1 /* 2 * This is the Fusion MPT base driver providing common API layer interface 3 * for access to MPT (Message Passing Technology) firmware. 4 * 5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c 6 * Copyright (C) 2012-2014 LSI Corporation 7 * Copyright (C) 2013-2014 Avago Technologies 8 * (mailto: MPT-FusionLinux.pdl@avagotech.com) 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License 12 * as published by the Free Software Foundation; either version 2 13 * of the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * NO WARRANTY 21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR 22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT 23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, 24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is 25 * solely responsible for determining the appropriateness of using and 26 * distributing the Program and assumes all risks associated with its 27 * exercise of rights under this Agreement, including but not limited to 28 * the risks and costs of program errors, damage to or loss of data, 29 * programs or equipment, and unavailability or interruption of operations. 30 31 * DISCLAIMER OF LIABILITY 32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY 33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND 35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED 38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES 39 40 * You should have received a copy of the GNU General Public License 41 * along with this program; if not, write to the Free Software 42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, 43 * USA. 44 */ 45 46 #include <linux/kernel.h> 47 #include <linux/module.h> 48 #include <linux/errno.h> 49 #include <linux/init.h> 50 #include <linux/slab.h> 51 #include <linux/types.h> 52 #include <linux/pci.h> 53 #include <linux/kdev_t.h> 54 #include <linux/blkdev.h> 55 #include <linux/delay.h> 56 #include <linux/interrupt.h> 57 #include <linux/dma-mapping.h> 58 #include <linux/io.h> 59 #include <linux/time.h> 60 #include <linux/ktime.h> 61 #include <linux/kthread.h> 62 #include <asm/page.h> /* To get host page size per arch */ 63 #include <linux/aer.h> 64 65 66 #include "mpt3sas_base.h" 67 68 static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS]; 69 70 71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */ 72 73 /* maximum controller queue depth */ 74 #define MAX_HBA_QUEUE_DEPTH 30000 75 #define MAX_CHAIN_DEPTH 100000 76 static int max_queue_depth = -1; 77 module_param(max_queue_depth, int, 0444); 78 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth "); 79 80 static int max_sgl_entries = -1; 81 module_param(max_sgl_entries, int, 0444); 82 MODULE_PARM_DESC(max_sgl_entries, " max sg entries "); 83 84 static int msix_disable = -1; 85 module_param(msix_disable, int, 0444); 86 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)"); 87 88 static int smp_affinity_enable = 1; 89 module_param(smp_affinity_enable, int, 0444); 90 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)"); 91 92 static int max_msix_vectors = -1; 93 module_param(max_msix_vectors, int, 0444); 94 MODULE_PARM_DESC(max_msix_vectors, 95 " max msix vectors"); 96 97 static int irqpoll_weight = -1; 98 module_param(irqpoll_weight, int, 0444); 99 MODULE_PARM_DESC(irqpoll_weight, 100 "irq poll weight (default= one fourth of HBA queue depth)"); 101 102 static int mpt3sas_fwfault_debug; 103 MODULE_PARM_DESC(mpt3sas_fwfault_debug, 104 " enable detection of firmware fault and halt firmware - (default=0)"); 105 106 static int perf_mode = -1; 107 module_param(perf_mode, int, 0444); 108 MODULE_PARM_DESC(perf_mode, 109 "Performance mode (only for Aero/Sea Generation), options:\n\t\t" 110 "0 - balanced: high iops mode is enabled &\n\t\t" 111 "interrupt coalescing is enabled only on high iops queues,\n\t\t" 112 "1 - iops: high iops mode is disabled &\n\t\t" 113 "interrupt coalescing is enabled on all queues,\n\t\t" 114 "2 - latency: high iops mode is disabled &\n\t\t" 115 "interrupt coalescing is enabled on all queues with timeout value 0xA,\n" 116 "\t\tdefault - default perf_mode is 'balanced'" 117 ); 118 119 enum mpt3sas_perf_mode { 120 MPT_PERF_MODE_DEFAULT = -1, 121 MPT_PERF_MODE_BALANCED = 0, 122 MPT_PERF_MODE_IOPS = 1, 123 MPT_PERF_MODE_LATENCY = 2, 124 }; 125 126 static int 127 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, 128 u32 ioc_state, int timeout); 129 static int 130 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc); 131 static void 132 _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc); 133 134 /** 135 * mpt3sas_base_check_cmd_timeout - Function 136 * to check timeout and command termination due 137 * to Host reset. 138 * 139 * @ioc: per adapter object. 140 * @status: Status of issued command. 141 * @mpi_request:mf request pointer. 142 * @sz: size of buffer. 143 * 144 * @Returns - 1/0 Reset to be done or Not 145 */ 146 u8 147 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc, 148 u8 status, void *mpi_request, int sz) 149 { 150 u8 issue_reset = 0; 151 152 if (!(status & MPT3_CMD_RESET)) 153 issue_reset = 1; 154 155 ioc_err(ioc, "Command %s\n", 156 issue_reset == 0 ? "terminated due to Host Reset" : "Timeout"); 157 _debug_dump_mf(mpi_request, sz); 158 159 return issue_reset; 160 } 161 162 /** 163 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug. 164 * @val: ? 165 * @kp: ? 166 * 167 * Return: ? 168 */ 169 static int 170 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp) 171 { 172 int ret = param_set_int(val, kp); 173 struct MPT3SAS_ADAPTER *ioc; 174 175 if (ret) 176 return ret; 177 178 /* global ioc spinlock to protect controller list on list operations */ 179 pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug); 180 spin_lock(&gioc_lock); 181 list_for_each_entry(ioc, &mpt3sas_ioc_list, list) 182 ioc->fwfault_debug = mpt3sas_fwfault_debug; 183 spin_unlock(&gioc_lock); 184 return 0; 185 } 186 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug, 187 param_get_int, &mpt3sas_fwfault_debug, 0644); 188 189 /** 190 * _base_readl_aero - retry readl for max three times. 191 * @addr: MPT Fusion system interface register address 192 * 193 * Retry the readl() for max three times if it gets zero value 194 * while reading the system interface register. 195 */ 196 static inline u32 197 _base_readl_aero(const volatile void __iomem *addr) 198 { 199 u32 i = 0, ret_val; 200 201 do { 202 ret_val = readl(addr); 203 i++; 204 } while (ret_val == 0 && i < 3); 205 206 return ret_val; 207 } 208 209 static inline u32 210 _base_readl(const volatile void __iomem *addr) 211 { 212 return readl(addr); 213 } 214 215 /** 216 * _base_clone_reply_to_sys_mem - copies reply to reply free iomem 217 * in BAR0 space. 218 * 219 * @ioc: per adapter object 220 * @reply: reply message frame(lower 32bit addr) 221 * @index: System request message index. 222 */ 223 static void 224 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply, 225 u32 index) 226 { 227 /* 228 * 256 is offset within sys register. 229 * 256 offset MPI frame starts. Max MPI frame supported is 32. 230 * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts 231 */ 232 u16 cmd_credit = ioc->facts.RequestCredit + 1; 233 void __iomem *reply_free_iomem = (void __iomem *)ioc->chip + 234 MPI_FRAME_START_OFFSET + 235 (cmd_credit * ioc->request_sz) + (index * sizeof(u32)); 236 237 writel(reply, reply_free_iomem); 238 } 239 240 /** 241 * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames 242 * to system/BAR0 region. 243 * 244 * @dst_iomem: Pointer to the destination location in BAR0 space. 245 * @src: Pointer to the Source data. 246 * @size: Size of data to be copied. 247 */ 248 static void 249 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size) 250 { 251 int i; 252 u32 *src_virt_mem = (u32 *)src; 253 254 for (i = 0; i < size/4; i++) 255 writel((u32)src_virt_mem[i], 256 (void __iomem *)dst_iomem + (i * 4)); 257 } 258 259 /** 260 * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region 261 * 262 * @dst_iomem: Pointer to the destination location in BAR0 space. 263 * @src: Pointer to the Source data. 264 * @size: Size of data to be copied. 265 */ 266 static void 267 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size) 268 { 269 int i; 270 u32 *src_virt_mem = (u32 *)(src); 271 272 for (i = 0; i < size/4; i++) 273 writel((u32)src_virt_mem[i], 274 (void __iomem *)dst_iomem + (i * 4)); 275 } 276 277 /** 278 * _base_get_chain - Calculates and Returns virtual chain address 279 * for the provided smid in BAR0 space. 280 * 281 * @ioc: per adapter object 282 * @smid: system request message index 283 * @sge_chain_count: Scatter gather chain count. 284 * 285 * Return: the chain address. 286 */ 287 static inline void __iomem* 288 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid, 289 u8 sge_chain_count) 290 { 291 void __iomem *base_chain, *chain_virt; 292 u16 cmd_credit = ioc->facts.RequestCredit + 1; 293 294 base_chain = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET + 295 (cmd_credit * ioc->request_sz) + 296 REPLY_FREE_POOL_SIZE; 297 chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth * 298 ioc->request_sz) + (sge_chain_count * ioc->request_sz); 299 return chain_virt; 300 } 301 302 /** 303 * _base_get_chain_phys - Calculates and Returns physical address 304 * in BAR0 for scatter gather chains, for 305 * the provided smid. 306 * 307 * @ioc: per adapter object 308 * @smid: system request message index 309 * @sge_chain_count: Scatter gather chain count. 310 * 311 * Return: Physical chain address. 312 */ 313 static inline phys_addr_t 314 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid, 315 u8 sge_chain_count) 316 { 317 phys_addr_t base_chain_phys, chain_phys; 318 u16 cmd_credit = ioc->facts.RequestCredit + 1; 319 320 base_chain_phys = ioc->chip_phys + MPI_FRAME_START_OFFSET + 321 (cmd_credit * ioc->request_sz) + 322 REPLY_FREE_POOL_SIZE; 323 chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth * 324 ioc->request_sz) + (sge_chain_count * ioc->request_sz); 325 return chain_phys; 326 } 327 328 /** 329 * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host 330 * buffer address for the provided smid. 331 * (Each smid can have 64K starts from 17024) 332 * 333 * @ioc: per adapter object 334 * @smid: system request message index 335 * 336 * Return: Pointer to buffer location in BAR0. 337 */ 338 339 static void __iomem * 340 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid) 341 { 342 u16 cmd_credit = ioc->facts.RequestCredit + 1; 343 // Added extra 1 to reach end of chain. 344 void __iomem *chain_end = _base_get_chain(ioc, 345 cmd_credit + 1, 346 ioc->facts.MaxChainDepth); 347 return chain_end + (smid * 64 * 1024); 348 } 349 350 /** 351 * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped 352 * Host buffer Physical address for the provided smid. 353 * (Each smid can have 64K starts from 17024) 354 * 355 * @ioc: per adapter object 356 * @smid: system request message index 357 * 358 * Return: Pointer to buffer location in BAR0. 359 */ 360 static phys_addr_t 361 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid) 362 { 363 u16 cmd_credit = ioc->facts.RequestCredit + 1; 364 phys_addr_t chain_end_phys = _base_get_chain_phys(ioc, 365 cmd_credit + 1, 366 ioc->facts.MaxChainDepth); 367 return chain_end_phys + (smid * 64 * 1024); 368 } 369 370 /** 371 * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain 372 * lookup list and Provides chain_buffer 373 * address for the matching dma address. 374 * (Each smid can have 64K starts from 17024) 375 * 376 * @ioc: per adapter object 377 * @chain_buffer_dma: Chain buffer dma address. 378 * 379 * Return: Pointer to chain buffer. Or Null on Failure. 380 */ 381 static void * 382 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc, 383 dma_addr_t chain_buffer_dma) 384 { 385 u16 index, j; 386 struct chain_tracker *ct; 387 388 for (index = 0; index < ioc->scsiio_depth; index++) { 389 for (j = 0; j < ioc->chains_needed_per_io; j++) { 390 ct = &ioc->chain_lookup[index].chains_per_smid[j]; 391 if (ct && ct->chain_buffer_dma == chain_buffer_dma) 392 return ct->chain_buffer; 393 } 394 } 395 ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n"); 396 return NULL; 397 } 398 399 /** 400 * _clone_sg_entries - MPI EP's scsiio and config requests 401 * are handled here. Base function for 402 * double buffering, before submitting 403 * the requests. 404 * 405 * @ioc: per adapter object. 406 * @mpi_request: mf request pointer. 407 * @smid: system request message index. 408 */ 409 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc, 410 void *mpi_request, u16 smid) 411 { 412 Mpi2SGESimple32_t *sgel, *sgel_next; 413 u32 sgl_flags, sge_chain_count = 0; 414 bool is_write = false; 415 u16 i = 0; 416 void __iomem *buffer_iomem; 417 phys_addr_t buffer_iomem_phys; 418 void __iomem *buff_ptr; 419 phys_addr_t buff_ptr_phys; 420 void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO]; 421 void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO]; 422 phys_addr_t dst_addr_phys; 423 MPI2RequestHeader_t *request_hdr; 424 struct scsi_cmnd *scmd; 425 struct scatterlist *sg_scmd = NULL; 426 int is_scsiio_req = 0; 427 428 request_hdr = (MPI2RequestHeader_t *) mpi_request; 429 430 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) { 431 Mpi25SCSIIORequest_t *scsiio_request = 432 (Mpi25SCSIIORequest_t *)mpi_request; 433 sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL; 434 is_scsiio_req = 1; 435 } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) { 436 Mpi2ConfigRequest_t *config_req = 437 (Mpi2ConfigRequest_t *)mpi_request; 438 sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE; 439 } else 440 return; 441 442 /* From smid we can get scsi_cmd, once we have sg_scmd, 443 * we just need to get sg_virt and sg_next to get virual 444 * address associated with sgel->Address. 445 */ 446 447 if (is_scsiio_req) { 448 /* Get scsi_cmd using smid */ 449 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid); 450 if (scmd == NULL) { 451 ioc_err(ioc, "scmd is NULL\n"); 452 return; 453 } 454 455 /* Get sg_scmd from scmd provided */ 456 sg_scmd = scsi_sglist(scmd); 457 } 458 459 /* 460 * 0 - 255 System register 461 * 256 - 4352 MPI Frame. (This is based on maxCredit 32) 462 * 4352 - 4864 Reply_free pool (512 byte is reserved 463 * considering maxCredit 32. Reply need extra 464 * room, for mCPU case kept four times of 465 * maxCredit). 466 * 4864 - 17152 SGE chain element. (32cmd * 3 chain of 467 * 128 byte size = 12288) 468 * 17152 - x Host buffer mapped with smid. 469 * (Each smid can have 64K Max IO.) 470 * BAR0+Last 1K MSIX Addr and Data 471 * Total size in use 2113664 bytes of 4MB BAR0 472 */ 473 474 buffer_iomem = _base_get_buffer_bar0(ioc, smid); 475 buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid); 476 477 buff_ptr = buffer_iomem; 478 buff_ptr_phys = buffer_iomem_phys; 479 WARN_ON(buff_ptr_phys > U32_MAX); 480 481 if (le32_to_cpu(sgel->FlagsLength) & 482 (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT)) 483 is_write = true; 484 485 for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) { 486 487 sgl_flags = 488 (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT); 489 490 switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) { 491 case MPI2_SGE_FLAGS_CHAIN_ELEMENT: 492 /* 493 * Helper function which on passing 494 * chain_buffer_dma returns chain_buffer. Get 495 * the virtual address for sgel->Address 496 */ 497 sgel_next = 498 _base_get_chain_buffer_dma_to_chain_buffer(ioc, 499 le32_to_cpu(sgel->Address)); 500 if (sgel_next == NULL) 501 return; 502 /* 503 * This is coping 128 byte chain 504 * frame (not a host buffer) 505 */ 506 dst_chain_addr[sge_chain_count] = 507 _base_get_chain(ioc, 508 smid, sge_chain_count); 509 src_chain_addr[sge_chain_count] = 510 (void *) sgel_next; 511 dst_addr_phys = _base_get_chain_phys(ioc, 512 smid, sge_chain_count); 513 WARN_ON(dst_addr_phys > U32_MAX); 514 sgel->Address = 515 cpu_to_le32(lower_32_bits(dst_addr_phys)); 516 sgel = sgel_next; 517 sge_chain_count++; 518 break; 519 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT: 520 if (is_write) { 521 if (is_scsiio_req) { 522 _base_clone_to_sys_mem(buff_ptr, 523 sg_virt(sg_scmd), 524 (le32_to_cpu(sgel->FlagsLength) & 525 0x00ffffff)); 526 /* 527 * FIXME: this relies on a a zero 528 * PCI mem_offset. 529 */ 530 sgel->Address = 531 cpu_to_le32((u32)buff_ptr_phys); 532 } else { 533 _base_clone_to_sys_mem(buff_ptr, 534 ioc->config_vaddr, 535 (le32_to_cpu(sgel->FlagsLength) & 536 0x00ffffff)); 537 sgel->Address = 538 cpu_to_le32((u32)buff_ptr_phys); 539 } 540 } 541 buff_ptr += (le32_to_cpu(sgel->FlagsLength) & 542 0x00ffffff); 543 buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) & 544 0x00ffffff); 545 if ((le32_to_cpu(sgel->FlagsLength) & 546 (MPI2_SGE_FLAGS_END_OF_BUFFER 547 << MPI2_SGE_FLAGS_SHIFT))) 548 goto eob_clone_chain; 549 else { 550 /* 551 * Every single element in MPT will have 552 * associated sg_next. Better to sanity that 553 * sg_next is not NULL, but it will be a bug 554 * if it is null. 555 */ 556 if (is_scsiio_req) { 557 sg_scmd = sg_next(sg_scmd); 558 if (sg_scmd) 559 sgel++; 560 else 561 goto eob_clone_chain; 562 } 563 } 564 break; 565 } 566 } 567 568 eob_clone_chain: 569 for (i = 0; i < sge_chain_count; i++) { 570 if (is_scsiio_req) 571 _base_clone_to_sys_mem(dst_chain_addr[i], 572 src_chain_addr[i], ioc->request_sz); 573 } 574 } 575 576 /** 577 * mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc 578 * @arg: input argument, used to derive ioc 579 * 580 * Return: 581 * 0 if controller is removed from pci subsystem. 582 * -1 for other case. 583 */ 584 static int mpt3sas_remove_dead_ioc_func(void *arg) 585 { 586 struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg; 587 struct pci_dev *pdev; 588 589 if (!ioc) 590 return -1; 591 592 pdev = ioc->pdev; 593 if (!pdev) 594 return -1; 595 pci_stop_and_remove_bus_device_locked(pdev); 596 return 0; 597 } 598 599 /** 600 * _base_sync_drv_fw_timestamp - Sync Drive-Fw TimeStamp. 601 * @ioc: Per Adapter Object 602 * 603 * Return nothing. 604 */ 605 static void _base_sync_drv_fw_timestamp(struct MPT3SAS_ADAPTER *ioc) 606 { 607 Mpi26IoUnitControlRequest_t *mpi_request; 608 Mpi26IoUnitControlReply_t *mpi_reply; 609 u16 smid; 610 ktime_t current_time; 611 u64 TimeStamp = 0; 612 u8 issue_reset = 0; 613 614 mutex_lock(&ioc->scsih_cmds.mutex); 615 if (ioc->scsih_cmds.status != MPT3_CMD_NOT_USED) { 616 ioc_err(ioc, "scsih_cmd in use %s\n", __func__); 617 goto out; 618 } 619 ioc->scsih_cmds.status = MPT3_CMD_PENDING; 620 smid = mpt3sas_base_get_smid(ioc, ioc->scsih_cb_idx); 621 if (!smid) { 622 ioc_err(ioc, "Failed obtaining a smid %s\n", __func__); 623 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED; 624 goto out; 625 } 626 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 627 ioc->scsih_cmds.smid = smid; 628 memset(mpi_request, 0, sizeof(Mpi26IoUnitControlRequest_t)); 629 mpi_request->Function = MPI2_FUNCTION_IO_UNIT_CONTROL; 630 mpi_request->Operation = MPI26_CTRL_OP_SET_IOC_PARAMETER; 631 mpi_request->IOCParameter = MPI26_SET_IOC_PARAMETER_SYNC_TIMESTAMP; 632 current_time = ktime_get_real(); 633 TimeStamp = ktime_to_ms(current_time); 634 mpi_request->Reserved7 = cpu_to_le32(TimeStamp & 0xFFFFFFFF); 635 mpi_request->IOCParameterValue = cpu_to_le32(TimeStamp >> 32); 636 init_completion(&ioc->scsih_cmds.done); 637 ioc->put_smid_default(ioc, smid); 638 dinitprintk(ioc, ioc_info(ioc, 639 "Io Unit Control Sync TimeStamp (sending), @time %lld ms\n", 640 TimeStamp)); 641 wait_for_completion_timeout(&ioc->scsih_cmds.done, 642 MPT3SAS_TIMESYNC_TIMEOUT_SECONDS*HZ); 643 if (!(ioc->scsih_cmds.status & MPT3_CMD_COMPLETE)) { 644 mpt3sas_check_cmd_timeout(ioc, 645 ioc->scsih_cmds.status, mpi_request, 646 sizeof(Mpi2SasIoUnitControlRequest_t)/4, issue_reset); 647 goto issue_host_reset; 648 } 649 if (ioc->scsih_cmds.status & MPT3_CMD_REPLY_VALID) { 650 mpi_reply = ioc->scsih_cmds.reply; 651 dinitprintk(ioc, ioc_info(ioc, 652 "Io Unit Control sync timestamp (complete): ioc_status(0x%04x), loginfo(0x%08x)\n", 653 le16_to_cpu(mpi_reply->IOCStatus), 654 le32_to_cpu(mpi_reply->IOCLogInfo))); 655 } 656 issue_host_reset: 657 if (issue_reset) 658 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 659 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED; 660 out: 661 mutex_unlock(&ioc->scsih_cmds.mutex); 662 } 663 664 /** 665 * _base_fault_reset_work - workq handling ioc fault conditions 666 * @work: input argument, used to derive ioc 667 * 668 * Context: sleep. 669 */ 670 static void 671 _base_fault_reset_work(struct work_struct *work) 672 { 673 struct MPT3SAS_ADAPTER *ioc = 674 container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work); 675 unsigned long flags; 676 u32 doorbell; 677 int rc; 678 struct task_struct *p; 679 680 681 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 682 if ((ioc->shost_recovery && (ioc->ioc_coredump_loop == 0)) || 683 ioc->pci_error_recovery) 684 goto rearm_timer; 685 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 686 687 doorbell = mpt3sas_base_get_iocstate(ioc, 0); 688 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) { 689 ioc_err(ioc, "SAS host is non-operational !!!!\n"); 690 691 /* It may be possible that EEH recovery can resolve some of 692 * pci bus failure issues rather removing the dead ioc function 693 * by considering controller is in a non-operational state. So 694 * here priority is given to the EEH recovery. If it doesn't 695 * not resolve this issue, mpt3sas driver will consider this 696 * controller to non-operational state and remove the dead ioc 697 * function. 698 */ 699 if (ioc->non_operational_loop++ < 5) { 700 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, 701 flags); 702 goto rearm_timer; 703 } 704 705 /* 706 * Call _scsih_flush_pending_cmds callback so that we flush all 707 * pending commands back to OS. This call is required to aovid 708 * deadlock at block layer. Dead IOC will fail to do diag reset, 709 * and this call is safe since dead ioc will never return any 710 * command back from HW. 711 */ 712 ioc->schedule_dead_ioc_flush_running_cmds(ioc); 713 /* 714 * Set remove_host flag early since kernel thread will 715 * take some time to execute. 716 */ 717 ioc->remove_host = 1; 718 /*Remove the Dead Host */ 719 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc, 720 "%s_dead_ioc_%d", ioc->driver_name, ioc->id); 721 if (IS_ERR(p)) 722 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n", 723 __func__); 724 else 725 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n", 726 __func__); 727 return; /* don't rearm timer */ 728 } 729 730 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) { 731 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ? 732 ioc->manu_pg11.CoreDumpTOSec : 733 MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS; 734 735 timeout /= (FAULT_POLLING_INTERVAL/1000); 736 737 if (ioc->ioc_coredump_loop == 0) { 738 mpt3sas_print_coredump_info(ioc, 739 doorbell & MPI2_DOORBELL_DATA_MASK); 740 /* do not accept any IOs and disable the interrupts */ 741 spin_lock_irqsave( 742 &ioc->ioc_reset_in_progress_lock, flags); 743 ioc->shost_recovery = 1; 744 spin_unlock_irqrestore( 745 &ioc->ioc_reset_in_progress_lock, flags); 746 mpt3sas_base_mask_interrupts(ioc); 747 _base_clear_outstanding_commands(ioc); 748 } 749 750 ioc_info(ioc, "%s: CoreDump loop %d.", 751 __func__, ioc->ioc_coredump_loop); 752 753 /* Wait until CoreDump completes or times out */ 754 if (ioc->ioc_coredump_loop++ < timeout) { 755 spin_lock_irqsave( 756 &ioc->ioc_reset_in_progress_lock, flags); 757 goto rearm_timer; 758 } 759 } 760 761 if (ioc->ioc_coredump_loop) { 762 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_COREDUMP) 763 ioc_err(ioc, "%s: CoreDump completed. LoopCount: %d", 764 __func__, ioc->ioc_coredump_loop); 765 else 766 ioc_err(ioc, "%s: CoreDump Timed out. LoopCount: %d", 767 __func__, ioc->ioc_coredump_loop); 768 ioc->ioc_coredump_loop = MPT3SAS_COREDUMP_LOOP_DONE; 769 } 770 ioc->non_operational_loop = 0; 771 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) { 772 rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 773 ioc_warn(ioc, "%s: hard reset: %s\n", 774 __func__, rc == 0 ? "success" : "failed"); 775 doorbell = mpt3sas_base_get_iocstate(ioc, 0); 776 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 777 mpt3sas_print_fault_code(ioc, doorbell & 778 MPI2_DOORBELL_DATA_MASK); 779 } else if ((doorbell & MPI2_IOC_STATE_MASK) == 780 MPI2_IOC_STATE_COREDUMP) 781 mpt3sas_print_coredump_info(ioc, doorbell & 782 MPI2_DOORBELL_DATA_MASK); 783 if (rc && (doorbell & MPI2_IOC_STATE_MASK) != 784 MPI2_IOC_STATE_OPERATIONAL) 785 return; /* don't rearm timer */ 786 } 787 ioc->ioc_coredump_loop = 0; 788 if (ioc->time_sync_interval && 789 ++ioc->timestamp_update_count >= ioc->time_sync_interval) { 790 ioc->timestamp_update_count = 0; 791 _base_sync_drv_fw_timestamp(ioc); 792 } 793 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 794 rearm_timer: 795 if (ioc->fault_reset_work_q) 796 queue_delayed_work(ioc->fault_reset_work_q, 797 &ioc->fault_reset_work, 798 msecs_to_jiffies(FAULT_POLLING_INTERVAL)); 799 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 800 } 801 802 /** 803 * mpt3sas_base_start_watchdog - start the fault_reset_work_q 804 * @ioc: per adapter object 805 * 806 * Context: sleep. 807 */ 808 void 809 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc) 810 { 811 unsigned long flags; 812 813 if (ioc->fault_reset_work_q) 814 return; 815 816 ioc->timestamp_update_count = 0; 817 /* initialize fault polling */ 818 819 INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work); 820 snprintf(ioc->fault_reset_work_q_name, 821 sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status", 822 ioc->driver_name, ioc->id); 823 ioc->fault_reset_work_q = 824 create_singlethread_workqueue(ioc->fault_reset_work_q_name); 825 if (!ioc->fault_reset_work_q) { 826 ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__); 827 return; 828 } 829 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 830 if (ioc->fault_reset_work_q) 831 queue_delayed_work(ioc->fault_reset_work_q, 832 &ioc->fault_reset_work, 833 msecs_to_jiffies(FAULT_POLLING_INTERVAL)); 834 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 835 } 836 837 /** 838 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q 839 * @ioc: per adapter object 840 * 841 * Context: sleep. 842 */ 843 void 844 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc) 845 { 846 unsigned long flags; 847 struct workqueue_struct *wq; 848 849 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 850 wq = ioc->fault_reset_work_q; 851 ioc->fault_reset_work_q = NULL; 852 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 853 if (wq) { 854 if (!cancel_delayed_work_sync(&ioc->fault_reset_work)) 855 flush_workqueue(wq); 856 destroy_workqueue(wq); 857 } 858 } 859 860 /** 861 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code 862 * @ioc: per adapter object 863 * @fault_code: fault code 864 */ 865 void 866 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code) 867 { 868 ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code); 869 } 870 871 /** 872 * mpt3sas_base_coredump_info - verbose translation of firmware CoreDump state 873 * @ioc: per adapter object 874 * @fault_code: fault code 875 * 876 * Return nothing. 877 */ 878 void 879 mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code) 880 { 881 ioc_err(ioc, "coredump_state(0x%04x)!\n", fault_code); 882 } 883 884 /** 885 * mpt3sas_base_wait_for_coredump_completion - Wait until coredump 886 * completes or times out 887 * @ioc: per adapter object 888 * @caller: caller function name 889 * 890 * Returns 0 for success, non-zero for failure. 891 */ 892 int 893 mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER *ioc, 894 const char *caller) 895 { 896 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ? 897 ioc->manu_pg11.CoreDumpTOSec : 898 MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS; 899 900 int ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_FAULT, 901 timeout); 902 903 if (ioc_state) 904 ioc_err(ioc, 905 "%s: CoreDump timed out. (ioc_state=0x%x)\n", 906 caller, ioc_state); 907 else 908 ioc_info(ioc, 909 "%s: CoreDump completed. (ioc_state=0x%x)\n", 910 caller, ioc_state); 911 912 return ioc_state; 913 } 914 915 /** 916 * mpt3sas_halt_firmware - halt's mpt controller firmware 917 * @ioc: per adapter object 918 * 919 * For debugging timeout related issues. Writing 0xCOFFEE00 920 * to the doorbell register will halt controller firmware. With 921 * the purpose to stop both driver and firmware, the enduser can 922 * obtain a ring buffer from controller UART. 923 */ 924 void 925 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc) 926 { 927 u32 doorbell; 928 929 if (!ioc->fwfault_debug) 930 return; 931 932 dump_stack(); 933 934 doorbell = ioc->base_readl(&ioc->chip->Doorbell); 935 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 936 mpt3sas_print_fault_code(ioc, doorbell & 937 MPI2_DOORBELL_DATA_MASK); 938 } else if ((doorbell & MPI2_IOC_STATE_MASK) == 939 MPI2_IOC_STATE_COREDUMP) { 940 mpt3sas_print_coredump_info(ioc, doorbell & 941 MPI2_DOORBELL_DATA_MASK); 942 } else { 943 writel(0xC0FFEE00, &ioc->chip->Doorbell); 944 ioc_err(ioc, "Firmware is halted due to command timeout\n"); 945 } 946 947 if (ioc->fwfault_debug == 2) 948 for (;;) 949 ; 950 else 951 panic("panic in %s\n", __func__); 952 } 953 954 /** 955 * _base_sas_ioc_info - verbose translation of the ioc status 956 * @ioc: per adapter object 957 * @mpi_reply: reply mf payload returned from firmware 958 * @request_hdr: request mf 959 */ 960 static void 961 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply, 962 MPI2RequestHeader_t *request_hdr) 963 { 964 u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & 965 MPI2_IOCSTATUS_MASK; 966 char *desc = NULL; 967 u16 frame_sz; 968 char *func_str = NULL; 969 970 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */ 971 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST || 972 request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH || 973 request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION) 974 return; 975 976 if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE) 977 return; 978 /* 979 * Older Firmware version doesn't support driver trigger pages. 980 * So, skip displaying 'config invalid type' type 981 * of error message. 982 */ 983 if (request_hdr->Function == MPI2_FUNCTION_CONFIG) { 984 Mpi2ConfigRequest_t *rqst = (Mpi2ConfigRequest_t *)request_hdr; 985 986 if ((rqst->ExtPageType == 987 MPI2_CONFIG_EXTPAGETYPE_DRIVER_PERSISTENT_TRIGGER) && 988 !(ioc->logging_level & MPT_DEBUG_CONFIG)) { 989 return; 990 } 991 } 992 993 switch (ioc_status) { 994 995 /**************************************************************************** 996 * Common IOCStatus values for all replies 997 ****************************************************************************/ 998 999 case MPI2_IOCSTATUS_INVALID_FUNCTION: 1000 desc = "invalid function"; 1001 break; 1002 case MPI2_IOCSTATUS_BUSY: 1003 desc = "busy"; 1004 break; 1005 case MPI2_IOCSTATUS_INVALID_SGL: 1006 desc = "invalid sgl"; 1007 break; 1008 case MPI2_IOCSTATUS_INTERNAL_ERROR: 1009 desc = "internal error"; 1010 break; 1011 case MPI2_IOCSTATUS_INVALID_VPID: 1012 desc = "invalid vpid"; 1013 break; 1014 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES: 1015 desc = "insufficient resources"; 1016 break; 1017 case MPI2_IOCSTATUS_INSUFFICIENT_POWER: 1018 desc = "insufficient power"; 1019 break; 1020 case MPI2_IOCSTATUS_INVALID_FIELD: 1021 desc = "invalid field"; 1022 break; 1023 case MPI2_IOCSTATUS_INVALID_STATE: 1024 desc = "invalid state"; 1025 break; 1026 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED: 1027 desc = "op state not supported"; 1028 break; 1029 1030 /**************************************************************************** 1031 * Config IOCStatus values 1032 ****************************************************************************/ 1033 1034 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION: 1035 desc = "config invalid action"; 1036 break; 1037 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE: 1038 desc = "config invalid type"; 1039 break; 1040 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE: 1041 desc = "config invalid page"; 1042 break; 1043 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA: 1044 desc = "config invalid data"; 1045 break; 1046 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS: 1047 desc = "config no defaults"; 1048 break; 1049 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT: 1050 desc = "config cant commit"; 1051 break; 1052 1053 /**************************************************************************** 1054 * SCSI IO Reply 1055 ****************************************************************************/ 1056 1057 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR: 1058 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE: 1059 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE: 1060 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN: 1061 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN: 1062 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR: 1063 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR: 1064 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED: 1065 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH: 1066 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED: 1067 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED: 1068 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED: 1069 break; 1070 1071 /**************************************************************************** 1072 * For use by SCSI Initiator and SCSI Target end-to-end data protection 1073 ****************************************************************************/ 1074 1075 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR: 1076 desc = "eedp guard error"; 1077 break; 1078 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR: 1079 desc = "eedp ref tag error"; 1080 break; 1081 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR: 1082 desc = "eedp app tag error"; 1083 break; 1084 1085 /**************************************************************************** 1086 * SCSI Target values 1087 ****************************************************************************/ 1088 1089 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX: 1090 desc = "target invalid io index"; 1091 break; 1092 case MPI2_IOCSTATUS_TARGET_ABORTED: 1093 desc = "target aborted"; 1094 break; 1095 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE: 1096 desc = "target no conn retryable"; 1097 break; 1098 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION: 1099 desc = "target no connection"; 1100 break; 1101 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH: 1102 desc = "target xfer count mismatch"; 1103 break; 1104 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR: 1105 desc = "target data offset error"; 1106 break; 1107 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA: 1108 desc = "target too much write data"; 1109 break; 1110 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT: 1111 desc = "target iu too short"; 1112 break; 1113 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT: 1114 desc = "target ack nak timeout"; 1115 break; 1116 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED: 1117 desc = "target nak received"; 1118 break; 1119 1120 /**************************************************************************** 1121 * Serial Attached SCSI values 1122 ****************************************************************************/ 1123 1124 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED: 1125 desc = "smp request failed"; 1126 break; 1127 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN: 1128 desc = "smp data overrun"; 1129 break; 1130 1131 /**************************************************************************** 1132 * Diagnostic Buffer Post / Diagnostic Release values 1133 ****************************************************************************/ 1134 1135 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED: 1136 desc = "diagnostic released"; 1137 break; 1138 default: 1139 break; 1140 } 1141 1142 if (!desc) 1143 return; 1144 1145 switch (request_hdr->Function) { 1146 case MPI2_FUNCTION_CONFIG: 1147 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size; 1148 func_str = "config_page"; 1149 break; 1150 case MPI2_FUNCTION_SCSI_TASK_MGMT: 1151 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t); 1152 func_str = "task_mgmt"; 1153 break; 1154 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL: 1155 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t); 1156 func_str = "sas_iounit_ctl"; 1157 break; 1158 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR: 1159 frame_sz = sizeof(Mpi2SepRequest_t); 1160 func_str = "enclosure"; 1161 break; 1162 case MPI2_FUNCTION_IOC_INIT: 1163 frame_sz = sizeof(Mpi2IOCInitRequest_t); 1164 func_str = "ioc_init"; 1165 break; 1166 case MPI2_FUNCTION_PORT_ENABLE: 1167 frame_sz = sizeof(Mpi2PortEnableRequest_t); 1168 func_str = "port_enable"; 1169 break; 1170 case MPI2_FUNCTION_SMP_PASSTHROUGH: 1171 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size; 1172 func_str = "smp_passthru"; 1173 break; 1174 case MPI2_FUNCTION_NVME_ENCAPSULATED: 1175 frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) + 1176 ioc->sge_size; 1177 func_str = "nvme_encapsulated"; 1178 break; 1179 default: 1180 frame_sz = 32; 1181 func_str = "unknown"; 1182 break; 1183 } 1184 1185 ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n", 1186 desc, ioc_status, request_hdr, func_str); 1187 1188 _debug_dump_mf(request_hdr, frame_sz/4); 1189 } 1190 1191 /** 1192 * _base_display_event_data - verbose translation of firmware asyn events 1193 * @ioc: per adapter object 1194 * @mpi_reply: reply mf payload returned from firmware 1195 */ 1196 static void 1197 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc, 1198 Mpi2EventNotificationReply_t *mpi_reply) 1199 { 1200 char *desc = NULL; 1201 u16 event; 1202 1203 if (!(ioc->logging_level & MPT_DEBUG_EVENTS)) 1204 return; 1205 1206 event = le16_to_cpu(mpi_reply->Event); 1207 1208 switch (event) { 1209 case MPI2_EVENT_LOG_DATA: 1210 desc = "Log Data"; 1211 break; 1212 case MPI2_EVENT_STATE_CHANGE: 1213 desc = "Status Change"; 1214 break; 1215 case MPI2_EVENT_HARD_RESET_RECEIVED: 1216 desc = "Hard Reset Received"; 1217 break; 1218 case MPI2_EVENT_EVENT_CHANGE: 1219 desc = "Event Change"; 1220 break; 1221 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE: 1222 desc = "Device Status Change"; 1223 break; 1224 case MPI2_EVENT_IR_OPERATION_STATUS: 1225 if (!ioc->hide_ir_msg) 1226 desc = "IR Operation Status"; 1227 break; 1228 case MPI2_EVENT_SAS_DISCOVERY: 1229 { 1230 Mpi2EventDataSasDiscovery_t *event_data = 1231 (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData; 1232 ioc_info(ioc, "Discovery: (%s)", 1233 event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ? 1234 "start" : "stop"); 1235 if (event_data->DiscoveryStatus) 1236 pr_cont(" discovery_status(0x%08x)", 1237 le32_to_cpu(event_data->DiscoveryStatus)); 1238 pr_cont("\n"); 1239 return; 1240 } 1241 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE: 1242 desc = "SAS Broadcast Primitive"; 1243 break; 1244 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE: 1245 desc = "SAS Init Device Status Change"; 1246 break; 1247 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW: 1248 desc = "SAS Init Table Overflow"; 1249 break; 1250 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST: 1251 desc = "SAS Topology Change List"; 1252 break; 1253 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE: 1254 desc = "SAS Enclosure Device Status Change"; 1255 break; 1256 case MPI2_EVENT_IR_VOLUME: 1257 if (!ioc->hide_ir_msg) 1258 desc = "IR Volume"; 1259 break; 1260 case MPI2_EVENT_IR_PHYSICAL_DISK: 1261 if (!ioc->hide_ir_msg) 1262 desc = "IR Physical Disk"; 1263 break; 1264 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST: 1265 if (!ioc->hide_ir_msg) 1266 desc = "IR Configuration Change List"; 1267 break; 1268 case MPI2_EVENT_LOG_ENTRY_ADDED: 1269 if (!ioc->hide_ir_msg) 1270 desc = "Log Entry Added"; 1271 break; 1272 case MPI2_EVENT_TEMP_THRESHOLD: 1273 desc = "Temperature Threshold"; 1274 break; 1275 case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION: 1276 desc = "Cable Event"; 1277 break; 1278 case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR: 1279 desc = "SAS Device Discovery Error"; 1280 break; 1281 case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE: 1282 desc = "PCIE Device Status Change"; 1283 break; 1284 case MPI2_EVENT_PCIE_ENUMERATION: 1285 { 1286 Mpi26EventDataPCIeEnumeration_t *event_data = 1287 (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData; 1288 ioc_info(ioc, "PCIE Enumeration: (%s)", 1289 event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ? 1290 "start" : "stop"); 1291 if (event_data->EnumerationStatus) 1292 pr_cont("enumeration_status(0x%08x)", 1293 le32_to_cpu(event_data->EnumerationStatus)); 1294 pr_cont("\n"); 1295 return; 1296 } 1297 case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST: 1298 desc = "PCIE Topology Change List"; 1299 break; 1300 } 1301 1302 if (!desc) 1303 return; 1304 1305 ioc_info(ioc, "%s\n", desc); 1306 } 1307 1308 /** 1309 * _base_sas_log_info - verbose translation of firmware log info 1310 * @ioc: per adapter object 1311 * @log_info: log info 1312 */ 1313 static void 1314 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info) 1315 { 1316 union loginfo_type { 1317 u32 loginfo; 1318 struct { 1319 u32 subcode:16; 1320 u32 code:8; 1321 u32 originator:4; 1322 u32 bus_type:4; 1323 } dw; 1324 }; 1325 union loginfo_type sas_loginfo; 1326 char *originator_str = NULL; 1327 1328 sas_loginfo.loginfo = log_info; 1329 if (sas_loginfo.dw.bus_type != 3 /*SAS*/) 1330 return; 1331 1332 /* each nexus loss loginfo */ 1333 if (log_info == 0x31170000) 1334 return; 1335 1336 /* eat the loginfos associated with task aborts */ 1337 if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info == 1338 0x31140000 || log_info == 0x31130000)) 1339 return; 1340 1341 switch (sas_loginfo.dw.originator) { 1342 case 0: 1343 originator_str = "IOP"; 1344 break; 1345 case 1: 1346 originator_str = "PL"; 1347 break; 1348 case 2: 1349 if (!ioc->hide_ir_msg) 1350 originator_str = "IR"; 1351 else 1352 originator_str = "WarpDrive"; 1353 break; 1354 } 1355 1356 ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n", 1357 log_info, 1358 originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode); 1359 } 1360 1361 /** 1362 * _base_display_reply_info - 1363 * @ioc: per adapter object 1364 * @smid: system request message index 1365 * @msix_index: MSIX table index supplied by the OS 1366 * @reply: reply message frame(lower 32bit addr) 1367 */ 1368 static void 1369 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 1370 u32 reply) 1371 { 1372 MPI2DefaultReply_t *mpi_reply; 1373 u16 ioc_status; 1374 u32 loginfo = 0; 1375 1376 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1377 if (unlikely(!mpi_reply)) { 1378 ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n", 1379 __FILE__, __LINE__, __func__); 1380 return; 1381 } 1382 ioc_status = le16_to_cpu(mpi_reply->IOCStatus); 1383 1384 if ((ioc_status & MPI2_IOCSTATUS_MASK) && 1385 (ioc->logging_level & MPT_DEBUG_REPLY)) { 1386 _base_sas_ioc_info(ioc , mpi_reply, 1387 mpt3sas_base_get_msg_frame(ioc, smid)); 1388 } 1389 1390 if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) { 1391 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo); 1392 _base_sas_log_info(ioc, loginfo); 1393 } 1394 1395 if (ioc_status || loginfo) { 1396 ioc_status &= MPI2_IOCSTATUS_MASK; 1397 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo); 1398 } 1399 } 1400 1401 /** 1402 * mpt3sas_base_done - base internal command completion routine 1403 * @ioc: per adapter object 1404 * @smid: system request message index 1405 * @msix_index: MSIX table index supplied by the OS 1406 * @reply: reply message frame(lower 32bit addr) 1407 * 1408 * Return: 1409 * 1 meaning mf should be freed from _base_interrupt 1410 * 0 means the mf is freed from this function. 1411 */ 1412 u8 1413 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 1414 u32 reply) 1415 { 1416 MPI2DefaultReply_t *mpi_reply; 1417 1418 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1419 if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK) 1420 return mpt3sas_check_for_pending_internal_cmds(ioc, smid); 1421 1422 if (ioc->base_cmds.status == MPT3_CMD_NOT_USED) 1423 return 1; 1424 1425 ioc->base_cmds.status |= MPT3_CMD_COMPLETE; 1426 if (mpi_reply) { 1427 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID; 1428 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4); 1429 } 1430 ioc->base_cmds.status &= ~MPT3_CMD_PENDING; 1431 1432 complete(&ioc->base_cmds.done); 1433 return 1; 1434 } 1435 1436 /** 1437 * _base_async_event - main callback handler for firmware asyn events 1438 * @ioc: per adapter object 1439 * @msix_index: MSIX table index supplied by the OS 1440 * @reply: reply message frame(lower 32bit addr) 1441 * 1442 * Return: 1443 * 1 meaning mf should be freed from _base_interrupt 1444 * 0 means the mf is freed from this function. 1445 */ 1446 static u8 1447 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply) 1448 { 1449 Mpi2EventNotificationReply_t *mpi_reply; 1450 Mpi2EventAckRequest_t *ack_request; 1451 u16 smid; 1452 struct _event_ack_list *delayed_event_ack; 1453 1454 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 1455 if (!mpi_reply) 1456 return 1; 1457 if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION) 1458 return 1; 1459 1460 _base_display_event_data(ioc, mpi_reply); 1461 1462 if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED)) 1463 goto out; 1464 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 1465 if (!smid) { 1466 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack), 1467 GFP_ATOMIC); 1468 if (!delayed_event_ack) 1469 goto out; 1470 INIT_LIST_HEAD(&delayed_event_ack->list); 1471 delayed_event_ack->Event = mpi_reply->Event; 1472 delayed_event_ack->EventContext = mpi_reply->EventContext; 1473 list_add_tail(&delayed_event_ack->list, 1474 &ioc->delayed_event_ack_list); 1475 dewtprintk(ioc, 1476 ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n", 1477 le16_to_cpu(mpi_reply->Event))); 1478 goto out; 1479 } 1480 1481 ack_request = mpt3sas_base_get_msg_frame(ioc, smid); 1482 memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t)); 1483 ack_request->Function = MPI2_FUNCTION_EVENT_ACK; 1484 ack_request->Event = mpi_reply->Event; 1485 ack_request->EventContext = mpi_reply->EventContext; 1486 ack_request->VF_ID = 0; /* TODO */ 1487 ack_request->VP_ID = 0; 1488 ioc->put_smid_default(ioc, smid); 1489 1490 out: 1491 1492 /* scsih callback handler */ 1493 mpt3sas_scsih_event_callback(ioc, msix_index, reply); 1494 1495 /* ctl callback handler */ 1496 mpt3sas_ctl_event_callback(ioc, msix_index, reply); 1497 1498 return 1; 1499 } 1500 1501 static struct scsiio_tracker * 1502 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid) 1503 { 1504 struct scsi_cmnd *cmd; 1505 1506 if (WARN_ON(!smid) || 1507 WARN_ON(smid >= ioc->hi_priority_smid)) 1508 return NULL; 1509 1510 cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid); 1511 if (cmd) 1512 return scsi_cmd_priv(cmd); 1513 1514 return NULL; 1515 } 1516 1517 /** 1518 * _base_get_cb_idx - obtain the callback index 1519 * @ioc: per adapter object 1520 * @smid: system request message index 1521 * 1522 * Return: callback index. 1523 */ 1524 static u8 1525 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid) 1526 { 1527 int i; 1528 u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1; 1529 u8 cb_idx = 0xFF; 1530 1531 if (smid < ioc->hi_priority_smid) { 1532 struct scsiio_tracker *st; 1533 1534 if (smid < ctl_smid) { 1535 st = _get_st_from_smid(ioc, smid); 1536 if (st) 1537 cb_idx = st->cb_idx; 1538 } else if (smid == ctl_smid) 1539 cb_idx = ioc->ctl_cb_idx; 1540 } else if (smid < ioc->internal_smid) { 1541 i = smid - ioc->hi_priority_smid; 1542 cb_idx = ioc->hpr_lookup[i].cb_idx; 1543 } else if (smid <= ioc->hba_queue_depth) { 1544 i = smid - ioc->internal_smid; 1545 cb_idx = ioc->internal_lookup[i].cb_idx; 1546 } 1547 return cb_idx; 1548 } 1549 1550 /** 1551 * mpt3sas_base_mask_interrupts - disable interrupts 1552 * @ioc: per adapter object 1553 * 1554 * Disabling ResetIRQ, Reply and Doorbell Interrupts 1555 */ 1556 void 1557 mpt3sas_base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc) 1558 { 1559 u32 him_register; 1560 1561 ioc->mask_interrupts = 1; 1562 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask); 1563 him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK; 1564 writel(him_register, &ioc->chip->HostInterruptMask); 1565 ioc->base_readl(&ioc->chip->HostInterruptMask); 1566 } 1567 1568 /** 1569 * mpt3sas_base_unmask_interrupts - enable interrupts 1570 * @ioc: per adapter object 1571 * 1572 * Enabling only Reply Interrupts 1573 */ 1574 void 1575 mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc) 1576 { 1577 u32 him_register; 1578 1579 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask); 1580 him_register &= ~MPI2_HIM_RIM; 1581 writel(him_register, &ioc->chip->HostInterruptMask); 1582 ioc->mask_interrupts = 0; 1583 } 1584 1585 union reply_descriptor { 1586 u64 word; 1587 struct { 1588 u32 low; 1589 u32 high; 1590 } u; 1591 }; 1592 1593 static u32 base_mod64(u64 dividend, u32 divisor) 1594 { 1595 u32 remainder; 1596 1597 if (!divisor) 1598 pr_err("mpt3sas: DIVISOR is zero, in div fn\n"); 1599 remainder = do_div(dividend, divisor); 1600 return remainder; 1601 } 1602 1603 /** 1604 * _base_process_reply_queue - Process reply descriptors from reply 1605 * descriptor post queue. 1606 * @reply_q: per IRQ's reply queue object. 1607 * 1608 * Return: number of reply descriptors processed from reply 1609 * descriptor queue. 1610 */ 1611 static int 1612 _base_process_reply_queue(struct adapter_reply_queue *reply_q) 1613 { 1614 union reply_descriptor rd; 1615 u64 completed_cmds; 1616 u8 request_descript_type; 1617 u16 smid; 1618 u8 cb_idx; 1619 u32 reply; 1620 u8 msix_index = reply_q->msix_index; 1621 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc; 1622 Mpi2ReplyDescriptorsUnion_t *rpf; 1623 u8 rc; 1624 1625 completed_cmds = 0; 1626 if (!atomic_add_unless(&reply_q->busy, 1, 1)) 1627 return completed_cmds; 1628 1629 rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index]; 1630 request_descript_type = rpf->Default.ReplyFlags 1631 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 1632 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) { 1633 atomic_dec(&reply_q->busy); 1634 return completed_cmds; 1635 } 1636 1637 cb_idx = 0xFF; 1638 do { 1639 rd.word = le64_to_cpu(rpf->Words); 1640 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX) 1641 goto out; 1642 reply = 0; 1643 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1); 1644 if (request_descript_type == 1645 MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS || 1646 request_descript_type == 1647 MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS || 1648 request_descript_type == 1649 MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) { 1650 cb_idx = _base_get_cb_idx(ioc, smid); 1651 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) && 1652 (likely(mpt_callbacks[cb_idx] != NULL))) { 1653 rc = mpt_callbacks[cb_idx](ioc, smid, 1654 msix_index, 0); 1655 if (rc) 1656 mpt3sas_base_free_smid(ioc, smid); 1657 } 1658 } else if (request_descript_type == 1659 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) { 1660 reply = le32_to_cpu( 1661 rpf->AddressReply.ReplyFrameAddress); 1662 if (reply > ioc->reply_dma_max_address || 1663 reply < ioc->reply_dma_min_address) 1664 reply = 0; 1665 if (smid) { 1666 cb_idx = _base_get_cb_idx(ioc, smid); 1667 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) && 1668 (likely(mpt_callbacks[cb_idx] != NULL))) { 1669 rc = mpt_callbacks[cb_idx](ioc, smid, 1670 msix_index, reply); 1671 if (reply) 1672 _base_display_reply_info(ioc, 1673 smid, msix_index, reply); 1674 if (rc) 1675 mpt3sas_base_free_smid(ioc, 1676 smid); 1677 } 1678 } else { 1679 _base_async_event(ioc, msix_index, reply); 1680 } 1681 1682 /* reply free queue handling */ 1683 if (reply) { 1684 ioc->reply_free_host_index = 1685 (ioc->reply_free_host_index == 1686 (ioc->reply_free_queue_depth - 1)) ? 1687 0 : ioc->reply_free_host_index + 1; 1688 ioc->reply_free[ioc->reply_free_host_index] = 1689 cpu_to_le32(reply); 1690 if (ioc->is_mcpu_endpoint) 1691 _base_clone_reply_to_sys_mem(ioc, 1692 reply, 1693 ioc->reply_free_host_index); 1694 writel(ioc->reply_free_host_index, 1695 &ioc->chip->ReplyFreeHostIndex); 1696 } 1697 } 1698 1699 rpf->Words = cpu_to_le64(ULLONG_MAX); 1700 reply_q->reply_post_host_index = 1701 (reply_q->reply_post_host_index == 1702 (ioc->reply_post_queue_depth - 1)) ? 0 : 1703 reply_q->reply_post_host_index + 1; 1704 request_descript_type = 1705 reply_q->reply_post_free[reply_q->reply_post_host_index]. 1706 Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 1707 completed_cmds++; 1708 /* Update the reply post host index after continuously 1709 * processing the threshold number of Reply Descriptors. 1710 * So that FW can find enough entries to post the Reply 1711 * Descriptors in the reply descriptor post queue. 1712 */ 1713 if (completed_cmds >= ioc->thresh_hold) { 1714 if (ioc->combined_reply_queue) { 1715 writel(reply_q->reply_post_host_index | 1716 ((msix_index & 7) << 1717 MPI2_RPHI_MSIX_INDEX_SHIFT), 1718 ioc->replyPostRegisterIndex[msix_index/8]); 1719 } else { 1720 writel(reply_q->reply_post_host_index | 1721 (msix_index << 1722 MPI2_RPHI_MSIX_INDEX_SHIFT), 1723 &ioc->chip->ReplyPostHostIndex); 1724 } 1725 if (!reply_q->irq_poll_scheduled) { 1726 reply_q->irq_poll_scheduled = true; 1727 irq_poll_sched(&reply_q->irqpoll); 1728 } 1729 atomic_dec(&reply_q->busy); 1730 return completed_cmds; 1731 } 1732 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) 1733 goto out; 1734 if (!reply_q->reply_post_host_index) 1735 rpf = reply_q->reply_post_free; 1736 else 1737 rpf++; 1738 } while (1); 1739 1740 out: 1741 1742 if (!completed_cmds) { 1743 atomic_dec(&reply_q->busy); 1744 return completed_cmds; 1745 } 1746 1747 if (ioc->is_warpdrive) { 1748 writel(reply_q->reply_post_host_index, 1749 ioc->reply_post_host_index[msix_index]); 1750 atomic_dec(&reply_q->busy); 1751 return completed_cmds; 1752 } 1753 1754 /* Update Reply Post Host Index. 1755 * For those HBA's which support combined reply queue feature 1756 * 1. Get the correct Supplemental Reply Post Host Index Register. 1757 * i.e. (msix_index / 8)th entry from Supplemental Reply Post Host 1758 * Index Register address bank i.e replyPostRegisterIndex[], 1759 * 2. Then update this register with new reply host index value 1760 * in ReplyPostIndex field and the MSIxIndex field with 1761 * msix_index value reduced to a value between 0 and 7, 1762 * using a modulo 8 operation. Since each Supplemental Reply Post 1763 * Host Index Register supports 8 MSI-X vectors. 1764 * 1765 * For other HBA's just update the Reply Post Host Index register with 1766 * new reply host index value in ReplyPostIndex Field and msix_index 1767 * value in MSIxIndex field. 1768 */ 1769 if (ioc->combined_reply_queue) 1770 writel(reply_q->reply_post_host_index | ((msix_index & 7) << 1771 MPI2_RPHI_MSIX_INDEX_SHIFT), 1772 ioc->replyPostRegisterIndex[msix_index/8]); 1773 else 1774 writel(reply_q->reply_post_host_index | (msix_index << 1775 MPI2_RPHI_MSIX_INDEX_SHIFT), 1776 &ioc->chip->ReplyPostHostIndex); 1777 atomic_dec(&reply_q->busy); 1778 return completed_cmds; 1779 } 1780 1781 /** 1782 * _base_interrupt - MPT adapter (IOC) specific interrupt handler. 1783 * @irq: irq number (not used) 1784 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure 1785 * 1786 * Return: IRQ_HANDLED if processed, else IRQ_NONE. 1787 */ 1788 static irqreturn_t 1789 _base_interrupt(int irq, void *bus_id) 1790 { 1791 struct adapter_reply_queue *reply_q = bus_id; 1792 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc; 1793 1794 if (ioc->mask_interrupts) 1795 return IRQ_NONE; 1796 if (reply_q->irq_poll_scheduled) 1797 return IRQ_HANDLED; 1798 return ((_base_process_reply_queue(reply_q) > 0) ? 1799 IRQ_HANDLED : IRQ_NONE); 1800 } 1801 1802 /** 1803 * _base_irqpoll - IRQ poll callback handler 1804 * @irqpoll: irq_poll object 1805 * @budget: irq poll weight 1806 * 1807 * returns number of reply descriptors processed 1808 */ 1809 static int 1810 _base_irqpoll(struct irq_poll *irqpoll, int budget) 1811 { 1812 struct adapter_reply_queue *reply_q; 1813 int num_entries = 0; 1814 1815 reply_q = container_of(irqpoll, struct adapter_reply_queue, 1816 irqpoll); 1817 if (reply_q->irq_line_enable) { 1818 disable_irq_nosync(reply_q->os_irq); 1819 reply_q->irq_line_enable = false; 1820 } 1821 num_entries = _base_process_reply_queue(reply_q); 1822 if (num_entries < budget) { 1823 irq_poll_complete(irqpoll); 1824 reply_q->irq_poll_scheduled = false; 1825 reply_q->irq_line_enable = true; 1826 enable_irq(reply_q->os_irq); 1827 /* 1828 * Go for one more round of processing the 1829 * reply descriptor post queue incase if HBA 1830 * Firmware has posted some reply descriptors 1831 * while reenabling the IRQ. 1832 */ 1833 _base_process_reply_queue(reply_q); 1834 } 1835 1836 return num_entries; 1837 } 1838 1839 /** 1840 * _base_init_irqpolls - initliaze IRQ polls 1841 * @ioc: per adapter object 1842 * 1843 * returns nothing 1844 */ 1845 static void 1846 _base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc) 1847 { 1848 struct adapter_reply_queue *reply_q, *next; 1849 1850 if (list_empty(&ioc->reply_queue_list)) 1851 return; 1852 1853 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) { 1854 irq_poll_init(&reply_q->irqpoll, 1855 ioc->hba_queue_depth/4, _base_irqpoll); 1856 reply_q->irq_poll_scheduled = false; 1857 reply_q->irq_line_enable = true; 1858 reply_q->os_irq = pci_irq_vector(ioc->pdev, 1859 reply_q->msix_index); 1860 } 1861 } 1862 1863 /** 1864 * _base_is_controller_msix_enabled - is controller support muli-reply queues 1865 * @ioc: per adapter object 1866 * 1867 * Return: Whether or not MSI/X is enabled. 1868 */ 1869 static inline int 1870 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc) 1871 { 1872 return (ioc->facts.IOCCapabilities & 1873 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable; 1874 } 1875 1876 /** 1877 * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts 1878 * @ioc: per adapter object 1879 * @poll: poll over reply descriptor pools incase interrupt for 1880 * timed-out SCSI command got delayed 1881 * Context: non ISR conext 1882 * 1883 * Called when a Task Management request has completed. 1884 */ 1885 void 1886 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc, u8 poll) 1887 { 1888 struct adapter_reply_queue *reply_q; 1889 1890 /* If MSIX capability is turned off 1891 * then multi-queues are not enabled 1892 */ 1893 if (!_base_is_controller_msix_enabled(ioc)) 1894 return; 1895 1896 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 1897 if (ioc->shost_recovery || ioc->remove_host || 1898 ioc->pci_error_recovery) 1899 return; 1900 /* TMs are on msix_index == 0 */ 1901 if (reply_q->msix_index == 0) 1902 continue; 1903 synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index)); 1904 if (reply_q->irq_poll_scheduled) { 1905 /* Calling irq_poll_disable will wait for any pending 1906 * callbacks to have completed. 1907 */ 1908 irq_poll_disable(&reply_q->irqpoll); 1909 irq_poll_enable(&reply_q->irqpoll); 1910 /* check how the scheduled poll has ended, 1911 * clean up only if necessary 1912 */ 1913 if (reply_q->irq_poll_scheduled) { 1914 reply_q->irq_poll_scheduled = false; 1915 reply_q->irq_line_enable = true; 1916 enable_irq(reply_q->os_irq); 1917 } 1918 } 1919 } 1920 if (poll) 1921 _base_process_reply_queue(reply_q); 1922 } 1923 1924 /** 1925 * mpt3sas_base_release_callback_handler - clear interrupt callback handler 1926 * @cb_idx: callback index 1927 */ 1928 void 1929 mpt3sas_base_release_callback_handler(u8 cb_idx) 1930 { 1931 mpt_callbacks[cb_idx] = NULL; 1932 } 1933 1934 /** 1935 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler 1936 * @cb_func: callback function 1937 * 1938 * Return: Index of @cb_func. 1939 */ 1940 u8 1941 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func) 1942 { 1943 u8 cb_idx; 1944 1945 for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--) 1946 if (mpt_callbacks[cb_idx] == NULL) 1947 break; 1948 1949 mpt_callbacks[cb_idx] = cb_func; 1950 return cb_idx; 1951 } 1952 1953 /** 1954 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler 1955 */ 1956 void 1957 mpt3sas_base_initialize_callback_handler(void) 1958 { 1959 u8 cb_idx; 1960 1961 for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++) 1962 mpt3sas_base_release_callback_handler(cb_idx); 1963 } 1964 1965 1966 /** 1967 * _base_build_zero_len_sge - build zero length sg entry 1968 * @ioc: per adapter object 1969 * @paddr: virtual address for SGE 1970 * 1971 * Create a zero length scatter gather entry to insure the IOCs hardware has 1972 * something to use if the target device goes brain dead and tries 1973 * to send data even when none is asked for. 1974 */ 1975 static void 1976 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr) 1977 { 1978 u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT | 1979 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST | 1980 MPI2_SGE_FLAGS_SIMPLE_ELEMENT) << 1981 MPI2_SGE_FLAGS_SHIFT); 1982 ioc->base_add_sg_single(paddr, flags_length, -1); 1983 } 1984 1985 /** 1986 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr. 1987 * @paddr: virtual address for SGE 1988 * @flags_length: SGE flags and data transfer length 1989 * @dma_addr: Physical address 1990 */ 1991 static void 1992 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr) 1993 { 1994 Mpi2SGESimple32_t *sgel = paddr; 1995 1996 flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING | 1997 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT; 1998 sgel->FlagsLength = cpu_to_le32(flags_length); 1999 sgel->Address = cpu_to_le32(dma_addr); 2000 } 2001 2002 2003 /** 2004 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr. 2005 * @paddr: virtual address for SGE 2006 * @flags_length: SGE flags and data transfer length 2007 * @dma_addr: Physical address 2008 */ 2009 static void 2010 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr) 2011 { 2012 Mpi2SGESimple64_t *sgel = paddr; 2013 2014 flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING | 2015 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT; 2016 sgel->FlagsLength = cpu_to_le32(flags_length); 2017 sgel->Address = cpu_to_le64(dma_addr); 2018 } 2019 2020 /** 2021 * _base_get_chain_buffer_tracker - obtain chain tracker 2022 * @ioc: per adapter object 2023 * @scmd: SCSI commands of the IO request 2024 * 2025 * Return: chain tracker from chain_lookup table using key as 2026 * smid and smid's chain_offset. 2027 */ 2028 static struct chain_tracker * 2029 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc, 2030 struct scsi_cmnd *scmd) 2031 { 2032 struct chain_tracker *chain_req; 2033 struct scsiio_tracker *st = scsi_cmd_priv(scmd); 2034 u16 smid = st->smid; 2035 u8 chain_offset = 2036 atomic_read(&ioc->chain_lookup[smid - 1].chain_offset); 2037 2038 if (chain_offset == ioc->chains_needed_per_io) 2039 return NULL; 2040 2041 chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset]; 2042 atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset); 2043 return chain_req; 2044 } 2045 2046 2047 /** 2048 * _base_build_sg - build generic sg 2049 * @ioc: per adapter object 2050 * @psge: virtual address for SGE 2051 * @data_out_dma: physical address for WRITES 2052 * @data_out_sz: data xfer size for WRITES 2053 * @data_in_dma: physical address for READS 2054 * @data_in_sz: data xfer size for READS 2055 */ 2056 static void 2057 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge, 2058 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 2059 size_t data_in_sz) 2060 { 2061 u32 sgl_flags; 2062 2063 if (!data_out_sz && !data_in_sz) { 2064 _base_build_zero_len_sge(ioc, psge); 2065 return; 2066 } 2067 2068 if (data_out_sz && data_in_sz) { 2069 /* WRITE sgel first */ 2070 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2071 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC); 2072 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2073 ioc->base_add_sg_single(psge, sgl_flags | 2074 data_out_sz, data_out_dma); 2075 2076 /* incr sgel */ 2077 psge += ioc->sge_size; 2078 2079 /* READ sgel last */ 2080 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2081 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 2082 MPI2_SGE_FLAGS_END_OF_LIST); 2083 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2084 ioc->base_add_sg_single(psge, sgl_flags | 2085 data_in_sz, data_in_dma); 2086 } else if (data_out_sz) /* WRITE */ { 2087 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2088 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 2089 MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC); 2090 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2091 ioc->base_add_sg_single(psge, sgl_flags | 2092 data_out_sz, data_out_dma); 2093 } else if (data_in_sz) /* READ */ { 2094 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 2095 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | 2096 MPI2_SGE_FLAGS_END_OF_LIST); 2097 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2098 ioc->base_add_sg_single(psge, sgl_flags | 2099 data_in_sz, data_in_dma); 2100 } 2101 } 2102 2103 /* IEEE format sgls */ 2104 2105 /** 2106 * _base_build_nvme_prp - This function is called for NVMe end devices to build 2107 * a native SGL (NVMe PRP). The native SGL is built starting in the first PRP 2108 * entry of the NVMe message (PRP1). If the data buffer is small enough to be 2109 * described entirely using PRP1, then PRP2 is not used. If needed, PRP2 is 2110 * used to describe a larger data buffer. If the data buffer is too large to 2111 * describe using the two PRP entriess inside the NVMe message, then PRP1 2112 * describes the first data memory segment, and PRP2 contains a pointer to a PRP 2113 * list located elsewhere in memory to describe the remaining data memory 2114 * segments. The PRP list will be contiguous. 2115 * 2116 * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP 2117 * consists of a list of PRP entries to describe a number of noncontigous 2118 * physical memory segments as a single memory buffer, just as a SGL does. Note 2119 * however, that this function is only used by the IOCTL call, so the memory 2120 * given will be guaranteed to be contiguous. There is no need to translate 2121 * non-contiguous SGL into a PRP in this case. All PRPs will describe 2122 * contiguous space that is one page size each. 2123 * 2124 * Each NVMe message contains two PRP entries. The first (PRP1) either contains 2125 * a PRP list pointer or a PRP element, depending upon the command. PRP2 2126 * contains the second PRP element if the memory being described fits within 2 2127 * PRP entries, or a PRP list pointer if the PRP spans more than two entries. 2128 * 2129 * A PRP list pointer contains the address of a PRP list, structured as a linear 2130 * array of PRP entries. Each PRP entry in this list describes a segment of 2131 * physical memory. 2132 * 2133 * Each 64-bit PRP entry comprises an address and an offset field. The address 2134 * always points at the beginning of a 4KB physical memory page, and the offset 2135 * describes where within that 4KB page the memory segment begins. Only the 2136 * first element in a PRP list may contain a non-zero offest, implying that all 2137 * memory segments following the first begin at the start of a 4KB page. 2138 * 2139 * Each PRP element normally describes 4KB of physical memory, with exceptions 2140 * for the first and last elements in the list. If the memory being described 2141 * by the list begins at a non-zero offset within the first 4KB page, then the 2142 * first PRP element will contain a non-zero offset indicating where the region 2143 * begins within the 4KB page. The last memory segment may end before the end 2144 * of the 4KB segment, depending upon the overall size of the memory being 2145 * described by the PRP list. 2146 * 2147 * Since PRP entries lack any indication of size, the overall data buffer length 2148 * is used to determine where the end of the data memory buffer is located, and 2149 * how many PRP entries are required to describe it. 2150 * 2151 * @ioc: per adapter object 2152 * @smid: system request message index for getting asscociated SGL 2153 * @nvme_encap_request: the NVMe request msg frame pointer 2154 * @data_out_dma: physical address for WRITES 2155 * @data_out_sz: data xfer size for WRITES 2156 * @data_in_dma: physical address for READS 2157 * @data_in_sz: data xfer size for READS 2158 */ 2159 static void 2160 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid, 2161 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request, 2162 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 2163 size_t data_in_sz) 2164 { 2165 int prp_size = NVME_PRP_SIZE; 2166 __le64 *prp_entry, *prp1_entry, *prp2_entry; 2167 __le64 *prp_page; 2168 dma_addr_t prp_entry_dma, prp_page_dma, dma_addr; 2169 u32 offset, entry_len; 2170 u32 page_mask_result, page_mask; 2171 size_t length; 2172 struct mpt3sas_nvme_cmd *nvme_cmd = 2173 (void *)nvme_encap_request->NVMe_Command; 2174 2175 /* 2176 * Not all commands require a data transfer. If no data, just return 2177 * without constructing any PRP. 2178 */ 2179 if (!data_in_sz && !data_out_sz) 2180 return; 2181 prp1_entry = &nvme_cmd->prp1; 2182 prp2_entry = &nvme_cmd->prp2; 2183 prp_entry = prp1_entry; 2184 /* 2185 * For the PRP entries, use the specially allocated buffer of 2186 * contiguous memory. 2187 */ 2188 prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid); 2189 prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid); 2190 2191 /* 2192 * Check if we are within 1 entry of a page boundary we don't 2193 * want our first entry to be a PRP List entry. 2194 */ 2195 page_mask = ioc->page_size - 1; 2196 page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask; 2197 if (!page_mask_result) { 2198 /* Bump up to next page boundary. */ 2199 prp_page = (__le64 *)((u8 *)prp_page + prp_size); 2200 prp_page_dma = prp_page_dma + prp_size; 2201 } 2202 2203 /* 2204 * Set PRP physical pointer, which initially points to the current PRP 2205 * DMA memory page. 2206 */ 2207 prp_entry_dma = prp_page_dma; 2208 2209 /* Get physical address and length of the data buffer. */ 2210 if (data_in_sz) { 2211 dma_addr = data_in_dma; 2212 length = data_in_sz; 2213 } else { 2214 dma_addr = data_out_dma; 2215 length = data_out_sz; 2216 } 2217 2218 /* Loop while the length is not zero. */ 2219 while (length) { 2220 /* 2221 * Check if we need to put a list pointer here if we are at 2222 * page boundary - prp_size (8 bytes). 2223 */ 2224 page_mask_result = (prp_entry_dma + prp_size) & page_mask; 2225 if (!page_mask_result) { 2226 /* 2227 * This is the last entry in a PRP List, so we need to 2228 * put a PRP list pointer here. What this does is: 2229 * - bump the current memory pointer to the next 2230 * address, which will be the next full page. 2231 * - set the PRP Entry to point to that page. This 2232 * is now the PRP List pointer. 2233 * - bump the PRP Entry pointer the start of the 2234 * next page. Since all of this PRP memory is 2235 * contiguous, no need to get a new page - it's 2236 * just the next address. 2237 */ 2238 prp_entry_dma++; 2239 *prp_entry = cpu_to_le64(prp_entry_dma); 2240 prp_entry++; 2241 } 2242 2243 /* Need to handle if entry will be part of a page. */ 2244 offset = dma_addr & page_mask; 2245 entry_len = ioc->page_size - offset; 2246 2247 if (prp_entry == prp1_entry) { 2248 /* 2249 * Must fill in the first PRP pointer (PRP1) before 2250 * moving on. 2251 */ 2252 *prp1_entry = cpu_to_le64(dma_addr); 2253 2254 /* 2255 * Now point to the second PRP entry within the 2256 * command (PRP2). 2257 */ 2258 prp_entry = prp2_entry; 2259 } else if (prp_entry == prp2_entry) { 2260 /* 2261 * Should the PRP2 entry be a PRP List pointer or just 2262 * a regular PRP pointer? If there is more than one 2263 * more page of data, must use a PRP List pointer. 2264 */ 2265 if (length > ioc->page_size) { 2266 /* 2267 * PRP2 will contain a PRP List pointer because 2268 * more PRP's are needed with this command. The 2269 * list will start at the beginning of the 2270 * contiguous buffer. 2271 */ 2272 *prp2_entry = cpu_to_le64(prp_entry_dma); 2273 2274 /* 2275 * The next PRP Entry will be the start of the 2276 * first PRP List. 2277 */ 2278 prp_entry = prp_page; 2279 } else { 2280 /* 2281 * After this, the PRP Entries are complete. 2282 * This command uses 2 PRP's and no PRP list. 2283 */ 2284 *prp2_entry = cpu_to_le64(dma_addr); 2285 } 2286 } else { 2287 /* 2288 * Put entry in list and bump the addresses. 2289 * 2290 * After PRP1 and PRP2 are filled in, this will fill in 2291 * all remaining PRP entries in a PRP List, one per 2292 * each time through the loop. 2293 */ 2294 *prp_entry = cpu_to_le64(dma_addr); 2295 prp_entry++; 2296 prp_entry_dma++; 2297 } 2298 2299 /* 2300 * Bump the phys address of the command's data buffer by the 2301 * entry_len. 2302 */ 2303 dma_addr += entry_len; 2304 2305 /* Decrement length accounting for last partial page. */ 2306 if (entry_len > length) 2307 length = 0; 2308 else 2309 length -= entry_len; 2310 } 2311 } 2312 2313 /** 2314 * base_make_prp_nvme - 2315 * Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only 2316 * 2317 * @ioc: per adapter object 2318 * @scmd: SCSI command from the mid-layer 2319 * @mpi_request: mpi request 2320 * @smid: msg Index 2321 * @sge_count: scatter gather element count. 2322 * 2323 * Return: true: PRPs are built 2324 * false: IEEE SGLs needs to be built 2325 */ 2326 static void 2327 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc, 2328 struct scsi_cmnd *scmd, 2329 Mpi25SCSIIORequest_t *mpi_request, 2330 u16 smid, int sge_count) 2331 { 2332 int sge_len, num_prp_in_chain = 0; 2333 Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl; 2334 __le64 *curr_buff; 2335 dma_addr_t msg_dma, sge_addr, offset; 2336 u32 page_mask, page_mask_result; 2337 struct scatterlist *sg_scmd; 2338 u32 first_prp_len; 2339 int data_len = scsi_bufflen(scmd); 2340 u32 nvme_pg_size; 2341 2342 nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE); 2343 /* 2344 * Nvme has a very convoluted prp format. One prp is required 2345 * for each page or partial page. Driver need to split up OS sg_list 2346 * entries if it is longer than one page or cross a page 2347 * boundary. Driver also have to insert a PRP list pointer entry as 2348 * the last entry in each physical page of the PRP list. 2349 * 2350 * NOTE: The first PRP "entry" is actually placed in the first 2351 * SGL entry in the main message as IEEE 64 format. The 2nd 2352 * entry in the main message is the chain element, and the rest 2353 * of the PRP entries are built in the contiguous pcie buffer. 2354 */ 2355 page_mask = nvme_pg_size - 1; 2356 2357 /* 2358 * Native SGL is needed. 2359 * Put a chain element in main message frame that points to the first 2360 * chain buffer. 2361 * 2362 * NOTE: The ChainOffset field must be 0 when using a chain pointer to 2363 * a native SGL. 2364 */ 2365 2366 /* Set main message chain element pointer */ 2367 main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL; 2368 /* 2369 * For NVMe the chain element needs to be the 2nd SG entry in the main 2370 * message. 2371 */ 2372 main_chain_element = (Mpi25IeeeSgeChain64_t *) 2373 ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64)); 2374 2375 /* 2376 * For the PRP entries, use the specially allocated buffer of 2377 * contiguous memory. Normal chain buffers can't be used 2378 * because each chain buffer would need to be the size of an OS 2379 * page (4k). 2380 */ 2381 curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid); 2382 msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid); 2383 2384 main_chain_element->Address = cpu_to_le64(msg_dma); 2385 main_chain_element->NextChainOffset = 0; 2386 main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 2387 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | 2388 MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP; 2389 2390 /* Build first prp, sge need not to be page aligned*/ 2391 ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL; 2392 sg_scmd = scsi_sglist(scmd); 2393 sge_addr = sg_dma_address(sg_scmd); 2394 sge_len = sg_dma_len(sg_scmd); 2395 2396 offset = sge_addr & page_mask; 2397 first_prp_len = nvme_pg_size - offset; 2398 2399 ptr_first_sgl->Address = cpu_to_le64(sge_addr); 2400 ptr_first_sgl->Length = cpu_to_le32(first_prp_len); 2401 2402 data_len -= first_prp_len; 2403 2404 if (sge_len > first_prp_len) { 2405 sge_addr += first_prp_len; 2406 sge_len -= first_prp_len; 2407 } else if (data_len && (sge_len == first_prp_len)) { 2408 sg_scmd = sg_next(sg_scmd); 2409 sge_addr = sg_dma_address(sg_scmd); 2410 sge_len = sg_dma_len(sg_scmd); 2411 } 2412 2413 for (;;) { 2414 offset = sge_addr & page_mask; 2415 2416 /* Put PRP pointer due to page boundary*/ 2417 page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask; 2418 if (unlikely(!page_mask_result)) { 2419 scmd_printk(KERN_NOTICE, 2420 scmd, "page boundary curr_buff: 0x%p\n", 2421 curr_buff); 2422 msg_dma += 8; 2423 *curr_buff = cpu_to_le64(msg_dma); 2424 curr_buff++; 2425 num_prp_in_chain++; 2426 } 2427 2428 *curr_buff = cpu_to_le64(sge_addr); 2429 curr_buff++; 2430 msg_dma += 8; 2431 num_prp_in_chain++; 2432 2433 sge_addr += nvme_pg_size; 2434 sge_len -= nvme_pg_size; 2435 data_len -= nvme_pg_size; 2436 2437 if (data_len <= 0) 2438 break; 2439 2440 if (sge_len > 0) 2441 continue; 2442 2443 sg_scmd = sg_next(sg_scmd); 2444 sge_addr = sg_dma_address(sg_scmd); 2445 sge_len = sg_dma_len(sg_scmd); 2446 } 2447 2448 main_chain_element->Length = 2449 cpu_to_le32(num_prp_in_chain * sizeof(u64)); 2450 return; 2451 } 2452 2453 static bool 2454 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc, 2455 struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count) 2456 { 2457 u32 data_length = 0; 2458 bool build_prp = true; 2459 2460 data_length = scsi_bufflen(scmd); 2461 if (pcie_device && 2462 (mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))) { 2463 build_prp = false; 2464 return build_prp; 2465 } 2466 2467 /* If Datalenth is <= 16K and number of SGE’s entries are <= 2 2468 * we built IEEE SGL 2469 */ 2470 if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2)) 2471 build_prp = false; 2472 2473 return build_prp; 2474 } 2475 2476 /** 2477 * _base_check_pcie_native_sgl - This function is called for PCIe end devices to 2478 * determine if the driver needs to build a native SGL. If so, that native 2479 * SGL is built in the special contiguous buffers allocated especially for 2480 * PCIe SGL creation. If the driver will not build a native SGL, return 2481 * TRUE and a normal IEEE SGL will be built. Currently this routine 2482 * supports NVMe. 2483 * @ioc: per adapter object 2484 * @mpi_request: mf request pointer 2485 * @smid: system request message index 2486 * @scmd: scsi command 2487 * @pcie_device: points to the PCIe device's info 2488 * 2489 * Return: 0 if native SGL was built, 1 if no SGL was built 2490 */ 2491 static int 2492 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc, 2493 Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd, 2494 struct _pcie_device *pcie_device) 2495 { 2496 int sges_left; 2497 2498 /* Get the SG list pointer and info. */ 2499 sges_left = scsi_dma_map(scmd); 2500 if (sges_left < 0) { 2501 sdev_printk(KERN_ERR, scmd->device, 2502 "scsi_dma_map failed: request for %d bytes!\n", 2503 scsi_bufflen(scmd)); 2504 return 1; 2505 } 2506 2507 /* Check if we need to build a native SG list. */ 2508 if (!base_is_prp_possible(ioc, pcie_device, 2509 scmd, sges_left)) { 2510 /* We built a native SG list, just return. */ 2511 goto out; 2512 } 2513 2514 /* 2515 * Build native NVMe PRP. 2516 */ 2517 base_make_prp_nvme(ioc, scmd, mpi_request, 2518 smid, sges_left); 2519 2520 return 0; 2521 out: 2522 scsi_dma_unmap(scmd); 2523 return 1; 2524 } 2525 2526 /** 2527 * _base_add_sg_single_ieee - add sg element for IEEE format 2528 * @paddr: virtual address for SGE 2529 * @flags: SGE flags 2530 * @chain_offset: number of 128 byte elements from start of segment 2531 * @length: data transfer length 2532 * @dma_addr: Physical address 2533 */ 2534 static void 2535 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length, 2536 dma_addr_t dma_addr) 2537 { 2538 Mpi25IeeeSgeChain64_t *sgel = paddr; 2539 2540 sgel->Flags = flags; 2541 sgel->NextChainOffset = chain_offset; 2542 sgel->Length = cpu_to_le32(length); 2543 sgel->Address = cpu_to_le64(dma_addr); 2544 } 2545 2546 /** 2547 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format 2548 * @ioc: per adapter object 2549 * @paddr: virtual address for SGE 2550 * 2551 * Create a zero length scatter gather entry to insure the IOCs hardware has 2552 * something to use if the target device goes brain dead and tries 2553 * to send data even when none is asked for. 2554 */ 2555 static void 2556 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr) 2557 { 2558 u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2559 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | 2560 MPI25_IEEE_SGE_FLAGS_END_OF_LIST); 2561 2562 _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1); 2563 } 2564 2565 /** 2566 * _base_build_sg_scmd - main sg creation routine 2567 * pcie_device is unused here! 2568 * @ioc: per adapter object 2569 * @scmd: scsi command 2570 * @smid: system request message index 2571 * @unused: unused pcie_device pointer 2572 * Context: none. 2573 * 2574 * The main routine that builds scatter gather table from a given 2575 * scsi request sent via the .queuecommand main handler. 2576 * 2577 * Return: 0 success, anything else error 2578 */ 2579 static int 2580 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc, 2581 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused) 2582 { 2583 Mpi2SCSIIORequest_t *mpi_request; 2584 dma_addr_t chain_dma; 2585 struct scatterlist *sg_scmd; 2586 void *sg_local, *chain; 2587 u32 chain_offset; 2588 u32 chain_length; 2589 u32 chain_flags; 2590 int sges_left; 2591 u32 sges_in_segment; 2592 u32 sgl_flags; 2593 u32 sgl_flags_last_element; 2594 u32 sgl_flags_end_buffer; 2595 struct chain_tracker *chain_req; 2596 2597 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 2598 2599 /* init scatter gather flags */ 2600 sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT; 2601 if (scmd->sc_data_direction == DMA_TO_DEVICE) 2602 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC; 2603 sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT) 2604 << MPI2_SGE_FLAGS_SHIFT; 2605 sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT | 2606 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST) 2607 << MPI2_SGE_FLAGS_SHIFT; 2608 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; 2609 2610 sg_scmd = scsi_sglist(scmd); 2611 sges_left = scsi_dma_map(scmd); 2612 if (sges_left < 0) { 2613 sdev_printk(KERN_ERR, scmd->device, 2614 "scsi_dma_map failed: request for %d bytes!\n", 2615 scsi_bufflen(scmd)); 2616 return -ENOMEM; 2617 } 2618 2619 sg_local = &mpi_request->SGL; 2620 sges_in_segment = ioc->max_sges_in_main_message; 2621 if (sges_left <= sges_in_segment) 2622 goto fill_in_last_segment; 2623 2624 mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) + 2625 (sges_in_segment * ioc->sge_size))/4; 2626 2627 /* fill in main message segment when there is a chain following */ 2628 while (sges_in_segment) { 2629 if (sges_in_segment == 1) 2630 ioc->base_add_sg_single(sg_local, 2631 sgl_flags_last_element | sg_dma_len(sg_scmd), 2632 sg_dma_address(sg_scmd)); 2633 else 2634 ioc->base_add_sg_single(sg_local, sgl_flags | 2635 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2636 sg_scmd = sg_next(sg_scmd); 2637 sg_local += ioc->sge_size; 2638 sges_left--; 2639 sges_in_segment--; 2640 } 2641 2642 /* initializing the chain flags and pointers */ 2643 chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT; 2644 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2645 if (!chain_req) 2646 return -1; 2647 chain = chain_req->chain_buffer; 2648 chain_dma = chain_req->chain_buffer_dma; 2649 do { 2650 sges_in_segment = (sges_left <= 2651 ioc->max_sges_in_chain_message) ? sges_left : 2652 ioc->max_sges_in_chain_message; 2653 chain_offset = (sges_left == sges_in_segment) ? 2654 0 : (sges_in_segment * ioc->sge_size)/4; 2655 chain_length = sges_in_segment * ioc->sge_size; 2656 if (chain_offset) { 2657 chain_offset = chain_offset << 2658 MPI2_SGE_CHAIN_OFFSET_SHIFT; 2659 chain_length += ioc->sge_size; 2660 } 2661 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset | 2662 chain_length, chain_dma); 2663 sg_local = chain; 2664 if (!chain_offset) 2665 goto fill_in_last_segment; 2666 2667 /* fill in chain segments */ 2668 while (sges_in_segment) { 2669 if (sges_in_segment == 1) 2670 ioc->base_add_sg_single(sg_local, 2671 sgl_flags_last_element | 2672 sg_dma_len(sg_scmd), 2673 sg_dma_address(sg_scmd)); 2674 else 2675 ioc->base_add_sg_single(sg_local, sgl_flags | 2676 sg_dma_len(sg_scmd), 2677 sg_dma_address(sg_scmd)); 2678 sg_scmd = sg_next(sg_scmd); 2679 sg_local += ioc->sge_size; 2680 sges_left--; 2681 sges_in_segment--; 2682 } 2683 2684 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2685 if (!chain_req) 2686 return -1; 2687 chain = chain_req->chain_buffer; 2688 chain_dma = chain_req->chain_buffer_dma; 2689 } while (1); 2690 2691 2692 fill_in_last_segment: 2693 2694 /* fill the last segment */ 2695 while (sges_left) { 2696 if (sges_left == 1) 2697 ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer | 2698 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2699 else 2700 ioc->base_add_sg_single(sg_local, sgl_flags | 2701 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2702 sg_scmd = sg_next(sg_scmd); 2703 sg_local += ioc->sge_size; 2704 sges_left--; 2705 } 2706 2707 return 0; 2708 } 2709 2710 /** 2711 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format 2712 * @ioc: per adapter object 2713 * @scmd: scsi command 2714 * @smid: system request message index 2715 * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be 2716 * constructed on need. 2717 * Context: none. 2718 * 2719 * The main routine that builds scatter gather table from a given 2720 * scsi request sent via the .queuecommand main handler. 2721 * 2722 * Return: 0 success, anything else error 2723 */ 2724 static int 2725 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc, 2726 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device) 2727 { 2728 Mpi25SCSIIORequest_t *mpi_request; 2729 dma_addr_t chain_dma; 2730 struct scatterlist *sg_scmd; 2731 void *sg_local, *chain; 2732 u32 chain_offset; 2733 u32 chain_length; 2734 int sges_left; 2735 u32 sges_in_segment; 2736 u8 simple_sgl_flags; 2737 u8 simple_sgl_flags_last; 2738 u8 chain_sgl_flags; 2739 struct chain_tracker *chain_req; 2740 2741 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 2742 2743 /* init scatter gather flags */ 2744 simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2745 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2746 simple_sgl_flags_last = simple_sgl_flags | 2747 MPI25_IEEE_SGE_FLAGS_END_OF_LIST; 2748 chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 2749 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2750 2751 /* Check if we need to build a native SG list. */ 2752 if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request, 2753 smid, scmd, pcie_device) == 0)) { 2754 /* We built a native SG list, just return. */ 2755 return 0; 2756 } 2757 2758 sg_scmd = scsi_sglist(scmd); 2759 sges_left = scsi_dma_map(scmd); 2760 if (sges_left < 0) { 2761 sdev_printk(KERN_ERR, scmd->device, 2762 "scsi_dma_map failed: request for %d bytes!\n", 2763 scsi_bufflen(scmd)); 2764 return -ENOMEM; 2765 } 2766 2767 sg_local = &mpi_request->SGL; 2768 sges_in_segment = (ioc->request_sz - 2769 offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee; 2770 if (sges_left <= sges_in_segment) 2771 goto fill_in_last_segment; 2772 2773 mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) + 2774 (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee); 2775 2776 /* fill in main message segment when there is a chain following */ 2777 while (sges_in_segment > 1) { 2778 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2779 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2780 sg_scmd = sg_next(sg_scmd); 2781 sg_local += ioc->sge_size_ieee; 2782 sges_left--; 2783 sges_in_segment--; 2784 } 2785 2786 /* initializing the pointers */ 2787 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2788 if (!chain_req) 2789 return -1; 2790 chain = chain_req->chain_buffer; 2791 chain_dma = chain_req->chain_buffer_dma; 2792 do { 2793 sges_in_segment = (sges_left <= 2794 ioc->max_sges_in_chain_message) ? sges_left : 2795 ioc->max_sges_in_chain_message; 2796 chain_offset = (sges_left == sges_in_segment) ? 2797 0 : sges_in_segment; 2798 chain_length = sges_in_segment * ioc->sge_size_ieee; 2799 if (chain_offset) 2800 chain_length += ioc->sge_size_ieee; 2801 _base_add_sg_single_ieee(sg_local, chain_sgl_flags, 2802 chain_offset, chain_length, chain_dma); 2803 2804 sg_local = chain; 2805 if (!chain_offset) 2806 goto fill_in_last_segment; 2807 2808 /* fill in chain segments */ 2809 while (sges_in_segment) { 2810 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2811 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2812 sg_scmd = sg_next(sg_scmd); 2813 sg_local += ioc->sge_size_ieee; 2814 sges_left--; 2815 sges_in_segment--; 2816 } 2817 2818 chain_req = _base_get_chain_buffer_tracker(ioc, scmd); 2819 if (!chain_req) 2820 return -1; 2821 chain = chain_req->chain_buffer; 2822 chain_dma = chain_req->chain_buffer_dma; 2823 } while (1); 2824 2825 2826 fill_in_last_segment: 2827 2828 /* fill the last segment */ 2829 while (sges_left > 0) { 2830 if (sges_left == 1) 2831 _base_add_sg_single_ieee(sg_local, 2832 simple_sgl_flags_last, 0, sg_dma_len(sg_scmd), 2833 sg_dma_address(sg_scmd)); 2834 else 2835 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, 2836 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); 2837 sg_scmd = sg_next(sg_scmd); 2838 sg_local += ioc->sge_size_ieee; 2839 sges_left--; 2840 } 2841 2842 return 0; 2843 } 2844 2845 /** 2846 * _base_build_sg_ieee - build generic sg for IEEE format 2847 * @ioc: per adapter object 2848 * @psge: virtual address for SGE 2849 * @data_out_dma: physical address for WRITES 2850 * @data_out_sz: data xfer size for WRITES 2851 * @data_in_dma: physical address for READS 2852 * @data_in_sz: data xfer size for READS 2853 */ 2854 static void 2855 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge, 2856 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, 2857 size_t data_in_sz) 2858 { 2859 u8 sgl_flags; 2860 2861 if (!data_out_sz && !data_in_sz) { 2862 _base_build_zero_len_sge_ieee(ioc, psge); 2863 return; 2864 } 2865 2866 if (data_out_sz && data_in_sz) { 2867 /* WRITE sgel first */ 2868 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2869 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2870 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz, 2871 data_out_dma); 2872 2873 /* incr sgel */ 2874 psge += ioc->sge_size_ieee; 2875 2876 /* READ sgel last */ 2877 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST; 2878 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz, 2879 data_in_dma); 2880 } else if (data_out_sz) /* WRITE */ { 2881 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2882 MPI25_IEEE_SGE_FLAGS_END_OF_LIST | 2883 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2884 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz, 2885 data_out_dma); 2886 } else if (data_in_sz) /* READ */ { 2887 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 2888 MPI25_IEEE_SGE_FLAGS_END_OF_LIST | 2889 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 2890 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz, 2891 data_in_dma); 2892 } 2893 } 2894 2895 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10)) 2896 2897 /** 2898 * _base_config_dma_addressing - set dma addressing 2899 * @ioc: per adapter object 2900 * @pdev: PCI device struct 2901 * 2902 * Return: 0 for success, non-zero for failure. 2903 */ 2904 static int 2905 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev) 2906 { 2907 struct sysinfo s; 2908 int dma_mask; 2909 2910 if (ioc->is_mcpu_endpoint || 2911 sizeof(dma_addr_t) == 4 || ioc->use_32bit_dma || 2912 dma_get_required_mask(&pdev->dev) <= 32) 2913 dma_mask = 32; 2914 /* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */ 2915 else if (ioc->hba_mpi_version_belonged > MPI2_VERSION) 2916 dma_mask = 63; 2917 else 2918 dma_mask = 64; 2919 2920 if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(dma_mask)) || 2921 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(dma_mask))) 2922 return -ENODEV; 2923 2924 if (dma_mask > 32) { 2925 ioc->base_add_sg_single = &_base_add_sg_single_64; 2926 ioc->sge_size = sizeof(Mpi2SGESimple64_t); 2927 } else { 2928 ioc->base_add_sg_single = &_base_add_sg_single_32; 2929 ioc->sge_size = sizeof(Mpi2SGESimple32_t); 2930 } 2931 2932 si_meminfo(&s); 2933 ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n", 2934 dma_mask, convert_to_kb(s.totalram)); 2935 2936 return 0; 2937 } 2938 2939 /** 2940 * _base_check_enable_msix - checks MSIX capabable. 2941 * @ioc: per adapter object 2942 * 2943 * Check to see if card is capable of MSIX, and set number 2944 * of available msix vectors 2945 */ 2946 static int 2947 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc) 2948 { 2949 int base; 2950 u16 message_control; 2951 2952 /* Check whether controller SAS2008 B0 controller, 2953 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX 2954 */ 2955 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 && 2956 ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) { 2957 return -EINVAL; 2958 } 2959 2960 base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX); 2961 if (!base) { 2962 dfailprintk(ioc, ioc_info(ioc, "msix not supported\n")); 2963 return -EINVAL; 2964 } 2965 2966 /* get msix vector count */ 2967 /* NUMA_IO not supported for older controllers */ 2968 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 || 2969 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 || 2970 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 || 2971 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 || 2972 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 || 2973 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 || 2974 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2) 2975 ioc->msix_vector_count = 1; 2976 else { 2977 pci_read_config_word(ioc->pdev, base + 2, &message_control); 2978 ioc->msix_vector_count = (message_control & 0x3FF) + 1; 2979 } 2980 dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n", 2981 ioc->msix_vector_count)); 2982 return 0; 2983 } 2984 2985 /** 2986 * _base_free_irq - free irq 2987 * @ioc: per adapter object 2988 * 2989 * Freeing respective reply_queue from the list. 2990 */ 2991 static void 2992 _base_free_irq(struct MPT3SAS_ADAPTER *ioc) 2993 { 2994 struct adapter_reply_queue *reply_q, *next; 2995 2996 if (list_empty(&ioc->reply_queue_list)) 2997 return; 2998 2999 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) { 3000 list_del(&reply_q->list); 3001 if (ioc->smp_affinity_enable) 3002 irq_set_affinity_hint(pci_irq_vector(ioc->pdev, 3003 reply_q->msix_index), NULL); 3004 free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index), 3005 reply_q); 3006 kfree(reply_q); 3007 } 3008 } 3009 3010 /** 3011 * _base_request_irq - request irq 3012 * @ioc: per adapter object 3013 * @index: msix index into vector table 3014 * 3015 * Inserting respective reply_queue into the list. 3016 */ 3017 static int 3018 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index) 3019 { 3020 struct pci_dev *pdev = ioc->pdev; 3021 struct adapter_reply_queue *reply_q; 3022 int r; 3023 3024 reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL); 3025 if (!reply_q) { 3026 ioc_err(ioc, "unable to allocate memory %zu!\n", 3027 sizeof(struct adapter_reply_queue)); 3028 return -ENOMEM; 3029 } 3030 reply_q->ioc = ioc; 3031 reply_q->msix_index = index; 3032 3033 atomic_set(&reply_q->busy, 0); 3034 if (ioc->msix_enable) 3035 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d", 3036 ioc->driver_name, ioc->id, index); 3037 else 3038 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d", 3039 ioc->driver_name, ioc->id); 3040 r = request_irq(pci_irq_vector(pdev, index), _base_interrupt, 3041 IRQF_SHARED, reply_q->name, reply_q); 3042 if (r) { 3043 pr_err("%s: unable to allocate interrupt %d!\n", 3044 reply_q->name, pci_irq_vector(pdev, index)); 3045 kfree(reply_q); 3046 return -EBUSY; 3047 } 3048 3049 INIT_LIST_HEAD(&reply_q->list); 3050 list_add_tail(&reply_q->list, &ioc->reply_queue_list); 3051 return 0; 3052 } 3053 3054 /** 3055 * _base_assign_reply_queues - assigning msix index for each cpu 3056 * @ioc: per adapter object 3057 * 3058 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity 3059 * 3060 * It would nice if we could call irq_set_affinity, however it is not 3061 * an exported symbol 3062 */ 3063 static void 3064 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc) 3065 { 3066 unsigned int cpu, nr_cpus, nr_msix, index = 0; 3067 struct adapter_reply_queue *reply_q; 3068 int local_numa_node; 3069 3070 if (!_base_is_controller_msix_enabled(ioc)) 3071 return; 3072 3073 if (ioc->msix_load_balance) 3074 return; 3075 3076 memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz); 3077 3078 nr_cpus = num_online_cpus(); 3079 nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count, 3080 ioc->facts.MaxMSIxVectors); 3081 if (!nr_msix) 3082 return; 3083 3084 if (ioc->smp_affinity_enable) { 3085 3086 /* 3087 * set irq affinity to local numa node for those irqs 3088 * corresponding to high iops queues. 3089 */ 3090 if (ioc->high_iops_queues) { 3091 local_numa_node = dev_to_node(&ioc->pdev->dev); 3092 for (index = 0; index < ioc->high_iops_queues; 3093 index++) { 3094 irq_set_affinity_hint(pci_irq_vector(ioc->pdev, 3095 index), cpumask_of_node(local_numa_node)); 3096 } 3097 } 3098 3099 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 3100 const cpumask_t *mask; 3101 3102 if (reply_q->msix_index < ioc->high_iops_queues) 3103 continue; 3104 3105 mask = pci_irq_get_affinity(ioc->pdev, 3106 reply_q->msix_index); 3107 if (!mask) { 3108 ioc_warn(ioc, "no affinity for msi %x\n", 3109 reply_q->msix_index); 3110 goto fall_back; 3111 } 3112 3113 for_each_cpu_and(cpu, mask, cpu_online_mask) { 3114 if (cpu >= ioc->cpu_msix_table_sz) 3115 break; 3116 ioc->cpu_msix_table[cpu] = reply_q->msix_index; 3117 } 3118 } 3119 return; 3120 } 3121 3122 fall_back: 3123 cpu = cpumask_first(cpu_online_mask); 3124 nr_msix -= ioc->high_iops_queues; 3125 index = 0; 3126 3127 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 3128 unsigned int i, group = nr_cpus / nr_msix; 3129 3130 if (reply_q->msix_index < ioc->high_iops_queues) 3131 continue; 3132 3133 if (cpu >= nr_cpus) 3134 break; 3135 3136 if (index < nr_cpus % nr_msix) 3137 group++; 3138 3139 for (i = 0 ; i < group ; i++) { 3140 ioc->cpu_msix_table[cpu] = reply_q->msix_index; 3141 cpu = cpumask_next(cpu, cpu_online_mask); 3142 } 3143 index++; 3144 } 3145 } 3146 3147 /** 3148 * _base_check_and_enable_high_iops_queues - enable high iops mode 3149 * @ioc: per adapter object 3150 * @hba_msix_vector_count: msix vectors supported by HBA 3151 * 3152 * Enable high iops queues only if 3153 * - HBA is a SEA/AERO controller and 3154 * - MSI-Xs vector supported by the HBA is 128 and 3155 * - total CPU count in the system >=16 and 3156 * - loaded driver with default max_msix_vectors module parameter and 3157 * - system booted in non kdump mode 3158 * 3159 * returns nothing. 3160 */ 3161 static void 3162 _base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc, 3163 int hba_msix_vector_count) 3164 { 3165 u16 lnksta, speed; 3166 3167 if (perf_mode == MPT_PERF_MODE_IOPS || 3168 perf_mode == MPT_PERF_MODE_LATENCY) { 3169 ioc->high_iops_queues = 0; 3170 return; 3171 } 3172 3173 if (perf_mode == MPT_PERF_MODE_DEFAULT) { 3174 3175 pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta); 3176 speed = lnksta & PCI_EXP_LNKSTA_CLS; 3177 3178 if (speed < 0x4) { 3179 ioc->high_iops_queues = 0; 3180 return; 3181 } 3182 } 3183 3184 if (!reset_devices && ioc->is_aero_ioc && 3185 hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES && 3186 num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES && 3187 max_msix_vectors == -1) 3188 ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES; 3189 else 3190 ioc->high_iops_queues = 0; 3191 } 3192 3193 /** 3194 * _base_disable_msix - disables msix 3195 * @ioc: per adapter object 3196 * 3197 */ 3198 static void 3199 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc) 3200 { 3201 if (!ioc->msix_enable) 3202 return; 3203 pci_free_irq_vectors(ioc->pdev); 3204 ioc->msix_enable = 0; 3205 } 3206 3207 /** 3208 * _base_alloc_irq_vectors - allocate msix vectors 3209 * @ioc: per adapter object 3210 * 3211 */ 3212 static int 3213 _base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc) 3214 { 3215 int i, irq_flags = PCI_IRQ_MSIX; 3216 struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues }; 3217 struct irq_affinity *descp = &desc; 3218 3219 if (ioc->smp_affinity_enable) 3220 irq_flags |= PCI_IRQ_AFFINITY; 3221 else 3222 descp = NULL; 3223 3224 ioc_info(ioc, " %d %d\n", ioc->high_iops_queues, 3225 ioc->reply_queue_count); 3226 3227 i = pci_alloc_irq_vectors_affinity(ioc->pdev, 3228 ioc->high_iops_queues, 3229 ioc->reply_queue_count, irq_flags, descp); 3230 3231 return i; 3232 } 3233 3234 /** 3235 * _base_enable_msix - enables msix, failback to io_apic 3236 * @ioc: per adapter object 3237 * 3238 */ 3239 static int 3240 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc) 3241 { 3242 int r; 3243 int i, local_max_msix_vectors; 3244 u8 try_msix = 0; 3245 3246 ioc->msix_load_balance = false; 3247 3248 if (msix_disable == -1 || msix_disable == 0) 3249 try_msix = 1; 3250 3251 if (!try_msix) 3252 goto try_ioapic; 3253 3254 if (_base_check_enable_msix(ioc) != 0) 3255 goto try_ioapic; 3256 3257 ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count); 3258 pr_info("\t no of cores: %d, max_msix_vectors: %d\n", 3259 ioc->cpu_count, max_msix_vectors); 3260 if (ioc->is_aero_ioc) 3261 _base_check_and_enable_high_iops_queues(ioc, 3262 ioc->msix_vector_count); 3263 ioc->reply_queue_count = 3264 min_t(int, ioc->cpu_count + ioc->high_iops_queues, 3265 ioc->msix_vector_count); 3266 3267 if (!ioc->rdpq_array_enable && max_msix_vectors == -1) 3268 local_max_msix_vectors = (reset_devices) ? 1 : 8; 3269 else 3270 local_max_msix_vectors = max_msix_vectors; 3271 3272 if (local_max_msix_vectors > 0) 3273 ioc->reply_queue_count = min_t(int, local_max_msix_vectors, 3274 ioc->reply_queue_count); 3275 else if (local_max_msix_vectors == 0) 3276 goto try_ioapic; 3277 3278 /* 3279 * Enable msix_load_balance only if combined reply queue mode is 3280 * disabled on SAS3 & above generation HBA devices. 3281 */ 3282 if (!ioc->combined_reply_queue && 3283 ioc->hba_mpi_version_belonged != MPI2_VERSION) { 3284 ioc_info(ioc, 3285 "combined ReplyQueue is off, Enabling msix load balance\n"); 3286 ioc->msix_load_balance = true; 3287 } 3288 3289 /* 3290 * smp affinity setting is not need when msix load balance 3291 * is enabled. 3292 */ 3293 if (ioc->msix_load_balance) 3294 ioc->smp_affinity_enable = 0; 3295 3296 r = _base_alloc_irq_vectors(ioc); 3297 if (r < 0) { 3298 ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", r); 3299 goto try_ioapic; 3300 } 3301 3302 ioc->msix_enable = 1; 3303 ioc->reply_queue_count = r; 3304 for (i = 0; i < ioc->reply_queue_count; i++) { 3305 r = _base_request_irq(ioc, i); 3306 if (r) { 3307 _base_free_irq(ioc); 3308 _base_disable_msix(ioc); 3309 goto try_ioapic; 3310 } 3311 } 3312 3313 ioc_info(ioc, "High IOPs queues : %s\n", 3314 ioc->high_iops_queues ? "enabled" : "disabled"); 3315 3316 return 0; 3317 3318 /* failback to io_apic interrupt routing */ 3319 try_ioapic: 3320 ioc->high_iops_queues = 0; 3321 ioc_info(ioc, "High IOPs queues : disabled\n"); 3322 ioc->reply_queue_count = 1; 3323 r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY); 3324 if (r < 0) { 3325 dfailprintk(ioc, 3326 ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n", 3327 r)); 3328 } else 3329 r = _base_request_irq(ioc, 0); 3330 3331 return r; 3332 } 3333 3334 /** 3335 * mpt3sas_base_unmap_resources - free controller resources 3336 * @ioc: per adapter object 3337 */ 3338 static void 3339 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc) 3340 { 3341 struct pci_dev *pdev = ioc->pdev; 3342 3343 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 3344 3345 _base_free_irq(ioc); 3346 _base_disable_msix(ioc); 3347 3348 kfree(ioc->replyPostRegisterIndex); 3349 ioc->replyPostRegisterIndex = NULL; 3350 3351 3352 if (ioc->chip_phys) { 3353 iounmap(ioc->chip); 3354 ioc->chip_phys = 0; 3355 } 3356 3357 if (pci_is_enabled(pdev)) { 3358 pci_release_selected_regions(ioc->pdev, ioc->bars); 3359 pci_disable_pcie_error_reporting(pdev); 3360 pci_disable_device(pdev); 3361 } 3362 } 3363 3364 static int 3365 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc); 3366 3367 /** 3368 * _base_check_for_fault_and_issue_reset - check if IOC is in fault state 3369 * and if it is in fault state then issue diag reset. 3370 * @ioc: per adapter object 3371 * 3372 * Returns: 0 for success, non-zero for failure. 3373 */ 3374 static int 3375 _base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc) 3376 { 3377 u32 ioc_state; 3378 int rc = -EFAULT; 3379 3380 dinitprintk(ioc, pr_info("%s\n", __func__)); 3381 if (ioc->pci_error_recovery) 3382 return 0; 3383 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 3384 dhsprintk(ioc, pr_info("%s: ioc_state(0x%08x)\n", __func__, ioc_state)); 3385 3386 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 3387 mpt3sas_print_fault_code(ioc, ioc_state & 3388 MPI2_DOORBELL_DATA_MASK); 3389 rc = _base_diag_reset(ioc); 3390 } else if ((ioc_state & MPI2_IOC_STATE_MASK) == 3391 MPI2_IOC_STATE_COREDUMP) { 3392 mpt3sas_print_coredump_info(ioc, ioc_state & 3393 MPI2_DOORBELL_DATA_MASK); 3394 mpt3sas_base_wait_for_coredump_completion(ioc, __func__); 3395 rc = _base_diag_reset(ioc); 3396 } 3397 3398 return rc; 3399 } 3400 3401 /** 3402 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap) 3403 * @ioc: per adapter object 3404 * 3405 * Return: 0 for success, non-zero for failure. 3406 */ 3407 int 3408 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc) 3409 { 3410 struct pci_dev *pdev = ioc->pdev; 3411 u32 memap_sz; 3412 u32 pio_sz; 3413 int i, r = 0, rc; 3414 u64 pio_chip = 0; 3415 phys_addr_t chip_phys = 0; 3416 struct adapter_reply_queue *reply_q; 3417 3418 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 3419 3420 ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM); 3421 if (pci_enable_device_mem(pdev)) { 3422 ioc_warn(ioc, "pci_enable_device_mem: failed\n"); 3423 ioc->bars = 0; 3424 return -ENODEV; 3425 } 3426 3427 3428 if (pci_request_selected_regions(pdev, ioc->bars, 3429 ioc->driver_name)) { 3430 ioc_warn(ioc, "pci_request_selected_regions: failed\n"); 3431 ioc->bars = 0; 3432 r = -ENODEV; 3433 goto out_fail; 3434 } 3435 3436 /* AER (Advanced Error Reporting) hooks */ 3437 pci_enable_pcie_error_reporting(pdev); 3438 3439 pci_set_master(pdev); 3440 3441 3442 if (_base_config_dma_addressing(ioc, pdev) != 0) { 3443 ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev)); 3444 r = -ENODEV; 3445 goto out_fail; 3446 } 3447 3448 for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) && 3449 (!memap_sz || !pio_sz); i++) { 3450 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { 3451 if (pio_sz) 3452 continue; 3453 pio_chip = (u64)pci_resource_start(pdev, i); 3454 pio_sz = pci_resource_len(pdev, i); 3455 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) { 3456 if (memap_sz) 3457 continue; 3458 ioc->chip_phys = pci_resource_start(pdev, i); 3459 chip_phys = ioc->chip_phys; 3460 memap_sz = pci_resource_len(pdev, i); 3461 ioc->chip = ioremap(ioc->chip_phys, memap_sz); 3462 } 3463 } 3464 3465 if (ioc->chip == NULL) { 3466 ioc_err(ioc, 3467 "unable to map adapter memory! or resource not found\n"); 3468 r = -EINVAL; 3469 goto out_fail; 3470 } 3471 3472 mpt3sas_base_mask_interrupts(ioc); 3473 3474 r = _base_get_ioc_facts(ioc); 3475 if (r) { 3476 rc = _base_check_for_fault_and_issue_reset(ioc); 3477 if (rc || (_base_get_ioc_facts(ioc))) 3478 goto out_fail; 3479 } 3480 3481 if (!ioc->rdpq_array_enable_assigned) { 3482 ioc->rdpq_array_enable = ioc->rdpq_array_capable; 3483 ioc->rdpq_array_enable_assigned = 1; 3484 } 3485 3486 r = _base_enable_msix(ioc); 3487 if (r) 3488 goto out_fail; 3489 3490 if (!ioc->is_driver_loading) 3491 _base_init_irqpolls(ioc); 3492 /* Use the Combined reply queue feature only for SAS3 C0 & higher 3493 * revision HBAs and also only when reply queue count is greater than 8 3494 */ 3495 if (ioc->combined_reply_queue) { 3496 /* Determine the Supplemental Reply Post Host Index Registers 3497 * Addresse. Supplemental Reply Post Host Index Registers 3498 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and 3499 * each register is at offset bytes of 3500 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one. 3501 */ 3502 ioc->replyPostRegisterIndex = kcalloc( 3503 ioc->combined_reply_index_count, 3504 sizeof(resource_size_t *), GFP_KERNEL); 3505 if (!ioc->replyPostRegisterIndex) { 3506 ioc_err(ioc, 3507 "allocation for replyPostRegisterIndex failed!\n"); 3508 r = -ENOMEM; 3509 goto out_fail; 3510 } 3511 3512 for (i = 0; i < ioc->combined_reply_index_count; i++) { 3513 ioc->replyPostRegisterIndex[i] = (resource_size_t *) 3514 ((u8 __force *)&ioc->chip->Doorbell + 3515 MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET + 3516 (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET)); 3517 } 3518 } 3519 3520 if (ioc->is_warpdrive) { 3521 ioc->reply_post_host_index[0] = (resource_size_t __iomem *) 3522 &ioc->chip->ReplyPostHostIndex; 3523 3524 for (i = 1; i < ioc->cpu_msix_table_sz; i++) 3525 ioc->reply_post_host_index[i] = 3526 (resource_size_t __iomem *) 3527 ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1) 3528 * 4))); 3529 } 3530 3531 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) 3532 pr_info("%s: %s enabled: IRQ %d\n", 3533 reply_q->name, 3534 ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC", 3535 pci_irq_vector(ioc->pdev, reply_q->msix_index)); 3536 3537 ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n", 3538 &chip_phys, ioc->chip, memap_sz); 3539 ioc_info(ioc, "ioport(0x%016llx), size(%d)\n", 3540 (unsigned long long)pio_chip, pio_sz); 3541 3542 /* Save PCI configuration state for recovery from PCI AER/EEH errors */ 3543 pci_save_state(pdev); 3544 return 0; 3545 3546 out_fail: 3547 mpt3sas_base_unmap_resources(ioc); 3548 return r; 3549 } 3550 3551 /** 3552 * mpt3sas_base_get_msg_frame - obtain request mf pointer 3553 * @ioc: per adapter object 3554 * @smid: system request message index(smid zero is invalid) 3555 * 3556 * Return: virt pointer to message frame. 3557 */ 3558 void * 3559 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3560 { 3561 return (void *)(ioc->request + (smid * ioc->request_sz)); 3562 } 3563 3564 /** 3565 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr 3566 * @ioc: per adapter object 3567 * @smid: system request message index 3568 * 3569 * Return: virt pointer to sense buffer. 3570 */ 3571 void * 3572 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3573 { 3574 return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE)); 3575 } 3576 3577 /** 3578 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr 3579 * @ioc: per adapter object 3580 * @smid: system request message index 3581 * 3582 * Return: phys pointer to the low 32bit address of the sense buffer. 3583 */ 3584 __le32 3585 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3586 { 3587 return cpu_to_le32(ioc->sense_dma + ((smid - 1) * 3588 SCSI_SENSE_BUFFERSIZE)); 3589 } 3590 3591 /** 3592 * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr 3593 * @ioc: per adapter object 3594 * @smid: system request message index 3595 * 3596 * Return: virt pointer to a PCIe SGL. 3597 */ 3598 void * 3599 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3600 { 3601 return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl); 3602 } 3603 3604 /** 3605 * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr 3606 * @ioc: per adapter object 3607 * @smid: system request message index 3608 * 3609 * Return: phys pointer to the address of the PCIe buffer. 3610 */ 3611 dma_addr_t 3612 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3613 { 3614 return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma; 3615 } 3616 3617 /** 3618 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address 3619 * @ioc: per adapter object 3620 * @phys_addr: lower 32 physical addr of the reply 3621 * 3622 * Converts 32bit lower physical addr into a virt address. 3623 */ 3624 void * 3625 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr) 3626 { 3627 if (!phys_addr) 3628 return NULL; 3629 return ioc->reply + (phys_addr - (u32)ioc->reply_dma); 3630 } 3631 3632 /** 3633 * _base_get_msix_index - get the msix index 3634 * @ioc: per adapter object 3635 * @scmd: scsi_cmnd object 3636 * 3637 * returns msix index of general reply queues, 3638 * i.e. reply queue on which IO request's reply 3639 * should be posted by the HBA firmware. 3640 */ 3641 static inline u8 3642 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc, 3643 struct scsi_cmnd *scmd) 3644 { 3645 /* Enables reply_queue load balancing */ 3646 if (ioc->msix_load_balance) 3647 return ioc->reply_queue_count ? 3648 base_mod64(atomic64_add_return(1, 3649 &ioc->total_io_cnt), ioc->reply_queue_count) : 0; 3650 3651 if (scmd && ioc->shost->nr_hw_queues > 1) { 3652 u32 tag = blk_mq_unique_tag(scmd->request); 3653 3654 return blk_mq_unique_tag_to_hwq(tag) + 3655 ioc->high_iops_queues; 3656 } 3657 3658 return ioc->cpu_msix_table[raw_smp_processor_id()]; 3659 } 3660 3661 /** 3662 * _base_get_high_iops_msix_index - get the msix index of 3663 * high iops queues 3664 * @ioc: per adapter object 3665 * @scmd: scsi_cmnd object 3666 * 3667 * Returns: msix index of high iops reply queues. 3668 * i.e. high iops reply queue on which IO request's 3669 * reply should be posted by the HBA firmware. 3670 */ 3671 static inline u8 3672 _base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc, 3673 struct scsi_cmnd *scmd) 3674 { 3675 /** 3676 * Round robin the IO interrupts among the high iops 3677 * reply queues in terms of batch count 16 when outstanding 3678 * IOs on the target device is >=8. 3679 */ 3680 3681 if (atomic_read(&scmd->device->device_busy) > 3682 MPT3SAS_DEVICE_HIGH_IOPS_DEPTH) 3683 return base_mod64(( 3684 atomic64_add_return(1, &ioc->high_iops_outstanding) / 3685 MPT3SAS_HIGH_IOPS_BATCH_COUNT), 3686 MPT3SAS_HIGH_IOPS_REPLY_QUEUES); 3687 3688 return _base_get_msix_index(ioc, scmd); 3689 } 3690 3691 /** 3692 * mpt3sas_base_get_smid - obtain a free smid from internal queue 3693 * @ioc: per adapter object 3694 * @cb_idx: callback index 3695 * 3696 * Return: smid (zero is invalid) 3697 */ 3698 u16 3699 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx) 3700 { 3701 unsigned long flags; 3702 struct request_tracker *request; 3703 u16 smid; 3704 3705 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3706 if (list_empty(&ioc->internal_free_list)) { 3707 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3708 ioc_err(ioc, "%s: smid not available\n", __func__); 3709 return 0; 3710 } 3711 3712 request = list_entry(ioc->internal_free_list.next, 3713 struct request_tracker, tracker_list); 3714 request->cb_idx = cb_idx; 3715 smid = request->smid; 3716 list_del(&request->tracker_list); 3717 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3718 return smid; 3719 } 3720 3721 /** 3722 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue 3723 * @ioc: per adapter object 3724 * @cb_idx: callback index 3725 * @scmd: pointer to scsi command object 3726 * 3727 * Return: smid (zero is invalid) 3728 */ 3729 u16 3730 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx, 3731 struct scsi_cmnd *scmd) 3732 { 3733 struct scsiio_tracker *request = scsi_cmd_priv(scmd); 3734 u16 smid; 3735 u32 tag, unique_tag; 3736 3737 unique_tag = blk_mq_unique_tag(scmd->request); 3738 tag = blk_mq_unique_tag_to_tag(unique_tag); 3739 3740 /* 3741 * Store hw queue number corresponding to the tag. 3742 * This hw queue number is used later to determine 3743 * the unique_tag using the logic below. This unique_tag 3744 * is used to retrieve the scmd pointer corresponding 3745 * to tag using scsi_host_find_tag() API. 3746 * 3747 * tag = smid - 1; 3748 * unique_tag = ioc->io_queue_num[tag] << BLK_MQ_UNIQUE_TAG_BITS | tag; 3749 */ 3750 ioc->io_queue_num[tag] = blk_mq_unique_tag_to_hwq(unique_tag); 3751 3752 smid = tag + 1; 3753 request->cb_idx = cb_idx; 3754 request->smid = smid; 3755 request->scmd = scmd; 3756 INIT_LIST_HEAD(&request->chain_list); 3757 return smid; 3758 } 3759 3760 /** 3761 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue 3762 * @ioc: per adapter object 3763 * @cb_idx: callback index 3764 * 3765 * Return: smid (zero is invalid) 3766 */ 3767 u16 3768 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx) 3769 { 3770 unsigned long flags; 3771 struct request_tracker *request; 3772 u16 smid; 3773 3774 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3775 if (list_empty(&ioc->hpr_free_list)) { 3776 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3777 return 0; 3778 } 3779 3780 request = list_entry(ioc->hpr_free_list.next, 3781 struct request_tracker, tracker_list); 3782 request->cb_idx = cb_idx; 3783 smid = request->smid; 3784 list_del(&request->tracker_list); 3785 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3786 return smid; 3787 } 3788 3789 static void 3790 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc) 3791 { 3792 /* 3793 * See _wait_for_commands_to_complete() call with regards to this code. 3794 */ 3795 if (ioc->shost_recovery && ioc->pending_io_count) { 3796 ioc->pending_io_count = scsi_host_busy(ioc->shost); 3797 if (ioc->pending_io_count == 0) 3798 wake_up(&ioc->reset_wq); 3799 } 3800 } 3801 3802 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc, 3803 struct scsiio_tracker *st) 3804 { 3805 if (WARN_ON(st->smid == 0)) 3806 return; 3807 st->cb_idx = 0xFF; 3808 st->direct_io = 0; 3809 st->scmd = NULL; 3810 atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0); 3811 st->smid = 0; 3812 } 3813 3814 /** 3815 * mpt3sas_base_free_smid - put smid back on free_list 3816 * @ioc: per adapter object 3817 * @smid: system request message index 3818 */ 3819 void 3820 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3821 { 3822 unsigned long flags; 3823 int i; 3824 3825 if (smid < ioc->hi_priority_smid) { 3826 struct scsiio_tracker *st; 3827 void *request; 3828 3829 st = _get_st_from_smid(ioc, smid); 3830 if (!st) { 3831 _base_recovery_check(ioc); 3832 return; 3833 } 3834 3835 /* Clear MPI request frame */ 3836 request = mpt3sas_base_get_msg_frame(ioc, smid); 3837 memset(request, 0, ioc->request_sz); 3838 3839 mpt3sas_base_clear_st(ioc, st); 3840 _base_recovery_check(ioc); 3841 ioc->io_queue_num[smid - 1] = 0; 3842 return; 3843 } 3844 3845 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 3846 if (smid < ioc->internal_smid) { 3847 /* hi-priority */ 3848 i = smid - ioc->hi_priority_smid; 3849 ioc->hpr_lookup[i].cb_idx = 0xFF; 3850 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list); 3851 } else if (smid <= ioc->hba_queue_depth) { 3852 /* internal queue */ 3853 i = smid - ioc->internal_smid; 3854 ioc->internal_lookup[i].cb_idx = 0xFF; 3855 list_add(&ioc->internal_lookup[i].tracker_list, 3856 &ioc->internal_free_list); 3857 } 3858 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 3859 } 3860 3861 /** 3862 * _base_mpi_ep_writeq - 32 bit write to MMIO 3863 * @b: data payload 3864 * @addr: address in MMIO space 3865 * @writeq_lock: spin lock 3866 * 3867 * This special handling for MPI EP to take care of 32 bit 3868 * environment where its not quarenteed to send the entire word 3869 * in one transfer. 3870 */ 3871 static inline void 3872 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr, 3873 spinlock_t *writeq_lock) 3874 { 3875 unsigned long flags; 3876 3877 spin_lock_irqsave(writeq_lock, flags); 3878 __raw_writel((u32)(b), addr); 3879 __raw_writel((u32)(b >> 32), (addr + 4)); 3880 spin_unlock_irqrestore(writeq_lock, flags); 3881 } 3882 3883 /** 3884 * _base_writeq - 64 bit write to MMIO 3885 * @b: data payload 3886 * @addr: address in MMIO space 3887 * @writeq_lock: spin lock 3888 * 3889 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes 3890 * care of 32 bit environment where its not quarenteed to send the entire word 3891 * in one transfer. 3892 */ 3893 #if defined(writeq) && defined(CONFIG_64BIT) 3894 static inline void 3895 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock) 3896 { 3897 wmb(); 3898 __raw_writeq(b, addr); 3899 barrier(); 3900 } 3901 #else 3902 static inline void 3903 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock) 3904 { 3905 _base_mpi_ep_writeq(b, addr, writeq_lock); 3906 } 3907 #endif 3908 3909 /** 3910 * _base_set_and_get_msix_index - get the msix index and assign to msix_io 3911 * variable of scsi tracker 3912 * @ioc: per adapter object 3913 * @smid: system request message index 3914 * 3915 * returns msix index. 3916 */ 3917 static u8 3918 _base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid) 3919 { 3920 struct scsiio_tracker *st = NULL; 3921 3922 if (smid < ioc->hi_priority_smid) 3923 st = _get_st_from_smid(ioc, smid); 3924 3925 if (st == NULL) 3926 return _base_get_msix_index(ioc, NULL); 3927 3928 st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd); 3929 return st->msix_io; 3930 } 3931 3932 /** 3933 * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware 3934 * @ioc: per adapter object 3935 * @smid: system request message index 3936 * @handle: device handle 3937 */ 3938 static void 3939 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc, 3940 u16 smid, u16 handle) 3941 { 3942 Mpi2RequestDescriptorUnion_t descriptor; 3943 u64 *request = (u64 *)&descriptor; 3944 void *mpi_req_iomem; 3945 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 3946 3947 _clone_sg_entries(ioc, (void *) mfp, smid); 3948 mpi_req_iomem = (void __force *)ioc->chip + 3949 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz); 3950 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 3951 ioc->request_sz); 3952 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 3953 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3954 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 3955 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 3956 descriptor.SCSIIO.LMID = 0; 3957 _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3958 &ioc->scsi_lookup_lock); 3959 } 3960 3961 /** 3962 * _base_put_smid_scsi_io - send SCSI_IO request to firmware 3963 * @ioc: per adapter object 3964 * @smid: system request message index 3965 * @handle: device handle 3966 */ 3967 static void 3968 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle) 3969 { 3970 Mpi2RequestDescriptorUnion_t descriptor; 3971 u64 *request = (u64 *)&descriptor; 3972 3973 3974 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 3975 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3976 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 3977 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 3978 descriptor.SCSIIO.LMID = 0; 3979 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 3980 &ioc->scsi_lookup_lock); 3981 } 3982 3983 /** 3984 * _base_put_smid_fast_path - send fast path request to firmware 3985 * @ioc: per adapter object 3986 * @smid: system request message index 3987 * @handle: device handle 3988 */ 3989 static void 3990 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid, 3991 u16 handle) 3992 { 3993 Mpi2RequestDescriptorUnion_t descriptor; 3994 u64 *request = (u64 *)&descriptor; 3995 3996 descriptor.SCSIIO.RequestFlags = 3997 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 3998 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 3999 descriptor.SCSIIO.SMID = cpu_to_le16(smid); 4000 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); 4001 descriptor.SCSIIO.LMID = 0; 4002 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 4003 &ioc->scsi_lookup_lock); 4004 } 4005 4006 /** 4007 * _base_put_smid_hi_priority - send Task Management request to firmware 4008 * @ioc: per adapter object 4009 * @smid: system request message index 4010 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0. 4011 */ 4012 static void 4013 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4014 u16 msix_task) 4015 { 4016 Mpi2RequestDescriptorUnion_t descriptor; 4017 void *mpi_req_iomem; 4018 u64 *request; 4019 4020 if (ioc->is_mcpu_endpoint) { 4021 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 4022 4023 /* TBD 256 is offset within sys register. */ 4024 mpi_req_iomem = (void __force *)ioc->chip 4025 + MPI_FRAME_START_OFFSET 4026 + (smid * ioc->request_sz); 4027 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 4028 ioc->request_sz); 4029 } 4030 4031 request = (u64 *)&descriptor; 4032 4033 descriptor.HighPriority.RequestFlags = 4034 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 4035 descriptor.HighPriority.MSIxIndex = msix_task; 4036 descriptor.HighPriority.SMID = cpu_to_le16(smid); 4037 descriptor.HighPriority.LMID = 0; 4038 descriptor.HighPriority.Reserved1 = 0; 4039 if (ioc->is_mcpu_endpoint) 4040 _base_mpi_ep_writeq(*request, 4041 &ioc->chip->RequestDescriptorPostLow, 4042 &ioc->scsi_lookup_lock); 4043 else 4044 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 4045 &ioc->scsi_lookup_lock); 4046 } 4047 4048 /** 4049 * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to 4050 * firmware 4051 * @ioc: per adapter object 4052 * @smid: system request message index 4053 */ 4054 void 4055 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid) 4056 { 4057 Mpi2RequestDescriptorUnion_t descriptor; 4058 u64 *request = (u64 *)&descriptor; 4059 4060 descriptor.Default.RequestFlags = 4061 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED; 4062 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4063 descriptor.Default.SMID = cpu_to_le16(smid); 4064 descriptor.Default.LMID = 0; 4065 descriptor.Default.DescriptorTypeDependent = 0; 4066 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 4067 &ioc->scsi_lookup_lock); 4068 } 4069 4070 /** 4071 * _base_put_smid_default - Default, primarily used for config pages 4072 * @ioc: per adapter object 4073 * @smid: system request message index 4074 */ 4075 static void 4076 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid) 4077 { 4078 Mpi2RequestDescriptorUnion_t descriptor; 4079 void *mpi_req_iomem; 4080 u64 *request; 4081 4082 if (ioc->is_mcpu_endpoint) { 4083 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); 4084 4085 _clone_sg_entries(ioc, (void *) mfp, smid); 4086 /* TBD 256 is offset within sys register */ 4087 mpi_req_iomem = (void __force *)ioc->chip + 4088 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz); 4089 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, 4090 ioc->request_sz); 4091 } 4092 request = (u64 *)&descriptor; 4093 descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 4094 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4095 descriptor.Default.SMID = cpu_to_le16(smid); 4096 descriptor.Default.LMID = 0; 4097 descriptor.Default.DescriptorTypeDependent = 0; 4098 if (ioc->is_mcpu_endpoint) 4099 _base_mpi_ep_writeq(*request, 4100 &ioc->chip->RequestDescriptorPostLow, 4101 &ioc->scsi_lookup_lock); 4102 else 4103 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, 4104 &ioc->scsi_lookup_lock); 4105 } 4106 4107 /** 4108 * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using 4109 * Atomic Request Descriptor 4110 * @ioc: per adapter object 4111 * @smid: system request message index 4112 * @handle: device handle, unused in this function, for function type match 4113 * 4114 * Return nothing. 4115 */ 4116 static void 4117 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4118 u16 handle) 4119 { 4120 Mpi26AtomicRequestDescriptor_t descriptor; 4121 u32 *request = (u32 *)&descriptor; 4122 4123 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 4124 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4125 descriptor.SMID = cpu_to_le16(smid); 4126 4127 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4128 } 4129 4130 /** 4131 * _base_put_smid_fast_path_atomic - send fast path request to firmware 4132 * using Atomic Request Descriptor 4133 * @ioc: per adapter object 4134 * @smid: system request message index 4135 * @handle: device handle, unused in this function, for function type match 4136 * Return nothing 4137 */ 4138 static void 4139 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4140 u16 handle) 4141 { 4142 Mpi26AtomicRequestDescriptor_t descriptor; 4143 u32 *request = (u32 *)&descriptor; 4144 4145 descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 4146 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4147 descriptor.SMID = cpu_to_le16(smid); 4148 4149 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4150 } 4151 4152 /** 4153 * _base_put_smid_hi_priority_atomic - send Task Management request to 4154 * firmware using Atomic Request Descriptor 4155 * @ioc: per adapter object 4156 * @smid: system request message index 4157 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0 4158 * 4159 * Return nothing. 4160 */ 4161 static void 4162 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, 4163 u16 msix_task) 4164 { 4165 Mpi26AtomicRequestDescriptor_t descriptor; 4166 u32 *request = (u32 *)&descriptor; 4167 4168 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; 4169 descriptor.MSIxIndex = msix_task; 4170 descriptor.SMID = cpu_to_le16(smid); 4171 4172 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4173 } 4174 4175 /** 4176 * _base_put_smid_default - Default, primarily used for config pages 4177 * use Atomic Request Descriptor 4178 * @ioc: per adapter object 4179 * @smid: system request message index 4180 * 4181 * Return nothing. 4182 */ 4183 static void 4184 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid) 4185 { 4186 Mpi26AtomicRequestDescriptor_t descriptor; 4187 u32 *request = (u32 *)&descriptor; 4188 4189 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 4190 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); 4191 descriptor.SMID = cpu_to_le16(smid); 4192 4193 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); 4194 } 4195 4196 /** 4197 * _base_display_OEMs_branding - Display branding string 4198 * @ioc: per adapter object 4199 */ 4200 static void 4201 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc) 4202 { 4203 if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL) 4204 return; 4205 4206 switch (ioc->pdev->subsystem_vendor) { 4207 case PCI_VENDOR_ID_INTEL: 4208 switch (ioc->pdev->device) { 4209 case MPI2_MFGPAGE_DEVID_SAS2008: 4210 switch (ioc->pdev->subsystem_device) { 4211 case MPT2SAS_INTEL_RMS2LL080_SSDID: 4212 ioc_info(ioc, "%s\n", 4213 MPT2SAS_INTEL_RMS2LL080_BRANDING); 4214 break; 4215 case MPT2SAS_INTEL_RMS2LL040_SSDID: 4216 ioc_info(ioc, "%s\n", 4217 MPT2SAS_INTEL_RMS2LL040_BRANDING); 4218 break; 4219 case MPT2SAS_INTEL_SSD910_SSDID: 4220 ioc_info(ioc, "%s\n", 4221 MPT2SAS_INTEL_SSD910_BRANDING); 4222 break; 4223 default: 4224 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4225 ioc->pdev->subsystem_device); 4226 break; 4227 } 4228 break; 4229 case MPI2_MFGPAGE_DEVID_SAS2308_2: 4230 switch (ioc->pdev->subsystem_device) { 4231 case MPT2SAS_INTEL_RS25GB008_SSDID: 4232 ioc_info(ioc, "%s\n", 4233 MPT2SAS_INTEL_RS25GB008_BRANDING); 4234 break; 4235 case MPT2SAS_INTEL_RMS25JB080_SSDID: 4236 ioc_info(ioc, "%s\n", 4237 MPT2SAS_INTEL_RMS25JB080_BRANDING); 4238 break; 4239 case MPT2SAS_INTEL_RMS25JB040_SSDID: 4240 ioc_info(ioc, "%s\n", 4241 MPT2SAS_INTEL_RMS25JB040_BRANDING); 4242 break; 4243 case MPT2SAS_INTEL_RMS25KB080_SSDID: 4244 ioc_info(ioc, "%s\n", 4245 MPT2SAS_INTEL_RMS25KB080_BRANDING); 4246 break; 4247 case MPT2SAS_INTEL_RMS25KB040_SSDID: 4248 ioc_info(ioc, "%s\n", 4249 MPT2SAS_INTEL_RMS25KB040_BRANDING); 4250 break; 4251 case MPT2SAS_INTEL_RMS25LB040_SSDID: 4252 ioc_info(ioc, "%s\n", 4253 MPT2SAS_INTEL_RMS25LB040_BRANDING); 4254 break; 4255 case MPT2SAS_INTEL_RMS25LB080_SSDID: 4256 ioc_info(ioc, "%s\n", 4257 MPT2SAS_INTEL_RMS25LB080_BRANDING); 4258 break; 4259 default: 4260 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4261 ioc->pdev->subsystem_device); 4262 break; 4263 } 4264 break; 4265 case MPI25_MFGPAGE_DEVID_SAS3008: 4266 switch (ioc->pdev->subsystem_device) { 4267 case MPT3SAS_INTEL_RMS3JC080_SSDID: 4268 ioc_info(ioc, "%s\n", 4269 MPT3SAS_INTEL_RMS3JC080_BRANDING); 4270 break; 4271 4272 case MPT3SAS_INTEL_RS3GC008_SSDID: 4273 ioc_info(ioc, "%s\n", 4274 MPT3SAS_INTEL_RS3GC008_BRANDING); 4275 break; 4276 case MPT3SAS_INTEL_RS3FC044_SSDID: 4277 ioc_info(ioc, "%s\n", 4278 MPT3SAS_INTEL_RS3FC044_BRANDING); 4279 break; 4280 case MPT3SAS_INTEL_RS3UC080_SSDID: 4281 ioc_info(ioc, "%s\n", 4282 MPT3SAS_INTEL_RS3UC080_BRANDING); 4283 break; 4284 default: 4285 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4286 ioc->pdev->subsystem_device); 4287 break; 4288 } 4289 break; 4290 default: 4291 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", 4292 ioc->pdev->subsystem_device); 4293 break; 4294 } 4295 break; 4296 case PCI_VENDOR_ID_DELL: 4297 switch (ioc->pdev->device) { 4298 case MPI2_MFGPAGE_DEVID_SAS2008: 4299 switch (ioc->pdev->subsystem_device) { 4300 case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID: 4301 ioc_info(ioc, "%s\n", 4302 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING); 4303 break; 4304 case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID: 4305 ioc_info(ioc, "%s\n", 4306 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING); 4307 break; 4308 case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID: 4309 ioc_info(ioc, "%s\n", 4310 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING); 4311 break; 4312 case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID: 4313 ioc_info(ioc, "%s\n", 4314 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING); 4315 break; 4316 case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID: 4317 ioc_info(ioc, "%s\n", 4318 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING); 4319 break; 4320 case MPT2SAS_DELL_PERC_H200_SSDID: 4321 ioc_info(ioc, "%s\n", 4322 MPT2SAS_DELL_PERC_H200_BRANDING); 4323 break; 4324 case MPT2SAS_DELL_6GBPS_SAS_SSDID: 4325 ioc_info(ioc, "%s\n", 4326 MPT2SAS_DELL_6GBPS_SAS_BRANDING); 4327 break; 4328 default: 4329 ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n", 4330 ioc->pdev->subsystem_device); 4331 break; 4332 } 4333 break; 4334 case MPI25_MFGPAGE_DEVID_SAS3008: 4335 switch (ioc->pdev->subsystem_device) { 4336 case MPT3SAS_DELL_12G_HBA_SSDID: 4337 ioc_info(ioc, "%s\n", 4338 MPT3SAS_DELL_12G_HBA_BRANDING); 4339 break; 4340 default: 4341 ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n", 4342 ioc->pdev->subsystem_device); 4343 break; 4344 } 4345 break; 4346 default: 4347 ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n", 4348 ioc->pdev->subsystem_device); 4349 break; 4350 } 4351 break; 4352 case PCI_VENDOR_ID_CISCO: 4353 switch (ioc->pdev->device) { 4354 case MPI25_MFGPAGE_DEVID_SAS3008: 4355 switch (ioc->pdev->subsystem_device) { 4356 case MPT3SAS_CISCO_12G_8E_HBA_SSDID: 4357 ioc_info(ioc, "%s\n", 4358 MPT3SAS_CISCO_12G_8E_HBA_BRANDING); 4359 break; 4360 case MPT3SAS_CISCO_12G_8I_HBA_SSDID: 4361 ioc_info(ioc, "%s\n", 4362 MPT3SAS_CISCO_12G_8I_HBA_BRANDING); 4363 break; 4364 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID: 4365 ioc_info(ioc, "%s\n", 4366 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING); 4367 break; 4368 default: 4369 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n", 4370 ioc->pdev->subsystem_device); 4371 break; 4372 } 4373 break; 4374 case MPI25_MFGPAGE_DEVID_SAS3108_1: 4375 switch (ioc->pdev->subsystem_device) { 4376 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID: 4377 ioc_info(ioc, "%s\n", 4378 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING); 4379 break; 4380 case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID: 4381 ioc_info(ioc, "%s\n", 4382 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING); 4383 break; 4384 default: 4385 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n", 4386 ioc->pdev->subsystem_device); 4387 break; 4388 } 4389 break; 4390 default: 4391 ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n", 4392 ioc->pdev->subsystem_device); 4393 break; 4394 } 4395 break; 4396 case MPT2SAS_HP_3PAR_SSVID: 4397 switch (ioc->pdev->device) { 4398 case MPI2_MFGPAGE_DEVID_SAS2004: 4399 switch (ioc->pdev->subsystem_device) { 4400 case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID: 4401 ioc_info(ioc, "%s\n", 4402 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING); 4403 break; 4404 default: 4405 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n", 4406 ioc->pdev->subsystem_device); 4407 break; 4408 } 4409 break; 4410 case MPI2_MFGPAGE_DEVID_SAS2308_2: 4411 switch (ioc->pdev->subsystem_device) { 4412 case MPT2SAS_HP_2_4_INTERNAL_SSDID: 4413 ioc_info(ioc, "%s\n", 4414 MPT2SAS_HP_2_4_INTERNAL_BRANDING); 4415 break; 4416 case MPT2SAS_HP_2_4_EXTERNAL_SSDID: 4417 ioc_info(ioc, "%s\n", 4418 MPT2SAS_HP_2_4_EXTERNAL_BRANDING); 4419 break; 4420 case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID: 4421 ioc_info(ioc, "%s\n", 4422 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING); 4423 break; 4424 case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID: 4425 ioc_info(ioc, "%s\n", 4426 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING); 4427 break; 4428 default: 4429 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n", 4430 ioc->pdev->subsystem_device); 4431 break; 4432 } 4433 break; 4434 default: 4435 ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n", 4436 ioc->pdev->subsystem_device); 4437 break; 4438 } 4439 default: 4440 break; 4441 } 4442 } 4443 4444 /** 4445 * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg 4446 * version from FW Image Header. 4447 * @ioc: per adapter object 4448 * 4449 * Return: 0 for success, non-zero for failure. 4450 */ 4451 static int 4452 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc) 4453 { 4454 Mpi2FWImageHeader_t *fw_img_hdr; 4455 Mpi26ComponentImageHeader_t *cmp_img_hdr; 4456 Mpi25FWUploadRequest_t *mpi_request; 4457 Mpi2FWUploadReply_t mpi_reply; 4458 int r = 0; 4459 u32 package_version = 0; 4460 void *fwpkg_data = NULL; 4461 dma_addr_t fwpkg_data_dma; 4462 u16 smid, ioc_status; 4463 size_t data_length; 4464 4465 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 4466 4467 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 4468 ioc_err(ioc, "%s: internal command already in use\n", __func__); 4469 return -EAGAIN; 4470 } 4471 4472 data_length = sizeof(Mpi2FWImageHeader_t); 4473 fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length, 4474 &fwpkg_data_dma, GFP_KERNEL); 4475 if (!fwpkg_data) { 4476 ioc_err(ioc, 4477 "Memory allocation for fwpkg data failed at %s:%d/%s()!\n", 4478 __FILE__, __LINE__, __func__); 4479 return -ENOMEM; 4480 } 4481 4482 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 4483 if (!smid) { 4484 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 4485 r = -EAGAIN; 4486 goto out; 4487 } 4488 4489 ioc->base_cmds.status = MPT3_CMD_PENDING; 4490 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 4491 ioc->base_cmds.smid = smid; 4492 memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t)); 4493 mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD; 4494 mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH; 4495 mpi_request->ImageSize = cpu_to_le32(data_length); 4496 ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma, 4497 data_length); 4498 init_completion(&ioc->base_cmds.done); 4499 ioc->put_smid_default(ioc, smid); 4500 /* Wait for 15 seconds */ 4501 wait_for_completion_timeout(&ioc->base_cmds.done, 4502 FW_IMG_HDR_READ_TIMEOUT*HZ); 4503 ioc_info(ioc, "%s: complete\n", __func__); 4504 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 4505 ioc_err(ioc, "%s: timeout\n", __func__); 4506 _debug_dump_mf(mpi_request, 4507 sizeof(Mpi25FWUploadRequest_t)/4); 4508 r = -ETIME; 4509 } else { 4510 memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t)); 4511 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) { 4512 memcpy(&mpi_reply, ioc->base_cmds.reply, 4513 sizeof(Mpi2FWUploadReply_t)); 4514 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 4515 MPI2_IOCSTATUS_MASK; 4516 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 4517 fw_img_hdr = (Mpi2FWImageHeader_t *)fwpkg_data; 4518 if (le32_to_cpu(fw_img_hdr->Signature) == 4519 MPI26_IMAGE_HEADER_SIGNATURE0_MPI26) { 4520 cmp_img_hdr = 4521 (Mpi26ComponentImageHeader_t *) 4522 (fwpkg_data); 4523 package_version = 4524 le32_to_cpu( 4525 cmp_img_hdr->ApplicationSpecific); 4526 } else 4527 package_version = 4528 le32_to_cpu( 4529 fw_img_hdr->PackageVersion.Word); 4530 if (package_version) 4531 ioc_info(ioc, 4532 "FW Package Ver(%02d.%02d.%02d.%02d)\n", 4533 ((package_version) & 0xFF000000) >> 24, 4534 ((package_version) & 0x00FF0000) >> 16, 4535 ((package_version) & 0x0000FF00) >> 8, 4536 (package_version) & 0x000000FF); 4537 } else { 4538 _debug_dump_mf(&mpi_reply, 4539 sizeof(Mpi2FWUploadReply_t)/4); 4540 } 4541 } 4542 } 4543 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 4544 out: 4545 if (fwpkg_data) 4546 dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data, 4547 fwpkg_data_dma); 4548 return r; 4549 } 4550 4551 /** 4552 * _base_display_ioc_capabilities - Disply IOC's capabilities. 4553 * @ioc: per adapter object 4554 */ 4555 static void 4556 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc) 4557 { 4558 int i = 0; 4559 char desc[16]; 4560 u32 iounit_pg1_flags; 4561 u32 bios_version; 4562 4563 bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion); 4564 strncpy(desc, ioc->manu_pg0.ChipName, 16); 4565 ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n", 4566 desc, 4567 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24, 4568 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16, 4569 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8, 4570 ioc->facts.FWVersion.Word & 0x000000FF, 4571 ioc->pdev->revision, 4572 (bios_version & 0xFF000000) >> 24, 4573 (bios_version & 0x00FF0000) >> 16, 4574 (bios_version & 0x0000FF00) >> 8, 4575 bios_version & 0x000000FF); 4576 4577 _base_display_OEMs_branding(ioc); 4578 4579 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) { 4580 pr_info("%sNVMe", i ? "," : ""); 4581 i++; 4582 } 4583 4584 ioc_info(ioc, "Protocol=("); 4585 4586 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) { 4587 pr_cont("Initiator"); 4588 i++; 4589 } 4590 4591 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) { 4592 pr_cont("%sTarget", i ? "," : ""); 4593 i++; 4594 } 4595 4596 i = 0; 4597 pr_cont("), Capabilities=("); 4598 4599 if (!ioc->hide_ir_msg) { 4600 if (ioc->facts.IOCCapabilities & 4601 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) { 4602 pr_cont("Raid"); 4603 i++; 4604 } 4605 } 4606 4607 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) { 4608 pr_cont("%sTLR", i ? "," : ""); 4609 i++; 4610 } 4611 4612 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) { 4613 pr_cont("%sMulticast", i ? "," : ""); 4614 i++; 4615 } 4616 4617 if (ioc->facts.IOCCapabilities & 4618 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) { 4619 pr_cont("%sBIDI Target", i ? "," : ""); 4620 i++; 4621 } 4622 4623 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) { 4624 pr_cont("%sEEDP", i ? "," : ""); 4625 i++; 4626 } 4627 4628 if (ioc->facts.IOCCapabilities & 4629 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) { 4630 pr_cont("%sSnapshot Buffer", i ? "," : ""); 4631 i++; 4632 } 4633 4634 if (ioc->facts.IOCCapabilities & 4635 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) { 4636 pr_cont("%sDiag Trace Buffer", i ? "," : ""); 4637 i++; 4638 } 4639 4640 if (ioc->facts.IOCCapabilities & 4641 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) { 4642 pr_cont("%sDiag Extended Buffer", i ? "," : ""); 4643 i++; 4644 } 4645 4646 if (ioc->facts.IOCCapabilities & 4647 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) { 4648 pr_cont("%sTask Set Full", i ? "," : ""); 4649 i++; 4650 } 4651 4652 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags); 4653 if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) { 4654 pr_cont("%sNCQ", i ? "," : ""); 4655 i++; 4656 } 4657 4658 pr_cont(")\n"); 4659 } 4660 4661 /** 4662 * mpt3sas_base_update_missing_delay - change the missing delay timers 4663 * @ioc: per adapter object 4664 * @device_missing_delay: amount of time till device is reported missing 4665 * @io_missing_delay: interval IO is returned when there is a missing device 4666 * 4667 * Passed on the command line, this function will modify the device missing 4668 * delay, as well as the io missing delay. This should be called at driver 4669 * load time. 4670 */ 4671 void 4672 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc, 4673 u16 device_missing_delay, u8 io_missing_delay) 4674 { 4675 u16 dmd, dmd_new, dmd_orignal; 4676 u8 io_missing_delay_original; 4677 u16 sz; 4678 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL; 4679 Mpi2ConfigReply_t mpi_reply; 4680 u8 num_phys = 0; 4681 u16 ioc_status; 4682 4683 mpt3sas_config_get_number_hba_phys(ioc, &num_phys); 4684 if (!num_phys) 4685 return; 4686 4687 sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys * 4688 sizeof(Mpi2SasIOUnit1PhyData_t)); 4689 sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL); 4690 if (!sas_iounit_pg1) { 4691 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4692 __FILE__, __LINE__, __func__); 4693 goto out; 4694 } 4695 if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply, 4696 sas_iounit_pg1, sz))) { 4697 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4698 __FILE__, __LINE__, __func__); 4699 goto out; 4700 } 4701 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 4702 MPI2_IOCSTATUS_MASK; 4703 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 4704 ioc_err(ioc, "failure at %s:%d/%s()!\n", 4705 __FILE__, __LINE__, __func__); 4706 goto out; 4707 } 4708 4709 /* device missing delay */ 4710 dmd = sas_iounit_pg1->ReportDeviceMissingDelay; 4711 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16) 4712 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16; 4713 else 4714 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK; 4715 dmd_orignal = dmd; 4716 if (device_missing_delay > 0x7F) { 4717 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 : 4718 device_missing_delay; 4719 dmd = dmd / 16; 4720 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16; 4721 } else 4722 dmd = device_missing_delay; 4723 sas_iounit_pg1->ReportDeviceMissingDelay = dmd; 4724 4725 /* io missing delay */ 4726 io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay; 4727 sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay; 4728 4729 if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1, 4730 sz)) { 4731 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16) 4732 dmd_new = (dmd & 4733 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16; 4734 else 4735 dmd_new = 4736 dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK; 4737 ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n", 4738 dmd_orignal, dmd_new); 4739 ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n", 4740 io_missing_delay_original, 4741 io_missing_delay); 4742 ioc->device_missing_delay = dmd_new; 4743 ioc->io_missing_delay = io_missing_delay; 4744 } 4745 4746 out: 4747 kfree(sas_iounit_pg1); 4748 } 4749 4750 /** 4751 * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields 4752 * according to performance mode. 4753 * @ioc : per adapter object 4754 * 4755 * Return nothing. 4756 */ 4757 static void 4758 _base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc) 4759 { 4760 Mpi2IOCPage1_t ioc_pg1; 4761 Mpi2ConfigReply_t mpi_reply; 4762 4763 mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy); 4764 memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t)); 4765 4766 switch (perf_mode) { 4767 case MPT_PERF_MODE_DEFAULT: 4768 case MPT_PERF_MODE_BALANCED: 4769 if (ioc->high_iops_queues) { 4770 ioc_info(ioc, 4771 "Enable interrupt coalescing only for first\t" 4772 "%d reply queues\n", 4773 MPT3SAS_HIGH_IOPS_REPLY_QUEUES); 4774 /* 4775 * If 31st bit is zero then interrupt coalescing is 4776 * enabled for all reply descriptor post queues. 4777 * If 31st bit is set to one then user can 4778 * enable/disable interrupt coalescing on per reply 4779 * descriptor post queue group(8) basis. So to enable 4780 * interrupt coalescing only on first reply descriptor 4781 * post queue group 31st bit and zero th bit is enabled. 4782 */ 4783 ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 | 4784 ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1)); 4785 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1); 4786 ioc_info(ioc, "performance mode: balanced\n"); 4787 return; 4788 } 4789 fallthrough; 4790 case MPT_PERF_MODE_LATENCY: 4791 /* 4792 * Enable interrupt coalescing on all reply queues 4793 * with timeout value 0xA 4794 */ 4795 ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa); 4796 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING); 4797 ioc_pg1.ProductSpecific = 0; 4798 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1); 4799 ioc_info(ioc, "performance mode: latency\n"); 4800 break; 4801 case MPT_PERF_MODE_IOPS: 4802 /* 4803 * Enable interrupt coalescing on all reply queues. 4804 */ 4805 ioc_info(ioc, 4806 "performance mode: iops with coalescing timeout: 0x%x\n", 4807 le32_to_cpu(ioc_pg1.CoalescingTimeout)); 4808 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING); 4809 ioc_pg1.ProductSpecific = 0; 4810 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1); 4811 break; 4812 } 4813 } 4814 4815 /** 4816 * _base_get_event_diag_triggers - get event diag trigger values from 4817 * persistent pages 4818 * @ioc : per adapter object 4819 * 4820 * Return nothing. 4821 */ 4822 static void 4823 _base_get_event_diag_triggers(struct MPT3SAS_ADAPTER *ioc) 4824 { 4825 Mpi26DriverTriggerPage2_t trigger_pg2; 4826 struct SL_WH_EVENT_TRIGGER_T *event_tg; 4827 MPI26_DRIVER_MPI_EVENT_TIGGER_ENTRY *mpi_event_tg; 4828 Mpi2ConfigReply_t mpi_reply; 4829 int r = 0, i = 0; 4830 u16 count = 0; 4831 u16 ioc_status; 4832 4833 r = mpt3sas_config_get_driver_trigger_pg2(ioc, &mpi_reply, 4834 &trigger_pg2); 4835 if (r) 4836 return; 4837 4838 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 4839 MPI2_IOCSTATUS_MASK; 4840 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 4841 dinitprintk(ioc, 4842 ioc_err(ioc, 4843 "%s: Failed to get trigger pg2, ioc_status(0x%04x)\n", 4844 __func__, ioc_status)); 4845 return; 4846 } 4847 4848 if (le16_to_cpu(trigger_pg2.NumMPIEventTrigger)) { 4849 count = le16_to_cpu(trigger_pg2.NumMPIEventTrigger); 4850 count = min_t(u16, NUM_VALID_ENTRIES, count); 4851 ioc->diag_trigger_event.ValidEntries = count; 4852 4853 event_tg = &ioc->diag_trigger_event.EventTriggerEntry[0]; 4854 mpi_event_tg = &trigger_pg2.MPIEventTriggers[0]; 4855 for (i = 0; i < count; i++) { 4856 event_tg->EventValue = le16_to_cpu( 4857 mpi_event_tg->MPIEventCode); 4858 event_tg->LogEntryQualifier = le16_to_cpu( 4859 mpi_event_tg->MPIEventCodeSpecific); 4860 event_tg++; 4861 mpi_event_tg++; 4862 } 4863 } 4864 } 4865 4866 /** 4867 * _base_get_scsi_diag_triggers - get scsi diag trigger values from 4868 * persistent pages 4869 * @ioc : per adapter object 4870 * 4871 * Return nothing. 4872 */ 4873 static void 4874 _base_get_scsi_diag_triggers(struct MPT3SAS_ADAPTER *ioc) 4875 { 4876 Mpi26DriverTriggerPage3_t trigger_pg3; 4877 struct SL_WH_SCSI_TRIGGER_T *scsi_tg; 4878 MPI26_DRIVER_SCSI_SENSE_TIGGER_ENTRY *mpi_scsi_tg; 4879 Mpi2ConfigReply_t mpi_reply; 4880 int r = 0, i = 0; 4881 u16 count = 0; 4882 u16 ioc_status; 4883 4884 r = mpt3sas_config_get_driver_trigger_pg3(ioc, &mpi_reply, 4885 &trigger_pg3); 4886 if (r) 4887 return; 4888 4889 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 4890 MPI2_IOCSTATUS_MASK; 4891 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 4892 dinitprintk(ioc, 4893 ioc_err(ioc, 4894 "%s: Failed to get trigger pg3, ioc_status(0x%04x)\n", 4895 __func__, ioc_status)); 4896 return; 4897 } 4898 4899 if (le16_to_cpu(trigger_pg3.NumSCSISenseTrigger)) { 4900 count = le16_to_cpu(trigger_pg3.NumSCSISenseTrigger); 4901 count = min_t(u16, NUM_VALID_ENTRIES, count); 4902 ioc->diag_trigger_scsi.ValidEntries = count; 4903 4904 scsi_tg = &ioc->diag_trigger_scsi.SCSITriggerEntry[0]; 4905 mpi_scsi_tg = &trigger_pg3.SCSISenseTriggers[0]; 4906 for (i = 0; i < count; i++) { 4907 scsi_tg->ASCQ = mpi_scsi_tg->ASCQ; 4908 scsi_tg->ASC = mpi_scsi_tg->ASC; 4909 scsi_tg->SenseKey = mpi_scsi_tg->SenseKey; 4910 4911 scsi_tg++; 4912 mpi_scsi_tg++; 4913 } 4914 } 4915 } 4916 4917 /** 4918 * _base_get_mpi_diag_triggers - get mpi diag trigger values from 4919 * persistent pages 4920 * @ioc : per adapter object 4921 * 4922 * Return nothing. 4923 */ 4924 static void 4925 _base_get_mpi_diag_triggers(struct MPT3SAS_ADAPTER *ioc) 4926 { 4927 Mpi26DriverTriggerPage4_t trigger_pg4; 4928 struct SL_WH_MPI_TRIGGER_T *status_tg; 4929 MPI26_DRIVER_IOCSTATUS_LOGINFO_TIGGER_ENTRY *mpi_status_tg; 4930 Mpi2ConfigReply_t mpi_reply; 4931 int r = 0, i = 0; 4932 u16 count = 0; 4933 u16 ioc_status; 4934 4935 r = mpt3sas_config_get_driver_trigger_pg4(ioc, &mpi_reply, 4936 &trigger_pg4); 4937 if (r) 4938 return; 4939 4940 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 4941 MPI2_IOCSTATUS_MASK; 4942 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 4943 dinitprintk(ioc, 4944 ioc_err(ioc, 4945 "%s: Failed to get trigger pg4, ioc_status(0x%04x)\n", 4946 __func__, ioc_status)); 4947 return; 4948 } 4949 4950 if (le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger)) { 4951 count = le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger); 4952 count = min_t(u16, NUM_VALID_ENTRIES, count); 4953 ioc->diag_trigger_mpi.ValidEntries = count; 4954 4955 status_tg = &ioc->diag_trigger_mpi.MPITriggerEntry[0]; 4956 mpi_status_tg = &trigger_pg4.IOCStatusLoginfoTriggers[0]; 4957 4958 for (i = 0; i < count; i++) { 4959 status_tg->IOCStatus = le16_to_cpu( 4960 mpi_status_tg->IOCStatus); 4961 status_tg->IocLogInfo = le32_to_cpu( 4962 mpi_status_tg->LogInfo); 4963 4964 status_tg++; 4965 mpi_status_tg++; 4966 } 4967 } 4968 } 4969 4970 /** 4971 * _base_get_master_diag_triggers - get master diag trigger values from 4972 * persistent pages 4973 * @ioc : per adapter object 4974 * 4975 * Return nothing. 4976 */ 4977 static void 4978 _base_get_master_diag_triggers(struct MPT3SAS_ADAPTER *ioc) 4979 { 4980 Mpi26DriverTriggerPage1_t trigger_pg1; 4981 Mpi2ConfigReply_t mpi_reply; 4982 int r; 4983 u16 ioc_status; 4984 4985 r = mpt3sas_config_get_driver_trigger_pg1(ioc, &mpi_reply, 4986 &trigger_pg1); 4987 if (r) 4988 return; 4989 4990 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 4991 MPI2_IOCSTATUS_MASK; 4992 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 4993 dinitprintk(ioc, 4994 ioc_err(ioc, 4995 "%s: Failed to get trigger pg1, ioc_status(0x%04x)\n", 4996 __func__, ioc_status)); 4997 return; 4998 } 4999 5000 if (le16_to_cpu(trigger_pg1.NumMasterTrigger)) 5001 ioc->diag_trigger_master.MasterData |= 5002 le32_to_cpu( 5003 trigger_pg1.MasterTriggers[0].MasterTriggerFlags); 5004 } 5005 5006 /** 5007 * _base_check_for_trigger_pages_support - checks whether HBA FW supports 5008 * driver trigger pages or not 5009 * @ioc : per adapter object 5010 * 5011 * Returns trigger flags mask if HBA FW supports driver trigger pages, 5012 * otherwise returns EFAULT. 5013 */ 5014 static int 5015 _base_check_for_trigger_pages_support(struct MPT3SAS_ADAPTER *ioc) 5016 { 5017 Mpi26DriverTriggerPage0_t trigger_pg0; 5018 int r = 0; 5019 Mpi2ConfigReply_t mpi_reply; 5020 u16 ioc_status; 5021 5022 r = mpt3sas_config_get_driver_trigger_pg0(ioc, &mpi_reply, 5023 &trigger_pg0); 5024 if (r) 5025 return -EFAULT; 5026 5027 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & 5028 MPI2_IOCSTATUS_MASK; 5029 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) 5030 return -EFAULT; 5031 5032 return le16_to_cpu(trigger_pg0.TriggerFlags); 5033 } 5034 5035 /** 5036 * _base_get_diag_triggers - Retrieve diag trigger values from 5037 * persistent pages. 5038 * @ioc : per adapter object 5039 * 5040 * Return nothing. 5041 */ 5042 static void 5043 _base_get_diag_triggers(struct MPT3SAS_ADAPTER *ioc) 5044 { 5045 int trigger_flags; 5046 5047 /* 5048 * Default setting of master trigger. 5049 */ 5050 ioc->diag_trigger_master.MasterData = 5051 (MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET); 5052 5053 trigger_flags = _base_check_for_trigger_pages_support(ioc); 5054 if (trigger_flags < 0) 5055 return; 5056 5057 ioc->supports_trigger_pages = 1; 5058 5059 /* 5060 * Retrieve master diag trigger values from driver trigger pg1 5061 * if master trigger bit enabled in TriggerFlags. 5062 */ 5063 if ((u16)trigger_flags & 5064 MPI26_DRIVER_TRIGGER0_FLAG_MASTER_TRIGGER_VALID) 5065 _base_get_master_diag_triggers(ioc); 5066 5067 /* 5068 * Retrieve event diag trigger values from driver trigger pg2 5069 * if event trigger bit enabled in TriggerFlags. 5070 */ 5071 if ((u16)trigger_flags & 5072 MPI26_DRIVER_TRIGGER0_FLAG_MPI_EVENT_TRIGGER_VALID) 5073 _base_get_event_diag_triggers(ioc); 5074 5075 /* 5076 * Retrieve scsi diag trigger values from driver trigger pg3 5077 * if scsi trigger bit enabled in TriggerFlags. 5078 */ 5079 if ((u16)trigger_flags & 5080 MPI26_DRIVER_TRIGGER0_FLAG_SCSI_SENSE_TRIGGER_VALID) 5081 _base_get_scsi_diag_triggers(ioc); 5082 /* 5083 * Retrieve mpi error diag trigger values from driver trigger pg4 5084 * if loginfo trigger bit enabled in TriggerFlags. 5085 */ 5086 if ((u16)trigger_flags & 5087 MPI26_DRIVER_TRIGGER0_FLAG_LOGINFO_TRIGGER_VALID) 5088 _base_get_mpi_diag_triggers(ioc); 5089 } 5090 5091 /** 5092 * _base_update_diag_trigger_pages - Update the driver trigger pages after 5093 * online FW update, incase updated FW supports driver 5094 * trigger pages. 5095 * @ioc : per adapter object 5096 * 5097 * Return nothing. 5098 */ 5099 static void 5100 _base_update_diag_trigger_pages(struct MPT3SAS_ADAPTER *ioc) 5101 { 5102 5103 if (ioc->diag_trigger_master.MasterData) 5104 mpt3sas_config_update_driver_trigger_pg1(ioc, 5105 &ioc->diag_trigger_master, 1); 5106 5107 if (ioc->diag_trigger_event.ValidEntries) 5108 mpt3sas_config_update_driver_trigger_pg2(ioc, 5109 &ioc->diag_trigger_event, 1); 5110 5111 if (ioc->diag_trigger_scsi.ValidEntries) 5112 mpt3sas_config_update_driver_trigger_pg3(ioc, 5113 &ioc->diag_trigger_scsi, 1); 5114 5115 if (ioc->diag_trigger_mpi.ValidEntries) 5116 mpt3sas_config_update_driver_trigger_pg4(ioc, 5117 &ioc->diag_trigger_mpi, 1); 5118 } 5119 5120 /** 5121 * _base_static_config_pages - static start of day config pages 5122 * @ioc: per adapter object 5123 */ 5124 static void 5125 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc) 5126 { 5127 Mpi2ConfigReply_t mpi_reply; 5128 u32 iounit_pg1_flags; 5129 int tg_flags = 0; 5130 ioc->nvme_abort_timeout = 30; 5131 mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0); 5132 if (ioc->ir_firmware) 5133 mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply, 5134 &ioc->manu_pg10); 5135 5136 /* 5137 * Ensure correct T10 PI operation if vendor left EEDPTagMode 5138 * flag unset in NVDATA. 5139 */ 5140 mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11); 5141 if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) { 5142 pr_err("%s: overriding NVDATA EEDPTagMode setting\n", 5143 ioc->name); 5144 ioc->manu_pg11.EEDPTagMode &= ~0x3; 5145 ioc->manu_pg11.EEDPTagMode |= 0x1; 5146 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply, 5147 &ioc->manu_pg11); 5148 } 5149 if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK) 5150 ioc->tm_custom_handling = 1; 5151 else { 5152 ioc->tm_custom_handling = 0; 5153 if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT) 5154 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT; 5155 else if (ioc->manu_pg11.NVMeAbortTO > 5156 NVME_TASK_ABORT_MAX_TIMEOUT) 5157 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT; 5158 else 5159 ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO; 5160 } 5161 ioc->time_sync_interval = 5162 ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_MASK; 5163 if (ioc->time_sync_interval) { 5164 if (ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_UNIT_MASK) 5165 ioc->time_sync_interval = 5166 ioc->time_sync_interval * SECONDS_PER_HOUR; 5167 else 5168 ioc->time_sync_interval = 5169 ioc->time_sync_interval * SECONDS_PER_MIN; 5170 dinitprintk(ioc, ioc_info(ioc, 5171 "Driver-FW TimeSync interval is %d seconds. ManuPg11 TimeSync Unit is in %s\n", 5172 ioc->time_sync_interval, (ioc->manu_pg11.TimeSyncInterval & 5173 MPT3SAS_TIMESYNC_UNIT_MASK) ? "Hour" : "Minute")); 5174 } else { 5175 if (ioc->is_gen35_ioc) 5176 ioc_warn(ioc, 5177 "TimeSync Interval in Manuf page-11 is not enabled. Periodic Time-Sync will be disabled\n"); 5178 } 5179 mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2); 5180 mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3); 5181 mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8); 5182 mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0); 5183 mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1); 5184 mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8); 5185 _base_display_ioc_capabilities(ioc); 5186 5187 /* 5188 * Enable task_set_full handling in iounit_pg1 when the 5189 * facts capabilities indicate that its supported. 5190 */ 5191 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags); 5192 if ((ioc->facts.IOCCapabilities & 5193 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING)) 5194 iounit_pg1_flags &= 5195 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING; 5196 else 5197 iounit_pg1_flags |= 5198 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING; 5199 ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags); 5200 mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1); 5201 5202 if (ioc->iounit_pg8.NumSensors) 5203 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors; 5204 if (ioc->is_aero_ioc) 5205 _base_update_ioc_page1_inlinewith_perf_mode(ioc); 5206 if (ioc->is_gen35_ioc) { 5207 if (ioc->is_driver_loading) 5208 _base_get_diag_triggers(ioc); 5209 else { 5210 /* 5211 * In case of online HBA FW update operation, 5212 * check whether updated FW supports the driver trigger 5213 * pages or not. 5214 * - If previous FW has not supported driver trigger 5215 * pages and newer FW supports them then update these 5216 * pages with current diag trigger values. 5217 * - If previous FW has supported driver trigger pages 5218 * and new FW doesn't support them then disable 5219 * support_trigger_pages flag. 5220 */ 5221 tg_flags = _base_check_for_trigger_pages_support(ioc); 5222 if (!ioc->supports_trigger_pages && tg_flags != -EFAULT) 5223 _base_update_diag_trigger_pages(ioc); 5224 else if (ioc->supports_trigger_pages && 5225 tg_flags == -EFAULT) 5226 ioc->supports_trigger_pages = 0; 5227 } 5228 } 5229 } 5230 5231 /** 5232 * mpt3sas_free_enclosure_list - release memory 5233 * @ioc: per adapter object 5234 * 5235 * Free memory allocated during encloure add. 5236 */ 5237 void 5238 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc) 5239 { 5240 struct _enclosure_node *enclosure_dev, *enclosure_dev_next; 5241 5242 /* Free enclosure list */ 5243 list_for_each_entry_safe(enclosure_dev, 5244 enclosure_dev_next, &ioc->enclosure_list, list) { 5245 list_del(&enclosure_dev->list); 5246 kfree(enclosure_dev); 5247 } 5248 } 5249 5250 /** 5251 * _base_release_memory_pools - release memory 5252 * @ioc: per adapter object 5253 * 5254 * Free memory allocated from _base_allocate_memory_pools. 5255 */ 5256 static void 5257 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc) 5258 { 5259 int i = 0; 5260 int j = 0; 5261 int dma_alloc_count = 0; 5262 struct chain_tracker *ct; 5263 int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1; 5264 5265 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 5266 5267 if (ioc->request) { 5268 dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz, 5269 ioc->request, ioc->request_dma); 5270 dexitprintk(ioc, 5271 ioc_info(ioc, "request_pool(0x%p): free\n", 5272 ioc->request)); 5273 ioc->request = NULL; 5274 } 5275 5276 if (ioc->sense) { 5277 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma); 5278 dma_pool_destroy(ioc->sense_dma_pool); 5279 dexitprintk(ioc, 5280 ioc_info(ioc, "sense_pool(0x%p): free\n", 5281 ioc->sense)); 5282 ioc->sense = NULL; 5283 } 5284 5285 if (ioc->reply) { 5286 dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma); 5287 dma_pool_destroy(ioc->reply_dma_pool); 5288 dexitprintk(ioc, 5289 ioc_info(ioc, "reply_pool(0x%p): free\n", 5290 ioc->reply)); 5291 ioc->reply = NULL; 5292 } 5293 5294 if (ioc->reply_free) { 5295 dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free, 5296 ioc->reply_free_dma); 5297 dma_pool_destroy(ioc->reply_free_dma_pool); 5298 dexitprintk(ioc, 5299 ioc_info(ioc, "reply_free_pool(0x%p): free\n", 5300 ioc->reply_free)); 5301 ioc->reply_free = NULL; 5302 } 5303 5304 if (ioc->reply_post) { 5305 dma_alloc_count = DIV_ROUND_UP(count, 5306 RDPQ_MAX_INDEX_IN_ONE_CHUNK); 5307 for (i = 0; i < count; i++) { 5308 if (i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0 5309 && dma_alloc_count) { 5310 if (ioc->reply_post[i].reply_post_free) { 5311 dma_pool_free( 5312 ioc->reply_post_free_dma_pool, 5313 ioc->reply_post[i].reply_post_free, 5314 ioc->reply_post[i].reply_post_free_dma); 5315 dexitprintk(ioc, ioc_info(ioc, 5316 "reply_post_free_pool(0x%p): free\n", 5317 ioc->reply_post[i].reply_post_free)); 5318 ioc->reply_post[i].reply_post_free = 5319 NULL; 5320 } 5321 --dma_alloc_count; 5322 } 5323 } 5324 dma_pool_destroy(ioc->reply_post_free_dma_pool); 5325 if (ioc->reply_post_free_array && 5326 ioc->rdpq_array_enable) { 5327 dma_pool_free(ioc->reply_post_free_array_dma_pool, 5328 ioc->reply_post_free_array, 5329 ioc->reply_post_free_array_dma); 5330 ioc->reply_post_free_array = NULL; 5331 } 5332 dma_pool_destroy(ioc->reply_post_free_array_dma_pool); 5333 kfree(ioc->reply_post); 5334 } 5335 5336 if (ioc->pcie_sgl_dma_pool) { 5337 for (i = 0; i < ioc->scsiio_depth; i++) { 5338 dma_pool_free(ioc->pcie_sgl_dma_pool, 5339 ioc->pcie_sg_lookup[i].pcie_sgl, 5340 ioc->pcie_sg_lookup[i].pcie_sgl_dma); 5341 } 5342 dma_pool_destroy(ioc->pcie_sgl_dma_pool); 5343 } 5344 5345 if (ioc->config_page) { 5346 dexitprintk(ioc, 5347 ioc_info(ioc, "config_page(0x%p): free\n", 5348 ioc->config_page)); 5349 dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz, 5350 ioc->config_page, ioc->config_page_dma); 5351 } 5352 5353 kfree(ioc->hpr_lookup); 5354 ioc->hpr_lookup = NULL; 5355 kfree(ioc->internal_lookup); 5356 ioc->internal_lookup = NULL; 5357 if (ioc->chain_lookup) { 5358 for (i = 0; i < ioc->scsiio_depth; i++) { 5359 for (j = ioc->chains_per_prp_buffer; 5360 j < ioc->chains_needed_per_io; j++) { 5361 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 5362 if (ct && ct->chain_buffer) 5363 dma_pool_free(ioc->chain_dma_pool, 5364 ct->chain_buffer, 5365 ct->chain_buffer_dma); 5366 } 5367 kfree(ioc->chain_lookup[i].chains_per_smid); 5368 } 5369 dma_pool_destroy(ioc->chain_dma_pool); 5370 kfree(ioc->chain_lookup); 5371 ioc->chain_lookup = NULL; 5372 } 5373 5374 kfree(ioc->io_queue_num); 5375 ioc->io_queue_num = NULL; 5376 } 5377 5378 /** 5379 * mpt3sas_check_same_4gb_region - checks whether all reply queues in a set are 5380 * having same upper 32bits in their base memory address. 5381 * @reply_pool_start_address: Base address of a reply queue set 5382 * @pool_sz: Size of single Reply Descriptor Post Queues pool size 5383 * 5384 * Return: 1 if reply queues in a set have a same upper 32bits in their base 5385 * memory address, else 0. 5386 */ 5387 5388 static int 5389 mpt3sas_check_same_4gb_region(long reply_pool_start_address, u32 pool_sz) 5390 { 5391 long reply_pool_end_address; 5392 5393 reply_pool_end_address = reply_pool_start_address + pool_sz; 5394 5395 if (upper_32_bits(reply_pool_start_address) == 5396 upper_32_bits(reply_pool_end_address)) 5397 return 1; 5398 else 5399 return 0; 5400 } 5401 5402 /** 5403 * base_alloc_rdpq_dma_pool - Allocating DMA'able memory 5404 * for reply queues. 5405 * @ioc: per adapter object 5406 * @sz: DMA Pool size 5407 * Return: 0 for success, non-zero for failure. 5408 */ 5409 static int 5410 base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER *ioc, int sz) 5411 { 5412 int i = 0; 5413 u32 dma_alloc_count = 0; 5414 int reply_post_free_sz = ioc->reply_post_queue_depth * 5415 sizeof(Mpi2DefaultReplyDescriptor_t); 5416 int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1; 5417 5418 ioc->reply_post = kcalloc(count, sizeof(struct reply_post_struct), 5419 GFP_KERNEL); 5420 if (!ioc->reply_post) 5421 return -ENOMEM; 5422 /* 5423 * For INVADER_SERIES each set of 8 reply queues(0-7, 8-15, ..) and 5424 * VENTURA_SERIES each set of 16 reply queues(0-15, 16-31, ..) should 5425 * be within 4GB boundary i.e reply queues in a set must have same 5426 * upper 32-bits in their memory address. so here driver is allocating 5427 * the DMA'able memory for reply queues according. 5428 * Driver uses limitation of 5429 * VENTURA_SERIES to manage INVADER_SERIES as well. 5430 */ 5431 dma_alloc_count = DIV_ROUND_UP(count, 5432 RDPQ_MAX_INDEX_IN_ONE_CHUNK); 5433 ioc->reply_post_free_dma_pool = 5434 dma_pool_create("reply_post_free pool", 5435 &ioc->pdev->dev, sz, 16, 0); 5436 if (!ioc->reply_post_free_dma_pool) 5437 return -ENOMEM; 5438 for (i = 0; i < count; i++) { 5439 if ((i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0) && dma_alloc_count) { 5440 ioc->reply_post[i].reply_post_free = 5441 dma_pool_zalloc(ioc->reply_post_free_dma_pool, 5442 GFP_KERNEL, 5443 &ioc->reply_post[i].reply_post_free_dma); 5444 if (!ioc->reply_post[i].reply_post_free) 5445 return -ENOMEM; 5446 /* 5447 * Each set of RDPQ pool must satisfy 4gb boundary 5448 * restriction. 5449 * 1) Check if allocated resources for RDPQ pool are in 5450 * the same 4GB range. 5451 * 2) If #1 is true, continue with 64 bit DMA. 5452 * 3) If #1 is false, return 1. which means free all the 5453 * resources and set DMA mask to 32 and allocate. 5454 */ 5455 if (!mpt3sas_check_same_4gb_region( 5456 (long)ioc->reply_post[i].reply_post_free, sz)) { 5457 dinitprintk(ioc, 5458 ioc_err(ioc, "bad Replypost free pool(0x%p)" 5459 "reply_post_free_dma = (0x%llx)\n", 5460 ioc->reply_post[i].reply_post_free, 5461 (unsigned long long) 5462 ioc->reply_post[i].reply_post_free_dma)); 5463 return -EAGAIN; 5464 } 5465 dma_alloc_count--; 5466 5467 } else { 5468 ioc->reply_post[i].reply_post_free = 5469 (Mpi2ReplyDescriptorsUnion_t *) 5470 ((long)ioc->reply_post[i-1].reply_post_free 5471 + reply_post_free_sz); 5472 ioc->reply_post[i].reply_post_free_dma = 5473 (dma_addr_t) 5474 (ioc->reply_post[i-1].reply_post_free_dma + 5475 reply_post_free_sz); 5476 } 5477 } 5478 return 0; 5479 } 5480 5481 /** 5482 * _base_allocate_memory_pools - allocate start of day memory pools 5483 * @ioc: per adapter object 5484 * 5485 * Return: 0 success, anything else error. 5486 */ 5487 static int 5488 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc) 5489 { 5490 struct mpt3sas_facts *facts; 5491 u16 max_sge_elements; 5492 u16 chains_needed_per_io; 5493 u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz; 5494 u32 retry_sz; 5495 u32 rdpq_sz = 0; 5496 u16 max_request_credit, nvme_blocks_needed; 5497 unsigned short sg_tablesize; 5498 u16 sge_size; 5499 int i, j; 5500 int ret = 0; 5501 struct chain_tracker *ct; 5502 5503 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 5504 5505 5506 retry_sz = 0; 5507 facts = &ioc->facts; 5508 5509 /* command line tunables for max sgl entries */ 5510 if (max_sgl_entries != -1) 5511 sg_tablesize = max_sgl_entries; 5512 else { 5513 if (ioc->hba_mpi_version_belonged == MPI2_VERSION) 5514 sg_tablesize = MPT2SAS_SG_DEPTH; 5515 else 5516 sg_tablesize = MPT3SAS_SG_DEPTH; 5517 } 5518 5519 /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */ 5520 if (reset_devices) 5521 sg_tablesize = min_t(unsigned short, sg_tablesize, 5522 MPT_KDUMP_MIN_PHYS_SEGMENTS); 5523 5524 if (ioc->is_mcpu_endpoint) 5525 ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS; 5526 else { 5527 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS) 5528 sg_tablesize = MPT_MIN_PHYS_SEGMENTS; 5529 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) { 5530 sg_tablesize = min_t(unsigned short, sg_tablesize, 5531 SG_MAX_SEGMENTS); 5532 ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n", 5533 sg_tablesize, MPT_MAX_PHYS_SEGMENTS); 5534 } 5535 ioc->shost->sg_tablesize = sg_tablesize; 5536 } 5537 5538 ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)), 5539 (facts->RequestCredit / 4)); 5540 if (ioc->internal_depth < INTERNAL_CMDS_COUNT) { 5541 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT + 5542 INTERNAL_SCSIIO_CMDS_COUNT)) { 5543 ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n", 5544 facts->RequestCredit); 5545 return -ENOMEM; 5546 } 5547 ioc->internal_depth = 10; 5548 } 5549 5550 ioc->hi_priority_depth = ioc->internal_depth - (5); 5551 /* command line tunables for max controller queue depth */ 5552 if (max_queue_depth != -1 && max_queue_depth != 0) { 5553 max_request_credit = min_t(u16, max_queue_depth + 5554 ioc->internal_depth, facts->RequestCredit); 5555 if (max_request_credit > MAX_HBA_QUEUE_DEPTH) 5556 max_request_credit = MAX_HBA_QUEUE_DEPTH; 5557 } else if (reset_devices) 5558 max_request_credit = min_t(u16, facts->RequestCredit, 5559 (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth)); 5560 else 5561 max_request_credit = min_t(u16, facts->RequestCredit, 5562 MAX_HBA_QUEUE_DEPTH); 5563 5564 /* Firmware maintains additional facts->HighPriorityCredit number of 5565 * credits for HiPriprity Request messages, so hba queue depth will be 5566 * sum of max_request_credit and high priority queue depth. 5567 */ 5568 ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth; 5569 5570 /* request frame size */ 5571 ioc->request_sz = facts->IOCRequestFrameSize * 4; 5572 5573 /* reply frame size */ 5574 ioc->reply_sz = facts->ReplyFrameSize * 4; 5575 5576 /* chain segment size */ 5577 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 5578 if (facts->IOCMaxChainSegmentSize) 5579 ioc->chain_segment_sz = 5580 facts->IOCMaxChainSegmentSize * 5581 MAX_CHAIN_ELEMT_SZ; 5582 else 5583 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */ 5584 ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS * 5585 MAX_CHAIN_ELEMT_SZ; 5586 } else 5587 ioc->chain_segment_sz = ioc->request_sz; 5588 5589 /* calculate the max scatter element size */ 5590 sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee); 5591 5592 retry_allocation: 5593 total_sz = 0; 5594 /* calculate number of sg elements left over in the 1st frame */ 5595 max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) - 5596 sizeof(Mpi2SGEIOUnion_t)) + sge_size); 5597 ioc->max_sges_in_main_message = max_sge_elements/sge_size; 5598 5599 /* now do the same for a chain buffer */ 5600 max_sge_elements = ioc->chain_segment_sz - sge_size; 5601 ioc->max_sges_in_chain_message = max_sge_elements/sge_size; 5602 5603 /* 5604 * MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE 5605 */ 5606 chains_needed_per_io = ((ioc->shost->sg_tablesize - 5607 ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message) 5608 + 1; 5609 if (chains_needed_per_io > facts->MaxChainDepth) { 5610 chains_needed_per_io = facts->MaxChainDepth; 5611 ioc->shost->sg_tablesize = min_t(u16, 5612 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message 5613 * chains_needed_per_io), ioc->shost->sg_tablesize); 5614 } 5615 ioc->chains_needed_per_io = chains_needed_per_io; 5616 5617 /* reply free queue sizing - taking into account for 64 FW events */ 5618 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64; 5619 5620 /* mCPU manage single counters for simplicity */ 5621 if (ioc->is_mcpu_endpoint) 5622 ioc->reply_post_queue_depth = ioc->reply_free_queue_depth; 5623 else { 5624 /* calculate reply descriptor post queue depth */ 5625 ioc->reply_post_queue_depth = ioc->hba_queue_depth + 5626 ioc->reply_free_queue_depth + 1; 5627 /* align the reply post queue on the next 16 count boundary */ 5628 if (ioc->reply_post_queue_depth % 16) 5629 ioc->reply_post_queue_depth += 16 - 5630 (ioc->reply_post_queue_depth % 16); 5631 } 5632 5633 if (ioc->reply_post_queue_depth > 5634 facts->MaxReplyDescriptorPostQueueDepth) { 5635 ioc->reply_post_queue_depth = 5636 facts->MaxReplyDescriptorPostQueueDepth - 5637 (facts->MaxReplyDescriptorPostQueueDepth % 16); 5638 ioc->hba_queue_depth = 5639 ((ioc->reply_post_queue_depth - 64) / 2) - 1; 5640 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64; 5641 } 5642 5643 ioc_info(ioc, 5644 "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), " 5645 "sge_per_io(%d), chains_per_io(%d)\n", 5646 ioc->max_sges_in_main_message, 5647 ioc->max_sges_in_chain_message, 5648 ioc->shost->sg_tablesize, 5649 ioc->chains_needed_per_io); 5650 5651 /* reply post queue, 16 byte align */ 5652 reply_post_free_sz = ioc->reply_post_queue_depth * 5653 sizeof(Mpi2DefaultReplyDescriptor_t); 5654 rdpq_sz = reply_post_free_sz * RDPQ_MAX_INDEX_IN_ONE_CHUNK; 5655 if ((_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable) 5656 || (ioc->reply_queue_count < RDPQ_MAX_INDEX_IN_ONE_CHUNK)) 5657 rdpq_sz = reply_post_free_sz * ioc->reply_queue_count; 5658 ret = base_alloc_rdpq_dma_pool(ioc, rdpq_sz); 5659 if (ret == -EAGAIN) { 5660 /* 5661 * Free allocated bad RDPQ memory pools. 5662 * Change dma coherent mask to 32 bit and reallocate RDPQ 5663 */ 5664 _base_release_memory_pools(ioc); 5665 ioc->use_32bit_dma = true; 5666 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) { 5667 ioc_err(ioc, 5668 "32 DMA mask failed %s\n", pci_name(ioc->pdev)); 5669 return -ENODEV; 5670 } 5671 if (base_alloc_rdpq_dma_pool(ioc, rdpq_sz)) 5672 return -ENOMEM; 5673 } else if (ret == -ENOMEM) 5674 return -ENOMEM; 5675 total_sz = rdpq_sz * (!ioc->rdpq_array_enable ? 1 : 5676 DIV_ROUND_UP(ioc->reply_queue_count, RDPQ_MAX_INDEX_IN_ONE_CHUNK)); 5677 ioc->scsiio_depth = ioc->hba_queue_depth - 5678 ioc->hi_priority_depth - ioc->internal_depth; 5679 5680 /* set the scsi host can_queue depth 5681 * with some internal commands that could be outstanding 5682 */ 5683 ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT; 5684 dinitprintk(ioc, 5685 ioc_info(ioc, "scsi host: can_queue depth (%d)\n", 5686 ioc->shost->can_queue)); 5687 5688 /* contiguous pool for request and chains, 16 byte align, one extra " 5689 * "frame for smid=0 5690 */ 5691 ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth; 5692 sz = ((ioc->scsiio_depth + 1) * ioc->request_sz); 5693 5694 /* hi-priority queue */ 5695 sz += (ioc->hi_priority_depth * ioc->request_sz); 5696 5697 /* internal queue */ 5698 sz += (ioc->internal_depth * ioc->request_sz); 5699 5700 ioc->request_dma_sz = sz; 5701 ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz, 5702 &ioc->request_dma, GFP_KERNEL); 5703 if (!ioc->request) { 5704 ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n", 5705 ioc->hba_queue_depth, ioc->chains_needed_per_io, 5706 ioc->request_sz, sz / 1024); 5707 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH) 5708 goto out; 5709 retry_sz = 64; 5710 ioc->hba_queue_depth -= retry_sz; 5711 _base_release_memory_pools(ioc); 5712 goto retry_allocation; 5713 } 5714 5715 if (retry_sz) 5716 ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n", 5717 ioc->hba_queue_depth, ioc->chains_needed_per_io, 5718 ioc->request_sz, sz / 1024); 5719 5720 /* hi-priority queue */ 5721 ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) * 5722 ioc->request_sz); 5723 ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) * 5724 ioc->request_sz); 5725 5726 /* internal queue */ 5727 ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth * 5728 ioc->request_sz); 5729 ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth * 5730 ioc->request_sz); 5731 5732 ioc_info(ioc, 5733 "request pool(0x%p) - dma(0x%llx): " 5734 "depth(%d), frame_size(%d), pool_size(%d kB)\n", 5735 ioc->request, (unsigned long long) ioc->request_dma, 5736 ioc->hba_queue_depth, ioc->request_sz, 5737 (ioc->hba_queue_depth * ioc->request_sz) / 1024); 5738 5739 total_sz += sz; 5740 5741 dinitprintk(ioc, 5742 ioc_info(ioc, "scsiio(0x%p): depth(%d)\n", 5743 ioc->request, ioc->scsiio_depth)); 5744 5745 ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH); 5746 sz = ioc->scsiio_depth * sizeof(struct chain_lookup); 5747 ioc->chain_lookup = kzalloc(sz, GFP_KERNEL); 5748 if (!ioc->chain_lookup) { 5749 ioc_err(ioc, "chain_lookup: __get_free_pages failed\n"); 5750 goto out; 5751 } 5752 5753 sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker); 5754 for (i = 0; i < ioc->scsiio_depth; i++) { 5755 ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL); 5756 if (!ioc->chain_lookup[i].chains_per_smid) { 5757 ioc_err(ioc, "chain_lookup: kzalloc failed\n"); 5758 goto out; 5759 } 5760 } 5761 5762 /* initialize hi-priority queue smid's */ 5763 ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth, 5764 sizeof(struct request_tracker), GFP_KERNEL); 5765 if (!ioc->hpr_lookup) { 5766 ioc_err(ioc, "hpr_lookup: kcalloc failed\n"); 5767 goto out; 5768 } 5769 ioc->hi_priority_smid = ioc->scsiio_depth + 1; 5770 dinitprintk(ioc, 5771 ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n", 5772 ioc->hi_priority, 5773 ioc->hi_priority_depth, ioc->hi_priority_smid)); 5774 5775 /* initialize internal queue smid's */ 5776 ioc->internal_lookup = kcalloc(ioc->internal_depth, 5777 sizeof(struct request_tracker), GFP_KERNEL); 5778 if (!ioc->internal_lookup) { 5779 ioc_err(ioc, "internal_lookup: kcalloc failed\n"); 5780 goto out; 5781 } 5782 ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth; 5783 dinitprintk(ioc, 5784 ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n", 5785 ioc->internal, 5786 ioc->internal_depth, ioc->internal_smid)); 5787 5788 ioc->io_queue_num = kcalloc(ioc->scsiio_depth, 5789 sizeof(u16), GFP_KERNEL); 5790 if (!ioc->io_queue_num) 5791 goto out; 5792 /* 5793 * The number of NVMe page sized blocks needed is: 5794 * (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1 5795 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry 5796 * that is placed in the main message frame. 8 is the size of each PRP 5797 * entry or PRP list pointer entry. 8 is subtracted from page_size 5798 * because of the PRP list pointer entry at the end of a page, so this 5799 * is not counted as a PRP entry. The 1 added page is a round up. 5800 * 5801 * To avoid allocation failures due to the amount of memory that could 5802 * be required for NVMe PRP's, only each set of NVMe blocks will be 5803 * contiguous, so a new set is allocated for each possible I/O. 5804 */ 5805 ioc->chains_per_prp_buffer = 0; 5806 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) { 5807 nvme_blocks_needed = 5808 (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1; 5809 nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE); 5810 nvme_blocks_needed++; 5811 5812 sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth; 5813 ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL); 5814 if (!ioc->pcie_sg_lookup) { 5815 ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n"); 5816 goto out; 5817 } 5818 sz = nvme_blocks_needed * ioc->page_size; 5819 ioc->pcie_sgl_dma_pool = 5820 dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz, 16, 0); 5821 if (!ioc->pcie_sgl_dma_pool) { 5822 ioc_info(ioc, "PCIe SGL pool: dma_pool_create failed\n"); 5823 goto out; 5824 } 5825 5826 ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz; 5827 ioc->chains_per_prp_buffer = min(ioc->chains_per_prp_buffer, 5828 ioc->chains_needed_per_io); 5829 5830 for (i = 0; i < ioc->scsiio_depth; i++) { 5831 ioc->pcie_sg_lookup[i].pcie_sgl = dma_pool_alloc( 5832 ioc->pcie_sgl_dma_pool, GFP_KERNEL, 5833 &ioc->pcie_sg_lookup[i].pcie_sgl_dma); 5834 if (!ioc->pcie_sg_lookup[i].pcie_sgl) { 5835 ioc_info(ioc, "PCIe SGL pool: dma_pool_alloc failed\n"); 5836 goto out; 5837 } 5838 for (j = 0; j < ioc->chains_per_prp_buffer; j++) { 5839 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 5840 ct->chain_buffer = 5841 ioc->pcie_sg_lookup[i].pcie_sgl + 5842 (j * ioc->chain_segment_sz); 5843 ct->chain_buffer_dma = 5844 ioc->pcie_sg_lookup[i].pcie_sgl_dma + 5845 (j * ioc->chain_segment_sz); 5846 } 5847 } 5848 5849 dinitprintk(ioc, 5850 ioc_info(ioc, "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n", 5851 ioc->scsiio_depth, sz, 5852 (sz * ioc->scsiio_depth) / 1024)); 5853 dinitprintk(ioc, 5854 ioc_info(ioc, "Number of chains can fit in a PRP page(%d)\n", 5855 ioc->chains_per_prp_buffer)); 5856 total_sz += sz * ioc->scsiio_depth; 5857 } 5858 5859 ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev, 5860 ioc->chain_segment_sz, 16, 0); 5861 if (!ioc->chain_dma_pool) { 5862 ioc_err(ioc, "chain_dma_pool: dma_pool_create failed\n"); 5863 goto out; 5864 } 5865 for (i = 0; i < ioc->scsiio_depth; i++) { 5866 for (j = ioc->chains_per_prp_buffer; 5867 j < ioc->chains_needed_per_io; j++) { 5868 ct = &ioc->chain_lookup[i].chains_per_smid[j]; 5869 ct->chain_buffer = dma_pool_alloc( 5870 ioc->chain_dma_pool, GFP_KERNEL, 5871 &ct->chain_buffer_dma); 5872 if (!ct->chain_buffer) { 5873 ioc_err(ioc, "chain_lookup: pci_pool_alloc failed\n"); 5874 goto out; 5875 } 5876 } 5877 total_sz += ioc->chain_segment_sz; 5878 } 5879 5880 dinitprintk(ioc, 5881 ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n", 5882 ioc->chain_depth, ioc->chain_segment_sz, 5883 (ioc->chain_depth * ioc->chain_segment_sz) / 1024)); 5884 5885 /* sense buffers, 4 byte align */ 5886 sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE; 5887 ioc->sense_dma_pool = dma_pool_create("sense pool", &ioc->pdev->dev, sz, 5888 4, 0); 5889 if (!ioc->sense_dma_pool) { 5890 ioc_err(ioc, "sense pool: dma_pool_create failed\n"); 5891 goto out; 5892 } 5893 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL, 5894 &ioc->sense_dma); 5895 if (!ioc->sense) { 5896 ioc_err(ioc, "sense pool: dma_pool_alloc failed\n"); 5897 goto out; 5898 } 5899 /* sense buffer requires to be in same 4 gb region. 5900 * Below function will check the same. 5901 * In case of failure, new pci pool will be created with updated 5902 * alignment. Older allocation and pool will be destroyed. 5903 * Alignment will be used such a way that next allocation if 5904 * success, will always meet same 4gb region requirement. 5905 * Actual requirement is not alignment, but we need start and end of 5906 * DMA address must have same upper 32 bit address. 5907 */ 5908 if (!mpt3sas_check_same_4gb_region((long)ioc->sense, sz)) { 5909 //Release Sense pool & Reallocate 5910 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma); 5911 dma_pool_destroy(ioc->sense_dma_pool); 5912 ioc->sense = NULL; 5913 5914 ioc->sense_dma_pool = 5915 dma_pool_create("sense pool", &ioc->pdev->dev, sz, 5916 roundup_pow_of_two(sz), 0); 5917 if (!ioc->sense_dma_pool) { 5918 ioc_err(ioc, "sense pool: pci_pool_create failed\n"); 5919 goto out; 5920 } 5921 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL, 5922 &ioc->sense_dma); 5923 if (!ioc->sense) { 5924 ioc_err(ioc, "sense pool: pci_pool_alloc failed\n"); 5925 goto out; 5926 } 5927 } 5928 ioc_info(ioc, 5929 "sense pool(0x%p)- dma(0x%llx): depth(%d)," 5930 "element_size(%d), pool_size(%d kB)\n", 5931 ioc->sense, (unsigned long long)ioc->sense_dma, ioc->scsiio_depth, 5932 SCSI_SENSE_BUFFERSIZE, sz / 1024); 5933 5934 total_sz += sz; 5935 5936 /* reply pool, 4 byte align */ 5937 sz = ioc->reply_free_queue_depth * ioc->reply_sz; 5938 ioc->reply_dma_pool = dma_pool_create("reply pool", &ioc->pdev->dev, sz, 5939 4, 0); 5940 if (!ioc->reply_dma_pool) { 5941 ioc_err(ioc, "reply pool: dma_pool_create failed\n"); 5942 goto out; 5943 } 5944 ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL, 5945 &ioc->reply_dma); 5946 if (!ioc->reply) { 5947 ioc_err(ioc, "reply pool: dma_pool_alloc failed\n"); 5948 goto out; 5949 } 5950 ioc->reply_dma_min_address = (u32)(ioc->reply_dma); 5951 ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz; 5952 dinitprintk(ioc, 5953 ioc_info(ioc, "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n", 5954 ioc->reply, ioc->reply_free_queue_depth, 5955 ioc->reply_sz, sz / 1024)); 5956 dinitprintk(ioc, 5957 ioc_info(ioc, "reply_dma(0x%llx)\n", 5958 (unsigned long long)ioc->reply_dma)); 5959 total_sz += sz; 5960 5961 /* reply free queue, 16 byte align */ 5962 sz = ioc->reply_free_queue_depth * 4; 5963 ioc->reply_free_dma_pool = dma_pool_create("reply_free pool", 5964 &ioc->pdev->dev, sz, 16, 0); 5965 if (!ioc->reply_free_dma_pool) { 5966 ioc_err(ioc, "reply_free pool: dma_pool_create failed\n"); 5967 goto out; 5968 } 5969 ioc->reply_free = dma_pool_zalloc(ioc->reply_free_dma_pool, GFP_KERNEL, 5970 &ioc->reply_free_dma); 5971 if (!ioc->reply_free) { 5972 ioc_err(ioc, "reply_free pool: dma_pool_alloc failed\n"); 5973 goto out; 5974 } 5975 dinitprintk(ioc, 5976 ioc_info(ioc, "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n", 5977 ioc->reply_free, ioc->reply_free_queue_depth, 5978 4, sz / 1024)); 5979 dinitprintk(ioc, 5980 ioc_info(ioc, "reply_free_dma (0x%llx)\n", 5981 (unsigned long long)ioc->reply_free_dma)); 5982 total_sz += sz; 5983 5984 if (ioc->rdpq_array_enable) { 5985 reply_post_free_array_sz = ioc->reply_queue_count * 5986 sizeof(Mpi2IOCInitRDPQArrayEntry); 5987 ioc->reply_post_free_array_dma_pool = 5988 dma_pool_create("reply_post_free_array pool", 5989 &ioc->pdev->dev, reply_post_free_array_sz, 16, 0); 5990 if (!ioc->reply_post_free_array_dma_pool) { 5991 dinitprintk(ioc, 5992 ioc_info(ioc, "reply_post_free_array pool: dma_pool_create failed\n")); 5993 goto out; 5994 } 5995 ioc->reply_post_free_array = 5996 dma_pool_alloc(ioc->reply_post_free_array_dma_pool, 5997 GFP_KERNEL, &ioc->reply_post_free_array_dma); 5998 if (!ioc->reply_post_free_array) { 5999 dinitprintk(ioc, 6000 ioc_info(ioc, "reply_post_free_array pool: dma_pool_alloc failed\n")); 6001 goto out; 6002 } 6003 } 6004 ioc->config_page_sz = 512; 6005 ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev, 6006 ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL); 6007 if (!ioc->config_page) { 6008 ioc_err(ioc, "config page: dma_pool_alloc failed\n"); 6009 goto out; 6010 } 6011 6012 ioc_info(ioc, "config page(0x%p) - dma(0x%llx): size(%d)\n", 6013 ioc->config_page, (unsigned long long)ioc->config_page_dma, 6014 ioc->config_page_sz); 6015 total_sz += ioc->config_page_sz; 6016 6017 ioc_info(ioc, "Allocated physical memory: size(%d kB)\n", 6018 total_sz / 1024); 6019 ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n", 6020 ioc->shost->can_queue, facts->RequestCredit); 6021 ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n", 6022 ioc->shost->sg_tablesize); 6023 return 0; 6024 6025 out: 6026 return -ENOMEM; 6027 } 6028 6029 /** 6030 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter. 6031 * @ioc: Pointer to MPT_ADAPTER structure 6032 * @cooked: Request raw or cooked IOC state 6033 * 6034 * Return: all IOC Doorbell register bits if cooked==0, else just the 6035 * Doorbell bits in MPI_IOC_STATE_MASK. 6036 */ 6037 u32 6038 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked) 6039 { 6040 u32 s, sc; 6041 6042 s = ioc->base_readl(&ioc->chip->Doorbell); 6043 sc = s & MPI2_IOC_STATE_MASK; 6044 return cooked ? sc : s; 6045 } 6046 6047 /** 6048 * _base_wait_on_iocstate - waiting on a particular ioc state 6049 * @ioc: ? 6050 * @ioc_state: controller state { READY, OPERATIONAL, or RESET } 6051 * @timeout: timeout in second 6052 * 6053 * Return: 0 for success, non-zero for failure. 6054 */ 6055 static int 6056 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout) 6057 { 6058 u32 count, cntdn; 6059 u32 current_state; 6060 6061 count = 0; 6062 cntdn = 1000 * timeout; 6063 do { 6064 current_state = mpt3sas_base_get_iocstate(ioc, 1); 6065 if (current_state == ioc_state) 6066 return 0; 6067 if (count && current_state == MPI2_IOC_STATE_FAULT) 6068 break; 6069 if (count && current_state == MPI2_IOC_STATE_COREDUMP) 6070 break; 6071 6072 usleep_range(1000, 1500); 6073 count++; 6074 } while (--cntdn); 6075 6076 return current_state; 6077 } 6078 6079 /** 6080 * _base_dump_reg_set - This function will print hexdump of register set. 6081 * @ioc: per adapter object 6082 * 6083 * Returns nothing. 6084 */ 6085 static inline void 6086 _base_dump_reg_set(struct MPT3SAS_ADAPTER *ioc) 6087 { 6088 unsigned int i, sz = 256; 6089 u32 __iomem *reg = (u32 __iomem *)ioc->chip; 6090 6091 ioc_info(ioc, "System Register set:\n"); 6092 for (i = 0; i < (sz / sizeof(u32)); i++) 6093 pr_info("%08x: %08x\n", (i * 4), readl(®[i])); 6094 } 6095 6096 /** 6097 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by 6098 * a write to the doorbell) 6099 * @ioc: per adapter object 6100 * @timeout: timeout in seconds 6101 * 6102 * Return: 0 for success, non-zero for failure. 6103 * 6104 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell. 6105 */ 6106 6107 static int 6108 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout) 6109 { 6110 u32 cntdn, count; 6111 u32 int_status; 6112 6113 count = 0; 6114 cntdn = 1000 * timeout; 6115 do { 6116 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 6117 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 6118 dhsprintk(ioc, 6119 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 6120 __func__, count, timeout)); 6121 return 0; 6122 } 6123 6124 usleep_range(1000, 1500); 6125 count++; 6126 } while (--cntdn); 6127 6128 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 6129 __func__, count, int_status); 6130 return -EFAULT; 6131 } 6132 6133 static int 6134 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout) 6135 { 6136 u32 cntdn, count; 6137 u32 int_status; 6138 6139 count = 0; 6140 cntdn = 2000 * timeout; 6141 do { 6142 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 6143 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 6144 dhsprintk(ioc, 6145 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 6146 __func__, count, timeout)); 6147 return 0; 6148 } 6149 6150 udelay(500); 6151 count++; 6152 } while (--cntdn); 6153 6154 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 6155 __func__, count, int_status); 6156 return -EFAULT; 6157 6158 } 6159 6160 /** 6161 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell. 6162 * @ioc: per adapter object 6163 * @timeout: timeout in second 6164 * 6165 * Return: 0 for success, non-zero for failure. 6166 * 6167 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to 6168 * doorbell. 6169 */ 6170 static int 6171 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout) 6172 { 6173 u32 cntdn, count; 6174 u32 int_status; 6175 u32 doorbell; 6176 6177 count = 0; 6178 cntdn = 1000 * timeout; 6179 do { 6180 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); 6181 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) { 6182 dhsprintk(ioc, 6183 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 6184 __func__, count, timeout)); 6185 return 0; 6186 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { 6187 doorbell = ioc->base_readl(&ioc->chip->Doorbell); 6188 if ((doorbell & MPI2_IOC_STATE_MASK) == 6189 MPI2_IOC_STATE_FAULT) { 6190 mpt3sas_print_fault_code(ioc, doorbell); 6191 return -EFAULT; 6192 } 6193 if ((doorbell & MPI2_IOC_STATE_MASK) == 6194 MPI2_IOC_STATE_COREDUMP) { 6195 mpt3sas_print_coredump_info(ioc, doorbell); 6196 return -EFAULT; 6197 } 6198 } else if (int_status == 0xFFFFFFFF) 6199 goto out; 6200 6201 usleep_range(1000, 1500); 6202 count++; 6203 } while (--cntdn); 6204 6205 out: 6206 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", 6207 __func__, count, int_status); 6208 return -EFAULT; 6209 } 6210 6211 /** 6212 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use 6213 * @ioc: per adapter object 6214 * @timeout: timeout in second 6215 * 6216 * Return: 0 for success, non-zero for failure. 6217 */ 6218 static int 6219 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout) 6220 { 6221 u32 cntdn, count; 6222 u32 doorbell_reg; 6223 6224 count = 0; 6225 cntdn = 1000 * timeout; 6226 do { 6227 doorbell_reg = ioc->base_readl(&ioc->chip->Doorbell); 6228 if (!(doorbell_reg & MPI2_DOORBELL_USED)) { 6229 dhsprintk(ioc, 6230 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", 6231 __func__, count, timeout)); 6232 return 0; 6233 } 6234 6235 usleep_range(1000, 1500); 6236 count++; 6237 } while (--cntdn); 6238 6239 ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n", 6240 __func__, count, doorbell_reg); 6241 return -EFAULT; 6242 } 6243 6244 /** 6245 * _base_send_ioc_reset - send doorbell reset 6246 * @ioc: per adapter object 6247 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET 6248 * @timeout: timeout in second 6249 * 6250 * Return: 0 for success, non-zero for failure. 6251 */ 6252 static int 6253 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout) 6254 { 6255 u32 ioc_state; 6256 int r = 0; 6257 unsigned long flags; 6258 6259 if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) { 6260 ioc_err(ioc, "%s: unknown reset_type\n", __func__); 6261 return -EFAULT; 6262 } 6263 6264 if (!(ioc->facts.IOCCapabilities & 6265 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY)) 6266 return -EFAULT; 6267 6268 ioc_info(ioc, "sending message unit reset !!\n"); 6269 6270 writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT, 6271 &ioc->chip->Doorbell); 6272 if ((_base_wait_for_doorbell_ack(ioc, 15))) { 6273 r = -EFAULT; 6274 goto out; 6275 } 6276 6277 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout); 6278 if (ioc_state) { 6279 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 6280 __func__, ioc_state); 6281 r = -EFAULT; 6282 goto out; 6283 } 6284 out: 6285 if (r != 0) { 6286 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 6287 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 6288 /* 6289 * Wait for IOC state CoreDump to clear only during 6290 * HBA initialization & release time. 6291 */ 6292 if ((ioc_state & MPI2_IOC_STATE_MASK) == 6293 MPI2_IOC_STATE_COREDUMP && (ioc->is_driver_loading == 1 || 6294 ioc->fault_reset_work_q == NULL)) { 6295 spin_unlock_irqrestore( 6296 &ioc->ioc_reset_in_progress_lock, flags); 6297 mpt3sas_print_coredump_info(ioc, ioc_state); 6298 mpt3sas_base_wait_for_coredump_completion(ioc, 6299 __func__); 6300 spin_lock_irqsave( 6301 &ioc->ioc_reset_in_progress_lock, flags); 6302 } 6303 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 6304 } 6305 ioc_info(ioc, "message unit reset: %s\n", 6306 r == 0 ? "SUCCESS" : "FAILED"); 6307 return r; 6308 } 6309 6310 /** 6311 * mpt3sas_wait_for_ioc - IOC's operational state is checked here. 6312 * @ioc: per adapter object 6313 * @timeout: timeout in seconds 6314 * 6315 * Return: Waits up to timeout seconds for the IOC to 6316 * become operational. Returns 0 if IOC is present 6317 * and operational; otherwise returns -EFAULT. 6318 */ 6319 6320 int 6321 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout) 6322 { 6323 int wait_state_count = 0; 6324 u32 ioc_state; 6325 6326 do { 6327 ioc_state = mpt3sas_base_get_iocstate(ioc, 1); 6328 if (ioc_state == MPI2_IOC_STATE_OPERATIONAL) 6329 break; 6330 ssleep(1); 6331 ioc_info(ioc, "%s: waiting for operational state(count=%d)\n", 6332 __func__, ++wait_state_count); 6333 } while (--timeout); 6334 if (!timeout) { 6335 ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__); 6336 return -EFAULT; 6337 } 6338 if (wait_state_count) 6339 ioc_info(ioc, "ioc is operational\n"); 6340 return 0; 6341 } 6342 6343 /** 6344 * _base_handshake_req_reply_wait - send request thru doorbell interface 6345 * @ioc: per adapter object 6346 * @request_bytes: request length 6347 * @request: pointer having request payload 6348 * @reply_bytes: reply length 6349 * @reply: pointer to reply payload 6350 * @timeout: timeout in second 6351 * 6352 * Return: 0 for success, non-zero for failure. 6353 */ 6354 static int 6355 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes, 6356 u32 *request, int reply_bytes, u16 *reply, int timeout) 6357 { 6358 MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply; 6359 int i; 6360 u8 failed; 6361 __le32 *mfp; 6362 6363 /* make sure doorbell is not in use */ 6364 if ((ioc->base_readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) { 6365 ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__); 6366 return -EFAULT; 6367 } 6368 6369 /* clear pending doorbell interrupts from previous state changes */ 6370 if (ioc->base_readl(&ioc->chip->HostInterruptStatus) & 6371 MPI2_HIS_IOC2SYS_DB_STATUS) 6372 writel(0, &ioc->chip->HostInterruptStatus); 6373 6374 /* send message to ioc */ 6375 writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) | 6376 ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)), 6377 &ioc->chip->Doorbell); 6378 6379 if ((_base_spin_on_doorbell_int(ioc, 5))) { 6380 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 6381 __LINE__); 6382 return -EFAULT; 6383 } 6384 writel(0, &ioc->chip->HostInterruptStatus); 6385 6386 if ((_base_wait_for_doorbell_ack(ioc, 5))) { 6387 ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n", 6388 __LINE__); 6389 return -EFAULT; 6390 } 6391 6392 /* send message 32-bits at a time */ 6393 for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) { 6394 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell); 6395 if ((_base_wait_for_doorbell_ack(ioc, 5))) 6396 failed = 1; 6397 } 6398 6399 if (failed) { 6400 ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n", 6401 __LINE__); 6402 return -EFAULT; 6403 } 6404 6405 /* now wait for the reply */ 6406 if ((_base_wait_for_doorbell_int(ioc, timeout))) { 6407 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 6408 __LINE__); 6409 return -EFAULT; 6410 } 6411 6412 /* read the first two 16-bits, it gives the total length of the reply */ 6413 reply[0] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell) 6414 & MPI2_DOORBELL_DATA_MASK); 6415 writel(0, &ioc->chip->HostInterruptStatus); 6416 if ((_base_wait_for_doorbell_int(ioc, 5))) { 6417 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 6418 __LINE__); 6419 return -EFAULT; 6420 } 6421 reply[1] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell) 6422 & MPI2_DOORBELL_DATA_MASK); 6423 writel(0, &ioc->chip->HostInterruptStatus); 6424 6425 for (i = 2; i < default_reply->MsgLength * 2; i++) { 6426 if ((_base_wait_for_doorbell_int(ioc, 5))) { 6427 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", 6428 __LINE__); 6429 return -EFAULT; 6430 } 6431 if (i >= reply_bytes/2) /* overflow case */ 6432 ioc->base_readl(&ioc->chip->Doorbell); 6433 else 6434 reply[i] = le16_to_cpu( 6435 ioc->base_readl(&ioc->chip->Doorbell) 6436 & MPI2_DOORBELL_DATA_MASK); 6437 writel(0, &ioc->chip->HostInterruptStatus); 6438 } 6439 6440 _base_wait_for_doorbell_int(ioc, 5); 6441 if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) { 6442 dhsprintk(ioc, 6443 ioc_info(ioc, "doorbell is in use (line=%d)\n", 6444 __LINE__)); 6445 } 6446 writel(0, &ioc->chip->HostInterruptStatus); 6447 6448 if (ioc->logging_level & MPT_DEBUG_INIT) { 6449 mfp = (__le32 *)reply; 6450 pr_info("\toffset:data\n"); 6451 for (i = 0; i < reply_bytes/4; i++) 6452 ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4, 6453 le32_to_cpu(mfp[i])); 6454 } 6455 return 0; 6456 } 6457 6458 /** 6459 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW 6460 * @ioc: per adapter object 6461 * @mpi_reply: the reply payload from FW 6462 * @mpi_request: the request payload sent to FW 6463 * 6464 * The SAS IO Unit Control Request message allows the host to perform low-level 6465 * operations, such as resets on the PHYs of the IO Unit, also allows the host 6466 * to obtain the IOC assigned device handles for a device if it has other 6467 * identifying information about the device, in addition allows the host to 6468 * remove IOC resources associated with the device. 6469 * 6470 * Return: 0 for success, non-zero for failure. 6471 */ 6472 int 6473 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc, 6474 Mpi2SasIoUnitControlReply_t *mpi_reply, 6475 Mpi2SasIoUnitControlRequest_t *mpi_request) 6476 { 6477 u16 smid; 6478 u8 issue_reset = 0; 6479 int rc; 6480 void *request; 6481 6482 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6483 6484 mutex_lock(&ioc->base_cmds.mutex); 6485 6486 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) { 6487 ioc_err(ioc, "%s: base_cmd in use\n", __func__); 6488 rc = -EAGAIN; 6489 goto out; 6490 } 6491 6492 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT); 6493 if (rc) 6494 goto out; 6495 6496 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 6497 if (!smid) { 6498 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 6499 rc = -EAGAIN; 6500 goto out; 6501 } 6502 6503 rc = 0; 6504 ioc->base_cmds.status = MPT3_CMD_PENDING; 6505 request = mpt3sas_base_get_msg_frame(ioc, smid); 6506 ioc->base_cmds.smid = smid; 6507 memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)); 6508 if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET || 6509 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) 6510 ioc->ioc_link_reset_in_progress = 1; 6511 init_completion(&ioc->base_cmds.done); 6512 ioc->put_smid_default(ioc, smid); 6513 wait_for_completion_timeout(&ioc->base_cmds.done, 6514 msecs_to_jiffies(10000)); 6515 if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET || 6516 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) && 6517 ioc->ioc_link_reset_in_progress) 6518 ioc->ioc_link_reset_in_progress = 0; 6519 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 6520 mpt3sas_check_cmd_timeout(ioc, ioc->base_cmds.status, 6521 mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)/4, 6522 issue_reset); 6523 goto issue_host_reset; 6524 } 6525 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) 6526 memcpy(mpi_reply, ioc->base_cmds.reply, 6527 sizeof(Mpi2SasIoUnitControlReply_t)); 6528 else 6529 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t)); 6530 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 6531 goto out; 6532 6533 issue_host_reset: 6534 if (issue_reset) 6535 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 6536 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 6537 rc = -EFAULT; 6538 out: 6539 mutex_unlock(&ioc->base_cmds.mutex); 6540 return rc; 6541 } 6542 6543 /** 6544 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device 6545 * @ioc: per adapter object 6546 * @mpi_reply: the reply payload from FW 6547 * @mpi_request: the request payload sent to FW 6548 * 6549 * The SCSI Enclosure Processor request message causes the IOC to 6550 * communicate with SES devices to control LED status signals. 6551 * 6552 * Return: 0 for success, non-zero for failure. 6553 */ 6554 int 6555 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc, 6556 Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request) 6557 { 6558 u16 smid; 6559 u8 issue_reset = 0; 6560 int rc; 6561 void *request; 6562 6563 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6564 6565 mutex_lock(&ioc->base_cmds.mutex); 6566 6567 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) { 6568 ioc_err(ioc, "%s: base_cmd in use\n", __func__); 6569 rc = -EAGAIN; 6570 goto out; 6571 } 6572 6573 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT); 6574 if (rc) 6575 goto out; 6576 6577 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 6578 if (!smid) { 6579 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 6580 rc = -EAGAIN; 6581 goto out; 6582 } 6583 6584 rc = 0; 6585 ioc->base_cmds.status = MPT3_CMD_PENDING; 6586 request = mpt3sas_base_get_msg_frame(ioc, smid); 6587 ioc->base_cmds.smid = smid; 6588 memset(request, 0, ioc->request_sz); 6589 memcpy(request, mpi_request, sizeof(Mpi2SepReply_t)); 6590 init_completion(&ioc->base_cmds.done); 6591 ioc->put_smid_default(ioc, smid); 6592 wait_for_completion_timeout(&ioc->base_cmds.done, 6593 msecs_to_jiffies(10000)); 6594 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 6595 mpt3sas_check_cmd_timeout(ioc, 6596 ioc->base_cmds.status, mpi_request, 6597 sizeof(Mpi2SepRequest_t)/4, issue_reset); 6598 goto issue_host_reset; 6599 } 6600 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) 6601 memcpy(mpi_reply, ioc->base_cmds.reply, 6602 sizeof(Mpi2SepReply_t)); 6603 else 6604 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t)); 6605 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 6606 goto out; 6607 6608 issue_host_reset: 6609 if (issue_reset) 6610 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); 6611 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 6612 rc = -EFAULT; 6613 out: 6614 mutex_unlock(&ioc->base_cmds.mutex); 6615 return rc; 6616 } 6617 6618 /** 6619 * _base_get_port_facts - obtain port facts reply and save in ioc 6620 * @ioc: per adapter object 6621 * @port: ? 6622 * 6623 * Return: 0 for success, non-zero for failure. 6624 */ 6625 static int 6626 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port) 6627 { 6628 Mpi2PortFactsRequest_t mpi_request; 6629 Mpi2PortFactsReply_t mpi_reply; 6630 struct mpt3sas_port_facts *pfacts; 6631 int mpi_reply_sz, mpi_request_sz, r; 6632 6633 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6634 6635 mpi_reply_sz = sizeof(Mpi2PortFactsReply_t); 6636 mpi_request_sz = sizeof(Mpi2PortFactsRequest_t); 6637 memset(&mpi_request, 0, mpi_request_sz); 6638 mpi_request.Function = MPI2_FUNCTION_PORT_FACTS; 6639 mpi_request.PortNumber = port; 6640 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz, 6641 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5); 6642 6643 if (r != 0) { 6644 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 6645 return r; 6646 } 6647 6648 pfacts = &ioc->pfacts[port]; 6649 memset(pfacts, 0, sizeof(struct mpt3sas_port_facts)); 6650 pfacts->PortNumber = mpi_reply.PortNumber; 6651 pfacts->VP_ID = mpi_reply.VP_ID; 6652 pfacts->VF_ID = mpi_reply.VF_ID; 6653 pfacts->MaxPostedCmdBuffers = 6654 le16_to_cpu(mpi_reply.MaxPostedCmdBuffers); 6655 6656 return 0; 6657 } 6658 6659 /** 6660 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL 6661 * @ioc: per adapter object 6662 * @timeout: 6663 * 6664 * Return: 0 for success, non-zero for failure. 6665 */ 6666 static int 6667 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout) 6668 { 6669 u32 ioc_state; 6670 int rc; 6671 6672 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6673 6674 if (ioc->pci_error_recovery) { 6675 dfailprintk(ioc, 6676 ioc_info(ioc, "%s: host in pci error recovery\n", 6677 __func__)); 6678 return -EFAULT; 6679 } 6680 6681 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 6682 dhsprintk(ioc, 6683 ioc_info(ioc, "%s: ioc_state(0x%08x)\n", 6684 __func__, ioc_state)); 6685 6686 if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) || 6687 (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL) 6688 return 0; 6689 6690 if (ioc_state & MPI2_DOORBELL_USED) { 6691 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n")); 6692 goto issue_diag_reset; 6693 } 6694 6695 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 6696 mpt3sas_print_fault_code(ioc, ioc_state & 6697 MPI2_DOORBELL_DATA_MASK); 6698 goto issue_diag_reset; 6699 } else if ((ioc_state & MPI2_IOC_STATE_MASK) == 6700 MPI2_IOC_STATE_COREDUMP) { 6701 ioc_info(ioc, 6702 "%s: Skipping the diag reset here. (ioc_state=0x%x)\n", 6703 __func__, ioc_state); 6704 return -EFAULT; 6705 } 6706 6707 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout); 6708 if (ioc_state) { 6709 dfailprintk(ioc, 6710 ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 6711 __func__, ioc_state)); 6712 return -EFAULT; 6713 } 6714 6715 issue_diag_reset: 6716 rc = _base_diag_reset(ioc); 6717 return rc; 6718 } 6719 6720 /** 6721 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc 6722 * @ioc: per adapter object 6723 * 6724 * Return: 0 for success, non-zero for failure. 6725 */ 6726 static int 6727 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc) 6728 { 6729 Mpi2IOCFactsRequest_t mpi_request; 6730 Mpi2IOCFactsReply_t mpi_reply; 6731 struct mpt3sas_facts *facts; 6732 int mpi_reply_sz, mpi_request_sz, r; 6733 6734 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6735 6736 r = _base_wait_for_iocstate(ioc, 10); 6737 if (r) { 6738 dfailprintk(ioc, 6739 ioc_info(ioc, "%s: failed getting to correct state\n", 6740 __func__)); 6741 return r; 6742 } 6743 mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t); 6744 mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t); 6745 memset(&mpi_request, 0, mpi_request_sz); 6746 mpi_request.Function = MPI2_FUNCTION_IOC_FACTS; 6747 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz, 6748 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5); 6749 6750 if (r != 0) { 6751 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 6752 return r; 6753 } 6754 6755 facts = &ioc->facts; 6756 memset(facts, 0, sizeof(struct mpt3sas_facts)); 6757 facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion); 6758 facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion); 6759 facts->VP_ID = mpi_reply.VP_ID; 6760 facts->VF_ID = mpi_reply.VF_ID; 6761 facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions); 6762 facts->MaxChainDepth = mpi_reply.MaxChainDepth; 6763 facts->WhoInit = mpi_reply.WhoInit; 6764 facts->NumberOfPorts = mpi_reply.NumberOfPorts; 6765 facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors; 6766 if (ioc->msix_enable && (facts->MaxMSIxVectors <= 6767 MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc))) 6768 ioc->combined_reply_queue = 0; 6769 facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit); 6770 facts->MaxReplyDescriptorPostQueueDepth = 6771 le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth); 6772 facts->ProductID = le16_to_cpu(mpi_reply.ProductID); 6773 facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities); 6774 if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)) 6775 ioc->ir_firmware = 1; 6776 if ((facts->IOCCapabilities & 6777 MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices)) 6778 ioc->rdpq_array_capable = 1; 6779 if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ) 6780 && ioc->is_aero_ioc) 6781 ioc->atomic_desc_capable = 1; 6782 facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word); 6783 facts->IOCRequestFrameSize = 6784 le16_to_cpu(mpi_reply.IOCRequestFrameSize); 6785 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 6786 facts->IOCMaxChainSegmentSize = 6787 le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize); 6788 } 6789 facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators); 6790 facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets); 6791 ioc->shost->max_id = -1; 6792 facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders); 6793 facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures); 6794 facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags); 6795 facts->HighPriorityCredit = 6796 le16_to_cpu(mpi_reply.HighPriorityCredit); 6797 facts->ReplyFrameSize = mpi_reply.ReplyFrameSize; 6798 facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle); 6799 facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize; 6800 6801 /* 6802 * Get the Page Size from IOC Facts. If it's 0, default to 4k. 6803 */ 6804 ioc->page_size = 1 << facts->CurrentHostPageSize; 6805 if (ioc->page_size == 1) { 6806 ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n"); 6807 ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K; 6808 } 6809 dinitprintk(ioc, 6810 ioc_info(ioc, "CurrentHostPageSize(%d)\n", 6811 facts->CurrentHostPageSize)); 6812 6813 dinitprintk(ioc, 6814 ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n", 6815 facts->RequestCredit, facts->MaxChainDepth)); 6816 dinitprintk(ioc, 6817 ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n", 6818 facts->IOCRequestFrameSize * 4, 6819 facts->ReplyFrameSize * 4)); 6820 return 0; 6821 } 6822 6823 /** 6824 * _base_send_ioc_init - send ioc_init to firmware 6825 * @ioc: per adapter object 6826 * 6827 * Return: 0 for success, non-zero for failure. 6828 */ 6829 static int 6830 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc) 6831 { 6832 Mpi2IOCInitRequest_t mpi_request; 6833 Mpi2IOCInitReply_t mpi_reply; 6834 int i, r = 0; 6835 ktime_t current_time; 6836 u16 ioc_status; 6837 u32 reply_post_free_array_sz = 0; 6838 6839 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 6840 6841 memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t)); 6842 mpi_request.Function = MPI2_FUNCTION_IOC_INIT; 6843 mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER; 6844 mpi_request.VF_ID = 0; /* TODO */ 6845 mpi_request.VP_ID = 0; 6846 mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged); 6847 mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION); 6848 mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K; 6849 6850 if (_base_is_controller_msix_enabled(ioc)) 6851 mpi_request.HostMSIxVectors = ioc->reply_queue_count; 6852 mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4); 6853 mpi_request.ReplyDescriptorPostQueueDepth = 6854 cpu_to_le16(ioc->reply_post_queue_depth); 6855 mpi_request.ReplyFreeQueueDepth = 6856 cpu_to_le16(ioc->reply_free_queue_depth); 6857 6858 mpi_request.SenseBufferAddressHigh = 6859 cpu_to_le32((u64)ioc->sense_dma >> 32); 6860 mpi_request.SystemReplyAddressHigh = 6861 cpu_to_le32((u64)ioc->reply_dma >> 32); 6862 mpi_request.SystemRequestFrameBaseAddress = 6863 cpu_to_le64((u64)ioc->request_dma); 6864 mpi_request.ReplyFreeQueueAddress = 6865 cpu_to_le64((u64)ioc->reply_free_dma); 6866 6867 if (ioc->rdpq_array_enable) { 6868 reply_post_free_array_sz = ioc->reply_queue_count * 6869 sizeof(Mpi2IOCInitRDPQArrayEntry); 6870 memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz); 6871 for (i = 0; i < ioc->reply_queue_count; i++) 6872 ioc->reply_post_free_array[i].RDPQBaseAddress = 6873 cpu_to_le64( 6874 (u64)ioc->reply_post[i].reply_post_free_dma); 6875 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE; 6876 mpi_request.ReplyDescriptorPostQueueAddress = 6877 cpu_to_le64((u64)ioc->reply_post_free_array_dma); 6878 } else { 6879 mpi_request.ReplyDescriptorPostQueueAddress = 6880 cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma); 6881 } 6882 6883 /* 6884 * Set the flag to enable CoreDump state feature in IOC firmware. 6885 */ 6886 mpi_request.ConfigurationFlags |= 6887 cpu_to_le16(MPI26_IOCINIT_CFGFLAGS_COREDUMP_ENABLE); 6888 6889 /* This time stamp specifies number of milliseconds 6890 * since epoch ~ midnight January 1, 1970. 6891 */ 6892 current_time = ktime_get_real(); 6893 mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time)); 6894 6895 if (ioc->logging_level & MPT_DEBUG_INIT) { 6896 __le32 *mfp; 6897 int i; 6898 6899 mfp = (__le32 *)&mpi_request; 6900 ioc_info(ioc, "\toffset:data\n"); 6901 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++) 6902 ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4, 6903 le32_to_cpu(mfp[i])); 6904 } 6905 6906 r = _base_handshake_req_reply_wait(ioc, 6907 sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request, 6908 sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 30); 6909 6910 if (r != 0) { 6911 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); 6912 return r; 6913 } 6914 6915 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK; 6916 if (ioc_status != MPI2_IOCSTATUS_SUCCESS || 6917 mpi_reply.IOCLogInfo) { 6918 ioc_err(ioc, "%s: failed\n", __func__); 6919 r = -EIO; 6920 } 6921 6922 /* Reset TimeSync Counter*/ 6923 ioc->timestamp_update_count = 0; 6924 return r; 6925 } 6926 6927 /** 6928 * mpt3sas_port_enable_done - command completion routine for port enable 6929 * @ioc: per adapter object 6930 * @smid: system request message index 6931 * @msix_index: MSIX table index supplied by the OS 6932 * @reply: reply message frame(lower 32bit addr) 6933 * 6934 * Return: 1 meaning mf should be freed from _base_interrupt 6935 * 0 means the mf is freed from this function. 6936 */ 6937 u8 6938 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, 6939 u32 reply) 6940 { 6941 MPI2DefaultReply_t *mpi_reply; 6942 u16 ioc_status; 6943 6944 if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED) 6945 return 1; 6946 6947 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); 6948 if (!mpi_reply) 6949 return 1; 6950 6951 if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE) 6952 return 1; 6953 6954 ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING; 6955 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE; 6956 ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID; 6957 memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4); 6958 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 6959 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) 6960 ioc->port_enable_failed = 1; 6961 6962 if (ioc->is_driver_loading) { 6963 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { 6964 mpt3sas_port_enable_complete(ioc); 6965 return 1; 6966 } else { 6967 ioc->start_scan_failed = ioc_status; 6968 ioc->start_scan = 0; 6969 return 1; 6970 } 6971 } 6972 complete(&ioc->port_enable_cmds.done); 6973 return 1; 6974 } 6975 6976 /** 6977 * _base_send_port_enable - send port_enable(discovery stuff) to firmware 6978 * @ioc: per adapter object 6979 * 6980 * Return: 0 for success, non-zero for failure. 6981 */ 6982 static int 6983 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc) 6984 { 6985 Mpi2PortEnableRequest_t *mpi_request; 6986 Mpi2PortEnableReply_t *mpi_reply; 6987 int r = 0; 6988 u16 smid; 6989 u16 ioc_status; 6990 6991 ioc_info(ioc, "sending port enable !!\n"); 6992 6993 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 6994 ioc_err(ioc, "%s: internal command already in use\n", __func__); 6995 return -EAGAIN; 6996 } 6997 6998 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx); 6999 if (!smid) { 7000 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 7001 return -EAGAIN; 7002 } 7003 7004 ioc->port_enable_cmds.status = MPT3_CMD_PENDING; 7005 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 7006 ioc->port_enable_cmds.smid = smid; 7007 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t)); 7008 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE; 7009 7010 init_completion(&ioc->port_enable_cmds.done); 7011 ioc->put_smid_default(ioc, smid); 7012 wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ); 7013 if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) { 7014 ioc_err(ioc, "%s: timeout\n", __func__); 7015 _debug_dump_mf(mpi_request, 7016 sizeof(Mpi2PortEnableRequest_t)/4); 7017 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET) 7018 r = -EFAULT; 7019 else 7020 r = -ETIME; 7021 goto out; 7022 } 7023 7024 mpi_reply = ioc->port_enable_cmds.reply; 7025 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; 7026 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 7027 ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n", 7028 __func__, ioc_status); 7029 r = -EFAULT; 7030 goto out; 7031 } 7032 7033 out: 7034 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED; 7035 ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED"); 7036 return r; 7037 } 7038 7039 /** 7040 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply) 7041 * @ioc: per adapter object 7042 * 7043 * Return: 0 for success, non-zero for failure. 7044 */ 7045 int 7046 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc) 7047 { 7048 Mpi2PortEnableRequest_t *mpi_request; 7049 u16 smid; 7050 7051 ioc_info(ioc, "sending port enable !!\n"); 7052 7053 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 7054 ioc_err(ioc, "%s: internal command already in use\n", __func__); 7055 return -EAGAIN; 7056 } 7057 7058 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx); 7059 if (!smid) { 7060 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 7061 return -EAGAIN; 7062 } 7063 7064 ioc->port_enable_cmds.status = MPT3_CMD_PENDING; 7065 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 7066 ioc->port_enable_cmds.smid = smid; 7067 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t)); 7068 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE; 7069 7070 ioc->put_smid_default(ioc, smid); 7071 return 0; 7072 } 7073 7074 /** 7075 * _base_determine_wait_on_discovery - desposition 7076 * @ioc: per adapter object 7077 * 7078 * Decide whether to wait on discovery to complete. Used to either 7079 * locate boot device, or report volumes ahead of physical devices. 7080 * 7081 * Return: 1 for wait, 0 for don't wait. 7082 */ 7083 static int 7084 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc) 7085 { 7086 /* We wait for discovery to complete if IR firmware is loaded. 7087 * The sas topology events arrive before PD events, so we need time to 7088 * turn on the bit in ioc->pd_handles to indicate PD 7089 * Also, it maybe required to report Volumes ahead of physical 7090 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set. 7091 */ 7092 if (ioc->ir_firmware) 7093 return 1; 7094 7095 /* if no Bios, then we don't need to wait */ 7096 if (!ioc->bios_pg3.BiosVersion) 7097 return 0; 7098 7099 /* Bios is present, then we drop down here. 7100 * 7101 * If there any entries in the Bios Page 2, then we wait 7102 * for discovery to complete. 7103 */ 7104 7105 /* Current Boot Device */ 7106 if ((ioc->bios_pg2.CurrentBootDeviceForm & 7107 MPI2_BIOSPAGE2_FORM_MASK) == 7108 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED && 7109 /* Request Boot Device */ 7110 (ioc->bios_pg2.ReqBootDeviceForm & 7111 MPI2_BIOSPAGE2_FORM_MASK) == 7112 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED && 7113 /* Alternate Request Boot Device */ 7114 (ioc->bios_pg2.ReqAltBootDeviceForm & 7115 MPI2_BIOSPAGE2_FORM_MASK) == 7116 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED) 7117 return 0; 7118 7119 return 1; 7120 } 7121 7122 /** 7123 * _base_unmask_events - turn on notification for this event 7124 * @ioc: per adapter object 7125 * @event: firmware event 7126 * 7127 * The mask is stored in ioc->event_masks. 7128 */ 7129 static void 7130 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event) 7131 { 7132 u32 desired_event; 7133 7134 if (event >= 128) 7135 return; 7136 7137 desired_event = (1 << (event % 32)); 7138 7139 if (event < 32) 7140 ioc->event_masks[0] &= ~desired_event; 7141 else if (event < 64) 7142 ioc->event_masks[1] &= ~desired_event; 7143 else if (event < 96) 7144 ioc->event_masks[2] &= ~desired_event; 7145 else if (event < 128) 7146 ioc->event_masks[3] &= ~desired_event; 7147 } 7148 7149 /** 7150 * _base_event_notification - send event notification 7151 * @ioc: per adapter object 7152 * 7153 * Return: 0 for success, non-zero for failure. 7154 */ 7155 static int 7156 _base_event_notification(struct MPT3SAS_ADAPTER *ioc) 7157 { 7158 Mpi2EventNotificationRequest_t *mpi_request; 7159 u16 smid; 7160 int r = 0; 7161 int i; 7162 7163 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7164 7165 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 7166 ioc_err(ioc, "%s: internal command already in use\n", __func__); 7167 return -EAGAIN; 7168 } 7169 7170 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); 7171 if (!smid) { 7172 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); 7173 return -EAGAIN; 7174 } 7175 ioc->base_cmds.status = MPT3_CMD_PENDING; 7176 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); 7177 ioc->base_cmds.smid = smid; 7178 memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t)); 7179 mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION; 7180 mpi_request->VF_ID = 0; /* TODO */ 7181 mpi_request->VP_ID = 0; 7182 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 7183 mpi_request->EventMasks[i] = 7184 cpu_to_le32(ioc->event_masks[i]); 7185 init_completion(&ioc->base_cmds.done); 7186 ioc->put_smid_default(ioc, smid); 7187 wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ); 7188 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { 7189 ioc_err(ioc, "%s: timeout\n", __func__); 7190 _debug_dump_mf(mpi_request, 7191 sizeof(Mpi2EventNotificationRequest_t)/4); 7192 if (ioc->base_cmds.status & MPT3_CMD_RESET) 7193 r = -EFAULT; 7194 else 7195 r = -ETIME; 7196 } else 7197 dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__)); 7198 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 7199 return r; 7200 } 7201 7202 /** 7203 * mpt3sas_base_validate_event_type - validating event types 7204 * @ioc: per adapter object 7205 * @event_type: firmware event 7206 * 7207 * This will turn on firmware event notification when application 7208 * ask for that event. We don't mask events that are already enabled. 7209 */ 7210 void 7211 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type) 7212 { 7213 int i, j; 7214 u32 event_mask, desired_event; 7215 u8 send_update_to_fw; 7216 7217 for (i = 0, send_update_to_fw = 0; i < 7218 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) { 7219 event_mask = ~event_type[i]; 7220 desired_event = 1; 7221 for (j = 0; j < 32; j++) { 7222 if (!(event_mask & desired_event) && 7223 (ioc->event_masks[i] & desired_event)) { 7224 ioc->event_masks[i] &= ~desired_event; 7225 send_update_to_fw = 1; 7226 } 7227 desired_event = (desired_event << 1); 7228 } 7229 } 7230 7231 if (!send_update_to_fw) 7232 return; 7233 7234 mutex_lock(&ioc->base_cmds.mutex); 7235 _base_event_notification(ioc); 7236 mutex_unlock(&ioc->base_cmds.mutex); 7237 } 7238 7239 /** 7240 * _base_diag_reset - the "big hammer" start of day reset 7241 * @ioc: per adapter object 7242 * 7243 * Return: 0 for success, non-zero for failure. 7244 */ 7245 static int 7246 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc) 7247 { 7248 u32 host_diagnostic; 7249 u32 ioc_state; 7250 u32 count; 7251 u32 hcb_size; 7252 7253 ioc_info(ioc, "sending diag reset !!\n"); 7254 7255 drsprintk(ioc, ioc_info(ioc, "clear interrupts\n")); 7256 7257 count = 0; 7258 do { 7259 /* Write magic sequence to WriteSequence register 7260 * Loop until in diagnostic mode 7261 */ 7262 drsprintk(ioc, ioc_info(ioc, "write magic sequence\n")); 7263 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence); 7264 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence); 7265 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence); 7266 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence); 7267 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence); 7268 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence); 7269 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence); 7270 7271 /* wait 100 msec */ 7272 msleep(100); 7273 7274 if (count++ > 20) { 7275 ioc_info(ioc, 7276 "Stop writing magic sequence after 20 retries\n"); 7277 _base_dump_reg_set(ioc); 7278 goto out; 7279 } 7280 7281 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic); 7282 drsprintk(ioc, 7283 ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n", 7284 count, host_diagnostic)); 7285 7286 } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0); 7287 7288 hcb_size = ioc->base_readl(&ioc->chip->HCBSize); 7289 7290 drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n")); 7291 writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER, 7292 &ioc->chip->HostDiagnostic); 7293 7294 /*This delay allows the chip PCIe hardware time to finish reset tasks*/ 7295 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000); 7296 7297 /* Approximately 300 second max wait */ 7298 for (count = 0; count < (300000000 / 7299 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) { 7300 7301 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic); 7302 7303 if (host_diagnostic == 0xFFFFFFFF) { 7304 ioc_info(ioc, 7305 "Invalid host diagnostic register value\n"); 7306 _base_dump_reg_set(ioc); 7307 goto out; 7308 } 7309 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER)) 7310 break; 7311 7312 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000); 7313 } 7314 7315 if (host_diagnostic & MPI2_DIAG_HCB_MODE) { 7316 7317 drsprintk(ioc, 7318 ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n")); 7319 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK; 7320 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW; 7321 writel(host_diagnostic, &ioc->chip->HostDiagnostic); 7322 7323 drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n")); 7324 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE, 7325 &ioc->chip->HCBSize); 7326 } 7327 7328 drsprintk(ioc, ioc_info(ioc, "restart the adapter\n")); 7329 writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET, 7330 &ioc->chip->HostDiagnostic); 7331 7332 drsprintk(ioc, 7333 ioc_info(ioc, "disable writes to the diagnostic register\n")); 7334 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence); 7335 7336 drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n")); 7337 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20); 7338 if (ioc_state) { 7339 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 7340 __func__, ioc_state); 7341 _base_dump_reg_set(ioc); 7342 goto out; 7343 } 7344 7345 ioc_info(ioc, "diag reset: SUCCESS\n"); 7346 return 0; 7347 7348 out: 7349 ioc_err(ioc, "diag reset: FAILED\n"); 7350 return -EFAULT; 7351 } 7352 7353 /** 7354 * _base_make_ioc_ready - put controller in READY state 7355 * @ioc: per adapter object 7356 * @type: FORCE_BIG_HAMMER or SOFT_RESET 7357 * 7358 * Return: 0 for success, non-zero for failure. 7359 */ 7360 static int 7361 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type) 7362 { 7363 u32 ioc_state; 7364 int rc; 7365 int count; 7366 7367 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7368 7369 if (ioc->pci_error_recovery) 7370 return 0; 7371 7372 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 7373 dhsprintk(ioc, 7374 ioc_info(ioc, "%s: ioc_state(0x%08x)\n", 7375 __func__, ioc_state)); 7376 7377 /* if in RESET state, it should move to READY state shortly */ 7378 count = 0; 7379 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) { 7380 while ((ioc_state & MPI2_IOC_STATE_MASK) != 7381 MPI2_IOC_STATE_READY) { 7382 if (count++ == 10) { 7383 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", 7384 __func__, ioc_state); 7385 return -EFAULT; 7386 } 7387 ssleep(1); 7388 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 7389 } 7390 } 7391 7392 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) 7393 return 0; 7394 7395 if (ioc_state & MPI2_DOORBELL_USED) { 7396 ioc_info(ioc, "unexpected doorbell active!\n"); 7397 goto issue_diag_reset; 7398 } 7399 7400 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 7401 mpt3sas_print_fault_code(ioc, ioc_state & 7402 MPI2_DOORBELL_DATA_MASK); 7403 goto issue_diag_reset; 7404 } 7405 7406 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) { 7407 /* 7408 * if host reset is invoked while watch dog thread is waiting 7409 * for IOC state to be changed to Fault state then driver has 7410 * to wait here for CoreDump state to clear otherwise reset 7411 * will be issued to the FW and FW move the IOC state to 7412 * reset state without copying the FW logs to coredump region. 7413 */ 7414 if (ioc->ioc_coredump_loop != MPT3SAS_COREDUMP_LOOP_DONE) { 7415 mpt3sas_print_coredump_info(ioc, ioc_state & 7416 MPI2_DOORBELL_DATA_MASK); 7417 mpt3sas_base_wait_for_coredump_completion(ioc, 7418 __func__); 7419 } 7420 goto issue_diag_reset; 7421 } 7422 7423 if (type == FORCE_BIG_HAMMER) 7424 goto issue_diag_reset; 7425 7426 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL) 7427 if (!(_base_send_ioc_reset(ioc, 7428 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) { 7429 return 0; 7430 } 7431 7432 issue_diag_reset: 7433 rc = _base_diag_reset(ioc); 7434 return rc; 7435 } 7436 7437 /** 7438 * _base_make_ioc_operational - put controller in OPERATIONAL state 7439 * @ioc: per adapter object 7440 * 7441 * Return: 0 for success, non-zero for failure. 7442 */ 7443 static int 7444 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc) 7445 { 7446 int r, i, index, rc; 7447 unsigned long flags; 7448 u32 reply_address; 7449 u16 smid; 7450 struct _tr_list *delayed_tr, *delayed_tr_next; 7451 struct _sc_list *delayed_sc, *delayed_sc_next; 7452 struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next; 7453 u8 hide_flag; 7454 struct adapter_reply_queue *reply_q; 7455 Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig; 7456 7457 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7458 7459 /* clean the delayed target reset list */ 7460 list_for_each_entry_safe(delayed_tr, delayed_tr_next, 7461 &ioc->delayed_tr_list, list) { 7462 list_del(&delayed_tr->list); 7463 kfree(delayed_tr); 7464 } 7465 7466 7467 list_for_each_entry_safe(delayed_tr, delayed_tr_next, 7468 &ioc->delayed_tr_volume_list, list) { 7469 list_del(&delayed_tr->list); 7470 kfree(delayed_tr); 7471 } 7472 7473 list_for_each_entry_safe(delayed_sc, delayed_sc_next, 7474 &ioc->delayed_sc_list, list) { 7475 list_del(&delayed_sc->list); 7476 kfree(delayed_sc); 7477 } 7478 7479 list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next, 7480 &ioc->delayed_event_ack_list, list) { 7481 list_del(&delayed_event_ack->list); 7482 kfree(delayed_event_ack); 7483 } 7484 7485 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); 7486 7487 /* hi-priority queue */ 7488 INIT_LIST_HEAD(&ioc->hpr_free_list); 7489 smid = ioc->hi_priority_smid; 7490 for (i = 0; i < ioc->hi_priority_depth; i++, smid++) { 7491 ioc->hpr_lookup[i].cb_idx = 0xFF; 7492 ioc->hpr_lookup[i].smid = smid; 7493 list_add_tail(&ioc->hpr_lookup[i].tracker_list, 7494 &ioc->hpr_free_list); 7495 } 7496 7497 /* internal queue */ 7498 INIT_LIST_HEAD(&ioc->internal_free_list); 7499 smid = ioc->internal_smid; 7500 for (i = 0; i < ioc->internal_depth; i++, smid++) { 7501 ioc->internal_lookup[i].cb_idx = 0xFF; 7502 ioc->internal_lookup[i].smid = smid; 7503 list_add_tail(&ioc->internal_lookup[i].tracker_list, 7504 &ioc->internal_free_list); 7505 } 7506 7507 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); 7508 7509 /* initialize Reply Free Queue */ 7510 for (i = 0, reply_address = (u32)ioc->reply_dma ; 7511 i < ioc->reply_free_queue_depth ; i++, reply_address += 7512 ioc->reply_sz) { 7513 ioc->reply_free[i] = cpu_to_le32(reply_address); 7514 if (ioc->is_mcpu_endpoint) 7515 _base_clone_reply_to_sys_mem(ioc, 7516 reply_address, i); 7517 } 7518 7519 /* initialize reply queues */ 7520 if (ioc->is_driver_loading) 7521 _base_assign_reply_queues(ioc); 7522 7523 /* initialize Reply Post Free Queue */ 7524 index = 0; 7525 reply_post_free_contig = ioc->reply_post[0].reply_post_free; 7526 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 7527 /* 7528 * If RDPQ is enabled, switch to the next allocation. 7529 * Otherwise advance within the contiguous region. 7530 */ 7531 if (ioc->rdpq_array_enable) { 7532 reply_q->reply_post_free = 7533 ioc->reply_post[index++].reply_post_free; 7534 } else { 7535 reply_q->reply_post_free = reply_post_free_contig; 7536 reply_post_free_contig += ioc->reply_post_queue_depth; 7537 } 7538 7539 reply_q->reply_post_host_index = 0; 7540 for (i = 0; i < ioc->reply_post_queue_depth; i++) 7541 reply_q->reply_post_free[i].Words = 7542 cpu_to_le64(ULLONG_MAX); 7543 if (!_base_is_controller_msix_enabled(ioc)) 7544 goto skip_init_reply_post_free_queue; 7545 } 7546 skip_init_reply_post_free_queue: 7547 7548 r = _base_send_ioc_init(ioc); 7549 if (r) { 7550 /* 7551 * No need to check IOC state for fault state & issue 7552 * diag reset during host reset. This check is need 7553 * only during driver load time. 7554 */ 7555 if (!ioc->is_driver_loading) 7556 return r; 7557 7558 rc = _base_check_for_fault_and_issue_reset(ioc); 7559 if (rc || (_base_send_ioc_init(ioc))) 7560 return r; 7561 } 7562 7563 /* initialize reply free host index */ 7564 ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1; 7565 writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex); 7566 7567 /* initialize reply post host index */ 7568 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { 7569 if (ioc->combined_reply_queue) 7570 writel((reply_q->msix_index & 7)<< 7571 MPI2_RPHI_MSIX_INDEX_SHIFT, 7572 ioc->replyPostRegisterIndex[reply_q->msix_index/8]); 7573 else 7574 writel(reply_q->msix_index << 7575 MPI2_RPHI_MSIX_INDEX_SHIFT, 7576 &ioc->chip->ReplyPostHostIndex); 7577 7578 if (!_base_is_controller_msix_enabled(ioc)) 7579 goto skip_init_reply_post_host_index; 7580 } 7581 7582 skip_init_reply_post_host_index: 7583 7584 mpt3sas_base_unmask_interrupts(ioc); 7585 7586 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { 7587 r = _base_display_fwpkg_version(ioc); 7588 if (r) 7589 return r; 7590 } 7591 7592 _base_static_config_pages(ioc); 7593 r = _base_event_notification(ioc); 7594 if (r) 7595 return r; 7596 7597 if (ioc->is_driver_loading) { 7598 7599 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier 7600 == 0x80) { 7601 hide_flag = (u8) ( 7602 le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) & 7603 MFG_PAGE10_HIDE_SSDS_MASK); 7604 if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK) 7605 ioc->mfg_pg10_hide_flag = hide_flag; 7606 } 7607 7608 ioc->wait_for_discovery_to_complete = 7609 _base_determine_wait_on_discovery(ioc); 7610 7611 return r; /* scan_start and scan_finished support */ 7612 } 7613 7614 r = _base_send_port_enable(ioc); 7615 if (r) 7616 return r; 7617 7618 return r; 7619 } 7620 7621 /** 7622 * mpt3sas_base_free_resources - free resources controller resources 7623 * @ioc: per adapter object 7624 */ 7625 void 7626 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc) 7627 { 7628 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7629 7630 /* synchronizing freeing resource with pci_access_mutex lock */ 7631 mutex_lock(&ioc->pci_access_mutex); 7632 if (ioc->chip_phys && ioc->chip) { 7633 mpt3sas_base_mask_interrupts(ioc); 7634 ioc->shost_recovery = 1; 7635 _base_make_ioc_ready(ioc, SOFT_RESET); 7636 ioc->shost_recovery = 0; 7637 } 7638 7639 mpt3sas_base_unmap_resources(ioc); 7640 mutex_unlock(&ioc->pci_access_mutex); 7641 return; 7642 } 7643 7644 /** 7645 * mpt3sas_base_attach - attach controller instance 7646 * @ioc: per adapter object 7647 * 7648 * Return: 0 for success, non-zero for failure. 7649 */ 7650 int 7651 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc) 7652 { 7653 int r, i, rc; 7654 int cpu_id, last_cpu_id = 0; 7655 7656 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7657 7658 /* setup cpu_msix_table */ 7659 ioc->cpu_count = num_online_cpus(); 7660 for_each_online_cpu(cpu_id) 7661 last_cpu_id = cpu_id; 7662 ioc->cpu_msix_table_sz = last_cpu_id + 1; 7663 ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL); 7664 ioc->reply_queue_count = 1; 7665 if (!ioc->cpu_msix_table) { 7666 ioc_info(ioc, "Allocation for cpu_msix_table failed!!!\n"); 7667 r = -ENOMEM; 7668 goto out_free_resources; 7669 } 7670 7671 if (ioc->is_warpdrive) { 7672 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz, 7673 sizeof(resource_size_t *), GFP_KERNEL); 7674 if (!ioc->reply_post_host_index) { 7675 ioc_info(ioc, "Allocation for reply_post_host_index failed!!!\n"); 7676 r = -ENOMEM; 7677 goto out_free_resources; 7678 } 7679 } 7680 7681 ioc->smp_affinity_enable = smp_affinity_enable; 7682 7683 ioc->rdpq_array_enable_assigned = 0; 7684 ioc->use_32bit_dma = false; 7685 if (ioc->is_aero_ioc) 7686 ioc->base_readl = &_base_readl_aero; 7687 else 7688 ioc->base_readl = &_base_readl; 7689 r = mpt3sas_base_map_resources(ioc); 7690 if (r) 7691 goto out_free_resources; 7692 7693 pci_set_drvdata(ioc->pdev, ioc->shost); 7694 r = _base_get_ioc_facts(ioc); 7695 if (r) { 7696 rc = _base_check_for_fault_and_issue_reset(ioc); 7697 if (rc || (_base_get_ioc_facts(ioc))) 7698 goto out_free_resources; 7699 } 7700 7701 switch (ioc->hba_mpi_version_belonged) { 7702 case MPI2_VERSION: 7703 ioc->build_sg_scmd = &_base_build_sg_scmd; 7704 ioc->build_sg = &_base_build_sg; 7705 ioc->build_zero_len_sge = &_base_build_zero_len_sge; 7706 ioc->get_msix_index_for_smlio = &_base_get_msix_index; 7707 break; 7708 case MPI25_VERSION: 7709 case MPI26_VERSION: 7710 /* 7711 * In SAS3.0, 7712 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and 7713 * Target Status - all require the IEEE formated scatter gather 7714 * elements. 7715 */ 7716 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee; 7717 ioc->build_sg = &_base_build_sg_ieee; 7718 ioc->build_nvme_prp = &_base_build_nvme_prp; 7719 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee; 7720 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t); 7721 if (ioc->high_iops_queues) 7722 ioc->get_msix_index_for_smlio = 7723 &_base_get_high_iops_msix_index; 7724 else 7725 ioc->get_msix_index_for_smlio = &_base_get_msix_index; 7726 break; 7727 } 7728 if (ioc->atomic_desc_capable) { 7729 ioc->put_smid_default = &_base_put_smid_default_atomic; 7730 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic; 7731 ioc->put_smid_fast_path = 7732 &_base_put_smid_fast_path_atomic; 7733 ioc->put_smid_hi_priority = 7734 &_base_put_smid_hi_priority_atomic; 7735 } else { 7736 ioc->put_smid_default = &_base_put_smid_default; 7737 ioc->put_smid_fast_path = &_base_put_smid_fast_path; 7738 ioc->put_smid_hi_priority = &_base_put_smid_hi_priority; 7739 if (ioc->is_mcpu_endpoint) 7740 ioc->put_smid_scsi_io = 7741 &_base_put_smid_mpi_ep_scsi_io; 7742 else 7743 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io; 7744 } 7745 /* 7746 * These function pointers for other requests that don't 7747 * the require IEEE scatter gather elements. 7748 * 7749 * For example Configuration Pages and SAS IOUNIT Control don't. 7750 */ 7751 ioc->build_sg_mpi = &_base_build_sg; 7752 ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge; 7753 7754 r = _base_make_ioc_ready(ioc, SOFT_RESET); 7755 if (r) 7756 goto out_free_resources; 7757 7758 ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts, 7759 sizeof(struct mpt3sas_port_facts), GFP_KERNEL); 7760 if (!ioc->pfacts) { 7761 r = -ENOMEM; 7762 goto out_free_resources; 7763 } 7764 7765 for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) { 7766 r = _base_get_port_facts(ioc, i); 7767 if (r) { 7768 rc = _base_check_for_fault_and_issue_reset(ioc); 7769 if (rc || (_base_get_port_facts(ioc, i))) 7770 goto out_free_resources; 7771 } 7772 } 7773 7774 r = _base_allocate_memory_pools(ioc); 7775 if (r) 7776 goto out_free_resources; 7777 7778 if (irqpoll_weight > 0) 7779 ioc->thresh_hold = irqpoll_weight; 7780 else 7781 ioc->thresh_hold = ioc->hba_queue_depth/4; 7782 7783 _base_init_irqpolls(ioc); 7784 init_waitqueue_head(&ioc->reset_wq); 7785 7786 /* allocate memory pd handle bitmask list */ 7787 ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8); 7788 if (ioc->facts.MaxDevHandle % 8) 7789 ioc->pd_handles_sz++; 7790 ioc->pd_handles = kzalloc(ioc->pd_handles_sz, 7791 GFP_KERNEL); 7792 if (!ioc->pd_handles) { 7793 r = -ENOMEM; 7794 goto out_free_resources; 7795 } 7796 ioc->blocking_handles = kzalloc(ioc->pd_handles_sz, 7797 GFP_KERNEL); 7798 if (!ioc->blocking_handles) { 7799 r = -ENOMEM; 7800 goto out_free_resources; 7801 } 7802 7803 /* allocate memory for pending OS device add list */ 7804 ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8); 7805 if (ioc->facts.MaxDevHandle % 8) 7806 ioc->pend_os_device_add_sz++; 7807 ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz, 7808 GFP_KERNEL); 7809 if (!ioc->pend_os_device_add) 7810 goto out_free_resources; 7811 7812 ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz; 7813 ioc->device_remove_in_progress = 7814 kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL); 7815 if (!ioc->device_remove_in_progress) 7816 goto out_free_resources; 7817 7818 ioc->fwfault_debug = mpt3sas_fwfault_debug; 7819 7820 /* base internal command bits */ 7821 mutex_init(&ioc->base_cmds.mutex); 7822 ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7823 ioc->base_cmds.status = MPT3_CMD_NOT_USED; 7824 7825 /* port_enable command bits */ 7826 ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7827 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED; 7828 7829 /* transport internal command bits */ 7830 ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7831 ioc->transport_cmds.status = MPT3_CMD_NOT_USED; 7832 mutex_init(&ioc->transport_cmds.mutex); 7833 7834 /* scsih internal command bits */ 7835 ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7836 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED; 7837 mutex_init(&ioc->scsih_cmds.mutex); 7838 7839 /* task management internal command bits */ 7840 ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7841 ioc->tm_cmds.status = MPT3_CMD_NOT_USED; 7842 mutex_init(&ioc->tm_cmds.mutex); 7843 7844 /* config page internal command bits */ 7845 ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7846 ioc->config_cmds.status = MPT3_CMD_NOT_USED; 7847 mutex_init(&ioc->config_cmds.mutex); 7848 7849 /* ctl module internal command bits */ 7850 ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); 7851 ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL); 7852 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED; 7853 mutex_init(&ioc->ctl_cmds.mutex); 7854 7855 if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply || 7856 !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply || 7857 !ioc->tm_cmds.reply || !ioc->config_cmds.reply || 7858 !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) { 7859 r = -ENOMEM; 7860 goto out_free_resources; 7861 } 7862 7863 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) 7864 ioc->event_masks[i] = -1; 7865 7866 /* here we enable the events we care about */ 7867 _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY); 7868 _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE); 7869 _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST); 7870 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE); 7871 _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE); 7872 _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST); 7873 _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME); 7874 _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK); 7875 _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS); 7876 _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED); 7877 _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD); 7878 _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION); 7879 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR); 7880 if (ioc->hba_mpi_version_belonged == MPI26_VERSION) { 7881 if (ioc->is_gen35_ioc) { 7882 _base_unmask_events(ioc, 7883 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE); 7884 _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION); 7885 _base_unmask_events(ioc, 7886 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST); 7887 } 7888 } 7889 r = _base_make_ioc_operational(ioc); 7890 if (r) 7891 goto out_free_resources; 7892 7893 /* 7894 * Copy current copy of IOCFacts in prev_fw_facts 7895 * and it will be used during online firmware upgrade. 7896 */ 7897 memcpy(&ioc->prev_fw_facts, &ioc->facts, 7898 sizeof(struct mpt3sas_facts)); 7899 7900 ioc->non_operational_loop = 0; 7901 ioc->ioc_coredump_loop = 0; 7902 ioc->got_task_abort_from_ioctl = 0; 7903 return 0; 7904 7905 out_free_resources: 7906 7907 ioc->remove_host = 1; 7908 7909 mpt3sas_base_free_resources(ioc); 7910 _base_release_memory_pools(ioc); 7911 pci_set_drvdata(ioc->pdev, NULL); 7912 kfree(ioc->cpu_msix_table); 7913 if (ioc->is_warpdrive) 7914 kfree(ioc->reply_post_host_index); 7915 kfree(ioc->pd_handles); 7916 kfree(ioc->blocking_handles); 7917 kfree(ioc->device_remove_in_progress); 7918 kfree(ioc->pend_os_device_add); 7919 kfree(ioc->tm_cmds.reply); 7920 kfree(ioc->transport_cmds.reply); 7921 kfree(ioc->scsih_cmds.reply); 7922 kfree(ioc->config_cmds.reply); 7923 kfree(ioc->base_cmds.reply); 7924 kfree(ioc->port_enable_cmds.reply); 7925 kfree(ioc->ctl_cmds.reply); 7926 kfree(ioc->ctl_cmds.sense); 7927 kfree(ioc->pfacts); 7928 ioc->ctl_cmds.reply = NULL; 7929 ioc->base_cmds.reply = NULL; 7930 ioc->tm_cmds.reply = NULL; 7931 ioc->scsih_cmds.reply = NULL; 7932 ioc->transport_cmds.reply = NULL; 7933 ioc->config_cmds.reply = NULL; 7934 ioc->pfacts = NULL; 7935 return r; 7936 } 7937 7938 7939 /** 7940 * mpt3sas_base_detach - remove controller instance 7941 * @ioc: per adapter object 7942 */ 7943 void 7944 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc) 7945 { 7946 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); 7947 7948 mpt3sas_base_stop_watchdog(ioc); 7949 mpt3sas_base_free_resources(ioc); 7950 _base_release_memory_pools(ioc); 7951 mpt3sas_free_enclosure_list(ioc); 7952 pci_set_drvdata(ioc->pdev, NULL); 7953 kfree(ioc->cpu_msix_table); 7954 if (ioc->is_warpdrive) 7955 kfree(ioc->reply_post_host_index); 7956 kfree(ioc->pd_handles); 7957 kfree(ioc->blocking_handles); 7958 kfree(ioc->device_remove_in_progress); 7959 kfree(ioc->pend_os_device_add); 7960 kfree(ioc->pfacts); 7961 kfree(ioc->ctl_cmds.reply); 7962 kfree(ioc->ctl_cmds.sense); 7963 kfree(ioc->base_cmds.reply); 7964 kfree(ioc->port_enable_cmds.reply); 7965 kfree(ioc->tm_cmds.reply); 7966 kfree(ioc->transport_cmds.reply); 7967 kfree(ioc->scsih_cmds.reply); 7968 kfree(ioc->config_cmds.reply); 7969 } 7970 7971 /** 7972 * _base_pre_reset_handler - pre reset handler 7973 * @ioc: per adapter object 7974 */ 7975 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc) 7976 { 7977 mpt3sas_scsih_pre_reset_handler(ioc); 7978 mpt3sas_ctl_pre_reset_handler(ioc); 7979 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__)); 7980 } 7981 7982 /** 7983 * _base_clear_outstanding_mpt_commands - clears outstanding mpt commands 7984 * @ioc: per adapter object 7985 */ 7986 static void 7987 _base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER *ioc) 7988 { 7989 dtmprintk(ioc, 7990 ioc_info(ioc, "%s: clear outstanding mpt cmds\n", __func__)); 7991 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) { 7992 ioc->transport_cmds.status |= MPT3_CMD_RESET; 7993 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid); 7994 complete(&ioc->transport_cmds.done); 7995 } 7996 if (ioc->base_cmds.status & MPT3_CMD_PENDING) { 7997 ioc->base_cmds.status |= MPT3_CMD_RESET; 7998 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid); 7999 complete(&ioc->base_cmds.done); 8000 } 8001 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { 8002 ioc->port_enable_failed = 1; 8003 ioc->port_enable_cmds.status |= MPT3_CMD_RESET; 8004 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid); 8005 if (ioc->is_driver_loading) { 8006 ioc->start_scan_failed = 8007 MPI2_IOCSTATUS_INTERNAL_ERROR; 8008 ioc->start_scan = 0; 8009 ioc->port_enable_cmds.status = 8010 MPT3_CMD_NOT_USED; 8011 } else { 8012 complete(&ioc->port_enable_cmds.done); 8013 } 8014 } 8015 if (ioc->config_cmds.status & MPT3_CMD_PENDING) { 8016 ioc->config_cmds.status |= MPT3_CMD_RESET; 8017 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid); 8018 ioc->config_cmds.smid = USHRT_MAX; 8019 complete(&ioc->config_cmds.done); 8020 } 8021 } 8022 8023 /** 8024 * _base_clear_outstanding_commands - clear all outstanding commands 8025 * @ioc: per adapter object 8026 */ 8027 static void _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc) 8028 { 8029 mpt3sas_scsih_clear_outstanding_scsi_tm_commands(ioc); 8030 mpt3sas_ctl_clear_outstanding_ioctls(ioc); 8031 _base_clear_outstanding_mpt_commands(ioc); 8032 } 8033 8034 /** 8035 * _base_reset_done_handler - reset done handler 8036 * @ioc: per adapter object 8037 */ 8038 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc) 8039 { 8040 mpt3sas_scsih_reset_done_handler(ioc); 8041 mpt3sas_ctl_reset_done_handler(ioc); 8042 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__)); 8043 } 8044 8045 /** 8046 * mpt3sas_wait_for_commands_to_complete - reset controller 8047 * @ioc: Pointer to MPT_ADAPTER structure 8048 * 8049 * This function is waiting 10s for all pending commands to complete 8050 * prior to putting controller in reset. 8051 */ 8052 void 8053 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc) 8054 { 8055 u32 ioc_state; 8056 8057 ioc->pending_io_count = 0; 8058 8059 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 8060 if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) 8061 return; 8062 8063 /* pending command count */ 8064 ioc->pending_io_count = scsi_host_busy(ioc->shost); 8065 8066 if (!ioc->pending_io_count) 8067 return; 8068 8069 /* wait for pending commands to complete */ 8070 wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ); 8071 } 8072 8073 /** 8074 * _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts 8075 * attributes during online firmware upgrade and update the corresponding 8076 * IOC variables accordingly. 8077 * 8078 * @ioc: Pointer to MPT_ADAPTER structure 8079 */ 8080 static int 8081 _base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc) 8082 { 8083 u16 pd_handles_sz; 8084 void *pd_handles = NULL, *blocking_handles = NULL; 8085 void *pend_os_device_add = NULL, *device_remove_in_progress = NULL; 8086 struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts; 8087 8088 if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle) { 8089 pd_handles_sz = (ioc->facts.MaxDevHandle / 8); 8090 if (ioc->facts.MaxDevHandle % 8) 8091 pd_handles_sz++; 8092 8093 pd_handles = krealloc(ioc->pd_handles, pd_handles_sz, 8094 GFP_KERNEL); 8095 if (!pd_handles) { 8096 ioc_info(ioc, 8097 "Unable to allocate the memory for pd_handles of sz: %d\n", 8098 pd_handles_sz); 8099 return -ENOMEM; 8100 } 8101 memset(pd_handles + ioc->pd_handles_sz, 0, 8102 (pd_handles_sz - ioc->pd_handles_sz)); 8103 ioc->pd_handles = pd_handles; 8104 8105 blocking_handles = krealloc(ioc->blocking_handles, 8106 pd_handles_sz, GFP_KERNEL); 8107 if (!blocking_handles) { 8108 ioc_info(ioc, 8109 "Unable to allocate the memory for " 8110 "blocking_handles of sz: %d\n", 8111 pd_handles_sz); 8112 return -ENOMEM; 8113 } 8114 memset(blocking_handles + ioc->pd_handles_sz, 0, 8115 (pd_handles_sz - ioc->pd_handles_sz)); 8116 ioc->blocking_handles = blocking_handles; 8117 ioc->pd_handles_sz = pd_handles_sz; 8118 8119 pend_os_device_add = krealloc(ioc->pend_os_device_add, 8120 pd_handles_sz, GFP_KERNEL); 8121 if (!pend_os_device_add) { 8122 ioc_info(ioc, 8123 "Unable to allocate the memory for pend_os_device_add of sz: %d\n", 8124 pd_handles_sz); 8125 return -ENOMEM; 8126 } 8127 memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0, 8128 (pd_handles_sz - ioc->pend_os_device_add_sz)); 8129 ioc->pend_os_device_add = pend_os_device_add; 8130 ioc->pend_os_device_add_sz = pd_handles_sz; 8131 8132 device_remove_in_progress = krealloc( 8133 ioc->device_remove_in_progress, pd_handles_sz, GFP_KERNEL); 8134 if (!device_remove_in_progress) { 8135 ioc_info(ioc, 8136 "Unable to allocate the memory for " 8137 "device_remove_in_progress of sz: %d\n " 8138 , pd_handles_sz); 8139 return -ENOMEM; 8140 } 8141 memset(device_remove_in_progress + 8142 ioc->device_remove_in_progress_sz, 0, 8143 (pd_handles_sz - ioc->device_remove_in_progress_sz)); 8144 ioc->device_remove_in_progress = device_remove_in_progress; 8145 ioc->device_remove_in_progress_sz = pd_handles_sz; 8146 } 8147 8148 memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts)); 8149 return 0; 8150 } 8151 8152 /** 8153 * mpt3sas_base_hard_reset_handler - reset controller 8154 * @ioc: Pointer to MPT_ADAPTER structure 8155 * @type: FORCE_BIG_HAMMER or SOFT_RESET 8156 * 8157 * Return: 0 for success, non-zero for failure. 8158 */ 8159 int 8160 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc, 8161 enum reset_type type) 8162 { 8163 int r; 8164 unsigned long flags; 8165 u32 ioc_state; 8166 u8 is_fault = 0, is_trigger = 0; 8167 8168 dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__)); 8169 8170 if (ioc->pci_error_recovery) { 8171 ioc_err(ioc, "%s: pci error recovery reset\n", __func__); 8172 r = 0; 8173 goto out_unlocked; 8174 } 8175 8176 if (mpt3sas_fwfault_debug) 8177 mpt3sas_halt_firmware(ioc); 8178 8179 /* wait for an active reset in progress to complete */ 8180 mutex_lock(&ioc->reset_in_progress_mutex); 8181 8182 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 8183 ioc->shost_recovery = 1; 8184 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 8185 8186 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 8187 MPT3_DIAG_BUFFER_IS_REGISTERED) && 8188 (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & 8189 MPT3_DIAG_BUFFER_IS_RELEASED))) { 8190 is_trigger = 1; 8191 ioc_state = mpt3sas_base_get_iocstate(ioc, 0); 8192 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT || 8193 (ioc_state & MPI2_IOC_STATE_MASK) == 8194 MPI2_IOC_STATE_COREDUMP) { 8195 is_fault = 1; 8196 ioc->htb_rel.trigger_info_dwords[1] = 8197 (ioc_state & MPI2_DOORBELL_DATA_MASK); 8198 } 8199 } 8200 _base_pre_reset_handler(ioc); 8201 mpt3sas_wait_for_commands_to_complete(ioc); 8202 mpt3sas_base_mask_interrupts(ioc); 8203 r = _base_make_ioc_ready(ioc, type); 8204 if (r) 8205 goto out; 8206 _base_clear_outstanding_commands(ioc); 8207 8208 /* If this hard reset is called while port enable is active, then 8209 * there is no reason to call make_ioc_operational 8210 */ 8211 if (ioc->is_driver_loading && ioc->port_enable_failed) { 8212 ioc->remove_host = 1; 8213 r = -EFAULT; 8214 goto out; 8215 } 8216 r = _base_get_ioc_facts(ioc); 8217 if (r) 8218 goto out; 8219 8220 r = _base_check_ioc_facts_changes(ioc); 8221 if (r) { 8222 ioc_info(ioc, 8223 "Some of the parameters got changed in this new firmware" 8224 " image and it requires system reboot\n"); 8225 goto out; 8226 } 8227 if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable) 8228 panic("%s: Issue occurred with flashing controller firmware." 8229 "Please reboot the system and ensure that the correct" 8230 " firmware version is running\n", ioc->name); 8231 8232 r = _base_make_ioc_operational(ioc); 8233 if (!r) 8234 _base_reset_done_handler(ioc); 8235 8236 out: 8237 ioc_info(ioc, "%s: %s\n", __func__, r == 0 ? "SUCCESS" : "FAILED"); 8238 8239 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); 8240 ioc->shost_recovery = 0; 8241 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); 8242 ioc->ioc_reset_count++; 8243 mutex_unlock(&ioc->reset_in_progress_mutex); 8244 8245 out_unlocked: 8246 if ((r == 0) && is_trigger) { 8247 if (is_fault) 8248 mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT); 8249 else 8250 mpt3sas_trigger_master(ioc, 8251 MASTER_TRIGGER_ADAPTER_RESET); 8252 } 8253 dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__)); 8254 return r; 8255 } 8256