1 /*
2  * This is the Fusion MPT base driver providing common API layer interface
3  * for access to MPT (Message Passing Technology) firmware.
4  *
5  * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6  * Copyright (C) 2012-2014  LSI Corporation
7  * Copyright (C) 2013-2014 Avago Technologies
8  *  (mailto: MPT-FusionLinux.pdl@avagotech.com)
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version 2
13  * of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * NO WARRANTY
21  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25  * solely responsible for determining the appropriateness of using and
26  * distributing the Program and assumes all risks associated with its
27  * exercise of rights under this Agreement, including but not limited to
28  * the risks and costs of program errors, damage to or loss of data,
29  * programs or equipment, and unavailability or interruption of operations.
30 
31  * DISCLAIMER OF LIABILITY
32  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39 
40  * You should have received a copy of the GNU General Public License
41  * along with this program; if not, write to the Free Software
42  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
43  * USA.
44  */
45 
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/kthread.h>
61 #include <linux/aer.h>
62 
63 
64 #include "mpt3sas_base.h"
65 
66 static MPT_CALLBACK	mpt_callbacks[MPT_MAX_CALLBACKS];
67 
68 
69 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
70 
71  /* maximum controller queue depth */
72 #define MAX_HBA_QUEUE_DEPTH	30000
73 #define MAX_CHAIN_DEPTH		100000
74 static int max_queue_depth = -1;
75 module_param(max_queue_depth, int, 0);
76 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
77 
78 static int max_sgl_entries = -1;
79 module_param(max_sgl_entries, int, 0);
80 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
81 
82 static int msix_disable = -1;
83 module_param(msix_disable, int, 0);
84 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
85 
86 static int max_msix_vectors = 8;
87 module_param(max_msix_vectors, int, 0);
88 MODULE_PARM_DESC(max_msix_vectors,
89 	" max msix vectors - (default=8)");
90 
91 static int mpt3sas_fwfault_debug;
92 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
93 	" enable detection of firmware fault and halt firmware - (default=0)");
94 
95 static int
96 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc, int sleep_flag);
97 
98 /**
99  * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
100  *
101  */
102 static int
103 _scsih_set_fwfault_debug(const char *val, struct kernel_param *kp)
104 {
105 	int ret = param_set_int(val, kp);
106 	struct MPT3SAS_ADAPTER *ioc;
107 
108 	if (ret)
109 		return ret;
110 
111 	pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
112 	list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
113 		ioc->fwfault_debug = mpt3sas_fwfault_debug;
114 	return 0;
115 }
116 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
117 	param_get_int, &mpt3sas_fwfault_debug, 0644);
118 
119 /**
120  *  mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
121  * @arg: input argument, used to derive ioc
122  *
123  * Return 0 if controller is removed from pci subsystem.
124  * Return -1 for other case.
125  */
126 static int mpt3sas_remove_dead_ioc_func(void *arg)
127 {
128 	struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
129 	struct pci_dev *pdev;
130 
131 	if ((ioc == NULL))
132 		return -1;
133 
134 	pdev = ioc->pdev;
135 	if ((pdev == NULL))
136 		return -1;
137 	pci_stop_and_remove_bus_device_locked(pdev);
138 	return 0;
139 }
140 
141 /**
142  * _base_fault_reset_work - workq handling ioc fault conditions
143  * @work: input argument, used to derive ioc
144  * Context: sleep.
145  *
146  * Return nothing.
147  */
148 static void
149 _base_fault_reset_work(struct work_struct *work)
150 {
151 	struct MPT3SAS_ADAPTER *ioc =
152 	    container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
153 	unsigned long	 flags;
154 	u32 doorbell;
155 	int rc;
156 	struct task_struct *p;
157 
158 
159 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
160 	if (ioc->shost_recovery)
161 		goto rearm_timer;
162 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
163 
164 	doorbell = mpt3sas_base_get_iocstate(ioc, 0);
165 	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
166 		pr_err(MPT3SAS_FMT "SAS host is non-operational !!!!\n",
167 		    ioc->name);
168 
169 		/*
170 		 * Call _scsih_flush_pending_cmds callback so that we flush all
171 		 * pending commands back to OS. This call is required to aovid
172 		 * deadlock at block layer. Dead IOC will fail to do diag reset,
173 		 * and this call is safe since dead ioc will never return any
174 		 * command back from HW.
175 		 */
176 		ioc->schedule_dead_ioc_flush_running_cmds(ioc);
177 		/*
178 		 * Set remove_host flag early since kernel thread will
179 		 * take some time to execute.
180 		 */
181 		ioc->remove_host = 1;
182 		/*Remove the Dead Host */
183 		p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
184 		    "mpt3sas_dead_ioc_%d", ioc->id);
185 		if (IS_ERR(p))
186 			pr_err(MPT3SAS_FMT
187 			"%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
188 			ioc->name, __func__);
189 		else
190 			pr_err(MPT3SAS_FMT
191 			"%s: Running mpt3sas_dead_ioc thread success !!!!\n",
192 			ioc->name, __func__);
193 		return; /* don't rearm timer */
194 	}
195 
196 	if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
197 		rc = mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
198 		    FORCE_BIG_HAMMER);
199 		pr_warn(MPT3SAS_FMT "%s: hard reset: %s\n", ioc->name,
200 		    __func__, (rc == 0) ? "success" : "failed");
201 		doorbell = mpt3sas_base_get_iocstate(ioc, 0);
202 		if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
203 			mpt3sas_base_fault_info(ioc, doorbell &
204 			    MPI2_DOORBELL_DATA_MASK);
205 		if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
206 		    MPI2_IOC_STATE_OPERATIONAL)
207 			return; /* don't rearm timer */
208 	}
209 
210 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
211  rearm_timer:
212 	if (ioc->fault_reset_work_q)
213 		queue_delayed_work(ioc->fault_reset_work_q,
214 		    &ioc->fault_reset_work,
215 		    msecs_to_jiffies(FAULT_POLLING_INTERVAL));
216 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
217 }
218 
219 /**
220  * mpt3sas_base_start_watchdog - start the fault_reset_work_q
221  * @ioc: per adapter object
222  * Context: sleep.
223  *
224  * Return nothing.
225  */
226 void
227 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
228 {
229 	unsigned long	 flags;
230 
231 	if (ioc->fault_reset_work_q)
232 		return;
233 
234 	/* initialize fault polling */
235 
236 	INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
237 	snprintf(ioc->fault_reset_work_q_name,
238 	    sizeof(ioc->fault_reset_work_q_name), "poll_%d_status", ioc->id);
239 	ioc->fault_reset_work_q =
240 		create_singlethread_workqueue(ioc->fault_reset_work_q_name);
241 	if (!ioc->fault_reset_work_q) {
242 		pr_err(MPT3SAS_FMT "%s: failed (line=%d)\n",
243 		    ioc->name, __func__, __LINE__);
244 			return;
245 	}
246 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
247 	if (ioc->fault_reset_work_q)
248 		queue_delayed_work(ioc->fault_reset_work_q,
249 		    &ioc->fault_reset_work,
250 		    msecs_to_jiffies(FAULT_POLLING_INTERVAL));
251 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
252 }
253 
254 /**
255  * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
256  * @ioc: per adapter object
257  * Context: sleep.
258  *
259  * Return nothing.
260  */
261 void
262 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
263 {
264 	unsigned long flags;
265 	struct workqueue_struct *wq;
266 
267 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
268 	wq = ioc->fault_reset_work_q;
269 	ioc->fault_reset_work_q = NULL;
270 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
271 	if (wq) {
272 		if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
273 			flush_workqueue(wq);
274 		destroy_workqueue(wq);
275 	}
276 }
277 
278 /**
279  * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
280  * @ioc: per adapter object
281  * @fault_code: fault code
282  *
283  * Return nothing.
284  */
285 void
286 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
287 {
288 	pr_err(MPT3SAS_FMT "fault_state(0x%04x)!\n",
289 	    ioc->name, fault_code);
290 }
291 
292 /**
293  * mpt3sas_halt_firmware - halt's mpt controller firmware
294  * @ioc: per adapter object
295  *
296  * For debugging timeout related issues.  Writing 0xCOFFEE00
297  * to the doorbell register will halt controller firmware. With
298  * the purpose to stop both driver and firmware, the enduser can
299  * obtain a ring buffer from controller UART.
300  */
301 void
302 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
303 {
304 	u32 doorbell;
305 
306 	if (!ioc->fwfault_debug)
307 		return;
308 
309 	dump_stack();
310 
311 	doorbell = readl(&ioc->chip->Doorbell);
312 	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
313 		mpt3sas_base_fault_info(ioc , doorbell);
314 	else {
315 		writel(0xC0FFEE00, &ioc->chip->Doorbell);
316 		pr_err(MPT3SAS_FMT "Firmware is halted due to command timeout\n",
317 			ioc->name);
318 	}
319 
320 	if (ioc->fwfault_debug == 2)
321 		for (;;)
322 			;
323 	else
324 		panic("panic in %s\n", __func__);
325 }
326 
327 #ifdef CONFIG_SCSI_MPT3SAS_LOGGING
328 /**
329  * _base_sas_ioc_info - verbose translation of the ioc status
330  * @ioc: per adapter object
331  * @mpi_reply: reply mf payload returned from firmware
332  * @request_hdr: request mf
333  *
334  * Return nothing.
335  */
336 static void
337 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
338 	MPI2RequestHeader_t *request_hdr)
339 {
340 	u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
341 	    MPI2_IOCSTATUS_MASK;
342 	char *desc = NULL;
343 	u16 frame_sz;
344 	char *func_str = NULL;
345 
346 	/* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
347 	if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
348 	    request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
349 	    request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
350 		return;
351 
352 	if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
353 		return;
354 
355 	switch (ioc_status) {
356 
357 /****************************************************************************
358 *  Common IOCStatus values for all replies
359 ****************************************************************************/
360 
361 	case MPI2_IOCSTATUS_INVALID_FUNCTION:
362 		desc = "invalid function";
363 		break;
364 	case MPI2_IOCSTATUS_BUSY:
365 		desc = "busy";
366 		break;
367 	case MPI2_IOCSTATUS_INVALID_SGL:
368 		desc = "invalid sgl";
369 		break;
370 	case MPI2_IOCSTATUS_INTERNAL_ERROR:
371 		desc = "internal error";
372 		break;
373 	case MPI2_IOCSTATUS_INVALID_VPID:
374 		desc = "invalid vpid";
375 		break;
376 	case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
377 		desc = "insufficient resources";
378 		break;
379 	case MPI2_IOCSTATUS_INVALID_FIELD:
380 		desc = "invalid field";
381 		break;
382 	case MPI2_IOCSTATUS_INVALID_STATE:
383 		desc = "invalid state";
384 		break;
385 	case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
386 		desc = "op state not supported";
387 		break;
388 
389 /****************************************************************************
390 *  Config IOCStatus values
391 ****************************************************************************/
392 
393 	case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
394 		desc = "config invalid action";
395 		break;
396 	case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
397 		desc = "config invalid type";
398 		break;
399 	case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
400 		desc = "config invalid page";
401 		break;
402 	case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
403 		desc = "config invalid data";
404 		break;
405 	case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
406 		desc = "config no defaults";
407 		break;
408 	case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
409 		desc = "config cant commit";
410 		break;
411 
412 /****************************************************************************
413 *  SCSI IO Reply
414 ****************************************************************************/
415 
416 	case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
417 	case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
418 	case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
419 	case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
420 	case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
421 	case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
422 	case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
423 	case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
424 	case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
425 	case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
426 	case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
427 	case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
428 		break;
429 
430 /****************************************************************************
431 *  For use by SCSI Initiator and SCSI Target end-to-end data protection
432 ****************************************************************************/
433 
434 	case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
435 		desc = "eedp guard error";
436 		break;
437 	case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
438 		desc = "eedp ref tag error";
439 		break;
440 	case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
441 		desc = "eedp app tag error";
442 		break;
443 
444 /****************************************************************************
445 *  SCSI Target values
446 ****************************************************************************/
447 
448 	case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
449 		desc = "target invalid io index";
450 		break;
451 	case MPI2_IOCSTATUS_TARGET_ABORTED:
452 		desc = "target aborted";
453 		break;
454 	case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
455 		desc = "target no conn retryable";
456 		break;
457 	case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
458 		desc = "target no connection";
459 		break;
460 	case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
461 		desc = "target xfer count mismatch";
462 		break;
463 	case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
464 		desc = "target data offset error";
465 		break;
466 	case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
467 		desc = "target too much write data";
468 		break;
469 	case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
470 		desc = "target iu too short";
471 		break;
472 	case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
473 		desc = "target ack nak timeout";
474 		break;
475 	case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
476 		desc = "target nak received";
477 		break;
478 
479 /****************************************************************************
480 *  Serial Attached SCSI values
481 ****************************************************************************/
482 
483 	case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
484 		desc = "smp request failed";
485 		break;
486 	case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
487 		desc = "smp data overrun";
488 		break;
489 
490 /****************************************************************************
491 *  Diagnostic Buffer Post / Diagnostic Release values
492 ****************************************************************************/
493 
494 	case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
495 		desc = "diagnostic released";
496 		break;
497 	default:
498 		break;
499 	}
500 
501 	if (!desc)
502 		return;
503 
504 	switch (request_hdr->Function) {
505 	case MPI2_FUNCTION_CONFIG:
506 		frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
507 		func_str = "config_page";
508 		break;
509 	case MPI2_FUNCTION_SCSI_TASK_MGMT:
510 		frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
511 		func_str = "task_mgmt";
512 		break;
513 	case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
514 		frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
515 		func_str = "sas_iounit_ctl";
516 		break;
517 	case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
518 		frame_sz = sizeof(Mpi2SepRequest_t);
519 		func_str = "enclosure";
520 		break;
521 	case MPI2_FUNCTION_IOC_INIT:
522 		frame_sz = sizeof(Mpi2IOCInitRequest_t);
523 		func_str = "ioc_init";
524 		break;
525 	case MPI2_FUNCTION_PORT_ENABLE:
526 		frame_sz = sizeof(Mpi2PortEnableRequest_t);
527 		func_str = "port_enable";
528 		break;
529 	case MPI2_FUNCTION_SMP_PASSTHROUGH:
530 		frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
531 		func_str = "smp_passthru";
532 		break;
533 	default:
534 		frame_sz = 32;
535 		func_str = "unknown";
536 		break;
537 	}
538 
539 	pr_warn(MPT3SAS_FMT "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
540 		ioc->name, desc, ioc_status, request_hdr, func_str);
541 
542 	_debug_dump_mf(request_hdr, frame_sz/4);
543 }
544 
545 /**
546  * _base_display_event_data - verbose translation of firmware asyn events
547  * @ioc: per adapter object
548  * @mpi_reply: reply mf payload returned from firmware
549  *
550  * Return nothing.
551  */
552 static void
553 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
554 	Mpi2EventNotificationReply_t *mpi_reply)
555 {
556 	char *desc = NULL;
557 	u16 event;
558 
559 	if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
560 		return;
561 
562 	event = le16_to_cpu(mpi_reply->Event);
563 
564 	switch (event) {
565 	case MPI2_EVENT_LOG_DATA:
566 		desc = "Log Data";
567 		break;
568 	case MPI2_EVENT_STATE_CHANGE:
569 		desc = "Status Change";
570 		break;
571 	case MPI2_EVENT_HARD_RESET_RECEIVED:
572 		desc = "Hard Reset Received";
573 		break;
574 	case MPI2_EVENT_EVENT_CHANGE:
575 		desc = "Event Change";
576 		break;
577 	case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
578 		desc = "Device Status Change";
579 		break;
580 	case MPI2_EVENT_IR_OPERATION_STATUS:
581 		desc = "IR Operation Status";
582 		break;
583 	case MPI2_EVENT_SAS_DISCOVERY:
584 	{
585 		Mpi2EventDataSasDiscovery_t *event_data =
586 		    (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
587 		pr_info(MPT3SAS_FMT "Discovery: (%s)", ioc->name,
588 		    (event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED) ?
589 		    "start" : "stop");
590 		if (event_data->DiscoveryStatus)
591 			pr_info("discovery_status(0x%08x)",
592 			    le32_to_cpu(event_data->DiscoveryStatus));
593 			pr_info("\n");
594 		return;
595 	}
596 	case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
597 		desc = "SAS Broadcast Primitive";
598 		break;
599 	case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
600 		desc = "SAS Init Device Status Change";
601 		break;
602 	case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
603 		desc = "SAS Init Table Overflow";
604 		break;
605 	case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
606 		desc = "SAS Topology Change List";
607 		break;
608 	case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
609 		desc = "SAS Enclosure Device Status Change";
610 		break;
611 	case MPI2_EVENT_IR_VOLUME:
612 		desc = "IR Volume";
613 		break;
614 	case MPI2_EVENT_IR_PHYSICAL_DISK:
615 		desc = "IR Physical Disk";
616 		break;
617 	case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
618 		desc = "IR Configuration Change List";
619 		break;
620 	case MPI2_EVENT_LOG_ENTRY_ADDED:
621 		desc = "Log Entry Added";
622 		break;
623 	case MPI2_EVENT_TEMP_THRESHOLD:
624 		desc = "Temperature Threshold";
625 		break;
626 	}
627 
628 	if (!desc)
629 		return;
630 
631 	pr_info(MPT3SAS_FMT "%s\n", ioc->name, desc);
632 }
633 #endif
634 
635 /**
636  * _base_sas_log_info - verbose translation of firmware log info
637  * @ioc: per adapter object
638  * @log_info: log info
639  *
640  * Return nothing.
641  */
642 static void
643 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
644 {
645 	union loginfo_type {
646 		u32	loginfo;
647 		struct {
648 			u32	subcode:16;
649 			u32	code:8;
650 			u32	originator:4;
651 			u32	bus_type:4;
652 		} dw;
653 	};
654 	union loginfo_type sas_loginfo;
655 	char *originator_str = NULL;
656 
657 	sas_loginfo.loginfo = log_info;
658 	if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
659 		return;
660 
661 	/* each nexus loss loginfo */
662 	if (log_info == 0x31170000)
663 		return;
664 
665 	/* eat the loginfos associated with task aborts */
666 	if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
667 	    0x31140000 || log_info == 0x31130000))
668 		return;
669 
670 	switch (sas_loginfo.dw.originator) {
671 	case 0:
672 		originator_str = "IOP";
673 		break;
674 	case 1:
675 		originator_str = "PL";
676 		break;
677 	case 2:
678 		originator_str = "IR";
679 		break;
680 	}
681 
682 	pr_warn(MPT3SAS_FMT
683 		"log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
684 		ioc->name, log_info,
685 	     originator_str, sas_loginfo.dw.code,
686 	     sas_loginfo.dw.subcode);
687 }
688 
689 /**
690  * _base_display_reply_info -
691  * @ioc: per adapter object
692  * @smid: system request message index
693  * @msix_index: MSIX table index supplied by the OS
694  * @reply: reply message frame(lower 32bit addr)
695  *
696  * Return nothing.
697  */
698 static void
699 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
700 	u32 reply)
701 {
702 	MPI2DefaultReply_t *mpi_reply;
703 	u16 ioc_status;
704 	u32 loginfo = 0;
705 
706 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
707 	if (unlikely(!mpi_reply)) {
708 		pr_err(MPT3SAS_FMT "mpi_reply not valid at %s:%d/%s()!\n",
709 		    ioc->name, __FILE__, __LINE__, __func__);
710 		return;
711 	}
712 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
713 #ifdef CONFIG_SCSI_MPT3SAS_LOGGING
714 	if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
715 	    (ioc->logging_level & MPT_DEBUG_REPLY)) {
716 		_base_sas_ioc_info(ioc , mpi_reply,
717 		   mpt3sas_base_get_msg_frame(ioc, smid));
718 	}
719 #endif
720 	if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
721 		loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
722 		_base_sas_log_info(ioc, loginfo);
723 	}
724 
725 	if (ioc_status || loginfo) {
726 		ioc_status &= MPI2_IOCSTATUS_MASK;
727 		mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
728 	}
729 }
730 
731 /**
732  * mpt3sas_base_done - base internal command completion routine
733  * @ioc: per adapter object
734  * @smid: system request message index
735  * @msix_index: MSIX table index supplied by the OS
736  * @reply: reply message frame(lower 32bit addr)
737  *
738  * Return 1 meaning mf should be freed from _base_interrupt
739  *        0 means the mf is freed from this function.
740  */
741 u8
742 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
743 	u32 reply)
744 {
745 	MPI2DefaultReply_t *mpi_reply;
746 
747 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
748 	if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
749 		return 1;
750 
751 	if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
752 		return 1;
753 
754 	ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
755 	if (mpi_reply) {
756 		ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
757 		memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
758 	}
759 	ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
760 
761 	complete(&ioc->base_cmds.done);
762 	return 1;
763 }
764 
765 /**
766  * _base_async_event - main callback handler for firmware asyn events
767  * @ioc: per adapter object
768  * @msix_index: MSIX table index supplied by the OS
769  * @reply: reply message frame(lower 32bit addr)
770  *
771  * Return 1 meaning mf should be freed from _base_interrupt
772  *        0 means the mf is freed from this function.
773  */
774 static u8
775 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
776 {
777 	Mpi2EventNotificationReply_t *mpi_reply;
778 	Mpi2EventAckRequest_t *ack_request;
779 	u16 smid;
780 
781 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
782 	if (!mpi_reply)
783 		return 1;
784 	if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
785 		return 1;
786 #ifdef CONFIG_SCSI_MPT3SAS_LOGGING
787 	_base_display_event_data(ioc, mpi_reply);
788 #endif
789 	if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
790 		goto out;
791 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
792 	if (!smid) {
793 		pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
794 		    ioc->name, __func__);
795 		goto out;
796 	}
797 
798 	ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
799 	memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
800 	ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
801 	ack_request->Event = mpi_reply->Event;
802 	ack_request->EventContext = mpi_reply->EventContext;
803 	ack_request->VF_ID = 0;  /* TODO */
804 	ack_request->VP_ID = 0;
805 	mpt3sas_base_put_smid_default(ioc, smid);
806 
807  out:
808 
809 	/* scsih callback handler */
810 	mpt3sas_scsih_event_callback(ioc, msix_index, reply);
811 
812 	/* ctl callback handler */
813 	mpt3sas_ctl_event_callback(ioc, msix_index, reply);
814 
815 	return 1;
816 }
817 
818 /**
819  * _base_get_cb_idx - obtain the callback index
820  * @ioc: per adapter object
821  * @smid: system request message index
822  *
823  * Return callback index.
824  */
825 static u8
826 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
827 {
828 	int i;
829 	u8 cb_idx;
830 
831 	if (smid < ioc->hi_priority_smid) {
832 		i = smid - 1;
833 		cb_idx = ioc->scsi_lookup[i].cb_idx;
834 	} else if (smid < ioc->internal_smid) {
835 		i = smid - ioc->hi_priority_smid;
836 		cb_idx = ioc->hpr_lookup[i].cb_idx;
837 	} else if (smid <= ioc->hba_queue_depth) {
838 		i = smid - ioc->internal_smid;
839 		cb_idx = ioc->internal_lookup[i].cb_idx;
840 	} else
841 		cb_idx = 0xFF;
842 	return cb_idx;
843 }
844 
845 /**
846  * _base_mask_interrupts - disable interrupts
847  * @ioc: per adapter object
848  *
849  * Disabling ResetIRQ, Reply and Doorbell Interrupts
850  *
851  * Return nothing.
852  */
853 static void
854 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
855 {
856 	u32 him_register;
857 
858 	ioc->mask_interrupts = 1;
859 	him_register = readl(&ioc->chip->HostInterruptMask);
860 	him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
861 	writel(him_register, &ioc->chip->HostInterruptMask);
862 	readl(&ioc->chip->HostInterruptMask);
863 }
864 
865 /**
866  * _base_unmask_interrupts - enable interrupts
867  * @ioc: per adapter object
868  *
869  * Enabling only Reply Interrupts
870  *
871  * Return nothing.
872  */
873 static void
874 _base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
875 {
876 	u32 him_register;
877 
878 	him_register = readl(&ioc->chip->HostInterruptMask);
879 	him_register &= ~MPI2_HIM_RIM;
880 	writel(him_register, &ioc->chip->HostInterruptMask);
881 	ioc->mask_interrupts = 0;
882 }
883 
884 union reply_descriptor {
885 	u64 word;
886 	struct {
887 		u32 low;
888 		u32 high;
889 	} u;
890 };
891 
892 /**
893  * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
894  * @irq: irq number (not used)
895  * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
896  * @r: pt_regs pointer (not used)
897  *
898  * Return IRQ_HANDLE if processed, else IRQ_NONE.
899  */
900 static irqreturn_t
901 _base_interrupt(int irq, void *bus_id)
902 {
903 	struct adapter_reply_queue *reply_q = bus_id;
904 	union reply_descriptor rd;
905 	u32 completed_cmds;
906 	u8 request_desript_type;
907 	u16 smid;
908 	u8 cb_idx;
909 	u32 reply;
910 	u8 msix_index = reply_q->msix_index;
911 	struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
912 	Mpi2ReplyDescriptorsUnion_t *rpf;
913 	u8 rc;
914 
915 	if (ioc->mask_interrupts)
916 		return IRQ_NONE;
917 
918 	if (!atomic_add_unless(&reply_q->busy, 1, 1))
919 		return IRQ_NONE;
920 
921 	rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
922 	request_desript_type = rpf->Default.ReplyFlags
923 	     & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
924 	if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
925 		atomic_dec(&reply_q->busy);
926 		return IRQ_NONE;
927 	}
928 
929 	completed_cmds = 0;
930 	cb_idx = 0xFF;
931 	do {
932 		rd.word = le64_to_cpu(rpf->Words);
933 		if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
934 			goto out;
935 		reply = 0;
936 		smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
937 		if (request_desript_type ==
938 		    MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
939 		    request_desript_type ==
940 		    MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS) {
941 			cb_idx = _base_get_cb_idx(ioc, smid);
942 			if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
943 			    (likely(mpt_callbacks[cb_idx] != NULL))) {
944 				rc = mpt_callbacks[cb_idx](ioc, smid,
945 				    msix_index, 0);
946 				if (rc)
947 					mpt3sas_base_free_smid(ioc, smid);
948 			}
949 		} else if (request_desript_type ==
950 		    MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
951 			reply = le32_to_cpu(
952 			    rpf->AddressReply.ReplyFrameAddress);
953 			if (reply > ioc->reply_dma_max_address ||
954 			    reply < ioc->reply_dma_min_address)
955 				reply = 0;
956 			if (smid) {
957 				cb_idx = _base_get_cb_idx(ioc, smid);
958 				if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
959 				    (likely(mpt_callbacks[cb_idx] != NULL))) {
960 					rc = mpt_callbacks[cb_idx](ioc, smid,
961 					    msix_index, reply);
962 					if (reply)
963 						_base_display_reply_info(ioc,
964 						    smid, msix_index, reply);
965 					if (rc)
966 						mpt3sas_base_free_smid(ioc,
967 						    smid);
968 				}
969 			} else {
970 				_base_async_event(ioc, msix_index, reply);
971 			}
972 
973 			/* reply free queue handling */
974 			if (reply) {
975 				ioc->reply_free_host_index =
976 				    (ioc->reply_free_host_index ==
977 				    (ioc->reply_free_queue_depth - 1)) ?
978 				    0 : ioc->reply_free_host_index + 1;
979 				ioc->reply_free[ioc->reply_free_host_index] =
980 				    cpu_to_le32(reply);
981 				wmb();
982 				writel(ioc->reply_free_host_index,
983 				    &ioc->chip->ReplyFreeHostIndex);
984 			}
985 		}
986 
987 		rpf->Words = cpu_to_le64(ULLONG_MAX);
988 		reply_q->reply_post_host_index =
989 		    (reply_q->reply_post_host_index ==
990 		    (ioc->reply_post_queue_depth - 1)) ? 0 :
991 		    reply_q->reply_post_host_index + 1;
992 		request_desript_type =
993 		    reply_q->reply_post_free[reply_q->reply_post_host_index].
994 		    Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
995 		completed_cmds++;
996 		if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
997 			goto out;
998 		if (!reply_q->reply_post_host_index)
999 			rpf = reply_q->reply_post_free;
1000 		else
1001 			rpf++;
1002 	} while (1);
1003 
1004  out:
1005 
1006 	if (!completed_cmds) {
1007 		atomic_dec(&reply_q->busy);
1008 		return IRQ_NONE;
1009 	}
1010 
1011 	wmb();
1012 	writel(reply_q->reply_post_host_index | (msix_index <<
1013 	    MPI2_RPHI_MSIX_INDEX_SHIFT), &ioc->chip->ReplyPostHostIndex);
1014 	atomic_dec(&reply_q->busy);
1015 	return IRQ_HANDLED;
1016 }
1017 
1018 /**
1019  * _base_is_controller_msix_enabled - is controller support muli-reply queues
1020  * @ioc: per adapter object
1021  *
1022  */
1023 static inline int
1024 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1025 {
1026 	return (ioc->facts.IOCCapabilities &
1027 	    MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1028 }
1029 
1030 /**
1031  * mpt3sas_base_flush_reply_queues - flushing the MSIX reply queues
1032  * @ioc: per adapter object
1033  * Context: ISR conext
1034  *
1035  * Called when a Task Management request has completed. We want
1036  * to flush the other reply queues so all the outstanding IO has been
1037  * completed back to OS before we process the TM completetion.
1038  *
1039  * Return nothing.
1040  */
1041 void
1042 mpt3sas_base_flush_reply_queues(struct MPT3SAS_ADAPTER *ioc)
1043 {
1044 	struct adapter_reply_queue *reply_q;
1045 
1046 	/* If MSIX capability is turned off
1047 	 * then multi-queues are not enabled
1048 	 */
1049 	if (!_base_is_controller_msix_enabled(ioc))
1050 		return;
1051 
1052 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1053 		if (ioc->shost_recovery)
1054 			return;
1055 		/* TMs are on msix_index == 0 */
1056 		if (reply_q->msix_index == 0)
1057 			continue;
1058 		_base_interrupt(reply_q->vector, (void *)reply_q);
1059 	}
1060 }
1061 
1062 /**
1063  * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1064  * @cb_idx: callback index
1065  *
1066  * Return nothing.
1067  */
1068 void
1069 mpt3sas_base_release_callback_handler(u8 cb_idx)
1070 {
1071 	mpt_callbacks[cb_idx] = NULL;
1072 }
1073 
1074 /**
1075  * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1076  * @cb_func: callback function
1077  *
1078  * Returns cb_func.
1079  */
1080 u8
1081 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1082 {
1083 	u8 cb_idx;
1084 
1085 	for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1086 		if (mpt_callbacks[cb_idx] == NULL)
1087 			break;
1088 
1089 	mpt_callbacks[cb_idx] = cb_func;
1090 	return cb_idx;
1091 }
1092 
1093 /**
1094  * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1095  *
1096  * Return nothing.
1097  */
1098 void
1099 mpt3sas_base_initialize_callback_handler(void)
1100 {
1101 	u8 cb_idx;
1102 
1103 	for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1104 		mpt3sas_base_release_callback_handler(cb_idx);
1105 }
1106 
1107 
1108 /**
1109  * _base_build_zero_len_sge - build zero length sg entry
1110  * @ioc: per adapter object
1111  * @paddr: virtual address for SGE
1112  *
1113  * Create a zero length scatter gather entry to insure the IOCs hardware has
1114  * something to use if the target device goes brain dead and tries
1115  * to send data even when none is asked for.
1116  *
1117  * Return nothing.
1118  */
1119 static void
1120 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1121 {
1122 	u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1123 	    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1124 	    MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1125 	    MPI2_SGE_FLAGS_SHIFT);
1126 	ioc->base_add_sg_single(paddr, flags_length, -1);
1127 }
1128 
1129 /**
1130  * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1131  * @paddr: virtual address for SGE
1132  * @flags_length: SGE flags and data transfer length
1133  * @dma_addr: Physical address
1134  *
1135  * Return nothing.
1136  */
1137 static void
1138 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1139 {
1140 	Mpi2SGESimple32_t *sgel = paddr;
1141 
1142 	flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1143 	    MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1144 	sgel->FlagsLength = cpu_to_le32(flags_length);
1145 	sgel->Address = cpu_to_le32(dma_addr);
1146 }
1147 
1148 
1149 /**
1150  * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1151  * @paddr: virtual address for SGE
1152  * @flags_length: SGE flags and data transfer length
1153  * @dma_addr: Physical address
1154  *
1155  * Return nothing.
1156  */
1157 static void
1158 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1159 {
1160 	Mpi2SGESimple64_t *sgel = paddr;
1161 
1162 	flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
1163 	    MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1164 	sgel->FlagsLength = cpu_to_le32(flags_length);
1165 	sgel->Address = cpu_to_le64(dma_addr);
1166 }
1167 
1168 /**
1169  * _base_get_chain_buffer_tracker - obtain chain tracker
1170  * @ioc: per adapter object
1171  * @smid: smid associated to an IO request
1172  *
1173  * Returns chain tracker(from ioc->free_chain_list)
1174  */
1175 static struct chain_tracker *
1176 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1177 {
1178 	struct chain_tracker *chain_req;
1179 	unsigned long flags;
1180 
1181 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
1182 	if (list_empty(&ioc->free_chain_list)) {
1183 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1184 		dfailprintk(ioc, pr_warn(MPT3SAS_FMT
1185 			"chain buffers not available\n", ioc->name));
1186 		return NULL;
1187 	}
1188 	chain_req = list_entry(ioc->free_chain_list.next,
1189 	    struct chain_tracker, tracker_list);
1190 	list_del_init(&chain_req->tracker_list);
1191 	list_add_tail(&chain_req->tracker_list,
1192 	    &ioc->scsi_lookup[smid - 1].chain_list);
1193 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1194 	return chain_req;
1195 }
1196 
1197 
1198 /**
1199  * _base_build_sg - build generic sg
1200  * @ioc: per adapter object
1201  * @psge: virtual address for SGE
1202  * @data_out_dma: physical address for WRITES
1203  * @data_out_sz: data xfer size for WRITES
1204  * @data_in_dma: physical address for READS
1205  * @data_in_sz: data xfer size for READS
1206  *
1207  * Return nothing.
1208  */
1209 static void
1210 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
1211 	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1212 	size_t data_in_sz)
1213 {
1214 	u32 sgl_flags;
1215 
1216 	if (!data_out_sz && !data_in_sz) {
1217 		_base_build_zero_len_sge(ioc, psge);
1218 		return;
1219 	}
1220 
1221 	if (data_out_sz && data_in_sz) {
1222 		/* WRITE sgel first */
1223 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1224 		    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
1225 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1226 		ioc->base_add_sg_single(psge, sgl_flags |
1227 		    data_out_sz, data_out_dma);
1228 
1229 		/* incr sgel */
1230 		psge += ioc->sge_size;
1231 
1232 		/* READ sgel last */
1233 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1234 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1235 		    MPI2_SGE_FLAGS_END_OF_LIST);
1236 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1237 		ioc->base_add_sg_single(psge, sgl_flags |
1238 		    data_in_sz, data_in_dma);
1239 	} else if (data_out_sz) /* WRITE */ {
1240 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1241 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1242 		    MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
1243 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1244 		ioc->base_add_sg_single(psge, sgl_flags |
1245 		    data_out_sz, data_out_dma);
1246 	} else if (data_in_sz) /* READ */ {
1247 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1248 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1249 		    MPI2_SGE_FLAGS_END_OF_LIST);
1250 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1251 		ioc->base_add_sg_single(psge, sgl_flags |
1252 		    data_in_sz, data_in_dma);
1253 	}
1254 }
1255 
1256 /* IEEE format sgls */
1257 
1258 /**
1259  * _base_add_sg_single_ieee - add sg element for IEEE format
1260  * @paddr: virtual address for SGE
1261  * @flags: SGE flags
1262  * @chain_offset: number of 128 byte elements from start of segment
1263  * @length: data transfer length
1264  * @dma_addr: Physical address
1265  *
1266  * Return nothing.
1267  */
1268 static void
1269 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
1270 	dma_addr_t dma_addr)
1271 {
1272 	Mpi25IeeeSgeChain64_t *sgel = paddr;
1273 
1274 	sgel->Flags = flags;
1275 	sgel->NextChainOffset = chain_offset;
1276 	sgel->Length = cpu_to_le32(length);
1277 	sgel->Address = cpu_to_le64(dma_addr);
1278 }
1279 
1280 /**
1281  * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
1282  * @ioc: per adapter object
1283  * @paddr: virtual address for SGE
1284  *
1285  * Create a zero length scatter gather entry to insure the IOCs hardware has
1286  * something to use if the target device goes brain dead and tries
1287  * to send data even when none is asked for.
1288  *
1289  * Return nothing.
1290  */
1291 static void
1292 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1293 {
1294 	u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1295 		MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
1296 		MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
1297 	_base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
1298 }
1299 
1300 /**
1301  * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
1302  * @ioc: per adapter object
1303  * @scmd: scsi command
1304  * @smid: system request message index
1305  * Context: none.
1306  *
1307  * The main routine that builds scatter gather table from a given
1308  * scsi request sent via the .queuecommand main handler.
1309  *
1310  * Returns 0 success, anything else error
1311  */
1312 static int
1313 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
1314 	struct scsi_cmnd *scmd, u16 smid)
1315 {
1316 	Mpi2SCSIIORequest_t *mpi_request;
1317 	dma_addr_t chain_dma;
1318 	struct scatterlist *sg_scmd;
1319 	void *sg_local, *chain;
1320 	u32 chain_offset;
1321 	u32 chain_length;
1322 	int sges_left;
1323 	u32 sges_in_segment;
1324 	u8 simple_sgl_flags;
1325 	u8 simple_sgl_flags_last;
1326 	u8 chain_sgl_flags;
1327 	struct chain_tracker *chain_req;
1328 
1329 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
1330 
1331 	/* init scatter gather flags */
1332 	simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1333 	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1334 	simple_sgl_flags_last = simple_sgl_flags |
1335 	    MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1336 	chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
1337 	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1338 
1339 	sg_scmd = scsi_sglist(scmd);
1340 	sges_left = scsi_dma_map(scmd);
1341 	if (!sges_left) {
1342 		sdev_printk(KERN_ERR, scmd->device,
1343 			"pci_map_sg failed: request for %d bytes!\n",
1344 			scsi_bufflen(scmd));
1345 		return -ENOMEM;
1346 	}
1347 
1348 	sg_local = &mpi_request->SGL;
1349 	sges_in_segment = (ioc->request_sz -
1350 	    offsetof(Mpi2SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
1351 	if (sges_left <= sges_in_segment)
1352 		goto fill_in_last_segment;
1353 
1354 	mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
1355 	    (offsetof(Mpi2SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
1356 
1357 	/* fill in main message segment when there is a chain following */
1358 	while (sges_in_segment > 1) {
1359 		_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1360 		    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1361 		sg_scmd = sg_next(sg_scmd);
1362 		sg_local += ioc->sge_size_ieee;
1363 		sges_left--;
1364 		sges_in_segment--;
1365 	}
1366 
1367 	/* initializing the pointers */
1368 	chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1369 	if (!chain_req)
1370 		return -1;
1371 	chain = chain_req->chain_buffer;
1372 	chain_dma = chain_req->chain_buffer_dma;
1373 	do {
1374 		sges_in_segment = (sges_left <=
1375 		    ioc->max_sges_in_chain_message) ? sges_left :
1376 		    ioc->max_sges_in_chain_message;
1377 		chain_offset = (sges_left == sges_in_segment) ?
1378 		    0 : sges_in_segment;
1379 		chain_length = sges_in_segment * ioc->sge_size_ieee;
1380 		if (chain_offset)
1381 			chain_length += ioc->sge_size_ieee;
1382 		_base_add_sg_single_ieee(sg_local, chain_sgl_flags,
1383 		    chain_offset, chain_length, chain_dma);
1384 
1385 		sg_local = chain;
1386 		if (!chain_offset)
1387 			goto fill_in_last_segment;
1388 
1389 		/* fill in chain segments */
1390 		while (sges_in_segment) {
1391 			_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1392 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1393 			sg_scmd = sg_next(sg_scmd);
1394 			sg_local += ioc->sge_size_ieee;
1395 			sges_left--;
1396 			sges_in_segment--;
1397 		}
1398 
1399 		chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1400 		if (!chain_req)
1401 			return -1;
1402 		chain = chain_req->chain_buffer;
1403 		chain_dma = chain_req->chain_buffer_dma;
1404 	} while (1);
1405 
1406 
1407  fill_in_last_segment:
1408 
1409 	/* fill the last segment */
1410 	while (sges_left) {
1411 		if (sges_left == 1)
1412 			_base_add_sg_single_ieee(sg_local,
1413 			    simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
1414 			    sg_dma_address(sg_scmd));
1415 		else
1416 			_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1417 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1418 		sg_scmd = sg_next(sg_scmd);
1419 		sg_local += ioc->sge_size_ieee;
1420 		sges_left--;
1421 	}
1422 
1423 	return 0;
1424 }
1425 
1426 /**
1427  * _base_build_sg_ieee - build generic sg for IEEE format
1428  * @ioc: per adapter object
1429  * @psge: virtual address for SGE
1430  * @data_out_dma: physical address for WRITES
1431  * @data_out_sz: data xfer size for WRITES
1432  * @data_in_dma: physical address for READS
1433  * @data_in_sz: data xfer size for READS
1434  *
1435  * Return nothing.
1436  */
1437 static void
1438 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
1439 	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1440 	size_t data_in_sz)
1441 {
1442 	u8 sgl_flags;
1443 
1444 	if (!data_out_sz && !data_in_sz) {
1445 		_base_build_zero_len_sge_ieee(ioc, psge);
1446 		return;
1447 	}
1448 
1449 	if (data_out_sz && data_in_sz) {
1450 		/* WRITE sgel first */
1451 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1452 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1453 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1454 		    data_out_dma);
1455 
1456 		/* incr sgel */
1457 		psge += ioc->sge_size_ieee;
1458 
1459 		/* READ sgel last */
1460 		sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1461 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1462 		    data_in_dma);
1463 	} else if (data_out_sz) /* WRITE */ {
1464 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1465 		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1466 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1467 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1468 		    data_out_dma);
1469 	} else if (data_in_sz) /* READ */ {
1470 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1471 		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1472 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1473 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1474 		    data_in_dma);
1475 	}
1476 }
1477 
1478 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
1479 
1480 /**
1481  * _base_config_dma_addressing - set dma addressing
1482  * @ioc: per adapter object
1483  * @pdev: PCI device struct
1484  *
1485  * Returns 0 for success, non-zero for failure.
1486  */
1487 static int
1488 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
1489 {
1490 	struct sysinfo s;
1491 	u64 consistent_dma_mask;
1492 
1493 	if (ioc->dma_mask)
1494 		consistent_dma_mask = DMA_BIT_MASK(64);
1495 	else
1496 		consistent_dma_mask = DMA_BIT_MASK(32);
1497 
1498 	if (sizeof(dma_addr_t) > 4) {
1499 		const uint64_t required_mask =
1500 		    dma_get_required_mask(&pdev->dev);
1501 		if ((required_mask > DMA_BIT_MASK(32)) &&
1502 		    !pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
1503 		    !pci_set_consistent_dma_mask(pdev, consistent_dma_mask)) {
1504 			ioc->base_add_sg_single = &_base_add_sg_single_64;
1505 			ioc->sge_size = sizeof(Mpi2SGESimple64_t);
1506 			ioc->dma_mask = 64;
1507 			goto out;
1508 		}
1509 	}
1510 
1511 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))
1512 	    && !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
1513 		ioc->base_add_sg_single = &_base_add_sg_single_32;
1514 		ioc->sge_size = sizeof(Mpi2SGESimple32_t);
1515 		ioc->dma_mask = 32;
1516 	} else
1517 		return -ENODEV;
1518 
1519  out:
1520 	si_meminfo(&s);
1521 	pr_info(MPT3SAS_FMT
1522 		"%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
1523 		ioc->name, ioc->dma_mask, convert_to_kb(s.totalram));
1524 
1525 	return 0;
1526 }
1527 
1528 static int
1529 _base_change_consistent_dma_mask(struct MPT3SAS_ADAPTER *ioc,
1530 				      struct pci_dev *pdev)
1531 {
1532 	if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
1533 		if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
1534 			return -ENODEV;
1535 	}
1536 	return 0;
1537 }
1538 
1539 /**
1540  * _base_check_enable_msix - checks MSIX capabable.
1541  * @ioc: per adapter object
1542  *
1543  * Check to see if card is capable of MSIX, and set number
1544  * of available msix vectors
1545  */
1546 static int
1547 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1548 {
1549 	int base;
1550 	u16 message_control;
1551 
1552 	base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
1553 	if (!base) {
1554 		dfailprintk(ioc, pr_info(MPT3SAS_FMT "msix not supported\n",
1555 			ioc->name));
1556 		return -EINVAL;
1557 	}
1558 
1559 	/* get msix vector count */
1560 
1561 	pci_read_config_word(ioc->pdev, base + 2, &message_control);
1562 	ioc->msix_vector_count = (message_control & 0x3FF) + 1;
1563 	if (ioc->msix_vector_count > 8)
1564 		ioc->msix_vector_count = 8;
1565 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
1566 		"msix is supported, vector_count(%d)\n",
1567 		ioc->name, ioc->msix_vector_count));
1568 	return 0;
1569 }
1570 
1571 /**
1572  * _base_free_irq - free irq
1573  * @ioc: per adapter object
1574  *
1575  * Freeing respective reply_queue from the list.
1576  */
1577 static void
1578 _base_free_irq(struct MPT3SAS_ADAPTER *ioc)
1579 {
1580 	struct adapter_reply_queue *reply_q, *next;
1581 
1582 	if (list_empty(&ioc->reply_queue_list))
1583 		return;
1584 
1585 	list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1586 		list_del(&reply_q->list);
1587 		irq_set_affinity_hint(reply_q->vector, NULL);
1588 		free_cpumask_var(reply_q->affinity_hint);
1589 		synchronize_irq(reply_q->vector);
1590 		free_irq(reply_q->vector, reply_q);
1591 		kfree(reply_q);
1592 	}
1593 }
1594 
1595 /**
1596  * _base_request_irq - request irq
1597  * @ioc: per adapter object
1598  * @index: msix index into vector table
1599  * @vector: irq vector
1600  *
1601  * Inserting respective reply_queue into the list.
1602  */
1603 static int
1604 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index, u32 vector)
1605 {
1606 	struct adapter_reply_queue *reply_q;
1607 	int r;
1608 
1609 	reply_q =  kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
1610 	if (!reply_q) {
1611 		pr_err(MPT3SAS_FMT "unable to allocate memory %d!\n",
1612 		    ioc->name, (int)sizeof(struct adapter_reply_queue));
1613 		return -ENOMEM;
1614 	}
1615 	reply_q->ioc = ioc;
1616 	reply_q->msix_index = index;
1617 	reply_q->vector = vector;
1618 
1619 	if (!alloc_cpumask_var(&reply_q->affinity_hint, GFP_KERNEL))
1620 		return -ENOMEM;
1621 	cpumask_clear(reply_q->affinity_hint);
1622 
1623 	atomic_set(&reply_q->busy, 0);
1624 	if (ioc->msix_enable)
1625 		snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
1626 		    MPT3SAS_DRIVER_NAME, ioc->id, index);
1627 	else
1628 		snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
1629 		    MPT3SAS_DRIVER_NAME, ioc->id);
1630 	r = request_irq(vector, _base_interrupt, IRQF_SHARED, reply_q->name,
1631 	    reply_q);
1632 	if (r) {
1633 		pr_err(MPT3SAS_FMT "unable to allocate interrupt %d!\n",
1634 		    reply_q->name, vector);
1635 		kfree(reply_q);
1636 		return -EBUSY;
1637 	}
1638 
1639 	INIT_LIST_HEAD(&reply_q->list);
1640 	list_add_tail(&reply_q->list, &ioc->reply_queue_list);
1641 	return 0;
1642 }
1643 
1644 /**
1645  * _base_assign_reply_queues - assigning msix index for each cpu
1646  * @ioc: per adapter object
1647  *
1648  * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
1649  *
1650  * It would nice if we could call irq_set_affinity, however it is not
1651  * an exported symbol
1652  */
1653 static void
1654 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
1655 {
1656 	unsigned int cpu, nr_cpus, nr_msix, index = 0;
1657 	struct adapter_reply_queue *reply_q;
1658 
1659 	if (!_base_is_controller_msix_enabled(ioc))
1660 		return;
1661 
1662 	memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
1663 
1664 	nr_cpus = num_online_cpus();
1665 	nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
1666 					       ioc->facts.MaxMSIxVectors);
1667 	if (!nr_msix)
1668 		return;
1669 
1670 	cpu = cpumask_first(cpu_online_mask);
1671 
1672 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1673 
1674 		unsigned int i, group = nr_cpus / nr_msix;
1675 
1676 		if (cpu >= nr_cpus)
1677 			break;
1678 
1679 		if (index < nr_cpus % nr_msix)
1680 			group++;
1681 
1682 		for (i = 0 ; i < group ; i++) {
1683 			ioc->cpu_msix_table[cpu] = index;
1684 			cpumask_or(reply_q->affinity_hint,
1685 				   reply_q->affinity_hint, get_cpu_mask(cpu));
1686 			cpu = cpumask_next(cpu, cpu_online_mask);
1687 		}
1688 
1689 		if (irq_set_affinity_hint(reply_q->vector,
1690 					   reply_q->affinity_hint))
1691 			dinitprintk(ioc, pr_info(MPT3SAS_FMT
1692 			    "error setting affinity hint for irq vector %d\n",
1693 			    ioc->name, reply_q->vector));
1694 		index++;
1695 	}
1696 }
1697 
1698 /**
1699  * _base_disable_msix - disables msix
1700  * @ioc: per adapter object
1701  *
1702  */
1703 static void
1704 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
1705 {
1706 	if (!ioc->msix_enable)
1707 		return;
1708 	pci_disable_msix(ioc->pdev);
1709 	ioc->msix_enable = 0;
1710 }
1711 
1712 /**
1713  * _base_enable_msix - enables msix, failback to io_apic
1714  * @ioc: per adapter object
1715  *
1716  */
1717 static int
1718 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1719 {
1720 	struct msix_entry *entries, *a;
1721 	int r;
1722 	int i;
1723 	u8 try_msix = 0;
1724 
1725 	if (msix_disable == -1 || msix_disable == 0)
1726 		try_msix = 1;
1727 
1728 	if (!try_msix)
1729 		goto try_ioapic;
1730 
1731 	if (_base_check_enable_msix(ioc) != 0)
1732 		goto try_ioapic;
1733 
1734 	ioc->reply_queue_count = min_t(int, ioc->cpu_count,
1735 	    ioc->msix_vector_count);
1736 
1737 	printk(MPT3SAS_FMT "MSI-X vectors supported: %d, no of cores"
1738 	  ": %d, max_msix_vectors: %d\n", ioc->name, ioc->msix_vector_count,
1739 	  ioc->cpu_count, max_msix_vectors);
1740 
1741 	if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
1742 		max_msix_vectors = 8;
1743 
1744 	if (max_msix_vectors > 0) {
1745 		ioc->reply_queue_count = min_t(int, max_msix_vectors,
1746 			ioc->reply_queue_count);
1747 		ioc->msix_vector_count = ioc->reply_queue_count;
1748 	} else if (max_msix_vectors == 0)
1749 		goto try_ioapic;
1750 
1751 	entries = kcalloc(ioc->reply_queue_count, sizeof(struct msix_entry),
1752 	    GFP_KERNEL);
1753 	if (!entries) {
1754 		dfailprintk(ioc, pr_info(MPT3SAS_FMT
1755 			"kcalloc failed @ at %s:%d/%s() !!!\n",
1756 			ioc->name, __FILE__, __LINE__, __func__));
1757 		goto try_ioapic;
1758 	}
1759 
1760 	for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++)
1761 		a->entry = i;
1762 
1763 	r = pci_enable_msix_exact(ioc->pdev, entries, ioc->reply_queue_count);
1764 	if (r) {
1765 		dfailprintk(ioc, pr_info(MPT3SAS_FMT
1766 			"pci_enable_msix_exact failed (r=%d) !!!\n",
1767 			ioc->name, r));
1768 		kfree(entries);
1769 		goto try_ioapic;
1770 	}
1771 
1772 	ioc->msix_enable = 1;
1773 	for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++) {
1774 		r = _base_request_irq(ioc, i, a->vector);
1775 		if (r) {
1776 			_base_free_irq(ioc);
1777 			_base_disable_msix(ioc);
1778 			kfree(entries);
1779 			goto try_ioapic;
1780 		}
1781 	}
1782 
1783 	kfree(entries);
1784 	return 0;
1785 
1786 /* failback to io_apic interrupt routing */
1787  try_ioapic:
1788 
1789 	ioc->reply_queue_count = 1;
1790 	r = _base_request_irq(ioc, 0, ioc->pdev->irq);
1791 
1792 	return r;
1793 }
1794 
1795 /**
1796  * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
1797  * @ioc: per adapter object
1798  *
1799  * Returns 0 for success, non-zero for failure.
1800  */
1801 int
1802 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
1803 {
1804 	struct pci_dev *pdev = ioc->pdev;
1805 	u32 memap_sz;
1806 	u32 pio_sz;
1807 	int i, r = 0;
1808 	u64 pio_chip = 0;
1809 	u64 chip_phys = 0;
1810 	struct adapter_reply_queue *reply_q;
1811 
1812 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n",
1813 	    ioc->name, __func__));
1814 
1815 	ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
1816 	if (pci_enable_device_mem(pdev)) {
1817 		pr_warn(MPT3SAS_FMT "pci_enable_device_mem: failed\n",
1818 			ioc->name);
1819 		ioc->bars = 0;
1820 		return -ENODEV;
1821 	}
1822 
1823 
1824 	if (pci_request_selected_regions(pdev, ioc->bars,
1825 	    MPT3SAS_DRIVER_NAME)) {
1826 		pr_warn(MPT3SAS_FMT "pci_request_selected_regions: failed\n",
1827 			ioc->name);
1828 		ioc->bars = 0;
1829 		r = -ENODEV;
1830 		goto out_fail;
1831 	}
1832 
1833 /* AER (Advanced Error Reporting) hooks */
1834 	pci_enable_pcie_error_reporting(pdev);
1835 
1836 	pci_set_master(pdev);
1837 
1838 
1839 	if (_base_config_dma_addressing(ioc, pdev) != 0) {
1840 		pr_warn(MPT3SAS_FMT "no suitable DMA mask for %s\n",
1841 		    ioc->name, pci_name(pdev));
1842 		r = -ENODEV;
1843 		goto out_fail;
1844 	}
1845 
1846 	for (i = 0, memap_sz = 0, pio_sz = 0 ; i < DEVICE_COUNT_RESOURCE; i++) {
1847 		if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1848 			if (pio_sz)
1849 				continue;
1850 			pio_chip = (u64)pci_resource_start(pdev, i);
1851 			pio_sz = pci_resource_len(pdev, i);
1852 		} else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
1853 			if (memap_sz)
1854 				continue;
1855 			ioc->chip_phys = pci_resource_start(pdev, i);
1856 			chip_phys = (u64)ioc->chip_phys;
1857 			memap_sz = pci_resource_len(pdev, i);
1858 			ioc->chip = ioremap(ioc->chip_phys, memap_sz);
1859 			if (ioc->chip == NULL) {
1860 				pr_err(MPT3SAS_FMT "unable to map adapter memory!\n",
1861 					ioc->name);
1862 				r = -EINVAL;
1863 				goto out_fail;
1864 			}
1865 		}
1866 	}
1867 
1868 	_base_mask_interrupts(ioc);
1869 
1870 	r = _base_get_ioc_facts(ioc, CAN_SLEEP);
1871 	if (r)
1872 		goto out_fail;
1873 
1874 	if (!ioc->rdpq_array_enable_assigned) {
1875 		ioc->rdpq_array_enable = ioc->rdpq_array_capable;
1876 		ioc->rdpq_array_enable_assigned = 1;
1877 	}
1878 
1879 	r = _base_enable_msix(ioc);
1880 	if (r)
1881 		goto out_fail;
1882 
1883 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
1884 		pr_info(MPT3SAS_FMT "%s: IRQ %d\n",
1885 		    reply_q->name,  ((ioc->msix_enable) ? "PCI-MSI-X enabled" :
1886 		    "IO-APIC enabled"), reply_q->vector);
1887 
1888 	pr_info(MPT3SAS_FMT "iomem(0x%016llx), mapped(0x%p), size(%d)\n",
1889 	    ioc->name, (unsigned long long)chip_phys, ioc->chip, memap_sz);
1890 	pr_info(MPT3SAS_FMT "ioport(0x%016llx), size(%d)\n",
1891 	    ioc->name, (unsigned long long)pio_chip, pio_sz);
1892 
1893 	/* Save PCI configuration state for recovery from PCI AER/EEH errors */
1894 	pci_save_state(pdev);
1895 	return 0;
1896 
1897  out_fail:
1898 	if (ioc->chip_phys)
1899 		iounmap(ioc->chip);
1900 	ioc->chip_phys = 0;
1901 	pci_release_selected_regions(ioc->pdev, ioc->bars);
1902 	pci_disable_pcie_error_reporting(pdev);
1903 	pci_disable_device(pdev);
1904 	return r;
1905 }
1906 
1907 /**
1908  * mpt3sas_base_get_msg_frame - obtain request mf pointer
1909  * @ioc: per adapter object
1910  * @smid: system request message index(smid zero is invalid)
1911  *
1912  * Returns virt pointer to message frame.
1913  */
1914 void *
1915 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1916 {
1917 	return (void *)(ioc->request + (smid * ioc->request_sz));
1918 }
1919 
1920 /**
1921  * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
1922  * @ioc: per adapter object
1923  * @smid: system request message index
1924  *
1925  * Returns virt pointer to sense buffer.
1926  */
1927 void *
1928 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1929 {
1930 	return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
1931 }
1932 
1933 /**
1934  * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
1935  * @ioc: per adapter object
1936  * @smid: system request message index
1937  *
1938  * Returns phys pointer to the low 32bit address of the sense buffer.
1939  */
1940 __le32
1941 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1942 {
1943 	return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
1944 	    SCSI_SENSE_BUFFERSIZE));
1945 }
1946 
1947 /**
1948  * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
1949  * @ioc: per adapter object
1950  * @phys_addr: lower 32 physical addr of the reply
1951  *
1952  * Converts 32bit lower physical addr into a virt address.
1953  */
1954 void *
1955 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
1956 {
1957 	if (!phys_addr)
1958 		return NULL;
1959 	return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
1960 }
1961 
1962 /**
1963  * mpt3sas_base_get_smid - obtain a free smid from internal queue
1964  * @ioc: per adapter object
1965  * @cb_idx: callback index
1966  *
1967  * Returns smid (zero is invalid)
1968  */
1969 u16
1970 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
1971 {
1972 	unsigned long flags;
1973 	struct request_tracker *request;
1974 	u16 smid;
1975 
1976 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
1977 	if (list_empty(&ioc->internal_free_list)) {
1978 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1979 		pr_err(MPT3SAS_FMT "%s: smid not available\n",
1980 		    ioc->name, __func__);
1981 		return 0;
1982 	}
1983 
1984 	request = list_entry(ioc->internal_free_list.next,
1985 	    struct request_tracker, tracker_list);
1986 	request->cb_idx = cb_idx;
1987 	smid = request->smid;
1988 	list_del(&request->tracker_list);
1989 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1990 	return smid;
1991 }
1992 
1993 /**
1994  * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
1995  * @ioc: per adapter object
1996  * @cb_idx: callback index
1997  * @scmd: pointer to scsi command object
1998  *
1999  * Returns smid (zero is invalid)
2000  */
2001 u16
2002 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
2003 	struct scsi_cmnd *scmd)
2004 {
2005 	unsigned long flags;
2006 	struct scsiio_tracker *request;
2007 	u16 smid;
2008 
2009 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2010 	if (list_empty(&ioc->free_list)) {
2011 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2012 		pr_err(MPT3SAS_FMT "%s: smid not available\n",
2013 		    ioc->name, __func__);
2014 		return 0;
2015 	}
2016 
2017 	request = list_entry(ioc->free_list.next,
2018 	    struct scsiio_tracker, tracker_list);
2019 	request->scmd = scmd;
2020 	request->cb_idx = cb_idx;
2021 	smid = request->smid;
2022 	list_del(&request->tracker_list);
2023 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2024 	return smid;
2025 }
2026 
2027 /**
2028  * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
2029  * @ioc: per adapter object
2030  * @cb_idx: callback index
2031  *
2032  * Returns smid (zero is invalid)
2033  */
2034 u16
2035 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
2036 {
2037 	unsigned long flags;
2038 	struct request_tracker *request;
2039 	u16 smid;
2040 
2041 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2042 	if (list_empty(&ioc->hpr_free_list)) {
2043 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2044 		return 0;
2045 	}
2046 
2047 	request = list_entry(ioc->hpr_free_list.next,
2048 	    struct request_tracker, tracker_list);
2049 	request->cb_idx = cb_idx;
2050 	smid = request->smid;
2051 	list_del(&request->tracker_list);
2052 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2053 	return smid;
2054 }
2055 
2056 /**
2057  * mpt3sas_base_free_smid - put smid back on free_list
2058  * @ioc: per adapter object
2059  * @smid: system request message index
2060  *
2061  * Return nothing.
2062  */
2063 void
2064 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2065 {
2066 	unsigned long flags;
2067 	int i;
2068 	struct chain_tracker *chain_req, *next;
2069 
2070 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2071 	if (smid < ioc->hi_priority_smid) {
2072 		/* scsiio queue */
2073 		i = smid - 1;
2074 		if (!list_empty(&ioc->scsi_lookup[i].chain_list)) {
2075 			list_for_each_entry_safe(chain_req, next,
2076 			    &ioc->scsi_lookup[i].chain_list, tracker_list) {
2077 				list_del_init(&chain_req->tracker_list);
2078 				list_add(&chain_req->tracker_list,
2079 				    &ioc->free_chain_list);
2080 			}
2081 		}
2082 		ioc->scsi_lookup[i].cb_idx = 0xFF;
2083 		ioc->scsi_lookup[i].scmd = NULL;
2084 		list_add(&ioc->scsi_lookup[i].tracker_list, &ioc->free_list);
2085 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2086 
2087 		/*
2088 		 * See _wait_for_commands_to_complete() call with regards
2089 		 * to this code.
2090 		 */
2091 		if (ioc->shost_recovery && ioc->pending_io_count) {
2092 			if (ioc->pending_io_count == 1)
2093 				wake_up(&ioc->reset_wq);
2094 			ioc->pending_io_count--;
2095 		}
2096 		return;
2097 	} else if (smid < ioc->internal_smid) {
2098 		/* hi-priority */
2099 		i = smid - ioc->hi_priority_smid;
2100 		ioc->hpr_lookup[i].cb_idx = 0xFF;
2101 		list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
2102 	} else if (smid <= ioc->hba_queue_depth) {
2103 		/* internal queue */
2104 		i = smid - ioc->internal_smid;
2105 		ioc->internal_lookup[i].cb_idx = 0xFF;
2106 		list_add(&ioc->internal_lookup[i].tracker_list,
2107 		    &ioc->internal_free_list);
2108 	}
2109 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2110 }
2111 
2112 /**
2113  * _base_writeq - 64 bit write to MMIO
2114  * @ioc: per adapter object
2115  * @b: data payload
2116  * @addr: address in MMIO space
2117  * @writeq_lock: spin lock
2118  *
2119  * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
2120  * care of 32 bit environment where its not quarenteed to send the entire word
2121  * in one transfer.
2122  */
2123 #if defined(writeq) && defined(CONFIG_64BIT)
2124 static inline void
2125 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2126 {
2127 	writeq(cpu_to_le64(b), addr);
2128 }
2129 #else
2130 static inline void
2131 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2132 {
2133 	unsigned long flags;
2134 	__u64 data_out = cpu_to_le64(b);
2135 
2136 	spin_lock_irqsave(writeq_lock, flags);
2137 	writel((u32)(data_out), addr);
2138 	writel((u32)(data_out >> 32), (addr + 4));
2139 	spin_unlock_irqrestore(writeq_lock, flags);
2140 }
2141 #endif
2142 
2143 static inline u8
2144 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc)
2145 {
2146 	return ioc->cpu_msix_table[raw_smp_processor_id()];
2147 }
2148 
2149 /**
2150  * mpt3sas_base_put_smid_scsi_io - send SCSI_IO request to firmware
2151  * @ioc: per adapter object
2152  * @smid: system request message index
2153  * @handle: device handle
2154  *
2155  * Return nothing.
2156  */
2157 void
2158 mpt3sas_base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
2159 {
2160 	Mpi2RequestDescriptorUnion_t descriptor;
2161 	u64 *request = (u64 *)&descriptor;
2162 
2163 
2164 	descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
2165 	descriptor.SCSIIO.MSIxIndex =  _base_get_msix_index(ioc);
2166 	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2167 	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2168 	descriptor.SCSIIO.LMID = 0;
2169 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2170 	    &ioc->scsi_lookup_lock);
2171 }
2172 
2173 /**
2174  * mpt3sas_base_put_smid_fast_path - send fast path request to firmware
2175  * @ioc: per adapter object
2176  * @smid: system request message index
2177  * @handle: device handle
2178  *
2179  * Return nothing.
2180  */
2181 void
2182 mpt3sas_base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2183 	u16 handle)
2184 {
2185 	Mpi2RequestDescriptorUnion_t descriptor;
2186 	u64 *request = (u64 *)&descriptor;
2187 
2188 	descriptor.SCSIIO.RequestFlags =
2189 	    MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
2190 	descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
2191 	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2192 	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2193 	descriptor.SCSIIO.LMID = 0;
2194 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2195 	    &ioc->scsi_lookup_lock);
2196 }
2197 
2198 /**
2199  * mpt3sas_base_put_smid_hi_priority - send Task Managment request to firmware
2200  * @ioc: per adapter object
2201  * @smid: system request message index
2202  *
2203  * Return nothing.
2204  */
2205 void
2206 mpt3sas_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2207 {
2208 	Mpi2RequestDescriptorUnion_t descriptor;
2209 	u64 *request = (u64 *)&descriptor;
2210 
2211 	descriptor.HighPriority.RequestFlags =
2212 	    MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
2213 	descriptor.HighPriority.MSIxIndex =  0;
2214 	descriptor.HighPriority.SMID = cpu_to_le16(smid);
2215 	descriptor.HighPriority.LMID = 0;
2216 	descriptor.HighPriority.Reserved1 = 0;
2217 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2218 	    &ioc->scsi_lookup_lock);
2219 }
2220 
2221 /**
2222  * mpt3sas_base_put_smid_default - Default, primarily used for config pages
2223  * @ioc: per adapter object
2224  * @smid: system request message index
2225  *
2226  * Return nothing.
2227  */
2228 void
2229 mpt3sas_base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2230 {
2231 	Mpi2RequestDescriptorUnion_t descriptor;
2232 	u64 *request = (u64 *)&descriptor;
2233 
2234 	descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2235 	descriptor.Default.MSIxIndex =  _base_get_msix_index(ioc);
2236 	descriptor.Default.SMID = cpu_to_le16(smid);
2237 	descriptor.Default.LMID = 0;
2238 	descriptor.Default.DescriptorTypeDependent = 0;
2239 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2240 	    &ioc->scsi_lookup_lock);
2241 }
2242 
2243 /**
2244  * _base_display_intel_branding - Display branding string
2245  * @ioc: per adapter object
2246  *
2247  * Return nothing.
2248  */
2249 static void
2250 _base_display_intel_branding(struct MPT3SAS_ADAPTER *ioc)
2251 {
2252 	if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
2253 		return;
2254 
2255 	switch (ioc->pdev->device) {
2256 	case MPI25_MFGPAGE_DEVID_SAS3008:
2257 		switch (ioc->pdev->subsystem_device) {
2258 		case MPT3SAS_INTEL_RMS3JC080_SSDID:
2259 			pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2260 				MPT3SAS_INTEL_RMS3JC080_BRANDING);
2261 			break;
2262 
2263 		case MPT3SAS_INTEL_RS3GC008_SSDID:
2264 			pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2265 				MPT3SAS_INTEL_RS3GC008_BRANDING);
2266 			break;
2267 		case MPT3SAS_INTEL_RS3FC044_SSDID:
2268 			pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2269 				MPT3SAS_INTEL_RS3FC044_BRANDING);
2270 			break;
2271 		case MPT3SAS_INTEL_RS3UC080_SSDID:
2272 			pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2273 				MPT3SAS_INTEL_RS3UC080_BRANDING);
2274 			break;
2275 		default:
2276 			pr_info(MPT3SAS_FMT
2277 				"Intel(R) Controller: Subsystem ID: 0x%X\n",
2278 				ioc->name, ioc->pdev->subsystem_device);
2279 			break;
2280 		}
2281 		break;
2282 	default:
2283 		pr_info(MPT3SAS_FMT
2284 			"Intel(R) Controller: Subsystem ID: 0x%X\n",
2285 			ioc->name, ioc->pdev->subsystem_device);
2286 		break;
2287 	}
2288 }
2289 
2290 
2291 
2292 /**
2293  * _base_display_ioc_capabilities - Disply IOC's capabilities.
2294  * @ioc: per adapter object
2295  *
2296  * Return nothing.
2297  */
2298 static void
2299 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
2300 {
2301 	int i = 0;
2302 	char desc[16];
2303 	u32 iounit_pg1_flags;
2304 	u32 bios_version;
2305 
2306 	bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
2307 	strncpy(desc, ioc->manu_pg0.ChipName, 16);
2308 	pr_info(MPT3SAS_FMT "%s: FWVersion(%02d.%02d.%02d.%02d), "\
2309 	   "ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
2310 	    ioc->name, desc,
2311 	   (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
2312 	   (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
2313 	   (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
2314 	   ioc->facts.FWVersion.Word & 0x000000FF,
2315 	   ioc->pdev->revision,
2316 	   (bios_version & 0xFF000000) >> 24,
2317 	   (bios_version & 0x00FF0000) >> 16,
2318 	   (bios_version & 0x0000FF00) >> 8,
2319 	    bios_version & 0x000000FF);
2320 
2321 	_base_display_intel_branding(ioc);
2322 
2323 	pr_info(MPT3SAS_FMT "Protocol=(", ioc->name);
2324 
2325 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
2326 		pr_info("Initiator");
2327 		i++;
2328 	}
2329 
2330 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
2331 		pr_info("%sTarget", i ? "," : "");
2332 		i++;
2333 	}
2334 
2335 	i = 0;
2336 	pr_info("), ");
2337 	pr_info("Capabilities=(");
2338 
2339 	if (ioc->facts.IOCCapabilities &
2340 		    MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
2341 			pr_info("Raid");
2342 			i++;
2343 	}
2344 
2345 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
2346 		pr_info("%sTLR", i ? "," : "");
2347 		i++;
2348 	}
2349 
2350 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
2351 		pr_info("%sMulticast", i ? "," : "");
2352 		i++;
2353 	}
2354 
2355 	if (ioc->facts.IOCCapabilities &
2356 	    MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
2357 		pr_info("%sBIDI Target", i ? "," : "");
2358 		i++;
2359 	}
2360 
2361 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
2362 		pr_info("%sEEDP", i ? "," : "");
2363 		i++;
2364 	}
2365 
2366 	if (ioc->facts.IOCCapabilities &
2367 	    MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
2368 		pr_info("%sSnapshot Buffer", i ? "," : "");
2369 		i++;
2370 	}
2371 
2372 	if (ioc->facts.IOCCapabilities &
2373 	    MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
2374 		pr_info("%sDiag Trace Buffer", i ? "," : "");
2375 		i++;
2376 	}
2377 
2378 	if (ioc->facts.IOCCapabilities &
2379 	    MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
2380 		pr_info("%sDiag Extended Buffer", i ? "," : "");
2381 		i++;
2382 	}
2383 
2384 	if (ioc->facts.IOCCapabilities &
2385 	    MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
2386 		pr_info("%sTask Set Full", i ? "," : "");
2387 		i++;
2388 	}
2389 
2390 	iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
2391 	if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
2392 		pr_info("%sNCQ", i ? "," : "");
2393 		i++;
2394 	}
2395 
2396 	pr_info(")\n");
2397 }
2398 
2399 /**
2400  * mpt3sas_base_update_missing_delay - change the missing delay timers
2401  * @ioc: per adapter object
2402  * @device_missing_delay: amount of time till device is reported missing
2403  * @io_missing_delay: interval IO is returned when there is a missing device
2404  *
2405  * Return nothing.
2406  *
2407  * Passed on the command line, this function will modify the device missing
2408  * delay, as well as the io missing delay. This should be called at driver
2409  * load time.
2410  */
2411 void
2412 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
2413 	u16 device_missing_delay, u8 io_missing_delay)
2414 {
2415 	u16 dmd, dmd_new, dmd_orignal;
2416 	u8 io_missing_delay_original;
2417 	u16 sz;
2418 	Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
2419 	Mpi2ConfigReply_t mpi_reply;
2420 	u8 num_phys = 0;
2421 	u16 ioc_status;
2422 
2423 	mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
2424 	if (!num_phys)
2425 		return;
2426 
2427 	sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
2428 	    sizeof(Mpi2SasIOUnit1PhyData_t));
2429 	sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
2430 	if (!sas_iounit_pg1) {
2431 		pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2432 		    ioc->name, __FILE__, __LINE__, __func__);
2433 		goto out;
2434 	}
2435 	if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
2436 	    sas_iounit_pg1, sz))) {
2437 		pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2438 		    ioc->name, __FILE__, __LINE__, __func__);
2439 		goto out;
2440 	}
2441 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
2442 	    MPI2_IOCSTATUS_MASK;
2443 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
2444 		pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2445 		    ioc->name, __FILE__, __LINE__, __func__);
2446 		goto out;
2447 	}
2448 
2449 	/* device missing delay */
2450 	dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
2451 	if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
2452 		dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
2453 	else
2454 		dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
2455 	dmd_orignal = dmd;
2456 	if (device_missing_delay > 0x7F) {
2457 		dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
2458 		    device_missing_delay;
2459 		dmd = dmd / 16;
2460 		dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
2461 	} else
2462 		dmd = device_missing_delay;
2463 	sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
2464 
2465 	/* io missing delay */
2466 	io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
2467 	sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
2468 
2469 	if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
2470 	    sz)) {
2471 		if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
2472 			dmd_new = (dmd &
2473 			    MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
2474 		else
2475 			dmd_new =
2476 		    dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
2477 		pr_info(MPT3SAS_FMT "device_missing_delay: old(%d), new(%d)\n",
2478 			ioc->name, dmd_orignal, dmd_new);
2479 		pr_info(MPT3SAS_FMT "ioc_missing_delay: old(%d), new(%d)\n",
2480 			ioc->name, io_missing_delay_original,
2481 		    io_missing_delay);
2482 		ioc->device_missing_delay = dmd_new;
2483 		ioc->io_missing_delay = io_missing_delay;
2484 	}
2485 
2486 out:
2487 	kfree(sas_iounit_pg1);
2488 }
2489 /**
2490  * _base_static_config_pages - static start of day config pages
2491  * @ioc: per adapter object
2492  *
2493  * Return nothing.
2494  */
2495 static void
2496 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
2497 {
2498 	Mpi2ConfigReply_t mpi_reply;
2499 	u32 iounit_pg1_flags;
2500 
2501 	mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
2502 	if (ioc->ir_firmware)
2503 		mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
2504 		    &ioc->manu_pg10);
2505 
2506 	/*
2507 	 * Ensure correct T10 PI operation if vendor left EEDPTagMode
2508 	 * flag unset in NVDATA.
2509 	 */
2510 	mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
2511 	if (ioc->manu_pg11.EEDPTagMode == 0) {
2512 		pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
2513 		    ioc->name);
2514 		ioc->manu_pg11.EEDPTagMode &= ~0x3;
2515 		ioc->manu_pg11.EEDPTagMode |= 0x1;
2516 		mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
2517 		    &ioc->manu_pg11);
2518 	}
2519 
2520 	mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
2521 	mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
2522 	mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
2523 	mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
2524 	mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
2525 	mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
2526 	_base_display_ioc_capabilities(ioc);
2527 
2528 	/*
2529 	 * Enable task_set_full handling in iounit_pg1 when the
2530 	 * facts capabilities indicate that its supported.
2531 	 */
2532 	iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
2533 	if ((ioc->facts.IOCCapabilities &
2534 	    MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
2535 		iounit_pg1_flags &=
2536 		    ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
2537 	else
2538 		iounit_pg1_flags |=
2539 		    MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
2540 	ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
2541 	mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
2542 
2543 	if (ioc->iounit_pg8.NumSensors)
2544 		ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
2545 }
2546 
2547 /**
2548  * _base_release_memory_pools - release memory
2549  * @ioc: per adapter object
2550  *
2551  * Free memory allocated from _base_allocate_memory_pools.
2552  *
2553  * Return nothing.
2554  */
2555 static void
2556 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
2557 {
2558 	int i = 0;
2559 	struct reply_post_struct *rps;
2560 
2561 	dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2562 	    __func__));
2563 
2564 	if (ioc->request) {
2565 		pci_free_consistent(ioc->pdev, ioc->request_dma_sz,
2566 		    ioc->request,  ioc->request_dma);
2567 		dexitprintk(ioc, pr_info(MPT3SAS_FMT
2568 			"request_pool(0x%p): free\n",
2569 			ioc->name, ioc->request));
2570 		ioc->request = NULL;
2571 	}
2572 
2573 	if (ioc->sense) {
2574 		pci_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
2575 		if (ioc->sense_dma_pool)
2576 			pci_pool_destroy(ioc->sense_dma_pool);
2577 		dexitprintk(ioc, pr_info(MPT3SAS_FMT
2578 			"sense_pool(0x%p): free\n",
2579 			ioc->name, ioc->sense));
2580 		ioc->sense = NULL;
2581 	}
2582 
2583 	if (ioc->reply) {
2584 		pci_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
2585 		if (ioc->reply_dma_pool)
2586 			pci_pool_destroy(ioc->reply_dma_pool);
2587 		dexitprintk(ioc, pr_info(MPT3SAS_FMT
2588 			"reply_pool(0x%p): free\n",
2589 			ioc->name, ioc->reply));
2590 		ioc->reply = NULL;
2591 	}
2592 
2593 	if (ioc->reply_free) {
2594 		pci_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
2595 		    ioc->reply_free_dma);
2596 		if (ioc->reply_free_dma_pool)
2597 			pci_pool_destroy(ioc->reply_free_dma_pool);
2598 		dexitprintk(ioc, pr_info(MPT3SAS_FMT
2599 			"reply_free_pool(0x%p): free\n",
2600 			ioc->name, ioc->reply_free));
2601 		ioc->reply_free = NULL;
2602 	}
2603 
2604 	if (ioc->reply_post) {
2605 		do {
2606 			rps = &ioc->reply_post[i];
2607 			if (rps->reply_post_free) {
2608 				pci_pool_free(
2609 				    ioc->reply_post_free_dma_pool,
2610 				    rps->reply_post_free,
2611 				    rps->reply_post_free_dma);
2612 				dexitprintk(ioc, pr_info(MPT3SAS_FMT
2613 				    "reply_post_free_pool(0x%p): free\n",
2614 				    ioc->name, rps->reply_post_free));
2615 				rps->reply_post_free = NULL;
2616 			}
2617 		} while (ioc->rdpq_array_enable &&
2618 			   (++i < ioc->reply_queue_count));
2619 
2620 		if (ioc->reply_post_free_dma_pool)
2621 			pci_pool_destroy(ioc->reply_post_free_dma_pool);
2622 		kfree(ioc->reply_post);
2623 	}
2624 
2625 	if (ioc->config_page) {
2626 		dexitprintk(ioc, pr_info(MPT3SAS_FMT
2627 		    "config_page(0x%p): free\n", ioc->name,
2628 		    ioc->config_page));
2629 		pci_free_consistent(ioc->pdev, ioc->config_page_sz,
2630 		    ioc->config_page, ioc->config_page_dma);
2631 	}
2632 
2633 	if (ioc->scsi_lookup) {
2634 		free_pages((ulong)ioc->scsi_lookup, ioc->scsi_lookup_pages);
2635 		ioc->scsi_lookup = NULL;
2636 	}
2637 	kfree(ioc->hpr_lookup);
2638 	kfree(ioc->internal_lookup);
2639 	if (ioc->chain_lookup) {
2640 		for (i = 0; i < ioc->chain_depth; i++) {
2641 			if (ioc->chain_lookup[i].chain_buffer)
2642 				pci_pool_free(ioc->chain_dma_pool,
2643 				    ioc->chain_lookup[i].chain_buffer,
2644 				    ioc->chain_lookup[i].chain_buffer_dma);
2645 		}
2646 		if (ioc->chain_dma_pool)
2647 			pci_pool_destroy(ioc->chain_dma_pool);
2648 		free_pages((ulong)ioc->chain_lookup, ioc->chain_pages);
2649 		ioc->chain_lookup = NULL;
2650 	}
2651 }
2652 
2653 /**
2654  * _base_allocate_memory_pools - allocate start of day memory pools
2655  * @ioc: per adapter object
2656  * @sleep_flag: CAN_SLEEP or NO_SLEEP
2657  *
2658  * Returns 0 success, anything else error
2659  */
2660 static int
2661 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc,  int sleep_flag)
2662 {
2663 	struct mpt3sas_facts *facts;
2664 	u16 max_sge_elements;
2665 	u16 chains_needed_per_io;
2666 	u32 sz, total_sz, reply_post_free_sz;
2667 	u32 retry_sz;
2668 	u16 max_request_credit;
2669 	unsigned short sg_tablesize;
2670 	u16 sge_size;
2671 	int i;
2672 
2673 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2674 	    __func__));
2675 
2676 
2677 	retry_sz = 0;
2678 	facts = &ioc->facts;
2679 
2680 	/* command line tunables for max sgl entries */
2681 	if (max_sgl_entries != -1)
2682 		sg_tablesize = max_sgl_entries;
2683 	else
2684 		sg_tablesize = MPT3SAS_SG_DEPTH;
2685 
2686 	if (sg_tablesize < MPT3SAS_MIN_PHYS_SEGMENTS)
2687 		sg_tablesize = MPT3SAS_MIN_PHYS_SEGMENTS;
2688 	else if (sg_tablesize > MPT3SAS_MAX_PHYS_SEGMENTS) {
2689 		sg_tablesize = min_t(unsigned short, sg_tablesize,
2690 				      SCSI_MAX_SG_CHAIN_SEGMENTS);
2691 		pr_warn(MPT3SAS_FMT
2692 		 "sg_tablesize(%u) is bigger than kernel"
2693 		 " defined SCSI_MAX_SG_SEGMENTS(%u)\n", ioc->name,
2694 		 sg_tablesize, MPT3SAS_MAX_PHYS_SEGMENTS);
2695 	}
2696 	ioc->shost->sg_tablesize = sg_tablesize;
2697 
2698 	ioc->hi_priority_depth = facts->HighPriorityCredit;
2699 	ioc->internal_depth = ioc->hi_priority_depth + (5);
2700 	/* command line tunables  for max controller queue depth */
2701 	if (max_queue_depth != -1 && max_queue_depth != 0) {
2702 		max_request_credit = min_t(u16, max_queue_depth +
2703 		    ioc->hi_priority_depth + ioc->internal_depth,
2704 		    facts->RequestCredit);
2705 		if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
2706 			max_request_credit =  MAX_HBA_QUEUE_DEPTH;
2707 	} else
2708 		max_request_credit = min_t(u16, facts->RequestCredit,
2709 		    MAX_HBA_QUEUE_DEPTH);
2710 
2711 	ioc->hba_queue_depth = max_request_credit;
2712 
2713 	/* request frame size */
2714 	ioc->request_sz = facts->IOCRequestFrameSize * 4;
2715 
2716 	/* reply frame size */
2717 	ioc->reply_sz = facts->ReplyFrameSize * 4;
2718 
2719 	/* calculate the max scatter element size */
2720 	sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
2721 
2722  retry_allocation:
2723 	total_sz = 0;
2724 	/* calculate number of sg elements left over in the 1st frame */
2725 	max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
2726 	    sizeof(Mpi2SGEIOUnion_t)) + sge_size);
2727 	ioc->max_sges_in_main_message = max_sge_elements/sge_size;
2728 
2729 	/* now do the same for a chain buffer */
2730 	max_sge_elements = ioc->request_sz - sge_size;
2731 	ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
2732 
2733 	/*
2734 	 *  MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
2735 	 */
2736 	chains_needed_per_io = ((ioc->shost->sg_tablesize -
2737 	   ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
2738 	    + 1;
2739 	if (chains_needed_per_io > facts->MaxChainDepth) {
2740 		chains_needed_per_io = facts->MaxChainDepth;
2741 		ioc->shost->sg_tablesize = min_t(u16,
2742 		ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
2743 		* chains_needed_per_io), ioc->shost->sg_tablesize);
2744 	}
2745 	ioc->chains_needed_per_io = chains_needed_per_io;
2746 
2747 	/* reply free queue sizing - taking into account for 64 FW events */
2748 	ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
2749 
2750 	/* calculate reply descriptor post queue depth */
2751 	ioc->reply_post_queue_depth = ioc->hba_queue_depth +
2752 				ioc->reply_free_queue_depth +  1 ;
2753 	/* align the reply post queue on the next 16 count boundary */
2754 	if (ioc->reply_post_queue_depth % 16)
2755 		ioc->reply_post_queue_depth += 16 -
2756 		(ioc->reply_post_queue_depth % 16);
2757 
2758 
2759 	if (ioc->reply_post_queue_depth >
2760 	    facts->MaxReplyDescriptorPostQueueDepth) {
2761 		ioc->reply_post_queue_depth =
2762 				facts->MaxReplyDescriptorPostQueueDepth -
2763 		    (facts->MaxReplyDescriptorPostQueueDepth % 16);
2764 		ioc->hba_queue_depth =
2765 				((ioc->reply_post_queue_depth - 64) / 2) - 1;
2766 		ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
2767 	}
2768 
2769 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "scatter gather: " \
2770 	    "sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), "
2771 	    "chains_per_io(%d)\n", ioc->name, ioc->max_sges_in_main_message,
2772 	    ioc->max_sges_in_chain_message, ioc->shost->sg_tablesize,
2773 	    ioc->chains_needed_per_io));
2774 
2775 	/* reply post queue, 16 byte align */
2776 	reply_post_free_sz = ioc->reply_post_queue_depth *
2777 	    sizeof(Mpi2DefaultReplyDescriptor_t);
2778 
2779 	sz = reply_post_free_sz;
2780 	if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
2781 		sz *= ioc->reply_queue_count;
2782 
2783 	ioc->reply_post = kcalloc((ioc->rdpq_array_enable) ?
2784 	    (ioc->reply_queue_count):1,
2785 	    sizeof(struct reply_post_struct), GFP_KERNEL);
2786 
2787 	if (!ioc->reply_post) {
2788 		pr_err(MPT3SAS_FMT "reply_post_free pool: kcalloc failed\n",
2789 			ioc->name);
2790 		goto out;
2791 	}
2792 	ioc->reply_post_free_dma_pool = pci_pool_create("reply_post_free pool",
2793 	    ioc->pdev, sz, 16, 0);
2794 	if (!ioc->reply_post_free_dma_pool) {
2795 		pr_err(MPT3SAS_FMT
2796 		 "reply_post_free pool: pci_pool_create failed\n",
2797 		 ioc->name);
2798 		goto out;
2799 	}
2800 	i = 0;
2801 	do {
2802 		ioc->reply_post[i].reply_post_free =
2803 		    pci_pool_alloc(ioc->reply_post_free_dma_pool,
2804 		    GFP_KERNEL,
2805 		    &ioc->reply_post[i].reply_post_free_dma);
2806 		if (!ioc->reply_post[i].reply_post_free) {
2807 			pr_err(MPT3SAS_FMT
2808 			"reply_post_free pool: pci_pool_alloc failed\n",
2809 			ioc->name);
2810 			goto out;
2811 		}
2812 		memset(ioc->reply_post[i].reply_post_free, 0, sz);
2813 		dinitprintk(ioc, pr_info(MPT3SAS_FMT
2814 		    "reply post free pool (0x%p): depth(%d),"
2815 		    "element_size(%d), pool_size(%d kB)\n", ioc->name,
2816 		    ioc->reply_post[i].reply_post_free,
2817 		    ioc->reply_post_queue_depth, 8, sz/1024));
2818 		dinitprintk(ioc, pr_info(MPT3SAS_FMT
2819 		    "reply_post_free_dma = (0x%llx)\n", ioc->name,
2820 		    (unsigned long long)
2821 		    ioc->reply_post[i].reply_post_free_dma));
2822 		total_sz += sz;
2823 	} while (ioc->rdpq_array_enable && (++i < ioc->reply_queue_count));
2824 
2825 	if (ioc->dma_mask == 64) {
2826 		if (_base_change_consistent_dma_mask(ioc, ioc->pdev) != 0) {
2827 			pr_warn(MPT3SAS_FMT
2828 			    "no suitable consistent DMA mask for %s\n",
2829 			    ioc->name, pci_name(ioc->pdev));
2830 			goto out;
2831 		}
2832 	}
2833 
2834 	ioc->scsiio_depth = ioc->hba_queue_depth -
2835 	    ioc->hi_priority_depth - ioc->internal_depth;
2836 
2837 	/* set the scsi host can_queue depth
2838 	 * with some internal commands that could be outstanding
2839 	 */
2840 	ioc->shost->can_queue = ioc->scsiio_depth;
2841 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
2842 		"scsi host: can_queue depth (%d)\n",
2843 		ioc->name, ioc->shost->can_queue));
2844 
2845 
2846 	/* contiguous pool for request and chains, 16 byte align, one extra "
2847 	 * "frame for smid=0
2848 	 */
2849 	ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
2850 	sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
2851 
2852 	/* hi-priority queue */
2853 	sz += (ioc->hi_priority_depth * ioc->request_sz);
2854 
2855 	/* internal queue */
2856 	sz += (ioc->internal_depth * ioc->request_sz);
2857 
2858 	ioc->request_dma_sz = sz;
2859 	ioc->request = pci_alloc_consistent(ioc->pdev, sz, &ioc->request_dma);
2860 	if (!ioc->request) {
2861 		pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
2862 		    "failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
2863 		    "total(%d kB)\n", ioc->name, ioc->hba_queue_depth,
2864 		    ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
2865 		if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
2866 			goto out;
2867 		retry_sz += 64;
2868 		ioc->hba_queue_depth = max_request_credit - retry_sz;
2869 		goto retry_allocation;
2870 	}
2871 
2872 	if (retry_sz)
2873 		pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
2874 		    "succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
2875 		    "total(%d kb)\n", ioc->name, ioc->hba_queue_depth,
2876 		    ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
2877 
2878 	/* hi-priority queue */
2879 	ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
2880 	    ioc->request_sz);
2881 	ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
2882 	    ioc->request_sz);
2883 
2884 	/* internal queue */
2885 	ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
2886 	    ioc->request_sz);
2887 	ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
2888 	    ioc->request_sz);
2889 
2890 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
2891 		"request pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
2892 		ioc->name, ioc->request, ioc->hba_queue_depth, ioc->request_sz,
2893 	    (ioc->hba_queue_depth * ioc->request_sz)/1024));
2894 
2895 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "request pool: dma(0x%llx)\n",
2896 	    ioc->name, (unsigned long long) ioc->request_dma));
2897 	total_sz += sz;
2898 
2899 	sz = ioc->scsiio_depth * sizeof(struct scsiio_tracker);
2900 	ioc->scsi_lookup_pages = get_order(sz);
2901 	ioc->scsi_lookup = (struct scsiio_tracker *)__get_free_pages(
2902 	    GFP_KERNEL, ioc->scsi_lookup_pages);
2903 	if (!ioc->scsi_lookup) {
2904 		pr_err(MPT3SAS_FMT "scsi_lookup: get_free_pages failed, sz(%d)\n",
2905 			ioc->name, (int)sz);
2906 		goto out;
2907 	}
2908 
2909 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "scsiio(0x%p): depth(%d)\n",
2910 		ioc->name, ioc->request, ioc->scsiio_depth));
2911 
2912 	ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
2913 	sz = ioc->chain_depth * sizeof(struct chain_tracker);
2914 	ioc->chain_pages = get_order(sz);
2915 	ioc->chain_lookup = (struct chain_tracker *)__get_free_pages(
2916 	    GFP_KERNEL, ioc->chain_pages);
2917 	if (!ioc->chain_lookup) {
2918 		pr_err(MPT3SAS_FMT "chain_lookup: __get_free_pages failed\n",
2919 			ioc->name);
2920 		goto out;
2921 	}
2922 	ioc->chain_dma_pool = pci_pool_create("chain pool", ioc->pdev,
2923 	    ioc->request_sz, 16, 0);
2924 	if (!ioc->chain_dma_pool) {
2925 		pr_err(MPT3SAS_FMT "chain_dma_pool: pci_pool_create failed\n",
2926 			ioc->name);
2927 		goto out;
2928 	}
2929 	for (i = 0; i < ioc->chain_depth; i++) {
2930 		ioc->chain_lookup[i].chain_buffer = pci_pool_alloc(
2931 		    ioc->chain_dma_pool , GFP_KERNEL,
2932 		    &ioc->chain_lookup[i].chain_buffer_dma);
2933 		if (!ioc->chain_lookup[i].chain_buffer) {
2934 			ioc->chain_depth = i;
2935 			goto chain_done;
2936 		}
2937 		total_sz += ioc->request_sz;
2938 	}
2939  chain_done:
2940 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
2941 		"chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
2942 		ioc->name, ioc->chain_depth, ioc->request_sz,
2943 		((ioc->chain_depth *  ioc->request_sz))/1024));
2944 
2945 	/* initialize hi-priority queue smid's */
2946 	ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
2947 	    sizeof(struct request_tracker), GFP_KERNEL);
2948 	if (!ioc->hpr_lookup) {
2949 		pr_err(MPT3SAS_FMT "hpr_lookup: kcalloc failed\n",
2950 		    ioc->name);
2951 		goto out;
2952 	}
2953 	ioc->hi_priority_smid = ioc->scsiio_depth + 1;
2954 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
2955 		"hi_priority(0x%p): depth(%d), start smid(%d)\n",
2956 		ioc->name, ioc->hi_priority,
2957 	    ioc->hi_priority_depth, ioc->hi_priority_smid));
2958 
2959 	/* initialize internal queue smid's */
2960 	ioc->internal_lookup = kcalloc(ioc->internal_depth,
2961 	    sizeof(struct request_tracker), GFP_KERNEL);
2962 	if (!ioc->internal_lookup) {
2963 		pr_err(MPT3SAS_FMT "internal_lookup: kcalloc failed\n",
2964 		    ioc->name);
2965 		goto out;
2966 	}
2967 	ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
2968 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
2969 		"internal(0x%p): depth(%d), start smid(%d)\n",
2970 		ioc->name, ioc->internal,
2971 	    ioc->internal_depth, ioc->internal_smid));
2972 
2973 	/* sense buffers, 4 byte align */
2974 	sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
2975 	ioc->sense_dma_pool = pci_pool_create("sense pool", ioc->pdev, sz, 4,
2976 	    0);
2977 	if (!ioc->sense_dma_pool) {
2978 		pr_err(MPT3SAS_FMT "sense pool: pci_pool_create failed\n",
2979 		    ioc->name);
2980 		goto out;
2981 	}
2982 	ioc->sense = pci_pool_alloc(ioc->sense_dma_pool , GFP_KERNEL,
2983 	    &ioc->sense_dma);
2984 	if (!ioc->sense) {
2985 		pr_err(MPT3SAS_FMT "sense pool: pci_pool_alloc failed\n",
2986 		    ioc->name);
2987 		goto out;
2988 	}
2989 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
2990 	    "sense pool(0x%p): depth(%d), element_size(%d), pool_size"
2991 	    "(%d kB)\n", ioc->name, ioc->sense, ioc->scsiio_depth,
2992 	    SCSI_SENSE_BUFFERSIZE, sz/1024));
2993 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "sense_dma(0x%llx)\n",
2994 	    ioc->name, (unsigned long long)ioc->sense_dma));
2995 	total_sz += sz;
2996 
2997 	/* reply pool, 4 byte align */
2998 	sz = ioc->reply_free_queue_depth * ioc->reply_sz;
2999 	ioc->reply_dma_pool = pci_pool_create("reply pool", ioc->pdev, sz, 4,
3000 	    0);
3001 	if (!ioc->reply_dma_pool) {
3002 		pr_err(MPT3SAS_FMT "reply pool: pci_pool_create failed\n",
3003 		    ioc->name);
3004 		goto out;
3005 	}
3006 	ioc->reply = pci_pool_alloc(ioc->reply_dma_pool , GFP_KERNEL,
3007 	    &ioc->reply_dma);
3008 	if (!ioc->reply) {
3009 		pr_err(MPT3SAS_FMT "reply pool: pci_pool_alloc failed\n",
3010 		    ioc->name);
3011 		goto out;
3012 	}
3013 	ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
3014 	ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
3015 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3016 		"reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
3017 		ioc->name, ioc->reply,
3018 	    ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024));
3019 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_dma(0x%llx)\n",
3020 	    ioc->name, (unsigned long long)ioc->reply_dma));
3021 	total_sz += sz;
3022 
3023 	/* reply free queue, 16 byte align */
3024 	sz = ioc->reply_free_queue_depth * 4;
3025 	ioc->reply_free_dma_pool = pci_pool_create("reply_free pool",
3026 	    ioc->pdev, sz, 16, 0);
3027 	if (!ioc->reply_free_dma_pool) {
3028 		pr_err(MPT3SAS_FMT "reply_free pool: pci_pool_create failed\n",
3029 			ioc->name);
3030 		goto out;
3031 	}
3032 	ioc->reply_free = pci_pool_alloc(ioc->reply_free_dma_pool , GFP_KERNEL,
3033 	    &ioc->reply_free_dma);
3034 	if (!ioc->reply_free) {
3035 		pr_err(MPT3SAS_FMT "reply_free pool: pci_pool_alloc failed\n",
3036 			ioc->name);
3037 		goto out;
3038 	}
3039 	memset(ioc->reply_free, 0, sz);
3040 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_free pool(0x%p): " \
3041 	    "depth(%d), element_size(%d), pool_size(%d kB)\n", ioc->name,
3042 	    ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
3043 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3044 		"reply_free_dma (0x%llx)\n",
3045 		ioc->name, (unsigned long long)ioc->reply_free_dma));
3046 	total_sz += sz;
3047 
3048 	ioc->config_page_sz = 512;
3049 	ioc->config_page = pci_alloc_consistent(ioc->pdev,
3050 	    ioc->config_page_sz, &ioc->config_page_dma);
3051 	if (!ioc->config_page) {
3052 		pr_err(MPT3SAS_FMT
3053 			"config page: pci_pool_alloc failed\n",
3054 			ioc->name);
3055 		goto out;
3056 	}
3057 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3058 		"config page(0x%p): size(%d)\n",
3059 		ioc->name, ioc->config_page, ioc->config_page_sz));
3060 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "config_page_dma(0x%llx)\n",
3061 		ioc->name, (unsigned long long)ioc->config_page_dma));
3062 	total_sz += ioc->config_page_sz;
3063 
3064 	pr_info(MPT3SAS_FMT "Allocated physical memory: size(%d kB)\n",
3065 	    ioc->name, total_sz/1024);
3066 	pr_info(MPT3SAS_FMT
3067 		"Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
3068 	    ioc->name, ioc->shost->can_queue, facts->RequestCredit);
3069 	pr_info(MPT3SAS_FMT "Scatter Gather Elements per IO(%d)\n",
3070 	    ioc->name, ioc->shost->sg_tablesize);
3071 	return 0;
3072 
3073  out:
3074 	return -ENOMEM;
3075 }
3076 
3077 /**
3078  * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
3079  * @ioc: Pointer to MPT_ADAPTER structure
3080  * @cooked: Request raw or cooked IOC state
3081  *
3082  * Returns all IOC Doorbell register bits if cooked==0, else just the
3083  * Doorbell bits in MPI_IOC_STATE_MASK.
3084  */
3085 u32
3086 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
3087 {
3088 	u32 s, sc;
3089 
3090 	s = readl(&ioc->chip->Doorbell);
3091 	sc = s & MPI2_IOC_STATE_MASK;
3092 	return cooked ? sc : s;
3093 }
3094 
3095 /**
3096  * _base_wait_on_iocstate - waiting on a particular ioc state
3097  * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
3098  * @timeout: timeout in second
3099  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3100  *
3101  * Returns 0 for success, non-zero for failure.
3102  */
3103 static int
3104 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout,
3105 	int sleep_flag)
3106 {
3107 	u32 count, cntdn;
3108 	u32 current_state;
3109 
3110 	count = 0;
3111 	cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3112 	do {
3113 		current_state = mpt3sas_base_get_iocstate(ioc, 1);
3114 		if (current_state == ioc_state)
3115 			return 0;
3116 		if (count && current_state == MPI2_IOC_STATE_FAULT)
3117 			break;
3118 		if (sleep_flag == CAN_SLEEP)
3119 			usleep_range(1000, 1500);
3120 		else
3121 			udelay(500);
3122 		count++;
3123 	} while (--cntdn);
3124 
3125 	return current_state;
3126 }
3127 
3128 /**
3129  * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
3130  * a write to the doorbell)
3131  * @ioc: per adapter object
3132  * @timeout: timeout in second
3133  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3134  *
3135  * Returns 0 for success, non-zero for failure.
3136  *
3137  * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
3138  */
3139 static int
3140 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout,
3141 	int sleep_flag)
3142 {
3143 	u32 cntdn, count;
3144 	u32 int_status;
3145 
3146 	count = 0;
3147 	cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3148 	do {
3149 		int_status = readl(&ioc->chip->HostInterruptStatus);
3150 		if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3151 			dhsprintk(ioc, pr_info(MPT3SAS_FMT
3152 				"%s: successful count(%d), timeout(%d)\n",
3153 				ioc->name, __func__, count, timeout));
3154 			return 0;
3155 		}
3156 		if (sleep_flag == CAN_SLEEP)
3157 			usleep_range(1000, 1500);
3158 		else
3159 			udelay(500);
3160 		count++;
3161 	} while (--cntdn);
3162 
3163 	pr_err(MPT3SAS_FMT
3164 		"%s: failed due to timeout count(%d), int_status(%x)!\n",
3165 		ioc->name, __func__, count, int_status);
3166 	return -EFAULT;
3167 }
3168 
3169 /**
3170  * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
3171  * @ioc: per adapter object
3172  * @timeout: timeout in second
3173  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3174  *
3175  * Returns 0 for success, non-zero for failure.
3176  *
3177  * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
3178  * doorbell.
3179  */
3180 static int
3181 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout,
3182 	int sleep_flag)
3183 {
3184 	u32 cntdn, count;
3185 	u32 int_status;
3186 	u32 doorbell;
3187 
3188 	count = 0;
3189 	cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3190 	do {
3191 		int_status = readl(&ioc->chip->HostInterruptStatus);
3192 		if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
3193 			dhsprintk(ioc, pr_info(MPT3SAS_FMT
3194 				"%s: successful count(%d), timeout(%d)\n",
3195 				ioc->name, __func__, count, timeout));
3196 			return 0;
3197 		} else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3198 			doorbell = readl(&ioc->chip->Doorbell);
3199 			if ((doorbell & MPI2_IOC_STATE_MASK) ==
3200 			    MPI2_IOC_STATE_FAULT) {
3201 				mpt3sas_base_fault_info(ioc , doorbell);
3202 				return -EFAULT;
3203 			}
3204 		} else if (int_status == 0xFFFFFFFF)
3205 			goto out;
3206 
3207 		if (sleep_flag == CAN_SLEEP)
3208 			usleep_range(1000, 1500);
3209 		else
3210 			udelay(500);
3211 		count++;
3212 	} while (--cntdn);
3213 
3214  out:
3215 	pr_err(MPT3SAS_FMT
3216 	 "%s: failed due to timeout count(%d), int_status(%x)!\n",
3217 	 ioc->name, __func__, count, int_status);
3218 	return -EFAULT;
3219 }
3220 
3221 /**
3222  * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
3223  * @ioc: per adapter object
3224  * @timeout: timeout in second
3225  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3226  *
3227  * Returns 0 for success, non-zero for failure.
3228  *
3229  */
3230 static int
3231 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout,
3232 	int sleep_flag)
3233 {
3234 	u32 cntdn, count;
3235 	u32 doorbell_reg;
3236 
3237 	count = 0;
3238 	cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3239 	do {
3240 		doorbell_reg = readl(&ioc->chip->Doorbell);
3241 		if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
3242 			dhsprintk(ioc, pr_info(MPT3SAS_FMT
3243 				"%s: successful count(%d), timeout(%d)\n",
3244 				ioc->name, __func__, count, timeout));
3245 			return 0;
3246 		}
3247 		if (sleep_flag == CAN_SLEEP)
3248 			usleep_range(1000, 1500);
3249 		else
3250 			udelay(500);
3251 		count++;
3252 	} while (--cntdn);
3253 
3254 	pr_err(MPT3SAS_FMT
3255 		"%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
3256 		ioc->name, __func__, count, doorbell_reg);
3257 	return -EFAULT;
3258 }
3259 
3260 /**
3261  * _base_send_ioc_reset - send doorbell reset
3262  * @ioc: per adapter object
3263  * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
3264  * @timeout: timeout in second
3265  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3266  *
3267  * Returns 0 for success, non-zero for failure.
3268  */
3269 static int
3270 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout,
3271 	int sleep_flag)
3272 {
3273 	u32 ioc_state;
3274 	int r = 0;
3275 
3276 	if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
3277 		pr_err(MPT3SAS_FMT "%s: unknown reset_type\n",
3278 		    ioc->name, __func__);
3279 		return -EFAULT;
3280 	}
3281 
3282 	if (!(ioc->facts.IOCCapabilities &
3283 	   MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
3284 		return -EFAULT;
3285 
3286 	pr_info(MPT3SAS_FMT "sending message unit reset !!\n", ioc->name);
3287 
3288 	writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
3289 	    &ioc->chip->Doorbell);
3290 	if ((_base_wait_for_doorbell_ack(ioc, 15, sleep_flag))) {
3291 		r = -EFAULT;
3292 		goto out;
3293 	}
3294 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY,
3295 	    timeout, sleep_flag);
3296 	if (ioc_state) {
3297 		pr_err(MPT3SAS_FMT
3298 			"%s: failed going to ready state (ioc_state=0x%x)\n",
3299 			ioc->name, __func__, ioc_state);
3300 		r = -EFAULT;
3301 		goto out;
3302 	}
3303  out:
3304 	pr_info(MPT3SAS_FMT "message unit reset: %s\n",
3305 	    ioc->name, ((r == 0) ? "SUCCESS" : "FAILED"));
3306 	return r;
3307 }
3308 
3309 /**
3310  * _base_handshake_req_reply_wait - send request thru doorbell interface
3311  * @ioc: per adapter object
3312  * @request_bytes: request length
3313  * @request: pointer having request payload
3314  * @reply_bytes: reply length
3315  * @reply: pointer to reply payload
3316  * @timeout: timeout in second
3317  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3318  *
3319  * Returns 0 for success, non-zero for failure.
3320  */
3321 static int
3322 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
3323 	u32 *request, int reply_bytes, u16 *reply, int timeout, int sleep_flag)
3324 {
3325 	MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
3326 	int i;
3327 	u8 failed;
3328 	u16 dummy;
3329 	__le32 *mfp;
3330 
3331 	/* make sure doorbell is not in use */
3332 	if ((readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
3333 		pr_err(MPT3SAS_FMT
3334 			"doorbell is in use (line=%d)\n",
3335 			ioc->name, __LINE__);
3336 		return -EFAULT;
3337 	}
3338 
3339 	/* clear pending doorbell interrupts from previous state changes */
3340 	if (readl(&ioc->chip->HostInterruptStatus) &
3341 	    MPI2_HIS_IOC2SYS_DB_STATUS)
3342 		writel(0, &ioc->chip->HostInterruptStatus);
3343 
3344 	/* send message to ioc */
3345 	writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
3346 	    ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
3347 	    &ioc->chip->Doorbell);
3348 
3349 	if ((_base_wait_for_doorbell_int(ioc, 5, NO_SLEEP))) {
3350 		pr_err(MPT3SAS_FMT
3351 			"doorbell handshake int failed (line=%d)\n",
3352 			ioc->name, __LINE__);
3353 		return -EFAULT;
3354 	}
3355 	writel(0, &ioc->chip->HostInterruptStatus);
3356 
3357 	if ((_base_wait_for_doorbell_ack(ioc, 5, sleep_flag))) {
3358 		pr_err(MPT3SAS_FMT
3359 			"doorbell handshake ack failed (line=%d)\n",
3360 			ioc->name, __LINE__);
3361 		return -EFAULT;
3362 	}
3363 
3364 	/* send message 32-bits at a time */
3365 	for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
3366 		writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
3367 		if ((_base_wait_for_doorbell_ack(ioc, 5, sleep_flag)))
3368 			failed = 1;
3369 	}
3370 
3371 	if (failed) {
3372 		pr_err(MPT3SAS_FMT
3373 			"doorbell handshake sending request failed (line=%d)\n",
3374 			ioc->name, __LINE__);
3375 		return -EFAULT;
3376 	}
3377 
3378 	/* now wait for the reply */
3379 	if ((_base_wait_for_doorbell_int(ioc, timeout, sleep_flag))) {
3380 		pr_err(MPT3SAS_FMT
3381 			"doorbell handshake int failed (line=%d)\n",
3382 			ioc->name, __LINE__);
3383 		return -EFAULT;
3384 	}
3385 
3386 	/* read the first two 16-bits, it gives the total length of the reply */
3387 	reply[0] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3388 	    & MPI2_DOORBELL_DATA_MASK);
3389 	writel(0, &ioc->chip->HostInterruptStatus);
3390 	if ((_base_wait_for_doorbell_int(ioc, 5, sleep_flag))) {
3391 		pr_err(MPT3SAS_FMT
3392 			"doorbell handshake int failed (line=%d)\n",
3393 			ioc->name, __LINE__);
3394 		return -EFAULT;
3395 	}
3396 	reply[1] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3397 	    & MPI2_DOORBELL_DATA_MASK);
3398 	writel(0, &ioc->chip->HostInterruptStatus);
3399 
3400 	for (i = 2; i < default_reply->MsgLength * 2; i++)  {
3401 		if ((_base_wait_for_doorbell_int(ioc, 5, sleep_flag))) {
3402 			pr_err(MPT3SAS_FMT
3403 				"doorbell handshake int failed (line=%d)\n",
3404 				ioc->name, __LINE__);
3405 			return -EFAULT;
3406 		}
3407 		if (i >=  reply_bytes/2) /* overflow case */
3408 			dummy = readl(&ioc->chip->Doorbell);
3409 		else
3410 			reply[i] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3411 			    & MPI2_DOORBELL_DATA_MASK);
3412 		writel(0, &ioc->chip->HostInterruptStatus);
3413 	}
3414 
3415 	_base_wait_for_doorbell_int(ioc, 5, sleep_flag);
3416 	if (_base_wait_for_doorbell_not_used(ioc, 5, sleep_flag) != 0) {
3417 		dhsprintk(ioc, pr_info(MPT3SAS_FMT
3418 			"doorbell is in use (line=%d)\n", ioc->name, __LINE__));
3419 	}
3420 	writel(0, &ioc->chip->HostInterruptStatus);
3421 
3422 	if (ioc->logging_level & MPT_DEBUG_INIT) {
3423 		mfp = (__le32 *)reply;
3424 		pr_info("\toffset:data\n");
3425 		for (i = 0; i < reply_bytes/4; i++)
3426 			pr_info("\t[0x%02x]:%08x\n", i*4,
3427 			    le32_to_cpu(mfp[i]));
3428 	}
3429 	return 0;
3430 }
3431 
3432 /**
3433  * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
3434  * @ioc: per adapter object
3435  * @mpi_reply: the reply payload from FW
3436  * @mpi_request: the request payload sent to FW
3437  *
3438  * The SAS IO Unit Control Request message allows the host to perform low-level
3439  * operations, such as resets on the PHYs of the IO Unit, also allows the host
3440  * to obtain the IOC assigned device handles for a device if it has other
3441  * identifying information about the device, in addition allows the host to
3442  * remove IOC resources associated with the device.
3443  *
3444  * Returns 0 for success, non-zero for failure.
3445  */
3446 int
3447 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
3448 	Mpi2SasIoUnitControlReply_t *mpi_reply,
3449 	Mpi2SasIoUnitControlRequest_t *mpi_request)
3450 {
3451 	u16 smid;
3452 	u32 ioc_state;
3453 	unsigned long timeleft;
3454 	bool issue_reset = false;
3455 	int rc;
3456 	void *request;
3457 	u16 wait_state_count;
3458 
3459 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3460 	    __func__));
3461 
3462 	mutex_lock(&ioc->base_cmds.mutex);
3463 
3464 	if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
3465 		pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
3466 		    ioc->name, __func__);
3467 		rc = -EAGAIN;
3468 		goto out;
3469 	}
3470 
3471 	wait_state_count = 0;
3472 	ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
3473 	while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
3474 		if (wait_state_count++ == 10) {
3475 			pr_err(MPT3SAS_FMT
3476 			    "%s: failed due to ioc not operational\n",
3477 			    ioc->name, __func__);
3478 			rc = -EFAULT;
3479 			goto out;
3480 		}
3481 		ssleep(1);
3482 		ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
3483 		pr_info(MPT3SAS_FMT
3484 			"%s: waiting for operational state(count=%d)\n",
3485 			ioc->name, __func__, wait_state_count);
3486 	}
3487 
3488 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
3489 	if (!smid) {
3490 		pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
3491 		    ioc->name, __func__);
3492 		rc = -EAGAIN;
3493 		goto out;
3494 	}
3495 
3496 	rc = 0;
3497 	ioc->base_cmds.status = MPT3_CMD_PENDING;
3498 	request = mpt3sas_base_get_msg_frame(ioc, smid);
3499 	ioc->base_cmds.smid = smid;
3500 	memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
3501 	if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
3502 	    mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
3503 		ioc->ioc_link_reset_in_progress = 1;
3504 	init_completion(&ioc->base_cmds.done);
3505 	mpt3sas_base_put_smid_default(ioc, smid);
3506 	timeleft = wait_for_completion_timeout(&ioc->base_cmds.done,
3507 	    msecs_to_jiffies(10000));
3508 	if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
3509 	    mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
3510 	    ioc->ioc_link_reset_in_progress)
3511 		ioc->ioc_link_reset_in_progress = 0;
3512 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
3513 		pr_err(MPT3SAS_FMT "%s: timeout\n",
3514 		    ioc->name, __func__);
3515 		_debug_dump_mf(mpi_request,
3516 		    sizeof(Mpi2SasIoUnitControlRequest_t)/4);
3517 		if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
3518 			issue_reset = true;
3519 		goto issue_host_reset;
3520 	}
3521 	if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
3522 		memcpy(mpi_reply, ioc->base_cmds.reply,
3523 		    sizeof(Mpi2SasIoUnitControlReply_t));
3524 	else
3525 		memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
3526 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
3527 	goto out;
3528 
3529  issue_host_reset:
3530 	if (issue_reset)
3531 		mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
3532 		    FORCE_BIG_HAMMER);
3533 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
3534 	rc = -EFAULT;
3535  out:
3536 	mutex_unlock(&ioc->base_cmds.mutex);
3537 	return rc;
3538 }
3539 
3540 /**
3541  * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
3542  * @ioc: per adapter object
3543  * @mpi_reply: the reply payload from FW
3544  * @mpi_request: the request payload sent to FW
3545  *
3546  * The SCSI Enclosure Processor request message causes the IOC to
3547  * communicate with SES devices to control LED status signals.
3548  *
3549  * Returns 0 for success, non-zero for failure.
3550  */
3551 int
3552 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
3553 	Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
3554 {
3555 	u16 smid;
3556 	u32 ioc_state;
3557 	unsigned long timeleft;
3558 	bool issue_reset = false;
3559 	int rc;
3560 	void *request;
3561 	u16 wait_state_count;
3562 
3563 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3564 	    __func__));
3565 
3566 	mutex_lock(&ioc->base_cmds.mutex);
3567 
3568 	if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
3569 		pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
3570 		    ioc->name, __func__);
3571 		rc = -EAGAIN;
3572 		goto out;
3573 	}
3574 
3575 	wait_state_count = 0;
3576 	ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
3577 	while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
3578 		if (wait_state_count++ == 10) {
3579 			pr_err(MPT3SAS_FMT
3580 			    "%s: failed due to ioc not operational\n",
3581 			    ioc->name, __func__);
3582 			rc = -EFAULT;
3583 			goto out;
3584 		}
3585 		ssleep(1);
3586 		ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
3587 		pr_info(MPT3SAS_FMT
3588 			"%s: waiting for operational state(count=%d)\n",
3589 			ioc->name,
3590 		    __func__, wait_state_count);
3591 	}
3592 
3593 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
3594 	if (!smid) {
3595 		pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
3596 		    ioc->name, __func__);
3597 		rc = -EAGAIN;
3598 		goto out;
3599 	}
3600 
3601 	rc = 0;
3602 	ioc->base_cmds.status = MPT3_CMD_PENDING;
3603 	request = mpt3sas_base_get_msg_frame(ioc, smid);
3604 	ioc->base_cmds.smid = smid;
3605 	memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
3606 	init_completion(&ioc->base_cmds.done);
3607 	mpt3sas_base_put_smid_default(ioc, smid);
3608 	timeleft = wait_for_completion_timeout(&ioc->base_cmds.done,
3609 	    msecs_to_jiffies(10000));
3610 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
3611 		pr_err(MPT3SAS_FMT "%s: timeout\n",
3612 		    ioc->name, __func__);
3613 		_debug_dump_mf(mpi_request,
3614 		    sizeof(Mpi2SepRequest_t)/4);
3615 		if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
3616 			issue_reset = false;
3617 		goto issue_host_reset;
3618 	}
3619 	if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
3620 		memcpy(mpi_reply, ioc->base_cmds.reply,
3621 		    sizeof(Mpi2SepReply_t));
3622 	else
3623 		memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
3624 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
3625 	goto out;
3626 
3627  issue_host_reset:
3628 	if (issue_reset)
3629 		mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
3630 		    FORCE_BIG_HAMMER);
3631 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
3632 	rc = -EFAULT;
3633  out:
3634 	mutex_unlock(&ioc->base_cmds.mutex);
3635 	return rc;
3636 }
3637 
3638 /**
3639  * _base_get_port_facts - obtain port facts reply and save in ioc
3640  * @ioc: per adapter object
3641  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3642  *
3643  * Returns 0 for success, non-zero for failure.
3644  */
3645 static int
3646 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port, int sleep_flag)
3647 {
3648 	Mpi2PortFactsRequest_t mpi_request;
3649 	Mpi2PortFactsReply_t mpi_reply;
3650 	struct mpt3sas_port_facts *pfacts;
3651 	int mpi_reply_sz, mpi_request_sz, r;
3652 
3653 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3654 	    __func__));
3655 
3656 	mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
3657 	mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
3658 	memset(&mpi_request, 0, mpi_request_sz);
3659 	mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
3660 	mpi_request.PortNumber = port;
3661 	r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
3662 	    (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5, CAN_SLEEP);
3663 
3664 	if (r != 0) {
3665 		pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
3666 		    ioc->name, __func__, r);
3667 		return r;
3668 	}
3669 
3670 	pfacts = &ioc->pfacts[port];
3671 	memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
3672 	pfacts->PortNumber = mpi_reply.PortNumber;
3673 	pfacts->VP_ID = mpi_reply.VP_ID;
3674 	pfacts->VF_ID = mpi_reply.VF_ID;
3675 	pfacts->MaxPostedCmdBuffers =
3676 	    le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
3677 
3678 	return 0;
3679 }
3680 
3681 /**
3682  * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
3683  * @ioc: per adapter object
3684  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3685  *
3686  * Returns 0 for success, non-zero for failure.
3687  */
3688 static int
3689 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
3690 {
3691 	Mpi2IOCFactsRequest_t mpi_request;
3692 	Mpi2IOCFactsReply_t mpi_reply;
3693 	struct mpt3sas_facts *facts;
3694 	int mpi_reply_sz, mpi_request_sz, r;
3695 
3696 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3697 	    __func__));
3698 
3699 	mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
3700 	mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
3701 	memset(&mpi_request, 0, mpi_request_sz);
3702 	mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
3703 	r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
3704 	    (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5, CAN_SLEEP);
3705 
3706 	if (r != 0) {
3707 		pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
3708 		    ioc->name, __func__, r);
3709 		return r;
3710 	}
3711 
3712 	facts = &ioc->facts;
3713 	memset(facts, 0, sizeof(struct mpt3sas_facts));
3714 	facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
3715 	facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
3716 	facts->VP_ID = mpi_reply.VP_ID;
3717 	facts->VF_ID = mpi_reply.VF_ID;
3718 	facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
3719 	facts->MaxChainDepth = mpi_reply.MaxChainDepth;
3720 	facts->WhoInit = mpi_reply.WhoInit;
3721 	facts->NumberOfPorts = mpi_reply.NumberOfPorts;
3722 	facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
3723 	facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
3724 	facts->MaxReplyDescriptorPostQueueDepth =
3725 	    le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
3726 	facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
3727 	facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
3728 	if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
3729 		ioc->ir_firmware = 1;
3730 	if ((facts->IOCCapabilities &
3731 	      MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE))
3732 		ioc->rdpq_array_capable = 1;
3733 	facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
3734 	facts->IOCRequestFrameSize =
3735 	    le16_to_cpu(mpi_reply.IOCRequestFrameSize);
3736 	facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
3737 	facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
3738 	ioc->shost->max_id = -1;
3739 	facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
3740 	facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
3741 	facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
3742 	facts->HighPriorityCredit =
3743 	    le16_to_cpu(mpi_reply.HighPriorityCredit);
3744 	facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
3745 	facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
3746 
3747 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3748 		"hba queue depth(%d), max chains per io(%d)\n",
3749 		ioc->name, facts->RequestCredit,
3750 	    facts->MaxChainDepth));
3751 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3752 		"request frame size(%d), reply frame size(%d)\n", ioc->name,
3753 	    facts->IOCRequestFrameSize * 4, facts->ReplyFrameSize * 4));
3754 	return 0;
3755 }
3756 
3757 /**
3758  * _base_send_ioc_init - send ioc_init to firmware
3759  * @ioc: per adapter object
3760  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3761  *
3762  * Returns 0 for success, non-zero for failure.
3763  */
3764 static int
3765 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
3766 {
3767 	Mpi2IOCInitRequest_t mpi_request;
3768 	Mpi2IOCInitReply_t mpi_reply;
3769 	int i, r = 0;
3770 	struct timeval current_time;
3771 	u16 ioc_status;
3772 	u32 reply_post_free_array_sz = 0;
3773 	Mpi2IOCInitRDPQArrayEntry *reply_post_free_array = NULL;
3774 	dma_addr_t reply_post_free_array_dma;
3775 
3776 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3777 	    __func__));
3778 
3779 	memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
3780 	mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
3781 	mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
3782 	mpi_request.VF_ID = 0; /* TODO */
3783 	mpi_request.VP_ID = 0;
3784 	mpi_request.MsgVersion = cpu_to_le16(MPI2_VERSION);
3785 	mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
3786 
3787 	if (_base_is_controller_msix_enabled(ioc))
3788 		mpi_request.HostMSIxVectors = ioc->reply_queue_count;
3789 	mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
3790 	mpi_request.ReplyDescriptorPostQueueDepth =
3791 	    cpu_to_le16(ioc->reply_post_queue_depth);
3792 	mpi_request.ReplyFreeQueueDepth =
3793 	    cpu_to_le16(ioc->reply_free_queue_depth);
3794 
3795 	mpi_request.SenseBufferAddressHigh =
3796 	    cpu_to_le32((u64)ioc->sense_dma >> 32);
3797 	mpi_request.SystemReplyAddressHigh =
3798 	    cpu_to_le32((u64)ioc->reply_dma >> 32);
3799 	mpi_request.SystemRequestFrameBaseAddress =
3800 	    cpu_to_le64((u64)ioc->request_dma);
3801 	mpi_request.ReplyFreeQueueAddress =
3802 	    cpu_to_le64((u64)ioc->reply_free_dma);
3803 
3804 	if (ioc->rdpq_array_enable) {
3805 		reply_post_free_array_sz = ioc->reply_queue_count *
3806 		    sizeof(Mpi2IOCInitRDPQArrayEntry);
3807 		reply_post_free_array = pci_alloc_consistent(ioc->pdev,
3808 			reply_post_free_array_sz, &reply_post_free_array_dma);
3809 		if (!reply_post_free_array) {
3810 			pr_err(MPT3SAS_FMT
3811 			"reply_post_free_array: pci_alloc_consistent failed\n",
3812 			ioc->name);
3813 			r = -ENOMEM;
3814 			goto out;
3815 		}
3816 		memset(reply_post_free_array, 0, reply_post_free_array_sz);
3817 		for (i = 0; i < ioc->reply_queue_count; i++)
3818 			reply_post_free_array[i].RDPQBaseAddress =
3819 			    cpu_to_le64(
3820 				(u64)ioc->reply_post[i].reply_post_free_dma);
3821 		mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
3822 		mpi_request.ReplyDescriptorPostQueueAddress =
3823 		    cpu_to_le64((u64)reply_post_free_array_dma);
3824 	} else {
3825 		mpi_request.ReplyDescriptorPostQueueAddress =
3826 		    cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
3827 	}
3828 
3829 	/* This time stamp specifies number of milliseconds
3830 	 * since epoch ~ midnight January 1, 1970.
3831 	 */
3832 	do_gettimeofday(&current_time);
3833 	mpi_request.TimeStamp = cpu_to_le64((u64)current_time.tv_sec * 1000 +
3834 	    (current_time.tv_usec / 1000));
3835 
3836 	if (ioc->logging_level & MPT_DEBUG_INIT) {
3837 		__le32 *mfp;
3838 		int i;
3839 
3840 		mfp = (__le32 *)&mpi_request;
3841 		pr_info("\toffset:data\n");
3842 		for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
3843 			pr_info("\t[0x%02x]:%08x\n", i*4,
3844 			    le32_to_cpu(mfp[i]));
3845 	}
3846 
3847 	r = _base_handshake_req_reply_wait(ioc,
3848 	    sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
3849 	    sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10,
3850 	    sleep_flag);
3851 
3852 	if (r != 0) {
3853 		pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
3854 		    ioc->name, __func__, r);
3855 		goto out;
3856 	}
3857 
3858 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
3859 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
3860 	    mpi_reply.IOCLogInfo) {
3861 		pr_err(MPT3SAS_FMT "%s: failed\n", ioc->name, __func__);
3862 		r = -EIO;
3863 	}
3864 
3865 out:
3866 	if (reply_post_free_array)
3867 		pci_free_consistent(ioc->pdev, reply_post_free_array_sz,
3868 				    reply_post_free_array,
3869 				    reply_post_free_array_dma);
3870 	return r;
3871 }
3872 
3873 /**
3874  * mpt3sas_port_enable_done - command completion routine for port enable
3875  * @ioc: per adapter object
3876  * @smid: system request message index
3877  * @msix_index: MSIX table index supplied by the OS
3878  * @reply: reply message frame(lower 32bit addr)
3879  *
3880  * Return 1 meaning mf should be freed from _base_interrupt
3881  *        0 means the mf is freed from this function.
3882  */
3883 u8
3884 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
3885 	u32 reply)
3886 {
3887 	MPI2DefaultReply_t *mpi_reply;
3888 	u16 ioc_status;
3889 
3890 	if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
3891 		return 1;
3892 
3893 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
3894 	if (!mpi_reply)
3895 		return 1;
3896 
3897 	if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
3898 		return 1;
3899 
3900 	ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
3901 	ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
3902 	ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
3903 	memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
3904 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
3905 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
3906 		ioc->port_enable_failed = 1;
3907 
3908 	if (ioc->is_driver_loading) {
3909 		if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
3910 			mpt3sas_port_enable_complete(ioc);
3911 			return 1;
3912 		} else {
3913 			ioc->start_scan_failed = ioc_status;
3914 			ioc->start_scan = 0;
3915 			return 1;
3916 		}
3917 	}
3918 	complete(&ioc->port_enable_cmds.done);
3919 	return 1;
3920 }
3921 
3922 /**
3923  * _base_send_port_enable - send port_enable(discovery stuff) to firmware
3924  * @ioc: per adapter object
3925  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3926  *
3927  * Returns 0 for success, non-zero for failure.
3928  */
3929 static int
3930 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
3931 {
3932 	Mpi2PortEnableRequest_t *mpi_request;
3933 	Mpi2PortEnableReply_t *mpi_reply;
3934 	unsigned long timeleft;
3935 	int r = 0;
3936 	u16 smid;
3937 	u16 ioc_status;
3938 
3939 	pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
3940 
3941 	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
3942 		pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
3943 		    ioc->name, __func__);
3944 		return -EAGAIN;
3945 	}
3946 
3947 	smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
3948 	if (!smid) {
3949 		pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
3950 		    ioc->name, __func__);
3951 		return -EAGAIN;
3952 	}
3953 
3954 	ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
3955 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
3956 	ioc->port_enable_cmds.smid = smid;
3957 	memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
3958 	mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
3959 
3960 	init_completion(&ioc->port_enable_cmds.done);
3961 	mpt3sas_base_put_smid_default(ioc, smid);
3962 	timeleft = wait_for_completion_timeout(&ioc->port_enable_cmds.done,
3963 	    300*HZ);
3964 	if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
3965 		pr_err(MPT3SAS_FMT "%s: timeout\n",
3966 		    ioc->name, __func__);
3967 		_debug_dump_mf(mpi_request,
3968 		    sizeof(Mpi2PortEnableRequest_t)/4);
3969 		if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
3970 			r = -EFAULT;
3971 		else
3972 			r = -ETIME;
3973 		goto out;
3974 	}
3975 
3976 	mpi_reply = ioc->port_enable_cmds.reply;
3977 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
3978 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
3979 		pr_err(MPT3SAS_FMT "%s: failed with (ioc_status=0x%08x)\n",
3980 		    ioc->name, __func__, ioc_status);
3981 		r = -EFAULT;
3982 		goto out;
3983 	}
3984 
3985  out:
3986 	ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
3987 	pr_info(MPT3SAS_FMT "port enable: %s\n", ioc->name, ((r == 0) ?
3988 	    "SUCCESS" : "FAILED"));
3989 	return r;
3990 }
3991 
3992 /**
3993  * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
3994  * @ioc: per adapter object
3995  *
3996  * Returns 0 for success, non-zero for failure.
3997  */
3998 int
3999 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
4000 {
4001 	Mpi2PortEnableRequest_t *mpi_request;
4002 	u16 smid;
4003 
4004 	pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
4005 
4006 	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
4007 		pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4008 		    ioc->name, __func__);
4009 		return -EAGAIN;
4010 	}
4011 
4012 	smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
4013 	if (!smid) {
4014 		pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4015 		    ioc->name, __func__);
4016 		return -EAGAIN;
4017 	}
4018 
4019 	ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
4020 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4021 	ioc->port_enable_cmds.smid = smid;
4022 	memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
4023 	mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
4024 
4025 	mpt3sas_base_put_smid_default(ioc, smid);
4026 	return 0;
4027 }
4028 
4029 /**
4030  * _base_determine_wait_on_discovery - desposition
4031  * @ioc: per adapter object
4032  *
4033  * Decide whether to wait on discovery to complete. Used to either
4034  * locate boot device, or report volumes ahead of physical devices.
4035  *
4036  * Returns 1 for wait, 0 for don't wait
4037  */
4038 static int
4039 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
4040 {
4041 	/* We wait for discovery to complete if IR firmware is loaded.
4042 	 * The sas topology events arrive before PD events, so we need time to
4043 	 * turn on the bit in ioc->pd_handles to indicate PD
4044 	 * Also, it maybe required to report Volumes ahead of physical
4045 	 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
4046 	 */
4047 	if (ioc->ir_firmware)
4048 		return 1;
4049 
4050 	/* if no Bios, then we don't need to wait */
4051 	if (!ioc->bios_pg3.BiosVersion)
4052 		return 0;
4053 
4054 	/* Bios is present, then we drop down here.
4055 	 *
4056 	 * If there any entries in the Bios Page 2, then we wait
4057 	 * for discovery to complete.
4058 	 */
4059 
4060 	/* Current Boot Device */
4061 	if ((ioc->bios_pg2.CurrentBootDeviceForm &
4062 	    MPI2_BIOSPAGE2_FORM_MASK) ==
4063 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
4064 	/* Request Boot Device */
4065 	   (ioc->bios_pg2.ReqBootDeviceForm &
4066 	    MPI2_BIOSPAGE2_FORM_MASK) ==
4067 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
4068 	/* Alternate Request Boot Device */
4069 	   (ioc->bios_pg2.ReqAltBootDeviceForm &
4070 	    MPI2_BIOSPAGE2_FORM_MASK) ==
4071 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
4072 		return 0;
4073 
4074 	return 1;
4075 }
4076 
4077 /**
4078  * _base_unmask_events - turn on notification for this event
4079  * @ioc: per adapter object
4080  * @event: firmware event
4081  *
4082  * The mask is stored in ioc->event_masks.
4083  */
4084 static void
4085 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
4086 {
4087 	u32 desired_event;
4088 
4089 	if (event >= 128)
4090 		return;
4091 
4092 	desired_event = (1 << (event % 32));
4093 
4094 	if (event < 32)
4095 		ioc->event_masks[0] &= ~desired_event;
4096 	else if (event < 64)
4097 		ioc->event_masks[1] &= ~desired_event;
4098 	else if (event < 96)
4099 		ioc->event_masks[2] &= ~desired_event;
4100 	else if (event < 128)
4101 		ioc->event_masks[3] &= ~desired_event;
4102 }
4103 
4104 /**
4105  * _base_event_notification - send event notification
4106  * @ioc: per adapter object
4107  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4108  *
4109  * Returns 0 for success, non-zero for failure.
4110  */
4111 static int
4112 _base_event_notification(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4113 {
4114 	Mpi2EventNotificationRequest_t *mpi_request;
4115 	unsigned long timeleft;
4116 	u16 smid;
4117 	int r = 0;
4118 	int i;
4119 
4120 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4121 	    __func__));
4122 
4123 	if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4124 		pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4125 		    ioc->name, __func__);
4126 		return -EAGAIN;
4127 	}
4128 
4129 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4130 	if (!smid) {
4131 		pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4132 		    ioc->name, __func__);
4133 		return -EAGAIN;
4134 	}
4135 	ioc->base_cmds.status = MPT3_CMD_PENDING;
4136 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4137 	ioc->base_cmds.smid = smid;
4138 	memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
4139 	mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
4140 	mpi_request->VF_ID = 0; /* TODO */
4141 	mpi_request->VP_ID = 0;
4142 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
4143 		mpi_request->EventMasks[i] =
4144 		    cpu_to_le32(ioc->event_masks[i]);
4145 	init_completion(&ioc->base_cmds.done);
4146 	mpt3sas_base_put_smid_default(ioc, smid);
4147 	timeleft = wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
4148 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4149 		pr_err(MPT3SAS_FMT "%s: timeout\n",
4150 		    ioc->name, __func__);
4151 		_debug_dump_mf(mpi_request,
4152 		    sizeof(Mpi2EventNotificationRequest_t)/4);
4153 		if (ioc->base_cmds.status & MPT3_CMD_RESET)
4154 			r = -EFAULT;
4155 		else
4156 			r = -ETIME;
4157 	} else
4158 		dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s: complete\n",
4159 		    ioc->name, __func__));
4160 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4161 	return r;
4162 }
4163 
4164 /**
4165  * mpt3sas_base_validate_event_type - validating event types
4166  * @ioc: per adapter object
4167  * @event: firmware event
4168  *
4169  * This will turn on firmware event notification when application
4170  * ask for that event. We don't mask events that are already enabled.
4171  */
4172 void
4173 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
4174 {
4175 	int i, j;
4176 	u32 event_mask, desired_event;
4177 	u8 send_update_to_fw;
4178 
4179 	for (i = 0, send_update_to_fw = 0; i <
4180 	    MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
4181 		event_mask = ~event_type[i];
4182 		desired_event = 1;
4183 		for (j = 0; j < 32; j++) {
4184 			if (!(event_mask & desired_event) &&
4185 			    (ioc->event_masks[i] & desired_event)) {
4186 				ioc->event_masks[i] &= ~desired_event;
4187 				send_update_to_fw = 1;
4188 			}
4189 			desired_event = (desired_event << 1);
4190 		}
4191 	}
4192 
4193 	if (!send_update_to_fw)
4194 		return;
4195 
4196 	mutex_lock(&ioc->base_cmds.mutex);
4197 	_base_event_notification(ioc, CAN_SLEEP);
4198 	mutex_unlock(&ioc->base_cmds.mutex);
4199 }
4200 
4201 /**
4202  * _base_diag_reset - the "big hammer" start of day reset
4203  * @ioc: per adapter object
4204  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4205  *
4206  * Returns 0 for success, non-zero for failure.
4207  */
4208 static int
4209 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4210 {
4211 	u32 host_diagnostic;
4212 	u32 ioc_state;
4213 	u32 count;
4214 	u32 hcb_size;
4215 
4216 	pr_info(MPT3SAS_FMT "sending diag reset !!\n", ioc->name);
4217 
4218 	drsprintk(ioc, pr_info(MPT3SAS_FMT "clear interrupts\n",
4219 	    ioc->name));
4220 
4221 	count = 0;
4222 	do {
4223 		/* Write magic sequence to WriteSequence register
4224 		 * Loop until in diagnostic mode
4225 		 */
4226 		drsprintk(ioc, pr_info(MPT3SAS_FMT
4227 			"write magic sequence\n", ioc->name));
4228 		writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
4229 		writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
4230 		writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
4231 		writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
4232 		writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
4233 		writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
4234 		writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
4235 
4236 		/* wait 100 msec */
4237 		if (sleep_flag == CAN_SLEEP)
4238 			msleep(100);
4239 		else
4240 			mdelay(100);
4241 
4242 		if (count++ > 20)
4243 			goto out;
4244 
4245 		host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4246 		drsprintk(ioc, pr_info(MPT3SAS_FMT
4247 			"wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
4248 		    ioc->name, count, host_diagnostic));
4249 
4250 	} while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
4251 
4252 	hcb_size = readl(&ioc->chip->HCBSize);
4253 
4254 	drsprintk(ioc, pr_info(MPT3SAS_FMT "diag reset: issued\n",
4255 	    ioc->name));
4256 	writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
4257 	     &ioc->chip->HostDiagnostic);
4258 
4259 	/*This delay allows the chip PCIe hardware time to finish reset tasks*/
4260 	if (sleep_flag == CAN_SLEEP)
4261 		msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
4262 	else
4263 		mdelay(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
4264 
4265 	/* Approximately 300 second max wait */
4266 	for (count = 0; count < (300000000 /
4267 		MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
4268 
4269 		host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4270 
4271 		if (host_diagnostic == 0xFFFFFFFF)
4272 			goto out;
4273 		if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
4274 			break;
4275 
4276 		/* Wait to pass the second read delay window */
4277 		if (sleep_flag == CAN_SLEEP)
4278 			msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC
4279 								/ 1000);
4280 		else
4281 			mdelay(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC
4282 								/ 1000);
4283 	}
4284 
4285 	if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
4286 
4287 		drsprintk(ioc, pr_info(MPT3SAS_FMT
4288 		"restart the adapter assuming the HCB Address points to good F/W\n",
4289 		    ioc->name));
4290 		host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
4291 		host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
4292 		writel(host_diagnostic, &ioc->chip->HostDiagnostic);
4293 
4294 		drsprintk(ioc, pr_info(MPT3SAS_FMT
4295 		    "re-enable the HCDW\n", ioc->name));
4296 		writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
4297 		    &ioc->chip->HCBSize);
4298 	}
4299 
4300 	drsprintk(ioc, pr_info(MPT3SAS_FMT "restart the adapter\n",
4301 	    ioc->name));
4302 	writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
4303 	    &ioc->chip->HostDiagnostic);
4304 
4305 	drsprintk(ioc, pr_info(MPT3SAS_FMT
4306 		"disable writes to the diagnostic register\n", ioc->name));
4307 	writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
4308 
4309 	drsprintk(ioc, pr_info(MPT3SAS_FMT
4310 		"Wait for FW to go to the READY state\n", ioc->name));
4311 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20,
4312 	    sleep_flag);
4313 	if (ioc_state) {
4314 		pr_err(MPT3SAS_FMT
4315 			"%s: failed going to ready state (ioc_state=0x%x)\n",
4316 			ioc->name, __func__, ioc_state);
4317 		goto out;
4318 	}
4319 
4320 	pr_info(MPT3SAS_FMT "diag reset: SUCCESS\n", ioc->name);
4321 	return 0;
4322 
4323  out:
4324 	pr_err(MPT3SAS_FMT "diag reset: FAILED\n", ioc->name);
4325 	return -EFAULT;
4326 }
4327 
4328 /**
4329  * _base_make_ioc_ready - put controller in READY state
4330  * @ioc: per adapter object
4331  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4332  * @type: FORCE_BIG_HAMMER or SOFT_RESET
4333  *
4334  * Returns 0 for success, non-zero for failure.
4335  */
4336 static int
4337 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, int sleep_flag,
4338 	enum reset_type type)
4339 {
4340 	u32 ioc_state;
4341 	int rc;
4342 	int count;
4343 
4344 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4345 	    __func__));
4346 
4347 	if (ioc->pci_error_recovery)
4348 		return 0;
4349 
4350 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4351 	dhsprintk(ioc, pr_info(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
4352 	    ioc->name, __func__, ioc_state));
4353 
4354 	/* if in RESET state, it should move to READY state shortly */
4355 	count = 0;
4356 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
4357 		while ((ioc_state & MPI2_IOC_STATE_MASK) !=
4358 		    MPI2_IOC_STATE_READY) {
4359 			if (count++ == 10) {
4360 				pr_err(MPT3SAS_FMT
4361 					"%s: failed going to ready state (ioc_state=0x%x)\n",
4362 				    ioc->name, __func__, ioc_state);
4363 				return -EFAULT;
4364 			}
4365 			if (sleep_flag == CAN_SLEEP)
4366 				ssleep(1);
4367 			else
4368 				mdelay(1000);
4369 			ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4370 		}
4371 	}
4372 
4373 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
4374 		return 0;
4375 
4376 	if (ioc_state & MPI2_DOORBELL_USED) {
4377 		dhsprintk(ioc, pr_info(MPT3SAS_FMT
4378 			"unexpected doorbell active!\n",
4379 			ioc->name));
4380 		goto issue_diag_reset;
4381 	}
4382 
4383 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
4384 		mpt3sas_base_fault_info(ioc, ioc_state &
4385 		    MPI2_DOORBELL_DATA_MASK);
4386 		goto issue_diag_reset;
4387 	}
4388 
4389 	if (type == FORCE_BIG_HAMMER)
4390 		goto issue_diag_reset;
4391 
4392 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
4393 		if (!(_base_send_ioc_reset(ioc,
4394 		    MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15, CAN_SLEEP))) {
4395 			return 0;
4396 	}
4397 
4398  issue_diag_reset:
4399 	rc = _base_diag_reset(ioc, CAN_SLEEP);
4400 	return rc;
4401 }
4402 
4403 /**
4404  * _base_make_ioc_operational - put controller in OPERATIONAL state
4405  * @ioc: per adapter object
4406  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4407  *
4408  * Returns 0 for success, non-zero for failure.
4409  */
4410 static int
4411 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4412 {
4413 	int r, i;
4414 	unsigned long	flags;
4415 	u32 reply_address;
4416 	u16 smid;
4417 	struct _tr_list *delayed_tr, *delayed_tr_next;
4418 	struct adapter_reply_queue *reply_q;
4419 	long reply_post_free;
4420 	u32 reply_post_free_sz, index = 0;
4421 
4422 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4423 	    __func__));
4424 
4425 	/* clean the delayed target reset list */
4426 	list_for_each_entry_safe(delayed_tr, delayed_tr_next,
4427 	    &ioc->delayed_tr_list, list) {
4428 		list_del(&delayed_tr->list);
4429 		kfree(delayed_tr);
4430 	}
4431 
4432 
4433 	list_for_each_entry_safe(delayed_tr, delayed_tr_next,
4434 	    &ioc->delayed_tr_volume_list, list) {
4435 		list_del(&delayed_tr->list);
4436 		kfree(delayed_tr);
4437 	}
4438 
4439 	/* initialize the scsi lookup free list */
4440 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
4441 	INIT_LIST_HEAD(&ioc->free_list);
4442 	smid = 1;
4443 	for (i = 0; i < ioc->scsiio_depth; i++, smid++) {
4444 		INIT_LIST_HEAD(&ioc->scsi_lookup[i].chain_list);
4445 		ioc->scsi_lookup[i].cb_idx = 0xFF;
4446 		ioc->scsi_lookup[i].smid = smid;
4447 		ioc->scsi_lookup[i].scmd = NULL;
4448 		list_add_tail(&ioc->scsi_lookup[i].tracker_list,
4449 		    &ioc->free_list);
4450 	}
4451 
4452 	/* hi-priority queue */
4453 	INIT_LIST_HEAD(&ioc->hpr_free_list);
4454 	smid = ioc->hi_priority_smid;
4455 	for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
4456 		ioc->hpr_lookup[i].cb_idx = 0xFF;
4457 		ioc->hpr_lookup[i].smid = smid;
4458 		list_add_tail(&ioc->hpr_lookup[i].tracker_list,
4459 		    &ioc->hpr_free_list);
4460 	}
4461 
4462 	/* internal queue */
4463 	INIT_LIST_HEAD(&ioc->internal_free_list);
4464 	smid = ioc->internal_smid;
4465 	for (i = 0; i < ioc->internal_depth; i++, smid++) {
4466 		ioc->internal_lookup[i].cb_idx = 0xFF;
4467 		ioc->internal_lookup[i].smid = smid;
4468 		list_add_tail(&ioc->internal_lookup[i].tracker_list,
4469 		    &ioc->internal_free_list);
4470 	}
4471 
4472 	/* chain pool */
4473 	INIT_LIST_HEAD(&ioc->free_chain_list);
4474 	for (i = 0; i < ioc->chain_depth; i++)
4475 		list_add_tail(&ioc->chain_lookup[i].tracker_list,
4476 		    &ioc->free_chain_list);
4477 
4478 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
4479 
4480 	/* initialize Reply Free Queue */
4481 	for (i = 0, reply_address = (u32)ioc->reply_dma ;
4482 	    i < ioc->reply_free_queue_depth ; i++, reply_address +=
4483 	    ioc->reply_sz)
4484 		ioc->reply_free[i] = cpu_to_le32(reply_address);
4485 
4486 	/* initialize reply queues */
4487 	if (ioc->is_driver_loading)
4488 		_base_assign_reply_queues(ioc);
4489 
4490 	/* initialize Reply Post Free Queue */
4491 	reply_post_free_sz = ioc->reply_post_queue_depth *
4492 	    sizeof(Mpi2DefaultReplyDescriptor_t);
4493 	reply_post_free = (long)ioc->reply_post[index].reply_post_free;
4494 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
4495 		reply_q->reply_post_host_index = 0;
4496 		reply_q->reply_post_free = (Mpi2ReplyDescriptorsUnion_t *)
4497 		    reply_post_free;
4498 		for (i = 0; i < ioc->reply_post_queue_depth; i++)
4499 			reply_q->reply_post_free[i].Words =
4500 			    cpu_to_le64(ULLONG_MAX);
4501 		if (!_base_is_controller_msix_enabled(ioc))
4502 			goto skip_init_reply_post_free_queue;
4503 		/*
4504 		 * If RDPQ is enabled, switch to the next allocation.
4505 		 * Otherwise advance within the contiguous region.
4506 		 */
4507 		if (ioc->rdpq_array_enable)
4508 			reply_post_free = (long)
4509 			    ioc->reply_post[++index].reply_post_free;
4510 		else
4511 			reply_post_free += reply_post_free_sz;
4512 	}
4513  skip_init_reply_post_free_queue:
4514 
4515 	r = _base_send_ioc_init(ioc, sleep_flag);
4516 	if (r)
4517 		return r;
4518 
4519 	/* initialize reply free host index */
4520 	ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
4521 	writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
4522 
4523 	/* initialize reply post host index */
4524 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
4525 		writel(reply_q->msix_index << MPI2_RPHI_MSIX_INDEX_SHIFT,
4526 		    &ioc->chip->ReplyPostHostIndex);
4527 		if (!_base_is_controller_msix_enabled(ioc))
4528 			goto skip_init_reply_post_host_index;
4529 	}
4530 
4531  skip_init_reply_post_host_index:
4532 
4533 	_base_unmask_interrupts(ioc);
4534 	r = _base_event_notification(ioc, sleep_flag);
4535 	if (r)
4536 		return r;
4537 
4538 	if (sleep_flag == CAN_SLEEP)
4539 		_base_static_config_pages(ioc);
4540 
4541 
4542 	if (ioc->is_driver_loading) {
4543 		ioc->wait_for_discovery_to_complete =
4544 		    _base_determine_wait_on_discovery(ioc);
4545 
4546 		return r; /* scan_start and scan_finished support */
4547 	}
4548 
4549 	r = _base_send_port_enable(ioc, sleep_flag);
4550 	if (r)
4551 		return r;
4552 
4553 	return r;
4554 }
4555 
4556 /**
4557  * mpt3sas_base_free_resources - free resources controller resources
4558  * @ioc: per adapter object
4559  *
4560  * Return nothing.
4561  */
4562 void
4563 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
4564 {
4565 	struct pci_dev *pdev = ioc->pdev;
4566 
4567 	dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4568 	    __func__));
4569 
4570 	if (ioc->chip_phys && ioc->chip) {
4571 		_base_mask_interrupts(ioc);
4572 		ioc->shost_recovery = 1;
4573 		_base_make_ioc_ready(ioc, CAN_SLEEP, SOFT_RESET);
4574 		ioc->shost_recovery = 0;
4575 	}
4576 
4577 	_base_free_irq(ioc);
4578 	_base_disable_msix(ioc);
4579 
4580 	if (ioc->chip_phys && ioc->chip)
4581 		iounmap(ioc->chip);
4582 	ioc->chip_phys = 0;
4583 
4584 	if (pci_is_enabled(pdev)) {
4585 		pci_release_selected_regions(ioc->pdev, ioc->bars);
4586 		pci_disable_pcie_error_reporting(pdev);
4587 		pci_disable_device(pdev);
4588 	}
4589 	return;
4590 }
4591 
4592 /**
4593  * mpt3sas_base_attach - attach controller instance
4594  * @ioc: per adapter object
4595  *
4596  * Returns 0 for success, non-zero for failure.
4597  */
4598 int
4599 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
4600 {
4601 	int r, i;
4602 	int cpu_id, last_cpu_id = 0;
4603 
4604 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4605 	    __func__));
4606 
4607 	/* setup cpu_msix_table */
4608 	ioc->cpu_count = num_online_cpus();
4609 	for_each_online_cpu(cpu_id)
4610 		last_cpu_id = cpu_id;
4611 	ioc->cpu_msix_table_sz = last_cpu_id + 1;
4612 	ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
4613 	ioc->reply_queue_count = 1;
4614 	if (!ioc->cpu_msix_table) {
4615 		dfailprintk(ioc, pr_info(MPT3SAS_FMT
4616 			"allocation for cpu_msix_table failed!!!\n",
4617 			ioc->name));
4618 		r = -ENOMEM;
4619 		goto out_free_resources;
4620 	}
4621 
4622 	ioc->rdpq_array_enable_assigned = 0;
4623 	ioc->dma_mask = 0;
4624 	r = mpt3sas_base_map_resources(ioc);
4625 	if (r)
4626 		goto out_free_resources;
4627 
4628 
4629 	pci_set_drvdata(ioc->pdev, ioc->shost);
4630 	r = _base_get_ioc_facts(ioc, CAN_SLEEP);
4631 	if (r)
4632 		goto out_free_resources;
4633 
4634 	/*
4635 	 * In SAS3.0,
4636 	 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
4637 	 * Target Status - all require the IEEE formated scatter gather
4638 	 * elements.
4639 	 */
4640 
4641 	ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
4642 	ioc->build_sg = &_base_build_sg_ieee;
4643 	ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
4644 	ioc->mpi25 = 1;
4645 	ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
4646 
4647 	/*
4648 	 * These function pointers for other requests that don't
4649 	 * the require IEEE scatter gather elements.
4650 	 *
4651 	 * For example Configuration Pages and SAS IOUNIT Control don't.
4652 	 */
4653 	ioc->build_sg_mpi = &_base_build_sg;
4654 	ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
4655 
4656 	r = _base_make_ioc_ready(ioc, CAN_SLEEP, SOFT_RESET);
4657 	if (r)
4658 		goto out_free_resources;
4659 
4660 	ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
4661 	    sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
4662 	if (!ioc->pfacts) {
4663 		r = -ENOMEM;
4664 		goto out_free_resources;
4665 	}
4666 
4667 	for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
4668 		r = _base_get_port_facts(ioc, i, CAN_SLEEP);
4669 		if (r)
4670 			goto out_free_resources;
4671 	}
4672 
4673 	r = _base_allocate_memory_pools(ioc, CAN_SLEEP);
4674 	if (r)
4675 		goto out_free_resources;
4676 
4677 	init_waitqueue_head(&ioc->reset_wq);
4678 
4679 	/* allocate memory pd handle bitmask list */
4680 	ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
4681 	if (ioc->facts.MaxDevHandle % 8)
4682 		ioc->pd_handles_sz++;
4683 	ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
4684 	    GFP_KERNEL);
4685 	if (!ioc->pd_handles) {
4686 		r = -ENOMEM;
4687 		goto out_free_resources;
4688 	}
4689 	ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
4690 	    GFP_KERNEL);
4691 	if (!ioc->blocking_handles) {
4692 		r = -ENOMEM;
4693 		goto out_free_resources;
4694 	}
4695 
4696 	ioc->fwfault_debug = mpt3sas_fwfault_debug;
4697 
4698 	/* base internal command bits */
4699 	mutex_init(&ioc->base_cmds.mutex);
4700 	ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4701 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4702 
4703 	/* port_enable command bits */
4704 	ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4705 	ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
4706 
4707 	/* transport internal command bits */
4708 	ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4709 	ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
4710 	mutex_init(&ioc->transport_cmds.mutex);
4711 
4712 	/* scsih internal command bits */
4713 	ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4714 	ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
4715 	mutex_init(&ioc->scsih_cmds.mutex);
4716 
4717 	/* task management internal command bits */
4718 	ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4719 	ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
4720 	mutex_init(&ioc->tm_cmds.mutex);
4721 
4722 	/* config page internal command bits */
4723 	ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4724 	ioc->config_cmds.status = MPT3_CMD_NOT_USED;
4725 	mutex_init(&ioc->config_cmds.mutex);
4726 
4727 	/* ctl module internal command bits */
4728 	ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4729 	ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
4730 	ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
4731 	mutex_init(&ioc->ctl_cmds.mutex);
4732 
4733 	if (!ioc->base_cmds.reply || !ioc->transport_cmds.reply ||
4734 	    !ioc->scsih_cmds.reply || !ioc->tm_cmds.reply ||
4735 	    !ioc->config_cmds.reply || !ioc->ctl_cmds.reply ||
4736 	    !ioc->ctl_cmds.sense) {
4737 		r = -ENOMEM;
4738 		goto out_free_resources;
4739 	}
4740 
4741 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
4742 		ioc->event_masks[i] = -1;
4743 
4744 	/* here we enable the events we care about */
4745 	_base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
4746 	_base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
4747 	_base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
4748 	_base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
4749 	_base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
4750 	_base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
4751 	_base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
4752 	_base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
4753 	_base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
4754 	_base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
4755 	_base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
4756 
4757 	r = _base_make_ioc_operational(ioc, CAN_SLEEP);
4758 	if (r)
4759 		goto out_free_resources;
4760 
4761 	return 0;
4762 
4763  out_free_resources:
4764 
4765 	ioc->remove_host = 1;
4766 
4767 	mpt3sas_base_free_resources(ioc);
4768 	_base_release_memory_pools(ioc);
4769 	pci_set_drvdata(ioc->pdev, NULL);
4770 	kfree(ioc->cpu_msix_table);
4771 	kfree(ioc->pd_handles);
4772 	kfree(ioc->blocking_handles);
4773 	kfree(ioc->tm_cmds.reply);
4774 	kfree(ioc->transport_cmds.reply);
4775 	kfree(ioc->scsih_cmds.reply);
4776 	kfree(ioc->config_cmds.reply);
4777 	kfree(ioc->base_cmds.reply);
4778 	kfree(ioc->port_enable_cmds.reply);
4779 	kfree(ioc->ctl_cmds.reply);
4780 	kfree(ioc->ctl_cmds.sense);
4781 	kfree(ioc->pfacts);
4782 	ioc->ctl_cmds.reply = NULL;
4783 	ioc->base_cmds.reply = NULL;
4784 	ioc->tm_cmds.reply = NULL;
4785 	ioc->scsih_cmds.reply = NULL;
4786 	ioc->transport_cmds.reply = NULL;
4787 	ioc->config_cmds.reply = NULL;
4788 	ioc->pfacts = NULL;
4789 	return r;
4790 }
4791 
4792 
4793 /**
4794  * mpt3sas_base_detach - remove controller instance
4795  * @ioc: per adapter object
4796  *
4797  * Return nothing.
4798  */
4799 void
4800 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
4801 {
4802 	dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4803 	    __func__));
4804 
4805 	mpt3sas_base_stop_watchdog(ioc);
4806 	mpt3sas_base_free_resources(ioc);
4807 	_base_release_memory_pools(ioc);
4808 	pci_set_drvdata(ioc->pdev, NULL);
4809 	kfree(ioc->cpu_msix_table);
4810 	kfree(ioc->pd_handles);
4811 	kfree(ioc->blocking_handles);
4812 	kfree(ioc->pfacts);
4813 	kfree(ioc->ctl_cmds.reply);
4814 	kfree(ioc->ctl_cmds.sense);
4815 	kfree(ioc->base_cmds.reply);
4816 	kfree(ioc->port_enable_cmds.reply);
4817 	kfree(ioc->tm_cmds.reply);
4818 	kfree(ioc->transport_cmds.reply);
4819 	kfree(ioc->scsih_cmds.reply);
4820 	kfree(ioc->config_cmds.reply);
4821 }
4822 
4823 /**
4824  * _base_reset_handler - reset callback handler (for base)
4825  * @ioc: per adapter object
4826  * @reset_phase: phase
4827  *
4828  * The handler for doing any required cleanup or initialization.
4829  *
4830  * The reset phase can be MPT3_IOC_PRE_RESET, MPT3_IOC_AFTER_RESET,
4831  * MPT3_IOC_DONE_RESET
4832  *
4833  * Return nothing.
4834  */
4835 static void
4836 _base_reset_handler(struct MPT3SAS_ADAPTER *ioc, int reset_phase)
4837 {
4838 	mpt3sas_scsih_reset_handler(ioc, reset_phase);
4839 	mpt3sas_ctl_reset_handler(ioc, reset_phase);
4840 	switch (reset_phase) {
4841 	case MPT3_IOC_PRE_RESET:
4842 		dtmprintk(ioc, pr_info(MPT3SAS_FMT
4843 		"%s: MPT3_IOC_PRE_RESET\n", ioc->name, __func__));
4844 		break;
4845 	case MPT3_IOC_AFTER_RESET:
4846 		dtmprintk(ioc, pr_info(MPT3SAS_FMT
4847 		"%s: MPT3_IOC_AFTER_RESET\n", ioc->name, __func__));
4848 		if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
4849 			ioc->transport_cmds.status |= MPT3_CMD_RESET;
4850 			mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
4851 			complete(&ioc->transport_cmds.done);
4852 		}
4853 		if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4854 			ioc->base_cmds.status |= MPT3_CMD_RESET;
4855 			mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
4856 			complete(&ioc->base_cmds.done);
4857 		}
4858 		if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
4859 			ioc->port_enable_failed = 1;
4860 			ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
4861 			mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
4862 			if (ioc->is_driver_loading) {
4863 				ioc->start_scan_failed =
4864 				    MPI2_IOCSTATUS_INTERNAL_ERROR;
4865 				ioc->start_scan = 0;
4866 				ioc->port_enable_cmds.status =
4867 				    MPT3_CMD_NOT_USED;
4868 			} else
4869 				complete(&ioc->port_enable_cmds.done);
4870 		}
4871 		if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
4872 			ioc->config_cmds.status |= MPT3_CMD_RESET;
4873 			mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
4874 			ioc->config_cmds.smid = USHRT_MAX;
4875 			complete(&ioc->config_cmds.done);
4876 		}
4877 		break;
4878 	case MPT3_IOC_DONE_RESET:
4879 		dtmprintk(ioc, pr_info(MPT3SAS_FMT
4880 			"%s: MPT3_IOC_DONE_RESET\n", ioc->name, __func__));
4881 		break;
4882 	}
4883 }
4884 
4885 /**
4886  * _wait_for_commands_to_complete - reset controller
4887  * @ioc: Pointer to MPT_ADAPTER structure
4888  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4889  *
4890  * This function waiting(3s) for all pending commands to complete
4891  * prior to putting controller in reset.
4892  */
4893 static void
4894 _wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4895 {
4896 	u32 ioc_state;
4897 	unsigned long flags;
4898 	u16 i;
4899 
4900 	ioc->pending_io_count = 0;
4901 	if (sleep_flag != CAN_SLEEP)
4902 		return;
4903 
4904 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4905 	if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
4906 		return;
4907 
4908 	/* pending command count */
4909 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
4910 	for (i = 0; i < ioc->scsiio_depth; i++)
4911 		if (ioc->scsi_lookup[i].cb_idx != 0xFF)
4912 			ioc->pending_io_count++;
4913 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
4914 
4915 	if (!ioc->pending_io_count)
4916 		return;
4917 
4918 	/* wait for pending commands to complete */
4919 	wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
4920 }
4921 
4922 /**
4923  * mpt3sas_base_hard_reset_handler - reset controller
4924  * @ioc: Pointer to MPT_ADAPTER structure
4925  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4926  * @type: FORCE_BIG_HAMMER or SOFT_RESET
4927  *
4928  * Returns 0 for success, non-zero for failure.
4929  */
4930 int
4931 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc, int sleep_flag,
4932 	enum reset_type type)
4933 {
4934 	int r;
4935 	unsigned long flags;
4936 	u32 ioc_state;
4937 	u8 is_fault = 0, is_trigger = 0;
4938 
4939 	dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: enter\n", ioc->name,
4940 	    __func__));
4941 
4942 	if (ioc->pci_error_recovery) {
4943 		pr_err(MPT3SAS_FMT "%s: pci error recovery reset\n",
4944 		    ioc->name, __func__);
4945 		r = 0;
4946 		goto out_unlocked;
4947 	}
4948 
4949 	if (mpt3sas_fwfault_debug)
4950 		mpt3sas_halt_firmware(ioc);
4951 
4952 	/* TODO - What we really should be doing is pulling
4953 	 * out all the code associated with NO_SLEEP; its never used.
4954 	 * That is legacy code from mpt fusion driver, ported over.
4955 	 * I will leave this BUG_ON here for now till its been resolved.
4956 	 */
4957 	BUG_ON(sleep_flag == NO_SLEEP);
4958 
4959 	/* wait for an active reset in progress to complete */
4960 	if (!mutex_trylock(&ioc->reset_in_progress_mutex)) {
4961 		do {
4962 			ssleep(1);
4963 		} while (ioc->shost_recovery == 1);
4964 		dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
4965 		    __func__));
4966 		return ioc->ioc_reset_in_progress_status;
4967 	}
4968 
4969 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
4970 	ioc->shost_recovery = 1;
4971 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
4972 
4973 	if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
4974 	    MPT3_DIAG_BUFFER_IS_REGISTERED) &&
4975 	    (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
4976 	    MPT3_DIAG_BUFFER_IS_RELEASED))) {
4977 		is_trigger = 1;
4978 		ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4979 		if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
4980 			is_fault = 1;
4981 	}
4982 	_base_reset_handler(ioc, MPT3_IOC_PRE_RESET);
4983 	_wait_for_commands_to_complete(ioc, sleep_flag);
4984 	_base_mask_interrupts(ioc);
4985 	r = _base_make_ioc_ready(ioc, sleep_flag, type);
4986 	if (r)
4987 		goto out;
4988 	_base_reset_handler(ioc, MPT3_IOC_AFTER_RESET);
4989 
4990 	/* If this hard reset is called while port enable is active, then
4991 	 * there is no reason to call make_ioc_operational
4992 	 */
4993 	if (ioc->is_driver_loading && ioc->port_enable_failed) {
4994 		ioc->remove_host = 1;
4995 		r = -EFAULT;
4996 		goto out;
4997 	}
4998 	r = _base_get_ioc_facts(ioc, CAN_SLEEP);
4999 	if (r)
5000 		goto out;
5001 
5002 	if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
5003 		panic("%s: Issue occurred with flashing controller firmware."
5004 		      "Please reboot the system and ensure that the correct"
5005 		      " firmware version is running\n", ioc->name);
5006 
5007 	r = _base_make_ioc_operational(ioc, sleep_flag);
5008 	if (!r)
5009 		_base_reset_handler(ioc, MPT3_IOC_DONE_RESET);
5010 
5011  out:
5012 	dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: %s\n",
5013 	    ioc->name, __func__, ((r == 0) ? "SUCCESS" : "FAILED")));
5014 
5015 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5016 	ioc->ioc_reset_in_progress_status = r;
5017 	ioc->shost_recovery = 0;
5018 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5019 	ioc->ioc_reset_count++;
5020 	mutex_unlock(&ioc->reset_in_progress_mutex);
5021 
5022  out_unlocked:
5023 	if ((r == 0) && is_trigger) {
5024 		if (is_fault)
5025 			mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
5026 		else
5027 			mpt3sas_trigger_master(ioc,
5028 			    MASTER_TRIGGER_ADAPTER_RESET);
5029 	}
5030 	dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
5031 	    __func__));
5032 	return r;
5033 }
5034