xref: /openbmc/linux/drivers/scsi/mpt3sas/mpt3sas_base.c (revision 4ed91d48259d9ddd378424d008f2e6559f7e78f8)
1 /*
2  * This is the Fusion MPT base driver providing common API layer interface
3  * for access to MPT (Message Passing Technology) firmware.
4  *
5  * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6  * Copyright (C) 2012-2014  LSI Corporation
7  * Copyright (C) 2013-2014 Avago Technologies
8  *  (mailto: MPT-FusionLinux.pdl@avagotech.com)
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version 2
13  * of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * NO WARRANTY
21  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25  * solely responsible for determining the appropriateness of using and
26  * distributing the Program and assumes all risks associated with its
27  * exercise of rights under this Agreement, including but not limited to
28  * the risks and costs of program errors, damage to or loss of data,
29  * programs or equipment, and unavailability or interruption of operations.
30 
31  * DISCLAIMER OF LIABILITY
32  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39 
40  * You should have received a copy of the GNU General Public License
41  * along with this program; if not, write to the Free Software
42  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
43  * USA.
44  */
45 
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <linux/aer.h>
63 
64 
65 #include "mpt3sas_base.h"
66 
67 static MPT_CALLBACK	mpt_callbacks[MPT_MAX_CALLBACKS];
68 
69 
70 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
71 
72  /* maximum controller queue depth */
73 #define MAX_HBA_QUEUE_DEPTH	30000
74 #define MAX_CHAIN_DEPTH		100000
75 static int max_queue_depth = -1;
76 module_param(max_queue_depth, int, 0);
77 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
78 
79 static int max_sgl_entries = -1;
80 module_param(max_sgl_entries, int, 0);
81 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
82 
83 static int msix_disable = -1;
84 module_param(msix_disable, int, 0);
85 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
86 
87 static int smp_affinity_enable = 1;
88 module_param(smp_affinity_enable, int, S_IRUGO);
89 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disbale Default: enable(1)");
90 
91 static int max_msix_vectors = -1;
92 module_param(max_msix_vectors, int, 0);
93 MODULE_PARM_DESC(max_msix_vectors,
94 	" max msix vectors");
95 
96 static int mpt3sas_fwfault_debug;
97 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
98 	" enable detection of firmware fault and halt firmware - (default=0)");
99 
100 static int
101 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
102 
103 /**
104  * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
105  *
106  */
107 static int
108 _scsih_set_fwfault_debug(const char *val, struct kernel_param *kp)
109 {
110 	int ret = param_set_int(val, kp);
111 	struct MPT3SAS_ADAPTER *ioc;
112 
113 	if (ret)
114 		return ret;
115 
116 	/* global ioc spinlock to protect controller list on list operations */
117 	pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
118 	spin_lock(&gioc_lock);
119 	list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
120 		ioc->fwfault_debug = mpt3sas_fwfault_debug;
121 	spin_unlock(&gioc_lock);
122 	return 0;
123 }
124 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
125 	param_get_int, &mpt3sas_fwfault_debug, 0644);
126 
127 /**
128  *  mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
129  * @arg: input argument, used to derive ioc
130  *
131  * Return 0 if controller is removed from pci subsystem.
132  * Return -1 for other case.
133  */
134 static int mpt3sas_remove_dead_ioc_func(void *arg)
135 {
136 	struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
137 	struct pci_dev *pdev;
138 
139 	if ((ioc == NULL))
140 		return -1;
141 
142 	pdev = ioc->pdev;
143 	if ((pdev == NULL))
144 		return -1;
145 	pci_stop_and_remove_bus_device_locked(pdev);
146 	return 0;
147 }
148 
149 /**
150  * _base_fault_reset_work - workq handling ioc fault conditions
151  * @work: input argument, used to derive ioc
152  * Context: sleep.
153  *
154  * Return nothing.
155  */
156 static void
157 _base_fault_reset_work(struct work_struct *work)
158 {
159 	struct MPT3SAS_ADAPTER *ioc =
160 	    container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
161 	unsigned long	 flags;
162 	u32 doorbell;
163 	int rc;
164 	struct task_struct *p;
165 
166 
167 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
168 	if (ioc->shost_recovery || ioc->pci_error_recovery)
169 		goto rearm_timer;
170 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
171 
172 	doorbell = mpt3sas_base_get_iocstate(ioc, 0);
173 	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
174 		pr_err(MPT3SAS_FMT "SAS host is non-operational !!!!\n",
175 		    ioc->name);
176 
177 		/* It may be possible that EEH recovery can resolve some of
178 		 * pci bus failure issues rather removing the dead ioc function
179 		 * by considering controller is in a non-operational state. So
180 		 * here priority is given to the EEH recovery. If it doesn't
181 		 * not resolve this issue, mpt3sas driver will consider this
182 		 * controller to non-operational state and remove the dead ioc
183 		 * function.
184 		 */
185 		if (ioc->non_operational_loop++ < 5) {
186 			spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
187 							 flags);
188 			goto rearm_timer;
189 		}
190 
191 		/*
192 		 * Call _scsih_flush_pending_cmds callback so that we flush all
193 		 * pending commands back to OS. This call is required to aovid
194 		 * deadlock at block layer. Dead IOC will fail to do diag reset,
195 		 * and this call is safe since dead ioc will never return any
196 		 * command back from HW.
197 		 */
198 		ioc->schedule_dead_ioc_flush_running_cmds(ioc);
199 		/*
200 		 * Set remove_host flag early since kernel thread will
201 		 * take some time to execute.
202 		 */
203 		ioc->remove_host = 1;
204 		/*Remove the Dead Host */
205 		p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
206 		    "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
207 		if (IS_ERR(p))
208 			pr_err(MPT3SAS_FMT
209 			"%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
210 			ioc->name, __func__);
211 		else
212 			pr_err(MPT3SAS_FMT
213 			"%s: Running mpt3sas_dead_ioc thread success !!!!\n",
214 			ioc->name, __func__);
215 		return; /* don't rearm timer */
216 	}
217 
218 	ioc->non_operational_loop = 0;
219 
220 	if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
221 		rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
222 		pr_warn(MPT3SAS_FMT "%s: hard reset: %s\n", ioc->name,
223 		    __func__, (rc == 0) ? "success" : "failed");
224 		doorbell = mpt3sas_base_get_iocstate(ioc, 0);
225 		if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
226 			mpt3sas_base_fault_info(ioc, doorbell &
227 			    MPI2_DOORBELL_DATA_MASK);
228 		if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
229 		    MPI2_IOC_STATE_OPERATIONAL)
230 			return; /* don't rearm timer */
231 	}
232 
233 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
234  rearm_timer:
235 	if (ioc->fault_reset_work_q)
236 		queue_delayed_work(ioc->fault_reset_work_q,
237 		    &ioc->fault_reset_work,
238 		    msecs_to_jiffies(FAULT_POLLING_INTERVAL));
239 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
240 }
241 
242 /**
243  * mpt3sas_base_start_watchdog - start the fault_reset_work_q
244  * @ioc: per adapter object
245  * Context: sleep.
246  *
247  * Return nothing.
248  */
249 void
250 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
251 {
252 	unsigned long	 flags;
253 
254 	if (ioc->fault_reset_work_q)
255 		return;
256 
257 	/* initialize fault polling */
258 
259 	INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
260 	snprintf(ioc->fault_reset_work_q_name,
261 	    sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
262 	    ioc->driver_name, ioc->id);
263 	ioc->fault_reset_work_q =
264 		create_singlethread_workqueue(ioc->fault_reset_work_q_name);
265 	if (!ioc->fault_reset_work_q) {
266 		pr_err(MPT3SAS_FMT "%s: failed (line=%d)\n",
267 		    ioc->name, __func__, __LINE__);
268 			return;
269 	}
270 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
271 	if (ioc->fault_reset_work_q)
272 		queue_delayed_work(ioc->fault_reset_work_q,
273 		    &ioc->fault_reset_work,
274 		    msecs_to_jiffies(FAULT_POLLING_INTERVAL));
275 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
276 }
277 
278 /**
279  * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
280  * @ioc: per adapter object
281  * Context: sleep.
282  *
283  * Return nothing.
284  */
285 void
286 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
287 {
288 	unsigned long flags;
289 	struct workqueue_struct *wq;
290 
291 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
292 	wq = ioc->fault_reset_work_q;
293 	ioc->fault_reset_work_q = NULL;
294 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
295 	if (wq) {
296 		if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
297 			flush_workqueue(wq);
298 		destroy_workqueue(wq);
299 	}
300 }
301 
302 /**
303  * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
304  * @ioc: per adapter object
305  * @fault_code: fault code
306  *
307  * Return nothing.
308  */
309 void
310 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
311 {
312 	pr_err(MPT3SAS_FMT "fault_state(0x%04x)!\n",
313 	    ioc->name, fault_code);
314 }
315 
316 /**
317  * mpt3sas_halt_firmware - halt's mpt controller firmware
318  * @ioc: per adapter object
319  *
320  * For debugging timeout related issues.  Writing 0xCOFFEE00
321  * to the doorbell register will halt controller firmware. With
322  * the purpose to stop both driver and firmware, the enduser can
323  * obtain a ring buffer from controller UART.
324  */
325 void
326 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
327 {
328 	u32 doorbell;
329 
330 	if (!ioc->fwfault_debug)
331 		return;
332 
333 	dump_stack();
334 
335 	doorbell = readl(&ioc->chip->Doorbell);
336 	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
337 		mpt3sas_base_fault_info(ioc , doorbell);
338 	else {
339 		writel(0xC0FFEE00, &ioc->chip->Doorbell);
340 		pr_err(MPT3SAS_FMT "Firmware is halted due to command timeout\n",
341 			ioc->name);
342 	}
343 
344 	if (ioc->fwfault_debug == 2)
345 		for (;;)
346 			;
347 	else
348 		panic("panic in %s\n", __func__);
349 }
350 
351 /**
352  * _base_sas_ioc_info - verbose translation of the ioc status
353  * @ioc: per adapter object
354  * @mpi_reply: reply mf payload returned from firmware
355  * @request_hdr: request mf
356  *
357  * Return nothing.
358  */
359 static void
360 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
361 	MPI2RequestHeader_t *request_hdr)
362 {
363 	u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
364 	    MPI2_IOCSTATUS_MASK;
365 	char *desc = NULL;
366 	u16 frame_sz;
367 	char *func_str = NULL;
368 
369 	/* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
370 	if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
371 	    request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
372 	    request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
373 		return;
374 
375 	if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
376 		return;
377 
378 	switch (ioc_status) {
379 
380 /****************************************************************************
381 *  Common IOCStatus values for all replies
382 ****************************************************************************/
383 
384 	case MPI2_IOCSTATUS_INVALID_FUNCTION:
385 		desc = "invalid function";
386 		break;
387 	case MPI2_IOCSTATUS_BUSY:
388 		desc = "busy";
389 		break;
390 	case MPI2_IOCSTATUS_INVALID_SGL:
391 		desc = "invalid sgl";
392 		break;
393 	case MPI2_IOCSTATUS_INTERNAL_ERROR:
394 		desc = "internal error";
395 		break;
396 	case MPI2_IOCSTATUS_INVALID_VPID:
397 		desc = "invalid vpid";
398 		break;
399 	case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
400 		desc = "insufficient resources";
401 		break;
402 	case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
403 		desc = "insufficient power";
404 		break;
405 	case MPI2_IOCSTATUS_INVALID_FIELD:
406 		desc = "invalid field";
407 		break;
408 	case MPI2_IOCSTATUS_INVALID_STATE:
409 		desc = "invalid state";
410 		break;
411 	case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
412 		desc = "op state not supported";
413 		break;
414 
415 /****************************************************************************
416 *  Config IOCStatus values
417 ****************************************************************************/
418 
419 	case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
420 		desc = "config invalid action";
421 		break;
422 	case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
423 		desc = "config invalid type";
424 		break;
425 	case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
426 		desc = "config invalid page";
427 		break;
428 	case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
429 		desc = "config invalid data";
430 		break;
431 	case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
432 		desc = "config no defaults";
433 		break;
434 	case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
435 		desc = "config cant commit";
436 		break;
437 
438 /****************************************************************************
439 *  SCSI IO Reply
440 ****************************************************************************/
441 
442 	case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
443 	case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
444 	case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
445 	case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
446 	case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
447 	case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
448 	case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
449 	case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
450 	case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
451 	case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
452 	case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
453 	case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
454 		break;
455 
456 /****************************************************************************
457 *  For use by SCSI Initiator and SCSI Target end-to-end data protection
458 ****************************************************************************/
459 
460 	case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
461 		desc = "eedp guard error";
462 		break;
463 	case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
464 		desc = "eedp ref tag error";
465 		break;
466 	case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
467 		desc = "eedp app tag error";
468 		break;
469 
470 /****************************************************************************
471 *  SCSI Target values
472 ****************************************************************************/
473 
474 	case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
475 		desc = "target invalid io index";
476 		break;
477 	case MPI2_IOCSTATUS_TARGET_ABORTED:
478 		desc = "target aborted";
479 		break;
480 	case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
481 		desc = "target no conn retryable";
482 		break;
483 	case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
484 		desc = "target no connection";
485 		break;
486 	case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
487 		desc = "target xfer count mismatch";
488 		break;
489 	case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
490 		desc = "target data offset error";
491 		break;
492 	case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
493 		desc = "target too much write data";
494 		break;
495 	case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
496 		desc = "target iu too short";
497 		break;
498 	case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
499 		desc = "target ack nak timeout";
500 		break;
501 	case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
502 		desc = "target nak received";
503 		break;
504 
505 /****************************************************************************
506 *  Serial Attached SCSI values
507 ****************************************************************************/
508 
509 	case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
510 		desc = "smp request failed";
511 		break;
512 	case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
513 		desc = "smp data overrun";
514 		break;
515 
516 /****************************************************************************
517 *  Diagnostic Buffer Post / Diagnostic Release values
518 ****************************************************************************/
519 
520 	case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
521 		desc = "diagnostic released";
522 		break;
523 	default:
524 		break;
525 	}
526 
527 	if (!desc)
528 		return;
529 
530 	switch (request_hdr->Function) {
531 	case MPI2_FUNCTION_CONFIG:
532 		frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
533 		func_str = "config_page";
534 		break;
535 	case MPI2_FUNCTION_SCSI_TASK_MGMT:
536 		frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
537 		func_str = "task_mgmt";
538 		break;
539 	case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
540 		frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
541 		func_str = "sas_iounit_ctl";
542 		break;
543 	case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
544 		frame_sz = sizeof(Mpi2SepRequest_t);
545 		func_str = "enclosure";
546 		break;
547 	case MPI2_FUNCTION_IOC_INIT:
548 		frame_sz = sizeof(Mpi2IOCInitRequest_t);
549 		func_str = "ioc_init";
550 		break;
551 	case MPI2_FUNCTION_PORT_ENABLE:
552 		frame_sz = sizeof(Mpi2PortEnableRequest_t);
553 		func_str = "port_enable";
554 		break;
555 	case MPI2_FUNCTION_SMP_PASSTHROUGH:
556 		frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
557 		func_str = "smp_passthru";
558 		break;
559 	default:
560 		frame_sz = 32;
561 		func_str = "unknown";
562 		break;
563 	}
564 
565 	pr_warn(MPT3SAS_FMT "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
566 		ioc->name, desc, ioc_status, request_hdr, func_str);
567 
568 	_debug_dump_mf(request_hdr, frame_sz/4);
569 }
570 
571 /**
572  * _base_display_event_data - verbose translation of firmware asyn events
573  * @ioc: per adapter object
574  * @mpi_reply: reply mf payload returned from firmware
575  *
576  * Return nothing.
577  */
578 static void
579 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
580 	Mpi2EventNotificationReply_t *mpi_reply)
581 {
582 	char *desc = NULL;
583 	u16 event;
584 
585 	if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
586 		return;
587 
588 	event = le16_to_cpu(mpi_reply->Event);
589 
590 	switch (event) {
591 	case MPI2_EVENT_LOG_DATA:
592 		desc = "Log Data";
593 		break;
594 	case MPI2_EVENT_STATE_CHANGE:
595 		desc = "Status Change";
596 		break;
597 	case MPI2_EVENT_HARD_RESET_RECEIVED:
598 		desc = "Hard Reset Received";
599 		break;
600 	case MPI2_EVENT_EVENT_CHANGE:
601 		desc = "Event Change";
602 		break;
603 	case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
604 		desc = "Device Status Change";
605 		break;
606 	case MPI2_EVENT_IR_OPERATION_STATUS:
607 		if (!ioc->hide_ir_msg)
608 			desc = "IR Operation Status";
609 		break;
610 	case MPI2_EVENT_SAS_DISCOVERY:
611 	{
612 		Mpi2EventDataSasDiscovery_t *event_data =
613 		    (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
614 		pr_info(MPT3SAS_FMT "Discovery: (%s)", ioc->name,
615 		    (event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED) ?
616 		    "start" : "stop");
617 		if (event_data->DiscoveryStatus)
618 			pr_info("discovery_status(0x%08x)",
619 			    le32_to_cpu(event_data->DiscoveryStatus));
620 			pr_info("\n");
621 		return;
622 	}
623 	case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
624 		desc = "SAS Broadcast Primitive";
625 		break;
626 	case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
627 		desc = "SAS Init Device Status Change";
628 		break;
629 	case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
630 		desc = "SAS Init Table Overflow";
631 		break;
632 	case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
633 		desc = "SAS Topology Change List";
634 		break;
635 	case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
636 		desc = "SAS Enclosure Device Status Change";
637 		break;
638 	case MPI2_EVENT_IR_VOLUME:
639 		if (!ioc->hide_ir_msg)
640 			desc = "IR Volume";
641 		break;
642 	case MPI2_EVENT_IR_PHYSICAL_DISK:
643 		if (!ioc->hide_ir_msg)
644 			desc = "IR Physical Disk";
645 		break;
646 	case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
647 		if (!ioc->hide_ir_msg)
648 			desc = "IR Configuration Change List";
649 		break;
650 	case MPI2_EVENT_LOG_ENTRY_ADDED:
651 		if (!ioc->hide_ir_msg)
652 			desc = "Log Entry Added";
653 		break;
654 	case MPI2_EVENT_TEMP_THRESHOLD:
655 		desc = "Temperature Threshold";
656 		break;
657 	case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
658 		desc = "Active cable exception";
659 		break;
660 	}
661 
662 	if (!desc)
663 		return;
664 
665 	pr_info(MPT3SAS_FMT "%s\n", ioc->name, desc);
666 }
667 
668 /**
669  * _base_sas_log_info - verbose translation of firmware log info
670  * @ioc: per adapter object
671  * @log_info: log info
672  *
673  * Return nothing.
674  */
675 static void
676 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
677 {
678 	union loginfo_type {
679 		u32	loginfo;
680 		struct {
681 			u32	subcode:16;
682 			u32	code:8;
683 			u32	originator:4;
684 			u32	bus_type:4;
685 		} dw;
686 	};
687 	union loginfo_type sas_loginfo;
688 	char *originator_str = NULL;
689 
690 	sas_loginfo.loginfo = log_info;
691 	if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
692 		return;
693 
694 	/* each nexus loss loginfo */
695 	if (log_info == 0x31170000)
696 		return;
697 
698 	/* eat the loginfos associated with task aborts */
699 	if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
700 	    0x31140000 || log_info == 0x31130000))
701 		return;
702 
703 	switch (sas_loginfo.dw.originator) {
704 	case 0:
705 		originator_str = "IOP";
706 		break;
707 	case 1:
708 		originator_str = "PL";
709 		break;
710 	case 2:
711 		if (!ioc->hide_ir_msg)
712 			originator_str = "IR";
713 		else
714 			originator_str = "WarpDrive";
715 		break;
716 	}
717 
718 	pr_warn(MPT3SAS_FMT
719 		"log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
720 		ioc->name, log_info,
721 	     originator_str, sas_loginfo.dw.code,
722 	     sas_loginfo.dw.subcode);
723 }
724 
725 /**
726  * _base_display_reply_info -
727  * @ioc: per adapter object
728  * @smid: system request message index
729  * @msix_index: MSIX table index supplied by the OS
730  * @reply: reply message frame(lower 32bit addr)
731  *
732  * Return nothing.
733  */
734 static void
735 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
736 	u32 reply)
737 {
738 	MPI2DefaultReply_t *mpi_reply;
739 	u16 ioc_status;
740 	u32 loginfo = 0;
741 
742 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
743 	if (unlikely(!mpi_reply)) {
744 		pr_err(MPT3SAS_FMT "mpi_reply not valid at %s:%d/%s()!\n",
745 		    ioc->name, __FILE__, __LINE__, __func__);
746 		return;
747 	}
748 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
749 
750 	if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
751 	    (ioc->logging_level & MPT_DEBUG_REPLY)) {
752 		_base_sas_ioc_info(ioc , mpi_reply,
753 		   mpt3sas_base_get_msg_frame(ioc, smid));
754 	}
755 
756 	if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
757 		loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
758 		_base_sas_log_info(ioc, loginfo);
759 	}
760 
761 	if (ioc_status || loginfo) {
762 		ioc_status &= MPI2_IOCSTATUS_MASK;
763 		mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
764 	}
765 }
766 
767 /**
768  * mpt3sas_base_done - base internal command completion routine
769  * @ioc: per adapter object
770  * @smid: system request message index
771  * @msix_index: MSIX table index supplied by the OS
772  * @reply: reply message frame(lower 32bit addr)
773  *
774  * Return 1 meaning mf should be freed from _base_interrupt
775  *        0 means the mf is freed from this function.
776  */
777 u8
778 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
779 	u32 reply)
780 {
781 	MPI2DefaultReply_t *mpi_reply;
782 
783 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
784 	if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
785 		return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
786 
787 	if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
788 		return 1;
789 
790 	ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
791 	if (mpi_reply) {
792 		ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
793 		memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
794 	}
795 	ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
796 
797 	complete(&ioc->base_cmds.done);
798 	return 1;
799 }
800 
801 /**
802  * _base_async_event - main callback handler for firmware asyn events
803  * @ioc: per adapter object
804  * @msix_index: MSIX table index supplied by the OS
805  * @reply: reply message frame(lower 32bit addr)
806  *
807  * Return 1 meaning mf should be freed from _base_interrupt
808  *        0 means the mf is freed from this function.
809  */
810 static u8
811 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
812 {
813 	Mpi2EventNotificationReply_t *mpi_reply;
814 	Mpi2EventAckRequest_t *ack_request;
815 	u16 smid;
816 	struct _event_ack_list *delayed_event_ack;
817 
818 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
819 	if (!mpi_reply)
820 		return 1;
821 	if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
822 		return 1;
823 
824 	_base_display_event_data(ioc, mpi_reply);
825 
826 	if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
827 		goto out;
828 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
829 	if (!smid) {
830 		delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
831 					GFP_ATOMIC);
832 		if (!delayed_event_ack)
833 			goto out;
834 		INIT_LIST_HEAD(&delayed_event_ack->list);
835 		delayed_event_ack->Event = mpi_reply->Event;
836 		delayed_event_ack->EventContext = mpi_reply->EventContext;
837 		list_add_tail(&delayed_event_ack->list,
838 				&ioc->delayed_event_ack_list);
839 		dewtprintk(ioc, pr_info(MPT3SAS_FMT
840 				"DELAYED: EVENT ACK: event (0x%04x)\n",
841 				ioc->name, le16_to_cpu(mpi_reply->Event)));
842 		goto out;
843 	}
844 
845 	ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
846 	memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
847 	ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
848 	ack_request->Event = mpi_reply->Event;
849 	ack_request->EventContext = mpi_reply->EventContext;
850 	ack_request->VF_ID = 0;  /* TODO */
851 	ack_request->VP_ID = 0;
852 	ioc->put_smid_default(ioc, smid);
853 
854  out:
855 
856 	/* scsih callback handler */
857 	mpt3sas_scsih_event_callback(ioc, msix_index, reply);
858 
859 	/* ctl callback handler */
860 	mpt3sas_ctl_event_callback(ioc, msix_index, reply);
861 
862 	return 1;
863 }
864 
865 /**
866  * _base_get_cb_idx - obtain the callback index
867  * @ioc: per adapter object
868  * @smid: system request message index
869  *
870  * Return callback index.
871  */
872 static u8
873 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
874 {
875 	int i;
876 	u8 cb_idx;
877 
878 	if (smid < ioc->hi_priority_smid) {
879 		i = smid - 1;
880 		cb_idx = ioc->scsi_lookup[i].cb_idx;
881 	} else if (smid < ioc->internal_smid) {
882 		i = smid - ioc->hi_priority_smid;
883 		cb_idx = ioc->hpr_lookup[i].cb_idx;
884 	} else if (smid <= ioc->hba_queue_depth) {
885 		i = smid - ioc->internal_smid;
886 		cb_idx = ioc->internal_lookup[i].cb_idx;
887 	} else
888 		cb_idx = 0xFF;
889 	return cb_idx;
890 }
891 
892 /**
893  * _base_mask_interrupts - disable interrupts
894  * @ioc: per adapter object
895  *
896  * Disabling ResetIRQ, Reply and Doorbell Interrupts
897  *
898  * Return nothing.
899  */
900 static void
901 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
902 {
903 	u32 him_register;
904 
905 	ioc->mask_interrupts = 1;
906 	him_register = readl(&ioc->chip->HostInterruptMask);
907 	him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
908 	writel(him_register, &ioc->chip->HostInterruptMask);
909 	readl(&ioc->chip->HostInterruptMask);
910 }
911 
912 /**
913  * _base_unmask_interrupts - enable interrupts
914  * @ioc: per adapter object
915  *
916  * Enabling only Reply Interrupts
917  *
918  * Return nothing.
919  */
920 static void
921 _base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
922 {
923 	u32 him_register;
924 
925 	him_register = readl(&ioc->chip->HostInterruptMask);
926 	him_register &= ~MPI2_HIM_RIM;
927 	writel(him_register, &ioc->chip->HostInterruptMask);
928 	ioc->mask_interrupts = 0;
929 }
930 
931 union reply_descriptor {
932 	u64 word;
933 	struct {
934 		u32 low;
935 		u32 high;
936 	} u;
937 };
938 
939 /**
940  * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
941  * @irq: irq number (not used)
942  * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
943  * @r: pt_regs pointer (not used)
944  *
945  * Return IRQ_HANDLE if processed, else IRQ_NONE.
946  */
947 static irqreturn_t
948 _base_interrupt(int irq, void *bus_id)
949 {
950 	struct adapter_reply_queue *reply_q = bus_id;
951 	union reply_descriptor rd;
952 	u32 completed_cmds;
953 	u8 request_desript_type;
954 	u16 smid;
955 	u8 cb_idx;
956 	u32 reply;
957 	u8 msix_index = reply_q->msix_index;
958 	struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
959 	Mpi2ReplyDescriptorsUnion_t *rpf;
960 	u8 rc;
961 
962 	if (ioc->mask_interrupts)
963 		return IRQ_NONE;
964 
965 	if (!atomic_add_unless(&reply_q->busy, 1, 1))
966 		return IRQ_NONE;
967 
968 	rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
969 	request_desript_type = rpf->Default.ReplyFlags
970 	     & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
971 	if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
972 		atomic_dec(&reply_q->busy);
973 		return IRQ_NONE;
974 	}
975 
976 	completed_cmds = 0;
977 	cb_idx = 0xFF;
978 	do {
979 		rd.word = le64_to_cpu(rpf->Words);
980 		if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
981 			goto out;
982 		reply = 0;
983 		smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
984 		if (request_desript_type ==
985 		    MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
986 		    request_desript_type ==
987 		    MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS) {
988 			cb_idx = _base_get_cb_idx(ioc, smid);
989 			if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
990 			    (likely(mpt_callbacks[cb_idx] != NULL))) {
991 				rc = mpt_callbacks[cb_idx](ioc, smid,
992 				    msix_index, 0);
993 				if (rc)
994 					mpt3sas_base_free_smid(ioc, smid);
995 			}
996 		} else if (request_desript_type ==
997 		    MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
998 			reply = le32_to_cpu(
999 			    rpf->AddressReply.ReplyFrameAddress);
1000 			if (reply > ioc->reply_dma_max_address ||
1001 			    reply < ioc->reply_dma_min_address)
1002 				reply = 0;
1003 			if (smid) {
1004 				cb_idx = _base_get_cb_idx(ioc, smid);
1005 				if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1006 				    (likely(mpt_callbacks[cb_idx] != NULL))) {
1007 					rc = mpt_callbacks[cb_idx](ioc, smid,
1008 					    msix_index, reply);
1009 					if (reply)
1010 						_base_display_reply_info(ioc,
1011 						    smid, msix_index, reply);
1012 					if (rc)
1013 						mpt3sas_base_free_smid(ioc,
1014 						    smid);
1015 				}
1016 			} else {
1017 				_base_async_event(ioc, msix_index, reply);
1018 			}
1019 
1020 			/* reply free queue handling */
1021 			if (reply) {
1022 				ioc->reply_free_host_index =
1023 				    (ioc->reply_free_host_index ==
1024 				    (ioc->reply_free_queue_depth - 1)) ?
1025 				    0 : ioc->reply_free_host_index + 1;
1026 				ioc->reply_free[ioc->reply_free_host_index] =
1027 				    cpu_to_le32(reply);
1028 				wmb();
1029 				writel(ioc->reply_free_host_index,
1030 				    &ioc->chip->ReplyFreeHostIndex);
1031 			}
1032 		}
1033 
1034 		rpf->Words = cpu_to_le64(ULLONG_MAX);
1035 		reply_q->reply_post_host_index =
1036 		    (reply_q->reply_post_host_index ==
1037 		    (ioc->reply_post_queue_depth - 1)) ? 0 :
1038 		    reply_q->reply_post_host_index + 1;
1039 		request_desript_type =
1040 		    reply_q->reply_post_free[reply_q->reply_post_host_index].
1041 		    Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1042 		completed_cmds++;
1043 		/* Update the reply post host index after continuously
1044 		 * processing the threshold number of Reply Descriptors.
1045 		 * So that FW can find enough entries to post the Reply
1046 		 * Descriptors in the reply descriptor post queue.
1047 		 */
1048 		if (completed_cmds > ioc->hba_queue_depth/3) {
1049 			if (ioc->combined_reply_queue) {
1050 				writel(reply_q->reply_post_host_index |
1051 						((msix_index  & 7) <<
1052 						 MPI2_RPHI_MSIX_INDEX_SHIFT),
1053 				    ioc->replyPostRegisterIndex[msix_index/8]);
1054 			} else {
1055 				writel(reply_q->reply_post_host_index |
1056 						(msix_index <<
1057 						 MPI2_RPHI_MSIX_INDEX_SHIFT),
1058 						&ioc->chip->ReplyPostHostIndex);
1059 			}
1060 			completed_cmds = 1;
1061 		}
1062 		if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1063 			goto out;
1064 		if (!reply_q->reply_post_host_index)
1065 			rpf = reply_q->reply_post_free;
1066 		else
1067 			rpf++;
1068 	} while (1);
1069 
1070  out:
1071 
1072 	if (!completed_cmds) {
1073 		atomic_dec(&reply_q->busy);
1074 		return IRQ_NONE;
1075 	}
1076 
1077 	wmb();
1078 	if (ioc->is_warpdrive) {
1079 		writel(reply_q->reply_post_host_index,
1080 		ioc->reply_post_host_index[msix_index]);
1081 		atomic_dec(&reply_q->busy);
1082 		return IRQ_HANDLED;
1083 	}
1084 
1085 	/* Update Reply Post Host Index.
1086 	 * For those HBA's which support combined reply queue feature
1087 	 * 1. Get the correct Supplemental Reply Post Host Index Register.
1088 	 *    i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1089 	 *    Index Register address bank i.e replyPostRegisterIndex[],
1090 	 * 2. Then update this register with new reply host index value
1091 	 *    in ReplyPostIndex field and the MSIxIndex field with
1092 	 *    msix_index value reduced to a value between 0 and 7,
1093 	 *    using a modulo 8 operation. Since each Supplemental Reply Post
1094 	 *    Host Index Register supports 8 MSI-X vectors.
1095 	 *
1096 	 * For other HBA's just update the Reply Post Host Index register with
1097 	 * new reply host index value in ReplyPostIndex Field and msix_index
1098 	 * value in MSIxIndex field.
1099 	 */
1100 	if (ioc->combined_reply_queue)
1101 		writel(reply_q->reply_post_host_index | ((msix_index  & 7) <<
1102 			MPI2_RPHI_MSIX_INDEX_SHIFT),
1103 			ioc->replyPostRegisterIndex[msix_index/8]);
1104 	else
1105 		writel(reply_q->reply_post_host_index | (msix_index <<
1106 			MPI2_RPHI_MSIX_INDEX_SHIFT),
1107 			&ioc->chip->ReplyPostHostIndex);
1108 	atomic_dec(&reply_q->busy);
1109 	return IRQ_HANDLED;
1110 }
1111 
1112 /**
1113  * _base_is_controller_msix_enabled - is controller support muli-reply queues
1114  * @ioc: per adapter object
1115  *
1116  */
1117 static inline int
1118 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1119 {
1120 	return (ioc->facts.IOCCapabilities &
1121 	    MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1122 }
1123 
1124 /**
1125  * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1126  * @ioc: per adapter object
1127  * Context: non ISR conext
1128  *
1129  * Called when a Task Management request has completed.
1130  *
1131  * Return nothing.
1132  */
1133 void
1134 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc)
1135 {
1136 	struct adapter_reply_queue *reply_q;
1137 
1138 	/* If MSIX capability is turned off
1139 	 * then multi-queues are not enabled
1140 	 */
1141 	if (!_base_is_controller_msix_enabled(ioc))
1142 		return;
1143 
1144 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1145 		if (ioc->shost_recovery || ioc->remove_host ||
1146 				ioc->pci_error_recovery)
1147 			return;
1148 		/* TMs are on msix_index == 0 */
1149 		if (reply_q->msix_index == 0)
1150 			continue;
1151 		synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
1152 	}
1153 }
1154 
1155 /**
1156  * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1157  * @cb_idx: callback index
1158  *
1159  * Return nothing.
1160  */
1161 void
1162 mpt3sas_base_release_callback_handler(u8 cb_idx)
1163 {
1164 	mpt_callbacks[cb_idx] = NULL;
1165 }
1166 
1167 /**
1168  * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1169  * @cb_func: callback function
1170  *
1171  * Returns cb_func.
1172  */
1173 u8
1174 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1175 {
1176 	u8 cb_idx;
1177 
1178 	for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1179 		if (mpt_callbacks[cb_idx] == NULL)
1180 			break;
1181 
1182 	mpt_callbacks[cb_idx] = cb_func;
1183 	return cb_idx;
1184 }
1185 
1186 /**
1187  * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1188  *
1189  * Return nothing.
1190  */
1191 void
1192 mpt3sas_base_initialize_callback_handler(void)
1193 {
1194 	u8 cb_idx;
1195 
1196 	for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1197 		mpt3sas_base_release_callback_handler(cb_idx);
1198 }
1199 
1200 
1201 /**
1202  * _base_build_zero_len_sge - build zero length sg entry
1203  * @ioc: per adapter object
1204  * @paddr: virtual address for SGE
1205  *
1206  * Create a zero length scatter gather entry to insure the IOCs hardware has
1207  * something to use if the target device goes brain dead and tries
1208  * to send data even when none is asked for.
1209  *
1210  * Return nothing.
1211  */
1212 static void
1213 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1214 {
1215 	u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1216 	    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1217 	    MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1218 	    MPI2_SGE_FLAGS_SHIFT);
1219 	ioc->base_add_sg_single(paddr, flags_length, -1);
1220 }
1221 
1222 /**
1223  * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1224  * @paddr: virtual address for SGE
1225  * @flags_length: SGE flags and data transfer length
1226  * @dma_addr: Physical address
1227  *
1228  * Return nothing.
1229  */
1230 static void
1231 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1232 {
1233 	Mpi2SGESimple32_t *sgel = paddr;
1234 
1235 	flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1236 	    MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1237 	sgel->FlagsLength = cpu_to_le32(flags_length);
1238 	sgel->Address = cpu_to_le32(dma_addr);
1239 }
1240 
1241 
1242 /**
1243  * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1244  * @paddr: virtual address for SGE
1245  * @flags_length: SGE flags and data transfer length
1246  * @dma_addr: Physical address
1247  *
1248  * Return nothing.
1249  */
1250 static void
1251 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1252 {
1253 	Mpi2SGESimple64_t *sgel = paddr;
1254 
1255 	flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
1256 	    MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1257 	sgel->FlagsLength = cpu_to_le32(flags_length);
1258 	sgel->Address = cpu_to_le64(dma_addr);
1259 }
1260 
1261 /**
1262  * _base_get_chain_buffer_tracker - obtain chain tracker
1263  * @ioc: per adapter object
1264  * @smid: smid associated to an IO request
1265  *
1266  * Returns chain tracker(from ioc->free_chain_list)
1267  */
1268 static struct chain_tracker *
1269 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1270 {
1271 	struct chain_tracker *chain_req;
1272 	unsigned long flags;
1273 
1274 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
1275 	if (list_empty(&ioc->free_chain_list)) {
1276 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1277 		dfailprintk(ioc, pr_warn(MPT3SAS_FMT
1278 			"chain buffers not available\n", ioc->name));
1279 		return NULL;
1280 	}
1281 	chain_req = list_entry(ioc->free_chain_list.next,
1282 	    struct chain_tracker, tracker_list);
1283 	list_del_init(&chain_req->tracker_list);
1284 	list_add_tail(&chain_req->tracker_list,
1285 	    &ioc->scsi_lookup[smid - 1].chain_list);
1286 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1287 	return chain_req;
1288 }
1289 
1290 
1291 /**
1292  * _base_build_sg - build generic sg
1293  * @ioc: per adapter object
1294  * @psge: virtual address for SGE
1295  * @data_out_dma: physical address for WRITES
1296  * @data_out_sz: data xfer size for WRITES
1297  * @data_in_dma: physical address for READS
1298  * @data_in_sz: data xfer size for READS
1299  *
1300  * Return nothing.
1301  */
1302 static void
1303 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
1304 	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1305 	size_t data_in_sz)
1306 {
1307 	u32 sgl_flags;
1308 
1309 	if (!data_out_sz && !data_in_sz) {
1310 		_base_build_zero_len_sge(ioc, psge);
1311 		return;
1312 	}
1313 
1314 	if (data_out_sz && data_in_sz) {
1315 		/* WRITE sgel first */
1316 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1317 		    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
1318 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1319 		ioc->base_add_sg_single(psge, sgl_flags |
1320 		    data_out_sz, data_out_dma);
1321 
1322 		/* incr sgel */
1323 		psge += ioc->sge_size;
1324 
1325 		/* READ sgel last */
1326 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1327 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1328 		    MPI2_SGE_FLAGS_END_OF_LIST);
1329 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1330 		ioc->base_add_sg_single(psge, sgl_flags |
1331 		    data_in_sz, data_in_dma);
1332 	} else if (data_out_sz) /* WRITE */ {
1333 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1334 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1335 		    MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
1336 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1337 		ioc->base_add_sg_single(psge, sgl_flags |
1338 		    data_out_sz, data_out_dma);
1339 	} else if (data_in_sz) /* READ */ {
1340 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1341 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1342 		    MPI2_SGE_FLAGS_END_OF_LIST);
1343 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1344 		ioc->base_add_sg_single(psge, sgl_flags |
1345 		    data_in_sz, data_in_dma);
1346 	}
1347 }
1348 
1349 /* IEEE format sgls */
1350 
1351 /**
1352  * _base_add_sg_single_ieee - add sg element for IEEE format
1353  * @paddr: virtual address for SGE
1354  * @flags: SGE flags
1355  * @chain_offset: number of 128 byte elements from start of segment
1356  * @length: data transfer length
1357  * @dma_addr: Physical address
1358  *
1359  * Return nothing.
1360  */
1361 static void
1362 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
1363 	dma_addr_t dma_addr)
1364 {
1365 	Mpi25IeeeSgeChain64_t *sgel = paddr;
1366 
1367 	sgel->Flags = flags;
1368 	sgel->NextChainOffset = chain_offset;
1369 	sgel->Length = cpu_to_le32(length);
1370 	sgel->Address = cpu_to_le64(dma_addr);
1371 }
1372 
1373 /**
1374  * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
1375  * @ioc: per adapter object
1376  * @paddr: virtual address for SGE
1377  *
1378  * Create a zero length scatter gather entry to insure the IOCs hardware has
1379  * something to use if the target device goes brain dead and tries
1380  * to send data even when none is asked for.
1381  *
1382  * Return nothing.
1383  */
1384 static void
1385 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1386 {
1387 	u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1388 		MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
1389 		MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
1390 
1391 	_base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
1392 }
1393 
1394 /**
1395  * _base_build_sg_scmd - main sg creation routine
1396  * @ioc: per adapter object
1397  * @scmd: scsi command
1398  * @smid: system request message index
1399  * Context: none.
1400  *
1401  * The main routine that builds scatter gather table from a given
1402  * scsi request sent via the .queuecommand main handler.
1403  *
1404  * Returns 0 success, anything else error
1405  */
1406 static int
1407 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
1408 		struct scsi_cmnd *scmd, u16 smid)
1409 {
1410 	Mpi2SCSIIORequest_t *mpi_request;
1411 	dma_addr_t chain_dma;
1412 	struct scatterlist *sg_scmd;
1413 	void *sg_local, *chain;
1414 	u32 chain_offset;
1415 	u32 chain_length;
1416 	u32 chain_flags;
1417 	int sges_left;
1418 	u32 sges_in_segment;
1419 	u32 sgl_flags;
1420 	u32 sgl_flags_last_element;
1421 	u32 sgl_flags_end_buffer;
1422 	struct chain_tracker *chain_req;
1423 
1424 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
1425 
1426 	/* init scatter gather flags */
1427 	sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
1428 	if (scmd->sc_data_direction == DMA_TO_DEVICE)
1429 		sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
1430 	sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
1431 	    << MPI2_SGE_FLAGS_SHIFT;
1432 	sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
1433 	    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
1434 	    << MPI2_SGE_FLAGS_SHIFT;
1435 	sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1436 
1437 	sg_scmd = scsi_sglist(scmd);
1438 	sges_left = scsi_dma_map(scmd);
1439 	if (sges_left < 0) {
1440 		sdev_printk(KERN_ERR, scmd->device,
1441 		 "pci_map_sg failed: request for %d bytes!\n",
1442 		 scsi_bufflen(scmd));
1443 		return -ENOMEM;
1444 	}
1445 
1446 	sg_local = &mpi_request->SGL;
1447 	sges_in_segment = ioc->max_sges_in_main_message;
1448 	if (sges_left <= sges_in_segment)
1449 		goto fill_in_last_segment;
1450 
1451 	mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
1452 	    (sges_in_segment * ioc->sge_size))/4;
1453 
1454 	/* fill in main message segment when there is a chain following */
1455 	while (sges_in_segment) {
1456 		if (sges_in_segment == 1)
1457 			ioc->base_add_sg_single(sg_local,
1458 			    sgl_flags_last_element | sg_dma_len(sg_scmd),
1459 			    sg_dma_address(sg_scmd));
1460 		else
1461 			ioc->base_add_sg_single(sg_local, sgl_flags |
1462 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1463 		sg_scmd = sg_next(sg_scmd);
1464 		sg_local += ioc->sge_size;
1465 		sges_left--;
1466 		sges_in_segment--;
1467 	}
1468 
1469 	/* initializing the chain flags and pointers */
1470 	chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
1471 	chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1472 	if (!chain_req)
1473 		return -1;
1474 	chain = chain_req->chain_buffer;
1475 	chain_dma = chain_req->chain_buffer_dma;
1476 	do {
1477 		sges_in_segment = (sges_left <=
1478 		    ioc->max_sges_in_chain_message) ? sges_left :
1479 		    ioc->max_sges_in_chain_message;
1480 		chain_offset = (sges_left == sges_in_segment) ?
1481 		    0 : (sges_in_segment * ioc->sge_size)/4;
1482 		chain_length = sges_in_segment * ioc->sge_size;
1483 		if (chain_offset) {
1484 			chain_offset = chain_offset <<
1485 			    MPI2_SGE_CHAIN_OFFSET_SHIFT;
1486 			chain_length += ioc->sge_size;
1487 		}
1488 		ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
1489 		    chain_length, chain_dma);
1490 		sg_local = chain;
1491 		if (!chain_offset)
1492 			goto fill_in_last_segment;
1493 
1494 		/* fill in chain segments */
1495 		while (sges_in_segment) {
1496 			if (sges_in_segment == 1)
1497 				ioc->base_add_sg_single(sg_local,
1498 				    sgl_flags_last_element |
1499 				    sg_dma_len(sg_scmd),
1500 				    sg_dma_address(sg_scmd));
1501 			else
1502 				ioc->base_add_sg_single(sg_local, sgl_flags |
1503 				    sg_dma_len(sg_scmd),
1504 				    sg_dma_address(sg_scmd));
1505 			sg_scmd = sg_next(sg_scmd);
1506 			sg_local += ioc->sge_size;
1507 			sges_left--;
1508 			sges_in_segment--;
1509 		}
1510 
1511 		chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1512 		if (!chain_req)
1513 			return -1;
1514 		chain = chain_req->chain_buffer;
1515 		chain_dma = chain_req->chain_buffer_dma;
1516 	} while (1);
1517 
1518 
1519  fill_in_last_segment:
1520 
1521 	/* fill the last segment */
1522 	while (sges_left) {
1523 		if (sges_left == 1)
1524 			ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
1525 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1526 		else
1527 			ioc->base_add_sg_single(sg_local, sgl_flags |
1528 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1529 		sg_scmd = sg_next(sg_scmd);
1530 		sg_local += ioc->sge_size;
1531 		sges_left--;
1532 	}
1533 
1534 	return 0;
1535 }
1536 
1537 /**
1538  * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
1539  * @ioc: per adapter object
1540  * @scmd: scsi command
1541  * @smid: system request message index
1542  * Context: none.
1543  *
1544  * The main routine that builds scatter gather table from a given
1545  * scsi request sent via the .queuecommand main handler.
1546  *
1547  * Returns 0 success, anything else error
1548  */
1549 static int
1550 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
1551 	struct scsi_cmnd *scmd, u16 smid)
1552 {
1553 	Mpi2SCSIIORequest_t *mpi_request;
1554 	dma_addr_t chain_dma;
1555 	struct scatterlist *sg_scmd;
1556 	void *sg_local, *chain;
1557 	u32 chain_offset;
1558 	u32 chain_length;
1559 	int sges_left;
1560 	u32 sges_in_segment;
1561 	u8 simple_sgl_flags;
1562 	u8 simple_sgl_flags_last;
1563 	u8 chain_sgl_flags;
1564 	struct chain_tracker *chain_req;
1565 
1566 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
1567 
1568 	/* init scatter gather flags */
1569 	simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1570 	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1571 	simple_sgl_flags_last = simple_sgl_flags |
1572 	    MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1573 	chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
1574 	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1575 
1576 	sg_scmd = scsi_sglist(scmd);
1577 	sges_left = scsi_dma_map(scmd);
1578 	if (sges_left < 0) {
1579 		sdev_printk(KERN_ERR, scmd->device,
1580 			"pci_map_sg failed: request for %d bytes!\n",
1581 			scsi_bufflen(scmd));
1582 		return -ENOMEM;
1583 	}
1584 
1585 	sg_local = &mpi_request->SGL;
1586 	sges_in_segment = (ioc->request_sz -
1587 	    offsetof(Mpi2SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
1588 	if (sges_left <= sges_in_segment)
1589 		goto fill_in_last_segment;
1590 
1591 	mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
1592 	    (offsetof(Mpi2SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
1593 
1594 	/* fill in main message segment when there is a chain following */
1595 	while (sges_in_segment > 1) {
1596 		_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1597 		    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1598 		sg_scmd = sg_next(sg_scmd);
1599 		sg_local += ioc->sge_size_ieee;
1600 		sges_left--;
1601 		sges_in_segment--;
1602 	}
1603 
1604 	/* initializing the pointers */
1605 	chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1606 	if (!chain_req)
1607 		return -1;
1608 	chain = chain_req->chain_buffer;
1609 	chain_dma = chain_req->chain_buffer_dma;
1610 	do {
1611 		sges_in_segment = (sges_left <=
1612 		    ioc->max_sges_in_chain_message) ? sges_left :
1613 		    ioc->max_sges_in_chain_message;
1614 		chain_offset = (sges_left == sges_in_segment) ?
1615 		    0 : sges_in_segment;
1616 		chain_length = sges_in_segment * ioc->sge_size_ieee;
1617 		if (chain_offset)
1618 			chain_length += ioc->sge_size_ieee;
1619 		_base_add_sg_single_ieee(sg_local, chain_sgl_flags,
1620 		    chain_offset, chain_length, chain_dma);
1621 
1622 		sg_local = chain;
1623 		if (!chain_offset)
1624 			goto fill_in_last_segment;
1625 
1626 		/* fill in chain segments */
1627 		while (sges_in_segment) {
1628 			_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1629 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1630 			sg_scmd = sg_next(sg_scmd);
1631 			sg_local += ioc->sge_size_ieee;
1632 			sges_left--;
1633 			sges_in_segment--;
1634 		}
1635 
1636 		chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1637 		if (!chain_req)
1638 			return -1;
1639 		chain = chain_req->chain_buffer;
1640 		chain_dma = chain_req->chain_buffer_dma;
1641 	} while (1);
1642 
1643 
1644  fill_in_last_segment:
1645 
1646 	/* fill the last segment */
1647 	while (sges_left > 0) {
1648 		if (sges_left == 1)
1649 			_base_add_sg_single_ieee(sg_local,
1650 			    simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
1651 			    sg_dma_address(sg_scmd));
1652 		else
1653 			_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1654 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1655 		sg_scmd = sg_next(sg_scmd);
1656 		sg_local += ioc->sge_size_ieee;
1657 		sges_left--;
1658 	}
1659 
1660 	return 0;
1661 }
1662 
1663 /**
1664  * _base_build_sg_ieee - build generic sg for IEEE format
1665  * @ioc: per adapter object
1666  * @psge: virtual address for SGE
1667  * @data_out_dma: physical address for WRITES
1668  * @data_out_sz: data xfer size for WRITES
1669  * @data_in_dma: physical address for READS
1670  * @data_in_sz: data xfer size for READS
1671  *
1672  * Return nothing.
1673  */
1674 static void
1675 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
1676 	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1677 	size_t data_in_sz)
1678 {
1679 	u8 sgl_flags;
1680 
1681 	if (!data_out_sz && !data_in_sz) {
1682 		_base_build_zero_len_sge_ieee(ioc, psge);
1683 		return;
1684 	}
1685 
1686 	if (data_out_sz && data_in_sz) {
1687 		/* WRITE sgel first */
1688 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1689 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1690 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1691 		    data_out_dma);
1692 
1693 		/* incr sgel */
1694 		psge += ioc->sge_size_ieee;
1695 
1696 		/* READ sgel last */
1697 		sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1698 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1699 		    data_in_dma);
1700 	} else if (data_out_sz) /* WRITE */ {
1701 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1702 		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1703 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1704 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1705 		    data_out_dma);
1706 	} else if (data_in_sz) /* READ */ {
1707 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1708 		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1709 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1710 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1711 		    data_in_dma);
1712 	}
1713 }
1714 
1715 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
1716 
1717 /**
1718  * _base_config_dma_addressing - set dma addressing
1719  * @ioc: per adapter object
1720  * @pdev: PCI device struct
1721  *
1722  * Returns 0 for success, non-zero for failure.
1723  */
1724 static int
1725 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
1726 {
1727 	struct sysinfo s;
1728 	u64 consistent_dma_mask;
1729 
1730 	if (ioc->dma_mask)
1731 		consistent_dma_mask = DMA_BIT_MASK(64);
1732 	else
1733 		consistent_dma_mask = DMA_BIT_MASK(32);
1734 
1735 	if (sizeof(dma_addr_t) > 4) {
1736 		const uint64_t required_mask =
1737 		    dma_get_required_mask(&pdev->dev);
1738 		if ((required_mask > DMA_BIT_MASK(32)) &&
1739 		    !pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
1740 		    !pci_set_consistent_dma_mask(pdev, consistent_dma_mask)) {
1741 			ioc->base_add_sg_single = &_base_add_sg_single_64;
1742 			ioc->sge_size = sizeof(Mpi2SGESimple64_t);
1743 			ioc->dma_mask = 64;
1744 			goto out;
1745 		}
1746 	}
1747 
1748 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))
1749 	    && !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
1750 		ioc->base_add_sg_single = &_base_add_sg_single_32;
1751 		ioc->sge_size = sizeof(Mpi2SGESimple32_t);
1752 		ioc->dma_mask = 32;
1753 	} else
1754 		return -ENODEV;
1755 
1756  out:
1757 	si_meminfo(&s);
1758 	pr_info(MPT3SAS_FMT
1759 		"%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
1760 		ioc->name, ioc->dma_mask, convert_to_kb(s.totalram));
1761 
1762 	return 0;
1763 }
1764 
1765 static int
1766 _base_change_consistent_dma_mask(struct MPT3SAS_ADAPTER *ioc,
1767 				      struct pci_dev *pdev)
1768 {
1769 	if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
1770 		if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
1771 			return -ENODEV;
1772 	}
1773 	return 0;
1774 }
1775 
1776 /**
1777  * _base_check_enable_msix - checks MSIX capabable.
1778  * @ioc: per adapter object
1779  *
1780  * Check to see if card is capable of MSIX, and set number
1781  * of available msix vectors
1782  */
1783 static int
1784 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1785 {
1786 	int base;
1787 	u16 message_control;
1788 
1789 	/* Check whether controller SAS2008 B0 controller,
1790 	 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
1791 	 */
1792 	if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
1793 	    ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
1794 		return -EINVAL;
1795 	}
1796 
1797 	base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
1798 	if (!base) {
1799 		dfailprintk(ioc, pr_info(MPT3SAS_FMT "msix not supported\n",
1800 			ioc->name));
1801 		return -EINVAL;
1802 	}
1803 
1804 	/* get msix vector count */
1805 	/* NUMA_IO not supported for older controllers */
1806 	if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
1807 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
1808 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
1809 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
1810 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
1811 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
1812 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
1813 		ioc->msix_vector_count = 1;
1814 	else {
1815 		pci_read_config_word(ioc->pdev, base + 2, &message_control);
1816 		ioc->msix_vector_count = (message_control & 0x3FF) + 1;
1817 	}
1818 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
1819 		"msix is supported, vector_count(%d)\n",
1820 		ioc->name, ioc->msix_vector_count));
1821 	return 0;
1822 }
1823 
1824 /**
1825  * _base_free_irq - free irq
1826  * @ioc: per adapter object
1827  *
1828  * Freeing respective reply_queue from the list.
1829  */
1830 static void
1831 _base_free_irq(struct MPT3SAS_ADAPTER *ioc)
1832 {
1833 	struct adapter_reply_queue *reply_q, *next;
1834 
1835 	if (list_empty(&ioc->reply_queue_list))
1836 		return;
1837 
1838 	list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1839 		list_del(&reply_q->list);
1840 		free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
1841 			 reply_q);
1842 		kfree(reply_q);
1843 	}
1844 }
1845 
1846 /**
1847  * _base_request_irq - request irq
1848  * @ioc: per adapter object
1849  * @index: msix index into vector table
1850  *
1851  * Inserting respective reply_queue into the list.
1852  */
1853 static int
1854 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
1855 {
1856 	struct pci_dev *pdev = ioc->pdev;
1857 	struct adapter_reply_queue *reply_q;
1858 	int r;
1859 
1860 	reply_q =  kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
1861 	if (!reply_q) {
1862 		pr_err(MPT3SAS_FMT "unable to allocate memory %d!\n",
1863 		    ioc->name, (int)sizeof(struct adapter_reply_queue));
1864 		return -ENOMEM;
1865 	}
1866 	reply_q->ioc = ioc;
1867 	reply_q->msix_index = index;
1868 
1869 	atomic_set(&reply_q->busy, 0);
1870 	if (ioc->msix_enable)
1871 		snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
1872 		    ioc->driver_name, ioc->id, index);
1873 	else
1874 		snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
1875 		    ioc->driver_name, ioc->id);
1876 	r = request_irq(pci_irq_vector(pdev, index), _base_interrupt,
1877 			IRQF_SHARED, reply_q->name, reply_q);
1878 	if (r) {
1879 		pr_err(MPT3SAS_FMT "unable to allocate interrupt %d!\n",
1880 		       reply_q->name, pci_irq_vector(pdev, index));
1881 		kfree(reply_q);
1882 		return -EBUSY;
1883 	}
1884 
1885 	INIT_LIST_HEAD(&reply_q->list);
1886 	list_add_tail(&reply_q->list, &ioc->reply_queue_list);
1887 	return 0;
1888 }
1889 
1890 /**
1891  * _base_assign_reply_queues - assigning msix index for each cpu
1892  * @ioc: per adapter object
1893  *
1894  * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
1895  *
1896  * It would nice if we could call irq_set_affinity, however it is not
1897  * an exported symbol
1898  */
1899 static void
1900 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
1901 {
1902 	unsigned int cpu, nr_cpus, nr_msix, index = 0;
1903 	struct adapter_reply_queue *reply_q;
1904 
1905 	if (!_base_is_controller_msix_enabled(ioc))
1906 		return;
1907 
1908 	memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
1909 
1910 	nr_cpus = num_online_cpus();
1911 	nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
1912 					       ioc->facts.MaxMSIxVectors);
1913 	if (!nr_msix)
1914 		return;
1915 
1916 	if (smp_affinity_enable) {
1917 		list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1918 			const cpumask_t *mask = pci_irq_get_affinity(ioc->pdev,
1919 							reply_q->msix_index);
1920 			if (!mask) {
1921 				pr_warn(MPT3SAS_FMT "no affinity for msi %x\n",
1922 					ioc->name, reply_q->msix_index);
1923 				continue;
1924 			}
1925 
1926 			for_each_cpu(cpu, mask)
1927 				ioc->cpu_msix_table[cpu] = reply_q->msix_index;
1928 		}
1929 		return;
1930 	}
1931 	cpu = cpumask_first(cpu_online_mask);
1932 
1933 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1934 
1935 		unsigned int i, group = nr_cpus / nr_msix;
1936 
1937 		if (cpu >= nr_cpus)
1938 			break;
1939 
1940 		if (index < nr_cpus % nr_msix)
1941 			group++;
1942 
1943 		for (i = 0 ; i < group ; i++) {
1944 			ioc->cpu_msix_table[cpu] = reply_q->msix_index;
1945 			cpu = cpumask_next(cpu, cpu_online_mask);
1946 		}
1947 		index++;
1948 	}
1949 }
1950 
1951 /**
1952  * _base_disable_msix - disables msix
1953  * @ioc: per adapter object
1954  *
1955  */
1956 static void
1957 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
1958 {
1959 	if (!ioc->msix_enable)
1960 		return;
1961 	pci_disable_msix(ioc->pdev);
1962 	ioc->msix_enable = 0;
1963 }
1964 
1965 /**
1966  * _base_enable_msix - enables msix, failback to io_apic
1967  * @ioc: per adapter object
1968  *
1969  */
1970 static int
1971 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1972 {
1973 	int r;
1974 	int i, local_max_msix_vectors;
1975 	u8 try_msix = 0;
1976 	unsigned int irq_flags = PCI_IRQ_MSIX;
1977 
1978 	if (msix_disable == -1 || msix_disable == 0)
1979 		try_msix = 1;
1980 
1981 	if (!try_msix)
1982 		goto try_ioapic;
1983 
1984 	if (_base_check_enable_msix(ioc) != 0)
1985 		goto try_ioapic;
1986 
1987 	ioc->reply_queue_count = min_t(int, ioc->cpu_count,
1988 		ioc->msix_vector_count);
1989 
1990 	printk(MPT3SAS_FMT "MSI-X vectors supported: %d, no of cores"
1991 	  ": %d, max_msix_vectors: %d\n", ioc->name, ioc->msix_vector_count,
1992 	  ioc->cpu_count, max_msix_vectors);
1993 
1994 	if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
1995 		local_max_msix_vectors = 8;
1996 	else
1997 		local_max_msix_vectors = max_msix_vectors;
1998 
1999 	if (local_max_msix_vectors > 0)
2000 		ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
2001 			ioc->reply_queue_count);
2002 	else if (local_max_msix_vectors == 0)
2003 		goto try_ioapic;
2004 
2005 	if (ioc->msix_vector_count < ioc->cpu_count)
2006 		smp_affinity_enable = 0;
2007 
2008 	if (smp_affinity_enable)
2009 		irq_flags |= PCI_IRQ_AFFINITY;
2010 
2011 	r = pci_alloc_irq_vectors(ioc->pdev, 1, ioc->reply_queue_count,
2012 				  irq_flags);
2013 	if (r < 0) {
2014 		dfailprintk(ioc, pr_info(MPT3SAS_FMT
2015 			"pci_alloc_irq_vectors failed (r=%d) !!!\n",
2016 			ioc->name, r));
2017 		goto try_ioapic;
2018 	}
2019 
2020 	ioc->msix_enable = 1;
2021 	ioc->reply_queue_count = r;
2022 	for (i = 0; i < ioc->reply_queue_count; i++) {
2023 		r = _base_request_irq(ioc, i);
2024 		if (r) {
2025 			_base_free_irq(ioc);
2026 			_base_disable_msix(ioc);
2027 			goto try_ioapic;
2028 		}
2029 	}
2030 
2031 	return 0;
2032 
2033 /* failback to io_apic interrupt routing */
2034  try_ioapic:
2035 
2036 	ioc->reply_queue_count = 1;
2037 	r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY);
2038 	if (r < 0) {
2039 		dfailprintk(ioc, pr_info(MPT3SAS_FMT
2040 			"pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
2041 			ioc->name, r));
2042 	} else
2043 		r = _base_request_irq(ioc, 0);
2044 
2045 	return r;
2046 }
2047 
2048 /**
2049  * mpt3sas_base_unmap_resources - free controller resources
2050  * @ioc: per adapter object
2051  */
2052 static void
2053 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
2054 {
2055 	struct pci_dev *pdev = ioc->pdev;
2056 
2057 	dexitprintk(ioc, printk(MPT3SAS_FMT "%s\n",
2058 		ioc->name, __func__));
2059 
2060 	_base_free_irq(ioc);
2061 	_base_disable_msix(ioc);
2062 
2063 	if (ioc->combined_reply_queue) {
2064 		kfree(ioc->replyPostRegisterIndex);
2065 		ioc->replyPostRegisterIndex = NULL;
2066 	}
2067 
2068 	if (ioc->chip_phys) {
2069 		iounmap(ioc->chip);
2070 		ioc->chip_phys = 0;
2071 	}
2072 
2073 	if (pci_is_enabled(pdev)) {
2074 		pci_release_selected_regions(ioc->pdev, ioc->bars);
2075 		pci_disable_pcie_error_reporting(pdev);
2076 		pci_disable_device(pdev);
2077 	}
2078 }
2079 
2080 /**
2081  * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
2082  * @ioc: per adapter object
2083  *
2084  * Returns 0 for success, non-zero for failure.
2085  */
2086 int
2087 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
2088 {
2089 	struct pci_dev *pdev = ioc->pdev;
2090 	u32 memap_sz;
2091 	u32 pio_sz;
2092 	int i, r = 0;
2093 	u64 pio_chip = 0;
2094 	u64 chip_phys = 0;
2095 	struct adapter_reply_queue *reply_q;
2096 
2097 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n",
2098 	    ioc->name, __func__));
2099 
2100 	ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
2101 	if (pci_enable_device_mem(pdev)) {
2102 		pr_warn(MPT3SAS_FMT "pci_enable_device_mem: failed\n",
2103 			ioc->name);
2104 		ioc->bars = 0;
2105 		return -ENODEV;
2106 	}
2107 
2108 
2109 	if (pci_request_selected_regions(pdev, ioc->bars,
2110 	    ioc->driver_name)) {
2111 		pr_warn(MPT3SAS_FMT "pci_request_selected_regions: failed\n",
2112 			ioc->name);
2113 		ioc->bars = 0;
2114 		r = -ENODEV;
2115 		goto out_fail;
2116 	}
2117 
2118 /* AER (Advanced Error Reporting) hooks */
2119 	pci_enable_pcie_error_reporting(pdev);
2120 
2121 	pci_set_master(pdev);
2122 
2123 
2124 	if (_base_config_dma_addressing(ioc, pdev) != 0) {
2125 		pr_warn(MPT3SAS_FMT "no suitable DMA mask for %s\n",
2126 		    ioc->name, pci_name(pdev));
2127 		r = -ENODEV;
2128 		goto out_fail;
2129 	}
2130 
2131 	for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
2132 	     (!memap_sz || !pio_sz); i++) {
2133 		if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
2134 			if (pio_sz)
2135 				continue;
2136 			pio_chip = (u64)pci_resource_start(pdev, i);
2137 			pio_sz = pci_resource_len(pdev, i);
2138 		} else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
2139 			if (memap_sz)
2140 				continue;
2141 			ioc->chip_phys = pci_resource_start(pdev, i);
2142 			chip_phys = (u64)ioc->chip_phys;
2143 			memap_sz = pci_resource_len(pdev, i);
2144 			ioc->chip = ioremap(ioc->chip_phys, memap_sz);
2145 		}
2146 	}
2147 
2148 	if (ioc->chip == NULL) {
2149 		pr_err(MPT3SAS_FMT "unable to map adapter memory! "
2150 			" or resource not found\n", ioc->name);
2151 		r = -EINVAL;
2152 		goto out_fail;
2153 	}
2154 
2155 	_base_mask_interrupts(ioc);
2156 
2157 	r = _base_get_ioc_facts(ioc);
2158 	if (r)
2159 		goto out_fail;
2160 
2161 	if (!ioc->rdpq_array_enable_assigned) {
2162 		ioc->rdpq_array_enable = ioc->rdpq_array_capable;
2163 		ioc->rdpq_array_enable_assigned = 1;
2164 	}
2165 
2166 	r = _base_enable_msix(ioc);
2167 	if (r)
2168 		goto out_fail;
2169 
2170 	/* Use the Combined reply queue feature only for SAS3 C0 & higher
2171 	 * revision HBAs and also only when reply queue count is greater than 8
2172 	 */
2173 	if (ioc->combined_reply_queue && ioc->reply_queue_count > 8) {
2174 		/* Determine the Supplemental Reply Post Host Index Registers
2175 		 * Addresse. Supplemental Reply Post Host Index Registers
2176 		 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
2177 		 * each register is at offset bytes of
2178 		 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
2179 		 */
2180 		ioc->replyPostRegisterIndex = kcalloc(
2181 		     ioc->combined_reply_index_count,
2182 		     sizeof(resource_size_t *), GFP_KERNEL);
2183 		if (!ioc->replyPostRegisterIndex) {
2184 			dfailprintk(ioc, printk(MPT3SAS_FMT
2185 			"allocation for reply Post Register Index failed!!!\n",
2186 								   ioc->name));
2187 			r = -ENOMEM;
2188 			goto out_fail;
2189 		}
2190 
2191 		for (i = 0; i < ioc->combined_reply_index_count; i++) {
2192 			ioc->replyPostRegisterIndex[i] = (resource_size_t *)
2193 			     ((u8 *)&ioc->chip->Doorbell +
2194 			     MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
2195 			     (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
2196 		}
2197 	} else
2198 		ioc->combined_reply_queue = 0;
2199 
2200 	if (ioc->is_warpdrive) {
2201 		ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
2202 		    &ioc->chip->ReplyPostHostIndex;
2203 
2204 		for (i = 1; i < ioc->cpu_msix_table_sz; i++)
2205 			ioc->reply_post_host_index[i] =
2206 			(resource_size_t __iomem *)
2207 			((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
2208 			* 4)));
2209 	}
2210 
2211 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
2212 		pr_info(MPT3SAS_FMT "%s: IRQ %d\n",
2213 		    reply_q->name,  ((ioc->msix_enable) ? "PCI-MSI-X enabled" :
2214 		    "IO-APIC enabled"),
2215 		    pci_irq_vector(ioc->pdev, reply_q->msix_index));
2216 
2217 	pr_info(MPT3SAS_FMT "iomem(0x%016llx), mapped(0x%p), size(%d)\n",
2218 	    ioc->name, (unsigned long long)chip_phys, ioc->chip, memap_sz);
2219 	pr_info(MPT3SAS_FMT "ioport(0x%016llx), size(%d)\n",
2220 	    ioc->name, (unsigned long long)pio_chip, pio_sz);
2221 
2222 	/* Save PCI configuration state for recovery from PCI AER/EEH errors */
2223 	pci_save_state(pdev);
2224 	return 0;
2225 
2226  out_fail:
2227 	mpt3sas_base_unmap_resources(ioc);
2228 	return r;
2229 }
2230 
2231 /**
2232  * mpt3sas_base_get_msg_frame - obtain request mf pointer
2233  * @ioc: per adapter object
2234  * @smid: system request message index(smid zero is invalid)
2235  *
2236  * Returns virt pointer to message frame.
2237  */
2238 void *
2239 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2240 {
2241 	return (void *)(ioc->request + (smid * ioc->request_sz));
2242 }
2243 
2244 /**
2245  * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
2246  * @ioc: per adapter object
2247  * @smid: system request message index
2248  *
2249  * Returns virt pointer to sense buffer.
2250  */
2251 void *
2252 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2253 {
2254 	return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
2255 }
2256 
2257 /**
2258  * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
2259  * @ioc: per adapter object
2260  * @smid: system request message index
2261  *
2262  * Returns phys pointer to the low 32bit address of the sense buffer.
2263  */
2264 __le32
2265 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2266 {
2267 	return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
2268 	    SCSI_SENSE_BUFFERSIZE));
2269 }
2270 
2271 /**
2272  * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
2273  * @ioc: per adapter object
2274  * @phys_addr: lower 32 physical addr of the reply
2275  *
2276  * Converts 32bit lower physical addr into a virt address.
2277  */
2278 void *
2279 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
2280 {
2281 	if (!phys_addr)
2282 		return NULL;
2283 	return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
2284 }
2285 
2286 static inline u8
2287 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc)
2288 {
2289 	return ioc->cpu_msix_table[raw_smp_processor_id()];
2290 }
2291 
2292 /**
2293  * mpt3sas_base_get_smid - obtain a free smid from internal queue
2294  * @ioc: per adapter object
2295  * @cb_idx: callback index
2296  *
2297  * Returns smid (zero is invalid)
2298  */
2299 u16
2300 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
2301 {
2302 	unsigned long flags;
2303 	struct request_tracker *request;
2304 	u16 smid;
2305 
2306 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2307 	if (list_empty(&ioc->internal_free_list)) {
2308 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2309 		pr_err(MPT3SAS_FMT "%s: smid not available\n",
2310 		    ioc->name, __func__);
2311 		return 0;
2312 	}
2313 
2314 	request = list_entry(ioc->internal_free_list.next,
2315 	    struct request_tracker, tracker_list);
2316 	request->cb_idx = cb_idx;
2317 	smid = request->smid;
2318 	list_del(&request->tracker_list);
2319 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2320 	return smid;
2321 }
2322 
2323 /**
2324  * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
2325  * @ioc: per adapter object
2326  * @cb_idx: callback index
2327  * @scmd: pointer to scsi command object
2328  *
2329  * Returns smid (zero is invalid)
2330  */
2331 u16
2332 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
2333 	struct scsi_cmnd *scmd)
2334 {
2335 	unsigned long flags;
2336 	struct scsiio_tracker *request;
2337 	u16 smid;
2338 
2339 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2340 	if (list_empty(&ioc->free_list)) {
2341 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2342 		pr_err(MPT3SAS_FMT "%s: smid not available\n",
2343 		    ioc->name, __func__);
2344 		return 0;
2345 	}
2346 
2347 	request = list_entry(ioc->free_list.next,
2348 	    struct scsiio_tracker, tracker_list);
2349 	request->scmd = scmd;
2350 	request->cb_idx = cb_idx;
2351 	smid = request->smid;
2352 	request->msix_io = _base_get_msix_index(ioc);
2353 	list_del(&request->tracker_list);
2354 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2355 	return smid;
2356 }
2357 
2358 /**
2359  * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
2360  * @ioc: per adapter object
2361  * @cb_idx: callback index
2362  *
2363  * Returns smid (zero is invalid)
2364  */
2365 u16
2366 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
2367 {
2368 	unsigned long flags;
2369 	struct request_tracker *request;
2370 	u16 smid;
2371 
2372 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2373 	if (list_empty(&ioc->hpr_free_list)) {
2374 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2375 		return 0;
2376 	}
2377 
2378 	request = list_entry(ioc->hpr_free_list.next,
2379 	    struct request_tracker, tracker_list);
2380 	request->cb_idx = cb_idx;
2381 	smid = request->smid;
2382 	list_del(&request->tracker_list);
2383 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2384 	return smid;
2385 }
2386 
2387 /**
2388  * mpt3sas_base_free_smid - put smid back on free_list
2389  * @ioc: per adapter object
2390  * @smid: system request message index
2391  *
2392  * Return nothing.
2393  */
2394 void
2395 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2396 {
2397 	unsigned long flags;
2398 	int i;
2399 	struct chain_tracker *chain_req, *next;
2400 
2401 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2402 	if (smid < ioc->hi_priority_smid) {
2403 		/* scsiio queue */
2404 		i = smid - 1;
2405 		if (!list_empty(&ioc->scsi_lookup[i].chain_list)) {
2406 			list_for_each_entry_safe(chain_req, next,
2407 			    &ioc->scsi_lookup[i].chain_list, tracker_list) {
2408 				list_del_init(&chain_req->tracker_list);
2409 				list_add(&chain_req->tracker_list,
2410 				    &ioc->free_chain_list);
2411 			}
2412 		}
2413 		ioc->scsi_lookup[i].cb_idx = 0xFF;
2414 		ioc->scsi_lookup[i].scmd = NULL;
2415 		ioc->scsi_lookup[i].direct_io = 0;
2416 		list_add(&ioc->scsi_lookup[i].tracker_list, &ioc->free_list);
2417 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2418 
2419 		/*
2420 		 * See _wait_for_commands_to_complete() call with regards
2421 		 * to this code.
2422 		 */
2423 		if (ioc->shost_recovery && ioc->pending_io_count) {
2424 			if (ioc->pending_io_count == 1)
2425 				wake_up(&ioc->reset_wq);
2426 			ioc->pending_io_count--;
2427 		}
2428 		return;
2429 	} else if (smid < ioc->internal_smid) {
2430 		/* hi-priority */
2431 		i = smid - ioc->hi_priority_smid;
2432 		ioc->hpr_lookup[i].cb_idx = 0xFF;
2433 		list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
2434 	} else if (smid <= ioc->hba_queue_depth) {
2435 		/* internal queue */
2436 		i = smid - ioc->internal_smid;
2437 		ioc->internal_lookup[i].cb_idx = 0xFF;
2438 		list_add(&ioc->internal_lookup[i].tracker_list,
2439 		    &ioc->internal_free_list);
2440 	}
2441 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2442 }
2443 
2444 /**
2445  * _base_writeq - 64 bit write to MMIO
2446  * @ioc: per adapter object
2447  * @b: data payload
2448  * @addr: address in MMIO space
2449  * @writeq_lock: spin lock
2450  *
2451  * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
2452  * care of 32 bit environment where its not quarenteed to send the entire word
2453  * in one transfer.
2454  */
2455 #if defined(writeq) && defined(CONFIG_64BIT)
2456 static inline void
2457 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2458 {
2459 	writeq(cpu_to_le64(b), addr);
2460 }
2461 #else
2462 static inline void
2463 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2464 {
2465 	unsigned long flags;
2466 	__u64 data_out = cpu_to_le64(b);
2467 
2468 	spin_lock_irqsave(writeq_lock, flags);
2469 	writel((u32)(data_out), addr);
2470 	writel((u32)(data_out >> 32), (addr + 4));
2471 	spin_unlock_irqrestore(writeq_lock, flags);
2472 }
2473 #endif
2474 
2475 /**
2476  * _base_put_smid_scsi_io - send SCSI_IO request to firmware
2477  * @ioc: per adapter object
2478  * @smid: system request message index
2479  * @handle: device handle
2480  *
2481  * Return nothing.
2482  */
2483 static void
2484 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
2485 {
2486 	Mpi2RequestDescriptorUnion_t descriptor;
2487 	u64 *request = (u64 *)&descriptor;
2488 
2489 
2490 	descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
2491 	descriptor.SCSIIO.MSIxIndex =  _base_get_msix_index(ioc);
2492 	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2493 	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2494 	descriptor.SCSIIO.LMID = 0;
2495 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2496 	    &ioc->scsi_lookup_lock);
2497 }
2498 
2499 /**
2500  * _base_put_smid_fast_path - send fast path request to firmware
2501  * @ioc: per adapter object
2502  * @smid: system request message index
2503  * @handle: device handle
2504  *
2505  * Return nothing.
2506  */
2507 static void
2508 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2509 	u16 handle)
2510 {
2511 	Mpi2RequestDescriptorUnion_t descriptor;
2512 	u64 *request = (u64 *)&descriptor;
2513 
2514 	descriptor.SCSIIO.RequestFlags =
2515 	    MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
2516 	descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
2517 	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2518 	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2519 	descriptor.SCSIIO.LMID = 0;
2520 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2521 	    &ioc->scsi_lookup_lock);
2522 }
2523 
2524 /**
2525  * _base_put_smid_hi_priority - send Task Management request to firmware
2526  * @ioc: per adapter object
2527  * @smid: system request message index
2528  * @msix_task: msix_task will be same as msix of IO incase of task abort else 0.
2529  * Return nothing.
2530  */
2531 static void
2532 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2533 	u16 msix_task)
2534 {
2535 	Mpi2RequestDescriptorUnion_t descriptor;
2536 	u64 *request = (u64 *)&descriptor;
2537 
2538 	descriptor.HighPriority.RequestFlags =
2539 	    MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
2540 	descriptor.HighPriority.MSIxIndex =  msix_task;
2541 	descriptor.HighPriority.SMID = cpu_to_le16(smid);
2542 	descriptor.HighPriority.LMID = 0;
2543 	descriptor.HighPriority.Reserved1 = 0;
2544 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2545 	    &ioc->scsi_lookup_lock);
2546 }
2547 
2548 /**
2549  * _base_put_smid_default - Default, primarily used for config pages
2550  * @ioc: per adapter object
2551  * @smid: system request message index
2552  *
2553  * Return nothing.
2554  */
2555 static void
2556 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2557 {
2558 	Mpi2RequestDescriptorUnion_t descriptor;
2559 	u64 *request = (u64 *)&descriptor;
2560 
2561 	descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2562 	descriptor.Default.MSIxIndex =  _base_get_msix_index(ioc);
2563 	descriptor.Default.SMID = cpu_to_le16(smid);
2564 	descriptor.Default.LMID = 0;
2565 	descriptor.Default.DescriptorTypeDependent = 0;
2566 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2567 	    &ioc->scsi_lookup_lock);
2568 }
2569 
2570 /**
2571 * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using
2572 *   Atomic Request Descriptor
2573 * @ioc: per adapter object
2574 * @smid: system request message index
2575 * @handle: device handle, unused in this function, for function type match
2576 *
2577 * Return nothing.
2578 */
2579 static void
2580 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2581 	u16 handle)
2582 {
2583 	Mpi26AtomicRequestDescriptor_t descriptor;
2584 	u32 *request = (u32 *)&descriptor;
2585 
2586 	descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
2587 	descriptor.MSIxIndex = _base_get_msix_index(ioc);
2588 	descriptor.SMID = cpu_to_le16(smid);
2589 
2590 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
2591 }
2592 
2593 /**
2594  * _base_put_smid_fast_path_atomic - send fast path request to firmware
2595  * using Atomic Request Descriptor
2596  * @ioc: per adapter object
2597  * @smid: system request message index
2598  * @handle: device handle, unused in this function, for function type match
2599  * Return nothing
2600  */
2601 static void
2602 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2603 	u16 handle)
2604 {
2605 	Mpi26AtomicRequestDescriptor_t descriptor;
2606 	u32 *request = (u32 *)&descriptor;
2607 
2608 	descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
2609 	descriptor.MSIxIndex = _base_get_msix_index(ioc);
2610 	descriptor.SMID = cpu_to_le16(smid);
2611 
2612 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
2613 }
2614 
2615 /**
2616  * _base_put_smid_hi_priority_atomic - send Task Management request to
2617  * firmware using Atomic Request Descriptor
2618  * @ioc: per adapter object
2619  * @smid: system request message index
2620  * @msix_task: msix_task will be same as msix of IO incase of task abort else 0
2621  *
2622  * Return nothing.
2623  */
2624 static void
2625 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2626 	u16 msix_task)
2627 {
2628 	Mpi26AtomicRequestDescriptor_t descriptor;
2629 	u32 *request = (u32 *)&descriptor;
2630 
2631 	descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
2632 	descriptor.MSIxIndex = msix_task;
2633 	descriptor.SMID = cpu_to_le16(smid);
2634 
2635 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
2636 }
2637 
2638 /**
2639  * _base_put_smid_default - Default, primarily used for config pages
2640  * use Atomic Request Descriptor
2641  * @ioc: per adapter object
2642  * @smid: system request message index
2643  *
2644  * Return nothing.
2645  */
2646 static void
2647 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2648 {
2649 	Mpi26AtomicRequestDescriptor_t descriptor;
2650 	u32 *request = (u32 *)&descriptor;
2651 
2652 	descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2653 	descriptor.MSIxIndex = _base_get_msix_index(ioc);
2654 	descriptor.SMID = cpu_to_le16(smid);
2655 
2656 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
2657 }
2658 
2659 /**
2660  * _base_display_OEMs_branding - Display branding string
2661  * @ioc: per adapter object
2662  *
2663  * Return nothing.
2664  */
2665 static void
2666 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
2667 {
2668 	if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
2669 		return;
2670 
2671 	switch (ioc->pdev->subsystem_vendor) {
2672 	case PCI_VENDOR_ID_INTEL:
2673 		switch (ioc->pdev->device) {
2674 		case MPI2_MFGPAGE_DEVID_SAS2008:
2675 			switch (ioc->pdev->subsystem_device) {
2676 			case MPT2SAS_INTEL_RMS2LL080_SSDID:
2677 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2678 				    MPT2SAS_INTEL_RMS2LL080_BRANDING);
2679 				break;
2680 			case MPT2SAS_INTEL_RMS2LL040_SSDID:
2681 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2682 				    MPT2SAS_INTEL_RMS2LL040_BRANDING);
2683 				break;
2684 			case MPT2SAS_INTEL_SSD910_SSDID:
2685 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2686 				    MPT2SAS_INTEL_SSD910_BRANDING);
2687 				break;
2688 			default:
2689 				pr_info(MPT3SAS_FMT
2690 				 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2691 				 ioc->name, ioc->pdev->subsystem_device);
2692 				break;
2693 			}
2694 		case MPI2_MFGPAGE_DEVID_SAS2308_2:
2695 			switch (ioc->pdev->subsystem_device) {
2696 			case MPT2SAS_INTEL_RS25GB008_SSDID:
2697 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2698 				    MPT2SAS_INTEL_RS25GB008_BRANDING);
2699 				break;
2700 			case MPT2SAS_INTEL_RMS25JB080_SSDID:
2701 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2702 				    MPT2SAS_INTEL_RMS25JB080_BRANDING);
2703 				break;
2704 			case MPT2SAS_INTEL_RMS25JB040_SSDID:
2705 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2706 				    MPT2SAS_INTEL_RMS25JB040_BRANDING);
2707 				break;
2708 			case MPT2SAS_INTEL_RMS25KB080_SSDID:
2709 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2710 				    MPT2SAS_INTEL_RMS25KB080_BRANDING);
2711 				break;
2712 			case MPT2SAS_INTEL_RMS25KB040_SSDID:
2713 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2714 				    MPT2SAS_INTEL_RMS25KB040_BRANDING);
2715 				break;
2716 			case MPT2SAS_INTEL_RMS25LB040_SSDID:
2717 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2718 				    MPT2SAS_INTEL_RMS25LB040_BRANDING);
2719 				break;
2720 			case MPT2SAS_INTEL_RMS25LB080_SSDID:
2721 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2722 				    MPT2SAS_INTEL_RMS25LB080_BRANDING);
2723 				break;
2724 			default:
2725 				pr_info(MPT3SAS_FMT
2726 				 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2727 				 ioc->name, ioc->pdev->subsystem_device);
2728 				break;
2729 			}
2730 		case MPI25_MFGPAGE_DEVID_SAS3008:
2731 			switch (ioc->pdev->subsystem_device) {
2732 			case MPT3SAS_INTEL_RMS3JC080_SSDID:
2733 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2734 					MPT3SAS_INTEL_RMS3JC080_BRANDING);
2735 				break;
2736 
2737 			case MPT3SAS_INTEL_RS3GC008_SSDID:
2738 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2739 					MPT3SAS_INTEL_RS3GC008_BRANDING);
2740 				break;
2741 			case MPT3SAS_INTEL_RS3FC044_SSDID:
2742 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2743 					MPT3SAS_INTEL_RS3FC044_BRANDING);
2744 				break;
2745 			case MPT3SAS_INTEL_RS3UC080_SSDID:
2746 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2747 					MPT3SAS_INTEL_RS3UC080_BRANDING);
2748 				break;
2749 			default:
2750 				pr_info(MPT3SAS_FMT
2751 				 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2752 				 ioc->name, ioc->pdev->subsystem_device);
2753 				break;
2754 			}
2755 			break;
2756 		default:
2757 			pr_info(MPT3SAS_FMT
2758 			 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2759 			 ioc->name, ioc->pdev->subsystem_device);
2760 			break;
2761 		}
2762 		break;
2763 	case PCI_VENDOR_ID_DELL:
2764 		switch (ioc->pdev->device) {
2765 		case MPI2_MFGPAGE_DEVID_SAS2008:
2766 			switch (ioc->pdev->subsystem_device) {
2767 			case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
2768 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2769 				 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
2770 				break;
2771 			case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
2772 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2773 				 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
2774 				break;
2775 			case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
2776 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2777 				 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
2778 				break;
2779 			case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
2780 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2781 				 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
2782 				break;
2783 			case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
2784 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2785 				 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
2786 				break;
2787 			case MPT2SAS_DELL_PERC_H200_SSDID:
2788 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2789 				 MPT2SAS_DELL_PERC_H200_BRANDING);
2790 				break;
2791 			case MPT2SAS_DELL_6GBPS_SAS_SSDID:
2792 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2793 				 MPT2SAS_DELL_6GBPS_SAS_BRANDING);
2794 				break;
2795 			default:
2796 				pr_info(MPT3SAS_FMT
2797 				   "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
2798 				   ioc->name, ioc->pdev->subsystem_device);
2799 				break;
2800 			}
2801 			break;
2802 		case MPI25_MFGPAGE_DEVID_SAS3008:
2803 			switch (ioc->pdev->subsystem_device) {
2804 			case MPT3SAS_DELL_12G_HBA_SSDID:
2805 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2806 					MPT3SAS_DELL_12G_HBA_BRANDING);
2807 				break;
2808 			default:
2809 				pr_info(MPT3SAS_FMT
2810 				   "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
2811 				   ioc->name, ioc->pdev->subsystem_device);
2812 				break;
2813 			}
2814 			break;
2815 		default:
2816 			pr_info(MPT3SAS_FMT
2817 			   "Dell HBA: Subsystem ID: 0x%X\n", ioc->name,
2818 			   ioc->pdev->subsystem_device);
2819 			break;
2820 		}
2821 		break;
2822 	case PCI_VENDOR_ID_CISCO:
2823 		switch (ioc->pdev->device) {
2824 		case MPI25_MFGPAGE_DEVID_SAS3008:
2825 			switch (ioc->pdev->subsystem_device) {
2826 			case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
2827 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2828 					MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
2829 				break;
2830 			case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
2831 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2832 					MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
2833 				break;
2834 			case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
2835 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2836 					MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
2837 				break;
2838 			default:
2839 				pr_info(MPT3SAS_FMT
2840 				  "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
2841 				  ioc->name, ioc->pdev->subsystem_device);
2842 				break;
2843 			}
2844 			break;
2845 		case MPI25_MFGPAGE_DEVID_SAS3108_1:
2846 			switch (ioc->pdev->subsystem_device) {
2847 			case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
2848 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2849 				MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
2850 				break;
2851 			case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
2852 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2853 				MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING
2854 				);
2855 				break;
2856 			default:
2857 				pr_info(MPT3SAS_FMT
2858 				 "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
2859 				 ioc->name, ioc->pdev->subsystem_device);
2860 				break;
2861 			}
2862 			break;
2863 		default:
2864 			pr_info(MPT3SAS_FMT
2865 			   "Cisco SAS HBA: Subsystem ID: 0x%X\n",
2866 			   ioc->name, ioc->pdev->subsystem_device);
2867 			break;
2868 		}
2869 		break;
2870 	case MPT2SAS_HP_3PAR_SSVID:
2871 		switch (ioc->pdev->device) {
2872 		case MPI2_MFGPAGE_DEVID_SAS2004:
2873 			switch (ioc->pdev->subsystem_device) {
2874 			case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
2875 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2876 				    MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
2877 				break;
2878 			default:
2879 				pr_info(MPT3SAS_FMT
2880 				   "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
2881 				   ioc->name, ioc->pdev->subsystem_device);
2882 				break;
2883 			}
2884 		case MPI2_MFGPAGE_DEVID_SAS2308_2:
2885 			switch (ioc->pdev->subsystem_device) {
2886 			case MPT2SAS_HP_2_4_INTERNAL_SSDID:
2887 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2888 				    MPT2SAS_HP_2_4_INTERNAL_BRANDING);
2889 				break;
2890 			case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
2891 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2892 				    MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
2893 				break;
2894 			case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
2895 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2896 				 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
2897 				break;
2898 			case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
2899 				pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2900 				    MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
2901 				break;
2902 			default:
2903 				pr_info(MPT3SAS_FMT
2904 				   "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
2905 				   ioc->name, ioc->pdev->subsystem_device);
2906 				break;
2907 			}
2908 		default:
2909 			pr_info(MPT3SAS_FMT
2910 			   "HP SAS HBA: Subsystem ID: 0x%X\n",
2911 			   ioc->name, ioc->pdev->subsystem_device);
2912 			break;
2913 		}
2914 	default:
2915 		break;
2916 	}
2917 }
2918 
2919 /**
2920  * _base_display_ioc_capabilities - Disply IOC's capabilities.
2921  * @ioc: per adapter object
2922  *
2923  * Return nothing.
2924  */
2925 static void
2926 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
2927 {
2928 	int i = 0;
2929 	char desc[16];
2930 	u32 iounit_pg1_flags;
2931 	u32 bios_version;
2932 
2933 	bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
2934 	strncpy(desc, ioc->manu_pg0.ChipName, 16);
2935 	pr_info(MPT3SAS_FMT "%s: FWVersion(%02d.%02d.%02d.%02d), "\
2936 	   "ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
2937 	    ioc->name, desc,
2938 	   (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
2939 	   (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
2940 	   (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
2941 	   ioc->facts.FWVersion.Word & 0x000000FF,
2942 	   ioc->pdev->revision,
2943 	   (bios_version & 0xFF000000) >> 24,
2944 	   (bios_version & 0x00FF0000) >> 16,
2945 	   (bios_version & 0x0000FF00) >> 8,
2946 	    bios_version & 0x000000FF);
2947 
2948 	_base_display_OEMs_branding(ioc);
2949 
2950 	pr_info(MPT3SAS_FMT "Protocol=(", ioc->name);
2951 
2952 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
2953 		pr_info("Initiator");
2954 		i++;
2955 	}
2956 
2957 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
2958 		pr_info("%sTarget", i ? "," : "");
2959 		i++;
2960 	}
2961 
2962 	i = 0;
2963 	pr_info("), ");
2964 	pr_info("Capabilities=(");
2965 
2966 	if (!ioc->hide_ir_msg) {
2967 		if (ioc->facts.IOCCapabilities &
2968 		    MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
2969 			pr_info("Raid");
2970 			i++;
2971 		}
2972 	}
2973 
2974 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
2975 		pr_info("%sTLR", i ? "," : "");
2976 		i++;
2977 	}
2978 
2979 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
2980 		pr_info("%sMulticast", i ? "," : "");
2981 		i++;
2982 	}
2983 
2984 	if (ioc->facts.IOCCapabilities &
2985 	    MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
2986 		pr_info("%sBIDI Target", i ? "," : "");
2987 		i++;
2988 	}
2989 
2990 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
2991 		pr_info("%sEEDP", i ? "," : "");
2992 		i++;
2993 	}
2994 
2995 	if (ioc->facts.IOCCapabilities &
2996 	    MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
2997 		pr_info("%sSnapshot Buffer", i ? "," : "");
2998 		i++;
2999 	}
3000 
3001 	if (ioc->facts.IOCCapabilities &
3002 	    MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
3003 		pr_info("%sDiag Trace Buffer", i ? "," : "");
3004 		i++;
3005 	}
3006 
3007 	if (ioc->facts.IOCCapabilities &
3008 	    MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
3009 		pr_info("%sDiag Extended Buffer", i ? "," : "");
3010 		i++;
3011 	}
3012 
3013 	if (ioc->facts.IOCCapabilities &
3014 	    MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
3015 		pr_info("%sTask Set Full", i ? "," : "");
3016 		i++;
3017 	}
3018 
3019 	iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
3020 	if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
3021 		pr_info("%sNCQ", i ? "," : "");
3022 		i++;
3023 	}
3024 
3025 	pr_info(")\n");
3026 }
3027 
3028 /**
3029  * mpt3sas_base_update_missing_delay - change the missing delay timers
3030  * @ioc: per adapter object
3031  * @device_missing_delay: amount of time till device is reported missing
3032  * @io_missing_delay: interval IO is returned when there is a missing device
3033  *
3034  * Return nothing.
3035  *
3036  * Passed on the command line, this function will modify the device missing
3037  * delay, as well as the io missing delay. This should be called at driver
3038  * load time.
3039  */
3040 void
3041 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
3042 	u16 device_missing_delay, u8 io_missing_delay)
3043 {
3044 	u16 dmd, dmd_new, dmd_orignal;
3045 	u8 io_missing_delay_original;
3046 	u16 sz;
3047 	Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
3048 	Mpi2ConfigReply_t mpi_reply;
3049 	u8 num_phys = 0;
3050 	u16 ioc_status;
3051 
3052 	mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
3053 	if (!num_phys)
3054 		return;
3055 
3056 	sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
3057 	    sizeof(Mpi2SasIOUnit1PhyData_t));
3058 	sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
3059 	if (!sas_iounit_pg1) {
3060 		pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
3061 		    ioc->name, __FILE__, __LINE__, __func__);
3062 		goto out;
3063 	}
3064 	if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
3065 	    sas_iounit_pg1, sz))) {
3066 		pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
3067 		    ioc->name, __FILE__, __LINE__, __func__);
3068 		goto out;
3069 	}
3070 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
3071 	    MPI2_IOCSTATUS_MASK;
3072 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
3073 		pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
3074 		    ioc->name, __FILE__, __LINE__, __func__);
3075 		goto out;
3076 	}
3077 
3078 	/* device missing delay */
3079 	dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
3080 	if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
3081 		dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
3082 	else
3083 		dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
3084 	dmd_orignal = dmd;
3085 	if (device_missing_delay > 0x7F) {
3086 		dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
3087 		    device_missing_delay;
3088 		dmd = dmd / 16;
3089 		dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
3090 	} else
3091 		dmd = device_missing_delay;
3092 	sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
3093 
3094 	/* io missing delay */
3095 	io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
3096 	sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
3097 
3098 	if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
3099 	    sz)) {
3100 		if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
3101 			dmd_new = (dmd &
3102 			    MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
3103 		else
3104 			dmd_new =
3105 		    dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
3106 		pr_info(MPT3SAS_FMT "device_missing_delay: old(%d), new(%d)\n",
3107 			ioc->name, dmd_orignal, dmd_new);
3108 		pr_info(MPT3SAS_FMT "ioc_missing_delay: old(%d), new(%d)\n",
3109 			ioc->name, io_missing_delay_original,
3110 		    io_missing_delay);
3111 		ioc->device_missing_delay = dmd_new;
3112 		ioc->io_missing_delay = io_missing_delay;
3113 	}
3114 
3115 out:
3116 	kfree(sas_iounit_pg1);
3117 }
3118 /**
3119  * _base_static_config_pages - static start of day config pages
3120  * @ioc: per adapter object
3121  *
3122  * Return nothing.
3123  */
3124 static void
3125 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
3126 {
3127 	Mpi2ConfigReply_t mpi_reply;
3128 	u32 iounit_pg1_flags;
3129 
3130 	mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
3131 	if (ioc->ir_firmware)
3132 		mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
3133 		    &ioc->manu_pg10);
3134 
3135 	/*
3136 	 * Ensure correct T10 PI operation if vendor left EEDPTagMode
3137 	 * flag unset in NVDATA.
3138 	 */
3139 	mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
3140 	if (ioc->manu_pg11.EEDPTagMode == 0) {
3141 		pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
3142 		    ioc->name);
3143 		ioc->manu_pg11.EEDPTagMode &= ~0x3;
3144 		ioc->manu_pg11.EEDPTagMode |= 0x1;
3145 		mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
3146 		    &ioc->manu_pg11);
3147 	}
3148 
3149 	mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
3150 	mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
3151 	mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
3152 	mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
3153 	mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
3154 	mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
3155 	_base_display_ioc_capabilities(ioc);
3156 
3157 	/*
3158 	 * Enable task_set_full handling in iounit_pg1 when the
3159 	 * facts capabilities indicate that its supported.
3160 	 */
3161 	iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
3162 	if ((ioc->facts.IOCCapabilities &
3163 	    MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
3164 		iounit_pg1_flags &=
3165 		    ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
3166 	else
3167 		iounit_pg1_flags |=
3168 		    MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
3169 	ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
3170 	mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
3171 
3172 	if (ioc->iounit_pg8.NumSensors)
3173 		ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
3174 }
3175 
3176 /**
3177  * _base_release_memory_pools - release memory
3178  * @ioc: per adapter object
3179  *
3180  * Free memory allocated from _base_allocate_memory_pools.
3181  *
3182  * Return nothing.
3183  */
3184 static void
3185 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
3186 {
3187 	int i = 0;
3188 	struct reply_post_struct *rps;
3189 
3190 	dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3191 	    __func__));
3192 
3193 	if (ioc->request) {
3194 		pci_free_consistent(ioc->pdev, ioc->request_dma_sz,
3195 		    ioc->request,  ioc->request_dma);
3196 		dexitprintk(ioc, pr_info(MPT3SAS_FMT
3197 			"request_pool(0x%p): free\n",
3198 			ioc->name, ioc->request));
3199 		ioc->request = NULL;
3200 	}
3201 
3202 	if (ioc->sense) {
3203 		pci_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
3204 		if (ioc->sense_dma_pool)
3205 			pci_pool_destroy(ioc->sense_dma_pool);
3206 		dexitprintk(ioc, pr_info(MPT3SAS_FMT
3207 			"sense_pool(0x%p): free\n",
3208 			ioc->name, ioc->sense));
3209 		ioc->sense = NULL;
3210 	}
3211 
3212 	if (ioc->reply) {
3213 		pci_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
3214 		if (ioc->reply_dma_pool)
3215 			pci_pool_destroy(ioc->reply_dma_pool);
3216 		dexitprintk(ioc, pr_info(MPT3SAS_FMT
3217 			"reply_pool(0x%p): free\n",
3218 			ioc->name, ioc->reply));
3219 		ioc->reply = NULL;
3220 	}
3221 
3222 	if (ioc->reply_free) {
3223 		pci_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
3224 		    ioc->reply_free_dma);
3225 		if (ioc->reply_free_dma_pool)
3226 			pci_pool_destroy(ioc->reply_free_dma_pool);
3227 		dexitprintk(ioc, pr_info(MPT3SAS_FMT
3228 			"reply_free_pool(0x%p): free\n",
3229 			ioc->name, ioc->reply_free));
3230 		ioc->reply_free = NULL;
3231 	}
3232 
3233 	if (ioc->reply_post) {
3234 		do {
3235 			rps = &ioc->reply_post[i];
3236 			if (rps->reply_post_free) {
3237 				pci_pool_free(
3238 				    ioc->reply_post_free_dma_pool,
3239 				    rps->reply_post_free,
3240 				    rps->reply_post_free_dma);
3241 				dexitprintk(ioc, pr_info(MPT3SAS_FMT
3242 				    "reply_post_free_pool(0x%p): free\n",
3243 				    ioc->name, rps->reply_post_free));
3244 				rps->reply_post_free = NULL;
3245 			}
3246 		} while (ioc->rdpq_array_enable &&
3247 			   (++i < ioc->reply_queue_count));
3248 
3249 		if (ioc->reply_post_free_dma_pool)
3250 			pci_pool_destroy(ioc->reply_post_free_dma_pool);
3251 		kfree(ioc->reply_post);
3252 	}
3253 
3254 	if (ioc->config_page) {
3255 		dexitprintk(ioc, pr_info(MPT3SAS_FMT
3256 		    "config_page(0x%p): free\n", ioc->name,
3257 		    ioc->config_page));
3258 		pci_free_consistent(ioc->pdev, ioc->config_page_sz,
3259 		    ioc->config_page, ioc->config_page_dma);
3260 	}
3261 
3262 	if (ioc->scsi_lookup) {
3263 		free_pages((ulong)ioc->scsi_lookup, ioc->scsi_lookup_pages);
3264 		ioc->scsi_lookup = NULL;
3265 	}
3266 	kfree(ioc->hpr_lookup);
3267 	kfree(ioc->internal_lookup);
3268 	if (ioc->chain_lookup) {
3269 		for (i = 0; i < ioc->chain_depth; i++) {
3270 			if (ioc->chain_lookup[i].chain_buffer)
3271 				pci_pool_free(ioc->chain_dma_pool,
3272 				    ioc->chain_lookup[i].chain_buffer,
3273 				    ioc->chain_lookup[i].chain_buffer_dma);
3274 		}
3275 		if (ioc->chain_dma_pool)
3276 			pci_pool_destroy(ioc->chain_dma_pool);
3277 		free_pages((ulong)ioc->chain_lookup, ioc->chain_pages);
3278 		ioc->chain_lookup = NULL;
3279 	}
3280 }
3281 
3282 /**
3283  * _base_allocate_memory_pools - allocate start of day memory pools
3284  * @ioc: per adapter object
3285  *
3286  * Returns 0 success, anything else error
3287  */
3288 static int
3289 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
3290 {
3291 	struct mpt3sas_facts *facts;
3292 	u16 max_sge_elements;
3293 	u16 chains_needed_per_io;
3294 	u32 sz, total_sz, reply_post_free_sz;
3295 	u32 retry_sz;
3296 	u16 max_request_credit;
3297 	unsigned short sg_tablesize;
3298 	u16 sge_size;
3299 	int i;
3300 
3301 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3302 	    __func__));
3303 
3304 
3305 	retry_sz = 0;
3306 	facts = &ioc->facts;
3307 
3308 	/* command line tunables for max sgl entries */
3309 	if (max_sgl_entries != -1)
3310 		sg_tablesize = max_sgl_entries;
3311 	else {
3312 		if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
3313 			sg_tablesize = MPT2SAS_SG_DEPTH;
3314 		else
3315 			sg_tablesize = MPT3SAS_SG_DEPTH;
3316 	}
3317 
3318 	if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
3319 		sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
3320 	else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
3321 		sg_tablesize = min_t(unsigned short, sg_tablesize,
3322 				      SG_MAX_SEGMENTS);
3323 		pr_warn(MPT3SAS_FMT
3324 		 "sg_tablesize(%u) is bigger than kernel"
3325 		 " defined SG_CHUNK_SIZE(%u)\n", ioc->name,
3326 		 sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
3327 	}
3328 	ioc->shost->sg_tablesize = sg_tablesize;
3329 
3330 	ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
3331 		(facts->RequestCredit / 4));
3332 	if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
3333 		if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
3334 				INTERNAL_SCSIIO_CMDS_COUNT)) {
3335 			pr_err(MPT3SAS_FMT "IOC doesn't have enough Request \
3336 			    Credits, it has just %d number of credits\n",
3337 			    ioc->name, facts->RequestCredit);
3338 			return -ENOMEM;
3339 		}
3340 		ioc->internal_depth = 10;
3341 	}
3342 
3343 	ioc->hi_priority_depth = ioc->internal_depth - (5);
3344 	/* command line tunables  for max controller queue depth */
3345 	if (max_queue_depth != -1 && max_queue_depth != 0) {
3346 		max_request_credit = min_t(u16, max_queue_depth +
3347 			ioc->internal_depth, facts->RequestCredit);
3348 		if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
3349 			max_request_credit =  MAX_HBA_QUEUE_DEPTH;
3350 	} else
3351 		max_request_credit = min_t(u16, facts->RequestCredit,
3352 		    MAX_HBA_QUEUE_DEPTH);
3353 
3354 	/* Firmware maintains additional facts->HighPriorityCredit number of
3355 	 * credits for HiPriprity Request messages, so hba queue depth will be
3356 	 * sum of max_request_credit and high priority queue depth.
3357 	 */
3358 	ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
3359 
3360 	/* request frame size */
3361 	ioc->request_sz = facts->IOCRequestFrameSize * 4;
3362 
3363 	/* reply frame size */
3364 	ioc->reply_sz = facts->ReplyFrameSize * 4;
3365 
3366 	/* chain segment size */
3367 	if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
3368 		if (facts->IOCMaxChainSegmentSize)
3369 			ioc->chain_segment_sz =
3370 					facts->IOCMaxChainSegmentSize *
3371 					MAX_CHAIN_ELEMT_SZ;
3372 		else
3373 		/* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
3374 			ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
3375 						    MAX_CHAIN_ELEMT_SZ;
3376 	} else
3377 		ioc->chain_segment_sz = ioc->request_sz;
3378 
3379 	/* calculate the max scatter element size */
3380 	sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
3381 
3382  retry_allocation:
3383 	total_sz = 0;
3384 	/* calculate number of sg elements left over in the 1st frame */
3385 	max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
3386 	    sizeof(Mpi2SGEIOUnion_t)) + sge_size);
3387 	ioc->max_sges_in_main_message = max_sge_elements/sge_size;
3388 
3389 	/* now do the same for a chain buffer */
3390 	max_sge_elements = ioc->chain_segment_sz - sge_size;
3391 	ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
3392 
3393 	/*
3394 	 *  MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
3395 	 */
3396 	chains_needed_per_io = ((ioc->shost->sg_tablesize -
3397 	   ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
3398 	    + 1;
3399 	if (chains_needed_per_io > facts->MaxChainDepth) {
3400 		chains_needed_per_io = facts->MaxChainDepth;
3401 		ioc->shost->sg_tablesize = min_t(u16,
3402 		ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
3403 		* chains_needed_per_io), ioc->shost->sg_tablesize);
3404 	}
3405 	ioc->chains_needed_per_io = chains_needed_per_io;
3406 
3407 	/* reply free queue sizing - taking into account for 64 FW events */
3408 	ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
3409 
3410 	/* calculate reply descriptor post queue depth */
3411 	ioc->reply_post_queue_depth = ioc->hba_queue_depth +
3412 				ioc->reply_free_queue_depth +  1 ;
3413 	/* align the reply post queue on the next 16 count boundary */
3414 	if (ioc->reply_post_queue_depth % 16)
3415 		ioc->reply_post_queue_depth += 16 -
3416 		(ioc->reply_post_queue_depth % 16);
3417 
3418 	if (ioc->reply_post_queue_depth >
3419 	    facts->MaxReplyDescriptorPostQueueDepth) {
3420 		ioc->reply_post_queue_depth =
3421 				facts->MaxReplyDescriptorPostQueueDepth -
3422 		    (facts->MaxReplyDescriptorPostQueueDepth % 16);
3423 		ioc->hba_queue_depth =
3424 				((ioc->reply_post_queue_depth - 64) / 2) - 1;
3425 		ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
3426 	}
3427 
3428 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "scatter gather: " \
3429 	    "sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), "
3430 	    "chains_per_io(%d)\n", ioc->name, ioc->max_sges_in_main_message,
3431 	    ioc->max_sges_in_chain_message, ioc->shost->sg_tablesize,
3432 	    ioc->chains_needed_per_io));
3433 
3434 	/* reply post queue, 16 byte align */
3435 	reply_post_free_sz = ioc->reply_post_queue_depth *
3436 	    sizeof(Mpi2DefaultReplyDescriptor_t);
3437 
3438 	sz = reply_post_free_sz;
3439 	if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
3440 		sz *= ioc->reply_queue_count;
3441 
3442 	ioc->reply_post = kcalloc((ioc->rdpq_array_enable) ?
3443 	    (ioc->reply_queue_count):1,
3444 	    sizeof(struct reply_post_struct), GFP_KERNEL);
3445 
3446 	if (!ioc->reply_post) {
3447 		pr_err(MPT3SAS_FMT "reply_post_free pool: kcalloc failed\n",
3448 			ioc->name);
3449 		goto out;
3450 	}
3451 	ioc->reply_post_free_dma_pool = pci_pool_create("reply_post_free pool",
3452 	    ioc->pdev, sz, 16, 0);
3453 	if (!ioc->reply_post_free_dma_pool) {
3454 		pr_err(MPT3SAS_FMT
3455 		 "reply_post_free pool: pci_pool_create failed\n",
3456 		 ioc->name);
3457 		goto out;
3458 	}
3459 	i = 0;
3460 	do {
3461 		ioc->reply_post[i].reply_post_free =
3462 		    pci_pool_alloc(ioc->reply_post_free_dma_pool,
3463 		    GFP_KERNEL,
3464 		    &ioc->reply_post[i].reply_post_free_dma);
3465 		if (!ioc->reply_post[i].reply_post_free) {
3466 			pr_err(MPT3SAS_FMT
3467 			"reply_post_free pool: pci_pool_alloc failed\n",
3468 			ioc->name);
3469 			goto out;
3470 		}
3471 		memset(ioc->reply_post[i].reply_post_free, 0, sz);
3472 		dinitprintk(ioc, pr_info(MPT3SAS_FMT
3473 		    "reply post free pool (0x%p): depth(%d),"
3474 		    "element_size(%d), pool_size(%d kB)\n", ioc->name,
3475 		    ioc->reply_post[i].reply_post_free,
3476 		    ioc->reply_post_queue_depth, 8, sz/1024));
3477 		dinitprintk(ioc, pr_info(MPT3SAS_FMT
3478 		    "reply_post_free_dma = (0x%llx)\n", ioc->name,
3479 		    (unsigned long long)
3480 		    ioc->reply_post[i].reply_post_free_dma));
3481 		total_sz += sz;
3482 	} while (ioc->rdpq_array_enable && (++i < ioc->reply_queue_count));
3483 
3484 	if (ioc->dma_mask == 64) {
3485 		if (_base_change_consistent_dma_mask(ioc, ioc->pdev) != 0) {
3486 			pr_warn(MPT3SAS_FMT
3487 			    "no suitable consistent DMA mask for %s\n",
3488 			    ioc->name, pci_name(ioc->pdev));
3489 			goto out;
3490 		}
3491 	}
3492 
3493 	ioc->scsiio_depth = ioc->hba_queue_depth -
3494 	    ioc->hi_priority_depth - ioc->internal_depth;
3495 
3496 	/* set the scsi host can_queue depth
3497 	 * with some internal commands that could be outstanding
3498 	 */
3499 	ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
3500 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3501 		"scsi host: can_queue depth (%d)\n",
3502 		ioc->name, ioc->shost->can_queue));
3503 
3504 
3505 	/* contiguous pool for request and chains, 16 byte align, one extra "
3506 	 * "frame for smid=0
3507 	 */
3508 	ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
3509 	sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
3510 
3511 	/* hi-priority queue */
3512 	sz += (ioc->hi_priority_depth * ioc->request_sz);
3513 
3514 	/* internal queue */
3515 	sz += (ioc->internal_depth * ioc->request_sz);
3516 
3517 	ioc->request_dma_sz = sz;
3518 	ioc->request = pci_alloc_consistent(ioc->pdev, sz, &ioc->request_dma);
3519 	if (!ioc->request) {
3520 		pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
3521 		    "failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
3522 		    "total(%d kB)\n", ioc->name, ioc->hba_queue_depth,
3523 		    ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
3524 		if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
3525 			goto out;
3526 		retry_sz = 64;
3527 		ioc->hba_queue_depth -= retry_sz;
3528 		_base_release_memory_pools(ioc);
3529 		goto retry_allocation;
3530 	}
3531 
3532 	if (retry_sz)
3533 		pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
3534 		    "succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
3535 		    "total(%d kb)\n", ioc->name, ioc->hba_queue_depth,
3536 		    ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
3537 
3538 	/* hi-priority queue */
3539 	ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
3540 	    ioc->request_sz);
3541 	ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
3542 	    ioc->request_sz);
3543 
3544 	/* internal queue */
3545 	ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
3546 	    ioc->request_sz);
3547 	ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
3548 	    ioc->request_sz);
3549 
3550 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3551 		"request pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
3552 		ioc->name, ioc->request, ioc->hba_queue_depth, ioc->request_sz,
3553 	    (ioc->hba_queue_depth * ioc->request_sz)/1024));
3554 
3555 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "request pool: dma(0x%llx)\n",
3556 	    ioc->name, (unsigned long long) ioc->request_dma));
3557 	total_sz += sz;
3558 
3559 	sz = ioc->scsiio_depth * sizeof(struct scsiio_tracker);
3560 	ioc->scsi_lookup_pages = get_order(sz);
3561 	ioc->scsi_lookup = (struct scsiio_tracker *)__get_free_pages(
3562 	    GFP_KERNEL, ioc->scsi_lookup_pages);
3563 	if (!ioc->scsi_lookup) {
3564 		pr_err(MPT3SAS_FMT "scsi_lookup: get_free_pages failed, sz(%d)\n",
3565 			ioc->name, (int)sz);
3566 		goto out;
3567 	}
3568 
3569 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "scsiio(0x%p): depth(%d)\n",
3570 		ioc->name, ioc->request, ioc->scsiio_depth));
3571 
3572 	ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
3573 	sz = ioc->chain_depth * sizeof(struct chain_tracker);
3574 	ioc->chain_pages = get_order(sz);
3575 	ioc->chain_lookup = (struct chain_tracker *)__get_free_pages(
3576 	    GFP_KERNEL, ioc->chain_pages);
3577 	if (!ioc->chain_lookup) {
3578 		pr_err(MPT3SAS_FMT "chain_lookup: __get_free_pages failed\n",
3579 			ioc->name);
3580 		goto out;
3581 	}
3582 	ioc->chain_dma_pool = pci_pool_create("chain pool", ioc->pdev,
3583 	    ioc->chain_segment_sz, 16, 0);
3584 	if (!ioc->chain_dma_pool) {
3585 		pr_err(MPT3SAS_FMT "chain_dma_pool: pci_pool_create failed\n",
3586 			ioc->name);
3587 		goto out;
3588 	}
3589 	for (i = 0; i < ioc->chain_depth; i++) {
3590 		ioc->chain_lookup[i].chain_buffer = pci_pool_alloc(
3591 		    ioc->chain_dma_pool , GFP_KERNEL,
3592 		    &ioc->chain_lookup[i].chain_buffer_dma);
3593 		if (!ioc->chain_lookup[i].chain_buffer) {
3594 			ioc->chain_depth = i;
3595 			goto chain_done;
3596 		}
3597 		total_sz += ioc->chain_segment_sz;
3598 	}
3599  chain_done:
3600 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3601 		"chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
3602 		ioc->name, ioc->chain_depth, ioc->chain_segment_sz,
3603 		((ioc->chain_depth *  ioc->chain_segment_sz))/1024));
3604 
3605 	/* initialize hi-priority queue smid's */
3606 	ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
3607 	    sizeof(struct request_tracker), GFP_KERNEL);
3608 	if (!ioc->hpr_lookup) {
3609 		pr_err(MPT3SAS_FMT "hpr_lookup: kcalloc failed\n",
3610 		    ioc->name);
3611 		goto out;
3612 	}
3613 	ioc->hi_priority_smid = ioc->scsiio_depth + 1;
3614 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3615 		"hi_priority(0x%p): depth(%d), start smid(%d)\n",
3616 		ioc->name, ioc->hi_priority,
3617 	    ioc->hi_priority_depth, ioc->hi_priority_smid));
3618 
3619 	/* initialize internal queue smid's */
3620 	ioc->internal_lookup = kcalloc(ioc->internal_depth,
3621 	    sizeof(struct request_tracker), GFP_KERNEL);
3622 	if (!ioc->internal_lookup) {
3623 		pr_err(MPT3SAS_FMT "internal_lookup: kcalloc failed\n",
3624 		    ioc->name);
3625 		goto out;
3626 	}
3627 	ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
3628 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3629 		"internal(0x%p): depth(%d), start smid(%d)\n",
3630 		ioc->name, ioc->internal,
3631 	    ioc->internal_depth, ioc->internal_smid));
3632 
3633 	/* sense buffers, 4 byte align */
3634 	sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
3635 	ioc->sense_dma_pool = pci_pool_create("sense pool", ioc->pdev, sz, 4,
3636 	    0);
3637 	if (!ioc->sense_dma_pool) {
3638 		pr_err(MPT3SAS_FMT "sense pool: pci_pool_create failed\n",
3639 		    ioc->name);
3640 		goto out;
3641 	}
3642 	ioc->sense = pci_pool_alloc(ioc->sense_dma_pool , GFP_KERNEL,
3643 	    &ioc->sense_dma);
3644 	if (!ioc->sense) {
3645 		pr_err(MPT3SAS_FMT "sense pool: pci_pool_alloc failed\n",
3646 		    ioc->name);
3647 		goto out;
3648 	}
3649 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3650 	    "sense pool(0x%p): depth(%d), element_size(%d), pool_size"
3651 	    "(%d kB)\n", ioc->name, ioc->sense, ioc->scsiio_depth,
3652 	    SCSI_SENSE_BUFFERSIZE, sz/1024));
3653 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "sense_dma(0x%llx)\n",
3654 	    ioc->name, (unsigned long long)ioc->sense_dma));
3655 	total_sz += sz;
3656 
3657 	/* reply pool, 4 byte align */
3658 	sz = ioc->reply_free_queue_depth * ioc->reply_sz;
3659 	ioc->reply_dma_pool = pci_pool_create("reply pool", ioc->pdev, sz, 4,
3660 	    0);
3661 	if (!ioc->reply_dma_pool) {
3662 		pr_err(MPT3SAS_FMT "reply pool: pci_pool_create failed\n",
3663 		    ioc->name);
3664 		goto out;
3665 	}
3666 	ioc->reply = pci_pool_alloc(ioc->reply_dma_pool , GFP_KERNEL,
3667 	    &ioc->reply_dma);
3668 	if (!ioc->reply) {
3669 		pr_err(MPT3SAS_FMT "reply pool: pci_pool_alloc failed\n",
3670 		    ioc->name);
3671 		goto out;
3672 	}
3673 	ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
3674 	ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
3675 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3676 		"reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
3677 		ioc->name, ioc->reply,
3678 	    ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024));
3679 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_dma(0x%llx)\n",
3680 	    ioc->name, (unsigned long long)ioc->reply_dma));
3681 	total_sz += sz;
3682 
3683 	/* reply free queue, 16 byte align */
3684 	sz = ioc->reply_free_queue_depth * 4;
3685 	ioc->reply_free_dma_pool = pci_pool_create("reply_free pool",
3686 	    ioc->pdev, sz, 16, 0);
3687 	if (!ioc->reply_free_dma_pool) {
3688 		pr_err(MPT3SAS_FMT "reply_free pool: pci_pool_create failed\n",
3689 			ioc->name);
3690 		goto out;
3691 	}
3692 	ioc->reply_free = pci_pool_alloc(ioc->reply_free_dma_pool , GFP_KERNEL,
3693 	    &ioc->reply_free_dma);
3694 	if (!ioc->reply_free) {
3695 		pr_err(MPT3SAS_FMT "reply_free pool: pci_pool_alloc failed\n",
3696 			ioc->name);
3697 		goto out;
3698 	}
3699 	memset(ioc->reply_free, 0, sz);
3700 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_free pool(0x%p): " \
3701 	    "depth(%d), element_size(%d), pool_size(%d kB)\n", ioc->name,
3702 	    ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
3703 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3704 		"reply_free_dma (0x%llx)\n",
3705 		ioc->name, (unsigned long long)ioc->reply_free_dma));
3706 	total_sz += sz;
3707 
3708 	ioc->config_page_sz = 512;
3709 	ioc->config_page = pci_alloc_consistent(ioc->pdev,
3710 	    ioc->config_page_sz, &ioc->config_page_dma);
3711 	if (!ioc->config_page) {
3712 		pr_err(MPT3SAS_FMT
3713 			"config page: pci_pool_alloc failed\n",
3714 			ioc->name);
3715 		goto out;
3716 	}
3717 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3718 		"config page(0x%p): size(%d)\n",
3719 		ioc->name, ioc->config_page, ioc->config_page_sz));
3720 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "config_page_dma(0x%llx)\n",
3721 		ioc->name, (unsigned long long)ioc->config_page_dma));
3722 	total_sz += ioc->config_page_sz;
3723 
3724 	pr_info(MPT3SAS_FMT "Allocated physical memory: size(%d kB)\n",
3725 	    ioc->name, total_sz/1024);
3726 	pr_info(MPT3SAS_FMT
3727 		"Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
3728 	    ioc->name, ioc->shost->can_queue, facts->RequestCredit);
3729 	pr_info(MPT3SAS_FMT "Scatter Gather Elements per IO(%d)\n",
3730 	    ioc->name, ioc->shost->sg_tablesize);
3731 	return 0;
3732 
3733  out:
3734 	return -ENOMEM;
3735 }
3736 
3737 /**
3738  * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
3739  * @ioc: Pointer to MPT_ADAPTER structure
3740  * @cooked: Request raw or cooked IOC state
3741  *
3742  * Returns all IOC Doorbell register bits if cooked==0, else just the
3743  * Doorbell bits in MPI_IOC_STATE_MASK.
3744  */
3745 u32
3746 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
3747 {
3748 	u32 s, sc;
3749 
3750 	s = readl(&ioc->chip->Doorbell);
3751 	sc = s & MPI2_IOC_STATE_MASK;
3752 	return cooked ? sc : s;
3753 }
3754 
3755 /**
3756  * _base_wait_on_iocstate - waiting on a particular ioc state
3757  * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
3758  * @timeout: timeout in second
3759  *
3760  * Returns 0 for success, non-zero for failure.
3761  */
3762 static int
3763 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
3764 {
3765 	u32 count, cntdn;
3766 	u32 current_state;
3767 
3768 	count = 0;
3769 	cntdn = 1000 * timeout;
3770 	do {
3771 		current_state = mpt3sas_base_get_iocstate(ioc, 1);
3772 		if (current_state == ioc_state)
3773 			return 0;
3774 		if (count && current_state == MPI2_IOC_STATE_FAULT)
3775 			break;
3776 
3777 		usleep_range(1000, 1500);
3778 		count++;
3779 	} while (--cntdn);
3780 
3781 	return current_state;
3782 }
3783 
3784 /**
3785  * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
3786  * a write to the doorbell)
3787  * @ioc: per adapter object
3788  * @timeout: timeout in second
3789  *
3790  * Returns 0 for success, non-zero for failure.
3791  *
3792  * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
3793  */
3794 static int
3795 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
3796 
3797 static int
3798 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
3799 {
3800 	u32 cntdn, count;
3801 	u32 int_status;
3802 
3803 	count = 0;
3804 	cntdn = 1000 * timeout;
3805 	do {
3806 		int_status = readl(&ioc->chip->HostInterruptStatus);
3807 		if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3808 			dhsprintk(ioc, pr_info(MPT3SAS_FMT
3809 				"%s: successful count(%d), timeout(%d)\n",
3810 				ioc->name, __func__, count, timeout));
3811 			return 0;
3812 		}
3813 
3814 		usleep_range(1000, 1500);
3815 		count++;
3816 	} while (--cntdn);
3817 
3818 	pr_err(MPT3SAS_FMT
3819 		"%s: failed due to timeout count(%d), int_status(%x)!\n",
3820 		ioc->name, __func__, count, int_status);
3821 	return -EFAULT;
3822 }
3823 
3824 static int
3825 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
3826 {
3827 	u32 cntdn, count;
3828 	u32 int_status;
3829 
3830 	count = 0;
3831 	cntdn = 2000 * timeout;
3832 	do {
3833 		int_status = readl(&ioc->chip->HostInterruptStatus);
3834 		if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3835 			dhsprintk(ioc, pr_info(MPT3SAS_FMT
3836 				"%s: successful count(%d), timeout(%d)\n",
3837 				ioc->name, __func__, count, timeout));
3838 			return 0;
3839 		}
3840 
3841 		udelay(500);
3842 		count++;
3843 	} while (--cntdn);
3844 
3845 	pr_err(MPT3SAS_FMT
3846 		"%s: failed due to timeout count(%d), int_status(%x)!\n",
3847 		ioc->name, __func__, count, int_status);
3848 	return -EFAULT;
3849 
3850 }
3851 
3852 /**
3853  * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
3854  * @ioc: per adapter object
3855  * @timeout: timeout in second
3856  *
3857  * Returns 0 for success, non-zero for failure.
3858  *
3859  * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
3860  * doorbell.
3861  */
3862 static int
3863 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
3864 {
3865 	u32 cntdn, count;
3866 	u32 int_status;
3867 	u32 doorbell;
3868 
3869 	count = 0;
3870 	cntdn = 1000 * timeout;
3871 	do {
3872 		int_status = readl(&ioc->chip->HostInterruptStatus);
3873 		if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
3874 			dhsprintk(ioc, pr_info(MPT3SAS_FMT
3875 				"%s: successful count(%d), timeout(%d)\n",
3876 				ioc->name, __func__, count, timeout));
3877 			return 0;
3878 		} else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3879 			doorbell = readl(&ioc->chip->Doorbell);
3880 			if ((doorbell & MPI2_IOC_STATE_MASK) ==
3881 			    MPI2_IOC_STATE_FAULT) {
3882 				mpt3sas_base_fault_info(ioc , doorbell);
3883 				return -EFAULT;
3884 			}
3885 		} else if (int_status == 0xFFFFFFFF)
3886 			goto out;
3887 
3888 		usleep_range(1000, 1500);
3889 		count++;
3890 	} while (--cntdn);
3891 
3892  out:
3893 	pr_err(MPT3SAS_FMT
3894 	 "%s: failed due to timeout count(%d), int_status(%x)!\n",
3895 	 ioc->name, __func__, count, int_status);
3896 	return -EFAULT;
3897 }
3898 
3899 /**
3900  * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
3901  * @ioc: per adapter object
3902  * @timeout: timeout in second
3903  *
3904  * Returns 0 for success, non-zero for failure.
3905  *
3906  */
3907 static int
3908 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
3909 {
3910 	u32 cntdn, count;
3911 	u32 doorbell_reg;
3912 
3913 	count = 0;
3914 	cntdn = 1000 * timeout;
3915 	do {
3916 		doorbell_reg = readl(&ioc->chip->Doorbell);
3917 		if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
3918 			dhsprintk(ioc, pr_info(MPT3SAS_FMT
3919 				"%s: successful count(%d), timeout(%d)\n",
3920 				ioc->name, __func__, count, timeout));
3921 			return 0;
3922 		}
3923 
3924 		usleep_range(1000, 1500);
3925 		count++;
3926 	} while (--cntdn);
3927 
3928 	pr_err(MPT3SAS_FMT
3929 		"%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
3930 		ioc->name, __func__, count, doorbell_reg);
3931 	return -EFAULT;
3932 }
3933 
3934 /**
3935  * _base_send_ioc_reset - send doorbell reset
3936  * @ioc: per adapter object
3937  * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
3938  * @timeout: timeout in second
3939  *
3940  * Returns 0 for success, non-zero for failure.
3941  */
3942 static int
3943 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
3944 {
3945 	u32 ioc_state;
3946 	int r = 0;
3947 
3948 	if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
3949 		pr_err(MPT3SAS_FMT "%s: unknown reset_type\n",
3950 		    ioc->name, __func__);
3951 		return -EFAULT;
3952 	}
3953 
3954 	if (!(ioc->facts.IOCCapabilities &
3955 	   MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
3956 		return -EFAULT;
3957 
3958 	pr_info(MPT3SAS_FMT "sending message unit reset !!\n", ioc->name);
3959 
3960 	writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
3961 	    &ioc->chip->Doorbell);
3962 	if ((_base_wait_for_doorbell_ack(ioc, 15))) {
3963 		r = -EFAULT;
3964 		goto out;
3965 	}
3966 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
3967 	if (ioc_state) {
3968 		pr_err(MPT3SAS_FMT
3969 			"%s: failed going to ready state (ioc_state=0x%x)\n",
3970 			ioc->name, __func__, ioc_state);
3971 		r = -EFAULT;
3972 		goto out;
3973 	}
3974  out:
3975 	pr_info(MPT3SAS_FMT "message unit reset: %s\n",
3976 	    ioc->name, ((r == 0) ? "SUCCESS" : "FAILED"));
3977 	return r;
3978 }
3979 
3980 /**
3981  * _base_handshake_req_reply_wait - send request thru doorbell interface
3982  * @ioc: per adapter object
3983  * @request_bytes: request length
3984  * @request: pointer having request payload
3985  * @reply_bytes: reply length
3986  * @reply: pointer to reply payload
3987  * @timeout: timeout in second
3988  *
3989  * Returns 0 for success, non-zero for failure.
3990  */
3991 static int
3992 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
3993 	u32 *request, int reply_bytes, u16 *reply, int timeout)
3994 {
3995 	MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
3996 	int i;
3997 	u8 failed;
3998 	__le32 *mfp;
3999 
4000 	/* make sure doorbell is not in use */
4001 	if ((readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
4002 		pr_err(MPT3SAS_FMT
4003 			"doorbell is in use (line=%d)\n",
4004 			ioc->name, __LINE__);
4005 		return -EFAULT;
4006 	}
4007 
4008 	/* clear pending doorbell interrupts from previous state changes */
4009 	if (readl(&ioc->chip->HostInterruptStatus) &
4010 	    MPI2_HIS_IOC2SYS_DB_STATUS)
4011 		writel(0, &ioc->chip->HostInterruptStatus);
4012 
4013 	/* send message to ioc */
4014 	writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
4015 	    ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
4016 	    &ioc->chip->Doorbell);
4017 
4018 	if ((_base_spin_on_doorbell_int(ioc, 5))) {
4019 		pr_err(MPT3SAS_FMT
4020 			"doorbell handshake int failed (line=%d)\n",
4021 			ioc->name, __LINE__);
4022 		return -EFAULT;
4023 	}
4024 	writel(0, &ioc->chip->HostInterruptStatus);
4025 
4026 	if ((_base_wait_for_doorbell_ack(ioc, 5))) {
4027 		pr_err(MPT3SAS_FMT
4028 			"doorbell handshake ack failed (line=%d)\n",
4029 			ioc->name, __LINE__);
4030 		return -EFAULT;
4031 	}
4032 
4033 	/* send message 32-bits at a time */
4034 	for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
4035 		writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
4036 		if ((_base_wait_for_doorbell_ack(ioc, 5)))
4037 			failed = 1;
4038 	}
4039 
4040 	if (failed) {
4041 		pr_err(MPT3SAS_FMT
4042 			"doorbell handshake sending request failed (line=%d)\n",
4043 			ioc->name, __LINE__);
4044 		return -EFAULT;
4045 	}
4046 
4047 	/* now wait for the reply */
4048 	if ((_base_wait_for_doorbell_int(ioc, timeout))) {
4049 		pr_err(MPT3SAS_FMT
4050 			"doorbell handshake int failed (line=%d)\n",
4051 			ioc->name, __LINE__);
4052 		return -EFAULT;
4053 	}
4054 
4055 	/* read the first two 16-bits, it gives the total length of the reply */
4056 	reply[0] = le16_to_cpu(readl(&ioc->chip->Doorbell)
4057 	    & MPI2_DOORBELL_DATA_MASK);
4058 	writel(0, &ioc->chip->HostInterruptStatus);
4059 	if ((_base_wait_for_doorbell_int(ioc, 5))) {
4060 		pr_err(MPT3SAS_FMT
4061 			"doorbell handshake int failed (line=%d)\n",
4062 			ioc->name, __LINE__);
4063 		return -EFAULT;
4064 	}
4065 	reply[1] = le16_to_cpu(readl(&ioc->chip->Doorbell)
4066 	    & MPI2_DOORBELL_DATA_MASK);
4067 	writel(0, &ioc->chip->HostInterruptStatus);
4068 
4069 	for (i = 2; i < default_reply->MsgLength * 2; i++)  {
4070 		if ((_base_wait_for_doorbell_int(ioc, 5))) {
4071 			pr_err(MPT3SAS_FMT
4072 				"doorbell handshake int failed (line=%d)\n",
4073 				ioc->name, __LINE__);
4074 			return -EFAULT;
4075 		}
4076 		if (i >=  reply_bytes/2) /* overflow case */
4077 			readl(&ioc->chip->Doorbell);
4078 		else
4079 			reply[i] = le16_to_cpu(readl(&ioc->chip->Doorbell)
4080 			    & MPI2_DOORBELL_DATA_MASK);
4081 		writel(0, &ioc->chip->HostInterruptStatus);
4082 	}
4083 
4084 	_base_wait_for_doorbell_int(ioc, 5);
4085 	if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
4086 		dhsprintk(ioc, pr_info(MPT3SAS_FMT
4087 			"doorbell is in use (line=%d)\n", ioc->name, __LINE__));
4088 	}
4089 	writel(0, &ioc->chip->HostInterruptStatus);
4090 
4091 	if (ioc->logging_level & MPT_DEBUG_INIT) {
4092 		mfp = (__le32 *)reply;
4093 		pr_info("\toffset:data\n");
4094 		for (i = 0; i < reply_bytes/4; i++)
4095 			pr_info("\t[0x%02x]:%08x\n", i*4,
4096 			    le32_to_cpu(mfp[i]));
4097 	}
4098 	return 0;
4099 }
4100 
4101 /**
4102  * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
4103  * @ioc: per adapter object
4104  * @mpi_reply: the reply payload from FW
4105  * @mpi_request: the request payload sent to FW
4106  *
4107  * The SAS IO Unit Control Request message allows the host to perform low-level
4108  * operations, such as resets on the PHYs of the IO Unit, also allows the host
4109  * to obtain the IOC assigned device handles for a device if it has other
4110  * identifying information about the device, in addition allows the host to
4111  * remove IOC resources associated with the device.
4112  *
4113  * Returns 0 for success, non-zero for failure.
4114  */
4115 int
4116 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
4117 	Mpi2SasIoUnitControlReply_t *mpi_reply,
4118 	Mpi2SasIoUnitControlRequest_t *mpi_request)
4119 {
4120 	u16 smid;
4121 	u32 ioc_state;
4122 	bool issue_reset = false;
4123 	int rc;
4124 	void *request;
4125 	u16 wait_state_count;
4126 
4127 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4128 	    __func__));
4129 
4130 	mutex_lock(&ioc->base_cmds.mutex);
4131 
4132 	if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
4133 		pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
4134 		    ioc->name, __func__);
4135 		rc = -EAGAIN;
4136 		goto out;
4137 	}
4138 
4139 	wait_state_count = 0;
4140 	ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4141 	while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
4142 		if (wait_state_count++ == 10) {
4143 			pr_err(MPT3SAS_FMT
4144 			    "%s: failed due to ioc not operational\n",
4145 			    ioc->name, __func__);
4146 			rc = -EFAULT;
4147 			goto out;
4148 		}
4149 		ssleep(1);
4150 		ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4151 		pr_info(MPT3SAS_FMT
4152 			"%s: waiting for operational state(count=%d)\n",
4153 			ioc->name, __func__, wait_state_count);
4154 	}
4155 
4156 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4157 	if (!smid) {
4158 		pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4159 		    ioc->name, __func__);
4160 		rc = -EAGAIN;
4161 		goto out;
4162 	}
4163 
4164 	rc = 0;
4165 	ioc->base_cmds.status = MPT3_CMD_PENDING;
4166 	request = mpt3sas_base_get_msg_frame(ioc, smid);
4167 	ioc->base_cmds.smid = smid;
4168 	memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
4169 	if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
4170 	    mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
4171 		ioc->ioc_link_reset_in_progress = 1;
4172 	init_completion(&ioc->base_cmds.done);
4173 	ioc->put_smid_default(ioc, smid);
4174 	wait_for_completion_timeout(&ioc->base_cmds.done,
4175 	    msecs_to_jiffies(10000));
4176 	if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
4177 	    mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
4178 	    ioc->ioc_link_reset_in_progress)
4179 		ioc->ioc_link_reset_in_progress = 0;
4180 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4181 		pr_err(MPT3SAS_FMT "%s: timeout\n",
4182 		    ioc->name, __func__);
4183 		_debug_dump_mf(mpi_request,
4184 		    sizeof(Mpi2SasIoUnitControlRequest_t)/4);
4185 		if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
4186 			issue_reset = true;
4187 		goto issue_host_reset;
4188 	}
4189 	if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
4190 		memcpy(mpi_reply, ioc->base_cmds.reply,
4191 		    sizeof(Mpi2SasIoUnitControlReply_t));
4192 	else
4193 		memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
4194 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4195 	goto out;
4196 
4197  issue_host_reset:
4198 	if (issue_reset)
4199 		mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
4200 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4201 	rc = -EFAULT;
4202  out:
4203 	mutex_unlock(&ioc->base_cmds.mutex);
4204 	return rc;
4205 }
4206 
4207 /**
4208  * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
4209  * @ioc: per adapter object
4210  * @mpi_reply: the reply payload from FW
4211  * @mpi_request: the request payload sent to FW
4212  *
4213  * The SCSI Enclosure Processor request message causes the IOC to
4214  * communicate with SES devices to control LED status signals.
4215  *
4216  * Returns 0 for success, non-zero for failure.
4217  */
4218 int
4219 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
4220 	Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
4221 {
4222 	u16 smid;
4223 	u32 ioc_state;
4224 	bool issue_reset = false;
4225 	int rc;
4226 	void *request;
4227 	u16 wait_state_count;
4228 
4229 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4230 	    __func__));
4231 
4232 	mutex_lock(&ioc->base_cmds.mutex);
4233 
4234 	if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
4235 		pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
4236 		    ioc->name, __func__);
4237 		rc = -EAGAIN;
4238 		goto out;
4239 	}
4240 
4241 	wait_state_count = 0;
4242 	ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4243 	while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
4244 		if (wait_state_count++ == 10) {
4245 			pr_err(MPT3SAS_FMT
4246 			    "%s: failed due to ioc not operational\n",
4247 			    ioc->name, __func__);
4248 			rc = -EFAULT;
4249 			goto out;
4250 		}
4251 		ssleep(1);
4252 		ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4253 		pr_info(MPT3SAS_FMT
4254 			"%s: waiting for operational state(count=%d)\n",
4255 			ioc->name,
4256 		    __func__, wait_state_count);
4257 	}
4258 
4259 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4260 	if (!smid) {
4261 		pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4262 		    ioc->name, __func__);
4263 		rc = -EAGAIN;
4264 		goto out;
4265 	}
4266 
4267 	rc = 0;
4268 	ioc->base_cmds.status = MPT3_CMD_PENDING;
4269 	request = mpt3sas_base_get_msg_frame(ioc, smid);
4270 	ioc->base_cmds.smid = smid;
4271 	memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
4272 	init_completion(&ioc->base_cmds.done);
4273 	ioc->put_smid_default(ioc, smid);
4274 	wait_for_completion_timeout(&ioc->base_cmds.done,
4275 	    msecs_to_jiffies(10000));
4276 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4277 		pr_err(MPT3SAS_FMT "%s: timeout\n",
4278 		    ioc->name, __func__);
4279 		_debug_dump_mf(mpi_request,
4280 		    sizeof(Mpi2SepRequest_t)/4);
4281 		if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
4282 			issue_reset = false;
4283 		goto issue_host_reset;
4284 	}
4285 	if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
4286 		memcpy(mpi_reply, ioc->base_cmds.reply,
4287 		    sizeof(Mpi2SepReply_t));
4288 	else
4289 		memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
4290 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4291 	goto out;
4292 
4293  issue_host_reset:
4294 	if (issue_reset)
4295 		mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
4296 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4297 	rc = -EFAULT;
4298  out:
4299 	mutex_unlock(&ioc->base_cmds.mutex);
4300 	return rc;
4301 }
4302 
4303 /**
4304  * _base_get_port_facts - obtain port facts reply and save in ioc
4305  * @ioc: per adapter object
4306  *
4307  * Returns 0 for success, non-zero for failure.
4308  */
4309 static int
4310 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
4311 {
4312 	Mpi2PortFactsRequest_t mpi_request;
4313 	Mpi2PortFactsReply_t mpi_reply;
4314 	struct mpt3sas_port_facts *pfacts;
4315 	int mpi_reply_sz, mpi_request_sz, r;
4316 
4317 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4318 	    __func__));
4319 
4320 	mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
4321 	mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
4322 	memset(&mpi_request, 0, mpi_request_sz);
4323 	mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
4324 	mpi_request.PortNumber = port;
4325 	r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
4326 	    (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
4327 
4328 	if (r != 0) {
4329 		pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4330 		    ioc->name, __func__, r);
4331 		return r;
4332 	}
4333 
4334 	pfacts = &ioc->pfacts[port];
4335 	memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
4336 	pfacts->PortNumber = mpi_reply.PortNumber;
4337 	pfacts->VP_ID = mpi_reply.VP_ID;
4338 	pfacts->VF_ID = mpi_reply.VF_ID;
4339 	pfacts->MaxPostedCmdBuffers =
4340 	    le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
4341 
4342 	return 0;
4343 }
4344 
4345 /**
4346  * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
4347  * @ioc: per adapter object
4348  * @timeout:
4349  *
4350  * Returns 0 for success, non-zero for failure.
4351  */
4352 static int
4353 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
4354 {
4355 	u32 ioc_state;
4356 	int rc;
4357 
4358 	dinitprintk(ioc, printk(MPT3SAS_FMT "%s\n", ioc->name,
4359 	    __func__));
4360 
4361 	if (ioc->pci_error_recovery) {
4362 		dfailprintk(ioc, printk(MPT3SAS_FMT
4363 		    "%s: host in pci error recovery\n", ioc->name, __func__));
4364 		return -EFAULT;
4365 	}
4366 
4367 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4368 	dhsprintk(ioc, printk(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
4369 	    ioc->name, __func__, ioc_state));
4370 
4371 	if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
4372 	    (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
4373 		return 0;
4374 
4375 	if (ioc_state & MPI2_DOORBELL_USED) {
4376 		dhsprintk(ioc, printk(MPT3SAS_FMT
4377 		    "unexpected doorbell active!\n", ioc->name));
4378 		goto issue_diag_reset;
4379 	}
4380 
4381 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
4382 		mpt3sas_base_fault_info(ioc, ioc_state &
4383 		    MPI2_DOORBELL_DATA_MASK);
4384 		goto issue_diag_reset;
4385 	}
4386 
4387 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
4388 	if (ioc_state) {
4389 		dfailprintk(ioc, printk(MPT3SAS_FMT
4390 		    "%s: failed going to ready state (ioc_state=0x%x)\n",
4391 		    ioc->name, __func__, ioc_state));
4392 		return -EFAULT;
4393 	}
4394 
4395  issue_diag_reset:
4396 	rc = _base_diag_reset(ioc);
4397 	return rc;
4398 }
4399 
4400 /**
4401  * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
4402  * @ioc: per adapter object
4403  *
4404  * Returns 0 for success, non-zero for failure.
4405  */
4406 static int
4407 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
4408 {
4409 	Mpi2IOCFactsRequest_t mpi_request;
4410 	Mpi2IOCFactsReply_t mpi_reply;
4411 	struct mpt3sas_facts *facts;
4412 	int mpi_reply_sz, mpi_request_sz, r;
4413 
4414 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4415 	    __func__));
4416 
4417 	r = _base_wait_for_iocstate(ioc, 10);
4418 	if (r) {
4419 		dfailprintk(ioc, printk(MPT3SAS_FMT
4420 		    "%s: failed getting to correct state\n",
4421 		    ioc->name, __func__));
4422 		return r;
4423 	}
4424 	mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
4425 	mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
4426 	memset(&mpi_request, 0, mpi_request_sz);
4427 	mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
4428 	r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
4429 	    (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
4430 
4431 	if (r != 0) {
4432 		pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4433 		    ioc->name, __func__, r);
4434 		return r;
4435 	}
4436 
4437 	facts = &ioc->facts;
4438 	memset(facts, 0, sizeof(struct mpt3sas_facts));
4439 	facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
4440 	facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
4441 	facts->VP_ID = mpi_reply.VP_ID;
4442 	facts->VF_ID = mpi_reply.VF_ID;
4443 	facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
4444 	facts->MaxChainDepth = mpi_reply.MaxChainDepth;
4445 	facts->WhoInit = mpi_reply.WhoInit;
4446 	facts->NumberOfPorts = mpi_reply.NumberOfPorts;
4447 	facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
4448 	facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
4449 	facts->MaxReplyDescriptorPostQueueDepth =
4450 	    le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
4451 	facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
4452 	facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
4453 	if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
4454 		ioc->ir_firmware = 1;
4455 	if ((facts->IOCCapabilities &
4456 	      MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE))
4457 		ioc->rdpq_array_capable = 1;
4458 	if (facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
4459 		ioc->atomic_desc_capable = 1;
4460 	facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
4461 	facts->IOCRequestFrameSize =
4462 	    le16_to_cpu(mpi_reply.IOCRequestFrameSize);
4463 	if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
4464 		facts->IOCMaxChainSegmentSize =
4465 			le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
4466 	}
4467 	facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
4468 	facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
4469 	ioc->shost->max_id = -1;
4470 	facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
4471 	facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
4472 	facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
4473 	facts->HighPriorityCredit =
4474 	    le16_to_cpu(mpi_reply.HighPriorityCredit);
4475 	facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
4476 	facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
4477 
4478 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
4479 		"hba queue depth(%d), max chains per io(%d)\n",
4480 		ioc->name, facts->RequestCredit,
4481 	    facts->MaxChainDepth));
4482 	dinitprintk(ioc, pr_info(MPT3SAS_FMT
4483 		"request frame size(%d), reply frame size(%d)\n", ioc->name,
4484 	    facts->IOCRequestFrameSize * 4, facts->ReplyFrameSize * 4));
4485 	return 0;
4486 }
4487 
4488 /**
4489  * _base_send_ioc_init - send ioc_init to firmware
4490  * @ioc: per adapter object
4491  *
4492  * Returns 0 for success, non-zero for failure.
4493  */
4494 static int
4495 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
4496 {
4497 	Mpi2IOCInitRequest_t mpi_request;
4498 	Mpi2IOCInitReply_t mpi_reply;
4499 	int i, r = 0;
4500 	ktime_t current_time;
4501 	u16 ioc_status;
4502 	u32 reply_post_free_array_sz = 0;
4503 	Mpi2IOCInitRDPQArrayEntry *reply_post_free_array = NULL;
4504 	dma_addr_t reply_post_free_array_dma;
4505 
4506 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4507 	    __func__));
4508 
4509 	memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
4510 	mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
4511 	mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
4512 	mpi_request.VF_ID = 0; /* TODO */
4513 	mpi_request.VP_ID = 0;
4514 	mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
4515 	mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
4516 
4517 	if (_base_is_controller_msix_enabled(ioc))
4518 		mpi_request.HostMSIxVectors = ioc->reply_queue_count;
4519 	mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
4520 	mpi_request.ReplyDescriptorPostQueueDepth =
4521 	    cpu_to_le16(ioc->reply_post_queue_depth);
4522 	mpi_request.ReplyFreeQueueDepth =
4523 	    cpu_to_le16(ioc->reply_free_queue_depth);
4524 
4525 	mpi_request.SenseBufferAddressHigh =
4526 	    cpu_to_le32((u64)ioc->sense_dma >> 32);
4527 	mpi_request.SystemReplyAddressHigh =
4528 	    cpu_to_le32((u64)ioc->reply_dma >> 32);
4529 	mpi_request.SystemRequestFrameBaseAddress =
4530 	    cpu_to_le64((u64)ioc->request_dma);
4531 	mpi_request.ReplyFreeQueueAddress =
4532 	    cpu_to_le64((u64)ioc->reply_free_dma);
4533 
4534 	if (ioc->rdpq_array_enable) {
4535 		reply_post_free_array_sz = ioc->reply_queue_count *
4536 		    sizeof(Mpi2IOCInitRDPQArrayEntry);
4537 		reply_post_free_array = pci_alloc_consistent(ioc->pdev,
4538 			reply_post_free_array_sz, &reply_post_free_array_dma);
4539 		if (!reply_post_free_array) {
4540 			pr_err(MPT3SAS_FMT
4541 			"reply_post_free_array: pci_alloc_consistent failed\n",
4542 			ioc->name);
4543 			r = -ENOMEM;
4544 			goto out;
4545 		}
4546 		memset(reply_post_free_array, 0, reply_post_free_array_sz);
4547 		for (i = 0; i < ioc->reply_queue_count; i++)
4548 			reply_post_free_array[i].RDPQBaseAddress =
4549 			    cpu_to_le64(
4550 				(u64)ioc->reply_post[i].reply_post_free_dma);
4551 		mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
4552 		mpi_request.ReplyDescriptorPostQueueAddress =
4553 		    cpu_to_le64((u64)reply_post_free_array_dma);
4554 	} else {
4555 		mpi_request.ReplyDescriptorPostQueueAddress =
4556 		    cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
4557 	}
4558 
4559 	/* This time stamp specifies number of milliseconds
4560 	 * since epoch ~ midnight January 1, 1970.
4561 	 */
4562 	current_time = ktime_get_real();
4563 	mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
4564 
4565 	if (ioc->logging_level & MPT_DEBUG_INIT) {
4566 		__le32 *mfp;
4567 		int i;
4568 
4569 		mfp = (__le32 *)&mpi_request;
4570 		pr_info("\toffset:data\n");
4571 		for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
4572 			pr_info("\t[0x%02x]:%08x\n", i*4,
4573 			    le32_to_cpu(mfp[i]));
4574 	}
4575 
4576 	r = _base_handshake_req_reply_wait(ioc,
4577 	    sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
4578 	    sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10);
4579 
4580 	if (r != 0) {
4581 		pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4582 		    ioc->name, __func__, r);
4583 		goto out;
4584 	}
4585 
4586 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
4587 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
4588 	    mpi_reply.IOCLogInfo) {
4589 		pr_err(MPT3SAS_FMT "%s: failed\n", ioc->name, __func__);
4590 		r = -EIO;
4591 	}
4592 
4593 out:
4594 	if (reply_post_free_array)
4595 		pci_free_consistent(ioc->pdev, reply_post_free_array_sz,
4596 				    reply_post_free_array,
4597 				    reply_post_free_array_dma);
4598 	return r;
4599 }
4600 
4601 /**
4602  * mpt3sas_port_enable_done - command completion routine for port enable
4603  * @ioc: per adapter object
4604  * @smid: system request message index
4605  * @msix_index: MSIX table index supplied by the OS
4606  * @reply: reply message frame(lower 32bit addr)
4607  *
4608  * Return 1 meaning mf should be freed from _base_interrupt
4609  *        0 means the mf is freed from this function.
4610  */
4611 u8
4612 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
4613 	u32 reply)
4614 {
4615 	MPI2DefaultReply_t *mpi_reply;
4616 	u16 ioc_status;
4617 
4618 	if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
4619 		return 1;
4620 
4621 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
4622 	if (!mpi_reply)
4623 		return 1;
4624 
4625 	if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
4626 		return 1;
4627 
4628 	ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
4629 	ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
4630 	ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
4631 	memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
4632 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
4633 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
4634 		ioc->port_enable_failed = 1;
4635 
4636 	if (ioc->is_driver_loading) {
4637 		if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4638 			mpt3sas_port_enable_complete(ioc);
4639 			return 1;
4640 		} else {
4641 			ioc->start_scan_failed = ioc_status;
4642 			ioc->start_scan = 0;
4643 			return 1;
4644 		}
4645 	}
4646 	complete(&ioc->port_enable_cmds.done);
4647 	return 1;
4648 }
4649 
4650 /**
4651  * _base_send_port_enable - send port_enable(discovery stuff) to firmware
4652  * @ioc: per adapter object
4653  *
4654  * Returns 0 for success, non-zero for failure.
4655  */
4656 static int
4657 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
4658 {
4659 	Mpi2PortEnableRequest_t *mpi_request;
4660 	Mpi2PortEnableReply_t *mpi_reply;
4661 	int r = 0;
4662 	u16 smid;
4663 	u16 ioc_status;
4664 
4665 	pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
4666 
4667 	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
4668 		pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4669 		    ioc->name, __func__);
4670 		return -EAGAIN;
4671 	}
4672 
4673 	smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
4674 	if (!smid) {
4675 		pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4676 		    ioc->name, __func__);
4677 		return -EAGAIN;
4678 	}
4679 
4680 	ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
4681 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4682 	ioc->port_enable_cmds.smid = smid;
4683 	memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
4684 	mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
4685 
4686 	init_completion(&ioc->port_enable_cmds.done);
4687 	ioc->put_smid_default(ioc, smid);
4688 	wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
4689 	if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
4690 		pr_err(MPT3SAS_FMT "%s: timeout\n",
4691 		    ioc->name, __func__);
4692 		_debug_dump_mf(mpi_request,
4693 		    sizeof(Mpi2PortEnableRequest_t)/4);
4694 		if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
4695 			r = -EFAULT;
4696 		else
4697 			r = -ETIME;
4698 		goto out;
4699 	}
4700 
4701 	mpi_reply = ioc->port_enable_cmds.reply;
4702 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
4703 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4704 		pr_err(MPT3SAS_FMT "%s: failed with (ioc_status=0x%08x)\n",
4705 		    ioc->name, __func__, ioc_status);
4706 		r = -EFAULT;
4707 		goto out;
4708 	}
4709 
4710  out:
4711 	ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
4712 	pr_info(MPT3SAS_FMT "port enable: %s\n", ioc->name, ((r == 0) ?
4713 	    "SUCCESS" : "FAILED"));
4714 	return r;
4715 }
4716 
4717 /**
4718  * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
4719  * @ioc: per adapter object
4720  *
4721  * Returns 0 for success, non-zero for failure.
4722  */
4723 int
4724 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
4725 {
4726 	Mpi2PortEnableRequest_t *mpi_request;
4727 	u16 smid;
4728 
4729 	pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
4730 
4731 	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
4732 		pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4733 		    ioc->name, __func__);
4734 		return -EAGAIN;
4735 	}
4736 
4737 	smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
4738 	if (!smid) {
4739 		pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4740 		    ioc->name, __func__);
4741 		return -EAGAIN;
4742 	}
4743 
4744 	ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
4745 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4746 	ioc->port_enable_cmds.smid = smid;
4747 	memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
4748 	mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
4749 
4750 	ioc->put_smid_default(ioc, smid);
4751 	return 0;
4752 }
4753 
4754 /**
4755  * _base_determine_wait_on_discovery - desposition
4756  * @ioc: per adapter object
4757  *
4758  * Decide whether to wait on discovery to complete. Used to either
4759  * locate boot device, or report volumes ahead of physical devices.
4760  *
4761  * Returns 1 for wait, 0 for don't wait
4762  */
4763 static int
4764 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
4765 {
4766 	/* We wait for discovery to complete if IR firmware is loaded.
4767 	 * The sas topology events arrive before PD events, so we need time to
4768 	 * turn on the bit in ioc->pd_handles to indicate PD
4769 	 * Also, it maybe required to report Volumes ahead of physical
4770 	 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
4771 	 */
4772 	if (ioc->ir_firmware)
4773 		return 1;
4774 
4775 	/* if no Bios, then we don't need to wait */
4776 	if (!ioc->bios_pg3.BiosVersion)
4777 		return 0;
4778 
4779 	/* Bios is present, then we drop down here.
4780 	 *
4781 	 * If there any entries in the Bios Page 2, then we wait
4782 	 * for discovery to complete.
4783 	 */
4784 
4785 	/* Current Boot Device */
4786 	if ((ioc->bios_pg2.CurrentBootDeviceForm &
4787 	    MPI2_BIOSPAGE2_FORM_MASK) ==
4788 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
4789 	/* Request Boot Device */
4790 	   (ioc->bios_pg2.ReqBootDeviceForm &
4791 	    MPI2_BIOSPAGE2_FORM_MASK) ==
4792 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
4793 	/* Alternate Request Boot Device */
4794 	   (ioc->bios_pg2.ReqAltBootDeviceForm &
4795 	    MPI2_BIOSPAGE2_FORM_MASK) ==
4796 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
4797 		return 0;
4798 
4799 	return 1;
4800 }
4801 
4802 /**
4803  * _base_unmask_events - turn on notification for this event
4804  * @ioc: per adapter object
4805  * @event: firmware event
4806  *
4807  * The mask is stored in ioc->event_masks.
4808  */
4809 static void
4810 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
4811 {
4812 	u32 desired_event;
4813 
4814 	if (event >= 128)
4815 		return;
4816 
4817 	desired_event = (1 << (event % 32));
4818 
4819 	if (event < 32)
4820 		ioc->event_masks[0] &= ~desired_event;
4821 	else if (event < 64)
4822 		ioc->event_masks[1] &= ~desired_event;
4823 	else if (event < 96)
4824 		ioc->event_masks[2] &= ~desired_event;
4825 	else if (event < 128)
4826 		ioc->event_masks[3] &= ~desired_event;
4827 }
4828 
4829 /**
4830  * _base_event_notification - send event notification
4831  * @ioc: per adapter object
4832  *
4833  * Returns 0 for success, non-zero for failure.
4834  */
4835 static int
4836 _base_event_notification(struct MPT3SAS_ADAPTER *ioc)
4837 {
4838 	Mpi2EventNotificationRequest_t *mpi_request;
4839 	u16 smid;
4840 	int r = 0;
4841 	int i;
4842 
4843 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4844 	    __func__));
4845 
4846 	if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4847 		pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4848 		    ioc->name, __func__);
4849 		return -EAGAIN;
4850 	}
4851 
4852 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4853 	if (!smid) {
4854 		pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4855 		    ioc->name, __func__);
4856 		return -EAGAIN;
4857 	}
4858 	ioc->base_cmds.status = MPT3_CMD_PENDING;
4859 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4860 	ioc->base_cmds.smid = smid;
4861 	memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
4862 	mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
4863 	mpi_request->VF_ID = 0; /* TODO */
4864 	mpi_request->VP_ID = 0;
4865 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
4866 		mpi_request->EventMasks[i] =
4867 		    cpu_to_le32(ioc->event_masks[i]);
4868 	init_completion(&ioc->base_cmds.done);
4869 	ioc->put_smid_default(ioc, smid);
4870 	wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
4871 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4872 		pr_err(MPT3SAS_FMT "%s: timeout\n",
4873 		    ioc->name, __func__);
4874 		_debug_dump_mf(mpi_request,
4875 		    sizeof(Mpi2EventNotificationRequest_t)/4);
4876 		if (ioc->base_cmds.status & MPT3_CMD_RESET)
4877 			r = -EFAULT;
4878 		else
4879 			r = -ETIME;
4880 	} else
4881 		dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s: complete\n",
4882 		    ioc->name, __func__));
4883 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4884 	return r;
4885 }
4886 
4887 /**
4888  * mpt3sas_base_validate_event_type - validating event types
4889  * @ioc: per adapter object
4890  * @event: firmware event
4891  *
4892  * This will turn on firmware event notification when application
4893  * ask for that event. We don't mask events that are already enabled.
4894  */
4895 void
4896 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
4897 {
4898 	int i, j;
4899 	u32 event_mask, desired_event;
4900 	u8 send_update_to_fw;
4901 
4902 	for (i = 0, send_update_to_fw = 0; i <
4903 	    MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
4904 		event_mask = ~event_type[i];
4905 		desired_event = 1;
4906 		for (j = 0; j < 32; j++) {
4907 			if (!(event_mask & desired_event) &&
4908 			    (ioc->event_masks[i] & desired_event)) {
4909 				ioc->event_masks[i] &= ~desired_event;
4910 				send_update_to_fw = 1;
4911 			}
4912 			desired_event = (desired_event << 1);
4913 		}
4914 	}
4915 
4916 	if (!send_update_to_fw)
4917 		return;
4918 
4919 	mutex_lock(&ioc->base_cmds.mutex);
4920 	_base_event_notification(ioc);
4921 	mutex_unlock(&ioc->base_cmds.mutex);
4922 }
4923 
4924 /**
4925  * _base_diag_reset - the "big hammer" start of day reset
4926  * @ioc: per adapter object
4927  *
4928  * Returns 0 for success, non-zero for failure.
4929  */
4930 static int
4931 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
4932 {
4933 	u32 host_diagnostic;
4934 	u32 ioc_state;
4935 	u32 count;
4936 	u32 hcb_size;
4937 
4938 	pr_info(MPT3SAS_FMT "sending diag reset !!\n", ioc->name);
4939 
4940 	drsprintk(ioc, pr_info(MPT3SAS_FMT "clear interrupts\n",
4941 	    ioc->name));
4942 
4943 	count = 0;
4944 	do {
4945 		/* Write magic sequence to WriteSequence register
4946 		 * Loop until in diagnostic mode
4947 		 */
4948 		drsprintk(ioc, pr_info(MPT3SAS_FMT
4949 			"write magic sequence\n", ioc->name));
4950 		writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
4951 		writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
4952 		writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
4953 		writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
4954 		writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
4955 		writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
4956 		writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
4957 
4958 		/* wait 100 msec */
4959 		msleep(100);
4960 
4961 		if (count++ > 20)
4962 			goto out;
4963 
4964 		host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4965 		drsprintk(ioc, pr_info(MPT3SAS_FMT
4966 			"wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
4967 		    ioc->name, count, host_diagnostic));
4968 
4969 	} while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
4970 
4971 	hcb_size = readl(&ioc->chip->HCBSize);
4972 
4973 	drsprintk(ioc, pr_info(MPT3SAS_FMT "diag reset: issued\n",
4974 	    ioc->name));
4975 	writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
4976 	     &ioc->chip->HostDiagnostic);
4977 
4978 	/*This delay allows the chip PCIe hardware time to finish reset tasks*/
4979 	msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
4980 
4981 	/* Approximately 300 second max wait */
4982 	for (count = 0; count < (300000000 /
4983 		MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
4984 
4985 		host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4986 
4987 		if (host_diagnostic == 0xFFFFFFFF)
4988 			goto out;
4989 		if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
4990 			break;
4991 
4992 		msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000);
4993 	}
4994 
4995 	if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
4996 
4997 		drsprintk(ioc, pr_info(MPT3SAS_FMT
4998 		"restart the adapter assuming the HCB Address points to good F/W\n",
4999 		    ioc->name));
5000 		host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
5001 		host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
5002 		writel(host_diagnostic, &ioc->chip->HostDiagnostic);
5003 
5004 		drsprintk(ioc, pr_info(MPT3SAS_FMT
5005 		    "re-enable the HCDW\n", ioc->name));
5006 		writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
5007 		    &ioc->chip->HCBSize);
5008 	}
5009 
5010 	drsprintk(ioc, pr_info(MPT3SAS_FMT "restart the adapter\n",
5011 	    ioc->name));
5012 	writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
5013 	    &ioc->chip->HostDiagnostic);
5014 
5015 	drsprintk(ioc, pr_info(MPT3SAS_FMT
5016 		"disable writes to the diagnostic register\n", ioc->name));
5017 	writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
5018 
5019 	drsprintk(ioc, pr_info(MPT3SAS_FMT
5020 		"Wait for FW to go to the READY state\n", ioc->name));
5021 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
5022 	if (ioc_state) {
5023 		pr_err(MPT3SAS_FMT
5024 			"%s: failed going to ready state (ioc_state=0x%x)\n",
5025 			ioc->name, __func__, ioc_state);
5026 		goto out;
5027 	}
5028 
5029 	pr_info(MPT3SAS_FMT "diag reset: SUCCESS\n", ioc->name);
5030 	return 0;
5031 
5032  out:
5033 	pr_err(MPT3SAS_FMT "diag reset: FAILED\n", ioc->name);
5034 	return -EFAULT;
5035 }
5036 
5037 /**
5038  * _base_make_ioc_ready - put controller in READY state
5039  * @ioc: per adapter object
5040  * @type: FORCE_BIG_HAMMER or SOFT_RESET
5041  *
5042  * Returns 0 for success, non-zero for failure.
5043  */
5044 static int
5045 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
5046 {
5047 	u32 ioc_state;
5048 	int rc;
5049 	int count;
5050 
5051 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5052 	    __func__));
5053 
5054 	if (ioc->pci_error_recovery)
5055 		return 0;
5056 
5057 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5058 	dhsprintk(ioc, pr_info(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
5059 	    ioc->name, __func__, ioc_state));
5060 
5061 	/* if in RESET state, it should move to READY state shortly */
5062 	count = 0;
5063 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
5064 		while ((ioc_state & MPI2_IOC_STATE_MASK) !=
5065 		    MPI2_IOC_STATE_READY) {
5066 			if (count++ == 10) {
5067 				pr_err(MPT3SAS_FMT
5068 					"%s: failed going to ready state (ioc_state=0x%x)\n",
5069 				    ioc->name, __func__, ioc_state);
5070 				return -EFAULT;
5071 			}
5072 			ssleep(1);
5073 			ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5074 		}
5075 	}
5076 
5077 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
5078 		return 0;
5079 
5080 	if (ioc_state & MPI2_DOORBELL_USED) {
5081 		dhsprintk(ioc, pr_info(MPT3SAS_FMT
5082 			"unexpected doorbell active!\n",
5083 			ioc->name));
5084 		goto issue_diag_reset;
5085 	}
5086 
5087 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
5088 		mpt3sas_base_fault_info(ioc, ioc_state &
5089 		    MPI2_DOORBELL_DATA_MASK);
5090 		goto issue_diag_reset;
5091 	}
5092 
5093 	if (type == FORCE_BIG_HAMMER)
5094 		goto issue_diag_reset;
5095 
5096 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
5097 		if (!(_base_send_ioc_reset(ioc,
5098 		    MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
5099 			return 0;
5100 	}
5101 
5102  issue_diag_reset:
5103 	rc = _base_diag_reset(ioc);
5104 	return rc;
5105 }
5106 
5107 /**
5108  * _base_make_ioc_operational - put controller in OPERATIONAL state
5109  * @ioc: per adapter object
5110  *
5111  * Returns 0 for success, non-zero for failure.
5112  */
5113 static int
5114 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
5115 {
5116 	int r, i, index;
5117 	unsigned long	flags;
5118 	u32 reply_address;
5119 	u16 smid;
5120 	struct _tr_list *delayed_tr, *delayed_tr_next;
5121 	struct _sc_list *delayed_sc, *delayed_sc_next;
5122 	struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
5123 	u8 hide_flag;
5124 	struct adapter_reply_queue *reply_q;
5125 	Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
5126 
5127 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5128 	    __func__));
5129 
5130 	/* clean the delayed target reset list */
5131 	list_for_each_entry_safe(delayed_tr, delayed_tr_next,
5132 	    &ioc->delayed_tr_list, list) {
5133 		list_del(&delayed_tr->list);
5134 		kfree(delayed_tr);
5135 	}
5136 
5137 
5138 	list_for_each_entry_safe(delayed_tr, delayed_tr_next,
5139 	    &ioc->delayed_tr_volume_list, list) {
5140 		list_del(&delayed_tr->list);
5141 		kfree(delayed_tr);
5142 	}
5143 
5144 	list_for_each_entry_safe(delayed_sc, delayed_sc_next,
5145 	    &ioc->delayed_sc_list, list) {
5146 		list_del(&delayed_sc->list);
5147 		kfree(delayed_sc);
5148 	}
5149 
5150 	list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
5151 	    &ioc->delayed_event_ack_list, list) {
5152 		list_del(&delayed_event_ack->list);
5153 		kfree(delayed_event_ack);
5154 	}
5155 
5156 	/* initialize the scsi lookup free list */
5157 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
5158 	INIT_LIST_HEAD(&ioc->free_list);
5159 	smid = 1;
5160 	for (i = 0; i < ioc->scsiio_depth; i++, smid++) {
5161 		INIT_LIST_HEAD(&ioc->scsi_lookup[i].chain_list);
5162 		ioc->scsi_lookup[i].cb_idx = 0xFF;
5163 		ioc->scsi_lookup[i].smid = smid;
5164 		ioc->scsi_lookup[i].scmd = NULL;
5165 		ioc->scsi_lookup[i].direct_io = 0;
5166 		list_add_tail(&ioc->scsi_lookup[i].tracker_list,
5167 		    &ioc->free_list);
5168 	}
5169 
5170 	/* hi-priority queue */
5171 	INIT_LIST_HEAD(&ioc->hpr_free_list);
5172 	smid = ioc->hi_priority_smid;
5173 	for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
5174 		ioc->hpr_lookup[i].cb_idx = 0xFF;
5175 		ioc->hpr_lookup[i].smid = smid;
5176 		list_add_tail(&ioc->hpr_lookup[i].tracker_list,
5177 		    &ioc->hpr_free_list);
5178 	}
5179 
5180 	/* internal queue */
5181 	INIT_LIST_HEAD(&ioc->internal_free_list);
5182 	smid = ioc->internal_smid;
5183 	for (i = 0; i < ioc->internal_depth; i++, smid++) {
5184 		ioc->internal_lookup[i].cb_idx = 0xFF;
5185 		ioc->internal_lookup[i].smid = smid;
5186 		list_add_tail(&ioc->internal_lookup[i].tracker_list,
5187 		    &ioc->internal_free_list);
5188 	}
5189 
5190 	/* chain pool */
5191 	INIT_LIST_HEAD(&ioc->free_chain_list);
5192 	for (i = 0; i < ioc->chain_depth; i++)
5193 		list_add_tail(&ioc->chain_lookup[i].tracker_list,
5194 		    &ioc->free_chain_list);
5195 
5196 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
5197 
5198 	/* initialize Reply Free Queue */
5199 	for (i = 0, reply_address = (u32)ioc->reply_dma ;
5200 	    i < ioc->reply_free_queue_depth ; i++, reply_address +=
5201 	    ioc->reply_sz)
5202 		ioc->reply_free[i] = cpu_to_le32(reply_address);
5203 
5204 	/* initialize reply queues */
5205 	if (ioc->is_driver_loading)
5206 		_base_assign_reply_queues(ioc);
5207 
5208 	/* initialize Reply Post Free Queue */
5209 	index = 0;
5210 	reply_post_free_contig = ioc->reply_post[0].reply_post_free;
5211 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
5212 		/*
5213 		 * If RDPQ is enabled, switch to the next allocation.
5214 		 * Otherwise advance within the contiguous region.
5215 		 */
5216 		if (ioc->rdpq_array_enable) {
5217 			reply_q->reply_post_free =
5218 				ioc->reply_post[index++].reply_post_free;
5219 		} else {
5220 			reply_q->reply_post_free = reply_post_free_contig;
5221 			reply_post_free_contig += ioc->reply_post_queue_depth;
5222 		}
5223 
5224 		reply_q->reply_post_host_index = 0;
5225 		for (i = 0; i < ioc->reply_post_queue_depth; i++)
5226 			reply_q->reply_post_free[i].Words =
5227 			    cpu_to_le64(ULLONG_MAX);
5228 		if (!_base_is_controller_msix_enabled(ioc))
5229 			goto skip_init_reply_post_free_queue;
5230 	}
5231  skip_init_reply_post_free_queue:
5232 
5233 	r = _base_send_ioc_init(ioc);
5234 	if (r)
5235 		return r;
5236 
5237 	/* initialize reply free host index */
5238 	ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
5239 	writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
5240 
5241 	/* initialize reply post host index */
5242 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
5243 		if (ioc->combined_reply_queue)
5244 			writel((reply_q->msix_index & 7)<<
5245 			   MPI2_RPHI_MSIX_INDEX_SHIFT,
5246 			   ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
5247 		else
5248 			writel(reply_q->msix_index <<
5249 				MPI2_RPHI_MSIX_INDEX_SHIFT,
5250 				&ioc->chip->ReplyPostHostIndex);
5251 
5252 		if (!_base_is_controller_msix_enabled(ioc))
5253 			goto skip_init_reply_post_host_index;
5254 	}
5255 
5256  skip_init_reply_post_host_index:
5257 
5258 	_base_unmask_interrupts(ioc);
5259 	r = _base_event_notification(ioc);
5260 	if (r)
5261 		return r;
5262 
5263 	_base_static_config_pages(ioc);
5264 
5265 	if (ioc->is_driver_loading) {
5266 
5267 		if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
5268 		    == 0x80) {
5269 			hide_flag = (u8) (
5270 			    le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
5271 			    MFG_PAGE10_HIDE_SSDS_MASK);
5272 			if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
5273 				ioc->mfg_pg10_hide_flag = hide_flag;
5274 		}
5275 
5276 		ioc->wait_for_discovery_to_complete =
5277 		    _base_determine_wait_on_discovery(ioc);
5278 
5279 		return r; /* scan_start and scan_finished support */
5280 	}
5281 
5282 	r = _base_send_port_enable(ioc);
5283 	if (r)
5284 		return r;
5285 
5286 	return r;
5287 }
5288 
5289 /**
5290  * mpt3sas_base_free_resources - free resources controller resources
5291  * @ioc: per adapter object
5292  *
5293  * Return nothing.
5294  */
5295 void
5296 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
5297 {
5298 	dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5299 	    __func__));
5300 
5301 	/* synchronizing freeing resource with pci_access_mutex lock */
5302 	mutex_lock(&ioc->pci_access_mutex);
5303 	if (ioc->chip_phys && ioc->chip) {
5304 		_base_mask_interrupts(ioc);
5305 		ioc->shost_recovery = 1;
5306 		_base_make_ioc_ready(ioc, SOFT_RESET);
5307 		ioc->shost_recovery = 0;
5308 	}
5309 
5310 	mpt3sas_base_unmap_resources(ioc);
5311 	mutex_unlock(&ioc->pci_access_mutex);
5312 	return;
5313 }
5314 
5315 /**
5316  * mpt3sas_base_attach - attach controller instance
5317  * @ioc: per adapter object
5318  *
5319  * Returns 0 for success, non-zero for failure.
5320  */
5321 int
5322 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
5323 {
5324 	int r, i;
5325 	int cpu_id, last_cpu_id = 0;
5326 
5327 	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5328 	    __func__));
5329 
5330 	/* setup cpu_msix_table */
5331 	ioc->cpu_count = num_online_cpus();
5332 	for_each_online_cpu(cpu_id)
5333 		last_cpu_id = cpu_id;
5334 	ioc->cpu_msix_table_sz = last_cpu_id + 1;
5335 	ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
5336 	ioc->reply_queue_count = 1;
5337 	if (!ioc->cpu_msix_table) {
5338 		dfailprintk(ioc, pr_info(MPT3SAS_FMT
5339 			"allocation for cpu_msix_table failed!!!\n",
5340 			ioc->name));
5341 		r = -ENOMEM;
5342 		goto out_free_resources;
5343 	}
5344 
5345 	if (ioc->is_warpdrive) {
5346 		ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
5347 		    sizeof(resource_size_t *), GFP_KERNEL);
5348 		if (!ioc->reply_post_host_index) {
5349 			dfailprintk(ioc, pr_info(MPT3SAS_FMT "allocation "
5350 				"for reply_post_host_index failed!!!\n",
5351 				ioc->name));
5352 			r = -ENOMEM;
5353 			goto out_free_resources;
5354 		}
5355 	}
5356 
5357 	ioc->rdpq_array_enable_assigned = 0;
5358 	ioc->dma_mask = 0;
5359 	r = mpt3sas_base_map_resources(ioc);
5360 	if (r)
5361 		goto out_free_resources;
5362 
5363 	pci_set_drvdata(ioc->pdev, ioc->shost);
5364 	r = _base_get_ioc_facts(ioc);
5365 	if (r)
5366 		goto out_free_resources;
5367 
5368 	switch (ioc->hba_mpi_version_belonged) {
5369 	case MPI2_VERSION:
5370 		ioc->build_sg_scmd = &_base_build_sg_scmd;
5371 		ioc->build_sg = &_base_build_sg;
5372 		ioc->build_zero_len_sge = &_base_build_zero_len_sge;
5373 		break;
5374 	case MPI25_VERSION:
5375 	case MPI26_VERSION:
5376 		/*
5377 		 * In SAS3.0,
5378 		 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
5379 		 * Target Status - all require the IEEE formated scatter gather
5380 		 * elements.
5381 		 */
5382 		ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
5383 		ioc->build_sg = &_base_build_sg_ieee;
5384 		ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
5385 		ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
5386 
5387 		break;
5388 	}
5389 
5390 	if (ioc->atomic_desc_capable) {
5391 		ioc->put_smid_default = &_base_put_smid_default_atomic;
5392 		ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic;
5393 		ioc->put_smid_fast_path = &_base_put_smid_fast_path_atomic;
5394 		ioc->put_smid_hi_priority = &_base_put_smid_hi_priority_atomic;
5395 	} else {
5396 		ioc->put_smid_default = &_base_put_smid_default;
5397 		ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
5398 		ioc->put_smid_fast_path = &_base_put_smid_fast_path;
5399 		ioc->put_smid_hi_priority = &_base_put_smid_hi_priority;
5400 	}
5401 
5402 
5403 	/*
5404 	 * These function pointers for other requests that don't
5405 	 * the require IEEE scatter gather elements.
5406 	 *
5407 	 * For example Configuration Pages and SAS IOUNIT Control don't.
5408 	 */
5409 	ioc->build_sg_mpi = &_base_build_sg;
5410 	ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
5411 
5412 	r = _base_make_ioc_ready(ioc, SOFT_RESET);
5413 	if (r)
5414 		goto out_free_resources;
5415 
5416 	ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
5417 	    sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
5418 	if (!ioc->pfacts) {
5419 		r = -ENOMEM;
5420 		goto out_free_resources;
5421 	}
5422 
5423 	for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
5424 		r = _base_get_port_facts(ioc, i);
5425 		if (r)
5426 			goto out_free_resources;
5427 	}
5428 
5429 	r = _base_allocate_memory_pools(ioc);
5430 	if (r)
5431 		goto out_free_resources;
5432 
5433 	init_waitqueue_head(&ioc->reset_wq);
5434 
5435 	/* allocate memory pd handle bitmask list */
5436 	ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
5437 	if (ioc->facts.MaxDevHandle % 8)
5438 		ioc->pd_handles_sz++;
5439 	ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
5440 	    GFP_KERNEL);
5441 	if (!ioc->pd_handles) {
5442 		r = -ENOMEM;
5443 		goto out_free_resources;
5444 	}
5445 	ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
5446 	    GFP_KERNEL);
5447 	if (!ioc->blocking_handles) {
5448 		r = -ENOMEM;
5449 		goto out_free_resources;
5450 	}
5451 
5452 	/* allocate memory for pending OS device add list */
5453 	ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
5454 	if (ioc->facts.MaxDevHandle % 8)
5455 		ioc->pend_os_device_add_sz++;
5456 	ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
5457 	    GFP_KERNEL);
5458 	if (!ioc->pend_os_device_add)
5459 		goto out_free_resources;
5460 
5461 	ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
5462 	ioc->device_remove_in_progress =
5463 		kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
5464 	if (!ioc->device_remove_in_progress)
5465 		goto out_free_resources;
5466 
5467 	ioc->fwfault_debug = mpt3sas_fwfault_debug;
5468 
5469 	/* base internal command bits */
5470 	mutex_init(&ioc->base_cmds.mutex);
5471 	ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5472 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5473 
5474 	/* port_enable command bits */
5475 	ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5476 	ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
5477 
5478 	/* transport internal command bits */
5479 	ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5480 	ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
5481 	mutex_init(&ioc->transport_cmds.mutex);
5482 
5483 	/* scsih internal command bits */
5484 	ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5485 	ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
5486 	mutex_init(&ioc->scsih_cmds.mutex);
5487 
5488 	/* task management internal command bits */
5489 	ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5490 	ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
5491 	mutex_init(&ioc->tm_cmds.mutex);
5492 
5493 	/* config page internal command bits */
5494 	ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5495 	ioc->config_cmds.status = MPT3_CMD_NOT_USED;
5496 	mutex_init(&ioc->config_cmds.mutex);
5497 
5498 	/* ctl module internal command bits */
5499 	ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5500 	ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
5501 	ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
5502 	mutex_init(&ioc->ctl_cmds.mutex);
5503 
5504 	if (!ioc->base_cmds.reply || !ioc->transport_cmds.reply ||
5505 	    !ioc->scsih_cmds.reply || !ioc->tm_cmds.reply ||
5506 	    !ioc->config_cmds.reply || !ioc->ctl_cmds.reply ||
5507 	    !ioc->ctl_cmds.sense) {
5508 		r = -ENOMEM;
5509 		goto out_free_resources;
5510 	}
5511 
5512 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
5513 		ioc->event_masks[i] = -1;
5514 
5515 	/* here we enable the events we care about */
5516 	_base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
5517 	_base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
5518 	_base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
5519 	_base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
5520 	_base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
5521 	_base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
5522 	_base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
5523 	_base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
5524 	_base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
5525 	_base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
5526 	_base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
5527 	if (ioc->hba_mpi_version_belonged == MPI26_VERSION)
5528 		_base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
5529 
5530 	r = _base_make_ioc_operational(ioc);
5531 	if (r)
5532 		goto out_free_resources;
5533 
5534 	ioc->non_operational_loop = 0;
5535 	ioc->got_task_abort_from_ioctl = 0;
5536 	return 0;
5537 
5538  out_free_resources:
5539 
5540 	ioc->remove_host = 1;
5541 
5542 	mpt3sas_base_free_resources(ioc);
5543 	_base_release_memory_pools(ioc);
5544 	pci_set_drvdata(ioc->pdev, NULL);
5545 	kfree(ioc->cpu_msix_table);
5546 	if (ioc->is_warpdrive)
5547 		kfree(ioc->reply_post_host_index);
5548 	kfree(ioc->pd_handles);
5549 	kfree(ioc->blocking_handles);
5550 	kfree(ioc->device_remove_in_progress);
5551 	kfree(ioc->pend_os_device_add);
5552 	kfree(ioc->tm_cmds.reply);
5553 	kfree(ioc->transport_cmds.reply);
5554 	kfree(ioc->scsih_cmds.reply);
5555 	kfree(ioc->config_cmds.reply);
5556 	kfree(ioc->base_cmds.reply);
5557 	kfree(ioc->port_enable_cmds.reply);
5558 	kfree(ioc->ctl_cmds.reply);
5559 	kfree(ioc->ctl_cmds.sense);
5560 	kfree(ioc->pfacts);
5561 	ioc->ctl_cmds.reply = NULL;
5562 	ioc->base_cmds.reply = NULL;
5563 	ioc->tm_cmds.reply = NULL;
5564 	ioc->scsih_cmds.reply = NULL;
5565 	ioc->transport_cmds.reply = NULL;
5566 	ioc->config_cmds.reply = NULL;
5567 	ioc->pfacts = NULL;
5568 	return r;
5569 }
5570 
5571 
5572 /**
5573  * mpt3sas_base_detach - remove controller instance
5574  * @ioc: per adapter object
5575  *
5576  * Return nothing.
5577  */
5578 void
5579 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
5580 {
5581 	dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5582 	    __func__));
5583 
5584 	mpt3sas_base_stop_watchdog(ioc);
5585 	mpt3sas_base_free_resources(ioc);
5586 	_base_release_memory_pools(ioc);
5587 	pci_set_drvdata(ioc->pdev, NULL);
5588 	kfree(ioc->cpu_msix_table);
5589 	if (ioc->is_warpdrive)
5590 		kfree(ioc->reply_post_host_index);
5591 	kfree(ioc->pd_handles);
5592 	kfree(ioc->blocking_handles);
5593 	kfree(ioc->device_remove_in_progress);
5594 	kfree(ioc->pend_os_device_add);
5595 	kfree(ioc->pfacts);
5596 	kfree(ioc->ctl_cmds.reply);
5597 	kfree(ioc->ctl_cmds.sense);
5598 	kfree(ioc->base_cmds.reply);
5599 	kfree(ioc->port_enable_cmds.reply);
5600 	kfree(ioc->tm_cmds.reply);
5601 	kfree(ioc->transport_cmds.reply);
5602 	kfree(ioc->scsih_cmds.reply);
5603 	kfree(ioc->config_cmds.reply);
5604 }
5605 
5606 /**
5607  * _base_reset_handler - reset callback handler (for base)
5608  * @ioc: per adapter object
5609  * @reset_phase: phase
5610  *
5611  * The handler for doing any required cleanup or initialization.
5612  *
5613  * The reset phase can be MPT3_IOC_PRE_RESET, MPT3_IOC_AFTER_RESET,
5614  * MPT3_IOC_DONE_RESET
5615  *
5616  * Return nothing.
5617  */
5618 static void
5619 _base_reset_handler(struct MPT3SAS_ADAPTER *ioc, int reset_phase)
5620 {
5621 	mpt3sas_scsih_reset_handler(ioc, reset_phase);
5622 	mpt3sas_ctl_reset_handler(ioc, reset_phase);
5623 	switch (reset_phase) {
5624 	case MPT3_IOC_PRE_RESET:
5625 		dtmprintk(ioc, pr_info(MPT3SAS_FMT
5626 		"%s: MPT3_IOC_PRE_RESET\n", ioc->name, __func__));
5627 		break;
5628 	case MPT3_IOC_AFTER_RESET:
5629 		dtmprintk(ioc, pr_info(MPT3SAS_FMT
5630 		"%s: MPT3_IOC_AFTER_RESET\n", ioc->name, __func__));
5631 		if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
5632 			ioc->transport_cmds.status |= MPT3_CMD_RESET;
5633 			mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
5634 			complete(&ioc->transport_cmds.done);
5635 		}
5636 		if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
5637 			ioc->base_cmds.status |= MPT3_CMD_RESET;
5638 			mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
5639 			complete(&ioc->base_cmds.done);
5640 		}
5641 		if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
5642 			ioc->port_enable_failed = 1;
5643 			ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
5644 			mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
5645 			if (ioc->is_driver_loading) {
5646 				ioc->start_scan_failed =
5647 				    MPI2_IOCSTATUS_INTERNAL_ERROR;
5648 				ioc->start_scan = 0;
5649 				ioc->port_enable_cmds.status =
5650 				    MPT3_CMD_NOT_USED;
5651 			} else
5652 				complete(&ioc->port_enable_cmds.done);
5653 		}
5654 		if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
5655 			ioc->config_cmds.status |= MPT3_CMD_RESET;
5656 			mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
5657 			ioc->config_cmds.smid = USHRT_MAX;
5658 			complete(&ioc->config_cmds.done);
5659 		}
5660 		break;
5661 	case MPT3_IOC_DONE_RESET:
5662 		dtmprintk(ioc, pr_info(MPT3SAS_FMT
5663 			"%s: MPT3_IOC_DONE_RESET\n", ioc->name, __func__));
5664 		break;
5665 	}
5666 }
5667 
5668 /**
5669  * _wait_for_commands_to_complete - reset controller
5670  * @ioc: Pointer to MPT_ADAPTER structure
5671  *
5672  * This function waiting(3s) for all pending commands to complete
5673  * prior to putting controller in reset.
5674  */
5675 static void
5676 _wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
5677 {
5678 	u32 ioc_state;
5679 	unsigned long flags;
5680 	u16 i;
5681 
5682 	ioc->pending_io_count = 0;
5683 
5684 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5685 	if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
5686 		return;
5687 
5688 	/* pending command count */
5689 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
5690 	for (i = 0; i < ioc->scsiio_depth; i++)
5691 		if (ioc->scsi_lookup[i].cb_idx != 0xFF)
5692 			ioc->pending_io_count++;
5693 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
5694 
5695 	if (!ioc->pending_io_count)
5696 		return;
5697 
5698 	/* wait for pending commands to complete */
5699 	wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
5700 }
5701 
5702 /**
5703  * mpt3sas_base_hard_reset_handler - reset controller
5704  * @ioc: Pointer to MPT_ADAPTER structure
5705  * @type: FORCE_BIG_HAMMER or SOFT_RESET
5706  *
5707  * Returns 0 for success, non-zero for failure.
5708  */
5709 int
5710 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
5711 	enum reset_type type)
5712 {
5713 	int r;
5714 	unsigned long flags;
5715 	u32 ioc_state;
5716 	u8 is_fault = 0, is_trigger = 0;
5717 
5718 	dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: enter\n", ioc->name,
5719 	    __func__));
5720 
5721 	if (ioc->pci_error_recovery) {
5722 		pr_err(MPT3SAS_FMT "%s: pci error recovery reset\n",
5723 		    ioc->name, __func__);
5724 		r = 0;
5725 		goto out_unlocked;
5726 	}
5727 
5728 	if (mpt3sas_fwfault_debug)
5729 		mpt3sas_halt_firmware(ioc);
5730 
5731 	/* wait for an active reset in progress to complete */
5732 	if (!mutex_trylock(&ioc->reset_in_progress_mutex)) {
5733 		do {
5734 			ssleep(1);
5735 		} while (ioc->shost_recovery == 1);
5736 		dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
5737 		    __func__));
5738 		return ioc->ioc_reset_in_progress_status;
5739 	}
5740 
5741 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5742 	ioc->shost_recovery = 1;
5743 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5744 
5745 	if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
5746 	    MPT3_DIAG_BUFFER_IS_REGISTERED) &&
5747 	    (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
5748 	    MPT3_DIAG_BUFFER_IS_RELEASED))) {
5749 		is_trigger = 1;
5750 		ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5751 		if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
5752 			is_fault = 1;
5753 	}
5754 	_base_reset_handler(ioc, MPT3_IOC_PRE_RESET);
5755 	_wait_for_commands_to_complete(ioc);
5756 	_base_mask_interrupts(ioc);
5757 	r = _base_make_ioc_ready(ioc, type);
5758 	if (r)
5759 		goto out;
5760 	_base_reset_handler(ioc, MPT3_IOC_AFTER_RESET);
5761 
5762 	/* If this hard reset is called while port enable is active, then
5763 	 * there is no reason to call make_ioc_operational
5764 	 */
5765 	if (ioc->is_driver_loading && ioc->port_enable_failed) {
5766 		ioc->remove_host = 1;
5767 		r = -EFAULT;
5768 		goto out;
5769 	}
5770 	r = _base_get_ioc_facts(ioc);
5771 	if (r)
5772 		goto out;
5773 
5774 	if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
5775 		panic("%s: Issue occurred with flashing controller firmware."
5776 		      "Please reboot the system and ensure that the correct"
5777 		      " firmware version is running\n", ioc->name);
5778 
5779 	r = _base_make_ioc_operational(ioc);
5780 	if (!r)
5781 		_base_reset_handler(ioc, MPT3_IOC_DONE_RESET);
5782 
5783  out:
5784 	dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: %s\n",
5785 	    ioc->name, __func__, ((r == 0) ? "SUCCESS" : "FAILED")));
5786 
5787 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5788 	ioc->ioc_reset_in_progress_status = r;
5789 	ioc->shost_recovery = 0;
5790 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5791 	ioc->ioc_reset_count++;
5792 	mutex_unlock(&ioc->reset_in_progress_mutex);
5793 
5794  out_unlocked:
5795 	if ((r == 0) && is_trigger) {
5796 		if (is_fault)
5797 			mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
5798 		else
5799 			mpt3sas_trigger_master(ioc,
5800 			    MASTER_TRIGGER_ADAPTER_RESET);
5801 	}
5802 	dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
5803 	    __func__));
5804 	return r;
5805 }
5806