1 /* 2 * This is the Fusion MPT base driver providing common API layer interface 3 * for access to MPT (Message Passing Technology) firmware. 4 * 5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c 6 * Copyright (C) 2012-2014 LSI Corporation 7 * Copyright (C) 2013-2014 Avago Technologies 8 * (mailto: MPT-FusionLinux.pdl@avagotech.com) 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License 12 * as published by the Free Software Foundation; either version 2 13 * of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * NO WARRANTY 21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR 22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT 23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, 24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is 25 * solely responsible for determining the appropriateness of using and 26 * distributing the Program and assumes all risks associated with its 27 * exercise of rights under this Agreement, including but not limited to 28 * the risks and costs of program errors, damage to or loss of data, 29 * programs or equipment, and unavailability or interruption of operations. 30 31 * DISCLAIMER OF LIABILITY 32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY 33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND 35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED 38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES 39 40 * You should have received a copy of the GNU General Public License 41 * along with this program; if not, write to the Free Software 42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, 43 * USA. 44 */ 45 46 #include <linux/kernel.h> 47 #include <linux/module.h> 48 #include <linux/errno.h> 49 #include <linux/init.h> 50 #include <linux/slab.h> 51 #include <linux/types.h> 52 #include <linux/pci.h> 53 #include <linux/kdev_t.h> 54 #include <linux/blkdev.h> 55 #include <linux/delay.h> 56 #include <linux/interrupt.h> 57 #include <linux/dma-mapping.h> 58 #include <linux/io.h> 59 #include <linux/time.h> 60 #include <linux/ktime.h> 61 #include <linux/kthread.h> 62 #include <asm/page.h> /* To get host page size per arch */ 63 #include <linux/aer.h> 64 65 66 #include "mpt3sas_base.h" 67 68 static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS]; 69 70 71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */ 72 73 /* maximum controller queue depth */ 74 #define MAX_HBA_QUEUE_DEPTH 30000 75 #define MAX_CHAIN_DEPTH 100000 76 static int max_queue_depth = -1; 77 module_param(max_queue_depth, int, 0444); 78 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth "); 79 80 static int max_sgl_entries = -1; 81 module_param(max_sgl_entries, int, 0444); 82 MODULE_PARM_DESC(max_sgl_entries, " max sg entries "); 83 84 static int msix_disable = -1; 85 module_param(msix_disable, int, 0444); 86 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)"); 87 88 static int smp_affinity_enable = 1; 89 module_param(smp_affinity_enable, int, 0444); 90 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)"); 91 92 static int max_msix_vectors = -1; 93 module_param(max_msix_vectors, int, 0444); 94 MODULE_PARM_DESC(max_msix_vectors, 95 " max msix vectors"); 96 97 static int irqpoll_weight = -1; 98 module_param(irqpoll_weight, int, 0444); 99 MODULE_PARM_DESC(irqpoll_weight, 100 "irq poll weight (default= one fourth of HBA queue depth)"); 101 102 static int mpt3sas_fwfault_debug; 103 MODULE_PARM_DESC(mpt3sas_fwfault_debug, 104 " enable detection of firmware fault and halt firmware - (default=0)"); 105 106 static int perf_mode = -1; 107 module_param(perf_mode, int, 0444); 108 MODULE_PARM_DESC(perf_mode, 109 "Performance mode (only for Aero/Sea Generation), options:\n\t\t" 110 "0 - balanced: high iops mode is enabled &\n\t\t" 111 "interrupt coalescing is enabled only on high iops queues,\n\t\t" 112 "1 - iops: high iops mode is disabled &\n\t\t" 113 "interrupt coalescing is enabled on all queues,\n\t\t" 114 "2 - latency: high iops mode is disabled &\n\t\t" 115 "interrupt coalescing is enabled on all queues with timeout value 0xA,\n" 116 "\t\tdefault - default perf_mode is 'balanced'" 117 ); 118 119 static int poll_queues; 120 module_param(poll_queues, int, 0444); 121 MODULE_PARM_DESC(poll_queues, "Number of queues to be use for io_uring poll mode.\n\t\t" 122 "This parameter is effective only if host_tagset_enable=1. &\n\t\t" 123 "when poll_queues are enabled then &\n\t\t" 124 "perf_mode is set to latency mode. &\n\t\t" 125 ); 126 127 enum mpt3sas_perf_mode { 128 MPT_PERF_MODE_DEFAULT = -1, 129 MPT_PERF_MODE_BALANCED = 0, 130 MPT_PERF_MODE_IOPS = 1, 131 MPT_PERF_MODE_LATENCY = 2, 132 }; 133 134 static int 135 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, 136 u32 ioc_state, int timeout); 137 static int 138 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc); 139 static void 140 _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc); 141 142 /** 143 * mpt3sas_base_check_cmd_timeout - Function 144 * to check timeout and command termination due 145 * to Host reset. 146 * 147 * @ioc: per adapter object. 148 * @status: Status of issued command. 149 * @mpi_request:mf request pointer. 150 * @sz: size of buffer. 151 * 152 * Return: 1/0 Reset to be done or Not 153 */ 154 u8 155 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc, 156 u8 status, void *mpi_request, int sz) 157 { 158 u8 issue_reset = 0; 159 160 if (!(status & MPT3_CMD_RESET)) 161 issue_reset = 1; 162 163 ioc_err(ioc, "Command %s\n", 164 issue_reset == 0 ? "terminated due to Host Reset" : "Timeout"); 165 _debug_dump_mf(mpi_request, sz); 166 167 return issue_reset; 168 } 169 170 /** 171 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug. 172 * @val: ? 173 * @kp: ? 174 * 175 * Return: ? 176 */ 177 static int 178 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp) 179 { 180 int ret = param_set_int(val, kp); 181 struct MPT3SAS_ADAPTER *ioc; 182 183 if (ret) 184 return ret; 185 186 /* global ioc spinlock to protect controller list on list operations */ 187 pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug); 188 spin_lock(&gioc_lock); 189 list_for_each_entry(ioc, &mpt3sas_ioc_list, list) 190 ioc->fwfault_debug = mpt3sas_fwfault_debug; 191 spin_unlock(&gioc_lock); 192 return 0; 193 } 194 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug, 195 param_get_int, &mpt3sas_fwfault_debug, 0644); 196 197 /** 198 * _base_readl_aero - retry readl for max three times. 199 * @addr: MPT Fusion system interface register address 200 * 201 * Retry the readl() for max three times if it gets zero value 202 * while reading the system interface register. 203 */ 204 static inline u32 205 _base_readl_aero(const volatile void __iomem *addr) 206 { 207 u32 i = 0, ret_val; 208 209 do { 210 ret_val = readl(addr); 211 i++; 212 } while (ret_val == 0 && i < 3); 213 214 return ret_val; 215 } 216 217 static inline u32 218 _base_readl(const volatile void __iomem *addr) 219 { 220 return readl(addr); 221 } 222 223 /** 224 * _base_clone_reply_to_sys_mem - copies reply to reply free iomem 225 * in BAR0 space. 226 * 227 * @ioc: per adapter object 228 * @reply: reply message frame(lower 32bit addr) 229 * @index: System request message index. 230 */ 231 static void 232 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply, 233 u32 index) 234 { 235 /* 236 * 256 is offset within sys register. 237 * 256 offset MPI frame starts. Max MPI frame supported is 32. 238 * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts 239 */ 240 u16 cmd_credit = ioc->facts.RequestCredit + 1; 241 void __iomem *reply_free_iomem = (void __iomem *)ioc->chip + 242 MPI_FRAME_START_OFFSET + 243 (cmd_credit * ioc->request_sz) + (index * sizeof(u32)); 244 245 writel(reply, reply_free_iomem); 246 } 247 248 /** 249 * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames 250 * to system/BAR0 region. 251 * 252 * @dst_iomem: Pointer to the destination location in BAR0 space. 253 * @src: Pointer to the Source data. 254 * @size: Size of data to be copied. 255 */ 256 static void 257 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size) 258 { 259 int i; 260 u32 *src_virt_mem = (u32 *)src; 261 262 for (i = 0; i < size/4; i++) 263 writel((u32)src_virt_mem[i], 264 (void __iomem *)dst_iomem + (i * 4)); 265 } 266 267 /** 268 * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region 269 * 270 * @dst_iomem: Pointer to the destination location in BAR0 space. 271 * @src: Pointer to the Source data. 272 * @size: Size of data to be copied. 273 */ 274 static void 275 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size) 276 { 277 int i; 278 u32 *src_virt_mem = (u32 *)(src); 279 280 for (i = 0; i < size/4; i++) 281 writel((u32)src_virt_mem[i], 282 (void __iomem *)dst_iomem + (i * 4)); 283 } 284 285 /** 286 * _base_get_chain - Calculates and Returns virtual chain address 287 * for the provided smid in BAR0 space. 288 * 289 * @ioc: per adapter object 290 * @smid: system request message index 291 * @sge_chain_count: Scatter gather chain count. 292 * 293 * Return: the chain address. 294 */ 295 static inline void __iomem* 296 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid, 297 u8 sge_chain_count) 298 { 299 void __iomem *base_chain, *chain_virt; 300 u16 cmd_credit = ioc->facts.RequestCredit + 1; 301 302 base_chain = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET + 303 (cmd_credit * ioc->request_sz) + 304 REPLY_FREE_POOL_SIZE; 305 chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth * 306 ioc->request_sz) + (sge_chain_count * ioc->request_sz); 307 return chain_virt; 308 } 309 310 /** 311 * _base_get_chain_phys - Calculates and Returns physical address 312 * in BAR0 for scatter gather chains, for 313 * the provided smid. 314 * 315 * @ioc: per adapter object 316 * @smid: system request message index 317 * @sge_chain_count: Scatter gather chain count. 318 * 319 * Return: Physical chain address. 320 */ 321 static inline phys_addr_t 322 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid, 323 u8 sge_chain_count) 324 { 325 phys_addr_t base_chain_phys, chain_phys; 326 u16 cmd_credit = ioc->facts.RequestCredit + 1; 327 328 base_chain_phys = ioc->chip_phys + MPI_FRAME_START_OFFSET + 329 (cmd_credit * ioc->request_sz) + 330 REPLY_FREE_POOL_SIZE; 331 chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth * 332 ioc->request_sz) + (sge_chain_count * ioc->request_sz); 333 return chain_phys; 334 } 335 336 /** 337 * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host 338 * buffer address for the provided smid. 339 * (Each smid can have 64K starts from 17024) 340 * 341 * @ioc: per adapter object 342 * @smid: system request message index 343 * 344 * Return: Pointer to buffer location in BAR0. 345 */ 346 347 static void __iomem * 348 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid) 349 { 350 u16 cmd_credit = ioc->facts.RequestCredit + 1; 351 // Added extra 1 to reach end of chain. 352 void __iomem *chain_end = _base_get_chain(ioc, 353 cmd_credit + 1, 354 ioc->facts.MaxChainDepth); 355 return chain_end + (smid * 64 * 1024); 356 } 357 358 /** 359 * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped 360 * Host buffer Physical address for the provided smid. 361 * (Each smid can have 64K starts from 17024) 362 * 363 * @ioc: per adapter object 364 * @smid: system request message index 365 * 366 * Return: Pointer to buffer location in BAR0. 367 */ 368 static phys_addr_t 369 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid) 370 { 371 u16 cmd_credit = ioc->facts.RequestCredit + 1; 372 phys_addr_t chain_end_phys = _base_get_chain_phys(ioc, 373 cmd_credit + 1, 374 ioc->facts.MaxChainDepth); 375 return chain_end_phys + (smid * 64 * 1024); 376 } 377 378 /** 379 * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain 380 * lookup list and Provides chain_buffer 381 * address for the matching dma address. 382 * (Each smid can have 64K starts from 17024) 383 * 384 * @ioc: per adapter object 385 * @chain_buffer_dma: Chain buffer dma address. 386 * 387 * Return: Pointer to chain buffer. Or Null on Failure. 388 */ 389 static void * 390 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc, 391 dma_addr_t chain_buffer_dma) 392 { 393 u16 index, j; 394 struct chain_tracker *ct; 395 396 for (index = 0; index < ioc->scsiio_depth; index++) { 397 for (j = 0; j < ioc->chains_needed_per_io; j++) { 398 ct = &ioc->chain_lookup[index].chains_per_smid[j]; 399 if (ct && ct->chain_buffer_dma == chain_buffer_dma) 400 return ct->chain_buffer; 401 } 402 } 403 ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n"); 404 return NULL; 405 } 406 407 /** 408 * _clone_sg_entries - MPI EP's scsiio and config requests 409 * are handled here. Base function for 410 * double buffering, before submitting 411 * the requests. 412 * 413 * @ioc: per adapter object. 414 * @mpi_request: mf request pointer. 415 * @smid: system request message index. 416 */ 417 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc, 418 void *mpi_request, u16 smid) 419 { 420 Mpi2SGESimple32_t *sgel, *sgel_next; 421 u32 sgl_flags, sge_chain_count = 0; 422 bool is_write = false; 423 u16 i = 0; 424 void __iomem *buffer_iomem; 425 phys_addr_t buffer_iomem_phys; 426 void __iomem *buff_ptr; 427 phys_addr_t buff_ptr_phys; 428 void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO]; 429 void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO]; 430 phys_addr_t dst_addr_phys; 431 MPI2RequestHeader_t *request_hdr; 432 struct scsi_cmnd *scmd; 433 struct scatterlist *sg_scmd = NULL; 434 int is_scsiio_req = 0; 435 436 request_hdr = (MPI2RequestHeader_t *) mpi_request; 437 438 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) { 439 Mpi25SCSIIORequest_t *scsiio_request = 440 (Mpi25SCSIIORequest_t *)mpi_request; 441 sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL; 442 is_scsiio_req = 1; 443 } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) { 444 Mpi2ConfigRequest_t *config_req = 445 (Mpi2ConfigRequest_t *)mpi_request; 446 sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE; 447 } else 448 return; 449 450 /* From smid we can get scsi_cmd, once we have sg_scmd, 451 * we just need to get sg_virt and sg_next to get virtual 452 * address associated with sgel->Address. 453 */ 454 455 if (is_scsiio_req) { 456 /* Get scsi_cmd using smid */ 457 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid); 458 if (scmd == NULL) { 459 ioc_err(ioc, "scmd is NULL\n"); 460 return; 461 } 462 463 /* Get sg_scmd from scmd provided */ 464 sg_scmd = scsi_sglist(scmd); 465 } 466 467 /* 468 * 0 - 255 System register 469 * 256 - 4352 MPI Frame. (This is based on maxCredit 32) 470 * 4352 - 4864 Reply_free pool (512 byte is reserved 471 * considering maxCredit 32. Reply need extra 472 * room, for mCPU case kept four times of 473 * maxCredit). 474 * 4864 - 17152 SGE chain element. (32cmd * 3 chain of 475 * 128 byte size = 12288) 476 * 17152 - x Host buffer mapped with smid. 477 * (Each smid can have 64K Max IO.) 478 * BAR0+Last 1K MSIX Addr and Data 479 * Total size in use 2113664 bytes of 4MB BAR0 480 */ 481 482 buffer_iomem = _base_get_buffer_bar0(ioc, smid); 483 buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid); 484 485 buff_ptr = buffer_iomem; 486 buff_ptr_phys = buffer_iomem_phys; 487 WARN_ON(buff_ptr_phys > U32_MAX); 488 489 if (le32_to_cpu(sgel->FlagsLength) & 490 (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT)) 491 is_write = true; 492 493 for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) { 494 495 sgl_flags = 496 (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT); 497 498 switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) { 499 case MPI2_SGE_FLAGS_CHAIN_ELEMENT: 500 /* 501 * Helper function which on passing 502 * chain_buffer_dma returns chain_buffer. Get 503 * the virtual address for sgel->Address 504 */ 505 sgel_next = 506 _base_get_chain_buffer_dma_to_chain_buffer(ioc, 507 le32_to_cpu(sgel->Address)); 508 if (sgel_next == NULL) 509 return; 510 /* 511 * This is coping 128 byte chain 512 * frame (not a host buffer) 513 */ 514 dst_chain_addr[sge_chain_count] = 515 _base_get_chain(ioc, 516 smid, sge_chain_count); 517 src_chain_addr[sge_chain_count] = 518 (void *) sgel_next; 519 dst_addr_phys = _base_get_chain_phys(ioc, 520 smid, sge_chain_count); 521 WARN_ON(dst_addr_phys > U32_MAX); 522 sgel->Address = 523 cpu_to_le32(lower_32_bits(dst_addr_phys)); 524 sgel = sgel_next; 525 sge_chain_count++; 526 break; 527 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT: 528 if (is_write) { 529 if (is_scsiio_req) { 530 _base_clone_to_sys_mem(buff_ptr, 531 sg_virt(sg_scmd), 532 (le32_to_cpu(sgel->FlagsLength) & 533 0x00ffffff)); 534 /* 535 * FIXME: this relies on a a zero 536 * PCI mem_offset. 537 */ 538 sgel->Address = 539 cpu_to_le32((u32)buff_ptr_phys); 540 } else { 541 _base_clone_to_sys_mem(buff_ptr, 542 ioc->config_vaddr, 543 (le32_to_cpu(sgel->FlagsLength) & 544 0x00ffffff)); 545 sgel->Address = 546 cpu_to_le32((u32)buff_ptr_phys); 547 } 548 } 549 buff_ptr += (le32_to_cpu(sgel->FlagsLength) & 550 0x00ffffff); 551 buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) & 552 0x00ffffff); 553 if ((le32_to_cpu(sgel->FlagsLength) & 554 (MPI2_SGE_FLAGS_END_OF_BUFFER 555 << MPI2_SGE_FLAGS_SHIFT))) 556 goto eob_clone_chain; 557 else { 558 /* 559 * Every single element in MPT will have 560 * associated sg_next. Better to sanity that 561 * sg_next is not NULL, but it will be a bug 562 * if it is null. 563 */ 564 if (is_scsiio_req) { 565 sg_scmd = sg_next(sg_scmd); 566 if (sg_scmd) 567 sgel++; 568 else 569 goto eob_clone_chain; 570 } 571 } 572 break; 573 } 574 } 575 576 eob_clone_chain: 577 for (i = 0; i < sge_chain_count; i++) { 578 if (is_scsiio_req) 579 _base_clone_to_sys_mem(dst_chain_addr[i], 580 src_chain_addr[i], ioc->request_sz); 581 } 582 } 583 584 /** 585 * mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc 586 * @arg: input argument, used to derive ioc 587 * 588 * Return: 589 * 0 if controller is removed from pci subsystem. 590 * -1 for other case. 591 */ 592 static int mpt3sas_remove_dead_ioc_func(void *arg) 593 { 594 struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg; 595 struct pci_dev *pdev; 596 597 if (!ioc) 598 return -1; 599 600 pdev = ioc->pdev; 601 if (!pdev) 602 return -1; 603 pci_stop_and_remove_bus_device_locked(pdev); 604 return 0; 605 } 606 607 /** 608 * _base_sync_drv_fw_timestamp - Sync Drive-Fw TimeStamp. 609 * @ioc: Per Adapter Object 610 * 611 * Return: nothing. 612 */ 613 static void _base_sync_drv_fw_timestamp(struct MPT3SAS_ADAPTER *ioc) 614 { 615 Mpi26IoUnitControlRequest_t *mpi_request; 616 Mpi26IoUnitControlReply_t *mpi_reply; 617 u16 smid; 618 ktime_t current_time; 619 u64 TimeStamp = 0; 620 u8 issue_reset = 0; 621 622 mutex_lock(&ioc->scsih_cmds.mutex); 623 if (ioc->scsih_cmds.status != MPT3_CMD_NOT_USED) { 624 ioc_err(ioc, "scsih_cmd in use %s\n", __func__); 625 goto out; 626 } 627 ioc->scsih_cmds.status = MPT3_CMD_PENDING; 628 smid = mpt3sas_base_get_smid(ioc, ioc->scsih_cb_idx); 629 if (!smid) { 630 ioc_err(ioc, "Failed obtaining a smid %s\n", __func__); 631 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED; 632 goto out; 633 } 634 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 635 ioc->scsih_cmds.smid = smid; 636 memset(mpi_request, 0, sizeof(Mpi26IoUnitControlRequest_t)); 637 mpi_request->Function = MPI2_FUNCTION_IO_UNIT_CONTROL; 638 mpi_request->Operation = MPI26_CTRL_OP_SET_IOC_PARAMETER; 639 mpi_request->IOCParameter = MPI26_SET_IOC_PARAMETER_SYNC_TIMESTAMP; 640 current_time = ktime_get_real(); 641 TimeStamp = ktime_to_ms(current_time); 642 mpi_request->Reserved7 = cpu_to_le32(TimeStamp >> 32); 643 mpi_request->IOCParameterValue = cpu_to_le32(TimeStamp & 0xFFFFFFFF); 644 init_completion(&ioc->scsih_cmds.done); 645 ioc->put_smid_default(ioc, smid); 646 dinitprintk(ioc, ioc_info(ioc, 647 "Io Unit Control Sync TimeStamp (sending), @time %lld ms\n", 648 TimeStamp)); 649 wait_for_completion_timeout(&ioc->scsih_cmds.done, 650 MPT3SAS_TIMESYNC_TIMEOUT_SECONDS*HZ); 651 if (!(ioc->scsih_cmds.status & MPT3_CMD_COMPLETE)) { 652 mpt3sas_check_cmd_timeout(ioc, 653 ioc->scsih_cmds.status, mpi_request, 654 sizeof(Mpi2SasIoUnitControlRequest_t)/4, issue_reset); 655 goto issue_host_reset; 656 } 657 if (ioc->scsih_cmds.status & MPT3_CMD_REPLY_VALID) { 658 mpi_reply = ioc->scsih_cmds.reply; 659 dinitprintk(ioc, ioc_info(ioc, 660 "Io Unit Control sync timestamp (complete): ioc_status(0x%04x), loginfo(0x%08x)\n", 661 le16_to_cpu(mpi_reply->IOCStatus), 662 le32_to_cpu(mpi_reply->IOCLogInfo))); 663 } 664 issue_host_reset: 665 if (issue_reset) 666 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 667 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED; 668 out: 669 mutex_unlock(&ioc->scsih_cmds.mutex); 670 } 671 672 /** 673 * _base_fault_reset_work - workq handling ioc fault conditions 674 * @work: input argument, used to derive ioc 675 * 676 * Context: sleep. 677 */ 678 static void 679 _base_fault_reset_work(struct work_struct *work) 680 { 681 struct MPT3SAS_ADAPTER *ioc = 682 container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work); 683 unsigned long flags; 684 u32 doorbell; 685 int rc; 686 struct task_struct *p; 687 688 689 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 690 if ((ioc->shost_recovery && (ioc->ioc_coredump_loop == 0)) || 691 ioc->pci_error_recovery) 692 goto rearm_timer; 693 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 694 695 doorbell = mpt3sas_base_get_iocstate(ioc, 0); 696 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) { 697 ioc_err(ioc, "SAS host is non-operational !!!!\n"); 698 699 /* It may be possible that EEH recovery can resolve some of 700 * pci bus failure issues rather removing the dead ioc function 701 * by considering controller is in a non-operational state. So 702 * here priority is given to the EEH recovery. If it doesn't 703 * not resolve this issue, mpt3sas driver will consider this 704 * controller to non-operational state and remove the dead ioc 705 * function. 706 */ 707 if (ioc->non_operational_loop++ < 5) { 708 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, 709 flags); 710 goto rearm_timer; 711 } 712 713 /* 714 * Call _scsih_flush_pending_cmds callback so that we flush all 715 * pending commands back to OS. This call is required to avoid 716 * deadlock at block layer. Dead IOC will fail to do diag reset, 717 * and this call is safe since dead ioc will never return any 718 * command back from HW. 719 */ 720 mpt3sas_base_pause_mq_polling(ioc); 721 ioc->schedule_dead_ioc_flush_running_cmds(ioc); 722 /* 723 * Set remove_host flag early since kernel thread will 724 * take some time to execute. 725 */ 726 ioc->remove_host = 1; 727 /*Remove the Dead Host */ 728 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc, 729 "%s_dead_ioc_%d", ioc->driver_name, ioc->id); 730 if (IS_ERR(p)) 731 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n", 732 __func__); 733 else 734 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n", 735 __func__); 736 return; /* don't rearm timer */ 737 } 738 739 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) { 740 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ? 741 ioc->manu_pg11.CoreDumpTOSec : 742 MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS; 743 744 timeout /= (FAULT_POLLING_INTERVAL/1000); 745 746 if (ioc->ioc_coredump_loop == 0) { 747 mpt3sas_print_coredump_info(ioc, 748 doorbell & MPI2_DOORBELL_DATA_MASK); 749 /* do not accept any IOs and disable the interrupts */ 750 spin_lock_irqsave( 751 &ioc->ioc_reset_in_progress_lock, flags); 752 ioc->shost_recovery = 1; 753 spin_unlock_irqrestore( 754 &ioc->ioc_reset_in_progress_lock, flags); 755 mpt3sas_base_mask_interrupts(ioc); 756 mpt3sas_base_pause_mq_polling(ioc); 757 _base_clear_outstanding_commands(ioc); 758 } 759 760 ioc_info(ioc, "%s: CoreDump loop %d.", 761 __func__, ioc->ioc_coredump_loop); 762 763 /* Wait until CoreDump completes or times out */ 764 if (ioc->ioc_coredump_loop++ < timeout) { 765 spin_lock_irqsave( 766 &ioc->ioc_reset_in_progress_lock, flags); 767 goto rearm_timer; 768 } 769 } 770 771 if (ioc->ioc_coredump_loop) { 772 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_COREDUMP) 773 ioc_err(ioc, "%s: CoreDump completed. LoopCount: %d", 774 __func__, ioc->ioc_coredump_loop); 775 else 776 ioc_err(ioc, "%s: CoreDump Timed out. LoopCount: %d", 777 __func__, ioc->ioc_coredump_loop); 778 ioc->ioc_coredump_loop = MPT3SAS_COREDUMP_LOOP_DONE; 779 } 780 ioc->non_operational_loop = 0; 781 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) { 782 rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 783 ioc_warn(ioc, "%s: hard reset: %s\n", 784 __func__, rc == 0 ? "success" : "failed"); 785 doorbell = mpt3sas_base_get_iocstate(ioc, 0); 786 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 787 mpt3sas_print_fault_code(ioc, doorbell & 788 MPI2_DOORBELL_DATA_MASK); 789 } else if ((doorbell & MPI2_IOC_STATE_MASK) == 790 MPI2_IOC_STATE_COREDUMP) 791 mpt3sas_print_coredump_info(ioc, doorbell & 792 MPI2_DOORBELL_DATA_MASK); 793 if (rc && (doorbell & MPI2_IOC_STATE_MASK) != 794 MPI2_IOC_STATE_OPERATIONAL) 795 return; /* don't rearm timer */ 796 } 797 ioc->ioc_coredump_loop = 0; 798 if (ioc->time_sync_interval && 799 ++ioc->timestamp_update_count >= ioc->time_sync_interval) { 800 ioc->timestamp_update_count = 0; 801 _base_sync_drv_fw_timestamp(ioc); 802 } 803 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 804 rearm_timer: 805 if (ioc->fault_reset_work_q) 806 queue_delayed_work(ioc->fault_reset_work_q, 807 &ioc->fault_reset_work, 808 msecs_to_jiffies(FAULT_POLLING_INTERVAL)); 809 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 810 } 811 812 /** 813 * mpt3sas_base_start_watchdog - start the fault_reset_work_q 814 * @ioc: per adapter object 815 * 816 * Context: sleep. 817 */ 818 void 819 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc) 820 { 821 unsigned long flags; 822 823 if (ioc->fault_reset_work_q) 824 return; 825 826 ioc->timestamp_update_count = 0; 827 /* initialize fault polling */ 828 829 INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work); 830 snprintf(ioc->fault_reset_work_q_name, 831 sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status", 832 ioc->driver_name, ioc->id); 833 ioc->fault_reset_work_q = 834 create_singlethread_workqueue(ioc->fault_reset_work_q_name); 835 if (!ioc->fault_reset_work_q) { 836 ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__); 837 return; 838 } 839 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 840 if (ioc->fault_reset_work_q) 841 queue_delayed_work(ioc->fault_reset_work_q, 842 &ioc->fault_reset_work, 843 msecs_to_jiffies(FAULT_POLLING_INTERVAL)); 844 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 845 } 846 847 /** 848 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q 849 * @ioc: per adapter object 850 * 851 * Context: sleep. 852 */ 853 void 854 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc) 855 { 856 unsigned long flags; 857 struct workqueue_struct *wq; 858 859 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 860 wq = ioc->fault_reset_work_q; 861 ioc->fault_reset_work_q = NULL; 862 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 863 if (wq) { 864 if (!cancel_delayed_work_sync(&ioc->fault_reset_work)) 865 flush_workqueue(wq); 866 destroy_workqueue(wq); 867 } 868 } 869 870 /** 871 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code 872 * @ioc: per adapter object 873 * @fault_code: fault code 874 */ 875 void 876 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code) 877 { 878 ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code); 879 } 880 881 /** 882 * mpt3sas_base_coredump_info - verbose translation of firmware CoreDump state 883 * @ioc: per adapter object 884 * @fault_code: fault code 885 * 886 * Return: nothing. 887 */ 888 void 889 mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code) 890 { 891 ioc_err(ioc, "coredump_state(0x%04x)!\n", fault_code); 892 } 893 894 /** 895 * mpt3sas_base_wait_for_coredump_completion - Wait until coredump 896 * completes or times out 897 * @ioc: per adapter object 898 * @caller: caller function name 899 * 900 * Return: 0 for success, non-zero for failure. 901 */ 902 int 903 mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER *ioc, 904 const char *caller) 905 { 906 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ? 907 ioc->manu_pg11.CoreDumpTOSec : 908 MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS; 909 910 int ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_FAULT, 911 timeout); 912 913 if (ioc_state) 914 ioc_err(ioc, 915 "%s: CoreDump timed out. (ioc_state=0x%x)\n", 916 caller, ioc_state); 917 else 918 ioc_info(ioc, 919 "%s: CoreDump completed. (ioc_state=0x%x)\n", 920 caller, ioc_state); 921 922 return ioc_state; 923 } 924 925 /** 926 * mpt3sas_halt_firmware - halt's mpt controller firmware 927 * @ioc: per adapter object 928 * 929 * For debugging timeout related issues. Writing 0xCOFFEE00 930 * to the doorbell register will halt controller firmware. With 931 * the purpose to stop both driver and firmware, the enduser can 932 * obtain a ring buffer from controller UART. 933 */ 934 void 935 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc) 936 { 937 u32 doorbell; 938 939 if (!ioc->fwfault_debug) 940 return; 941 942 dump_stack(); 943 944 doorbell = ioc->base_readl(&ioc->chip->Doorbell); 945 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 946 mpt3sas_print_fault_code(ioc, doorbell & 947 MPI2_DOORBELL_DATA_MASK); 948 } else if ((doorbell & MPI2_IOC_STATE_MASK) == 949 MPI2_IOC_STATE_COREDUMP) { 950 mpt3sas_print_coredump_info(ioc, doorbell & 951 MPI2_DOORBELL_DATA_MASK); 952 } else { 953 writel(0xC0FFEE00, &ioc->chip->Doorbell); 954 ioc_err(ioc, "Firmware is halted due to command timeout\n"); 955 } 956 957 if (ioc->fwfault_debug == 2) 958 for (;;) 959 ; 960 else 961 panic("panic in %s\n", __func__); 962 } 963 964 /** 965 * _base_sas_ioc_info - verbose translation of the ioc status 966 * @ioc: per adapter object 967 * @mpi_reply: reply mf payload returned from firmware 968 * @request_hdr: request mf 969 */ 970 static void 971 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply, 972 MPI2RequestHeader_t *request_hdr) 973 { 974 u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & 975 MPI2_IOCSTATUS_MASK; 976 char *desc = NULL; 977 u16 frame_sz; 978 char *func_str = NULL; 979 980 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */ 981 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST || 982 request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH || 983 request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION) 984 return; 985 986 if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE) 987 return; 988 /* 989 * Older Firmware version doesn't support driver trigger pages. 990 * So, skip displaying 'config invalid type' type 991 * of error message. 992 */ 993 if (request_hdr->Function == MPI2_FUNCTION_CONFIG) { 994 Mpi2ConfigRequest_t *rqst = (Mpi2ConfigRequest_t *)request_hdr; 995 996 if ((rqst->ExtPageType == 997 MPI2_CONFIG_EXTPAGETYPE_DRIVER_PERSISTENT_TRIGGER) && 998 !(ioc->logging_level & MPT_DEBUG_CONFIG)) { 999 return; 1000 } 1001 } 1002 1003 switch (ioc_status) { 1004 1005 /**************************************************************************** 1006 * Common IOCStatus values for all replies 1007 ****************************************************************************/ 1008 1009 case MPI2_IOCSTATUS_INVALID_FUNCTION: 1010 desc = "invalid function"; 1011 break; 1012 case MPI2_IOCSTATUS_BUSY: 1013 desc = "busy"; 1014 break; 1015 case MPI2_IOCSTATUS_INVALID_SGL: 1016 desc = "invalid sgl"; 1017 break; 1018 case MPI2_IOCSTATUS_INTERNAL_ERROR: 1019 desc = "internal error"; 1020 break; 1021 case MPI2_IOCSTATUS_INVALID_VPID: 1022 desc = "invalid vpid"; 1023 break; 1024 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES: 1025 desc = "insufficient resources"; 1026 break; 1027 case MPI2_IOCSTATUS_INSUFFICIENT_POWER: 1028 desc = "insufficient power"; 1029 break; 1030 case MPI2_IOCSTATUS_INVALID_FIELD: 1031 desc = "invalid field"; 1032 break; 1033 case MPI2_IOCSTATUS_INVALID_STATE: 1034 desc = "invalid state"; 1035 break; 1036 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED: 1037 desc = "op state not supported"; 1038 break; 1039 1040 /**************************************************************************** 1041 * Config IOCStatus values 1042 ****************************************************************************/ 1043 1044 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION: 1045 desc = "config invalid action"; 1046 break; 1047 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE: 1048 desc = "config invalid type"; 1049 break; 1050 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE: 1051 desc = "config invalid page"; 1052 break; 1053 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA: 1054 desc = "config invalid data"; 1055 break; 1056 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS: 1057 desc = "config no defaults"; 1058 break; 1059 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT: 1060 desc = "config cant commit"; 1061 break; 1062 1063 /**************************************************************************** 1064 * SCSI IO Reply 1065 ****************************************************************************/ 1066 1067 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR: 1068 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE: 1069 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE: 1070 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN: 1071 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN: 1072 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR: 1073 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR: 1074 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED: 1075 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH: 1076 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED: 1077 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED: 1078 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED: 1079 break; 1080 1081 /**************************************************************************** 1082 * For use by SCSI Initiator and SCSI Target end-to-end data protection 1083 ****************************************************************************/ 1084 1085 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR: 1086 desc = "eedp guard error"; 1087 break; 1088 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR: 1089 desc = "eedp ref tag error"; 1090 break; 1091 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR: 1092 desc = "eedp app tag error"; 1093 break; 1094 1095 /**************************************************************************** 1096 * SCSI Target values 1097 ****************************************************************************/ 1098 1099 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX: 1100 desc = "target invalid io index"; 1101 break; 1102 case MPI2_IOCSTATUS_TARGET_ABORTED: 1103 desc = "target aborted"; 1104 break; 1105 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE: 1106 desc = "target no conn retryable"; 1107 break; 1108 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION: 1109 desc = "target no connection"; 1110 break; 1111 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH: 1112 desc = "target xfer count mismatch"; 1113 break; 1114 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR: 1115 desc = "target data offset error"; 1116 break; 1117 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA: 1118 desc = "target too much write data"; 1119 break; 1120 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT: 1121 desc = "target iu too short"; 1122 break; 1123 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT: 1124 desc = "target ack nak timeout"; 1125 break; 1126 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED: 1127 desc = "target nak received"; 1128 break; 1129 1130 /**************************************************************************** 1131 * Serial Attached SCSI values 1132 ****************************************************************************/ 1133 1134 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED: 1135 desc = "smp request failed"; 1136 break; 1137 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN: 1138 desc = "smp data overrun"; 1139 break; 1140 1141 /**************************************************************************** 1142 * Diagnostic Buffer Post / Diagnostic Release values 1143 ****************************************************************************/ 1144 1145 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED: 1146 desc = "diagnostic released"; 1147 break; 1148 default: 1149 break; 1150 } 1151 1152 if (!desc) 1153 return; 1154 1155 switch (request_hdr->Function) { 1156 case MPI2_FUNCTION_CONFIG: 1157 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size; 1158 func_str = "config_page"; 1159 break; 1160 case MPI2_FUNCTION_SCSI_TASK_MGMT: 1161 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t); 1162 func_str = "task_mgmt"; 1163 break; 1164 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL: 1165 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t); 1166 func_str = "sas_iounit_ctl"; 1167 break; 1168 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR: 1169 frame_sz = sizeof(Mpi2SepRequest_t); 1170 func_str = "enclosure"; 1171 break; 1172 case MPI2_FUNCTION_IOC_INIT: 1173 frame_sz = sizeof(Mpi2IOCInitRequest_t); 1174 func_str = "ioc_init"; 1175 break; 1176 case MPI2_FUNCTION_PORT_ENABLE: 1177 frame_sz = sizeof(Mpi2PortEnableRequest_t); 1178 func_str = "port_enable"; 1179 break; 1180 case MPI2_FUNCTION_SMP_PASSTHROUGH: 1181 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size; 1182 func_str = "smp_passthru"; 1183 break; 1184 case MPI2_FUNCTION_NVME_ENCAPSULATED: 1185 frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) + 1186 ioc->sge_size; 1187 func_str = "nvme_encapsulated"; 1188 break; 1189 default: 1190 frame_sz = 32; 1191 func_str = "unknown"; 1192 break; 1193 } 1194 1195 ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n", 1196 desc, ioc_status, request_hdr, func_str); 1197 1198 _debug_dump_mf(request_hdr, frame_sz/4); 1199 } 1200 1201 /** 1202 * _base_display_event_data - verbose translation of firmware asyn events 1203 * @ioc: per adapter object 1204 * @mpi_reply: reply mf payload returned from firmware 1205 */ 1206 static void 1207 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc, 1208 Mpi2EventNotificationReply_t *mpi_reply) 1209 { 1210 char *desc = NULL; 1211 u16 event; 1212 1213 if (!(ioc->logging_level & MPT_DEBUG_EVENTS)) 1214 return; 1215 1216 event = le16_to_cpu(mpi_reply->Event); 1217 1218 switch (event) { 1219 case MPI2_EVENT_LOG_DATA: 1220 desc = "Log Data"; 1221 break; 1222 case MPI2_EVENT_STATE_CHANGE: 1223 desc = "Status Change"; 1224 break; 1225 case MPI2_EVENT_HARD_RESET_RECEIVED: 1226 desc = "Hard Reset Received"; 1227 break; 1228 case MPI2_EVENT_EVENT_CHANGE: 1229 desc = "Event Change"; 1230 break; 1231 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE: 1232 desc = "Device Status Change"; 1233 break; 1234 case MPI2_EVENT_IR_OPERATION_STATUS: 1235 if (!ioc->hide_ir_msg) 1236 desc = "IR Operation Status"; 1237 break; 1238 case MPI2_EVENT_SAS_DISCOVERY: 1239 { 1240 Mpi2EventDataSasDiscovery_t *event_data = 1241 (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData; 1242 ioc_info(ioc, "Discovery: (%s)", 1243 event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ? 1244 "start" : "stop"); 1245 if (event_data->DiscoveryStatus) 1246 pr_cont(" discovery_status(0x%08x)", 1247 le32_to_cpu(event_data->DiscoveryStatus)); 1248 pr_cont("\n"); 1249 return; 1250 } 1251 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE: 1252 desc = "SAS Broadcast Primitive"; 1253 break; 1254 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE: 1255 desc = "SAS Init Device Status Change"; 1256 break; 1257 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW: 1258 desc = "SAS Init Table Overflow"; 1259 break; 1260 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST: 1261 desc = "SAS Topology Change List"; 1262 break; 1263 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE: 1264 desc = "SAS Enclosure Device Status Change"; 1265 break; 1266 case MPI2_EVENT_IR_VOLUME: 1267 if (!ioc->hide_ir_msg) 1268 desc = "IR Volume"; 1269 break; 1270 case MPI2_EVENT_IR_PHYSICAL_DISK: 1271 if (!ioc->hide_ir_msg) 1272 desc = "IR Physical Disk"; 1273 break; 1274 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST: 1275 if (!ioc->hide_ir_msg) 1276 desc = "IR Configuration Change List"; 1277 break; 1278 case MPI2_EVENT_LOG_ENTRY_ADDED: 1279 if (!ioc->hide_ir_msg) 1280 desc = "Log Entry Added"; 1281 break; 1282 case MPI2_EVENT_TEMP_THRESHOLD: 1283 desc = "Temperature Threshold"; 1284 break; 1285 case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION: 1286 desc = "Cable Event"; 1287 break; 1288 case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR: 1289 desc = "SAS Device Discovery Error"; 1290 break; 1291 case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE: 1292 desc = "PCIE Device Status Change"; 1293 break; 1294 case MPI2_EVENT_PCIE_ENUMERATION: 1295 { 1296 Mpi26EventDataPCIeEnumeration_t *event_data = 1297 (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData; 1298 ioc_info(ioc, "PCIE Enumeration: (%s)", 1299 event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ? 1300 "start" : "stop"); 1301 if (event_data->EnumerationStatus) 1302 pr_cont("enumeration_status(0x%08x)", 1303 le32_to_cpu(event_data->EnumerationStatus)); 1304 pr_cont("\n"); 1305 return; 1306 } 1307 case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST: 1308 desc = "PCIE Topology Change List"; 1309 break; 1310 } 1311 1312 if (!desc) 1313 return; 1314 1315 ioc_info(ioc, "%s\n", desc); 1316 } 1317 1318 /** 1319 * _base_sas_log_info - verbose translation of firmware log info 1320 * @ioc: per adapter object 1321 * @log_info: log info 1322 */ 1323 static void 1324 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info) 1325 { 1326 union loginfo_type { 1327 u32 loginfo; 1328 struct { 1329 u32 subcode:16; 1330 u32 code:8; 1331 u32 originator:4; 1332 u32 bus_type:4; 1333 } dw; 1334 }; 1335 union loginfo_type sas_loginfo; 1336 char *originator_str = NULL; 1337 1338 sas_loginfo.loginfo = log_info; 1339 if (sas_loginfo.dw.bus_type != 3 /*SAS*/) 1340 return; 1341 1342 /* each nexus loss loginfo */ 1343 if (log_info == 0x31170000) 1344 return; 1345 1346 /* eat the loginfos associated with task aborts */ 1347 if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info == 1348 0x31140000 || log_info == 0x31130000)) 1349 return; 1350 1351 switch (sas_loginfo.dw.originator) { 1352 case 0: 1353 originator_str = "IOP"; 1354 break; 1355 case 1: 1356 originator_str = "PL"; 1357 break; 1358 case 2: 1359 if (!ioc->hide_ir_msg) 1360 originator_str = "IR"; 1361 else 1362 originator_str = "WarpDrive"; 1363 break; 1364 } 1365 1366 ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n", 1367 log_info, 1368 originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode); 1369 } 1370 1371 /** 1372 * _base_display_reply_info - handle reply descriptors depending on IOC Status 1373 * @ioc: per adapter object 1374 * @smid: system request message index 1375 * @msix_index: MSIX table index supplied by the OS 1376 * @reply: reply message frame (lower 32bit addr) 1377 */ 1378 static void 1379 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 1380 u32 reply) 1381 { 1382 MPI2DefaultReply_t *mpi_reply; 1383 u16 ioc_status; 1384 u32 loginfo = 0; 1385 1386 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1387 if (unlikely(!mpi_reply)) { 1388 ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n", 1389 __FILE__, __LINE__, __func__); 1390 return; 1391 } 1392 ioc_status = le16_to_cpu(mpi_reply->IOCStatus); 1393 1394 if ((ioc_status & MPI2_IOCSTATUS_MASK) && 1395 (ioc->logging_level & MPT_DEBUG_REPLY)) { 1396 _base_sas_ioc_info(ioc , mpi_reply, 1397 mpt3sas_base_get_msg_frame(ioc, smid)); 1398 } 1399 1400 if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) { 1401 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo); 1402 _base_sas_log_info(ioc, loginfo); 1403 } 1404 1405 if (ioc_status || loginfo) { 1406 ioc_status &= MPI2_IOCSTATUS_MASK; 1407 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo); 1408 } 1409 } 1410 1411 /** 1412 * mpt3sas_base_done - base internal command completion routine 1413 * @ioc: per adapter object 1414 * @smid: system request message index 1415 * @msix_index: MSIX table index supplied by the OS 1416 * @reply: reply message frame(lower 32bit addr) 1417 * 1418 * Return: 1419 * 1 meaning mf should be freed from _base_interrupt 1420 * 0 means the mf is freed from this function. 1421 */ 1422 u8 1423 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 1424 u32 reply) 1425 { 1426 MPI2DefaultReply_t *mpi_reply; 1427 1428 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1429 if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK) 1430 return mpt3sas_check_for_pending_internal_cmds(ioc, smid); 1431 1432 if (ioc->base_cmds.status == MPT3_CMD_NOT_USED) 1433 return 1; 1434 1435 ioc->base_cmds.status |= MPT3_CMD_COMPLETE; 1436 if (mpi_reply) { 1437 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID; 1438 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4); 1439 } 1440 ioc->base_cmds.status &= ~MPT3_CMD_PENDING; 1441 1442 complete(&ioc->base_cmds.done); 1443 return 1; 1444 } 1445 1446 /** 1447 * _base_async_event - main callback handler for firmware asyn events 1448 * @ioc: per adapter object 1449 * @msix_index: MSIX table index supplied by the OS 1450 * @reply: reply message frame(lower 32bit addr) 1451 * 1452 * Return: 1453 * 1 meaning mf should be freed from _base_interrupt 1454 * 0 means the mf is freed from this function. 1455 */ 1456 static u8 1457 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply) 1458 { 1459 Mpi2EventNotificationReply_t *mpi_reply; 1460 Mpi2EventAckRequest_t *ack_request; 1461 u16 smid; 1462 struct _event_ack_list *delayed_event_ack; 1463 1464 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1465 if (!mpi_reply) 1466 return 1; 1467 if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION) 1468 return 1; 1469 1470 _base_display_event_data(ioc, mpi_reply); 1471 1472 if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED)) 1473 goto out; 1474 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 1475 if (!smid) { 1476 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack), 1477 GFP_ATOMIC); 1478 if (!delayed_event_ack) 1479 goto out; 1480 INIT_LIST_HEAD(&delayed_event_ack->list); 1481 delayed_event_ack->Event = mpi_reply->Event; 1482 delayed_event_ack->EventContext = mpi_reply->EventContext; 1483 list_add_tail(&delayed_event_ack->list, 1484 &ioc->delayed_event_ack_list); 1485 dewtprintk(ioc, 1486 ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n", 1487 le16_to_cpu(mpi_reply->Event))); 1488 goto out; 1489 } 1490 1491 ack_request = mpt3sas_base_get_msg_frame(ioc, smid); 1492 memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t)); 1493 ack_request->Function = MPI2_FUNCTION_EVENT_ACK; 1494 ack_request->Event = mpi_reply->Event; 1495 ack_request->EventContext = mpi_reply->EventContext; 1496 ack_request->VF_ID = 0; /* TODO */ 1497 ack_request->VP_ID = 0; 1498 ioc->put_smid_default(ioc, smid); 1499 1500 out: 1501 1502 /* scsih callback handler */ 1503 mpt3sas_scsih_event_callback(ioc, msix_index, reply); 1504 1505 /* ctl callback handler */ 1506 mpt3sas_ctl_event_callback(ioc, msix_index, reply); 1507 1508 return 1; 1509 } 1510 1511 static struct scsiio_tracker * 1512 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid) 1513 { 1514 struct scsi_cmnd *cmd; 1515 1516 if (WARN_ON(!smid) || 1517 WARN_ON(smid >= ioc->hi_priority_smid)) 1518 return NULL; 1519 1520 cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid); 1521 if (cmd) 1522 return scsi_cmd_priv(cmd); 1523 1524 return NULL; 1525 } 1526 1527 /** 1528 * _base_get_cb_idx - obtain the callback index 1529 * @ioc: per adapter object 1530 * @smid: system request message index 1531 * 1532 * Return: callback index. 1533 */ 1534 static u8 1535 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid) 1536 { 1537 int i; 1538 u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1; 1539 u8 cb_idx = 0xFF; 1540 1541 if (smid < ioc->hi_priority_smid) { 1542 struct scsiio_tracker *st; 1543 1544 if (smid < ctl_smid) { 1545 st = _get_st_from_smid(ioc, smid); 1546 if (st) 1547 cb_idx = st->cb_idx; 1548 } else if (smid == ctl_smid) 1549 cb_idx = ioc->ctl_cb_idx; 1550 } else if (smid < ioc->internal_smid) { 1551 i = smid - ioc->hi_priority_smid; 1552 cb_idx = ioc->hpr_lookup[i].cb_idx; 1553 } else if (smid <= ioc->hba_queue_depth) { 1554 i = smid - ioc->internal_smid; 1555 cb_idx = ioc->internal_lookup[i].cb_idx; 1556 } 1557 return cb_idx; 1558 } 1559 1560 /** 1561 * mpt3sas_base_pause_mq_polling - pause polling on the mq poll queues 1562 * when driver is flushing out the IOs. 1563 * @ioc: per adapter object 1564 * 1565 * Pause polling on the mq poll (io uring) queues when driver is flushing 1566 * out the IOs. Otherwise we may see the race condition of completing the same 1567 * IO from two paths. 1568 * 1569 * Returns nothing. 1570 */ 1571 void 1572 mpt3sas_base_pause_mq_polling(struct MPT3SAS_ADAPTER *ioc) 1573 { 1574 int iopoll_q_count = 1575 ioc->reply_queue_count - ioc->iopoll_q_start_index; 1576 int qid; 1577 1578 for (qid = 0; qid < iopoll_q_count; qid++) 1579 atomic_set(&ioc->io_uring_poll_queues[qid].pause, 1); 1580 1581 /* 1582 * wait for current poll to complete. 1583 */ 1584 for (qid = 0; qid < iopoll_q_count; qid++) { 1585 while (atomic_read(&ioc->io_uring_poll_queues[qid].busy)) { 1586 cpu_relax(); 1587 udelay(500); 1588 } 1589 } 1590 } 1591 1592 /** 1593 * mpt3sas_base_resume_mq_polling - Resume polling on mq poll queues. 1594 * @ioc: per adapter object 1595 * 1596 * Returns nothing. 1597 */ 1598 void 1599 mpt3sas_base_resume_mq_polling(struct MPT3SAS_ADAPTER *ioc) 1600 { 1601 int iopoll_q_count = 1602 ioc->reply_queue_count - ioc->iopoll_q_start_index; 1603 int qid; 1604 1605 for (qid = 0; qid < iopoll_q_count; qid++) 1606 atomic_set(&ioc->io_uring_poll_queues[qid].pause, 0); 1607 } 1608 1609 /** 1610 * mpt3sas_base_mask_interrupts - disable interrupts 1611 * @ioc: per adapter object 1612 * 1613 * Disabling ResetIRQ, Reply and Doorbell Interrupts 1614 */ 1615 void 1616 mpt3sas_base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc) 1617 { 1618 u32 him_register; 1619 1620 ioc->mask_interrupts = 1; 1621 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask); 1622 him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK; 1623 writel(him_register, &ioc->chip->HostInterruptMask); 1624 ioc->base_readl(&ioc->chip->HostInterruptMask); 1625 } 1626 1627 /** 1628 * mpt3sas_base_unmask_interrupts - enable interrupts 1629 * @ioc: per adapter object 1630 * 1631 * Enabling only Reply Interrupts 1632 */ 1633 void 1634 mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc) 1635 { 1636 u32 him_register; 1637 1638 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask); 1639 him_register &= ~MPI2_HIM_RIM; 1640 writel(him_register, &ioc->chip->HostInterruptMask); 1641 ioc->mask_interrupts = 0; 1642 } 1643 1644 union reply_descriptor { 1645 u64 word; 1646 struct { 1647 u32 low; 1648 u32 high; 1649 } u; 1650 }; 1651 1652 static u32 base_mod64(u64 dividend, u32 divisor) 1653 { 1654 u32 remainder; 1655 1656 if (!divisor) 1657 pr_err("mpt3sas: DIVISOR is zero, in div fn\n"); 1658 remainder = do_div(dividend, divisor); 1659 return remainder; 1660 } 1661 1662 /** 1663 * _base_process_reply_queue - Process reply descriptors from reply 1664 * descriptor post queue. 1665 * @reply_q: per IRQ's reply queue object. 1666 * 1667 * Return: number of reply descriptors processed from reply 1668 * descriptor queue. 1669 */ 1670 static int 1671 _base_process_reply_queue(struct adapter_reply_queue *reply_q) 1672 { 1673 union reply_descriptor rd; 1674 u64 completed_cmds; 1675 u8 request_descript_type; 1676 u16 smid; 1677 u8 cb_idx; 1678 u32 reply; 1679 u8 msix_index = reply_q->msix_index; 1680 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc; 1681 Mpi2ReplyDescriptorsUnion_t *rpf; 1682 u8 rc; 1683 1684 completed_cmds = 0; 1685 if (!atomic_add_unless(&reply_q->busy, 1, 1)) 1686 return completed_cmds; 1687 1688 rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index]; 1689 request_descript_type = rpf->Default.ReplyFlags 1690 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 1691 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) { 1692 atomic_dec(&reply_q->busy); 1693 return completed_cmds; 1694 } 1695 1696 cb_idx = 0xFF; 1697 do { 1698 rd.word = le64_to_cpu(rpf->Words); 1699 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX) 1700 goto out; 1701 reply = 0; 1702 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1); 1703 if (request_descript_type == 1704 MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS || 1705 request_descript_type == 1706 MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS || 1707 request_descript_type == 1708 MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) { 1709 cb_idx = _base_get_cb_idx(ioc, smid); 1710 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) && 1711 (likely(mpt_callbacks[cb_idx] != NULL))) { 1712 rc = mpt_callbacks[cb_idx](ioc, smid, 1713 msix_index, 0); 1714 if (rc) 1715 mpt3sas_base_free_smid(ioc, smid); 1716 } 1717 } else if (request_descript_type == 1718 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) { 1719 reply = le32_to_cpu( 1720 rpf->AddressReply.ReplyFrameAddress); 1721 if (reply > ioc->reply_dma_max_address || 1722 reply < ioc->reply_dma_min_address) 1723 reply = 0; 1724 if (smid) { 1725 cb_idx = _base_get_cb_idx(ioc, smid); 1726 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) && 1727 (likely(mpt_callbacks[cb_idx] != NULL))) { 1728 rc = mpt_callbacks[cb_idx](ioc, smid, 1729 msix_index, reply); 1730 if (reply) 1731 _base_display_reply_info(ioc, 1732 smid, msix_index, reply); 1733 if (rc) 1734 mpt3sas_base_free_smid(ioc, 1735 smid); 1736 } 1737 } else { 1738 _base_async_event(ioc, msix_index, reply); 1739 } 1740 1741 /* reply free queue handling */ 1742 if (reply) { 1743 ioc->reply_free_host_index = 1744 (ioc->reply_free_host_index == 1745 (ioc->reply_free_queue_depth - 1)) ? 1746 0 : ioc->reply_free_host_index + 1; 1747 ioc->reply_free[ioc->reply_free_host_index] = 1748 cpu_to_le32(reply); 1749 if (ioc->is_mcpu_endpoint) 1750 _base_clone_reply_to_sys_mem(ioc, 1751 reply, 1752 ioc->reply_free_host_index); 1753 writel(ioc->reply_free_host_index, 1754 &ioc->chip->ReplyFreeHostIndex); 1755 } 1756 } 1757 1758 rpf->Words = cpu_to_le64(ULLONG_MAX); 1759 reply_q->reply_post_host_index = 1760 (reply_q->reply_post_host_index == 1761 (ioc->reply_post_queue_depth - 1)) ? 0 : 1762 reply_q->reply_post_host_index + 1; 1763 request_descript_type = 1764 reply_q->reply_post_free[reply_q->reply_post_host_index]. 1765 Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 1766 completed_cmds++; 1767 /* Update the reply post host index after continuously 1768 * processing the threshold number of Reply Descriptors. 1769 * So that FW can find enough entries to post the Reply 1770 * Descriptors in the reply descriptor post queue. 1771 */ 1772 if (completed_cmds >= ioc->thresh_hold) { 1773 if (ioc->combined_reply_queue) { 1774 writel(reply_q->reply_post_host_index | 1775 ((msix_index & 7) << 1776 MPI2_RPHI_MSIX_INDEX_SHIFT), 1777 ioc->replyPostRegisterIndex[msix_index/8]); 1778 } else { 1779 writel(reply_q->reply_post_host_index | 1780 (msix_index << 1781 MPI2_RPHI_MSIX_INDEX_SHIFT), 1782 &ioc->chip->ReplyPostHostIndex); 1783 } 1784 if (!reply_q->is_iouring_poll_q && 1785 !reply_q->irq_poll_scheduled) { 1786 reply_q->irq_poll_scheduled = true; 1787 irq_poll_sched(&reply_q->irqpoll); 1788 } 1789 atomic_dec(&reply_q->busy); 1790 return completed_cmds; 1791 } 1792 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) 1793 goto out; 1794 if (!reply_q->reply_post_host_index) 1795 rpf = reply_q->reply_post_free; 1796 else 1797 rpf++; 1798 } while (1); 1799 1800 out: 1801 1802 if (!completed_cmds) { 1803 atomic_dec(&reply_q->busy); 1804 return completed_cmds; 1805 } 1806 1807 if (ioc->is_warpdrive) { 1808 writel(reply_q->reply_post_host_index, 1809 ioc->reply_post_host_index[msix_index]); 1810 atomic_dec(&reply_q->busy); 1811 return completed_cmds; 1812 } 1813 1814 /* Update Reply Post Host Index. 1815 * For those HBA's which support combined reply queue feature 1816 * 1. Get the correct Supplemental Reply Post Host Index Register. 1817 * i.e. (msix_index / 8)th entry from Supplemental Reply Post Host 1818 * Index Register address bank i.e replyPostRegisterIndex[], 1819 * 2. Then update this register with new reply host index value 1820 * in ReplyPostIndex field and the MSIxIndex field with 1821 * msix_index value reduced to a value between 0 and 7, 1822 * using a modulo 8 operation. Since each Supplemental Reply Post 1823 * Host Index Register supports 8 MSI-X vectors. 1824 * 1825 * For other HBA's just update the Reply Post Host Index register with 1826 * new reply host index value in ReplyPostIndex Field and msix_index 1827 * value in MSIxIndex field. 1828 */ 1829 if (ioc->combined_reply_queue) 1830 writel(reply_q->reply_post_host_index | ((msix_index & 7) << 1831 MPI2_RPHI_MSIX_INDEX_SHIFT), 1832 ioc->replyPostRegisterIndex[msix_index/8]); 1833 else 1834 writel(reply_q->reply_post_host_index | (msix_index << 1835 MPI2_RPHI_MSIX_INDEX_SHIFT), 1836 &ioc->chip->ReplyPostHostIndex); 1837 atomic_dec(&reply_q->busy); 1838 return completed_cmds; 1839 } 1840 1841 /** 1842 * mpt3sas_blk_mq_poll - poll the blk mq poll queue 1843 * @shost: Scsi_Host object 1844 * @queue_num: hw ctx queue number 1845 * 1846 * Return number of entries that has been processed from poll queue. 1847 */ 1848 int mpt3sas_blk_mq_poll(struct Scsi_Host *shost, unsigned int queue_num) 1849 { 1850 struct MPT3SAS_ADAPTER *ioc = 1851 (struct MPT3SAS_ADAPTER *)shost->hostdata; 1852 struct adapter_reply_queue *reply_q; 1853 int num_entries = 0; 1854 int qid = queue_num - ioc->iopoll_q_start_index; 1855 1856 if (atomic_read(&ioc->io_uring_poll_queues[qid].pause) || 1857 !atomic_add_unless(&ioc->io_uring_poll_queues[qid].busy, 1, 1)) 1858 return 0; 1859 1860 reply_q = ioc->io_uring_poll_queues[qid].reply_q; 1861 1862 num_entries = _base_process_reply_queue(reply_q); 1863 atomic_dec(&ioc->io_uring_poll_queues[qid].busy); 1864 1865 return num_entries; 1866 } 1867 1868 /** 1869 * _base_interrupt - MPT adapter (IOC) specific interrupt handler. 1870 * @irq: irq number (not used) 1871 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure 1872 * 1873 * Return: IRQ_HANDLED if processed, else IRQ_NONE. 1874 */ 1875 static irqreturn_t 1876 _base_interrupt(int irq, void *bus_id) 1877 { 1878 struct adapter_reply_queue *reply_q = bus_id; 1879 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc; 1880 1881 if (ioc->mask_interrupts) 1882 return IRQ_NONE; 1883 if (reply_q->irq_poll_scheduled) 1884 return IRQ_HANDLED; 1885 return ((_base_process_reply_queue(reply_q) > 0) ? 1886 IRQ_HANDLED : IRQ_NONE); 1887 } 1888 1889 /** 1890 * _base_irqpoll - IRQ poll callback handler 1891 * @irqpoll: irq_poll object 1892 * @budget: irq poll weight 1893 * 1894 * Return: number of reply descriptors processed 1895 */ 1896 static int 1897 _base_irqpoll(struct irq_poll *irqpoll, int budget) 1898 { 1899 struct adapter_reply_queue *reply_q; 1900 int num_entries = 0; 1901 1902 reply_q = container_of(irqpoll, struct adapter_reply_queue, 1903 irqpoll); 1904 if (reply_q->irq_line_enable) { 1905 disable_irq_nosync(reply_q->os_irq); 1906 reply_q->irq_line_enable = false; 1907 } 1908 num_entries = _base_process_reply_queue(reply_q); 1909 if (num_entries < budget) { 1910 irq_poll_complete(irqpoll); 1911 reply_q->irq_poll_scheduled = false; 1912 reply_q->irq_line_enable = true; 1913 enable_irq(reply_q->os_irq); 1914 /* 1915 * Go for one more round of processing the 1916 * reply descriptor post queue in case the HBA 1917 * Firmware has posted some reply descriptors 1918 * while reenabling the IRQ. 1919 */ 1920 _base_process_reply_queue(reply_q); 1921 } 1922 1923 return num_entries; 1924 } 1925 1926 /** 1927 * _base_init_irqpolls - initliaze IRQ polls 1928 * @ioc: per adapter object 1929 * 1930 * Return: nothing 1931 */ 1932 static void 1933 _base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc) 1934 { 1935 struct adapter_reply_queue *reply_q, *next; 1936 1937 if (list_empty(&ioc->reply_queue_list)) 1938 return; 1939 1940 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) { 1941 if (reply_q->is_iouring_poll_q) 1942 continue; 1943 irq_poll_init(&reply_q->irqpoll, 1944 ioc->hba_queue_depth/4, _base_irqpoll); 1945 reply_q->irq_poll_scheduled = false; 1946 reply_q->irq_line_enable = true; 1947 reply_q->os_irq = pci_irq_vector(ioc->pdev, 1948 reply_q->msix_index); 1949 } 1950 } 1951 1952 /** 1953 * _base_is_controller_msix_enabled - is controller support muli-reply queues 1954 * @ioc: per adapter object 1955 * 1956 * Return: Whether or not MSI/X is enabled. 1957 */ 1958 static inline int 1959 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc) 1960 { 1961 return (ioc->facts.IOCCapabilities & 1962 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable; 1963 } 1964 1965 /** 1966 * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts 1967 * @ioc: per adapter object 1968 * @poll: poll over reply descriptor pools incase interrupt for 1969 * timed-out SCSI command got delayed 1970 * Context: non-ISR context 1971 * 1972 * Called when a Task Management request has completed. 1973 */ 1974 void 1975 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc, u8 poll) 1976 { 1977 struct adapter_reply_queue *reply_q; 1978 1979 /* If MSIX capability is turned off 1980 * then multi-queues are not enabled 1981 */ 1982 if (!_base_is_controller_msix_enabled(ioc)) 1983 return; 1984 1985 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 1986 if (ioc->shost_recovery || ioc->remove_host || 1987 ioc->pci_error_recovery) 1988 return; 1989 /* TMs are on msix_index == 0 */ 1990 if (reply_q->msix_index == 0) 1991 continue; 1992 1993 if (reply_q->is_iouring_poll_q) { 1994 _base_process_reply_queue(reply_q); 1995 continue; 1996 } 1997 1998 synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index)); 1999 if (reply_q->irq_poll_scheduled) { 2000 /* Calling irq_poll_disable will wait for any pending 2001 * callbacks to have completed. 2002 */ 2003 irq_poll_disable(&reply_q->irqpoll); 2004 irq_poll_enable(&reply_q->irqpoll); 2005 /* check how the scheduled poll has ended, 2006 * clean up only if necessary 2007 */ 2008 if (reply_q->irq_poll_scheduled) { 2009 reply_q->irq_poll_scheduled = false; 2010 reply_q->irq_line_enable = true; 2011 enable_irq(reply_q->os_irq); 2012 } 2013 } 2014 } 2015 if (poll) 2016 _base_process_reply_queue(reply_q); 2017 } 2018 2019 /** 2020 * mpt3sas_base_release_callback_handler - clear interrupt callback handler 2021 * @cb_idx: callback index 2022 */ 2023 void 2024 mpt3sas_base_release_callback_handler(u8 cb_idx) 2025 { 2026 mpt_callbacks[cb_idx] = NULL; 2027 } 2028 2029 /** 2030 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler 2031 * @cb_func: callback function 2032 * 2033 * Return: Index of @cb_func. 2034 */ 2035 u8 2036 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func) 2037 { 2038 u8 cb_idx; 2039 2040 for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--) 2041 if (mpt_callbacks[cb_idx] == NULL) 2042 break; 2043 2044 mpt_callbacks[cb_idx] = cb_func; 2045 return cb_idx; 2046 } 2047 2048 /** 2049 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler 2050 */ 2051 void 2052 mpt3sas_base_initialize_callback_handler(void) 2053 { 2054 u8 cb_idx; 2055 2056 for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++) 2057 mpt3sas_base_release_callback_handler(cb_idx); 2058 } 2059 2060 2061 /** 2062 * _base_build_zero_len_sge - build zero length sg entry 2063 * @ioc: per adapter object 2064 * @paddr: virtual address for SGE 2065 * 2066 * Create a zero length scatter gather entry to insure the IOCs hardware has 2067 * something to use if the target device goes brain dead and tries 2068 * to send data even when none is asked for. 2069 */ 2070 static void 2071 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr) 2072 { 2073 u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT | 2074 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST | 2075 MPI2_SGE_FLAGS_SIMPLE_ELEMENT) << 2076 MPI2_SGE_FLAGS_SHIFT); 2077 ioc->base_add_sg_single(paddr, flags_length, -1); 2078 } 2079 2080 /** 2081 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr. 2082 * @paddr: virtual address for SGE 2083 * @flags_length: SGE flags and data transfer length 2084 * @dma_addr: Physical address 2085 */ 2086 static void 2087 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr) 2088 { 2089 Mpi2SGESimple32_t *sgel = paddr; 2090 2091 flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING | 2092 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT; 2093 sgel->FlagsLength = cpu_to_le32(flags_length); 2094 sgel->Address = cpu_to_le32(dma_addr); 2095 } 2096 2097 2098 /** 2099 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr. 2100 * @paddr: virtual address for SGE 2101 * @flags_length: SGE flags and data transfer length 2102 * @dma_addr: Physical address 2103 */ 2104 static void 2105 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr) 2106 { 2107 Mpi2SGESimple64_t *sgel = paddr; 2108 2109 flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING | 2110 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT; 2111 sgel->FlagsLength = cpu_to_le32(flags_length); 2112 sgel->Address = cpu_to_le64(dma_addr); 2113 } 2114 2115 /** 2116 * _base_get_chain_buffer_tracker - obtain chain tracker 2117 * @ioc: per adapter object 2118 * @scmd: SCSI commands of the IO request 2119 * 2120 * Return: chain tracker from chain_lookup table using key as 2121 * smid and smid's chain_offset. 2122 */ 2123 static struct chain_tracker * 2124 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc, 2125 struct scsi_cmnd *scmd) 2126 { 2127 struct chain_tracker *chain_req; 2128 struct scsiio_tracker *st = scsi_cmd_priv(scmd); 2129 u16 smid = st->smid; 2130 u8 chain_offset = 2131 atomic_read(&ioc->chain_lookup[smid - 1].chain_offset); 2132 2133 if (chain_offset == ioc->chains_needed_per_io) 2134 return NULL; 2135 2136 chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset]; 2137 atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset); 2138 return chain_req; 2139 } 2140 2141 2142 /** 2143 * _base_build_sg - build generic sg 2144 * @ioc: per adapter object 2145 * @psge: virtual address for SGE 2146 * @data_out_dma: physical address for WRITES 2147 * @data_out_sz: data xfer size for WRITES 2148 * @data_in_dma: physical address for READS 2149 * @data_in_sz: data xfer size for READS 2150 */ 2151 static void 2152 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge, 2153 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 2154 size_t data_in_sz) 2155 { 2156 u32 sgl_flags; 2157 2158 if (!data_out_sz && !data_in_sz) { 2159 _base_build_zero_len_sge(ioc, psge); 2160 return; 2161 } 2162 2163 if (data_out_sz && data_in_sz) { 2164 /* WRITE sgel first */ 2165 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2166 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC); 2167 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2168 ioc->base_add_sg_single(psge, sgl_flags | 2169 data_out_sz, data_out_dma); 2170 2171 /* incr sgel */ 2172 psge += ioc->sge_size; 2173 2174 /* READ sgel last */ 2175 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2176 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 2177 MPI2_SGE_FLAGS_END_OF_LIST); 2178 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2179 ioc->base_add_sg_single(psge, sgl_flags | 2180 data_in_sz, data_in_dma); 2181 } else if (data_out_sz) /* WRITE */ { 2182 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2183 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 2184 MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC); 2185 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2186 ioc->base_add_sg_single(psge, sgl_flags | 2187 data_out_sz, data_out_dma); 2188 } else if (data_in_sz) /* READ */ { 2189 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2190 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 2191 MPI2_SGE_FLAGS_END_OF_LIST); 2192 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2193 ioc->base_add_sg_single(psge, sgl_flags | 2194 data_in_sz, data_in_dma); 2195 } 2196 } 2197 2198 /* IEEE format sgls */ 2199 2200 /** 2201 * _base_build_nvme_prp - This function is called for NVMe end devices to build 2202 * a native SGL (NVMe PRP). 2203 * @ioc: per adapter object 2204 * @smid: system request message index for getting asscociated SGL 2205 * @nvme_encap_request: the NVMe request msg frame pointer 2206 * @data_out_dma: physical address for WRITES 2207 * @data_out_sz: data xfer size for WRITES 2208 * @data_in_dma: physical address for READS 2209 * @data_in_sz: data xfer size for READS 2210 * 2211 * The native SGL is built starting in the first PRP 2212 * entry of the NVMe message (PRP1). If the data buffer is small enough to be 2213 * described entirely using PRP1, then PRP2 is not used. If needed, PRP2 is 2214 * used to describe a larger data buffer. If the data buffer is too large to 2215 * describe using the two PRP entriess inside the NVMe message, then PRP1 2216 * describes the first data memory segment, and PRP2 contains a pointer to a PRP 2217 * list located elsewhere in memory to describe the remaining data memory 2218 * segments. The PRP list will be contiguous. 2219 * 2220 * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP 2221 * consists of a list of PRP entries to describe a number of noncontigous 2222 * physical memory segments as a single memory buffer, just as a SGL does. Note 2223 * however, that this function is only used by the IOCTL call, so the memory 2224 * given will be guaranteed to be contiguous. There is no need to translate 2225 * non-contiguous SGL into a PRP in this case. All PRPs will describe 2226 * contiguous space that is one page size each. 2227 * 2228 * Each NVMe message contains two PRP entries. The first (PRP1) either contains 2229 * a PRP list pointer or a PRP element, depending upon the command. PRP2 2230 * contains the second PRP element if the memory being described fits within 2 2231 * PRP entries, or a PRP list pointer if the PRP spans more than two entries. 2232 * 2233 * A PRP list pointer contains the address of a PRP list, structured as a linear 2234 * array of PRP entries. Each PRP entry in this list describes a segment of 2235 * physical memory. 2236 * 2237 * Each 64-bit PRP entry comprises an address and an offset field. The address 2238 * always points at the beginning of a 4KB physical memory page, and the offset 2239 * describes where within that 4KB page the memory segment begins. Only the 2240 * first element in a PRP list may contain a non-zero offset, implying that all 2241 * memory segments following the first begin at the start of a 4KB page. 2242 * 2243 * Each PRP element normally describes 4KB of physical memory, with exceptions 2244 * for the first and last elements in the list. If the memory being described 2245 * by the list begins at a non-zero offset within the first 4KB page, then the 2246 * first PRP element will contain a non-zero offset indicating where the region 2247 * begins within the 4KB page. The last memory segment may end before the end 2248 * of the 4KB segment, depending upon the overall size of the memory being 2249 * described by the PRP list. 2250 * 2251 * Since PRP entries lack any indication of size, the overall data buffer length 2252 * is used to determine where the end of the data memory buffer is located, and 2253 * how many PRP entries are required to describe it. 2254 */ 2255 static void 2256 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid, 2257 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request, 2258 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 2259 size_t data_in_sz) 2260 { 2261 int prp_size = NVME_PRP_SIZE; 2262 __le64 *prp_entry, *prp1_entry, *prp2_entry; 2263 __le64 *prp_page; 2264 dma_addr_t prp_entry_dma, prp_page_dma, dma_addr; 2265 u32 offset, entry_len; 2266 u32 page_mask_result, page_mask; 2267 size_t length; 2268 struct mpt3sas_nvme_cmd *nvme_cmd = 2269 (void *)nvme_encap_request->NVMe_Command; 2270 2271 /* 2272 * Not all commands require a data transfer. If no data, just return 2273 * without constructing any PRP. 2274 */ 2275 if (!data_in_sz && !data_out_sz) 2276 return; 2277 prp1_entry = &nvme_cmd->prp1; 2278 prp2_entry = &nvme_cmd->prp2; 2279 prp_entry = prp1_entry; 2280 /* 2281 * For the PRP entries, use the specially allocated buffer of 2282 * contiguous memory. 2283 */ 2284 prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid); 2285 prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid); 2286 2287 /* 2288 * Check if we are within 1 entry of a page boundary we don't 2289 * want our first entry to be a PRP List entry. 2290 */ 2291 page_mask = ioc->page_size - 1; 2292 page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask; 2293 if (!page_mask_result) { 2294 /* Bump up to next page boundary. */ 2295 prp_page = (__le64 *)((u8 *)prp_page + prp_size); 2296 prp_page_dma = prp_page_dma + prp_size; 2297 } 2298 2299 /* 2300 * Set PRP physical pointer, which initially points to the current PRP 2301 * DMA memory page. 2302 */ 2303 prp_entry_dma = prp_page_dma; 2304 2305 /* Get physical address and length of the data buffer. */ 2306 if (data_in_sz) { 2307 dma_addr = data_in_dma; 2308 length = data_in_sz; 2309 } else { 2310 dma_addr = data_out_dma; 2311 length = data_out_sz; 2312 } 2313 2314 /* Loop while the length is not zero. */ 2315 while (length) { 2316 /* 2317 * Check if we need to put a list pointer here if we are at 2318 * page boundary - prp_size (8 bytes). 2319 */ 2320 page_mask_result = (prp_entry_dma + prp_size) & page_mask; 2321 if (!page_mask_result) { 2322 /* 2323 * This is the last entry in a PRP List, so we need to 2324 * put a PRP list pointer here. What this does is: 2325 * - bump the current memory pointer to the next 2326 * address, which will be the next full page. 2327 * - set the PRP Entry to point to that page. This 2328 * is now the PRP List pointer. 2329 * - bump the PRP Entry pointer the start of the 2330 * next page. Since all of this PRP memory is 2331 * contiguous, no need to get a new page - it's 2332 * just the next address. 2333 */ 2334 prp_entry_dma++; 2335 *prp_entry = cpu_to_le64(prp_entry_dma); 2336 prp_entry++; 2337 } 2338 2339 /* Need to handle if entry will be part of a page. */ 2340 offset = dma_addr & page_mask; 2341 entry_len = ioc->page_size - offset; 2342 2343 if (prp_entry == prp1_entry) { 2344 /* 2345 * Must fill in the first PRP pointer (PRP1) before 2346 * moving on. 2347 */ 2348 *prp1_entry = cpu_to_le64(dma_addr); 2349 2350 /* 2351 * Now point to the second PRP entry within the 2352 * command (PRP2). 2353 */ 2354 prp_entry = prp2_entry; 2355 } else if (prp_entry == prp2_entry) { 2356 /* 2357 * Should the PRP2 entry be a PRP List pointer or just 2358 * a regular PRP pointer? If there is more than one 2359 * more page of data, must use a PRP List pointer. 2360 */ 2361 if (length > ioc->page_size) { 2362 /* 2363 * PRP2 will contain a PRP List pointer because 2364 * more PRP's are needed with this command. The 2365 * list will start at the beginning of the 2366 * contiguous buffer. 2367 */ 2368 *prp2_entry = cpu_to_le64(prp_entry_dma); 2369 2370 /* 2371 * The next PRP Entry will be the start of the 2372 * first PRP List. 2373 */ 2374 prp_entry = prp_page; 2375 } else { 2376 /* 2377 * After this, the PRP Entries are complete. 2378 * This command uses 2 PRP's and no PRP list. 2379 */ 2380 *prp2_entry = cpu_to_le64(dma_addr); 2381 } 2382 } else { 2383 /* 2384 * Put entry in list and bump the addresses. 2385 * 2386 * After PRP1 and PRP2 are filled in, this will fill in 2387 * all remaining PRP entries in a PRP List, one per 2388 * each time through the loop. 2389 */ 2390 *prp_entry = cpu_to_le64(dma_addr); 2391 prp_entry++; 2392 prp_entry_dma++; 2393 } 2394 2395 /* 2396 * Bump the phys address of the command's data buffer by the 2397 * entry_len. 2398 */ 2399 dma_addr += entry_len; 2400 2401 /* Decrement length accounting for last partial page. */ 2402 if (entry_len > length) 2403 length = 0; 2404 else 2405 length -= entry_len; 2406 } 2407 } 2408 2409 /** 2410 * base_make_prp_nvme - Prepare PRPs (Physical Region Page) - 2411 * SGLs specific to NVMe drives only 2412 * 2413 * @ioc: per adapter object 2414 * @scmd: SCSI command from the mid-layer 2415 * @mpi_request: mpi request 2416 * @smid: msg Index 2417 * @sge_count: scatter gather element count. 2418 * 2419 * Return: true: PRPs are built 2420 * false: IEEE SGLs needs to be built 2421 */ 2422 static void 2423 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc, 2424 struct scsi_cmnd *scmd, 2425 Mpi25SCSIIORequest_t *mpi_request, 2426 u16 smid, int sge_count) 2427 { 2428 int sge_len, num_prp_in_chain = 0; 2429 Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl; 2430 __le64 *curr_buff; 2431 dma_addr_t msg_dma, sge_addr, offset; 2432 u32 page_mask, page_mask_result; 2433 struct scatterlist *sg_scmd; 2434 u32 first_prp_len; 2435 int data_len = scsi_bufflen(scmd); 2436 u32 nvme_pg_size; 2437 2438 nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE); 2439 /* 2440 * Nvme has a very convoluted prp format. One prp is required 2441 * for each page or partial page. Driver need to split up OS sg_list 2442 * entries if it is longer than one page or cross a page 2443 * boundary. Driver also have to insert a PRP list pointer entry as 2444 * the last entry in each physical page of the PRP list. 2445 * 2446 * NOTE: The first PRP "entry" is actually placed in the first 2447 * SGL entry in the main message as IEEE 64 format. The 2nd 2448 * entry in the main message is the chain element, and the rest 2449 * of the PRP entries are built in the contiguous pcie buffer. 2450 */ 2451 page_mask = nvme_pg_size - 1; 2452 2453 /* 2454 * Native SGL is needed. 2455 * Put a chain element in main message frame that points to the first 2456 * chain buffer. 2457 * 2458 * NOTE: The ChainOffset field must be 0 when using a chain pointer to 2459 * a native SGL. 2460 */ 2461 2462 /* Set main message chain element pointer */ 2463 main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL; 2464 /* 2465 * For NVMe the chain element needs to be the 2nd SG entry in the main 2466 * message. 2467 */ 2468 main_chain_element = (Mpi25IeeeSgeChain64_t *) 2469 ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64)); 2470 2471 /* 2472 * For the PRP entries, use the specially allocated buffer of 2473 * contiguous memory. Normal chain buffers can't be used 2474 * because each chain buffer would need to be the size of an OS 2475 * page (4k). 2476 */ 2477 curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid); 2478 msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid); 2479 2480 main_chain_element->Address = cpu_to_le64(msg_dma); 2481 main_chain_element->NextChainOffset = 0; 2482 main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 2483 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | 2484 MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP; 2485 2486 /* Build first prp, sge need not to be page aligned*/ 2487 ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL; 2488 sg_scmd = scsi_sglist(scmd); 2489 sge_addr = sg_dma_address(sg_scmd); 2490 sge_len = sg_dma_len(sg_scmd); 2491 2492 offset = sge_addr & page_mask; 2493 first_prp_len = nvme_pg_size - offset; 2494 2495 ptr_first_sgl->Address = cpu_to_le64(sge_addr); 2496 ptr_first_sgl->Length = cpu_to_le32(first_prp_len); 2497 2498 data_len -= first_prp_len; 2499 2500 if (sge_len > first_prp_len) { 2501 sge_addr += first_prp_len; 2502 sge_len -= first_prp_len; 2503 } else if (data_len && (sge_len == first_prp_len)) { 2504 sg_scmd = sg_next(sg_scmd); 2505 sge_addr = sg_dma_address(sg_scmd); 2506 sge_len = sg_dma_len(sg_scmd); 2507 } 2508 2509 for (;;) { 2510 offset = sge_addr & page_mask; 2511 2512 /* Put PRP pointer due to page boundary*/ 2513 page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask; 2514 if (unlikely(!page_mask_result)) { 2515 scmd_printk(KERN_NOTICE, 2516 scmd, "page boundary curr_buff: 0x%p\n", 2517 curr_buff); 2518 msg_dma += 8; 2519 *curr_buff = cpu_to_le64(msg_dma); 2520 curr_buff++; 2521 num_prp_in_chain++; 2522 } 2523 2524 *curr_buff = cpu_to_le64(sge_addr); 2525 curr_buff++; 2526 msg_dma += 8; 2527 num_prp_in_chain++; 2528 2529 sge_addr += nvme_pg_size; 2530 sge_len -= nvme_pg_size; 2531 data_len -= nvme_pg_size; 2532 2533 if (data_len <= 0) 2534 break; 2535 2536 if (sge_len > 0) 2537 continue; 2538 2539 sg_scmd = sg_next(sg_scmd); 2540 sge_addr = sg_dma_address(sg_scmd); 2541 sge_len = sg_dma_len(sg_scmd); 2542 } 2543 2544 main_chain_element->Length = 2545 cpu_to_le32(num_prp_in_chain * sizeof(u64)); 2546 return; 2547 } 2548 2549 static bool 2550 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc, 2551 struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count) 2552 { 2553 u32 data_length = 0; 2554 bool build_prp = true; 2555 2556 data_length = scsi_bufflen(scmd); 2557 if (pcie_device && 2558 (mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))) { 2559 build_prp = false; 2560 return build_prp; 2561 } 2562 2563 /* If Datalenth is <= 16K and number of SGE’s entries are <= 2 2564 * we built IEEE SGL 2565 */ 2566 if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2)) 2567 build_prp = false; 2568 2569 return build_prp; 2570 } 2571 2572 /** 2573 * _base_check_pcie_native_sgl - This function is called for PCIe end devices to 2574 * determine if the driver needs to build a native SGL. If so, that native 2575 * SGL is built in the special contiguous buffers allocated especially for 2576 * PCIe SGL creation. If the driver will not build a native SGL, return 2577 * TRUE and a normal IEEE SGL will be built. Currently this routine 2578 * supports NVMe. 2579 * @ioc: per adapter object 2580 * @mpi_request: mf request pointer 2581 * @smid: system request message index 2582 * @scmd: scsi command 2583 * @pcie_device: points to the PCIe device's info 2584 * 2585 * Return: 0 if native SGL was built, 1 if no SGL was built 2586 */ 2587 static int 2588 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc, 2589 Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd, 2590 struct _pcie_device *pcie_device) 2591 { 2592 int sges_left; 2593 2594 /* Get the SG list pointer and info. */ 2595 sges_left = scsi_dma_map(scmd); 2596 if (sges_left < 0) { 2597 sdev_printk(KERN_ERR, scmd->device, 2598 "scsi_dma_map failed: request for %d bytes!\n", 2599 scsi_bufflen(scmd)); 2600 return 1; 2601 } 2602 2603 /* Check if we need to build a native SG list. */ 2604 if (!base_is_prp_possible(ioc, pcie_device, 2605 scmd, sges_left)) { 2606 /* We built a native SG list, just return. */ 2607 goto out; 2608 } 2609 2610 /* 2611 * Build native NVMe PRP. 2612 */ 2613 base_make_prp_nvme(ioc, scmd, mpi_request, 2614 smid, sges_left); 2615 2616 return 0; 2617 out: 2618 scsi_dma_unmap(scmd); 2619 return 1; 2620 } 2621 2622 /** 2623 * _base_add_sg_single_ieee - add sg element for IEEE format 2624 * @paddr: virtual address for SGE 2625 * @flags: SGE flags 2626 * @chain_offset: number of 128 byte elements from start of segment 2627 * @length: data transfer length 2628 * @dma_addr: Physical address 2629 */ 2630 static void 2631 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length, 2632 dma_addr_t dma_addr) 2633 { 2634 Mpi25IeeeSgeChain64_t *sgel = paddr; 2635 2636 sgel->Flags = flags; 2637 sgel->NextChainOffset = chain_offset; 2638 sgel->Length = cpu_to_le32(length); 2639 sgel->Address = cpu_to_le64(dma_addr); 2640 } 2641 2642 /** 2643 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format 2644 * @ioc: per adapter object 2645 * @paddr: virtual address for SGE 2646 * 2647 * Create a zero length scatter gather entry to insure the IOCs hardware has 2648 * something to use if the target device goes brain dead and tries 2649 * to send data even when none is asked for. 2650 */ 2651 static void 2652 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr) 2653 { 2654 u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2655 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | 2656 MPI25_IEEE_SGE_FLAGS_END_OF_LIST); 2657 2658 _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1); 2659 } 2660 2661 /** 2662 * _base_build_sg_scmd - main sg creation routine 2663 * pcie_device is unused here! 2664 * @ioc: per adapter object 2665 * @scmd: scsi command 2666 * @smid: system request message index 2667 * @unused: unused pcie_device pointer 2668 * Context: none. 2669 * 2670 * The main routine that builds scatter gather table from a given 2671 * scsi request sent via the .queuecommand main handler. 2672 * 2673 * Return: 0 success, anything else error 2674 */ 2675 static int 2676 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc, 2677 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused) 2678 { 2679 Mpi2SCSIIORequest_t *mpi_request; 2680 dma_addr_t chain_dma; 2681 struct scatterlist *sg_scmd; 2682 void *sg_local, *chain; 2683 u32 chain_offset; 2684 u32 chain_length; 2685 u32 chain_flags; 2686 int sges_left; 2687 u32 sges_in_segment; 2688 u32 sgl_flags; 2689 u32 sgl_flags_last_element; 2690 u32 sgl_flags_end_buffer; 2691 struct chain_tracker *chain_req; 2692 2693 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 2694 2695 /* init scatter gather flags */ 2696 sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT; 2697 if (scmd->sc_data_direction == DMA_TO_DEVICE) 2698 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC; 2699 sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT) 2700 << MPI2_SGE_FLAGS_SHIFT; 2701 sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT | 2702 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST) 2703 << MPI2_SGE_FLAGS_SHIFT; 2704 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2705 2706 sg_scmd = scsi_sglist(scmd); 2707 sges_left = scsi_dma_map(scmd); 2708 if (sges_left < 0) { 2709 sdev_printk(KERN_ERR, scmd->device, 2710 "scsi_dma_map failed: request for %d bytes!\n", 2711 scsi_bufflen(scmd)); 2712 return -ENOMEM; 2713 } 2714 2715 sg_local = &mpi_request->SGL; 2716 sges_in_segment = ioc->max_sges_in_main_message; 2717 if (sges_left <= sges_in_segment) 2718 goto fill_in_last_segment; 2719 2720 mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) + 2721 (sges_in_segment * ioc->sge_size))/4; 2722 2723 /* fill in main message segment when there is a chain following */ 2724 while (sges_in_segment) { 2725 if (sges_in_segment == 1) 2726 ioc->base_add_sg_single(sg_local, 2727 sgl_flags_last_element | sg_dma_len(sg_scmd), 2728 sg_dma_address(sg_scmd)); 2729 else 2730 ioc->base_add_sg_single(sg_local, sgl_flags | 2731 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2732 sg_scmd = sg_next(sg_scmd); 2733 sg_local += ioc->sge_size; 2734 sges_left--; 2735 sges_in_segment--; 2736 } 2737 2738 /* initializing the chain flags and pointers */ 2739 chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT; 2740 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2741 if (!chain_req) 2742 return -1; 2743 chain = chain_req->chain_buffer; 2744 chain_dma = chain_req->chain_buffer_dma; 2745 do { 2746 sges_in_segment = (sges_left <= 2747 ioc->max_sges_in_chain_message) ? sges_left : 2748 ioc->max_sges_in_chain_message; 2749 chain_offset = (sges_left == sges_in_segment) ? 2750 0 : (sges_in_segment * ioc->sge_size)/4; 2751 chain_length = sges_in_segment * ioc->sge_size; 2752 if (chain_offset) { 2753 chain_offset = chain_offset << 2754 MPI2_SGE_CHAIN_OFFSET_SHIFT; 2755 chain_length += ioc->sge_size; 2756 } 2757 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset | 2758 chain_length, chain_dma); 2759 sg_local = chain; 2760 if (!chain_offset) 2761 goto fill_in_last_segment; 2762 2763 /* fill in chain segments */ 2764 while (sges_in_segment) { 2765 if (sges_in_segment == 1) 2766 ioc->base_add_sg_single(sg_local, 2767 sgl_flags_last_element | 2768 sg_dma_len(sg_scmd), 2769 sg_dma_address(sg_scmd)); 2770 else 2771 ioc->base_add_sg_single(sg_local, sgl_flags | 2772 sg_dma_len(sg_scmd), 2773 sg_dma_address(sg_scmd)); 2774 sg_scmd = sg_next(sg_scmd); 2775 sg_local += ioc->sge_size; 2776 sges_left--; 2777 sges_in_segment--; 2778 } 2779 2780 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2781 if (!chain_req) 2782 return -1; 2783 chain = chain_req->chain_buffer; 2784 chain_dma = chain_req->chain_buffer_dma; 2785 } while (1); 2786 2787 2788 fill_in_last_segment: 2789 2790 /* fill the last segment */ 2791 while (sges_left) { 2792 if (sges_left == 1) 2793 ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer | 2794 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2795 else 2796 ioc->base_add_sg_single(sg_local, sgl_flags | 2797 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2798 sg_scmd = sg_next(sg_scmd); 2799 sg_local += ioc->sge_size; 2800 sges_left--; 2801 } 2802 2803 return 0; 2804 } 2805 2806 /** 2807 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format 2808 * @ioc: per adapter object 2809 * @scmd: scsi command 2810 * @smid: system request message index 2811 * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be 2812 * constructed on need. 2813 * Context: none. 2814 * 2815 * The main routine that builds scatter gather table from a given 2816 * scsi request sent via the .queuecommand main handler. 2817 * 2818 * Return: 0 success, anything else error 2819 */ 2820 static int 2821 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc, 2822 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device) 2823 { 2824 Mpi25SCSIIORequest_t *mpi_request; 2825 dma_addr_t chain_dma; 2826 struct scatterlist *sg_scmd; 2827 void *sg_local, *chain; 2828 u32 chain_offset; 2829 u32 chain_length; 2830 int sges_left; 2831 u32 sges_in_segment; 2832 u8 simple_sgl_flags; 2833 u8 simple_sgl_flags_last; 2834 u8 chain_sgl_flags; 2835 struct chain_tracker *chain_req; 2836 2837 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 2838 2839 /* init scatter gather flags */ 2840 simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2841 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2842 simple_sgl_flags_last = simple_sgl_flags | 2843 MPI25_IEEE_SGE_FLAGS_END_OF_LIST; 2844 chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 2845 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2846 2847 /* Check if we need to build a native SG list. */ 2848 if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request, 2849 smid, scmd, pcie_device) == 0)) { 2850 /* We built a native SG list, just return. */ 2851 return 0; 2852 } 2853 2854 sg_scmd = scsi_sglist(scmd); 2855 sges_left = scsi_dma_map(scmd); 2856 if (sges_left < 0) { 2857 sdev_printk(KERN_ERR, scmd->device, 2858 "scsi_dma_map failed: request for %d bytes!\n", 2859 scsi_bufflen(scmd)); 2860 return -ENOMEM; 2861 } 2862 2863 sg_local = &mpi_request->SGL; 2864 sges_in_segment = (ioc->request_sz - 2865 offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee; 2866 if (sges_left <= sges_in_segment) 2867 goto fill_in_last_segment; 2868 2869 mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) + 2870 (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee); 2871 2872 /* fill in main message segment when there is a chain following */ 2873 while (sges_in_segment > 1) { 2874 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2875 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2876 sg_scmd = sg_next(sg_scmd); 2877 sg_local += ioc->sge_size_ieee; 2878 sges_left--; 2879 sges_in_segment--; 2880 } 2881 2882 /* initializing the pointers */ 2883 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2884 if (!chain_req) 2885 return -1; 2886 chain = chain_req->chain_buffer; 2887 chain_dma = chain_req->chain_buffer_dma; 2888 do { 2889 sges_in_segment = (sges_left <= 2890 ioc->max_sges_in_chain_message) ? sges_left : 2891 ioc->max_sges_in_chain_message; 2892 chain_offset = (sges_left == sges_in_segment) ? 2893 0 : sges_in_segment; 2894 chain_length = sges_in_segment * ioc->sge_size_ieee; 2895 if (chain_offset) 2896 chain_length += ioc->sge_size_ieee; 2897 _base_add_sg_single_ieee(sg_local, chain_sgl_flags, 2898 chain_offset, chain_length, chain_dma); 2899 2900 sg_local = chain; 2901 if (!chain_offset) 2902 goto fill_in_last_segment; 2903 2904 /* fill in chain segments */ 2905 while (sges_in_segment) { 2906 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2907 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2908 sg_scmd = sg_next(sg_scmd); 2909 sg_local += ioc->sge_size_ieee; 2910 sges_left--; 2911 sges_in_segment--; 2912 } 2913 2914 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2915 if (!chain_req) 2916 return -1; 2917 chain = chain_req->chain_buffer; 2918 chain_dma = chain_req->chain_buffer_dma; 2919 } while (1); 2920 2921 2922 fill_in_last_segment: 2923 2924 /* fill the last segment */ 2925 while (sges_left > 0) { 2926 if (sges_left == 1) 2927 _base_add_sg_single_ieee(sg_local, 2928 simple_sgl_flags_last, 0, sg_dma_len(sg_scmd), 2929 sg_dma_address(sg_scmd)); 2930 else 2931 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2932 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2933 sg_scmd = sg_next(sg_scmd); 2934 sg_local += ioc->sge_size_ieee; 2935 sges_left--; 2936 } 2937 2938 return 0; 2939 } 2940 2941 /** 2942 * _base_build_sg_ieee - build generic sg for IEEE format 2943 * @ioc: per adapter object 2944 * @psge: virtual address for SGE 2945 * @data_out_dma: physical address for WRITES 2946 * @data_out_sz: data xfer size for WRITES 2947 * @data_in_dma: physical address for READS 2948 * @data_in_sz: data xfer size for READS 2949 */ 2950 static void 2951 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge, 2952 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 2953 size_t data_in_sz) 2954 { 2955 u8 sgl_flags; 2956 2957 if (!data_out_sz && !data_in_sz) { 2958 _base_build_zero_len_sge_ieee(ioc, psge); 2959 return; 2960 } 2961 2962 if (data_out_sz && data_in_sz) { 2963 /* WRITE sgel first */ 2964 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2965 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2966 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz, 2967 data_out_dma); 2968 2969 /* incr sgel */ 2970 psge += ioc->sge_size_ieee; 2971 2972 /* READ sgel last */ 2973 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST; 2974 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz, 2975 data_in_dma); 2976 } else if (data_out_sz) /* WRITE */ { 2977 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2978 MPI25_IEEE_SGE_FLAGS_END_OF_LIST | 2979 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2980 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz, 2981 data_out_dma); 2982 } else if (data_in_sz) /* READ */ { 2983 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2984 MPI25_IEEE_SGE_FLAGS_END_OF_LIST | 2985 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2986 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz, 2987 data_in_dma); 2988 } 2989 } 2990 2991 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10)) 2992 2993 /** 2994 * _base_config_dma_addressing - set dma addressing 2995 * @ioc: per adapter object 2996 * @pdev: PCI device struct 2997 * 2998 * Return: 0 for success, non-zero for failure. 2999 */ 3000 static int 3001 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev) 3002 { 3003 struct sysinfo s; 3004 3005 if (ioc->is_mcpu_endpoint || 3006 sizeof(dma_addr_t) == 4 || ioc->use_32bit_dma || 3007 dma_get_required_mask(&pdev->dev) <= 32) 3008 ioc->dma_mask = 32; 3009 /* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */ 3010 else if (ioc->hba_mpi_version_belonged > MPI2_VERSION) 3011 ioc->dma_mask = 63; 3012 else 3013 ioc->dma_mask = 64; 3014 3015 if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(ioc->dma_mask)) || 3016 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(ioc->dma_mask))) 3017 return -ENODEV; 3018 3019 if (ioc->dma_mask > 32) { 3020 ioc->base_add_sg_single = &_base_add_sg_single_64; 3021 ioc->sge_size = sizeof(Mpi2SGESimple64_t); 3022 } else { 3023 ioc->base_add_sg_single = &_base_add_sg_single_32; 3024 ioc->sge_size = sizeof(Mpi2SGESimple32_t); 3025 } 3026 3027 si_meminfo(&s); 3028 ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n", 3029 ioc->dma_mask, convert_to_kb(s.totalram)); 3030 3031 return 0; 3032 } 3033 3034 /** 3035 * _base_check_enable_msix - checks MSIX capabable. 3036 * @ioc: per adapter object 3037 * 3038 * Check to see if card is capable of MSIX, and set number 3039 * of available msix vectors 3040 */ 3041 static int 3042 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc) 3043 { 3044 int base; 3045 u16 message_control; 3046 3047 /* Check whether controller SAS2008 B0 controller, 3048 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX 3049 */ 3050 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 && 3051 ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) { 3052 return -EINVAL; 3053 } 3054 3055 base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX); 3056 if (!base) { 3057 dfailprintk(ioc, ioc_info(ioc, "msix not supported\n")); 3058 return -EINVAL; 3059 } 3060 3061 /* get msix vector count */ 3062 /* NUMA_IO not supported for older controllers */ 3063 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 || 3064 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 || 3065 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 || 3066 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 || 3067 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 || 3068 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 || 3069 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2) 3070 ioc->msix_vector_count = 1; 3071 else { 3072 pci_read_config_word(ioc->pdev, base + 2, &message_control); 3073 ioc->msix_vector_count = (message_control & 0x3FF) + 1; 3074 } 3075 dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n", 3076 ioc->msix_vector_count)); 3077 return 0; 3078 } 3079 3080 /** 3081 * mpt3sas_base_free_irq - free irq 3082 * @ioc: per adapter object 3083 * 3084 * Freeing respective reply_queue from the list. 3085 */ 3086 void 3087 mpt3sas_base_free_irq(struct MPT3SAS_ADAPTER *ioc) 3088 { 3089 struct adapter_reply_queue *reply_q, *next; 3090 3091 if (list_empty(&ioc->reply_queue_list)) 3092 return; 3093 3094 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) { 3095 list_del(&reply_q->list); 3096 if (reply_q->is_iouring_poll_q) { 3097 kfree(reply_q); 3098 continue; 3099 } 3100 3101 if (ioc->smp_affinity_enable) 3102 irq_set_affinity_hint(pci_irq_vector(ioc->pdev, 3103 reply_q->msix_index), NULL); 3104 free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index), 3105 reply_q); 3106 kfree(reply_q); 3107 } 3108 } 3109 3110 /** 3111 * _base_request_irq - request irq 3112 * @ioc: per adapter object 3113 * @index: msix index into vector table 3114 * 3115 * Inserting respective reply_queue into the list. 3116 */ 3117 static int 3118 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index) 3119 { 3120 struct pci_dev *pdev = ioc->pdev; 3121 struct adapter_reply_queue *reply_q; 3122 int r, qid; 3123 3124 reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL); 3125 if (!reply_q) { 3126 ioc_err(ioc, "unable to allocate memory %zu!\n", 3127 sizeof(struct adapter_reply_queue)); 3128 return -ENOMEM; 3129 } 3130 reply_q->ioc = ioc; 3131 reply_q->msix_index = index; 3132 3133 atomic_set(&reply_q->busy, 0); 3134 3135 if (index >= ioc->iopoll_q_start_index) { 3136 qid = index - ioc->iopoll_q_start_index; 3137 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-mq-poll%d", 3138 ioc->driver_name, ioc->id, qid); 3139 reply_q->is_iouring_poll_q = 1; 3140 ioc->io_uring_poll_queues[qid].reply_q = reply_q; 3141 goto out; 3142 } 3143 3144 3145 if (ioc->msix_enable) 3146 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d", 3147 ioc->driver_name, ioc->id, index); 3148 else 3149 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d", 3150 ioc->driver_name, ioc->id); 3151 r = request_irq(pci_irq_vector(pdev, index), _base_interrupt, 3152 IRQF_SHARED, reply_q->name, reply_q); 3153 if (r) { 3154 pr_err("%s: unable to allocate interrupt %d!\n", 3155 reply_q->name, pci_irq_vector(pdev, index)); 3156 kfree(reply_q); 3157 return -EBUSY; 3158 } 3159 out: 3160 INIT_LIST_HEAD(&reply_q->list); 3161 list_add_tail(&reply_q->list, &ioc->reply_queue_list); 3162 return 0; 3163 } 3164 3165 /** 3166 * _base_assign_reply_queues - assigning msix index for each cpu 3167 * @ioc: per adapter object 3168 * 3169 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity 3170 * 3171 * It would nice if we could call irq_set_affinity, however it is not 3172 * an exported symbol 3173 */ 3174 static void 3175 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc) 3176 { 3177 unsigned int cpu, nr_cpus, nr_msix, index = 0; 3178 struct adapter_reply_queue *reply_q; 3179 int local_numa_node; 3180 int iopoll_q_count = ioc->reply_queue_count - 3181 ioc->iopoll_q_start_index; 3182 3183 if (!_base_is_controller_msix_enabled(ioc)) 3184 return; 3185 3186 if (ioc->msix_load_balance) 3187 return; 3188 3189 memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz); 3190 3191 nr_cpus = num_online_cpus(); 3192 nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count, 3193 ioc->facts.MaxMSIxVectors); 3194 if (!nr_msix) 3195 return; 3196 3197 if (ioc->smp_affinity_enable) { 3198 3199 /* 3200 * set irq affinity to local numa node for those irqs 3201 * corresponding to high iops queues. 3202 */ 3203 if (ioc->high_iops_queues) { 3204 local_numa_node = dev_to_node(&ioc->pdev->dev); 3205 for (index = 0; index < ioc->high_iops_queues; 3206 index++) { 3207 irq_set_affinity_hint(pci_irq_vector(ioc->pdev, 3208 index), cpumask_of_node(local_numa_node)); 3209 } 3210 } 3211 3212 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 3213 const cpumask_t *mask; 3214 3215 if (reply_q->msix_index < ioc->high_iops_queues || 3216 reply_q->msix_index >= ioc->iopoll_q_start_index) 3217 continue; 3218 3219 mask = pci_irq_get_affinity(ioc->pdev, 3220 reply_q->msix_index); 3221 if (!mask) { 3222 ioc_warn(ioc, "no affinity for msi %x\n", 3223 reply_q->msix_index); 3224 goto fall_back; 3225 } 3226 3227 for_each_cpu_and(cpu, mask, cpu_online_mask) { 3228 if (cpu >= ioc->cpu_msix_table_sz) 3229 break; 3230 ioc->cpu_msix_table[cpu] = reply_q->msix_index; 3231 } 3232 } 3233 return; 3234 } 3235 3236 fall_back: 3237 cpu = cpumask_first(cpu_online_mask); 3238 nr_msix -= (ioc->high_iops_queues - iopoll_q_count); 3239 index = 0; 3240 3241 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 3242 unsigned int i, group = nr_cpus / nr_msix; 3243 3244 if (reply_q->msix_index < ioc->high_iops_queues || 3245 reply_q->msix_index >= ioc->iopoll_q_start_index) 3246 continue; 3247 3248 if (cpu >= nr_cpus) 3249 break; 3250 3251 if (index < nr_cpus % nr_msix) 3252 group++; 3253 3254 for (i = 0 ; i < group ; i++) { 3255 ioc->cpu_msix_table[cpu] = reply_q->msix_index; 3256 cpu = cpumask_next(cpu, cpu_online_mask); 3257 } 3258 index++; 3259 } 3260 } 3261 3262 /** 3263 * _base_check_and_enable_high_iops_queues - enable high iops mode 3264 * @ioc: per adapter object 3265 * @hba_msix_vector_count: msix vectors supported by HBA 3266 * 3267 * Enable high iops queues only if 3268 * - HBA is a SEA/AERO controller and 3269 * - MSI-Xs vector supported by the HBA is 128 and 3270 * - total CPU count in the system >=16 and 3271 * - loaded driver with default max_msix_vectors module parameter and 3272 * - system booted in non kdump mode 3273 * 3274 * Return: nothing. 3275 */ 3276 static void 3277 _base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc, 3278 int hba_msix_vector_count) 3279 { 3280 u16 lnksta, speed; 3281 3282 /* 3283 * Disable high iops queues if io uring poll queues are enabled. 3284 */ 3285 if (perf_mode == MPT_PERF_MODE_IOPS || 3286 perf_mode == MPT_PERF_MODE_LATENCY || 3287 ioc->io_uring_poll_queues) { 3288 ioc->high_iops_queues = 0; 3289 return; 3290 } 3291 3292 if (perf_mode == MPT_PERF_MODE_DEFAULT) { 3293 3294 pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta); 3295 speed = lnksta & PCI_EXP_LNKSTA_CLS; 3296 3297 if (speed < 0x4) { 3298 ioc->high_iops_queues = 0; 3299 return; 3300 } 3301 } 3302 3303 if (!reset_devices && ioc->is_aero_ioc && 3304 hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES && 3305 num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES && 3306 max_msix_vectors == -1) 3307 ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES; 3308 else 3309 ioc->high_iops_queues = 0; 3310 } 3311 3312 /** 3313 * mpt3sas_base_disable_msix - disables msix 3314 * @ioc: per adapter object 3315 * 3316 */ 3317 void 3318 mpt3sas_base_disable_msix(struct MPT3SAS_ADAPTER *ioc) 3319 { 3320 if (!ioc->msix_enable) 3321 return; 3322 pci_free_irq_vectors(ioc->pdev); 3323 ioc->msix_enable = 0; 3324 kfree(ioc->io_uring_poll_queues); 3325 } 3326 3327 /** 3328 * _base_alloc_irq_vectors - allocate msix vectors 3329 * @ioc: per adapter object 3330 * 3331 */ 3332 static int 3333 _base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc) 3334 { 3335 int i, irq_flags = PCI_IRQ_MSIX; 3336 struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues }; 3337 struct irq_affinity *descp = &desc; 3338 /* 3339 * Don't allocate msix vectors for poll_queues. 3340 * msix_vectors is always within a range of FW supported reply queue. 3341 */ 3342 int nr_msix_vectors = ioc->iopoll_q_start_index; 3343 3344 3345 if (ioc->smp_affinity_enable) 3346 irq_flags |= PCI_IRQ_AFFINITY | PCI_IRQ_ALL_TYPES; 3347 else 3348 descp = NULL; 3349 3350 ioc_info(ioc, " %d %d %d\n", ioc->high_iops_queues, 3351 ioc->reply_queue_count, nr_msix_vectors); 3352 3353 i = pci_alloc_irq_vectors_affinity(ioc->pdev, 3354 ioc->high_iops_queues, 3355 nr_msix_vectors, irq_flags, descp); 3356 3357 return i; 3358 } 3359 3360 /** 3361 * _base_enable_msix - enables msix, failback to io_apic 3362 * @ioc: per adapter object 3363 * 3364 */ 3365 static int 3366 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc) 3367 { 3368 int r; 3369 int i, local_max_msix_vectors; 3370 u8 try_msix = 0; 3371 int iopoll_q_count = 0; 3372 3373 ioc->msix_load_balance = false; 3374 3375 if (msix_disable == -1 || msix_disable == 0) 3376 try_msix = 1; 3377 3378 if (!try_msix) 3379 goto try_ioapic; 3380 3381 if (_base_check_enable_msix(ioc) != 0) 3382 goto try_ioapic; 3383 3384 ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count); 3385 pr_info("\t no of cores: %d, max_msix_vectors: %d\n", 3386 ioc->cpu_count, max_msix_vectors); 3387 3388 ioc->reply_queue_count = 3389 min_t(int, ioc->cpu_count, ioc->msix_vector_count); 3390 3391 if (!ioc->rdpq_array_enable && max_msix_vectors == -1) 3392 local_max_msix_vectors = (reset_devices) ? 1 : 8; 3393 else 3394 local_max_msix_vectors = max_msix_vectors; 3395 3396 if (local_max_msix_vectors == 0) 3397 goto try_ioapic; 3398 3399 /* 3400 * Enable msix_load_balance only if combined reply queue mode is 3401 * disabled on SAS3 & above generation HBA devices. 3402 */ 3403 if (!ioc->combined_reply_queue && 3404 ioc->hba_mpi_version_belonged != MPI2_VERSION) { 3405 ioc_info(ioc, 3406 "combined ReplyQueue is off, Enabling msix load balance\n"); 3407 ioc->msix_load_balance = true; 3408 } 3409 3410 /* 3411 * smp affinity setting is not need when msix load balance 3412 * is enabled. 3413 */ 3414 if (ioc->msix_load_balance) 3415 ioc->smp_affinity_enable = 0; 3416 3417 if (!ioc->smp_affinity_enable || ioc->reply_queue_count <= 1) 3418 ioc->shost->host_tagset = 0; 3419 3420 /* 3421 * Enable io uring poll queues only if host_tagset is enabled. 3422 */ 3423 if (ioc->shost->host_tagset) 3424 iopoll_q_count = poll_queues; 3425 3426 if (iopoll_q_count) { 3427 ioc->io_uring_poll_queues = kcalloc(iopoll_q_count, 3428 sizeof(struct io_uring_poll_queue), GFP_KERNEL); 3429 if (!ioc->io_uring_poll_queues) 3430 iopoll_q_count = 0; 3431 } 3432 3433 if (ioc->is_aero_ioc) 3434 _base_check_and_enable_high_iops_queues(ioc, 3435 ioc->msix_vector_count); 3436 3437 /* 3438 * Add high iops queues count to reply queue count if high iops queues 3439 * are enabled. 3440 */ 3441 ioc->reply_queue_count = min_t(int, 3442 ioc->reply_queue_count + ioc->high_iops_queues, 3443 ioc->msix_vector_count); 3444 3445 /* 3446 * Adjust the reply queue count incase reply queue count 3447 * exceeds the user provided MSIx vectors count. 3448 */ 3449 if (local_max_msix_vectors > 0) 3450 ioc->reply_queue_count = min_t(int, local_max_msix_vectors, 3451 ioc->reply_queue_count); 3452 /* 3453 * Add io uring poll queues count to reply queues count 3454 * if io uring is enabled in driver. 3455 */ 3456 if (iopoll_q_count) { 3457 if (ioc->reply_queue_count < (iopoll_q_count + MPT3_MIN_IRQS)) 3458 iopoll_q_count = 0; 3459 ioc->reply_queue_count = min_t(int, 3460 ioc->reply_queue_count + iopoll_q_count, 3461 ioc->msix_vector_count); 3462 } 3463 3464 /* 3465 * Starting index of io uring poll queues in reply queue list. 3466 */ 3467 ioc->iopoll_q_start_index = 3468 ioc->reply_queue_count - iopoll_q_count; 3469 3470 r = _base_alloc_irq_vectors(ioc); 3471 if (r < 0) { 3472 ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", r); 3473 goto try_ioapic; 3474 } 3475 3476 /* 3477 * Adjust the reply queue count if the allocated 3478 * MSIx vectors is less then the requested number 3479 * of MSIx vectors. 3480 */ 3481 if (r < ioc->iopoll_q_start_index) { 3482 ioc->reply_queue_count = r + iopoll_q_count; 3483 ioc->iopoll_q_start_index = 3484 ioc->reply_queue_count - iopoll_q_count; 3485 } 3486 3487 ioc->msix_enable = 1; 3488 for (i = 0; i < ioc->reply_queue_count; i++) { 3489 r = _base_request_irq(ioc, i); 3490 if (r) { 3491 mpt3sas_base_free_irq(ioc); 3492 mpt3sas_base_disable_msix(ioc); 3493 goto try_ioapic; 3494 } 3495 } 3496 3497 ioc_info(ioc, "High IOPs queues : %s\n", 3498 ioc->high_iops_queues ? "enabled" : "disabled"); 3499 3500 return 0; 3501 3502 /* failback to io_apic interrupt routing */ 3503 try_ioapic: 3504 ioc->high_iops_queues = 0; 3505 ioc_info(ioc, "High IOPs queues : disabled\n"); 3506 ioc->reply_queue_count = 1; 3507 ioc->iopoll_q_start_index = ioc->reply_queue_count - 0; 3508 r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY); 3509 if (r < 0) { 3510 dfailprintk(ioc, 3511 ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n", 3512 r)); 3513 } else 3514 r = _base_request_irq(ioc, 0); 3515 3516 return r; 3517 } 3518 3519 /** 3520 * mpt3sas_base_unmap_resources - free controller resources 3521 * @ioc: per adapter object 3522 */ 3523 static void 3524 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc) 3525 { 3526 struct pci_dev *pdev = ioc->pdev; 3527 3528 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 3529 3530 mpt3sas_base_free_irq(ioc); 3531 mpt3sas_base_disable_msix(ioc); 3532 3533 kfree(ioc->replyPostRegisterIndex); 3534 ioc->replyPostRegisterIndex = NULL; 3535 3536 3537 if (ioc->chip_phys) { 3538 iounmap(ioc->chip); 3539 ioc->chip_phys = 0; 3540 } 3541 3542 if (pci_is_enabled(pdev)) { 3543 pci_release_selected_regions(ioc->pdev, ioc->bars); 3544 pci_disable_pcie_error_reporting(pdev); 3545 pci_disable_device(pdev); 3546 } 3547 } 3548 3549 static int 3550 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc); 3551 3552 /** 3553 * mpt3sas_base_check_for_fault_and_issue_reset - check if IOC is in fault state 3554 * and if it is in fault state then issue diag reset. 3555 * @ioc: per adapter object 3556 * 3557 * Return: 0 for success, non-zero for failure. 3558 */ 3559 int 3560 mpt3sas_base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc) 3561 { 3562 u32 ioc_state; 3563 int rc = -EFAULT; 3564 3565 dinitprintk(ioc, pr_info("%s\n", __func__)); 3566 if (ioc->pci_error_recovery) 3567 return 0; 3568 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 3569 dhsprintk(ioc, pr_info("%s: ioc_state(0x%08x)\n", __func__, ioc_state)); 3570 3571 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 3572 mpt3sas_print_fault_code(ioc, ioc_state & 3573 MPI2_DOORBELL_DATA_MASK); 3574 mpt3sas_base_mask_interrupts(ioc); 3575 rc = _base_diag_reset(ioc); 3576 } else if ((ioc_state & MPI2_IOC_STATE_MASK) == 3577 MPI2_IOC_STATE_COREDUMP) { 3578 mpt3sas_print_coredump_info(ioc, ioc_state & 3579 MPI2_DOORBELL_DATA_MASK); 3580 mpt3sas_base_wait_for_coredump_completion(ioc, __func__); 3581 mpt3sas_base_mask_interrupts(ioc); 3582 rc = _base_diag_reset(ioc); 3583 } 3584 3585 return rc; 3586 } 3587 3588 /** 3589 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap) 3590 * @ioc: per adapter object 3591 * 3592 * Return: 0 for success, non-zero for failure. 3593 */ 3594 int 3595 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc) 3596 { 3597 struct pci_dev *pdev = ioc->pdev; 3598 u32 memap_sz; 3599 u32 pio_sz; 3600 int i, r = 0, rc; 3601 u64 pio_chip = 0; 3602 phys_addr_t chip_phys = 0; 3603 struct adapter_reply_queue *reply_q; 3604 int iopoll_q_count = 0; 3605 3606 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 3607 3608 ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM); 3609 if (pci_enable_device_mem(pdev)) { 3610 ioc_warn(ioc, "pci_enable_device_mem: failed\n"); 3611 ioc->bars = 0; 3612 return -ENODEV; 3613 } 3614 3615 3616 if (pci_request_selected_regions(pdev, ioc->bars, 3617 ioc->driver_name)) { 3618 ioc_warn(ioc, "pci_request_selected_regions: failed\n"); 3619 ioc->bars = 0; 3620 r = -ENODEV; 3621 goto out_fail; 3622 } 3623 3624 /* AER (Advanced Error Reporting) hooks */ 3625 pci_enable_pcie_error_reporting(pdev); 3626 3627 pci_set_master(pdev); 3628 3629 3630 if (_base_config_dma_addressing(ioc, pdev) != 0) { 3631 ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev)); 3632 r = -ENODEV; 3633 goto out_fail; 3634 } 3635 3636 for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) && 3637 (!memap_sz || !pio_sz); i++) { 3638 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { 3639 if (pio_sz) 3640 continue; 3641 pio_chip = (u64)pci_resource_start(pdev, i); 3642 pio_sz = pci_resource_len(pdev, i); 3643 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) { 3644 if (memap_sz) 3645 continue; 3646 ioc->chip_phys = pci_resource_start(pdev, i); 3647 chip_phys = ioc->chip_phys; 3648 memap_sz = pci_resource_len(pdev, i); 3649 ioc->chip = ioremap(ioc->chip_phys, memap_sz); 3650 } 3651 } 3652 3653 if (ioc->chip == NULL) { 3654 ioc_err(ioc, 3655 "unable to map adapter memory! or resource not found\n"); 3656 r = -EINVAL; 3657 goto out_fail; 3658 } 3659 3660 mpt3sas_base_mask_interrupts(ioc); 3661 3662 r = _base_get_ioc_facts(ioc); 3663 if (r) { 3664 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc); 3665 if (rc || (_base_get_ioc_facts(ioc))) 3666 goto out_fail; 3667 } 3668 3669 if (!ioc->rdpq_array_enable_assigned) { 3670 ioc->rdpq_array_enable = ioc->rdpq_array_capable; 3671 ioc->rdpq_array_enable_assigned = 1; 3672 } 3673 3674 r = _base_enable_msix(ioc); 3675 if (r) 3676 goto out_fail; 3677 3678 iopoll_q_count = ioc->reply_queue_count - ioc->iopoll_q_start_index; 3679 for (i = 0; i < iopoll_q_count; i++) { 3680 atomic_set(&ioc->io_uring_poll_queues[i].busy, 0); 3681 atomic_set(&ioc->io_uring_poll_queues[i].pause, 0); 3682 } 3683 3684 if (!ioc->is_driver_loading) 3685 _base_init_irqpolls(ioc); 3686 /* Use the Combined reply queue feature only for SAS3 C0 & higher 3687 * revision HBAs and also only when reply queue count is greater than 8 3688 */ 3689 if (ioc->combined_reply_queue) { 3690 /* Determine the Supplemental Reply Post Host Index Registers 3691 * Addresse. Supplemental Reply Post Host Index Registers 3692 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and 3693 * each register is at offset bytes of 3694 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one. 3695 */ 3696 ioc->replyPostRegisterIndex = kcalloc( 3697 ioc->combined_reply_index_count, 3698 sizeof(resource_size_t *), GFP_KERNEL); 3699 if (!ioc->replyPostRegisterIndex) { 3700 ioc_err(ioc, 3701 "allocation for replyPostRegisterIndex failed!\n"); 3702 r = -ENOMEM; 3703 goto out_fail; 3704 } 3705 3706 for (i = 0; i < ioc->combined_reply_index_count; i++) { 3707 ioc->replyPostRegisterIndex[i] = (resource_size_t *) 3708 ((u8 __force *)&ioc->chip->Doorbell + 3709 MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET + 3710 (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET)); 3711 } 3712 } 3713 3714 if (ioc->is_warpdrive) { 3715 ioc->reply_post_host_index[0] = (resource_size_t __iomem *) 3716 &ioc->chip->ReplyPostHostIndex; 3717 3718 for (i = 1; i < ioc->cpu_msix_table_sz; i++) 3719 ioc->reply_post_host_index[i] = 3720 (resource_size_t __iomem *) 3721 ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1) 3722 * 4))); 3723 } 3724 3725 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 3726 if (reply_q->msix_index >= ioc->iopoll_q_start_index) { 3727 pr_info("%s: enabled: index: %d\n", 3728 reply_q->name, reply_q->msix_index); 3729 continue; 3730 } 3731 3732 pr_info("%s: %s enabled: IRQ %d\n", 3733 reply_q->name, 3734 ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC", 3735 pci_irq_vector(ioc->pdev, reply_q->msix_index)); 3736 } 3737 3738 ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n", 3739 &chip_phys, ioc->chip, memap_sz); 3740 ioc_info(ioc, "ioport(0x%016llx), size(%d)\n", 3741 (unsigned long long)pio_chip, pio_sz); 3742 3743 /* Save PCI configuration state for recovery from PCI AER/EEH errors */ 3744 pci_save_state(pdev); 3745 return 0; 3746 3747 out_fail: 3748 mpt3sas_base_unmap_resources(ioc); 3749 return r; 3750 } 3751 3752 /** 3753 * mpt3sas_base_get_msg_frame - obtain request mf pointer 3754 * @ioc: per adapter object 3755 * @smid: system request message index(smid zero is invalid) 3756 * 3757 * Return: virt pointer to message frame. 3758 */ 3759 void * 3760 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3761 { 3762 return (void *)(ioc->request + (smid * ioc->request_sz)); 3763 } 3764 3765 /** 3766 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr 3767 * @ioc: per adapter object 3768 * @smid: system request message index 3769 * 3770 * Return: virt pointer to sense buffer. 3771 */ 3772 void * 3773 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3774 { 3775 return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE)); 3776 } 3777 3778 /** 3779 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr 3780 * @ioc: per adapter object 3781 * @smid: system request message index 3782 * 3783 * Return: phys pointer to the low 32bit address of the sense buffer. 3784 */ 3785 __le32 3786 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3787 { 3788 return cpu_to_le32(ioc->sense_dma + ((smid - 1) * 3789 SCSI_SENSE_BUFFERSIZE)); 3790 } 3791 3792 /** 3793 * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr 3794 * @ioc: per adapter object 3795 * @smid: system request message index 3796 * 3797 * Return: virt pointer to a PCIe SGL. 3798 */ 3799 void * 3800 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3801 { 3802 return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl); 3803 } 3804 3805 /** 3806 * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr 3807 * @ioc: per adapter object 3808 * @smid: system request message index 3809 * 3810 * Return: phys pointer to the address of the PCIe buffer. 3811 */ 3812 dma_addr_t 3813 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3814 { 3815 return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma; 3816 } 3817 3818 /** 3819 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address 3820 * @ioc: per adapter object 3821 * @phys_addr: lower 32 physical addr of the reply 3822 * 3823 * Converts 32bit lower physical addr into a virt address. 3824 */ 3825 void * 3826 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr) 3827 { 3828 if (!phys_addr) 3829 return NULL; 3830 return ioc->reply + (phys_addr - (u32)ioc->reply_dma); 3831 } 3832 3833 /** 3834 * _base_get_msix_index - get the msix index 3835 * @ioc: per adapter object 3836 * @scmd: scsi_cmnd object 3837 * 3838 * Return: msix index of general reply queues, 3839 * i.e. reply queue on which IO request's reply 3840 * should be posted by the HBA firmware. 3841 */ 3842 static inline u8 3843 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc, 3844 struct scsi_cmnd *scmd) 3845 { 3846 /* Enables reply_queue load balancing */ 3847 if (ioc->msix_load_balance) 3848 return ioc->reply_queue_count ? 3849 base_mod64(atomic64_add_return(1, 3850 &ioc->total_io_cnt), ioc->reply_queue_count) : 0; 3851 3852 if (scmd && ioc->shost->nr_hw_queues > 1) { 3853 u32 tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd)); 3854 3855 return blk_mq_unique_tag_to_hwq(tag) + 3856 ioc->high_iops_queues; 3857 } 3858 3859 return ioc->cpu_msix_table[raw_smp_processor_id()]; 3860 } 3861 3862 /** 3863 * _base_get_high_iops_msix_index - get the msix index of 3864 * high iops queues 3865 * @ioc: per adapter object 3866 * @scmd: scsi_cmnd object 3867 * 3868 * Return: msix index of high iops reply queues. 3869 * i.e. high iops reply queue on which IO request's 3870 * reply should be posted by the HBA firmware. 3871 */ 3872 static inline u8 3873 _base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc, 3874 struct scsi_cmnd *scmd) 3875 { 3876 /** 3877 * Round robin the IO interrupts among the high iops 3878 * reply queues in terms of batch count 16 when outstanding 3879 * IOs on the target device is >=8. 3880 */ 3881 3882 if (scsi_device_busy(scmd->device) > MPT3SAS_DEVICE_HIGH_IOPS_DEPTH) 3883 return base_mod64(( 3884 atomic64_add_return(1, &ioc->high_iops_outstanding) / 3885 MPT3SAS_HIGH_IOPS_BATCH_COUNT), 3886 MPT3SAS_HIGH_IOPS_REPLY_QUEUES); 3887 3888 return _base_get_msix_index(ioc, scmd); 3889 } 3890 3891 /** 3892 * mpt3sas_base_get_smid - obtain a free smid from internal queue 3893 * @ioc: per adapter object 3894 * @cb_idx: callback index 3895 * 3896 * Return: smid (zero is invalid) 3897 */ 3898 u16 3899 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx) 3900 { 3901 unsigned long flags; 3902 struct request_tracker *request; 3903 u16 smid; 3904 3905 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3906 if (list_empty(&ioc->internal_free_list)) { 3907 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3908 ioc_err(ioc, "%s: smid not available\n", __func__); 3909 return 0; 3910 } 3911 3912 request = list_entry(ioc->internal_free_list.next, 3913 struct request_tracker, tracker_list); 3914 request->cb_idx = cb_idx; 3915 smid = request->smid; 3916 list_del(&request->tracker_list); 3917 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3918 return smid; 3919 } 3920 3921 /** 3922 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue 3923 * @ioc: per adapter object 3924 * @cb_idx: callback index 3925 * @scmd: pointer to scsi command object 3926 * 3927 * Return: smid (zero is invalid) 3928 */ 3929 u16 3930 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx, 3931 struct scsi_cmnd *scmd) 3932 { 3933 struct scsiio_tracker *request = scsi_cmd_priv(scmd); 3934 u16 smid; 3935 u32 tag, unique_tag; 3936 3937 unique_tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd)); 3938 tag = blk_mq_unique_tag_to_tag(unique_tag); 3939 3940 /* 3941 * Store hw queue number corresponding to the tag. 3942 * This hw queue number is used later to determine 3943 * the unique_tag using the logic below. This unique_tag 3944 * is used to retrieve the scmd pointer corresponding 3945 * to tag using scsi_host_find_tag() API. 3946 * 3947 * tag = smid - 1; 3948 * unique_tag = ioc->io_queue_num[tag] << BLK_MQ_UNIQUE_TAG_BITS | tag; 3949 */ 3950 ioc->io_queue_num[tag] = blk_mq_unique_tag_to_hwq(unique_tag); 3951 3952 smid = tag + 1; 3953 request->cb_idx = cb_idx; 3954 request->smid = smid; 3955 request->scmd = scmd; 3956 INIT_LIST_HEAD(&request->chain_list); 3957 return smid; 3958 } 3959 3960 /** 3961 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue 3962 * @ioc: per adapter object 3963 * @cb_idx: callback index 3964 * 3965 * Return: smid (zero is invalid) 3966 */ 3967 u16 3968 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx) 3969 { 3970 unsigned long flags; 3971 struct request_tracker *request; 3972 u16 smid; 3973 3974 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3975 if (list_empty(&ioc->hpr_free_list)) { 3976 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3977 return 0; 3978 } 3979 3980 request = list_entry(ioc->hpr_free_list.next, 3981 struct request_tracker, tracker_list); 3982 request->cb_idx = cb_idx; 3983 smid = request->smid; 3984 list_del(&request->tracker_list); 3985 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3986 return smid; 3987 } 3988 3989 static void 3990 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc) 3991 { 3992 /* 3993 * See _wait_for_commands_to_complete() call with regards to this code. 3994 */ 3995 if (ioc->shost_recovery && ioc->pending_io_count) { 3996 ioc->pending_io_count = scsi_host_busy(ioc->shost); 3997 if (ioc->pending_io_count == 0) 3998 wake_up(&ioc->reset_wq); 3999 } 4000 } 4001 4002 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc, 4003 struct scsiio_tracker *st) 4004 { 4005 if (WARN_ON(st->smid == 0)) 4006 return; 4007 st->cb_idx = 0xFF; 4008 st->direct_io = 0; 4009 st->scmd = NULL; 4010 atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0); 4011 st->smid = 0; 4012 } 4013 4014 /** 4015 * mpt3sas_base_free_smid - put smid back on free_list 4016 * @ioc: per adapter object 4017 * @smid: system request message index 4018 */ 4019 void 4020 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid) 4021 { 4022 unsigned long flags; 4023 int i; 4024 4025 if (smid < ioc->hi_priority_smid) { 4026 struct scsiio_tracker *st; 4027 void *request; 4028 4029 st = _get_st_from_smid(ioc, smid); 4030 if (!st) { 4031 _base_recovery_check(ioc); 4032 return; 4033 } 4034 4035 /* Clear MPI request frame */ 4036 request = mpt3sas_base_get_msg_frame(ioc, smid); 4037 memset(request, 0, ioc->request_sz); 4038 4039 mpt3sas_base_clear_st(ioc, st); 4040 _base_recovery_check(ioc); 4041 ioc->io_queue_num[smid - 1] = 0; 4042 return; 4043 } 4044 4045 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 4046 if (smid < ioc->internal_smid) { 4047 /* hi-priority */ 4048 i = smid - ioc->hi_priority_smid; 4049 ioc->hpr_lookup[i].cb_idx = 0xFF; 4050 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list); 4051 } else if (smid <= ioc->hba_queue_depth) { 4052 /* internal queue */ 4053 i = smid - ioc->internal_smid; 4054 ioc->internal_lookup[i].cb_idx = 0xFF; 4055 list_add(&ioc->internal_lookup[i].tracker_list, 4056 &ioc->internal_free_list); 4057 } 4058 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 4059 } 4060 4061 /** 4062 * _base_mpi_ep_writeq - 32 bit write to MMIO 4063 * @b: data payload 4064 * @addr: address in MMIO space 4065 * @writeq_lock: spin lock 4066 * 4067 * This special handling for MPI EP to take care of 32 bit 4068 * environment where its not quarenteed to send the entire word 4069 * in one transfer. 4070 */ 4071 static inline void 4072 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr, 4073 spinlock_t *writeq_lock) 4074 { 4075 unsigned long flags; 4076 4077 spin_lock_irqsave(writeq_lock, flags); 4078 __raw_writel((u32)(b), addr); 4079 __raw_writel((u32)(b >> 32), (addr + 4)); 4080 spin_unlock_irqrestore(writeq_lock, flags); 4081 } 4082 4083 /** 4084 * _base_writeq - 64 bit write to MMIO 4085 * @b: data payload 4086 * @addr: address in MMIO space 4087 * @writeq_lock: spin lock 4088 * 4089 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes 4090 * care of 32 bit environment where its not quarenteed to send the entire word 4091 * in one transfer. 4092 */ 4093 #if defined(writeq) && defined(CONFIG_64BIT) 4094 static inline void 4095 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock) 4096 { 4097 wmb(); 4098 __raw_writeq(b, addr); 4099 barrier(); 4100 } 4101 #else 4102 static inline void 4103 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock) 4104 { 4105 _base_mpi_ep_writeq(b, addr, writeq_lock); 4106 } 4107 #endif 4108 4109 /** 4110 * _base_set_and_get_msix_index - get the msix index and assign to msix_io 4111 * variable of scsi tracker 4112 * @ioc: per adapter object 4113 * @smid: system request message index 4114 * 4115 * Return: msix index. 4116 */ 4117 static u8 4118 _base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid) 4119 { 4120 struct scsiio_tracker *st = NULL; 4121 4122 if (smid < ioc->hi_priority_smid) 4123 st = _get_st_from_smid(ioc, smid); 4124 4125 if (st == NULL) 4126 return _base_get_msix_index(ioc, NULL); 4127 4128 st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd); 4129 return st->msix_io; 4130 } 4131 4132 /** 4133 * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware 4134 * @ioc: per adapter object 4135 * @smid: system request message index 4136 * @handle: device handle 4137 */ 4138 static void 4139 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc, 4140 u16 smid, u16 handle) 4141 { 4142 Mpi2RequestDescriptorUnion_t descriptor; 4143 u64 *request = (u64 *)&descriptor; 4144 void *mpi_req_iomem; 4145 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 4146 4147 _clone_sg_entries(ioc, (void *) mfp, smid); 4148 mpi_req_iomem = (void __force *)ioc->chip + 4149 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz); 4150 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 4151 ioc->request_sz); 4152 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 4153 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4154 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 4155 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 4156 descriptor.SCSIIO.LMID = 0; 4157 _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 4158 &ioc->scsi_lookup_lock); 4159 } 4160 4161 /** 4162 * _base_put_smid_scsi_io - send SCSI_IO request to firmware 4163 * @ioc: per adapter object 4164 * @smid: system request message index 4165 * @handle: device handle 4166 */ 4167 static void 4168 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle) 4169 { 4170 Mpi2RequestDescriptorUnion_t descriptor; 4171 u64 *request = (u64 *)&descriptor; 4172 4173 4174 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 4175 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4176 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 4177 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 4178 descriptor.SCSIIO.LMID = 0; 4179 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 4180 &ioc->scsi_lookup_lock); 4181 } 4182 4183 /** 4184 * _base_put_smid_fast_path - send fast path request to firmware 4185 * @ioc: per adapter object 4186 * @smid: system request message index 4187 * @handle: device handle 4188 */ 4189 static void 4190 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4191 u16 handle) 4192 { 4193 Mpi2RequestDescriptorUnion_t descriptor; 4194 u64 *request = (u64 *)&descriptor; 4195 4196 descriptor.SCSIIO.RequestFlags = 4197 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 4198 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4199 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 4200 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 4201 descriptor.SCSIIO.LMID = 0; 4202 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 4203 &ioc->scsi_lookup_lock); 4204 } 4205 4206 /** 4207 * _base_put_smid_hi_priority - send Task Management request to firmware 4208 * @ioc: per adapter object 4209 * @smid: system request message index 4210 * @msix_task: msix_task will be same as msix of IO in case of task abort else 0 4211 */ 4212 static void 4213 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4214 u16 msix_task) 4215 { 4216 Mpi2RequestDescriptorUnion_t descriptor; 4217 void *mpi_req_iomem; 4218 u64 *request; 4219 4220 if (ioc->is_mcpu_endpoint) { 4221 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 4222 4223 /* TBD 256 is offset within sys register. */ 4224 mpi_req_iomem = (void __force *)ioc->chip 4225 + MPI_FRAME_START_OFFSET 4226 + (smid * ioc->request_sz); 4227 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 4228 ioc->request_sz); 4229 } 4230 4231 request = (u64 *)&descriptor; 4232 4233 descriptor.HighPriority.RequestFlags = 4234 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 4235 descriptor.HighPriority.MSIxIndex = msix_task; 4236 descriptor.HighPriority.SMID = cpu_to_le16(smid); 4237 descriptor.HighPriority.LMID = 0; 4238 descriptor.HighPriority.Reserved1 = 0; 4239 if (ioc->is_mcpu_endpoint) 4240 _base_mpi_ep_writeq(*request, 4241 &ioc->chip->RequestDescriptorPostLow, 4242 &ioc->scsi_lookup_lock); 4243 else 4244 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 4245 &ioc->scsi_lookup_lock); 4246 } 4247 4248 /** 4249 * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to 4250 * firmware 4251 * @ioc: per adapter object 4252 * @smid: system request message index 4253 */ 4254 void 4255 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid) 4256 { 4257 Mpi2RequestDescriptorUnion_t descriptor; 4258 u64 *request = (u64 *)&descriptor; 4259 4260 descriptor.Default.RequestFlags = 4261 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED; 4262 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4263 descriptor.Default.SMID = cpu_to_le16(smid); 4264 descriptor.Default.LMID = 0; 4265 descriptor.Default.DescriptorTypeDependent = 0; 4266 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 4267 &ioc->scsi_lookup_lock); 4268 } 4269 4270 /** 4271 * _base_put_smid_default - Default, primarily used for config pages 4272 * @ioc: per adapter object 4273 * @smid: system request message index 4274 */ 4275 static void 4276 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid) 4277 { 4278 Mpi2RequestDescriptorUnion_t descriptor; 4279 void *mpi_req_iomem; 4280 u64 *request; 4281 4282 if (ioc->is_mcpu_endpoint) { 4283 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 4284 4285 _clone_sg_entries(ioc, (void *) mfp, smid); 4286 /* TBD 256 is offset within sys register */ 4287 mpi_req_iomem = (void __force *)ioc->chip + 4288 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz); 4289 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 4290 ioc->request_sz); 4291 } 4292 request = (u64 *)&descriptor; 4293 descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 4294 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4295 descriptor.Default.SMID = cpu_to_le16(smid); 4296 descriptor.Default.LMID = 0; 4297 descriptor.Default.DescriptorTypeDependent = 0; 4298 if (ioc->is_mcpu_endpoint) 4299 _base_mpi_ep_writeq(*request, 4300 &ioc->chip->RequestDescriptorPostLow, 4301 &ioc->scsi_lookup_lock); 4302 else 4303 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 4304 &ioc->scsi_lookup_lock); 4305 } 4306 4307 /** 4308 * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using 4309 * Atomic Request Descriptor 4310 * @ioc: per adapter object 4311 * @smid: system request message index 4312 * @handle: device handle, unused in this function, for function type match 4313 * 4314 * Return: nothing. 4315 */ 4316 static void 4317 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4318 u16 handle) 4319 { 4320 Mpi26AtomicRequestDescriptor_t descriptor; 4321 u32 *request = (u32 *)&descriptor; 4322 4323 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 4324 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4325 descriptor.SMID = cpu_to_le16(smid); 4326 4327 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4328 } 4329 4330 /** 4331 * _base_put_smid_fast_path_atomic - send fast path request to firmware 4332 * using Atomic Request Descriptor 4333 * @ioc: per adapter object 4334 * @smid: system request message index 4335 * @handle: device handle, unused in this function, for function type match 4336 * Return: nothing 4337 */ 4338 static void 4339 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4340 u16 handle) 4341 { 4342 Mpi26AtomicRequestDescriptor_t descriptor; 4343 u32 *request = (u32 *)&descriptor; 4344 4345 descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 4346 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4347 descriptor.SMID = cpu_to_le16(smid); 4348 4349 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4350 } 4351 4352 /** 4353 * _base_put_smid_hi_priority_atomic - send Task Management request to 4354 * firmware using Atomic Request Descriptor 4355 * @ioc: per adapter object 4356 * @smid: system request message index 4357 * @msix_task: msix_task will be same as msix of IO in case of task abort else 0 4358 * 4359 * Return: nothing. 4360 */ 4361 static void 4362 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4363 u16 msix_task) 4364 { 4365 Mpi26AtomicRequestDescriptor_t descriptor; 4366 u32 *request = (u32 *)&descriptor; 4367 4368 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 4369 descriptor.MSIxIndex = msix_task; 4370 descriptor.SMID = cpu_to_le16(smid); 4371 4372 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4373 } 4374 4375 /** 4376 * _base_put_smid_default_atomic - Default, primarily used for config pages 4377 * use Atomic Request Descriptor 4378 * @ioc: per adapter object 4379 * @smid: system request message index 4380 * 4381 * Return: nothing. 4382 */ 4383 static void 4384 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid) 4385 { 4386 Mpi26AtomicRequestDescriptor_t descriptor; 4387 u32 *request = (u32 *)&descriptor; 4388 4389 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 4390 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4391 descriptor.SMID = cpu_to_le16(smid); 4392 4393 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4394 } 4395 4396 /** 4397 * _base_display_OEMs_branding - Display branding string 4398 * @ioc: per adapter object 4399 */ 4400 static void 4401 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc) 4402 { 4403 if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL) 4404 return; 4405 4406 switch (ioc->pdev->subsystem_vendor) { 4407 case PCI_VENDOR_ID_INTEL: 4408 switch (ioc->pdev->device) { 4409 case MPI2_MFGPAGE_DEVID_SAS2008: 4410 switch (ioc->pdev->subsystem_device) { 4411 case MPT2SAS_INTEL_RMS2LL080_SSDID: 4412 ioc_info(ioc, "%s\n", 4413 MPT2SAS_INTEL_RMS2LL080_BRANDING); 4414 break; 4415 case MPT2SAS_INTEL_RMS2LL040_SSDID: 4416 ioc_info(ioc, "%s\n", 4417 MPT2SAS_INTEL_RMS2LL040_BRANDING); 4418 break; 4419 case MPT2SAS_INTEL_SSD910_SSDID: 4420 ioc_info(ioc, "%s\n", 4421 MPT2SAS_INTEL_SSD910_BRANDING); 4422 break; 4423 default: 4424 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4425 ioc->pdev->subsystem_device); 4426 break; 4427 } 4428 break; 4429 case MPI2_MFGPAGE_DEVID_SAS2308_2: 4430 switch (ioc->pdev->subsystem_device) { 4431 case MPT2SAS_INTEL_RS25GB008_SSDID: 4432 ioc_info(ioc, "%s\n", 4433 MPT2SAS_INTEL_RS25GB008_BRANDING); 4434 break; 4435 case MPT2SAS_INTEL_RMS25JB080_SSDID: 4436 ioc_info(ioc, "%s\n", 4437 MPT2SAS_INTEL_RMS25JB080_BRANDING); 4438 break; 4439 case MPT2SAS_INTEL_RMS25JB040_SSDID: 4440 ioc_info(ioc, "%s\n", 4441 MPT2SAS_INTEL_RMS25JB040_BRANDING); 4442 break; 4443 case MPT2SAS_INTEL_RMS25KB080_SSDID: 4444 ioc_info(ioc, "%s\n", 4445 MPT2SAS_INTEL_RMS25KB080_BRANDING); 4446 break; 4447 case MPT2SAS_INTEL_RMS25KB040_SSDID: 4448 ioc_info(ioc, "%s\n", 4449 MPT2SAS_INTEL_RMS25KB040_BRANDING); 4450 break; 4451 case MPT2SAS_INTEL_RMS25LB040_SSDID: 4452 ioc_info(ioc, "%s\n", 4453 MPT2SAS_INTEL_RMS25LB040_BRANDING); 4454 break; 4455 case MPT2SAS_INTEL_RMS25LB080_SSDID: 4456 ioc_info(ioc, "%s\n", 4457 MPT2SAS_INTEL_RMS25LB080_BRANDING); 4458 break; 4459 default: 4460 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4461 ioc->pdev->subsystem_device); 4462 break; 4463 } 4464 break; 4465 case MPI25_MFGPAGE_DEVID_SAS3008: 4466 switch (ioc->pdev->subsystem_device) { 4467 case MPT3SAS_INTEL_RMS3JC080_SSDID: 4468 ioc_info(ioc, "%s\n", 4469 MPT3SAS_INTEL_RMS3JC080_BRANDING); 4470 break; 4471 4472 case MPT3SAS_INTEL_RS3GC008_SSDID: 4473 ioc_info(ioc, "%s\n", 4474 MPT3SAS_INTEL_RS3GC008_BRANDING); 4475 break; 4476 case MPT3SAS_INTEL_RS3FC044_SSDID: 4477 ioc_info(ioc, "%s\n", 4478 MPT3SAS_INTEL_RS3FC044_BRANDING); 4479 break; 4480 case MPT3SAS_INTEL_RS3UC080_SSDID: 4481 ioc_info(ioc, "%s\n", 4482 MPT3SAS_INTEL_RS3UC080_BRANDING); 4483 break; 4484 default: 4485 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4486 ioc->pdev->subsystem_device); 4487 break; 4488 } 4489 break; 4490 default: 4491 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4492 ioc->pdev->subsystem_device); 4493 break; 4494 } 4495 break; 4496 case PCI_VENDOR_ID_DELL: 4497 switch (ioc->pdev->device) { 4498 case MPI2_MFGPAGE_DEVID_SAS2008: 4499 switch (ioc->pdev->subsystem_device) { 4500 case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID: 4501 ioc_info(ioc, "%s\n", 4502 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING); 4503 break; 4504 case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID: 4505 ioc_info(ioc, "%s\n", 4506 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING); 4507 break; 4508 case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID: 4509 ioc_info(ioc, "%s\n", 4510 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING); 4511 break; 4512 case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID: 4513 ioc_info(ioc, "%s\n", 4514 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING); 4515 break; 4516 case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID: 4517 ioc_info(ioc, "%s\n", 4518 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING); 4519 break; 4520 case MPT2SAS_DELL_PERC_H200_SSDID: 4521 ioc_info(ioc, "%s\n", 4522 MPT2SAS_DELL_PERC_H200_BRANDING); 4523 break; 4524 case MPT2SAS_DELL_6GBPS_SAS_SSDID: 4525 ioc_info(ioc, "%s\n", 4526 MPT2SAS_DELL_6GBPS_SAS_BRANDING); 4527 break; 4528 default: 4529 ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n", 4530 ioc->pdev->subsystem_device); 4531 break; 4532 } 4533 break; 4534 case MPI25_MFGPAGE_DEVID_SAS3008: 4535 switch (ioc->pdev->subsystem_device) { 4536 case MPT3SAS_DELL_12G_HBA_SSDID: 4537 ioc_info(ioc, "%s\n", 4538 MPT3SAS_DELL_12G_HBA_BRANDING); 4539 break; 4540 default: 4541 ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n", 4542 ioc->pdev->subsystem_device); 4543 break; 4544 } 4545 break; 4546 default: 4547 ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n", 4548 ioc->pdev->subsystem_device); 4549 break; 4550 } 4551 break; 4552 case PCI_VENDOR_ID_CISCO: 4553 switch (ioc->pdev->device) { 4554 case MPI25_MFGPAGE_DEVID_SAS3008: 4555 switch (ioc->pdev->subsystem_device) { 4556 case MPT3SAS_CISCO_12G_8E_HBA_SSDID: 4557 ioc_info(ioc, "%s\n", 4558 MPT3SAS_CISCO_12G_8E_HBA_BRANDING); 4559 break; 4560 case MPT3SAS_CISCO_12G_8I_HBA_SSDID: 4561 ioc_info(ioc, "%s\n", 4562 MPT3SAS_CISCO_12G_8I_HBA_BRANDING); 4563 break; 4564 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID: 4565 ioc_info(ioc, "%s\n", 4566 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING); 4567 break; 4568 default: 4569 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n", 4570 ioc->pdev->subsystem_device); 4571 break; 4572 } 4573 break; 4574 case MPI25_MFGPAGE_DEVID_SAS3108_1: 4575 switch (ioc->pdev->subsystem_device) { 4576 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID: 4577 ioc_info(ioc, "%s\n", 4578 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING); 4579 break; 4580 case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID: 4581 ioc_info(ioc, "%s\n", 4582 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING); 4583 break; 4584 default: 4585 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n", 4586 ioc->pdev->subsystem_device); 4587 break; 4588 } 4589 break; 4590 default: 4591 ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n", 4592 ioc->pdev->subsystem_device); 4593 break; 4594 } 4595 break; 4596 case MPT2SAS_HP_3PAR_SSVID: 4597 switch (ioc->pdev->device) { 4598 case MPI2_MFGPAGE_DEVID_SAS2004: 4599 switch (ioc->pdev->subsystem_device) { 4600 case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID: 4601 ioc_info(ioc, "%s\n", 4602 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING); 4603 break; 4604 default: 4605 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n", 4606 ioc->pdev->subsystem_device); 4607 break; 4608 } 4609 break; 4610 case MPI2_MFGPAGE_DEVID_SAS2308_2: 4611 switch (ioc->pdev->subsystem_device) { 4612 case MPT2SAS_HP_2_4_INTERNAL_SSDID: 4613 ioc_info(ioc, "%s\n", 4614 MPT2SAS_HP_2_4_INTERNAL_BRANDING); 4615 break; 4616 case MPT2SAS_HP_2_4_EXTERNAL_SSDID: 4617 ioc_info(ioc, "%s\n", 4618 MPT2SAS_HP_2_4_EXTERNAL_BRANDING); 4619 break; 4620 case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID: 4621 ioc_info(ioc, "%s\n", 4622 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING); 4623 break; 4624 case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID: 4625 ioc_info(ioc, "%s\n", 4626 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING); 4627 break; 4628 default: 4629 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n", 4630 ioc->pdev->subsystem_device); 4631 break; 4632 } 4633 break; 4634 default: 4635 ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n", 4636 ioc->pdev->subsystem_device); 4637 break; 4638 } 4639 break; 4640 default: 4641 break; 4642 } 4643 } 4644 4645 /** 4646 * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg 4647 * version from FW Image Header. 4648 * @ioc: per adapter object 4649 * 4650 * Return: 0 for success, non-zero for failure. 4651 */ 4652 static int 4653 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc) 4654 { 4655 Mpi2FWImageHeader_t *fw_img_hdr; 4656 Mpi26ComponentImageHeader_t *cmp_img_hdr; 4657 Mpi25FWUploadRequest_t *mpi_request; 4658 Mpi2FWUploadReply_t mpi_reply; 4659 int r = 0, issue_diag_reset = 0; 4660 u32 package_version = 0; 4661 void *fwpkg_data = NULL; 4662 dma_addr_t fwpkg_data_dma; 4663 u16 smid, ioc_status; 4664 size_t data_length; 4665 4666 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 4667 4668 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 4669 ioc_err(ioc, "%s: internal command already in use\n", __func__); 4670 return -EAGAIN; 4671 } 4672 4673 data_length = sizeof(Mpi2FWImageHeader_t); 4674 fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length, 4675 &fwpkg_data_dma, GFP_KERNEL); 4676 if (!fwpkg_data) { 4677 ioc_err(ioc, 4678 "Memory allocation for fwpkg data failed at %s:%d/%s()!\n", 4679 __FILE__, __LINE__, __func__); 4680 return -ENOMEM; 4681 } 4682 4683 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 4684 if (!smid) { 4685 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 4686 r = -EAGAIN; 4687 goto out; 4688 } 4689 4690 ioc->base_cmds.status = MPT3_CMD_PENDING; 4691 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 4692 ioc->base_cmds.smid = smid; 4693 memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t)); 4694 mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD; 4695 mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH; 4696 mpi_request->ImageSize = cpu_to_le32(data_length); 4697 ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma, 4698 data_length); 4699 init_completion(&ioc->base_cmds.done); 4700 ioc->put_smid_default(ioc, smid); 4701 /* Wait for 15 seconds */ 4702 wait_for_completion_timeout(&ioc->base_cmds.done, 4703 FW_IMG_HDR_READ_TIMEOUT*HZ); 4704 ioc_info(ioc, "%s: complete\n", __func__); 4705 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 4706 ioc_err(ioc, "%s: timeout\n", __func__); 4707 _debug_dump_mf(mpi_request, 4708 sizeof(Mpi25FWUploadRequest_t)/4); 4709 issue_diag_reset = 1; 4710 } else { 4711 memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t)); 4712 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) { 4713 memcpy(&mpi_reply, ioc->base_cmds.reply, 4714 sizeof(Mpi2FWUploadReply_t)); 4715 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 4716 MPI2_IOCSTATUS_MASK; 4717 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 4718 fw_img_hdr = (Mpi2FWImageHeader_t *)fwpkg_data; 4719 if (le32_to_cpu(fw_img_hdr->Signature) == 4720 MPI26_IMAGE_HEADER_SIGNATURE0_MPI26) { 4721 cmp_img_hdr = 4722 (Mpi26ComponentImageHeader_t *) 4723 (fwpkg_data); 4724 package_version = 4725 le32_to_cpu( 4726 cmp_img_hdr->ApplicationSpecific); 4727 } else 4728 package_version = 4729 le32_to_cpu( 4730 fw_img_hdr->PackageVersion.Word); 4731 if (package_version) 4732 ioc_info(ioc, 4733 "FW Package Ver(%02d.%02d.%02d.%02d)\n", 4734 ((package_version) & 0xFF000000) >> 24, 4735 ((package_version) & 0x00FF0000) >> 16, 4736 ((package_version) & 0x0000FF00) >> 8, 4737 (package_version) & 0x000000FF); 4738 } else { 4739 _debug_dump_mf(&mpi_reply, 4740 sizeof(Mpi2FWUploadReply_t)/4); 4741 } 4742 } 4743 } 4744 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 4745 out: 4746 if (fwpkg_data) 4747 dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data, 4748 fwpkg_data_dma); 4749 if (issue_diag_reset) { 4750 if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED) 4751 return -EFAULT; 4752 if (mpt3sas_base_check_for_fault_and_issue_reset(ioc)) 4753 return -EFAULT; 4754 r = -EAGAIN; 4755 } 4756 return r; 4757 } 4758 4759 /** 4760 * _base_display_ioc_capabilities - Display IOC's capabilities. 4761 * @ioc: per adapter object 4762 */ 4763 static void 4764 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc) 4765 { 4766 int i = 0; 4767 char desc[16]; 4768 u32 iounit_pg1_flags; 4769 u32 bios_version; 4770 4771 bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion); 4772 strncpy(desc, ioc->manu_pg0.ChipName, 16); 4773 ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n", 4774 desc, 4775 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24, 4776 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16, 4777 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8, 4778 ioc->facts.FWVersion.Word & 0x000000FF, 4779 ioc->pdev->revision, 4780 (bios_version & 0xFF000000) >> 24, 4781 (bios_version & 0x00FF0000) >> 16, 4782 (bios_version & 0x0000FF00) >> 8, 4783 bios_version & 0x000000FF); 4784 4785 _base_display_OEMs_branding(ioc); 4786 4787 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) { 4788 pr_info("%sNVMe", i ? "," : ""); 4789 i++; 4790 } 4791 4792 ioc_info(ioc, "Protocol=("); 4793 4794 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) { 4795 pr_cont("Initiator"); 4796 i++; 4797 } 4798 4799 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) { 4800 pr_cont("%sTarget", i ? "," : ""); 4801 i++; 4802 } 4803 4804 i = 0; 4805 pr_cont("), Capabilities=("); 4806 4807 if (!ioc->hide_ir_msg) { 4808 if (ioc->facts.IOCCapabilities & 4809 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) { 4810 pr_cont("Raid"); 4811 i++; 4812 } 4813 } 4814 4815 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) { 4816 pr_cont("%sTLR", i ? "," : ""); 4817 i++; 4818 } 4819 4820 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) { 4821 pr_cont("%sMulticast", i ? "," : ""); 4822 i++; 4823 } 4824 4825 if (ioc->facts.IOCCapabilities & 4826 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) { 4827 pr_cont("%sBIDI Target", i ? "," : ""); 4828 i++; 4829 } 4830 4831 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) { 4832 pr_cont("%sEEDP", i ? "," : ""); 4833 i++; 4834 } 4835 4836 if (ioc->facts.IOCCapabilities & 4837 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) { 4838 pr_cont("%sSnapshot Buffer", i ? "," : ""); 4839 i++; 4840 } 4841 4842 if (ioc->facts.IOCCapabilities & 4843 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) { 4844 pr_cont("%sDiag Trace Buffer", i ? "," : ""); 4845 i++; 4846 } 4847 4848 if (ioc->facts.IOCCapabilities & 4849 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) { 4850 pr_cont("%sDiag Extended Buffer", i ? "," : ""); 4851 i++; 4852 } 4853 4854 if (ioc->facts.IOCCapabilities & 4855 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) { 4856 pr_cont("%sTask Set Full", i ? "," : ""); 4857 i++; 4858 } 4859 4860 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags); 4861 if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) { 4862 pr_cont("%sNCQ", i ? "," : ""); 4863 i++; 4864 } 4865 4866 pr_cont(")\n"); 4867 } 4868 4869 /** 4870 * mpt3sas_base_update_missing_delay - change the missing delay timers 4871 * @ioc: per adapter object 4872 * @device_missing_delay: amount of time till device is reported missing 4873 * @io_missing_delay: interval IO is returned when there is a missing device 4874 * 4875 * Passed on the command line, this function will modify the device missing 4876 * delay, as well as the io missing delay. This should be called at driver 4877 * load time. 4878 */ 4879 void 4880 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc, 4881 u16 device_missing_delay, u8 io_missing_delay) 4882 { 4883 u16 dmd, dmd_new, dmd_orignal; 4884 u8 io_missing_delay_original; 4885 u16 sz; 4886 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL; 4887 Mpi2ConfigReply_t mpi_reply; 4888 u8 num_phys = 0; 4889 u16 ioc_status; 4890 4891 mpt3sas_config_get_number_hba_phys(ioc, &num_phys); 4892 if (!num_phys) 4893 return; 4894 4895 sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys * 4896 sizeof(Mpi2SasIOUnit1PhyData_t)); 4897 sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL); 4898 if (!sas_iounit_pg1) { 4899 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4900 __FILE__, __LINE__, __func__); 4901 goto out; 4902 } 4903 if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply, 4904 sas_iounit_pg1, sz))) { 4905 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4906 __FILE__, __LINE__, __func__); 4907 goto out; 4908 } 4909 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 4910 MPI2_IOCSTATUS_MASK; 4911 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 4912 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4913 __FILE__, __LINE__, __func__); 4914 goto out; 4915 } 4916 4917 /* device missing delay */ 4918 dmd = sas_iounit_pg1->ReportDeviceMissingDelay; 4919 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16) 4920 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16; 4921 else 4922 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK; 4923 dmd_orignal = dmd; 4924 if (device_missing_delay > 0x7F) { 4925 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 : 4926 device_missing_delay; 4927 dmd = dmd / 16; 4928 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16; 4929 } else 4930 dmd = device_missing_delay; 4931 sas_iounit_pg1->ReportDeviceMissingDelay = dmd; 4932 4933 /* io missing delay */ 4934 io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay; 4935 sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay; 4936 4937 if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1, 4938 sz)) { 4939 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16) 4940 dmd_new = (dmd & 4941 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16; 4942 else 4943 dmd_new = 4944 dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK; 4945 ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n", 4946 dmd_orignal, dmd_new); 4947 ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n", 4948 io_missing_delay_original, 4949 io_missing_delay); 4950 ioc->device_missing_delay = dmd_new; 4951 ioc->io_missing_delay = io_missing_delay; 4952 } 4953 4954 out: 4955 kfree(sas_iounit_pg1); 4956 } 4957 4958 /** 4959 * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields 4960 * according to performance mode. 4961 * @ioc : per adapter object 4962 * 4963 * Return: zero on success; otherwise return EAGAIN error code asking the 4964 * caller to retry. 4965 */ 4966 static int 4967 _base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc) 4968 { 4969 Mpi2IOCPage1_t ioc_pg1; 4970 Mpi2ConfigReply_t mpi_reply; 4971 int rc; 4972 4973 rc = mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy); 4974 if (rc) 4975 return rc; 4976 memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t)); 4977 4978 switch (perf_mode) { 4979 case MPT_PERF_MODE_DEFAULT: 4980 case MPT_PERF_MODE_BALANCED: 4981 if (ioc->high_iops_queues) { 4982 ioc_info(ioc, 4983 "Enable interrupt coalescing only for first\t" 4984 "%d reply queues\n", 4985 MPT3SAS_HIGH_IOPS_REPLY_QUEUES); 4986 /* 4987 * If 31st bit is zero then interrupt coalescing is 4988 * enabled for all reply descriptor post queues. 4989 * If 31st bit is set to one then user can 4990 * enable/disable interrupt coalescing on per reply 4991 * descriptor post queue group(8) basis. So to enable 4992 * interrupt coalescing only on first reply descriptor 4993 * post queue group 31st bit and zero th bit is enabled. 4994 */ 4995 ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 | 4996 ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1)); 4997 rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1); 4998 if (rc) 4999 return rc; 5000 ioc_info(ioc, "performance mode: balanced\n"); 5001 return 0; 5002 } 5003 fallthrough; 5004 case MPT_PERF_MODE_LATENCY: 5005 /* 5006 * Enable interrupt coalescing on all reply queues 5007 * with timeout value 0xA 5008 */ 5009 ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa); 5010 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING); 5011 ioc_pg1.ProductSpecific = 0; 5012 rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1); 5013 if (rc) 5014 return rc; 5015 ioc_info(ioc, "performance mode: latency\n"); 5016 break; 5017 case MPT_PERF_MODE_IOPS: 5018 /* 5019 * Enable interrupt coalescing on all reply queues. 5020 */ 5021 ioc_info(ioc, 5022 "performance mode: iops with coalescing timeout: 0x%x\n", 5023 le32_to_cpu(ioc_pg1.CoalescingTimeout)); 5024 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING); 5025 ioc_pg1.ProductSpecific = 0; 5026 rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1); 5027 if (rc) 5028 return rc; 5029 break; 5030 } 5031 return 0; 5032 } 5033 5034 /** 5035 * _base_get_event_diag_triggers - get event diag trigger values from 5036 * persistent pages 5037 * @ioc : per adapter object 5038 * 5039 * Return: nothing. 5040 */ 5041 static int 5042 _base_get_event_diag_triggers(struct MPT3SAS_ADAPTER *ioc) 5043 { 5044 Mpi26DriverTriggerPage2_t trigger_pg2; 5045 struct SL_WH_EVENT_TRIGGER_T *event_tg; 5046 MPI26_DRIVER_MPI_EVENT_TIGGER_ENTRY *mpi_event_tg; 5047 Mpi2ConfigReply_t mpi_reply; 5048 int r = 0, i = 0; 5049 u16 count = 0; 5050 u16 ioc_status; 5051 5052 r = mpt3sas_config_get_driver_trigger_pg2(ioc, &mpi_reply, 5053 &trigger_pg2); 5054 if (r) 5055 return r; 5056 5057 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 5058 MPI2_IOCSTATUS_MASK; 5059 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 5060 dinitprintk(ioc, 5061 ioc_err(ioc, 5062 "%s: Failed to get trigger pg2, ioc_status(0x%04x)\n", 5063 __func__, ioc_status)); 5064 return 0; 5065 } 5066 5067 if (le16_to_cpu(trigger_pg2.NumMPIEventTrigger)) { 5068 count = le16_to_cpu(trigger_pg2.NumMPIEventTrigger); 5069 count = min_t(u16, NUM_VALID_ENTRIES, count); 5070 ioc->diag_trigger_event.ValidEntries = count; 5071 5072 event_tg = &ioc->diag_trigger_event.EventTriggerEntry[0]; 5073 mpi_event_tg = &trigger_pg2.MPIEventTriggers[0]; 5074 for (i = 0; i < count; i++) { 5075 event_tg->EventValue = le16_to_cpu( 5076 mpi_event_tg->MPIEventCode); 5077 event_tg->LogEntryQualifier = le16_to_cpu( 5078 mpi_event_tg->MPIEventCodeSpecific); 5079 event_tg++; 5080 mpi_event_tg++; 5081 } 5082 } 5083 return 0; 5084 } 5085 5086 /** 5087 * _base_get_scsi_diag_triggers - get scsi diag trigger values from 5088 * persistent pages 5089 * @ioc : per adapter object 5090 * 5091 * Return: 0 on success; otherwise return failure status. 5092 */ 5093 static int 5094 _base_get_scsi_diag_triggers(struct MPT3SAS_ADAPTER *ioc) 5095 { 5096 Mpi26DriverTriggerPage3_t trigger_pg3; 5097 struct SL_WH_SCSI_TRIGGER_T *scsi_tg; 5098 MPI26_DRIVER_SCSI_SENSE_TIGGER_ENTRY *mpi_scsi_tg; 5099 Mpi2ConfigReply_t mpi_reply; 5100 int r = 0, i = 0; 5101 u16 count = 0; 5102 u16 ioc_status; 5103 5104 r = mpt3sas_config_get_driver_trigger_pg3(ioc, &mpi_reply, 5105 &trigger_pg3); 5106 if (r) 5107 return r; 5108 5109 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 5110 MPI2_IOCSTATUS_MASK; 5111 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 5112 dinitprintk(ioc, 5113 ioc_err(ioc, 5114 "%s: Failed to get trigger pg3, ioc_status(0x%04x)\n", 5115 __func__, ioc_status)); 5116 return 0; 5117 } 5118 5119 if (le16_to_cpu(trigger_pg3.NumSCSISenseTrigger)) { 5120 count = le16_to_cpu(trigger_pg3.NumSCSISenseTrigger); 5121 count = min_t(u16, NUM_VALID_ENTRIES, count); 5122 ioc->diag_trigger_scsi.ValidEntries = count; 5123 5124 scsi_tg = &ioc->diag_trigger_scsi.SCSITriggerEntry[0]; 5125 mpi_scsi_tg = &trigger_pg3.SCSISenseTriggers[0]; 5126 for (i = 0; i < count; i++) { 5127 scsi_tg->ASCQ = mpi_scsi_tg->ASCQ; 5128 scsi_tg->ASC = mpi_scsi_tg->ASC; 5129 scsi_tg->SenseKey = mpi_scsi_tg->SenseKey; 5130 5131 scsi_tg++; 5132 mpi_scsi_tg++; 5133 } 5134 } 5135 return 0; 5136 } 5137 5138 /** 5139 * _base_get_mpi_diag_triggers - get mpi diag trigger values from 5140 * persistent pages 5141 * @ioc : per adapter object 5142 * 5143 * Return: 0 on success; otherwise return failure status. 5144 */ 5145 static int 5146 _base_get_mpi_diag_triggers(struct MPT3SAS_ADAPTER *ioc) 5147 { 5148 Mpi26DriverTriggerPage4_t trigger_pg4; 5149 struct SL_WH_MPI_TRIGGER_T *status_tg; 5150 MPI26_DRIVER_IOCSTATUS_LOGINFO_TIGGER_ENTRY *mpi_status_tg; 5151 Mpi2ConfigReply_t mpi_reply; 5152 int r = 0, i = 0; 5153 u16 count = 0; 5154 u16 ioc_status; 5155 5156 r = mpt3sas_config_get_driver_trigger_pg4(ioc, &mpi_reply, 5157 &trigger_pg4); 5158 if (r) 5159 return r; 5160 5161 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 5162 MPI2_IOCSTATUS_MASK; 5163 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 5164 dinitprintk(ioc, 5165 ioc_err(ioc, 5166 "%s: Failed to get trigger pg4, ioc_status(0x%04x)\n", 5167 __func__, ioc_status)); 5168 return 0; 5169 } 5170 5171 if (le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger)) { 5172 count = le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger); 5173 count = min_t(u16, NUM_VALID_ENTRIES, count); 5174 ioc->diag_trigger_mpi.ValidEntries = count; 5175 5176 status_tg = &ioc->diag_trigger_mpi.MPITriggerEntry[0]; 5177 mpi_status_tg = &trigger_pg4.IOCStatusLoginfoTriggers[0]; 5178 5179 for (i = 0; i < count; i++) { 5180 status_tg->IOCStatus = le16_to_cpu( 5181 mpi_status_tg->IOCStatus); 5182 status_tg->IocLogInfo = le32_to_cpu( 5183 mpi_status_tg->LogInfo); 5184 5185 status_tg++; 5186 mpi_status_tg++; 5187 } 5188 } 5189 return 0; 5190 } 5191 5192 /** 5193 * _base_get_master_diag_triggers - get master diag trigger values from 5194 * persistent pages 5195 * @ioc : per adapter object 5196 * 5197 * Return: nothing. 5198 */ 5199 static int 5200 _base_get_master_diag_triggers(struct MPT3SAS_ADAPTER *ioc) 5201 { 5202 Mpi26DriverTriggerPage1_t trigger_pg1; 5203 Mpi2ConfigReply_t mpi_reply; 5204 int r; 5205 u16 ioc_status; 5206 5207 r = mpt3sas_config_get_driver_trigger_pg1(ioc, &mpi_reply, 5208 &trigger_pg1); 5209 if (r) 5210 return r; 5211 5212 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 5213 MPI2_IOCSTATUS_MASK; 5214 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 5215 dinitprintk(ioc, 5216 ioc_err(ioc, 5217 "%s: Failed to get trigger pg1, ioc_status(0x%04x)\n", 5218 __func__, ioc_status)); 5219 return 0; 5220 } 5221 5222 if (le16_to_cpu(trigger_pg1.NumMasterTrigger)) 5223 ioc->diag_trigger_master.MasterData |= 5224 le32_to_cpu( 5225 trigger_pg1.MasterTriggers[0].MasterTriggerFlags); 5226 return 0; 5227 } 5228 5229 /** 5230 * _base_check_for_trigger_pages_support - checks whether HBA FW supports 5231 * driver trigger pages or not 5232 * @ioc : per adapter object 5233 * @trigger_flags : address where trigger page0's TriggerFlags value is copied 5234 * 5235 * Return: trigger flags mask if HBA FW supports driver trigger pages; 5236 * otherwise returns %-EFAULT if driver trigger pages are not supported by FW or 5237 * return EAGAIN if diag reset occurred due to FW fault and asking the 5238 * caller to retry the command. 5239 * 5240 */ 5241 static int 5242 _base_check_for_trigger_pages_support(struct MPT3SAS_ADAPTER *ioc, u32 *trigger_flags) 5243 { 5244 Mpi26DriverTriggerPage0_t trigger_pg0; 5245 int r = 0; 5246 Mpi2ConfigReply_t mpi_reply; 5247 u16 ioc_status; 5248 5249 r = mpt3sas_config_get_driver_trigger_pg0(ioc, &mpi_reply, 5250 &trigger_pg0); 5251 if (r) 5252 return r; 5253 5254 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 5255 MPI2_IOCSTATUS_MASK; 5256 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) 5257 return -EFAULT; 5258 5259 *trigger_flags = le16_to_cpu(trigger_pg0.TriggerFlags); 5260 return 0; 5261 } 5262 5263 /** 5264 * _base_get_diag_triggers - Retrieve diag trigger values from 5265 * persistent pages. 5266 * @ioc : per adapter object 5267 * 5268 * Return: zero on success; otherwise return EAGAIN error codes 5269 * asking the caller to retry. 5270 */ 5271 static int 5272 _base_get_diag_triggers(struct MPT3SAS_ADAPTER *ioc) 5273 { 5274 int trigger_flags; 5275 int r; 5276 5277 /* 5278 * Default setting of master trigger. 5279 */ 5280 ioc->diag_trigger_master.MasterData = 5281 (MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET); 5282 5283 r = _base_check_for_trigger_pages_support(ioc, &trigger_flags); 5284 if (r) { 5285 if (r == -EAGAIN) 5286 return r; 5287 /* 5288 * Don't go for error handling when FW doesn't support 5289 * driver trigger pages. 5290 */ 5291 return 0; 5292 } 5293 5294 ioc->supports_trigger_pages = 1; 5295 5296 /* 5297 * Retrieve master diag trigger values from driver trigger pg1 5298 * if master trigger bit enabled in TriggerFlags. 5299 */ 5300 if ((u16)trigger_flags & 5301 MPI26_DRIVER_TRIGGER0_FLAG_MASTER_TRIGGER_VALID) { 5302 r = _base_get_master_diag_triggers(ioc); 5303 if (r) 5304 return r; 5305 } 5306 5307 /* 5308 * Retrieve event diag trigger values from driver trigger pg2 5309 * if event trigger bit enabled in TriggerFlags. 5310 */ 5311 if ((u16)trigger_flags & 5312 MPI26_DRIVER_TRIGGER0_FLAG_MPI_EVENT_TRIGGER_VALID) { 5313 r = _base_get_event_diag_triggers(ioc); 5314 if (r) 5315 return r; 5316 } 5317 5318 /* 5319 * Retrieve scsi diag trigger values from driver trigger pg3 5320 * if scsi trigger bit enabled in TriggerFlags. 5321 */ 5322 if ((u16)trigger_flags & 5323 MPI26_DRIVER_TRIGGER0_FLAG_SCSI_SENSE_TRIGGER_VALID) { 5324 r = _base_get_scsi_diag_triggers(ioc); 5325 if (r) 5326 return r; 5327 } 5328 /* 5329 * Retrieve mpi error diag trigger values from driver trigger pg4 5330 * if loginfo trigger bit enabled in TriggerFlags. 5331 */ 5332 if ((u16)trigger_flags & 5333 MPI26_DRIVER_TRIGGER0_FLAG_LOGINFO_TRIGGER_VALID) { 5334 r = _base_get_mpi_diag_triggers(ioc); 5335 if (r) 5336 return r; 5337 } 5338 return 0; 5339 } 5340 5341 /** 5342 * _base_update_diag_trigger_pages - Update the driver trigger pages after 5343 * online FW update, in case updated FW supports driver 5344 * trigger pages. 5345 * @ioc : per adapter object 5346 * 5347 * Return: nothing. 5348 */ 5349 static void 5350 _base_update_diag_trigger_pages(struct MPT3SAS_ADAPTER *ioc) 5351 { 5352 5353 if (ioc->diag_trigger_master.MasterData) 5354 mpt3sas_config_update_driver_trigger_pg1(ioc, 5355 &ioc->diag_trigger_master, 1); 5356 5357 if (ioc->diag_trigger_event.ValidEntries) 5358 mpt3sas_config_update_driver_trigger_pg2(ioc, 5359 &ioc->diag_trigger_event, 1); 5360 5361 if (ioc->diag_trigger_scsi.ValidEntries) 5362 mpt3sas_config_update_driver_trigger_pg3(ioc, 5363 &ioc->diag_trigger_scsi, 1); 5364 5365 if (ioc->diag_trigger_mpi.ValidEntries) 5366 mpt3sas_config_update_driver_trigger_pg4(ioc, 5367 &ioc->diag_trigger_mpi, 1); 5368 } 5369 5370 /** 5371 * _base_assign_fw_reported_qd - Get FW reported QD for SAS/SATA devices. 5372 * - On failure set default QD values. 5373 * @ioc : per adapter object 5374 * 5375 * Returns 0 for success, non-zero for failure. 5376 * 5377 */ 5378 static int _base_assign_fw_reported_qd(struct MPT3SAS_ADAPTER *ioc) 5379 { 5380 Mpi2ConfigReply_t mpi_reply; 5381 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL; 5382 Mpi26PCIeIOUnitPage1_t pcie_iounit_pg1; 5383 int sz; 5384 int rc = 0; 5385 5386 ioc->max_wideport_qd = MPT3SAS_SAS_QUEUE_DEPTH; 5387 ioc->max_narrowport_qd = MPT3SAS_SAS_QUEUE_DEPTH; 5388 ioc->max_sata_qd = MPT3SAS_SATA_QUEUE_DEPTH; 5389 ioc->max_nvme_qd = MPT3SAS_NVME_QUEUE_DEPTH; 5390 if (!ioc->is_gen35_ioc) 5391 goto out; 5392 /* sas iounit page 1 */ 5393 sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData); 5394 sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL); 5395 if (!sas_iounit_pg1) { 5396 pr_err("%s: failure at %s:%d/%s()!\n", 5397 ioc->name, __FILE__, __LINE__, __func__); 5398 return rc; 5399 } 5400 rc = mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply, 5401 sas_iounit_pg1, sz); 5402 if (rc) { 5403 pr_err("%s: failure at %s:%d/%s()!\n", 5404 ioc->name, __FILE__, __LINE__, __func__); 5405 goto out; 5406 } 5407 ioc->max_wideport_qd = 5408 (le16_to_cpu(sas_iounit_pg1->SASWideMaxQueueDepth)) ? 5409 le16_to_cpu(sas_iounit_pg1->SASWideMaxQueueDepth) : 5410 MPT3SAS_SAS_QUEUE_DEPTH; 5411 ioc->max_narrowport_qd = 5412 (le16_to_cpu(sas_iounit_pg1->SASNarrowMaxQueueDepth)) ? 5413 le16_to_cpu(sas_iounit_pg1->SASNarrowMaxQueueDepth) : 5414 MPT3SAS_SAS_QUEUE_DEPTH; 5415 ioc->max_sata_qd = (sas_iounit_pg1->SATAMaxQDepth) ? 5416 sas_iounit_pg1->SATAMaxQDepth : MPT3SAS_SATA_QUEUE_DEPTH; 5417 /* pcie iounit page 1 */ 5418 rc = mpt3sas_config_get_pcie_iounit_pg1(ioc, &mpi_reply, 5419 &pcie_iounit_pg1, sizeof(Mpi26PCIeIOUnitPage1_t)); 5420 if (rc) { 5421 pr_err("%s: failure at %s:%d/%s()!\n", 5422 ioc->name, __FILE__, __LINE__, __func__); 5423 goto out; 5424 } 5425 ioc->max_nvme_qd = (le16_to_cpu(pcie_iounit_pg1.NVMeMaxQueueDepth)) ? 5426 (le16_to_cpu(pcie_iounit_pg1.NVMeMaxQueueDepth)) : 5427 MPT3SAS_NVME_QUEUE_DEPTH; 5428 out: 5429 dinitprintk(ioc, pr_err( 5430 "MaxWidePortQD: 0x%x MaxNarrowPortQD: 0x%x MaxSataQD: 0x%x MaxNvmeQD: 0x%x\n", 5431 ioc->max_wideport_qd, ioc->max_narrowport_qd, 5432 ioc->max_sata_qd, ioc->max_nvme_qd)); 5433 kfree(sas_iounit_pg1); 5434 return rc; 5435 } 5436 5437 /** 5438 * _base_static_config_pages - static start of day config pages 5439 * @ioc: per adapter object 5440 */ 5441 static int 5442 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc) 5443 { 5444 Mpi2ConfigReply_t mpi_reply; 5445 u32 iounit_pg1_flags; 5446 int tg_flags = 0; 5447 int rc; 5448 ioc->nvme_abort_timeout = 30; 5449 5450 rc = mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, 5451 &ioc->manu_pg0); 5452 if (rc) 5453 return rc; 5454 if (ioc->ir_firmware) { 5455 rc = mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply, 5456 &ioc->manu_pg10); 5457 if (rc) 5458 return rc; 5459 } 5460 /* 5461 * Ensure correct T10 PI operation if vendor left EEDPTagMode 5462 * flag unset in NVDATA. 5463 */ 5464 rc = mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, 5465 &ioc->manu_pg11); 5466 if (rc) 5467 return rc; 5468 if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) { 5469 pr_err("%s: overriding NVDATA EEDPTagMode setting\n", 5470 ioc->name); 5471 ioc->manu_pg11.EEDPTagMode &= ~0x3; 5472 ioc->manu_pg11.EEDPTagMode |= 0x1; 5473 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply, 5474 &ioc->manu_pg11); 5475 } 5476 if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK) 5477 ioc->tm_custom_handling = 1; 5478 else { 5479 ioc->tm_custom_handling = 0; 5480 if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT) 5481 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT; 5482 else if (ioc->manu_pg11.NVMeAbortTO > 5483 NVME_TASK_ABORT_MAX_TIMEOUT) 5484 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT; 5485 else 5486 ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO; 5487 } 5488 ioc->time_sync_interval = 5489 ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_MASK; 5490 if (ioc->time_sync_interval) { 5491 if (ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_UNIT_MASK) 5492 ioc->time_sync_interval = 5493 ioc->time_sync_interval * SECONDS_PER_HOUR; 5494 else 5495 ioc->time_sync_interval = 5496 ioc->time_sync_interval * SECONDS_PER_MIN; 5497 dinitprintk(ioc, ioc_info(ioc, 5498 "Driver-FW TimeSync interval is %d seconds. ManuPg11 TimeSync Unit is in %s\n", 5499 ioc->time_sync_interval, (ioc->manu_pg11.TimeSyncInterval & 5500 MPT3SAS_TIMESYNC_UNIT_MASK) ? "Hour" : "Minute")); 5501 } else { 5502 if (ioc->is_gen35_ioc) 5503 ioc_warn(ioc, 5504 "TimeSync Interval in Manuf page-11 is not enabled. Periodic Time-Sync will be disabled\n"); 5505 } 5506 rc = _base_assign_fw_reported_qd(ioc); 5507 if (rc) 5508 return rc; 5509 rc = mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2); 5510 if (rc) 5511 return rc; 5512 rc = mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3); 5513 if (rc) 5514 return rc; 5515 rc = mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8); 5516 if (rc) 5517 return rc; 5518 rc = mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0); 5519 if (rc) 5520 return rc; 5521 rc = mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1); 5522 if (rc) 5523 return rc; 5524 rc = mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8); 5525 if (rc) 5526 return rc; 5527 _base_display_ioc_capabilities(ioc); 5528 5529 /* 5530 * Enable task_set_full handling in iounit_pg1 when the 5531 * facts capabilities indicate that its supported. 5532 */ 5533 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags); 5534 if ((ioc->facts.IOCCapabilities & 5535 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING)) 5536 iounit_pg1_flags &= 5537 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING; 5538 else 5539 iounit_pg1_flags |= 5540 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING; 5541 ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags); 5542 rc = mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1); 5543 if (rc) 5544 return rc; 5545 5546 if (ioc->iounit_pg8.NumSensors) 5547 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors; 5548 if (ioc->is_aero_ioc) { 5549 rc = _base_update_ioc_page1_inlinewith_perf_mode(ioc); 5550 if (rc) 5551 return rc; 5552 } 5553 if (ioc->is_gen35_ioc) { 5554 if (ioc->is_driver_loading) { 5555 rc = _base_get_diag_triggers(ioc); 5556 if (rc) 5557 return rc; 5558 } else { 5559 /* 5560 * In case of online HBA FW update operation, 5561 * check whether updated FW supports the driver trigger 5562 * pages or not. 5563 * - If previous FW has not supported driver trigger 5564 * pages and newer FW supports them then update these 5565 * pages with current diag trigger values. 5566 * - If previous FW has supported driver trigger pages 5567 * and new FW doesn't support them then disable 5568 * support_trigger_pages flag. 5569 */ 5570 _base_check_for_trigger_pages_support(ioc, &tg_flags); 5571 if (!ioc->supports_trigger_pages && tg_flags != -EFAULT) 5572 _base_update_diag_trigger_pages(ioc); 5573 else if (ioc->supports_trigger_pages && 5574 tg_flags == -EFAULT) 5575 ioc->supports_trigger_pages = 0; 5576 } 5577 } 5578 return 0; 5579 } 5580 5581 /** 5582 * mpt3sas_free_enclosure_list - release memory 5583 * @ioc: per adapter object 5584 * 5585 * Free memory allocated during enclosure add. 5586 */ 5587 void 5588 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc) 5589 { 5590 struct _enclosure_node *enclosure_dev, *enclosure_dev_next; 5591 5592 /* Free enclosure list */ 5593 list_for_each_entry_safe(enclosure_dev, 5594 enclosure_dev_next, &ioc->enclosure_list, list) { 5595 list_del(&enclosure_dev->list); 5596 kfree(enclosure_dev); 5597 } 5598 } 5599 5600 /** 5601 * _base_release_memory_pools - release memory 5602 * @ioc: per adapter object 5603 * 5604 * Free memory allocated from _base_allocate_memory_pools. 5605 */ 5606 static void 5607 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc) 5608 { 5609 int i = 0; 5610 int j = 0; 5611 int dma_alloc_count = 0; 5612 struct chain_tracker *ct; 5613 int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1; 5614 5615 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 5616 5617 if (ioc->request) { 5618 dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz, 5619 ioc->request, ioc->request_dma); 5620 dexitprintk(ioc, 5621 ioc_info(ioc, "request_pool(0x%p): free\n", 5622 ioc->request)); 5623 ioc->request = NULL; 5624 } 5625 5626 if (ioc->sense) { 5627 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma); 5628 dma_pool_destroy(ioc->sense_dma_pool); 5629 dexitprintk(ioc, 5630 ioc_info(ioc, "sense_pool(0x%p): free\n", 5631 ioc->sense)); 5632 ioc->sense = NULL; 5633 } 5634 5635 if (ioc->reply) { 5636 dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma); 5637 dma_pool_destroy(ioc->reply_dma_pool); 5638 dexitprintk(ioc, 5639 ioc_info(ioc, "reply_pool(0x%p): free\n", 5640 ioc->reply)); 5641 ioc->reply = NULL; 5642 } 5643 5644 if (ioc->reply_free) { 5645 dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free, 5646 ioc->reply_free_dma); 5647 dma_pool_destroy(ioc->reply_free_dma_pool); 5648 dexitprintk(ioc, 5649 ioc_info(ioc, "reply_free_pool(0x%p): free\n", 5650 ioc->reply_free)); 5651 ioc->reply_free = NULL; 5652 } 5653 5654 if (ioc->reply_post) { 5655 dma_alloc_count = DIV_ROUND_UP(count, 5656 RDPQ_MAX_INDEX_IN_ONE_CHUNK); 5657 for (i = 0; i < count; i++) { 5658 if (i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0 5659 && dma_alloc_count) { 5660 if (ioc->reply_post[i].reply_post_free) { 5661 dma_pool_free( 5662 ioc->reply_post_free_dma_pool, 5663 ioc->reply_post[i].reply_post_free, 5664 ioc->reply_post[i].reply_post_free_dma); 5665 dexitprintk(ioc, ioc_info(ioc, 5666 "reply_post_free_pool(0x%p): free\n", 5667 ioc->reply_post[i].reply_post_free)); 5668 ioc->reply_post[i].reply_post_free = 5669 NULL; 5670 } 5671 --dma_alloc_count; 5672 } 5673 } 5674 dma_pool_destroy(ioc->reply_post_free_dma_pool); 5675 if (ioc->reply_post_free_array && 5676 ioc->rdpq_array_enable) { 5677 dma_pool_free(ioc->reply_post_free_array_dma_pool, 5678 ioc->reply_post_free_array, 5679 ioc->reply_post_free_array_dma); 5680 ioc->reply_post_free_array = NULL; 5681 } 5682 dma_pool_destroy(ioc->reply_post_free_array_dma_pool); 5683 kfree(ioc->reply_post); 5684 } 5685 5686 if (ioc->pcie_sgl_dma_pool) { 5687 for (i = 0; i < ioc->scsiio_depth; i++) { 5688 dma_pool_free(ioc->pcie_sgl_dma_pool, 5689 ioc->pcie_sg_lookup[i].pcie_sgl, 5690 ioc->pcie_sg_lookup[i].pcie_sgl_dma); 5691 ioc->pcie_sg_lookup[i].pcie_sgl = NULL; 5692 } 5693 dma_pool_destroy(ioc->pcie_sgl_dma_pool); 5694 } 5695 if (ioc->config_page) { 5696 dexitprintk(ioc, 5697 ioc_info(ioc, "config_page(0x%p): free\n", 5698 ioc->config_page)); 5699 dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz, 5700 ioc->config_page, ioc->config_page_dma); 5701 } 5702 5703 kfree(ioc->hpr_lookup); 5704 ioc->hpr_lookup = NULL; 5705 kfree(ioc->internal_lookup); 5706 ioc->internal_lookup = NULL; 5707 if (ioc->chain_lookup) { 5708 for (i = 0; i < ioc->scsiio_depth; i++) { 5709 for (j = ioc->chains_per_prp_buffer; 5710 j < ioc->chains_needed_per_io; j++) { 5711 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 5712 if (ct && ct->chain_buffer) 5713 dma_pool_free(ioc->chain_dma_pool, 5714 ct->chain_buffer, 5715 ct->chain_buffer_dma); 5716 } 5717 kfree(ioc->chain_lookup[i].chains_per_smid); 5718 } 5719 dma_pool_destroy(ioc->chain_dma_pool); 5720 kfree(ioc->chain_lookup); 5721 ioc->chain_lookup = NULL; 5722 } 5723 5724 kfree(ioc->io_queue_num); 5725 ioc->io_queue_num = NULL; 5726 } 5727 5728 /** 5729 * mpt3sas_check_same_4gb_region - checks whether all reply queues in a set are 5730 * having same upper 32bits in their base memory address. 5731 * @reply_pool_start_address: Base address of a reply queue set 5732 * @pool_sz: Size of single Reply Descriptor Post Queues pool size 5733 * 5734 * Return: 1 if reply queues in a set have a same upper 32bits in their base 5735 * memory address, else 0. 5736 */ 5737 5738 static int 5739 mpt3sas_check_same_4gb_region(long reply_pool_start_address, u32 pool_sz) 5740 { 5741 long reply_pool_end_address; 5742 5743 reply_pool_end_address = reply_pool_start_address + pool_sz; 5744 5745 if (upper_32_bits(reply_pool_start_address) == 5746 upper_32_bits(reply_pool_end_address)) 5747 return 1; 5748 else 5749 return 0; 5750 } 5751 5752 /** 5753 * _base_reduce_hba_queue_depth- Retry with reduced queue depth 5754 * @ioc: Adapter object 5755 * 5756 * Return: 0 for success, non-zero for failure. 5757 **/ 5758 static inline int 5759 _base_reduce_hba_queue_depth(struct MPT3SAS_ADAPTER *ioc) 5760 { 5761 int reduce_sz = 64; 5762 5763 if ((ioc->hba_queue_depth - reduce_sz) > 5764 (ioc->internal_depth + INTERNAL_SCSIIO_CMDS_COUNT)) { 5765 ioc->hba_queue_depth -= reduce_sz; 5766 return 0; 5767 } else 5768 return -ENOMEM; 5769 } 5770 5771 /** 5772 * _base_allocate_pcie_sgl_pool - Allocating DMA'able memory 5773 * for pcie sgl pools. 5774 * @ioc: Adapter object 5775 * @sz: DMA Pool size 5776 * 5777 * Return: 0 for success, non-zero for failure. 5778 */ 5779 5780 static int 5781 _base_allocate_pcie_sgl_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz) 5782 { 5783 int i = 0, j = 0; 5784 struct chain_tracker *ct; 5785 5786 ioc->pcie_sgl_dma_pool = 5787 dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz, 5788 ioc->page_size, 0); 5789 if (!ioc->pcie_sgl_dma_pool) { 5790 ioc_err(ioc, "PCIe SGL pool: dma_pool_create failed\n"); 5791 return -ENOMEM; 5792 } 5793 5794 ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz; 5795 ioc->chains_per_prp_buffer = 5796 min(ioc->chains_per_prp_buffer, ioc->chains_needed_per_io); 5797 for (i = 0; i < ioc->scsiio_depth; i++) { 5798 ioc->pcie_sg_lookup[i].pcie_sgl = 5799 dma_pool_alloc(ioc->pcie_sgl_dma_pool, GFP_KERNEL, 5800 &ioc->pcie_sg_lookup[i].pcie_sgl_dma); 5801 if (!ioc->pcie_sg_lookup[i].pcie_sgl) { 5802 ioc_err(ioc, "PCIe SGL pool: dma_pool_alloc failed\n"); 5803 return -EAGAIN; 5804 } 5805 5806 if (!mpt3sas_check_same_4gb_region( 5807 (long)ioc->pcie_sg_lookup[i].pcie_sgl, sz)) { 5808 ioc_err(ioc, "PCIE SGLs are not in same 4G !! pcie sgl (0x%p) dma = (0x%llx)\n", 5809 ioc->pcie_sg_lookup[i].pcie_sgl, 5810 (unsigned long long) 5811 ioc->pcie_sg_lookup[i].pcie_sgl_dma); 5812 ioc->use_32bit_dma = true; 5813 return -EAGAIN; 5814 } 5815 5816 for (j = 0; j < ioc->chains_per_prp_buffer; j++) { 5817 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 5818 ct->chain_buffer = 5819 ioc->pcie_sg_lookup[i].pcie_sgl + 5820 (j * ioc->chain_segment_sz); 5821 ct->chain_buffer_dma = 5822 ioc->pcie_sg_lookup[i].pcie_sgl_dma + 5823 (j * ioc->chain_segment_sz); 5824 } 5825 } 5826 dinitprintk(ioc, ioc_info(ioc, 5827 "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n", 5828 ioc->scsiio_depth, sz, (sz * ioc->scsiio_depth)/1024)); 5829 dinitprintk(ioc, ioc_info(ioc, 5830 "Number of chains can fit in a PRP page(%d)\n", 5831 ioc->chains_per_prp_buffer)); 5832 return 0; 5833 } 5834 5835 /** 5836 * _base_allocate_chain_dma_pool - Allocating DMA'able memory 5837 * for chain dma pool. 5838 * @ioc: Adapter object 5839 * @sz: DMA Pool size 5840 * 5841 * Return: 0 for success, non-zero for failure. 5842 */ 5843 static int 5844 _base_allocate_chain_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz) 5845 { 5846 int i = 0, j = 0; 5847 struct chain_tracker *ctr; 5848 5849 ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev, 5850 ioc->chain_segment_sz, 16, 0); 5851 if (!ioc->chain_dma_pool) 5852 return -ENOMEM; 5853 5854 for (i = 0; i < ioc->scsiio_depth; i++) { 5855 for (j = ioc->chains_per_prp_buffer; 5856 j < ioc->chains_needed_per_io; j++) { 5857 ctr = &ioc->chain_lookup[i].chains_per_smid[j]; 5858 ctr->chain_buffer = dma_pool_alloc(ioc->chain_dma_pool, 5859 GFP_KERNEL, &ctr->chain_buffer_dma); 5860 if (!ctr->chain_buffer) 5861 return -EAGAIN; 5862 if (!mpt3sas_check_same_4gb_region((long) 5863 ctr->chain_buffer, ioc->chain_segment_sz)) { 5864 ioc_err(ioc, 5865 "Chain buffers are not in same 4G !!! Chain buff (0x%p) dma = (0x%llx)\n", 5866 ctr->chain_buffer, 5867 (unsigned long long)ctr->chain_buffer_dma); 5868 ioc->use_32bit_dma = true; 5869 return -EAGAIN; 5870 } 5871 } 5872 } 5873 dinitprintk(ioc, ioc_info(ioc, 5874 "chain_lookup depth (%d), frame_size(%d), pool_size(%d kB)\n", 5875 ioc->scsiio_depth, ioc->chain_segment_sz, ((ioc->scsiio_depth * 5876 (ioc->chains_needed_per_io - ioc->chains_per_prp_buffer) * 5877 ioc->chain_segment_sz))/1024)); 5878 return 0; 5879 } 5880 5881 /** 5882 * _base_allocate_sense_dma_pool - Allocating DMA'able memory 5883 * for sense dma pool. 5884 * @ioc: Adapter object 5885 * @sz: DMA Pool size 5886 * Return: 0 for success, non-zero for failure. 5887 */ 5888 static int 5889 _base_allocate_sense_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz) 5890 { 5891 ioc->sense_dma_pool = 5892 dma_pool_create("sense pool", &ioc->pdev->dev, sz, 4, 0); 5893 if (!ioc->sense_dma_pool) 5894 return -ENOMEM; 5895 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, 5896 GFP_KERNEL, &ioc->sense_dma); 5897 if (!ioc->sense) 5898 return -EAGAIN; 5899 if (!mpt3sas_check_same_4gb_region((long)ioc->sense, sz)) { 5900 dinitprintk(ioc, pr_err( 5901 "Bad Sense Pool! sense (0x%p) sense_dma = (0x%llx)\n", 5902 ioc->sense, (unsigned long long) ioc->sense_dma)); 5903 ioc->use_32bit_dma = true; 5904 return -EAGAIN; 5905 } 5906 ioc_info(ioc, 5907 "sense pool(0x%p) - dma(0x%llx): depth(%d), element_size(%d), pool_size (%d kB)\n", 5908 ioc->sense, (unsigned long long)ioc->sense_dma, 5909 ioc->scsiio_depth, SCSI_SENSE_BUFFERSIZE, sz/1024); 5910 return 0; 5911 } 5912 5913 /** 5914 * _base_allocate_reply_pool - Allocating DMA'able memory 5915 * for reply pool. 5916 * @ioc: Adapter object 5917 * @sz: DMA Pool size 5918 * Return: 0 for success, non-zero for failure. 5919 */ 5920 static int 5921 _base_allocate_reply_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz) 5922 { 5923 /* reply pool, 4 byte align */ 5924 ioc->reply_dma_pool = dma_pool_create("reply pool", 5925 &ioc->pdev->dev, sz, 4, 0); 5926 if (!ioc->reply_dma_pool) 5927 return -ENOMEM; 5928 ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL, 5929 &ioc->reply_dma); 5930 if (!ioc->reply) 5931 return -EAGAIN; 5932 if (!mpt3sas_check_same_4gb_region((long)ioc->reply_free, sz)) { 5933 dinitprintk(ioc, pr_err( 5934 "Bad Reply Pool! Reply (0x%p) Reply dma = (0x%llx)\n", 5935 ioc->reply, (unsigned long long) ioc->reply_dma)); 5936 ioc->use_32bit_dma = true; 5937 return -EAGAIN; 5938 } 5939 ioc->reply_dma_min_address = (u32)(ioc->reply_dma); 5940 ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz; 5941 ioc_info(ioc, 5942 "reply pool(0x%p) - dma(0x%llx): depth(%d), frame_size(%d), pool_size(%d kB)\n", 5943 ioc->reply, (unsigned long long)ioc->reply_dma, 5944 ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024); 5945 return 0; 5946 } 5947 5948 /** 5949 * _base_allocate_reply_free_dma_pool - Allocating DMA'able memory 5950 * for reply free dma pool. 5951 * @ioc: Adapter object 5952 * @sz: DMA Pool size 5953 * Return: 0 for success, non-zero for failure. 5954 */ 5955 static int 5956 _base_allocate_reply_free_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz) 5957 { 5958 /* reply free queue, 16 byte align */ 5959 ioc->reply_free_dma_pool = dma_pool_create( 5960 "reply_free pool", &ioc->pdev->dev, sz, 16, 0); 5961 if (!ioc->reply_free_dma_pool) 5962 return -ENOMEM; 5963 ioc->reply_free = dma_pool_alloc(ioc->reply_free_dma_pool, 5964 GFP_KERNEL, &ioc->reply_free_dma); 5965 if (!ioc->reply_free) 5966 return -EAGAIN; 5967 if (!mpt3sas_check_same_4gb_region((long)ioc->reply_free, sz)) { 5968 dinitprintk(ioc, 5969 pr_err("Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n", 5970 ioc->reply_free, (unsigned long long) ioc->reply_free_dma)); 5971 ioc->use_32bit_dma = true; 5972 return -EAGAIN; 5973 } 5974 memset(ioc->reply_free, 0, sz); 5975 dinitprintk(ioc, ioc_info(ioc, 5976 "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n", 5977 ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024)); 5978 dinitprintk(ioc, ioc_info(ioc, 5979 "reply_free_dma (0x%llx)\n", 5980 (unsigned long long)ioc->reply_free_dma)); 5981 return 0; 5982 } 5983 5984 /** 5985 * _base_allocate_reply_post_free_array - Allocating DMA'able memory 5986 * for reply post free array. 5987 * @ioc: Adapter object 5988 * @reply_post_free_array_sz: DMA Pool size 5989 * Return: 0 for success, non-zero for failure. 5990 */ 5991 5992 static int 5993 _base_allocate_reply_post_free_array(struct MPT3SAS_ADAPTER *ioc, 5994 u32 reply_post_free_array_sz) 5995 { 5996 ioc->reply_post_free_array_dma_pool = 5997 dma_pool_create("reply_post_free_array pool", 5998 &ioc->pdev->dev, reply_post_free_array_sz, 16, 0); 5999 if (!ioc->reply_post_free_array_dma_pool) 6000 return -ENOMEM; 6001 ioc->reply_post_free_array = 6002 dma_pool_alloc(ioc->reply_post_free_array_dma_pool, 6003 GFP_KERNEL, &ioc->reply_post_free_array_dma); 6004 if (!ioc->reply_post_free_array) 6005 return -EAGAIN; 6006 if (!mpt3sas_check_same_4gb_region((long)ioc->reply_post_free_array, 6007 reply_post_free_array_sz)) { 6008 dinitprintk(ioc, pr_err( 6009 "Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n", 6010 ioc->reply_free, 6011 (unsigned long long) ioc->reply_free_dma)); 6012 ioc->use_32bit_dma = true; 6013 return -EAGAIN; 6014 } 6015 return 0; 6016 } 6017 /** 6018 * base_alloc_rdpq_dma_pool - Allocating DMA'able memory 6019 * for reply queues. 6020 * @ioc: per adapter object 6021 * @sz: DMA Pool size 6022 * Return: 0 for success, non-zero for failure. 6023 */ 6024 static int 6025 base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER *ioc, int sz) 6026 { 6027 int i = 0; 6028 u32 dma_alloc_count = 0; 6029 int reply_post_free_sz = ioc->reply_post_queue_depth * 6030 sizeof(Mpi2DefaultReplyDescriptor_t); 6031 int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1; 6032 6033 ioc->reply_post = kcalloc(count, sizeof(struct reply_post_struct), 6034 GFP_KERNEL); 6035 if (!ioc->reply_post) 6036 return -ENOMEM; 6037 /* 6038 * For INVADER_SERIES each set of 8 reply queues(0-7, 8-15, ..) and 6039 * VENTURA_SERIES each set of 16 reply queues(0-15, 16-31, ..) should 6040 * be within 4GB boundary i.e reply queues in a set must have same 6041 * upper 32-bits in their memory address. so here driver is allocating 6042 * the DMA'able memory for reply queues according. 6043 * Driver uses limitation of 6044 * VENTURA_SERIES to manage INVADER_SERIES as well. 6045 */ 6046 dma_alloc_count = DIV_ROUND_UP(count, 6047 RDPQ_MAX_INDEX_IN_ONE_CHUNK); 6048 ioc->reply_post_free_dma_pool = 6049 dma_pool_create("reply_post_free pool", 6050 &ioc->pdev->dev, sz, 16, 0); 6051 if (!ioc->reply_post_free_dma_pool) 6052 return -ENOMEM; 6053 for (i = 0; i < count; i++) { 6054 if ((i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0) && dma_alloc_count) { 6055 ioc->reply_post[i].reply_post_free = 6056 dma_pool_zalloc(ioc->reply_post_free_dma_pool, 6057 GFP_KERNEL, 6058 &ioc->reply_post[i].reply_post_free_dma); 6059 if (!ioc->reply_post[i].reply_post_free) 6060 return -ENOMEM; 6061 /* 6062 * Each set of RDPQ pool must satisfy 4gb boundary 6063 * restriction. 6064 * 1) Check if allocated resources for RDPQ pool are in 6065 * the same 4GB range. 6066 * 2) If #1 is true, continue with 64 bit DMA. 6067 * 3) If #1 is false, return 1. which means free all the 6068 * resources and set DMA mask to 32 and allocate. 6069 */ 6070 if (!mpt3sas_check_same_4gb_region( 6071 (long)ioc->reply_post[i].reply_post_free, sz)) { 6072 dinitprintk(ioc, 6073 ioc_err(ioc, "bad Replypost free pool(0x%p)" 6074 "reply_post_free_dma = (0x%llx)\n", 6075 ioc->reply_post[i].reply_post_free, 6076 (unsigned long long) 6077 ioc->reply_post[i].reply_post_free_dma)); 6078 return -EAGAIN; 6079 } 6080 dma_alloc_count--; 6081 6082 } else { 6083 ioc->reply_post[i].reply_post_free = 6084 (Mpi2ReplyDescriptorsUnion_t *) 6085 ((long)ioc->reply_post[i-1].reply_post_free 6086 + reply_post_free_sz); 6087 ioc->reply_post[i].reply_post_free_dma = 6088 (dma_addr_t) 6089 (ioc->reply_post[i-1].reply_post_free_dma + 6090 reply_post_free_sz); 6091 } 6092 } 6093 return 0; 6094 } 6095 6096 /** 6097 * _base_allocate_memory_pools - allocate start of day memory pools 6098 * @ioc: per adapter object 6099 * 6100 * Return: 0 success, anything else error. 6101 */ 6102 static int 6103 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc) 6104 { 6105 struct mpt3sas_facts *facts; 6106 u16 max_sge_elements; 6107 u16 chains_needed_per_io; 6108 u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz; 6109 u32 retry_sz; 6110 u32 rdpq_sz = 0, sense_sz = 0; 6111 u16 max_request_credit, nvme_blocks_needed; 6112 unsigned short sg_tablesize; 6113 u16 sge_size; 6114 int i; 6115 int ret = 0, rc = 0; 6116 6117 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6118 6119 6120 retry_sz = 0; 6121 facts = &ioc->facts; 6122 6123 /* command line tunables for max sgl entries */ 6124 if (max_sgl_entries != -1) 6125 sg_tablesize = max_sgl_entries; 6126 else { 6127 if (ioc->hba_mpi_version_belonged == MPI2_VERSION) 6128 sg_tablesize = MPT2SAS_SG_DEPTH; 6129 else 6130 sg_tablesize = MPT3SAS_SG_DEPTH; 6131 } 6132 6133 /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */ 6134 if (reset_devices) 6135 sg_tablesize = min_t(unsigned short, sg_tablesize, 6136 MPT_KDUMP_MIN_PHYS_SEGMENTS); 6137 6138 if (ioc->is_mcpu_endpoint) 6139 ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS; 6140 else { 6141 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS) 6142 sg_tablesize = MPT_MIN_PHYS_SEGMENTS; 6143 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) { 6144 sg_tablesize = min_t(unsigned short, sg_tablesize, 6145 SG_MAX_SEGMENTS); 6146 ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n", 6147 sg_tablesize, MPT_MAX_PHYS_SEGMENTS); 6148 } 6149 ioc->shost->sg_tablesize = sg_tablesize; 6150 } 6151 6152 ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)), 6153 (facts->RequestCredit / 4)); 6154 if (ioc->internal_depth < INTERNAL_CMDS_COUNT) { 6155 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT + 6156 INTERNAL_SCSIIO_CMDS_COUNT)) { 6157 ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n", 6158 facts->RequestCredit); 6159 return -ENOMEM; 6160 } 6161 ioc->internal_depth = 10; 6162 } 6163 6164 ioc->hi_priority_depth = ioc->internal_depth - (5); 6165 /* command line tunables for max controller queue depth */ 6166 if (max_queue_depth != -1 && max_queue_depth != 0) { 6167 max_request_credit = min_t(u16, max_queue_depth + 6168 ioc->internal_depth, facts->RequestCredit); 6169 if (max_request_credit > MAX_HBA_QUEUE_DEPTH) 6170 max_request_credit = MAX_HBA_QUEUE_DEPTH; 6171 } else if (reset_devices) 6172 max_request_credit = min_t(u16, facts->RequestCredit, 6173 (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth)); 6174 else 6175 max_request_credit = min_t(u16, facts->RequestCredit, 6176 MAX_HBA_QUEUE_DEPTH); 6177 6178 /* Firmware maintains additional facts->HighPriorityCredit number of 6179 * credits for HiPriprity Request messages, so hba queue depth will be 6180 * sum of max_request_credit and high priority queue depth. 6181 */ 6182 ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth; 6183 6184 /* request frame size */ 6185 ioc->request_sz = facts->IOCRequestFrameSize * 4; 6186 6187 /* reply frame size */ 6188 ioc->reply_sz = facts->ReplyFrameSize * 4; 6189 6190 /* chain segment size */ 6191 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 6192 if (facts->IOCMaxChainSegmentSize) 6193 ioc->chain_segment_sz = 6194 facts->IOCMaxChainSegmentSize * 6195 MAX_CHAIN_ELEMT_SZ; 6196 else 6197 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */ 6198 ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS * 6199 MAX_CHAIN_ELEMT_SZ; 6200 } else 6201 ioc->chain_segment_sz = ioc->request_sz; 6202 6203 /* calculate the max scatter element size */ 6204 sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee); 6205 6206 retry_allocation: 6207 total_sz = 0; 6208 /* calculate number of sg elements left over in the 1st frame */ 6209 max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) - 6210 sizeof(Mpi2SGEIOUnion_t)) + sge_size); 6211 ioc->max_sges_in_main_message = max_sge_elements/sge_size; 6212 6213 /* now do the same for a chain buffer */ 6214 max_sge_elements = ioc->chain_segment_sz - sge_size; 6215 ioc->max_sges_in_chain_message = max_sge_elements/sge_size; 6216 6217 /* 6218 * MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE 6219 */ 6220 chains_needed_per_io = ((ioc->shost->sg_tablesize - 6221 ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message) 6222 + 1; 6223 if (chains_needed_per_io > facts->MaxChainDepth) { 6224 chains_needed_per_io = facts->MaxChainDepth; 6225 ioc->shost->sg_tablesize = min_t(u16, 6226 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message 6227 * chains_needed_per_io), ioc->shost->sg_tablesize); 6228 } 6229 ioc->chains_needed_per_io = chains_needed_per_io; 6230 6231 /* reply free queue sizing - taking into account for 64 FW events */ 6232 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64; 6233 6234 /* mCPU manage single counters for simplicity */ 6235 if (ioc->is_mcpu_endpoint) 6236 ioc->reply_post_queue_depth = ioc->reply_free_queue_depth; 6237 else { 6238 /* calculate reply descriptor post queue depth */ 6239 ioc->reply_post_queue_depth = ioc->hba_queue_depth + 6240 ioc->reply_free_queue_depth + 1; 6241 /* align the reply post queue on the next 16 count boundary */ 6242 if (ioc->reply_post_queue_depth % 16) 6243 ioc->reply_post_queue_depth += 16 - 6244 (ioc->reply_post_queue_depth % 16); 6245 } 6246 6247 if (ioc->reply_post_queue_depth > 6248 facts->MaxReplyDescriptorPostQueueDepth) { 6249 ioc->reply_post_queue_depth = 6250 facts->MaxReplyDescriptorPostQueueDepth - 6251 (facts->MaxReplyDescriptorPostQueueDepth % 16); 6252 ioc->hba_queue_depth = 6253 ((ioc->reply_post_queue_depth - 64) / 2) - 1; 6254 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64; 6255 } 6256 6257 ioc_info(ioc, 6258 "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), " 6259 "sge_per_io(%d), chains_per_io(%d)\n", 6260 ioc->max_sges_in_main_message, 6261 ioc->max_sges_in_chain_message, 6262 ioc->shost->sg_tablesize, 6263 ioc->chains_needed_per_io); 6264 6265 /* reply post queue, 16 byte align */ 6266 reply_post_free_sz = ioc->reply_post_queue_depth * 6267 sizeof(Mpi2DefaultReplyDescriptor_t); 6268 rdpq_sz = reply_post_free_sz * RDPQ_MAX_INDEX_IN_ONE_CHUNK; 6269 if ((_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable) 6270 || (ioc->reply_queue_count < RDPQ_MAX_INDEX_IN_ONE_CHUNK)) 6271 rdpq_sz = reply_post_free_sz * ioc->reply_queue_count; 6272 ret = base_alloc_rdpq_dma_pool(ioc, rdpq_sz); 6273 if (ret == -EAGAIN) { 6274 /* 6275 * Free allocated bad RDPQ memory pools. 6276 * Change dma coherent mask to 32 bit and reallocate RDPQ 6277 */ 6278 _base_release_memory_pools(ioc); 6279 ioc->use_32bit_dma = true; 6280 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) { 6281 ioc_err(ioc, 6282 "32 DMA mask failed %s\n", pci_name(ioc->pdev)); 6283 return -ENODEV; 6284 } 6285 if (base_alloc_rdpq_dma_pool(ioc, rdpq_sz)) 6286 return -ENOMEM; 6287 } else if (ret == -ENOMEM) 6288 return -ENOMEM; 6289 total_sz = rdpq_sz * (!ioc->rdpq_array_enable ? 1 : 6290 DIV_ROUND_UP(ioc->reply_queue_count, RDPQ_MAX_INDEX_IN_ONE_CHUNK)); 6291 ioc->scsiio_depth = ioc->hba_queue_depth - 6292 ioc->hi_priority_depth - ioc->internal_depth; 6293 6294 /* set the scsi host can_queue depth 6295 * with some internal commands that could be outstanding 6296 */ 6297 ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT; 6298 dinitprintk(ioc, 6299 ioc_info(ioc, "scsi host: can_queue depth (%d)\n", 6300 ioc->shost->can_queue)); 6301 6302 /* contiguous pool for request and chains, 16 byte align, one extra " 6303 * "frame for smid=0 6304 */ 6305 ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth; 6306 sz = ((ioc->scsiio_depth + 1) * ioc->request_sz); 6307 6308 /* hi-priority queue */ 6309 sz += (ioc->hi_priority_depth * ioc->request_sz); 6310 6311 /* internal queue */ 6312 sz += (ioc->internal_depth * ioc->request_sz); 6313 6314 ioc->request_dma_sz = sz; 6315 ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz, 6316 &ioc->request_dma, GFP_KERNEL); 6317 if (!ioc->request) { 6318 ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n", 6319 ioc->hba_queue_depth, ioc->chains_needed_per_io, 6320 ioc->request_sz, sz / 1024); 6321 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH) 6322 goto out; 6323 retry_sz = 64; 6324 ioc->hba_queue_depth -= retry_sz; 6325 _base_release_memory_pools(ioc); 6326 goto retry_allocation; 6327 } 6328 6329 if (retry_sz) 6330 ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n", 6331 ioc->hba_queue_depth, ioc->chains_needed_per_io, 6332 ioc->request_sz, sz / 1024); 6333 6334 /* hi-priority queue */ 6335 ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) * 6336 ioc->request_sz); 6337 ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) * 6338 ioc->request_sz); 6339 6340 /* internal queue */ 6341 ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth * 6342 ioc->request_sz); 6343 ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth * 6344 ioc->request_sz); 6345 6346 ioc_info(ioc, 6347 "request pool(0x%p) - dma(0x%llx): " 6348 "depth(%d), frame_size(%d), pool_size(%d kB)\n", 6349 ioc->request, (unsigned long long) ioc->request_dma, 6350 ioc->hba_queue_depth, ioc->request_sz, 6351 (ioc->hba_queue_depth * ioc->request_sz) / 1024); 6352 6353 total_sz += sz; 6354 6355 dinitprintk(ioc, 6356 ioc_info(ioc, "scsiio(0x%p): depth(%d)\n", 6357 ioc->request, ioc->scsiio_depth)); 6358 6359 ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH); 6360 sz = ioc->scsiio_depth * sizeof(struct chain_lookup); 6361 ioc->chain_lookup = kzalloc(sz, GFP_KERNEL); 6362 if (!ioc->chain_lookup) { 6363 ioc_err(ioc, "chain_lookup: __get_free_pages failed\n"); 6364 goto out; 6365 } 6366 6367 sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker); 6368 for (i = 0; i < ioc->scsiio_depth; i++) { 6369 ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL); 6370 if (!ioc->chain_lookup[i].chains_per_smid) { 6371 ioc_err(ioc, "chain_lookup: kzalloc failed\n"); 6372 goto out; 6373 } 6374 } 6375 6376 /* initialize hi-priority queue smid's */ 6377 ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth, 6378 sizeof(struct request_tracker), GFP_KERNEL); 6379 if (!ioc->hpr_lookup) { 6380 ioc_err(ioc, "hpr_lookup: kcalloc failed\n"); 6381 goto out; 6382 } 6383 ioc->hi_priority_smid = ioc->scsiio_depth + 1; 6384 dinitprintk(ioc, 6385 ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n", 6386 ioc->hi_priority, 6387 ioc->hi_priority_depth, ioc->hi_priority_smid)); 6388 6389 /* initialize internal queue smid's */ 6390 ioc->internal_lookup = kcalloc(ioc->internal_depth, 6391 sizeof(struct request_tracker), GFP_KERNEL); 6392 if (!ioc->internal_lookup) { 6393 ioc_err(ioc, "internal_lookup: kcalloc failed\n"); 6394 goto out; 6395 } 6396 ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth; 6397 dinitprintk(ioc, 6398 ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n", 6399 ioc->internal, 6400 ioc->internal_depth, ioc->internal_smid)); 6401 6402 ioc->io_queue_num = kcalloc(ioc->scsiio_depth, 6403 sizeof(u16), GFP_KERNEL); 6404 if (!ioc->io_queue_num) 6405 goto out; 6406 /* 6407 * The number of NVMe page sized blocks needed is: 6408 * (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1 6409 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry 6410 * that is placed in the main message frame. 8 is the size of each PRP 6411 * entry or PRP list pointer entry. 8 is subtracted from page_size 6412 * because of the PRP list pointer entry at the end of a page, so this 6413 * is not counted as a PRP entry. The 1 added page is a round up. 6414 * 6415 * To avoid allocation failures due to the amount of memory that could 6416 * be required for NVMe PRP's, only each set of NVMe blocks will be 6417 * contiguous, so a new set is allocated for each possible I/O. 6418 */ 6419 6420 ioc->chains_per_prp_buffer = 0; 6421 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) { 6422 nvme_blocks_needed = 6423 (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1; 6424 nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE); 6425 nvme_blocks_needed++; 6426 6427 sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth; 6428 ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL); 6429 if (!ioc->pcie_sg_lookup) { 6430 ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n"); 6431 goto out; 6432 } 6433 sz = nvme_blocks_needed * ioc->page_size; 6434 rc = _base_allocate_pcie_sgl_pool(ioc, sz); 6435 if (rc == -ENOMEM) 6436 return -ENOMEM; 6437 else if (rc == -EAGAIN) 6438 goto try_32bit_dma; 6439 total_sz += sz * ioc->scsiio_depth; 6440 } 6441 6442 rc = _base_allocate_chain_dma_pool(ioc, ioc->chain_segment_sz); 6443 if (rc == -ENOMEM) 6444 return -ENOMEM; 6445 else if (rc == -EAGAIN) 6446 goto try_32bit_dma; 6447 total_sz += ioc->chain_segment_sz * ((ioc->chains_needed_per_io - 6448 ioc->chains_per_prp_buffer) * ioc->scsiio_depth); 6449 dinitprintk(ioc, 6450 ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n", 6451 ioc->chain_depth, ioc->chain_segment_sz, 6452 (ioc->chain_depth * ioc->chain_segment_sz) / 1024)); 6453 /* sense buffers, 4 byte align */ 6454 sense_sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE; 6455 rc = _base_allocate_sense_dma_pool(ioc, sense_sz); 6456 if (rc == -ENOMEM) 6457 return -ENOMEM; 6458 else if (rc == -EAGAIN) 6459 goto try_32bit_dma; 6460 total_sz += sense_sz; 6461 ioc_info(ioc, 6462 "sense pool(0x%p)- dma(0x%llx): depth(%d)," 6463 "element_size(%d), pool_size(%d kB)\n", 6464 ioc->sense, (unsigned long long)ioc->sense_dma, ioc->scsiio_depth, 6465 SCSI_SENSE_BUFFERSIZE, sz / 1024); 6466 /* reply pool, 4 byte align */ 6467 sz = ioc->reply_free_queue_depth * ioc->reply_sz; 6468 rc = _base_allocate_reply_pool(ioc, sz); 6469 if (rc == -ENOMEM) 6470 return -ENOMEM; 6471 else if (rc == -EAGAIN) 6472 goto try_32bit_dma; 6473 total_sz += sz; 6474 6475 /* reply free queue, 16 byte align */ 6476 sz = ioc->reply_free_queue_depth * 4; 6477 rc = _base_allocate_reply_free_dma_pool(ioc, sz); 6478 if (rc == -ENOMEM) 6479 return -ENOMEM; 6480 else if (rc == -EAGAIN) 6481 goto try_32bit_dma; 6482 dinitprintk(ioc, 6483 ioc_info(ioc, "reply_free_dma (0x%llx)\n", 6484 (unsigned long long)ioc->reply_free_dma)); 6485 total_sz += sz; 6486 if (ioc->rdpq_array_enable) { 6487 reply_post_free_array_sz = ioc->reply_queue_count * 6488 sizeof(Mpi2IOCInitRDPQArrayEntry); 6489 rc = _base_allocate_reply_post_free_array(ioc, 6490 reply_post_free_array_sz); 6491 if (rc == -ENOMEM) 6492 return -ENOMEM; 6493 else if (rc == -EAGAIN) 6494 goto try_32bit_dma; 6495 } 6496 ioc->config_page_sz = 512; 6497 ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev, 6498 ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL); 6499 if (!ioc->config_page) { 6500 ioc_err(ioc, "config page: dma_pool_alloc failed\n"); 6501 goto out; 6502 } 6503 6504 ioc_info(ioc, "config page(0x%p) - dma(0x%llx): size(%d)\n", 6505 ioc->config_page, (unsigned long long)ioc->config_page_dma, 6506 ioc->config_page_sz); 6507 total_sz += ioc->config_page_sz; 6508 6509 ioc_info(ioc, "Allocated physical memory: size(%d kB)\n", 6510 total_sz / 1024); 6511 ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n", 6512 ioc->shost->can_queue, facts->RequestCredit); 6513 ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n", 6514 ioc->shost->sg_tablesize); 6515 return 0; 6516 6517 try_32bit_dma: 6518 _base_release_memory_pools(ioc); 6519 if (ioc->use_32bit_dma && (ioc->dma_mask > 32)) { 6520 /* Change dma coherent mask to 32 bit and reallocate */ 6521 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) { 6522 pr_err("Setting 32 bit coherent DMA mask Failed %s\n", 6523 pci_name(ioc->pdev)); 6524 return -ENODEV; 6525 } 6526 } else if (_base_reduce_hba_queue_depth(ioc) != 0) 6527 return -ENOMEM; 6528 goto retry_allocation; 6529 6530 out: 6531 return -ENOMEM; 6532 } 6533 6534 /** 6535 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter. 6536 * @ioc: Pointer to MPT_ADAPTER structure 6537 * @cooked: Request raw or cooked IOC state 6538 * 6539 * Return: all IOC Doorbell register bits if cooked==0, else just the 6540 * Doorbell bits in MPI_IOC_STATE_MASK. 6541 */ 6542 u32 6543 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked) 6544 { 6545 u32 s, sc; 6546 6547 s = ioc->base_readl(&ioc->chip->Doorbell); 6548 sc = s & MPI2_IOC_STATE_MASK; 6549 return cooked ? sc : s; 6550 } 6551 6552 /** 6553 * _base_wait_on_iocstate - waiting on a particular ioc state 6554 * @ioc: ? 6555 * @ioc_state: controller state { READY, OPERATIONAL, or RESET } 6556 * @timeout: timeout in second 6557 * 6558 * Return: 0 for success, non-zero for failure. 6559 */ 6560 static int 6561 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout) 6562 { 6563 u32 count, cntdn; 6564 u32 current_state; 6565 6566 count = 0; 6567 cntdn = 1000 * timeout; 6568 do { 6569 current_state = mpt3sas_base_get_iocstate(ioc, 1); 6570 if (current_state == ioc_state) 6571 return 0; 6572 if (count && current_state == MPI2_IOC_STATE_FAULT) 6573 break; 6574 if (count && current_state == MPI2_IOC_STATE_COREDUMP) 6575 break; 6576 6577 usleep_range(1000, 1500); 6578 count++; 6579 } while (--cntdn); 6580 6581 return current_state; 6582 } 6583 6584 /** 6585 * _base_dump_reg_set - This function will print hexdump of register set. 6586 * @ioc: per adapter object 6587 * 6588 * Return: nothing. 6589 */ 6590 static inline void 6591 _base_dump_reg_set(struct MPT3SAS_ADAPTER *ioc) 6592 { 6593 unsigned int i, sz = 256; 6594 u32 __iomem *reg = (u32 __iomem *)ioc->chip; 6595 6596 ioc_info(ioc, "System Register set:\n"); 6597 for (i = 0; i < (sz / sizeof(u32)); i++) 6598 pr_info("%08x: %08x\n", (i * 4), readl(®[i])); 6599 } 6600 6601 /** 6602 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by 6603 * a write to the doorbell) 6604 * @ioc: per adapter object 6605 * @timeout: timeout in seconds 6606 * 6607 * Return: 0 for success, non-zero for failure. 6608 * 6609 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell. 6610 */ 6611 6612 static int 6613 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout) 6614 { 6615 u32 cntdn, count; 6616 u32 int_status; 6617 6618 count = 0; 6619 cntdn = 1000 * timeout; 6620 do { 6621 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 6622 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 6623 dhsprintk(ioc, 6624 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 6625 __func__, count, timeout)); 6626 return 0; 6627 } 6628 6629 usleep_range(1000, 1500); 6630 count++; 6631 } while (--cntdn); 6632 6633 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 6634 __func__, count, int_status); 6635 return -EFAULT; 6636 } 6637 6638 static int 6639 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout) 6640 { 6641 u32 cntdn, count; 6642 u32 int_status; 6643 6644 count = 0; 6645 cntdn = 2000 * timeout; 6646 do { 6647 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 6648 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 6649 dhsprintk(ioc, 6650 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 6651 __func__, count, timeout)); 6652 return 0; 6653 } 6654 6655 udelay(500); 6656 count++; 6657 } while (--cntdn); 6658 6659 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 6660 __func__, count, int_status); 6661 return -EFAULT; 6662 6663 } 6664 6665 /** 6666 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell. 6667 * @ioc: per adapter object 6668 * @timeout: timeout in second 6669 * 6670 * Return: 0 for success, non-zero for failure. 6671 * 6672 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to 6673 * doorbell. 6674 */ 6675 static int 6676 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout) 6677 { 6678 u32 cntdn, count; 6679 u32 int_status; 6680 u32 doorbell; 6681 6682 count = 0; 6683 cntdn = 1000 * timeout; 6684 do { 6685 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 6686 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) { 6687 dhsprintk(ioc, 6688 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 6689 __func__, count, timeout)); 6690 return 0; 6691 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 6692 doorbell = ioc->base_readl(&ioc->chip->Doorbell); 6693 if ((doorbell & MPI2_IOC_STATE_MASK) == 6694 MPI2_IOC_STATE_FAULT) { 6695 mpt3sas_print_fault_code(ioc, doorbell); 6696 return -EFAULT; 6697 } 6698 if ((doorbell & MPI2_IOC_STATE_MASK) == 6699 MPI2_IOC_STATE_COREDUMP) { 6700 mpt3sas_print_coredump_info(ioc, doorbell); 6701 return -EFAULT; 6702 } 6703 } else if (int_status == 0xFFFFFFFF) 6704 goto out; 6705 6706 usleep_range(1000, 1500); 6707 count++; 6708 } while (--cntdn); 6709 6710 out: 6711 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 6712 __func__, count, int_status); 6713 return -EFAULT; 6714 } 6715 6716 /** 6717 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use 6718 * @ioc: per adapter object 6719 * @timeout: timeout in second 6720 * 6721 * Return: 0 for success, non-zero for failure. 6722 */ 6723 static int 6724 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout) 6725 { 6726 u32 cntdn, count; 6727 u32 doorbell_reg; 6728 6729 count = 0; 6730 cntdn = 1000 * timeout; 6731 do { 6732 doorbell_reg = ioc->base_readl(&ioc->chip->Doorbell); 6733 if (!(doorbell_reg & MPI2_DOORBELL_USED)) { 6734 dhsprintk(ioc, 6735 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 6736 __func__, count, timeout)); 6737 return 0; 6738 } 6739 6740 usleep_range(1000, 1500); 6741 count++; 6742 } while (--cntdn); 6743 6744 ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n", 6745 __func__, count, doorbell_reg); 6746 return -EFAULT; 6747 } 6748 6749 /** 6750 * _base_send_ioc_reset - send doorbell reset 6751 * @ioc: per adapter object 6752 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET 6753 * @timeout: timeout in second 6754 * 6755 * Return: 0 for success, non-zero for failure. 6756 */ 6757 static int 6758 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout) 6759 { 6760 u32 ioc_state; 6761 int r = 0; 6762 unsigned long flags; 6763 6764 if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) { 6765 ioc_err(ioc, "%s: unknown reset_type\n", __func__); 6766 return -EFAULT; 6767 } 6768 6769 if (!(ioc->facts.IOCCapabilities & 6770 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY)) 6771 return -EFAULT; 6772 6773 ioc_info(ioc, "sending message unit reset !!\n"); 6774 6775 writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT, 6776 &ioc->chip->Doorbell); 6777 if ((_base_wait_for_doorbell_ack(ioc, 15))) { 6778 r = -EFAULT; 6779 goto out; 6780 } 6781 6782 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout); 6783 if (ioc_state) { 6784 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 6785 __func__, ioc_state); 6786 r = -EFAULT; 6787 goto out; 6788 } 6789 out: 6790 if (r != 0) { 6791 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 6792 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 6793 /* 6794 * Wait for IOC state CoreDump to clear only during 6795 * HBA initialization & release time. 6796 */ 6797 if ((ioc_state & MPI2_IOC_STATE_MASK) == 6798 MPI2_IOC_STATE_COREDUMP && (ioc->is_driver_loading == 1 || 6799 ioc->fault_reset_work_q == NULL)) { 6800 spin_unlock_irqrestore( 6801 &ioc->ioc_reset_in_progress_lock, flags); 6802 mpt3sas_print_coredump_info(ioc, ioc_state); 6803 mpt3sas_base_wait_for_coredump_completion(ioc, 6804 __func__); 6805 spin_lock_irqsave( 6806 &ioc->ioc_reset_in_progress_lock, flags); 6807 } 6808 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 6809 } 6810 ioc_info(ioc, "message unit reset: %s\n", 6811 r == 0 ? "SUCCESS" : "FAILED"); 6812 return r; 6813 } 6814 6815 /** 6816 * mpt3sas_wait_for_ioc - IOC's operational state is checked here. 6817 * @ioc: per adapter object 6818 * @timeout: timeout in seconds 6819 * 6820 * Return: Waits up to timeout seconds for the IOC to 6821 * become operational. Returns 0 if IOC is present 6822 * and operational; otherwise returns %-EFAULT. 6823 */ 6824 6825 int 6826 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout) 6827 { 6828 int wait_state_count = 0; 6829 u32 ioc_state; 6830 6831 do { 6832 ioc_state = mpt3sas_base_get_iocstate(ioc, 1); 6833 if (ioc_state == MPI2_IOC_STATE_OPERATIONAL) 6834 break; 6835 6836 /* 6837 * Watchdog thread will be started after IOC Initialization, so 6838 * no need to wait here for IOC state to become operational 6839 * when IOC Initialization is on. Instead the driver will 6840 * return ETIME status, so that calling function can issue 6841 * diag reset operation and retry the command. 6842 */ 6843 if (ioc->is_driver_loading) 6844 return -ETIME; 6845 6846 ssleep(1); 6847 ioc_info(ioc, "%s: waiting for operational state(count=%d)\n", 6848 __func__, ++wait_state_count); 6849 } while (--timeout); 6850 if (!timeout) { 6851 ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__); 6852 return -EFAULT; 6853 } 6854 if (wait_state_count) 6855 ioc_info(ioc, "ioc is operational\n"); 6856 return 0; 6857 } 6858 6859 /** 6860 * _base_handshake_req_reply_wait - send request thru doorbell interface 6861 * @ioc: per adapter object 6862 * @request_bytes: request length 6863 * @request: pointer having request payload 6864 * @reply_bytes: reply length 6865 * @reply: pointer to reply payload 6866 * @timeout: timeout in second 6867 * 6868 * Return: 0 for success, non-zero for failure. 6869 */ 6870 static int 6871 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes, 6872 u32 *request, int reply_bytes, u16 *reply, int timeout) 6873 { 6874 MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply; 6875 int i; 6876 u8 failed; 6877 __le32 *mfp; 6878 6879 /* make sure doorbell is not in use */ 6880 if ((ioc->base_readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) { 6881 ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__); 6882 return -EFAULT; 6883 } 6884 6885 /* clear pending doorbell interrupts from previous state changes */ 6886 if (ioc->base_readl(&ioc->chip->HostInterruptStatus) & 6887 MPI2_HIS_IOC2SYS_DB_STATUS) 6888 writel(0, &ioc->chip->HostInterruptStatus); 6889 6890 /* send message to ioc */ 6891 writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) | 6892 ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)), 6893 &ioc->chip->Doorbell); 6894 6895 if ((_base_spin_on_doorbell_int(ioc, 5))) { 6896 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 6897 __LINE__); 6898 return -EFAULT; 6899 } 6900 writel(0, &ioc->chip->HostInterruptStatus); 6901 6902 if ((_base_wait_for_doorbell_ack(ioc, 5))) { 6903 ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n", 6904 __LINE__); 6905 return -EFAULT; 6906 } 6907 6908 /* send message 32-bits at a time */ 6909 for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) { 6910 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell); 6911 if ((_base_wait_for_doorbell_ack(ioc, 5))) 6912 failed = 1; 6913 } 6914 6915 if (failed) { 6916 ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n", 6917 __LINE__); 6918 return -EFAULT; 6919 } 6920 6921 /* now wait for the reply */ 6922 if ((_base_wait_for_doorbell_int(ioc, timeout))) { 6923 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 6924 __LINE__); 6925 return -EFAULT; 6926 } 6927 6928 /* read the first two 16-bits, it gives the total length of the reply */ 6929 reply[0] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell) 6930 & MPI2_DOORBELL_DATA_MASK); 6931 writel(0, &ioc->chip->HostInterruptStatus); 6932 if ((_base_wait_for_doorbell_int(ioc, 5))) { 6933 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 6934 __LINE__); 6935 return -EFAULT; 6936 } 6937 reply[1] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell) 6938 & MPI2_DOORBELL_DATA_MASK); 6939 writel(0, &ioc->chip->HostInterruptStatus); 6940 6941 for (i = 2; i < default_reply->MsgLength * 2; i++) { 6942 if ((_base_wait_for_doorbell_int(ioc, 5))) { 6943 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 6944 __LINE__); 6945 return -EFAULT; 6946 } 6947 if (i >= reply_bytes/2) /* overflow case */ 6948 ioc->base_readl(&ioc->chip->Doorbell); 6949 else 6950 reply[i] = le16_to_cpu( 6951 ioc->base_readl(&ioc->chip->Doorbell) 6952 & MPI2_DOORBELL_DATA_MASK); 6953 writel(0, &ioc->chip->HostInterruptStatus); 6954 } 6955 6956 _base_wait_for_doorbell_int(ioc, 5); 6957 if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) { 6958 dhsprintk(ioc, 6959 ioc_info(ioc, "doorbell is in use (line=%d)\n", 6960 __LINE__)); 6961 } 6962 writel(0, &ioc->chip->HostInterruptStatus); 6963 6964 if (ioc->logging_level & MPT_DEBUG_INIT) { 6965 mfp = (__le32 *)reply; 6966 pr_info("\toffset:data\n"); 6967 for (i = 0; i < reply_bytes/4; i++) 6968 ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4, 6969 le32_to_cpu(mfp[i])); 6970 } 6971 return 0; 6972 } 6973 6974 /** 6975 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW 6976 * @ioc: per adapter object 6977 * @mpi_reply: the reply payload from FW 6978 * @mpi_request: the request payload sent to FW 6979 * 6980 * The SAS IO Unit Control Request message allows the host to perform low-level 6981 * operations, such as resets on the PHYs of the IO Unit, also allows the host 6982 * to obtain the IOC assigned device handles for a device if it has other 6983 * identifying information about the device, in addition allows the host to 6984 * remove IOC resources associated with the device. 6985 * 6986 * Return: 0 for success, non-zero for failure. 6987 */ 6988 int 6989 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc, 6990 Mpi2SasIoUnitControlReply_t *mpi_reply, 6991 Mpi2SasIoUnitControlRequest_t *mpi_request) 6992 { 6993 u16 smid; 6994 u8 issue_reset = 0; 6995 int rc; 6996 void *request; 6997 6998 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6999 7000 mutex_lock(&ioc->base_cmds.mutex); 7001 7002 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) { 7003 ioc_err(ioc, "%s: base_cmd in use\n", __func__); 7004 rc = -EAGAIN; 7005 goto out; 7006 } 7007 7008 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT); 7009 if (rc) 7010 goto out; 7011 7012 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 7013 if (!smid) { 7014 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 7015 rc = -EAGAIN; 7016 goto out; 7017 } 7018 7019 rc = 0; 7020 ioc->base_cmds.status = MPT3_CMD_PENDING; 7021 request = mpt3sas_base_get_msg_frame(ioc, smid); 7022 ioc->base_cmds.smid = smid; 7023 memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)); 7024 if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET || 7025 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) 7026 ioc->ioc_link_reset_in_progress = 1; 7027 init_completion(&ioc->base_cmds.done); 7028 ioc->put_smid_default(ioc, smid); 7029 wait_for_completion_timeout(&ioc->base_cmds.done, 7030 msecs_to_jiffies(10000)); 7031 if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET || 7032 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) && 7033 ioc->ioc_link_reset_in_progress) 7034 ioc->ioc_link_reset_in_progress = 0; 7035 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 7036 mpt3sas_check_cmd_timeout(ioc, ioc->base_cmds.status, 7037 mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)/4, 7038 issue_reset); 7039 goto issue_host_reset; 7040 } 7041 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) 7042 memcpy(mpi_reply, ioc->base_cmds.reply, 7043 sizeof(Mpi2SasIoUnitControlReply_t)); 7044 else 7045 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t)); 7046 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 7047 goto out; 7048 7049 issue_host_reset: 7050 if (issue_reset) 7051 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 7052 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 7053 rc = -EFAULT; 7054 out: 7055 mutex_unlock(&ioc->base_cmds.mutex); 7056 return rc; 7057 } 7058 7059 /** 7060 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device 7061 * @ioc: per adapter object 7062 * @mpi_reply: the reply payload from FW 7063 * @mpi_request: the request payload sent to FW 7064 * 7065 * The SCSI Enclosure Processor request message causes the IOC to 7066 * communicate with SES devices to control LED status signals. 7067 * 7068 * Return: 0 for success, non-zero for failure. 7069 */ 7070 int 7071 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc, 7072 Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request) 7073 { 7074 u16 smid; 7075 u8 issue_reset = 0; 7076 int rc; 7077 void *request; 7078 7079 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7080 7081 mutex_lock(&ioc->base_cmds.mutex); 7082 7083 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) { 7084 ioc_err(ioc, "%s: base_cmd in use\n", __func__); 7085 rc = -EAGAIN; 7086 goto out; 7087 } 7088 7089 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT); 7090 if (rc) 7091 goto out; 7092 7093 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 7094 if (!smid) { 7095 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 7096 rc = -EAGAIN; 7097 goto out; 7098 } 7099 7100 rc = 0; 7101 ioc->base_cmds.status = MPT3_CMD_PENDING; 7102 request = mpt3sas_base_get_msg_frame(ioc, smid); 7103 ioc->base_cmds.smid = smid; 7104 memset(request, 0, ioc->request_sz); 7105 memcpy(request, mpi_request, sizeof(Mpi2SepReply_t)); 7106 init_completion(&ioc->base_cmds.done); 7107 ioc->put_smid_default(ioc, smid); 7108 wait_for_completion_timeout(&ioc->base_cmds.done, 7109 msecs_to_jiffies(10000)); 7110 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 7111 mpt3sas_check_cmd_timeout(ioc, 7112 ioc->base_cmds.status, mpi_request, 7113 sizeof(Mpi2SepRequest_t)/4, issue_reset); 7114 goto issue_host_reset; 7115 } 7116 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) 7117 memcpy(mpi_reply, ioc->base_cmds.reply, 7118 sizeof(Mpi2SepReply_t)); 7119 else 7120 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t)); 7121 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 7122 goto out; 7123 7124 issue_host_reset: 7125 if (issue_reset) 7126 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 7127 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 7128 rc = -EFAULT; 7129 out: 7130 mutex_unlock(&ioc->base_cmds.mutex); 7131 return rc; 7132 } 7133 7134 /** 7135 * _base_get_port_facts - obtain port facts reply and save in ioc 7136 * @ioc: per adapter object 7137 * @port: ? 7138 * 7139 * Return: 0 for success, non-zero for failure. 7140 */ 7141 static int 7142 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port) 7143 { 7144 Mpi2PortFactsRequest_t mpi_request; 7145 Mpi2PortFactsReply_t mpi_reply; 7146 struct mpt3sas_port_facts *pfacts; 7147 int mpi_reply_sz, mpi_request_sz, r; 7148 7149 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7150 7151 mpi_reply_sz = sizeof(Mpi2PortFactsReply_t); 7152 mpi_request_sz = sizeof(Mpi2PortFactsRequest_t); 7153 memset(&mpi_request, 0, mpi_request_sz); 7154 mpi_request.Function = MPI2_FUNCTION_PORT_FACTS; 7155 mpi_request.PortNumber = port; 7156 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz, 7157 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5); 7158 7159 if (r != 0) { 7160 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 7161 return r; 7162 } 7163 7164 pfacts = &ioc->pfacts[port]; 7165 memset(pfacts, 0, sizeof(struct mpt3sas_port_facts)); 7166 pfacts->PortNumber = mpi_reply.PortNumber; 7167 pfacts->VP_ID = mpi_reply.VP_ID; 7168 pfacts->VF_ID = mpi_reply.VF_ID; 7169 pfacts->MaxPostedCmdBuffers = 7170 le16_to_cpu(mpi_reply.MaxPostedCmdBuffers); 7171 7172 return 0; 7173 } 7174 7175 /** 7176 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL 7177 * @ioc: per adapter object 7178 * @timeout: 7179 * 7180 * Return: 0 for success, non-zero for failure. 7181 */ 7182 static int 7183 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout) 7184 { 7185 u32 ioc_state; 7186 int rc; 7187 7188 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7189 7190 if (ioc->pci_error_recovery) { 7191 dfailprintk(ioc, 7192 ioc_info(ioc, "%s: host in pci error recovery\n", 7193 __func__)); 7194 return -EFAULT; 7195 } 7196 7197 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 7198 dhsprintk(ioc, 7199 ioc_info(ioc, "%s: ioc_state(0x%08x)\n", 7200 __func__, ioc_state)); 7201 7202 if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) || 7203 (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL) 7204 return 0; 7205 7206 if (ioc_state & MPI2_DOORBELL_USED) { 7207 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n")); 7208 goto issue_diag_reset; 7209 } 7210 7211 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 7212 mpt3sas_print_fault_code(ioc, ioc_state & 7213 MPI2_DOORBELL_DATA_MASK); 7214 goto issue_diag_reset; 7215 } else if ((ioc_state & MPI2_IOC_STATE_MASK) == 7216 MPI2_IOC_STATE_COREDUMP) { 7217 ioc_info(ioc, 7218 "%s: Skipping the diag reset here. (ioc_state=0x%x)\n", 7219 __func__, ioc_state); 7220 return -EFAULT; 7221 } 7222 7223 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout); 7224 if (ioc_state) { 7225 dfailprintk(ioc, 7226 ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 7227 __func__, ioc_state)); 7228 return -EFAULT; 7229 } 7230 7231 issue_diag_reset: 7232 rc = _base_diag_reset(ioc); 7233 return rc; 7234 } 7235 7236 /** 7237 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc 7238 * @ioc: per adapter object 7239 * 7240 * Return: 0 for success, non-zero for failure. 7241 */ 7242 static int 7243 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc) 7244 { 7245 Mpi2IOCFactsRequest_t mpi_request; 7246 Mpi2IOCFactsReply_t mpi_reply; 7247 struct mpt3sas_facts *facts; 7248 int mpi_reply_sz, mpi_request_sz, r; 7249 7250 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7251 7252 r = _base_wait_for_iocstate(ioc, 10); 7253 if (r) { 7254 dfailprintk(ioc, 7255 ioc_info(ioc, "%s: failed getting to correct state\n", 7256 __func__)); 7257 return r; 7258 } 7259 mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t); 7260 mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t); 7261 memset(&mpi_request, 0, mpi_request_sz); 7262 mpi_request.Function = MPI2_FUNCTION_IOC_FACTS; 7263 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz, 7264 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5); 7265 7266 if (r != 0) { 7267 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 7268 return r; 7269 } 7270 7271 facts = &ioc->facts; 7272 memset(facts, 0, sizeof(struct mpt3sas_facts)); 7273 facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion); 7274 facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion); 7275 facts->VP_ID = mpi_reply.VP_ID; 7276 facts->VF_ID = mpi_reply.VF_ID; 7277 facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions); 7278 facts->MaxChainDepth = mpi_reply.MaxChainDepth; 7279 facts->WhoInit = mpi_reply.WhoInit; 7280 facts->NumberOfPorts = mpi_reply.NumberOfPorts; 7281 facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors; 7282 if (ioc->msix_enable && (facts->MaxMSIxVectors <= 7283 MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc))) 7284 ioc->combined_reply_queue = 0; 7285 facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit); 7286 facts->MaxReplyDescriptorPostQueueDepth = 7287 le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth); 7288 facts->ProductID = le16_to_cpu(mpi_reply.ProductID); 7289 facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities); 7290 if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)) 7291 ioc->ir_firmware = 1; 7292 if ((facts->IOCCapabilities & 7293 MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices)) 7294 ioc->rdpq_array_capable = 1; 7295 if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ) 7296 && ioc->is_aero_ioc) 7297 ioc->atomic_desc_capable = 1; 7298 facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word); 7299 facts->IOCRequestFrameSize = 7300 le16_to_cpu(mpi_reply.IOCRequestFrameSize); 7301 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 7302 facts->IOCMaxChainSegmentSize = 7303 le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize); 7304 } 7305 facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators); 7306 facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets); 7307 ioc->shost->max_id = -1; 7308 facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders); 7309 facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures); 7310 facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags); 7311 facts->HighPriorityCredit = 7312 le16_to_cpu(mpi_reply.HighPriorityCredit); 7313 facts->ReplyFrameSize = mpi_reply.ReplyFrameSize; 7314 facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle); 7315 facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize; 7316 7317 /* 7318 * Get the Page Size from IOC Facts. If it's 0, default to 4k. 7319 */ 7320 ioc->page_size = 1 << facts->CurrentHostPageSize; 7321 if (ioc->page_size == 1) { 7322 ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n"); 7323 ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K; 7324 } 7325 dinitprintk(ioc, 7326 ioc_info(ioc, "CurrentHostPageSize(%d)\n", 7327 facts->CurrentHostPageSize)); 7328 7329 dinitprintk(ioc, 7330 ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n", 7331 facts->RequestCredit, facts->MaxChainDepth)); 7332 dinitprintk(ioc, 7333 ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n", 7334 facts->IOCRequestFrameSize * 4, 7335 facts->ReplyFrameSize * 4)); 7336 return 0; 7337 } 7338 7339 /** 7340 * _base_send_ioc_init - send ioc_init to firmware 7341 * @ioc: per adapter object 7342 * 7343 * Return: 0 for success, non-zero for failure. 7344 */ 7345 static int 7346 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc) 7347 { 7348 Mpi2IOCInitRequest_t mpi_request; 7349 Mpi2IOCInitReply_t mpi_reply; 7350 int i, r = 0; 7351 ktime_t current_time; 7352 u16 ioc_status; 7353 u32 reply_post_free_array_sz = 0; 7354 7355 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7356 7357 memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t)); 7358 mpi_request.Function = MPI2_FUNCTION_IOC_INIT; 7359 mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER; 7360 mpi_request.VF_ID = 0; /* TODO */ 7361 mpi_request.VP_ID = 0; 7362 mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged); 7363 mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION); 7364 mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K; 7365 7366 if (_base_is_controller_msix_enabled(ioc)) 7367 mpi_request.HostMSIxVectors = ioc->reply_queue_count; 7368 mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4); 7369 mpi_request.ReplyDescriptorPostQueueDepth = 7370 cpu_to_le16(ioc->reply_post_queue_depth); 7371 mpi_request.ReplyFreeQueueDepth = 7372 cpu_to_le16(ioc->reply_free_queue_depth); 7373 7374 mpi_request.SenseBufferAddressHigh = 7375 cpu_to_le32((u64)ioc->sense_dma >> 32); 7376 mpi_request.SystemReplyAddressHigh = 7377 cpu_to_le32((u64)ioc->reply_dma >> 32); 7378 mpi_request.SystemRequestFrameBaseAddress = 7379 cpu_to_le64((u64)ioc->request_dma); 7380 mpi_request.ReplyFreeQueueAddress = 7381 cpu_to_le64((u64)ioc->reply_free_dma); 7382 7383 if (ioc->rdpq_array_enable) { 7384 reply_post_free_array_sz = ioc->reply_queue_count * 7385 sizeof(Mpi2IOCInitRDPQArrayEntry); 7386 memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz); 7387 for (i = 0; i < ioc->reply_queue_count; i++) 7388 ioc->reply_post_free_array[i].RDPQBaseAddress = 7389 cpu_to_le64( 7390 (u64)ioc->reply_post[i].reply_post_free_dma); 7391 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE; 7392 mpi_request.ReplyDescriptorPostQueueAddress = 7393 cpu_to_le64((u64)ioc->reply_post_free_array_dma); 7394 } else { 7395 mpi_request.ReplyDescriptorPostQueueAddress = 7396 cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma); 7397 } 7398 7399 /* 7400 * Set the flag to enable CoreDump state feature in IOC firmware. 7401 */ 7402 mpi_request.ConfigurationFlags |= 7403 cpu_to_le16(MPI26_IOCINIT_CFGFLAGS_COREDUMP_ENABLE); 7404 7405 /* This time stamp specifies number of milliseconds 7406 * since epoch ~ midnight January 1, 1970. 7407 */ 7408 current_time = ktime_get_real(); 7409 mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time)); 7410 7411 if (ioc->logging_level & MPT_DEBUG_INIT) { 7412 __le32 *mfp; 7413 int i; 7414 7415 mfp = (__le32 *)&mpi_request; 7416 ioc_info(ioc, "\toffset:data\n"); 7417 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++) 7418 ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4, 7419 le32_to_cpu(mfp[i])); 7420 } 7421 7422 r = _base_handshake_req_reply_wait(ioc, 7423 sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request, 7424 sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 30); 7425 7426 if (r != 0) { 7427 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 7428 return r; 7429 } 7430 7431 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK; 7432 if (ioc_status != MPI2_IOCSTATUS_SUCCESS || 7433 mpi_reply.IOCLogInfo) { 7434 ioc_err(ioc, "%s: failed\n", __func__); 7435 r = -EIO; 7436 } 7437 7438 /* Reset TimeSync Counter*/ 7439 ioc->timestamp_update_count = 0; 7440 return r; 7441 } 7442 7443 /** 7444 * mpt3sas_port_enable_done - command completion routine for port enable 7445 * @ioc: per adapter object 7446 * @smid: system request message index 7447 * @msix_index: MSIX table index supplied by the OS 7448 * @reply: reply message frame(lower 32bit addr) 7449 * 7450 * Return: 1 meaning mf should be freed from _base_interrupt 7451 * 0 means the mf is freed from this function. 7452 */ 7453 u8 7454 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 7455 u32 reply) 7456 { 7457 MPI2DefaultReply_t *mpi_reply; 7458 u16 ioc_status; 7459 7460 if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED) 7461 return 1; 7462 7463 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 7464 if (!mpi_reply) 7465 return 1; 7466 7467 if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE) 7468 return 1; 7469 7470 ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING; 7471 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE; 7472 ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID; 7473 memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4); 7474 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 7475 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) 7476 ioc->port_enable_failed = 1; 7477 7478 if (ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE_ASYNC) { 7479 ioc->port_enable_cmds.status &= ~MPT3_CMD_COMPLETE_ASYNC; 7480 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 7481 mpt3sas_port_enable_complete(ioc); 7482 return 1; 7483 } else { 7484 ioc->start_scan_failed = ioc_status; 7485 ioc->start_scan = 0; 7486 return 1; 7487 } 7488 } 7489 complete(&ioc->port_enable_cmds.done); 7490 return 1; 7491 } 7492 7493 /** 7494 * _base_send_port_enable - send port_enable(discovery stuff) to firmware 7495 * @ioc: per adapter object 7496 * 7497 * Return: 0 for success, non-zero for failure. 7498 */ 7499 static int 7500 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc) 7501 { 7502 Mpi2PortEnableRequest_t *mpi_request; 7503 Mpi2PortEnableReply_t *mpi_reply; 7504 int r = 0; 7505 u16 smid; 7506 u16 ioc_status; 7507 7508 ioc_info(ioc, "sending port enable !!\n"); 7509 7510 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 7511 ioc_err(ioc, "%s: internal command already in use\n", __func__); 7512 return -EAGAIN; 7513 } 7514 7515 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx); 7516 if (!smid) { 7517 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 7518 return -EAGAIN; 7519 } 7520 7521 ioc->port_enable_cmds.status = MPT3_CMD_PENDING; 7522 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 7523 ioc->port_enable_cmds.smid = smid; 7524 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t)); 7525 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE; 7526 7527 init_completion(&ioc->port_enable_cmds.done); 7528 ioc->put_smid_default(ioc, smid); 7529 wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ); 7530 if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) { 7531 ioc_err(ioc, "%s: timeout\n", __func__); 7532 _debug_dump_mf(mpi_request, 7533 sizeof(Mpi2PortEnableRequest_t)/4); 7534 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET) 7535 r = -EFAULT; 7536 else 7537 r = -ETIME; 7538 goto out; 7539 } 7540 7541 mpi_reply = ioc->port_enable_cmds.reply; 7542 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 7543 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 7544 ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n", 7545 __func__, ioc_status); 7546 r = -EFAULT; 7547 goto out; 7548 } 7549 7550 out: 7551 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED; 7552 ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED"); 7553 return r; 7554 } 7555 7556 /** 7557 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply) 7558 * @ioc: per adapter object 7559 * 7560 * Return: 0 for success, non-zero for failure. 7561 */ 7562 int 7563 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc) 7564 { 7565 Mpi2PortEnableRequest_t *mpi_request; 7566 u16 smid; 7567 7568 ioc_info(ioc, "sending port enable !!\n"); 7569 7570 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 7571 ioc_err(ioc, "%s: internal command already in use\n", __func__); 7572 return -EAGAIN; 7573 } 7574 7575 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx); 7576 if (!smid) { 7577 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 7578 return -EAGAIN; 7579 } 7580 ioc->drv_internal_flags |= MPT_DRV_INTERNAL_FIRST_PE_ISSUED; 7581 ioc->port_enable_cmds.status = MPT3_CMD_PENDING; 7582 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE_ASYNC; 7583 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 7584 ioc->port_enable_cmds.smid = smid; 7585 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t)); 7586 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE; 7587 7588 ioc->put_smid_default(ioc, smid); 7589 return 0; 7590 } 7591 7592 /** 7593 * _base_determine_wait_on_discovery - desposition 7594 * @ioc: per adapter object 7595 * 7596 * Decide whether to wait on discovery to complete. Used to either 7597 * locate boot device, or report volumes ahead of physical devices. 7598 * 7599 * Return: 1 for wait, 0 for don't wait. 7600 */ 7601 static int 7602 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc) 7603 { 7604 /* We wait for discovery to complete if IR firmware is loaded. 7605 * The sas topology events arrive before PD events, so we need time to 7606 * turn on the bit in ioc->pd_handles to indicate PD 7607 * Also, it maybe required to report Volumes ahead of physical 7608 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set. 7609 */ 7610 if (ioc->ir_firmware) 7611 return 1; 7612 7613 /* if no Bios, then we don't need to wait */ 7614 if (!ioc->bios_pg3.BiosVersion) 7615 return 0; 7616 7617 /* Bios is present, then we drop down here. 7618 * 7619 * If there any entries in the Bios Page 2, then we wait 7620 * for discovery to complete. 7621 */ 7622 7623 /* Current Boot Device */ 7624 if ((ioc->bios_pg2.CurrentBootDeviceForm & 7625 MPI2_BIOSPAGE2_FORM_MASK) == 7626 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED && 7627 /* Request Boot Device */ 7628 (ioc->bios_pg2.ReqBootDeviceForm & 7629 MPI2_BIOSPAGE2_FORM_MASK) == 7630 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED && 7631 /* Alternate Request Boot Device */ 7632 (ioc->bios_pg2.ReqAltBootDeviceForm & 7633 MPI2_BIOSPAGE2_FORM_MASK) == 7634 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED) 7635 return 0; 7636 7637 return 1; 7638 } 7639 7640 /** 7641 * _base_unmask_events - turn on notification for this event 7642 * @ioc: per adapter object 7643 * @event: firmware event 7644 * 7645 * The mask is stored in ioc->event_masks. 7646 */ 7647 static void 7648 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event) 7649 { 7650 u32 desired_event; 7651 7652 if (event >= 128) 7653 return; 7654 7655 desired_event = (1 << (event % 32)); 7656 7657 if (event < 32) 7658 ioc->event_masks[0] &= ~desired_event; 7659 else if (event < 64) 7660 ioc->event_masks[1] &= ~desired_event; 7661 else if (event < 96) 7662 ioc->event_masks[2] &= ~desired_event; 7663 else if (event < 128) 7664 ioc->event_masks[3] &= ~desired_event; 7665 } 7666 7667 /** 7668 * _base_event_notification - send event notification 7669 * @ioc: per adapter object 7670 * 7671 * Return: 0 for success, non-zero for failure. 7672 */ 7673 static int 7674 _base_event_notification(struct MPT3SAS_ADAPTER *ioc) 7675 { 7676 Mpi2EventNotificationRequest_t *mpi_request; 7677 u16 smid; 7678 int r = 0; 7679 int i, issue_diag_reset = 0; 7680 7681 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7682 7683 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 7684 ioc_err(ioc, "%s: internal command already in use\n", __func__); 7685 return -EAGAIN; 7686 } 7687 7688 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 7689 if (!smid) { 7690 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 7691 return -EAGAIN; 7692 } 7693 ioc->base_cmds.status = MPT3_CMD_PENDING; 7694 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 7695 ioc->base_cmds.smid = smid; 7696 memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t)); 7697 mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION; 7698 mpi_request->VF_ID = 0; /* TODO */ 7699 mpi_request->VP_ID = 0; 7700 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 7701 mpi_request->EventMasks[i] = 7702 cpu_to_le32(ioc->event_masks[i]); 7703 init_completion(&ioc->base_cmds.done); 7704 ioc->put_smid_default(ioc, smid); 7705 wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ); 7706 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 7707 ioc_err(ioc, "%s: timeout\n", __func__); 7708 _debug_dump_mf(mpi_request, 7709 sizeof(Mpi2EventNotificationRequest_t)/4); 7710 if (ioc->base_cmds.status & MPT3_CMD_RESET) 7711 r = -EFAULT; 7712 else 7713 issue_diag_reset = 1; 7714 7715 } else 7716 dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__)); 7717 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 7718 7719 if (issue_diag_reset) { 7720 if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED) 7721 return -EFAULT; 7722 if (mpt3sas_base_check_for_fault_and_issue_reset(ioc)) 7723 return -EFAULT; 7724 r = -EAGAIN; 7725 } 7726 return r; 7727 } 7728 7729 /** 7730 * mpt3sas_base_validate_event_type - validating event types 7731 * @ioc: per adapter object 7732 * @event_type: firmware event 7733 * 7734 * This will turn on firmware event notification when application 7735 * ask for that event. We don't mask events that are already enabled. 7736 */ 7737 void 7738 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type) 7739 { 7740 int i, j; 7741 u32 event_mask, desired_event; 7742 u8 send_update_to_fw; 7743 7744 for (i = 0, send_update_to_fw = 0; i < 7745 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) { 7746 event_mask = ~event_type[i]; 7747 desired_event = 1; 7748 for (j = 0; j < 32; j++) { 7749 if (!(event_mask & desired_event) && 7750 (ioc->event_masks[i] & desired_event)) { 7751 ioc->event_masks[i] &= ~desired_event; 7752 send_update_to_fw = 1; 7753 } 7754 desired_event = (desired_event << 1); 7755 } 7756 } 7757 7758 if (!send_update_to_fw) 7759 return; 7760 7761 mutex_lock(&ioc->base_cmds.mutex); 7762 _base_event_notification(ioc); 7763 mutex_unlock(&ioc->base_cmds.mutex); 7764 } 7765 7766 /** 7767 * _base_diag_reset - the "big hammer" start of day reset 7768 * @ioc: per adapter object 7769 * 7770 * Return: 0 for success, non-zero for failure. 7771 */ 7772 static int 7773 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc) 7774 { 7775 u32 host_diagnostic; 7776 u32 ioc_state; 7777 u32 count; 7778 u32 hcb_size; 7779 7780 ioc_info(ioc, "sending diag reset !!\n"); 7781 7782 pci_cfg_access_lock(ioc->pdev); 7783 7784 drsprintk(ioc, ioc_info(ioc, "clear interrupts\n")); 7785 7786 count = 0; 7787 do { 7788 /* Write magic sequence to WriteSequence register 7789 * Loop until in diagnostic mode 7790 */ 7791 drsprintk(ioc, ioc_info(ioc, "write magic sequence\n")); 7792 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence); 7793 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence); 7794 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence); 7795 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence); 7796 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence); 7797 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence); 7798 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence); 7799 7800 /* wait 100 msec */ 7801 msleep(100); 7802 7803 if (count++ > 20) { 7804 ioc_info(ioc, 7805 "Stop writing magic sequence after 20 retries\n"); 7806 _base_dump_reg_set(ioc); 7807 goto out; 7808 } 7809 7810 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic); 7811 drsprintk(ioc, 7812 ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n", 7813 count, host_diagnostic)); 7814 7815 } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0); 7816 7817 hcb_size = ioc->base_readl(&ioc->chip->HCBSize); 7818 7819 drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n")); 7820 writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER, 7821 &ioc->chip->HostDiagnostic); 7822 7823 /*This delay allows the chip PCIe hardware time to finish reset tasks*/ 7824 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000); 7825 7826 /* Approximately 300 second max wait */ 7827 for (count = 0; count < (300000000 / 7828 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) { 7829 7830 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic); 7831 7832 if (host_diagnostic == 0xFFFFFFFF) { 7833 ioc_info(ioc, 7834 "Invalid host diagnostic register value\n"); 7835 _base_dump_reg_set(ioc); 7836 goto out; 7837 } 7838 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER)) 7839 break; 7840 7841 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000); 7842 } 7843 7844 if (host_diagnostic & MPI2_DIAG_HCB_MODE) { 7845 7846 drsprintk(ioc, 7847 ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n")); 7848 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK; 7849 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW; 7850 writel(host_diagnostic, &ioc->chip->HostDiagnostic); 7851 7852 drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n")); 7853 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE, 7854 &ioc->chip->HCBSize); 7855 } 7856 7857 drsprintk(ioc, ioc_info(ioc, "restart the adapter\n")); 7858 writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET, 7859 &ioc->chip->HostDiagnostic); 7860 7861 drsprintk(ioc, 7862 ioc_info(ioc, "disable writes to the diagnostic register\n")); 7863 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence); 7864 7865 drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n")); 7866 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20); 7867 if (ioc_state) { 7868 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 7869 __func__, ioc_state); 7870 _base_dump_reg_set(ioc); 7871 goto out; 7872 } 7873 7874 pci_cfg_access_unlock(ioc->pdev); 7875 ioc_info(ioc, "diag reset: SUCCESS\n"); 7876 return 0; 7877 7878 out: 7879 pci_cfg_access_unlock(ioc->pdev); 7880 ioc_err(ioc, "diag reset: FAILED\n"); 7881 return -EFAULT; 7882 } 7883 7884 /** 7885 * mpt3sas_base_make_ioc_ready - put controller in READY state 7886 * @ioc: per adapter object 7887 * @type: FORCE_BIG_HAMMER or SOFT_RESET 7888 * 7889 * Return: 0 for success, non-zero for failure. 7890 */ 7891 int 7892 mpt3sas_base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type) 7893 { 7894 u32 ioc_state; 7895 int rc; 7896 int count; 7897 7898 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7899 7900 if (ioc->pci_error_recovery) 7901 return 0; 7902 7903 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 7904 dhsprintk(ioc, 7905 ioc_info(ioc, "%s: ioc_state(0x%08x)\n", 7906 __func__, ioc_state)); 7907 7908 /* if in RESET state, it should move to READY state shortly */ 7909 count = 0; 7910 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) { 7911 while ((ioc_state & MPI2_IOC_STATE_MASK) != 7912 MPI2_IOC_STATE_READY) { 7913 if (count++ == 10) { 7914 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 7915 __func__, ioc_state); 7916 return -EFAULT; 7917 } 7918 ssleep(1); 7919 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 7920 } 7921 } 7922 7923 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) 7924 return 0; 7925 7926 if (ioc_state & MPI2_DOORBELL_USED) { 7927 ioc_info(ioc, "unexpected doorbell active!\n"); 7928 goto issue_diag_reset; 7929 } 7930 7931 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 7932 mpt3sas_print_fault_code(ioc, ioc_state & 7933 MPI2_DOORBELL_DATA_MASK); 7934 goto issue_diag_reset; 7935 } 7936 7937 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) { 7938 /* 7939 * if host reset is invoked while watch dog thread is waiting 7940 * for IOC state to be changed to Fault state then driver has 7941 * to wait here for CoreDump state to clear otherwise reset 7942 * will be issued to the FW and FW move the IOC state to 7943 * reset state without copying the FW logs to coredump region. 7944 */ 7945 if (ioc->ioc_coredump_loop != MPT3SAS_COREDUMP_LOOP_DONE) { 7946 mpt3sas_print_coredump_info(ioc, ioc_state & 7947 MPI2_DOORBELL_DATA_MASK); 7948 mpt3sas_base_wait_for_coredump_completion(ioc, 7949 __func__); 7950 } 7951 goto issue_diag_reset; 7952 } 7953 7954 if (type == FORCE_BIG_HAMMER) 7955 goto issue_diag_reset; 7956 7957 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL) 7958 if (!(_base_send_ioc_reset(ioc, 7959 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) { 7960 return 0; 7961 } 7962 7963 issue_diag_reset: 7964 rc = _base_diag_reset(ioc); 7965 return rc; 7966 } 7967 7968 /** 7969 * _base_make_ioc_operational - put controller in OPERATIONAL state 7970 * @ioc: per adapter object 7971 * 7972 * Return: 0 for success, non-zero for failure. 7973 */ 7974 static int 7975 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc) 7976 { 7977 int r, i, index, rc; 7978 unsigned long flags; 7979 u32 reply_address; 7980 u16 smid; 7981 struct _tr_list *delayed_tr, *delayed_tr_next; 7982 struct _sc_list *delayed_sc, *delayed_sc_next; 7983 struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next; 7984 u8 hide_flag; 7985 struct adapter_reply_queue *reply_q; 7986 Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig; 7987 7988 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7989 7990 /* clean the delayed target reset list */ 7991 list_for_each_entry_safe(delayed_tr, delayed_tr_next, 7992 &ioc->delayed_tr_list, list) { 7993 list_del(&delayed_tr->list); 7994 kfree(delayed_tr); 7995 } 7996 7997 7998 list_for_each_entry_safe(delayed_tr, delayed_tr_next, 7999 &ioc->delayed_tr_volume_list, list) { 8000 list_del(&delayed_tr->list); 8001 kfree(delayed_tr); 8002 } 8003 8004 list_for_each_entry_safe(delayed_sc, delayed_sc_next, 8005 &ioc->delayed_sc_list, list) { 8006 list_del(&delayed_sc->list); 8007 kfree(delayed_sc); 8008 } 8009 8010 list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next, 8011 &ioc->delayed_event_ack_list, list) { 8012 list_del(&delayed_event_ack->list); 8013 kfree(delayed_event_ack); 8014 } 8015 8016 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 8017 8018 /* hi-priority queue */ 8019 INIT_LIST_HEAD(&ioc->hpr_free_list); 8020 smid = ioc->hi_priority_smid; 8021 for (i = 0; i < ioc->hi_priority_depth; i++, smid++) { 8022 ioc->hpr_lookup[i].cb_idx = 0xFF; 8023 ioc->hpr_lookup[i].smid = smid; 8024 list_add_tail(&ioc->hpr_lookup[i].tracker_list, 8025 &ioc->hpr_free_list); 8026 } 8027 8028 /* internal queue */ 8029 INIT_LIST_HEAD(&ioc->internal_free_list); 8030 smid = ioc->internal_smid; 8031 for (i = 0; i < ioc->internal_depth; i++, smid++) { 8032 ioc->internal_lookup[i].cb_idx = 0xFF; 8033 ioc->internal_lookup[i].smid = smid; 8034 list_add_tail(&ioc->internal_lookup[i].tracker_list, 8035 &ioc->internal_free_list); 8036 } 8037 8038 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 8039 8040 /* initialize Reply Free Queue */ 8041 for (i = 0, reply_address = (u32)ioc->reply_dma ; 8042 i < ioc->reply_free_queue_depth ; i++, reply_address += 8043 ioc->reply_sz) { 8044 ioc->reply_free[i] = cpu_to_le32(reply_address); 8045 if (ioc->is_mcpu_endpoint) 8046 _base_clone_reply_to_sys_mem(ioc, 8047 reply_address, i); 8048 } 8049 8050 /* initialize reply queues */ 8051 if (ioc->is_driver_loading) 8052 _base_assign_reply_queues(ioc); 8053 8054 /* initialize Reply Post Free Queue */ 8055 index = 0; 8056 reply_post_free_contig = ioc->reply_post[0].reply_post_free; 8057 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 8058 /* 8059 * If RDPQ is enabled, switch to the next allocation. 8060 * Otherwise advance within the contiguous region. 8061 */ 8062 if (ioc->rdpq_array_enable) { 8063 reply_q->reply_post_free = 8064 ioc->reply_post[index++].reply_post_free; 8065 } else { 8066 reply_q->reply_post_free = reply_post_free_contig; 8067 reply_post_free_contig += ioc->reply_post_queue_depth; 8068 } 8069 8070 reply_q->reply_post_host_index = 0; 8071 for (i = 0; i < ioc->reply_post_queue_depth; i++) 8072 reply_q->reply_post_free[i].Words = 8073 cpu_to_le64(ULLONG_MAX); 8074 if (!_base_is_controller_msix_enabled(ioc)) 8075 goto skip_init_reply_post_free_queue; 8076 } 8077 skip_init_reply_post_free_queue: 8078 8079 r = _base_send_ioc_init(ioc); 8080 if (r) { 8081 /* 8082 * No need to check IOC state for fault state & issue 8083 * diag reset during host reset. This check is need 8084 * only during driver load time. 8085 */ 8086 if (!ioc->is_driver_loading) 8087 return r; 8088 8089 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc); 8090 if (rc || (_base_send_ioc_init(ioc))) 8091 return r; 8092 } 8093 8094 /* initialize reply free host index */ 8095 ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1; 8096 writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex); 8097 8098 /* initialize reply post host index */ 8099 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 8100 if (ioc->combined_reply_queue) 8101 writel((reply_q->msix_index & 7)<< 8102 MPI2_RPHI_MSIX_INDEX_SHIFT, 8103 ioc->replyPostRegisterIndex[reply_q->msix_index/8]); 8104 else 8105 writel(reply_q->msix_index << 8106 MPI2_RPHI_MSIX_INDEX_SHIFT, 8107 &ioc->chip->ReplyPostHostIndex); 8108 8109 if (!_base_is_controller_msix_enabled(ioc)) 8110 goto skip_init_reply_post_host_index; 8111 } 8112 8113 skip_init_reply_post_host_index: 8114 8115 mpt3sas_base_unmask_interrupts(ioc); 8116 8117 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 8118 r = _base_display_fwpkg_version(ioc); 8119 if (r) 8120 return r; 8121 } 8122 8123 r = _base_static_config_pages(ioc); 8124 if (r) 8125 return r; 8126 8127 r = _base_event_notification(ioc); 8128 if (r) 8129 return r; 8130 8131 if (!ioc->shost_recovery) { 8132 8133 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier 8134 == 0x80) { 8135 hide_flag = (u8) ( 8136 le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) & 8137 MFG_PAGE10_HIDE_SSDS_MASK); 8138 if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK) 8139 ioc->mfg_pg10_hide_flag = hide_flag; 8140 } 8141 8142 ioc->wait_for_discovery_to_complete = 8143 _base_determine_wait_on_discovery(ioc); 8144 8145 return r; /* scan_start and scan_finished support */ 8146 } 8147 8148 r = _base_send_port_enable(ioc); 8149 if (r) 8150 return r; 8151 8152 return r; 8153 } 8154 8155 /** 8156 * mpt3sas_base_free_resources - free resources controller resources 8157 * @ioc: per adapter object 8158 */ 8159 void 8160 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc) 8161 { 8162 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 8163 8164 /* synchronizing freeing resource with pci_access_mutex lock */ 8165 mutex_lock(&ioc->pci_access_mutex); 8166 if (ioc->chip_phys && ioc->chip) { 8167 mpt3sas_base_mask_interrupts(ioc); 8168 ioc->shost_recovery = 1; 8169 mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET); 8170 ioc->shost_recovery = 0; 8171 } 8172 8173 mpt3sas_base_unmap_resources(ioc); 8174 mutex_unlock(&ioc->pci_access_mutex); 8175 return; 8176 } 8177 8178 /** 8179 * mpt3sas_base_attach - attach controller instance 8180 * @ioc: per adapter object 8181 * 8182 * Return: 0 for success, non-zero for failure. 8183 */ 8184 int 8185 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc) 8186 { 8187 int r, i, rc; 8188 int cpu_id, last_cpu_id = 0; 8189 8190 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 8191 8192 /* setup cpu_msix_table */ 8193 ioc->cpu_count = num_online_cpus(); 8194 for_each_online_cpu(cpu_id) 8195 last_cpu_id = cpu_id; 8196 ioc->cpu_msix_table_sz = last_cpu_id + 1; 8197 ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL); 8198 ioc->reply_queue_count = 1; 8199 if (!ioc->cpu_msix_table) { 8200 ioc_info(ioc, "Allocation for cpu_msix_table failed!!!\n"); 8201 r = -ENOMEM; 8202 goto out_free_resources; 8203 } 8204 8205 if (ioc->is_warpdrive) { 8206 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz, 8207 sizeof(resource_size_t *), GFP_KERNEL); 8208 if (!ioc->reply_post_host_index) { 8209 ioc_info(ioc, "Allocation for reply_post_host_index failed!!!\n"); 8210 r = -ENOMEM; 8211 goto out_free_resources; 8212 } 8213 } 8214 8215 ioc->smp_affinity_enable = smp_affinity_enable; 8216 8217 ioc->rdpq_array_enable_assigned = 0; 8218 ioc->use_32bit_dma = false; 8219 ioc->dma_mask = 64; 8220 if (ioc->is_aero_ioc) 8221 ioc->base_readl = &_base_readl_aero; 8222 else 8223 ioc->base_readl = &_base_readl; 8224 r = mpt3sas_base_map_resources(ioc); 8225 if (r) 8226 goto out_free_resources; 8227 8228 pci_set_drvdata(ioc->pdev, ioc->shost); 8229 r = _base_get_ioc_facts(ioc); 8230 if (r) { 8231 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc); 8232 if (rc || (_base_get_ioc_facts(ioc))) 8233 goto out_free_resources; 8234 } 8235 8236 switch (ioc->hba_mpi_version_belonged) { 8237 case MPI2_VERSION: 8238 ioc->build_sg_scmd = &_base_build_sg_scmd; 8239 ioc->build_sg = &_base_build_sg; 8240 ioc->build_zero_len_sge = &_base_build_zero_len_sge; 8241 ioc->get_msix_index_for_smlio = &_base_get_msix_index; 8242 break; 8243 case MPI25_VERSION: 8244 case MPI26_VERSION: 8245 /* 8246 * In SAS3.0, 8247 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and 8248 * Target Status - all require the IEEE formatted scatter gather 8249 * elements. 8250 */ 8251 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee; 8252 ioc->build_sg = &_base_build_sg_ieee; 8253 ioc->build_nvme_prp = &_base_build_nvme_prp; 8254 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee; 8255 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t); 8256 if (ioc->high_iops_queues) 8257 ioc->get_msix_index_for_smlio = 8258 &_base_get_high_iops_msix_index; 8259 else 8260 ioc->get_msix_index_for_smlio = &_base_get_msix_index; 8261 break; 8262 } 8263 if (ioc->atomic_desc_capable) { 8264 ioc->put_smid_default = &_base_put_smid_default_atomic; 8265 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic; 8266 ioc->put_smid_fast_path = 8267 &_base_put_smid_fast_path_atomic; 8268 ioc->put_smid_hi_priority = 8269 &_base_put_smid_hi_priority_atomic; 8270 } else { 8271 ioc->put_smid_default = &_base_put_smid_default; 8272 ioc->put_smid_fast_path = &_base_put_smid_fast_path; 8273 ioc->put_smid_hi_priority = &_base_put_smid_hi_priority; 8274 if (ioc->is_mcpu_endpoint) 8275 ioc->put_smid_scsi_io = 8276 &_base_put_smid_mpi_ep_scsi_io; 8277 else 8278 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io; 8279 } 8280 /* 8281 * These function pointers for other requests that don't 8282 * the require IEEE scatter gather elements. 8283 * 8284 * For example Configuration Pages and SAS IOUNIT Control don't. 8285 */ 8286 ioc->build_sg_mpi = &_base_build_sg; 8287 ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge; 8288 8289 r = mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET); 8290 if (r) 8291 goto out_free_resources; 8292 8293 ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts, 8294 sizeof(struct mpt3sas_port_facts), GFP_KERNEL); 8295 if (!ioc->pfacts) { 8296 r = -ENOMEM; 8297 goto out_free_resources; 8298 } 8299 8300 for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) { 8301 r = _base_get_port_facts(ioc, i); 8302 if (r) { 8303 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc); 8304 if (rc || (_base_get_port_facts(ioc, i))) 8305 goto out_free_resources; 8306 } 8307 } 8308 8309 r = _base_allocate_memory_pools(ioc); 8310 if (r) 8311 goto out_free_resources; 8312 8313 if (irqpoll_weight > 0) 8314 ioc->thresh_hold = irqpoll_weight; 8315 else 8316 ioc->thresh_hold = ioc->hba_queue_depth/4; 8317 8318 _base_init_irqpolls(ioc); 8319 init_waitqueue_head(&ioc->reset_wq); 8320 8321 /* allocate memory pd handle bitmask list */ 8322 ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8); 8323 if (ioc->facts.MaxDevHandle % 8) 8324 ioc->pd_handles_sz++; 8325 ioc->pd_handles = kzalloc(ioc->pd_handles_sz, 8326 GFP_KERNEL); 8327 if (!ioc->pd_handles) { 8328 r = -ENOMEM; 8329 goto out_free_resources; 8330 } 8331 ioc->blocking_handles = kzalloc(ioc->pd_handles_sz, 8332 GFP_KERNEL); 8333 if (!ioc->blocking_handles) { 8334 r = -ENOMEM; 8335 goto out_free_resources; 8336 } 8337 8338 /* allocate memory for pending OS device add list */ 8339 ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8); 8340 if (ioc->facts.MaxDevHandle % 8) 8341 ioc->pend_os_device_add_sz++; 8342 ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz, 8343 GFP_KERNEL); 8344 if (!ioc->pend_os_device_add) { 8345 r = -ENOMEM; 8346 goto out_free_resources; 8347 } 8348 8349 ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz; 8350 ioc->device_remove_in_progress = 8351 kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL); 8352 if (!ioc->device_remove_in_progress) { 8353 r = -ENOMEM; 8354 goto out_free_resources; 8355 } 8356 8357 ioc->fwfault_debug = mpt3sas_fwfault_debug; 8358 8359 /* base internal command bits */ 8360 mutex_init(&ioc->base_cmds.mutex); 8361 ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 8362 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 8363 8364 /* port_enable command bits */ 8365 ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 8366 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED; 8367 8368 /* transport internal command bits */ 8369 ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 8370 ioc->transport_cmds.status = MPT3_CMD_NOT_USED; 8371 mutex_init(&ioc->transport_cmds.mutex); 8372 8373 /* scsih internal command bits */ 8374 ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 8375 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED; 8376 mutex_init(&ioc->scsih_cmds.mutex); 8377 8378 /* task management internal command bits */ 8379 ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 8380 ioc->tm_cmds.status = MPT3_CMD_NOT_USED; 8381 mutex_init(&ioc->tm_cmds.mutex); 8382 8383 /* config page internal command bits */ 8384 ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 8385 ioc->config_cmds.status = MPT3_CMD_NOT_USED; 8386 mutex_init(&ioc->config_cmds.mutex); 8387 8388 /* ctl module internal command bits */ 8389 ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 8390 ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL); 8391 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED; 8392 mutex_init(&ioc->ctl_cmds.mutex); 8393 8394 if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply || 8395 !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply || 8396 !ioc->tm_cmds.reply || !ioc->config_cmds.reply || 8397 !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) { 8398 r = -ENOMEM; 8399 goto out_free_resources; 8400 } 8401 8402 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 8403 ioc->event_masks[i] = -1; 8404 8405 /* here we enable the events we care about */ 8406 _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY); 8407 _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE); 8408 _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST); 8409 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE); 8410 _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE); 8411 _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST); 8412 _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME); 8413 _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK); 8414 _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS); 8415 _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED); 8416 _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD); 8417 _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION); 8418 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR); 8419 if (ioc->hba_mpi_version_belonged == MPI26_VERSION) { 8420 if (ioc->is_gen35_ioc) { 8421 _base_unmask_events(ioc, 8422 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE); 8423 _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION); 8424 _base_unmask_events(ioc, 8425 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST); 8426 } 8427 } 8428 r = _base_make_ioc_operational(ioc); 8429 if (r == -EAGAIN) { 8430 r = _base_make_ioc_operational(ioc); 8431 if (r) 8432 goto out_free_resources; 8433 } 8434 8435 /* 8436 * Copy current copy of IOCFacts in prev_fw_facts 8437 * and it will be used during online firmware upgrade. 8438 */ 8439 memcpy(&ioc->prev_fw_facts, &ioc->facts, 8440 sizeof(struct mpt3sas_facts)); 8441 8442 ioc->non_operational_loop = 0; 8443 ioc->ioc_coredump_loop = 0; 8444 ioc->got_task_abort_from_ioctl = 0; 8445 return 0; 8446 8447 out_free_resources: 8448 8449 ioc->remove_host = 1; 8450 8451 mpt3sas_base_free_resources(ioc); 8452 _base_release_memory_pools(ioc); 8453 pci_set_drvdata(ioc->pdev, NULL); 8454 kfree(ioc->cpu_msix_table); 8455 if (ioc->is_warpdrive) 8456 kfree(ioc->reply_post_host_index); 8457 kfree(ioc->pd_handles); 8458 kfree(ioc->blocking_handles); 8459 kfree(ioc->device_remove_in_progress); 8460 kfree(ioc->pend_os_device_add); 8461 kfree(ioc->tm_cmds.reply); 8462 kfree(ioc->transport_cmds.reply); 8463 kfree(ioc->scsih_cmds.reply); 8464 kfree(ioc->config_cmds.reply); 8465 kfree(ioc->base_cmds.reply); 8466 kfree(ioc->port_enable_cmds.reply); 8467 kfree(ioc->ctl_cmds.reply); 8468 kfree(ioc->ctl_cmds.sense); 8469 kfree(ioc->pfacts); 8470 ioc->ctl_cmds.reply = NULL; 8471 ioc->base_cmds.reply = NULL; 8472 ioc->tm_cmds.reply = NULL; 8473 ioc->scsih_cmds.reply = NULL; 8474 ioc->transport_cmds.reply = NULL; 8475 ioc->config_cmds.reply = NULL; 8476 ioc->pfacts = NULL; 8477 return r; 8478 } 8479 8480 8481 /** 8482 * mpt3sas_base_detach - remove controller instance 8483 * @ioc: per adapter object 8484 */ 8485 void 8486 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc) 8487 { 8488 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 8489 8490 mpt3sas_base_stop_watchdog(ioc); 8491 mpt3sas_base_free_resources(ioc); 8492 _base_release_memory_pools(ioc); 8493 mpt3sas_free_enclosure_list(ioc); 8494 pci_set_drvdata(ioc->pdev, NULL); 8495 kfree(ioc->cpu_msix_table); 8496 if (ioc->is_warpdrive) 8497 kfree(ioc->reply_post_host_index); 8498 kfree(ioc->pd_handles); 8499 kfree(ioc->blocking_handles); 8500 kfree(ioc->device_remove_in_progress); 8501 kfree(ioc->pend_os_device_add); 8502 kfree(ioc->pfacts); 8503 kfree(ioc->ctl_cmds.reply); 8504 kfree(ioc->ctl_cmds.sense); 8505 kfree(ioc->base_cmds.reply); 8506 kfree(ioc->port_enable_cmds.reply); 8507 kfree(ioc->tm_cmds.reply); 8508 kfree(ioc->transport_cmds.reply); 8509 kfree(ioc->scsih_cmds.reply); 8510 kfree(ioc->config_cmds.reply); 8511 } 8512 8513 /** 8514 * _base_pre_reset_handler - pre reset handler 8515 * @ioc: per adapter object 8516 */ 8517 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc) 8518 { 8519 mpt3sas_scsih_pre_reset_handler(ioc); 8520 mpt3sas_ctl_pre_reset_handler(ioc); 8521 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__)); 8522 } 8523 8524 /** 8525 * _base_clear_outstanding_mpt_commands - clears outstanding mpt commands 8526 * @ioc: per adapter object 8527 */ 8528 static void 8529 _base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER *ioc) 8530 { 8531 dtmprintk(ioc, 8532 ioc_info(ioc, "%s: clear outstanding mpt cmds\n", __func__)); 8533 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) { 8534 ioc->transport_cmds.status |= MPT3_CMD_RESET; 8535 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid); 8536 complete(&ioc->transport_cmds.done); 8537 } 8538 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 8539 ioc->base_cmds.status |= MPT3_CMD_RESET; 8540 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid); 8541 complete(&ioc->base_cmds.done); 8542 } 8543 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 8544 ioc->port_enable_failed = 1; 8545 ioc->port_enable_cmds.status |= MPT3_CMD_RESET; 8546 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid); 8547 if (ioc->is_driver_loading) { 8548 ioc->start_scan_failed = 8549 MPI2_IOCSTATUS_INTERNAL_ERROR; 8550 ioc->start_scan = 0; 8551 } else { 8552 complete(&ioc->port_enable_cmds.done); 8553 } 8554 } 8555 if (ioc->config_cmds.status & MPT3_CMD_PENDING) { 8556 ioc->config_cmds.status |= MPT3_CMD_RESET; 8557 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid); 8558 ioc->config_cmds.smid = USHRT_MAX; 8559 complete(&ioc->config_cmds.done); 8560 } 8561 } 8562 8563 /** 8564 * _base_clear_outstanding_commands - clear all outstanding commands 8565 * @ioc: per adapter object 8566 */ 8567 static void _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc) 8568 { 8569 mpt3sas_scsih_clear_outstanding_scsi_tm_commands(ioc); 8570 mpt3sas_ctl_clear_outstanding_ioctls(ioc); 8571 _base_clear_outstanding_mpt_commands(ioc); 8572 } 8573 8574 /** 8575 * _base_reset_done_handler - reset done handler 8576 * @ioc: per adapter object 8577 */ 8578 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc) 8579 { 8580 mpt3sas_scsih_reset_done_handler(ioc); 8581 mpt3sas_ctl_reset_done_handler(ioc); 8582 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__)); 8583 } 8584 8585 /** 8586 * mpt3sas_wait_for_commands_to_complete - reset controller 8587 * @ioc: Pointer to MPT_ADAPTER structure 8588 * 8589 * This function is waiting 10s for all pending commands to complete 8590 * prior to putting controller in reset. 8591 */ 8592 void 8593 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc) 8594 { 8595 u32 ioc_state; 8596 8597 ioc->pending_io_count = 0; 8598 8599 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 8600 if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) 8601 return; 8602 8603 /* pending command count */ 8604 ioc->pending_io_count = scsi_host_busy(ioc->shost); 8605 8606 if (!ioc->pending_io_count) 8607 return; 8608 8609 /* wait for pending commands to complete */ 8610 wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ); 8611 } 8612 8613 /** 8614 * _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts 8615 * attributes during online firmware upgrade and update the corresponding 8616 * IOC variables accordingly. 8617 * 8618 * @ioc: Pointer to MPT_ADAPTER structure 8619 */ 8620 static int 8621 _base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc) 8622 { 8623 u16 pd_handles_sz; 8624 void *pd_handles = NULL, *blocking_handles = NULL; 8625 void *pend_os_device_add = NULL, *device_remove_in_progress = NULL; 8626 struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts; 8627 8628 if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle) { 8629 pd_handles_sz = (ioc->facts.MaxDevHandle / 8); 8630 if (ioc->facts.MaxDevHandle % 8) 8631 pd_handles_sz++; 8632 8633 pd_handles = krealloc(ioc->pd_handles, pd_handles_sz, 8634 GFP_KERNEL); 8635 if (!pd_handles) { 8636 ioc_info(ioc, 8637 "Unable to allocate the memory for pd_handles of sz: %d\n", 8638 pd_handles_sz); 8639 return -ENOMEM; 8640 } 8641 memset(pd_handles + ioc->pd_handles_sz, 0, 8642 (pd_handles_sz - ioc->pd_handles_sz)); 8643 ioc->pd_handles = pd_handles; 8644 8645 blocking_handles = krealloc(ioc->blocking_handles, 8646 pd_handles_sz, GFP_KERNEL); 8647 if (!blocking_handles) { 8648 ioc_info(ioc, 8649 "Unable to allocate the memory for " 8650 "blocking_handles of sz: %d\n", 8651 pd_handles_sz); 8652 return -ENOMEM; 8653 } 8654 memset(blocking_handles + ioc->pd_handles_sz, 0, 8655 (pd_handles_sz - ioc->pd_handles_sz)); 8656 ioc->blocking_handles = blocking_handles; 8657 ioc->pd_handles_sz = pd_handles_sz; 8658 8659 pend_os_device_add = krealloc(ioc->pend_os_device_add, 8660 pd_handles_sz, GFP_KERNEL); 8661 if (!pend_os_device_add) { 8662 ioc_info(ioc, 8663 "Unable to allocate the memory for pend_os_device_add of sz: %d\n", 8664 pd_handles_sz); 8665 return -ENOMEM; 8666 } 8667 memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0, 8668 (pd_handles_sz - ioc->pend_os_device_add_sz)); 8669 ioc->pend_os_device_add = pend_os_device_add; 8670 ioc->pend_os_device_add_sz = pd_handles_sz; 8671 8672 device_remove_in_progress = krealloc( 8673 ioc->device_remove_in_progress, pd_handles_sz, GFP_KERNEL); 8674 if (!device_remove_in_progress) { 8675 ioc_info(ioc, 8676 "Unable to allocate the memory for " 8677 "device_remove_in_progress of sz: %d\n " 8678 , pd_handles_sz); 8679 return -ENOMEM; 8680 } 8681 memset(device_remove_in_progress + 8682 ioc->device_remove_in_progress_sz, 0, 8683 (pd_handles_sz - ioc->device_remove_in_progress_sz)); 8684 ioc->device_remove_in_progress = device_remove_in_progress; 8685 ioc->device_remove_in_progress_sz = pd_handles_sz; 8686 } 8687 8688 memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts)); 8689 return 0; 8690 } 8691 8692 /** 8693 * mpt3sas_base_hard_reset_handler - reset controller 8694 * @ioc: Pointer to MPT_ADAPTER structure 8695 * @type: FORCE_BIG_HAMMER or SOFT_RESET 8696 * 8697 * Return: 0 for success, non-zero for failure. 8698 */ 8699 int 8700 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc, 8701 enum reset_type type) 8702 { 8703 int r; 8704 unsigned long flags; 8705 u32 ioc_state; 8706 u8 is_fault = 0, is_trigger = 0; 8707 8708 dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__)); 8709 8710 if (ioc->pci_error_recovery) { 8711 ioc_err(ioc, "%s: pci error recovery reset\n", __func__); 8712 r = 0; 8713 goto out_unlocked; 8714 } 8715 8716 if (mpt3sas_fwfault_debug) 8717 mpt3sas_halt_firmware(ioc); 8718 8719 /* wait for an active reset in progress to complete */ 8720 mutex_lock(&ioc->reset_in_progress_mutex); 8721 8722 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 8723 ioc->shost_recovery = 1; 8724 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 8725 8726 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 8727 MPT3_DIAG_BUFFER_IS_REGISTERED) && 8728 (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 8729 MPT3_DIAG_BUFFER_IS_RELEASED))) { 8730 is_trigger = 1; 8731 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 8732 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT || 8733 (ioc_state & MPI2_IOC_STATE_MASK) == 8734 MPI2_IOC_STATE_COREDUMP) { 8735 is_fault = 1; 8736 ioc->htb_rel.trigger_info_dwords[1] = 8737 (ioc_state & MPI2_DOORBELL_DATA_MASK); 8738 } 8739 } 8740 _base_pre_reset_handler(ioc); 8741 mpt3sas_wait_for_commands_to_complete(ioc); 8742 mpt3sas_base_mask_interrupts(ioc); 8743 mpt3sas_base_pause_mq_polling(ioc); 8744 r = mpt3sas_base_make_ioc_ready(ioc, type); 8745 if (r) 8746 goto out; 8747 _base_clear_outstanding_commands(ioc); 8748 8749 /* If this hard reset is called while port enable is active, then 8750 * there is no reason to call make_ioc_operational 8751 */ 8752 if (ioc->is_driver_loading && ioc->port_enable_failed) { 8753 ioc->remove_host = 1; 8754 r = -EFAULT; 8755 goto out; 8756 } 8757 r = _base_get_ioc_facts(ioc); 8758 if (r) 8759 goto out; 8760 8761 r = _base_check_ioc_facts_changes(ioc); 8762 if (r) { 8763 ioc_info(ioc, 8764 "Some of the parameters got changed in this new firmware" 8765 " image and it requires system reboot\n"); 8766 goto out; 8767 } 8768 if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable) 8769 panic("%s: Issue occurred with flashing controller firmware." 8770 "Please reboot the system and ensure that the correct" 8771 " firmware version is running\n", ioc->name); 8772 8773 r = _base_make_ioc_operational(ioc); 8774 if (!r) 8775 _base_reset_done_handler(ioc); 8776 8777 out: 8778 ioc_info(ioc, "%s: %s\n", __func__, r == 0 ? "SUCCESS" : "FAILED"); 8779 8780 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 8781 ioc->shost_recovery = 0; 8782 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 8783 ioc->ioc_reset_count++; 8784 mutex_unlock(&ioc->reset_in_progress_mutex); 8785 mpt3sas_base_resume_mq_polling(ioc); 8786 8787 out_unlocked: 8788 if ((r == 0) && is_trigger) { 8789 if (is_fault) 8790 mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT); 8791 else 8792 mpt3sas_trigger_master(ioc, 8793 MASTER_TRIGGER_ADAPTER_RESET); 8794 } 8795 dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__)); 8796 return r; 8797 } 8798