947 static int
4948 is_MSB_are_same(long reply_pool_start_address, u32 pool_sz)
4949 {
4950 	long reply_pool_end_address;
4951 
4952 	reply_pool_end_address = reply_pool_start_address + pool_sz;
4953 
4954 	if (upper_32_bits(reply_pool_start_address) ==
4955 		upper_32_bits(reply_pool_end_address))
4956 		return 1;
4957 	else
4958 		return 0;
4959 }
4960 
4961 /**
4962  * _base_allocate_memory_pools - allocate start of day memory pools
4963  * @ioc: per adapter object
4964  *
4965  * Return: 0 success, anything else error.
4966  */
4967 static int
4968 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
4969 {
4970 	struct mpt3sas_facts *facts;
4971 	u16 max_sge_elements;
4972 	u16 chains_needed_per_io;
4973 	u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz;
4974 	u32 retry_sz;
4975 	u16 max_request_credit, nvme_blocks_needed;
4976 	unsigned short sg_tablesize;
4977 	u16 sge_size;
4978 	int i, j;
4979 	struct chain_tracker *ct;
4980 
4981 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4982 
4983 
4984 	retry_sz = 0;
4985 	facts = &ioc->facts;
4986 
4987 	/* command line tunables for max sgl entries */
4988 	if (max_sgl_entries != -1)
4989 		sg_tablesize = max_sgl_entries;
4990 	else {
4991 		if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
4992 			sg_tablesize = MPT2SAS_SG_DEPTH;
4993 		else
4994 			sg_tablesize = MPT3SAS_SG_DEPTH;
4995 	}
4996 
4997 	/* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
4998 	if (reset_devices)
4999 		sg_tablesize = min_t(unsigned short, sg_tablesize,
5000 		   MPT_KDUMP_MIN_PHYS_SEGMENTS);
5001 
5002 	if (ioc->is_mcpu_endpoint)
5003 		ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
5004 	else {
5005 		if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
5006 			sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
5007 		else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
5008 			sg_tablesize = min_t(unsigned short, sg_tablesize,
5009 					SG_MAX_SEGMENTS);
5010 			ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n",
5011 				 sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
5012 		}
5013 		ioc->shost->sg_tablesize = sg_tablesize;
5014 	}
5015 
5016 	ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
5017 		(facts->RequestCredit / 4));
5018 	if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
5019 		if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
5020 				INTERNAL_SCSIIO_CMDS_COUNT)) {
5021 			ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n",
5022 				facts->RequestCredit);
5023 			return -ENOMEM;
5024 		}
5025 		ioc->internal_depth = 10;
5026 	}
5027 
5028 	ioc->hi_priority_depth = ioc->internal_depth - (5);
5029 	/* command line tunables  for max controller queue depth */
5030 	if (max_queue_depth != -1 && max_queue_depth != 0) {
5031 		max_request_credit = min_t(u16, max_queue_depth +
5032 			ioc->internal_depth, facts->RequestCredit);
5033 		if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
5034 			max_request_credit =  MAX_HBA_QUEUE_DEPTH;
5035 	} else if (reset_devices)
5036 		max_request_credit = min_t(u16, facts->RequestCredit,
5037 		    (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth));
5038 	else
5039 		max_request_credit = min_t(u16, facts->RequestCredit,
5040 		    MAX_HBA_QUEUE_DEPTH);
5041 
5042 	/* Firmware maintains additional facts->HighPriorityCredit number of
5043 	 * credits for HiPriprity Request messages, so hba queue depth will be
5044 	 * sum of max_request_credit and high priority queue depth.
5045 	 */
5046 	ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
5047 
5048 	/* request frame size */
5049 	ioc->request_sz = facts->IOCRequestFrameSize * 4;
5050 
5051 	/* reply frame size */
5052 	ioc->reply_sz = facts->ReplyFrameSize * 4;
5053 
5054 	/* chain segment size */
5055 	if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
5056 		if (facts->IOCMaxChainSegmentSize)
5057 			ioc->chain_segment_sz =
5058 					facts->IOCMaxChainSegmentSize *
5059 					MAX_CHAIN_ELEMT_SZ;
5060 		else
5061 		/* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
5062 			ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
5063 						    MAX_CHAIN_ELEMT_SZ;
5064 	} else
5065 		ioc->chain_segment_sz = ioc->request_sz;
5066 
5067 	/* calculate the max scatter element size */
5068 	sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
5069 
5070  retry_allocation:
5071 	total_sz = 0;
5072 	/* calculate number of sg elements left over in the 1st frame */
5073 	max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
5074 	    sizeof(Mpi2SGEIOUnion_t)) + sge_size);
5075 	ioc->max_sges_in_main_message = max_sge_elements/sge_size;
5076 
5077 	/* now do the same for a chain buffer */
5078 	max_sge_elements = ioc->chain_segment_sz - sge_size;
5079 	ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
5080 
5081 	/*
5082 	 *  MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
5083 	 */
5084 	chains_needed_per_io = ((ioc->shost->sg_tablesize -
5085 	   ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
5086 	    + 1;
5087 	if (chains_needed_per_io > facts->MaxChainDepth) {
5088 		chains_needed_per_io = facts->MaxChainDepth;
5089 		ioc->shost->sg_tablesize = min_t(u16,
5090 		ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
5091 		* chains_needed_per_io), ioc->shost->sg_tablesize);
5092 	}
5093 	ioc->chains_needed_per_io = chains_needed_per_io;
5094 
5095 	/* reply free queue sizing - taking into account for 64 FW events */
5096 	ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
5097 
5098 	/* mCPU manage single counters for simplicity */
5099 	if (ioc->is_mcpu_endpoint)
5100 		ioc->reply_post_queue_depth = ioc->reply_free_queue_depth;
5101 	else {
5102 		/* calculate reply descriptor post queue depth */
5103 		ioc->reply_post_queue_depth = ioc->hba_queue_depth +
5104 			ioc->reply_free_queue_depth +  1;
5105 		/* align the reply post queue on the next 16 count boundary */
5106 		if (ioc->reply_post_queue_depth % 16)
5107 			ioc->reply_post_queue_depth += 16 -
5108 				(ioc->reply_post_queue_depth % 16);
5109 	}
5110 
5111 	if (ioc->reply_post_queue_depth >
5112 	    facts->MaxReplyDescriptorPostQueueDepth) {
5113 		ioc->reply_post_queue_depth =
5114 				facts->MaxReplyDescriptorPostQueueDepth -
5115 		    (facts->MaxReplyDescriptorPostQueueDepth % 16);
5116 		ioc->hba_queue_depth =
5117 				((ioc->reply_post_queue_depth - 64) / 2) - 1;
5118 		ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
5119 	}
5120 
5121 	ioc_info(ioc,
5122 	    "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), "
5123 	    "sge_per_io(%d), chains_per_io(%d)\n",
5124 	    ioc->max_sges_in_main_message,
5125 	    ioc->max_sges_in_chain_message,
5126 	    ioc->shost->sg_tablesize,
5127 	    ioc->chains_needed_per_io);
5128 
5129 	/* reply post queue, 16 byte align */
5130 	reply_post_free_sz = ioc->reply_post_queue_depth *
5131 	    sizeof(Mpi2DefaultReplyDescriptor_t);
5132 
5133 	sz = reply_post_free_sz;
5134 	if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
5135 		sz *= ioc->reply_queue_count;
5136 
5137 	ioc->reply_post = kcalloc((ioc->rdpq_array_enable) ?
5138 	    (ioc->reply_queue_count):1,
5139 	    sizeof(struct reply_post_struct), GFP_KERNEL);
5140 
5141 	if (!ioc->reply_post) {
5142 		ioc_err(ioc, "reply_post_free pool: kcalloc failed\n");
5143 		goto out;
5144 	}
5145 	ioc->reply_post_free_dma_pool = dma_pool_create("reply_post_free pool",
5146 	    &ioc->pdev->dev, sz, 16, 0);
5147 	if (!ioc->reply_post_free_dma_pool) {
5148 		ioc_err(ioc, "reply_post_free pool: dma_pool_create failed\n");
5149 		goto out;
5150 	}
5151 	i = 0;
5152 	do {
5153 		ioc->reply_post[i].reply_post_free =
5154 		    dma_pool_zalloc(ioc->reply_post_free_dma_pool,
5155 		    GFP_KERNEL,
5156 		    &ioc->reply_post[i].reply_post_free_dma);
5157 		if (!ioc->reply_post[i].reply_post_free) {
5158 			ioc_err(ioc, "reply_post_free pool: dma_pool_alloc failed\n");
5159 			goto out;
5160 		}
5161 		dinitprintk(ioc,
5162 			    ioc_info(ioc, "reply post free pool (0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
5163 				     ioc->reply_post[i].reply_post_free,
5164 				     ioc->reply_post_queue_depth,
5165 				     8, sz / 1024));
5166 		dinitprintk(ioc,
5167 			    ioc_info(ioc, "reply_post_free_dma = (0x%llx)\n",
5168 				     (u64)ioc->reply_post[i].reply_post_free_dma));
5169 		total_sz += sz;
5170 	} while (ioc->rdpq_array_enable && (++i < ioc->reply_queue_count));
5171 
5172 	if (ioc->dma_mask > 32) {
5173 		if (_base_change_consistent_dma_mask(ioc, ioc->pdev) != 0) {
5174 			ioc_warn(ioc, "no suitable consistent DMA mask for %s\n",
5175 				 pci_name(ioc->pdev));
5176 			goto out;
5177 		}
5178 	}
5179 
5180 	ioc->scsiio_depth = ioc->hba_queue_depth -
5181 	    ioc->hi_priority_depth - ioc->internal_depth;
5182 
5183 	/* set the scsi host can_queue depth
5184 	 * with some internal commands that could be outstanding
5185 	 */
5186 	ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
5187 	dinitprintk(ioc,
5188 		    ioc_info(ioc, "scsi host: can_queue depth (%d)\n",
5189 			     ioc->shost->can_queue));
5190 
5191 
5192 	/* contiguous pool for request and chains, 16 byte align, one extra "
5193 	 * "frame for smid=0
5194 	 */
5195 	ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
5196 	sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
5197 
5198 	/* hi-priority queue */
5199 	sz += (ioc->hi_priority_depth * ioc->request_sz);
5200 
5201 	/* internal queue */
5202 	sz += (ioc->internal_depth * ioc->request_sz);
5203 
5204 	ioc->request_dma_sz = sz;
5205 	ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz,
5206 			&ioc->request_dma, GFP_KERNEL);
5207 	if (!ioc->request) {
5208 		ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n",
5209 			ioc->hba_queue_depth, ioc->chains_needed_per_io,
5210 			ioc->request_sz, sz / 1024);
5211 		if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
5212 			goto out;
5213 		retry_sz = 64;
5214 		ioc->hba_queue_depth -= retry_sz;
5215 		_base_release_memory_pools(ioc);
5216 		goto retry_allocation;
5217 	}
5218 	memset(ioc->request, 0, sz);
5219 
5220 	if (retry_sz)
5221 		ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n",
5222 			ioc->hba_queue_depth, ioc->chains_needed_per_io,
5223 			ioc->request_sz, sz / 1024);
5224 
5225 	/* hi-priority queue */
5226 	ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
5227 	    ioc->request_sz);
5228 	ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
5229 	    ioc->request_sz);
5230 
5231 	/* internal queue */
5232 	ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
5233 	    ioc->request_sz);
5234 	ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
5235 	    ioc->request_sz);
5236 
5237 	ioc_info(ioc,
5238 	    "request pool(0x%p) - dma(0x%llx): "
5239 	    "depth(%d), frame_size(%d), pool_size(%d kB)\n",
5240 	    ioc->request, (unsigned long long) ioc->request_dma,
5241 	    ioc->hba_queue_depth, ioc->request_sz,
5242 	    (ioc->hba_queue_depth * ioc->request_sz) / 1024);
5243 
5244 	total_sz += sz;
5245 
5246 	dinitprintk(ioc,
5247 		    ioc_info(ioc, "scsiio(0x%p): depth(%d)\n",
5248 			     ioc->request, ioc->scsiio_depth));
5249 
5250 	ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
5251 	sz = ioc->scsiio_depth * sizeof(struct chain_lookup);
5252 	ioc->chain_lookup = kzalloc(sz, GFP_KERNEL);
5253 	if (!ioc->chain_lookup) {
5254 		ioc_err(ioc, "chain_lookup: __get_free_pages failed\n");
5255 		goto out;
5256 	}
5257 
5258 	sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker);
5259 	for (i = 0; i < ioc->scsiio_depth; i++) {
5260 		ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL);
5261 		if (!ioc->chain_lookup[i].chains_per_smid) {
5262 			ioc_err(ioc, "chain_lookup: kzalloc failed\n");
5263 			goto out;
5264 		}
5265 	}
5266 
5267 	/* initialize hi-priority queue smid's */
5268 	ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
5269 	    sizeof(struct request_tracker), GFP_KERNEL);
5270 	if (!ioc->hpr_lookup) {
5271 		ioc_err(ioc, "hpr_lookup: kcalloc failed\n");
5272 		goto out;
5273 	}
5274 	ioc->hi_priority_smid = ioc->scsiio_depth + 1;
5275 	dinitprintk(ioc,
5276 		    ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n",
5277 			     ioc->hi_priority,
5278 			     ioc->hi_priority_depth, ioc->hi_priority_smid));
5279 
5280 	/* initialize internal queue smid's */
5281 	ioc->internal_lookup = kcalloc(ioc->internal_depth,
5282 	    sizeof(struct request_tracker), GFP_KERNEL);
5283 	if (!ioc->internal_lookup) {
5284 		ioc_err(ioc, "internal_lookup: kcalloc failed\n");
5285 		goto out;
5286 	}
5287 	ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
5288 	dinitprintk(ioc,
5289 		    ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n",
5290 			     ioc->internal,
5291 			     ioc->internal_depth, ioc->internal_smid));
5292 	/*
5293 	 * The number of NVMe page sized blocks needed is:
5294 	 *     (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
5295 	 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
5296 	 * that is placed in the main message frame.  8 is the size of each PRP
5297 	 * entry or PRP list pointer entry.  8 is subtracted from page_size
5298 	 * because of the PRP list pointer entry at the end of a page, so this
5299 	 * is not counted as a PRP entry.  The 1 added page is a round up.
5300 	 *
5301 	 * To avoid allocation failures due to the amount of memory that could
5302 	 * be required for NVMe PRP's, only each set of NVMe blocks will be
5303 	 * contiguous, so a new set is allocated for each possible I/O.
5304 	 */
5305 	ioc->chains_per_prp_buffer = 0;
5306 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
5307 		nvme_blocks_needed =
5308 			(ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1;
5309 		nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE);
5310 		nvme_blocks_needed++;
5311 
5312 		sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth;
5313 		ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL);
5314 		if (!ioc->pcie_sg_lookup) {
5315 			ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n");
5316 			goto out;
5317 		}
5318 		sz = nvme_blocks_needed * ioc->page_size;
5319 		ioc->pcie_sgl_dma_pool =
5320 			dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz, 16, 0);
5321 		if (!ioc->pcie_sgl_dma_pool) {
5322 			ioc_info(ioc, "PCIe SGL pool: dma_pool_create failed\n");
5323 			goto out;
5324 		}
5325 
5326 		ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz;
5327 		ioc->chains_per_prp_buffer = min(ioc->chains_per_prp_buffer,
5328 						ioc->chains_needed_per_io);
5329 
5330 		for (i = 0; i < ioc->scsiio_depth; i++) {
5331 			ioc->pcie_sg_lookup[i].pcie_sgl = dma_pool_alloc(
5332 				ioc->pcie_sgl_dma_pool, GFP_KERNEL,
5333 				&ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5334 			if (!ioc->pcie_sg_lookup[i].pcie_sgl) {
5335 				ioc_info(ioc, "PCIe SGL pool: dma_pool_alloc failed\n");
5336 				goto out;
5337 			}
5338 			for (j = 0; j < ioc->chains_per_prp_buffer; j++) {
5339 				ct = &ioc->chain_lookup[i].chains_per_smid[j];
5340 				ct->chain_buffer =
5341 				    ioc->pcie_sg_lookup[i].pcie_sgl +
5342 				    (j * ioc->chain_segment_sz);
5343 				ct->chain_buffer_dma =
5344 				    ioc->pcie_sg_lookup[i].pcie_sgl_dma +
5345 				    (j * ioc->chain_segment_sz);
5346 			}
5347 		}
5348 
5349 		dinitprintk(ioc,
5350 			    ioc_info(ioc, "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n",
5351 				     ioc->scsiio_depth, sz,
5352 				     (sz * ioc->scsiio_depth) / 1024));
5353 		dinitprintk(ioc,
5354 			    ioc_info(ioc, "Number of chains can fit in a PRP page(%d)\n",
5355 				     ioc->chains_per_prp_buffer));
5356 		total_sz += sz * ioc->scsiio_depth;
5357 	}
5358 
5359 	ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev,
5360 	    ioc->chain_segment_sz, 16, 0);
5361 	if (!ioc->chain_dma_pool) {
5362 		ioc_err(ioc, "chain_dma_pool: dma_pool_create failed\n");
5363 		goto out;
5364 	}
5365 	for (i = 0; i < ioc->scsiio_depth; i++) {
5366 		for (j = ioc->chains_per_prp_buffer;
5367 				j < ioc->chains_needed_per_io; j++) {
5368 			ct = &ioc->chain_lookup[i].chains_per_smid[j];
5369 			ct->chain_buffer = dma_pool_alloc(
5370 					ioc->chain_dma_pool, GFP_KERNEL,
5371 					&ct->chain_buffer_dma);
5372 			if (!ct->chain_buffer) {
5373 				ioc_err(ioc, "chain_lookup: pci_pool_alloc failed\n");
5374 				goto out;
5375 			}
5376 		}
5377 		total_sz += ioc->chain_segment_sz;
5378 	}
5379 
5380 	dinitprintk(ioc,
5381 		    ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
5382 			     ioc->chain_depth, ioc->chain_segment_sz,
5383 			     (ioc->chain_depth * ioc->chain_segment_sz) / 1024));
5384 
5385 	/* sense buffers, 4 byte align */
5386 	sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
5387 	ioc->sense_dma_pool = dma_pool_create("sense pool", &ioc->pdev->dev, sz,
5388 					      4, 0);
5389 	if (!ioc->sense_dma_pool) {
5390 		ioc_err(ioc, "sense pool: dma_pool_create failed\n");
5391 		goto out;
5392 	}
5393 	ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
5394 	    &ioc->sense_dma);
5395 	if (!ioc->sense) {
5396 		ioc_err(ioc, "sense pool: dma_pool_alloc failed\n");
5397 		goto out;
5398 	}
5399 	/* sense buffer requires to be in same 4 gb region.
5400 	 * Below function will check the same.
5401 	 * In case of failure, new pci pool will be created with updated
5402 	 * alignment. Older allocation and pool will be destroyed.
5403 	 * Alignment will be used such a way that next allocation if
5404 	 * success, will always meet same 4gb region requirement.
5405 	 * Actual requirement is not alignment, but we need start and end of
5406 	 * DMA address must have same upper 32 bit address.
5407 	 */
5408 	if (!is_MSB_are_same((long)ioc->sense, sz)) {
5409 		//Release Sense pool & Reallocate
5410 		dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
5411 		dma_pool_destroy(ioc->sense_dma_pool);
5412 		ioc->sense = NULL;
5413 
5414 		ioc->sense_dma_pool =
5415 			dma_pool_create("sense pool", &ioc->pdev->dev, sz,
5416 						roundup_pow_of_two(sz), 0);
5417 		if (!ioc->sense_dma_pool) {
5418 			ioc_err(ioc, "sense pool: pci_pool_create failed\n");
5419 			goto out;
5420 		}
5421 		ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
5422 				&ioc->sense_dma);
5423 		if (!ioc->sense) {
5424 			ioc_err(ioc, "sense pool: pci_pool_alloc failed\n");
5425 			goto out;
5426 		}
5427 	}
5428 	ioc_info(ioc,
5429 	    "sense pool(0x%p)- dma(0x%llx): depth(%d),"
5430 	    "element_size(%d), pool_size(%d kB)\n",
5431 	    ioc->sense, (unsigned long long)ioc->sense_dma, ioc->scsiio_depth,
5432 	    SCSI_SENSE_BUFFERSIZE, sz / 1024);
5433 
5434 	total_sz += sz;
5435 
5436 	/* reply pool, 4 byte align */
5437 	sz = ioc->reply_free_queue_depth * ioc->reply_sz;
5438 	ioc->reply_dma_pool = dma_pool_create("reply pool", &ioc->pdev->dev, sz,
5439 					      4, 0);
5440 	if (!ioc->reply_dma_pool) {
5441 		ioc_err(ioc, "reply pool: dma_pool_create failed\n");
5442 		goto out;
5443 	}
5444 	ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL,
5445 	    &ioc->reply_dma);
5446 	if (!ioc->reply) {
5447 		ioc_err(ioc, "reply pool: dma_pool_alloc failed\n");
5448 		goto out;
5449 	}
5450 	ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
5451 	ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
5452 	dinitprintk(ioc,
5453 		    ioc_info(ioc, "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
5454 			     ioc->reply, ioc->reply_free_queue_depth,
5455 			     ioc->reply_sz, sz / 1024));
5456 	dinitprintk(ioc,
5457 		    ioc_info(ioc, "reply_dma(0x%llx)\n",
5458 			     (unsigned long long)ioc->reply_dma));
5459 	total_sz += sz;
5460 
5461 	/* reply free queue, 16 byte align */
5462 	sz = ioc->reply_free_queue_depth * 4;
5463 	ioc->reply_free_dma_pool = dma_pool_create("reply_free pool",
5464 	    &ioc->pdev->dev, sz, 16, 0);
5465 	if (!ioc->reply_free_dma_pool) {
5466 		ioc_err(ioc, "reply_free pool: dma_pool_create failed\n");
5467 		goto out;
5468 	}
5469 	ioc->reply_free = dma_pool_zalloc(ioc->reply_free_dma_pool, GFP_KERNEL,
5470 	    &ioc->reply_free_dma);
5471 	if (!ioc->reply_free) {
5472 		ioc_err(ioc, "reply_free pool: dma_pool_alloc failed\n");
5473 		goto out;
5474 	}
5475 	dinitprintk(ioc,
5476 		    ioc_info(ioc, "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
5477 			     ioc->reply_free, ioc->reply_free_queue_depth,
5478 			     4, sz / 1024));
5479 	dinitprintk(ioc,
5480 		    ioc_info(ioc, "reply_free_dma (0x%llx)\n",
5481 			     (unsigned long long)ioc->reply_free_dma));
5482 	total_sz += sz;
5483 
5484 	if (ioc->rdpq_array_enable) {
5485 		reply_post_free_array_sz = ioc->reply_queue_count *
5486 		    sizeof(Mpi2IOCInitRDPQArrayEntry);
5487 		ioc->reply_post_free_array_dma_pool =
5488 		    dma_pool_create("reply_post_free_array pool",
5489 		    &ioc->pdev->dev, reply_post_free_array_sz, 16, 0);
5490 		if (!ioc->reply_post_free_array_dma_pool) {
5491 			dinitprintk(ioc,
5492 				    ioc_info(ioc, "reply_post_free_array pool: dma_pool_create failed\n"));
5493 			goto out;
5494 		}
5495 		ioc->reply_post_free_array =
5496 		    dma_pool_alloc(ioc->reply_post_free_array_dma_pool,
5497 		    GFP_KERNEL, &ioc->reply_post_free_array_dma);
5498 		if (!ioc->reply_post_free_array) {
5499 			dinitprintk(ioc,
5500 				    ioc_info(ioc, "reply_post_free_array pool: dma_pool_alloc failed\n"));
5501 			goto out;
5502 		}
5503 	}
5504 	ioc->config_page_sz = 512;
5505 	ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev,
5506 			ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL);
5507 	if (!ioc->config_page) {
5508 		ioc_err(ioc, "config page: dma_pool_alloc failed\n");
5509 		goto out;
5510 	}
5511 
5512 	ioc_info(ioc, "config page(0x%p) - dma(0x%llx): size(%d)\n",
5513 	    ioc->config_page, (unsigned long long)ioc->config_page_dma,
5514 	    ioc->config_page_sz);
5515 	total_sz += ioc->config_page_sz;
5516 
5517 	ioc_info(ioc, "Allocated physical memory: size(%d kB)\n",
5518 		 total_sz / 1024);
5519 	ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
5520 		 ioc->shost->can_queue, facts->RequestCredit);
5521 	ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n",
5522 		 ioc->shost->sg_tablesize);
5523 	return 0;
5524 
5525  out:
5526 	return -ENOMEM;
5527 }
5528 
5529 /**
5530  * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
5531  * @ioc: Pointer to MPT_ADAPTER structure
5532  * @cooked: Request raw or cooked IOC state
5533  *
5534  * Return: all IOC Doorbell register bits if cooked==0, else just the
5535  * Doorbell bits in MPI_IOC_STATE_MASK.
5536  */
5537 u32
5538 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
5539 {
5540 	u32 s, sc;
5541 
5542 	s = ioc->base_readl(&ioc->chip->Doorbell);
5543 	sc = s & MPI2_IOC_STATE_MASK;
5544 	return cooked ? sc : s;
5545 }
5546 
5547 /**
5548  * _base_wait_on_iocstate - waiting on a particular ioc state
5549  * @ioc: ?
5550  * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
5551  * @timeout: timeout in second
5552  *
5553  * Return: 0 for success, non-zero for failure.
5554  */
5555 static int
5556 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
5557 {
5558 	u32 count, cntdn;
5559 	u32 current_state;
5560 
5561 	count = 0;
5562 	cntdn = 1000 * timeout;
5563 	do {
5564 		current_state = mpt3sas_base_get_iocstate(ioc, 1);
5565 		if (current_state == ioc_state)
5566 			return 0;
5567 		if (count && current_state == MPI2_IOC_STATE_FAULT)
5568 			break;
5569 		if (count && current_state == MPI2_IOC_STATE_COREDUMP)
5570 			break;
5571 
5572 		usleep_range(1000, 1500);
5573 		count++;
5574 	} while (--cntdn);
5575 
5576 	return current_state;
5577 }
5578 
5579 /**
5580  * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
5581  * a write to the doorbell)
5582  * @ioc: per adapter object
5583  *
5584  * Return: 0 for success, non-zero for failure.
5585  *
5586  * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
5587  */
5588 
5589 static int
5590 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
5591 {
5592 	u32 cntdn, count;
5593 	u32 int_status;
5594 
5595 	count = 0;
5596 	cntdn = 1000 * timeout;
5597 	do {
5598 		int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
5599 		if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5600 			dhsprintk(ioc,
5601 				  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5602 					   __func__, count, timeout));
5603 			return 0;
5604 		}
5605 
5606 		usleep_range(1000, 1500);
5607 		count++;
5608 	} while (--cntdn);
5609 
5610 	ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
5611 		__func__, count, int_status);
5612 	return -EFAULT;
5613 }
5614 
5615 static int
5616 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
5617 {
5618 	u32 cntdn, count;
5619 	u32 int_status;
5620 
5621 	count = 0;
5622 	cntdn = 2000 * timeout;
5623 	do {
5624 		int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
5625 		if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5626 			dhsprintk(ioc,
5627 				  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5628 					   __func__, count, timeout));
5629 			return 0;
5630 		}
5631 
5632 		udelay(500);
5633 		count++;
5634 	} while (--cntdn);
5635 
5636 	ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
5637 		__func__, count, int_status);
5638 	return -EFAULT;
5639 
5640 }
5641 
5642 /**
5643  * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
5644  * @ioc: per adapter object
5645  * @timeout: timeout in second
5646  *
5647  * Return: 0 for success, non-zero for failure.
5648  *
5649  * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
5650  * doorbell.
5651  */
5652 static int
5653 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
5654 {
5655 	u32 cntdn, count;
5656 	u32 int_status;
5657 	u32 doorbell;
5658 
5659 	count = 0;
5660 	cntdn = 1000 * timeout;
5661 	do {
5662 		int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
5663 		if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
5664 			dhsprintk(ioc,
5665 				  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5666 					   __func__, count, timeout));
5667 			return 0;
5668 		} else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5669 			doorbell = ioc->base_readl(&ioc->chip->Doorbell);
5670 			if ((doorbell & MPI2_IOC_STATE_MASK) ==
5671 			    MPI2_IOC_STATE_FAULT) {
5672 				mpt3sas_print_fault_code(ioc, doorbell);
5673 				return -EFAULT;
5674 			}
5675 			if ((doorbell & MPI2_IOC_STATE_MASK) ==
5676 			    MPI2_IOC_STATE_COREDUMP) {
5677 				mpt3sas_print_coredump_info(ioc, doorbell);
5678 				return -EFAULT;
5679 			}
5680 		} else if (int_status == 0xFFFFFFFF)
5681 			goto out;
5682 
5683 		usleep_range(1000, 1500);
5684 		count++;
5685 	} while (--cntdn);
5686 
5687  out:
5688 	ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
5689 		__func__, count, int_status);
5690 	return -EFAULT;
5691 }
5692 
5693 /**
5694  * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
5695  * @ioc: per adapter object
5696  * @timeout: timeout in second
5697  *
5698  * Return: 0 for success, non-zero for failure.
5699  */
5700 static int
5701 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
5702 {
5703 	u32 cntdn, count;
5704 	u32 doorbell_reg;
5705 
5706 	count = 0;
5707 	cntdn = 1000 * timeout;
5708 	do {
5709 		doorbell_reg = ioc->base_readl(&ioc->chip->Doorbell);
5710 		if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
5711 			dhsprintk(ioc,
5712 				  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5713 					   __func__, count, timeout));
5714 			return 0;
5715 		}
5716 
5717 		usleep_range(1000, 1500);
5718 		count++;
5719 	} while (--cntdn);
5720 
5721 	ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
5722 		__func__, count, doorbell_reg);
5723 	return -EFAULT;
5724 }
5725 
5726 /**
5727  * _base_send_ioc_reset - send doorbell reset
5728  * @ioc: per adapter object
5729  * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
5730  * @timeout: timeout in second
5731  *
5732  * Return: 0 for success, non-zero for failure.
5733  */
5734 static int
5735 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
5736 {
5737 	u32 ioc_state;
5738 	int r = 0;
5739 	unsigned long flags;
5740 
5741 	if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
5742 		ioc_err(ioc, "%s: unknown reset_type\n", __func__);
5743 		return -EFAULT;
5744 	}
5745 
5746 	if (!(ioc->facts.IOCCapabilities &
5747 	   MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
5748 		return -EFAULT;
5749 
5750 	ioc_info(ioc, "sending message unit reset !!\n");
5751 
5752 	writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
5753 	    &ioc->chip->Doorbell);
5754 	if ((_base_wait_for_doorbell_ack(ioc, 15))) {
5755 		r = -EFAULT;
5756 		goto out;
5757 	}
5758 
5759 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
5760 	if (ioc_state) {
5761 		ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
5762 			__func__, ioc_state);
5763 		r = -EFAULT;
5764 		goto out;
5765 	}
5766  out:
5767 	if (r != 0) {
5768 		ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5769 		spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5770 		/*
5771 		 * Wait for IOC state CoreDump to clear only during
5772 		 * HBA initialization & release time.
5773 		 */
5774 		if ((ioc_state & MPI2_IOC_STATE_MASK) ==
5775 		    MPI2_IOC_STATE_COREDUMP && (ioc->is_driver_loading == 1 ||
5776 		    ioc->fault_reset_work_q == NULL)) {
5777 			spin_unlock_irqrestore(
5778 			    &ioc->ioc_reset_in_progress_lock, flags);
5779 			mpt3sas_print_coredump_info(ioc, ioc_state);
5780 			mpt3sas_base_wait_for_coredump_completion(ioc,
5781 			    __func__);
5782 			spin_lock_irqsave(
5783 			    &ioc->ioc_reset_in_progress_lock, flags);
5784 		}
5785 		spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5786 	}
5787 	ioc_info(ioc, "message unit reset: %s\n",
5788 		 r == 0 ? "SUCCESS" : "FAILED");
5789 	return r;
5790 }
5791 
5792 /**
5793  * mpt3sas_wait_for_ioc - IOC's operational state is checked here.
5794  * @ioc: per adapter object
5795  * @wait_count: timeout in seconds
5796  *
5797  * Return: Waits up to timeout seconds for the IOC to
5798  * become operational. Returns 0 if IOC is present
5799  * and operational; otherwise returns -EFAULT.
5800  */
5801 
5802 int
5803 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout)
5804 {
5805 	int wait_state_count = 0;
5806 	u32 ioc_state;
5807 
5808 	do {
5809 		ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
5810 		if (ioc_state == MPI2_IOC_STATE_OPERATIONAL)
5811 			break;
5812 		ssleep(1);
5813 		ioc_info(ioc, "%s: waiting for operational state(count=%d)\n",
5814 				__func__, ++wait_state_count);
5815 	} while (--timeout);
5816 	if (!timeout) {
5817 		ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__);
5818 		return -EFAULT;
5819 	}
5820 	if (wait_state_count)
5821 		ioc_info(ioc, "ioc is operational\n");
5822 	return 0;
5823 }
5824 
5825 /**
5826  * _base_handshake_req_reply_wait - send request thru doorbell interface
5827  * @ioc: per adapter object
5828  * @request_bytes: request length
5829  * @request: pointer having request payload
5830  * @reply_bytes: reply length
5831  * @reply: pointer to reply payload
5832  * @timeout: timeout in second
5833  *
5834  * Return: 0 for success, non-zero for failure.
5835  */
5836 static int
5837 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
5838 	u32 *request, int reply_bytes, u16 *reply, int timeout)
5839 {
5840 	MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
5841 	int i;
5842 	u8 failed;
5843 	__le32 *mfp;
5844 
5845 	/* make sure doorbell is not in use */
5846 	if ((ioc->base_readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
5847 		ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__);
5848 		return -EFAULT;
5849 	}
5850 
5851 	/* clear pending doorbell interrupts from previous state changes */
5852 	if (ioc->base_readl(&ioc->chip->HostInterruptStatus) &
5853 	    MPI2_HIS_IOC2SYS_DB_STATUS)
5854 		writel(0, &ioc->chip->HostInterruptStatus);
5855 
5856 	/* send message to ioc */
5857 	writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
5858 	    ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
5859 	    &ioc->chip->Doorbell);
5860 
5861 	if ((_base_spin_on_doorbell_int(ioc, 5))) {
5862 		ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
5863 			__LINE__);
5864 		return -EFAULT;
5865 	}
5866 	writel(0, &ioc->chip->HostInterruptStatus);
5867 
5868 	if ((_base_wait_for_doorbell_ack(ioc, 5))) {
5869 		ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n",
5870 			__LINE__);
5871 		return -EFAULT;
5872 	}
5873 
5874 	/* send message 32-bits at a time */
5875 	for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
5876 		writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
5877 		if ((_base_wait_for_doorbell_ack(ioc, 5)))
5878 			failed = 1;
5879 	}
5880 
5881 	if (failed) {
5882 		ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n",
5883 			__LINE__);
5884 		return -EFAULT;
5885 	}
5886 
5887 	/* now wait for the reply */
5888 	if ((_base_wait_for_doorbell_int(ioc, timeout))) {
5889 		ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
5890 			__LINE__);
5891 		return -EFAULT;
5892 	}
5893 
5894 	/* read the first two 16-bits, it gives the total length of the reply */
5895 	reply[0] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
5896 	    & MPI2_DOORBELL_DATA_MASK);
5897 	writel(0, &ioc->chip->HostInterruptStatus);
5898 	if ((_base_wait_for_doorbell_int(ioc, 5))) {
5899 		ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
5900 			__LINE__);
5901 		return -EFAULT;
5902 	}
5903 	reply[1] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
5904 	    & MPI2_DOORBELL_DATA_MASK);
5905 	writel(0, &ioc->chip->HostInterruptStatus);
5906 
5907 	for (i = 2; i < default_reply->MsgLength * 2; i++)  {
5908 		if ((_base_wait_for_doorbell_int(ioc, 5))) {
5909 			ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
5910 				__LINE__);
5911 			return -EFAULT;
5912 		}
5913 		if (i >=  reply_bytes/2) /* overflow case */
5914 			ioc->base_readl(&ioc->chip->Doorbell);
5915 		else
5916 			reply[i] = le16_to_cpu(
5917 			    ioc->base_readl(&ioc->chip->Doorbell)
5918 			    & MPI2_DOORBELL_DATA_MASK);
5919 		writel(0, &ioc->chip->HostInterruptStatus);
5920 	}
5921 
5922 	_base_wait_for_doorbell_int(ioc, 5);
5923 	if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
5924 		dhsprintk(ioc,
5925 			  ioc_info(ioc, "doorbell is in use (line=%d)\n",
5926 				   __LINE__));
5927 	}
5928 	writel(0, &ioc->chip->HostInterruptStatus);
5929 
5930 	if (ioc->logging_level & MPT_DEBUG_INIT) {
5931 		mfp = (__le32 *)reply;
5932 		pr_info("\toffset:data\n");
5933 		for (i = 0; i < reply_bytes/4; i++)
5934 			ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
5935 			    le32_to_cpu(mfp[i]));
5936 	}
5937 	return 0;
5938 }
5939 
5940 /**
5941  * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
5942  * @ioc: per adapter object
5943  * @mpi_reply: the reply payload from FW
5944  * @mpi_request: the request payload sent to FW
5945  *
5946  * The SAS IO Unit Control Request message allows the host to perform low-level
5947  * operations, such as resets on the PHYs of the IO Unit, also allows the host
5948  * to obtain the IOC assigned device handles for a device if it has other
5949  * identifying information about the device, in addition allows the host to
5950  * remove IOC resources associated with the device.
5951  *
5952  * Return: 0 for success, non-zero for failure.
5953  */
5954 int
5955 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
5956 	Mpi2SasIoUnitControlReply_t *mpi_reply,
5957 	Mpi2SasIoUnitControlRequest_t *mpi_request)
5958 {
5959 	u16 smid;
5960 	u8 issue_reset = 0;
5961 	int rc;
5962 	void *request;
5963 
5964 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5965 
5966 	mutex_lock(&ioc->base_cmds.mutex);
5967 
5968 	if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
5969 		ioc_err(ioc, "%s: base_cmd in use\n", __func__);
5970 		rc = -EAGAIN;
5971 		goto out;
5972 	}
5973 
5974 	rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
5975 	if (rc)
5976 		goto out;
5977 
5978 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
5979 	if (!smid) {
5980 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
5981 		rc = -EAGAIN;
5982 		goto out;
5983 	}
5984 
5985 	rc = 0;
5986 	ioc->base_cmds.status = MPT3_CMD_PENDING;
5987 	request = mpt3sas_base_get_msg_frame(ioc, smid);
5988 	ioc->base_cmds.smid = smid;
5989 	memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
5990 	if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
5991 	    mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
5992 		ioc->ioc_link_reset_in_progress = 1;
5993 	init_completion(&ioc->base_cmds.done);
5994 	ioc->put_smid_default(ioc, smid);
5995 	wait_for_completion_timeout(&ioc->base_cmds.done,
5996 	    msecs_to_jiffies(10000));
5997 	if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
5998 	    mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
5999 	    ioc->ioc_link_reset_in_progress)
6000 		ioc->ioc_link_reset_in_progress = 0;
6001 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
6002 		mpt3sas_check_cmd_timeout(ioc, ioc->base_cmds.status,
6003 		    mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)/4,
6004 		    issue_reset);
6005 		goto issue_host_reset;
6006 	}
6007 	if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
6008 		memcpy(mpi_reply, ioc->base_cmds.reply,
6009 		    sizeof(Mpi2SasIoUnitControlReply_t));
6010 	else
6011 		memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
6012 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6013 	goto out;
6014 
6015  issue_host_reset:
6016 	if (issue_reset)
6017 		mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
6018 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6019 	rc = -EFAULT;
6020  out:
6021 	mutex_unlock(&ioc->base_cmds.mutex);
6022 	return rc;
6023 }
6024 
6025 /**
6026  * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
6027  * @ioc: per adapter object
6028  * @mpi_reply: the reply payload from FW
6029  * @mpi_request: the request payload sent to FW
6030  *
6031  * The SCSI Enclosure Processor request message causes the IOC to
6032  * communicate with SES devices to control LED status signals.
6033  *
6034  * Return: 0 for success, non-zero for failure.
6035  */
6036 int
6037 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
6038 	Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
6039 {
6040 	u16 smid;
6041 	u8 issue_reset = 0;
6042 	int rc;
6043 	void *request;
6044 
6045 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6046 
6047 	mutex_lock(&ioc->base_cmds.mutex);
6048 
6049 	if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
6050 		ioc_err(ioc, "%s: base_cmd in use\n", __func__);
6051 		rc = -EAGAIN;
6052 		goto out;
6053 	}
6054 
6055 	rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
6056 	if (rc)
6057 		goto out;
6058 
6059 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
6060 	if (!smid) {
6061 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6062 		rc = -EAGAIN;
6063 		goto out;
6064 	}
6065 
6066 	rc = 0;
6067 	ioc->base_cmds.status = MPT3_CMD_PENDING;
6068 	request = mpt3sas_base_get_msg_frame(ioc, smid);
6069 	ioc->base_cmds.smid = smid;
6070 	memset(request, 0, ioc->request_sz);
6071 	memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
6072 	init_completion(&ioc->base_cmds.done);
6073 	ioc->put_smid_default(ioc, smid);
6074 	wait_for_completion_timeout(&ioc->base_cmds.done,
6075 	    msecs_to_jiffies(10000));
6076 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
6077 		mpt3sas_check_cmd_timeout(ioc,
6078 		    ioc->base_cmds.status, mpi_request,
6079 		    sizeof(Mpi2SepRequest_t)/4, issue_reset);
6080 		goto issue_host_reset;
6081 	}
6082 	if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
6083 		memcpy(mpi_reply, ioc->base_cmds.reply,
6084 		    sizeof(Mpi2SepReply_t));
6085 	else
6086 		memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
6087 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6088 	goto out;
6089 
6090  issue_host_reset:
6091 	if (issue_reset)
6092 		mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
6093 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6094 	rc = -EFAULT;
6095  out:
6096 	mutex_unlock(&ioc->base_cmds.mutex);
6097 	return rc;
6098 }
6099 
6100 /**
6101  * _base_get_port_facts - obtain port facts reply and save in ioc
6102  * @ioc: per adapter object
6103  * @port: ?
6104  *
6105  * Return: 0 for success, non-zero for failure.
6106  */
6107 static int
6108 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
6109 {
6110 	Mpi2PortFactsRequest_t mpi_request;
6111 	Mpi2PortFactsReply_t mpi_reply;
6112 	struct mpt3sas_port_facts *pfacts;
6113 	int mpi_reply_sz, mpi_request_sz, r;
6114 
6115 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6116 
6117 	mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
6118 	mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
6119 	memset(&mpi_request, 0, mpi_request_sz);
6120 	mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
6121 	mpi_request.PortNumber = port;
6122 	r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
6123 	    (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
6124 
6125 	if (r != 0) {
6126 		ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
6127 		return r;
6128 	}
6129 
6130 	pfacts = &ioc->pfacts[port];
6131 	memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
6132 	pfacts->PortNumber = mpi_reply.PortNumber;
6133 	pfacts->VP_ID = mpi_reply.VP_ID;
6134 	pfacts->VF_ID = mpi_reply.VF_ID;
6135 	pfacts->MaxPostedCmdBuffers =
6136 	    le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
6137 
6138 	return 0;
6139 }
6140 
6141 /**
6142  * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
6143  * @ioc: per adapter object
6144  * @timeout:
6145  *
6146  * Return: 0 for success, non-zero for failure.
6147  */
6148 static int
6149 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
6150 {
6151 	u32 ioc_state;
6152 	int rc;
6153 
6154 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6155 
6156 	if (ioc->pci_error_recovery) {
6157 		dfailprintk(ioc,
6158 			    ioc_info(ioc, "%s: host in pci error recovery\n",
6159 				     __func__));
6160 		return -EFAULT;
6161 	}
6162 
6163 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6164 	dhsprintk(ioc,
6165 		  ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
6166 			   __func__, ioc_state));
6167 
6168 	if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
6169 	    (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
6170 		return 0;
6171 
6172 	if (ioc_state & MPI2_DOORBELL_USED) {
6173 		dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n"));
6174 		goto issue_diag_reset;
6175 	}
6176 
6177 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
6178 		mpt3sas_print_fault_code(ioc, ioc_state &
6179 		    MPI2_DOORBELL_DATA_MASK);
6180 		goto issue_diag_reset;
6181 	} else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
6182 	    MPI2_IOC_STATE_COREDUMP) {
6183 		ioc_info(ioc,
6184 		    "%s: Skipping the diag reset here. (ioc_state=0x%x)\n",
6185 		    __func__, ioc_state);
6186 		return -EFAULT;
6187 	}
6188 
6189 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
6190 	if (ioc_state) {
6191 		dfailprintk(ioc,
6192 			    ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6193 				     __func__, ioc_state));
6194 		return -EFAULT;
6195 	}
6196 
6197  issue_diag_reset:
6198 	rc = _base_diag_reset(ioc);
6199 	return rc;
6200 }
6201 
6202 /**
6203  * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
6204  * @ioc: per adapter object
6205  *
6206  * Return: 0 for success, non-zero for failure.
6207  */
6208 static int
6209 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
6210 {
6211 	Mpi2IOCFactsRequest_t mpi_request;
6212 	Mpi2IOCFactsReply_t mpi_reply;
6213 	struct mpt3sas_facts *facts;
6214 	int mpi_reply_sz, mpi_request_sz, r;
6215 
6216 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6217 
6218 	r = _base_wait_for_iocstate(ioc, 10);
6219 	if (r) {
6220 		dfailprintk(ioc,
6221 			    ioc_info(ioc, "%s: failed getting to correct state\n",
6222 				     __func__));
6223 		return r;
6224 	}
6225 	mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
6226 	mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
6227 	memset(&mpi_request, 0, mpi_request_sz);
6228 	mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
6229 	r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
6230 	    (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
6231 
6232 	if (r != 0) {
6233 		ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
6234 		return r;
6235 	}
6236 
6237 	facts = &ioc->facts;
6238 	memset(facts, 0, sizeof(struct mpt3sas_facts));
6239 	facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
6240 	facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
6241 	facts->VP_ID = mpi_reply.VP_ID;
6242 	facts->VF_ID = mpi_reply.VF_ID;
6243 	facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
6244 	facts->MaxChainDepth = mpi_reply.MaxChainDepth;
6245 	facts->WhoInit = mpi_reply.WhoInit;
6246 	facts->NumberOfPorts = mpi_reply.NumberOfPorts;
6247 	facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
6248 	if (ioc->msix_enable && (facts->MaxMSIxVectors <=
6249 	    MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc)))
6250 		ioc->combined_reply_queue = 0;
6251 	facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
6252 	facts->MaxReplyDescriptorPostQueueDepth =
6253 	    le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
6254 	facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
6255 	facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
6256 	if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
6257 		ioc->ir_firmware = 1;
6258 	if ((facts->IOCCapabilities &
6259 	      MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices))
6260 		ioc->rdpq_array_capable = 1;
6261 	if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
6262 	    && ioc->is_aero_ioc)
6263 		ioc->atomic_desc_capable = 1;
6264 	facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
6265 	facts->IOCRequestFrameSize =
6266 	    le16_to_cpu(mpi_reply.IOCRequestFrameSize);
6267 	if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
6268 		facts->IOCMaxChainSegmentSize =
6269 			le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
6270 	}
6271 	facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
6272 	facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
6273 	ioc->shost->max_id = -1;
6274 	facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
6275 	facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
6276 	facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
6277 	facts->HighPriorityCredit =
6278 	    le16_to_cpu(mpi_reply.HighPriorityCredit);
6279 	facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
6280 	facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
6281 	facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize;
6282 
6283 	/*
6284 	 * Get the Page Size from IOC Facts. If it's 0, default to 4k.
6285 	 */
6286 	ioc->page_size = 1 << facts->CurrentHostPageSize;
6287 	if (ioc->page_size == 1) {
6288 		ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n");
6289 		ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K;
6290 	}
6291 	dinitprintk(ioc,
6292 		    ioc_info(ioc, "CurrentHostPageSize(%d)\n",
6293 			     facts->CurrentHostPageSize));
6294 
6295 	dinitprintk(ioc,
6296 		    ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n",
6297 			     facts->RequestCredit, facts->MaxChainDepth));
6298 	dinitprintk(ioc,
6299 		    ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n",
6300 			     facts->IOCRequestFrameSize * 4,
6301 			     facts->ReplyFrameSize * 4));
6302 	return 0;
6303 }
6304 
6305 /**
6306  * _base_send_ioc_init - send ioc_init to firmware
6307  * @ioc: per adapter object
6308  *
6309  * Return: 0 for success, non-zero for failure.
6310  */
6311 static int
6312 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
6313 {
6314 	Mpi2IOCInitRequest_t mpi_request;
6315 	Mpi2IOCInitReply_t mpi_reply;
6316 	int i, r = 0;
6317 	ktime_t current_time;
6318 	u16 ioc_status;
6319 	u32 reply_post_free_array_sz = 0;
6320 
6321 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6322 
6323 	memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
6324 	mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
6325 	mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
6326 	mpi_request.VF_ID = 0; /* TODO */
6327 	mpi_request.VP_ID = 0;
6328 	mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
6329 	mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
6330 	mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K;
6331 
6332 	if (_base_is_controller_msix_enabled(ioc))
6333 		mpi_request.HostMSIxVectors = ioc->reply_queue_count;
6334 	mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
6335 	mpi_request.ReplyDescriptorPostQueueDepth =
6336 	    cpu_to_le16(ioc->reply_post_queue_depth);
6337 	mpi_request.ReplyFreeQueueDepth =
6338 	    cpu_to_le16(ioc->reply_free_queue_depth);
6339 
6340 	mpi_request.SenseBufferAddressHigh =
6341 	    cpu_to_le32((u64)ioc->sense_dma >> 32);
6342 	mpi_request.SystemReplyAddressHigh =
6343 	    cpu_to_le32((u64)ioc->reply_dma >> 32);
6344 	mpi_request.SystemRequestFrameBaseAddress =
6345 	    cpu_to_le64((u64)ioc->request_dma);
6346 	mpi_request.ReplyFreeQueueAddress =
6347 	    cpu_to_le64((u64)ioc->reply_free_dma);
6348 
6349 	if (ioc->rdpq_array_enable) {
6350 		reply_post_free_array_sz = ioc->reply_queue_count *
6351 		    sizeof(Mpi2IOCInitRDPQArrayEntry);
6352 		memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz);
6353 		for (i = 0; i < ioc->reply_queue_count; i++)
6354 			ioc->reply_post_free_array[i].RDPQBaseAddress =
6355 			    cpu_to_le64(
6356 				(u64)ioc->reply_post[i].reply_post_free_dma);
6357 		mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
6358 		mpi_request.ReplyDescriptorPostQueueAddress =
6359 		    cpu_to_le64((u64)ioc->reply_post_free_array_dma);
6360 	} else {
6361 		mpi_request.ReplyDescriptorPostQueueAddress =
6362 		    cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
6363 	}
6364 
6365 	/*
6366 	 * Set the flag to enable CoreDump state feature in IOC firmware.
6367 	 */
6368 	mpi_request.ConfigurationFlags |=
6369 	    cpu_to_le16(MPI26_IOCINIT_CFGFLAGS_COREDUMP_ENABLE);
6370 
6371 	/* This time stamp specifies number of milliseconds
6372 	 * since epoch ~ midnight January 1, 1970.
6373 	 */
6374 	current_time = ktime_get_real();
6375 	mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
6376 
6377 	if (ioc->logging_level & MPT_DEBUG_INIT) {
6378 		__le32 *mfp;
6379 		int i;
6380 
6381 		mfp = (__le32 *)&mpi_request;
6382 		ioc_info(ioc, "\toffset:data\n");
6383 		for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
6384 			ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
6385 			    le32_to_cpu(mfp[i]));
6386 	}
6387 
6388 	r = _base_handshake_req_reply_wait(ioc,
6389 	    sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
6390 	    sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10);
6391 
6392 	if (r != 0) {
6393 		ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
6394 		return r;
6395 	}
6396 
6397 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
6398 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
6399 	    mpi_reply.IOCLogInfo) {
6400 		ioc_err(ioc, "%s: failed\n", __func__);
6401 		r = -EIO;
6402 	}
6403 
6404 	return r;
6405 }
6406 
6407 /**
6408  * mpt3sas_port_enable_done - command completion routine for port enable
6409  * @ioc: per adapter object
6410  * @smid: system request message index
6411  * @msix_index: MSIX table index supplied by the OS
6412  * @reply: reply message frame(lower 32bit addr)
6413  *
6414  * Return: 1 meaning mf should be freed from _base_interrupt
6415  *          0 means the mf is freed from this function.
6416  */
6417 u8
6418 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
6419 	u32 reply)
6420 {
6421 	MPI2DefaultReply_t *mpi_reply;
6422 	u16 ioc_status;
6423 
6424 	if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
6425 		return 1;
6426 
6427 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
6428 	if (!mpi_reply)
6429 		return 1;
6430 
6431 	if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
6432 		return 1;
6433 
6434 	ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
6435 	ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
6436 	ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
6437 	memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
6438 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
6439 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
6440 		ioc->port_enable_failed = 1;
6441 
6442 	if (ioc->is_driver_loading) {
6443 		if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
6444 			mpt3sas_port_enable_complete(ioc);
6445 			return 1;
6446 		} else {
6447 			ioc->start_scan_failed = ioc_status;
6448 			ioc->start_scan = 0;
6449 			return 1;
6450 		}
6451 	}
6452 	complete(&ioc->port_enable_cmds.done);
6453 	return 1;
6454 }
6455 
6456 /**
6457  * _base_send_port_enable - send port_enable(discovery stuff) to firmware
6458  * @ioc: per adapter object
6459  *
6460  * Return: 0 for success, non-zero for failure.
6461  */
6462 static int
6463 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
6464 {
6465 	Mpi2PortEnableRequest_t *mpi_request;
6466 	Mpi2PortEnableReply_t *mpi_reply;
6467 	int r = 0;
6468 	u16 smid;
6469 	u16 ioc_status;
6470 
6471 	ioc_info(ioc, "sending port enable !!\n");
6472 
6473 	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
6474 		ioc_err(ioc, "%s: internal command already in use\n", __func__);
6475 		return -EAGAIN;
6476 	}
6477 
6478 	smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
6479 	if (!smid) {
6480 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6481 		return -EAGAIN;
6482 	}
6483 
6484 	ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
6485 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
6486 	ioc->port_enable_cmds.smid = smid;
6487 	memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
6488 	mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
6489 
6490 	init_completion(&ioc->port_enable_cmds.done);
6491 	ioc->put_smid_default(ioc, smid);
6492 	wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
6493 	if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
6494 		ioc_err(ioc, "%s: timeout\n", __func__);
6495 		_debug_dump_mf(mpi_request,
6496 		    sizeof(Mpi2PortEnableRequest_t)/4);
6497 		if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
6498 			r = -EFAULT;
6499 		else
6500 			r = -ETIME;
6501 		goto out;
6502 	}
6503 
6504 	mpi_reply = ioc->port_enable_cmds.reply;
6505 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
6506 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
6507 		ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n",
6508 			__func__, ioc_status);
6509 		r = -EFAULT;
6510 		goto out;
6511 	}
6512 
6513  out:
6514 	ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
6515 	ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED");
6516 	return r;
6517 }
6518 
6519 /**
6520  * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
6521  * @ioc: per adapter object
6522  *
6523  * Return: 0 for success, non-zero for failure.
6524  */
6525 int
6526 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
6527 {
6528 	Mpi2PortEnableRequest_t *mpi_request;
6529 	u16 smid;
6530 
6531 	ioc_info(ioc, "sending port enable !!\n");
6532 
6533 	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
6534 		ioc_err(ioc, "%s: internal command already in use\n", __func__);
6535 		return -EAGAIN;
6536 	}
6537 
6538 	smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
6539 	if (!smid) {
6540 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6541 		return -EAGAIN;
6542 	}
6543 
6544 	ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
6545 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
6546 	ioc->port_enable_cmds.smid = smid;
6547 	memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
6548 	mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
6549 
6550 	ioc->put_smid_default(ioc, smid);
6551 	return 0;
6552 }
6553 
6554 /**
6555  * _base_determine_wait_on_discovery - desposition
6556  * @ioc: per adapter object
6557  *
6558  * Decide whether to wait on discovery to complete. Used to either
6559  * locate boot device, or report volumes ahead of physical devices.
6560  *
6561  * Return: 1 for wait, 0 for don't wait.
6562  */
6563 static int
6564 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
6565 {
6566 	/* We wait for discovery to complete if IR firmware is loaded.
6567 	 * The sas topology events arrive before PD events, so we need time to
6568 	 * turn on the bit in ioc->pd_handles to indicate PD
6569 	 * Also, it maybe required to report Volumes ahead of physical
6570 	 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
6571 	 */
6572 	if (ioc->ir_firmware)
6573 		return 1;
6574 
6575 	/* if no Bios, then we don't need to wait */
6576 	if (!ioc->bios_pg3.BiosVersion)
6577 		return 0;
6578 
6579 	/* Bios is present, then we drop down here.
6580 	 *
6581 	 * If there any entries in the Bios Page 2, then we wait
6582 	 * for discovery to complete.
6583 	 */
6584 
6585 	/* Current Boot Device */
6586 	if ((ioc->bios_pg2.CurrentBootDeviceForm &
6587 	    MPI2_BIOSPAGE2_FORM_MASK) ==
6588 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
6589 	/* Request Boot Device */
6590 	   (ioc->bios_pg2.ReqBootDeviceForm &
6591 	    MPI2_BIOSPAGE2_FORM_MASK) ==
6592 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
6593 	/* Alternate Request Boot Device */
6594 	   (ioc->bios_pg2.ReqAltBootDeviceForm &
6595 	    MPI2_BIOSPAGE2_FORM_MASK) ==
6596 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
6597 		return 0;
6598 
6599 	return 1;
6600 }
6601 
6602 /**
6603  * _base_unmask_events - turn on notification for this event
6604  * @ioc: per adapter object
6605  * @event: firmware event
6606  *
6607  * The mask is stored in ioc->event_masks.
6608  */
6609 static void
6610 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
6611 {
6612 	u32 desired_event;
6613 
6614 	if (event >= 128)
6615 		return;
6616 
6617 	desired_event = (1 << (event % 32));
6618 
6619 	if (event < 32)
6620 		ioc->event_masks[0] &= ~desired_event;
6621 	else if (event < 64)
6622 		ioc->event_masks[1] &= ~desired_event;
6623 	else if (event < 96)
6624 		ioc->event_masks[2] &= ~desired_event;
6625 	else if (event < 128)
6626 		ioc->event_masks[3] &= ~desired_event;
6627 }
6628 
6629 /**
6630  * _base_event_notification - send event notification
6631  * @ioc: per adapter object
6632  *
6633  * Return: 0 for success, non-zero for failure.
6634  */
6635 static int
6636 _base_event_notification(struct MPT3SAS_ADAPTER *ioc)
6637 {
6638 	Mpi2EventNotificationRequest_t *mpi_request;
6639 	u16 smid;
6640 	int r = 0;
6641 	int i;
6642 
6643 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6644 
6645 	if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
6646 		ioc_err(ioc, "%s: internal command already in use\n", __func__);
6647 		return -EAGAIN;
6648 	}
6649 
6650 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
6651 	if (!smid) {
6652 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6653 		return -EAGAIN;
6654 	}
6655 	ioc->base_cmds.status = MPT3_CMD_PENDING;
6656 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
6657 	ioc->base_cmds.smid = smid;
6658 	memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
6659 	mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
6660 	mpi_request->VF_ID = 0; /* TODO */
6661 	mpi_request->VP_ID = 0;
6662 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
6663 		mpi_request->EventMasks[i] =
6664 		    cpu_to_le32(ioc->event_masks[i]);
6665 	init_completion(&ioc->base_cmds.done);
6666 	ioc->put_smid_default(ioc, smid);
6667 	wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
6668 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
6669 		ioc_err(ioc, "%s: timeout\n", __func__);
6670 		_debug_dump_mf(mpi_request,
6671 		    sizeof(Mpi2EventNotificationRequest_t)/4);
6672 		if (ioc->base_cmds.status & MPT3_CMD_RESET)
6673 			r = -EFAULT;
6674 		else
6675 			r = -ETIME;
6676 	} else
6677 		dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__));
6678 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6679 	return r;
6680 }
6681 
6682 /**
6683  * mpt3sas_base_validate_event_type - validating event types
6684  * @ioc: per adapter object
6685  * @event_type: firmware event
6686  *
6687  * This will turn on firmware event notification when application
6688  * ask for that event. We don't mask events that are already enabled.
6689  */
6690 void
6691 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
6692 {
6693 	int i, j;
6694 	u32 event_mask, desired_event;
6695 	u8 send_update_to_fw;
6696 
6697 	for (i = 0, send_update_to_fw = 0; i <
6698 	    MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
6699 		event_mask = ~event_type[i];
6700 		desired_event = 1;
6701 		for (j = 0; j < 32; j++) {
6702 			if (!(event_mask & desired_event) &&
6703 			    (ioc->event_masks[i] & desired_event)) {
6704 				ioc->event_masks[i] &= ~desired_event;
6705 				send_update_to_fw = 1;
6706 			}
6707 			desired_event = (desired_event << 1);
6708 		}
6709 	}
6710 
6711 	if (!send_update_to_fw)
6712 		return;
6713 
6714 	mutex_lock(&ioc->base_cmds.mutex);
6715 	_base_event_notification(ioc);
6716 	mutex_unlock(&ioc->base_cmds.mutex);
6717 }
6718 
6719 /**
6720  * _base_diag_reset - the "big hammer" start of day reset
6721  * @ioc: per adapter object
6722  *
6723  * Return: 0 for success, non-zero for failure.
6724  */
6725 static int
6726 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
6727 {
6728 	u32 host_diagnostic;
6729 	u32 ioc_state;
6730 	u32 count;
6731 	u32 hcb_size;
6732 
6733 	ioc_info(ioc, "sending diag reset !!\n");
6734 
6735 	drsprintk(ioc, ioc_info(ioc, "clear interrupts\n"));
6736 
6737 	count = 0;
6738 	do {
6739 		/* Write magic sequence to WriteSequence register
6740 		 * Loop until in diagnostic mode
6741 		 */
6742 		drsprintk(ioc, ioc_info(ioc, "write magic sequence\n"));
6743 		writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
6744 		writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
6745 		writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
6746 		writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
6747 		writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
6748 		writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
6749 		writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
6750 
6751 		/* wait 100 msec */
6752 		msleep(100);
6753 
6754 		if (count++ > 20) {
6755 			ioc_info(ioc,
6756 			    "Stop writing magic sequence after 20 retries\n");
6757 			goto out;
6758 		}
6759 
6760 		host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
6761 		drsprintk(ioc,
6762 			  ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
6763 				   count, host_diagnostic));
6764 
6765 	} while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
6766 
6767 	hcb_size = ioc->base_readl(&ioc->chip->HCBSize);
6768 
6769 	drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n"));
6770 	writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
6771 	     &ioc->chip->HostDiagnostic);
6772 
6773 	/*This delay allows the chip PCIe hardware time to finish reset tasks*/
6774 	msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
6775 
6776 	/* Approximately 300 second max wait */
6777 	for (count = 0; count < (300000000 /
6778 		MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
6779 
6780 		host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
6781 
6782 		if (host_diagnostic == 0xFFFFFFFF) {
6783 			ioc_info(ioc,
6784 			    "Invalid host diagnostic register value\n");
6785 			goto out;
6786 		}
6787 		if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
6788 			break;
6789 
6790 		msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000);
6791 	}
6792 
6793 	if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
6794 
6795 		drsprintk(ioc,
6796 			  ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n"));
6797 		host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
6798 		host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
6799 		writel(host_diagnostic, &ioc->chip->HostDiagnostic);
6800 
6801 		drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n"));
6802 		writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
6803 		    &ioc->chip->HCBSize);
6804 	}
6805 
6806 	drsprintk(ioc, ioc_info(ioc, "restart the adapter\n"));
6807 	writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
6808 	    &ioc->chip->HostDiagnostic);
6809 
6810 	drsprintk(ioc,
6811 		  ioc_info(ioc, "disable writes to the diagnostic register\n"));
6812 	writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
6813 
6814 	drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n"));
6815 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
6816 	if (ioc_state) {
6817 		ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6818 			__func__, ioc_state);
6819 		goto out;
6820 	}
6821 
6822 	ioc_info(ioc, "diag reset: SUCCESS\n");
6823 	return 0;
6824 
6825  out:
6826 	ioc_err(ioc, "diag reset: FAILED\n");
6827 	return -EFAULT;
6828 }
6829 
6830 /**
6831  * _base_make_ioc_ready - put controller in READY state
6832  * @ioc: per adapter object
6833  * @type: FORCE_BIG_HAMMER or SOFT_RESET
6834  *
6835  * Return: 0 for success, non-zero for failure.
6836  */
6837 static int
6838 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
6839 {
6840 	u32 ioc_state;
6841 	int rc;
6842 	int count;
6843 
6844 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6845 
6846 	if (ioc->pci_error_recovery)
6847 		return 0;
6848 
6849 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6850 	dhsprintk(ioc,
6851 		  ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
6852 			   __func__, ioc_state));
6853 
6854 	/* if in RESET state, it should move to READY state shortly */
6855 	count = 0;
6856 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
6857 		while ((ioc_state & MPI2_IOC_STATE_MASK) !=
6858 		    MPI2_IOC_STATE_READY) {
6859 			if (count++ == 10) {
6860 				ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6861 					__func__, ioc_state);
6862 				return -EFAULT;
6863 			}
6864 			ssleep(1);
6865 			ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6866 		}
6867 	}
6868 
6869 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
6870 		return 0;
6871 
6872 	if (ioc_state & MPI2_DOORBELL_USED) {
6873 		ioc_info(ioc, "unexpected doorbell active!\n");
6874 		goto issue_diag_reset;
6875 	}
6876 
6877 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
6878 		mpt3sas_print_fault_code(ioc, ioc_state &
6879 		    MPI2_DOORBELL_DATA_MASK);
6880 		goto issue_diag_reset;
6881 	}
6882 
6883 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
6884 		/*
6885 		 * if host reset is invoked while watch dog thread is waiting
6886 		 * for IOC state to be changed to Fault state then driver has
6887 		 * to wait here for CoreDump state to clear otherwise reset
6888 		 * will be issued to the FW and FW move the IOC state to
6889 		 * reset state without copying the FW logs to coredump region.
6890 		 */
6891 		if (ioc->ioc_coredump_loop != MPT3SAS_COREDUMP_LOOP_DONE) {
6892 			mpt3sas_print_coredump_info(ioc, ioc_state &
6893 			    MPI2_DOORBELL_DATA_MASK);
6894 			mpt3sas_base_wait_for_coredump_completion(ioc,
6895 			    __func__);
6896 		}
6897 		goto issue_diag_reset;
6898 	}
6899 
6900 	if (type == FORCE_BIG_HAMMER)
6901 		goto issue_diag_reset;
6902 
6903 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
6904 		if (!(_base_send_ioc_reset(ioc,
6905 		    MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
6906 			return 0;
6907 	}
6908 
6909  issue_diag_reset:
6910 	rc = _base_diag_reset(ioc);
6911 	return rc;
6912 }
6913 
6914 /**
6915  * _base_make_ioc_operational - put controller in OPERATIONAL state
6916  * @ioc: per adapter object
6917  *
6918  * Return: 0 for success, non-zero for failure.
6919  */
6920 static int
6921 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
6922 {
6923 	int r, i, index, rc;
6924 	unsigned long	flags;
6925 	u32 reply_address;
6926 	u16 smid;
6927 	struct _tr_list *delayed_tr, *delayed_tr_next;
6928 	struct _sc_list *delayed_sc, *delayed_sc_next;
6929 	struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
6930 	u8 hide_flag;
6931 	struct adapter_reply_queue *reply_q;
6932 	Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
6933 
6934 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6935 
6936 	/* clean the delayed target reset list */
6937 	list_for_each_entry_safe(delayed_tr, delayed_tr_next,
6938 	    &ioc->delayed_tr_list, list) {
6939 		list_del(&delayed_tr->list);
6940 		kfree(delayed_tr);
6941 	}
6942 
6943 
6944 	list_for_each_entry_safe(delayed_tr, delayed_tr_next,
6945 	    &ioc->delayed_tr_volume_list, list) {
6946 		list_del(&delayed_tr->list);
6947 		kfree(delayed_tr);
6948 	}
6949 
6950 	list_for_each_entry_safe(delayed_sc, delayed_sc_next,
6951 	    &ioc->delayed_sc_list, list) {
6952 		list_del(&delayed_sc->list);
6953 		kfree(delayed_sc);
6954 	}
6955 
6956 	list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
6957 	    &ioc->delayed_event_ack_list, list) {
6958 		list_del(&delayed_event_ack->list);
6959 		kfree(delayed_event_ack);
6960 	}
6961 
6962 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
6963 
6964 	/* hi-priority queue */
6965 	INIT_LIST_HEAD(&ioc->hpr_free_list);
6966 	smid = ioc->hi_priority_smid;
6967 	for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
6968 		ioc->hpr_lookup[i].cb_idx = 0xFF;
6969 		ioc->hpr_lookup[i].smid = smid;
6970 		list_add_tail(&ioc->hpr_lookup[i].tracker_list,
6971 		    &ioc->hpr_free_list);
6972 	}
6973 
6974 	/* internal queue */
6975 	INIT_LIST_HEAD(&ioc->internal_free_list);
6976 	smid = ioc->internal_smid;
6977 	for (i = 0; i < ioc->internal_depth; i++, smid++) {
6978 		ioc->internal_lookup[i].cb_idx = 0xFF;
6979 		ioc->internal_lookup[i].smid = smid;
6980 		list_add_tail(&ioc->internal_lookup[i].tracker_list,
6981 		    &ioc->internal_free_list);
6982 	}
6983 
6984 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
6985 
6986 	/* initialize Reply Free Queue */
6987 	for (i = 0, reply_address = (u32)ioc->reply_dma ;
6988 	    i < ioc->reply_free_queue_depth ; i++, reply_address +=
6989 	    ioc->reply_sz) {
6990 		ioc->reply_free[i] = cpu_to_le32(reply_address);
6991 		if (ioc->is_mcpu_endpoint)
6992 			_base_clone_reply_to_sys_mem(ioc,
6993 					reply_address, i);
6994 	}
6995 
6996 	/* initialize reply queues */
6997 	if (ioc->is_driver_loading)
6998 		_base_assign_reply_queues(ioc);
6999 
7000 	/* initialize Reply Post Free Queue */
7001 	index = 0;
7002 	reply_post_free_contig = ioc->reply_post[0].reply_post_free;
7003 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
7004 		/*
7005 		 * If RDPQ is enabled, switch to the next allocation.
7006 		 * Otherwise advance within the contiguous region.
7007 		 */
7008 		if (ioc->rdpq_array_enable) {
7009 			reply_q->reply_post_free =
7010 				ioc->reply_post[index++].reply_post_free;
7011 		} else {
7012 			reply_q->reply_post_free = reply_post_free_contig;
7013 			reply_post_free_contig += ioc->reply_post_queue_depth;
7014 		}
7015 
7016 		reply_q->reply_post_host_index = 0;
7017 		for (i = 0; i < ioc->reply_post_queue_depth; i++)
7018 			reply_q->reply_post_free[i].Words =
7019 			    cpu_to_le64(ULLONG_MAX);
7020 		if (!_base_is_controller_msix_enabled(ioc))
7021 			goto skip_init_reply_post_free_queue;
7022 	}
7023  skip_init_reply_post_free_queue:
7024 
7025 	r = _base_send_ioc_init(ioc);
7026 	if (r) {
7027 		/*
7028 		 * No need to check IOC state for fault state & issue
7029 		 * diag reset during host reset. This check is need
7030 		 * only during driver load time.
7031 		 */
7032 		if (!ioc->is_driver_loading)
7033 			return r;
7034 
7035 		rc = _base_check_for_fault_and_issue_reset(ioc);
7036 		if (rc || (_base_send_ioc_init(ioc)))
7037 			return r;
7038 	}
7039 
7040 	/* initialize reply free host index */
7041 	ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
7042 	writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
7043 
7044 	/* initialize reply post host index */
7045 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
7046 		if (ioc->combined_reply_queue)
7047 			writel((reply_q->msix_index & 7)<<
7048 			   MPI2_RPHI_MSIX_INDEX_SHIFT,
7049 			   ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
7050 		else
7051 			writel(reply_q->msix_index <<
7052 				MPI2_RPHI_MSIX_INDEX_SHIFT,
7053 				&ioc->chip->ReplyPostHostIndex);
7054 
7055 		if (!_base_is_controller_msix_enabled(ioc))
7056 			goto skip_init_reply_post_host_index;
7057 	}
7058 
7059  skip_init_reply_post_host_index:
7060 
7061 	_base_unmask_interrupts(ioc);
7062 
7063 	if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
7064 		r = _base_display_fwpkg_version(ioc);
7065 		if (r)
7066 			return r;
7067 	}
7068 
7069 	_base_static_config_pages(ioc);
7070 	r = _base_event_notification(ioc);
7071 	if (r)
7072 		return r;
7073 
7074 	if (ioc->is_driver_loading) {
7075 
7076 		if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
7077 		    == 0x80) {
7078 			hide_flag = (u8) (
7079 			    le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
7080 			    MFG_PAGE10_HIDE_SSDS_MASK);
7081 			if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
7082 				ioc->mfg_pg10_hide_flag = hide_flag;
7083 		}
7084 
7085 		ioc->wait_for_discovery_to_complete =
7086 		    _base_determine_wait_on_discovery(ioc);
7087 
7088 		return r; /* scan_start and scan_finished support */
7089 	}
7090 
7091 	r = _base_send_port_enable(ioc);
7092 	if (r)
7093 		return r;
7094 
7095 	return r;
7096 }
7097 
7098 /**
7099  * mpt3sas_base_free_resources - free resources controller resources
7100  * @ioc: per adapter object
7101  */
7102 void
7103 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
7104 {
7105 	dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7106 
7107 	/* synchronizing freeing resource with pci_access_mutex lock */
7108 	mutex_lock(&ioc->pci_access_mutex);
7109 	if (ioc->chip_phys && ioc->chip) {
7110 		_base_mask_interrupts(ioc);
7111 		ioc->shost_recovery = 1;
7112 		_base_make_ioc_ready(ioc, SOFT_RESET);
7113 		ioc->shost_recovery = 0;
7114 	}
7115 
7116 	mpt3sas_base_unmap_resources(ioc);
7117 	mutex_unlock(&ioc->pci_access_mutex);
7118 	return;
7119 }
7120 
7121 /**
7122  * mpt3sas_base_attach - attach controller instance
7123  * @ioc: per adapter object
7124  *
7125  * Return: 0 for success, non-zero for failure.
7126  */
7127 int
7128 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
7129 {
7130 	int r, i, rc;
7131 	int cpu_id, last_cpu_id = 0;
7132 
7133 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7134 
7135 	/* setup cpu_msix_table */
7136 	ioc->cpu_count = num_online_cpus();
7137 	for_each_online_cpu(cpu_id)
7138 		last_cpu_id = cpu_id;
7139 	ioc->cpu_msix_table_sz = last_cpu_id + 1;
7140 	ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
7141 	ioc->reply_queue_count = 1;
7142 	if (!ioc->cpu_msix_table) {
7143 		ioc_info(ioc, "Allocation for cpu_msix_table failed!!!\n");
7144 		r = -ENOMEM;
7145 		goto out_free_resources;
7146 	}
7147 
7148 	if (ioc->is_warpdrive) {
7149 		ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
7150 		    sizeof(resource_size_t *), GFP_KERNEL);
7151 		if (!ioc->reply_post_host_index) {
7152 			ioc_info(ioc, "Allocation for reply_post_host_index failed!!!\n");
7153 			r = -ENOMEM;
7154 			goto out_free_resources;
7155 		}
7156 	}
7157 
7158 	ioc->smp_affinity_enable = smp_affinity_enable;
7159 
7160 	ioc->rdpq_array_enable_assigned = 0;
7161 	ioc->dma_mask = 0;
7162 	if (ioc->is_aero_ioc)
7163 		ioc->base_readl = &_base_readl_aero;
7164 	else
7165 		ioc->base_readl = &_base_readl;
7166 	r = mpt3sas_base_map_resources(ioc);
7167 	if (r)
7168 		goto out_free_resources;
7169 
7170 	pci_set_drvdata(ioc->pdev, ioc->shost);
7171 	r = _base_get_ioc_facts(ioc);
7172 	if (r) {
7173 		rc = _base_check_for_fault_and_issue_reset(ioc);
7174 		if (rc || (_base_get_ioc_facts(ioc)))
7175 			goto out_free_resources;
7176 	}
7177 
7178 	switch (ioc->hba_mpi_version_belonged) {
7179 	case MPI2_VERSION:
7180 		ioc->build_sg_scmd = &_base_build_sg_scmd;
7181 		ioc->build_sg = &_base_build_sg;
7182 		ioc->build_zero_len_sge = &_base_build_zero_len_sge;
7183 		ioc->get_msix_index_for_smlio = &_base_get_msix_index;
7184 		break;
7185 	case MPI25_VERSION:
7186 	case MPI26_VERSION:
7187 		/*
7188 		 * In SAS3.0,
7189 		 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
7190 		 * Target Status - all require the IEEE formated scatter gather
7191 		 * elements.
7192 		 */
7193 		ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
7194 		ioc->build_sg = &_base_build_sg_ieee;
7195 		ioc->build_nvme_prp = &_base_build_nvme_prp;
7196 		ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
7197 		ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
7198 		if (ioc->high_iops_queues)
7199 			ioc->get_msix_index_for_smlio =
7200 					&_base_get_high_iops_msix_index;
7201 		else
7202 			ioc->get_msix_index_for_smlio = &_base_get_msix_index;
7203 		break;
7204 	}
7205 	if (ioc->atomic_desc_capable) {
7206 		ioc->put_smid_default = &_base_put_smid_default_atomic;
7207 		ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic;
7208 		ioc->put_smid_fast_path =
7209 				&_base_put_smid_fast_path_atomic;
7210 		ioc->put_smid_hi_priority =
7211 				&_base_put_smid_hi_priority_atomic;
7212 	} else {
7213 		ioc->put_smid_default = &_base_put_smid_default;
7214 		ioc->put_smid_fast_path = &_base_put_smid_fast_path;
7215 		ioc->put_smid_hi_priority = &_base_put_smid_hi_priority;
7216 		if (ioc->is_mcpu_endpoint)
7217 			ioc->put_smid_scsi_io =
7218 				&_base_put_smid_mpi_ep_scsi_io;
7219 		else
7220 			ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
7221 	}
7222 	/*
7223 	 * These function pointers for other requests that don't
7224 	 * the require IEEE scatter gather elements.
7225 	 *
7226 	 * For example Configuration Pages and SAS IOUNIT Control don't.
7227 	 */
7228 	ioc->build_sg_mpi = &_base_build_sg;
7229 	ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
7230 
7231 	r = _base_make_ioc_ready(ioc, SOFT_RESET);
7232 	if (r)
7233 		goto out_free_resources;
7234 
7235 	ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
7236 	    sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
7237 	if (!ioc->pfacts) {
7238 		r = -ENOMEM;
7239 		goto out_free_resources;
7240 	}
7241 
7242 	for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
7243 		r = _base_get_port_facts(ioc, i);
7244 		if (r) {
7245 			rc = _base_check_for_fault_and_issue_reset(ioc);
7246 			if (rc || (_base_get_port_facts(ioc, i)))
7247 				goto out_free_resources;
7248 		}
7249 	}
7250 
7251 	r = _base_allocate_memory_pools(ioc);
7252 	if (r)
7253 		goto out_free_resources;
7254 
7255 	if (irqpoll_weight > 0)
7256 		ioc->thresh_hold = irqpoll_weight;
7257 	else
7258 		ioc->thresh_hold = ioc->hba_queue_depth/4;
7259 
7260 	_base_init_irqpolls(ioc);
7261 	init_waitqueue_head(&ioc->reset_wq);
7262 
7263 	/* allocate memory pd handle bitmask list */
7264 	ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
7265 	if (ioc->facts.MaxDevHandle % 8)
7266 		ioc->pd_handles_sz++;
7267 	ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
7268 	    GFP_KERNEL);
7269 	if (!ioc->pd_handles) {
7270 		r = -ENOMEM;
7271 		goto out_free_resources;
7272 	}
7273 	ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
7274 	    GFP_KERNEL);
7275 	if (!ioc->blocking_handles) {
7276 		r = -ENOMEM;
7277 		goto out_free_resources;
7278 	}
7279 
7280 	/* allocate memory for pending OS device add list */
7281 	ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
7282 	if (ioc->facts.MaxDevHandle % 8)
7283 		ioc->pend_os_device_add_sz++;
7284 	ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
7285 	    GFP_KERNEL);
7286 	if (!ioc->pend_os_device_add)
7287 		goto out_free_resources;
7288 
7289 	ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
7290 	ioc->device_remove_in_progress =
7291 		kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
7292 	if (!ioc->device_remove_in_progress)
7293 		goto out_free_resources;
7294 
7295 	ioc->fwfault_debug = mpt3sas_fwfault_debug;
7296 
7297 	/* base internal command bits */
7298 	mutex_init(&ioc->base_cmds.mutex);
7299 	ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7300 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7301 
7302 	/* port_enable command bits */
7303 	ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7304 	ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
7305 
7306 	/* transport internal command bits */
7307 	ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7308 	ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
7309 	mutex_init(&ioc->transport_cmds.mutex);
7310 
7311 	/* scsih internal command bits */
7312 	ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7313 	ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
7314 	mutex_init(&ioc->scsih_cmds.mutex);
7315 
7316 	/* task management internal command bits */
7317 	ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7318 	ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
7319 	mutex_init(&ioc->tm_cmds.mutex);
7320 
7321 	/* config page internal command bits */
7322 	ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7323 	ioc->config_cmds.status = MPT3_CMD_NOT_USED;
7324 	mutex_init(&ioc->config_cmds.mutex);
7325 
7326 	/* ctl module internal command bits */
7327 	ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7328 	ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
7329 	ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
7330 	mutex_init(&ioc->ctl_cmds.mutex);
7331 
7332 	if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
7333 	    !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
7334 	    !ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
7335 	    !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) {
7336 		r = -ENOMEM;
7337 		goto out_free_resources;
7338 	}
7339 
7340 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
7341 		ioc->event_masks[i] = -1;
7342 
7343 	/* here we enable the events we care about */
7344 	_base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
7345 	_base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
7346 	_base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
7347 	_base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
7348 	_base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
7349 	_base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
7350 	_base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
7351 	_base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
7352 	_base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
7353 	_base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
7354 	_base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
7355 	_base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
7356 	_base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR);
7357 	if (ioc->hba_mpi_version_belonged == MPI26_VERSION) {
7358 		if (ioc->is_gen35_ioc) {
7359 			_base_unmask_events(ioc,
7360 				MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE);
7361 			_base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION);
7362 			_base_unmask_events(ioc,
7363 				MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
7364 		}
7365 	}
7366 	r = _base_make_ioc_operational(ioc);
7367 	if (r)
7368 		goto out_free_resources;
7369 
7370 	/*
7371 	 * Copy current copy of IOCFacts in prev_fw_facts
7372 	 * and it will be used during online firmware upgrade.
7373 	 */
7374 	memcpy(&ioc->prev_fw_facts, &ioc->facts,
7375 	    sizeof(struct mpt3sas_facts));
7376 
7377 	ioc->non_operational_loop = 0;
7378 	ioc->ioc_coredump_loop = 0;
7379 	ioc->got_task_abort_from_ioctl = 0;
7380 	return 0;
7381 
7382  out_free_resources:
7383 
7384 	ioc->remove_host = 1;
7385 
7386 	mpt3sas_base_free_resources(ioc);
7387 	_base_release_memory_pools(ioc);
7388 	pci_set_drvdata(ioc->pdev, NULL);
7389 	kfree(ioc->cpu_msix_table);
7390 	if (ioc->is_warpdrive)
7391 		kfree(ioc->reply_post_host_index);
7392 	kfree(ioc->pd_handles);
7393 	kfree(ioc->blocking_handles);
7394 	kfree(ioc->device_remove_in_progress);
7395 	kfree(ioc->pend_os_device_add);
7396 	kfree(ioc->tm_cmds.reply);
7397 	kfree(ioc->transport_cmds.reply);
7398 	kfree(ioc->scsih_cmds.reply);
7399 	kfree(ioc->config_cmds.reply);
7400 	kfree(ioc->base_cmds.reply);
7401 	kfree(ioc->port_enable_cmds.reply);
7402 	kfree(ioc->ctl_cmds.reply);
7403 	kfree(ioc->ctl_cmds.sense);
7404 	kfree(ioc->pfacts);
7405 	ioc->ctl_cmds.reply = NULL;
7406 	ioc->base_cmds.reply = NULL;
7407 	ioc->tm_cmds.reply = NULL;
7408 	ioc->scsih_cmds.reply = NULL;
7409 	ioc->transport_cmds.reply = NULL;
7410 	ioc->config_cmds.reply = NULL;
7411 	ioc->pfacts = NULL;
7412 	return r;
7413 }
7414 
7415 
7416 /**
7417  * mpt3sas_base_detach - remove controller instance
7418  * @ioc: per adapter object
7419  */
7420 void
7421 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
7422 {
7423 	dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7424 
7425 	mpt3sas_base_stop_watchdog(ioc);
7426 	mpt3sas_base_free_resources(ioc);
7427 	_base_release_memory_pools(ioc);
7428 	mpt3sas_free_enclosure_list(ioc);
7429 	pci_set_drvdata(ioc->pdev, NULL);
7430 	kfree(ioc->cpu_msix_table);
7431 	if (ioc->is_warpdrive)
7432 		kfree(ioc->reply_post_host_index);
7433 	kfree(ioc->pd_handles);
7434 	kfree(ioc->blocking_handles);
7435 	kfree(ioc->device_remove_in_progress);
7436 	kfree(ioc->pend_os_device_add);
7437 	kfree(ioc->pfacts);
7438 	kfree(ioc->ctl_cmds.reply);
7439 	kfree(ioc->ctl_cmds.sense);
7440 	kfree(ioc->base_cmds.reply);
7441 	kfree(ioc->port_enable_cmds.reply);
7442 	kfree(ioc->tm_cmds.reply);
7443 	kfree(ioc->transport_cmds.reply);
7444 	kfree(ioc->scsih_cmds.reply);
7445 	kfree(ioc->config_cmds.reply);
7446 }
7447 
7448 /**
7449  * _base_pre_reset_handler - pre reset handler
7450  * @ioc: per adapter object
7451  */
7452 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc)
7453 {
7454 	mpt3sas_scsih_pre_reset_handler(ioc);
7455 	mpt3sas_ctl_pre_reset_handler(ioc);
7456 	dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__));
7457 }
7458 
7459 /**
7460  * _base_clear_outstanding_mpt_commands - clears outstanding mpt commands
7461  * @ioc: per adapter object
7462  */
7463 static void
7464 _base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER *ioc)
7465 {
7466 	dtmprintk(ioc,
7467 	    ioc_info(ioc, "%s: clear outstanding mpt cmds\n", __func__));
7468 	if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
7469 		ioc->transport_cmds.status |= MPT3_CMD_RESET;
7470 		mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
7471 		complete(&ioc->transport_cmds.done);
7472 	}
7473 	if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
7474 		ioc->base_cmds.status |= MPT3_CMD_RESET;
7475 		mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
7476 		complete(&ioc->base_cmds.done);
7477 	}
7478 	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7479 		ioc->port_enable_failed = 1;
7480 		ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
7481 		mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
7482 		if (ioc->is_driver_loading) {
7483 			ioc->start_scan_failed =
7484 				MPI2_IOCSTATUS_INTERNAL_ERROR;
7485 			ioc->start_scan = 0;
7486 			ioc->port_enable_cmds.status =
7487 				MPT3_CMD_NOT_USED;
7488 		} else {
7489 			complete(&ioc->port_enable_cmds.done);
7490 		}
7491 	}
7492 	if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
7493 		ioc->config_cmds.status |= MPT3_CMD_RESET;
7494 		mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
7495 		ioc->config_cmds.smid = USHRT_MAX;
7496 		complete(&ioc->config_cmds.done);
7497 	}
7498 }
7499 
7500 /**
7501  * _base_clear_outstanding_commands - clear all outstanding commands
7502  * @ioc: per adapter object
7503  */
7504 static void _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc)
7505 {
7506 	mpt3sas_scsih_clear_outstanding_scsi_tm_commands(ioc);
7507 	mpt3sas_ctl_clear_outstanding_ioctls(ioc);
7508 	_base_clear_outstanding_mpt_commands(ioc);
7509 }
7510 
7511 /**
7512  * _base_reset_done_handler - reset done handler
7513  * @ioc: per adapter object
7514  */
7515 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc)
7516 {
7517 	mpt3sas_scsih_reset_done_handler(ioc);
7518 	mpt3sas_ctl_reset_done_handler(ioc);
7519 	dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__));
7520 }
7521 
7522 /**
7523  * mpt3sas_wait_for_commands_to_complete - reset controller
7524  * @ioc: Pointer to MPT_ADAPTER structure
7525  *
7526  * This function is waiting 10s for all pending commands to complete
7527  * prior to putting controller in reset.
7528  */
7529 void
7530 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
7531 {
7532 	u32 ioc_state;
7533 
7534 	ioc->pending_io_count = 0;
7535 
7536 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7537 	if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
7538 		return;
7539 
7540 	/* pending command count */
7541 	ioc->pending_io_count = scsi_host_busy(ioc->shost);
7542 
7543 	if (!ioc->pending_io_count)
7544 		return;
7545 
7546 	/* wait for pending commands to complete */
7547 	wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
7548 }
7549 
7550 /**
7551  * _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts
7552  *     attributes during online firmware upgrade and update the corresponding
7553  *     IOC variables accordingly.
7554  *
7555  * @ioc: Pointer to MPT_ADAPTER structure
7556  */
7557 static int
7558 _base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc)
7559 {
7560 	u16 pd_handles_sz;
7561 	void *pd_handles = NULL, *blocking_handles = NULL;
7562 	void *pend_os_device_add = NULL, *device_remove_in_progress = NULL;
7563 	struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts;
7564 
7565 	if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle) {
7566 		pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
7567 		if (ioc->facts.MaxDevHandle % 8)
7568 			pd_handles_sz++;
7569 
7570 		pd_handles = krealloc(ioc->pd_handles, pd_handles_sz,
7571 		    GFP_KERNEL);
7572 		if (!pd_handles) {
7573 			ioc_info(ioc,
7574 			    "Unable to allocate the memory for pd_handles of sz: %d\n",
7575 			    pd_handles_sz);
7576 			return -ENOMEM;
7577 		}
7578 		memset(pd_handles + ioc->pd_handles_sz, 0,
7579 		    (pd_handles_sz - ioc->pd_handles_sz));
7580 		ioc->pd_handles = pd_handles;
7581 
7582 		blocking_handles = krealloc(ioc->blocking_handles,
7583 		    pd_handles_sz, GFP_KERNEL);
7584 		if (!blocking_handles) {
7585 			ioc_info(ioc,
7586 			    "Unable to allocate the memory for "
7587 			    "blocking_handles of sz: %d\n",
7588 			    pd_handles_sz);
7589 			return -ENOMEM;
7590 		}
7591 		memset(blocking_handles + ioc->pd_handles_sz, 0,
7592 		    (pd_handles_sz - ioc->pd_handles_sz));
7593 		ioc->blocking_handles = blocking_handles;
7594 		ioc->pd_handles_sz = pd_handles_sz;
7595 
7596 		pend_os_device_add = krealloc(ioc->pend_os_device_add,
7597 		    pd_handles_sz, GFP_KERNEL);
7598 		if (!pend_os_device_add) {
7599 			ioc_info(ioc,
7600 			    "Unable to allocate the memory for pend_os_device_add of sz: %d\n",
7601 			    pd_handles_sz);
7602 			return -ENOMEM;
7603 		}
7604 		memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0,
7605 		    (pd_handles_sz - ioc->pend_os_device_add_sz));
7606 		ioc->pend_os_device_add = pend_os_device_add;
7607 		ioc->pend_os_device_add_sz = pd_handles_sz;
7608 
7609 		device_remove_in_progress = krealloc(
7610 		    ioc->device_remove_in_progress, pd_handles_sz, GFP_KERNEL);
7611 		if (!device_remove_in_progress) {
7612 			ioc_info(ioc,
7613 			    "Unable to allocate the memory for "
7614 			    "device_remove_in_progress of sz: %d\n "
7615 			    , pd_handles_sz);
7616 			return -ENOMEM;
7617 		}
7618 		memset(device_remove_in_progress +
7619 		    ioc->device_remove_in_progress_sz, 0,
7620 		    (pd_handles_sz - ioc->device_remove_in_progress_sz));
7621 		ioc->device_remove_in_progress = device_remove_in_progress;
7622 		ioc->device_remove_in_progress_sz = pd_handles_sz;
7623 	}
7624 
7625 	memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts));
7626 	return 0;
7627 }
7628 
7629 /**
7630  * mpt3sas_base_hard_reset_handler - reset controller
7631  * @ioc: Pointer to MPT_ADAPTER structure
7632  * @type: FORCE_BIG_HAMMER or SOFT_RESET
7633  *
7634  * Return: 0 for success, non-zero for failure.
7635  */
7636 int
7637 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
7638 	enum reset_type type)
7639 {
7640 	int r;
7641 	unsigned long flags;
7642 	u32 ioc_state;
7643 	u8 is_fault = 0, is_trigger = 0;
7644 
7645 	dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__));
7646 
7647 	if (ioc->pci_error_recovery) {
7648 		ioc_err(ioc, "%s: pci error recovery reset\n", __func__);
7649 		r = 0;
7650 		goto out_unlocked;
7651 	}
7652 
7653 	if (mpt3sas_fwfault_debug)
7654 		mpt3sas_halt_firmware(ioc);
7655 
7656 	/* wait for an active reset in progress to complete */
7657 	mutex_lock(&ioc->reset_in_progress_mutex);
7658 
7659 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
7660 	ioc->shost_recovery = 1;
7661 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
7662 
7663 	if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
7664 	    MPT3_DIAG_BUFFER_IS_REGISTERED) &&
7665 	    (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
7666 	    MPT3_DIAG_BUFFER_IS_RELEASED))) {
7667 		is_trigger = 1;
7668 		ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7669 		if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT ||
7670 		    (ioc_state & MPI2_IOC_STATE_MASK) ==
7671 		    MPI2_IOC_STATE_COREDUMP)
7672 			is_fault = 1;
7673 	}
7674 	_base_pre_reset_handler(ioc);
7675 	mpt3sas_wait_for_commands_to_complete(ioc);
7676 	_base_mask_interrupts(ioc);
7677 	r = _base_make_ioc_ready(ioc, type);
7678 	if (r)
7679 		goto out;
7680 	_base_clear_outstanding_commands(ioc);
7681 
7682 	/* If this hard reset is called while port enable is active, then
7683 	 * there is no reason to call make_ioc_operational
7684 	 */
7685 	if (ioc->is_driver_loading && ioc->port_enable_failed) {
7686 		ioc->remove_host = 1;
7687 		r = -EFAULT;
7688 		goto out;
7689 	}
7690 	r = _base_get_ioc_facts(ioc);
7691 	if (r)
7692 		goto out;
7693 
7694 	r = _base_check_ioc_facts_changes(ioc);
7695 	if (r) {
7696 		ioc_info(ioc,
7697 		    "Some of the parameters got changed in this new firmware"
7698 		    " image and it requires system reboot\n");
7699 		goto out;
7700 	}
7701 	if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
7702 		panic("%s: Issue occurred with flashing controller firmware."
7703 		      "Please reboot the system and ensure that the correct"
7704 		      " firmware version is running\n", ioc->name);
7705 
7706 	r = _base_make_ioc_operational(ioc);
7707 	if (!r)
7708 		_base_reset_done_handler(ioc);
7709 
7710  out:
7711 	ioc_info(ioc, "%s: %s\n", __func__, r == 0 ? "SUCCESS" : "FAILED");
7712 
7713 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
7714 	ioc->shost_recovery = 0;
7715 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
7716 	ioc->ioc_reset_count++;
7717 	mutex_unlock(&ioc->reset_in_progress_mutex);
7718 
7719  out_unlocked:
7720 	if ((r == 0) && is_trigger) {
7721 		if (is_fault)
7722 			mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
7723 		else
7724 			mpt3sas_trigger_master(ioc,
7725 			    MASTER_TRIGGER_ADAPTER_RESET);
7726 	}
7727 	dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__));
7728 	return r;
7729 }
7730