1 /* 2 * This is the Fusion MPT base driver providing common API layer interface 3 * for access to MPT (Message Passing Technology) firmware. 4 * 5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c 6 * Copyright (C) 2012-2014 LSI Corporation 7 * Copyright (C) 2013-2014 Avago Technologies 8 * (mailto: MPT-FusionLinux.pdl@avagotech.com) 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License 12 * as published by the Free Software Foundation; either version 2 13 * of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * NO WARRANTY 21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR 22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT 23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, 24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is 25 * solely responsible for determining the appropriateness of using and 26 * distributing the Program and assumes all risks associated with its 27 * exercise of rights under this Agreement, including but not limited to 28 * the risks and costs of program errors, damage to or loss of data, 29 * programs or equipment, and unavailability or interruption of operations. 30 31 * DISCLAIMER OF LIABILITY 32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY 33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND 35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED 38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES 39 40 * You should have received a copy of the GNU General Public License 41 * along with this program; if not, write to the Free Software 42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, 43 * USA. 44 */ 45 46 #include <linux/kernel.h> 47 #include <linux/module.h> 48 #include <linux/errno.h> 49 #include <linux/init.h> 50 #include <linux/slab.h> 51 #include <linux/types.h> 52 #include <linux/pci.h> 53 #include <linux/kdev_t.h> 54 #include <linux/blkdev.h> 55 #include <linux/delay.h> 56 #include <linux/interrupt.h> 57 #include <linux/dma-mapping.h> 58 #include <linux/io.h> 59 #include <linux/time.h> 60 #include <linux/ktime.h> 61 #include <linux/kthread.h> 62 #include <asm/page.h> /* To get host page size per arch */ 63 #include <linux/aer.h> 64 65 66 #include "mpt3sas_base.h" 67 68 static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS]; 69 70 71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */ 72 73 /* maximum controller queue depth */ 74 #define MAX_HBA_QUEUE_DEPTH 30000 75 #define MAX_CHAIN_DEPTH 100000 76 static int max_queue_depth = -1; 77 module_param(max_queue_depth, int, 0444); 78 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth "); 79 80 static int max_sgl_entries = -1; 81 module_param(max_sgl_entries, int, 0444); 82 MODULE_PARM_DESC(max_sgl_entries, " max sg entries "); 83 84 static int msix_disable = -1; 85 module_param(msix_disable, int, 0444); 86 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)"); 87 88 static int smp_affinity_enable = 1; 89 module_param(smp_affinity_enable, int, 0444); 90 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)"); 91 92 static int max_msix_vectors = -1; 93 module_param(max_msix_vectors, int, 0444); 94 MODULE_PARM_DESC(max_msix_vectors, 95 " max msix vectors"); 96 97 static int irqpoll_weight = -1; 98 module_param(irqpoll_weight, int, 0444); 99 MODULE_PARM_DESC(irqpoll_weight, 100 "irq poll weight (default= one fourth of HBA queue depth)"); 101 102 static int mpt3sas_fwfault_debug; 103 MODULE_PARM_DESC(mpt3sas_fwfault_debug, 104 " enable detection of firmware fault and halt firmware - (default=0)"); 105 106 static int perf_mode = -1; 107 module_param(perf_mode, int, 0444); 108 MODULE_PARM_DESC(perf_mode, 109 "Performance mode (only for Aero/Sea Generation), options:\n\t\t" 110 "0 - balanced: high iops mode is enabled &\n\t\t" 111 "interrupt coalescing is enabled only on high iops queues,\n\t\t" 112 "1 - iops: high iops mode is disabled &\n\t\t" 113 "interrupt coalescing is enabled on all queues,\n\t\t" 114 "2 - latency: high iops mode is disabled &\n\t\t" 115 "interrupt coalescing is enabled on all queues with timeout value 0xA,\n" 116 "\t\tdefault - default perf_mode is 'balanced'" 117 ); 118 119 enum mpt3sas_perf_mode { 120 MPT_PERF_MODE_DEFAULT = -1, 121 MPT_PERF_MODE_BALANCED = 0, 122 MPT_PERF_MODE_IOPS = 1, 123 MPT_PERF_MODE_LATENCY = 2, 124 }; 125 126 static int 127 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, 128 u32 ioc_state, int timeout); 129 static int 130 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc); 131 static void 132 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc); 133 static void 134 _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc); 135 136 /** 137 * mpt3sas_base_check_cmd_timeout - Function 138 * to check timeout and command termination due 139 * to Host reset. 140 * 141 * @ioc: per adapter object. 142 * @status: Status of issued command. 143 * @mpi_request:mf request pointer. 144 * @sz: size of buffer. 145 * 146 * @Returns - 1/0 Reset to be done or Not 147 */ 148 u8 149 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc, 150 u8 status, void *mpi_request, int sz) 151 { 152 u8 issue_reset = 0; 153 154 if (!(status & MPT3_CMD_RESET)) 155 issue_reset = 1; 156 157 ioc_err(ioc, "Command %s\n", 158 issue_reset == 0 ? "terminated due to Host Reset" : "Timeout"); 159 _debug_dump_mf(mpi_request, sz); 160 161 return issue_reset; 162 } 163 164 /** 165 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug. 166 * @val: ? 167 * @kp: ? 168 * 169 * Return: ? 170 */ 171 static int 172 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp) 173 { 174 int ret = param_set_int(val, kp); 175 struct MPT3SAS_ADAPTER *ioc; 176 177 if (ret) 178 return ret; 179 180 /* global ioc spinlock to protect controller list on list operations */ 181 pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug); 182 spin_lock(&gioc_lock); 183 list_for_each_entry(ioc, &mpt3sas_ioc_list, list) 184 ioc->fwfault_debug = mpt3sas_fwfault_debug; 185 spin_unlock(&gioc_lock); 186 return 0; 187 } 188 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug, 189 param_get_int, &mpt3sas_fwfault_debug, 0644); 190 191 /** 192 * _base_readl_aero - retry readl for max three times. 193 * @addr - MPT Fusion system interface register address 194 * 195 * Retry the readl() for max three times if it gets zero value 196 * while reading the system interface register. 197 */ 198 static inline u32 199 _base_readl_aero(const volatile void __iomem *addr) 200 { 201 u32 i = 0, ret_val; 202 203 do { 204 ret_val = readl(addr); 205 i++; 206 } while (ret_val == 0 && i < 3); 207 208 return ret_val; 209 } 210 211 static inline u32 212 _base_readl(const volatile void __iomem *addr) 213 { 214 return readl(addr); 215 } 216 217 /** 218 * _base_clone_reply_to_sys_mem - copies reply to reply free iomem 219 * in BAR0 space. 220 * 221 * @ioc: per adapter object 222 * @reply: reply message frame(lower 32bit addr) 223 * @index: System request message index. 224 */ 225 static void 226 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply, 227 u32 index) 228 { 229 /* 230 * 256 is offset within sys register. 231 * 256 offset MPI frame starts. Max MPI frame supported is 32. 232 * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts 233 */ 234 u16 cmd_credit = ioc->facts.RequestCredit + 1; 235 void __iomem *reply_free_iomem = (void __iomem *)ioc->chip + 236 MPI_FRAME_START_OFFSET + 237 (cmd_credit * ioc->request_sz) + (index * sizeof(u32)); 238 239 writel(reply, reply_free_iomem); 240 } 241 242 /** 243 * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames 244 * to system/BAR0 region. 245 * 246 * @dst_iomem: Pointer to the destination location in BAR0 space. 247 * @src: Pointer to the Source data. 248 * @size: Size of data to be copied. 249 */ 250 static void 251 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size) 252 { 253 int i; 254 u32 *src_virt_mem = (u32 *)src; 255 256 for (i = 0; i < size/4; i++) 257 writel((u32)src_virt_mem[i], 258 (void __iomem *)dst_iomem + (i * 4)); 259 } 260 261 /** 262 * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region 263 * 264 * @dst_iomem: Pointer to the destination location in BAR0 space. 265 * @src: Pointer to the Source data. 266 * @size: Size of data to be copied. 267 */ 268 static void 269 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size) 270 { 271 int i; 272 u32 *src_virt_mem = (u32 *)(src); 273 274 for (i = 0; i < size/4; i++) 275 writel((u32)src_virt_mem[i], 276 (void __iomem *)dst_iomem + (i * 4)); 277 } 278 279 /** 280 * _base_get_chain - Calculates and Returns virtual chain address 281 * for the provided smid in BAR0 space. 282 * 283 * @ioc: per adapter object 284 * @smid: system request message index 285 * @sge_chain_count: Scatter gather chain count. 286 * 287 * Return: the chain address. 288 */ 289 static inline void __iomem* 290 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid, 291 u8 sge_chain_count) 292 { 293 void __iomem *base_chain, *chain_virt; 294 u16 cmd_credit = ioc->facts.RequestCredit + 1; 295 296 base_chain = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET + 297 (cmd_credit * ioc->request_sz) + 298 REPLY_FREE_POOL_SIZE; 299 chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth * 300 ioc->request_sz) + (sge_chain_count * ioc->request_sz); 301 return chain_virt; 302 } 303 304 /** 305 * _base_get_chain_phys - Calculates and Returns physical address 306 * in BAR0 for scatter gather chains, for 307 * the provided smid. 308 * 309 * @ioc: per adapter object 310 * @smid: system request message index 311 * @sge_chain_count: Scatter gather chain count. 312 * 313 * Return: Physical chain address. 314 */ 315 static inline phys_addr_t 316 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid, 317 u8 sge_chain_count) 318 { 319 phys_addr_t base_chain_phys, chain_phys; 320 u16 cmd_credit = ioc->facts.RequestCredit + 1; 321 322 base_chain_phys = ioc->chip_phys + MPI_FRAME_START_OFFSET + 323 (cmd_credit * ioc->request_sz) + 324 REPLY_FREE_POOL_SIZE; 325 chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth * 326 ioc->request_sz) + (sge_chain_count * ioc->request_sz); 327 return chain_phys; 328 } 329 330 /** 331 * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host 332 * buffer address for the provided smid. 333 * (Each smid can have 64K starts from 17024) 334 * 335 * @ioc: per adapter object 336 * @smid: system request message index 337 * 338 * Return: Pointer to buffer location in BAR0. 339 */ 340 341 static void __iomem * 342 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid) 343 { 344 u16 cmd_credit = ioc->facts.RequestCredit + 1; 345 // Added extra 1 to reach end of chain. 346 void __iomem *chain_end = _base_get_chain(ioc, 347 cmd_credit + 1, 348 ioc->facts.MaxChainDepth); 349 return chain_end + (smid * 64 * 1024); 350 } 351 352 /** 353 * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped 354 * Host buffer Physical address for the provided smid. 355 * (Each smid can have 64K starts from 17024) 356 * 357 * @ioc: per adapter object 358 * @smid: system request message index 359 * 360 * Return: Pointer to buffer location in BAR0. 361 */ 362 static phys_addr_t 363 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid) 364 { 365 u16 cmd_credit = ioc->facts.RequestCredit + 1; 366 phys_addr_t chain_end_phys = _base_get_chain_phys(ioc, 367 cmd_credit + 1, 368 ioc->facts.MaxChainDepth); 369 return chain_end_phys + (smid * 64 * 1024); 370 } 371 372 /** 373 * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain 374 * lookup list and Provides chain_buffer 375 * address for the matching dma address. 376 * (Each smid can have 64K starts from 17024) 377 * 378 * @ioc: per adapter object 379 * @chain_buffer_dma: Chain buffer dma address. 380 * 381 * Return: Pointer to chain buffer. Or Null on Failure. 382 */ 383 static void * 384 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc, 385 dma_addr_t chain_buffer_dma) 386 { 387 u16 index, j; 388 struct chain_tracker *ct; 389 390 for (index = 0; index < ioc->scsiio_depth; index++) { 391 for (j = 0; j < ioc->chains_needed_per_io; j++) { 392 ct = &ioc->chain_lookup[index].chains_per_smid[j]; 393 if (ct && ct->chain_buffer_dma == chain_buffer_dma) 394 return ct->chain_buffer; 395 } 396 } 397 ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n"); 398 return NULL; 399 } 400 401 /** 402 * _clone_sg_entries - MPI EP's scsiio and config requests 403 * are handled here. Base function for 404 * double buffering, before submitting 405 * the requests. 406 * 407 * @ioc: per adapter object. 408 * @mpi_request: mf request pointer. 409 * @smid: system request message index. 410 */ 411 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc, 412 void *mpi_request, u16 smid) 413 { 414 Mpi2SGESimple32_t *sgel, *sgel_next; 415 u32 sgl_flags, sge_chain_count = 0; 416 bool is_write = 0; 417 u16 i = 0; 418 void __iomem *buffer_iomem; 419 phys_addr_t buffer_iomem_phys; 420 void __iomem *buff_ptr; 421 phys_addr_t buff_ptr_phys; 422 void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO]; 423 void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO]; 424 phys_addr_t dst_addr_phys; 425 MPI2RequestHeader_t *request_hdr; 426 struct scsi_cmnd *scmd; 427 struct scatterlist *sg_scmd = NULL; 428 int is_scsiio_req = 0; 429 430 request_hdr = (MPI2RequestHeader_t *) mpi_request; 431 432 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) { 433 Mpi25SCSIIORequest_t *scsiio_request = 434 (Mpi25SCSIIORequest_t *)mpi_request; 435 sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL; 436 is_scsiio_req = 1; 437 } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) { 438 Mpi2ConfigRequest_t *config_req = 439 (Mpi2ConfigRequest_t *)mpi_request; 440 sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE; 441 } else 442 return; 443 444 /* From smid we can get scsi_cmd, once we have sg_scmd, 445 * we just need to get sg_virt and sg_next to get virual 446 * address associated with sgel->Address. 447 */ 448 449 if (is_scsiio_req) { 450 /* Get scsi_cmd using smid */ 451 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid); 452 if (scmd == NULL) { 453 ioc_err(ioc, "scmd is NULL\n"); 454 return; 455 } 456 457 /* Get sg_scmd from scmd provided */ 458 sg_scmd = scsi_sglist(scmd); 459 } 460 461 /* 462 * 0 - 255 System register 463 * 256 - 4352 MPI Frame. (This is based on maxCredit 32) 464 * 4352 - 4864 Reply_free pool (512 byte is reserved 465 * considering maxCredit 32. Reply need extra 466 * room, for mCPU case kept four times of 467 * maxCredit). 468 * 4864 - 17152 SGE chain element. (32cmd * 3 chain of 469 * 128 byte size = 12288) 470 * 17152 - x Host buffer mapped with smid. 471 * (Each smid can have 64K Max IO.) 472 * BAR0+Last 1K MSIX Addr and Data 473 * Total size in use 2113664 bytes of 4MB BAR0 474 */ 475 476 buffer_iomem = _base_get_buffer_bar0(ioc, smid); 477 buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid); 478 479 buff_ptr = buffer_iomem; 480 buff_ptr_phys = buffer_iomem_phys; 481 WARN_ON(buff_ptr_phys > U32_MAX); 482 483 if (le32_to_cpu(sgel->FlagsLength) & 484 (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT)) 485 is_write = 1; 486 487 for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) { 488 489 sgl_flags = 490 (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT); 491 492 switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) { 493 case MPI2_SGE_FLAGS_CHAIN_ELEMENT: 494 /* 495 * Helper function which on passing 496 * chain_buffer_dma returns chain_buffer. Get 497 * the virtual address for sgel->Address 498 */ 499 sgel_next = 500 _base_get_chain_buffer_dma_to_chain_buffer(ioc, 501 le32_to_cpu(sgel->Address)); 502 if (sgel_next == NULL) 503 return; 504 /* 505 * This is coping 128 byte chain 506 * frame (not a host buffer) 507 */ 508 dst_chain_addr[sge_chain_count] = 509 _base_get_chain(ioc, 510 smid, sge_chain_count); 511 src_chain_addr[sge_chain_count] = 512 (void *) sgel_next; 513 dst_addr_phys = _base_get_chain_phys(ioc, 514 smid, sge_chain_count); 515 WARN_ON(dst_addr_phys > U32_MAX); 516 sgel->Address = 517 cpu_to_le32(lower_32_bits(dst_addr_phys)); 518 sgel = sgel_next; 519 sge_chain_count++; 520 break; 521 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT: 522 if (is_write) { 523 if (is_scsiio_req) { 524 _base_clone_to_sys_mem(buff_ptr, 525 sg_virt(sg_scmd), 526 (le32_to_cpu(sgel->FlagsLength) & 527 0x00ffffff)); 528 /* 529 * FIXME: this relies on a a zero 530 * PCI mem_offset. 531 */ 532 sgel->Address = 533 cpu_to_le32((u32)buff_ptr_phys); 534 } else { 535 _base_clone_to_sys_mem(buff_ptr, 536 ioc->config_vaddr, 537 (le32_to_cpu(sgel->FlagsLength) & 538 0x00ffffff)); 539 sgel->Address = 540 cpu_to_le32((u32)buff_ptr_phys); 541 } 542 } 543 buff_ptr += (le32_to_cpu(sgel->FlagsLength) & 544 0x00ffffff); 545 buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) & 546 0x00ffffff); 547 if ((le32_to_cpu(sgel->FlagsLength) & 548 (MPI2_SGE_FLAGS_END_OF_BUFFER 549 << MPI2_SGE_FLAGS_SHIFT))) 550 goto eob_clone_chain; 551 else { 552 /* 553 * Every single element in MPT will have 554 * associated sg_next. Better to sanity that 555 * sg_next is not NULL, but it will be a bug 556 * if it is null. 557 */ 558 if (is_scsiio_req) { 559 sg_scmd = sg_next(sg_scmd); 560 if (sg_scmd) 561 sgel++; 562 else 563 goto eob_clone_chain; 564 } 565 } 566 break; 567 } 568 } 569 570 eob_clone_chain: 571 for (i = 0; i < sge_chain_count; i++) { 572 if (is_scsiio_req) 573 _base_clone_to_sys_mem(dst_chain_addr[i], 574 src_chain_addr[i], ioc->request_sz); 575 } 576 } 577 578 /** 579 * mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc 580 * @arg: input argument, used to derive ioc 581 * 582 * Return: 583 * 0 if controller is removed from pci subsystem. 584 * -1 for other case. 585 */ 586 static int mpt3sas_remove_dead_ioc_func(void *arg) 587 { 588 struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg; 589 struct pci_dev *pdev; 590 591 if (!ioc) 592 return -1; 593 594 pdev = ioc->pdev; 595 if (!pdev) 596 return -1; 597 pci_stop_and_remove_bus_device_locked(pdev); 598 return 0; 599 } 600 601 /** 602 * _base_fault_reset_work - workq handling ioc fault conditions 603 * @work: input argument, used to derive ioc 604 * 605 * Context: sleep. 606 */ 607 static void 608 _base_fault_reset_work(struct work_struct *work) 609 { 610 struct MPT3SAS_ADAPTER *ioc = 611 container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work); 612 unsigned long flags; 613 u32 doorbell; 614 int rc; 615 struct task_struct *p; 616 617 618 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 619 if ((ioc->shost_recovery && (ioc->ioc_coredump_loop == 0)) || 620 ioc->pci_error_recovery) 621 goto rearm_timer; 622 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 623 624 doorbell = mpt3sas_base_get_iocstate(ioc, 0); 625 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) { 626 ioc_err(ioc, "SAS host is non-operational !!!!\n"); 627 628 /* It may be possible that EEH recovery can resolve some of 629 * pci bus failure issues rather removing the dead ioc function 630 * by considering controller is in a non-operational state. So 631 * here priority is given to the EEH recovery. If it doesn't 632 * not resolve this issue, mpt3sas driver will consider this 633 * controller to non-operational state and remove the dead ioc 634 * function. 635 */ 636 if (ioc->non_operational_loop++ < 5) { 637 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, 638 flags); 639 goto rearm_timer; 640 } 641 642 /* 643 * Call _scsih_flush_pending_cmds callback so that we flush all 644 * pending commands back to OS. This call is required to aovid 645 * deadlock at block layer. Dead IOC will fail to do diag reset, 646 * and this call is safe since dead ioc will never return any 647 * command back from HW. 648 */ 649 ioc->schedule_dead_ioc_flush_running_cmds(ioc); 650 /* 651 * Set remove_host flag early since kernel thread will 652 * take some time to execute. 653 */ 654 ioc->remove_host = 1; 655 /*Remove the Dead Host */ 656 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc, 657 "%s_dead_ioc_%d", ioc->driver_name, ioc->id); 658 if (IS_ERR(p)) 659 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n", 660 __func__); 661 else 662 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n", 663 __func__); 664 return; /* don't rearm timer */ 665 } 666 667 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) { 668 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ? 669 ioc->manu_pg11.CoreDumpTOSec : 670 MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS; 671 672 timeout /= (FAULT_POLLING_INTERVAL/1000); 673 674 if (ioc->ioc_coredump_loop == 0) { 675 mpt3sas_print_coredump_info(ioc, 676 doorbell & MPI2_DOORBELL_DATA_MASK); 677 /* do not accept any IOs and disable the interrupts */ 678 spin_lock_irqsave( 679 &ioc->ioc_reset_in_progress_lock, flags); 680 ioc->shost_recovery = 1; 681 spin_unlock_irqrestore( 682 &ioc->ioc_reset_in_progress_lock, flags); 683 _base_mask_interrupts(ioc); 684 _base_clear_outstanding_commands(ioc); 685 } 686 687 ioc_info(ioc, "%s: CoreDump loop %d.", 688 __func__, ioc->ioc_coredump_loop); 689 690 /* Wait until CoreDump completes or times out */ 691 if (ioc->ioc_coredump_loop++ < timeout) { 692 spin_lock_irqsave( 693 &ioc->ioc_reset_in_progress_lock, flags); 694 goto rearm_timer; 695 } 696 } 697 698 if (ioc->ioc_coredump_loop) { 699 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_COREDUMP) 700 ioc_err(ioc, "%s: CoreDump completed. LoopCount: %d", 701 __func__, ioc->ioc_coredump_loop); 702 else 703 ioc_err(ioc, "%s: CoreDump Timed out. LoopCount: %d", 704 __func__, ioc->ioc_coredump_loop); 705 ioc->ioc_coredump_loop = MPT3SAS_COREDUMP_LOOP_DONE; 706 } 707 ioc->non_operational_loop = 0; 708 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) { 709 rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 710 ioc_warn(ioc, "%s: hard reset: %s\n", 711 __func__, rc == 0 ? "success" : "failed"); 712 doorbell = mpt3sas_base_get_iocstate(ioc, 0); 713 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 714 mpt3sas_print_fault_code(ioc, doorbell & 715 MPI2_DOORBELL_DATA_MASK); 716 } else if ((doorbell & MPI2_IOC_STATE_MASK) == 717 MPI2_IOC_STATE_COREDUMP) 718 mpt3sas_print_coredump_info(ioc, doorbell & 719 MPI2_DOORBELL_DATA_MASK); 720 if (rc && (doorbell & MPI2_IOC_STATE_MASK) != 721 MPI2_IOC_STATE_OPERATIONAL) 722 return; /* don't rearm timer */ 723 } 724 ioc->ioc_coredump_loop = 0; 725 726 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 727 rearm_timer: 728 if (ioc->fault_reset_work_q) 729 queue_delayed_work(ioc->fault_reset_work_q, 730 &ioc->fault_reset_work, 731 msecs_to_jiffies(FAULT_POLLING_INTERVAL)); 732 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 733 } 734 735 /** 736 * mpt3sas_base_start_watchdog - start the fault_reset_work_q 737 * @ioc: per adapter object 738 * 739 * Context: sleep. 740 */ 741 void 742 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc) 743 { 744 unsigned long flags; 745 746 if (ioc->fault_reset_work_q) 747 return; 748 749 /* initialize fault polling */ 750 751 INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work); 752 snprintf(ioc->fault_reset_work_q_name, 753 sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status", 754 ioc->driver_name, ioc->id); 755 ioc->fault_reset_work_q = 756 create_singlethread_workqueue(ioc->fault_reset_work_q_name); 757 if (!ioc->fault_reset_work_q) { 758 ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__); 759 return; 760 } 761 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 762 if (ioc->fault_reset_work_q) 763 queue_delayed_work(ioc->fault_reset_work_q, 764 &ioc->fault_reset_work, 765 msecs_to_jiffies(FAULT_POLLING_INTERVAL)); 766 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 767 } 768 769 /** 770 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q 771 * @ioc: per adapter object 772 * 773 * Context: sleep. 774 */ 775 void 776 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc) 777 { 778 unsigned long flags; 779 struct workqueue_struct *wq; 780 781 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 782 wq = ioc->fault_reset_work_q; 783 ioc->fault_reset_work_q = NULL; 784 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 785 if (wq) { 786 if (!cancel_delayed_work_sync(&ioc->fault_reset_work)) 787 flush_workqueue(wq); 788 destroy_workqueue(wq); 789 } 790 } 791 792 /** 793 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code 794 * @ioc: per adapter object 795 * @fault_code: fault code 796 */ 797 void 798 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code) 799 { 800 ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code); 801 } 802 803 /** 804 * mpt3sas_base_coredump_info - verbose translation of firmware CoreDump state 805 * @ioc: per adapter object 806 * @fault_code: fault code 807 * 808 * Return nothing. 809 */ 810 void 811 mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code) 812 { 813 ioc_err(ioc, "coredump_state(0x%04x)!\n", fault_code); 814 } 815 816 /** 817 * mpt3sas_base_wait_for_coredump_completion - Wait until coredump 818 * completes or times out 819 * @ioc: per adapter object 820 * 821 * Returns 0 for success, non-zero for failure. 822 */ 823 int 824 mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER *ioc, 825 const char *caller) 826 { 827 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ? 828 ioc->manu_pg11.CoreDumpTOSec : 829 MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS; 830 831 int ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_FAULT, 832 timeout); 833 834 if (ioc_state) 835 ioc_err(ioc, 836 "%s: CoreDump timed out. (ioc_state=0x%x)\n", 837 caller, ioc_state); 838 else 839 ioc_info(ioc, 840 "%s: CoreDump completed. (ioc_state=0x%x)\n", 841 caller, ioc_state); 842 843 return ioc_state; 844 } 845 846 /** 847 * mpt3sas_halt_firmware - halt's mpt controller firmware 848 * @ioc: per adapter object 849 * 850 * For debugging timeout related issues. Writing 0xCOFFEE00 851 * to the doorbell register will halt controller firmware. With 852 * the purpose to stop both driver and firmware, the enduser can 853 * obtain a ring buffer from controller UART. 854 */ 855 void 856 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc) 857 { 858 u32 doorbell; 859 860 if (!ioc->fwfault_debug) 861 return; 862 863 dump_stack(); 864 865 doorbell = ioc->base_readl(&ioc->chip->Doorbell); 866 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 867 mpt3sas_print_fault_code(ioc, doorbell & 868 MPI2_DOORBELL_DATA_MASK); 869 } else if ((doorbell & MPI2_IOC_STATE_MASK) == 870 MPI2_IOC_STATE_COREDUMP) { 871 mpt3sas_print_coredump_info(ioc, doorbell & 872 MPI2_DOORBELL_DATA_MASK); 873 } else { 874 writel(0xC0FFEE00, &ioc->chip->Doorbell); 875 ioc_err(ioc, "Firmware is halted due to command timeout\n"); 876 } 877 878 if (ioc->fwfault_debug == 2) 879 for (;;) 880 ; 881 else 882 panic("panic in %s\n", __func__); 883 } 884 885 /** 886 * _base_sas_ioc_info - verbose translation of the ioc status 887 * @ioc: per adapter object 888 * @mpi_reply: reply mf payload returned from firmware 889 * @request_hdr: request mf 890 */ 891 static void 892 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply, 893 MPI2RequestHeader_t *request_hdr) 894 { 895 u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & 896 MPI2_IOCSTATUS_MASK; 897 char *desc = NULL; 898 u16 frame_sz; 899 char *func_str = NULL; 900 901 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */ 902 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST || 903 request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH || 904 request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION) 905 return; 906 907 if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE) 908 return; 909 910 switch (ioc_status) { 911 912 /**************************************************************************** 913 * Common IOCStatus values for all replies 914 ****************************************************************************/ 915 916 case MPI2_IOCSTATUS_INVALID_FUNCTION: 917 desc = "invalid function"; 918 break; 919 case MPI2_IOCSTATUS_BUSY: 920 desc = "busy"; 921 break; 922 case MPI2_IOCSTATUS_INVALID_SGL: 923 desc = "invalid sgl"; 924 break; 925 case MPI2_IOCSTATUS_INTERNAL_ERROR: 926 desc = "internal error"; 927 break; 928 case MPI2_IOCSTATUS_INVALID_VPID: 929 desc = "invalid vpid"; 930 break; 931 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES: 932 desc = "insufficient resources"; 933 break; 934 case MPI2_IOCSTATUS_INSUFFICIENT_POWER: 935 desc = "insufficient power"; 936 break; 937 case MPI2_IOCSTATUS_INVALID_FIELD: 938 desc = "invalid field"; 939 break; 940 case MPI2_IOCSTATUS_INVALID_STATE: 941 desc = "invalid state"; 942 break; 943 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED: 944 desc = "op state not supported"; 945 break; 946 947 /**************************************************************************** 948 * Config IOCStatus values 949 ****************************************************************************/ 950 951 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION: 952 desc = "config invalid action"; 953 break; 954 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE: 955 desc = "config invalid type"; 956 break; 957 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE: 958 desc = "config invalid page"; 959 break; 960 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA: 961 desc = "config invalid data"; 962 break; 963 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS: 964 desc = "config no defaults"; 965 break; 966 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT: 967 desc = "config cant commit"; 968 break; 969 970 /**************************************************************************** 971 * SCSI IO Reply 972 ****************************************************************************/ 973 974 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR: 975 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE: 976 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE: 977 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN: 978 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN: 979 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR: 980 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR: 981 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED: 982 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH: 983 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED: 984 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED: 985 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED: 986 break; 987 988 /**************************************************************************** 989 * For use by SCSI Initiator and SCSI Target end-to-end data protection 990 ****************************************************************************/ 991 992 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR: 993 desc = "eedp guard error"; 994 break; 995 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR: 996 desc = "eedp ref tag error"; 997 break; 998 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR: 999 desc = "eedp app tag error"; 1000 break; 1001 1002 /**************************************************************************** 1003 * SCSI Target values 1004 ****************************************************************************/ 1005 1006 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX: 1007 desc = "target invalid io index"; 1008 break; 1009 case MPI2_IOCSTATUS_TARGET_ABORTED: 1010 desc = "target aborted"; 1011 break; 1012 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE: 1013 desc = "target no conn retryable"; 1014 break; 1015 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION: 1016 desc = "target no connection"; 1017 break; 1018 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH: 1019 desc = "target xfer count mismatch"; 1020 break; 1021 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR: 1022 desc = "target data offset error"; 1023 break; 1024 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA: 1025 desc = "target too much write data"; 1026 break; 1027 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT: 1028 desc = "target iu too short"; 1029 break; 1030 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT: 1031 desc = "target ack nak timeout"; 1032 break; 1033 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED: 1034 desc = "target nak received"; 1035 break; 1036 1037 /**************************************************************************** 1038 * Serial Attached SCSI values 1039 ****************************************************************************/ 1040 1041 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED: 1042 desc = "smp request failed"; 1043 break; 1044 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN: 1045 desc = "smp data overrun"; 1046 break; 1047 1048 /**************************************************************************** 1049 * Diagnostic Buffer Post / Diagnostic Release values 1050 ****************************************************************************/ 1051 1052 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED: 1053 desc = "diagnostic released"; 1054 break; 1055 default: 1056 break; 1057 } 1058 1059 if (!desc) 1060 return; 1061 1062 switch (request_hdr->Function) { 1063 case MPI2_FUNCTION_CONFIG: 1064 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size; 1065 func_str = "config_page"; 1066 break; 1067 case MPI2_FUNCTION_SCSI_TASK_MGMT: 1068 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t); 1069 func_str = "task_mgmt"; 1070 break; 1071 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL: 1072 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t); 1073 func_str = "sas_iounit_ctl"; 1074 break; 1075 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR: 1076 frame_sz = sizeof(Mpi2SepRequest_t); 1077 func_str = "enclosure"; 1078 break; 1079 case MPI2_FUNCTION_IOC_INIT: 1080 frame_sz = sizeof(Mpi2IOCInitRequest_t); 1081 func_str = "ioc_init"; 1082 break; 1083 case MPI2_FUNCTION_PORT_ENABLE: 1084 frame_sz = sizeof(Mpi2PortEnableRequest_t); 1085 func_str = "port_enable"; 1086 break; 1087 case MPI2_FUNCTION_SMP_PASSTHROUGH: 1088 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size; 1089 func_str = "smp_passthru"; 1090 break; 1091 case MPI2_FUNCTION_NVME_ENCAPSULATED: 1092 frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) + 1093 ioc->sge_size; 1094 func_str = "nvme_encapsulated"; 1095 break; 1096 default: 1097 frame_sz = 32; 1098 func_str = "unknown"; 1099 break; 1100 } 1101 1102 ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n", 1103 desc, ioc_status, request_hdr, func_str); 1104 1105 _debug_dump_mf(request_hdr, frame_sz/4); 1106 } 1107 1108 /** 1109 * _base_display_event_data - verbose translation of firmware asyn events 1110 * @ioc: per adapter object 1111 * @mpi_reply: reply mf payload returned from firmware 1112 */ 1113 static void 1114 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc, 1115 Mpi2EventNotificationReply_t *mpi_reply) 1116 { 1117 char *desc = NULL; 1118 u16 event; 1119 1120 if (!(ioc->logging_level & MPT_DEBUG_EVENTS)) 1121 return; 1122 1123 event = le16_to_cpu(mpi_reply->Event); 1124 1125 switch (event) { 1126 case MPI2_EVENT_LOG_DATA: 1127 desc = "Log Data"; 1128 break; 1129 case MPI2_EVENT_STATE_CHANGE: 1130 desc = "Status Change"; 1131 break; 1132 case MPI2_EVENT_HARD_RESET_RECEIVED: 1133 desc = "Hard Reset Received"; 1134 break; 1135 case MPI2_EVENT_EVENT_CHANGE: 1136 desc = "Event Change"; 1137 break; 1138 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE: 1139 desc = "Device Status Change"; 1140 break; 1141 case MPI2_EVENT_IR_OPERATION_STATUS: 1142 if (!ioc->hide_ir_msg) 1143 desc = "IR Operation Status"; 1144 break; 1145 case MPI2_EVENT_SAS_DISCOVERY: 1146 { 1147 Mpi2EventDataSasDiscovery_t *event_data = 1148 (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData; 1149 ioc_info(ioc, "Discovery: (%s)", 1150 event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ? 1151 "start" : "stop"); 1152 if (event_data->DiscoveryStatus) 1153 pr_cont(" discovery_status(0x%08x)", 1154 le32_to_cpu(event_data->DiscoveryStatus)); 1155 pr_cont("\n"); 1156 return; 1157 } 1158 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE: 1159 desc = "SAS Broadcast Primitive"; 1160 break; 1161 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE: 1162 desc = "SAS Init Device Status Change"; 1163 break; 1164 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW: 1165 desc = "SAS Init Table Overflow"; 1166 break; 1167 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST: 1168 desc = "SAS Topology Change List"; 1169 break; 1170 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE: 1171 desc = "SAS Enclosure Device Status Change"; 1172 break; 1173 case MPI2_EVENT_IR_VOLUME: 1174 if (!ioc->hide_ir_msg) 1175 desc = "IR Volume"; 1176 break; 1177 case MPI2_EVENT_IR_PHYSICAL_DISK: 1178 if (!ioc->hide_ir_msg) 1179 desc = "IR Physical Disk"; 1180 break; 1181 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST: 1182 if (!ioc->hide_ir_msg) 1183 desc = "IR Configuration Change List"; 1184 break; 1185 case MPI2_EVENT_LOG_ENTRY_ADDED: 1186 if (!ioc->hide_ir_msg) 1187 desc = "Log Entry Added"; 1188 break; 1189 case MPI2_EVENT_TEMP_THRESHOLD: 1190 desc = "Temperature Threshold"; 1191 break; 1192 case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION: 1193 desc = "Cable Event"; 1194 break; 1195 case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR: 1196 desc = "SAS Device Discovery Error"; 1197 break; 1198 case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE: 1199 desc = "PCIE Device Status Change"; 1200 break; 1201 case MPI2_EVENT_PCIE_ENUMERATION: 1202 { 1203 Mpi26EventDataPCIeEnumeration_t *event_data = 1204 (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData; 1205 ioc_info(ioc, "PCIE Enumeration: (%s)", 1206 event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ? 1207 "start" : "stop"); 1208 if (event_data->EnumerationStatus) 1209 pr_cont("enumeration_status(0x%08x)", 1210 le32_to_cpu(event_data->EnumerationStatus)); 1211 pr_cont("\n"); 1212 return; 1213 } 1214 case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST: 1215 desc = "PCIE Topology Change List"; 1216 break; 1217 } 1218 1219 if (!desc) 1220 return; 1221 1222 ioc_info(ioc, "%s\n", desc); 1223 } 1224 1225 /** 1226 * _base_sas_log_info - verbose translation of firmware log info 1227 * @ioc: per adapter object 1228 * @log_info: log info 1229 */ 1230 static void 1231 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info) 1232 { 1233 union loginfo_type { 1234 u32 loginfo; 1235 struct { 1236 u32 subcode:16; 1237 u32 code:8; 1238 u32 originator:4; 1239 u32 bus_type:4; 1240 } dw; 1241 }; 1242 union loginfo_type sas_loginfo; 1243 char *originator_str = NULL; 1244 1245 sas_loginfo.loginfo = log_info; 1246 if (sas_loginfo.dw.bus_type != 3 /*SAS*/) 1247 return; 1248 1249 /* each nexus loss loginfo */ 1250 if (log_info == 0x31170000) 1251 return; 1252 1253 /* eat the loginfos associated with task aborts */ 1254 if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info == 1255 0x31140000 || log_info == 0x31130000)) 1256 return; 1257 1258 switch (sas_loginfo.dw.originator) { 1259 case 0: 1260 originator_str = "IOP"; 1261 break; 1262 case 1: 1263 originator_str = "PL"; 1264 break; 1265 case 2: 1266 if (!ioc->hide_ir_msg) 1267 originator_str = "IR"; 1268 else 1269 originator_str = "WarpDrive"; 1270 break; 1271 } 1272 1273 ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n", 1274 log_info, 1275 originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode); 1276 } 1277 1278 /** 1279 * _base_display_reply_info - 1280 * @ioc: per adapter object 1281 * @smid: system request message index 1282 * @msix_index: MSIX table index supplied by the OS 1283 * @reply: reply message frame(lower 32bit addr) 1284 */ 1285 static void 1286 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 1287 u32 reply) 1288 { 1289 MPI2DefaultReply_t *mpi_reply; 1290 u16 ioc_status; 1291 u32 loginfo = 0; 1292 1293 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1294 if (unlikely(!mpi_reply)) { 1295 ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n", 1296 __FILE__, __LINE__, __func__); 1297 return; 1298 } 1299 ioc_status = le16_to_cpu(mpi_reply->IOCStatus); 1300 1301 if ((ioc_status & MPI2_IOCSTATUS_MASK) && 1302 (ioc->logging_level & MPT_DEBUG_REPLY)) { 1303 _base_sas_ioc_info(ioc , mpi_reply, 1304 mpt3sas_base_get_msg_frame(ioc, smid)); 1305 } 1306 1307 if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) { 1308 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo); 1309 _base_sas_log_info(ioc, loginfo); 1310 } 1311 1312 if (ioc_status || loginfo) { 1313 ioc_status &= MPI2_IOCSTATUS_MASK; 1314 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo); 1315 } 1316 } 1317 1318 /** 1319 * mpt3sas_base_done - base internal command completion routine 1320 * @ioc: per adapter object 1321 * @smid: system request message index 1322 * @msix_index: MSIX table index supplied by the OS 1323 * @reply: reply message frame(lower 32bit addr) 1324 * 1325 * Return: 1326 * 1 meaning mf should be freed from _base_interrupt 1327 * 0 means the mf is freed from this function. 1328 */ 1329 u8 1330 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 1331 u32 reply) 1332 { 1333 MPI2DefaultReply_t *mpi_reply; 1334 1335 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1336 if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK) 1337 return mpt3sas_check_for_pending_internal_cmds(ioc, smid); 1338 1339 if (ioc->base_cmds.status == MPT3_CMD_NOT_USED) 1340 return 1; 1341 1342 ioc->base_cmds.status |= MPT3_CMD_COMPLETE; 1343 if (mpi_reply) { 1344 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID; 1345 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4); 1346 } 1347 ioc->base_cmds.status &= ~MPT3_CMD_PENDING; 1348 1349 complete(&ioc->base_cmds.done); 1350 return 1; 1351 } 1352 1353 /** 1354 * _base_async_event - main callback handler for firmware asyn events 1355 * @ioc: per adapter object 1356 * @msix_index: MSIX table index supplied by the OS 1357 * @reply: reply message frame(lower 32bit addr) 1358 * 1359 * Return: 1360 * 1 meaning mf should be freed from _base_interrupt 1361 * 0 means the mf is freed from this function. 1362 */ 1363 static u8 1364 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply) 1365 { 1366 Mpi2EventNotificationReply_t *mpi_reply; 1367 Mpi2EventAckRequest_t *ack_request; 1368 u16 smid; 1369 struct _event_ack_list *delayed_event_ack; 1370 1371 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1372 if (!mpi_reply) 1373 return 1; 1374 if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION) 1375 return 1; 1376 1377 _base_display_event_data(ioc, mpi_reply); 1378 1379 if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED)) 1380 goto out; 1381 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 1382 if (!smid) { 1383 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack), 1384 GFP_ATOMIC); 1385 if (!delayed_event_ack) 1386 goto out; 1387 INIT_LIST_HEAD(&delayed_event_ack->list); 1388 delayed_event_ack->Event = mpi_reply->Event; 1389 delayed_event_ack->EventContext = mpi_reply->EventContext; 1390 list_add_tail(&delayed_event_ack->list, 1391 &ioc->delayed_event_ack_list); 1392 dewtprintk(ioc, 1393 ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n", 1394 le16_to_cpu(mpi_reply->Event))); 1395 goto out; 1396 } 1397 1398 ack_request = mpt3sas_base_get_msg_frame(ioc, smid); 1399 memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t)); 1400 ack_request->Function = MPI2_FUNCTION_EVENT_ACK; 1401 ack_request->Event = mpi_reply->Event; 1402 ack_request->EventContext = mpi_reply->EventContext; 1403 ack_request->VF_ID = 0; /* TODO */ 1404 ack_request->VP_ID = 0; 1405 ioc->put_smid_default(ioc, smid); 1406 1407 out: 1408 1409 /* scsih callback handler */ 1410 mpt3sas_scsih_event_callback(ioc, msix_index, reply); 1411 1412 /* ctl callback handler */ 1413 mpt3sas_ctl_event_callback(ioc, msix_index, reply); 1414 1415 return 1; 1416 } 1417 1418 static struct scsiio_tracker * 1419 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid) 1420 { 1421 struct scsi_cmnd *cmd; 1422 1423 if (WARN_ON(!smid) || 1424 WARN_ON(smid >= ioc->hi_priority_smid)) 1425 return NULL; 1426 1427 cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid); 1428 if (cmd) 1429 return scsi_cmd_priv(cmd); 1430 1431 return NULL; 1432 } 1433 1434 /** 1435 * _base_get_cb_idx - obtain the callback index 1436 * @ioc: per adapter object 1437 * @smid: system request message index 1438 * 1439 * Return: callback index. 1440 */ 1441 static u8 1442 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid) 1443 { 1444 int i; 1445 u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1; 1446 u8 cb_idx = 0xFF; 1447 1448 if (smid < ioc->hi_priority_smid) { 1449 struct scsiio_tracker *st; 1450 1451 if (smid < ctl_smid) { 1452 st = _get_st_from_smid(ioc, smid); 1453 if (st) 1454 cb_idx = st->cb_idx; 1455 } else if (smid == ctl_smid) 1456 cb_idx = ioc->ctl_cb_idx; 1457 } else if (smid < ioc->internal_smid) { 1458 i = smid - ioc->hi_priority_smid; 1459 cb_idx = ioc->hpr_lookup[i].cb_idx; 1460 } else if (smid <= ioc->hba_queue_depth) { 1461 i = smid - ioc->internal_smid; 1462 cb_idx = ioc->internal_lookup[i].cb_idx; 1463 } 1464 return cb_idx; 1465 } 1466 1467 /** 1468 * _base_mask_interrupts - disable interrupts 1469 * @ioc: per adapter object 1470 * 1471 * Disabling ResetIRQ, Reply and Doorbell Interrupts 1472 */ 1473 static void 1474 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc) 1475 { 1476 u32 him_register; 1477 1478 ioc->mask_interrupts = 1; 1479 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask); 1480 him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK; 1481 writel(him_register, &ioc->chip->HostInterruptMask); 1482 ioc->base_readl(&ioc->chip->HostInterruptMask); 1483 } 1484 1485 /** 1486 * _base_unmask_interrupts - enable interrupts 1487 * @ioc: per adapter object 1488 * 1489 * Enabling only Reply Interrupts 1490 */ 1491 static void 1492 _base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc) 1493 { 1494 u32 him_register; 1495 1496 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask); 1497 him_register &= ~MPI2_HIM_RIM; 1498 writel(him_register, &ioc->chip->HostInterruptMask); 1499 ioc->mask_interrupts = 0; 1500 } 1501 1502 union reply_descriptor { 1503 u64 word; 1504 struct { 1505 u32 low; 1506 u32 high; 1507 } u; 1508 }; 1509 1510 static u32 base_mod64(u64 dividend, u32 divisor) 1511 { 1512 u32 remainder; 1513 1514 if (!divisor) 1515 pr_err("mpt3sas: DIVISOR is zero, in div fn\n"); 1516 remainder = do_div(dividend, divisor); 1517 return remainder; 1518 } 1519 1520 /** 1521 * _base_process_reply_queue - Process reply descriptors from reply 1522 * descriptor post queue. 1523 * @reply_q: per IRQ's reply queue object. 1524 * 1525 * Return: number of reply descriptors processed from reply 1526 * descriptor queue. 1527 */ 1528 static int 1529 _base_process_reply_queue(struct adapter_reply_queue *reply_q) 1530 { 1531 union reply_descriptor rd; 1532 u64 completed_cmds; 1533 u8 request_descript_type; 1534 u16 smid; 1535 u8 cb_idx; 1536 u32 reply; 1537 u8 msix_index = reply_q->msix_index; 1538 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc; 1539 Mpi2ReplyDescriptorsUnion_t *rpf; 1540 u8 rc; 1541 1542 completed_cmds = 0; 1543 if (!atomic_add_unless(&reply_q->busy, 1, 1)) 1544 return completed_cmds; 1545 1546 rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index]; 1547 request_descript_type = rpf->Default.ReplyFlags 1548 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 1549 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) { 1550 atomic_dec(&reply_q->busy); 1551 return completed_cmds; 1552 } 1553 1554 cb_idx = 0xFF; 1555 do { 1556 rd.word = le64_to_cpu(rpf->Words); 1557 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX) 1558 goto out; 1559 reply = 0; 1560 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1); 1561 if (request_descript_type == 1562 MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS || 1563 request_descript_type == 1564 MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS || 1565 request_descript_type == 1566 MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) { 1567 cb_idx = _base_get_cb_idx(ioc, smid); 1568 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) && 1569 (likely(mpt_callbacks[cb_idx] != NULL))) { 1570 rc = mpt_callbacks[cb_idx](ioc, smid, 1571 msix_index, 0); 1572 if (rc) 1573 mpt3sas_base_free_smid(ioc, smid); 1574 } 1575 } else if (request_descript_type == 1576 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) { 1577 reply = le32_to_cpu( 1578 rpf->AddressReply.ReplyFrameAddress); 1579 if (reply > ioc->reply_dma_max_address || 1580 reply < ioc->reply_dma_min_address) 1581 reply = 0; 1582 if (smid) { 1583 cb_idx = _base_get_cb_idx(ioc, smid); 1584 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) && 1585 (likely(mpt_callbacks[cb_idx] != NULL))) { 1586 rc = mpt_callbacks[cb_idx](ioc, smid, 1587 msix_index, reply); 1588 if (reply) 1589 _base_display_reply_info(ioc, 1590 smid, msix_index, reply); 1591 if (rc) 1592 mpt3sas_base_free_smid(ioc, 1593 smid); 1594 } 1595 } else { 1596 _base_async_event(ioc, msix_index, reply); 1597 } 1598 1599 /* reply free queue handling */ 1600 if (reply) { 1601 ioc->reply_free_host_index = 1602 (ioc->reply_free_host_index == 1603 (ioc->reply_free_queue_depth - 1)) ? 1604 0 : ioc->reply_free_host_index + 1; 1605 ioc->reply_free[ioc->reply_free_host_index] = 1606 cpu_to_le32(reply); 1607 if (ioc->is_mcpu_endpoint) 1608 _base_clone_reply_to_sys_mem(ioc, 1609 reply, 1610 ioc->reply_free_host_index); 1611 writel(ioc->reply_free_host_index, 1612 &ioc->chip->ReplyFreeHostIndex); 1613 } 1614 } 1615 1616 rpf->Words = cpu_to_le64(ULLONG_MAX); 1617 reply_q->reply_post_host_index = 1618 (reply_q->reply_post_host_index == 1619 (ioc->reply_post_queue_depth - 1)) ? 0 : 1620 reply_q->reply_post_host_index + 1; 1621 request_descript_type = 1622 reply_q->reply_post_free[reply_q->reply_post_host_index]. 1623 Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 1624 completed_cmds++; 1625 /* Update the reply post host index after continuously 1626 * processing the threshold number of Reply Descriptors. 1627 * So that FW can find enough entries to post the Reply 1628 * Descriptors in the reply descriptor post queue. 1629 */ 1630 if (!base_mod64(completed_cmds, ioc->thresh_hold)) { 1631 if (ioc->combined_reply_queue) { 1632 writel(reply_q->reply_post_host_index | 1633 ((msix_index & 7) << 1634 MPI2_RPHI_MSIX_INDEX_SHIFT), 1635 ioc->replyPostRegisterIndex[msix_index/8]); 1636 } else { 1637 writel(reply_q->reply_post_host_index | 1638 (msix_index << 1639 MPI2_RPHI_MSIX_INDEX_SHIFT), 1640 &ioc->chip->ReplyPostHostIndex); 1641 } 1642 if (!reply_q->irq_poll_scheduled) { 1643 reply_q->irq_poll_scheduled = true; 1644 irq_poll_sched(&reply_q->irqpoll); 1645 } 1646 atomic_dec(&reply_q->busy); 1647 return completed_cmds; 1648 } 1649 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) 1650 goto out; 1651 if (!reply_q->reply_post_host_index) 1652 rpf = reply_q->reply_post_free; 1653 else 1654 rpf++; 1655 } while (1); 1656 1657 out: 1658 1659 if (!completed_cmds) { 1660 atomic_dec(&reply_q->busy); 1661 return completed_cmds; 1662 } 1663 1664 if (ioc->is_warpdrive) { 1665 writel(reply_q->reply_post_host_index, 1666 ioc->reply_post_host_index[msix_index]); 1667 atomic_dec(&reply_q->busy); 1668 return completed_cmds; 1669 } 1670 1671 /* Update Reply Post Host Index. 1672 * For those HBA's which support combined reply queue feature 1673 * 1. Get the correct Supplemental Reply Post Host Index Register. 1674 * i.e. (msix_index / 8)th entry from Supplemental Reply Post Host 1675 * Index Register address bank i.e replyPostRegisterIndex[], 1676 * 2. Then update this register with new reply host index value 1677 * in ReplyPostIndex field and the MSIxIndex field with 1678 * msix_index value reduced to a value between 0 and 7, 1679 * using a modulo 8 operation. Since each Supplemental Reply Post 1680 * Host Index Register supports 8 MSI-X vectors. 1681 * 1682 * For other HBA's just update the Reply Post Host Index register with 1683 * new reply host index value in ReplyPostIndex Field and msix_index 1684 * value in MSIxIndex field. 1685 */ 1686 if (ioc->combined_reply_queue) 1687 writel(reply_q->reply_post_host_index | ((msix_index & 7) << 1688 MPI2_RPHI_MSIX_INDEX_SHIFT), 1689 ioc->replyPostRegisterIndex[msix_index/8]); 1690 else 1691 writel(reply_q->reply_post_host_index | (msix_index << 1692 MPI2_RPHI_MSIX_INDEX_SHIFT), 1693 &ioc->chip->ReplyPostHostIndex); 1694 atomic_dec(&reply_q->busy); 1695 return completed_cmds; 1696 } 1697 1698 /** 1699 * _base_interrupt - MPT adapter (IOC) specific interrupt handler. 1700 * @irq: irq number (not used) 1701 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure 1702 * 1703 * Return: IRQ_HANDLED if processed, else IRQ_NONE. 1704 */ 1705 static irqreturn_t 1706 _base_interrupt(int irq, void *bus_id) 1707 { 1708 struct adapter_reply_queue *reply_q = bus_id; 1709 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc; 1710 1711 if (ioc->mask_interrupts) 1712 return IRQ_NONE; 1713 if (reply_q->irq_poll_scheduled) 1714 return IRQ_HANDLED; 1715 return ((_base_process_reply_queue(reply_q) > 0) ? 1716 IRQ_HANDLED : IRQ_NONE); 1717 } 1718 1719 /** 1720 * _base_irqpoll - IRQ poll callback handler 1721 * @irqpoll - irq_poll object 1722 * @budget - irq poll weight 1723 * 1724 * returns number of reply descriptors processed 1725 */ 1726 static int 1727 _base_irqpoll(struct irq_poll *irqpoll, int budget) 1728 { 1729 struct adapter_reply_queue *reply_q; 1730 int num_entries = 0; 1731 1732 reply_q = container_of(irqpoll, struct adapter_reply_queue, 1733 irqpoll); 1734 if (reply_q->irq_line_enable) { 1735 disable_irq(reply_q->os_irq); 1736 reply_q->irq_line_enable = false; 1737 } 1738 num_entries = _base_process_reply_queue(reply_q); 1739 if (num_entries < budget) { 1740 irq_poll_complete(irqpoll); 1741 reply_q->irq_poll_scheduled = false; 1742 reply_q->irq_line_enable = true; 1743 enable_irq(reply_q->os_irq); 1744 } 1745 1746 return num_entries; 1747 } 1748 1749 /** 1750 * _base_init_irqpolls - initliaze IRQ polls 1751 * @ioc: per adapter object 1752 * 1753 * returns nothing 1754 */ 1755 static void 1756 _base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc) 1757 { 1758 struct adapter_reply_queue *reply_q, *next; 1759 1760 if (list_empty(&ioc->reply_queue_list)) 1761 return; 1762 1763 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) { 1764 irq_poll_init(&reply_q->irqpoll, 1765 ioc->hba_queue_depth/4, _base_irqpoll); 1766 reply_q->irq_poll_scheduled = false; 1767 reply_q->irq_line_enable = true; 1768 reply_q->os_irq = pci_irq_vector(ioc->pdev, 1769 reply_q->msix_index); 1770 } 1771 } 1772 1773 /** 1774 * _base_is_controller_msix_enabled - is controller support muli-reply queues 1775 * @ioc: per adapter object 1776 * 1777 * Return: Whether or not MSI/X is enabled. 1778 */ 1779 static inline int 1780 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc) 1781 { 1782 return (ioc->facts.IOCCapabilities & 1783 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable; 1784 } 1785 1786 /** 1787 * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts 1788 * @ioc: per adapter object 1789 * Context: non ISR conext 1790 * 1791 * Called when a Task Management request has completed. 1792 */ 1793 void 1794 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc) 1795 { 1796 struct adapter_reply_queue *reply_q; 1797 1798 /* If MSIX capability is turned off 1799 * then multi-queues are not enabled 1800 */ 1801 if (!_base_is_controller_msix_enabled(ioc)) 1802 return; 1803 1804 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 1805 if (ioc->shost_recovery || ioc->remove_host || 1806 ioc->pci_error_recovery) 1807 return; 1808 /* TMs are on msix_index == 0 */ 1809 if (reply_q->msix_index == 0) 1810 continue; 1811 if (reply_q->irq_poll_scheduled) { 1812 /* Calling irq_poll_disable will wait for any pending 1813 * callbacks to have completed. 1814 */ 1815 irq_poll_disable(&reply_q->irqpoll); 1816 irq_poll_enable(&reply_q->irqpoll); 1817 reply_q->irq_poll_scheduled = false; 1818 reply_q->irq_line_enable = true; 1819 enable_irq(reply_q->os_irq); 1820 continue; 1821 } 1822 synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index)); 1823 } 1824 } 1825 1826 /** 1827 * mpt3sas_base_release_callback_handler - clear interrupt callback handler 1828 * @cb_idx: callback index 1829 */ 1830 void 1831 mpt3sas_base_release_callback_handler(u8 cb_idx) 1832 { 1833 mpt_callbacks[cb_idx] = NULL; 1834 } 1835 1836 /** 1837 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler 1838 * @cb_func: callback function 1839 * 1840 * Return: Index of @cb_func. 1841 */ 1842 u8 1843 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func) 1844 { 1845 u8 cb_idx; 1846 1847 for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--) 1848 if (mpt_callbacks[cb_idx] == NULL) 1849 break; 1850 1851 mpt_callbacks[cb_idx] = cb_func; 1852 return cb_idx; 1853 } 1854 1855 /** 1856 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler 1857 */ 1858 void 1859 mpt3sas_base_initialize_callback_handler(void) 1860 { 1861 u8 cb_idx; 1862 1863 for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++) 1864 mpt3sas_base_release_callback_handler(cb_idx); 1865 } 1866 1867 1868 /** 1869 * _base_build_zero_len_sge - build zero length sg entry 1870 * @ioc: per adapter object 1871 * @paddr: virtual address for SGE 1872 * 1873 * Create a zero length scatter gather entry to insure the IOCs hardware has 1874 * something to use if the target device goes brain dead and tries 1875 * to send data even when none is asked for. 1876 */ 1877 static void 1878 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr) 1879 { 1880 u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT | 1881 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST | 1882 MPI2_SGE_FLAGS_SIMPLE_ELEMENT) << 1883 MPI2_SGE_FLAGS_SHIFT); 1884 ioc->base_add_sg_single(paddr, flags_length, -1); 1885 } 1886 1887 /** 1888 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr. 1889 * @paddr: virtual address for SGE 1890 * @flags_length: SGE flags and data transfer length 1891 * @dma_addr: Physical address 1892 */ 1893 static void 1894 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr) 1895 { 1896 Mpi2SGESimple32_t *sgel = paddr; 1897 1898 flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING | 1899 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT; 1900 sgel->FlagsLength = cpu_to_le32(flags_length); 1901 sgel->Address = cpu_to_le32(dma_addr); 1902 } 1903 1904 1905 /** 1906 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr. 1907 * @paddr: virtual address for SGE 1908 * @flags_length: SGE flags and data transfer length 1909 * @dma_addr: Physical address 1910 */ 1911 static void 1912 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr) 1913 { 1914 Mpi2SGESimple64_t *sgel = paddr; 1915 1916 flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING | 1917 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT; 1918 sgel->FlagsLength = cpu_to_le32(flags_length); 1919 sgel->Address = cpu_to_le64(dma_addr); 1920 } 1921 1922 /** 1923 * _base_get_chain_buffer_tracker - obtain chain tracker 1924 * @ioc: per adapter object 1925 * @scmd: SCSI commands of the IO request 1926 * 1927 * Return: chain tracker from chain_lookup table using key as 1928 * smid and smid's chain_offset. 1929 */ 1930 static struct chain_tracker * 1931 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc, 1932 struct scsi_cmnd *scmd) 1933 { 1934 struct chain_tracker *chain_req; 1935 struct scsiio_tracker *st = scsi_cmd_priv(scmd); 1936 u16 smid = st->smid; 1937 u8 chain_offset = 1938 atomic_read(&ioc->chain_lookup[smid - 1].chain_offset); 1939 1940 if (chain_offset == ioc->chains_needed_per_io) 1941 return NULL; 1942 1943 chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset]; 1944 atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset); 1945 return chain_req; 1946 } 1947 1948 1949 /** 1950 * _base_build_sg - build generic sg 1951 * @ioc: per adapter object 1952 * @psge: virtual address for SGE 1953 * @data_out_dma: physical address for WRITES 1954 * @data_out_sz: data xfer size for WRITES 1955 * @data_in_dma: physical address for READS 1956 * @data_in_sz: data xfer size for READS 1957 */ 1958 static void 1959 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge, 1960 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 1961 size_t data_in_sz) 1962 { 1963 u32 sgl_flags; 1964 1965 if (!data_out_sz && !data_in_sz) { 1966 _base_build_zero_len_sge(ioc, psge); 1967 return; 1968 } 1969 1970 if (data_out_sz && data_in_sz) { 1971 /* WRITE sgel first */ 1972 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 1973 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC); 1974 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 1975 ioc->base_add_sg_single(psge, sgl_flags | 1976 data_out_sz, data_out_dma); 1977 1978 /* incr sgel */ 1979 psge += ioc->sge_size; 1980 1981 /* READ sgel last */ 1982 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 1983 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 1984 MPI2_SGE_FLAGS_END_OF_LIST); 1985 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 1986 ioc->base_add_sg_single(psge, sgl_flags | 1987 data_in_sz, data_in_dma); 1988 } else if (data_out_sz) /* WRITE */ { 1989 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 1990 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 1991 MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC); 1992 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 1993 ioc->base_add_sg_single(psge, sgl_flags | 1994 data_out_sz, data_out_dma); 1995 } else if (data_in_sz) /* READ */ { 1996 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 1997 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 1998 MPI2_SGE_FLAGS_END_OF_LIST); 1999 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2000 ioc->base_add_sg_single(psge, sgl_flags | 2001 data_in_sz, data_in_dma); 2002 } 2003 } 2004 2005 /* IEEE format sgls */ 2006 2007 /** 2008 * _base_build_nvme_prp - This function is called for NVMe end devices to build 2009 * a native SGL (NVMe PRP). The native SGL is built starting in the first PRP 2010 * entry of the NVMe message (PRP1). If the data buffer is small enough to be 2011 * described entirely using PRP1, then PRP2 is not used. If needed, PRP2 is 2012 * used to describe a larger data buffer. If the data buffer is too large to 2013 * describe using the two PRP entriess inside the NVMe message, then PRP1 2014 * describes the first data memory segment, and PRP2 contains a pointer to a PRP 2015 * list located elsewhere in memory to describe the remaining data memory 2016 * segments. The PRP list will be contiguous. 2017 * 2018 * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP 2019 * consists of a list of PRP entries to describe a number of noncontigous 2020 * physical memory segments as a single memory buffer, just as a SGL does. Note 2021 * however, that this function is only used by the IOCTL call, so the memory 2022 * given will be guaranteed to be contiguous. There is no need to translate 2023 * non-contiguous SGL into a PRP in this case. All PRPs will describe 2024 * contiguous space that is one page size each. 2025 * 2026 * Each NVMe message contains two PRP entries. The first (PRP1) either contains 2027 * a PRP list pointer or a PRP element, depending upon the command. PRP2 2028 * contains the second PRP element if the memory being described fits within 2 2029 * PRP entries, or a PRP list pointer if the PRP spans more than two entries. 2030 * 2031 * A PRP list pointer contains the address of a PRP list, structured as a linear 2032 * array of PRP entries. Each PRP entry in this list describes a segment of 2033 * physical memory. 2034 * 2035 * Each 64-bit PRP entry comprises an address and an offset field. The address 2036 * always points at the beginning of a 4KB physical memory page, and the offset 2037 * describes where within that 4KB page the memory segment begins. Only the 2038 * first element in a PRP list may contain a non-zero offest, implying that all 2039 * memory segments following the first begin at the start of a 4KB page. 2040 * 2041 * Each PRP element normally describes 4KB of physical memory, with exceptions 2042 * for the first and last elements in the list. If the memory being described 2043 * by the list begins at a non-zero offset within the first 4KB page, then the 2044 * first PRP element will contain a non-zero offset indicating where the region 2045 * begins within the 4KB page. The last memory segment may end before the end 2046 * of the 4KB segment, depending upon the overall size of the memory being 2047 * described by the PRP list. 2048 * 2049 * Since PRP entries lack any indication of size, the overall data buffer length 2050 * is used to determine where the end of the data memory buffer is located, and 2051 * how many PRP entries are required to describe it. 2052 * 2053 * @ioc: per adapter object 2054 * @smid: system request message index for getting asscociated SGL 2055 * @nvme_encap_request: the NVMe request msg frame pointer 2056 * @data_out_dma: physical address for WRITES 2057 * @data_out_sz: data xfer size for WRITES 2058 * @data_in_dma: physical address for READS 2059 * @data_in_sz: data xfer size for READS 2060 */ 2061 static void 2062 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid, 2063 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request, 2064 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 2065 size_t data_in_sz) 2066 { 2067 int prp_size = NVME_PRP_SIZE; 2068 __le64 *prp_entry, *prp1_entry, *prp2_entry; 2069 __le64 *prp_page; 2070 dma_addr_t prp_entry_dma, prp_page_dma, dma_addr; 2071 u32 offset, entry_len; 2072 u32 page_mask_result, page_mask; 2073 size_t length; 2074 struct mpt3sas_nvme_cmd *nvme_cmd = 2075 (void *)nvme_encap_request->NVMe_Command; 2076 2077 /* 2078 * Not all commands require a data transfer. If no data, just return 2079 * without constructing any PRP. 2080 */ 2081 if (!data_in_sz && !data_out_sz) 2082 return; 2083 prp1_entry = &nvme_cmd->prp1; 2084 prp2_entry = &nvme_cmd->prp2; 2085 prp_entry = prp1_entry; 2086 /* 2087 * For the PRP entries, use the specially allocated buffer of 2088 * contiguous memory. 2089 */ 2090 prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid); 2091 prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid); 2092 2093 /* 2094 * Check if we are within 1 entry of a page boundary we don't 2095 * want our first entry to be a PRP List entry. 2096 */ 2097 page_mask = ioc->page_size - 1; 2098 page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask; 2099 if (!page_mask_result) { 2100 /* Bump up to next page boundary. */ 2101 prp_page = (__le64 *)((u8 *)prp_page + prp_size); 2102 prp_page_dma = prp_page_dma + prp_size; 2103 } 2104 2105 /* 2106 * Set PRP physical pointer, which initially points to the current PRP 2107 * DMA memory page. 2108 */ 2109 prp_entry_dma = prp_page_dma; 2110 2111 /* Get physical address and length of the data buffer. */ 2112 if (data_in_sz) { 2113 dma_addr = data_in_dma; 2114 length = data_in_sz; 2115 } else { 2116 dma_addr = data_out_dma; 2117 length = data_out_sz; 2118 } 2119 2120 /* Loop while the length is not zero. */ 2121 while (length) { 2122 /* 2123 * Check if we need to put a list pointer here if we are at 2124 * page boundary - prp_size (8 bytes). 2125 */ 2126 page_mask_result = (prp_entry_dma + prp_size) & page_mask; 2127 if (!page_mask_result) { 2128 /* 2129 * This is the last entry in a PRP List, so we need to 2130 * put a PRP list pointer here. What this does is: 2131 * - bump the current memory pointer to the next 2132 * address, which will be the next full page. 2133 * - set the PRP Entry to point to that page. This 2134 * is now the PRP List pointer. 2135 * - bump the PRP Entry pointer the start of the 2136 * next page. Since all of this PRP memory is 2137 * contiguous, no need to get a new page - it's 2138 * just the next address. 2139 */ 2140 prp_entry_dma++; 2141 *prp_entry = cpu_to_le64(prp_entry_dma); 2142 prp_entry++; 2143 } 2144 2145 /* Need to handle if entry will be part of a page. */ 2146 offset = dma_addr & page_mask; 2147 entry_len = ioc->page_size - offset; 2148 2149 if (prp_entry == prp1_entry) { 2150 /* 2151 * Must fill in the first PRP pointer (PRP1) before 2152 * moving on. 2153 */ 2154 *prp1_entry = cpu_to_le64(dma_addr); 2155 2156 /* 2157 * Now point to the second PRP entry within the 2158 * command (PRP2). 2159 */ 2160 prp_entry = prp2_entry; 2161 } else if (prp_entry == prp2_entry) { 2162 /* 2163 * Should the PRP2 entry be a PRP List pointer or just 2164 * a regular PRP pointer? If there is more than one 2165 * more page of data, must use a PRP List pointer. 2166 */ 2167 if (length > ioc->page_size) { 2168 /* 2169 * PRP2 will contain a PRP List pointer because 2170 * more PRP's are needed with this command. The 2171 * list will start at the beginning of the 2172 * contiguous buffer. 2173 */ 2174 *prp2_entry = cpu_to_le64(prp_entry_dma); 2175 2176 /* 2177 * The next PRP Entry will be the start of the 2178 * first PRP List. 2179 */ 2180 prp_entry = prp_page; 2181 } else { 2182 /* 2183 * After this, the PRP Entries are complete. 2184 * This command uses 2 PRP's and no PRP list. 2185 */ 2186 *prp2_entry = cpu_to_le64(dma_addr); 2187 } 2188 } else { 2189 /* 2190 * Put entry in list and bump the addresses. 2191 * 2192 * After PRP1 and PRP2 are filled in, this will fill in 2193 * all remaining PRP entries in a PRP List, one per 2194 * each time through the loop. 2195 */ 2196 *prp_entry = cpu_to_le64(dma_addr); 2197 prp_entry++; 2198 prp_entry_dma++; 2199 } 2200 2201 /* 2202 * Bump the phys address of the command's data buffer by the 2203 * entry_len. 2204 */ 2205 dma_addr += entry_len; 2206 2207 /* Decrement length accounting for last partial page. */ 2208 if (entry_len > length) 2209 length = 0; 2210 else 2211 length -= entry_len; 2212 } 2213 } 2214 2215 /** 2216 * base_make_prp_nvme - 2217 * Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only 2218 * 2219 * @ioc: per adapter object 2220 * @scmd: SCSI command from the mid-layer 2221 * @mpi_request: mpi request 2222 * @smid: msg Index 2223 * @sge_count: scatter gather element count. 2224 * 2225 * Return: true: PRPs are built 2226 * false: IEEE SGLs needs to be built 2227 */ 2228 static void 2229 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc, 2230 struct scsi_cmnd *scmd, 2231 Mpi25SCSIIORequest_t *mpi_request, 2232 u16 smid, int sge_count) 2233 { 2234 int sge_len, num_prp_in_chain = 0; 2235 Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl; 2236 __le64 *curr_buff; 2237 dma_addr_t msg_dma, sge_addr, offset; 2238 u32 page_mask, page_mask_result; 2239 struct scatterlist *sg_scmd; 2240 u32 first_prp_len; 2241 int data_len = scsi_bufflen(scmd); 2242 u32 nvme_pg_size; 2243 2244 nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE); 2245 /* 2246 * Nvme has a very convoluted prp format. One prp is required 2247 * for each page or partial page. Driver need to split up OS sg_list 2248 * entries if it is longer than one page or cross a page 2249 * boundary. Driver also have to insert a PRP list pointer entry as 2250 * the last entry in each physical page of the PRP list. 2251 * 2252 * NOTE: The first PRP "entry" is actually placed in the first 2253 * SGL entry in the main message as IEEE 64 format. The 2nd 2254 * entry in the main message is the chain element, and the rest 2255 * of the PRP entries are built in the contiguous pcie buffer. 2256 */ 2257 page_mask = nvme_pg_size - 1; 2258 2259 /* 2260 * Native SGL is needed. 2261 * Put a chain element in main message frame that points to the first 2262 * chain buffer. 2263 * 2264 * NOTE: The ChainOffset field must be 0 when using a chain pointer to 2265 * a native SGL. 2266 */ 2267 2268 /* Set main message chain element pointer */ 2269 main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL; 2270 /* 2271 * For NVMe the chain element needs to be the 2nd SG entry in the main 2272 * message. 2273 */ 2274 main_chain_element = (Mpi25IeeeSgeChain64_t *) 2275 ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64)); 2276 2277 /* 2278 * For the PRP entries, use the specially allocated buffer of 2279 * contiguous memory. Normal chain buffers can't be used 2280 * because each chain buffer would need to be the size of an OS 2281 * page (4k). 2282 */ 2283 curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid); 2284 msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid); 2285 2286 main_chain_element->Address = cpu_to_le64(msg_dma); 2287 main_chain_element->NextChainOffset = 0; 2288 main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 2289 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | 2290 MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP; 2291 2292 /* Build first prp, sge need not to be page aligned*/ 2293 ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL; 2294 sg_scmd = scsi_sglist(scmd); 2295 sge_addr = sg_dma_address(sg_scmd); 2296 sge_len = sg_dma_len(sg_scmd); 2297 2298 offset = sge_addr & page_mask; 2299 first_prp_len = nvme_pg_size - offset; 2300 2301 ptr_first_sgl->Address = cpu_to_le64(sge_addr); 2302 ptr_first_sgl->Length = cpu_to_le32(first_prp_len); 2303 2304 data_len -= first_prp_len; 2305 2306 if (sge_len > first_prp_len) { 2307 sge_addr += first_prp_len; 2308 sge_len -= first_prp_len; 2309 } else if (data_len && (sge_len == first_prp_len)) { 2310 sg_scmd = sg_next(sg_scmd); 2311 sge_addr = sg_dma_address(sg_scmd); 2312 sge_len = sg_dma_len(sg_scmd); 2313 } 2314 2315 for (;;) { 2316 offset = sge_addr & page_mask; 2317 2318 /* Put PRP pointer due to page boundary*/ 2319 page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask; 2320 if (unlikely(!page_mask_result)) { 2321 scmd_printk(KERN_NOTICE, 2322 scmd, "page boundary curr_buff: 0x%p\n", 2323 curr_buff); 2324 msg_dma += 8; 2325 *curr_buff = cpu_to_le64(msg_dma); 2326 curr_buff++; 2327 num_prp_in_chain++; 2328 } 2329 2330 *curr_buff = cpu_to_le64(sge_addr); 2331 curr_buff++; 2332 msg_dma += 8; 2333 num_prp_in_chain++; 2334 2335 sge_addr += nvme_pg_size; 2336 sge_len -= nvme_pg_size; 2337 data_len -= nvme_pg_size; 2338 2339 if (data_len <= 0) 2340 break; 2341 2342 if (sge_len > 0) 2343 continue; 2344 2345 sg_scmd = sg_next(sg_scmd); 2346 sge_addr = sg_dma_address(sg_scmd); 2347 sge_len = sg_dma_len(sg_scmd); 2348 } 2349 2350 main_chain_element->Length = 2351 cpu_to_le32(num_prp_in_chain * sizeof(u64)); 2352 return; 2353 } 2354 2355 static bool 2356 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc, 2357 struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count) 2358 { 2359 u32 data_length = 0; 2360 bool build_prp = true; 2361 2362 data_length = scsi_bufflen(scmd); 2363 if (pcie_device && 2364 (mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))) { 2365 build_prp = false; 2366 return build_prp; 2367 } 2368 2369 /* If Datalenth is <= 16K and number of SGE’s entries are <= 2 2370 * we built IEEE SGL 2371 */ 2372 if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2)) 2373 build_prp = false; 2374 2375 return build_prp; 2376 } 2377 2378 /** 2379 * _base_check_pcie_native_sgl - This function is called for PCIe end devices to 2380 * determine if the driver needs to build a native SGL. If so, that native 2381 * SGL is built in the special contiguous buffers allocated especially for 2382 * PCIe SGL creation. If the driver will not build a native SGL, return 2383 * TRUE and a normal IEEE SGL will be built. Currently this routine 2384 * supports NVMe. 2385 * @ioc: per adapter object 2386 * @mpi_request: mf request pointer 2387 * @smid: system request message index 2388 * @scmd: scsi command 2389 * @pcie_device: points to the PCIe device's info 2390 * 2391 * Return: 0 if native SGL was built, 1 if no SGL was built 2392 */ 2393 static int 2394 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc, 2395 Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd, 2396 struct _pcie_device *pcie_device) 2397 { 2398 int sges_left; 2399 2400 /* Get the SG list pointer and info. */ 2401 sges_left = scsi_dma_map(scmd); 2402 if (sges_left < 0) { 2403 sdev_printk(KERN_ERR, scmd->device, 2404 "scsi_dma_map failed: request for %d bytes!\n", 2405 scsi_bufflen(scmd)); 2406 return 1; 2407 } 2408 2409 /* Check if we need to build a native SG list. */ 2410 if (base_is_prp_possible(ioc, pcie_device, 2411 scmd, sges_left) == 0) { 2412 /* We built a native SG list, just return. */ 2413 goto out; 2414 } 2415 2416 /* 2417 * Build native NVMe PRP. 2418 */ 2419 base_make_prp_nvme(ioc, scmd, mpi_request, 2420 smid, sges_left); 2421 2422 return 0; 2423 out: 2424 scsi_dma_unmap(scmd); 2425 return 1; 2426 } 2427 2428 /** 2429 * _base_add_sg_single_ieee - add sg element for IEEE format 2430 * @paddr: virtual address for SGE 2431 * @flags: SGE flags 2432 * @chain_offset: number of 128 byte elements from start of segment 2433 * @length: data transfer length 2434 * @dma_addr: Physical address 2435 */ 2436 static void 2437 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length, 2438 dma_addr_t dma_addr) 2439 { 2440 Mpi25IeeeSgeChain64_t *sgel = paddr; 2441 2442 sgel->Flags = flags; 2443 sgel->NextChainOffset = chain_offset; 2444 sgel->Length = cpu_to_le32(length); 2445 sgel->Address = cpu_to_le64(dma_addr); 2446 } 2447 2448 /** 2449 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format 2450 * @ioc: per adapter object 2451 * @paddr: virtual address for SGE 2452 * 2453 * Create a zero length scatter gather entry to insure the IOCs hardware has 2454 * something to use if the target device goes brain dead and tries 2455 * to send data even when none is asked for. 2456 */ 2457 static void 2458 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr) 2459 { 2460 u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2461 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | 2462 MPI25_IEEE_SGE_FLAGS_END_OF_LIST); 2463 2464 _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1); 2465 } 2466 2467 /** 2468 * _base_build_sg_scmd - main sg creation routine 2469 * pcie_device is unused here! 2470 * @ioc: per adapter object 2471 * @scmd: scsi command 2472 * @smid: system request message index 2473 * @unused: unused pcie_device pointer 2474 * Context: none. 2475 * 2476 * The main routine that builds scatter gather table from a given 2477 * scsi request sent via the .queuecommand main handler. 2478 * 2479 * Return: 0 success, anything else error 2480 */ 2481 static int 2482 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc, 2483 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused) 2484 { 2485 Mpi2SCSIIORequest_t *mpi_request; 2486 dma_addr_t chain_dma; 2487 struct scatterlist *sg_scmd; 2488 void *sg_local, *chain; 2489 u32 chain_offset; 2490 u32 chain_length; 2491 u32 chain_flags; 2492 int sges_left; 2493 u32 sges_in_segment; 2494 u32 sgl_flags; 2495 u32 sgl_flags_last_element; 2496 u32 sgl_flags_end_buffer; 2497 struct chain_tracker *chain_req; 2498 2499 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 2500 2501 /* init scatter gather flags */ 2502 sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT; 2503 if (scmd->sc_data_direction == DMA_TO_DEVICE) 2504 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC; 2505 sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT) 2506 << MPI2_SGE_FLAGS_SHIFT; 2507 sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT | 2508 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST) 2509 << MPI2_SGE_FLAGS_SHIFT; 2510 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2511 2512 sg_scmd = scsi_sglist(scmd); 2513 sges_left = scsi_dma_map(scmd); 2514 if (sges_left < 0) { 2515 sdev_printk(KERN_ERR, scmd->device, 2516 "scsi_dma_map failed: request for %d bytes!\n", 2517 scsi_bufflen(scmd)); 2518 return -ENOMEM; 2519 } 2520 2521 sg_local = &mpi_request->SGL; 2522 sges_in_segment = ioc->max_sges_in_main_message; 2523 if (sges_left <= sges_in_segment) 2524 goto fill_in_last_segment; 2525 2526 mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) + 2527 (sges_in_segment * ioc->sge_size))/4; 2528 2529 /* fill in main message segment when there is a chain following */ 2530 while (sges_in_segment) { 2531 if (sges_in_segment == 1) 2532 ioc->base_add_sg_single(sg_local, 2533 sgl_flags_last_element | sg_dma_len(sg_scmd), 2534 sg_dma_address(sg_scmd)); 2535 else 2536 ioc->base_add_sg_single(sg_local, sgl_flags | 2537 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2538 sg_scmd = sg_next(sg_scmd); 2539 sg_local += ioc->sge_size; 2540 sges_left--; 2541 sges_in_segment--; 2542 } 2543 2544 /* initializing the chain flags and pointers */ 2545 chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT; 2546 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2547 if (!chain_req) 2548 return -1; 2549 chain = chain_req->chain_buffer; 2550 chain_dma = chain_req->chain_buffer_dma; 2551 do { 2552 sges_in_segment = (sges_left <= 2553 ioc->max_sges_in_chain_message) ? sges_left : 2554 ioc->max_sges_in_chain_message; 2555 chain_offset = (sges_left == sges_in_segment) ? 2556 0 : (sges_in_segment * ioc->sge_size)/4; 2557 chain_length = sges_in_segment * ioc->sge_size; 2558 if (chain_offset) { 2559 chain_offset = chain_offset << 2560 MPI2_SGE_CHAIN_OFFSET_SHIFT; 2561 chain_length += ioc->sge_size; 2562 } 2563 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset | 2564 chain_length, chain_dma); 2565 sg_local = chain; 2566 if (!chain_offset) 2567 goto fill_in_last_segment; 2568 2569 /* fill in chain segments */ 2570 while (sges_in_segment) { 2571 if (sges_in_segment == 1) 2572 ioc->base_add_sg_single(sg_local, 2573 sgl_flags_last_element | 2574 sg_dma_len(sg_scmd), 2575 sg_dma_address(sg_scmd)); 2576 else 2577 ioc->base_add_sg_single(sg_local, sgl_flags | 2578 sg_dma_len(sg_scmd), 2579 sg_dma_address(sg_scmd)); 2580 sg_scmd = sg_next(sg_scmd); 2581 sg_local += ioc->sge_size; 2582 sges_left--; 2583 sges_in_segment--; 2584 } 2585 2586 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2587 if (!chain_req) 2588 return -1; 2589 chain = chain_req->chain_buffer; 2590 chain_dma = chain_req->chain_buffer_dma; 2591 } while (1); 2592 2593 2594 fill_in_last_segment: 2595 2596 /* fill the last segment */ 2597 while (sges_left) { 2598 if (sges_left == 1) 2599 ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer | 2600 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2601 else 2602 ioc->base_add_sg_single(sg_local, sgl_flags | 2603 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2604 sg_scmd = sg_next(sg_scmd); 2605 sg_local += ioc->sge_size; 2606 sges_left--; 2607 } 2608 2609 return 0; 2610 } 2611 2612 /** 2613 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format 2614 * @ioc: per adapter object 2615 * @scmd: scsi command 2616 * @smid: system request message index 2617 * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be 2618 * constructed on need. 2619 * Context: none. 2620 * 2621 * The main routine that builds scatter gather table from a given 2622 * scsi request sent via the .queuecommand main handler. 2623 * 2624 * Return: 0 success, anything else error 2625 */ 2626 static int 2627 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc, 2628 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device) 2629 { 2630 Mpi25SCSIIORequest_t *mpi_request; 2631 dma_addr_t chain_dma; 2632 struct scatterlist *sg_scmd; 2633 void *sg_local, *chain; 2634 u32 chain_offset; 2635 u32 chain_length; 2636 int sges_left; 2637 u32 sges_in_segment; 2638 u8 simple_sgl_flags; 2639 u8 simple_sgl_flags_last; 2640 u8 chain_sgl_flags; 2641 struct chain_tracker *chain_req; 2642 2643 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 2644 2645 /* init scatter gather flags */ 2646 simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2647 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2648 simple_sgl_flags_last = simple_sgl_flags | 2649 MPI25_IEEE_SGE_FLAGS_END_OF_LIST; 2650 chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 2651 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2652 2653 /* Check if we need to build a native SG list. */ 2654 if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request, 2655 smid, scmd, pcie_device) == 0)) { 2656 /* We built a native SG list, just return. */ 2657 return 0; 2658 } 2659 2660 sg_scmd = scsi_sglist(scmd); 2661 sges_left = scsi_dma_map(scmd); 2662 if (sges_left < 0) { 2663 sdev_printk(KERN_ERR, scmd->device, 2664 "scsi_dma_map failed: request for %d bytes!\n", 2665 scsi_bufflen(scmd)); 2666 return -ENOMEM; 2667 } 2668 2669 sg_local = &mpi_request->SGL; 2670 sges_in_segment = (ioc->request_sz - 2671 offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee; 2672 if (sges_left <= sges_in_segment) 2673 goto fill_in_last_segment; 2674 2675 mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) + 2676 (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee); 2677 2678 /* fill in main message segment when there is a chain following */ 2679 while (sges_in_segment > 1) { 2680 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2681 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2682 sg_scmd = sg_next(sg_scmd); 2683 sg_local += ioc->sge_size_ieee; 2684 sges_left--; 2685 sges_in_segment--; 2686 } 2687 2688 /* initializing the pointers */ 2689 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2690 if (!chain_req) 2691 return -1; 2692 chain = chain_req->chain_buffer; 2693 chain_dma = chain_req->chain_buffer_dma; 2694 do { 2695 sges_in_segment = (sges_left <= 2696 ioc->max_sges_in_chain_message) ? sges_left : 2697 ioc->max_sges_in_chain_message; 2698 chain_offset = (sges_left == sges_in_segment) ? 2699 0 : sges_in_segment; 2700 chain_length = sges_in_segment * ioc->sge_size_ieee; 2701 if (chain_offset) 2702 chain_length += ioc->sge_size_ieee; 2703 _base_add_sg_single_ieee(sg_local, chain_sgl_flags, 2704 chain_offset, chain_length, chain_dma); 2705 2706 sg_local = chain; 2707 if (!chain_offset) 2708 goto fill_in_last_segment; 2709 2710 /* fill in chain segments */ 2711 while (sges_in_segment) { 2712 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2713 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2714 sg_scmd = sg_next(sg_scmd); 2715 sg_local += ioc->sge_size_ieee; 2716 sges_left--; 2717 sges_in_segment--; 2718 } 2719 2720 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2721 if (!chain_req) 2722 return -1; 2723 chain = chain_req->chain_buffer; 2724 chain_dma = chain_req->chain_buffer_dma; 2725 } while (1); 2726 2727 2728 fill_in_last_segment: 2729 2730 /* fill the last segment */ 2731 while (sges_left > 0) { 2732 if (sges_left == 1) 2733 _base_add_sg_single_ieee(sg_local, 2734 simple_sgl_flags_last, 0, sg_dma_len(sg_scmd), 2735 sg_dma_address(sg_scmd)); 2736 else 2737 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2738 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2739 sg_scmd = sg_next(sg_scmd); 2740 sg_local += ioc->sge_size_ieee; 2741 sges_left--; 2742 } 2743 2744 return 0; 2745 } 2746 2747 /** 2748 * _base_build_sg_ieee - build generic sg for IEEE format 2749 * @ioc: per adapter object 2750 * @psge: virtual address for SGE 2751 * @data_out_dma: physical address for WRITES 2752 * @data_out_sz: data xfer size for WRITES 2753 * @data_in_dma: physical address for READS 2754 * @data_in_sz: data xfer size for READS 2755 */ 2756 static void 2757 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge, 2758 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 2759 size_t data_in_sz) 2760 { 2761 u8 sgl_flags; 2762 2763 if (!data_out_sz && !data_in_sz) { 2764 _base_build_zero_len_sge_ieee(ioc, psge); 2765 return; 2766 } 2767 2768 if (data_out_sz && data_in_sz) { 2769 /* WRITE sgel first */ 2770 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2771 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2772 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz, 2773 data_out_dma); 2774 2775 /* incr sgel */ 2776 psge += ioc->sge_size_ieee; 2777 2778 /* READ sgel last */ 2779 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST; 2780 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz, 2781 data_in_dma); 2782 } else if (data_out_sz) /* WRITE */ { 2783 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2784 MPI25_IEEE_SGE_FLAGS_END_OF_LIST | 2785 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2786 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz, 2787 data_out_dma); 2788 } else if (data_in_sz) /* READ */ { 2789 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2790 MPI25_IEEE_SGE_FLAGS_END_OF_LIST | 2791 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2792 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz, 2793 data_in_dma); 2794 } 2795 } 2796 2797 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10)) 2798 2799 /** 2800 * _base_config_dma_addressing - set dma addressing 2801 * @ioc: per adapter object 2802 * @pdev: PCI device struct 2803 * 2804 * Return: 0 for success, non-zero for failure. 2805 */ 2806 static int 2807 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev) 2808 { 2809 u64 required_mask, coherent_mask; 2810 struct sysinfo s; 2811 /* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */ 2812 int dma_mask = (ioc->hba_mpi_version_belonged > MPI2_VERSION) ? 63 : 64; 2813 2814 if (ioc->is_mcpu_endpoint) 2815 goto try_32bit; 2816 2817 required_mask = dma_get_required_mask(&pdev->dev); 2818 if (sizeof(dma_addr_t) == 4 || required_mask == 32) 2819 goto try_32bit; 2820 2821 if (ioc->dma_mask) 2822 coherent_mask = DMA_BIT_MASK(dma_mask); 2823 else 2824 coherent_mask = DMA_BIT_MASK(32); 2825 2826 if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(dma_mask)) || 2827 dma_set_coherent_mask(&pdev->dev, coherent_mask)) 2828 goto try_32bit; 2829 2830 ioc->base_add_sg_single = &_base_add_sg_single_64; 2831 ioc->sge_size = sizeof(Mpi2SGESimple64_t); 2832 ioc->dma_mask = dma_mask; 2833 goto out; 2834 2835 try_32bit: 2836 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32))) 2837 return -ENODEV; 2838 2839 ioc->base_add_sg_single = &_base_add_sg_single_32; 2840 ioc->sge_size = sizeof(Mpi2SGESimple32_t); 2841 ioc->dma_mask = 32; 2842 out: 2843 si_meminfo(&s); 2844 ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n", 2845 ioc->dma_mask, convert_to_kb(s.totalram)); 2846 2847 return 0; 2848 } 2849 2850 static int 2851 _base_change_consistent_dma_mask(struct MPT3SAS_ADAPTER *ioc, 2852 struct pci_dev *pdev) 2853 { 2854 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(ioc->dma_mask))) { 2855 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) 2856 return -ENODEV; 2857 } 2858 return 0; 2859 } 2860 2861 /** 2862 * _base_check_enable_msix - checks MSIX capabable. 2863 * @ioc: per adapter object 2864 * 2865 * Check to see if card is capable of MSIX, and set number 2866 * of available msix vectors 2867 */ 2868 static int 2869 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc) 2870 { 2871 int base; 2872 u16 message_control; 2873 2874 /* Check whether controller SAS2008 B0 controller, 2875 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX 2876 */ 2877 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 && 2878 ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) { 2879 return -EINVAL; 2880 } 2881 2882 base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX); 2883 if (!base) { 2884 dfailprintk(ioc, ioc_info(ioc, "msix not supported\n")); 2885 return -EINVAL; 2886 } 2887 2888 /* get msix vector count */ 2889 /* NUMA_IO not supported for older controllers */ 2890 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 || 2891 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 || 2892 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 || 2893 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 || 2894 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 || 2895 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 || 2896 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2) 2897 ioc->msix_vector_count = 1; 2898 else { 2899 pci_read_config_word(ioc->pdev, base + 2, &message_control); 2900 ioc->msix_vector_count = (message_control & 0x3FF) + 1; 2901 } 2902 dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n", 2903 ioc->msix_vector_count)); 2904 return 0; 2905 } 2906 2907 /** 2908 * _base_free_irq - free irq 2909 * @ioc: per adapter object 2910 * 2911 * Freeing respective reply_queue from the list. 2912 */ 2913 static void 2914 _base_free_irq(struct MPT3SAS_ADAPTER *ioc) 2915 { 2916 struct adapter_reply_queue *reply_q, *next; 2917 2918 if (list_empty(&ioc->reply_queue_list)) 2919 return; 2920 2921 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) { 2922 list_del(&reply_q->list); 2923 if (ioc->smp_affinity_enable) 2924 irq_set_affinity_hint(pci_irq_vector(ioc->pdev, 2925 reply_q->msix_index), NULL); 2926 free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index), 2927 reply_q); 2928 kfree(reply_q); 2929 } 2930 } 2931 2932 /** 2933 * _base_request_irq - request irq 2934 * @ioc: per adapter object 2935 * @index: msix index into vector table 2936 * 2937 * Inserting respective reply_queue into the list. 2938 */ 2939 static int 2940 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index) 2941 { 2942 struct pci_dev *pdev = ioc->pdev; 2943 struct adapter_reply_queue *reply_q; 2944 int r; 2945 2946 reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL); 2947 if (!reply_q) { 2948 ioc_err(ioc, "unable to allocate memory %zu!\n", 2949 sizeof(struct adapter_reply_queue)); 2950 return -ENOMEM; 2951 } 2952 reply_q->ioc = ioc; 2953 reply_q->msix_index = index; 2954 2955 atomic_set(&reply_q->busy, 0); 2956 if (ioc->msix_enable) 2957 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d", 2958 ioc->driver_name, ioc->id, index); 2959 else 2960 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d", 2961 ioc->driver_name, ioc->id); 2962 r = request_irq(pci_irq_vector(pdev, index), _base_interrupt, 2963 IRQF_SHARED, reply_q->name, reply_q); 2964 if (r) { 2965 pr_err("%s: unable to allocate interrupt %d!\n", 2966 reply_q->name, pci_irq_vector(pdev, index)); 2967 kfree(reply_q); 2968 return -EBUSY; 2969 } 2970 2971 INIT_LIST_HEAD(&reply_q->list); 2972 list_add_tail(&reply_q->list, &ioc->reply_queue_list); 2973 return 0; 2974 } 2975 2976 /** 2977 * _base_assign_reply_queues - assigning msix index for each cpu 2978 * @ioc: per adapter object 2979 * 2980 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity 2981 * 2982 * It would nice if we could call irq_set_affinity, however it is not 2983 * an exported symbol 2984 */ 2985 static void 2986 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc) 2987 { 2988 unsigned int cpu, nr_cpus, nr_msix, index = 0; 2989 struct adapter_reply_queue *reply_q; 2990 int local_numa_node; 2991 2992 if (!_base_is_controller_msix_enabled(ioc)) 2993 return; 2994 2995 if (ioc->msix_load_balance) 2996 return; 2997 2998 memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz); 2999 3000 nr_cpus = num_online_cpus(); 3001 nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count, 3002 ioc->facts.MaxMSIxVectors); 3003 if (!nr_msix) 3004 return; 3005 3006 if (ioc->smp_affinity_enable) { 3007 3008 /* 3009 * set irq affinity to local numa node for those irqs 3010 * corresponding to high iops queues. 3011 */ 3012 if (ioc->high_iops_queues) { 3013 local_numa_node = dev_to_node(&ioc->pdev->dev); 3014 for (index = 0; index < ioc->high_iops_queues; 3015 index++) { 3016 irq_set_affinity_hint(pci_irq_vector(ioc->pdev, 3017 index), cpumask_of_node(local_numa_node)); 3018 } 3019 } 3020 3021 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 3022 const cpumask_t *mask; 3023 3024 if (reply_q->msix_index < ioc->high_iops_queues) 3025 continue; 3026 3027 mask = pci_irq_get_affinity(ioc->pdev, 3028 reply_q->msix_index); 3029 if (!mask) { 3030 ioc_warn(ioc, "no affinity for msi %x\n", 3031 reply_q->msix_index); 3032 goto fall_back; 3033 } 3034 3035 for_each_cpu_and(cpu, mask, cpu_online_mask) { 3036 if (cpu >= ioc->cpu_msix_table_sz) 3037 break; 3038 ioc->cpu_msix_table[cpu] = reply_q->msix_index; 3039 } 3040 } 3041 return; 3042 } 3043 3044 fall_back: 3045 cpu = cpumask_first(cpu_online_mask); 3046 nr_msix -= ioc->high_iops_queues; 3047 index = 0; 3048 3049 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 3050 unsigned int i, group = nr_cpus / nr_msix; 3051 3052 if (reply_q->msix_index < ioc->high_iops_queues) 3053 continue; 3054 3055 if (cpu >= nr_cpus) 3056 break; 3057 3058 if (index < nr_cpus % nr_msix) 3059 group++; 3060 3061 for (i = 0 ; i < group ; i++) { 3062 ioc->cpu_msix_table[cpu] = reply_q->msix_index; 3063 cpu = cpumask_next(cpu, cpu_online_mask); 3064 } 3065 index++; 3066 } 3067 } 3068 3069 /** 3070 * _base_check_and_enable_high_iops_queues - enable high iops mode 3071 * @ ioc - per adapter object 3072 * @ hba_msix_vector_count - msix vectors supported by HBA 3073 * 3074 * Enable high iops queues only if 3075 * - HBA is a SEA/AERO controller and 3076 * - MSI-Xs vector supported by the HBA is 128 and 3077 * - total CPU count in the system >=16 and 3078 * - loaded driver with default max_msix_vectors module parameter and 3079 * - system booted in non kdump mode 3080 * 3081 * returns nothing. 3082 */ 3083 static void 3084 _base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc, 3085 int hba_msix_vector_count) 3086 { 3087 u16 lnksta, speed; 3088 3089 if (perf_mode == MPT_PERF_MODE_IOPS || 3090 perf_mode == MPT_PERF_MODE_LATENCY) { 3091 ioc->high_iops_queues = 0; 3092 return; 3093 } 3094 3095 if (perf_mode == MPT_PERF_MODE_DEFAULT) { 3096 3097 pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta); 3098 speed = lnksta & PCI_EXP_LNKSTA_CLS; 3099 3100 if (speed < 0x4) { 3101 ioc->high_iops_queues = 0; 3102 return; 3103 } 3104 } 3105 3106 if (!reset_devices && ioc->is_aero_ioc && 3107 hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES && 3108 num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES && 3109 max_msix_vectors == -1) 3110 ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES; 3111 else 3112 ioc->high_iops_queues = 0; 3113 } 3114 3115 /** 3116 * _base_disable_msix - disables msix 3117 * @ioc: per adapter object 3118 * 3119 */ 3120 static void 3121 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc) 3122 { 3123 if (!ioc->msix_enable) 3124 return; 3125 pci_free_irq_vectors(ioc->pdev); 3126 ioc->msix_enable = 0; 3127 } 3128 3129 /** 3130 * _base_alloc_irq_vectors - allocate msix vectors 3131 * @ioc: per adapter object 3132 * 3133 */ 3134 static int 3135 _base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc) 3136 { 3137 int i, irq_flags = PCI_IRQ_MSIX; 3138 struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues }; 3139 struct irq_affinity *descp = &desc; 3140 3141 if (ioc->smp_affinity_enable) 3142 irq_flags |= PCI_IRQ_AFFINITY; 3143 else 3144 descp = NULL; 3145 3146 ioc_info(ioc, " %d %d\n", ioc->high_iops_queues, 3147 ioc->reply_queue_count); 3148 3149 i = pci_alloc_irq_vectors_affinity(ioc->pdev, 3150 ioc->high_iops_queues, 3151 ioc->reply_queue_count, irq_flags, descp); 3152 3153 return i; 3154 } 3155 3156 /** 3157 * _base_enable_msix - enables msix, failback to io_apic 3158 * @ioc: per adapter object 3159 * 3160 */ 3161 static int 3162 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc) 3163 { 3164 int r; 3165 int i, local_max_msix_vectors; 3166 u8 try_msix = 0; 3167 3168 ioc->msix_load_balance = false; 3169 3170 if (msix_disable == -1 || msix_disable == 0) 3171 try_msix = 1; 3172 3173 if (!try_msix) 3174 goto try_ioapic; 3175 3176 if (_base_check_enable_msix(ioc) != 0) 3177 goto try_ioapic; 3178 3179 ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count); 3180 pr_info("\t no of cores: %d, max_msix_vectors: %d\n", 3181 ioc->cpu_count, max_msix_vectors); 3182 if (ioc->is_aero_ioc) 3183 _base_check_and_enable_high_iops_queues(ioc, 3184 ioc->msix_vector_count); 3185 ioc->reply_queue_count = 3186 min_t(int, ioc->cpu_count + ioc->high_iops_queues, 3187 ioc->msix_vector_count); 3188 3189 if (!ioc->rdpq_array_enable && max_msix_vectors == -1) 3190 local_max_msix_vectors = (reset_devices) ? 1 : 8; 3191 else 3192 local_max_msix_vectors = max_msix_vectors; 3193 3194 if (local_max_msix_vectors > 0) 3195 ioc->reply_queue_count = min_t(int, local_max_msix_vectors, 3196 ioc->reply_queue_count); 3197 else if (local_max_msix_vectors == 0) 3198 goto try_ioapic; 3199 3200 /* 3201 * Enable msix_load_balance only if combined reply queue mode is 3202 * disabled on SAS3 & above generation HBA devices. 3203 */ 3204 if (!ioc->combined_reply_queue && 3205 ioc->hba_mpi_version_belonged != MPI2_VERSION) { 3206 ioc_info(ioc, 3207 "combined ReplyQueue is off, Enabling msix load balance\n"); 3208 ioc->msix_load_balance = true; 3209 } 3210 3211 /* 3212 * smp affinity setting is not need when msix load balance 3213 * is enabled. 3214 */ 3215 if (ioc->msix_load_balance) 3216 ioc->smp_affinity_enable = 0; 3217 3218 r = _base_alloc_irq_vectors(ioc); 3219 if (r < 0) { 3220 ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", r); 3221 goto try_ioapic; 3222 } 3223 3224 ioc->msix_enable = 1; 3225 ioc->reply_queue_count = r; 3226 for (i = 0; i < ioc->reply_queue_count; i++) { 3227 r = _base_request_irq(ioc, i); 3228 if (r) { 3229 _base_free_irq(ioc); 3230 _base_disable_msix(ioc); 3231 goto try_ioapic; 3232 } 3233 } 3234 3235 ioc_info(ioc, "High IOPs queues : %s\n", 3236 ioc->high_iops_queues ? "enabled" : "disabled"); 3237 3238 return 0; 3239 3240 /* failback to io_apic interrupt routing */ 3241 try_ioapic: 3242 ioc->high_iops_queues = 0; 3243 ioc_info(ioc, "High IOPs queues : disabled\n"); 3244 ioc->reply_queue_count = 1; 3245 r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY); 3246 if (r < 0) { 3247 dfailprintk(ioc, 3248 ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n", 3249 r)); 3250 } else 3251 r = _base_request_irq(ioc, 0); 3252 3253 return r; 3254 } 3255 3256 /** 3257 * mpt3sas_base_unmap_resources - free controller resources 3258 * @ioc: per adapter object 3259 */ 3260 static void 3261 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc) 3262 { 3263 struct pci_dev *pdev = ioc->pdev; 3264 3265 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 3266 3267 _base_free_irq(ioc); 3268 _base_disable_msix(ioc); 3269 3270 kfree(ioc->replyPostRegisterIndex); 3271 ioc->replyPostRegisterIndex = NULL; 3272 3273 3274 if (ioc->chip_phys) { 3275 iounmap(ioc->chip); 3276 ioc->chip_phys = 0; 3277 } 3278 3279 if (pci_is_enabled(pdev)) { 3280 pci_release_selected_regions(ioc->pdev, ioc->bars); 3281 pci_disable_pcie_error_reporting(pdev); 3282 pci_disable_device(pdev); 3283 } 3284 } 3285 3286 static int 3287 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc); 3288 3289 /** 3290 * _base_check_for_fault_and_issue_reset - check if IOC is in fault state 3291 * and if it is in fault state then issue diag reset. 3292 * @ioc: per adapter object 3293 * 3294 * Returns: 0 for success, non-zero for failure. 3295 */ 3296 static int 3297 _base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc) 3298 { 3299 u32 ioc_state; 3300 int rc = -EFAULT; 3301 3302 dinitprintk(ioc, pr_info("%s\n", __func__)); 3303 if (ioc->pci_error_recovery) 3304 return 0; 3305 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 3306 dhsprintk(ioc, pr_info("%s: ioc_state(0x%08x)\n", __func__, ioc_state)); 3307 3308 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 3309 mpt3sas_print_fault_code(ioc, ioc_state & 3310 MPI2_DOORBELL_DATA_MASK); 3311 rc = _base_diag_reset(ioc); 3312 } else if ((ioc_state & MPI2_IOC_STATE_MASK) == 3313 MPI2_IOC_STATE_COREDUMP) { 3314 mpt3sas_print_coredump_info(ioc, ioc_state & 3315 MPI2_DOORBELL_DATA_MASK); 3316 mpt3sas_base_wait_for_coredump_completion(ioc, __func__); 3317 rc = _base_diag_reset(ioc); 3318 } 3319 3320 return rc; 3321 } 3322 3323 /** 3324 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap) 3325 * @ioc: per adapter object 3326 * 3327 * Return: 0 for success, non-zero for failure. 3328 */ 3329 int 3330 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc) 3331 { 3332 struct pci_dev *pdev = ioc->pdev; 3333 u32 memap_sz; 3334 u32 pio_sz; 3335 int i, r = 0, rc; 3336 u64 pio_chip = 0; 3337 phys_addr_t chip_phys = 0; 3338 struct adapter_reply_queue *reply_q; 3339 3340 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 3341 3342 ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM); 3343 if (pci_enable_device_mem(pdev)) { 3344 ioc_warn(ioc, "pci_enable_device_mem: failed\n"); 3345 ioc->bars = 0; 3346 return -ENODEV; 3347 } 3348 3349 3350 if (pci_request_selected_regions(pdev, ioc->bars, 3351 ioc->driver_name)) { 3352 ioc_warn(ioc, "pci_request_selected_regions: failed\n"); 3353 ioc->bars = 0; 3354 r = -ENODEV; 3355 goto out_fail; 3356 } 3357 3358 /* AER (Advanced Error Reporting) hooks */ 3359 pci_enable_pcie_error_reporting(pdev); 3360 3361 pci_set_master(pdev); 3362 3363 3364 if (_base_config_dma_addressing(ioc, pdev) != 0) { 3365 ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev)); 3366 r = -ENODEV; 3367 goto out_fail; 3368 } 3369 3370 for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) && 3371 (!memap_sz || !pio_sz); i++) { 3372 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { 3373 if (pio_sz) 3374 continue; 3375 pio_chip = (u64)pci_resource_start(pdev, i); 3376 pio_sz = pci_resource_len(pdev, i); 3377 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) { 3378 if (memap_sz) 3379 continue; 3380 ioc->chip_phys = pci_resource_start(pdev, i); 3381 chip_phys = ioc->chip_phys; 3382 memap_sz = pci_resource_len(pdev, i); 3383 ioc->chip = ioremap(ioc->chip_phys, memap_sz); 3384 } 3385 } 3386 3387 if (ioc->chip == NULL) { 3388 ioc_err(ioc, 3389 "unable to map adapter memory! or resource not found\n"); 3390 r = -EINVAL; 3391 goto out_fail; 3392 } 3393 3394 _base_mask_interrupts(ioc); 3395 3396 r = _base_get_ioc_facts(ioc); 3397 if (r) { 3398 rc = _base_check_for_fault_and_issue_reset(ioc); 3399 if (rc || (_base_get_ioc_facts(ioc))) 3400 goto out_fail; 3401 } 3402 3403 if (!ioc->rdpq_array_enable_assigned) { 3404 ioc->rdpq_array_enable = ioc->rdpq_array_capable; 3405 ioc->rdpq_array_enable_assigned = 1; 3406 } 3407 3408 r = _base_enable_msix(ioc); 3409 if (r) 3410 goto out_fail; 3411 3412 if (!ioc->is_driver_loading) 3413 _base_init_irqpolls(ioc); 3414 /* Use the Combined reply queue feature only for SAS3 C0 & higher 3415 * revision HBAs and also only when reply queue count is greater than 8 3416 */ 3417 if (ioc->combined_reply_queue) { 3418 /* Determine the Supplemental Reply Post Host Index Registers 3419 * Addresse. Supplemental Reply Post Host Index Registers 3420 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and 3421 * each register is at offset bytes of 3422 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one. 3423 */ 3424 ioc->replyPostRegisterIndex = kcalloc( 3425 ioc->combined_reply_index_count, 3426 sizeof(resource_size_t *), GFP_KERNEL); 3427 if (!ioc->replyPostRegisterIndex) { 3428 ioc_err(ioc, 3429 "allocation for replyPostRegisterIndex failed!\n"); 3430 r = -ENOMEM; 3431 goto out_fail; 3432 } 3433 3434 for (i = 0; i < ioc->combined_reply_index_count; i++) { 3435 ioc->replyPostRegisterIndex[i] = (resource_size_t *) 3436 ((u8 __force *)&ioc->chip->Doorbell + 3437 MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET + 3438 (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET)); 3439 } 3440 } 3441 3442 if (ioc->is_warpdrive) { 3443 ioc->reply_post_host_index[0] = (resource_size_t __iomem *) 3444 &ioc->chip->ReplyPostHostIndex; 3445 3446 for (i = 1; i < ioc->cpu_msix_table_sz; i++) 3447 ioc->reply_post_host_index[i] = 3448 (resource_size_t __iomem *) 3449 ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1) 3450 * 4))); 3451 } 3452 3453 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) 3454 pr_info("%s: %s enabled: IRQ %d\n", 3455 reply_q->name, 3456 ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC", 3457 pci_irq_vector(ioc->pdev, reply_q->msix_index)); 3458 3459 ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n", 3460 &chip_phys, ioc->chip, memap_sz); 3461 ioc_info(ioc, "ioport(0x%016llx), size(%d)\n", 3462 (unsigned long long)pio_chip, pio_sz); 3463 3464 /* Save PCI configuration state for recovery from PCI AER/EEH errors */ 3465 pci_save_state(pdev); 3466 return 0; 3467 3468 out_fail: 3469 mpt3sas_base_unmap_resources(ioc); 3470 return r; 3471 } 3472 3473 /** 3474 * mpt3sas_base_get_msg_frame - obtain request mf pointer 3475 * @ioc: per adapter object 3476 * @smid: system request message index(smid zero is invalid) 3477 * 3478 * Return: virt pointer to message frame. 3479 */ 3480 void * 3481 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3482 { 3483 return (void *)(ioc->request + (smid * ioc->request_sz)); 3484 } 3485 3486 /** 3487 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr 3488 * @ioc: per adapter object 3489 * @smid: system request message index 3490 * 3491 * Return: virt pointer to sense buffer. 3492 */ 3493 void * 3494 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3495 { 3496 return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE)); 3497 } 3498 3499 /** 3500 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr 3501 * @ioc: per adapter object 3502 * @smid: system request message index 3503 * 3504 * Return: phys pointer to the low 32bit address of the sense buffer. 3505 */ 3506 __le32 3507 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3508 { 3509 return cpu_to_le32(ioc->sense_dma + ((smid - 1) * 3510 SCSI_SENSE_BUFFERSIZE)); 3511 } 3512 3513 /** 3514 * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr 3515 * @ioc: per adapter object 3516 * @smid: system request message index 3517 * 3518 * Return: virt pointer to a PCIe SGL. 3519 */ 3520 void * 3521 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3522 { 3523 return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl); 3524 } 3525 3526 /** 3527 * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr 3528 * @ioc: per adapter object 3529 * @smid: system request message index 3530 * 3531 * Return: phys pointer to the address of the PCIe buffer. 3532 */ 3533 dma_addr_t 3534 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3535 { 3536 return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma; 3537 } 3538 3539 /** 3540 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address 3541 * @ioc: per adapter object 3542 * @phys_addr: lower 32 physical addr of the reply 3543 * 3544 * Converts 32bit lower physical addr into a virt address. 3545 */ 3546 void * 3547 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr) 3548 { 3549 if (!phys_addr) 3550 return NULL; 3551 return ioc->reply + (phys_addr - (u32)ioc->reply_dma); 3552 } 3553 3554 /** 3555 * _base_get_msix_index - get the msix index 3556 * @ioc: per adapter object 3557 * @scmd: scsi_cmnd object 3558 * 3559 * returns msix index of general reply queues, 3560 * i.e. reply queue on which IO request's reply 3561 * should be posted by the HBA firmware. 3562 */ 3563 static inline u8 3564 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc, 3565 struct scsi_cmnd *scmd) 3566 { 3567 /* Enables reply_queue load balancing */ 3568 if (ioc->msix_load_balance) 3569 return ioc->reply_queue_count ? 3570 base_mod64(atomic64_add_return(1, 3571 &ioc->total_io_cnt), ioc->reply_queue_count) : 0; 3572 3573 return ioc->cpu_msix_table[raw_smp_processor_id()]; 3574 } 3575 3576 /** 3577 * _base_sdev_nr_inflight_request -get number of inflight requests 3578 * of a request queue. 3579 * @q: request_queue object 3580 * 3581 * returns number of inflight request of a request queue. 3582 */ 3583 inline unsigned long 3584 _base_sdev_nr_inflight_request(struct request_queue *q) 3585 { 3586 struct blk_mq_hw_ctx *hctx = q->queue_hw_ctx[0]; 3587 3588 return atomic_read(&hctx->nr_active); 3589 } 3590 3591 3592 /** 3593 * _base_get_high_iops_msix_index - get the msix index of 3594 * high iops queues 3595 * @ioc: per adapter object 3596 * @scmd: scsi_cmnd object 3597 * 3598 * Returns: msix index of high iops reply queues. 3599 * i.e. high iops reply queue on which IO request's 3600 * reply should be posted by the HBA firmware. 3601 */ 3602 static inline u8 3603 _base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc, 3604 struct scsi_cmnd *scmd) 3605 { 3606 /** 3607 * Round robin the IO interrupts among the high iops 3608 * reply queues in terms of batch count 16 when outstanding 3609 * IOs on the target device is >=8. 3610 */ 3611 if (_base_sdev_nr_inflight_request(scmd->device->request_queue) > 3612 MPT3SAS_DEVICE_HIGH_IOPS_DEPTH) 3613 return base_mod64(( 3614 atomic64_add_return(1, &ioc->high_iops_outstanding) / 3615 MPT3SAS_HIGH_IOPS_BATCH_COUNT), 3616 MPT3SAS_HIGH_IOPS_REPLY_QUEUES); 3617 3618 return _base_get_msix_index(ioc, scmd); 3619 } 3620 3621 /** 3622 * mpt3sas_base_get_smid - obtain a free smid from internal queue 3623 * @ioc: per adapter object 3624 * @cb_idx: callback index 3625 * 3626 * Return: smid (zero is invalid) 3627 */ 3628 u16 3629 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx) 3630 { 3631 unsigned long flags; 3632 struct request_tracker *request; 3633 u16 smid; 3634 3635 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3636 if (list_empty(&ioc->internal_free_list)) { 3637 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3638 ioc_err(ioc, "%s: smid not available\n", __func__); 3639 return 0; 3640 } 3641 3642 request = list_entry(ioc->internal_free_list.next, 3643 struct request_tracker, tracker_list); 3644 request->cb_idx = cb_idx; 3645 smid = request->smid; 3646 list_del(&request->tracker_list); 3647 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3648 return smid; 3649 } 3650 3651 /** 3652 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue 3653 * @ioc: per adapter object 3654 * @cb_idx: callback index 3655 * @scmd: pointer to scsi command object 3656 * 3657 * Return: smid (zero is invalid) 3658 */ 3659 u16 3660 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx, 3661 struct scsi_cmnd *scmd) 3662 { 3663 struct scsiio_tracker *request = scsi_cmd_priv(scmd); 3664 unsigned int tag = scmd->request->tag; 3665 u16 smid; 3666 3667 smid = tag + 1; 3668 request->cb_idx = cb_idx; 3669 request->smid = smid; 3670 request->scmd = scmd; 3671 INIT_LIST_HEAD(&request->chain_list); 3672 return smid; 3673 } 3674 3675 /** 3676 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue 3677 * @ioc: per adapter object 3678 * @cb_idx: callback index 3679 * 3680 * Return: smid (zero is invalid) 3681 */ 3682 u16 3683 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx) 3684 { 3685 unsigned long flags; 3686 struct request_tracker *request; 3687 u16 smid; 3688 3689 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3690 if (list_empty(&ioc->hpr_free_list)) { 3691 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3692 return 0; 3693 } 3694 3695 request = list_entry(ioc->hpr_free_list.next, 3696 struct request_tracker, tracker_list); 3697 request->cb_idx = cb_idx; 3698 smid = request->smid; 3699 list_del(&request->tracker_list); 3700 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3701 return smid; 3702 } 3703 3704 static void 3705 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc) 3706 { 3707 /* 3708 * See _wait_for_commands_to_complete() call with regards to this code. 3709 */ 3710 if (ioc->shost_recovery && ioc->pending_io_count) { 3711 ioc->pending_io_count = scsi_host_busy(ioc->shost); 3712 if (ioc->pending_io_count == 0) 3713 wake_up(&ioc->reset_wq); 3714 } 3715 } 3716 3717 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc, 3718 struct scsiio_tracker *st) 3719 { 3720 if (WARN_ON(st->smid == 0)) 3721 return; 3722 st->cb_idx = 0xFF; 3723 st->direct_io = 0; 3724 st->scmd = NULL; 3725 atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0); 3726 st->smid = 0; 3727 } 3728 3729 /** 3730 * mpt3sas_base_free_smid - put smid back on free_list 3731 * @ioc: per adapter object 3732 * @smid: system request message index 3733 */ 3734 void 3735 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3736 { 3737 unsigned long flags; 3738 int i; 3739 3740 if (smid < ioc->hi_priority_smid) { 3741 struct scsiio_tracker *st; 3742 void *request; 3743 3744 st = _get_st_from_smid(ioc, smid); 3745 if (!st) { 3746 _base_recovery_check(ioc); 3747 return; 3748 } 3749 3750 /* Clear MPI request frame */ 3751 request = mpt3sas_base_get_msg_frame(ioc, smid); 3752 memset(request, 0, ioc->request_sz); 3753 3754 mpt3sas_base_clear_st(ioc, st); 3755 _base_recovery_check(ioc); 3756 return; 3757 } 3758 3759 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3760 if (smid < ioc->internal_smid) { 3761 /* hi-priority */ 3762 i = smid - ioc->hi_priority_smid; 3763 ioc->hpr_lookup[i].cb_idx = 0xFF; 3764 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list); 3765 } else if (smid <= ioc->hba_queue_depth) { 3766 /* internal queue */ 3767 i = smid - ioc->internal_smid; 3768 ioc->internal_lookup[i].cb_idx = 0xFF; 3769 list_add(&ioc->internal_lookup[i].tracker_list, 3770 &ioc->internal_free_list); 3771 } 3772 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3773 } 3774 3775 /** 3776 * _base_mpi_ep_writeq - 32 bit write to MMIO 3777 * @b: data payload 3778 * @addr: address in MMIO space 3779 * @writeq_lock: spin lock 3780 * 3781 * This special handling for MPI EP to take care of 32 bit 3782 * environment where its not quarenteed to send the entire word 3783 * in one transfer. 3784 */ 3785 static inline void 3786 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr, 3787 spinlock_t *writeq_lock) 3788 { 3789 unsigned long flags; 3790 3791 spin_lock_irqsave(writeq_lock, flags); 3792 __raw_writel((u32)(b), addr); 3793 __raw_writel((u32)(b >> 32), (addr + 4)); 3794 spin_unlock_irqrestore(writeq_lock, flags); 3795 } 3796 3797 /** 3798 * _base_writeq - 64 bit write to MMIO 3799 * @b: data payload 3800 * @addr: address in MMIO space 3801 * @writeq_lock: spin lock 3802 * 3803 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes 3804 * care of 32 bit environment where its not quarenteed to send the entire word 3805 * in one transfer. 3806 */ 3807 #if defined(writeq) && defined(CONFIG_64BIT) 3808 static inline void 3809 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock) 3810 { 3811 wmb(); 3812 __raw_writeq(b, addr); 3813 barrier(); 3814 } 3815 #else 3816 static inline void 3817 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock) 3818 { 3819 _base_mpi_ep_writeq(b, addr, writeq_lock); 3820 } 3821 #endif 3822 3823 /** 3824 * _base_set_and_get_msix_index - get the msix index and assign to msix_io 3825 * variable of scsi tracker 3826 * @ioc: per adapter object 3827 * @smid: system request message index 3828 * 3829 * returns msix index. 3830 */ 3831 static u8 3832 _base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3833 { 3834 struct scsiio_tracker *st = NULL; 3835 3836 if (smid < ioc->hi_priority_smid) 3837 st = _get_st_from_smid(ioc, smid); 3838 3839 if (st == NULL) 3840 return _base_get_msix_index(ioc, NULL); 3841 3842 st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd); 3843 return st->msix_io; 3844 } 3845 3846 /** 3847 * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware 3848 * @ioc: per adapter object 3849 * @smid: system request message index 3850 * @handle: device handle 3851 */ 3852 static void 3853 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc, 3854 u16 smid, u16 handle) 3855 { 3856 Mpi2RequestDescriptorUnion_t descriptor; 3857 u64 *request = (u64 *)&descriptor; 3858 void *mpi_req_iomem; 3859 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 3860 3861 _clone_sg_entries(ioc, (void *) mfp, smid); 3862 mpi_req_iomem = (void __force *)ioc->chip + 3863 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz); 3864 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 3865 ioc->request_sz); 3866 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 3867 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3868 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 3869 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 3870 descriptor.SCSIIO.LMID = 0; 3871 _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3872 &ioc->scsi_lookup_lock); 3873 } 3874 3875 /** 3876 * _base_put_smid_scsi_io - send SCSI_IO request to firmware 3877 * @ioc: per adapter object 3878 * @smid: system request message index 3879 * @handle: device handle 3880 */ 3881 static void 3882 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle) 3883 { 3884 Mpi2RequestDescriptorUnion_t descriptor; 3885 u64 *request = (u64 *)&descriptor; 3886 3887 3888 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 3889 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3890 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 3891 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 3892 descriptor.SCSIIO.LMID = 0; 3893 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3894 &ioc->scsi_lookup_lock); 3895 } 3896 3897 /** 3898 * _base_put_smid_fast_path - send fast path request to firmware 3899 * @ioc: per adapter object 3900 * @smid: system request message index 3901 * @handle: device handle 3902 */ 3903 static void 3904 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid, 3905 u16 handle) 3906 { 3907 Mpi2RequestDescriptorUnion_t descriptor; 3908 u64 *request = (u64 *)&descriptor; 3909 3910 descriptor.SCSIIO.RequestFlags = 3911 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 3912 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3913 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 3914 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 3915 descriptor.SCSIIO.LMID = 0; 3916 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3917 &ioc->scsi_lookup_lock); 3918 } 3919 3920 /** 3921 * _base_put_smid_hi_priority - send Task Management request to firmware 3922 * @ioc: per adapter object 3923 * @smid: system request message index 3924 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0. 3925 */ 3926 static void 3927 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid, 3928 u16 msix_task) 3929 { 3930 Mpi2RequestDescriptorUnion_t descriptor; 3931 void *mpi_req_iomem; 3932 u64 *request; 3933 3934 if (ioc->is_mcpu_endpoint) { 3935 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 3936 3937 /* TBD 256 is offset within sys register. */ 3938 mpi_req_iomem = (void __force *)ioc->chip 3939 + MPI_FRAME_START_OFFSET 3940 + (smid * ioc->request_sz); 3941 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 3942 ioc->request_sz); 3943 } 3944 3945 request = (u64 *)&descriptor; 3946 3947 descriptor.HighPriority.RequestFlags = 3948 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 3949 descriptor.HighPriority.MSIxIndex = msix_task; 3950 descriptor.HighPriority.SMID = cpu_to_le16(smid); 3951 descriptor.HighPriority.LMID = 0; 3952 descriptor.HighPriority.Reserved1 = 0; 3953 if (ioc->is_mcpu_endpoint) 3954 _base_mpi_ep_writeq(*request, 3955 &ioc->chip->RequestDescriptorPostLow, 3956 &ioc->scsi_lookup_lock); 3957 else 3958 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3959 &ioc->scsi_lookup_lock); 3960 } 3961 3962 /** 3963 * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to 3964 * firmware 3965 * @ioc: per adapter object 3966 * @smid: system request message index 3967 */ 3968 void 3969 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3970 { 3971 Mpi2RequestDescriptorUnion_t descriptor; 3972 u64 *request = (u64 *)&descriptor; 3973 3974 descriptor.Default.RequestFlags = 3975 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED; 3976 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3977 descriptor.Default.SMID = cpu_to_le16(smid); 3978 descriptor.Default.LMID = 0; 3979 descriptor.Default.DescriptorTypeDependent = 0; 3980 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3981 &ioc->scsi_lookup_lock); 3982 } 3983 3984 /** 3985 * _base_put_smid_default - Default, primarily used for config pages 3986 * @ioc: per adapter object 3987 * @smid: system request message index 3988 */ 3989 static void 3990 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3991 { 3992 Mpi2RequestDescriptorUnion_t descriptor; 3993 void *mpi_req_iomem; 3994 u64 *request; 3995 3996 if (ioc->is_mcpu_endpoint) { 3997 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 3998 3999 _clone_sg_entries(ioc, (void *) mfp, smid); 4000 /* TBD 256 is offset within sys register */ 4001 mpi_req_iomem = (void __force *)ioc->chip + 4002 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz); 4003 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 4004 ioc->request_sz); 4005 } 4006 request = (u64 *)&descriptor; 4007 descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 4008 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4009 descriptor.Default.SMID = cpu_to_le16(smid); 4010 descriptor.Default.LMID = 0; 4011 descriptor.Default.DescriptorTypeDependent = 0; 4012 if (ioc->is_mcpu_endpoint) 4013 _base_mpi_ep_writeq(*request, 4014 &ioc->chip->RequestDescriptorPostLow, 4015 &ioc->scsi_lookup_lock); 4016 else 4017 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 4018 &ioc->scsi_lookup_lock); 4019 } 4020 4021 /** 4022 * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using 4023 * Atomic Request Descriptor 4024 * @ioc: per adapter object 4025 * @smid: system request message index 4026 * @handle: device handle, unused in this function, for function type match 4027 * 4028 * Return nothing. 4029 */ 4030 static void 4031 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4032 u16 handle) 4033 { 4034 Mpi26AtomicRequestDescriptor_t descriptor; 4035 u32 *request = (u32 *)&descriptor; 4036 4037 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 4038 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4039 descriptor.SMID = cpu_to_le16(smid); 4040 4041 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4042 } 4043 4044 /** 4045 * _base_put_smid_fast_path_atomic - send fast path request to firmware 4046 * using Atomic Request Descriptor 4047 * @ioc: per adapter object 4048 * @smid: system request message index 4049 * @handle: device handle, unused in this function, for function type match 4050 * Return nothing 4051 */ 4052 static void 4053 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4054 u16 handle) 4055 { 4056 Mpi26AtomicRequestDescriptor_t descriptor; 4057 u32 *request = (u32 *)&descriptor; 4058 4059 descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 4060 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4061 descriptor.SMID = cpu_to_le16(smid); 4062 4063 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4064 } 4065 4066 /** 4067 * _base_put_smid_hi_priority_atomic - send Task Management request to 4068 * firmware using Atomic Request Descriptor 4069 * @ioc: per adapter object 4070 * @smid: system request message index 4071 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0 4072 * 4073 * Return nothing. 4074 */ 4075 static void 4076 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4077 u16 msix_task) 4078 { 4079 Mpi26AtomicRequestDescriptor_t descriptor; 4080 u32 *request = (u32 *)&descriptor; 4081 4082 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 4083 descriptor.MSIxIndex = msix_task; 4084 descriptor.SMID = cpu_to_le16(smid); 4085 4086 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4087 } 4088 4089 /** 4090 * _base_put_smid_default - Default, primarily used for config pages 4091 * use Atomic Request Descriptor 4092 * @ioc: per adapter object 4093 * @smid: system request message index 4094 * 4095 * Return nothing. 4096 */ 4097 static void 4098 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid) 4099 { 4100 Mpi26AtomicRequestDescriptor_t descriptor; 4101 u32 *request = (u32 *)&descriptor; 4102 4103 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 4104 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4105 descriptor.SMID = cpu_to_le16(smid); 4106 4107 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4108 } 4109 4110 /** 4111 * _base_display_OEMs_branding - Display branding string 4112 * @ioc: per adapter object 4113 */ 4114 static void 4115 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc) 4116 { 4117 if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL) 4118 return; 4119 4120 switch (ioc->pdev->subsystem_vendor) { 4121 case PCI_VENDOR_ID_INTEL: 4122 switch (ioc->pdev->device) { 4123 case MPI2_MFGPAGE_DEVID_SAS2008: 4124 switch (ioc->pdev->subsystem_device) { 4125 case MPT2SAS_INTEL_RMS2LL080_SSDID: 4126 ioc_info(ioc, "%s\n", 4127 MPT2SAS_INTEL_RMS2LL080_BRANDING); 4128 break; 4129 case MPT2SAS_INTEL_RMS2LL040_SSDID: 4130 ioc_info(ioc, "%s\n", 4131 MPT2SAS_INTEL_RMS2LL040_BRANDING); 4132 break; 4133 case MPT2SAS_INTEL_SSD910_SSDID: 4134 ioc_info(ioc, "%s\n", 4135 MPT2SAS_INTEL_SSD910_BRANDING); 4136 break; 4137 default: 4138 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4139 ioc->pdev->subsystem_device); 4140 break; 4141 } 4142 break; 4143 case MPI2_MFGPAGE_DEVID_SAS2308_2: 4144 switch (ioc->pdev->subsystem_device) { 4145 case MPT2SAS_INTEL_RS25GB008_SSDID: 4146 ioc_info(ioc, "%s\n", 4147 MPT2SAS_INTEL_RS25GB008_BRANDING); 4148 break; 4149 case MPT2SAS_INTEL_RMS25JB080_SSDID: 4150 ioc_info(ioc, "%s\n", 4151 MPT2SAS_INTEL_RMS25JB080_BRANDING); 4152 break; 4153 case MPT2SAS_INTEL_RMS25JB040_SSDID: 4154 ioc_info(ioc, "%s\n", 4155 MPT2SAS_INTEL_RMS25JB040_BRANDING); 4156 break; 4157 case MPT2SAS_INTEL_RMS25KB080_SSDID: 4158 ioc_info(ioc, "%s\n", 4159 MPT2SAS_INTEL_RMS25KB080_BRANDING); 4160 break; 4161 case MPT2SAS_INTEL_RMS25KB040_SSDID: 4162 ioc_info(ioc, "%s\n", 4163 MPT2SAS_INTEL_RMS25KB040_BRANDING); 4164 break; 4165 case MPT2SAS_INTEL_RMS25LB040_SSDID: 4166 ioc_info(ioc, "%s\n", 4167 MPT2SAS_INTEL_RMS25LB040_BRANDING); 4168 break; 4169 case MPT2SAS_INTEL_RMS25LB080_SSDID: 4170 ioc_info(ioc, "%s\n", 4171 MPT2SAS_INTEL_RMS25LB080_BRANDING); 4172 break; 4173 default: 4174 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4175 ioc->pdev->subsystem_device); 4176 break; 4177 } 4178 break; 4179 case MPI25_MFGPAGE_DEVID_SAS3008: 4180 switch (ioc->pdev->subsystem_device) { 4181 case MPT3SAS_INTEL_RMS3JC080_SSDID: 4182 ioc_info(ioc, "%s\n", 4183 MPT3SAS_INTEL_RMS3JC080_BRANDING); 4184 break; 4185 4186 case MPT3SAS_INTEL_RS3GC008_SSDID: 4187 ioc_info(ioc, "%s\n", 4188 MPT3SAS_INTEL_RS3GC008_BRANDING); 4189 break; 4190 case MPT3SAS_INTEL_RS3FC044_SSDID: 4191 ioc_info(ioc, "%s\n", 4192 MPT3SAS_INTEL_RS3FC044_BRANDING); 4193 break; 4194 case MPT3SAS_INTEL_RS3UC080_SSDID: 4195 ioc_info(ioc, "%s\n", 4196 MPT3SAS_INTEL_RS3UC080_BRANDING); 4197 break; 4198 default: 4199 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4200 ioc->pdev->subsystem_device); 4201 break; 4202 } 4203 break; 4204 default: 4205 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4206 ioc->pdev->subsystem_device); 4207 break; 4208 } 4209 break; 4210 case PCI_VENDOR_ID_DELL: 4211 switch (ioc->pdev->device) { 4212 case MPI2_MFGPAGE_DEVID_SAS2008: 4213 switch (ioc->pdev->subsystem_device) { 4214 case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID: 4215 ioc_info(ioc, "%s\n", 4216 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING); 4217 break; 4218 case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID: 4219 ioc_info(ioc, "%s\n", 4220 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING); 4221 break; 4222 case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID: 4223 ioc_info(ioc, "%s\n", 4224 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING); 4225 break; 4226 case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID: 4227 ioc_info(ioc, "%s\n", 4228 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING); 4229 break; 4230 case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID: 4231 ioc_info(ioc, "%s\n", 4232 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING); 4233 break; 4234 case MPT2SAS_DELL_PERC_H200_SSDID: 4235 ioc_info(ioc, "%s\n", 4236 MPT2SAS_DELL_PERC_H200_BRANDING); 4237 break; 4238 case MPT2SAS_DELL_6GBPS_SAS_SSDID: 4239 ioc_info(ioc, "%s\n", 4240 MPT2SAS_DELL_6GBPS_SAS_BRANDING); 4241 break; 4242 default: 4243 ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n", 4244 ioc->pdev->subsystem_device); 4245 break; 4246 } 4247 break; 4248 case MPI25_MFGPAGE_DEVID_SAS3008: 4249 switch (ioc->pdev->subsystem_device) { 4250 case MPT3SAS_DELL_12G_HBA_SSDID: 4251 ioc_info(ioc, "%s\n", 4252 MPT3SAS_DELL_12G_HBA_BRANDING); 4253 break; 4254 default: 4255 ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n", 4256 ioc->pdev->subsystem_device); 4257 break; 4258 } 4259 break; 4260 default: 4261 ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n", 4262 ioc->pdev->subsystem_device); 4263 break; 4264 } 4265 break; 4266 case PCI_VENDOR_ID_CISCO: 4267 switch (ioc->pdev->device) { 4268 case MPI25_MFGPAGE_DEVID_SAS3008: 4269 switch (ioc->pdev->subsystem_device) { 4270 case MPT3SAS_CISCO_12G_8E_HBA_SSDID: 4271 ioc_info(ioc, "%s\n", 4272 MPT3SAS_CISCO_12G_8E_HBA_BRANDING); 4273 break; 4274 case MPT3SAS_CISCO_12G_8I_HBA_SSDID: 4275 ioc_info(ioc, "%s\n", 4276 MPT3SAS_CISCO_12G_8I_HBA_BRANDING); 4277 break; 4278 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID: 4279 ioc_info(ioc, "%s\n", 4280 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING); 4281 break; 4282 default: 4283 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n", 4284 ioc->pdev->subsystem_device); 4285 break; 4286 } 4287 break; 4288 case MPI25_MFGPAGE_DEVID_SAS3108_1: 4289 switch (ioc->pdev->subsystem_device) { 4290 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID: 4291 ioc_info(ioc, "%s\n", 4292 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING); 4293 break; 4294 case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID: 4295 ioc_info(ioc, "%s\n", 4296 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING); 4297 break; 4298 default: 4299 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n", 4300 ioc->pdev->subsystem_device); 4301 break; 4302 } 4303 break; 4304 default: 4305 ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n", 4306 ioc->pdev->subsystem_device); 4307 break; 4308 } 4309 break; 4310 case MPT2SAS_HP_3PAR_SSVID: 4311 switch (ioc->pdev->device) { 4312 case MPI2_MFGPAGE_DEVID_SAS2004: 4313 switch (ioc->pdev->subsystem_device) { 4314 case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID: 4315 ioc_info(ioc, "%s\n", 4316 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING); 4317 break; 4318 default: 4319 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n", 4320 ioc->pdev->subsystem_device); 4321 break; 4322 } 4323 break; 4324 case MPI2_MFGPAGE_DEVID_SAS2308_2: 4325 switch (ioc->pdev->subsystem_device) { 4326 case MPT2SAS_HP_2_4_INTERNAL_SSDID: 4327 ioc_info(ioc, "%s\n", 4328 MPT2SAS_HP_2_4_INTERNAL_BRANDING); 4329 break; 4330 case MPT2SAS_HP_2_4_EXTERNAL_SSDID: 4331 ioc_info(ioc, "%s\n", 4332 MPT2SAS_HP_2_4_EXTERNAL_BRANDING); 4333 break; 4334 case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID: 4335 ioc_info(ioc, "%s\n", 4336 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING); 4337 break; 4338 case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID: 4339 ioc_info(ioc, "%s\n", 4340 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING); 4341 break; 4342 default: 4343 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n", 4344 ioc->pdev->subsystem_device); 4345 break; 4346 } 4347 break; 4348 default: 4349 ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n", 4350 ioc->pdev->subsystem_device); 4351 break; 4352 } 4353 default: 4354 break; 4355 } 4356 } 4357 4358 /** 4359 * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg 4360 * version from FW Image Header. 4361 * @ioc: per adapter object 4362 * 4363 * Return: 0 for success, non-zero for failure. 4364 */ 4365 static int 4366 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc) 4367 { 4368 Mpi2FWImageHeader_t *fw_img_hdr; 4369 Mpi26ComponentImageHeader_t *cmp_img_hdr; 4370 Mpi25FWUploadRequest_t *mpi_request; 4371 Mpi2FWUploadReply_t mpi_reply; 4372 int r = 0; 4373 u32 package_version = 0; 4374 void *fwpkg_data = NULL; 4375 dma_addr_t fwpkg_data_dma; 4376 u16 smid, ioc_status; 4377 size_t data_length; 4378 4379 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 4380 4381 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 4382 ioc_err(ioc, "%s: internal command already in use\n", __func__); 4383 return -EAGAIN; 4384 } 4385 4386 data_length = sizeof(Mpi2FWImageHeader_t); 4387 fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length, 4388 &fwpkg_data_dma, GFP_KERNEL); 4389 if (!fwpkg_data) { 4390 ioc_err(ioc, 4391 "Memory allocation for fwpkg data failed at %s:%d/%s()!\n", 4392 __FILE__, __LINE__, __func__); 4393 return -ENOMEM; 4394 } 4395 4396 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 4397 if (!smid) { 4398 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 4399 r = -EAGAIN; 4400 goto out; 4401 } 4402 4403 ioc->base_cmds.status = MPT3_CMD_PENDING; 4404 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 4405 ioc->base_cmds.smid = smid; 4406 memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t)); 4407 mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD; 4408 mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH; 4409 mpi_request->ImageSize = cpu_to_le32(data_length); 4410 ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma, 4411 data_length); 4412 init_completion(&ioc->base_cmds.done); 4413 ioc->put_smid_default(ioc, smid); 4414 /* Wait for 15 seconds */ 4415 wait_for_completion_timeout(&ioc->base_cmds.done, 4416 FW_IMG_HDR_READ_TIMEOUT*HZ); 4417 ioc_info(ioc, "%s: complete\n", __func__); 4418 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 4419 ioc_err(ioc, "%s: timeout\n", __func__); 4420 _debug_dump_mf(mpi_request, 4421 sizeof(Mpi25FWUploadRequest_t)/4); 4422 r = -ETIME; 4423 } else { 4424 memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t)); 4425 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) { 4426 memcpy(&mpi_reply, ioc->base_cmds.reply, 4427 sizeof(Mpi2FWUploadReply_t)); 4428 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 4429 MPI2_IOCSTATUS_MASK; 4430 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 4431 fw_img_hdr = (Mpi2FWImageHeader_t *)fwpkg_data; 4432 if (le32_to_cpu(fw_img_hdr->Signature) == 4433 MPI26_IMAGE_HEADER_SIGNATURE0_MPI26) { 4434 cmp_img_hdr = 4435 (Mpi26ComponentImageHeader_t *) 4436 (fwpkg_data); 4437 package_version = 4438 le32_to_cpu( 4439 cmp_img_hdr->ApplicationSpecific); 4440 } else 4441 package_version = 4442 le32_to_cpu( 4443 fw_img_hdr->PackageVersion.Word); 4444 if (package_version) 4445 ioc_info(ioc, 4446 "FW Package Ver(%02d.%02d.%02d.%02d)\n", 4447 ((package_version) & 0xFF000000) >> 24, 4448 ((package_version) & 0x00FF0000) >> 16, 4449 ((package_version) & 0x0000FF00) >> 8, 4450 (package_version) & 0x000000FF); 4451 } else { 4452 _debug_dump_mf(&mpi_reply, 4453 sizeof(Mpi2FWUploadReply_t)/4); 4454 } 4455 } 4456 } 4457 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 4458 out: 4459 if (fwpkg_data) 4460 dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data, 4461 fwpkg_data_dma); 4462 return r; 4463 } 4464 4465 /** 4466 * _base_display_ioc_capabilities - Disply IOC's capabilities. 4467 * @ioc: per adapter object 4468 */ 4469 static void 4470 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc) 4471 { 4472 int i = 0; 4473 char desc[16]; 4474 u32 iounit_pg1_flags; 4475 u32 bios_version; 4476 4477 bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion); 4478 strncpy(desc, ioc->manu_pg0.ChipName, 16); 4479 ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n", 4480 desc, 4481 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24, 4482 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16, 4483 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8, 4484 ioc->facts.FWVersion.Word & 0x000000FF, 4485 ioc->pdev->revision, 4486 (bios_version & 0xFF000000) >> 24, 4487 (bios_version & 0x00FF0000) >> 16, 4488 (bios_version & 0x0000FF00) >> 8, 4489 bios_version & 0x000000FF); 4490 4491 _base_display_OEMs_branding(ioc); 4492 4493 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) { 4494 pr_info("%sNVMe", i ? "," : ""); 4495 i++; 4496 } 4497 4498 ioc_info(ioc, "Protocol=("); 4499 4500 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) { 4501 pr_cont("Initiator"); 4502 i++; 4503 } 4504 4505 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) { 4506 pr_cont("%sTarget", i ? "," : ""); 4507 i++; 4508 } 4509 4510 i = 0; 4511 pr_cont("), Capabilities=("); 4512 4513 if (!ioc->hide_ir_msg) { 4514 if (ioc->facts.IOCCapabilities & 4515 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) { 4516 pr_cont("Raid"); 4517 i++; 4518 } 4519 } 4520 4521 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) { 4522 pr_cont("%sTLR", i ? "," : ""); 4523 i++; 4524 } 4525 4526 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) { 4527 pr_cont("%sMulticast", i ? "," : ""); 4528 i++; 4529 } 4530 4531 if (ioc->facts.IOCCapabilities & 4532 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) { 4533 pr_cont("%sBIDI Target", i ? "," : ""); 4534 i++; 4535 } 4536 4537 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) { 4538 pr_cont("%sEEDP", i ? "," : ""); 4539 i++; 4540 } 4541 4542 if (ioc->facts.IOCCapabilities & 4543 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) { 4544 pr_cont("%sSnapshot Buffer", i ? "," : ""); 4545 i++; 4546 } 4547 4548 if (ioc->facts.IOCCapabilities & 4549 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) { 4550 pr_cont("%sDiag Trace Buffer", i ? "," : ""); 4551 i++; 4552 } 4553 4554 if (ioc->facts.IOCCapabilities & 4555 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) { 4556 pr_cont("%sDiag Extended Buffer", i ? "," : ""); 4557 i++; 4558 } 4559 4560 if (ioc->facts.IOCCapabilities & 4561 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) { 4562 pr_cont("%sTask Set Full", i ? "," : ""); 4563 i++; 4564 } 4565 4566 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags); 4567 if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) { 4568 pr_cont("%sNCQ", i ? "," : ""); 4569 i++; 4570 } 4571 4572 pr_cont(")\n"); 4573 } 4574 4575 /** 4576 * mpt3sas_base_update_missing_delay - change the missing delay timers 4577 * @ioc: per adapter object 4578 * @device_missing_delay: amount of time till device is reported missing 4579 * @io_missing_delay: interval IO is returned when there is a missing device 4580 * 4581 * Passed on the command line, this function will modify the device missing 4582 * delay, as well as the io missing delay. This should be called at driver 4583 * load time. 4584 */ 4585 void 4586 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc, 4587 u16 device_missing_delay, u8 io_missing_delay) 4588 { 4589 u16 dmd, dmd_new, dmd_orignal; 4590 u8 io_missing_delay_original; 4591 u16 sz; 4592 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL; 4593 Mpi2ConfigReply_t mpi_reply; 4594 u8 num_phys = 0; 4595 u16 ioc_status; 4596 4597 mpt3sas_config_get_number_hba_phys(ioc, &num_phys); 4598 if (!num_phys) 4599 return; 4600 4601 sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys * 4602 sizeof(Mpi2SasIOUnit1PhyData_t)); 4603 sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL); 4604 if (!sas_iounit_pg1) { 4605 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4606 __FILE__, __LINE__, __func__); 4607 goto out; 4608 } 4609 if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply, 4610 sas_iounit_pg1, sz))) { 4611 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4612 __FILE__, __LINE__, __func__); 4613 goto out; 4614 } 4615 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 4616 MPI2_IOCSTATUS_MASK; 4617 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 4618 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4619 __FILE__, __LINE__, __func__); 4620 goto out; 4621 } 4622 4623 /* device missing delay */ 4624 dmd = sas_iounit_pg1->ReportDeviceMissingDelay; 4625 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16) 4626 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16; 4627 else 4628 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK; 4629 dmd_orignal = dmd; 4630 if (device_missing_delay > 0x7F) { 4631 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 : 4632 device_missing_delay; 4633 dmd = dmd / 16; 4634 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16; 4635 } else 4636 dmd = device_missing_delay; 4637 sas_iounit_pg1->ReportDeviceMissingDelay = dmd; 4638 4639 /* io missing delay */ 4640 io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay; 4641 sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay; 4642 4643 if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1, 4644 sz)) { 4645 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16) 4646 dmd_new = (dmd & 4647 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16; 4648 else 4649 dmd_new = 4650 dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK; 4651 ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n", 4652 dmd_orignal, dmd_new); 4653 ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n", 4654 io_missing_delay_original, 4655 io_missing_delay); 4656 ioc->device_missing_delay = dmd_new; 4657 ioc->io_missing_delay = io_missing_delay; 4658 } 4659 4660 out: 4661 kfree(sas_iounit_pg1); 4662 } 4663 4664 /** 4665 * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields 4666 * according to performance mode. 4667 * @ioc : per adapter object 4668 * 4669 * Return nothing. 4670 */ 4671 static void 4672 _base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc) 4673 { 4674 Mpi2IOCPage1_t ioc_pg1; 4675 Mpi2ConfigReply_t mpi_reply; 4676 4677 mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy); 4678 memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t)); 4679 4680 switch (perf_mode) { 4681 case MPT_PERF_MODE_DEFAULT: 4682 case MPT_PERF_MODE_BALANCED: 4683 if (ioc->high_iops_queues) { 4684 ioc_info(ioc, 4685 "Enable interrupt coalescing only for first\t" 4686 "%d reply queues\n", 4687 MPT3SAS_HIGH_IOPS_REPLY_QUEUES); 4688 /* 4689 * If 31st bit is zero then interrupt coalescing is 4690 * enabled for all reply descriptor post queues. 4691 * If 31st bit is set to one then user can 4692 * enable/disable interrupt coalescing on per reply 4693 * descriptor post queue group(8) basis. So to enable 4694 * interrupt coalescing only on first reply descriptor 4695 * post queue group 31st bit and zero th bit is enabled. 4696 */ 4697 ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 | 4698 ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1)); 4699 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1); 4700 ioc_info(ioc, "performance mode: balanced\n"); 4701 return; 4702 } 4703 /* Fall through */ 4704 case MPT_PERF_MODE_LATENCY: 4705 /* 4706 * Enable interrupt coalescing on all reply queues 4707 * with timeout value 0xA 4708 */ 4709 ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa); 4710 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING); 4711 ioc_pg1.ProductSpecific = 0; 4712 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1); 4713 ioc_info(ioc, "performance mode: latency\n"); 4714 break; 4715 case MPT_PERF_MODE_IOPS: 4716 /* 4717 * Enable interrupt coalescing on all reply queues. 4718 */ 4719 ioc_info(ioc, 4720 "performance mode: iops with coalescing timeout: 0x%x\n", 4721 le32_to_cpu(ioc_pg1.CoalescingTimeout)); 4722 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING); 4723 ioc_pg1.ProductSpecific = 0; 4724 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1); 4725 break; 4726 } 4727 } 4728 4729 /** 4730 * _base_static_config_pages - static start of day config pages 4731 * @ioc: per adapter object 4732 */ 4733 static void 4734 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc) 4735 { 4736 Mpi2ConfigReply_t mpi_reply; 4737 u32 iounit_pg1_flags; 4738 4739 ioc->nvme_abort_timeout = 30; 4740 mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0); 4741 if (ioc->ir_firmware) 4742 mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply, 4743 &ioc->manu_pg10); 4744 4745 /* 4746 * Ensure correct T10 PI operation if vendor left EEDPTagMode 4747 * flag unset in NVDATA. 4748 */ 4749 mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11); 4750 if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) { 4751 pr_err("%s: overriding NVDATA EEDPTagMode setting\n", 4752 ioc->name); 4753 ioc->manu_pg11.EEDPTagMode &= ~0x3; 4754 ioc->manu_pg11.EEDPTagMode |= 0x1; 4755 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply, 4756 &ioc->manu_pg11); 4757 } 4758 if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK) 4759 ioc->tm_custom_handling = 1; 4760 else { 4761 ioc->tm_custom_handling = 0; 4762 if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT) 4763 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT; 4764 else if (ioc->manu_pg11.NVMeAbortTO > 4765 NVME_TASK_ABORT_MAX_TIMEOUT) 4766 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT; 4767 else 4768 ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO; 4769 } 4770 4771 mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2); 4772 mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3); 4773 mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8); 4774 mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0); 4775 mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1); 4776 mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8); 4777 _base_display_ioc_capabilities(ioc); 4778 4779 /* 4780 * Enable task_set_full handling in iounit_pg1 when the 4781 * facts capabilities indicate that its supported. 4782 */ 4783 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags); 4784 if ((ioc->facts.IOCCapabilities & 4785 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING)) 4786 iounit_pg1_flags &= 4787 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING; 4788 else 4789 iounit_pg1_flags |= 4790 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING; 4791 ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags); 4792 mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1); 4793 4794 if (ioc->iounit_pg8.NumSensors) 4795 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors; 4796 if (ioc->is_aero_ioc) 4797 _base_update_ioc_page1_inlinewith_perf_mode(ioc); 4798 } 4799 4800 /** 4801 * mpt3sas_free_enclosure_list - release memory 4802 * @ioc: per adapter object 4803 * 4804 * Free memory allocated during encloure add. 4805 */ 4806 void 4807 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc) 4808 { 4809 struct _enclosure_node *enclosure_dev, *enclosure_dev_next; 4810 4811 /* Free enclosure list */ 4812 list_for_each_entry_safe(enclosure_dev, 4813 enclosure_dev_next, &ioc->enclosure_list, list) { 4814 list_del(&enclosure_dev->list); 4815 kfree(enclosure_dev); 4816 } 4817 } 4818 4819 /** 4820 * _base_release_memory_pools - release memory 4821 * @ioc: per adapter object 4822 * 4823 * Free memory allocated from _base_allocate_memory_pools. 4824 */ 4825 static void 4826 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc) 4827 { 4828 int i = 0; 4829 int j = 0; 4830 struct chain_tracker *ct; 4831 struct reply_post_struct *rps; 4832 4833 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 4834 4835 if (ioc->request) { 4836 dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz, 4837 ioc->request, ioc->request_dma); 4838 dexitprintk(ioc, 4839 ioc_info(ioc, "request_pool(0x%p): free\n", 4840 ioc->request)); 4841 ioc->request = NULL; 4842 } 4843 4844 if (ioc->sense) { 4845 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma); 4846 dma_pool_destroy(ioc->sense_dma_pool); 4847 dexitprintk(ioc, 4848 ioc_info(ioc, "sense_pool(0x%p): free\n", 4849 ioc->sense)); 4850 ioc->sense = NULL; 4851 } 4852 4853 if (ioc->reply) { 4854 dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma); 4855 dma_pool_destroy(ioc->reply_dma_pool); 4856 dexitprintk(ioc, 4857 ioc_info(ioc, "reply_pool(0x%p): free\n", 4858 ioc->reply)); 4859 ioc->reply = NULL; 4860 } 4861 4862 if (ioc->reply_free) { 4863 dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free, 4864 ioc->reply_free_dma); 4865 dma_pool_destroy(ioc->reply_free_dma_pool); 4866 dexitprintk(ioc, 4867 ioc_info(ioc, "reply_free_pool(0x%p): free\n", 4868 ioc->reply_free)); 4869 ioc->reply_free = NULL; 4870 } 4871 4872 if (ioc->reply_post) { 4873 do { 4874 rps = &ioc->reply_post[i]; 4875 if (rps->reply_post_free) { 4876 dma_pool_free( 4877 ioc->reply_post_free_dma_pool, 4878 rps->reply_post_free, 4879 rps->reply_post_free_dma); 4880 dexitprintk(ioc, 4881 ioc_info(ioc, "reply_post_free_pool(0x%p): free\n", 4882 rps->reply_post_free)); 4883 rps->reply_post_free = NULL; 4884 } 4885 } while (ioc->rdpq_array_enable && 4886 (++i < ioc->reply_queue_count)); 4887 if (ioc->reply_post_free_array && 4888 ioc->rdpq_array_enable) { 4889 dma_pool_free(ioc->reply_post_free_array_dma_pool, 4890 ioc->reply_post_free_array, 4891 ioc->reply_post_free_array_dma); 4892 ioc->reply_post_free_array = NULL; 4893 } 4894 dma_pool_destroy(ioc->reply_post_free_array_dma_pool); 4895 dma_pool_destroy(ioc->reply_post_free_dma_pool); 4896 kfree(ioc->reply_post); 4897 } 4898 4899 if (ioc->pcie_sgl_dma_pool) { 4900 for (i = 0; i < ioc->scsiio_depth; i++) { 4901 dma_pool_free(ioc->pcie_sgl_dma_pool, 4902 ioc->pcie_sg_lookup[i].pcie_sgl, 4903 ioc->pcie_sg_lookup[i].pcie_sgl_dma); 4904 } 4905 if (ioc->pcie_sgl_dma_pool) 4906 dma_pool_destroy(ioc->pcie_sgl_dma_pool); 4907 } 4908 4909 if (ioc->config_page) { 4910 dexitprintk(ioc, 4911 ioc_info(ioc, "config_page(0x%p): free\n", 4912 ioc->config_page)); 4913 dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz, 4914 ioc->config_page, ioc->config_page_dma); 4915 } 4916 4917 kfree(ioc->hpr_lookup); 4918 kfree(ioc->internal_lookup); 4919 if (ioc->chain_lookup) { 4920 for (i = 0; i < ioc->scsiio_depth; i++) { 4921 for (j = ioc->chains_per_prp_buffer; 4922 j < ioc->chains_needed_per_io; j++) { 4923 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 4924 if (ct && ct->chain_buffer) 4925 dma_pool_free(ioc->chain_dma_pool, 4926 ct->chain_buffer, 4927 ct->chain_buffer_dma); 4928 } 4929 kfree(ioc->chain_lookup[i].chains_per_smid); 4930 } 4931 dma_pool_destroy(ioc->chain_dma_pool); 4932 kfree(ioc->chain_lookup); 4933 ioc->chain_lookup = NULL; 4934 } 4935 } 4936 4937 /** 4938 * is_MSB_are_same - checks whether all reply queues in a set are 4939 * having same upper 32bits in their base memory address. 4940 * @reply_pool_start_address: Base address of a reply queue set 4941 * @pool_sz: Size of single Reply Descriptor Post Queues pool size 4942 * 4943 * Return: 1 if reply queues in a set have a same upper 32bits in their base 4944 * memory address, else 0. 4945 */ 4946 4947 static int 4948 is_MSB_are_same(long reply_pool_start_address, u32 pool_sz) 4949 { 4950 long reply_pool_end_address; 4951 4952 reply_pool_end_address = reply_pool_start_address + pool_sz; 4953 4954 if (upper_32_bits(reply_pool_start_address) == 4955 upper_32_bits(reply_pool_end_address)) 4956 return 1; 4957 else 4958 return 0; 4959 } 4960 4961 /** 4962 * _base_allocate_memory_pools - allocate start of day memory pools 4963 * @ioc: per adapter object 4964 * 4965 * Return: 0 success, anything else error. 4966 */ 4967 static int 4968 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc) 4969 { 4970 struct mpt3sas_facts *facts; 4971 u16 max_sge_elements; 4972 u16 chains_needed_per_io; 4973 u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz; 4974 u32 retry_sz; 4975 u16 max_request_credit, nvme_blocks_needed; 4976 unsigned short sg_tablesize; 4977 u16 sge_size; 4978 int i, j; 4979 struct chain_tracker *ct; 4980 4981 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 4982 4983 4984 retry_sz = 0; 4985 facts = &ioc->facts; 4986 4987 /* command line tunables for max sgl entries */ 4988 if (max_sgl_entries != -1) 4989 sg_tablesize = max_sgl_entries; 4990 else { 4991 if (ioc->hba_mpi_version_belonged == MPI2_VERSION) 4992 sg_tablesize = MPT2SAS_SG_DEPTH; 4993 else 4994 sg_tablesize = MPT3SAS_SG_DEPTH; 4995 } 4996 4997 /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */ 4998 if (reset_devices) 4999 sg_tablesize = min_t(unsigned short, sg_tablesize, 5000 MPT_KDUMP_MIN_PHYS_SEGMENTS); 5001 5002 if (ioc->is_mcpu_endpoint) 5003 ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS; 5004 else { 5005 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS) 5006 sg_tablesize = MPT_MIN_PHYS_SEGMENTS; 5007 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) { 5008 sg_tablesize = min_t(unsigned short, sg_tablesize, 5009 SG_MAX_SEGMENTS); 5010 ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n", 5011 sg_tablesize, MPT_MAX_PHYS_SEGMENTS); 5012 } 5013 ioc->shost->sg_tablesize = sg_tablesize; 5014 } 5015 5016 ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)), 5017 (facts->RequestCredit / 4)); 5018 if (ioc->internal_depth < INTERNAL_CMDS_COUNT) { 5019 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT + 5020 INTERNAL_SCSIIO_CMDS_COUNT)) { 5021 ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n", 5022 facts->RequestCredit); 5023 return -ENOMEM; 5024 } 5025 ioc->internal_depth = 10; 5026 } 5027 5028 ioc->hi_priority_depth = ioc->internal_depth - (5); 5029 /* command line tunables for max controller queue depth */ 5030 if (max_queue_depth != -1 && max_queue_depth != 0) { 5031 max_request_credit = min_t(u16, max_queue_depth + 5032 ioc->internal_depth, facts->RequestCredit); 5033 if (max_request_credit > MAX_HBA_QUEUE_DEPTH) 5034 max_request_credit = MAX_HBA_QUEUE_DEPTH; 5035 } else if (reset_devices) 5036 max_request_credit = min_t(u16, facts->RequestCredit, 5037 (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth)); 5038 else 5039 max_request_credit = min_t(u16, facts->RequestCredit, 5040 MAX_HBA_QUEUE_DEPTH); 5041 5042 /* Firmware maintains additional facts->HighPriorityCredit number of 5043 * credits for HiPriprity Request messages, so hba queue depth will be 5044 * sum of max_request_credit and high priority queue depth. 5045 */ 5046 ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth; 5047 5048 /* request frame size */ 5049 ioc->request_sz = facts->IOCRequestFrameSize * 4; 5050 5051 /* reply frame size */ 5052 ioc->reply_sz = facts->ReplyFrameSize * 4; 5053 5054 /* chain segment size */ 5055 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 5056 if (facts->IOCMaxChainSegmentSize) 5057 ioc->chain_segment_sz = 5058 facts->IOCMaxChainSegmentSize * 5059 MAX_CHAIN_ELEMT_SZ; 5060 else 5061 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */ 5062 ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS * 5063 MAX_CHAIN_ELEMT_SZ; 5064 } else 5065 ioc->chain_segment_sz = ioc->request_sz; 5066 5067 /* calculate the max scatter element size */ 5068 sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee); 5069 5070 retry_allocation: 5071 total_sz = 0; 5072 /* calculate number of sg elements left over in the 1st frame */ 5073 max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) - 5074 sizeof(Mpi2SGEIOUnion_t)) + sge_size); 5075 ioc->max_sges_in_main_message = max_sge_elements/sge_size; 5076 5077 /* now do the same for a chain buffer */ 5078 max_sge_elements = ioc->chain_segment_sz - sge_size; 5079 ioc->max_sges_in_chain_message = max_sge_elements/sge_size; 5080 5081 /* 5082 * MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE 5083 */ 5084 chains_needed_per_io = ((ioc->shost->sg_tablesize - 5085 ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message) 5086 + 1; 5087 if (chains_needed_per_io > facts->MaxChainDepth) { 5088 chains_needed_per_io = facts->MaxChainDepth; 5089 ioc->shost->sg_tablesize = min_t(u16, 5090 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message 5091 * chains_needed_per_io), ioc->shost->sg_tablesize); 5092 } 5093 ioc->chains_needed_per_io = chains_needed_per_io; 5094 5095 /* reply free queue sizing - taking into account for 64 FW events */ 5096 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64; 5097 5098 /* mCPU manage single counters for simplicity */ 5099 if (ioc->is_mcpu_endpoint) 5100 ioc->reply_post_queue_depth = ioc->reply_free_queue_depth; 5101 else { 5102 /* calculate reply descriptor post queue depth */ 5103 ioc->reply_post_queue_depth = ioc->hba_queue_depth + 5104 ioc->reply_free_queue_depth + 1; 5105 /* align the reply post queue on the next 16 count boundary */ 5106 if (ioc->reply_post_queue_depth % 16) 5107 ioc->reply_post_queue_depth += 16 - 5108 (ioc->reply_post_queue_depth % 16); 5109 } 5110 5111 if (ioc->reply_post_queue_depth > 5112 facts->MaxReplyDescriptorPostQueueDepth) { 5113 ioc->reply_post_queue_depth = 5114 facts->MaxReplyDescriptorPostQueueDepth - 5115 (facts->MaxReplyDescriptorPostQueueDepth % 16); 5116 ioc->hba_queue_depth = 5117 ((ioc->reply_post_queue_depth - 64) / 2) - 1; 5118 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64; 5119 } 5120 5121 ioc_info(ioc, 5122 "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), " 5123 "sge_per_io(%d), chains_per_io(%d)\n", 5124 ioc->max_sges_in_main_message, 5125 ioc->max_sges_in_chain_message, 5126 ioc->shost->sg_tablesize, 5127 ioc->chains_needed_per_io); 5128 5129 /* reply post queue, 16 byte align */ 5130 reply_post_free_sz = ioc->reply_post_queue_depth * 5131 sizeof(Mpi2DefaultReplyDescriptor_t); 5132 5133 sz = reply_post_free_sz; 5134 if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable) 5135 sz *= ioc->reply_queue_count; 5136 5137 ioc->reply_post = kcalloc((ioc->rdpq_array_enable) ? 5138 (ioc->reply_queue_count):1, 5139 sizeof(struct reply_post_struct), GFP_KERNEL); 5140 5141 if (!ioc->reply_post) { 5142 ioc_err(ioc, "reply_post_free pool: kcalloc failed\n"); 5143 goto out; 5144 } 5145 ioc->reply_post_free_dma_pool = dma_pool_create("reply_post_free pool", 5146 &ioc->pdev->dev, sz, 16, 0); 5147 if (!ioc->reply_post_free_dma_pool) { 5148 ioc_err(ioc, "reply_post_free pool: dma_pool_create failed\n"); 5149 goto out; 5150 } 5151 i = 0; 5152 do { 5153 ioc->reply_post[i].reply_post_free = 5154 dma_pool_zalloc(ioc->reply_post_free_dma_pool, 5155 GFP_KERNEL, 5156 &ioc->reply_post[i].reply_post_free_dma); 5157 if (!ioc->reply_post[i].reply_post_free) { 5158 ioc_err(ioc, "reply_post_free pool: dma_pool_alloc failed\n"); 5159 goto out; 5160 } 5161 dinitprintk(ioc, 5162 ioc_info(ioc, "reply post free pool (0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n", 5163 ioc->reply_post[i].reply_post_free, 5164 ioc->reply_post_queue_depth, 5165 8, sz / 1024)); 5166 dinitprintk(ioc, 5167 ioc_info(ioc, "reply_post_free_dma = (0x%llx)\n", 5168 (u64)ioc->reply_post[i].reply_post_free_dma)); 5169 total_sz += sz; 5170 } while (ioc->rdpq_array_enable && (++i < ioc->reply_queue_count)); 5171 5172 if (ioc->dma_mask > 32) { 5173 if (_base_change_consistent_dma_mask(ioc, ioc->pdev) != 0) { 5174 ioc_warn(ioc, "no suitable consistent DMA mask for %s\n", 5175 pci_name(ioc->pdev)); 5176 goto out; 5177 } 5178 } 5179 5180 ioc->scsiio_depth = ioc->hba_queue_depth - 5181 ioc->hi_priority_depth - ioc->internal_depth; 5182 5183 /* set the scsi host can_queue depth 5184 * with some internal commands that could be outstanding 5185 */ 5186 ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT; 5187 dinitprintk(ioc, 5188 ioc_info(ioc, "scsi host: can_queue depth (%d)\n", 5189 ioc->shost->can_queue)); 5190 5191 5192 /* contiguous pool for request and chains, 16 byte align, one extra " 5193 * "frame for smid=0 5194 */ 5195 ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth; 5196 sz = ((ioc->scsiio_depth + 1) * ioc->request_sz); 5197 5198 /* hi-priority queue */ 5199 sz += (ioc->hi_priority_depth * ioc->request_sz); 5200 5201 /* internal queue */ 5202 sz += (ioc->internal_depth * ioc->request_sz); 5203 5204 ioc->request_dma_sz = sz; 5205 ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz, 5206 &ioc->request_dma, GFP_KERNEL); 5207 if (!ioc->request) { 5208 ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n", 5209 ioc->hba_queue_depth, ioc->chains_needed_per_io, 5210 ioc->request_sz, sz / 1024); 5211 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH) 5212 goto out; 5213 retry_sz = 64; 5214 ioc->hba_queue_depth -= retry_sz; 5215 _base_release_memory_pools(ioc); 5216 goto retry_allocation; 5217 } 5218 memset(ioc->request, 0, sz); 5219 5220 if (retry_sz) 5221 ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n", 5222 ioc->hba_queue_depth, ioc->chains_needed_per_io, 5223 ioc->request_sz, sz / 1024); 5224 5225 /* hi-priority queue */ 5226 ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) * 5227 ioc->request_sz); 5228 ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) * 5229 ioc->request_sz); 5230 5231 /* internal queue */ 5232 ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth * 5233 ioc->request_sz); 5234 ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth * 5235 ioc->request_sz); 5236 5237 ioc_info(ioc, 5238 "request pool(0x%p) - dma(0x%llx): " 5239 "depth(%d), frame_size(%d), pool_size(%d kB)\n", 5240 ioc->request, (unsigned long long) ioc->request_dma, 5241 ioc->hba_queue_depth, ioc->request_sz, 5242 (ioc->hba_queue_depth * ioc->request_sz) / 1024); 5243 5244 total_sz += sz; 5245 5246 dinitprintk(ioc, 5247 ioc_info(ioc, "scsiio(0x%p): depth(%d)\n", 5248 ioc->request, ioc->scsiio_depth)); 5249 5250 ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH); 5251 sz = ioc->scsiio_depth * sizeof(struct chain_lookup); 5252 ioc->chain_lookup = kzalloc(sz, GFP_KERNEL); 5253 if (!ioc->chain_lookup) { 5254 ioc_err(ioc, "chain_lookup: __get_free_pages failed\n"); 5255 goto out; 5256 } 5257 5258 sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker); 5259 for (i = 0; i < ioc->scsiio_depth; i++) { 5260 ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL); 5261 if (!ioc->chain_lookup[i].chains_per_smid) { 5262 ioc_err(ioc, "chain_lookup: kzalloc failed\n"); 5263 goto out; 5264 } 5265 } 5266 5267 /* initialize hi-priority queue smid's */ 5268 ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth, 5269 sizeof(struct request_tracker), GFP_KERNEL); 5270 if (!ioc->hpr_lookup) { 5271 ioc_err(ioc, "hpr_lookup: kcalloc failed\n"); 5272 goto out; 5273 } 5274 ioc->hi_priority_smid = ioc->scsiio_depth + 1; 5275 dinitprintk(ioc, 5276 ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n", 5277 ioc->hi_priority, 5278 ioc->hi_priority_depth, ioc->hi_priority_smid)); 5279 5280 /* initialize internal queue smid's */ 5281 ioc->internal_lookup = kcalloc(ioc->internal_depth, 5282 sizeof(struct request_tracker), GFP_KERNEL); 5283 if (!ioc->internal_lookup) { 5284 ioc_err(ioc, "internal_lookup: kcalloc failed\n"); 5285 goto out; 5286 } 5287 ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth; 5288 dinitprintk(ioc, 5289 ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n", 5290 ioc->internal, 5291 ioc->internal_depth, ioc->internal_smid)); 5292 /* 5293 * The number of NVMe page sized blocks needed is: 5294 * (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1 5295 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry 5296 * that is placed in the main message frame. 8 is the size of each PRP 5297 * entry or PRP list pointer entry. 8 is subtracted from page_size 5298 * because of the PRP list pointer entry at the end of a page, so this 5299 * is not counted as a PRP entry. The 1 added page is a round up. 5300 * 5301 * To avoid allocation failures due to the amount of memory that could 5302 * be required for NVMe PRP's, only each set of NVMe blocks will be 5303 * contiguous, so a new set is allocated for each possible I/O. 5304 */ 5305 ioc->chains_per_prp_buffer = 0; 5306 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) { 5307 nvme_blocks_needed = 5308 (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1; 5309 nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE); 5310 nvme_blocks_needed++; 5311 5312 sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth; 5313 ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL); 5314 if (!ioc->pcie_sg_lookup) { 5315 ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n"); 5316 goto out; 5317 } 5318 sz = nvme_blocks_needed * ioc->page_size; 5319 ioc->pcie_sgl_dma_pool = 5320 dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz, 16, 0); 5321 if (!ioc->pcie_sgl_dma_pool) { 5322 ioc_info(ioc, "PCIe SGL pool: dma_pool_create failed\n"); 5323 goto out; 5324 } 5325 5326 ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz; 5327 ioc->chains_per_prp_buffer = min(ioc->chains_per_prp_buffer, 5328 ioc->chains_needed_per_io); 5329 5330 for (i = 0; i < ioc->scsiio_depth; i++) { 5331 ioc->pcie_sg_lookup[i].pcie_sgl = dma_pool_alloc( 5332 ioc->pcie_sgl_dma_pool, GFP_KERNEL, 5333 &ioc->pcie_sg_lookup[i].pcie_sgl_dma); 5334 if (!ioc->pcie_sg_lookup[i].pcie_sgl) { 5335 ioc_info(ioc, "PCIe SGL pool: dma_pool_alloc failed\n"); 5336 goto out; 5337 } 5338 for (j = 0; j < ioc->chains_per_prp_buffer; j++) { 5339 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 5340 ct->chain_buffer = 5341 ioc->pcie_sg_lookup[i].pcie_sgl + 5342 (j * ioc->chain_segment_sz); 5343 ct->chain_buffer_dma = 5344 ioc->pcie_sg_lookup[i].pcie_sgl_dma + 5345 (j * ioc->chain_segment_sz); 5346 } 5347 } 5348 5349 dinitprintk(ioc, 5350 ioc_info(ioc, "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n", 5351 ioc->scsiio_depth, sz, 5352 (sz * ioc->scsiio_depth) / 1024)); 5353 dinitprintk(ioc, 5354 ioc_info(ioc, "Number of chains can fit in a PRP page(%d)\n", 5355 ioc->chains_per_prp_buffer)); 5356 total_sz += sz * ioc->scsiio_depth; 5357 } 5358 5359 ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev, 5360 ioc->chain_segment_sz, 16, 0); 5361 if (!ioc->chain_dma_pool) { 5362 ioc_err(ioc, "chain_dma_pool: dma_pool_create failed\n"); 5363 goto out; 5364 } 5365 for (i = 0; i < ioc->scsiio_depth; i++) { 5366 for (j = ioc->chains_per_prp_buffer; 5367 j < ioc->chains_needed_per_io; j++) { 5368 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 5369 ct->chain_buffer = dma_pool_alloc( 5370 ioc->chain_dma_pool, GFP_KERNEL, 5371 &ct->chain_buffer_dma); 5372 if (!ct->chain_buffer) { 5373 ioc_err(ioc, "chain_lookup: pci_pool_alloc failed\n"); 5374 goto out; 5375 } 5376 } 5377 total_sz += ioc->chain_segment_sz; 5378 } 5379 5380 dinitprintk(ioc, 5381 ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n", 5382 ioc->chain_depth, ioc->chain_segment_sz, 5383 (ioc->chain_depth * ioc->chain_segment_sz) / 1024)); 5384 5385 /* sense buffers, 4 byte align */ 5386 sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE; 5387 ioc->sense_dma_pool = dma_pool_create("sense pool", &ioc->pdev->dev, sz, 5388 4, 0); 5389 if (!ioc->sense_dma_pool) { 5390 ioc_err(ioc, "sense pool: dma_pool_create failed\n"); 5391 goto out; 5392 } 5393 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL, 5394 &ioc->sense_dma); 5395 if (!ioc->sense) { 5396 ioc_err(ioc, "sense pool: dma_pool_alloc failed\n"); 5397 goto out; 5398 } 5399 /* sense buffer requires to be in same 4 gb region. 5400 * Below function will check the same. 5401 * In case of failure, new pci pool will be created with updated 5402 * alignment. Older allocation and pool will be destroyed. 5403 * Alignment will be used such a way that next allocation if 5404 * success, will always meet same 4gb region requirement. 5405 * Actual requirement is not alignment, but we need start and end of 5406 * DMA address must have same upper 32 bit address. 5407 */ 5408 if (!is_MSB_are_same((long)ioc->sense, sz)) { 5409 //Release Sense pool & Reallocate 5410 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma); 5411 dma_pool_destroy(ioc->sense_dma_pool); 5412 ioc->sense = NULL; 5413 5414 ioc->sense_dma_pool = 5415 dma_pool_create("sense pool", &ioc->pdev->dev, sz, 5416 roundup_pow_of_two(sz), 0); 5417 if (!ioc->sense_dma_pool) { 5418 ioc_err(ioc, "sense pool: pci_pool_create failed\n"); 5419 goto out; 5420 } 5421 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL, 5422 &ioc->sense_dma); 5423 if (!ioc->sense) { 5424 ioc_err(ioc, "sense pool: pci_pool_alloc failed\n"); 5425 goto out; 5426 } 5427 } 5428 ioc_info(ioc, 5429 "sense pool(0x%p)- dma(0x%llx): depth(%d)," 5430 "element_size(%d), pool_size(%d kB)\n", 5431 ioc->sense, (unsigned long long)ioc->sense_dma, ioc->scsiio_depth, 5432 SCSI_SENSE_BUFFERSIZE, sz / 1024); 5433 5434 total_sz += sz; 5435 5436 /* reply pool, 4 byte align */ 5437 sz = ioc->reply_free_queue_depth * ioc->reply_sz; 5438 ioc->reply_dma_pool = dma_pool_create("reply pool", &ioc->pdev->dev, sz, 5439 4, 0); 5440 if (!ioc->reply_dma_pool) { 5441 ioc_err(ioc, "reply pool: dma_pool_create failed\n"); 5442 goto out; 5443 } 5444 ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL, 5445 &ioc->reply_dma); 5446 if (!ioc->reply) { 5447 ioc_err(ioc, "reply pool: dma_pool_alloc failed\n"); 5448 goto out; 5449 } 5450 ioc->reply_dma_min_address = (u32)(ioc->reply_dma); 5451 ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz; 5452 dinitprintk(ioc, 5453 ioc_info(ioc, "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n", 5454 ioc->reply, ioc->reply_free_queue_depth, 5455 ioc->reply_sz, sz / 1024)); 5456 dinitprintk(ioc, 5457 ioc_info(ioc, "reply_dma(0x%llx)\n", 5458 (unsigned long long)ioc->reply_dma)); 5459 total_sz += sz; 5460 5461 /* reply free queue, 16 byte align */ 5462 sz = ioc->reply_free_queue_depth * 4; 5463 ioc->reply_free_dma_pool = dma_pool_create("reply_free pool", 5464 &ioc->pdev->dev, sz, 16, 0); 5465 if (!ioc->reply_free_dma_pool) { 5466 ioc_err(ioc, "reply_free pool: dma_pool_create failed\n"); 5467 goto out; 5468 } 5469 ioc->reply_free = dma_pool_zalloc(ioc->reply_free_dma_pool, GFP_KERNEL, 5470 &ioc->reply_free_dma); 5471 if (!ioc->reply_free) { 5472 ioc_err(ioc, "reply_free pool: dma_pool_alloc failed\n"); 5473 goto out; 5474 } 5475 dinitprintk(ioc, 5476 ioc_info(ioc, "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n", 5477 ioc->reply_free, ioc->reply_free_queue_depth, 5478 4, sz / 1024)); 5479 dinitprintk(ioc, 5480 ioc_info(ioc, "reply_free_dma (0x%llx)\n", 5481 (unsigned long long)ioc->reply_free_dma)); 5482 total_sz += sz; 5483 5484 if (ioc->rdpq_array_enable) { 5485 reply_post_free_array_sz = ioc->reply_queue_count * 5486 sizeof(Mpi2IOCInitRDPQArrayEntry); 5487 ioc->reply_post_free_array_dma_pool = 5488 dma_pool_create("reply_post_free_array pool", 5489 &ioc->pdev->dev, reply_post_free_array_sz, 16, 0); 5490 if (!ioc->reply_post_free_array_dma_pool) { 5491 dinitprintk(ioc, 5492 ioc_info(ioc, "reply_post_free_array pool: dma_pool_create failed\n")); 5493 goto out; 5494 } 5495 ioc->reply_post_free_array = 5496 dma_pool_alloc(ioc->reply_post_free_array_dma_pool, 5497 GFP_KERNEL, &ioc->reply_post_free_array_dma); 5498 if (!ioc->reply_post_free_array) { 5499 dinitprintk(ioc, 5500 ioc_info(ioc, "reply_post_free_array pool: dma_pool_alloc failed\n")); 5501 goto out; 5502 } 5503 } 5504 ioc->config_page_sz = 512; 5505 ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev, 5506 ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL); 5507 if (!ioc->config_page) { 5508 ioc_err(ioc, "config page: dma_pool_alloc failed\n"); 5509 goto out; 5510 } 5511 5512 ioc_info(ioc, "config page(0x%p) - dma(0x%llx): size(%d)\n", 5513 ioc->config_page, (unsigned long long)ioc->config_page_dma, 5514 ioc->config_page_sz); 5515 total_sz += ioc->config_page_sz; 5516 5517 ioc_info(ioc, "Allocated physical memory: size(%d kB)\n", 5518 total_sz / 1024); 5519 ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n", 5520 ioc->shost->can_queue, facts->RequestCredit); 5521 ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n", 5522 ioc->shost->sg_tablesize); 5523 return 0; 5524 5525 out: 5526 return -ENOMEM; 5527 } 5528 5529 /** 5530 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter. 5531 * @ioc: Pointer to MPT_ADAPTER structure 5532 * @cooked: Request raw or cooked IOC state 5533 * 5534 * Return: all IOC Doorbell register bits if cooked==0, else just the 5535 * Doorbell bits in MPI_IOC_STATE_MASK. 5536 */ 5537 u32 5538 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked) 5539 { 5540 u32 s, sc; 5541 5542 s = ioc->base_readl(&ioc->chip->Doorbell); 5543 sc = s & MPI2_IOC_STATE_MASK; 5544 return cooked ? sc : s; 5545 } 5546 5547 /** 5548 * _base_wait_on_iocstate - waiting on a particular ioc state 5549 * @ioc: ? 5550 * @ioc_state: controller state { READY, OPERATIONAL, or RESET } 5551 * @timeout: timeout in second 5552 * 5553 * Return: 0 for success, non-zero for failure. 5554 */ 5555 static int 5556 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout) 5557 { 5558 u32 count, cntdn; 5559 u32 current_state; 5560 5561 count = 0; 5562 cntdn = 1000 * timeout; 5563 do { 5564 current_state = mpt3sas_base_get_iocstate(ioc, 1); 5565 if (current_state == ioc_state) 5566 return 0; 5567 if (count && current_state == MPI2_IOC_STATE_FAULT) 5568 break; 5569 if (count && current_state == MPI2_IOC_STATE_COREDUMP) 5570 break; 5571 5572 usleep_range(1000, 1500); 5573 count++; 5574 } while (--cntdn); 5575 5576 return current_state; 5577 } 5578 5579 /** 5580 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by 5581 * a write to the doorbell) 5582 * @ioc: per adapter object 5583 * 5584 * Return: 0 for success, non-zero for failure. 5585 * 5586 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell. 5587 */ 5588 5589 static int 5590 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout) 5591 { 5592 u32 cntdn, count; 5593 u32 int_status; 5594 5595 count = 0; 5596 cntdn = 1000 * timeout; 5597 do { 5598 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 5599 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 5600 dhsprintk(ioc, 5601 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 5602 __func__, count, timeout)); 5603 return 0; 5604 } 5605 5606 usleep_range(1000, 1500); 5607 count++; 5608 } while (--cntdn); 5609 5610 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 5611 __func__, count, int_status); 5612 return -EFAULT; 5613 } 5614 5615 static int 5616 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout) 5617 { 5618 u32 cntdn, count; 5619 u32 int_status; 5620 5621 count = 0; 5622 cntdn = 2000 * timeout; 5623 do { 5624 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 5625 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 5626 dhsprintk(ioc, 5627 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 5628 __func__, count, timeout)); 5629 return 0; 5630 } 5631 5632 udelay(500); 5633 count++; 5634 } while (--cntdn); 5635 5636 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 5637 __func__, count, int_status); 5638 return -EFAULT; 5639 5640 } 5641 5642 /** 5643 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell. 5644 * @ioc: per adapter object 5645 * @timeout: timeout in second 5646 * 5647 * Return: 0 for success, non-zero for failure. 5648 * 5649 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to 5650 * doorbell. 5651 */ 5652 static int 5653 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout) 5654 { 5655 u32 cntdn, count; 5656 u32 int_status; 5657 u32 doorbell; 5658 5659 count = 0; 5660 cntdn = 1000 * timeout; 5661 do { 5662 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 5663 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) { 5664 dhsprintk(ioc, 5665 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 5666 __func__, count, timeout)); 5667 return 0; 5668 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 5669 doorbell = ioc->base_readl(&ioc->chip->Doorbell); 5670 if ((doorbell & MPI2_IOC_STATE_MASK) == 5671 MPI2_IOC_STATE_FAULT) { 5672 mpt3sas_print_fault_code(ioc, doorbell); 5673 return -EFAULT; 5674 } 5675 if ((doorbell & MPI2_IOC_STATE_MASK) == 5676 MPI2_IOC_STATE_COREDUMP) { 5677 mpt3sas_print_coredump_info(ioc, doorbell); 5678 return -EFAULT; 5679 } 5680 } else if (int_status == 0xFFFFFFFF) 5681 goto out; 5682 5683 usleep_range(1000, 1500); 5684 count++; 5685 } while (--cntdn); 5686 5687 out: 5688 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 5689 __func__, count, int_status); 5690 return -EFAULT; 5691 } 5692 5693 /** 5694 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use 5695 * @ioc: per adapter object 5696 * @timeout: timeout in second 5697 * 5698 * Return: 0 for success, non-zero for failure. 5699 */ 5700 static int 5701 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout) 5702 { 5703 u32 cntdn, count; 5704 u32 doorbell_reg; 5705 5706 count = 0; 5707 cntdn = 1000 * timeout; 5708 do { 5709 doorbell_reg = ioc->base_readl(&ioc->chip->Doorbell); 5710 if (!(doorbell_reg & MPI2_DOORBELL_USED)) { 5711 dhsprintk(ioc, 5712 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 5713 __func__, count, timeout)); 5714 return 0; 5715 } 5716 5717 usleep_range(1000, 1500); 5718 count++; 5719 } while (--cntdn); 5720 5721 ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n", 5722 __func__, count, doorbell_reg); 5723 return -EFAULT; 5724 } 5725 5726 /** 5727 * _base_send_ioc_reset - send doorbell reset 5728 * @ioc: per adapter object 5729 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET 5730 * @timeout: timeout in second 5731 * 5732 * Return: 0 for success, non-zero for failure. 5733 */ 5734 static int 5735 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout) 5736 { 5737 u32 ioc_state; 5738 int r = 0; 5739 unsigned long flags; 5740 5741 if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) { 5742 ioc_err(ioc, "%s: unknown reset_type\n", __func__); 5743 return -EFAULT; 5744 } 5745 5746 if (!(ioc->facts.IOCCapabilities & 5747 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY)) 5748 return -EFAULT; 5749 5750 ioc_info(ioc, "sending message unit reset !!\n"); 5751 5752 writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT, 5753 &ioc->chip->Doorbell); 5754 if ((_base_wait_for_doorbell_ack(ioc, 15))) { 5755 r = -EFAULT; 5756 goto out; 5757 } 5758 5759 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout); 5760 if (ioc_state) { 5761 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 5762 __func__, ioc_state); 5763 r = -EFAULT; 5764 goto out; 5765 } 5766 out: 5767 if (r != 0) { 5768 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 5769 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 5770 /* 5771 * Wait for IOC state CoreDump to clear only during 5772 * HBA initialization & release time. 5773 */ 5774 if ((ioc_state & MPI2_IOC_STATE_MASK) == 5775 MPI2_IOC_STATE_COREDUMP && (ioc->is_driver_loading == 1 || 5776 ioc->fault_reset_work_q == NULL)) { 5777 spin_unlock_irqrestore( 5778 &ioc->ioc_reset_in_progress_lock, flags); 5779 mpt3sas_print_coredump_info(ioc, ioc_state); 5780 mpt3sas_base_wait_for_coredump_completion(ioc, 5781 __func__); 5782 spin_lock_irqsave( 5783 &ioc->ioc_reset_in_progress_lock, flags); 5784 } 5785 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 5786 } 5787 ioc_info(ioc, "message unit reset: %s\n", 5788 r == 0 ? "SUCCESS" : "FAILED"); 5789 return r; 5790 } 5791 5792 /** 5793 * mpt3sas_wait_for_ioc - IOC's operational state is checked here. 5794 * @ioc: per adapter object 5795 * @wait_count: timeout in seconds 5796 * 5797 * Return: Waits up to timeout seconds for the IOC to 5798 * become operational. Returns 0 if IOC is present 5799 * and operational; otherwise returns -EFAULT. 5800 */ 5801 5802 int 5803 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout) 5804 { 5805 int wait_state_count = 0; 5806 u32 ioc_state; 5807 5808 do { 5809 ioc_state = mpt3sas_base_get_iocstate(ioc, 1); 5810 if (ioc_state == MPI2_IOC_STATE_OPERATIONAL) 5811 break; 5812 ssleep(1); 5813 ioc_info(ioc, "%s: waiting for operational state(count=%d)\n", 5814 __func__, ++wait_state_count); 5815 } while (--timeout); 5816 if (!timeout) { 5817 ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__); 5818 return -EFAULT; 5819 } 5820 if (wait_state_count) 5821 ioc_info(ioc, "ioc is operational\n"); 5822 return 0; 5823 } 5824 5825 /** 5826 * _base_handshake_req_reply_wait - send request thru doorbell interface 5827 * @ioc: per adapter object 5828 * @request_bytes: request length 5829 * @request: pointer having request payload 5830 * @reply_bytes: reply length 5831 * @reply: pointer to reply payload 5832 * @timeout: timeout in second 5833 * 5834 * Return: 0 for success, non-zero for failure. 5835 */ 5836 static int 5837 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes, 5838 u32 *request, int reply_bytes, u16 *reply, int timeout) 5839 { 5840 MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply; 5841 int i; 5842 u8 failed; 5843 __le32 *mfp; 5844 5845 /* make sure doorbell is not in use */ 5846 if ((ioc->base_readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) { 5847 ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__); 5848 return -EFAULT; 5849 } 5850 5851 /* clear pending doorbell interrupts from previous state changes */ 5852 if (ioc->base_readl(&ioc->chip->HostInterruptStatus) & 5853 MPI2_HIS_IOC2SYS_DB_STATUS) 5854 writel(0, &ioc->chip->HostInterruptStatus); 5855 5856 /* send message to ioc */ 5857 writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) | 5858 ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)), 5859 &ioc->chip->Doorbell); 5860 5861 if ((_base_spin_on_doorbell_int(ioc, 5))) { 5862 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 5863 __LINE__); 5864 return -EFAULT; 5865 } 5866 writel(0, &ioc->chip->HostInterruptStatus); 5867 5868 if ((_base_wait_for_doorbell_ack(ioc, 5))) { 5869 ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n", 5870 __LINE__); 5871 return -EFAULT; 5872 } 5873 5874 /* send message 32-bits at a time */ 5875 for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) { 5876 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell); 5877 if ((_base_wait_for_doorbell_ack(ioc, 5))) 5878 failed = 1; 5879 } 5880 5881 if (failed) { 5882 ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n", 5883 __LINE__); 5884 return -EFAULT; 5885 } 5886 5887 /* now wait for the reply */ 5888 if ((_base_wait_for_doorbell_int(ioc, timeout))) { 5889 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 5890 __LINE__); 5891 return -EFAULT; 5892 } 5893 5894 /* read the first two 16-bits, it gives the total length of the reply */ 5895 reply[0] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell) 5896 & MPI2_DOORBELL_DATA_MASK); 5897 writel(0, &ioc->chip->HostInterruptStatus); 5898 if ((_base_wait_for_doorbell_int(ioc, 5))) { 5899 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 5900 __LINE__); 5901 return -EFAULT; 5902 } 5903 reply[1] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell) 5904 & MPI2_DOORBELL_DATA_MASK); 5905 writel(0, &ioc->chip->HostInterruptStatus); 5906 5907 for (i = 2; i < default_reply->MsgLength * 2; i++) { 5908 if ((_base_wait_for_doorbell_int(ioc, 5))) { 5909 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 5910 __LINE__); 5911 return -EFAULT; 5912 } 5913 if (i >= reply_bytes/2) /* overflow case */ 5914 ioc->base_readl(&ioc->chip->Doorbell); 5915 else 5916 reply[i] = le16_to_cpu( 5917 ioc->base_readl(&ioc->chip->Doorbell) 5918 & MPI2_DOORBELL_DATA_MASK); 5919 writel(0, &ioc->chip->HostInterruptStatus); 5920 } 5921 5922 _base_wait_for_doorbell_int(ioc, 5); 5923 if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) { 5924 dhsprintk(ioc, 5925 ioc_info(ioc, "doorbell is in use (line=%d)\n", 5926 __LINE__)); 5927 } 5928 writel(0, &ioc->chip->HostInterruptStatus); 5929 5930 if (ioc->logging_level & MPT_DEBUG_INIT) { 5931 mfp = (__le32 *)reply; 5932 pr_info("\toffset:data\n"); 5933 for (i = 0; i < reply_bytes/4; i++) 5934 ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4, 5935 le32_to_cpu(mfp[i])); 5936 } 5937 return 0; 5938 } 5939 5940 /** 5941 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW 5942 * @ioc: per adapter object 5943 * @mpi_reply: the reply payload from FW 5944 * @mpi_request: the request payload sent to FW 5945 * 5946 * The SAS IO Unit Control Request message allows the host to perform low-level 5947 * operations, such as resets on the PHYs of the IO Unit, also allows the host 5948 * to obtain the IOC assigned device handles for a device if it has other 5949 * identifying information about the device, in addition allows the host to 5950 * remove IOC resources associated with the device. 5951 * 5952 * Return: 0 for success, non-zero for failure. 5953 */ 5954 int 5955 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc, 5956 Mpi2SasIoUnitControlReply_t *mpi_reply, 5957 Mpi2SasIoUnitControlRequest_t *mpi_request) 5958 { 5959 u16 smid; 5960 u8 issue_reset = 0; 5961 int rc; 5962 void *request; 5963 5964 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 5965 5966 mutex_lock(&ioc->base_cmds.mutex); 5967 5968 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) { 5969 ioc_err(ioc, "%s: base_cmd in use\n", __func__); 5970 rc = -EAGAIN; 5971 goto out; 5972 } 5973 5974 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT); 5975 if (rc) 5976 goto out; 5977 5978 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 5979 if (!smid) { 5980 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 5981 rc = -EAGAIN; 5982 goto out; 5983 } 5984 5985 rc = 0; 5986 ioc->base_cmds.status = MPT3_CMD_PENDING; 5987 request = mpt3sas_base_get_msg_frame(ioc, smid); 5988 ioc->base_cmds.smid = smid; 5989 memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)); 5990 if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET || 5991 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) 5992 ioc->ioc_link_reset_in_progress = 1; 5993 init_completion(&ioc->base_cmds.done); 5994 ioc->put_smid_default(ioc, smid); 5995 wait_for_completion_timeout(&ioc->base_cmds.done, 5996 msecs_to_jiffies(10000)); 5997 if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET || 5998 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) && 5999 ioc->ioc_link_reset_in_progress) 6000 ioc->ioc_link_reset_in_progress = 0; 6001 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 6002 mpt3sas_check_cmd_timeout(ioc, ioc->base_cmds.status, 6003 mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)/4, 6004 issue_reset); 6005 goto issue_host_reset; 6006 } 6007 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) 6008 memcpy(mpi_reply, ioc->base_cmds.reply, 6009 sizeof(Mpi2SasIoUnitControlReply_t)); 6010 else 6011 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t)); 6012 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 6013 goto out; 6014 6015 issue_host_reset: 6016 if (issue_reset) 6017 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 6018 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 6019 rc = -EFAULT; 6020 out: 6021 mutex_unlock(&ioc->base_cmds.mutex); 6022 return rc; 6023 } 6024 6025 /** 6026 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device 6027 * @ioc: per adapter object 6028 * @mpi_reply: the reply payload from FW 6029 * @mpi_request: the request payload sent to FW 6030 * 6031 * The SCSI Enclosure Processor request message causes the IOC to 6032 * communicate with SES devices to control LED status signals. 6033 * 6034 * Return: 0 for success, non-zero for failure. 6035 */ 6036 int 6037 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc, 6038 Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request) 6039 { 6040 u16 smid; 6041 u8 issue_reset = 0; 6042 int rc; 6043 void *request; 6044 6045 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6046 6047 mutex_lock(&ioc->base_cmds.mutex); 6048 6049 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) { 6050 ioc_err(ioc, "%s: base_cmd in use\n", __func__); 6051 rc = -EAGAIN; 6052 goto out; 6053 } 6054 6055 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT); 6056 if (rc) 6057 goto out; 6058 6059 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 6060 if (!smid) { 6061 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 6062 rc = -EAGAIN; 6063 goto out; 6064 } 6065 6066 rc = 0; 6067 ioc->base_cmds.status = MPT3_CMD_PENDING; 6068 request = mpt3sas_base_get_msg_frame(ioc, smid); 6069 ioc->base_cmds.smid = smid; 6070 memset(request, 0, ioc->request_sz); 6071 memcpy(request, mpi_request, sizeof(Mpi2SepReply_t)); 6072 init_completion(&ioc->base_cmds.done); 6073 ioc->put_smid_default(ioc, smid); 6074 wait_for_completion_timeout(&ioc->base_cmds.done, 6075 msecs_to_jiffies(10000)); 6076 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 6077 mpt3sas_check_cmd_timeout(ioc, 6078 ioc->base_cmds.status, mpi_request, 6079 sizeof(Mpi2SepRequest_t)/4, issue_reset); 6080 goto issue_host_reset; 6081 } 6082 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) 6083 memcpy(mpi_reply, ioc->base_cmds.reply, 6084 sizeof(Mpi2SepReply_t)); 6085 else 6086 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t)); 6087 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 6088 goto out; 6089 6090 issue_host_reset: 6091 if (issue_reset) 6092 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 6093 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 6094 rc = -EFAULT; 6095 out: 6096 mutex_unlock(&ioc->base_cmds.mutex); 6097 return rc; 6098 } 6099 6100 /** 6101 * _base_get_port_facts - obtain port facts reply and save in ioc 6102 * @ioc: per adapter object 6103 * @port: ? 6104 * 6105 * Return: 0 for success, non-zero for failure. 6106 */ 6107 static int 6108 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port) 6109 { 6110 Mpi2PortFactsRequest_t mpi_request; 6111 Mpi2PortFactsReply_t mpi_reply; 6112 struct mpt3sas_port_facts *pfacts; 6113 int mpi_reply_sz, mpi_request_sz, r; 6114 6115 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6116 6117 mpi_reply_sz = sizeof(Mpi2PortFactsReply_t); 6118 mpi_request_sz = sizeof(Mpi2PortFactsRequest_t); 6119 memset(&mpi_request, 0, mpi_request_sz); 6120 mpi_request.Function = MPI2_FUNCTION_PORT_FACTS; 6121 mpi_request.PortNumber = port; 6122 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz, 6123 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5); 6124 6125 if (r != 0) { 6126 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 6127 return r; 6128 } 6129 6130 pfacts = &ioc->pfacts[port]; 6131 memset(pfacts, 0, sizeof(struct mpt3sas_port_facts)); 6132 pfacts->PortNumber = mpi_reply.PortNumber; 6133 pfacts->VP_ID = mpi_reply.VP_ID; 6134 pfacts->VF_ID = mpi_reply.VF_ID; 6135 pfacts->MaxPostedCmdBuffers = 6136 le16_to_cpu(mpi_reply.MaxPostedCmdBuffers); 6137 6138 return 0; 6139 } 6140 6141 /** 6142 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL 6143 * @ioc: per adapter object 6144 * @timeout: 6145 * 6146 * Return: 0 for success, non-zero for failure. 6147 */ 6148 static int 6149 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout) 6150 { 6151 u32 ioc_state; 6152 int rc; 6153 6154 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6155 6156 if (ioc->pci_error_recovery) { 6157 dfailprintk(ioc, 6158 ioc_info(ioc, "%s: host in pci error recovery\n", 6159 __func__)); 6160 return -EFAULT; 6161 } 6162 6163 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 6164 dhsprintk(ioc, 6165 ioc_info(ioc, "%s: ioc_state(0x%08x)\n", 6166 __func__, ioc_state)); 6167 6168 if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) || 6169 (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL) 6170 return 0; 6171 6172 if (ioc_state & MPI2_DOORBELL_USED) { 6173 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n")); 6174 goto issue_diag_reset; 6175 } 6176 6177 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 6178 mpt3sas_print_fault_code(ioc, ioc_state & 6179 MPI2_DOORBELL_DATA_MASK); 6180 goto issue_diag_reset; 6181 } else if ((ioc_state & MPI2_IOC_STATE_MASK) == 6182 MPI2_IOC_STATE_COREDUMP) { 6183 ioc_info(ioc, 6184 "%s: Skipping the diag reset here. (ioc_state=0x%x)\n", 6185 __func__, ioc_state); 6186 return -EFAULT; 6187 } 6188 6189 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout); 6190 if (ioc_state) { 6191 dfailprintk(ioc, 6192 ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 6193 __func__, ioc_state)); 6194 return -EFAULT; 6195 } 6196 6197 issue_diag_reset: 6198 rc = _base_diag_reset(ioc); 6199 return rc; 6200 } 6201 6202 /** 6203 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc 6204 * @ioc: per adapter object 6205 * 6206 * Return: 0 for success, non-zero for failure. 6207 */ 6208 static int 6209 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc) 6210 { 6211 Mpi2IOCFactsRequest_t mpi_request; 6212 Mpi2IOCFactsReply_t mpi_reply; 6213 struct mpt3sas_facts *facts; 6214 int mpi_reply_sz, mpi_request_sz, r; 6215 6216 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6217 6218 r = _base_wait_for_iocstate(ioc, 10); 6219 if (r) { 6220 dfailprintk(ioc, 6221 ioc_info(ioc, "%s: failed getting to correct state\n", 6222 __func__)); 6223 return r; 6224 } 6225 mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t); 6226 mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t); 6227 memset(&mpi_request, 0, mpi_request_sz); 6228 mpi_request.Function = MPI2_FUNCTION_IOC_FACTS; 6229 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz, 6230 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5); 6231 6232 if (r != 0) { 6233 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 6234 return r; 6235 } 6236 6237 facts = &ioc->facts; 6238 memset(facts, 0, sizeof(struct mpt3sas_facts)); 6239 facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion); 6240 facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion); 6241 facts->VP_ID = mpi_reply.VP_ID; 6242 facts->VF_ID = mpi_reply.VF_ID; 6243 facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions); 6244 facts->MaxChainDepth = mpi_reply.MaxChainDepth; 6245 facts->WhoInit = mpi_reply.WhoInit; 6246 facts->NumberOfPorts = mpi_reply.NumberOfPorts; 6247 facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors; 6248 if (ioc->msix_enable && (facts->MaxMSIxVectors <= 6249 MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc))) 6250 ioc->combined_reply_queue = 0; 6251 facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit); 6252 facts->MaxReplyDescriptorPostQueueDepth = 6253 le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth); 6254 facts->ProductID = le16_to_cpu(mpi_reply.ProductID); 6255 facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities); 6256 if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)) 6257 ioc->ir_firmware = 1; 6258 if ((facts->IOCCapabilities & 6259 MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices)) 6260 ioc->rdpq_array_capable = 1; 6261 if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ) 6262 && ioc->is_aero_ioc) 6263 ioc->atomic_desc_capable = 1; 6264 facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word); 6265 facts->IOCRequestFrameSize = 6266 le16_to_cpu(mpi_reply.IOCRequestFrameSize); 6267 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 6268 facts->IOCMaxChainSegmentSize = 6269 le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize); 6270 } 6271 facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators); 6272 facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets); 6273 ioc->shost->max_id = -1; 6274 facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders); 6275 facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures); 6276 facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags); 6277 facts->HighPriorityCredit = 6278 le16_to_cpu(mpi_reply.HighPriorityCredit); 6279 facts->ReplyFrameSize = mpi_reply.ReplyFrameSize; 6280 facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle); 6281 facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize; 6282 6283 /* 6284 * Get the Page Size from IOC Facts. If it's 0, default to 4k. 6285 */ 6286 ioc->page_size = 1 << facts->CurrentHostPageSize; 6287 if (ioc->page_size == 1) { 6288 ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n"); 6289 ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K; 6290 } 6291 dinitprintk(ioc, 6292 ioc_info(ioc, "CurrentHostPageSize(%d)\n", 6293 facts->CurrentHostPageSize)); 6294 6295 dinitprintk(ioc, 6296 ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n", 6297 facts->RequestCredit, facts->MaxChainDepth)); 6298 dinitprintk(ioc, 6299 ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n", 6300 facts->IOCRequestFrameSize * 4, 6301 facts->ReplyFrameSize * 4)); 6302 return 0; 6303 } 6304 6305 /** 6306 * _base_send_ioc_init - send ioc_init to firmware 6307 * @ioc: per adapter object 6308 * 6309 * Return: 0 for success, non-zero for failure. 6310 */ 6311 static int 6312 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc) 6313 { 6314 Mpi2IOCInitRequest_t mpi_request; 6315 Mpi2IOCInitReply_t mpi_reply; 6316 int i, r = 0; 6317 ktime_t current_time; 6318 u16 ioc_status; 6319 u32 reply_post_free_array_sz = 0; 6320 6321 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6322 6323 memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t)); 6324 mpi_request.Function = MPI2_FUNCTION_IOC_INIT; 6325 mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER; 6326 mpi_request.VF_ID = 0; /* TODO */ 6327 mpi_request.VP_ID = 0; 6328 mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged); 6329 mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION); 6330 mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K; 6331 6332 if (_base_is_controller_msix_enabled(ioc)) 6333 mpi_request.HostMSIxVectors = ioc->reply_queue_count; 6334 mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4); 6335 mpi_request.ReplyDescriptorPostQueueDepth = 6336 cpu_to_le16(ioc->reply_post_queue_depth); 6337 mpi_request.ReplyFreeQueueDepth = 6338 cpu_to_le16(ioc->reply_free_queue_depth); 6339 6340 mpi_request.SenseBufferAddressHigh = 6341 cpu_to_le32((u64)ioc->sense_dma >> 32); 6342 mpi_request.SystemReplyAddressHigh = 6343 cpu_to_le32((u64)ioc->reply_dma >> 32); 6344 mpi_request.SystemRequestFrameBaseAddress = 6345 cpu_to_le64((u64)ioc->request_dma); 6346 mpi_request.ReplyFreeQueueAddress = 6347 cpu_to_le64((u64)ioc->reply_free_dma); 6348 6349 if (ioc->rdpq_array_enable) { 6350 reply_post_free_array_sz = ioc->reply_queue_count * 6351 sizeof(Mpi2IOCInitRDPQArrayEntry); 6352 memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz); 6353 for (i = 0; i < ioc->reply_queue_count; i++) 6354 ioc->reply_post_free_array[i].RDPQBaseAddress = 6355 cpu_to_le64( 6356 (u64)ioc->reply_post[i].reply_post_free_dma); 6357 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE; 6358 mpi_request.ReplyDescriptorPostQueueAddress = 6359 cpu_to_le64((u64)ioc->reply_post_free_array_dma); 6360 } else { 6361 mpi_request.ReplyDescriptorPostQueueAddress = 6362 cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma); 6363 } 6364 6365 /* 6366 * Set the flag to enable CoreDump state feature in IOC firmware. 6367 */ 6368 mpi_request.ConfigurationFlags |= 6369 cpu_to_le16(MPI26_IOCINIT_CFGFLAGS_COREDUMP_ENABLE); 6370 6371 /* This time stamp specifies number of milliseconds 6372 * since epoch ~ midnight January 1, 1970. 6373 */ 6374 current_time = ktime_get_real(); 6375 mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time)); 6376 6377 if (ioc->logging_level & MPT_DEBUG_INIT) { 6378 __le32 *mfp; 6379 int i; 6380 6381 mfp = (__le32 *)&mpi_request; 6382 ioc_info(ioc, "\toffset:data\n"); 6383 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++) 6384 ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4, 6385 le32_to_cpu(mfp[i])); 6386 } 6387 6388 r = _base_handshake_req_reply_wait(ioc, 6389 sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request, 6390 sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10); 6391 6392 if (r != 0) { 6393 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 6394 return r; 6395 } 6396 6397 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK; 6398 if (ioc_status != MPI2_IOCSTATUS_SUCCESS || 6399 mpi_reply.IOCLogInfo) { 6400 ioc_err(ioc, "%s: failed\n", __func__); 6401 r = -EIO; 6402 } 6403 6404 return r; 6405 } 6406 6407 /** 6408 * mpt3sas_port_enable_done - command completion routine for port enable 6409 * @ioc: per adapter object 6410 * @smid: system request message index 6411 * @msix_index: MSIX table index supplied by the OS 6412 * @reply: reply message frame(lower 32bit addr) 6413 * 6414 * Return: 1 meaning mf should be freed from _base_interrupt 6415 * 0 means the mf is freed from this function. 6416 */ 6417 u8 6418 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 6419 u32 reply) 6420 { 6421 MPI2DefaultReply_t *mpi_reply; 6422 u16 ioc_status; 6423 6424 if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED) 6425 return 1; 6426 6427 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 6428 if (!mpi_reply) 6429 return 1; 6430 6431 if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE) 6432 return 1; 6433 6434 ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING; 6435 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE; 6436 ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID; 6437 memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4); 6438 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 6439 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) 6440 ioc->port_enable_failed = 1; 6441 6442 if (ioc->is_driver_loading) { 6443 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 6444 mpt3sas_port_enable_complete(ioc); 6445 return 1; 6446 } else { 6447 ioc->start_scan_failed = ioc_status; 6448 ioc->start_scan = 0; 6449 return 1; 6450 } 6451 } 6452 complete(&ioc->port_enable_cmds.done); 6453 return 1; 6454 } 6455 6456 /** 6457 * _base_send_port_enable - send port_enable(discovery stuff) to firmware 6458 * @ioc: per adapter object 6459 * 6460 * Return: 0 for success, non-zero for failure. 6461 */ 6462 static int 6463 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc) 6464 { 6465 Mpi2PortEnableRequest_t *mpi_request; 6466 Mpi2PortEnableReply_t *mpi_reply; 6467 int r = 0; 6468 u16 smid; 6469 u16 ioc_status; 6470 6471 ioc_info(ioc, "sending port enable !!\n"); 6472 6473 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 6474 ioc_err(ioc, "%s: internal command already in use\n", __func__); 6475 return -EAGAIN; 6476 } 6477 6478 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx); 6479 if (!smid) { 6480 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 6481 return -EAGAIN; 6482 } 6483 6484 ioc->port_enable_cmds.status = MPT3_CMD_PENDING; 6485 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 6486 ioc->port_enable_cmds.smid = smid; 6487 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t)); 6488 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE; 6489 6490 init_completion(&ioc->port_enable_cmds.done); 6491 ioc->put_smid_default(ioc, smid); 6492 wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ); 6493 if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) { 6494 ioc_err(ioc, "%s: timeout\n", __func__); 6495 _debug_dump_mf(mpi_request, 6496 sizeof(Mpi2PortEnableRequest_t)/4); 6497 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET) 6498 r = -EFAULT; 6499 else 6500 r = -ETIME; 6501 goto out; 6502 } 6503 6504 mpi_reply = ioc->port_enable_cmds.reply; 6505 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 6506 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 6507 ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n", 6508 __func__, ioc_status); 6509 r = -EFAULT; 6510 goto out; 6511 } 6512 6513 out: 6514 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED; 6515 ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED"); 6516 return r; 6517 } 6518 6519 /** 6520 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply) 6521 * @ioc: per adapter object 6522 * 6523 * Return: 0 for success, non-zero for failure. 6524 */ 6525 int 6526 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc) 6527 { 6528 Mpi2PortEnableRequest_t *mpi_request; 6529 u16 smid; 6530 6531 ioc_info(ioc, "sending port enable !!\n"); 6532 6533 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 6534 ioc_err(ioc, "%s: internal command already in use\n", __func__); 6535 return -EAGAIN; 6536 } 6537 6538 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx); 6539 if (!smid) { 6540 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 6541 return -EAGAIN; 6542 } 6543 6544 ioc->port_enable_cmds.status = MPT3_CMD_PENDING; 6545 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 6546 ioc->port_enable_cmds.smid = smid; 6547 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t)); 6548 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE; 6549 6550 ioc->put_smid_default(ioc, smid); 6551 return 0; 6552 } 6553 6554 /** 6555 * _base_determine_wait_on_discovery - desposition 6556 * @ioc: per adapter object 6557 * 6558 * Decide whether to wait on discovery to complete. Used to either 6559 * locate boot device, or report volumes ahead of physical devices. 6560 * 6561 * Return: 1 for wait, 0 for don't wait. 6562 */ 6563 static int 6564 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc) 6565 { 6566 /* We wait for discovery to complete if IR firmware is loaded. 6567 * The sas topology events arrive before PD events, so we need time to 6568 * turn on the bit in ioc->pd_handles to indicate PD 6569 * Also, it maybe required to report Volumes ahead of physical 6570 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set. 6571 */ 6572 if (ioc->ir_firmware) 6573 return 1; 6574 6575 /* if no Bios, then we don't need to wait */ 6576 if (!ioc->bios_pg3.BiosVersion) 6577 return 0; 6578 6579 /* Bios is present, then we drop down here. 6580 * 6581 * If there any entries in the Bios Page 2, then we wait 6582 * for discovery to complete. 6583 */ 6584 6585 /* Current Boot Device */ 6586 if ((ioc->bios_pg2.CurrentBootDeviceForm & 6587 MPI2_BIOSPAGE2_FORM_MASK) == 6588 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED && 6589 /* Request Boot Device */ 6590 (ioc->bios_pg2.ReqBootDeviceForm & 6591 MPI2_BIOSPAGE2_FORM_MASK) == 6592 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED && 6593 /* Alternate Request Boot Device */ 6594 (ioc->bios_pg2.ReqAltBootDeviceForm & 6595 MPI2_BIOSPAGE2_FORM_MASK) == 6596 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED) 6597 return 0; 6598 6599 return 1; 6600 } 6601 6602 /** 6603 * _base_unmask_events - turn on notification for this event 6604 * @ioc: per adapter object 6605 * @event: firmware event 6606 * 6607 * The mask is stored in ioc->event_masks. 6608 */ 6609 static void 6610 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event) 6611 { 6612 u32 desired_event; 6613 6614 if (event >= 128) 6615 return; 6616 6617 desired_event = (1 << (event % 32)); 6618 6619 if (event < 32) 6620 ioc->event_masks[0] &= ~desired_event; 6621 else if (event < 64) 6622 ioc->event_masks[1] &= ~desired_event; 6623 else if (event < 96) 6624 ioc->event_masks[2] &= ~desired_event; 6625 else if (event < 128) 6626 ioc->event_masks[3] &= ~desired_event; 6627 } 6628 6629 /** 6630 * _base_event_notification - send event notification 6631 * @ioc: per adapter object 6632 * 6633 * Return: 0 for success, non-zero for failure. 6634 */ 6635 static int 6636 _base_event_notification(struct MPT3SAS_ADAPTER *ioc) 6637 { 6638 Mpi2EventNotificationRequest_t *mpi_request; 6639 u16 smid; 6640 int r = 0; 6641 int i; 6642 6643 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6644 6645 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 6646 ioc_err(ioc, "%s: internal command already in use\n", __func__); 6647 return -EAGAIN; 6648 } 6649 6650 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 6651 if (!smid) { 6652 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 6653 return -EAGAIN; 6654 } 6655 ioc->base_cmds.status = MPT3_CMD_PENDING; 6656 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 6657 ioc->base_cmds.smid = smid; 6658 memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t)); 6659 mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION; 6660 mpi_request->VF_ID = 0; /* TODO */ 6661 mpi_request->VP_ID = 0; 6662 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 6663 mpi_request->EventMasks[i] = 6664 cpu_to_le32(ioc->event_masks[i]); 6665 init_completion(&ioc->base_cmds.done); 6666 ioc->put_smid_default(ioc, smid); 6667 wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ); 6668 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 6669 ioc_err(ioc, "%s: timeout\n", __func__); 6670 _debug_dump_mf(mpi_request, 6671 sizeof(Mpi2EventNotificationRequest_t)/4); 6672 if (ioc->base_cmds.status & MPT3_CMD_RESET) 6673 r = -EFAULT; 6674 else 6675 r = -ETIME; 6676 } else 6677 dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__)); 6678 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 6679 return r; 6680 } 6681 6682 /** 6683 * mpt3sas_base_validate_event_type - validating event types 6684 * @ioc: per adapter object 6685 * @event_type: firmware event 6686 * 6687 * This will turn on firmware event notification when application 6688 * ask for that event. We don't mask events that are already enabled. 6689 */ 6690 void 6691 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type) 6692 { 6693 int i, j; 6694 u32 event_mask, desired_event; 6695 u8 send_update_to_fw; 6696 6697 for (i = 0, send_update_to_fw = 0; i < 6698 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) { 6699 event_mask = ~event_type[i]; 6700 desired_event = 1; 6701 for (j = 0; j < 32; j++) { 6702 if (!(event_mask & desired_event) && 6703 (ioc->event_masks[i] & desired_event)) { 6704 ioc->event_masks[i] &= ~desired_event; 6705 send_update_to_fw = 1; 6706 } 6707 desired_event = (desired_event << 1); 6708 } 6709 } 6710 6711 if (!send_update_to_fw) 6712 return; 6713 6714 mutex_lock(&ioc->base_cmds.mutex); 6715 _base_event_notification(ioc); 6716 mutex_unlock(&ioc->base_cmds.mutex); 6717 } 6718 6719 /** 6720 * _base_diag_reset - the "big hammer" start of day reset 6721 * @ioc: per adapter object 6722 * 6723 * Return: 0 for success, non-zero for failure. 6724 */ 6725 static int 6726 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc) 6727 { 6728 u32 host_diagnostic; 6729 u32 ioc_state; 6730 u32 count; 6731 u32 hcb_size; 6732 6733 ioc_info(ioc, "sending diag reset !!\n"); 6734 6735 drsprintk(ioc, ioc_info(ioc, "clear interrupts\n")); 6736 6737 count = 0; 6738 do { 6739 /* Write magic sequence to WriteSequence register 6740 * Loop until in diagnostic mode 6741 */ 6742 drsprintk(ioc, ioc_info(ioc, "write magic sequence\n")); 6743 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence); 6744 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence); 6745 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence); 6746 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence); 6747 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence); 6748 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence); 6749 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence); 6750 6751 /* wait 100 msec */ 6752 msleep(100); 6753 6754 if (count++ > 20) { 6755 ioc_info(ioc, 6756 "Stop writing magic sequence after 20 retries\n"); 6757 goto out; 6758 } 6759 6760 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic); 6761 drsprintk(ioc, 6762 ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n", 6763 count, host_diagnostic)); 6764 6765 } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0); 6766 6767 hcb_size = ioc->base_readl(&ioc->chip->HCBSize); 6768 6769 drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n")); 6770 writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER, 6771 &ioc->chip->HostDiagnostic); 6772 6773 /*This delay allows the chip PCIe hardware time to finish reset tasks*/ 6774 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000); 6775 6776 /* Approximately 300 second max wait */ 6777 for (count = 0; count < (300000000 / 6778 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) { 6779 6780 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic); 6781 6782 if (host_diagnostic == 0xFFFFFFFF) { 6783 ioc_info(ioc, 6784 "Invalid host diagnostic register value\n"); 6785 goto out; 6786 } 6787 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER)) 6788 break; 6789 6790 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000); 6791 } 6792 6793 if (host_diagnostic & MPI2_DIAG_HCB_MODE) { 6794 6795 drsprintk(ioc, 6796 ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n")); 6797 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK; 6798 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW; 6799 writel(host_diagnostic, &ioc->chip->HostDiagnostic); 6800 6801 drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n")); 6802 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE, 6803 &ioc->chip->HCBSize); 6804 } 6805 6806 drsprintk(ioc, ioc_info(ioc, "restart the adapter\n")); 6807 writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET, 6808 &ioc->chip->HostDiagnostic); 6809 6810 drsprintk(ioc, 6811 ioc_info(ioc, "disable writes to the diagnostic register\n")); 6812 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence); 6813 6814 drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n")); 6815 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20); 6816 if (ioc_state) { 6817 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 6818 __func__, ioc_state); 6819 goto out; 6820 } 6821 6822 ioc_info(ioc, "diag reset: SUCCESS\n"); 6823 return 0; 6824 6825 out: 6826 ioc_err(ioc, "diag reset: FAILED\n"); 6827 return -EFAULT; 6828 } 6829 6830 /** 6831 * _base_make_ioc_ready - put controller in READY state 6832 * @ioc: per adapter object 6833 * @type: FORCE_BIG_HAMMER or SOFT_RESET 6834 * 6835 * Return: 0 for success, non-zero for failure. 6836 */ 6837 static int 6838 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type) 6839 { 6840 u32 ioc_state; 6841 int rc; 6842 int count; 6843 6844 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6845 6846 if (ioc->pci_error_recovery) 6847 return 0; 6848 6849 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 6850 dhsprintk(ioc, 6851 ioc_info(ioc, "%s: ioc_state(0x%08x)\n", 6852 __func__, ioc_state)); 6853 6854 /* if in RESET state, it should move to READY state shortly */ 6855 count = 0; 6856 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) { 6857 while ((ioc_state & MPI2_IOC_STATE_MASK) != 6858 MPI2_IOC_STATE_READY) { 6859 if (count++ == 10) { 6860 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 6861 __func__, ioc_state); 6862 return -EFAULT; 6863 } 6864 ssleep(1); 6865 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 6866 } 6867 } 6868 6869 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) 6870 return 0; 6871 6872 if (ioc_state & MPI2_DOORBELL_USED) { 6873 ioc_info(ioc, "unexpected doorbell active!\n"); 6874 goto issue_diag_reset; 6875 } 6876 6877 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 6878 mpt3sas_print_fault_code(ioc, ioc_state & 6879 MPI2_DOORBELL_DATA_MASK); 6880 goto issue_diag_reset; 6881 } 6882 6883 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) { 6884 /* 6885 * if host reset is invoked while watch dog thread is waiting 6886 * for IOC state to be changed to Fault state then driver has 6887 * to wait here for CoreDump state to clear otherwise reset 6888 * will be issued to the FW and FW move the IOC state to 6889 * reset state without copying the FW logs to coredump region. 6890 */ 6891 if (ioc->ioc_coredump_loop != MPT3SAS_COREDUMP_LOOP_DONE) { 6892 mpt3sas_print_coredump_info(ioc, ioc_state & 6893 MPI2_DOORBELL_DATA_MASK); 6894 mpt3sas_base_wait_for_coredump_completion(ioc, 6895 __func__); 6896 } 6897 goto issue_diag_reset; 6898 } 6899 6900 if (type == FORCE_BIG_HAMMER) 6901 goto issue_diag_reset; 6902 6903 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL) 6904 if (!(_base_send_ioc_reset(ioc, 6905 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) { 6906 return 0; 6907 } 6908 6909 issue_diag_reset: 6910 rc = _base_diag_reset(ioc); 6911 return rc; 6912 } 6913 6914 /** 6915 * _base_make_ioc_operational - put controller in OPERATIONAL state 6916 * @ioc: per adapter object 6917 * 6918 * Return: 0 for success, non-zero for failure. 6919 */ 6920 static int 6921 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc) 6922 { 6923 int r, i, index, rc; 6924 unsigned long flags; 6925 u32 reply_address; 6926 u16 smid; 6927 struct _tr_list *delayed_tr, *delayed_tr_next; 6928 struct _sc_list *delayed_sc, *delayed_sc_next; 6929 struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next; 6930 u8 hide_flag; 6931 struct adapter_reply_queue *reply_q; 6932 Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig; 6933 6934 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6935 6936 /* clean the delayed target reset list */ 6937 list_for_each_entry_safe(delayed_tr, delayed_tr_next, 6938 &ioc->delayed_tr_list, list) { 6939 list_del(&delayed_tr->list); 6940 kfree(delayed_tr); 6941 } 6942 6943 6944 list_for_each_entry_safe(delayed_tr, delayed_tr_next, 6945 &ioc->delayed_tr_volume_list, list) { 6946 list_del(&delayed_tr->list); 6947 kfree(delayed_tr); 6948 } 6949 6950 list_for_each_entry_safe(delayed_sc, delayed_sc_next, 6951 &ioc->delayed_sc_list, list) { 6952 list_del(&delayed_sc->list); 6953 kfree(delayed_sc); 6954 } 6955 6956 list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next, 6957 &ioc->delayed_event_ack_list, list) { 6958 list_del(&delayed_event_ack->list); 6959 kfree(delayed_event_ack); 6960 } 6961 6962 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 6963 6964 /* hi-priority queue */ 6965 INIT_LIST_HEAD(&ioc->hpr_free_list); 6966 smid = ioc->hi_priority_smid; 6967 for (i = 0; i < ioc->hi_priority_depth; i++, smid++) { 6968 ioc->hpr_lookup[i].cb_idx = 0xFF; 6969 ioc->hpr_lookup[i].smid = smid; 6970 list_add_tail(&ioc->hpr_lookup[i].tracker_list, 6971 &ioc->hpr_free_list); 6972 } 6973 6974 /* internal queue */ 6975 INIT_LIST_HEAD(&ioc->internal_free_list); 6976 smid = ioc->internal_smid; 6977 for (i = 0; i < ioc->internal_depth; i++, smid++) { 6978 ioc->internal_lookup[i].cb_idx = 0xFF; 6979 ioc->internal_lookup[i].smid = smid; 6980 list_add_tail(&ioc->internal_lookup[i].tracker_list, 6981 &ioc->internal_free_list); 6982 } 6983 6984 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 6985 6986 /* initialize Reply Free Queue */ 6987 for (i = 0, reply_address = (u32)ioc->reply_dma ; 6988 i < ioc->reply_free_queue_depth ; i++, reply_address += 6989 ioc->reply_sz) { 6990 ioc->reply_free[i] = cpu_to_le32(reply_address); 6991 if (ioc->is_mcpu_endpoint) 6992 _base_clone_reply_to_sys_mem(ioc, 6993 reply_address, i); 6994 } 6995 6996 /* initialize reply queues */ 6997 if (ioc->is_driver_loading) 6998 _base_assign_reply_queues(ioc); 6999 7000 /* initialize Reply Post Free Queue */ 7001 index = 0; 7002 reply_post_free_contig = ioc->reply_post[0].reply_post_free; 7003 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 7004 /* 7005 * If RDPQ is enabled, switch to the next allocation. 7006 * Otherwise advance within the contiguous region. 7007 */ 7008 if (ioc->rdpq_array_enable) { 7009 reply_q->reply_post_free = 7010 ioc->reply_post[index++].reply_post_free; 7011 } else { 7012 reply_q->reply_post_free = reply_post_free_contig; 7013 reply_post_free_contig += ioc->reply_post_queue_depth; 7014 } 7015 7016 reply_q->reply_post_host_index = 0; 7017 for (i = 0; i < ioc->reply_post_queue_depth; i++) 7018 reply_q->reply_post_free[i].Words = 7019 cpu_to_le64(ULLONG_MAX); 7020 if (!_base_is_controller_msix_enabled(ioc)) 7021 goto skip_init_reply_post_free_queue; 7022 } 7023 skip_init_reply_post_free_queue: 7024 7025 r = _base_send_ioc_init(ioc); 7026 if (r) { 7027 /* 7028 * No need to check IOC state for fault state & issue 7029 * diag reset during host reset. This check is need 7030 * only during driver load time. 7031 */ 7032 if (!ioc->is_driver_loading) 7033 return r; 7034 7035 rc = _base_check_for_fault_and_issue_reset(ioc); 7036 if (rc || (_base_send_ioc_init(ioc))) 7037 return r; 7038 } 7039 7040 /* initialize reply free host index */ 7041 ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1; 7042 writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex); 7043 7044 /* initialize reply post host index */ 7045 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 7046 if (ioc->combined_reply_queue) 7047 writel((reply_q->msix_index & 7)<< 7048 MPI2_RPHI_MSIX_INDEX_SHIFT, 7049 ioc->replyPostRegisterIndex[reply_q->msix_index/8]); 7050 else 7051 writel(reply_q->msix_index << 7052 MPI2_RPHI_MSIX_INDEX_SHIFT, 7053 &ioc->chip->ReplyPostHostIndex); 7054 7055 if (!_base_is_controller_msix_enabled(ioc)) 7056 goto skip_init_reply_post_host_index; 7057 } 7058 7059 skip_init_reply_post_host_index: 7060 7061 _base_unmask_interrupts(ioc); 7062 7063 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 7064 r = _base_display_fwpkg_version(ioc); 7065 if (r) 7066 return r; 7067 } 7068 7069 _base_static_config_pages(ioc); 7070 r = _base_event_notification(ioc); 7071 if (r) 7072 return r; 7073 7074 if (ioc->is_driver_loading) { 7075 7076 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier 7077 == 0x80) { 7078 hide_flag = (u8) ( 7079 le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) & 7080 MFG_PAGE10_HIDE_SSDS_MASK); 7081 if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK) 7082 ioc->mfg_pg10_hide_flag = hide_flag; 7083 } 7084 7085 ioc->wait_for_discovery_to_complete = 7086 _base_determine_wait_on_discovery(ioc); 7087 7088 return r; /* scan_start and scan_finished support */ 7089 } 7090 7091 r = _base_send_port_enable(ioc); 7092 if (r) 7093 return r; 7094 7095 return r; 7096 } 7097 7098 /** 7099 * mpt3sas_base_free_resources - free resources controller resources 7100 * @ioc: per adapter object 7101 */ 7102 void 7103 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc) 7104 { 7105 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7106 7107 /* synchronizing freeing resource with pci_access_mutex lock */ 7108 mutex_lock(&ioc->pci_access_mutex); 7109 if (ioc->chip_phys && ioc->chip) { 7110 _base_mask_interrupts(ioc); 7111 ioc->shost_recovery = 1; 7112 _base_make_ioc_ready(ioc, SOFT_RESET); 7113 ioc->shost_recovery = 0; 7114 } 7115 7116 mpt3sas_base_unmap_resources(ioc); 7117 mutex_unlock(&ioc->pci_access_mutex); 7118 return; 7119 } 7120 7121 /** 7122 * mpt3sas_base_attach - attach controller instance 7123 * @ioc: per adapter object 7124 * 7125 * Return: 0 for success, non-zero for failure. 7126 */ 7127 int 7128 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc) 7129 { 7130 int r, i, rc; 7131 int cpu_id, last_cpu_id = 0; 7132 7133 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7134 7135 /* setup cpu_msix_table */ 7136 ioc->cpu_count = num_online_cpus(); 7137 for_each_online_cpu(cpu_id) 7138 last_cpu_id = cpu_id; 7139 ioc->cpu_msix_table_sz = last_cpu_id + 1; 7140 ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL); 7141 ioc->reply_queue_count = 1; 7142 if (!ioc->cpu_msix_table) { 7143 ioc_info(ioc, "Allocation for cpu_msix_table failed!!!\n"); 7144 r = -ENOMEM; 7145 goto out_free_resources; 7146 } 7147 7148 if (ioc->is_warpdrive) { 7149 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz, 7150 sizeof(resource_size_t *), GFP_KERNEL); 7151 if (!ioc->reply_post_host_index) { 7152 ioc_info(ioc, "Allocation for reply_post_host_index failed!!!\n"); 7153 r = -ENOMEM; 7154 goto out_free_resources; 7155 } 7156 } 7157 7158 ioc->smp_affinity_enable = smp_affinity_enable; 7159 7160 ioc->rdpq_array_enable_assigned = 0; 7161 ioc->dma_mask = 0; 7162 if (ioc->is_aero_ioc) 7163 ioc->base_readl = &_base_readl_aero; 7164 else 7165 ioc->base_readl = &_base_readl; 7166 r = mpt3sas_base_map_resources(ioc); 7167 if (r) 7168 goto out_free_resources; 7169 7170 pci_set_drvdata(ioc->pdev, ioc->shost); 7171 r = _base_get_ioc_facts(ioc); 7172 if (r) { 7173 rc = _base_check_for_fault_and_issue_reset(ioc); 7174 if (rc || (_base_get_ioc_facts(ioc))) 7175 goto out_free_resources; 7176 } 7177 7178 switch (ioc->hba_mpi_version_belonged) { 7179 case MPI2_VERSION: 7180 ioc->build_sg_scmd = &_base_build_sg_scmd; 7181 ioc->build_sg = &_base_build_sg; 7182 ioc->build_zero_len_sge = &_base_build_zero_len_sge; 7183 ioc->get_msix_index_for_smlio = &_base_get_msix_index; 7184 break; 7185 case MPI25_VERSION: 7186 case MPI26_VERSION: 7187 /* 7188 * In SAS3.0, 7189 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and 7190 * Target Status - all require the IEEE formated scatter gather 7191 * elements. 7192 */ 7193 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee; 7194 ioc->build_sg = &_base_build_sg_ieee; 7195 ioc->build_nvme_prp = &_base_build_nvme_prp; 7196 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee; 7197 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t); 7198 if (ioc->high_iops_queues) 7199 ioc->get_msix_index_for_smlio = 7200 &_base_get_high_iops_msix_index; 7201 else 7202 ioc->get_msix_index_for_smlio = &_base_get_msix_index; 7203 break; 7204 } 7205 if (ioc->atomic_desc_capable) { 7206 ioc->put_smid_default = &_base_put_smid_default_atomic; 7207 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic; 7208 ioc->put_smid_fast_path = 7209 &_base_put_smid_fast_path_atomic; 7210 ioc->put_smid_hi_priority = 7211 &_base_put_smid_hi_priority_atomic; 7212 } else { 7213 ioc->put_smid_default = &_base_put_smid_default; 7214 ioc->put_smid_fast_path = &_base_put_smid_fast_path; 7215 ioc->put_smid_hi_priority = &_base_put_smid_hi_priority; 7216 if (ioc->is_mcpu_endpoint) 7217 ioc->put_smid_scsi_io = 7218 &_base_put_smid_mpi_ep_scsi_io; 7219 else 7220 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io; 7221 } 7222 /* 7223 * These function pointers for other requests that don't 7224 * the require IEEE scatter gather elements. 7225 * 7226 * For example Configuration Pages and SAS IOUNIT Control don't. 7227 */ 7228 ioc->build_sg_mpi = &_base_build_sg; 7229 ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge; 7230 7231 r = _base_make_ioc_ready(ioc, SOFT_RESET); 7232 if (r) 7233 goto out_free_resources; 7234 7235 ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts, 7236 sizeof(struct mpt3sas_port_facts), GFP_KERNEL); 7237 if (!ioc->pfacts) { 7238 r = -ENOMEM; 7239 goto out_free_resources; 7240 } 7241 7242 for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) { 7243 r = _base_get_port_facts(ioc, i); 7244 if (r) { 7245 rc = _base_check_for_fault_and_issue_reset(ioc); 7246 if (rc || (_base_get_port_facts(ioc, i))) 7247 goto out_free_resources; 7248 } 7249 } 7250 7251 r = _base_allocate_memory_pools(ioc); 7252 if (r) 7253 goto out_free_resources; 7254 7255 if (irqpoll_weight > 0) 7256 ioc->thresh_hold = irqpoll_weight; 7257 else 7258 ioc->thresh_hold = ioc->hba_queue_depth/4; 7259 7260 _base_init_irqpolls(ioc); 7261 init_waitqueue_head(&ioc->reset_wq); 7262 7263 /* allocate memory pd handle bitmask list */ 7264 ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8); 7265 if (ioc->facts.MaxDevHandle % 8) 7266 ioc->pd_handles_sz++; 7267 ioc->pd_handles = kzalloc(ioc->pd_handles_sz, 7268 GFP_KERNEL); 7269 if (!ioc->pd_handles) { 7270 r = -ENOMEM; 7271 goto out_free_resources; 7272 } 7273 ioc->blocking_handles = kzalloc(ioc->pd_handles_sz, 7274 GFP_KERNEL); 7275 if (!ioc->blocking_handles) { 7276 r = -ENOMEM; 7277 goto out_free_resources; 7278 } 7279 7280 /* allocate memory for pending OS device add list */ 7281 ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8); 7282 if (ioc->facts.MaxDevHandle % 8) 7283 ioc->pend_os_device_add_sz++; 7284 ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz, 7285 GFP_KERNEL); 7286 if (!ioc->pend_os_device_add) 7287 goto out_free_resources; 7288 7289 ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz; 7290 ioc->device_remove_in_progress = 7291 kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL); 7292 if (!ioc->device_remove_in_progress) 7293 goto out_free_resources; 7294 7295 ioc->fwfault_debug = mpt3sas_fwfault_debug; 7296 7297 /* base internal command bits */ 7298 mutex_init(&ioc->base_cmds.mutex); 7299 ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7300 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 7301 7302 /* port_enable command bits */ 7303 ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7304 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED; 7305 7306 /* transport internal command bits */ 7307 ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7308 ioc->transport_cmds.status = MPT3_CMD_NOT_USED; 7309 mutex_init(&ioc->transport_cmds.mutex); 7310 7311 /* scsih internal command bits */ 7312 ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7313 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED; 7314 mutex_init(&ioc->scsih_cmds.mutex); 7315 7316 /* task management internal command bits */ 7317 ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7318 ioc->tm_cmds.status = MPT3_CMD_NOT_USED; 7319 mutex_init(&ioc->tm_cmds.mutex); 7320 7321 /* config page internal command bits */ 7322 ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7323 ioc->config_cmds.status = MPT3_CMD_NOT_USED; 7324 mutex_init(&ioc->config_cmds.mutex); 7325 7326 /* ctl module internal command bits */ 7327 ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7328 ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL); 7329 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED; 7330 mutex_init(&ioc->ctl_cmds.mutex); 7331 7332 if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply || 7333 !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply || 7334 !ioc->tm_cmds.reply || !ioc->config_cmds.reply || 7335 !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) { 7336 r = -ENOMEM; 7337 goto out_free_resources; 7338 } 7339 7340 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 7341 ioc->event_masks[i] = -1; 7342 7343 /* here we enable the events we care about */ 7344 _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY); 7345 _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE); 7346 _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST); 7347 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE); 7348 _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE); 7349 _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST); 7350 _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME); 7351 _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK); 7352 _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS); 7353 _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED); 7354 _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD); 7355 _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION); 7356 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR); 7357 if (ioc->hba_mpi_version_belonged == MPI26_VERSION) { 7358 if (ioc->is_gen35_ioc) { 7359 _base_unmask_events(ioc, 7360 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE); 7361 _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION); 7362 _base_unmask_events(ioc, 7363 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST); 7364 } 7365 } 7366 r = _base_make_ioc_operational(ioc); 7367 if (r) 7368 goto out_free_resources; 7369 7370 /* 7371 * Copy current copy of IOCFacts in prev_fw_facts 7372 * and it will be used during online firmware upgrade. 7373 */ 7374 memcpy(&ioc->prev_fw_facts, &ioc->facts, 7375 sizeof(struct mpt3sas_facts)); 7376 7377 ioc->non_operational_loop = 0; 7378 ioc->ioc_coredump_loop = 0; 7379 ioc->got_task_abort_from_ioctl = 0; 7380 return 0; 7381 7382 out_free_resources: 7383 7384 ioc->remove_host = 1; 7385 7386 mpt3sas_base_free_resources(ioc); 7387 _base_release_memory_pools(ioc); 7388 pci_set_drvdata(ioc->pdev, NULL); 7389 kfree(ioc->cpu_msix_table); 7390 if (ioc->is_warpdrive) 7391 kfree(ioc->reply_post_host_index); 7392 kfree(ioc->pd_handles); 7393 kfree(ioc->blocking_handles); 7394 kfree(ioc->device_remove_in_progress); 7395 kfree(ioc->pend_os_device_add); 7396 kfree(ioc->tm_cmds.reply); 7397 kfree(ioc->transport_cmds.reply); 7398 kfree(ioc->scsih_cmds.reply); 7399 kfree(ioc->config_cmds.reply); 7400 kfree(ioc->base_cmds.reply); 7401 kfree(ioc->port_enable_cmds.reply); 7402 kfree(ioc->ctl_cmds.reply); 7403 kfree(ioc->ctl_cmds.sense); 7404 kfree(ioc->pfacts); 7405 ioc->ctl_cmds.reply = NULL; 7406 ioc->base_cmds.reply = NULL; 7407 ioc->tm_cmds.reply = NULL; 7408 ioc->scsih_cmds.reply = NULL; 7409 ioc->transport_cmds.reply = NULL; 7410 ioc->config_cmds.reply = NULL; 7411 ioc->pfacts = NULL; 7412 return r; 7413 } 7414 7415 7416 /** 7417 * mpt3sas_base_detach - remove controller instance 7418 * @ioc: per adapter object 7419 */ 7420 void 7421 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc) 7422 { 7423 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7424 7425 mpt3sas_base_stop_watchdog(ioc); 7426 mpt3sas_base_free_resources(ioc); 7427 _base_release_memory_pools(ioc); 7428 mpt3sas_free_enclosure_list(ioc); 7429 pci_set_drvdata(ioc->pdev, NULL); 7430 kfree(ioc->cpu_msix_table); 7431 if (ioc->is_warpdrive) 7432 kfree(ioc->reply_post_host_index); 7433 kfree(ioc->pd_handles); 7434 kfree(ioc->blocking_handles); 7435 kfree(ioc->device_remove_in_progress); 7436 kfree(ioc->pend_os_device_add); 7437 kfree(ioc->pfacts); 7438 kfree(ioc->ctl_cmds.reply); 7439 kfree(ioc->ctl_cmds.sense); 7440 kfree(ioc->base_cmds.reply); 7441 kfree(ioc->port_enable_cmds.reply); 7442 kfree(ioc->tm_cmds.reply); 7443 kfree(ioc->transport_cmds.reply); 7444 kfree(ioc->scsih_cmds.reply); 7445 kfree(ioc->config_cmds.reply); 7446 } 7447 7448 /** 7449 * _base_pre_reset_handler - pre reset handler 7450 * @ioc: per adapter object 7451 */ 7452 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc) 7453 { 7454 mpt3sas_scsih_pre_reset_handler(ioc); 7455 mpt3sas_ctl_pre_reset_handler(ioc); 7456 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__)); 7457 } 7458 7459 /** 7460 * _base_clear_outstanding_mpt_commands - clears outstanding mpt commands 7461 * @ioc: per adapter object 7462 */ 7463 static void 7464 _base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER *ioc) 7465 { 7466 dtmprintk(ioc, 7467 ioc_info(ioc, "%s: clear outstanding mpt cmds\n", __func__)); 7468 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) { 7469 ioc->transport_cmds.status |= MPT3_CMD_RESET; 7470 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid); 7471 complete(&ioc->transport_cmds.done); 7472 } 7473 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 7474 ioc->base_cmds.status |= MPT3_CMD_RESET; 7475 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid); 7476 complete(&ioc->base_cmds.done); 7477 } 7478 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 7479 ioc->port_enable_failed = 1; 7480 ioc->port_enable_cmds.status |= MPT3_CMD_RESET; 7481 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid); 7482 if (ioc->is_driver_loading) { 7483 ioc->start_scan_failed = 7484 MPI2_IOCSTATUS_INTERNAL_ERROR; 7485 ioc->start_scan = 0; 7486 ioc->port_enable_cmds.status = 7487 MPT3_CMD_NOT_USED; 7488 } else { 7489 complete(&ioc->port_enable_cmds.done); 7490 } 7491 } 7492 if (ioc->config_cmds.status & MPT3_CMD_PENDING) { 7493 ioc->config_cmds.status |= MPT3_CMD_RESET; 7494 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid); 7495 ioc->config_cmds.smid = USHRT_MAX; 7496 complete(&ioc->config_cmds.done); 7497 } 7498 } 7499 7500 /** 7501 * _base_clear_outstanding_commands - clear all outstanding commands 7502 * @ioc: per adapter object 7503 */ 7504 static void _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc) 7505 { 7506 mpt3sas_scsih_clear_outstanding_scsi_tm_commands(ioc); 7507 mpt3sas_ctl_clear_outstanding_ioctls(ioc); 7508 _base_clear_outstanding_mpt_commands(ioc); 7509 } 7510 7511 /** 7512 * _base_reset_done_handler - reset done handler 7513 * @ioc: per adapter object 7514 */ 7515 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc) 7516 { 7517 mpt3sas_scsih_reset_done_handler(ioc); 7518 mpt3sas_ctl_reset_done_handler(ioc); 7519 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__)); 7520 } 7521 7522 /** 7523 * mpt3sas_wait_for_commands_to_complete - reset controller 7524 * @ioc: Pointer to MPT_ADAPTER structure 7525 * 7526 * This function is waiting 10s for all pending commands to complete 7527 * prior to putting controller in reset. 7528 */ 7529 void 7530 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc) 7531 { 7532 u32 ioc_state; 7533 7534 ioc->pending_io_count = 0; 7535 7536 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 7537 if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) 7538 return; 7539 7540 /* pending command count */ 7541 ioc->pending_io_count = scsi_host_busy(ioc->shost); 7542 7543 if (!ioc->pending_io_count) 7544 return; 7545 7546 /* wait for pending commands to complete */ 7547 wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ); 7548 } 7549 7550 /** 7551 * _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts 7552 * attributes during online firmware upgrade and update the corresponding 7553 * IOC variables accordingly. 7554 * 7555 * @ioc: Pointer to MPT_ADAPTER structure 7556 */ 7557 static int 7558 _base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc) 7559 { 7560 u16 pd_handles_sz; 7561 void *pd_handles = NULL, *blocking_handles = NULL; 7562 void *pend_os_device_add = NULL, *device_remove_in_progress = NULL; 7563 struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts; 7564 7565 if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle) { 7566 pd_handles_sz = (ioc->facts.MaxDevHandle / 8); 7567 if (ioc->facts.MaxDevHandle % 8) 7568 pd_handles_sz++; 7569 7570 pd_handles = krealloc(ioc->pd_handles, pd_handles_sz, 7571 GFP_KERNEL); 7572 if (!pd_handles) { 7573 ioc_info(ioc, 7574 "Unable to allocate the memory for pd_handles of sz: %d\n", 7575 pd_handles_sz); 7576 return -ENOMEM; 7577 } 7578 memset(pd_handles + ioc->pd_handles_sz, 0, 7579 (pd_handles_sz - ioc->pd_handles_sz)); 7580 ioc->pd_handles = pd_handles; 7581 7582 blocking_handles = krealloc(ioc->blocking_handles, 7583 pd_handles_sz, GFP_KERNEL); 7584 if (!blocking_handles) { 7585 ioc_info(ioc, 7586 "Unable to allocate the memory for " 7587 "blocking_handles of sz: %d\n", 7588 pd_handles_sz); 7589 return -ENOMEM; 7590 } 7591 memset(blocking_handles + ioc->pd_handles_sz, 0, 7592 (pd_handles_sz - ioc->pd_handles_sz)); 7593 ioc->blocking_handles = blocking_handles; 7594 ioc->pd_handles_sz = pd_handles_sz; 7595 7596 pend_os_device_add = krealloc(ioc->pend_os_device_add, 7597 pd_handles_sz, GFP_KERNEL); 7598 if (!pend_os_device_add) { 7599 ioc_info(ioc, 7600 "Unable to allocate the memory for pend_os_device_add of sz: %d\n", 7601 pd_handles_sz); 7602 return -ENOMEM; 7603 } 7604 memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0, 7605 (pd_handles_sz - ioc->pend_os_device_add_sz)); 7606 ioc->pend_os_device_add = pend_os_device_add; 7607 ioc->pend_os_device_add_sz = pd_handles_sz; 7608 7609 device_remove_in_progress = krealloc( 7610 ioc->device_remove_in_progress, pd_handles_sz, GFP_KERNEL); 7611 if (!device_remove_in_progress) { 7612 ioc_info(ioc, 7613 "Unable to allocate the memory for " 7614 "device_remove_in_progress of sz: %d\n " 7615 , pd_handles_sz); 7616 return -ENOMEM; 7617 } 7618 memset(device_remove_in_progress + 7619 ioc->device_remove_in_progress_sz, 0, 7620 (pd_handles_sz - ioc->device_remove_in_progress_sz)); 7621 ioc->device_remove_in_progress = device_remove_in_progress; 7622 ioc->device_remove_in_progress_sz = pd_handles_sz; 7623 } 7624 7625 memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts)); 7626 return 0; 7627 } 7628 7629 /** 7630 * mpt3sas_base_hard_reset_handler - reset controller 7631 * @ioc: Pointer to MPT_ADAPTER structure 7632 * @type: FORCE_BIG_HAMMER or SOFT_RESET 7633 * 7634 * Return: 0 for success, non-zero for failure. 7635 */ 7636 int 7637 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc, 7638 enum reset_type type) 7639 { 7640 int r; 7641 unsigned long flags; 7642 u32 ioc_state; 7643 u8 is_fault = 0, is_trigger = 0; 7644 7645 dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__)); 7646 7647 if (ioc->pci_error_recovery) { 7648 ioc_err(ioc, "%s: pci error recovery reset\n", __func__); 7649 r = 0; 7650 goto out_unlocked; 7651 } 7652 7653 if (mpt3sas_fwfault_debug) 7654 mpt3sas_halt_firmware(ioc); 7655 7656 /* wait for an active reset in progress to complete */ 7657 mutex_lock(&ioc->reset_in_progress_mutex); 7658 7659 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 7660 ioc->shost_recovery = 1; 7661 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 7662 7663 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 7664 MPT3_DIAG_BUFFER_IS_REGISTERED) && 7665 (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 7666 MPT3_DIAG_BUFFER_IS_RELEASED))) { 7667 is_trigger = 1; 7668 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 7669 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT || 7670 (ioc_state & MPI2_IOC_STATE_MASK) == 7671 MPI2_IOC_STATE_COREDUMP) 7672 is_fault = 1; 7673 } 7674 _base_pre_reset_handler(ioc); 7675 mpt3sas_wait_for_commands_to_complete(ioc); 7676 _base_mask_interrupts(ioc); 7677 r = _base_make_ioc_ready(ioc, type); 7678 if (r) 7679 goto out; 7680 _base_clear_outstanding_commands(ioc); 7681 7682 /* If this hard reset is called while port enable is active, then 7683 * there is no reason to call make_ioc_operational 7684 */ 7685 if (ioc->is_driver_loading && ioc->port_enable_failed) { 7686 ioc->remove_host = 1; 7687 r = -EFAULT; 7688 goto out; 7689 } 7690 r = _base_get_ioc_facts(ioc); 7691 if (r) 7692 goto out; 7693 7694 r = _base_check_ioc_facts_changes(ioc); 7695 if (r) { 7696 ioc_info(ioc, 7697 "Some of the parameters got changed in this new firmware" 7698 " image and it requires system reboot\n"); 7699 goto out; 7700 } 7701 if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable) 7702 panic("%s: Issue occurred with flashing controller firmware." 7703 "Please reboot the system and ensure that the correct" 7704 " firmware version is running\n", ioc->name); 7705 7706 r = _base_make_ioc_operational(ioc); 7707 if (!r) 7708 _base_reset_done_handler(ioc); 7709 7710 out: 7711 ioc_info(ioc, "%s: %s\n", __func__, r == 0 ? "SUCCESS" : "FAILED"); 7712 7713 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 7714 ioc->shost_recovery = 0; 7715 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 7716 ioc->ioc_reset_count++; 7717 mutex_unlock(&ioc->reset_in_progress_mutex); 7718 7719 out_unlocked: 7720 if ((r == 0) && is_trigger) { 7721 if (is_fault) 7722 mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT); 7723 else 7724 mpt3sas_trigger_master(ioc, 7725 MASTER_TRIGGER_ADAPTER_RESET); 7726 } 7727 dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__)); 7728 return r; 7729 } 7730